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*e use of natural language processing (NLP) methods and their application to developing conversational systems for health
diagnosis increases patients’ access to medical knowledge. In this study, a chatbot service was developed for the Covenant
University Doctor (CUDoctor) telehealth system based on fuzzy logic rules and fuzzy inference. *e service focuses on assessing
the symptoms of tropical diseases in Nigeria. Telegram Bot Application Programming Interface (API) was used to create the
interconnection between the chatbot and the system, while Twilio API was used for interconnectivity between the system and a
short messaging service (SMS) subscriber. *e service uses the knowledge base consisting of known facts on diseases and
symptoms acquired from medical ontologies. A fuzzy support vector machine (SVM) is used to effectively predict the disease
based on the symptoms inputted. *e inputs of the users are recognized by NLP and are forwarded to the CUDoctor for decision
support. Finally, a notification message displaying the end of the diagnosis process is sent to the user. *e result is a medical
diagnosis system which provides a personalized diagnosis utilizing self-input from users to effectively diagnose diseases. *e
usability of the developed system was evaluated using the system usability scale (SUS), yielding a mean SUS score of 80.4, which
indicates the overall positive evaluation.

1. Introduction

Remote diagnosis systems are becoming increasingly pop-
ular and accurate, with enormous advantages such as cost-
effectiveness, fast and reliable decision support for medical
diagnostics, and treatment and prevention of disease, illness,
injury, and other physical and mental damages in human
beings. *e rise in remote health services (or telehealth)
offered by healthcare institutions coincided with the evo-
lution of assisted living systems and environments, aiming to
widen the possibility for older and disadvantaged people to
access appropriate healthcare services and thus improve
their health status and clinical outcome [1]. With the in-
crease in the innovation of medical technologies, there is a

need to adopt medical expert systems that will oversee and
control diagnosis and treatment processes [2]. Medical di-
agnostic processes carried out with the aid of computer-
related technology which is on the rise daily have improved
the experience and capabilities of physicians to make an
effective diagnosis of diseases while employing novel signal
processing techniques for analysis of patients’ physiological
data [3, 4] and deep neural networks for decision support
[5].With the rise of the artificial intelligence (AI) techniques,
the chatbots have appeared as a promising direction in
streamlining the communication between doctors and pa-
tients [6]. Such chats are becoming increasingly popular as
remote health interventions are implemented in the form of
the synchronous text-based dialogue systems [7]. Patients
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with chronic diseases could make the most advantage from
the use of chatbots which can continuously monitor their
condition, provide reliable up-to-date information, and
remind of taking medication [8]. For the effective use of
chatbots in the healthcare domain, the chatbot technology
need advanced reasoning capabilities based on the for-
malization of medical knowledge (semantics) and health
state of patients coupled with language vocabularies and
dialogue engines [9].

*e natural language processing (NLP) technology can
serve as an interaction between computers and humans
using linguistic analysis and deep learningmethods to obtain
knowledge from an unstructured free text [10]. *e NLP
systems have shown their uniqueness and importance in the
areas of information retrieval mostly in the retrieval and
processing of large amount of unstructured clinical records
and return structured information by user-defined queries.
In general, the NLP system is aimed at representing explicitly
the knowledge that is expressed by the text written in a
natural language. *ere are few applications of the NLP
techniques in diagnosing diseases despite the enormous
amount of text-based information, which can be retrieved
from patients’ self-narrations [11]. *e main challenges
addressed by the application of NLP for medical records are
flexible formatting, structure without sentences, missing
expected words and punctuation, unusual parts of speech
(POS), medical jargon, and misspellings [12]. Linguistic
structures such as coreferences make medical texts difficult
to be interpreted [13]. Moreover, unique linguistic entities
such as medical abbreviations make the inference of
knowledge from medical texts much harder [14].

*is study introduces the use of the NLP model via an
SMS and a chatbot platform to improve the health self-
assessment and decision support in digital healthcare sys-
tems.*e extraction of knowledge from the electronic health
record (EHR) is a growing area of interest in medicine, and
the use of electronic medical records (EMRs) at the
healthcare center and on the cloud [15] has provided a vast
amount of data to be analyzed. An EMR is a digital record of
health-related information that is created, collected, and
managed by medical experts [16]. Compilation of existing
and available medical data complications includes inte-
grating NLP into multiple EMRs, ensuring privacy and
security of patients’ data [17] and clinical validation of a tool.
All these can be overwhelming to medical research for
improving patient care. However, the application of NLP
techniques to screen patients and assist medical experts in
their diagnosis would serve as a boost in successfully im-
proving healthcare services through effective analysis of
narrative text of symptoms provided by a patient.

For example, Langer et al. [18] used several NLP tools
along with classification methods to process the drug-related
questions. *ey developed a natural language-based inter-
face that enables the users to phrase their queries and get an
accurate result up to 81% in classifying drug-related ques-
tions. Pendyala et al. [19] presented an application which
allows machines to take on the function of life support. *e
focus of the study was based on medical diagnosis, and an
experiment was conducted to show the relationship of

information retrieval and text mining to the medical diag-
nosis problem. *e study concludes that the proposed
system would help in improving the goals of providing a
ubiquitous medical diagnosis. Fernandez-Millan et al. [20]
presented a rule-based expert system using the list of likely
diseases regarding laboratory test results for diagnosis. *e
authors concluded that the proposed system clinically gave a
better accuracy and speed, thereby improving the efficiency
and quality of service. Atutxa et al. [21] used deep learning
models to extract the International Classification of Diseases
(ICD) codes from the death certificates written in a regular
natural language, obtaining an F-score of 0.963, 0.838, and
0.952 for Hungarian, French, and Italian, respectively.
Combi et al. [22] proposed an NLP method for the trans-
coding of natural text descriptions of adverse drug reactions
intoMedDRA standard terms, reaching an average precision
and recall of 91.8% and 86.9%. Evans et al. [23] analyzed
patient safety incident reports written in free text to cate-
gorize incident type and the severity of outcome, reaching an
accuracy of 0.891 and 0.708, respectively. Kloehn et al. [24]
generate explanations for complex medical terms in Spanish
and English using WordNet synonyms and summaries, as
well as the word embedding vector as a source of knowledge.
Sarker et al. [25] used fuzzy logic and set theory-based
methods for learning from a limited number of annotated
examples of unstructured answers in health examinations
for recognizing correct concepts with an average F1-measure
of 0.89. Zhou et al. [26] used deep learning models pre-
trained on the general text sources to learn knowledge for
information extraction from the medical texts. Lauraitis
et al. [27] used text input acquired by a smartphone app for
evaluation of cognitive and motor deficits for people
showing symptoms of central nervous system (CNS) dis-
orders as a part of self-administered cognitive testing
(SAGE) tests.

*e development of the medical domain-oriented
conversational chatbots has been addressed by several re-
searchers. Such conversational agents powered by AI
techniques may serve patients with minor health concerns
while allowing medical doctors to allocate more time to treat
more serious patients [28] or find suitable donors [29]. A
chatbot-powered healthcare service can promptly respond to
the problems that arise in daily life and to the health state
changes of people with chronic diseases such as obesity,
diabetes, or hypertension [30]. For example, Ahmad et al.
[31] developed a chatbot that is able to advice on the kind of
drugs to be taken based on the data submitted by the user.
Avila et al. [32] developed a chatbot to find the best prices for
medicines and suggest their best possible substitutes. Bao
et al. [33] suggested a hybrid model composed of a
knowledge graph and a textual similarity model to construct
a system for responding to medical questions using Hier-
archical BiLSTMAttentionModel (HBAM). Chaix et al. [34]
developed a chatbot for patients with breast cancer to
provide support and answers to their concerns on their
disease as well as to remind taking the prescribed drugs.
Denecke et al. [35] developed a mobile app with a chatbot
that uses the elements of the cognitive behavior therapy to
support mentally ill people in addressing their psychological
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problems. Harilal et al. [36] developed a chatbot app aimed
at supporting empathetic conversations, sensing the asso-
ciated emotions, and extending medical advice for people
with depression. Huang et al. [37] developed an AI-powered
chatbot for promoting healthy lifestyle and providing ad-
vices for weight management. Hussain and Athula [38]
developed a chatbot that uses Media Wiki API to extract
information from Wikipedia to supplement the chatbot’s
knowledge for advising diabetic patients on diabetes man-
agement. Kökciyan et al. [39] integrated the data from
commercial health sensors, EHR, and clinical guidelines
with a conversational chatbot that provides further expla-
nations about their overall well-being based on the argu-
mentation-based dialogue. Ni et al. [40] suggested a
knowledge-driven primary care chatbot system that has an
analytic NLP-based engine for understanding the descrip-
tions of patients’ symptom, a reasoner for mapping symp-
toms to possible causes, and a question generator for
creating further dialogue questions. On the other hand, Zini
et al. [41] developed a deep learning framework-based
conversational agent to represent a virtual patient that can be
used for teaching medical students on patient examination.

Machine learning algorithms, especially SVM, have
shown promising results in classifying free text such as
Georgian language in medical records [42]. SVM with a
polykernel was used for classifying primary care patient
safety incident report content and severity [23]. However,
authors claimed that improving definitions and increased
training samples of select categories will further improve
performance of the system. Deep learning methods were
proposed by Zhou et al. [26]. *e authors presented transfer
learning methods based on the traditional multilayer neural
network (NN) model to develop a clinical information
extraction system. Other methods in existing studies include
an interactive NLP tool for identifying incidents in radiology
reports presented by Trivedi et al. [43]. *e authors
implemented and assessed usability based on an open-ended
questionnaire and the system usability scale (SUS). *e
summary of the selected literature is depicted in Table 1.

Medical chatbot has been designed and implemented in
various clinical areas for developing conversational tools
with wide access to medical knowledge and healthcare is-
sues. Existing chatbots are designed for either generic or
specific disease purposes. A novel approach based on the AI
method was proposed by Madhu et al. [46] for designing a
simple and interactive medical assistance chatbot for
medicine dosage intake considering the age and weight of
patients. Mandy chatbot system was designed to assist
healthcare staff in automating patient intake process [40].
*e proposed chatbot is based on three sections which are
the mobile app front for patient interaction, the diagnosis
section, and the doctor’s interface for assessing patient’s
records. *e chatbots combine NLP with knowledge-driven
diagnosis abilities. Similarly, Siangchin and Samancheun
[47] developed a chatbot application using the auxiliary NLP
library. *e system was further compared with traditional
ICD-10 application based on analytic hierarchy process
(AHP) for analyzing, selecting, and classifying diabetes
mellitus, trauma, and external causes. *e integration of

NLP and machine learning algorithms has also played a key
role in creating chatbot application for disease prediction
and treatment recommendation [48]. Deep learning
framework was proposed by Zini et al. [41] for enhancing
virtual patients’ conversational skills. *e authors integrated
long-short-term memory networks and CNN for sentence
embeddings in a given QA script. Other methods include a
study by Roca et al. [8] which introduced the chatbots-
patient interaction system for specific chronic disease pso-
riasis. Further study from Rosruen and Samanchuen [49]
also developed an intent-based approach chatbot known as
MedBot using Dialogflow for medical consultant services.
*e authors claimed that the proposed system was able to
maximize user’s convenience, increase service capability,
and reduce operational cost.

*e successful adoption of chatbot technology from
Table 2 has shown effective interaction between users and
machines especially in various domains within the health-
care system. However, there are some limitations with some
of the methods proposed in the literature such as challenges
associated with the static local knowledge based in chatbots
and time consumption during training especially for a
specific domain [38]. *erefore, there is a need for a future
study to develop chatbot software with more scalability,
increased data sharing and reusability, and improved
standard conversation model [8].

*e continuous growth of mobile technology has af-
fected every facet of human life around the globe as its
support of healthcare objectives through telemedicine, tel-
ehealth, and m-health [52] has helped to diagnose and treat
patients at low cost especially in the developing countries,
where there are limited options of diagnosis and treatment.
Out of various communication media available on mobile
devices, short messaging service (SMS) has proven to be
unique and reliable due to its low cost, reliable delivery,
personal to users, and not Internet-oriented service [53, 54].
Considering the need to provide good medical care to ev-
eryone including rural dwellers with poor electricity and
slow Internet connections, it is therefore important to in-
tegrate SMS with a medical diagnosis system, thus estab-
lishing an SMS-medical diagnosis system to best meet the
needs of a common man [55]. Considering the overall
progress and research efforts made by researchers in im-
proving e-health systems and designing decision support
systems (DSS) [56–58], there is still much work to be done
for effective understanding and identifying key features
based on NLP for enhancing diagnosis, thus improving good
health and well-being of the global society at large.

Summarizing the existing medical diagnosis systems
(MDS) often adopts poor decisions due to interpretation of
the text-based input provided by the patient. *erefore,
there is a need to automate MDS for efficient diagnosis of
diseases and support their decisions based on the severity of
symptoms.Moreover, the medical experts need a platform to
keep track of large text-based chunk of knowledge narrated
by patients in a natural language, hence improving
healthcare delivery for remote patients.

*e contribution of this paper is as follows: (1) we have
developed a text-based medical diagnosis system which
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provides a personalized diagnosis utilizing self-input from
users to effectively diagnose diseases. (2) *e proposed
system combines the NLP and machine learning algorithms
for SMS and Telegram bot. (3)*e system is able to diagnose
using a direct approach of the question and answering
technique to suggest a medical diagnosis.

*e structure of the remaining parts of the paper is as
follows. We present and discuss our methodology and the
algorithm used in Section 2. In Section 3, we evaluate and
discuss the results. We present conclusions and outline
future work in Section 4.

2. Design Methodology

2.1. Outline of the Architecture. *e study assesses the
clinical data needs and requirements in diagnosing the
tropical diseases in Nigeria and assesses the patients’ clinical
data found in EHRs or manual records. *e architecture of
the proposed text-based medical diagnosis system is
depicted in Figure 1.

*e steps involved in the proposed text-based medical
diagnosis system are as follows: (1) description of the
knowledge base; (2) preprocessing of text-based documents;

Table 1: Summary of related work on the medical diagnosis system.

References Methods Contributions Limitations

Ayush et al.
[44]

Developed integral model including
probability and fuzzy models for

determination of human constitutional
types

Proposed MDES system creates and supports
decision system to users via providing reliable

information about disease manifestation

It has not enough practical
evidence for effectiveness and

efficiency

Korenevskiy
[45] Synthesis of fuzzy decision rules Simple to calculate with high possibility of

diagnosis and predetermined level of reliability
It requires larger training

samples

Atutxa et al.
[21]

ICD-10 encoding based on neural
networks

Multilingual ICD-10 coding. *e method is
interpretable and it outperforms alternative

approaches.

Worse performance was
detected on larger datasets

Combi et al.
[22] MagiCoder, an NLP algorithm

Simple, efficient in terms of computational
complexity for Italian pharmacovigilance

language

Inability to handle negations
in textual medical records

Lu et al. [14]
Combined classic enhanced sequential
inference model (ESIM) and BiLSTM

network

Achieved higher accuracy compared to existing
methods without knowledge enhanced

Challenges of concepts with
multiple definition was not

addressed

Kloehn et al.
[24]

Proposed a novel algorithm
SubSimplify

Improved quality in English and Spanish by
providing multiword explanations for difficult

terms

*ere is a possibility of the
proposed model generating
incomplete explanations

Sarker et al.
[25]

Combination of fuzzy matching and
intersection Increased accuracy against human annotations Inability to detect negations in

expressions

Table 2: Summary of the literature based on medical chatbots.

References Method Contributions Domain

Bao et al. [33] Hybrid model chatbot that combines knowledge
graph and a text similarity model

Proposed method was able to identify and reduce
similarity in large QA dataset Generic

Harilal et al.
[36]

Developed CARO, a chatbot app, which is
capable of performing empathetic conversations

and providing medical advice

Proposed method has the ability to sense the
conversational context, intent, and associated

emotions
Depression

Bibault et al.
[28]

Vik chatbot: blind, randomized controlled
noninferiority trial

Proposed method was able to improve
conversation between chatbot and physician Breast cancer

Bali et al. [50] Ensemble learning using advanced NLU
techniques

Improved accuracy in diabetes prediction when
compared to generic health prediction

Diabetes and
generic

Cameron et al.
[51]

Proposed iHelper using questionnaire
developed by chatbottest

Recommendations to increase the usability of a
chatbot for mental healthcare Mental healthcare

Chaix et al.
[34] Vik chatbot Evaluated a yearlong of conversations between

patients with breast cancer and a chatbot Breast cancer

Chung and
Park [30]

Chatbot-based healthcare service framework in
cloud

Provides a smooth human-machine interaction
for the chatbot healthcare service Accident response

Hussein and
Athula [38]

Virtual Diabetes Management System (VDMS)
using modified open source AIML web-based

chatbot

Proposed method provides a more robust
knowledge using Wikipedia knowledge

Generic and
diabetes patients

Huang et al.
[37]

AI-based health chatbot known as “Smart
Wireless Interactive Healthcare System”

(SWITCHes)

Proposed system can provide advice to user on
food intake based on calorie order, advice on

physical activities, etc.

Weight control and
health promotion

Ahmad et al.
[31] NLP Ability to give adequate advice on the right type of

medication based on information provided Pharmacy
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(3) tagging of document; (4) extraction of answer; and (5)
ranking of candidate answers.

*e implementation of the diagnosis system framework
was done using the Python language due to the following
functionalities: cross-platform and high availability of third-
party libraries for tasks relating to machine learning and
NLP. *e system uses Python library packages to access the
machine learning functions and NLP needed for
categorization.

2.2. Knowledge Base. *e knowledge base is the principal
source of data in a question and answering system, and it
could be in the structured or unstructured format. To de-
velop the knowledge base, the information from a medical
database system was collected and divided into categories
which are referred to as context knowledge of the disease.

*e main sources of information in the knowledge base
are as follows: (1) WordNet [59], which provides a lexical
database and defines the relationships of words and phrases;
(2) YAGO (Yet Another Great Ontology) [60], an open
source knowledge base which we use to construct a
knowledge graph of common knowledge entities; (3) UMLS
(Unified Medical Language System), which combines many
medical vocabularies, including ICD-10-CM and SNOMED
CT, and is used to link medical terms and extract medical
concepts, relationships, or knowledge; UMLS is recognized
as a comprehensive knowledge source in the healthcare
domain [61]; and (4) Disease Ontology (DO) [62], which
contains a knowledge base of over 10,000 human diseases.

We used WordNet as WordNet is used in most of the
question-answering systems, and it has proved to be useful
when dealing with words. An access to WordNet is
implemented via WordNet HTTP API. An access to YAGO
is implemented using a SPARQL [63] query engine, which
sends queries to the SPAQL endpoint and returns the se-
mantic fact triples (subject-predicate-object). An access to
UMLs is implemented via UMLS REST API using the Py-
thon language. An access to DO metadata for a specific DO
term is by using the REST metadata API by constructing a
HTTP request. *e knowledge base is specified using

eXtensible Meta Language (XML), which ensures a common
way to specify and share structurally organized data that are
not dependent of an application.

For knowledge representation, we have adopted a three-
layer model of disease-symptom-property (DSP) originally
suggested in [64] as shown in Figure 2.*e knowledge in the
knowledge database is stored as resource description
framework (RDF) triples (property, symptom, and disease),
while the computational model is adopted from the disease
compass [65], which allows us to query the causal chains of
diseases.

Our knowledge base includes 71 instances of diseases
(mainly tropical ones) and 542 pieces of information. *e
model (see Figure 3) uses the knowledge from the knowledge
database and applies the fuzzy rules described in Section 2.6.

2.3. Communication System. *e communication system
was implemented based on the knowledge base for the ef-
ficient communication of users through Telegram or SMS
with the medical doctor using question-answer rules. Each
diagnosis question has certain features and attributes that
give additional information about the request. *e different
attributes of a request/question can be as follows:

(1) Diagnosis question: the actual diagnosis question
that will be sent across to the user

(2) Response: the list of responses that will be shown to
the user that denote the answers that he/she can send
to the system via the Telegram GUI or SMS

(3) Serial id: the order in which the question should be
asked

*e types of questions are as follows.

2.3.1. Basic Data Questions. *ese are the preliminary
questions asked once a communication has been established
by the user and the system. *ese questions are basic in-
formation about the users, some of which include infor-
mation such as gender, age, height, and weight. *e sample
question sequence is demonstrated in Algorithm 1.

Symptoms
by text

User/patient

Text
document

Keyword extraction and
matching

Symptoms

Diagnosis system

SVM classifier

Result

Knowledge
base

Figure 1: *e architecture of the proposed system.
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2.3.2. Symptom-Related Questions. *ese questions are the
questions that will be asked from users to confirm whether
they are showing signs of a symptom or not. *ey can gather
specific responses based on predetermined constraints or
either binary (yes/no) responses. *ese questions are sub-
divided into two types:

(i) Target diagnosis questions: these are questions that
confirm if a symptom exists or not

(ii) Linked diagnosis questions: these are question used
for asking more information about a symptom in
case the user replies affirmatively to the target
question of that symptom

Each of these questions is designed such that they give an
affirmative response of the existing symptoms or non-
existing symptoms. For instance, a top diagnosis question
that will ask the users of the presence of certain symptoms is
represented in Algorithm 2.

2.4. Content Extraction and Text Preprocessing. *e content
package is responsible for extracting the content knowledge
from an SMS. For convenience, the package provides several
different content extractors that specialize on extracting
different sets of data from an SMS. *e content extractors
perform text processing using the NLP package. When a
patient sends an SMS of his or her symptoms, the SMS

receiver of the system receives it and passes the text (SMS
body) to the NLP module, which looks at the text, makes
necessary corrections if needed, and extracts important
keywords.

*e text processing operations include three major steps:
noise removal, tokenization of document sentences, and
splitting of sentences.

2.4.1. Noise Removal. Text contains a sequence of characters,
both relevant and irrelevant characters. *erefore, noise is
removed from the raw documents leaving only relevant
content which is related to subjects for further processing.

2.4.2. Tokenization. *is involves the fragmentation of
strings of characters into its lexical elements. In this context,
sentence splitting process was used for splitting of the text
into a separate sentence. Here, we used the natural language
toolkit (NLTK) tokenizer.

2.4.3. Tagging of Document. Useful information from the
knowledge source is tagged for identifying quality infor-
mation from the specific document. *e names of diseases
were used as labels for documents, and tools such as parser
and WordNet were used for document tagging.

2.4.4. Parser. Stanford Parser was used as a tool for gen-
erating parts of speech (POS) of each word inputted by the
user query, and, in addition, the candidate answers selected
from the knowledge database. *e WordNet was used to
discover the relationship between the words of the user
query and the data source. Words are grouped into nouns,
verbs, adjectives, and adverbs.

2.4.5. Term Matching. *en, the system performs querying
of the knowledge base to match the extracted words with
information stored in the knowledge base.

2.5. Feature Selection and Extraction. *e extracted collec-
tion of important words then was transformed into a feature
vector suitable for use with the machine learning algorithm.
For transformation into the feature vector, we used the word
embedding [66] technique. Word embeddings are the
representation of words in the semantic multidimensional
space. For our system, we have adopted an available word
embedding Glove [67], which is based on Twitter data,
because it provides a good approximation to common
English for an informal communication channel. For an
effective training of data, the text messages were pre-
processed and converted into feature vectors. *is was
achieved based on feature extraction using the word em-
beddings. *e feature vector of the unlabeled document was
then given to the classifier’s decision function to return a
category for the unlabeled document.

Diseases
d1

s1

P1

dn

sm

Pq

Symptoms

Properties

Figure 2: *ree-layered “disease-symptom-property” model of
knowledge representation.

Knowledge
base

Diseases Symptoms

Rules:
if A then B

Figure 3: Integration of the knowledge representation model with
fuzzy logic rules.
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2.6. Fuzzy Reasoning Module. Its primary purpose is to use
fuzzy logic-based algorithms [68] to read and interpret the
responses from the user, track andmonitor all the symptoms
that the user has already responded to, and to administer
questions to the user that are most relevant based on the

dataset of diseases that is maintained. Each disease is
modeled as a bucket, where each bucket is associated with a
symptom.*e appropriate fuzzy rules are formulated to deal
with multiple symptomatic diseases. *e algorithms
employed by CUDoctor read the state of these buckets and

def question_data ():
return {
’user_age’ : {
’diagnosis_question’: “What is your age?”,
’diagnosis _response’: [’15-25’, ’25-40’, ’40-50’, ’>50’],
’serial’ : 1
},
’user_weight’ : {
’diagnosis_question’: “What is your weight?”,
’diagnosis _response’: [’40-50 kg’, ’50-70 kg’, ’70-90 kg’, ’>90 kg’],
’serial’ : 2
},
’user_height’: {

’diagnosis_question’: “What is your height?”,
’diagnosis _ response ’ : [’4-5 ft’, ’5-6 ft’, ’6-7 ft’],
’serial’ : 1
},
’user_gender’ : {
’diagnosis_question’’ : “What is your gender?”,
’diagnosis_ response’ : [’Male’, ’Female’, ’Unspecified’],
’serial’ : 3
}

}

ALGORITHM 1: Algorithm showing the samples of basic data questions.

def diagnosis_top_data ():
return {
’fever’ : {
’diagnosis_question’: “Do you have a fever?”,
’diagnosis_response’: [’Yes, High (>103 F)’,’Yes, Mild (101-103 F)’,

’Yes, Very Mild (99 - 101 F)’, no],
},

’head_ache’ : {
’diagnosis_question’ : “Do you have a head ache?”,
’diagnosis_response’ : [yes, no],
},
’body_chills’ : {
’diagnosis_question’ : “Are you experiencing body chills?”,
’diagnosis_response’ : [yes, no],
},

’diarrhea’ : {
’question’ : “Are you having very frequent loose motions?”,
’response’ : [yes, no],
},

’extreme_weakness’: {
’diagnosis_question’: “Do you experience extreme weakness?”,
’diagnosis_response’ : [yes, no],
},

}

ALGORITHM 2: Algorithm showing the samples of top diagnosis questions.
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send the most relevant question to the user. *is helps us
narrow down the number of questions that would be asked
by the system to reach a diagnosis.

*e weighted fuzzy logic rule system is used, where each
fuzzy rule has a weight assigned based on the historic data.
*eMamdani fuzzy logic model of fuzzy inference was used,
in which the IF-THEN statement represents each rule. *e
fuzzy rules were specified as “If x1 is A1 and y1 is B1 then z1
is C1,” where A1, B1, and C1 are fuzzy sets. *e fuzzy rules
are weighted by an assessment of the level of contribution of
the properties and symptoms to diagnosing the disease. *e
crisp dataset D is described by n features and k samples [F1,
F1, . . ., Fn], and the n-dimensional tuple Ti� [a1, a1, . . ., an]
is represented as a kn-dimensional feature vector:

Ti � [≺ μFT1(a1), μFT2(a1), . . . , μFTk(a1)≻, . . . ,

≺ μFT1(an), μFT2(an), . . . , μFTk(an)≻],
(1)

where μFTk(ai) is the membership degree of the fuzzy term
FTk of feature Fi (Fi� ai). If the fuzzy variable Fn has k fuzzy
terms, FT1, FT2, . . ., FTk, then for each value v of Fn, the
fuzzy value is computed as max{μFT1(v), μFT2(v), . . .,
μFTk(v)}.

*e max-min operators were used for implication. In
order to obtain the crisp output, the center-of-gravity
(centroid) defuzzification was employed, where the weights
are expressed by the degree of membership of the value xi
with the concept modeled by the fuzzy set A.

*e process is implemented (Figure 4) as follows:

(1) Fuzzification: transforms the crisp inputs into fuzzy
values. Expert judgement is used for defining the
degree of membership function. During fuzzifica-
tion, a fuzzy rule controller receives input data (fuzzy
variable) and analyzes it according to membership
functions.

(2) Knowledge base: it comprises a fuzzy definition
database and a fuzzy IF-THEN rule base. *e rule
base describes the diseases for each combination of
crisp input variables.

(3) Inference engine: applies the appropriate fuzzy rules
on the input data.

(4) Defuzzification: produces the crisp output values
from the fuzzy values as the results.

*e final decision is made by selecting the fuzzy rule that
achieved the highest score. *e system architecture, which
was adopted from [64], is presented in Figure 5.

2.7. Classification Module. In this study, the choice of our
classifier was dependent on the practical requirements of the
proposed application and the need for a classifier with better
results based on the established literature for document
classification. However, there were specific requirements in
the proposed application which influence the selection of
our classifier such as the computational complexity for the
training and/or testing phase.

Machine learning was used to provide category pre-
diction on the text messages using the fuzzy SVM classifier

[69]. It has only one hyperparameter C, which is a regu-
larization parameter. *e value of the hyperparameter was
tuned by grid search. In a fuzzy SVM, a fuzzy membership
values are used for each data point of SVM, and the SVM is
reformulated such that different input points can make
different contributions to the learning of the decision sur-
face. Here, the fuzzy membership values are calculated using
an algorithm suggested by Le et al. [70]. First, we use
clustering techniques to find clusters of data. Fuzzy mem-
bership values of data points belonging to clusters are set to
1, and fuzzy memberships of other data points are deter-
mined by their distance to the closest cluster, respectively.

*e classifier was trained using a set of training docu-
ments which have been processed by the NLP package and
converted into word embedding used as feature vectors. *e
length of the feature vector is 300 as suggested by Mikolov
et al. [66]. Finally, the feature vectors extracted from the user
answers are passed to the fuzzy SVM model, which suggests
the diagnosis by performing the classification on those
important words contained in the SMS and then sends the
result to the patient via an SMS.

2.8. Graphical User Interface (GUI). *e system initiates a
communication/conversation with the user/patient to ob-
tain more insights about their basic personal data such as
gender, age, height, and weight. Once the basic data are
acquired, the CUDoctor moves to the second stage and
proceeds to query the patient for symptoms based on the
above algorithms. *e Telegram API was used for the GUI
design with an additional custom keyboard that is also
provided by the Telegram API.*e screenshot of a question-
answer subsystem is shown in Figure 6.

*e SMS text request and response were integrated for
communication since the application does not require an
Internet connection, and it is compatible with all mobile
devices. *e python-telegram-API library was used as the
Python wrapper that executes communication with the
Telegram API. It enables easy setting method hooks that are
triggered whenever a function is executed on the part of the
Telegram chatbot. In the same way, the application sends a
request to the Twilio communication API for the SMS text
formatting server for incoming requests and passes re-
sponses to the logical layer for actual processing and pre-
sentation of the result to the client users.*e python-Twilio-
communication-SMS-API library was used as the Python
wrapper that executes communication with the Twilio
communication SMS API. *e SMS interface for diagnosis
conversation is represented in Figure 7.

Fuzzy rule
base

Fuzzy inference
engine

DefuzzifierFuzzifier

Figure 4: Structure of the fuzzy logic-based reasoning module.
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3. Evaluation and Results

3.1. Data Collection. *e data used in this study were col-
lected from a medical database, and an interview was
conducted for extraction of text content from experts and
individuals with knowledge about the various diseases. *e
extracted text content was then stored on the local file of the
system.

3.1.1. Selection of Participants. Selection of respondents was
based on snowball sampling. *e inclusion criteria require
participants who have recently been diagnosed of the disease

we are working on, and/or specialist who is engaged in
clinical research, or having an indebt experience with the
diseases by coming in contact with or treating patients who
in recent times have been diagnosed. To be included for the
questionnaire, the participants must be actively working in
the hospital, responsible for treating patients who have been
to the hospital for treatment on the various selected diseases.
Individuals who do not match any of these inclusion criteria
were excluded. Information extracted for the implementa-
tion of the system was the selected result from some indi-
viduals’ experience about the disease (individuals who can
provide expert information about the selected diseases and
their varying symptoms and individuals who have recently
been diagnosed or hosted in the hospital for the selected
diseases were recruited).

3.2.EvaluationofResults. To evaluate the performance of the
developed service, we used the Bilingual Evaluation Un-
derstudy (BLEU) score [71], which has become a typical
metric for evaluating chatbot services [72, 73]. BLEU scores
an output response from the service as compared to the
reference, where a BLEU score ranges from 0 to 1. Here, we
used BLEU-2, which is based on unigram and bigram
matches between the generated and the reference sentences.
We also used the Recall-Oriented Understudy for Gisting
Evaluation (ROUGE-L) metric [74], which is based on the
longest common subsequence (LCS). *e results are 25.29
for BLEU-2 and 31.56 for ROUGE-L.

3.3. Usability Testing. To perform the usability testing of the
developed system, we followed the recommendations out-
lined by Cameron et al. [51]. We used the system usability
scale (SUS), which is a questionnaire to evaluate the ease of
use of a system using a Likert scale (five-point scale that
varies from strongly disagree to strongly agree).

*e SUS score is able to evaluate usability performance
in terms of effectiveness, efficiency, and overall ease of use.

Patients Doctors

User module
New medical knowledge

Patient’s symptoms and properties

Diagnostic interface

Symptoms and properties

Knowledge update

New medical knowledge

Knowledge base
Fuzzy

inference engine

Diagnostic
result

Figure 5: Architecture of the fuzzy logic inference system.

Figure 6: Telegram graphical user interface.
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SUS is considered as a reliable tool for measuring the us-
ability, and it allows to evaluate a wide variety of products
and services. SUS has become an industry standard, with
references in over 1300 articles and publications [75], which
also includes medical chatbots and other NLP-based medical
diagnostics systems such as presented by Tielman et al. [76]
and Valtolina et al. [77]. SUS is designed to support as-
sessment and comparison of the user experience when
interacting with different tools and is recommended to be
included in any evaluation of health chatbots [44].

SUS has only 10 questions. *e results of an SUS fall
between 0 and 100, while a score of 68 is considered average.
SUS has already been applied before to assess the usability of
chatbots [78, 79]. *e SUS questions are easily adaptable for
use with different types of systems; therefore, it was adapted
to be used for our study. *e SUS questions we asked are
listed in Figure 8.

*e participants of the usability test comprised 27
participants, including 11 females and 16 males, 13 were
aged between 25 and 34, 9 aged between 35 and 44, and 6
aged between 45 and 53. *e study participants have pro-
vided an informed consent to take part in this research.
Usability study lasted less than 45min per session. Infor-
mation booklets informing about the study performed were
distributed to the participants, and the participants were
requested to communicate with the chatbot by using a
mobile phone. All received answers were anonymized.

*e SUS scores were computed using the procedure
provided by Brooke [80]: subtracting 1 from the score for

questions 1, 3, 5, 7, and 9, whereas subtracting the score from
5 for questions 2, 4, 6, 8, and 10 and multiplying the total of
the scores by 2.5 to obtain the final evaluation score.

*e SUS score is assessed as follows:>80.3 (excellent),
68–80.3 (good), 68 (okay), 51–68 (poor), and <51 (bad). As a
result of evaluation, the mean SUS score obtained for
CUDoctor was 80.4, which is above the threshold of 68,
which means that the overall evaluation was excellent. *e
results for all SUS questions are presented in Figure 9. *ey
show that the user provided the worst evaluation for Q2 (“I
found CUDoctor unnecessarily complex”) giving a score of
72.7, but still above the threshold of 68. *e best evaluated
feature was integration (Q5) with a score of 91.6.

3.4. Comparison with Other NLP-Based Services. Several
chatbots with medical-related applications are provided on
social networking platforms such as Facebook. For example,
the FLORENCE bot that reminds the users when to take
their medication and monitors their weight and moods.
SMOKEY warns the users on bad air quality. HealthTap
provides answers using a database of knowledge that con-
tains similar questions. Google provides the Dialogflow
Application Programming Interface (API) for the integra-
tion of NLP to the target applications. Woebot provides a
cognitive behavior therapy service for patients with and has
been tested with depression [81]. It allowed to reduce their
symptoms of depression as evaluated by the depression
questionnaire PHQ-9. XiaoIce is a social chatbot that

Figure 7: An example of SMS diagnosis conversation in natural language.
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emphasizes emotional connection [82], while using deep
learning for meaningful response dialogue tasks. Chatbots
are also used in suicide prevention and cognitive behavioral
therapy, aiming at risk groups such as HARR-E and Wysa
[83]. *e main difference of the system described in this
paper is that the service is delivered over the SMS rather than
social networks, which require very good Internet con-
nectivity often unavailable in remote rural regions of de-
veloping countries. Moreover, the described solution focuses
on the niche domain of tropical disease symptom assess-
ment, and we are not aware of any other NLP-based systems
focusing on this domain of application.

4. Conclusion and Future Work

*e timely access to healthcare avoiding unnecessary time
wastage of patients is a major issue in sub-Saharan Africa.
However, considering the exponential growth of mobile
users and the need for a real-time medical diagnosis as-
sistance tool, it is therefore important to explore the need for
a cost-effective telehealthcare platform, which allows the
earlier detection of diseases and effective communication
with patients (users) to a diagnosis system (remote doctor at

proxy). Based on the highlighted needs, this study was able
to successfully build a text-based medical diagnosis system,
which provides a personalized diagnosis utilizing self-input
response from users to effectively suggest a disease diagnosis.
*e proposed system was able to combine NLP and machine
learning algorithm for SMS and Telegram bot. *e system
was able to suggest a diagnosis using a direct approach of the
question and answering technique to offer a diagnosis. *e
limitation of the system is that it is not secure against the
false-positive cases of falsely suggesting the disease; there-
fore, a final diagnosis still must be confirmed by the medical
doctor.

*e future recommendations include the automation of
this medical diagnosis system to easily recognize diseases,
recommend treatments, prescribe a medication, and per-
form medication adherence. Audio interaction will be in-
corporated to make the system more interactive. *ese
improvements will serve towards reducing cost and mor-
tality rate, thereby reducing the workload burden onmedical
doctors in underdeveloped regions.
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Mobile health (m-health) is the term of monitoring the health usingmobile phones and patient monitoring devices etc. It has been
often deemed as the substantial breakthrough in technology in this modern era. Recently, artificial intelligence (AI) and big data
analytics have been applied within the m-health for providing an effective healthcare system. Various types of data such as
electronic health records (EHRs), medical images, and complicated text which are diversified, poorly interpreted, and extensively
unorganized have been used in the modernmedical research.+is is an important reason for the cause of various unorganized and
unstructured datasets due to emergence of mobile applications along with the healthcare systems. In this paper, a systematic
review is carried out on application of AI and the big data analytics to improve the m-health system. Various AI-based algorithms
and frameworks of big data with respect to the source of data, techniques used, and the area of application are also discussed. +is
paper explores the applications of AI and big data analytics for providing insights to the users and enabling them to plan, using the
resources especially for the specific challenges in m-health, and proposes a model based on the AI and big data analytics for
m-health. Findings of this paper will guide the development of techniques using the combination of AI and the big data as source
for handling m-health data more effectively.

1. Introduction

Mobile health is defined as the practice of applying mobile-
based devices such as the mobile phones, patient monitoring
devices, personal digital assistants (PDAs), and other
wireless devices for the medical and public health.+erefore,
this process requires the application of mobile phone’s one
of the most important benefits called the voice and short
messaging service (SMS). At present, more than 500 projects
are there for the m-health and nearly 40,000 medical-based
mobile applications are also available worldwide [1]. +ere
are mobile-based medical devices which are designed spe-
cifically for monitoring the heart rate [2], level of glucose [3],
blood pressure [4], tracking the patterns of sleep [5], and also
for monitoring the activity of brain [6]. It also uses more
complicated operations and services such as the General
Packet Radio Service (GPRS), 3rd and 4th generation mo-
bile-based technologies, Global Positioning System (GPS),

and Bluetooth-based technology. Big data [7–9] in the
healthcare contains the medical images [10], clinical data of
doctor, doctors’ prescriptions and notes, computed to-
mography (CT) images, MRI scans, laboratory data, doc-
uments from the drugstore, files from the insurance EPR
data, and other data related to the administrative operations.
+is is increasingly becoming favored within the worldwide
communities of healthcare. However, there is a deficiency of
understanding the most suitable framework based on the
computational methodologies which are required for this
approach. Big data analytics is the process of scrutinizing
huge volume of data from various kinds of sources of data
[11, 12]. +ese data are of different presentations and de-
signs. Various analytical methods such as data mining and
AI can be put in to examine the data. Approaches for big
data analytics can be used to identify the abnormalities
obtained as a result of combining large volume of data from
different sources of data. Big data has become closely
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associative with the mobile health in recent years [13]. +e
main problems of big data analytics and the m-health are yet
to be solved.

Various works have been done recently as proposals
[14–28] or review [15, 27, 29–32] on m-health and appli-
cations of AI and big data analytics in healthcare sector.
Applications of mobile phones have been successfully
proven in medical-based applications for monitoring and
have enhanced in the possibilities of assessing clinical data
[27, 33]. Methods such as experience sampling methods
(ESMs) and ecological momentary assessment (EMA) were
applied in the process of assessing the patient’s relationships
between events and disease course [28]. +ese methods,
which depend on providing contents which are informative
in nature and questionnaires which were self-administered,
reduce the recall since these applications will process in real
time [34]. Recently, mobile devices can also able to perform
passive gathering of data, i.e., to gather the information
about the users without any effort on their part. Processes
such as actigraphy, geolocation, and communication-based
activities are usual features of current smartphones, and they
can also be used in collecting the patient’s behavior using the
m-health-based systems. +ese m-health-based applications
were also used to remotely monitor various physical and
mental conditions [31]. Mobile-based health application can
use various sensors for generating self-report of a patient.
+e authors in [26] proposed a mobile application for
recognizing the human activity from inertial sensors to
determine the user’s activity level during the recording
process. +e signal from heart rate and galvanic skin re-
sponse are also recorded in by their method to determine the
emotional state of a user.

Following are the provocations that are still under
consideration from the perspective of m-health:

(i) Better perception of the organized and unorganized
sources of data produced from different sources of
mobile and information.

(ii) Smart implementation and conversion of the big
data of health data occurred from the users of 5G
mobile health. +is should be performed in order to
compare the most awaited intelligent and pre-
defined change of behavior or convincing tools for
inspiring more users for comfort and improvement
of their health.

(iii) Resilient, precise, and secure methods for data
analytics for the explication of huge data of medical
imaging and other relevant diagnostic data which
are created and transferred from the future gen-
eration of mobile imaging devices should be
developed.

+e paper explores the applications of AI and big data
analytics for providing insights to the users and enabling
them to plan, uses resources especially for the specific
challenges in m-health, and a proposes a model based on AI
and big data analytics for m-health.

+e remainder of the paper is organized as follows.
Section 2 shows the motivation and scope of this work along

with the systematic reviews and meta-analysis process.
Section 3 depicts the definition of m-health and its schematic
representation along with the mobile sensors and their
applications in m-health. Section 4 explains a detailed review
about the applications of AI in m-health along with the
performance measurement indicators used to examine the
quality of m-healthcare. Section 5 presents the applications
of big data analytics in m-health followed by the additional
summary of its applications in the healthcare sector. Section
6 presents the proposed model based on the AI and big data
analytics for m-health. Section 7 depicts the limitations of
the proposed review. Conclusion and the future enhance-
ments are shown in Section 8.

2. Motivation and Scope

At present, there are many papers that have been published
recently as proposals or review onm-health and applications
of AI and big data analytics in healthcare sector. +is paper
outlines the characteristics and applications, scope/health-
care subarea, timeframe, and number of papers reviewed.
+is review is intended to answer the following research
questions:

(1) What is m-health and what sensors have been de-
veloped along with their applications for m-health?

(2) What applications and benefits could AI technology
bring to m-health?

(3) What applications and benefits could big data ana-
lytics bring to m-health?

(4) What are the challenges of adopting AI and big data
analytics technology in m-health? anda proposed m-
health model based on the combination of the AI and
big data analytics.

+e following sections describe how these questions
were answered by this systematic review.

2.1. Methodology. +e methodology of our review followed
the checklist proposed by the Preferred Reporting Items for
Systematic Reviews andMeta-Analyses (PRISMA) [35].+is
review also identified applications of AI and big data ana-
lytics in m-health system. +e review is limited to English
articles and reports from 2007 to present date.

2.1.1. Relevant Articles. Relevant articles and process of their
selection for this systematic review are described in this
section. In order to collect the relevant articles for this
systematic review, we searched eight large scientific data-
bases: the IEEE Xplore, ACM digital library, Taylor &
Francis online, ScienceDirect, SAGE Journals, ProQuest,
Springer, and Web of Science. +is is done by an advance
keyword searching process. +e following terms were used
in the search: “Artificial Intelligence AND m-Health,” “Big
data analytics AND m-Health,” and “AI AND big data
analytics inM-health.” Various articles were also found from
the Google Scholar search. +e main aim of this search is to
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find other quality articles that might be missed during the
initial search in scientific databases.

2.1.2. Inclusion and Exclusion of Articles. After completing
the process of searching the article, the authors concealed the
titles and abstracts of the retrieved articles using an inclusion
and exclusion criteria. +e articles that were not in English,
the articles lacking full text, the articles that do not represent
the applications of AI in m-health, the articles that do not
represent the applications of big data analytics in m-health,
and the articles with insufficient details were excluded. All
the duplicate articles were removed. At last, 106 articles were
obtained and kept for the review process. +e above process
is explained in the form of PRISMA flowchart in Figure 1.

2.2. Results. A total of 2543 articles were retrieved from the
eight scientific databases. +en, another 130 additional ar-
ticles were found through the search in Google Scholar. A
total of 2437 articles have been excluded in the initial
screening process. Among these, 1345 articles which do not
represent the applications of AI in m-health, 902 articles
which do not represent the applications of big data analytics
in m-health, 78 articles which were from international
journals, and 12 articles with insufficient details were ex-
cluded. Flowchart of the systematic reviews and meta-an-
alyses (PRISMA) is shown in Figure 1.

3. Mobile Health

+e application of mobile phones has inadequacies in in-
frastructure in developing countries which have led to huge
changes in various healthcare sectors. Recently, mobile
technology has played a significant role in various fields of
technologies among various subscribers in almost all the
countries. Mobile devices and communications assist the
evolution of the proposed systems and their employment for
the healthcare called m-health [36]. +is comprises the
combination of mobile devices, medical-based sensors [37],
and portable devices [23, 38]. Health-based applications on
smartphones are classified into the following: general health
and fitness-based applications, information on medicine-
based applications, and applications for managing the
healthcare. m-Health is the innovative application of up-
coming mobile-based technologies in concurrence with
wearable devices especially in the application of healthcare
informatics in order to enhance the practices of healthcare
[39, 40]. m-Health has a scope of applying it to the mobile-
based technologies. As a result, it produces various tech-
nologies such as the wearable devices, embedded systems,
trackers for location, and legacy-based sensor devices. It also
explores the facilitation in wireless-based communication
[24, 41], ubiquitous computing, and other embedded
technologies in healthcare to improve support of healthcare-
based applications and also to reach into different pastoral
areas [42, 43]. +e schematic representation of m-health
scenario is shown in Figure 2.

+ere are many advantages of using m-health. +ese
devices can apprehend, save, recover, and transmit data to

provide instantaneous, personalized informatics for indi-
viduals. m-Health could be a key element in healthcare
systems [29] and can be useful in monitoring health status
and improving patient safety and quality of care.

m-Health is becoming more popular in the smart device
sector as it can provide remote assistance and data collection.
Unlike an individual healthcare service, the collected data
can be expanded and used across communities to under-
stand common trends and thus improve the standards of
healthcare. m-Health can provide support in vulnerable and
remote communities via improvements to networks and the
emergence of IoT [44].

+e application of mobile technologies and their impact
are likely to increase in the coming years. Surveys showed
that mobile technologies and devices held about 80% of the
overall global market in 2017, whereas in 2013, it was just
39%. +e number of global users of smart mobile devices is
anticipated to almost double in 2020 compared with 2014
and will reach 2.87 billion users [45]. +is may increase the
significance of m-health globally as shown in Figure 3. Low-
cost smartphones have the required features and capabilities
to cope with health-related applications and include the
necessary connectivity [36].

As the popularity of m-health increases, countries are
allotting more funding to this area helping society and
communities to become more health literate. +is promotes
wellness rather than expensive medical intervention and
hospitalization.

3.1. Mobile Sensors and &eir Applications for m-Health.
+ere are many mobile sensors which can be applied for a
various applications of health [21, 47–52]. Various sensors
such as camera sensor [53–55], microphone sensor [56–58],
accelerometer sensor [59–61], and gyroscope sensor [59, 62]
were used in the healthcare-based applications. Table 1
shows a detailed outline of how the mobile-based sensors
can be applied for various healthcare-based applications.

4. Applications of Artificial
Intelligence in m-Health

Artificial intelligence is the process of demonstration of
intelligence by machines in disparity to the natural in-
telligence depicted by the humans [24, 75, 76]. Machine
learning is one of the applications of AI that lay out the
systems to create capability to learn automatically and to
enhance it from its training without being programmed
explicitly. It also puts emphasis on the evolution of al-
gorithms, can obtain data, and can adopt it for the process
of making it to train themselves. Due to the fast en-
hancement of the AI, it has been employed in various
fields, such as the IoT [22, 41, 77], machine vision [78],
driver assistance [79, 80], and natural language pro-
cessing [81, 82]. AI has been put in application in various
domains of healthcare [83–87] which includes cancer
research [88], cardiology [89], diabetes [90], mental
health [91], identification of prognosis [92], identification
of Alzheimer’s disease [93], identification of difference in
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Figure 1: PRISMA flowchart for the entire review process.
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the clinical groups [94], identification of cardiovascular
disease [39], stroke-related studies [95], etc.

Larburu et al. in [96] proposed an m-health application
based on artificial intelligence for avoiding heart failures in
patients. At present, the doctors are applying simple
methods for generating alerts in the identification of heart
failure. More false alerts are generated in the present
methodology. In this work, predictive models were proposed
to avoid the impact of these false alarms. +ese predictive
models are based on clinical data taken from 242 heart
failure patients’ mobile accumulated in 44 months. +e
finest predictive model is acquired by the merger of various
alerts which are based on observing the data and a set of
questions using the application of a Naive Bayes classifier.
+is proposed model lowered the false alerts for a patient for
a year from 28.64 to 7.8 gradually. In this method, the
proposed system forecasts the possible risk of heart failures
among the patients with more possibility of a heart failure.
Main drawback of their method is that the accuracy of
detection is less when the patient had undergone any heart
surgeries in his past.

Burns et al. in [97] depicted the importance of mobile-
based multicomponent that can be applied in the models of
AI in order to analyze the different types of emotions such as
the mood, cognitive state, depression, motivation, various
activities, environmental behavior of the patient, and social
behavior of the patient. +eir proposed methodology gives
graphs for feedback for the process of behavioral self-re-
flection, and it also provides coaching using various special
trainers. +e proposed methodology is based on the com-
bination of regression along with decision trees and the
phone sensor-based devices. Overall accuracy of their
proposed methodology was excellent for the prediction of
location about 60%–91%. Main drawback of their method is
that the accuracy of prediction was very less for emotions,

for example, sadness. In their analysis, they have selected
eight patients for identifying the depressive disorder, the
depression symptoms, anxiety, etc. Even though the accu-
racy of their proposed methodology is promising, the au-
thors suggested the proposed methodology has to be
enhanced since the outcome of prediction in the case of
mood and location has to be upgraded.

Hawley et al. [98] proposed an application of automated
machine in the recognition of speech of persons who are
affected with dysarthria. It also assists in the process of voice
message generation. In their method, the authors employed
the hiddenMarkovmodels to decide the overall proximity of
a word which is spoken to a speech model and is person-
alized for a particular person. Yet, the accuracy of their
methodology for the speech recognition is only 67% for real-
life study which comprises nine persons. +e persons who
participated identified that the hurdles in the process of
communication are decreased by their proposed device
when compared with the already available method of
communication while speaking. Main drawback of their
methodology is that its support is done by a usual aid for the
voice-output communication and the accuracy of speech
recognition hardware is less.

Martin et al. in [99] proposed a predicting and an alert
generating methodology about multiple modalities such as
lung diseases or cardiovascular problems in patients. Alerts
were generated and sent to professionals of healthcare who
can monitor the alerts based on the predefined guidelines.
+eir proposed system was based on the information col-
lected through the phone calls of patients. Features such as
linguistic and metalinguistic were extracted along with the
status of patient in order to instruct themodels of prediction.
A 70% positive predictive value was obtained for unplanned
events by their proposed methodology. +eir proposed
methodology was tested in a controlled manner with a set of
214 patients in a time period of six months. +is is the
biggest testing of an algorithm in terms of patient’s par-
ticipation and also with respect to the time taken. +is
methodology depicted a reduction rate of 50% in the number
of participants in unplanned events of hospitals in the group
when compared with custom alert generating mechanism.

Morrison et al. in [100] used the push notifications to
upgrade the application of smartphone users for the process
of stress management. +e authors have employed a clas-
sifier called Naive Bayes for predicting the response of a user.
+eir algorithm predicts if a user would respond for a
personalized intelligent mechanism for notification delivery
when a notification is received from it. It depends on the
number of times a user views and reacts within a day for the
messages he received. +is methodology was carried out for
72 hours which includes 76 participants. +e drawback in
this method is that the response is less when there is a
distraction in the mobile networks.

Ortiz-Catalan et al in [101] used the pattern recognition
algorithms for controlling the virtual limb movement in
patients suffering from phantom limb pain. +ey also used
gaming-based methodology combined with augmented re-
ality for the process of treatment. +eir proposed meth-
odology was trained with a group of 14 participants. +e

Figure 3: Global m-health markets [46].
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results revealed that about 50% symptoms of phantom limb
pain in patients were decreased significantly after 6 months
of treatment.+e authors also recommended that their novel
method of treatment could be employed after clinical
treatments. One of the disadvantages of their methodology is
the time frame. Table 2 depicts the additional summary of
various applications of machine learning in the healthcare
sector.

4.1. Performance Measurement Indicators Used to Examine
the m-Healthcare Quality. In order to assess the quality of
m-healthcare-based apps, various performance measure-
ment indicators were proposed earlier. +ese performance
measure indicators were proposed by incorporating the
challenges of mobile health apps and strategies to ensure
appropriate design and development of the apps for
healthcare providers, patients, and the general public. Fol-
lowing are the various performance measurement indicators
used to examine the quality of m-healthcare:

(1) Usefulness. +is metric enables the m-health user to
achieve his or her specific goals and motivates the
user to use the app repeatedly whenever necessary.
+is metric also analyzes how the mobile platform is

effective in assessing how far the user is satisfied by
the mobile healthcare system.

(2) Effectiveness. Effectiveness is defined as the extent to
which the m-healthcare system app works in the way
that users expect it to and the ease with which users
can apply it to achieve their specific goals. +is is an
important metric used in the case of m-healthcare
quality.

(3) Veracity. It is the measure of analyzing the accuracy
and reliability of the information, data, or content
present in the m-health application. Content in
health apps is usually based on more than one source
of information. +e m-health application provides a
method to enable the user to identify to the complete
content more easily. Most of the m-health-based
systems perform the functions of user or patient
management, such as computation, tracking the
data, and reminders, which should be more accurate.

(4) Interactivity. It is the process of providing a sense of
engagement with the user, entertainment, satisfac-
tion to the patient or user, and motivation for the
users who are using the m-health systems. It also
extends to interactivity between service providers
and patients as facilitated by the m-health app.

Table 1: Mobile-based sensors applied for various healthcare-based applications.

Mobile sensors Main area Applications in healthcare

Camera Capturing photo and
video

Applied for identifying various categories of diseases, in the
perspective of effects in surgery, diagnosis of diseases, observing the
slash, analysis of skin disease [63], monitoring the health of child, etc.

[18].

GPS Location tracking
Provides an access to follow the patients who are vulnerable to some
diseases such as the people with Alzheimer’s disease [64] and Ebola

[65] by the application of mobile-based applications [66].

Electrocardiograph Cardiovascular disease
monitoring

Mobile phones which are enabled with the electrocardiographs are
being used in areas which are underdeveloped for the purpose of

monitoring the patients with heart diseases [40, 67].

Bluetooth Data sharing and
communication

It allows a midrange data communication between mobile devises,
various other healthcare monitoring devices, and wearable sensors.

Microphone Voice recording

It allows the doctors to communicate with the patients regarding the
support for identification and treatment of diseases. It also comes up
with the way for analyzing the audio for assessing the feeling of a
patient with various diseases such as muscular dystrophy [68].

Accelerometer Acceleration
measurement

It assists to compute the orientation of devices which are relative to
Earth especially for calculating the motion. It can be executed in

various activity monitoring techniques of patients such as counting the
step of a person, gait analysis, and monitoring [19, 69].

Wi-Fi Data sharing and
communication

Wi-Fi-based mobile sensor enables the mobile device to communicate
with the physician about the healthcare data to for the purpose of

identification of a disease and its treatments.
Accelerometer, GPS, compass,
gyroscope, and barometer Physical activities Combination of hardware and the sensors present in it is being utilized

for computing the stationary vs nonstationary actions [20].

Microphone, accelerometer, and GPS Social engagement
+is combination makes the monitoring of psychological health by
checking the social problems, talks from the conversationalists,

consternation, strain, behaviors related to depression, etc. [70, 71].
Microphone, GPS, accelerometer, touch
interface, and light sensor Sleep pattern tracking Combination of this hardware depicts the data of interrupted vs

constant patterns of sleep in a patient [71–74].
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(5) Customization. +e main purpose of designing the
m-health-based system is to support the users in one
or more healthcare domains. Examples include as-
sessment of diseases, its diagnostics, prevention of
further complications, expert’s intervention, and
recovery. Customization is crucial in aiding the
m-health-based system to achieve what the users
intend to do. For example, the systems may have to
connect to one or more EHR systems to provide the
medical data of a particular user/patient.

(6) User Satisfaction. User satisfaction can be defined as
the proven willingness of a user for specified tasks in
the overall m-health system or in using a specific
system for repeated emergencies. +is user accept-
ability has replaced most of the traditional metrics
already available for assessing the usability in mobile
health systems.

5. Applications of Big Data
Analytics in m-Health

Recently, big data analytics has various options of pro-
viding advanced care for the patient and clinical decision
support in the healthcare [14–17, 110, 111]. In general,
application of big data in healthcare refers to the elec-
tronic datasets of health which are huge and complex and

are difficult to manage with normal hardware, software,
tools, and methods for managing the data [11]. Big data in
the healthcare consists of clinical details of doctors, their
notes and prescriptions, CT images, MRI images, labo-
ratory data, documents from the drugstore, files from the
insurance and other data related to the administrative
operations, EPR data, etc. +is comprises the big data.
More methods have been proposed by various researchers
to process these types of data. Still, there is a deficiency of
understanding the most suitable framework based on the
computational methodologies which are required for this
approach. Hence, an enormous amount of data belonging
to the healthcare is available for big data scientists. By
understanding the advantages and disadvantages present
in this, the big data analytics has to be enhanced in order
to save the lives and to reduce the cost of processing data.
+erefore, big data can be classified into two main cat-
egories [36] as follows:

(i) Organized data: in general, these data refer to the
contents having defined format and length such as
the numbers, generated date, and contents of strings.
+ese data are formed by various sources such
mobile phones, computers, various sensors, and logs
of web. Examples of these types of data include EHR,
home treatment and monitoring data, prescriptions
from the doctors, etc.

Table 2: Additional summary of the AI methods suitable for the healthcare sector.

Name of the
framework System Technique Area of application

Apache Mahout
[102]

Library for machine
learning (open source)

A real-time computation system which is
more flexible and scalable.

Provides mechanisms such as clustering,
classification, and regression.

Skytree [103]
AI-based platform which
is applied for general
purpose algorithms

Applies artificial intelligence for producing
complicated algorithms for more advanced

analytics.

For processing very large organized and
unorganized datasets more accurately
without performing downsampling.

Karmasphere [104] Platform of big data
Searches and scrutinizes the web-based,
mobile-based, and sensor-based data in

Hadoop for the social media.

Develops and issues a graphical-based
environment which assists the way finding
through any type of big data and identifies
the recent trends and patterns present in it.

BigML [105] Platform for AI-based
programs

Gives various tools for performing tasks
related to AI such as clustering, regression
analysis, pattern classification, detection of
anomaly, and discovery of association.

It combines the AI-based features along
with the cloud-based infrastructure for
developing applications which are cost-
effective, highly accurate, reliable, and

flexible.

Cognitive machine
learning algorithm
[106]

Cognitive computing
tool

Associative memory classifier-based
machine learning algorithm.

Echocardiography data are normalized
using the machine learning algorithm in
order to differentiate the constrictive

pericarditis from restrictive
cardiomyopathy.

Machine learning
algorithms [107] Support vector machine

Analyzes and classifies a multidimensional
echocardiographic data based on gap in

present in it.

To distinguish between athlete heart and
hypertrophic cardiomyopathy.

Phenotypic
clustering [108] Hierarchical clustering

Classifies similar objects between the same
clusters and calculates the hierarchy in the

echocardiographic data.

To analyze the clustering of
echocardiographic variables in order to

compute the dysfunction in left ventricular
and isolate high-risk phenotyping patterns.

Convolutional
neural network [109]

Combination of AI and
natural language

processing

It reads the chest X-ray reports of patients
and assists the antibiotic assistant system to
alert physicians for anti-infective therapy.

It combines the AI-based features along
with the natural language processing for

effective diagnosis of diseases.
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(ii) Unorganized data: in general, these data refer to the
contents which do not have a predefined format of
big data. +e majority of the data are generated from
various sources, such as the data from social media,
mobile data, and content from the video and web.
Examples of unorganized health data include health
data from the social platform such as from Twitter,
Facebook, user blogs, notes of clinicians, and diaries
of medication and its instructions.

+e process of analyzing a huge amount of data from
various sources of data and different formats in order to
convey the perception of enabling a decision-making pro-
cess in real time is called big data analytics. Various concepts
of analytics such as data mining and AI can be used to
analyze the obtained data.+ese analytical approaches in big
data can be used to identify the anomalies by analyzing a
huge amount of data from various datasets and their sources.
Figure 4 shows an example of the smartphone-based
m-health model with the combination of AI and big data
analytics. Nowadays, the conversion of digital version of all
exams done in clinical and medical fields yields huge data
and records, which has formed a standard and has been
widely accepted and implemented in practice.

EHRs are defined as the computerized form of medical
records for all the patients. It has various information regarding
the previous, current, and upcoming physical and the mental
health situation of an individual. +ese electronic systems are
used to apprehend, transfer, obtain, stock, connect, and change
the data of multimedia. +e primary purpose of this electronic
system is to provide services related to the health [45]. Main
advantages of these EHRs are that they enable faster retrieval of
data and the professionals in healthcare have an enhanced
access to the whole history of the patient about his medical
details. Its benefits include providing better healthcare by
making better classifications of the patient’s health.

Similar to EHR, another record called electronic medical
record (EMR) is used to store the medical and clinical data
which are gathered from the patients. +ese are standard in
nature. EHRs, EMRs, PHR, software for the medical practice
management, and various other components of the
healthcare data increase the quality and efficiency of service
and reduce the overall cost of healthcare and medical errors.
+e healthcare big data consist of the data from healthcare
provider and various experiments done in the laboratories
and various other data obtained from the IoT-based devices.

Raghupathi and Raghupathi [112] proposed a novel ar-
chitecture for the healthcare-based system applying the analytics
of big data.+eirmethodology comprises various layers for data
source, transformation, big data platform, and analytics. +e
layer for data source mainly focuses on the data sources of
internal and external healthcare which can be found in different
locations and in different formats. +e layer for transformation
is accountable for various tasks such as removal, conversion,
and uploading of data in the platform of big data for the process
of doing specific operations on theDistributed File Systemusing
a programming model called Map-Reduce. +e main task of
analytical layer is to do various operations such as inquiring,
announcing, online analytical processing, and mining the data.

A patient-centric personalized framework for healthcare
based on the collaborative filtering approach was proposed by
Chawla and Davis in [113]. It apprehends the similarities in
different patients and generates the personalized profiles for
risky diseases for individuals. Collaborative filtering is one
form of data analysis technique which is designed to guess the
opinion of user regarding an entity item or its service; it is
based on the preferences from a known group of a large
number of users. In their framework, healthcare history of
individual patients was collated with all the medical histories
of other available patients. +is is based on the following
similarity constraints. Some of these are occupation, symp-
tom, result from the laboratory, history of family, data of
demography, etc. Based on the computation of similarity, a
collection of patients who are similar is chosen and the
prediction of diseases is done. Since the application of elec-
tronic healthcare records was increased, their framework
depicts a proactive healthcare solution with respect to the
context of big data. Even though their proposed methodology
has various advantages, their proposed methodology handles
only the identification of codes for various diseases.

An analytical framework of big data that employs
ubiquitous healthcare system was proposed by Kim et al. in
[114]. +eir proposed framework analyzes the vital signs
obtained from accelerometers in order to provide healthcare
services. Vital signs are continuous time series data which are
unstructured in nature having inadequacy to be stored in the
traditional databases. Data obtained from ECG and from the
respiratory system are considered as vital signs. +eir pro-
posed framework used a platform of open standard in order to
support the inability of data exchange between various de-
vices. +is platform has been enlarged by including various
algorithms for the process of extracting feature values from
the fresh vital signs data and then storing them for the process
of real-time analysis. Even though their proposed method-
ology has various advantages, their work has a major dis-
advantage in delivering considerable analytical models.

A detailed survey on the inference of computational
methods in the big data-based health informatics has
been done by Fang et al. in [30]. +ey focused on a novel
framework called “Health informatics processing pipe-
line” which incorporates various steps to obtain signifi-
cant patterns from healthcare-based big data. +eir
proposed framework consists of pipeline process such as
capturing the data, storing the data, analysis, extraction,
and decision support systems. Apart from the proposed
framework, some directions for research in the hetero-
geneity of data such as organized and unorganized data of
the healthcare, existing complexities which are available
in the available data, issues of privacy, and analysis of the
identified patterns are also traversed in their entire work.
+eir proposed healthcare-based framework offers a
systematic pipeline of data processing for various stages
of informatics of big data such as data acquisition, saving,
finding, and analyzing data from diversified sources.
Hence, the authors focused on enhancing the aspects of
technological development by using the tools and tech-
niques of big data. Due to the enhancement of mobile
devices and wireless sensor networks, healthcare services
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were improved. As a result, the services are offered at any
time and at anywhere in the health informatics domain.

Pramanik et al. in [115] performed a detailed analysis on
the latest improvements in healthcare-based systems. +eir
work mainly focuses on the applications of technologies
based on smart system. +ey focused on a novel framework
for the smart healthcare system enabled by big data for
maintaining ubiquitous solutions for healthcare. It also
offered a reduced cost with improved advancements. It
consisted of the following layers:

(i) Data source layer: designed especially for main-
taining the organized, unorganized, and semi-
organized data sources.

(ii) Data analytics layer: designed mainly for processing
calculations on big data, its visualization, and
management.

(iii) Smart service layer: designed mainly for making
ease of various favors such as the monitoring of
data, agreement on privacy, and security between
the providers, consumers, and their services. Also,
this layer proposes various smart services and their
infrastructure with the help of various devices and
software.

(iv) Knowledge discovery layer: improved functional-
ities such as the guessing necessity of entities,
proposal, and its cost evaluation of mechanism for
providing the healthcare service were also
included.

+e authors proposed a framework for the organizations
in healthcare in providing intelligence-based smart services.
+eir detailed research depicts a novel framework for the
smart healthcare system based on big data and also makes
the research directions interdisciplinary. In fact, the pro-
posed framework is the combination of three technical
streams such as the AI, agent-based systems, and data
mining along with the smart health. Additional summary of

the applications of big data in the healthcare sector is
provided in Table 3.

6. Proposed Model Based on AI and Big Data
Analytics for m-Health

+e proposed framework comprises three essential parts
such as the medical data obtained from the patients through
the mobile phone and the telemonitoring devices, AI and big
data analytics platform, and the output towards the mobile
care monitor. +e architecture of the proposed system is
shown in Figure 5. +e entire process of analyzing a huge
amount of data obtained from various sources of data in
different formats is processed by the combination of AI and
big data platform. +ese are combined to convey the per-
ception of enabling a decision-making process in real time.
Various concepts of analytics such as data mining and AI are
used to analyze the obtained data from a patient. +ese
analytical approaches in big data can be used to identify the
anomalies by analyzing a huge amount of data from various
datasets and their sources such as biomedical signals,
physiological sensing data, genomic data, and biomedical
imaging. +e AI-based engine comprises two modules such
as the stream analysis module and the AI-based report
management tool. +ese analyze the queries obtained from
the big data analysis engine.

+emain aim of the AI-based report management tool is
to generate a better decision using the AI technology in order
to report the status of the patient’s health. It is also used as a
platform for the disease control, treatment, and diagnosis
tool. In this model, the AI-based report management tool
collects, analyzes, performs, and triggers the action by
classifying the code of a disease or condition using the free
text approach. It also extracts the features from the EHR. It
also detects the irregular records which are present in the
EHR. All the processed streams are stored and updated in
the big data engine.

Smartphone
EHR

IoT data
collection

Wireless medical
sensor/wearable

Artificial intelligence and big data analytics Notification

Mobile care
monitor

Automated
connectivity

1. Collect
and record the

data

2. Analyze and
process the data

4. Action taken
by clinician

3. Trigger
alert to the patient

Trigger alerts

Figure 4: Smartphone-based m-health model with AI and big data analytics.
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Table 3: Additional summary of the applications of big data in the healthcare sector.

Name of the framework Source of data Technique Area of application
Substructure for preserving
privacy in healthcare systems
based on RFID [116]

Data produced from the tags of RFID Privacy preservation
methods

Reliable healthcare-based services.
Enhanced isolation in healthcare

system based on RFID.

Novel framework for
distributed and secured HIS
[46]

Electronic-based health records

Providing security
limitation and control

mechanisms for accessing
the data

Secure healthcare system.
Distributed and secured multitier

framework.

Smart framework for
healthcare system enabled
with big data [115]

EHR, report on diagnosis, data from
the social media, biometric data, and

monitoring data

Providing services of smart
healthcare by infrastructure
which is service oriented

Technologies based on smart system
especially for the healthcare system.

Combining the healthcare
knowledge data mining strategies
with the infrastructure of smart

services.

Framework for policy
enforcement towards IoT-
based smart health [117]

Patients’ various biological
parameters, data related to

environmental factors, and data
generated from the instruments such

as RFID

Providing access control
based on policy mechanism
for offering resources of

healthcare

Smart health applications for
avoiding threats in security for large
scale and heterogeneous scenarios.

Framework for prediction of
protein structure using big
data and ensemble learning
[118]

Protein structure dataset
Ensemble learning
technique based on
distributed tree

Design of drugs. Depicts a
distributed framework with

enhanced accuracy.

Framework for smart health
[44]

Datasets of the patient from various
sources such as the health
information system and the

radiology department

Pattern recognition and its
matching techniques

Big data-based analytics for the
applications of smart healthcare.

Improving the services of healthcare
by combining the sensor-based

technologies along with the cloud
computing and big data analytics.

A semantic web-based
technology for maintaining
and reusing the archetypes
present in clinical data [119]

EHR
Building the ontology
through ontology web

language

Classification of patient based on
various clinical criteria. Combining
the semantic-based resources along

with the EHR.

Large medical data

Data from doctors and
clinicians

Data from the patients

Medical images

RFID data

AI and big data analytics platform

Big data
storage

Stream analysis
module

Statistical data
analysis tool

AI-based report
management

tool

IoT-based
devices

Mobile phone

Doctors and
medical
service

providers

Mobile care
monitor

Web server

Figure 5: Architecture of the proposed AI and big data analytics-based m-health system.

10 Journal of Healthcare Engineering



+e big data analysis engine consists of two modules
such as storage for big data and a statistical data analysis tool.
+e statistical data analysis tool retrieves the input data,
processes it into queries, and then sends it to the AI-based
engine. All the processed queries and streams were given as
output towards the mobile care monitor.

+e proposed model enhances the overall performance
of m-health since AI and big data analytics are combined.
+e proposed methodology improves the process of
m-health by processing each and every query, and it also
enables a decision-making process in real time.

7. Limitations

Despite the various advantages of the proposed m-health
model based on AI and big data analytics, some limitations
were also there that need to be considered: a large section of
population, system can never be too accurate, have to de-
pend completely on the technology, and several privacy and
security issues.

With regard to a large section of population, the access to
m-health-based system is denied because of their numbers,
their incapacity to afford it, and the lack of knowledge and
skill to use it.+e system can never be too accurate to replace
the humans and their predictions. +ese systems have been
made to ease out the health structure but they cannot be a
substitute to human. Even the most well designed and
technologically best developed apps can also never be
hundred percent accurate.

+ese m-health systems also make a user/patient to be
dependent completely on them. If the user loses his or her
mobile phone and user id/password, there is a possibility for
all the information to be lost temporarily or even perma-
nently. +ere might be a chance for various issues in the
privacy and security of the health data present in it. In such
cases, there is a chance for the personal information to be
leaked and shared to unauthorized users.

8. Conclusion and Future Works

m-Health is a technique which uses mobile devices and tech-
nology for health interventions and is the biggest technological
advancement of recent research. Similarly, the application of AI
and the analytics of big data in healthcare are considered as one
of the important achievements for the intelligent healthcare
system. In this paper, a detailed review of the m-healthcare
system is proposed based on the application of AI and big data
analytics. Various advantages from this combination for the
m-health perspective are presented. Particularly, all applications
of relevant technological areas and the building blocks such as
communications, sensors, and computing which are associated
with mobile health are explained in detail. +e role of various
tools of machine learning within the current m-health model is
also illustrated. Future works can be a comprehensive review on
the retrospective validation of models of the AI and combining
them with various digital health tools and evaluating their
clinical validation and efficacy issues on these systems. Future
works can be the proposal of application of intelligent agent-

based systems for providing privacy and security in m-health
big data.
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.ree-dimensional speckle tracking echocardiography (3D STE) is an emerging noninvasive method for predicting left ven-
tricular remodeling (LVR) after acute myocardial infarction (AMI). Previous studies analyzed the predictive value of 3D STE with
traditional models. However, no models that contain comprehensive risk factors were assessed, and there are limited data on the
comparison of different 3D STE parameters. In this study, we sought to build a machine learning model for predicting LVR in
AMI patients after effective percutaneous coronary intervention (PCI) that contains the majority of the clinical risk factors and
compare 3D STE parameters values for LVR prediction. We enrolled 135 first-onset AMI patients (120 males, mean age 54± 9
years). All patients went through a 3D STE and a traditional transthoracic echocardiography 24 hours after reperfusion. A second
echocardiography was repeated at the three-month follow-up to detect LVR (defined as a 20 percent increase in left ventricular
end-diastolic volume). Six models were constructed using 15 risk factors. A receiver operator characteristic curve and four
performance measurements were used as evaluation methods. Feature importance was used to compare 3D STE parameters. 26
patients (19.3%) had LVR. Our evaluation showed that RF can best predict LVR with the best AUC of 0.96. 3D GLS was the most
valuable 3D STE parameters, followed by GCS, global area strain, and global radial strain (feature importance 0.146, 0.089, 0.087,
and 0.069, respectively). To sum up, RF models can accurately predict the LVR after AMI, and 3D GLS was the best 3D STE
parameters in predicting the LVR.

1. Introduction

Acute myocardial infarction (AMI) has been the leading
cause of cardiac death among all the cardiovascular events.
According to the China cardiovascular disease report 2018
[1], the prevalence of AMI in Chinese urban area is 0.999‰,
which is still growing, with a total number of 753,142
percutaneous coronary interventions (PCIs) being carried
out in 2017. Left ventricular remodeling (LVR), an structural
adaptation of the myocardium to compensate for the con-
tractile dysfunction of myocardial fibers [2], is an important

reference in early cardiac rehabilitation treatment for it is the
main cause of heart failure after AMI [3–6]. .erefore, a
robust prediction on the occurrence of LVR is invaluable to
the recovery of AMI patients.

Some studies have explored the values of serological
indicators, echocardiographic parameters, cardiac magnetic
resonance imaging (CMRI) [7–10], and coronary angiog-
raphy (CAG) in LVR prediction. Among all the imaging
examinations, echocardiography is most vastly applied be-
cause it is less costly, less time-consuming, and friendly to
almost all types of patients, with a good balance of simplicity
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and predictive power. .ree-dimensional speckle tracking
echocardiography (3D STE) is a noninvasive method that
outmatches traditional echocardiography in diagnostic
power and other imaging methods both in an economical or
a practical term [10–12]. 3D STE tracks the deformation of
the myocardium through actual three-dimensional obser-
vations rather than geometrical assumptions. .ere have
been some studies that used 3D STE to predict LVR [13–16],
but few studies have compared the abilities of different 3D
STE parameters in predicting LVR or built a comprehensive
model to predict LVR using factors that include 3D STE.

With the growing attention on machine learning, the
medical application of this technology has become a new
focus [17]. Machine learning is an interdisciplinary
subject, which involves probability theory, statistics, ap-
proximation theory, convex analysis, algorithm com-
plexity theory, and other disciplines [18–22]. It is flexible,
expandable, and automatic, which makes it adaptable for
risk stratification, diagnosis, and predictions, but cur-
rently, we cannot find any machine learning algorithm
being applied to predict the occurrence of LVR.

In this study, we attempted (1) to investigate the pre-
diction power of machine learning methods in predicting
LVR and (2) to investigate the difference of 3D STE pa-
rameters in predicting LVR.

2. Materials and Methods

2.1. Patient Population and Protocols. 172 consecutive pa-
tients with first-onset AMI were initially enrolled in this
study. All the AMI patients were diagnosed according to
the guideline recommendations. Exclusion criteria were
as follows: age <18 years, a history of previous coronary
heart disease requiring a PCI, severe valvulopathy, left
bundle branch block, atrial fibrillation, malignant ar-
rhythmia, and/or any condition compromising the pa-
tient’s ability to comply. Patients received reperfusion
within 12 hours. 24 h after effective PCI, patients went
through a standard transthoracic echocardiography and a
3D STE examination. After three months, patients went
through another standard transthoracic echocardiogra-
phy. We defined LVR as an increase ≥20% in LVEDV at
three-month follow-up [2, 23–28]. .e study protocol was
approved by the ethics committee of the General Hospital
of the Southern .eatre Command, PLA, and oral in-
formed consent was obtained from all the patients. Due to
the sensitivity of patients’ personal information in a
military hospital, an application for waiver of written
informed consent was applied and approved by the same
ethics committee (No. 202041).

2.2. 3D STE Examinations. 3D STE was performed using a
GE Vivid E9 ultrasound diagnostic system (Horten, Nor-
way) with a 4D volume probe (4 V-D). First, left ventricular
volume data from an apical four-chamber view of four to six
consecutive ECG-gated cardiac cycles were obtained and
stored during a single end-expiratory breath hold. .en, we
outlined the LV endocardial and epicardial borders as a

region of interest. .en, the 3D GLS, 3D GCS, 3D GRS, and
3DGAS values were displayed in a bulls-eyed plot (Figure 1).

According to Korup et al., left ventricular dilatation
began within three hours after acute myocardial infarction,
and no further progress was made after that in the first six
days [29]. Sakuma et al. reported that the optimal timing to
detect myocardial changes for predicting LVR is 24 hours
after reperfusion of the culprit artery [30]. Based on these
studies, we assessed 3D myocardial contractions at 24 hours
after PCI.

2.3. Coronary Angiography. All patients went through CAG
to identify an infarct-related artery (IRA), measure the
thrombolysis in myocardial infarction (TIMI) grade, and
carry out revascularization through PCI. CAG was per-
formed with a digital subtraction angiography machine. For
coronary artery reperfusion therapy, subsequent PCI was
performed to recover blood flow in the IRA. .e blood flow
level of the coronary artery was measured with the TIMI
grade during CAG both at baseline and after coronary
angioplasty. Patients with a TIMI grade ≥3 after coronary
angioplasty were included in the statistical analysis.

2.4. Statistics. All statistical analyses were performed using
IBM SPSS 21.0 (Chicago, IL, USA) software and Python with
modules including Scikit-learn based on Abraham A’s
method [31], as well as Pandas, Numpy, Tensorflow, and
Matplotlib. Data as continuous variables were expressed as
means± SD. Categorical variables were presented as abso-
lute numbers and relative frequencies. Normal distribution
of variables was checked with the Kolmogorov–Smirnov
test. Continuous variables were compared using Student’s t-
test. Fisher’s exact test or the chi-squared test was used to
compare categorical variables.

In this study, before we compared 3D STE in a specific
model, we used 15 risk factors to build six models including
Decision Tree (DT), Random Forest (RF), eXtreme Gradient
Boosting (eXGB), K-Nearest Neighbors (K-NN), Gaussian
Naive Bayes (GNB), and Logistic Regression (LR) and
compared the prediction power of all six models. .e
modules of the above machine learning methods were
imported into Python so that no extra coding was needed. 5-
fold cross-validation was performed to enhance the effect of
testing and modeling capability. A receiver operator char-
acteristic (ROC) curve was performed, and area under the
curve (AUC), accuracy, sensitivity, specificity, and F1 score
were calculated to evaluate classifiers.

In this study, data analysis proceeded according to the
following steps. (1) Preliminary analysis: input patient data
set and conduct one-way ANOVA, chi-square, and corre-
lation analysis. (2) Model construction: input significant
factors from step one, and import modules including DT,
RF, eXGB, K-NN, GNB, and LR to Python. Each parameter
was tested under 5-fold cross-validation that randomly se-
lected 75% of the dataset as the training set and the rest 25%
as the test set. (3) Tuning: conducted multiple program
running and sorted out the best values of the model pa-
rameters such as n_estimators, max_depth, and
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random_state. (4) Model comparison: compared con-
structed models using AUC, accuracy, sensitivity, specificity,
and F1 score. (5) 3D STE comparison: after the best clas-
sification method was confirmed, we compared 3D STE
parameters through feature importance from the model..e
data analysis work flow is displayed in Figure 2.

3. Results

3.1.Demographic andClinical Characteristics. Initially, there
were 172 patients enrolled in this study. 37 were further
excluded due to the following reasons: (1) 13 patients with a
TIMI grade< 3, (2) 12 patients due to poor myocardial
tracking (>2 nonvisualized segments), (3) 10 patients for
disagreement to participate, and (4) 2 patients died. Even-
tually, 135 patients (mean age, 54± 9, 88.9% males) were
included in our study.

Patients were divided into two groups according to the
occurrence of LVR. Table 1 displays baseline demographic
and clinical characteristics. Age, sex, body mass index,
body surface area, medical history, angiographic findings,
blood tests findings as well as medication during follow-
up were compared. Patients with LVR were older than

patients without LVR (56.85 ± 11.80 yrs vs.
53.22 ± 7.92 yrs, p � 0.044, S). .ere is no significant dif-
ference among the other characteristics.

3.2. Echocardiographic Data. Baseline and three-month
follow-up standard echocardiographic parameters as well as
baseline 3D STE parameters are presented in Table 2. 26
patients (19.3%) were defined as LVR (>20% increase in
LVEDV), and 109 patients (80.7%) did not have LVR. No
significant differences were found in baseline standard
echocardiographic characteristics between LVR and non-
LVR patients. Follow-up LVEDV, LVESV, and LVEF were
all significantly different between the two groups (respec-
tively, 126.94± 19.77 vs. 105.32± 25.53, p< 0.001;
62.39± 14.12 vs. 47.86± 18.34, p< 0.001; 51.43± 7.00 vs.
55.42± 8.79, p � 0.025). Follow-up LVMI was not significant
between the LVR and non-LVR patients.

A 3D STE assessment was carried out 24 hours after
effective PCI (defined as a TIMI grade≥ 3). .e results are
also presented in Table 2. 3D GLS and 3D GRS in patients
with LVR were significantly reduced (respectively,
−9.90± 2.60% vs. −12.99± 3.10%, p< 0.001 and
28.13± 7.13% vs. 32.29± 9.43%, p � 0.037).
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Figure 1: .ree-dimensional speckle tracking echocardiography (3D STE) analysis shows the result of global longitudinal strain (GLS) and
global area strain (GAS) on a bull’s eye depiction acquired by EchoPAC 112 (GE Medical System, Horten, Norway) from a patient. (a)
Curves of instantaneous segmental 3D GLS in a patient (−18.9%). (b) Curves of instantaneous segmental 3D GAS in a patient (−21.8%).
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3.3. LVR Risk Factors. A correlation analysis was conducted
to find out possible risk factors that have impact in pre-
dicting LVR. .e results are presented in Table 3. Age, 3D
GLS, 3D GCS, and 3D GRS were correlated with the oc-
currence of LVR. Among all of the 3D STE parameters, the r
value of 3D GLS is the best, the second is 3D GRS, and the
third is 3D GCS. In this correlation analysis, 3D GAS does
not correlate with the occurrence of LVR.

Univariate analysis showed that 3D GLS, 3D GRS, and
LVMI were associated with LVR occurrence. .e odds ratio
(OR) and 95% CI for each of 3D STE parameters along with
other factors are displayed in Table 4. One of the important
findings in the univariate analysis was that 3D GLS was the

best predictor of LVR occurrence (OR, 1.374; 95% CI,
1.176–1.604; p< 0.001). And 3D GRS was also a good
predictor (OR, 0.949; 95% CI, 0.903–0.998; p � 0.040).
Further assessment of these factors was conducted by using
machine learning methods to build models that contained
most of the clinically important factors.

3.4.LVRPredictiveModels. DT, RF, eXGB, K-NN, GNB, and
LR were applied to construct models with 15 clinical risk
factors including age, sex, smoking, BMI, body surface area,
serum creatinine, cTnL, time to perfusion, left anterior
descending branch occlusion as the infarct-related artery,
multivessel occlusion, LVMI, and four 3D STE parameters.

INPUT
AMI

patient
data set

Significant
factors

One-way
ANOVA

Preliminary analyses

Correlation

Model construction

Input
factors

3D GLS
3D GCS
3D GAS
3D GRS

Time

Age
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LAD
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test_size = 0.25
seed = 5

random_state = seed
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max_depth
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Random
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Model
comparison

ROC curve
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Accuracy
Sensitivity

3D STE
comparison

Feature
importance

Tuning

Figure 2: Data analysis work flow.

Table 1: Demographic and clinical characteristics.

LVR (n� 26) Non-LVR
(n� 109) p

Age, yrs 56.85± 11.80 53.22± 7.92 0.044
Male, % 88.5 89.0 NS
Body mass index, kg/ m2 25.67± 2.65 24.57± 2.77 NS
Body surface area, m2 1.75± 0.18 1.72± 0.14 NS
Medical history
Hypertension (%) 46.2 42.2 NS
Diabetes (%) 42.3 26.6 NS
Smoking (%) 84.6 89.9 NS

Angiographic findings
Time to reperfusion
(h) 12.69± 5.33 10.81± 5.67 NS

Multivessel disease
(%) 46.2 49.5 NS

LAD as the IRA (%) 65.4 57.4 NS
Blood tests findings
cTnI 11.54± 6.77 9.84± 8.49 NS
SCr, μmol/l 85.92± 19.05 84.69± 21.75 NS

Medications during
follow-up
Antiplatelets (%) 100 100 —
ACEI/ARB (%) 100 95.4 NS
β-Blockers (%) 100 95.4 NS
Statins (%) 100 100 —

LAD: left anterior descending branch. IRA: infarct-related artery. ACEI:
angiotensin-converting enzyme inhibitors. ARB: angiotensin receptor
blockers. NS: p> 0.05, nonsignificant.

Table 2: Echocardiographic characteristics according to the oc-
currence of LVR.

LVR (n� 26) Non-LVR
(n� 109) p

LVEDV (baseline)
(ml) 99.68± 16.56 105.431± 25.07 NS

LVEDV (follow-up)
(ml) 126.94± 19.77 105.32± 25.53 <0.001

LVESV (baseline)
(ml) 47.75± 9.96 48.98± 18.40 NS

LVESV (follow-up)
(ml) 62.39± 14.12 47.86± 18.34 <0.001

LVEF (baseline) (%) 51.70± 6.23 54.40± 8.55 NS
LVEF (follow-up)
(%) 51.43± 7.00 55.42± 8.79 0.025

LVMI (baseline) (g/
m2) 79.79± 19.00 85.82± 9.33 NS

LVMI (follow-up)
(g/m2) 81.87± 19.34 85.54± 8.79 NS

3D GLS (%) −9.90± 2.60 −12.99± 3.10 <0.001
3D GCS (%) −14.10± 7.53 −18.07± 19.49 0.071
3D GAS (%) −19.72± 3.84 −21.33± 6.28 NS
3D GRS (%) 28.13± 7.13 32.29± 9.43 0.037
LVEDV: left ventricular end-diastolic volume. LVESV: left ventricular end-
systolic volume. LVEF: left ventricular ejection fraction. LVMI: left ven-
tricular mass index. 3D GLS: three-dimensional global longitudinal strain.
GCS: global circumferential strain. GAS: global area strain. GRS: global
radial strain.
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.e constructed models were then compared to show which
was the best in predicting LVR in this sample.

Merged ROC curves of all six classifiers are presented in
Figure 3. Table 5 shows all the evaluation parameters of the
constructed models. As a result, the RF model predicted
LVR with the best AUC of 0.96, the best accuracy of 90.48%,
and the second best specificity of 94.12%, surpassing the
other models. eXGB ranked second to RF with an AUC of
0.90. DT and LR ranked third with equal AUCs of 0.83. .e
K-NN model had an AUC of 0.77, and GNB had the lowest
AUC of 0.60. LR and K-NN had the best sensitivity (94.64%
and 92.86%).

Since the RF model was the best in this work, we further
ran a visualization of the model structure. .e structure of
one of the decision trees that formed the RF model is vi-
sualized and displayed in Figure 4. For each sample, a de-
cision tree identifies it through multiple nodes and finally
contributes a vote to decide if it is LVR or non-LVR. Each
decision tree might have different features and different
number of nodes. In the example given in Figure 4, the
decision tree votes its decision through three processes: first,
the value of a sample’s age; second, the BSA or 3D GLS; and
final, the BSA or age.

3.5. Comparison of Different 3D STE Parameters in Predicting
LVR. As a result of the above section, we found that RF can
construct the best model to predict LVR, and consequently,
we used such model to display the comparison of different
3D STE parameters’ ability in predicting LVR. .e model
was trained under 5-fold cross-validation that randomly
selected 75% of the sample as the training set (n� 101) and

25% of the sample as the test set. A feature importance
analysis of the RF model was conducted, and the resulted
diagram is displayed in Figure 5. .e five most important
features of the RF model were 3D GLS, age, 3D GCS, time to
perfusion (TTP), and 3D GAS (feature importance: 0.146,
0.140, 0.089, 0.087, 0.087, respectively).

4. Discussion

It is difficult to predict which AMI patients will and which
will not develop LVR after a successful PCI. We built several
prediction models including the conventional model and
machine learning models and discovered that RF achieved
higher predictive power than other models in our work and
used the Random Forest model to compare 3D STE pa-
rameters, finally discovering the overwhelming predictive
value of 3D GLS, thus bringing more attention to possible
future investigation into 3D GLS. Our study was the first to
build a machine learning model for LVR prediction using
factors that were mostly encountered in clinical practice plus
four 3D STE parameters and compare 3D STE parameters
values for predicting LVR in AMI patients after effective PCI
by using the Random Forest method.

4.1. Predictive Models for LVR. In this study, we built a
strong RF model for LVR prediction, using most of the

Table 3: .e correlation of factors with LVR occurrence.

Factors r p value
Age 0.174 0.043
cTnI 0.134 0.121
LAD 0.064 0.462
Sex −0.007 0.939
TTP 0.129 0.137
Smoker −0.066 0.444
Multivessel −0.027 0.758
3D GLS 0.396 <0.001
3D GAS 0.139 0.107
3D GCS 0.179 0.038
3D GRS −0.185 0.031
LVMI −0.106 0.220
Scr 0.036 0.677
TTP: time to perfusion. BMI: body mass index.

Table 4: .e univariate analysis of LVR predictive factors.

Factors OR 95% CI p value
3D GLS 1.374 1.176–1.604 <0.001
3D GAS 1.047 0.974–1.125 0.214
3D GCS 1.059 0.992–1.131 0.087
3D GRS 0.949 0.903–0.998 0.040
Age 1.049 0.998–1.104 0.061
LVMI 0.962 0.925–1.000 0.047
Scr 1.003 0.983–1.023 0.789
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Figure 3: Comparison of the ROC curves of all models. .e
Random Forest model showed the best AUC of 0.96 (blue line), and
eXGB showed the second best AUC of 0.90 (green line).

Table 5: Evaluation of constructed models.

Classifier AUC Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1
score

DT 0.83 85.71 75.00 88.24 0.81
RF 0.96 90.48 50.00 94.12 0.85
eXGB 0.90 76.19 50.00 82.35 0.87
K-NN 0.72 83.82 94.64 94.87 0.83
GNB 0.60 70.73 44.44 79.49 0.79
LR 0.83 85.37 92.86 92.31 0.83
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important factors we encountered in the clinical practices.
Some studies also built various predictive models for LVR in
AMI patients. Bochenek et al. built a regression model using
global longitudinal strain solely as a risk factor, with an AUC
of 0.77 and accuracy of 80% [32]. Sugano et al. used 3D GCS
to predict LVR, with an AUC of 0.73 and sensitivity of 84%
[33]. Xu et al. built regression models that contained several

clinical risk factors, but their work focused on evaluating
these factors and did not assess these models’ ability as a
whole in predicting LVR [34]. Most of the studies build
regression models to investigate the predictive value of a
separate risk factor. We did not find studies that assessed
models using various clinical risk factors, whether it in-
cluded 3D STE parameters or not.

4.2. �e Predictive Value of 3D STE for LVR. .is study
demonstrated that 3D GLS, among all the 3D STE pa-
rameters, is the strongest in predicting LVR in AMI patients
undergoing effective PCI, the power of which exceeded other
conventional markers such as cTnI, which is consistent with
most similar studies [15, 32, 35–37]. We assumed that this
phenomenon partly resulted from the intuitive feature of 3D
STE in observing heart movement. .e effect of cTnI on the
occurrence of LVR is subtle, and the same goes for other
serological biomarkers, while 3D STE detects detailed heart
movement to predict probable myocardial changes in the
future.

In our study, due to its original characteristics, the RF
model constructed requires less calculation and fits better in
real-world clinical cases, in which the samples are usually
small and imbalanced.

4.3. Different 3D STE Parameters in Predicting LVR. In our
model generated by RF, 3D GLS was the most important
feature, as shown in Figure 5 (feature importance of 3D GLS:
0.146, age: 0.140, 3D GCS: 0.089, TTP: 0.087, and 3D GAS:

BSA ≤ 1.7
Gini = 0.2

Samples = 64
Value = [92, 12]

Class = non-LVR
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Value = [14, 17]

Class = LVR
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Gini = 0.0
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Value = [41, 1]
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BSA ≤ 1.7
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Gini = 0.3
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Figure 4: One of the decision trees in the resulted Random Forest model. A Random Forest model is a combination of multiple diverse
decision trees..e decision tree displayed in this figure had age, 3D GLS, and BSA as classification features..e grayness in a box means the
probability of a node being predicted as LVR. .e parameter “sample” means the number of randomly chosen samples in this node. .e
parameter “Gini” measures the diversity of the samples, that is, the probability of inconsistent categories between two samples from a data
set. .e smaller the Gini index, the higher the purity of the sample. .e parameter “class” means this node tendency of this vote.
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0.087). .is result is in consistence with many other studies
that used traditional biostatistical models. A reasonable
explanation for the excellent performance of 3D GLS lies in
the anatomic characteristic of the coronary artery and the
capillary network inside the heart muscles. 3D GLS observes
the most vulnerable myocardium layer, the sub-endocar-
dium, which is anatomically far from the coronary artery
and receives the least nutrition from its capillary network,
rendering it the most vulnerable to coronary artery blockage.
.ese myofibrils are the first to show abnormality in a heart
attack and remain poorly cared for after the revasculari-
zation, in which the affected endocardial movement is
uncoordinated, and the amplitude is reduced.

In one of our previous studies, we compared 3D STE
parameters with 2D STE in predicting LVR in ST-elevated
myocardial infarction patients, coming to the conclusion
that 3D GRS was the second best 3D STE parameter, fol-
lowed by 3DGAS, while 3DGCS showed no predictive effect
[36]. However, in this study, we had a different result. 3D
GCS was the second best 3D STE parameter, followed closely
by 3D GAS (feature importance 0.089 and 0.087). As
Random Forest commonly has a better result in small and
imbalanced sample and we included more risk factors in this
work, we believe this result is more accurate, but further
investigation is needed to confirm this theory.

4.4. Random Forest Model. In this work, we decided to
compare the 3D STE parameters with the RF model for it
had the best performance, outmatching DT, eXGB, K-NN,
GNB, and LR models. .e DT is simple in calculation and
vastly used, but overfitting remains as one of its main
disadvantages, which might be the reason why it did not
have a good performance in this work. .e eXGB is a highly
efficient and optimized distributed gradient boosting library
[38]. It is highly flexible and portable, which excels in big
data analysis. However, the imbalance of a dataset can affect
the training of an eXGB model, which explains why it was
not as good as RF in this work..eK-NN algorithm searches
the most similar training samples to predict the observation
value of a new sample. It usually performs well in numerical
data and discrete data, but performs badly when the sample
is imbalanced, which is quite opposite to the RF. .e
Gaussian NB usually has a good performance in small
sample studies, but in this study, it still performed badly. We
assumed the main reason was that many of the variables in
this study were discontinuous, whichmay affect the power of
Gaussian NB. .e other reason is that the Gaussian NB
presumed that none of the variables interact with each other,
which is unlikely in this study, and this may heavily affect the
predictive power of the Gaussian NB model, and the LR
performed badly in this work for the same reason.

Random Forest is a highly flexible machine learning
algorithm that performs well in small and imbalanced
samples [19]. .at explains why it excelled in this study. It
is based on bagged decision trees that are trained on
bootstrap samples. And these decision trees combined and
formed a Random Forest. Its coding was uploaded in the
supplement files.

In the our RF model, Gini impurity was used to measure
the partitioning attribute. Assuming that the proportion of
the kth sample in the current sample set D is pk (k� 1, 2, . . .,
K), the purity of the dataset D can be measured by the Gini
value:

Gini(D) � 􏽘
K

k�1
􏽘

k′≠k

pkpk′ � 1 − 􏽘
K

k�1
p
2
k. (1)

When Gini (D)� 0, the sample was the purest, and then,
the category extracted was of the same type, either LVR or
non-LVR. When Gini (D)� 0.5, the probabilities of two
categories were the same, meaning the tree cannot distin-
guish LVR or non-LVR. .erefore, the smaller the Gini (D),
the higher the purity of the dataset D. For the tuning of
parameters, see the supplementary materials (available
here).

An RF can be described as a cluster of many decision
trees in which each decision tree independently votes for the
most possible classification at input x [39, 40]. It is a highly
flexible and expandable machine learning algorithm based
on the concept of integrated learning, which integrates many
basic decision tree units into a “forest.” Every decision tree
can classify a result through its own features (as shown in
Figure 4), and the RF assembles the decisions of all these
trees and gives the final decision. It is capable of simulta-
neously handling thousands of input variables without de-
letion, and the speed of RF calculation is a lot faster than
traditional models.

In this study, we showed that RF is a more powerful
method of predicting LVR after AMI. Furthermore, due to
its flexibility, scalability, and faster calculation speed, RF is
promising in the clinical practice of predicting LVR after
AMI.

4.5. Clinical Implications. Our study built LVR predictive
models with machine learning techniques and discovered
that the best 3D STE parameters in predicting LVR after
AMI is 3D GLS, and the second is 3D GCS. .is model is
more accurate because (1) it included 15 risk factors that
were encountered regularly in clinical practice and (2) in
clinical practice, the sample is always a small and imbalanced
one. And this model is more rapid for it needs less calcu-
lation steps. .ough we have not verified the value of this
model in clinical practice, because it is still in its early stage,
we believe more and more research will transfer the value of
this work into clinical application.

Rapid prediction of future LVR in patients with AMI
after PCI is instructive for cardiologists to stratify patients,
especially for the detection of patients with poor prognosis.
.ese patients need careful treatment plans to avoid relapse,
HF deaths, heart transplantation, and to prevent major
ventricular arrhythmia. Further research is required to help
supplement the clinical benefits of the model and 3D STE.

4.6. Limitations. One of the limitations of this study is that
the positive and negative proportion was imbalanced (26
LVR patients vs. 109 non-LVR patients), thus affecting the
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robustness of the machine learning models. .ough RF can
reduce this effect, a more balanced data set is still required to
give a more convincing result. .e other limitation is this
study only represents the results of an ultrasound machine
from one kind of vendor, so it may be less comparable to
results from different vendors. .e rigor of this work should
be demonstrated by using different ultrasound machines
with the similar size of samples.

5. Conclusions

.ere are two main conclusions of this study: (1) the ma-
chine learning method Random Forest constructs the best
model under the circumstances of predicting LVR with 3D
STE; and (2) for AMI patients undergoing effective PCI, the
3D STE parameter 3D GLS acquired at 24 hours after the
PCI is highly likely to best predict the occurrence of LVR.
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Recently, computer vision and deep learning technology has been applied in various gait rehabilitation researches. Considering
the long short-term memory (LSTM) network has been proved an excellent performance in learn sequence feature represen-
tations, we proposed a lower limb joint trajectory prediction method based on LSTM for conducting active rehabilitation on a
rehabilitation robotic system. Our approach based on synergy theory exploits that the follow-up lower limb joint trajectory, i.e.
limb intention, could be generated by joint angles of the previous swing process of upper limb which were acquired from Kinect
platform, an advanced computer vision platform for motion tracking. A customize Kinect-Treadmill data acquisition platform
was built for this study.With this platform, data acquisition on ten healthy subjects is processed in four different walking speeds to
acquire the joint angles calculated by Kinect visual signals of upper and lower limb swing. +en, the angles of hip and knee in one
side which were presented as lower limb intentions are predicted by the fore angles of the elbow and shoulder on the opposite side
via a trained LSTM model. +e results indicate that the trained LSTM model has a better estimation of predicting the lower limb
intentions, and the feasibility of Kinect visual signals has been validated as well.

1. Introduction

Stroke is a disease caused by acute rupture of blood vessels or
vascular occlusion [1, 2]. About 15 million people suffer from
it every year globally [3]. Hemiplegia is the major sequela of
most stroke survivors which affects the quality of their daily
life in the home, workplace, and community [4]. It presents
with the weakness of one entire side of the body. Due to limb
weaknesses leading to an inability to properly performing,
hemiplegia patients could lose a number of motor functions
especially the walking function [5, 6]. Walking abnormality
makes performing everyday activities in the home, workplace,
and community more difficult [7, 8].

Recovery of the walking ability for hemiplegia patients is
crucial in order to perform daily activities [9, 10]. Key
components of gait recovery are high-intensity, skill-ori-
ented, and task-specific [11, 12]. Due to physically ex-
haustion of therapists to repeat hundreds of complex gait

cycles in a training session [13], an amount of rehabilitation
gait training robots have been developed to provide robotic
assistance [14]. Robotic-assisted gait training refers to the
rehabilitation therapists how to assist the patient in per-
forming the gait cycle [15]. Considering the limb weaknesses
leading to difficulty in supporting the body weight in
training, current rehabilitation could support body weight to
allow the lower limbs to maintain a pattern during gait
training such as Lokomat [16]. +ese gait robot trainers
passively move the patients on a treadmill. However, the
control systems of most commercial robotic systems are
passive in nature because the training subject is not con-
sidered in the system. By increasing active participation [17],
the dependence of patients on robot assistance can be re-
duced by improving the effectiveness of rehabilitation
training. +us, we should make the robots include the ability
that collects quantitative gait data to generate sensory
stimulation synchronized to gait patterns.
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To develop a noncontact signal prediction for an active
rehabilitation robotic system, the synergy that is initiated by
weight-bearing over the involved limb and supporting the
human body was taken into consideration [18, 19]. Twitchell
et al. proved that abnormal synergy is a motor impairment in
patients with stroke [20]. +e main factor that limited the
motor rehabilitation of patients with stroke is abnormal
synergy [21]. Studies have shown that interlimb and
intralimb coordination of lower limbs in patients after stroke
is diverse from that in normal subjects [22]. In 2018, Zebin
et al. proposed a prediction method via inertial sensors and
LSTM methods to predict the angle trajectory of the im-
paired lower limb [23]. Simultaneously, the security and
privacy of medical data are also crucial. Sandeep et al. de-
veloped a biometric-based security framework for wearable
health monitoring systems to extract ECG signal, and it
proved that time-domain based biometric features plays an
important role in security [24]. Wu et al. proposed an
adaptive computing-based random binary sequences gen-
eration method to provide a balance between processing
time and security in wireless body sensor networks [25]. Cai
et al. quantified the concurrent accuracy and the test-retest
reliability of a Kinect V2-based upper limb functional as-
sessment system [26]. Liao et al. proposed a motion

intention recognition system based on the Kinect V2 sensor.
It can successfully provide an adequate assistance with a
lesser time delay compared with the system without Kalman
filter [27].

Recently, the time series prediction model has been
effectively applied to several studies [28]. Long short-term
memory (LSTM) networks widely used to have done a good
job on this issue in fields including gait recognition owing to
the ability of processing and predicting the time series with
very long intervals [29, 30]. It works effectively to extract the
gait feature [11].

As shown in Figure 1, in this paper, a lower limb joint
trajectory generation framework was proposed to drive the
lower limb robot using the trajectory of healthy upper limbs.
+is study aimed to utilize upper limb Kinect information
during walking to estimate sagittal plane hip and knee ki-
nematics trajectories.+e trajectories will be used for driving
a rehabilitation robotic system in follow-up studies.

2. Methods

2.1. Experimental Setup and Data Acquisition. To obtain
human gait data, we have built and evaluate our model that
used a “virtual skeleton” produced by the Kinect sensor and

Subject
Angular data Preprocessing PredictionLSTM

Kinect

Lower limb 
movement intention

Personalized rehabilitation program
Design

Upper limb 
motor

Guide

Proposed method

Healthy gait data
Compare

Follow-up 

Figure 1: +e framework of our method and follow-up studies.

Virtual avatar

Gait data

Treadmill

Kinect Record application

Figure 2: Treadmill and Kinect layout (the treadmill was angled at 45 with respect to the Kinect sensor, with the front of the treadmill
positioned 140 cm to the right and at a distance of 150 cm in front of the sensor; the base of the Kinect sensor rested 100 cm above the floor).
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software. Kinect 2.0 provides a high-quality skeletal model to
one user in front of the Kinect sensor, and Kinect SDK offers
the tracking and detection of 25 different skeletal points,
which could apply this skeletal data for feature extraction;
the experimental setup is as shown in Figure 2.

Gait data were concurrently recorded by a Kinect sensor
that provides approximately 30 skeleton frames per second
[31]. Each participant wore a fitting and light color suit on
the treadmill. In a 10 participants’ database, they are gen-
erally divided into four walking velocities: 3.0, 3.5, 4.0, and
4.5 km/h.

+e joint angle of the shoulder, ankle, hip, knee, arm of
the right side, left knee, and hip in the sagittal plane were
calculated based on the quaternion. For each joint of the
Kinect virtual model, the x, y, and z coordinates are
recorded. +is study converts the joints into a vector for
angle calculation. For each joint, the current position of the
angle between a joint and a sagittal vector was recorded.
Finally, we generate the following features: the angle in each
of the frames, the difference in angle between consecutive
frames, and these angular displacements providing basic gait
characteristics.

2.2. Gait Joint Angle Design. +e Kinect skeletal joints 3-D
coordinated data reading is less susceptible to noise com-
pared with their distance to the acquisition [32, 33].+us, for
each limb, a shoulder joint angle was determined by con-
sidering the location of the shoulder and elbow in the
Cartesian coordinate. +e shoulder, elbow, hip, and knee
position in Cartesian space are defined with four-vectors, the
Kinect being at the origin of the 3-D space. +e vector
definition is formulated in equations (1)–(5). +e angle of
joints definition is formulated in equations (6)–(9):
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where v
→

se, v
→

ew, v
→

hk, and v
→

ka are the 3-D vectors con-
necting the participants’ shoulder to the elbow, elbow to the
wrist, hip to the knee, and knee to the ankle, respectively,
that is also depicted in Figure 3.

2.3. Long-Short Term Memory Network for Angle Prediction.
In our proposed approach, trajectory generation is to apply
the interlimb synergy extracted from healthy participants by
LSTM to generate a trajectory-based on gait data [34, 35].

To solve the difficulties in training the RNNmodel caused
by the “vanishing gradient” effect, the long-short term
memory (LSTM) architecture has been proposed. Figure 4
illustrates a typical LSTM neuron. It contains one self-con-
nected memory cell ct and three multiplicative units, i.e., the
input gate it, the forget gate ft, and the output gate ot.

+e memory cell has a self-connected recurrent edge of
weight 1, ensuring that the gradient can pass across many
time steps without vanishing or exploding [29]. +e input
gate and forget gate govern the information flow into and
out of the cell [37]. +e output gate controls how much
information from the cell is passed to the output ht. +e
activations of the memory cell and three gates are given as
follows:

it � σ Wxixt + Whiht−1 + Wcict−1 + bi( 􏼁,

ft � σ Wxfxt + Whfht−1 + Wcfct−1 + bf􏼐 􏼑,

ct � ftct−1 + it tanh Wxcxt + Whcht−1 + bc( 􏼁,

ot � σ Wxoxt + Whoht−1 + Wcoct−1 + bo( 􏼁,

ht � ottanh ct( 􏼁.

(10)

where σ(x) is the logistic sigmoid function and defined as
σ(x) � 1/(1 + e− x), wαβ are the weight matrices connecting
α and β, and bβ denotes the corresponding bias vectors.

3. Experiment

3.1. Experiment Implementation. Since stroke patients show
a lower extremity weakness of walking [38, 39], we target in
studying the spatial correlations of gait features by using
neural networks. To get enough training gait data, 10 healthy
participants (aged 23.3 ± 1.4years, height 169.1 ± 6.9cm,
and weight 55.5 ± 6.5kg) were recruited from our labora-
tory. +ey were free of any physical condition or limitation
which prevented them from walking on the treadmill. +ey
were required to walk for 150s per velocity.

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

30

25

20

15

10

5

0

–5

–10
0 20 40 60 80 100 120

Time

Time Time Time Time

TimeTimeTimeTime

Time Time Time Time

A
ng

le
A

ng
le

A
ng

le
A

ng
le

Time Time Time

5

0

–5

–10

–15

–20

–25

A
ng

le
A

ng
le

A
ng

le
A

ng
le

A
ng

le
A

ng
le

A
ng

le
A

ng
le

A
ng

le
A

ng
le

A
ng

le
A

ng
le

0 10 20 30 40 50 60 70 80 90 100

50

40

30

20

10

0

–10
0 20 40 60 80 100 120

5

0

–5

–10

–15

–20

–25

–30

–35
0 10 20 30 40 50 60 70 80 90 100

5
10

0
–5

–10
–15
–20
–25
–30
–35
–40

0 20 40 60 80 100 120

30

35

25

20

15

10

5

0

–5
0 10 20 30 40 50 60 70 80 900 20 40 60 80 100 120

15
10

5
0

–5
–10
–15
–20
–25
–30
–35

0 10 20 30 40 50 60 70 80 90 100

35
40

30
25
20
15
10

5

–5
0

0 10 20 30 40 50 60 70 80 90

35

30

25

20

15

10

5

0

–5
0 10 20 30 40 50 60 70 80 90 100

5

0

–5

–10

–15

–20

–25

–30
0 10 20 30 40 50 60 70 80 90 100

50

40

30

20

10

0

–10
0 10 20 30 40 50 60 70 80 90

5

0

–5

–10

–15

–20

–25

–30

–35

0 10 20 30 40 50 60 70 80

0

–5

–10

–15

–20

–25

–30
0 10 20 30 40 50 60 70 80 90 100

35
40

30
25
20
15
10

5
0

–5
0 10 20 30 40 50 60 70 80 90 100

5

0

–5

–10

–15

–20

–25

–30
0 10 20 30 40 50 60 70 80 90 100

35
30
25
20
15
10

5
0

–5
–10

3.0

3.5

4.0

4.5

Left hip Right hipLeft knee Right knee

Figure 6: Estimated left hip and knee trajectories vs. original hip and knee trajectories through using the right shoulder and elbow in
different velocities (3.0, 3.5, 4.0, and 4.5 km/h).
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For maintaining a stable recognition of the human body
[40], the Kinect was placed at a height of 1meter above the
ground and the treadmill was set within 2.6 to 4meters from
the Kinect sensor.

During the experiment, there was a total of 10 (male/
female:6/4) healthy participants enrolled. We prepared 40
gait feature data of upper and lower limbs from 10 subjects,
while their skeletal data were captured by Kinect 2.0. Fig-
ure 5 illustrates a participant walking session and joints
behavior during a gait cycle in different velocities.

Our experiments were implemented on the Tensorflow
framework [36], a popular deep learning framework. +e
base learning rate was set to 0.0005, and the LSTM step size
was set to 10 frames. +e maximum number of iterations
was set to 1000.

3.2. Results. +is study estimated one side’s gait data by
using the other side’s data based on the synergy. Figure 6
shows the estimated result of left hip joint and knee joint
trajectories through using the right shoulder and elbow by
LSTM. To validate the feasibility of LSTM synergy, we used
right side upper limb joints and lower limb joints to predict
left side lower limb and are shown in Figure 7; it shows the

estimated result of one side’s hip and knee trajectories
through using the other side’s shoulder, elbow, hip, and knee
by LSTM. As can be seen from the figure, the error between
the estimated trajectory and the original trajectory of the left
hip and knee is low.

Results show that LSTM is a good approach for person
identification based on gait recognition with Kinect. We also
tested the quality of the prediction of the angular velocity,
and we applied the root-mean-squared error (RMSE) to
evaluate the model after each run. Here, we compared RMSE
between the estimated angle and original angle in four
different velocities on prediction based on LSTM. +e result
is shown in Figures 8 and 9. Especially, RMSE was poor for
hip and knee joint angles at 3.0 km/h than the other three
velocities by using the joints of the upper limb (Table 1);
however, it was relatively good by using the joints of the
upper limb and lower limb (Table 2).

4. Discussion

To estimate the hip and knee trajectory by using the upper
limb joints trajectories, we applied the Kinect 2.0 to track the
upper limb and lower limb sagittal plane movement in the
walking period.+e human body is in a continuous dynamic

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

Original data
Estimated data

A
ng

le

A
ng

le

A
ng

le

A
ng

le
A

ng
le

A
ng

le
A

ng
le

A
ng

le
A

ng
le

A
ng

le

A
ng

le
A

ng
le

A
ng

le

A
ng

le
A

ng
le

A
ng

le
30

25

20

15

10

5

0

–5

Time

Time Time Time Time

TimeTimeTimeTime

Time Time Time Time

Time Time Time
0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

5

0

–5

–10

–15

–20

–25

–30
0 20 40 60 80 100 120 0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

30
35
40

25
20
15
10

5
0

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 90

0 10 20 30 40 50 60 70 80 10090

0 10 20 30 40 50 60 70 80

0
–2
–4
–6
–8

–10
–12
–14
–16

30
35
40

25
20
15
10

5
0

–5

5

0

–5

–10

–15

–20

–25

30

35

25

20

15

10

5

0

0

–5

–10

–15

–20

–25

–30

0
5

–5
–10
–15
–20
–25
–30
–35

30
35
40

25
20
15
10

5
0

–5
–10

0

–5

–10

–15

–20

–25

–30

30
35
40

25
20
15
10

5
0

–5

30
35

25
20
15
10

5
0

–5
–10

0

5

–5

–10

–15

–20

–25

–30

30
35
40

25
20
15
10

5
0

–5

0

–5

–10

–15

–20

–25

–30

–35

3.0

3.5

4.0

4.5

Left hip Right hipLeft knee Right knee

Figure 7: Estimated one side’s hip and knee trajectories vs. original hip and knee trajectories through using the other side’s shoulder, elbow,
hip, and knee in different velocities (3.0, 3.5, 4.0, and 4.5 km/h).
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Figure 8: RMSE of LSTM estimation on hip and knee extension and flexion using the right shoulder and elbow in different velocities for
Kinect.
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Figure 9: RMSE of LSTM estimation on hip and knee extension and flexion using the shoulder, elbow, hip, and knee in different velocities
for Kinect.
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state during walking. In this study, the LSTM model was
developed, and its performances were compared using
RMSE. Because there is no need to go through a process of
selecting features and having better stability, we chose it to
estimate our trajectory. +e LSTM model in this study
showed improved results, and RMSE has been introduced
above. It can see that LSTM has a better estimation on
predicting the gait trajectory, which included human
interlimb synergy. +is model showed excellency in mod-
eling that with the change over time such as walking to
predict the data of current time from information in the
previous step.

As the pace velocity increases, we can see that the ac-
curacy of the prediction is getting higher. In the case of
3.0 km/h velocity, the gait prediction trajectory is relatively
poor; however, in the case of 4.5 km/h velocity, LSTM
presents the effect of prediction is quite amazing. +is result
indicates that when humans walk at 4.5 km/h velocity, the
upper and lower limbs on the two sides are highly correlated.

In various velocities, the trajectory prediction effect of
the knee joint is generally higher than that of the hip joint,
except for the velocity in 3.5 km/h.

When using the joints of the upper limb and lower limb
to estimate the hip and knee trajectory, we can get an ob-
vious better estimation accuracy. From Table 2, we can see
that the RMSE is basically maintained within 2, which is
better than merely used the upper limb to predict hip and
knee trajectory. Otherwise, in this case, the accuracy of the
estimated hip trajectory is better than estimated knee tra-
jectory, respectively; compared with the right hip, the left hip
trajectory is great. In Figure 8, the trajectory only based on
the upper limb trajectory still has a good estimation per-
formance. It was concluded that LSTM has good exploita-
tion in gait features.

+is study has a limitation of not applying data of
patients with stroke to the learning model for lower limb
trajectory prediction. However, the study is to suggest the
possibility of estimating the lower limb trajectory by using

the upper limb trajectory and an artificial neural network
model. In the next research, we can apply various data for
the training model.

5. Conclusion

In this paper, an artificial neural network model was de-
veloped to estimate the lower limb joints trajectory of a
complete gait cycle by using the joints of the opposite side.
Accuracies of using the upper limb joints and the upper and
lower limb joints to estimate another side lower limb joints
were compared. As a result, the model showed RMSE values
within 3.0. +ese trials demonstrate that this model can be
used safely as a gait training intervention for those stroke
patients. It suggests that the exoskeletal gait rehabilitation
robot can apply this model to help patients try to walk like
normal people.
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