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Categorification, a term coined by Louis Crane and Igor Frenkel, is the process of realizing
mathematical structures as shadows of higher mathematics. The original motivation was
the idea that one should be able to construct four-dimensional quantum field theories by
categorifying the representation theory of quantum groups. Work of many people over the
past 15 years has made great progress in clarifying and developing this vision. In that time,
it has become increasingly clear that categorification is a broad mathematical phenomenon
with applications extending far beyond these original motivations.

This special issue focuses on categorification in the context of representation theory of
quantum groups and Hecke algebras, in the spirit of the examples of categorification coming
from geometric representation theory and low-dimensional topology. A special emphasis is
placed on the diagrammatic calculus created by Elias and Khovanov to describe the category
of Seorgel bimodules in terms of planar diagrams.

One reason for the prominence of quantum groups and Hecke algebras in categori-
fication is that they provide a bridge between representation theory and low-dimensional
topology. Indeed, quantum groups and Hecke algebras can be viewed as the basic algebraic
input giving rise to knot invariants such as the Jones polynomial, colored Jones polynomial,
HOMFLYPT polynomial, and Witten-Reshetikhin-Turaev 3-manifold invariants. Khovanov
showed that the Jones polynomial could be understood as the graded Euler characteristic of a
graded homology theory for knots and links, thus opening the door to a new chapter of inter-
action between representation theory and low-dimensional topology. Besides being a strictly
stronger knot invariant than its Euler characteristic, many of the knot homologies developed
since Khovanov homology are functorial: cobordisms between tangles give rise to maps
between homologies. This functoriality is explained by the rich structure of morphisms and
natural transformations which exists in categorified quantum groups and Hecke algebras.
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That representation theory has proven to be an especially fertile ground for
categorification is a fact that owes much to the geometric methods pervading the subject.
For example, constructions of natural bases with positivity and integrality properties are
a central part of geometric representation theory. The categorifications that sit above such
geometric constructions provide rich explanations for the existence of these bases: in the
categorification, basis vectors are reinterpreted as indecomposable objects in a category, while
structure constants become decomposition numbers or multiplicities. From this point of
view, positivity and integrality are manifest. A particularly important object in geometric
representation theory is the category of Soergel bimodules, which was used by Soergel to
give a categorification of the Hecke algebra. The Elias-Khovanov description of the Soergel
category also suggests a natural categorification of a quotient of the Hecke algebra known as
the Temperley-Lieb algebra. Such a categorification is studied in the papers in this issue by B.
Elias and B. Elias-Khovanov.

Constructions of knot homology theories associated to quantum sln can be given
using certain singular surfaces called foams. The papers by P. Vaz and M. Mackaay-P. Vaz
in this issue construct representations of the Soergel category on the category of foams. These
constructions clarify the representation theoretic meaning of foams in the construction of
sln knot homology theories. D. Krasner, in his paper, constructs knot homology from braid
group actions built from the diagrammatic Soergel category, obtaining integral versions of
HOMFLY-PT and sln-link homology theories.

J. Sussan and D. Hill’s paper connects the Khovanov-Lauda diagrammatic categorifi-
cation of Uq(sln) with a previous categorification of the adjoint representation constructed
by Khovanov-Huerfano. In particular, they obtain a categorification of the irreducible
representations of highest weight 2ωk, where the ωk are the fundamental weights. The paper
by A. Ram and P. Tingley uses the Shapovalov determinant for a universal Verma module to
explain a connection between structure constants appearing in the Misra-Miwa Fock space
and Weyl modules.

One theme common to several of the papers in this special issue is the use of a
graphical calculus of planar diagrams in categorification. In these graphical presentations,
the algebraic relations amongst morphisms are described by local geometry in the plane.
While these diagrammatic constructions can be rigorously translated into a purely algebraic
formulations, planar diagrams describe categorifications in a geometric and often quite
intuitive manner.

Alistair Savage
Aaron Lauda

Anthony Licata
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The monoidal category of Soergel bimodules can be thought of as a categorification of the Hecke
algebra of a finite Weyl group. We present this category, when the Weyl group is the symmetric
group, in the language of planar diagrams with local generators and local defining relations.

1. Introduction

In this paper [1], Soergel gave a combinatorial description of a certain category of Harish-
Chandra bimodules over a simple Lie algebra g. This category was and continues to be of
primary interest in the infinite-dimensional representation theory of simple Lie algebras.
Soergel discovered a functor from this category to a full subcategory of bimodules over a
certain ring R, the objects of which are now commonly called Soergel bimodules. The category
of Soergel bimodules is additive and monoidal, unlike the original category which is abelian,
but it still has sufficient information to describe the original category. Soergel constructed
an isomorphism between the Grothendieck ring of his category and the integral form of
the Hecke algebra of the Weyl group W of g. Hence, Soergel’s construction provides a
categorification of the Hecke algebra.

Given a k-dimensional c-vector space V and a generic q ∈ c, there are commuting
actions of the quantum group Uq(slk) and the Hecke algebra H of the symmetric group Sn
on V ⊗n. These actions turn the quotient Uq(slk)/J1 of the quantum group and H/J2 of the
Hecke algebra by the kernels of these action into a dual pair. A categorical realization of
the triple (V ⊗n,Uq(slk)/J1,H/J2) was given by Grojnowski and Lusztig [2] via categories of
perverse sheaves on products of flag and partial flag varieties, also see [3–6].

Many foundational ideas about categorification were put forward by Igor Frenkel
in the early 90s (a small fraction of these ideas formed a part of the paper [7]). In
particular, Frenkel conjectured [8] that quantum groups and not just their finite-dimensional
quotients Uq(slk)/J1 can be categorified. These conjectures remained open until recently,
when categorifications of quantum sl2 and slk were discovered in [9, 10], with a related but
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different approach developed in [11, 12]. In the categorifications [9, 10] of quantum groups,
2 morphisms are given by linear combinations of planar diagrams, modulo local relations.

The parallel objective would be to categorify the Hecke algebra in the same spirit,
using planar diagrams. Soergel had already provided a categorification, so it remains to ask
whether his category can be rephrased diagrammatically. Diagrammatics should also provide
a presentation of the category by generators and relations. A similar question was recently
posed by Libedinsky [13], who essentially produced such a description for categorifications
of Hecke algebras associated to “right-angled” Coxeter systems.

Here, we answer this question positively in the case of the Hecke algebra associated
to the symmetric group. This is, of course, the Hecke algebra that appears in the Schur-Weyl
duality for V ⊗n. For notational convenience, we use n+1, not n, as our parameter and define a
diagrammatical version DC of the category of Soergel bimodules that categorifies the Hecke
algebra of the symmetric group Sn+1.

In some sense, diagrammatic categorifications are very “low-tech,” in that they
can be described easily and do not rely on heavy machinery. While one can prove that
Soergel bimodules categorify the Hecke algebra using only elaborate commutative algebra
(see [14], although it is never stated explicitly), showing that indecomposable bimodules
descend to the Kazhdan-Lusztig basis of the Hecke algebra utilizes Kazhdan-Lusztig theory
[15, 16]. This, in turn, is related to fundamental developments in geometric representation
theory like D-modules on flag manifolds [17, 18] and perverse sheaves [19]. One hopes
that a diagrammatic approach will help to visualize and work with these sophisticated
constructions, in the same way that the categorifications of quantum groups [9, 10] have led
to an improved understanding of perverse sheaves on quiver varieties (see [20]). One also
hopes that this approach can shed light on categorifications of representations of the Hecke
algebra coming from the context of category O (see [21]).

We start with an intermediate category DC1 whose objects are finite sequences i =
i1 · · · id of numbers between 1 and n. An object is represented graphically by marking d points
in the standard position (say, having coordinates 1, . . . , d) on the x-axis and assigning labels
i1, . . . , id to marked points from left to right. Morphisms between i and j are given by linear
combinations (with coefficients in a ground field k) of planar diagrams embedded in the
strip R × [0, 1]. These diagrams are decorated planar graphs, where edges may extend to the
boundary R × {0, 1}. Each edge carries a label between 1 and n, so that the induced labellings
of the lower and upper boundaries are i and j, respectively. In the interior of the strip, we
allow

(1) vertices of valence 1,

(2) vertices of valence 3 with all 3 edges carrying the same label,

(3) vertices of valence 4 seen as intersections of i and j-labelled lines with |i − j| > 1,

(4) vertices of valence 6 with the edge labelling i, i+ 1, i, i+ 1, i, i+ 1, reading clockwise
around the vertex,

(5) boxes labelled by numbers between 1 and n + 1 which float in the regions of the
graph.

We impose a set of local relations on linear combinations of these diagrams, including
invariance of diagrams under all isotopies. A subset of the relations says that i is a Frobenius
object in the category DC1.

The space of morphisms in DC1 between i and j is naturally a graded vector space.
Allowing grading shifts and direct sums of objects, then restricting to grading-preserving
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morphisms, and finally passing to the Karoubian closure of the category results in a graded
k-linear additive monoidal category DC. Our main result (Theorem 4.22 in Section 4) is an
explicit equivalence between this category and the category SC of Soergel bimodules.

The category DC is monoidal, and can be viewed as a 2-category with a single object.
It may be easier to tackle the diagrammatics after reading an introductory reference on
diagrammatics for 2-categories. Such an introduction can be found in [9]. This may make
it easier to explore similarities with the categorifications of quantum groups in [9, 10], where
regions of diagrams are labelled by integers in [9] and integral weights of sln in [10]. Boxes
floating in regions are superficially analogous to floating bubbles of [9, 10]. Unlike the
diagrammatic categorifications in [9, 10], our lines do not carry dots and are not oriented.

There is another way to view our diagrammatics, which is not developed in this
paper. Rouquier [22, 23] defined an action of the Coxeter braid group associated to W on
the category of complexes of Soergel bimodules up to homotopies, which is related to a
braid group action using Harish-Chandra bimodules that had been known for some time.
These complexes were later used in an alternative construction [24] of a triply graded link
homology theory [25] categorifying the HOMFLY-PT polynomial [25–28]. In this approach, a
product Soergel bimodule Bi1 ⊗ · · · ⊗Bid is depicted by a planar diagram given by concatening
elementary planar diagrams lying in the xy-plane that consist of n + 1 strands going up,
with i and i + 1-st strands merging and splitting, see [24, Figures 2 and 3]. Morphisms
between product bimodules can be realized by linear combinations of foams—decorated two-
dimensional CW-complexes embedded in R

3 with suitable boundary conditions. Foams have
been implicit throughout papers on triply graded link homology (see [29] for instance, where
various arrows between planar diagrams can be implemented by foams), and explicitly
appear in the papers on their doubly-graded cousins, see [30, 31] and references therein.

Foams are 3-dimensional objects; they are two-dimensional CW-complexes embedded
in R

3 that produce cobordisms along the z-axis direction between planar objects correspond-
ing to product Soergel bimodules. The planar diagrams of our paper are two-dimensional
encodings of these foams, essentially projections of the foams onto the yz-plane along the
x-axis.

It was shown in [32] that the action of the braid group on the homotopy category of
Soergel bimodules extends to a (projective) action of the category of braid cobordisms. Thus,
the homotopy category of DC produces invariants of braid cobordisms, so that our planar
diagrammatics carry information about four-dimensional objects. This informational density
indicates the efficiency of such encodings.

Addendum 1. Since this paper first appeared, the diagrammatics developed here have led to several
developments which we briefly mention here. In [33] it is shown that Rouquier’s braid group action
lifts functorially to the braid cobordism category. In [34, 35], a functor is given from the category DC
to categories of foams used in link homology. Together, these papers show that the encodings mentioned
above are more than simply heuristic. In [36], the Temperley-Lieb algebra is categorified as a quotient
of DC. Additional statements relating this paper to either newer papers or to previous versions of this
paper are found sparsely under a similar “Addendum” heading.

2. Preliminaries

Henceforth, we will fix a positive integer n. Indices i, j, and k will range over 1, . . . , n if not
otherwise specified. Finite ordered sequences of such indices (allowing repetition) will be
denoted i = i1 · · · id, as well as j and k. The length of the sequence will be denoted d = d(i).
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For sequences of length d = 1 where the single entry is i, we use i and i interchangeably.
Occasionally i + 1 will also be used as an index, and whenever this occurs we make the tacit
assumption that i ≤ n − 1, so that all indices used remain between 1 and n. The same goes for
i − 1, i + 2, and the like. We denote the length 0 sequence by the empty set symbol ∅.

We work over a field k, usually assuming that Char k/= 2, and sometimes specializing
it to c.

Given a noetherian ring R, the category R-molf-R is the full subcategory of R-bimo-
dules consisting of objects which are finitely generated as left R-modules. If R is graded,
the category R-molfZ-R is the analogous subcategory of graded R-bimodules and grading-
preserving homomorphisms.

2.1. Hecke Algebra

Let (W,S) be a Coxeter system of a finite Weyl group W , with length function l : W → n =
{0, 1, 2, . . .}, and let e ∈ W be the identity. The Hecke algebra H is an algebra over Z[v, v−1]
(we follow Soergel’s use [37] of the variable v; related variables are denoted in the literature
by t = v−1 and q = t2), which is free as a module with basis Tw, w ∈W . Multiplication in this
basis is given by TxTw = Txw when l(v) + l(w) = l(vw), and T2

s = (v−2 − 1)Ts + v−2Te for s ∈ S.
Te is the identity element in H and will often be written as 1.

In the case we are interested in presently,W = Sn+1, andS consists of the transpositions
si = (i, i + 1) for i = 1, . . . , n. The element Tsi will be denoted Ti. The Hecke algebra has a
presentation over Z[v, v−1], being generated by Ti subject to the relations

T2
i =

(
v−2 − 1

)
Ti + v−2,

TiTj = TjTi for
∣∣i − j

∣∣ ≥ 2,

TiTi+1Ti = Ti+1TiTi+1.

(2.1)

Clearly then, H is also generated as an algebra by bi
def= C′si = v(Ti + 1), 1 ≤ i ≤ n, and the

relations above transform into

b2
i =

(
v + v−1

)
bi,

bibj = bjbi for
∣∣i − j

∣∣ ≥ 2,

bibi+1bi + bi+1 = bi+1bibi+1 + bi.

(2.2)

We often write the monomial bi1bi2 · · · bid as bi where i = i1 · · · id. Notice that b∅ = 1.
Let a 	→ a be the involution of Z[v, v−1] determined by v = v−1. It extends to an

involution of H given by
∑

awTw =
∑

awT
−1
w−1 . (2.3)

In particular, Ti = T−1
i = v2Ti + v2 − 1.

Kazhdan and Lusztig [15] defined a pair of bases {Cw}w∈W and {C′w}w∈W for H,
which immediately proved to be of fundamental importance for representation theory and
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combinatorics. The two bases are related via a suitable involution of H, and the elements of
the second Kazhdan-Lusztig basis {C′w}w are determined by the two properties

C′w = C′w,

C′w = vl(w)
∑

y≤w
Py,wTy,

(2.4)

where Py,w ∈ Z[v−2] has negative v-degree strictly less than l(w)−l(y) for y < w and Pw,w = 1.
There is no simple formula expressing C′w in terms of Ty, but observe that C′e = 1 and C′si =
bi = v(Ti + 1). For a good introduction to the Kazhdan-Lusztig basis, see [37].

Let ε : H → Z[v, v−1] be the Z[v, v−1]-linear map given by ε(Te) = 1 and ε(Tw) = 0 if
w/= e. Thus, ε simply picks up the coefficient of Te in x. The easily checked property ε(Tix) =
ε(xTi) for any x ∈ H implies that ε(xy) = ε(yx), for all x, y ∈ H, so that ε is a trace map and
turns H into a symmetric Frobenius Z[v, v−1]-algebra.

Denote byω a v-antilinear anti-involutionω : H → H defined uniquely byω(bi) = bi.
The anti-involution and v-antilinearity conditions say that ω(xy) = ω(y)ω(x) and ω(ax) =
aω(x), for x, y ∈ H and a ∈ Z[v, v−1].

Consider the pairing (, ) : H ×H → Z[v, v−1] of Z-modules given by

(
x, y

)
= ε

(
ω(x)y

)
. (2.5)

It satisfies the following properties:

(1) the pairing is semi-linear, that is, (ax, y) = a(x, y) while (x, ay) = a(x, y), for a ∈
Z[v, v−1],

(2) bi is self-adjoint, that is, (x, biy) = (bix, y) and (x, ybi) = (xbi, y),

(3) if i = i1 · · · id with i1 < i2 < · · · < id then (1, bi) = vd. Such a monomial bi is called
an increasing monomial, and i an increasing sequence. When d = 0, the sequence i is
empty and (1, 1) = 1.

Remark 2.1. It is not difficult to observe that (, ) is the unique form satisfying these three
properties. This is because the Hecke algebra has a spanning set over Z[t, t−1] consisting of
monomials bi, and every monomial may be reduced, by cycling the last bi to the beginning
and by applying the Hecke algebra relations, to an increasing monomial. This is a simple
combinatorial argument that we leave to the reader.

2.2. Soergel Bimodules

In [1], Soergel introduced a category of bimodules which categorified the Hecke algebra,
and later generalized his construction to any Coxeter group W [14]. Within the category
R-molfZ-R, for R a certain graded k-algebra (k an infinite field of characteristic /= 2), he
identified indecomposable modules Bw for w ∈ W , such that the only indecomposable
summands of tensor products of Bw’s are Bw′ forw′ ∈W . Thus, the subcategory of R-molfZ-R
generated additively by the Bw has a tensor product, and its Grothendieck ring is isomorphic
to H, under the isomorphism sending C′s to [Bs]. Moreover, every Bw shows up as a
summand of some tensor product of various Bs for s ∈ S. While the general Bw may be
difficult to describe, Bs has an easy description.
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It is conjectured in [14] that this isomorphism sends [Bw] to C′w for all w ∈ W , and it
is proven for k = c and W a Weyl group in [1], using geometric methods.

Henceforth we specialize to the case where W = Sn+1 and S = {si}. We also make one
additional change from Soergel’s conventions.

Remark 2.2. Soergel defines R to be the coordinate ring of the n-dimensional reflection
representation V of Sn+1, while we find it easier to consider R′, the coordinate ring of the
n + 1-dimensional standard representation V ′. This is akin to treating gln instead of sln, and
a similar convention is adopted in [24]. The bimodules Bw are defined in [14] to be the
coordinate rings of unions of “twisted diagonals” in V ×V , and B′w can be defined analogously
for V ′. Now R′ ∼= R⊗kk[y] and the entire story of Bw translates to B′w by base extension.
Conversely, R is a quotient of R′ by the first elementary symmetric polynomial e1, which is
a central element of our category, so that the entire story of B′w translates easily to Bw under
the quotient. We will interest ourselves with the B′w story below because the ring R′ is slightly
more intuitive, and mention briefly the changes required to deal with R in Section 4.6. Since
we only useB′w andR′ below, we will denote them asBw andR instead to avoid an apostrophe
catastrophe.

With these conventions, we now make the story explicit.

Notation 2.3. Let R = k[x1, x2, . . . , xn+1] be the ring of polynomials in n + 1 variables, with the
natural action of Sn+1. The ring R is graded, with deg(xi) = 2. If W is the subgroup of Sn+1

generated by transpositions {si1 , . . . , sir}, then we denote the ring of invariants under W as
Ri1,...,ir or RW . Thus Ri are the invariants under the transposition (i, i + 1).

Since R is an RW -algebra, ⊗RW is a bifunctor sending two R-bimodules to an R-
bimodule. Henceforth, ⊗ with no subscript denotes tensoring over R, while ⊗i1,...,ir denotes
tensoring over the subring Ri1,...,ir . Most commonly we will just use ⊗i for various indices i.

Definition 2.4. The Soergel bimodule Bi is R⊗iR{−1}, where {m} denotes a grading shift.

Notation 2.5. We denote by Bi the tensor product Bi1 ⊗ Bi2 ⊗ · · · ⊗ Bid .

Note that B∅ = R and

Bi = (R⊗i1R{−1}) ⊗ (R⊗i2R{−1}) ⊗ · · · = R⊗i1R⊗i2 · · · ⊗idR{−d}. (2.6)

We reiterate this important point: a typical element of a tensor product of d generators Bi
can be expressed (up to linear combination) by a choice of d + 1 polynomials, one in each
slot separated by the tensors. Multiplication by an element of R in any particular slot is an
R-bimodule endomorphism.

For each i there is a map of graded vector spaces ∂i : R → Ri{2}, called the Demazure
operator, sending f 	→ (f − si(f))/(xi − xi+1). This map is Ri-linear. Since ∂i(f) is si-invariant,
it is not hard to see that Pi(f) = f − xi∂i(f) is also si-invariant. Since f = Pi(f) + xi∂i(f), this
implies that R is a free graded Ri-module of rank two, with homogeneous generators 1 and
xi. In other words, there is an isomorphism R ∼= Ri ⊕ Ri{2} of graded Ri-modules, sending
f 	→ (Pi(f), ∂i(f)), with inverse (f, g) 	→ f + gxi.

From the isomorphism R ∼= Ri ⊕ Ri{2} of graded Ri-modules just illustrated, one can
deduce other isomorphisms. For instance, Bi = R⊗iR{−1} ∼= R{−1} ⊕ R{1} as graded left (or
right) R-modules. Repeating this, we see that Bi is a free left R-module of rank 2d(i), and
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properly belongs in R-molfZ-R. Finally, we can deduce an isomorphism Bi⊗iBi ∼= Bi{1} ⊕
Bi{−1}, which unlike the previous isomorphisms is actually an isomorphism of R-bimodules.

Remark 2.6. Let us make this slightly more explicit. To give the isomorphism of leftR-modules
Bi ∼= R{−1} ⊕ R{1}, note that

f ⊗ g = f ⊗ Pi
(
g
)
+ f ⊗ xi∂i

(
g
)
= Pi

(
g
)
f ⊗ 1 + ∂i

(
g
)
f ⊗ xi. (2.7)

Rewriting a term 1 ⊗ g as a sum of terms like above will happen often, and we refer to it
as forcing the polynomial g across the tensor. If g is si-invariant then it may be slid across
leaving nothing behind, while an arbitrary g when forced leaves terms with either 1 or xi
behind (alternatively, we may choose to leave 1 and xi+1 behind, if it is more convenient). We
consistently use the term “slide” instead of “force” when the polynomial g is invariant so it
can be moved across without any ado.

Inside Bi ⊗ Bi, taking an element f ⊗ g ⊗ h and forcing g to the left (or right) is now
an R-bilinear operation, since multiplication on the left or right will only affect f or h, not
g. This gives the isomorphism Bi ⊗ Bi ∼= Bi{1} ⊕ Bi{−1} of R-bimodules, via f ⊗ g ⊗ h 	→
(fPi(g) ⊗ h, f∂i(g) ⊗ h) with inverse (f1 ⊗ h1, f2 ⊗ h2) 	→ f1 ⊗ 1 ⊗ h1 + f2 ⊗ xi ⊗ h2. These maps
are R-bimodule morphisms, since the only polynomials which can slide from fi to hi in both
the source and the target of the map are those polynomials in Ri.

Remark 2.7. We also remark on spanning sets for Bi as R-bimodules. For instance, we’ve seen
that Bi ⊗ Bi has a spanning set {1 ⊗ 1 ⊗ 1, 1 ⊗ xi ⊗ 1}. The bimodule Bi ⊗ Bj for j /= i has a
spanning set {1 ⊗ 1 ⊗ 1}, since any polynomial in the middle can be forced to the left leaving
at most xi behind (or xi+1, which we choose when j = i − 1), and that can be slid to the right;
thus 1 ⊗ 1 ⊗ 1 generates it as a R-bimodule. The bimodule Bi ⊗ Bj ⊗ Bk ⊗ Bi has a spanning set
{1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1, 1 ⊗ xi ⊗ 1 ⊗ 1 ⊗ 1}. This is because all polynomials anywhere between the
two i tensors may be slid out, leaving xi somewhere in-between. As an exercise, the reader
may generalize this argument to an arbitrary Bi and find a spanning set as a R-bimodule,
consisting of 2m(i) terms, where m(i) is the number of pairs 1 ≤ r < s ≤ d such that ir = is and
it /= is for t between r and s. Between such a pair, one either places a linear “unslideable” term
like xir , or just 1. Note that m(i) is equal to d(i) minus the number of distinct indices in i.

For more information on Soergel bimodules and their applications we refer the reader
to [1, 22, 24, 38–44] and references therein.

2.3. The Soergel Categorification

Let us summarize the Soergel categorification of the Hecke algebraH of the symmetric group
Sn+1 and the various structures on it, following [1, 14, 22, 38, 41].

Several subcategories of R-molf-R and R-molfZ-R will play a role in what follows. Let
SC1 be the full subcategory ofR-molf-Rwhose objects consist of Bi for all sequences of indices
i; these are called Bott-Samelson bimodules. Since R is a commutative ring, the Hom spaces
in SC1 are in fact enriched in R-molfZ-R. Let SC2 be the subcategory of R-molfZ-R whose
objects are finite direct sums of various graded shifts of objects in SC1 and the morphisms are
all grading-preserving bimodule homomorphisms. Finally, let SC be the Karoubi envelope of
SC2, a category equivalent to the full subcategory ofR-molfZ-Rwhich contains all summands
of objects of SC2

SC1
Grading shifts and direct sums−−−−−−−−−−−−−−−−−−−−−−−−−→ SC2

Karoubi envelope−−−−−−−−−−−−−−→ SC. (2.8)
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In general, the Karoubi envelope is the category which formally includes all “sum-
mands,” where a summand of an object M is identified by an idempotent p ∈ End(M)
corresponding to projection to that summand. Since R-molfZ-R is abelian, it is idempotent-
closed, and the Karoubi envelope of SC2 can be realized as a subcategory in R-molfZ-R. We
refer the reader to [45] for basic information about Karoubi envelopes.

This final category SC (the category of Soergel bimodules) is a k-linear additive
monoidal category with the Krull-Schmidt property. Soergel showed that, when k is an
infinite field of characteristic other than 2, the indecomposable bimodules in this category
are enumerated by elements of the Weyl group and grading shifts (Theorem 6.16 in [14]).
They are denoted by Bw{j} for w ∈ W and j ∈ Z. An indecomposable Bw is determined by
the condition that it appears as a direct summand of Bi, where i = i1 · · · id and si1 · · · sid is a
reduced presentation of w, and does not appear as direct summand of any Bi, for sequences
i of length less than l(w).

The Hecke algebra H is canonically isomorphic to K0(SC), the Grothendieck group of
SC. Multiplication by v corresponds to the grading shift: [M{d}] = vd[M]. Multiplication in
the Hecke algebra corresponds to the tensor product of bimodules:

[M] · [N] := [M⊗RN]. (2.9)

The isomorphism takes [Bi] to bi and [Bi] to bi.

Remark 2.8. Nothing prevents one from defining a category SCZ where the field k is replaced
with Z in the definitions of the previous section. Thus one could define the category for any
ring. However, one does not have control over the size of the Grothendieck group in this
instance. When defined over a field k of characteristic /= 2, we may use Theorem 6.16 of [14] to
classify indecomposables and get results about the Grothendieck group. When k = c, Soergel
has shown that the Kazhdan-Lusztig basis {C′w} satisfies C′w = [Bw]. This is unknown in
general.

Relation (2.2) lifts to isomorphisms of graded bimodules in SC

Bi ⊗ Bi ∼= Bi{1} ⊕ Bi{−1}, (2.10)

Bi ⊗ Bj ∼= Bj ⊗ Bi for
∣∣i − j

∣∣ ≥ 2, (2.11)

(Bi ⊗ Bi+1 ⊗ Bi) ⊕ Bi+1
∼= (Bi+1 ⊗ Bi ⊗ Bi+1) ⊕ Bi. (2.12)

It is important to note that these isomorphisms take place in SC2, not SC1, since the
latter does not have grading shifts or direct sums of objects. However, the same information
can be encapsulated in inclusion and projection morphisms of various degrees, which do live
in SC1. This will be explored in Section 4.5.

The first isomorphism has already been made explicit in Remark 2.6. We have chosen a
specific isomorphism; other choices were possible. The second and third isomorphisms come
from the following isomorphisms in R-molfZ-R:

Bi ⊗ Bj ∼= R⊗i,jR{−2} ∼= Bj ⊗ Bi for
∣∣i − j

∣∣ ≥ 2, (2.13)

Bi ⊗ Bi+1 ⊗ Bi ∼= Bi ⊕ (R⊗i,i+1R{−3}), (2.14)

Bi+1 ⊗ Bi ⊗ Bi+1
∼= Bi+1 ⊕ (R⊗i,i+1R{−3}). (2.15)
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These isomorphisms will be made explicit in Section 4.5.
The ring Z[v, v−1] is canonically isomorphic to the Grothendieck group of the category

R-fmod of finitely generated graded free R-modules. Under this isomorphism

K0(R-fmod) ∼= Z

[
v, v−1

]
(2.16)

[R] goes to 1 and [R{d}] to vd. In particular, given any graded free R-module M, its image
in the Grothendieck group will be its graded rank, calculated by choosing a homogeneous

R-basis {yj} of M and letting grkM def=
∑

j v
deg yj . The bar involution on Z[v, v−1] lifts to

the contravariant equivalence that takes M ∈ R-fmod to HomR(M,R), the latter naturally
viewed as an R-module.

In the category SC1, given any objects M,N, the space HomSC1(M,N) is a graded
free finitely generated left R-module. By extension, the same is true of the module
⊕m∈ZHomSC(M{m},N). Shifting the grading of N will shift the grading of this Hom space
in the same direction, while shifting M will shift the Hom space in the opposite direction.
Therefore, the bifunctor

HomSC(·, ·) : SCop × SC −→ R-fmod (2.17)

categorifies a semilinear form H ×H → Z[v, v−1] which sends

([M], [N]) 	−→ grk(⊕m∈ZHomSC(M{m},N)). (2.18)

The bimodule Bi self-biadjoint, that is, that HomSC1(M ⊗ Bi,N) = HomSC1(M,N ⊗ Bi)
and HomSC1(Bi ⊗M,N) = HomSC1(M,Bi ⊗N) via some adjunction maps. This will become
explicit in Section 3.1. In fact, every bimodule M in SC has a biadjoint bimodule Ω(M) such
that tensoring with M on the left (resp., right) is biadjoint to tensoring with Ω(M) on the left
(resp., right). Due to a cyclicity property (see the next section) any homomorphism f : M →
N of bimodules dualizes to a canonical homomorphism Ω(f) : Ω(N) → Ω(M), so that Ω
can be made into an antiequivalence of SC, lifting the anti-involution ω. Notice that Ω takes
Bi to itself and Bi to Bj where j is given by reading i from right to left.

Unsurprisingly, the semilinear product on H above (induced by the Hom bifunctor)
agrees with the one defined in Section 2.1. To check this, following Remark 2.1 and using the
self-biadjointness of Bi, we only need to show the following claim.

Claim 2.9. When i is an increasing sequence, HomSC1(R,Bi) is a free left R-module of rank 1,
generated by a morphism of degree d, the length of i.

Proof. We only sketch this result. An R-bimodule map from R to Bi is clearly determined by
an element of Bi on which right and left multiplication by polynomials in R are identical.
Any element of Bi is of the form m = f ⊗ 1 + g ⊗ xi, and clearly xjm = mxj for j /= i, i + 1, and
(xi + xi+1)m = m(xi + xi+1). Hence m can be the image of 1 under a bimodule map from R if
and only if xim = mxi.

mxi = f ⊗ xi + g ⊗ x2
i = f ⊗ xi + g(xi + xi+1) ⊗ xi − g(xixi+1) ⊗ 1. (2.19)
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Thus m can be an image if and only if g(xixi+1) = −fxi and f + g(xi + xi+1) = gxi, if and only
if f = −gxi+1. Such elements form a left R-module generated by the case g = 1, f = −xi+1, or
in other words by m = 1 ⊗ xi − xi+1 ⊗ 1. The element m has degree 1 in Bi, so we deduce that
(R,Bi) = v. Let us call ϕi the corresponding map R → Bi, 1 	→ m.

One may use the same argument for the general case. Suppose i is increasing and has
length d, then Bi is a free left R-module of degree 2d, with generators {1⊗iif1 · · · ⊗ik fk} ranging
over terms where either fl = 1 or fl = xil . As an exercise, the reader may find the criteria for a
general element to be ad-invariant under xi, and verify that the only possible bimodule maps
R → Bi are R-multiples of the following iterated version of ϕi:

R −→ Bi1
∼= Bi1 ⊗ R −→ Bi1 ⊗ Bi2 ∼= · · · . (2.20)

The first map is ϕi1 , the second map is Id⊗ϕi2 , and so forth. This generator is a map of degree
d, so that HomSC1(R,Bi) = R{d} and ([R], [Bi]) = vd.

Remark 2.10. We have swept the calculation under the rug, so the dependence of this claim
on the fact that i is increasing is unclear. In general, when i has a repeated index there will
be additional maps from R to Bi. Roughly speaking, certain symmetry conditions are placed
upon polynomials in order for them to slide across certain tensors. The duplication of an
index will yield a redundant symmetry condition that places fewer constraints on an ad-
invariant element than would be expected from the length of the sequence. We suggest the
reader try to find all the maps from R to Bi in the length 2 case, first when i = ij has no
repeated index and then when i = ii has a repeated index. This should illustrate the main idea.

Because it is a crucial statement which we use again and again, we restate the overall
result and give a reference.

Proposition 2.11. Given two sequences i and j, HomSC(Bi, Bj) is a free graded left (or right) R-
module of rank ε(ω(bi)bj), where ε is the standard trace onH defined in Section 2.1.

Proof. This is deduced from the above discussion. For Soergel’s proof, see [14], although it
is somewhat obscured. Theorem 5.15 in that paper and especially its proof together state this
result, once one unravels exactly what hΔ means. Propositions 5.7 and 5.9 state that hΔ(Bi) =
bi, since hΔ sends Bi ⊗ · to bi· and sends R to 1.

The facts below will not be used in this paper.
For a Soergel bimodule M the space of bimodule homomorphisms HomSC1(R,M) is

just the 0th Hochschild cohomology HH0(R,M) of M. Thus, unraveling the definitions,

ε([M]) := grk
(

HH0(R,M)
)
. (2.21)

Calculations in Hochschild cohomology can be used to provide a proof of the claim above.
One could also define a trace map τ(x) = ε(ω(x)) which is the decategorification of the
functor HH0 of taking the 0th Hochschild homology.

Hecke algebra H has a trace more sophisticated than ε or τ , called the Ocneanu trace
[46], which describes the HOMFLY-PT polynomial. The categorification of the Ocneanu trace
utilizes all Hochschild homology groups rather than just HH0, see [24, 43, 47].
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The Rouquier complexes mentioned in the introduction are described here. Invertible
elements Ti that satisfy the braid relations become [22] invertible complexes

0 −→ R −→ Bi{−1} −→ 0, (2.22)

in the homotopy category of the Soergel category (with R sitting in cohomological degree
−1). This aligns with the fact that Ti = v−1bi−1 in the Hecke quotient of the braid group. Their
inverses T−1

i become inverse complexes

0 −→ Bi{1} −→ R −→ 0, (2.23)

with R in cohomological degree 1, agreeing with T−1
i = vbi − 1. The homomorphism from the

braid group into the Hecke algebra is categorified by a projective functor from the category
of braid cobordisms between (n + 1)-stranded braids to the category of endofunctors of the
homotopy category of the Soergel category [32].

Remark 2.12. Note that this convention for Rouquier complexes is opposite that found in [22],
which is to say that we have flipped Ti with T−1

i . Presumably this arises because we are using
v as a parameter for the grading shift, and not t = v−1. The choice of v is more natural for the
calculation of graded ranks of Hom spaces.

2.4. Diagrammatic Calculus for Bimodule Maps

We follow the standard rules for the diagrammatic calculus of bimodules, or more generally
for the diagrammatic calculus of a monoidal category. An excellent and thorough explanation
of these rules can be found in [9], so we will provide a quick summary. A planar diagram will
represent a morphism of R-bimodules, with the following conventions. A horizontal slice or
line segment in this diagram will represent an object (an R-bimodule). A rectangle inside the
plane will represent a morphism from its bottom horizontal line segment to its top horizontal
line segment.

The R-bimodule Bi is denoted by a point (on a horizontal line segment) labelled i. The
tensor product of bimodules is depicted by a sequence of labelled points on a horizontal line
segment, so that tensor products are formed “horizontally”. A vertical line labelled i denotes
the identity endomorphism of Bi, and similarly labelled lines placed side by side denote the
identity endomorphism of the tensor product. More general bimodule maps are represented
by some symbols connecting the appropriate lines, and are composed “vertically”, and
tensored “horizontally”. All diagrams are read from bottom to top, so that the following
diagram represents a bimodule map from Bk to Bi ⊗ Bi ⊗ Bj :

j

k

ii
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A horizontal line segment which does not contain any marked points represents R
as a bimodule over itself, the monoidal identity. The empty rectangle represents the identity
endomorphism ofR. Planar diagrams without top and bottom endpoints (without boundary)
represent more general endomorphisms of R.

The structure of bimodule categories (or more generally strict 2-categories) guarantees
that a planar diagram will unambiguously denote a morphism of bimodules.

We will be using so many such pictures that it will become cumbersome to
continuously label each line by an index. Generally, the calculations we do will work
independently for each i, and can be expressed with diagrams that use lines labelled i, i + 1
and the like. In these circumstances, when there is no ambiguity, we will fix an index i and
draw a line labelled i with one style, a line labelled i + 1 with a different style, and so forth,
maintaining the same conventions throughout the paper. We use different styles of lines
because most printers are black and white, but we recommend that you do your calculations
at home in colored pen or pencils instead; we even refer to the labels as “colors” throughout
this paper.

i i + 1 ji − 1

We use the styles above when referring to indices i, i+1, i−1, and j, where j will be used
unambiguously for any index which is “far away” from any other indices in the picture (in
other words, when drawing a picture only involving i-colored strands, we require |i − j| > 1,
while for a picture involving both i and i + 1 we require j < i − 1 or j > i + 2).

2.5. Methodology

Proposition 2.13. Suppose one chooses the subset of the morphisms in SC1, including the identity
morphism of each object, as well as the following morphisms:

(1) the generating morphism from R to Bi,

(2) some isomorphisms that yield the Hecke algebra relations, as well as the respective
projections to and inclusions from each summand in (2.10) and (2.12),

(3) the unit and counit of adjunction that make Bi into a self-biadjoint bimodule.

Consider C the subcategory generated monoidally over the left action of R by these morphisms,
that is, it includes left R-linear combinations, compositions, and tensors of all its morphisms, then C
is a full subcategory, and thus it is actually SC1.

Proof. For any objects M,N in SC1, there is an inclusion HomC(M,N) ⊂ HomSC1(M,N)
of graded left R-modules (since it is clearly an inclusion of R-modules, and all generating
morphisms are homogeneous). One can define grk for any graded left R-module M by
choosing generators of M/(R+M), where R+ is the ideal of positively graded elements, and
it is a simple argument that a submodule of a free graded R-module with the same graded
rank is in fact the entire module. So we need only show that Hom spaces in C have the same
graded rank.
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We can define a semilinear form on the free Z[v, v−1]-algebra generated by bi by the
formula (bi, bj) = grk HomC(Bi, Bj). The existence of isomorphisms and projection maps will
give us the direct sum decompositions (2.10)–(2.12) in C, with the resulting implications for
Hom spaces. Therefore the Hecke algebra relation (2.2) are in the kernel of this semilinear
form, so it descends to a form on the Hecke algebra. Each bi will be self-adjoint. When i is
increasing, HomC(R,Bi) contains the generator of the free rank one R-module HomSC1(R,Bi),
since that generator is the tensor of the generating morphisms from R to various Bi (see
the proof of Claim 2.9). Hence it is in fact the entire module, so HomC(R,Bi) ∼= R{d}, and
(1, bi) = vd.

By unicity, this inner product agrees with our earlier inner product on the Hecke
algebra. In particular, the graded ranks agree, and the inclusion is full.

Below we will construct a categoryDC1 of diagrams via generators and local relations,
where the Hom spaces will be graded R-bimodules. We will construct a functor F1 from DC1

to SC1, showing that our diagrams give graphical presentation of morphisms in SC1. The
morphisms in the image of F1 will include all the morphisms enumerated in Proposition 2.13,
hence the functor will be full. Calculating the Hom spaces in DC1 between certain objects
(corresponding to R, Bi for i increasing), we may use a similar argument to the above
proposition to show that they are free R-modules of the same graded rank as the Hom spaces
in SC1, then the functor F1 will be faithful, and an equivalence of categories. This describes
SC1 in terms of generators and relations.

LetDC2 be the category whose objects are finite direct sums of formal grading shifts of
objects inDC1, but whose morphisms only include degree 0 maps. Finally, letDC = Kar(DC2)
be the Karoubi envelope of DC2. The functor F1 lifts to functors F2 and F, as in the picture
below, with all three horizontal arrows being equivalences of categories.

DC1
F1 SC1

Grading shifts and direct sums

DC2
F2 SC2

Karoubi envelope

DC
F

SC

(2.24)

We will define the category DC1 originally without reference to isotopy, in order
to make the definition of the functor F1 entirely straightforward, using the standard rules
for diagrammatics for bimodules. The category would be entirely unchanged if one used
different pictures to represent each morphism. However, when the “correct” pictures are
chosen for the generators, then every morphism can actually be viewed as a planar graph,
and moreover two embedded graphs linked by isotopy represent the same morphism. One
could very well define DC1 originally using graphs, but this would obscure the definition of
F1.

The most difficult part of the proof will be showing the faithfulness of F1, which
involves a calculation of certain Hom spaces in the diagrammatic category. This calculation
will be made possible by the planar graphs interpretation of DC1, wherein some relatively
simple graph theory can be applied to simplify pictures.
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3. Definition of DC

This section contains a piecemeal definition of DC and DC1. For pedagogical reasons, we
prefer to provide commentary as we go, instead of defining the category all at once (in fact,
some relations do not make sense without the commentary). We also provide some redundant
relations in the first pass, because they help make the category more intuitive. However, we
repeat the definition all in one place in Section 3.4, without redundant relations, where we
also explicitly define the functor F1.

3.1. The Category DC1: Zero Colors and One Color

This section and the next several will hold the definition of the category DC1, which will be a
k-linear additive monoidal category, with Z-graded Hom spaces. Shortly it will become clear
that Hom spaces are actually graded R-bimodules. It is generated monoidally by n objects
i = 1, . . . , n, whose tensor products will be denoted i = i1 · · · id.

Morphisms will be given by (linear combinations of) diagrams inside the strip R ×
[0, 1], constructed out of lines colored by an index i, and certain other planar diagrams,
modulo local relations. The intersection of the diagram with R × {0}, called the lower
boundary, will be a sequence i of colored endpoints, the source of the map, and the upper
boundary j will be the target. A vertical line colored i represents the identity map from i

to i. The monoidal structure consists of placing diagrams side by side, and composition
consists of placing diagrams one above the other, in the standard fashion for diagrammatic
categories.

We present the generators and relations in an order based on the number of colors
they use. The one-color generators and relations will be sufficient to describe the category for
n = 1, the two-color ones for n = 2, and the three-color ones for the general case. The set of
all relations is invariant under all color changes that preserve adjacency, so we only display
each generator for a single color i, using the conventions described in Section 2.4. However,
the generator exists for each index i.

All the relations we will give are homogeneous with respect to the grading on gene-
rators stated.

The first class of generators, which use no colors, are the following endomorphisms of
the monoidal identity ∅:

i

There is one such generator for each i = 1, . . . , n + 1. It is a map of degree 2, which
we call multiplication by xi. After we apply the functor F1, this will actually correspond to
the endomorphism of R given by multiplication by xi. Together, these generators are called
boxes. A morphism from ∅ to ∅ consisting of a sum of disjoint unions of boxes will be
called a polynomial. Since the composition of multiplication by xi and multiplication by xj
is multiplication by xixj , such a sum of products of boxes will obviously correspond under
the functor to multiplication by an element f ∈ R. As a shorthand we draw such a morphism
as a box with the corresponding element f inside. As a map from ∅ to ∅, and thus a closed
diagram, a polynomial may be placed in any region of another diagram. Placing boxes in the
rightmost and leftmost regions of a diagram will define the R-bimodule structure on Hom
spaces in DC1.
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The generating morphisms which use only one color are

Symbol Degree Name

EndDot

StartDot

−1

−1

Merge

Split

1

1

For the beginner, the maps are, respectively, a map from i to ∅, a map from ∅ to i, a map
from ii to i, a map from i to ii.

Remember, there is one such set of generators for each color i. We give these maps
names, but the names are temporary. Once we explore the meaning of isotopy invariance,
we will stop distinguishing between Merge and Split, and call them both trivalent vertices.
Similarly we will stop distinguishing between StartDot and EndDot, and call them both dots.

We also use a shorthand for the following compositions:

= 0 Cupdef

Cap= 0
def

Symbol Degree Name

We now list a series of relations using only one color, the one-color relations, dividing
them into several types of relations for ease of reference. The first set we refer to as the
Frobenius relations, since they imply that i is a Frobenius object in DC1 (see [48, 49] for more
on Frobenius algebras). Once we define the functor F1, this will imply that Bi is a Frobenius
object in SC1. Remember that the cups and caps appearing below can actually be rewritten
in terms of the generators.

= (3.1)
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= (3.2)

= = (3.3)

= = (3.4)

= = (3.5)

= = (3.6)

= = (3.7)
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= =
(3.8)

= = (3.9)

For quick reference, we refer to these relations by their Frobenius algebra names. The
first two are the associativity of Merge and the coassociativity of Split. The next two are the
unit and counit relations. Relation (3.5) is the biadjunction relation, and the final four are
cyclicity relations.

Remark 3.1. For readers not well versed in cyclicity properties and their implications towards
isotopy invariance, let us quickly discuss the topic, using the easily visualized notion of a
twist. Given a morphism, one can twist it by taking a line which goes to the upper boundary
and adding a cap, letting the line go to the other boundary instead. An example is given
below,

twists to

One can also twist a downward line back up, or twist lines on the left as well. Two
morphisms are twists of each other if they are related by a series of these simple twists, using
cups and caps on the right and left side. For instance, relations (3.6) and (3.7) state that the
Merge is a simple twist of the Split, twisting on the left or right. If one applies the same twist
to every term in a relation, one gets a twist of that relation. For instance, relation (3.4) is
actually a twist of the definition of the cup.

Because of biadjointness (3.5), twisting a line down and then back up will do nothing
to the morphism. Once biadjointness is shown, all twists of a relation are equivalent, because
twisting in the reverse direction we get the original relation back. When a morphism has a
total of m inputs and outputs, twisting a single strand will often be referred to as rotation by
180/m degrees.

The above relations imply that twisting any of the above generators by 360 degrees
will do nothing. A morphism is said to be cyclic with respect to a fixed set of adjunctions (i.e.,
cups and caps) if 360 rotation does not change the morphism. Cyclicity is useful because of
the following proposition.

Proposition 3.2. Fix adjunctions of each object, which are drawn as caps and cups. If every generating
morphism in a diagram is cyclic with respect to those adjunctions, then so is the entire diagram, and
the morphism represented by that diagram is invariant under isotopy of the diagram.

For more on diagrammatics of biadjointness and the cyclicity property we refer the
reader to [9, 48, 50–52].
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Merge and Split are 60 rotations of each other, and each is invariant under 120 degree
rotation, so we may represent them isotopy-unambiguously with pictures that satisfy the
same properties. A similar statement holds for StartDot and EndDot. We will refer to these
morphisms as dots and trivalent vertices from now on, because these terms encapsulate the
picture up to rotation.

Remark 3.3. Henceforth, we can take more liberties in our drawings. We can draw a horizontal
line colored i, and even though this can not be constructed using our generators, it is isotopy
equivalent to a cup or cap which can be so constructed. We can allow a diagram to have a
boundary not just on the top or bottom, but also on the side. While this does not represent
a morphism in our category, the line running to the side boundary can be twisted either
up or down to represent a genuine morphism. A relation drawn using diagrams with side
boundaries does unambiguously give a relation in DC1.

Associativity and coassociativity are twists of each other. This relation is written in
a rotation-invariant form below, and will be crucial in the sequel. We refer to this relation,
which permits one to “slide” one trivalent vertex over another, as one-color associativity.

= (3.10)

We refer to either picture above as an “H”. The horizontal line in the right picture is
exactly such a liberty as in Remark 3.3.

Note that relations (3.1), (3.5), (3.6), and (3.8) are sufficient to imply the other
Frobenius relations, because of the remarks about twisting made above. Here is the proof
of half of (3.7) using (3.6), as an illustrative example.

= =

The next set of relations are known as polynomial slides, which have obvious analogies
in the definitions of the modules Bi.

i +i ++ 1 i + 1= i
(3.11)

i i + 1 i + 1= i
(3.12)

=j j (3.13)
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The j appearing in the box in the last relation can be any index not equal to i or i + 1.
Together, these relations imply precisely that any polynomial which is invariant under si can
be slid across a line colored i, since Ri is generated by xi + xi+1, xixi+1, and xj for j /= i, i + 1.
Therefore, for an arbitrary polynomial f , we have the following immediate consequence (see
Remark 2.6).

Proposition 3.4. One may force a polynomial to the other side of a line, leaving at most xi behind, as
follows:

f = Pi(f) i ∂if+
(3.14)

f = Pi(f) + i∂if (3.15)

Proof. This is proven in the same way as (2.7).

Now these are the final one-color relations. First, the dot relations

= i − i + 1 = − i + 1 + i (3.16)

= i − i + 1 (3.17)

The second equality in (3.16) is just the relation (3.11). Now, is the needle relation:

= 0

(3.18)

It is important to realize that such a relation does not apply if there is anything inside
the eye of the needle, as can be seen in the following examples.
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Example 3.5. Combining these relations, we have a number of simple but important
consequences, which we leave as easy exercises to get the reader used to the diagrammatic
calculus

=

i

(3.19)

Use the first dot relation, then the needle relation and the unit relation

= 0 (3.20)

Use the needle relation and associativity

=i (3.21)

As above, with the unit relation

= =i
i i

==

This is effectively the same example again, with more uses of associativity.

As the examples demonstrate, and the following proposition proves, we may remove
cycles of this nice form from a one-color graph.
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Proposition 3.6. The following relations hold:

= 0 (3.22)

=i (3.23)

More generally, for any polynomial f , one has

f = ∂if (3.24)

Proof. This is a simple consequence of (3.4), along with the needle, associativity, and unit
relations.

There is another relation which is equivalent (given the others) to the first equality in
(3.16)

i

i

i + 1

i + 1

=

=

= −

−

(3.25)

This relation quickly leads to the decomposition Bi⊗Bi = Bi{1}⊕Bi{−1}, see Section 4.5.
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For a single color and two variables x1, x2, the category above, modulo the relation
x1 = x2, is equivalent to the category considered by Libedinsky [13] in the case of a single
label r. Morphisms given by dot, Merge, Split, and Cap correspond to morphisms ε̂r , m̂r , p̂r ,
ĵr , and α̂r in [13, section 2.4]. Planar graphical notation, of paramount importance to us, is
implicit in [13]. From here on, we diverge from Libedinsky’s work, by generalizing to the
case of the Weyl group Sn+1, while Libedinsky [13] investigates the right-angled case.

3.2. The Category DC1: Adjacent Colors

We now add some generators which mix adjacent colors, which we call 6-valent vertices.
Remember that the thick lines represent i + 1, and the thin lines represent i,

Symbol Degree Symbol Degree

0 0

For the beginner, these maps are, respectively, a map from i(i + 1)i to (i + 1)i(i + 1), a
map from (i + 1)i(i + 1) to i(i + 1)i.

Below are the relations which deal with our new generators. In addition to the relations
below, we also impose the same relations with the colors switched. The two color variants in
general do not imply each other. However, it is better to think of the two colors as being
arbitrary adjacent colors, rather than one being i and the other i + 1; then one views these
relations as generic for adjacent colors

= − (3.26)

= = (3.27)

= + (3.28)

= = = (3.29)
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= (3.30)

It will be shown in Section 4.5 that the first relation is related to the isomorphism (Bi ⊗
Bi+1 ⊗ Bi) ⊕ Bi+1

∼= (Bi+1 ⊗ Bi ⊗ Bi+1) ⊕ Bi.
The second relation shows that the 6-valent vertex is cyclic, that drawing it as a

6-valent vertex is unambiguous, and that isotopy classes of diagrams built out of our
local generators will still unambiguously designate a morphism. See Remark 3.1 for details.
Because of this, we have used the liberties of Remark 3.3 when writing the last two relations.
Note that (3.27) does in fact imply the color-switched version of that same relation, using
(3.5).

The relation (3.29) contains a number of equalities, and it is clear that the last equality
is merely a rotation of the color switch of the first equality. In fact, there are numerous
redundancies amongst (3.29) and (3.30). It is a worthwhile exercise for the reader at this
point to check the following statement.

Example 3.7. Assume the relation (3.28) and those before it, then any pair of equalities from
(3.29) will imply both color variants of (3.30) as well as the remainder of the equalities from
(3.29). Hint: adding a dot to the relation (3.29) allows one to recover (3.30), while the latter
may be applied twice within the former.

An important feature to notice is that the 6-valent vertex can be visualized as two
trivalent vertices, one of each color, that overlap. If one takes a graph constructed out of dots,
trivalent vertices, and 6-valent vertices (our generators so far), then the subgraph formed
by all edges of a specific color i will have only univalent and trivalent vertices. We use the
term two-color (overlap) associativity for i + 1 to refer to the transformation performed by either
(3.30) or the first equality of (3.29), because when viewed as an operation on the “thick”-
colored graph, these operations mimic one-color associativity (3.10). Note that, under the
same transformations, the “thin”-colored graph (labelled i) is transformed in a different way.
However, the color-switched relations will give two-color associativity for i instead.

3.3. The Category DC1: Distant Colors

Fix j, an index which is not adjacent to i. In pictures involving both i and i+1, we also assume
j is not adjacent to i+ 1. Remember that j is represented by a dashed line. This new generator
is called a 4-valent vertex, or a crossing.

Symbol Degree

0

Note that this definition also covers the same picture with the colors reversed. The
colors i and j can be switched freely since the only requirement was that they were distant
from each other.
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Now, for relations involving the new generator.

= = (3.31)

= (3.32)

= (3.33)

= (3.34)

= (3.35)

= (3.36)
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Relation (3.35) holds when you switch i and i + 1, but one color variant will follow
quickly from the other by twisting and applying the first relation. In the final relation, the
new color represents an index k which is distant from both i and j. We will refer to (3.32) and
(3.36) as the R2 and R3 moves, respectively, because of the obvious analogy to knot theory.
The R2 relation is essentially the isomorphism Bi ⊗ Bj ∼= Bj ⊗ Bi, see Section 4.5.

The same statements about cyclicity and drawing diagrams with sideways boundaries
apply from before (see Remarks 3.1 and 3.3). Once again, the 4-valent vertices are drawn so
that morphisms are isotopy invariant.

The relations (3.32)–(3.36) imply that a j-colored strand can just be pulled underneath
any morphism only using colors distant from j, since it can be pulled under any generating
morphism, whether it be a line, a dot, a trivalent vertex, or a 6-valent vertex. In fact, thanks
to (3.4), the R2 move follows from (3.33) and (3.34).

We have now listed all the generators of our subcategory: trivalent, 4-valent, and 6-
valent vertices, and dots. There is one final relation, coming from the fact that i + 1 and i − 1
may not interact, but they do jointly interact with i. The final relation will be called three-color
(overlap) associativity for i ± 1:

= (3.37)

In the above diagram, dotted lines carry label i − 1, thick lines i + 1 and thin solid
lines i. Rotating this relation by 90 degrees, we get the same relation except with i + 1
and i − 1 switched, so that only color variant is needed to imply both. The “thick”-colored
graph undergoes the associativity transformation. The same is true (symmetrically) with the
“dotted”-colored graph.

This concludes the definition of the category DC1.

3.4. The Complete Definition and the Functor F1

In order to put everything in one place with no redundancy, let us define the category
again.

Definition 3.8. The categoryDC1 has objects given by sequences i of indices in {1, . . . , n}, with
a monoidal structure given by concatenation. Fix two sequences i and j. Consider the set
of all diagrams in R × [0, 1], constructed out of vertical lines colored by indices, and out of
the generating pictures below, such that the intersection of the diagram with R × {0} is the
sequence of points i, and the intersection with R × {1} is j. This set is graded, where the
generators have the degree indicated, then the space HomDC1(i, j) is defined to be the k-linear
span of this set of diagrams, modulo the homogeneous local relations below.
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Generators:

i

For each color, pictures of degree 1:(1)

For each color, pictures of degree −1:(2)

For each pair of distant colors, a picture of degree 0:(3)

For each pair of adjacent colors, a picture of degree 0:(4)

For each i ∈ {1, . . . , n + 1}, a picture of degree 2:(5)

Relations:

Some relations are drawn using the liberties of Remark 3.3. We also use the definition
of the cap and cup,

=
def

=
def

For each color,

= = = =

= = = = 0

Here, i is the color of the line, and j is a color /= i, i + 1,

++ i + 1i + 1 =i i

i i + 1 i + 1= i
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=j j

= =i i− −i + 1 i + 1 +

= i − i + 1

For any two adjacent colors,

= −

= =

= +

=
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For any two distant colors,

= =

=

=

For two adjacent colors and a third, distant to both,

=

For three mutually distant colors,

=

For three colors with the same adjacency as {1, 2, 3},

=

Definition 3.9. Let F1 be the functor from DC1 to SC1 specified as follows. On objects,
F1(i) = Bi. We define the functor on generating morphisms and extend it monoidally to all
morphisms.
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In doing so, we always use the isomorphism (2.6) to identify Bi with the R-bimodule
spanned by a choice of d(i) + 1 polynomials. If one thinks of Bi diagrammatically as d
vertical lines, then a spanning element of Bi is a choice of polynomial for each empty region
delineated by the lines (and polynomials with the appropriate symmetry may slide across
the lines). We write the map explicitly for a general element when it is easy enough to do so,
or we write it for a spanning set as an R-bimodule (see Remark 2.7).

For a line colored i,

Symbol

fg

xi
⊗

1 − 1
⊗

xi+1

f
⊗

g

f
⊗

g

f
⊗

g0

f
⊗

1
⊗

g

f
⊗

1

1

⊗
g

f
⊗

xi
⊗

g

F1

For lines colored i and j distant,

f
⊗

1
⊗

g

f
⊗

1
⊗

g

For a thin line colored i and a thick line colored i + 1,

1
⊗

1
⊗

1
⊗

1

1
⊗

1
⊗

1
⊗

1

1
⊗

1
⊗

1
⊗

1

1
⊗

1
⊗

1
⊗

1

(xi + xi+1)
⊗

1
⊗

1
⊗

1 − 1
⊗

1
⊗

1
⊗

xi + 2

1
⊗

xi
⊗

1
⊗

1

1
⊗

1
⊗

1
⊗

(xi+1 + xi+2) − xi
⊗

1
⊗

1
⊗

1

1
⊗

xi+2
⊗

1
⊗

1
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For any 1 ≤ i ≤ n + 1,

1

xi

i

Claim 3.10. The above maps are R-bimodule maps.

Proof. This is obviously true for EndDot, since the resulting map is no more than
multiplication. StartDot is sent precisely to the generator ϕi of Hom(R,Bi) discussed in
Section 2.3. Split and Merge have already been seen as inclusion and projection maps in
the isomorphism Bi ⊗ Bi ∼= Bi{1} ⊕ Bi{−1}, see Remark 2.6. For the 4-valent vertex, the only
polynomials which slide all the way across Bi ⊗ Bj or Bj ⊗ Bi are in Ri,j , so that the map
f ⊗ 1 ⊗ g → f ⊗ 1 ⊗ g is a bimodule map (that f ⊗ 1 ⊗ g spans it was observed in Remark 2.7).

Only the 6-valent vertices remain to be checked. Consider the first of the two variants.
The generating set {1 ⊗ 1 ⊗ 1 ⊗ 1, 1 ⊗ xi ⊗ 1 ⊗ 1} as an R-bimodule was chosen because xi can
be slid freely between the second and third slots. We have defined the R-bimodule map on
generators before showing that the map is an R-bimodule map at all, which is akin to putting
the cart before the horse. Let us explicitly define the map on a k spanning set by the following
algorithm: given f ⊗ g ⊗ h ⊗ k ∈ Bi ⊗ Bi+1 ⊗ Bi, first we force h to the right and slide the
“remainder” to the left, that is f ⊗ g ⊗ h ⊗ k = f ⊗ g ⊗ 1 ⊗ kPi(h) + f ⊗ gxi ⊗ 1 ⊗ k∂i(h); then we
force the terms in the second slot to the left, yielding fPi(g) ⊗ 1 ⊗ 1 ⊗ kPi(h) + f∂i(g) ⊗ xi ⊗ 1 ⊗
kPi(h)+fPi(gxi)⊗1⊗1⊗k∂i(h)+f∂i(gxi)⊗xi⊗1⊗k∂i(h). Finally, each term can be evaluated
using the given definition of F1 on generators. This gives an explicit formula for the image of
f ⊗ g ⊗ h⊗ k, which we only need check is invariant under: sliding an element of Ri from f to
g, or from h to k; sliding an element of Ri+1 from g to h. Sliding elements of Ri does not pose
a problem, since we defined the map by forcing h to k and g to f , which fully respects such
slides. Checking invariance under slides from g to h is nontrivial. However, the bulk of the
work is encapsulated in the following discussion, which is useful for calculations in general.

By adding and subtracting xi+2, the image of 1⊗xi⊗1⊗1 under the first 6-valent vertex
(see above) can be written more symmetrically as (xi + xi+1 + xi+2)(1 ⊗ 1 ⊗ 1 ⊗ 1) − xi+2 ⊗ 1 ⊗
1 ⊗ 1 − 1 ⊗ 1 ⊗ 1 ⊗ xi+2. The first term is a polynomial symmetric in all the relevant variables
and thus can be slid anywhere. In the other two terms, xi+2 can not be slid freely under a line
labelled i+1, so it is stuck in its respective position. In contrast, 1⊗xi+1⊗1⊗1 and 1⊗1⊗xi+1⊗1
are not equal, since xi+1 can not be slid over a line labelled i + 1, but the images of both these
elements are easier to remember, and are shown below,

1
⊗

1
⊗

1
⊗

xi+2

1
⊗

xi+1
⊗

1
⊗

1

xi+2
⊗

1
⊗

1
⊗

1

1
⊗

1
⊗

xi+1
⊗

1

1
⊗

1
⊗

1
⊗

xi

1
⊗

xi+1
⊗

1
⊗

1

xi
⊗

1
⊗

1
⊗

1

1
⊗

1
⊗

xi+1
⊗

1
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The way to remember these formulae is that the variable which cannot be slid is sent
to the variable which cannot be slid, from the middle on one side to the exterior on the other.
It is easy to see that these calculations were done according to the algorithm above, forcing
xi+1 to the outside first and then evaluating on the leftover xi.

Now, we do the consistency check for the simplest cases. We wish to show that 1 ⊗
(xi+1 + xi+2) ⊗ 1 ⊗ 1 and 1 ⊗ 1 ⊗ (xi+1 + xi+2) ⊗ 1 are sent to the same element by the algorithm.
However, this is rather easy, for in both cases, the xi+2 term slides immediately to the exterior,
and the xi+1 term is evaluated as above, so both are sent to xi+2 ⊗ 1 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ xi+2.
Similarly, both 1⊗xi+1xi+2⊗1⊗1 and 1⊗1⊗xi+1xi+2⊗1 are sent to xi+2⊗1⊗1⊗xi+2. The general
case is not significantly more difficult than this; we leave the details to the reader.

Proposition 3.11. The functor F1 is well-defined. That is, the relations of DC1 hold between
morphisms of R-bimodules in SC1.

Checking that the relations hold is a series of simple but tedious calculations that is
postponed until Section 5.1. We assume this result henceforth. In addition, we note once and
for all that (as one can easily check) all relations in the definition of DC1 are homogeneous,
and F1 preserves the degree of the generators.

Addendum 2. It may strike the reader as unusual that the definition of the functor seems lopsided,
while the definition of DC1 is invariant under right-left reflection, or under reversing the order of the
colors n, n− 1, . . . , 1. For instance, F1 applied to StartDot yields the element xi ⊗ 1− 1⊗xi+1, which is
actually invariant under right-left reflection but not immediately so. Had this element been rewritten
as (xi −xi+1)/2⊗ 1+ 1⊗ (xi −xi+1)/2, perhaps the calculations would be more natural despite having
more fractions. A worse offender is the forcing rule 1⊗g = (g −∂i(g)xi)⊗1+∂i(g)⊗xi, which should
be rewritten 1 ⊗ g = (g + si(g))/2 ⊗ 1 + ∂i(g) ⊗ (xi − xi+1)/2. In general, the elements xi − xi+1

are more natural than xi or xi+1, coming from the reflection representation rather than the standard
representation of Sn+1 (see Remark 2.2 and Section 4.6).

Previous versions of this paper, however, used the style above, and so we feel compelled to stick
with it to maintain consistency. Also, checking that F1 is a functor may be easier with the current
notation.

4. Consequences

4.1. Terminology

We will spend the next few sections classifying the homomorphisms in DC1. For many of the
results, proofs will be postponed until Section 5.2.

We will we using the fact, extensively discussed in the previous sections, that a
morphism can be viewed unambiguously as an isotopy class of graphs with polynomials
in the regions (or rather, a linear combination of these). Henceforth, the term graph only
refers to colored finite graphs with boundary (embedded in the planar strip) which can be
constructed out of univalent, trivalent, 4-valent, and 6-valent vertices as above. Remember
that these graphs do have edges which run to the boundary, which we call boundary lines, and
may have edges which meet neither the boundary nor any vertex, and thus must necessarily
form a circle. We say a graph has a boundary if it has at least one boundary line. A graph
divides the planar strip into regions, and there are two distinguished regions: the lefthand
and righthand regions, which contain −∞ and∞, respectively.

We call a boundary dot any connected component of a graph which consists entirely
of an edge starting at the boundary and ending in a dot. We call a double dot any connected
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component of a graph which consists entirely of an edge with a dot on both ends. Cutting an
edge in a diagram and replacing it with two dots we call breaking the edge (see, for instance,
relation (3.16)).

Given a set S of graphs and a morphism ϕ in DC1, we say that S underlies ϕ if ϕ can
be written as a linear combination of morphisms, each of which is given by a graph Γ ∈ S
with polynomials in regions. We say that a graph Γreduces to S if S underlies every morphism
that Γ underlies. Clearly reduction is transitive, in that if Γ reduces to S, and every graph in
S reduces to S′, then Γ reduces to S′. Our goal will be to find a nice set of graphs to which
all other graphs reduce. We will do this by finding reduction moves, which are local moves on
graphs, sending a graph to a set of graphs to which it reduces.

Example 4.1. The relation (3.25) implies that reduces to . In other words, underlies
both the terms on the right side of (3.25). This can be applied as a local reduction move within
any graph.

Let T be a subset of {1, . . . , n}. The T -graph of a graph will be the subgraph consisting
of all edges colored i for i ∈ T . Some 6-valent vertices in the original graph may become
trivalent vertices in the T -graph. Similarly, some 4-valent vertices in the original graph may
become 2-valent vertices in the T -graph, which we ignore, connecting the incoming edges
into a single edge. The T -graph is itself a graph by our above definition. Most often we will
just consider the i-graph for a single color (i.e., T = {i}). Typically, our reduction moves will
be designed to simplify the i-graph for a particular i, allowing us to simplify the graph one
color at a time.
Remark 4.2. The rest of this paper will have numerous calculations, but they will mostly be
calculations with the underlying graphs, not keeping track of polynomials, so they do not
reflect how morphisms actually behave in DC1. For lots of examples of computations in the
graphical calculus, see [33].

4.2. One Color Reductions

In this section, we assume all graphs consist of a single color i.

Definition 4.3. Consider the following “moves”, or transformations. They take a subdiagram
looking like Start, and replace that subdiagram with Finish. We call these the basic moves.

Move Start Finish

Move Start Finish

Associativity Needle

DotContraction

DoubleDotRemoval

DotExtension

Connecting
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Remember, these are moves on graphs, not graphs with polynomials. Note that the
needle move, by adding a dot on the bottom, yields a reduction from the circle to a double
dot. The only moves which change the connectivity of a graph are double dot removal, which
deletes a connected component, and the connecting move, which has the potential to link two
components into one.

Claim 4.4. All of these moves are reduction moves in DC1.

Proof. The associativity move follows from (3.10). That is, even if there are polynomials
in the regions of the graph, the relation (3.10) can still be applied. These polynomials,
being in external regions, do not interfere with the application of relations. Similarly, dot
contraction/extension follow from (3.4), dot removal follows from (3.17), and the connecting
move follows from (3.25).

The needle move remains. Suppose we have an arbitrary polynomial f in the eye
of the needle. We may use (3.24), generalizing (3.19), to replace the diagram with a dot
accompanied by ∂i(f).

The following example of reduction should be familiar.

Example 4.5.

→ →

→ →

In order, this is done with associativity, associativity, needle, and dot contraction moves.

Example 4.6.

→

This is meant to indicate an arbitrary length cycle of this form, and reduction is done with
associativity, needle, and dot contraction moves.

Definition 4.7. A simple tree T with m boundary lines is a connected one-color graph with
boundary, whose form depends on m:

(1) if m ≥ 2, then T is a trivalent tree with m − 2 vertices connecting all the boundary
lines. Note that any two such trees are equivalent under the associativity move;
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(2) if m = 1, then T is a single boundary dot;

(3) if m = 0, then T is the empty graph.

Definition 4.8. A cycle in a one-color graph is either a circle or a path from a vertex to itself
which does not repeat any edges. Any cycle splits the plane into two parts, the inside and
outside of the cycle. A cycle is minimal if the inside of the cycle consists of a single region.

By counting vertices, it is clear that any connected purely trivalent graph with no
cycles is a simple tree. Any graph with a cycle has a minimal cycle.

We will now give a precise inductive algorithm to reduce a graph to a disjoint union
of simple trees, by reducing minimal cycles.

Proposition 4.9. Consider a minimal cycle in a one-color graph Γ. Using the associativity, needle, dot
removal, and dot contraction/extension moves, we may reduce a neighborhood of the cycle (including
the inside region) to a simple tree (see (4.1)).

Γ′ → (4.1)

Proposition 4.10. Using the associativity, needle, dot removal and dot contraction/extension moves,
one can reduce any one-color graph Γ to a disjoint union of simple trees. During this process, each
component with no boundary lines will be replaced with the empty graph, and after this is done, no
further connected components are created or destroyed or merged.

We prove both propositions together, in several steps.

Proof of Proposition 4.10 for a Graph with No Cycles. Suppose there are no cycles in Γ. If there is
a dot, the edge coming from that dot must connect to either the boundary, another dot, or a
trivalent vertex. Our simplification algorithm is as follows.

(1) Remove any dot connected to a trivalent vertex, using dot contraction. Repeat Step 1
until no such dots remain. This does not alter the connected components.

(2) Replace any double dot with the empty set, using double dot removal. Because
Step 1 did not alter the connected components, this could only be applied to double
dots which arose from components which had no boundary lines.

Boundary dots are in their own connected component. Any other connected
component is purely trivalent and has no cycles, so it must be a simple tree.

Proof of Proposition 4.9, Assuming Proposition 4.10 for Graphs with No Cycles. Let γ denote a
minimal cycle of Γ. Consider a neighborhood of γ in Γ, and let Γ′ be the subgraph consisting
of the interior of the cycle, as in (4.1). Let us call the boundary lines of Γ′spokes, since they run
into γ from the inside, like spokes hitting the wheel of a bicycle. Now Γ′ may not have any
cycles, or else γ would not be a minimal cycle. Moreover, the spokes of Γ′ must be in distinct
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connected components of Γ′, or else they would create additional regions and γ would not be
a minimal cycle. Our simplification algorithm is as follows:

(1) Apply Proposition 4.10 to Γ′, replacing Γ′ with a disjoint union of boundary dots,
one for each spoke.

(2) Use dot contraction to remove all the spokes. We are now in the situation of
Example 4.6.

(3) Apply associativity as in Example 4.5, reducing the length of γ by one. Repeat until
γ is a needle or a circle.

(4) If γ is a needle, apply the needle move to replace it with a dot. If associativity moves
were performed in Step 3, use dot contraction to contract this dot into one of the
trivalent vertices, as in Example 4.5.

(5) If γ is a circle, apply dot extension to replace it with a needle attached to a dot, then
apply needle reduction to obtain a double dot, and double dot removal to obtain
the empty graph.

It is a simple observation that the result of this procedure is a simple tree, and that
the only alteration of connected components which occurred was the removal of components
which had no boundary lines to begin with.

Proof of Proposition 4.10 in the General Case. Suppose we have an arbitrary graph Γ. Our
simplification algorithm is as follows:

(1) If Γ has a cycle, apply Proposition 4.9 to replace its neighborhood with a simple tree.
Repeat this process until Γ has no cycles.

(2) Apply the procedure for the case of no cycles above.

Note that Step 1 will terminate, which can be shown by induction on the number
of internal regions (regions which do not meet the boundary of the planar strip). Each
application of Proposition 4.9 reduces the number of internal regions by 1.

Corollary 4.11. Using the connecting move in addition, we can reduce the graph to a single simple
tree.

Proof. It is an easy observation that when one uses the connecting move on a simple tree with
m boundary lines and a simple tree withm′ boundary lines, one gets a simple tree withm+m′

boundary lines, after possibly removing extraneous dots if either m or m′ equals 1.

Remark 4.12. There are two useful sets of one-color graphs with m boundary lines, to which
all others reduce. The first set just contains the simple tree with m boundary lines, and the
latter is the collection of all disjoint unions of simple trees whose number of boundary lines
add up to m. The former is useful because there is a single graph, so we have fewer cases to
deal with. The latter is useful because it does not require the connecting move.

More importantly, these sets behave differently when we introduce polynomials into
the equation. Let us assume that all m boundary lines are on the top boundary, so that we
are looking at a morphism in Hom(∅, i) where i is iiiiiiiii (m times). The following statements
will not be used in this paper, and can be more easily proven after the calculation of Hom
spaces.
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Claim 4.13. Consider diagrams which are a simple tree, with an arbitrary monomial in the
lefthand region, and either 1 or xi in each other region. This is a basis for Hom(∅, i) over k.

Claim 4.14. Consider diagrams which are disjoint unions of simple trees, with an arbitrary
monomial in the lefthand region, and no other polynomials. These are a spanning set for
Hom(∅, i) over k.

The second claim is easy to see, given Proposition 4.10. Given a disjoint union of
simple trees, with arbitrary polynomials, we may use relation (3.16) and the polynomial
slides to force all the polynomials to the left, at the cost of potentially breaking some lines.
This breakage is not a problem, since one can reduce again to a simple tree without adding
more polynomials, using (3.10) and (3.4). We do not get a basis this way: consider the three
different ways to break a line in a trivalent vertex diagram; there is a linear dependence
relation between these diagrams and the trivalent vertex with a polynomial in the lefthand
region.

Relations (3.25) and (3.11) essentially allow us to get from the second spanning set to
the first, showing that the first is at least a spanning set. That it is a basis is immediate from
counting the graded dimension of the Hom space, one we prove that the dimension of Hom
spaces in DC1 conforms with a certain semilinear form.

The connecting move is less important than the others in the proofs, and was
introduced primarily to make these remarks. It can generally be ignored below.

4.3. Broken One-Color Reductions

The reductions of the previous section do apply, as stated, to any one color graph. However,
we would like to apply these moves to the i-colored graph of a multicolor graph, where the
moves above do not extend trivially to reduction moves in DC1. In this section, we quickly
generalize the results of the previous section to a weaker set of moves.

Definition 4.15. Consider the following reductions for one-color graphs, which take the graph
on the left and replace it with the set of graphs on the right:

WeakAssociativity

WeakDotContraction

Move Start Finish

We call the moves above (together with the basic moves that have no weak analog)
the broken or weak basic moves.

These moves behave like the basic moves of the same name, except that they may also
replace the original diagram with a broken version of itself, that is, a version with some edges
broken. To distinguish the original basic moves, we may call them the strict basic moves.
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What is important is that we have analogs of Propositions 4.9 and 4.10, despite only
being able to use weak moves.

Proposition 4.16. Consider a minimal cycle in a one-color graph Γ. Using the weak associativity,
needle, dot removal, weak dot contraction, and dot extension moves, we may reduce a neighborhood of
the cycle (including the inside region) to a disjoint union of simple trees.

Proposition 4.17. Using the weak associativity, needle, dot removal, weak dot contraction, and dot
extension moves, one can reduce any one-color graph Γ to a disjoint union of simple trees.

Of course, two distinct simple trees are no longer equivalent under the weak
associativity move, but this is really irrelevant for us.

Proof. Breaking a line will never create a cycle or increase the number of trivalent vertices.
Because of this, the proofs of the previous section go through almost verbatim (ignoring any
statements about connected component, and occasionally replacing “a simple tree” with “a
disjoint union of simple trees”). The only significant alterations that need to be made come in
the proof of Proposition 4.9. In Step 4 or Step 5 one may need to remove an additional double
dot. In Step 2 or Step 3, weak dot contraction and weak associativity have multiple outcomes,
but each outcome that does not agree with strict dot contraction or strict associativity will
have broken the cycle already, allowing us to complete the proof using the no-cycle algorithm
of Proposition 4.10.

Alternatively, one could also prove these statements by induction on the number of
trivalent vertices. Each weak move is equivalent to a strong move modulo diagrams with
fewer trivalent vertices. The only part of the proof that ever created additional trivalent
vertices was the single use of dot extension in Step 5 of the proof of Proposition 4.9. It is
easy to see how Step 5 does not actually cause a problem, however, since after dot extension
is applied, the needle move and double dot removal will do the trick in the same way
regardless.

Addendum 3. The overall proof using weak one-color moves is slightly different than the treatment
in previous versions of this paper, but it is cleaner and more straightforward.

4.4. i-Colored Moves

Now we list the moves which allow us to simplify multicolor graphs.

Definition 4.18. Consider a graph Γ whose i-graph looks like one of the pictures in the
start column of Definition 4.3. Let S be the set of all graphs whose i-graph looks like the
corresponding picture in the finish column. LetW be the set of all graphs whose i-graph looks
like any of the corresponding pictures in the finish column of definition weakbasicmoves. The
strict i-colored move replaces Γ with the set S. The weak i-colored move replaces Γ with the set W .

For instance, strict i-colored associativity will replace any graph Γ whose i-graph is

with the set S of graphs whose i-graph is . This set S is enormous, for other colors
can interfere, and the j-graph for some other j can be arbitrarily complicated. The i-colored
vertices, seemingly trivalent, could come from 6-valent vertices in Γ. In general, an i-colored
move will behave nicely on the i-graph, but may significantly complicate the full graph.
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Proposition 4.19. The weak i-colored basic moves are reduction moves in DC1, so long as they are
applied to graphs which do not contain either the color i − 1 or i + 1.

A color i will be called extremal for a graph Γ if it appears in Γ but either i − 1 or
i + 1 does not appear. Clearly, any nonempty graph will have an extremal color, such as the
minimal color present.

The proof of this proposition is found in Section 5.2, as well as more precise details on
what can be done. The power of the proposition can be seen immediately:

Corollary 4.20. Any graph Γ without boundary lines can be reduced to the empty graph.

Proof. We induct on the set of colors present in the graph Γ. If no colors are present, then Γ
is the empty graph and we are done. Else, choose an extremal color i. By Proposition 4.19
we may apply the weak i-colored basic moves and use Proposition 4.17 to replace every
connected component of the i-graph with a disjoint union of simple trees with no boundary
lines. Since a simple tree with no boundary lines is the empty set, Γ reduces to a set of graphs
which do not include the color i. By induction, Γ now reduces to the empty graph.

One can apply a similar procedure to a graph Γ with boundary lines. Choose an
extremal color i, and reduce the i-graph to a disjoint union of simple trees, then, within each
region delimited by the i-graph, the colors i+1 and i−1 are now extremal, and we can reduce
those. One can repeat this procedure, however, it will not produce a very simple graph in
all cases. If the color i has at least 3 boundary lines, the i-graph may have trivalent vertices,
and the graph Γ itself may have 6-valent vertices in their place. These 6-valent vertices will
produce more i+1 or i−1 colored boundary lines inside the regions delimited by the i-graph.
Nonetheless, we have the following simple case.

Corollary 4.21. Any graph whose boundary has at most one line of each color can be reduced to a
disjoint union of boundary dots.

Proof. We know we can reduce the i-graph, for i an extremal color, to a disjoint union
of simple trees. A simple tree with at most one boundary line is either the empty set or
a boundary dot. Therefore the i-graph is now either the empty set or a boundary dot,
depending on whether or not i appears in the boundary. The dot need not be a boundary
dot in the entire graph Γ, but it can encounter only 4-valent vertices en route to the boundary.
Since a dot can be slid under a 4-valent vertex by relation (3.33), we may turn the dot into a
boundary dot (its own connected component). The remaining connected components form
a subgraph (also viewable in the planar strip) without the color i. Induction now concludes
the proof.

4.5. F1 Is Fully Faithful

In this section, modulo the proofs of previous sections which were delayed until Section 5,
we prove our main theorem.

Theorem 4.22. The functor F1 from DC1 to SC1 is an equivalence of k-linear monoidal categories
with Hom spaces enriched in R-molf

Z
-R.

We know F1 is a functor by Proposition 3.11, and inspection of the objects in both
categories shows immediately that it is essentially surjective. To show F1 is full, we use
Proposition 2.13, which motivates the next few statements.
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Corollary 4.23. For any index i, the object i in DC1 is self-biadjoint. This means that for any
sequences j and k, there are natural isomorphisms HomDC1(k, ji) → HomDC1(ki, j) and
HomDC1(k, ij) → HomDC1(ik, j).

Proof. The first isomorphism and its inverse are shown below. That these maps compose to
be the identity is exactly the relation (3.5)

The second isomorphism and its inverse are the left-right mirror of the maps above.

Note that when k = ∅ in the corollary above, these isomorphisms combine to yield an
isomorphism HomDC1(∅, ji) → HomDC1(∅, ij), drawn as below

At this point, one could construct a semilinear product on the free algebra generated
by bi, i = 1, . . . , n, via (bi, bj) = grk HomDC1(i, j), and bi would be self-adjoint. If we show that
the Hecke algebra relations are in the kernel of this semilinear product then it will descend to
the Hecke algebra. We have several methods by which we could do this.

(1) Look in DC2, where we have direct sums and grading shifts, and prove the
isomorphisms (2.10)–(2.12).

(2) Look in the Karoubi envelope DC, find idempotents corresponding to the auxiliary
modules in (2.13) and friends, and show those isomorphisms.

(3) Work entirely within DC1 and show the isomorphisms (2.12) only after applying
the Hom functor. For instance, showing that Hom(ii, j) ∼= Hom(i, j){1} ⊕
Hom(i, j){−1}will be sufficient.

All these tactics are primarily the same. We illustrate the third method, although we
do explore the auxiliary modules of the second method.

The relation (3.25) precisely descends to Bi ⊗ Bi ∼= Bi{1} ⊕ Bi{−1}. We decompose the
identity of ii into the sum of two idempotents, and obtain orthogonal projections from ii to i
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of degrees 1 and −1, respectively,

=

p1

α1

−
p2

α2

i

i + 1

(4.2)

Stated very explicitly, we have two projection maps p1, p2 : ii → i, and two inclusion
maps α1, α2 : i → ii, as indicated in the diagram above, which is just relation (3.25) divided in
half. Include the minus sign on the right picture into the map α2, then one can quickly check
p1α1 = 1i, p2α2 = 1i, p1α2 = 0, p2α1 = 0, and 1ii = α1p1 + α2p2. So these must be projections to
and inclusions of summands, and they are maps of the correct degree.

Now, we look at i and j which are distant. We have the isomorphism Bi ⊗ Bj ∼=
R⊗Ri,j R{−2} ∼= Bj ⊗Bi. It is clear that we may construct for any k isomorphisms Hom(ij,k) →
Hom(ji,k) or vice versa merely by precomposing with the appropriate 4-valent vertex, and
(3.32) shows that these maps are inverses.

Because we can, let us discuss how we might extend our diagrammatic calculus to
include additional modules from R-molf-R, like R⊗Ri,j R{−2}. Let us (temporarily) allow a
new color of line in our pictures, call it w, and extend the functor F1 so that it sends w to
R⊗Ri,j R{−2}. We add new generators to our diagrammatics, and specify the image under the
extended functor, as below

=
def

Symbol Degree Definition

0

0

1
⊗

1

1
⊗

1

1
⊗

1
⊗

1

1
⊗

1
⊗

1

The definition of these bimodule maps, and the proof that they are in fact bimodule
maps, is exactly akin to the discussion in Section 3.4. It is clear that composing these
morphisms to get an endomorphism of ij will yield the identity map, and composing them
to get an endomorphism of w will also yield the identity map (these would be relations in
the extended diagrammatic calculus). Thus we get isomorphisms ij ∼= w ∼= ji in DC.

We now combine these techniques to deal with adjacent colors. We have isomorphisms
Bi ⊗ Bi+1 ⊗ Bi ∼= Bi ⊕ (R⊗Ri,i+1R{−3}) and Bi+1 ⊗ Bi ⊗ Bi+1

∼= Bi+1 ⊕ (R⊗Ri,i+1R{−3}). If we allow
the new color of line, again called w, to represent the bimodule R⊗Ri,i+1R{−3}, then we may
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define the following maps:

Symbol Degree Definition

0

0

0

0

1
⊗

1

1
⊗

1

1
⊗

1

1
⊗

1

1
⊗

1
⊗

1
⊗

1

1
⊗

1
⊗

1
⊗

1

1
⊗

1
⊗

1
⊗

1

1
⊗

1
⊗

1
⊗

1

(xi + xi+1)
⊗

1 − 1
⊗

1
⊗

xi+2

1
⊗

xi
⊗

1
⊗

1

1
⊗

(xi+1 + xi+2) − xi
⊗

1

1
⊗

xi+2
⊗

1
⊗

1

=
def

=
def

Again, checking that we have well-defined bimodule maps is akin to Section 3.4.
Composing the two maps that go through i(i + 1)i and w to get an endomorphism of w
will yield the identity map of w, and the same is true, respectively, of (i + 1)i(i + 1).

Then the equation (3.26), which is a decomposition of the identity of i(i + 1)i, actually
follows from this relation in DC

=
p1

α1

−
p2

α2

(4.3)

There is a more explicit statement to be derived from this relation, completely
analogous to the two-line case, with projection and inclusion maps p1, α1, p2, α2 (include the
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minus sign on the right picture in α2). Similarly we get a decomposition of (i + 1)i(i + 1)
via the same relation with the colors switched. The auxiliary module used here is in fact the
indecomposable Soergel bimodule Bw where w = sisi+1si = si+1sisi+1.

To state the result without extending the calculus to the Karoubi envelope, one may
merely observe that for any k there is a map Hom(i(i + 1)i,k) → Hom((i + 1)i(i + 1),k) and
vice versa given by precomposing with the appropriate 6-valent vertex; there is another map
Hom(i(i + 1)i,k) → Hom(i,k) given by precomposing with α2, and a map backwards given
by precomposing with p2, then (3.26) exactly yields that Hom(i(i + 1)i,k) ⊕Hom((i + 1),k) ∼=
Hom((i + 1)i(i + 1),k) ⊕Hom(i,k).

Thus we have shown the following claim:

Claim 4.24. The isomorphisms (2.10) through (2.12) hold in DC1 after applying any Hom
functor.

We have now satisfied the requirements of Proposition 2.13, which implies the fullness
of F1.

Claim 4.25. The functor F1 is full.

Finally, our graphical reductions give us a classification of certain Hom spaces.

Corollary 4.26. The space HomDC1(∅, i), where i is a length d increasing sequence, is a free left (or
right) R-module of rank 1, generated by a homogeneous morphism of degree d.

Proof. Let ϕ be the morphism consisting entirely of boundary dots. This corresponds, under
the functor, to the generator of degree d discussed in Claim 2.9. By Corollary 4.21, ϕ viewed as
a graph underlies every morphism in DC1. This graph has a single region, so any morphism
that it underlies will be generated by ϕ under the action of R on the right or left, which puts
a polynomial into that single region. This gives a surjective map from R to the Hom space.
After applying F1, we know that the morphisms must surject onto HomSC1(R,Bi), which is a
free R-module (see Claim 2.9). Therefore, the Hom space in DC1 must also be free.

Corollary 4.27. The semilinear form on H induced by Hom spaces in DC1 agrees with the form
defined in Section 2.1, so it agrees with the form induced by SC1. Therefore F1 is faithful.

Proof. This is now immediate, from Remark 2.1.

In conclusion, F1 is an equivalence of categories, and Theorem 4.22 is proven.
We also get for free the following corollary, which is difficult to prove purely

diagrammatically.

Corollary 4.28. Hom spaces in DC1 are free as left or right R-modules.

Remark 4.29. It is worth reiterating what is proven diagrammatically, and what is proven
using the functor F1 to Soergel’s category. Diagrammatically, we can prove Proposition 4.19
and Corollary 4.21, which implies thatR surjects onto HomDC1(∅, i) for i increasing. However,
without the full functor F1 and the nondiagrammatic knowledge of Hom spaces in Soergel’s
category, we do not know how to prove that the Hom space is free. We do not have a
fully diagrammatic proof that the Hom spaces in DC1 are what they are, we only have a
diagrammatic proof of an upper bound on the size of the Hom spaces.
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4.6. The e1 Quotient

In the remainder of this chapter, we provide some sketched statements about generalizations
and variations of DC1. We do not use these results elsewhere in the paper, and while the
proofs are only sketched, they are fairly obvious and can be fleshed out without too much
work.

As described in Remark 2.2, one usually constructs Soergel bimodules with respect to
the n-dimensional fundamental or geometric representation, instead of the n+ 1-dimensional
standard representation. This amounts to working over the ring R1 = k[x1, x2, . . . , xn+1]/(x1 +
x2 + · · · + xn+1), which is a quotient of R by the first elementary symmetric function e1. Since
e1 is symmetric, it is in the center of the category DC1 (it slides freely under all lines, tensor-
commuting with all morphisms), and one may easily take the quotient category, setting e1 =
0, without changing any of the diagrammatics. There is a functor from this quotient category
to the appropriate category of Soergel bimodules in R1-molf-R1, which is an equivalence of
categories, so this diagrammatical quotient category also categorifies the Hecke algebra.

One advantage to passing to the quotient e1 = 0 is that, after inverting a suitable
integer, we may remove the boxes from our list of generators. According to relation (3.17),
the double dot colored i is equal to xi−xi+1. Thus linear combinations of double dots of colors
i = 1, . . . , n will give us the k-span of x1 − x2, x2 −x3, . . . inside the space of linear polynomials
(these are the simple roots). This span will not include xi in R, which is why we require at
least one box as an additional generator. However, it is easy to check that, if n+ 1 is invertible
in k, then xi is in the k-span after passing to the quotient R1. As an example, when n = 1,
the double dot is equal to x1 − x2, and passing to x1 + x2 = 0, we get x1 = (1/2)(x1 − x2).
Thus, if n + 1 is invertible in k, one can eliminate boxes from the quotient calculus altogether,
replacing them with linear combinations of double dots.

Addendum 4. All the relations which involve boxes can be rewritten so that they only involve double
dots. This is not done here, but can be found in any of the papers [33, 34, 36].

Replacing boxes with double dots is much more natural, since it emphasizes that the
boxes themselves should have a color, and that the set of polynomials depends in a natural
way upon the coxeter group Sn+1. Viewing them as boxes may help make the proofs in this
paper more intuitive, however.

4.7. Color Elimination

We have already shown that DC1
∼= SC1, without needing to investigate in depth any

morphisms except those from ∅ to i an increasing sequence. Because this pins down the
size of all Hom spaces, we can deduce some additional facts about general morphisms.
The following result is not used elsewhere in this paper, but may come in handy when
constructing the analogous category for arbitrary Coxeter systems.

Proposition 4.30. Let Γ be a graph where the color j does not appear in the boundary, then Γ can be
reduced to graphs not containing the color j at all.

We can already show this when j is extremal, since by Proposition 4.19 we may apply
the weak j-colored basic moves and reduce the color j to the empty graph. Unfortunately, as
in Remark 4.29, we do not have a diagrammatic result of this proposition in general, but use
the known size of Hom spaces to prove it.

For X ⊂ {1, . . . , n}, (i.e., for a Coxeter subgraph of An) we let DC1[X] be the category
defined analogously but where edges can only be labelled by colors in X. If colors which do
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not appear on the boundary are not needed in the graph after reduction, then the natural
inclusion of DC1[X] into DC1 is fully faithful, which one would expect. The full faithfulness
of this inclusion is equivalent to the above proposition.

However, as discussed in the previous section, the boxes which are allowed to appear
should also depend on X. For the rest of this section, we assume we are working in the e1

quotient. Let DC1(X) be the category defined analogously, where edges are labelled in X,
and where the only polynomials appearing are in the subring R(X) generated by double dots
colored in X. This is really the category we should look at. Given a morphism in DC1[X], we
can use polynomial forcing rules to guarantee that the only polynomials not in R(X) appear
in the lefthand region. We do not prove it here, DC1[X] is simply DC1(X)⊗R(X)R; that is, the
objects are unchanged, and morphism spaces undergo base change.

Proposition 4.31. Let X be a Coxeter subgraph of An, and letW(X),H(X), SC1(X) designate the
corresponding constructions for this Coxeter graph, then there is a functor F1(X) from DC1(X) to
SC1(X) which is an equivalence of categories.

Proof. We will only sketch this result. The set X will be a disjoint union of various subgraphs
Xl, each isomorphic to Aml for some ml ≤ n. For each Xl we know that DC1(Xl) ∼= SC1(Xl),
and we have all the results aforementioned. Moreover, for any l /= l′ and objects M ∈ DC1(Xl)
and N ∈ DC1(X′l), we have natural isomorphisms M ⊗ N ∼= N ⊗M constructed with 4-
valent crossings. Thanks to the distant sliding rules, these natural isomorphisms commute
in the proper way with all morphisms in DC1(Xl) or DC1(X′l). The category DC1(X) can be
constructed via some universal “symmetric monoidal product” construction, by taking the
product over the categories DC1(Xl). The same holds true for SC1(X), which will yield the
result.

Given the sketchy result above, we can calculate the rank of Hom spaces inDC1(X) by
using the standard trace map on H(X). This trace map commutes with the standard trace on
H under the inclusion H(X) ⊂ H. Thus we see that, for objects i and j in DC1(X), the space
HomDC1(i, j) is a free R module of some rank r, and the space HomDC1(X)(i, j) is a free R(X)
module of the same rank r. Therefore HomDC1[X](i, j) is a free R module of rank r as well, and
the inclusion of DC1[X] in DC1 is fully faithful.

We quickly sketch an alternative proof of Proposition 4.30, which assumes that we
know that Hom spaces in DC1 conform to the standard trace. We can think of any graph
with boundary as a morphism in DC1 from ∅ to j. We have already “inductively calculated”
the space of such morphisms, along the lines of Remark 2.1 and Proposition 2.13. Namely,
if j has no repeated colors, then every morphism is a polynomial with boundary dots. If j
has repeated colors, we use idempotent decompositions to consider the Hom space as the
sum of the Hom spaces of its summands, or apply biadjunction to cycle the sequence j, until
we have expressed the Hom space in terms of Hom(∅,k) for various k nonrepeating. Since
neither biadjunctions nor idempotent decompositions add any new colors to the graph, we
have just constructed a generating set of morphisms in a way which does not involve any
colors which were not in j to begin with.

5. Proofs

It remains to prove Proposition 3.11, which we do in the first section, and Proposition 4.19,
which we do in the second.
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5.1. F1 Is a Functor

We need now to check that each of our relations holds true for Soergel bimodules, after
application of F1. The relations are listed in full in Section 3.4. These checks are entirely
tedious and straightforward, and require little imagination. With a little imagination,
however, there are some tricks which make checking most relations trivial.

Again, we always use relation (2.6) to identify elements of Bi with d(i) + 1 tensors of
polynomials.

For brevity, we will call any element which is a tensor product 1 ⊗ 1 ⊗ 1 ⊗ · · · a 1-
tensor. EndDot, Split, and the 4-valent and 6-valent vertices all send 1-tensors to 1-tensors.
This simple fact is already enough to prove relations (3.1), (3.32), (3.33), (3.34), and (3.36),
since the bottom bimodule in each of these pictures is generated by the 1-tensor; we call this
the 1-tensor trick. Caps and Merges kill a 1-tensor, while Cups and StartDots send it to a sum
of two-linear terms.

There are several choices to make when checking the various relations. Once the
twisting relations are shown, one is free to prove any twist of the other relations. Also, one
may choose which set of generators of the source bimodule to check equality on. Finally,
whenever a Cup or a StartDot appears, there are two equivalent ways to write the result,
since xi ⊗1−1⊗xi+1 = 1⊗xi −xi+1 ⊗1 in Bi, and one might be easier than the other to evaluate.

The first trick is to choose the set of generators which makes the calculation the easiest.
Let us remind ourselves of the arguments of Remark 2.7. An arbitrary module Bi of length d
will have 2d−m generators as an R-bimodule, where m is the number of different colors that
appear. Let us use the term i-pair to denote two instances of the index i in i, separated only
by colors /= i. Let X denote the set of all i-pairs for all i; the size of X is d − m. As we force
polynomials to the right or left, a variable xi (or alternatively xi+1) might get stuck between
the two i-colored lines of an i-pair, and this independently of each other i-pair or j-pair for
j /= i. The following claim is easy to show from the forcing rules.

Claim 5.1. Each Bi will be generated as an R-bimodule by any set Y of 2d−m linearly
independent tensors, for which we have a bijection between Y and the power set of X,
satisfying the following property: If a tensor y ∈ Y corresponds to a subset Xy ⊂ X, then each
i-pair in Xy corresponds to a distinct linear factor of y which is either xi or xi+1 somewhere
inside the i-pair.

It is a mouthful, but an example clarifies it. The following is an example of a set of
generators for B(i−1)(i+1)i(i+1)(i−1)i, where d −m = 3 so we need 8 generators:

xi

xi+1 xi+1

xi xi xixi+1

xixi+1 xi+1xi+1 xi−1

Each picture represents a tensor, where by convention a blank area is filled with a 1-
tensor. Reading across, the first picture corresponds to the empty subset of X. The second
picture corresponds to the i − 1-pair, the third to the i + 1-pair, and the fourth to the i-pair.
Since these three are linearly independent, they take care of all the linear generators. Clearly
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the fourth picture could have also worked for the i+1-pair, but if we had chosen it as such, we
would have had to choose a new linearly independent vector for the i-pair. The fifth generator
corresponds to the i − 1-pair and the i + 1-pair, the sixth generator to the i − 1-pair and the
i-pair, and the seventh generator to the i-pair and the i + 1-pair. These three are also linearly
independent. The final generator corresponds to the entire set X.

A clever choice of which generators to use may greatly simplify a calculation by
reducing the number of terms in intermediate steps. There are two main instances when this
occurs. Either 6-valent vertex with strands i and i+ 1 will send 1⊗xi+1 ⊗ 1⊗ 1 or 1⊗ 1⊗xi+1 ⊗ 1
to a single tensor, while it may send 1 ⊗ xi ⊗ 1 ⊗ 1 to the sum of two tensors, thus doubling
the work we need to do in the remainder of the calculation. Also, xixi+1 entering a 6-valent
vertex i(i + 1)i in the second slot may by moved across the i-strand to the left for a simple
calculation, while x2

i leads to a more complicated solution.
The second trick will be a useful diagrammatic way of evaluating homomorphisms

in SC1, which really only works well when applied to a well-chosen set of generators. In
particular, the choice of generators above makes the verification of triple overlap associativity
(3.37) rather straightforward. We demonstrate the graphical method in the most difficult case,
the highest degree generator

xi

xi

xi

xi
xi

xi−1

xi−1

xi−1

xi−1

xi−1

xi−1 xi+1

x′

x′

xi

xi
xi

xi

xi−1

xi−1

xi−1

xi−1

xi−1

xi+1

xi+1
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Here x′ = xi−1xixi+1.
We keep track of the image at every stage in the calculation, which is one term as

shown, with all blank spaces being filled by 1-tensors. An arrow indicates either bringing a
symmetric polynomial through a line, or applying a 6-valent vertex to a tensor. The lack of
an arrow indicates that a 1-tensor is sent to a 1-tensor. This works well only because every
intermediate term is a single tensor, not a sum of tensors.

We leave it as an exercise to the reader to verify, using this graphical method of
calculation, that both sides of the triple overlap associativity relation, as displayed above,
send the other 7 generators to the same elements. Precisely, both sides send the 1-tensor to
a 1-tensor, and the other generators to 1-tensors with polynomials in various slots: the 2nd
and 4th generators to xi+2 in the last slot, the third generator to xi−1 in the last slot, the 5th to
xi−1xi+2 in the last slot, the 6th to xixi−1 in the first slot, the 7th to xi+1xi+2 in the first slot, and
the 8th as shown above to xixi−1 in the first slot and xi−1 in the last slot. We promise that the
graphical method will work for this set of generators.

One can extend this graphical method easily to handle other morphisms. As an
example, we show the Merge map below

xi

0

When xi+1 enters a Merge, it is sent to −1. Almost the same pictures can be drawn for
the Cap. Split and EndDot send 1-tensors to 1-tensors, and no arrows are needed.

When there is a cup or a StartDot, a 1-tensor is sent to a sum of two terms, each of
which must be evaluated separately. However, the sum can be written as either xi⊗1−1⊗xi+1

or 1⊗xi−xi+1⊗1, so we may choose the one whichever is more convenient. Often the problem
of having two terms is very temporary. For example, consider what happens to the 1-tensor
under the map

The cup creates two terms, the first with a 1 under the cap and the second with xi
under the cap. But the first term is annihilated immediately by the cap, and the cap eats the
xi from the other term, to return back a 1-tensor. So long as a cup or a StartDot appears right
next to a cap or a merge, one of the two terms is always immediately annihilated. This is
the case for (3.5), (3.6), (3.8), which all send 1-tensors to 1-tensors as a result. After a quick
polynomial slide, the same is true for (3.31), and using the more convenient choice so the xi+1

ends up underneath the 6-valent vertex, a quick calculation shows it for (3.27) as well. We
call this the cupcap trick.
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We now list and prove the necessary relations, following the same order as in
Section 3.4. One could print out this list and hold it next to that section, where the relations
are and the functor is defined, to make this ordeal easier.

(1) Biadjointness (3.5) follows from the cupcap trick.

(2) Trivalent twisting (3.6) follows from the cupcap trick.

(3) Associativity (3.1) follows from the 1-tensor trick.

(4) Dot twisting (3.8) follows from the cupcap trick.

(5) The needle consists of a split, sending a 1-tensor to a 1-tensor, and a cap, killing a
1-tensor. Hence the needle relation (3.18) follows.

(6) The polynomial slide relations clearly hold for Soergel bimodules, by definition.

(7) For the broken line relation (3.16), both sides clearly send the 1-tensor to xi ⊗ 1− 1⊗
xi+1.

(8) For the double dot relation (3.17), both sides clearly send the 1-tensor to xi − xi+1.

(9) The three-line decomposition relation (3.26) is a calculation. We need to show it for
both color variants, whether thin is i and thick i + 1 or vice versa. Let w be the 1-
tensor and x = 1 ⊗ xi+1 ⊗ 1 ⊗ 1, regardless of which variant we are in, then it is easy
to check that

= −
w

w

x

x

Consider what happens to x, under the first color variant. The double 6-valent
vertex sends x to 1 ⊗ 1 ⊗ 1 ⊗ xi+2 = 1 ⊗ 1 ⊗ xi+2 ⊗ 1, while the rightmost picture
sends x to 1 ⊗ xi+1 ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ xi+2 ⊗ 1. The sum of these two is just x again. We
leave similarly easy calculations to the reader in the future.

(10) 6-valent twisting (3.27) follows from the cupcap trick.

(11) Adding a dot to a 6-valent vertex (3.28) needs to be checked for both color variants.
Define w and x as before, and it is easy to check that

= +
w

w 1
⊗

1
⊗

1
⊗

y

x

Here y = xi for one color variant, y = xi+2 for the other.

(12) Two-color associativity (3.29) is a calculation. We recommend using the following
twist:

=
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and using the four generators: a 1-tensor, 1 ⊗ 1 ⊗ xi+1 ⊗ 1 ⊗ 1, 1 ⊗ xi+1 ⊗ 1 ⊗ 1 ⊗ 1 and
1⊗ xi+1 ⊗ 1⊗ xi+1 ⊗ 1. Evaluate using the graphical calculus. The first two generators
are killed by both maps thanks to merge maps. The third generator is send to a 1-
tensor by both maps. The final generator is also killed by both maps, as symmetric
polynomials are slid out of the way and merge maps eat the remaining 1-tensor.

(13) 4-valent twisting (3.31) follows from the cupcap trick.

(14) Sliding a dot or a trivalent vertex through a distant line both follow from the 1-
tensor trick.

(15) Sliding a 6-valent vertex through a distant line is easily checked on both generators.

(16) Sliding a 4-valent vertex through a distant line follows from the 1-tensor trick.

(17) Three-color associativity will be a calculation, using the generators and pictures
described above, that we leave to the reader.

5.2. Graphical Proofs

In this section, we provide graphical proofs for a series of propositions which collectively
prove Proposition 4.19. Recall the definitions of the strict and weak i-colored moves from
Section 4.4. Remember that an extremal color i is one which appears in a graph, but for which
either i−1 or i+1 does not appear. Each of the results states what reduction moves the relations
of DC1 allow. Because more than three colors may be required for some proofs, we use extra
line styles that designate other arbitrary colors, and are very explicit about what colors they
are allowed to be. A thin line will still always represent i and a thick line i + 1, but we will be
lax about other colors.

Lemma 5.2. One may strictly pull a distant line under any other graph, like in the relations (3.32)–
(3.36). That is, these relations can be viewed as graph reduction moves.

Proof. The only significant part of this lemma is that we can still apply the relations
mentioned, even in the presence of arbitrary polynomials in each region. However, it is an
immediate observation that any polynomial inside a region bounded by at least two-lines of
distant colors may be slid entirely out of the region, which does not affect the underlying
graph.

The above lemma highlights the fact that we must deal with polynomials when they
appear. However, the only significant polynomials are those which appear in internal regions
(regions not touching the boundary of the planar strip) since all our computations will be
local, so polynomials in external regions can be moved outside the calculation. We will
mention whenever a polynomial is relevant, and the reader can check that whenever we do
not mention it, there are only external regions.

Proposition 5.3. One may apply the (strict) i-colored double dot removal move to any graph Γ.

Proof. Suppose the i-graph of Γ contains two dots connected by an edge, then in Γ, the “edge”
connecting them can only meet series of 4-valent vertices with various j-strands for j distant
from i. Since dots can be slid across distant-colored strands by (3.33), we may slide the dots
until they are connected directly by an edge, and just use (3.17) to reduce the graph.

Proposition 5.4. One may apply the weak i-colored dot contraction move to any graph Γ.
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Proof. Suppose the i-graph of Γ contains a trivalent vertex connected to a dot. In Γ, the
trivalent vertex is either a trivalent or 6-valent vertex v, and the edge connected the dot to the
vertex may have numerous 4-valent vertices. Again, in Γ the dot may be slid across distant-
colored strands until it is connected directly to v. If v is trivalent then (3.4) allows strict dot
contraction, while if v is 6-valent, (3.28) sends Γ to the sum of two graphs allowed by weak
dot contraction.

Proposition 5.5. One may apply the (strict) i-colored dot extension move to any graph Γ.

Proof. This is trivial, by (3.4).

The following lemma is needed to prove the remainder of the basic i-colored moves.

Lemma 5.6. Let Γ be a sequence of lines j (i.e., the identity map of j), and let i be an extremal color in
j, then Γ is equal inDC1 to a sum of idempotents, such that each idempotent factors through a sequence
of lines k where i appears no more than once, and such that the idempotents do not introduce any new
colors not present in j.

Proof. This proof is akin to the combinatorial argument that the relations defining the Hecke
algebra or the symmetric algebra are enough to take any complicated word in bj or sj to a
reduced form. We use induction on the length of j. If k(k + 1)k appears in j for some k, then
using (3.26), we may factor through (k + 1)k(k + 1) instead, modulo morphisms that factor
through shorter length sequences. If any color appears twice consecutively in j then we may
apply (3.25) to replace the two adjacent lines with an “H”, which factors through a sequence
of lines of shorter length. If jk appears for j distant from k, then applying the R2 move we
can factor through kj. None of these procedures added any new colors. So if we consider the
sequence j as a word in the symmetric group sj1sj2 · · · sjd , then any nonreduced words will
reduce to smaller length sequences, and any two reduced words for the same element will
factor through each other, modulo smaller length sequences.

We may now use the easily observable fact that any element of the symmetric group
can be represented by a reduced word which uses s1 at most once, or sn at most once
(although not both!). It follows from this that any element in a parabolic subgroup of Sn+1

can be represented by a reduced word which uses an extremal index at most once. Thus, by
the process above, we can replace j by idempotents factoring through reduced expressions k
which use i at most once.

The usefulness of this lemma can be seen in the following proof.

Proposition 5.7. One may apply the (strict) i-colored connecting move to any graph Γ, so long as i is
extremal.

Proof. Assume i−1 does not appear, although the i+1 case is analogous. Induct on the number
of colors present in the graph: the base case of one color is clear, then we are attempting to
apply the i-colored connecting move to some region of the graph which looks like this:

Γ′
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Γ′ is some graph composed entirely of the colors 1, . . . , i − 2 and i + 1, . . . , n, so that
i + 1 is extremal or nonexistent. In some neighborhood Γ′ is just a sequence of lines 1j. By the
previous lemma, we may replace this sequence of lines with a sum of idempotents factoring
through sequences k where i + 1 appears at most once, and i − 1 appears not at all. Localizing
to a neighborhood around 1k, we may as well assume that j = k. Now apply the R2 move to
bring the i-strands past all the other colors so that they are separated by either nothing or a
single i + 1 strand. We have not yet altered the i-graph at all, then equation (3.25) or equation
(3.26) (respectively) will allow the strict i-colored connecting move.

When we have an edge in an i-graph, a neighborhood of that edge in the full graph will
be nothing more than a sequence of 4-valent vertices as the i-strand crosses distant strands.
The next corollary allows us to place restrictions on which distant strands the i-strand need
cross.

Corollary 5.8. Suppose we are given a graph Γ which is a neighborhood of an i-colored strand
consisting only of 4-valent vertices crossing the i-strand (see the picture below), then Γ is equivalent
in DC1 to a linear combination of graphs Γ′ which have the same i-graph, and for which the sequence
of lines crossing the i-strand in Γ′ contains i + 2 and i − 2 each at most once.

Γ =

Proof. Let j be the sequence of lines crossing the i-strand in Γ; clearly i, i − 1, and i + 1
do not appear in j. According to the above lemma, we may replace 1j with a sum of
idempotents which factor through “nice” sequences k where i + 2 and i − 2 each appear
at most once. Moreover, for any idempotent appearing in this sum, i is distant from every
color appearing in the idempotent (as well as the polynomials which may appear in the
idempotent). So replacing 1j with this sum immediately above the i-strand, we may then
slide the i-strand in each idempotent so that it passes through k. An example is given below,
ignoring polynomials which can also be slid.

−→ −→

The last two moves will take the rest of the paper to prove.

Proposition 5.9. One may apply the (strict) i-colored needle move to any graph Γ.
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Proposition 5.10. One may apply the weak i-colored associativity move to any i-colored “H ” in any
graph Γ, so long as the “H ” does not look like the following picture:

where the two vertices are 6-valent in Γ with different colors i + 1 and i − 1.
In particular, we may apply the i-colored associativity move to any graph Γ when i is extremal.

Proof Setup. We apply induction on the set of colors present in the graph to prove
these two propositions simultaneously. Both propositions hold when i is the only color in the
graph, by (3.10), (3.18), (3.24), where the latter is needed because an arbitrary polynomial
may be within the eye of the needle. The inductive hypothesis then implies, with the previous
propositions, that for any graph with fewer colors, we may apply all the weak k-colored basic
moves for an extremal color k. In this case Proposition 4.17 says that we may reduce the k-
graph to a disjoint union of simple trees. Within each region of Γ delimited by the i-graph the
color i is absent, so there are fewer total colors and we may reduce both the i − 1-graph and
the i + 1-graph inside this region to a union of simple trees. This application of the inductive
hypothesis was the only reason to consider the two propositions together; we now treat them
separately.

Needle Move: Modulo Induction Hypothesis. Suppose the i-colored graph contains
a needle. The trivalent vertex of the needle is either trivalent or 6-valent in Γ, and the edge
of the needle may contain a series of 4-valent vertices. So a neighborhood of the needle in Γ
looks like one of the pictures below.

OR Γ′Γ′

The lines entering the needle around the top are colored with various j all distant from
i. We assume without loss of generality that, in the second case, the 6-valent vertex has second
color i + 1.

We may now reduce the i + 1 and i − 1 graph of Γ′, since Γ′ does not contain the color
i. In the first case, the i ± 1 graph has no boundary, so both reduce to the empty graph. In the
second case, i + 1 has a single boundary line so it reduces to a boundary dot, and i − 1 has
none so it reduces to the empty graph. Within the reduced Γ′, the possible i + 1 dot may be
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slid under other lines until no 4-valent vertices separate it from the 6-valent vertex (as in the
proof of weak dot contraction). Thus we may assume that, after reduction, our neighborhood
looks like

OR
Γ′Γ′

where now Γ′ does not contain any of the colors i − 1, i, i + 1. Note that Γ′ may have arbitrary
polynomials in its various regions. But then by Lemma 5.2 we can pull the line forming the
needle through all of Γ′, thus completely ignoring Γ′ from the picture! There still may be a
polynomial in the eye of the needle. We have effectively reduced to the 2-color case on the
right, or the one color case on the left. We know the one color case works. To check the 2-color
case, we use (3.28) followed by other reduction moves.

or or→ →

In these final graphs, the i-graph is a dot, as desired. So we may apply the strict i-
colored needle move.

Associativity Move: Modulo Induction Hypothesis. We would like to apply
associativity to the following subgraph of the i-graph.

Each trivalent vertex of the i-graph may be either trivalent or 6-valent in Γ. We are
forbidding the case when one is 6-valent with i + 1 and the other with i − 1, so without loss of
generality with assume that a 6-valent vertex has i + 1 as the other color. The neighborhood
of this subgraph in Γ looks like one of the following cases:

or or
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All polynomials may be assumed to lie outside the neighborhood. We may use
Corollary 5.8 to assume that the sequence of lines passing through the middle strand contains
at most one instance of i + 2 and i − 2. In the first two cases, all such lines may be slid one by
one to the right over the trivalent vertex, removing them from the neighborhood. In the third
case, all lines not labelled i + 2 can be slid to the right or to the left, and since there is at most
one line labelled i+2, then at most one line remains. (If there had been multiple lines labelled
i + 2, then additional lines may have been stuck between them, but thankfully Corollary 5.8
eliminates this possibility.) Four cases remain:

In the fourth case, the additional line is i + 2. So far, the i-graph has been unchanged.

Case 1. One color associativity allows the strict i-colored associativity move.

Case 2. Double overlap associativity (3.30) allows the strict i-colored associativity move.

The remaining two cases use the same trick: they replace the interior lines on the top
and bottom of the graph with the corresponding sum of idempotents, and then resolve each
one with double or triple overlap associativity. The remaining two cases will not allow the
strict associativity move, only the weak one.

Case 3. We rewrite equation (3.25), using (3.16), so that there is no polynomial on the bottom.

i +
+

1
= −

i + 1

Applying this to the thick edges on top of Case 3, and symmetrically to the bottom, we
get a difference of graphs of two kinds.

For terms which do not involve a dot, we get a graph which looks like the following,
with no polynomial in any interior region:
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We may apply double overlap associativity (3.29) to a subgraph of this diagram
(ignoring the top and bottom thick trivalent vertices), which will apply associativity to the
i-graph.

Consider a term where a dot connects to a 6-valent vertex. Resolving the dot using
(3.28), we get a difference of two further terms: one which looks like Case 2, and the other
which is one of the alternate graphs allowed by the weak associativity move.

Thus we may apply weak i-colored associativity to each term.

Case 4. Applying equation (3.26) to the i + 1, i + 2, i + 1 sequence on top of the graph, we get
the difference

−

Now we need to show that we can apply associativity to each of these.
For the second picture, we may drag the dot on i + 2 through the i-strand, and then a

smaller neighborhood of the X looks like Case 3.
For the first picture, we once again apply (3.26) to the bottom of the graph to get the

difference

−

Again, for the second picture we may drag the dot through and reduce using Case 3.
For the first picture, there are no polynomials in any internal region, because these

internal regions were just created by relations. We may now apply triple overlap associativity
(3.37) to the subgraph of the this picture which ignores the top and bottom 6-valent vertices.
This has the effect of applying weak i-colored associativity.
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Remark 5.11. It does not seem possible to apply i-colored associativity to the following graph.

Consider switching the i-graph to the other version of an “H”, and look at the
triangular region delimited by the i-graph on top. It has at most one 6-valent vertex on its
perimeter, so that its boundary lines consist of an i− 1 line, an i+ 1 line, and at most one other
i ± 1 line. This means that one of the two colors i − 1 or i + 1 must reduce to a boundary dot.
It is not possible to obtain a degree 0 morphism if this happens.

Because of the failure of i-colored associativity in this context, our algorithm towards
reducing graphs has always been to treat extremal colors and use induction. Despite this
pessimism, Proposition 4.30 (color elimination) implies that we can still do a lot. However,
any purely graphical proof of color elimination is complicated by the failure of i-colored
associativity for nonextremal colors.
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We define two functors from Elias and Khovanov’s diagrammatic Soergel category, one targeting
Clark-Morrison-Walker’s category of disoriented sl(2) cobordisms and the other targeting the
category of (universal) sl(3) foams.

1. Introduction

In this paper we define functors between the Elias-Khovanov diagrammatic version of the
Soergel category SC defined in [1] and the categories of universal sl(2) and sl(3) foams
defined in [2, 3].

The Soergel category provides a categorification of the Hecke algebra and was used by
Khovanov in [4] to construct a triply-graded link homology categorifying the HOMFLYPT
polynomial. Elias and Khovanov constructed in [1] a category defined diagrammatically by
generators and relations and showed it to be equivalent to SC.

The sl(2) and sl(3) foams were introduced in [2, 5] and in [3, 6], respectively, to give
topological constructions of the sl(2) and sl(3) link homologies.

This paper can be seen as a first step towards the construction of a family of functors
between SC and the categories of sl(N)-foams for all N ∈ Z+, to be completed in a
subsequent paper [7]. The functors Fsl(2),n and Fsl(3),n are not faithful. In [7] we will extend
the construction of these functors to all N. The whole family of functors is faithful in the
following sense: if for a morphism f in SC1 we have Fsl(N),n(f) = 0 for all N, then f = 0.
With these functors one can try to give a graphical interpretation of Rasmussen’s [8] spectral
sequences from the HOMFLYPT link homology to the sl(N)-link homologies.

The plan of the paper is as follows. In Section 2 we give a brief description of Elias
and Khovanov’s diagrammatic Soergel category. In Section 3 we describe the category Foam2
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of sl(2) foams and construct a functor from SC to Foam2. Finally in Section 4 we give the
analogue of these results for the case of sl(3) foams.

We have tried to keep this paper reasonably self-contained. Although not mandatory,
some acquaintance with [1–3, 9] is desirable.

2. The Diagrammatic Soergel Category Revisited

This section is a reminder of the diagrammatics for Soergel categories introduced by Elias
and Khovanov in [1]. Actually we give the version which they explained in [1, Section 4.5]
and which can be found in detail in [9].

Fix a positive integer n. The categorySC1 is the category whose objects are finite length
sequences of points on the real line, where each point is colored by an integer between 1 and
n. We read sequences of points from left to right. Two colors i and j are called adjacent if
|i − j| = 1 and distant if |i − j| > 1. The morphisms of SC1 are given by generators modulo
relations. A morphism of SC1 is a C-linear combination of planar diagrams constructed by
horizontal and vertical gluings of the following generators (by convention no label means a
generic color j).

(i) Generators involving only one color are as follows:

EndDot StartDot Merge Split

(2.1)

It is useful to define the cap and cup as

≡
≡ (2.2)

(ii) Generators involving two colors are as follows:

- The 4-valent vertex, with distant colors,

i j

(2.3)

- and the 6-valent vertex, with adjacent colors i and j

i j ij

(2.4)
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read from bottom to top. In this setting a diagram represents a morphism from the bottom
boundary to the top. We can add a new colored point to a sequence and this endows SC1

with a monoidal structure on objects, which is extended to morphisms in the obvious way.
Composition of morphisms consists of stacking one diagram on top of the other.

We consider our diagrams modulo the following relations.
”Isotopy” Relations.

= = (2.5)

= = (2.6)

= = (2.7)

= = (2.8)

= = (2.9)

The relations are presented in terms of diagrams with generic colorings. Because of
isotopy invariance, one may draw a diagram with a boundary on the side, and view it as a
morphism in SC1 by either bending the line up or down. By the same reasoning, a horizontal
line corresponds to a sequence of cups and caps.
One Color Relations.

= (2.10)

= 0 (2.11)
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+ = 2 (2.12)

Two Distant Colors.

= (2.13)

= (2.14)

= (2.15)

Two Adjacent Colors.

= + (2.16)

= − (2.17)

= (2.18)

=
1
2

− − (2.19)
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Relations Involving Three Colors: (Adjacency is determined by the vertices which appear)

= (2.20)

= (2.21)

= (2.22)

Introduce a q-grading on SC1 declaring that dots have degree 1, trivalent vertices have
degree −1 and 4-, and 6-valent vertices have degree 0.

Definition 2.1. The category SC2 is the category containing all direct sums and grading shifts
of objects in SC1 and whose morphisms are the grading-preserving morphisms from SC1.

Definition 2.2. The category SC is the Karoubi envelope of the category SC2.

Elias and Khovanov’s main result in [1] is the following theorem.

Theorem 2.3 (Elias-Khovanov). The category SC is equivalent to the Soergel category in [10].

From Soergel’s results from [10] we have the following corollary.

Corollary 2.4. The Grothendieck algebra of SC is isomorphic to the Hecke algebra.

Notice that SC is an additive category but not abelian and we are using the (additive)
split Grothendieck algebra.

In Sections 3 and 4 we will define functors from SC1 to the categories of sl(2) and sl(3)
foams. These functors are grading preserving, so they obviously extend uniquely to SC2. By
the universality of the Karoubi envelope, they also extend uniquely to functors between the
respective Karoubi envelopes.

3. The sl(2) Case

3.1. Clark-Morrison-Walker’s Category of Disoriented sl(2) Foams

In this subsection we review the category Foam2 of sl(2) foams following Clark et al.
construction in [2]. This category was introduced in [2] to modify Khovanov’s link homology
theory making it properly functorial with respect to link cobordisms. Actually we will use
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the version with dots of Clark-Morrison-Walker’s original construction in [2]. Recall that we
obtain one from the other by replacing each dot by 1/2 times a handle.

A disoriented arc is an arc composed by oriented segments with oppositely oriented
segments separated by a mark pointing to one of these segments. A disoriented diagram
consists of a collection D of disoriented arcs in the strip in R

2 bounded by the lines y = 0, 1
containing the boundary points ofD. We allow diagrams containing oriented and disoriented
circles. Disoriented diagrams can be composed vertically, which endows Foam2 with a
monoidal structure on objects. For example, the diagrams 1n and uj for (1 < j < n) are
disoriented diagrams:

1n =

1 2 n

· · · uj =

1 n

· · · · · ·

j j + 1

(3.1)

A disoriented cobordism between disoriented diagrams is a 2D cobordism which can be
decorated with dots and with seams separating differently oriented regions and such that the
vertical boundary of each cobordism is a set (possibly empty) of vertical lines. Disorientation
seams can have one out of two possible orientations which we identify with a fringe. We read
cobordisms from bottom to top. For example,

1 j

· · ·

n

· · ·
(3.2)

is a disoriented cobordism from 1n to uj .
Cobordism composition consists of placing one cobordism on top of the other and

the monoidal structure is given by vertical composition which corresponds to placing one
cobordism behind the other in our pictures. Let C[t] be the ring of polynomials in t with
coefficients in C.

Definition 3.1. The category Foam2 is the category whose objects are disoriented diagrams,
and whose morphisms are C[t]-linear combinations of isotopy classes of disoriented
cobordisms, modulo some relations:

(i) the disorientation relations

= i = −i (3.3)

= −i (3.4)
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= − (3.5)

where i is the imaginary unit,

(ii) and the Bar-Natan (BN) relations

= t (3.6)

= 0 = 1 (3.7)

= + (3.8)

which are only valid away from the disorientations.

The universal theory for the original Khovanov homology contains another parameter
h, but we have to put h = 0 in the Clark-Morrison-Walker’s cobordism theory over a field
of characteristic zero. Suppose that we have a cylinder with a transversal disoriented circle.
Applying (3.8) on one side of the disorientation circle followed by the disoriented relation
(3.3) gives a cobordism that is independent of the side chosen to apply (3.8) only if h = 0 over
a field of characteristic zero.

Define a q-grading on C[t] by q(1) = 0 and q(t) = 4. We introduce a q-grading on
Foam2 as follows. Let f be a cobordism with | • | dots and |b| vertical boundary components.
The q-grading of f is given by

q
(
f
)
= −χ

(
f
)
+ 2|•| + 1

2
|b|, (3.9)

where χ is the Euler characteristic. For example, the degree of a saddle is 1 while the degree
of a cap or a cup is −1. The category Foam2 is additive and monoidal. More details about
Foam2 can be found in [2].

3.2. The Functor Fsl(2),n

In this subsection we define a monoidal functorFsl(2),n between the categories SC and Foam2.
On Objects. Fsl(2),n sends the empty sequence to 1n and the one-term sequence (j) to uj with
Fsl(2),n(jk) given by the vertical composite ujuk.
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On Morphisms

(i) The empty diagram is sent to n parallel vertical sheets:

∅ �−→ · · ·

n − 1 n21

(3.10)

(ii) The vertical line colored j is sent to the identity cobordism of uj :

�−→ · · ·

j + 1j

j (3.11)

The remaining n−2 vertical parallel sheets on the r.h.s. are not shown for simplicity,
a convention that we will follow from now on.

(iii) The StartDot and EndDot morphisms are sent to saddle cobordisms:

�−→

j + 1j

j j �−→

j + 1j

(3.12)

(iv) Merge and Split are sent to cup and cap cobordisms:

�−→

j + 1j

j j �−→

j + 1j

(3.13)
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(v) The 4-valent vertex with distant colors is given as follows. For j + 1 < k we have

�−→

j + 1j

jk

· · · k + 1k

(3.14)

The case j > k + 1 is given by reflection in a horizontal plane.

(vi) The 6-valent vertices are sent to zero:

�−→ 0 (3.15)

Notice that Fsl(2),n respects the gradings of the morphisms. Taking the quotient of SC by the
6-valent vertex gives a diagrammatic category TL categorifying the Temperley-Lieb algebra.
According to [11] relations (2.16) and (2.17) can be replaced by a single relation in TL. The
functor Fsl(2),n descends to a functor between TL and Foam2.

Proposition 3.2. Fsl(2),n is a monoidal functor.

Proof. The assignment given by Fsl(2),n clearly respects the monoidal structures of SC1 and
Foam2. So we only need to show that Fsl(2),n is a functor, that is, it respects the relations (2.5)
to (2.22) of Section 2.

”Isotopy Relations”

Relations (2.5) to (2.8) are straightforward to check and correspond to isotopies of their
images under Fsl(2),n which respect the disorientations. Relation (2.9) is automatic since
Fsl(2),n sends all terms to zero. For the sake of completeness we show the first equality in
(2.5). We have

Fsl(2),n j =

j j + 1

∼= = Fsl(2),n j

j j + 1

(3.16)

One Color Relations

For relation (2.10) we have

Fsl(2),n ,∼= Fsl(2),n ∼= Fsl(2),n (3.17)
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where the first equivalence follows from relations (2.5) and (2.7) and the second from isotopy
of the cobordisms involved.

For relation (2.11) we have

Fsl(2),n
j

= = 0

j j + 1

by relations (3.3) and (3.7). (3.18)

Relation (2.12) requires some more work. We have

Fsl(2),n
j

j
= = −i

j j + 1 j j + 1

= −i
,

j j + 1 j j + 1

+

(3.19)

where the second equality follows from the disoriented relation (3.4) and the third follows
from the BN relation (3.8). We also have

Fsl(2),n j = = −i + i

j + 1j j + 1j j + 1j

(3.20)

and therefore

Fsl(2),n j = −2i

j + 1j

(3.21)
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Fsl(2),n j = −2i .

j + 1j

(3.22)

We thus have that

Fsl(2),n + Fsl(2),n = 2Fsl(2),n . (3.23)

Two Distant Colors

Relations (2.13) to (2.15) correspond to isotopies of the cobordisms involved and are
straightforward to check.

Adjacent Colors

We prove the case where “blue” corresponds to j and ”red“ corresponds to j+1. The relations
with colors reversed are proved the same way. To prove relation (2.16) we first notice that

Fsl(2),n ∼=

j + 1j j + 2

(3.24)

which means that

Fsl(2),n ∼=

j + 1j j + 2

(3.25)
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On the other side we have

Fsl(2), n ∼=

j + 1j j + 2

(3.26)

which, using isotopies and the disorientation relation (3.4) twice, can be seen to be equivalent
to

−

j + 1j j + 2

(3.27)

which equals

−Fsl(2),n . (3.28)

This implies that

0 = Fsl(2),n = Fsl(2),n + Fsl(2),n . (3.29)

We now prove relation (2.17). We have isotopy equivalences

Fsl(2),n ∼=

j + 1j j + 2

(3.30)
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Fsl(2),n ∼=

j + 1j j + 2

= −

j + 1j j + 2

(3.31)

Therefore we see that

0 = Fsl(2),n = Fsl(2),n + Fsl(2),n . (3.32)

The functor Fsl(2),n sends both sides of relation (2.18) to zero and so there is nothing to
prove here. To prove relation (2.19) we start with the equivalence

Fsl(2),n =

j + 1j j + 2

∼= −i

j + 1j j + 2

+ i

j + 1j j + 2

(3.33)
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which is a consequence of the neck-cutting relation (3.8) and the disorientation relations (3.3)
and (3.5). We also have

Fsl(2),n ∼= −i

j + 1j j + 2

+ i

.

j + 1j j + 2

(3.34)

Comparing with (3.21) and (3.22) and using the disoriented relation (3.5), we get

Fsl(2),n − Fsl(2),n =
1
2
Fsl(2),n − 1

2
Fsl(2),n . (3.35)

Relations Involving Three Colors

Functor Fsl(2),n sends to zero both sides of relations (2.20) and (2.22). Relation (2.21) follows
from isotopies of the cobordisms involved.

4. The sl(3) Case

4.1. The Category Foam3 of sl(3) Foams

In this subsection we review the category Foam3 of sl(3) foams introduced by the author and
Mackaay in [3]. This category was introduced to universally deform Khovanov’s construction
in [6] leading to the sl(3)-link homology theory.

We follow the conventions and notation of [3]. Recall that a web is a trivalent planar
graph, where near each vertex all edges are oriented away from it or all edges are oriented
towards it. We also allow webs without vertices, which are oriented loops. A pre-foam is a
cobordism with singular arcs between two webs. A singular arc in a prefoam f is the set
of points of f which has a neighborhood homeomorphic to the letter Y times an interval.
Singular arcs are disjoint. Interpreted as morphisms, we read prefoams from bottom to top
by convention; foam composition consists of placing one prefoam on top of the other. The
orientation of the singular arcs is by convention as in the zip and the unzip:

and , (4.1)

respectively. Pre-foams can have dots which can move freely on the facet to which they belong
but are not allowed to cross singular arcs. A foam is an isotopy class of pre-foams. Let C[a, b, c]
be the ring of polynomials in a, b, c with coefficients in C.
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We impose the set of relations � = (3D,CN,S,Θ) on foams, as well as the closure
relation, which are explained below.

= a + b + c (3D)

= − − − + a + + b (CN)

= = 0, = −1 (S)

α

β

δ

1

−1

0

(α, β, δ) = (1, 2, 0) or a cyclic permutation

(α, β, δ) = (2, 1, 0) or a cyclic permutation

else

(Θ)

The closure relation says that any C[a, b, c]-linear combination of foams, all of which
having the same boundary, is equal to zero if and only if any common way of closing these
foams yields a C[a, b, c]-linear combination of closed foams whose evaluation is zero.

Using the relations �, one can prove the identities below (for detailed proofs see [3]).

= − (Bamboo)

= − (RD)

= 0 (Bubble)

= − (DR)
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= − − (SqR)

+ + = a

+ + = −b

= c

(Dot Migration)

In this paper we will work with open webs and open foams.

Definition 4.1. Foam3 is the category whose objects are webs Γ inside a horizontal strip in R
2

bounded by the lines y = 0, 1 containing the boundary points of Γ and whose morphisms are
C[a, b, c]-linear combinations of foams inside that strip times the unit interval such that the
vertical boundary of each foam is a set (possibly empty) of vertical lines.

For example, the diagrams 1n and vj are objects of Foam3:

1n =

1 2 n

· · · vj =

1 n

· · · · · ·

j j + 1

(4.2)

The category Foam3 is additive and monoidal, with the monoidal structure given as in
Foam2. The category Foam3 is also additive and graded. The q-grading in C[a, b, c] is defined
as

q(1) = 0, q(a) = 2, q(b) = 4, q(c) = 6 (4.3)

and the degree of a foam f with | • | dots and |b| vertical boundary components is given by

q
(
f
)
= −2χ

(
f
)
+ χ

(
∂f

)
+ 2|•| + |b|, (4.4)

where χ denotes the Euler characteristic and ∂f is the boundary of f .
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4.2. The Functor Fsl(3),n

In this subsection we define a monoidal functorFsl(3),n between the categories SC and Foam3.

On Objects

Fsl(3),n sends the empty sequence to 1n and the one-term sequence (j) to vj with Fsl(3),n(jk)
given by the vertical composite vjvk.

On Morphisms

(i) As before the empty diagram is sent to n parallel vertical sheets:

∅ �−→ · · ·

n − 1 n21

(4.5)

(ii) The vertical line colored j is sent to the identity foam of vj :

�−→

j + 1j

j (4.6)

(iii) The StartDot and EndDot morphisms are sent to the zip and the unzip, respectively:

�−→

j + 1j

j �−→

j + 1j

j
(4.7)

(iv) Merge and Split are sent to the digon annihilation and creation, respectively:

�−→

j + 1j

j �−→

j + 1j

j (4.8)
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(v) The 4-valent vertex with distant colors is showen as follows. For j + 1 < k we have.

�−→

j + 1j

jk

· · · k + 1k

(4.9)

The case j > k + 1 is given by reflection around a horizontal plane.

(vi) For the 6-valent vertex we have

�−→ −

j + 1j

jj + 1

j + 2

(4.10)

The case with the colors switched is given by reflection in a vertical plane.
Notice that Fsl(3),n respects the gradings of the morphisms.

Proposition 4.2. Fsl(3),n is a monoidal functor.

Proof. The assignment given by Fsl(3),n clearly respects the monoidal structures of SC1 and
Foam3. To prove that it is a monoidal functor we need only to show that it is actually a functor,
that is, it respects relations (2.5) to (2.22) of Section 2.

Isotopy Relations

Relations (2.5) to (2.9) correspond to isotopies of their images under Fsl(3),n, and we leave its
check to the reader.

One-Color Relations

Relation (2.10) is straightforward and left to the reader. For relation (2.11) we have

Fsl(3),n = = 0,

j + 1j

j (4.11)

the last equality following from the (Bubble) relation.
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For relation (2.12) we have

Fsl(3),n = = −

j + 1j j + 1j j + 1j

j

j (4.12)

where the second equality follows from the (DR) relation. We also have

Fsl(3),n = = − ,

j + 1j j + 1j j + 1j

j (4.13)

which is given by (RD). Using (Dot Migration) one obtains

Fsl(3),n = 2 + + a

j + 1j j + 1j j + 1j

j (4.14)

Fsl(3),n = −2 − − a

j + 1j j + 1j j + 1j

j (4.15)

and therefore, we have that

Fsl(3),n + Fsl(3),n = 2Fsl(3),n . (4.16)

Two Distant Colors

Relations (2.13) to (2.15) correspond to isotopies of the foams involved and are straightfor-
ward to check.
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Adjacent Colors

We prove the case where ”blue“ corresponds to j and ”red“ corresponds to j+1. The relations
with colors reversed are proved the same way. To prove relation (2.16) we first notice that

Fsl(3),n =

j + 1j j + 2

(4.17)

Fsl(3),n =
.

j + 1j j + 2

(4.18)

We also have an isotopy equivalence

Fsl(3),n ∼= −

j + 1j j + 2

(4.19)

which in turn is isotopy equivalent to the foam obtained by putting

on top of −

.
(4.20)

T he common boundary of these two foams contains two squares. Putting (SqR) on the square
on the right glued with the identity foam everywhere else gives two terms, one isotopic to
Fsl(3),n and the other isotopic to Fsl(3),n .
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We now prove relation (2.17). We have

Fsl(3),n ∼=
.

j + 1
j

j + 2

(4.21)

Applying (SqR) to the middle square we obtain two terms. One is isotopic to −Fsl(3),n and
the other gives Fsl(3),n after using the (Bamboo) relation.

We now prove relation (2.18) in the form

= . (4.22)

The images of the l.h.s. and r.h.s. under Fsl(3),n are isotopic to

and

j + 1
j

j + 2
j + 1
j

j + 2

(4.23)

respectively, and both give the same foam after applying the (Bamboo) relation.
Relation (2.19) follows from a straightforward computation and is left to the reader.

Relations Involving Three Colors

Relations (2.20) and (2.21) follow from isotopies of the cobordisms involved.
We prove relation (2.22) in the form

= . (4.24)
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We claim that Fsl(3),n sends both sides to zero. Since the images of both sides of (4.24) can be
obtained from each other using a symmetry relative to a vertical plane placed between the
sheets labelled j+1 and j+2, it suffices to show that one side of (4.24) is sent to zero. The foams
involved are rather complicated and hard to visualize. To make the computations easier we
use movies (two dimensional diagrams) for the whole foam and implicitly translate some
bits to three-dimensional foams to apply isotopy equivalences or relations from Section 4.1.
The r.h.s. corresponds to

f1 = (4.25)

followed by

f2 = . (4.26)

The foam f2 is isotopic to

. (4.27)

Using this, we can also see that the foams corresponding with

, (4.28)

(4.29)

are isotopic. We see that the foam we have contains

, (4.30)

which corresponds to a foam containing , which is zero by the (Bubble) relation.
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For each N ≥ 4, we define a monoidal functor from Elias and Khovanov’s diagrammatic version
of Soergel’s category of bimodules to the category of sl(N) foams defined by Mackaay, Stošić, and
Vaz. We show that through these functors Soergel’s category can be obtained from the sl(N) foams.

1. Introduction

In [1] Soergel categorified the Hecke algebra using bimodules. Just as the Hecke algebra is
important for the construction of the HOMFLY-PT link polynomial, so is Soergel’s category
for the construction of Khovanov and Rozansky’s HOMFLY-PT link homology [2], as
explained by Khovanov in [3]. Elias and Khovanov [4] constructed a diagrammatic version
of the Soergel category with generators and relations, which Elias and Krasner [5] used for a
diagrammatic construction of Rouquier’s complexes associated to braids.

In [6] Bar-Natan gave a new version of Khovanov’s [7] original link homology, also
called the sl(2) link homology, using 2d-cobordisms modulo certain relations, which we will
call sl(2) foams. Using 2d-cobordisms with a particular sort of singularity modulo certain
relations, which we will call sl(3) foams, Khovanov constructed the sl(3) link homology [8].
Khovanov and Rozansky [9] then constructed the sl(N) link homologies, for any N ≥ 1,
using matrix factorizations. These link homologies are closely related to the HOMFLY-PT link
homology by Rasmussen’s spectral sequences [10], withE1-page isomorphic to the HOMFLY-
PT homology and converging to the sl(N) homology, for any N ≥ 1. In [11] Mackaay
et al. gave an alternative construction of these sl(N) link homologies, for N ≥ 4, using
sl(N) foams, which are 2d-cobordisms with two types of singularities satisfying relations

mailto:mmackaay@ualg.pt
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determined by a formula from quantum field theory, originally obtained by Kapustin and Li
[12] and later adapted by Khovanov and Rozansky [13].

Khovanov and Rozansky in [2, 9] and Rasmussen in [10] used matrix factorizations
for their constructions. Therefore, the question arises whether their results can be understood
in diagrammatic terms and what could be learned from that. In [14] Vaz constructed functors
from Elias and Khovanov’s diagrammatic version of Soergel’s category to the categories
of sl(2) and sl(3) foams. In this paper we construct the analogous functors from the same
version of Soergel’s category to the category of sl(N) foams for N ≥ 4. To complete the
picture, one would like to construct the analogues of Rasmussen’s spectral sequences in this
setting. However for this, one would first have to understand the Hochschild homology
of bimodules in diagrammatic terms, which has not been accomplished yet. Hochschild
homology plays an integral part of the construction. Nevertheless, there is an interesting
result which can already be shown using the functors in this paper. In a certain technical
sense, which we will make precise in Proposition 4.2, Soergel’s category can be obtained from
the sl(N) foams, and therefore from the Kapustin-Li formula, using our functors. This result
should be compared to Rasmussen’s Theorem 1 in [10].

We thank Catharina Stroppel for pointing out the connection of our work to results in
[15]. We quote her directly: In [15] a categorification of ”special trivalent” graphs modulo the
MOY relations was constructed by exact functors acting between certain blocks of parabolic
category O. Using Soergel’s functor passing from Lie theory to the combinatorial bimodule
category the construction in [15] in fact produces an action of the diagrammatic Soergel
category on these various category Os.

We have tried to make the paper as self-contained as possible, but the reader should
definitely leaf through [4, 5, 11, 14] before reading the rest of this paper.

In Section 2 we recall Elias and Khovanov’s version of Soergel’s category. In Section 3
we review sl(N) foams, as defined by Mackaay, Stošic’, and Vaz. Section 4 contains the
new results: the definition of our functors, the proof that they are indeed monoidal, and a
statement on faithfulness in Proposition 4.2.

2. Elias and Khovanov’s Version of Soergel’s Category

This section is a reminder of the diagrammatics for Soergel categories introduced by Elias
and Khovanov in [4]. Actually we give the version which they explained in [4, Section 4.5]
and which can be found in detail in [5].

Fix a positive integer n. The categorySC1 is the category whose objects are finite length
sequences of points on the real line, where each point is colored by an integer between 1 and
n. We read sequences of points from left to right. Two colors i and j are called adjacent if
|i − j| = 1 and distant if |i − j| > 1. The morphisms of SC1 are given by generators modulo
relations. A morphism of SC1 is a C-linear combination of planar diagrams constructed by
horizontal and vertical gluings of the following generators (by convention no label means a
generic color j)

(i) Generators involving only one color are

EndDot StartDot Merge Split

(2.1)
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It is useful to define the cap and cup as

≡ ≡ (2.2)

(ii) Generators involving two colors are

–The 4-valent vertex, with distant colors,

i j

(2.3)

and the 6-valent vertex, with adjacent colors i and j,

i j ij

, (2.4)

read from bottom to top. In this setting a diagram represents a morphism from the bottom
boundary to the top. We can add a new colored point to a sequence and this endows SC1

with a monoidal structure on objects, which is extended to morphisms in the obvious way.
Composition of morphisms consists of stacking one diagram on top of the other.

We consider our diagrams modulo the following relations.
“Isotopy” relations are

= = (2.5)

= = (2.6)

= = (2.7)
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= = (2.8)

= = (2.9)

The relations are presented in terms of diagrams with generic colorings. Because of
isotopy invariance, one may draw a diagram with a boundary on the side, and view it as a
morphism in SC1 by either bending the line up or down. By the same reasoning, a horizontal
line corresponds to a sequence of cups and caps.
One color relations are

= (2.10)

= 0 (2.11)

+ = 2 (2.12)

Relations involvingtwo distant colors are

= (2.13)

= (2.14)

= (2.15)
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Relations involving two adjacent colors are

= + (2.16)

= − (2.17)

= (2.18)

=
1
2

− − (2.19)

Relations involving three colors are (adjacency is determined by the vertices which appear)

= (2.20)

= (2.21)

= (2.22)
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Furthermore, we also have a useful implication of relation (2.12) as follows:

=
1
2

+ (2.23)

Introduce a q-grading on SC1 declaring that dots have degree 1, trivalent vertices have
degree −1, and 4- and 6-valent vertices have degree 0.

Definition 2.1. The category SC2 is the category containing all direct sums and grading shifts
of objects in SC1 and whose morphisms are the grading-preserving morphisms from SC1.

Definition 2.2. The category SC is the Karoubi envelope of the category SC2.

Elias and Khovanov’s main result in [4] is the following theorem.

Theorem 2.3 (Elias-Khovanov). The category SC is equivalent to the Soergel category in [1].

From Soergel’s results from [1] we have the following corollary.

Corollary 2.4. The Grothendieck algebra of SC is isomorphic to the Hecke algebra.

Notice that SC is an additive category but not abelian and we are using the (additive)
split Grothendieck algebra.

In Section 4 we will define a a family of functors from SC1,n to the category of sl(N)
foams, one for each N ≥ 4. These functors are grading preserving, so they obviously extend
uniquely to SC2,n. By the universality of the Karoubi envelope, they also extend uniquely to
functors between the respective Karoubi envelopes.

3. Foams

3.1. Prefoams

In this section we recall the basic facts about foams. For the definition of the Kapustin-Li
formula, for proofs of the relations between foams, and for other details, see [11, 16]. The
foams in this paper are composed of three types of facets: simple, double, and triple facets.
The double facets are coloured and the triple facets are marked to show the difference.
Intersecting such a foam with a generic plane results in a web, as long as the plane avoids
the singularities where six facets meet, such as on the right in Figure 1.

Definition 3.1. Let sγ be a finite oriented closed 4-valent graph, which may contain disjoint
circles and loose endpoints. We assume that all edges of sγ are oriented. A cycle in sγ is
defined to be a circle or a closed sequence of edges which form a piecewise linear circle. Let
Σ be a compact orientable possibly disconnected surface, whose connected components are
simple, double, or triple, denoted by white, coloured, or marked. Each component can have
a boundary consisting of several disjoint circles and can have additional decorations which
we discuss below. A closed prefoam u is the identification space Σ/sγ obtained by gluing
boundary circles of Σ to cycles in sγ such that every edge and circle in sγ are glued to exactly
three boundary circles of Σ and such that for any point p ∈ sγ ,
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∗ ∗

Figure 1: Some elementary prefoams.

(1) if p is an interior point of an edge, then p has a neighborhood homeomorphic to the
letter Y times an interval with exactly one of the facets being double, and at most
one of them being triple; for an example see Figure 1,

(2) if p is a vertex of sγ , then it has a neighborhood as shown in Figure 1.

We call sγ the singular graph, its edges and vertices singular arcs and singular vertices, and the
connected components of u − sγ the facets.

Furthermore the facets can be decorated with dots. A simple facet can only have black
dots (•), a double facet can also have white dots (◦), and a triple facet besides black and white
dots can have double dots (�). Dots can move freely on a facet but are not allowed to cross
singular arcs.

Note that the cycles to which the boundaries of the simple and the triple facets are
glued are always oriented, whereas the ones to which the boundaries of the double facets
are glued are not, as can be seen in Figure 1. Note also that there are two types of singular
vertices. Given a singular vertex v, there are precisely two singular edges which meet at v
and bound a triple facet: one oriented toward v, denoted as e1, and one oriented away from
v, denoted as e2. If we use the “left-hand rule”, then the cyclic ordering of the facets incident
to e1 and e2 is either (3, 2, 1) or (3, 1, 2), respectively, or the other way around. We say that v is
of type I in the first case and of type II in the second case. When we go around a triple facet,
we see that there have to be as many singular vertices of type I as there are of type II for the
cyclic orderings of the facets to match up. This shows that for a closed prefoam the number
of singular vertices of type I is equal to the number of singular vertices of type II.

We can intersect a prefoam u generically by a plane W in order to get a closed web, as
long as the plane avoids the vertices of sγ . The orientation of sγ determines the orientation of
the simple edges of the web according to the convention in Figure 2.

Suppose that, for all but a finite number of values i ∈]0, 1[, the plane W × i intersects u
generically. Suppose also that W ×0 and W ×1 intersect u generically and outside the vertices
of sγ . Furthermore, suppose that D ⊂ W is a disc in W and C ⊂ D its boundary circle such
thatC×[0, 1]∩u is a disjoint union of vertical line segments. This means that we are assuming
that sγ does not intersect C × [0, 1]. We call D × [0, 1] ∩ u an open prefoam between the open
webs D × {0} ∩ u and D × {1} ∩ u. Interpreted as morphisms, we read open prefoams from
bottom to top, and their composition consists of placing one prefoam on top of the other, as
long as their boundaries are isotopic and the orientations of the simple edges coincide.

Definition 3.2. Let Pfoam be the category whose objects are webs and whose morphisms are
Q-linear combinations of isotopy classes of prefoams with the obvious identity prefoams and
composition rule.

We now define the q-degree of a prefoam. Let u be a prefoam, u1, u2, and u3 the
disjoint union of its simple, double, and marked facets, respectively, and sγ(u) its singular
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∗

∗

∗

∗

∗

W

W

W

W

W

W

Figure 2: Orientations near a singular arc.

graph. Furthermore, let b1, b2, and b3 be the number of simple, double, and marked vertical
boundary edges of u, respectively. Define the partial q-gradings of u as

qi(u) = χ(ui) −
1
2
χ(∂ui ∩ ∂u) −

1
2
bi, i = 1, 2, 3,

qsγ (u) = χ
(
sγ(u)

)
− 1

2
χ
(
∂sγ(u)

)
,

(3.1)

where χ is the Euler characteristic and ∂ denotes the boundary.

Definition 3.3. Let u be a prefoam with d• dots of type •, d◦ dots of type ◦, and d� dots of type
�. The q-grading of u is given by

q(u) = −
3∑

i=1

i(N − i)qi(u) − 2(N − 2)qsγ (u) + 2d• + 4d◦ + 6d�. (3.2)

The following result is a direct consequence of the definitions.

Lemma 3.4. q(u) is additive under the gluing of prefoams.

We denote a simple facet with i dots by

i · (3.3)

Recall that the two-variable Schur polynomial πk,m can be expressed in terms of the
elementary symmetric polynomials π1,0 and π1,1. By convention, the latter correspond to •
and ◦ on a double facet, respectively, so that

(k,m) (3.4)
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is defined to be the linear combination of dotted double facets corresponding to the
expression of πk,m in terms of π1,0 and π1,1. Analogously we can express the three-variable
Schur polynomial πp,q,r in terms of the elementary symmetric polynomials π1,0,0, π1,1,0, and
π1,1,1. By convention, the latter correspond to •, ◦, and � on a triple facet, respectively, so we
can make sense of

∗(p, q, r) · (3.5)

3.2. Foams

In [11, 16] we gave a precise definition of the Kapustin-Li formula, following Khovanov and
Rozansky’s work [13]. We will not repeat that definition here, since it is complicated and
unnecessary for our purposes in this paper. The only thing one needs to remember is that
the Kapustin-Li formula associates a number to any closed prefoam and that those numbers
have very special properties, some of which we will recall below. By 〈u〉KL, we denote the
Kapustin-Li evaluation of a closed prefoam u.

Definition 3.5. The category FoamN is the quotient of the category Pfoam by the kernel
of 〈〉KL, that is, by the following identifications: for any webs Γ, Γ′ and finite sets fi ∈
HomPfoam(Γ,Γ′) and ci ∈ Q we impose the relations

∑

i

cifi = 0⇐⇒
∑

i

ci〈fi〉KL = 0, (3.6)

for any fixed way of closing the fi, denoted by fi. By “fixed” we mean that all the fi are closed
in the same way. The morphisms of FoamN are called foams.

In the next proposition we recall those relations in FoamN that we need in the sequel.
For their proofs and other relations we refer to [11].

Proposition 3.6. The following identities hold in FoamN

The dot conversion relations are

i = 0 if i ≥N, (3.7)

(k,m) = 0 if k ≥N − 1, (3.8)

∗(p, q, r) = 0 if p ≥N − 2. (3.9)
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The dot migration relations are

= + (3.10)

= (3.11)

=∗ ∗ ∗+ (3.12)

=∗ ∗ ∗+ (3.13)

=∗ ∗ (3.14)

The neck cutting relations are (these were called cutting neck relations in [11, 16])

=
N−1∑

i=0

N − 1 − i

i

(NC1) (3.15)

= −
∑

0≤j≤i≤N−2

(i, j)

(̂i, j)

(i, j, k)

̂(i, j, k)

(NC2) ∗

∗

∗

= −
∑

0≤k≤j≤i≤N−3

(NC∗) (3.16)
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The sphere relations are

i
= =

=

1, i =N − 1

0, else 0, else
(S2)

−1, i = j =N − 2

(i, j, k)

(i, j)

∗

(S1)

−1, i = j = k =N − 3

0, else·

(S∗)

(3.17)

The Θ-foam relations are

N − 1 N − 2

N − 2 N − 1

(N − 3,N − 3,N − 3)

(N − 3,N − 3,N − 3)

∗

∗
= −1 = −= −1 = − (�) and (�∗)· (3.18)

Inverting the orientation of the singular circle of (�∗) inverts the sign of the corresponding foam. A
theta-foam with dots on the double facet can be transformed into a theta-foam with dots only on the
other two facets, using the dot migration relations.

The Matveev-Piergalini relation is

=

∗

, .=

∗

∗ ∗
(MP)

The disc removal relations are

= − (RD1)

∗ = − + (RD2)

The digon removal relations are

= − (DR1)
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∗ ∗ ∗ ∗ ∗
= − + − (DR31)

∗

∗
(i, j, 0)

∗
(N − 3 − j,N − 3 − i, 0)

=
∑

0≤j≤i≤N−3 (DR32)

The square removal relations are

= − a

c

d

b

+
∑

a+b+c+d=N−3
(SqR1)

= − −
∗ (SqR2)

i

(p,q,r) ∗
=

−

−

(q, r) if p =N − 3 − i

(p + 1, q + 1) if r =N − 1 − i

(p + 1, r) if q =N − 2 − i

0 else

(3.19)

j

i

=

− (i − 1, j) if i > j ≥ 0

(j − 1, i) if j > i ≥ 0

0 if i = j

(3.20)
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4. The Functors FN,n

Let n ≥ 1 and N ≥ 4 be arbitrary but fixed. In this section we define a monoidal functor FN,n

between the categories SC1,n and FoamN .
On Objects. FN,n sends the empty sequence to 1n and the one-term sequence (j) to wj :

(∅) �−→

1 2 n

· · · (j) �−→

1 n

· · · · · ·

j j + 1

(4.1)

with FN,n(jk) given by the vertical composite wjwk.
On Morphisms.

(i) The empty diagram is sent to n parallel vertical sheets:

∅ �−→

1 2 n

· · ·

n − 1

(4.2)

(ii) The vertical line coloured j is sent to the identity cobordism of wj :

�−→

j + 1j

j
(4.3)

The remaining n − 2 vertical parallel sheets on the r.h.s. are not shown for simplicity, a
convention that we will follow from now on.

(iii) The StartDot and EndDot morphisms are sent to the zip and the unzip, respectively:
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�−→

j + 1j

j �−→

j + 1j

j
(4.4)

(iv) Merge and Split are sent to cup and cap cobordisms:

�−→

j + 1j

j �−→

j + 1j

j (4.5)

(v) The 4-valent vertex with distant colors. For j + 1 < k we have

�−→

k j

· · ·j j + 1 k k + 1

(4.6)

The case j > k + 1 is given by reflexion around a horizontal plane.

(vi) For the 6-valent vertices we have

�−→

j + 1 j

∗
j

j + 1
j + 2

(4.7)

The case with the colors switched is given by reflection in a vertical plane. Notice that FN,n

respects the gradings of the morphisms.

Proposition 4.1. FN,n is a monoidal functor.



International Journal of Mathematics and Mathematical Sciences 15

Proof. The assignment given by FN,n clearly respects the monoidal structures of SC1,n and
FoamN . So we only need to show that FN,n is a functor, that is, it respects the relations (2.5)
to (2.22) of Section 2.

“Isotopy Relations”. Relations (2.5) to (2.9) are straightforward to check and correspond
to isotopies of their images under FN,n. For the sake of completeness we show the first
equality in (2.5). We have

FN,n j =

j j + 1

∼= = FN,n j

j j + 1

(4.8)

One Color Relations. For relation (2.10) we have

FN,n ,∼= FN,n
∼= FN,n (4.9)

where the first equivalence follows from relations (2.5) and (2.7) and the second from isotopy
of the foams involved.

For relation (2.11) we have

FN,n

j

= = 0

j j + 1

by equation (23).
(4.10)

Relation (2.12) requires some more work. We have

FN,n
j

j

= −=

j j + 1jj + 1 j j + 1

(4.11)
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where the second equality follows from the (DR1) relation. We also have

FN,n
j

= −=

j j + 1jj + 1 j j + 1

(4.12)

Using (3.12), we obtain

FN,n
j

= 2 −

j j + 1jj + 1

(4.13)

FN,n
j

= −2 +

j j + 1jj + 1

(4.14)

and, therefore, we have that

FN,n ·+FN,n = 2FN,n (4.15)

Two Distant Colors. Relations (2.13) to (2.15) correspond to isotopies of the foams involved
and are straightforward to check.

Adjacent Colors. We prove the case where “blue” corresponds to j and “red”
corresponds to j + 1. The relations with colors reversed are proved the same way. To prove
relation (2.16) we first notice that using the (MP) move we get

∼=FN,n ·∗

j
j + 1
j + 2

(4.16)
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Apply (SqR1) to the simple-double square tube perpendicular to the triple facet to obtain two
terms. The first term contains a double-triple digon tube which is the left-hand side of the
(DR32) relation rotated by 1800 around a vertical axis. Next apply the (DR32) relation and use
(MP) to remove the four singular vertices, which results in simple-triple bubbles (with dots)
in the double facets. Using (3.19) to remove these bubbles gives

j j + 1 j + 2

(4.17)

which is FN,n . The second term contains

∗

a b

c
∑

a+b+c+d=N−3 (4.18)

behind a simple facet with d dots (notice that all dots are on simple facets). Using the (MP)
relation to get a simple-triple bubble in the double facet, followed by (RD2) and (S1) we
obtain

j j + 1 j + 2

(4.19)

which equals FN,n .
We now prove relation (2.17). We have an isotopy equivalence

FN,n
∼=

j
j + 1
j + 2

(4.20)
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Notice that FN,n is the l.h.s. of the (SqR2) relation. The first term on the r.h.s. of (SqR2) is
isotopic to −FN,n . For the second term on the r.h.s. of (SqR2) we notice thatFN,n contains

∗

∗

(4.21)

Applying (DR31) followed by (MP) to remove the singular vertices creating simple-simple
bubbles on the two double facets and using (3.20) to remove these bubbles, we conclude that
FN,n is the second term on the r.h.s. of (SqR2).

We now prove relation (2.18) in the form

= · (4.22)

The image of the l.h.s. also contains a bit like the one in (4.21). Simplifying it like we did in
the proof of (2.17), we obtain that FN,n reduces to

− ∗

j
j + 1
j + 2

(4.23)

For the r.h.s. we have

∗ ∗

j
j + 1
j + 2

(4.24)

Using (DR31) on the vertical digon, followed by (MP) and the Bubble relation (3.20), we
obtain (4.23).

Relation (2.19) follows from straightforward computation and is left to the reader.
Relations Involving Three Colors. Relations (2.20) and (2.21) follow from isotopies of

the foams involved. To show that FN,n respects relation (2.22), we use a different type
of argument. First of all, we note that the images under FN,n of both sides of relation
(2.22) are multiples of each other, because the graded vector space of morphisms in FoamN



International Journal of Mathematics and Mathematical Sciences 19

between the bottom and top webs has dimension one in degree zero. Verifying this only
requires computing the coefficient of q−(4N−4) (this includes the necessary shift!) in the MOY
polynomial associated to the web

, (4.25)

which is a standard calculation left to the reader. To see that the multiplicity coefficient is
equal to one, we close both sides of relation (2.22) simply by putting a dot on each open end.
Using relations (2.14) and (2.16) to reduce these closed diagrams, we see that both sides give
the same nonzero sum of disjoint unions of coloured StartDot-EndDot diagrams. Note that we
have already proved that FN,n respects relations (2.14) and (2.16). By applying foam relation
(4.12) to the images of all nonzero terms in the sum, we obtain a nonzero sum of dotted
sheets. This implies that both sides of (2.22) have the same image under FN,n.

We have now proved that FN,n is a monoidal functor for all N ≥ 4. Our main result
about the whole family of these functors, that is, for all N ≥ 4 together, is the proposition
below. It implies that all the defining relations in Soergel’s category can be obtained from the
corresponding relations between sl(N) foams, when all N ≥ 4 are considered, and that there
are no other independent relations in Soergel’s category corresponding to relations between
foams.

Proposition 4.2. Let i, j be two arbitrary objects in SC1,n and let f ∈ Hom(i, j) be arbitrary. If
FN,n(f) = 0 for allN ≥ 4, then f = 0.

Proof. Let us first suppose that i = j = ∅. Suppose also that f has degree 2d and that N ≥
max{4, d + 1}. Recall that, as shown in [5, Corollary 3], we know that Hom(∅, ∅) is the free
commutative polynomial ring generated by the StartDot-EndDots of all possible colors. So f
is a polynomial in StartDot-EndDots, and therefore a sum of monomials. Letm be one of these
monomials, no matter which one, and let mj denote the power of the StartDot-EndDot with
color j in m. Close FN,n(f) by gluing disjoint discs to the boundaries of all open simple facets
(i.e., the vertical ones with corners in the pictures). For each color j, put N−1−mj dots on the
left simple open facet corresponding to j and also putN−1 dots on the rightmost simple open
facet. Note that, after applying (RD1), we get a linear combination of dotted simple spheres.
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Only one term survives and is equal to ±1, because only in that term each sphere has exactly
N − 1 dots. This shows that FN,n(f)/= 0, because it admits a nonzero closure.

Now let us suppose that i = ∅ and j is arbitrary. By [4, Corollaries 4.11 and 4.12], we
know that Hom(∅, j) is the free Hom(∅, ∅)-module of rank one generated by the disjoint union
of StartDots coloured by j. Closing off the StartDots by putting dots on all open ends gives an
element of Hom(∅, ∅), whose image under FN,n is nonzero for N big enough by the above.
This shows that the generator of Hom(∅, j) has nonzero image under FN,n for N big enough,
because FN,n is a functor.

Finally, the general case, for i and j arbitrary, can be reduced to the previous case by
[4, Corollary 4.12].
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The monoidal category of Soergel bimodules categorifies the Hecke algebra of a finite Weyl group.
In the case of the symmetric group, morphisms in this category can be drawn as graphs in the
plane. We define a quotient category, also given in terms of planar graphs, which categorifies
the Temperley-Lieb algebra. Certain ideals appearing in this quotient are related both to the 1-
skeleton of the Coxeter complex and to the topology of 2D cobordisms. We demonstrate how
further subquotients of this category will categorify the irreducible modules of the Temperley-Lieb
algebra.

1. Introduction

A goal of the categorification theorist is to replace interesting endomorphisms of a vector
space with interesting endofunctors of a category. The question is what makes these functors
interesting? In the pivotal paper of Chuang and Rouquier [1], a fresh paradigm emerged.
They noticed that by specifying structure on the natural transformations (morphisms)
between these functors one obtains more useful categorifications (in this case, the added
utility is a certain derived equivalence). The categorification of quantum groups by Rouquier
[2], Lauda [3], and Khovanov and Lauda [4] has shown that categorifying an algebra A itself
(with a categoryA) will specify what this additional structure should be for a categorification
of any representation of that algebra: a functor fromA to an endofunctor category. That their
categorificationsA provide the “correct” extra structure is confirmed by the facts that existing
geometric categorifications conform to it (see [5]) and that irreducible representations of A
can be categorified in this framework (see [6, 7]). The salient feature of these categorifications
is that, instead of being defined abstractly, the morphisms are presented by generators and
relations, making it straightforward to define functors out ofA.

In the case of the Hecke algebraH, categorifications have existed for some time, in the
guise of category O or perverse sheaves on the flag variety. In [8] Soergel rephrased these
categorifications in a more combinatorial way, constructing an additive categorification ofH
by a certain full monoidal subcategoryHC of graded R-bimodules, where R is a polynomial
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ring. Objects in this full subcategory are called Soergel bimodules. There are deep connections
between Soergel bimodules, representation theory, and geometry, and we refer the reader to
[8–11] for more details. Categorifications using category O and variants thereof are common
in the literature, and often Soergel bimodules are used to aid calculations (see, e.g., [12–14]).

In [15], Elias and Khovanov provides (in type A) a presentation ofHC by generators
and relations, where morphisms can be viewed diagrammatically as decorated graphs
in a plane. To be more precise, the diagrammatics are for a smaller category HC1, the
(ungraded) category of Bott-Samelson bimodules, described in Section 2.1. Soergel bimodules
are obtained fromHC1 by taking the graded Karoubi envelope. This is in exact analogy with
the procedures of Khovanov and Lauda in [4] and related papers.

The Temperley-Lieb algebra TL is a well-known quotient of H, and it can be
categorified by a quotient TLC of HC, as this paper endeavors to show. Thus, we have a
naturally arising categorification by generators and relations, and we expect it to be a useful
one. Objects in TLC can no longer be viewed as R-bimodules (though their Hom spaces will
be R-bimodules), so that diagrammatics provide the simplest way to define the category.

The most complicated generator of HC is killed in the quotient to TLC, making
TLC easy to describe diagrammatically in its own right. Take a category where objects
are sequences of indices between 1 and n (denoted i). Morphisms will be given by (linear
combinations of) collections of graphs Γi embedded in R × [0, 1], one for each index i ∈
{1, . . . , n}, such that the graphs have only trivalent or univalent vertices, and such that Γi
and Γi+1 are disjoint. Each graph will have a degree, making Hom spaces into a graded vector
space. The intersection of the graphs with R×{0} and R×{1} determines the source and target
objects, respectively. Finally, some local graphical relations are imposed on these morphisms.
This defines TLC1, and we take the graded Karoubi envelope to obtain TLC.

The proof that TLC categorifies TL uses a method similar to that in [15]. We
show first that TLC1 is a potential categorification of TL, in the sense described in
Section 2.2. Categorifications and potential categorifications define a pairing on TL given by
([M], [N]) = gdimHomTLC1(M,N), the graded dimension which takes values in Z[[t, t−1]].
Equivalently, it defines a trace on TL via ε([M]) = gdimHom(1,M) where 1 is the monoidal
identity (see Section 2.1). The difficult part is to prove the following lemma.

Lemma 1.1. The trace induced on TL from TLC1 is the map εcat defined in Section 2.2.

Given this lemma, it is surprisingly easy (see Section 3.3) to show the main theorem.

Theorem 1.2. Let TLC2 be the graded additive closure of TLC1, and let TLC be the graded Karoubi
envelope of TLC1. Then TLC2 is Krull-Schmidt and idempotent closed, so TLC2

∼= TLC, and TLC
categorifies TL.

To prove the lemma, we note that there is a convenient set of elements in TL, the
nonrepeating monomials, whose values determine any pairing; hence, there is a convenient set
of objects whose Hom spaces will determine all Hom spaces. If i is a nonrepeating sequence,
the Hom space we must calculate is (up to shift) a quotient of R by a two-sided ideal Ii. We
use graphical methods to determine these rings explicitly, giving generators for the ideals in
R which define them. As an interesting side note, these ideals also occur elsewhere in nature.

Proposition 1.3. Let V be the reflection representation of Sn+1, and identify R with its coordinate
ring. Let Z be the union of all the lines in V which are intersections of reflection-fixed hyperplanes,
and let I ⊂ R be the ideal which gives the reduced scheme structure onZ. Then Hom spaces inTLC are
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R/I-bimodules, and the ideals Ii cut out subvarieties of Z given by lines with certain transverseness
properties (see Section 3.7 for details).

Also in Section 3.7, we give a topological interpretation of the ideals Ii, using a functor
defined by Vaz [16].

Now, let TLJi be the parabolic subalgebra of TL given by ignoring the index i, and
let V i be the induced (right) representation from the sign representation of TLJi . Such an
induced representation is useful because it is a quotient ofTL and also contains an irreducible
module Li of TL as a submodule. All irreducibles can be constructed this way.

We provide a diagrammatic categorification of V i as a quotient Vi of TLC, and a
categorification of Li as a full subcategory Li of Vi, in a fashion analogous to quantum
group categorifications. Having found a diagrammatic categorification C of the positive
half U+ of the quantum group, Khovanov and Lauda in [17] conjectured that the highest
weight modules (naturally quotients of U+) could be categorified by quotients of C by the
appearance of certain pictures on the left. This approach was proven correct by Lauda and
Vazirani [6] (for the U+-module structure), and then used by Webster to categorify tensor
products [18]. Similarly, to obtain Vi, we mod out TLC by diagrams where any index except
i appears on the left. The proof that this works is similar in style to the proof of Theorem 1.2:
one calculates the dimension of all Hom spaces by calculating enough Hom spaces to specify
a unique pairing on V i and then uses simple arguments to identify the Grothendieck group.

Theorem 1.4. The category Vi is idempotent closed and Krull-Schmidt. Its Grothendieck group is
isomorphic to V i. Letting Li be the full subcategory generated by indecomposables which decategorify
to elements of Li, one has that Li is idempotent closed and Krull-Schmidt, with Grothendieck group
isomorphic to Li.

A future paper will categorify all representations induced from the sign and
trivial representations of parabolic subalgebras of H and TL. Induced representations
were categorified more generally in [13] in the context of category O, although not
diagrammatically. We believe that our categorification should describe what happens in [13]
after applying Soergel’s functor.

Soergel bimodules are intrinsically linked with braids, as was shown by Rouquier in
[19, 20], who used them to construct braid group actions (these braid group actions also
appear in the category O context, see [21]). As such, morphisms between Soergel bimodules
should correspond roughly to movies, and the graphs appearing in the diagrammatic
presentation of the category HC should be (heuristically) viewed as 2-dimensional
holograms of braid cobordisms. This is studied in [22]. The Temperley-Lieb quotient is
associated with the representation theory of Uq(sl2), for which all braids degenerate into
1-manifolds, and braid cobordisms degenerate into surfaces with disorientations. There is a
functor F from TLC to the category of disorientations constructed by Vaz [16]. The functor
F is faithful (though certainly not full), as we remark in Section 3.7. This in turn yields a
topological motivation of the variety Z and its subvarieties Z′. Because F is not full, there
might be actions ofTLC that do not extend to actions of disoriented cobordisms. Cobordisms
have long been a reasonable candidate for morphisms in Temperley-Lieb categorifications,
although we hope TLC will provide a useful substitute, with more explicit and computable
Hom spaces.

Categorification and the Temperley-Lieb algebra have a long history. Khovanov in
[23] constructed a categorification of TL using a TQFT, which was slightly generalized
by Bar-Natan in [24]. This was then used to categorify the Jones polynomial. Bernstein
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et al. in [25] provide a categorical action of the Temperley-Lieb algebra by Zuckerman and
projective functors on category O. Stroppel [14] showed that this categorical action extends
to the full tangle algebroid, and also investigated the natural transformations between
projective functors. Recent work of Brundan and Stroppel [26] connects these Temperley-
Lieb categorifications to Khovanov-Lauda-Rouquier algebras, among other things. We hope
that our diagrammatics will help to understand the morphisms in these categorifications.

The organization of this paper is as follows. Section 2 will provide a quick overview
of the Hecke and Temperley-Lieb algebras, and the diagrammatic definition of the category
HC. Section 3 begins by defining the quotient category diagrammatically in its own right
(which makes a thorough understanding of the diagrammatic calculus forHC unnecessary).
Section 3.3 proves Theorem 1.2, modulo Lemma 1.1 which requires all the work. The
remaining sections of that chapter do all the work, and starting with Section 3.6 one will
not miss any important ideas if one skips the proofs. Section 4 begins with a discussion of cell
modules for TL and certain other modules, and then goes on to categorify these modules,
requiring only very simple diagrammatic arguments.

This paper is reasonably self-contained. We do not require familiarity with [15] and
do not use any results other than Corollary 2.20. We do quote some results for motivational
reasons, but the difficult graphical arguments of that paper can often be drastically simplified
for the Temperley-Lieb setting, so that we provide easier proofs for the results we need.
Familiarity with diagrammatics for monoidal categories with adjunction would be useful,
and [3] provides a good introduction. More details on preliminary topics can be found in [15].

2. Preliminaries

Notation 1. Fix n ∈ N, and let I = 1, . . . , n index the vertices of the Dynkin diagram An. We
use the word index for an element of I, and the letters i, j always represent indices. Indices
i /= j are adjacent if |i − j| = 1, and distant if |i − j| ≥ 2, and questions of adjacency always refer to
the Dynkin diagram, not the position of indices in a word or picture.

Notation 2. Let W = Sn+1 with simple reflections si = (i, i + 1). Let k be a field of characteristic
not dividing 2(n + 1); all vector spaces will be over this field. Let R = k[x1, . . . , xn+1]/e1,
where e1 = x1 + x2 + · · · + xn+1; it is a graded ring, with deg(xi) = 2. We will abuse notation
and refer to elements of k[x1, . . . , xn+1] and their images in R in the same way, and will refer
to both as polynomials. Note that R = k[f1, . . . , fn], where fi = xi − xi+1, since x1 = (nf1 + (n −
1)f2 + · · · + fn)/(n + 1) modulo e1. The ring R arises as the coordinate ring of V , the reflection
representation of W (the span of the root system), and fi are the simple coroots.

There is an obvious action of Sn+1 on R, which permutes the generators xi. For each
index we have a Demazure operator ∂i, a map of degree −2 from R to the invariant subring Rsi ,
which is Rsi-linear and sends Rsi to 0. Explicitly, ∂i(f) = (f − si(f))/(xi − xi+1).

Notation 3. Let (·) be the Z-linear involution of Z[t, t−1] switching t and t−1. Given a Z-linear
map β of Z[t, t−1] modules, we call it antilinear if it is Z[t, t−1]-linear after twisting by (·), or in

other words if β(tm) = t−1β(m). We write [2] def= t + t−1.
Let A be a Z[t, t−1]-algebra. In this paper we always use the word trace to designate a

Z[t, t−1]-linear map ε : A → Z[[t, t−1]] satisfying ε(xy) = ε(yx). We use the word pairing or
semilinear pairing to denote a Z-linear map A ×A → Z[[t, t−1]] which is Z[t, t−1]-linear in the
second factor and Z[t, t−1]-antilinear in the first factor.
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2.1. The Hecke Algebra and the Soergel Categorification

We state here without proof a number of basic facts about the Hecke algebra, its traces,
and Soergel’s categorification. For more background, see Soergel’s original definition of his
categorification [8], or an easier version [11]. A similar overview with more discussion can
be found in [15]. A more in-depth introduction, connecting Soergel bimodules to other parts
of representation theory, can be found in [13].

Definition 2.1. Denote by H the Hecke algebra for Sn+1. It is a Z[t, t−1]-algebra, specified here
by its Kazhdan-Lusztig presentation: it has generators bi, i ∈ I and relations

b2
i =
(
t + t−1

)
bi (2.1)

bibj = bjbi for distant i, j (2.2)

bibjbi + bj = bjbibj + bi for adjacent i, j. (2.3)

Definition 2.2. Given two objects in a graded k-linear (possibly additive) category C, where
{1} denotes the grading shift, the graded hom space between them is the graded vector space
HOM(M,N) =

⊕
n∈ZHomC(M,N{n}). Given a class of objects {Mα} in C, we can define

a category with morphisms enriched in graded vector spaces, whose objects are {Mα} and
whose morphisms are HOM(Mα,Mβ). Let us call this an enriched full subcategory, which we
often shorten to the adjective enriched. While the enriched subcategory is neither additive nor
graded, it has enough information to recover the hom spaces between grading shifts and
direct sums of objects Mα in C.

Let R-bim denote the category of finitely-generated graded (resp., ungraded) R-
bimodules. Then HOM spaces in R-bim will be graded R-bimodules. For i ∈ I, let Bi ∈ R-bim
be defined by Bi = R

⊗
Rsi R{−1}, where Rsi is the invariant subring. A Bott-Samelson bimodule

is a tensor product Bi1 ⊗Bi2 ⊗· · ·⊗Bid in R-bim, where here and henceforth ⊗ denotes the tensor
product over R. Let HC1 be the enriched full subcategory generated by the Bott-Samelson
bimodules; it is a monoidal category, but is neither additive nor graded. LetHC2 denote the
full subcategory of R-bim given by all (finite) direct sums of grading shifts of Bott-Samelson
bimodules; it is monoidal, additive, and graded. Finally, letHC denote the category of Soergel
bimodules or special bimodules, the full subcategory of R-bim given by all (finite) direct sums
of grading shifts of summands of Bott-Samelson bimodules; it is monoidal, additive, graded,
and idempotent closed.

One can observe that all bimodules inHC are free and finitely generated when viewed
as either leftR-modules or rightR-modules, and therefore the same is true of any HOM space.
The following proposition parallels the Kazhdan-Lusztig presentation forH.

Proposition 2.3. The categoryHC2 is generated (as an additive, monoidal category) by objects Bi, i ∈
I which satisfy

Bi ⊗ Bi ∼= Bi{1} ⊕ Bi{−1}, (2.4)

Bi ⊗ Bj ∼= Bj ⊗ Bi for distant i, j, (2.5)

Bi ⊗ Bj ⊗ Bi ⊕ Bj ∼= Bj ⊗ Bi ⊗ Bj ⊕ Bi for adjacent i, j. (2.6)



6 International Journal of Mathematics and Mathematical Sciences

From this we might expect the next result.

Proposition 2.4. The Grothendieck ring [HC2] ofHC2 is isomorphic toH, with [Bi] being sent to
bi, and [R{1}] being sent to t. The Grothendieck ring [HC] ofHC is isomorphic toH as well.

Remark 2.5. The proof of this statement is not immediately obvious. There is clearly a
surjective morphism fromH to [HC2]. When one takes the idempotent closure of a category,
one adds new indecomposables and can potentially enlarge the Grothendieck group. Soergel
showed, via a support filtration, that all the new indecomposables in HC have symbols in
[HC] which can be reached from certain symbols in [HC2] by a unitriangular matrix (see
[11]). Therefore, the Grothendieck rings ofHC andHC2 are equal. SinceHC is idempotent
closed and is embedded in R-bim, it has the Krull-Schmidt property and the Grothendieck
group behaves as one would expect: it has a basis given by indecomposables. By classifying
indecomposables and using the unitriangular matrix, Soergel showed that the map fromH
to [HC2] is actually an isomorphism.

It is important to note that one does not know what the image of the indecomposables
of HC in H is. The Soergel conjecture, still unproven in generality, proposes that the
indecomposables ofHC descend to the Kazhdan-Lusztig basis ofH (see [11]).

Notation 4. We write the monomial bi1bi2 · · · bid ∈ H as bi, where i = i1 · · · id is a finite sequence
of indices; by abuse of notation, we sometimes refer to this monomial simply as i. If i is as
above, we say the monomial has length d = d(i). We call a monomial nonrepeating if ik /= il
for k /= l, and increasing if i1 < i2 < · · · . The empty set is a sequence of length 0, and b∅ = 1.
Similarly, in HC1, write Bi1 ⊗ · · · ⊗ Bid as Bi. Note that B∅ = R, the monoidal identity. For an
arbitrary index i and sequence i, we write i ∈ i if i appears in i.

Given two objects M,N ∈ R-bim we say they are biadjoint if M ⊗ − and N ⊗ − are
left and right adjoints of each other, and the same for − ⊗M and − ⊗ N. If M and N are
biadjoint, so areM{1} andN{−1}. We often want to specify additional compatibility between
various adjunction maps, but we pass over the details here (see [3] for more information on
biadjunction).

Proposition 2.6. Each object inHC (resp.,HC1,HC2) has a biadjoint, and Bi is self-biadjoint. Let
ω be the t-antilinear anti-involution onH which fixes bi, that is, ω(tabi) = t−abσ(i), where σ reverses
the order of a sequence. There is a contravariant functor onHC sending an object to its biadjoint, and
it descends on the Grothendieck ring to ω.

Definition 2.7. An adjoint pairing on H is a pairing where each bi is self-adjoint, so that
(x, biy) = (bix, y) and (x, ybi) = (xbi, y) for all x, y ∈ H and all i ∈ I. Equivalently, for
any m ∈ H, (mx, y) = (x,ω(m)y) and (xm, y) = (x, yω(m)).

There is a bijection between adjoint pairings (, ) and traces ε, defined by letting
(x, y) = ε(ω(x)y), or conversely ε(y) = (1, y). Adjoint pairings appear often in the literature,
for instance [27] (although they are usually Z[t, t−1]-linear in both factors, unlike our current
semilinear definition). Semilinear adjoint pairings will be crucially important, due to the
following remark.

Remark 2.8. Let C be a monoidal category with objects Bi, such that Bi are self-biadjoint.
We assume that C is additive and graded and has isomorphisms (2.4)–(2.6). We call such
a category a potential categorification ofH. In this case, there is a map of rings fromH to [C]
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sending bi to [Bi], and (under suitable finite-dimensionality conditions) we get an adjoint
semilinear pairing onH via (bi, bj) = gdimHOMC(Bi, Bj) ∈ Z[[t, t−1]], the graded dimension
as a vector space. Denote the pairing and its associated trace map as (, )C and εC.

Instead, we may assume C is an enriched monoidal subcategory, containing objects Bi.
The isomorphisms (2.4)–(2.6) typically have no meaning in this context, since there are no
grading shifts or direct sums, but we can require that they Yoneda-hold; that is, they hold after
the application of any Hom(−, X) functor (to graded vector spaces). There is no definition of a
Grothendieck ring in this case, but we still get an induced adjoint semilinear pairing induced
by Hom spaces. We call this an enriched potential categorification.

We may use pairings to distinguish between different potential categorifications. The
next proposition allows us to specify the pairing induced by a categorification by only
investigating certain HOM spaces.

Proposition 2.9. Traces onH are uniquely determined by their values ε(bi) on increasing monomials
i. Equivalently, adjoint pairings are determined by (1, bi) for increasing i. If i is nonrepeating and j is
a permutation of i, then ε(bi) = ε(bj).

We quickly sketch the proof. Moving an index from the beginning of a monomial to
the end, or vice versa, will be called cycling the monomial. It is clear, using biadjointness
or the definition of trace, that the value of ε is invariant under cycling. It is not difficult to
show that any monomial in W (in the letters si) will reduce, using the Coxeter relations and
cycling, to an increasing monomial. When the monomial is already nonrepeating, one needs
only use cycling and sisj = sjsi for distant i, j. Finally, using induction on the length of the
monomial, the same principle shows that any monomial inH reduces to a linear combination
of increasing monomials, and therefore ε is determined by these.

The upshot is that, given a potential categorification, one knows the dimension of all
HOM(Bi, Bj) so long as one knows the dimension of HOM(B∅, Bi) for increasing i. Note that
not every choice of (1, bi) for all increasing i will yield a well-defined trace map.

Consider the adjoint pairing given by εstd(bi) = (1, bi) = td for nonrepeating i of length
d. This is the semilinear version of the pairing found in [27] which picks out the coefficient
of the identity in the standard basis of H and is called the standard pairing. Soergel showed
that HOM(Bi, Bj) is a free graded left (or right) R-module of rank (bi, bj) using this pairing. In
particular, for increasing i, HOM(R,Bi) is generated by a single element in degree d(i). Since
the graded dimension of R is 1/(1 − t2)n we have that (1, bi)HC = td/(1 − t2)n is a rescaling of
the standard pairing.

Now let ε be the quotient map H → Z[t, t−1] by the ideal generated by all bi. It is a
homomorphism to a commutative algebra, so it is a trace. The corresponding pairing satisfies
(1, 1) = 1 and (x, y) = 0 for monomials x, y if either monomial is not 1. We call this the trivial
pairing, εtriv.

2.2. The Temperley-Lieb Algebra

Here again we state without proof some basic facts about Temperley-Lieb algebras. They were
originally defined by Temperley and Lieb in [28], and were given a topological interpretation
by Kauffman [29]. There are many good expositions for the topic, such as [30, 31].
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Definition 2.10. The Temperley-Lieb algebra TL is the Z[t, t−1]-algebra generated by ui, i ∈ I
with relations

u2
i = [2]ui, (2.7)

uiuj = ujui for
∣
∣i − j

∣
∣ ≥ 2, (2.8)

uiujui = ui for adjacent i, j. (2.9)

Proposition 2.11. For adjacent i, j ∈ I, consider the element of H defined by cij
def= bibjbi − bi =

bjbibj − bj , where the equality arises from relation (2.3). There is a surjective mapH → TL sending
bi to ui for all i ∈ I, and whose kernel is generated by cij for adjacent i, j ∈ I.

Once again, write ui for a monomial in the above generators, with all the same
conventions as before. The map ω descends fromH to TL, and we define an adjoint pairing
on TL in the same way, with ui replacing bi everywhere. The results of Proposition 2.9 apply
equally to TL.

Definition 2.12. A categoryC as in Remark 2.8 is a potential categorification ofTL if it has objects
Ui satisfying

Ui ⊗Ui
∼= Ui{1} ⊕Ui{−1},

Ui ⊗Uj
∼= Uj ⊗Ui for distant i, j,

Ui ⊗Uj ⊗Ui
∼= Ui for adjacent i, j.

(2.10)

We call it an enriched potential categorification if it is an enriched category with objects
Ui such that these isomorphisms Yoneda-hold.

A permutation σ ∈ Sn+1 is called 321-avoiding if it never happens that, for i < j < k,
σ(i) > σ(j) > σ(k). It turns out that, using the Temperley-Lieb relations, every monomial
uj is equal to a scalar times some ui where i is 321-avoiding; that is, if viewed as a word
in the symmetric group, it represents a reduced expression for a 321-avoiding permutation.
Moreover, between 321-avoiding monomials, the only further relations come from (2.8), and
hence it is easy to pick out a basis from this spanning set. See [30] for more details.

The Temperley-Lieb algebra has a well-known topological interpretation where an
element ofTL is a linear combination of crossingless matchings (isotopy classes of embedded
planar 1-manifolds) between n + 1 bottom points and n + 1 top points. Multiplication of
crossingless matchings consists of vertical concatenation (where ab is a above b), followed
by removing any circles and replacing them with a factor of [2]. In this picture, ui becomes
the following:

(2.11)

The basis of 321-avoiding monomials agrees with the basis of crossingless matchings.
Any increasing monomial is 321-avoiding. Increasing monomials are easy to visualize
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Figure 1: An example of the closure of a crossingless matching.

topologically, as they have only “right waves” and “simple cups and caps.” For example:

u1u2u3u6u7u9 �−→ (2.12)

As an example of a monomial which is not increasing:

u4u3u1u2 �−→ (2.13)

Given a crossingless matching, its closure is a configuration of circles in the punctured
plane obtained by wrapping the top boundary around the puncture to close up with the
bottom boundary, as in Figure 1. Circle configurations have two topological invariants: the
number of circles and the nesting number which is the number of circles which surround the
puncture and is equal to n + 1 − 2l ≥ 0 for some l ≥ 0. Given a scaling factor for each possible
nesting number, one constructs a trace by letting ε(ui) = ck[2]

m where m is the number of
circles in the closure of ui and ck is the scaling factor associated to its nesting number k. To
calculate (x, y), we place y below an upside-down copy of x (or vice versa), and then take
the closure. All pairings/traces on TL can be constructed this way, so they are all topological
in nature.

The Temperley-Lieb algebra has a standard pairing of its own for which ck = 1 for all
nesting numbers k: εstd(ui) = [2]m as above. One can check that εstd(ui) = [2]n+1−d(i) for
an increasing monomial. This is not related to the standard pairing on H, which does not
descend to TL. On the other hand, εtriv clearly does descend to a pairing trivial pairing on
TL, which only evaluates to a nonzero number when the nesting number is n + 1.

It turns out that the pairing onTL arising from our categorification will satisfy (1, 1) =
(tn/(1 − t2))[2]n − (t2/(1 − t2)) and (1, ui) = (tn/(1 − t2))[2]n−d. We will call the associated
trace εcat. Clearly εcat = (tn/(1 − t2)[2])εstd − (t2/(1 − t2))εtriv. In particular, on any monomial
x /= 1, our trace will agree with a rescaling of the standard trace. When n = 1, the algebras TL
andH are already isomorphic, and εcat agrees with the rescaling of the standard trace onH
discussed at the end of Section 2.1.
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Figure 2: An example of a planar graph in the strip, with colored edges.

Figure 3: An example of tree reduction.

2.3. Definition of Soergel Diagrammatics

We now give a diagrammatic description of the category HC1, as discovered in [15]. Since
the category to be defined will be equivalent to the category of Bott-Samelson bimodules, we
will abuse notation temporarily and use the same names.

Definition 2.13. In this paper, a planar graph in the strip is a finite graph with boundary (Γ, ∂Γ)
embedded in (R × [0, 1],R × {0, 1}). In other words, all vertices of Γ occur in the interior
R×(0, 1), and removing the vertices, we have a 1-manifold with boundary whose intersection
with R × {0, 1} is precisely its boundary. This allows for edges which connect two vertices,
edges which connect a vertex to the boundary, edges which connect two points on the
boundary, and edges which form circles (closed 1-manifolds embedded in the plane).

We generally refer to R× {0, 1} as the boundary, which consists of two components, the
top boundary R × {1}, and the bottom boundary R × {0}. We refer to a local segment of an edge
which hits the boundary as a boundary edge; there is one boundary edge for each point on
the boundary of the graph. We use the word component to mean a connected component of a
graph with boundary.

This definition clearly extends to other subsets of the plane with boundary, so that we
can speak of planar graphs in a disk or planar graphs in an annulus. The annulus has two
boundary components, inner and outer. When we do not specify, we always mean a planar
graph in the strip.

We will be drawing morphisms in HC1 as planar graphs with edges labelled in I.
Instead of putting labels everywhere, we color the edges, assigning a color to each index in I.
Henceforth, we use the term “color” and “index” interchangeably.

We now define HC1 anew. Let HC1 be the monoidal category, with hom spaces
enriched over graded vector spaces, which is defined as follows.

Definition 2.14. An object inHC1 is given by a sequence of indices i, which is visualized as d
points on the real line R, labelled or “colored” by the indices in order from left to right. These
objects are also called Bi. The monoidal structure on objects is concatenation of sequences.
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Definition 2.15. Consider the set of isotopy classes of planar graphs in the strip whose edges
are colored by indices in I such that only four types of vertices exist: univalent vertices or
“dots”, trivalent vertices with all three adjoining edges of the same color, 4-valent vertices
whose adjoining edges alternate in colors between distant i and j, and 6-valent vertices whose
adjoining edges alternate between adjacent i and j. This set has a grading, where the degree
of a graph is +1 for each dot and -1 for each trivalent vertex; 4-valent and 6-valent vertices are
of degree 0. The allowable vertices, which we call “generators,” are pictured here:

(2.14)

(2.15)

The intersection of a graph with the boundary yields two sequences of colored points
on R, the top boundary i and the bottom boundary j. In this case, the graph is viewed as a
morphism from j to i. For instance, if “blue” corresponds to the index i and “red” to j, then
the lower right generator is a degree 0 morphism from jij to iji. Although this paper is easiest
to read in color, it should be readable in black and white: the colors appearing are typically
either blue, red, green, or miscellaneous and irrelevant. We throughout use the convention
that blue (the darker color) is always adjacent to red (the middle color) and distant from
green (the lighter color).

We let HomHC1(Bi, Bj) be the graded vector space with basis given by planar graphs
as above which have the correct top and bottom boundary, modulo relations (2.16) through
(2.30). As usual in a diagrammatic category, composition of morphisms is given by vertical
concatenation (read from bottom to top), the monoidal structure is given by horizontal
concatenation, and relations are to be interpreted monoidally (i.e., they may be applied
locally inside any other planar diagram).

The relations are given in terms of colored graphs, but with no explicit assignment
of indices to colors. They hold for any assignment of indices to colors, so long as certain
adjacency conditions hold. We will specify adjacency for all pictures, although one can
generally deduce it from the fact that 6-valent vertices only join adjacent colors, and 4-valent
vertices only join distant colors.

For example, these first four relations hold, with blue representing a generic index.

=

(2.16)

= =

(2.17)
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= 0

(2.18)

+ = 2
(2.19)

We will repeatedly call a picture looking like (2.18) by the name “needle.” Note that a
needle is not necessarily zero if there is something in the interior. Note that a circle is just a
needle with a dot attached, by (2.17), so that an empty circle evaluates to 0.

Remark 2.16. It is an immediate consequence of relations (2.16) and (2.17) that any tree
(connected graph with boundary without cycles) of one color is equal to

(i) if it has no boundary, two dots connected by an edge. Call the entire component a
double dot.

(ii) if it has one boundary edge, a single dot connected by the edge to the boundary.
Call the component a boundary dot.

(iii) if it has more boundary edges, a tree with no dots and the fewest possible number of
trivalent vertices needed to connect the boundaries. Moreover, any two such trees
are equal. Call the component a simple tree.

We refer to this as tree reduction.
This applies only to components of a graph which are a single color. Even if the blue

part of a graph looks like a tree, if other colors overlap, then we may not apply tree reduction
in general.

In the following relations, the two colors are distant

= (2.20)

= (2.21)

= (2.22)

= (2.23)
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In this relation, two colors are adjacent, and both distant to the third color.

= (2.24)

In this relation, all three colors are mutually distant.

= (2.25)

Remark 2.17. Relations (2.20) through (2.25) indicate that any part of the graph colored i and
any part of the graph colored j “do not interact” for distant i and j, that is, one may visualize
sliding the j-colored part past the i-colored part, and it will not change the morphism. We call
this the distant sliding property.

In the following relations, the two colors are adjacent.

= +

(2.26)

= −

(2.27)

=

(2.28)

− = −
(2.29)

In this final relation, the colors have the same adjacency as {1, 2, 3}

= (2.30)
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This concludes the list of relations definingHC1.

Remark 2.18. We chose here to describe HC1 in terms of planar graphs with relations, with
the notion of isotopy built-in, rather than in terms of generators and relations. Note, however,

that using isotopy and (2.17), we get = . Therefore, all “cups” and “caps” can be
expressed in terms of the generators. By adding new relations corresponding to isotopy, one
could give a presentation of the category where the “generators” above (and their isotopy
twists) are really generators. This is how the category is presented in [15].

We will occasionally use a shorthand to represent double dots. We identify a double
dot colored i with the polynomial fi ∈ R, and for a linear combination of disjoint unions of
double dots in the same region of a graph, we associate the appropriate linear combination of
products of fi. For any polynomial f ∈ R, a square box with a polynomial f in a region will
represent the corresponding linear combination of graphs with double dots.

For instance,
= f2

i fj .

Relations (2.19), (2.29), and (2.23) are referred to as dot forcing rules, because they
describe at what price one can “force” a double dot to the other side of a line. The three
relations imply that, given a line and an arbitrary collection of double dots on the left side
of that line, one can express the morphism as a sum of diagrams where all double dots are
on the right side, or where the line is “broken” (as illustrated next). Rephrasing this, for any
polynomial f there exist polynomials g and h such that

f = g h+ (2.31)

The polynomials appearing can in fact be found using the Demazure operator ∂i, and
in particular, h = ∂i(f). One particular implication is that

f = f (2.32)

whenever f is a polynomial invariant under si (and blue represents i). As an exercise, the
reader can check that f2

i slides through a line colored i. These polynomial relations are easy
to deduce, or one can refer to [15] (see page 7, pages 16-17, and relation 3.16).

We have an bimodule action of R on morphisms by placing boxes (i.e., double dots) in
the leftmost or rightmost regions of a graph. Now we can formulate the main result of [15].

Theorem 2.19. There is a functor from this diagrammatic category HC1 to the earlier definition in
terms of Bott-Samelson bimodules. This functor sends i to the bimodule Bi and a planar graph to a
map of bimodules, preserving the grading and the R-bimodule action on morphisms. This functor is an
equivalence of categories.

Corollary 2.20. The R-bimodules HomHC1(Bi, Bj) are free as left (or right) R-modules. In other
words, placing double dots to the left of a graph is a torsion-free operation.
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Now, we have justified our abuse of notation. In this paper, we will never need to know
explicitly what map of R-bimodules a planar graph corresponds to, so the interested reader
can see [15] for details. In fact, we will not use Theorem 2.19 at all, preferring to work entirely
with planar graphs. However, we do use Corollary 2.20, a fact which would be difficult to
prove diagrammatically.

The proof of Theorem 2.19 can be quickly summarized: first, one explicitly constructs
a functor from the diagrammatic category to the Bott-Samelson category. Then, using the
observations of the next section, one shows that the diagrammatic category is a potential
categorification of H and that the diagrammatic category, the Bott-Samelson category, and
the image of the former in the latter all induce the same adjoint pairing onH. Therefore, the
functor is fully faithful.

2.4. Understanding Soergel Diagrammatics

Let us explain diagrammatically why the category HC1 is a potential categorification of H,
and induces the aforementioned adjoint pairing.

Definition 2.21. Given a category C whose morphism spaces are Z-modules, one may take its
additive closure, which formally adds direct sums of objects and yields an additive category.
Given C whose morphism spaces are graded Z-modules, one may take its grading closure
which formally adds shifts of objects, but restricts morphisms to be homogeneous of degree
0. Given C an additive category, one may take the idempotent completion or Karoubi envelope,
which formally adds direct summands. Recall that the Karoubi envelope has as objects pairs
(B, e) where B is an object in C and e an idempotent endomorphism of B. This object acts
as though it were the “image” of this projection e and behaves like a direct summand. When
taking the Karoubi envelope of a graded category (or a category with graded morphisms) one
restricts to homogeneous degree 0 idempotents. We refer in this paper to the entire process
which takes a category C, whose morphism spaces are graded Z-modules, and returns the
Karoubi envelope of its additive and grading closure as taking the graded Karoubi envelope.
All these transformations interact nicely with monoidal structures. For more information on
Karoubi envelopes see [32].

We letHC2 be the graded additive closure ofHC1, and letHC be the graded Karoubi
envelope ofHC1.

We wish to show that the isomorphisms (2.4) through (2.6) hold in HC2. Relation
(2.20) immediately implies that Bi ⊗ Bj ∼= Bj ⊗ Bi for i, j distant, with the isomorphism being
given by the 4-valent vertex.

We have the following equality:

=
1
2

+ . (2.33)

To obtain this, use (2.17) to stretch two dots from the two lines into the middle, and then use
(2.19) to connect them. The identity idii decomposes as a sum of two orthogonal idempotents,
each of which is the composition of a “projection” and an “inclusion” map of degree ±1, to
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and from Bi (explicitly, idii = i1p1 + i2p2 where p1i1 = idi, p2i2 = idi, p1i2 = 0 = p2i1). This
implies thatBi⊗Bi ∼= Bi{1}⊕Bi{−1} and is a typical example of how direct sum decompositions
work in diagrammatic categories.

Similarly, the two color variants of relation (2.27) together express the direct sum
decompositions in the Karoubi envelope

Bi ⊗ Bi+1 ⊗ Bi = Cij ⊕ Bi

Bi+1 ⊗ Bi ⊗ Bi+1 = Cji ⊕ Bi+1.
(2.34)

Again, the identity idi(i+1)i is decomposed into orthogonal idempotents. The second
idempotent factors through Bi, and the corresponding object in the Karoubi envelope will
be isomorphic to Bi. The first idempotent, which we call a “doubled 6-valent vertex,”
corresponds to a new object Cij in the idempotent completion. It turns out that the doubled
6-valent vertexCij for “blue red blue” is isomorphic in the Karoubi envelope to the doubled 6-
valent vertexCji for “red blue red” (i.e., their images are isomorphic). We may abuse notation
and call both of these new objects Cij ; it is a summand of both i(i + 1)i and (i + 1)i(i + 1). The
image of Cij in the Grothendieck group is cij .

We can also understand the induced pairing on H using diagrammatic arguments.
The theorems below are proven in [15], and we will not use them in this paper (except
motivationally), proving their analogs in the Temperley-Lieb case directly.

Theorem 2.22 (Color Reduction). Consider a morphism ϕ : ∅ → i, and suppose that the index i
(blue) appears in i zero times (resp.,: once). Then ϕ is in the -span of graphs which only contain blue
in the form of double dots in the leftmost region of the graph (resp., as well as a single boundary dot).
This result may be obtained simultaneously for multiple indices i.

Corollary 2.23. The space HomHC1(∅, ∅) is precisely the graded ring R. In other words, it is freely
generated (over double dots) by the empty diagram. The space HomHC1(∅, i) for i nonrepeating is a
free left (or right) R-module of rank 1, generated by the following morphism of degree d(i).

(2.35)

The proof of the theorem does not use any sophisticated technology, only convoluted
pictorial arguments. It comprises the bulk of [15]. The corollary implies that εHC1(bi) = t

d/(1−
t2)n for nonrepeating i of length d, as stated in Section 2.1.

2.5. Aside from Karoubi Envelopes and Quotients

Return to the setup of Definition 2.21. If C is a full subcategory of (graded) R-bimodules for
some ring R, then the transformations described above behave as one would expect them
to. In particular, the Karoubi envelope agrees with the full subcategory which includes all
summands of the previous objects. The Grothendieck group of the Karoubi envelope is in
some sense “under control” if one understands indecomposable R-bimodules already. On
the other hand, the Karoubi envelope of an arbitrary additive category may be enormous,
and to control the size of its Grothendieck group, one should understand and classify all
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idempotents in the category, a serious task. Also, arbitrary additive categories need not have
the Krull-Schmidt property, making their Grothendieck groups even more complicated.

The Temperley-Lieb algebra is obtained from the Hecke algebra by setting the elements
cij to zero, for i = 1, . . . , n − 1. These elements lift in the Soergel categorification to objects
Cij . The obvious way one might hope to categorify TL would be to take the quotient of the
categoryHC by each object Cij .

To mod out an additive monoidal category C by an object Z, one must kill the monoidal
ideal of idZ in Mor(C), that is, the morphism space Hom(X,Y ) in the quotient category is
exactly HomC(X,Y ) modulo the submodule of morphisms factoring through V ⊗ Z ⊗W for
any V,W . If the category is drawn diagrammatically, one needs to only kill any diagram
which has idZ as a subdiagram.

We have not truly drawnHC diagrammatically, onlyHC1. The object we wish to kill is
not an object inHC1; the closest thing we have is the corresponding idempotent, the doubled
6-valent vertex. However, this is not truly a problem, due to the following proposition, whose
proof we leave to the reader.

Proposition 2.24. Let C1 be an additive category, and let B be an object in C1, and let e be an
idempotent in End(B). Let D1 be the quotient of C1 by the morphism e. Let C and D be the respective
Karoubi envelopes. Finally, let D′ be the quotient of C by the identity of the object (B, e). Then, there
is a natural equivalence of categories from D to D′.

The analogous statement holds when one considers graded Karoubi envelopes.

Remark 2.25. Note that D′ has more objects than D, but they are still equivalent. For instance,
(B, e) and (B, 0) are distinct (isomorphic) objects in D′, but are the same object in D.

So to categorify TL, one might wish to take the quotient of HC1 by the doubled 6-
valent vertex, and then take the Karoubi envelope. This is easy to do diagrammatically, which
is one advantage to the diagrammatic approach over the R-bimodule approach. The quotient
ofHC1 will no longer be a category which embeds nicely as a full subcategory of bimodules.
One might worry that Krull-Schmidt fails, or that to understand its Karoubi envelope one
must classify all idempotents therein. Thankfully, our calculation of HOM spaces will imply
easily that its graded additive closure is Krull-Schmidt and is already idempotent closed, so it
is equivalent to its own Karoubi envelope (see Section 3.3).

3. The Quotient Category TLC

3.1. A Motivating Calculation

As discussed in the previous section, our desire is to take the quotient ofHC1 by the doubled
6-valent vertex, and then take the graded Karoubi envelope.

An important consequence of relations (2.26) and (2.18) is that

= 0 (3.1)
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from which it follows, using (2.27), that

= (3.2)

so the (monoidal) ideal generated in HC1 by a doubled 6-valent vertex is the same as the
ideal generated by the 6-valent vertex.

Claim 1. The following relations are all equivalent (the ideals they generate are equal)

= 0 (3.3)

= 0+ (3.4)

= − (3.5)

= − (3.6)

= 0 (3.7)

Proof. (3.3)⇒(3.4): add a dot, and use relation (2.26).
(3.4)⇒(3.5): add a dot to the top, and use (2.17).
(3.5)⇒(3.4): apply to the middle of the diagram.
(3.5)⇒(3.6): stretch dots from the blue strands towards the red strand using (2.17), and

then apply (3.5) to the middle.
(3.6)⇒(3.7): use relation (2.27).
(3.7)⇒(3.3): use (3.2).
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Modulo 6-valent vertices, the relations (2.26) and (2.27) become (3.4) and (3.6) above.
All other relations involving 6-valent vertices, namely, (2.28), (2.30), and (2.24), are sent to
zero modulo 6-valent vertices. Relation (3.5) implies both (3.4) and (3.6) without reference to
any graphs using 6-valent vertices. So, if we wish to rephrase our quotient in terms of graphs
that never have 6-valent vertices, the sole necessary relation imposed by the fact that 6-valent
vertices were sent to zero is the relation (3.5).

Suppose, we only allow ourselves univalent, trivalent, and 4-valent vertices, but no 6-
valent vertices, in a graph Γ. Then, the i-graph of Γ, which consists of all edges colored i and
all vertices they touch, will be disjoint from the i+ 1- and i− 1-graphs of Γ. The distant sliding
property implies that the i-graph and the j-graph of Γ do not interact effectively, when i and
j are distant. This will motivate the definition in the next section.

3.2. Diagrammatic Definition of TLC

Definition 3.1. We let TLC1 be the monoidal category, with hom spaces enriched over graded
vector spaces, defined as follows. Objects will be sequences of colored points on the line R,
which we will call i or Ui. Consider the set whose elements are described as follows:

(1) for each i ∈ I, consider a planar graph Γi in the strip, which is drawn with edges
colored i (see Definition 2.13);

(2) the only vertices in Γi are univalent vertices (dots) and trivalent vertices;

(3) the graphs Γi and Γi+1 are disjoint. All graphs Γi are pairwise disjoint on the
boundary;

(4) we consider isotopy classes of this data, so that one may apply isotopy to each Γi
individually so long as it stays appropriately disjoint.

This set has a grading, where the degree of a graph is +1 for each dot and −1 for each
trivalent vertex, and the degree of an element of this set is the sum of the degrees for each
graph Γi. Just as in Definition 2.15, each element of the set has a top and bottom boundary
which is an object in TLC, and will be thought of as a map from the bottom boundary to the
top. We let HomTLC1(Ui, Uj) be the graded vector space with basis given by elements of the
set above with bottom boundary j and top boundary i, modulo the relations (2.16) through
(2.19), (2.29), and the new relation (3.5). As a reminder, the new relation is given here again.

= − (3.8)

As before, composition of morphisms is given by vertical concatenation, the monoidal
structure is given by horizontal concatenation, and relations are to be interpreted monoidally.
This concludes the definition.

Phrasing the definition in this fashion eliminates the need to add distant sliding rules,
for these are now built into the notion of isotopy. Note that as we have stated it here, Γi and
Γj may have edges which are embedded in a tangent fashion, or even entirely overlapped.
However, such embeddings are isotopic to graph embeddings with only transverse edge
intersections, which arise as 4-valent vertices in our earlier viewpoint.
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Proposition 3.2. The category TLC1 is isomorphic toHC1 modulo the 6-valent vertex.

Proof. Due to the observations of Section 3.1, this is obvious.

Hom spaces inTLC1 are in fact enriched over graded R-bimodules, by placing double
dots as before. However, they will no longer be free as left or right R-modules, as we will see.

Remark 3.3. Note that tree reduction (see Remark 2.16) can now be applied to any tree of a
single color in TLC, regardless of what other colors are present, since the only colors which
can intersect the tree are distant colors which do not actually interfere.

We denote by TLC the graded Karoubi envelope of TLC1, and by TLC2 the graded
additive closure of TLC1. However, we will show that TLC2 is already idempotent closed,
so that TLC2 and TLC are the same.

It is obvious that

Ui ⊗Ui+1 ⊗Ui
∼= Ui,

Ui+1 ⊗Ui ⊗Ui+1
∼= Ui+1

(3.9)

in TLC1, and from the relation (3.6) and the simple calculation (using dot forcing rules) that

= − (3.10)

For the same reasons as in Section 2.4, we still have Ui ⊗Uj
∼= Uj ⊗Ui for distant i, j,

and Ui ⊗Ui
∼= Ui{1} ⊕Ui{−1} in TLC2. Therefore, TLC is a potential categorification of TL,

and induces an adjoint pairing and a trace map εTLC onTL. At this point, we have not shown
that the category TLC1 is nonzero, so this pairing could be 0.

3.3. Using the Adjoint Pairing

Proposition 3.4. Let C1 be an enriched category which is a potential categorification of TL, whose
objects are Ui for sequences i. Let C2 be its additive graded closure, and let C be its graded Karoubi
envelope. Suppose that the induced trace map εC1 on TL is equal to εcat. Then, the set of Ui{n} for
n ∈ Z and 321-avoiding i forms an exhaustive irredundant list of indecomposables in C2. In addition,
C2 is Krull-Schmidt and idempotent closed (so C2 and C are equivalent), and C categorifies TL.

This proposition is an excellent illustration of the utility of the induced adjoint pairing.
We prove it in a series of lemmas, which all assume the hypotheses above.

Lemma 3.5. The object Ui in C1 has no nontrivial (homogeneous) idempotents when i is 321-
avoiding. Moreover, if both i and j are 321-avoiding, thenUi

∼= Uj{m} in C2 if and only ifm = 0 and
ui = uj in TL.

Proof. Two 321-avoiding monomials in TL are equal only if they are related by the relation
(2.8). Since this lifts to an isomorphism Ui ⊗Uj

∼= Uj ⊗Ui in C2, we have ui = uj ⇒ Ui
∼= Uj.
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If an object has a 1-dimensional space of degree 0 endomorphisms, then it must be
spanned by the identity map, and there can be no nontrivial idempotents. If an object has
endomorphisms only in nonnegative degrees, then it can not be isomorphic to any nonzero
degree shift of itself. If two objects X and Y are such that both Hom(X,Y ) and Hom(Y,X) are
concentrated in strictly positive degrees, then no grading shift of X is isomorphic to Y , since
there can not be a degree zero map in both directions.

Therefore, we need only show that (for 321-avoiding monomials) Ui has endomor-
phisms concentrated in nonnegative degree, with a 1-dimensional degree 0 part, and that
when ui /=uj, Hom(Ui, Uj) is in strictly positive degrees. This question is entirely determined
by the pairing on TL, since it only asks about the graded dimension of Hom spaces.

When i is empty, we already know that (1, 1) = (tn/(1 − t2))[2]n − (t2/(1 − t2)), which
has degree 0 coefficient 1, and is concentrated in nonnegative degrees.

We know how to calculate (x, y) in TL when x and y are monomials, and either x
or y is not 1 (see Section 2.2). We draw x as a crossingless matching, draw y upside-down
and place it below x, and close off the diagram: if there are m circles in the diagram, then
(x, y) = tn[2]m−1/(1 − t2). In particular, if m = n + 1, then the Hom space will be concentrated
in nonnegative degrees, with 1-dimensional degree 0 part. If m < n + 1, then the Hom space
will be concentrated in strictly positive degrees.

We leave it as an exercise to show that, if x is a crossingless matching (i.e., a 321-
avoiding monomial) then the closed diagram for (x, x) has exactly n+1 circles. The following
example makes the statement fairly clear, where x̃ is x upside-down:

x

x̃

(3.11)

In this example x has all 3 kinds of arcs which appear in a crossingless matching:
bottom to top, bottom to bottom, and top to top. Each of these corresponds to a single circle
in the diagram closure.

Similarly, there are fewer than n + 1 circles in the diagram for (x, y) whenever the
crossingless matchings x, y are nonequal. Consider the diagram above but with the region x
removed. One can see that no circles are yet completed, and each boundary point of x’s region
is matched to the other by an arc. The number of circles is maximized when you pair these
boundary points to each other, and this clearly gives the matching x. For any other matching
y, two arcs will become joined into one, and fewer than n + 1 circles will be created.

Lemma 3.6. C2 is idempotent closed, and its indecomposables can all be expressed as grading shifts of
Ui for 321-avoiding i. It has the Krull-Schmidt property.
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Proof. Since the Temperley-Lieb relations allow one to reduce a general word to a 321-
avoiding word, one can show that every Ui is isomorphic to a direct sum of shifts of Uj for
321-avoiding j, using isomorphisms and direct sum decompositions instead of the analogous
Temperley-Lieb relations. Clearly these shifted Uj are all indecomposable, since they have no
nontrivial idempotents; these are then all the indecomposables. Since every indecomposable
in C2 has a graded local endomorphism ring (with maximal ideal given by positively graded
morphisms), C2 is idempotent closed and Krull-Schmidt (see [33], Section 2.2).

The Krull-Schmidt property implies that isomorphism classes of indecomposables
form a basis for the Grothendieck group.

Proof of Proposition 3.4. There is a Z[t, t−1]-linear map of rings TL → [C2], which is evidently
bijective because it sends the 321-avoiding basis to the 321-avoiding basis. Since C = C2, we
are done.

This proposition shows that Lemma 1.1 implies Theorem 1.2.

Remark 3.7. In analogy to the paper [15], the bulk of the proof of Theorem 1.2 lies in proving
that hom spaces induce a particular adjoint pairing. Beyond that, we have mostly stated
the obvious. Let us note that what is obvious for TL and TLC is not obvious at all when
dealing with H and HC. In particular, if we are given a category C1 which is a potential
categorification of H as in Proposition 3.4, we can not conclude that C categorifies H. We
summarize the differences here.

It is clear (for both Hecke and Temperley-Lieb) that the map H → [HC2] is well
defined and surjective. The two main subtleties are (1) the difference betweenHC2 andHC,
and (2) the injectivity of the map.

In general, one likes to examine the additive Grothendieck group only of idempotent
closed categories with the Krull-Schmidt property, because this guarantees that indecompos-
ables form a basis for the Grothendieck group. Thus it is convenient that TLC2 is already
idempotent closed. Thankfully, we have a result of Soergel [11] that proves that [HC2] ∼=
[HC], as was discussed in Remark 2.5.

To show injectivity of the map in the TL case, we can identify a basis for TL which
is sent to a complete set of indecomposables, and then we can evaluate the trace map to
show that these indecomposables are pairwise nonisomorphic. ForHC, we do not currently
know what the indecomposables (i.e., idempotents) are, nor do we know their preimage
in H. If we knew a class of indecomposables which decategorified to the Kazhdan-Lusztig
basis, then we could use a similar argument to the above to show that they and their shifts
form an exhaustive irredundant list of indecomposables in HC, and therefore that the map
H → [HC] is injective. Soergel discusses this in the last chapter of [11]. This is actually
a deep question, shown by Soergel ([34], see also [8, 11]) to be equivalent to proving a
version of the Kazhdan-Lusztig conjectures. In any case, the result depends on the base
field k, and no simple proof has been found. In particular, to prove that the graded Karoubi
closure of the diagrammatic categoryHC1 categorifies the Hecke algebra (for certain k), we
must pass to the world of bimodules where Soergel’s powerful geometric techniques will
work. In particular, there is currently no proof of injectivity if one defines the category HC
diagrammatically over k = Z.

It should be emphasized that the story of TL is a particularly easy one (as is its
Kazhdan-Lusztig theory). No high-powered technical machinery is needed, and the proofs
of idempotent closure and injectivity are self-contained and diagrammatic. In fact, the
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Figure 4: An arbitrary innermost blue cycle. The dotted line encapsulates the subgraph on the interior
which may contain colors adjacent to blue.

arguments in this paper do work entirely over Z[1/2], as can be checked. Dividing by two
must be allowed in order to split the identity of Uii into idempotents, as in (2.33); however,
it is likely that the arguments would work over Z as well. Working over Z is discussed more
extensively in [22].

Remark 3.8. A category O analog of the fact that 321-avoiding monomials lift to indecompos-
able Soergel bimodules, which remain indecomposable upon passage to the Temperley-Lieb
quotient, can be found in Lemma 5.2 of [14].

3.4. Reductions

When we say that a graph or a morphism “reduces” to a set of other graphs, we mean that
the morphism is in the k-span of those graphs. We refer to a one-color graph, each of whose
(connected) components is either a simple tree with respect to its boundary or a double dot,
as a simple forest with double dots. If there are no double dots, it is a simple forest without double
dots. Tree reduction implies that any graph Γi without cycles reduces to a simple forest with
double dots. Note also that circles in a graph are equal to needles with a dot attached, and
can be treated just like any other cycle.

If there were only one color, we could iterate the following rule (which is an
implication of the dot forcing rules and (2.18)) to break cycles:

=f ∂if (3.12)

We do something similar for the general case.

Proposition 3.9. In TLC1, any morphism reduces to one where, for each i, the i-graph is a simple
forest with double dots. Moreover, we may assume that all double dots are in the lefthand region.

Proof. We use induction on the total number of cycles (of any color) in the graph. Suppose
there is a blue colored cycle: choose one so that it delineates a single region (i.e., there are
no other cycles inside). There may be blue “spokes” going from this cycle into the interior,
but no two spokes can meet, lest they create another region. By tree reduction on the spokes,
we can assume that any blue appearing inside the cycle is in a different blue component
than the cycle. Other colors may cross over the cycle, into the interior. If we view the interior
of the cycle as a graph of its own, it has fewer total cycles so we may use induction. Since
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the boundary of the interior contains no blue color or colors adjacent to blue, they may be
assumed to appear in the interior only in the form of double dots next to the cycle. Using
dot-forcing rules, we reduce to two graphs: one with the cycle broken, and one with all these
double dots on the exterior of the cycle. The former reduces by induction. For the latter, only
distant colors enter the cycle, so they can be slid out of the way to leave an empty blue cycle,
which is 0 by the rule above.

We need to only do the base case, where the graph has no cycles. The dot-forcing rules
imply that double dots may be moved to any region of the (multicolored) graph, at the cost
of breaking a few lines. Breaking lines will never increase the number of cycles. Therefore,
if we have a graph without cycles, tree reduction implies that we actually have a simple
forest with double dots, and dot forcing allows us to move these double dots to the left. The
breaking of lines may require more tree reduction, yielding more double dots, but this process
is finite.

Remark 3.10. This proposition and its proof will apply to graphs in any connected simply
connected region in the plane.

Corollary 3.11. For any nonrepeating i, HomTLC1(∅, i) is generated (as a left or right R-module) by
a single element ϕi of degree d(i), pictured below

(3.13)

Proof. A simple forest with double dots and at most one boundary edge is no more than a
boundary dot with double dots. Thus, any morphism reduces to a boundary dot for each
color, accompanied by double dots.

To show Lemma 1.1, we need to only investigate Hom(∅, i) for increasing i, since we
have already shown that the values of ε(ui) are determined by their values for increasing
i. This space will be an R-bimodule where the left and right action are the same (since the
lefthand and righthand regions are the same in any picture with no bottom boundary), so we
view it as an R-module, and we have just shown that it is cyclic. Let Ii be the ideal which is
the kernel of the map R → HOM(∅, i) sending 1 �→ ϕi; we call it the TL ideal of i. Proving the
Lemma 1.1 is to find Ii and show that the graded dimension of R/Ii{d} is εcat(ui).

Remark 3.12. Since the space HomHC1(∅, i) is a free R-module, all polynomials in Ii must have
arisen from reducing to some morphism which contained the relation (3.5) to a “nice form,”
that is, ϕi plus double dots. In other words, letting αi be the morphism pictured below, we
want to plug αi into a bigger graph, reduce it to a nice form, and see what we get.

αi = + (3.14)

Remember that αi is actually just a 6-valent vertex with two dots attached (one red
and one blue). This bigger graph, into which αi is plugged, will actually be a graph on the
punctured plane or punctured disk with specified boundary conditions on both the outer and
inner boundaries. The difficult graphical proofs of this paper just consist in analyzing such
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graphs. This is done by splitting the punctured plane into simply connected regions and using
the above proposition.

3.5. Generators of the TL Ideal

The sequence i is assumed to be nonrepeating.

Proposition 3.13. The TL ideal of ∅ contains yi,j
def= fifj(fi + 2fi+1 + 2fi+2 + · · ·+ 2fj−1 + fj) over all

1 ≤ i < j ≤ n.
The TL ideal of i contains zi,j,i

def= yi,j/gigj , where gi = fi if i ∈ i, gi = 1 otherwise.

We will prove that these actually generate the ideal in Proposition 3.24 but postpone
the proof as it is long and unenlightening.

Proof. Adding 4 dots to αi, or 6 dots to a 6-valent vertex, we get

+ = 0 . (3.15)

This is yi,i+1 = fifi+1(fi + fi+1) = (xi − xi+1) (xi+1 − xi+2) (xi − xi+2). Even though we are
not allowing 6-valent vertices in our diagrams, we will sometimes express yi,i+1 as

or (3.16)

to avoid having to consider sums of graphs (it’s easier for me to draw!).
To obtain the other yi,j , note the following equalities under the action of Sn+1 on R:

sifi+1 = fi + fi+1,

si+1fi = fi + fi+1,

sifi = −fi,

sifj = fj for
∣∣i − j

∣∣ > 1.

(3.17)

From this it follows by explicit calculation that

si−1yi,j − yi,j = yi−1,j ,

sj+1yi,j − yi,j = yi,j+1.
(3.18)
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Now, when we surround a polynomial f with a j-colored circle and use (3.12), we are
left with a j-colored double dot times ∂j(f), so we get f − sjf = ∂j(f)fj .

=f f − sjf (3.19)

Combining this with the calculations we just made, we see that a j + 1 circle around
yi,j will yield yi,j+1 up to sign, and so forth. We now have numerous ways to express ±yi,j : for
any i ≤ k ≤ j − 1, take αk with 4 dots to get yk,k+1, and then surround it with concentric circles
whose colors, from inside to out, are k + 2, k + 3, . . . , j and then k − 1, k − 2, . . . , i

(3.20)

Clearly the colors of the increasing sequence and those of the decreasing sequence are
distant, so a sequence like k − 1, k + 2, k + 3, k − 2, . . . is also okay, or any permutation which
preserves the order of the increasing and the decreasing sequence individually.

For very similar reasons, zi,j,i is in the TL ideal of i. Adding two or three dots to (3.5),
we get several more equations.

= 0+
(3.21)

= 0+

(3.22)

= 0+

(3.23)

Again, for a variety of these pictures, we use shorthand like

or (3.24)

These give you zi,i+1,i in the case where at least one of i, i + 1 ∈ i. Again by (3.12),
putting a polynomial f in the eye of a j-colored needle will yield ∂j(f) = (f − sjf)/fj next to
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a j-colored boundary dot.

=f ∂jf
(3.25)

This gives us several ways to draw zi,j,i.
If neither i nor j are in i, then zi,j,i = yi,j and is pictured as above, but with additional

boundary dots being put below to account for ϕi. Since these extra dots are generally
irrelevant, we often do not bother to draw them.

If i ∈ i and j /∈ i, we have two ways of drawing zi,j,i. One can take αi, connect one i
input to the outer boundary, add dots, and surround it with circles colored i + 2, i + 3, . . . , j

(3.26)

Alternatively, take some i < k < j, add dots to αk, and surround it with circles forming
an increasing sequence k + 2 · · · j and a decreasing sequence k − 1 · · · i, except that the final
i-colored circle is a needle

(3.27)

The case of j ∈ i and i /∈ i is obvious.
If both i, j ∈ i, then we have several choices again. If j = i + 1, then we must use

(3.28)
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but in general, we may either repeat (3.26) with a j-needle instead of a j-circle

(3.29)

or repeat (3.27) with a j-needle instead of a j-circle

(3.30)

In any case, it is clear that the polynomials above are in the TL ideal, and the claim is
proven.

Let us quickly consider the redundancy in this generating set of the ideal. When i > j

let yi,j
def= yj,i and zi,j,i

def= zj,i,i.

Corollary 3.14. Suppose that i is nonempty, and fix an index k ∈ i. Then, Ii is generated by zk,j,i for
1 ≤ j ≤ n, j /= k. None of these generators are redundant.

None of the generators yi,j of I∅ are redundant.

Proof. We leave the checks of irredundancy to the reader, but a proof will also arise as a
byproduct in the next section (see Remark 3.17).

Suppose that k ∈ i but i, j /∈ i. If k < i < j, then zi,j,i = yi,j = fizk,j,i − fjzk,i,i so that zi,j,i is
redundant. If i < k < j, then zi,j,i = fizk,j,i + fjzi,k,i. A similar statement holds for i < j < k. In
the same vein, if k, l ∈ i but i /∈ i, then for a given zk,l,i, only one of zk,i,i or zl,i,i is needed, and
if k, l,m ∈ i, then any two of the three pairwise relations will imply the third.
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3.6. Graded Dimensions

In this section, fix a nonrepeating sequence i. We assume in this section that the generators of
Ii are precisely the polynomials described in Proposition 3.13.

Notation 5. An element of R can be written as a polynomial in fi, so let x = fa1
1 · · · f

an
n be a

general monomial. Choose any i, possibly empty. Given a monomial x, let Jx ⊂ {1, . . . , n} be
the subset containing i and all indices j such that aj /= 0. For a fixed subset J , let RJ be the
subset of all monomials x with Jx = J . This inherently depends on the choice of i.

Under the map R → HOM(U∅, Ui), the image of RJ will be graphs where the
colors appearing are precisely J . Every color in i appears as a boundary dot, and every fj
corresponds to a double dot of that color. The case J = ∅ only occurs when i = ∅ and R∅ = {1}.

To find a basis for R/Ii, we will use the Bergman Diamond Lemma [35] for
commutative rings.

Definition 3.15. Let A be a free commutative polynomial ring, where monomials are given
a partial order with the DCC, compatible with multiplication in that x < y ⇒ ax < ay.
Let I be an ideal generated by relations r of the form xr = yr , where xr is a monomial and
yr is a linear combination of monomials which are each less than xr in the partial order.
A reduction is an application of a relation r to replace xr with yr , but not the other way
around (a reduction always lowers the partial order on each term in a polynomial). One says
a polynomial x reduces to y if y can be obtained from x by a series of reductions applied
to monomials in x. A monomial is called irreducible if it does not have xr as a factor for
any relation r. An inclusion ambiguity is a monomial x = ab, where x = xr for some r, and
b = xr ′ for some r ′ /= r. An overlap ambiguity is a monomial x = abc, where ab = xr for some
r and bc = xr ′ for some r ′ /= r. Each ambiguity has two natural reductions, and one says the
ambiguity is resolvable if the two reductions are then jointly reducible to the same element.

Lemma 3.16 (Bergman Diamond Lemma for Commutative Rings, [35]). With these definitions
in place, if every inclusion and overlap ambiguity is resolvable, then the images of the irreducible
monomials form a basis for A/I.

This process may become more transparent from the example below; in addition,
Bergman’s paper has a number of nice examples for the trickier, noncommutative version.
We treat two separate cases, when i = ∅ and when i/= ∅.

Claim 2. Let i = ∅. We place the lexicographic order on monomials in R, so that f1 < f2 < · · · .
The relation yi,j = 0 for i < j will be rewritten as fif2

j = −fifj(fi + 2
∑

i<k<j fk), which replaces
fif

2
j with a sum of monomials all lower in the order. For each J /= ∅, the irreducible monomials

in RJ are precisely fm
k

∏
i∈Jfi, where k is the minimal index in J and m ≥ 0 (note: the exponent

of fk is m + 1 ≥ 1). When J = ∅, 1 is irreducible. Irreducibles form a basis for R/I∅.

Proof. A monomial is irreducible if fif2
j never appears as a factor for any i < j. Because of

this, the classification of irreducible monomials in each RJ is obvious. There are no inclusion
ambiguities between relations, since they are all homogeneous and degree 3. There are two
kinds of overlap ambiguities, both labelled by a choice of i < l < j.

For the first ambiguity, one can reduce x = fiflf
2
j by either reducing flf

2
j or fif2

j .
Applying the former reduction, x �→ fiflfj(−fl − 2

∑
l<k<j fk) which has a term given by
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−fif2
l fj that can be further reduced, yielding fiflfj(fi+2

∑
i<k<l fk −2

∑
l<k<j fk). Applying the

latter reduction, x �→ fiflfj(−fi−2
∑

i<k<j fk) = fiflfj(−fi−2
∑

i<k<l fk−2fl−2
∑

l<k<j fk), which
has a term given by −2fif2

l
fj that can be further reduced, yielding fiflfj(−fi − 2

∑
i<k<l fk −

2
∑

l<k<j fk + 2fi + 4
∑

i<k<l fk) = fiflfj(fi + 2
∑

i<k<l fk − 2
∑

l<k<j fk). Since these agree, the
ambiguity is resolvable.

For the second ambiguity, one can reduce x = fif
2
l
f2
j by either reducing fif

2
l

or flf2
j .

A very similar calculation shows that this ambiguity is resolvable as well. Therefore, the
Bergman diamond lemma implies that irreducibles form a basis for the quotient.

Remark 3.17. This also proves that none of the yi,j is redundant. Removing yi,j from the ideal,
we may apply the same Bergman diamond lemma argument to say that irreducibles form
a basis for the quotient. However, with no yi,j , the monomial fif2

j is irreducible, and the
quotient is larger than before. A similar statement can be made about the zk,j,i below.

When J /= ∅, the graded rank of the irreducibles in RJ is t2|J |/(1 − t2). When J is empty,
the only element of RJ is 1. So the graded rank of R/I∅ is 1+

∑
J /= ∅(t

2|J |/(1− t2)), but
∑

J t
2|J | =

(1 + t2)n since every fi may either appear or not appear, independently of every other. Hence∑
J /= ∅ t

2|J | = (1 + t2)n − 1. Putting it all together, the graded rank is ((1 + t2)n − t2)/(1 − t2) =
(tn[2]n − t2)/(1 − t2). Hence we have proven the following claim.

Claim 3. The graded dimension of R/I∅ is exactly εcat(u∅).

Claim 4. Let i/= ∅, and fix k ∈ i. We choose a different order on indices, where k < k + 1 <
k − 1 < k + 2 < k − 2 < · · · , and then place the lexicographic order on monomials. The relation
zk,j,i for j /= k will be rewritten in decreasing order format as either f2

j = −fj(fk + 2
∑

l fl) for
j /∈ i, or fj = −(fk + 2

∑
l fl) for j ∈ i, where the sum is over l between k and j. Then, the

irreducible monomials in RJ are precisely fm
k

∏
j∈J\ ifj for m ≥ 0. Irreducibles form a basis for

R/Ii.

Proof. An irreducible polynomial will be a polynomial which does not have f2
j as a factor, for

k /= j /∈ i, and does not have fj as a factor for k /= j ∈ i. The classification of irreducibles in RJ is
now obvious. There are no ambiguities whatsoever, so we are done by the Bergman diamond
lemma.

The graded rank of irreducibles in RJ is t2|J |−2d/(1− t2), for d the length of i (remember
that i ⊂ J). Thus, the graded rank of R/Ii is

∑
i⊂J(t

2|J |−2d/(1 − t2)) = (1 + t2)n−d/(1 − t2), and

the graded rank of R/Ii{d} is td(1 + t2)n−d/(1 − t2) = tn[2]n−d/(1 − t2). Hence, one considers
the following.

Claim 5. The graded dimension of R/Ii{d(i)} is exactly εcat(ui).

This is clearly sufficient to prove Lemma 1.1, modulo Proposition 3.24.

3.7. Weyl Lines and Disoriented Tubes

We now give two alternate interpretations of the TL ideals Ii. We continue to assume that i is
nonrepeating and zi,j,i generates Ii.

Definition 3.18. Let V be the reflection representation of Sn+1, such that R = C[f1, . . . , fn]
is the coordinate ring of V . Note that the linear equations which cut out reflection-fixed
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hyperplanes are precisely wi,j = fi + fi+1 + · · · + fj = xi − xj+1 for i ≤ j. A Weyl line is a line
in V through the origin which is defined by the intersection of reflection-fixed hyperplanes;
it is given by a choice of n − 1 transversely intersecting reflection-fixed hyperplanes. Given a
nonrepeating sequence i, one says that a Weyl line is transverse to i if it is transverse to (i.e.,
not contained in) the hyperplanes fk = 0 for each k ∈ i.

Proposition 3.19. The TL ideal of i is the ideal associated with the union of all Weyl lines transverse
to i (with its reduced scheme structure).

Example 3.20. Let n = 3. One can check that f1f2(f1+f2) = f2f3(f2+f3) = f1f3(f1+2f2+f3) = 0
cuts out 7 lines in V , namely,

(1) f1 = f2 = f1 + f2 = 0,

(2) f1 = f3 = 0,

(3) f2 = f3 = f2 + f3 = 0,

(4) f1 = f2 + f3 = f1 + f2 + f3 = 0,

(5) f1 + f2 = f3 = f1 + f2 + f3 = 0,

(6) f2 = f1 + f2 + f3 = 0,

(7) f1 + f2 = f2 + f3 = 0,

These 7 lines are precisely the 7 lines cut out by the intersection of pairs of reflection-fixed
hyperplanes. There are 6 reflection-fixed hyperplanes, given by equations f1, f2, f3, f1 + f2,
f2 + f3, and f1 + f2 + f3, or alternatively, by xi − xj for 4 ≥ j > i ≥ 1. Intersecting pairs of
hyperplanes will give a line, and occasionally this line is forced to lie in a third hyperplane,
as in the list above. One can check that this list covers all pairs of hyperplanes which give
distinct lines as their intersection.

Proof. This is not difficult to show, but since we have not seen it elsewhere, we provide a
complete proof. First, we show by induction on n that the ideal I∅ cuts out the Weyl lines with
the reduced scheme structure. The case n = 1 is trivial (and n = 2 is also obvious).

For any 1 ≤ k ≤ n, consider the hyperplane fk = 0 as an n − 1-dimensional space
V ′, with an action of Sn+1/〈sk〉 ∼= Sn. Giving Sn a Coxeter structure with simple reflections
si for i /= k (note that sk+1 = (k + 1, k + 2) = (k, k + 2) in the quotient), it is quite easy to
see that V ′ is the reflection representation of Sn. Moreover, the Weyl hyperplanes are cut
out by w′i,j = fi + fi+1 + · · · + fj (where fk = 0 so it may be left out of the sum) for i, j /= k,
and the equivalent polynomials y′i,j also have the same formulae, and are indexed by i, j /= k.
Therefore, for i, j /= k, the images of wi,j are just w′i,j , and the same for yi,j and y′i,j . Moreover,
if either i or j equals k, then yi,j = 0 on fk = 0, and wi,j is redundant on fk = 0, being equal to
some wi′,j ′ . By induction, y′i,j cut out the Weyl lines with the reduced scheme structure on V ′,
and therefore the vanishing set of yi,j agrees with the Weyl lines on fk = 0.

If all fk /= 0, then it is easy to see that the yi,j cut out a single line with the reduced
scheme structure, namely, −f1 = f2 = −f3 = · · · = (−1)nfn. This is a Weyl line, the intersection
of all wi,i+1. We wish to show that this is the only Weyl line transverse to all fk = 0. We can
show this by induction as well (again, the base case n = 2 is easy). Suppose we are given n−1
transverse hyperplaneswi,j . If any two involve the index n, that is,wi,n andwj,n, then we may
replace the pair withwi,n andwi,j since they have the same intersection (andwi,j is not already
in the set, or the intersection would not be transverse). So, we may assume that at most one of
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the chosen hyperplanes involves the index n, but then we have n − 2 transverse hyperplanes
which only involve indices {1, . . . , n − 1}, which must then be mutually transverse to fn = 0.
Letting V ′ be the hyperplane fn = 0 viewed as a reflection representation as above, we have
n−2 transverse hyperplanes which cut out a Weyl line transverse to fk = 0 for all 1 ≤ k ≤ n−1.
By induction, that Weyl line is −f1 = f2 = −f3 = · · · = (−1)n−1fn−1 (which holds true modulo
fn = 0), but repeating the same argument for the index k instead, we leave out the kth term

and get −f1 = f2 = · · · = ̂(−1)kfk = · · · = (−1)nfn modulo fk = 0. Together, all these equalities
imply that −f1 = f2 = · · · = (−1)nfn everywhere.

One might be worried, because of the restrictions used in the induction step, that
Ii does not give the reduced structure on the Weyl lines at the origin. However, Ii is a
homogeneous ideal which cuts out a reduced 0-dimensional subscheme of P(V ), so that its
vanishing on V is the cone of a reduced scheme, and hence is reduced. This concludes the
proof that I∅ cuts out the Weyl lines with the reduced scheme structure.

For i/= ∅, I∅ ⊂ Ii and the vanishing of Ii is contained in that of I∅. Choose k ∈ i. If fk = 0
then zk,k+1,i is equal to fa

k+1, where a = 1, 2 depending on whether k + 1 ∈ i, but either way we
get that fk+1 = 0. Then zk,k+2 = fak+2 for a = 1, 2, and so forth. Therefore fk = 0 only intersects
the vanishing of Ii at the origin (as sets). It is clear that, on the open set where fk /= 0 for all
k ∈ i, the polynomials zi,j,i and yi,j have the same vanishing (as schemes), since they differ by
a unit. The same cone argument shows that Ii gives the reduced structure at the origin.

Remark 3.21. In particular, I∅ is contained in every ideal, and the category TLC1 is manifestly
R/I∅-linear.

Remark 3.22. Let Z be the union of all Weyl lines in V . The previous results should lead one to
guess that the Temperley-Lieb algebra should be connected to the geometry of the Sn+1 action
on Z via TLC, in much the same way that the Hecke algebra is connected to the reflection
representation viaHC (see [11]). However, at the moment, we have no way to formulate the
category TLC in terms of coherent sheaves on Z × Z (i.e., R/I∅-bimodules) or the derived
category thereof. Describing TLC using sheaves on Z seems like an interesting question.

As an example of the difficulties, let Ui be the bimodule R/Ii ⊗ R/Ii{−1}, where the
tensor is over Rsi ; this should be the equivalent of the Soergel bimodule Bi. Then, there is a
degree-1 map R/I∅ → Ui sending 1 to xi ⊗ 1 − 1 ⊗ xi+1 (the boundary dot on the top), but
there is no degree-1 map Ui → R/I∅ (the boundary dot on the bottom); such a map should
send 1 ⊗ 1 to 1. There is only a degree-3 map, sending 1 ⊗ 1 to fi (the boundary dot with a
double dot). A similar problem occurs again: the trivalent vertex seems to be defined only in
one direction.

Now, we describe briefly the topological intuition associated with the category TLC,
and another way to view Ii. These remarks will not be used in the remainder of the paper,
nor will we give a proof. The reader should be acquainted with the section on sl2-foams in
Vaz’s paper [16].

Remark 3.23. Let F be the functor from TLC1 to the category of disoriented cobordisms
Foam2, as defined in Vaz’s paper. If fi is the double dot colored i, then one can easily see
that F sends fi to a tube connecting the ith sheet to the (i+1)th sheet, with a disorientation on
it. If the double dot appears in a larger morphism ϕ, such that in F(ϕ), the ith sheet and the
(i + 1)th sheet are already connected by a saddle or tube, then adding another tube between
them does nothing more than adding a disoriented handle to the existing surface. Note that
the map ϕi previously defined will connect the ith sheet to the (i + 1)th sheet for any i ∈ i.
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Suppose that the ith, (i + 1)th, and (i + 2)th sheets are all connected in a cobordism.
Then fi adds a handle on the left side of the (i + 1)th sheet, fi+1 adds a handle on the right
side, and these two disoriented surfaces are equal up to a minus sign in Foam2. This fact is
essentially the statement that:

+ = 0
(3.31)

In other words, the algebra k[f1, . . . , fn] maps to Foam2, sending fi to the disoriented
tube between the ith and (i + 1)th sheet. The ideal Ii is clearly in the kernel of this action
when applied to the cobordism F(ϕi). In fact, it is precisely the kernel, using the argument of
Proposition 4.2 in [36]: for any distinct monomials in a basis for R/Ii, their image in Foam2

will have independent evaluations with respect to some closure of the cobordism. We do
not do the calculation here. The usual arguments involving adjoint pairings imply that the
faithfulness of the functor F can be checked on Hom(∅, i). Therefore, the functor F is faithful.

3.8. Proof of Generation

Proposition 3.24. The TL ideal I∅ is generated by yi,j
def= fifj(fi + 2fi+1 + 2fi+2 + · · · + 2fj−1 + fj)

over all 1 ≤ i < j ≤ n.
The TL ideal Ii is generated by all zi,j,i

def= yi,j/gigj , where gi = fi if i ∈ i, gi = 1 otherwise.

We wish to determine the ideal generated by αk inside HOM(∅, i), for nonrepeating
i. As discussed in Remark 3.12 (where αk is defined), our goal is to take any graph Γ on the
punctured plane, with i as its outer boundary and k(k + 1) k(k + 1) as its inner boundary,
plug αk into the puncture, and reduce it to something in the ideal generated by the pictures
of Section 3.5.

αk

Γ

(3.32)

Our coloring conventions for this chapter will be that blue always represents the index
k, red represents k + 1, and other colors tend to be arbitrary (often, the number of other
colors appearing is also arbitrary). However, it will often happen that colors will appear in
increasing or decreasing sequences, and these will be annotated as such. Note that blue or
red may appear in the outer boundary as well, but at most once each.

Let us study Γ, and not bother to plug in αk. The only properties of αk which we need
are the following:

= 0 (3.33)
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This follows from (3.1), or just from isotopy. The same holds with colors being switched.

= 0
(3.34)

This is because the diagram reduces to a k-colored needle, with f = fk+1(fk +fk+1) inside, but
f is fixed by sk, so it slides out of the needle, and the empty needle is equal to 0. A similar
equality holds with colors switched.

= 2
(3.35)

This follows from the above and the dot forcing rules.
The final property we use is that any graph only using colors < k − 1 or > k + 2 can

slide freely across the puncture.
Note however that, say, an arbitrary k − 3 edge cannot automatically slide across the

puncture, because a k − 2 edge might be in the way, and this could be in turn obstructed by a
k − 1 edge, which cannot slide across the blue at all.

The one-color reduction results apply to any simply connected planar region, so we
may assume (without even using the relation (3.5)) that in a simply connected region of our
choice, the i-graph for each i is a simple forest with double dots. Any connected component of
an i-graph that does not encircle the puncture will be contained in a simply connected region,
and hence can be simplified; this will be the crux of the proof. The proof is simple, but has
many cases.

Remark 3.25. We will still need to use relation (3.5) as we simplify graphs.

We will treat cases based on the “connectivity” of Γ that is, how many of the blue
and red boundary lines in the inner and outer boundary are connected with each other. We
will rarely perform an operation which makes the graph more connected. At each stage, we
will reduce the graph to something known to be in the ideal or break edges to decrease the
connectivity. We call an edge coming from the puncture an interior line and one coming from
the outer boundary an exterior line.

Note also that any double dots that we can move to the exterior of the diagram become
irrelevant, since the picture with those double dots is in the ideal generated by the picture
without double dots. Also, any exterior boundary dots are irrelevant, since they are merely
part of the map ϕi and do not interfere with the rest of the diagram at all.

Step 1. Suppose that the two interior red lines are in the same component of Γk+1. Then, there
is some innermost red path from one to the other, such that the interior of this path (the region
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towards the puncture) is simply connected. Applying reductions, we may assume that the k-
graph in this region consists of a blue boundary dot with double dots, and the k + 1-graph
and k + 2-graph each consists only of double dots. We may assume all double dots occur
right next to one of the red lines coming from the puncture. The current picture is exactly like
that in (3.33), except that there may be double dots inside and other colors may be present
(also, there could be more red spokes emanating from the red arc, but these can be ignored or
eliminated using (2.16) and tree reduction). However, the double dots may be forced out of
the red enclosure at the cost of potentially breaking the red edge, and breaking it will cause
the two red interior lines to be no longer in the same connected component. If there are no
double dots, then all the remaining colors (which are < k − 2 or > k + 1) may be slid across
the red line and out of the picture. Hence, we are left with the exact picture of (3.33), which
is zero.

Thus, we may assume that the two red lines coming from the puncture are not in the
same component. The same holds for the blue lines.

Step 2. Suppose that the component of one of the interior blue lines wraps the puncture,
creating an internal region (which contains the puncture). Again, reducing in that internal
region, the other interior blue line cannot connect to the boundary so it must reduce to a
boundary dot (with double dots), the reds may not connect to each other so each reduces
to a boundary dot, and as before we are left in the picture of (3.34) except possibly with
double dots and other colors. If there are no double dots, all other colors may be slid out,
and the picture is zero by (3.34). Again, we can put the double dots near the exterior, and
forcing them out will break the blue arc. It is still possible that some other cycle still allows
that component to wrap the puncture; however, this process needs to only be iterated a finite
number of times, and finitely many arcs broken, until that component no longer wraps the
puncture.

So, we may assume that the component of any interior line, red or blue, does not
wrap the puncture. That component is contained in a simply connected region, so it reduces
to a simple tree. Hence, we may assume that the components of interior lines either end
immediately in boundary dots, or connect directly to an external line of the same color (at
most one as such exists of each color).

Step 3. Suppose that there is a blue edge connecting an internal line directly to an external
one. Consider the region Γ′:

Γ′
(3.36)

Then Γ′ is simply connected. Other colors in Γ may leave Γ′ to cross through the blue
line; however, the colors k − 1, k, k + 1 may not. Therefore, reducing within Γ′, we may end
the internal blue line in a boundary dot and eliminate all other instances of the color blue
(since they become irrelevant double dots on the exterior), reduce red to a simple forest
where the two interior lines are not connected (again, ignoring irrelevant double dots), and
reduce k−1 to either the empty diagram or an external boundary dot (depending on whether
k + 1 ∈ i). Once this has been accomplished, the absence of the color k − 1 implies that we
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may slide k − 2 freely across the puncture! The color k − 2 can be dealt with in the entire
disk, which is simply connected, so it reduces to the empty diagram or an external boundary
dot (depending on whether k + 2 ∈ i), with extraneous double dots. Then we may deal with
color k − 3, and so forth.

Thus, the existence of the blue edge implies that all colors < k can be ignored: they
appear in irrelevant double dots, in irrelevant boundary dots, or not at all. Similarly, the
existence of a red edge allows us to ignore all colors > k + 1.

Step 4. Let us consider only the components of graphs which do not meet the internal
boundary.

Lemma 3.26. Consider a component of a graph on a punctured disk which does not meet the internal
boundary and which meets the external boundary at most once. Then it can be reduced to one of the
following, with double dots on the exterior: the empty graph, a boundary dot, a circle around the
puncture, a needle coming from the external boundary, with its eye around the puncture.

Proof. Suppose that the component splits the punctured plane into m regions. If the
component is contained in a simply connected part of the punctured plane, we are done.
This is always true for m = 1. So we may suppose that m ≥ 2 and, we have two distinguished
regions: the external region, and the region containing the puncture. Any other region is one
of two kinds, as illustrated in the following equality (due to (2.16):

= (3.37)

On the right side we have a region which is contained in a simply connected part and
thus can be eliminated by reduction (see Proposition 3.9). On the left side the region is not
contained in a simply connected part nor does it contain the puncture. However, any such
region can be altered, using (2.16) as in the heuristic example above, into a cycle of the first
kind. Therefore, we may assume there are exactly 2 regions.

In the event that there are two regions, we have a cycle which surrounds around
the puncture and may have numerous branches into both regions, internal and external.
However, each branch must be a tree lest another region be created. These trees reduce in
the usual fashion, and therefore the internal branches disappear, and the external branches
either disappear or connect directly to the single exterior boundary. Thus, we have either a
needle or a circle. Double dots, as usual, can be forced out of the way possibly at the cost of
breaking the cycle, and reducing to the case m = 1.

Let us now examine the remaining cases. We will ignore all parts of a graph which are
double dots on the exterior, or are external boundary dots.

Case 1. Both a blue edge and a red edge connect an internal line to an external line. Then, as
in Step 3, all other colors can be ignored, and the entire graph is

(3.38)
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This, as explained in Section 3.5, is zk,k+1,i.

Case 2. A blue edge connects an internal line to an external line, and both red internal lines
end in boundary dots. As discussed in Step 3, we may ignore all colors < k, and both colors
k and k + 1 do not appear in a relevant fashion outside of what is already described. We may
ignore the presence of any double dots. However, there may be numerous circles and needles
colored ≥ k + 2 which surround the puncture and cross through the blue line, in an arbitrary
order.

(3.39)

Claim 6. The sequence of circles and needles can be assumed to form an increasing sequence
of colors, from k + 2, k + 3, . . . until the final color, and assuming that only the final color may
be a needle.

Proof. If the innermost circle/needle is not colored k + 2, then it may slide through the
puncture, and will evaluate to zero by (2.18). So, suppose the innermost is k + 2. If it is a
needle, not a circle, then there can be no more k + 2-colored circles, and no k + 3-colored
circles. Color k + 4 can be pulled through the middle so resolved on the entire disk and hence
can be ignored, and so too with k+5 and higher. This is the “needle” analogy to the conclusion
of Step 3: the existence of an m-colored needle around the puncture and the lack of m or m+1
on the interior of the needle will allow us to ignore all colors ≥ m + 1.

So, suppose it is a k + 2-colored circle. If the next circle/needle is colored ≥ k + 4 then it
slides through the k+2 circle and the puncture and evaluates to zero. If the next circle/needle
is also colored k + 2, then we may use the following calculation to ignore it. The calculation
begins by using (2.33)

= = = 2 (3.40)

Thus, we may assume that the next circle/needle is colored k+3. Again, if it is a needle,
then we can ignore all other colors, and our picture is complete.

Similarly, the next circle/needle can not be colored ≥ k + 5 lest it slide through, and it
can not be colored k + 3 lest we use (3.40). If it is colored k + 2, then we may use the following
calculation to ignore it. The calculation begins by using (3.5), and assumes green and purple
are adjacent
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= − = − = (3.41)

Thus, we can assume the next circle/needle is colored k + 4. If it is a needle, then all
colors k + 5 and higher can be ignored. Additional circles of color k + 2 could run through the
needle, but these could be slid inwards and reduced as before. So, if it is a needle, our picture
is complete.

Finally, the next circle/needle can not be colored ≥ k + 6 lest it slide, k + 4 lest we use
(3.40), k + 3 lest we use (3.41), or k + 2 lest we slide it inside and reduce it as above. Hence
it is colored k + 5, and if it is a needle, we are done. This argument can now be repeated ad
infinitum.

Thus, our final picture yields zk,j,i as in (3.26) or (3.29).
Note that the case of a red edge works the same way, with a decreasing sequence

instead of an increasing sequence.

Case 3. All the internal lines end in boundary dots. We may assume that the remainder of
the graph consists of circles/needles around this diagram, but we have no restrictions at the
moment on which colors may appear.

Claim 7. We may assume that the colors in circles/needles form an increasing sequence from
k + 2 up, and a decreasing sequence from k − 1 down (these sequences do not interact, so
without loss of generality. we may assume the increasing sequence comes first, then the
decreasing one). Only the highest and lowest color may be a needle.

Proof. The method of proof will be the same as the arguments of the previous case.
Consider the innermost circle/needle. If it is colored k or k+1, then we may use (3.35)

to reduce the situation to a previous case. If it is colored ≥ k+3 or ≤ k−2 then it slides through
the puncture. So we may assume it is k + 2 or k − 1. If it is a k + 2-colored (resp., k − 1-colored)
needle, then the usual arguments imply that all colors > k + 2 (resp., < k − 1) can be ignored.
This same argument with needles will always work, so we will not discuss the circle/needle
question again, and speak as though everything is a circle.

Assume that the first colors appearing are an increasing sequence from k + 2 to i and
then a decreasing sequence from k − 1 to j. Note that either sequence may be empty. If the
next color appearing is ≤ j − 2 then it slides through the whole diagram and the puncture,
and evaluates to zero. If the decreasing sequence is nonempty and the next color is j then we
use (3.40); if it is ≥ j + 1 and ≤ k − 1 then we slide it as far in as it will go and use (3.41). If the
decreasing sequence is nonempty and the next color is k then one can push it almost to the
center, and use the following variant of (3.41):

= − = = (3.42)
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In this picture, green is k − 1 and is the only thing in the way of the blue circle. The
first equality uses (3.5), and the second equality uses (2.29), and eliminates the terms which
vanish due to (3.34).

Continuously, if the decreasing sequence is empty and the next color is k, then we may
use (3.35) as above. Any colors which are ≥ k + 1 do not depend on the increasing sequence,
and instead use the exact analogs for the increasing sequence.

Hence, in any case in which the next color appearing is not i+1, or j−1, or the beginning
of a new increasing/decreasing series, we may simplify the diagram to ignore the new circle.
Induction will now finish the proof.

Therefore, the resulting diagram is equal to zi,j,i, matching up either with (3.27) or
(3.30).

Since every possible graph can be reduced to a form which is demonstrably in the ideal
generated by zi,j,i, we have proven that these elements do in fact generate the TL ideal Ii.

4. Irreducible Representations

In this section, we may vary the number of strands appearing in the Temperley-Lieb algebra.
When TL appears, it designates the Temperley-Lieb algebra on n + 1 strands, but TLk
designates the algebra on k strands.

4.1. Cell Modules

The Temperley-Lieb algebra has the structure of a cellular algebra, a concept first defined
by Graham and Lehrer [37]. One feature of cellular algebras is that they are equipped with
certain modules known as cell modules. Cell modules provide a complete set of nonisomorphic
irreducible modules in many cases (such as TL in type A). Cell modules come equipped
with a basis and a bilinear form, making them obvious candidates for categorification. We
will not go into detail on cellular algebras here, or even use their general properties; instead
we will describe the cell modules explicitly and pictorially for the case of TL, where things
are unusually simple. Nothing in this section or the next is particularly original, and we state
some standard results without proof.

Notation 6. Consider a crossingless matching in the planar strip between n points on the
bottom boundary and m points on the top. We call this briefly an (n,m) diagram. In the
terminology of [30], there are two kinds of arcs in a diagram: horizontal arcs which connect
two points on the top (let us call it a top arc), or two points on the bottom (bottom arc) and
vertical arcs which connect a point on the top to one on the bottom. Elsewhere in the literature,
vertical arcs are called through-strands. An (n, k) diagram with exactly k through-strands (and
therefore no top arcs) has an isotopy representative with only “caps” (local maxima) and no
“cups” (local minima) so it is called an (n, k) cap diagram. A (k, n) diagram with k through-
strands is called a (k, n) cup diagram.

The set of all (n,m) diagrams can be partitioned by the number of through-strands.
Any (n,m) diagram with k through-strands can be expressed as the concatenation of an (n, k)
cap diagram with a (k,m) cup diagram in a unique way. For an illustration of this concept,
see Figure 5.
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Figure 5: On the left side, a (7, 7) diagram with k = 3 through-strands and l = 2 top arcs (resp., bottom
arcs) is decomposed into a (7, 3) cap diagram a-composed with a (3, 7) cup diagram z. On the right side,
an element of TL3 is obtained by composing a and z in the opposite order.

In an (m,m) diagram the number l of top arcs equals the number of bottom arcs, and if
k is the number of through-strands, then k + 2l = m. We will typically use k and l to represent
the number of through-strands and top arcs in an (m,m) diagram henceforth.

Notation 7. Let X be the set of all (n + 1, n + 1) diagrams. Let ω be the endomorphism of X
sending each diagram to its vertical flip. We will write the operation on diagrams of reduced
vertical concatenation by ◦: a ◦ b places a above b and remove any circles. Let Xk be the set of
crossingless matchings with exactly k through-strands. Let Mk be the set of all (n + 1, k) cap
diagrams, so that ω(Mk) is the set of all (k, n + 1) cup diagrams.

Definition 4.1. Let Lk be the free Z[t, t−1] module spanned by Mk, the (n + 1, k) cap diagrams.
We place a right TL-module structure on Lk by concatenation, where circles become factors
of [2] as usual, and any resulting diagram with fewer than k through-strands is sent to 0. This
is the cell module for cell k, and it is irreducible.

Example 4.2. The only diagram in Xn+1 corresponds to the identity map in TL. The cell
module Ln+1 has rank 1 over Z[t, t−1], and its generator is killed by all ui. We will take this as
the definition of the sign representation of TL.

Example 4.3. The next cell module Ln−1 has rank n over Z[t, t−1], having generators vi, i =
1 · · ·n (see Figure 6), such that

vjui =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[2]vj if i = j,

vi if i and j are adjacent,

0 if i and j are distant.

(4.1)

Given a (n+1, k) cap diagram a and a (k, n+1) cup diagram z, there are two things we
can do: take the composition z◦a to obtain an element called cz,a ofXk or take the composition
a ◦ z to get an element of TLk (there may be additional circles created, and the final diagram
may have fewer than k through-strands). Both compositions have the same closure on the
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punctured plane. Note that ω(cz,a) = cω(a),ω(z). The seemingly extraneous use of the notation
c·,· is standard for cellular algebras.

Proposition 4.4. There is, up to rescaling, a unique pairing (, ) : Lk × Lk → Z[[t, t−1]] for which ui
is self-adjoint, that is, (aui, b) = (a, bui). Given cup diagrams a and b inMk, one evaluates (a, b) by
considering the closure of cω(a),b ∈ TL, or equivalently the closure of b ◦ω(a) ∈ TLk. If the diagram
has nesting number k, one returns a scalar times [2] raised to the number of circles; if it has nesting
number < k, one returns zero. This is precisely the evaluation ε(cω(a),b) for some well-defined trace on
TL supported on nesting number k (which are unique up to rescaling).

4.2. Some Induced Sign Representations

Cell modules are naturally subquotients of the cellular algebra itself, viewed as a free module
(see [37]). For our purposes, we will describe the cell modules as subquotients of TL in
a different way, which will be more convenient to diagrammatically categorify. Taking the
inclusionTLJ → TL for some sub-Dynkin diagram J , we can induce the sign representation
ofTLJ up toTL. This is the quotient ofTL by the right ideal generated by ui, i ∈ J . In a future
paper, we will describe, for both the Hecke and Temperley-Lieb algebras, a diagrammatic way
to categorify the induction of both the “sign” and “trivial” representations of sub-Dynkin
diagrams, but for this paper we restrict to a specific case. For the sub-Dynkin diagram which
contains every index except i, let Ii be the corresponding ideal (generated by uj for j /= i),
and consider the induced sign representation V i = TL/Ii. Let li = min(i, n + 1 − i) and let
ki = n + 1 − 2li. It turns out that we can embed Lki inside V i, as shown explicitly below, and
we will categorify both modules accordingly. For this reason, we use Li to denote Lki . Note
that every possible Lk can be achieved as some Li with the exception of Ln+1.

For the rest of this section, fix an index i ∈ I. We define a module V i overTL abstractly,
and then prove that this module is isomorphic to TL/Ii.

Definition 4.5. For 0 ≤ l ≤ li (and letting k = n + 1 − 2l as always), let aik be the following
(k, n + 1) cup diagram with l top arcs, where the innermost top arc always connects i to i + 1:

l = 0 l = 1

(4.2)

l = 2 l = 3

(4.3)

Let Xi
k ⊂ Xk consist of all matchings of the form cai

k
,b for b ∈Mk. Let Xi be the disjoint

union of all Xi
k for 0 ≤ l ≤ li, and let V i be the free Z[t, t−1]-module with basis Xi. There is

a distinguished element 1 of this basis, the unique member of Xi
n+1. Let TL act on V i on the



42 International Journal of Mathematics and Mathematical Sciences

Figure 6: A basis for the cell module Ln−1, consisting of (n + 1, n − 1) cap diagrams (here, n = 4).

right by viewing elements of V i as though they were inTL, using the standard multiplication
rules, and then killing any terms whose diagrams are not in Xi.

The elements of Xi exhaust those elements of X where the only simple top arcs (those
connecting j to j + 1 for some j) connect i to i + 1. Any crossingless matching with a simple
top arc connecting j to j + 1 has an expression in TL as a monomial ui which begins with
uj . The converse is also true. Thus, Xi are the elements of X for which every expression of the
matching begins with ui. This motivates the definition.

While something does need to be checked to ensure that this defines a module action, it
is entirely straightforward. In the Temperley-Lieb algebra, things are generally easy to prove
because products of monomials always reduce to another monomial (with a scalar), not a
linear combination of multiple monomials. Therefore, checking the associativity condition for
being a module, say, involves showing that both sides of an equation are the same diagram
in Xi, or that both sides are 0. This module is cyclic, generated by 1, and Ii is clearly in the
annihilator of 1, so that TL/Ii surjects onto V i. One could prove the following by bounding
dimensions.

Claim 8. The modules V i and TL/Ii are isomorphic.

There is a (cellular) filtration on V i, given by the span of Xi
≤k, diagrams with at most

k through-strands (call it V i
≤k). Clearly, each subquotient in this filtration has a basis given

by Xi
k, or in other words by the elements cai

k
,b for b ∈ Mk. It is an easy exercise that this

subquotient is isomorphic to the cell module Lk, under the map sending b ∈ Mk to cai
k
,b.

There is one subquotient for each 0 ≤ l ≤ li.

Claim 9. The module Li is a submodule of V i.

Proof. Letting l = li and k = ki, the final term in the filtration is precisely Li ∼= V i
ki

.

Having explicitly defined the embedding Li ⊂ V i, we pause to investigate adjoint
pairings on V i.

Proposition 4.6. Consider the Z[[t, t−1]] module of semi-linear pairings on V i where (xuj , y) =
(x, yuj) for all j. Consider the li + 1 functionals on this space, which send a pairing to (1, cai

k
,ω(ai

k
))

for various k = n + 1 − 2l, 0 ≤ l ≤ li. Then these linear functionals are independent and yield an
isomorphism between the space of pairings and a free module of rank li + 1.

Note that, using adjunction, one can check that [2]l(1, cai
k
,ω(ai

k
)) = (cai

k
,ω(ai

k
), cai

k
,ω(ai

k
)).
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Proof. Given diagrams x, y ∈ Xi, the self-adjointness of ui implies that the value of (x, y) is
an invariant of the diagram y ◦ ω(x). In particular, (x, y) = (1, yω(x)) = (xω(y),1), where
yω(x) refers to the image of this diagram in the quotient TL/Ii. Therefore, if either yω(x) or
xω(y) is not in Xi then the value of (x, y) is zero. However, Xi ∩ ω(Xi) = {cai

k
,ω(ai

k
)} where

this set runs over all k with 0 ≤ l ≤ li. Thus the value of the pairing on all elements is clearly
determined by the values of (1, cai

k
,ω(ai

k
)) for all such k.

Consider the following map V i × V i → Z[[t, t−1]]: fix k, and for basis elements x, y
send (x, y) to r ∈ Z[t, t−1] if yω(x) = rcai

k
,ω(ai

k
) ∈ TL, and send (x, y) to zero otherwise.

Clearly this is a well-defined semi-linear map (being defined on a Z[t, t−1]-basis) and uj is
self-adjoint. Thus we have enough pairings to prove independence.

Remark 4.7. Once again, all pairings are defined topologically. The closure of cai
k
,ω(ai

k
) has

nesting number exactly k, which distinguishes the traces.

4.3. Categorifying Cell Modules

Categorifying the sign representation Ln+1 is easy. If we take the quotient of TLC by all
nonempty diagrams, we get a category where the only nonzero morphism space is the one-
dimensional space Hom(∅, ∅). This clearly categorifies Ln+1, and we will say no more.

Consider the quotient of the category TLC1 by all diagrams where any color not equal
to i appears on the left. Call this quotient Vi1. As usual, we let Vi2 be its additive grading
closure, and let Vi be its graded Karoubi envelope. We will show that Vi ∼= Vi2, so that we
really may think of Vi entirely diagrammatically without worrying about idempotents. We
claim that Vi categorifies V i. Not only this, but the action of TLC on Vi by placing diagrams
on the right will categorify the action of TL on V i.

Any monomial ui which goes to zero in V i is equal to a (scalar multiple of a) monomial
uj where some index j /= i appears on the left. Therefore, the corresponding object Ui will be
isomorphic to Uj, whose identity morphism is sent to zero in Vi1 since it has a j-colored line
on the left. There is an obvious map from V i to the Grothendieck group of Vi2, and the action
of TLC, descended to the Grothendieck group, will commute with the action of TL on V i.

Therefore, Hom spaces in Vi1 will induce a semi-linear pairing on V i, which satisfies
the property (auj , b) = (a, buj) becauseUj is self-adjoint. As before, once we determine which
pairing this is, our proof will be almost complete.

Lemma 4.8. The pairing induced by Vi1 will satisfy (1, caik,ω(aik)) = t
l/(1 − t2), where k = n + 1 − 2l.

Remark 4.9. Taking a (n + 1, n + 1) diagram and closing it off on the punctured plane, if m is
the number of circles and k is the nesting number, then the pairing comes from the trace on
TLwhich sends this configuration to [2]l+m−(n+1)(tl/(1 − t2)).

For a closure of an arbitrary diagram, l + m < n + 1 is possible. However, for any
diagram in Xi ∩ ω(Xi) (with extra circles thrown in), we have l +m ≥ n + 1, since removing
the circles yields precisely cai

k
,ω(ai

k
) for some k. This guarantees that evaluating the formula on

an element of V i yields a power series with nonnegative coefficients.

The proof of the lemma may be found shortly below. Temporarily assuming the
lemma, the remainder of our results are easy.
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Theorem 4.10. Vi2 is idempotent closed and Krull-Schmidt, so that Vi ∼= Vi2. Its Grothendieck group
is isomorphic to V i.

Proof. It is enough to check that for any ui /=uj corresponding to matchings in Xi,
Hom(Ui, Ui) is concentrated in nonnegative degrees with a 1-dimensional degree 0 part, and
Hom(Ui, Uj) is concentrated in strictly positive degrees (see the proof of Proposition 3.4).
This is a calculation using the semi-linear pairing.

Lettingm be the number of circles in a configuration on the punctured disk, and letting
k = n + 1 − 2l be the nesting number, then the evaluation will be in strictly positive degrees
if m < n + 1, and will be in nonnegative degrees with a 1-dimensional degree 0 part if m =
n + 1 exactly, but this was precisely the calculation in the proof of Lemma 3.5: for arbitrary
crossingless matchings ui and uj, the closure of uiω(uj) has fewer than n + 1 circles if ui /=uj,
and exactly n + 1 if they are equal.

Corollary 4.11. Let Li be the full subcategory of Vi with objects consisting of (sums and grading
shifts of) Ui such that ui is an element of V i

n+1−2li
. This has an action of TLC on the right. On the

Grothendieck group, this setup categorifies the cell module Li = V i
n+1−2li

.

Proof. That this subcategory is closed under the action of TLC is obvious, as is the existence
of a map from Li to the Grothendieck group. We already know the induced pairing, because
the subcategory is full. Therefore, the same arguments imply that the Grothendieck group
behaves as planned.

Proof of Lemma 4.8. To calculate the pairing, we may calculate (ui, ui) = gdimEnd(Ui) for the
following choices of i: ∅, i, i(i + 1) (i − 1), i(i + 1) (i − 1)(i + 2)i(i − 2), i(i + 1) (i − 1)(i + 2)i(i −
2)(i + 3)(i + 1)(i − 1)(i − 3), and so forth. These are pictured below.

(4.4)

(4.5)

These sequences are split into subsequences we call “tiers”, where the mth sequence
adds the mth tier. The following property of these sequences is easily verified: each sequence
i is in Xi, and remains in Xi if one removes any subset of the final tier, but ceases to be in Xi

if one removes a single element from any other tier instead.
Fix nonempty i in this sequence, and let j be the subsequence with the final tier

removed. It is a quick exercise to show that the lemma is equivalent to gdimEnd(Ui) =
(1 + t2)l/(1 − t2), where l is the number of elements in the final tier.

Now consider an element of the endomorphism ring. Using previous results, we may
assume it is a simple forest, with all double dots on the far left. Any double dot colored j /= i
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will be sent to zero, so we have only an action of the ring k[fi] on the left. This accounts for
the 1/(1 − t2) appearing in all the formulae.

Suppose there is a boundary dot in the morphism on any line not in the final tier. Then
the morphism factors through the sequence Uk where k is i with that index removed. As
discussed above, uk is not in Xi and therefore Uk is isomorphic to the zero object. See the
first picture below for an intuitive reason why such a morphism vanishes. Hence, the only
boundary dots which can appear occur on the final tier. It is easy to check that the existence of
a trivalent vertex joining three boundary lines will force the existence of a dot not on the final
tier; see the second picture below. Both pictures are for the sequence i(i+1)(i−1)(i+2)i(i−2),
and blue will represent i in all pictures in this section.

(4.6)

Therefore a nonzero endomorphism must be 1Uj accompanied on the right by either
identity maps or broken lines (pairs of boundary dots), because all other simple forests yield a
zero map. Identity maps have degree zero, while broken lines have degree 2. If these pictures
form a basis (along with the action of blue double dots on the left), then the graded dimension
will be exactly as desired. An example with l = 3, two broken lines, and one unbroken line is
shown below.

(4.7)

This spanning set is linearly independent in TLC over k, so any further dependencies
must come from having a nonblue color on the left. Consider an arbitrary endomorphism,
and reduce it using the TLC relations to a simple forest with all double dots on the left. The
actual double dots appearing are ambiguous, since there are polynomial relations in TLC,
but it is easy (knowing the generators of the TL ideal) to note that these relations are trivial
modulo nonblue colors. Hence the spanning set will be linearly independent if any diagram
inTLCwhich started with a nonblue color on the left will still have a nonblue color (perhaps
in a double-dot) on the left after reducing to a simple forest. This will be the case for any
diagram with a boundary dot on j.

Let red indicate any other index, and suppose that red appears on the far left.
Regardless of what index red is, unless there is a dot on j, the identity lines of j block
this leftmost red component from reaching any red on the boundary of the graph. Take a
neighborhood of a red line segment which includes no other colors and goes to −∞. Excising
this neighborhood, we get a simply connected region where the only relevant red boundary
lines are the two which connect to the ends of the segment. Red then will reduce to a simple
forest with double dots on the left, which in this case yields either a red double dot or a red
circle (potentially with more double dots).

or (4.8)
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However, no colors adjacent to red can interfere on the interior of a red circle, so the
circle evaluates to zero. Therefore, the diagram evaluates to zero or has at least one red double
dot on the left. We may ignore the red double dot and reduce the remainder of the diagram,
and so regardless of what else is done, the final result will have a red double dot on the
left.
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Using the diagrammatic calculus for Soergel bimodules, developed by Elias and Khovanov, as well
as Rasmussen’s spectral sequence, we construct an integral version of HOMFLY-PT and sl(n)-link
homology.

1. Introduction

During the past half-decade, categorification and, in particular, that of topological invariants
has flourished into a subject of its own right. It has been a study finding connections
and ramifications over a vast spectrum of mathematics, including areas such as low-
dimensional topology, representation theory, and algebraic geometry. Following the original
work of Khovanov on the categorification of the Jones polynomial in [1], came a
slew of link homology theories lifting other quantum invariants. With a construction
that utilized matrix factorizations, a tool previously developed in an algebra-geometric
context, Khovanov and Rozansky produced the sl(n) and HOMFLY-PT link homology
theories. Albeit computationally intensive, it was clear from the onset that thick interlacing
structure was hidden within. The most insightful and influential work in uncovering these
innerconnections was that of Rasmussen in [2], where he constructed a spectral sequence
from the HOMFLY-PT to the sl(n)-link homology. This was a major step in deconstructing
the web of how these theories come together, yet many structural questions remained and
still remain unanswered, waiting for a new approach. Close to the time of the original work,
Khovanov produced an equivalent categorification of the HOMFLY-PT polynomial in [3],
but this time using Hochschild homology of Soergel bimodules and Rouquier complexes of
[4]. The latter proved to be more computation-friendly and was used by Webster to calculate
many examples in [5].
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In the meantime, a new flavor of categorification came into light. With the work of
Khovanov and Lauda on the categorification of quantum groups in [6], a diagrammatic
calculus originating in the study of 2 categories arrived into the foreground. This graphical
approach proved quite fruitful and was soon used by Elias and Khovanov to rewrite the work
of Soergel in [7], and en suite by Elias and the author to repackage Rouquier’s complexes and
to prove that they are functorial over braid cobordisms [8] (not just projectively functorial
as was known before). We note the closely related independent construction of Chuang
and Rouquier in [9, 10]. An immediate advantage to the diagrammatic construction was a
comparative ease of calculation.

As there has yet to be seen an integral version of either HOMFLY-PT or sl(n)-link
homology, with the original Khovanov homology being defined over Z and torsion playing
an interesting role, a natural question arose as to whether this graphical calculus could
be used to define these. The definition of such integral theories is precisely the purpose
of this paper. The one immediate disadvantage to the graphical approach is that at the
present moment there does not exist a diagrammatic calculus for the Hochschild homology
of Soergel bimodules. Hence, to define integral HOMFLY-PT homology, our paper takes a
rather roundabout way, jumping between matrix factorizations and diagrammatic Rouquier
complexes whenever one is deemed more advantageous than the other. For the sl(n) version
of the story, we add the Rasmussen spectral sequence into the mix and essentially repeat his
construction in our context.

When choosing what to define in full and what to leave out, we assume the reader’s
familiarity with [8]. The organization of the paper is the following: in Section 2, we give a
brief account of the necessary tools (matrix factorizations, Soergel bimodules, Hochschild
homology, Rouquier complexes, and corresponding diagrammatics)—the emphasis here is
brevity and we refer the reader to more original sources for particulars and details; in Sections
3 and 4, we describe the integral HOMFLY-PT complex and prove the Reidemeister moves,
utilizing all of the background in Section 2; Section 5 is devoted to the Rasmussen spectral
sequence and integral sl(n)-link homology. We conclude it with some remarks and questions.

Throughout the paper, we will refer to a positive crossing as the one labelled D+ and
negative crossing as the one labelled D− in Figure 1. For resolutions of a crossing, we will
refer to Do and Ds of Figure 1 as the “oriented” and “singular” resolutions, respectively. We
will use the following conventions for the HOMLFY-PT polynomial:

aP(D−) − a−1P(D+) =
(
q − q−1

)
P(Do), (1.1)

with P of the unknot being 1. Substituting a = qn we arrive at the quantum sl(n)-link
polynomial.

2. The Toolkit

We will require some knowledge of matrix factorizations, Soergel bimodules, and Rouquier
complexes, as well as the corresponding diagrammatic calculus of Elias and Khovanov [7].
In this section the reader will find a brief survery of the necessary tools, and for more details
we refer him to the following papers: matrix factorizations [2, 11], Soergel bimodules and
Rouquier complexes and diagrammatics [3, 4, 7, 8], and Hochschild homology [3, 12].
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D−

Do

Ds

D+

Figure 1: Crossings and resolutions (note: these are braid diagrams).

2.1. Matrix Factorizations

Definition 2.1. Let R be a Noetherian commutative ring, w ∈ R, and C∗, ∗ ∈ Z, a free graded
R-module. A Z-graded matrix factorization with potential w ∈ R consists of C∗ and a pair of
differentials d± : C∗ → C∗±1, such that (d+ + d−)

2 = wIdC∗ .

A morphism of two matrix factorizations C∗ and D∗ is a homomorphism of graded
R-modules f : C∗ → D∗ that commutes with both d+ and d−. The tensor product C∗ ⊗ D∗
is taken as the regular tensor product of complexes, and is itself a matrix factorization with
diffentials d+ and d−. A useful and easy exercise is the following.

Lemma 2.2. Given two matrix factorizations C∗ and D∗ with potenials wc and wd, respectively, the
tensor product C∗ ⊗D∗ is a matrix factorization with potential wc +wd.

Remark 2.3. Following Rasmussen [2], we work with Z-graded, rather than Z/2Z-graded,
matrix factorizations as in [11]. The Z-grading implies that (d+ + d−)

2 = wIdC∗ is equivalent
to

d2
+ = d2

− = 0,

d+d− + d−d+ = wIdC∗ .
(2.1)

In the case that w = 0, we acquire a new Z/2Z-graded chain complex structure with
differential d+ + d−.

Suppressing the underlying ring R and potential w, we will denote the category of
graded matrix factorizations by mf .

We also need the notion of complexes of matrix factorizations. If we visualize a
collection of matrix factorizations as sitting horizontally in the plane at each integer level,
with differentials d+ and d− running right and left, respectively, we can think of morphisms
{dv} between these as running in the vertical direction. All together, we have that

d± : Ci,j −→ Ci±1,j , dv : Ci,j −→ Ci,j+1, (2.2)

where we think of i as the horizontal grading and j as the vertical grading, and will denote
these as grh and grv, respectively.



4 International Journal of Mathematics and Mathematical Sciences

In addition we will be taking tensor products of complexes of matrix factorizations (in
the obvious way) and, just to add to the confusion, we will also have homotopies of these
complexes as well homotopies of matrix factorizations themselves. These notions will land
us in different categories for which we now give some notation.

(i) hmf will denote the homotopy category of matrix factorizations.

(ii) KOM(mf) will denote the category of complexes of matrix factorizations.

(iii) KOMh(mf) will denote homotopy category of complexes of matrix factorizations.

(iv) KOMh(hmf) will denote the obvious conglomerate.

2.2. Diagrammatics of Soergel Bimodules

The category of Soergel bimodules SC1 is a monoidal category generated by objects Bi, where
i ∈ I is a finite indexing set, which satisfy

Bi ⊗ Bi ∼= Bi{1} ⊕ Bi{−1},

Bi ⊗ Bj ∼= Bj ⊗ Bi, for distant i, j,

Bi ⊗ Bj ⊗ Bi ⊕ Bj ∼= Bj ⊗ Bi ⊗ Bj ⊕ Bi, for adjacent i, j.

(2.3)

These objects Bi are graded and the notation {j} refers a grading shift of +j. Technically
speaking this should be called the category of Bott-Samuelson bimodules and the “real”
category of Soergel bimodules is obtained as described at the end of this section. A key feature
of this category is that the Grothendieck group of SC(I) is isomorphic to the Hecke algebra
H of type A∞ over the ring Z[t, t−1]. We refer the reader to [7, 8] for defenitions and relvant
details.

More concretely, the Soergel bimodule Bi = R
⊗

RiR{−1}, where R = Z[x1 −
x2, . . . , xn−1 − xn] with degxi = 2, {m} denotes the grading shift by m, and Ri is the
subring of invariants corresponding to the permutation (i, i + 1) under the natural action
of Sn on the variables. There is some flexibility as to the exact description of R, but we
work with the most convenient for the constructions below (note that our grading shift
of −1 in the definition of Bi is absent from the contruction of [3]). We have that B∅ =
R itself, and Bi = Bi1

⊗
RBi2
⊗

R · · ·
⊗

RBid , where i is denotes the sequence {i1, i2, . . . , id},
that is,

Bi =

(

R
⊗

Ri1

R{−1}
)

⊗
(

R
⊗

Ri2

R{−1}
)

⊗ · · · ⊗
(

R
⊗

Rid

R{−1}
)

= R
⊗

Ri1

R ⊗ R
⊗

Ri2

R ⊗ · · · ⊗ R
⊗

Rid

R{−d}

= R
⊗

Ri1

⊗ R
⊗

Ri2

R
⊗

Ri3

· · ·R
⊗

Rid

R{−d}.

(2.4)
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One useful feature of this categorification is that it is easy to calculate the dimension

of Hom spaces in each degree. Let HOM(M,N) def=
⊕

m∈Z Hom(M,N{m}) be the graded
vector space (actually an R-bimodule) generated by homogeneous morphisms of all degrees.
Then HOM(Bi, Bj) is a free left R-module, and its graded rank over R is given by a natural
bilinear form (bi, bj) defined on the Hecke algebra H. For more information on this
categorification and related topics we refer the reader to [7, 13].

The graphical counterpart, which we will also refer to as SC1 was given a
diagrammatic presentation by generators and relations, allowing morphisms to be viewed
as isotopy classes of certain graphs.

An object in SC1 is given by a sequence of indices i, which is visualized as d points on
the real line R, labelled or “colored” by the indices in order from left to right. Sometimes these
objects are also called Bi. Morphisms are given by pictures embedded in the strip R × [0, 1]
(modulo certain relations), constructed by gluing the following generators horizontally and
vertically:

For instance, if “blue” corresponds to the index i and “red” to j, then the lower right
generator is a morphism from jij to iji. The generating pictures above may exist in various
colors, although there are some restrictions based on adjacency conditions.

We can view a morphism as an embedding of a planar graph, satisfying the following
properties:

(1) edges of the graph are colored by indices from 1 to n;

(2) edges may run into the boundary R × {0, 1}, yielding two sequences of colored
points on R, the top boundary i, and the bottom boundary j. In this case, the graph
is viewed as a morphism from j to i;

(3) only four types of vertices exist in this graph: univalent vertices or “dots,” trivalent
vertices with all three adjoining edges of the same color, 4-valent vertices whose
adjoining edges alternate in colors between distant i and j, and 6-valent vertices
whose adjoining edges alternate between adjacent i and j.

The degree of a graph is +1 for each dot and −1 for each trivalent vertex. 4-valent and
6-valent vertices are of degree 0. The term graph henceforth refers to such a graph embedding.

By convention, we color the edges with different colors, but do not specify
which colors match up with which i ∈ I. This is legitimate, as only the various
adjacency relations between colors are relevant for any relations or calculations. We will
specify adjacency for all pictures, although one can generally deduce it from the fact
that 6-valent vertices only join adjacent colors, and 4-valent vertices join only distant
colors.

In addition to the bimodules Bi above, we will require the use of the bimodule
R
⊗

Ri,i+1R{−3}, where Ri,i+1 is the ring of invariants under the transpositions (i, i + 1) and
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(i+1, i+2), and will use a black squiggly line, as in (2.7) below, to represent it. This bimodule
comes into play in the isomorphisms:

Bi ⊗ Bi+1 ⊗ Bi ∼= Bi ⊕
(

R
⊗

Ri,i+1

R{−3}
)

,

Bi+1 ⊗ Bi ⊗ Bi+1
∼= Bi+1 ⊕

(

R
⊗

Ri,i+1

R{−3}
)

,

(2.5)

which we will use in the proof of Reidemeister move III. As usual in a diagrammatic category,
composition of morphisms is given by vertical concatenation, and the monoidal structure is
given by horizontal concatenation.

We then allow Z-linear sums of graphs, and apply relations to obtain our categorySC1.
The relations come in three flavors: one color, two distant colors, two adjacent and one distant,
and three mutually distant colors. We do not list all of them here, just the consequences
necessary for the calculations at hand, and refer the reader to [7, 11] for a complete picture.
Our graphs are invariant under isotopy and in addition, we have the following isomorphisms
or “decompositions”:

{−1}

{1}[i + 1]

[i]

−

(2.6)

The vertical juxtapositions of diagrams corresponds to direct sums of morphisms and
[i] corresponds to the morphism induced by multiplication by the polynomial xi. Note that
this relation is precisely that of 1 described diagrammatically.

−

(2.7)

Here, we have the graphical counterpart of 4 and 5.

Remark 2.4. Primarily we will work in another category denoted SC2, the category formally
containing all direct sums and grading shifts of objects in SC1, but whose morphisms are
forced to be degree 0. In addition, we let SC be the Karoubi envelope, or idempotent
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completion, of the category SC2. Recall that the Karoubi envelope of a category C has as
objects pairs (B, e) where B is an object in C and e an idempotent endomorphism of B. This
object acts as though it were the “image” of this projection e, and in an additive category
behaves like a direct summand. For more information on Karoubi envelopes, see Wikipedia.
It is really here that the object R

⊗
Ri,i+1R{−3} of 4 and 5 resides. In practice all our calculations

will be done in SC2, but since SC2 includes fully faithfully into SC they will be valid there as
well.

The important fact here is that there is a functor from SC to the category of R-
bimodules, sending a line colored i to Bi and each generator to an appropriate bimodule map.
The functor gives an equivalence of categories between this diagrammatic category and the
subcategory SC1 of R-bimodules mentioned in the previous section, so the use of the same
name is legitimate.

Our diagrammatic category has many wonderful properties, such as the self-
adjointness of Bi, which permits us to “twist” morphisms around and view any morphism as
one from or to the empty diagram. This allows for a very hands-on, explicit, understanding
of hompaces between objects in SC1, which was key in proving functoriality in [8].

2.3. Hochschild (Co)Homology

Let A be a k-algebra and M an A-bimodule, or equivalently a left A ⊗ Aop-module or a
right Aop ⊗ A-module. The definitions of the Hochschild (co)homology groups HH∗(A,M)
(HH∗(A,M)) are the following:

HH∗(A,M) := TorA⊗A
op

∗ (M,A), HH∗(A,M) := Ext∗A⊗Aop(A,M). (2.8)

To compute them we take a projective resolution of theA-bimoduleA, with the natural
left and right action, by projective A-bimodules

· · · −→ P2 −→ P1 −→ P0 −→ 0 (2.9)

and tensor this with M over A ⊗Aop to get

· · · −→ P2

⊗

A⊗Aop

M −→ P1

⊗

A⊗Aop

M −→ P0

⊗

A⊗Aop

M −→ 0. (2.10)

The homology of this complex is isomorphic to HH∗(A,M).

Example 2.5. For any bimodule M, we have

HH0(A,M) ∼=
M

[A,M]
, HH0(A,M) ∼=MA, (2.11)

where [A,M] is the subspace of M generated by all elements of the form am−ma, a ∈ A and
m ∈M, and MA = {m ∈M | am = ma for all a ∈ A}. We leave this as an exercise or refer the
reader to [12].
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For the polynomial algebra A = k[x1, . . . , xn], with k commutative, we can use the
Koszul resolution of A by free A ⊗ A-modules, which is the tensor product of the following
complexes:

0 −→ A ⊗A xi⊗1−1⊗xi−−−−−−−−→ A ⊗A −→ 0, (2.12)

for 1 ≥ i ≥ n. This resolution has length n, and its total space is naturally isomorphic to the
exterior algebra on n generators tensored withA⊗A. Hence, we have that the complex which
computes Hochschild homology of a bimodule M over A is made up of 2n copies of M, with
the differentials coming from multiplication by xi ⊗ 1 − 1 ⊗ xi. In other words

0 −→ Cn(M) −→ · · · −→ C1(M) −→ C0(M) −→ 0, (2.13)

with

Cj(M) =
⊕

I⊂{1,...,n},|I|=j
M
⊗

Z

Z[I], (2.14)

where Z[I] is the rank 1 free abelian group generated by the symbol [I] (i.e., it is there to
keep track where exactly we are in the complex). Here, the differential takes the form

d(m ⊗ [I]) =
∑

i∈I
± (xim −mxi) ⊗ [I \ {i}], (2.15)

and the sign is taken as negative if I contains an odd number of elements less than i.

Remark 2.6. For the polynomial algebra, the Hochschild homology and cohomology are
isomorphic,

HHi(A,M) ∼= HHn−i(A,M), (2.16)

for any bimodule M. This comes from self-duality of the Koszul resolution for such algebras.
Hence, we will be free to use either homology or cohomology groups in the constructions
below.

For us, taking Hochschild homology will come into play when looking at closed
braid diagrams. To a given resolution of a braid diagram we will assign a Soergel bimodule;
“closing off” this diagram will correspond to taking Hochschild homology of the associated
bimodule. More details are below in Section 3.2.

3. The Integral HOMFLY-PT Complex

3.1. The Matrix Factorization Construction

As stated above we will work with Z-graded, rather than Z/2Z-graded, matrix factorizations
and follow closely the conventions laid out in [2]. We begin by first assigning the appropriate
complex to a single crossing and then extend this to general braids.
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Gradings

Our complex will be triply graded, coming from the internal or “quantum” grading of the
underlying ring, the homological grading of the matrix factorizations, and finally an overall
homological grading of the entire complex. It will be convenient to visualize our complexes
in the plane with the latter two homological gradings lying in the horizontal and vertical
directions, respectively. We will denoted these gradings by (i, j, k) = (q, 2grh, 2grv) and their
shifts by curly brackets, that is, {a, b, c} will indicate a shift in the quantum grading by a,
in the horizontal grading by b, and in the vertical grading by c. Note that following the
conventions in [2], we have doubled the latter two gradings, as illustrated in Figure 2.

Definition 3.1 (edge ring). Given a diagram D with vertices labelled by x1, . . . , xn, define the
edge ring of D as R(D) := Z[x1, . . . , xn]/〈rel(vi)〉, where i runs over all internal vertices, or
marks, with the defining relations being xi − xj for type I and xk + xl − xi − xj for type II
vertices (see Figure 2).

Consider the two types of crossings D+ and D−, as in Figure 1, with outgoing edges
labeled by k, l, and incoming edges labelled by i, j. Let

Rc :=
Z
[
xi, xj , xk, xl

]

(
xk + xl − xi − xj

) ∼= Z
[
xi, xj , xk

]
(3.1)

be the underlying ring associated to a crossing. The complex for the positive crossing D+ is
given by the following diagram:

Rc{0,−2, 0}
(xk−xi)

Rc{0, 0, 0}

Rc{2,−2,−2}
−(xk−xi)(xk−xj )

(xj−xk)

Rc{0, 0,−2}

1 (3.2)

The complex for the negative crossing D+ is given by the following diagram:

Rc{0,−2, 2}
−(xk−xi)(xk−xj )

Rc{−2, 0, 2}

Rc{0,−2, 0}
(xk−xi)

1

Rc{0, 0, 0}

(xj−xk) (3.3)
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Remark 3.2. The horizontal and vertical differentials d+ and dv are homogeneous of degrees
(2, 2, 0) and (0, 0, 2), respectively. For those more familiar with [11] and hoping to reconcile
the differences, note that in Rc multiplication by xkxl − xixj = −(xk − xi)(xk − xj), so up to
some grading shifts we are working with the same underlying complex as in the original
construction, but over Z, not Q.

To write down the complex for a general braid we tensor the above for every crossing,
keeping track of markings, replace the underlying ring with a copy of the edge ring R(D)
and replace dv with (−1)idv to make it anticommute with dh (here i is the degree if dv). More
precisely, given a diagram D of a braid let

C(D) :=
⊗

crossings

(

C(Dc)
⊗

Rc

R(D)

)

. (3.4)

Definition 3.3 (HOMFLY-PT homology). Given a braid diagram D of a link L we define its
HOMFLY-PT homology to be the group

H(L) := H(H(C(D), d+), d∗v){−w + b,w + b − 1, w − b + 1}, (3.5)

where w and b are the writhe and the number of strands of D, respectively.

Remark 3.4. In [2], this is what Rasmussen calls the “middle HOMFLY homology.” The
relation between this link homology theory and the HOMFLY-PT polynomial is that for any
link L ⊂ S3

∑

i,j,k

(−1)(k−j)/2ajqi dimHi,j,k(L) =
−P(L)
q − q−1

. (3.6)

The Reduced Complex

There is a natural subcomplex C(D) ⊂ C(D) defined as follows: let R(D) ⊂ R(D) to be
the subring generated by xi − xj where i, j run over all edges of D and let C(D) be the
subcomplex gotten by replacing in C(D) each copy of R(D) by one of R(D). A quick glance
at the complexes C(D+) and C(D−) will reassure the reader that this is indeed a subcomplex,
as the coefficients of both dv and d+ lie in R(D). We will refer to C(D) as the reduced complex
for D.

(i) If i is an edge of D we can also define the complex C(D, i) := C(D)/(xi). It is not
hard to see that C(D, i) ∼= C(D) and is, hence, independent of the choice of edge i.
See [2, Section 2.8] for a discussion as well as [11].

Below we will work primarily with the reduced complex C(D), and will stick with the
grading conventions of [2], which are different than that of [11].
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Definition 3.5 (reduced homology). Given a braid diagram D of a link Lwe define its reduced
HOMFLY-PT homology to be the group

H(L) := H
(
H
(
C(D), d+

)
, d∗v

)
{−w + b − 1, w + b − 1, w − b + 1}, (3.7)

where w and b are the writhe and the number of strands of D, respectively.

Remark 3.6. For any link L ⊂ S3, we have

∑

i,j,k

(−1)(k−j)/2ajqi dimH
i,j,k

(L) = P(L). (3.8)

We can look at the complex C(D) in two essential ways: either as the tensor product, over
appropriate rings, of C(D+) and C(D−) for every crossing in our diagram D (as described
above), or as a tensor product of corresponding complexes over all resolutions of the diagram.
Although this is really just a matter of point of view, the latter approach is what we find
in the original construction of Khovanov and Rozansky, as well as in the Soergel bimodule
construction to be described below. To clarify this approach, consider the oriented Do and
singular Ds resolution of a crossing as in Figure 1. Assign to Do the complex

0 −→ Rc
(xk−xi)−−−−−−→ Rc −→ 0 (3.9)

and to Ds the complex

0 −→ Rc

−(xk−xi)(xk−xj )−−−−−−−−−−−−−→ Rc −→ 0. (3.10)

Then, we have

C(D+) : 0 −→ C(Ds) −→ C(Do) −→ 0,

C(D−) : 0 −→ C(Do) −→ C(Ds) −→ 0,
(3.11)

where the maps are given by dv as defined above. (For simplicity we leave out the internal
grading shifts.) Let a resolution of a link diagram D be a resolution of each crossing in either
of the two ways above, and let the complex assigned to each resolution be the tensor product
of the corresponding complexes for each resolved crossing. Then, modulo grading shifts, our
total complex can be viewed as

C(D) =
⊕

resolutions

C(Dres), (3.12)

whereDres is the diagram of a given resolution. This closely mimics the “state-sum model” for
the Jones polynomial, due to Kauffman [14], or the MOY calculus of [15] for other quantum
polynomials.
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Figure 3: A braid diagram.

3.2. The Soergel Bimodule Construction

We now turn to the Soergel bimodule construction for the HOMFLY-PT homology found in
[3]. Recall from Section 2.2 that the Soergel bimodule Bi = R

⊗
RiR{−1} where R = Z[x1 −

x2, . . . , xn−1 − xn] is the ring generated by consecutive differences in variables x1, . . . , xn (n
is the number of strands in the braid diagram), and Ri ⊂ R is the subring of S2-invariants
corresponding to the permutation action xi ↔ xi+1. Furthermore define the map Bi → R by
1 ⊗ 1 �→ 1, and the map R → Bi by 1 �→ (xi − xi+1) ⊗ 1 + 1 ⊗ (xi − xi+1). We resolve a crossing in
position [i, i+1] in the either of two ways, as in Figure 1, assigningR to the oriented resolution
and Bi to the singular resolution. For a positive crossing, we have the following complex:

C(D+) : 0 −→ R{2} −→ Bi{1} −→ 0, (3.13)

and for a negative crossing the complex

C(D−) : 0 −→ Bi{−1} −→ R{−2} −→ 0. (3.14)

We place Bi in homological grading 0 and increase/decrease by 1, that is, in the complex for
D+, R{2} is in homological grading −1. Note, this grading convention differs from [3], and is
the convention used in [8]. The complexes above are known as Rouquier complexes, due to
Rouquier who studied braid group actions with relation to the category of Soergel bimodules;
for more information we refer the reader to [3, 4, 8].

Given a braid diagram D we tensor the above complexes for each crossing, arriving
at a total complex of length k, where k is the number of crossings of D, or equivalently the
length of the corresponding braid word (Figure 3). Each entry in the complex can be thought
of as a resolution of the diagram consisting of the tensor product of the appropriate Soergel
bimodules. For example, to the graph in Section 3.2, we assign the bimodule B1⊗B2⊗B1. That
is, modulo grading shifts, we can view our total complex as

C(D) =
⊕

resolutions

C(Dres). (3.15)
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To proceed, we take Hochschild homology HH(C(Dres)) for each resolution of D and arrive
at the complex

HH(C(D)) =
⊕

resolutions

HH(C(Dres)), (3.16)

with the induced differentials. Finally, taking homology of HH(C(D)) with respect to these
differentials gives us our link homology.

Definition 3.7 (reduced homology). Given a braid diagram D of a link Lwe define its reduced
HOMFLY-PT homology to be the group

H(HH(C(D))). (3.17)

Of course, now that, we have defined reduced HOMFLY-PT homology in two different
ways, it would be nice to reconcile the fact that they are indeed the same.

Claim 1. Up to grading shifts the two definitions of reduced HOMFLY-PT homology agree,
that is, H(H(C(D), d+), d∗v) ∼= H(HH(C(D))) for a diagram D of a link L.

Proof. The proof in [3] works without any changes for matrix factorizations and Soergel
bimodules over Z. We sketch it here for completeness and the fact that we will be referring
to some of its details a bit later. Letus first look at the matrix factorization C(Ds) (unreduced
version) associated to a singular resolution Ds. Now C(Ds) can be thought of as a Koszul
complex of the sequence (xk + xl − xi − xj , xkxl − xixj) in the polynomial ring Z[xi, xj , xk, xl]
(donot forget that in Rc multiplication by xkxl − xixj = −(xk − xi)(xk − xj)). This sequence
is regular so the complex has cohomology only in the right-most degree. The cohomology is
the quotient ring

Z
[
xi, xj , xk, xl

]

(
xi + xj − xk − xl, xkxl − xixj

) . (3.18)

This is naturally isomorphic to the Soergel bimodule B′i (notice that this is the “unreduced”
Soergel bimodule) over the polynomial ring R′ = Z[xi, xj]. The left and right action of R′ on
B′i corresponds to multiplication by xi, xj and xk, xl, respectively. Quotienting out by xk +xl −
xi − xj and xkxl − xixj agrees with the definition of B′i as the tensor product R′

⊗
R′i
R′ over the

subalgebra R′i of symmetric polynomials in xi, xj .
Now letus consider a general resolution Dres. The matrix factorization for Dres is, once

again, just a Koszul complex corresponding to a sequence of two types of elements. The first
ones are as above, that is, they are of the form xk + xl − xi − xj and xkxl − xixj and come
from the singular resolutions Ds, and the remaining are of the form xi − xj that come from
“closing off” our braid diagram D, which in turn means equating the corresponding marks
at the top and bottom the diagram. Now it is pretty easy to see that the polynomials of the
first type, coming from the Dss form a regular sequence and we can quotient out by them
immediately, just like above. The quotient ring we get is naturally isomorphic to the Soergel
bimodule B′(Dres) associated to the resolution Dres. At this point all, we have left is to deal
with the remaining elements of the form xi−xj coming from closing offD; to be more concrete,
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the Koszul complex we started with for Dres is quasi-isomorphic to the Koszul complex of the
ring B′(Dres) corresponding to these remaining elements. This in turn precisely computes the
Hochschild homology of B′(Dres).

Finally if we downsize from B′i to Bi and from C(Dres) to C(Dres) we get the required
isomorphism. For more details we refer the reader to [3].

Gradings et al.

We come to the usual rigmarole of grading conventions, which seems to be evepresent in
link homology. Perhaps when using the Rouquier complexes above we could have picked
conventions that more closely matched those of Section 3.1. However, we chose not to for a
couple of reasons: first there would inevitably be some grading conversion to be done either
way due to the inherent difference in the nature of the constructions, and second we use
Rouquier complexes to aid us in just a few results (namely the proof of Reidemeister moves
II and III), and leave them shortly after attaining these; hence, it is convenient for us, as well
as for the reader familiar with the Soergel bimodule construction of [3] and the diagrammatic
construction of [7], to adhere to the conventions of the former and the subsequent results in
[8]. For completeness, we descibe the conversion rules. Recall that in the matrix factorization
construction of Section 3.1 we denoted the gradings as (i, j, k) = (q, 2grh, 2grv).

(i) To get the cohomological grading in the Soergel construction take (j − k)/2 from
Section 3.1.

(ii) The Hochschild grading here matches the “horizontal” or j grading of Section 3.1.

(iii) To get the “quantum” grading i of Section 3.1 of an element x, take Hochschild
grading of x minus deg(x), that is, deg(x) = j(x) − i(x).

3.2.1. Diagrammatic Rouquier Complexes

We now restate the last section in the diagrammatic language of [8] as outlined above in
Section 2.2. The main advantage of doing this is the inherent ability of the graphical calculus
developed by Elias and Khovanov in [7] to hide and, hence simplify, the complexity of the
calculations at hand. Recall that we work in the integral version of Soergel category SC2 as
defined in Section 2.3 of [8], which allows for constructions over Z without adjoining inverses
(see Section 5.2 in [8] for a discussion of these facts). Recall, that an object of SC2 is given by
a sequence of indices i, visualized as d points on the real line and morhisms are given by
pictures or graphs embedded in the strip R × [0, 1]. We think of the indices as “colors,” and
depict them accordingly. The Soergel bimodule Bi is represented by a vertical line of “color”
i (i.e., by the identity morphism from Bi to itself) and the maps we find in the Rouquier
complexes above, Section 3.2, are given by those referred to as “start dot” and “end-dot.”
More precisely, the complexes C(D−) and C(D+) become as illustrated in Figure 4.

For completeness and ease we remind the reader of the diagrammatic calculus rubric
used to contruct Rouquier complexes for a given braid diagram.

3.2.2. Conventions

We use a colored circle to indicate the empty graph, but maintain the color for reasons of
sanity. It is immediately clear that in the complex associated to a tensor product of d Rouquier
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:

: 0

0

{2}

{−1}

−1 0

{1} 0

0

{−2}
1

0

Figure 4: Diagrammatic Rouquier complex for right and left crossings.

complexes, each summand will be a sequence of k lines where 0 ≤ k ≤ d (interspersed with
colored circles, but these represent the empty graph so could be ignored). Each differential
from one summand to another will be a “dot” map, with an appropriate sign.

(1) The dot would be a map of degree 1 if Bi had not been shifted accordingly. In SC2,
all maps must be homogeneous, so we could have deduced the degree shift in Bi
from the degree of the differential. Because of this, it is not useful to keep track of
various degree shifts of objects in a complex. Hence at times we will draw all the
objects without degree shifts, and all differentials will therefore be maps of graded
degree 1 (as well as homological degree 1). It follows from this that homotopies will
have degree −1, in order to be degree 0 when the shifts are put back in. One could
put in the degree shifts later, noting that B∅ always occurs as a summand in a tensor
product exactly once, with degree shift 0.

(2) We will use blue for the index associated to the leftmost crossing in the braid, then
red and dotted orange for other crossings, from left to right. The adjacency of these
various colors is determined from the braid.

(3) We read tensor products in a braid diagram from bottom to top. That is, in the
following diagram, we take the complex for the blue crossing, and tensor by the
complex for the red crossing. Then we translate this into pictures by saying that
tensors go from left to right. In other words, in the complex associated to this braid,
blue always appears to the left of red.

(4) One can deduce the sign of a differential between two summands using the Liebnitz
rule, d(ab) = d(a)b + (−1)|a|ad(b). In particular, since a line always occurs in the
basic complex in homological dimension ±1, the sign on a particular differential is
exactly given by the parity of lines appearing to the left of the map. For example,

−

−

−

−
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(5) When putting an order on the summands in the tensored complex, we use
the following standardized order. Draw the picture for the object of smallest
homological degree, which we draw with lines and circles. In the next homological
degree, the first summand has the first color switched (from line to circle, or
circle to line), the second has the second color switched, and so forth. In the next
homological degree, two colors will be switched, and we use the lexicographic
order: 1st and 2nd, then 1st and 3rd, then 1st and 4th,. . . then 2nd and 3rd, and
so forth. This pattern continues.

4. Checking the Reidemeister Moves

We will use the matrix factorization construction of Section 3.1 to check Reidemeister move
I, as it is not very difficult to verify even over Z that this goes through, and the diagrammatic
calculus of Section 3.2.1 for the remaining moves. There are two main reasons for the
interplay: first, checking Reidemeister II and III over Z using the matix factorization approach
is rather computationally intensive (it was already quite so over Q in [11] with all the
algebraic advantages of working over a field at hand); second, at this moment there does
not exist a full diagrammatic description of Hochschild homology of Soergel bimodules,
which prevents us from using a pictorial calculus to compute link homology from closed
braid diagrams. Of course, for Reidemeister II and III we could have used the computations
of [8], where we prove the stronger result that Rouquier complexes are functorial over braid
cobordisms. Instead, the proofs we exhibit below use essentially the same strategy as the
original paper [11], but are so much simpler and more concise that they underline well the
usefulness of the diagrammatic calculus for computations.

A small lemma from linear algebra, which Bar-Natan refers to as “Gaussian
Elimination for Complexes” in [16], will be very helpful to us.

Lemma 4.1. If φ : B → D is an isomorphism (in some additive category C), then the four-term
complex segment below

· · · [A]

⎛

⎝α
β

⎞

⎠

−−−−−→
[
B
C

]

⎛

⎝φ δ
γ ε

⎞

⎠

−−−−−−−−−→
[
D
E

] (μ ν
)

−−−−−−−→ [F] · · ·
(4.1)
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is isomorphic to the (direct sum) complex segment

· · · [A]

⎛

⎝0
β

⎞

⎠

−−−−−→
[
B
C

]

⎛

⎝φ 0
0 ε − γφ−1δ

⎞

⎠

−−−−−−−−−−−−−−−−−−→
[
D
E

] (0 ν
)

−−−−−−→ [F] · · · .
(4.2)

Both of these complexes are homotopy equivalent to the (simpler) complex segment

· · · [A]
(β)
−−−→ [C]

(ε−γφ−1δ)
−−−−−−−−−→ [E]

(ν)−−→ [F] · · · . (4.3)

Here the capital letters are arbitrary columns of objects in C and all Greek letters are arbitrary matrices
representing morphisms (all the matrices are block matrices); φ : B → D is an isomorphism, that is,
it is invertible.

4.1. Reidemeister I

Proof. The complex C(DIa) for the left-hand side braid in Reidemester Ia, see Figure 5, has the
form

Z[x1, x2]{0,−2, 0} 0
Z[x1, x2]{0, 0, 0}

Z[x1, x2]{2,−2,−2} 0

(x2−x1)

Z[x1, x2]{0, 0,−2}

1 (4.4)

Up to homotopy, the right-hand side of the complex dissapears and only the top left
corner survives after quotienting out by the relation x2−x1. Note that the overall degree shifts
of the total complex make sure that the left-over entry sits in the correct trigrading.

Similarly, the complex C(DIb) for the left-hand side braid in Reidemester Ib, has the
form

Z[x1, x2]{0,−2, 2} 0
Z[x1, x2]{−2, 0, 2}

Z[x1, x2]{0,−2, 0} 0

1

Z[x1, x2]{0, 0, 0}

(x2−x1) (4.5)

The left-hand side is annihilated and the upper-right corner remains modulo the
relation x2 − x1.

4.2. Reidemeister II

Proof. Consider the braid diagrams for Reidemeister type IIa in Figure 5. Recall the
decomposition Bi ⊗ Bi ∼= Bi{−1} ⊕ Bi{1} in SC2 and its pictorial counterpart 6. The complex
we are interested in is, as illustrated in Figure 6.
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Ia Ib

IIa IIb

III

Figure 5: The Reidemeister moves.

{1} {−1}

{−1}

{1}

[i + 1]

[i]

−

−

Figure 6: Reidemeister IIa complex with decomposition 6.

Inserting the decomposed Bi ⊗ Bi and the corresponding maps, we find two
isomorphisms staring at us; we pick the left most one and mark it for removal, (see Figure 7).

After changing basis and removing the acyclic complex, as in Lemma 4.1, we arrive at
the complex below with two more entries marked for removal, (see Figure 8.)

With the marked acyclic subcomplex removed, we arrive at our desired result, the
complex assigned to the no crossing braid of two strands as in Figure 5. The computation for
Reidemeister IIb is virtually identical.

4.3. Reidemeister III

Proof. Luckily, we only have to check one version of Reidemeister move III, but as the reader
will see below even that is pretty easy and not much harder than that of Reidemeister II above.
We follow closely the structure of the proof in [11], utilizing the bimodule R

⊗
Ri,i+1R{−3} and
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{1} {−1}

{−1}

{1}

[i + 1]
[i]

[i] [i + 1]−
−

−

−

−
−

Figure 7: Reidemeister IIa complex, removing one of the acyclic subcomplexes.

{−1}

{−1}

Figure 8: Reidemeister IIa complex, removing a second acyclic subcomplex.

decomposition 7 to reduce the complex for one of the RIII braids to that which is invariant
under the move or, equivalently in our case, invariant under color flip. We start with the braid
on the left-hand side of III in Figure 5; the corresponding complex, with decomposition 6 and
7 given by dashed/yellow arrows, is, (as illustrated in Figure 9).

We insert the decomposed bimodules and the appropriate maps; then we change bases
as in Lemma 4.1 (the higher matrix of the two is before base-change, and the lower is after),
(see Figure 10.)

We strike out the acyclic subcomplex and mark another one for removal; yet again we
change bases (the lower matrix is the one after base change), (see Figure 11.)

Now we are almost done; if we can prove that the maps

are invariant under color change, we would arrive at a complex that is invariant under
Reidemeister move III. To do this we must stop for a second, go back to the source and
examine the original, algebraic, definitions of the morphisms in [7]; upon doing so we are
relieved to see that the maps we are interested in are actually equal to zero (they are defined
by sending 1 ⊗ 1 �→ 1 ⊗ 1 ⊗ 1 ⊗ 1 �→ 1 ⊗ 1 ⊗ 1 �→ 0). In all, we have arrived, (see Figure 12).

Repeating the calculation for the braid on the right-hand side of RIII, Figure 5, amounts
to the above calculation with the colors switched—a quick glance will convince the reader
that the end result is the same complex rotated about the x-axis.
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{−3} −

{−3}

{−3}
−

−

{−4}

{−4}

{−4}

−

−

−

{−5}

{−3}

{−5}

{−5}

{−5}

{−6}

[i + 1]

[i]

Figure 9: Reidemeister III complex with decompositions 6 and 7.

{−3}

{−4}

{−5}

{−3}

{−4}

{−5}

{−5}

{−5}

{−6}

−+0

0 0

0 00

0 0

0

0 − −

−

−

[i + 1]

[i]

[i + 1]

[i + 1][i + 1]

Figure 10: Reidemeister III complex, with an acyclic subcomplex marked for removal.

4.4. Observations

Having seen this interplay between the different constructions, perhaps it is a good moment
to highlight exactly what categories we do need to work in so as to arrive at a genuine link
invariant, or a braid invariant at that. Let us start with the latter: we can take the category of
complexes of Soergel bimodulesKOM(SC) (either the diagrammatic or “original” version)
and construct Rouquier complexes; if we mod out by homotopies and work inKOMh(SC),
we arrive at something that is not only an invariant of braids but of braid cobordisms
as well (over Z or Q if we wish). Now if we repeat the construction in the category of
complexes of graded matrix factorizationsKOM(mf), we have some choices of homotopies
to quotient out by. First, we can quotient out by the homotopies in the category of graded
matrix factorizations and work inKOM(hmf) and second, we can quotient in the category
of the complexes and work in KOMh(mf), or we can do both and work in KOMh(hmf).
It is immediate that working in KOMh(mf) is necessary, but one could hope that it is also
sufficient. A close look at the argument of Claim 1, where the two constructions are proven
equivalent, shows that if we start with the Koszul complex associated to the resolution of
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{−3}

{−3}

−

−

−

+ 0

−0

+ 0

{−3}

{−4}

{−4}
− 0

+ − {−5}

{−5}

{−6}

[i + 1] [i + 1]

Figure 11: Reidemeister III complex, with another acyclic subcomplex marked for removal.

{−3}
{−4}

{−4}
−

− {−5}

{−5}
{−6}

Figure 12: Reidemeister III complex—the end result, after removal of all acyclic subcomplexes.

a braid Dres the polynomial relations coming from the singular vertices in Dres form a regular
sequence and, hence, the homology of this complex is the quotient of the edge ring R(Dres) by
these relations and is supported in the right-most degree. It is this quotient that is isomorphic
to the corresponding Soergel bimodule, that is, the Koszul complex is quasi-isomorphic, as
a bimodule, to B′(Dres). Hence, we really do need to work in KOMh(hmf), to have a braid
invariant or an invariant of braid cobordisms, or a link invariant.

Anyone, who has suffered throught the proofs of, say, Reidemeister III in [11] would
probably find the above a relief. Of course, much of the ease in computation using this
pictorial language is founded upon the intimate understanding and knowledge of hom
spaces between objects in SC, which is something that is only available to us due to the labors
of Elias and Khovanov in [7]. With that said, it would not be suprising if this diagrammatic
calculus would aid other calculations of link homology in the future.

All in all, we have arrived at an integral version of HOMFLY-PT link homology;
combining with the results of [8], we have the following.

Theorem 4.2. Given a link L ⊂ S3, the groupsH(L) andH(L) are invariants of L and when tensored
with Q are isomorphic to the unreduced and reduced versions, respectively, of the Khovanov-Rozansky
HOMFLY-PT link homology. Moreover, these integral homology theories give rise to functors from the
category of braid cobordisms to the category of complexes of graded R-bimodules.



22 International Journal of Mathematics and Mathematical Sciences

5. Rasmussen’s Spectral Sequence and Integral sl(n)-Link Homology

It is time for us to look more closely at Rasmussen’s spectral sequence from HOMFLY-PT to
sl(n)-link homology. For this we need an extra “horizontal” differential d− in our complex,
and here is the first time we encounter matrix factorizations with a nonzero potential; as
before, to a link diagram D we will associate the tensor product of complexes of matrix
factorizations with potential for each crossing. These will be complexes over the ring

Rc =
Z
[
xi, xj , xk, xl

]

(
xk + xl − xi − xj

) ∼= Z
[
xi, xj , xk

]
, (5.1)

with total potential

Wp

[
xi, xj , xk, xl

]
= p(xk) + p(xl) − p(xi) − p

(
xj
)
,

= p(xk) + p
(
xi + xj − xk

)
− p(xi) − p

(
xj
)
,

(5.2)

where the p(x) ∈ Z[x]. We do not specify the potential p(x) at the moment as the spectral
sequence works for any choice; later on when looking at sl(n)-link homology we will set
p(x) = xn+1.

To define d−, let pi = Wp/(xk − xi) and pij = −Wp/(xk − xi)(xk − xj) (recall that in Rc,
(xk − xi)(xk − xj) = xixj − xkxl, and note that substituting either xk = xi or xk = xj into Wp

makes it vanish, so pij is indeed a polynomial in Rc).
To the positive crossing D+, we assign the following complex:

Rc{0,−2, 0}
(xk−xi)

Rc{0, 0, 0}
pi

Rc{2,−2,−2}
−(xk−xi)(xk−xj )

(xj−xk)

Rc{0, 0,−2}
pij

1 (5.3)

To the negative crossing D−, we assign the following complex:

Rc{0,−2, 2}
−(xk−xi)(xk−xj )

Rc{−2, 0, 2}
pij

Rc{0,−2, 0}
(xk−xi)

1

Rc{0, 0, 0}
pi

(xj−xk) (5.4)

The total complex for a link L with diagram D will be defined analagously to the one
above, that is,

Cp(D) :=
⊗

crossings

(

C(Dc)
⊗

Rc

R(D)

)

, (5.5)

as will be the reduced Hp(L, i) and unreduced Hp(L) versions of link homology.
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The main result of [2] is the following.

Theorem 5.1 (Rasmussen [2]). Suppose L ⊂ S3 is a link, and let i be a marked component of L. For
each p(x) ∈ Q[x], there is a spectral sequence Ek(p) with E1(p) ∼= H(L) and E∞(p) ∼= Hp(L, i). For
all k > 0, the isomorphism type of Ek(p) is an invariant of the pair (L, i).

In particular setting p(x) = xn+1 one would arrive at a spectral sequence from
the HOMFLY-PT to the sl(n)-link homology. Rasmussen’s result pertains to rational link
homology with matrix factorizations defined over the ring Q[x1, . . . , xn] and potentials
polynomials in Q[x]. We will essentially repeat his construction in our setting and, for the
benefit of those familiar with the results of [2], will stay as close as possible to the notation
and conventions therein. This will be a rather condensed version of the story and we refer the
reader to the original paper for more details.

We will work primarily with reduced link homology (although all the results follow
through for both versions) and with closed link diagrams, where all three differentials dv, d+,
and d− anticommute. We have some choices as to the order of running the differentials, so let
us define

H
+
(D, i) = H

(
C(D, i), d+

)
. (5.6)

Here, H
+
(D, i) inherits a pair of anticommuting differentials d∗− and d∗v, where d∗−

lowers grh by 1 while preserving grv and d∗v raises grv by 1 while preserving grh. Hence,
(H

+
p(D, i), d

∗
v, d

∗
−) defines a double complex with total differential dv− := d∗v + d

∗
−.

Definition 5.2. Let Ek(p) be the spectral sequence induced by the horizontal filtration on the
complex (H

+
p(D, i), dv−).

After shifting the triple grading of Ek(p) by {−w+b−1,w+b−1,w−b+1} it is immediate
that the first page of the spectral sequence is isomorphic to H(L, i) (the part of the differential
d∗v+d

∗
− which preserves horizontal grading on E0(p) = H

+
(D, i){−w+b−1, w+b−1, w−b+1}

is precisely d∗v, that is, d0(p) = d∗v and

E1
(
p
)
= H

(
H

+
(D, i), d∗v

)
{−w + b − 1, w + b − 1, w − b + 1} ∼= H(L, i), (5.7)

where D is a diagram for L. It also follows that dk(p) is homogenous of degree −k with
respect to grh and degree 1 − k with respect to grv, and in the case that p(x) = xn+1 it is also
homogeneous of degree 2nk with respect to the q-grading.

Claim 2. Suppose L ⊂ S3 is a link, and let i be a marked component of L. For each p(x) ∈ Z[x],
the spectral sequence Ek(p) has E1(p) ∼= H(L, i) and E∞(p) ∼= Hp(L, i). For all k > 0, the
isomorphism type of Ek(p) is an invariant of the pair (L, i).

Proof. We argue as in [2, Section 5.4]. Suppose that, we have two closed diagrams Dj and D′j
that are related by the jth Reidemeister move, and suppose that there is a morphism

σj : H
+
p

(
Dj, i

)
−→ H

+
p

(
D′j , i

)
(5.8)
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in the category KOM(mf) that extends to a homotopy equivalence in the category
of modules over the edge ring R. Then σj induces a morphism of spectral sequences
(σj)k : Ek(Dj, i, p) → Ek(D′j , i, p) which is an isomorphism for k > 0. See [2] for
more details and discussion. Hence, in practice, we have to exhibit morphisms and
prove invariance for the first page of the spectral sequence, that is, for the HOMLFY-
PT homology, which is basically already done. However, we ought to be a bit careful, of
course, as here we are working with H

+
p(D, i) and not with the complex C(D, i) defined in

Section 4.
Reidemeister I is done, as in this case d+ = 0 and, hence, the complex H

+
p(D, i) =

Cp(D, i) and the same argument as the one in Section 4.1 works here.
For Reidemesiter II and III, we have to observe that for a closed diagram, we have

morphisms σj : Cp(Dj, i) → Cp(D′j , i) for j = II, III, which are homotopy equivalences of
complexes (these can be extrapolated from Section 4 above, or from [8], where all chain maps
are exhibited concretely). Therefore we get induced maps (σj)k on the spectral sequence with
the property that (σj)1 = σj∗ is an isomorphism.

To get the last part of the claim, that is, that the reduced homology depends only on
the link component and not on the edge therein we refer the reader to [2], as the arguments
from there are valid verbatum.

Setting p(x) = xn+1, we get that the differentials dk(p) preserve q + 2ngrh and,
hence, the graded Euler characteristic of H(H

+
p(D, i), dv−) with respect to this quantity

is the same as that of E1(xn+1). Tensoring with Q, to get rid of torsion elements, and
computing we see that the Euler characteristic of the E∞(xn+1) is the quantum sl(n)-
link polynomial PL(qn, q) of L. See [2, Section 5.1] for details. We have arrived at the
following.

Theorem 5.3. The E∞(xn+1) of the spectral sequence defined in 11 is an invariant of L and categorifies
the quantum sl(n)-link polynomial PL(qn, q).

Remark 5.4. Well, we have a categorification over Z of the quantum sl(n)-link poly-
nomial, but what homology theory exactly are we dealing with? Is it isomorphic
to H(H(H(Cxn+1(D, i), d+), d∗−), d

∗
v) or to H(H(Cxn+1(D, i), d+ + d−), d∗v) and are these two

isomorphic here? The answer is not immediate. In [2], Rasmussen bases the corresponding
results on a lemma that utilizes the Kunneth formula, which is much more manageable in this
context when looked at over Q. Of course, for certain classes of knots things are easier. For
example, if we take the class of knots that are KR-thin, then the spectral sequence converges
at the E1 term, as this statement only depends on the degrees of the differentials, and we
have that E∞(xn+1) ∼= H(H(Cxn+1(D, i), d+), d∗v). However, that is a bit of a “red herring” as
stated.
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We construct 2-functors from a 2-category categorifying quantum sl(n) to 2-categories categorify-
ing the irreducible representation of highest weight 2ωk .

1. Introduction

Khovanov and Lauda introduced a 2-category whose Grothendieck group is Uq(sln) [1].
This work generalizes earlier work by Lauda for the Uq(sl2) case [2]. Rouquier has
independently produced a 2-category with similar generators and relations [3]. There have
been several examples of categorifications of representations of Uq(sln) arising in various
contexts. Khovanov and Lauda conjectured that their 2-category acts on various known
categorifications via a 2-functor. For example, in their work they construct such a 2-functor to
a category of graded modules over the cohomology of partial flag varieties. This 2-category
categorifies the irreducible representation of Uq(sln) of highest weight nω1 where ω1 is the
first fundamental weight.

In this paper we construct this action for the categorification constructed by Huerfano
and Khovanov in [4]. They categorify the irreducible representation V2ωk of highest weight
2ωk, by a modification of a diagram algebra introduced in [5]. The objects of 2-category
HKk,n are categories Cλ which are module categories over the modified Khovanov algebra.
We explicitly construct natural transformations between the functors in [4] and show that
they satisfy the relations in the Khovanov-Lauda 2-category giving the following theorem.

mailto:sussan@math.berkeley.edu


2 International Journal of Mathematics and Mathematical Sciences

Theorem 1.1. Over a field of characteristic two, there exists a 2-functor Ωk,n :KL → HKk,n.

The Huerfano-Khovanov categorification is based on categories used for the categori-
fication of Uq(sl2)-tangle invariants. This hints that a categorification of V2ωk may also be
obtained on maximal parabolic subcategories of certain blocks of category O(gl2k). More
specifically, we construct a 2-category Pk,n whose objects are full subcategories ZP(k,k)

μ (gl2k)

of graded category ZO(k,k)
μ (gl2k) whose set of objects are those modules which have projective

presentations by projective-injective objects. The 1-morphisms of Pk,n are certain projective
functors. We explicitly construct the 2-morphisms as natural transformations between the
projective functors by the Soergel functor V. We then prove the following.

Theorem 1.2. There is a 2-functorΠk,n :KL → Pk,n.

It should be possible to categorify VNωk for N ≥ 1 using categories which appear
in various knot homologies. For N ≥ 2, the module categories Cλ in the Huerfano-
Khovanov construction should be replaced by suitable categories of matrix factorization
based on Khovanov-Rozansky link homology. The categories of matrix factorizations must
be generalized from those used in [6]. Khovanov and Rozansky suggest that the categories
of matrix factorizations should be taken over tensor products of polynomial rings invariant
under the symmetric group. These categories were studied in depth by Yonezawa and Wu
[7, 8]. In fact, the isomorphisms of functors categorifying the Uq(sln) relations were defined
implicitly in [8]. To check that there is a 2-representation of the Khovanov-Lauda 2-category,
these isomorphisms would need to be made more explicit. The category O approach should
be modified as well. Now the objects of the 2-category should be subcategories of parabolic
subcategories corresponding to the composition Nk = k + · · · + k of blocks of Oλ(gl(Nk)),
and the stabilizer of the dominant integral weight μ is taken to be Sλ1 × · · · × Sλn where each
λi ∈ {0, 1, . . . ,N}; compare, for example, Section 5 below. Note that a categorification of Vλ
for arbitrary dominant integral λ, hence in particular of VNωk , is constructed in [9] using
cyclotomic quotients of Khovanov-Lauda-Rouquier algebras.

While this paper was in preparation, two very relevant papers appeared. In [10],
Brundan and Stroppel also defined the appropriate natural transformations and checked
relations between them to establish a version of the first theorem above, but for Rouquier’s
2-category from [3] rather than the Khovanov-Lauda 2-category. One of the advantages of
their result is that they are able to work over an arbitrary field, while we work over a field
of characteristic 2 in constructing the 2-functor to HKk,n. It is not immediately clear to us
how to use their sign conventions to get an action of the full Khovanov-Lauda 2-category
in characteristic zero, because they seem to lead to inconsistencies between Propositions 4.7,
4.8, 4.10, and 4.16. Additionally, Brundan and Stroppel categorify V2ωk using graded category
O. More precisely, they first categorify the classical limit of V2ωk at q = 1 using a certain
parabolic category O, without mentioning gradings. Then they establish an equivalence
between this category and the (ungraded) diagrammatic category. Finally, they observe that
both categories are Koszul (by [11] and [12], respectively) so, exploiting unicity of Koszul
gradings, their categorification at q = 1 can be lifted to a categorification of the module
V2ωk itself in terms of graded category O. Our construction on the graded category O side
is more explicit, relying heavily on the Soergel functor, the Koszul grading that O inherits
from geometry, and explicit calculations on the cohomology of flag varieties made in [1].
In the other relevant paper, M. Mackaay [13] constructs an action of the Khovanov-Lauda
2-category on a category of foams which is the basis of an sl3-knot homology.
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2. The Quantum Group Uq(sln)

2.1. Root Data

Let sln = sln(C) denote the Lie algebra of traceless n × n-matrices with standard triangular
decomposition sln = n− ⊕h⊕n+. Let Δ ⊂ h∗ be the root system of type An−1 with simple system
Π = {αi | i = 1, . . . , n − 1}. Let (·, ·) denote the symmetric bilinear form on h∗ satisfying

(
αi, αj

)
= aij , (2.1)

where A = (aij)1≤i,j<n is the Cartan matrix of type An−1:

aij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if j = i,

−1 if
∣
∣j − i

∣
∣ = 1,

0 if
∣∣i − j

∣∣ > 1.

(2.2)

Let Δ+ be the set of simple roots relative to Π. Let ω1, . . . , ωn−1 ∈ h∗ be the elements satisfying
(ωi, αj) = δij , and let

Q =
n−1⊕

i=1

Zαi, Q+ =
n−1⊕

i=1

Z≥0αi, P =
n−1⊕

i=1

Zωi, P+ =
n−1⊕

i=1

Z≥0ωi (2.3)

denote the root lattice, positive root lattice, weight lattice, and dominant weight lattice,
respectively.

Set I = {1, . . . , n − 1,−1, . . . ,−n + 1}, I+ = {1, . . . , n − 1}, and I− = −I+. Define α−i = −αi,
and extend the definition of aij to all i, j ∈ I accordingly. Finally, for i ∈ I, let sgn(i) = i/|i| be
the sign of i.

The quantum groupUq(sln) is the associative algebra over Q(q) with generators Ei,Ki,
for i ∈ I, satisfying the following conditions:

(1) KiK−i = K−iKi = 1, and KiKj = KjKi for i, j ∈ I,

(2) KiEj = qai,j EjKi, i, j ∈ I,

(3) EiE−j − E−jEi = δi,j((Ki −K−i)/(q − q−1)), i, j ∈ I±,
(4) EiEj = EjEi, i, j ∈ I±, |i − j| > 1,

(5) E2
i Ej − (q + q−1)EiEjEi + EjE2

i = 0, i, j ∈ I±, |i − j| = 1.

We fix a comultiplication Δ : Uq(sln) → Uq(sln) ⊗ Uq(sln) given as follows for all i ∈ I+:

Δ(Ei) = 1 ⊗ Ei + Ei ⊗Ki,

Δ(E−i) = K−i ⊗ E−i + E−i ⊗ 1,

Δ(K±i) = K±i ⊗K±i.

(2.4)

Via Δ, a tensor product of Uq(sln)-modules becomes a Uq(sln)-module.
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In this paper we are interested in the irreducible Uq(sln)-modules, V2ωk with highest
weight 2ωk. Therefore, we will identify the weight lattice P ∼= Z

n−1 ⊂ Z
n as follows. Assume

that λ =
∑

i aiωi. For each 1 ≤ i < n, set

λi =
2k − a1 − 2a2 − · · · − (i − 1)ai−1 + (n − i)ai + (n − i − 1)ai+1 + · · · + an−1

n
. (2.5)

Let P(2ωk) denote the set of weights of V2ωk . It is well known that under this
identification each λ ∈ P(2ωk) satisfies λi ∈ {0, 1, 2} for all 1 ≤ i ≤ n and λ1 + · · · + λn = 2k.

3. The Khovanov-Lauda 2-Category

Let k be a field. The k-linear 2-categoryKL defined here was originally constructed in [1].
Let I∞ =

⋃
n≥0 I

n, I+∞ =
⋃
n≥0(I

+)n where In and (I+)n denote n-fold Cartesian products.
Given that i = (i1, i2, . . .) ∈ I∞, let

cont
(
i
)
=

n−1∑

i=1

ciαi, where ci = #
{
j | ij = i

}
− #
{
j | ij = −i

}
. (3.1)

Given that ν ∈ Q, let Seq(ν) = {i ∈ I∞ | cont(i) = ν} and, for ν ∈ Q+, define Seq+(ν) = {i ∈
I+∞|cont(i) = ν}. Finally, define

Seq =
⋃

ν∈Q
Seq(ν). (3.2)

3.1. The Objects

The set of objects for this 2-category is the weight lattice, P .

3.2. The 1-Morphisms

For each λ ∈ P , let Iλ ∈ EndKL(λ) be the identity morphism and, for λ, λ′ ∈ P , set IλIλ′ =
δλ,λ′Iλ. For each i ∈ I, we define morphisms EiIλ ∈ HomKL(λ, λ + αi). Evidently, we have
EiIλ = Iλ+αiEiIλ. For λ, λ′ ∈ P , we have

HomKL
(
λ, λ′
)
=
⊕

i∈Seq
s∈Z

Iλ′EiIλ{s},
(3.3)

where Ei := Ei1 · · · Eir if i = (i1, . . . , ir) ∈ I∞, and s refers to a grading shift. Observe that
Iλ′EiIλ = 0 unless cont(i) = λ′ − λ, and Iλ+cont(i)EiIλ = EiIλ.
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3.3. The 2-Morphisms

The 2-morphisms are generated by

Yi;λ ∈ EndKL(EiIλ), Ψi,j;λ ∈ HomKL
(
EiEjIλ,EjEiIλ

)
,

⋃

i;λ

∈ HomKL(Iλ,E−iEiIλ),
⋂

i;λ

∈ HomKL(E−iEiIλ,Iλ),
(3.4)

for i, j ∈ I±. We define 1i;λ ∈ EndKL(EiIλ) to be the identity transformation.
For λ ∈ P , the degrees of the basic 2-morphisms are given by

degYi;λ = aii, degΨi,j;λ = −aij , deg
⋃

i;λ

= deg
⋂

i;λ

= 1 + (αi, λ). (3.5)

Let λ+cont(i) = λ+cont(j) = λ+cont(k) = λ′ and λ′+cont(i′) = λ+cont(j ′) = λ′′. Let Θ1 ∈
HomKL(EiIλ,EjIλ) and Θ2 ∈ HomKL(Ei′Iλ′ ,Ej ′Iλ′). Then denote the horizontal composition
of these 2-morphisms by Θ2Θ1 which is an element of HomKL(Ei′Iλ′EiIλ,Ej ′Iλ′EjIλ). If Θ3 ∈
HomKL(EjIλ,EkIλ), denote the vertical composition of Θ3 and Θ1 by Θ3 ◦Θ1.

For convenience of notation, we define the following 2-morphisms. If θ ∈ End(EiIλ),
let θ[j] = θ ◦ · · · ◦ θ︸ ︷︷ ︸

j

. For each i ∈ I, define the bubble

©•Ni;λ =
⋂

i;λ

◦(1−i;λ+αiYi;λ)
[N] ◦

⋃

i;λ

. (3.6)

Also, define half-bubbles

•N⋃

i;λ

= (1−i;λ+αiYi;λ)
[N] ◦

⋃

i;λ

,
•N⋃

i;λ

=
⋂

i;λ

◦(Y−i;λ+αi1i,λ)
[N]. (3.7)

We now define the relations satisfied by these basic 2 morphisms. In what follows, we
omit the argument λ when the relation is independent of it.

(1) sl2Relations

(a) For all i ∈ I,

(
⋂

−i
1i

)

◦
(

1i
⋃

i

)

= 1i =

(

1i
⋂

i

)

◦
(
⋃

−i
1i

)

. (3.8)

(b) For all i ∈ I+,

Yi =

(
⋂

−i
1i

)

◦ (1iY−i1i) ◦
(

1i
⋃

i

)

=

(

1i
⋂

i

)

◦ (1iY−i1i) ◦
(
⋃

−i
1i

)

. (3.9)
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(c) Suppose that i ∈ I and (−αi, λ) > r + 1, then

•r
©
i;λ
= 0. (3.10)

(d) Let i ∈ I. If (αi, λ) ≤ −1,

•−(αi,λ)−1
©
i;λ

= 1. (3.11)

(e) Let i ∈ I. If (αi, λ) ≥ 1, then

1i;λ−αi1−i;λ = −Ψ−i,i;λ ◦Ψi,−i;λ

+
(αi,λ)−1∑

f=0

f∑

g=0

•[(αi,λ)−f−1]⋃

−i;λ
◦
•[−(αi,λ)−1+g]
©
i;λ

◦
•[f−g]⋂

−i;λ
.

(3.12)

(f) Let i ∈ I+. If (αi, λ) ≤ 0, then

(

1i;λ
⋂

−i;λ

)

◦ (Ψi,i;λ−αi1−i;λ) ◦
(

1i;λ
⋃

−i;λ

)

= −
−(αi,λ)∑

f=0

Yi;λ
[−(αi,λ)−f]

•[(αi,λ)−1+f]
©
−i;λ

.

(3.13)

If (αi, λ) ≥ −2, then

(
⋂

i;λ

1i;λ−αi

)

◦ (1−i;λ+αiΨi,i;λ−αi) ◦
(
⋃

i;λ

1i;λ−αi

)

=
(αi,λ)+2∑

g=0

•[−(αi,λ)−1+g]
©
i;λ

Yi;λ−αi
[(αi,λ)−g].

(3.14)

Remark 3.1. Note that in 1(e) above the exponent of the bubble may be negative, which is not
defined. To make sense of this, for i ∈ I+, define these symbols (referred to as fake bubbles in
[1]) inductively by the formula

(
∑

n≥0

•(α−i ,λ)−1+n
©
i;λ

tn
)(
∑

n≥0

•(α−i ,λ)−1+n
©
−i;λ

tn
)

= 1 (3.15)

and©•−1
i;λ = 1 whenever (αi, λ) = 0.

(2) The nil-Hecke Relations

(a) For each i ∈ I+, Ψ[2]
i,i = 0.

(b) For i ∈ I+, (Ψi,i1i) ◦ (1iΨi,i) ◦ (Ψi,i1i) = (1iΨi,i) ◦ (Ψi,i1i) ◦ (1iΨi,i).
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(c) For i ∈ I+, (1i1i) = (Ψi,i) ◦ (Yi1i) − (1iYi) ◦ (Ψi,i) = (Yi1i) ◦ (Ψi,i) − (Ψi,i) ◦ (1iYi).
(d) For j, i ∈ I−,

Ψj,i =

⎛

⎝
⋂

−j
1i1j

⎞

⎠ ◦
(

1j
⋂

−i
1−j1i1j

)

◦
(
1j1iΨ−j,−i1i1j

)
◦
(

1j1i1−j
⋃

i

1j

)

◦

⎛

⎝1j1i
⋃

j

⎞

⎠

=

(

1i1j
⋂

i

)

◦

⎛

⎝1i1j1−i
⋂

j

1i

⎞

⎠ ◦
(
1i1jΨ−j,−i1j1i

)
◦

⎛

⎝1i
⋃

−j
1−i1j1i

⎞

⎠ ◦
(
⋃

−i
1j1i

)

.

(3.16)

Remark 3.2. For all i, j ∈ I±, set Ψi,−j = (1−j1i
⋂
−j) ◦ (1−jΨj,i1−j) ◦ (

⋃
j 1i1−j).

(3) The R(ν) Relations

(a) For i, j ∈ I±, (Ψ−j,i) ◦ (Ψi,−j) = 1i1−j .
(b) For i, j ∈ I+, i /= j,

Ψj,i ◦Ψi,j =

⎧
⎨

⎩

1i1j if
∣∣i − j

∣∣ > 1,
(
i − j
)(
Yi1j − 1iYj

)
if
∣∣i − j

∣∣ = 1.
(3.17)

(c) For i, j ∈ I+, i /= j,

(
1jYi
)
◦
(
Ψi,j

)
=
(
Ψi,j

)
◦
(
Yi1j
)
,

(
Yj1i
)
◦
(
Ψi,j

)
=
(
Ψi,j

)
◦
(
1iYj
)
. (3.18)

(d) For i, j, k ∈ I+,

(
Ψj,k1i

)
◦
(
1jΨi,k

)
◦
(
Ψi,j1k

)
−
(
1kΨi,j

)
◦
(
Ψi,k1j

)
◦
(
1iΨj,k

)

=

⎧
⎨

⎩

0 i /= k or
∣∣i − j

∣∣ = 0,
(
i − j
)
1i1j1i i = k and

∣∣i − j
∣∣ = 1.

(3.19)

4. The Huerfano-Khovanov 2-Category

4.1. The Khovanov Diagram Algebra

Let A = C[x]/x2. This is a Z-graded algebra with multiplication map m : A ⊗A → A such
that deg 1 = −1 and degx = 1. There is a comultiplication map Δ : A → A ⊗ A such that
Δ(1) = x ⊗ 1 + 1 ⊗ x and Δ(x) = x ⊗ x. There is a trace map Tr : A → C such that Tr(x) = 1
and Tr(1) = 0. There is also a unit map ι : C → A given by ι(1) = 1. Also, let κ : A → A
be given by κ(1) = 0, κ(x) = 1. This algebra gives rise to a two-dimensional TQFT F, which
is a functor from the category of oriented 1 + 1 cobordisms to the category of abelian groups.
The functor F sends a disjoint union of m copies of the circle S

1 to A⊗m. For a cobordism C1,
from two circles to one circle, F(C1) = m. For a cobordism C2, from one circle to two circles,
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a b

Figure 1: Crossingless matches a and b for r = 2.

Figure 2: Concatenation (Ra)b.

F(C2) = Δ. For a cobordism C3, from the empty manifold to S
1, F(C3) = ι. For a cobordism C4,

from the empty manifold to S
1,F(C4) = Tr .

For any nonnegative integer r, consider 2r marked points on a line. Let CMr be the set
of nonintersecting curves up to isotopy whose boundary is the set of the 2r marked points
such that all of the curves lie on one side of the line. Then there are

(
2r

r

)
/r + 1 elements in

this set. The set of crossingless matches for r = 2 is given in Figure 1.
Let a, b ∈ CMr . Then (Rb)a is a collection of circles obtained by concatenating a ∈ CMr

with the reflection Rb of b ∈ CMr in the line. Then applying the two-dimensional TQFT F,
one associates the graded vector space bH

r
a to this collection of circles. Taking direct sums

over all crossingless matches gives a graded vector space

Hr =
⊕

a,b

bH
r
a{r}, (4.1)

where the degree i component of bH
r
a{r} is the degree i − r component of bH

r
a. This graded

vector space obtains the structure of an associative algebra via F; compare, for example, [5].
Let T be a tangle from 2r points to 2s points. Let a be a crossingless match for 2s

points and b a crossingless match for 2s points. Then let aTb be the concatenation Ra ◦ T ◦ b
and aF(T)b = F(aTb). See Figure 3 for an example when T is the identity tangle.

To any tangle diagram T from 2r points to 2s points, there is an (Hs,Hr)-bimodule

F(T) =
⊕

a∈CMr
b∈CMs

F( aTb){r}.
(4.2)

To any cobordism C between tangles T1 and T2, there is a bimodule map F(C) : F(T1) →
F(T2), of degree −χ(C)−r−s, where χ(C) is the Euler characteristic ofC; compare, for example,
Proposition 5 of [5].

Lemma 4.1. Consider the tangles I andUi in Figure 4. Then there are saddle cobordisms Si : Ui → I
and Si : I → Ui.

Let Ti and Ti be the tangles in Figure 5.

(1) There exists an (Hn−1,Hn)-bimodule homomorphism μi : F(Ti) → F(Ti+1) of degree one.

(2) There exists an (Hn,Hn−1)-bimodule homomorphism μi : F(Ti) → F(Ti+1) of degree one.
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Figure 3: Concatenation aTb.

1 i· · · i + 1 · · · n 1 · · · i i + 1 · · · n

Figure 4: I and Ui.

Proof. There is a degree zero isomorphism of bimodules F(Ti) ∼= F(Ti)
⊗

HnF(I). Then by [5]
there is a bimodule map of degree one

1 ⊗ F
(
Si+1
)

: F(Ti)
⊗

Hn

F(I) −→ F(Ti)
⊗

Hn

F(Ui+1), (4.3)

where 1 denotes the identity map. Finally note that F(Ti)
⊗

HnF(Ui+1) ∼= F(Ti+1). Then μi is the
composition of these maps.

The construction of μi is similar.

Remark 4.2. One may construct, in a similar way, maps of degree one: F(Ti) → F(Ti−1) and
F(Ti) → F(Ti−1).

Lemma 4.3. Let a ∈ CMn and b ∈ CMn−1 be two crossingless matches. Let Ti be the tangle on
the right side of Figure 5. Let Ui be the tangle in Figure 4. Consider the homomorphism induced by
the cobordism Si,F(Ti) → F(Ui)

⊗
HnF(Ti) ∼= A

⊗
C
F(Ti). Let α ⊗ β ∈ F( aTib), where α ∈ A

corresponds to the circle passing through the point i on the top line and β ∈ A⊗p corresponds to the
remaining circles. Then α ⊗ β �→ Δ(α) ⊗ β.

Proof. The map is induced by the cobordism Si. On the set of circles, this cobordism is a union
of identity cobordisms and a cobordism C2. The result now follows upon applying F.

Lemma 4.4. Let I be the identity tangle from 2r points to 2r points, Ti a tangle from 2(r + 1) points
to 2r points, and Ti a tangle from 2r points to 2(r + 1) points. Let a and b be cup diagrams for 2r
points (a, b ∈ CMr). Consider the map

A
⊗

C

F(I) −→ F(Ti)
⊗

Hr+1

F
(
Ti
)
−→ F(Ti+1)

⊗

Hr+1

F
(
Ti
)
−→ F(I), (4.4)

where the first and last maps are isomorphisms and the middle map is μi ⊗ 1. Let β ∈ A correspond
to the circle passing through point i of aIb, γ ∈ A⊗r correspond to the remaining circles, and α ∈ A.
Then the map above sends α ⊗ β ⊗ γ �→ (αβ) ⊗ γ.
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1 i· · · i + 1 · · · n 1 · · · i i + 1 · · · n

Figure 5: Ti and Ti.

λ1 λi· · · λi+1 · · · λn λ1 · · · λi λi+1 · · · λn

λ1 λi + 1· · · λi+1 − 1 · · · λn λ1 · · · λi + 1 λi+1 − 1 · · · λn

Figure 6: Dλ,i and Dλ,i.

λ1 λi· · · λi+1 · · · λn λ1 · · · λi λi+1 · · · λn

λ1 λi + 1· · · λi+1 − 1 · · · λn λ1 · · · λi + 1 λi+1 − 1 · · · λn

Figure 7: Tλ,i and Tλ,i.

λ1 λi· · · λi+1 · · · λn

λ1 λi· · · λi+1 · · · λn

Figure 8: Identity tangle Iλ.

Proof. The map is induced by a cobordism Si+1. On the set of circles, this cobordism is union
of identity cobordisms and a cobordism C1. The result now follows upon applying F.

4.2. The Huerfano-Khovanov Categorification

Let λ ∈ P(2ωk). Recall that α−i = −αi. Hence, for i ∈ I, we have

λ + αi =
(
λ1, . . . , λi + sgn(i), λi+1 − sgn(i), . . . , λn

)
. (4.5)

Label n collinear points by the integers λi. Those points labeled by 0 or 2 will never be the
boundaries of arcs but will rather just serve as place holders. Then define the algebra Hλ =
Hγ(λ) (as in Section 4.1), where γ(λ) = (1/2) | {λi | λi = 1}|. Let eλ be the identity element.

Let i ∈ I+. We define five special tangles Dλ,i, D
λ,i, Tλ,i, T

λ,i, Iλ in Figures 6, 7, and 8.
If a point is labeled by zero or two, it will not be part of the boundary of any curve. Away
from points i, i + 1, the tangle is the identity.
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λ1 λi· · · λi+1 λi+2 · · · λn λ1 λi· · · λi+1 λi+2 · · · λn

λ1 λi + 1· · · λi+1 λi+2 − 1 · · · λn λ1 λi + 1· · · λi+1 λi+2 − 1 · · · λn

Sλ,i,i+1

Figure 9: Cobordism Sλ,i,i+1.

λ1 λi· · · λi+1 · · · λn λ1 · · · λi λi+1 · · · λn

λ1 λi − 1· · · λi+1 + 1 · · · λn λ1 · · · λi − 1 λi+1 + 1 · · · λn

Figure 10: Dλ,−i and Dλ,−i.

λ1 λi· · · λi+1 · · · λn λ1 · · · λi λi+1 · · · λn

λ1 λi − 1· · · λi+1 + 1 · · · λn λ1 · · · λi − 1 λi+1 + 1 · · · λn

Figure 11: Tλ,−i and Tλ,−i.

The cobordisms Sλ,i : Tλ+αi,i ◦ Tλ,i → Iλ and Sλ,i,j : Tλ+αi,j ◦ Tλ,i → Dλ+αj ,i ◦ Dλ,j are
saddle cobordisms for j = i ± 1. Similarly, the cobordisms Sλ,i, Sλ,i,j are saddle cobordisms in
the opposite direction. For example, the cobordism Sλ,i,i+1 is given in Figure 9.

Let Cλ be the category of finitely generated, graded Hλ-modules, and let Iλ : Cλ → Cλ
be the identity functor. For λ, λ′ ∈ P(2ωk), set Iλ′Iλ = δλ,λ′Iλ.

Let i ∈ I+. To make future definitions more homogeneous, define
Dλ,−i, Dλ,−i, Tλ,−i, Tλ,−i as in Figures 10 and 11. Also, in what follows, interpret the pair
(λ−i, λ−i+1) as (λi+1, λi) and recall that α−i = −αi.

Let i ∈ I. Let Iλ : Cλ → Cλ denote the identity functor which is tensoring with the
(Hλ,Hλ)-bimodule Hλ. Let EiIλ : Cλ → Cλ+αi be the functor of tensoring with a bimodule
defined as follows:

EiIλ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(Dλ,i) if (λi, λi+1) = (1, 2),

F
(
Dλ,i
)

if (λi, λi+1) = (0, 1),

F(Tλ,i) if (λi, λi+1) = (1, 1),

F
(
Tλ,i
)

if (λi, λi+1) = (0, 2),

0 otherwise.

(4.6)

Evidently, EiIλ = Iλ+αiEiIλ for all i ∈ I, and Iλ = F(Iλ).
For i ∈ I, let KiIλ : Cλ → Cλ be the grading shift functor KiIλ = Iλ{(αi, λ)}. Finally, set

C =
⊕

λ∈P(2ωk)Cλ, Ei =
⊕

λ∈P(2ωk)EiIλ, Ki =
⊕

λ∈P(2ωk)KiIλ, and I =
⊕

λ∈P(2ωk)Iλ.

Propositions 2 and 3 of [4] are that these functors satisfy quantum sln relations.
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Proposition 4.5 (see [4, Propositions 2, 3]). One has

(1) KiK−iIλ ∼= Iλ
∼= K−iKiIλ, and KiKjIλ

∼= KjKiIλ for i, j ∈ I,
(2) KiEjIλ

∼= EjKiIλ{aij}, for i, j ∈ I,
(3) EiE−jIλ ∼= E−jEiIλ if i, j ∈ I+, i /= j,
(4) EiEjIλ

∼= EjEiIλ if i, j ∈ I±, |i − j| > 1,

(5) EiEiEjIλ ⊕ EjEiEiIλ
∼= EiEjEiIλ{1} ⊕ EiEjEiIλ{−1} if i, j ∈ I±, |i − j| = 1,

(6) For i ∈ I,

EiE−iIλ ∼=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E−iEiIλ ⊕ Iλ{1} ⊕ Iλ{−1} if i ∈ I+, (λi, λi+1) = (2, 0),

E−iEiIλ ⊕ Iλ{1} ⊕ Iλ{−1} if i ∈ I−, (λi, λi+1) = (0, 2),

E−iEiIλ ⊕ Iλ if (αi, λ) = 1,

E−iEiIλ if (αi, λ) = 0.

(4.7)

Now we define the Huerfano-Khovanov 2-categoryHKk,n over the field k, chark = 2.

4.3. The Objects

The objects ofHKk,n are the categories Cλ, λ ∈ P(V2ωk).

4.4. The 1-Morphisms

For each λ ∈ P(2ωk), Iλ ∈ EndHK(λ) is the identity morphism and, for λ, λ′ ∈ P , set
IλI
′
λ = δλ,λ′Iλ as above. For each i ∈ I, we have defined morphisms EiIλ ∈ HomHK(Cλ,Cλ+αi).

Evidently, we have EiIλ = Iλ+αiEiIλ. For λ, λ′ ∈ P(2ωk), we have

HomHK(Cλ,Cλ′) =
⊕

i∈Seq
s∈Z

Iλ′EiIλ{s},
(4.8)

where Ei := Ei1 · · ·Eir Iλ if i = (i1, . . . , ir) ∈ I∞, and s refers to a grading shift. Observe that
Iλ′EiIλ = 0 unless cont(i) = λ′ − λ, and Iλ+cont(i)EiIλ = EiIλ.

4.5. The 2-Morphisms

In this section we define natural transformations of functors. These maps were not explicitly
defined in [4]. Note that the notation for these 2-morphisms is similar to the 2-morphisms in
Section 3 since we will construct a 2-functor mapping one set of 2-morphisms to the other.
Recall the convention (λ−i, λ−i+1) = (λi+1, λi) for i ∈ I+.

(1) The Maps 1i,λ, 1λ

Let i ∈ I, and let 1i,λ : EiIλ → EiIλ and 1λ : Iλ → Iλ be the identity maps.
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(2) The Maps yi;λ

For i ∈ I we define maps yi;λ : EiIλ → EiIλ of degree 2. Let T be the tangle diagram for the
functor EiIλ. It depends on the pair (λi, λi+1). Let a and b be crossingless matches such that
(Rb)Ta is a disjoint union of circles. Thus F((Rb)Ta) = (A)⊗p for some natural number p.
Define

yi;λ
((
β1 ⊗ · · · ⊗ βp

))
=
(
β1 ⊗ · · · ⊗ xβi ⊗ · · · ⊗ βp

)
, (4.9)

where

(a) if (λi, λi+1) = (1, 2), then the ith factor in (A)⊗p corresponds to the circle passing
through the ith point on the bottom set of dots for tangle Dλ,i in Figure 6,

(b) if (λi, λi+1) = (0, 1), then the ith factor in (A)⊗p corresponds to the circle passing
through the ith point on the top set of dots for tangle Dλ,i in Figure 6,

(c) if (λi, λi+1) = (0, 2), then the ith factor in (A)⊗p corresponds to the circle passing
through the ith point on the top set of dots for tangle Tλ,i in Figure 7,

(d) if (λi, λi+1) = (1, 1), then the ith factor in (A)⊗p corresponds to the circle passing
through the ith point on the bottom set of dots for tangle Tλ,i in Figure 7.

(3) The Map ∪i;λ

We define a map ∪i;λ : Iλ → E−iEiIλ. There are four nontrivial cases for (λi, λi+1) to consider.

(a) (λi, λi+1) = (1, 2). The identity functor is induced from the identity tangle Iλ. The
functor E−iEi is isomorphic to tensoring with the bimodule F(Dλ+αi,i ◦Dλ,i) which is
equal to F(Iλ). Thus in this case ∪i;λ is given by the identity map.

(b) (λi, λi+1) = (1, 1). Then the functor E−iEi is isomorphic to tensoring with the
bimodule F(Tλ+αi,i ◦ Tλ,i). Then ∪i;λ is F(Sλ,i).

(c) (λi, λi+1) = (0, 2). Then the functor E−iEi is isomorphic to tensoring with the
bimodule F(Tλ+αi,i ◦ Tλ,i) = F(Iλ) ⊗A. Then the bimodule map is given by 1λ ⊗ ι.

(d) (λi, λi+1) = (0, 1). The functor E−iEi is isomorphic to tensoring with the bimodule
F(Dλ+αi,i◦Dλ,i).As in case 1, this tangle is isotopic to the identity so the map between
the functors is the identity map.

(4) The Map ∩i;λ.

We define a map ∩i;λ : E−iEiIλ → Iλ. There are four non-trivial cases for (λi, λi+1) to consider.

(a) (λi, λi+1) = (1, 2). The functor E−iEi is isomorphic to tensoring with the bimodule
F(Dλ+αi,i ◦Dλ,i) which is equal to F(Iλ). Thus in this case ∩i;λ is given by the identity
map.

(b) (λi, λi+1) = (1, 1). Then the functor E−iEi is isomorphic to tensoring with the
bimodule F(Tλ+αi,i ◦ Tλ,i). Then the homomorphism is F(Sλ,i).

(c) (λi, λi+1) = (0, 2). Then the functor E−iEi is isomorphic to tensoring with the
bimodule F(Tλ+αi,i ◦ Tλ,i) = F(Iλ) ⊗A. Then the bimodule map is given by 1λ ⊗ Tr .
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(d) (λi, λi+1) = (0, 1). The functor E−iEi is given by tensoring with the bimodule
F(Dλ+αi,i◦Dλ,i).As in case 1, this tangle is isotopic to the identity so the map between
the functors is the identity map.

(5) The Maps ψi,j;λ

We define a map ψi,j;λ : EiEjIλ → EjEiIλ for i, j ∈ I±.
There are four cases for i and j to consider and then subcases for λ.

(a) i = j. In this case, the functors are non-trivial only if λi = 0 and λi+1 = 2. The
bimodule for EiEi is isomorphic to tensoring with the bimodule F(Tλ+αi,i ◦ Tλ,i) =
F(Iλ) ⊗A. Then ψi,i = 1λ ⊗ κ.

(b) |i−j| > 1. In this case, the functors EiEj and EjEi are isomorphic via an isomorphism
induced from a cobordism isotopic to the identity so set ψi,j to the identity map.

(c) ψi,i+1 : EiEi+1 → Ei+1Ei. There are four non-trivial subcases to consider.

(i) (λi, λi+1, λi+2) = (1, 1, 2). The bimodule for EiEi+1 is F(Dλ+αi+1,i ◦ Dλ,i+1). The
bimodule for Ei+1Ei is F(Tλ+αi,i+1 ◦ Tλ,i). In this case we define the bimodule
map to be F(Sλ,i,i+1).

(ii) (λi, λi+1, λi+2) = (1, 1, 1). The functor EiEi+1 is given by tensoring with a
bimodule isomorphic to

F(Dλ+αi+1,i ◦ Tλ,i+1) ∼= F(Dλ+αi+1,i ◦ Tλ,i+1)
⊗

Hλ

F(Iλ). (4.10)

The bimodule for Ei+1Ei is isomorphic to F(Dλ+αi,i+1 ◦ Tλ,i). Then define ψi,j to
be 1λ

⊗
Hλ

F(Sλ,i) since

F(Dλ+αi+1,i ◦ Tλ,i+1)
⊗

Hλ

F
(
Tλ+αi,−i ◦ Tλ,i

)
∼= F
(
Dλ+αi,i+1 ◦ Tλ,i

)
. (4.11)

(iii) (λi, λi+1, λi+2) = (0, 1, 2). The bimodule for EiEi+1 is isomorphic to

F
(
Tλ+αi+1,i ◦Dλ,i+1

)
∼= F(Iλ+αi+αi+1)

⊗

Hλ+αi+αi+1

F
(
Tλ+αi+1,i ◦Dλ,i+1

)
. (4.12)

The bimodule for Ei+1Ei is isomorphic to F(Tλ+αi,i+1 ◦Dλ,i). Then define ψi,j to
be F(Sλ+αi+αi+1,i)

⊗
Hλ

1λ since

F
(
Tλ+2αi+αi+1,−(i+1) ◦ Tλ+αi+αi+1,i+1

) ⊗

Hλ+αi+αi+1

F
(
Tλ+αi+1,i ◦Dλ,i+1

)

∼= F
(
Tλ+αi,i+1 ◦Dλ,i

)
.

(4.13)

(iv) (λi, λi+1, λi+2) = (0, 1, 1). The bimodule for EiEi+1 is F(Tλ+αi+1,i ◦ Tλ,i+1). The
bimodule for Ei+1Ei is F(Dλ+αi,i+1 ◦Dλ,i). Then set ψi,j = F(Sλ,i+1,i).
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(d) ψi+1,i : Ei+1Ei → EiEi+1. We essentially just have to read the maps in cases (c)(i)–(iv)
above backwards.

(i) (λi, λi+1, λi+2) = (1, 1, 2). The functors are just as in case (c)(i). Now the map is
F(Sλ,i,i+1).

(ii) (λi, λi+1, λi+2) = (1, 1, 1). The bimodule for Ei+1Ei is isomorphic to

F
(
Dλ+αi,i+1 ◦ Tλ,i

)
∼= F
(
Dλ+αi,i+1 ◦ Tλ,i

)⊗

Hλ

F(Iλ). (4.14)

Then define ψi+1,i = 1λ
⊗

Hλ
F(Sλ,i+1).

(iii) (λi, λi+1, λi+2) = (0, 1, 2). The bimodule for Ei+1Ei is isomorphic to

F
(
Tλ+αi,i+1 ◦Dλ,i

)
∼= F(Iλ+αi+αi+1)

⊗

Hλ+αi+αi+1

F
(
Tλ+αi,i+1 ◦Dλ,i

)
. (4.15)

Then define ψi+1,i = F(Sλ+αi+αi+1,i)
⊗

Hλ
1λ.

(iv) (λi, λi+1, λi+2) = (0, 1, 1). The functors are just as in case (c)(iv). Now the map
is F(Sλ,i+1,i).

Proposition 4.6. For all i, j ∈ I, and λ ∈ P(V2ωk), the maps yi;λ, ψi,j,λ, ∪i,λ, ∩i,λ are bimodule
homomorphisms.

For convenience of notation, we define the following 2-morphisms. If θ ∈ End(Ei), let
θ[j] = θ ◦ · · · ◦ θ︸ ︷︷ ︸

j

. For each i ∈ I, define the bubble

•N
©
i;λ

= ∩i;λ ◦
(
1−i;λ+αiyi;λ

)[N] ◦ ∪i;λ, (4.16)

and define fake bubbles inductively by the formula

(
∑

n≥0

•(α−i ,λ)−1+n
©
i;λ

tn
)(
∑

n≥0

•(α−i ,λ)−1+n
©
−i;λ

tn
)

= 1 (4.17)

and©•−1
i;λ = 1 whenever (αi, λ) = 0. Also, define half-bubbles

•N⋃

i;λ

=
(
1−i;λ+αiyi;λ

)[N] ◦ ∪i;λ,
•N⋂

i;λ

= ∩i;λ ◦
(
yi;λ+αi1i,λ

)[N]
. (4.18)

Finally, for i, j ∈ I±, define

ψi,−j =
(
1−j1i∩−j

)
◦
(
1−jψj,i1−j

)
◦
(
∪j1i1−j

)
. (4.19)
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1 2

Figure 12: Tangles for Ei and EiE−iEi, (λi, λi+1) = (1, 2).

1 1

0 2

1 1

0 2

1 1

0 2

Figure 13: Tangles for Ei and EiE−iEi, (λi, λi+1) = (0, 2).

4.6. The 2-Morphism Relations

In this section we prove certain relations between the 2-morphisms defined in Section 4.5.
This will allow us to define a 2-functor from the Khovanov-Lauda 2-category to the Huerfano-
Khovanov 2-category. Again, we will often omit the argument λ when it is clear from context.

4.6.1. sl2 Relations

Proposition 4.7. For all i ∈ I, (∩−i1i) ◦ (1i∪i) = 1i = (1i∩i) ◦ (∪−i1i).

Proof. The second equality is similar to the first equality. The case i ∈ I− is similar to the case
i ∈ I+ so we just compute the map (∩i1i) ◦ (1i∪i) on the bimodule for the functor Ei for i ∈ I+.
There are four cases to consider.

Suppose that (λi, λi+1) = (1, 2). Then the tangle diagrams for the functors Ei and EiE−iEi

are Dλ,i and Dλ,i ◦Dλ+αi ◦Dλ,i and can be found in Figure 12.
The cobordism between the tangles is isotopic to the identity map so in this case the

composition is equal to the identity map.
The case (λi, λi+1) = (0, 1) is similar to the (1, 2) case.
Now let (λi, λi+1) = (0, 2). Then the tangle diagrams for the functors Ei and EiE−iEi can

be found in Figure 13.
Let B be the bimodule for the functor Ei. Then the bimodule for EiE−iEi is isomorphic

to A ⊗ B. The map Ei → EiE−iEi is given by the unit map which sends an element b ∈ B to
1 ⊗ b. The map EiE−iEi → Ei is obtained from the cobordism joining the circle to the upper
cup which induces the multiplication map. This maps 1⊗b to b. Thus the composition is equal
to the identity.
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2 0

1 1

2 0

1 1

2 0

1 1

Figure 14: Tangles for Ei and EiE−iEi, (λi, λi+1) = (1, 1).

Finally consider the case (λi, λi+1) = (1, 1). The tangle diagrams for the functors Ei and
EiE−iEi can be found in Figure 14.

Let B be the bimodule giving rise to the functor Ei and letA⊗B be the bimodule giving
rise to the functor EiE−iEi. Let α ⊗ β ∈ B, where α is in the tensor factor corresponding to the
circle passing through point i on the bottom row of the left side of Figure 14 and β belongs to
the remaining tensor factors.

The cobordism between the two tangle diagrams is a saddle which, on the level of
bimodule maps, sends α ⊗ β �→ Δ(α) ⊗ β. Then the map from EiE−iEi to Ei is given by Tr⊗1λ
so Δ(α) ⊗ β �→ α ⊗ β by considering the two cases α = 1 or x. Thus the composition is equal to
the identity map.

Proposition 4.8. One has

yi = (∩−i1i) ◦
(
1iy−i1i

)
◦ (1i∪i) = (1i∩i) ◦

(
1iy−i1i

)
◦ (∪−i1i). (4.20)

Proof. We prove only the first equality as the second is similar. There are four cases to consider
for which the functor Ei is nonzero.

Suppose that (λi, λi+1) = (1, 2). Then the tangle diagrams for the functors Ei and EiE−iEi

can be found in Figure 12.
Note that the bimodules for Ei and EiE−iEi are the same. Denote this bimodule by B.

Let α ⊗ β ∈ B, where α is an element in the tensor factor corresponding to a circle passing
through point i in the bottom row of Figure 12. Then the first map 1i∪i is given by the
identity cobordism and is thus the identity. The second map is multiplication by x on all
tensor components corresponding to circles passing through the point i + 1 in the second
row of the right side of Figure 12. The final map EiE−iEi → Ei is also given by the identity
cobordism. Thus the composition maps α ⊗ β �→ α ⊗ β �→ xα ⊗ β �→ α ⊗ β. On the other hand,
yi(α ⊗ β) = xα ⊗ β.

The case (λi, λi+1) = (0, 1) is similar to the previous case.
Suppose that (λi, λi+1) = (0, 2). Then the bimodule for the functor Ei is B = F(Tλ,i)

and the tangle diagram for EiE−iEi is F(Tλ,i ◦ Tλ−αi,i ◦ Tλ,i) ∼= A ⊗ B. Let α ⊗ β ∈ B, where α
is an element of the tensor factor corresponding to the circle passing through the point i in
the top row of the tangle Tλ,i and β is an element in the remaining tensor factors. Then the
composition of maps sends α ⊗ β �→ 1 ⊗ α ⊗ β �→ x ⊗ α ⊗ β �→ xα ⊗ β. This is equal to yi(α ⊗ β).

Suppose that (λi, λi+1) = (1, 1). Then the tangle diagrams for the functors Ei and EiE−iEi

can be found in Figure 14.
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Let B be the bimodule for the functor E−i and let A ⊗ B be the bimodule for EiE−iEi.
Let α ⊗ β ∈ B, where α is an element in the tensor factor corresponding to the circle passing
through point i on the bottom row of Figure 14 and β is an element in the remaining tensor
factors. First let α = 1. Then

1 ⊗ β �−→ x ⊗ 1 ⊗ β + 1 ⊗ x ⊗ β �−→ x ⊗ x ⊗ β �−→ x ⊗ β = yi
(
1 ⊗ β
)
, (4.21)

where the last map is Tr⊗1. If α = x, then

x ⊗ β �−→ x ⊗ x ⊗ β �−→ 0 = yi
(
x ⊗ β

)
. (4.22)

Proposition 4.9. Suppose i ∈ I and (−αi, λ) > r + 1, then©•ri;λ = 0.

Proof. In order that r ≥ 0, it must be the case that (−αi, λ) ≥ 2. Thus the only possibility is
(λi, λi+1) = (0, 2) and r = 0. Then the bimodule for E−iEi isA⊗F(Iλ). Thus the map 1 → E−iEi

is given by the unit map. The map E−iEi → 1 is given by the trace map. Thus the composition
of the maps in the proposition sends an element β �→ 1 ⊗ β �→ Tr(1) ⊗ b = 0.

Proposition 4.10. If (αi, λ) ≤ −1, then©•(−αi,λ)−1
i;λ = 1.

Proof. The only cases to consider are (λi, λi+1) = (0, 2), (1, 2), (0, 1).
Consider the case (0, 2). Let B = F(Iλ). Then the bimodule corresponding to E−iEi is

A ⊗ B. Let β ∈ B. Then ∪i(β) = 1 ⊗ β, yi(1 ⊗ β) = x ⊗ β, and ∩i(x ⊗ β) = Tr(x)β = β. Thus in this
case, the composition is the identity map.

For the case (1, 2), (−αi, λ) − 1 = 0. The cobordism between the tangle diagrams for
the identity functor and E−iEi is isotopic to the identity cobordism. Similarly, the cobordism
between the tangle diagrams for the functors E−iEi and the identity functor is isotopic to the
identity cobordism. Thus the bimodule map is equal to the identity.

The case (0, 1) is the same as the case (1, 2).

Proposition 4.11. Let i ∈ I. If (αi, λ) ≥ 1, then

1i;λ−αi1−i;λ = ψ−i,i;λ ◦ ψi,−i;λ +
(αi,λ)−1∑

f=0

f∑

g=0

•(αi,λ)−f−1⋃

−i;λ
◦
•−(αi,λ)−1+g
©
i;λ

◦
•f−g⋂

−i;λ
. (4.23)

Proof. There are three cases to consider: (λi, λi+1) = (1, 0), (2, 1), (2, 0).
For the case (1, 0), the first term on the right-hand side is zero since that map passes

through the functor EiEiE−i which is zero for this λ. The summation on the right-hand side
reduces to

•0⋃

−i;λ
◦
•−2
©
i;λ
◦
•0⋂

i;λ

= ∪−i;λ ◦ ∩−i;λ (4.24)

by definition (4.17) of the fake bubbles. This map is a composition EiE−i → 1 → EiE−i. This
composition of maps is the identity.

The case (2, 1) is similar to the (1, 0) case.
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For the case (2, 0), the first term on the right-hand side is zero as in the previous two
cases. The summation on the right-hand side consists of three terms, which simplifies by
(4.17) to

•1⋃

−i;λ
◦ ∩−i;λ + ∪−i;λ ◦

•1⋃

−i;λ
+ ∪−i;λ◦

•2
©
i;λ
◦∩−i;λ. (4.25)

Let B = F(Iλ). Then the bimodule for EiE−i isA ⊗ B. Then

•1⋃

−i;λ
◦ ∩−i;λ : EiE−i −→ I → EiE−i −→ EiE−i. (4.26)

Under this composition of maps, 1⊗b maps to zero since the first map is given by a trace map
on the first component. The element x ⊗ b gets mapped to x ⊗ b as follows:

x ⊗ b �−→ b �−→ 1 ⊗ b �−→ x ⊗ b, (4.27)

where the first map is the trace map, the second map is the unit map, and the third map is
multiplication by x. Similarly,

∪−i;λ ◦
•1⋃

−i;λ
: EiE−i −→ EiE−i −→ I −→ EiE−i. (4.28)

Under this composition, 1 ⊗ b �→ 1 ⊗ b and x ⊗ b �→ 0. Finally, the map

∪−i;λ◦
•2
©
i;λ
◦∩−i;λ (4.29)

is zero because the middle term is zero. Thus the right-hand side is the identity as well.

Proposition 4.12. Let i ∈ I+.

(1) If (αi, λ) ≤ 0, then

(1i∩−i;λ) ◦
(
ψi,i;λ−αi1−i

)
◦ (1i∪−i;λ) =

−(αi,λ)∑

f=0

yi
−(αi,λ)−f

•(αi,λ)−1+f
©
−i;λ

. (4.30)

(2) If (αi, λ) ≥ −2, then

(∩i;λ+αi1i) ◦
(
1iψi,i;λ

)
◦ (∪i;λ+αi1i) =

(αi,λ)+2∑

g=0

•−(αi,λ)−3+g
©
i,λ

yi
(αi,λ)−g+2. (4.31)
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Proof. We prove (1), the proof of (2) being similar. Since the maps on both sides pass through
the functor EiEiE−i, the maps on both sides are zero unless (λi, λi+1) = (1, 1). The functors for
Ei and EiEiE−i are given by tangles in Figure 14.

Let B be the bimodule for the functor Ei so A ⊗ B is the bimodule for the functor
EiEiE−i. Let α ⊗ β ∈ B, where α is an element in the tensor factor corresponding to a circle
passing through point i in the bottom row of the left side of Figure 14 and β is an element
in the other tensor factors. Consider first α = 1. The left-hand side maps an element α ⊗ β as
follows:

1 ⊗ β �−→ x ⊗ 1 ⊗ β + 1 ⊗ x ⊗ β �−→ 1 ⊗ 1 ⊗ β �−→ 1 ⊗ β, (4.32)

where the first map is Δ ⊗ 1, the second map is κ ⊗ 1 ⊗ 1, and the third map is m ⊗ 1. If α = x,
the left-hand side maps α ⊗ β as follows:

x ⊗ β �−→ x ⊗ x ⊗ β �−→ 1 ⊗ x ⊗ β �−→ x ⊗ β. (4.33)

The right-hand side is 1 by convention.

4.6.2. nil-Hecke Relations.

Proposition 4.13. For i ∈ I+, ψ[2]
i,i = 0.

Proof. Since EiEi is identically zero unless (λi, λi+1) = (0, 2),we need only to consider this case.
Let B = F(Iλ). Then the bimodule for EiEi is isomorphic to F(Tλ,i ◦ Tλ,i) = A ⊗ B.

Then ψi,i ◦ψi,i : A⊗B → A⊗B → A⊗B. This map sends 1⊗b �→ 0 and x⊗b �→ 1⊗b �→
0.

Proposition 4.14. Let i ∈ I+. Then, (ψi,i1i) ◦ (1iψi,i) ◦ (ψi,i1i) = (1iψi,i) ◦ (ψi,i1i) ◦ (1iψi,i).

Proof. Both sides are natural transformations of the functor EiEiEi. However, by definition
this composition is zero.

Proposition 4.15. For i ∈ I+, (1i1i) = (ψi,i) ◦ (yi1i) − (1iyi) ◦ (ψi,i) = (yi1i) ◦ (ψi,i) − (ψi,i) ◦ (1iyi).

Proof. The only case to check is (λi, λi+1) = (0, 2) since otherwise EiEi = 0. Let B = F(Iλ). Then
the bimodule for EiEi is isomorphic toA ⊗ B. Then

(
ψi,i
)
◦
(
yi1i
)

: A ⊗ B −→ A ⊗ B. (4.34)

Under this map, 1 ⊗ b �→ x ⊗ b �→ 1 ⊗ b and x ⊗ b �→ 0. For the map (1iyi) ◦ (ψi,i), 1 ⊗ b �→ 0, and
x ⊗ b �→ 1 ⊗ b �→ x ⊗ b. This gives the first equality since our field has characteristic two.

For the second equality, (yi1i) ◦ (ψi,i) : 1 ⊗ b �→ 0, (yi1i) ◦ (ψi,i) : x ⊗ b �→ 1 ⊗ b �→ x ⊗ b.
Similarly, (ψi,i) ◦ (1iyi) : 1 ⊗ b �→ x ⊗ b �→ 1 ⊗ b and (ψi,i) ◦ (1iyi) : x ⊗ b �→ 0.
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Proposition 4.16. For i, j ∈ I−,

ψj,i =
(
∩−j1i1j

)
◦
(
1j∩−i1−j1i1j

)
◦
(
1j1iψ−j,−i1i1j

)
◦
(
1j1i1−j∪i1j

)
◦
(
1j1i∪j

)

=
(
1i1j∩i

)
◦
(
1i1j1−i∩j1i

)
◦
(
1i1jψ−j,−i1j1i

)
◦
(
1i∪−j1−i1j1i

)
◦
(
∪−i1j1i

)
.

(4.35)

Proof. Let i, j ∈ I−. We prove only the first equality. If |i−j| > 1, the proposition is easy because
then ψ±i,±j are identity morphisms. Therefore, we take i = j + 1, the case i = j − 1 being similar.
The natural transformation on the right side of the proposition is a composition of natural
transformations:

EjEj+1 −→ EjEj+1E−jEj −→ EjEj+1E−jE−j−1Ej+1Ej

−→ EjEj+1E−j−1E−jEj+1Ej −→ EjE−jEj+1Ej −→ Ej+1Ej .
(4.36)

There are four nontrivial cases for λ. We prove the case (λj , λj+1, λj+2) = (2, 1, 1). The
proofs of the remaining cases (2, 1, 0), (1, 1, 0), and (1, 1, 1) are similar.

Let B be the bimodule representing the functor EjEj+1 and B′ the bimodule
representing the functor Ej+1Ej . Then the morphism is the composition B → B → B →
A ⊗ B → B → B′ induced by the tangle cobordisms in Figure 15. The first and second maps
are the identity maps. The third map is comultiplication. The fourth map is the trace map and
the last map is ψj,j+1. Computing this composition on elements as in previous propositions
easily gives that it is equal to ψj,j+1.

4.6.3. R(ν) Relations

Proposition 4.17. For i, j ∈ I±, i /= j,

ψ−j,i ◦ ψi,−j = 1i1−j . (4.37)

Proof. Note that, for |i− j| > 1, the left-hand side is easily seen to be the identity so let j = i+ 1.
The case j = i − 1 is similar. Thus the left-hand side is

ψ−j,i ◦ ψi,−j : EiE−i−1 −→ E−i−1Ei+1EiE−i−1 −→ E−i−1EiEi+1E−i−1 −→ E−i−1Ei

−→ E−i−1EiEi+1E−i−1 −→ E−i−1Ei+1EiE−i−1 −→ EiE−i−1.
(4.38)

There are four non-trivial cases for λ.

Case 1 ((λi, λi+1, λi+2) = (1, 2, 1)). Let B be the bimodule representing the functor EiE−i−1. Then

ψ−j,i ◦ ψi,−j : B −→ A ⊗ B −→ B −→ B −→ B −→ A ⊗ B −→ B. (4.39)

The first map is ι ⊗ 1λ. The second map is multiplication m. The third and fourth maps are
the identity. The fifth map is comultiplication Δ. The last map is Tr⊗1. It is easy to check on
elements that this is the identity map.
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2 0 2

1 1 2

1 2 1

2 1 1

1 1 2

1 2 1

2 1 1

Figure 15: Tangles for compositions of natural transformations in the (2, 1, 1) case.

Case 2 ((λi, λi+1, λi+2) = (1, 2, 0)). Let B be the bimodule representing the functor EiE−i−1. Then

ψ−j,i ◦ ψi,−j : B −→ B −→ A ⊗ B −→ B −→ A ⊗ B −→ B −→ B. (4.40)

The first map is the identity. The second map is Δ by Lemma 4.3. The third map is Tr⊗1
where the trace map is applied to the tensor factor arising from the new circle component.
The fourth map is ι ⊗ 1. The fifth map is multiplication by Lemma 4.4. The last map is the
identity. It is easy to check that this composition is the identity on all elements.

Case 3 ((λi, λi+1, λi+2) = (0, 2, 1)). This is similar to Case 2.

Case 4 ((λi, λi+1, λi+2) = (0, 2, 0)). This is similar to Case 1.

Proposition 4.18. If i, j ∈ I+ and |i − j| > 1, then ψj,i ◦ ψi,j = 1i1j .

Proof. The tangle diagrams for the bimodules for EiEj and EjEi are the same up to isotopy.
The maps in the proposition are obtained from cobordisms isotopic to the identity so they are
identity maps.

Proposition 4.19. If i, j ∈ I+ and |i − j| = 1, then ψj,i ◦ ψi,j = (yi1j + 1iyj).

Proof. Assume that j = i + 1. The case j = i − 1 is similar. There are eight cases for λ such that
EiEi+1 is non-zero. In all cases let a and b be cup diagrams. Let B be the bimodule for EiEi+1

and B′ the bimodule for Ei+1Ei.

Case 1. (λi, λi+1, λi+2) = (0, 0, 1). Since Ei+1Ei = 0, the map ψi+1,i ◦ ψi,i+1 = 0. The bimodule
representing the functor EiEi+1 is isomorphic to F(Dλ+αi+1,i ◦ Dλ,i+1). Since the circle passing
through point i on the bottom row of Dλ+αi+1,i ◦Dλ,i+1 is the same as the circle passing through
point i + 1 in the middle row, the map on the right side of the proposition is zero as well.

Case 2 ((λi, λi+1, λi+2) = (1, 0, 1)). This is similar to Case 1.

Case 3 ((λi, λi+1, λi+2) = (1, 0, 2)). This is similar to Case 1.

Case 4 ((λi, λi+1, λi+2) = (0, 0, 2)). This is similar to Case 1.
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Case 5 ((λi, λi+1, λi+2) = (0, 1, 1)). In this case B ∼= F(Tλ+αi+1,i ◦ Tλ,i+1) and B′ ∼= F(Dλ+αi,i+1 ◦Dλ,i).
Let a and b be crossingless matches.

(i) Suppose that the circle passing through point i+1 on the bottom row of a(Tλ+αi+1,i)◦
Tλ,i+1)b is the same as the circle passing through point i of the top row. Then aBb =
A ⊗ R and aB

′
b = A ⊗A ⊗ R, where R is a tensor product ofA corresponding to the

remaining circles. Then the map on the left side of the proposition is (m⊗1)◦(Δ⊗1).
Thus it maps an element 1 ⊗ r to 2x ⊗ r. On the other hand, yi(1 ⊗ r) = x ⊗ r. Also,
yi+1(1 ⊗ r) = x ⊗ r. Thus both sides are the same.

(ii) Suppose that the circle passing through point i + 1 on the bottom is different from
the circle passing through point i on the top. Then aBb = A⊗A⊗R and aB

′
b = A⊗R.

Then the map on the left side of the proposition is (Δ ⊗ 1λ) ◦ (m ⊗ 1λ). Thus it maps
an element 1⊗ 1⊗ r to x ⊗ 1⊗ r + 1⊗x ⊗ r. On the other hand, yi(1⊗ 1⊗ r) = x ⊗ 1⊗ r.
Also, yi+1(1 ⊗ r) = 1 ⊗ x ⊗ r. Thus both sides are the same

Case 6 ((λi, λi+1, λi+2) = (1, 1, 1)). In this case, B ∼= F(Dλ+αi+1,i ◦ Tλ,i+1) and B′ ∼= F(Dλ+αi,i+1 ◦ Tλ,i).
Let a and b be crossingless matches.

(i) Suppose that the circle passing through point i + 1 on the bottom row of Dλ+αi+1,i ◦
Tλ,i+1 is the same as the circle passing through point i on the bottom row. Then
aBb = A ⊗ R and aB

′
b
= A ⊗A ⊗ R. Then the map on the left side of the proposition

is (m ⊗ 1) ◦ (Δ ⊗ 1). Thus it maps an element 1 ⊗ r to 2x ⊗ r. On the other hand,
yi(1 ⊗ r) = x ⊗ r. Also, yi+1(1 ⊗ r) = x ⊗ r. Thus both sides are the same.

(ii) Suppose that the circle passing through point i + 1 on the bottom row of Dλ+αi+1,i ◦
Tλ,i+1 is different from the circle passing through point i on the bottom row. Then
aBb = A ⊗A ⊗ R and aB

′
b
= A ⊗ R. Then the map on the left side of the proposition

is (Δ ⊗ 1) ◦ (m ⊗ 1). Thus it maps an element 1 ⊗ 1 ⊗ r to x ⊗ 1 ⊗ r + 1 ⊗ x ⊗ r. On the
other hand, yi(1 ⊗ 1 ⊗ r) = x ⊗ 1 ⊗ r. Also, yi+1(1 ⊗ r) = 1 ⊗ x ⊗ r. Thus both sides are
the same.

Case 7 ((λi, λi+1, λi+2) = (1, 1, 2)). This is similar to Case 5.

Case 8 ((λi, λi+1, λi+2) = (0, 1, 2)). This is similar to Case 6.

Proposition 4.20. Let i, j ∈ I+. If i /= j, then

(1) (1jyi) ◦ ψi,j = ψi,j ◦ (yi1j),
(2) (yj1i) ◦ ψi,j = ψi,j ◦ (1iyj).

Proof. We prove only the first statement. Assume further that j = i + 1, the case j = i − 1 being
similar. The case for |j − i| > 1 is easy because the bimodules for EiEj and EjEi are equal.

There are four non-trivial cases for (λi, λi+1, λi+2). Let a and b be crossingless matches.
Let B be the bimodule for EiEi+1 and let B′ be the bimodule for Ei+1Ei.

Case 1 ((λi, λi+1, λi+2) = (1, 1, 2)). (i) Suppose that the circle passing through point i on
the bottom row of the tangle for EiEi+1 is the same as the circle passing through
point i + 1 on the bottom row. Then aBb = A ⊗ R and aB

′
b
= A ⊗ A ⊗ R, where R

denotes a tensor product ofA corresponding to the remaining circles. Then ψi,i+1 is
given by Δ ⊗ 1. Then ψi,i+1yi(1 ⊗ r) = ψi,i+1(x ⊗ r) = x ⊗ x ⊗ r. Then yiψi,i+1(1 ⊗ r) =
yi(x ⊗ 1 ⊗ r + 1 ⊗ x ⊗ r) = x ⊗ x ⊗ r.
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(ii) Suppose that the circle passing through point i on the bottom row of the tangle for
EiEi+1 is different from the circle passing through point i + 1 on the bottom row.
Then aBb = A ⊗A ⊗R and aB

′
b
= A ⊗R. Then ψi,i+1 = m ⊗ 1. Then it is easy to verify

that ψi,i+1yi(1 ⊗ 1 ⊗ r) = yiψi,i+1(1 ⊗ 1 ⊗ r) = x ⊗ r.

Case 2. (λi, λi+1, λi+2) = (0, 1, 1). This is similar to Case 1.

Case 3. (λi, λi+1, λi+2) = (1, 1, 1).

(i) Suppose that the circle passing through point i on the bottom row of the tangle is the
same as the circle passing through point i + 1 on the bottom row. Then aBb = A ⊗ R
and aB

′
b
= A ⊗A ⊗ R. Then ψi,i+1 is given by Δ ⊗ 1. This then follows as in Case 1.

(ii) Suppose that the circle passing through point i on the bottom row of the tangle is
different from the circle passing through the point i + 1 on the bottom row. Then
aBb = A⊗A⊗R and aB

′
b = A⊗R. Then ψi,i+1 = m⊗ 1. This then follows as in Case 1.

Case 4 ((λi, λi+1, λi+2) = (0, 1, 2)). This is similar to Case 3.

Proposition 4.21. For i, j, k ∈ I+,

(
ψj,k1i

)
◦
(
1jψi,k

)
◦
(
ψi,j1k

)
+
(
1kψi,j

)
◦
(
ψi,k1j

)
◦
(
1iψj,k

)
=

⎧
⎨

⎩

0, i /= k or
∣∣i − j

∣∣/= 1,

1i1j1i, i = k and
∣∣i − j

∣∣ = 1.
(4.41)

Proof. The proof of the first part consists of verifying the equality in many different cases,
each of which is similar to the second part. We only prove the second part in the case j = i+ 1
as the case j = i − 1 is similar. There are four cases for (λi, λi+1, λi+2) for which EiEi+1Ei is
non-zero.

Case 1 ((λi, λi+1, λi+2) = (0, 1, 1)). In this case, (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i) = 0 because it passes
through the functor Ei+1EiEi which is zero on the category corresponding to this λ. On the
other hand,

(
1iψi,j
)
◦
(
ψi,i1j
)
◦
(
1iψj,i
)

: EiEi+1Ei −→ EiEiEi+1 −→ EiEiEi+1 −→ EiEi+1Ei. (4.42)

Let B be the bimodule for the functor EiEi+1Ei. Then this is a sequence of maps

B −→ A ⊗ B −→ A ⊗ B −→ B, (4.43)

where the first map is given by comultiplication, the middle map is given by the map 1 ⊗ κ,
and the last map is multiplication. This sequence of maps acts on 1 ⊗ α ∈ B as follows:

1 ⊗ α �−→ x ⊗ 1 ⊗ α + 1 ⊗ x ⊗ α �−→ 1 ⊗ 1 ⊗ α �−→ 1 ⊗ α. (4.44)

Clearly, (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i)(1 ⊗ α) = 0. Similarly, x ⊗ α �→ x ⊗ α.
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Case 2 ((λi, λi+1, λi+2) = (0, 2, 2)). This is similar to Case 1 except that now (1iψi,j) ◦ (ψi,i1j) ◦
(1iψj,i) = 0 and (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i) = 1i1j1i.

Case 3. (λi, λi+1, λi+2) = (0, 1, 2). In this case, (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i) = 0 since this map passes
through the functor Ei+1EiEi which is zero on the category corresponding to λ.

On the other hand,

(
1iψi,j
)
◦
(
ψi,i1j
)
◦
(
1iψj,i
)

: EiEi+1Ei −→ EiEiEi+1 −→ EiEiEi+1 −→ EiEi+1Ei. (4.45)

Let B be the bimodule for the functor EiEi+1Ei. Then this is a sequence of maps

B −→ A ⊗ B −→ A ⊗ B −→ B, (4.46)

where the first and third maps are given by Lemmas 4.3 and 4.4, respectively, and the middle
map is given in Section 4.5. This sequence of maps acts on 1 ⊗ α, x ⊗ α ∈ B as follows:

1 ⊗ α �−→ x ⊗ 1 ⊗ α + 1 ⊗ x ⊗ α �−→ 1 ⊗ 1 ⊗ α �−→ 1 ⊗ α,

x ⊗ α �−→ x ⊗ x ⊗ α �−→ x ⊗ 1 ⊗ α �−→ x ⊗ α.
(4.47)

Case 4 ((λi, λi+1, λi+2) = (0, 2, 1)). This is similar to Case 1 except that now (1iψi,j) ◦ (ψi,i1j) ◦
(1iψj,i) = 0 and (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i)(β ⊗ α) = β ⊗ α.

The relations of the 2-morphisms proven in this section give the following.

Theorem 4.22. There is a 2-functor Ωk,n :KL → HKk,n such that, for all i, j ∈ I,

(1) Ωk,n(λ) = Cλ,

(2) Ωk,n(Iλ) = Iλ,

(3) Ωk,n(EiIλ) = EiIλ,

(4) Ωk,n(Yi;λ) = yi;λ,

(5) Ωk,n(Ψi,j;λ) = ψi,j;λ,

(6) Ωk,n(
⋃
i;λ) = ∪i;λ,

(7) Ωk,n(
⋂
i;λ) = ∩i;λ,

(8) Ωk,n(1i;λ) = 1i;λ.

5. The 2-Category Pk,n
5.1. Graded Category ZO

Let g = gl2k be the Lie algebra of 2k × 2k-matrices, let d denote the Cartan subalgebra of g

consisting of diagonal matrices, and let p be the Borel subalgebra of upper triangular matrices.
For i = 1, . . . , 2k, let eij denote the (i, j)-matrix unit, and let εi ∈ d∗ be the coordinate functional
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εi(ejj) = δij . Let O be the category of finitely generated g-modules which are diagonalizable
with respect to d and locally finite with respect to p. Let

X =
2k⊕

i=1

Zεi, Y =
2k−1⊕

i=1

Z(εi − εi+1) ⊂ X (5.1)

denote the weight lattice and root lattice of gl2k, respectively. The dominant weights are given
by the set X+ = { μ = μ1ε1 + · · · + μ2kε2k ∈ X | μ1 ≥ · · · ≥ μ2k }. Denote half the sum of the
positive roots by ρ. Let μ ∈ X+, and let Oμ be the block of O consisting of modules that have a
generalized central character corresponding to μ under the Harish-Chandra homomorphism.
Let O(k,k)

μ be the full subcategory O consisting of modules which are locally finite with

respect to the parabolic subalgebra whose reductive part is glk ⊕ glk. Finally, let P(k,k)
μ be the

full subcategory of O(k,k)
μ whose objects have projective presentations by projective-injective

modules.
Let μ and μ′ be integral dominant weights of g, and let Stab(μ) denote the stabilizer

of μ under the ρ-shifted action of the symmetric group S2k. Suppose that μ′ − μ is an integral
dominant weight. Then, let θμ

′

μ : O(k,k)
μ → O(k,k)

μ′ be the translation functor of tensoring with
the finite-dimensional irreducible representation of highest weight μ′ − μ composed with
projecting onto the μ′-block, and let θμμ′ be its adjoint.

Let Pμ be a minimal projective generator of Oμ. It was shown that Aμ = Endg(Pμ) has
the structure of a graded algebra [11]. Since Oμ is Morita equivalent to Aμ-mod, we consider
the category of graded Aμ-modules which we denote by ZOμ. Let the graded lift of O(k,k)

μ

and P(k,k)
μ be ZO(k,k)

μ and ZP(k,k)
μ , respectively. It is known that if Stab(μ) ⊂ Stab(μ′), there is a

graded lift of the translation functors, compare, for example, [14], which by abuse of notation
we denote again by θ̃μμ′ and θ̃

μ′

μ .
The key tool in the construction of graded category O is the Soergel functor. Let

λ = (λ1, . . . , λn) be a composition of 2k and Sλ = Sλ1 × · · · × Sλn . Denote the longest
coset representative in S2k/Sμ by w

μ

0 . Let P(wμ

0 · μ) be the unique up to isomorphism,
indecomposable projective-injective object of Oμ. Let C = S(h)/S(h)S2k

+ be the coinvariant
algebra of the symmetric algebra for the Cartan subalgebra with respect to the action of the
symmetric group. Let {x1, . . . , x2k} be a basis of S(h) and by abuse of notation also let xi
denote its image in C. Let Cλ be the subalgebra of elements invariant under the action of Sλ.
Soergel proved in [15] the following.

Proposition 5.1. One has Endg(P(w
μ

0 · μ)) ∼= CStab(μ).

Define the Soergel functor Vμ : Oμ → CStab(μ)-mod to be Homg(P(w0 · μ), •).

Proposition 5.2. Let P be a projective object. Then there is a natural isomorphism
HomCStab(μ) (VμP,VμM) ∼= Homg(P,M).

Proof. This is the Structure Theorem of [15].
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Proposition 5.3. Let μ, μ′ ∈ X+ be integral dominant weights such that there is a containment of
stabilizers: Stab(μ) ⊂ Stab(μ′). Then there are isomorphisms of functors

(1) Vμ′θ
μ′

μ
∼= ResC

Stab(μ′)

CStab(μ) Vμ,

(2) Vμθ
μ

μ′
∼= CStab(μ)⊗

CStab(μ′)Vμ′ .

Proof. These are Theorem 12 and Proposition 6 of [16].

5.2. The Objects of Pk,n

Let λ = (λ1, . . . , λr) be a composition of 2k with λi ∈ {0, 1, 2} for all i. To each such λ, we
associate an integral dominant weight

λ =
r∑

j=1

λj∑

i=1

(
r − j + 1

)
ελ1+···+λj−1+i − ρ (5.2)

of gl2k, where λ0 = 0. Note that the stabilizer of this weight under the action of S2k is Sλ1 × · · ·×
Sλn .

The set of objects of Pk,n are the categories ZP(k,k)

λ
, λ ∈ P(V2ωk).

5.3. The 1-Morphisms of Pk,n

Let λ ∈ P(V2ωk), and let Iλ ∈ Endg( ZP
(k,k)

λ
) be the identity functor.

For each i ∈ I, we define functors EiIλ and KiIλ. To this end, let λ be a weight of V2ωk

and i ∈ I+. Then we have compositions of 2k into n + 1 parts:

λ(i) = (λ1, . . . , λi, 1, λi+1 − 1, . . . , λn), λ(−i) = (λ1, . . . , λi − 1, 1, λi+1, . . . , λn) (5.3)

Also, if λ =
∑

i aiωi ∈ P , set ri,λ = 1 + a1 + · · · + ai−1 + ai+1 and si,λ = 2 − ai − ai+1.
Let i ∈ I. Suppose that (λi, λi+1) ∈ {(0, 1), (0, 2), (1, 1), (1, 2)}. Then we define, as in [17],

EiIλ:ZP(k,k)

λ
→ ZP(k,k)

λ+αi
which is given by tensoring with the following bimodule:

Homg

(
Pλ+αi , θ

λ+αi
λ(i)

θ
λ(i)

λ
Pλ{ri,λ}

)
∼= HomCλ+αi

(
Vλ+αi

Pλ+αi ,Vλ+αi
θλ+αi
λ(i)

θ
λ(i)

λ
Pλ{ri,λ}

)

∼= HomCλ+αi

(

Vλ+αi
Pλ+αi , C

λ+αi
⊗

Cλ(i)

Re sC
λ(i)

Cλ VλPλ{ri,λ}
)

.

(5.4)

For all other values of (λi, λi+1), set EiIλ = 0. Let KiIλ:ZP(k,k)

λ
→ ZP(k,k)

λ
be the grading shift

functor KiIλ = Iλ{(αi, λ)}.
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Let ZP(k,k)

λ
and ZP(k,k)

λ
′ be two objects. Then

Hom
(

ZP
(k,k)

λ
,ZP

(k,k)

λ
′

)
=
⊕

i∈Seq
s∈Z

Iλ′EiIλ{s}, (5.5)

where Ei := Ei1 · · ·Eir Iλ if i = (i1, . . . , ir) ∈ I∞, and s refers to a grading shift.

5.4. Bimodule Categories over the Cohomology of Flag Varieties

A review of certain bimodules and bimodule maps over the cohomology of flag varieties
developed in [1, 2, 18] is given here. Let λ = (λ1, . . . , λn) be a composition of 2k into n parts.
Let x(λ)j,r = xλ1+···+λj−1+r . There is an isomorphism of algebras:

Cλ ∼=

⊗
1≤j≤nC

[
x(λ)j,1, x(λ)j,2, . . . , x(λ)j,λj

]

Jλ,n
, (5.6)

where Jλ,n is the ideal generated by the homogeneous terms in the equation

∏

1≤j≤n

(
1 + x(λ)j,1t + x(λ)j,2t

2 + · · · + x(λ)j,λj t
λj
)
= 1. (5.7)

Let x̂(λ)i,k be the homogenous term of degree 2k in the product

∏

1≤j≤n
j /= i

(
1 + x(λ)j,1t + x(λ)j,2t

2 + · · · + x(λ)j,λj t
λj
)
.

(5.8)

Then, using (5.7), we see that

k∑

j=1

x(λ)i,j x̂(λ)i,k−j = δk,0, (5.9)

compare, for example, [1, Section 5.1] for details.
We must also consider Cλ(i). There is an isomorphism of algebras:

Cλ(i) ∼=
⊗

1≤j≤n,
j /= i+1

C

[
x(λ)j,1, x(λ)j,2, . . . , x(λ)j,λj

]
⊗ C[ζi]

⊗
C
[
x(λ)i+1,1, x(λ)i+1,2, . . . , x(λ)i+1,λi+1−1

]

Jλ(i),n
,

(5.10)
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where Jλ(i),n is the ideal generated by the homogeneous terms in the equation

∏

1≤j≤n,
j /= i+1

(1 + ζit)
λi+1−1∑

r=0

x(λ)i+1,r t
r
λj∑

s=0

x(λ)j,st
s = 1. (5.11)

There is also an isomorphism of algebras:

Cλ(−i) ∼=
⊗

1≤j≤n,
j /= i

C

[
x(λ)j,1, x(λ)j,2, . . . , x(λ)j,λj

]
⊗ C
[
x(λ)i,1, x(λ)i,2, . . . , x(λ)i,λi−1

]
⊗ C[ζi]/Jλ(−i),n,

(5.12)

where Jλ(−i),n is the ideal generated by the homogeneous terms in the equation

∏

1≤j≤n,
j /= i

(1 + ζit)
λi−1∑

r=0

x(λ)i,r t
r
λj∑

s=0

x(λ)j,st
s = 1. (5.13)

5.5. The 2-Morphisms

In light of Propositions 5.2 and 5.3, we may define the 2-morphisms on the algebras Cλ, λ ∈
P(V2ωk) in order to define natural transformations of functors.

The Maps yi;λ

Let i ∈ I. Define yi;λ : Cλ(i) → Cλ(i) which is a map of (Cλ+αi , Cλ)-bimodules by yi;λ((ζi)
r) =

(ζi)
r+1.

The Maps ∪i;λ,∩i;λ

Let i ∈ I+. Define a map of (Cλ,Cλ)-bimodules

∪i;λ : Cλ −→ Cλ(i)
⊗

Cλ+αi

Cλ(i){1 − λi − λi+1} (5.14)

by

∪i;λ(1) =
λi∑

f=0

(−1)λi−fζfi ⊗ x(λ)i,λi−f . (5.15)

Next define a map of (Cλ,Cλ)-bimodules

∪−i;λ : Cλ −→ Cλ(−i)
⊗

Cλ−αi

Cλ(−i){1 − λi − λi+1} (5.16)
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by

∪−i;λ(1) =
λi+1∑

f=0

(−1)λi+1−fζ
f

i ⊗ x(λ)i+1,λi+1−f . (5.17)

Next define a map of (Cλ,Cλ)-bimodules

∩i;λ : Cλ(i)
⊗

Cλ+αi

Cλ(i){1 − λi − λi+1} −→ Cλ
(5.18)

by

∩i;λ
(
ζr1
i ⊗ ζ

r2
i

)
= (−1)r1+r2+1−λi+1 x̂(λ)i+1,r1+r2+1−λi+1

. (5.19)

Next define a map of (Cλ,Cλ)-bimodules

∩−i;λ : Cλ(−i)
⊗

Cλ−αi

Cλ(−i){1 − λi − λi+1} −→ Cλ
(5.20)

by

∩−i;λ
(
ζr1
i ⊗ ζ

r2
i

)
= (−1)r1+r2+1−λi x̂(λ)i,r1+r2+1−λi . (5.21)

The Maps ψi,j;λ

Let i, j ∈ I+. Define a map of (Cλ+αi+αj , Cλ)-bimodules

ψi,j;λ : C(λ+αj )(i)
⊗

C
λ+αj

Cλ(j) −→ C(λ+αi)(j)
⊗

Cλ+αi

Cλ(i)
(5.22)

by

ψi,j;λ

(
ζr1
i ⊗ ζ

r2
j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζr2
j ⊗ ζ

r1
i if

∣∣i − j
∣∣ > 1,

r1−1∑

f=0

ζ
r1+r2−1−f
i ⊗ ζfi −

r2−1∑

g=0

ζ
r1+r2−1−g
i ⊗ ζgi if j = i,

(
ζr2
j ⊗ ζ

r1+1
i − ζr2+1

j ⊗ ζr1
i

)
{−1} if i = j + 1,

(
ζr2
j ⊗ ζ

r1
i

)
{1} if j = i + 1.

(5.23)

Define a map of (Cλ−αi−αj , Cλ)-bimodules

ψ−i,−j;λ : C(λ−αj )(−i)
⊗

C
λ−αj

Cλ(−j) −→ C(λ−αi)(−j)
⊗

Cλ−αi

Cλ(−i)
(5.24)
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by

ψ−i,−j

(
ζr1
i ⊗ ζ

r2
j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζr2
j ⊗ ζ

r1
i if

∣
∣i − j

∣
∣ > 1,

r2−1∑

f=0

ζ
r1+r2−1−f
i ⊗ ζfi −

r1−1∑

g=0

ζ
r1+r2−1−g
i ⊗ ζgi if j = i,

(
ζr2
j ⊗ ζ

r1+1
i

)
{−1} if i = j + 1,

(
ζr2+1
j ⊗ ζr1

i − ζ
r2
j ⊗ ζ

r1+1
i

)
{1} if j = i + 1.

(5.25)

5.6. The 2-Morphisms of Pk,n

Let i, j ∈ I+.

The Maps 1i;λ

Let 1i;λ : EiIλ → EiIλ and 1−i;λ : E−iIλ → E−iIλ be the identity morphisms.

The Maps yi;λ

Next we define a morphism of degree 2, yi;λ : EiIλ → EiIλ. Recall that

EiIλ
∼= HomCλ+αi

(

Vλ+αi
Pλ+αi , C

λ(i)
⊗

Cλ

VλPλ{ri,λ}
)

. (5.26)

Let f be such a homomorphism. Suppose that f(m) = γ ⊗ n. Then set (yi;λ · f)(m) = yi(γ) ⊗ n.
Similarly,

E−iIλ ∼= HomCλ−αi

(

Vλ−αiPλ−αi , C
λ(−i)
⊗

Cλ

VλPλ{si,λ}
)

. (5.27)

Let f be such a homomorphism. Suppose that f(m) = γ⊗n. Then set (y−i;λ ·f)(m) = y−i;λ(γ)⊗n.

The Maps ∪i;λ,∩i;λ

Note that

Iλ
∼= J = HomCλ

(
VλPλ,VλPλ

)
,

E−i ◦ EiIλ
∼= K = HomCλ

(

VλPλ, C
λ+αi(−i)

⊗

Cλ+αi

Cλ(i)
⊗

Cλ

VλPλ{rλ,i + sλ+αi,i}
)

,

Ei ◦ E−iIλ ∼= L = HomCλ

(

VλPλ, C
λ−αi(i)

⊗

Cλ−αi

Cλ(−i)
⊗

Cλ

VλPλ{sλ,i + rλ−αi,i}
)

.

(5.28)
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Let f ∈ J. Then define ∪i;λ : Iλ → E−iEiIλ by

∪i;λ
(
f
)
(m) = ∪i;λ(1) ⊗ f(m) (5.29)

and ∪−i;λ : Iλ → EiE−iIλ by

∪−i;λ
(
f
)
(m) = ∪−i;λ(1) ⊗ f(m). (5.30)

Now define ∩i;λ : E−iEiIλ → Iλ. Suppose that f ∈ K such that f(m) = γ ⊗ n. Then set
∩i;λ(f)(m) = ∩i;λ(γ) ⊗ n.

Next define ∩−i;λ : EiE−iIλ → Iλ. Suppose that f ∈ L such that f(m) = γ ⊗ n. Then set
∩−i;λ(f)(m) = ∩−i;λ(γ) ⊗ n.

The Maps ψi,j;λ

First we define a map ψi,j;λ : EiEjIλ → EjEiIλ.
Set

J+i,j = EiEjIλ
∼= Hom

C
λ+αi+αj

⎛

⎝Vλ+αi+αj
Pλ+αi+αj , C

(λ+αj )(i)
⊗

C
λ+αj

Cλ(j)
⊗

Cλ

VλPλ

{
rλ,j + rλ+αj ,i

}
⎞

⎠,

K+
i,j = EjEiIλ

∼= Hom
C
λ+αj+αi

(

Vλ+αj+αi
Pλ+αj+αi , C

(λ+αi)(j)
⊗

Cλ+αi

Cλ(i)
⊗

Cλ

VλPλ
{
rλ,i + rλ+αi,j

}
)

.

(5.31)

Let f ∈ J+i,j and suppose that f(m) = γ1 ⊗ γ2 ⊗ n. Then define ψi,j;λf(m) = ψi,j;λ(γ1 ⊗ γ2) ⊗ n.
Set

J−i,j = E−iE−jIλ ∼= Hom
C
λ−αi−αj

⎛

⎝Vλ−αi−αj Pλ−αi−αj , C
(λ−αj )(−i)

⊗

C
λ−αj

Cλ(−j)
⊗

Cλ

VλPλ

{
sλ,j + sλ−αj ,i

}
⎞

⎠,

K−i,j = E−jE−iIλ ∼= Hom
C
λ−αj−αi

(

Vλ−αj−αiPλ−αj−αi , C
(λ−αi)(−j)

⊗

Cλ−αi

Cλ(−i)
⊗

Cλ

VλPλ
{
sλ,i + sλ−αi,j

}
)

.

(5.32)

Let f ∈ J−i,j and suppose that f(m) = γ1 ⊗ γ2 ⊗ n. Then define ψ−i,−j;λf(m) = ψ−i,−j;λ(γ1 ⊗
γ2) ⊗ n.

Theorem 5.4. There is a 2-functorΠk,n :KL → Pk,n such that, for all i, j ∈ I,

(1) Πk,n(λ)=ZP(k,k)

λ
,

(2) Πk,n(Iλ) = Iλ,

(3) Πk,n(EiIλ) = EiIλ,
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(4) Πk,n(Yi;λ) = yi;λ,

(5) Πk,n(Ψi,j;λ) = ψi,j;λ,

(6) Πk,n(
⋃
i;λ) = ∪i;λ,

(7) Πk,n(
⋂
i;λ) = ∩i;λ,

(8) Πk,n(1i;λ) = 1i;λ.

Proof. This now follows from the computations in [1, Section 6.2] for bimodules over the
cohomology of flag varieties using the naturality of the isomorphism in Proposition 5.2.

Finally we show that the category Pk,n is a categorification of the module V2ωk . Denote
the Grothendieck group of Pk,n by [Pk,n], and let [Pk,n]Q(q) = C(q)

⊗
Z[q,q−1][Pk,n].

Proposition 5.5. There is an isomorphism of Uq(sln)-modules [Pk,n]Q(q)
∼= V2ωk .

Proof. Since projective functors map projective-injective modules to projective-injective
modules, it follows from Theorem 5.4 and [1] that [Pk,n]Q(q) is a Uq(sln)-module. By
construction, it contains a highest weight vector of weight 2ωk so it suffices to compute the
dimension of its weight spaces.

By [19, Theorem 4.8], the number of projective-injective objects in O(k,k)

λ
(gl2k) is equal

to the number of column decreasing and row nondecreasing tableau for a diagram with k
rows and 2 columns with entries from the set

⎧
⎪⎨

⎪⎩
n, . . . , n
︸ ︷︷ ︸

λ1

, . . . , 1, . . . , 1
︸ ︷︷ ︸

λn

⎫
⎪⎬

⎪⎭
. (5.33)

Call the set of such tableau T.
Let S = {i ∈ I+ | λi = 1}. Denote by |S| the cardinality of this set. Consider a Young

diagram with |S|/2 rows and 2 columns. Let T ′ denote the set of tableau on such a column
with entries from S such that the rows and columns are decreasing. It is well known that the

cardinality of the set T ′ is the Catalan number
(

2|S|

|S|

)
/(|S| + 1). There is a bijection between

T and T ′. For any tableaux t′ ∈ T ′, one constructs a tableaux t ∈ T by inserting a new box
with the entry i in each column for each i ∈ I+ such that λi = 2. The inverse is given by box
removal.

Finally, the Weyl character formula gives that the dimension of the λ weight space of

V2ωk is
(

2|S|

|S|

)
/(|S| + 1).
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The Misra-Miwa v-deformed Fock space is a representation of the quantized affine algebraUv(�̂��).
It has a standard basis indexed by partitions, and the nonzero matrix entries of the action of
the Chevalley generators with respect to this basis are powers of v. Partitions also index the
polynomial Weyl modules for Uq(��N) as N tends to infinity. We explain how the powers of v
which appear in the Misra-Miwa Fock space also appear naturally in the context of Weyl modules.
The main tool we use is the Shapovalov determinant for a universal Verma module.

1. Introduction

Fock space is an infinite dimensional vector space which is a representation of several
important algebras, as described in, for example, [1, Chapter 14]. Here we consider the charge
zero part of Fock space, which we denote by F, and its v-deformation Fv. The space F has a
standard �-basis {|μ〉 | λ is a partition} and Fv := F⊗��(v). Following Hayashi [2], Misra
and Miwa [3] define an action of the quantized universal enveloping algebra Uv(�̂��) on Fv.
The only nonzero matrix elements 〈μ|Fi|λ〉 of the Chevalley generators Fi in terms of the
standard basis occur when μ is obtained by adding a single i-colored box to λ, and these are
powers of v.

We show that these powers of v also appear naturally in the following context:
partitions with at most N parts index polynomial Weyl modules Δ(λ) for the integral
quantum group UAq (��N). Let V be the standard N dimensional representation of UAq (��N).
If the matrix element 〈μ|Fi|λ〉 is nonzero then, for sufficiently large N, (ΔA(λ)⊗AV )⊗A�(q)
contains the highest weight vector of weight μ. There is a unique such highest weight
vector vμ which satisfies a certain triangularity condition with respect to an integral basis
of ΔA(λ)⊗AV . We show that the matrix element 〈μ|Fi|λ〉 is equal to vvalφ2� (vμ,vμ), where (·, ·) is
the Shapovalov form and valφ2� is the valuation at the cyclotomic polynomial φ2� .
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Our proof is computational, making use of the Shapovalov determinant [4–6]. This is
a formula for the determinant of the Shapovalov form on a weight space of a Verma module.
The necessary computation is most easily done in terms of the universal Verma modules
introduced in the classical case by Kashiwara [7] and studied in the quantum case by Kamita
[8]. The statement for Weyl modules is then a straightforward consequence.

Before beginning, let us discuss some related work. In [9], Kleshchev carefully ana-
lyzed the ��N−1 highest weight vectors in a Weyl module for ��N and used this information to
give modular branching rules for symmetric group representations. Brundan and Kleshchev
[10] have explained that highest weight vectors in the restriction of a Weyl module to ��N−1

give information about highest weight vectors in a tensor product Δ(λ)⊗V of a Weyl module
with the standard N-dimensional representation of ��N . Our computations put a new twist
on the analysis of the highest weight vectors in Δ(λ)⊗V , as we study them in their “universal”
versions and by the use of the Shapovalov determinant. Our techniques can be viewed as an
application of the theory of Jantzen [11] as extended to the quantum case by Wiesner [12].

Brundan [13] generalized Kleshchev’s [9] techniques and used this information to
give modular branching rules for Hecke algebras. As discussed in [14, 15], these branching
rules are reflected in the fundamental representation of �̂�p and its crystal graph, recovering
much of the structure of the Misra-Miwa Fock space. Using Hecke algebras at a root of
unity, Ryom-Hansen [16] recovered the full Uv(�̂��) action on Fock space. To complete
the picture, one should construct a graded category, where multiplication by v in the �̂��
representation corresponds to a grading shift. Recent work of Brundan-Kleshchev [17] and
Ariki [18] explains that one solution to this problem is through the representation theory of
Khovanov-Lauda-Rouquier algebras [19, 20]. It would be interesting to explicitly describe
the relationship between their category and the present work. Another related construction
due to Brundan-Stroppel considers the case when the Fock space is replaced by ∧mV ⊗ ∧nV ,
where V is the natural ��∞ module and m,n are fixed natural numbers.

We would also like to mention very recent work of Peng Shan [21] which
independently develops a similar story to the one presented here, but using representations
of a quantum Schur algebra where we use representations of Uε(��N). The approach taken
there is somewhat different and in particular relies on localization techniques of Beı̆linson
and Bernstein [22].

This paper is arranged as follows. Sections 2 and 3 are background on the quantum
group Uq(��N) and the Fock space Fv. Sections 4 and 5 explain universal Verma modules and
the Shapovalov determinant. Section 6 contains the statement and proof of our main result
relating Fock space and Weyl modules.

2. The Quantum Group Uq(��N) and Its Integral Form UAq (��N)

This is a very brief review, intended mainly to fix notation. With slight modifications, the
construction in this section works in the generality of symmetrizable Kac-Moody algebras.
See [23, Chapters 6 and 9] for details.

2.1. The Rational Quantum Group

Uq(��N) is the associative algebra over the field of rational functions �(q) generated by

X1, . . . , XN−1, Y1, . . . , YN−1, L±1
1 , . . . , L

±1
N , (2.1)
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with relations

LiLj = LjLi, LiL
−1
i = L−1

i Li = 1, XiYj − YjXi = δi,j
LiL

−1
i+1 − Li+1L

−1
i

q − q−1
,

LiXjL
−1
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qXj, if i = j,

q−1Xj, if i = j + 1,

Xj , otherwise,

LiYjL
−1
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q−1Yj, if i = j,

qYj , if i = j + 1,

Yj , otherwise,

XiXj = XjXi, YiYj = YjYi, if
∣∣i − j

∣∣ ≥ 2,

X2
i Xj −

(
q + q−1

)
XiXjXi +XjX

2
i = Y

2
i Yj −

(
q + q−1

)
YiYjYi + YjY 2

i = 0, if
∣∣i − j

∣∣ = 1.

(2.2)

The algebra Uq(��N) is a Hopf algebra with coproduct and antipode given by

Δ(Li) = Li ⊗ Li, S(Li) = L−1
i ,

Δ(Xi) = Xi ⊗ LiL
−1
i+1 + 1 ⊗Xi, S(Xi) = −XiL

−1
i Li+1,

Δ(Yi) = Yi ⊗ 1 + L−1
i Li+1 ⊗ Yi, S(Yi) = −LiL−1

i+1Yi,

(2.3)

respectively, (see [23, Section 9.1]).
As a �(q)-vector space, Uq(��N) has a triangular decomposition

Uq

(
g�N

) ∼= Uq

(
g�N

)<0 ⊗Uq

(
g�N

)0 ⊗Uq

(
g�N

)>0
, (2.4)

where the inverse isomorphism is given by multiplication (see [23, Proposition 9.1.3]). Here
Uq(��N)<0 is the subalgebra generated by the Yi for i = 1, . . . ,N−1,Uq(��N)>0 is the subalgebra
generated by the Xi for i = 1, . . . ,N − 1, and Uq(��N)0 is the subalgebra generated by the L±1

i

for i = 1, . . . ,N.

2.2. The Integral Quantum Group

LetA = �[q, q−1]. For n, k ∈ �>0 and c ∈ �, let

[n] :=
qn − q−n

q − q−1
, x(k) :=

xk

[k][k − 1] · · · [2][1] ,
[
x; c

k

]

:=
k∏

s=1

xqc+1−s − x−1qs−1−c

qs − q−s ,

(2.5)
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in �(q, x). The restricted integral form UAq (��N) is the A-subalgebra of Uq(��N) generated by

X
(k)
i , Y

(k)
i , L±1

i and
[
Li;c
k

]
for 1 ≤ i ≤ N, c ∈ �, k ∈ �>0. As discussed in [24, Section 6], this is

an integral form in the sense that

UAq (��N)⊗A�
(
q
)
= Uq(��N). (2.6)

As with Uq(��N), the algebra UAq (��N) has a triangular decomposition

UAq (��N) ∼= UAq (��N)<0 ⊗UAq (��N)0 ⊗UAq (��N)>0, (2.7)

where the isomorphism is given by multiplication (see [23, Proposition 9.3.3]). In this case,
UAq (��N)<0 is the subalgebra generated by the Y (k)

i , UAq (��N)>0 is the subalgebra generated by

the X(k)
i , and UAq (��N)0 is generated by L±1

i and
[
Li ;c
k

]
for 1 ≤ i ≤ N, c ∈ �, and k ∈ �>0.

2.3. Rational Representations

The Lie algebra ��N = MN(� ) of N × N matrices has standard basis {Eij | 1 ≤ i, j ≤
N}, where Eij is the matrix with 1 in position (i, j) and 0 everywhere else. Let � =
span{E11, E22, . . . , ENN}. Let εi ∈ �∗ be the weight of ��N given by εi(Ejj) = δi,j . Define

�∗� : = {λ = λ1ε1 + λ2ε2 + · · · + λNεN ∈ �∗ | λ1, . . . , λN ∈ Z},
(
�∗�
)+ : =

{
λ = λ1ε1 + λ2ε2 + · · · + λNεN ∈ �∗� | λ1 ≥ λ2 ≥ · · · ≥ λN

}
,

P+ : =
{
λ = λ1ε1 + λ2ε2 + · · · + λNεN ∈

(
�∗�
)+ | λN ≥ 0

}
,

R+ : =
{
εi − εj | 1 ≤ i < j ≤ N

}
,

Q : = span�(R+), Q+ := span�≥0(R
+), Q− := span�≤0(R

+)

(2.8)

to be the set of integral weights, the set of dominant integral weights, the set of dominant
polynomial weights, the set of positive roots, the root lattice, the positive part of the root lattice,
and the negative part of the root lattice, respectively.

For an integral weight λ = λ1ε1 + · · ·+ λNεN , the Verma moduleM(λ) for Uq(��N) of the
highest weight λ is

M(λ) := Uq(��N)⊗Uq(��N)≥0�
(
q
)
λ, (2.9)

where �(q)λ = span�(q){vλ} is the one dimensional vector space over �(q) with Uq(��N)≥0

action given by

Xi · vλ = 0, Lj · vλ = qλjvλ, for 1 ≤ i ≤N − 1, 1 ≤ j ≤N. (2.10)
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Theorem 2.1 (see [23, Chapter 10.1]). If λ ∈ (�∗
�
)+ then M(λ) has a unique finite dimensional

quotient Δ(λ) and the map λ �→ Δ(λ) is a bijection between (�∗
�
)+, and the set of irreducible finite

dimensionalUq(��N)-modules.

A singular vector in a representation of Uq(��N) is a vector v such that Xi ·v = 0 for all i.

2.4. Integral Representations

The integral Verma module MA(λ) is the UAq (��N)-submodule of M(λ) generated by vλ. The
integral Weyl module ΔA(λ) is the UAq (��N)-submodule of Δ(λ) generated by vλ. Using (2.6)
and (2.4),

MA(λ)⊗A�
(
q
)
=M(λ), ΔA(λ)⊗A�

(
q
)
= Δ(λ). (2.11)

In general, ΔA(λ) is not irreducible as a UAq (��N) module.

3. Partitions and Fock Space

We now describe the v-deformed Fock space representation of Uv(�̂��) constructed by Misra
and Miwa [3] following work of Hayashi [2]. Our presentation largely follows [25, Chapter
10].

3.1. Partitions

A partition λ is a finite length nonincreasing sequence of positive integers. Associated to
a partition is its Ferrers diagram. We draw these diagrams as in Figure 1 so that, if λ =
(λ1, . . . , λN), then λi is the number of boxes in row i (rows run southeast to northwest ↖).
Say that λ is contained in μ if the diagram for λ fits inside the diagram for μ and let μ/λ
be the collection of boxes of μ that are not in λ. For each box b ∈ λ, the content c(b) is the
horizontal position of b and the color c(b) is the residue of c(b) modulo �. In Figure 1, the
numbers c(b) are listed below the diagram. The size |λ| of a partition λ is the total number of
boxes in its Ferrers diagram.

The set P+ of dominant polynomial weights from Section 2.3 is naturally identified
with partitions with at most N parts. If λ ∈ P+, then

Δ(λ) ⊗Δ(ε1) ∼=
⊕

1≤k≤N
λ+εk∈P+

Δ(λ + εk) (3.1)

as Uq(��N)-modules. The diagram of λ+εk is obtained from the diagram of λ by adding a box
on row k, and Δ(λ + εk) appears in the sum on the right side of (3.1) if and only if λ + εk is a
partition. See, for example, [26, Section 6.1, Formula 6.8] for the classical statement and [23,
Proposition 10.1.16] for the quantum case.
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Figure 1: The partition (7, 6, 6, 5, 5, 3, 3, 1) with each box containing its color for � = 3. The content c(b) of
a box b is the horizontal position of b reading right to left. The contents of boxes are listed beneath the
diagram so that c(b) is aligned with all boxes b of that content.

3.2. The Quantum Affine Algebra

Let U′v(�̂��) be the quantized universal enveloping algebra corresponding to the �-node
Dynkin diagram

· · ·

More precisely, U′v(�̂��) is the algebra generated by Ei, Fi, K
±1
i

, for i ∈ �/��, with relations

KiKj = KjKi, KiK
−1
i

= K−1
i
Ki = 1, EiFj − FjEi = δi,j

Ki −K−1
i

v − v−1
,

KiEjK
−1
i

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v2Ej, if i = j,

v−1Ej , if i = j ± 1,

Ej , otherwise,

KiFjK
−1
i

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v−2Fj, if i = j,

vFj , if i = j ± 1,

Fj , otherwise,

EiEj = EjEi, FiFj = FjFi, if
∣∣
∣i − j

∣∣
∣ ≥ 2,

E2
i
Ej −

(
v + v−1

)
EiEjEi + EjE

2
i
= F2

i
Fj −

(
v + v−1

)
FiFjFi + FjF

2
i
= 0, if

∣∣∣i − j
∣∣∣ = 1.

(3.2)

See [23, Definition Proposition 9.1.1]. The algebra U′v(�̂��) is the quantum group correspond-
ing to the nontrivial central extension �̂�

′
� = ���[t, t−1] ⊕ � c of the algebra of polynomial loops

in ��� .
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3.3. Fock Space

Define v-deformed Fock space to be the �(v) vector space Fv with basis {|μ〉 | λ is a partition}.
Our Fv is only the charge 0 part of Fock space described in [27]. Fix i ∈ �/��and partitions
λ ⊆ μ such that μ/λ is a single box. Define

Ai(λ) :=
{

boxes b | b /∈ λ, b has color i and λ ∪ b is a partition
}
,

Ri(λ) :=
{

boxes b | b ∈ λ, b has color i and λ \ b is a partition
}
,

Nl

i

(
μ/λ

)
:=
∣∣{b ∈ Ri(λ) | b is to the left of μ/λ

}∣∣ −
∣∣{b ∈ Ai(λ) | b is to the left of μ/λ

}∣∣,

Nr

i

(
μ/λ

)
:=
∣∣{b ∈ Ri(λ) | b is to the right of μ/λ

}∣∣ −
∣∣{b ∈ Ai(λ) | b is to the right of μ/λ

}∣∣,

(3.3)

to be the set of addable boxes of color i, the set of removable boxes of color i, the left removable-addable
difference, and the right removable-addable difference, respectively.

Theorem 3.1 (see [25, Theorem 10.6]). There is an action ofU′v(�̂��) on Fv determined by

Ei|λ〉 :=
∑

c(λ/μ)=i
v−N

r

i
(λ/μ)∣∣μ

〉
, Fi|λ〉 :=

∑

c(μ/λ)=i
vN

l

i
(μ/λ)∣∣μ

〉
, (3.4)

where c(λ/μ) denotes the color of λ/μ and the sum is over partitions μwhich differ from λ by removing
(resp. adding) a single i-colored box.

As a U′v(�̂��)-module, Fv is isomorphic to an infinite direct sum of copies of the basic
representation V (Λ0). Using the grading of Fv where |λ〉 has degree |λ|, the highest weight
vectors in Fv occur in degrees divisible by �, and the number of the highest weight vectors
in degree �k is the number of partitions of k. Then, Fv ∼= V (Λ0) ⊗ � [x1 , x2, . . .], where xk has
degree �k, and U′v(�̂��) acts trivially on the second factor (see [27, Proposition 2.3]). Note that
we are working with the “derived” quantum group U′v(�̂��), not the “full” quantum group
Uv(�̂��), which is why there are no δ-shifts in the summands of Fv.

Comment 1. Comparing with [25, Chapter 10], our Nl

i
(μ/λ) is equal to Ariki’s −Na

i
(μ/λ) and

our Nr

i
(μ/λ) is equal to Ariki’s −Nb

i
(μ/λ). However, these numbers play a slightly different

role in Ariki’s work, which is explained by a different choice of conventions.

4. Universal Verma Modules

The purpose of this section is to construct a family of representations which are universal
Verma modules in the sense that each can be “evaluated” to obtain any given Verma module.
This notion was defined by Kashiwara [7] in the classical case and was studied in the
quantum case by Kamita [8].
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4.1. Rational Universal Verma Modules

Let � := �(q, z1 , z2, . . . , zN). This field is isomorphic to the field of fractions of Uq(��N)0 via
the map

ψ : Uq(��N)0 −→ � , defined by ψ
(
L±1
i

)
= z±1

i . (4.1)

For each μ ∈ �∗
�

, define a �(q)-linear automorphism σμ : � → � by

σμ(zi) := q(μ,εi)zi, for 1 ≤ i ≤ N, (4.2)

where (·, ·) is the inner product on �∗
�

defined by (εi, εj) = δi,j . Let � μ = span�{vμ+} be the
one-dimensional vector space over � with basis vector v+μ and Uq(��N)≥0 action given by

Xi · vμ+ = 0, for 1 ≤ i ≤N − 1, a · vμ+ = σμ
(
ψ(a)

)
vμ+, for a ∈ Uq(��N)0. (4.3)

The μ-shifted rational universal Verma module μM̃ is the Uq(��N)-module

μM̃ := Uq(��N)⊗Uq(��N)≥0 � μ . (4.4)

The universal Verma module μM̃ is actually a module over Uq(��N)⊗Uq(��N) 0Ũq(��N)0, where

Ũq(��N)0 is the field of fractions of Uq(��N)0. However, if we identify Ũq(��N)0 with � using
the map ψ, the action of Ũq(��N)0 on μM̃ is not by multiplication, but rather is twisted by
the automorphism σμ. It is to keep track of the difference between the action of Uq(��N)0 and
multiplication that we use different notation for the generators of � and Uq(��N)0 (i.e., zi
versus Li).

4.2. Integral Universal Verma Modules

The field � contains anA-subalgebra

R generated by z±1
i ,

[
zi; c

k

]

, (1 ≤ i ≤N, c ∈ �, k ∈ �>0), (4.5)

which is isomorphic toUAq (��N)0 via the restriction of the map ψ in (4.1). The integral universal

Verma module μM̃R is the UAq (��N)-submodule of μM̃ generated by vμ+. By restricting (4.4),

μM̃R = UAq (��N)⊗UAq (��N )≥0 Rμ, (4.6)

where Rμ is the R-submodule of � μ spanned by vμ+. In particular, μM̃R is a free R-module.
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4.3. Evaluation

Let evR
λ

: R → A be the map defined by

evRλ (zi) = q
(λ,εi), evRλ

[
zi; c

n

]

=

[
q(λ,εi); c

n

]

, (4.7)

where (·, ·) is the inner product on �∗ defined by (εi, εj) = δi,j . There is a surjective UAq (��N)-
module homomorphism “evaluation at λ”

evλ:μM̃R −→MA(μ + λ
)

defined by evλ
(
a · vμ+

)
:= a · vμ+λ, ∀a ∈ UAq (��N). (4.8)

For fixed λ, the maps evRλ and evλ extend to a map from the subspace of � and
μM̃=μM̃R⊗R� , respectively, where no denominators evaluate to 0. Where it is clear we denote
both these extended maps by evλ.

Example 4.1. Computing the action of Li on vμ+ and vμ+λ,

Li · vμ+ = q(μ,εi)zivμ+, Li · vμ+λ = evλ
(
q(μ,εi)zi

)
vμ+λ = q(μ,εi)q(λ,εi)vμ+λ = q(μ+λ,εi)vμ+λ.

(4.9)

4.4. Weight Decompositions

Let Ṽ be a Uq(��N)⊗AR-module. For each ν ∈ �∗Z , we define the ν-weight space of Ṽ to be

Ṽν :=
{
v ∈ Ṽ : Li · v = q(ν,εi)ziv

}
. (4.10)

The universal Verma module μM̃R is a Uq(��N)⊗AR-module, where the second factor acts as
multiplication. The weight space μM̃η /= 0 if and only if η = μ − ν with ν in the positive part
Q+ of the root lattice. These nonzero weight spaces and the weight decomposition of μM̃ can
be described explicitly by

μM̃R
μ−ν = U

A
q (��N)<0

−ν · Rμ, μM̃R =
⊕

ν∈Q+

μ
M̃R

μ−ν. (4.11)

Here, UAq (��N)<0
−ν is defined using the grading of Uq(��N)<0 with Fi ∈ Uq(��N)<0

−(εi−εi+1).

4.5. Tensor Products

Let Ṽ be a UAq (��N)⊗AR-module and W a UAq (��N)-module. The tensor product Ṽ⊗AW is
a UAq (��N)⊗AR-module, where the first factor acts via the usual coproduct and the second
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factor acts by multiplication on Ṽ . In the case when Ṽ and W both have weight space
decompositions, the weight spaces of Ṽ⊗AW are

(
Ṽ⊗AW

)

ν
=
⊕

γ+η=ν
Ṽγ⊗AWη. (4.12)

We also need the following.

Proposition 4.2. The tensor product of a universal Verma module with a Weyl module satisfies

(
μM̃R ⊗A ΔA(ν)

)
⊗R� ∼=

(
⊕

γ

(μ+γM̃R)
⊕

dimΔA(ν)γ

)

⊗R� . (4.13)

Proof. Fix ν ∈ P+. In general, M(λ + μ) ⊗ Δ(ν) has a Verma filtration (see, e.g., [28, Theorem
2.2]) and if λ + μ + γ is dominant for all γ such that Δ(ν)γ /= 0 then

M
(
λ + μ

)
⊗Δ(ν) ∼=

⊕

γ

M
(
λ + μ + γ

)⊕dimΔ(ν)γ , (4.14)

which can be seen by, for instance, taking central characters. The proposition follows since
this is true for a Zariski dense set of weights λ.

5. The Shapovalov Form and the Shapovalov Determinant

5.1. The Shapovalov Form

The Cartan involution ω : Uq(��N) → Uq(��N) is the �(q)-algebra anti-involution of Uq(��N)
defined by

ω
(
L±1
i

)
= L±1

i , ω(Xi) = YiLiL−1
i+1, ω(Yi) = L−1

i Li+1Xi. (5.1)

The map ω is also a coalgebra involution. An ω-contravariant form on a Uq(��N)-module V is
a symmetric bilinear form (·, ·) such that

(u, a · v) = (ω(a) · u, v), for u, v ∈ V, a ∈ Uq(��N). (5.2)

It follows by the same argument used in the classical case [4] that there is an ω-
contravariant form (the Shapovalov form) on each Verma module M(λ) and this is unique
up to rescaling. The radical of (·, ·) is the maximal proper submodule of M(λ), so Δ(λ) =
M(λ)/Rad(·, ·) for all λ ∈ P+. In particular, (·, ·) descends to an ω-contravariant form on
Δ(λ).

Since ω fixes UAq (��N) ⊆ Uq(��N), there is a well-defined notion of an ω-contravariant
form on a UAq (��N) module. In particular, the restriction of the Shapovalov form on Δ(λ) to
ΔA(λ) is ω-contravariant.
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5.2. Universal Shapovalov Forms

There are surjective maps ofA-algebras p− : UAq (��N)<0 → �(q) and p+ : UAq (��N)>0 → �(q)
defined by p−(Fi) = 0 and p+(Ei) = 0, for 1 ≤ i ≤N. Using the triangular decomposition (2.7),
there is anA-linear surjection

π0 := p− ⊗ Id ⊗ p+ : UAq (��N) ∼= UAq (��N)<0⊗AUAq (��N)0⊗AUAq (��N)>0 −→ UAq (��N)0. (5.3)

The standard universal Shapovalov form is theR-bilinear form (·, ·)μM̃R :μM̃R⊗μM̃R → R defined
by

(
a1 · vμ+, a2 · vμ+

)
μM̃R =

(
σμ ◦ ψ ◦ π0

)
(ω(a2)a1) (5.4)

for all a1, a2 ∈ URq (��N)<0. Here, ψ and σμ are as in (4.1) and (4.2). Since

(
a1a2 · vμ+, a3 · vμ+

)
μM̃R =

(
σμ ◦ ψ ◦ π0

)
(ω(a2)ω(a1)a3) =

(
a2 · vμ+, ω(a1)a3 · vμ+

)
μM̃R

(5.5)

for a1, a2, a3 ∈ Uq(��N), the form (·, ·)μM̃R is ω-contravariant. As with the usual Shapovalov
form, distinct weight spaces are orthogonal, where weight spaces are defined as in Section 4.4.

Evaluation at λ gives anA-valued ω-contravariant form (·, ·)MA(μ+λ) on MA(μ + λ) by

(evλ(u1), evλ(u2))MA(μ+λ) = evλ
(
(u1, u2)μM̃R

)
for u1, u2 ∈μ M̃R. (5.6)

The form (·, ·)μM̃R can be extended by linearity to an ω-contravariant form (·, ·)μM̃ on μM̃.

5.3. The Shapovalov Determinant

Let Ṽ be a (UAq (��N)⊗AR)-module with a chosen ω-contravariant form. Let Bη be an R basis

for the η-weight space Ṽη of Ṽ . Let det ṼBη be the determinant of the form evaluated on the
basis Bη. Changing the basis Bη changes the determinant by a unit in R, and we sometimes
write det Ṽη to mean the determinant calculated on an unspecified basis (det Ṽη which is only
defined up to multiplication by unit in R). The Shapovalov determinant is

detM̃R
η := det

((
bi, bj

)
M̃R

)

bi,bj∈Bη
. (5.7)

Define the partition function p : �∗ → �≥0 by

p
(
γ
)

:= dimM(0)γ . (5.8)

Then, p(γ) = dimM(λ)γ+λ for any λ, and η /∈Q− implies that p(η) = 0 and detM̃R
η = 1.
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Theorem 5.1 (see [5, Proposition 1.9A], [6, Theorem 3.4], [4]). For any weight η,

detM̃R
η = cη

∏

1≤i<j≤N
m>0

(
ziz

−1
j − q

2m+2i−2jz−1
i zj

)p(η+mεi−mεj)
, (5.9)

where cη is a unit in R⊗A �(q) = Q(q)[z±1
1 , . . . , z±1

N ].

Proposition 5.2. Fix μ, η ∈ �∗
�
with η −μ ∈ Q−. Choose anA-basis Bη−μ forUAq (��N)η−μ. Consider

the R-bases B̃η−μ := {b · v+ | b ∈ Bη−μ} for M̃R
η−μ and μB̃η := {b · vμ+ | b ∈ Bη−μ} for μM̃R

η . Then

det
μ
M̃
R
(μB̃η) = σμ(detM̃R

B̃η−μ
).

Proof. For b, b′ ∈ Bη−μ,

(b · vμ+, b′ · vμ+)μM̃R = σμ ◦ ψ ◦ π0
(
ω
(
b′
)
b
)
= σμ

((
b · v0+, b

′ · v0+
)
M̃R

)
. (5.10)

The result follows by taking determinants.

5.4. Contravariant Forms on Tensor Products

If V and W are UAq (��N)-modules with ω-contravariant forms (·, ·)V and (·, ·)W , define an
A-bilinear form (·, ·)W⊗V by (w1 ⊗ v1, w2 ⊗ v2)W⊗V = (w1, w2)W (v1, v2)V . Similarly, for a
UAq (��N)⊗A R module W̃ with R-bilinear ω-contravariant form (·, ·)W̃ , define a R-bilinear

form (·, ·)W̃⊗�(q)V on W̃⊗�(q)V by

(u1 ⊗ v1, u2 ⊗ v2)W̃⊗�(q)V = (u1, u2)W̃ (v1, v2)V . (5.11)

Since ω is a coalgebra involution (i.e., Δ(ω(a)) = (ω ⊗ ω)Δ(a), for a ∈ Uq(��N)), the forms
(·, ·)V⊗W and (·, ·)μM̃⊗Q(q)V

are ω-contravariant.

In the case when W̃=μM̃R, evaluation of the ω-contravariant form (·, ·)μM̃R⊗AV at λ
gives an ω-contravariant form (·, ·)MA(μ+λ)⊗AV :

(u1 ⊗ v1, u2 ⊗ v2)MA(μ+λ)
⊗
AV

= evλ
(
(u1 ⊗ v1, u2 ⊗ v2)μM̃⊗

AV

)

= (evλ(u1) ⊗ v1, evλ(u2) ⊗ v2)M(μ+λ)
⊗
AV
,

(5.12)

for u1, u2∈μM̃ and v1, v2 ∈ V . As in Section 4.3, this form can be extended to theA-submodule
of the rational module where no denominators evaluate to zero.
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6. The Misra-Miwa Formula for Fi from UAq (��N)
Representation Theory

Let us prepare the setting for our main result (Theorem 6.1). Fix � ≥ 2 and a partition λ. Let
N be a positive integer greater than the number of parts of λ. All calculations below are in
terms of representations of UAq (��N).

(1) Let V = ΔA(ε1) be the standard N-dimensional module. Since ΔA(λ)⊗A�(q) =
Δ(λ), (3.1) implies

(
ΔA(λ)⊗AV

)
⊗A�

(
q
)
�
⊕

ΔA
(
λ + εkj

)
⊗A�

(
q
)
, (6.1)

where the sum is over those indices 1 = k1 < k2 < · · · < kmλ ≤ N for which λ + εkj is
a partition. For ease of notation, let μ(j) = λ + εkj .

(2) Fix an A-basis {v1, . . . , vN} of V where vk has weight εk and Yi(vk) = δi,kvk+1.
Recursively, define singular weight vectors vμ(j) in (ΔA(λ) ⊗ V )⊗A�(q) by

(i) vμ(1) = vλ ⊗ v1

(ii) for each k, the submodule Wk of (Δ(λ)⊗AV )⊗A�(q) generated by {vλ ⊗ vi |
1 ≤ i ≤ k} contains all weight vectors of (Δ(λ)⊗AV )⊗A�(q) of weight greater
than or equal to λ + εk. Thus, using (6.1), for each 1 ≤ j ≤ mλ there is a one-
dimensional space of singular vectors of weight μ(j) in Wkj , and this is not
contained in Wkj−1 (since kj > kj−1). This implies that there unique singular
vector vμ(j) of weight μ(j) in

vλ ⊗ vkj +
⊕

1≤i<j
Uq(��N)vμ(i) ⊆

(
ΔA(λ)⊗AV

)
⊗A�

(
q
)
, (6.2)

where we recall that Uq(��N) = UAq (��N)⊗A�(q).

(3) There is a unique ω-contravariant form on ΔA(λ) normalized so that (vλ, vλ) = 1
and a unique ω-contravariant form on V normalized so that (v1, v1) = 1. As in
Section 5.4, define a ω-contravariant form on (ΔA(λ)⊗AV )⊗A�(q) by (u1 ⊗w1, u2 ⊗
w2) = (u1, u2)(w1, w2). For each 1 ≤ j ≤ mλ, define an element rj(λ) ∈ �(q) by

rj(λ) :=
(
vμ(j) , vμ(j)

)
. (6.3)

Theorem 6.1. The Misra-Miwa operators Fi from Section 3.3 satisfy

Fi|λ〉 =
∑

c(b(j))=i
vvalφ2� rj(λ)

∣∣
∣μ(j)

〉
, (6.4)
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where b(j) is the box μ(j)/λ, c(b(j)) is the color of box b(j) as in Figure 1, φ2� is the 2�th cyclotomic
polynomial in q, and valφ2� r is the number of factors of φ2� in the numerator of r minus the number of
factors of φ2� in the denominator of r.

The proof of Theorem 6.1 will occupy the rest of this section. We will first prove a
similar statement, Proposition 6.6, where the role of the Weyl modules is played by the
universal Verma modules from Section 4. For ease of notation, let M̃R denote the module
0M̃R from Section 4.2.

Definition 6.2. Recursively define singular weight vectors vεk+ ∈ (M̃R⊗AV )⊗R� and elements
sk ∈ � for 1 ≤ k ≤N by

(i) vε1+ = v+ ⊗ v1,

(ii) since {v+ ⊗ vj | 1 ≤ j ≤ N} generates M̃R⊗AV as a UAq (��N)≤0 module,
Proposition 4.2 implies that, for each 1 ≤ k ≤ N, there is a unique singular vector
vεk+ in v+⊗vk+⊕1≤j<kU�q (��N)vεj+ ⊆ (M̃R⊗AV )⊗R� , whereU�q (��N) := Uq(��N)⊗(q)�
and the factor of � acts by multiplication on M̃R.

Let sk = (vεk+, vεk+).

The sk are quantized versions of the Jantzen numbers first calculated in [11, Section 5]
and quantized in [12]. It follows immediately from the definition that s1 = 1.

Lemma 6.3. For any weight η, up to multiplication by a power of q,

∏

1≤k≤N
s
p(η−εk)
k

=
∏

1≤k≤N

detM̃R
η−εk

σεk detM̃R
η−εk

, (6.5)

where, as in Section 5.3, detM̃R
η−εk is the determinant of the Shapovalov form evaluated on an R-basis

for the η − εk weight space of M̃R.

Comment 2. In order for Lemma 6.3 to hold as stated, for each 1 ≤ k ≤ N, one must calculate
the detM̃R

η−εk in the numerator and denominator with respect to the sameR-basis. The power
of q which appears depends on this choice of R-bases.

Proof of Lemma 6.3. For each γ ∈ span �≤0(R
+) fix an R-basis Bγ for URq (��N)<0

γ . Consider the

following three � -bases for ((M̃R⊗AV )η)⊗R� :

Aη :=
{
(b · v+) ⊗ vk | b ∈ Bη−εk , 1 ≤ k ≤N

}
,

Cη :=
{
b · (v+ ⊗ vk) | b ∈ Bη−εk , 1 ≤ k ≤N

}
,

Dη :=
{
b · vεk+ | b ∈ Bη−εk , 1 ≤ k ≤N

}
.

(6.6)

Let det(M̃R⊗AV )B denote the determinant of (·, ·)(M̃R⊗AV )η
calculated on B, where B is one of

Aη, Cη, or Dη. Let det
ν
M̃
R
Bη−ν denote det

ν
M̃
R
η calculated with respect to the basis Bη−ν · vν+.
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By the definition of the ω-contravariant form on M̃R⊗AV (see Section 4.5),

det
(
M̃R ⊗ V

)

Aη

=
N∏

k=1

(
detM̃R

Bη−εk

)dimVεk (detVεk)
dimM̃R

η−εk . (6.7)

For 1 ≤ k ≤N, Vεk is one dimensional and detVεk is a power of q. Hence, up to multiplication
by a power of q, (6.7) simplifies to

det
(
M̃R⊗AV

)

Aη

=
N∏

k=1

detM̃R
Bη−εk

. (6.8)

Notice that UAq (��N)<0 · vεk+ is isomorphic to εkM̃, and Dη is the union of R-bases for

each of these submodules. For each 1 ≤ k ≤N, and each η ∈ �∗Z define an R basis of εkM̃η by

εk B̃η :=
{
b · vεk+ | b ∈ Bη−εk

}
. (6.9)

Using (vεk+, vεk+) = sk,

det
(
M̃R ⊗ V

)

Dη

=
N∏

k=1

s
dim (εk M̃R

η )
k det

εk
M̃
R
(εk B̃η) =

N∏

k=1

s
p(η−εk)
k σεk

(
detM̃R

B̃η−εk

)
, (6.10)

where the last equality uses Proposition 5.2. Here, as in Section 5.3, det
εk
M̃
R
(εk B̃η) is the

Shapovalov determinant calculated with respect to the basis εk B̃η.
The change of basis from Aη to Cη is unitriangular and the change of basis from Cη to

Dη is unitriangular. Thus, det(M̃R⊗AV )Aη
= det(M̃R⊗AV )Dη

, and so the right sides of (6.8)
and (6.10) are equal. The lemma follows from this equality by rearranging.

Lemma 6.4. Up to multiplication by a power of q,

sk =
∏

1≤j<k

⎛

⎜
⎝

zjz
−1
k
− q2+2j−2kz−1

j zk

σεj

(
zjz

−1
k
− q2+2j−2kz−1

j zk
)

⎞

⎟
⎠. (6.11)
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Proof. Fix 1 ≤ k ≤ N. Setting η = εk in Lemma 6.3 and applying Theorem 5.1 we see that, up
to multiplication by a power of q,

∏

1≤x≤N
s
p(εk−εx)
x =

∏

1≤x≤N

detM̃R
εk−εx

σεx detM̃R
εk−εx

=
∏

1≤x≤N

∏

1 ≤ i < j ≤N
m > 0

⎛

⎜
⎝

cεk−εx

(
ziz

−1
j − q2m+2i−2jz−1

i zj
)

σεx(cεk−εx)σεx
(
ziz

−1
j − q2m+2i−2jz−1

i zj
)

⎞

⎟
⎠

p(εk−εx+mεi−mεj)

,

(6.12)

where, for each 1 ≤ x ≤N, cεk−εx is a unit in �(q)[z±1
1 , . . . , z±1

N ]. The value p(εk −εx +mεi−mεj)
is 0 unless m = 1 and x ≤ i < j ≤ k. If i > x, then σεx acts as the identity on ziz−1

j − q2+2i−2j z−1
i zj ,

so the corresponding factors in the numerator and denominator cancel. Hence, we need only
consider factors on the right hand side where m = 1, i = x, and x < j ≤ k. If x > k, then
εk − εx /∈Q−, and hence p(εk − εx) = 0, so on the left hand since we only need to consider those
factors where 1 ≤ x ≤ k. Up to multiplication by a power of q, the expression reduces to

∏

1≤x≤k
s
p(εk−εx)
x =

∏

1≤x<k

(
cεk−εx

σεx(cεk−εx)

)p(εk−εj) ∏

x<j≤k

⎛

⎜
⎝

zxz
−1
j − q2+2x−2jz−1

x zj

σεx

(
zxz

−1
j − q2+2x−2jz−1

x zj
)

⎞

⎟
⎠

p(εk−εj)

=
∏

1<j≤k

⎛

⎜
⎝
∏

1≤x<j

zxz
−1
j − q2+2x−2jz−1

x zj

σεx

(
zxz

−1
j − q2+2x−2jz−1

x zj
)

⎞

⎟
⎠

p(εk−εj)

.

(6.13)

The last two expressions are equal because they are each a product over pairs (x, j) with
1 ≤ x < j ≤ k, and the factors of cεk−εx/(σεx(cεk−εx)) have been dropped because they are
powers of q. Using the fact that s1 = 1 and making the change of variables j → x and x → j
on the right side, (6.13) becomes

∏

1<x≤k
s
p(εk−εx)
x =

∏

1<x≤k

⎛

⎜
⎝
∏

1≤j<x

zjz−1
x − q2+2j−2xz−1

j zx

σεj

(
zjz

−1
x − q2+2j−2xz−1

j zx
)

⎞

⎟
⎠

p(εk−εx)

. (6.14)

For k ≥ 2, the lemma now follows by induction. For k = 1, the result simply says that s1 = 1,
which we already know.
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Figure 2: The partition enclosed by the thick lines is λ = (10, 10, 8, 8, 8, 6, 6, 6, 6,1, 1). If k = 6 then
A(λ, < 6) = {a1, a3}, R(λ, < 6) = {g2, g5}, and evλ(s6) = ([2]/[3])([3]/[4])([4]/[5])([7]/[8])([8]/[9]) =
([2]/[5])([7]/[9]) = ([c(g5)−c(b)][c(g2)−c(b)])/([c(a3)−c(b)][c(a1)−c(b)]). The factors in the numerator
of the first expression are displayed. These are the q-integers corresponding to the hook lengths of the boxes
in the same column as the addable box b in row 6.

Proposition 6.5. Let λ be a partition. Let A(λ, < k) (resp. R(λ, < k)) be the set of boxes which can
be added to (resp. removed from) λ on rows λj with j < k such that the result is still a partition. Let
b = (λ + εk)/λ and let c(·) be as in Figure 1. Then, up to multiplication by a power of q,

evλ(sk) =

⎧
⎪⎨

⎪⎩

∏
r∈R(λ,<k)[c(r) − c(b)]∏
a∈A(λ,<k)[c(a) − c(b)]

, if λ + εk is a partition,

0, if λ + εk is not a partition.
(6.15)

Proof. For 1 ≤ j ≤ N, let gj be the last box in row j of λ. By Lemma 6.4, up to multiplication
by a power of q,

evλ(sk) = evλ

⎛

⎜
⎝
∏

1≤j<k

zjz
−1
k
− q2+2j−2kz−1

j zk

σεj

(
zjz

−1
k − q2+2j−2kz−1

j zk
)

⎞

⎟
⎠ =

∏

1≤j<k

[
c
(
gj
)
− c(b)

]

[
c
(
gj
)
− c(b) + 1

] , (6.16)

where the last equality is a simple calculation from definitions. The denominator on the right
side is never zero, and the numerator is zero exactly when λk = λk−1, so that λ+εk is no longer
a partition. If λj = λj+1 for any j < k, then there is cancellation, giving (6.15). See Figure 2.

Proposition 6.6. LetNl

j
(μ/λ) be as in Section 3.3. For any partition λ,

valφ2� evλ(sk) =N
l

i

(
μ/λ

)
, if μ = λ + εk is a partition, and μ/λ is an i colored box,

evλ(sk) = 0, otherwise.
(6.17)
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Proof. By Proposition 6.5, evλ(sk) = 0 if λ + εk is not a partition. If λ + εk is a partition, then

{
b ∈ A(λ, < k) : c(b) = c

(
μ/λ

)}
=
{
b ∈ Ai(λ) | b is to the left of μ/λ

}
,

{
b ∈ R(λ, < k) : c(b) = c

(
μ/λ

)}
=
{
b ∈ Ri(λ) | b is to the left of μ/λ

}
,

(6.18)

where the notation is as in Section 3.3. Since

[x] =
qx − q−x

q − q−1
= q−x

(
q − q−1

)−1∏

d|2x
φd, (6.19)

[x] is divisible by φ2� if and only if x is divisible by �, and [x] is never divisible by φ2
2� . The

result now follows from Proposition 6.5.

Proof of Theorem 6.1. Fix λ and 1 ≤ k ≤ mλ. From definitions, (evλ ⊗ 1)vεkj + = vμ(j) . Thus, using
(5.12),

rj(λ) =
(
vμ(j) , vμ(j)

)
=
(
(evλ ⊗ 1)vεkj +, (evλ ⊗ 1)vεkj +

)
= evλ

(
vεkj +, vεkj +

)
= evλ

(
skj

)
. (6.20)

The result now follows from Proposition 6.6.
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