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Research Article
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To detect comprehensive clues and providemore accurate forecasting in the early stage of financial distress, in addition to financial
indicators, digitalization of lengthy but indispensable textual disclosure, such as Management Discussion and Analysis (MD&A),
has been emphasized by researchers. However, most studies divide the long text into words and count words to treat the text as
word count vectors, bringing massive invalid information but ignoring meaningful contexts. Aiming to efficiently represent the
text of large size, an end-to-end neural networksmodel based on hierarchical self-attention is proposed in this study after the state-
of-the-art pretrained model is introduced for text embedding including contexts. +e proposed model has two notable char-
acteristics. First, the hierarchical self-attention only affords the essential content with high weights in word-level and sentence-
level and automatically neglects lots of information that has no business with risk prediction, which is suitable for extracting
effective parts of the large-scale text. Second, after fine-tuning, the word embedding adapts the specific contexts of samples and
conveys the original text expression more accurately without excessive manual operations. Experiments confirm that the addition
of text improves the accuracy of financial distress forecasting and the proposed model outperforms benchmark models better at
AUC and F2-score. For visualization, the elements in the weight matrix of hierarchical self-attention act as scalers to estimate the
importance of each word and sentence. In this way, the “red-flag” statement that implies financial risk is figured out and
highlighted in the original text, providing effective references for decision-makers.

1. Introduction

Financial distress is a global issue of significant concern for
all stakeholders. It usually brings a tremendous amount of
loss to the related parties [1, 2], which is a severe threat to the
stability of global economic systems [3]. Due to loss
avoidance, cost saving, and risk management, financial
distress prediction is emphasized by potential investors,
managers, government officials, and other decision-makers
[4]. A scientific and informed predictionmodel is urgently in
need.

Financial distress prediction is a typical binary classifi-
cation. Most previous researches focused on the application
of machine learning methods to gain insights into financial
indicators as clues to detect financial risk. For model

construction, on one hand, classic statistical and machine
learning methods are applied in feature engineering and
classification, such as Näıve Bayesian [5, 6], Support Vector
Machine (SVM) [2, 7, 8], and ensemble learning including
decision trees based Gradient Boosting Decision Tree
(GBDT) [9–12], Random Forest (RF) [13, 14], eXtreme
Gradient Boosting (XGB) [13, 15], and Adaptive Boosting
(AdaBoost) [16, 17]. On the other hand, various deep
learningmodels are also employed formodeling [18], such as
Genetic Algorithm (GA) [6, 19], Convolutional Neural
Network (CNN) [20, 21], and Self Organizing Map (SOM)
[22]. In short, various models are used to exploit the risk
information represented by limited financial ratios to
forecast financial distress. +is type of research has been
quite sufficient.
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Financial ratios are calculated in accordance with a
specific framework, which provides an opportunity for the
company to whitewash the financial situation within a
limited range [22]. For example, financially distressed firms
tend to undertake more accrual earnings management and
less real earnings management [23, 24]. More essentially,
forecasting simply covering financial indicators neglects the
economic environment and recent business decisions re-
flected in other disclosure. In summary, the information
conveyed by financial data is limited; it is still a challenging
task to forecast financial risk accurately.

With the development of artificial intelligence (AI),
experts in the field of finance and accounting devote
themselves to integrating heterogeneous massive amounts of
information by the devices with powerful computing ca-
pabilities to predict financial distress more accurately
[12, 14, 17]. Relevant research proved that text fusion
benefits more accurate identification of financial distress
[4, 5, 25]. Since all listed companies obey structural rules to
disclose annual reports, the majority of textual information
is similar to each other except MD&A. MD&A is closely
related to financial distress prediction as it offers investors
the review of the company’s performance as well as the
future potential from the perspective of management
[14, 25–27]. +us, it is reasonable to extract texts from
MD&A to represent the nonfinancial information for a
supplement. However, the changeable semantic information
and unstructured wordy content in MD&A are serious
obstacles for text presentation.

+ere are already some paradigms to quantify text. Most
related studies utilize bag-of-words method for text repre-
sentation [5, 13, 14, 25, 28]. It means that these studies
regard the text as a set of scattered segments or isolated
words, counting all the terms according to the dictionary to
represent text as word count vectors. However, it ignores the
contexts hidden inside words and sentences. On the con-
trary, word embedding through designed neural networks
(or pretrained neural networks) preserves the integrity of the
article andmakes it available to transform the contexts in the
corpus into numeric tensors [26, 29, 30]. Compared with
training the text embedding neural network based on certain
own datasets, the pretraining model with more complicated
structures has been trained on a massive standard corpus,
with more powerful text representation ability. On a specific
natural language processing task, text embedding adaptive
for a certain dataset is obtained after fine-tuning the pre-
trained model. However, in this area, there have been few
studies employing advanced pretrained neural networks for
end-to-end text representation about financial distress
prediction. In this way, Bidirectional Encoder Representa-
tions from Transformer (BERT) is introduced for word
embedding in the study.

After each word in the text is expressed as a word vector,
another major challenge is that the long sequence of in-
formation is difficult to remember. In the previous re-
searches on text classification, most researches [31, 32]
regard the text as a sequence of words and regard the output
from RNN and LSTM as the representation of the text.
Generally, multiple hidden layers in RNN and LSTM are

considered to record the contextual information, which is
summarized by the output of the last hidden layer. However,
for lengthy text information, due to gradient diffusion and
gradient explosion, this model tends to forget the previous
information in the article. In comparison, attention is better
in the classification of long-sequence texts [33, 34]. Only
critical information where more weights are assigned is
extracted. Although attention does not consider the order of
words in the text, it is compensated by the text embedding
expressed by the pretrained model, through which the
position of each word is recorded.

Aiming to efficiently express theMD&A of large size and
provide additional clues to detect financial distress, hier-
archical attention neural networks (HAN) are proposed in
this study. Since the length of MD&A is usually more than
1000 Chinese words, it is unrealistic to process the entire text
as a tedious sentence. We draw on related research on the
classification of hierarchical levels, split long texts into
sentences, extract the main points of each sentence through
attention, and express the sentence vector through the av-
erage word vector. On the basis of sentence vectors, the key
sentence information is once again refined into text vectors
by attention. In this way, the main points of the entire text
are effectively expressed in the text vector. +is text clas-
sification design is especially suitable for the processing of
the lengthyMD&A. Based on a combination of original texts
and financial ratios, comprehensive experiments have
proved that the proposed model outperforms other baseline
models trained on word count vectors or financial indicators
at AUC and F2-score.

Our main contributions for financial distress prediction
are demonstrated as follows:

For the prediction model, after word embedding, a
framework based on hierarchical self-attention neural net-
works is proposed, competent for the binary classification of
texts of large size. Contextual information is embedded as
high-dimensional tensors by BERT. +en, attention effec-
tively extracts essential information hierarchically at the
word level and the sentence level. Along with financial ratios,
as the risk information in MD&A is more effectively and
comprehensively extracted, the predictive power of financial
distress is enhanced.

For decision support and risk early warning, in con-
sideration of visualization and interpretation, the weights of
the attention matrix act as scalers to estimate the importance
of linguistic features both at the word and sentence levels. In
an article or a sentence belonging to a sample suspected of
risk, sentences and words with higher scores will be marked
and highlighted as red-flag segments. +e parameters
learned by the attention network are regarded as the con-
textual commonality of financially distressed disclosure. For
each sample input, this mechanism refines and labels key-
notes about risk prediction, providing a direct reference for
decision-makers.

2. Literature Review

+ere are different views on the definition of financial
distress. Altman [35] first puts forward the multivariate
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discriminant analysis to establish a financial distress
warning model and proposes the Z-score model to
evaluate the possibility of corporate bankruptcy. Beaver
[36] defines the default on preferred dividends, and de-
fault on debt as financial distress. Altman defines a fi-
nancial dilemma as a legally bankrupt business. Deakin
[37] recognizes only companies that have gone through
financial distress, insolvency, or liquidation for the benefit
of creditors are in financial distress. Carmichael [38]
considers financial distress to be a disruption of obliga-
tions in the form of illiquidity, insufficient equity, debt
arrears, or insufficient funds. For China’s A-share stock
market, Shanghai and Shenzhen stock exchanges an-
nounced on April 22, 1998, that they would specially treat
(ST) stock transactions of listed companies with the ab-
normal financial state. It mainly refers to two cases: one is
the net profit of the listed company audited negative for
two consecutive fiscal years, and the other is the net asset
per share audited below the face value of the stock in the
most recent fiscal year. Usually, a listed company titled ST
faces severe financial deterioration, as a sign of financial
distress. China’s definition of listed companies in financial
distress puts weight on profitability before debt defaults,
more cautiously.

Based on the indicators covered, the research on fi-
nancial distress forecasting can be divided into two
categories; there are two categories to construct pre-
diction models. On one hand, financial information is
simply transformed into financial ratios, and there are
intensive studies based on machine learning for feature
engineering and classification [10, 16, 20, 39–41]. How-
ever, financial statement fraud is frequently committed
by cunningly revising financial ratios even legally [24].
Actually, the financial fraudulent activities occurring
globally in the past two decades were estimated to amount
up to $5.127 trillion, with associated losses increasing by
56% in the past ten years [26]. It is not convincing enough
to adopt financial ratios simply to predict financial dis-
tress [23, 24]. On the other hand, more studies begin to
focus on nonfinancial information incorporating finan-
cial ratios to predict the financial distress to reach higher
accuracy. Nonfinancial information, mainly disclosed
textual information, has proved to play an important role
in financial distress prediction, such as letters to share-
holders [28], MD&A [5, 14, 26, 27, 29], or sentiment from
annual reports [4, 14, 26], as a supplement to financial
numerical information represented by financial ratios
only.

+ere have been methods to accomplish tasks in-
corporating texts represented by word count vectors.
Peng et al. [27] analyze letters to shareholders to build a
bag of words (BOW), count word vectors, and propose a
scheme for financial distress prediction. Hajek and
Henriques [5] deal with counted sentiment words with a
random subspace method as an additional feature for
financial distress forecasting. Further, word2vec is a
comparatively advanced model based on the artificial
neural network, which encodes each word as sequential
embedded vectors where contexts are included [42]. To

record the sequential information, RNN allows retaining
the input sequence as contexts for each segment, which is
widely applied for natural language processing (NLP).
Long-Short Term Memory (LSTM) [43] is a special type
of RNN, comprised of different gates determining cor-
responding information forgotten or updated and en-
abling long-term dependencies to be learned. Based on
these techniques, Mai et al. [29] employ shallow layers of
neural networks for text embedding and apply RNN for
text classification. Besides, Du et al. [10] apply pretrained
word2vec neural networks for word embeddings and
employ models based on bidirectional LSTM (Bi-LSTM)
for risk prediction. However, the longer the input se-
quence is accepted by the RNN, the more likely the
training fails to remember the previous part of the article
due to gradient vanishment or gradient explosion. +us,
Long-Short Time Memory (LSTM) has made improve-
ments on the basis of RNN, which tries to capture more
nonadjacent semantic information through the cell
state of a text sequence. Although LSTM introduces a
large number of parameters in exchange for more ex-
pression length, its expression effect on longer texts is still
limited.

Besides, there are two approaches to integrate infor-
mation derived from the disclosure text and quantitative
finance ratios. +e first way is to directly combine text and
financial indicators in the data set [4, 5, 25, 26]. +e latter
one is similar to ensemble learning, which reprocesses the
separately learned text information and financial informa-
tion [29], not prevailing for fusing text in financial distress
prediction.

3. Methodology

+e objective of the study is to incorporate text represen-
tation and financial ratios to predict financial distress.
Generally, financial ratios are structural data and require no
excessive preprocessing. Comparatively, unstructured text
parsed from annual reports demands to be cleaned and to be
transformed into numeric tensors further.

+e majority of MD&A exceed 1000 words. It is
necessary to disassemble the article into sentences as time
distributed series and then encode each part. However,
even if the article is split into dozens of sentences, the
memory length of convolutional neural networks (CNN,
LSTM, etc.) is quite limited. Hence, this article proposed a
prediction model based on the hierarchical self-attention
after word embedding by the pretrained model, BERT.
Composed of 12 encoders and decoders, BERT concludes
the word sequences through positional embedding in each
component.

+e proposed hierarchical framework obtains the final
text representation by averaging the sentence-level vectors
when each sentence vector is the summary of the word
vector. Self-attention treats the fragment most relevant to
the other parts as significant information, as a typical effi-
cient approach to deal with long sequences. Subsequently,
financial ratios and dense text vectors are combined as final
expressions, then identified by the fully connected layer as
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positive ones (with financial distress) and negative ones
(without financial distress). +e flow chart of the proposed
method is demonstrated in Figure 1.

3.1. Hierarchical Attention for Text Representation.
Hierarchical attention (HAN) for multilevel structures is an
efficient framework for processing excessively long text
information. +e framework designed is inspired by Yang
et al. [44]. On the one hand, the hierarchical construction
divides the text with the large size into small pieces that can
be accurately calculated. On the other hand, the model
adapts the contexts of the same words or even the same
sentences varying in different articles. Further, it endows
each word or sentence specific expression according to
certain contexts. +e architecture of the hierarchical at-
tention is shown in Figure 2.

3.1.1. Word-Level Self-Attention. Here is the approach
to obtaining sentence-level vectors from the word-
level embeddings. +e input was scattered isolated
Chinese characters without extensive tokenization. wiτ
denotes the input character τ of the sentence i, τ ∈ [1, T],
where T denotes the largest length of a sentence to be
encoded.

Scaled dot-product is applied to generate self-atten-
tion. Weights in the values (V) are obtained by computing
scaled dot-products of the query (Q) with all keys (K).
In the word-level attention, the query denotes the em-
bedding result of each word in the sentence i embedded
by BERT, Qi � [ei1, ei2, . . . , eiT]T, and equals the key Ki

and the value Vi. +e weights in square matrices
Wq, Wk, Wv are parameters to be trained in the linear
networks.

+e element of the dot production matrix Wi measures
the degree of similarity between two words in the word
embedding space. dk denotes embedding dimensions of
words. It is assumed that Vattn

i is the summary of sentence i,
rewarding the keywords with more weights, while tending to
neglect useless words with fewer weights. si is the final
sentence-level vector rerepresented by the mean of all word
vectors in the word attention Vattn

i .

Qi � Ki � Vi,

Wi � softmax
WqQi · WkK

T
i��

dk

⎛⎝ ⎞⎠ � ai1, ai2, . . . , aiT ,

V
attn
i � Qi, Ki, Vi(  � Wi · WvVi � ei1′, ei2′, . . . , eiT

′ 
T
,

si �


T
τ�1 eiτ′

T
.

(1)

3.1.2. Sentence-Level Self-Attention. +e way to summarize
sentence-level vectors as a final text vector is similar to
how to refine word-level inputs from sentence-level in-
put. +e text sample t is composed of sentence queries

Qt � [s1, s2, . . . , sL]T, which equals keys Kt and values Vt.
+e weights in square matrices Uq, Uk, Uv are parameters to be
trained in the linear networks. +e element in the dot
production Ut measures the similarity between two sen-
tences in the article. ds denotes the embedding dimensions
of sentences. It is considered that Vattn

t denotes re-repre-
sented information contained in all the sentences of the
document t. In this way, sentence-level attention assigns
larger weights to the essential sentences. t is the final text
vector represented by the mean of all the sentence-level
vectors in the sentence attention matrix Vattn

t .

Qt � Kt � Vt,

Ut � softmax
UqQt · UkK

T
t��

ds

⎛⎝ ⎞⎠ � a1, a2, . . . , aL ,

V
attn
t � Qt, Kt, Vt(  � Ut · UvVt � s1′, s2′, . . . , sL

′ 
T
,

t �


L
l�1 el
′

L
.

(2)

Subsequently, the model takes text vector generated
from sentence-level representation as input to concatenate
financial ratios.

3.2. Interpretation. After normalization by the soft-max
function in rows, the element of the dot products in the
symmetric matrix Wi scores the resemblance between word
vectors in the sentence i. If most words in a sentence re-
semble a certain word wt, the word is assumed to be the
keyword. +e sum of the elements in the column or row i of
the matrix Wi, 

T
j≠ t wtj(j � 1, 2, . . . , T) , is regarded as the

importance score to evaluate how often the word wt is cited
in the sentence i. Notably, the element on the main diagonal
is excluded from the evaluation.

impiτ � 

T

j≠ τ
wτj. (3)

Identically, the evaluation of the importance of each
sentence in the article also follows the evaluation above. +e
sum of the elements in the column s in the matrix Us,


L
j≠ s usj, (j � 1, 2, . . . , T) , is treated as the importance score

to measure the frequency of the sentence s quoted by the
other sentences.

imps � 
L

j≠ s

usj. (4)

In order to discover significant sentences containing
the main idea in one text, the importance score of the
sentence is sorted and the top-ranked sentences with high
imps should be concerned by deciders if the sample is
labeled with financial distress. If the decision-makers
would check the keywords of the red-flagged sentence i,
those words with excessive scores impiτ should be
highlighted.
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4. Experiment

+e data set applied to the proposed model includes both
texts of MD&A and financial indicators. Generally, there are
two types of listed companies, including companies with
special treatment (ST, positive samples) and normal com-
panies (non-ST, negative samples). It is reasonable to mark
listed companies to be titled STor directly delisted as positive
samples with financial distress one or two years ahead.
Besides, the ratio of positive and negative samples of the
original data set is 1 :12. Financial distress prediction is
challengeable with such a severely imbalanced dataset.
Random undersampling is applied in this experiment. By

reducing the number of negative samples, more features
derived from positive samples can be noticed by the model.

+e core mission is to combine the multisource of in-
formation for financial distress forecasting, where one of the
difficulties is digitizing text information and combining text
representation with financial ratios. +e proposed model is
compared with the baseline models with word count vector
to represent text in the comparative experiments. Besides, in
order to present the benefits of information fusion, exper-
iments on financial data simply are also carried out.

Here are details on the implementation of the trial. For
the device, the type of graphics processing unit (GPU)
applied in this study is NVIDIA TITANXP. In the process of

ei1 ei2 eiT

wi1 wi2 wiT

BERT pretrained embedding model

s1 si sLs2

Positional encoding added

sp1 spi spL

t

attn U

attn Wi

ai1 ai2
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aL
sentence 
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word 
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word 
embedding
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Figure 2: +e architecture of hierarchical attention networks (HAN).
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Figure 1: Flow chart of the proposed deep learning model.
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processing text, the number of batch training takes a value of
4 with the epoch of 2. For the parameter fine-tuning, the
hierarchical learning rate is also adopted, 2 × 10− 5 is still
proven to be the best learning rate for the pretrained model,
and the learning rate of the custom networks is 0.001. With
the dropout ratio of text encoding increasing slightly, the
recall of positive samples has been effectively improved with
acceptable precision.

Besides, 10-fold cross-validation is employed to make
sure that there is no violent fluctuation for the generalization
performance under the set of hyperparameters. Section 4.3
shows the average of measurements under all the data
divisions.

4.1. Data. +e data in this experiment includes two parts,
financial indicators and text MD&A. +e text and numeric
ratios are directly combined in one data set.

After all, the samples with financial distress are ex-
tremely few. In this study, there are 860 positive samples
and 11140 negative samples in the original data set listed
in Table 1. +e ratio of positive samples (with financial
distress) to negative samples is 1 : 12. Financial ratios and
textual disclosure are included in the research,
derived from listed companies in Shanghai and Shenzhen
Stock Exchange markets from January 2012 to December
2018.

4.1.1. Imbalance Treatment. +e effect of learners will de-
cline with the severely unbalanced dataset [7, 10, 45]. It is
necessary to preprocess the imbalanced train set. In this
study, certain majority samples with negative labels are
reduced based on the random undersampling technique
(Rus). +e final sample distribution is demonstrated in
Table 2.

4.1.2. Text Data. Annual reports of listed companies are
downloaded from Chinese official information query station
designated by the China Securities Regulatory Commission
information, the earliest securities information professional
website, covering more than 3700 listed companies in
Shanghai and Shenzhen Stock Exchange markets.

Nonfinancial information, MD&A, is extracted from
annual reports. Generally, in addition to the financial in-
dicators calculated by the financial staff, MD&A shows
management’s expectations for the company’s prospects. It
is assumed that the narrative of the disclosure hints at the
company’s governance or development trend [5, 25, 27].

It is worth mentioning that, to prevent overfitting, all
company names and geographic locations in documents are
filtered by the stop words list. For linear models or decision
tree-based models, the BOW is employed to quantify text.
For the model proposed in this study, raw text without
extensive processing is directly entered as the input.
However, the size of the MD&A is excessively large, most of
which are beyond 512 words, exceeding the maximum
length of the näıve BERT. If all the text in one sample is
regarded as a sentence truncated within 512 words, it means

that some essential content would be dropped off. Hence,
it is necessary to divide the text into hierarchical levels,
sentences, and words, to intergrade more information.
Due to the limitation of hardware, only 1000 characters or
less at the beginning of the document are entered into the
proposed model. Each text is staged into 20 sentences
within 50 words.

4.1.3. Quantitative Data. +e quantitative financial indi-
cators are downloaded from the China Stock Market and
Accounting Study database (CSMAR). Based on previous
researches [5, 10, 12, 24], 48 financial indicators are taken
into account, including solvency, ratio structure, operation,
profitability, cash flow, risk, development, and the index of
per share. Solvency and cash flow describe a company’s
ability to repay short-term and long-term debts to prevent
bankruptcy.+e ratio structure shows the value composition
of the company. Operation and profitability evaluate the
company’s operating efficiency and performance. Risk
measures themultiple that a small change in revenue leads to
a huge change in profit due to the existence of fixed costs.
Development capability refers to the speed at which a
company expands.

4.2. Metrics. Financial distress prediction is regarded as a
binary classification. +ere are four predicted results, true
positive (TP), false positive (FN), true negative (TN), and
false negative (FN). Only TP denotes correct performances
to identify samples with financial distress as positive, while
FP denotes wrong performances to identify samples without
financial distress as positive. Correspondingly, TN indicates
correct performances to identify negative samples as neg-
ative, and FN denotes wrong performances to mistake
positive samples for negative ones.

For the identification of financial distress, the recall of
positive samples is crucial. In this study, the model per-
formance is evaluated by a combination of metrics, in-
cluding the AUC, precision score, recall rate, F1-score, and
F2-score for positive samples. +e F-score is a combination
of precision (the ratio of true positive identified by the
classifier to all the positive samples) and recall (the pro-
portion of identified positive samples to all positive
samples).

Table 1: +e sample distribution of the original dataset.

Class Number
Positive samples (titled “ST” in the next 2 years) 862
Negative samples 11142
Total samples 12004

Table 2: +e sample distribution of the original dataset.

Class Number
Positive samples (titled “ST” in the next 2 years) 862
Negative samples 2978
Total samples 3840
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precision �
TP

TP + FP
,

recall �
TP

TP + FN
.

(5)

+us, the F-score measures how accurate and prudent
are those for classifier’s performance. Craja et al. [26] es-
timate the cost of neglecting a positive sample with financial
problems to be twice as high as the cost of mistaking a
negative sample for a positive one. Effective models should
concentrate on the higher recall of positive samples. It is
natural to emphasize that recall is more crucial than pre-
cision in financial distress prediction.+is study employs the
F2-score as a supplement to the F1-score. Besides, the AUC
evaluates the ability to rank positive samples and negative
samples in the correct order [10], also serving as an
indicator.

F1 − score �
2 × Precision × Recall
Precision + Recall

,

F2 − score �
1 + β2  × Precision × Recall

β2 × Precision + Recall
(β � 2).

(6)

4.3. Comparative Experiment Result. Multiple sets of com-
parative experiments are carried out in this part. Generally,
there are two groups, models on financial data simply and
models on the combination of financial ratios and digiti-
zation of texts. +e result of experiments on financial data
serves as a benchmark to demonstrate the progress of dif-
ferent learners after adding text features. Typical baseline
learners, including linear models (LR, SVM), the decision-
tree based models (XGB, RF, and AdaBoost), and Multilayer
Perceptions (MLP) serve as comparative models.

+e evaluation indicators of all learners’ performance on
different data set divisions are reported. Multiple sets of train

sets and test sets are generated with several random seeds to
reduce bias in case of overfitting on the specific splitting.

4.3.1. Modeling on Financial Ratios. Based on 48 financial
indicators, the learning result of control models is shown in
Table 3. As mentioned above, in addition to AUC, what
should be concentrated on are the indicators of the learner’s
recognition of positive samples, recall, and F2-score. For
these indicators, decision-tree based models perform well
with higher AUC, recall. Especially XGB outperforms the
other models in terms of AUC, recall, and F2-score. Al-
though linear models, LR and SVM, have achieved higher
precision, they leave out excessive positive samples, fail to
serve as qualified learners in this area. Besides, ANN is
composed of two encoders. Each encoder includes two linear
layers and a fully connected layer. From the results, the
performance of ANN is close to linear learners.

4.3.2. Modeling on Financial Ratios and Digitalization of
Text. It is the core of this research to intergrade financial
indicators and text to predict financial distress. Typical
approaches to convert text include BOW and word em-
bedding through neural networks. BOW counts the word
frequency in each text according to the dictionary manip-
ulated by chi-square test and pair-words merging. BOW
serves as a baseline method. +e combined numeric word
frequency vector with financial ratios vector is entered into
benchmark leaners.

As a comparison to BOW, with the pretrained model
BERT to represent texts, the result of the comparison ex-
periments is shown in Table 4.

After adding text features, the effects of all models have
been improved, with the exception of RF. It is observed that
all models have unanimously made progress on the most
noteworthy F2-score. When focusing on the AUC and F2-
score, the proposed model achieved the best results with
82.18% and 71.41%. It can be concluded that when the F2-

Table 3: Evaluation of models on 48 financial ratios.

AUC Precision Recall F1-score F2-score

FIN

LR 0.6768 0.8450 0.372 0.5166 0.4189
SVM 0.7506 0.7768 0.5465 0.6416 0.5809
XGB 0.8023 0.7222 0.6802 0.7006 0.6882
RF 0.7829 0.7448 0.6279 0.6814 0.6482

ANN 0.7337 0.644 0.5581 0.5980 0.5734
AdaBoost 0.7933 0.7604 0.6453 0.6981 0.6654

Table 4: Evaluation of models on both 48 financial ratios and text.

AUC Precision Recall F1-score F2-score

FIN+BOW

LR 0.7203 0.8515 0.4826 0.6160 0.5284
SVM 0.7729 0.8683 0.5258 0.6594 0.5708
XGB 0.8115 0.7356 0.7035 0.7192 0.7097
RF 0.7634 0.6357 0.6121 0.6237 0.6167

ANN 0.7636 0.5720 0.6962 0.6280 0.6672
AdaBoost 0.8071 0.7214 0.6860 0.7061 0.6986

FIN+TXT BERT+HAN 0.8218 0.6656 0.7274 0.6951 0.7141

Computational Intelligence and Neuroscience 7



score, which puts weights on the recall rate, is regarded as the
core indicator of the financial distress prediction, the pro-
posed model behaves best. When dealing with texts with

intricate internal relationships of intact original documents,
deep neural networks (DNN) offer substantial improvement
in interpreting the complexity and detect more commonality

I.Overview

reform and resumption of listing have made substantial progress.

�e company held the second extraordinary general meeting of shareholders on September18,
2013, and passed the"Amendment to the Articles of Association" and other proposals. �e eighth
session of the board of directors was held on September18, elected the chairman and vice chairman of

committees of the board and the company's management. �e eighth session of the Supervisory
Committee was held on September18, 2005 to elect the chairman of the new Supervisory Committee.
On December 31,2013, the company implemented and completed the equity split reform plan and the
debt restructuring and transfer of shares plan. In January 2014, the company completed the
registration of new shares and resumed listing on January 10,2014 .�e stock abbreviation was
changed to"*** Cobalt Nickel" and the stock cod eremained unchanged.

In 2013, the company realized operating income of 4.407771927.08 yuan, an increase of 249.17%
1year-on-year, and the total profit was ¥30.634.985.00, attributable to the parent company.�e net
profit was ¥111,784,706.53. Faced with the unfavorables ituation of the long-term low price of non-
ferrous metals in 2013 and the continuous increase in the cost of production factors, in order to strive

stable and healthy production and operation. At the same time, increase the trading business of non-
ferrous products and strive to achieve the set goals. �e company makes every effort to ensure the
normal production and ensure that the annual operation rate of its equipment remains above 90%. On

strengthenmarketdevelopment,stabil izeexistingcustomers,activelydevelopotherhigh-quality
customers, and open up new market space. Inresponse to the decline in the price of electrolyzed nickel
products, the company deeply analyzed various adverse factors, continuously enhanced the awareness
of crises, explored solutions to problems, organized employees, solved practical problems, and worked
hard to minimize losses point.
2. Promote the progress of the preliminary work of project construction ...

...

the new board of directors, and confirmed the appointment of the members of the professional

to achieve the company's profitability, the company went all out to do the following work:
1.Carry on researches on market changes, flexibly organize and arrange production, and maintain

the premise of ensuring the quality of nickel sulfate and iron fine powder. We will continue to

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

In
de

x

Sentence-level Attention
1.0

0.8

0.6

0.4

0.2

0.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Index
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Figure 3: A page fromMD&A parsed from a positive sample. In the sentence-level attention, corresponding to the top three total scores of
column weights, the three sentences that best summarize the article information are highlighted. Similarly, the keywords in each sentence
are also marked according to word-level attention respectively, where word-level attention is not depicted here.
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shared by positive samples. Our proposed model,
BERT+HAN, proves to be a promising alternative method
with the performance under a higher recall, which is em-
phasized by stakeholders.

4.4. Interpretation Demonstration. According to assump-
tions, the documents disclosed by companies facing financial
difficulties have a certain contextual commonality instead of
the simple frequency of words. +ese sharing features are
summarized, captured by the elaborately designed hierar-
chical attention mechanism.

Here, the identification of significant sentences and
words in a sample facing financial distress is illustrated. In
the text-level attention, each row of the matrix has been
normalized. +e sum of each column is considered to be
the total cited score, in other words, the importance of the
sentence of the column index. For the example illumi-
nated in Figure 3, sentences with the serial number 1, 4,
and 10 are evaluated and marked with the highest scores.
In the same way, the keynotes in each sentence are also
selected and highlighted with a darker color. +e text-level
attention and labeled article are displayed in Figure 3. Due
to space limitations, the word-level attention matrix is not
shown in the picture. Since the text is cleaned, and the
sentences with the total number of words less than 50 are
merged, the serial number corresponds to the cleaned text
and may not correspond to the original sentence one-to-
one.

+e proposed model not only provides a more powerful
financial distress prediction ability, but also the two-step
attention mechanism offers an interpretable reference for
decision-makers. Visual labeling of suspicious words and
sentences offers clues to potential financial distress.

5. Discussion

Regarding the textual disclosure of new information as a
supplement to financial indicators, a basic prerequisite is
that it contains information that is not reflected in the latter,
such as management’s insights and expectations of the
company’s outlook. Moreover, companies facing financial
distress have potentially similar contextual characteristics in
disclosure, difficult to be modified like financial indicators.
Our work confirms this, and through the setting of hier-
archical attention networks, the exploration of the contex-
tual features mentioned above has been well completed.

Our study introduces the pretrained model BERTwith a
powerful ability for text representation and employs a hi-
erarchical attention mechanism to disassemble the ultra-
long text into some shorter sentences for representation and
training and, finally, combine the obtained text vector and
financial data for financial distress prediction. From the
experimental results, our proposed model beats all the
benchmark models at the AUC and F2-score emphasized in
the field. Experiments prove that the context of the original
text hides clues to financial distress. If these clues are de-
tected, they effectively improve the ability to predict financial
distress.

To think further, the plain word2vec based on shallow
neural networks and the bag-of-words perhaps have
limitations in dealing with the text of large size, and it is
difficult for them to capture the intricate and contextual
attributes. With the original form of the text remaining,
utilizing pretraining models BERT based on deep neural
networks with fine-tuning and filtering the key infor-
mation of long texts hierarchically based on the attention
mechanism is a novel idea for analyzing large texts. More
importantly, for different samples, attention is targeted to
analyze and opt for indispensable features in varying
contexts, which is closer to the way people process fi-
nancial disclosure in reading comprehension. It is more
effective than the methods quantifying text with one
unified feature scale.

In addition, we have also explored the interpretability of
deep neural network models. +e attention mechanism
provides a way to visualize the key features of all samples.
Based on the vector similarity measurement by dot product
normalized through soft-max function, we can pick up the
key information and encode sentence vectors according to
the word-level attention matrix and then refine the text
vector through the sentence-level attention, where all the
steps are visualized. Illuminating attention to different
sentences and words and evaluating importance points,
clues of financial distress in the original text can be marked.

We recommend that decision-makers pay more atten-
tion to the complex and tedious text disclosures. In par-
ticular, we expect that the proposed model can reduce the
workload of auditors by filtering out key information.
+rough tracking and investigation of the clues further, the
risk is more likely to be detected in advance.

6. Conclusion

Based on heterogeneous information, not only studies in the
financial field to predict financial distress are involved, but
also artificial intelligence methods to digitize unstructured
information are necessary.

+e model proposed in this research embeds and ex-
presses the text from the original data at the word and
sentence levels and summarizes the final vector represen-
tation of the text. Next, the text vector obtained and financial
data are entered into the multilayer perceptron and classi-
fied. Experiments show that the proposed model beats all the
benchmark ones at F2-score.

Without additional discretion, the potential of the
proposed end-to-end deep learning method in information
representation and feature engineering has been examined
in this study. At the same time, the trained attention
mechanism in this study successfully imitates humans to dig
keynotes from complex language structures and offers
readers with visualization of the “red flag” content as clues of
financial distress. Finally, for researchers, research on the
time series of corporate disclosure texts and financial in-
dicators based on panel data may still be required. In ad-
dition, risk prediction divided by industry segments may be
more effective in the application of artificial intelligence in
the respective field.
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Hand gesture recognition based on surface electromyography (sEMG) plays an important role in the field of biomedical and
rehabilitation engineering. Recently, there is a remarkable progress in gesture recognition using high-density surface electro-
myography (HD-sEMG) recorded by sensor arrays. On the other hand, robust gesture recognition using multichannel sEMG
recorded by sparsely placed sensors remains a major challenge. In the context of multiview deep learning, this paper presents a
hierarchical view pooling network (HVPN) framework, which improves multichannel sEMG-based gesture recognition by
learning not only view-specific deep features but also view-shared deep features from hierarchically pooled multiview feature
spaces. Extensive intrasubject and intersubject evaluations were conducted on the large-scale noninvasive adaptive prosthetics
(NinaPro) database to comprehensively evaluate our proposed HVPN framework. Results showed that when using 200ms sliding
windows to segment data, the proposed HVPN framework could achieve the intrasubject gesture recognition accuracy of 88.4%,
85.8%, 68.2%, 72.9%, and 90.3% and the intersubject gesture recognition accuracy of 84.9%, 82.0%, 65.6%, 70.2%, and 88.9% on
the first five subdatabases of NinaPro, respectively, which outperformed the state-of-the-art methods.

1. Introduction

As a noninvasive approach of establishing links between
muscles and devices, the surface electromyography- (sEMG-
) based neural interface, also known as the muscle computer
interface (MCI), has been widely studied in the past decade.
Surface electromyography is a type of biomedical signal
recorded by noninvasive electrodes placed on human skin
[1]; it is the spatiotemporal superposition of motor unit
action potential (MUAP) generated by all active motor units
(MU) at different depths within the recording area [2].
sEMG recorded from subject’s forearm measures muscular
activity of his/her hand movements, thus, can be used for
hand gesture recognition. So far, the sEMG-based gesture
recognition techniques have been widely applied in reha-
bilitation engineering [3–5] and human-computer interac-
tion [6–8].

From the perspective of signal recording, there are two
types of sEMG signals: (1) high-density sEMG (HD-sEMG)

[9–11] signals which are recorded by electrode arrays that
consist of dozens, or even hundreds of electrodes arranged in
a grid; (2) multichannel sEMG signals [12, 13] which are
recorded by several sparsely located electrodes. For MCIs
such as robotic hand prostheses and upper-limb rehabili-
tation robots, one of the key challenges is to precisely
recognize the user’s gestures through sEMG signals collected
from his/her forearm. Over the past five years, feature
learning approaches based on convolutional neural net-
works (CNNs) have shown promising success in HD-sEMG-
based gesture recognition, that is, achieving >90% recog-
nition accuracy in classifying a large set of gestures [11], and
almost 100% recognition accuracy in classifying a small set
of gestures [14, 15], because HD-sEMG signals contain both
spatial and temporal information of muscle activity [16].
Compared to conventional feature engineering approaches
based on shallow learning models, a major advantage of
feature learning approaches is that the end-to-end learning
capability of deep learning models enables them to
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automatically learn representative deep features from raw
sEMG signals without any hand-crafted feature [17].

On the other hand, achieving high accuracy in multi-
channel sEMG-based gesture recognition performance re-
mains a challenging task, because multichannel sEMG is
noisy, random, nonstationary [18], and vulnerable to elec-
trode shift [16] and contains much less spatial information
about muscle activities than HD-sEMG [19]. So far, re-
searchers have tried a variety of strategies to improve the
multichannel sEMG-based gesture recognition perfor-
mance, including extracting more representative features
[20], using multimodal gesture data collected from multiple
sensors [21], and developing more sophisticated deep
learning models [15].

In recent years, there has emerged a trend in combining
deep learning models with feature engineering techniques,
as well-designed time domain (TD) [22], frequency domain
(FD) [23], and time-frequency domain (TFD) [24] features
have achieved remarkable success in multichannel sEMG-
based gesture recognition systems. For example, Zhai et al.
[25] calculated spectrograms of sEMG and used them as
features for CNN-based gesture recognition and achieved
78.7% gesture recognition accuracy for recognizing 49
gestures. Hu et al. [26] extracted the Phinyomark feature set
[23] from raw sEMG signals and fed them into an attention-
based hybrid convolutional neural network and recurrent
neural network (CNN-RNN) architecture for gesture rec-
ognition; they achieved 87% recognition accuracy for rec-
ognizing 52 gestures. Betthauser et al. [27] proposed the
encoder-decoder temporal convolutional networks (ED-
TCN) for sEMG-based sequential movement prediction; the
inputs of their proposed ED-TCN model were composed of
mean absolute value (MAV) sequences. Chen et al. [28] used
continuous wavelet transform (CWT) to process the data as
the input of their proposed CNN model.

In machine learning, multiview learning refers to
learning from data described by different view-points or
different feature sets [29, 30]. On this basis, Wei et al. [31]
proposed a multiview CNN (MV-CNN) framework that
constructs images generated from different sEMG features
into multiview representations of multichannel sEMG.
Compared to prior works that combined deep learning
models with feature engineering techniques, one of the key
characteristics of MV-CNN is that it adopts a “divide-and-
aggregation” strategy that is able to independently learn deep
features from each individual view of multichannel sEMG.
'e MV-CNN framework showed promising success in
multichannel sEMG-based gesture recognition, as the ges-
ture recognition accuracy achieved by MV-CNN signifi-
cantly outperformed the state-of-the-art deep learning
approaches.

From the perspective of multiview learning, there are
generally two types of features, namely, the “view-specific
feature” or “private feature” particular for each individual
view and the “view-shared feature” or “public feature”
shared by all views [32]. 'e independent learning under
each individual view is able to learn view-specific features
[33]; on the other hand, it is unable to learn shared in-
formation across different views [34]. 'e MV-CNN

framework [31] did consider view-shared learning by an
early fusion strategy that concatenates the output from the
lowest convolutional layers of all view-specific CNN
branches. However, from our perspective, the early fusion
strategy used in MV-CNN is still a naive approach based
on concatenation; it also ignores the original input feature
spaces of different views.

Aiming at improving multichannel sEMG-based ges-
ture recognition via better learning of view-shared deep
features, in this paper, we proposed a hierarchical view
pooling network (HVPN) framework, in which view-
shared feature spaces were hierarchically pooled from
multiview low-level features for view-shared learning. In
order to build up more discriminative view-shared feature
spaces, we proposed a CNN-based view pooling technique
named the feature-level view pooling (FLVP) layer, which
is able to learn a unified view-shared feature space from
multiview low-level features. Compared to MV-CNN [31],
the application of hierarchical view pooling and FLVP layer
results in a wider (i.e., with more CNN branches) and
deeper (i.e., with more convolutional layers in the view-
shared learning branches) network architecture, respec-
tively, thus enabling the learning of more representative
view-shared deep features.

'e remainder of this paper is organized as follows.
Section 2 formulates the multiview learning problem, de-
scribes the databases, and details the proposed HVPN
framework. Section 3 introduces the experiments in this
paper and provides the experimental setup. Section 4
presents and discusses the experimental results. Finally,
Section 5 concludes the paper.

2. Materials and Methods

2.1. Problem Statement. According to Wei et al. [31], the
problem of multiview deep learning-based gesture recogni-
tion using multichannel sEMG signals can be formulated as

y � H v1, v2, . . . , vn; θ( , (1)

where v1, v2, . . . , vn denote multiview representations from n

different views of C-channel sEMG signals x ∈ RC, H de-
notes a deep neural network with parameters θ, and y

denotes the final gesture classification results.
'e relationship between v1, v2, . . . , vn and x can be

formulated as

vi � fvci
(x), (2)

where fvci
, i � 1, 2, . . . , n denotes view construction func-

tions that generate multiview representations from raw
sEMG signals.

In the field of multiview deep learning, a common ap-
proach is to build up n neural networks Hli

, i � 1, 2, . . . , n to
learn deep representations from n views, respectively, and
then use a view aggregation network Ha to fuse the learned
multiview deep representations together and obtain the final
decisions y. 'us, equation (1) can be written as
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y � Ha Hl1
v1; θl1

 , Hl2
v2; θl2

 , . . . , Hln
vn; θln

 ; θa .

(3)

2.2.Databases. 'e evaluations in this work were performed
offline using multichannel sEMG signals from the publicity
available NinaPro databases [35]. We chose 5 subdatabases
of NinaPro, which contain multichannel sEMG signals
recorded from intact and transradial amputees through
different types of electrodes. Details of these databases are as
follows:

'e first subdatabase (denoted as NinaProDB1) contains
sEMG signals collected from 27 intact subjects; each subject
was asked to perform 53 gestures, including 12 finger
movements (denoted as Exercise A), 17 wrist movements
and hand postures (denoted as Exercise B), 23 grasping and
functional movement (denoted as Exercise C), and the rest
movement; each gesture was repeated 10 times (i.e., 10 trials
per gesture). 'e sEMG signals in NinaProDB1 were
recorded by 10 Otto Bock 13E200-50 electrodes at a sam-
pling rate of 100Hz [13]. As most of the existing studies on
this database excluded the rest movement for gesture rec-
ognition [10, 26, 31, 36], in our experiments we also excluded
the rest movement for the convenience of performance
comparison.

'e second subdatabase (denoted as NinaProDB2)
contains sEMG signals collected from 40 intact subjects;
each subject was asked to perform 50 gestures, including
Exercises B and C in NinaProDB1, 9 force patterns (denoted
as Exercise D), and the rest movement; each gesture was
repeated 6 times (i.e., 6 trials per gesture). 'e sEMG signals
in NinaProDB2 were recorded by 12 Delsys Trigno Wireless
electrodes at a sampling rate of 2000Hz [13].

'e third subdatabase (denoted as NinaProDB3) con-
tains sEMG signals collected from 11 transradial amputees;
each subject was asked to perform exactly the same 50
gestures as those in NinaProDB2; each gesture was repeated
6 times (i.e., 6 trials per gesture). 'e sEMG signals in
NinaProDB3 were recorded by 12 Delsys Trigno Wireless
electrodes at a sampling rate of 2000Hz [13]. According to
the authors of NinaPro database, during the sEMG re-
cording process of NinaProDB3, three amputated subjects
performed only a part of gestures due to fatigue or pain, and
in two amputated subjects, the number of electrodes was
reduced to ten due to insufficient space [13]. To ensure
training and testing of the model can be completed, we
omitted data from these subjects following the experimental
configuration used by Wei et al. [31].

'e fourth subdatabase (denoted as NinaProDB4)
contains sEMG signals collected from 10 intact subjects;
each subject was asked to perform exactly the same 53
gestures as those in NinaProDB1; each gesture was repeated
6 times (i.e., 6 trials per gesture). 'e sEMG signals in
NinaProDB4 were recorded by the Cometa Wave Plus
Wireless sEMG system with 12 electrodes, and the sampling
rate was 2000Hz [37]. After checking the data, we found that
two subjects (i.e., subject 4 and subject 6) did not complete
all hand movements; their data were omitted in our
experiments.

'e fifth subdatabase (denoted as NinaProDB5) contains
sEMG signals collected from 10 intact subjects; each subject
was asked to perform exactly the same 53 gestures as those in
NinaProDB1; each gesture was repeated 6 times (i.e., 6 trials
per gesture). Following the experimental configuration in
[37], we chose 41 gestures (i.e., Exercise B and C plus rest
movement) from all 53 gestures in NinaProDB5 for clas-
sification. 'e sEMG signals in NinaProDB5 were recorded
by two'almic Myo armbands at a sampling rate of 200Hz;
each Myo armband contains 8 sEMG electrodes [37].

2.3. Data Preprocessing and View Construction. Due to
memory limitation of the hardware, for experiments on
NinaProDB2-DB4, we downsampled the sEMG signals from
2000Hz to 100Hz following the experimental configuration
used in [31].

In multiview learning, view construction is usually de-
fined as generation of multiple views from a single view of
original data [38]. Considering the fairness of performance
comparison, the view construction process in this paper was
exactly the same as that in MV-CNN framework [31]. As a
result, three different views of multichannel sEMG, denoted
as v1, v2, and v3, are represented by images of discrete
wavelet packet transform coefficients (DWPTC), discrete
wavelet transform coefficients (DWTC), and the first Phi-
nyomark’s feature set (Phin_FS1) that are extracted from
raw sEMG signals, respectively.

For the generation of the feature images, we followed the
image generation algorithm proposed by Jiang and Yin [39],
which is described in Algorithm 1.

Although the abovementioned three views of multichannel
sEMG were proven to be the most discriminative views for
gesture recognition in [31], the construction of them still re-
quires a lot of computational time and resources, as well as
their high-dimensionality results in the increase of the number
of neural network parameters, making us consider the trade-off
between gesture recognition accuracy and computational
complexity.'us, in this paper, we also evaluated a “two-view”
configuration, which selected the two most discriminative
views (i.e., v1 and v2, represented by images of DWPTC and
DWTC, resp.) out of these three views of multichannel sEMG
and used them as the input of the proposedHVPN framework.
Details of the evaluations on the “two-view” configuration will
be presented in the following sections of this paper.

For extraction of sEMG features during view construc-
tion, sliding windows were used to segment the multichannel
sEMG. Early studies in MCI have pointed out that the re-
sponse time of a real-time MCI system should be kept below
300ms to avoid a time delay perceived by the user [40, 41]. For
this reason, the sliding window length was set to 200ms for
most of the experiments, and the window increment was set
to 10ms except for experiments on NinaProDB5 using the
sliding window length of 200ms. For experiments on
NinaProDB5 using 200ms sliding windows, we followed the
experimental configuration used by Pizzolato et al. [37] and
Wei et al. [31], which set the window increment to 100ms.

Suppose the images that represent the ith view have an
sEMG feature dimension of Mi and an sEMG channel
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dimension of C, the Mi × C (width, height, respectively,
depth� 1) feature space of vi is firstly transformed into an
Mi × C × 1 (depth, width, and height, respectively) feature
space before it is input into neural network architecture of
HVPN for gesture recognition. 'e transformation is based
on the experimental results presented in [15], where the 20 ×

10 × 1 (depth, width, and height, respectively) sEMG images
significantly outperformed the 1 × 20 × 10 (depth, width,
and height, respectively) sEMG images as the input of an
end-to-end CNN in gesture recognition using 10-channel
sEMG signals segmented by 20-frame sliding window.

2.4. ,e HVPN Framework. A diagram of our proposed
HVPN framework with all three views of multichannel
sEMG is illustrated in Figure 1. 'e deep learning archi-
tecture of HVPN can be divided into three parts: view-
specific CNNs, hierarchical view pooling CNNs, and a view
aggregation network. For HVPN with the “two-view”
configuration, there are two view-specific CNN branches to
learn view-specific deep features from v1 and v2, respectively,
and other parts are almost the same as those illustrated in
Figure 1. 'e following sections describe the detailed net-
work architecture and hyperparameter configurations of
these parts.

2.5. View-Specific CNNs. After view construction, we built
up three view-specific CNN branches to learn view-specific
deep features from v1, v2, and v3, respectively. As shown in
Figure 1, all view-specific CNN branches share the same
network architecture but do not share their weights. 'e
network architecture of each view-specific CNN branch is

based on GengNet [10], which has been extensively used in
sEMG-based gesture recognition [15, 31, 42]. Specifically, the
images of each view are input into two convolutional layer
with 64 3× 3 filters (stride� 1), followed by two locally
connected (LC) layers with 64 1× 1 filters (stride� 1) and
one fully connected (FC) layer with 1024 hidden units. For
each CNN branch, we applied batch normalization and the
ReLU nonlinearity function after each layer and added
dropout layers to the FC layer and the last LC layer to
prevent overfitting. 'e input of each CNN is also nor-
malized through batch normalization.

2.6. Hierarchical View Pooling CNNs. 'e hierarchical view
pooling CNNs are composed of two CNN branches, namely,
the first-level view pooling CNN (denoted as L1-VPCNN)
and the second-level view pooling CNN (denoted as L2-
VPCNN); each of them starts with an FLVP layer, which is
used to learn a view-shared feature space from multiview
low-level features. As illustrated in Figure 2, the FLVP layer
firstly concatenates the input feature maps from different
views together and then learns a unified feature space from
the concatenated feature maps through a 1× 1 convolutional
layer with 64 filters.'e FLVP layers in our proposed HVPN
framework play two important roles: (1) each of them learns
a unified feature space shared by all views from concatenated
multiview low-level features for view-shared learning; (2)
compared with the extensively used view pooling technique
based on simple element-wise maximum [43] or average
[44] operation, each FLVP layer can guarantee that its
corresponding hierarchical view pooling CNN branch is
deep enough to learn representative features.

Input: sEMG features z ∈ RD×C, which are extracted from a sliding window that is used to segment C-channel sEMG signals.
Output: 'e generated image, denoted as v ∈ RM×C

(1) if D%2 �� 0 then
(2) D � D + 1;
(3) end if
(4) seq � [′1′]; index � [1];
(5) i � 1; j � i + 1;
(6) while i≠ j do
(7) l � “ij”; r � “ji”;
(8) if j>D then
(9) j � 1;
(10) else if l ∉ seq&& r ∉ seq then
(11) seq.append(′j′);
(12) index.append(j);
(13) i � j; j � i + 1;
(14) else
(15) j � j + 1;
(16) end if
(17) end while
(18) index � index[: − 1];
(19) v �;
(20) for k � 1; k≤ length(index) do
(21) v.append(z[: , index[k]])

(22) end for

ALGORITHM 1: 'e image generation algorithm used in this paper [39].
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Suppose we have v1 ∈ RM1×C×1, v2 ∈ RM2×C×1,
v3 ∈ RM3×C×1, and the multiview low-level features learned
by the bottom convolutional layers of three view-specific
CNN branches are v1, v2, v3 ∈ R64×C×1, respectively. 'e
hierarchical view pooling process by FLVP layers can be
formulated as follows.

'e 1st-level view pooling:

vc1
� v1 v2

����
����v3,

vl1
� Hfv1

vc1
; θfv1

 ,

vc1
∈ RM×C×1

, M � M1 + M2 + M3,

vl1
∈ R64×C×1

.

(4)

'e 2nd-level view pooling:

vc2
� v1 v2

����
���� v3

����vl1
,

vl2
� Hfv2

vc2
; θfv2

 ,

vc2
∈ R256×C×1

,

vl2
∈ R64×C×1

,

(5)

where ‖ denotes the feature-level concatenation operation,
vli

denotes the learned feature space after level-i view
pooling, Hfvi

denotes the FLVP layer in Li-VPCNN, and θfvi

denotes its parameters.
'e remaining parts of L1-VPCNN and L2-VPCNN

perform view-shared learning from vl1
and vl2

, respectively.
'ey share the same network architecture, which is com-
posed of one convolutional layer with 64 3× 3 filters
(stride� 1), followed by two LC layers with 64 1× 1 filters
(stride� 1) and one FC layer with 1024 hidden units.
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Figure 1: A schematic diagram of the proposed HVPN framework. FLVP, Conv, LC, and FC denote the feature-level view pooling layer,
convolutional layer, locally connected layer, and fully connected layer, respectively. 'e numbers after the layer name denote the size and
number of the filters or neurons; for example, Conv 3× 3@64 denotes a CNNwith 64 3× 3 filters, and FC 1024 denotes an FC layer with 1024
hidden units.
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Figure 2: Diagram of the FLVP layer.
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2.7. View Aggregation Network. 'e view aggregation net-
work is used for the following: (1) the fusion of all view-
specific CNN branches and hierarchical view pooling CNN
branches and (2) final gesture classification. As shown in
Figure 1, the view aggregation network adopts a two-step
view aggregation strategy. Specifically, it concatenates the
output view-specific deep features learned by three view-
specific CNN branches together at first. 'en, the concat-
enated view-specific deep features and the view-shared deep
features learned by L1-VPCNN and L2-VPCNN are input
into three branches, respectively. Each branch consists of
one FC layer with 512 hidden units and a classifier module,
and each classifier module is composed of a G-way FC layer
and a softmax classifier for gesture classification. At the top
of HVPN, there is an element-wise summation operation
that sums up the softmax scores predicted by all three
classifier modules together to form the final classification
results.

2.8. EvaluationMetric andMethodology. For experiments in
this study, we calculated the gesture recognition accuracy for
each subject as the evaluation metric, which is defined as

accuracy �
number of correct classifications
Ttotal number of classifications

∗ 100%.

(6)

'e evaluation methodology in this paper can be cate-
gorized into intrasubject evaluation and intersubject eval-
uation. Generally speaking, in intrasubject evaluation, the
deep learning model is trained on a part of the data from one
subject and tested on the nonoverlapping part of the data
from the same subject, whereas in intersubject evaluation,
the deep learning model is usually trained on data from one
or a group of subjects and tested on data from another group
of subjects.

For fair performance comparison, we adopted the same
intrasubject and intersubject evaluation schemes as those
were most commonly used in existing studies on NinaPro
database [10, 13, 26, 31, 36, 42], which are described as
follows.

Intrasubject Evaluation. For intrasubject evaluation, we
followed the evaluation scheme proposed by the NinaPro
team [13]. Specifically, for each subject, approximately 2/3 of
the gesture trials are used as the training set; the remaining
gesture trials constitute the test set. 'e final gesture rec-
ognition accuracy is obtained by averaging the achieved
accuracy over all subjects. 'e selection of gesture trials for
training and testing are based on the literature [13, 37].

Intersubject Evaluation. For intersubject evaluation, we
followed the leave-one-subject-out cross-validation
(LOSOCV) scheme used in the literature [31, 36, 42].
Specifically, in each fold of the cross-validation, data from
one subject is used as the test set, and data from the
remaining subjects is used as the training set. 'e final
gesture recognition accuracy of the evaluation is obtained by
averaging the achieved accuracy over all folds.

Specifications of the evaluation methodology on dif-
ferent sEMG databases are presented in Table 1.

2.9. Deep Domain Adaptation for Intersubject Evaluation.
In intersubject evaluation, the training (i.e., source domain)
and test (i.e., target domain) data comes from two non-
overlapping groups of subjects; thus, there exist distribution
mismatch and domain shift across the source target domain
caused by electrode shifts, changes in arm position, muscle
fatigue, skin condition [45], and individual differences
among subjects [46], which may dramatically degrade the
classification performance of the model [47].

To reduce the negative effect of distribution mismatch
and domain shift on classification performance, a number of
existing deep learning based approaches [31, 42, 48] in this
field have applied a novel unsupervised deep domain ad-
aptation technique named multistream AdaBN (MS-
AdaBN) [42]. 'e MS-AdaBN technique uses a multistream
network to incrementally update the batch normalization
statistics of the network training process with the calibration
data.

In this work, the MS-AdaBN was also implemented for
deep domain adaptation in LOSOCV, because our pre-
liminary experiments on NinaProDB1 revealed that the
LOSOCV accuracy achieved by our proposed model without
deep domain adaptation is far from practical applications
(i.e., < 30%). Similar results were achieved by MV-CNN and
reported by Wei et al. [31].

For selection of training, calibration, and test data, we
followed exactly the same MS-AdaBN configuration as that
used in previous works [31, 42]. It should be mentioned that
as MS-AdaBN requires a relatively large amount of cali-
bration data, it may not be the best solution for domain
adaptation in the context of multichannel sEMG-based
gesture recognition. Nevertheless, MS-AdaBN is not a
contribution of this work, and we used it in our experiments
because we wanted to ensure a fair comparison of LOSOCV
accuracy between our proposed method and the previously
proposed MV-CNN [31], which is a multiview deep learning
framework that also adopted MS-AdaBN for domain
adaptation.

3. Experiments

All experiments were performed offline (i.e., not real-time)
on a DevMax401 workstation with NVIDIA GeForce
GTX1080Ti GPU. 'e proposed HVPN framework was
trained using the stochastic gradient descent (SGD) opti-
mizer with 28 epochs. For all experiments, the batch size was
set to 1000, and a learning rate decay strategy was adopted
during training to improve convergence, which initialized
the learning rate at 0.1 and divided it by 10 after 16 and 24
epochs. For all layers with dropout, the dropout rate was set
to 0.65 during training.

3.1. Evaluation of the Hierarchical View Pooling Strategy.
Evaluation of the hierarchical view pooling strategy can be
divided into two steps. First, we carried an ablation study to
verify the effectiveness of FLVP layer. Second, we carried out
an ablation study to validate the effectiveness of the pro-
posed hierarchical view pooling CNNs. For all experiments
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in these ablation studies, the sliding window length was set
to 200ms.

In the first step of the evaluation, the standard HVPN
was firstly compared with its two variants, namely, HVPN-
maxpool and HVPN-avgpool, on five databases (i.e.,
NinaProDB1-DB5). In HVPN-maxpool, the FLVP layer in
L2-VPCNNwas replaced by view pooling based on element-
wise maximum, while in HVPN-avgpool the FLVP layer in
L2-VPCNNwas replaced by view pooling based on element-
wise average. Meanwhile, the FLVP layers in the L1-VPCNN
of HVPN-maxpool and HVPN-avgpool were retained, be-
cause the input feature spaces of L1-VPCNN have different
sizes, which make it impossible for performing element-wise
maximum or average operation among them.

In the second step of the evaluation, the proposed HVPN
was compared with the following deep neural network
architectures:

VS-L1VP: a deep network that is equivalent to HVPN
without the L2-VPCNN.
VS-L2VP: a deep network that is equivalent to HVPN
without the L1-VPCNN.
VS-ONLY: a deep network that only consists of view-
specific CNNs, followed by a concatenation operation
that fuses their output together, a FC layer with 512
hidden units and a classifier module.

'e schematic illustration of VS-L1VP, VS-L2VP, and
VS-ONLY is depicted in Figure 3. Compared to HVPN that
contains hierarchical view pooling CNNs, there is only one
view pooling CNN in VS-L1VP, as well as VS-L2VP, for
view-shared learning.

3.2. Comparison with Related Works. 'e gesture recogni-
tion accuracy achieved by the proposed HVPN framework,
as well as the gesture recognition accuracy achieved by the
proposed HVPN framework with the “two-view” configu-
ration (denoted as HVPN-2-view), was further compared
with related works on five databases (i.e., NinaProDB1-
DB5). For the aim of fairness in this comparison, among
various machine learning methods that were proposed for
sEMG-based gesture recognition and tested on NinaPro, we
only considered the ones that meet the following require-
ments: (1) their reported gesture recognition accuracy was
achieved using exactly the same intrasubject or intersubject
gesture recognition schemes as described in Section 2; (2)
the input of their machine learning models were engineered
features, not raw sEMG signals.

To prevent overfitting, a pretraining strategy that has
been widely used by the compared methods [26, 31] was also
adopted in this work. Specifically, for each experiment, a
pretrained model was firstly trained using all available
training data; then, the gesture recognition model for each
subject was initialized by the pretrained model. For all layers
with dropout, the dropout rate was set to 0.5 during the
pretraining stage.

For comparison of intrasubject gesture recognition ac-
curacy, we evaluated the gesture recognition accuracy
achieved with 50ms, 100ms, 150ms, and 200ms sliding
windows. Moreover, the gesture recognition accuracy ob-
tained by majority voting on all 200ms windows within each
trial is also presented in the column labeled “Trial.” For
comparison of LOSOCV (i.e., intersubject gesture recog-
nition) accuracy, we only evaluated the gesture recognition
accuracy achieved with 200ms sliding windows.

4. Results and Discussion

4.1.Multichannel sEMG-BasedGestureRecognitionEnhanced
by Hierarchical View Pooling. Table 2 presents the intra-
subject and LOSOCV accuracy achieved by the standard
HVPN, HVPN-maxpool, and HVPN-avgpool on five da-
tabases. 'e proposed HVPN framework achieved the
intrasubject gesture recognition accuracy of 86.8%, 84.4%,
68.2%, 70.8%, and 88.6% on NinaProDB1, DB2, DB3, DB4,
and DB5, respectively, and achieved the LOSOCV accuracy
of 83.1%, 79.0%, 65.6%, 67.0%, and 87.1% on NinaProDB1,
DB2, DB3, DB4, and DB5, respectively. 'e gesture rec-
ognition accuracy achieved by HVPN was higher than that
achieved by HVPN-maxpool and HVPN-avgpool in all
experiments, indicating that the FLVP layer can achieve
better gesture recognition accuracy than the conventional
view pooling approaches based on element-wise maximum
or average operation. However, when evaluated on
NinaProDB1, DB2, DB3, and DB4, the performance im-
provement brought by the FLVP layer was subtle (i.e., from
+0.2% to +0.4% over element-wise max or average pooling).
'is is likely due to the fact that in HVPN-maxpool and
HVPN-avgpool we only replaced the FLVP layer in L2-
VPCNN with conventional view pooling, making them very
similar to the original HVPN.

Table 3 presents the intrasubject and LOSOCV accuracy
achieved by HVPN, VS-L1VP, VS-L2VP, and VS-ONLY on
five databases (i.e., NinaProDB1-DB5). According to the
experimental results in Table 3, the deep neural network
architectures with view pooling CNNs (i.e., HVPN,

Table 1: Specifications of the evaluation methodology on different sEMG databases.

Databases Intrasubject IntersubjectTrials for training Trials for testing
NinaPro DB1 1st, 3rd, 4th, 6th, 7th, 8th, 9th 2nd, 5th, 10th LOSOCV
NinaPro DB2 1st, 3rd, 4th, 6th 2nd, 5th LOSOCV
NinaPro DB3 1st, 3rd, 4th, 6th 2nd, 5th LOSOCV
NinaPro DB4 1st, 3rd, 4th, 6th 2nd, 5th LOSOCV
NinaPro DB5 1st, 3rd, 4th, 6th 2nd, 5th LOSOCV
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Figure 3: Schematic diagrams of (a) VS-L1VP, (b) VS-L2VP, and (c) VS-ONLY.

Table 2: Gesture recognition accuracy achieved by the standard HVPN, HVPN-maxpool, and HVPN-avgpool on five databases.

Database Evaluation methodology HVPN HVPN-maxpool HVPN-avgpool
NinaProDB1 Intrasubject 86.8% 86.4% 86.5%
NinaProDB2 Intrasubject 84.4% 84.1% 84.1%
NinaProDB3 Intrasubject 68.2% 68.0% 67.9%
NinaProDB4 Intrasubject 70.8% 70.5% 70.5%
NinaProDB5 Intrasubject 88.6% 88.1% 88.1%
NinaProDB1 LOSOCV 83.1% 82.7% 82.8%
NinaProDB2 LOSOCV 79.0% 78.8% 78.7%
NinaProDB3 LOSOCV 65.6% 65.4% 65.3%
NinaProDB4 LOSOCV 67.0% 66.6% 66.6%
NinaProDB5 LOSOCV 87.1% 86.4% 86.6%
Results in bold entries indicate best performance.
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VS-L1VP, and VS-L2VP) significantly outperformed VS-
ONLY, indicating that combining view-specific learning
with view-shared learning is better than performing view-
specific learning alone in the context of multiview deep
learning for multichannel sEMG-based gesture recognition.
Moreover, the intrasubject and LOSOCV accuracy achieved
by HVPN was higher than that achieved by VS-L1VP and
VS-L2VP on all databases, which proves the effectiveness of
our proposed hierarchical view pooling strategy in im-
proving gesture recognition accuracy.

4.2. Comparison with Related Works Based on Intrasubject
Evaluation. Table 4 presents the intrasubject gesture rec-
ognition accuracy achieved by various methods on the first
five subdatabases of NinaPro. Among these methods, the
methods proposed in [13, 36, 37] are shallow learning
frameworks, the methods proposed in [25–27, 49, 50] are
single-view deep learning frameworks, and the method
proposed in [31] is a multiview deep learning framework
(i.e., MV-CNN). All the above-mentioned methods are non-
end-to-end methods using engineered sEMG features as
their input, and they used exactly the same intrasubject
evaluation scheme as that was used in our work.

Experimental results in Table 4 demonstrate that when
using all three views of multichannel sEMG as input, the
proposed HVPN achieved the intrasubject gesture recog-
nition accuracy of 88.4%, 85.8%, 68.2%, 72.9%, and 90.3% on
NinaProDB1, DB2, DB3, DB4, and DB5, respectively, with
the sliding window length of 200ms, which outperformed
not only shallow learning frameworks [13, 36, 37] but also
deep learning frameworks [25, 26, 31, 49, 50] that were
proposed for sEMG-based gesture recognition in recent
years.

Compared to MV-CNN, which is also a multiview deep
learning framework, experimental results show the follow-
ing: (1) when using exactly the same input, the gesture
accuracy achieved by MV-CNN was significantly inferior to
that achieved by HVPN on all databases; (2) when the
number of input views of HVPN was reduced to two (i.e.,
denoted as HVPN-2-view in Table 4), it still outperformed
MV-CNN framework onmost of the databases (i.e., NinaPro
DB2, DB3, DB4, and DB5), and their gesture recognition
accuracy on NinaProDB1 was almost the same. For example,

when the sliding window length was set to 200ms, the
HVPN-2-view achieved the intrasubject gesture recognition
accuracy of 88.1%, 85.0%, 67.9%, 72.1%, and 90.1% on
NinaPro DB1, DB2, DB3, DB4, and DB5, respectively. By
comparison, the intrasubject gesture recognition accuracy
achieved by MV-CNN on NinaPro DB1, DB2, DB3, DB4,
and DB5 was 88.2%, 83.7%, 64.3%, 54.3%, and 90.0%, re-
spectively. 'ese results indicate that compared to MV-
CNN, the HVPN framework can achieve better or similar
intrasubject gesture recognition accuracy using less input
data.

We also found that the intrasubject gesture recognition
accuracy achieved by MV-CNN on NinaPro DB4 was much
lower than that achieved by a shallow learning method (i.e.,
random forests [37]). By comparison, our proposed HVPN
achieved the intrasubject gesture recognition accuracy of
72.9% on NinaPro DB4, with the sliding window length of
200ms, which significantly outperformed both MV-CNN
[31] and the random forests-based method [37].

4.3. Comparison with MV-CNN Based on Intersubject
Evaluation. As very few studies in this field have presented
the LOSOCV accuracy of recognizing all gestures in any of
the NinaPro subdatabases, considering the difference in
evaluation methodology and domain adaptation strategy, in
this section, we focused on comparison with the MV-CNN
framework [31], which used exactly the same intersubject
evaluation scheme and domain adaptation technique as our
proposed HVPN framework.

'e LOSOCV accuracy achieved by MV-CNN and our
proposed HVPN framework on five databases is presented in
Table 5. 'e MV-CNN framework achieved the LOSOCV
accuracy of 84.3%, 80.1%, 55.5%, 52.6%, and 87.2% on
NinaProDB1, DB2, DB3, DB4, and DB5, respectively, with
the sliding window length of 200ms. By comparison, the
HVPN framework achieved the LOSOCV accuracy of 84.9%,
82.0%, 65.6%, 70.2%, and 88.9% on NinaPro DB1, DB2,
DB3, DB4, and DB5, respectively, with the sliding window
length of 200ms, which significantly outperformed MV-
CNN. Similar to the results of intrasubject evaluation, the
LOSOCV accuracy achieved by HVPN framework with the
“two-view” configuration (i.e., denoted as HVPN-2-view in
Table 5) also outperformed that achieved by MV-CNN

Table 3: Gesture recognition accuracy achieved by HVPN, VS-L1VP, VS-L2VP, and VS-ONLY on five databases.

Database Evaluation methodology HVPN VS-L1VP VS-L2VP VS-ONLY
NinaProDB1 Intrasubject 86.8% 86.5% 86.2% 85.8%
NinaProDB2 Intrasubject 84.4% 84.1% 83.9% 83.4%
NinaProDB3 Intrasubject 68.2% 67.7% 67.5% 67.2%
NinaProDB4 Intrasubject 70.8% 69.9% 69.7% 68.5%
NinaProDB5 Intrasubject 88.6% 87.9% 88.3% 87.2%
NinaProDB1 LOSOCV 83.1% 82.6% 82.5% 81.9%
NinaProDB2 LOSOCV 79.0% 78.7% 78.7% 78.1%
NinaProDB3 LOSOCV 65.6% 65.5% 65.0% 64.7%
NinaProDB4 LOSOCV 67.0% 66.3% 65.7% 65.2%
NinaProDB5 LOSOCV 87.1% 86.2% 86.5% 84.7%
Results in bold entries indicate best performance.
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Table 4: Intrasubject gesture recognition accuracy in comparison with related works on five databases.

Machine learning
(ML) model

Type of ML
model

Input of ML
model Database Num. of gestures for

classification
Window length

50ms 100ms 150ms 200ms Trial

Random forests [13] Shallow
learning

5 hand-crafted
features NinaProDB1 50 N.A. N.A. N.A. 75.3% N.A.

Dictionary learning
[36]

Shallow
learning

MLSVD-based
features NinaProDB1 52 N.A. N.A. N.A. N.A. 97.4%

HuNet [26] CNN-RNN Phinyomark
feature set NinaProDB1 52 N.A. N.A. 86.8% 87.0% 97.3%

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB1 52 85.8% 86.8% 87.4% 88.2% N.A.

ChengNet [49] CNN Multi-sEMG-
features image NinaProDB1 52 N.A. N.A. N.A. 82.5% N.A.

HVPN-2-view Multi-view
CNN 2 views of sEMG NinaProDB1 52 85.4% 86.5% 87.2% 88.1% 97.8%

HVPN Multi-view
CNN Same as [31] NinaProDB1 52 86.0% 86.9% 87.7% 88.4% 98.0%

Random forests [13] Shallow
learning

Hand-crafted
features NinaProDB2 50 N.A. N.A. N.A. 75.3% N.A.

ZhaiNet [25] CNN sEMG
spectrogram NinaProDB2 50 N.A. N.A. N.A. 78.7% N.A.

HuNet [26] CNN-RNN Phinyomark
feature set NinaProDB2 50 N.A. N.A. N.A. 82.2% 97.6%

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB2 50 80.6% 81.1% 82.7% 83.7% N.A.

HVPN-2-view Multiview
CNN 2 views of sEMG NinaProDB2 50 82.7% 83.8% 83.3% 85.0% 97.8%

HVPN Multiview
CNN Same as [31] NinaProDB2 50 82.3% 84.1% 84.8% 85.8% 98.1%

Support vector
machine (SVM) [13]

Shallow
learning

5 hand-crafted
features NinaProDB3 50 N.A. N.A. N.A. 46.3% N.A.

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB3 50 N.A. N.A. N.A. 64.3% N.A.

ED-TCN [27] TCN MAV sequences NinaProDB3 41 N.A. N.A. 63.5% N.A. N.A.

HVPN-2-view Multiview
CNN 2 views of sEMG NinaProDB3 50 64.4% 65.7% 66.8% 67.9% 80.3%

HVPN Multiview
CNN Same as [31] NinaProDB3 50 64.5% 65.9% 66.9% 68.2% 80.7%

Random forests [37] Shallow
learning mDWT features NinaProDB4 53 N.A. N.A. N.A. 69.1% N.A.

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB4 53 N.A. N.A. N.A. 54.3% N.A.

HVPN-2-view Multiview
CNN 2 views of sEMG NinaProDB4 53 60.1% 63.2% 67.6% 72.1% 81.1%

HVPN Multiview
CNN Same as [31] NinaProDB4 53 58.3% 67.1% 70.5% 72.9% 81.7%

SVM [37] Shallow
learning mDWT features NinaProDB5 41 N.A. N.A. N.A. 69.0% N.A.

ShenNet [50] Stacking-
based CNN

TD, FD and TFD
features NinaProDB5 40 N.A. N.A. N.A. 72.1% N.A.

MV-CNN [31] Multiview
CNN 3 views of sEMG NinaProDB5 41 N.A. N.A. N.A. 90.0% N.A.

HVPN-2-view Multiview
CNN 2 views of sEMG NinaProDB5 41 88.7% 89.1% 89.9% 90.1% 98.8%

HVPN Multiview
CNN Same as [31] NinaProDB5 41 88.7% 89.3% 90.0% 90.3% 98.4%

N.A. denotes not applicable, and bold entries indicate our proposed method. HVPN-2-view refers to the proposed HVPN framework with the “two-view”
configuration (i.e., using v1 and v2 as its input). †It should be mentioned that existing MCIs seldom segment raw sEMG signals by trial due to the constraint
that the maximal response time of an MCI should be kept below 300ms [40, 41]. ‡For experiments on HVPN, the predicted class label of each gesture trial is
obtained by majority voting on all 200ms sliding windows within it.
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framework on all databases, indicating that HVPN frame-
work can achieve better LOSOCV accuracy than MV-CNN
using less input data.

5. Conclusions

'is paper proposed and implemented a hierarchical view
pooling network (HVPN) framework, which improves
multichannel sEMG-based gesture recognition by not only
view-specific learning under each individual view but also
view-shared learning in feature spaces that are hierarchically
pooled from multiview low-level features.

Ablation studies were conducted on five multichannel
sEMG databases (i.e., NinaPro DB1–DB5) to validate the
effectiveness of the proposed framework. Results show the
following: (1) when the FLVP layer in L2-VPCNN was
replaced by conventional view pooling based on element-
wise max pooling or average pooling, both intrasubject and
LOSOCV accuracy degraded; (2) the proposed HVPN
outperformed its two simplified variants that have only one
view pooling CNN, as well as a deep neural network ar-
chitecture that only consists of view-specific CNNs, in both
intrasubject evaluation and LOSOCV. According to the
above results, the effectiveness of the proposed hierarchical
view pooling strategy can be proven.

Furthermore, we carried out performance comparison
with the state-of-the-art methods on five databases (i.e.,

NinaPro DB1–DB5). Experimental results have demon-
strated the superiority of the proposed HVPN framework
over other deep learning and shallow learning-based
methods. When using sliding windows of 200ms, the
proposed HVPN achieved the intrasubject gesture rec-
ognition accuracy of 88.4%, 85.8%, 68.2%, 72.9%, and
90.3% on NinaPro DB1, DB2, DB3, DB4, and DB5, re-
spectively. 'e LOSOCV accuracy achieved on NinaPro
DB1, DB2, DB3, DB4, and DB5 using 200ms sliding
windows was 84.9%, 82.0%, 65.6%, 70.2%, and 88.9%,
respectively.

Limited by experimental conditions, we only considered
offline experiments to verify our proposed HVPN frame-
work. Our future work will focus on online evaluation of the
proposed multiview deep learning framework. Moreover, in
the future, we will investigate the integration of our pro-
posed framework with hardware systems, such as upper-
limb prostheses [51, 52] and space robots [53, 54] that are
driven by multichannel sEMG signals.

Data Availability

'emultichannel sEMG data supporting the findings of this
study are from the NinaPro dataset, which is publicly
available at http://ninapro.hevs.ch. Papers describing the
NinaPro dataset are cited at relevant places within the text as
references [13, 37]. 'e processed data and trained deep

Table 5: LOSOCV accuracy in comparison with MV-CNN on five databases.

ML model Type of ML model Domain adaptation
method Database Num. of gestures for

classification

LOSOCV accuracy
(achieved with 200ms

window)
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB1 52 84.3%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB1 52 84.5%

HVPN Multiview CNN MS-AdaBN NinaProDB1 52 84.9%
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB2 50 80.1%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB2 50 81.8%

HVPN Multiview CNN MS-AdaBN NinaProDB2 50 82.0%
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB3 50 55.5%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB3 50 65.4%

HVPN Multiview CNN MS-AdaBN NinaProDB3 50 65.6%
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB4 53 52.6%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB4 53 69.9%

HVPN Multiview CNN MS-AdaBN NinaProDB4 53 70.2%
MV-CNN
[31] Multiview CNN MS-AdaBN NinaProDB5 41 87.2%

HVPN-2-
view Multiview CNN MS-AdaBN NinaProDB5 41 88.8%

HVPN Multiview CNN MS-AdaBN NinaProDB5 41 88.9%
N.A. denotes not applicable, and bold entries indicate our proposed method. HVPN-2-view refers to the proposed HVPN framework with the “two-view”
configuration (i.e., using v1 and v2 as its input).
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learningmodels used to support the findings of this study are
available from the corresponding author upon request.
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-e feature selection problem is a fundamental issue in many research fields. In this paper, the feature selection problem is
regarded as an optimization problem and addressed by utilizing a large-scale many-objective evolutionary algorithm. Considering
the number of selected features, accuracy, relevance, redundancy, interclass distance, and intraclass distance, a large-scale many-
objective feature selection model is constructed. It is difficult to optimize the large-scale many-objective feature selection op-
timization problem by using the traditional evolutionary algorithms.-erefore, this paper proposes a modified vector angle-based
large-scale many-objective evolutionary algorithm (MALSMEA). -e proposed algorithm uses polynomial mutation based on
variable grouping instead of naive polynomial mutation to improve the efficiency of solving large-scale problems. And a novel
worst-case solution replacement strategy using shift-based density estimation is used to replace the poor solution of two in-
dividuals with similar search directions to enhance convergence. -e experimental results show that MALSMEA is competitive
and can effectively optimize the proposed model.

1. Introduction

Feature selection involves the selection of a specific number
of features from existing features to optimize specific ob-
jectives [1]. Feature selection can be regarded as a multi-
objective optimization problem that can be solved using
evolutionary algorithms. Feature selection has attracted the
attention of scholars and has been widely used in gene
expression analysis [2], face recognition [3], and drug dis-
covery [4]. For example, a two-stage heuristic algorithm
minimal redundancy maximal relevance (mRMR) [5] is used
to optimize relevance and redundancy simultaneously. A
filter-based algorithm [6] is used to consider the entropy-
based correlation measure and the combination measure of
the redundancy and cardinality of a selected subset. A de-
composition algorithm based on a weighted method is
utilized to optimize interclass and intraclass distances [7].

Gulsah et al. [8] proposed two algorithms, W-QEISS and
F-QEISS, that use nondominated sorting based on classifi-
cation accuracy, feature number, relevance, and redundancy.
Li et al. [9] established a model with feature number,
classification performance, interclass distance, and intraclass
distance as objectives and proposed a decomposition-based
large-scale algorithm (DMEA-FS).

However, some unsolved problems still exist in feature
selection using traditional evolutionary algorithms. -e first
problem is that the selection of a large number of features
can be regarded as the optimization of the large-scale op-
timization problem [1] or the large-scale multiobjective
optimization problem (LSMOP) [10], but the traditional
evolutionary algorithms cannot effectively solve such
problems. -e second problem is that feature number and
accuracy are two basic objectives, and other objectives are
needed to explore the potential information to guide the
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evolution in feature selection [1]. Correspondingly, more
objectives result in many-objective optimization problems
(MaOPs) [11, 12].

-ere are three main types of current algorithms, which
are mainly used to solve LSMOPs or MaOPs, but they
perform poorly on large-scale many-objective problems
(LSMaOPs) [13], which include more than 3 objectives and
over 100 decision variables [14, 15].

-e first kind of algorithms is based on the Pareto
dominance, which improves the convergence pressure by
modifying the Pareto dominance relation. -e new domi-
nance relations are ε-dominance [16], θ-dominance [17],
L-optimality [18], simplex dominance [19], grid dominance
[20, 21], etc. -e algorithm using shift-based density esti-
mation (SDE) was proposed in the work of [22], which
allows individuals with poor convergence to obtain higher
density.

-e second is based on performance indicators, such as
the hypervolume (HV) adaptive grid algorithm (HAGA)
[23], the evolutionary algorithm (MaOEA/IGD) using
inverted generational distance (IGD) [24], indicator-based
algorithm with boundary protection (MaOEA-IBP) [25],
and R2 indicator and weight vector-based method (R2-
WVEA) [26]. Most of these algorithms are many-objective
evolutionary algorithms (MaOEAs), but their computational
costs are large.

-e third category is composed of decomposition-based
methods. -e most classic ones are the multiobjective
evolutionary algorithm based on decomposition (MOEA/D)
[27] and its variants [28–30]. -e algorithm based on
nondominated sorting approach (NSGA-III) [31] uses
evenly distributed reference points to assist the environ-
mental selection. Based on NSGA-III, Gu and Wang [10]
introduced an information feedback model to solve
LSMaOPs. -e reference vector-guided evolutionary algo-
rithm (RVEA) [32] uses reference vectors to guide the
optimization.

To more comprehensively describe and better solve the
large-scale feature selection problem, this paper studies the
existing multiobjective models based on the evolutionary
algorithm, combines the existing objectives, constructs the
feature selection problem as an LSMaOP, and uses an im-
proved large-scale many-objective evolutionary algorithm
(LSMaOEA) for optimization.

-e main contributions of this paper are summarized as
follows:

(1) A novel worst-case solution replacement strategy
based on SDE is proposed. -is strategy allows
conditional replacement of poor solutions in terms
of convergence and diversity compared to other
solutions, thereby maintaining a balance between
convergence and diversity.

(2) A modified vector angle-based large-scale many-
objective evolutionary algorithm (MALSMEA) is
proposed, which uses variable grouping-based
polynomial mutation instead of naive polynomial
mutation to improve the efficiency of solving large-
scale problems. In the environmental selection

process, the proposed worst solution replacement
strategy is used to improve diversity.

(3) A large-scale many-objective feature selection opti-
mization model is constructed, and MALSMEA is
used to optimize it. -e optimization objectives of
this model are the number of selected features, ac-
curacy, relevance, redundancy, interclass distance,
and intraclass distance.

-e remainder of this paper is arranged as follows.
Section 2 introduces the related works. Section 3 describes
the proposed model and MALSMEA in detail. In Section 4,
we compare and analyze the experimental results of
MALSMEA and four advanced algorithms in solving
benchmark LS-MaOPs, as well as the performance of
MALSMEA and three feature selection algorithms in opti-
mizing the proposed feature selection model. Section 5
provides a summary of the full paper and prospects of future
research.

2. Related Works

2.1. Large-Scale Many-Objective Optimization Problem.
An LSMaOP can be described as

min F(x) � f1(x), f2(x), . . . , fm(x)( 

s.t. x ∈ Ω,
(1)

where Ω � 
D
i�1[li, ui] ⊆ RD is the decision space, D is the

number of decision variables (D≥ 100), and li and ui are the
lower and upper bounds of decision variables in the ith
dimension, respectively. x is the D-dimensional decision
vector in Ω, m is the objective number (m> 3), and
F(x) ∈ Rm is the objective vector of x. If no other solution
dominates x, then x is a Pareto optimal solution [33]. -e
objective vectors corresponding to all Pareto optimal so-
lutions constitute the Pareto optimal front (PF) [34, 35].

2.2. Shift-Based Density Estimation. We use the SDE [22]
with the kth nearest neighbor [36] to estimate the density of
all individuals. For an individual xi, the following method is
used to calculate the density value SDE(xi).

(i) First, the standardized objective vectors of other
individuals in population P are shifted.

(ii) -en, the Euclidean distances between other shifted
normalized objective vectors and the considered
individual are calculated, expressed as d(xi, xk).

(iii) Next, the kth minimum value λ(xi) in the set
d(xi, xk), xk ∈ P∩xk ≠ xi  is found, where k �

��
N

√

and N is the size of the population.
(iv) Finally, SDE(xi) is calculated as follows:

SDE xi(  �
1

λ xi(  + 2
. (2)

-rough the above process of estimating the individual
density, we can observe that the smaller the individual
density is, the better the performance of the individual.
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-erefore, this paper uses this strategy, considering both
diversity and convergence, to judge a pair of individuals with
similar search direction, so as to delete the individual with
poor performance.

2.3. Information 3eory Criterion Based on Entropy. -e
feature selection model uses an entropy-based information
theory criterion [8] to measure correlation and redundancy.
For a given discrete random variable A, its entropy E(A) is
determined as follows:

E(A) � − 
a∈A

p(a)log p(a), (3)

where p(a) � Pr(A � a), A is the set of all possible values of
A, a ∈ A. -en, the joint entropy of A and B is determined as
follows:

E(A, B) � − 
a∈A


b∈B

p(a, b)log p(a, b), (4)

where B is a discrete random variable,
p(a, b) � Pr(A � a, B � b), a ∈ A, and b ∈ B. -en, the
mutual information between A and B is determined as
follows:

M(A, B) � E(A) + E(B) − E(A, B). (5)

Symmetric uncertainty is used to scale the value range of
mutual information to [0, 1] [37], which is defined as
follows:

SU(A, B) �
2M(A, B)

E(A) + E(B)
. (6)

3. Proposed Model and Algorithm

3.1.ModelDesign. -e optimization objectives of the feature
selection model include the number of selected features,
accuracy, relevance, redundancy, interclass distance, and
intraclass distance, which are described as follows:

(1) 3e Number of Selected Features. It is minimized to
ensure the simplification of feature selection:

F1(S) � |S|, (7)

where |S| represents the cardinality of feature set S.
(2) Accuracy. -e accuracy of the learning algorithm is

measured by the classification performance. -e
higher the classification performance is, the greater
the accuracy. In this paper, the extreme learning
machine (ELM) classifier [8] is used to calculate the
accuracy:

F2(S) �
tn + tp

fn + fp + tn + tp
, (8)

where tn, tp, fn, and fp represent the true negative,
true positive, false negative, and false positive,
respectively.

(3) Relevance. -e relevance between features and cat-
egorical variables reflects the recognition ability of
the selected features. -e greater the correlation is,
the stronger the recognition ability is:

F3(S) � 
xi∈S

SU xi, y( ,
(9)

where xi represents the ith feature and y represents
the target categorical variable. -is objective is
normalized according to F3(S) � F3(S)/maxF3(S).

(4) Redundancy. -e redundancy is used to quantify the
level of similarity between selected features. -e
smaller the redundancy is, the smaller the similarity:

F4(S) � 
xi,xj∈S,i<j

SU xi, xj ,
(10)

where xj represents the jth feature. -is objective is
normalized according to F4(S) � F4(S)/maxF4(S).

(5) Interclass Distance. -e interclass distance represents
the distance between the mean sample of each class
and the average of mean samples of all classes, which
reflects the recognition ability of samples of different
classes. In the evolutionary process, a better sample
distribution is obtained by maximizing the distance
between classes:

F5(S) � 
L

i�1
mi −

1
L



L

i�1
mi

⎛⎝ ⎞⎠

2

, (11)

where L is the total number of classes and mi is the
average value of all samples with feature S in class i.
-is objective is normalized according to
F5(S) � F5(S)/maxF5(S).

(6) Intraclass Distance. By calculating the distances
between the samples with the selected feature and the
mean of all samples of the same kind, this value
reflects the cohesion of the same kind of samples and
can improve the accuracy to a certain extent:

F6(S) � 
L

i�1


aij∈Li

aij − mi 
2
, (12)

where aij is the jth sample in class i. -is objective is
normalized according to F6(S) � F6(S)/maxF6(S).

-erefore, the definition of the feature selection opti-
mization model in this paper is as follows:

min F1(S), −F2(S), −F3(S), F4(S), −F5(S), F6(S)( . (13)

3.2. 3e Proposed Algorithm: MALSMEA. In this paper, a
modified vector angle-based large-scale many-objective
evolutionary algorithm is proposed, termed as MALSMEA.
MALSMEA mainly uses a mutation operator based on
variable grouping and the environment selection method of
VaEA [38]. Figure 1 shows the program flowchart of
MALSMEA. -e main process of MALSMEA is as follows:
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(i) Step 1. Initialize a population P(t) with N indi-
viduals randomly in the whole decision space Ω,
and set parameters.

(ii) Step 2. -e mutation operator based on variable
grouping is used to mutate the population P(t),
in which the grouping method is ordered
grouping, to generate the offspring population
Q(t).

(iii) Step 3. Combine the offspring population Q(t)

with the parent population P(t) and obtain the
joint population U(t). -en, the environmental
selection in steps 4–9 is adopted to select N

promising individuals from U(t).
(iv) Step 4. Normalize the individuals in the population

U(t), and calculate the fitness and density values of
each individual as well as the vector angle between
every two individuals.

(v) Step 5. Use the nondominated sorting method to
rank, and determine the last layer F(l).

(vi) Step 6. According to the vector angle between any
two individuals in layer F(l) and the fitness value
of each individual, m individuals with the largest
vector angle and m individuals with the smallest

fitness value are selected to join P(t + 1) to ensure
the diversity.

(vii) Step 7. If |P(t + 1)|<N, select the individual with
the largest vector angle in F(l) to join the new
population P(t + 1) by calculating the vector an-
gles between the individuals in F(l) and the in-
dividuals in P(t + 1); otherwise, go to step 9.

(viii) Step 8. To maintain the balance between conver-
gence and diversity, the worst individual re-
placement strategy is used to replace the poor
individual with other individuals. Repeat from step
7 if |P(t + 1)|<N.

(ix) Step 9. Obtain the new population P(t + 1).
(x) Step 10. Repeat from step 2, and stop when the

maximum number of generations tmax is reached.

3.3. 3e Worst-Case Solution Replacement Strategy Based on
SDE. As the extreme individuals have been selected
according to the vector angle and fitness value, for the worst
individual replacement strategy in the process of environ-
mental selection, we use the SDE strategy to calculate the
density of individuals. -e SDE strategy can consider the
convergence and diversity of individuals simultaneously.
Using this method, we can replace the poor individuals with
similar search directions. -e specific process is as follows: if
the angle between an individual a in F(l) and an individual b

in P(t + 1) is less than the angle between two solutions of N

ideal solutions, that is, θ � ((π/2)/N + 1), where N is the
population size, then they have similar search directions. In
this case, if SDE(a)< SDE(b), then individual b is replaced
by a. After replacement, the angle between each individual
a ∈ F(l) and the new population P(t + 1) is updated.

3.4. 3e Wrapper Structure of MALSMEA. MALSMEA is
applied to the feature selection model, and the pseudocode
of the wrapper structure of MALSMEA is shown in Algo-
rithm 1. -e main steps are as follows:

(i) First, the input dataset DS is divided into training
and test datasets.

(ii) -en, in the initialization process, MALSMEA al-
locates the random feature vector WS selected from
the data feature matrix W. -e selected feature
vector WS is encoded as solutions by using the
coding technology of [9] to reduce the amount of
computation in the evolutionary process, and the
mask of WS is regarded as the decision variables,
and the population P is formed.

(iii) -en, in the wrapper structure, the population P is
evaluated via six objective functions to obtain ob-
jective vectors and obtain the evaluated population
P(t). -e feature number is calculated according to
the decision variables of the solutions. -e accuracy
can be obtained from the decoded feature subset
and the corresponding ELM classifier [8], and other
objectives can be calculated according to the cor-
responding equations.

Start

Initialize population P (t)
and set parameters

t < tmax

Y

Generate Q (t) by mutation operation

P (t) ∪ Q (t) = U (t)

Normalize individuals, calculate
fitness, density and angle

Nondominated sorting

Select extreme solutions, add to P (t + 1)

|P (t + 1)| < N

Choose solutions with maximum angle

�e worst-case solution
replacement strategy based on SDE

t = t + 1

N

Y

End

Optimal resultN

Figure 1: Program flowchart of MALSMEA.
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(iv) -en, the population is optimized by MALSMEA.
(v) Finally, the optimal set PS is obtained.

3.5. Time Complexity Analysis. -e time complexity of
MALSMEA is composed mainly of the following parts: the
time complexity of the mutation operation in MALSMEA is
O(D2N/K), where K is the number of groups, the time
complexity of nondominated sorting is O(N logm− 2 N)

[31], the worst-case solution replacement strategy based on
SDE has the time complexity of O(mN2), and the time
complexity of other operations is O(mN2). -erefore, the
time complexity of MALSMEA is
max O(D2N/K), O(N logm− 2 N), O(mN2) . Compared
with the four algorithms, the time complexity of the grouped
and linked polynomial mutation operator (GLMO) is
max O(D2N/K), O(mN2)  [39], linear combination-based
search algorithm (LCSA) is O(mN2) [40], vector angle-
based evolutionary algorithm (VaEA) is
max O(N logm− 2 N), O(mN2)  [38], and RVEA is
O(mN2) [32]. -us, the time complexity of MALSMEA is
similar to that of GLMO but greater than that of the other
three algorithms.

4. Experimental Studies

In this section, DTLZ1-DTLZ6 in the Deb, -iele, Lau-
manns, and Zitzler (DTLZ) test suite [41] and LSMOP1-
LSMOP9 in the Large-Scale Multi- and Many-Objective
Problems (LSMOP) test suite [42] are selected to evaluate the
performance of MALSMEA, and four datasets in the Uni-
versity of California at Irvine (UCI) machine learning library
[43] are selected to evaluate the ability of MALSMEA to
optimize the proposed feature selection model, among
which Heart is a two-class dataset, Zoo and Iris are two
multiclass datasets, and Musk1 is a high-dimensional
dataset. For LSMaOPs,MALSMEA is compared with GLMO
[39], LCSA [40], VaEA [38], and RVEA [32]. GLMO and
LCSA are large-scale multiobjective evolutionary algo-
rithms. GLMO uses mutation operators based on variable
grouping, and LCSA uses a linear combination to reduce
dimensionality. VaEA and RVEA are many-objective evo-
lutionary algorithms that use vector angles and reference
vectors, respectively. For the proposed six-objective feature
selection model, MALSMEA is compared with W-MOSS
[44], W-QEISS, and F-QEISS [8].

In the next sections, we introduce the performance
indicators and set the parameters in the experiments. -en,
for all algorithms, when the objective numbers m are 5 and
10, the population sizes N are 126 and 275, and the numbers
of decision variables D are 500 and 1000, respectively. Each
algorithm runs 20 times independently and stops when the
number of function evaluations (FEs) reaches 90,000. -e
performance of MALSMEA is verified by comparing the
average IGD values obtained by five algorithms. In each test
instance, the best average IGD value is highlighted in bold.
Finally, in four datasets, MALSMEA and three feature se-
lection algorithms are utilized to deal with the proposed six-
objective feature selection optimization model, for which

N � 100, the maximum number of FEs is 100, and each
algorithm runs independently for 10 times.-e optimization
ability of MALSMEA is verified by comparing the HV in-
dicator and optimization results.

4.1. Experimental Settings

(1) Performance Indicator. In the experiment, IGD [45]
and HV [46] are used as evaluation indicators. -e
smaller (larger) the IGD (HV) indicator value is, the
better the performance of the algorithm. -e IGD
indicator evaluates the algorithm by calculating the
average of minimum distances between all sampled
individuals on the actual PF and the obtained so-
lution set. -e HV indicator quantifies the algorithm
performance by calculating the volume between the
obtained nondominated solution set and the refer-
ence point.

(2) Parameter Settings for the Crossover and Mutation
Operators. In the performance verification experi-
ment of MALSMEA, MALSMEA and GLMO use the
mutation operator based on variable grouping to
generate offspring. Other algorithms use simulated
binary crossover (SBX) [32] and polynomial muta-
tion [47]. -e crossover probability is pc � 1.0, the
mutation probability is pm � 1/D, and the distri-
bution indicator is ηm � 20, where D is the number
of decision variables. In the experiment to verify the
superiority of MALSMEA with respect to the pro-
posed model, according to [9], pc � 0.8, pm � 0.2.

(3) Other Parameter Settings for Algorithms. In MALS-
MEA and GLMO [39], the number of groups K is set
to 4, and the ordered grouping method is adopted.
For RVEA [32], the index α and the frequency fr are
set to 2 and 0.1, respectively. -e parameters in
W-QEISS and F-QEISS are set according to [8], and
the searching method is based on r-NSGA-II [48].
-e parameters in W-MOSS are set according to
[44].

(4) Datasets. -e details of 4 UCI datasets utilized are
shown in Table 1.

(5) ELM Classifier. For the proposed model, the ELM
classifier [8] is utilized to evaluate the accuracy of the
current solution, which follows the criterion given in
[46]: the activation function is g(x) � 1/(1 + e(−x))

in the hidden layer, and the number of neurons is set
to nh � 10. -e target classification variable and the
(input) features are normalized into ranges [0, 1] and
[−1, 1] in each dataset, respectively. To minimize the
accuracy deviation, the k-fold cross validation ap-
proach is utilized with k � 10, and the average ac-
curacy is used for comparison [9].

4.2. Performance Comparison of Algorithms on DTLZ.
Table 2 describes the IGD indicator values obtained by the
five algorithms on the 5- and 10-objective DTLZ1-DTLZ6
with 500 and 1000 decision variables. As shown in Table 2,
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MALSMEA is competitive with the other four algorithms.
Specifically, MALSMEA produces 18 best results out of 24
test instances, and its performance on the 10-objective
DTLZ is significantly better than that of the other algo-
rithms. -e experimental results are analyzed in detail as
below.

DTLZ1 reflects the convergence of the algorithm.
MALSMEA outperforms the other algorithms on the 5- and
10-objective DTLZ1. -ese results demonstrate that
MALSMEA has better convergence on the large-scale high-
dimensional DTLZ1. DTLZ2 is generally used to test the
scalability of algorithms with respect to the number of
objectives. -e performance of MALSMEA on the 5-ob-
jective DTLZ2 is better than that of LCSA but slightly in-
ferior to that of GLMO, VaEA, and RVEA.-e performance
of MALSMEA on the 10-objective DTLZ2 is better than that
of the other four algorithms. -us, MALSMEA has better
scalability to the objective number.

DTLZ3 is a highly multimodal problem similar to
DTLZ1. MALSMEA obtains the smallest IGD indicator
value on DTLZ3 with 500 and 1000 decision variables.
DTLZ4 is used to test the ability of the algorithm to ensure
the diversity of the population. MALSMEA obtains the
smallest IGD indicator value on the 10-objective DTLZ4
with 500 and 1000 decision variables. For the 5-objective
DTLZ4, VaEA outperforms other algorithms on DTLZ4
with 500 and 1000 decision variables. MALSMEA exhibits
greater diversity on the large-scale 10-objective DTLZ4.

For the 5-objective DTLZ5, MALSMEA outperforms
LCSA on DTLZ5 with 500 and 1000 decision variables, but
inferior to GLMO, VaEA, and RVEA. For the 10-objective
DTLZ5, MALSMEA outperforms its counterparts. For
DTLZ6, the overall performance of MALSMEA is optimal
on instances with up to 1000 decision variables.

To further test the performance of MALSMEA, the
nonparametric Friedman test [49] is employed. According to
the average IGD indicator values of the five algorithms on
DTLZ, Table 3 indicates the average ranking of the five
algorithms. -e average ranking of MALSMEA is the

smallest, which indicates that MALSMEA performs the best.
-e average ranking of LCSA is the largest, so its perfor-
mance is the worst.

To verify the efficiency of MALSMEA, Table 4 presents
the running time of MALSMEA and the four other algo-
rithms on the 10-objective DTLZ1 with 1000 decision
variables. -e running times of MALSMEA and GLMO are
quite similar but greater than those of other algorithms.

4.3. Performance Comparison of Algorithms on LSMOP.
LSMOP is proposed to test the performance of the algorithm
in LSMaOPs. Table 5 lists the IGD indicator values obtained
by five algorithms on 5- and 10-objective LSMOP1-LSMOP9
with 500 and 1000 decision variables. MALSMEA produces
26 best results out of 36 test instances. -erefore, compared
with the other four algorithms, MALSMEA has better
performance in solving LSMaOPs.

Specifically, for the LSMOP test suite with 500 decision
variables, MALSMEA outperforms the other algorithms on
the 5- and 10-objective LSMOP2, LSMOP4, LSMOP5,
LSMOP8, and LSMOP9. MALSMEA is inferior to LCSA on
LSMOP3. MALSMEA outperforms the other algorithms on
the 10-objective LSMOP1 and LSMOP7, but LCSA obtains
the smallest IGD indicator value on the 5-objective LSMOP1
and LSMOP7. MALSMEA obtains the smallest IGD indi-
cator value on the 5-objective LSMOP6, while RVEA per-
forms better on the 10-objective LSMOP6.

For the LSMOP test suite with 1000 decision variables,
MALSMEA outperforms the other algorithms on the 5- and
10-objective LSMOP2, LSMOP4, LSMOP5, LSMOP8, and
LSMOP9. MALSMEA is inferior to LCSA on LSMOP3.
LCSA obtains the best performance on the 5-objective
LSMOP1 and LSMOP7, and MALSMEA outperforms the
other algorithms on the 10-objective LSMOP1 and
LSMOP7. -e performance of MALSMEA on the 5-objec-
tive LSMOP6 is better than that of the other algorithms, but
it is slightly inferior to that of LCSA and RVEA on the 10-
objective LSMOP6.

4.4. Comparison of the Optimization Results on the Proposed
Model. Table 6 shows the HV indicator values and objective
values of the four algorithms after optimization on four
datasets. -e results demonstrate that MALSMEA obtains
the maximum HV indicator values, showing that MALS-
MEA has certain advantages in feature selection. As noted in

Input: Datasets with labels, DS; the maximal number of generations, tmax; the population size, N;
Output: -e Pareto subset, PS;

(1) divide DS into training and test datasets;
(2) [W, Y] � Segment(training datasets);
(3) S � Encoding(WS); WS � Feature Select(W);
(4) P(t) � Evaluate SixObjectives(P); P � Initialize(N, S);
(5) P(t) � MALSMEA(P(t));
(6) PS←P(t);

ALGORITHM 1: -e wrapper structure of MALSMEA.

Table 1: -e information of four UCI datasets.

Dataset Classes Features Instance
Heart 2 13 270
Zoo 7 16 101
Iris 3 4 150
Musk1 2 166 476
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Table 2: Performance comparison between MALSMEA and four algorithms with respect to the average IGD values on the DTLZ1-DTLZ6
(gray values represent the best values in each row).

Problem m D MALSMEA GLMO LCSA VaEA RVEA

DTLZ1
5 500 1.1079e+ 3 (4.24e+ 2) 9.9478e+ 3 (1.61e+ 3) 3.9526e+ 3 (2.52e+ 2) 4.5327e+ 3 (2.97e+ 2) 7.8347e+ 3 (1.99e+ 2)

1000 3.6284e+ 3 (1.03e+ 3) 1.8810e+ 4 (2.97e+ 3) 7.7836e+ 3 (4.34e+ 2) 1.3520e+ 4 (5.87e+ 2) 1.8532e+ 4 (3.84e+ 2)

10 500 2.2202e+ 3 (3.47e+ 2) 9.4305e+ 3 (5.82e+ 2) 4.5825e+ 3 (3.67e+ 2) 8.4640e+ 3 (3.85e+ 2) 7.2316e+ 3 (7.61e+ 2)
1000 4.7828e+ 3 (9.45e+ 2) 1.8648e+ 4 (9.68e+ 2) 9.2419e+ 3 (4.31e+ 2) 1.8151e+ 4 (5.38e+ 2) 1.6042e+ 4 (3.96e+ 2)

DTLZ2
5 500 2.8988e+ 1 (1.27e+ 0) 3.0185e+ 1 (4.19e+ 0) 2.9554e+ 1 (2.79e+ 0) 4.0643e+ 0 (2.88e - 1) 2.5720e+ 0 (1.80e− 1)

1000 6.6661e+ 1 (2.14e+ 0) 6.2634e+ 1 (6.02e+ 0) 7.7019e+ 1 (5.98e+ 0) 1.8169e+ 1 (8.34e− 1) 1.4208e+ 1 (6.65e− 1)

10 500 2.1635e+ 1 (3.68e+ 0) 3.7764e+ 1 (4.64e+ 0) 4.2687e+ 1 (1.30e+ 1) 2.4451e+ 1 (1.05e+ 0) 2.6761e+ 1 (7.91e+ 0)
1000 4.4200e+ 1 (7.77e+ 0) 7.7862e+ 1 (7.30e+ 0) 7.9824e+ 1 (2.29e+ 0) 5.8910e+ 1 (1.32e+ 0) 5.0172e+ 1 (1.07e+ 0)

DTLZ3
5 500 4.3020e+ 3 (1.57e+ 3) 2.3235e+ 4 (6.13e+ 3) 1.2346e+ 4 (7.98e+ 0) 1.8602e+ 4 (7.53e+ 2) 3.1291e+ 4 (6.31e+ 2)

1000 1.0670e+ 4 (2.63e+ 3) 4.3783e+ 4 (8.98e+ 3) 2.4844e+ 4 (1.47e+ 1) 6.0220e+ 4 (1.81e+ 3) 7.6232e+ 4 (9.67e+ 3)

10 500 1.3306e+ 4 (1.60e+ 3) 4.1894e+ 4 (2.65e+ 3) 1.4213e+ 4 (1.03e+ 1) 3.8615e+ 4 (7.37e+ 2) 3.9350e+ 4 (7.75e+ 2)
1000 2.5625e+ 4 (4.16e+ 3) 8.4954e+ 4 (6.42e+ 3) 2.7420e+ 4 (9.93e+ 0) 8.5528e+ 4 (1.17e+ 3) 8.8290e+ 4 (1.15e+ 3)

DTLZ4
5 500 2.6523e+ 1 (1.65e+ 0) 3.5059e+ 1 (5.11e+ 0) 2.6238e+ 1 (3.03e+ 0) 5.6372e+ 0 (3.94e - 1) 5.9172e+ 0 (7.12e - 1)

1000 5.8758e+ 1 (3.00e+ 0) 6.6782e+ 1 (1.20e+ 1) 6.9454e+ 1 (3.04e+ 0) 2.2961e+ 1 (9.24e− 1) 2.9794e+ 1 (2.77e+ 0)

10 500 2.3290e+ 1 (1.42e+ 0) 3.3557e+ 1 (9.70e+ 0) 4.0018e+ 1 (1.84e+ 0) 2.4352e+ 1 (8.56e− 1) 2.5171e+ 1 (5.22e− 1)
1000 4.9795e+ 1 (3.90e+ 0) 7.0596e+ 1 (1.42e+ 1) 8.0600e+ 1 (2.05e+ 0) 5.8910e+ 1 (1.22e+ 0) 5.6250e+ 1 (1.07e+ 0)

DTLZ5
5 500 2.8696e+ 1 (1.44e+ 0) 2.4279e+ 1 (7.19e+ 0) 3.5655e+ 1 (1.04e+ 0) 7.8308e+ 0 (6.53e− 1) 2.9302e+ 0 (2.18e− 1)

1000 6.3241e+ 1 (2.51e+ 0) 3.7272e+ 1 (1.12e+ 1) 7.4941e+ 1 (1.88e+ 0) 2.7873e+ 1 (1.40e+ 0) 1.6365e+ 1 (4.94e− 1)

10 500 2.2663e+ 1 (4.07e+ 0) 2.2874e+ 1 (7.97e+ 0) 4.0439e+ 1 (4.57e+ 0) 2.7748e+ 1 (1.08e+ 0) 2.6317e+ 1 (8.24e+ 0)
1000 4.8397e+ 1 (7.02e+ 0) 4.8756e+ 1 (1.63e+ 1) 8.1209e+ 1 (2.71e+ 0) 6.3840e+ 1 (1.28e+ 0) 4.9904e+ 1 (1.13e+ 0)

DTLZ6
5 500 8.8879e+ 0 (1.39e+ 0) 4.2732e+ 2 (2.36e+ 1) 9.4574e+ 0 (8.51e+ 0) 3.8495e+ 2 (4.90e+ 0) 3.6416e+ 2 (2.58e+ 0)

1000 1.9706e+ 1 (3.29e+ 0) 8.9090e+ 2 (2.39e+ 1) 2.9199e+ 1 (1.29e+ 1) 8.1717e+ 2 (6.01e+ 0) 8.0078e+ 2 (3.00e+ 0)

10 500 5.4188e+ 1 (1.00e+ 1) 4.2710e+ 2 (1.53e+ 1) 7.0212e+ 1 (1.23e+ 1) 4.1523e+ 2 (2.44e+ 0) 4.1207e+ 2 (2.66e+ 0)
1000 1.0773e+ 2 (3.16e+ 1) 8.6234e+ 2 (4.55e+ 1) 1.1227e+ 2 (8.94e+ 1) 8.5524e+ 2 (2.99e+ 0) 8.5757e+ 2 (2.39e+ 0)

Table 3: Average rankings of the Friedman test.

Algorithm Ranking
MALSMEA 2.1667
GLMO 3.4583
LCSA 3.6667
VaEA 2.9583
RVEA 2.75

Table 4: Comparison of running time between MALSMEA and the other four algorithms.

Algorithm Time
MALSMEA 2.3113e+ 2
GLMO 2.0182e+ 2
LCSA 4.3017e+ 1
VaEA 1.2587e+ 2
RVEA 6.8803e+ 1

Table 5: Performance comparison between MALSMEA and four algorithms with respect to the average IGD values on the
LSMOP1–LSMOP9 (gray values represent the best values in each row).

Problem m D MALSMEA GLMO LCSA VaEA RVEA

LSMOP1

5
500 1.3173e+ 0

(1.55e− 1)
9.9913 e− 1
(1.05e− 1) 9.3999e− 1 (5.30e− 3) 1.6687e+ 0

(2.66e− 1) 1.2713e+ 0 (1.54e− 1)

1000 1.3109e+ 0
(1.61e− 1)

1.2099e+ 0
(5.21e− 1) 9.3942e− 1 (2.67e− 3) 3.6704e+ 0

(4.00e− 1) 2.6898e+ 0 (2.09e− 1)

10
500 1.2008e+ 0

(1.89e− 1)
5.9934e+ 0
(2.79e+ 0) 1.2010e+ 0 (1.16e− 3) 4.1745e+ 0

(1.28e+ 0) 1.6742e+ 0 (3.51e− 1)

1000 1.1728e+ 0
(1.53e− 1)

7.9449e+ 0
(3.19e+ 0) 1.1938e+ 0 (2.75e− 3) 7.0153e+ 0

(6.50e− 1) 4.0353e+ 0 (9.27e− 1)
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Table 5: Continued.

Problem m D MALSMEA GLMO LCSA VaEA RVEA

LSMOP2

5
500 1.5237e− 1

(1.77e− 3)
1.8423e− 1
(5.16e− 3) 1.9821e - 1 (6.56e− 3) 1.6390e - 1 (1.71e− 3) 1.6594e− 1 (9.99e− 4)

1000 1.3444e− 1
(1.08e− 3)

1.6139e− 1
(4.75e− 3) 1.7402e− 1 (3.87e− 3) 1.4188e− 1

(1.73e− 3) 1.4299e− 1 (8.72e− 4)

10
500 2.8094e− 1

(6.69e− 3)
3.3525e− 1
(7.25e− 3) 3.6322e− 1 (8.55e− 3) 3.1995e− 1

(3.89e− 3) 2.8197e− 1 (3.56e− 3)

1000 2.3979e− 1
(2.71e− 3)

2.8301e− 1
(5.22e− 3) 3.0751e− 1 (7.90e− 3) 2.6900e− 1

(1.85e− 3) 2.3980e− 1 (3.04e− 3)

LSMOP3

5
500 1.1955e+ 1

(3.86e+ 0)
1.3626e+ 0
(6.23e− 1) 9.5883e− 1 (0.00e+ 0) 1.6636e+ 1

(4.85e+ 0) 4.7605e+ 0 (1.27e+ 0)

1000 1.3419e+ 1
(4.38e+ 0)

1.4773e+ 0
(5.34e− 1) 9.5883e− 1 (0.00e+ 0) 1.6875e+ 1

(5.62e+ 0) 8.7885e+ 0 (1.03e+ 0)

10
500 1.2546e+ 1

(1.59e+ 0)
2.1075e+ 2
(3.43e+ 2) 1.8733e+ 0 (1.57e− 3) 1.7999e+ 1

(3.05e+ 0) 2.4510e+ 0 (4.99e− 1)

1000 1.3071e+ 1
(1.29e+ 0)

1.1423e+ 4
(1.26e+ 2) 1.9179e+ 0 (8.35e− 4) 1.9379e+ 1

(2.80e+ 0) 4.3816e+ 1(1.40e+ 0)

LSMOP4

5
500 2.8356e - 1 (8.13e - 3) 3.3698e− 1

(1.31e− 2) 3.2856e− 1 (9.98e− 3) 3.0856–1 (5.78e− 3) 2.8894e− 1 (2.96e− 3)

1000 2.1150e - 1 (5.31e− 3) 2.4674e− 1
(7.40e− 3) 2.5458e− 1 (6.51e− 3) 2.1842e− 1

(3.10e− 3) 2.1661e− 1 (1.51e− 3)

10
500 3.3748e− 1

(5.61e− 3)
3.9190e− 1
(1.04e− 2) 4.3146e− 1 (1.52e− 2) 3.7828e− 1

(3.79e− 3) 3.4044e− 1 (3.98e− 3)

1000 2.7003e− 1
(2.36e− 3) 3.1838e - 1 (8.76e− 3) 3.5483e− 1 (6.41e− 3) 3.0457e− 1

(3.65e− 3) 2.7902e− 1 (3.82e− 3)

LSMOP5

5
500 4.5817e− 1

(5.45e− 3)
3.3566e+ 0
(3.16e+ 0) 4.6074e− 1 (3.81e− 2) 4.5633e+ 0

(3.26e− 1) 1.8603e+ 0 (3.83e− 1)

1000 4.5647e− 1
(2.97e− 2)

8.3782e+ 0
(6.28e+ 0) 4.5874e− 1 (1.99e− 2) 7.4372e+ 0

(7.67e− 1) 3.3211e+ 0 (5.08e− 1)

10
500 6.5504e− 1

(4.37e− 2)
1.6148e+ 1
(8.45e+ 0) 1.1132e+ 0 (8.69e− 2) 8.4930e+ 0

(1.21e+ 0) 3.0758e+ 0 (5.69e− 1)

1000 6.6973e− 1
(6.22e− 2)

1.4246e+ 1
(6.02e+ 0) 1.1087e+ 0 (9.32e− 2) 1.0274e+ 1

(1.04e+ 0) 6.1324e+ 0 (5.95e− 1)

LSMOP6

5
500 1.2094 e+ 0

(1.33e− 1)
5.3807e+ 2
(1.68e+ 3) 1.2106e+ 0 (3.67e− 2) 1.1135e+ 1

(5.75e+ 0) 8.3040e+ 0 (1.66e+ 1)

1000 1.2188e+ 0
(8.52e− 2)

2.5183e+ 3
(4.35e+ 3) 1.2549e+ 0 (5.34e− 2) 1.4415e+ 2

(3.65e+ 1) 5.3053e+ 1 (2.99e+ 1)

10
500 1.4348e+ 0

(1.42e− 1)
6.0471e+ 1
(1.88e+ 2) 1.4179e+ 0 (8.13e− 2) 1.3763e+ 2

(2.90e+ 2) 1.2580e+ 0 (1.09e− 1)

1000 1.4961e+ 0
(1.46e− 1)

7.6272e+ 2
(3.01e+ 3) 1.3573e+ 0(7.95e− 2) 1.5136e+ 0

(8.68e− 3) 1.2743e+ 0 (9.00e− 2)

LSMOP7

5
500 1.3323e+ 0

(6.63e− 2)
2.4841e+ 0
(3.00e− 1) 1.0912e+ 0 (1.46e− 2) 2.9317e+ 0

(1.47e− 1) 1.2645e+ 0 (1.88e− 1)

1000 1.3577e+ 0
(6.26e− 2) 1.7911e+ 0 (1.01e− 1) 1.0321e+ 0 (1.40e− 2) 1.9182e+ 0

(5.40e− 2) 1.1214e+ 0 (8.68e− 2)

10
500 1.3995e+ 0

(7.97e− 2)
3.5137e+ 4
(1.36e+ 4) 1.5578e+ 0 (5.12e− 2) 1.0739e+ 3

(7.45e+ 2) 2.6040e+ 1 (6.95e+ 0)

1000 1.4663e+ 0
(1.11e− 1)

3.7805e+ 4
(1.15e+ 4) 1.5933e+ 0 (5.63e− 2) 2.7102e+ 3

(1.09e+ 3) 1.4501e+ 2 (3.01e+ 1)

LSMOP8

5
500 3.8850e− 1

(2.43e− 2) 1.1661e+ 0 (7.11e− 2) 3.8922e− 1 (1.02e− 2) 1.1767e+ 0
(9.67e− 3) 9.3066e - 1 (1.19e− 1)

1000 3.9206e− 1
(3.27e− 2)

1.0697e+ 0
(9.46e− 2) 3.9962e− 1 (8.72e− 3) 1.1544e+ 0

(1.25e− 3) 8.9791e - 1 (1.45e− 1)

10
500 6.4152e− 1

(4.00e− 2)
1.2619e+ 1
(4.49e+ 0) 9.6995e− 1 (9.27e− 2) 2.8446e+ 0

(5.01e− 1) 1.4025e+ 0 (1.12e− 1)

1000 6.2434e− 1
(3.37e− 2)

1.1402e+ 1
(4.19e+ 0) 1.0886e+ 0 (1.06e− 1) 4.0270e+ 0

(6.02e−1) 2.6957e+ 0 (3.85e− 1)
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Table 6, for the four datasets, the optimization performance
of MALSMEA is better on Iris and Musk1. MALSMEA is
slightly inferior to the other three algorithms in relevance
and redundancy but exhibits better performance in the other
four objectives. In addition, W-QEISS and F-QEISS are
relatively better than the other algorithms in terms of rel-
evance and redundancy, but they are worse in other
objectives.

5. Conclusion

In this paper, a modified vector angle-based large-scale
many-objective evolutionary algorithm called MALSMEA is
proposed. InMALSMEA, the polynomial mutation based on
variable grouping is used to replace the polynomial mutation
to improve the efficiency of solving large-scale optimization
problems. A novel worst-case solution replacement strategy
based on SDE is proposed to replace the worse one of two
individuals with similar search directions to increase di-
versity. In addition, MALSMEA is compared with four
typical algorithms to solve the optimization problemwith up
to 10 objectives and 1000 decision variables. Experimental
results indicate that MALSMEA outperforms the four al-
gorithms on the DTLZ and LSMOP test suites. By studying
the existing feature selection models, taking the number of
selected features, accuracy, relevance, redundancy, interclass
distance, and intraclass distance as the optimization ob-
jectives, a six-objective optimization model is constructed

and solved by using MALSMEA. Compared with the other
three feature selection algorithms, MALSMEA has some
advantages in solving this model.

Future studies will proceed in two directions. -e first
direction is to add a parallel strategy to MALSMEA to
improve efficiency or to further modify its environmental
selection method. Another research direction is to solve
LSMaOPs in other fields using MALSMEA.
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Table 5: Continued.

Problem m D MALSMEA GLMO LCSA VaEA RVEA

LSMOP9

5
500 2.8005e+ 0

(2.91e− 8)
2.9775e+ 0
(9.23e− 2) 2.9985e+ 0 (8.77e− 3) 1.2971e+ 1

(2.27e+ 0) 2.5483e+ 1 (6.20e+ 0)

1000 2.9801e+ 0
(9.11e− 2)

2.9976e+ 0
(9.44e− 2) 3.0005e+ 0 (0.00e+ 0) 3.5883e+ 1

(3.99e+ 0) 5.5544e+ 1 (1.95e+ 1)

10
500 6.4182e+ 0 (1.93–1) 6.5037e+ 0

(7.63e− 1) 6.5321e+ 0 (3.65e− 15) 3.6094e+ 2
(2.89e+ 1) 2.7313e+ 2 (9.11e+ 1)

1000 6.3652e+ 0
(2.05e− 1)

6.3891e+ 0
(1.06e+ 0) 6.5321e+ 0 (3.65e− 15) 5.0223e+ 2

(2.77e+ 1) 3.4370e+ 2 (9.37e+ 1)

Table 6: HV values and optimized results of four algorithms (values in bold represent better results).

Dataset Algorithm HV Feature Accuracy Relevance Redundancy Interclass distance Intraclass distance

Heart

MALSMEA 0.9972 6 0.7979 0.4615 0.1923 0.0802 0.0123
W-MOSS 0.9962 7 0.7667 0.5385 0.2692 0.0769 0.0128
W-QEISS 0.9943 8 0.7604 0.6154 0.3590 0.0764 0.0130
F-QEISS 0.9980 7 0.7811 0.5385 0.0256 0.0798 0.0125

Zoo

MALSMEA 0.9979 5 0.9842 0.3125 0.0833 0.0637 0.0074
W-MOSS 0.9975 7 0.9816 0.4375 0.1750 0.0622 0.0085
W-QEISS 0.9972 7 0.9697 0.5000 0.2333 0.0615 0.0076
F-QEISS 0.9977 6 0.9556 0.3750 0.0167 0.0609 0.0083

Iris

MALSMEA 0.9351 2 0.9387 0.5000 0.1667 0.2574 0.1667
W-MOSS 0.9234 3 0.9071 0.7500 0.5000 0.2566 0.1673
W-QEISS 0.9236 3 0.9049 0.5655 0.1765 0.2571 0.1670
F-QEISS 0.9247 3 0.9187 0.7500 0.1667 0.2569 0.1668

Musk1

MALSMEA 0.9697 11 0.6173 0.0663 0.0045 7.3102e− 5 0.0060
W-MOSS 0.9693 12 0.6130 0.0723 0.0048 7.3023e− 5 0.0060
W-QEISS 0.9603 13 0.5956 0.0783 0.0057 7.3037e− 5 0.0067
F-QEISS 0.9627 13 0.6069 0.0783 0.0057 7.3026e− 5 0.0062
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In recent years, hashing learning has received increasing attention in supervised video retrieval. However, most existing su-
pervised video hashing approaches design hash functions based on pairwise similarity or triple relationships and focus on local
information, which results in low retrieval accuracy. In this work, we propose a novel supervised framework called discriminative
codebook hashing (DCH) for large-scale video retrieval. .e proposed DCH encourages samples within the same category to
converge to the same code word and maximizes the mutual distances among different categories. Specifically, we first propose the
discriminative codebook via a predefined distance among intercode words and Bernoulli distributions to handle each hash bit.
.en, we use the composite Kullback–Leibler (KL) divergence to align the neighborhood structures between the high-dimensional
space and the Hamming space. .e proposed DCH is optimized via the gradient descent algorithm. Experimental results on three
widely used video datasets verify that our proposed DCH performs better than several state-of-the-art methods.

1. Introduction

Under the condition of the increase in smartphones, the
amount of video data has shown an explosive growth trend
[1–3]. For example, TikTok has over 400 million daily active
users who upload approximately 2,000 videos every minute.
YouTube receives a total of 100 hours of videos per minute
[4–6]. Due to the economic storage and efficiency of binary
codes, hash-based methods have been widely applied to
visual retrieval tasks [7–13].

Previous hash-related work [14] mainly focused on
image hashing and can be divided into data-independent
and data-dependent methods. Data-independent ap-
proaches learn binary codes without data information but
through random space projection. .e most representative
algorithm is local sensitive hashing (LSH) [15], which
generates huge redundant information using random
mapping and obtains satisfactory performance with long
hash codes. Data-dependent hash methods [16–18], which
can also be divided into unsupervised hashing and super-
vised hashing, are proposed to generate more efficient hash

codes by maintaining the neighborhood structure between
data. For example, Gong et al. [19] proposed iterative
quantization hashing (ITQ), which minimizes quantization
error by rotating principal component analysis (PCA)
projection data. Spectral hashing (SH) [20] assumes that
data obey a uniform distribution and divides the data
according to the main direction of the data stream. Density
sensitive hashing (DSH) [21] extends LSH by studying
structural information. Zhang et al. [22] developed a con-
vergence-preserving parametric learning algorithm, called
latent factor hashing (LFH), to learn similarity-preserving
binary codes based on latent factor models. Liu et al. [23]
proposed kernel supervised hashing (KSH) by applying
kernel-based formulas to accommodate linearly inseparable
data and designed a greedy algorithm to solve the hash
function optimization problem.

In recent years, hashing methods proposed for video
retrieval have also received extensive attention [24–31] and
are composed of two categories: machine learning methods
and deep hashing. Machine learning methods, resembling
image hashing approaches, learn binary codes of video
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keyframes based on the low-level manual features and then
calculate video hashing codes via averaging. Wu et al. [4]
employed video hashing via using color histograms to obtain
global features. .is is the first application of hash learning
in the video field. Multiple-feature hashing (MFH) [32]
adopts the weight-based method to combine different fea-
tures. Ye et al. [33] used video structural information in the
supervised learning paradigm to obtain the optimal binary
codes. Stochastic multiview hashing (SMVH) [34] attempts
to separately calculate the probability similarity matrices of
video frames in the feature space and the Hamming space,
and then, the difference between the above two probability
matrices is minimized using the KL divergence. Nie et al.
[35] defined joint multiview hashing (JMVH) by maxi-
mizing the interclass distance and minimizing the innerclass
distance to preserve the global structure and local structure
with multiple features. Boosting temporal video hashing
(BTVH) [36] studies the multitable learning problem to
boost the performance and captures the inherent similarity
of video from both visual and temporal perspectives. In
addition, some researchers in recent years have used deep
networks to obtain the temporal and spatial information
between keyframes. For instance, central similarity quan-
tization (CSQ) [37] learns the temporal information by using
3D convolutional neural networks and proposes a view point
called hash center to enhance the central similarity.

However, most existing video hashing approaches may
lead to the following problems. (1) Low discriminability
among different categories: functions based on pairwise
similarity or triple relationships only consider local infor-
mation, which results in good maintenance of the infor-
mation of similar samples but shows poor performance in
distinguishing samples from different categories. (2) Poor
performance in real-world scenarios: in real application
scenarios, similar data often accounts for only a small
proportion, and most samples are not similar, which leads to
low efficiency when the data are imbalanced [37]. (3) Greater
time costs on deep learning: deep learning frameworks are
time-consuming when training models and have no sig-
nificant performance based on the spatiotemporal infor-
mation extracted by the network. Hence, these video hashing
functions cannot learn discriminative hash codes to enhance
the performance.

To solve the above problems, in this work, we propose a
novel framework for supervised video retrieval, called dis-
criminative codebook hashing, which considers the global
structure to construct the hash function. DCH encourages
samples within the same category to converge to the
identical codeword and maximizes the mutual distances
between different categories. Specifically, the discriminative
codebook is first generated based on two characters: the
predefined distance between intercode words and Bernoulli
distributions for ensuring that each hash bit stores more
information..en, to keep the similarity matrix between the
feature space and the Hamming space, the composite KL
divergence is proposed to solve this problem. Finally, the
gradient descent algorithm is utilized to optimize the al-
gorithm. In this way, we can obtain discriminative binary
codes for video retrieval. Figure 1 shows the framework of

DCH, and the method we proposed has the following
innovations:

(i) We proposed the discriminative codebook based on
the predefined distance between intercode words
and Bernoulli distributions for ensuring each hash
bit to store more information

(ii) .e DCHmethod, which canmaximize the distance
of the intercode words generated by the predefined
codebook to learn discriminative binary codes for
supervised video retrieval, is proposed

(iii) We verify our proposed method by experimenting
on three widely used datasets, which shows that
DCH has a significant improvement in contrast
with several state-of-the-art methods

.e other sections are organized as follows. Section 2
introduces some preliminary works. Section 3 introduces the
proposed discriminative codebook hashing in detail. .e
experimental work is presented in Section 4, and the con-
clusion of DCH is shown in Section 5.

2. Preliminary Work

In this section, we briefly introduce the preliminary work,
namely, stochastic multiview hashing [34]. It is a supervised
video retrieval method that aims to preserve the similarity
structure from the original space to the Hamming space.

Let V � vi 
nv

i�1 be the video set, where vi indicates the ith
video of V and nv is the number of videos. H � hi 

nv

i�1 is hash
code of the video set, where hi ∈ 0, 1{ } is l-bit length binary
codes transformed by vi. .e video features are extracted
based on the set of keyframe features X � xi 

n
i�1, where

xi ∈ R1×d, n is the number of keyframes, and d is the di-
mension of each keyframe. Z � zi 

n

i�1 represents the cor-
responding binary codes of the keyframes, where zi ∈ R1×l.
.e conversion relationships between the above variables are
formulated as

Z � XW + b, (1)

Z � sigmoid(Z), (2)

hi � T
1

Indi





j∈Indi

zj·
⎛⎝ ⎞⎠, (3)

where Z ∈ Rn×l is the temporal result of linear projection,
b ∈ Rl is a bias parameter, W ∈ Rd×l is the projectionmatrix,
Indi is the set of frames, and |Indi| is the sum of samples in
the set. .e high-dimensional keyframe feature matrix X is
first projected into the lower matrix Z. .en, the sigmoid
function is used to map the variable between 0 and 1. Finally,
a thresholding function is used to change the data into a
binary code with T(y) � 0 if y< 0.5 and T(y) � 1,
otherwise.

SMVH keeps the similarity matrix between the feature
space and the Hamming space using a composite KL di-
vergence measure. In particular, it separately calculated the
similarity probability matrix P in the original space and the
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pairwise similarity matrix Q among samples in the Ham-
ming space..en, the KL divergence is used to examine how
well the above two probability matrices P and Q match.
.erefore, the objective function of SMVH is defined as
follows:

min
W,b

SKL(W, b) +
μ
2
‖W‖

2
F, (4)

where μ> 0 controls the weight of the regular term to
prevent overfitting and SKL(W, b) is the composite KL di-
vergence. .e latter can be represented as

SKL(W, b) � λKL(P ‖ Q) +(1 − λ)KL(Q ‖ P), (5)

where 0 ≤ λ ≤ 1 controls the influence of the composite KL
divergence, P � pi 

n

i�1 ∈ R
n×n is the similarity structure

based on X, and Q � qi 
n

i�1 ∈ R
n×n is another probability

matrix preserving the similarity information of Z in the
Hamming space. In addition, the KL divergence is defined as
follows:

KL(P ‖ Q) � 
n

i�1


j≠ i

pj|ilog
pj|i

qj|i

, (6)

where pj|i is a conditional probability that reflects the
similarity between xi and xj, and another conditional
probability qj|i represents the probability of returning zj

given the query zi.

3. Discriminative Codebook Hashing

In this section, we present the proposed DCH in detail
through four parts, including the proposed discriminative
codebook, the objective function, algorithmic optimization,
and complexity analysis.

3.1. Discriminative Codebook. Motivated by CSQ [37], we
propose a novel and discriminative codebook C � ci 

m

i�1 for
supervised video retrieval, where ci ∈ 0, 1{ }1×l is the code
word of the ith category. .e proposed codebook is defined
according to two characters. .e first is that the value in the
same bit of different code words obeys a Bernoulli distri-
bution. Specifically, the proportions of 0 and 1 of the same
bit in different categories are both 50%, that is, c·i has a 50%
probability of being 0 or 1, which will maximize the entropy
and store more information in each bit. .e other is that the
mutual distances among intercode words are defined as
follows:

DH ci, cj ≥
l

2
− f, (7)

where DH is the Hamming distance between code words ci

and cj, l is the length of binary codes, and f represents the
fault tolerance. .e mutual distance between intercode
words will be the largest constrained by equation (7).

Overall, the proposed codebook encourages samples
within the same category to converge to the same codeword
and maximizes the mutual distance between different cat-
egories. .erefore, the proposed codebook can preserve
global structures and help generate discriminative binary
codes for video retrieval. .e scheme of the proposed dis-
criminative codebook is presented in Algorithm 1.

3.2. Objective Function. According to the proposed dis-
criminative codebook C, we expand each row of the
codebook matrix C into R � ri 

n

i�1 according to the number
of samples, where ri ∈ R1×l. .e detailed generation process
of R is shown in Algorithm 2. We minimize the error be-
tween the binary codes and the predefined codebook as

DCH 
Function

Hash Codes
0 1 1 … 1 0 1 1
1 1 0 … 1 0 0 1

…
0 1 0 … 0 0 1 0 

Codebook
0 1 0 …1 0 1 1
1 0 0 …1 1 0 1

…
0 0 0 …1 1 1 0

Feature
1 2 3 … d
1 2 3 … d

…
1 2 3 … d

Training Set

Hash Code
Generation

Feature
Extraction

Keyframe
Extraction

Keyframe Set

Feature
1 2 3 … d
1 2 3 … d

…
1 2 3 … d

Query Hash 
Codes

1 1 0 … 1 0 11

Video Retrieval 
Results

Keyframe
Extraction

Feature
Extraction

Hash Code
Generation Retrieval

Query Video
Keyframe Set

Offline Learning

Online Retrieval

Figure 1: .e framework of DCH. We divide the entire experiment into two steps, namely, offline learning and online retrieval. In the
offline phase, we join keyframe features and predefined codebook to learn hash functions. In the online phrase, we map the query video into
a set of binary codes through hash functions. Next, we use the exclusive or (XOR) operation to obtain the Hamming distance between the
query video and samples in the database. Finally, we take videos with the shortest Hamming distance as the video retrieval results.
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min
W,b

‖Z − R‖
2
F. (8)

Specifically, for each zi ∈ Z, we take ri as the codebook of
zi ∈ Z to make samples in the same category share the same
codebook and samples in different categories have dis-
criminative binary codes.

To keep the similarity matrix between the feature space
and the Hamming space, we join the composite KL diver-
gence and our proposed codebook to construct the overall
objective function of DCH as follows:

min
W,b

SKL(W, b) +
c

2
‖Z − R‖

2
F +

μ
2
‖W‖

2
F, (9)

where c controls the weight of the error loss between the
codebook and the learned hash codes, and the second term
of equation (9) aligns values between binary codes and their
corresponding code word.

In this way, our proposed DCH can solve the problem
that other algorithms only consider the pairwise relation-
ships and ensure that samples in the same category share the

same code word. Furthermore, DCH maximizes the mutual
distances between different categories and then obtains
discriminative binary codes.

3.3. Algorithmic Optimization. .e optimization problem
has two main variables: W and b. Our solution is to use the
gradient descent algorithm to find good solutions. To fa-
cilitate the writing, we split the objective function equation
(9) into three parts:

Φ1(W, b) � SKL(W, b),

Φ2(W, b) �
c

2
‖Z − R‖

2
F,

Φ3(W) �
μ
2
‖W‖

2
F.

(10)

.e detailed optimization procedure is presented as
follows.

W-Step: the corresponding problem is to minimize the
following loss function:

Input: the number of categories m; the number of samples per category ni; code length l; maximum number of iterations Tc; fault
tolerance rate f.
Output: codebook C ∈ Rm×l

(1) for iteration tc � 1 : Tc

(2) for category i � 1 : m

(3) c·i[random half coordinate] � 1
(4) c·i[the rest coordinate] � 0
(5) end
(6) if any two rows of C satisfy equation (7)
(7) break
(8) end
(9) end

ALGORITHM 1: Discriminative codebook.

Input: training data X ∈ Rn×d; codebook C ∈ Rm×l; maximum number of iterations T; code length l; parameters λ, μ, c; learning rate α;
Output: hash codes H ∈ 0, 1{ }nv×l.
(1) Initialization: initialize the projection matrix W and bias matrix b as a random matrix and vector.
(2) Generating R according to the number of samples:
(3) for category i � 1 :m
(4) R � [R; repmat(C(i, : ), ni, 1)]

(5) end
(6) Gradient descent:
(7) for iteration i � 1 :T
(8) W-Step: W(i+1) � W(i) + αdW

(9) b-Step: b(i+1) � b(i) + αdb

(10) end
(11) Video binary code computation: video hash codes are obtained by equations (1)–(3).

ALGORITHM 2: Discriminative codebook hashing.
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min
W

SKL(W, b) +
c

2
‖Z − R‖

2
F +

μ
2
‖W‖

2
F. (11)

To compute the optimal W, the relevant deviation
formula can be expressed as

dW �
zΦ1(W, b)

zW
+

zΦ2(W, b)

zW
+

zΦ3(W)

zW
. (12)

.e derivative of zΦ1(W, b) w.r.t. W can be computed as
follows:

zΦ1(W, b)

zW
�

zΦ1(W, b)

zzik

zzik

zwkj

 
d×l

, (13)

where zΦ1(W, b)/zzik and zzik/zwkj are represented as

zΦ1(W, b)

zzik

� 2 λ pi|t − qi|t + pt|i − qt|i  +(1 − λ)∗ qt|i 
g≠i

qg|ilog
qg|i

pg|i

+ qi|t 
g≠t

qg|tlog
qg|t

pg|t

− log
qt|i

pt|i

− log
qi|t

pi|t

⎛⎝ ⎞⎠ zik − ztk( ,

zzik

zwkj

� zik 1 − zik( xji.

(14)

Following the norm derivation law, zΦ2(W, b)/zW can
be optimized as follows:

zΦ2(W, b)

zW
�

zΦ2(W, b)

zZ

zZ

zW
� X

T
((Z − R)⊙ (Z⊙ (1 − Z))),

(15)

where ⊙ indicates that the elements in the same position of
two matrices are multiplied.

For zΦ3(W)/zW, we have the derivative that

zΦ3(W)

zW
� μW. (16)

b-Step: the subproblem of b is given by

min
b

SKL(W, b) +
c

2
‖Z − R‖

2
F. (17)

.e deviation w.r.t. b can be expressed as

db �
zΦ1(W, b)

zb
+

zΦ2(W, b)

zb
. (18)

.e derivative of zΦ1(W, b)/zb is described as follows:

zΦ1(W, b)

zb
�

zΦ1(W, b)

zzik

zzik

zbk

 
1×l

, (19)

where

zzik

zbk

� zik 1 − zik( . (20)

.e second term of equation (18) is described as follows:

zΦ2(W, b)

zb
�

zΦ2(W, b)

zZ

zZ

zb
� (Z − R)⊙ (Z⊙ (1 − Z)).

(21)

Algorithm 2 describes the overall algorithm optimiza-
tion process of the proposed DCH.

3.4. Complexity Analysis. .e time complexity of the entire
training process of SMVH [34] is approximately
O(Tn3 + n2), and the proposed DCH algorithm adds two
parts time-consuming on this basis. .e first part is the
learning process of C, and the time complexity isO(Tcl)..e
second part is that the time complexity of optimizing
equations (15) and (21) together is O(dnl) in each iteration.
.erefore, the overall time complexity of DCH is
O(n2 + Tcl + T(n3 + dnl)). In this work, time complexities
O(Tcl) and O(dnl) can be ignored due to Tc, l, d≪ n so that
our complexity is nearly O(Tn3 + n2). Additionally, the
calculation of the hash codes is a linear projection with a
time complexity of approximately O(1), and the online
search can be performed by XOR operations. Although the
algorithm proposed in this paper adds a constraint on
SMVH, the maximum number of iterations T directly affects
the time complexity of the algorithm. It can be proven in
subsequent experiments that DCH can converge in fewer
iterations. .us, the time complexity of DCH is in a rea-
sonable range.

4. Experiments

In this section, we first introduce the datasets used in this
paper, and then, the baselines and some experimental details
will be introduced. Finally, we present the experimental
results.

4.1. Datasets. CC_WEB_VIDEO [4] is the most useful
dataset in near-duplicate video retrieval (NDVR) research,
which contains data from YouTube, Google, and Yahoo.
.ere are 12,877 videos that are divided into 24 sets, and
keyframes are extracted by a uniform sampling method to
represent the video. Since some videos do not have label
information, we take 3,482 videos with labels as the ex-
perimental dataset. In each category, we select 70% of the
video data as the training set and the remainder as the testing
set. We extract 10 keyframes for each video uniformly and
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extract 4096-dimensional features to represent keyframes by
using the pretrained VGG-19 network.

HMDB51 [38] contains 6,766 human action videos
selected from movies and some other public sources such as
YouTube. .e dataset is divided into 51 categories, and each
of them includes approximately 100 clips. In each category,
we randomly select 45 video samples. Of these, 25 videos are
added to the training set and the rest are select to the testing
set. We uniformly extract 10 keyframes for each video, and
the VGG-19 pretraining network is used to extract the 4096-
dimensional deep features.

UCF101 [39] contains 13,320 videos which has been
divided into 101 human behavior categories, such as
sports, instruments, character interactions, and others
used for action recognition. We randomly select 70 videos
in each category to join the training set, and 30 videos to
join the testing set. For each video, 10 keyframes are
uniformly selected to represent the video. We use VGG-19
to extract the 4096-dimensional features for each
keyframe.

4.2. Experimental Setting

4.2.1. Baselines. Several state-of-the-art hash functions,
including ITQ [19], SH [20], DSH [21], LFH [22], KSH [23],
JMVH [35], and SMVH [34], are used for comparison.
Among these methods, ITQ, SH, and DSH are unsuper-
vised hashing methods, while LFH, KSH, JMVH, and
SMVH are supervised hashing methods. For the com-
parative test, we use the source codes published to conduct
the experiment. JMVH and SMVH can also be used for
multiview video retrieval, but in this paper, we only test
these methods as a single view method. It is worth noting
that all the experimental results are obtained in MATLAB
R2016a on the same computer with an Intel Core i7-6700
CPU @ 3.40 GHz, 72 GB RAM and the 64 bit Windows 10
operating system.

4.2.2. Evaluation Metrics. We use four popular evaluation
metrics to comprehensively evaluate experimental results.
.e mean average precision (mAP) is widely used in the
retrieval field. .e higher the mAP score is, the better the
retrieval performance of the method is. .e precision@K
curve represents the precision accuracy versus the first K

retrieved samples, where precision represents the pro-
portion of the number of retrieved correct videos to the
total number of retrieved videos. .e recall@K curve
represents the average recall rate versus the first K retrieved
samples, where recall represents the proportion of the
correct video volume retrieved in all near-duplicate video
samples. .e precision-recall (PR) curve is an index used to
evaluate reliability and is widely used in the fields of
medicine and machine learning.

4.2.3. Parameter Selection. We have three model param-
eters, including λ, μ, and c, and the number of iterations
T. According to SMVH [34], we set λ � 0.9 and μ � 0.01.

As shown in Figure 2(a), when c is in the range of 0.05 to
1, the results are stable across three different datasets.
.erefore, we empirically choose c � 1 in our proposed
model. .e maximum number of iterations T determines
the training time cost and the performance, so it is worth
discussing. Figure 2(b) shows the effect of the
maximum iterations T in the range of 100 to 1400 on
mAP performance. For HMDB51, it can be seen that the
best mAP is generated with T � 800 before decreasing.
However, in the other two datasets, T � 800 is not an
optimal experimental result. .erefore, after compre-
hensive consideration, T � 1000 is set as the final pa-
rameter setting.

4.3. Results and Discussion. Table 1 shows the mAP results
for different lengths of hash codes on the three datasets, and
the results of other evaluation metrics are shown in
Figures 3–5. We will give the detailed analysis of all results of
the three datasets in the following parts.

According to Table 1, for the CC_WEB_VIDEO
dataset, the mAPs are very high because the dataset is
movie clips, and videos of the same category are near-
duplicate videos. As shown in Table 1, the performance of
the proposed DCH is at least 1.85% better than that of the
other methods from 32 to 64 bits. When the code length is
96 bits, the mAP of DCH is slightly lower than that of LFH.
As shown in Figure 3, the experimental results of our
method in precision@K and recall@K are equal to or
slightly higher than those of most other methods. Besides,
as the code length increases, the performance of our
proposed DCH gradually surpasses that of other methods.
Figures 3(i)–3(l) show that the area surrounded by DCH is
gradually increasing.

Table 1 shows that our proposed DCH performs better
than other hash methods in most cases in the HMDB51
dataset. Although the mAP performance of the JMVH
method surpasses 2.39% over that of DCH with 32 bits, the
mAPs of our proposed DCH are better than those of the
other comparison methods in the subsequent experi-
ments. Figure 4 shows that when the length of hash codes
is larger than 32 bits, regardless of whether precision@K
curve, recall@K curve, or PR curve is used, DCH has
excellent performance compared with other methods in
all metrics for the precision@K curve, recall@K curve, and
PR curve.

For the UCF101 dataset, DCH obtained the optimal
experimental results in the range of [32, 48, 64] bits. It is
worth noting that the size of the UCF101 dataset is rel-
atively large, and SMVH cannot obtain discriminative
video hash when the hash code length is very small.
.erefore, SMVH has no experimental results available
for l � 32 and l � 48. As shown in Figure 5, the perfor-
mance of DCH is much higher than those of some of the
methods except JMVH. We can see that the recall rate of
DCH for positive samples is slightly lower than that of
JMVH based on Figures 5(e)–5(h). Figures 5(i)–5(k)
show that the performance of DCH for 32 to 48 bits is
better than those of all other methods for the PR curve.
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Figure 2: Parameter analysis on the CC_WEB_VIDEO, HMDB51, and UCF101 datasets. (a) mAP vs. c (weight parameter c) and (b) mAP
vs. T (iteration parameter T).

Table 1: .e mAP of different hash code lengths on three datasets, where the best experimental results are given in bold.

Method
CC_WEB_VIDEO HMDB51 UCF101

32 bits 48 bits 64 bits 96 bits 32 bits 48 bits 64 bits 96 bits 32 bits 48 bits 64 bits 96 bits
ITQ [19] 0.6877 0.7725 0.8099 0.7700 0.0697 0.0749 0.0793 0.0885 0.1383 0.1620 0.1801 0.2119
SH [20] 0.6729 0.7026 0.6994 0.6708 0.0662 0.0657 0.0642 0.0653 0.1033 0.1138 0.1244 0.1395
DSH [21] 0.6510 0.7060 0.6929 0.8158 0.0505 0.0628 0.0671 0.0750 0.0720 0.0667 0.0815 0.1082
LFH [22] 0.8327 0.8088 0.9854 0.9912 0.0141 0.0208 0.0148 0.0225 0.0032 0.0038 0.0078 0.0113
KSH [23] 0.9368 0.9030 0.9477 0.8761 0.2470 0.2811 0.3054 0.3144 0.3222 0.3598 0.3972 0.4075
JMVH [35] 0.7842 0.5576 0.4335 0.3745 0.2807 0.3015 0.2418 0.1295 0.3941 0.5166 0.6007 0.6875
SMVH [34] 0.9346 0.9411 0.9543 0.7490 0.1212 0.1399 0.1374 0.0319 — — 0.0094 0.0304
DCH 0.9531 0.9763 0.9886 0.9858 0.2568 0.3819 0.3600 0.4150 0.5310 0.6137 0.6609 0.6458

0 100 200 300 400 500 600 700 800 900 1000
The number of retrieved samples

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ec

isi
on

 @
 3

2 
bi

ts

CC_WEB_VIDEO

ITQ
SH
DSH
LFH

KSH
JMVH

DCH
SMVH

(a)

0 100 200 300 400 500 600 700 800 900 1000
The number of retrieved samples

CC_WEB_VIDEO

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ec

isi
on

 @
 4

8 
bi

ts

ITQ
SH
DSH
LFH

KSH
JMVH

DCH
SMVH

(b)

0 100 200 300 400 500 600 700 800 900 1000
The number of retrieved samples

CC_WEB_VIDEO

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ec

isi
on

 @
 6

4 
bi

ts

ITQ
SH
DSH
LFH

KSH
JMVH

DCH
SMVH

(c)

0 100 200 300 400 500 600 700 800 900 1000
The number of retrieved samples

CC_WEB_VIDEO

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ec

isi
on

 @
 9

6 
bi

ts

ITQ
SH
DSH
LFH

KSH
JMVH

DCH
SMVH

(d)

Figure 3: Continued.
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Figure 3: Precision@K (a–d), recall@K (e–h), and PR (i–l) curves on the CC_WEB_VIDEO dataset.
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Figure 4: Continued.
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Figure 5: Precision@K (a–d), recall@K (e–h), and PR (i–l) curves on the UCF101 dataset.
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Figure 4: Precision@K (a–d), recall@K (e–h), and PR (i)–(l) curves on the HMDB51 dataset.
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5. Conclusion

In this paper, we propose a novel supervised video hashing
framework, termed discriminative codebook hashing,
which can generate discriminative binary codes for video
retrieval. .e proposed DCH encourages samples within
the same category to converge to the same code word and
maximizes the mutual distances between different cate-
gories. Specifically, we generate a discriminative codebook
to distinguish between samples of different categories more
accurately. Extensive experimental results prove that the
performance of DCH is significantly improved compared
to several state-of-the-art methods. In future work, we will
use a smaller matrix storing the similarity information
between samples to avoid consuming considerable training
time and space when the amount of data is large. .is will
improve the performance of the model while reducing the
time complexity.

Data Availability

CC_WEB_VIDEO dataset can be downloaded from http://
vireo.cs.cityu.edu.hk/webvideo/, the HMDB51 dataset can be
downloaded from https://serre-lab.clps.brown.edu/resource/
hmdb-a-large-human-motion-database/#dataset, and the
UCF101 dataset can be downloaded from https://www.crcv.
ucf.edu/data/UCF101.php.
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Naru3 (NR) is a traditional Mongolian medicine with high clinical efficacy and low incidence of side effects. Metabolomics is an
approach that can facilitate the development of traditional drugs. However, metabolomic data have a high throughput, sparse,
high-dimensional, and small sample nature, and their classification is challenging. Although deep learning methods have a wide
range of applications, deep learning-based metabolomic studies have not been widely performed. We aimed to develop an
improved stacked autoencoder (SAE) for metabolomic data classification. We established an NR-treated rheumatoid arthritis
(RA) mouse model and classified the obtained metabolomic data using the Hessian-free SAE (HF-SAE) algorithm. During
training, the unlabeled data were used for pretraining, and the labeled data were used for fine-tuning based on the HF algorithm
for gradient descent optimization. +e hybrid algorithm successfully classified the data. +e results were compared with those of
the support vector machine (SVM), k-nearest neighbor (KNN), and gradient descent SAE (GD-SAE) algorithms. A five-fold cross-
validation was used to complete the classification experiment. In each fine-tuning process, the mean square error (MSE) and
misclassification rates of the training and test data were recorded. We successfully established an NR animal model and an
improved SAE for metabolomic data classification.

1. Introduction

Rheumatoid arthritis (RA) is a common systemic autoim-
mune disease characterized by symmetric polyarthritis and
joint destruction [1]. It is traditionally treated with meth-
otrexate combined with the botanical preparation of Trip-
terygium wilfordii. Good results are achieved with this
treatment, which improves symptoms and delays disease
progression. However, due to severe side effects, treatment
compliance is poor. Naru3 (NR) is a traditional Mongolian
medicine with a pure botanical preparation. Feng and Xiao
[2] and Zhi [3] showed that the therapeutic effect of NR was
similar to that of traditional RA treatment methods, and that
it was a safe and effective drug of high medicinal value.
However, the traditional Mongolian medicine (TMM) re-
search methods are simplistic, and the technologies used are
outdated. +erefore, it is necessary to combine these

methods with modern technologies and approaches to
further promote the application of TMM in disease diag-
nosis and treatment.

In recent years, machine learning and its subfield deep
learning have been successfully applied in various fields,
such as image processing, speech recognition, and natural
language processing. Furthermore, they have attracted
widespread attention in the fields of medicine, chemistry,
and biology, exerting a great impact on people’s life.

With the development of high-throughput experimental
technologies, high-dimensional, noisy, and redundant bio-
logical or medical data can be obtained. However, owing to
the cost of the experiments, the sample data are scarce,
rendering the standard method of multiple regression in-
efficient. Assuming that p is the dimensionality and n is the
amount of data, then p>> n. If we use limited data to build a
distribution model with p parameters, it can easily lead to
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overfitting in machine learning models.+is is a well-known
problem in the field of statistics, known as the “curse of
dimension” [4]. In the abovementioned research fields, there
have been many successful applications of machine learning
methods in solving the p>> n problem. Ueki and Tamiya
have developed a new genetic prediction method using
single nucleotide polymorphism (SNP) data in genome-wide
association studies (GWASs), which has good predictive
ability but is computationally expensive [5]. Ching et al.
developed a new artificial neural network (ANN) frame-
work, called Cox-nnet, to predict patient prognosis from
high-throughput transcriptomic data, achieving the same or
better predictive accuracy compared with that of other
methods, including Cox-proportional hazards regression,
random survival forests, and CoxBoost, while revealing
richer biological information [6]. Xu et al. proposed a feature
selection method for one-bit compressed sensing for the
classification of high-throughput protein data based onmass
spectrometry (MS), which has been employed on MS data to
select important features with low dimensions, showing
better classification performance for real MS data than
traditional methods [7]. Yu et al. developed a support vector
machine (SVM) algorithm that identifies optimal sorting
gates based on machine learning using positive and negative
control populations, taking advantage of more than two
dimensions to enhance the ability to distinguish between
populations [8]. Furthermore, Xie et al. proposed a Rank-
Comp algorithm, which was mainly developed to identify
individual-level differentially expressed genes (DEGs) that
can be applied to identify population-level DEGs for one-
phenotype data [9]. Fouaz and Hacene proposed a genetic
algorithm to improve similarity searching pertaining to li-
gand-based virtual screening, which can identify the most
important and relevant characteristics of chemical com-
pounds [10].

In recent years, metabolomic data processing has
attracted increasing attention [11]. Metabolomics mainly
studies how an organism’s metabolites respond to changes in
internal and external environmental conditions [12]. In
metabolomics, a machine learning method is used to process
data, screen biomarkers, and study the changes in metabolic
pathways and the molecular mechanisms of diseases [13].
+e analysis of metabolomic data is accompanied by mul-
tiple difficulties and challenges due to its high throughput,
sparse, and high-dimensional nature and the p>> n problem
[14, 15]. At present, although traditional machine learning
methods such as principal component analysis (PCA) [16],
random forest (RF) [17], and SVM [18] have been suc-
cessfully applied in the field of metabolomics, it is still
necessary to find better methods to process metabolomic
data. Deep learning methods have been successfully applied
in many fields but less in metabolomics [19]. A stacked
autoencoder (SAE) is a typical deep learning model with
good feature selection and nonlinear expression. An im-
proved SAE algorithm needs to be developed to solve the
problem of metabolomic data classification.

Although deep learning is a machine learning subfield
with a wide range of applications, a limited number of deep
learning-based metabolomic studies have been so far

performed. Asakura et al. proposed an ensemble deep neural
network (EDNN) algorithm, which they applied to
metabolomic data of various fish species, that is helpful for
regression analyses and concerns pertaining to classification
in metabolomic studies. +e dimensions of their experi-
mental data were 106 and were derived from nuclear
magnetic resonance (NMR) measurements [19]. Date and
Kikuchi proposed an improved DNN-mean decrease ac-
curacy (MDA) method that can be used for supervised
classification and regression modeling and the determina-
tion of important variables for the evaluation of biological
and environmental samples [20]. Alakwaa et al. proposed
that metabolomics holds promise as a new technology for
the diagnosis of highly heterogeneous diseases. However, it
remains unknown whether DNN, a class of increasingly
popular machine learning methods, is suitable for classifying
metabolomic data. [21]. Bardley and Robert proposed that
metabolomic data are complex because of their high di-
mensionality and high degree of multicollinearity between
variables [22]. Risum and Bro successfully implemented a
deep learning algorithm to perform automated spectral
deconvolution [23]. +us, it is reasonable to speculate that
we are now within reach of a single deep learning algorithm
for accurately classifying raw spectra directly from the in-
strument [24]. However, the limiting factor for success is to
obtain sufficiently large datasets, which are required to train
such computationally “greedy” algorithms [25].

Metabolomic data have a high throughput, sparse, high-
dimensional, and small sample nature. Deep learning has
good predictability, which shows that it can better distin-
guish different types of metabolomics data. If a good clas-
sification can be obtained, it will help us to further complete
the selection of biomarkers based on deep learning. In this
study, we aimed to introduce an improved framework,
named Hessian-free [26] stacked autoencoder (HF-SAE),
combining the Hessian-free algorithm and SAE model with
Softmax regression for the classification of metabolomic data
of NR-treated RA.We used this hybrid algorithm to perform
the classification of metabolomic data of NR-treated RA and
compared the results with those obtained using the SVM, k-
nearest neighbor (KNN), and gradient descent SAE (GD-
SAE) algorithms. A five-fold cross-validation was used to
complete the classification experiment. In each fine-tuning
process, the mean square error (MSE) and misclassification
rates of the training data and test data were recorded. +e
hybrid algorithm successfully classified the data. A five-fold
cross-validation was used to complete the classification
experiment. In each fine-tuning process, the MSE and
misclassification rates of the training and test data were
recorded. We successfully established an NR animal model
and an improved SAE for metabolomic data classification.

2. Methods

2.1.MetabolomicStackedAutoencoder. +e autoencoder was
composed of an input layer, a hidden layer, and an output
layer. +e encoder encoded the input data, which were
composed of an input layer and a hidden layer. +e decoder
completed the reconstruction of the input data, which
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consisted of a hidden layer and an output layer. Its purpose
was to make the output as close as possible to the input. +e
training steps of the autoencoder were as follows.

2.1.1. Calculation of the Activation Value of Each Layer.
+e sample data were the input of the encoder, and the
activation value of the hidden layer neurons was calculated
by forward conduction. +e activation value of the hidden
layer neurons was the input of the decoder, and its output
(reconstruction value) was calculated in the same manner. If
f (z) is used to represent the activation function, al

i � f(zl
i) is

the activation value of the i-th neuron in layer l. zl+1
j

represents the weighted sum of all inputs of the j-th neuron
in the l+ 1 layer, and its formula is as follows:

z
l+1
j � 

n

i�1
w

l
ijx + b

l+1
j , (1)

where n is the number of neurons in the l layer, x is the input.
wl

ij is the weight between the j-th neuron of the l+ 1 layer
and the i-th neuron of the l layer, and bl+1

j is the bias of the
jth neuron in the l+ 1 layer.

2.1.2. Updating Weights and Biases. +e back-propagation
(BP) was used to calculate the residual between each layer of
neurons and the output layer, and BP was based on gradient
descent to reduce the training error of the network. +e cost
function was used to calculate the least mean square error
between the expected output and the actual output. J (w, b) is
the cost function, and the formula is as follows:

J(w, b) �
1
m
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 , (2)

wherem is the number of samples, x is the input, aw,b(x)k is
the actual output, and y is the expected output.+e error was
used to adjust the weight and bias of the network based on
BP so that the error was gradually reduced. Gradient descent
was used to continuously update w and b so that the output
of the autoencoder was close to the input. +e adjusted value
of w and b is proportional to z/zwJ(w, b) and z/zbJ(w, b).
+e formulas for updating w and b are as follows:

w � w − α
z

zw
J(w, b),

b � b − α
z

zb
J(w, b).

(3)

2.1.3. Activation Function. SAE is a deep neural network
composed of multiple AE units.+emodel is trained layer by
layer using an unsupervised method, and the output of the
previous layer is the input of the next layer.+e output of the
SAE is the input of the classifier that completes the classi-
fication. +e multihidden layer in SAE can effectively reduce
the noise, improve the generalization ability, increase ro-
bustness, and improve the classification accuracy.

In the training, the restricted Boltzmann machine
(RBM) was used to obtain the initial weight, and the ReLU
was used as the activation function. A sigmoid is a common
activation function that maps the output between [0, 1].
However, when the input values are close to infinity or
infinitesimal, their gradient is close to zero. +erefore, it is
very important to initialize the parameters. If the initial
parameters are very small, most neurons are in the saturated
state; that is, the gradient is close to 0, which makes the
learning of the neural network extremely difficult. As
mentioned above, ReLU was selected as the activation
function of the SAE, and its formula was as follows:

a
l
i � f z

l
i  � max 0, z

l
i , (4)

where the gradient is always 1 when zl
i > 1, which indicates

that the gradient is unsaturated. When the error is back-
propagated, the update of the SAE weight can be completed
quickly. Moreover, the calculation of ReLU is simple, and
thus the running speed of the SAE is significantly improved.

2.2. SparseAutoencoder. To better complete feature selection
and reconstruction, the sparse method was used to limit the
activity of neurons in the model. If x is the input of AE and
a

(2)
j (x) is the activation value of the hidden node j, the

average activation value of the hidden node j is as follows:

pj �
1
m



m

i�1
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j x

i
  , (5)

wherem is the number of samples. In the sparse method, the
penalty factor is added to the cost function of AE, and its
formula is as follows:



s2

j�1
p log

p

pj

+(1 − p)log
1 − p

1 − pj

, (6)

where p is a sparse parameter and its value is close to zero, pj

is determined by the connection weights and biases between
the nodes of each layer, and s2 is the number of nodes in the
hidden layer. We would like the average activation of each
hidden neuron j to be close to zero. To achieve this, we add
an extra penalty term to our optimization objective that
penalizes pjdeviating significantly from p. +e optimized
cost function of the sparse method is as follows:

J(w, b) � J(w, b) + β

s2

j�1
p log

p

pj

+(1 − p)log
1 − p

1 − pj

, (7)

where β is the weight of the sparse penalty factor.

2.3.Fine-Tuning. +eproposedHF-SAE consists of SAE and
Softmax regression. SAE completes feature selection, and
Softmax regression completes the classification of metab-
olomic data. +e structure of our neural network is 4573-
1000-500-100-5, which includes three AE units and one
Softmax unit. In the pretraining of the SAE, two adjacent
layers formed an AE, and the connection weights between
layers were obtained by AE training. +e input of each AE
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hidden layer was the input of the next AE. In the process of
fine-tuning, the entire SAE was considered as an encoder,
and the mapping of the SAE was considered as a decoder.
SAE and its mapping were combined into more hierarchical
networks, and HF was used to fine-tune the weights. +e
fine-tuning structure is illustrated in Figure 1.

3. Results

3.1. Dataset

3.1.1. Chemicals and Reagents. NR was provided by the
Mongolian Medicine Manufacturing Room of the Affiliated
Hospital of Mongolia University for the Nationalities
(Tongliao, China). NR powder was dissolved in a 0.5%
carboxymethyl cellulose (CMC) sodium aqueous solution
up to a concentration of 1.00 g/mL and stored at 4°C for
animal experimentation.

Radix Aconiti kusnezoffii (AK) and Piper longum (PL)
were purchased from Liqun Drugstore (Tongliao, China).
+e AK and PL powders were refluxed eight times with
ethanol for three times (2 h each time). +e extraction so-
lution was slightly boiled. After filtration, the concentrations
of AK and PL supernatants were diluted to 0.28 and 0.17 g/
mL, respectively.

Complete Freund’s adjuvant (CFA) was purchased from
Sigma Chemical Co. (St. Louis, MO, USA). Methanol and
formic acid (Fisher Scientific, UK) were of HPLC grade. +e
assays were purchased from Nanjing Jiancheng Bioengi-
neering Institute (Nanjing, China).

3.1.2. Adjuvant-Induced Arthritis Model Establishment and
Treatment. +e study was approved by the ethics com-
mittee of the Medicine College of Inner Mongolia Uni-
versity for the Nationalities (IMUNMCEC20210412 [1]).
Male Wistar rats (200 ± 10 g) were provided by YiSi
Laboratory Animal Technology Co., Ltd. (Changchun,
China). All animals were reared under standard condi-
tions (21 ± 2°C, daily sunshine for 14 h) with free access to
rodent chow and water in the Affiliated Hospital of Inner
Mongolia University for Nationalities and allowed to
acclimatize in metabolism cages for 1 week prior to the
experiment. +e rats were divided into five treatment
groups: control (CG), model (MG), NR, AK, and PL, with
eight rats in each group. On day 1, the rats in the MG NR,
AK, and PL groups were intradermally injected with
0.1 mL CFA in the right posterior toe, while the rats in the
CG group were injected with 0.1 mL saline. After 7 days,
the rats in the MG, NR, AK, and PL groups were injected
with 0.1 mL CFA. On day 14, the rats in the NR, AK, and
PL groups were administered NR, AK, and PL, with the
doses of 1.00, 0.28, and 0.17 g/kg/day, respectively, for 21
consecutive days, and on day 35 all the rats were eu-
thanized. Blood was collected from the hepatic portal vein
and centrifuged at 3500 rpm for 10min at 4°C. +e
supernatants were immediately frozen, stored at −20°C,
and thawed before analysis. Arthrodial cartilage was fixed
in 10% formaldehyde for paraffin embedding.

3.1.3. Serum Sample Preparation. +e serum samples were
thawed before analysis, and 100-µL aliquots were added to
400 µL acetonitrile, followed by vortexing for 30 s and
centrifugation at 12000 rpm for 10min at 4°C. +e super-
natant was subsequently filtered through a 0.22-µm filter
membrane.

3.1.4. Ultrahigh-Performance Liquid Chromatography
(UHPLC) Conditions. A +ermo Dionex Ultimate 3000
UHPLC system coupled with a Q Exactive Focus Orbitrap
mass spectrometer (+ermo, USA) was used for metab-
olomic analysis.

+eWaters Acquity UHPLC BEH C18 Column (1.7-µm,
2.1mm× 50mm, Waters, UK) was maintained at 40°C with
a flow rate of 0.3mL/min−1 for the separation. +e mobile
phases were 0.1% formic acid in deionized water (A) and
methanol (B). +e gradient elution with B was performed
according to the following schedule: 8% B for 0–0.5min,
8–60% B for 0.5–1.5min, 60–100% B for 1.5–6min, 100% B
for 6–8min, 100–8% B for 8-9min, and 8% B for 9-10min.
+e sample injection volume was 10 µL.

+e optimal conditions used for UHPLC-high-definition
MS (HDMS) analysis were as follows: nitrogen was used as
the sheath and aux gas (at flow rates of 30 and 5 bar, re-
spectively), the spray voltage was 3.0 kV, and capillary and
aux gas heater temperatures were 320°C and 300°C,
respectively.

+e MS data were collected in switching mode
(switching between positive and negative spectra) in the
mass range of 100–1000Da. +e resolution of the full MS
was 70000. In the dd-MS2 discovery mode, the resolution
was 17500, and the isolation window was set to 3.0m/z. +e
MS2 collision energy was set to 30 eV.

3.1.5. Data Analysis. A pooled quality control (QC) sample
was prepared by mixing aliquots (20 µL) of each sample to
monitor the instrument stability. Every day, six QC samples
were analyzed to test the stability of the instrument. +e
Compound Discoverer software (version 2.0) was used for
peak detection, alignment, and normalization of the peak
area.

3.2. Five-Fold Cross-Validation Classification Experiment.
+e metabolomic dataset contained a small number of
samples. To verify the reliability and stability of the HF-SAE
model for classification, a five-fold cross-validation method
was adopted. +e data were divided into five groups on
average. Each time, four groups were selected as the training
set, and one group was selected as the validation set. +e
process was repeated until each group of data became a
validation set.

We obtained 40 samples of metabolomic data from the
NR-treated animal model. To better complete the training of
the model, we used the synthetic minority oversampling
technique (SMOTE) [27] algorithm to expand the experi-
mental data to 320. +ere were 255 samples in the training
set, 65 samples in the test set, and 4573 variables. +e
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experimental data were preprocessed and normalized and
divided into five groups (CG, MG, NR, AK, and PL). +e
structure of our neural network was 4573-1000-500-100-5.
+e learning rate was set to 0.01. First, the unsupervised
method was used to complete the SAE training (the pre-
training of the model was completed, and the initial weight
was obtained). Second, a supervised method was used to
complete the training of the Softmax classifier. Finally, fine-
tuning of the model was completed, in which the GD andHF
algorithms were used to minimize the cost function. Owing
to the small number of training and test data, a min-batch
was not used in the training process. +e number of iter-
ations in each RBMduring training was 500, and the number
of iterations during fine-tuning was 4000. +e classification
accuracies are presented in Table 1.

Table 1 shows the results of the five-fold cross-validation
classification experiment for the different datasets.+e KNN
classification accuracy was between 81.54% and 86.15%, with
the lowest accuracy being observed in the third group. +e
SVM classification accuracy fluctuated dramatically between
73.85% and 81.54%, with the lowest accuracy being observed
in the first group.When we used themethod combining SAE
with Softmax regression, in which fine-tuning was based on
GD or HF, the GD-SAE classification accuracy was between
70.77% and 76.92%, and that of HF-SAE was over 90% for
each group and did not fluctuate dramatically. +e SVM

classification accuracy varied greatly and lacked robustness.
Although the classification results of KNN and GD-SAE
were stable, the classification accuracies were not satisfac-
tory.+erefore, the proposedmethod is more stable, reliable,
and suitable for the classification of metabolomic data. To
further compare the effects of different fine-tuning algo-
rithms on the SAE, we recorded the MSE of the training set
and the misclassification rate of the training and test sets. A
comparison of MSE, training, and test classification error
rates is shown in Figure 2.

For terms of the running time, KNN, SVM, GD-SAE,
and HF-SAE were about 80 seconds, 80 seconds, 650 sec-
onds, and 900 seconds, respectively. AlthoughHF-SAE had a
good classification effect, the computational complexity was
very high. In addition, we also evaluated the classification
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x1
(i)′

x2
(i)′

xp(i)′

x1
(i)

x2
(i)

xp(i)

Decoder
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Figure 1: Fine-tuning structure (SAE, stacked autoencoder).

Table 1: Classification accuracy in the five-fold cross-validation
experiment (%).

Group KNN SVM GD-SAE HF-SAE
1 84.62 73.85 70.77 93.85
2 86.15 76.92 76.92 92.31
3 81.54 81.54 73.85 90.77
4 84.62 75.38 75.38 93.85
5 87.69 78.46 73.85 93.85
Mean 84.92 77.23 74.15 92.93
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Figure 2: Fine-tuning of experimental results on the five-fold data sets. +e red and blue lines represent the GD-SAE and HF-SAE results,
respectively. In each subgraph of (a) to (e), (i) shows the FMSE, (ii) shows the CR of the training set, and (iii) shows the CR of the test set
(GD-SAE, gradient descent stacked autoencoder; HF-SAE, Hessian-free SAE; FMSE, fine-tuning mean square error; CR, classification rate).
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accuracy by calculating the kappa value [28], and the range
of this value is [0, 1]. If the value was closer to 1, it indicated
that the classification accuracy of the model was better. +e
kappa value of KNN, SVM, GD-SAE, and HF-SAE was 0.81,
0.72, 0.68, and 0.91, respectively. +e proposed HF-SAE
method had the best kappa value, which further showed that
the method had better classification ability.

3.3. Classification Experiments of Different Training and Test
Datasets. Metabolomic data have a high throughput, sparse,
high-dimensional, and small sample nature, which increases
the classification difficulty. To further verify the effect of
different methods on metabolomic data classification, six
datasets with different sizes were established, and the data
content difference between each group was 10%. +e ex-
periment algorithmwas the same as that used in the five-fold
cross-validation classification experiment. +e number of
training sets and test sets for each group, as well as the
classification results, is listed in Table 2.

Table 2 shows that when the training data decrease with
the decrease in total samples, the classification accuracy of
KNN, GD-SAE, and HF-SAE also significantly declines. +e
reason is that the above three machine learning methods are
affected by the reduction of the features that can be obtained,
while the accuracy of SVM is relatively stable and less af-
fected by this. Compared with the other three methods, HF-
SAE can provide better results. In metabolomic data clas-
sification experiments of different scales, it is shown that
although the training data are reduced, HF-SAE can still
obtain better metabolomic data characteristics.

4. Discussion

In the five-fold cross-validation classification experiment,
the GD-SAE average classification accuracy rate was the
lowest, while that of HF-SAE was the highest. +e experi-
mental results show that if the fine-tuning methods of the
SAE classification model are different, the effect on the
results is very obvious. As the number of iterations in-
creased, the fine-tuning process differed significantly. To
further compare the effects of different fine-tuning algo-
rithms on the SAE, we recorded the MSE of the training set
and the misclassification rate of the training and test sets. In
the five-fold cross-validation experiment based on the GD
fine-tuning method, the MSE decreased slowly with the
increase in iteration, and the misclassification rate of the
training and test sets also gradually decreased during the
oscillation process. However, this downward trend was not
obvious. When the iteration reached a certain number of
times, only a certain range of oscillation occurred, but there
was no trend of continuous decline. In the five-fold cross-
validation experiment based on the HF fine-tuning method,
each indicator had a fast decline speed and small amplitude,
and fewer iterations were needed to reach a stable interval
compared with GD.

In the process of fine-tuning, the classification accuracy
of GD and HF tended to be stable after 2000 iterations, but
their classification effect was obviously different. +is shows

that GD only reaches the local optimal state during fine-
tuning and cannot jump out of the local minimum. +e
change in MSE also explains the difference in the classifi-
cation accuracy. +e MSE of the HF showed a clear
downward trend and stabilized after approximately 2000
iterations. Although the GD showed a downward trend, the
change was small. +e HF-SAE proposed in this paper is
superior to the GD-SAE in both the classification results and
the fine-tuning process. Moreover, the HF-SAE is stable,
reliable, and suitable for metabolomic data classification. A
comparison of MSE, training, and test classification error
rates is shown in Figure 2. For terms of the running time,
KNNwas the shortest, HF-SAE time was the longest, and the
computational complexity was the highest. HF-SAE
achieved better classification results at the cost of consuming
more computing resources.

In the classification experiments of different training and
test datasets, the number of fine-tuning iterations was 4000.
+e training data for the experiment were reduced from 255
to 128, and the test data were reduced from 65 to 32. In each
group of experiments, the classification result of HF-SAE
was better than that of GD-SAE. In the fine-tuning process,
the HF-SAE error rate amplitude was relatively large in the
initial stage.+e classification error rate decreased faster and
entered a stable and small-amplitude oscillation range in a
short time.+e GD-SAE classification accuracy only showed
a significant decline in the initial stage of fine-tuning.
However, there was no significant change in the classifica-
tion accuracy, which was significantly different from the
classification results of HF-SAE.

In the method comparison, accuracies of HF-SAE were
superior for the classification of metabolomic data of NR-
treated RA compared with KNN, SVM, and GD-SAE. Ac-
companying development of metabolomics, robust and
accurate classification methods to predict sample labels are
in critical need. +ese results indicated that the HF-SAE
developed here was a helpful tool for analyzing biomarkers
from the metabolomic data. We concluded that the HF-SAE
was capable of identifying important variables that con-
tributed to the constructed HF-SAE model.

Although HF-SAE has excellent classification perfor-
mance, there are still some considerations in metabonomics
research. Compared with some other machine learning
methods, HF-SAE is time-consuming computation. In ad-
dition, metabonomics datasets are typically small compared
with other data, such as text and images. For the classifi-
cation of metabolomic data of NR-treated RA, we obtained
40 samples. To better complete the training of the model, we

Table 2: Classification accuracies of the different training and test
sets (%).

Training set Test set KNN SVM GD-SAE HF-SAE
255 65 86.15 76.92 76.92 92.31
230 58 82.76 84.48 77.59 91.38
204 52 80.77 80.77 76.92 88.46
179 45 77.78 75.56 77.78 84.44
153 39 76.92 79.49 74.36 84.62
128 32 71.88 78.13 68.75 81.25
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used the SMOTE algorithm to expand the experimental data
to 320 because very small data sets may not be suitable for
HF-SAE. We also experimented with the effects of reducing
training set size and test set size and found that HF-SAE is
indeed sensitive to the sample size of the study.

5. Conclusions

NR is a traditional Mongolian medicine and a pure botanical
preparation, and it has achieved good results in improving
symptoms and delaying RA progression. However, the
TMM research methods are simplistic, and the technologies
used are outdated. +erefore, HF-SAE was used to classify
the metabolomic data of NR-treated RA. Metabolomic data
are highly dimensional and sparse. With the proposed
method, we not only diagnosed RA but also completed an
evaluation of NR. In the five-fold cross-validation classifi-
cation experiment, the proposed method is more stable,
reliable, and suitable for the classification of metabolomic
data compared with KNN, SVM, and GD-SAE. To further
verify the effect of different methods on metabolomic data
classification, we performed classification experiments using
different training and test datasets. +e results show that
although the training data are reduced, HF-SAE can still
obtain better metabolomic data characteristics. Although the
HF-SAE algorithm is a useful tool for the classification, the
performance of the method depends on sample size, and
how to select biomarkers and explain the model scientifically
through the model proposed is also an urgent problem to be
solved in this field at this stage.

Data Availability

Our data still need to be studied in the next stage, so it is not
convenient to provide it directly. +e data can be made
available upon request via email.

Conflicts of Interest

+e authors declare that there are no conflicts of interest.

Acknowledgments

+is work was supported by Science and Technology
Projects of Inner Mongolia Autonomous Region
(2020GG0190), Research Program of Science and Tech-
nology at Universities of Inner Mongolia Autonomous
Region (NJZY20112), Program for Young Talents of Science
and Technology in Universities of Inner Mongolia Auton-
omous Region (NJYT-19-B18), Natural Science Foundation
of Inner Mongolia Autonomous Region of China
(2019MS08036 and 2021LHMS06007), Industry Innovation
Talent Team of Inner Mongolia Grassland Talent Engi-
neering (2017), Industry-University-Research Innovation
Fund of Ministry of Education Science and Technology
Development Center—“Zhi Rong Xing Jiao” Fund
(2018A01027), Science Research Project of Inner Mongolia
University for Nationalities (NMDYB19060), and Inner

Mongolia University for Nationalities Doctoral Research
Start Fund Project (BS543 and BS603).

References

[1] V. Dziedziejko, M. Kurzawski, K. Safranow et al., “Lack of
association between CAG repeat polymorphism in the an-
drogen receptor gene and the outcome of rheumatoid arthritis
treatment with leflunomide,” European Journal of Clinical
Pharmacology, vol. 68, no. 4, pp. 371–377, 2012.

[2] B. Feng and J. Xiao, “Observation on curative effect of
Mongolian medicine naru-3 pills in treating rheumatoid
arthritis,” Journal of North Pharmacy, vol. 11, no. 2, pp. 36-37,
2014.

[3] W. Zhi, “Analysis of the clinical efficacy and safety of
Mongolian medicine Naru-3 pills in the treatment of rheu-
matoid arthritis,” Electronic Journal of Clinical Medical Lit-
erature, vol. 67, no. 5, pp. 166–168, 2018.

[4] A. Narita, M. Ueki, and G. Tamiya, “Artificial intelligence
powered statistical genetics in biobanks,” Journal of Human
Genetics, vol. 66, no. 1, pp. 61–65, 2021.

[5] M. Ueki and G. Tamiya, “Smooth-threshold multivariate
genetic prediction with unbiased model selection,” Genetic
Epidemiology, vol. 40, no. 3, pp. 233–243, 2016.

[6] T. Ching, X. Zhu, and L. X. Garmire, “Cox-nnet: an artificial
neural network method for prognosis prediction of high-
throughput omics data,” PLoS Computational Biology, Article
ID e1006076, 2018.

[7] W. Xu, Y. Tian, S. Wang, and Y. Cui, “Feature selection and
classification of noisy proteomics mass spectrometry data
based on one-bit perturbed compressed sensing,” Bio-
informatics, vol. 36, no. 16, pp. 4423–4431, 2020.

[8] J. S. Yu, D. A. Pertusi, A. V. Adeniran et al., “CellSort: a
support vector machine tool for optimizing fluorescence-
activated cell sorting and reducing experimental effort,”
Bioinformatics, vol. 33, no. 6, pp. 909–916, 2016.

[9] J. Xie, Y. Xu, H. Chen et al., “Identification of population-level
differentially expressed genes in one-phenotype data,” Bio-
informatics, vol. 36, no. 15, pp. 4283–4290, 2020.

[10] B. Fouaz and B. Hacene, “Genetic algorithm-based feature
selection approach for enhancing the effectiveness of simi-
larity searching in ligand-based virtual screening,” Current
Bioinformatics, vol. 15, no. 5, pp. 431–444, 2020.

[11] K. Raja, M. Patrick, Y. Gao et al., “A review of recent ad-
vancement in integrating omics data with literature mining
towards biomedical discoveries,” International Journal of
Genomics, vol. 2017, Article ID 6213474, 2017.

[12] W. Andrew, N. Jeremy, H. John et al., “A metabonomic
approach to the investigation of drug-induced phospholipi-
dosis: an NMR spectroscopy and pattern recognition study,”
Biomarkers, vol. 5, no. 6, pp. 410–423, 2000.

[13] A. Scalbert, L. Brennan, C. Manach et al., “+e food
metabolome: a window over dietary exposure,”Be American
Journal of Clinical Nutrition, vol. 99, no. 6, pp. 1286–1308,
2014.

[14] M. Kircher and J. Kelso, “High-throughput DNA sequencing -
concepts and limitations,” BioEssays, vol. 32, no. 6,
pp. 524–536, 2010.

[15] H. Mohamadi, H. Khan, and I. Birol, “Ntcard: a streaming
algorithm for cardinality estimation in genomics data,” Bio-
informatics, vol. 33, no. 9, pp. 1324–1330, 2017.

[16] H. Abdi and L. J. Williams, “Principal component analysis,”
Wiley Interdisciplinary Reviews: Computational Statistics,
vol. 2, no. 4, pp. 433–459, 2010.

8 Computational Intelligence and Neuroscience



[17] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[18] G. Harman and S. Kulkarni, “Statistical learning theory and
induction,” in Encyclopedia of the Sciences of Learning,
N. M. Seel, Ed., Springer, New York, NY, USA, pp. 3186–3188,
2012.

[19] T. Asakura, Y. Date, and J. Kikuchi, “Application of ensemble
deep neural network to metabolomics studies,” Analytica
Chimica Acta, vol. 1037, pp. 230–236, 2018.

[20] Y. Date and J. Kikuchi, “Application of a deep neural network
to metabolomics studies and its performance in determining
important variables,” Analytical Chemistry, vol. 90, no. 3,
pp. 1805–1810, 2018.

[21] F. M. Alakwaa, K. Chaudhary, and L. X. Garmire, “Deep
learning accurately predicts estrogen receptor status in breast
cancer metabolomics data,” Journal of Proteome Research,
vol. 17, no. 1, pp. 337–347, 2018.

[22] W. Bradley and P. Robert, “Multivariate analysis in metab-
olomics,” Current Metabolomics, vol. 1, pp. 92–107, 2013.

[23] A. B. Risum and R. Bro, “Using deep learning to evaluate
peaks in chromatographic data,” Talanta, vol. 204, pp. 255–
260, 2019.

[24] K. M. Mendez, D. I. Broadhurst, and S. N. Reinke, “Be
Application of Artificial Neural Networks in Metabolomics: A
Historical Perspective,” Metabolomics, vol. 15, no. 11, Article
ID 142, 2019.

[25] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[26] J. Martens and I. Sutskever, “Training deep and recurrent
networks with hessian-free optimization,” Edited by
G. Montavon, G. B. Orr, and K.-R. Müller, Eds., Springer,
Berlin Heidelberg, Germany, Second edition, pp. 479–535,
Berlin Heidelberg, Germany, 2012, Lecture Notes in Com-
puter Science.

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: synthetic minority over-sam-
pling technique,” Journal of Artificial Intelligence Research,
vol. 16, pp. 321–357, 2002.

[28] Z. Qiu, S. W. Lyon, and E. Creveling, “Defining a topographic
index threshold to delineate hydrologically sensitive areas for
water resources planning and management,”Water Resources
Management, vol. 34, no. 11, pp. 3675–3688, 2020.

Computational Intelligence and Neuroscience 9



Research Article
Automatic Diagnosis of Alzheimer’s Disease and Mild Cognitive
Impairment Based on CNN+ SVM Networks with
End-to-End Training

Zhe Huang , Minglang Sun , and Chengan Guo

School of Information and Communication Engineering, Dalian University of Technology, Dalian 116023, China

Correspondence should be addressed to Chengan Guo; cguo@dlut.edu.cn

Received 20 May 2021; Revised 29 July 2021; Accepted 6 August 2021; Published 14 August 2021

Academic Editor: Nian Zhang

Copyright © 2021 Zhe Huang et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease, and, at present, once it has been diagnosed, there is no
effective curative treatment. Accurate and early diagnosis of Alzheimer’s disease is crucial for improving the condition of patients
since effective preventive measures can be taken in advance to delay the onset time of the disease. 18F-Fluorodeoxyglucose positron
emission tomography (18F-FDG PET : PET) is an effective biomarker of the symptom of AD and has been used as medical imaging
data for diagnosing AD. Mild cognitive impairment (MCI) is regarded as an early symptom of AD, and it has been shown that
MCI also has a certain biomedical correlation with PET. In this paper, we explore how to use 3D PET images to realize the effective
recognition of MCI and thus achieve the early prediction of AD.(is problem is then taken as the classification of three categories
of PET images, including MCI, AD, and NC (normal controls). In order to get better classification performance, a novel network
model is proposed in the paper based on 3D convolution neural networks (CNN) and support vector machines (SVM) by utilizing
both the excellent abilities of CNN in feature extraction and SVM in classification. In order to make full use of the optimal
property of SVM in solving binary classification problems, the three-category classification problem is divided into three binary
classifications, and each binary classification is being realized with a CNN+SVM network. (en, the outputs of the three
CNN+SVM networks are fused into a final three-category classification result. An end-to-end learning algorithm is developed to
train the CNN+SVM networks, and a decision fusion algorithm is exploited to realize the fusion of the outputs of three
CNN+SVM networks. Experimental results obtained in the work with comparative analyses confirm the effectiveness of the
proposed method.

1. Introduction

Alzheimer’s disease (AD), as a chronic neurodegenera-
tive disease characterized by irreversible loss of neurons
and genetically complex disorder, is often found in the
elderly people [1]. Unfortunately, there is no effective
curative treatment to reverse AD at present due to the
irreversible brain atrophy. (us, the early diagnosis of
AD and its prodromal stage, i.e., mild cognitive im-
pairment (MCI), is vital for patient care and slowing
down progressive deterioration [2]. However, patients
with MCI only have subtle typical changes, so the ac-
curate diagnosis of MCI is still a difficult problem in early
AD diagnosis.

Since the metabolic rate and structure of the brain
change accordingly with the progression of AD, the positron
emission tomography (PET) is usually utilized to quantify
the changes and further applied for computer-aided diag-
nosis (CAD) of AD [3–5]. In computer-aided AD diagnosis,
various pattern recognition-based methods have been
employed to predict AD andMCI, and these methods can be
roughly divided into two steps, feature extraction and
classification. (e feature extraction step is to extract dis-
criminative features from the PET images, and the classi-
fication step is to get prediction results according to the
extracted features. Gray et al. [6] used two support vector
machine (SVM) classifiers to identify NC vs. MCI and NC
vs. AD, in which the SVMs are trained with the features of
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mean signal intensity in the region of native MRI-space of
each subject. Garali et al. [7] proposed a novel brain region
validity ranking method to separate AD from healthy
controls, where SVM and random forest are employed for
classification with the features obtained from selected 21
regions. Silveira and Marques [8] developed a boosting
classification method that mixed a group of simple classifiers
to perform feature selection and segmentation. Cabral and
Silveira [9] used different ensemble classifiers based on SVM
and random forest to extract diverse features on different
sets of brain voxels for classification. Lu et al. [10] extracted
three groups of spatial features from PET images and
proposed a semisupervised classification method based on
random manifold learning with affinity regularization for
AD detection.

In recent years, deep learning technology has made great
strides on compute vision tasks, e.g. segmentation, classification,
and detection. Different from the conventional methods
mentioned above, deep learning-based methods can auto-
matically find discriminative features from inputs, avoiding
complex processing procedures and manually designed feature
extraction operators. Inspired by the impressive performance,
amounts of promising studies based on deep learning have been
developed for AD prediction. As the 3D PET images can be
divided into 2D slices, some scholars employed 2D CNNs to
classify AD. Wang et al. [11] proposed an eight-layer con-
volutional neural network (CNN) with the leaky rectified linear
unit and max-pooling layer for AD classification, in which 2D
slice of 3D MRI is employed as the input of CNN. Ding et al.
[12] introduced the inception v3 that stacks 11 inception
modules [13] into the method for AD classification with the
4× 4 grid images generated from the 3D PETas inputs. Liu et al.
[14] proposed a classification framework based on 2DCNN and
recurrent neural network (RNN) for AD classification, in which
the 2D CNN is used to capture the intraslice features, and RNN
is employed to learn and integrate the interslice features. Af-
terwards, the final results were obtained by fusing the prediction
scores from three directions of 3D PET.

Although the mentioned methods with 2D CNNs show
effectiveness in AD classification, one of the shortcomings of
themethods is that the spatial information of the 3D image is
not fully utilized. In order to solve this problem, CNNs with
3D kernels are developed to better utilize the spatial in-
formation. Huang et al. [15] constructed a 3D VGG variant
model based on single modality for AD diagnosis and
achieved multimodality detection by concatenating the
multimodality features obtained from MRI and PET images.
In addition, the experimental results in [15] showed that
hippocampus segmentation is not necessary for improving
the performance of the CNN-based classification method.
Liu et al. [16] developed a CNN-based model for AD au-
tomatic diagnosis with various techniques for designing the
CNN model. Zhou et al. [17] utilized a sparse-response deep
belief network (SR-DBN) with extreme learning machine
(ELM) to classify NC,MCI, and AD. Liu et al. [18] designed a
diagnostic framework to extract complementary informa-
tion frommultiple inputs by using zero-masking strategy for
prediction. Yee et al. [19] designed a 3D CNN-based net-
work with residual connections for AD diagnosis, and class

activation maps implicate many known regions affected by
AD. Pan et al. [20] developed a multiview separable pyramid
network-based classification model for AD prediction, in
which the features are extracted from axial, coronal, and
sagittal views of PET scans with the 3D CNN framework.

As inferred from literature, most of the existing studies for
AD diagnosis aim at recognizing AD vs. NC or MCI vs. NC,
which regard AD diagnosis as a binary classification problem.
Due to the importance of MCI in early diagnosis of AD, the
MCI should be accurately recognized from AD and NC. (us,
the three-category classification including NC, MCI, and AD is
more reasonable for AD prediction. However, MCI is a tran-
sition state from NC to AD, and it is more difficult to be
correctly identified compared with the identification of AD and
NC. To tackle the 3-category classification, one direct way is to
build a 3-category classifier for classification, but this is usually
not able to achieve excellent enough performance as usual,
especially for the prediction of MCI. (erefore, more attention
needs to be paid on the identification ofMCI than the other two
categories.

Besides, there is still a big space for improving the per-
formance in AD diagnosis of deep learning-basedmethods due
to the limitation of scarce training samples. Since the success of
deep learning is partially attributed to the training data, it is
believed that a discriminative and robust deep learning-based
model can be learned with a large-scale and variable dataset.
However, because of the difficulties of PET image acquisition
and the high cost ofmanual annotation, it is infeasible to obtain
sufficient training data, which decreases the generalization
ability in working data.

In view of the optimal property of SVM in solving binary
classifications and the powerful feature extraction ability of
deep CNNs, in this paper, we proposed a hybrid model
integrated with CNN and SVM networks for AD prediction.
(e CNN model composed of 3D convolution kernels is
developed to extract deep features, while the SVM [21] is
utilized for classification. Moreover, an end-to-end training
algorithm is developed for further fine-tuning the hybrid
system. Since the SVM-based classifier is designed for binary
classification, to tackle the 3-category classification problem
with the proposed hybrid model, a decision fusion algorithm
is proposed to fuse the results of three hybrid models for
performing NC, MCI, and AD prediction, in which one
network is employed for two of three-category prediction.
Extensive experiments have been conducted in the work,
and the experimental results show that the proposed ap-
proach achieves outstanding performance, compared with
the state-of-the-art methods.

(e sequel of this paper is organized as follows: Section 2
presents the detailed description of the proposed method, and
Section 3 gives the experimental results and performance
analysis on the database used in the work. Finally, Section 4
draws conclusions of the contributions made in the paper.

2. Proposed Method

2.1.Overall Scheme of the ProposedMethod. In this paper, we
proposed a hybrid model integrated with CNN and SVM
networks to predict NC, MCI, and AD. (e structure of the
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proposed model is shown in Figure 1 that consists of two
modules, a feature extraction module based on CNN with
3D kernels (3DCNN), and a SVM-based classification
module. Briefly, the feature extraction module is to extract
deep features of the input 3D PET images and the classi-
fication module is to classify the features to get final deci-
sions. Inspired by [16], the 3DCNNmodel is redesigned here
in according to the purpose of this paper so as to utilize the
spatial information provided by the PET images. In addition,
to further improve the performance of the model with small
batch sizes caused by large 3D data, instance normalization
(IN) [22] is employed for normalization. Besides, channel
attention [23] is also introduced into the 3DCNN to select
more important features. Under the assumption of scarce
annotated training data, the SVM-based classification
module with the kernel function is employed to find the
global structural optimal hyperplane of the training features
from all the training samples.

In the training stage, the training data are first sent to the
feature extraction module for classification. (en, the out-
puts of the global average pooling layer (GAP) of the feature
extraction module shown in Figure 2 are taken as the inputs
of the SVM-based classification module. Next, the param-
eters of the SVM are solved by the extracted features of
training data. Finally, the hybrid model is trained end-to-
end by the designed strategy to further optimize the pa-
rameters of themodel. In the testing stage, the inputs are first
sent to the 3DCNN module to extract deep features. (en,
the classification results are obtained by the SVM according
to the extracted features.

For early AD diagnosis, the proposed model should tackle
the problem of 3-category classification. Due to the optimal
classification performance for binary classifications of SVM, we
divide the three-category classification problem into three
binary classification problems so as to boost the performance of
3-category classification, each binary problem being solved by
one hybrid model. (e overall structure of this three-category
classification system is shown in Figure 3, in which it consists of
three branches, each binary classification being realized with
one 3DCNN+SVM hybrid network. In order to obtain the
final classification decision according to the three branch
classifiers, a decision fusion algorithm is proposed to fuse the
outputs of three 3DCNN+SVM classifiers. (e details of the
proposed classification system will be given in the sequel
sections.

2.2. 3DCNN-Based Feature Extraction Module. CNN is
widely used in the field of computer vision currently [24]
owing to its powerful feature extraction ability. Different
from conventional methods that extract features manually,
CNN can automatically learn features through an end-to-
end training process. In order to utilize the advantage of
CNN and the spatial information of input 3D PET images,
we design a 3DCNN-based feature extraction module to
extract deep features. (e structure of the designed 3DCNN
network is described in Table 1 and Figure 2, and it is
composed of 6 convolutional layers with 3D kernels to
extract features, 4 max-pooling layers for downsampling,

and 4 attention layers to select the informative channels. (e
typical 3D CNNs, such as 3D DenseNet [25] and 3D ResNet
[26], usually employ large-scale kernels to compress the
input in the first convolutional layer, which may lose the
detailed information. To better learn the lesion feature from
the 3D PET images, the first two convolutional layers in-
volved in the model do not perform dimension reduction.
(e kernel size of the two layers is 1× 1× 1 and 3× 3× 3 with
a stride of 1, and the number of kernels is set to 32 and 64 to
extend the features, separately. Afterwards, to reduce the
computational complexity, a 2× 2× 2MaxPooling3D layer is
employed to reduce the size of the features by half. (en,
four convolutional layers, each followed by a channel at-
tention module and a 2× 2× 2 MaxPooling3D layer, are
adopted to learn more generalization representations. (e
channel attention mechanism utilized here is based on the
CBAM [23] to enable the model to pay more attention to
significant features. (e mechanism employs multilayer
perceptron (MLP) with one hidden layer to generate at-
tention vector W as attention weights for feature selection,
and W can be computed as

W(F) � σ(MLP(AvgPool(F)) + MLP(MaxPool(F))),

(1)

where F denotes the input feature map and σ(·) is the
sigmoid function. (e MaxPooling3D layer followed the
mechanism module is to compress the deep features.
Moreover, to speed up the network training and maintain
excellent performance on small batch size, the IN [22] layer
after each convolutional layer is introduced into the system
as in [16] to conduct feature normalization. Besides, after
each convolutional layer, a Rectified Linear Unit (ReLU) is
utilized as the activation function to conduct nonlinear
transformation, thereby preventing the network from
degrading into a linear system.

To optimize the model using the annotated data, a fully
connected layer after a global average pooling (GAP) layer is
utilized to perform binary classification at the end of the last
convolutional. Notably, the fully connected layer here is only
to optimize the network to gain initial weights, and the
outputs of the feature extraction module obtained after the
GAP layer are used for subsequent classification.

In addition, to improve the robustness of the model
against small batch size training, we update the network with
the average gradient from multiple batches. Moreover, the
technologies of dropout and label smoothing are employed
[27, 28] as well.

3DCNN SVM
y

Feature
Vector

Input

3D PET

Figure 1: Block diagram of the scheme for the 3DCNN+SVM
method.
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2.3. SVM-Based Classification Module and an End-to-End
Training Algorithm for CNN+ SVM Model. SVM with the
nonlinear kernel function is able to transform a nonlinear
separable problem into a linear separable problem and then
finds the structural optimal separate hyperplane that has the
maximum margin between the two classes [21]. Because of
the small size of annotated training data, the global optimal
solution of the training data is available in the conditional
that the features extracted by the feature extraction module
are fixed. To this end, we employ the SVM with polynomial
kernel as the classification module to find the structural
optimal solution from all the training data. Nevertheless, it is
known that the performance of SVM depends on the sup-
port vectors. Once the CNN is trained, the support vectors
are fixed. In order to further optimize the parameters of the
CNN by using the optimal hyperplane obtained by SVM in
the embedding feature space, an end-to-end training algo-
rithm is developed for the proposed hybrid model. (e

details of the SVM-based classification module and the end-
to-end training algorithm are introduced as follows.

As introduced in [21], the purpose of SVM is to find a
separation hyperplane, which maximizes the distances be-
tween the margins of two kinds of categories. For n sample
features (xi, yi) 

n
i�1, xi ∈ R1×d, xi � x1

i , x2
i , . . . , xd

i , and
yi ∈ −1, 1{ }, the objective function of SVM is defined by

L(w, b, α, ξ) �
1
2
‖w‖

2
+ C 

n

i�1
ξi − 

n

i�1
aiyi wTxi + b  − 1 ,

(2)

where w ∈ Rd×1 is the coefficient vector, b is the bias term,
α≥ 0 is Lagrange multiplier, ξ is the slack variables, and C≥ 0
is a penalty parameter used to control the degree of penalty
for misclassification. To optimize the SVM by minimizing
the objective function, (2) is usually solved by the following
dual problem:

Table 1: (e architecture of 3DCNN designed in the paper.

Layer ID Layer Kernel number Kernel size/stride Output size
0 Input 1× 80×100× 76
1 Conv1 32 (1, 1, 1)/1 32× 80×100× 76
2 Conv2 64 (3, 3, 3)/1 64× 80×100× 76
3 MaxPool3D (2, 2, 2)/2 64× 40× 50× 38
4 Conv3 128 (3, 3, 3)/1 128× 40× 50× 38
5 Attention 128× 40× 50× 38
6 Maxpool3D (2, 2, 2)/2 128× 20× 25×19
7 Conv4 256 (3, 3, 3)/1 256× 20× 25×19
8 Attention 256× 20× 25×19
9 Maxpool3D (2, 2, 2)/2 256×10×12× 9
10 Conv5 512 (3, 3, 3)/1 512×10×12× 9
11 Attention 512×10×12× 9
12 Maxpool3D (2, 2, 2)/2 512× 5× 6× 4
13 Conv6 512 (3× 3× 3)/1 512× 3× 4× 2
14 GAP 512×1× 1× 1
15 Flatten 512
16 FC 2
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Figure 2: (e structure of the proposed feature extraction module.
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Q(α) � 
n

i�1
αi −

1
2



n

j�1


n

i�1
αiαjyiyjK xi, xj  ,

Subjected to : 0≤ αi ≤C, 
n

i�1
aiyi � 0,

(3)

where i and j ∈ 1, . . . , n and K(xi, xj) is the kernel function.
In the paper, the polynomial kernel function is utilized as the
kernel function that is defined as

K x, xi(  � x · xi(  + 1 
q
, (4)

where x is the input vector, xi denotes the support vector of
SVM, and q is the order of polynomial.

For the input x, the decision function is defined as

y � sign 
i

αiyiK x, xi(  + b⎛⎝ ⎞⎠ � sign(s). (5)

Obviously, after solving the parameters of αi and b, the
classification result of x can be obtained. In the paper, the
sequential minimal optimization (SMO) algorithm [29] is
utilized to calculate αi and b.

As shown in (5), a nonderivable sign function is
employed to binarize the value of the linear output of SVM
to obtain finally prediction. Due to that the output of sign
function is 1 or −1, the influence of the linear output value s
of SVM is ignored. In general, higher value of the output in
the classification indicates higher confidence that the input
belongs to the corresponding category. In addition, the BP
algorithm cannot be performed by using a nondifferentiable
sign function. In order to tackle the problems, a modified
SVM is proposed for classification and an end-to-end
training algorithm integrated with CNN and modified SVM
is proposed to further optimize the hybrid model.

For the modified SVM, the sign function is replaced with
a differentiable softmax-based function. Since SVM only has
one output, the linear value s together with its opposite
value, −s, are utilized as the inputs of softmax function. (e
structure of the modified SVM is shown in Figure 4, and its
output can be computed as

y � f 
n

i�1
wiK x, xi(  + b⎛⎝ ⎞⎠ � f(s), (6)

where wi � αiyi can be regarded as the weights of the output
of K(xi, x), f (·) is the softmax function-based differentiable
function, and y� {y0, y1} is the output of the modified SVM,
in which y can be obtained by

y0 � q x ∈ d+(  �
e

s

e
s

+ e
−s, (7)

y1 � q x ∈ d−(  �
e

−s

e
s

+ e
−s, (8)

where x is the input feature, s is the linear output value of
SVM, q(x ∈ d+) denotes the probability of x belonging to the

positive class, and q(x ∈ d−) denotes the probability of x
belonging to the negative class.

(e modified SVM shown in Figure 4 can be equivalent
to a neural network with one hidden layer, thus the hybrid
model can be trained end-to-end. In the article, the cross-
entropy loss is employed to optimize the hybrid model, in
which the loss function is defined as

H(p, q) � − 
n

i�1
p xi ∈ d+( logq xi ∈ d+( (

+ 1 − p xi ∈ d+( ( log 1 − q xi ∈ d+( ( ,

(9)

where p is the label function that is defined as p � 1 if
x ∈ positive sample; else, p� 0; and n indicates the total
number of the training samples.

Equations (7) and (8) can also be represented by

q x ∈ d+(  �
1

1 + e
−2s

,

q x ∈ d−(  �
1

1 + e
2s

.

(10)

Obviously, for a positive class feature, only s tends to
positive infinity, q(x ∈ d+) equals to 1, and loss function H
(p, q) tends to 0. Since s is positively related to the distance
from x to the hyperplane of SVM, the larger s means the
greater distance between x and the hyperplane. For a neg-
ative class feature, the loss functionH (p, q) tends to 0 when s
tends to negative infinity. (us, the loss function can be
utilized to optimize the features of CNN and further increase
the margin between the two classes.

(e optimization of SVM is to find the optimal
hyperplane from all training samples, which is different
from the backwardpropagation (BP) algorithm-based
optimization of 3DCNN. In order to jointly optimize
the hybrid system with the BP algorithm and maintain
the optimal structure of SVM, the parameters of the
SVM are not adjusted in the process of optimizing CNN
with the BP algorithm. After CNN converged, the pa-
rameters of SVM are re-calculated by the SMO algo-
rithm to find the new separate hyperplane for further
optimization.

Details for these operation steps are as follows:

K(x,x1)

K(x,x2)

K(x,xn)

∑  

. . .

. . .

w1

w2

wn
. . .

s

b

x

f(s)

q(x∊d+)

q(x∊d–)

Figure 4: (e equivalent neural network of SVM with the non-
linear kernel function.
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(i) Initialize a 3DCNN and a SVM to be trained, and
divide the PET dataset into 3 subsets (training set,
verification set, and test set)

(ii) Train the 3DCNN by using the samples in the
training set until converged, and then, use the
converged 3DCNN to extract the feature vector
output from its last pooling layer using all the
samples in the training set and in the verification
set as input

(iii) Train the SVM by using the extracted feature
vectors as training samples obtained by using the
input samples in the training set in Step (ii), until
the SVM converged

(iv) Construct a 3DCNN+SVM network using the
trained 3DCNN and SVM, and replace sign
function with softmax function as described in (7)
and (8)

(v) Fine-tune the 3DCNN+SVM network by using
the samples both in the training set and in the
verification set and the loss function computed
according to (9), with the weights of the SVM fixed
(without updated), until the 3DCNN converged
basically

(vi) Re-train the SVM by using the extracted feature
vectors output from the 3DCNN obtained in Step
(v) without updating the 3DCNN, until the SVM
converged basically

(vii) Repeat the Steps (iv)–(vi), until the whole
3DCNN+SVM network converged

(viii) Test the trained 3DCNN+SVM network by using
the samples in the test set

2.4. Decision Fusion Algorithm of 7ree Binary Classifiers.
At present, most of the existing studies related to AD aim to
solve binary classification problems, such as AD vs. NC and
MCI vs. NC. However, in practical applications, a robust 3-
category classificationmodel is crucial for the early diagnosis
of AD as mentioned above. Generally, this problem can be
well solved directly by a 3-category classifier, but it may not
be suitable for AD prediction with a simple 3-category
classifier as the MCI is hard to be accurately identified from
AD and NC. Since the proposed SVM-based classification
module can achieve global optimal structure solutions for
binary classification on the training data, 3-category clas-
sification task can be solved by using three hybrid models
with the proposed decision fusion algorithm.

As shown in Figure 3, three 3DCNNi + SVMi networks
(i� 1, 2, and 3) are built up to cope with the three-category
classification with one network for solving two of three-
category classification. Before making a final decision, three
3DCNN+SVM hybrid networks need to be trained in ad-
vance for performing the binary classifications of AD vs. NC,
MCI vs. NC, and AD vs. MCI. Afterwards, for a 3D PET
image to be classified, it is first fed into the three
3DCNNi + SVMi networks (i� 1, 2, and 3) respectively, and
then, outputs of the three classification models can be

obtained. In order to use the results of the three classifiers
effectively, in the paper, we design a decision fusion algo-
rithm as follows to get the final decision:

(1) If the results of two classification models belong to
the same category, the category is regarded as the
final classification result

(2) If all the three classification results are different, the
final decision is made according to the absolute
value, |si|, of the linear output of the SVMi (i� 1, 2,
and 3) as follows:

k � argmax
i

si


 . (11)

(en, final classification result is selected as the
binary classification result of the kth 3DCNN+SVM
network (i.e., the output of the SVMk).

3. Experiments

3.1. Database and Data Preprocessing. In order to evaluate
the proposed method in AD prediction, the 18F-Fluo-
rodeoxyglucose positron emission tomography (18F-FDG
PET : PET) data obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database [30] launched in
2003 are utilized in the paper, in which ADNI has been
committed to tracking the progress of AD through bio-
markers and clinical assessments. By identifying sensitive
and specific markers of early AD progression in the database
provided by the participants at different time, it can help
researchers and clinicians develop new treatments, monitor
the effectiveness, and reduce the cost of clinical trials.

In this work, we adopt 2706 3D PET images from 959
ADNI participants, including 267 AD subjects, 340 MCI
subjects, and 352 NC subjects. Table 2 presents the demo-
graphic details of the studied subjects in the work, where
MMSE is the abbreviation of the Mini-Mental State Ex-
amination. (e PET images are first preprocessed by per-
forming image registration, spatial normalization, intensity
normalization, and image smoothing. (en, the voxels
outside the brain are removed from the PET images, and the
images are cropped to a size of 80×100× 76.

3.2. Implementation Settings and Evaluation Indexes. All the
models and algorithms adopted in the work have been
implemented, and all the experiments are conducted by
using Python on a CPU+GPU platform with the CPU of
Intel ®Core™ i77700@3.60GHz and the GPU of NVIDIA
GeForce GTX 1080Ti.

In the experiment, five-fold cross-validation is per-
formed, where the dataset is divided into 5 equal parts in
which 1 part is used as the testing data and 4 parts are used as
training data with 1 part of them as verification data. And,
the experiments are conducted 5 times in turn, and the mean
values of the results of 5 trials are used as final indexes of the
method. (e data are strictly divided according to patient’s
IDs to ensure that the image samples of the same person will
not be put into different datasets, i.e., the PET images of one
participant are put into only one part in the data partition to
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avoid data leakage. (e stochastic gradient descent (SGD)
algorithm is utilized to minimize the loss function in
training the proposed model. (e batch size is set to 4, and
the weights of the network are updated every four batches
for better convergence in the training process.

To better evaluate the performance of the proposed
method and state-of-the-art methods, 4 technical indexes
[20] are employed for evaluation, including accuracy (ACC),
sensitivity (SEN), specificity (SPE), and AUC (area under
ROC curve). (e ACC, SEN, and SPE are the proportion of
correct predictions among all samples, positive samples, and
negative samples, respectively. Each of the indexes is
identified as

ACC �
TP + TN

TP + TN + FP + FN
,

SEN �
TP

TP + FN
,

SPE �
TN

TN + FP
,

(12)

where TP, FP, TN, and FN separately indicate the true
positive, false positive, true negative, and false negative. (e
AUC is obtained by computing the area under the receiver
operating characteristic curve (ROC) which is the curve to
describe the relationship between the true positive rate
(TPR) and the false positive rate (FPR) under varied
threshold settings. Obviously, the higher result stands for
better performance.

3.3. Evaluation of the Proposed Method Applied to Binary
Classification. In this section, experiments are conducted
for the proposed 3DCNN+SVM classification method and
also for the other state-of-the-art methods, respectively. (e
methods proposed in the cited literature were originally
designed for solving binary classification problems, such as
the prediction of AD vs. NC or MCI vs. NC. For our
proposed method, since a single 3DCNN+SVMmodel with
end-to-end training is also proposed for solving a binary

classification problem, we just need to use a single
3DCNN+SVM network to perform the classification
without needing three such networks.

Aiming to better evaluate the generalization perfor-
mance of the proposed method and the state-of-the-art ones,
we test the approaches on both training and testing sets.
Tables 3–5 present the experimental results implemented on
the data of AD vs. NC, MCI vs. NC, and AD vs. MCI, re-
spectively. Since the experimental results given in the cited
literature were obtained by using different data partitions
under different experiment settings, in order to make a fair
comparison, the methods without “∗” are implemented by
using the same PETdata under the same experiment settings
as in ours in the paper; meanwhile, the results of themethods
with “∗” are cited by the corresponding reference. From the
results shown in the tables, one can see that the proposed
method generally performs better than the other ones, and
its effectiveness can be confirmed by the experiments.

In addition, Figure 5 displays the comparisons of the
ROC curves on AD vs. NC, MCI vs. NC, and AD vs MCI.
From the figure, we can observe that the proposed method
achieves the best AUC compared with the mentioned state-
of-the-art methods and proves the robustness and effec-
tiveness of the hybrid model.

3.4. Evaluation of the ProposedMethod Applied to 3-Category
Classification. As mentioned before, in order to solve the
early prediction of AD symptoms, a hybrid 3-category
classification system is developed by integrating three binary
3DCNN+SVM classifiers with an optimal decision fusion
scheme. In this section, we present the experimental results
to evaluate this 3-category classification system by using the
3D PET images fromMCI, AD, and NC subjects. In order to
demonstrate the effectiveness of the proposed method, the
“CNN+BGRU” method introduced in [14] and the
“ADCNN” model proposed by Liu et al. [16] are imple-
mented in the paper for comparison. In this work, we re-
implement the CNN-based state-of-the-art methods and
train and test by using the same 3D PET images as used in

Table 3: Evaluation of the proposed 3DCNN+SVM with E2E applied to binary classification of AD vs. NC samples (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
Gray [6]∗ — — — — 81.60 82.7 80.4 90.0
Lu [10]∗ — — — — 89.44 88.89 90.0 —
Silveira [8]∗ — — — — 90.97 — — —
Ding et al. [12] 98.92 99.49 98.61 98.95 86.27 86.97 85.78 90.50
Liu et al. [14] 98.61 99.59 98.07 99.84 89.31 87.50 90.32 92.96
Huang et al. [15] 99.21 99.43 98.48 99.35 88.68 87.74 89.17 91.98
Proposed 99.19 99.39 99.54 99.88 90.82 91.29 90.59 93.75

Table 2: Demographic characteristics of the studied subjects.

Diagnosis Number Age Gender (F/M) MMSE
AD 514 75.98± 7.62 305/209 19.26± 5.64
MCI 1247 76.47± 7.54 809/438 22.83± 6.56
NC 945 76.99± 5.95 544/405 27.83± 3.63
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Table 4: Evaluation of the proposed 3DCNN+SVM with E2E applied to binary classification of MCI vs. NC samples (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
Gray [6]∗ — — — — 70.20 73.80 62.30 73.0
Lu [10]∗ — — — — 79.63 — — —
Silveira [8]∗ — — — — 70.00 46.96 80.44 —
Ding et al. [12] 98.70 98.05 99.55 99.43 72.37 74.70 69.31 79.19
Liu et al. [14] 99.04 98.52 99.74 99.73 73.80 73.16 74.69 80.45
Huang et al. [15] 98.30 97.72 99.09 99.97 73.52 75.50 70.90 79.65
Proposed 99.54 99.26 99.90 99.88 76.68 77.80 75.57 82.39

Table 5: Evaluation of the proposed 3DCNN+SVM with E2E applied to binary classification of AD vs. MCI samples (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
Gray [6]∗ — — — — 68.2 58.3 73.0 70.0
Lu [10]∗ — — — — — — — —
Silveira [8]∗ — — — — 70.0 — — —
Ding et al. [12] 92.39 97.50 90.29 98.59 71.19 68.52 72.36 77.28
Liu et al. [14] 96.10 99.93 94.52 99.18 73.79 75.00 73.28 79.16
Huang et al. [15] 96.09 99.66 94.53 99.39 73.83 74.93 73.42 78.53
Proposed 98.45 99.24 97.31 99.91 74.29 70.78 75.48 80.11
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Figure 5: ROC curves of the proposed method and state-of-the-art methods on AD vs. NC, MCI vs. NC, and AD vs. MCI. (a) AD vs. NC.
(b) MCI vs. NC. (c) AD vs. MCI.
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Table 6: Evaluation of the proposed method applied to 3-category classification in terms of ACC (%).

Method
Training set Testing set

AD MCI NC Average AD MCI NC Average
Cabral et al. [9]∗ — — — — — — —- 66.78
3DCNN 99.85 98.62 99.89 99.45 65.63 62.12 70.43 65.66
CNN+BGRU [14] 97.75 99.89 99.86 99.17 58.65 66.22 68.28 65.53
ADCNN [16] 99.81 98.35 99.99 99.38 65.16 63.25 68.63 65.44
Proposed 99.17 97.83 99.37 98.79 73.42 67.86 72.28 71.19

Table 8: Ablations studies of the proposed 3DCNN+SVM model applied to binary classification of MCI vs. NC (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN 99.80 99.66 99.55 99.99 75.04 75.54 72.97 79.74
3DCNN+SVM 98.35 98.30 98.41 99.99 75.58 76.42 74.41 80.80
3DCNN+SVM+E2E 99.54 99.26 99.90 99.88 76.68 77.80 75.57 82.39

Table 7: Ablations studies of the proposed 3DCNN+SVM model applied to binary classification of AD vs. NC (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN 99.50 99.72 99.39 99.97 89.83 90.94 89.26 92.68
3DCNN+SVM 98.62 99.01 98.40 99.95 90.20 90.34 90.19 93.36
3DCNN+SVM+E2E 99.19 99.39 99.54 99.88 90.82 91.29 90.59 93.75

Table 9: Ablations studies of the proposed 3DCNN+SVM model applied to binary classification of AD vs. MCI (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN 98.37 99.73 97.72 99.81 73.56 73.84 73.51 77.82
3DCNN+SVM 97.72 99.43 96.80 99.84 73.95 71.88 74.89 78.75
3DCNN+SVM+E2E 98.45 99.24 97.31 99.91 74.29 70.78 75.48 80.11
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Figure 6: ROC curves of the ablation experiments on 3DCNN+SVM. (a) AD vs. NC. (b) MCI vs. NC. (c) AD vs. MCI.
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the paper. Table 6 shows the experiment results on training
and testing sets, in which the experimental results of
“3DCNN” are also included that are obtained by using a
three-dimensional CNN network with the same structure as
the 3DCNN shown in Figure 2 but adjusting the number of
the output fully connected layer nodes from 2 to 3.(is “3D-
CNN” model is also trained and tested by using the same
data as the other models and also used for performance
comparison in the experiment.

From the results shown in Table 6, it can be seen that the
proposed hybrid 3-category classification system obtains a sig-
nificant improvement on all the four evaluation indexes,
comparedwith the others. According to the results of Tables 3–6,

it implies that the proposed method not only achieves excellent
performance in binary classification tasks but also outperforms
the othermethods in three category classification by applying the
proposed decision strategywith three proposed binary classifiers.

3.5. Ablation Experiments of the CNN+ SVM Hybrid Model
with End-to-End Training Algorithm. For the proposed
method, the SVM is employed to replace the fully connected
layer of the proposed 3DCNN as the classifier, and an end-
to-end algorithm is developed to optimize the hybrid model.

In order to compare the performance of the improve-
ment and, meanwhile, validate the effectiveness of the
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Figure 7: (e visualization results of the features extracted from the 3DCNN before and after the end-to-end training algorithm on AD vs.
NC. (a) (e results before end-to-end training. (b) (e results after end-to-end training.
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Figure 8:(e visualization results of the features extracted from the 3DCNN before and after the end-to-end training algorithm onMCI vs.
NC. (a) (e results before end-to-end training. (b) (e results after end-to-end training.
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integration, we conduct ablation experiments to evaluate the
proposed improvement including the SVM-based classifier and
the end-to-end algorithm. Tables 7–9 show the ablation results
of the proposed module evaluated on the data of AD vs. NC,
MCI vs. NC, and AD vs. MCI on both training and testing sets,
respectively. In order to make a fair comparison, the 3DCNN
network illustrated in Figure 2 is employed as the baseline for
further comparison. To assess the effects of the SVM-based
classifier, in this section, the results of “3DCNN+SVM” are
obtained by directly combining the baseline with an SVM
without the proposed end-to-end algorithm, i.e., the two
modules are trained separately. From the results of the three
binary-category classification tasks, the “3DCNN+SVM” can
give relatively better overall performance than the baseline,
which proves the effectiveness of the SVM-based classifier on
AD prediction with scarce training data. To further optimize
the hybrid model, the end-to-end algorithm is developed to
fine-tune the 3DCNN model. (e results of
“3DCNN+SVM+E2E” are obtained by using the proposed
end-to-end training methods. With the assistance of the end-
to-end algorithm, the performance of the proposed module is

improved again on the indexes of ACC, SEN, SPE, and AUC.
Figure 6 displays the comparisons of the ROC curves onAD vs.
NC, MCI vs. NC, and AD vs. MCI for the above ablation
experiments, which further proves the effectiveness of the
proposed implementations for AD prediction. (erefore,
according to the ablation studies, the proposed SVM-based
classifier and the end-to-end algorithm play an important role
in boosting the performance of the baseline on AD diagnosis.

In addition, we also visualize the features extracted by
the outputs after the global average pooling layer of 3DCNN
before and after end-to-end training, and the visualization
results are shown in Figures 7–9 . From the results, it can be
seen that the features in visual are easier to be recognized
after end-to-end training, which confirms the feasibility of
the proposed end-to-end algorithm.

3.6. Ablation Studies of the Implemented 3DCNN. In this
section, we validate the effectiveness of the key technologies
employed in the 3DCNNmodel, mainly including the channel
attention mechanism and the instance normalization method.
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Figure 9: (e visualization results of the features extracted from the 3DCNN before and after the end-to-end training algorithm on AD vs.
MCI. (a) (e results before end-to-end training. (b) (e results after end-to-end training.

Table 10: Ablations studies of the channel attention mechanism on AD vs. NC (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN w/o Atten 98.74 99.88 99.12 99.78 89.41 90.55 88.83 91.92
3DCNN with Atten 99.50 99.72 99.39 99.97 89.83 90.94 89.26 92.68

Table 11: Comparison of different normalization functions of SVM on AD vs. NC (%).

Method
Training set Testing set

ACC SEN SPE AUC ACC SEN SPE AUC
3DCNN with BN 99.04 99.21 99.48 99.92 89.36 89.68 89.16 91.96
3DCNN with IN 99.50 99.72 99.39 99.97 89.83 90.94 89.26 92.68
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Table 10 shows the ablation results on AD vs. NC prediction.
(e “3DCNN w/o Atten” is the model that removes the
channel attention mechanism from the designed 3DCNN, and
the “3DCNN with Atten” is the proposed 3DCNN model
shown in Figure 2. As can be seen, the model with channel
attention is superior to the model without the attention
mechanism in the four indexes, which shows that the measure
is effective for improving the recognition accuracy.

In addition, due to the small batch size caused by a large
scale of image data, the instance normalization (IN) is
employed to replace the typical batch normalization (BN) for
the designed 3DCNNmodel. (e comparison experiments are
conducted in Table 11, in which the 3DCNN with BN is the
model that uses BN as the normalization function, and the
3DCNNwith IN is the proposed 3DCNNmodel. It can be seen
from the results that the performance of the 3DCNN is im-
proved after replacing BN with IN, and the sensitivity is the
most obvious. As a result, from the results in Tables 10 and 11,
the measures introduced into the proposed 3DCNNmodel are
helpful in improving the performance of the model.

4. Summary and Further Working Direction

In this paper, we proposed a new classification system for
early automatic diagnosis of AD symptoms based on
3DCNN and SVM, in which the original 3-category clas-
sification problem is divided into three binary classification
problems; each binary classification is realized with a
3DCNN+SVM model. Furthermore, an end-to-end learn-
ing algorithm is developed for training the 3DCNN+ SVM
networks, and an optimal decision fusion scheme is pro-
posed to fuse the outputs of three 3DCNN+SVM classifiers
based on the criteria of majority voting. By using these
methods, the advantages of both CNN and SVMmodels can
be fully utilized; thus, the overall performance of the system
can be significantly improved. Experimental results obtained
in the paper confirm the effectiveness of the proposed ap-
proach that outperforms the existing start-of-the-art
methods in terms of the class accuracy, sensitivity, speci-
ficity, and area under ROC.

It is noticed that, from the experimental results obtained
in the paper, the classification performance of MCI samples
still leaves some room for further improvement, and the
correct identification of this category samples is crucial for
the early diagnosis of AD. (erefore, a more effective
method is needed to be developed to overcome this shortage,
which will be the future research direction of the paper.
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C. J. C. Burges, and A. J. Smola, Eds., MIT Press, Cambridge,
MA, USA, 1998.

[30] ADNI Database, http://adni.loni.usc.edu/, 2020.

Computational Intelligence and Neuroscience 13

https://arxiv.org/abs/1911.03740v3
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1906.02629
http://adni.loni.usc.edu/


Research Article
Diversity Evolutionary Policy Deep Reinforcement Learning

Jian Liu 1,2 and Liming Feng1,2

1School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
2Engineering Research Center of Intelligent Control for Underground Space, Ministry of Education,
China University of Mining and Technology, Xuzhou 221116, China

Correspondence should be addressed to Jian Liu; liujiansqjxt@126.com

Received 19 June 2021; Revised 10 July 2021; Accepted 19 July 2021; Published 4 August 2021

Academic Editor: Nian Zhang

Copyright © 2021 Jian Liu and Liming Feng. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

*e reinforcement learning algorithms based on policy gradient may fall into local optimal due to gradient disappearance during
the update process, which in turn affects the exploration ability of the reinforcement learning agent. In order to solve the above
problem, in this paper, the cross-entropy method (CEM) in evolution policy, maximum mean difference (MMD), and twin
delayed deep deterministic policy gradient algorithm (TD3) are combined to propose a diversity evolutionary policy deep
reinforcement learning (DEPRL) algorithm. By using the maximum mean discrepancy as a measure of the distance between
different policies, some of the policies in the population maximize the distance between them and the previous generation of
policies while maximizing the cumulative return during the gradient update. Furthermore, combining the cumulative returns and
the distance between policies as the fitness of the population encourages more diversity in the offspring policies, which in turn can
reduce the risk of falling into local optimal due to the disappearance of the gradient. *e results in the MuJoCo test environment
show that DEPRL has achieved excellent performance on continuous control tasks; especially in the Ant-v2 environment, the
return of DEPRL ultimately achieved a nearly 20% improvement compared to TD3.

1. Introduction

Reinforcement learning [1, 2], as an important branch of
machine learning [3, 4], has always been a research hotspot.
Reinforcement learning constantly improves its policy by
interacting with the actual environment, so that the policy
can get the maximum cumulative return in the current
environment. In recent years, deep learning has exerted
more and more influence on various research fields. *e
combination of deep learning and reinforcement learning
produces a variety of deep reinforcement learning algo-
rithms. Deep reinforcement learning can be divided into
three types: value-based deep reinforcement learning [5–7],
policy-based deep reinforcement learning [8], and deep
reinforcement learning based on actor-critic structure
[9–11].

Value-based deep reinforcement learning methods es-
timate the value function through a neural network and use
the value function output by the neural network to guide the

agent to choose policies, such as deep Q network (DQN)
algorithm [12]. Policy-based deep reinforcement learning
methods can parameterize policies and achieve policy op-
timization through learning parameters, so that the agent
can obtain the largest cumulative return, such as deter-
ministic policy gradient (DPG) algorithm [5]. *is type of
algorithm has good performance when dealing with high-
dimensional continuous space problems, but it is easy to
cause gradient disappearance in the process of policy update
and then fall into the local optimal solution problem [8].
Deep reinforcement learning methods based on actor-critic
structure combine value-based and policy-based methods to
learn policies while fitting value functions, such as deep
deterministic policy gradient (DDPG) algorithm. Actor
network parameters are trained according to the value
function output by the critic network, and the critic network
parameters are updated in a single step using the time
difference (TD) method. Although the actor-critic-based
methods have the advantages of both value-based and
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policy-based methods, they also inherit the shortcomings of
the policy gradient algorithm; that is, the policy update falls
into a local optimal solution due to the disappearance of the
gradient.

*e DDPG algorithm combines the ideas of DQN [12]
and DPG [5] to solve tasks under continuous action. As an
off-policy actor-critic algorithm, DDPG can be trained with
historical data through experience playback pool, which
greatly improves the utilization of samples and achieves better
results in continuous action tasks. Subsequently, inspired by
double DQN [13], twin delayed deep deterministic policy
gradient algorithm (TD3) [10] on the basis of DDPG si-
multaneously uses two critic networks to fit the state action
value function. And it takes the minimum value of the two
target network outputs as the final estimate. TD3 solves the
problem of overestimation of the DDPGmedian function and
improves the stability of the agent. However, since DDPG and
TD3 both use a similar way to the policy-based algorithms
when updating the policy, they also rely on the gradient
information for updating policy, which undoubtedly suffers
from the vanishing gradient problem during the update
process. By adding a small amount of random noise to the
policy output by the neural network, the influence of the
disappearance of the gradient on the policy update can be
alleviated to a certain extent. For example, NoisyNets [14]
enhance the exploration ability of the algorithm by directly
adding random noise to the parameters of the neural network.
However, since the influence of random noise on the policy is
random and nondirectional, the effect of this method is
limited.*e combination of policy gradient and deep learning
can be applied to complex and challenging tasks such as game
simulation [15], robot control [16], and dialogue system [17].
However, when the policy gradient methods are applied to the
continuous control filed, there still exists a basic problem, that
is, the local optimal problem caused by the disappearance of
gradient in the updating process. Tessler et al. [8] put forward
that the generation model can be used to learn policies. In this
way, although local optimal problem can be avoided, the
difficulty of algorithm training is increased.

Evolutionary policy has been used as a nongradient
optimization algorithm for decades and performs well in
some reinforcement learning benchmark environments.
Compared with gradient optimization, the evolution policy
is simpler to implement, uses fewer hyperparameters, does
not require gradient information, is easier to expand in a
distributed environment, and is less affected by sparse re-
wards. Wierstra et al. [18] proposed Natural Evolution
Policies (NES), which optimizes the policy by searching for
the distribution of parameters and uses natural gradients to
update the distribution in the direction of higher fitness.
Inspired by the NES, Tim et al. [19] used the NES as a
nongradient black box optimizer to find the optimal policy
parameters. Khadka and Tumer [20] proposed evolutionary
reinforcement learning (ERL) by effectively combining the
evolutionary algorithm based on population with DDPG.
Based on ERL, Pourchot and Sigaud [21] combined the
cross-entropy method (CEM) with reinforcement learning
and proposed CEM-RLmethod, which further improved the
performance of the algorithm.

At present, most of the algorithms that combine rein-
forcement learning and evolutionary policy only make use of
the cumulative return information of policies in each gen-
eration population but do not make full use of the distance
information of policies between different generations. Ef-
fectively increasing the distance between policies of different
generations is conducive to the generation of diverse policies
for future generations and can improve the exploration of
the environment by the reinforcement learning agent. Si-
multaneously, compared with the single policy, the diverse
policies can effectively reduce the risk of falling into the local
optimal solution in the updating process. *erefore, in this
paper, a diversity evolutionary policy deep reinforcement
learning (DEPRL) algorithm is proposed. DEPRL uses
maximum mean discrepancy (MMD) to measure the dis-
tance between different policies. In the contemporary
population, some policies maximize the cumulative return
while maximizing the distance from the previous generation
policy during the gradient update process. In the process of
population evolution, the distance information and cumu-
lative return of the policy are taken as the fitness of the
population. *e difference between the new generation
policy and the previous generation policy is enlarged on the
basis of ensuring the higher cumulative return of the new
generation policy. By diversifying the policies in the pop-
ulation, DEPRL reduces the risk that the algorithm will fall
into local optimum due to the disappearance of gradient in
the process of updating and improves the exploration effi-
ciency of agents. Finally, the effectiveness of DEPRL in
continuous action task is verified by MuJoCo simulation
environment.

*e remainder of this paper is organized as follows. *e
next section describes the related works of DEPRL method.
Section 3 represents the framework and details of DEPRL
method. *en, in Section 4, a series of comparison exper-
iments on MuJoCo test environment are conducted. *e
final section provides our concluding remarks and points
out our future work orientation.

2. Related Works

2.1. Markov Decision Process (MDP). In reinforcement
learning, the interaction process between reinforcement
learning agents and the environment can be represented by
Markov decision process (MDP). MDP can be represented
by a tuple M � (S, A, R, Pt, c), where S is the state space, A is
the action space, R is the reward function, Pt is the state
transition probability, and c ∈ [0 ∼ 1] is the discount factor.
When the agent interacts with the environment, the way of
choosing an action is called an action policy. Generally, the
action policy can be a random policy or a deterministic
policy. *e random policy π is a probability value, which
represents the probability that the agent chooses different
actions from the action space in the state S, and the de-
terministic policy πη represents the choice of a certain action
in the state S. In each time step, the agent observes the
current state st ∈ S according to the environment and
chooses action at ∼ π(st) according to the policy to get the
reward rt � r(st, at) of the environment feedback.

2 Computational Intelligence and Neuroscience



Subsequently, the agent enters the next state according to the
state transition probability Pt. *e goal of reinforcement
learning is to train the agent so that the agent finds an
optimal policy π∗ that can obtain the largest cumulative
return.

2.2. Cross-Entropy Method (CEM). Evolutionary algorithms
update the population by managing a finite number of in-
dividuals and generating new individuals near the previous
elite sample. Some evolutionary algorithms are temporary
optimization methods based on heuristics, such as genetic
algorithm (GA) [22]. And the other part is based on the
distribution algorithm that estimates the elite sample, such
as estimation of distribution algorithms (EDA) [23, 24].
Cross-entropy method (CEM) is a simple EDA algorithm.
Suppose that the total number of individuals in the pop-
ulation is K, where the total number of elite individuals is
fixed at a certain value Ke, which is usually set to half of the
total number of individuals in the population. After eval-
uating all the individuals in the population, the first Ke

outstanding individuals are used to calculate the new mean
and variance of the population. *en, additional variance is
added to prevent premature convergence, and the next
generation is sampled from the new population. A new
distribution is obtained by adding Gaussian noise ε around
the average value μ of the distribution, so that each indi-
vidual (xi)i�1,...,K is sampled from this new distribution, that
is, xi ∼ N(μ,Σ), where Σ represents the current covariance
matrix. By calculating the fitness of these newly generated
individuals related to specific problems, CEM uses the best
performing Ke individuals (zi)i�1,...,Ke

to update the distri-
bution parameters.

2.3. Neural Networks. In recent years, many neural net-
works, such as extreme learning machine (ELM) [25],
probabilistic neural network (PNN) [26], and deep neural
networks (DNN) [27], have been proposed and applied in
many research fields. For example, Yi et al. [26] proposed a
self-adaptive probabilistic neural network (SaPNN) method
for transformer fault diagnosis problem. SaPNN can select
the best spread self-adaptively all the time and always get the
best prediction accuracy. To improve the accuracy and
usefulness of target threat assessment in the aerial combat,
Wang et al. proposed Elman-AdaBoost strong predictor [28]
and multiple wavelet function wavelet neural networks
(MWFWNN) [29] to solve threat assessment. Elman-Ada-
Boost strong predictor uses the Elman neural network as a
weak predictor and obtains a strong predictor composed of
multiple Elman neural network weak predictors through the
Elman-AdaBoost algorithm. In [29], a wavelet mother
function selection algorithm was proposed with minimum
mean squared error and used to construct MWFWNN
network. Cui et al. [30] proposed a novel method that used
convolutional neural network (CNN) to improve the de-
tection of malware variants. *ey converted the malicious
code into grayscale images and used CNN to identify and
classify the images.

Neural networks can also be applied to reinforcement
learning. Traditional reinforcement learning is limited to
small action space and sample space, which are generally
discrete. However, more complex and more realistic tasks
often have a large state space and continuous action space.
When the input data is image or sound, it usually has a very
high dimension, which is difficult for traditional rein-
forcement learning to deal with. Deep reinforcement
learning is to combine the high-dimensional input of deep
neural networks with reinforcement learning. Deep Q
network (DQN) [12] can be regarded as the beginning of the
successful combination of the two. It uses a deep network to
represent the value function. Based on Q-learning in rein-
forcement learning, it provides target values for the deep
network and constantly updates the network until conver-
gence. After that, many deep reinforcement learning algo-
rithms have been proposed, such as double DQN [13], DPG
[5], and TD3 [10].

2.4. Twin Delayed Deep Deterministic Policy Gradient Algo-
rithm (TD3). Both DDPG and TD3 are off-policy rein-
forcement learning algorithms based on the actor-critic
structure. DDPG is easy to cause the problem of overesti-
mation of value function, which affects the stability of al-
gorithm. To mitigate the negative effects of overestimation,
TD3 uses both critic networks to estimate the state action
values and takes the minimum value of the two target
network outputs as the final estimate.

In order to make the parameters of actor and critic
networks updated stably, TD3makes the updating frequency
of network parameters of actor network lower than that of
critic network during the training process. TD3 also adds
random noise to the action output by the target policy, which
not only improves the agent’s exploration ability, but also fits
the state action value of a small area around the target action.
TD3 makes the value function learned by critic network
smoother in the action dimension. Since the update di-
rection of actor network parameters is affected by the value
function learned from the critic network, the policy learned
from actor network also tends to be smoother in the action
dimension. By adding random noise, TD3 improves the
stability of the agent during training process.*e calculation
formula of the action value of the target state in TD3 is as
follows:

y r, s′(  � r + cmin
i�1,2

Qϕi
s′, πθ s′(  + ε( ,

ε ∼ clip(N(0, σ), −c, c).
(1)

3. Methods

3.1. Diversity Evolutionary Policy Deep Reinforcement
Learning (DEPRL). *e objective function of DEPRLmainly
includes the objective function of critic network and actor
network. To mitigate the impact of overestimation of the
value function, critic network takes the minimum value of
the two target network outputs to calculate the final target
value. Assuming that θ1 and θ2 represent the estimated
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network parameters of the two critic networks, θtarg,1 and
θtarg,2 represent target network parameters of the two critic
networks. *en, the update process of the critic networks in
DEPRL is shown in Figure 1. *e target value of state action
under time steps t is

Y st, at(  � r + cmin
i�1,2

Qθtarg,i
st+1, πϕ st+1(  , (2)

where r is the reward to the environment,
Qθtarg,i

(st+1, πϕ(st+1)) represents the target network output
value of the i-th critic network, ϕ represents the network
parameters of the actor network, and c is the discount factor.
Assume that Qθi

(st, at) represents the estimated value
output by the i-th estimation network under the number of
time steps t, and then the objective function of critic network
can be written as

JQ θi(  � E st,at( )∼D

1
2

Qθi
st, at(  − Y st, at(  

2
 . (3)

*erefore, the estimated network parameters θ1 and θ2
can minimize the objective function JQ(θi) through gradient
descent. *at is, gradient descent is used to minimize the
mean square error between the estimate and the target value:

θ1⟵ θ1 − α∇θ1
1
2

Qθ1 st, at(  − Y st, at(  
2
,

θ2⟵ θ2 − α∇θ2
1
2

Qθ2 st, at(  − Y st, at(  
2
,

(4)

where α represents the update step size. In the process of
gradient updating, the target network parameters θtarg,1 and
θtarg,2 are kept constant to ensure the stability of updating.

After the estimated network parameters are updated, the
parameters of the target network are updated by soft update
method. *e formula is as follows:

θtarg,1⟵ τθ1 +(1 − τ)θtarg,1, (5)

θtarg,2⟵ τθ2 +(1 − τ)θtarg,2, (6)

where τ is the coefficient of soft update method. For the
parameter ϕ of actor network, the gradient update direction
is to maximize the distance between the current policy and
πη while maximizing the cumulative return. *e distance
between πη and the current policy can be calculated by using
the square of the maximum mean discrepancy (MMD).

Given samples x1, . . . , xn ∼ P and y1, . . . , ym ∼ G, the
square of the MMD can be estimated only from the sample
of the distribution. *en, the square of MMD between
distribution P and G can be written as

MMD2
x1, . . . , xn , y1, . . . , ym (  �

1
n
2 

i,i′

k xi, xi′(  −
2

nm

i,j

k xi, yj  +
1

m
2 

j,j′

k yj, yj′ , (7)

where k(·, ·) is the kernel function. Here, Gaussian kernel is
used in DEPRL, that is,

k xi, xi′(  � exp −
xi − xi′

����
����
2

2σ2
⎛⎝ ⎞⎠, σ > 0, (8)

where σ is standard deviation. Record the square of MMD
between policy πη and policy πϕ as DMMD(πη, πϕ), and the
formula is as follows:

DMMD πμ, πϕ  � MMD2 πμ(·|s), πϕ(·|s)  s ∼ D, (9)

where D is the experience pool.
To sum up, the objective function of actor network only

considering the maximum cumulative return is

Jπ(ϕ) � Es∼D,a∼πϕ(×|s) Qθ1(s, a) . (10)

When DMMD(πη, πϕ) that satisfies the gradient update
requirement is obtained, the objective function of the actor
network can be written as

JMMD(ϕ) � Es∼D,a∼πϕ(·|s) Qθ1(s, a) 

+ βEs∼D MMD2 πμ(·|s), πϕ(·|s)  ,
(11)

where β> 0 is the weighting factor. *e number of actors
that only consider cumulative returns is recorded as K1, and
then the number of actors that maximize DMMD(πη, πϕ) at
the same time is K/2−K1.

3.2. ;e Framework of DEPRL. In CEM-RL method, the
total number of individuals in the population is set to K. *e
mean μ and covariance matrix Σ of the policy parameter
distribution are obtained by random initialization.
According to the covariance matrix and the mean value, K
parameters are extracted from the distribution as the pa-
rameters of actor network in the population. *e actor
network with half of the total number of individuals in the
population is randomly selected for gradient update
according to the value function output from critic network.
*e goal is to maximize the cumulative return of the actor
network’s corresponding policy. *e critic network that
guides actor network gradient updates throughout the
process is the same; that is, half of the actors in the
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population use the same critic network to guide updates. In a
population, the data generated by the interaction between
the actor and the environment is stored in the experience
pool and is used to train the critic network. By evaluating the
cumulative returns of the policies corresponding to all actors
in the population after gradient updating, the policies ranked
in the top half of the cumulative returns are selected as the
elite sample. *e number of the elite sample Ke is usually set
to Ke � K/2. Finally, according to the parameters of con-
temporary elite samples, μnew and Σnew of the new generation
actor network parameter distribution are generated.

*e framework of DEPRL algorithm is shown in Fig-
ure 2. Assume that the corresponding policy of Actorμ
composed of elite sample parameters is πη. When the critic
network guides the next generation policy update, it needs to
maximize the MMD between a part of policies and πη. By
increasing the diversity of descendant policies, more space is
explored, and the probability of the algorithm falling into the
local optimal solution is reduced. When selecting the elite
sample, not only the cumulative return of each policy should
be considered, but also the MMD between each policy and
πη should be considered. In the population, the updated new
policy is first sorted according to the cumulative return from
high to low, and the policies with cumulative return ranked
between 2 and K/2 greater than πμ cumulative return are
taken out, and the MMD values between these policies and

πη are calculated, and reorder the MMD value from largest
to smallest. In the population, the updated new policy is first
sorted according to the cumulative return from high to low.
*en, the policies in which the cumulative return is between
2 and K/2 greater than the cumulative return of πη are taken
out. Finally, the MMD values between these policies and πη
are calculated. *ese policies are reordered in descending
order of MMD value.

Use MMD as the standard to select policies that is quite
different from πμ among contemporary policies, which helps
transfer the diversity policy to the next generation

Evaluate

Select elite
samples

Environment

Actorμ

N (μ, ∑) 

Population

Actor 1

Actor K/2

Actor K

Maximize
the MMD

Sampling

Update
actor

Update
critic

Critic

MMD
sampling

Update the
sampling

Storage Experience
pool

...

...

Figure 2: *e framework of DEPRL.
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Figure 1: *e update process of critic networks in DEPRL.
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distribution. *e new generation policy generated by
sampling in the new distribution is quite different from the
old policy, which makes the trajectory of the new generation
policy more diversified and can increase the exploration
space. In order to reduce the amount of calculation when
calculating the new distribution parameters, Σ is constrained
to be a diagonal matrix. *e update formulas of the new
distribution parameters μnew and Σnew are as follows:

μnew � 

Ke

i�1
λizi, (12)

Σnew � 

Ke

i�1
λi zi − μold(  zi − μold( 

T
+ ε, (13)

where λi represents the weight of the parameter corre-
sponding to the i-th elite policy in the population, and ε is
the Gaussian noise. λi can be defined as

λi �
log 1 + Ke( /i( 


Ke

i�1 log 1 + Ke( /i( 
. (14)

*e above formula indicates that the higher the ranking
of the parameters corresponding to the elite policy, the
greater the value of a λi.

To sum up, the update process of DEPRL can be simply
summarized as follows: (1) the parameter distribution of the
initialization policy is N (μ0, 0); (2) K group policies are
randomly selected corresponding to K group parameters
from the distribution; (3) gradient updating is performed by
randomly selecting K/2 policy; (4) the fitness of the corre-
sponding policy under the K set of parameters is calculated;
(5) the parameters corresponding to the current elite policy
are used to calculate the parameter distribution (μ, ) of the
next generation policy, as shown in equations (12) and (13);
(6) whether the parameter distribution of the contemporary
policy meets the requirements is determined; if so, stop
updating; if not, repeat step (2).

*e pseudocode of DEPRL algorithm is shown in
Algorithm 1.

4. Results and Analysis

4.1. Experiment Settings. In this section, we use the MuJoCo
test environment implemented in OpenAI Gym [31] to
evaluate the performance of the proposed algorithm and
comparison Algorithms. Gym is a basic platform for testing
deep reinforcement learning algorithms provided by
OpenAI. It provides a large number of simple interfaces for
the training of the agent, greatly simplifies the interaction
process between the agent and the environment, and fa-
cilitates related researchers to implement deep reinforce-
ment learning algorithms and test the performance of deep
reinforcement learning algorithms. Figure 3 shows the
corresponding status screens of the four tasks in theMuJoCo
test environment. Table 1 describes the state dimension and
action dimension of the four tasks in the MuJoCo test
environment, as well as specific task goals. According to the
state dimension and action dimension information provided

by MuJoCo, it is convenient to design the corresponding
neural network for learning. *e version of OpenAI Gym
used in the experiment is 0.17.3, and the version of MuJoCo
is 2.0.

Experiment settings are set up as follows:

(1) We chose to compare TD3, multiactor TD3, CEM,
and CEM-TD3 to verify the superiority of the
proposed DEPRL. *e common superparameter
settings of the five algorithms are the same as shown
in Table 2, and the total numbers of population
individuals and elite individuals of CEM-TD3 and
DEPRL are the same, 10 and 5, respectively. When
DEPRL calculates DMMD, the data size M extracted
from the experience pool is 600, the number of
Gaussian kernel function m� n� 5, and the value of
K1 is 4. *e weighting factor β in the objective
function JMMD is 0.2 in the Ant-v2 environment, and
0.1 in all other test environments.

(2) In order to make a fair comparison between different
algorithms, we combined CEM and TD3 to form
CEM-TD3 algorithm for experiment. And the net-
work structure used by CEM to represent policies is
consistent with that of DEPRL, CEM-TD3, multi-
actor TD3 and TD3. Multiactor TD3 is a variant of
TD3. Compared with TD3, multiactor TD3 has
multiple actors.*e experience data generated by the
interaction between multiple actors and the envi-
ronment are sent to the experience pool together,
and the critic remains unchanged. In the experiment,
the number of actors in multiactor TD3 is set to 5,
and the total number of gradient updates of critic
and actor inmultiactor TD3, CEM-TD3, and DEPRL
is the same.

(3) We selected four environments HalfCheetah-v2,
Hopper-v2, Walker2d-v2, and Ant-v2 for compari-
son, and the details of the test environment are
shown in Table 1.*e experimental results are shown
in Figure 4, where the horizontal axis represents the
number of time steps, and the vertical axis represents
the cumulative return value of a round in the
evaluation stage. During the training process, the
performance of the current algorithm is evaluated
every 1000 steps. Each algorithm was repeated with
five different random seeds in different test envi-
ronments. When drawing the reward curve, the
sliding window size is set to 100. *e curve part and
shaded part in the figure represent the mean value
and the standard deviation of the accumulated
return value under multiple random seeds, respec-
tively. We also present the mean and standard de-
viation of the cumulative return per turn in different
MuJoCo tasks. *e results can be found in Table 3.

4.2. Analysis of Experimental Results

(1) As can be seen from Figure 4, DEPRL performs best
overall in the test environment and also performs
best in the environment with higher state dimension
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and action dimension, such as Ant-v2 and Wal-
ker2d-v2. CEM performs worst overall and learns
few effective policies in environments with higher
state and action dimensions. *erefore, it can be
shown that both the sample utilization and learning
rate of CEM are significantly lower than those of
other algorithms based on single-step update.

(2) In order to explore whether the improvement of
DEPRL effect is due to the adoption of multiactor
structure, we tested the influence of multiactor
structure on the algorithm. Compared with the
traditional actor-critic structure, the training data
used by the critic in the multiactor structure is
generated by the interaction between multiple actors
and the environment. By comparing the reward
curves of TD3, multiactor TD3, and DEPRL in
Figure 4, it can be found that the reward curve of
multiactor TD3 is only slightly higher than that of
TD3 based on the traditional actor-critic structure.
*erefore, it can be explained that the multiactor
structure does not improve the algorithm much. In
the Hopper-v2 training environment, multiactor
TD3 began to oscillate when the cumulative return of
the policy reached about 3200 and could not learn a

better policy, while DEPRL with the same multiactor
structure could get about 3600 cumulative returns.
By comparing the reward curves among TD3,
multiactor TD3, and DEPRL, it can be shown that
the performance improvement of DEPRL does not
simply depend on the multiactor structure.

(3) To explore the benefits of DEPRL in encouraging
offspring diversity, we compared it with CEM-TD3,
which only uses cumulative returns as a policy
learning goal. CEM-TD3 also uses multiactor
structure, and the total number of population in-
dividuals and the number of elite individuals is set
the same as DEPRL. It can be seen from Figure 4 that
the reward curve of DEPRL is significantly higher,
and the reward curve of CEM-TD3 gradually levelled
off in the second half due to the decline of explo-
ration ability. Except for the Hopper-v2 test envi-
ronment, DEPRL still maintained a relatively high
growth trend in the second half of the reward curve.

(4) As can be seen from Table 3, the DPERL algorithm
has the highest mean cumulative return of all the
algorithms. *e CEM algorithm performs the
worst, which once again demonstrates that CEM, as
a turn update algorithm with no experience replay,

Input: the coefficient of soft update method τ, sampling size of the experience pool N and M, maximum number of time steps Tmax,
discount factor c, experience pool capacity Δsize, population parameter K and K1

Output: actor network parameters ϕ∗ corresponding to the optimal policy π∗
(1) Initialize critic network parameters θ1, θ2, θtarg,1, θtarg,2 and actor network parameter distribution (μ0, 0)
(2) Ttotal � 0, Tactor � 0
(3) WHILE Ttotal<Tmax:
(4) Extract K sets of parameters para from the current distribution (μ, )
(5) FOR k� 1 TO K/2:
(6) Initialize the actor according to the parameter para[k]
(7) FOR t� 1 TO 2 ∗ Tactor/K:
(8) Sampling N samples from Δ to minimize the objective function (3)
(9) Update θtarg,1 and θtarg,2 through equations (5) and (6)
(10) FOR k� 1 TO K1:
(11) Initialize the actor according to the parameter para [k]
(12) FOR t� 1 TO Tactor:
(13) Sample N samples from Δ to maximize the objective function (11)
(14) Replace the original parameter para [k] with the new actor parameter
(15) FOR k�K1 + 1 TO K/2:
(16) Initialize the actor according to the parameter para [k]
(17) FOR t� 1 TO Tactor:
(18) Sample N samples from Δ to maximize the objective function (12)
(19) Replace the original parameter para [k] with the new actor parameter
(20) Tactor � 0
(21) FOR k� 1 TO K:
(22) Initialize the actor according to the parameter para[k]
(23) Interact with the environment to calculate the cumulative payoff G and the total number of time steps used Tepisode
(24) Store data (s, a, s′, r) in the experience pool Δ
(25) Sample M samples from Δ to calculate the DMMD between them and Actorμ
(26) Tactor �Tactor +Tepisode
(27) Ttotal �Ttotal +Tactor
(28) Select elite samples according to G and DMMD, and update the distribution according to equations (12) and (13)
(29) END WHILE

ALGORITHM 1: DEPRL.
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(a) (b)

(c) (d)

Figure 3: MuJoCo test environments. (a) Hopper-v2, (b) HalfCheetah-v2, (c) Ant-v2, and (d) Walker2d-v2.

Table 1: *e test environment in the MuJoCo benchmark.

Environment Action dimension/state dimension Task goals
Hopper-v2 3/11 Make a two-dimensional one-legged robot hop forward as fast as possible
HalfCheetah-v2 6/17 Make the 2D cheetah robot run fast
Ant-v2 8/111 Make a four-legged creature walk forward as fast as possible
Walker2d-v2 6/17 Make a two-dimensional bipedal robot walk forward as fast as possible
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Figure 4: Continued.

8 Computational Intelligence and Neuroscience



could not learn effective strategies. Compared with
TD3 and multiactor TD3 algorithms, DPERL and
CEM-TD3 algorithms have higher average cumu-
lative returns, which is due to the addition of
evolutionary strategy into DPERL and CEM-TD3
algorithms. Compared with the CEM-TD3 algo-
rithm, the DPERL algorithm achieves better results,
because it increases exploration by encouraging the
generation of diversity strategies in the offspring. In
addition, in the Hopper-v2, HalfCheetah-v2, and
Ant-v2 test environments, DPERL has smaller
standard deviations than TD3, multiactor TD3, and
CEM-TD3 algorithms, which indicates that DPERL
algorithm has more stable results than the other
three algorithms. To some extent, this also shows
that DPERL algorithm can explore more effective
strategies.

*e above results clearly show that DEPRL improves the
exploration ability of reinforcement learning agents and, to
some extent, reduces the risk of policy updating falling into
local optimum due to the disappearance of gradient.

5. Conclusions and Discussions

In this paper, we propose the DEPRL algorithm, which
combines CEM and TD3 to measure the distance between
different policies through MMD method. Some contem-
porary policies maximize the cumulative return while
maximizing the distance between them and the previous
generation policies and obtain policies with large differences
to increase the scope of exploration. In the course of evo-
lution, combining the cumulative return of a contemporary
policy with the distance between the previous generation’s
policy as fitness helps the next generation’s policy have more
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Figure 4: Results of each algorithm in MuJoCo test environment. (a) Hopper-v2. (b) HalfCheetah-v2. (c) Ant-v2. (d) Walker2d-v2.

Table 2: Values of hyperparameter.

Hyperparameter Values
Critic/actor learning rate 0.0003
Critic/actor hidden layer 2
Number of neurons 400/300
Critic activation Relu
Actor activation Tanh
Discount factor 0.99
Optimizer Adam
Soft update coefficient 0.005
Experience pool capacity 106

Experience pool sample size 100
Gauss noise Clip ((0, 0.2), −0.5, 0.5)

Table 3: *e mean and standard deviation of the cumulative return per turn in different MuJoCo tasks.

Task TD3 Multiactor TD3 CEM CEM-TD3 DPERL
Hopper-v2 3025± 577 3241± 363 1054± 17 3652± 116 3732± 106
HalfCheetah-v2 10002± 930 10341± 578 2298± 690 10978± 758 11615± 464
Ant-v2 3618± 425 3881± 319 845± 52 4037± 466 4852± 317
Walker2d-v2 4399± 238 4470± 301 743± 225 4612± 357 5001± 562
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diversity based on a higher cumulative return. By combining
TD3 with gradient updating and CEM without gradient
updating, DEPRL can reduce the risk of policy updating
falling into local optimal solution due to gradient disap-
pearance by encouraging the generation of diversified pol-
icies in the offspring. By comparing DEPRL with CEM-RL,
TD3, CEM, and multiactor TD3 in MuJoCo test environ-
ment, the experimental results show that DEPRL achieves
more effect without increasing the number of update steps.

In DEPRL, we use an estimation of distribution algo-
rithm to estimate the distribution of the elite samples and
then select the elite samples that meet certain conditions to
improve the diversification of the elite strategy. Except for
estimation of distribution algorithms, some of the most
representative computational intelligence algorithms can be
used to reinforcement learning. Monarch butterfly opti-
mization (MBO) [32] algorithm generates offspring by
migration operator, which can be adjusted by the migration
ratio of monarch butterflies. It is followed by tuning the
positions for other butterflies by means of butterfly adjusting
operator. In reinforcement learning, MBO can adjust the
selection of elite samples in the global scope to avoid the loss
of potential elite samples. In earthworm optimization al-
gorithm (EWA) [33], the offspring are generated through
Reproduction 1 and Reproduction 2 independently, and
then, the weighted sum of all the generated offspring is used
to get the final earthworm for next generation. Reproduction
1 generates only one offspring by itself that is also special
kind of reproduction in nature. Reproduction 2 is to gen-
erate one or more than one offspring at one time. EWA can
be used to replicate elite samples to ensure the high efficiency
of elite strategies in reinforcement learning and speed-up
learning. In elephant herding optimization (EHO) [34], the
elephants in each clan are updated by its current position
and matriarch through clan updating operator. It is followed
by the implementation of the separating operator, which can
enhance the population diversity at the later search phase.
EHO is an appropriate way to increase the diversity of a
population. Not only can it be used to eliminate bad rein-
forcement learning strategies, but it can also be used to add
new strategies that did not exist before. Exploration is a vital
part of reinforcement learning. Exploratory algorithms in
computational intelligence algorithms can provide mean-
ingful guidance for reinforcement learning. For example,
slime mould algorithm (SMA) [35] uses adaptive weights to
simulate the process of producing positive and negative
feedback of the propagation wave of slime mould based on
bio-oscillator to form the optimal path for connecting food
with excellent exploratory ability and exploitation propen-
sity. According to the moth’s phototaxis and Levy flight
characteristics, moth search (MS) [36] algorithm can do
exploitation and exploration at the same time and ensures
local search and global search. Harris Hawks Optimizer
(HHO) [37] is a popular population-based nongradient
optimization algorithm, which has many active time varying
exploration and development stages. It has strong global
searching ability.

We only analyzed the possibilities of the above com-
putational intelligence algorithms in reinforcement learning

applications, but these algorithms are not really used in
reinforcement learning. *erefore, in the future work, we
will devote ourselves to applying computational intelligence
algorithms to strategy optimization, exploration enhance-
ment, and acceleration of learning speed in reinforcement
learning.
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As a result of long-term pressure from train operations and direct exposure to the natural environment, rails, fasteners, and other
components of railway track lines inevitably produce defects, which have a direct impact on the safety of train operations. In this
study, a multiobject detection method based on deep convolutional neural network that can achieve nondestructive detection of
rail surface and fastener defects is proposed. First, rails and fasteners on the railway track image are localized by the improved
YOLOv5 framework. (en, the defect detection model based on Mask R-CNN is utilized to detect the surface defects of the rail
and segment the defect area. Finally, the model based on ResNet framework is used to classify the state of the fasteners. To verify
the robustness and effectiveness of our proposed method, we conduct experimental tests using the ballast and ballastless railway
track images collected from Shijiazhuang-Taiyuan high-speed railway line. (rough a variety of evaluation indexes to compare
with other methods using deep learning algorithms, experimental results show that our method outperforms others in all stages
and enables effective detection of rail surface and fasteners.

1. Introduction

In recent years, rail transportation has become one of the
most important modes of travel. As the total mileage of rail
transit continues to increase, how to ensure safe railway
operation has become a dominant issue that has attracted
public attention. As shown in Figure 1, the rail is the main
component of the railway track and is utilized to guide the
wheels of the train forward and bear the pressure of the
wheel set. (e rail and its fasteners in the service are affected
by contact forces such as extrusion and impact of the train
wheel-rail, poor environment, and material aging. (ese
problems have led to the continuous deterioration of rail-
ways, inducing the formation of rail surface defects such as
peeling, collapse, abrasion, and corrosion, as well as fastener
defects such as fracture and loosening [1]. Research results
show that many rail fractures or train derailments are caused

by rail surface or fastener defects. (erefore, it is crucial to
ensure that the rail and its fasteners are in a healthy state that
maintains the safety and stability of train operation. At
present, state detection of the rail and its fasteners on the
railway track line is mainly conducted through inspections
by railway staff. Although this inspection method has the
advantages of simplicity and low cost, it also has disad-
vantages such as low detection efficiency, high missed de-
tection rate, and poor real-time performance. In recent
years, defect detection technology based on computer vision
has been widely used in industry [2–6]. Some scholars have
begun to employ computer vision technology to detect the
defects of rails and their fasteners, so that the problems of
manual inspection can be solved.

Using a localization algorithm is necessary to improve
the accuracy of defect detection and localize the track
components to be inspected, so that the influence of
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redundant information such as background can be reduced.
Commonly used localization methods are template
matching [7], pixel statistics [8], and edge detection [9].
However, localization methods of pixel statistics and edge
detection are susceptible to uneven lighting and complex
backgrounds. (e traditional template matching method is
difficult to use in localizing deformed or damaged track
parts. To solve this problem and localize the track fasteners,
Qiu et al. [10] proposed a double-template matching
method. First, the rail template is used to localize the rail in
the horizontal direction and then use the fastener template
to localize the fastener in the vertical direction. In addition,
Li et al. [11, 12] used the geometric characteristics of track
components to localize fasteners, andWei et al. [13] used the
variance projection and wavelet transform to localize the
edges of the rail, fasteners, and backing plates based on the
fixed positional relationship between the track components.

(e detection method of rail fasteners based on tradi-
tional vision mainly uses artificially designed features to
extract the features within the fastener area and then inputs
the extracted features into a classification model based on
shallow learning to classify the state of the fasteners. (e
shallow features used in the research articles on fastener
detection mainly include Haar-like feature [7, 14], Dense-
SIFT feature [13], direction field feature [15], edge feature
[16], HOG feature [17], Gabor filter feature [18], and Hough
transform feature [11, 12]. Classification models mainly
include AdaBoost classifier [7, 19], support vector machine
(SVM) [17, 18, 20], probabilistic graphical models (PGM)
[13], and multilayered perception neural classifier [21, 22].
However, this type of detection method extracts features for
the fastener area rather than the detection object. (e
extracted features are susceptible to the influence of back-
ground information, with low robustness and low accuracy
for the identification of fasteners in abnormal states. In
recent years, as the application of deep learning technology
in image processing has achieved great success, many
scholars have also begun to try to apply deep learning
technology to rail fastener detection. Li et al. [23] used a
method based on semantic segmentation algorithm to detect
the state of fasteners First, the saliency model is used to

localize the track fastener area, and then PSPNet is used to
semantically segment the fastener subimages. Finally, the
state of the fastener is judged by the vector geometry
measurements of the fastener. Gibert et al. [24] used a
customized fully convolutional network to extract the highly
abstract features of fasteners and identify fastener types and
then utilized customized support vector machines to classify
the state of fasteners for various types of fasteners. Ma et al.
[25] cropped out the bolt area subimages that were not
related to the identification of the fastener state on the
fastener area image and then used the CNN network for
classification. (rough this approach, the accuracy rate is
improved compared to that with the classification directly in
the fastener area. To address the impact of the imbalance
problem of the dataset samples on the performance of the
detection model, Liu et al. [26] proposed a similarity-based
deep network, which obtains a large number of training
samples by combining an abnormal sample with multiple
normal samples. Liu et al. [27] proposed to use U-Net to
generate a large number of defective fastener samples, after
which the fasteners were detected using convolutional
neural network.

In the last decade, many scholars have conducted re-
search on the detection methods of rail surface defects.
(ese methods mainly solve three problems, namely, the
classification of rail surface defects [28, 29], location of rail
surface defects [30–33], and pixel-level segmentation of
rail surface defects [34–37]. Among them, the pixel-level
segmentation of rail surface defects is a key research
problem. Nieniewski [34] proposed a detection method
based on morphological processing for pixel-level ex-
traction of rail surface defects. (e main advantage of this
method is the fast detection speed that can reach 50ms/
frame. Yu et al. [35] proposed a three-stage coarse-to-fine
model. At the first stage, the background subtraction
model is used to filter the images of the defect-free rail
surface area; at the second stage, the region extraction
model is used to localize the defective area; and at the last
stage, a pixel subtraction model is used to detect the de-
fective contours and perform pixel-level extraction.
However, this method involves many steps and is sensitive
to noise. Niu et al. [36] applied a binocular line-scanning
system to the detection of rail surface defects and used
global low-rank, nonnegative reconstruction saliency al-
gorithm, and depth outlier detection to combine the two-
dimensional saliency map and the three-dimensional
defect contour to obtain the final output result. In recent
years, there has been a great development of the detection
of rail surface defect using deep learning techniques.
Faghih-Roohi et al. [38] proposed to use DCNN to classify
images of rail surface areas with defects. Shang et al. [39]
used traditional object positioning algorithms to localize
the rail surface area on the original track image and then
used a fine-tuned CNN network to divide the rail surface
subimages into two categories: defective and intact.
However, the aforementioned two methods did not detect
the specific location of the defect. Song et al. [40] used the
YOLOv3 network to localize the defect on the rail surface,
but this method did not obtain the specific size and shape

RailFastener

Figure 1: Railway track line.
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information of the defect. Liang et al. [41] used the SegNet
network to identify and segment the defects, but the
segmentation accuracy of this method needs to be im-
proved. James et al. [42] proposed TrackNet, which in-
tegrates U-Net and ResNet for defect semantic
segmentation and classification, respectively. (is method
improves the accuracy of defect recognition, but the ac-
curacy of semantic segmentation needs to be improved.

(e aforementioned methods are mainly aimed at
detecting a single railway track component. However, the
track images collected in the railway line usually contain
both rails and fasteners. If both are detected at the same
time, the detection efficiency can be greatly improved. To
the best of our knowledge, only one article considers the
defect detection problem of rail surface and fasteners si-
multaneously. Wei et al. [43] used the improved YOLOv3
model to realize the simultaneous detection of rail surface
defects and fasteners in the railway track line image and
obtained high detection accuracy. However, the types of
fasteners considered in this article are different from those
considered in our study. (is method cannot detect the
specific location and size of the rail surface defects, and the
detection speed is difficult to meet the actual needs of the
project. Realizing the pixel size detection of the surface
defect area of the rail helps the inspector judge the degree
of the rail disease. For this reason, we propose a detection
method based on convolutional neural network (CNN) to
automatically detect the rail surface defects and the state of
the fasteners on the railway line, in Figure 2. First, we
utilize the improved YOLOv5 framework to localize the
rail and fasteners in the original railway track line image.
(en, a defect detection model based on the Mask R-CNN
is designed to semantically segment the defects in the rail
subimages. In addition, the ResNet network is used to
classify the fastener state in the fastener subimages into
normal, loosening, and broken.

(e contributions of this study are summarized as
follows:

(1) A railway line key component multiobject detection
method is proposed based on a series of deep con-
volutional neural networks, which can achieve the
detection of rail surface defects and fastener state.

(2) An improved YOLOv5s framework is proposed to
localize the rail and fastener in the railway track line
image at the same time, and the Ghost bottleneck is
used to optimize the backbone network of the
original YOLOv5s to effectively reduce the number
of parameters and the computational cost. (is
method can be used for both ballast and ballastless
track line image detection. Compared with the
original YOLOv5s and other advanced object de-
tection models, the detection speed is significantly
improved while maintaining high accuracy.

(3) (e two-stage object detection algorithm, Mask
R-CNN, is used in the detection of rail surface de-
fects, which effectively improves the recognition and
segmentation accuracy.

(4) A set of state classification criteria for slab fast clip
(SFC) type fastener are proposed.

(e rest of this article is organized as follows: Section 2
introduces the rail and fastener positioningmethod based on
the improved YOLOv5. Section 3 describes the rail surface
defect detection model based on Mask R-CNN algorithm.
Section 4 introduces the state classification criteria of SFC-
type fasteners and the classificationmodel used in this paper.
Section 5 designs comparative experiments with other
competitive methods to verify the effectiveness of our
method. Finally, conclusions and future work are presented
in Section 6.

2. Localization of the Rail and Fastener

2.1. YOLOv5Framework. In this study, we use the improved
YOLOv5s object detection neural network to localize the rail
and fasteners in the original track images collected from the
railway site. (e network framework is shown in Figure 3.

(e You Only Look Once (YOLO) series network is a
one-stage object detection algorithm for object localization
and recognition in the image. (is algorithm extracts image
features by CNN and directly calculates the classification
score and object localization [44]. Compared with YOLOv3
and YOLOv4, YOLOv5 is optimized for data enhancement,
network structure, and loss function. YOLOv5 uses the
following data enhancement methods to improve the ro-
bustness of the model: mosaic data enhancement, adaptive
anchor box calculation, and adaptive image scaling. Both
YOLOv5 and YOLOv4 use mosaic data enhancement to
improve the detection ability of the model for small objects.
Adaptive anchor box calculation can calculate the best
anchor box value depending on different training data sets.
Adaptive image scaling can improve the speed of object
detection by adding a minimum of black borders when
scaling the image. In terms of network structure, YOLOv5
adds a Focus component to the Backbone to perform slicing
operations on images, retaining more complete image
downsampling information for subsequent feature extrac-
tion by adding some floating point operations (FLOPs). (e
Neck Network chose path aggregation network (PANet) [45]
to improve the problem of difficult propagation of low-level
features of the original feature pyramid networks (FPN) [46]
and strengthened the fusion of extracted features. (e Head
network chose the same as YOLOv3 and YOLOv4 to realize
object detection. (e loss function of YOLOv5 is mainly
composed of three parts, including bounding box loss,
classification loss, and confidence loss. (e binary cross
entropy is used as the loss function of the classification loss
and the confidence loss to calculate the category probability
and the target confidence score. We use CIoU loss as the loss
function of bounding box, which better describes the re-
gression of rectangular boxes [47].

2.2. Backbone Optimization. (e original YOLOv5 network
used cross stage partial (CSP) bottleneck [48] to increase the
depth of the network and thus improve the network’s ability
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to extract features. However, in the task of rail and fastener
localization, we have found that utilizing somemodules with
lower computational costs to simplify the structure of the
model can also achieve satisfactory experimental results. To
facilitate our model to be deployed on some low-perfor-
mance devices with small memory, such as track inspection
vehicles or embedded devices, we used a lightweight Ghost
bottleneck [49] instead of the CSP bottleneck in the original
network to reduce the size of the model and increase the
inference speed of the network, as shown in Figure 4. (e
core idea of the Ghost bottleneck is to use some cheap cost
linear operation to generate many feature maps with rich

information. Specifically, first, use a small amount of con-
ventional convolution operations on the feature map to
generate intrinsic features, then use some cheap cost linear
transformation on the feature map to generate another part
of the feature, and finally integrate the two parts together as
the final output feature.

(e structure of the Ghost bottleneck is shown in Fig-
ure 5. Ghost bottleneck consists of two Ghost modules. (e
network first goes through a Ghost module to increase the
number of channels, then a deep-wise convolution to re-
integrate the features, and finally a Ghost module to match
the number of channels with the shortcut paths. (e two are
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added together to obtain the final output. Ghost module
includes convolution operation and linear transform, and its
calculation formula is as follows:

Y � X∗f,

y
,
(i,j) � φ(i,j) yi( ,

(1)

where X is the input data, ∗ is the convolution operation,
and Y � [y1, y2, . . . , yi, . . . , ym] is the output data, which
means that the m channel feature map is obtained after the
convolution operation, 1≤ i≤m, φ(i,j)(yi) in the afore-
mentioned formula is the j-th linear transformation of the
i-th feature map, and Y′ � [y(1,1)

′ , y(1,2)
′ , . . . , y(i,j)

′ , . . . ,

y(m,s)
′ ] represents the feature map ofm × s channels obtained

by linear transformation, 1≤ j≤ s.
(e Ghost module can flexibly define the number of

convolution kernels and enlarge the number of channels of
the input feature map by s times. Adding a deep-wise
convolution between the two Ghost modules can effectively
increase the tolerance to changes in the geometric features of
the rail and fasteners and reduce the parameter redundancy.
Batch normalization (BN) is added after the convolutional
layer of each module, and the hard-Swish [50] activation
function is added after the convolutional layer of the two
Ghost modules to improve the expressive ability of the
neural network.

3. Rail Surface Defect Detection

In this paper, the Mask R-CNNmodel is used to localize and
segment the defects in the rail surface image.

Mask R-CNN is an improved two-stage object detection
network based on the Faster R-CNN framework [51]. On the
basis of Faster R-CNN [52], Mask R-CNN optimizes the
architecture for bounding box regression and object
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classification at the first stage and adds the FCN [53] branch
for the second stage of predicting segmentation masks. (e
network structure is shown in Figure 6.

First, the rail surface image is input to the feature
extraction network to generate a multiscale feature map.
Second, the obtained feature map is input to the region
proposal network (RPN) network to generate a region of
interest (RoI). (en, the RoI of different dimensions
generated by the RPN network is transformed to features of
the same dimension by the RoI Align operation. Finally, the
obtained features are, respectively, input to the fully
connected layer and FCN for rail surface defect classifi-
cation, bounding box regression, and segmentation mask
prediction.

(e rail surface defect detection model designed in this
study uses Resnet50 [54] +FPN as the feature extraction
network. Using Resnet50 can enable extraction of features at
different scales on the rail surface image. However, if only
Resnet50 is employed as a feature extraction network, there
is the problem of weak detection ability of objects with small
objects occurs, which can easily fail to detect small defects on
the rail surface. (erefore, adding RPN to integrate the low-
level and high-level features of Resnet50 can effectively
improve the ability of small defect detection. Four different
feature maps from P2 to P5 are used in FPN. Depending on
the size of the RoI, different scales of feature maps should be
selected. It is ensured that large RoIs are generated from
high-semantic feature maps, which is conducive to the
detection of large defects, and small RoIs are generated from
high-resolution feature maps, which is conducive to the
detection of small defects. (e specific selection formula is

k � k0 + log2

���
wh

√

224
 , (2)

where k0 � 4, w and h are the width and height of RoI, and k
is the number of layers of the feature map in FPN. To input
RoIs of different dimensions to the fully connected layer for
classification score calculation and bounding box regression,
transforming RoIs of different dimensions to the same di-
mension is necessary. Mask R-CNN utilizes RoI Align in-
stead of RoI Pooling in Faster R-CNN. RoI Align uses a
bilinear interpolation to obtain the values of multiple
sampling points and then uses the maximum pooling of the
values of multiple sampling points to obtain the final value of
the point. (is method effectively solves the position mis-
match problem caused by two quantization operations in
RoI Pooling and can effectively improve the accuracy of
detection or segmentation. Finally, the loss function of Mask
R-CNN is

L � Lbox + Lcls + Lmask, (3)

where Lbox and Lcls are the same as in Faster R-CNN [52],
representing the bounding box regression loss and object
classification loss, and Lmask is the mask loss. (e mask
branch in the network uses the Sigmoid function for each
pixel on the mask, then feeds it into the cross-entropy loss,
and defines the average of all pixel losses as the mask loss.

4. Fastener State Classification

4.1. Judgment Criteria for Fastener State. (e track fasteners
used in this experiment are Pandol fast clip. (e fasteners in
the track images collected on the railway line are in three
states, namely, normal, loosening, and broken, as shown in
Figure 7. Currently, no set of criteria is available to classify
the normal and loosening states of SFC-type fasteners.
(erefore, this study divides the fastener area into the two
parts shown in Figure 8 as the criteria for judging the state of
the SFC-type fasteners based on the experience of the railway
line inspection staff. When the clip is completely within area
A, the fastener is fastened and is in a normal state. When the
clip appears in area B, the fastener is in a loosening state.

4.2. Classification Model. ResNet [54] is a classical deep
convolutional network that is widely used in image classi-
fication, detection, and segmentation. (e core of ResNet is
the residual block, as shown in Figure 9. By adding a shortcut
branch to the residual block, the problem of gradient dis-
appearance caused by the increase in the number of neural
network layers is effectively solved, allowing ResNet to
improve the network performance by increasing the number
of network layers. (e output function of the residual
module is as follows:

y � F x, wi (  + x, (4)

where x and y are the input and output vectors of the re-
sidual block. F(x, wi ) represents the feature vector ob-
tained after the input vector passes through i convolutional
layers. If the residual block has the same structure as that
shown in Figure 9 and contains two weight layers, and then
the formula of F(x, wi ) is as follows:

F x, wi (  � W2f1 W1x + b1(  + b2, (5)

where f1 is ReLU function.
Different depth ResNet models can be obtained by

setting various channel numbers and residual blocks in the
module. In this study, the ResNet101 model is used to detect
the state of the Pandrol clip fasteners.

5. Experiments and Analysis

5.1. Data Set. (e images are collected from the Shi-
jiazhuang-Taiyuan high-speed railway line, as shown in
Figure 10. (e LQ-H3X industrial linear array camera,
which is mounted on the special rail inspection vehicle, is
used to collect the track images on the line. (rough re-
peated image data acquisition experiments on site, high-
resolution grayscale images of 2,572 track fasteners have
been collected successfully, including 1,425 images of bal-
lastless tracks and 1,147 images of ballast tracks, whose
image resolutions are 4096× 2048 pixels.

In the localization experiment on rails and fasteners,
2,572 collected original images were selected as the data set.
(e data set of the rail surface defect detection experiment is
composed of two parts: one is derived from the rail subimage
obtained from the rail and fastener localization experiment
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results, and the other is derived from the public rail surface
discrete defect (RSDD) data set [32]. We obtained 526
images, of which rail surface has at least one defect, with
width between 140 and 170 pixels and height between 600
and 700 pixels. We selected 825 subimages of fasteners from
the experimental results of rail and fastener localization as
the data set of fastener state detection, including 705 normal

fasteners, 71 loosening fasteners, and 49 broken fasteners. As
the number of loosening fasteners and broken fasteners is
relatively small, data augmentation methods such as rota-
tion, Gaussian noise, and salt-and-pepper noise are used to
expand the samples of defective fasteners. (en, 705 normal
fasteners, 152 loosening fasteners, and 130 broken fasteners
were obtained as the data set of this experiment ultimately.

Feature extraction
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Region proposal 
network

RoI align

FCN

Fully connected 
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Input
Output

Figure 6: Rail surface defect detection model.
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Figure 7: Different types of SFC fastener state. (a) Normal. (b) Loosening. (c) Broken.
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Figure 8: Division of the fastener state judgment area.
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Of the total number of images, 70% were randomly selected
from the data set as the training set, including 494 normal
fasteners, 106 loosening fasteners, and 91 broken fasteners.
(e remaining 30% of the images were used for testing,
including 211 normal fasteners, 46 loosening fasteners, and
39 broken fasteners.

5.2. Experimental Environment. (e experimental envi-
ronment of this study is based on Windows 10, NVIDIA
RTX 2080TI 11GB GPU, Intel Xeon Silver 4214 2.2GHz
dual CPU and 64GB RAM. (e algorithm based on deep
learning was developed using PyTorch framework.

5.3. Training Process. (e overall training process of our
method is shown in Figure 11, which is described as follows:

Step 1: use LabelImg to mark the rail and fastener area
in the images of original data set for the training of the
improved YOLOv5s to obtain the rail and fastener
localization model.
Step 2: use the images of original data set as the input to
the rail and localization model to obtain the rail sub-
image and the fastener subimage.
Step 3: combine the rail subimage obtained in Step 2
with the public RSDD dataset as the rail dataset, and use
LabelMe to mark the rail surface defect contours in the

Weight layer

Weight layer

ReLU

ReLU

F(x) + x

x

Figure 9: Residual block.

(a)

Image acquisition device

(b)

Figure 10: Image acquisition. (a) Picture of image acquisition in Shijiazhuang-Taiyuan high-speed railway line. (b) Special rail inspection
vehicle.
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dataset for Mask R-CNN training to obtain rail surface
defect detection model.
Step 4: use the fastener subimage obtained in Step 2 as
the fastener data set for the training of the ResNet101
model to obtain the fastener state classification model.

In the process of training the rail and fastener locali-
zation model, 2572 images were randomly assigned 1543
images as the training set, 2 257 images as the verification set,
and the remaining 772 images as the test set. Due to the
limitation of the performance of the GPU, the input image is
resized to 1024× 512 pixels during the training. (e specific
parameter settings of the model are shown in Table 1 and the
loss curve of the training process is shown in Figure 12.
During the first 20 epochs, training loss converges rapidly,
and the decline rate of the train loss value of the model
decreases. After 100 epochs, the training efficiency of the
model reaches saturation loss value, and the change of loss
value is small.

During the training process of the rail surface defect
detection model, 526 images were randomly assigned 368 as
the training set, 52 as the verification set, and the remaining
106 images as the verification set. In this experiment, the size
of the image input to the training model is resized to
160× 650 pixels. (e threshold value of the intersection over
union (IoU) in the RPN network was set as 0.6; that is, the
IoU between the proposal and ground truth was greater than
0.6, which was retained as the positive sample. Other pa-
rameters of the model are shown in Table 2.(e loss curve of
the training process is shown in Figure 13. (e training loss
value decreases rapidly before 2500 iterations and tends to be
stable after 20000 iterations, finally stabilizing at around
0.06.

5.4. Localization Experiment of the Rail and Fastener

5.4.1. Analysis of Experimental Results. Figure 14 shows the
visual detection results of two different types of track bed.
According to the figure, the proposed model can realize the
positioning of rails and fasteners on both ballastless and
ballast railway track images.

To further verify the effectiveness of the proposed model,
five object detection methods, namely, SSD [55], Faster
R-CNN, YOLOv3 [56], Tiny-YOLOv3, and original
YOLOv5s, were selected for comparison in this study.

VGG16 [57] was used for SSD, Resnet50 was used for Faster
R-CNN, and Darknet53 [56] was used for Yolov3. Precision
(P), recall (R), mean average precision (mAP), and detection
speed (FPS) were used as evaluation indexes for object
detection:

LabelingOriginal data set Train improved YOLOv5s Rail and fastener 
localization model

Fastener data set

Train mask-RCNN Rail data setLabelMeRail surface defect 
detection model

Train ResNet101Fastener state
classification model

Figure 11: Overall training process.

Table 1: Parameters of rail and fastener localization model.

Parameters Value
Input size 1024× 512
Initial learning rate 0.01
Class 2
Batch size 6
Epochs 120

0.00
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0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
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ss
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Figure 12: Training loss curve of the rail and fastener localization
model.

Table 2: Parameters of the rail surface defect detection model.

Parameters Value
Learning rate 0.001
Weight decay 0.0001
Batch size 4
Class 1
Iterations 30000
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precision �
TP

TP + FP
× 100%,

recall �
TP

TP + FN
× 100%,

mAP �


D
d�1 AP(d)

D
,

(6)

where TP, FP, and FN represent true positive, false positive,
and false negative cases, respectively. AP is the area covered
under the P-R curve, and D represents the number of
categories detected. D � 2 was used in this experiment.

(e results are shown in Table 3. Detection speed of
Tiny-YOLOv3 is obviously faster than that of other methods,
but its detection accuracy is only 76.52%. Faster R-CNN has
the best detection performance but the lowest detection
speed. (e detection performance of the proposed model is
similar to that of Faster R-CNN and Yolov5s, but the de-
tection speed is significantly faster than that of Faster
R-CNN, which is improved by 17.52% compared with the
original Yolov5s. At the same time, our model is only 12.6M
in size and can be flexibly deployed on devices with small
memory. (erefore, the performance of the object detection
model proposed in this study is better than that of the other
five methods in our data set.

5.4.2. Experiment of Rail Surface Defect Detection.
Figure 15 shows the comparison results of the method
proposed in this study and other methods for the detection
of rail surface defects on different scales, where both PSPNet
[58] and Deeplabv3+ [59] chose Resnet50 for the feature
extraction network, and the boundary box was ignored for
Mask R-CNN. Mask R-CNN has the best detection effect for
slight defect because the addition of FPN in the backbone
greatly improves the detection performance of small objects.
In the three models of moderate and severe defects, the
existence of defects can be detected well. However, the
prediction of the defect edge byMask R-CNN is significantly
more accurate, and the defect contour can be segmented
completely. In addition, the detection effect of Deeplabv3+
was also good, but the segmentation accuracy was inferior to
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Figure 13: Training loss curve of the rail surface defect detection model.

(a) (b)

Figure 14: Visualization results of rail and fastener localization. (a) Ballastless track image. (b) Ballast track image.

Table 3: Comparison of different object detection methods.

Method P (%) R (%) mAP (%) Model size (MB) FPS
SSD 94.72 99.73 98.96 181.2 61.3
Faster R-CNN 97.12 100 99.76 267.8 12.2
YOLOv3 96.81 99.73 99.74 117.2 62.5
Tiny-
YOLOv3 76.52 98.04 92.92 16.6 168.4

YOLOv5s 96.41 100 99.71 14.1 83.3
Ours 96.23 100 99.68 12.6 97.9
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that of Mask R-CNN. (e segmentation accuracy of PSPNet
was the worst, especially for the segmentation with slight and
moderate defects. (erefore, the proposed method has high
segmentation accuracy and robustness advantages com-
pared with the other two methods.

To obtain quantitative experimental results, pixel ac-
curacy (PA), mean pixel accuracy (MPA), mean intersection
over union (MIoU), and frequency weighted intersection
over union (FWIoU) were used as evaluation indexes in this
experiment. (eir specific expressions are as follows:

(a) (b) (c) (d) (e)

Figure 15: Comparison of detection results of rail surface defects with different methods: (a) original image, (b) ground truth, (c) PSPNet,
(d) Deeplabv3+, and (e) Mask R-CNN.
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where pij represents the total number of pixels that belong to
the i class but are predicted to be in jclass, and c represents
the number of categories. Two categories are used in this
experiment, namely, defects and background.

Table 4 records the specific quantitative experimental
comparison results. As shown in the table, the performance

of PSPNet is significantly lower than that of Deeplabv3+ and
Mask R-CNN in MPA and MIoU, with only 74.48% and
73.65%, respectively. (e Mask R-CNN model used in this
paper achieves the best results in all indicators. One of the
main reasons is that Mask R-CNN is a two-stage object
detection network and only segments candidate boxes
generated in the first stage, which is conducive to the im-
provement of segmentation accuracy. (erefore, Mask
R-CNN performs better in the test set of our dataset.

5.4.3. Experiment of Fastener State Detection. We selected
some classification models based on deep learning algo-
rithms and some classification models based on traditional
shallow learning algorithms to compare our method:

(1) VGG16: a classic deep learning framework is widely
used in object classification and feature extraction
networks.

(2) HOG+SVM: HOG feature extraction is performed
on the coupler image, and then the extracted HOG
feature is input to SVM for coupler status
classification.

(3) Canny +HOG+ SVM: Canny operator [60] first
extracts the edge contour features of the coupler
image to obtain the edge feature map. (e HOG
features are extracted from the edge feature map.(e
SVM algorithm is used for classification finally.

(e results of different classificationmodels are shown in
Table 5. Figure 16 shows the accuracy comparison results of
the various methods. (e experiment shows that, compared
with the other three methods, Resnet101 achieves the best
detection results in our fastener data set. In addition, VGG16
and Resnet101 based on deep learning framework are sig-
nificantly better than the other two methods in the detection
accuracy for all types of coupler. One main reason is that
VGG16 and Resnet101 extract advanced semantic features of
coupler images by using the convolutional layer, while the
other two methods only extract the low-level features of the
image by using the artificially designed feature extraction
method. (us, they are better than the traditional machine
learning method in terms of classification accuracy and
robustness. Canny +HOG+SVM is better than

Table 4: Comparison of different segmentation models.

Method PA (%) MPA (%) MIoU (%) FWIoU (%)
PSPNet 99.41 74.48 73.65 98.84
Deeplabv3+ 99.65 92.76 85.67 99.38
Mask R-CNN 99.72 94.37 87.52 99.51

Table 5: Classification results of different classification models.

Method Normal fastener Loosening fastener Broken fastener
HOG+SVM 206/211 37/46 31/39
Canny +HOG+SVM 208/211 40/46 32/39
VGG16 211/211 44/46 34/39
ResNet101 211/211 45/46 36/39

HOG + SVM Canny + HOG + SVM
VGG16 ResNet101

Loosening
fastener

Broken
fastener

TotalNormal
fastener

76
78
80
82
84
86
88
90
92
94
96
98

100

A
cc

ur
ac

y 
(%

)

Figure 16: Accuracy of different fastener state classification
models.
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HOG+SVM because the former method first uses a Canny
operator to extract the edge features of the coupler image
before extracting HOG features, so that the interference of
background and other useless information is reduced on
classification, and the classification precision improves to a
certain extent. Compared with VGG16, Resnet101 improved
the detection accuracy of loosening fasteners by 5.13% and
the overall detection accuracy by 1.01%, because Resnet101
uses residual blocks to increase the depth of the CNN. (is
feature enables Resnet101 to have stronger feature extraction
capability.

6. Conclusions and Future Work

(is study proposed a nondestructive detection method
based on deep learning algorithms to implement rail surface
and fasteners defect detection. At the object localization
stage, part of the structure of the backbone based on the
YOLOv5 framework is improved to achieve the localization
of the rail and fastener rapidly. Compared with other object
detection methods, our method has the highest detection
accuracy and fastest detection speed, and the model size is
only 12.6M. At the defect detection stage, Mask R-CNN is
used as the defect detection model of the rail surface. Ex-
periments show that our method is more suitable for defect
detection of rail surface compared with other advanced
semantic segmentation methods. In the state detection of
fasteners, a set of criteria for judging the state of SFC-type
fasteners is given to judge whether the fasteners are in a
normal or loosening state. A comparison between the
classification models based on deep learning or traditional
machine learning theory can show that ResNet is the most
suitable classification method for the fasteners in this data
set. In general, the proposed method can effectively detect
rail surface defects and fastener states.

In the future, we intend to gain more advanced
knowledge of deep learning and optimize the rail surface
defects detection model to improve the accuracy of defect
segmentation. In our data set, few samples of rail surface
defects and fastener defects are available, so we will try to use
more data augmentation methods to expand the defect
samples and can further improve the robustness of our
method.
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A pure acoustic signal can be easy to realize signal analysis and feature extraction. However, the surrounding noises will affect the
content of acoustic signals as well as auditory fatigue to the audience. .erefore, it is vital to overcome the problem of noises that
affect the acoustic signal. An indoor acoustic signal enhanced method based on image source (IS) method, filtered-x least mean
square (FxLMS) algorithm, and the combination of Delaunay triangulation and fuzzy c-means (FCM) clustering algorithm is
proposed. In the first stage of the proposed system, the IS method was used to simulate indoor impulse response. Next, the FxLMS
algorithm was used to reduce the acoustic signals with noise. Lastly, the quiet areas are optimized and visualized by combining the
Delaunay triangulation and FCM clustering algorithm..e experimental analysis results on the proposed system show that better
noise reduction can be achieved than the most widely used least mean square algorithm. Visualization was validated with an
intuitive understanding of the indoor sound field distribution and the quiet areas.

1. Introduction

An acoustic signal is the most widely used signal in real life.
However, there is a lot of noise that disturbs the original
acoustics signal. Excessive environmental noise harms
people’s physiological and psychological health [1]. Fur-
thermore, long-term exposure to a high noisy environment
will cause serious harm to people’s health and affect their
daily life [2]. Statistics show that more than 70 percent of the
world’s urban residents are affected by noise pollution [3].
And it is difficult to communicate with people in noisy
environments. Even the phenomenon that you cannot hear
or not hear clearly occurs..erefore, acoustic enhancements
have caused growing concern all over the world.

Acoustic enhancement algorithms include commonly
spectral subtraction, wiener filtering, and adaptive filtering.

Boll proposed firstly the spectral subtraction algorithm with
low computational complexity and easy implementation [4].
However, the music noise is caused for nonlinear processing
of inaccurate amplitude estimation, and the speech
roughness was produced for the lack of phase information of
the pure signal. .en, Berouti et al. proposed nonlinear
spectral subtraction [5], Gustafsson et al. proposed adaptive
gain average spectral subtraction [6], and SIM et al. pro-
posed minimum mean square error spectral subtraction [7];
these methods are not perfect. Lim and Oppenheim [8, 9]
proposed the wiener filtering algorithm of speech en-
hancement. .e premise of the wiener filtering is that the
speech can be calculated by the AR model. .en, the noise
can be reduced by estimating the AR parameters of pure
speech. Compared with spectral subtraction and Wiener
filtering methods which require prior knowledge of noise
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and pure acoustic signals, adaptive filtering methods can
dynamically adjust filter parameters using adaptive algo-
rithms under unknown noise conditions to ensure optimal
noise suppression performance. .erefore, noise reduction
algorithms based on adaptive filtering have been widely
used.

Active noise reduction methods eliminate the noise
mixed in the useful signal using an adaptive algorithm,
adjusting the parameters adaptively [10, 11]. .is method
is widely used due to its lower complexity and better
controllability. Among the active noise reduction algo-
rithms, the least mean square (LMS) algorithm is classical
adaptive algorithms [12, 13]. However, due to the fact that
its fixed-step manner slowly reaches the optimal coeffi-
cient of the whole system, the convergence speed of the
LMS algorithm is relatively slow. As a result, the noise
cannot be processed and analyzed in real time. .erefore,
the filtered-x least mean square (FxLMS) algorithm can
eliminate both high- and low-frequency noises [14, 15].
Furthermore, when the error between the received noise
and the expected residual becomes more significant, the
step is increased to accelerate its convergence to the
wiener solution and vice versa.

.ere are three indoor acoustic simulation methods:
wave acoustic method, statistical acoustic method, and
geometric acoustic method [16]. .e wave acoustic method
focuses on studying the effect of standing wave resonance in
the room by wave theory [17]. Craggs proposed the finite
element method [18] based on the wave acoustic theory.
Kopuz and Lalor proposed the boundary element method
[19], and Botteldooren proposed the time-domain finite
difference method [20]. .e statistical acoustic approach
focuses on measuring the energy, ignoring the acoustic wave
characteristics [17]. Forssen et al. proposed the statistical
energy analysis (SEA) to realize the sound field in the railway
[21]. .e geometric acoustic method ignores acoustic wave
characteristics and uses sound lines to describe the sound
propagation path when studying the free sound field’s dif-
fusion. Krokstad et al. proposed the ray tracing method
(RTM) [22]. Allen and Berkley proposed an image source
method based on geometric acoustics [23]. Finally, Vor-
lander combined the tracking method with the image source
method [24] to improve the efficiency and accuracy of the
indoor acoustic simulation.

.e wave-based method is limited to some specific
situations, which are used in a small room with uneven
frequency distribution and less resonant frequency in low
frequency. In addition, the statistical acoustic method is
suitable for high frequency and large-sized space. .e
geometric acoustic method ignores the acoustic fluctuation
and is applicable when the indoor sound propagates to an
interface whose size is much larger than the sound wave-
length. Among the methods mentioned above, the geo-
metrical method has both high accuracy and more
applications. .e image source (IS) method is the most
typical geometrical acoustic method, and it has been widely
used in practical applications [25, 26].

In indoor environments, unreliable prior knowledge
between noise and pure acoustic signals, and difficult-to-

estimate noise degrade the performance of acoustic en-
hancement and pose great challenges for attaining the
pure acoustic signals. Aiming at a better performance on
acoustic enhancement, we propose a novel indoor
acoustic signals enhanced method. .e basic idea of this
method is to produce adaptively the reverse signal equal
to the external noise, then to get pure signal by the ad-
dition of the received signal and the reverse signal. Fi-
nally, the quiet areas are optimized and visualized by
combining the Delaunay triangulation and FCM clus-
tering algorithm..emain contributions in this paper are
as follows:

Noise reduction based on the FxLMS algorithm is
presented for indoor spatial structure. .e comparison
between the FxLMS algorithm and the LMS algorithm
has been researched for noise inhibition of indoor
environments. .e results demonstrate that the per-
formance of the noise reduction based on the FxLMS
algorithm has dramatically improved.
We propose to adopt the Delaunay triangulation and
FCM clustering algorithm to analyze the acoustic
signal and visualize noise inhibition in indoor envi-
ronments. .e visualization demonstration of noise
inhibition is more conducive to examining the indoor
effect and specific distribution of indoor noise
reduction.

.e remainder of this article is arranged as follows. In
Section 2, we discuss noise reduction and the visualization of
acoustic field distribution. .e proposed method is intro-
duced in Section 3 including the FxLMS algorithm and FCM
clustering algorithm. Experimental results are depicted in
Section 4. Finally, the conclusions are summarized in Sec-
tion 5.

2. Related Work

2.1. Noise Reduction. Active noise reduction is realized with
superposition and cancellation of the controlled acoustic
wave and original noise. It can effectively suppress low-
frequency noise that is difficult to reduce in the passive
method.

.e FxLMS algorithm is an active noise control method.
.e secondary channel composed of a loudspeaker and error
sensor is used in the FxLMS algorithm [15, 27]. .e input
reference signal is processed to get the control signal. .e
weight vector of the FxLMS algorithm is modified by
comparing the control signal with the error signal so that it
can be adjusted at all the target frequency bands. Erkan
completed the headset design of a single channel, which is
realized by the FxLMS algorithm [28]. Liu analyzed the
performance of a narrow-band active noise control system
based on the FxLMS algorithm [29]. Kuo researched the
FxLMS algorithm on an embedded platform [30]. Jordan
and Elliott constructed a multichannel FxLMS active noise
reduction system to suppress the multiline spectrum
superimposed noise generated by the yacht engine and
proposed a method to determine the convergence coefficient
of each channel [31].
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2.2. Noise Inhibition Visualization. Visualization is an in-
tuitive method to help researchers know acoustic fields.
However, visualizing acoustic fields is a complex problem in
the acoustic simulation since sound will incur the reflection
and absorption during the propagation. Oikawa et al. de-
scribed the united visualization for acoustic field and the
source fluctuation using the 3D laser [32]. Acoustical ho-
lography is the most widely used acoustic visualization
technology. Wang and Bei applied an optimization method
in the design of a microphone array [33]. Koprinkova-
Hristova and Alexiev proposed a dynamic visual approach
for acoustic camera perception [34] and created a 3D vi-
sualization of acoustic wave propagation in time. To visu-
alize acoustic fields, the sound is typically estimated using
active noise control (ANC) in the room at a given time in this
paper; the sound field distribution during propagation and
the quiet areas after noise reduction is visualized.

3. Proposed Method

In this section, a novel indoor acoustic signal enhanced
method is proposed, aiming to realize a better performance
for noise reduction and the conducive visualization of the
acoustic signal distribution. .e framework of our proposed
method includes three stages. In the first stage, a rever-
beration acoustic signal is simulated by the IS method..en,
the reverse signals equal to the noises are produced by the
FxLMS algorithm, and the denoised signal is gained by the
addition of the reverberation signals and the reverse signal.
After noise reduction, the data can be divided into different
subsets. .en, all the quiet points are clustered through the
FCM clustering algorithm. We adopt the Delaunay trian-
gulation to subseparate the quiet points set. Lastly, visual-
ization is developed for indoor acoustic signal distribution
and the quiet areas in the room.

3.1. Acoustic Signal Simulation. In this paper, the source
acoustic signal is recorded by the audiorecorder function of
MATLAB, its sampling frequency fs� 8000Hz, and the
format is audio1� audiorecorder (8000, 16, 1). .e IS
method [23] is adopted to simulate the impulse response in
indoor environments. .erefore, the acoustic simulation
results of the received position in the space can be obtained.

In indoor environments, the sound may be reflected in
each wall. .erefore, an image sound can be considered at
each reflection. .e distributions of the sound source and
image source and the received position in 3D space are
shown in Figure 1. S and R denote the sound source position
and the received position, respectively. S1, S2, S3, and S4 are
the image source positions. In Figure 1(b), a solid arrow
represents the direct path between the source position S and
the received position R, and reflected paths between the
image source positions and the received position R are
represented by the dotted arrow.

Suppose the virtual room is a ∗ b ∗ c, the received
position R � Rx Ry Rz , and the source position
S � Sx Sy Sz . Only analyze two boundaries y� 0 and
y� b for simplicity without loss of generality. .e two image

positions will be S1 � Sx −Sy Sz  and
S2 � Sx 2b − Sy Sz , and the distances from S1, S2 to R
can be computed. We can also obtain the other image source
positions and calculate the distances in the same way; the
impulse response of the room is obtained by the image
source (IS) method. .erefore, the total acoustic signals of
the received position should be gained by the acoustic and all
reflected acoustics in the received position.

As a result, the sound will be reflected in each boundary,
and image sound can also be propagated and reflected at
each border. .e number of image sounds will increase
exponentially, and the calculation will be much more
complex with multiple reflections considered. However, the
farther the image sounds are from the received position, the
more the attenuation will be. It is crucial to analyze the
reflected distribution for simulating indoor sound withmore
accuracy. Given K be the number of reflections, let k be [−K:
K].

.erefore, the array composed by image acoustic signal
path can be expressed as follows:

Mk � k + 0.5∗ 1 +(−1)
k

 . (1)

After determining all image positions, the distance from
the source position S to the received position R is presented
as

Dk � (−1)
k ∗ S + Mk ∗M − R



, (2)

where M denotes room position. Sound signals of the re-
ceived position are got if multiple acoustic signals arrive at
the received position.

.e acoustic signal must be convolved to get acoustic
fluctuation at the received position. .e convolution is
represented as

G(k) � 
j

Q(j)φ(k − j + 1), (3)

where Q is the source data after normalization and φ is the
spatial impact factor vector. .en, the indoor image acoustic
signal simulation model can be expressed. .e signal G can
be obtained by the convolution of the function φ and the
source signal Q. Hence, the final output G is the fixed-point
acoustic simulation result of the received position under the
condition of indoor space based on the image source
method.

To simulate the acoustic signal in the indoor environ-
ment, we suppose that the parameters as follows: room size is
5× 7× 3m3, the boundary of the walls is not rigid, the
absorption coefficient is 0.4, acoustic source position is S�

[0.5 0.5 2.5] m, and reflection coefficient K � 0 5 15 .
Figure 2 shows the simulation results with different

received positions..e distanceD1 from the source position
S to received position R1� [3.5 5.0 1.3] m is D1� 5.5399m,
the distance D2 from the source position S to received
position R2� [2.0 3.0 1.3] m is D2� 3.1528m, and the
distance D3 from the source position S to received position
R3� [0.5 5.0 1.3] m is D3� 4.6573m. .en, the signal
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Figure 1: .e distribution of sound source and image source and received position in 3D space: (a) space structure of sound source point
and received position and (b) the distribution of direct path and reflected path.
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reaches the received positions R1, R2, R3 at [129, 74, 109] as
shown in Figure 2(a) at K� 0.

3.2. FxLMS Algorithm. FxLMS algorithm [14] structure is
shown in Figure 3. In Figure 3, P(z), S(z), and S(z) are the
transfer function of the primary path, the secondary path,
and the secondary path model, respectively. .e desired
signal d(n) is the output signal of the primary path. .e
coefficient of the secondary path is controlled by the residual
noise or error signal e(n) that minimizes the noise.

If the filter W(z) has L-order transverse structure,
therefore input signal X(n) of the filter w(n) can be de-
scribed as

X(n) � [x(n), x(n − 1), . . . , x(n − L + 1)]
T

. (4)

.e residual noise or error signal e(n) is given by

e(n) � d(n) − s(n)∗ w(n)
T
X(n) , (5)

where ∗ is the convolution sum.
Assuming that M is the length of the secondary path,

then E[e2(n)] at the nth time is expressed by

E e
2
(n)  � E d(n) − 

M− 1

i�1
si(n) 

N− 1

j�1
wj(n − i)(n − i − j)⎡⎢⎢⎣ ⎤⎥⎥⎦

2

.

(6)

We get the gradient of mean square error as follows:

zE e
2
(n) 

zw(n)
� 2e(n) 

M−1

i�1
si(n)

zx(n − i)

zw(n)
, (7)

If the update step of weight coefficient is small enough,
then

zJ(n)

zW(n)
� 2e(n)x′(n). (8)

.e gradient descent algorithm of adaptive weighting
coefficient is used in the ANC, so the weighting vector can be
gained:

w(n + 1) � w(n) + μe(n)X′(n), (9)

where μ is the convergence factor. It affects convergence
speed and stability in the FxLMS algorithm. To ensure
stability, the convergence factor must be less than the
maximum eigenvalue of the autocorrelation function.

.e coefficient of the secondary path is determined
according to the error signal during the convergence pro-
cedure. A trial-and-error process is used to make sure the
factor emerges stable response, and it is slowly decreased
until it emerges durable response.
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Figure 2: Impulse response on the different received positions R1, R2, R3: (a) K� 0, (b) K� 5, and (c) K� 15.
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Initially, ANC was used for a single channel, and later, it
was extended to the multichannel. In comparison with
single-channel noise suppression, the multichannel noise
suppression has better performance to gain large quiet re-
gions. .erefore, multichannel noise suppression based on
the FxLMS algorithm is designed in this paper.

In the FxLMS algorithm, the results of noise reduction
under different parameters are obtained so as to further
judge the best noise reduction performance. .e antinoise
signal is calculated as

Gm(k) � 
j

Ym
′ (j)φ(k − j + 1), (10)

where Ym
′ is the control signal of the secondary path.

.e signal received at the error microphone is

em(k) � dK − Gm(k). (11)

.e implementation of the ANC is defined as follows:

Multichannel ANC includes one reference micro-
phone, two control loudspeakers, and one error
microphone
Choose one acoustic sound position and three control
positions

Figure 4 shows the error waveform in different received
positions after and before ANC. At the same time, it shows
the error waveform in different influence factors. .e signal
at the received position is consistent with the source signal at
different positions. Meanwhile, variations of the signal at the
received position are almost compatible with the source
signal, except for some differences.

3.3. FCM Clustering Algorithm. FCM clustering is a flexible
algorithm [35]. By calculating the membership matrix of the
sample, the FCM clustering algorithm divides the objects
into same-sized clusters with the greatest similarity and the
different clusters with minor similarity. Although, in actual
most cases, the dataset cannot be divided into distinctly
separate clusters, assigning an object to a particular cluster
can be rigid and can be error-prone. .erefore, it is better to
use fuzzy c-means with natural, nonprobability character-
istics in the FCM clustering algorithm.

Supposing the data are divided intoC subsets,C centers of
the subset are gained. .en, uij is the degree of membership
that data i belongs to subset j. FCM clustering algorithm aims
to find minimum value as following function [36, 37]:

J U, c1, . . . , cC(  � 
C

j�1
Jj � 

C

j�1


M

i�1
uij xi − v

2
j

�����

�����, (12)

with the constraints:



C

j�1
uij � 1, ∀i; 0≤ uij ≤ 1,∀j,



M

i�1
uij > 0, ∀i,

(13)

where c1, . . . , cC  is the set of clustering centers, ‖ · ‖ ex-
presses the Euclidean distance, and M is the data length.
.erefore, the equation can be solved by

uij �
1


C
l�1 xi − vj/xi − vl 

(2/m− 1)
, j � 1, 2, . . . , C; i � 1, 2, . . . , n,

vij �


M
i�1 u

m
ij xi


n
i�l u

m
ij

, j � 1, 2, . . . , C,

(14)

where m is the weighting exponent.

4. Experimental Results

To validate the proposed method, we conducted an exper-
iment to compare it with a baseline based on the LMS al-
gorithm. Visualizations of sound field distributions are also
presented to help to understand sound propagation. In
addition, the FCM clustering algorithm is adopted to op-
timize the quiet points after indoor noise suppression.

4.1. Noise Inhibition. .e two-way speaker noise control
based on the FxLMS algorithm includes one noise source,
one reference microphone, two antinoise loudspeakers, and
one error microphone.

.e ANC transfer function P (z) is

P(z) � 0.01 + 0.25z
− 1

+ 0.5z
− 2

+ z
− 3

+ 0.5z
− 4

+ 0.25z
− 5

+ 0.01z
− 6

.
(15)

.e secondary-path transfer function is defined as

S1(z) � 0.05 − 0.01z
− 1

+ 0.95z
− 2

+ z
− 3

+ 0.9z
− 4

,

S2(z) � 1 + 0.44z
− 1

− 0.95z
− 2

+ 0.01z
− 3

+ 0.9z
− 4

.
(16)

.e 5× 7× 3m3 room is the border of the indoor sound
field. Its walls are not rigid in which absorption coefficient is
0.4. Figures 5(b)−5(c) show the noise inhibition results with
LMS and FxLMS algorithms in the time domain, respec-
tively. As we can see, both methods can reduce noise. In the
beginning, the noise inhibition effect based on the FxLMS
algorithm does not meet expectations. It is more significant
with time increasing. .e noise suppression based on the
FxLMS algorithm is better than the system based on the LMS
algorithm in the time domain. Figure 5(d) shows the
spectrum of original noise in the frequency domain.
Figure 5(e) describes the residual noise spectrum of the
system based on the LMS algorithm. Figure 5(f) describes
the residual noise spectrum based on the FxLMS algorithm.
.e vertical axis denotes the noise amplitude after sup-
pression in dB. Figure 5 shows that the noise in the whole
frequency band has been well suppressed. .e system based
on the FxLMS algorithm has a perfect suppression effect
than based on the LMS algorithm.

Figure 6 depicts the experiment result of an 8×10× 4m3

medium-sized room, of which the impact factor K� 10 and
the source position is [7.9, 9.9, 3.9]. .e experiment result
shows that the acoustic inhibition of themedium-sized room
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Figure 4: .e noise reduction waveform of ANC at different received positions with K� 0, 5, and 15 in different rows, respectively. (a, d, g)
.e received position R1. (b, e, h) .e received position R2. (c, f, i) .e received position R3.
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can reach 30 dB. Besides, the correlation between signal and
interference is weak, and the reflection signal and refraction
signal are not obvious for the large-sized room. .e noise
inhibition for the small-sized room is much more chal-
lenging, so the 5× 7× 3m3 room is adopted in this paper.

4.2. Distribution of Sound Field. According to the sound
field of the room, the acoustic vibration of each position
at different times and spaces can be obtained. However, in

the visualization stage, a large room will lead to diffi-
culties for sound field simulation. .erefore, the room is
divided into small units with 10 cm. Image sounds are
used to simulate sound information at all the received
positions.

In the experiment, the positions of the noise source rsrc
and the reference microphone rrmic are identical; both are
[2.5 0.5 2]m. It is considered that the measuring height of
the building is between 1.2m and 1.5m from the ground in
the acoustic environment quality standard. .erefore 1.3m
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is selected as the height in this paper, and the received
position rrmic is [2.5 5 1.3]m.

Considering the areas of human movement, we detect
the areas between 1.0m and 2.1m in a vertical orientation.
.e amplitude ranges of [−0.001, 0.001] are defined as the

quiet points. .e acoustic distributions at times t� 0.03 s,
0.07 s, 0.4 s, and 0.6 s were examined to observe the sound
propagation more intuitively. Figure 7 shows the experiment
results. Figures 7(b), 7(d), 7(f), and 7(h) show sound
propagation at different times when the height h is 1.3m.

25

40
30

20Width (dm)
10 10

20
30

40
50

Length (dm)

60

–0.04

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

20
15

H
ei

gh
t (

dm
)

10
5

(a)

–0.04

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

40

14
12

30
20

Width (dm) 10 10
20

30
40

50

Length (dm)

60

(b)

–1

–0.5

0

0.5

1

40
30

20Width (dm)
10

10
20

30
40

50

Length (dm)

60

25
20
15

H
ei

gh
t (

dm
)

10
5

(c)

–1

–0.5

0

0.5

1

40

14
12

30
20

Width (dm) 10 10
20

30
40

50

Length (dm)

60

(d)

–0.08

–0.06

–0.07

–0.05

–0.04

–0.01

–0.02

–0.03

0

0.01

40
30

20Width (dm)
10 10

20
30

40
50

Length (dm)

60

25
20
15

H
ei

gh
t (

dm
)

10
5

(e)

–0.08

–0.06

–0.07

–0.05

–0.04

–0.01

–0.02

–0.03

0

0.01

40

14
12

30
20

Width (dm) 10 10
20

30
40

50

Length (dm)

60

(f )

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

40
30

20
Width (dm)

10 10
20

30
40

50

Length (dm)

60

25
20
15

H
ei

gh
t (

dm
)

10
5

(g)

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

40

14
12

30
20Width (dm)

10 10
20

30
40

50

Length (dm)

60

(h)

Figure 7: Indoor acoustic distributions in 3D space with different times: (a) t� 0.03 s, (c) t� 0.07 s, (e) t� 0.4 s, and (g) t� 0.6 s. Acoustic
distributions at the height h� 1.3m with different times of (b) 0.03 s, (d) 0.07 s, (f ) 0.4 s, and (h) 0.6 s.
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Figure 8: .e distributions of quiet points at (a) t� 0.03 s, (c) t� 0.07 s, (e) t� 0.4 s, and (g) t� 0.6 s and their corresponding results after
subseparation are shown in (b), (d), (f ), and (h).
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Figure 9: .e quiet area distribution for the indoor environment after FCM algorithm with different times of (a) 0.03 s, (c) 0.07 s, (e) 0.4 s,
and (g) 0.6 s at different rows, respectively, and their visualization results of using the FCM algorithm are shown in (b), (d), (f ), and (h).
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Figure 7 depicts the direct sound signal that has not
reached the received position at t� 0.03 s, which means there
are many quiet regions in the room. At t� 0.07 s, the direct
signal has nearly reached the received position. Some image
signals have reached the received end at t� 0.4 s while the
reverberation becomes more severe at t� 0.6 s.

4.3. Quiet Area Integration. .e distribution density of quiet
indoor points represents the comfort of certain areas in
space. Because of the line of sight occlusion in three-di-
mensional space, it is difficult to distinguish the quiet local
area with a concentration of points. .e quiet local area can
be represented intuitively through the quiet points’ subdi-
vision and the integration of the quiet areas.

After obtaining the quiet points, we adopt the Delaunay
triangulation to subseparate the quiet points set. Firstly, it is
integrated into two-dimensional space. During integration,
specific spatial points can be integrated into the same point
on the plane. As a result, not all the quiet points can be
vertices of the Delaunay triangle. Figure 8 shows the out-
comes adopted by the Delaunay triangle and the quiet points
at t� 0.03 s, 0.07 s, 0.4 s, and 0.6 s separately. It can be seen
from the figures that there are a few quiet points in the space,
but they still show a particular regional distribution.
However, the quiet areas are larger than the others in
Figure 8(a). .erefore, it would be convenient to integrate
the quiet points set in the space directly. It is necessary to
optimize the quiet point set to facilitate the description of the
mute area.

4.4. Optimization of the Quiet Areas. .e quiet points ob-
tained in the discrete acquisitions can either be distributed
sparsely throughout the space or be grouped into distinct
distribution groups. If we use the data to integrate the area
directly, we can obtain nearly the whole area. However, as
shown in Figure 8(g), there are only small quiet points. To
tackle this issue, we use a FCM clustering algorithm to
optimize all the quiet points before we integrate the
Delaunay triangulation into the quiet area.

After the data are divided into C different subsets, the
data are divided into different subsets to obtain an accurate
quiet area. Quiet points are clustered with the FCM
algorithm.

.e quiet area in Figure 8 is not perfect when specific
points are far away from the others. Furthermore, certain
small areas containmany quiet points, whereas other regions
have few quiet points. For this case, data with precise
subcluster characteristics and continuity of volatility, the
triangulation is obtained after separating the quiet points,
and we segment the quiet points by the FCM clustering
algorithm.

Figure 9 depicts the optimization results of the quiet area
at different visual time points after the noise suppression
through the combination of clustering algorithm and
Delaunay triangulation. In Figure 9, the quiet area will be
less as time increases, and it achieved good noise inhibition
and has better than that without subset optimization.

5. Conclusions

In this paper, a multichannel ANC noise reduction method
based on the FxLMS algorithm is realized in small-sized and
medium-sized rooms. In addition, to illustrate and optimize
the quiet areas in 3D indoor spaces, the combination of the
FCM algorithm and Delaunay triangulation is also
employed. .e experimental results show that the proposed
method of signal enhancement performs better than the
system based on the LMS algorithm in noise inhibition. .is
is more conducive to examining the indoor effect and
specific distribution of indoor noise reduction through vi-
sualization demonstration.
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Accurate segmentation of the tongue body is an important prerequisite for computer-aided tongue diagnosis. In general, the size
and shape of the tongue are very different, the color of the tongue is similar to the surrounding tissue, the edge of the tongue is
fuzzy, and some of the tongue is interfered by pathological details. )e existing segmentation methods are often not ideal for
tongue image processing. To solve these problems, this paper proposes a symmetry and edge-constrained level set model
combined with the geometric features of the tongue for tongue segmentation. Based on the symmetry geometry of the tongue, a
novel level set initialization method is proposed to improve the accuracy of subsequent model evolution. In order to increase the
evolution force of the energy function, symmetry detection constraints are added to the evolutionmodel. Combined with the latest
convolution neural network, the edge probability input of the tongue image is obtained to guide the evolution of the edge stop
function, so as to achieve accurate and automatic tongue segmentation.)e experimental results show that the input tongue image
is not subject to the external capturing facility or environment, and it is suitable for tongue segmentation under most realistic
conditions. Qualitative and quantitative comparisons show that the proposed method is superior to the other methods in terms of
robustness and accuracy.

1. Introduction

Tongue diagnosis is one of the important diagnostic
methods of traditional Chinese medicine, while for a long
time, tongue diagnosis relied on the doctor’s clinical ex-
periences by short-term visual observation, which causes the
subjective and uncertain diagnosis results. With the devel-
opment of image processing and machine learning tech-
nology, the research about intelligent assistant diagnosis of
tongue manifestation in Chinese medicine has attracted
more and more attention. Tongue segmentation from the
background with teeth, lips, and face is the important step in
the process of computer-aided tongue diagnosis and also an
important premise to extract and analyze the color, texture,
and morphology features of tongue quality and fur char-
acter. However, due to the limitation of the image acqui-
sition process, the tongue with its surrounding tissue in the

tongue image is similar in color and blurred of the outline; it
is a challenge to propose an automatic, accurate, and uni-
versal tongue segmentation method.

Tongue segmentation is also an image segmentation task.
Image segmentation is a process of dividing an image into
several homogenous regions that do not overlap each other.
It is an important part of the image processing and is of great
significance for image analysis, pattern recognition, and
computer vision. From the classical image processing
methods [1–3] to the deep learning [4–9], image segmen-
tation has been widely concerned and applied. Traditional
methods often focus on segmentation based on image
features and variable models, and the level set model is one
of the most representative methods of the active contour
model. In 1987, the active contour models (ACM) were
proposed by Kass et al. [10] firstly, which treated the image
segmentation as an energy optimization problem and
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opened up a new view of image segmentation [10–13]. In
recent years, the deep learning method can better perform
automatic segmentation and can improve segmentation
speed and robustness because of its excellent feature learning
and representation ability [6–9]. SegNet [6] provides a full
convolution network for pixel level image segmentation,
while DFN [7] constructs a smooth network and a border
network to form a discriminative feature network. LEDnet
[9] adopts an asymmetric codec structure to solve the
segmentation task in real-time scenes. )ese learning-based
segmentation methods are widely used in various fields such
as medical diagnosis [14].

In fact, in the process of tongue image acquisition, due to
the influence of external conditions such as light and
temperature, the tongue image is prone to the problems of
tongue body position error and spot noise. And, due to the
low-contrast characteristic of the tongue image, tongue
segmentation is more difficult than conventional image
segmentation. Since 1990s, many scholars have made rele-
vant research studies on accurate tongue segmentation
[15–22]. In the early stage of research, it is difficult to get
accurate results only by using the underlying information of
the image. Many subsequent methods improve the accuracy
and robustness of segmentation. For example, Huang et al.
[19] used the mean shift to smooth the edge and the
maximum between-class variance method to classify the
image and then merged the regions to extract the tongue. In
[20], tongue extraction was based on color building blocks,
and sparse representation was used to calculate pixel
probability. )e method based on deep learning can acquire
more image features and has better performance. Huang
et al. [21] proposed an automatic tongue image segmenta-
tion based on an enhanced full convolutional network. Qu
et al. [22] proposed an image quality evaluation method
based on brightness statistics to determine whether the input
image needs to be segmented and used SegNet to train the
tongue dataset. )ese methods avoid the complicated pro-
cess of manually extracting features and have obvious ad-
vantages in segmentation performance.

It is worth mentioning that the active contour model and
some variants began to be applied in the field. For instance,
Yang [23] presented a gradient vector active contour model
based on the original tongue edge detection method and
color gradient and obtained a good segmentation effect. In
[24], the original tongue contour was obtained by extracting
the ROI of the tongue and using the color similarity of the
histogram, and then, the tongue segmentation combining
region model and edge model were proposed. From the
perspective of transforming the color space model, re-
searchers proposed some effective algorithms based on color
information [25–30].

However, it should be noted that the above algorithms
usually have certain restrictions and requirements on the
tongue image collection environment and the tongue image
itself. )erefore, the results of tongue image segmentation
with incorrect tongue body position and large noise influ-
ence are often not ideal. At the same time, there are other
tissues such as peri lip in the image, and the color features of
these parts are very close to the tongue itself, which results in

the slow change of the gradient of the tongue edge.)is leads
to problems such as incomplete segmentation and boundary
leakage in level set methods that rely on active contour
models or gradient information to extract edges, and the
accuracy of segmentation results is difficult to guarantee.
Moreover, the active contour model is sensitive to the initial
position; then, the adaptability is not satisfied.

In view of the above problems, we propose a symmetry
and edge-constrained level set model for tongue segmen-
tation. Different from the traditional level set model, the
edge probability value is calculated using the latest con-
volutional neural network, and the obtained edge probability
map is used as the gradient input of the level set. Considering
the symmetry characteristics of the tongue, we add a
symmetry detection constraint to the level set evolution
model to test the symmetry feature of the zero level set
contour. A novel level set initialization method is also
proposed. It is proved by experiments that this method can
complete automatic precise tongue segmentation suitable
for most real situations.

2. Related Work

Osher and Sethian [31, 32] proposed a level set method based
on the important idea of fluid, which solved the problem that
the topological structure is not easy to change during image
segmentation. )e level set method implicitly represents the
closed active contour as a zero level set of a higher di-
mensional level set function and uses the curve evolution to
locate the edge of the target. A lot of improvement work
related to this appeared later. For example, Li et al. [33]
proposed the distance regularized level set evolution
(DRLSE) based on distance reinitialization in the process of
level set evolution. Zhong et al. [34] proposed a level set
method based on region consistency detection by consid-
ering the consistency of image region information and
achieved good experimental results.

)e main idea of the level set method is to regard the
physical section moving with time t as the zero iso-surfaces
of the level set function and transform the contour trans-
formation of the n-dimensional surface into the evolution of
the n + 1 dimensional level set function; the boundary of it is
expressed by the zero level set of the higher dimensional level
set function. )e active contour C is represented as a zero
level set of the higher dimensional level set function
φ(x, y, t), denoted as C(t) � (x, y)|φ(x, y, t) � 0 . )e
purpose of the level set method is to make the zero level set C
meet the partial differential equation of curve evolution:

zC

zt
� V(k)N. (1)

For the above formula, the evolution equation of the zero
level set φ under the velocity function F is

zφ
zt

+ F|∇φ| � 0. (2)

)e velocity function F depends on the image data and
the level set function φ. In the image segmentation, F
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generally contains the curvature k of the evolution curve C.
)e curvature is calculated as follows:

k � div
∇φ

|∇φ|
  �

φxxφ
2
y − 2φxφyφxy + φyyφ

2
x

φ2
x + φ2

y 
3/2 . (3)

If it is under the average curvature, the evolution
equation can be written as

zφ
zt

� |∇φ|div
∇φ

|∇φ|
 . (4)

One advantage of the level set method is that the cal-
culation of curves and surfaces can be performed on a fixed
Cartesian grid, and the evolution of the curve is independent
of parameters. However, in the conventional level set
methods, with the evolution of the curve, the level set
function will no longer remain as the signed distance
function. )erefore, it is necessary to periodically initialize
the level set function to the signed distance function during
the curve evolution. )e process of reinitialization can affect
the accuracy of the calculation, and it is time-consuming. To
solve this problem, Li et al. added a distance regularization
term to the conventional level set model and proposed a
DRLSE [33] model without reinitialization.

)e energy function of the DRLSE model is as follows:

εDRLSE(φ) � μRp(φ) + λL(φ) + αA(φ) � μ
Ω

p(|∇φ|)dx

+ λ
Ω

gδ(φ)|∇φ|dx + α
Ω

gH(−φ)dx,

(5)

where μ, λ, and α are constant with positive values, repre-
senting the weight of each energy term.

)e first term is a regularization term that constrains the
deformation of the curve by guaranteeing the signed dis-
tance property |∇φ| � 1. It is not necessary to reinitialize the
level set function acyclically after adding the regularization
term.

)e second term is used to drive the zero level set to
evolve towards the target edge. )e function g is a boundary
stop function based on the image gradient. Once the zero
level set curve arrives at the target boundary, the energy
function of the length term is the smallest.

)e third term is the area term, which can accelerate the
convergence of the zero level contour during the evolution of
the level set. When initializing the level set, if the target is
completely inside the initial curve, α should take a positive
number to ensure that the curve converges inward; on the
contrary, it should take the negative number.

)e edge stop function g is defined as

g �
1

1 + ∇Gσ ∗ I



2, (6)

where I is the image to be segmented and Gσ is the standard
deviation of the Gaussian filter.

According to the variational theory, in order to solve the
gradient descent flow of energy functional, the following
level set evolution equation is obtained as

zφ
zt

� −
zεDRLSE(φ)

zφ
� μdiv dp(|∇φ|)∇φ 

+ λδε(φ)div g
∇φ

|∇φ|
  + αgδε(φ),

(7)

where the Heaviside function HεU
(x) (see the third term in

formula (5)) is used to divide the evolution region in the level
set evolution, and the Dirac function δεU

(x) is the de-
rivative function of the Heaviside function, which is used
to constrain the evolution value. )ey are formulated by
the following smooth functions:

Hε(x) �

1
2

1 +
x

ε
+
1
π
sin(ε) , |x|≤ ε,

1, x> ε,

0, x x< − ε,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δε(x) �

1
2ε

1 + cos
πx

ε
  , |x|≤ ε,

0, |x|> ε.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

In recent years, the active contour model, level set, and
some variants have been applied to tongue segmentation; Li
[25] added the prior information of the difference between
tongue and other parts in HSV color gamut to the level set
model and proposed a new region-based bounded pressure
function. Shi et al. [28] combined the geometric snake model
with the parameterized GVFSnake [27] model and built the
C2G2FSnake model, which improved the segmentation
accuracy.

3. The Proposed New Method

Due to the speciality of the pathological tongue and the
limitation of image acquisition equipment, the difficulties of
tongue segmentation are mainly reflected in the following
aspects:

(1) )e color of the tongue is similar to the surrounding
tissues in the image background, so the color contrast is low.
(2) )e position of the tongue is not correct, and the spot
noise is common in tongue segmentation. (3) )e surface of
the tongue has a thick coating or the tongue is cracked in the
middle of the tongue. )ese factors lead to small differences
in gradient values; then, the gradient map of the tongue is
blurred.)erefore, the segmentation curve usually cannot be
accurately stopped at the edge of the target contour, which
greatly increases the difficulty of tongue segmentation.
Figure 1 shows the segmentation results of the DRLSE
method for low-contrast, speckle noise, and thick coating
images.
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)e level set method can calculate curves and surfaces
on fixed Cartesian meshes and can deal with various to-
pological changes as well, which is very suitable for medical
image segmentation. As well known, the geometric char-
acteristics of an image can clearly reflect the structural and
content characteristics of the image and can prevent the
image texture from being easily affected by interference
factors such as light and noise. As the basic shape char-
acteristic of an object, symmetry is ubiquitous in the na-
ture, and the tongue as a part of the human body has the
characteristics of mirror symmetry and rotation invariance.
)erefore, the extraction of symmetry geometric features of
the tongue image has a good guiding effect on tongue
segmentation. Based on the above findings, the symmetry
information is added to the level set model as a constraint
by using the symmetry characteristics of the tongue image.
At the same time, in recent years, the convolutional neural
network has shown its unique advantages in complex or
low-contrast image processing. )erefore, this paper
combines the convolutional neural network model with the
level set model, by taking the gradient map of neural
network training as the gradient input of the level set to
guide the curve evolution, and then proposes a symmetry
and edge-constrained level set model for tongue
segmentation.

)e principle of the symmetry detection constraint is
that, during the process of level set segmentation, if the zero
level set curve evolves to a weak gradient or strong noise, at
that time, the zero level set function does not maintain
symmetry; then, the constraints on the incomplete side of
the segmentation and the energy will increase under the
combined action of internal energy and external force of
image symmetry. Conversely, if the zero level set function
remains symmetrical during the segmentation process, the
constraint term does not participate in the evolution
process. Meanwhile, the evolution process of the level set
function is to solve the DRLSE energy function of the
minimized closed curve.

)e initial contour is usually fixed to a rectangular area
at an arbitrary position in traditional methods. In fact, the
selection of the initial contour has a great impact on the
segmentation results. Inappropriate position of the initial
curve will cause the level set function to fall into a local
minimum position. In this paper, we also extract the
initial contour of the level set in a novel way. According to
the characteristics of the constructed symmetry detection
energy item, we first obtain the symmetry axis of the
tongue body and set the initial contour curve as a circular
region.

)e key steps of the algorithm include the following: the
convolution neural network is used to train the color tongue
image, and the edge probability map is obtained as the
gradient image input of the level set model. )en, we use the
mirror symmetry of the tongue image to select the symmetry
axis of the tongue automatically and take the symmetrical
axis as the centre of the circle to get the initial contour curve
located in the centre of the tongue. During the process of
evolution, the evolutionary image and the gradient image are
reflected and transformed, and the symmetry detection
energy term is constructed to constrain the level set evo-
lution. Finally, we use the variational method to solve the
gradient descent flow of the energy function as to obtain the
target boundary. )e specific flow of the algorithm is shown
in Figure 2.

4. The Symmetry and Edge-Constrained Level
Set Model for Tongue Segmentation

Compared with the traditional model, our improvements
are as follows: adding the symmetry detection constraints,
putting forward a symmetry and edge-constrained level set
model, determining the symmetry axis of the tongue and
changing the initial contour curve accordingly to match the
functional characteristics of the symmetry constraint item,
and combining the deep learning method to train the
gradient input to improve edge accuracy. Next, the technical

(a) (b) (c)

Figure 1: (a) Low-contrast tongue. (b) Speckle noise tongue. (c) )ick coating tongue.
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details will be described in the above order, not the order of
the algorithm implementation steps.

4.1. Symmetry Detection Constraint. As mentioned above,
the tongue has obvious symmetry; the symmetry detection
constraint is used to detect the symmetry of level set
function φ under the gradient image on both sides of the
symmetry axis. )e proposed detection constraint is based
on a simple but important fact: if a plane geometry figure
is approximately symmetric about the major axis, there
must be a reflection transformation that minimizes the
error of the transformed figure aligned with the original
figure. )en, the difference between the energy of the
DRLSE level set function and the energy after reflection
transformation to the energy function is added as a
symmetry detection constraint. )e essence of the con-
straint is to evaluate the approximate symmetry of the
target contour in the segmentation process.

Axis reflection transformation on the Euclidean plane
and mirror reflection transformation in the Euclidean space
are called reflection transformation. Reflection transfor-
mation is an important transformation in the Euclidean
geometry. In this paper, the reflection transform is a hori-
zontal mirror transform. Specifically, the symmetry axis of
the image is used as the transformation axis to swap the
pixels of the image. )e original level set and the trans-
formed level set in the evolution process are shown in
Figure 3. )e matrix M of the reflection transformation is
expressed as

1
A
2

+ B
2

B
2

− A
2

−2AB −2AC

−2AB A
2

− B
2

−2BC

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where A, B, and C are the coefficients of the general formula
of the straight line l, and the calculation formulas of the
coefficients A, B, and C are as follows:

A � y1 − y2( ,

B � x2 − x1( ,

C � x1 ∗y2 − x2 ∗y1( .

⎧⎪⎪⎨

⎪⎪⎩
(10)

In the evolution process of the level set function, if
Q(x, y) is a point on the zero level set, the calculation
formula of the new coordinate Q(x′, y′) after the reflection
transformation with l as the symmetry axis is as follows:

Q′ � M∗Q. (11)

If an image I is symmetrical, I is defined as a symmetrical
complementary image of the source image, and the position
of the pixels on I is derived from equation (11). )e co-
ordinates of point Q(x, y) for reflection transformation are
as follows:

x′

y′

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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�
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1
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(12)

For any given signed distance function, a transformed
signed distance function that preserves shape invariance can
be obtained by the above transformation. In the evolution
process, φ is used to represent the priori shape, and the
Heaviside function of φ in the gradient image is denoted as
Hε(−φ)g. According to the above reflection transformation
formula, the symmetric complementary term is Hε(−φ)g.
For solving the symmetric complementary term, the value of
matrix M will be updated with the iteration of level set
function φ. )e definition of the symmetry detection con-
straint is shown in the formula:

Input image Output image
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Figure 2: Flowchart of symmetry and edge-constrained level set model for tongue segmentation.
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Sg(φ) � η
Ω

Hε(−φ)g − Hε(−φ)g 
2
dx, (13)

where η is a positive number and Hε(−φ) is a Heavyside
function of the level set φ.

In image domain Ω, we measure the approximate
symmetry of the target’s own contour by the difference

between the original level set function and the reflected
transformed level set function. )e computation on dif-
ference is completed by the symmetry detection constraint.

)e energy function of the symmetry detection level set
model is expressed as follows:

εSCT−DRLSE(φ) � μRP(φ) + λLg(φ) + αAg(φ) + ηSg(φ)

� 
Ω

p(|∇φ|)dx + λ
Ω

gδε(φ)|∇φ|dx

+ α
Ω

gHε(−φ) + η
Ω

Hε(−φ)g − Hε(−φ)g 
2
dx,

(14)

where λ, α, and η are the coefficients of each energy term, the
first three terms of the formula belong to the DRLSE model,
and the last one is the symmetry detection constraint term
(SCT).

)e optimization of this energy function can be obtained
with the following gradient flow descent method:

zφ
zt

� −
zεSCT−DRLSE(φ)

zφ
� −

zεDRLSE(φ)

zφ
− η

zS

zφ

� μdiv dp(|∇φ|)∇φ  + λδε(φ)div g
∇φ

|∇φ|
 

+ αgδε(φ) + 2ηδε(φ)(H(φ) − H(φ)).

(15)

Obviously, the higher the symmetry of level set function
φ, the smaller the value of SCT and the less the energy of
constraints on evolution. If the image information is
asymmetric, such as when the curve evolves to weak edges or
tongue noise and tongue cracks, the symmetry of level set

function φ decreases, and then, the value of SCT increases,
which promotes the evolution of the side curve under the
effect symmetry detection constraints.

A schematic diagram of LSM-SEC level set evolution is
given in Figure 4.

4.2. Automatic Determination of Initial Contour. In the
actual process of image acquisition, the tongue is usually
captured in the middle of the image. Considering this prior
knowledge, the symmetry axis from the tongue gradient
image is first extracted, and it is used as the reflection
transformation reference line of the symmetry detection
constraint (SCT). Considering the feature of the symmetry
detection constraint (SCT), in order to maintain the original
image force of the level set function under the initial con-
dition, we set the initial level set function as a circular
contour fixed in the target area.

)e extraction of the symmetrical axis can be divided
into two steps: fixed axis and direction, that is, determining

Figure 3: Schematic diagram of horizontal set reflection transformation.
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the position of the symmetrical axis and the direction of the
symmetrical axis. Since the centre of gravity of an axi-
symmetric figure must be on the symmetrical axis, the
position of the symmetrical axis is determined by calculating
the centre of gravity w1(x1, y1) of the gradient image:

X1 �
 Pixi

 Pi

,

Y1 �
 Piyi

 Pi

,

(16)

where (xi, yi) is the coordinates of the pixel and pi is the
pixel values.

)e corner point is generally considered to be the point
at which the brightness of the image changes abruptly or the
point at which the curvature of the edge curve is maximum.
)e Harris corner detection algorithm is used to find the
potential tip point in the middle position of the tongue. )e
Harris corner detection [35] algorithm defines a corner as a
point whose gray value can be greatly changed by micro
offset in any direction. )e Harris corner detection algo-
rithm assumes that the pixel gray value of point (x, y) is
I(x, y), and the change of gray intensity of each pixel (x, y)

moving (u, v) in the image is expressed as a differential
operator:

E(x,y) � 
u,v

w(u, v)|I(x + u, y + v) − I(u, v)|
2
, (17)

where w(u, v) is the coefficient of the filter window.
)e rule of tracking the tip of the tongue with the Harris

corner detector is searching for k pixels on the left and right
sides of the middle position of the image data. For each

current point projection to the y-axis, set the y-axis threshold
and find its mean coordinate w2(x2, y2). Determine the axial
direction by finding the position average of the potential tip
point. )e acquisition of the symmetry axis is shown in
Figure 5.

It is known that the barycentric coordinates are
v1(x1, y1) and the tongue tip coordinates are v2(x2, y2).
According to the general equation Ax + By + C � 0 of the
straight line, a straight line equation that can obtain two
points passing v1 and v2 can be expressed as

l: y1 − y2( ∗x + x2 − x1( ∗y + x1 ∗y2 − x2 ∗y1(  � 0.

(18)

Taking the line l as the axis of symmetry, the point on the
zero level set function is transformed.

)e initial contour of level set evolution is fixed in the
target area, by choosing the axes of the symmetry axis. )e
initial contour shape is set as a circular region with the axes
as the centre, which ensures that the symmetry detection
constraint does not act on the level set function φ in the
initial segmentation state and maintains the image force of
the original evolution process.

With the source image M and symmetry axis l, the in-
tersection of the line l and the source imageM is denoted by
(xa, ya), (xb, yb), and the calculation formula of the axis
coordinate O of the symmetry axis is

O(X, Y) �
xa + xb( 

2
,

ya + yb( 

2
 . (19)

In general, the initial level set function is set as the signed
distance function (SDF), which is defined as follows:
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Figure 4:)e behavior of level set evolution in the LSM-SEC: (a) the contour of the level set after 10 iterations, (b) the level set function after
10 iterations, (c) the contour of the level set after 80 iterations, (d) the level set function after 80 iterations, (e) the contour of the level set after
300 iterations, (f ) the level set function after 300 iterations, (g) the contour of the level set after 600 iterations, and (h) the level set function
after 600 iterations.
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φ(x, y) �

−d((x, y), C), (x, y) ∈ inside(C),

0, (x, y) ∈ C,

+d((x, y), C), (x, y) ∈ outside(C).

⎧⎪⎪⎨

⎪⎪⎩
(20)

)e signed distance function satisfies |∇φ| � 1, where d is
the Euclidean distance from the point (x, y) to the zero level
set.

In this paper, the symbol distance function is defined as a
circular initialization level set function with the axis O as the
centre and R as the radius. )e expression is as follows:

d(X, Y) �
�������
X

2
+ Y

2


− R. (21)

4.3. Gradient Image Based on Edge Probability Prior.
From the definition of the boundary stopping function, one
can see that the accuracy of the tongue gradient map is very
important to the segmentation results. )e traditional level
set method directly calculates the partial derivative of the
original image in the horizontal and vertical directions to
obtain the gradient, but at the fuzzy boundary or the discrete
edge, the segmentation result is limited with small gradient
change of the target tongue.

Convolution neural networks (CNNs), as a kind of deep
network, have been widely used in image processing and
pattern recognition in recent years. )e basic structure of a
convolutional neural network generally includes a con-
volutional layer, pooling layer, and fully connected layer.
Given by that the traditional CNN edge detection method
only uses the features of the last convolutional layer as the
output, many features and details are lost in the convolution
process. Liu et al. [36] proposed an edge detector using a
richer convolution feature (RCF). )e RCF network makes
full use of multiscale and multilevel information, combines
all meaningful convolution features in a holistic manner to
perform edge detection, and obtains a clear probability

boundary. )e network achieved the best detection results
on the BSDS500 database.

In this paper, the multilayer network structure features
of the RCF network model are used to obtain the edge
probability map, which is used as the gradient image input of
the level set to guide the evolution of the edge stop function.

)e RCF network model uses the characteristics of the
multilayer network structure to obtain an edge probability
map. RCF is based on the VGG16 network, which consists of
five modules, alternating convolutional and pooled layers
and three fully connected layers. )e first two modules
contain two subconvolution layers with the same parame-
ters, and the last three modules contain three subcon-
volution layers with the same parameters. )e
subconvolution layer features of each module are added
pixel by pixel using else layer, and the results are fused.
Different scale features can be obtained by sampling under
the maximum pooling layer.

Different from the traditional VGG16 network structure,
the RCF replaces the pooled layer and the fully connected
layer of the fifth module with a convolutional layer of size
1 × 1 so that the training result retains spatial information.
RCF also proposes a new loss function for each module,
avoiding the gradient disappearance problem during net-
work training. )e loss function is defined as follows:

l Xi; W(  �

α · log 1 − P Xi; W( ( , if yi � 0,

0, if 0<yi ≤ n,

β · log P Xi; W( , otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

in which α � λ ·
Y

+




Y
+


 + Y

−
| |

,

β �
Y

−
| |

Y
+


 + Y

−
| |

.

(22)

Figure 5: Center of gravity detection and corner detection.
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where Y+ and Y− represent a positive sample set and a
negative sample set, respectively. )e superparameter λ is
used to balance the positive and negative samples. P(X) is a
standard sigmoid function. RCF uses the Caffe deep learning
framework, the other parameters are the same as the Caffe
model, and the training experiments were performed using
the NVIDIA TITAN X GPU. )e RCF network structure
diagram is shown in Figure 6.

)e edge probability map trained by the RCF network is
used as the gradient image input of LSM-SEC, replacing the
original gradient input in the edge stop function. )e
Gaussian filtering of the RCF gradient image is carried into
equation (14), and the evolution of the edge curve is guided
by iteratively calculating the edge stop function in the
process of level set evolution. As shown in Figure 7, a is the
original image and b is the tongue gradient image acquired
by the RCF.

5. Experimental Results and Analyses

In the experiment, the tongue image dataset contains 550
tongue images, part of which is from GitHub’s open-source
dataset, with a total of 300 tongue images; the other part is
provided by the teachers of the University of traditional
Chinese medicine, with a total of 250 tongue images. )e
images in the dataset are different in size, shape, angle, and
position, but they all contain the complete tongue body,
which is suitable for this experiment. Due to the need of the
follow-up experiments, the tongue images were flipped,
randomly cropped, rotated, and other operations were
performed to expand the dataset, and finally, 1100 images
were obtained. )e “ground truth” of each tongue image is
manually marked by experts. In this section, we will make
qualitative and quantitative analysis of the experimental
results.

)e experimental environment of the algorithm is
MATLAB R2010b; the machine system: win7; memory:
4GB. In RCF training, the weight of the 1 × 1 conversion
layer in stages 1–5 is subject to a zero-mean Gaussian
distribution, the standard deviation is initialized to 0.01, and
the deviation is initialized to 0. Because the dataset is rel-
atively small, the ratio of training data and test data is 7 : 3.
All parts of the neural network in this paper are completed
by NVIDIA TITAN X GPU.

)e parameters of the experiment are set as follows: the
time step of the level set is Δt � 1, the regularization pa-
rameter is ε � 1.5, the length penalty term parameter is
λ � 2, the weighted area term is α � −2, the distance reg-
ularization coefficient is μ � 0.2, and the convolution cal-
culation window size is σ � 1. )e above parameters all
maintain the original DRLSE method parameter settings,
and the symmetry detection constraints’ parameter is η � 1.

5.1. Qualitative Analysis. We compare the proposed method
with three other classical methods, including distance rule
level set evolution (DRLSE) method [33], maximal similarity-
based region merging (MSRM) [37], automatic tongue image
segmentation utilizing prior knowledge (C2G2FSnake) [28],

and SegNet-based method proposed in [22].)e results of
tongue segmentation are shown in Figure 8. It can be analyzed
that the MSRM method is not effective for most tongue
segmentation, the contour curve is not completely consistent
with the tongue boundary, and the segmentation accuracy is
low. As shown in the third row (c) of Figure 8, the tongue and
upper lip portions are not identified, and the thick coated
tongue of the row (3) and column (e) differs greatly from the
true boundary. It can be seen from the row (4) that SegNet can
hardly distinguish the background around the tongue, es-
pecially in the row (4) and the columns (e) and (f), teeth and
lips are not recognized. )e edge of the DRLSE-divided
tongue is smooth, but since the DRLSE method only uses the
gradient information and does not combine high-level fea-
tures such as color information, the result of segmentation
between the low-contrast and low-gradient portions of the tip
and the lip is poor. As shown in the low-contrast tongue
images in columns (a) and (b) of row (5) of Figure 8, the
DRLSE method does not accurately segment the portion of
the tongue that is similar in color to the circumference of the
lips. From the segmentation result of row (6), we can see that
the C2G2FSnake method preserves the main contour of the
tongue better, but this method still cannot solve the noise
interference on the edge of the tongue, such as the thick
coated tongue image of the fifth line. In addition, due to the
low robustness of the C2G2FSnake tipping point finding
method, these results in the segmentation extraction results
are often not obtained during the segmentation process. In
the experimental dataset, other results of the method of this
paper are shown in Figure 9.

Combining the experimental results of Figures 8 and 9,
we can conclude that the edge of the target tongue extracted
by the method is smooth and can effectively copy with the
tongue crack of the pathological tongue, such as the third
line (d) and (f) image above. At the same time, by observing
the pictures in the second row (d) column and the fourth
row (b) column, it can be noted that the method in this paper
is insensitive to the spot noise appearing on the surface of the
tongue, which solves the problem of spot segmentation
caused by the DRLSE method. On the qualitative point of
view, the LSM-SEC method is superior to the other three
methods in processing low-contrast tongue images, which
greatly improves the segmentation accuracy. )e accuracy is
partly due to the fact that the level set method is more
suitable for the change of the tongue contour topology, and
the gradient image input makes the segmentation result
insensitive to the cracks and thick coating on the surface of
the tongue, and the contour is more stable. On the contrary,
the symmetry detection constraint enables the segmentation
curve to maintain a good symmetry characteristic of the
original tongue at a weak gradient. In a word, we can see
from the results that our method is relatively universal and
can extract accurate tongue from the surrounding
environment.

5.2. Quantitative Analysis. In order to quantitatively mea-
sure the segmentation performance of the proposed method,
we use the reca, prec, IoU, and F1-measure indicators to
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compare and analyze the segmentation accuracy of the four
methods. Prec, reca, and IoU are the precision, recall, and
cross ratio, respectively, and F1-measure is the harmonic
mean of the accuracy and recall. )e accuracy of segmen-
tation represents the proportion of the real target region in
the segmentation result, and the recall ratio represents the
proportion of the segmentation result in the real target
region. F1-measure is the weighted harmonic average of
accuracy and recall, while IOU is the intersection and
parallelism ratio of the real area and segmentation area. )e
four indicators reflect the accuracy of the segmentation
method, which are defined as follows:

P �
TP

TP + FP
,

R �
TP

TP + FN
,

F1 �
2∗PR

P + R
,

IOU �
Aa ∩Ab

Aa ∪Ab

.

(23)

Input
layer Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Concat 1∗1–1 conv Loss

3∗3 conv

1∗1 conv

1∗1 conv
∑

Deconv

Loss

∑

3∗3 conv

1∗1 conv

1∗1 conv

Deconv

Loss

Figure 6: RCF network structure diagram.

(a) (b)

Figure 7: (a) Original image. (b) Gradient image.
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(a) (b) (c) (d) (e) (f) (g)

Figure 8: Comparison of the results of tongue image segmentation method. Column (a)-(b) are seven types of tongue image. Row (1) is the
original image, row (2) is the ground truth, and rows (3)–(7) are the segmentation results of MSRM, SegNet, DRLSE, C2G2FSnake, and our
LSM-SEC, respectively.

(1)

(2)

(3)

(4)

(a) (b) (c) (d) (e) (f)

Figure 9: LSM-SEC segmentation result. Items (a), (c), and (e) are listed as real images, and items (b), (d), and (f) are listed as LSM-SEC
segmentation results.

Table 1: Quantitative results.

F-measure IOU Prec Reca
MSRM 0.856 0.759 0.842 0.885
DRLSE 0.909 0.834 0.925 0.897
C2G2FSnake 0.899 0.820 0.899 0.904
SegNet 0.838 0.727 0.905 0.802
LSM-SEC 0.963 0.930 0.972 0.956
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)e variables Aa and Bb represent the segmentation
results of the model and the divisions given by the medical
experts. FP, FN, and TP are false positive volume fractions,
false negative volume fractions, and true positive volume
fractions, respectively, as defined below:

TP �
Aa ∩Ab

Ab

,

FN �
Ab − Aa ∩Ab( 

Ab

,

FP �
Aa − Aa ∩Ab( 

Ab

.

(24)

)e closer the values of prec, reca, IoU, and F1-measure
are to 1, the better the segmentation results are. )e average
reca of LSM-SEC is 95.6%, the prec is 97.2%, the IOU is 93%,
and the F1-measure is 96.3%. Refer to Table 1 for index
values of other methods.

Figure 10 is a comparison of the index results of the four
methods. )e abscissa is the mean value of the indicators of
reca, prec, IOU, and F1-measure from left to right. )rough
the quantitative analysis of the four indicators, it can be
concluded that the LSM-SEC algorithm represented by the
yellow column is superior to the other methods in the
segmentation effect of the tongue. )e proposed method
achieves accurate segmentation results on all clinical tongue
images and has high robustness. In the MATLAB experi-
mental environment, the average processing time of each
image in this algorithm is about 49.2 seconds.

6. Conclusions

As aforementioned, tongue segmentation is an important
basic step in the informatization of tongue diagnosis in
traditional Chinese medicine. In this paper, we first intro-
duce a symmetry and edge-constrained level set model,
which combines the latest neural network model and level
set segmentation method to improve the gradient accuracy.
With the symmetry constraint and adjustment of the ini-
tialization position, the proposed approach realizes

intelligent segmentation. As the basic of the expert system,
the symmetry and edge-constrained level set model for
tongue segmentation can realize automatic tongue seg-
mentation without manual intervention and achieve the goal
of intellectualization. Finally, we provide detailed experi-
mental tests. )e experimental results demonstrate the
segmentation accuracy and robustness of the proposed
algorithm.

Machine learning has been widely used in the medical
field and plays an important role in disease diagnosis. In
assisted tongue diagnosis, the method based on deep
learning can achieve end-to-end tongue segmentation,
which greatly simplifies the tedious steps of the traditional
segmentation method and runs faster, with higher accuracy
and better robustness. But different learning methods have
different efficiency and segmentation accuracy. Different
training samples and different size data will also affect the
segmentation accuracy. )erefore, in the future research, we
can improve the segmentation effect by improving the
network structure and training strategy. At the same time, in
view of the small dataset of the tongue image, few-shot
learning is also considered as the research direction in the
future.

Data Availability

In the experiment, the tongue image dataset contains 550
tongue images, part of which is from GitHub’s open-source
dataset, with a total of 300 tongue images: https://github.
com/BioHit/TongeImageDataset; the other part is provided
by the project collaborator of the University of Traditional
Chinese Medicine, with a total of 250 tongue images. )e
images in the dataset are different in size, shape, angle, and
position, but they all contain the complete tongue body,
which is suitable for this experiment. Due to the need of the
follow-up experiments, the tongue images were flipped,
randomly cropped, rotated, and other operations were
performed to expand the dataset, and finally, 1100 images
were obtained. )e “ground truth” of each tongue image is
manually marked by experts in traditional Chinese
medicine.
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Feature selection is a known technique to preprocess the data before performing any datamining task. Inmultivariate time series (MTS)
prediction, feature selection needs to find both the most related variables and their corresponding delays. Both aspects, to a certain
extent, represent essential characteristics of system dynamics. However, the variable and delay selection for MTS is a challenging task
when the system is nonlinear and noisy. In this paper, a multiattention-based supervised feature selection method is proposed. It
translates the feature weight generation problem into a bidirectional attention generation problem with two parallel placed attention
modules. )e input 2D data are sliced into 1D data from two orthogonal directions, and each attention module generates attention
weights from their respective dimensions. To facilitate the feature selection from the global perspective, we proposed a global weight
generation method that calculates a dot product operation on the weight values of the two dimensions. To avoid the disturbance of
attention weights due to noise and duplicated features, the final feature weight matrix is calculated based on the statistics of the entire
training set. Experimental results show that this proposed method achieves the best performance on compared synthesized, small,
medium, and practical industrial datasets, compared to several state-of-the-art baseline feature selection methods.

1. Introduction

With the development of IoT, more and more domains, e.g.,
social media and industries, have accumulated a large
amount of high-dimensional data with temporal orders, so-
called multivariate time series (MTS), which contain valu-
able information. MTS data containing a large number of
features become more and more common in various ap-
plications, such as in biology [1], multimedia [2], social
networks [3], energy [4], and industries [5, 6]. It has brought
the curse of dimensionality and volume. Excessive numbers
of features may greatly slow down the quality of the clas-
sifiers because irrelevant, redundant, and noninformative
features are highly confusing in the learning process [7–9],
while also increasing computational overhead. )us, it is
important to fully exploit the complex relationship from
both temporal and variate dimensions and identify the most
related variates and their most appropriate feature time
stamps in respect to the supervision target. Figure 1 shows

the two different requirements for the feature selection in
MTS. Finding those variables and their time lags is often of
great importance in understanding physical/chemical
models of the underlying systems.

Feature selection, by removing irrelevant and/or redun-
dant features/variables, has been seen as an essential and
crucial data preprocessing step for machine learning [10].)e
supervised feature selection methods are normally catego-
rized as the wrapper, filter, and embedded methods [7, 11].
Different feature selection algorithms exploit various types of
criteria to define the relevance of features: similarity-based
methods, e.g., SPEC [12] and Fisher’s score [13], feature
discriminative capability, e.g., ReliefF [14], information-the-
ory based methods, e.g., mRmR [15], and statistics-based
methods, e.g., T-score [16]. However, those feature selection
methods normally suffer major problems: varying from
computation scalability to stability. Recently, advances in
tree-based solutions and deep learning-based feature selection
andmany deep learning-based feature selectionmethods have
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been proposed due to their effectiveness in processingmassive
data and rich modeling capability. Random Forest [17] cal-
culates feature importance as the sum over number of splits.
)e extreme popularity of the gradient boosting methods also
provides feature selection capabilities, e.g., the Xgboost [18]
and LightGBM [19] calculate feature weight basically
according to the numbers of times the feature is used. Li et al.
[20] proposed a deep feature selection (DFS) by adding a
sparse one-to-one linear layer. Roy et al. [21] use the acti-
vation potentials contributed by each of the individual input
dimensions, as the metric for feature selection. Gui et al. [22]
in their recent work use an attention mechanism for the
general feature selection task as both attention mechanism
and feature selection focus on selecting partial data from the
high-dimensional dataset. However, those feature selection
algorithms are designed for general data and treating the two-
dimensional MTS data indiscriminately.

For MTS feature selection, partially due to its com-
plexity, most research studies are optimized for certain
domains, e.g., Wong et al. [23] propose the feature se-
lection method based on the adaptive resonance theory for
financial time series forecasting. Jimenez et al. [24] define
a wrapper feature selection method based on multi-
objective evolutionary algorithms for antibiotic resistance
outbreak prediction. González-Vidal et al. [25] design a
feature selection method for smart buildings. )ose ap-
proaches generally limit in their respective domains and
cannot easily be extended to other domains. Few feature
selection methods have been proposed for general mul-
tivariate time series. Most of them have major limitations.
For instance, Hido and Morimura [26] find the most
appropriate time stamps for the whole set of variates.
Some keep, e.g., Wong et al. 2012, the time windows
invariant or the same for all features [23]. Sun et al. [27]
used the Granger causality [28] discovery to identify
causal features as well as the effective sliding window sizes
in multivariate numerical time series. However, these
approaches face the same limitation of Granger causality
and may produce misleading results when the true rela-
tionship involves three or more variables and is incapable
of the nonlinear causal relationship.

In this paper, a novel multiattention-based supervised
feature selection (m-AFS) method is proposed to explicitly
tackle the two different correlations. It translates the feature
weight generation problem into a bidirectional attention
generation problem with two parallel placed attention
modules. )e input 2D data are sliced into 1D data from two
orthogonal directions, and each attention module generates
attention weights from their respective dimensions.

)e major contributions of our work are as listed as
follows:

(i) An innovative biattention-based feature selection
architecture is proposed tomake dimension-specific
feature selection methods with neural network-
based solutions. )is method proposes a systematic
structure to generate two different feature weights
from a different perspective with one coherent
neural network structure. By reusing existing neural
network computation advances, this architecture
supports fast and scalable feature weight generation.

(ii) Two different attention-based modules are proposed
that formulate dimension-specific feature weight
generation problems into attention-based attention
weight generation problems: attention over time
(AoT) and attention over variates (AoV). )ose two
modules are designed according to the different
characteristics of two-dimensional features.

(iii) A feature weight generation mechanism is proposed
to generate a final feature weight matrix to unify two
different feature weights across two dimensions
with simple dot product operation. As the attention
weight might have a huge disturbance during the
training, the final feature weight matrix is calculated
based on the statistics of the entire training set.

A set of experiments are designed on a set of datasets
including both regression and classification problems. )e
highest predicting and classification accuracy, compared
with existing popularly used baseline algorithms, has been
observed on all tested datasets. To the best of our knowledge,
m-AFS is the first attention-based neural network solution
for MTS feature selection tasks.

2. Multiattention-Based Feature Selection

In this section, the overall architecture of m-AFS is illus-
trated and analyzed. )en, the major components of this
architecture are illustrated.

2.1. Notation. For the clarity of symbol usage, this paper
presents matrices as a bold uppercase character (e.g., A),
vectors as a bold lowercase (e.g., a), and normal lowercase
character for numerical values (e.g., a). For instance, a time
series is a series of observations,
xi(t); i � 1, 2, . . . , m; t � 1, 2, . . . , d, which is made sequen-
tially through time, where i denotes the index of the mea-
surements made at each time step t and t denotes the index of
the time. Matrix X � xi(tk)|i � 1, 2, . . . , m; k � 1, . . . , d  is
used to indicate the feature selection space with n features and

Temporal dimension

Variate
dimension

Irrelevant

Relevant
Relevant
features

Current
time (t)y

x1

x2

x3

x4

Figure 1: Two-dimensional feature selection in MTS: temporal
feature selection and variate selection, only partial variates and
certain time lags of those variates relevant towards the label y.
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d time points before time t. Here, d represents the maximum
time interval in respect to the current time t. For the feature
selection task, our goal is to find the appropriate feature and
time step with respect to the output y(t). Here, y(t) presents the
value for the label at time point t. When n is equal to or greater
than 2, it is called MTS.

2.2. Architecture. As discussed in Introduction, for MTS data,
two different feature selection dimensions coexist: time di-
mension selection and variate dimension selection. )ose two
dimensions have respective characteristics and have to be
handled differently. In the time dimension, the sequence of a
single feature’s correlation with the target at different time steps
generally is of close characteristics: (1) same unit: the unit of
value is uniform for the same feature; (2) continuity in values:
the values in time sequence are generally continuous. Normally,
the smaller the time interval, the smaller the difference between
the front and back of the sequence of features. However, in the
variate dimension, different features are heterogeneous in most
cases. )erefore, the ways in which features are correlated with
the label normally are quite different.

Similar to the embedded feature selectionmethods, m-AFS
generates feature weight during a learning process. As shown in
Figure 2, m-AFS consists of three connected modules, namely,
the AoTmodule, the AoV module, and the learning module.
)e AoT and AoV modules are parallel arranged in the upper
of m-AFS. AoT is responsible for computing the time di-
mensional weights with transformed one-dimensional data
instead of the original data. Each variate has an AoT module
and a set of attention weights ai

T is generated. Similarly, the
AoV takes all variates at the same time step as its inputs and
tries to find the correlation between variates and label. )e two
attention modules are placed in parallel to avoid convergence
problem which exists in the sequential structure. )e mutual
influence between two modules hampers the learning module.
)e learning module aims to find the optimal correlation
between the weighted features and the supervision target by
solving the optimization problem. It connects the supervision
target and features by the backpropagation mechanism and
continuously corrects the feature weights during the training
process. )e AoT, AoV, and the learning module build the
correlation that best describes the degree of relevance of the
target and features together.

As shown in Figure 2, m-AFS is a loosely coupled and
stacked structure. )us, it is quite similar to extend the
feature selection to data with more dimensions, e.g., tem-
poral, spatial, and variable dimensions. Furthermore, the
learning module can also be customized according to spe-
cific learning tasks, e.g., CNN or RNN.

2.3. Design of the Attention Module. )e AoV unit, as shown
in Figure 3, slices the sample along the time dimension and
uses the variate vector on a single time step
tj � x1(j), x2(j), . . . , xm(j)  as input. Firstly, a dense layer
(denoted as E) is used to extract the intrinsic relationship to
eliminate certain noise or outliers. )e introduced dense
network E compresses the original feature domain into a vector
with a smaller size (adjustable according to specific problems),

while keeping the major part of the information. As the size of
E is normally much smaller than the size of variables, certain
redundant variables will be discarded during this process.

Secondly, by using the extracted E as input, each U is
assigned with a shallow neural network corresponding to the
number of variables. )e output of U represents the jth time
step’s variable attention distribution. To widen the difference
between variables and avoid to take an effect on the time
dimension, the softmax activation is used and the selection
possibility of feature j, pj is calculated with equation (1) and
the output a

j
V is calculated with (2):

p
j

� w
j
ptj + b

j
p, (1)

a
j
V � softmax tanh w

j
np

j
+ b

j
n  . (2)

For each input X with m feature and n time steps, the
AoV modules generate n different attention vectors a

j
V for

different time stamps j. )us, it creates a weight matrix
AV � a

j
V|j � 1, 2, . . . , d . Note that the parameters of AoV

and AoT modules are summarized as θa.
While the AoV unit calculates the variable attention, the

AoTunit integrates the input information of all moments in
the form of soft attention. It uses the time step vector of a
single variable xi � xi(1), xi(2), . . . , xi(d)  as input and
calculates the ith variable’s corresponding attention vector
ai

T|i � 1, 2, . . . , m and matrix AT � ai
T|i � 1, 2, . . . , m with a

series of transformations which are similar to the AoV unit.
For each variable, one AoT is used.

)is design has twomajor functions: (1) the separation of
two dimensions avoids mutual influence and accelerates
convergence and (2) each component ai

T and a
j
V in the

interval (0,1) can force many feature coefficients to be small,
or exactly zero to facilitate feature selection. Attention here
is similar to some sparse regularization terms used in many
sparse-learning-based feature selection methods.

2.4. Learning Module. )e feature weights generated from
m-AFS are from AoT and AoV, respectively. )erefore, it is
important to merge the two sets of weights to facilitate global
feature selection. Two dimensions of the original data have
their different characteristics and cannot directly be used for
selection. But after the transformations of the attention
module, weights of both dimensions are unified within [0,1]
and can be directly used to identify the importance of
variables. Here, we contact the two attention weight matrices
AV andAT by a pairwise multiplication operation ⊙ and the
global dimension attention weight is as follows:

A � AV ⊙AT. (3)

)e 2D weighted inputs of the learning module G can be
accessed by the following equation:

G � A⊙X. (4)

A is constantly adjusted during the learning process with
backpropagation by solving the objection function as
follows:
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argmin
A

L fθl
(A⊙X) − Y  + λR(θ), (5)

where θ � 〈θa, θl〉 and R(·) is often an L2-norm that helps to
speed up the optimization process and prevent overfitting.
Here, λ controls the strength of regularization. )e loss
function depends on the type of prediction task. For the
classification tasks, the cross-entropy loss functions are
usually used. For regression tasks, the mean absolute error
(MAE) is normally used. Note that fθl

(·) is a neural network
with parameters θl.

For a specific learning problem, m-AFS can use a net-
work structure that best fits the particular task. For general

value-based regression and classification tasks, we adopt the
fully connected network for task learning. Other structures,
e.g., LSTM and CNN, are also adopted.

2.5. Feature Score Generation. Considering the much larger
amount of data and limited computing resources in the real
scenario, as well as the risk of trapping into local optimum,
the training of network is processed in batch. )is limits us
to getting global attention weights of only one batch
inputted, resulting in degraded performance. To have a
better understanding of the attention distribution, we use the
trained model to evaluate the whole dataset, get each
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Figure 2: Conceptual structure of m-AFS.
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sample’s global weight ws, and calculate the statistical feature
score using the following equation:

F �


D
i�1 Ai

D
, (6)

where D is the size of the dataset and Ai is the attention
matrix generated by the trained model for the sample i. )e
average weight matrix F across the whole sample is used as
the basis for the feature selection.

3. Results

In this section, we will conduct experiments to answer the
following research questions:

(i) Q1: Does the selection achieve good accuracy or a
small error in those datasets?

(ii) Q2: Does it capable to select the most appropriate
features from both the temporal and variate
dimensions?

In the following section, we introduce the basic exper-
iment settings and the comparisons of different methods on
both synthetic and real-world datasets.

3.1. Experiment Settings. )is section is divided into two
main experiments. )e first experiment verifies the feasi-
bility of m-AFS on a synthetic data. )en, experiments on
several real-world datasets from the UCI Machine Learning
Data Repository are conducted.

3.1.1. Evaluation Setting. )e ratio of training data to test data
is 8 : 2. m-AFS adopts the normalization method introduced in
Section 2.5 to generate global feature weight from the weights
of variable and the temporal dimensions. Other feature se-
lection methods do not have the concept of hierarchically
generating weights. )us, other baseline algorithms select
feature directly via their feature weights across all features.

3.1.2. Baselines. )e implementation of the feature selection
methods compared in this experiment is from the open-
source library [7] (https://github.com/jundongl/scikit-
feature). )is experiment compares the m-AFS with the
following representative methods:

Similarity-based methods: Fisher’s score [29] and
ReliefF [30] select features by finding the near-hit and
near-miss instances using the l1-norm: FS_l21 (feature
selection with l2, 1-norm) [31]
Embedded method: RF (Random Forest) is a tree-based
feature selection method provided by scikit-learn package

3.1.3. Predictive Model Settings. )e RF (Random Forest) is
used as the classifier for the experiments to avoid using the
same methods for feature selection and testing. Other clas-
sifiers are also tested, e.g., support vector machine (SVM) is
too slow to be used in the large dataset, and KNN is also much
slower than RF and displays no significant advantages over RF

in most of the tested datasets. Since the feature subsets se-
lected by different feature selection methods are different, it is
not appropriate to use the same hyperparameters for pre-
diction. )erefore, we use the grid search to find the optimal
parameters for the predictionmodel and use these parameters
to set the model and then test the prediction accuracy on the
reconstructed feature set. For the regression tasks, the mean
absolute error (MAE) is adopted while the percentage of
classification accuracy is used for classification tasks.

Model parameters are initialized with the truncated
normal distribution with a mean of 0 and a standard de-
viation of 0.1. )e model is optimized by Adam. )e batch
size is set according to the size of samples, 100 for small
datasets and 1000 for MNIST and noisy MNIST. )e
learning rate is the default value of Adam optimizer in Keras
framework (0.002). Here, all trainable parameters are con-
strained by L2 regularization. )e network setting of AoT is
one hidden layer and AoV is with two hidden layers: the first
layer E with 32 units and the second layer U with the length
of time steps and the number of the variables, respectively.
)e E layer is with 512 units. As the structure is loosely
coupled, the learning module can be easily replaced. )e
max training epoch is set at 100 and early stopping is
adopted to avoid overfitting.

3.2. Experiments on the Synthetic Data. In order to verify
whether m-ATP can accurately identify the related features,
we performed feature selection in a synthesized nonlinear
system with known dynamics.)ere are six variables that are
uniformly random distributed. )e output y is generated
with the following function:

Y � X1(t − 1)∗X2(t − 2) + X3(t − 5) + X4(t − 1)

+ X4(t − 4)+

X4(t − 5) + X4(t − 7) + X4(t − 8) + σ(0, 0.1),

(7)

where x1 ∈ [2, 5], x2 ∈ [10, 30], x3 ∈ [5, 10], x4 ∈ [30, 70],

x5 ∈ [100, 200], x6 ∈ [65, 85], and uniformly distributed. As
can be seen from this equation, only x1∼x4 variates are
related to y at certain time stamps. At the same time, in order
to simulate the noisy environment, Gaussian white noise
σ(0, 0.1) is added. )e total number of samples of the
simulation dataset generated according to the above prin-
ciples is 5000. Here, T is set to 10, and the total number of
samples becomes 4991.

We tested various feature selection algorithms on the
datasets. Here, the major focus is to check whether those
algorithms can effectively identify the correct time stamps.
)us, the feature weights generated by different methods are
illustrated in Figure 4. Note that as other methods generate
weight in ranges other than [0,1], in order to have
straightforward comparisons, those weights are normalized
to the same range. Of course, the order of feature weights for
feature selection is kept unchanged. )e darker the feature,
the more likely it should be chosen. )is figure clearly shows
that m-AFS can correctly find all the most relevant time
stamps. In contrast, none of the other methods can correctly
identify both variates and time stamps, or even some of
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them. For instance, although RF achieves very sparse feature
weight distribution, this distribution deviates significantly
from the real system dynamics.)us, their results might give
misguidance towards the system’s characteristics.

3.3. Experiments on Real-World Datasets. To further dem-
onstrate the effectiveness of m-AFS in real-world cases, we
conducted experiments in six publicly available time series
datasets from UCI (https://archive.ics.uci.edu/ml/index.
php), including three regression datasets and three classi-
fication datasets. Details about the dataset are shown in
Table 1. )e size of the data is calculated with the product of
sample instances, maximum time window, and the number
of variates to represent how many inputs are needed to be
calculated.

Table 2 shows the partial experiments results on the six
different MTS datasets with different percentages of selected
features. Due to the fact that MTS data normally have strong
autocorrelation in the temporal dimension, maximum 15%
of features are selected.

Table 2 shows that m-AFS and RF achieve the best
performance on almost all the datasets and normally have
big performance advantage over the other methods. RF leads
with small percentage over m-AFS in the top 5% range and
m-AFS ranks first in most top 10% features. However, their
performances are quite close. It shows that bothmethods can
identify the most influential factors for the prediction. Other
methods, e.g., the LS_121 have rather unstable performance
in different datasets. LS_121 ranks first in the OD dataset
while it ranks last in the EEG dataset. Both datasets are the
classification task. We also notice that more selected features
normally yield little improvement towards the final results.
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Figure 4: Feature weight distribution in the synthetic data. (a) m-AFS feature weight; (b) trace ratio; (c) RF; (d) ReliefF.

Table 1: Dataset information.

Dataset Type Var. no. Win. size Train/test Size (million)
DC R 7 20 1900/475 0.266
SRU R 5 15 8053/2014 0.603
AEP R 27 20 15772/3944 8.516
EEG C 14 20 11968/2993 3.351
OD C 5 20 6499/1625 0.650
WFRN C 24 20 4349/1088 2.328
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And in the bigger range of top K, similar results are
observed.

Here, the Random Forest algorithm is chosen also as the
classifier for prediction and classification due to its per-
formance and accuracy. We have to admit that this choice
gives RF some advantages over the other methods. However,
SVM is too slow to finish those tasks and KNN displays not
so well accuracy in those tasks.

3.4. Interpretability. Formanymission-critical domains, it is
important that the generated feature weights have good
interpretability and represent real system dynamics. Partial
feature weights from the best two methods: m-AFS and RF
for x2, x3, and x4 of the SRU dataset are shown in Figure 5. It
clearly shows that m-AFS generates more smooth feature
weights and clearly identifies the system lags for variates x2
(around 5 7), x3 (around 14), and x4 (around 8 10). )is
result is quite close to the results deduced by domain expert
supported with domain-specific data mining solutions [32].
)eir conclusion is x2 (6), x3 (14), and x4 (10). However,
results from RF hardly demonstrate this conclusion al-
though it has the best performance in SRU.

)ese results also show the possibility that the global
weight generation methods proposed have room for im-
provements. How to generate global consistent weights to
facilitate the feature selection with two different dimension-
specific weights still needs further investigations.

3.5. Computational Complexity. In Table 3, the computation
overheads of different feature selection methods are illustrated.
Note that AFS intentionally only uses the CPU rather than the

GPU as the calculation devices to make a fair comparison.
)eoretically, it can execute 3∼9 times faster on the GPU.

)e overhead is measured with the execution time for
the feature weight generation process. Results show that AFS
has moderate computation complexity. For the training with
1000 steps, it takes about 10 s to 173 s for the feature weight
generation. Its execution time increases almost linearly as
the size of data increases. In contrast, Fisher’s score and
ReliefF suffer the high and unstable computation cost. )eir
calculation time does not increase exactly with the increase
in data volume.

3.6. Discussions

3.6.1. Possible Applications. Obtaining the most relevant
features of the target system and the time node with the
greatest impact is essential for the modeling of any se-
quential system. As machine learning is more and more
applied to the modeling of time series systems, the accuracy
of the model is getting higher and higher, and the required
parameters are becoming more and more complicated. )e
improvement of the accuracy of the model is of course very
important, but the increase in the complexity of the model
leads to a decrease in the intelligibility and robustness of the
model. For many application scenarios that require high
model availability and robustness, such as modeling of in-
dustrial systems, the existing deep learning models often
cannot meet the modeling requirements of intelligibility and
robustness. In our work, by identifying the most relevant
features, the most relevant time delays, and the important
system parameters and through the actual industrial data,
the delay calculation of this SRU dataset is consistent with

Table 2: Regression and classification accuracy with different percentages of selected features with the RF classifier.

SRU (10− 2) DC (10− 2) AEP (10− 2) EEG (%) OD (%) WFRN (%)
Top 5% of selected features
m-AFS 1.65 6.55 3.09 89.98 95.38 92.74
Fisher
’s score 2.63 11.24 3.72 81.35 98.52 93.47

ReliefF 2.74 9.39 5.53 70.09 97.48 94.30
Trace 2.80 5.94 4.05 68.09 84.74 90.71
LS_l21 1.86 6.81 3.36 63.81 99.01 92.46
RF 1.40 5.37 3.29 82.15 98.58 98.34
Top 10% of selected features
m-AFS 1.3 3.18 3.22 95.16 99.26 95.96
Fisher
’s score 2.55 7.31 3.38 85.63 98.65 96.04

ReliefF 2.52 7.73 5.29 76.54 98.46 95.31
Trace 2.58 5.62 3.44 75.67 86.77 92.09
LS_l21 1.57 5.24 3.23 67.65 98.52 93.29
RF 1.10 3.88 3.61 85.36 99.20 98.07
Top 15% of selected features
m-AFS 0.99 2.80 3.27 96.26 99.26 95.96
Fisher
’s score 2.52 7.03 3.30 89.31 98.71 96.87

ReliefF 2.51 6.14 4.73 82.73 98.77 95.59
Trace 2.54 5.40 3.15 79.89 86.95 92.56
LS_l21 1.50 4.56 3.20 75.01 98.52 93.38
RF 0.96 2.81 3.60 86.97 99.32 98.07
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the actual physical model, which effectively illustrates that
this work plays an important role in the modeling of un-
derstandable industrial systems.

3.6.2. Current Limitations. )e current major limitation is
in the difference of feature weight evaluation. Traditional
feature selection solutions calculate the feature weights and
select the most influential features from the global per-
spective. In contrast, m-AFS calculates the feature weight
from two different dimensions. Although our solution
provides better interpretability, it introduces complexities in
evaluating their contributions in the global aspect. And we
need to balance the attention weight from multiple di-
mensions as proposed in Section 2.5. We are working on a
more effective solution to condense weights from multiple
dimensions.

4. Conclusion

In this paper, a novel multiattention-based feature se-
lection architecture is introduced for the supervised
feature selection for MTS data. In this architecture, two
different attention mechanisms are designed to make the
temporal and variable selection according to different
feature selection patterns. Specifically, for the temporal
dimension, the feature weight problem is formulated into
a weighted average problem. For the variate dimension,

the variate selection problem is transformed into a binary
classification problem for each variate. )is architecture is
designed to be easily stackable so it is possible to be ex-
tended to data with more than two dimensions. Experi-
ment results show that m-AFS can achieve the best feature
selection accuracy on most tested different datasets,
compared with three off-the-shelf and widely used
baselines.

In future work, we aim to develop more domain-op-
timized solutions for data with more than 3 dimensions.
We are also working on the data-driven physical dynamics
model reconstruction to enhance the model
interpretability.
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Figure 5: Feature weight distribution in the SRU dataset.

Table 3: Comparisons of the computation overhead (in seconds).

Meth. dataset DC SRU EEG AEP OD WFRN
m-AFS 10 52 101 173 44 60
Fisher’s score 16 1511 68 128 21 5.6
ReliefF 633 45594 412 2707 72 45
Trace ratio 1.3 30 95 185 19.2 10
LS_L21 1 1.4 12 20 3.5 3.3
RF 3 9 33 124 1.5 7.8
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methodology for energymultivariate time series forecasting in
smart buildings based on feature selection,” Energy and
Buildings, vol. 196, pp. 71–82, 2019.

[26] S. Hido and T. Morimura, “Temporal feature selection for
time-series prediction,” in Proceedings of the 21st Interna-
tional Conference on Pattern Recognition (ICPR2012), Tsu-
kuba, Japan, November 2012.

[27] Y. Sun, J. Li, J. Liu, C. Chow, B. Sun, and R. Wang, “Using
causal discovery for feature selection in multivariate nu-
merical time series,” Machine Learning, vol. 101, no. 1-3,
pp. 377–395, 2015.

[28] C. W. J. Granger, “Investigating causal relations by econo-
metric models and cross-spectral methods,” Econometrica,
Wiley, Econometric Society, vol. 37, no. 3, pp. 424–438, 1969.

[29] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature
selection,” Advances in Neural Information Processing Sys-
tems, vol. 18, pp. 507–514, 2005.

Computational Intelligence and Neuroscience 9



[30] I. Kononenko, “Estimating attributes: analysis and extensions
of RELIEF,” in Machine Learning: ECML-94, F. Bergadano
and L. De Raedt, Eds., pp. 171–182, Lecture Notes in Com-
puter Science, 1994.

[31] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient
l2, 1-norm minimization,” http://arxiv.org/abs/1205.2631
2012.

[32] S. Han, T. Kim, D. Kim, Y.-L. Park, and S. Jo, “Use of deep
learning for characterization of microfluidic soft sensors,”
IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 873–880, 2018.

10 Computational Intelligence and Neuroscience

http://arxiv.org/abs/1205.2631 2012
http://arxiv.org/abs/1205.2631 2012


Research Article
A Single Target Grasp DetectionNetwork Based on Convolutional
Neural Network

Longzhi Zhang and Dongmei Wu

State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150001, China

Correspondence should be addressed to Dongmei Wu; wdm@hit.edu.cn

Received 21 May 2021; Accepted 10 July 2021; Published 20 July 2021

Academic Editor: Nian Zhang

Copyright © 2021 Longzhi Zhang and Dongmei Wu. )is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Grasp detection based on convolutional neural network has gained some achievements. However, overfitting of multilayer
convolutional neural network still exists and leads to poor detection precision. To acquire high detection accuracy, a single target
grasp detection network that generalizes the fitting of angle and position, based on the convolution neural network, is put forward
here. )e proposed network regards the image as input and grasping parameters including angle and position as output, with the
detection manner of end-to-end. Particularly, preprocessing dataset is to achieve the full coverage to input of model and transfer
learning is to avoid overfitting of network. Importantly, a series of experimental results indicate that, for single object grasping, our
network has good detection results and high accuracy, which proves that the proposed network has strong generalization in
direction and category.

1. Introduction

Over recent years, deep learning has gained huge break-
throughs in computer vision [1, 2]. Unlike traditional
hand-engineered features, deep learning can autonomic
learning features from images, to acquire highly abstract
and robust visual features via making use of image in-
formation to the most extent. Naturally, as one of the most
representative deep learning models, convolutional neural
network has become a research hotspot in computer vision,
with easy training, high performance, few parameters, and
strong generalization. Particularly, researchers have
attempted to introduce it into research on robotic grasp
detection, since its remarkable achievements in target
detection [3–12].

Literature [13] innovatively used convolutional neural
network for robotic grasps. More importantly, a deep neural
network with four layers was proposed, which could ef-
fectively express multimodal features of grasping position, to
achieve accurate detection of suitable grasping position on
object [13]. Furthermore, a three-stage convolutional neural
network was adopted to detect the grasping position of

objects in depth image [14], where the first-level convolu-
tional neural network was used for performing preliminary
location of grasping position, the second-level convolutional
neural network was utilized for acquiring the preselected
grasping boundary, and the third-level convolutional neural
network was to reevaluate the preselected grasping
boundary. To perform operations, a two-step robotic grasp
detection system was proposed [15].

Distinct from above thoughts, although convolutional
neural network was also adopted to identify the grasping
region of the object, the entire image of the object was taken
as the input of network, to directly generate the position of
the possible grasping region on object [16]. Reference [17]
evaluated the possible position to be grasped of the target via
predicting the grasping function learned from the con-
volutional neural network. In addition, researchers con-
verted the grasp detection into an 18-channel binary
classification [18] and adopted a convolutional neural net-
work to learn the clamping rule of the two-finger gripper to
obtain the optimal grasping position on the target. Xia et al.
proposed a planar grasping pose detection method of the
robot based on the cascaded convolutional neural network
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[19]; they established a cascaded two-stage convolution
neural network model with position and attitude from
coarse to fine to estimate the optimal grasping position and
angle. In order to perform grasping new unknown model
objects, visual feature points of an object in the process of
being grasped were exacted via a convolutional neural
network model, and a grasp strategy was constructed based
on these visual feature points [20].

For actual robotic grasping, some grasp detection
methods based on convolutional neural network models
were put forward. Literature [21] proposed a hybrid deep
architecture combining visual and tactile sensing for
robotic grasp detection. An efficient framework of hi-
erarchical cascaded forests to perform recognition and
grasp detection of objects from RGB-D images of real
scenes was proposed [22]. Ribeiro et al. [23] addressed the
problems of grasp detection and visual servoing using
deep learning and applied them as an approach to the
problem of grasping dynamic objects. To acquire satis-
factory grasp detection results, a self-supervised learning
method was applied to learn grasping data directly col-
lected by a robot [24]. To recognize and detect grasp
rectangles on images of an object to be held by two-plates
parallel grippers, a dictionary learning and sparse rep-
resentation framework was proposed [25]. Also, unsu-
pervised feature-learning methods were proposed for
grasp detection [26–28]. In literature [26], a network
model was proposed for predicting the 6 DOF pose of the
target to confirm the position to be grasped. A beneficial
attempt was conducted via using tactile sensors and an
unsupervised feature-learning approach to predict
whether a grasp is successful [27]. To clean water surface
by aquatic robots, researchers came up with an unsu-
pervised grasp detection method for water-surface object
collection [28].

Additionally, for actual robotic grasping, another
category of prediction approach is based on reinforce-
ment learning. Zhang et al. proposed a reinforcement
learning method for grasp detection to define a grasp as a
point in a 2D image plane [29] via Q network [30] to
perform target reaching after training in simulation. In
literature [31], an asynchronous deep reinforcement
learning approach was presented for learning robotic
grasping policies, which can be trained on real physical
robots. To perform complex sequences of pushing and
grasping on a real robot, a method that combines deep
reinforcement learning with affordance-based manipu-
lation was put forward for detecting grasps [32]. Fur-
thermore, to improve the flexibility of robotic detection
for grasps, a curriculum-based reinforcement learning
approach was conducted to learn reactive policies for the
task of real picking [33]. Obviously, unlike above
methods, grasp detection based on reinforcement
learning mainly focuses on learning grabbing strategy for
detecting grasps, rather than involving the network ar-
chitecture itself.

However, with some success of grasp detection based
on convolutional neural network in theories and appli-
cations, for grasp detection network inherence itself,
overfitting in multilayer convolutional neural network
still exists and leads to poor detection precision. To
achieve highly accurate detection for grasps, a single
target grasp detection network with high detection ac-
curacy is proposed, which generalizes the fitting of angle
and position.

)e remainder of this paper is organized as follows.
Section 2 introduces our preliminary work to provide a
theoretical basis for this research. Section 3 gives an ex-
haustive formulation of our thoughts. Experimental results
are shown in Section 4 to demonstrate the superiority of the
proposed network. Ultimately, Section 5 concludes the paper
and looks forward to the future work.

2. Related Work

2.1. Overview and Analysis of Components in Convolutional
Neural Network. Objective of exploring each component in
convolutional neural network is to deepen the under-
standing of network structure, so as to carry out our re-
search. As a matter of fact, convolutional neural network is a
feed-forward neural network, but distinct from ordinary
neural networks, it is generally composed of a convolution
layer, activation layer, pooling layer, and fully connected
layer. Following, each component is overviewed and
analyzed.

2.1.1. Convolutional Layer. Convolutional layer is the core
module in a convolutional neural network, which is usually
composed of several convolution kernels with different sizes.
After image input into the convolutional neural network, the
convolution kernel performs convolution operations suc-
cessively on the width and height of the image with a certain
step length, to obtain a convolved feature vector.

Unlike connection ways of neurons in the ordinary
neural network, convolution operation adopts sparse
connection, which means that only neurons calculated
with convolution kernels are connected to each other.
)us, this connection mode could increase the sparsity of
the network to greatly reduce the number of network
parameters and also could avoid overfitting of the net-
work. In addition, convolutional neural network has the
characteristic of weight sharing; that is, different positions
of an image could be processed via the same convolution
kernel, which could also reduce the number of network
parameters.

Furthermore, the relation between input and output in a
convolutional neural network is determined by convolution
operation and selection of hyperparameters.

Assuming that the input image size is H × W × C, the
convolution kernel size is F × F × C, the number is N, the
convolution step is S, the unilateral filling size is P, and the
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output eigenvector is H × W × C, then the output could be
expressed as

H′ �
H − F + 2P

S
+ 1,

W′ �
W − F + 2P

S
+ 1,

C′ � N.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Apparently, the output height and width of the con-
volutional neural network are determined by input, con-
volution kernel size, filling size, and step, while the output
channel number is determined by convolution kernel
number.

2.1.2. Activation Function. Activation function plays an
important role in the convolutional neural network. In fact,
the inexistence of activation function will lead to the output
that is a linear expression of input, which means that the
network could only deal with linear problems, thereby
greatly weakening the expression ability of the network
model. As a result, to increase the nonlinear expression
ability of network, activation function is usually added after
convolutional layer.

Sigmoid function is one of the typical activation func-
tions [34], and its expression is

σ(x) �
1

1 + e
−x. (2)

In Sigmoid activation function, definition domain is
(−∞, +∞), and value ranges at (0, 1), as shown in Figure 1.

Sigmoid function was formerly widely used in the
shallow neural network, but when the input is large, its
gradient approaches 0, and with the increasing depth of the
network, gradient dissipation is easy to occur in back-
propagation, leading to failure of network training. More-
over, the output value of the Sigmoid function is not
centered at 0.

Another typical activation function is the tanh function
[35], which could be expressed as

tanh(x) �
e

x
− e

−x

e
x

+ e
−x. (3)

Similar to the Sigmoid function, the definition domain of
the tanh function is (−∞, +∞), and the value also ranges at
(0, 1). However, different from the Sigmoid function, the
output value of the tanh function is centered at 0, as shown
in Figure 2.

Although the output value of the tanh function is
centered at 0, it still has not solved the problem that the
network could not effectively backpropagate in case output
or initial value is large. Hence, applications of above two
activation functions tend to drop off.

Subsequently, a linear rectifier function called ReLU was
proposed [36]; the expression is

f(x) �
0, x< 0,

x, x≫ 0.
 (4)

ReLU function is simple and easy to derive, which does
not increase the difficulty in process of backpropagation and
greatly accelerates the training speed. Even though the
function could not be differentiated at 0, it has left deriv-
atives and right derivatives around 0 and any of them could
be selected since values exactly falling at 0 are minor and
hardly affect the overall results. )e image of this activation
function is shown in Figure 3.

In ReLU activation function, the gradient saturation phe-
nomenon is inexistent and the gradient is always 1, leading to
fast convergence. Simultaneously, there is low computation due
to nonexponential operations. Furthermore, neurons with
output less than 0 do not work, which greatly increases the
sparse expression ability of the network, to improve the network
generalization performance. )us, ReLU activation function is
most widely used in current deep neural networks.

2.1.3. Pooling Layer. Pooling layer is also called downsampling
layer and is commonly located behind the convolutional layer to
reduce parameters number and computational complexity.
Meanwhile, pooling layer could compress eigenvectors to exact
main features and avoid overfitting. Generally, polling layer
could compress the sizes of eigenvectors but could not change
their depth.

Typical pooling methods include average pooling and
maximum pooling; their calculation principles are, respec-
tively, shown in Figures 4 and 5.

In Figures 4 and 5, the size of convolution kernels is the
same, since above convolution kernel size is the most
universally used in the convolutional neural network. It can
be clearly seen that the average pooling takes the average
value of convolution kernel region size and blurs the ei-
genvectors; thus, it is not conducive to feature extraction.
However, maximum pooling takes the maximum value of
convolution kernel region size and retains remarkable fea-
tures. Accordingly, maximum pooling is mostly used at
present.
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Figure 1: Sigmoid activation function.
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2.1.4. Fully Connected Layer. Fully connected layer is similar
to the ordinary neural network, without weight sharing and
sparse connection of convolutional layer, and each neuron in
it is interconnected. In a convolutional neural network, the
input of the fully connected layer is eigenvectors extracted
from the convolutional layer, and the output layer is selected
based on completed task, such as Softmax output layer and
logistic regression layer.

However, fully connection gives rise to a large number
of parameters. If the number of data is too small, the
network will easily fall into overfitting. )us, in con-
volutional neural network, the emergence of the fully

connected layer is generally accompanied by the dropout
layer. )e dropout layer could stochastically discard some
neurons to make them ineffective in fully connected layer.
)at is, the dropout layer is to imitate the sparse con-
nection of the convolutional layer to prevent the over-
fitting of the network. In fact, the coefficient of dropout is
confirmed by the specific application scenarios and
network models, whose value is usually between 0.5 and
0.8 during training.

2.2. Performance Comparison of End-to-End Target Detection
Algorithms Based on Convolutional Neural Network.
Among target detection based on convolutional neural
network, end-to-end networks directly detect the results
from the image output, leading to a good performance in
real time. Accordingly, we compare and analyze the
performance of nowadays commonly used end-to-end
networks to provide a theoretical foundation for our
research.

In our implementation, VOC07 + 12 dataset is divided
into a training set and test set, where the test set is 2007 test
set, and the rest are training set. Detection results of different
algorithms on test set are shown in Table 1.

It can be concluded from Table 1 that YOLOv2 is su-
perior to YOLOv1 in accuracy and real time, and compared
with YOLOv2-tiny, YOLOv2 gets a significant increase in
accuracy at the expense of certain speed. Moreover, YOLOv2
is lower than SSD-300 in accuracy only at 1 percent, but
more than four times faster in real time. Compared with
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Figure 2: Tanh activation function.
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SSD-512, YOLOv2 is 6.7 times faster than it, while being
lower than it in accuracy only at 3.6%.

)rough comparative analysis of above results, it can be
seen that YOLOv2 has superiority over others in high ac-
curacy and better real time. Hence, this paper introduces it
into research on grasp detection andmakes use of its end-to-
end detection thought to conceive a single grasp detection
network, which takes an image as input and grasp param-
eters as output. Also, the proposed network has a great
generalization ability to fit in angle and position and has high
detection accuracy.

3. Constructing Single Target Grasp
Detection Network

3.1. Modeling Grasping Parameters. Indeed, the essence of
grasp detection based on a convolutional neural network is
to find grasping parameters that could achieve stable
grasping. Hence, establishment of an appropriate grasping
parameter model to achieve stable grasping is the key to the
research of grasp detection based on a convolutional neural
network.

Saxena et al. adopted a 2D grasping point as a grasp
parameter model [37], and Le et al. utilized a pair of grasping
points as a grasp parameter model [38]. However, the
limitation of above grasp parameter models lies in that they
could not fully represent the seven dimension parameters in
grasping operation of the robot, and the other parameters
need to be estimated separately.

Due to this, Jiang et al. proposed a seven-dimensional
representation method combining 2D grasping rectangle
and 3D point cloud [39], which described the 3D position,
attitude, and size of the end-gripper. However, 3D point
cloud data need to be calculated, which means that the
extracted point cloud data require high precision and large
amounts of computation.

To deal with above problem, Redmon and Angelova [16]
simplified the model of literature [39]. )eir contribution
simplified the grasping in three-dimensional into planar
grasping and proposed a five-dimensional parameter rep-
resentation method based on the 2D grasping rectangle,
which brought inspiration to our research.

Obviously, simplifying 3D grasping into 2D planar
grasping and using a grasping rectangle to express the grasp
parameters could effectively reduce the computation, and
the issue of grasp detection becomes relatively simple.
Particularly, the grasping rectangle is used to describe the
grasp parameters, which makes grasp detection quite similar
to object detection, while the distinction between the two is

that the direction of the gripper needs to be considered in
grasp detection.

Consequently, we utilize the strong learning ability of the
convolutional neural network on image features to convert
the grasp detection of the robot into target detection and
adopt a 2D grasping rectangle to confirm the appropriate
grasp parameters. More importantly, in order to enable 2D
grasping to be fully mapped into 3D space and directly
utilized by the robot to accomplish grasping operations, in
this work, we assume that the gripper is always perpen-
dicular to the z-axis to grasp vertically downward.

To sum up, we build up amodel of grasp parameters with
the manner of five-dimensional representation. More pre-
cisely, we use the position of the gripper (x, y), the direction
of gripper θ, the opening size of the gripper before grasping
objects w, and the size of gripper h to constitute a grasping
rectangle, as exhibited in Figure 6.

)e grasp parameters model could be expressed as

M � x, y, h, w, θ , (5)

where (x, y) is the center coordinates of grasping rectangle,
θ represents the rotation angle of grasping rectangle relative
to the horizontal axis of the image (counterclockwise is
positive), w means the width of grasping rectangle, and h

refers to the height of grasping rectangle.
As displayed in Figure 6, a grasping rectangle of a remote

device is composed of five grasp parameters defined by
formula (5), where blue is on behalf of the gripper, red
represents the distance between the two ends of the gripper
before grasping, (x, y) is the center coordinates of grasping
rectangle, and θ represents the rotation angle of grasping
rectangle relative to the horizontal axis.

3.2. Modeling Grasp Detection Network. As mentioned
above, YOLOv2 has obvious advantages in detection ac-
curacy and real time. )us, we introduce it into the research
of grasp detection and utilize its “end-to-end” detection
manner to establish a grasp detection network model with
the proposed 5 grasp parameters as output. Accordingly, it is
necessary to comprehend and analyze the network structure
of YOLOv2 before modeling the grasp detection network.

Darknet19 as the framework of YOLOv2 is composed of
19 convolutional layers and 5 maximum pooling layers. In
darkent19, largely 3 × 3 convolutional kernels are used for
feature exaction, and after each maximum pooling layer,
channels are doubled to prevent information loss. Simul-
taneously, 1 × 1 convolutional kernels are added after 3 × 3
convolutional kernels to compress eigenvectors. Lastly,
global average pooling is adopted to reduce dimension, and
the Softmax layer is utilized for prediction. Furthermore,
batch normalization is used for improving the stabilization
and accelerating the convergence of the model in process of
training. )e network model of darknet19 is shown in
Figure 7.

In fact, darknet19 has good performance in target de-
tection, and the established grasp detection network model
in this paper only needs the output 5 grasp parameters.)us,
in order to simplify the process of training network,

Table 1: Detection results of different end-to-end algorithms.

Algorithm Training set Test set mAP FPS
YOLOv1 VOC07 + 12 trainval VOC07 test 48.1 71
YOLOv1-tiny VOC07 + 12 trainval VOC07 test 33.5 282
YOLOv2 VOC07 + 12 trainval VOC07 test 75.4 100
YOLOv2-tiny VOC07 + 12 trainval VOC07 test 41.1 250
SSD-300 VOC07 + 12 trainval VOC07 test 75.5 18
SSD-512 VOC07 + 12 trainval VOC07 test 79.0 15
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meanwhile shortening the process of forward reasoning and
backpropagation, thereby to avoid the occurrence of over-
fitting, we construct a grasp detection network model based
on the network structure of darknet19, which has a relatively
simple structure and could adapt to the proposed grasp
parameters.

On the other hand, both accuracy and real time in grasp
detection are taken into consideration; the constructed grasp
detection network model should be able to make full use of
powerful learning ability and extraction ability of con-
volutional neural network on image features and could avoid
multiple time-consuming classification calculations in a
small part of the whole image. Hence, the established grasp
detection network model should be able to carry out
bounding box regression on the whole image to acquire the
appropriate grasping rectangle.

In summary, based on the network architecture of
darknet19, we put forward a grasp detection network model
with the whole image as input and five grasp parameters as
output, whose structure is displayed in Figure 8.

As shown in Figure 8, compared with darknet19, the
grasp detection network model established in this paper
prunes the 1 × 1 convolutional kernel used for compressing
eigenvectors, which was connected with 3 × 3 convolutional
kernel, and removes the 3 × 3 convolutional kernel used for
learning higher-level features, which was between 1 × 1
convolutional kernel and maximum pooling layer. )e ei-
genvectors of 7 × 7 × 1024 are obtained after six convolu-
tional layers and pooling layers and without connection of
pooling layers behind the last convolutional layer. In ad-
dition, the 1 × 1 convolutional layer, fully connected layer,
and Softmax output layer used for classification tasks are
replaced by three fully connected layers with 1024, 512, and 5
neurons, respectively, where fully connected layers with
1024 and 512 neurons are used to deal with 7 × 7 × 1024
eigenvectors extracted by convolutional layer, and the last 5
neurons are used to output the grasp parameters.

When the original image is input into the network model,
the convolutional layer is used to extract features from the
image, and the fully connected layer of the last 5 neurons is used
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as the output layer corresponding to the coordinates of grasp
parameters, where four neurons correspond to the position,
width, and distance of the gripper. )e grasping angle is
symmetric; thus, θ ∈ (−π/2, π/2), but tan θ is monotone in-
creasing in this interval. Accordingly, the last neuron corre-
sponds to the tan θ value of the gripper relative to z-axis
rotation angle. Although θ between (−π/2, π/2) is reasonable,
tan θ is closer to these two thresholds, and the value of |tan θ| is
greater, which is quite disadvantageous to the calculation of
regression and even leads to difficulty in continuing training the
network model. To avoid the emergence of this situation, we
further limit the range of θ. Since tan ± 85° ≈ ± 11, in this
paper, the angle range is limited to θ ∈ (−85°, 85°), namely,
only loss of 5°, and tan θ is limited to a small range, which is
convenient for regression calculation of the model.

Indeed, the constructed network model is for single
object grasp detection; hence, each object only needs to
predict once grasp. )at is, as long as the image is input into
themodel, our model could directly make a global regression
prediction of the image.

During training the proposed grasp detection network
model, the model randomly selects a real value as a label to
carry our regression with the predicted value. Since label
value is always changing each time, the network model is
uneasy to overfit in grasp parameters of an object. In order to
better training the proposed network model, we define the
loss function, which could be expressed as

Fcoord � λcoord (x − x)
2

+ (y − y)
2

+ (h − h)
2

+ (w − w)
2

 ,

(6)

Fangle � λangle(tan θ − tan θ)
2

,

(7)

Ftotal � Fcoord + Fangle, (8)

where λcoord is the trade-off parameter of coordinate values
losses, λangle is the trade-off parameter of angle values losses,
Fcoord is the coordinate values losses of the network, Fangle is
the angle values losses of the network, and Ftotal is the total
loss of network.

It can be seen from formula (6) and formula (7) that the
paper adopts a sum of square errors to construct loss

function, but different weight factors are used for different
parameters to ensure that the contribution of each pa-
rameter to the loss is approximately consistent. )rough
statistics, rectangular center coordinates x and y are mostly
between 100 and 150 pixels , as well as h and w are mostly
between 20 and 30 pixels. Obviously, it is unreasonable to
add directly and proportionately to the loss. Indeed, grasp
position is quite important, but the opening and closing size
of the gripper is also equally important. Hence, the regulator
of coordinate values λcoord is added before error losses of x

and y, whose value is 0.1. Similarly, since the value of tan θ is
limited at the range of (−11, 11), to adjust to the same level,
the adjustment factor λangle is added before angular losses,
whose value is 10. )rough the above manners, losses of all
parameters are basically guaranteed to account for the same
proportion in total loss, which are conducive to the training
network to obtain good results.

3.3. Selection and Preprocessing of Dataset. In order to verify
the effectiveness of the proposed network model, it is necessary
to select an appropriate dataset for the training model. At
present, Cornell dataset is a widely used grasping dataset, which
contains 240 common objects and 885 images obtained from
different angles of these objects [1, 39]. In this dataset, numerous
images contain the same kind of object, but the position and
direction of the object in the image are different, which is
extremely important for improving the robustness of the net-
work model to the position and direction of the object during
training. Consequently, this paper selects the Cornell grasping
dataset to verify the validity of the proposed grasp detection
network model.

However, in current data labels, cases that could not
completely cover overall grasp positions and directions still
exist. )us, it is essential to preprocess the dataset to adapt
the input of the model. In other words, we expand the
dataset to achieve full coverage of input.

For the entire dataset, in order to prevent some objects in
subsequent steps which are cut off, we primarily intercept
pixel-sized areas of 321 × 321 from the center in each image
and utilize a filling algorithm to fill in the neighboring pixels
to pixel-sized areas of 501 × 501. )en we randomly spin the
image five times with a certain angle. Namely, the image is
randomly, respectively, moved five times within 100 pixels in
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x and y directions. Lastly, pixel-sized area of 320 × 320 from
center in each image is cut out and scaled to the pixel-sized
area of 240 × 240 that the network model needs to input. At
the same time, label values also need to be synchronized to
match the changes of each image. )e whole process of the
data preprocessing algorithm is shown in Figure 9.

After preprocessing, the dataset is expanded 125 times,
including 110625 images, which satisfies the requirements of
the following network training.

In our implementation, we use a 50-fold cross-validation
method to test our model. Meanwhile, we adopt two ways to
segment the image. )e first one is to randomly segment all
the images in the dataset, which means that the most likely
occurrence of the test set is objects seen during training, but
the direction is random and unseen. )is image segmen-
tation method tests the sensitivity of the network model to
angle.)e other is to randomly segment each category of the
object in data; that is, all images of the same object are in the
same cross-validation set, which means that objects in the
test set are unseen during training, but the direction is seen.
)is segmentation manner has higher requirements and
greater difficulty for the model, which is to test the gener-
alization ability of the network model. In fact, generalization
ability is exactly what we expect the proposed model should
have.

3.4. PreTraining Grasp Detection Network. As a matter of
fact, the dataset used in this paper contains a limited amount
of data; directly training the network model easily leads to
network overfitting. Yet pretraining a large-scale convolu-
tional neural network model could greatly shorten training
time and avoid overfitting [40]. Hence, it is essential to
pretraining the network model to avoid overfitting during
training.

Due to data similarity between grasp detection and target
detection is high, and the training set has 88500 images after
expansion of the whole dataset via preprocessing, whose
amount is large. )us, we could use transfer learning to
extract image features from networks trained by datasets in
target detection for grasp detection.

Nevertheless, transfer learning has different processing
manners for diverse application scenarios. Consider that the
only distinction between grasp detection and target detec-
tion is the output of grasp detection which has an extra
gripper angle. )erefore, after data classification in the
network, we use parameters of six convolution layers to send
the extracted eigenvectors to the following fully connected
layer for processing and predicting results. )e three fully
connected layers are trained from scratch and only one
initialization value is given.

3.5. Training GraspDetectionNetwork. After pretraining the
network model, we adopt a small-batch gradient descent
algorithm to training the network 100 times with themanner
of end-to-end, where the value of each batch is 128. We set
the learning rate α to 0.0005, the weight attenuation coef-
ficient λ to 0.01, and the dropout parameter among three

fully connected layers to 0.5. )e loss of training processing
is exhibited in Figure 10.

In Figure 10, the abscissa represents the number of
training steps, and the ordinate refers to the corresponding
loss value. Apparently, the total loss is decreasing with the
increasing of iterative steps, but a short oscillation occurs
when it decreases to a certain extent, and then it continues
decreasing to a certain value, which indicates that the
performance of the model for the training set tends to be
stable at this time. Hence, in general, the model is reliable for
the training set.

4. Experiments

4.1. Select and Determine the Evaluation Index of Proposed
GraspDetectionNetwork. Point coordinates and rectangular
coordinates are currently two general indexes to evaluate the
performance of a grasp detection network [16, 41]. Indeed,
point coordinates are to judge the quality of grasping via
comparing the distance between the predicted coordinates of
the center point in grasping rectangle and center points
coordinates of all real grasping values, whereas this evalu-
ation method does not consider the impact of grasping angle
on accuracy, but angle value is particularly important in
actual grasping. In addition, point coordinates also need to
set another threshold to evaluate the results of point co-
ordinates, which also affects the accuracy of calculation to a
certain extent.

Rectangular coordinate is to judge the quality of grasping
by comparing the difference between the predicted grasping
angle and real grasping value. When the difference is less
than 30° and the Jaccard similarity coefficient between the
predicted grasping rectangle and real grasping value is
greater than 25%, the grasping is considered to be effective
[42]. In this paper, the Jaccard similarity coefficient is similar
to Intersection-over-Union in target detection, which is
defined as follows:

J Mg, Mp  �
Mg ∩Mp





Mg ∪Mp




, (9)

where Mg represents actual values of grasping rectangle and
Mp refers to the predicted values of grasping rectangle.

Obviously, the value of the Jaccard similarity coefficient
is larger, which indicates that the effect of grasp detection is
better.

From above analysis, it can be concluded that the
rectangle index considers both position and angle, which is
more comprehensive than point coordinates and more
convincing in judging the quality of grasping. Accordingly,
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Cut off
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Figure 9: Flow of data preprocessing algorithm.
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in this paper, we adopt rectangle index to evaluate the
performance of the proposed grasp detection network.

4.2. Experimental Results and Analysis. In order to validate
the effectiveness of our network model, we conduct ex-
perimental verification on Cornell dataset. )e image is
input into the proposed network model, and the output
result is the prediction grasping rectangle box of each input
image. Some of the visual detection results are exhibited in
Figure 11.

Obviously, detection results in Figure 11 illustrate that
our model could detect the grasping region. )us, to further
illustrate the effectiveness of prediction, we calculate the
Jaccard similarity coefficient of each prediction rectangle in
Figure 11, and calculation results are shown in Table 2.

It can be clearly seen from Table 2 that all Jaccard
similarity coefficients are greater than 0.25, which indicates
that our grasp detection is effective, and grasp detection
results for single object grasping could be regarded as good.

)rough analysis of established network model, it can be
known that acquired good detection results lie in two rea-
sons. )e first one is that our model adopts directly cal-
culation of the loss and carry out global boundary regression
on image to acquire the appropriate grasping rectangle. )e
other is that our model randomly selects a label value for
each image during model training, which means that, after
multiple training of dataset, the model predicts an average
value for each object. )us, for single object grasping, the
predicted average value still has a good detection effect.

Additionally, to further verify the performance of the
proposed network model, we make a comparison with other
models based on convolutional neural networks, and the
results are exhibited in Table 3.

It can be seen from above table that, in terms of detection
accuracy, the prediction accuracy of our network model for
image segmentation is 88.7%, and prediction accuracy for
object segmentation is 87.2%; both of them stay at the third,
belonging to an upper level. On the other hand, our research
is inspired by literature [16, 39], and the comparison results

in Table 3 show that our model is superior to the above two
in detection accuracy, indicating that our research is
meaningful even though it is not the best in above
comparisons.

In summary, above experimental results demonstrate
that the constructed network model has good detection
results and high accuracy in single object grasping. Also,
these results validate that our model is effective with strong
generalization in direction and category.
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Figure 10: Changing curve of total loss.

Table 2: Jaccard similarity coefficients of grasp detection in
Figure 11.

Image no. Jaccard similar coefficient
a 0.83
b 0.85
c 0.82
d 0.51
e 0.81
f 0.68
g 0.85
h 0.75
i 0.86
j 0.67

Table 3: Grasping prediction accuracy of different algorithms on
Cornell dataset.

Algorithms Image segmentation
accuracy (%)

Object segmentation
accuracy (%)

Jiang et al. [39] 60.5 58.3
Lenz et al. [13] 73.9 75.6
Redmon and
Angelova [16] 88.0 87.1

Wang et al. [15] 81.8 N/A
Guo et al. [21] 93.2 89.1
Asif et al. [22] 88.2 87.5
Ribeiro et al. [23] 94.8 86.9
Trottier et al. [25] 87.7 86.6
Ours 88.7 87.2
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5. Conclusions

In this work, a single target grasp detection network based on a
convolutional neural network is put forward, which generalizes
the fitting of angle and position with high detection accuracy.
Specifically, we simplified 3D space grasping into 2D planar
grasping andmodeled grasping parameters with themanner of
five-dimensional representation. Afterward, we adopted end-
to-end detection ways to construct a grasp detection network
model with the image as input and five grasping parameters as
output. In order to verify the effectiveness of the proposed
grasp detection network model, the Cornell grasp dataset is
selected and expanded to match the input of the model.
Furthermore, a 50-fold cross-validationmethodwas adopted to
test our network model, and the image was split into two ways.
Moreover, for the sake of avoiding overfitting of the network in
training, the constructed network model was pretrained via
transfer learning. Ultimately, experimental results indicate that,
for single object grasping, the proposed grasp detection net-
work has good detection results and high prediction accuracy,
which demonstrates that our detection model has strong
generalization in direction and category.

Particularly, in the future, using other datasets to further
optimize and validate our model is a beneficial work to be
finished. Also, applying the proposed network to actual
grasping operation is worth being deeply researched.
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)e internal assembly correctness of industrial products directly affects their performance and service life. Industrial products are
usually protected by opaque housing, so most internal detection methods are based on X-rays. Since the dense structural features
of industrial products, it is challenging to detect the occluded parts only from projections. Limited by the data acquisition and
reconstruction speeds, CT-based detectionmethods do not achieve real-time detection. To solve the above problems, we design an
end-to-end single-projection 3D segmentation network. For a specific product, the network adopts a single projection as input to
segment product components and output 3D segmentation results. In this study, the feasibility of the network was verified against
data containing several typical assembly errors. )e qualitative and quantitative results reveal that the segmentation results can
meet industrial assembly real-time detection requirements and exhibit high robustness to noise and component occlusion.

1. Introduction

In the industrial production process, real-time assembly
detection is an essential link [1]. Especially for critical dis-
posable products (such as fuses, solid rocket motors, and
airbags), conventional functional testing destroys the
product structure. Due to the particularity of this kind of
product, abnormal assembly inevitably causes notable safety
hazards and property losses, so these products must be
detected one at a time before being put into use. )erefore, a
real-time automatic assembly detection method that can
match the production rhythm is highly important to im-
prove production efficiency and product reliability.

Since X-rays can obtain internal information, this
technology is widely applied in internal abnormality de-
tection. To ensure the detection speed, a series of internal
abnormality detection methods based on a single projection
has been widely implemented in different fields, such as the
security field [2–5] and the aerospace field [6–8]. )ese
methods achieve rapid detection via the direct extraction of
features from projections. However, in regard to the as-
sembly detection of industrial products, these kinds of
single-projection methods are susceptible to component

occlusion, thereby reducing the accuracy.)emain reason is
that industrial products possess complex structures, and the
distribution of internal components is compact, so com-
ponent occlusion is inevitable. Furthermore, projections
contain integral information of all the components passed by
the ray path. It is difficult to separate the information
contribution of the different components. An effective way
to avoid occlusion is to apply computed tomography (CT)
algorithms. )e 3D model of the product can provide richer
structural information for detection while avoiding the
influence of occlusion. However, the CT reconstruction
algorithm requires complete projection data and consumes
much time. Limited by the projection data acquisition speed
and reconstruction speed, the CT reconstruction approach
does not meet the needs of real-time detection.

Researchers have introduced convolutional neural net-
works (CNNs) [9] based on deep learning [10] in the field of
X-ray 3D reconstruction and proposed a series of single-
projection 3D reconstruction algorithms for specific targets.
Henzler et al. [11] used the encoder-decoder network [12] to
predict a low-resolution 3D model and fused the result with
the projection to improve the resolution, thus achieving
single-projection reconstruction of the mammalian skull.
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Shen et al. [13] designed an automatic encoder network with
an embedded conversion module and used the feature
representation across dimensions to realize reconstruction
of specific patients based on ultrasparse projection data. On
this basis, Lei et al. [14] introduced generative adversarial
networks (GANs) [15], using adversarial supervision to
improve the realism of generated 3D images relative to
ground truth images. Wang et al. [16] employed multiorgan
template selection and smooth free-form deformation (FFD)
strategies to generate high-quality manifold meshing models
of organs. Based on the U-Net [17], Vlontzos et al. [18]
proposed the 2D to 3D U-Net, which realizes 3D volume
generation of the target organ based on a single projection.
Compared to the traditional CT reconstruction algorithms,
the above algorithms do not reconstruct 3D volumes by
solving the mathematical inversion but rely on structural
features extracted from the projection for reconstruction. By
combining the structural priors implied in the dataset of a
specific target, the 3D structure of the reconstruction result
is constrained, thereby achieving a single-projection re-
construction of the specific target. )ese single-projection
reconstruction algorithms highly reduce the data acquisition
time, thus facilitating real-time detection based on 3D data.

)e purpose of assembly detection is to determine the
position and posture of different product components.
)rough segmentation of the internal components of a given
product, the results of the segmentation algorithm can be
applied to accurately determine the position and posture of
the components. Since Long et al. [19] first applied fully
convolutional networks (FCNs) to image segmentation,
semantic image segmentation based on CNNs has become a
research area of heightened interest, and many break-
throughs have been achieved. Researchers have successively
proposed DeconvNet [20], SegNet [21], U-Net, LinkNet
[22], DeepLab [23], PSPNet [24], and other image seg-
mentation networks based on CNNs. )ese semantic image
segmentation networks can be summarized as encoder-
decoder networks, where the encoder is adopted for image
feature extraction, and the decoder is employed to map the
learned semantic features onto the pixel space to obtain the
probabilistic classification of the different pixels. )ese al-
gorithms are widely adopted in the medical field and have
achieved many results [25–27]. However, these works seg-
ment the target from 2D slices, only consider 2D features in
the cross section and ignore 3D features. Regarding assembly
detection, industrial products contain many components
with similar cross-sectional features but different 3D
structures. It is difficult to accomplish an accurate distinc-
tion only via 2D segmentation of the cross section. Aiming at
the semantic segmentation of 3D images, Milletari et al. [28]
proposed a fully convolutional 3D segmentation network
(V-Net) to directly segment the 3D volume and designed the
Dice loss function to train the network. Yang et al. [29]
introduced a pyramid pooling module into a 3D convolu-
tional network and adopted a combination of global and
local features for more accurate voxel prediction. In contrast
to the above single-target segmentation algorithms, Gibson
et al. [30] designed a dense FCN (Dense V-Net) for mul-
ticategory 3D segmentation.

In terms of assembly detection, whether the assembly is
correct or not, the product exhibits a similar structure, with
only partial differences. Based on this characteristic, by
combining the single-projection reconstruction algorithm
and the 3D segmentation algorithm, we proposed an end-to-
end X-ray single-projection 3D segmentation network for
specific products. )e network adopts a single projection of
any view as input and performs segmentation of different
components under the same perspective. )e proposed
approach first generates asymmetric mappings with a deep
encoder-decoder network under the constraints of a specific
dataset, thereby adaptively extracting features from 2D
projections andmapping them onto the 3D space domain. In
the mapping process, by postponing cross-dimensional
feature transformation and applying 2D convolution instead
of 3D convolution for upsampling, the feature processing
flow is optimized to reduce the calculations. Furthermore, a
mixed loss function comprising Dice and cross-entropy
terms is applied to solve the data imbalance issue. Compared
to CT-based detection methods, the application of this
network in assembly detection can reduce the data acqui-
sition time and achieve real-time detection. Furthermore,
this network can help to simplify imaging hardware and
improve radiation utilization, thus reducing detection costs.
To our knowledge, this is the first article to propose a single-
projection 3D segmentation network.

2. Methods

2.1. Principle. )e essence of semantic image segmentation
algorithms is the pixelwise classification algorithm, which
can be broadly regarded as involving the two stages of
feature extraction and feature mapping. At the feature ex-
traction stage, cascaded convolutional layers are used for
feature extraction, usually accompanied by downsampling
to reduce the dimensionality of features and finally form the
semantic features of the image. At the feature mapping stage,
upsampling is performed to map the learned discriminative
features onto a high-resolution pixel space. Different net-
works add various feature transfer mechanisms (skip con-
nection [17], pyramid pooling [24], etc.) to increase the
information and accuracy of mapping. Finally, a probability
vector is constructed for each pixel, and pixelwise classifi-
cation is achieved via the prediction of pixels belonging to
the different targets. Most image segmentation networks
(such as FCNs [19], SegNet [21], and U-Net [17]) follow this
process and have achieved great segmentation results. )e
projections and the reconstruction results should share
semantic features, as they represent the same object [13].
Based on this consideration, previous works on single-
projection reconstruction [11, 13, 14] have verified that,
under the strict constraint condition that the structure of
specific targets is similar, the 2D features containing local
differences extracted from projections can be mapped onto
3D features and correctly expressed in the constructed 3D
output. )is study combines this idea with the semantic
image segmentation algorithm to achieve 3D segmentation
of specific targets based on a single projection.)e following
three problems need to be solved:
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(1) Computational cost of 3D feature processing: It is
necessary to improve the efficiency of 3D feature
processing to realize real-time segmentation under
existing hardware resources.

(2) Cross-dimensional manifold mapping: It is neces-
sary to map the 2D features of the projection image
onto the 3D structural features of the object in order
to construct the probability vector output of the 3D
voxels.

(3) Data imbalance: It is necessary to solve the problem
of inconsistent training efficiency for different seg-
mentation targets due to volume differences.

Taking these three problems as clues, the following
content of this section introduces the network architecture
and loss function.

2.2. Network Architecture. )e proposed network can be
regarded as an extension of the encoder-decoder network
model [12] and follows the process of feature extraction and
feature mapping. As shown in Figure 1, the encoder network
comprises four residual convolution blocks and five down-
sampling blocks. )e residual convolution blocks extract 2D
features from the input projections and gradually increase
feature channels to 512. )e downsampling blocks gradually
reduce the spatial size of the input feature map to 8× 8 and
keep the number of feature channels unchanged so that
convert high-dimensional features into low-dimensional
embedded semantic representations. )e decoder network
consists of five upsampling blocks, a feature transformation
model, and three 3D convolution blocks. )e upsampling
blocks restore the low-dimensional features and gradually
increase the spatial size of the feature maps to the target size
(256× 256).)e feature transformation model transforms the
high-dimensional feature representation across dimensions
for the subsequent generation of the probability vector. )en,
the number of channels of the 3D features is gradually in-
creased through the 3D convolution blocks to ensure that the
output is of the same size as that of the target probability
vector (256× 256× 256). Finally, the probability vector of
each voxel is obtained through the softmax layer. Refer to
section 2.5 for detailed network parameter settings.

2.3. Improve the Efficiency of Feature Processing. )e 3D
convolution process can maintain the spatial association of
features and control the size of the output feature, so it is an
essential operation in 3D segmentation. However, 3D
convolution is associated with a large number of parameters
and computations, occupying a large amount of memory.
Under the existing hardware resources, this limits the res-
olution and speed of the segmentation algorithm. )is
problem is common in 3D segmentation networks and is
usually solved by improving hardware utilization and op-
timizing the algorithm’s computing efficiency. For example,
literature [30] achieved high-resolution 3D segmentation
through memory-efficient dropout and feature reuse.

To improve the feature processing efficiency to realize
real-time 3D segmentation of industrial products, we

postponed feature cross-dimensional mapping and 3D
convolution in the decoder network and adopted the same
technique as reported in the literature [11], applying 2D
convolution instead of 3D convolution for upsampling (as
shown by the green arrow in Figure 1). 3D convolution is
only employed in probability vector construction from 3D
features (as shown by the red arrow in Figure 1). Specifically,
in the 3D segmentation network, feature mapping in the
decoder network is usually implemented via 3D convolu-
tion. )e computation is mainly concentrated on upsam-
pling. To improve the computational efficiency, we encode
depth information into the channel dimension and apply 2D
convolution instead of 3D convolution for upsampling,
which highly reduces the number of parameters and com-
putation. Since downsampling and upsampling comprise
convolution processes with the same dimensions, skip
connections similar to those in the U-Net [17] can be used in
the network (shown by the dotted arrow in Figure 1). )is
can provide more detailed information for the feature
mapping process, which is helpful for the segmentation of
tiny structures. In the process of downsampling and
upsampling, the feature channel is fixed to twice the spatial
resolution, i.e., 2× 256� 512. )e structure of the down-
sampling and upsampling blocks and skip connections is
shown in Figures 2(b) and 2(c), respectively. In addition,
because of the notable depth of the network, in all 2D
convolution operations (residual convolution blocks,
downsampling blocks, and upsampling blocks), we adopt the
residual learning scheme [31] to improve the training effi-
ciency and avoid gradient disappearance, as shown in
Figure 2(a).

2.4. Cross-Dimensional Feature Mapping. In the process of
downsampling and upsampling, depth information is
encoded in the channel dimension of the feature. )is
process can be regarded as a process involving the extraction
and fusion of depth and structural information. To bridge
the upsampling blocks and subsequent 3D convolution
blocks, we designed a feature transformation model to
decode depth information and realize cross-dimensional
mapping. As shown in Figure 2(d), through the convolution
operation with a kernel size of 1× 1 and rectified linear unit
(ReLU) activation, the 2D convolutional layer learns the
transformation of all 2D features and reorganizes the depth
information implicit in the channel dimension. )en, the
feature map is reshaped from 256× 256× 512 to
256× 256× 256× 2. In this manner, the 2D features are
transformed across dimensions for the subsequent genera-
tion of the probability vector. Next, we apply the 3D con-
volution operation with a kernel size of 1× 1× 1 and a stride
of 1× 1× 1 to learn the transformations among all 3D
features and maintain the feature size unchanged. )e
feature transformation model connects the 2D and 3D
feature domains and maps the 2D features with hidden
depth information into 3D features.

2.5. Details of the Network Structure and Parameters. )e
parameter settings of the entire network are summarized in
Tables 1 and 2. )e encoder network and the upsampling
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Figure 2: Schematic of themodules in the network. (a) Convolution residual block. (b) Downsampling block and upsampling block. (c) Skip
connection. (d) Feature transformation model.
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Figure 1: Schematic of the network architecture. )e encoder network consists of residual convolution (blue arrow) and downsampling
(yellow arrow) processes. )e decoder network comprises upsampling (green arrow), a feature transformation model (purple arrow), and
3D convolution (red arrow). )e upsampling and downsampling blocks share features through skip connections (dashed arrows). Finally,
the probability vector is output through the softmax layer. )e number next to the feature map indicates the spatial resolution and number
of channels of the feature maps.
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process in the decoder network comprise residual blocks.
Each residual block comprises two sets of 3× 3 2D con-
volutional layers, batch norm layers, and ReLU activation
functions. A residual path is added between the input and
the second ReLU through a 1× 1 convolution layer. As
input, the projection first performs 2D feature extraction
through four residual blocks, thereby maintaining the spatial
size fixed and gradually expanding the channels to 512. )e
downsampling block comprises two residual blocks and a
2× 2 max-pooling layer. Five downsampling blocks con-
stitute the compression path of the feature stream. )rough
downsampling, a low-resolution feature with a large re-
ceptive field is gradually established, with a size of

8× 8× 512. )e upsampling block comprises a 2D decon-
volution layer (with a kernel size of 3× 3 and a stride of 2× 2)
and two residual blocks. Five upsampling blocks constitute
the extension path of the feature stream. )rough upsam-
pling, the spatial size of the feature maps is gradually re-
stored to 256× 256× 512, which expands the spatial support
of the lower-resolution feature maps. Via upsampling and
downsampling, the depth information encoded in the
channel dimension is integrated and reorganized. Between
the upsampling and downsampling blocks of the same level,
a path of feature flow transfer is added through a skip
connection. In the skip connection, the feature maps from
the downsampling block and previous upsampling block are
first concatenated and then merged through a 1×1 2D
convolution operation to ensure that the number of chan-
nels remains fixed at 512. After passing through the feature
transformation module, the 2D features with hidden depth
information are transformed into 3D features. Next, three
3D convolution blocks are employed to reorganize the
structural features and expand the channels. Each 3D
convolution block comprises a 3× 3× 3 3D convolution
layer, a batch norm layer, and a ReLU activation function.
Finally, the network output is adjusted to a suitable size via
1× 1× 1 3D convolution and transformed into a probability
vector by the softmax layer.

2.6. Loss Function. Due to differences in the sample number
among the various segmentation targets, the network often
ignores categories containing fewer samples, which in turn
affects the segmentation effect of these categories [32]. In
terms of the 3D segmentation of components in industrial
products, the data imbalance issue is mainly reflected in the
number of voxels. )e voxel number of the components of
different sizes often differs by several orders of magnitude.
)is kind of difference cannot be balanced through data
enhancement, so in this study, we address this problem via
loss function optimization.

)e output of the proposed network is processed by the
softmax layer for multiclassification, and the probability of
each voxel belonging to the background or a certain com-
ponent is calculated. To optimize the segmentation per-
formance of the network, the accuracy of the predicted
probability over the ground truth must be evaluated via
calculating loss function. As a common loss function applied
in segmentation, the Dice loss function [28] measures the
accuracy of prediction by calculating the ratio between the
intersection and union of the segmentation and ground
truth regions. )e Dice loss between the predicted proba-
bility P and ground truth R can be expressed as follows:

LDice(P, R) � 1 −
1

M


M

i�1

2
N
j�1 pi,jri,j + ε


N
j�1 p

2
i,j + 

N
j�1 r

2
i,j + ε

. (1)

where M is the number of categories in the probability
vector, and each category represents a kind of component or
background (the background is set to category 0). Moreover,
N is the number of voxels, pi,j and ri,j denote the probability
that the jth voxel belongs to the ith category in the predicted

Table 1: Parametric structure of the essential components.

Layer Parameters Output
size

ResConv block (k)

3× 3× k Conv +BN+ReLU

2562 × k3× 3× k Conv +BN
1× 1× k Conv

ReLU

DownSample block
(n)

ResConv block (512)
n2 × 512ResConv block (512)

2× 2 max-pooling

UpSample block (n)
3× 3 Deconv with 2× 2 stride

n2 × 512ResConv block (512)
ResConv block (512)

Skip connect (n) Concatenate + 1× 1× 512
Conv n2 × 512

Transformation
module

1× 1× 512 Conv +ReLU
2563 × 2Reshape

1× 1× 1× 2 Conv

3D Conv block (k) 3× 3× 3× k
Conv +BN+ReLU 2563 × k

k denotes the number of filters in the convolution layers, and n denotes the
output resolution of the downsampling or upsampling block.

Table 2: Parametric structure of the entire network.

Layer Output size

Encoder network

ResConv block (64) 2562 × 64
ResConv block (128) 2562 ×128
ResConv block (256) 2562 × 256
ResConv block (512) 2562 × 512

DownSample block (128) 1282 × 512
DownSample block (64) 642 × 512
DownSample block (32) 322 × 512
DownSample block (16) 162 × 512
DownSample block (8) 82 × 512

Decoder network

UpSample block (16) 162 × 512
UpSample block (32) 322 × 512
UpSample block (64) 642 × 512
UpSample block (128) 1282 × 512
UpSample block (256) 2562 × 512
Transformation module 2563 × 2
3D Conv block (4) 2563 × 4
3D Conv block (8) 2563 × 8
3D Conv block (16) 2563 ×16

1× 1× 1 Conv + softmax 2563 ×15
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probability and the ground truth, respectively. And ε is
applied to prevent the denominator from equalling 0, which
is set to 10−10 in this study. )e Dice loss balances the voxel
number of the different categories through the square term
in the denominator. However, due to the complex gradient
form of the Dice loss, gradient saturation occurs in the
training process, which often leads to training instability. To
solve this problem, we added a weighted cross-entropy
(WCE) term to the Dice loss. )e WCE loss is defined as
follows:

LWCE � 
M

i�1


N

j�1
ωiri,jlog pi,j ⎛⎝ ⎞⎠,

ωi �
1


N
j�1 ri,j + ε

,

(2)

where ωi is the weight of the ith category, which is used to
penalize the gradient contribution of the large-size com-
ponent in training. )erefore, the mixed loss is defined as
follows:

L � αLDice +(1 − α)LWCE. (3)

where α balances the Dice and the WCE terms, which is set
to 0.5.

2.7. Implementation Details. )e network is implemented
using the Tensorflow framework and optimized with the
Adam optimizer at an initial learning rate of 10−4 and a
minibatch size of 5. In the training process, we evaluate the
model on the validation set and gradually reduce the
learning rate from 10−4 to 10−6. )e training and testing of
the network are carried out on a workstation with an E5-
2620 CPU, 32GB of RAM, and a TITAN RTX GPU.

3. Material

Taking a fuse as the detection target, we perform data ac-
quisition. Under the best imaging conditions, we acquire
1080 projections of the fuse at equal angular intervals on the
YXLON FF20 CT system with tube voltage 160 kV and
current 40 μA and then adopt the FDK algorithm for re-
construction. Next, regarding the 14 critical fuse compo-
nents, the reconstructed 3D image was manually segmented.
Specifically, each reconstructed slice was segmented with the
watershed algorithm involving artificial participation, and
all the segmented slices were then combined into a 3D
segmented image as the ground truth data for training the
network. Since the perspective of the reconstruction result
depends on the order of the projections, we reordered the
projections before reconstruction so that the components
attained the same spatial distribution in the reconstruction
results. In addition, as the input of the network, the pro-
jections were resized into 256× 256 and normalized to [0, 1].
For the convenience of description, we numbered the 14
critical components, as shown in Figure 3.

Regarding the most error-prone striker and spring,
according to typical assembly errors (posture error, position

error, and omission), we set a total of six different assembly
situations, as shown in Figure 4. For each situation, 12 sets of
data were generated through the abovementioned data ac-
quisition process. Before acquiring each set of data, the fuse
has been reassembled. Ten sets of data were used for training.
Moreover, to control the size of the training dataset, we
randomly selected half of them as the training dataset,
containing 32400 samples. )e rest two sets were reserved
for validating and testing, each containing 6480 samples.

4. Experiment Results and Discussion

4.1. Segmentation Results of the Proposed Network. We
evaluate the segmentation performance of our network on
the test dataset and randomly select a sample from each
assembly situation for display. Figure 4 shows the 3D
rendering of the segmentation results. To avoid occlusion,
the results are shown as anatomical diagrams. In addition,
we randomly select four slices from the segmentation results
to compare the segmented foreground regions, as shown in
Figure 5. )e yellow, red, and green areas represent the
ground truth, predicted segmentation, and overlap area,
respectively. To increase the prominence of the difference,
we display magnified views of partial areas. Furthermore, we
adopt four metrics for quantitative analysis of the network
segmentation results, namely, the Dice similarity coefficient
(DSC), Jaccard similarity coefficient (JSC), positive predic-
tion value (PPV), and sensitivity (SEN). )ese metrics are
defined as follows:

DSC �
2 Vgt ∩Vpd

�����

�����

Vgt

�����

����� + Vpd

�����

�����
,

JSC �
Vgt ∩Vpd

�����

�����

Vgt ∪Vpd

�����

�����
,

PPV �
Vgt ∩Vpd

�����

�����

Vpd

�����

�����
,

SEN �
Vgt ∩Vpd

�����

�����

Vgt

�����

�����
,

(4)

where Vgt and Vpd denote the ground truth and predicted
segmentation voxels, respectively. )e quantitative results of
the different component segmentations are summarized in
Table 3.

)e qualitative and quantitative analysis results indicate
that the difference between the segmentation result of the
network and the manual segmentation result is very small.
)e differences are mainly concentrated along the edge of
the components and include mispredicted scattered points.
)e segmentation results fully reflect the assembly situation
of the fuse. )e advantage of the network is that the use of
projections from any angle as the input can reduce the
dependence on mechanical equipment, which helps simplify
the imaging system and reduce the cost of detection. In
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addition, the segmentation results output by the network are
generated in the same perspective, which allows the position
and posture information obtained from the segmentation
results to be directly used to infer the assembly situation
without any coordinate transformation.

4.2. Comparison to General 3D Segmentation Networks.
To our knowledge, there is no 3D segmentation algorithm
based on a single projection. )erefore, we compare our
network to general segmentation algorithms based on 3D
images. U-Net [17] and V-Net [28] are the baseline
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(9)

(3)
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(6)

(13)
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Figure 3: Segmentation of critical components. )e spring and striker are numbered as 7 and 9, respectively.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Figure 4: )ree-dimensional rendering of the segmentation results. Sample 1: correct assembly. Sample 2: the striker is assembled to point
upward. Sample 3: the spring is assembled below the striker. Sample 4: the spring is assembled below the striker with the striker points
upward. Sample 5: the striker is missing. Sample 6: the spring is missing. To avoid occlusion, anatomical diagrams are shown here.
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Figure 5: Slices of the segmentation results.)e yellow, red, and green areas indicate the ground truth, predicted segmentation, and overlap
area, respectively. To make the difference prominent, we display magnified views of partial areas, which are marked with red boxes.
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architectures for 2D and 3D image segmentation, respec-
tively, which have been widely applied and adapted.
)erefore, V-Net and 3DU-Net [33] (a 3D variant of U-Net)
are selected as candidates for comparison. Since the original
V-Net and 3D U-Net are designed for binary segmentation,
we extend their loss functions to support multiclass data.
Applying the CT reconstruction result and artificial seg-
mentation result as the input and ground truth data, we train
the V-Net and 3D U-Net on the training dataset and then
test these networks on the test dataset. )e qualitative and
quantitative results of the different algorithms are shown in
Figures 6 and 7 and Table 4.

)e comparison reveals that the difference between the
segmentation results obtained with the proposed network
and the general 3D segmentation networks is extremely
small. )e performance of the proposed network almost
reaches the level of the general 3D segmentation algorithms.
It should be emphasized that the proposed network uses a
single projection as the input for 3D segmentation, and a
single segmentation requires approximately 0.2 seconds.
Applying this network to industrial product assembly de-
tection can greatly reduce the time required for data ac-
quisition and 3D reconstruction and achieve real-time
detection, which is of great significance for industrial
products with a high production speed and huge production.

4.3. Segmentation Results with Noise. Quantum fluctuation
noise in radiography obeys the Poisson distribution.
)erefore, Poisson noise is added to the projections for
analysis to illustrate the robustness of our network to noise.
Noise addition is according to the following formula:

Pi ∼ Possion b0e
−li , (5)

where Pi is the detector measurement along the ith ray, b0 is
the blank scan factor, and li is the line integral of the at-
tenuation coefficients along the ith ray. )e Poisson noise
level can be adjusted by setting the blank scan factor b0. In
this study, b0 is varied from 1× 106 to 1× 103. During the
decrease of b0, several segmentation results with notable
changes are shown in Figure 8. )e performance metrics of
the segmentation results are summarized in Table 5.

Before b0 decreases to 1× 105, the segmentation perfor-
mance of the network remains relatively stable. When the
noise level is worse than 1× 104, the components in the

segmentation results start to exhibit adhesion and the number
of scattered points increases. When the noise level further
deteriorates to 4×103, part of the information in the pro-
jection is masked by the noise. In the segmentation results,
certain components are structurally missing, and the number
of scattered points further increases. )e results demonstrate
that when b0 is greater than 1× 105, the network effectively
suppresses noise, and the segmentation results completely and
accurately reflect the position, structure, and posture infor-
mation of each component. )e proposed network remains
robust to a relatively broad range of noise levels.

4.4. Segmentation Results with Occlusion. We selected
samples in different occlusion cases for comparison. Figure 9
shows the segmentation results in the three occlusion cases
and the grayscale level profiles extracted along the dashed
red line.

In the projections and the grayscale level profiles, it is
difficult to determine whether the striker exists in cases 2 and
3 with the naked eye. Comparing the former two samples
demonstrates that the network can use projections from
different angles for segmentation and can completely seg-
ment the occluded component. Comparing the latter two
samples reveals that the network can perform correct seg-
mentation in the different assembly situations with similar
projections. )erefore, the proposed network achieves high
robustness to occlusion. In assembly detection, the network
can effectively avoid the influence caused by component
occlusion.

4.5. Segmentation Results with Untrained Assembly Errors.
In order to further verify the effectiveness of the proposed
network, we set up two additional assembly errors for the
spring and the striker (the striker missed with the spring
stuck upside, and the spring missed with the striker stuck
upside) and acquire the data under these two wrong as-
sembly conditions for testing. )e segmentation results are
shown in Figure 10 and Table 6.

)e results indicate that for untrained assembly errors,
the network can also correctly extract the features of each
component and perform correct segmentation. Compared
with the trained data, there is no noticeable difference in the
performance metrics of the segmentation results. )erefore,

Table 3: Quantitative results obtained by the different component segmentations.

Components no. 1 2 3 4 5 6 7
DSC (%) 98.6 97.5 97.6 97.8 97.5 96.7 92.7
JSC (%) 97.3 96.1 97.3 96.6 96.1 94.9 91.6
PPV (%) 97.6 97.0 97.5 97.5 97.5 95.2 91.6
SEN (%) 98.6 98.1 98.7 98.0 97.5 98.5 93.7
Components no. 8 9 10 11 12 13 14
DSC (%) 96.7 91.6 97.2 98.1 97.0 98.6 96.8
JSC (%) 95.6 90.2 96.4 97.4 95.2 97.3 94.8
PPV (%) 95.6 90.8 96.4 97.4 95.2 97.4 94.8
SEN (%) 98.9 92.4 98.8 98.9 98.8 98.8 98.7
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Figure 7: Slices of the segmentation results of the different algorithms.)e yellow, red, and green areas indicate the ground truth, predicted
segmentation, and overlap area, respectively. To make the difference prominent, we display magnified views of partial areas, which are
marked with red boxes.
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Figure 6: Segmentation results of the different algorithms.
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Table 4: Quantitative results obtained by the different segmentation algorithms.

V-Net 3D U-Net Ours
DSC (%) 97.2 96.8 96.7
JSC (%) 96.1 95.7 95.4
PPV (%) 96.2 96.4 95.8
SEN (%) 97.6 97.5 97.7
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b0 = 1 × 105 b0 = 1 × 104 b0 = 4 × 103

Figure 8: Segmentation results under the different noise levels. )e first row shows the projections under the different levels of noise. )e
second row shows the predicted segmentation results. )e zoomed regions of interest are shown on the right side.

Table 5: Quantitative results obtained under the different noise levels.

b0 �1× 105 b0 �1× 104 b0 � 4×103

DSC (%) 96.5 96.2 94.8
JSC (%) 95.1 94.6 92.0
PPV (%) 95.6 95.1 93.0
SEN (%) 97.4 97.4 96.7
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for the assembly errors of the striker and the spring, the
segmentation results can be applied to detect effectively.

5. Conclusion

In this study, we proposed a multiclass 3D segmentation
network based on a single X-ray projection by combining the
single-projection reconstruction algorithm and the semantic
image segmentation algorithm. Adopting a single projection
as the input, the network can segment different targets
within a specific object and can output 3D segmentation
results. )e experimental results indicate that the segmen-
tation results of the network completely reflect the position,
structure, and posture information of the different internal

Case 1: without occlusion Case 2: with occlusion

Case 3: no striker
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Figure 9: Segmentation results in different occlusion cases. Case 1: without occlusion. Case 2: with occlusion. Case 3: no striker. )e striker
is marked with a red box, and the zoomed views are shown on the right side. )e grayscale level profiles are extracted along with the red
dashed line.
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Figure 10: Segmentation results of untrained data. Case 1: the
striker missed with the spring stuck upside. Case 2: the spring
missed with the striker stuck upside.

Table 6: Quantitative results obtained by untrained assembly
errors.

Case 1 Case 2
DSC (%) 96.6 96.5
JSC (%) 95.2 95.3
PPV (%) 95.6 95.6
SEN (%) 97.5 97.4
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targets, and the segmentation performance for the specific
objects is close to that of the 3D semantic image segmen-
tation network. In addition, the network achieves high
robustness to noise and component occlusion. )e advan-
tage of implementing the network in assembly detection is
that it takes a single projection to perform 3D segmentation,
which can improve the ray utilization rate and detection
efficiency, thereby realizing real-time detection. Further-
more, the network is suitable for projections from different
angles, which can simplify the imaging system and help
reduce detection costs.

In the application process, the network can be directly
deployed in digital radiography detection systems without
any additional machinery or imaging equipment. However,
the network has certain drawbacks and limitations. First, in
contrast to the general semantic image segmentation algo-
rithm, the network performs segmentation of specific ob-
jects, which suggests that changing the detection products
requires network retraining. Second, the network relies on
complete training data, which means that it needs to acquire
data of different assembly situations for training.

To solve the problem whereby training data are difficult
to obtain, in future work, we plan to conduct research on
simulation data synthesis to reduce the difficulty and time
cost of training data acquisition.
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)e crude oil futures prices forecasting is a significant research topic for the management of the energy futures market. In order to
optimize the accuracy of energy futures prices prediction, a new hybrid model is established in this paper which combines wavelet
packet decomposition (WPD) based on long short-term memory network (LSTM) with stochastic time effective weight (SW)
functionmethod (WPD-SW-LSTM). In the proposed framework,WPD is a signal processingmethod employed to decompose the
original series into subseries with different frequencies and the SW-LSTM model is constructed based on random theory and the
principle of LSTM network. To investigate the prediction performance of the new forecasting approach, SVM, BPNN, LSTM,
WPD-BPNN, WPD-LSTM, CEEMDAN-LSTM, VMD-LSTM, and ST-GRU are considered as comparison models. Moreover, a
new error measurement method (multiorder multiscale complexity invariant distance, MMCID) is improved to evaluate the
forecasting results from different models, and the numerical results demonstrate that the high-accuracy forecast of oil futures
prices is realized.

1. Introduction

Crude oil is a natural and nonrenewable resource that has an
irreplaceable effect on the development of the global
economy and international financial markets. Since oil is the
main source of energy production, it is often considered the
single important commodity in the world. )e price fluc-
tuations of crude oil may affect the economic situation,
social stability, and even national security in the world [1].
Meanwhile, international crude oil price series are regarded
as nonlinear and nonstationary time series. Hence, accurate
forecasting of the crude oil price is a challenging task of
energy market and has increasingly become an active re-
search field.

In recent years, numerous methods for time series
predictions have been proposed [2–13]. )ese methods can
be classified into the following three categories: traditional
econometric models, machine learning approaches and deep
learning models. )e autoregressive integrated moving

average model (ARIMA) is a popular statistical model ap-
plied to time series prediction. Liu et al. [3] proposed two
novel forecasting models based on ARIMA, which was
employed to forecast two sections of actual wind speed
series. Abdollahi and Ebrahimi [4] established a new
composite model to predict Brent crude oil prices by in-
tegrating the adaptive neuro fuzzy inference system
(ANFIS), autoregressive fractionally integrated moving av-
erage (ARFIMA), and Markov-switching models. However,
the traditional econometric models have evident short-
comings. For instance, the time series data must be stable
when these models are used for forecasting. It is difficult to
capture the characters if the datasets are nonstationary.
)erefore, the model is less effective when applied for time
series forecasting during periods of sharp fluctuations [14].
With the development of artificial intelligence, machine
learning models, such as support vector machine (SVM) and
artificial neural networks (ANNs), have attracted a lot of
attention because of the learning capabilities for nonlinear
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kernel mapping between input and output vectors. For
instance, Huang et al. [7] explored the forecasting ability of
SVM for financial movement direction and proposed a
combining model based on SVM and classification methods.
Ghiassi et al. [15] presented a dynamic neural network
model for time series events prediction, and compared with
the ARIMA model, the prediction results of the proposed
model have higher accuracy. Liao and Wang [6] established
an improved neural network, the stochastic time-effective
neural network model, and analyzed the volatility statistics
characteristics of the Chinese stock price indices. Wang and
Wang [8] established a hybrid model by combining the
principle component analysis (PCA) algorithm and random
time-effective neural networks (STNN) and explored the
predictive performance by considering financial time series.
Although machine learning techniques have considerable
prediction processing capacity, their precision on the cor-
relations exploring between data is still not efficient.
Meanwhile, these methods are extremely time-consuming
for big data and predictions are not quite expected [16].With
the establishment of the hidden layer units, the transmission
of historical information can be realized by recurrent neural
networks (RNNs). Wang and Wang [9] proposed a new
forecasting model to elevate the prediction accuracy of crude
oil price fluctuations, which is based on multilayer per-
ceptrons (MLP) and Elman recurrent neural networks
(ERNN) with stochastic time effective function. Berradi and
Lazaara [17] combined principal component analysis and
RNNs to predict the stock price from Casablanca Stock
Exchange, and the results enhanced the accuracy of the
original method and performed a desirable prediction for
the stock price. Deep learningmethods are the broader series
of machine learning methods, which try to learn advanced
features from the given data. Compared with traditional
neural network models, deep learning methods contain
multiple hidden layers of multilayer perceptrons, and they
have better performances in managing strong nonlinear
characteristics. Long short-termmemory network (LSTM) is
a type of deep learning method devised to deal with the long-
term dependence problems for a special purpose [18]. )e
network structure of LSTM is much more complex than that
of RNNs, which utilizes memory cell states to maintain
essential historical information and get rid of the unim-
portant. Due to the superior algorithmmechanism, LSTM is
widely applied to natural language processing (NLP) and
sentimental analysis [19, 20], time series forecasting
[10, 21, 22], and synthesizing a piece of music [23]. However,
the individual forecasting models cannot precisely reveal the
complicated connections existing in the nonlinear and
nonstationary datasets.

To obtain more accurate and reliable time series pre-
diction, different kinds of hybrid forecasting models have
been proposed which could take the advantage of different
single models [24–26]. Among them, the hybrid models
based on decomposition and prediction have been widely
recognized, and such models are usually composed of
nonlinear decomposition method and forecasting model.
Liu et al. [27] presented an improved hybrid forecasting
model for wind speed, which includes the empirical wavelet

transform method and three types of deep learning net-
works. By comparing all the data results of different
methods, the proposed reinforcement learning based hybrid
model is effective in combining three types of deep learning
networks and performs better than conventional optimi-
zation-based hybrid models. Wang and Wang [28] com-
bined empirical mode decomposition (EMD) method with
random time strength neural network to predict global stock
indices, and the empirical results showed that the proposed
approach veritably has a great effect in predicting stock
market fluctuations. Wang et al. [29] established a two-layer
decomposition model and then developed an ensemble
approach by integrating the fast ensemble empirical mode
decomposition method (FEEMD), variational mode de-
composition (VMD), and optimized backpropagation
neural network by firefly algorithm (FA-BPNN). )e em-
pirical results indicated that the developed new model has
exceptional forecasting implementation in electricity price
series. )e first key point of hybrid models is to break down
the original data series into several independent subseries
and makes it likely for models to adaptively learn the
nonlinear characteristics of fluctuations in each subseries.
)en, by using the inverse transformation algorithm, the
forecasting series of each subseries are integrated to acquire
the final forecasting results. )ese hybrid models could raise
the efficiency and precision of modelling by conquering the
handicap of nonlinear and nonstationary of original series
[30–32]. )e empirical results show that wavelet transform
(WT) is a time-frequency localization analysis method in
which the window area is fixed but its shape can be changed.
Because it only redecomposes low-frequency signals during
the decomposition process, and no longer breaks down
high-frequency signals, its frequency resolution decreases as
the frequency increases. )e EMD, FEEMD, and VMD
methods also have some certain limitations, for example,
inadequate mathematical explanations, the boundary effects,
noise oversensitivity, and pattern overlap. )ese may cause
excessive decomposition of the original data and adversely
affect the prediction results [33, 34]. On the other hand, the
well-known deep learning model causes overfitting prob-
lems and is always based on historical information without
thinking over the statistical regularity of behavior in the
financial market, which leads to deficient precision [10, 32].

To improve the disadvantages of the above widely
recognized decomposition methods and the traditional
deep learning methods, this paper proposes a novel en-
semble energy forecasting framework, WPD-SW-LSTM,
which combines wavelet packet decomposition (WPD), the
stochastic time strength weights (SW) method, and LSTM.
)e WPD is proposed on the basis of the issue that the
inferior frequency resolution of wavelet decomposition in
the high-frequency range and poor time resolution in the
low-frequency range. It is a more sophisticated method of
signal analysis to improve the temporal resolution signal.
Moreover, the WPD working speed is faster than the
traditional WT, and by selecting the appropriate wavelet
basis function and mother function, the mixing-frequency
problem can be improved. )erefore, WPD is adopted in
this research to explore the complexity of nonlinear
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characteristics for original energy future time series. In fact,
there are complicated factors that affect energy futures
prices in the process of market transactions fluctuations.
SW is based on stochastic process which conforms with
both the real trading market and the gating mechanism in
the forecasting model [6, 8, 10]. )e mechanism of SW is to
measure historical information in conformity with the time
of occurrence. )e newer the historical data occurs, the
more valuable its data information is to present future
information, so that historical price figures can be
employed to advanced pick up the fluctuations statistics in
the energy futures series. In addition, this research employs
the WPD method to extract the original crude oil series for
the first time and firstly improves the conventional LSTM
model with stochastic time strength weights for the crude
oil prices forecasting. With the method of WPD, the
original energy futures price series can be decomposed into
several subseries (SSi), which are in different frequency
bands. )en, different SW-LSTM models are modeled for
the corresponding SSi, respectively. Finally, the ensemble
forecasting result of the original energy futures series is
produced by integrating all the predicted SSi components.
To estimate the predictive power of the proposed model
WPD-SW-LSTM, the conventional and latest hybrid
models (SVM, BPNN, LSTM, WPD-BPNN, WPD-LSTM,
CEEMAD-LSTM, VMD-LSTM, and ST-GRU) are intro-
duced for comparative analysis. In order to reveal the
predictive capabilities of different forecasting models,
quantitative analysis is performed through different error
methods. At the same time, this research proposes a new
error measurement method called multiorder multiscale
complexity invariant distance (MMCID) [9,35]. )e main
contributions of this paper are summarized as follows:

(a) A novel hybrid forecasting model SW-LSTM is
established for energy futures series, which based on
the LSTM network and the theory of stochastic
process.

(b) Combined withWPDmethod, several subseries (SSi)
with different fluctuation frequency are derived from
the original data series. Each SSi is trained by the new
SW-LSTM model, respectively.

(c) )e empirical results of corresponding forecasting
models are estimated and contrasted with different
error criteria and the new measurement MMCID.

)e structure of this article is as follows. Section 2 ex-
plains the price datasets from the energy futures markets.
Section 3 introduces the WPD and SW-LSTM methodol-
ogies and provides the main framework of this paper.
Section 4 demonstrates the experimental forecasting results
in detail. Section 5 compares the proposed hybrid method
with other models, which are SVM, BPNN, LSTM, WPD-
BPNN, WPD-LSTM, CEEMAD-LSTM,VMD-LSTM, and
ST-GRU. Moreover, error measurement methods are ap-
plied to estimate the prediction performance of each model
in this section. Finally, Section 6 summarizes the main
conclusion of this study.

2. Datasets

Crude oil is an international bulk financial commodity,
which can be traded in markets around the world either
through spot oil or through financial derivative contracts.
)is research mainly focuses on the oil futures market, and
four representative oil futures indices are selected for the
case study: west Texas intermediate (WTI) futures prices
series, Brent crude oil futures prices series, RBOB gasoline,
and heating oil. )ese four datasets are from the New York
Mercantile Exchange (NYMEX) energy futures market,
which can be downloaded from https://www.wind.com.cn/.
WTI crude oil price is widely applied in the pricing of US
domestic crudes. Brent is the theoretical international oil
benchmark, and prices of most oil use Brent crude as the
criterion, which connected with two-thirds of all the world’s
oil contracts. Brent crude andWTI dominate the oil market,
and both determine pricing in their corresponding markets.
)ey are known as light sweet oil because they contain low
sulfur, making it “sweet,” and have low density, making it
“light.” Gasoline and heating oil are refined from crude oil
which are usually merchandised as futures contracts in fi-
nancial markets. Figure 1 reveals the similar dynamic
changes in more than a 10-year period from January 2, 2009,
to October 23, 2019, of the four corresponding oil futures
series. In the past decades, the price fluctuation trends of
these four futures series are almost the same, which manifest
that there is a certain correlation between them.

3. Methodology

3.1. Wavelet Packet Decomposition. Wavelet transform is a
mathematical method produced to solve the problem of
decomposition of nonstationary signals. Compared with
wavelet analysis, wavelet packet decomposition (WPD) can
be used to analyze the signal more meticulous. Wavelet
packet analysis can divide the time-frequency plane in more
detail, and the resolution of the high-frequency part of the
signal is better than wavelet analysis [36]. It can also
adaptively select the best wavelet basis function according to
the characteristics of the signal in order to better analyze the
signal. )e theory of the WPD analysis is as follows [37–39].
)e wavelet packet function is a time-frequency function; it
can be defined as

W
n
j,k(t) � 2(j/2)

W
n 2j

t − k , (1)

where the integers j and k are the index scale and translation
operations. )e index n is an operation modulation pa-
rameter or oscillation parameter. )e first two wavelet
packet functions are the scaling and mother wavelet
functions:

W
0
0,0(t) � ϕ(t),

W
1
0,0(t) � ψ(t).

(2)

When n � 2, 3, . . ., the function has the following re-
cursive relationship:
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W
2n
0,0(t) �

�
2

√

k

h(k)W
n
1,k(2t − k),

W
2n+1
0,0 (t) �

�
2

√

k

g(k)W
n
1,k(2t − k),

(3)

where h(k) and g(k) are the quadrature filter function
related to the previously defined scaling function and
mother wavelet function.)e wavelet packet coefficientswn

j,k

are calculated by the inner product 〈f(t)Wn
j,k〉, which is

defined as

w
n
j,k �〈f(t)W

n
j,k〉 �  f(t)W

n
j,kdt. (4)

According to the literature [40], the number of the
decomposition level is often in the range from 2 to 4 in
forecasting model. In the present work, the 3-level frame-
work of WPD algorithm is applied, which is schematically
shown in Figure 1(a). Additionally, the Daubechies wavelets
of order 4 are employed as the mother wavelet in this re-
search [41], and the corresponding decomposition result of
the WTI crude oil is demonstrated in Figure 2(b). Each
subseries with different frequency band represents a sort of
oscillatory factor embedded in the futures price indices. In
Figure 2(b), the decomposed subseries “DDD3,” “DDA3,”

“DAD3,” “DAA3,” “ADD3,” “ADA3,” “AAD3,” “AAA3” are
recorded as SSi(i � 1, 2, . . . , 8) series subsequently.

3.2. Long Short-Term Memory Network. Long short-term
memory networks are a particular form of RNNs that can
handle with long-term and short-term dependencies. )ey
were introduced in 1997 by Hochreiter and Schmidhuber
[18] and were improved and promoted in subsequent work.
Although the structure of traditional RNNs are entirely
component of handling long-term memory dependencies
in theory, the effect is confined in the actual application
[42]. )erefore, the memory storage capacity of RNNs is
more suitable for short-term sequences. On the basis of
conventional RNNs, cell states and gate mechanism are
added to the hidden layer, so that the gradient vanishing
problem can be largely mitigated through its control gates.
In addition, each time the historical message is dispatched
to the neurons of the hidden layer, several control gates
with different functions are employed to regulate the in-
formation of the past and latest.)e principle of the control
gate is described as follows. It is mainly composed of a
sigmoid neural net layer and a pointwise multiplication
operation. )e output values of sigmoid function stage are
between 0 and 1, which indicate how much information
can be delivered to the next step. A value of zero means
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Figure 1: Dynamic changes of energy futures series between January 2, 2009, and October 23, 2019.

4 Computational Intelligence and Neuroscience



letting nothing through, while a value of one means letting
everything through. Specially, when the value is 0, it means
nothing can be transmitted, and when the value is 1, it
implies everything can be transmitted. )e LSTM control
gates involve three gates: the forget gate ft, the input gate it,
and the output gate ot. )e forget gate determines how
much historical information stored in the current moment
from the last moment. )e input gate judges the infor-
mation saved in the cell state, and the output gate decides
the output data based on the cell state. )e architecture of
LSTM network is shown in Figure 3. )e description of
LSTM networks follows Fischer and Krauss [43], Sainath
et al. [44], and He et al. [45]. )e specific algorithm steps of
LSTM are as follows:

(i) )e memory cell reads in the input xt and the
previous hidden state ht−1, which can reveal long-
term dynamic trends and abandon the redundant
useless information. )e forget gate is determined
by the following equation:

ft � σ Wf · xt, ht−1(  + bf . (5)

(ii) )e first part of input gate in the model determines
how much current information should be retained
in the cell state:

it � σ Wi · xt, ht−1(  + bi . (6)

(iii) )e second part is to generate a new candidate
vector Ct to update the state, which is according to
the following equation:

Ct � tanh WC · xt, ht−1(  + bC . (7)

(iv) After that, the new cell state Ct is constructed on the
basis of the outcomes of the last steps with ⊗
denoting the Hadamard (element-wise) product:

Ct � ft ⊗Ct−1 + it ⊗ Ct. (8)

(v) Finally, the output gate ot is updated and the final
output ht is decided based on the updated state and
the output gate state:

ot � σ Wo · xt, ht−1(  + bo ,

ht � ot ⊗ tanh Ct−1( .
(9)

In the previous equations, the following notation is used:

(i) xt is the input vector at current time step t.
(ii) Wf, Wi, WC, and Wo are the weight matrices which

associate with corresponding vectors. )ey can be
spilt into

Wf � Wfx + Wfh,

Wi � Wix + Wih,

WC � WCx + WCh,

Wo � Wox + Woh.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

(iii) bf, bi, bC, and bo are bias indicators.
(iv) ft, it, and ot are forget gate, input gate, and output

gate vectors.
(v) Ct and Ct are vectors for the cell states and can-

didate values.
(vi) ht is a vector for the output of the LSTM layer.
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Figure 2: (a) )e process of WPD algorithm. (b) )e corresponding subseries SSi of WTI index derived from WPD.
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(vii) σ(·) and tanh(·) are the sigmoid function and
hyperbolic tangent function, respectively.

3.3. LSTM with Stochastic Time Effective Weight Function
(SW-LSTM). Dufresne and Gatheral et al. [46, 47] dem-
onstrate that the prediction of financial market price series
should integrate great amount of historical data, because the
information represented in different periods has different
impacts on future results. In other words, the closer the data
is to the current time, the stronger the impact of information
is at that moment, and, on the contrary, the further the data
is, the weaker the influence is [48]. )erefore, to improve the
accuracy of forecasting in actual application, this paper
considers combining the SW function with LSTM theory in
the predictive modelling process. During the stage of model
training, SW function is integrated into the LSTM model to
construct a novel forecasting model, which is referred to as
long short-term memory with stochastic time strength
weight function model (SW-LSTM). )e expression of SW
function derives from a stochastic process [6]. It can assign
different weights to different data in the light of the variant
time of occurrence. )e mathematical expression is as
follows:

φ tn(  �
1
β
exp 

tn

t0

μ(t)dt + 
tn

t0

ω(t)dB(t) , (11)

where β(> 0) is the depth of market parameter, t0 is the
moment of the latest time point in the data set, and tn is an

arbitrary time point in the dataset. B(t) is the standard
Brownianmotion which is commonly considered as random
movement of a particle in liquid [49]. μ(t) is the drift
function which mainly direct trend changes. ω(t) is the wave
function which is applied to model the uncertain events
during the forecasting process. )emathematical expression
of μ(t) and ω(t) is as follows:

μ(t) � exp(−αt),

ω(t) � ω(T) �
1

T − 1


T

i�1
xi − x( 

2⎛⎝ ⎞⎠

(1/2)

.

(12)

In the training process of conventional LSTM network,
the parameter matrices Wf, Wi, WC, and Wo are modified
following the backpropagation in each iteration through
time procedure of typical RNNs [17]. )e model training
error of the sample point n is defined as

E tn(  �
1
2
ε2tn

�
1
2

dtn
− ytn

 
2
. (13)

For the SW-LSTM model, a new description of model
training error Etn can be obtained:

E tn(  �
1
2
φ(t)ε2tn

�
1
2
φ(t) dtn

− ytn
 

2
. (14)

)en, the corresponding global error of model training is
defined as

E �
1
N



N

i�1
Et �

1
2N



N

i�1

1
β
exp 

tn

t0

μ(t)dt + 
tn

t0

ω(t)dB(t)  dtn
− ytn

 
2
. (15)

In the modelling process, based on the newly defined
global error E, the model parameters are updated through
the gradient descent method [10, 50, 51]. First, the partial

derivative of each model parameter needs to be calculated
from the global error function. )en, the principle of pa-
rameter update is as follows:
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Figure 3: )e architecture of LSTM network.
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(16)

where netf,t,neti,t, netC,t, neto,t denotes the input of the
corresponding function, δf,t � (zE/znetf,t), δi,t � (zE/z
neti,t), δC,t � (zE/znetC,t), and δo,t � (zE/zneto,t).

)e above is the algorithm of SW-LSTM model, which
corrects the model parameters accords with the gradient
descent method. Figure 4 illustrates the training algorithm
procedures of the proposed model, which involve six steps.
For the different subseries of different crude oil series,
different hyperparameters, which include the training steps,
the number of hidden layers units, the learning rate, number
of iterations, and the batch size, should be trained by the
proposed model. )e specific modelling and empirical
prediction are given in Section 4.

3.4. Forecasting Process of theHybridWPD-SW-LSTMModel.
In this study, the fluctuation of energy futures prices is
applied to the proposed hybrid forecasting model, WPD-
SW-LSTM.)e procedure of theWPD-SW-LSTM approach
is described in brief subsequently, and the flowchart of this

research is shown in Figure 5. Firstly, the main process of the
proposed model is displayed on the upper left of Figure 5,
which includes three steps. )e first step is data decom-
position, where the original preprocessed data are decom-
posed by WPD method. )en, applying the improved SW-
LSTMmethod for subseries forecasting step, the third step is
the ensemble forecasting step. )en, the final forecasting
results can be obtained by aggregating the subseries fore-
casting results with inverse wavelet packet transform. )e
specific description of each step is as follows:

Step 1: the WPD technique is employed to analyze the
original energy futures series X(t)(t � 1, 2, . . . , N).
And, 8 subseries SSi, i � 1, 2, . . . , 8 are derived from the
three-layer WPD method, which indicate that the local
oscillations in different frequency bands. )e details of
the WPD algorithm are given in Section 3.1.

Step 2: each subsequence SSi derived from WPD
method is separated into training and testing datasets.
)e SW-LSTM network is utilized to train and establish
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the forecasting model on the basis of the training
dataset. Model parameters need to be set in advance,
which includes the learning rate, the number of hidden
layer units, the number of iterations, and the batch size.
)ey are essential for predicting precision of the model.
)e training algorithm procedures of SW-LSTMmodel
are proposed in Sections 3.2 and 3.3.
Step 3: it composites the prediction of each SSi to obtain
the final forecasting results by employing the theory of
inverse wavelet packet transform. Moreover, linear
regression and relative error are applied to investigate
the correlation between predictive points and actual
values.
Step 4: multiple evaluation indicators are adopted to
estimate the prediction ability of WPD-SW-LSTM,
which involves MAE, RMSE, MAPE, SMAPE, and TIC
and a novel method multiple multiorder complexity-

invariant distance (MMCID) based on information
theory. In addition, other models like SVM, BPNN,
LSTM, WPD-BPNN, and WPD-LSTM are taken into
account for prediction comparison.

4. Forecasting and Statistical Analysis

4.1. Data Preprocessing. To estimate the performance of the
proposed WPD-SW-LSTM forecasting model, the futures
prices of WTI crude oil, Brent crude oil, RBOB gasoline,
and heating oil are selected. Table 1 displays the selected
data sets of all indices that are from 02/01/2009 to 23/10/
2019. Usually, the non-trading days are regarded as frozen
such that this research only adopts the data during trading
time. To conduct the experiments, nearly eighty percent of
the samples from 2009 to 2017 are used to train the model,
and the remaining twenty percent of data are used for
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Figure 4: )e training algorithm procedures of SW-LSTM model.
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testing to examine the effectiveness of the proposed model.
Table 1 provides the selection and division of the four
selected oil futures indices. Generally, to minimize the
influence of noise and finally enhance the accuracy of
forecasting, each subseries SSi derived from WPD is
normalized to the range of [0, 1] by the following stan-
dardized method [52, 53]:

S(t)′ �
S(t) − min S(t)

max S(t) − min S(t)
. (17)

After that, to acquire the true predictive value and then
intuitively compare the numerical results with the actual
value, the normalized output variables S(t) should be
reverted to S(t) as follows:

S(t) � S(t)′(max S(t) − min S(t)) + min S(t). (18)

4.2. Training and Forecasting by the Hybrid WPD-SW-LSTM
Model. In this section, four different energy futures price
series are carried out to support the proposed hybrid WPD-
SW-LSTM model. )e decomposition merit of WPD makes
it exceptional in the extraction of feature sequences. )e
model parameters are trained by calculating the root mean
square error between the predicted value and actual value.
)e global error between the predicted value and the actual
target is reduced through weights modification. )e training
enters the next step when the global error is less than the
preset value. For all prediction models involved in this ar-
ticle, the input units are set to 4, and the output units are set
to 1. In WPD-SW-LSTM model, the batch size is set to 32,
the hidden size is 30, and the epochs number is 400.

Afterwards, the normalized subseries SSi obtained from
WPD are trained and predicted by the SW-LSTMmodel. )e
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Figure 5: Flowchart of the hybrid WPD-SW-LSTM model.

Table 1: Data selection.

Index Data sets Total number Training sets Training number Testing number
WTI 02/01/2009 ∼ 23/10/2019 2794 02/01/2009 ∼ 31/08/2017 2230 564
Brent 02/01/2009 ∼ 23/10/2019 2791 02/01/2009 ∼ 21/08/2017 2230 561
RBOB 02/01/2009 ∼ 23/10/2019 2976 02/01/2009 ∼ 20/11/2017 2380 570
Heating oil 02/01/2009 ∼ 23/10/2019 2821 02/01/2009 ∼ 22/08/2017 2250 571
Note: training number means the number in training set; testing number represents the number in testing set.
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number of input samples is set to 4, and the number of
outputs is set to 1; that is, the 4th order historical data are used
to predict the data of the next period. Figure 6 shows the
forecasting results of each subseries from the futures series of
WTI crude oil. It is shown visually that the predicted value of
each subseries SSi is almost consistent with the actual values.
With the purpose of illustrating the prediction from the SW-
LSTM forecastingmodel, Figure 7 demonstrates the empirical
results of each subseries from RBOB gasoline. Figures 6 and 7
present decomposed forecasting results of WTI crude oil and
RBOB gasoline as examples, which is a critical component
that measures the fluctuations of the prediction, especially in
forecasting the direction of fluctuations accurately. )e
subseries SSi has been recognized as the whole trend of the
futures price series, whose results from the proposed fore-
casting model are well predicted.)e curves of the actual data
and the predicted data intuitively are very approximating.
)en, the final predictive results of the four sample datasets
can be calculated by employing the theory of inverse wavelet
packet transform.

Figure 8 shows the final predictive results for four in-
dices, WTI, Brent, heating oil, and RBOB, with the proposed
WPD-SW-LSTM model. From this figure, the fluctuation
trends of the predictive data are extremely near that of the
actual data. In addition, the absolute correlation error results
of the empirical analysis are also revealed in Figure 7, which
can be calculated by RE(t) � |yt − yt|/yt. It can be con-
cluded that the predicted results nearly have consistent
trends with the fluctuations of the actual data. )e results of
RE are also centralized in (0, 0.01), and only a few sectional
data points surpass 0.01 and are smaller than 0.015. It means
that with repeated experiments, the energy futures series
have been trained excellently, and the forecasting perfor-
mance of the WPD-SW-LSTM model is improving.

It is generally known that the predicted results and the
actual value can be fitted by linear regression method, where
the predicted points are regarded as the dependent variable
Y, and the actual data are considered as the independent
variable X. )rough linear regression analysis between the
predicted value of theWPD-SW-LSTMmodel and the actual
data, the prediction accuracy can be judged by the goodness
of fit.)e closer the goodness of fit value is to 1, the closer the
predicted value is to the true value. An effective numerical
indicator between the two variables is the correlation co-
efficient R. )e curves of linear regression for series WTI,
Brent, heating oil, and RBOB are revealed, respectively, in
Figure 9, and the numerical results are revealed in Table 2. In
detail, the values of R for these four series are all above 0.98,
and the regression coefficients a of the linear equations are
near to 1, which indicates that the predicted values are al-
most close to the actual values. )e regression equation
parameters of the proposed model for WTI are
a � 0.9934, b � 0.6931, which is approaching to the ideal
situation y � x, followed by the Brent indices,
a � 0.9217, b � 4.864. )e heating oil is a � 0.9441,

b � 0.0823 and RBOB gasoline is a � 0.9930, b � 0.0007.

5. Models Comparison and Prediction
Accuracy Evaluation

5.1. Performance Evaluation Criteria. While the established
model WPD-SW-LSTM is utilized to the forecasting ex-
periments, it is also indispensable to validate the forecasting
effects of different models. )en, five models (SVM, BPNN,
LSTM, WPD-BPNN, and WPD-LSTM) are employed to the
forecasting evaluations in this part. Support vector machine
(SVM) technique is displayed in this part, which is regarded
as the state-of-the-art machine learning theory for binary
classification [54–56]. Additionally, to fully prove the ef-
fectiveness of the proposed model, BPNN, LSTM, and
WPD-BPNN are selected to make a comparison because the
proposedmodel is constructed based on LSTMnetwork, and
backpropagation neural network (BPNN) is the most typical
neural network. For the purpose of estimating the fore-
casting error of the new hybrid model and comparing it with
other five models, the error measurement between actual
data points and predicted value for different models are
investigated. Among them,mean absolute error (MAE), root
mean square error (RMSE), mean absolute percent error
(MAPE), symmetric mean absolute percent error (SMAPE),
and )eil inequality coefficient (TIC) are selected as the
error evaluation criteria, which can indicate the forecasting
performance of each model. Generally, the smaller the error
(MAE, RMSE, MAPE, SMAPE, and TIC) values are, the
more accurate the predictive ability of the forecasting model
is [52]. )e evaluation definitions are expressed as follows:
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(19)

where yt and yt are the actual value and the predicted value
at time t, respectively, and N is the total number of the data.

Figure 10 illustrates the forecasting results of WTI,
Brent, RBOB, and heating oil for the six forecasting models
in comparison. Additionally, the forecasting results from the
insert plots of Figure 10 show the local prediction of training
sets and testing sets from the proposed WPD-SW-LSTM

10 Computational Intelligence and Neuroscience
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Figure 6:)e predicted data and the actual data of each subseries fromWTI crude oil. (a) SS1. (b) SS2. (c) SS3. (d) SS4. (e) SS5. (f ) SS6. (g) SS7.
(h) SS8.
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Figure 7: )e predicted data and the actual data of each subseries from RBOB gasoline. (a) SS1. (b) SS2. (c) SS3. (d) SS4. (e) SS5. (f ) SS6.
(g) SS7. (h) SS8.
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model, respectively. It displays the distinct advantages
contrast with the other five models, SVM, BPNN, LSTM,
WPD-BPNN, and WPD-LSTM, especially at big fluctuation
stages. Affected by the changes of social economy and
various external environment, the energy market shows
different fluctuations. Besides, the predicted results during
the small fluctuation period seem comparatively accurate for
all predictive models.

Tables 3–6 demonstrate a detailed comparison of the
evaluation criteria quantitatively, by applying MAE, RMSE,
MAPE, SMAPE, and TIC among aforementioned six
models. )e numerical results demonstrate that the evalu-
ation indicators from the WPD-SW-LSTMmodel are all the
smallest ones among these models, and the evaluation in-
dicators by the hybrid models are almost less than those by
the individual models. For example, the MAPE values for
WTI futures indices from the first three hybrid models are
1.4329, 2.0092, and 2.7653, and the individual modelsMAPE
values are 4.6351, 5.4562, and 5.6108, respectively. Overall,

the empirical results demonstrate that the WPD-SW-LSTM
predictor has higher forecasting accuracy. From the error
evaluations, the hybrid models WPD-SW-LSTM, WPD-
LSTM, and WPD-BPNN are superior to the LSTM, BPNN,
and SVM models. Moreover, compared with the WPD-
LSTM and WPD-BPNN model, the superior predictive
accuracy of the proposed model WPD-SW-LSTM reflects
that the stochastic time effective weights (SW) method can
play an important role during forecasting process. In par-
ticular, after WPD-LSTM is combined with SW, the
hyperparameters are extremely improved, and error indi-
cators MAE, RMSE, MAPE, SMAPE, and TIC are raised by
33.32%, 19.14%, 28.69%, 39.59%, and 48.06%, respectively.
In order to show the forecast results more intuitively, Fig-
ure 11 displays the evaluation values of MAE, RMSE, MAPE,
SMAPE, and TIC for different models, respectively. Due to
the different data structures and character of these four
indices, the left y-axis of Figure 11 in the case of WTI and
Brent stands for the value of MAE, RMSE, MAPE, and
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Figure 8: )e predicted results of the proposed model for the original series. (a) WTI. (b) Brent. (c) RBOB. (d) Heating oil.
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SMAPE, and the right y-axis is the TIC value. But for the
case of RBOB and heating oil, the left y-axis represents the
value of MAE, RMSE, and TIC, and the right y-axis is the
value of MAPE and SMAPE. From Figure 11, the MAPE and
SMAPE have similar numerical results for all the case study.
)e MAPE, SMAPE, and TIC values of RBOB and heating
oil indicate that there is no obvious difference between
WPD-LSTM model and the WPD-BPNN model, but in
accordance with the results of MAE and RMSE, the former is
slightly better than the latter model.

In order to verify whether the proposed model is sig-
nificantly different from other forecasting models (WPD-
LSTM, WPD-BPNN, LSTM, BPNN, and SVM), the non-
parametric Wilcoxon signed rank test is applied on two
absolute errors by two compared models [57–59]. )e
corresponding statistical test results of the four indexes are

presented in Table 7. )e results illustrate that the proposed
model has statistical significance among the other models.
Besides, in Tables 3–6, the error evaluations of MAE, RMSE,
MAPE, SMAPE, and TIC byWPD-SW-LSTM are all smaller
than those by other five models for indexes WTI, Brent,
RBOB, and heating oil. It can be inferred that theWPD-SW-
LSTM model is significant superior to other models for the
four indexes.

5.2. Evaluation of Multiorder Multiscale CID Analysis
(MMCID). In this section, novel error evaluation methods
are proposed to detect the predicted performance. )e new
analysis method is based on complexity-invariant distance
(CID) which generally brings about major improvements in
time series classification and clustering accuracy [35].
Complexity invariance makes use of knowledge about
complexity discrepancy between two different datasets as a
modification factor for the existing distance measurement
methods [35, 60]. By improving the CIDmethod, multiorder
multiscale complexity invariant distance (MMCID) is de-
rived to evaluate the predictions of the energy futures prices
with different forecasting models. In practical application,
the complexity is not limited to a single scale. )e MMCID
measurement considers multiple time scales when validating
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Figure 9: Comparisons of the predicted data and the actual data for the forecasting models. (a) WTI. (b) Brent. (c) RBOB. (d) Heating oil.

Table 2: Linear regression parameters from WPD-SW-LSTM
model.

Parameter WTI Brent RBOB Heating oil
a 0.9934 0.9217 0.9930 0.0.9441
b 0.6931 4.864 0.0007 0.0823
R 0.9901 0.9845 0.9856 0.9822
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Figure 10: Forecasting comparison of different models for WTI, Brent, heating oil, and RBOB. (a) WTI. (b) Brent. (c) RBOB. (d) Heating oil.

Table 3: Prediction performance evaluation of distinct prediction models for WTI.

Model MAE RMSE MAPE SMAPE TIC
WPD-SW-LSTM 0.8283 1.8493 1.4329 1.3143 0.0130
WPD-LSTM 1.2422 2.2842 2.0092 2.1755 0.0195
WPD-BPNN 2.1742 2.8328 2.7653 2.9991 0.0239
LSTM 3.0488 3.8097 4.6351 4.8980 0.0310
BPNN 3.5219 4.3772 5.4562 5.2742 0.0395
SVM 3.8286 4.7274 5.6108 5.9419 0.0417
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and quantifying the connection between different futures
series. )e MMCID measurement can consist of the fol-
lowing two procedures: (i) considering one-dimensional
discrete time series: x1, x2, . . . , xi, . . . , xN, consecutive
coarse-grained vector y(τ) is calculated with the scale pa-
rameter τ. )e specific mathematical expressions are as
follows, which refers to [61]

y
(τ)
j �

1
τ



jτ

i�(j−1)τ+1
xi, 1≤ j≤

N

τ
. (20)

Particularly, when τ � 1, the coarse-grained time series is
y(1), which is merely the primitive sequence. )e length of

each coarse-grained time series is equal to the length of
primitive series divided by the scale parameter τ. (ii)
According to the principle of CID, we compute the mul-
tiorder value of CID for each coarse-grained time series and
then acquire the MMCID method as a function with scale
parameter τ. Assuming that there are two time series, R and
S, with length n,

R � r1, r2, . . . , ri, . . . , rn,

S � s1, s2, . . . , si, . . . , sn.
(21)

)e multiorder distance expression is given as

EDq
(T) � 

n

i�1
ri − si( 

q⎛⎝ ⎞⎠

(1/q)

,

CFq
(R, S) �

max CE
q
(R),CEq

(S) 

min CE
q
(R),CEq

(S) 
,

CEq
(T) � 

n−1

i�1
ti+1 − ti( 

q⎛⎝ ⎞⎠

(1/q)

,

M − CID(R, S) � EDq
(R, S) × CFq

(R, S),

(22)

Table 4: Prediction performance evaluation of distinct prediction models for Brent.

Model MAE RMSE MAPE SMAPE TIC
WPD-SW-LSTM 0.6756 1.8180 0.9579 1.2339 0.0191
WPD-LSTM 1.5148 2.4533 1.3950 1.6971 0.0235
WPD-BPNN 2.0444 3.5218 3.0684 3.6750 0.0261
LSTM 3.6183 4.5880 5.2474 5.5041 0.0327
BPNN 3.9204 4.9236 5.4507 5.8135 0.0355
SVM 4.1716 5.3706 6.0980 6.6347 0.0412

Table 5: Prediction performance evaluation of distinct prediction models for RBOB.

Model MAE RMSE MAPE SMAPE TIC
WPD-SW-LSTM 0.0122 0.0302 1.0350 1.0012 0.0085
WPD-LSTM 0.0351 0.0498 1.8576 1.7286 0.0166
WPD-BPNN 0.0464 0.0570 1.9764 1.8878 0.0164
LSTM 0.0514 0.0692 2.2633 2.3379 0.0189
BPNN 0.0671 0.0889 3.6352 4.3773 0.0246
SVM 0.0817 0.1070 4.4089 5.4389 0.0297

Table 6: Prediction performance evaluation of distinct prediction models for heating oil.

Model MAE RMSE MAPE SMAPE TIC
WPD-SW-LSTM 0.0212 0.0642 0.4775 0.6298 0.0143
WPD-LSTM 0.0463 0.0945 1.8461 1.9538 0.0241
WPD-BPNN 0.0505 0.1271 2.0593 2.1686 0.0252
LSTM 0.0714 0.1529 3.1326 3.2484 0.0284
BPNN 0.0844 0.1980 5.2090 5.9175 0.0340
SVM 0.1056 0.2156 7.2594 8.4040 0.0465
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Figure 11: Forecasting comparison of the evaluation errors from the six involved models. (a) WTI. (b) Brent. (c) RBOB. (d) Heating oil.

Table 7: Wilcoxon signed rank test for proposed model with different prediction models.

WTI Brent RBOB Heating oil

WPD-LSTM
H 1 1 1 1

z value −39.1953 −42.0197 −7.7244 −20.9041
Prob.p 3.5050e− 10 3.1244e− 12 1.1234e− 14 4.9117e− 6

WPD-BPNN
H 1 1 1 1

z value −22.2057 −21.8502 −30.8334 −20.6775
Prob.p 3.0267e− 6 4.3975e− 9 9.3655e− 29 5.5209e− 9

LSTM
H 1 1 1 1

z value −45.7889 −36.8169 −26.5620 −18.0050
Prob.p 6.0053e− 19 9.8998e− 27 1.8654e− 15 1.7815e− 7

BPNN
H 1 1 1 1

z value −23.8007 −30.5701 −31.1161 −21.1325
Prob.p 3.7303e− 11 8.5523e− 29 1.4575e− 22 3.9941e− 6

SVM
H 1 1 1 1

z value −8.9625 −37.2304 −33.3299 −21.0766
Prob.p 1.6290e− 27 2.1975e− 33 1.4235e− 23 1.3043e− 8
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where EDq(R, S) between two time series R and S indicates
complexity invariant by introducing a correction index. CFq

is a complexity correction index, and CEq(T) is a complexity
evaluation of time series T. Moreover, CFq gives reasons for
complexity differences of different datasets into comparison.
It separates time series with distinctly different complexities
to be further apart. And multiorder parameter q is applied to
enlarge the performance of great changes in the process of
error evaluation.

When evaluating with the MMCID method, the actual
value can be regarded as series R and the predicted results as

the series S. According to the theory of the MMCID, the
predicted effectiveness is better when the MMCID value is
smaller. It also indicates that the fluctuation trends of the
prediction are almost consistent with the actual data. In this
study, the parameter q is set to 2 and τ is from 1 to 20. Table 8
shows the specific MMCID values between the forecasting
results and the actual values from the six mentioned models
when the scale parameter τ � 1.)e empirical results from the
four different types of experiment data demonstrate that the
proposed hybrid model performs much better than the other
five forecasting models. Figure 12 shows MMCID results

Table 8: MMCID value between the actual data and the corresponding predictions.

Index WTI Brent RBOB Heating oil
WPD-SW-LSTM 120.1289 237.8508 4.5909 8.9039
WPD-LSTM 239.3461 384.7985 6.8226 11.9508
WPD-BPNN 305.2824 416.4688 11.4907 13.7667
LSTM 577.9065 516.0784 18.0672 18.0709
BPNN 730.7260 595.6528 26.0103 24.4857
SVM 929.2038 779.0730 41.2264 31.5295
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Figure 12: )e MMCID curves of the actual futures data points and the forecasting results from different forecasting models. (a) WTI.
(b) Brent. (c) RBOB. (d) Heating oil.
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between the actual futures prices series and the corresponding
prediction of them from each predictive model. It is distinctly
noticed that the MMCID value between actual data and the
prediction ones by the WPD-SW-LSTMmodel is the smallest
one of all, and the results from hybrid models are much better
than those from single models for all the four contemplated
futures indices. With the novel estimation method, the
forecastingmerits of the proposedWPD-SW-LSTMmodel are
further manifested, and the productiveness of the SWmethod
added to WPD-LSTM model is also revealed distinctively. In
view of the above empirical analysis, the established new
hybrid forecasting approach is effective for improving the
accuracy of energy futures prices.

5.3. Comparative Analysis with Existing Hybrid Models.
In this section, the latest hybrid models are considered as the
benchmark models to make predictions on the selected four
energy futures indexes. Recently, many researchers have
combined decomposition methods with machine learning
algorithm to establish hybrid forecasting models. Lin et al.
[34] proposed the CEEMDAN-LSTM model to the forecast

of exchange rate. Niu et al. [32] and He et al. [45] applied the
VMD-LSTM model to the forecasting fields of stock prices
and exchange rate movements. Li and Wang [62] developed
a novel model ST-GRU by embedding stochastic time in-
tensity function into gated recurrent unit model (GRU).
)erefore, this section makes comparative analysis between
the WPD-SW-LSTM model with the CEEMDAN-LSTM,
VMD-LSTM, and ST-GRU models, respectively. Table 9 has
listed the error evaluation results of the four hybrid fore-
casting models. Table 10 is the hypothesis test results of
Wilcoxon signed rank test for different paired models. )e p

values are all close to 0 and the H values are 1 through
calculation by hypothesis test, indicating that test rejects null
hypothesis. Hence, the prediction error of the WPD-SW-
LSTMmodel is significantly different (under the significance
level of 0.05) from the error of the other three hybrid models.
Furthermore, compared with the results of other models, all
the error evaluations of the forecasting performances in
Table 9 are very close, but those of the proposed model are
smaller than the errors of the other models. Combined with
the results of the statistical test in Table 10, it can be deduced
that the prediction efficiency of the proposed model is more

Table 9: Prediction performance evaluation of hybrid forecasting models.

Errors MAE RMSE MAPE SMAPE TIC
Index WTI
CEEMDAN-LSTM 1.2017 2.1849 1.7099 1.8371 0.0167
VMD-LSTM 1.3158 2.5268 2.2632 2.4196 0.0192
ST-GRU 1.1701 2.2165 1.6895 1.9726 0.0151
WPD-SW-LSTM 0.8283 1.8493 1.4329 1.3143 0.0130
Index Brent
CEEMDAN-LSTM 0.9782 2.3274 1.3412 1.5177 0.0228
VMD-LSTM 1.2814 2.5638 1.4101 1.7065 0.0239
ST-GRU 1.1267 2.2680 1.2826 1.4371 0.0215
WPD-SW-LSTM 0.6756 1.8180 0.9579 1.2339 0.0191
Index RBOB
CEEMDAN-LSTM 0.0269 0.0381 1.6774 1.5205 0.0168
VMD-LSTM 0.0368 0.0558 1.9783 1.8152 0.0175
ST-GRU 0.0326 0.0328 1.6186 1.4322 0.0116
WPD-SW-LSTM 0.0122 0.0302 1.0350 1.0012 0.0085
Index Heating oil
CEEMDAN-LSTM 0.0376 0.0805 1.2376 1.5278 0.0183
VMD-LSTM 0.0497 0.1014 1.8509 2.0125 0.0252
ST-GRU 0.0408 0.0732 1.0338 1.2957 0.0171
WPD-SW-LSTM 0.0212 0.0642 0.4775 0.6298 0.0143

Table 10: Wilcoxon signed rank test for proposed model with different hybrid models.

WTI Brent RBOB Heating oil

CEEMDAN-LSTM
H 1 1 1 1

z value −38.4806 3.4128 23.3774 3.0441
Prob.p 3.1639e− 10 6.4302e− 4 7.2652e− 12 0.0023

VMD-LSTM
H 1 1 1 1

z value −20.6386 7.2933 21.2588 −2.7126
Prob.p 1.2432e− 9 3.0256e− 13 2.7349e− 10 0.0067

ST-GRU
H 1 1 1 1

z value −23.4035 −15.9011 −24.8309 −5.3581
Prob.p 3.9388e− 12 6.2225e− 15 4.1571e− 13 8.4113e− 8
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superior to the latest three hybrid models for energy futures
prices forecasting.

6. Conclusion

In this research, a new hybrid forecasting model,
WPD-SW-LSTM, has been set up by integrating the
wavelet packet decomposition based on LSTM with sto-
chastic time strength weight function method. After
decomposing the primitive futures series into several
subseries, each forecasting model for the different sub-
series SSi has been established according to its own fre-
quency band properties. )e correlation coefficient values
(R) from four energy futures series are all above 0.98 and
extremely near 1, which implies that the proposed model
performs great prediction effect. Furthermore, compared
with the empirical results of SVM, BPNN, LSTM, WPD-
BPNN, and WPD-LSTM forecasting models, the predicted
values and different error evaluation reveal that the pro-
posed WPD-SW-LSTM forecasting model has strong
points in upgrading the accuracy of energy futures prices.
In addition, according to the evaluation errors of MAE,
RMSE, MAPE, SMAPE, and TIC, the hybrid models WPD-
SW-LSTM, WPD-LSTM, and WPD-BPNN have better
prediction performance than the individual models,
LSTM, BPNN, and SVM. )e effectiveness of stochastic
time strength weight function is the key that the accuracy
of the WPD-SW-LSTM model is far more than the other
five models. By introducing the novel evaluation error,
MMCID method and the forecasting effectiveness of the
proposed model are further confirmed. At the last section,
compared with the recent hybrid CEEMDAN-LSTM,
VMD-LSTM, and ST-GRU models, by Wilcoxon test, the
proposed model is significantly different from the fore-
casting errors of the other three models. Combined with
the error evaluation results, it can be referred that the
forecasting accuracy of the proposed model is the highest
among the other benchmark models for energy futures
prices forecasting.
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Hyperspectral imaging is an area of active research with many applications in remote sensing, mineral exploration, and en-
vironmental monitoring. Deep learning and, in particular, convolution-based approaches are the current state-of-the-art
classification models. However, in the presence of noisy hyperspectral datasets, these deep convolutional neural networks
underperform. In this paper, we proposed a feature augmentation approach to increase noise resistance in imbalanced
hyperspectral classification. Our method calculates context-based features, and it uses a deep convolutional neuronet (DCN). We
tested our proposed approach on the Pavia datasets and compared three models, DCN, PCA+DCN, and our context-based DCN,
using the original datasets and the datasets plus noise. Our experimental results show that DCN and PCA+DCN perform well on
the original datasets but not on the noisy datasets. Our robust context-based DCNwas able to outperform others in the presence of
noise and was able to maintain a comparable classification accuracy on clean hyperspectral images.

1. Introduction

Advances in data collection and data warehousing tech-
nologies have led to a wealth of massive repositories of data.
Together with active research in artificial intelligence, big
data science promises mountain ranges of unexplored
datasets and the smart tools to extract relevant information.
An important goal in computer-based hyperspectral im-
aging is to be able to accurately perform this information
mining without human work. Government, industry, and
academia sectors seek to automate this process. )ey find it
valuable for their future to be able to reduce the human
requirement in core processing tasks, such as segmentation,
classification, and its applications.

Ever since Vapnik’s [1, 2] work transformed the
statistical learning theory community, research has in-
dicated the considerable potential of SVM in supervised

classification, However, in many real-world classification
problems such as remote sensing, medical diagnosis,
object recognition, and business decision-making, the
costs of selecting a poor kernel for high dimensional data
is too high in terms of computational performance and a
handicap to robust, real-time hyperspectral classification
and segmentation.

More recently, deep networks have dominated clas-
sification problems, such as image segmentation. Con-
volutional-based neural networks or CNNs are driving
advances in recognition. CNNs are not only improving for
all domains of image classification [3–7] but also making
progress on object detection [8–10], key-point-based
prediction [11, 12], and local correspondence [13]. )e
natural next step in the progression from coarse to fine
inference is to make a prediction at every pixel. Prior
approaches have used Deep CNNs for image segmentation
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[14–20], in which each pixel is labeled, but with short-
comings that this work addresses.

Typically, DCN-based algorithms use the output of the
last layer of the network to assign category labels. Imposing a
softmax layer on top of a fully-connected dense layer, DCN
focuses on semantic information. However, when the task
we are interested in is more granular, such as one of clas-
sifying mixed pixels or dealing with imbalanced multiclass
classification of hyperspectral images, these last layers are
not optimal.

Image segmentation faces yet another challenging gap:
global information answers the what, while local informa-
tion provides the where. It is not immediately clear that deep
convolutional neural networks for image classification yield
a structure sound enough for accurate, pixel-wise multiclass
classification. Moreover, when working with high dimen-
sional features, there is often no go-to algorithm that is exact
and has acceptable performance. To obtain a speed im-
provement, many practical applications are forced to settle
for approximation approaches, in which they do not return
exact answers. In practice, numerical optimizations and fast
approximation saturate the spectrum of algorithms and
research. However, image segmentation can also be explored
as the reconstruction to a low-quality image from its high
quality observations. )is point of view has many important
applications, such as low-level image processing, remote
sensing, medical imaging, and surveillance.

)ere are also paramount applications that would benefit
from advances in unsupervised image segmentation, such as
medical applications and homeland security. Early detection
of tumors, kidney disease, heart disease, microbleeds, and
microdamages is critical to worldwide public health.)ere is
significant research and new investments for advancing
magnetic resonance imaging technology that can accurately
aid in early diagnosis. )e authors in [21] reviewed the
principles and applications of a gradient echo MRI, the so
called T2∗ weighted. During COVID, the pharmaceutical
industry joins forces with academia to develop algorithms
for automated assessment of large-scale datasets [22]. De-
tection of illicit drugs, warfare agents, and dangerous sub-
stances is critical to security. )e authors in [23] introduced
a new technology that can rapidly detect explosives using a
thermal imager. )is thermal spectroscopy pushes the
boundaries of traditional image and signal processing
techniques.

)e problem is that the state-of-the-art in machine
learning and data science demands for abundance of labeled
samples, which require domain expert input. )is is not
feasible to spend time and effort labeling training samples. It
is more efficient to develop a new method that scales and
requires small number of labeled training samples.

Moreover, noise is a challenging variable, specially
within imbalanced data. Hyperspectral imaging is such a
data containing highly-imbalanced classes. Multiclass clas-
sification using DCN suffers from the presence of noise.
)erefore, this study proposes a method that can address
these challenges using a deep learning-based image clus-
tering model that combines both an adaptive dimensionality
reduction approach and a robust feature augmentation

approach which can cluster different types of imaging
datasets with high positive predictive value.

)e main contribution of this paper is a new pre-
processing approach to deal with noisy, highly-imbalanced
hyperspectral classification. In Section 2, we present a lit-
erature review. In Section 3, we explain our approach. In
Section 4, we explain our experiments, while in Section 5, we
compare our results. And in Section 6, we present our
conclusions and future lines of research.

2. Related Works

)is section presents previous works and relevant literature
in the areas of dimensionality reduction, feature augmen-
tation, noise reduction, and hyperspectral image
classification.

2.1.DimensionalityReduction. As big data, cloud computing
becomes the standard for data storage, and high dimensional
datasets are more and more commonplace. To process such
large oceans of data, dimensionality reduction offers two
options: feature projection and feature selection. Feature
projection techniques transform data from a highly di-
mensional space to a new space with a lower dimensionality.
Principal Component Analysis is one of the most popular
linear transformations. In [24] the authors effectively con-
ducted a dimension reduction by applying the principal
component analysis to highly overlapped photo-thermal
infrared imaging dataset. Feature selection techniques are an
alternative that aims to choose the most information-rich
features and discard irrelevant features and noise. )e au-
thors in [25, 26] present different feature selection tech-
niques to integrate spectral band selection and hyperspectral
image classification in an adaptive fashion, with the ultimate
goal of improving the analysis and interpretation of
hyperspectral imaging.

Recent literature [27] proposes a Kronecker-decom-
posable component analysis model that combines dictionary
learning and component analysis with great results on low
rank modeling. )e Kronecker product is compatible with
the most common matrix decomposition. )erefore, it can
be used to learn low-ranking dictionaries in tensor factor-
ization. It also can effectively remove noise.

Principal Component Analysis [28] or PCA is a classical
dimensionality reduction with multiple implementations.
One intuitive implementation consists of six steps: stan-
dardization, covariance, eigenvalues, eigenvectors, reduc-
tion, and projection. )is formulation is based on
maximizing variance within a low-dimensional projection.
)ere are other formulations that scale better to high di-
mensionality. One of such solver implementations consists
of breaking down PCA into two easy-to-calculate sub-
problems: alternating least square linear regressions [29]
using an iterative algorithm based on the idea that the
product of principal orthogonal components can be an
approximation to the original data.

Despite the fact that PCA is among the most established
techniques for dimensionality reduction, the story does not
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end here. )ere are many other techniques that show great
empirical applications and theoretical guarantees. )e au-
thors in [30] introduced a Forward Selection Component
Analysis and obtained comparable results to PCA and Sparse
PCA. And in [31, 32], anomaly and change detection was
carried out with great success in hyperspectral imaging. Yet,
[33] suggests PCA as yet a powerful preprocessing step to
denoise data. Similarly to numerous other noise reduction
methods including patents [34], PCA works under the as-
sumption that the signal needs to be cleaned from the same
global noise.

2.2. Image Classification. Deep learning and big data science
are the state-of-the-art in image classification. From support
vector machines to convolutional neural networks to
spectral clustering, both academia and industry keep
pushing for more innovative research. Collaborative and in
particular interdisciplinary research is needed to bring these
advances to other fields and transform innovations into
applications.)e authors in [35] and [36] bear witness to the
benefits of incorporating diversity to research teams. With
authors with top degrees in civil engineering, computer
science, and communications and graduate and under-
graduate authors, these teams show that in order to push the
science forward we need the help of everyone.

)ere are many classic image segmentation algorithms,
from simple thresholding to similarity-based clustering to
connectedness and discontinuity-based detection. )resh-
old-based image segmentation seeks to divide the scale range
into background and a set of target foregrounds based on
global or local information, for instance, minimizing their
interclass variance, maximizing entropy, and/or fuzzy sets
theory. One big advantage of using these simple methods is
the low computational cost in terms of code complexity
which is evident in fast speed operation. )is is mainly
because thresholding does not take into account spatial
information. One drawback is that in the presence of noise,
results are not optimal. Similarity-based segmentation uses
the idea of clustering based on certain aggregation in feature
space. K-means clustering is one of the most well-known
unsupervised algorithms. K-means groups together pixels
based on their distance; hence, it is considered a distance-
based partition method. Connectedness-based image seg-
mentation is a region growing approach that links together
points with similar features creating homogeneous and
smoothly-connected segments. Discontinuity-based image
segmentation seeks to detect object edges or high changes in
intensity. Its motivation comes from the idea that there is
always a discontinuity between different regions or seg-
ments. )ese discontinuities can be detected using deriva-
tives. Prewiit, Sobel, and Laplacian operators are among the
most popular differential operators for spatial domain edge
detection which can be applied using convolution for image
segmentation.

)ere are also emerging machine learning and deep
learning approaches. Support Vector Machines or SVM is a
machine learning algorithm that models classification tasks
as optimization problems subject to inequality constraints.

)e original algorithm [1] was invented by Vapnik and
Chervonenkis in 1963. SVM uses a dual Lagrangian, which
depends only on labeled samples. )e traditional SVM
philosophy consists of finding the hyperplane that maxi-
mizes the margin between points of different classes. Note
that the hyperplane is at the centre of the margin that
separates the two classes. )e kernel trick was introduced in
[2] by Cortes in 1995. )is hyperplane is denoted by the
perpendicular vector w from the origin and it is charac-
terized by (12). Introduce a new variable Y subscript i-th
such that Yi is positive (+1) for gray samples and it is
negative (–l) for yellow samples. )is optimization problem
is solved using a Lagrangian multiplier (13). After applying
the partial derivatives, it is evident that the solution only
depends on the inner product of the supporting vectors xi.
Different kernel functions SVM may be employed to solve
nonlinearly separable samples. )us, SVM performs so well
on binary classification.

Deep Convolutional Neuronets or DCN is a deep
learning algorithm that models a classification task as series
of convolutional layers, pooling layers, dropout, and an
activation layer usually consisting of a softmax function.
CNN-based learning has recently achieved expert level
performance in various applications. In [37] the authors
present a deep fully convolutional neural network for se-
mantic pixel-wise segmentation. Evaluation of the decoder
variants shows that accuracy increases for larger decoders
for a given encoder network. Experimental results on road
scenes and indoor scenes show that the proposed SegNet
outperforms other segmentation benchmarks.

Some other applications of DCN-based segmentation are
listed in [38, 39] and [40]. In [38], the authors extended the
original DeepLab with more speed, accuracy, and simplicity
by compiling a comprehensive evaluation on benchmark
and challenging datasets, such as PASCAL VOC 2012,
Cityscapes, among others. In [39] the authors present a new
unsupervised image segmentation based on the centre of a
local region. )e authors validated their work on 2D and 3D
medical images. MATLAB was used to implement the ap-
proach on X-rays, abdominal and cardiovascular MRI im-
ages. In [40] the authors present an image segmentation
approach that recasts the problem into a binary pairwise
classification of pixels.

Deep learning high speed and accuracy come with a
price: subject matter expert labor to label. DCN-based ap-
proaches are supervised learning and labeled samples are
needed in abundance which results in a high demand for
SME input. Despite the shortcomings, multiple research
initiatives are pushing the boundaries of noninvasive
medicine, remote sensing, and natural language processing.
Deep learning-based models stand at the core of these
emerging applications.

2.3. Applications in Medical Image Processing. U-NET deep
FCN structure is highly applicable for medical image seg-
mentation. Multiple U-NET variants [41–43] and domain
specific models [44] have been applied to process medical
images. For instance, [41] presents a U-Net variant for image
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segmentation on brain tumor MRI scans while [42] presents
another U-Net variant based on nested and dense skip
connections for medical image segmentation. Moreover, [43]
introduces a robust self-adapting U-Net-based framework for
medical image segmentation. And [44] adds the emerging
attentionmechanism to a nestedU-Net architecture for image
segmentation on liver CT scans. One interesting medical
application of image segmentation using a deep learning
model is presented in [45]. A new hybrid of the classic V-Net
architecture is used to help detect kidney and renal tumors on
CT imaging with successful performance of medical seg-
mentation.)is wealth of deep learning research branches out
from the U-Net model and provides expert-level solutions to
medical image segmentation.

Recently, one shot learning models have been proposed to
detect COVID-19 using medical images. Signoroni et al. [46]
introduced a learning-based solution designed to assess the
severity of COVID-19 disease by means of automated X-ray
image processing, a domain specific implementation of [42].
Furthermore, [47] compiles an early survey of medical im-
aging research toward COVID-19 detection, diagnosis, and
follow-up. One of their findings is the proliferation of AI-
empowered applications which use X-rays and/or CTscans to
provide partial information about patients with COVID-19.
)is reinforces the sense that deep learning-based solutions
are widely used in medial image processing.

Tensor-based learning has also been incorporated into
medical image processing and hyperspectral imaging. An
et al. [48] presented a tensor-based low rank decomposition
model for hyperspectral images and evaluates its classifi-
cation accuracy on hyperspectral cubes. Moreover, the au-
thors in [49] proposed another tensor-based representation
to better preserve the spatial and spectral information and
capture the local and global structures of hyperspectral
images. Yet these models do not focus on imbalanced
datasets nor try to solve the denoising problem. Recently, in
the field of optical coherence tomography (OCT) [50] has
introduced a tensor-based learning model, which tackles the
denoising problem on high resolution OCTmedical images
with great results. However, it is unclear how well tensor-
based models would represent the structure of imbalance
datasets and will remain outside the scope of our work.

2.4. Applications in Natural Language Processing. Natural
language processing (NLP) is a field with multiple-machine-
learning- (ML-) and deep-learning- (DL-) based research
initiatives. With sentiment analysis as a fundamental task of
NLP, researchers have proposed several domain specific
applications of ML- and DL-based frameworks. )e main
challenge encountered in machine-learning-based senti-
ment classification is the unmanageable amount of data. To
address this challenge, [51] presents an ensemble learning
(EL) approach for feature selection, which successfully ag-
gregates several different feature selection results, so that we
can obtain a more robust and efficient feature subset.
Moreover, [52] also explores the predictive performance of
different feature engineering schemes, four supervised ML-
based algorithms and three EL-based methods obtaining

experimental results that yield higher predictive perfor-
mance compared to the individual feature sets. Furthermore,
in [53], the author presents yet another comprehensive
analysis this time of keyword extraction approaches with
empirical results that indicate an enhanced predictive per-
formance and scalability of keyword-based representation of
text documents in conjunction with EL-based models.

Sentiment analysis is a critical task of extracting sub-
jective information from online text documents, mainly
based on feature engineering to build efficient sentiment
classifiers. To improve the feature selection process, [54]
proposes and validates the effectiveness of a hybrid ensemble
pruning scheme based on clustering and randomized search
for text sentiment classification. Sentiment analysis can be
reduced to a text classification problem. However, the text
classification problem suffers from the curse of high di-
mensional feature space and feature sparsity problems. To
mitigate and lift this curse, [55] explores several classifica-
tion algorithms and EL-based methods on different datasets.

To recognize sentiment in information-rich but un-
structured text, [56] presents a DL-based approach to
sentiment analysis on product reviews with outperforming
results. Since Twitter can serve as an essential source for
several applications, including event detection, news rec-
ommendation, and crisis management, in [57], the author
presents a DL-based scheme for sentiment analysis on
Twitter messages with consistent and encouraging results.

ML- and DL-basedmodels are at the core of NLP research.
For instance, Onan [58] indicated that DL-based methods
outperform EL-based methods and supervised ML-based
methods for the task of sentiment analysis on educational data
mining. And the list does not stop here. Onan [59] indicated
that topic-enriched word embedding schemes utilized in
conjunction with conventional feature sets can yield promising
results for sarcasm identification. Onan [60] presented first
usage of supervised clustering to obtain diverse ensemble for
text classification and compare it to ML- and DL-based
models. Onan and Toçoğlu [61] employed a three-layer stacked
bidirectional long short-term memory architecture to identify
sarcastic text documents with promising classification accuracy
results. Onan [62] presented an extensive comparative analysis
of different feature engineering schemes and five different ML-
based learners in conjunction with EL-based methods.

3. Methodology

)e main objective of our proposed approach is to optimize
the performance of DCN on hyperspectral images. We
developed a context-based feature augmentation ap-
proach to provide resistance against noise to deep learning
classification of highly imbalanced hyperspectral images.
)e classification apparatus used in this study relies on a
deep convolutional neuronet (DCN) to perform multi-
class classification based on findings in [63]. )e input to
this network is a highly imbalanced hyperspectral image
or cube. Figure 1 shows a hyperspectral cube. Figure 2
shows a 1-by-1 column along the spectral dimension.

Our proposed approach will be a preprocessing module
in this classification apparatus as shown in Figure 3. Our
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four-step approach is introduced as follows. Full details are
presented in Sections 3.1 through 3.2.

(i) Local gradients are feature vectors of differences,
defined in Section 3.1. In this step, we calculate these
feature vectors for each pixel p in the hyperspectral

cube, as differences between the pivotal pixel p and
its surrounding pixels in a 3-by-3-by-3 local
neighborhood. )is set of differences will constitute
the local gradients of p.

(ii) Reference clusters are feature vectors of high and
low thresholds, defined in Section 3.2. In this step,
we calculate these feature vectors for each pixel p in
the hyperspectral cube, as statistical thresholds of
the surrounding 9-by-9 reference neighborhood.)is
set of thresholds will constitute the reference clusters
of p.

(iii) Prototype contexts are feature vectors of similarity,
defined in Section 3.3. In this step, we calculate these
feature vectors for each pixel p in the hyperspectral
cube, as the degree of membership of the local
gradients to the reference clusters. )is set of simi-
larity degrees will constitute the prototype contexts
of p.

(iv) Concatenated features are all feature vectors, defined
in Sections 3.1 and 3.2. In this step, we concatenate
local gradients, reference clusters, and prototype
contexts into one context-based feature vector for
each pixel p in the hyperspectral cube.

3.1. Calculate LocalGradients. )e first step of our approach
is to calculate the local gradients [64]. Figure 4 shows a
pivotal pixel p(1, 1, 1) in its 3-by-3-by-3 local neighborhood.
)e local gradient χ is the set of gradient differences {d1, d2,
d3, . . ., d13}, where di is the magnitude of the differences
between p and its direct neighbors for each discrete direction
i. For instance, in direction i� 1, d1 is equal to |
p1,1,1 − p2,1,1| + |p1,1,1 − p0,1,1|, whereas, in direction i� 10, d10
is equal to |p1,1,1 − p2,2,2| + |p1,1,1 − p0,0,0|. Such local gradients
are calculated for each pixel pi,j,k within the hyperspectral
cube.

It is important to note that this moving cubic-shaped local
neighborhood only uses partial data around the borders of the
hyperspectral image.)us the indexes, i, j, k, will only run from
1 to the dimension length −1 for each dimension x, y, z.

3.2. Calculate Reference Clusters. )e second step of our
approach is to calculate the reference clusters [64]. Figure 5
shows a pivotal pixel p(5, 5, 5) in its 9-by-9 reference
neighborhood. )e reference clusters ζ is the sets of high and
low thresholds {hi1, hi2, hi3, . . ., hi13}, {lo1, lo2, lo3, . . ., lo13},
where hii is the central value of the high-valued gradients
and loi is the central value of the low-valued gradients within
p’s reference neighbors for each discrete direction i. We
calculate these central values using the meanμ and variance
σ2 equations presented in (1) and (2) to set hi� μ+2σ and
lo� μ–2σ. Such reference clusters are calculated for each pixel
pi,j,k within the hyperspectral cube.

X

Y

Z

Figure 2: A hyperspectral column, where z is the spectral
dimension.

X

Y

Z

Figure 1: A hyperspectral image, where x and y are spatial di-
mensions and z is the spectral dimension.
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N × M


N−1
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M−1

m�0
xi+n,i+m,k,d, (1)
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1

N × M


N−1

n�0


M−1

m�0
xi+n,i+m,k,d − μi,j,k,d 

2
. (2)

It is important to note that this moving square-shaped
reference neighborhood only uses partial data around the
borders of the hyperspectral image. )us the indexes, i, j will
only run from 5 to the dimension length −5 for each spatial
dimensions. It will use however all the spectral bands on the
z dimension.

3.3. Construct Prototype Contexts. )e third step of our
approach is to construct the prototype contexts. )e proto-
type contexts κ is the sets of similarity features {c1, c2, c3, . . .,
c13} where ci is the prototype context with the highest degree
of membership for each discrete direction i. We calculate
this degree of membershipM with the equation presented in
(3)–(6) whereD2 is the square of theMahalanobis distance, χ
is the vector of local gradients, κ is the vector of prototype
contexts,W is the inverse pooled covariance matrix, and the

K factor is equal to the square root of the product between
the highest value in χ and the highest value in κ. Such
prototype contexts are calculated for each pixel pi,j,k within
the hyperspectral cube.

M(χ) � max 0, 1 −
D
��
K

√ , (3)

D
2
(χ, κ) � (χ − κ)

T
W

− 1
(χ − κ), (4)

W(χ, κ) �
1
2
cov(χ) +

1
2
cov(κ), (5)

K(χ, κ) � max(χ) × max(κ). (6)

3.4. Concatenated Augmented Features. )e fourth step of
our approach is to concatenate all features vectors. )ese
feature vectors consist of the local gradients, reference clus-
ters, and prototypes contexts. Such context-based feature
vectors are concatenated for each pixel pi,j,k within the
hyperspectral cube.

Figure 6 shows how our context-based approach inte-
grates into a deep learning classification model. Note that to
evaluate the robustness of our approach, we added a syn-
thetic noise to the original datasets. )is noise was generated
using a Gaussian equation. And classification accuracy was
used as the main measurement to compare the performance
of the model and in particular the resistance to noise in
imbalanced hyperspectral images. Details are presented in
the following section.

X

Y

ZX

YZ XY

Z

p (1, 1, 1)

Figure 4: Pivotal pixel p inside its local neighborhood.

Imbalanced
hyperspectral image

Context-based
features

Deep convolutional
neural network

Local gradients

Reference clusters

Prototype contexts

Concatenated features

Figure 3: Overview of our deep learning hyperspectral classifi-
cation apparatus.
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p (5, 5, 5)

Figure 5: Pivotal pixel p inside its reference neighborhood.
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4. Experiments

In this section, we describe the datasets, dataset partition
policy, and experimental settings. Multiple settings are
designed to evaluate the performance of our approach on
noisy and clean data, as well as on imbalanced and balanced
data.

4.1. Datasets. Four datasets were used in our experiments.
)e first two are the Pavia Centre and Pavia University
datasets. )ese two datasets were acquired by the ROSIS
sensor during a flight campaign over Pavia, Italy. )e
original Pavia Centre dataset is a hyperspectral cube with a
spatial resolution of 1096× 715 and 102 spectral bands, and
the original Pavia University dataset is a hyperspectral cube
with a spatial resolution of 610× 340 spatial pixels and 103
spectral bands. )e corresponding ground truths differen-
tiate nine classes. For more details, please visit the following
link. )is link was last accessed on February 1, 2021 (http://
www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes#Pavia_Centre_and_University).

It is important to note that the Pavia Centre data are
considered a balanced hyperspectral cube, whereas the Pavia
University data are considered an imbalanced hyperspectral

cube. It is clear from Figure 7 that the Pavia Centre samples
are evenly distributed between classes. But, in Figure 8, the
majority of Pavia University samples belong to one single
class, namely the class Meadows. )us, this predominant
class dwarfs minority classes, such as Shadows, Bitumen, and
Painted Metal Sheets. )is disparity is what makes Pavia
University data imbalanced.

To evaluate the robustness of our approach, we added a
synthetic noise to the original “clean” datasets and produced
two additional synthetic datasets. )us, together with the
two clean datasets, two noisy datasets were used in our
experiments, corresponding to the noisy Pavia Centre and
the noisy Pavia University datasets. Identically to their clean
counterparts, the noisy Pavia Centre dataset is a hyper-
spectral cube with a spatial resolution of 1096× 715 pixels,
102 spectral bands and 9 distinct classes, and the noisy Pavia
University dataset is a hyperspectral cube with a spatial
resolution of 610× 340 pixels, 103 spectral bands and 9
distinct classes.

To produce these noisy datasets, an intermittent irreg-
ular noise was incorporated. Equations (7)–(9) were used to
generate a noise signal corresponding to a signal-to-noise
value of SNRdB � 120. In (7), G and F are random variables
and N follows a Gaussian distribution with a probability
density function presented in (8). Similarly to [65], this
weighted random noise will follow a Gaussian normal
distribution N(μ, σ), where the mean µ is zero and the
variance σ is determined from the signal-to-noise ratio
(SNRdB) formula presented in (9).

G(a, b)←F(m, n) + N(μ, σ), (7)

N x|μ, σ2  �
1

����
2πσ2

 exp −
(x − μ)

2

2σ2
 , (8)

SNRdB � 20�log10
μsignal

σnoise

. (9)

4.2. Dataset Partition Policy. Datasets were divided into
training and testing sets; 80% of the data was used during the
training (a.k.a. model-fitting) phase while the remaining
20% of the data was used for testing (a.k.a. model-predic-
tion) phase. One-fourth of the training set was used as
validation set during the fitting phase. Figure 9 shows the
full-partition schema.

To rank our context-based DCN approach, two addi-
tional models are implemented: (i) a baseline deep learning
approach, namely, DCN, and (ii) a benchmark approach,
that is PCA+DCN. And classification metrics are used to
evaluate and compare the performance and effectiveness of
our approach.

4.3. Baseline Experiments. As a baseline, we observe the
performance of a deep learning model without any pre-
processing on the different hyperspectral datasets. Four
types of experiments are included in this section. First, we
work on clean data, running individual experiments for

Imbalanced
hyperspectral image

Context-based
features

Deep convolutional
neural network

Figure 6: Overview of our approach as a preprocessing module.
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balanced and imbalanced datasets. )en, we focus on noisy
data, and again we run individual experiments for balanced
and imbalanced datasets.

A Deep Convolutional Neuronet (DCN) was used as a
baseline to perform the classification. We used a DCNwhich

consists of three types of layers, namely, input layer, hidden
convolutional layer(s), and output layer. In Figure 10, the
input dataset is shown as a cube. Similarly to [40], the hidden
convolutional layers are shown as flat squares, the max-
pooling layers in whiter color, and the dropout layer in pale.
Straight lines are used to depict fully-connected layers or
dense layers. Finally, for multiclass classification, the acti-
vation function is based on a softmax function.

During the model-fitting phase, we run for 20 epochs. At
this point, the network achieves stability without running
into overfitting. DCN used the two original datasets and the
two noisy datasets. )e results of our fitting phase are
presented in Figures 11 to 14. )e average classification
accuracy on clean test data was 86.1± 3.9 percent, whereas in
noisy data was 66.9± 2.9 percent. )ese results suggest an
adversary effect of noise on our basic model.

4.4. Benchmark Experiments. As a benchmark comparison,
we observe the performance of a deep learning model with
noise reduction model as a preprocessing on the different
hyperspectral datasets. Similarly, to the previous section, this
section presents four types of experiments. First, we work on
clean data, running individual experiments for balanced and
imbalanced datasets.)en, we focus on noisy data, and again
we run individual experiments for balanced and imbalanced
datasets.

Principal Component Analysis (PCA) together with
DCN was used as a benchmark to perform the classification.
Ten principal components are sufficient to represent 99%
variability of the data. Figure 15 shows the Scree Curves for
both the Pavia Centre dataset in Figure 15(a) and the Pavia
University dataset in Figure 15(b).

As suggested by the Scree Curves, PCA +DCN was
implemented using only the first ten principal compo-
nents. Twenty epochs were used during the model-fitting
phase, a.k.a. training phase. In our experimental runs, the
dataset partition policy was maintained the same and
both the original datasets and the noisy datasets were
randomly selected into training, validation, and testing
sets.

)e results of our fitting phase are presented in Fig-
ures 16 to 19. )e average classification accuracy on clean
test data was 84.1± 6.1 percent, whereas on noisy data was
37.3± 4.7 percent. Compared to the results for vanilla DCN,
these results strongly suggest an adversary effect of noise on
the principal component-based model. Another important
point to analyze is that during training of PCA+DCN on

Pavia Centre

Asphalt
Bare soil
Bitumen
Meadows
Self-blocking bricks

Shadows
Tiles
Trees
Water

Figure 7: Class distribution for Pavia Centre. )is dataset is
considered balanced because for each class, there is relatively the
same number of samples.

Pavia University

Asphalt
Bare soil
Bitumen
Gravel
Meadows

Painted metal sheets
Self-blocking bricks
Shadows
Trees

Figure 8: Class distribution for Pavia University. )is dataset is
considered imbalanced because for each class, there is not the same
number of samples.

Entire dataset (100%)

Model fitting (80%)

Training (60%)

Test

TestValid

Figure 9: Partition policy: datasets are divided into 3 parts (20%,
20%, and 60%). )e training task uses 60% of the samples. )e
validation task uses 20%. )e testing task uses the remaining 20%.
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noisy data, the model suffered from overfitting after the 4
epochs as shown in Figure 18.

4.5. Enhanced Experiments. We integrate our context-based
feature augmentation module as a preprocessing step to the
deep learning model. We observe the performance of a
context-based deep learning model on the original highly
imbalanced hyperspectral dataset. )en, we observe the

performance of our enhanced model in the presence of
noise. We also run our context-based DCN for 20 epochs
using the two original datasets and the two noisy datasets.
All context-based features were used to achieve better noise
resistance.

)e results of the model-fitting phase are presented in
Figures 20 to 23.)e average classification accuracy on clean
test data was 87.5± 3.4 percent, whereas on noisy data was
85.0± 4.2 percent. Compared to previous results, these

Figure 10: Overview of our deep convolutional neural network.
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Figure 11: DCNN accuracy and loss during the model-fitting phase using the original Pavia Centre dataset.
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Figure 12: DCNN accuracy and loss during the model-fitting phase using the original Pavia University dataset.
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Figure 13: DCNN accuracy and loss during the model-fitting phase using the noisy Pavia Centre dataset.
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Figure 14: DCNN accuracy and loss during the model-fitting phase using the noisy Pavia University dataset.
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Figure 16: PCA+DCNN accuracy and loss during the model-fitting phase using the original Pavia Centre dataset.
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Figure 17: PCA+DCNN accuracy and loss during the model-fitting phase using the original Pavia University dataset.
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Figure 18: PCA+DCNN accuracy and loss during the model-fitting phase using the noisy Pavia Centre dataset.
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percentages suggest that our proposed approach exhibits a
high-level of accuracy on clean data and robustness against
noise on both the Pavia University and the Pavia Centre
datasets.

5. Results and Discussion

5.1. Performance Metrics. Receiver operating characteristic
(ROC) curves are used to provide a graphical summary of
the performance of our classification model. In this Car-
tesian plane graph, the x-axis denotes the False Positive Rate
and the y-axis denotes the True Positive Rate. )us, ROC
curves depict False Positive Rate vs. True Positive Rate,
where we have the following:

(i) True Positive Rate is equal to True Positives (TP)
divided by the addition of True Positives (TP) and
False Negatives (FN), that is, TP/(TP + FN)

(ii) False Positive Rate is equal to False Positives (FP)
divided by the addition of False Positives (FP) and
True Negatives (TN), that is, FP/(FP +TN)

Precision-Recall (PR) curves provide another graphical
tool to evaluate performance of a classification model. In this
Cartesian plane graph, the x-axis denotes the Recall and the
y-axis denotes the Precision. )us, PR curves depict Recall
vs. Precision, where we have the following:

(i) Recall is equal to True Positives (TP) divided by the
addition of True Positives (TP) and False Negatives
(FN), that is, TP/(TP+ FN)

(ii) Precision is equal to True Positives (TP) divided by
the addition of True Positives (TP) and False Posi-
tives (FP), that is, TP/(TP+ FP)

Finally, to compare the performance of each model
dataset side by side, we compile a table using the ROC Area
under Curve (AUC) Score for each model dataset. To this
end, we used the following metrics:

(i) Accuracy is equal to the quotation between the
addition of True Positives and True Negatives

divided by the Total Population, that is, (TP+TN)/
(TP+TN+FP+FN)

(ii) F1-score is equal to two times Precision (P) times
Recall (R) divided by the addition of Precision (P)
and Recall (R), that is, 2PR/(P+R)

5.2. Prediction Results. )e following detail the classification
results during the model-prediction phase. )e following
present the weighted averages for all performance metrics.
First, Tables 1 and 2 present the classification results on the
original, “clean datasets”, Pavia Centre and Pavia University,
correspondingly. )en, Tables 3 and 4 present the classifi-
cation results on the synthetic, “noisy datasets”, Pavia Centre
with noise and Pavia University with noise, correspondingly.

Our experimental results suggest that all models suffer in
the presence of noise, but the negative impact of noise can be
mitigated with our proposed context-based approach. Ta-
bles 3 and 4 present the precision, recall, F1-score, and
overall accuracy scores for DCN, PCA+DCN and our
context-based DCN. Table 3 focuses on the noisy Pavia
Centre dataset, while Table 4 focuses on the noisy Pavia
University dataset. In both tables, we can observe that our
proposed model achieves better results.

5.3. Tabular Summary and Analysis. Comprehensive sum-
mary tables are presented as follows. A total of three ap-
proaches were analyzed: a basic DCNwith no preprocessing,
a PCA+DCN, and a context-based DCN. )ey are listed on
different rows. Four datasets were used: two without noise
referenced as “clean data” and the same ones with random
noise referenced as “noisy data”. Imbalanced datasets are
listed on shaded columns of the tables.)e values in each cell
represent overall classification accuracy. Table 5 summarizes
the overall accuracy of each model during the fitting/
learning phase, whereas Table 6 summarizes the overall
accuracy of each model during the testing/prediction phase.

It is important to note that during training on labeled
samples as well as during testing on new samples, our
proposed context-based DCN outperformed both DCN and
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Figure 19: PCA+DCNN accuracy and loss during the model-fitting phase using the noisy Pavia University dataset.
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Figure 20: Context-based DCNN accuracy and loss during the model-fitting phase using the original Pavia Centre dataset.
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Figure 21: Context-based DCNN accuracy and loss during the model-fitting phase using the original Pavia University dataset.
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Figure 22: Context-based DCNN accuracy and loss during the model-fitting phase using the noisy Pavia Centre dataset.
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Figure 23: Context-based DCNN accuracy and loss during the model-fitting phase using the noisy Pavia University dataset.

Table 1: Model comparison based on prediction results using the original Pavia Centre dataset.

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
DCN 86.70 89.15 85.11 88.92
PCA+DCN 79.71 88.72 83.82 88.52
Context-based DCN 88.35 89.95 88.05 89.88

Table 2: Model comparison based on prediction results using the original Pavia University dataset.

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
DCN 83.99 83.16 83.08 84.28
PCA+DCN 80.68 79.89 78.37 81.29
Context-based DCN 86.37 85.00 85.50 85.78

Table 3: Model comparison based on prediction results using the noisy Pavia Centre dataset.

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
DCN 85.97 65.14 69.00 68.98
PCA+DCN 84.70 34.10 37.26 40.62
Context-based DCN 86.37 82.14 83.40 88.01

Table 4: Model comparison based on prediction results using the noisy Pavia University dataset.

Models Precision (%) Recall (%) F1-score (%) Accuracy (%)
DCN 89.72 67.81 73.22 64.79
PCA+DCN 89.45 40.86 46.02 33.93
Context-based DCN 89.48 88.59 88.50 81.99

Table 5: Highest validation accuracy during the training phase (model-fitting).

Models
Clean datasets Noisy datasets

Pavia Centre (%) Pavia University (%) Pavia Centre w/noise (%) Pavia University w/noise (%)
DCN 88.93 84.28 96.44 96.00
PCA+DCN 88.69 81.29 88.66 86.24
Context-based DCN 89.92 85.78 98.22 97.83

14 Computational Intelligence and Neuroscience



PCA+DCN, especially in the presence of random noise.
PCA+DCN did not perform well for noisy cases because it
was not able to remove our synthetic noise signal, which was
not just random but also intermittent and irregular.

6. Conclusions

Hyperspectral imaging is an area of active research. Deep
learning-based approaches to classification are the current
state-of-the-art. However, our experimental results showed
that in the presence of noisy hyperspectral datasets, these
expert-level models underperform. To address this short-
coming, this paper presented a context-based feature
augmentation approach to increase noise resistance in
highly-imbalanced hyperspectral classification.

On noisy datasets, our robust approach outperformed a
basic deep learning model and outclassed a combination of
PCA and DCN approach. In addition, on highly-imbalanced
noisy data, our context-based DCN approach suffered sig-
nificant loss in terms of classification accuracy (less than 10%),
whereas DCN and PCA+DCN suffered from an alarming
25% and 50% cuts in classification accuracy respectively.

Future lines of research should focus on applying our
context-based approach to other noisy datasets in areas such
as MRI and other highly imbalanced 3D medical images.
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[17] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Si-
multaneous detection and segmentation,” in Proceedings of
the Computer Vision—ECCV 2014, pp. 297–312, Zurich,
Switzerland, September 2014.

[18] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich
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Synthetic aperture radar (SAR) plays an irreplaceable role in the monitoring of marine oil spills. However, due to the limitation of
its imaging characteristics, it is difficult to use traditional image processingmethods to effectively extract oil spill information from
SAR images with coherent speckle noise. In this paper, the convolutional neural network AlexNet model is used to extract the oil
spill information from SAR images by taking advantage of its features of local connection, weight sharing, and learning for image
representation. .e existing remote sensing images of the oil spills in recent years in China are used to build a dataset. .ese
images are enhanced by translation and flip of the dataset, and so on and then sent to the established deep convolutional neural
network for training. .e prediction model is obtained through optimization methods such as Adam. During the prediction, the
predicted image is cut into several blocks, and the error information is removed by corrosion expansion and Gaussian filtering
after the image is spliced again. Experiments based on actual oil spill SAR datasets demonstrate the effectiveness of the modified
AlexNet model compared with other approaches.

1. Introduction

Oil resources are the most important resources in the
process of human industrialization. While the exploitation
of marine oil enriches the oil resources, the marine oil spill
caused by many factors has caused great harm to the en-
vironment. A large area of marine oil spill has caused a lot of
economic losses, but at the same time, it has also caused
great damage to the ecosystem. Regarding the Gulf of
Mexico oil spill [1], Penglai 19-3 oil spill, and so on, those oil
spill events caused damage to the local marine ecosystem
and caused serious economic, ecological, and social impacts.
Furthermore, the oil spill area will spread to other places
with the current and wind and eventually affect a large area
of the sea. Moreover, polluted marine organisms will enter
the human body through the food chain, leading to a variety
of diseases and even casualties [2]. .us, the marine oil spill
is one of the most serious problems of marine pollution in
the world today. It should be monitored by an efficient and
real-time method to extract timely information such as

location and area before the oil spill is spread over a large
area [3].

Because of its own characteristics, remote sensing oil
spill detection technology has been a hot research field in
recent years. Because aerial remote sensing, satellite remote
sensing, and other remote sensing monitoring methods have
the characteristics of high timeliness, high resolution, large
monitoring range, not affected by regional factors, image,
and graphic data are easy to process and interpret. Remote
sensing monitoring provides a lot of technical support for oil
spill risk inspection, oil spill pollution monitoring, early
warning, emergency response, oil spill ecological damage
assessment, and remediation [4].

Remote sensing images represent the differences of
different ground objects through the differences of bright-
ness value or pixel value (reflecting the spectral information
of ground objects) and spatial changes (reflecting the spatial
information of ground objects) [5]. In remote sensing im-
ages, the background of oil spill and seawater are different in
features such as grayscale, texture, shape, and brightness.
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.erefore, oil spills can be identified by analyzing the feature
changes of remote sensing images [6]. Early marine oil spill
monitoring mainly through visual interpretation, through
direct observation, or with the aid of auxiliary interpretation
instrument to obtain specific target information in remote
sensing images. Because the visual interpretation needs less
equipment and is simple and convenient, it can obtain a lot
of thematic information from remote sensing images at any
time. .erefore, visual interpretation is the main method to
interpret the image in the process of oil spill monitoring for a
long time. However, the amount of remote sensing data is
increasing year by year. Visual interpretation alone cannot
meet the growing demand for monitoring. Moreover, the
visual interpretation depends entirely on the experience of
the interpreter, so interpretation errors are prone to occur.
.erefore, computer vision is introduced into the oil spill
remote sensing image monitoring. .e computer or related
equipment is used to simulate the biological vision, and the
oil spill remote sensing image is processed to obtain the
corresponding scene information. At present, an image
segmentation algorithm is mainly used to extract infor-
mation from oil spill remote sensing image or ENVI and
another commercial remote sensing digital image processing
software is used to classify sample pixels by built-in clas-
sification method [7].

.e classification basis of the image segmentation al-
gorithm is not unified, and the selection of segmentation
algorithm largely depends on the shape of the image to be
segmented, pixel distribution characteristics, and other
factors, mainly divided into threshold segmentation, clus-
tering segmentation, region growth, and so on.

Xu et al. applied the OTSU algorithm to oil spill
monitoring [8]. Jin et al. used FCM to extract oil spill dark
spots in SAR images [9]. Zou et al. used the SVM supervised
classification method to complete the task of extracting oil
spill information [10]. OTSU algorithm, also known as the
maximum interclass variance method, was proposed by
Japanese scholar OTSU in 1979. It assumes that the image to
be processed only contains foreground image and back-
ground image and realizes image segmentation by calcu-
lating the threshold, which can make the maximum
difference between the two types of pixels. .ere is also the
optimal entropy threshold method proposed by Kaotur et al.
and Ptile method proposed by Detcoyle et al. Clustering
segmentation method is based on basic features such as
grayscale pixels to divide the image according to certain
rules. .en, the clustering method also developed the HCM
clustering method based on a fuzzy theory proposed by
RsuPini and fuzzy C-means (FCM) algorithm proposed by
Dunn. .e commonly used method is fuzzy C-means. .e
basic idea of the region growing segmentation method is to
start from a group of growing points and merge the similar
pixels until they cannot continue to grow.

Marine remote sensing techniques can be divided into
laser fluorescence sensing, visible sensing, infrared, and
microwave remote sensing [11]. .e detection ability of the
visible light sensor is limited due to the small contrast be-
tween the oil spill and the background. At this stage, only
visible light sensor with high spatial resolution can detect oil

spill effectively. However, limited by the platform, it can only
be carried out in limited scenarios. Compared with laser
fluorescence sensor, visible light remote sensing, infrared
remote sensing, and SAR in microwave remote sensing are
not limited by weather, light, and other external conditions
and can monitor the target all-weather, long-term, and real-
time [12]..e SAR remote sensing image with good imaging
conditions has the outstanding advantages of fast, all-day,
all-weather, high precision, which can penetrate the surface
and vegetation to obtain the information that optical
photogrammetry is difficult to obtain. .e visible light re-
mote sensing image is greatly affected by the weather, and
the factors such as light, cloud, and atmospheric particles
will affect the remote sensing image. .erefore, SAR has
many advantages over other methods in monitoring marine
oil spill and other natural disasters. In general, the most
important contribution of SAR in oil spill monitoring is that
it cannot be affected by rainy or cloudy weather [13]. .e
classical segmentation algorithms mentioned in this paper
have been relatively mature and stable, but most of them
have the problems of a large amount of computation and
time consumption. .e number of classifications (except
threshold segmentation) is affected by the image itself, and it
is sensitive to noise and other factors. .erefore, most of
them can only be used for optical remote sensing images
acquired by visible light sensors, while the classification
effect of SAR images is general and unstable [14].

In recent years, deep learning has attracted extensive
attention in various fields. .is method mainly uses neural
network to supervise the learning of samples. Deep learning
has been widely used in the field of object detection. Kwan
et al. used YOLO to track and classify targets [15]. As a one-
stage target detection algorithm, YOLO can directly predict
the whole picture. Deep learning contains many algorithms,
but the most representative one is the convolutional neural
network, which can be traced back to 1962, Hubel and
Wiesel’s research on the visual system in the cat’s brain [16].
.en, the neocognitron model was proposed by Kunihiko
Fukushima in 1979 and 1980. Neocognitron was a neural
network with a deep structure, and it was one of the earliest
deep learning algorithms. .e first convolutional neural
network was a time delay network proposed by Alexander
Waibel in 1987 [17]. CNN is a kind of artificial neural
network, and its weight-sharing network structure reduces
the complexity of the network model and the number of
weights. .is advantage is particularly obvious when the
input of the network is a multidimensional image. It can
effectively learn the corresponding features from a large
number of samples and extract the features better than the
artificial design. Moreover, the larger the number of samples
is, the better the extracted features are for classification and
recognition. Meanwhile, the CNN structure has strong
expansibility, and it can use a very deep number of layers.
.erefore, training convolutional neural network for SAR
image recognition can greatly reduce the interference caused
by a lot of noise. At the same time, due to the stronger
expression ability of the depthmodel, it has more advantages
than the current mature algorithm in dealing with more
complex classification problems such as remote sensing
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image. Convolutional neural network is used to simulate the
human brain’s perception of image representation. With the
increasing number of iterations and the application of the
optimization algorithm, the model will have better ro-
bustness. When processing SAR image, it has better per-
formance in the face of information interference brought by
more complex sea conditions. Traditional semantic seg-
mentation algorithms are based on artificially designed
features to perform segmentation, which has poor accuracy
and robustness. For remote sensing images, remote sensing
images have rich features. Different remote sensing images
may have different characteristics of oil spills. It is difficult to
find a feature that can be used to segment remote sensing
images accurately [18]. However, convolutional neural
network can find a feature that can segment remote sensing
image accurately. Convolutional neural network is an ef-
fective method for SAR image recognition. Compared with
the traditional methods, this method has better robustness
and generalization ability, and the accuracy is also improved.

In SAR images, oil spill can be identified from the
perspective of features such as geometry, grayscale, and
texture [19]. Moreover, for different SAR remote sensing
images, their characteristics are also very different. It is
difficult to find suitable features that can identify oil spills.
Using convolutional neural networks can avoid the process
of manually searching for features. It saves the time of
manually searching for suitable features and can also im-
prove detection accuracy. Inevitably, because the imaging
principle of SAR is coherent microwave imaging, this im-
aging principle causes the existence of coherent speckle
noise in SAR remote sensing images, and the existence of
coherent speckle noise makes it particularly difficult to in-
terpret SAR images [20].

Due to the existence of coherent speckle noise, it is
difficult to classify each pixel in the SAR remote sensing
image like semantic segmentation..erefore, to reduce the
interference of coherent speckle noise, the larger picture is
divided into many smaller pictures, and then the con-
volutional neural network is used to classify the cropped
smaller pictures and replace the classification of each pixel
in semantic segmentation by classifying the smaller pic-
tures after cropping. In short, it uses the classification of
small images to segment the original image semantically.
.is method not only greatly reduces the interference of
speckle noise on SAR remote sensing images but also
improves the detection accuracy. Because the input image
is a very small image, so using a shallow network has been
able to meet the requirements. .e model used in this
paper is the classic network model AlexNet [21]. Con-
sidering the input image is a smaller image, the model is
adjusted to fit the smaller image input.

.e remainder of this paper is organized as follows.
Section 2 describes the principle of convolutional neural
network. .e experimental methods are reported and dis-
cussed in Section 3. In Section 4, the experimental results are
provided. Finally, the conclusion is given in Section 5.

2. Preliminary

.e traditional unsupervised classification methods, such as
image threshold segmentation and image edge extraction,
are mainly based on the color features or texture features of
the image. .e extraction of image color features is to
convert pixel values in digital images to corresponding
values. Since color features are essentially pixel-based fea-
tures, pixels in all regions of the image have corresponding
contributions. As a global feature, color features are in-
sensitive to changes in the direction and size of the image
region and cannot well capture local features in the image.
For texture features, this method is not like color features
based on pixels but is calculated in areas containing multiple
pixels. As a statistical feature, texture features usually have
rotation invariance and are more resistant to noise. Texture
feature is an efficient method for processing images with
different thicknesses and densities. However, when the in-
formation difference between the thickness and density of
the image is small, it is difficult to accurately reflect the
difference between different textures perceived by human
vision through texture features. When the wind wave is
small, the noise is small, and the texture features of the image
are relatively obvious. Images in areas with high winds and
waves will appear like oil spills in texture and color. When
the resolution of remote sensing images is high, this phe-
nomenon is more obvious.

Convolutional neural network is usually composed of
input layer, hidden layer, and output layer [22]. .e input
layer mainly performs some preprocessing operations on the
picture, such as filtering and normalization. In this way, the
model can be more robust.

.e hidden layer usually includes the convolutional
layer, the pooled layer, and the fully connected layer. .e
hidden layer is the key reason why CNN can extract the
features of the images of the marine oil spill. Since the input
image is a small image cut from the original large image, a
simple convolutional neural network model can meet the
requirements of the input image. For this reason, the classic
AlexNet model is used. According to the size of the input
image, the model is adjusted. .e adjusted model includes
five convolution layers: one pooling layer and three fully
connected layers. After a series of convolution and pool
operations, the input image is connected to the full con-
nection layer, and two final prediction results are output,
which corresponds to the score of the corresponding cat-
egory. Figure 1 shows the adjusted AlexNet model.

Finally, there is the output layer. In this part, the clas-
sification labels are output by using logical functions or
normalized exponential functions, or like semantic image
segmentation, the output layer directly outputs the classi-
fication results of each pixel [23].

.e core of the convolutional neural network is the
hidden layer. .e hidden layer mainly contains three parts,
the convolutional layer, the pooling layer, and the fully
connected layer.
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.e convolution layer is the set of a series of filters, and
the output of the convolution layer is called the feature map.
In the process of image processing, the extraction of image
features can be regarded as the solution of feature vectors.
.e essence of an image is a matrix composed of pixel values.
Decomposition of the eigenvalues of the image is extracting
the features in the image. Among them, the convolution
kernel can be regarded as the eigenvector set, and the
backpropagation in the hidden layer can be considered as the
process of solving the eigenvector set. CNN has a better
effect on Marine oil spill processing because it has certain
translation invariance and rotation invariance of the image.
Compared with traditional classification methods, targets
can still be accurately identified when affected by unpre-
dictable environmental factors such as thermal noise and sea
waves. In the neural network, the convolution kernel is
defined as the feature detector at different positions. .at is,
nomatter where the target appears in the image, it will detect
these features and output the same response. .e same is
true for the pooling layer. For example, the maximum
pooling will return the maximum value in the field if the
maximum value has beenmoved, but in the field, the pooling
layer will still output the same maximum value. Compared
with texture feature extraction, texture feature has better

resistance to noise, although it usually has rotation invari-
ance and has a good effect on processing images with great
difference in thickness and density.

.e pooling layer, also known as the lower sampling
layer, can reduce the amount of data while retaining effective
feature information. Due to the nature of the remote sensing
image itself and the influence of uncertain factors such as
environment, the model is prone to overfitting after pro-
cessing a large amount of data. After dimensionality re-
duction and compression of the oil spill features that need to
be extracted through the pooling layer, the overfitting will be
reduced, and the fault tolerance of the model will be im-
proved. .is is especially true when extracting its features
from ultrahigh resolution remote sensing images. Sampling
can confuse the specific position of a feature. After a feature
is found, only the relative position of this feature and other
features can be needed to deal with the changes of similar
objects caused by deformation and distortion.

.e full connection layer is located at the last position of
the whole network. From the perspective of representational
learning, the full connection layer will conduct a nonlinear
combination and output of the previously extracted features.
.at is, the full connection layer will not extract the features
itself but use the extracted features at a higher stage to
complete the final learning. ReLU [24] function is generally
used for the excitation function of each neuron in the full
connection layer. Since the ReLU function is an unsaturated
nonlinear function, it can reduce the interdependence be-
tween parameters and alleviate the problem of overfitting
[25]. For the problem of image classification, the output
layer of the convolutional neural network generally uses the
normalized exponential function to output the final classi-
fication label. Due to the small number of samples available
for training oil spill images, overfitting is easy to occur. .e
dropout [26] operation can be introduced in the output layer
to randomly delete the neurons of the neural network.
Regularization and other operations can also be used to
enhance the robustness of the model and reduce the phe-
nomenon of overfitting so that the model can obtain higher
accuracy in the prediction.

3. Oil Spill Detection Based on AlexNet

According to the principle of CNN, the extraction of the
marine oil spill CNN can be roughly divided into four parts:
dataset preparation, network model training, model testing,
and model prediction. .e specific process is shown in
Figure 2.

In the preparation of the dataset, the noise generated in
the SAR images in the process of imaging has the wind and
waves and the ship, such as the impact of the target; scope of
the different characteristics of the original data may have a
very big difference, with the goal of the oil spill, features may
be varied and very easy to appear in the process of training
convergence, and accuracy is not high or gradient to vanish,
so usually data in the input network before, need to input
data standardization, namely before the convolutional
neural network training data input, need in the channel or
time/frequency d to normalization of data, on the image
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Figure 1: AlexNet network model.
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processing. .e original pixel values distributed in [0, 255]
are usually normalized to the range [0, 1] so that the network
model has a better ability to adapt to uncontrollable factors.
At the same time, due to microwave coherent imaging
characters, its special imaging mechanism will bring the
interference of coherent speckle noise to the image. .ese
images with coherent speckle noise will affect the training
results of the model. It is a common practice to use speckle
noise reduction methods before and after prediction, which
can improve the detection accuracy. Some papers in the
literature have incorporated such a practice in SAR image
processing [27–32]. .erefore, before the image is input to
the network, the noise reduction method is used to process
the image to reduce the interference of speckle noise.

In order to increase the amount of training data and
improve the generalization ability and robustness of the
model, the satellite remote sensing image is enhanced by
inversion, translation, and rotation operations [33].

All images of datasets are processed by the cropping
method. Because the predicted oil spill area and the normal
sea area appear in an image at the same time, the loss of
information may occur after the predicted image is res-
titched. .erefore, the cutting step size during cutting and
splicing is smaller than the cutting size. When using the
cropping method to crop a picture, if the oil spill area in the
cropped picture accounts for more than 60% of the total
picture, the picture will be judged as an oil spill. Otherwise, it
is not judged. As shown in Figure 3, 4 ∗ 4 extraction with a
step size of 2 is carried out for the region of 7 ∗ 7. .e
features extracted by the convolutional neural network only
retain 4 ∗ 4 information after the stitching is completed. In
this way, the interference between the oil spill and the image
of the normal sea area is reduced, and the edge of the de-
tection area is smoothed. At the same time, because the
image size is smaller than the step size in cutting and
stitching, the prediction of the following image can be used
to verify the prediction result of the previous image. .is
method not only improves the detection accuracy but also
reduces the interference of speckle noise.

In the process of the processed oil spill image entering
CNN, the features are usually extracted by convolution
kernel, and the features are compressed, and further di-
mensionality is reduced through the pooling layer [34].
.ese randomly initialized convolution kernels will be
updated continuously through backpropagation and will
approach the real solution after several iterations. .e es-
sence of this method is not to solve the whole image but to
iterate out a set of feature vectors consistent with a certain
distribution through the backpropagation algorithm, and
this set of feature vectors infinitely approximates the con-
ceptual feature vectors so that we can use the mathematical
method of feature vectors to solve the image matrix.
.erefore, CNN has the advantage that traditional feature
extraction methods do not have when processing images
based on remote sensing images, such as marine oil spill,
whose features are difficult to separate. .e convolution
layer usually extracts the features of the input image through
the convolution operation. .e lower convolution layer
extracts the relatively low-level features, such as the edges,
lines, and corners of the image, while the higher the con-
volution layer extracts, the more advanced the features. .e
inner part of the convolution layer is composed of multiple
convolution kernels, and each element of convolution
kernels corresponds to a weight and a deviation vector. Each
neuron in the convolutional layer is connected to multiple
neurons in the adjacent layer above. When the convolution
kernel is working, it will regularly sweep the input features
and perform matrix multiplication on the input features in
the receptive field and superposition of the deviation vector.
.e specific mathematical expression is shown as follows
[35]:
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In the formula, b is the deviation vector, Zl and Zl+1
represent the convolution input and output of l + 1 layer,

also known as feature map, and Ll+1 is the size of Zl+1. It is
assumed that the feature map has the same length and width.

Figure 3: Diagram of cutting method.
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Figure 2: Flow chart of oil spill extraction.
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Z(i, j) corresponds to the pixels of the feature graph, where
(i, j) ∈ 0, 1, . . . , Ll+1 , Ll+1 � (Ll + 2p − f/sn) + 1. K is the
number of channels of the feature graph. f, s0, and p are
parameters of the convolution layer; they correspond to the
size of the convolution kernel, the stride of the convolution,
and the number of padding layers.

After the convolution layer, the output feature map is
usually sent to the pooling layer for subsampling. .e
mathematical representation of Lp pooling is shown as
follows [36]:
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In the formula, step size s0 and pixel Z(i, j) have the same
meanings as the convolution layer, and p is the prespecified
parameter. When p � 1, Lp pooling takes the mean value in
the pooling region, which is called mean pooling. When p

goes to infinity, Lp pooling takes the maximum value in the
pooling region, which is called maximum pooling. .e
pooling layer aims to obtain spatially invariant features by
reducing the resolution of the feature surface, and the
pooling layer plays the role of secondary feature extraction.
.e pooling layer also plays the role of reducing compu-
tational complexity.

.emodel will be tested after training is completed every
epoch..e difference between the prediction process and the
final big image prediction process is that at this stage, only
the small images are predicted, and the best time for model
training is found by comparing the predicted results. .e
main purpose of this part is to measure the quality of the
model.

.e model prediction stage is mainly divided into 4 steps
when predicting real remote sensing images. In the first step,
the preprocessing stage, we will perform filtering operations
on the picture to reduce the interference of coherent speckle
noise in the picture. In the second step, the image is cropped
according to the size of 16 ∗ 16 and the step size of 7. .e
third step is model prediction. .e cropped images are sent
with a size of 16 ∗ 16 to the trained AlexNet network for
prediction..e fourth step is to generate a mask image based
on the prediction result because oil spills usually exist
continuously and in pieces on the sea. .erefore, a small oil
spill area in the prediction result is likely to be the result of
the wrong prediction. So, the oil spill area with the wrong
prediction can be removed by corrosion expansion. In order
to improve accuracy and reduce errors, a corrosion ex-
pansion operation is performed. .is can reduce the in-
terference to the prediction result due to the prediction error
and then maps the result back to the original image to obtain
the final predicted result. In this part, the adjusted AlexNet
model plays the most important role, extracting features,
and classification, through the classification results to de-
termine whether it is oil spill, to generate mask image.
Figure 4 shows the detailed forecast flow chart.

In order to measure the error between the measured data
and the manual calibration data, the difference between the
binary image and the manually calibrated truth graph was

calculated, that is, (the number of same pixels)/(the total
number of pixels) ∗ 100%, which is the accuracy. At the
same time, the kappa index based on the confusion matrix is
used. .e kappa coefficient reflects the accuracy of classi-
fication. Under normal circumstances, the kappa coefficient
range is 0-1, divided into five groups, which are very low
agreement (slight) between 0.0 and 0.2 and general agree-
ment (fair) between 0.21 and 0.40, moderate consistency
between 0.41 and 0.60, substantial consistency between 0.61
and 0.80, and almost perfect between 0.81 and 1. When
calculating the kappa coefficient, we need to get four data,
which are the basis of the confusion matrix. .ey are true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN). TP and TN mean that the predicted
category of the pixel is similar to the actual category, but TP
is the predicted positive category, and TN is the predicted
negative category. FP and FN indicate that the predicted
pixel category is not the same as the real category. .e
difference is that FP is the predicted positive category, while
FN predicts the negative category. After obtaining the four
data, P0 can be obtained by (4), which is the accuracy. It
reflects the correct proportion of the classification. .en, Pe
is obtained by (5), which can be called bias index. Pe is the
product of the actual and predicted quantity/the square of
the total number of samples. It reflects the balance of the
results. .e higher it is, the more unbalanced the confusion
matrix is. And finally, kappa is obtained by combining (6). It
is the evaluation index of reaction consistency standard.
Also, oil spill detection aims to identify the oil spill area
accurately, so the evaluation standard of recall rate shown in
(7) will be used, reflecting the proportion of predicted
positive samples to actual positive samples:

p0 �
tp + tn

tp + tn + fp + fn
, (4)

pe �
(tn + fn)∗ (tn + fp) +(fp + tp)∗ (fn + tp)

(tp + tn + fp + fn)
2 , (5)

kappa �
p0 − pe

1 − pe

. (6)

recall �
tp

tp + fn
. (7)

4. Experiments

In order to ensure the validity of this experiment, the images
selected in the experiment are all SAR images with the real
oil spill events.

4.1. Data Processing. .e image is cropped by Photoshop
software, and the 2109× 2109 resolution image of some sea
areas is intercepted to establish the training set. .e cropped
2109× 2109 oil spill image is cropped into multiple parts
according to the method of length 16, width 16, and Step 7.
In other words, the 2109× 2109 resolution image is cropped
into 300 lines × 300 columns, and the single image size is
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16×16 resolution image. When making the dataset, if more
than 60% of the image belongs to the oil spill area, the picture
is judged to be oil spill. Otherwise, it is not. During Mosaic,
part of the information of a single image will be overwritten
by the next adjacent image..is can improve the accuracy of
detection. When making labels, if more than 60% of the part
in the image belongs to the oil spill area, it is classified as the
oil spill part, and the rest is classified as the nonoil spill part.
After image enhancement, 90% of the labeled 16 ∗ 16
datasets (17,100 images in total) were randomly selected as
training samples. A total of 1,710 images of 10% were used as
test samples, and the test samples and training samples were
not duplicated. Before the image is input, in order to reduce
the interference caused by noise, the convolution kernel size
is 3, and the mean filtering method is adopted to smooth the
image. Some training samples are shown in Figure 5.

As for the model, the basic learning rate is 0.0005, and
the input size is adjusted to 16×16× 3. Every 50 epoch, the
learning rate is adjusted once, and the adjustment magni-
fication is 0.99, that is, adjusted to 0.99 times the previous
time. .e network consists of 8 layers, and the five layers are
the convolution layer. After the first and second convolution
layer, a maximum pooling layer is used to extract the fea-
tures of the image. .e last three layers are fully connected
layers, which are used to classify the extracted features
without updating the parameters. In order to further im-
prove the generalization ability of the model, L2 regulari-
zation and dropout were used in the full connection layer
during training, and the dropout parameter was set to 0.6.
Table 1 shows the detailed parameter settings of the model.

.e algorithm of AlexNet is compared with OTSU,
SVM, and FCM. Before the prediction, the parameters of the
algorithm are set. Table 2 shows the parameter setting of the
FCM algorithm, and Table 3 shows the parameter setting of
the SVM algorithm.

4.2. Result. .e following results are from the same hard-
ware condition. .e processor is Intel(R) Core (TM) i5-
10200H CPU @2.40GHz 2.4GHz, memory 16GB.

.ere are many denoising algorithms that can deal with
speckle noise, such as frost filtering and median filtering.
Before image prediction, filtering the image can reduce the
interference of speckle noise on the image and improve the
accuracy of detection. Different denoising algorithms will
produce different results. In order to select an appropriate
denoising algorithm, different filtering algorithms are used
for the same image, and then AlexNet is used for detection.
In the detection process, only the filtering algorithm before
detection is changed, and other parameters remain un-
changed. Finally, recall, accuracy, and kappa coefficient are
used to evaluate the results. Recall rate is the evaluation of
positive samples, and oil spill detection is more concerned
about the recognition effect of the oil spill area, so the use of
recall rate can better compare the effect of different noise
reduction algorithms. .e specific results are shown in
Table 4. It is not difficult to find from the table that after
filtering the image, the detection accuracy is improved
compared with no filtering operation, and the highest de-
tection recall is the Lee-Sigma filter, so the Lee-Sigma filter is
selected as the filtering algorithm used before image
prediction.

Figure 6 shows the loss curve and precision curve.
Figure 6(a) shows the loss function and precision curve in
the training process, and Figure 6(b) shows the loss function
and precision curve in the verification process. It is not
difficult to find that in the training process, the model’s loss
function is close to 0, and the accuracy is close to 1, which
indicates that the model has well fitted the data of the
training set. In the verification set, with the increase of
epoch, the model’s loss function is close to 0. .e accuracy is
relative to 0.96-0.97, which shows that the model has good
robustness and generalization ability. .e network can still
achieve higher accuracy and lower loss value in few itera-
tions at the current depth. .e survey surface proves that
such excellent features as CNNweight sharing greatly reduce
the calculation amount during training.

In the experimental comparison results, the predicted
image is obtained after corrosion expansion and smooth
filtering. By macroscopic comparison between the extracted

Speckle
noise

reduction

Crop

Size: 16 ∗ 16
Stride: 7

Splicing Erode

Dilate

Ground truth annotated images

Mapping

Calculate
Accuracy test

Predict

Figure 4: Oil spill prediction flow chart.
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results (only after corrosion expansion treatment) and the
original image, the network extraction is more accurate.
Some areas that have not been accurately calibrated by
human calibration can still be extracted through the net-
work. Two criteria, accuracy and kappa coefficient, are used
for image segmentation evaluation. Figures 7 and 8 are two
examples of detection using different methods. .ey are

called Sample 1 and Sample 2, respectively. Samples 1 and 2
compare the results using AlexNet, Otsu, FCM, and SVM
methods, respectively. In order to maintain the fairness of
the result, the same operation is performed on the predicted
image before and after the prediction.

Figures 7 and 8 show the processing results of the different
oil spill images by different methods. .e red part is the oil
spill area, and other areas are nonoil spill areas such as sea or
land. Figures 7(a) and 8(a) are the original images of two
different oil spill images, respectively, while Figures 7(b) and
8(b) are the results of manual annotation of these two images,
respectively. Figures 7(d), 7(e), 8(d), and 8(e) show the ex-
traction results of the same oil spill area using traditional
unsupervised algorithms such as OTSU and FCM, respec-
tively. Due to the influence of speckle noise, many speckle
noises are identified as oil spill areas, and the oil spill part
cannot be accurately extracted. Figures 7(f) and 8(f) show the
extraction results of the SVM algorithm commonly used in
supervised learning, which has high accuracy in visible light
remote sensing classification. However, the algorithm is still
seriously affected by noise and cannot obtain a clean oil spill
area through corrosion expansion filtering. Figures 7(c) and
8(c) are the oil spill results extracted by the improved AlexNet
method. It is not difficult to find that the image extraction
effect is better than the other three methods. .is method can
not only improve the detection accuracy but also improve the
detection accuracy. Because the size of clipping and stitching
is smaller than the step size, the final stitching result is
smoother than other methods.

After comparing the AlexNet method with OTSU, FCM,
and SVMmethods, the accuracy and kappa coefficient is used
to evaluate the result. .e specific numerical results are shown
in Table 5. .e most common evaluation index is accuracy,
which can directly reflect the correct proportion of the results,
and the calculation is straightforward. When detecting oil
spills from remote sensing images, due to the uneven distri-
bution of oil spills and nonoil spills, the oil spills only account
for a small part of the whole remote sensing image. In this case,
it will lead to high accuracy, which cannot well reflect the
results of oil spill detection. .erefore, the kappa coefficient is
added as the evaluation index. Kappa coefficient, as an index of
consistency test, can better evaluate the test results.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 5: Partial training sample examples.

Table 1: AlexNet parameters configuration.

Epoch 2500
Batch size 256
Learning rate 0.0005
Learning rate decay 0.99
Dropout 0.6
Weight decay 0.0001

Table 2: FCM parameters configuration.

Number of categories 2
Maximum number of iterations 50
.reshold of membership change 1e-5
Class center change threshold 1e-5

Table 3: SVM parameters configuration.

Kernel type Radial basis function
Gamma in kernel function 0.333
Penalty parameter 100
Pyramid levels 0
Classification probability threshold 0

Table 4: Results of different filtering methods.

Recall (%) Accuracy (%) Kappa
No filtering 97.88 98.52 0.78
Frost filtering 98.2 98.73 0.80
Gamma-MAP filtering 98.24 98.64 0.79
Local filtering 97.94 98.68 0.80
Mean filtering 98.26 98.58 0.79
Median filtering 98.13 98.60 0.79
Lee filtering 98.19 98.71 0.80
Lee-Sigma 98.3 98.57 0.79
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.e accuracy and kappa coefficient are used to evaluate
the overall results, while in oil spill detection, the detection
of oil spill area is more important than that of the nonoil spill
area, so the recall rate is used to evaluate the detection results
further. Recall rate reflects the proportion of predicted
positive samples in actual positive samples. It only cares
about positive samples, so it can better evaluate the results of
oil spill detection..e specific results are shown in Table 6. It
is not difficult to find that compared with other methods, the
detection accuracy of AlexNet for oil spill area is much
higher than the other three methods.

In addition, the time required by several detection
methods is calculated. .e specific time required is shown in

Table 7. It is not difficult to find that the AlexNet algorithm
takes the longest time. But for the oil spill detection, the
detection accuracy is more important. It takes a long time to
obtain higher accuracy, which is acceptable.

In order to test the generalization ability of the model,
several other oil spill image input models are selected to test.
.ese test images have different sizes and characteristics. In
SAR images, the brightness of remote sensing images is
different because of the different backscattering coefficients.
.e larger the coefficient, the brighter the image. .e lower
the coefficient, the darker the image. .erefore, before the
image is predicted, the image’s brightness to be predicted
needs to be adjusted according to the image brightness

(a) (b) (c)

(d) (e) (f )

Figure 7: Comparison of experimental results. (a) Original SAR image. (b).e true value figures. (c) AlexNet prediction results. (d) OTSU.
(e) FCM. (f) SVM.
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Figure 6: Loss and accuracy curves. (a) Train and (b) validation.
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standard in the training set. .is can reduce the detection
error caused by different image brightness..e experimental
images are shown in Figure 9–13 . .ey are called Samples 3,
4, 5, 6, and 7, respectively.

After the picture is predicted, the results are tabulated in
Table 8. It is seen that the AlexNet model has achieved good
results in the picture. It has good robustness and general-
ization ability in detecting oil spill area.

(a) (b) (c)

(d) (e) (f )

Figure 8: Comparison of experimental results. (a) Original SAR image. (b).e true value figures. (c) AlexNet prediction results. (d) OTSU.
(e) FCM. (f) SVM.

Table 5: Test results of four methods.

Images
Overall accuracy (%) Kappa

AlexNet OTSU FCM SVM AlexNet OTSU FCM SVM
Sample 1 99.74 98.62 97.66 97.78 0.79 0.73 0.41 0.41
Sample 2 97.54 97.09 96.47 96.88 0.67 0.59 0.45 0.51

Table 6: Recall results of four methods.

Images
Recall (%)

AlexNet OTSU FCM SVM
Sample 1 97.21 63.14 60.9 26.46
Sample 2 78.50 47.27 32.7 36.33

Table 7: Time of four methods.

Images
Time (s)

AlexNet OTSU FCM SVM
Sample 1 74.32 1.63 18.36 46.16
Sample 2 70.24 1.72 21.95 43.57
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(a) (b) (c)

Figure 9: Comparison of experimental results. (a) Original SAR image. (b) .e true value figures. (c) AlexNet prediction results.

(a) (b) (c)

Figure 10: Comparison of experimental results. (a) Original SAR image. (b) .e true value figures. (c) AlexNet prediction results.

(a) (b)

(c)

Figure 11: Comparison of experimental results. (a) Original SAR image. (b) .e true value figures. (c) AlexNet prediction results.
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(a) (b)

(c)

Figure 12: Comparison of experimental results. (a) Original SAR image. (b) .e true value figures. (c) AlexNet prediction results.

(a) (b)

(c)

Figure 13: Comparison of experimental results. (a) Original SAR image. (b) .e true value figures. (c) AlexNet prediction results.

Table 8: Experimental evaluation results.

Images Recall (%) Overall accuracy (%) Kappa
Sample 3 96.32 97.73 0.70
Sample 4 99.92 93.86 0.83
Sample 5 99.76 98.91 0.73
Sample 6 96.14 96.72 0.78
Sample 7 97.24 97.93 0.83
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5. Conclusion

By the advantage of its characterization learning ability, the
CNN model achieves a high identification accuracy under
the condition of small training sample size and only data
enhancement and expansion capacity and extracts the oil
spill areas that have not been calibrated by manual cali-
bration. At the same time, by the advantage of its translation
invariance and scaling invariance, the CNN model has good
generalization ability and robustness and can still extract the
oil spill area with high precision even when there is a certain
difference between the two images. According to the ex-
periment, it is feasible to use the convolutional neural
network to extract the marine oil spill. YOLO model, as
another small target detection scheme, can directly process
the whole remote sensing imagery effectively. .us, YOLO
model can be used to detect marine oil spill in the future.

Data Availability

All datasets in the experiment are based on GF-3 and
Radarsat-2 SAR images, which are not freely available. .ese
datasets can be checked and ordered from China Centre For
Resources Satellite Data and Application and Canadian
Space Agency.All datasets in the experiment are based on
GF-3 and Radarsat-2 SAR images, which are not freely
available. .ese datasets can be checked and ordered from
China Centre For Resources Satellite Data and Application
and Canadian Space Agency.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.is work was supported in part by the National Natural
Science Foundation of China under grant nos. 42076184,
41876109, 41806207, and 41706195, in part by the National
Key Research and Development Program of China under
grant nos. 2017YFC1404902 and 2016YFC1401007, in part
by the National High Resolution Special Research under
grant no. 41-Y30F07-9001-20/22, and Dalian University of
Technology Innovation Training Program for College
Students.

References

[1] F. Cui and S. S. Zhang, “Ocean exploitation and environ-
mental risk: an analysis of the Gulf of Mexico oil spill in USA,”
Journal of Ocean University of China (Social Sciences), vol. 5,
pp. 6–10, 2011.

[2] C. Tao, “A study on types, characteristics and social effects of
ocean pollution incidents,” Pacific Journal, vol. 23, no. 3,
pp. 87–96, 2015.

[3] Y. N. Zhang, Q. Ding, and Q. J. Li, “A study on monitoring of
oil spill at sea by satellite remote sensing,” Journal of Dalian
Maritime University, vol. 25, no. 3, pp. 1–5, 1999.

[4] L. C. Sun, Q. Zhou, and J. Wang, “.e present situation and
forecast of marine oil spill detection technology by using

remote sensing,” Ocean Development and Management,
vol. 36, no. 3, pp. 49–53, 2019.

[5] F. Y. Zhou, L. P. Jin, and J. Dong, “Review of convolutional
neural network,” Chinese Journal of Computers, vol. 40, no. 6,
pp. 1229–1251, 2017.

[6] S. L. Song, Y. Y. Zhu, and M. H. Zhang, “Advances in marine
oil spill monitoring using remote sensing,” Shanxi Architec-
ture, vol. 43, no. 20, pp. 205-206, 2017.

[7] N. Li and X. L. Wang, “Research on classification method of
remote sensing image based on ENVI,” Technology Innovation
and Productivity, vol. 5, pp. 63–65, 2020.

[8] J. Xu, B. Li, C. Cui, P. Liu, and X. Y. Zhu, “Research on marine
radar oil spill monitoring technology,”Marine Environmental
Science, vol. 37, no. 1, pp. 16–20, 2018.

[9] J. Jin, Y. N. Wu, and Z. L. Kang, “Feature extraction of oil spill
dark spot based on multi-feature in SAR image,” Geomatics &
Spatial Information Technology, vol. 41, no. 2, pp. 53–56, 2018.

[10] Y. R. Zou, C. Liang, and T. Zeng, “Oil spill identification using
SVM based on polarization parameters,” Journal of Marine
Sciences, vol. 31, no. 3, pp. 71–75, 2013.

[11] J. C. Hu and D. F. Wang, “Monitoring method of ocean oil
spilling based on remote sensing,” Environmental Protection
Science, vol. 40, no. 1, pp. 68–73, 2014.

[12] Y. Yan, X. L. Dong, and Y. Li, “.e comparative study of
remote sensing image supervised classification methods based
on ENVI,” Beijing Surveying and Mapping, vol. 3, pp. 14–16,
2011.

[13] M. G. Gong, L. Z. Su, andH. Li, “A survey on change detection
in synthetic aperture radar imagery,” Journal of Computer
Research and Development, vol. 53, no. 1, pp. 123–137, 2016.

[14] C. Liu, C. W. Qu, Q. Zhou, and Z. Li, “SAR images target
classification algorithm optimization based on convolutional
neural network,” Radar Science and Technology, vol. 15, no. 4,
pp. 362–367, 2017.

[15] C. Kwan, B. Chou, J. Yang, and T. Tran, “Deep learning based
target tracking and classification for infrared videos using
compressive measurements,” Journal of Signal and Infor-
mation Processing, vol. 10, no. 4, pp. 167–199, 2019.

[16] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular
interaction and functional architecture in the cat’s visual
cortex,”9e Journal of Physiology, vol. 160, no. 1, pp. 106–154,
1962.

[17] J. Schmidhuber, “Deep learning in neural networks: an
overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[18] H. L. Luo and Y. Zhang, “A survey of image semantic seg-
mentation based on deep network,” Acta Electronica Sinica,
vol. 47, no. 10, pp. 2211–2220, 2019.

[19] C. Shu and S. S. Sha, “Characteristics analysis of the oil spill
and looks-alike for sea surface oil spill automatic monitoring,”
Ship Ocean Engineering, vol. 49, no. 2, pp. 64–67, 2020.

[20] Z. L. Lu, X. Jia, W. G. Zhu, and C. Z. Zeng, “Study on SAR
image despeckling algorithm,,” Journal of Sichuan Ordnance,
vol. 38, no. 6, pp. 104–108, 2018.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,”
Advances in Neural Information Processing Systems, vol. 60,
no. 6, pp. 84–90, 2017.

[22] B. Z. Li, K. Liu, J. J. Gu, and W. Z. Jiang, “Review of the
researches on convolutional neural networks,” Computer Era,
vol. 4, pp. 12–17, 2021.

[23] M. Y. Ji, X. M. Xi, and Z. L. Yu, “A review of semantic
segmentation based on deep learning,” Information Tech-
nology & Informatization, vol. 10, pp. 137–140, 2017.

Computational Intelligence and Neuroscience 13



[24] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” Artificial Intelligence and Statistics, vol. 15,
no. 8, pp. 315–323, 2011.

[25] J. Y. Qu, X. Sun, and X. Gao, “Remote sensing image target
recognition based on CNN,” Foreign Electronic Measurement
Technology, vol. 35, no. 8, pp. 45–50, 2016.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[27] B. Ayhan and C. Kwan, “Practical considerations in unsu-
pervised change detection using SAR images,” in Proceedings
of the 2019 IEEE 10th Annual Ubiquitous Computing, Elec-
tronics & Mobile Communication Conference (UEMCON),
pp. 0334–0339, New York, NY, USA, 2019.

[28] S. Temitope Yekeen, A. L. Balogun, and K. B. Wan Yusof, “A
novel deep learning instance segmentation model for auto-
mated marine oil spill detection,” ISPRS Journal of Photo-
grammetry and Remote Sensing, vol. 167, pp. 190–200, 2020.

[29] W. C. Xiong, C. Q. Wu, B. Wei, W. M. Shen, and Z. P. Sun,
“Oil spill detection with SAR in South Korea’s oil leak,”
Remote Sensing Technology and Application, no. 4,
pp. 410–413+358, 2008.

[30] L. J. Shi, C. F. Zhao, and P. Liu, “Oil spill identification in
marine SAR images based on texture feature and artificial
neural network,” Periodical of Ocean University of China,
vol. 39, no. 6, pp. 1269–1274, 2009.

[31] F. Yang, J. Yang, J. J. Yin, and J. S. Song, “Spill detection based
on polarimetric SAR decomposition models,” Journal of
Tsinghua University (Science and Technology), vol. 55, no. 8,
pp. 854–859, 2015.

[32] J. Sun, Y. Xu, F. X. Chen, and Z. R. Peng, “Research on
offshore petroleum oil spilling detection using SAR echo
signal,” Acta Oceanologica Sinica, vol. 36, no. 9, pp. 103–111,
2014.

[33] X. Zhang and B. W. Liu, “Research on SAR target recognition
based on convolutional neural networks,” Electronic Mea-
surement Technology, vol. 44, no. 14, pp. 92–96, 2018.

[34] J. Huang, Z. G. Jiang, H. P. Zhang, and Y. Yao, “Ship object
detection in remote sensing images using convolutional
neural networks,” Journal of Beijing University of Aeronautics
and Astronautics, vol. 43, no. 9, pp. 1841–1848, 2017.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
pp. 326–366, MIT press, Cambridge, UK, 2016.

[36] J. B. Estrach, A. Szlam, and Y. Lecun, “Signal recovery from
pooling representations,” in Proceedings of the International
Conference on Machine Learning, pp. 307–315, Bejing, China,
2014.

14 Computational Intelligence and Neuroscience



Research Article
Quadruplet-Based Deep Cross-Modal Hashing

Huan Liu,1 Jiang Xiong ,1 Nian Zhang,2 Fuming Liu,1 and Xitao Zou 1

1Key Laboratory of Intelligent Information Processing and Control, Chongqing Municipal Institutions of Higher Education,
Chongqing !ree Gorges University, Chongqing 40044, China
2Department of Electrical and Computer Engineering, University of the District of Columbia, Washington, D. C., SC 20008, USA

Correspondence should be addressed to Jiang Xiong; xjcq123@126.com

Received 18 March 2021; Revised 24 May 2021; Accepted 14 June 2021; Published 2 July 2021

Academic Editor: Raşit Köker
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Recently, benefitting from the storage and retrieval efficiency of hashing and the powerful discriminative feature extraction
capability of deep neural networks, deep cross-modal hashing retrieval has drawn more and more attention. To preserve the
semantic similarities of cross-modal instances during the hash mapping procedure, most existing deep cross-modal hashing
methods usually learn deep hashing networks with a pairwise loss or a triplet loss. However, these methods may not fully explore
the similarity relation across modalities. To solve this problem, in this paper, we introduce a quadruplet loss into deep cross-modal
hashing and propose a quadruplet-based deep cross-modal hashing (termed QDCMH) method. Extensive experiments on two
benchmark cross-modal retrieval datasets show that our proposedmethod achieves state-of-the-art performance and demonstrate
the efficiency of the quadruplet loss in cross-modal hashing.

1. Introduction

With the advent of the era of big data, there are surgingmassive
multimedia data on the Internet, such as images, videos, and
texts. 0ese data usually exist in diversified modalities, for
example, there may exist a textual data and an audio data
describing a video data or an image data. As data from different
modalities may have compact semantic relevance, cross-modal
retrieval [1, 2] is proposed to retrieve semantic similar data from
one modality while the querying data is from a distinct mo-
dality. Benefitting from the high efficiency and low cost,
hashing-based cross-modal retrieval (cross-modal hashing)
[3–6] has drew extensive attention. 0e goal of cross-modal
hashing is tomap themodal heterogeneous data into a common
binary space and ensure that semantic similar/dissimilar cross-
modal data have similar/dissimilar hash codes. Cross-modal
hashing methods can usually achieve superior performance;
nonetheless, most of existing cross-modal hashing methods
(such as cross-modal similarity sensitive hashing (CMSSH) [7],
semantic correlation maximization (SCM) [8], semantics-pre-
serving hashing (SePH) [9], and generalized semantic pre-
serving hashing (GSPH) [10]) are based on handcrafted feature
learning, which cannot effectively capture the heterogeneous

relevance between different modalities and thus may result in
inferior performance.

In the last decade, deep convolutional neural networks
[11, 12] have been successfully utilized in many computer
vision tasks, and therefore, some researchers also deploy it in
cross-modal hashing, such as deep cross-modal hashing
(DCMH) [13], pairwise relationship guided deep hashing
(PRDH) [14], self-supervised adversarial hashing (SSAH)
[15], and triplet-based deep hashing (TDH) [16]. Cross-modal
hashing methods with deep neural networks efficiently in-
tegrate the hash representation learning and the hash function
learning into an end-to-end framework, which can capture
heterogeneous cross-modal relevance more effectively and
thus acquire better cross-modal retrieval performance.

To date, most deep cross-modal hashing methods
utilize the pairwise loss (such as [13–15]) or the triplet
loss (such as [16]) to preserve semantic relevance during
the hash representation learning procedure. Neverthe-
less, the pairwise loss- and triplet loss-based hash
methods suffer from a weak generalization capacity from
the training set to the testing set [17, 18], as shown in
Figure 1(a). On the contrary, quadruplet loss is proposed
and has been utilized in image hashing retrieval [17] and
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person reidentification [18], and in these works, it has
been proved that the quadruplet loss-based model can
enhance the generalization capability. 0erefore, cross-
modal hashing combines quadruplet loss as a natural
solution to enhance the performance of cross-modal
hashing, as shown in Figure 1(b).

To this end, in this paper, we introduce quadruplet loss into
cross-modal hashing and propose a quadruplet-based deep
cross-modal hashing method (QDCMH). Specifically,
QDCMH firstly defines a quadruplet-based cross-modal se-
mantic preservingmodule. Afterwards, QDCMH integrates this
module, hash representation learning, and hash code generation
into an end-to-end framework. Finally, experiments on two
benchmark cross-modal retrieval datasets are conducted to
validate the performance of the proposed method. 0e main
contributions of our proposed QDCMH include the following:

(i) We introduce quadruplet loss into cross-modal re-
trieval and propose a novel deep cross-modal
hashingmethod. To the best of our knowledge, this is

the first work to introduce quadruplet loss into
cross-modal hashing retrieval.

(ii) We conduct extensive experiments on benchmark
cross-modal retrieval datasets to investigate the
performance of our proposed QDCMH.

0e remainder of this paper is organized as follows.
Section 2 elaborates our proposed quadruplet-based deep
cross-modal hashingmethod. Section 3 presents the learning
algorithm of QDCMH. Section 4 is the experimental results
and the corresponding analysis. Section 5 concludes our
work.

2. Proposed Method

In this section, we elaborate our proposed quadruplet-based
deep cross-modal hashing (QDCMH) method with the
following sections: notations, quadruplet-based cross-modal
semantic preserving module, feature learning networks, and
hash function learning. Figure 2 presents the flowchart of

Training set Test set

A zebra grazing
on lush green
grass in a field

A zebra grazing
on lush green
grass in a field

(a)

A zebra grazing
on lush green
grass in a field

Training set Test set

A zebra grazing
on lush green
grass in a field

(b)

Figure 1: (a) Triplet loss-based cross-modal hashing methods suffer from a weak generalization capacity from the training set to the testing
set because the test instances belong to the category and cannot be mapped into compact binary codes (see the lower-right corner).
(b) Triplet loss-based cross-modal hashingmethods can project the test instances, which belong to the category , into compact binary space
(see the lower right corner).
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our proposed QDCMH, which cooperates quadruplet-based
cross-modal semantic preserving module, hash represen-
tation learning, and hash codes generation into an end-to-
end framework. In our proposed QDCMH method, we
assume that each instance has two modalities, i.e., an image
modality and a text modality, but they can be easily applied
to multimodalities.

2.1. Notations. Assume that the training data comprises n

image-text pairs, i.e., the original image features V ∈ Rn×dv

and the original text features T ∈ Rn×dt . Besides, there is a
label vector associated with each image-text pair and label
vectors for all training instances constitute a label matrix
L ∈ Rn×dl . dv and dt are the corresponding original di-
mensions of image features and text features, respectively,
and dl is the total number of class categories. If image-text
pair Vi, Ti  attaches to the jth category, then Lij � 1,
otherwise Lij � 0. 0e quadruplet (Vq, Tp, Tn1, Tn2) denotes
that Vq is a query instance from the image modality, and
Tp, Tn1, Tn2 are three retrieval instances from the text mo-
dality, where Vq and Tp have at least one common cate-
gories, while Vq and Tn1, Vq and Tn2, and Tn1 and Tn2 are
three pairwise instances and the two instances in each
pairwise have no common label.

With the known quadruplet (Vq, Tp, Tn1, Tn2), the target
of our proposed QDCMH is to learn the corresponding hash
codes (BVq

, BTp
, BTn1

, BTn2
), where BVq

, BTp
, BTn1

, BTn2
are the

hash codes of instances Vq, Tp, Tn1, Tn2, respectively. To
learn the above hash codes, we first learn the hash repre-
sentations (FVq

, GTp
, GTn1

, GTn2
) from the quadruplet

(Vq, Tp, Tn1, Tn2) with deep neural networks, where FVq
�

f(Vq, θV) and GTp
� g(Tp, θT) are the hash representations

of instance Vq and Tp, respectively. f(., θV) and g(., θT) are
the hash representation learning functions for the image
modality and the text modality, respectively. θV and θT are
the parameters of deep neural networks to extract features
for the image modality and for the text modality, respec-
tively. Secondly, we can utilize the following sign function to

approximately map the hash representations into the cor-
responding hash codes, i.e., BVq

� sign(FVq
) and

BTp
� sign(GTp

). In the same way, we can learn the hash
codes of quadruplet (Tq, Vp, Vn1, Vn2). For convenience, we
denote the hash codes of all training image-text pairs, the
hash representations of all training image instances, and the
hash representations of all training text instances as
B ∈ −1, 1{ }n×k, F ∈ Rn×k, and G ∈ Rn×k, respectively, where k

is the length of hash codes:

y �
1, if x> � 0, x ∈ R,

−1, if x< 0, x ∈ R.
 (1)

2.2. Quadruplet-Based Cross-Modal Semantic Preserving
Module. In cross-modal hashing retrieval, given an image
instance Vi and a text instance Tj, it is intractable to preserve
the semantic relativity during the hash code learning pro-
cedure as the huge semantic gap across modalities. To solve
this, DCMH [13] defines pairwise loss to map similar/dis-
similar image-text pairs into similar/dissimilar hash codes.
TDH [16] utilizes triplet loss to learn similar hash codes for
similar cross-modal instances and generate distinct hash
codes for semantic irrelevant cross-modal instances. Both
pairwise loss and triplet loss can preserve the relevance in the
original instance space; however, pairwise loss- and triplet
loss-based hashing methods often suffer from a weaker
generalization capability from the training set to the testing
set [17, 18]. To solve this problem, in this section, a qua-
druplet-based cross-modal semantic preserving module is
proposed to boost the generalization capability and better
preserve the semantic relevance for cross-modal hashing.

For a quadruplet (Vq, Tp, Tn1, Tn2), we should keep the
semantic relevance unchanged during the hash represen-
tation learning, i.e., FVq

should be similar to GTp
, FVq

should
be distinct to GTn1

and GTn2
, and GTn1

should be dissimilar
with GTn2

. 0us, we can define the following quadruplet loss
for cross-modal hashing:

J
I⟶T
quadruplet FVq

, GTp
, GTn1

, GTn2
  � 

Vq,Tp,Tn1

max 0, FVq
− GTp

�����

�����
2

2
− FVq

− GTn1

�����

�����
2

2
+ α1 

+ 
Vq,Tp,Tn1 ,Tn2

max 0, FVq
− GTp

�����

�����
2

2
− GTn1

− GTn2

�����

�����
2

2
+ α2 ,

(2)

where Vq is a query instance from the image modality, Tp,
Tn1, and Tn2 are three retrieval instances from the text
modality, and Vq and Tp are semantic similar. While Vq and
Tn1, Vq and Tn2, and Tn1 and Tn2 are three pairwise instances,
and the two instances in each pairwise have distinct se-
mantics. Equation (2) denotes that the distance of hash
representations of similar cross-modal pairwise instances

should be smaller than that of dissimilar pairwise instances
(both from intermodalities and from intramodalities) with a
positive margin (α1 orα2). 0is can ensure that similar cross-
modal instances have similar hash representations while
dissimilar instances have distinct hash representations. By this
quadruplet loss, the cross-modal semantic relevance can be
preserved during the hash representation learning stage.
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Figure 2: Flowchart of the proposed quadruplet-based deep cross-modal hashing (QDCMH) method. QDCMH encompasses three steps:
(1) a quadruplet-based cross-modal semantic preserving module, (2) a classical convolutional neural network is used to learn image-
modality features and the TxtNet in SSAH [15] is adopted to learn the text-modality features, and (3) an intermodal quadruplet loss is
utilized to efficiently capture the relevant semantic information during the feature learning process and a quantization loss is used to
decrease information loss during the hash codes generation procedure. (a) Quadruplet (Vq, Tp, Tn1, Tn2), which utilizes an image instance
Vq to retrieve three text instances: Tp, Tn1, and Tn2. Vq and Tp have at least one common labels, while Vq and Tn1, Vq and Tn2, and Tn1 and
Tn2 are three pairwise instances and the two instances in each pairwise have no common label. (b) Quadruplet (Vq, Tp, Tn1, Tn2), which
utilizes a text instance Tq to retrieve three image instances: Vp, Vn1, and Vn2. Tq and Vp have at least one common labels, while Tq and Vn1,
Tq and Vn2, and Vn1 and Vn2 are three pairwise instances and the two instances in each pairwise have no common label.
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Similarly, given a quadruplet (Tq, Vp, Vn1, Vn2), we can
have the following cross-modal quadruplet loss:

J
T⟶I
quadruplet GTq

, FVp
, FVn1

, FVn2
  � 

Tq,Vp,Vn1

max 0, GTq
− FVp

�����

�����
2

2
− GTq

− FVn1

�����

�����
2

2
+ α3 

+ 
Tq,Vp,Vn1 ,Vn2

max 0, GTq
− FVp

�����

�����
2

2
− FVn1

− FVn2

�����

�����
2

2
+ α4 ,

(3)

where Tq is a query instance from the text modality, Vp, Vn1,
and Vn2 are three retrieval instances from the image modality,
GTq

, FVp
, FVn1

, and FVn2
are hash representations for instances

Tq, Vp, Vn1, and Vn2, respectively, and α3 and α4 are two
positivemargins. Equation (3) is distinct to equation (2) as the
modality of query instance and the modality of retrieval
instances are inverse.

2.3. Hash Representation Learning and Hash Code Learning.
For each quadruplet from training set, it is easy to learn their
hash representations and fully protect the semantic simi-
larity with the above quadruplet-based cross-modal se-
mantic relevance preserving module, so we have the
following hash representation learning loss:

Jrepresentation �
1

nI⟶T

J
I⟶T
quadruplet FVq

, GTp
, GTn1

, GTn2
 

+
β

nT⟶I

J
T⟶I
quadruplet GTq

, FVp
, FVn1

, FVn2
 ,

(4)

where nI⟶T is the number of quadruplets for utilizing
image to retrieve text, nT⟶I is the number of quadruplets
for utilizing text to retrieve images, and β is a hyper-
parameter to balance the two parts.

Additionally, to learn high-quality hash codes, we
generate hash codes from the learned hash representations
with the sign function in equation (1), and the final hash
codes matrix for all training image-text pairs are generated
as follows:

B � sign
F + G

2
 . (5)

As F and G are real-valued features, to decrease the
information loss from F and G to B in equation (5), it is
necessary to force F and G to be as close as possible to B;
thus, we introduce the following quantization loss:

Jquantization �
‖B − F‖

2
2 +‖B − G‖

2
2

2nk
. (6)

Integrating the hash representation loss and the quan-
tization loss together, the whole loss function is as follows:

J � Jrepresentation + cJquantization, (7)

where c is a hyperparameter to balance the hash repre-
sentation loss and the quantization loss.

2.4. Feature Extraction Networks. In QDCMH, feature ex-
traction includes two deep neural networks: a classical
convolutional neural network is used to extract the features
of images and a multiscale fusion model is utilized to learn
features from texts. Specifically, for image modality, we
deploy AlexNet [11] pretrained on the ImageNet [19]
dataset. We then fine-tune the last layer using a new fully
connected hash layer which consists of k hidden nodes.
0erefore, the learned deep features have been embedded
into a k-dimensional Hamming space. For text modality, the
TxtNet in SSAH [15] is used, which comprises a three-layer
feedforward neural network and a multiscale (MS) fusion
model (Input⟶ MS⟶ 4096⟶ 512⟶ k).

3. Learning Algorithm of QDCMH

For QDCMH, we utilize alternating strategy to learn pa-
rameters θV of deep neural networks for image modality and
parameters θT of deep neural networks for text modality and
hash codes matrix B for all training image-text pairs. When
we learn one of θV, θT, and B, we keep the other two fixed.0e
specific algorithm for QDCMH is depicted in Algorithm 1.

3.1. Update θV with θT and B Fixed. When θT and B are
maintained fixed, we utilize stochastic gradient descent and
backpropagation to optimize the deep neural network pa-
rameters θV.

3.2.UpdateθT withθV andBFixed. Whenwe fix the values of
θV and B, we use stochastic gradient descent and back-
propagation to learn the deep neural network parameters θT.

3.3. Update B with θT and θV Fixed. When the deep neural
networks’ parameters θT and θV are kept unchanged, the
hash codes matrix B can be optimized with equation (5).

4. Experiments

4.1. Datasets. To investigate the performance of QDCMH,
we conduct experiments on two benchmark cross-modal
retrieval datasets: MIRFLICKR-25K [20] and Microsoft
COCO2014 [21], and the brief descriptions of the datasets
are listed in Table 1.

4.2. EvaluationMetrics. In our experiments, we utilize mean
average precision (MAP), top N-precision curves (top N
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Curves), and precision-recall curves (PR Curves) as evalu-
ation metrics; for the detailed description of these evaluation
metrics, refer to [22, 23].

4.3. Baselines and Implementation Details. We compare our
proposed QDCMHmethod with eight state-of-the-art cross-
modal hashing methods, including four handcrafted ones,
i.e., cross-modal similarity sensitive hashing (CMSSH)
method [7], semantics-preserving hashing (SePH) [9]
method, semantic correlation maximization (SCM) method
[8], and generalized semantic preserving hashing (GSPH)
method [10] and four deep feature-based ones, i.e., deep
cross-modal hashing (DCMH) method [13], pairwise rela-
tionship guided deep hashing (PRDH) method [14], self-
supervised adversarial hashing (SSAH) method [15], and
triplet-based deep hashing (TDH) method [16]. Most
baseline methods are carefully implemented based on the
codes provided by the authors. A few baseline methods are
implemented by us following the suggestions and descrip-
tions of the original papers.

All the experiments are executed by using the open
source deep learning framework pytorch and running on an
NVIDIA GTX Titan XP GPU server. In our experiments, we
set nI⟶T � nT⟶I � 10000, max_epoch � 500, and λ � 10−5

and the learning rate is initialized to 10−1.5 and gradually
decreased to 10− 6 in 500 epochs. For those handcrafted
feature-based baselines, each image in the two datasets is
represented by a bag of words (BoW) histogram or feature
vector having 512 dimensions. For the whole experiment, we
use I⟶ T to denote using a querying image while
returning text and T⟶ I to denote using a querying text
while returning an image.

4.4. Performance Evaluation and Discussion. Firstly, we in-
vestigate the performance of QDCMH with different
hyperparameters β and c. To this goal, we experiment on
MIRFLICKR-25K with the hash code length k � 64 and
record the corresponding MAPs under different values of β
and c, as shown in Figure 3. We find that high performance
can be acquired when β � 1 and c � 0.2.

Secondly, to validate the performance of QDCMH, we
perform the experiment to compare QDCMH with baseline
methods in terms of MAP on datasets MIRFLICKR-25K and
MS-COCO2014. Table 2 presents the MAPs of each method
for different hash code lengths, i.e., 16, 32, and 64. DSePH
represents the SePH method whose features of the original
images are extracted by CNN–F. From Table 2, we can see
that the following. (1) 0e MAPs of our proposed QDCMH

Input:
training data set: V, T, L{ }. 0e maximal number of epoches of the algorithm is max_epoch. Mini-batch size nbatch � 128.

Output:
Parameters θV, θT of the deep neural networks, and corresponding hash codes matrix B.

(1) Generating nI⟶T (Vq, Tp, Tn1, Tn2) quadruplets (named QuadI2T) from training set, generating nT⟶I (Tq, Vp, Vn1, Vn2)

quadruplets (named QuadT2I) from training set.
(2) Initialize the deep neural network parameters θV, θT, the whole training image hash representations F, the whole training text

hash representations G, the hash codes matrix B, and the epoch numbers batchnumv � batchnumt � (nI⟶T + nT⟶I)/nbatch.
(3) repeat
(4) for j � 1 to batchnumv do
(5) Randomly sample nv images from QuadI2T ∪QuadT2I to construct a mini-batch of images.
(6) For each instance Vi in the mini-batch, calculate FVi

� f(Vi, θV) by forward propagation.
(7) Update F.
(8) Calculate the derivative of θV in equation (7).
(9) Update the network parameters θI by utilizing backpropagation.
(10) end for
(11) for j � 1 to batchnumt do
(12) Randomly sample nt texts from QuadI2T ∪QuadT2I to construct a mini-batch of texts.
(13) For each instance Ti in the mini-batch, calculate GTi

� g(Ti, θT) by forward propagation.
(14) Update G.
(15) Calculate the derivative of θT in equation (7).
(16) Update the network parameters θT by using backpropagation.
(17) end for
(18) Update B using equation (5).
(19) until the max epoch number max_epoch.

ALGORITHM 1: QDCMH: quadruplet-based deep cross-modal hashing.

Table 1: Brief description of the experimental datasets.

Dataset Used Train Query Retrieve Tag dimension Labels
MIRFLICKR-25K 20,015 10,000 2,000 18,015 1,386 24
MS-COCO2014 122,218 10,000 5,000 117,218 2,026 80
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are higher than the MAPs of most baseline methods in most
cases, which demonstrates the superiority of QDCMH. We
can also observe that SSAH outperforms than our proposed
QDCMH in most cases, which is partly because SSAH takes
self-supervised learning and generative adversarial networks
into account during hash representation learning procedure.
(2)0eMAPs of QDCMH is always higher than theMAPs of
TDH, which shows that quadruplet loss can better preserve
semantic relevance than triplet loss in cross-modal hashing
retrieval. (3) 0e MAPs of DSePH is always higher than the
MAPs of SePH, which demonstrates that deep neural

networks have powerful features learning capacity. (4) Our
proposed QDCMH can achieve better performance on MS-
COCO 2014 dataset than on MIRFlickr-25K dataset, which
is partly because the instances in MS-COCO 2014 dataset
belong to 80 categories while the instances inMIRFlickr-25K
dataset belong to 24 categories, and this makes the qua-
druplets generated from the MS-COCO 2014 dataset have
better generalization ability than the quadruplets generated
from the MIRFlickr-25K dataset.

0irdly, to further investigate the performance of QDCMH,
we plot the precision-recall curves and top N-precision curves
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Figure 3: A sensitivity analysis of the hyperparameters. (a) Hyperparameter β on MIRFLICKR-25K dataset. (b) Hyperparameter c on
MIRFLICKR-25K dataset.

Table 2: Comparison to baselines in terms of MAP on two datasets: MIRFLICKR-25K, and Microsoft COCO2014, respectively. 0e best
accuracy is shown in boldface.

Task Methods MIRFlickr-25K MS-COCO
16bits 32bits 64bits 16bits 32bits 64bits

I⟶ T

Handcrafted methods

CMSSH [7] 0.5600 0.5709 0.5836 0.5439 0.5450 0.5410
SePH [9] 0.6740 0.6813 0.6803 0.4295 0.4353 0.4726
SCM [8] 0.6354 0.6407 0.6556 0.4252 0.4344 0.4574
GSPH [10] 0.6068 0.6191 0.6230 0.4427 0.4733 0.4840

Deep methods

DCMH [13] 0.7316 0.7343 0.7446 0.5228 0.5438 0.5419
PRDH [14] 0.6952 0.7072 0.7108 0.5238 0.5521 0.5572
SSAH [15] 0.7745 0.7882 0.7990 0.5127 0.5256 0.5067
TDH [16] 0.7423 0.7478 0.7512 0.5164 0.5222 0.5276
DSePH [9] 0.7128 0.7285 0.7422 0.4621 0.4958 0.5112
QDCMH 0.7635 0.7688 0.7713 0.5286 0.5313 0.5371

T⟶ I

Handcrafted methods

CMSSH [7] 0.5726 0.5776 0.5753 0.3793 0.3876 0.3899
SePH [9] 0.7139 0.7258 0.7294 0.4348 0.4606 0.5195
SCM [8] 0.6340 0.6458 0.6541 0.4118 0.4183 0.4345
GSPH [10] 0.6282 0.6458 0.6503 0.5435 0.6039 0.6461

Deep methods

DCMH [13] 0.7607 0.7737 0.7805 0.4883 0.4942 0.5145
PRDH [14] 0.7626 0.7718 0.7755 0.5122 0.5190 0.5404
SSAH [15] 0.7860 0.7974 0.7910 0.4832 0.4831 0.4922
TDH [16] 0.7516 0.7577 0.7634 0.5198 0.5332 0.5399
DSePH [9] 0.7422 0.7578 0.7760 0.4616 0.4882 0.5305
QDCMH 0.7762 0.7725 0.7859 0.5245 0.5398 0.5487
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Figure 5: Continued.
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Figure 4: Precision-recall curves on datasets MIRFLICKR-25K and Microsoft COCO2014.
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ofQDCMHand baselinemethodswith hash code lengths 64 on
datasets MIRFLICKR-25K, Microsoft COCO2014, respectively,
as presented in Figures 4 and 5. From this figure, we can see that
the precision-recall curves and top N-precision curves are
nearly consistent with the MAPs in Table 2.

5. Conclusions

In this paper, we introduce a quadruplet loss into deep cross-
modal hashing to fully preserve semantic relevance of
original cross-modal quadruple instances and propose a
quadruplet based deep cross-modal hashing method
(QDCMH). QDCMH integrates quadruplet-based cross-
modal semantic relevance preserving module, hash repre-
sentation learning, and hash code generation into an end-to-
end framework. Experiments on two benchmark cross-
modal retrieval datasets demonstrate the efficiency of our
proposed QDCMH.

Data Availability

0e experimental datasets and the related settings can be
found in https://github.com/SWU-CS-MediaLab/MLSPH.
0e experimental codes used to support the findings of this
study will been deposited in the github repository after the
publication of this paper or can be provided by xitaozou@
sanxiau.edu.cn.
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COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). Due to the rapid
spread of COVID-19 around the world, the number of COVID-19 cases continues to increase, and lots of countries are facing
tremendous pressure on both public and medical resources. Although RT-PCR is the most widely used detection technology with
COVID-19 detection, it still has some limitations, such as high cost, being time-consuming, and having low sensitivity. According
to the characteristics of chest X-ray (CXR) images, we design the Parallel Channel Attention Feature Fusion Module (PCAF), as
well as a new structure of convolutional neural networkMCFF-Net proposed based on PCAF. In order to improve the recognition
efficiency, the network adopts 3 classifiers: 1-FC, GAP-FC, and Conv1-GAP. +e experimental results show that the overall
accuracy of MCFF-Net66-Conv1-GAP model is 94.66% for 4-class classification. Simultaneously, the classification accuracy,
precision, sensitivity, specificity, and F1-score of COVID-19 are 100%. MCFF-Net may not only assist clinicians in making
appropriate decisions for COVID-19 diagnosis but also mitigate the lack of testing kits.

1. Introduction

Coronavirus disease 2019 (COVID-19) is a respiratory
disease caused by severe acute respiratory syndrome coro-
navirus (SARS-CoV-2). Since its discovery in December
2019, the disease has spread rapidly around the world and is
highly infectious. On March 11, 2020, the disease was de-
clared a global pandemic by the World Health Organization
(WHO) [1]. With the reopening of daily activities in
countries around the world, the morbidity and mortality of
COVID-19 have continued to increase, putting tremendous
pressure on medical institutions and medical resources.
+erefore, finding a quick and effective diagnosis method
has become a top priority.

+e current mainstream COVID-19 diagnosis tech-
nology is real-time reverse transcription polymerase chain
reaction (RT-PCR) technology. However, the detection
process is cumbersome and the diagnosis result has a high
false-negative rate [2]. At the same time, chest imaging
examinations, such as computed tomography (CT) and
chest X-ray detection, also play a vital role in the early
diagnosis of the disease [3]. Although the diagnostic

efficiency of COVID-19 is constantly improving, the cur-
rent cost of testing and diagnosis is still at a relatively high
level. By examining the patient’s lung imaging images, the
diagnosis efficiency of COVID-19 can be greatly
accelerated, and the patient can be treated as soon as
possible.

Some studies have shown that COVID-19 has obvious
clinical imaging characteristics.+e study of Zu et al. [2] showed
that some patients with COVID-19 had lung opacity in chest CT
images. Zhao et al. [4] proposed that most patients have ground
glass opacity (GGO), and some patients have lung consolidation
and vasodilatation in chest lesions. Li and Xia [5] proposed that
the CT imaging lesions of COVID-19 patients showed signs of
GGO, lung consolidation, thickened interlobular septa, and air
bronchography. Compared with CT, chest X-Ray (CXR) di-
agnosis has the advantages of convenient detection process, low
cost, and low ionizing radiation intensity [6], which is more
patient-friendly and easy to promote in remote and underde-
veloped areas. In addition, manual image reading is a time-
consuming and error-prone task. In order to reduce the pressure
of medical imaging physicians, it is necessary to propose an
efficient and accurate COVID-19 detection method.
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In recent years, deep learning has become one of the
most popular research fields in artificial intelligence. Deep
convolutional neural network (DCNN) has excellent per-
formance in computer vision tasks such as image classifi-
cation, image segmentation, and target detection. A wealth
of research results has emerged in this field. For example,
Wang et al. [7] proposed and improved a deep learning
method for detecting colon polyp images and achieved good
results. Wang et al. [8] introduced the dense connection idea
of the DenseNet model in the MobileNet model and pro-
posed a new type of image classification model Dense-
MobileNet. On the basis of the original model, the accuracy
of the image classification task is improved and the com-
plexity of the model is reduced.Wang et al. [9] combined the
dense connection idea with the full convolutional network
FCN model, proposed a dense full convolutional network
DFCN, and used this model to perform semantic segmen-
tation tasks on the Chenzhou remote sensing image dataset,
achieving good results. After the outbreak of the COVID-19
epidemic, the use of DCNN to detect COVID-19 has become
a current hot research field. At the same time, many out-
standing research results have emerged in this field. Based on
the characteristics of CXR images, Wang et al. [10] designed
the Channel Feature Weight Extraction module (CFWE)
and proposed a new network structure CFW-Net on this
basis, which has achieved a good classification effect. Wang
et al. [11] designed a Multiattention Interaction Enhance-
ment module (MAIE) and proposed a new convolutional
neural network, MAI-Net. +e overall accuracy and
COVID-19 category accuracy were 96.42% and 100%, re-
spectively, which were better than those of ResNet [12].
Based on the VGG19 [13] network model, Apostolopoulos
and Mpesiana [14] conducted a three-category classification
experiment on a dataset containing COVID-19 positive,
common pneumonia, and normal CXR images, and the
overall classification accuracy rate was 93.48%. Wang et al.
[15] proposed a COVID-Net network model based on the
PEPX structure and introduced the depthwise separable
convolution [16] into the network. +e accuracy of the 3-
class classification was 93.3%, which reduced the amount of
model parameters and had good classification performance.
Khan et al. [17] proposed a CoroNet network model based
on the structure of Xception [18] and conducted 2-class, 3-
class, and 4-class classification experiments for CXR images.
+e classification accuracy rates were 99%, 95%, and 89.6%.
On this basis, Hussain et al. [19] improved Khan’s work and
proposed the CoroDet network structure. +e classification
accuracy of 2-class, 3-class, and 4-class were 99.1%, 94.2%,
and 91.2%, respectively.

Unlike conventional image classification tasks, CXR
images have high interclass similarity and low intraclass
variability. +is kind of data characteristics can easily lead to
model deviation and overfitting problems, reduce the
generalization performance of the network, and increase the
difficulty of image classification tasks. To solve these
problems, the Parallel Channel Attention Feature Fusion
Module (PCAF) is designed. Based on the PCAF module, a
new convolutional neural network structure, MCFF-Net, is
proposed. MCFF-Net is used to perform a 4-class

classification experiment on a dataset containing four types
of image of COVID-19, normal, bacterial pneumonia, and
viral pneumonia, with excellent performance. Compared
with the deep learning methods in other documents, MCFF-
Net has higher classification accuracy and stronger gener-
alization ability.

2. CNNs

In recent years, deep convolutional neural networks have
been widely used in the field of computer vision, and its basic
structure is shown in Figure 1. In view of the brand-new
techniques such as ReLU [20], LRN [20], and Dropout [21],
AlexNet [22] designed by Hintion and AlexKrizhevsky won
the championship in 2012 ImageNet Challenge, with ex-
cellent performance. At the same time, AlexNet reduces the
problem of network overfitting and enhances the general-
ization ability of the model. In 2014, Simonyan and Zis-
serman proposed the visual geometry group network
(VGGNet) [14], which increased the network depth to 19
layers by alternately using 3× 3 convolution kernels and
2× 2 maximum pooling layers, significantly improving the
network performance. Christian Szegedy et al. [23] designed
the Inception module and constructed the GoogLeNet
network based on this module. By increasing the width and
depth, GoogLeNet also improves the utilization of the in-
ternal resources of the network and alleviates the problem of
overfitting to a certain extent.

Increasing the network depth can improve network
performance, but it can also cause some problems such as
overfitting, network degradation, gradient disappearance,
and gradient explosion. In 2015, He et al. [12] proposed the
residual network named ResNet, which solved the degra-
dation problem of the network through skip connection
and increased the network depth to 1000 layers for the first
time, making the deep convolutional neural network reach
an unprecedented depth. Inspired by the residual network,
the dense network named DenseNet was proposed by
Huang et al. [24] in 2017 based on the idea of dense
connections. By directly introducing short connections in
any two layers to realize the reuse of features, it greatly
reduces the amount of network parameters and effectively
alleviates the problem of gradient disappearance of deep
network.

3. PCAF Module

In order to relieve the pressure of current medical staff and
improve the diagnostic speed of COVID-19, we adopt a
convolutional neural network that can adaptively learn the
feature information exhaustively to identify and classify
CXR images. CXR images have high interclass similarity and
low intraclass variability. +ese problems will lead to model
deviation and overfitting as well as reduce the recognition
ability and generalization performance of the network.
Hence, the PCAF module has been designed, whose
structure is shown in Figure 2. C is the number of channels
related to the input feature map. H and W represent the
height and width of the feature map, respectively. “r”
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represents the channel compression ratio. “GAP” [26]
represents the global average pooling. “PWConv” represents
the 1× 1 pointwise convolution. “BN” [27] is on behalf of
batch normalization. “LeakyReLU” [28] and “Sigmoid” are
activation functions. “⊕” represents the feature matrix bit-
wise addition operation. “⊗ ” represents the feature matrix
bitwise multiplication operation.

+e PCAF module is composed of two parallel branches,
namely, the global feature extraction branch and the local
feature extraction branch.+e input feature map is imported
into the two branches for feature extraction. Local feature
extraction branch is composed of two PWConvs. +e size of
convolution kernel for the first PWConv is C/r × 1 × 1,
compressing the channels of feature map to C/r, reducing
the dimension of the feature map. +e size of the second
PWConv convolution kernel is C × 1 × 1, restoring the
channels of the featuremap toC, raising the dimension of the
feature map.

Based on the above, the global feature extraction branch
consists of one GAP layer and two PWConv layers.+e GAP
operation can compress the global information into a real
number, which has the receptive field of global information
to a certain extent.

+erefore, the global feature extraction branch focuses
on extracting widely distributed global information in the
feature map. +e size of feature map in local feature ex-
traction branch remains H × W. It has not been compressed
by the global average pooling from beginning to end.
Consequently, more attention is paid to extract the local
subtle information of the feature map.

+e output features of the two branches can be expressed
as

G (X) � d BN[PWConv2[d[BN[PWConv1[GAP(X)]]]]]{ },

L (X) � d BN[PWConv2[d[BN[PWConv1(X)]]]]{ },

(1)

where ΒN represents batch normalization operation and d

represents LeakyReLU activation function.
After output features L(X) and G(X) of the two

branches are fused by matrix bitwise addition operation, the
fusion feature F(X) is obtained by the sigmoid activation
function, which can be described by the following formula:

F(X) � G(X)⊕L(X). (2)
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Figure 1: +e basic structure of convolutional neural network [25].
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+e features of different scales are merged by F(X). In
this way, the weight of each channel in the feature map is
recalibrated. +e model can learn the weight coefficient of
each channel in the global feature and the weight coefficient
of each channel in the local feature, respectively.

Finally, the mask F(X) and the input feature map X are
processed by matrix bitwise multiplication operation, and the
output feature map X′ is obtained. +e formula is as follows:

X′ � X⊗ σ(F(X)) � X⊗ σ[(L(X)⊕G(X))], (3)

where σ represents Sigmoid activation function.
After the input feature map is processed by the PCAF

module, the network can learn more important information
in a targeted manner, ignoring the secondary information.

4. MCFF-NET

Based on the PCAF module, three convolutional neural
networks with different depths are proposed: Multiscale
Channel Feature Fusion Network (MCFF-Net), as shown in
Table 1. When calculating the network depth in Table 1, a
PCAF module is recorded as one layer, and the depth of the
classifier in MCFF-Net is uniformly recorded as one layer.
+e “Conv” structure in Table 1 can be expressed as a
composite structure including “convolution,” “batch nor-
malization”, and “ReLU activation function.” +e value after
“Conv” represents the number of channels corresponding to
the structure. +e network diagram is shown in Figure 3.

In traditional convolutional neural networks such as
AlexNet [22] and VGGNet [14], three fully connected layers (3
full connection layer, 3-FC) are used as classifiers. +is can
increase the nonlinear expression ability of network, accom-
panied by a large amount of memory occupation and high
calculation overhead, which has caused a substantial increase in
the amount of network parameters. In order to reduce the
network parameters, our network uses a fully connected layer
(1-FC) as the classifier to convert the computational overhead
of the image recognition task to the convolutional layer, which
reduces the burden of the fully connected layer.

Due to the extremely large number of features output by
the convolutional layer, one fully connected layer as a
classifier will cause excessive parameters. +erefore, we first
reduce the output feature map size of the convolutional layer
to 1× 1 through the GAP operation and then classify
through the fully connected layer, which greatly reduces the
amount of parameter of the network model. “GAP-FC” is
used to represent this structure.

Besides, 1× 1 point convolution is considered to be
inserted in front of the GAP structure, reducing the dimen-
sionality of the output feature map at the end of the network.
+e classifier designed under this idea has nothing to do with
the fully connected layer, thereby further reducing the amount
of parameter. “Conv1-GAP” is used to represent this structure.

When using different depth networks and different
classifiers to recognize CXR images, there are differences
among the amount of parameter and calculation of the
network. Take the 4-class classification task as an example,
and suppose the output feature map size of the last

convolutional layer in the network is H × W × D. When
using a fully connected layer “1− FC” as the classifier, the
parameter of the network is 4 × H × W × D + 4. When the
“GAP-FC” structure is used as the classifier, the parameter of
the network is D + D × 4 + 4. When the “Conv1-GAP”
structure is used as the classifier, the parameter of the
network is H × W × 4 + D × 4 + 4. When MCFF-Nets with
different depths use different classifiers, the parameters are
shown in Figure 4. Comparison of floating point of oper-
ations (FLOPs) is shown in Figure 5.

From Figure 4, the sort of classifier has great influence on
the network parameters. In the case of the same network
depth, the networks using the “1− FC” classifier are obviously
larger than those using other classifiers. +erefore, using the
“1− FC” classifier should be avoided as much as possible
under the premise of ensuring the classification accuracy. In
addition, the network depth also has a huge impact on the
amount of network parameters. +e parameters of MCFF-
Net134-GAP-FC are 3.90 times that of MCFF-Net50-GAP-
FC, and the parameters of MCFF-Net134-GAP-FC are 1.26
times that of MCFF-Net66-GAP-FC.

According to Figure 5, the computational cost is mainly
determined by the depth of network. MCFF-Net134 is very
computationally intensive. Compared with MCFF-Net66,
MCFF-Net134 has a FLOPs increase of 94.87%. MCFF-
Net66 has an increase of 53.18% compared to MCFF-Net50.
Compared with MCFF-Net66, MCFF-Net134 has an in-
crease of 194.87%, which is the largest increase in calcula-
tions. In conclusion, when there is no notable difference in
recognition accuracy, in order to save computational cost,
MCFF-Net66 has the highest cost performance.

5. Experiments and Results

5.1.Datasets. Since COVID-19 is a new type of disease, there
is a lack of datasets suitable for this study. In this paper, we

Table 1: MCFF-Net configuration.

MCFF-Net50 MCFF-Net66 MCFF-Net134
Conv7× 7-64, stride 2

3× 3 maxpooling, stride 2
Conv3× 3-64

×3

Conv1× 1-64

×3

Conv1× 1-64

×3Conv3× 3-64 Conv3× 3-64 Conv3× 3-64
PCAF-64 Conv1× 1-256 Conv1× 1-256

PCAF-256 PCAF-256
Conv3× 3-128

×4

Conv1× 1-128

×4

Conv1× 1-128

×4Conv3× 3-128 Conv3× 3-128 Conv3× 3-128
PCAF-128 Conv1× 1-512 Conv1× 1-512

PCAF-512 PCAF-512
Conv3× 3-256

×6

Conv1× 1-256

×6

Conv1× 1-256

×23Conv3× 3-256 Conv3× 3-256 Conv3× 3-256
PCAF-256 Conv1×1-1024 Conv1×1-1024

PCAF-1024 PCAF-1024
Conv3× 3-512

×3

Conv1× 1-512

×3

Conv1× 1-512

×3Conv3× 3-512 Conv3× 3-512 Conv3× 3-512
PCAF-512 Conv1× 1-2048 Conv1× 1-2048

PCAF-2048 PCAF-2048
Average pooling
Classifier, softmax
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have constructed a dataset by collecting CXR images from
public image databases.

In order to further evaluate the generalization perfor-
mance of the MCFF-Net, a 4-class dataset has been con-
structed. Dataset collects CXR images from five different
public databases. +ese databases are (1) Actualmed-
COVID-chestxray-dataset [29]; (2) COVID-19 Radiogra-
phy Database [30]; (3) Figure 1-COVID-chestxray-dataset
[31]; (4) Pneumonia Virus vs. Pneumonia Bacteria [32];
and (5) Chest X-ray Image [33]. Dataset contains four
classes of CXR images, namely, COVID-19, normal, bac-
terial pneumonia, and viral pneumonia, totaling 5,985
images. +ere are 5300 images in training sets, including
800 COVID-19 patient images, 1300 normal images, 1600
viral pneumonia images, and 1600 bacterial pneumonia
images. +ere are 741 images in the test sets, including 142
images of COVID-19 patients, 200 normal images, 202
bacterial pneumonia images, and 197 viral pneumonia
images.

+e eight sample images from the dataset that we have
established are shown in Figure 6.

5.2. Experimental Setup. +e experiments are carried out on
the same platform and environment to ensure the credibility
of the comparison results between different network models.
Table 2 shows the software and hardware configuration
information of the experimental platform. +e batch size of
the training set and the test set is both 16.

+e learning rate annealing algorithm is introduced in
the training process, and a larger learning rate is used in the
initial stage of training. As the number of iterations in-
creases, the learning rate is gradually reduced. +is algo-
rithm can avoid large fluctuations of classification accuracy
in the later stage of training, so as to get closer to the optimal
solution. After repeated experiments, we finally adjusted the
parameter settings as follows: the initial learning rate is set to
0.001. Since the first 50 epochs, the learning rate decays twice
as much as before and then decreases by 2 times every 50
epochs. A total of 300 epochs are used for training. In order
to evaluate the performance of the model more objectively,
we take the recognition accuracy of the last 10 epochs on test
set to calculate the average value, which is used as the final
classification accuracy.

5.3. Evaluation Criteria. In this section, we will explain the
evaluation indicators used to quantify the classification
performance of the network: accuracy, precision, sensitivity,
specificity, and F1-score. In order to represent the above
indicators, we also need to count the four numbers in the
confusion matrix: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN).

5.4. Experimental Results andDiscussion. In order to further
verify the generalization ability of MCFF-Net66-Conv1-
GAP in the CXR image recognition task, we increase the
difficulty of the classification task and use the model to
conduct experiments on dataset with four classes of CXR
images. +e training period is 300 epochs, which is divided
into 6 stages, each with 50 epochs. We take test set recog-
nition accuracy of the last 5 epochs in each stage and cal-
culate the average value as the experimental result of the
corresponding stage. Figure 7 shows the 4-class confusion
matrix of MCFF-Net66-Conv1-GAP. Figure 8 shows the
overall accuracy of MCFF-Net66-Conv1-GAP in each stage
of the 4-classification experiment.

According to Figures 7 and 8, the overall accuracy of the
four classification tasks of MCFF-Net66-Conv1-GAP rea-
ches 94.6%, showing that the MCFF-Net has excellent
classification performance in CXR image recognition tasks.
In the discussion of Introduction, we briefly described a
variety of COVID-19 detection methods proposed by
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researchers from various regions of the world. Some models
are suitable for 2-class classification, and some models are
suitable for multiclass classification. Hence, the model
MCFF-Net66-Conv1-GAP is compared with the methods of
Khan [17], Hussain [19], Mangal [34], and Joshi [35]. +e
comparison results are shown in Table 3.

According to Table 4, our proposed network model
MCFF-Net66-Conv1-GAP can efficiently help classify CXR
images of COVID-19-positive patients, normal, and ordi-
nary pneumonia patients. What is more, the overall accu-
racy, sensitivity, specificity, and F1-score of COVID-19
images have reached 100%.

+e various methods in Table 3 use different numbers of
CXR images from different data sources for training. +e
number of images used for training is shown in the fourth
column.When there are four values in the number of images
column, then the first value indicates the number of
COVID-19 images, the second value indicates the number of
viral pneumonia images, the third value indicates the

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6: Chest X-ray images. (a) COVID-19, (b) COVID-19, (c) normal, (d) normal, (e) pneumonia—bacteria, (f ) pneumonia—bacteria,
(g) pneumonia—viral and (h) pneumonia—viral.

Table 2: Experimental platform configuration.

Attributes Configuration information
Operating
system Ubuntu 18.04.5 LTS

CPU Intel (R) Xeon (R) silver 4214 CPU@ 2.20GHz
GPU GeForce RTX 2080
CUDNN CUDNN 7.5.0
CUDA CUDA 10.0.130
Frame Fastai
IDE PyCharm
Language Python
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number of bacterial pneumonia images, and the fourth value
indicates the number of normal images. “N/A” indicates an
item of information that is not disclosed in the above-
mentioned documents.

Compared with other methods, we have used the largest
number of COVID-19 images to train our MCFF-Net model
and have got 94.66% classification accuracy in the 4-class
recognition task, which are higher than other methods in
Table 3. +is shows that the MCFF-Net has better perfor-
mance in CXR image classification tasks.

5.5. Experimental Analysis. According to the experimental
results in Section 5.4, we can find that, in the 4-class clas-
sification experiments, MCFF-Net66-Conv1-GAP has been
chosen to conduct a 4-class classification experiment. +e
experimental results are compared with other existing
methods. +e overall accuracy of the 4-class classification
experiment is 94.66%. In conclusion, the overall perfor-
mance is better than other existing methods.

+rough experimental analysis, it can be seen that, in the
CXR image classification task of COVID-19, the network
depth should be kept moderate. If the network is too shallow,
it is hard to fully extract the feature information. If the
network is too deep, while greatly increasing the amounts of
parameters and calculations, it is also likely to overfitting and
gradient explosion problems.

Because CXR images have high similarity between
classes and low intraclass variability, it is easy to cause model
deviation and overfitting, which increases the difficulty of
image classification tasks. +erefore, this paper designs a
PCAF module, which is composed of two parallel branches,
and includes “GAP” and “PWConv” structures. After the
input feature map is processed by the PCAF module, the
output feature map will both have global and local infor-
mation in the image, which improves the feature extraction
capability of the network.

6. Conclusions

In this paper, a Parallel Channel Attention Feature Fusion
(PCAF) module is designed according to the characteristics

of CXR images. And based on this module, a new con-
volutional neural network structure MCFF-Net is proposed
to classify CXR images in order to diagnose and detect
COVID-19 cases. +rough the analysis and comparison of
the experimental results, we believe that MCFF-Net66-
Conv1-GAP has the highest application value. +e overall
accuracy of the 4-class classification experiment and the
COVID-19 image recognition accuracy have reached 94.66%
and 100%, respectively. Despite the fact that good results
have been achieved, MCFF-Net still needs clinical research
and testing. We will overcome the limitations of hardware
conditions and train the MCFF-Net with a larger dataset to
further improve its classification accuracy.
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In the field of electronic countermeasure, the recognition of radar signals is extremely important. )is paper uses GNU Radio and
Universal Software Radio Peripherals to generate 10 classes of close-to-real multipulse radar signals, namely, Barker, Chaotic,
EQFM, Frank, FSK, LFM, LOFM, OFDM, P1, and P2. In order to obtain the time-frequency image (TFI) of the multipulse radar
signal, the signal is Choi–Williams distribution (CWD) transformed. Aiming at the features of the multipulse radar signal TFI, we
designed a distinguishing feature fusion extraction module (DFFE) and proposed a new HRF-Net deep learning model based on
this module. )e model has relatively few parameters and calculations. )e experiments were carried out at the signal-to-noise
ratio (SNR) of −14 ∼ 4 dB. In the case of −6 dB, the recognition result of HRF-Net reached 99.583% and the recognition result of
the network still reached 97.500% under −14 dB. Compared with other methods, HRF-Nets have relatively better generalization
and robustness.

1. Introduction

)e external electromagnetic environment is becoming
more and more complex, which brings severe challenges to
electronic reconnaissance and electronic countermeasures
systems. In the process of electronic countermeasures, the
rapid and accurate identification of intercepted signals can
give priority to the right to control information. However,
the intercepted enemy signal is not only a single pulse signal,
but also a multipulse signal, so the identification of multi-
pulse is also extremely important.

Traditional radar signal recognition technology usually
uses pulse description words (PDW) to match conventional
parameters and designs feature extraction algorithms and
classifiers for recognition. Wenqiang Zhang et al. [1]
designed a TPOT-LIME algorithm, which can recognize
radar signals frommultiple aspects. Krzysztof Konopko et al.
[2] used Wigner–Ville distribution to perform time-fre-
quency analysis on the signal, then used a probability density
function estimator to extract feature vectors, and finally used
a statistical classifier to recognize radar signals. )e

recognition accuracy is better, but the recognized signal
classes are less. Jian Guo et al. [3] designed an FCBF-
AdaBoost algorithm to identify radar signals and achieved
good results. Qiang Guo et al. [4] designed a method that
combines the main ridge slice and cloud model and con-
structed a feature vector for radar signal recognition, which
has a high recognition rate. Jingchao Li and Ying [5]
designed an entropy feature algorithm. )e algorithm de-
scribed the distribution features of different classes of radar
signals by extracting odd-spectrum Shannon entropy and
odd-spectrum exponential entropy features and had a higher
recognition rate under low SNR.

However, with the increasingly serious external inter-
ference, the signal features are easily submerged by external
interference. )e traditional radar signal recognition
method also needs to carry out complex feature design,
which is difficult to achieve high recognition results. With
the development of deep learning, Convolutional Neural
Networks (CNNs) have been widely used. )e network is
widely used in image classification, semantic segmentation,
target detection, and other directions. Muqing Zhang et al.
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[6] designed an algorithm based on stacked autoencoders
and support vector machines (SVM). )is method obtained
the time-frequency diagram of radar signals through
Choi–Williams distribution, then used stacked autoencoders
to automatically extract features, and finally completed
signal recognition through SVM. Shunjun Wei et al. [7]
designed a new type of network combining shallow CNN,
LSTM, and deep DNN, which has a good recognition effect
on a variety of radar signals. Li ji et al. [8] proposed an IIF-
Net deep learning model, which achieved good recognition
effect under low SNR. Guo, Limin et al. [9] designed an
improved AlexNet network, and through time-frequency
analysis of the signal, the overall recognition rate is higher
under low SNR. Yihan Xiao et al. [10] designed a feature
fusion algorithm, combined with an improved CNN, and got
better recognition results.

In this paper, GNU Radio, USRP N210, and USRP-LW
N210 are used to generate close-to-real radar signals with
high reliability. 10 classes of multipulse radar signals are
generated between −14 and 4 dB in SNR, namely, Barker,
Chaotic, EQFM, Frank, FSK, LFM, LOFM, OFDM, P1, and
P2. Various signals through the CWD are used to generate
two-dimensional TFIs. Different radar signals TFI have
larger repetitive similar regions, while the distinctive feature
regions are relatively small. In order to solve the above
difficult, this paper designs a distinguishing feature fusion
extraction module (DFFE) and proposes a new high-reso-
lution feature fusion extraction network (HRF-Net) based
on this module.

2. DFFE Module and HRF-Nets

2.1. CNNS. CNNS can extract target features adaptively.
Figure 1 shows its network architecture [11].WangWei et al.
[12] gave a detailed analysis and introduction to CNN. In
semantic segmentation, CNN can extract image features and
achieve image pixel-level classification [13]. In order to
improve the recognition effect, the image can be pre-
processed, such as superresolution reconstruction [14], and
attention mechanism can also be introduced to improve the
performance of the network [15]. AlexNet [16] applies
ReLU, LRN [17], and Dropout [18] at the same time.
Simonyan and Zisserman [19] proposed the 3×3 small
convolution filter in visual geometry group networks
(VGGNets), and the network reached 19 layers. But when
the network has been trained enough, the performance of
the network will decrease instead. Residual net (ResNet) [20]
used skip connections to solve this problem and continued
to increase the depth of the network.

Affected by the ResNet, Huang, Gao et al. [21] designed a
dense connection mechanism that can connect all layers to
each other and achieved reuse feature. Wang et al. combined
DenseNet and MobileNet [22] to design a Dense-MobileNet
[23], which achieved higher recognition rate and reduced the
amount of network parameters and calculations.

2.2. DFFE Module. )e TFIs of different radar signals have
larger repeating similar regions, and the distinguishing

feature regions are smaller. )erefore, this paper designs a
distinguishing feature fusion extraction module (DFFE).
Figure 2 shows its structure.

First, in the spatial dimension, MaxPool and AvgPool are
simultaneously performed on the input feature map. )e
feature map is compressed in the spatial dimension to obtain
two one-dimensional vectors, which, respectively, represent
the channel weight coefficients of the two feature maps.
)en, through the ReLU activation function, the two
channel weight coefficients are added together. A compre-
hensive analysis is performed to highlight the highly cor-
related channels, suppress the irrelevant channels, and focus
on which input channels are more distinguishable. )en, we
use the Sigmoid activation function. Finally, the one-di-
mensional channel weight vector is multiplied by the input
feature map, keeping the input size unchanged, so the
channel weight feature map Out1 is obtained.

In the channel dimension, MaxPool and AvgPool are
performed on Out1. )e channel dimension is compressed
to obtain two two-dimensional spatial weight feature ma-
trices, which are stitched together according to the channel
dimension. A feature map with 2 channels is obtained. After
that, Conv7 is used for convolution operation. )en, Sig-
moid function is used for activation to obtain a compre-
hensive two-dimensional spatial weight feature matrix. It
emphasizes the spatial position of high correlation and
weakens the spatial position of less correlation, focusing on
which areas of the input image are more distinguishable.
Finally, the obtained two-dimensional feature matrix is
multiplied with Out1, keeping the input size unchanged, so
the featuremap Out2, which is more distinguishable in space
and channel, is obtained.

As the network deepens, problems such as image
information loss and network degradation will occur.
Adding skip connections can solve these problems.
)erefore, we add the obtained feature map Out2 to the
original input feature map “Base.” And after the acti-
vation function ReLU, we obtain the feature map Out3
with complete information and more spatial and channel
resolution. Next, we perform multiscale feature extrac-
tion on Out3 by using “Conv7,″ “Conv5,″ “Conv3,″ and
“Conv1,″ respectively. Larger convolution kernels have
larger receptive fields and strong semantic information
representation ability. Smaller convolution kernels have
smaller receptive fields, strong geometric detail infor-
mation representation ability, and high resolution.
)erefore, a variety of sizes of convolution kernels are
used to perform feature fusion extraction on Out3, so the
high-resolution features are obtained.

2.3. HRF-Nets. Based on the DFFE module, we propose
three deep convolutional neural network structures, namely,
high-resolution feature fusion extraction networks (HRF-
Nets), which are HRF-Net157, HRF-Net187, and HRF-
Net217. Among them, C-[MaxPool, AvgPool] represents the
compression of the image spatial dimensions to obtain a
feature map with channel weight coefficients. S-[MaxPool,
AvgPool] means compressing the image channel dimensions
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to obtain a feature map with spatial weight coefficients.
Table 1 is the network structure.

)e field of radar electronic countermeasures has high
requirements for time delay, so the network needs smaller
computational costs. Many classic CNNs use three-layer
fully connected layers such as AlexNet and VGGNets,
which have a high computational cost and take a long

time. )erefore, this paper first adopts the Global Average
Pooling (GAP) [24] and then uses single-layer full con-
nection, which obviously reduces the calculation cost and
makes the network have relatively high real-time
performance.

2.4.NetworkComplexity. )e classifier occupies a large part of
the calculation and parameter amount in the network, and the
difference of the classifier greatly affects the performance and
calculation cost of the network. In this paper, 10 classes of
multipulse radar signals are recognized. Assuming that the
output of the last layer of the network is H × W × D. )e
parameter amount of using three-layer full connection as the
classifier is 16, 818, 184 + 4096 × H × W × D, the parameter
amount of using single-layer full connection is
H × W × D × 10 + 10, and the parameter amount of using
GAP is D + D × 10 + 10.

Figure 3 shows the amount of parameters for different
networks, and Figure 4 shows the amount of calculation.

According to Figure 3, it can be seen that when the network
depth gradually increases, the amount of network parameters of
the same type is gradually increasing, indicating that the net-
work depth affects the size of the parameter amount to a certain
extent. )e three-layer fully connected layer is the classifier of
VGGNets.)eHRF-Nets classifier uses GAP plus a single-layer
fully connected. Although the VGG13 network has only 13
layers, its parameter quantity is 4.18 times that of HRF-Net157,
3.64 times that of HRF-Net187, and 3.16 times that of HRF-
Net217. )erefore, the classifier is a key factor affecting the
amount of network parameters. )e parameters of SKNet152,
SEnet152, and ResNet152 are larger than those of HRF-Net157.
)e parameter of ResNet152 is 1.89 times that of HRF-Net157,
which has more parameters of about 28.37 million.

According to Figure 4, it can be seen that theVGGNets have
a huge amount of calculation.)e 13-layer VGG network has a
floating point calculation amount of 11.321 billion, which is 1.56
times that of the 157-layer HRF-Net. Compared with the
ResNet152, HRF-Net157 has a deeper depth. But the calculation
of ResNet152 is 1.59 times that of HRF-Net157, which has an
increase of 4.309 billion. )is is because ResNet152 uses a large
number of convolutional layers. Without considering the bias,
the calculation amount of the convolutional layer is
(2∗Cint ∗K2 − 1)∗Cout ∗Hout ∗Wout. HRF-Nets havemany
pooling layers, and the calculation amount of the pooling layer
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is K2 ∗Cout ∗Hout ∗Wout. )erefore, HRF-Net157 has a
smaller amount of calculation than ResNet152. )e calculation
amount of HRF-Net217 is 30.32% more than that of HRF-
Net157, and the calculation amount of HRF-Net187 is 15.21%
more than that of HRF-Net157. Radar electronic counter-
measure system requires low delay, especially in small devices
such as missiles. )e memory is insufficient, and the hardware
conditions do not support too many parameters and calcula-
tions.)eHRF-Net157 is relatively small in terms of parameters
and calculations. )erefore, when the recognition result of the

signal differs slightly, HRF-Net157 has the highest cost per-
formance and is a better choice.

3. Experimental Results

3.1. Dataset. In this paper, the multipulse radar signal is
generated by GNU Radio USRP N210, and USRP-LWN210.
When we intercept the enemy signal, our interception
should be amultipulse signal.)erefore, this paper generates
a multipulse radar signal with 4 pulses. Because of the
different distribution of noise, the signals between radar

Table 1: HRF-Nets configurations.

HRF-Net157 HRF-Net187 HRF-Net217
Conv7-64, stride:2

3×3Maxpool, stride:2
Conv1-64

×3

Conv1-64

×3

Conv1-64

×3

Conv3-64 Conv3-64 Conv3-64
C-[MaxPool, AvgPool] C-[MaxPool, AvgPool] C-[MaxPool, AvgPool]
S-[MaxPool, AvgPool] S-[MaxPool, AvgPool] S-[MaxPool, AvgPool]
Conv7-64 Conv7-64 Conv7-64
Conv1-256 Conv1-256 Conv1-256
DFFE-256
Conv1-128

×7

Conv1-128

×8

Conv1-128

×8

Conv3-128 Conv3-128 Conv3-128
C-[MaxPool, AvgPool] C-[MaxPool, AvgPool] C-[MaxPool, AvgPool]
S-[MaxPool, AvgPool] S-[MaxPool, AvgPool] S-[MaxPool, AvgPool]
Conv7-128 Conv7-128 Conv7-128
Conv1-512 Conv1-512 Conv1-512
DFFE-512
Conv1-256

×10

Conv1-256

×14

Conv1-256

×19

Conv3-256 Conv3-256 Conv3-256
C-[MaxPool, AvgPool] C-[MaxPool, AvgPool] C-[MaxPool, AvgPool]
S-[MaxPool, AvgPool] S-[MaxPool, AvgPool] S-[MaxPool, AvgPool]
Conv7-256 Conv7-256 Conv7-256
Conv1-1024 Conv1-1024 Conv1-1024
DFFE-1024
Conv1-512

×3

Conv1-512

×3

Conv1-512

×3

Conv3-512 Conv3-512 Conv3-512
C-[MaxPool, AvgPool] C-[MaxPool, AvgPool] C-[MaxPool, AvgPool]
S-[MaxPool, AvgPool] S-[MaxPool, AvgPool] S-[MaxPool, AvgPool]
Conv7-512 Conv7-512 Conv7-512
Conv1-2048 Conv1-2048 Conv1-2048
Classifier, Softmax
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Figure 3: Parameters for different networks.
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pulses are not exactly the same. In order to obtain the TFI of
the radar signal, the signal is CWD transformed. Different
from SAR image [25] and high-resolution radar target image
[26], TFI has high definition, which is good for signal
recognition.

Different time-frequency analysis algorithms have dif-
ferent characteristics. Among them, Gabor transform lo-
calizes time and frequency at the same time, which can better
describe the transient structure in the signal. Its time-fre-
quency resolution is completely determined by the Gaussian
window. )e Wegener–Wiley distribution (WVD) is to
distribute the energy of the signal in the time-frequency
plane. It has a good time-frequency focus. Affected by the
interference of the cross term, its various smoothing im-
provement methods can reduce the cross-term interference
but reduces the time-frequency focus.

In order to improve the recognition rate of the signal, we
need high-resolution images. )e CWD has the character-
istics of minimal cross-term interference and has high
definition and resolution for different signals. )e radar
signal data set in this paper contains 10 classes of signals.
)ere are 2880 TFIs for each class of signal. We add
Gaussian white noise to the signal. In the SNR of −14 ∼ 4 dB,
there are a total of 28800 samples, including 21,600 in the
training set and 7,200 in the test set. Figure 5 is the TFI after
the signal passes through the CWD.

According to Figure 5, it can be seen that different radar
signals TFI have a large number of repeated similar regions,
while the regions of distinguishing features are relatively
small. )erefore, this paper designs a DFFE module, which
can focus on extracting regional features with strong res-
olution and achieve the purpose of improving the signal
recognition rate.

3.2. Preprocessing and Experiment Setup. In the process of
data preprocessing, we downsample the image, and the
resolution is fixed to 224∗224. )en, the data is expanded,
and the image is randomly flipped horizontally, vertically
flipped randomly, and rotated 90° randomly. Data expansion
increases the complexity of the image and improves the
performance of the network. USRP N210 and USRP-LW
N210 are hardware devices for signal generation. Among
them, its ADC Sampling Rate is 100MS/s, DAC Sampling
Rate is 400MS/s, and LO accuracy is 2.5 ppm.

In the experiment, we set some parameters. Among
them, the bandwidth of the signal is 4MHZ, the batch size is
16, the initial learning rate is 0.001, the weight decay is 5e-4,
and the momentum is 0.9.)e experiment is conducted for a
total of 60 cycles, and the final results are the average of the
last 10 cycles.)e training and testing process of the network
is implemented on the server. Among them, we use the
PyTorch framework. Its operating system is Ubuntu 14.04.5
LTS, GPU is GeForce GTX TITAN X, and CUDA is CUDA
8.0.61.

3.3. Experimental Results. In this paper, we add noise to the
signal to keep the SNR at −14 ∼ 4 dB. )en, we generate
more realistic multipulse radar signals through GNU Radio

and USRP N210, USRP-LW N210. We use HRF-Net with
different depths to identify multipulse radar signals. Figure 6
shows the experimental results.

According to Figure 6, when HRF-Nets have a SNR of
-8 dB, the network recognition results are all over 99%.
When HRF-Nets are at a SNR of -14 dB, noise interference
has already had a great impact on the signal. However, the
recognition result of the network still exceeds 97%, which
shows that the HRF-Nets network has good robustness. )e
recognition rate of HRF-Net157 is slightly lower (within 1%)
than that of the other two networks. It indicates that as the
network deepens, its signal feature extraction ability has
approached saturation, and the signal recognition rate has
not improved significantly. HRF-Net217 and HRF-Net187
have more parameters by 32.46% and 14.93% than HRF-
Net157, and more calculations by 30.32% and 15.21% than
HRF-Net157. It can be seen from Figure 6 that the recog-
nition result of HRF-Net217 is the best. Compared with
HRF-Net157, the recognition rate is improved by no more
than 1%, but the computational cost of the network has
increased obviously. )rough comprehensive analysis, we
believe that HRF-Net157 has the highest cost performance.
We also compare HRF-Net157 with other CNN networks,
and Table 2 shows the recognition effect.

According to Table 2, the recognition performance of
HRF-Nets is relatively high when the SNR is between -14
and 4 dB. As the electromagnetic environment of the
modern battlefield is becoming more and more complex, the
signal interference is increasing. )e recognition of radar
signals under low SNR is of greater significance, and its
recognition is more difficult. In the case of −14 dB, the
recognition result of HRF-Net157 is about 7% higher than
that of VGGNets, and the calculation cost of VGGNets is too
high, and the delay is long. )erefore, the VGGNets cannot
be applied to the field of low delay radar electronic
countermeasures.

In the recognition results of 10 multipulse radars, HRF-
Net157 is about 2% higher than ResNet152, SEnet152, and
SKNet152. It is 2.418% higher than ResNet152, while the
calculation and parameter amount of HRF-Net157 are
relatively small. Although ResNet152 uses skip connections,
it maintains information integrity. However, the TFI dis-
tinguishing feature area of the multipulse radar signal is
small, and the repetitive area is large. When ResNet152
extracts image features, it performs the same processing on
the image globally and has no specificity to the distinctive
feature area. )e DFFE module focuses on extracting high-
resolution regional features of the image, improves the
recognition effect of the network, and enhances
generalization.

Table 3 shows the comparison result of HRF-Net157
with other methods, and it can be seen that the CLDNN
network has a better recognition result at a SNR of over
−8 dB, reaching more than 90%, but when SNR is within the
range of −14∼ −8 dB, its recognition rate is relatively poor.
HRF-Net157 has a better recognition rate at −14 dB. )e
comprehensive recognition rate of HRF-Net157 is still as
high as 97.5%, indicating that HRF-Net157 can still fully
extract image features under low SNR, so it has strong anti-
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interference ability and good robustness. FCBF-AdaBoost
adopts traditional feature selection and classifier design,
which has a good recognition rate under the condition of less
interference. But it is mostly for a certain class of image
recognition. In a multitask and low SNR environment, its
recognition rate is relatively poor. CNN-KCRDP, AlexNet,
and I–CNN all combine deep learning to recognize images
to a certain extent and can adaptively extract image features.
)eir recognition rates are not much different from HRF-
Net157 when SNR is above −6 dB. But, in the case of more
serious interference, the signal features are submerged by
noise. HRF-Net157 can extract more distinguishable fea-
tures to a greater extent through the DFFE module.
)erefore, when the interference is large, a better recogni-
tion effect can still be achieved.

Table 4 shows the recognition results of HRF-Nets for
different signals. In the case of -14 dB, the difference between
the recognition results of the same class of radar signal for
the three depths of HRF-Net is only about 2%. Deepening
the network increases a lot of parameters and calculations,
but the recognition effect is not significantly improved.
Among the 10 multipulse radar signals, the recognition

results of Barker, Chaotic, Frank, OFDM, FSK, LFM, EQFM,
and LOFM in HRF-Nets all reached more than 94%. )e
recognition effects of P1 and P2 are relatively poor, around
90%, and the fluctuation is large. We choose HRF-Net157
with the best cost performance and generate a confusion
matrix at −14 dB for further analysis.

According to Figure 7, it can be seen that the classes of
errors identified in P1 are all P2. Among the 6 errors of P2, 5
are P1. According to Figure 5, it can be seen that the TFI of
P1 and P2 has a certain degree of similarity. In the case of
−14 dB, the interference of noise has largely covered the
features of the image, making the similarity of P1 and P2
increase, and further improved the difficulty of identifica-
tion. However, the recognition rate of P1 and P2 still reaches
about 90%. )e HRF-Nets proposed in this paper can focus
on extracting high-resolution image features for images with
small distinguishing regions and obtain better recognition
results. )e comprehensive recognition rate of HRF-Net157
under -14 dB reached 97.500%.

3.4. Experiment Analysis. In this paper, three depths of
HRF-Net are proposed, namely, HRF-Net157, HRF-Net187,
and HRF-Net217. According to the experimental results, the
recognition rate of the signal is more than 99% when SNR is
above -6 dB. In the case of −14 dB, the recognition results of
the network also reached 97.500%. With the increase of
network depth, the difference in recognition rate of HRF-
Net157, HRF-Net187, and HRF-Net217 is only within 1%,
but the computational cost has increased obviously. Taking
into account comprehensive considerations, we believe that
HRF-Net157 is the most cost-effective. In the process of
comparing with other CNNs, it is found that the recognition
rate of HRF-Net157 between −14 dB and −6 dB is higher
than other CNNs, which is more obvious in the case of low
SNR. When comparing with other methods, it is found that
the recognition results of HRF-Net157 are better than other
methods under the condition of −14 dB. When compared
with other methods, it is found that the signal recognition
rate of HRF-Net157 is higher than other methods under the

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 5: TFIs of 10 multipulse radar signals. (a) Barker, (b) Chaotic, (c) EQFM, (d) Frank, (e) FSK, (f ) LFM, (g) LOFM, (h) OFDM, (i) P1,
and (j) P2.

97.5

98.056

98.611

99.167

99.583

100 100 100 100 100

97.2

97.6

98

98.4

98.8

99.2

99.6

100

–14 –12 –10 –8 –6 –4 –2 0 2 4

Ac
cu

ra
cy

 (%
)

SNR (dB)

HRF-nets recognition accuracy

HRF-Net157
HRF-Net187
HRF-Net217

Figure 6: HRF-Nets recognition accuracy at different depths.

6 Computational Intelligence and Neuroscience



Table 3: Recognition results of other methods (%).

Methods −14 −12 −10 −8 −6 −4 −2 0 2 4
CLDNN [7] 46 66 83 92 97 98 99 100 100 100
CNN-KCRDP [27] — — 88 94 97 98 100 100 100 100
AlexNet [9] — — 82 89 92 93 96 99 100 100
I-CNN [28] — — 55 80 96.10 — 100 100 100 100
FCBF-AdaBoost [3] — — — — — — — 94.46 96.86 98.75
HRF-Net157 97.500 98.056 98.611 99.167 99.583 100 100 100 100 100

Table 4: HRF-Nets recognition results of different signals (−14 dB) (%).

Signal HRF-Net157 HRF-Net187 HRF-Net217
Barker 98.611 100 100
Chaotic 100 100 100
EQFM 97.222 100 98.241
Frank 100 97.536 100
FSK 100 100 100
LFM 100 100 100
LOFM 94.444 96.538 96.524
OFDM 100 98.564 100
P1 87.500 89.536 89.422
P2 93.056 92.467 91.362
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Figure 7: Confusion matrix of HRF-Net157(-14 dB).

Table 2: Recognition results of different networks (%).

SNR (dB) ResNet152 SENet152 SKNet152 VGG13 VGG16 VGG19 HRF-Net157
−14 95.082 95.253 95.535 89.268 90.366 90.851 97.500
−12 96.374 96.862 97.134 91.423 93.514 93.735 98.056
−10 97.746 98.254 98.481 93.526 94.316 95.242 98.611
−8 98.356 98.426 98.768 95.628 96.211 97.522 99.167
−6 99.161 99.287 99.442 98.254 98.856 99.082 99.583
−4 100 100 100 99.142 99.627 99.855 100
−2 100 100 100 100 100 100 100
0 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100
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condition of −14 dB. It has better robustness. In the case of
−14 dB, HRF-Nets also have a good recognition effect on
different classes of radar signals.

According to the TFI of the multipulse radar signal,
we can see that the similarity area between different
images is larger, and the distinguishing area is smaller.
)erefore, when extracting image features, the
importance of different areas of the image should be
considered, focusing on extracting more distinguishable
regional features. )e network depth should be kept
moderate. )e image features cannot be fully extracted if
the network is too shallow. )e recognition rates of
networks have not changed significantly when the net-
work is too deep. )ere may also be network degradation
problems, and the amount of parameters and calculations
will increase significantly. )e use of skip connections can
maintain the integrity of image information.)e classifier
uses GAP followed by a single-layer full connection,
which can greatly reduce the computational cost of the
network. )e DFFE module designed in this paper can
perform distinguishing feature fusion extraction of im-
ages. First, Maxpool and Avgpool are used to compress
the spatial dimensions to obtain feature maps with
channel weights. )en, Maxpool and Avgpool are used to
compress the channel dimensions, and the spatial weight
feature map is obtained. Finally, the features of images are
extracted by multiscale fusion through Conv1, Conv3,
Conv5, and Conv7 to obtain high-resolution features and
improve the signal recognition rate.

4. Conclusions

In this paper, we use GNU Radio, USRP N210, and USRP-
LW N210 to generate close-to-real multipulse radar signals
and then perform CWD transformation on the echo signal
to get TFI. Aiming at the features of the multipulse radar
signal TFI, a DFFE module is designed, which can perform
distinguishing fusion extraction of image features. Based on
the DFFE module, we proposed three deep CNN structures,
that is, HRF-Net157, HRF-Net187, and HRF-Net217. )e
nets can identify 10 classes of radar signals and have good
generalization. )rough comprehensive comparison, we
believe that HRF-Net157 is the most cost-effective. In the
case of a SNR of −14 dB, there is still a recognition rate of
97.500%, with better robustness and lower computational
cost. In radar systems that require low delay, HRF-Nets have
certain advantages and can be further studied in the areas of
radar interference recognition and radar radiation source
recognition.
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+e digital twin is becoming the most promising emerging technology in the field of unmanned combat and has the potential to
innovate future combat styles. Online battlefield learning is one of the key technologies for supporting the successful application of
digital twin in unmanned combat. Since there is an urgent need for effective algorithms for online learning the battlefield states in
real time, a new random finite set- (RFS-) based algorithm is proposed in the presence of detection uncertainty including clutters,
missed detection, and noises. +e system architecture and operational mode for implementing the digital twin-enabled online
battlefield learning are provided.+e unmanned ground vehicle (UGV) is employed as the experimental subject for systematically
describing the proposed algorithm. +e system architecture for implementing the digital twin-enabled online battlefield learning
is firstly given, and its operational mode is also described in detail.+e RFS-based digital twinmodels including the battlefield state
model, UGV motion model, and sensor model are designed. +e Bayesian inference is adopted, and the probability hypothesis
density (PHD) filter is modified to implement the online learning process. At last, a group of experiments are conducted to verify
the performance and effectiveness of the proposed algorithm. +e research work in this paper will provide a good demonstration
of the application of digital twin in unmanned combat.

1. Introduction

+e adoption of unmanned vehicles brings both great au-
tonomy and new technical challenges to modern warfare.
Unmanned vehicles such as unmanned ground vehicles
(UGVs) hold great promise for future combat operations
and have already been used in several recent military
conflicts in Syria and Afghanistan [1–3]. UGVs are the
vehicles that operate while in contact with the ground and
without a human presence on board. How to feed back the
effective information collected from the real battlefield to the
simulation space and how to enable the benefits of future
paradigms, such as the Cyber-Physical Systems (CPSs) and
digital twin, are big challenges for unmanned combat [4–7].
In this paper, we employ the UGV as the experimental
subject to specify our contributions in implementing digital
twins in unmanned combat.

Due to the data separation between the real battlefield
and its models, it is difficult to achieve the automatic flow of

information in a closed loop. Digital twin provides a new
and effective way to solve this problem. It can enable the
real-time bidirectional interoperability between the real
world and virtual simulation space and is also an effective
way to enable efficient real-time data sharing throughout the
entire operational process including intelligent monitoring,
prediction, digital representation, evaluation, decision
support, and battlefield learning [8–10].

Battlefield refers to the environment constituted by all
the objective factors in the battlespace except the combatants
and weapons. All kinds of combat operations are inseparable
from the specific battlefield. Battlefield has an important
influence on the course and outcomes of combat operations.
Combat entities can receive inputs from and provide outputs
to the battlefield. +e combat intention of the combat entity
is realized through its interaction with the battlefield.

Battlefield learning means sensing the entities on the
battlefield rapidly, understanding the current situation
comprehensively, and predicting future status accurately
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before decision-making [11]. Battlefield learning is impor-
tant for predicting future situations and evaluating the
operational effectiveness of different actions. Battlefield
learning helps to improve the commander’s understanding
of the situation as a whole and form a basis for decision-
making. It is also very important for the commanders’ real-
time monitoring and perception of the dynamic situation
[12].

Based on the classical definition of battlefield learning,
online battlefield learning is the process of perceiving an
existing battlefield and anticipating how it may evolve in the
future. It is useful for obtaining knowledge of the previously
unknown battlefield while the real combat process is pro-
ceeding simultaneously [13]. Online battlefield learning is
also extremely important for generating plans and online
decision support for security patrol [14].

In the military simulation, computer-generated force
(CGF) is the virtual combat force object which is created by a
computer and can control or guide all or part of its action
and behavior [15]. +e core task of constructing CGF is to
model the behavior of combat entities on the battlefield.
Online battlefield learning is one of the key technologies of
CGF and has a broad application prospect. CGF depends on
the online learning battlefield to fuse the data generated by
the sensors in the battlefield and generate the real-time
battlefield states online.

In recent years, the digital twin has become a hot topic, as
well as the representative intelligence in all fields from
military to people’s livelihood [16–19]. Digital twin em-
phasizes that the virtual object evolves in real time by re-
ceiving data from the physical object, thereby keeping
consistent with the physical object throughout its entire
simulation cycle [20, 21]. In a broad sense, the digital twin is
a system composed of physical objects, simulation models,
and the real-time dynamic interaction between them. It
requires building the simulation models for real entities and
simulating their behaviors [22]. It is regarded as the core link
between the real and virtual spaces. With the help of various
high-performance sensors and high-speed communication
technologies, the digital twin can present and predict the
actual situation of physical entities in near real time by
integrating the data of physical entities. It enhances the
ability of analysis and simulation and controls the physical
entities through the virtual-real interactive interfaces and
data fusion algorithms [23]. Key to enable digital twin in
unmanned combat is understanding the evolving situations
in the battlefield accurately and timely.

In this paper, we focus on learning the battlefield states
that consist of significant environmental cues and the UGV
states. In order to explore how to implement the digital twin-
enabled online battlefield learning, we propose a random
finite set- (RFS-) based algorithm which can support real-
time interaction, as well as the deep integration andmutually
beneficial symbiosis between the virtual and real battlefield.
It is the necessary foundation for the successful application
of the digital twin in unmanned combat. Our main con-
tribution is designing and implementing a new online bat-
tlefield learning algorithm by using the RFS-based Bayesian
theory and modifying the probability hypothesis density

(PHD) filter [24]. +e most important value of the proposed
algorithm is to break through the data boundary between the
real and virtual battlefield and enable the application of digital
twin in unmanned combat. +is algorithm can eliminate
information islands and realize the tight integration and equal
interaction of real and virtual battlefield.

+e rest of the paper is structured as follows. A literature
review on the recent digital twin and random finite set (RFS)
is given in Section 2. We present the system architecture and
operational mode of the proposed online battlefield learning
algorithm in Section 3. +e RFS-based battlefield model,
UGV motion model, and sensor model are introduced in
Section 4. +e design and implementation of the learning
process are given in Section 5. Experimental results are
detailed in Section 6, and conclusions are given in Section 7.

2. Related Works

+e digital twin has important research and application
value in every stage of online battlefield learning. In the
design and demonstration stage, the digital twin can help to
improve the evaluation capability of system performance by
enabling the equal two-way interaction between the simu-
lation system and the real system. +rough the semiphysical
simulation, digital twin enhances the ability to quickly locate
the design defect, optimize system design, and test the
practicability of an online battlefield learning algorithm in
execution.

In order to apply the digital twin-enabled online battle-
field learning in the operation stage, it is important to realize
the bidirectional interaction between the simulation space
and the real space. Tao gives the five-dimensional structure
models of digital twin and presents six application principles
[25, 26]. +e digital twin is the best way to realize the in-
teractive integration of real space and simulation space and is
highly concerned by many academics and enterprises. Its
most important breakthrough is that it is not only a mirror
image of the physical world but also accepts real-time data
from the physical world and in turn acts on the physical world
in real time [22, 27]. Digital twin brings new development
opportunities to the combat simulation area, because it can
allow commanders to have a complete digital footprint of the
battlefield from beginning to end [28, 29]. +e real-time
dynamic interaction between the virtual world and the
physical world is the foundation of the digital twin, as well as
the main challenge of modeling and simulation. Some re-
searchers present a digital twin-driven manufacturing cyber-
physical system for parallel controlling of the smart work-
shop. By using the decentralized digital twin models, they
successfully connect cyberspace and physical space.

Online battlefield learning needs autonomy in the op-
eration stage. A decentralized multiagent system is also a
new approach for implementing online battlefield learning,
such as blockchain and CGF. Some researchers have dis-
cussed how to use blockchain to overcome the cybersecurity
barriers for achieving intelligence in Industry 4.0 and in-
troduced eight cybersecurity issues in manufacturing sys-
tems. Some researchers have surveyed the ability of
blockchain for overcoming the barriers and examined the
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literature on the manufacturing system perspective and the
product lifecycle management perspective. Ali et al. pro-
vided a survey of all aspects of multiagent systems, starting
from definitions, features, applications, challenges, and
communications to evaluation. +ey also gave a classifica-
tion on multiagent system applications and challenges along
with references for further studies [30].

RFS provides a novel unified probabilistic way for fusing
real-time battlefield data [31]. +e conventional battlefield
learning algorithms usually depend on the vector-based data
representation and fail to support the digital twin in real
time. +e vector-based representation requires the dimen-
sion and elements’ order in each vector to be equal and fixed.
It also needs necessary operations outside of the Bayesian
recursion to ensure the consistency of the vectors. +e
determination of newly observed measurements and missed
measurements is implementing through vector augmenta-
tion and truncation which are very computationally in-
tensive and irreversible. In this paper, we propose employing
the random set theory to overcome these disadvantages. +e
proposed RFS-based algorithm can overcome the limitations
of conventional algorithms very well, because it takes into
account a more realistic situation where the randomly
varying number of targets and measurements, detection
uncertainty, false alarms, and association uncertainty are all
taken into consideration.

3. System Architecture

With the rapid development of emerging information
technologies, such as artificial intelligence (AI), cloud
computing, edge computing, digital twin, and Internet of
+ings (IoT), the combat style has also been undergoing
profound changes. New information technologies have fa-
cilitated the birth, development, and application of un-
manned combat. Just as it is shown in Figure 1, new
information technologies provide more diverse data sources,
more powerful computing power, and more efficient
computing methods for the key activities of unmanned
combat including description, diagnosis, prediction, and
decision.

+e operational mode of the digital twin-enhanced
online battlefield learning consists of five elements, i.e.,
computing services, physical entities, simulation models,
connected data, and the connection between them. As
shown in Figure 2, digital twin enables the bidirectional real-
timemapping and interaction between real battlefield and its
simulation model. Simulation models of the real combat
entities are employed to reflect and predict their behaviors in
real space. On the other hand, through the RFS-based
battlefield states generated by the online battlefield learning
algorithm, the combat simulation systems could guide the
military commanders to respond to situation changes and
choose the optimal courses of action (COA). Digital twin
realizes the closed-loop optimization in the entire process
from observing, orienting, and deciding to act. +e simu-
lation aspect of digital twin means building digital models of
weapons, soldiers, or battlefield and executing all the models
in an integrated way. +e RFS-based simulation models are

executed in parallel with the real battlefield and provide
useful knowledge to the commanders.

+e battlefield considered in this paper consists of all the
significant environmental cues and the states of UGVs. Since
GPS and topographic map in actual combat are most likely
be disabled, location and mapping for unmanned vehicles
can only be obtained with the help of the equipped sensors.
+e RFS-based online battlefield learning algorithm plays a
central role in the virtual space. It provides simulated bat-
tlefield information to the decision support system to train
the deep learning network system. It can also generate real-
time battlefield information to the unmanned combat
simulation system and helps to evaluate the possible outputs
of available COAs.

For combat simulation, the battlefield provides spatial-
temporal constraints for all participating actors. +e sim-
ulated combat objects are deployed and controlled in the
virtual space. +ey learn the battlefield that consists of other
combat objects and significant environmental cues by using
the proposed algorithm. +e combat simulation system in
the virtual space is used as a decision-making aid tool that
assists the commanders to evaluate all the available COAs. It
is in charge of choosing the optimal COA. +e proposed
online battlefield learning algorithm aims at analyzing and
understanding operational activity in the real space at a
given time. It can help to make the right decision and predict
the future situation. It is the key technology for enabling and
implementing digital twin-enabled online battlefield learn-
ing in unmanned combat.

Corresponding to the operational mode, the system
architecture of digital twin-enabled online battlefield
learning in unmanned combat is shown in Figure 3. +e
runtime infrastructure (RTI) is adopted to provide the
simulation services to support the interconnection and
interoperation for the entities in the real space and the
simulation models in the virtual space. +is system archi-
tecture employs digital twin and RTI to support real-time
interaction between the virtual and real battlefield. By this
means, it can realize the deep integration and mutually
beneficial symbiosis between the virtual and real battlefield.
+e proposed algorithm can synchronously learn the
number and position of the significant environmental cues
(or landmarks) in the battlefield that exist in the sensor’s
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+ +
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Figure 1: +e relationship between new information technologies
and unmanned combat.
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field of view (FoV). It also has the advantages of precise
mapping, virtual-real interaction, stereoperception, intelli-
gent intervention, and other characteristics.

4. RFS-Based Simulation Models

+e digital twin-enabled battlefield modeling consists of
three aspects. +e first one is modeling the battlefield states
including cues (or landmarks). +e second one is modeling
the UGV movement. +e third one is modeling the sensors
equipped on the UGV. In order to overcome the data as-
sociation uncertainty problem under high clutters and
measurement noises, the RFS-based modeling method is
employed to fully integrate data association uncertainty into
battlefield learning. +e key of the proposed algorithm is to
represent the battlefield states by using RFS. +e derivation
of the simulation models depends on RFS. RFS is the theory
proposed by Mahler for implementing RFS in engineering
applications [32]. +e RFS-based models are the twinning
models that are executed in parallel with the real entities and
provide new knowledge about the real battlefield [8, 27].

+e vector-based representation of the battlefield has
been demonstrated to have some mathematical conse-
quences, such as the ordering of significant environmental
cues, data association problems, and element management
problems. In addition, for the dynamic random scene, how
to quantify the errors of the learned results generated by the
vector-based Bayesian inference is also a great challenge.+e
abovementioned problems are usually solved by augmenting
or truncating vectors outside of the Bayesian inference
process. +is will lead to the problem that the Bayesian
optimality can only be achieved on the subset of the bat-
tlefield that is defined in advance. In this section, we give the

RFS-based models which can solve these problems
systematically.

+e difficulty of RFS-based Bayesian inference is its
computational complexity. To solve this problem, Mahler
proposed the PHD (probability hypothesis density) filter.
+e PHD of the posterior probability density fk|k(Xk|Zk) is
denoted by vk|k(x|Zk) and is a density function defined on
the single object state x ∈ X0 as follows:

vk|k x|Zk(  �  fk|k x{ }∪Xk|Zk( δXk. (1)

Here, Zk denotes the RFS of detection received at time k,
and Xk denotes the RFS of states at time k. We use the
abbreviation vk|k(x) � vk|k(x|Zk). In point theory, vk|k(x) is
defined as the intensity density. It is not a probability density
and represents the density of the expected number of points
at x. Given any subspace S of single object state space X0, the
integral Svk|k(x)dx is the expected number of objects in S.

4.1. RFS-Based Battlefield Representation. We adopt the
RFS-based battlefield representation; here, S denotes the RFS
that represents the entire unknown battlefield. In addition,
in order to assist in operational decision-making, we also
relate the battlefield S to the UGV state X. RFS Sk−1, which is
based on the UGV state X0: k−1 � [X0, X1, . . . , Xk−1] at time
k − 1, is used to denote the battlefield that has been explored.
Sk−1 is the RFS of the battlefield states which consists of
significant environmental cues and is the intersection of the
union of all FoVs and the entire battlefield state. +us, Sk−1
can be represented as follows:

Sk−1 � S∩ FoV X0: k−1( . (2)
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Here, FoV(X0: k−1) � FoV(X0)∪ FoV(X1)∪ · · · ∪ FoV
(Xk−1). FoV depends on the UGV states at time k − 1. +e
learned battlefield at time k can be obtained based on Sk−1 in
the following way:

Sk � Sk−1 ∪ FoV Xk( ∩ Sk−1( , (3)

where Sk−1 � S − Sk−1 represents the unexplored battlefield
namely, the set of significant environmental cues that are not
in Sk−1. RFS Bk(Xk) denotes the learned battlefield which has
appeared in the FoV for the first time. +erefore, the bat-
tlefield transition process can be modeled as

fS Sk|Sk−1, Xk(  � 
W⊆Sk

fS W|Sk−1( fB Sk − W|Xk( ,
(4)

where fS(W|Sk−1) denotes the state transition density of
battlefield from time k − 1 to time k, andfB(Sk − W|Xk)

denotes the density of the RFS B(Xk).

4.2. RFS-Based UGV Motion Model. +e location of UGV
can be represented by the state vector X � [x, y, θ]T. +e
UGV motion model characterizes the state transition be-
tween Xk−1 � [xk− 1, yk− 1, θk− 1]

T and Xk � [xk, yk, θk]T af-
ter inputting the control command uk−1. In this paper, we
adopt the following two-dimensional motion model with
translational and rotational displacement:

Xk �

x

y

θ
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + ωk, ωk ∼ (0,Q).

(5)

In this paper, the specific mathematical expression of g is
employed as follows:
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+ ωk.

(6)

Here, ωk is used to represent the uncertainty and noise,
and uk−1 � [tk− 1, ck− 1]

T is the control command that UGV
received at time k − 1.

4.3. RFS-Based Sensor Model. Given the current UGV state
RFS Xk and the battlefield RFS Sk, the detection RFS can be
described as follows:

Zk � 
s∈Sk

Dk s, Xk( ∪Ck Xk( .
(7)

Here, Dk(s, Xk) denotes the detection RFS related to the
significant environmental cue with state s, and Ck(Xk)

denotes the clutters RFS, which is related to the UGV state
Xk. Due to the uncertainty and randomness in the detection
process, the number of elements in Zk is random andmay be
different from the number of states in Sk.

+e detection RFS Dk(s, Xk) generated by battlefield
state s is modeled by Bernoulli RFS. +erefore, there are two
forms of Dk(s, Xk). +e first one is Dk(s, Xk) � ∅ and the
probability is 1 − pD(s, Xk). +e other one is Dk(s, Xk) � z

and the probability is pD(s, Xk)gk(z|s, Xk). Xk denotes the
UGV state at time k, and pD(s, Xk) denotes the probability
of generating detection from s. gk(z|s, Xk) models the
likelihood that s generates detection z. In this paper,
pD(s, Xk) � pD if the significant environmental cue exists in
the sensor’s FoV, and pD(s, Xk) � 0, otherwise.

Depending on Xk and Sk, the sensor’s likelihood
function for generating Zk is represented as follows:

gk Zk|Xk, Sk(  � 
W⊆Zk

gD W|Sk, Xk( gC Zk − W( .
(8)

Here, gD(W|Sk, Xk) is the likelihood function of gen-
erating detection RFS Dk for RFS Sk, and gC(Zk − W) is the
probability density of the clutter RFS Ck.

In this paper, the range and bearing sensor is used. +e
detection generated by the two-dimensional environmental
cues at location s can be modeled as follows:
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+ ek, ek ∼ (0,R).

(9)

Here, zk � rk bk 
T is the range and bearing detection,

s � xs ys 
T is the cue’s position, and ek is the noise with

covariance R.

5. Learning Process and Its Implementation

In this section, we give the basic principles, design, and
implementation of the proposed algorithm. +e process of
the proposed algorithm relies on sequentially propagating
the joint posterior probability density of the RFS-based
battlefield and the UGV state as detection arrives.

5.1. RFS-Based Learning Process. With the RFS-based bat-
tlefield modeling, the RFS-based Bayesian inference is used
to jointly learn the environmental cues’ locations and UGV
state at every time step. +e battlefield RFS can be char-
acterized as follows:

pk|k S � s
1
, s

2
, . . . , s

mk |Z0: k, X0: k . (10)

In this paper, we use pk|k−1(X0: k, Sk|Z0: k−1, U0: k−1, X0)

to denote the predicted distribution of the battlefield state
and pk|k(X0: k, Sk|Z0: k, U0: k−1, X0) to denote the a posteriori
distribution of the battlefield state. +e knowledge of the
battlefield can be propagated by the following prediction and
update process:

(i) Predict the battlefield state by using the previous
battlefield states and input parameters:

pk|k−1 X0: k, Sk|Z0: k−1, U0: k−1, X0( 

�  f X0: k, Sk|X0: k−1, Sk−1, Uk−1( 

× pk−1|k−1 X0: k−1, Sk−1|Z0: k−1, U0: k−2, X0( dXk−1.

(11)
(ii) Update the battlefield state depending on the re-

ceived detection RFS Zk:
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pk|k X0: k, Sk|Z0: k, U0: k−1, X0( 

�
gk Zk|Sk, Xk( pk|k−1 X0: k, Sk|Z0: k−1, U0: k−1, X0( 

Jgk Zk|Sk, Xk( pk|k−1 X0: k, Sk|Z0: k−1, U0: k−1, X0( dXkδSk.

(12)

Here, δ implies set integration.
In this paper, the PHD filter is employed to implement

the RFS-based Bayesian recursion [24, 33–35]. We modify
and extend the Gaussian mixture-based PHD filter with a
particle filter. +e Gaussian mixture PHD filter is applied to
learn the number and locations of the environmental cues,
and the particle filter is applied to learn the UGV state at the
same time. +e computing process of online battlefield
learning by modifying PHD filter is shown in Figure 4. +e
Bayesian recursion encapsulates the inherent uncertainty of
the number of significant environmental cues that may be
caused by detection uncertainty, clutters, UGV maneuvers,
and the uncertainty related to detection noises.

+e main challenge of online battlefield learning is how
to learn the number and location of environmental cues
while estimating the UGV state at the same time. In this
paper, we partition the battlefield state into two kinds: s for
environmental cues and X

(i)
k for UGV movement. We can

analytically integrate out s provided that we know X
(i)
0: k. +is

means that even though we only have the sample sets X
(i)
0: k,

we can also represent p(s|X
(i)
0: k) successfully. +us, each

particle X
(i)
k represents a value for s. +e advantage of this

approach is that we can reduce the dimensionality of state
space in which we are sampling and reduce the error of the
learned battlefield.

Here, the Gaussian mixture PHD filter is applied to
propagate each PHD that depends on the UGV state. +e
location of environmental cues in the battlefield is charac-
terized by the Gaussian components of the mixture, and the
number of cues in the battlefield is characterized by masses
of all the Gaussian components. In this paper, the PHD at
time k − 1 is characterized by the following N particles:

w
(i)
k−1|k−1, X

(i)
0: k−1, v

(i)
k−1|k−1 s|X

(i)
0: k−1  

N

i�1,
(13)

where X
(i)
0: k−1 � [X

(i)
0 , X

(i)
1 , X

(i)
2 , . . . , X

(i)
k−1] is the ith hy-

pothesized UGV state set, w
(i)
k−1|k−1 denotes the weight, and

v
(i)
k−1|k−1(s|X

(i)
0: k−1) is the related PHD. +e posterior distri-

bution is approximated by the following set of weighted
particles:

w
(i)
k|k, X

(i)
0: k, v

(i)
k|k s|X

(i)
0: k  

N

i�1.
(14)

In this paper, v
(i)
k−1|k−1(s|X

(i)
k−1) is the prior PHD of the

battlefield states for the ith particle related to the ith UGV
trajectory. v

(i)
k−1|k−1(s|X

(i)
k−1) can be represented by the fol-

lowing Gaussian mixture:

v
(i)
k−1|k−1 s|X

(i)
k−1  � 

J
(i)

k−1|k−1

j�1
η(i,j)

k−1|k−1N s; μ(i,j)

k−1|k−1, P
(i,j)

k−1|k−1 ,

(15)

which consists of J
(i)
k−1|k−1 Gaussian components. For jth

Gaussian component, η(i,j)

k−1|k−1 is predicted weight, μ(i,j)

k−1|k−1 is
mean, and P

(i,j)

k−1|k−1is covariance. +e PHD of the new en-
vironmental cue for the sampled state X

(i)
k at time k is

represented by b(s|Zk−1, X
(i)
k ). b(s|Zk−1, X

(i)
k ) is also a

Gaussian mixture and can be represented as follows:

b s|Zk−1, X
(i)
k  � 

J
(i)

b,k

j�1
η(i,j)

b,k N s; μ(i,j)

b,k , P
(i,j)

b,k , (16)

where J
(i)
b,k is the number of the Gaussian components of the

new PHD at time k, andη(i,j)

b,k , μ(i,j)

b,k , andP
(i,j)

b,k are the cor-
responding Gaussian parameters. +e predicted PHD is
therefore also a Gaussian mixture and can be represented as
follows:

vk|k−1 s|X
(i)
k  � 

J
(i)

k|k−1

j�1
η(i,j)

k|k−1N s; μ(i,j)

k|k−1, P
(i,j)

k|k−1 . (17)

Here, vk|k−1(s|X
(i)
k ) is composed of J

(i)
k|k−1 � J

(i)
k−1|k−1 + J

(i)
b,k

Gaussian components that represent the union of the prior
PHD vk−1|k−1(s|X

(i)
k−1) and the PHD of new environmental

cues. Since the detection function can also be represented by
a Gaussian mixture, the posterior PHD vk|k(s|X

(i)
k ) can be

represented by a Gaussian mixture as follows:

vk|k s|X
(i)
k  � vk|k−1 s|X

(i)
k 

· 1 − pD s|X
(i)
k  + 

z∈Zk



J
(i)

k|k−1

j�1
v

(i,j)

G,k z, s|X
(i)
k 

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(18)

+e components of equation (18) are given as follows:

v
(i,j)

G,k z, s|X
(i)
k  � η(i,j)

k|k z|X
(i)
k N s; μ(i,j)

k|k , P
(i,j)

k|k ,

η(i,j)

k|k z|X
(i)
k  �

pD s|X
(i)
k η(i,j)

k|k−1q
(i,j)

z, X
(i)
k 

c(z) + 
J

(i)

k|k−1
l�1 pD s|X

(i)
k η(i,l)

k|k−1q
(i,l)

z, X
(i)
k 

.

(19)

Here, q(i,j)(z, X
(i)
k ) � N(z; Hkμ

(i,j)

k|k , S
(i,j)

k|k ). +e terms
μk|k, Pk|k, and Sk|k can be got through standard Kalman
filters; here, we adopt the unscented Kalman filter [36].

We assume that the number of clutters in Ck complies
with the Poisson distribution, and the elements comply with
uniform distribution over the battlefield state space. +en,
the clutter PHD can be represented by c(z) � λcU(z); here,
λc denotes the averaged number of clutters, and U(z)

complies with a uniform distribution. In order to reduce the
amount of calculation, we use pruning andmergingmethods
to reduce the number of Gaussian components of the
updated distribution [37].

+e posterior UGV state pk(X1: k) is sampled by

w
(i)
k|k, X

(i)

k 
N

i�1
with
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X
(i)

k ∼ f X
(i)

k |X
(i)
k−1, Uk−1 ,

w
(i)
k �

gk Zk|Z0: k−1,
X

(i)

0: k f X
(i)

k |X
(i)
k−1, Uk−1 

f X
(i)

k |X
(i)
0: k−1, Uk−1 

w
(i)
k−1.

(20)

+e weights should be normalized as 
N
i�1 w

(i)
k � 1. With

the resampling step [24], we can get the resampled particles

w
(i)
k , X

(i)

k 
N

i�1
. By choosing the UGV transition density as

the proposal density, we get the weight as follows:

w
(i)
k � gk Zk|Z0: k−1,

X
(i)

0: k w
(i)
k−1. (21)

By assuming that there is only one environmental cue s

in the battlefield, then, we can get

gk Zk|Z0: k−1, X0: k(  ≈
1
Γ

1 − pD s|Xk( ( κZk

k + pD s|Xk(  
z∈Zk

κZk−z{ }

k gk z|s, Xk( ⎛⎝ ⎞⎠vk|k−1 s|X0: k( ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (22)

with

Γ � exp mk|k−1 − mk|k +  ck(z)dz vk|k s|X0: k( . (23)

Here, mk|k−1 � 
J

(i)

k|k−1
j�1 η(i,j)

k|k−1 and mk|k � 
J

(i)

k|k

j�1 η
(i,j)

k|k .

5.2. Implementation. According to the learning process
given above, we give the concrete realization method of the
proposed algorithm in this section. We use C++ to write the
experimental program for this algorithm. +e C++ library
dependencies such as Eigen (version 3.0.0), Boost (version
1.5.3), and gtest are also used. In order to detail the
implementation of the proposed algorithm, the flow diagram
of the proposed algorithm is presented in Figure 5. +e
concrete steps are described in Algorithm 1.

+e computational complexity of the proposed algo-
rithm is Ο(mk · |Zk| · N) and is linear in the number of
landmarks (in the FoV), as well as the number of detections
and number of particles for the UGV state.

6. Experiments

In this section, a group of experiments are conducted to
quantitatively verify the effectiveness and analyze the per-
formance of the proposed algorithm.+e virtual machine we
used to run our experiments has 4G of RAM and 6 3.40GHz
Intel CPUs and runs on Unbuntu 14.04 OS. +e experi-
mental data used to support the findings of this study are
included within the article. +e parameters used in this
experiment are given in Section 6.1, and the models used in
this experiment are given in Section 4.

6.1. Experimental Setup. As shown in Figure 6, the UGV
patrols in a simulated two-dimensional space. +e known
ground truth (including the UGV states and locations of
landmarks) is generated by the simulation models.+e black
dots represent the real locations of landmarks, and the black
dashed line represents the real UGV states. +e number of
clutters complies with the Poisson distribution, and the

Creating new cues
from measurements

for birthing

RFS-based
battlefield model

(sampling)

Prediction for birthed,
spawned, and existing

cues

Unscented transformation
for each Gaussian

component

RFS-based sensor model

Gaussian component
weight, mean, and 

covariance matrix updating

Pruning and
merging

State extraction
Predicted Gaussian

component

Step k – 1 Step k Step
k + 1

Measurements from
real space Zk

Sigma points and weights
for all Gaussian components

(i) (i), uyk , Li = 1, 2, ..., Jk_1
Li
l=0

Predicted state statistics

Dk|k–1(x) = x, mk|k–1, Pk|k–1Nwk|k–1
i=1

(i) (i) (i)
Jk|k–1

Σ

Predicted measurement statistics

Zk|k–1 = , Li = 1, 2, ..., Jk|k–1u(l)h yk
i=1

(i)
Li
Σ (l)ˆ Vk|k(x) = x; mk , PkwkN

i=1

Jk
Σ (i)(i)i

Vk–1(x) = x; mk–1 , Pk–1wk–1N
i=1

Jk–1
Σ (i)(i)(i)

Sk–1|k–1 = mk–1 , Pk–1wk–1 ,
(i)(i) Jk–1

i=1
(i)

Sk|k = mk , Pkwk , (i) (i)
Jk
i=1

i
wk|k–1, mk|k–1 , Pk|k–1

(i)(i) Jk–1+Jγ,k
i=1

(i)

Updated Gaussian
components

wk , mk , Pk
(i)

Jk–1+Jγ, k–1
Zk +1(i) (i)

.

i=1

Figure 4: +e online battlefield learning process based on Gaussian mixture-based PHD filter.
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clutter PHD is uniformly distributed. Table 1 shows some
important parameters for the simulation models to generate
the ground truth.

+e sensor used in this experiment is the range-bearing
sensor that can detect landmarks with distances of 5m to
30m in any direction. +e range measurement standard
deviation (std) is 1m and the bearing measurement std is

2 deg. +e maximum FoV of the sensor used by the UGV is
10m and 360 deg.

6.2. Results and Analysis. +e experimental results are
shown in Figure 6, the red dashed line represents the learned
UGV states, and the red points represent the learned

Update battlefield with
related PHD

Start

Receive sensor detections

Data preprocessing and
obtain measurements Zk–1

Record the sensor control
input Uk–1

Begin running and set time
step k = 1

If continue running?

Y

Initialize particle index i = 1

If i < Maximum N?

Generate the particles for
the UGV state Xk–1

Get PHD of the predicted
battlefield state

Get PHD of the updated
battlefield state

Calculate the mass of
predicted and updated PHD 

Select a battlefield state j

Calculate the updated UGV
state weight wk|k

i = i + 1

Initialize the learned
battlefield Sk

Determine the maximum
weight component j

N

Update UGV state X0:k = X0:k
( J )ˆ

Initialize particle index i = 1

Y

Y

N

Generate new situation Sk

i = i + 1

N

Time advance k = k + 1

Output the learned
battlefield state

End

N

ˆ

ˆ

(i)~

(i)~

If ηk|k
(j,i) > Tcues?

If i < J(j) k|k

Y

Figure 5: +e flow diagram of the RFS-based online battlefield learning algorithm.
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locations of landmarks. +e collection of red dashed lines
and points represents the battlefield states. +e results
successfully confirm that the proposed algorithm can learn
the battlefield states by using sensor detection at runtime.

In order to quantitatively evaluate the performance of the
proposed algorithm, we give the errors of the learned battlefield
states in Figures 7 and 8. Figures 7(a) and 7(b) give the errors of
the learned number and locations of landmarks. +e errors of

locations are represented by optimal subpattern assignment
(OSPA) distance [38].We can find out that the performance of
the proposed algorithm can satisfy the requirements of sim-
ulation and evaluation in unmanned combat.

Consider two sets X � x1, . . . , xm  and Y � y1, . . . , yn ,
where m, n ∈ N0 � 0, 1, . . .{ }. Vectors x ∈ X and y ∈ Y are
taking values from the battlefield state space. +e OSPA
metric is defined as a distance between sets X and Y. +e
OSPA distance of order 1≤p≤∞, with the cut-off pa-
rameter c, is defined for m≤ n as follows:

dp,c(X,Y) �
1
n

min
π∈Πn



m

i�1
dc xi, yπ(i)  

p
+(n − m) · c

p⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

(1/p)

,

(24)

where Πn represents the permutations set of length m with
elements taken from 1, 2, . . . , n{ }.

+e errors of learned UGV states are shown in Figures 8(a)
and 8(b). We can find out that the proposed algorithm can
generate the learned UGV states with acceptable accuracy. But
the errors are increased as time advance. +is is caused by the
cumulative errors of the UGV states.

In order to analyze how detection parameters affect the
proposed algorithm, the averaged errors of the UGV states
and landmarks are generated with different probabilities of
detection pD from 0.1 to 0.99 and clutter intensity λc from
0.0001 to 1. For each pair of parameters, 10 simulation runs
were carried out. Here, cardinalized optimal linear assign-
ment (COLA) is used to evaluate the errors for the learned
landmarks. From Figures 9(a) and 9(b), we can find out that
the errors of the learned UGV states increase as pD
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Y 
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)
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UGV trajectory
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Figure 6: +e real and learned battlefield states.

Input: ( w
(i)
k−1, X

(i)
0: k−1, v

(i)
k−1(s|Zk−1, X

(i)
k−1) 

N

i�1, Zk−1, Uk−1)

Output: ( X0: k, Sk)

(1) for i � 1 to N do
(2) Generate the particles for the UGV state, X

(i)

k−1 ∼ f( X
(i)

k−1|X
(i)
k−1, Uk−1);

(3) Get predicted battlefield PHD through the predict step of PHD filter;
(4) Get updated battlefield PHD through the update step of PHD filter;
(5) Get predicted PHD mass mk|k−1 � 

J
(i)

k|k−1
j�1 η(i,j)

k|k−1;

(6) Get updated PHD mass mk|k � 
J

(i)

k|k

j�1 η
(i,j)

k|k ;
(7) Select a given battlefield state j � i � 1, . . . , J

(i)
k |m(i,j) � m ;

(8) a � (1 − pD)c(z)|Zk| + pDη
(i,j)

k|k−1 × z∈Zk
(c(z)|Zk |− 1)N(z; z

(i,j)

k|k−1, S
(i,j)

k );
(9) b � expmk|k−1− mk|k+λcη(i,j)

k|k ;
(10) Get updated UGV state weight w

(i)
k|k � (a/b)w

(i)
k|k−1;

(11) end for
(12) Initialize the learned battlefield state S

⌢

k � ∅, I � 1, . . . , N{ };
(13) Determine the maximum weight component j � argmaxi∈Iw

(i)
k|k;

(14) Update UGV state with X0: k � X
(j)

0: k;
(15) Update battlefield state according to the related PHD:
(16) for i � 1 to J

(j)

k|k do
(17) if η(j,i)

k|k >Tcues, here Tcues is the landmark existence threshold
(18) Generate new battlefield state by Sk � Sk μ(j,i)

k|k
 ;

(19) end if
(20) end for
(21) Return ( X0: k, Sk).

ALGORITHM 1: RFS-based online battlefield learning algorithm.
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decreases. +e errors of the learned landmarks only increase
slightly as PD decreases. +e increase of λc will increase the
errors of the learned locations of landmarks, but the effect on
the errors of learned UGV states is quite small.

In order to apply the proposed algorithm in real un-
manned combat applications, the time cost should be fully
evaluated. As shown in Figure 10, we record 10 simulation
runs for each pair of detection probability and clutter

Table 1: Partial experimental parameters.

Parameter Velocity input std. (m/s) Steering input std. (deg) Detection
probability pD

Clutter
rate λc

Particle number
N

Landmark existence
threshold Tcue

Value 2 2 0.90 0.0001 100 0.5
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Figure 7: +e errors of the learned number and locations of landmarks. (a) +e learned and observed number of landmarks. (b) +e OSPA
errors of the learned landmarks.
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Figure 8: +e errors of the learned UGV states. (a) Euclidean errors of the learned UGV states. (b) Orientation errors of the learned UGV
states.
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intensity, and each simulation run consists of 1000 time
steps.+e averaged time costs of the proposed algorithm and
CPU are shown in Figures 10(a) and 10(b). We can find that
the increase of detection probability will increase the time
cost, and the decrease of clutter intensity will also increase
the time cost. +e average time cost for each time step is
about 500ms, and it can satisfy many unmanned combat
applications very well.

7. Conclusions

Digital twin technology enables real-time dynamic interaction
between the real battlefield and the simulation system. Our
main contribution is proposing a new online battlefield
learning algorithm based on RFS to enable the application of
the digital twin in unmanned combat. +e digital twin has a
broad application prospect in unmanned combat and greatly
promotes the innovation of unmanned combatmode. Since the
implementation of the digital twin in unmanned combat de-
pends on battlefield understanding, an effective battlefield
learning algorithm is quite important. By adopting the RFS-
based representation of the battlefield, the proposed algorithm
can overcome the limitations of the traditional vector-based
representation. +e performance of the proposed algorithm is
verified by using two groups of experiments. +is paper is the
first attempt for applying the digital twin to the unmanned
combat area and has practical significance for implementing
the digital twin in many other areas.
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Face detection remains a challenging problem due to the high variability of scale and occlusion despite the strong representational
power of deep convolutional neural networks and their implicit robustness. To handle hard face detection under extreme
circumstances especially tiny faces detection, in this paper, we proposed a multiscale Hybrid Pyramid Convolutional Network
(HPCNet), which is a one-stage fully convolutional network. Our HPCNet consists of three newly presented modules: firstly, we
designed the Hybrid Dilated Convolution (HDC)module to replace the fully connected layers in VGG16, which enlarges receptive
field and reduces its loss of local information; secondly, we constructed the Hybrid Feature Pyramid (HFP) to combine semantic
information from higher layers together with details from lower layers; and thirdly, to deal with the problem of occlusion and
blurring effectively, we introduced Context Information Extractor (CIE) in HPCNet. In addition, we presented an improved
Online Hard Example Mining (OHEM) strategy, which can enhance the average precision of face detection by balancing the
number of positive and negative samples. Our method has achieved an accuracy of 0.933, 0.924, and 0.848 on the Easy, Medium,
and Hard subset of WIDER FACE, respectively, which surpasses most of the advanced algorithms.

1. Introduction

*e face is a key biometric characteristic of humans, thus
making face detection the most widely used technology in
the field of object detection, recognition, and tracking. *e
objective of face detection is to detect the existence of a face
from a given image and return its size and location, and in
practice, many face recognition and pedestrian matching
systems have a higher demand for the speed and accuracy of
detection.

Because images are taken under a variety of conditions,
there is high variability in the scale, occlusion, lighting
condition, and viewing angle between faces. To address these
problems, the development of face detection techniques
underwent three stages: template matching, AdaBoost, and
deep learning.

In the early period, most of the face detection algorithms
used template matching technology, that is, using a face

template image and comparing it with all regions in a given
image to judge whether this region contains faces. One
representative method was proposed by Rowley et al. [1, 2],
who built a multilayer perceptron model using 20 × 20 face
and nonface images. *eir methods handled the detection of
images taken from not only the front [1] but also various
angles [2]. *ough this model performed well in precision,
its detection speed was too slow due to a relatively complex
design of classifier and dense sliding-window sampling.
After that, machine learning algorithms were used in
matching, including neural networks and quorummode [3],
support vector machine based on polemical kernel [4], Bayes
classifier [5], and statistics model based on Hidden Markov
Models (HMM) [6]. Despite a quite slow speed of detection,
these algorithms did not overcome the disadvantages of
naı̈ve features.

In 2001, P. Viola and M. Jones published “Rapid Object
Detection Using a Boosted Cascade of Simple Features” on
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CVPR, which represented the coming of AdaBoost period
[7]. *is Viola–Jones method and Discriminatively Trained
Part-Based Models (DPM) [8] were the most commonly
known ones in that period.*e principle of these algorithms
is to build multiplied simple weak classifiers with the help of
Haar [9], ACF [10], HOG [11], and other manual features,
and then use them to construct a strong classifier possessing
a high precision. However, because manual features were a
few in number, poor in self-adaption, and stability, these
algorithms generally failed to deal with complex conditions
like different occlusion, lighting condition, or viewing angles
and were usually slow in detection speed.

After that, benefiting from the fast development of deep
learning, the above problems were effectively handled.
Convolutional neural networks (ConvNet) [12] have a
strong expression ability in learning nonlinear features.
After its success in image classification, ConvNet was soon
applied to face detection and showed a significantly higher
precision compared with the previous AdaBoost framework
[13]. Cascade CNN [14] can be recognized as a represen-
tative of the combination between the traditional method
and deep learning. Similar to the algorithms in the Adaboost
period, it also adopts a cascade structure, only with Con-
vNets as its cascade classifiers. Starting fromCascade CNN, a
series of deep learning-based object detection algorithms
were proposed. *e most representative ones include one-
stage algorithms with a fast speed, such as YOLO series
[15–17], SSD series [18–20], and two-stage algorithms with
high precision, such as Fast R-CNN series [21, 22], MTCNN
[23], and R-FCN series [24]. *ese general detection models
were also applied to face detection and performs well.

However, though most deep learning algorithms achieve
success under different lighting conditions and viewing
angles, their performances are still disappointing when
confronted with complex circumstances like multiscale and
occlusion. By comparing these methods, we found that one
common drawback of them is to use a single or simple
composite feature map rather than combine semantic in-
formation from higher layers together with details from
lower layers effectively. For example, most two-stage Con-
vNets use several single featuremaps and ignore information
from higher or lower layers, while ScaleFace [25] combines
features from only the lower layers. We assumed that this
was the main reason for these methods to fail under extreme
conditions.

In this paper, we proposed a multiscale face detection
algorithm based on HFP structure and design a new face
detection framework HPCNet. *e main contributions of
this paper are concluded as follows:

Targeting large-scale detection, we designed a HDC
module, which can enlarge receptive field (RF) rapidly
to acquire feature maps with a higher resolution. *is
mechanism is introduced from object segmentation to
face detection for the first time.
Targeting small-scale detection, we presented a HFP
structure as the core of our model, which combines
semantic information from higher layers together with
details from lower layers. Compared with Feature

Pyramid Network (FPN) [26], HFP processes features
more carefully, with more convolution operations
before feature fusion.
Targeting face occlusion and blurring, we introduced a
CIE module here, which reduces the amount of
computation and avoid feature confusion.

In addition, in the training stage, we presented an im-
proved OHEM strategy in face of the imbalance between the
number of positive and negative samples and introduced
multiscale training to enhance the robustness of the model
further. After running on the authoritative WIDER FACE
[27], we found that our model showed a high precision of
0.933, 0.924, and 0.848 on three subsets Easy, Medium, and
Hard, respectively. When running on GTX 1080Ti, the
inference speed can achieve 44 Frames Per Second (FPS)
with a higher resolution. After a series of comparative ex-
periments, we proved our method to be reasonable.

*e rest of the paper is organized as follows: Section 2
introduces some related works. Section 3 illustrates the
proposedmethods from point to total. Section 4 provides the
experiments and Section 5 concludes the paper.

2. Related Works

2.1. Dilated Convolution. SSD [18], SFD [28], DSFD [29],
and other algorithms add several convolution layers at the
end of VGGNet [30] to address with large-scale objective or
face. *ese added convolution layers help to process the
information further, reduce the size of the feature map, and
enlarge RF. Dilated Convolution has similar effects, only
with the size of the feature map unchanged.

Specifically, dilated convolution is to make convolution
kernel dilate. Assuming that the size of the kernel is f × f

and the dilation factor is d, then the size of the kernel after
dilation fd is

fd � 1 +(f − 1)d. (1)

*e number of inserted pixels pd is

pd �
fd

2
 . (2)

*e dilation process of the kernel is shown in Figure 1,
where the blank space left after dilation is filled by 0. Dilation
convolution can enlarge kernel and RF rapidly without
changing the size of the feature map, thus generating a
feature map of a higher resolution. Dilated convolution is
also commonly used in extracting structured and context
information.

2.2. Feature Pyramid. To use feature maps of different scales
for object detection is an effective method to handle the scale
problem. *ere are mainly two ways to realize it: one is the
featured image pyramid [31] and another one is using
multiscale feature maps at the end of the network (as shown
in Figure 2(a)). *e former one has a large amount of
computation due to repetitive calculation and has difficulty
training network in an end-to-end way, while the latter one
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avoids this successfully. Nevertheless, neither of these two
methods takes advantages of feature maps from higher
layers. As feature maps in lower layers contain no semantic
information, its absence brings challenges to detection.

Our objective is to take full advantage of the pyramidal
feature hierarchy embedded in ConvNets, which contains
information from lower to higher layers and construct a
feature pyramid combining information from lower to
higher layers together.

FPN [26] offers a rather simple way to use feature maps.
Its principle is to build a top-down architecture by intro-
ducing higher-level information to the current layer: first,
the feature map from higher pyramid levels is upsampled by
a factor of 2 (using nearest neighbor upsampling for sim-
plicity); then, it undergoes a 1 × 1 convolutional layer to
reduce channel dimensions; finally, the upsampled map is
merged with the current map (which undergoes a 1 × 1
convolutional layer) by elementwise addition. *e detailed
process of merging is shown in Figure 3.

2.3. Context Information. When humans search for faces,
they take not only faces but also hats, clothes, surroundings,
and other information. Context information is exactly a
simulation of this behavior. When it is difficult to judge
whether the candidate proposal contains faces, we can use
the information around the proposal as a supplement, which
is an effective way to handle occlusion and blurring.

Based on the experience, CMS-RCNN [32] combined
face and body information together for face detection. *e
spatial relationship between face and body is described as
follows:

tx �
xb − xf

wf

,

ty �
yb − yf

hf

,

tw � log
wb

wf

,

th � log
hb

hf

,

(3)

where f and b represent face and body, respectively; t is a
fixed value; x, y, w, and h represent the center coordinate,
width, and height of candidate proposal. CMS-RCNN

substitutes the coordinate of extracted face candidate into
equation (3) to acquire body candidate and then maps face
and body candidate onto feature maps. After undergoing
pooling layer, convolutional layer, and two fully connected
layers, they are joint together for bias regression and clas-
sification of coordinates. *e way that CMS-RCNN acquires
context information can be easily combined with the two-
stage objective detection algorithm, which is credited to the
RoI pooling layer. *ough the CIE in CMS-RCNN has
positive effects on the detection result, the assumption it
contains is too strong to be accurate and it is difficult to
combine with one-stage detection algorithms.

2.4. OHEM. OHEM [33] is a completely online hard sample
mining algorithm, which samples according to the non-
uniform and nonstationary distribution depending on
sample classification loss, and makes simple changes to the
stochastic gradient descent. For each detection task, OHEM
chooses N samples with a higher loss from thousands of
proposals or anchors in one or two images. *ough only
using a part of proposals or anchors, its backward propa-
gation is still effective and robust. *e reason why OHEM
does not use all the samples is that simple samples contribute
little to the loss. In addition, when there are too many
negative samples, the dataset is filled with simple samples,
which altogether have a huge effect on loss, with no help to
classification.*e same with SVM, it is the hard samples that
contribute truly to classification. Compared with hard
sample mining, OHEM does not need to construct a dataset
or train model; while compared with stochastic gradient
descent, OHEM takes advantage of hard samples that make a
contribution to classification loss and thus avoid useless
computation.

3. Method

In this section, we will introduce each proposed module and
give a comprehensive description of the overall framework
of HPCNet.

3.1. Components in HPCNet

3.1.1. HDC Module. Instead of adding several convolution
layers at the end of a basic convolution network like SSD
[18], SFD [28], and DSFD [29], we introduce the concept of
dilated convolution to handle large-scale faces, which is a
new trail.
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Figure 1: *e dilation process of the convolution kernel.
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*ere exist some drawbacks in the common dilated
convolution. Assume that there is a pixel v in the l th layer,
and the fd × fd area that contributes to v is in the l − 1 th
layer around the location of v. Because the dilated kernel
introduced several 0, the actual contribution area is still
f × f. As the dilation factor increases, the contribution area
in l − 1 th layer enlarges rapidly, while the real contribution
area stays the same. *erefore, the local feature information
gradually gets lost due to 0 values, and the correlation of
information contributing to v decreased consistently. When
several dilated convolution layers are connected in series,
this effect will be exacerbated continuously.

Assume that there are three dilated convolution layers
forming a structure s, where the kernel is 3 × 3, dilation
factor is 2, and the sliding stride is 1. With structure s

replacing the l th layer, the RF area that truly contributes to v

in the l − 1 th layer is shown in Figures 4(a)–4(c). *e
number in the blue grid represents its contribution value and
the white grid has no contribution. *e value in Figure 4 is
calculated under the assumption that the values of the kernel
and the l − 1 th feature map are all 1.

To make use of the advantages of dilated convolution, as
well as avoiding local information loss and correlation re-
duction, we designed the HDC module. HDC only contains
three dilated convolution layers, of which the kernel size is
3 × 3, dilation factor is 1, 2, and 3, respectively, and sliding

stride is 1. With HDC replacing the lth layer, the RF area that
truly contributes to v in the l − 1 th layer is shown in
Figures 5(a)–5(c). It is clear from Figure 5 that, in every
stage, all the grids in RF area contribute to v, and the weights
of which increase as getting closer to the location of v. *is
structure is obviously reasonable.

3.1.2. HFP Module. *ough FPN [26] introduced semantic
information from the higher layer into the current feature
map, there still exist three problems:

FPN generates composite feature map by elementwise
addition, which lacks self-adaption and can easily cause
feature confusion
FPN ignores information from lower layers when
constructing a feature map, which results in a lack of
details and location information, thus bringing a
challenge to locating and detecting small-scale objects
*e composite feature map obtained is used both as high-
level semantic information and for detection, which is not
a reasonable way as it undertakes too many tasks

Our HFP (as shown in Figure 2(b)) is an improvement of
FPN targeting at the above three problems. A summary of its
process is as follows: first, it upsamples feature maps from
higher layers (using bilinear interpolation) and reduces their
channel dimensions to generate composite feature maps by
merging with current ones; then the composite feature map
is further processed to obtain truly useful semantic infor-
mation by reducing channel dimensions; after that, simi-
larly, downsampling and channel dimensions reduction are
applied to feature maps from lower layers to acquire hybrid
feature maps by stitching with composite ones; finally, the
hybrid feature maps are used for detection after channel
changes and information fusion.

To be more specific, the details in HFP (as shown in
Figure 6) are as follows: for high-level feature maps, we use
1 × 1 convolution layer for channel dimension reduction, as
the 1 × 1 kernel will not change RF and is more suitable for
semantic learning. For composite feature maps, we use 3 × 3
convolution layer when used as high-level semantic infor-
mation, as the 3 × 3 kernel can avoid feature confusion
resulting from upsampling and downsampling. For low-
level feature maps, we use 3 × 3 convolution layer with a
stride of 2 for downsampling in order to save detailed

Detection

Detection

Detection

(a)

Detection

Detection

Detection

(b)

Figure 2: *e simplified structure of the feature pyramid before and after improvement. (a) Feature Pyramid Network (FPN). (b) Hybrid
Feature Pyramid (HFP).

Upsampling

Conv2d-1 × 1

Figure 3: *e structure of FPN.
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information; then the feature maps undergo another 3 × 3
convolution layer for channel dimension reduction to ex-
tract truly needed details. For hybrid feature maps, we use
3× 3 convolution layer for channel changes and information
fusion as well.

Our HFP is different from FPN in several aspects:

In HFP, composite feature map is generated by channel
joint, while FPN uses elementwise addition instead.
*e processing procedure of feature maps for detection
is different. In FPN, composite feature maps are used in
detection directly, while our HFP processes composite
ones further and combines them with low-level ones
before detection.
HFP handles feature maps in a more careful way and
adopts a series of dimension operations to acquire
effective information.

3.1.3. CIE Module. Despite enlarging the window around
the candidate proposals, a bigger kernel is a better choice for
a one-stage object detection algorithm to obtain information
around faces.

SSH [34] adopts this strategy by applying simply two
bigger kernels to extract context information. However, a

bigger kernel usually leads to a bigger amount of compu-
tation, which can be replaced by several smaller ones con-
nected in series. Inspired by this idea and SHH, we proposed
our CIE which only contains convolution layers with 3 × 3
kernels. To reduce the amount of computation further and
prevent the correlation of context from decreasing, we adopt
a method to share some convolution layers. *e detailed
structure is shown in Figure 7.

3.1.4. Improvements of OHEM. *ough OHEM [33] is ro-
bust and highly efficient, it only considers hard samples
without taking the ratio of positive to negative samples into
consideration. As a large number of samples in the dataset
are negative, the ones chosen by OHEMmay also suffer from
an imbalance of two samples, which is obviously detrimental
to classification. *erefore, we proposed an improved
OHEM, which chooses samples in a more balanced way:
assuming that the loss function needs N samples, first, we
sort positive and negative samples in descent order by loss,
respectively; then, we choose the first S positive ones and
N − S negative ones. *e default value of S is set as N/4. In
the ideal case, there are N samples chosen with a ratio of 1 : 3
[22]. Even if the total number is less than N and the ratio is
not 1 : 3 exactly due to a lack of positive samples, these
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usually will not do harm to the performance of the algo-
rithm. In contrast, they can enhance the robustness of the
algorithm.

3.2. ,e Overall Layout of HPCNet. HPCNet is a one-stage
multiscale face detection algorithm. To handle large-scale
and small-scale faces, HPCNet introduced HDCmodule and
HFP structure; to address with occlusion and blurring,
HPCNet contained CIE.

HPCNet contains the convolution layers in VGG16 [30]
as its basic network (as shown in Table 1). *e overall
structure is shown in Figure 8, where N4, N5, and N6 are
three subnetworks for detecting different scales of face,
namely, small, medium, and large. One thing that should be

noticed here is that all the convolution layers we used are
3 × 3, as they cut down on parameters and computation in
addition to satisfying needs for processing.

In Figure 8, HDC6 refers to the proposed HDC module,
which keeps in line with the architecture of VGG16 (as
shown in Figure 9).

HFP module consists of HFPx_1 (including HFP4_1
and HFP5_1) and HFPx_2 (including HFP4_2, HFP5_2,
and HFP6_2). HFPx_1 (as shown in Figure 10) is to
generate composite feature maps, which are passed for-
ward as high-level semantic information; HFPx_2 is to
generate hybrid feature maps, which combines infor-
mation from both high and low layers. HFP4_2 (as shown
in Figure 11) uses 3 × 3 convolution layer to reduce
channel dimension of hybrid feature maps to 256, while
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Figure 5: An illustration of the area that truly contributes to v when using HDC.

6 Computational Intelligence and Neuroscience



�e form of
composite feature map

Operation 1

Operation 2

Operation 2Operation 1

Higher
layer 

Upsampling Downsampling

Channel
reduction

Channel
reduction

Channel
reduction

Channel
changes

Information
fusion

Composite
feature map 

�e form of
hybrid feature map

Current
layer

Lower
layer

Concat
Concat

Figure 6: An illustration of the detailed structure of HFP.

Conv2d + A
3 × 3

Conv2d + A
3 × 3

Conv2d + A
3 × 3

Conv2d + A
3 × 3

Concat

X/2
channels X/2

channels

X
channels

Figure 7: An illustration of the detailed structure of CIE.

Computational Intelligence and Neuroscience 7



Conv3_3

Conv4_3

Conv5_3

HFP5_1HFP4_1

HFP6_2

Concat

CIE4

Cls

Concat

Reg

Concat

Cls RegCls Reg

HDC6

N4 N5 N6

HFP4_2 HFP5_2

Conv2d + A
3 × 3

Conv2d + A
3 × 3

Conv2d + A
3 × 3

CIE5 CIE6

Figure 8: *e overall layout of HPCNet.

Table 1: *e basic structure of HPCNet.

Name Configurations
Conv1_1 Conv2d +A, 3 × 3 × 64_s1
Conv1_2 Conv2d +A, 3 × 3 × 64_s1
Downsampling MAxpool, 2 × 2_s2
Conv2_1 Conv2d +A, 3 × 3 × 128_s1
Conv2_2 Conv2d +A, 3 × 3 × 128_s1
Conv2_3 Conv2d +A, 3 × 3 × 128_s1
Downsampling MAxpool, 2 × 2_s2
Conv3_1 Conv2d +A, 3 × 3 × 512_s1
Conv3_2 Conv2d +A, 3 × 3 × 512_s1
Conv3_3 Conv2d +A, 3 × 3 × 512_s1
Downsampling MAxpool, 2 × 2_s2
Conv4_1 Conv2d +A, 3 × 3 × 512_s1
Conv4_2 Conv2d +A, 3 × 3 × 512_s1
Conv4_3 Conv2d +A, 3 × 3 × 512_s1
Downsampling MAxpool, 2 × 2_s2
Conv5_1 Conv2d +A, 3 × 3 × 512_s1
Conv5_2 Conv2d +A, 3 × 3 × 512_s1
Conv5_3 Conv2d +A, 3 × 3 × 512_s1
Conv6 Conv2d +A, 3 × 3 × 512_s2

HDC6
Conv2d +A, 3 × 3 × 512_s1_d1
Conv2d +A¸ 3 × 3 × 512_s1_d2
Conv2d +A, 3 × 3 × 512_s1_d3
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HFP5_2 and HFP6_2 increase channel dimension to 512.
*e reason for this difference in HFP4_2 is to reduce
memory occupation and keep in line with the following
modules.

CIE4, CIE5, and CIE6 are three individual CIE modules,
the structures of which are shown in Figure 7. Each sub-
network contains one CIE module as one branch and one
3 × 3 convolution layer as another. *e feature maps for
classification are generated by two branches together, the
channel dimension of which is half that in HFPx_2, re-
spectively (as shown in Figure 8). In N5 and N6, the channel
dimension through CIE5 and CIE6 is 256, while in N4, the
channel dimension through CIE4 is 128. *e reason for
fewer channels in CIE4 is to reduce memory occupation and
accelerate network convergence.

4. Experiment and Analysis

In this section, we first introduced some training strategies
and parameter settings of HPCNet. *en, we conducted a
series of ablation experiments on the WIDER FACE [27]
dataset and compared HPCNet with other advanced algo-
rithms to prove the effectiveness of our method.

4.1. Training Details

4.1.1. Dataset. All the experiments in this paper are based on
WIDER FACE [27], which is the largest and most author-
itative face image dataset in the world. In WIDER FACE,
there are 32203 images containing 393703 labeled faces,
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Figure 11: *e structure of HFPx_2. (a) HFP4 2. (b) HFP5_2 and HFP6_2.
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which is of high variability in terms of scales, occlusion,
posture, and other aspects. In this paper, we randomly
choose 40%, 10%, and 50% of the dataset as training, val-
idation, and test set, respectively. In each set, the data is
divided into three subsets (viz., Easy, Medium, and Hard)
according to the difficulty level of detection.

Before entering into HPCNet, all the images are scaled to
less than S × L. To be more specific, we first scale the height
of images to S pixels. After that, if its width is longer than L

pixels, the width of this image is scaled to L pixels. During
the scaling, the aspect ratio of all images remains unchanged.

4.1.2. Hard Example Mining. *e feature maps generated by
three subnets N4, N5, and N6 correspond to 8 × 8, 16 × 16,
and 32 × 32 area in the original image.*e prior anchors used
in N4, N5, and N6 are 16 × 32, 64 × 128, and 256 × 512,
respectively. All of them have an aspect ratio of 1. During the
training, we set the candidate proposals with Intersection over
Union (IoU) higher than 0.5 as positive samples, while the
ones with IoU lower than 0.3 as negative samples. After that,
we process the dataset with an improved OHEM strategy.

4.1.3. Loss Function. To handle the problems of classification
and regression at the same time, HPCNet adopts multitask
loss function, which can be represented as

Ltotal � 
i

1
Ni


j∈Bi

Lconf pj, gj  +
λ

Ni


j∈Bi

I gj � 1 Lloc bj, tj ⎛⎝ ⎞⎠,

(4)

where Ltotal represents the total loss, Lconf represents the
classification loss, and Lloc represents the regression loss. For
Lconf , we use Softmax function targeting at binary classifi-
cation, in subnet Ni, Ni represents the number of samples,
Bi represents the whole dataset, and pj and gj represent the
class score and label of j th sample. For Lloc, we use SmoothL1
function with I representing the characteristic function: if
the jth sample in subnet Ni is positive (i.e., gi � 1), then
I � 1; otherwise I � 0. Here, bj and tj represent the coor-
dinate prediction and preset value of the jth sample in
subnet Ni; λ controls the ratio of Lconf to Lloc (set as 1). If
there is no positive sample in subnet Nx, Lloc is set as 0.

4.1.4. Hyperparameter Setting. *e weights in HPCNet are
initialized by Gaussian function with an average of 0 and
variance of 0.01. *e bias is initialized as 0 and the regu-
larization parameter is set as 0.0005. *e training process
adopts a batch SGD algorithm with a momentum of 0.9,
itersize as 2, batchsize as 1, and initial learning rate as 0.004
(adopting StepLR policy with Gamma of 0.1 and stride as
18,000). Our HPCNet uses four GTX 1080Ti GPU to train
for 21,000 times in total.

4.2. Ablation Experiment and Results

4.2.1. Analysis of Improved OHEM. We trained HPCNet
with OHEM and improved OHEM, respectively, the result
of which on WIDER FACE is shown in Table 2.

*e average precision (AP) of improved OHEM onHard
subset is 2.4% higher than that of OHEM, though it is 0.4%
and 0.2% lower on Easy and Medium subsets. As Hard
subset contains the most difficult cases which is closer to a
real application, it is proved that improved OHEM is better.
All the following experiments adopt improved OHEM.

4.2.2. Analysis of HDC Module. To test the effects of the
HDC module, we get rid of HDC6 in HPCNet and named
the network HPCNet-HDC6. *e result is shown in Table 3.
HPCNet-HDC6 is 1.6%, 1.2%, and 1.2% lower than HPCNet
in terms of AP on each subset. Compared with the other two
subsets, AP on Easy subset shows a bigger decrease, which
proves that HDC6 is effective especially in detecting large-
scale faces.

4.2.3. Analysis of HFP Module. To clearly illustrate the
importance of low-level detailed information in HFP, we
changed the architecture of HFPx_2 by deleting the feature
maps from lower layers. *e changed HFPx is shown in
Figure 12 and the network is named as HPCNet-Lx. From
Table 3, we can see that HPCNet-Lx shows an obvious lower
AP on all subsets, with an emphasis on the Hard subset
(from 81.9% to 79.5%, reduced by 2.4%). *is result has
proved that low-level feature maps are essential to small-
scale face detection.

4.2.4. Analysis of CIE Module. In this experiment, we re-
moved the CIEx in HPCNet and set the number of channels
in the main branch as the total number (256 in N4, 512 in
N5, and N6). *e changed network is named as HPCNet-
CIEx. It is clear from Table 3 that HPCNet-CIEx is 1.6%,
1.2%, and 0.8% lower than HPCNet in terms of AP on each
subset, which shows the effect of CIE on large-scale oc-
clusion problems.

4.2.5. Analysis of Multiscale Training. We adopt multiscale
training to HPCNet. To be more specific, it is randomly
scaling images to 400 × 1600, 600 × 1600, 800 × 1600,
1000 × 1600, 1200 × 1600, 1400 × 1600, and 1600 × 1600. All
of these sizes follow the principle of S × L. *e result is
shown in Table 4 and Figure 13. We name the model after
multiscale training as HPCNet_Pd.

From Table 4, we can see that the AP of HPCNet_Pd on
each subset is 1.3%, 1.6%, and 2.9% higher than HPCNet.
*e reason for this improvement is that multiscale training is
indeed an image boosting strategy, which generates more
faces of different scales and therefore enhances adaption and
robustness of the model.

Table 2: *e result of OHEM and improved OHEM.

Name Easy Medium Hard
OHEM 0.924 0.910 0.795
Improved OHEM 0.920 0.908 0.819

10 Computational Intelligence and Neuroscience



Table 3: *e effect of different components.

Name Easy Medium Hard
HPCNet 0.920 0.908 0.819
HPCNet-HDC6 0.904 0.896 0.807
HPCNet-Lx 0.912 0.900 0.795
HPCNet-CEx 0.904 0.896 0.811
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Figure 12: *e structure of HFPx_2. (a) HFP4_2. (b) HFP5_2 and HFP6_2. (c) HFP5_2 and HFP6_2.

Table 4: Analysis of multiscale training.

Name Easy Medium Hard
HPCNet 0.920 0.908 0.819
HPCNet_Pd 0.933 0.924 0.848
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Figure 13: Continued.
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4.2.6. Comparison with Other Algorithms. We choose sev-
eral face detection algorithms to compare with HPCNet,
namely, two-stage CNN [22], MTCNN [23], ScaleFace [25],
SFD [28], DSFD [29], CMS-RCNN [32], SSH [34], HR [35],
and FacenessNet [36]. *e reason for choosing them is as
follows:

All of them are based on ConvNet
*ey are representative in different genres
*ey have a good performance on WIDER FACE
*ey take both precision and time into consideration

*e comparison result is shown in Figure 14 and Table 5.
Despite HPCNet, all the AP and curve data are from the
website of WIDER FACE [27]. Figure 14 directly shows
differences between algorithms, where R represents recall
rate and P represents precision.

It is clear from Table 5 that HPCNet has a higher AP on
three subsets than classical algorithms including two-stage,

FacenessNet, MTCNN, ScaleFace, CNNCMS-RCNN, HR,
and SSH. For the most advanced algorithms like SFD and
DSFD, though HPCNet shows slightly lower AP, its running
speed is much faster. *e result has shown that HPCNet can
have an advanced detection rate as well as running speed,
which proves its reasonability and effectiveness. Figure 15 is
an example of small-scale face detection by HPCNet.

5. Conclusion

Scaling and occlusion are the most challenging problems for
face detection currently. We conducted research targeting
these difficulties and proposed a one-stage, fully convolu-
tional face detection framework HPCNet, which contains
several designed components. In HPCNet, we introduced
the concept of HDC and enlarged RF to handle large-scale
faces. Meanwhile, we proposed a new HFP structure
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Figure 14: *e PR curves of all the algorithms on WIDER FACE subset. (a) Easy, (b) Medium, and (c) Hard.

Table 5: Comparison between HPCNet and other algorithms.

Name Easy Medium Hard FPS
Two-stage CNN 0.681 0.618 0.323 <5
FacenessNet 0.713 0.634 0.345 <100
MTCNN 0.848 0.825 0.598 <95
ScaleFace 0.868 0.867 0.772 <5
CMS-RCNN 0.899 0.874 0.624 <15
HR 0.925 0.910 0.806 <5
SSH 0.931 0.921 0.845 <15
SFD 0.937 0.925 0.859 <35
DSFD 0.966 0.957 0.904 <20
HPCNet_Pd 0.933 0.924 0.848 44

Figure 15: An illustration of detection result using HPCNet.
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combining high-level and low-level features together to
enhance performance on small-scale faces. In addition,
aimed at occlusion, we designed the CIE with fewer pa-
rameters. Particularly, we took advantage of improved
OHEM and multiscale training strategy to balance the
number of different samples as well as enhance robustness.
By a series of ablation experiments, we proved the superi-
ority of our HPCNet. In the future, the idea of this method
can be applied to other computer vision tasks, such as person
reidentification.
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Loanword identification is studied in recent years to alleviate data sparseness in several natural language processing (NLP) tasks,
such as machine translation, cross-lingual information retrieval, and so on. However, recent studies on this topic usually put
efforts on high-resource languages (such as Chinese, English, and Russian); for low-resource languages, such as Uyghur and
Mongolian, due to the limitation of resources and lack of annotated data, loanword identification on these languages tends to have
lower performance. To overcome this problem, we first propose a lexical constraint-based data augmentation method to generate
training data for low-resource language loanword identification; then, a loanword identification model based on a log-linear RNN
is introduced to improve the performance of low-resource loanword identification by incorporating features such as word-level
embeddings, character-level embeddings, pronunciation similarity, and part-of-speech (POS) into one model. Experimental
results on loanword identification in Uyghur (in this study, we mainly focus on Arabic, Chinese, Russian, and Turkish loanwords
in Uyghur) showed that our proposed method achieves best performance compared with several strong baseline systems.

1. Introduction

Bilingual data play an very important role in cross-lingual
natural language processing (NLP) tasks, such as cross-lingual
text classification, cross-lingual information retrieval, and
neural machine translation. However, bilingual data are often
difficult to obtain. Lexical borrowing happens in almost every
language; Figure 1 gives several loanwords in Uyghur (the
reasons why we choose Uyghur as an example in our study are
as follows: (1) there are many loanwords in Uyghur and (2)
Uyghur is a low-resource language). If loanwords in low-
resource languages can be identified effectively, it will be a
novel way to alleviate the data sparseness existing in many
cross-lingual NLP tasks.

Loanword identification is a task of finding out loan-
words of a specific language (donor language) in texts in
another language (receipt language). 'ere are about three
kinds of loanword identification methods: (1) rule-based
method; (2) statistical-based method; and (3) deep learning-

based method. Early studies on loanword identification
often based on rules. For example, McCoy and Frank [1]
proposed a string similarity-based loanword identification
model that relies on the ED algorithm. With the develop-
ment of machine learning algorithms in NLP area, statis-
tical-based methods are also proposed [2]. In recent years,
deep learning algorithm such as bidirectional LSTM and
convolutional neural network (BLSTM+CNN) are also used
in loanword identification tasks [3]. Due to the lack of
generalization ability of rule-based methods and limitation
of training data in statistical-based methods, recent studies
often combine the rule and statistical features together to
improve the model performance effectively [4, 5]. However,
almost all of these methods suffer from data sparseness
during model training, especially in low-resource settings.

As a common used method to alleviate the data
sparseness, data augmentation is one of the most popular
methods in this topic. For example, Liu et al. [6] proposed to
use a GAN model consisting of two generators and one
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discriminator to produce meaningful natural language
sentences. Motivated by this study, we propose to use a
lexical constraint-based data augmentation model to gen-
erate more training data for loanword identification. Dif-
ferent from [6], we take the loanwords in training data as a
lexical constraint to produce more sentences containing the
loanwords.

After investigation, we find that there are two important
clues in loanword identification: semantic similarity and
pronunciation similarity. To incorporate these two features
into one feature, we propose to transfer the semantic sim-
ilarity as word-level feature and pronunciation similarity as
character-level feature. 'en, we fuse these two features into
one feature. Meanwhile, we incorporate the fusion feature,
pronunciation feature, and POS feature into a log-linear
RNN to achieve the best performance in loanword
identification.

'e main contributions of this study are as follows:

(i) First, a lexical constraint-based data augmentation
method is proposed to generate more training data
for loanword identification task.

(ii) Second, we incorporate multilevel features, pro-
nunciation similarity feature, and POS feature into a
log-linear RNN model to improve the performance
of the loanword identification model for low-re-
source language.

(iii) 'ird, we conduct an experiment on loanword
(Arabic, Chinese, Russian, and Turkish) identifi-
cation in Uyghur; experimental results show that
our proposed model achieves the best performance
compared with several strong baseline systems.

'e rest of this paper is organized as follows. Section 2
introduces some recent studies related to our topic. We
present details of our proposed method in Section 3.
Datasets, settings, and experimental results are described in
Section 4. We show the analysis of experimental results in
Section 5. In Section 6, we conclude this study and give some
possible future directions.

2. Related Work

In this section, we present some work related to our study.

2.1. Loanword Identification. Lexical borrowing has received
relatively little attention in natural language processing area.
Tsvetkov and Dyer [7] proposed a morph-phonological
transformation model to obtain good performance at pre-
dicting donor forms from borrowed forms. Tsvetkov et al.
[7] suggested to use the lexical borrowing as a model in an
SMT framework to translate OOV words. Gerz et al. [8]
analyzed the implication of variation in structural and se-
mantic properties in general language-independent archi-
tectures on the language modeling task. Mi et al. [9] used
shallow features such as string similarity to detect loanwords
in Uyghur. Mi et al. [3] presented a neural network-based
loanword identification model that also incorporated several
shallow features. However, these methods only trained

loanword identification models based on some monolingual
corpora. It fails to project donor language and receipt
language into one semantic space. 'e limitation of training
data also exists.

2.2. Data Augmentation for NLP. 'e main goal of data
augmentation in NLP is to generate additional, synthetic
data using the data you have to alleviate the data sparseness
during model training [10]. 'ere are several data aug-
mentation methods in NLP area [11]. 'e first one is lexical
substitution which tries to substitute words present in a text
without changing the meaning of the sentence [12]. 'e
second one is back translation, which is commonly used in
neural machine translation (NMT). Back translation first
trains an intermediate system on the parallel data which is
used to translate the target monolingual data into the source
language.'e result is a parallel corpus where the source side
is synthetic machine translation output while the target is
genuine text written by humans. 'e synthetic parallel
corpus is then simply added to the real bitext in order to
train a final system that will translate from the source to the
target language [13]. 'e syntax-tree manipulation has been
used in [14]; the idea is to parse and generate the dependency
tree of the original sentence, transform it using rules, and
generate a paraphrased sentence. Mixup is a simple yet
effective image augmentation technique introduced by
Zhang et al. [15]. 'e idea is to combine two random images
in a mini-batch in some proportion to generate synthetic
examples for training. 'e most recent data augmentation
method is generative model; this kind of method tries to
generate additional training data while preserving the class
label [16].

2.3. Sequence Labeling in NLP. 'ere are two main types of
sequence labeling methods in NLP, such as gradient-based
methods and search-based methods [17]. As for the prob-
abilistic gradient-based learning methods such as condi-
tional random fields (CRFs) and recurrent neural network
(RNN), they have high accuracy because of the exact
computation of the gradient and probabilistic information.
Nevertheless, those methods have critical drawbacks. First,
the probabilistic gradient-based methods typically do not
support search-based optimization (search-based learning
or decoding-based learning), which is important in sequence
labeling problems with emphasis on the learning speed (e.g.,
for large-scale datasets). In tasks with complex structures,
gradient computation is usually quite complicated some-
times and even intractable. 'is is mainly because dynamic
programming for computing gradient is hard to scale for
large-scale datasets. On the other hand, the search technique
is easier to scale to large-scale datasets. 'is is because
search-based learning is much simpler than gradient-based
learning [18–20]—just search the promising output candi-
dates and compare them with the oracle labels and update
the weights accordingly. Another category of sequence la-
beling methods is the search-based learning methods (i.e.,
decoding-based learning), such as structured perceptron and
MIRA. A major advantage of those methods is that they
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support search-based learning, such that the gradient is not
needed and the learning is done by simply searching and
comparing the promising output candidates with the oracle
labels and updating the model weights accordingly. As a by-
product of the avoidance of gradient computation, those
methods have faster training speed compared with proba-
bilistic gradient-based learning methods like CRF.

3. Method

In previous studies, a large scale of annotated data is used to
train a loanword identification model. 'ey treated the
loanword detection as a sequence labeling problem. How-
ever, the annotated data for loanword identification are very
difficult to obtain. So, one of the contributions of this study is
the data augmentation for loanword identification. We
propose to use a lexical constraint GAN to generate more
sentences for loanword identification model training. An-
other contribution of this paper is the combination of several
features for loanword identification model; we introduce
three features such as embedding fusion feature (word level
and character level), pronunciation similarity feature, and
POS feature.

3.1. Overall Architecture. Our proposed method includes
two parts:

(1) Data augmentation for loanword identification.
(2) Log-linear RNN-based loanword identification

model.

To generate more training data for loanword identifi-
cation, we propose a lexical constraint GAN-based data
augmentation model. Recent methods on loanword iden-
tification often trained on features such as pronunciation
similarity, POS similarity, and so on. However, these kinds

of methods usually suffer from data sparseness or lack of
semantic knowledge. To overcome this, we introduce a log-
linear RNN-based loanword identification model which
combines word-level and character-level embedding fusion
features, pronunciation similarity, and POS features to
predict Arabic, Chinese, Russian, and Turkish loanwords in
Uyghur. 'e main idea of loanword identification in
low-resource languages is as follows: we first use the data
augmentation model to generate more training data for
loanword identification in Uyghur; then, several features
such as word- and character-level embedding features,
pronunciation similarity, and POS features are proposed to
build a multiple feature fusion-based loanword identifica-
tion model (Figure 2).

3.2. Data Augmentation for Loanword Identification.
Recent studies on loanword identification task often suffer
from limitation of training data. In this study, we propose to
use a lexical constraint GAN to generate more annotated
data for the loanword identification task. As an extension of
traditional GAN, our data augmentationmodel also includes
two main parts: a generator and a discriminator. 'e dif-
ference is that we use two generators and a discriminator to
build the data augmentation model for low-resource loan-
word identification. We introduce the details of our pro-
posed model in this section.

3.2.1. Generators. We follow the work of [6] and extend the
backward and forward generators to adapt to the loanword
identification task. In our study, we use the loanwords of a
specific language as the lexical constraint to generate more
training data. Similar to [6], given a loanword, the backward
generator takes it as the sentence’s starting point and
generates the first half sentence backwards. 'en, the se-
quence produced by the backward generator is reversed and

Figure 1: Examples of loanwords in Uyghur2.
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fed into the forward generator. It then learns to generate the
whole sentence with the aim of fooling the discriminator.

We can define the backward generator G
(bw)
θ as

P
(bw)
θ s<c|wlw(  � 

lw−1

i�1
P

(bw)
θ wlw−i|wlw, . . . , wlw−i+1( , (1)

where wlw denotes a given loanword and l indicates the
length of generated training sentence. 'e generated sen-
tence is s � w1w2, . . . , wlw, . . . , wl. 'e backward generator
generates the first half of the sentence, while another half of
sentence is generated by the forward generator. θ and θ′ are
parameters of the backward and forward generators.

'e generator of the entire sentence can be defined as

G s|wct; nθq, hθ′(  � P
(bw)
θ s<c|wlw( P

fw

θ′ s<c|s1: lw( , (2)

where P
(bw)
θ (s<c|wlw) and P

fw

θ′ (s<c|s1: lw) are descripted as
above.

'e two generators have the same structure but have
distinct parameters. To improve the coherence of the con-
strained sentence, we employ an LSTM-based language
model with dynamic attention mechanism (called
attRNN-LM) as generator.

3.2.2. Discriminator. Another important component in our
proposed method is the discriminator, which takes sentence
pairs as input and distinguishes whether a given sentence
pair is real or generated. It guides the joint training of two
generators by assigning proper reward signals. 'is module
can be a binary classifier or a ranker. Following previous
methods [21], we use Text-CNN as the discriminator which
outputs a probability indicating whether the input is gen-
erated by humans or machines in the experiment.

3.2.3. Data Augmentation Model. To train the data aug-
mentation model effectively, we first pretrain the backward
and forward generators by standard MLE loss. Different
from [6], we sample a loanword in our loanword list as the
lexical constraint rather than select it randomly. 'en, we
use two generators and the lexical constraint to generate the

training sentence. 'e discriminator is trained based on real
sentence as positive sample and sentences generated by
generators as negative samples.'e discriminator’s output is
the probability that the generated sentence is written by
humans. We use the discriminator’s output as the reward to
encourage the two generators to work together to generate
sentences which are indistinguishable from human-written
sentence. To make the training stable and prevent the
perplexity value skyrocketing, we apply teacher forcing to
give the generators access to the gold-standard targets after
each policy training step.

3.3. Multiple Feature Fusion-Based Loanword Identification.
Loanword identification can be defined as a sequence la-
beling problem. However, different from a traditional se-
quence labeling task, loanword identification task can apply
some additional knowledge such as semantic similarity,
pronunciation similarity, and POS tagging. As the data
augmentation can provide us more annotated data for model
training, we propose to use a deep neural network model to
identify loanword in low-resource settings. 'e principle
feature we used is the fusion of word- and character-level
features, which combines the word relation and pronunci-
ation similarity in loanword identification. We also incor-
porate external features such as pronunciation similarity and
POS information into our method. In this section, we first
describe features used in our proposed method and then
define the details of the loanword identification method.

3.3.1. Features. We use three kinds of features in our
proposed method: the fusion feature, pronunciation simi-
larity, and POS feature.

Fusion Feature. In loanword identification task, word co-
occurrence often plays a very important role. For example, in
the English sentence “Tiananmen square is the most famous
tourist destination in Beijing,” the Chinese loanword
“Tiananmen” is most related to the Chinese loanword
“Beijing.” In previous work, word embedding can capture
word similarity and word relations with other words in a

Word-level feature

Character-level feature

Pronunciation feature

POS feature

Loanword identification 
model

(Log-linear RNNs)

Generator (backward)

Generator (forward)

Discriminator

w_lwi, …w_3, w_2, w_1

w_1, w_2,
w_3,…,w_lwi, …,w_m-1,w_m

Feed

Reward

Data augmentation Loanword identification

w_lw0, w_lw1, w_lw2, …,w_lwi,…,w_lw (n-1), w_lwn

w_lwi

Figure 2: 'e framework of our proposed model.
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sentence. 'erefore, we apply self-attention to obtain word
embedding in our study. 'e most important advantage of
the self-attention is that it can model dependencies between
words.

We use the dot-product attention in this study:

DotAtt(Q,K,V) � softmax QKT
 V, (3)

whereQ,K,V are query, key, and value vectors, respectively.
It should be noted that the self-attention was obtained
without scaling. We set

Q � K � V � x
w
t , (4)

and at time step t, the word embedding at time t based on
self-attention can be defined as

h
wl
t � DotAtt x

w
t , x

w
t , x

w
t( . (5)

'emost important feature in loanword identification task
is the pronunciation similarity between the word in receipt
language and its corresponding word in donor language. As
convolutional neural networks (CNNs) have been proven to
capture the character-level information in NLP tasks, CNNs
can process the sequences in the current receptive filed akin to
the attention mechanism [22]. Meanwhile, we also use max
pooling to capture character-level features. 'e way we use
CNN in our proposed method can be defined as

Conv x
c
t(  � Mask x

c
t( ∗U. (6)

We follow the study of [23] and use a CNN with a
redundant position of input sequences masked to extract the
character-level features. U is the filter width k set as 3. 'e
convolution operation is denoted with ∗, and the padded
position of input sequences is set as 0.

Max means a max pooling operation. We use it to
capture the significant features assigned with the highest
value for a given filter. 'erefore, in the time step t, the
character-level representation from local view is obtained as

h
cl
t � Max Conv x

c
t( ( . (7)

To fuse the word-level and character-level features to-
gether, we propose to concatenate two features with auto-
matic adjustment (Figure 3). 'e final fusion representation
can be defined as

Z � λ1h
wl
t + λ2h

cl
t , (8)

where hwl
t and hcl

t are word-level and character-level features,
respectively, and λ1 and λ2 are corresponding parameters.

Pronunciation Similarity Feature. Intuitively, we find that a
loanword often has a similar pronunciation with its corre-
sponding donor word. A samplemethod to detect loanwords is
to use a string similarity algorithm to compute the string
similarity scores between the candidate loanword and a list of
words in donor language.'en, we rank the scores and take the
word with the best score as the donor word. In loanword
identification task, we first transform donor and receipt lan-
guage texts into a samewriting system. For example, in Chinese

loanword identification in Uyghur, we first convert these two
language texts into Latin. 'en, we apply the most commonly
used string similarity algorithm—minimum edit distance
(MinED)—in our loanword identification task.

hmed(lw, acrt,u)

� 

lacrt

j�0


lu

i�0
Pr lwi|med ui, acrtj  ,

(9)

where lacrt and lu are lengths of donor word list and receipt
word list, respectively, acrt and u represent donor languages
(Arabic, Chinese, Russian, and Turkish) and receipt language
(in this study indicates Uyghur), lwi is the loanword label of the
ith receipt word, and med(ui, acrtj) is the minimum edit
distance of two words. To adapt the loanword identification
task, we first conduct text normalization on all datasets, which
transform a text into a canonical (standard) form. 'en, we
carry on morphological segmentation on morphologically rich
languages, such as Uyghur, Russian, and Turkish.

POS Feature. As loanwords are often nouns, we propose a part-
of-speech (POS) feature to further constrain the loanword
identification model. We first pretrain POS tagging models for
donor languages and receipt language. Considering both the
language resource and performance, we select CRF as the
framework of POS tagging model. As POS models are ready, if
a word in receipt and its corresponding candidate donor word
are all nouns, we set the POS features as 1.

3.3.2. Loanword Prediction Model. Log-linear models play a
considerable role in statistics and machine learning. 'e
most important reason we chose the log-linear model as the
basic framework of our proposed loanword prediction

Input Uyghur texts

Character random
embeddings

Pretrained word
embeddings

CNN Attention

Max pooling Short cut

Char feature Word feature

λ

Figure 3: 'e multilevel feature fusion method used in our
proposed loanword identification model. Character embeddings and
word embeddings are taken as input for the feature selection layer.
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model was because features can be easily added into it.
Additionally, the log-linear model has been widely used in
NLP tasks such as SMT and NMT.

To adapt the loanword prediction task and include rich
features such as BiLSTM, POS, and semantic feature into the
model, we use log-linear RNNs [24] as the basic framework
in our task. Log-linear RNN is similar to a RNN model. It
allows a more general form of input to the network at each
time step; that is , instead of allowing only the latest symbol
xt to be used as input, along with the condition C, it now
allows an arbitrary feature vector ψ(C, x1, x2, .., xt−1, xt) to
be used as input; this feature vector is of fixed dimensionality
|ψ| and allows it to be computed in an arbitrary (but de-
terministic) way from the combination of the currently
known prefix x1, x2, .., xt−1, xt and the context C. 'is is a
relatively minor change, but one that usefully expands the
expressive power of the network.

'e hidden state at time t in our loanword identification
task can be defined as

pθ,t(x)

∝ b C, x1, x2, . . . , xt−1, xt( 

· exp a
T
θ,tϕ C, x1, x2, . . . , xt−1, xt(  .

(10)

We assume that we have a priori fixed a certain back-
ground function b(C, x1, x2, . . . , xt−1, xt) and also defined
M features defining a feature vector ϕ(C, x1, x2, . . . , xt−1, xt)

of fixed dimensionality ϕ(C, x1, x2, . . . , xt−1, xt).
'erefore, the loanword label of t + 1 word xt+1 can be

defined as

xt+1 ∼ pθ,t(·). (11)

During training of our proposed loanword identification
model, we use the cross-entropy loss to optimize the per-
formance of our model [25].

4. Experiments

In this section, we evaluate the effectiveness of our proposed
method.

4.1.Data. To fully evaluate the effectiveness of our proposed
model, we conduct Arabic, Chinese, Russian, and Turkish
loanword identification in Uyghur. 'e datasets used in our
experiments are listed in Table 1. We crawl these corpora
from the Internet. 'en, we annotate a small part with
loanword label by hands. In all texts, we assure that each
sentence includes at least one loanword.

To train the data augmentation model, we also collect
some monolingual data from Internet for each language
(Table 2).

4.2. Settings

4.2.1. Data Augmentation. We train the data augmentation
model on datasets described in Table 2. We set the same
hyperparameters for forward and backward generators. All

generators include 2-layer char-level LSTMs with 1024
hidden units. 'e dimension of word embeddings is set to
1024; the batch size, dropout rate, threshold of element-wise
gradient clipping, and initial learning rate of Adam opti-
mizer are set to 128, 0.5, 5.0, and 0.001; layer normalization is
also applied. We set both backward and forward generators
to one layered word-level LSTM with 1024 hidden units
when training on datasets described in Table 2. For the
hyperparameters of the discriminator, the filter window size
is set to be 3, 4, 5, 6, and 7, and the kernel number of each
filter is 512. We set the batch size as 64 and the number of
iterations as 5000.

4.2.2. Loanword Identification. We implemented the log-
linear RNNs by ourselves. We also developed the extended
version of edit distance algorithm to adapt the loanword
identification task. For the POS feature, we first pretrained a
Uyghur POS tagging model; then, we tagged all Uyghur
sentences based on this model.

We compared our method with several strong baseline
systems: Rule [1], CRF [2], BLSTM-CNN [3], and ClEm-
bedding [4].

4.3. Results on Data Augmentation. Results on data aug-
mentation and size of training data can be found in Tables 3
and 4, respectively.

4.4. Results on Loanword Identification. 'e results on
loanword identification on different methods can be found
in Table 5.

5. Analysis

Table 3 presents experimental results on data augmentation
for loanword identification. We can find that our proposed
lexical constraint method achieves the best performance
compared with other strong baseline systems in all evalu-
ation metrics.'emost important reason is that our method
guarantees the fluency and semantic consistency of gener-
ated sentence at the same time. Table 4 shows the size of
Uyghur sentence (with loanword in different donor lan-
guages) generated by our proposed data augmentation
model. For loanwords in different donor languages, we
obtain the largest Uyghur datasets with Turkish loanwords;
one possible reason is that Uyghur and Turkish are closely

Table 1: Size of datasets.

Data type
Size

Arabic Chinese Russian Turkish
Sentences 100, 780 125, 085 143, 290 132, 500
Loanwords 690 2,450 1,274 2,009

Table 2: Size of monolingual data.

Languages Uyghur Arabic Chinese Russian Turkish
Size (words) 0.32 1.05 B 1.70 B 1.14 B 1.49 B
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related. We obtain the fewest sentences with Arabic; it is
because Uyghur and Turkish have very different grammar
and syntax.

'e first part in Table 5 describes experimental results on
different methods with the original training data. We found
that the CRF and rule-based model outperform BLSTM-
CNN method; one possible reason is the limitation of an-
notated data. Because the ClEmbedding model can exploit
semantic information obtained from monolingual data, the
ClEmbedding model achieves slightly better results com-
pared with the CRF and rule-based model. Compared with
other baseline models, our method incorporates word-level
and character-level features pretrained from monolingual
corpora into one model; therefore, our method achieves best
results, but the improvement is not significant. 'is is be-
cause our method also suffers from data sparseness during
model training.

'e second part of Table 5(with (+)) presents loanword
identification results on different methods with our gener-
ated training data (data augmentation). We can find that the
generated training data improve all baseline models sig-
nificantly. 'e CRF-based model has the ability of gener-
alization, but the data sparseness still weakens the loanword
identification performance significantly. 'e BLSTM-
CNN+method also achieves better performance compared
with the BLSTM-CNN. Both CRF+ and BLSTM-
CNN+benefit from data augmentation. Although ClEm-
bedding + relies on monolingual data, it also obtains per-
formance improvements due to loanword identification
results are added. Our proposed method incorporates RNN
features and external features into one model, so it achieves
the best performance among all baseline systems.

Table 6 presents results on different features in our
proposed method (we take Turkish and Chinese loanword
identification as examples). We find that models with all
features achieve best performance in both Turkish and
Chinese loanword identification tasks. As for single feature,
the fusion feature is more important than others; one
possible reason is that the fusion feature combines word-
level and character-level features at the same time. Except
the fusion feature, pronunciation similarity feature out-
performs other features because the pronunciation similarity
is the most intuitive feature in loanword identification task.
Although the POS cannot achieve comparative performance
with others, we find that the combination features with POS
always outperform others.

In Table 5, we describe results on different donor lan-
guages. We can easily find that our method achieves best
performance on Turkish loanword identification task. One
important reason is that Turkish and Uyghur belong to the
same language family, and they share much vocabulary and
grammar compared with other donor languages. Our model
also achieves better results on Russian loanword identifi-
cation than Chinese and Arabic; one possible reason is that
Russian has a deep influence on Uyghur, and Uyghur is
sometimes written in a Cyrillic alphabet, which is the basic
writing system in Russian. Because people who can speak

Table 3: Evaluation of data augmentation methods.

Donor Metrics B/F-LM BF-MLE Ours

Arabic
BLEU-4 0.15 0.15 0.21
Self-BLEU 64.32 64.58 63.46

TER 66.19 66.44 65.82

Chinese
BLEU-4 0.16 0.17 0.23
Self-BLEU 64.05 64.30 63.78

TER 64.23 65.02 63.98

Russian
BLEU-4 0.18 0.18 0.23
Self-BLEU 62.76 63.05 62.64

TER 63.69 63.92 63.45

Turkish
BLEU-4 0.19 0.20 0.25
Self-BLEU 62.51 62.86 62.18

TER 62.46 63.14 62.04

Table 4: Size of training data generated in data augmentation
(Uyghur sentences).

Lang Arabic Chinese Russian Turkish
Size 302, 480 325, 790 314, 208 336, 852

Table 5: Loanword identification experimental results on different
methods.

Donor Model
Loanword identification results (%)

P P(+) R R(+) F1 F1
(+)

Russian

Rule (+) 72.04 72.89 69.31 70.18 70.65 71.28
CRF (+) 71.63 72.45 67.28 68.15 69.39 70.23

BLSTM-CNN
(+) 71.45 72.26 70.50 71.31 70.97 71.78

ClEmbedding
(+) 73.12 73.94 71.84 72.62 72.47 73.27

Ours (+) 74.80 75.62 73.64 74.20 74.22 74.90

Arabic

Rule (+) 69.05 69.84 68.17 69.02 68.61 69.43
CRF (+) 69.83 70.65 67.42 68.29 68.60 69.45

BLSTM-CNN
(+) 68.70 69.52 69.85 70.67 69.27 70.09

ClEmbedding
(+) 72.95 73.76 72.03 72.85 72.49 73.30

Ours (+) 73.91 74.62 72.35 73.06 73.12 73.83

Turkish

Rule (+) 72.02 72.86 69.87 70.50 70.93 71.66
CRF (+) 71.46 72.29 69.02 69.95 70.22 71.10

BLSTM-CNN
(+) 71.25 72.04 70.43 71.18 70.84 71.61

ClEmbedding
(+) 72.96 73.64 73.08 73.85 73.02 73.74

Ours (+) 75.24 76.09 74.36 75.14 74.80 75.61

Chinese

Rule (+) 70.32 71.13 69.77 70.58 70.04 70.85
CRF (+) 70.85 71.64 69.24 70.05 70.04 70.84

BLSTM-CNN
(+) 70.58 71.34 69.98 70.79 70.28 71.06

ClEmbedding
(+) 71.67 72.48 71.35 72.14 71.51 72.31

Ours (+) 74.30 75.07 72.88 73.95 73.58 74.51
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Uyghur can often speak Chinese fluently, Chinese has a
significant impact on Uyghur. Although Uyghur and Arabic
share the same writing system, two languages belong to
different language families. So, Arabic loanword identifi-
cation achieves the worst performance.

6. Conclusion

'e main goal of this study is to improve the performance of
loanword identification for low-resource language. Our con-
tribution includes two parts: (1) data augmentation for loan-
word identification and (2) loanword identification based on
multiple feature fusion. In particular, data augmentation al-
leviates the data sparseness occurring in the loanword iden-
tification model training; we optimize the loanword
identification model by introducing several features such as
fusion feature of word- and character-level embeddings,
pronunciation similarity, and POS feature into one model
based on a log-linear RNN. To evaluate the effectiveness of our
proposed method, we conduct experiments on several baseline
models. Experiments show that our proposed loanword
identification method achieves the best performance.

In our future work, we plan to improve the robustness of
the loanword identification model by generating more di-
verse training data and incorporating richer contextual
information into it.
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*e goal of aggregating the base classifiers is to achieve an aggregated classifier that has a higher resolution than individual
classifiers. Random forest is one of the types of ensemble learning methods that have been considered more than other ensemble
learning methods due to its simple structure, ease of understanding, as well as higher efficiency than similar methods. *e ability
and efficiency of classical methods are always influenced by the data. *e capabilities of independence from the data domain, and
the ability to adapt to problem space conditions, are the most challenging issues about the different types of classifiers. In this
paper, a method based on learning automata is presented, through which the adaptive capabilities of the problem space, as well as
the independence of the data domain, are added to the random forest to increase its efficiency. Using the idea of reinforcement
learning in the random forest has made it possible to address issues with data that have a dynamic behaviour. Dynamic behaviour
refers to the variability in the behaviour of a data sample in different domains.*erefore, to evaluate the proposed method, and to
create an environment with dynamic behaviour, different domains of data have been considered. In the proposedmethod, the idea
is added to the random forest using learning automata. *e reason for this choice is the simple structure of the learning automata
and the compatibility of the learning automata with the problem space. *e evaluation results confirm the improvement of
random forest efficiency.

1. Introduction

Random forest is one of the methods of ensemble learning
that comes under the homogeneous base learner category in
terms of the type of constructive classifiers. As the name
implies, all base learners are decision trees, and therefore
they have a simpler structure than similar methods [1]. *e
random forest structure has two advantages. *e first cat-
egory is from a computational point of view, and the second
category is from a statistical point of view. Advantages that
can be considered from a computational point of view are:
the random forest has the ability to deal with both regression
and classification issues. *e train and prediction processes
in this classifier are performed at high speed, and therefore
the random forest is known as one of the fast classic clas-
sifiers. Another advantage of the random forest is its ability
to be used directly in high-dimensional issues [2]. *e
advantages of the second view of the random forest are its

characteristics, namely, prioritization of features, attribution
of different weight coefficients to different classes, and il-
lustration and unsupervised learning ability.

According to the literature, the random forest method is
one of the most practical methods of ensemble learning.
Weighting the base learners in ensemble learning is one of
the main challenges in aggregating the basic classifiers in
order to achieve a stronger classifier [3]. *e reason for
weighing base learners, or in other words, determining the
impact factor for each base learner, is to increase the scal-
ability of the data mining algorithm with the problem space.
*is becomes even more apparent when the environment is
dynamic, and different or sometimes contradictory behav-
iours are observed from data in different situations. *e text
data environment has such an interesting behaviour that it
challenges data mining algorithms. For example, placing one
word on one domain may create a positive polarity, but it
may also create a negative polarity on another domain. *is
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difference in polarity is created without any change in the
form of the word and without any change in the role of the
word from a grammatical point of view. *e word “small” in
both the electronic domain and the restaurant domain has
such a behaviour. *is behaviour poses a major challenge to
the opinion mining algorithms [4].

*e classical solution in the literature to overcome this
challenge is based on the use of lexical-based approaches.
*is approach is based on frameworks such as unigram,
n-gram, aspect-based, and similar methods, and all of them
are data-dependent. In addition to the urgent need for
predefined data, these methods lose their efficiency if they
are met with an unspecified word or metaphor in the
opinion mining field. In other words, they are not com-
patible with the problem space. *e way random forest
works is that with the sequential placement of training data
and feature vectors that are injected into each of the base
learners, it tries to find the best subset of features, and by
increasing their impact factor in the classifier, it achieves the
highest performance among all the aggregated base learners
[5]. However, this method is not effective in relation to data
such as text, in which a word can have different polarities in
different domains because, in the classification algorithm,
there is no ability to adapt to the conditions of the problem
space.

In this paper, we intend to empower random forest with
the idea of reinforcement learning and improve its efficiency.
In the proposed method, learning automata is used to ag-
gregate and weigh base learners. *e way learning automata
works is to receive feedback from the environment and
perform one of the actions based on the type of feedback. In
the learning automata, feedbacks are divided into two cat-
egories of reinforcement signals: reward signals and penalty
signals. For each reinforcement signal received by the
learning automata, it updates the probability of selecting the
selected action in the previous step. *is process continues
until the probability of action selections converges to one of
the actions; in other words, the best option for running in the
current situation is found. In the proposed method, learning
automata actions are appropriate when one of the base
learners selected leads to the maximum reward that can be
received from the environment. Since at each stage of
learning automata execution, the learning algorithm tries to
select the best option, achieving global optima in the
problem space is guaranteed.*is is proof of the adaptability
of the proposed method. In the proposed method, the
subprocess of replacing features in the feature vector is
removed, and all the features in the feature vector are used.
As a practical application in the field of opinion mining, if
the Bag of Word (BoW) method is used to create the feature
vector, the advantage of considering all the features of the
feature vector will also cover cases that occur rarely. In other
words, in the proposed method, the aspect of independence
from the domain in the processes such as opinion mining is
considered.

Our contribution is summarized as follows:

In this paper, a brief review of random forest in terms of
application scope is given.
In this paper, a learning automata-based method is
proposed to improve the random forest performance.
*e proposed method operates independently of the
domain, and it is adaptable to the conditions of the
problem space.

*e rest of the paper is organized as follows. In Section 2,
related work is introduced. Section 3 presents the intro-
duction to learning automata. *e proposed method is
explained in Section 4. Section 5 includes evaluation. Dis-
cussion is given in Section 6, and finally, the conclusion and
future work are described in Section 7.

2. Related Work

In this section, theories and literature on the subject of
random forest are examined.*e purpose of this section is to
review the innovations that have been introduced around
random forest in recent years.

Random forest is considered as one of the methods of
ensemble learning in the homogeneous ensemble learning
subgroup. In the random forest, each decision tree, or in
other words, each base learner, has access to a random subset
of feature vectors [6]. *erefore, the feature vector is defined
as follows:

x � x1, x2, ..., xp , (1)

, where p is the dimension property of the available vector for
the base learner. *e main goal is to find the prediction
function as f(x) that predicts the Y parameter.*e prediction
function is defined as follows:

L(Y, f(x)), (2)

where L is known as the loss function, and the goal is to
minimize the expected value of the loss. For regression
applications and classification applications, squared error
loss and zero-one loss are common choices, respectively.
*ese two functions are defined as follows in equations (3)
and (4), respectively.

L(Y, f(x)) � Y − f(x)
2

 , (3)

L(Y, f(x)) � I(Y≠f(x)) �
0, if Y � f(x),

1, otherwise.
 (4)

To create an ensemble, a set of base learners come to-
gether. If base learners are defined as follows:

h1(x), h2(x), . . . , hJ(x), (5)

for regression applications, the averaging will be based on
equation (6), and for classification applications, the voting
will be based on equation (7).
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f(x) �
1
J



J

j�1
hj(x), (6)

f(x) � argmax

J

j�1
I y � hj(x) . (7)

*e Random Forest pseudocode for classification ap-
plications is shown in Algorithm 1.

As can be seen in Algorithm 1, in the random forest, an
attempt is made to find a subset of features using the various
replacements of training data and features that maximize the
efficiency and accuracy of the output. *is set of features is
used to identify a new instance.

*e following is a brief review of the random forest
subject literature. It should be noted that we intend to in-
troduce the background of the subject, and this paper is not a
review paper, and the presented review is a brief review and
does not mention all the previous works undoubtedly.
However, the authors have tried to refer to the latest and
most authoritative research work published in the recent
years.

2.1. Astronomy, Bioinformatics, and Economics fields. In the
astronomy field, Markel and Bayless [7] use RF for the
classification of type IA and core-collapse supernovae. Chen
et al. [8] propose an approach to detect the potential signal
photons by RF. In the bioinformatics, Pang et al. [9] propose
a method to mitigate the computational complexity of RNA
simulation software by a typical random forest. Darmawan
et al. [10] propose an age estimation model in the bio-
informatics field. In the economics field, Park et al. [11]
propose two stages of short-term load forecasting by random
forest and deep neural networks to reduce energy costs. 12
use a typical RF to solve the e-commerce product classifi-
cation problem. Modeling consumer credit risk by RF is the
main goal of [13]. 14 increase tree correlation by controlling
the probability of placing splits along with strong predictors
to deal with high-dimensional settings. Sikdar et al. [15]
proposed a variable selectionmethod based on RF to identify
the key predictors of price change in amazon.

2.2. General and Global Problem fields. In the general field,
Giffon et al. [16] use the mean of orthogonal matching
pursuit algorithms for calculating the weights of the linear
combination for producing a linear combination of trees
with minimum training error. Combining RF and gener-
alized linear mixed models is the main idea of [17] to model
clustered and longitudinal binary outcomes. Mohapatra
et al. [18] optimize the random forest by use of unequal
weight voting strategy. Ji et al. [19] propose a hybrid model
for crowd counting by a combination of convolutional
neural networks (CNN) and deep regression forest. Santra
et al. [20] propose a deterministic dropout to remove un-
important connections in NN by RF. Proposing the oblique
RF without explicit regularization techniques by minimizing
the structural risk is the main goal of [21]. Katuwal et al. [22]

use an oblique hyperplane to split the data for increasing the
accuracy of the trees and reduce the depth of RF. Probst et al.
[23] tune the hyper-parameters to achieve higher perfor-
mance to improve the RF. Kim et al. [24] propose a method
for interpreting and simplifying a black-box model of a deep
RF by quantifying the feature contributions and frequency of
the fully trained deep RF. Jain et al. [25] purpose dynamic
weighing scheme for RF using the correlation between
decision tree and data samples. In the global problem field,
Stafoggia et al. [26] estimate daily particulate matter for
weather forecasting by RF.Modeling the global forest area by
RF is the main target of [27]. Breidenbach and Saravi [28]
present research on land-subsidence spatial modeling and its
assessment. Analyzing the net ecosystem carbon exchange is
the goal of [29]. Prediction about the global climate problem
using the index quantization ability of random forest and the
optimizing ability of PSO in the NN prediction model is the
main purpose of [30]. Li et al. [31] solve the class imbalance
by detecting serial case pairs.

2.3. Healthcare field. Diagnosis detection and prediction of
obesity in patients by RF are the main goals of [32, 33],
respectively. El-Sappagh et al. [34] use RF in the simple form
for the detection of Alzheimer’s disease progression. In [35],
RF is introduced as one useful machine learning tool for
healthcare domain, especially for COVID-19 modeling.
Khedkar et al. [36] use Patients Electronic Health Records
for predicting the heart failure risks by RF. Hane et al. [37]
propose a model for prediction of the dissolution behaviour
of a wide variety of oxide glasses. Subudhi et al. [38] propose
a method by RF to detect the ischemic stroke by a sequence
of MRI images. Javadi et al. [39] propose a method to predict
the immunogenic peptides of intracellular parasites. Iden-
tifying the key risk factors associated with acute rejection in
organ transplantation is the main propose of [40]. In Singh
et al. [41], RF has been used as one of the classifiers to classify
the covid-19 spread. Na et al. [42] propose an automatic
walking mode change of the above-knee prosthesis. Clus-
tering and predicting vital signs by RF is the goal of [43]. Zhu
et al. [44] optimize the parameters of the random forest by
improved fish Swarm algorithm for predicting the knee
contact force. A method for identifying foreign particles for
quality detection of liquid pharmaceutical products is pre-
sented by [45]. Lee and Jung [46] consider the relation
between teacher attachment and student growth. 47 propose
a practical method for SIF downscaling. Guanter et al. [48]
present a method based on RF for predicting diabetes. Subasi
et al. [49] propose a decision support system for the diag-
nosis of migraine by RF. Classification of the driver’s stress
level is the main goal of [50]. Ayata et al. [51] propose an
emotion recognition algorithm from multimodal physio-
logical signals by using the random forest as one of the
machine learning methods for recognition.

2.4. Industrial and Network fields. Zeraatpisheh et al. [52]
use typical RF for producing the feature map in the in-
dustrial field. Du et al. [53] propose a rapid and accurate
detection technique for pesticide detection by RF to
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construct a quantitative detection model. Improving the
performance of mapping for mineral is the main goal of
reference [54]. Liu et al. [55] propose an adaptive electrical
period partition algorithm for open-circuit fault detection.
Software fault prediction by ensemble techniques is inves-
tigated by [56]. In [57], the RF id is used to build a dis-
tributed energy system. A comprehensive image processing
model is proposed by [58]. Ho et al. [59] uses RF to propose a
framework that uses climate data to model hydropower
generation. Zhou et al. [60] use RF for small and unbalanced
datasets to create a risk prediction model for decision-
making tool. Deng et al. [61] propose an authentication
method for protecting high-value food products by RF. *e
forecast for agricultural products by RF is proposed by [62].
Jeong and Kim [63] use weighted random forest for the link
prediction model. Khorshidpour et al. [64] present an ap-
proach to model an attack against classifiers with non-
differentiable decision boundary. Fusing multi-domain
entropy and RF is the main goal of [65] for proposing a fault
diagnosis method of the inter-shaft bearing. Analyzing the
wine quality is presented by [66]. In the network field,
Madhumathi and Suresh [67] develop a model to predict the
future location of a dynamic sensor node in wireless
communications. Fang et al. [68] propose an encrypted
malicious traffic identification method. Detecting the in-
trusion in the network by typical RF is proposed by [69], and
intrusion detection in the network security by tuning the RF
parameter of the Moth-Flame optimization algorithm is
presented by [70].

2.5. Physics, Text Processing, Tourism, and Urban Planning
fields. In the physics field, Mingjing [71] measure and
quantify the pH of soil by RF. 72 propose a model for
extracting complex relationships between energy modu-
lation and device efficiency. Zhang et al. [73] propose a
model to accurately and effectively predict the UCS of
LWSCC by a beetle antennae search algorithm for tuning
the hyper-parameters of RF. *e prediction of geotechnical
parameters by typical RF is made by [74]. Creep index
prediction by the RF algorithm to determine the optimal
combination of variables is the main goal of [75]. In the text
processing field, the comparison between RF and other

classifiers is presented by [76] for finding the best classifiers in
the subject literature of text classification. *e random forest
is used as one of the base learners of the ensemble model for
fake news detection by [77]. Analyzing the reviewer’s
comment for sentiment analysis is the main goal of [78].
Zhang et al. [79] propose two novel label flipping attacks to
evaluate the robustness of NB under noise by random forest.
Recognizing newspaper text by RF is done by [80]. Mad-
ichetty and Sridevi [81] use RF as one of the classifiers for
detecting the damage assessment tweets. Madasu and Elango
[82] use the typical RF for feature selection for sentiment
analysis. Chang et al. [83] use online customer reviews for
opinion mining by RF. Text classification by simple RF is the
goal of [84]. Onan and Toçouglu [85] present a method for
document clustering and topic modeling on massive open
online courses. Sentiment analysis of technical words in
English by the Gini index for feature selection is done by [86].
Beck [87] uses ensemble learning and deep learning for
sentiment classification scheme with high predictive per-
formance in massive open online courses’ reviews. Onan [88]
present a deep learning based approach to sentiment analysis.
*is approach uses TF-IDF weighted Glove word embedding
with CNN LSTM architecture. Onan and Tocoglu [89]
present an effective sarcasm identification framework on
social media data by pursuing the paradigms of neural
language models and deep neural networks. In the tourism
field, Rodriguez-Pardo et al. [90] propose a method based on
simple RF for predicting the behaviour of tourists. Predicting
the travel time to reduce traffic congestion is the main goal of
[91]. Jamatia et al.92 propose a method for tourist destina-
tions’ prediction. In urban planning, Baumeister et al.93 rank
the urban forest characteristics for cultural ecosystem ser-
vices supply by typical RF. Forecasting road traffic conditions
in done by [94]. *e simulation of urban space development
by RF is presented by [95]. Investigating the information on a
gross domestic product for the analysis of economic devel-
opment is presented by [96]. Mei et al. [97] propose a method
to identify the spatiotemporal commuting patterns of the
transportation system. In this brief review, the mentioned
references are categorized in terms of innovation and
functionality.

As can be seen from Table 1, RF has a high range of
applications and variations in scope. In contrast, both in

Let D� {(x1, y1), (x2, y2), . . ., (xN, yN)} denote the training data, with xi � (xi,1, xi,2, . . ., xi,p)T

For j� 1 to J:
Take a bootstrap sample D of size N from D.
Using the bootstrap sample, Dj as the training data fit a tree.

(a) Start with all observations in a single node.
(b) Repeat the following steps recursively for each node until the stopping criterion is met: (i) Select m predictors at random from

the p available predictors.
Find the best binary split among all binary splits in the predictors from step (i).
Split the node into two descendant nodes using the split from step (ii).
To make a prediction at a new point x.
f(x) � argmaxy 

J
j�1 I(hj(x))

Where hj(x) is the prediction of the response variable at x using the jth tree.

ALGORITHM 1: *e random forest pseudocode for classification applications [1].
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terms of quantity and quality, their innovations are often
limited to set various parameters, and there is no significant
innovation in the base learner combinations.

3. Learning Automata

Learning Automata (LA) is one of the learning algorithms
that, after selecting different actions at different times,
identify the best practices in terms of responses received
from a random environment. LA selects an action from the
set of actions in the vector of probabilities, and this action is
evaluated in the environment. By using the received signal
from the environment, the LA updates the probability vector
and, by repeating this process, the optimal action is gradually
identified. *e classification problem can be formulated as a
team of LA that operates collectively to optimize an objective
function [102]. In Figure 1, the interaction of the learning
automata and the environment is shown.

Finding the global optimum in the solution space is
another advantage of using the LA. *e LA can be formally
represented by the quadruple

LA � α, β, P, T , (8)

in which

α � α1, α2, . . . , αr  (9)

is the set of actions (outputs) of the LA; in other words, the
set of inputs of the environment.

β � β1, β2, . . . , βr , (10)

is the set of inputs of the LA; in other words, the set of
outputs of the environment.

P � p1, p2, . . . , pr , (11)

is the probability vector of the LA actions and

P(n + 1) � T[P(n), α(n), β(n)], (12)

is the learning algorithm.
In LA, three different models can be defined in the

environment. In the P-Model, the environment presents the
values of 0 or 1 as the output. In the Q-Model, the output
values of the environment are discrete numbers between 0
and 1. In the S-Model, the output of the environment is the
continuous value between 0 and 1. *e selected actions by
the LA are updated by both the signal received from the
environment and using reward and penalty functions. *e
amount of allocated reward and penalty to the LA action can
be defined in four ways: LRP, where the number of rewards
and penalties are considered the same; LRεP in which the
amount of penalty is several times smaller than the reward;
LRI in which the penalty amount is considered 0; and LIP,
where the reward amount is considered 0 [103].

At each instant n, the action probability vector pi(n) is
updated by the linear learning algorithm given in equation
(13) if the chosen action ai(k) is rewarded by the environ-
ment, and it is updated according to equation (14) if the
chosen action is penalized [104].

Table 1: Brief review of RF literature on functionality and innovation.

Type Field Paper

Functionality

Astronomy [7], [8]
Bioinformatics [9], [10]
Economics [11], [12], [13]

Global problem [26], [27], [28]

Healthcare [32], [33], [34], [35], [36], [41], [98], [37], [39], [40], [42], [43], [45], [46], [47],
[48], [49], [50], [51],

Industrial [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62]
Network [63], [67], [68], [69], [99], [100]
Physics [71], [72]

Text processing [76], [77], [78], 80 [81], [82], [83], [84]
Tourism [91], [92]

Urban planning [93], [94], [95], [96], [97]

Innovative method

Economics [14], [15]
General [16], [17], [18], [19], [101], [21], [22], [23], [24], [25]

Global problem [30], [31]
Healthcare [44]
Industrial [65]
Network [64]
Physics [73], [75]

Text processing [79], [86]

Environment’s
response

Environment Learning
automata

Learning automata’s
action

α

β

Figure 1: Interaction of learning automata with the environment.
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pi(n + 1) � pi(n) + a 1 − pi(n) ,

pj(n + 1) � (1 − a)pj(n), ∀ j, j≠ i,

⎧⎪⎨

⎪⎩
(13)

pj(n + 1) � (1 − b)pi(n),

pj(n + 1) �
b

r − 1
+(1 − b)pj(n), ∀ j ; j≠ i,

⎧⎪⎪⎨

⎪⎪⎩
(14)

, where “a” is the reward parameter, “b” is the penalty
parameter, and “r” is the number of actions. *e authors
applied the LA in the proposed method, because:

(i) *e LA presents an acceptable performance in
uncertain situations.

(ii) *e LA does search action in the probability space.
(iii) *e LA requires simple feedback from the envi-

ronment to optimize its state.
(iv) Since the LA has a simple structure, it has a simpler

implementation in both software and hardware.
(v) *e LA is not constrained to use accuracy criteria

for optimization usage.
(vi) *e LA is applicable in real-time usage since the LA

is not involved with light computational complexity
[105].

4. Proposed Method

*e random forest is one of the methods of ensemble
learning that all constructor classifiers are same type (i.e.,
decision tree). *erefore, the random forest is a homo-
geneous ensemble learning method. In this article, we
intend to use the idea of reinforcement learning to in-
crease the efficiency of random forest and add the ability
to adapt to the conditions of the problem for this data
mining algorithm. *e details of the proposed method are
described below.

*e method proposed in this paper is based on the idea
of reinforcement learning, and it employs the learning
automata to implement the idea. *e learning automata is
the core of the proposed method, and by receiving feedback
from the environment for each action, it updates the
probability selection of the actions. In the proposed method,
each base learner, all of which are decision tree, are con-
sidered as learning automata actions.

In the proposed method, the training data are first
randomly divided into N sections. In this division, N cor-
responds to the number of trees we want to have in the
forest. Unlike the random forest, in which the predictive
model works by averaging or voting between trees, in the
proposed method, the predictive model is created using
learning automata, which forms the core of the algorithm.
*e block diagram of the proposed method is shown in
Figure 2.

*e preprocessing step in the proposed method is a
general step, and based on what type of data the processing
area is dealing with, the details of this phase are determined.
In the proposed method, at first, similar to the random forest
method, the training data are divided into the number of

base learners and randomly injected into the base learners.
*e difference between this step and the similar step in the
random forest is that all the features in the feature vector are
given to all base learners, and the feature replacement option
is removed.

After the first run, the prediction models are created in
the base learners and placed in a pool that is actually an
interactive environment with the learning automata. *e
results obtained from the base learners for each new sample
are given in the form of a reinforcement signal to the
learning automata, which we know as the primary feedback
of the environment. Depending on whether the received
reinforcement signal is a reward or a penalty, the chances of
selecting each of the base learners, -which they are the
actions of the learning automata - are updated. It should be
noted that the initial probability of selecting these actions is
considered equal at the start. If we have R base learners to
form the ensemble, the probability of the initial selection of
each of them is equal to

p DTr(  � (1/R). (15)

It is clear that the sum of the probabilities of all actions
will be equal to 1.



R

i�1
(pDT) � 1. (16)

*e initial probability of selecting actions is considered
equal because all of them are homogeneous in terms of
separating power.

In the proposed method, integration of the base learners
is performed by the LA. *erefore, for each input in the test
set, a linear LA is defined, and the action of each LA cor-
responds to selecting the base learners. *e process of
running base learners and receiving feedback from the
environment continues until the probability of selecting
actions converges to one of the base learners, or the number
of repetitions for learning automata exceeds the pre-
determined limit. Once the probability of selections con-
verges, then the result of the base learner, which has the
highest probability of selection, is determined as the result of
the ensemble for that particular input. In such a case, finding
the global optimal is guaranteed by the algorithm, and
because all the features in the feature vector are examined,
rare modes are also covered, and the ability to adapt to the
conditions of the problem space and independence from the
domain is stabilized. In the proposed method, the random
selection of subsets causes interdependence between trees.
*e depth of all the decision trees in the proposed method is
considered equal. Each decision tree divides the training
data differently at the leaf level. *e pseudocode of the
proposed method is shown in Algorithm 2.

In the learning automata block in Figure 2, there are two
functions called the reward function and penalty function.
Activation of one of these two functions is based on the type
of reinforcement signal received from the environment. *e
received signal from the environment determines whether
the result of the base learner activity or the selected action in
the previous step was useful or not. If the result is useful, that
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Figure 2: *e block diagram of the proposed method.

Input D= {(x1, y1), (x2, y2), . . ., (xN, yN),} denote the training data with xi � (xi,1, xi,2, . . ., xi,p)
(1) Output classified test data
(2) Assumption
(3) LA : Learning automata
(4) DTr � {DT1, DT2, . . . , DTR} denote the base learners
(5) αi: LA action//Choose DTr
(6) a: Reward parameter
(7) b: Penalty parameter
(8) Pool : All the trained base learners
(9) Algorithm
(10) For r� 1 to R do
(11) Create a dataset Dt, by sampling (N/R) items, randomly with replacement from D
(12) Train DTr using Dt, and add to the pool
(13) end//for
(14) For each test sample
(15) {
(16) LA� new LA//Create an LA object from LA class
(17) While ((LA convergences to an action) or (LA exceeds predefined iteration number))
(18) {
(19) Select one of the actions at random and execute it, by the LA, Let it be αi
(20) If (αi predicts the new test sample correctly) then//Update the probability of selection vector
(21)

pi(n + 1) � pi(n) + a[1 − pi(n)]

pj(n + 1) � (1 − a)pj(n), ∀ j, j≠ i
 //reward the selected αi

(22)
else

(23)
pj(n + 1) � (1 − b)pi(n),

pj(n + 1) � (b/R − 1) + (1 − b)pj(n), ∀ j, j≠ i,
 //Penalty the selected αi

(24)
}//end while

(25) }//end for
(26) Return DTr
(27) Classified test data� the prediction of DTr
(28) End.//algorithm

ALGORITHM 2: *e pseudocode of the proposed method.
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action must be rewarded or, in other words, increase the
probability of its selection. *e increase in the probability of
the selected action is determined by the parameters “a” and
“b,” which are called the reward parameter and the penalty
parameter, respectively.

To comply with (16), that is, the sum of the probabilities
of all actions being equal to one, the probability of all other
actions is reduced according to the size of the parameter “a.”
If the result of the selected action is not useful, that action
must also be penalized. In other words, the probability of
that action must be reduced. To do this, the probability of
selecting that action is reduced to the size of parameter “b,”
and as a rewardingmode, and to observe (16), the probability
of selecting other actions is increased by the size of the
parameter “b.”

In the proposed method, the learning automata model
environment is assumed to be the P-Model, where the
environment defines zero and one values as outputs. Zero
means reward, and one means penalty. If the correct answer
is received from the selected base learner by the LA, the
action of choice will be rewarded; otherwise, it will be
penalized.

5. Evaluation

In order to thoroughly evaluate the efficiency of the pro-
posed method, in this section, the details of the evaluation of
the proposed method are presented separately from the data
used and the experimental results.

5.1. Datasets. In order to evaluate the proposed method and
to create an environment with the dynamic behaviour of
data, different domains of applications have been selected.
As mentioned in the previous sections, dynamic behaviour
refers to the different results that an instance exhibits in
different environmental conditions. Variety in the results of
different environments is created by a specific domain. Text
data are one of the most well-known types of data that
exhibit such dynamic behaviour. In other words, these types
of data are one of the optimal options for creating a dynamic
environment, which proves the adaptability of the proposed
method. *e details of the selected data for the evaluation
phase are shown in Table 2.

5.2. Experimental Result. In order to evaluate the proposed
method, eighteen datasets in different domains introduced
in the previous section have been used. In the literature on
learning automata, different modes have been considered for
tuning learning automata; in this paper, three modes have
been used to evaluate the proposed method.*e LIP mode is
not considered due to poor results. *e evaluation results of
each of the LRI, LRεP, and LRPmodes are shown in separate
figures. In order to determine the optimal value for the
reward and penalty parameters, six text datasets have been
selected.*e reason for this choice is the high diversity in the
behaviour of textual data as well as a large number of
samples and a large number of features of these six datasets.
In the LRI mode, the value of the penalty parameter is

considered to be zero, and the results of the proposed
method in this mode are shown in Figure 3.

Based on the literature on learning automata in the LRεP
mode, the value of the penalty parameter is considered to be
much smaller than the value of the reward parameter. *e
results of the proposed method are shown in the LRεP mode
in Figure 4.

As mentioned in the learning automata section, in the
LRP mode, the values of the penalty and reward parameters
are considered equal. *e results of the proposed method in
this mode are also shown in Figure 5.

A comparison of the results obtained from the
implementation of the proposed method in three adjust-
able modes for learning automata shows that the settings
on the LRP mode have resulted in the highest accuracy for
identification. *en there are LRεP and LRI modes. In the
LRεP mode, the setting a � 0.01, b � 0.01 is not considered,
because these values are equal to the first values set in the
LRP mode, and in order to prevent duplication of results in
different tables, these settings have been removed from the
LRεP mode. For this reason, the number of experiments
performed on LRεP mode evaluations is one less than the
other two. Considering that the settings of reward and
penalty parameters in the LRP mode with the values of
a � 0.5, b � 0.5 have resulted in the highest efficiency,
evaluation has been done on other datasets with these
settings. A comparison of the proposed method and
similar approaches in the subject literature is shown in
Table 3.

As can be seen in Table 3 from the point of view of
accuracy, the proposed method offers better performance
than the methods available in the subject literature, which
indicates an improvement in the aggregation model of the
base learners. *is improvement is due to the use of rein-
forcement learning ideas of the method of aggregation of
basic classifiers, which is known as base learner. *e use of
reinforcement learning ideas has improved the ability of the
created ensemble, and it improved the ability to address
issues in which data exhibit dynamic behaviour. *e results
of experiments performed on different data confirm the
capabilities added to the random forest by the proposed
method. As mentioned earlier, in the field of opinion
mining, the type of text data is the most obvious data that
exhibit such dynamic behaviour. *erefore, the optimal
values for the reward and penalty parameters have been
determined in these types of data, and these settings have
been used for other types of data.

In addition to the accuracy criterion, other statistical
criteria have been examined to evaluate the proposed
method. As can be seen in Table 4, the proposed method has
shown better results in both positive and negative classes
than the methods available in the literature. Among the
statistical criteria, Precision (P) determines the exactness of
the results obtained from the classifier, and Recall (R) de-
termines the completeness of the results obtained from the
classifier.*e results obtained from the test in thementioned
statistical criteria show that the proposed method has a high
performance.
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6. Discussion

In this section, more details of the proposed method are
explained along with the reasons for the need to address
these details. *ese include the details of the preprocessing
step, tuning the learning automata parameters, as well as

ranking the set of these parameters based on their
performance.

6.1. Preprocessing. As explained in the proposed method
section, the preprocessing step is a general step. In order for

Table 2: Details of textual data used for evaluation.

Domain Name # Feature # Instance

Text

Stanford—Sentiment 140 corpus [106] Bag of word 1600000
Large dataset of movie reviews [107] Bag of word 50000
Sentence polarity dataset v1.0 [108] Bag of word 10662

Internet movie database [105] Bag of word 1400
Yelp review [105] Bag of word 598000

Amazon review [105] Bag of word 1000000

Healthcare

Heart disease dataset [105] 13 200
Breast cancer dataset [105] 30 569
Arrhythmia dataset [105] 279 454
Parkinson dataset [105] 45 241

Caesarean section dataset [105] 5 81
Gene expression dataset [105] 255 801

Diabetes dataset [105] 7 765
Statlog (heart) dataset [105] 13 271

Physical Ionosphere dataset [105] 34 352
Sonar, mines vs. rocks dataset [105] 60 208

Sound Voice dataset [105] 20 3168
Emotions from music dataset [105] 28 592

a = 0.01, b = 0 a = 0.05, b = 0 a = 0.1, b = 0 a = 0.3, b = 0 a = 0.5, b = 0 a = 0.7, b = 0
Sentiment 140 dataset
Large dataset of movie reviews
Sentence polarity dataset
Movie reviews dataset
Yelp review polarity
Amazon review polarity

86.13
74.05

72.94
82.31
89.56
81.41

85.98
74.05

72.94
82.31
89.56
81.41

85.98
74.05

72.94
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89.56
81.41

85.98
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81.41
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72.94
82.31
89.56
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Figure 3: *e results of the proposed method in LRI mode.
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the evaluation, different data from different domains were
examined. *e preprocessing of textual data, along with the
relevant details, is described below. It should be noted that
preprocessing for other types of data, such as feature ex-
traction, feature selection, normalization, noise removal,
and other related preprocessing, has not been performed
because all of them are taken as clean data from the UCI

Repository [109]. And their basis for accuracy is based on
previous research works that have used these data.

In order to prepare textual data for the main process,
the opinion mining domain is selected and the related
preprocessing is as follows. *e details of the pre-
processing step for text data in opinion mining are shown
in Figure 6.

a = 0.05, b = 0.01 a = 0.1, b = 0.01 a = 0.3, b = 0.01 a = 0.5, b = 0.01 a = 0.7, b = 0.01

Sentiment 140 dataset 74.4 74.65 74.9 74.55 73.95
86.57 86.03 86.33 86.47 86.57

Sentence polarity dataset 73.44 74.53 73.74 73.29 75.53
Movie reviews dataset 82.31 82.67 81.22 82.31 81.58
Yelp review polarity 90.32 89.45 89.23 89.78 89.23
Amazon review polarity 81.33 81.75 80.83 80.5 80.83

Large dataset of movie reviews
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Figure 4: *e results of the proposed method in the LRεP mode.

a = 0.01,
b = 0.01

a = 0.05,
b = 0.05

a = 0.1,
b = 0.1

a = 0.3,
b = 0.3

a = 0.5,
b = 0.5

a = 0.7,
b = 0.7

Sentiment 140 dataset 74.7 74.8 75.85 76.85 76.3 75.65
Large dataset of movie reviews 85.98 86.23 87.06 87.35 86.62 86.82
Sentence polarity dataset 74.33 75.53 75.83 76.48 77.03 76.08
Movie reviews dataset 81.94 81.58 83.75 83.03 85.92 83.75
Yelp review polarity 89.78 89.67 89.34 89.78 90.76 89.67
Amazon review polarity 80.41 80.58 81.08 81.16 82.58 81.33
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Figure 5: *e results of the proposed method in the LRP mode.
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Table 3: Comparison of the proposed method with similar approaches in the subject literature.

Dataset Averaging Majority Voting Random Forest Our Method

Text

Sentiment140 dataset 74.54 75.50 74.30 76.30
Large dataset of movie reviews 86.28 86.86 86.42 86.62

Sentence polarity dataset 73.75 74.63 73.38 77.03
Movie reviews dataset 81.58 81.58 81.67 85.92
Yelp review polarity 89.47 90.32 89.74 90.76

Amazon review polarity 80.86 81.66 80.97 82.58

Healthcare

Heart disease dataset 58.00 57.50 57.50 65.00
Breast cancer dataset 97.41 97.36 96.49 98.24
Arrhythmia dataset 80.71 85.71 81.31 85.71
Parkinson dataset 63.95 64.58 64.58 68.75

Caesarean section dataset 60.31 62.50 43.75 68.75
Gene expression dataset 95.59 95.62 96.27 98.75

Diabetes dataset 75.77 75.32 74.67 76.62
Statlog (heart) data set 81.20 81.48 79.62 85.18

Physical Ionosphere dataset 91.05 91.54 92.95 95.77
Sonar, mines vs. rocks dataset 85.23 85.71 73.80 88.09

Sound Voice dataset 76.38 76.18 76.49 88.95
Emotions from music dataset 78.23 78.15 82.35 84.03

Table 4: Comparison of statistical criteria.

Positive class Negative class Positive class Negative class
Method P (%) R (%) F1 (%) P (%) R (%) F1 (%) Method P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Sentiment140 dataset Parkinson dataset
MV 72.44 70.35 71.38 70.90 72.96 71.92 MV 69.23 66.67 67.92 59.09 61.9 60.47
RF 72.44 74.58 73.49 76.46 74.43 75.43 RF 69.23 66.67 67.92 59.09 61.9 60.47
OM 75.20 80.36 77.69 81.17 76.16 78.59 OM 76.92 68.97 72.73 59.09 68.42 63.41

Large dataset of movie reviews Caesarean section data set
MV 87.50 87.33 87.41 87.41 87.59 87.50 MV 55.56 71.43 62.5 71.43 55.56 62.5
RF 85.83 76.16 80.70 73.37 83.93 78.29 RF 33.33 50 40 57.14 40 47.06
OM 87.80 87.97 87.88 88.10 87.93 88.01 OM 66.67 75 70.59 71.43 62.5 66.67

Sentence polarity dataset Gene expression dataset
MV 75.63 72.83 74.20 72.80 75.61 74.18 MV 92.31 94.12 93.2 97.25 96.36 96.8
RF 74.62 67.78 71.08 65.95 72.94 69.27 RF 94.23 93.23 94.23 97.25 97.25 97.25
OM 76.04 73.29 74.64 73.29 76.04 76.64 OM 98.08 98.08 98.08 99.08 99.08 99.08

Movie reviews dataset Diabetes dataset
MV 83.10 82.52 82.81 81.84 82.09 81.78 MV 90.29 76.86 83.04 45.1 69.7 54.76
RF 77.46 71.43 74.32 76.41 73.98 70.54 RF 90.29 76.23 82.67 43.14 68.75 53.01
OM 84.51 83.33 83.92 82.22 83.46 82.84 OM 91.26 77.69 83.93 47.07 72.73 57.14

Yelp review polarity Voice dataset
MV 90.85 88.04 88.42 87.11 90.11 88.59 MV 64.58 76.09 69.86 84.85 76.24 80.31
RF 80.64 85.94 83.21 86.22 81.00 83.53 RF 64.58 76.75 70.14 85.4 76.35 80.62
OM 90.00 89.43 89.71 88.89 89.49 89.19 OM 87.82 86.55 87.18 89.81 90.81 90.3

Amazon review polarity Emotions from music dataset
MV 82.68 79.45 81.03 79.38 82.62 80.97 MV 83.58 78.87 81.16 71.15 77.08 74
RF 79.12 74.56 76.77 73.98 87.61 76.22 RF 88.06 81.94 84.89 75 82.98 78.79
OM 83.70 79.52 81.56 79.21 83.45 81.28 OM 92.54 81.58 86.71 73.08 88.37 80

Heart disease dataset Sonar, mines vs. Rocks dataset
MV 61.90 59.09 60.47 52.63 55.56 54.05 MV 87.5 87.5 87.5 83.33 83.33 83.33
RF 61.90 59.09 60.47 52.63 55.56 54.05 RF 79.17 76 77.55 66.67 70.59 68.57
OM 61.90 68.42 65.00 68.42 61.90 65.00 OM 87.5 87.5 87.5 83.33 83.33 83.33

Breast cancer data set Statlog (heart) data set
MV 95.74 97.83 96.77 98.51 97.06 97.78 MV 79.19 79.19 79.19 83.33 83.33 83.33
RF 97.87 93.88 95.83 95.52 98.46 96.97 RF 75 78.26 76.6 83.33 80.65 81.67
OM 97.87 97.87 97.87 98.51 98.51 98.51 OM 79.19 86.36 82.61 90 84.38 87.1

Arrhythmia data set Ionosphere data set
MV 88.37 82.61 85.39 83.33 88.89 86.02 MV 82.14 95.83 88.46 97.67 89.36 93.33
RF 83.72 78.26 80.9 79.17 79.74 73.85 RF 85.71 96 90.57 97.67 91.3 94.38
OM 93.02 80 86.02 79.19 92.68 85.39 OM 89.29 100 94.34 100 93.48 96.63

P, R, and F1 refer to Precision, Recall, and F1-score. MV: majority voting, RF: random forest, and OM: our method.
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Expressive Lengthening. Word lengthening or word
stretching refers to the words that are elongated to
express a particular emotion strongly, and the words
with wrong spellings are corrected and replaced with
their original words.
Emoticons Handling. It refers to the emoticons men-
tioned in the text that are replaced with their meaning,
which makes it easier to analyze the emoticons.
HTML Markups Removal. HTML markups presented
in the text are removed as they do not have any sen-
timental value attached to it.
Slangs Handling.*e slangs are used for writing a given
word, in short syllables, which depict the samemeaning
but save the time of typing. In slangs handling, the
slangs presented in the text are replaced with their
original words.
Punctuation Handling. Punctuations are used in a text
to separate sentences and their elements, and to clarify
their meaning. At punctuation handling, once the
apostrophes are handled, all the remaining punctua-
tions and numbers are removed.
Stopwords Removal. Stopwords do not carry much
meaning and have no importance in the text. Stop-
words are removed to get a simplified text.
Stemming. It refers to finding out the root or stem of a
word. Removing various suffixes to reduce the number
of words is the purpose of stemming.
Lemmatization. It returns the base or dictionary form
of a word, which is known as the lemma. It is very
similar to stemming, but it is more akin to synonym
replacement.
BoW creation. *e bag of word creation is the latest
preprocess that is performed on the text preparation.

6.2. Tuning the Parameters of Reward and Penalty. In the
subject literature of the learning automata, three different
modes have been defined to tune the parameters of reward
and penalty. In the proposed method, in which the idea of

reinforcement learning is implemented using learning
automata, all three adjustable modes of the parameters of
reward and penalty are examined. *e results of these three
modes were presented in the experimental result section. In
this paper, Friedman test statistical verification is used to
determine which mode and which settings are best ad-
justable for the reward and penalty parameters. *e values
set for parameters “a” and “b” are shown in Table 5. De-
termining the numerical value of these parameters is based
on the subject literature of learning automata. Of course, a
wide variety of values can be considered for these two pa-
rameters. In this paper, an attempt has beenmade to tune the
parameters in such a way that all the modes are considered
so that they can be used to prove the efficiency of the
proposed method compared to the previous methods.

6.3. Ranking. Friedman test statistical verification [110] is a
ranking method that, the difference between the ranks
assigned to each of the input samples, determines the op-
timal level of each option. In this paper, this verification
method has been used to determine the optimal value of
reward and penalty parameters as well as to compare the
proposed method with the conventional methods in the
subject literature of ensemble learning.*e results are shown
in Table 6.

As can be seen in Table 6, there is a significant difference
between the rankings of the proposed method and the
rankings of the traditional methods, which indicate an
improvement in the efficiency of the proposed method
compared to other methods. Among the three modes
considered for tuning reward and penalty parameters, it is
observed that the rankings have increased in LRI, LReP, and
LRP modes, respectively. In the LRP mode, where the values
of the reward and penalty parameters are considered the
same, the highest efficiency is also observed. *ere is a
significant difference between the Mean Rank of the best set
of the reward and penalty parameters in the proposed
method and this rank in the random forest method. *e
difference between the ranks is proof that the proposed
method is optimal versus the traditional methods of

PreprocessingExpressive
lengthening

Emoticons
handling

HTML markups
removal

Slangs handling

Slangs
dictionary

Stem list

Emoticons
dictionary

Word net
dictionary

Lemmatization

Stemming

Stopwords
removal

Punctuation
handling

Figure 6: Details of the preprocessing step for text data.
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Table 5: Numerical values tuned for reward and penalty parameters.

Mode Parameter

LRI a 0 0.1 0.1 0.3 0.5 0.7
b 0 0 0 0 0 0

LRεP a 0.1 0.1 0.3 0.5 0.7
b 0 0 0 0 0

LRP a 0 0.1 0.1 0.3 0.5 0.7
b 0 0.1 0.1 0.3 0.5 0.7

Table 6: Friedman test statistical verification results for ranking the parameters of reward and penalty and comparing the proposed method
with the literature.

Method Tuning Mean rank Final rank
LRP a� 0.5, b� 0.5 19.17 1
LRP a� 0.3, b� 0.3 16.83 2
LRP a� 0.7, b� 0.7 15.58 3
MV Majority voting 14.67 4
LRP a� 0.1, b� 0.1 13.92 5
LReP a� 0.05, b� 0.01 12.17 6
LReP a� 0.1, b� 0.01 11.83 7
LReP a� 0.5, b� 0.01 10.08 8
LRP a� 0.05, b� 0.05 9.58 9
RF Random forest 9.17 10
LRP a� 0.01, b� 0.01 8.75 11
LIR a� 0.01, b� 0 8.42 12
LIR a� 0.05, b� 0 7.67 13
LIR a� 0.1, b� 0 7.67 13
LIR a� 0.3, b� 0 7.67 13
LIR a� 0.5, b� 0 7.67 13
LIR a� 0.7, b� 0 7.67 13
AV Averaging 7.58 14
LReP a� 0.3, b� 0.01 7.17 15
LReP a� 0.7, b� 0.01 6.75 16

Convergence rate

200 400 600 800 10000
Number of iteration

0.0

0.2

0.4

0.6

0.8

1.0

LA
 ac

tio
ns

(a)

Convergence rate

200 400 600 800 10000
Number of iteration

0.0

0.2

0.4

0.6

0.8

1.0

LA
 ac

tio
ns

(b)

Figure 7: Continued.
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aggregating classifiers to achieve a strong classification
method.

6.4. Checking Convergence Rate. To more accurately address
the proposed method in terms of efficiency, LA convergence
has been investigated. Figure 7 shows the convergence of LA
actions for different amounts of reward and penalty vari-
ables. In most of the different settings for these two pa-
rameters, the convergence rate is high, and convergence to
one of the actions usually occurs before reaching a certain

number of iterations. As shown in Table 5, convergence at a
lower rate occurred in some of the other settings that scored
lower on the Friedman test.

6.5. Noise Resistance. In order to more accurately evaluate
the proposed method and determine the resistance of the
proposed method to noise, another evaluation has been
performed on the data presented in the previous section.
*is evaluation was performed by injecting 20% noise into
clean data. *e results of the evaluation on noisy data show
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Figure 7: Convergence rate for different reward and penalty parameters. (a) a� 0.5, b� 0.5; (b) a� 0.3, b� 0.3; (c) a� 0.7, b� 0; (d) a� 0.1,
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that the proposed method, due to the use of learning
automata, has high adaptability to the problem conditions,
and in the presence of noise, contrary to conventional
methods in the literature, the proposed method does not
suffer a sharp decline, and in such conditions, it shows high
efficiency compared to traditional methods. *e evaluation
of the proposed method in the presence of noise is shown in
Figure 8.

7. Conclusion and Future Work

Base learner aggregation in ensemble learning should be
done in such a way that the following points are met. First
point: selecting a base learner leads to the highest perfor-
mance achievable in the current situation. Second point: if
the situation changes due to the dynamics of the problem,
the structure of the ensemble will change in such a way that it
has the greatest amount of compatibility with the conditions
of the new environment. *erefore, in order to meet the
above points and achieve an ensemble that is able to adapt to
the dynamic conditions of the problem, in this paper, a new
method based on the idea of reinforcement learning is
proposed to integrate the base learners in the random forest.
In the proposed method, learning automata is used to re-
ceive feedback from the environment and perform actions
on it. *e general procedure is to receive feedback from the
environment, where the environment is a set of base learners
that we intend to combine to achieve a better performance
than individual base learners. Learning automata actions
include choosing one of the base learners as the best base

learner. *e choice of action is based on receiving feedback
from the environment.*is causes the dynamic behaviour of
data to be covered by using the idea of reinforcement
learning. On the other hand, given that at each stage,
learning automata strives to achieve the highest amount of
achievable rewards, it is guaranteed to find the global optima
in the problem space. Adaptability is another advantage of
the proposed method compared to similar methods in the
subject literature.

Due to the fact that in each step learning automata
operates based on environmental conditions and received
feedback from the environment, the ability to adapt to the
problem is met. *e results of the evaluations performed in
different data show that the proposed method has the ability
to achieve all the desired items mentioned above. Despite the
fact that, unlike the random forest mechanism, all features are
injected into all base learners in the proposed method, the
efficiency of the proposed method in dealing with large-
volume data has not decreased, and the results are more
favorable than the classical methods. *e proposed method is
independent of the data type and has the ability to handle any
other type of data in any field. In order to substantiate this
claim, and in order to evaluate the proposedmethod, different
types of data have been chosen. However, there are no re-
strictions on the proposed method for dealing with different
types of data. In this paper, a new method for aggregating the
base learners of the random forest using learning automata is
proposed. Determining the optimal value for the parameters
of reward and penalty in the form of self-tuning is one of the
future works that the authors intend to do.
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Figure 8: *e evaluation of the proposed method in the presence of noise.
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Obstructive sleep apnea (OSA) is a common sleep-related respiratory disorder. Around the world, more and more people are
suffering from OSA. Because of the limitation of monitor equipment, many people with OSA remain undetected. +erefore, we
propose a sleep-monitoring model based on single-channel electrocardiogram using a convolutional neural network (CNN),
which can be used in portable OSA monitor devices. To learn different scale features, the first convolution layer comprises three
types of filters.+e long short-termmemory (LSTM) is used to learn the long-term dependencies such as the OSA transition rules.
+e softmax function is connected to the final fully connected layer to obtain the final decision. To detect a complete OSA event,
the raw ECG signals are segmented by a 10 s overlapping sliding window. +e proposed model is trained with the segmented raw
signals and is subsequently tested to evaluate its event detection performance. According to experiment analysis, the proposed
model exhibits Cohen’s kappa coefficient of 0.92, a sensitivity of 96.1%, a specificity of 96.2%, and an accuracy of 96.1% with
respect to the Apnea-ECG dataset. +e proposed model is significantly higher than the results from the baseline method. +e
results prove that our approach could be a useful tool for detecting OSA on the basis of a single-lead ECG.

1. Introduction

Obstructive sleep apnea (OSA) is a major sleep-disordered
breathing (SDB) syndrome that is an independent risk
factor of coronary heart disease, hypertension, and ar-
rhythmia [1]. According to the manual of the American
Academy of Sleep Medicine (AASM) [2], OSA in adults is
scored when there is a 90% or more reduction in the
baseline of the oral and nasal respiration amplitude for 10
s or more, occuring during sleep. +is condition is as-
sociated with repetitive airflow limitation and sleep
fragmentation, decreasing the sleep time and degrading
the sleep quality of the OSA patients [3]. OSA not only

causes excessive daytime neurocognitive deficits, drows-
iness, depression, fatigue, and heart stroke [4–6] but can
also cause a brain stroke, high blood pressure, arrhyth-
mias, myocardial infarction, and ischemia [7–9].
According to the AASM [2], polysomnography (PSG) is
considered to be the gold standard for OSA detection,
which is based on a comprehensive evaluation of the sleep
signals [10]. PSG involves overnight recording of the
patient and the measurement of many signals using the
sensors attached to the body, e.g., an electroencephalo-
gram (EEG), electromyogram (EMG), electrocardiogram
(ECG), and electrooculogram (EOG), to monitor the
respiratory effort and other biophysiological signals [1].
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After collecting the PSG data, physicians inspect them
using statistical tools to score the OSA events.

However, PSG has several disadvantages. First, patients
need to sleep in the hospital for at least one night, which
consumes a considerable amount of time and is expensive.
Furthermore, many patients cannot sleep well in hospitals.
Second, many electrodes have to be connected to the body of
a patient. +ese electrodes will interrupt their sleep, which
will result in the deviation of the measurement results.
+erefore, it is important to develop methods that can re-
liably diagnose OSA with a few signals and that can be used
at home. According to Mietus and Peng [11], the heart beat
interval of patients fluctuates periodically during the oc-
currence and recovery of OSA. Zarei and Asl [12] indicated
that significant changes in heart rate or abnormal activities
of the heart may indicate OSA. Additionally, according to
our clinical research, patients’ compliance is very low when
they wear the pressure transducer sensor to obtain the oral
and nasal respiration. Patients often pull out the nasal
cannula. +erefore, when compared with the ECG signal,
nasal airflow data can be unstable due to lead falling off.
Hence, in this study, we use ECG signals to detect OSA
events.

Traditional visual OSA scoring is a very tedious and
time-consuming process for a physician to conduct.
+erefore, many alternative OSA detection methods have
been developed [13]. +ese methods were based on bio-
signals such as the respiratory [14], snoring [15–17], SpO2
[8, 9, 18], and ECG [12, 19–24] signals, and many authors
have obtained a high performance level in terms of OSA
detection. However, almost all these methods involved
data preprocessing, feature extraction, feature selection,
and classification. Although feature extraction is essential
to ensure good performance, this process requires con-
siderable domain expertise and is particularly limited to
high-dimensional data [25].

Deep learning is an attractive alternative because it
can automatically learn and extract features from raw
data and can be merged with a classification procedure. In
particular, convolutional neural networks (CNNs), which
are a popular deep-learning model, have gained con-
siderable success owing to their excellent performance in
various domains, including visual imagery [26], speech
recognition [27], and text recognition [28]. CNNs have
also been applied to biosignal classification problems. For
example, in our previous study [29], a CNN can be used to
score the sleep stages. Banluesombatkul et al. [30] used
metalearning classify sleep stages. Piriyajitakonkij et al.
[31] proposed a SleepPoseNet to recognize sleep postures.
An event-related potential encoder network was applied
to ERP-related tasks [32]. Wilaiprasitporn et al. [33] used
a deep-learning approach to improve the performance of
affective EEG-based person identification. Recently, some
models based on CNNs have been employed to detect
OSA. Urtnasan et al. [25] proposed a method for the
automated detection of OSA from a single-lead ECG
using a CNN. Ho et al. [10] developed an approach for
OSA event detection using a CNN and a single-channel
nasal pressure signal. Banluesombatkul et al. [34] used a

CNN to extract ECG signal features and fully connected
neural networks for OSA events detection. McCloskey
et al. [35] used a CNN and wavelets to analyze the nasal
airflow and detect the OSA events. However, most of
these methods score OSA events by minute-by-minute
analysis. According to the AASM ruler [2], OSA events
occur in 10 s or more. +erefore, minute-by-minute
analysis will lose some OSA events. At the same time, the
duration of each OSA event is different. Multiple OSA
events can occur as briefly within only a single minute
(i.e., one epoch); at times, one OSA event can be pro-
longed over multiple epochs. +erefore, it is difficult to
detect complete OSA events for these methods.

According to Guilleminault et al. [36], there is a relation
between the OSA events and heart rate variability. +ey
indicated that the heart rate decelerates at the beginning of
an OSA event and that it suddenly increases when normal
breathing is resumed [36]. Because long short-termmemory
(LSTM) maintains internal memory and utilizes feedback
connections to learn temporal information from sequences
of inputs, in this study, we propose a new method for OSA
detection using the CNN and LSTM. +e LSTM [37] is used
to learn these dependencies, such as the transition rules
employed by physicians, to identify future OSA events from
previous ECG epochs. To detect complete OSA events, a
window overlapping method is required to accurately detect
the OSA events, which can identify the start and end po-
sitions of the event. +erefore, the proposed method can
alert for OSA events of long duration, which will reduce the
rate of sudden death caused by OSA events [38].

+is study is organized as follows: the datasets are
presented in Section 2, and the methods are presented in
Section 3. +e experimental results and discussion are
presented in Section 4, and Section 5 concludes this study.

2. Dataset and Preprocessing

+e Apnea-ECG dataset [39], downloaded from https://
www.physionet.org/content/apnea-ecg/1.0.0, was used to
evaluate the proposed approach. +e dataset comprises 70
PSG recordings, among which 35 are used in the training set
and 35 are used in the test set. +e training set was used to
update the parameters of the proposed model, and the test
set was used to perform independent performance assess-
ments. Each recording contains a continuous digitized ECG
signal, a set of apnea annotations (derived by human experts
on the basis of the simultaneously recorded respiration and
related signals), and a set of machine-generated QRS an-
notations. +e sampling rate for the ECG was 100Hz with a
12 bit resolution.+e records contain variable lengths from 7
to 10 hours. +e age of the subjects is between 27 and 63
years, and their weights are 35–135 kg.

First, according to Urtnasan et al. [25], a Chebyshev
type-II band-pass filter (5–11Hz) was used to remove un-
desirable noise from the single-lead ECG data. Second, the
data were segmented into epochs (10 s long) to train the
proposed model. Table 1 presents the distribution of all the
epochs in the training and test sets. Abnormal epoch means
an OSA event.
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3. Methods

3.1. Convolutional Neural Network. In this study, we used a
one-dimensional (1D) CNN to classify the ECG signals. +e
CNN comprised convolutional, pooling, and fully connected
layers. +e net input of neuron j in layer l is defined as
follows:

Z
l
j � 

i∈Mj

w
l
j,i ∗ x

l−1
i + b

l
j, (1)

where Mj represents the selection of input maps, wj,i de-
notes the weight or the filter associated with the connection
between neurons j and i, xl−1

i is the output signal from
neuron i in layer l− 1, bl

j is the bias associated with neuron j
in layer l, and (∗) denotes vector convolution. To acquire an
output map, an activation function is required as follows:

x
l
j � f z

l
j . (2)

When compared with other activation functions, a
rectified linear unit (ReLU) exhibits robust training per-
formance. Hence, in this study, we used ReLU as the acti-
vation function for the output maps, which can be expressed
as follows:

f z
l
j  � max 0, z

l
j . (3)

After the convolutional layer, a pooling layer was
placed, which was used to reduce the dimensions of the
feature maps, network parameters, and the computa-
tional cost associated with successive layers using specific
functions to summarize the subregions, such as by
considering the average value or the maximum value.
Additionally, the pooling layer allowed the CNN to learn
features that were scale invariant or can be attributed to
the orientation changes [40]. +e pooling operation
consisted of sliding a window across the previous feature
map. Herein, max pooling was used after the convolu-
tional layer was activated. Finally, a dense layer, which
was generally used in the final stages of the CNN, was
fully connected to the outputs of the previous layers.

3.2. Batch Normalization. During the training of a CNN, a
change in the distribution of the inputs of each layer will
affect the outputs of all the succeeding layers. +is can result
in difficulty when attempting to train models with saturated
nonlinearities [41].+erefore, batch normalization (BN) was
used to solve this problem.

Suppose X� {x1, x2, · · · , xd} is the input to a layer with
dimension d. +e corresponding minibatch ismb. +e mean

of all the inputs in the same minibatch can be expressed as
follows:

μ �
1

mb


mb

i�1
xi. (4)

+e variance of the input in aminibatch can be expressed
as follows:

σ2 �
1

mb


mb

i�1
xi − μ( 

2
. (5)

+erefore, BN can be expressed as follows:

yi � cx
∼

i + β, (6)

where x ∼
i � xi − μ/

�����
ε + σ2

√
, c, and β are learnable param-

eters. +e training efficiency of a CNN can be improved
using BN. At the same time, BN helps the CNN to train faster
and provides high accuracy [41].

3.3. Long Short-Term Memory. LSTM controls the cell state
via three gates, i.e., a forgetting gate, an input gate, and an
output gate. +e output features obtained from the previous
dense layer of a CNN layer are passed to the gate units. +e
memory cells constituting the LSTM update their states via
the activation of each gate unit controlled to a continuous
value between 0 and 1.+e hidden state of the LSTM cell ht is
updated after every t steps. +e input gate, forget gate, and
output gate can be written as shown in equations (7)–(9)
[37], respectively.

i
t

� sigmoid WniX
t

+ WhiX
t− 1

+ Wci°c
t− 1

+ bi , (7)

f
t

� sigmoid WnfX
t

+ Whfh
t− 1

+ Wcf°c
t− 1

+ bbf , (8)

o
t

� sigmoid WnoX
t

+ Whoh
t− 1

+ Wco°c
t
+ bbo , (9)

where ∘ represents point-wise multiplication.
+e cell states and hidden states can be expressed using

equations (10) and (11), respectively.

c
t

� f
t ∘ ct− 1

+ i
t ∘ sigmoid WncX

t
+ Whch

t− 1
+ bbc ,

(10)

h
t

� o
t ∘ sigmoid c

t
 . (11)

+e CNN and LSTM can be used as backpropagation
algorithms to update the parameters of the model during
training.

4. Experiments

4.1. Statistical EvaluationMethods. In this study, we use the
kappa coefficient (KP) [42], which is a robust statistical
measure of the inter-rater agreement, to evaluate the per-
formance of our method. Additionally, the total accuracy
(TAC), sensitivity (SE), specificity (SP), positive predictive
value (PPV), and negative predictive value (NPV) were

Table 1: +e number of normal epochs (NE) and abnormal epochs
(AE).

Training set Test set
NE AE NE AE
210680 130050 213830 13102
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calculated according to an epoch-by-epoch analysis as
follows:

TAC �
TP + TN

TP + FN + FP + TN
%, (12)

Sensitivity �
TP

TP + FN
%, (13)

Specificity �
TN

TN + FP
%, (14)

PPV �
TP

FP + TP
%, (15)

NPV �
TN

TN + FN
%, (16)

where TP, TN, FP, and FN denote the true positive, true
negative, false positive, and false negative, respectively. We
implement our experiments on a workstation with a
GeForce GTX2060 GPU in a Windows environment. +e
TensorFlow framework is used to train the proposed model.

4.2. <e Proposed Deep Model Architecture and Parameters.
To build an optimal OSA detection architecture, we need to
understand the characteristics of the input data. +e sam-
pling rate of the ECG was 100Hz, and the 10 s input di-
mension was 1000. To extract different scale features, we
need to set up different size filters. +erefore, experiments
are implemented while varying the filters size of the con-
volution layer to identify the optimal parameters for auto-
mated OSA detection. According to existing study [25, 29],
we design a network model, which contains a convolution,
BN, pooling, dropout, and dense layer, as shown in Figure 1.
N denotes the number of the filters. +e parameters and
results are shown in Table 2. From Table 2, we can see that
model_2 performs best andmodel_1 is the second. However,
the parameters of model_2 are large than those of model_1.
For portable OSA devices or real-time OSA analysis systems,
model_1 is more appropriate. +erefore, model_1 is used to
learning the features representation of ECG. To learn the
transition rules of OSA, LSTM is used. +e proposed model
contains the BN, convolutional, pooling, LSTM, and dense
layer, as shown in Figure 2.

+e detailed parameters of the proposed model are pre-
sented in Table 3.+is table shows the number of filters, the size,
and stride in each convolution layer, the size and stride of the
kernel in each pooling layer, and the output size of each layer,
including the LSTM layer. +e batch size is 30, the training
epoch is 100, and the learning rate is 0.1. Figure 3 shows the
learning results in terms of accuracy and loss obtained as the
number of epochs is varied. +e results show that the accuracy
and loss reach stable values after several iterations of learning
when applied to the validation dataset. Figure 4 shows the filter
morphology and training time with each training epoch. From
Figure 4(a), we can see that, after 90 training epochs, the
morphology of the filter almost does not change. Figure 4(b)
indicates that the speed of model training is fast.

4.3. Performance Results. Table 4 presents the performances
of the proposed model for the automated detection of OSA
from a single-lead ECG signal. When applied to the test
dataset, we obtained a KP of 0.92, an SE of 96.1%, an SP of
96.2%, a TAC of 96.1%, a PPV of 97.6%, and an NPV of
93.8%. As can be seen, the proposed model performed very
well for the detection of OSA.

From Table 4, we can observe that 3.9% of the AEs
were misclassified as NEs and that 3.8% of the NEs were
misclassified as AEs. According to our research, these
misclassifications could have been caused by two prob-
able reasons. One reason is that a transition epoch from
NE to AE or AE to NE is difficult to classify. For example,
Figure 5 shows a transition epoch from NE to AE,
whereas Figure 6 shows a transition epoch from AE to
NE. A skilled physician would be able to classify these
epochs based on the contextual information. However,
the proposed model does not use the contextual infor-
mation to score OSA, making it unable to distinguish the
transition epochs. +e other reason may be that the
proposed model finds it difficult to score the artifact
epochs. +e ECG signals can be polluted by unwanted
noise signals, including body movement. Figure 7 shows a
polluted ECG epoch. Because the artifact epochs are few
and varied, the proposed model was unable to learn the
distributions of all the artifact epochs. +erefore, it is
difficulty for the proposed model to detect the OSA of
artifact epochs. In this case, the usage of handcrafted
features seems to be considerably robust.

Input

BN

Conv_1 Conv_2 Conv_N

Pooling_1 Pooling_2 Pooling_N

Concatenate

Mp_4: MaxPooling

Add

Dense

Dropout

GlobalPooling

Dense

Figure 1: Schematic of the proposed CNN model for the auto-
mated detection of OSA.
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4.4. Benefits of Long Short-Term Memory. +e major ad-
vantage associated with the usage of LSTM is that it can be
trained to learn long-term dependencies, including the
transition rules that are used by the physicians to identify the
next possible OSA event(s) from a sequence of ECG epochs.
To validate the usefulness of LSTM, we removed the LSTM
layer from the model (Figure 2) and then reimplemented the

experiment. +is test was named CNN_1. Table 5 shows the
comparison results, where we can see that the proposed
model (CNN+LSTM) results in a gain of 1.3% over the TAC
of CNN_1. In addition, KP increased by 0.03 when LSTM
was added, verifying our assumption.

Figure 8 shows an example of the NE ECG signal. When
the proposed method (CNN+LSTM) is used, the epoch is
classified as an NE. However, when CNN_1 is used, this
epoch is scored as an OSA event. +e reason for OSA
misclassification is that the heart rate is slow at the center of
this epoch. According to a previously conducted study [11],
the heart rate decelerates when OSA occurs. +erefore,
CNN_1 learned this feature. However, from Figure 8, we can
observe that the heart rate changes very little. At the same
time, the heart rates of previous epochs are similar to those
of this epoch. However, because the LSTM learns long-term
dependencies, the CNN+LSTM method accurately detects
the epoch, which is the benefit associated with the usage of
LSTM.

4.5. OSA Detection. As mentioned previously, long OSA is
dangerous because it can lead to sudden death. To identify
long OSA, the window overlapping method can be used to
detect the start and end positions of an OSA event. In this
way, long OSA can be detected Figure 9 shows that the
proposed model can detect complete OSA events from the
ECG signals. From the nasal airflow signal, we can observe
that the OSA events detected by our model have been ac-
curately identified.

4.6. Comparison of the ProposedMethodwith Existing Studies.
+e comparison of various methods of automatic OSA
detection is difficult because different datasets, feature sets,
and classifiers are used in different studies. For ensuring a
fair comparison with existing studies, Table 6 shows the
classification performances of different methods based on
single-lead ECG signals. From Table 6, we can observe that
the proposed model achieved better performance when
compared with those achieved in the previous studies. More

Input

BN

Cn_1: Conv1D Cn_2: Conv1D Cn_3: Conv1D

Mp_1: MaxPooling Mp_2: MaxPooling Mp_3: MaxPooling

Concatenate

Mp_4: MaxPooling

Add

Dense

Dropout

GlobalPooling

LSTM

Dense

Figure 2: Architecture of the proposed model.

Table 2: +e parameters and TACs of the different models.

Name N Layer Units Size Stride TAC (%)

Model_1 3
Cn_1 24 125×1 1× 1

94.832Cn_2 24 15×1 1× 1
Cn_3 24 5×1 1× 1

Model_2 4

Cn_1 24 125×1 1× 1

94.835Cn_2 20 100×1 1× 1
Cn_3 24 15×1 1× 1
Cn_4 24 5×1 1× 1

Model_3 4

Cn_1 24 125×1 1× 1

93.92Cn_2 20 50×1 1× 1
Cn_3 20 15×1 1× 1
Cn_4 20 5×1 1× 1

Model_4 3
Cn_1 24 100×1 1× 1

94.78Cn_2 24 15×1 1× 1
Cn_3 24 5×1 1× 1

Model_5 2 Cn_1 30 125×1 1× 1 90.4Cn_2 30 15×1 1× 1
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Table 3: +e parameters of the proposed model.

Layer Layer type Units Unit type Size Stride Output size
Input 1000×1
BN 1000×1
Cn_1 Convolutional 24 ReLU 125×1 1× 1 876× 24
Cn_2 Convolutional 24 ReLU 15×1 1× 1 986× 24
Cn_3 Convolutional 24 ReLU 5×1 1× 1 996× 24
Mp_1 Max pooling 24 2×1 1× 1 438× 24
Mp_2 Max pooling 24 2×1 1× 1 493× 24
Mp_3 Max pooling 24 2×1 1× 1 498× 24
Concatenate 24 1429× 24
Mp_4 Max pooling 24 3×1 1× 1 476× 24
Add Add 24 1000× 24
Dense Fully connected 48 LeakyReLU 1000× 48
Dropout Dropout 1000× 48
Gp Global pooling 48×1
LSTM LSTM 64×1
Dense Fully connected 2 Softmax 2
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Figure 3: Accuracy and loss of the proposed model for automated OSA detection. (a) Loss curve. (b) Accuracy curve.
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Figure 4: Filters morphology and training time with each epoch. (a) Filter morphology. (b) Training time.
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Table 4: +e performances of the proposed model for automated detection of OSA.

NE AE KP SE (%) SP (%) TAC (%) PPV (%) NPV (%)
NE 202460 4940 0.92 96.1 96.2 96.1 97.6 93.8
AE 8220 125110

Figure 5: A transition epoch from an NE to an AE. Blue denotes the ECG signal, and black denotes the nasal airflow signal.

Figure 6: A transition epoch from an AE to an NE. Blue denotes the ECG signal, and black denotes the nasal airflow signal.

Figure 7: An ECG artifact epoch. Blue denotes the ECG signal, and black denotes the nasal airflow signal.

Table 5: Comparison of classification performances.

Model KP TAC (%)
CNN_1 0.89 94.8
CNN+LSTM 0.92 96.1

Computational Intelligence and Neuroscience 7



importantly, our method can be used in conjunction with
wearable medical devices, which is very important for home
OSA monitoring.

5. Conclusions

In this study, we developed an automated OSA event
detection method using a CNN, where the feature ex-
traction and selection processes were not required. +e
proposed method detected the start and end positions of
the OSA events based on the overlapping epochs in the
ECG signal dataset. Our method automatically extracted
the time-invariant features from raw ECG signals without
utilizing any handcrafted features. +e proposed ap-
proach is robust and completely automated, and the
method can be easily adapted to other physiological

signal analyses and prediction problems. +e TAC and
KP of the proposed model applied to the single-channel
ECG reached 96.1% and 0.92, respectively. +e experi-
mental results showed that the proposed method could
accurately score the OSA events and that it achieved
comparable performance with other state-of-the-art
studies. More importantly, our method can prevent
sudden death from OSA, which is important for the
patients who are severely affected by OSA.

+ere are some limitations associated with our CNN
method. First, the proposed model can only detect OSA
and normal events but not hypopnea events. Although
hypopnea is not as serious as OSA, it is still prevalent in
sleep-disordered breathing patients. Second, it is difficult to
score transition epochs using our method. In the future, we
will improve the discrimination ability of our method for

OSA OSA OSA OSA

Figure 9: +e start and end positions of multiple OSA events.

Table 6: Comparison of performances of different methods.

Input Author Method TAC (%) SE (%) SP (%)

ECG

Jafari [43] Handcrafted features, SVM 94.8 94.1 95.4
Chen et al. [44] Handcrafted features, SVM 82.1 83.2 80.2

Urtnasan et al. [25] CNN 96 96 96
Banluesombatkul et al. [34] CNN 79.45 77.6 80.1

Zarei and Asl [12] Handcrafted features, SVM 94.63 94.43 94.77
Tripathy [45] Handcrafted features, kernel extreme learning machine 76.37 78.02 74.64

Hassan and Haque [46] Handcrafted features, RUSboot 88.88 87.58 91.49
Hassan [47] Handcrafted features, AdaBoost 87.33 81.99 90.72
Our method CNN 96.1 96.1 96.2

82 8380 81 8176 76 74 71 73 81 81 8179 79

Figure 8: A normal ECG epoch.
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AEs and NEs. In addition, the automated anomaly de-
tection of ECG based on the CNN, which is important to
rapidly assess the quality of the ECG data, will be studied.

Data Availability

+e Apnea-ECG dataset, downloaded from https://www.
physionet.org/content/apnea-ecg/1.0.0, was used to evalu-
ate our proposed approach.
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