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In the article titled “Strong Convergence of a New Hybrid
Iterative Scheme for Nonexpensive Mappings and Applica-
tions” [1], affiliation 3 was incorrect. The correct affiliation
is “Department of Mechanical Engineering, Sejong Univer-
sity, Seoul 05006, South Korea,” and it is corrected above.
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Two concepts—one of Darbo-type theorem and the other of Banach sequence spaces—play a very important and active role in
ongoing research on existence problems. We first demonstrate the generalized Darbo-type fixed point theorems involving the
concept of continuous functions. Keeping one of these theorems into our account, we study the existence of solutions of
system of nonlinear integral equations in the setting of tempered sequence space. Moreover, a very interesting and illustrative
example is designed to visualize our findings.

1. Introduction and Preliminaries

Darbo [1] constructed the fixed point theorem, and later,
researchers called this widely studied theorem by his name,
that is, “Darbo fixed point theorem” wherein he enforced the
technique of measure of noncompactness (shortly, MNC)
while Kuratowski [2] was the first who described the idea of
MNC. Many researchers are employing Darbo’s theorem to
demonstrate the existence or solvability of several functional
equations (linear or nonlinear) in conjunction with different
kind of Banach sequence spaces or simply called Banach
spaces. Recently, the infinite system of several kinds of differ-
ential equations was considered by Banas and Lecko [3], Mur-
saleen et al. [4, 5], and Mohiuddine et al. [6] to obtain the
existence of solutions in the framework of Banach spaces,
namely, the spaces c0, c, ℓp, and ℓ1 of null, convergent, abso-
lutely p-summable, and absolutely summable sequences in
conjunction with the Dorbo-type theorem. The reader can
refer to the recent monographs [7, 8] on the normed/para-
normed sequence spaces and related topics.

The integral equations play a significant contribution
in diverse branches of science and engineering as well as
this theory is applicable in several real life problems such
as gas kinetic theory, neutron transportation, and radiation
[9]. Most recently, the researchers used different kinds of
integral equations (infinite system) (see [10–12]) to dem-
onstrate existence of solutions by means of the notion of
MNC, i.e., in ℓp [13] and in Banach space [14–16].

Suppose that E is a Banach space, and suppose also that
Bðθ, r̂Þ = fx ∈E : kx − θk ≤ r̂g is a closed ball. If Xð≠∅Þ ⊆
E, then its closure and convex closure, respectively, will
write by symbols �X and ConvX. Further, ME will be used
to denote the family of bounded (nonempty) subsets of E
as well as its subfamily, NE, which consists of all relatively
compact sets. The MNC is defined in [17] (see also [18]) as
follows.

Definition 1. A mapping G : ME ⟶ℝ+ð= ½0,∞ÞÞ is called
MNC in E if
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(i) J ∈ME, which implies GðJ Þ = 0 gives J be rela-
tively compact

(ii) kerG = fJ ∈ME : GðJ Þ = 0g ≠∅: Also, kerG ⊂
NE

(iii) J ⊆ J 1GðJ Þ ≤GðJ 1Þ
(iv) Gð �J Þ =GðJ Þ
(v) GðConvJ Þ = GðJ Þ
(vi) GðςJ + ð1 − ςÞJ 1Þ ≤ ςGðJ Þ + ð1 − ςÞGðJ 1Þ, ς ∈ ½0

, 1�
(vii) J j ∈ME, J j = �J j, J j+1 ⊂ J j for j ∈ℕ and lim

j⟶∞

GðJ jÞ = 0, and then,
T∞

j=1J j ≠∅

Note that J∞ =T∞
j=1J j ∈ kerG : Since GðJ∞Þ ≤ GðJ jÞ

for any j, we infer that GðJ∞Þ = 0:

Banas and Krajewska [19] proposed the generalization of
classical spaces c0, c, and ℓ∞ with the help of tempering
sequence α = ðαiÞ∞i=1 while the tempering sequence means
that αi is positive for any i ∈ℕ and ðαiÞ is nonincreasing,
and they defined cα0 , c

α, and ℓα∞ which are called the tem-
pered sequence space. Inspired by these constructions, very
recently, Rebbani et al. [20] defined the tempered space ℓαp
as follows:

L = ρ = ρnð Þ∞n=1 ∈w : 〠
∞

n=1
αpn ρnj jp<∞for 1 ≤ p<∞

( )
, ð1Þ

where w is the space of real or complex sequences, or simply,
we shall write L∶≡ℓαp . Clearly, ℓ

α
p is a Banach space endowed

with

ρk kℓαp = 〠
∞

n=1
αpn ρnj jp

 !1/p

: ð2Þ

In case of αn = 1 for all n ∈ℕ, the tempered space ℓαp
coincides with ℓp, and, in addition, if p = 1, ℓαp coincides with
ℓ1. In the same paper, they gave the Hausdorff MNC χℓαp

for

a nonempty bounded set Bα of ℓαp (1 ≤ p <∞) by

χℓαp
Bαð Þ = lim

n⟶∞
sup
y∈Bα

〠
k≥n

αpk ykj jp
 !1/p" #

: ð3Þ

We will use CðI, ℓαpÞ to denote the collection of all con-
tinuous mappings from I = ½0, a� (a > 0) to ℓαp , and CðI, ℓαpÞ
is a Banach space with the norm

ρk kC I,ℓαpð Þ = sup
s∈I

ρ sð Þk kℓαp , ð4Þ

where ρðsÞ = ðρnðsÞÞ∞n=1 ∈ CðI, ℓαpÞ. For any nonempty
bounded set Eα of CðI, ℓαpÞ and for s ∈ I, one defines EαðsÞ

= fρðsÞ: ρðsÞ ∈ Eαg and hence, its MNC is given by

χC I,ℓαpð Þ Eαð Þ = sup
s∈I

χℓαp
Eα sð Þð Þ: ð5Þ

Recall the theorem given in [1] as follows:

Theorem 2. Suppose that J is a nonempty, closed, bounded,
and convex subset of E, and suppose also thatS : J ⟶ J is
a continuous mapping, and there exists κ ∈ ½0, 1Þ satisfying

G SΛð Þ ≤ κG Λð Þ,Λ ⊆ J : ð6Þ

Then, S has a fixed point.

2. Dorbo-Type Fixed Point Theorems

In order to discuss our Dorbo-type theorems, we first recall
the set of functions which has been recently used in [13] as
follows: Consider the function M : ℝ+ ×ℝ+ ⟶ℝ+ such
that

(1) max fϑ1, ϑ2g ≤Mðϑ1, ϑ2Þ for ϑ1, ϑ2 ≥ 0
(2) M is continuous and nondecreasing

(3) Mðϑ1 + ϑ1, ν1 + ν2Þ ≤Mðϑ1, ν1Þ +Mðϑ2, ν2Þ
hold. We will denote the collection of such functions by M.
The example of aforesaid kind of function is Mðϑ1, ϑ2Þ = ϑ1
+ ϑ2.

Theorem 3. Consider a Banach space E, a nonempty, closed,
bounded convex set D ⊆ E, and an arbitrary MNC G . Also,
consider a continuous mapping T : D⟶D satisfying the
inequality

α M G TXð Þ, γ G TXð Þð Þð Þ½ �
≤ α M G Xð Þ, γ G Xð Þð Þð Þ½ � − β M G Xð Þ, γ G Xð Þð Þð Þ½ �, ð7Þ

for any Xð≠∅Þ ⊆D, where M ∈M and α, β, γ : ℝ+ ⟶ℝ+
are functions such that α, γ are continuous on ℝ+ and β is
lower semicontinuous which satisfies the relations

β 0ð Þ = 0 and β xð Þ > 0 x > 0ð Þ: ð8Þ

Then,

T has at least one fixed point inD: ð9Þ

Proof. Consider a sequence fDng∞n=1 such that D1 =D and
Dn+1 = ConvðT DnÞ for n ∈ℕ. One can find that TD1 = TD
⊆D =D1,D2 = ConvðTD1Þ ⊆D =D1: We obtain in a similar
way that D1 ⊇D2 ⊇D3 ⊇⋯ ⊇Dn ⊇Dn+1 ⊇⋯: If there exists
n0 ∈ℕ satisfying GðDn0

Þ = 0, then Dn0
is a compact set. With

a view of Schauder theorem [21], T has a fixed point in D
⊆ E.
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Further, assume that GðDnÞ > 0 for n ∈ℕ: Clearly,
fGðDnÞg∞n=1 is nonnegative, decreasing, and bounded below
sequence. Therefore, fGðDnÞg∞n=1 is convergent and

lim
n⟶∞

G Dnð Þ = r ≥ 0, say: ð10Þ

Inequality (7) gives

α M G Dn+1ð Þ, γ G Dn+1ð Þð Þð Þ½ �
= α M G ConvTDnð Þ, γ G ConvTDnð Þð Þð Þ½ �
= α M G TDnð Þ, γ G TDnð Þð Þð Þ½ �
≤ α M G Dnð Þ, γ G Dnð Þð Þð Þ½ � − β M G Dnð Þ, γ G Dnð Þð Þð Þ½ �:

ð11Þ

If possible, assume r > 0. Letting limsupn⟶∞ in the last
inequality, one obtains

lim sup
n⟶∞

α M G Dn+1ð Þ, γ G Dn+1ð Þð Þð Þ½ �
≤ lim sup α M G Dnð Þ, γ G Dnð Þð Þð Þ½ �

n⟶∞

− lim sup
n⟶∞

β M G Dnð Þ, γ G Dnð Þð Þð Þ½ �,
ð12Þ

which yields

α M r, γ rð Þð Þ½ � ≤ α M r, γ rð Þð Þ½ � − β M r, γ rð Þð Þ½ �: ð13Þ

It follows from the inequality (13) that

β M r, γ rð Þð Þ½ � ≤ 0: ð14Þ

Consequently, we get β½Mðr, γðrÞÞ� = 0: So, γðrÞ = r = 0.
Therefore, we have

lim
n⟶∞

G Dnð Þ = 0: ð15Þ

Using the fact Dn ⊇Dn+1 and Definition 1, we fairly have

D∞ =
\∞
j=1

Dn ⊆D, ð16Þ

which is nonempty, convex, closed subset of D and D∞ is T
invariant. By taking into account Schauder theorem [21], we
conclude that (9) holds.

Theorem 4. Consider a Banach space E, a nonempty, closed,
bounded convex set D ⊆ E, and an arbitrary MNC G . Also,
consider a continuous mapping T : D⟶D satisfying the
inequality

α G TXð Þ + γ G TXð Þð Þ½ � ≤ α G Xð Þ + γ G Xð Þð Þ½ �
− β G Xð Þ + γ G Xð Þð Þ½ �, ð17Þ

for Xð≠∅Þ ⊆D, where α, β, γ : ℝ+ ⟶ℝ+ are functions
such that α, γ are continuous on ℝ+ and β is lower semicon-
tinuous satisfies relation (8). Then, (9) holds.

Proof. This result can be obtained by considering the func-
tion Mðν1, ν2Þ = ν1 + ν2 in Theorem 3.

Theorem 5. Consider a Banach space E, a nonempty, closed,
bounded convex set D ⊆ E, and an arbitrary MNC G . Also,
consider a continuous mapping T : D⟶D satisfies the
inequality

M G TXð Þ, γ G TXð Þð Þð Þ
≤ η M G Xð Þ,γ G Xð Þð Þð Þ½ �  X ≠∅ð Þ ⊆D,M ∈Mð Þ, ð18Þ

where γ, η : ℝ+ ⟶ℝ+ are two functions such that γ is con-
tinuous and η is nondecreasing satisfying

lim
n⟶∞

ηn xð Þ = 0  x ≥ 0ð Þ: ð19Þ

Then, (9) holds.

Proof. Consider fDng∞n=1 such that

D1 =D andDn+1 = Conv TDnð Þ  n ∈ℕð Þ: ð20Þ

Then, we see that

TD1 = TD ⊆D =D1 andD2 = Conv TD1ð Þ ⊆D =D1: ð21Þ

Continuing in this way, we obtain

D1 ⊇D2 ⊇D3 ⊇⋯ ⊇Dn ⊇Dn+1 ⊇⋯: ð22Þ

If there exists n0 ∈ℕ satisfying the condition GðDn0
Þ = 0,

then the set Dn0
is compact. By taking into account Schauder

theorem [21], we conclude that (9) holds.

We now assume GðDnÞ > 0 (n ∈ℕ). Consequently, a
sequence fGðDnÞg∞n=1 is decreasing and bounded below.
Thus, fGðDnÞg∞n=1 is convergent and so

lim
n⟶∞

G Dnð Þ = r ≥ 0, say: ð23Þ

With a view of (18), one writes

M G Dn+1ð Þ, γ G Dn+1ð Þð Þð Þ
=M G ConvTDnð Þ, γ G ConvTDnð Þð Þð Þ
=M G TDnð Þ, γ G TDnð Þð Þð Þ
≤ η M G Dnð Þ, γ G Dnð Þð Þð Þ½ �
≤ η2 M G Dn−1ð Þ, γ G Dn−1ð Þð Þð Þ½ �⋯⋯
≤ ηn M G Dð Þ, γ G Dð Þð Þð Þ½ �:

ð24Þ
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Suppose that r > 0 (if possible). We obtain by letting n
⟶∞ together with (19) and (23) in the inequality (24)
that

ηn M G Dð Þ, γ G Dð Þð Þð Þ½ �⟶ 0, ð25Þ

which yields

M r, γ rð Þð Þ = 0: ð26Þ

We therefore have γðrÞ = r = 0, so lim
n⟶∞

GðDnÞ = 0. With

the help of (22), we obtain nonempty, convex, closed set
D∞ ⊆D which is T invariant. Hence, by Schauder theorem
[21], we reach to the desired result.

Theorem 6. Consider a Banach space E, a nonempty, closed,
bounded convex set D ⊆ E, and an arbitrary MNC G . Also,
consider a continuous mapping T : D⟶D satisfies the
inequality

M G TXð Þ, γ G TXð Þð Þð Þ ≤ kM G Xð Þ, γ G Xð Þð Þð Þ
  0 ≤ k < 1,X ≠∅ð Þ ⊆D,M ∈Mð Þ,

ð27Þ

where a function γ : ℝ+ ⟶ℝ+ is continuous. Then, (9)
holds.

Proof. This can be easily obtained by considering

η τð Þ = kτ  0 ≤ k < 1,∀τ ≥ 0ð Þ: ð28Þ

in Theorem 5, above.

Theorem 7. Consider a Banach space E, a nonempty, closed,
bounded convex set D ⊆ E, and an arbitrary MNC G . Also,
consider a continuous mapping T : D⟶D having the prop-
erty

G TXð Þ + γ G TXð Þð Þ
≤ k G Xð Þ + γ G Xð Þð Þð Þ  0 ≤ k < 1,X ≠∅ð Þ ⊆Dð Þ, ð29Þ

where γ is a continuous function. Then, (9) holds.

Proof. By using the function Mðx, yÞ = x + y, the proof is
obtained as an immediate consequence of Theorem 6.

3. Existence of Solutions for Integral Equation

We are studying the existence of solutions for an infinite sys-
tem of the nonlinear integral equation which is considered
as follows:

Ωn ξð Þ = Fn ξ,Ω ξð Þ,
ðξ
0
Gn ξ, s,Ω sð Þð Þds

 !
n ∈ℕð Þ, ð30Þ

where ΩðξÞ = ðΩnðξÞÞ∞n=1, ξ ∈ I = ½0, a�, a > 0:

To discuss the result of this section, our assumptions are
as below:

(1) For n ∈ℕ, the functions Fn : I × CðI, ℓαpÞ ×ℝ⟶ℝ
are continuous with

〠
n≥1

αpn Fn ξ,Ω0, 0
� ��� ��p ⟶ 0  ∀ξ ∈ Ið Þ, ð31Þ

where

Ω0 = Ω0
n ξð Þ� �∞

n=1 ∈ C I, ℓαp
� �

 and 

Ω0
n ξð Þ = 0  ∀n ∈ℕ, t ∈ Ið Þ:

ð32Þ

Moreover, these exist continuous functions An, Bn
: I ⟶ℝ+ such that the inequality

Fn ξ,Ω ξð Þ, pð Þ − Fn ξ, �Ω ξð Þ, �p� ��� ��p
≤ An ξð Þ Ωn ξð Þ − �Ωn ξð Þ�� ��p + Bn ξð Þ p − �pj jp

ð33Þ

holds, where �ΩðξÞ = ð�ΩnðξÞÞ∞n=1 ∈ CðI, ℓαpÞ:
(2) For n ∈ℕ, the functions Gn : I × I × CðI, ℓαpÞ⟶ℝ

are continuous. Also, there exists Lk satisfying

Lk = sup 〠
n≥k

αpnBn ξð Þ
ðξ
0
Gn ξ, s,Ω sð Þð Þds

�����
�����
p" #

: ξ ∈ I

( )
:

ð34Þ

Further,

sup
n∈ℕ

Ln = L and  lim
n⟶∞

Lk = 0 ð35Þ

(3) Define an operator H on I × CðI, ℓαpÞ to CðI, ℓαpÞ as
follows

ξ,Ω ξð Þð Þ⟶ HΩð Þ ξð Þ

= Fn ξ,Ω ξð Þ,
ðξ
0
Gn ξ, s,Ω sð Þð Þds

 ! !∞

n=1

:
ð36Þ

(4) Let

sup An ξð Þ: ξ ∈ I, n ∈ℕf g =cA, ð37Þ

such that 0 < 2Â1/p < 1 and

B̂ = sup 〠
n≥1

αpnBn ξð Þ: ξ ∈ I
( )

: ð38Þ
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Theorem 8. Under assumptions (1)–(4), the system

Ωn ξð Þ = Fn ξ,Ω ξð Þ,
ðξ
0
Gn ξ, s,Ω sð Þð Þds

 !
ð39Þ

has at least one solution in CðI, ℓαpÞ, where

Ω ξð Þ = Ωn ξð Þð Þ∞n=1, ξ ∈ I = 0, a½ �, a > 0: ð40Þ

Proof. For arbitrary fixed ξ ∈ I,

Ω ξð Þk kpℓαp

= 〠
n≥1

αpn Fn ξ,Ω ξð Þ,
ðξ
0
Gn ξ, s,Ω sð Þð Þds

 !�����
�����
p

≤ 2p〠
n≥1

αpn Fn ξ,Ω ξð Þ,
ðξ
0
Gn ξ, s,Ω sð Þð Þds

 !�����
− Fn ξ,Ω0, 0

� ������
p

+ 2p〠
n≥1

Fn ξ,Ω0, 0
� ��� ��p

≤ 2p〠
n≥1

αpn An ξð Þ Ωn ξð Þj jp + Bn ξð Þ
ðξ
0
Gn ξ, s,Ω sð Þð Þds

�����
�����
p( )

≤ 2pÂ Ω ξð Þk kpℓαp + 2pL,

ð41Þ

which yields

Ω ξð Þk kpℓαp ≤
2pL

1 − 2pÂ
= rp, say: ð42Þ

It follows from (42) that

Ω ξð Þk kℓαp ≤ r, ð43Þ

and hence,

Ωk kC I,ℓαpð Þ ≤ r: ð44Þ

Let us define nonempty set

B = Ω ξð Þ ∈ C I, ℓαp
� �

: Ωk kC I,ℓαpð Þ ≤ r, ξ ∈ I
n o

, ð45Þ

which is closed, bounded, and convex subset of CðI, ℓαpÞ. By
assumption (3) and for arbitrary fixed ξ ∈ I, we write

HΩð Þ ξð Þ = HnΩð Þ ξð Þf g∞n=1
= Fn ξ,Ω ξð Þ,

ðξ
0
Gn ξ, s,Ω sð Þð Þds

 !( )∞

n=1

  Ω ξð Þ ∈ Bð Þ:

ð46Þ

Also,

〠
∞

n=1
αpn HnΩð Þ ξð Þj jp

= 〠
n≥1

αpn Fn ξ,Ω ξð Þ,
ðξ
0
Gn ξ, s,Ω sð Þð Þds

 !�����
�����
p

<∞:

ð47Þ

Hence, ðHΩÞðξÞ ∈ ℓαp :
Since

HΩð Þ ξð Þk kℓαp ≤ r⇒ HΩk kC I,ℓαpð Þ ≤ r, ð48Þ

we have that H maps B into B. We are now claiming that H
is continuous on B. For this, suppose ϵ > 0 and ΩðξÞ =
ðΩnðξÞÞ∞n=1, �ΩðξÞ = ð�ΩnðξÞÞ∞n=1 ∈ B satisfying

Ω − �Ω
�� ��

C I,ℓαpð Þ <
ϵ

2Â
� �1/p = δ: ð49Þ

For arbitrary fixed ξ ∈ I,

HnΩð Þ ξð Þ − Hn
�Ω

� �
ξð Þ�� ��p

= Fn ξ,Ω ξð Þ,
ðξ
0
Gn ξ, s,Ω sð Þð Þds

 !�����
− Fn ξ, �Ω ξð Þ,

ðξ
0
Gn ξ, s, �Ω sð Þ� �

ds

 !�����
p

≤ Â Ωn ξð Þ − �Ωn ξð Þ�� ��p + Bn ξð Þ

�
ðξ
0
Gn ξ, s,Ω sð Þð Þds −

ðξ
0
Gn ξ, s, �Ω sð Þ� �

ds

�����
�����
p

≤ Â Ωn ξð Þ − �Ωn ξð Þ�� ��p + Bn ξð Þ

�
ðξ
0
Gn ξ, s,Ω sð Þð Þ −Gn ξ, s, �Ω sð Þ� ��� ��ds

" #p
:

ð50Þ

Considering the fact kΩ − �ΩkCðI,ℓαpÞ < δ and Gn is contin-

uous, we get

Gn ξ, s,Ω sð Þð Þ −Gn ξ, s, �Ω sð Þ� ��� �� < ε

21/p B̂ + 1
� �1/p

a
, ð51Þ

and so,

ðξ
0
Gn ξ, s,Ω sð Þð Þ −Gn ξ, s, �Ω sð Þ� ��� ��ds
< ϵ

21/p B̂ + 1
� �1/p

a

ðξ
0
ds < ϵa

21/p B̂ + 1
� �1/p

a

= ϵ

21/p B̂ + 1
� �1/p :

ð52Þ
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It follows from (50) and (52) that

〠
∞

n=1
αpn HnΩð Þ ξð Þ − Hn

�Ω
� �

ξð Þ�� ��p
≤ Â〠

∞

n=1
αpn Ωn ξð Þ − �Ωn ξð Þ�� ��p + ϵp

2 B̂ + 1
� �〠∞

n=1
αpnBn ξð Þ

< Âϵp

2Â
+ ϵpB̂

2 B̂ + 1
� � < ϵp,

ð53Þ

which gives

HΩð Þ ξð Þ − H �Ω
� �

ξð Þ�� ��p
ℓαp
< ϵp: ð54Þ

Therefore,

HΩ −H �Ω
�� ��

C I,ℓαpð Þ < ϵ whenever Ω − �Ω
�� ��

C I,ℓαpð Þ < δ: ð55Þ

Hence, H is continuous on B:
Now, for arbitrary fixed ξ ∈ I and BðΩÞ = fΩðξÞ: ΩðξÞ

∈ Bg, we write

χℓαp
H B ξð Þð Þð Þ

= lim
n⟶∞

sup
Ω ξð Þ∈B ξð Þ

〠
∞

k=n
αpk Ωk ξð Þj jp

 !1/p

= lim
n⟶∞

sup
Ω ξð Þ∈B ξð Þ

〠
∞

k=n
αpk Fn ξ,Ω ξð Þ,

ðξ
0
Gn ξ, s,Ω sð Þð Þds

 !�����
�����
p" #1/p

≤ lim
n⟶∞

sup
Ω ξð Þ∈B ξð Þ

2p 〠
∞

k=n
αpk Â Ωk ξð Þj jp + Lk
� 	" #1/p

,

ð56Þ

or

χℓαp
H B ξð Þð Þð Þ ≤ 2Â1/p

χℓαp
B ξð Þð Þ: ð57Þ

Operating supξ∈I on both sides of (57), we obtain

sup
ξ∈I

χℓαp
H B ξð Þð Þð Þ ≤ 2Â1/p sup

ξ∈I
χℓαp

B ξð Þð Þ: ð58Þ

We thus have

χC I,ℓαpð Þ H Bð Þð Þ ≤ 2Â1/p
χC I,ℓαpð Þ Bð Þ: ð59Þ

As 0 < 2Â1/p < 1, so applying Theorem 7 for γ ≡ 0 gives
that H has at least one fixed point on B ⊆ CðI, ℓαpÞ, i.e., the
considered system admits a solution in CðI, ℓαpÞ:

Example 1. In order to demonstrate Theorem 8, we consider
an infinite system of integral equation as follows:

Ωn ξð Þ = ξ3Ωn ξð Þ
6 1 + ξð Þn2 + 1

n3

ðξ
0

cos Ωn sð Þð Þ
5 + sin ∑n

j=1Ωj sð Þ
� � ds, ð60Þ

for ξ ∈ ½0, 1� = I and n ∈ℕ. For this demonstration, write

Fn ξ,Ω ξð Þ, pn Ω ξð Þð Þð Þ = ξ3Ωn ξð Þ
6 1 + ξð Þn2 + pn Ω ξð Þð Þ

n3
,

pn Ω ξð Þð Þ =
ðξ
0

cos Ωn sð Þð Þ
5 + sin ∑n

j=1Ωj sð Þ
� � ds,

Gn ξ, s,Ω ξð Þð Þ = cos Ωn sð Þð Þ
5 + sin ∑n

j=1Ωj sð Þ
� � :

ð61Þ

Further, take a = 1 and let αn = 1/n, n ∈ℕ. If ΩðξÞ ∈ ℓαp
for some fixed ξ ∈ I, then

〠
n≥1

αpn Fn ξ,Ω ξð Þ, pn Ω ξð Þð Þð Þj jp

= 〠
n≥1

1
np

ξ3Ωn ξð Þ
6 1 + ξð Þn2 + 1

n3

ðξ
0

cos Ωn sð Þð Þ
5 + sin ∑n

j=1Ωj sð Þ
� � ds

������
������
p

≤ 2p〠
n≥1

1
6pn3p Ωn ξð Þj jp + 2p〠

n≥1

1
n4p

= 1
3p 〠n≥1

1
n3p

Ωn ξð Þj jp + 2p〠
n≥1

1
n4p

≤
1
3p 〠n≥1

1
np

Ωn ξð Þj jp + 2p〠
n≥1

1
n4p

= 1
3p Ω ξð Þk kpℓαp + 2p〠

n≥1

1
n4p

<∞,

ð62Þ

as the series

〠
n≥1

1
n4p

converges for p ≥ 1: ð63Þ

Therefore, for arbitrary fixed ξ ∈ I, one has

Fn ξ,Ω ξð Þ, pn Ω ξð Þð Þð Þf g∞n=1 ∈ ℓαp , ð64Þ

and hence,

Fn ξ,Ω ξð Þ, pn Ω ξð Þð Þð Þf g∞n=1 ∈ C I, ℓαp
� �

: ð65Þ
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Let �ΩðξÞ = ð�ΩnðξÞÞ∞n=1 ∈ CðI, ℓαpÞ. Then,

Fn ξ,Ω ξð Þ, pn Ω ξð Þð Þð Þ − Fn ξ, �Ω ξð Þ, pn �Ω ξð Þ� �� ��� ��p
≤

1
3p Ωn ξð Þ − �Ωn ξð Þ�� ��p + 2p pn Ω ξð Þð Þ − pn �Ω ξð Þ� ��� ��p:

ð66Þ

Here

An ξð Þ = 1
3p andBn ξð Þ = 2p: ð67Þ

Also,

Â = 1
3p ⇒ 2Â1/p = 2

3 < 1,

〠
n≥1

αpn Fn ξ,Ω0, 0
� ��� ��p ⟶ 0  ∀ξ ∈ Ið Þ:

ð68Þ

Again,

〠
n≥k

αpnBn ξð Þ Pn Ω ξð Þð Þj jp ≤ 2p〠
n≥k

1
np

,

Lk ≤ sup 2p〠
n≥k

1
np

: ξ ∈ I

( )
:

ð69Þ

We can find that

Lk ⟶ 0 k⟶∞ð Þ and L = 2p〠
n≥1

1
np

: ð70Þ

Moreover, we have

〠
n≥1

αpnBn ξð Þ = 2p〠
n≥1

1
np

; ;

B̂ = sup 2p〠
n≥1

1
np

: ξ ∈ I

( )
= 2p〠

n≥1

1
np

<∞:

ð71Þ

The functions Fn and Gn are continuous for all n ∈ℕ as
well as the conditions (1)–(4) are fulfilled so with a view of
Theorem 8, we reach to our conclusion that the considered
system (60) admits a solution in CðI, ℓαpÞ.

4. Concluding Remarks

In this work, we linked three different disciplines such as the
concept of measure of noncompactness (MNC), the theory
of existence of solutions for functional equations, and the
Banach space theory, particularly, in tempered sequence
spaces. We first discussed some generalized Dorbo-type fixed
point theorems by considering the arbitrary MNC and then
discussed the existence of solutions for nonlinear integral
equation (infinite system) by taking aforesaid newly investi-
gated Dorbo-type theorem in tempered sequence spaces.

Finally, we constructed an illustrative example by taking an
integral equation to validate our result.

It is worth noting to the reader that one can obtain the
results of Section 2 by taking into account another suitable
function instead of M : ℝ+ ×ℝ+ ⟶ℝ+ and consider two
dimensional integral (or fraction integral) equation to
extend the results of Section 3.
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In this paper, utilizing the Fibonacci-Mann iteration process, we explore Julia and Mandelbrot sets by establishing the escape
criteria of a transcendental function, sin ðznÞ + az + c, n ≥ 2; here, z is a complex variable, and a and c are complex numbers.
Also, we explore the effect of involved parameters on the deviance of color, appearance, and dynamics of generated fractals. It
is well known that fractal geometry portrays the complexity of numerous complicated shapes in our surroundings. In fact,
fractals can illustrate shapes and surfaces which cannot be described by the traditional Euclidean geometry.

1. Introduction and Preliminaries

Let us consider the well-known Fibonacci sequence f f ðnÞg
defined recursively by

f n + 1ð Þ = f nð Þ + f n − 1ð Þ, n ≥ 1, ð1Þ

with the initial conditions f ð0Þ = f ð1Þ = 1. Recently, a novel
iteration process, Fibonacci-Mann iteration, is introduced as

zn+1 = tnT
f nð Þ znð Þ + 1 − tnð Þzn, ð2Þ

where tn ∈ ½0, 1� and n ∈ℕ (see [1] for more details). It is
worth mentioning here that a fixed point iteration performs
a significant role in the generation of geometrical pictures of
classical Julia and Mandelbrot sets (for instance, see [2–4],
and the references therein). In [2], by establishing the escape
criteria for a complex function

T zð Þ = sin znð Þ + az + c, n ≥ 2ð Þ, ð3Þ

where z is a complex variable and a and c are complex num-
bers; new Julia sets were studied by providing new algo-

rithms for exploring Julia sets utilizing four distinct
iterations (the Picard iteration [5], the Mann iteration [6],
the Ishikawa iteration [7], and the Noor-iteration [8]). Also,
the effects of change in values of parameters on the deviance
of color appearance and dynamics of fractals were investi-
gated in the sequel.

Motivated by these recent studies, our aim in this paper
is to develop escape criteria for a function of the form (3)
using a new algorithm via the Fibonacci-Mann iteration pro-
cess (2) for visualizing the stunning fractals. It is well known
that the escape criterion [9] is indispensable for exploring
the Mandelbrot and Julia sets. We furnish some graphical
illustrations of the generated complex fractals using the
MATLAB software, algorithm, and colormap to demon-
strate the variation in images and explore the effect of the
involved parameters on the deviance of color, appearance,
and dynamics of generated fractals. Also, we observe that
as we zoom in at the edges of the petals of the Mandelbrot
set, we come across the Julia set meaning thereby each point
of the Mandelbrot set includes massive image data of a Julia
set.

A filled Julia set is the set of complex numbers so that the
orbits do not converge to a point at infinity ([10, 11]). For
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the polynomial T : ℂ⟶ℂ of degree ≥2, we denote it by FT
, that is,

FT = z ∈ℂ : T zkð Þj jf g∞k=0is bounded
� �

: ð4Þ

The boundary of JT is the Julia set; that is, JT = ∂FT :
The set of parameters c ∈ℂ so that the filled Julia set JTc

of the polynomial TcðzÞ = z2 + c is connected is known as the
Mandelbrot set ([12, 13]), that is,

M = c ∈ℂ : JTc
is connected

� �
, ð5Þ

or

M = c ∈ℂ : Tc zkð Þj jf g↛∞ as k⟶∞f g: ð6Þ

2. An Escape Criteria via Fibonacci-Mann
Iteration Process

In this section, we establish an escape criterion for the com-
plex transcendental function (3). We take x0 = x, y0 = y, z0
= z, and TðzÞ as Ta,cðzÞ. Suppose that

1 − z2n

3! + z4n

5! −⋯
����

���� ≥ u1j j,

1 − y2n

3! + y4n

5! −⋯
����

���� ≥ u2j j,

1 − x2n

3! + x4n

5! −⋯
����

���� ≥ u3j j,

ð7Þ

where juij ∈ ð0, 1�, 1 ≤ i ≤ 3 except for the values of x, y, and z
so that ju1j = ju2j = ju3j = 0: Then, we have

sin znð Þj j = zn −
z3n

3! + z5n

5! −⋯
����

���� = znj j 1 − z2n

3! + z4n

5! −⋯
����

����,

ð8Þ

and so

sin znð Þj j ≥ znj j u1j j, ð9Þ

z ∈ℂ except for the value of z so that ju1j = 0, ju1j ∈ ð0
, 1�:

Theorem 1. Let Ta,cðzÞ = sin ðznÞ + az + c, n ≥ 2, a, c ∈ℂ,
and the sequence of iterates fzkgk∈ℕ be the Fibonacci-Mann
iteration. Suppose t = inf ftng > 0 and

zj j ≥ cj j > 2 T aj j + 1ð Þ
t u1j j

� �1/ n−1ð Þ
, ð10Þ

where T = sup ftng. Then, we have jzkj⟶∞ as k⟶∞.

Proof. Let z0 = z, Ta,cðzÞ = sin ðznÞ + az + c. Now

zk+1j j = tkT
f kð Þ
a,c zkð Þ + 1 − tkð Þzk

���
���: ð11Þ

For k = 0, since we have jzj ≥ jcj and f ð0Þ = 1, consider-
ing inequality (9), we get

z1j j = t0T
f 0ð Þ
a,c zð Þ + 1 − t0ð Þz

���
��� = t0 sin znð Þ + az + c½ �j

+ 1 − t0ð Þzj ≥ t0 sin znð Þj j − t0 azj j − t0 cj j − 1 − t0ð Þ zj j
= t0 sin znð Þj j − t0 aj j zj j − t0 cj j − 1 − t0ð Þ zj j ≥ t0 u1j j znj j

− t0 aj j zj j − t0 zj j − 1 − t0ð Þ zj j = t0 u1j j znj j − zj j t0 aj jð
+ t0 + 1 − t0ð ÞÞ = t0 u1j j znj j − zj j t0 aj j + 1ð Þ ≥ t u1j j znj j

− zj j T aj j + 1ð Þ ≥ zj j T aj j + 1ð Þ t u1j j zn−1�� ��

T aj j + 1 − 1
 !

:

ð12Þ

Hence, we obtain

z1j j ≥ z1j j
T aj j + 1 ≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !

: ð13Þ

Let k = 1. Since f ð1Þ = 1, following similar steps and
using the inequality (13), we obtain

z2j j ≥ z1j j t u1j j zn−11
�� ��

T aj j + 1 − 1
 !

≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !

� t u1j j zn−11
�� ��

T aj j + 1 − 1
 !

≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !2

,
ð14Þ

and so

z2j j ≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !2

: ð15Þ

Because, by inequality (13) and the fact that jzj ≥ jcj >
ð2ðTjaj + 1Þ/tju1jÞ1/ðn−1Þ, it is easy to see that jz1j ≥ jzj, and
this implies

z1j j t u1j j zn−11
�� ��

T aj j + 1 − 1
 !

≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !

: ð16Þ

Again, using the inequality jz1j ≥ jzj ≥ jcj >
ð2ðTjaj + 1Þ/tju1jÞ1/ðn−1Þ and (14), we find jz2j ≥ jz1j.

Let k = 2 and set ω1 = Ta,cðz2Þ. By inequality (10), it is
easy to see that

zn−12
�� �� u1j j ≥ aj j + 2: ð17Þ
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Input:TðzÞ = sin ðznÞ + az + c, where a, c ∈ℂ and n = 2, 3,⋯; A ⊂ℂ − area; K −maximum number of iterations; tn, u1 ∈ ð0, 1� −
Parameters of the generalized Fibonacci-Mann iteration; colormap½0::C − 1� -color map with C colors.
Output: Julia set for area A.
1: forz ∈ Ado
2: R1 = ð2ðTjaj + 1Þ/tju1jÞ1/n−1
3: R =max ðjcj, R1Þ
4: n ≥ 1
5: z = 0
6: whilen ≤ Kdo
7: f ð0Þ = 1
8: f ð1Þ = 1
9: f ðn + 1Þ = f ðnÞ + f ðn − 1Þ
10: zn+1 = tnT

f ðnÞðznÞ + ð1 − tnÞzn
11: ifjzn+1j > Rthen
12: break
13: end if
14: n = n + 1
15: end while
16: i = bðC − 1Þðn/KÞc
17: color z with colormap½i�
18: end for

Algorithm 1:Geometry of Julia set.

Input:TðzÞ = sin ðznÞ + az + c, where a, c ∈ℂ and n = 2, 3,⋯; A ⊂ℂ − area; K −maximum number of iterations; tn, u1 ∈ ð0, 1� −
Parameters of the generalized Fibonacci-Mann iteration; colormap½0::C − 1� -color map with C colors.
Output: Mandelbrot set for area A.
1: forc ∈ Ado
2: R1 = ð2ðTjaj + 1Þ/tju1jÞ1/n−1
3: R =max ðjcj, R1Þ
4: n ≥ 1
5: whilen ≤ Kdo
6: f ð0Þ = 1
7: f ð1Þ = 1
8: f ðn + 1Þ = f ðnÞ + f ðn − 1Þ
9: zn+1 = tnT

f ðnÞðznÞ + ð1 − tnÞzn
10: ifjzn+1j > Rthen
11: break
12: end if
13: n = n + 1
14: end while
15: i = bðC − 1Þðn/KÞc
16: color z with colormap½i�
17: end for

Algorithm 2: Geometry of Mandelbrot set.

Figure 1: Colormap used in the graphical examples.
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Using this last inequality and inequality (9), we get

Table 1: Parameters for generation of Julia set for different values of n:

a c t T t u1 n

(i) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 2

(ii) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(iii) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 5

(iv) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 6

(v) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 8

(vi) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 10

Quadratic

(a) Quadratic

Quartic

(b) Quartic

Quintic

(c) Quintic

Sextic

(d) Sextic

Octic

(e) Octic

Decic

(f) Decic

Figure 2: Effect of n on Julia set.

ω1j j
z2j j =

sin zn2ð Þ + az2 + cj j
z2j j ≥

sin zn2ð Þj j − aj j z2j j − cj j
z2j j ≥

zn2j j u1j j − aj j z2j j − z2j j
z2j j ≥ zn−12

�� �� u1j j − aj j − 1 ≥ 1, ð18Þ
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Table 2: Parameters for generation of quartic Julia set for different values of a.

a c t T t u1 n

(i) 19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(ii) -19i −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(iii) -19 −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(iv) 19 −0:835 − 0:2321i 0.0009 0.1 0.1 0.2 4

(a) (b)

(c) (d)

Figure 3: Effect of change in sign in the real and complex parameter a of quartic Julia set.

Table 3: Parameters for generation of quadratic Julia set for different values of a.

a c t T t u1 n

(i) 10 3.14 0.00029901 0.0105 0.0105 0.9 2

(ii) 20 3.14 0.00029901 0.0105 0.0105 0.9 2

(iii) −10 + 50i 3.14 0.00029901 0.0105 0.0105 0.9 2

(iv) 50 − 50i 3.14 0.00029901 0.0105 0.0105 0.9 2
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(a) (b)

(c) (d)

Figure 4: Effect of increase in the absolute value of a on quadratic Julia set.

Table 4: Parameters for generation of cubic Julia set for different values of a and c.

a c t T t u1 n

(i) 40 − 40i −3:25 + 3:50i 0.0019990914 0.0191 0.0191 0.012 3

(ii) 5.7 7.5 0.0019990914 0.0191 0.0191 0.012 3

(iii) 1.8 2.718 0.0019990914 0.0191 0.0191 0.012 3

(a) (b) (c)

Figure 5: Effect of decrease in the absolute value of parameters a and c simultaneously on cubic Julia set.
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Table 5: Parameters for generation of quintic Julia set for different values of t.

a c t T t u1 n

(i) 2.2 0.0035 0.35 0.115025 0.115025 0.92 5

(ii) 2.2 0.0035 0.25 0.115025 0.115025 0.92 5

(iii) 2.2 0.0035 0.20 0.115025 0.115025 0.92 5

(a) (b) (c)

Figure 6: Effect of decrease in parameter t on quintic Julia set.

Quadratic

(a) Quadratic

Cubic

(b) Cubic

Quartic

(c) Quartic

Quintic

(d) Quintic

Septic

(e) Septic

Figure 7: Effect of n on Mandelbrot set.
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Quartic

(a) Quartic

Quintic

(b) Quintic

Sextic

(c) Sextic

Septic

(d) Septic

Octic

(e) Octic

Nonic

(f) Nonic

Figure 8: Effect of change in n on Mandelbrot set.

Table 6: Parameters for generation of Mandelbrot set for different values of n.

a t T t u1 n

(i) -1.87897 0.000026 0.2105 0.2105 0.0932 2

(ii) -1.87897 0.000026 0.2105 0.2105 0.0932 3

(iii) -1.87897 0.000026 0.2105 0.2105 0.0932 4

(iv) -1.87897 0.000026 0.2105 0.2105 0.0932 5

(v) -1.87897 0.000026 0.2105 0.2105 0.0932 7

Table 7: Parameters for generation of Mandelbrot set for different values of n.

a t T t u1 n

(i) -2.2 0.1593911 0.115025 0.115025 0.92 4

(ii) -2.2 0.1593911 0.115025 0.115025 0.92 5

(iii) -2.2 0.1593911 0.115025 0.115025 0.92 6

(iv) -2.2 0.1593911 0.115025 0.115025 0.92 7

(v) -2.2 0.1593911 0.115025 0.115025 0.92 8

(vi) -2.2 0.1593911 0.115025 0.115025 0.92 9
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and this implies

ω1j j ≥ z2j j: ð19Þ

Since f ð2Þ = 2, we have

z3j j = t2T
f 2ð Þ
a,c z2ð Þ + 1 − t2ð Þz2

���
��� = t2 sin ωn

1ð Þ + aω1 + c½ �j
+ 1 − t2ð Þz2j ≥ t2 sin ωn

1ð Þj j − t2 aω1j j − t2 cj j − 1 − t2ð Þ z2j j
= t2 sin ωn

1ð Þj j − t2 aj j ω1j j − t2 cj j − 1 − t2ð Þ z2j j ≥ t2 u1j j ωn
1j j

− t2 aj j ω1j j − t2 ω1j j − 1 − t2ð Þ ω1j j ≥ t2 u1j j ωn
1j j

− ω1j j t2 aj j + 1ð Þ ≥ t u1j j ωn
1j j

− ω1j j T aj j + 1ð Þ ≥ ω1j j T aj j + 1ð Þ t u1j j ωn−1
1

�� ��

T aj j + 1ð Þ − 1
 !

,

ð20Þ

and hence,

z3j j ≥ z3j j
T aj j + 1 ≥ ω1j j t u1j j ωn−1

1
�� ��

T aj j + 1 − 1
 !

: ð21Þ

Similarly, by inequalities (15), (19), and (21), we get

z3j j ≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !3

: ð22Þ

Repeating this process till kth term, we find

zkj j ≥ zj j t u1j j zn−1�� ��

T aj j + 1 − 1
 !k

: ð23Þ

Then, because of inequality (10), we have

t u1j j zn−1�� ��

T aj j + 1 − 1 > 1, ð24Þ

where ju1j ∈ ð0, 1�. This implies that the orbit of z tends to
infinity; that is, we find jzkj⟶∞ as k⟶∞.

Corollary 2. If we consider jcj > ð2ðTjaj + 1Þ/tju1jÞ1/ðn−1Þ,
then the Fibonacci-Mann orbit escapes to infinity.

Remark 3. The motivation for choosing the Fibonacci-Mann
iteration method in the generation of Julia and Mandelbrot
fractal sets is the fact that for tn ∈ ð0, :5�, both Mann

(a) (b) (c)

Figure 9: Effect of change in sign as well change in real to complex parameter a on quadratic Mandelbrot set.

Table 8: Parameters for generation of quadratic Mandelbrot set for different values of a.

a t T t u1 n

(i) 1.87897 0.000026 0.2105 0.2105 0.0932 2

(ii) -1.87897 0.000026 0.2105 0.2105 0.0932 2

(iii) 1.87897i 0.000026 0.2105 0.2105 0.0932 2

Table 9: Parameters for generation of cubic Mandelbrot set for different values of t.

a t T t u1 n

(i) -2.2 0.059 0.115025 0.115025 0.92 3

(ii) -2.2 0.1593911 0.115025 0.115025 0.92 3

(iii) -2.2 0.91 0.115025 0.115025 0.92 3
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iteration, as well as Fibonacci-Mann iteration, converge to a
fixed point. However, the Fibonacci-Mann iteration con-
verges faster than the Mann iteration. But for tn ∈ ð0:5,1Þ,
Mann iteration needs not converge to a fixed point; however,

the Fibonacci-Mann iteration converges for all the initial
values. By taking f ðnÞ = 1 in inequality (2), we get the Mann
iteration [6]. Also, for f ðnÞ = 1 and tn = 1, we get the Picard
iteration [5]. It neither reduces to Ishikawa-iteration [7], nor

(a) (b) (c)

Figure 10: Effect of change in parameter t on cubic Mandelbrot set.

(a) (b)

(c) (d)

Figure 11: Effect of change in parameters a and t simultaneously on quintic Mandelbrot set.

Table 10: Parameters for generation of quintic Mandelbrot set for different values of a and t.

a t T t u1 n

(i) -2i 0.13 0.9025 0.9025 0.92 5

(ii) -0.5 0.1593911 0.9025 0.9025 0.92 5

(iii) 0 0.91 0.9025 0.9025 0.92 5

(iv) -2.2i 0.031 0.9025 0.9025 0.92 5
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to Noor-iteration [8] since Ishikawa-iteration is a two-step
process and Noor-iteration is a three-step process. On the
other hand, Antal et al. [2] used the Picard iteration, the
Mann iteration, the Ishikawa iteration, and the Noor-
iteration to explore and compare the fractals as Julia sets.
It is well known that Banach [14] utilized Picard iteration
[5] to approximate a fixed point for underlying contraction
mapping. But when we use slightly weaker mapping, then
Picard iteration needs not converge. Consequently, Mann
iteration [6], Ishikawa iteration [7], Krasnosel’ski iteration
[15], modified Mann iteration [16], and so on have been
introduced by distinct researchers to solve this issue for dif-
ferent contractions.

Remark 4. In Theorem 1, we proved the conclusion by sym-
metry by starting with taking k = 0, then k = 1, k = 2, and
repeating the process till the kth term. The parameters
selected have not been studied in this point of view till
now and are new. We refer the interested reader to [17,
18] for a detailed information about the Fibonacci sequence.
It is well-known that the golden ratio and the Fibonacci
sequence have numerous applications which range from
the description of plant growth, the crystallographic struc-
ture of certain solids to music, and the development of com-
puter algorithms for searching data bases. This fascinating
sequence of numbers is named after the Italian mathemati-
cian Leonardo of Pisa, later known as Fibonacci, who intro-
duced the sequence to Western European mathematics in
his 1202 book Liber Abaci. It is interesting to recall that
the Fibonacci sequence is initially explored by an ancient
Indian mathematician and poet Acharya Pingala (450BC-
200BC), the author of the Chandaśāstra (the earliest known
treatise on Sanskrit prosody).

3. Generation of Julia and Mandelbrot Sets

We use MATLAB 8.5.0 (R2015a) for developing fractals for
transcendental complex sine function (3) via the Fibonacci-
Mann iteration (2) process. We develop Algorithms 1 and 2
to explore the geometry of Julia and Mandelbrot sets, respec-
tively. It is interesting to notice that the structure of the frac-
tals is very much dependent on the selection of iterative
processes. During the simulation process, we have obtained
and analyzed many fractals but included a limited number
of fractals to discuss the behavior for the different parameter
values associated with it. The parameters a, c, n, u1, t, t, and
T perform a very significant role in giving vibrant colors
and exploring the characteristics of the associated Julia sets
and Mandelbrot sets. Throughout the paper, we use the
standard “jet” colormap (as shown in Figure 1).

3.1. Julia Set. As we change the value of n (see Table 1),
keeping other parameters fixed, we get amazing fractals,
which are visible in Figures 2(a)–2(f). As the value of n
increases, the fractal takes a circular shape. For n = 10, we
obtain a Julia set that is similar to a circular saw or colorful
teething ring (Figure 2(f)).

The parameter a gives rotational symmetry when it is
purely real (imaginary) and changes the sign. For the same
set of parameters and only changing the sign of real and
complex parameter a as in Table 2, the resultant fractals
can be seen in Figures 3(a)–3(d).

The parameter a also adds beauty to the fractals. As the
absolute value of a increases keeping other parameters the
same (as in Table 3), the more aesthetic fractals can be seen
(Figures 4(a)–4(d)).

The impact of change in the values of parameters a and c
simultaneously (see Table 4) on the cubic Julia set can be

(a) (b)

Figure 12: Effect of change in parameters T, t, and u1 simultaneously on cubic Mandelbrot set.

Table 11: Parameters for generation of cubic Mandelbrot set for different values of T, t, and u1.

a t T t u1 n

(i) -5 0.0525 0.2 0.01 0.05 3

(ii) -5 0.0525 0.3 0.05 0.005 3
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seen in Figures 5(a)–5(c). Noticeably, cubic Julia set in
Figure 5(a) is symmetrical about both the axes; however, in
Figures 5(b) and 5(c), it is symmetrical only about x-axis.
Changes in the values of a and c from complex to real as well
as a decrease in absolute value add beauty to resulting
fractals.

The parameter t is responsible for the volume of the frac-
tal (see Table 5). Even a slight decrease in t from 0.35 to 0.20
expands the quintic Julia set which are symmetrical about x
-axis as shown in Figures 6(a)–6(c).

3.2. Mandelbrot Set. Like Julia set, Mandelbrot also becomes
rounded (see Figures 7 and 8) as n increases (Tables 6 and 7).
Noticeably, the number of branches in Figures 7(a)–7(e) is 2n
while the number of branches in Figures 8(a)–8(f) is (n − 1)
(unlike Figure 7).

Figure 9 demonstrates the effect of change in sign as well
change in real to the complex value of parameter a on qua-
dratic Mandelbrot set (see Table 8).

Lower values (Table 9) of t give more beautiful, artistic,
and larger fractals which are symmetrical about x-axis
(Figures 10(a)–10(c)).

Figure 11 demonstrates the effect of change in parame-
ters a and t simultaneously on the quintic Mandelbrot set
(see Table 10).

Figure 12 demonstrates the effect of change in parame-
ters T, t, and u1 simultaneously on the cubic Mandelbrot
set (see Table 11). Figures 12(a) and 12(b) appear like a pair
of duck which are mirror images of each other.

Remark 5.

(i) During the generation of fractals, it is surprising to
see that, for the same parameter set values, the effect
of even minor changes in one parameter causes a
major impact on the appearance of the resultant
fractal. Consequently, it is significant to select
appropriate parameters to obtain the desired fractal
pattern.

(ii) The majority of Julia and Mandelbrot sets generated
by the sine function are symmetrical about the x
-axis except Figures 2(a)–2(c) and Figures 3(a) and
3(b).

(iii) The change in the sign of the value of parameters a
leads to reflexive and rotational symmetry.

(iv) The Julia and Mandelbrot fractals explored in this
work are aesthetic, novel, and pleasing because the
complex sine function TðzÞ = sin ðznÞ + az + c con-
tains a lot of attributes in it. The motivation behind
this is the fact that on altering the iteration process,
the dynamics and behavior of the fractals are also
altered, which are significant from the graphical as
well as applications viewpoint.

(v) We have displayed just the zoomed kind of fractals
since the transcendental function sin ðzÞ is
unbounded so that the fractals which occupy the
infinite area may lie in. But due to the unbounded-

ness of sin ðzÞ only on a real and imaginary axis, it
can be observable.

(vi) Almost all the fractals occupy the area from ½−
0:1,0:1� × ½−0:1,0:1� to ½−10, 10� × ½−10, 10�.

4. Conclusion

We have generated Mandelbrot and Julia sets of various tran-
scendental complex sine functions to demonstrate the signif-
icance of the newly developed Fibonacci-Mann iteration
process. We have analyzed the behavior of variants of the
Julia and Mandelbrot sets for different parameter values after
obtaining fascinating nonclassical variants of classical Man-
delbrot and Julia fractals using the MATLAB software. We
have noticed that the role of each parameter is distinct.
Therefore, we have restricted our discussion to a limited type
of combination of parameters. However, we have tried to
cover the maximum possible combination of parameters
involved in developing the algorithm (escape criterion) in
the Corollary 2. Also, we have observed that as we zoom in
on the edges of the petals of the Mandelbrot set, we come
across the Julia set meaning thereby each point of the Man-
delbrot set includes massive image data of a Julia set. Also,
the size of fractals relies on the value of parameter n. As the
value of n parameter increases, the area captured by the frac-
tals decreases, and its shape becomes circular. On the other
hand, the shape as well as the symmetry of each fractal relies
on the values of parameters a and c. We have explored a new
technique via Fibonacci-Mann iteration for visualizing the
filled-in Julia and Mandelbrot sets.
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The article generalizes the notion of orthogonal fuzzy metric space into a broader term, named as orthogonal picture fuzzy metric
space. The obtained results improve and extend the idea of the orthogonal fuzzy metric space and its related results. However, this
article outstretches the above-mentioned notion further into a newly defined concept, named as orthogonal picture fuzzy metric
space. A detailed insight is given into the topic by presenting some fixed point results in the frame of the newly defined structure.
To elaborate the results more precisely, some concrete examples are given.

1. Introduction

In 2013, Cuong [2] proposed a new concept named picture
fuzzy sets (PFS), which is an extension of fuzzy sets and intui-
tionistic fuzzy sets. In a picture fuzzy set, each element is spec-
ified by the degree of membership, the degree of non-
membership, and degree of neutrality together with the condi-
tion that the sum of these grades should be less or equal to 1.

In this regard, Phong et al. [7] studied some compositions
of picture fuzzy relations. Cuong and Hai [8] investigated
main fuzzy logic operators: negations, conjunctions, disjunc-
tions, and implications on picture fuzzy sets, and constructed
the main operations for fuzzy inference processes in picture
fuzzy systems. Singh [9] studied the correlation coefficients
of picture fuzzy sets. Cuong et al. [10] then investigated the
classification of representable picture t-norms and picture t-
conorms operators for picture fuzzy sets.

Eshaghi et al. [4] presented a new generalization of the
Banach fixed point theorem (BFPT) by defining the notion of
orthogonal sets. The orthogonal set is a non-empty set equipped
with a binary relation (called orthogonal relation) having a spe-
cial structure (see [4]). Themetric defined on the orthogonal set
is called orthogonal metric space. The orthogonal metric space
contains partially ordered metric space and graphical metric

space. Hezarjaribi [5] further extended the results of [4] to
orthogonal fuzzy metric space. Also, Ishtiaq et al. [6] extended
the results of [4] to orthogonal neutrosophic metric space.
Somemore details about generalized orthogonal metric spaces
have been provided by Javed et al. [11], Uddin et al. [12, 13],
and Senapati et al. [14].

In this paper, we introduce orthogonal picture fuzzy
metric space which generalize picture fuzzy metric space
and orthogonal fuzzy metric spaces. We show that every pic-
ture fuzzy metric space is an orthogonal picture fuzzy metric
space but not conversely. We investigate different conditions
on the picture fuzzy to show the existence of fixed points in
various types of contractions. We also present some exam-
ples in support of the obtained results. The authors intend
to further widen the interesting idea of orthogonality to the
intuitionistic fuzzy metric space and spherical fuzzy metric
spaces. Some interesting results on the same two topics can
be read in the articles [15, 16] and [17], respectively.

2. Preliminaries

Definition 1 (see [1]). A fuzzy set is a pair ðⱲ , f Þ, where Ⱳ
is a non-empty set, f : Ⱳ ⟶ ½0, 1� is a membership
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function and for each I ∈Ⱳ , f ðIÞ is called the grade of
membership of I in ðⱲ , f Þ:

Definition 2 (see [2]). A picture fuzzy set A on the universe
set Ⱳ is an object of the form where Yð∂Þ ∈ ½0, 1� is called
the degree of positive membership of ∂ in A, Mð∂Þ ∈ ½0, 1�
is called the “degree of neutral membership of ∂ in A,” and
Ɒð∂Þ ∈ ½0, 1� is called the degree of negative membership of
∂ in A, and Yð∂Þ,Mð∂Þ,Ɒð∂Þ satisfy

Y ∂ð Þ +M ∂ð Þ +Ɒ ∂ð Þ ≤ 1, ð1Þ

for all ∂ ∈ A. Then,

for all ∂ ∈A, 1 − Y ∂ð Þ +M ∂ð Þ +Ɒ ∂ð Þð Þ, ð2Þ

is called the degree of refusal membership of ∂ in A.

Definition 3 (see [3]). SupposeⱲ ≠∅ is an arbitrary set,
assume a five tuple ðⱲ , Y ,M,∗,ΔÞ where ∗ is a CTN, Δ is
a CTCN, andY ,M are FSs onⱲ ×Ⱳ × ð0,∞Þ. If ðⱲ , Y ,
M,∗,ΔÞ meet the following circumstances for all I, ℏ, ∂ ∈
Ⱳ andπ, ℘0 :

(B1) YðI, ℏ,℘Þ +MðI, ℏ,℘Þ ≤ 1,
(B2) YðI, ℏ,℘Þ > 0,
(B3) YðI, ℏ,℘Þ = 1⟺I = ℏ,
(B4)YðI, ℏ,℘Þ = Yðℏ,I,℘Þ,
(B5) YðI, ∂,ð℘+πÞÞ ≥ YðI, ℏ,℘Þ ∗ Yðℏ, ∂, πÞ,
(B6) YðI, ℏ,∙Þ is non decreasing (ND) function of ℝ+

and ℘YðI, ℏ,℘Þ = 1,
(B7) MðI, ℏ,℘Þ > 0,
(B8) MðI, ℏ,℘Þ = 0⟺I = ℏ,
(B9) MðI, ℏ,℘Þ =Mðℏ,I,℘Þ,
(B10) MðI, ∂,ð℘+πÞÞ ≤MðI, ℏ,℘ÞΔMðℏ, ∂, πÞ,
(B11) MðI, ℏ,∙Þ is non increasing (NI) function of ℝ+

and lim
℘⟶∞

MðI, ℏ,℘Þ = 0:
Then, ðⱲ , Y ,M,∗,ΔÞ is an IFMS.

Definition 4. SupposeⱲ ≠∅, assume five tuples ðⱲ , Y ,M
,Ɒ,∗,ΔÞ where ∗ is a CTN, Δ is a CTCN, andY ,M,Ɒ are
picture fuzzy set onⱲ ×Ⱳ ×ℝ+. If ðⱲ , Y ,M,Ɒ,∗,ΔÞ meet
the following circumstances for all I, ℏ, ∂ ∈Ⱳ andπ, ℘>0 :

(P1) YðI, ℏ,℘Þ +MðI, ℏ,℘Þ +ⱰðI, ℏ,℘Þ ≤ 1,
(P2) 0 ≤ YðI, ℏ,℘Þ ≤ 1,
(P3) YðI, ℏ,℘Þ = 1⟺I = ℏ,
(P4)YðI, ℏ,℘Þ = Yðℏ,I,℘Þ,
(P5) YðI, ∂,℘+πÞ ≥ YðI, ℏ,℘Þ ∗ Yðℏ, ∂, πÞ,
(P6) YðI, ℏ,∙Þ is non decreasing (ND) function of ℝ+

and lim
℘⟶∞

YðI, ℏ,℘Þ = 1,
(P7) 0 ≤MðI, ℏ,℘Þ ≤ 1,
(P8) MðI, ℏ,℘Þ = 0⟺I = ℏ,
(P9) MðI, ℏ,℘Þ =Mðℏ,I,℘Þ,
(P10) MðI, ∂,℘+πÞ ≤MðI, ℏ,℘ÞΔSðℏ, ∂, πÞ,

(P11) MðI, ℏ,∙Þ is non increasing (NI) function of ℝ+

and lim
℘⟶∞

MðI, ℏ,℘Þ = 0,
(P12) 0 ≤ⱰðI, ℏ,℘Þ ≤ 1,
(P13) ⱰðI, ℏ,℘Þ = 0⟺I = ℏ,
(P14) ⱰðI, ℏ,℘Þ =Ɒðℏ,I,℘Þ,
(P15) ⱰðI, ∂,℘+πÞ ≤ⱰðI, ℏ,℘ÞΔvðℏ, ∂, πÞ,
(P16) ⱰðI, ℏ,∙Þ is non increasing (NI) function of ℝ+

and lim
℘⟶∞

ⱰðI, ℏ,℘Þ = 0,
(P17) If ℘≤0,then YðI, ℏ,℘Þ = 0,MðI, ℏ,℘Þ = 1 and Ɒð

I, ℏ,℘Þ = 1:
Then, ðⱲ , Y ,M,Ɒ,∗,ΔÞ is a PFMS.

Definition 5 (see [4]). Assume Ⱳ ≠⏀ and ˫∈Ⱳ ×Ⱳ is a
binary relation. Assume there exists I0 ∈Ⱳ such that I0˫
I or I˫I0 for allI ∈Ⱳ . Thus, Ⱳ is said to be an OS. Fur-
thermore, we denote OS by ðⱲ , ˫Þ.

Definition 6 (see [4]). Suppose that ðⱲ , ˫Þ is an OS. A
sequence fIng for n ∈ℕ is called an (OS) if for all n,In˫
In+1 or for all n,In+1˫In.

2.1. Orthogonal Picture Fuzzy Metric Space

Definition 7. Let ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ be called an OPFMS if
Ⱳ is a non-empty OS, ∗ is a CTN, Δ is a CTCN, and Y ,
M,Ɒ are pfs on Ⱳ ×Ⱳ ×ℝ+ if the following condition
are satisfied for all I, ℏ, ∂ ∈Ⱳ with either (I˫ℏ or ℏ˫I),
either (I˫ℏ or δ˫I), and either (I˫ℏ∨ℏ˫I):

P1) YðI, ℏ,℘Þ +MðI, ℏ,℘Þ +ⱰðI, ℏ,℘Þ ≤ 1,
P˫2) 0 ≤ YðI, ℏ,℘Þ ≤ 1,
P˫3) YðI, ℏ,℘Þ = 1 if and only if I = ℏ,
P˫4) YðI, ℏ,℘Þ = Yðℏ,I,℘Þ,
P˫5) YðI, ∂,℘+πÞ ≥ YðI, ℏ, λÞ ∗ Yðℏ, e, πÞ,
P˫6) YðI, ℏ,∙Þ: ð0,∞Þ⟶ ½0, 1� is continuous,
P˫7) 0 ≤MðI, ℏ,℘Þ ≤ 1,
P˫8) MðI, ℏ,℘Þ = 1 if and only if I = ℏ,
P˫9) MðI, ℏ,℘Þ =Mðℏ,I,℘Þ,
P˫10) MðI, ∂,℘+πÞ ≤MðI, ℏ,℘ÞΔMðℏ, ∂, πÞ,
P˫11) MðI, ℏ,∙Þ: ð0,∞Þ⟶ ½0, 1� is continuous,
P˫12) 0≤ⱰðI, ℏ,℘Þ ≤ 1,
P˫13) ⱰðI, ℏ,℘Þ = 1 if and only if I = ℏ,
P˫14) ⱰðI, ℏ,℘Þ =Ɒðℏ,I,℘Þ,
P˫15) ⱰðI, ∂,℘+πÞ ≤ⱰðI, ℏ,℘ÞΔⱰðℏ, ∂, πÞ,
P˫16) ⱰðI, ℏ,∙Þ: ð0,∞Þ⟶ ½0, 1� is continuous,
P˫17) If ℘≤0 then YðI, ℏ,℘Þ = 0,MðI, ℏ,℘Þ = 1 and Ɒð

I, ℏ,℘Þ = 1,
Then, ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ is called OPFMS.

Remark 8. Every PFMS is anOPFMSbut the converse is not true.

Example 1. Let Ⱳ = ½−7, 7� and define a CTN as a ∗ b = ab,
CTCN as aΔb =max fa, bg and define a binary relation ˫
by I˫ℏ iff I + ℏ ≥ 0. Take
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Y I, ℏ,℘ð Þ =
1 if I = ℏ,

℘
℘+ max I, ℏf g if otherwise,

8<
:

M I, ℏ,℘ð Þ =
0 if I = ℏ,
max I,ℏf g

℘+ max I, ℏf g if otherwise,

8><
>:

Ɒ I, ℏ,℘ð Þ =
0 if I = ℏ,
max I, ℏf g
℘ if otherwise,

8<
:

ð3Þ

for all I, ℏ ∈Ⱳ , ℘>0, then it is OPFS, but not an PFMS.

It is easy to see that for π = ℘ = 1,I = −1, ℏ = −1/2, ∂ = −2:
(P˫5), (P˫10), and (P˫15) fails.

Remark 9. The above example is also OPFMS if we take

M I, ℏ,℘ð Þ =
0 if I = ℏ,

1− ℘
℘+ max I, ℏf g if otherwise:

8<
:

ð4Þ

Definition 10. An OS fIng in an OPFMS ðⱲ , Y ,M,Ɒ,∗,Δ
, ˫Þ is said to be orthogonal convergent (O-C) toI ∈Ⱳ if

lim
n⟶∞

Y In,I,℘ð Þ = 1,∀℘ > 0,

lim
n⟶∞

M In,I,℘ð Þ = 0,∀℘ > 0,

lim
n⟶∞

Ɒ In,I,℘ð Þ = 0,∀℘ > 0:

ð5Þ

Definition 11. An OS fIng in an OPFMS ðⱲ , Y ,M,∗,Δ, ˫Þ
is said to be Orthogonal Cauchy (O-CS) if there exists n ∈
ℕ such that

lim
n⟶∞

Y In,In+p,℘
� �

= 1,

lim
n⟶∞

M In,In+p,℘
� �

= 0,

lim
n⟶∞

Ɒ In,In+p,℘
� �

= 0,

ð6Þ

for all ℘≥0, p ≥ 1.

Definition 12. Ω : Ⱳ ⟶Ⱳ is OC at I ∈Ⱳ in an OPFMS
ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ, whenever for each OS fIng for all n
∈ℕ in Ⱳ if lim

n⟶∞
RðIn,I,℘Þ = 1, lim

n⟶∞
MðIn,I,℘Þ = 0,

and lim
n⟶∞

ⱰðIn,I,℘Þ = 0 for all℘>0, then lim
n⟶∞

YðΩIn,Ω
I,℘Þ = 1, lim

n⟶∞
MðΩIn,ΩI,℘Þ = 0, and lim

n⟶∞
ⱰðΩIn,ΩI,

℘Þ = 0 for all ℘>0.

Definition 13. An OPFMS ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ is said to be
orthogonally complete (O-complete) if every O-CS is
convergent.

Example 2. Assume OPFMS as given in Example 1 and
define a sequence fIng in Ⱳ by In = 1 − 1/n, ∀n ∈ℕ such
that ð∀n ;In˫In+1Þ or ð∀n ;In+1˫InÞ. Define a CTN
as a ∗ b = ab, CTCN as aΔb =max fa, bg, and define a
binary relation ˫ by I˫ℏ iff I + ℏ ≥ 0. Take

lim
n⟶∞

Y In,I,℘ð Þ = lim
n⟶∞

1 if I = ℏ,
℘

℘+ max In,If g if otherwise,

8<
: =

1 if I = ℏ,
℘

℘+ max I,If g if otherwise,

8<
:

lim
n⟶∞

M In,I,℘ð Þ = lim
n⟶∞

0 if I = ℏ,
max In,If g

℘+ max In,If g if otherwise,

8<
: =

0 if I = ℏ
max I,If g

℘+ max I,If g if otherwise,

8<
:

lim
n⟶∞

Ɒ In,I,℘ð Þ = lim
n⟶∞

0 if I = ℏ

max Ij,I
� �

℘ if otherwise

8><
>: =

0 if I = ℏ,
max I,If g
℘ if otherwise:

8<
:

ð7Þ
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Example 3. From proof of Example 2, In = 1 − 1/n, ∀n ∈ℕ
is a O-CS in an OPFMS.

for all ℘≥0, p ≥ 1.

Lemma 14. If for some v ∈ ð0, 1Þ and I, ℏ ∈Ⱳ ,

Y I, ℏ,℘ð Þ ≥ Y I, ℏ, ℘
v

� �
,℘ > 0,

M I, ℏ,℘ð Þ ≤M I, ℏ, ℘
v

� �
,℘ > 0

Ɒ I, ℏ,℘ð Þ ≤Ɒ I, ℏ, ℘
v

� �
,℘ > 0

ð9Þ

thenI = ℏ.

Definition 15. Let ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ be an OPFMS. A map
Ω : Ⱳ ⟶Ⱳ is an orthogonal contraction if there exists θ
∈ ð0, 1Þ such that for every ℘>0 and I, δ ∈Ⱳ with I˫ℏ,
we have

Y ψI,Ωℏ, θλð Þ ≥ Y I, ℏ,℘ð Þ, ð10Þ

M ΩI,Ωℏ, θ℘ð Þ ≤M I, ℏ,℘ð Þ, ð11Þ
Ɒ ΩI,Ωℏ, θ℘ð Þ ≤Ɒ I, ℏ,℘ð Þ: ð12Þ

Theorem 16. Let ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ be an O-complete
PFMS such that

lim
℘⟶∞

Y I, ℏ,℘ð Þ = 1, lim
℘⟶∞

M I, ℏ,℘ð Þ = 0,and lim
℘⟶∞

Ɒ I, ℏ,℘ð Þ = 0,∀I, ℏ ∈Ⱳ:

ð13Þ

Let Ω : Ⱳ ⟶Ⱳ be an OC, O-CON and OPR. Thus, Ω
has a unique FP, say I∗ ∈Ⱳ . Furthermore,

lim
n⟶∞

Y ΩnI,I∗,℘ð Þ = 1, lim
n⟶∞

M ΩnI,I∗,℘ð Þ = 0,
and lim

n⟶∞
Ɒ ΩnI,I∗,℘ð Þ = 0∀I ∈Ⱳ and℘ > 0:

ð14Þ

Proof. Since ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ is an O-complete PFMS,
there exists I0 ∈Ⱳ such that

I0˫ℏ for all ℏ ∈Ⱳ : ð15Þ

That is, I0˫ΩI0: Take

In =ΩnI0 =ΩIn−1 for all n ∈M: ð16Þ

Since Ω is OPR, fIng is an OS. Now, since Ω is an O-
CON, we get

Y In+1,In, θ℘ð Þ = Y ΩIn,ΩIn−1, θ℘ð Þ ≥ Y In,In−1,℘ð Þ,
ð17Þ

for all n ∈M and ℘>0: Note that Y is nondecreasing on
ð0,∞Þ: Therefore, by applying the above expression, we
can deduce

Y In+1,In,℘ð Þ ≥ Y In+1,In, θ℘ð Þ = Y ΩIn,ΩIn−1, θ℘ð Þ
≥ Y In,In−1,℘ð Þ = Y ΩIn−1,ΩIn−2,℘ð Þ
≥ Y In−1,In−2,

℘
θ

� �
≥⋯≥ Y I1,I0,

℘
θn

� �
,

ð18Þ

for all n ∈M and ℘>0. Thus, from (15) and (P˫5), we have

lim
n⟶∞

Y In,In+p,℘
� �

= lim
n⟶∞

1 if I = ℏ,
℘

℘+ max In,In+p
� � if otherwise,

8<
: =

1 if I = ℏ,
℘

℘+ max I,If g if otherwise,

8<
:

lim
n⟶∞

M In,In+p,℘
� �

= lim
n⟶∞

0 if I = ℏ,
max In,In+p

� �
℘+ max In,In+p

� � if otherwise,

8><
>: =

0 if I = ℏ,
max I,If g

℘+ max I,If g if otherwise,

8<
:

lim
n⟶∞

Ɒ In,In+p,℘
� �

= lim
n⟶∞

0 if I = ℏ,
max In,In+p

� �
℘ if otherwise

8><
>: =

0 if I = ℏ,
max I,If g
℘ if otherwise,

8<
:

ð8Þ
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We know that lim
℘⟶∞

YðI, ℏ,℘Þ = 1, for all I, ℏ ∈Ⱳ and

℘>0: So, from (19) we get,

lim
n⟶∞

Y In,In+α,℘ð Þ ≥ 1 ∗ 1∗⋯∗1 = 1:

M In+1,In, θ℘ð Þ =M ΩIn,ΩIn−1, θ℘ð Þ ≤M In,In−1,℘ð Þ,
ð20Þ

for all n ∈ ℏ and ℘>0: Therefore, by applying the above
expression, we can deduce

M In+1,In,℘ð Þ ≤M In+1,In, θ℘ð Þ =M ΩIn,ΩIn−1, θ℘ð Þ
≤M In,In−1,℘ð Þ =M ΩIn−1, ψIn−2,℘ð Þ
≤M In−1,In−2,

℘
θ

� �
≤⋯≤M I1,I0,

℘
θn

� �
,

ð21Þ

for all n ∈ ℏ and ℘>0. Thus, from (21) and (P⊥10), we have

M In,In+α,℘ð Þ ≤M In,In+1,
℘
2

� �
ΔM In+1,In+α,

℘
2

� �
≤M In,In+1,

℘
2

� �
ΔM In+1,In+2,

℘
22

� �
ΔM In+2,I, ℘23

� �
Δ⋯ ΔM In+α−1,In+α,

℘
2n+α

� �
≤M I,I0,

℘
2θn

� �
ΔM I1,I0,

℘
22θn

� �
Δ⋯

ΔM I1,I0,
℘

2n+αθn
� �

:

ð22Þ

We know that lim
℘⟶∞

MðI, ℏ,℘Þ = 0, for all I, ℏ ∈Ⱳ and

℘>0: So, from (22) we get,

lim
n⟶∞

M In,In+α,℘ð Þ ≤ 0Δ 0Δ⋯ Δ 0 = 0,

Ɒ In+1,In, θ℘ð Þ =Ɒ ΩIn,ΩIn−1, θ℘ð Þ
≤Ɒ In,In−1,℘ð Þ,

ð23Þ

for all n ∈M and ℘>0: Therefore, by applying the above

expression, we can deduce

Ɒ In+1,In,℘ð Þ ≤Ɒ In+1,In, θ℘ð Þ =Ɒ ΩIn,ΩIn−1, θ℘ð Þ
≤Ɒ In,In−1,℘ð Þ =Ɒ ΩIn−1,ΩIn−2,℘ð Þ
≤Ɒ In−1,In−2,

℘
θ

� �
≤⋯≤Ɒ I1,I0,

℘
θn

� �
,

ð24Þ

for all n ∈M and ℘>0. Thus, from (24) and (P⊥15), we have

Ɒ In,In+α,℘ð Þ ≤Ɒ In,In+1,
℘
2

� �
ΔⱰ In+1,In+α,

℘
2

� �
≤Ɒ In,In+1,

℘
2

� �
ΔⱰ In+1,In+2,

℘
22

� �
ΔⱰ In+2,In+3,

℘
23

� �
Δ::ΔⱰ In+α−1,In+α,

℘
2n+α

� �
≤Ɒ I1,I0,

℘
2θn

� �
ΔⱰ I1,I0,

℘
22θn

� �
Δ⋯ ΔⱰ I1,I0,

℘
2n+αθn

� �
,

ð25Þ

We know that lim
℘⟶∞

ⱰðI, ℏ,℘Þ = 0, for all I, ℏ ∈Ⱳ and

℘>0: So, from (25) we get,

lim
n⟶∞

Ɒ In,In+α,℘ð Þ ≤ 0Δ 0Δ⋯ Δ 0 = 0: ð26Þ

So, fIng is a O-CS. The O-completeness of the PFMS
ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ ensures that there existI∗ ∈Ⱳ such
that YðIn,I∗,℘Þ⟶ 1,MðIn,I∗,℘Þ⟶ 0, and ⱰðIn,I∗,
℘Þ⟶ 0 as n⟶ +∞ for all ℘>0: Now, since Ω is an OC,
YðIn+1,ΩI∗,℘Þ = YðΩIn,ΩI∗,℘Þ⟶ 1, MðIn+1,ΩI∗,℘
Þ =MðΩIn,ΩI∗,℘Þ⟶ 0, and ⱰðIn+1,ΩI∗,℘Þ =ⱰðΩIn
,ΩI∗,℘Þ⟶ 0 as n⟶ +∞. Now, we have

Y I∗, ψI∗,℘ð Þ ≥ Y I∗,In+1,
℘
2

� �
∗ Y In+1,ΩI∗,

℘
2

� �
,

M I∗,ΩI∗,℘ð Þ ≤M I∗,In+1,
℘
2

� �
ΔM In+1,ΩI∗,

℘
2

� �
,

Ɒ I∗,ΩI∗,℘ð Þ ≤Ɒ I∗,In+1,
℘
2

� �
ΔⱰ In+1,ΩI∗,

℘
2

� �
:

ð27Þ

Taking limit as n⟶ +∞, we get YðI∗,ΩI∗,℘Þ = 1 ∗
1 = 1,MðI∗,ΩI∗,℘Þ = 0Δ 0 = 0, and ⱰðI∗,ΩI∗,℘Þ = 0Δ 0
= 0 and hence ΩI∗ =I∗:

Now, we show the uniqueness of the FP of the
mappingΩ. Assume that I∗ and ℏ∗ are two FPs of Ω such
thatI∗ ≠ δ∗. We can get

I0˫I∗ andI0˫ℏ∗: ð28Þ

Y In,In+α,℘ð Þ ≥ Y In,In+1,
℘
2

� �
∗ Y In+1,In+α,

℘
2

� �
≥ Y In,In+1,

℘
2

� �
∗ Y In+1,In+2,

℘
22

� �
∗ Y In+2,In+3,

℘
23

� �
∗

⋮

∗Y In+α−1,In+α,
℘

2n+α
� �

≥ Y I1,I0,
℘
2θn

� �
∗ Y I1,I0,

℘
22θn

� �
∗

⋮

∗Y I1,I0,
℘

2n+αθn
� �

:

ð19Þ
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Since Ɒ is OPR, one writes

ΩnI0˫Ω
nI∗ andΩnI0˫Ω

nℏ∗, ð29Þ

for all n ∈M: So from (10), we can derive

Y ΩnI0,ΩnI∗,℘ð Þ ≥ Y ΩnI0,ΩnI∗, θ℘ð Þ ≥ Y I0,I∗,
℘
θn

� �
,

Y ΩnI0,Ωnℏ∗,℘ð Þ ≥ Y ΩnI0,Ωnℏ∗, θ℘ð Þ ≥ Y I0, ℏ∗,
℘
θn

� �
:

ð30Þ

Therefore,

Y I∗, ℏ∗,℘ð Þ = Y ΩnI∗,Ωnℏ∗,℘ð Þ ≥ Y ΩnI0,ΩnI∗,
℘
2

� �
∗ Y ΩnI0,Ωnℏ∗,

℘
2

� �
≥ Y I0,I∗,

℘
2θn

� �
∗ Y I0, ℏ∗,

℘
2θn

� �
⟶ 1 as n⟶∞:

ð31Þ

So from (11), we can derive

M ΩnI0,ΩnI∗,℘ð Þ ≤M ΩnI0,ΩnI∗, θ℘ð Þ ≤M I0,I∗,
℘
θn

� �
,

M ΩnI0,Ωnℏ∗,℘ð Þ ≤M ΩnI0,Ωnℏ∗, θ℘ð Þ ≤M I0, ℏ∗,
℘
θn

� �
:

ð32Þ

Therefore,

M I∗, ℏ∗,℘ð Þ =M ΩnI∗,Ωnℏ∗,℘ð Þ ≤M ΩnI0,ΩnI∗,
℘
2

� �
ΔM ΩnI0,Ωnℏ∗,

℘
2

� �
≤M I0,I∗,

℘
2θn

� �
ΔM I0, ℏ∗,

℘
2θn

� �
⟶ 0 as n⟶∞:

ð33Þ

Similarly, from (12), we can derive

Ɒ ΩnI0,ΩnI∗,℘ð Þ ≤Ɒ ΩnI0,ΩnI∗, θ℘ð Þ ≤Ɒ I0,I∗,
℘
θn

� �
,

Ɒ ΩnI0,Ωnℏ∗,℘ð Þ ≤Ɒ ΩnI0,Ωnℏ∗, θ℘ð Þ ≤Ɒ I0, ℏ∗,
℘
θn

� �
:

ð34Þ

Therefore,

Ɒ I∗, ℏ∗,℘ð Þ =Ɒ ΩnI∗,Ωnℏ∗,℘ð Þ
≤Ɒ ΩnI0,ΩnI∗,

℘
2

� �
ΔⱰ ΩnI0,Ωnℏ∗,

℘
2

� �
≤Ɒ I0,I∗,

℘
2θn

� �
ΔⱰ I0, ℏ∗,

℘
2θn

� �
⟶ 0 as n⟶∞:

ð35Þ

So, I∗ = ℏ ; hence, I∗ is the unique FP.

Corollary 17. Assume ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ be an O-complete
PFMS. Assume Ω : Ⱳ ⟶Ⱳ be O-CON and OPR and if f
Ing is an OS with In ⟶I ∈Ⱳ , thenI˫In for all n ∈ℕ:
Then, Ω has a unique FP, say I∗ ∈Ⱳ :

Proof.We can similarly derive as in the proof of Theorem 16
that fIng is a O-CS and so it converges to I∗ ∈Ⱳ : Hence,
I∗˫In for all n ∈ℕ: from (10), we can get

Y ΩI∗,In+1,℘ð Þ = Y ΩI∗,ΩIn,℘ð Þ ≥ Y ΩI∗,ΩIn,℘θð Þ ≥ Y I∗,In,℘ð Þ,
lim

n⟶∞
Y ΩI∗,In+1,℘ð Þ = 1:

ð36Þ

Then, we can write

Y I∗,ΩI∗,℘ð Þ ≥ Y I∗,In+1,
℘
2

� �
∗ Y In+1,ΩI∗,

℘
2

� �
:

ð37Þ

Taking limit as n⟶ +∞, we get YðI∗,ΩI∗,℘Þ = 1 ∗
1 = 1 and from (11), we can get

M ΩI∗,In+1,℘ð Þ =M ΩI∗,ΩIn,℘ð Þ ≤M ΩI∗,ΩIn,℘θð Þ ≤M I∗,In,℘ð Þ,
lim

n⟶∞
M ΩI∗,In+1,℘ð Þ = 0:

ð38Þ

Then, we can write

M I∗,ΩI∗,℘ð Þ ≤M I∗,In+1,
℘
2

� �
ΔM In+1,ΩI∗,

℘
2

� �
:

ð39Þ

Taking limit as n⟶ +∞, we get

M I∗,ΩI∗,℘ð Þ = 0Δ 0 = 0, ð40Þ

and from (12), we can get

Ɒ ΩI∗,In+1,℘ð Þ =Ɒ ΩI∗,ΩIn,℘ð Þ ≤Ɒ ΩI∗,ΩIn,℘θð Þ ≤Ɒ I∗,In,℘ð Þ,
lim

n⟶∞
Ɒ ΩI∗,In+1,℘ð Þ = 0:

ð41Þ

Then, we can write

Ɒ I∗,ΩI∗,℘ð Þ ≤Ɒ I∗,In+1,
℘
2

� �
ΔⱰ In+1,ΩI∗,

℘
2

� �
: ð42Þ

Taking limit as n⟶ +∞, we get

Ɒ I∗,ΩI∗,℘ð Þ = 0Δ 0 = 0, ð43Þ

so ΩI∗ =I∗: Next proof is similar as in Theorem 16.

Example 4. LetⱲ = ½−3, 3�. We define a binary relation ˫ by
I˫ℏ⟺I + ℏ ≥ 0:
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Define an OPFMS as in Example 1 by

Y I, ℏ,℘ð Þ =
1 if I = ℏ,

℘
℘+ max I, ℏf g if otherwise,

8<
:

M I, ℏ,℘ð Þ =
0 if I = ℏ,
max I,ℏf g

℘+ max I, ℏf g if otherwise,

8><
>:

Ɒ I, ℏ,℘ð Þ =
0 if I = ℏ,
max I, ℏf g
℘ if otherwise,

8<
:

ð44Þ

for all I, δ ∈Ⱳ , ℘>0, with the CTN a ∗ b = a∙b and
CTCN aΔb =max fa, bg: Then, ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ is an
O-complete PFMS. Define Ω : Ⱳ ⟶Ⱳ by

ΩI =
I

4 , I ∈ −3, 0½ �
0, I ∈ 0, 3ð �

8<
: : ð45Þ

Then, the following cases are satisfied:

(1) If I ∈ ½−3, 0� and ℏ ∈ ð0, 3�, then ΩI =I/4
andψℏ = 0

(2) If I, ℏ ∈ ½−3, 0�, then ΩI =I/4 andΩℏ = ℏ/4
(3) If I, ℏ ∈ ð0, 3�, then ΩI = 0 andΩℏ = 0
(4) If I ∈ ð0, 3� and ℏ ∈ ½−3, 0�, then ΩI = 0

andΩℏ = ℏ/4

This clearly implies thatΩI +Ωℏ ≥ 0. Hence, Ω is OPR.
We can easily see that if lim

n⟶∞
YðIn,I,℘Þ = 1, then lim

n⟶∞
Y

ðΩIj,ΩI,℘Þ = 1, lim
n⟶∞

MðIn,I,℘Þ = 0, then lim
n⟶∞

MðΩIn

,ΩI,℘Þ = 0 and lim
n⟶∞

ⱰðIn,I,℘Þ = 0, then lim
n⟶∞

ⱰðΩIn,
ΩI,℘Þ = 0 for allI ∈Ⱳ and ℘>0: Hence, Ω is OC.

The above four cases for θ ∈ ½1/2, 1Þ satisfies the below
contractive conditions:

Y ΩI,Ωℏ, θ℘ð Þ ≥ Y I, ℏ,℘ð Þ,
M ΩI,Ωℏ, θ℘ð Þ ≤M I, ℏ,℘ð Þ,
Ɒ ΩI,Ωℏ, θ℘ð Þ ≤Ɒ I, ℏ,℘ð Þ:

ð46Þ

All conditions of Theorem 16 are satisfied. Also, 0 is FP
of Ω.

Theorem 18. Let ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ be an O-complete
PFMS such that

lim
℘⟶∞

Y I, ℏ,℘ð Þ = 1 and lim
℘⟶∞

M I, ℏ,℘ð Þ = 0,∀I, ℏ ∈Ⱳ and℘ > 0:

ð47Þ

Let Ω : Ⱳ ⟶Ⱳ be OC,O-CON and OPR. Assume that
there exist θ ∈ ð0, 1Þ and ℘>0 such that

Y ΩI,Ωℏ, θ℘ð Þ ≥min Y ΩI,I,℘ð Þ, Y Ωℏ, ℏ,℘ð Þf g,
M ΩI,Ωℏ, θ℘ð Þ ≤min M ΩI,I,℘ð Þ,M Ωℏ, ℏ,℘ð Þf g,
Ɒ ΩI,Ωℏ, θ℘ð Þ ≤min Ɒ ΩI,I,℘ð Þ,Ɒ Ωℏ, ℏ,℘ð Þf g,

ð48Þ

for all I, ℏ ∈Ⱳ , ℘>0. Then, Ω has a unique FP, soI∗ ∈Ⱳ .
Furthermore, lim

n⟶∞
YðΩnI,I∗,℘Þ = 1, lim

n⟶∞
MðΩnI,I∗,℘Þ

= 0, and lim
n⟶∞

ⱰðΩnI,I∗,℘Þ = 0 for all I ∈Ⱳ and ℘>0:

Proof. Since ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ is an O-complete PFMS,
there exists I0 ∈Ⱳ such that

I0˫ℏ,∀δ ∈Ⱳ : ð49Þ

Thus, I˫h:Consider

In =ΩnI0 =ΩIn−1,∀n ∈ S: ð50Þ

Since Ω is OPR, fIng is an OS. We can get

Y In+1,In,℘ð Þ ≥ Y In+1,In, θ℘ð Þ = Y ΩIn,ΩIn−1, θ℘ð Þ ≥min Y ΩIn,In,℘ð Þ, Y ΩIn−1,In−1,℘ð Þf g,
M In+1,In,℘ð Þ ≤M In+1,In, θ℘ð Þ =M ΩIn,ΩIn−1, θ℘ð Þ ≤min M ΩIn,In,℘ð Þ,M ΩIn−1,In−1,℘ð Þf g,
Ɒ In+1,In,℘ð Þ ≤Ɒ In+1,In, θ℘ð Þ =Ɒ ΩIn,ΩIn−1, θ℘ð Þ ≤min Ɒ ΩIn,In,℘ð Þ,Ɒ ΩIn−1,In−1,℘ð Þf g:

ð51Þ
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Two cases arise:
Case1: If YðIn+1,In,℘Þ ≥ YðΩIn,In,℘Þ, then

Y In+1,In,℘ð Þ ≥ Y In+1,In, θ℘ð Þ ≥ Y ΩIn,In,℘ð Þ = Y In+1,In,℘ð Þ,
M In+1,In,℘ð Þ ≤M ΩIn,In,℘ð Þ:

ð52Þ

Then,

M In+1,In,℘ð Þ ≤M In+1,In, θ℘ð Þ ≤M ΩIn,In,℘ð Þ =M In+1,In,℘ð Þ,
Ɒ In+1,In,℘ð Þ ≤Ɒ ΩIn,In,℘ð Þ:

ð53Þ

Then,

Ɒ In+1,In,℘ð Þ ≤Ɒ In+1,In, θ℘ð Þ ≤Ɒ ΩIn,In,℘ð Þ
=Ɒ In+1,In,℘ð Þ: ð54Þ

Then by Lemma 14, In =In+1 for all n ∈ℕ.
Case2: If YðIn+1,In,℘Þ ≥ YðΩIn−1,In−1,℘Þ, then

Y In+1,In,℘ð Þ ≥ Y In+1,In, θ℘ð Þ ≥ Y ΩIn−1,In−1,℘ð Þ ≥ Y In,In−1,℘ð Þ,
M In+1,In,℘ð Þ ≤M ΩIn−1,In−1,℘ð Þ:

ð55Þ

Then,

M In+1,In,℘ð Þ ≤M In+1,In, θ℘ð Þ ≤M ΩIn−1,In−1,℘ð Þ ≤M In,In−1,℘ð Þ,
ð56Þ

and

Ɒ In+1,In,℘ð Þ ≤Ɒ ΩIn−1,In−1,℘ð Þ: ð57Þ

Then,

Ɒ In+1,In,℘ð Þ ≤Ɒ In+1,In, θ℘ð Þ ≤Ɒ ΩIn−1,In−1,℘ð Þ
≤Ɒ In,In−1,℘ð Þ, ð58Þ

for all n ∈ℕ and ℘>0. Then by Theorem 16, we have a OCS.
By completeness of ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ, there exists I∗ ∈Ⱳ
such that lim

n⟶∞
RðIn,I∗,℘Þ = 1, lim

n⟶∞
MðIn,I∗,℘Þ = 0 ,

and lim
n⟶∞

ⱰðIn,I∗,℘Þ = 0, for all ℘>0:
We know that Ω is an OC, then

lim
n⟶∞

Y In+1,ΩI∗,℘ð Þ = lim
n⟶∞

Y ΩIn,ΩI∗,℘ð Þ = 1,

lim
n⟶∞

M In+1,ΩI∗,℘ð Þ = lim
n⟶∞

M ΩIn,ΩI∗,℘ð Þ = 0,

lim
n⟶∞

Ɒ In+1,ΩI∗,℘ð Þ = lim
n⟶∞

Ɒ ΩIj,ΩI∗,℘
� �

= 0:

ð59Þ

Now, we prove that I∗ is a FP of Ω: Let ℘1 ∈ ðθ, 1Þ and
℘2 = 1 − ℘1. Then,

Y ΩI∗,I∗,℘ð Þ ≥ Y ΩI∗,In+1,
℘℘1
2

� �
∗ Y In+1,I∗,

℘℘2
2

� �
= Y ΩI∗,ΩIn,

℘℘1
2

� �
∗ Y In+1,I∗,

℘℘2
2

� �
≥min Y ΩI∗,I∗,

℘℘1
2θ

� �
, Y ψIn,In,

℘℘1
2θ

� �n o
∗ Y In+1,I∗,

℘℘2
2

� �
=min Y ΩI∗,I∗,

℘℘1
2θ

� �
, Y In+1,In,

℘℘1
2θ

� �n o
∗ Y In+1,I∗,

℘℘2
2

� �
:

ð60Þ

Taking n⟶∞, we get

Y ΩI∗,I∗,℘ð Þ ≥min Y ΩI∗,I∗,
℘℘1
2θ

� �
, 1

n o
∗ 1,

Y ΩI∗,I∗,℘ð Þ ≥ Y ΩI∗,I∗,
℘
v

� �
,℘ > 0,

M ΩI∗,I∗,℘ð Þ ≤M ΩI∗,In+1,
℘℘1
2

� �
ΔM

�In+1,I∗,
℘℘2
2

� �
=M ΩI∗,ΩIn,

℘℘1
2

� �
ΔM In+1,I∗,

℘℘2
2

� �
≤min M ΩI∗,I∗,

℘℘1
2θ

� �
,M ΩIn,In,

℘℘1
2θ

� �n o
ΔM In+1,I∗,

℘℘2
2

� �
=min M ΩI∗,I∗,

℘℘1
2θ

� �
,M In+1,In,

℘℘1
2θ

� �n o
ΔM In+1,I∗,

℘℘2
2

� �
:

ð61Þ

Taking n⟶∞, we get

M ΩI∗,I∗,℘ð Þ ≤min M ΩI∗,I∗,
℘℘1
2θ

� �
, 0

n o
Δ 0,

M ΩI∗,I∗,℘ð Þ ≤M ΩI∗,I∗,
℘
v

� �
,℘ > 0,

Ɒ ΩI∗,I∗,℘ð Þ ≤Ɒ ΩI∗,In+1,
℘℘1
2

� �
ΔⱰ In+1,I∗,

℘℘2
2

� �
=Ɒ ΩI∗,ΩIn,

℘℘1
2

� �
ΔⱰ In+1,I∗,

℘℘2
2

� �
≤min Ɒ ΩI∗,I∗,

℘℘1
2θ

� �
,Ɒ ΩIn,In,

℘℘1
2θ

� �n o
ΔⱰ In+1,I, ℘℘2

2
� �

=min Ɒ ΩI∗,I∗,
℘℘1
2θ

� �
,Ɒ In+1,In,

℘℘1
2θ

� �n o
ΔⱰ In+1,I∗,

℘℘2
2

� �
:

ð62Þ
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Taking n⟶∞, we get

Ɒ ΩI∗,I∗,℘ð Þ ≤min Ɒ ΩI∗,I∗,
℘℘1
2θ

� �
, 0

n o
Δ 0,

Ɒ ΩI∗,I∗,℘ð Þ ≤Ɒ ΩI∗,I∗,
℘
v

� �
,℘ > 0:

ð63Þ

Here, v = 2θ/℘1 ∈ ð0, 1Þ, from Lemma 14, we

haveΩI∗ =I∗. Suppose v∗ and ℏ∗ the FPs of Ω. We have

I0˫I∗ andI0˫I∗: ð64Þ

Because Ω is an OPR, so we can write

ΩnI0˫Ω
nI∗ andΩnI0˫Ω

nI∗ for all n ∈ℕ: ð65Þ

We can write

Hence, we write that

Hence, we write that

Hence, we write that

for all ℘>0. Hence, I∗ = ℏ∗:

Corollary 19. Let ðⱲ , Y ,M,∗,Δ, ˫Þ be an O-complete PFMS
and Ω : Ⱳ ⟶Ⱳ be an OC and OPR. Then θ ∈ ð0, 1Þ, we get
℘>0,

Y ΩnI0,ΩnI∗,℘ð Þ ≥ Y ΩnI0,ΩnI∗, θ℘ð Þ ≥min Y ΩnI0,I0,℘ð Þ, Y ΩnI∗,I∗,℘ð Þf g,
Y ΩnI0,Ωnℏ∗,℘ð Þ ≥ Y ΩnI0,Ωnℏ∗, θ℘ð Þ ≥min Y ΩnI0,I0,℘ð Þ, Y Ωnℏ∗, ℏ∗,℘ð Þf g:

ð66Þ

Y I∗, ℏ∗,℘ð Þ = Y ΩnI∗,Ωnℏ∗,℘ð Þ ≥min Y ΩnI∗,I∗,
℘
θ

� �
, Y Ωnℏ∗, ℏ∗,

℘
θ

� �n o
=min 1, 1f g = 1,

M ΩnI0,ΩnI∗,℘ð Þ ≤M ΩnI0,ΩnI∗, θ℘ð Þ ≤min M ΩnI0,I0,℘ð Þ,M ΩnI∗,I∗,℘ð Þf g,
M ΩnI0,Ωnℏ∗,℘ð Þ ≤M ΩnI0,Ωnℏ∗, θ℘ð Þ ≤min M ΩnI0,I0,℘ð Þ,M Ωnℏ∗, ℏ∗,℘ð Þf g:

ð67Þ

M I∗, ℏ∗,℘ð Þ =M ΩnI∗,Ωnℏ∗,℘ð Þ ≤min M ΩnI∗,I∗,
℘
θ

� �
,M Ωnℏ∗, ℏ∗,

℘
θ

� �n o
=min 0, 0f g = 0,

Ɒ ΩnI0,ΩnI∗,℘ð Þ ≤Ɒ ΩnI0,ΩnI∗, θ℘ð Þ ≤min Ɒ ΩnI0,I0,℘ð Þ,Ɒ ΩnI∗,I∗,℘ð Þf g,
Ɒ ΩnI0,Ωnℏ∗,℘ð Þ ≤Ɒ ΩnI0,Ωnℏ∗, θ℘ð Þ ≤min Ɒ ΩnI0,I0,℘ð Þ,Ɒ Ωnℏ∗, ℏ,℘ð Þf g:

ð68Þ

Ɒ I∗, ℏ∗,℘ð Þ =Ɒ ΩnI∗,Ωnℏ∗,℘ð Þ ≤min Ɒ ΩnI∗,I∗,
℘
θ

� �
,Ɒ Ωnℏ∗, ℏ∗,

℘
θ

� �n o
=min 0, 0f g = 0, ð69Þ

Y ΩI,Ωℏ, θ℘ð Þ ≥min Y ΩI,I,℘ð Þ, Y Ωℏ, ℏ,℘ð Þ, Y I, ℏ,℘ð Þf g,
M ΩI,Ωℏ, θ℘ð Þ ≤min M ΩI,I,℘ð Þ,M Ωℏ, ℏ,℘ð Þ,M I, ℏ,℘ð Þf g,
Ɒ ΩI,Ωℏ, θ℘ð Þ ≤min Ɒ ΩI,I,℘ð Þ,Ɒ Ωℏ, ℏ,℘ð Þ,Ɒ I, ℏ,℘ð Þf g,

ð70Þ
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Then, Ω has a unique FP.

Proof. It follows from Theorem 16 and Theorem 18.

Example 5. Let Ⱳ = ½−2, 2� and define a binary relation ⊥
by

I˫ℏ⟺I + ℏ ≥ 0: ð71Þ

Define YandMby

Y I, ℏ,℘ð Þ =
1 if I = ℏ

℘
℘+ max I, ℏf g otherwise,

8<
:

M I, ℏ,℘ð Þ =
0 if I = ℏ

max I, ℏf g
λ +max I, ℏf g otherwise,

8<
:

Ɒ I, ℏ,℘ð Þ =
0 if I = ℏ,
max I, ℏf g
λ

otherwise,

8<
:

ð72Þ

for all I, ℏ ∈Ⱳ and ℘>0, with the CTN and CTCN,
respectively; a ∗ b = a:b, aΔb =max fa, bg then ðⱲ , Y ,M,
Ɒ,∗,Δ, ˫Þ is an O-complete PFMS. Note
that lim

℘⟶∞
YðI, ℏ,℘Þ = 1, lim

℘⟶∞
MðI, ℏ,℘Þ = 0, and lim

℘⟶∞
Ɒ

ðI, ℏ,℘Þ = 0 ∀ I, ℏ ∈ E: Define Ω : Ⱳ ⟶Ⱳ by

ΩI =

I

4 , I ∈ −2, 23

� 	

1 −I, I ∈
2
3 , 1


 	

I −
1
2 , I ∈ 1, 2ð �

8>>>>>>>><
>>>>>>>>:

: ð73Þ

We have the following cases:

(1) If I, ℏ ∈ ½−2, 2/3�, then ΩI =I/4 andΩℏ = ℏ/4
(2) If I, ℏ ∈ ð2/3, 1�, then ΩI = 1 −I andΩℏ = 1 − ℏ

(3) If I, ℏ ∈ ð1, 2�, then ΩI =I − 1/2 andΩℏ = ℏ − 1/2
(4) IfI ∈ ½−2, 2/3� and ℏ ∈ ð2/3, 1�, then ΩI =I/4

andΩℏ = 1 − ℏ

(5) IfI ∈ ½−2, 2/3� and ℏ ∈ ð1, 2�, then ΩI =I/4
andΩℏ = ℏ − 1/2

(6) If I ∈ ð2/3, 1� and ℏ ∈ ð1, 2�, then ΩI = 1 −I

andΩℏ = ℏ − 1/2
(7) If I ∈ ð1, 2� and ℏ ∈ ð2/3, 1�, then ΩI =I − 1/2

andΩℏ = 1 − ℏ

(8) If I ∈ ð1, 2� and ℏ ∈ ½−2, 2/3�, then ΩI =I − 1/2
andΩℏ = ℏ/4

(9) If I ∈ ð2/3, 1� and ℏ ∈ ½−2, 2/3�, then ΩI = 1 −I

andΩℏ = ℏ/4

Because I˫ℏ⟺I + ℏ ≥ 0, it is clearly implying
thatΩI +Ωℏ ≥ 0. Hence, Ω is OPR. Let fIng be an arbi-
trary OS in Ⱳ that converges toI ∈Ⱳ . We have

lim
n⟶∞

Y In,I,℘ð Þ = lim
n⟶∞

1 if I = ℏ,
℘

℘+ max In,If g otherwise = 1,

8<
:

lim
n⟶∞

M In,I,℘ð Þ = lim
n⟶∞

1 if I = ℏ,
max In,If g

℘+ max In,If g otherwise = 0,

8<
:

lim
n⟶∞

Ɒ In,I,℘ð Þ = lim
n⟶∞

1 if I = ℏ,
max In,If g
℘ otherwise = 0:

8<
:

ð74Þ

Note that if lim
n⟶∞

YðIn,I, λÞ = 1, lim
n⟶∞

SðIn,I,℘Þ = 0,
and lim

n⟶∞
ⱰðIn,I,℘Þ = 0, then lim

n⟶∞
YðΩIn,ΩI,℘Þ = 1,

lim
n⟶∞

MðΩIn,ΩI,℘Þ = 0, and lim
n⟶∞

ⱰðΩIn,ΩI,℘Þ = 0 for

allI ∈Ⱳ and ℘>0: Hence, Ω is OC. The case I = ℏ is clear.
LetI ≠ ℏ. We have

Y ΩI,Ωℏ, θ℘ð Þ ≥min Y ΩI,I,℘ð Þ, Y Ωℏ, ℏ,℘ð Þf g,
M ΩI,Ωℏ, θ℘ð Þ ≤min M ΩI,I,℘ð Þ,M Ωℏ, ℏ,℘ð Þf g,
Ɒ ΩI,Ωℏ, θ℘ð Þ ≤min Ɒ ΩI,I,℘ð Þ,Ɒ Ωℏ, ℏ,℘ð Þf g:

ð75Þ

Indeed, it is satisfied for all above 9 cases. But, Ω is not a
contraction. Assume

min Y ΩI,I,℘ð Þ, Y Ωℏ, ℏ,℘ð Þf g = Y ΩI,I,℘ð Þ,
min M ΩI,I,℘ð Þ,M Ωℏ, ℏ,℘ð Þf g =M ΩI,I,℘ð Þ,
min Ɒ ΩI,I,℘ð Þ, T Ωℏ, ℏ,℘ð Þf g =Ɒ ΩI,I,℘ð Þ,

ð76Þ

then for I = −1, ℏ = −2, we have

Y ΩI,Ωℏ, θ℘ð Þ = θ℘
θ℘+ max I/4ð Þ, δ/4ð Þf g = 4θ℘

4θ℘−1 ≥ 1,

M ΩI,Ωℏ, θ℘ð Þ = max I/4ð Þ, ℏ/4ð Þf g
θλ +max I/4ð Þ, ℏ/4ð Þf g = −1

4θ℘−1 ≤ 0,

M ΩI,Ωℏ, θ℘ð Þ = max I/4ð Þ, ℏ/4ð Þf g
θλ

= −1
4θ℘ ≤ 0:

ð77Þ

It is a contradiction. Hence, all the conditions of Theo-
rem 18 are satisfied and 0 is the unique FP ofψ.
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Definition 20. Let ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ be an OPFMS. A
mapping Ω : Ⱳ ⟶Ⱳ is named to be an PF ˫-contractive
if ∃ θ ∈ ð0, 1Þ so that

1
Y ΩI,Ωℏ, λð Þ − 1 ≤ θ

1
Y I, ℏ, λð Þ − 1

� 	
, ð78Þ

M ΩI,Ωℏ,℘ð Þ ≤ θM I, ℏ,℘ð Þ andⱰ ΩI,Ωℏ,℘ð Þ ≤ θⱰ I, ℏ,℘ð Þ,
ð79Þ

for all I, ℏ ∈Ⱳ and ℘>0: Here, θ is called the PFS ˫
-contractive constant ofΩ.

Theorem 21. Let ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ be an O-complete
PFMS such that

lim
℘⟶∞

Y I, ℏ,℘ð Þ = 1, lim
℘⟶∞

M I, ℏ,℘ð Þ
= 0,and lim

℘⟶∞
Ɒ I, ℏ,℘ð Þ = 0,∀I, ℏ ∈Ⱳ:

ð80Þ

Let Ω : Ⱳ ⟶Ⱳ be an OC,˫ -contraction and OPR.
Thus, Ω has a FP, say υ ∈Ⱳ , Yðυ, υ,℘Þ = 1,Mðυ, υ,℘Þ = 0
and Ɒðυ, υ,℘Þ = 0 for all ℘>0:

Proof. Let ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ be an O-complete PFMS. For
an arbitraryI0 ∈Ⱳ ,

I0˫ℏ,∀ℏ ∈Ⱳ: ð81Þ

That is, I0˫ΩI0: Consider

In =ΩnI0 =ΩIn−1 for all n ∈ℕ: ð82Þ

Since Ω is OPR, fIng is an OS. If In =In−1 for some
n ∈ℕ, then In is a FP ofΩ. We assume that In ≠In−1 for
all n ∈ℕ. For all ℘>0 and n ∈ℕ, we get from (12),

1
Y In,In+1,℘ð Þ − 1 = 1

Y ΩIn−1,ΩIn,℘ð Þ − 1 ≤ θ
1

Y In−1,In,℘ð Þ − 1
� 	

,

M In,In+1,℘ð Þ =M ΩIn−1,ΩIn,℘ð Þ ≤ θM In−1,In,℘ð Þ,
Ɒ In,In+1,℘ð Þ =Ɒ ΩIn−1,ΩIn,℘ð Þ ≤ θⱰ In−1,In,℘ð Þ:

ð83Þ

We have ∀℘ > 0

1
Y In,In+1,℘ð Þ ≤

θ

Y In−1,In,℘ð Þ + 1 − θð Þ, ð84Þ

Implying that

θ

Y ΩIn−2,ΩIn−1,℘ð Þ + 1 − θð Þ ≤ θ2

Y In−2,In−1,℘ð Þ + θ 1 − θð Þ + 1 − θð Þ:

ð85Þ

Continuing in this way, we get

1
Y In,In+1,℘ð Þ ≤

θn

Y I0,I1,℘ð Þ + θn−1 1 − θð Þ + θn−2 1 − θð Þ

+⋯+θ 1 − θð Þ + 1 − θð Þ ≤ θn

Y I0,I1,℘ð Þ
+ θn−1 + θn−2+⋯+1
� �

1 − θð Þ ≤ θn

Y I0,I1,℘ð Þ + 1 − θnð Þ:

ð86Þ

We have

1
θn/Y I0,I1,℘ð Þð Þ + 1 − θnð Þ ≤ Y In,In+1,℘ð Þ,∀℘ > 0, n ∈ℕ,

ð87Þ

M In,In+1,℘ð Þ =M ΩIn−1,ΩIn,℘ð Þ ≤ θM In−1,In,℘ð Þ
= θM ΩIn−2,ΩIn−1,℘ð Þ ≤ θ2M In−2,In−1,℘ð Þ
≤⋯≤ θnM I0,I1,℘ð Þ:∀℘ > 0, n ∈ℕ,

ð88Þ

Ɒ In,In+1,℘ð Þ =Ɒ ψIn−1, ψIn,℘ð Þ ≤ θⱰ In−1,In,℘ð Þ
= θⱰ ψIn−2, ψIn−1,℘ð Þ ≤ θ2Ɒ βn−2,In−1,℘ð Þ
≤⋯≤ θnⱰ I0,I1,℘ð Þ:∀℘ > 0, n ∈ℕ:

ð89Þ

Now, for m ≥ 1 and n ∈ℕ, we have

Y In,In+m,℘ð Þ ≥ Y In,In+1,
℘
2

� �
∗ Y In+1,In+m,

℘
2

� �
≥ Y In,In+1,

℘
2

� �
∗ Y In+1,In+2,

℘
22

� �
∗ Y In+2,In+m,

℘
22

� �
:

ð90Þ

Again, continuing in this way, we get

Y In,In+m,℘ð Þ ≥ Y In,In+1,
℘
2

� �
∗ Y In+1,In+2,

℘
22

� �
∗⋯∗Y In+m−1,In+m,

℘
2m−1

� �
,

M In,In+p,℘
� �

≤M In,In+1,
℘
2

� �
ΔM In+1,In+p,

℘
2

� �
≤M In,In+1,

℘
2

� �
ΔM In+1,In+2,

℘
22

� �
ΔM In+2,In+p,

℘
22

� �
:

ð91Þ
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Continuing in this way, we get

Continuing in this way, we get

By using (87) in the above inequality, we have

using (88),

S In,In+p,℘
� �

≤ S In,In+1,
℘
2

� �
Δ S In+1,In+2,

℘
22

� �
Δ⋯ Δ S In+p−1,In+p,

℘
2p−1

� �
,

ð95Þ

and using (89)

Ɒ In,In+p,℘
� �

≤Ɒ In,In+1,
℘
2

� �
ΔⱰ In+1,In+2,

℘
22

� �
Δ⋯ ΔⱰ In+p−1,In+p,

℘
2p−1

� �
,

ð96Þ

θ ∈ ð0, 1Þ we deduce from the above expression that
lim

n⟶∞
YðIn,In+m,℘Þ = 1, lim

n⟶∞
MðIn,In+m,℘Þ = 0, and

lim
n⟶∞

ⱰðIn,In+m,℘Þ = 0 for all ℘>0,m ≥ 1:
Therefore, fIng is a O-CS in ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ: By

the completeness of ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ, we know that Ω
is an OC and there exists υ ∈Ⱳ such that

lim
n⟶∞

Y In+1, υ,℘ð Þ = lim
n⟶∞

Y ΩIn,Ωυ,℘ð Þ = 1,∀℘ > 0, ð97Þ

lim
n⟶∞

M In+1, υ,℘ð Þ = lim
n⟶∞

M ΩIn,Ωυ,℘ð Þ = 0∀℘ > 0,

ð98Þ

lim
n⟶∞

Ɒ In+1, υ,℘ð Þ = lim
n⟶∞

Ɒ ΩIn,Ωυ,℘ð Þ = 0∀℘ > 0:

ð99Þ

Now, we prove that υ is a FP of Ω. For this, we obtain
from (78) that

1
Y ΩIn,Ωυ,℘ð Þ − 1 ≤ θ

1
Y In, υ,℘ð Þ − 1

� 	
= θ

Y In, υ,℘ð Þ − θ:

ð100Þ

That is,

1
θ/Y In, υ,℘ð Þð Þ + 1 − θ

≤ Y ΩIn,Ωυ,℘ð Þ: ð101Þ

Using the above inequality, we obtain

M In,In+p,℘
� �

≤M In,In+1,
℘
2

� �
ΔM In+1,In+2,

℘
22

� �
Δ⋯ ΔM In+p−1,In+p,

℘
2p−1

� �
,

Ɒ In,In+p,℘
� �

≤Ɒ In,In+1,
℘
2

� �
ΔⱰ In+1,In+p,

℘
2

� �
≤Ɒ In,In+1,

℘
2

� �
ΔⱰ In+1,In+2,

℘
22

� �
ΔⱰ In+2,In+p,

℘
22

� �
:

ð92Þ

Ɒ In,In+p,℘
� �

≤Ɒ In,In+1,
℘
2

� �
ΔⱰ In+1,In+2,

℘
22

� �
Δ⋯ ΔⱰ In+p−1,In+p,

℘
2p−1

� �
: ð93Þ

Y In,In+m,℘ð Þ ≥ 1
θn/Y I0,I1, ℘/2ð Þð Þð Þ + 1 − θnð Þ ∗

1
θn+1/Y I0,I1, ℘/22

� �� �� �
+ 1 − θn+1
� �∗⋯∗

� 1
θn+m−1/Y I0,I1, ℘/2m−1� �� �� �

+ 1 − θn+m−1� � , ≥ 1
θn/Y I0,I1, ℘/2ð Þð Þð Þ + 1

∗
1

θn+1/Y I0,I1, ℘/22
� �� �� �

+ 1
∗⋯∗

1
θn+m−1/Y I0,I1, ℘/2m−1� �� �� �

+ 1
,

ð94Þ
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Taking limit as n⟶∞ and using (97), (98), and (99) in
the above expression, we get that Yðυ,Ωυ,℘Þ = 1, Mðυ,Ωυ,
℘Þ = 0, and Ɒðυ,Ωυ,℘Þ = 0, that is, Ωυ = υ: Therefore, υ is a
FP of Ω, Yðυ, υ,℘Þ = 1, Mðυ, υ,℘Þ = 0, and Ɒðυ, υ,℘Þ = 0 for
all ℘>0:

Corollary 22. Let ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ be a O-complete
PFMS and Ω : Ⱳ ⟶Ⱳ satisfy

1
Y ΩnI,Ωnℏ,℘ð Þ − 1 ≤ θ

1
Y I, ℏ,℘ð Þ − 1

� 	
,

M ΩnI,Ωnℏ,℘ð Þ ≤ θM I, ℏ,℘ð Þ,
Ɒ ΩnI,Ωnℏ,℘ð Þ ≤ θⱰ I, ℏ,℘ð Þ,

ð103Þ

for all n ∈ℕ,I, ℏ ∈Ⱳ , ℘>0, where 0 < θ < 1. Then, Ω has a
FP.

Proof. υ ∈Ⱳ is the unique FP of Ωn by using Theorem 21,
and Yðυ, υ,℘Þ = 1,Mðυ, υ,℘Þ = 0,Ɒðυ, υ,℘Þ = 0, ∀℘>0:Ωυ is
also a FP of Ωn as ΩnðΩυÞ =Ωυ. From Theorem 21, Ωυ =
υ, υ is a FP since the FP of Ω is also a FP of Ωn:

Example 6. Let Ⱳ = ½−1, 2� and define a binary relation ˫ by

I˫ℏ⟺I + ℏ ≥ 0: ð104Þ

Define Y ,M,Ɒ by

Y I, ℏ,℘ð Þ =
1 if I = ℏ,

℘
℘+ max I, ℏf g if otherwise,

8<
:

M I, ℏ,℘ð Þ =
0 if I = ℏ,

1− ℘
℘+ max I, ℏf g if otherwise,

8<
:

Ɒ I, ℏ,℘ð Þ =
0 if I = ℏ,
max I, ℏf g
℘ if otherwise:

8<
:

ð105Þ

With CTN a ∗ b = a:b and CTCN aΔb =max fa, bg then
ðⱲ , Y ,M,Ɒ,∗,Δ, ˫Þ is an O-complete PFMS. Also observe
that lim

℘⟶∞
YðI, ℏ,℘Þ = 1, lim

℘⟶∞
SðI, ℏ,℘Þ = 0,

and lim
℘⟶∞

ⱰðI, ℏ,℘Þ = 0, ∀ I, ℏ ∈Ⱳ:

Define Ω : Ⱳ ⟶Ⱳ by

ΩI =
2 −I, I ∈ −1, 1½ Þ
1, I ∈ 1, 2½ �

(
: ð106Þ

Therefore, it will satisfy the following cases:

(1) If I, ℏ ∈ ½−1, 1Þ, then ΩI = 2 −I and Ωℏ = 2 − ℏ

(2) If I, ℏ ∈ ½1, 2�, then ΩI =Ωℏ = 1
(3) If I ∈ ½−1, 1Þ and ℏ ∈ ½1, 2�, then ΩI = 2 −I and Ω

ℏ = 1
(4) If I ∈ ½1, 2� and ℏ ∈ ½−1, 1Þ, then ΩI = 1 and Ωℏ =

2 − ℏ

Because I˫ℏ⟺I + ℏ ≥ 0, it is clearly implying
thatΩI +Ωℏ ≥ 0. Hence, Ω is OPR. Let fIng be an arbi-
trary OS in Ⱳ that fIng converges toI ∈Ⱳ .

lim
n⟶∞

Y In,I,℘ð Þ = 1,

lim
n⟶∞

M In,I,℘ð Þ = 0,

lim
n⟶∞

Ɒ In,I,℘ð Þ = 0,

ð107Þ

as fIng converges to I. We can easily see that if lim
n⟶∞

Yð
In,I,℘Þ = 1, lim

n⟶∞
MðIn,I,℘Þ = 0, and lim

n⟶∞
ⱰðIn,I,℘Þ

= 0, then clearly lim
n⟶∞

YðΩIn,ΩI,℘Þ = 1, lim
n⟶∞

MðΩIn,
ΩI,℘Þ = 0, and lim

n⟶∞
ⱰðΩIn,ΩI,℘Þ = 0 for allI ∈Ⱳ and

℘>0: Hence, Ω is OC. Also above all cases satisfied PFS ˫
-contractive mapping

1
Y ΩI,Ωℏ,℘ð Þ − 1 ≤ θ

1
Y I, ℏ,℘ð Þ − 1

� 	
,

M ΩI,Ωℏ,℘ð Þ ≤ θM I, ℏ,℘ð Þ,
Ɒ ΩI,Ωℏ,℘ð Þ ≤ θⱰ I, ℏ,℘ð Þ:

ð108Þ

All conditions of Theorem 21 are satisfied and 1 is a FP
of Ω.

3. Conclusions

A picture fuzzy set is more proficient and more capable than
an intuitionistic fuzzy set and fuzzy to cope with uncertain

Y υ,Ωυ,℘ð Þ ≥ Y υ,In+1,
℘
2

� �
∗ Y In+1,Ωυ, ℘2

� �
= Y υ,In+1,

℘
2

� �
∗ Y ΩIn,Ωυ,℘ð Þ ≥ Y υ,In+1,

℘
2

� �
∗

1
θ/Y In, υ, ℘/2ð Þð Þð Þ + 1 − θ

,

M w, v,℘ð Þ =M Ωw,Ωv,℘ð Þ ≤ θM w, v,℘ð Þ <M w, v,℘ð Þ, =M w,In+1,
℘
2

� �
ΔM ΩIn,Ωw,℘ð Þ ≤M w,In+1,

℘
2

� �
Δ θM In,w,

℘
2

� �
,

Ɒ w, v,℘ð Þ =Ɒ Ωw,Ωv,℘ð Þ ≤ θⱰ w, v,℘ð Þ <Ɒ w, v,℘ð Þ, =Ɒ w,In+1,
℘
2

� �
ΔⱰ ΩIn,Ωw, ℘2

� �
≤Ɒ w,In+1,

℘
2

� �
Δ θⱰ In,w,

℘
2

� �
:

ð102Þ
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and unpredictable information in realistic issues. Herein, we
have introduced the notion of orthogonal picture fuzzy met-
ric space and investigated some new type of fixed point the-
orems in this new setting. Moreover, we have provided non-
trivial examples to demonstrate the viability of the proposed
results. Since our structure is more general than the class of
picture fuzzy metric spaces, our results and notions expand
and generalize several previous results. This work can be eas-
ily extended in the structure of orthogonal picture fuzzy
cone metric spaces, and orthogonal picture fuzzy bipolar
metric spaces.
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In this paper, we consider the class of enriched nonexpansive mappings in the setting of geodesic spaces. We obtain a number of
fixed point theorems for these mappings in geodesic spaces. Further, we employ the SP iterative method and present some new
convergence theorems for the class of enriched nonexpansive mappings under different assumptions. We present some results
concerning Δ and strong convergence.

1. Introduction

Nonexpansive mappings are those class of nonlinear
mappings which have Lipschitz constant equal to one.
A nonexpansive mapping needs not to admit a fixed
point in a complete space. However, Browder [1], Göhde
[2], and Kirk [3] independently ensured the existence of
fixed points of nonexpansive mappings in Banach spaces
under certain geometric assumptions. Many mathemati-
cians have generalized and extended these results and con-
sidered a number of nonlinear mappings, see [4–9] (see
also the references therein).

In 2019, Berinde [10] considered a new class of nonlin-
ear mappings by enriching nonexpansive mappings, known
as enriched nonexpansive mappings. He obtained some
fixed point theorems for these classes of mappings in Hilbert
spaces. It was observed in [10, 11] that class of enriched non-
expansive mappings has strong relations with averaged and
nonexpansive mappings.

On the other hand, in 1970, Takahashi [12] considered
the structure of convexity outside linear spaces. These spaces
are fruitful in the context of fixed point theory. Goebel and
Kirk [13] employed Krasnosel’skiĭ-Mann iterative method
to find fixed points of nonexpansive mappings in hyperbolic

type spaces. In the recent years, a number of papers have
appeared in the literature dealing with the fixed point theo-
rems in nonlinear spaces, see [14–24].

The class of enriched nonexpansive mappings has
been studied only in linear spaces. Now it is natural to
extend this class of mappings outside of linear spaces
(or in nonlinear spaces) and ensure the existence of fixed
points. The aim of this paper is to study the class of
enriched nonexpansive mappings in geodesic spaces. We
observe that for every b-enriched nonexpansive mapping,
one can define a nonexpansive mapping, and the set of
fixed points of both the mappings remains the same.
Therefore, the existence of fixed points for b-enriched
nonexpansive mappings is equivalent to existence of fixed
points for nonexpansive mappings. However, the conver-
gence of fixed points for b-enriched nonexpansive
mappings is slightly different than the convergence of
fixed points for nonexpansive mappings. We prove that
Krasnosel’skiĭ method converges to fixed point of map-
ping. Further, we use SP iterative method to reckon fixed
points of b-enriched nonexpansive mappings under cer-
tain assumptions. These results are new even in Hilbert
spaces. Our results extend, complement, and generalize
some results from [10, 11, 16, 19, 25–27].
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2. Preliminaries

Let ðΓ, ρÞ be a metric space and ½0, c� ⊂ℝ. A mapping g :
½0, c�⟶ Γ is called as geodesic path from ζ to ξ if

g 0ð Þ = ζ, g cð Þ = ξ,

ρ g sð Þ, g s′
� �� �

= s − s′
�� ��, ð1Þ

for all s, s′ ∈ ½0, c�: The image gð½0, c�Þ of g forms a geode-
sic joining ζ and ξ. It is noted that the geodesic segment
joining ζ and ξ is not unique, in general. For more details
of geodesic spaces, see [14, 21].

Definition 1 (see [28]). A triplet ðΓ, ρ,ΩÞ is called as a hyper-
bolic metric space if ðΓ, ρÞ is a metric space, and function
Ω : Γ × Γ × ½0, 1�⟶ Γ satisfies the following assumptions
for all ζ, ξ, υ,w ∈ Γ and μ, θ ∈ ½0, 1�

(W1) ρðυ,Ωðζ, ξ, μÞÞ ≤ ð1 − μÞρðυ, ζÞ + μρðυ, ξÞ
(W2) ρðΩðζ, ξ, μÞ,Ωðζ, ξ, θÞÞ = jμ − θjρðζ, ξÞ
(W3) Ωðζ, ξ, μÞ =Ωðξ, ζ, 1 − μÞ
(W4) ρðΩðζ, υ, μÞ,Ωðξ,w, μÞÞ ≤ ð1 − μÞρðζ, ξÞ + μρðυ,wÞ

Remark 2. If Ωðζ, ξ, μÞ = ð1 − μÞζ + μξ for all ζ, ξ ∈ Γ, μ ∈
½0, 1�, then it can be seen that all normed linear spaces
are hyperbolic metric space.

Remark 3. If conditions (W1)–(W3) are satisfied, then ðΓ,
ρ,ΩÞ is hyperbolic type space considered by Goebel and
Kirk [13]. Reich and Shafrir [22] also obtained some impor-
tant results in hyperbolic metric spaces.

We shall write

Ω ζ, ξ, μð Þ≔ 1 − μð Þζ ⊕ μξ, ð2Þ

to denote a point Ωðζ, ξ, μÞ of ðΓ, ρ,ΩÞ space. For ζ, ξ ∈ Γ,

ζ, ξ½ � = 1 − μð Þζ ⊕ μξ : μ ∈ 0, 1½ �f g, ð3Þ

indicates geodesic segments. A subset Z of hyperbolic met-
ric space (or hyperbolic space) ðΓ, ρ,ΩÞ is called convex if
½ζ, ξ� ⊂Z whenever ζ, ξ ∈Z:

Remark 4. Leustean [20] proved that the class of CATð0Þ
spaces is the class of complete uniformly convex hyperbolic
spaces (in short, complete UCΩ-hyperbolic space), see the
definition of UCΩ-hyperbolic space in [19].

If ðΓ, ρ,ΩÞ is a Busemann space, then there is a unique
convexity mapping Ω in such a way that ðΓ, ρ,ΩÞ is
Ω-hyperbolic space with unique geodesics. In other words,
for all ζ ≠ ξ ∈ Γ and any μ ∈ ½0, 1�, there is an element υ ∈ Γ
which is unique (say υ =Ωðζ, ξ, μÞ) in such a way

ρ ζ, υð Þ = μρ ζ, ξð Þ and ρ ξ, υð Þ = 1 − μð Þρ ζ, ξð Þ: ð4Þ

Let ζ, ξ, υ be three points in metric space ðΓ, ρÞ; the point
ξ is said to lie between ζ and υ if

ρ ζ, υð Þ = ρ ζ, ξð Þ + ρ ξ, υð Þ, ð5Þ

and these points are distinct pairwise. Thus, if ξ lies between
ζ and υ, then ξ lies between υ and ζ:

Lemma 5 (see [14]). Let Γ be a uniquely geodesic space. Let
ζ, ξ, υ ∈ Γ be pairwise distinct points. A point ξ lies between
ζ and υ if and only if ξ ∈ ½ζ, υ�:

Proposition 6 (see [14]). Let Γ be a metric space and ζ,
ξ, υ,w ∈ Γ be pairwise distinct points. The following are
equivalent:

(a) ξ lies between ζ and υ, and υ lies between ζ and w

(b) ξ lies between ζ and w, and υ lies between ξ and w

Let fζng be a bounded sequence in a hyperbolic space
ðΓ, ρ,ΩÞ and Z ⊆ Γ with Z ≠∅: A functional rð:,fζngÞ:
Γ⟶ ½0,∞Þ can be defined as follows:

r ξ, ζnf gð Þ = limsup
n⟶∞

ρ ξ, ζnð Þ: ð6Þ

The asymptotic radius of fζng with respect to (in short,
wrt) Z is defined as

r Z , ζnf gð Þ = inf r ξ, ζnf gð Þ ξ ∈Zjf g: ð7Þ

A point ζ in Z is called an asymptotic center of fζng
wrt Z if

r ζ, ζnf gð Þ = r Z , ζnf gð Þ: ð8Þ

AðZ , fζngÞ is denoted as set of all asymptotic centers
of fζng wrt Z: A bounded sequence fζng in a hyperbolic
space ðΓ, ρ,ΩÞ is said to Δ-converge to ζ if ζ is the unique
asymptotic center for every subsequence fung of fζng. A
sequence fζng ⊆ Γ is called Fejér monotone wrt Z if for
all ζ† ∈Z

ρ ζ†, ζn+1
� �

≤ ρ ζ†, ζn
� �

, ð9Þ

for all n ≥ 0:

Definition 7 (see [29]). A mapping Ϝ : Z ⟶Z is called
quasi-nonexpansive if

ρ Ϝ ζð Þ, ζ†
� �

≤ ρ ζ, ζ†
� �

∀ζ ∈Z ,

ζ† ∈ Fix Ϝð Þ ≠∅,
ð10Þ

where FixðϜ Þ = fζ† ∈ZjϜ ðζ†Þ = ζ†g:
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Definition 8 (see [30]). The mapping Ϝ : Z ⟶Z with Fix
ðϜ Þ ≠∅ is said to have Condition (I) if the following
assumptions are satisfied:

(a) ∃ a function f : ½0,∞Þ⟶ ½0,∞Þ which is
nondecreasing

(b) For r ∈ ð0,∞Þ, f ðrÞ > 0 and f ð0Þ = 0

(c) For all ζ ∈Z , ρðζ, Ϝ ðζÞÞ ≥ f ðρðζ, FixðϜ ÞÞÞ
where ρðζ, FixðϜ ÞÞ = inf fρðζ, ξÞ: ξ ∈ FixðϜ Þg:

Definition 9. Let ðΓ, ρÞ be a metric space and Z ⊆ Γ with
Z ≠∅: A mapping Ϝ : Z ⟶Z is called as compact if
Ϝ ðZÞ has a compact closure.

Proposition 10 (see [20]). Let ðΓ, ρ,ΩÞ be a complete
UCΩ-hyperbolic space, Z ⊆ Γ with Z ≠∅. Suppose that
Z is convex and closed, and fζng is bounded sequence in
Γ: Then, fζng has a unique asymptotic center with respect
to Z:

Lemma 11 (see [17]). Let ðΓ, ρ,ΩÞ be same as in Proposition
10. Let w ∈ Γ and fωng be a sequence with fωng ⊆ ½a, b� ⊆
ð0, 1Þ: For some r ≥ 0, if fζng and fξng are sequences in Γ
with limsup

n⟶∞
ρðζn,wÞ ≤ r, limsup

n⟶∞
ρðξn,wÞ ≤ r, and lim

n⟶∞
ρðωn

ξn ⊕ ð1 − ωnÞζn,wÞ = r: Then, lim
n⟶∞

ρðξn, ζnÞ = 0:

Lemma 12. Let ðΓ, ρ,ΩÞ and Z be same as in Proposition
10. Let Ϝ : Z ⟶Z be a mapping. For λ ∈ ð0, 1Þ, consider
Ψ : Z ⟶Z as follows:

Ψ ζð Þ = 1 − λð Þζ ⊕ λϜ ζð Þ, ð11Þ

for all ζ ∈Z: Then, FixðΨÞ = FixðϜ Þ:

Lemma 13 (see [20]). Let fζng be a bounded sequence in Γ
and AðZ , fζngÞ = fυg. Let fκng and fνng be two
sequences in ℝ with for all n ∈ℕ,κn ∈ ½0,∞Þ, limsupκn ≤ 1
and limsupνn ≤ 0. Suppose that ξ ∈Z and there exists m,
q ∈ℕ such that

ρ ξ, ζn+mð Þ ≤ κnρ υ, ζnð Þ + νn∀n ≥ q: ð12Þ

Then, ξ = υ.

Lemma 14 (see [14]). Let ðΓ, ρ,ΩÞ be a metric space, Z ⊆ Γ
such that Z ≠∅. If fζng is Fejér monotone wrt Z , AðZ ,
fζngÞ = fζg and AðΓ, fungÞ ⊆Z for every subsequence fung
of fζng: Then, the sequence fζngΔ-converges to ζ ∈Z:

Lemma 15 (see [16]). Let ðΓ, ρ,ΩÞ be a complete UCΩ-
hyperbolic space and Z ⊆ Γ such that Z ≠∅ and Z is closed

convex. Let fζng be a bounded sequence in Γ and τ : Z ⟶
½0,∞Þ a function defined as follows:

τ ζð Þ = limsup
n⟶∞

ρ ζn, ζð Þ, ð13Þ

for any ζ ∈Z . τ is called as type function, and it is unique.
Then, there is a minimum point (unique) w ∈Z and

τðwÞ = inf fτðζÞ: ζ ∈Zg:

Proposition 16 (see [13]). Let ðΓ, ρ,ΩÞ andZ be same as in
Lemma 15 with Z is bounded. Let Ϝ : Z ⟶Z be a nonex-
pansive mapping. Let ζ0 ∈Z and ϑ ∈ ð0, 1Þ. Define a sequence
fζng in Z by Krasnosel’skiĭ iterative method [31].

ζn+1 = 1 − ϑð Þζn ⊕ ϑϜ ζnð Þ, n ∈ℕ ∪ 0f g: ð14Þ

Then, lim
n⟶∞

ρðζn, Ϝ ðζnÞÞ = 0:

The proof of the following theorem is motivated
from [16].

Theorem 17. Let ðΓ, ρ,ΩÞ, Z , and Ϝ be same as in Proposi-
tion 16. Then, FixðϜ Þ ≠∅:

Proof. For a given ζ0 ∈Z and for any ω ∈ ð0, 1Þ, a sequence
can be defined:

ζn+1 = 1 − ωð Þζn ⊕ ωΨ ζnð Þ: ð15Þ

From Proposition 16, it implies that

lim
n⟶∞

ρ ζn,Ψ ζnð Þð Þ = 0: ð16Þ

From Lemma 15, there is a minimum point (unique)
υ† ∈Z in such a way that

τ υ†
� �

= inf τ ωð Þ: ω ∈Zf g: ð17Þ

From the definition of mapping Ψ,

τ Ψ υ†
� �� �

= limsup
n⟶∞

ρ ζn,Ψ υ†
� �� �

≤ limsup
n⟶∞

ρ ζn,Ψ ζnð Þð Þ + limsup
n⟶∞

ρ Ψ ζnð Þ,Ψ υ†
� �� �

≤ limsup
n⟶∞

ρ ζn, υ†
� �

:

ð18Þ

Then, Ψðυ†Þ = υ†:

3. Main Results

In 2019, Berinde [10] considered a new class of mappings
which is defined below.
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Definition 18. Let ðΓ, k:kÞ be a Banach space and Ϝ : Γ
⟶ Γ a mapping. The mapping Ϝ is called b-enriched non-
expansive if ∃b ∈ ½0,∞Þ in such a way that

b ζ − ξð Þ + Ϝ ζð Þ − Ϝ ξð Þk k ≤ b + 1ð Þ ζ − ξk k, ð19Þ

for all ζ, ξ ∈ Γ:

It can be noted that 0-enriched mapping is nonexpansive
mapping. Even both the class of mappings, that is, quasi-
nonexpansive and b-enriched nonexpansive, are indepen-
dent in nature, cf. [27].

Remark 19. Take b ≠ 0, and it is straight forward from (19)
that

b
b + 1

ζ − ξð Þ + 1
b + 1

Ϝ ζð Þ − Ϝ ξð Þð Þ
����

����
≤ ζ − ξk k⇔ 1 −

1
b + 1

� 	
ζ − ξð Þ + 1

b + 1
Ϝ ζð Þ − Ϝ ξð Þð Þ

����
����

≤ ζ − ξk k⇔ 1 −
1

b + 1

� 	
ζ +

1
b + 1

Ϝ ζð Þ
����

− 1 −
1

b + 1

� 	
ξ +

1
b + 1

Ϝ ξð Þ

 �����

≤ ζ − ξk k:
ð20Þ

Take, λb = 1/ðb + 1Þ ∈ ð0, 1Þ then

1 − λbð Þζ + λbϜ ζð Þ − 1 − λbð Þξ + λbϜ ξð Þf gk k ≤ ζ − ξk k:
ð21Þ

From the above inequality, we can take convex combina-
tion of Ϝ and the identity mappings.

In view of Remark 19, we consider Definition 18 in
Ω-hyperbolic spaces.

Definition 20. Let ðΓ, ρ,ΩÞ be a Ω-hyperbolic space, Z a
subset of Γ such that Z ≠∅, and Ϝ : Z ⟶Z a mapping.
The mapping Ϝ is called b-enriched nonexpansive if
∃b ∈ ½0,∞Þ in such a way that

ρ 1 − λbð Þζ ⊕ λbϜ ζð Þ, 1 − λbð Þξ ⊕ λbϜ ξð Þð Þ ≤ ρ ζ, ξð Þ, ð22Þ

for all ζ, ξ ∈Z , where λb = 1/ðb + 1Þ:

We prove the following important lemma which will be
utilized throughout this paper.

Lemma 21. Let ðΓ, ρ,ΩÞ be a uniquely geodesic space. For
some λ, ω ∈ ð0, 1Þ, let ζ, ξ, υ ∈ Γ be pairwise distinct points
with ξ = ð1 − λÞζ ⊕ λυ and υ = ð1 − ωÞζ ⊕ ωw: Then

ξ = 1 − ϑð Þζ ⊕ ϑw, ð23Þ

where ϑ = ωλ:

Proof. From Lemma 5, ξ lies between ζ and υ. And υ lies
between ζ and w. From Proposition 6, ξ lies between ζ and
w. Thus, ξ ∈ ½ζ,w� and

ξ = 1 − ϑð Þζ ⊕ ϑw, ð24Þ

for some ϑ ∈ ð0, 1Þ: Since Γ is uniquely geodesic space, we
have

ρ ζ, ξð Þ = ϑρ ζ,wð Þ, ð25Þ

ρ ξ,wð Þ = 1 − ϑð Þρ ζ,wð Þ: ð26Þ
Since ξ = ð1 − λÞζ ⊕ λυ, we have

ρ ζ, ξð Þ = λρ ζ, υð Þ: ð27Þ

Again, since υ = ð1 − ωÞζ ⊕ ωw, we have

ρ ζ, υð Þ = ωρ ζ,wð Þ: ð28Þ

From (25), (27), and (28), one can conclude

ρ ζ, ξð Þ = λρ ζ, υð Þ = ωλρ ζ,wð Þ = ωλ

ϑ
ρ ζ, ξð Þ: ð29Þ

Therefore, ωλ/ϑ = 1, and ϑ = ωλ:

Theorem 22. Let ðΓ, ρ,ΩÞ be a complete UCΩ-hyperbolic
space and Z ⊆ Γ such that Z ≠∅: Assume that Z is closed,
bounded, and convex. Let Ϝ : Z ⟶Z be a b-enriched non-
expansive mapping. Then, FixðϜ Þ ≠∅: Moreover, for given
ζ0 ∈Z , any ω ∈ ð0, 1Þ, there exists ωb = ω/ðb + 1Þ such that
the sequence fζng generated by (Krasnosel’skiĭ method)

ζn+1 = 1 − ωbð Þζn + ωbϜ ζnð Þ for all n ∈ℕ ∪ 0f g: ð30Þ

Δ-converges to an element of FixðϜ Þ:

Proof. By the definition of mapping Ϝ , we get

ρ 1 − λbð Þζ ⊕ λbϜ ζð Þ, 1 − λbð Þξ ⊕ λbϜ ξð Þð Þ ≤ ρ ζ, ξð Þ, ð31Þ

for all ζ, ξ ∈Z and λb = 1/ðb + 1Þ: Set the mapping Ψ as
follows:

Ψ ζð Þ = 1 −
1

b + 1

� 	
ζ ⊕

1
b + 1

Ϝ ζð Þ for all ζ ∈Z: ð32Þ

Thus, from (31), we get, for all ζ, ξ ∈Z ,

ρ Ψ ζð Þ,Ψ ξð Þð Þ ≤ ρ ζ, ξð Þ, ð33Þ

and Ψ is a nonexpansive mapping. For any ω ∈ ð0, 1Þ and a
given ζ0 ∈Z , we can define a sequence

ζn+1 = 1 − ωð Þζn ⊕ ωΨ ζnð Þ: ð34Þ
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From Proposition 16, it follows that

lim
n⟶∞

ρ ζn,Ψ ζnð Þð Þ = 0: ð35Þ

From Theorem 17, FixðΨÞ ≠∅; thus, from Lemma 12,
FixðΨÞ = FixðϜ Þ ≠∅: Further, for any υ† ∈ FixðΨÞ,

ρ Ψ ζnð Þ, υ†� �
≤ ρ ζn, υ†

� �
for all n ≥ 0: ð36Þ

Thus, from (W1)

ρ ζn+1, υ†
� �

= ρ 1 − ωð Þζn ⊕ ωΨ ζnð Þ, υ†� �
≤ 1 − ωð Þρ ζn, υ†

� �
+ ωρ Ψ ζnð Þ, υ†� �

≤ ρ ζn, υ†
� �

:

ð37Þ

Hence, the sequence fρðζn, υ†Þg is monotone nonin-
creasing. It implies that fζng is Fejér monotone sequence
wrt FixðϜ Þ. In view of Proposition 10, the sequence fζng
has unique asymptotic center w† wrt FixðϜ Þ. Suppose fung
is a subsequence of fζng and u† is unique asymptotic center
of fung wrt FixðϜ Þ. Now,

ρ un,Ψ u†
� �� �

≤ ρ Ψ unð Þ,Ψ u†
� �� �

+ ρ Ψ unð Þ, unð Þ
≤ ρ un, u†

� �
+ ρ Ψ unð Þ, unð Þ:

ð38Þ

From (35) and Lemma 13, it follows that Ψðu†Þ = u†:
From Lemma 14, the sequence fζngΔ-converges to an
element of FixðϜ Þ: From Lemma 21 with υ =ΨðζÞ and w =
Ϝ ðζÞ, we have

1 − ωð Þζ ⊕ ωΨ ζð Þ = 1 − ωλbð Þζ ⊕ ωλbϜ ζð Þ, ð39Þ

for all ζ ∈Z since ω ∈ ð0, 1Þ and λb = 1/ðb + 1Þ: It follows that
ωλb ∈ ð0, 1/ðb + 1ÞÞ: Thus, for any ωb = ωλb ∈ ð0, 1/ðb + 1ÞÞ,
the sequence fζng defined by (30) Δ-converges to a point in
FixðϜ Þ:

Remark 23. It can be seen that Theorem 22 generalizes the
results in [10] (Theorem 3.3) from Hilbert spaces to hyper-
bolic spaces.

Theorem 24. Let ðΓ, ρ,ΩÞ and Ϝ be same as in Theorem 22.
SupposeZ ⊆ Γ such thatZ ≠∅, andZ is closed and convex.
Assume Ϝ satisfies Condition (I) with FixðϜ Þ ≠∅: For fixed
ζ0 ∈Z and any ω ∈ ð0, 1Þ, there exists ωb = ω/ðb + 1Þ such
that the sequence fζng generated by (Krasnosel’skiĭ method)

ζn+1 = 1 − ωbð Þζn + ωbϜ ζnð Þ∀n ∈ℕ ∪ 0f g, ð40Þ

strongly converges to an element of FixðϜ Þ:

Proof. By the similar technique in proof of Theorem 22, one
can set a mapping Ψ as in (32), and Ψ is nonexpansive. Let
ω ∈ ð0, 1Þ and define

ζn+1 = 1 − ωð Þζn ⊕ ωΨ ζnð Þ: ð41Þ

For all υ† ∈ FixðΨÞ

ρ Ψ ζnð Þ, υ†� �
≤ ρ ζn, υ†

� �
for all n ≥ 1: ð42Þ

From (41), we have

ρ ζn+1, υ†
� �

≤ ρ ζn, υ†
� �

: ð43Þ

Thus, fρðζn, υ†Þg and fρðζn, FixðΨÞÞg are monotone
nonincreasing sequences and lim

n⟶∞
ρðζn, υ†Þ and lim

n⟶∞
ρðζn,

FixðΨÞÞ exist. Let

lim
n⟶∞

ρ ζn, υ†
� �

= r: ð44Þ

From (42)

lim
n⟶∞

ρ Ψ ζnð Þ, υ†� �
≤ r: ð45Þ

By (44), we have

r = lim
n⟶∞

ρ ζn+1, υ†
� �

= lim
n⟶∞

ρ 1 − ωð Þζn ⊕ ωΨ ζnð Þ, υ†� �
:

ð46Þ

In view of (44), (45), (46), and Lemma 11, it implies:

lim
n⟶∞

ρ ζn,Ψ ζnð Þð Þ = 0: ð47Þ

Since

Ψ ζð Þ = 1 −
1

b + 1

� 	
ζ ⊕

1
b + 1

Ϝ ζð Þ, ð48Þ

we have

ρ ζ,Ψ ζð Þð Þ = 1
b + 1

ρ ζ, Ϝ ζð Þð Þ for all ζ ∈Z: ð49Þ

Since Ϝ satisfies Condition (I) and (49), we obtain

b + 1ð Þρ ζn,Ψ ζnð Þð Þ = ρ ζn, Ϝ ζnð Þð Þ ≥ f ρ ζn, Fix Ϝð Þð Þð Þ
= f ρ ζn, Fix Ψð Þð Þð Þ:

ð50Þ

By (47), lim
n⟶∞

f ðρðζn, FixðΨÞÞÞ = 0 and

lim
n⟶∞

ρ ζn, Fix Ψð Þð Þ = 0: ð51Þ

One can easily show that fζng is a Cauchy sequence. For
the sake of completeness, we prove this claim. From (51), for
given ε > 0, ∃ a n0 ∈ℕ in such a way that

ρ ζn, Fix Ψð Þð Þ < ε

4
, ð52Þ
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for all n ≥ n0: Hence,

inf ρ ζn0 , υ
†� �
: υ† ∈ Fix Ψð Þ� 

<
ε

4
, ð53Þ

so there is υ† ∈ FixðΨÞ in such a way

ρ ζn0 , υ
†� �

<
ε

2
: ð54Þ

Therefore, for all m, n ≥ n0,

ρ ζn+m, ζnð Þ ≤ ρ ζn+m, υ†
� �

+ ρ υ†, ζn
� �

≤ 2ρ ζn0 , υ
†� �

< 2
ε

2
= ε,

ð55Þ

and fζng is a Cauchy sequence. By the closedness of Z in Γ,
fζng converges to a point ζ† ∈Z. Now

ρ ζ†,Ψ ζ†
� �� �

≤ ρ ζ†, ζn
� �

+ ρ ζn,Ψ ζnð Þð Þ + ρ Ψ ζnð Þ,Ψ ζ†
� �� �

≤ 2ρ ζ†, ζn
� �

+ ρ ζn,Ψ ζnð Þð Þ:
ð56Þ

From (47), ζ† =Ψðζ†Þ. Therefore, the sequence fζng
strongly converges to a point in FixðϜ Þ: Further,

1 − ωð Þζ ⊕ ωΨ ζð Þ = 1 − ωbð Þζ ⊕ ωbϜ ζð Þ, ð57Þ

for all ζ ∈Z with ωb = ω/ðb + 1Þ:

Remark 25. Theorem 24 generalizes the results in [11] (The-
orem 3.2) from Hilbert spaces to hyperbolic spaces.

Theorem 26. Let ðΓ, ρ,ΩÞ and Ϝ be same as in Theorem 22.
Let Z ⊆ Γ such that Z ≠∅ and Z be a closed and convex.
Suppose that Ϝ is compact mapping with FixðϜ Þ ≠∅: For
fixed λ ∈ ð0, 1/ðb + 1ÞÞ, fζng is a sequence generated as
follows:

ζn+1 = 1 − λð Þζn ⊕ λϜ ζnð Þ, ð58Þ

strongly converges to an element of FixðϜ Þ:

Proof. We set the nonexpansive mapping Ψ as in the proof
of Theorem 22. For given ζ0 ∈Z and for any ω ∈ ð0, 1Þ,
define a sequence

ζn+1 = 1 − ωð Þζn ⊕ ωΨ ζnð Þ: ð59Þ

Following largely as in Theorem 24 and from Lemma 11

lim
n⟶∞

ρ ζn,Ψ ζnð Þð Þ = 0: ð60Þ

Since

Ψ ζð Þ = 1 −
1

b + 1

� 	
ζ ⊕

1
b + 1

Ϝ ζð Þ, ð61Þ

we get

ρ ζ,Ψ ζð Þð Þ = 1
b + 1

ρ ζ, Ϝ ζð Þð Þ for all ζ ∈Z: ð62Þ

From the above equation and (60)

lim
n⟶∞

ρ ζn, Ϝ ζnð Þð Þ = 0: ð63Þ

Since the range of Z under Ϝ is subset of a compact set,
there is a subsequence fϜ ðζnj

Þg of fϜ ðζnÞg strongly con-

verges to ζ† ∈Z: By (63), the subsequence fζnj
g strongly

converges to ζ†: Since Ψ is nonexpansive mapping and by
the triangle inequality, we obtain

ρ ζnj
,Ψ ζ†

� �� �
≤ ρ ζnj

,Ψ ζnj

� �� �
+ ρ Ψ ζnj

� �
,Ψ ζ†

� �� �

≤ ρ ζnj
,Ψ ζnj

� �� �
+ ρ ζnj

, ζ†
� �

:

ð64Þ

Thus, subsequence fζnj
g strongly converges to Ψðζ†Þ

and Ψðζ†Þ = ζ†: Since lim
n⟶∞

ρðζn, ζ†Þ exists, it follows that

the sequence fζng strongly converges to an element of
FixðϜ Þ:

4. SP Iterative Method

In this section, we present some convergence results for SP
iterative process. For a fix ζ0 ∈Z and the mapping Ϝ : Z
⟶Z , the SP iterative method in the setting of hyperbolic
metric spaces can be defined as follows [26]:

wn = 1 − σnð Þζn ⊕ σnϜ ζnð Þ,
ξn = 1 − ϑnð Þwn ⊕ ϑnϜ wnð Þ,
ζn+1 = 1 − ωnð Þξn ⊕ ωnϜ ξnð Þ,

8>><
>>:

ð65Þ

where fσng, fϑng, and fωng are sequences in ½0, 1�.
Similar to [25] (Lemma 4), we model the following

lemma.

Lemma 27. Let ðΓ, ρ,ΩÞ and Z be same as in Theorem 24.
Let Ψ : Z ⟶Z be a nonexpansive mapping with FixðϜ Þ
≠∅: For fixed ζ0 ∈Z and for all n ∈ℕ ∪ f0g, ωn, ϑn, σn ∈
½ω, ϑ� with ω, ϑ ∈ ð0, 1Þ, the sequence fζng is defined by

wn = 1 − σnð Þζn ⊕ σnΨ ζnð Þ,
ξn = 1 − ϑnð Þwn ⊕ ϑnΨ wnð Þ,
ζn+1 = 1 − ωnð Þξn ⊕ ωnΨ ξnð Þ:

8>><
>>:

ð66Þ

Then, the following holds:

(1) lim
n⟶∞

ρðζn, υÞ exists ∀υ ∈ FixðΨÞ

(2) lim
n⟶∞

ρðζn,ΨðζnÞÞ = 0
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Proof. From (W1), we get

ρ wn, υð Þ ≤ 1 − σnð Þρ ζn, υð Þ + σnρ Ψ ζnð Þ, υð Þ
≤ 1 − σnð Þρ ζn, υð Þ + σnρ ζn, υð Þ = ρ ζn, υð Þ, ð67Þ

ρ ξn, υð Þ ≤ 1 − ϑnð Þρ wn, υð Þ + ϑnρ Ψ wnð Þ, υð Þ
≤ 1 − ϑnð Þρ wn, υð Þ + ϑnρ wn, υð Þ = ρ wn, υð Þ: ð68Þ

Further, from (67) and (68), we get

ρ ζn+1, υð Þ ≤ 1 − ωnð Þρ ξn, υð Þ + ωnρ Ψ ξnð Þ, υð Þ
≤ 1 − ωnð Þρ ξn, υð Þ + ωnρ ξn, υð Þ
= ρ ξn, υð Þ ≤ ρ wn, υð Þ ≤ ρ ζn, υð Þ:

ð69Þ

Thus, fρðζn, υÞg is a monotone nonincreasing sequence.
Hence, lim

n⟶∞
ρðζn, υÞ exists. Let

lim
n⟶∞

ρ ζn, υð Þ = r > 0: ð70Þ

From (69) and (70), we have

r ≤ liminf
n⟶∞

ρ wn, υð Þ,

limsup
n⟶∞

ρ wn, υð Þ ≤ r:
ð71Þ

Thus

lim
n⟶∞

ρ wn, υð Þ = r: ð72Þ

Since the mapping Ψ is nonexpansive

limsup
n⟶∞

ρ Ψ ζnð Þ, υð Þ ≤ lim
n⟶∞

ρ ζn, υð Þ = r, ð73Þ

and from (72)

lim
n⟶∞

ρ 1 − σnð Þζn ⊕ σnΨ ζnð Þ, υð Þ = lim
n⟶∞

ρ wn, υð Þ = r: ð74Þ

From (70), (73), (74), and Lemma 11, it follows:

lim
n⟶∞

ρ ζn,Ψ ζnð Þð Þ = 0: ð75Þ

Theorem 28. Let ðΓ, ρ,ΩÞ andZ be same as in Theorem 24.
Let Ϝ : Z ⟶Z be a b-enriched nonexpansive mapping
with FixðϜ Þ ≠∅: For fixed ζ0 ∈Z , for all n ∈ℕ ∪ f0g, ωn,
ϑn, σn ∈ ½ω/ðb + 1Þ, ϑ/ðb + 1Þ� with ω, ϑ ∈ ð0, 1Þ, the sequence
fζng generated by (65) Δ-converges to an element of FixðϜ Þ:

Proof. For given ζ0 ∈Z and for all n ∈ℕ ∪ f0g, ωb
n, ϑ

b
n, σb

n
∈ ½ω, ϑ� with ω, ϑ ∈ ð0, 1Þ, we can consider a sequence fζng:

wn = 1 − σb
n

� �
ζn ⊕ σbnΨ ζnð Þ,

ξn = 1 − ϑbn

� �
wn ⊕ ϑbnΨ wnð Þ,

ζn+1 = 1 − ωb
n

� �
ξn ⊕ ωb

nΨ ξnð Þ,

8>>>>><
>>>>>:

ð76Þ

where Ψ is a mapping defined as in (32). Using Lemma 21,
we have

wn = 1 − σnð Þζn ⊕ σnϜ ζnð Þ,
ξn = 1 − ϑnð Þwn ⊕ ϑnϜ wnð Þ,
ζn+1 = 1 − ωnð Þξn ⊕ ωnϜ ξnð Þ,

8>><
>>:

ð77Þ

where σn = σbn/ðb + 1Þ, ϑn = ϑbn/ðb + 1Þ, and ωn = ωb
n/ðb + 1Þ.

By Lemma 27 and repeating the technique of proof of The-
orem 22, one can complete the proof.

Theorem 29. Let ðΓ, ρ,ΩÞ,Z , and Ϝ be same as in Theorem
24. For fixed ζ0 ∈Z , for all n ∈ℕ ∪ f0g, ωn, ϑn, σn ∈ ½ω/
ðb + 1Þ, ϑ/ðb + 1Þ� with ω, ϑ ∈ ð0, 1Þ, the sequence fζng gener-
ated by (65) strongly converges to an element of FixðϜ Þ:

Proof. Using proof of Theorem 28, Lemma 27, and Theorem
24, one can complete the proof.

Theorem 30. Let ðΓ, ρ,ΩÞ andZ be same as in Theorem 24.
Let Ϝ : Z ⟶Z be a compact b-enriched nonexpansive
mapping with FixðϜ Þ ≠∅: For fixed ζ0 ∈Z , for all n ∈ℕ ∪
f0g, ωn, ϑn, σn ∈ ½ω/ðb + 1Þ, ϑ/ðb + 1Þ� with ω, ϑ ∈ ð0, 1Þ, the
sequence fζng generated by (65) strongly converges to a point
in FixðϜ Þ:

Proof. Using proof of Theorem 28, Lemma 27, and Theorem
26, one can complete the proof.

Remark 31. Theorems 28–30 are new even in Hilbert spaces.
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Variational inequalities are considered the most significant field in applied mathematics and optimization because of their massive
and vast applications. The current study proposed a novel iterative scheme developed through a fixed-point scheme and
formulation for solving variational inequalities. Modification is done by using the self-adaptive technique that provides the
basis for predicting a new predictor-corrector self-adaptive for solving nonlinear variational inequalities. The motivation of the
presented study is to provide a meaningful extension to existing knowledge through convergence at mild conditions. The
numerical interpretation provided a significant boost to the results.

1. Introduction

Earlier, most of the equilibrium-related queries were
resolved by variational inequalities that are a mathematical
theory. In this regard, Stampacchia [1] is considered a
pioneer who initially introduced variational inequalities in
1964. At the end of 1964, Stampacchia extended his work
by introducing partial differential equations. Since then, this
field has become the most emerging and demanding with
extensive applications in optimization and control, econom-
ics, movements, engineering sciences, and equilibrium prob-
lems. Massive utilization of variational inequalities in applied
sciences made it branched and more generalized to interact
with other fields [2–5], hence proved the novelty and produc-
tivity of variational inequalities. Most of the profound task
for researchers is to work on extensions and generalized
inequalities regarding their applications; consequently, it
gives rise to pure and applied mathematics problems. Modi-
fications in variational inequalities produced advances in
numerical methods [6–10], sensitivity analysis, and the
dynamical system that are efficient in solving mathematics-

related problems. Theory and algorithmic advancements
meet in the theory of variational inequalities, opening up a
brand-new field of application [7, 11, 12]. These issues
necessitate a combination of convex, functional, and
numerical analysis techniques. There are numerous exciting
applications for this fascinating section of applied mathe-
matics in the fields of business, finance, economics, and
the social, as well as the pure and applied sciences (see
[3, 9, 13, 14] and the references therein for applications
and numerical approaches). Such extraordinary progress
is based on the most basic and unidirectional linear and
nonlinear approaches.

A fundamental problem associated with variational
inequalities is the establishment of fast numerical methods.
A projection-type method and its variant solve many opti-
mization problems and are also related to variational
inequalities. Variational inequalities and fixed-point issues
with equivalent effects utilizing projection techniques have
grown in popularity in recent years as a study focus. To
prove the convergence of fixed-point iterative methods,
quantitative knowledge of pseudocontractive and nonlinear
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monotone (accretive) operators combined with Lipschitz
type conditions is required (see [15–17]). The phenomena
of variational inequalities have a significant contribution to
solving the Wiener-Hopf equations. Salient features of
Wiener-Hopf equations and optimization problems in the
presence of variational inequalities are addressed by Shi
[17]. Together with the Wiener-Hopf equation, the projec-
tion method is considered an important technique for
approximating the solution of variational inequality prob-
lems. Constructing an equivalence between fixed-point
problems and variational inequalities is made easier with
the concept of the projection method. Utilizing variational
problems, several conventional improved ways to establish
solutions for open, moving boundary value problems, asym-
metric obstacle, unilateral, even-order, and odd-order prob-
lems could be developed (see [4–7, 11, 15] and the references
therein). An investigation into a new predictor-corrector
self-adaptive strategy for solving nonlinear variational
inequalities under known assumptions is suggested in the
proposed study. It was possible to arrive at this fixed-point
formulation using projection, variational inequalities, and
Wiener-Hopf equations. Additionally, the convergence of
the proposed method is discussed.

2. Formulation and Basic Results

A convex set is denoted by K in H (Hilbert space). We
denote norm and inner by k·k and h·, · i, respectively. We
consider a variational inequality: for general operator T , find
y ∈ K such that

Ty, x − yh i ≥ 0,∀x ∈ K: ð1Þ

The inequality (1) is called the variational inequality (VI)
introduced by Stampacchia [1]. A large number of problems
related to equilibrium, nonsymmetric, physical sciences,
engineering, moving boundary value problem, unified,
obstacle, unilateral contact, and applied sciences can be dis-
cussed via the inequalities (1) [1, 6, 7, 12, 13].

Lemma 1. [13].
For z ∈H, y ∈ K holds for the inequality

y − z, x − yh i ≥ 0,∀x ∈ K , ð2Þ

if and only if

y = PKz, ð3Þ

where PK is the projection of H onto Kðconvex setÞ.

It is also known that the PK is called projection operator,
which is also nonexpansive and holds for the inequality.

PKz − yk k ≤ z − yk k − z − PKzk k: ð4Þ

Lemma 2. If y is a solution of VI (1), then y ∈ K satisfies the
relation

y = PK y − ρTy½ �, ð5Þ

where ρ ≥ 0 is taken as constant and PK is considered the pro-
jection operator H onto K:

From Lemma 2, it is obvious that y is a solution of VI
(1), if and only if y satisfies the residue vector rðy, ρÞ defined
by

r y, ρð Þ = y − PK y − ρTy½ �: ð6Þ

Related to the original inequality (1), we see the Wiener-
Hopf equations (WHE) problem. To be more precise, let
QK = I − PK , where PK is the projection operator and I is
the identity operator. For the operator T : H ⟶H, then
for finding z ∈H, we have

ρTPKz +QKz = 0: ð7Þ

Here, Equation (7) is the Wiener-Hopf equation (WHE),
investigated by Shi [17]. This WHE (7) is considered more
general and gives a unified framework to establish the vari-
ous powerful and efficient iterative methods and numerical
techniques (for the application of the WHE (7), see [17, 18]).

Lemma 3. The inequality (1) has a unique solution y ∈ K , if
and only if z ∈H satisfies the WHE (7), provided

y = PKz, ð8Þ

z = y − ρTy: ð9Þ
Lemma 3 implies that the VI (1) is equivalent to WHE

(7). Noor et al. [8, 18] considers this fixed-point formulation
to establish various iterative schemes for solving the VI and
other optimization and related problems.

3. Main Results and Algorithm

To solve the variational inequality (1), we will use an itera-
tive approach that we are developing in this study. The
relevant results, algorithm, and theory will be established
to make an iterative process for solving the inequality. The
convergence of the new technique will also be provided.

We use the fixed-point formulation and suggest a
predictor-corrector technique for upgrading the solution
for VI.

w = PK y − γTy½ �, for γ > 0, ð10Þ

y = PK w − ρTw½ � = PK PK y − γTy½ � − ρTPK y − γTy½ �½ �:
ð11Þ

Using (6), (8), and (10), the WHE (7) can be written in
the form

0 = y − PK y − ρTy½ � − ρTy + ρTPK y − ρTy½ �
= r y, ρð Þ − ρTy + ρTPK y − ρTy½ �: ð12Þ
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We define the relation

D y, ρð Þ = r y, ρð Þ − ρTy + ρTPK y − ρTy½ �: ð13Þ

It is obvious that y ∈ K is a solution of the VI if and only
if y ∈ K is satisfied with Equation (13).

D y, ρð Þ = 0: ð14Þ

Using (10) and (13), we can rewrite as

w = PK y − γD y, ρð Þ − γTy½ �, ð15Þ

This fact has motivated us to establish the new predictor-
corrector self-adaptive iterative method for solving the VI
(1).

Algorithm 1. Step 1: Give ∈>0, γ > 0, δ ∈ ð0, 1Þ, δ0 ∈ ð0, 1Þ,
μ ∈ ð0, 1Þ, ρ > 0, and y∗ ∈H set n = 0

Step 2: Set ρn = ρ; if krðyn, ρÞk < ϵ, then computation
stops; otherwise, the iteration will continue to find the mn
nonnegative integer, and take ρn = ρμmn which satisfies the
inequality

ρn T ynð Þ − T wnð Þð Þk k ≤ δ r yn, ρnð Þk k, ð16Þ

where

wn = PK yn − γnD yn, ρnð Þ − γnTy
n½ � ð17Þ

Step 3: Compute

d yn, ρnð Þ = r yn, ρnð Þ − ρnT ynð Þ + ρnT PK yn − ρnTy
n½ �ð Þ,
ð18Þ

where

r yn, ρnð Þ = yn − PK yn − ρTyn½ � ð19Þ

Step 4: Get the next iterate

wn = PK yn − γD yn, ρnð Þ − γT ynð Þ½ �, ð20Þ

yn+1 = PK wn − ρTwn½ �, ð21Þ
and then set ρ = ρn/μ, else set ρ = ρn:n = n + 1, and go to

Step 2

We observe that Algorithm 1 is refinement and addition
of the standard procedure. Here, we consider −γDðyn, ρnÞ
− γTðynÞ, the self-adaptive technique, or we can say the
step-size. This technique and procedure are closely related
to the projection residue.

The convergence of the newly established result of
Algorithm 1 is the important part to consider under some
suitable and mild conditions, which is the paper’s main
target and motivation.

Theorem 4. Let real Hilbert space be denoted by H and
T : K ⟶H; we take α as strongly monotone, where β is
Lipschitz continuous mapping on a convex subset K of H:
Let y∗ ∈ K be a solution of VI (1) and let the sequences fyng
be generated by Algorithm 1. If θ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ρα + ρ2β2
p

ð1 + γβÞ
< 1, then the sequences fyng converges to y∗, for

0 < ρ < 2α

β2 : ð22Þ

Proof. Since y∗ is a solution of NVI (1), from Lemma 1, we
have

w∗ = PK y∗ − y∗Ty∗½ �, for γ > 0, ð23Þ

y∗ = PK w∗ − ρTw∗½ �, for ρ > 0: ð24Þ

Applying Algorithm 1, from (19) and (24), we know that
PK is nonexpansive:

yn+1 − y∗
�

�

�

� = PK wn − ρTwn½ � − PK w∗ − ρTw∗½ �k k
≤ wn −w∗ − ρTwn + ρTw∗�k k:

ð25Þ

Since T is considered as strongly monotone and
Lipschitz continuous with constant α and β: From (25), we
have

wn −w∗ − ρ Twn − Tw∗ð Þk k2
= wn −w∗k k2 − 2ρ Twn − Tw∗,wn −w∗h i

+ ρ2 Twn − Tw∗k k2 ≤ wn −w∗k k2
− 2ρα wn −w∗k k2 + ρ2β2 wn −w∗k k2

= 1 − 2ρα + ρ2β2� �

wn −w∗k k2:

ð26Þ

From (25) and (22), we get

yn+1 − y∗
�

�

�

� ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ρα + ρ2β2
q

wn −w∗k k: ð27Þ

From (18) and (22), we get

wn −w∗k k = PK yn − γD yn, ρnð Þ − γTyn½ � − PK y∗ − γTy∗½ �k k
≤ yn − γD yn, ρnð Þ − γTyn − y∗ + γTy∗k k
≤ yn − y∗ − γD yn, ρnð Þk k + γ Tyn − Ty∗k k
≤ yn − y∗ − γD yn, ρnð Þk k + γβ yn − y∗k k:

ð28Þ

Consider

yn − y∗ − γD yn, ρnð Þk k2
= yn − y∗k k2 − 2γ yn − y∗,D yn, ρnð Þh i + γ2 D yn, ρnð Þk k2:

ð29Þ
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We use the definition of Dðyn, ρnÞ, and we obtain

yn − y∗ − γD yn, ρnð Þk k ≤ yn − y∗k k: ð30Þ

From (28) and (30), we have

wn −w∗k k ≤ 1 + γβð Þ yn − y∗k k: ð31Þ

From (27) and (31), we get

yn+1 − y∗
�

�

�

� ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ρα + ρ2β2
q

1 + γβð Þ yn − y∗k k = θ yn − y∗k k,
ð32Þ

where θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ρα + ρ2β2p

ð1 + γβÞ, since 0 < θ < ,∑∞
n=0θ

n

=∞, thus from (32) and Algorithm 1 for an arbitrarily cho-
sen and consider initial points y0 and yn obtained from
Algorithm 1,which converge strongly to y∗:

4. Numerical Example

Example 1. We take the nonlinear complementarity
problems: for finding y ∈ Rn, we have

y ≥ 0, T yð Þ ≥ 0, y, T yð Þh i = 0: ð33Þ

Here, TðyÞ =D1ðyÞ +D2ðyÞ + q,we considerD1ðyÞas non-
linear part, andD2ðyÞ + qis taken as a linear part, and in
((33)), we take a special case of the VI (1). The matrix D2 =
BtB + C, where B is n × n matrix whose entries we generate
randomly in the interval ð−5,+5Þ, and skew-symmetric matrix
C is considered in the same way. The vector is denoted by q
and is obtained in the interval ð−500,+500Þ. This is distrib-
uted uniformly. For easy problems, we take ð−500,+500Þ
and ð−500,0Þ considered for the hard problem. In D1ðyÞ, the
nonlinear part of TðyÞ, the components are DjðyÞ = dj ∗
arctan ðyjÞ, and dj is a random variable generated in ð0, 1Þ:

For the output of the result, we consider, μ = 2/3, δ = 0:95,
δ0 = 0:95, ρ > 0 and γ = 1:95; the initial guess y0 =
ð0, 0, 0,⋯, 0ÞT . The computation starts with ρ0 = 1 and
stops as soon as krðyn, ρnÞk ≤ 10−7: MATLAB is used for
all codes. Table 1 represents the outcomes of Algorithm 1.

5. Conclusion

We have considered the new technique for solving inequality
(1). We have applied the self-adaptive technique to control
the step size under some mild conditions. Results have been
compared with the published paper. It has been observed
that the number of iterations is reduced by applying the
new suggested method. This is an extension of the previ-
ously known results. This work can be enhanced further
when the operator is pseudomonotone which is considered
a weaker condition when the operator is strongly monoto-
nicity. The numerical results reflect the output of our newly
established algorithms well for the considered problems.
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The purpose of this note is to come up with some new directions in fuzzy fixed point theory. To this effect, notions of a
C∗-algebra-valued fuzzy λ-contraction and related concepts in a convex C∗-algebra-valued metric space (C∗-AVMS) are set-up. In
line with the view of a Hausdorff distance function, an idea of a distance between two approximate quantities is proposed.
Consequently, two fixed point results of a C∗-algebra-valued fuzzy mapping (C∗-AVFM) for the new type of contractions are
established using Mann and Ishikawa iterative schemes. For some future investigations of our results, two open problems are
noted concerning sufficient criteria guaranteeing the existence of fixed points of a C∗-algebra-valued fuzzy λ-contraction and
whether or not the Picard iteration for a C∗-algebra-valued fuzzy λ-contraction converges.

1. Introduction and Preliminaries

We begin this section with specific notions of C∗-algebras as
follows.

Definition 1 (see [1]). Let A be a unital algebra with the unit
IA . An involution on A is a conjugate linear map j↦ j∗

such that j∗∗ = j and ðjℓÞ∗ = ℓ∗ j∗, for all j, ℓ ∈A . The pair
ðA , ∗Þ is called a ∗-algebra. A Banach ∗-algebra is a ∗
-algebra A together with a submultiplicative norm such
that ∥j∗∥ = ∥j∥, for all j ∈A ; where a norm k:k on an alge-
bra A is said to be submultiplicative if kjℓk≤kjkkℓk, for all
j, ℓ ∈A . A C∗-algebra is a Banach ∗-algebra such that ∥
j∗ j∥ = ∥j∥2, for all j ∈A .

Throughout this paper, A represents a unital C∗-algebra
with a unit IA . Also, we takeAa = fj ∈A : j = j∗g and denote
the zero element in A by 0A . An element j ∈A is called posi-
tive, written j ± 0A , if j ∈Aa and σðjÞ ⊆ℝ+ = ½0,∞Þ, where
σðjÞ = fλ ∈ℂ : λI − j is not invertibleg is the spectrum of j.
Availing positive elements, we set up a partial ordering ° on
Aa as follows: j

°ℓ if and only if ℓ − j ± 0A . Hereafter, by A+,
we mean the set fj ∈A : j ± 0Ag and ∣j ∣ = ðj∗ jÞ1/2 (cf. [2]).

Remark 2. When A is a unital C∗-algebra, then for any j ∈
A+, we have j°IA if and only if ∥j∥≤1 (cf. [1]).

With the aid of positive elements in A , Ma et al. [2]
launched the concept of C∗-AVMS in the following manner.
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Definition 3 (see [2]). Let ℧ be a nonempty set. Suppose that
the mapping σ : ℧2 ⟶A satisfies the following conditions:

(c1) 0A °σðj, ℓÞ and σðj, ℓÞ = 0A if and only if j = ℓ
(c2) σðj, ℓÞ = σðℓ, jÞ, for all j, ℓ ∈℧
(c3) σðj, ℓÞ°σðj, zÞ + σðz, ℓÞ, for all j, ℓ, z ∈℧
Then, σ is called a C∗-algebra-valued metric, and ð℧,

A , σÞ is known as a C∗-AVMS.

It is clear that a C∗-AVMS generalizes the idea of a met-
ric space, by replacing the set of real numbers with A+. For
some recent fixed point results in C∗-AVMS, one can
consult [3, 4] and the references therein.

Definition 4 (see [2]). Given a C∗-AVMS ð℧,A , σÞ. Suppose
that the sequence fjngn∈ℕ ⊂℧ and u ∈℧. If for any ℘>0,
there exists ζ ∈ℕ such that for all n > ζ, ∥σðjn, uÞ∥≤℘, then
fjngn∈ℕ is said to be convergent to u with respect to A . In
this case, we write limn⟶∞ jn = u.

If for any ℘>0, there is ζ ∈ℕ such that n,m > ζ, ∥σðjn,
jmÞ∥≤℘, then the sequence fjngn∈ℕ is said to be Cauchy with
respect to A . We say that ð℧,A , σÞ is a complete C∗-AVMS,
if every Cauchy sequence in ℧ is convergent with respect to
A .

Definition 5 (see [2]). Given a C∗-AVMS ð℧,A , σÞ, a map-
ping Y : ℧⟶℧ is called a C∗-algebra-valued contractive
mapping on ℧, if there exists λ ∈A with ∥λ∥<1 such that
for all j, ℓ ∈℧,

σ Y j, Yℓð Þ°λ∗σ j, ℓð Þλ: ð1Þ

The following lemma is useful in discussing our main
results.

Lemma 6 [1]. Let A be a C∗-algebra. Then:

(i) For any τ ∈A , if p, q ∈Aa with p°q, then r∗pr°r∗qr

(ii) For any p, q ∈Aa, if 0A
°p°q, then 0 ≤ ∥p∥≤∥q∥

In 1970, Takahashi [5] initiated the concept of convexity
in metric spaces in the following fashion.

Definition 7 (see [5]). Let ð℧, σÞ be a metric space and D =
½0, 1�. A mapping Ψ : ℧×℧×D⟶℧ is called a convex
structure on ℧, if for all j, ℓ, a ∈℧ and t ∈D,

σ a,Ψ j, ℓ, tð Þð Þ ≤ tσ a, jð Þ + 1 − tð Þσ a, ℓð Þ: ð2Þ

Using the notion of convexity, Takahashi [5] comple-
mented some FP results originally obtained in Banach
spaces. Following [5], several investigators have come up
with FP notions in convex metric spaces; for such results,
we can refer [6–9] and the references therein. Using the idea
of a convex metric space and with the aid of positive ele-
ments in a C∗-algebra, Ghanifard et al. [10] brought up the
next definition.

Definition 8 (see [10]). Let ð℧,A , σÞ be a C∗-AVMS. A
mapping Ψ : ℧×℧×D⟶℧ is called a convex structure
on ℧ if for all j, ℓ, a ∈℧, it satisfies the following:

σ a,Ψ j, ℓ, tð Þð Þ°tσ a, jð Þ + 1 − tð Þσ a, ℓð Þ: ð3Þ

A C∗-AVMS equipped with a convex structure is said
to be a convex C∗-AVMS, denoted by ð℧,A ,Ψ, σÞ. A sub-
set Θ of ℧ is called convex if for all j, ℓ ∈Θ and t ∈D,
Ψðj, ℓ, tÞ ∈Θ.

As an attempt at reducing uncertainties in dealing with
practical problems for which conventional mathematics can-
not cope effectively, the evolvement of fuzzy mathematics
started with the introduction of the concepts of fuzzy sets
by Zadeh [11] in 1965. Fuzzy set theory is now well-known
as one of the mathematical tools for handling information
with nonstatistical uncertainty. As a result, the theory of
fuzzy sets has gained greater applications in diverse domains
such as management sciences, engineering, environmental
sciences, medical sciences, and in other emerging fields. In
the meantime, the basic notions of fuzzy sets have been
modified and improved in various settings; for example,
see [12–15]. Along the lane, Heilpern [16] employed the
concept of fuzzy sets to come up with the notion of fuzzy
mappings and established a FP result for fuzzy contraction
mappings which is a fuzzy version of FP theorems estab-
lished by Nadler [17] and Banach [18].

Let ℧ be a universal set. A fuzzy set in ℧ is a map with
domain ℧ and range set D. Let I℧ be the collection of all
fuzzy sets in ℧. If ∇ is a fuzzy set in ℧, then the function
value ∇ðjÞ is called the grade of membership of j in ∇. The
α-level set of a fuzzy set ∇ is denoted by ½∇�α and is defined
as follows:

∇½ �α =
�j ∈℧ : ∇ jð Þ > 0f g, if α = 0,

j ∈℧ : ∇ jð Þ ≥ αf g, if α ∈D \ 0f g,

 
ð4Þ

where by �P, we mean the closure of the crisp set P.

Definition 9 (see [16]). Let ℧ be an arbitrary set and Y be a
metric space. A mapping Y : ℧⟶ I℧ is called a fuzzy map-
ping. A fuzzy mapping Y is a fuzzy subset of ℧× Y with
membership function YðjÞðℓÞ. The function value YðjÞðℓÞ
is called the grade of membership of ℓ in YðjÞ.

Definition 10 (see [16]). Let ℧ be a nonempty set and Y
: ℧⟶ I℧ be a fuzzy mapping. A point u ∈℧ is said to be
a fuzzy FP of Y if there exists an α ∈D \ f0g such that u ∈
½Yu�αðuÞ.

Hereafter, FixðYÞ = fu ∈℧ : u ∈ ½Yu�α for some α ∈Dg.
Motivated by the ideas of fuzzy mappings and C∗-

AVMSs due to Heilpern [16] and Ma et al. [2], respectively,
the aim of this research is to initiate the study of fuzzy FP
results in convex C∗-AVMSs. To this effect, some new
concepts of C∗-algebra-valued fuzzy contractions in convex
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C∗-AVMSs are proposed, and related fuzzy FP theorems are
established. The notions put forward herein are not only
novel, but complement and unify a few corresponding
results in the existing literature.

2. Main Results

In this section, we introduce notions of C∗-algebra-valued
fuzzy contractions and some corresponding fixed point
results. First, a few requisite auxiliary concepts are initiated
as follows.

Definition 11. A fuzzy set Ω in a C∗-AVMS ð℧,A , σÞ is said
to be convex if for all j, ℓ ∈℧ and t ∈D \ f0, 1g, min
fΩðjÞ,ΩðℓÞg°Ωðt j + ð1 − tÞℓÞ. A fuzzy set Ω in ℧ is called
an approximate quantity if its α-level set is a compact convex
subset of ℧ for each α ∈D and supj∈℧A

ΩðjÞ = 1.

Throughout, the collection of all approximate quantities
in ð℧,A , σÞ is denoted by WAð℧Þ. We define a distance
function between two approximate quantities in WAð℧Þ as
follows.

Definition 12. Let F,G ∈WAð℧Þ and α ∈D. Then, we define:

D∗
α F,Gð Þ =ℵ F½ �α, G½ �α

� �
,

σ∞ F,Gð Þ = sup
α
D∗
α F,Gð Þ, ð5Þ

where the Hausdorff distance function ℵ : WA ×WA ⟶
A is set-up as follows:

ℵ F½ �α, G½ �α
� �

= max sup
j∈ F½ �α

σ j, G½ �α
� ��� ��, sup

ℓ∈ F½ �α
σ F½ �α, ℓ
� ��� ��( ) !

IA ,

σ a, ϖð Þ = inf ∥σ a, ρð Þ∥ : ρ ∈ ϖf gð ÞIA :
ð6Þ

Consistent with Heilpern [16], we call the function D∗
α

an ðα, ∗Þ-distance and σ∞ a distance between two approxi-
mate quantities in WA ð℧Þ.

We say that a subset Ψ of a C∗-AVMS ð℧,A , σÞ is
bounded if supj,ℓ∈Af∥σðj, ℓÞ∥g <∞. The collection of all
closed and bounded subsets of ð℧,A , σÞ is represented by
BAð℧Þ.

Note that σ∞ is a C∗-algebra-valued metric on BAð℧Þ
(induced by the Hausdorff metric ℵ), and the completeness
of ð℧,A , σ∞Þ implies the completeness of the correspond-
ing C∗-AVMS ðKΩð℧Þ,A , σ∞Þ. Moreover, ð℧,A , σ∞Þ↦ ð
BAð℧Þ,A , σ∞Þ↦ ðKΩð℧Þ,A , σ∞Þ are isometric embed-
ding via the relation j↦ fjg (crisp set) and ⊑↦χ⊑, respec-
tively, where χ⊑ is the characteristic function of ⊑, and

KΩ ℧ð Þ = Ω ∈ I℧ : Ω½ �α ∈ BA ℧ð Þ, for each α ∈D� �
: ð7Þ

Similarly,

K Ω1,Ω2ð Þ ℧ð Þ = Ω1,Ω2 ∈ I
℧ : Ω1½ �α, Ω2½ �α ∈ BA ℧ð Þ, for each α ∈D� �

:

ð8Þ

We now define the idea of a C∗-AVFM in the following
manner.

Definition 13. Let ℧ be an arbitrary set and ðY,A , σÞ be a
C∗-AVMS. A mapping Y : ℧⟶WAðYÞ is called a C∗-
AVFM.

In line with the idea of fuzzy λ-contraction due to
Heilpern [16], we introduce the next concept.

Definition 14. Let ð℧,A , σÞ be a C∗-AVMS. A C∗-AVFM
Y : ℧⟶WAð℧Þ is called a C∗-algebra-valued fuzzy λ
-contraction, if there exists λ ∈A with ∥λ∥<1 such that for
all j, ℓ ∈℧,

σ∞ Y j, Yℓð Þ°λ∗σ j, ℓð Þλ: ð9Þ

Example 15. Let ℧ =ℝ and A =M2ðℝÞ (the collection all 2
× 2 matrices with real entries) with the norm kΦk =
maxp′ ,q′ jςp′q′ j, where ςp′q′ are the entries of the matrix Φ ∈
M2ðℝÞ and the involution given by Φ∗ =ΦT . Define σ : ℧
×℧⟶A by σðj, ℓÞ = diag ðjj − ℓj, jj − ℓjÞ. Obviously, ð℧,
A , σÞ is a C∗-AVMS. We define a partial ordering on A as
follows:

p1 p2

p3 p4

" #
=

q1 q2

q3 q4

" #
⇔ pi≼λ

∗qiλ, ð10Þ

for i = 1, 2, 3, 4 and for some λ ∈A . Let β ∈ ð0, 1� and for
each j ∈℧, define a fuzzy mapping YðjÞ: ℧⟶½0, 1� as
follows:

Y jð Þ tð Þ =
β, if j

7 ≤ t ≤
j
5

β

6 , otherwise:

8>><
>>: ð11Þ

If we take the mapping α : ℧⟶ ð0, 1� as αðjÞ = β for all
j ∈℧, then

Y j½ �α jð Þ = t ∈℧ : Y jð Þ tð Þ ≥ βf g = j
7 ,

j
5

� �
: ð12Þ

Obviously, ½Y j�αðjÞ ∈ BAð℧Þ, for each j ∈℧. We see that
for all j, ℓ ∈℧,
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σ∞ Y j, Yℓð Þ = sup
β
Dβ Y j, Yℓð Þ =ℵ Y j½ �β, Yℓ½ �β

	 


= max sup
a∈ Y j½ �β

σ a, Yℓ½ �β
	 
��� ���, sup

b∈ Yℓ½ �
σ Y j½ �β, b
	 
��� ���

( ) !
IA

= max sup inf
a∈ Y j½ �β ,ℓ∈ Yℓ½ �β

a − bj j, sup inf
b∈ Yℓ½ �β ,a∈ Y j½ �β

a − bj j
( ) !

� IA max j
7 −

ℓ
7

����
����, j

5 −
ℓ
5

����
����

� � �
IA = j

5 −
ℓ
5

����
����

� �
IA

= diag j
5 −

ℓ
5

����
����

� �
:

ð13Þ

It follows that Y is a C∗-algebra-valued fuzzy λ-con-
traction with λ = diag ð1/ ffiffiffi

4
p

, 1/
ffiffiffi
4

p Þ. Clearly, kλk < 1:

Definition 16. Let ℧ be a nonempty set. A point u ∈℧ is
called a stationary point of a fuzzy mapping Y : ℧⟶ I℧, if
there exists an α ∈D \ f0g such that ½Yu�α = fug. We say that
u is a common stationary point of any two fuzzy mappings
Y ,Λ : ℧⟶ I℧ if ½Yu�α = fug = ½Λu�α, for some α ∈D \ f0g.

Our main result is provided hereunder.

Theorem 17. Let ð℧,A ,Ψ, σÞ be a complete convex C∗-
AVMS. Suppose that the mapping Y : ℧⟶ KYð℧Þ is a C∗

-algebra-valued fuzzy λ-contraction such that FixðYÞ ≠∅
and every a ∈ FixðYÞ is a stationary point of Y . Let fjng be
the Mann iteration scheme given by

jn+1 =Ψ ℓn, jn, ηnð Þ, ð14Þ

where ℓn ∈ ½Y jn�αðjnÞ and ηn ∈D. Then, fjng converges to a

fuzzy FP of Y , provided limn⟶∞σðjn, FixðYÞÞ = 0A .

Proof. Let a ∈ FixðYÞ and αðjÞ ∈D \ f0g for each j ∈℧. Then,
we have

σ jn+1, að Þ = σ Ψ ℓn, jn, ηnð Þ, að Þ≼ηnσ ℓn, að Þ + 1 − ηnð Þσ jn, að Þ:
ð15Þ

From (15),

σ jn+1, að Þk k ≤ ηn σ ℓn, að Þk k + 1 − ηnð Þ σ jn, að Þk k

≤ ηn sup
ℓn∈ Y jn½ �α jnð Þ ,a∈ Ya½ �α að Þ

σ ℓn, að Þk k
 !

+ 1 − ηnð Þ σ jn, að Þk k
= ηn σ Y jn½ �α jnð Þ, Ya½ �α að Þ

	 
��� ��� + 1 − ηnð Þ σ jn, að Þk k
≤ ηn ℵ Y jn½ �α jnð Þ, Ya½ �α að Þ

	 
��� ��� + 1 − ηnð Þ σ jn, að Þk k
≤ ηn σ∞ Y jn, Yað Þk k + 1 − ηnð Þ σ jn, að Þk k
≤ ηn λ∗k k σ jn, að Þk k λk k + 1 − ηnð Þ σ jn, að Þk k
= ηn λk k2 σ jn, að Þk k + 1 − ηnð Þ σ jn, að Þk k
< ηn σ jn, að Þk k + 1 − ηnð Þ σ jn, að Þk k = σ jn, að Þk k:

ð16Þ

We observe that the strict inequality in (16) is valid
whenever jn ≠ a, for each n ∈ℕ. Indeed, if we take jκ = a
for a finite κ ∈ℕ, then jn = a for each n ≥ κ, from which it
yields that fjngn∈ℕ converges to a for finite number of iter-
ations, and hence, we obtain the conclusion of our result.

Now, we prove that the sequence fjngn∈ℕ is Cauchy with
respect to A . Since limn⟶∞σðjn, FixðYÞÞ = 0A , for each ℘>0,
there exists mð℘Þ ∈ℕ such that for all n ≥mð℘Þ,

σ jn, Fix Yð Þð Þk k ≤ ℘
7 : ð17Þ

By (17), there exists r1 ∈ FixðYÞ such that for all n ≥mð℘Þ,

σ jn, r1ð Þk k ≤ ℘
2 : ð18Þ

Using the triangle inequality in ð℧,A , σÞ,

σ jn+k, jnð Þ≼σ jn+k, r1ð Þ + σ r1, jnð Þ: ð19Þ

Therefore, taking (18) into consideration, we get

∥σ jn+k, jnð Þ∥ ≤ ∥σ jn+k, r1ð Þ∥+∥σ r1, jnð Þ∥
< ∥σ jn, r1ð Þ∥+∥σ r1, jnð Þ∥ ≤ ℘

2 + ℘
2 = ℘,

ð20Þ

for jn ≠ r1. This proves that fjngn∈ℕ is a Cauchy sequence with
respect toA . The completeness of℧A implies that there exists
a∗ ∈℧A such that limn⟶∞ jn = a∗. Next, we establish that a∗

is a fuzzy FP of Y . For this, take ℘′ > 0. Since jn ⟶ a∗ as n
⟶∞, there exists mð℘′Þ ∈ℕ such that for all n ≥mð℘′Þ,

∥σ jn, a∗ð Þ∥ ≤ ℘′
4 : ð21Þ

Moreover, limn⟶∞σðjn, FixðYÞÞ = 0A yields that there
exists m′ð℘Þ ≥mð℘′Þ such that for all mð℘Þ ≥m′ð℘Þ,

∥σ jn, Fix Yð Þð Þ∥ ≤ ℘′
10 : ð22Þ

Hence, there exists r2 ∈ FixðYÞ such that for all mð℘Þ ≥
m′ð℘Þ,

∥σ jn, r2ð Þ∥ ≤ ℘′
12 : ð23Þ

By triangle inequality in ℧A , there exists write

σ Ya∗½ �α a∗ð Þ, a
∗

	 

≼σ Ya∗½ �α a∗ð Þ, r2
	 


+ σ r2, Y j3½ �α j3ð Þ
	 


+ σ Y j3½ �α j3ð Þ, r2
	 


+ σ r2, jn3
	 


+ σ jn3 , a
∗

	 

:

ð24Þ
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Consequently,

∥σ Ya∗½ �α a∗ð Þ, a
∗

	 

∥ ≤ ∥σ Ya∗½ �α a∗ð Þ, r2

	 

∥+∥σ r2, Y jn3

h i
α jn3ð Þ

� �
∥

+∥σ Yjn3

h i
α jn3ð Þ, r2

� �
∥+∥σ r2, jn3

	 

∥

+∥σ jn3 , a
∗

	 

∥ ≤ ∥ℵ Ya∗½ �α a∗ð Þ, Yr2½ �α r2ð Þ

	 

∥

+2∥ℵ Yr2½ �α r2ð Þ, Y jn3

h i
α jn3ð Þ

� �
∥+∥σ r2, jn3

	 

∥

+∥σ jn3 , a
∗

	 

∥ ≤ ∥σ∞ Ya∗, Yr2ð Þ∥

+2∥σ∞ Yr2, Y jn3
	 


∥+∥σ r2, jn3
	 


∥

+∥σ jn3 , a
∗

	 

∥ ≤ ∥λ∗∥∥σ a∗, r2ð Þ∥∥λ∥

+2∥λ∗∥∥σ r2, jn3
	 


∥∥λ∥+∥σ jn, a∗ð Þ∥

+∥σ r2, jn3
	 


∥+∥σ jn3 , a
∗

	 

∥

= ∥λ∥2∥σ a∗, r2ð Þ∥+2∥λ∥2∥σ r2, jn3
	 


∥+

∥σ jn3 , a
∗

	 

∥ < ∥σ a∗, r2ð Þ∥+2∥σ r2, jn3

	 

∥

+∥σ jn3 , a
∗

	 

∥ ≤ ∥σ a∗, jn3

	 

∥+∥σ jn3 , r2

	 

∥

+∥σ jn3 , r2
	 


∥+2∥σ jn3 , r2
	 


∥+2∥σ jn3 , r2
	 


∥

+∥σ jn3 , r2
	 


∥+∥σ jn3 , a
∗

	 

∥ = 2∥σ jn3 , a

∗
	 


∥

+6∥σ jn3 , r2
	 


∥ ≤ 2 ℘′
4

 !
+ 6 ℘′

12

 !
= ℘′,

ð25Þ

whenever jn3 ≠ r2. It follows that σð½Ya∗�αða∗Þ, a∗Þ = 0A , and
thus, a∗ ∈ ½Ya∗�αða∗Þ, for some αða∗Þ ∈D \ f0g.

In what follows, we present a fuzzy coincidence theorem
for two C∗-algebra fuzzy mappings using Ishikawa iterative
scheme.

Theorem 18. Let ð℧,A , σÞ be a complete convex C∗-AVMS
andΛ, Y : ℧⟶ KðY ,ΛÞð℧Þ be any two C∗-AVFMs satisfying:

σ∞ Y j,Λℓð Þ ≤ λ∗σ j, ℓð Þλ, ð26Þ

for all j, ℓ ∈℧ with λ ∈A such that ∥λ∥<1. Assume further
that CðY ,ΛÞ ≔ FixðYÞ ∩ FixðΛÞ ≠∅, and every a ∈ CðY ,ΛÞ is
a common stationary point of Y and Λ. Then, the sequence
of Ishikawa iterative scheme set-up by

jn+1 =Ψ zn, jn, ηnð Þ, ℓn =Ψ z′, jn, ξn
	 


, ð27Þ

where zn ∈ ½Λjn�αðjnÞ, zn′ ∈ ½Y jn�αðjnÞ, and ηn, ξn ∈D, converges
to an element of CðY ,ΛÞ, provided limn⟶∞σðjn, CðY ,ΛÞÞ = 0A .

Proof. Let a ∈ CðY ,ΛÞ. Assume that jn ≠ a for all n ∈ℕ. Then

σ ℓn, að Þ = σ Ψ zn′
	 


, jn, ξn
	 


a≼ξnσ zn′ , a
	 


+ 1 − ξnð Þσ jn, að Þ,
ð28Þ

from which it follows that

∥σ ℓn, að Þ∥ ≤ ξn∥σ zn′ , a
	 


∥+ 1 − ξnð Þ∥σ jn, að Þ∥

≤ ξn∥ℵ Y jn½ �α jnð Þ, Λa½ �α að Þ
	 


∥+ 1 − ξnð Þ∥σ jn, að Þ∥
≤ ξn∥σ∞ Y jn,Λað Þ∥+ 1 − ξnð Þ∥σ jn, að Þ∥
≤ ∥λ∗σ ℓn, að Þλ∥+ 1 − ξnð Þ∥σ jn, að Þ∥
≤ ξn∥λ∥

2∥σ jn, að Þ∥+ 1 − ξnð Þ∥σ jn, að Þ∥
< ξn∥σ jn, að Þ∥+ 1 − ξnð Þ∥σ jn, að Þ∥ = ∥σ jn, að Þ∥:

ð29Þ

Similarly,

σ jn+1, að Þ = σ Ψ zn, jn, ηnð Þ, að Þ≼ηnσ zn, að Þ + 1 − ηnð Þσ jn, að Þ,
ð30Þ

which gives

∥σ jn+1, að Þ∥ ≤ ηn∥σ zn, að Þ∥+ 1 − ηnð Þ∥σ jn, að Þ∥
≤ ηn∥ℵ Λjn½ �α jnð Þ, Ya½ �α að Þ

	 

∥+ 1 − ηnð Þ∥σ jn, að Þ∥

≤ ηn∥λ∥
2∥σ jn, að Þ∥+ 1 − ηnð Þ∥σ jn, að Þ∥

< ηn∥σ jn, að Þ∥+ 1 − ηnð Þ∥σ jn, að Þ∥ = ∥σ jn, að Þ∥:
ð31Þ

Hence, in line with the proof of Theorem 17, we can
prove that fjngn∈ℕ is a Cauchy sequence with respect to A

, and the completeness of ð℧,A ,Ψ, σÞ implies that fjngn∈ℕ
converges to some u∗ ∈℧. Thus, consistent with Theorem
17, we obtain that u∗ ∈ FixðYÞ ∩ FixðΛÞ.

As some consequences of Theorem 17 and Theorem 18,
the following two results, using C∗-algebra-valued Hausdorff
distance function, can be deduced easily.

Corollary 19. Let ð℧,A ,Ψ, σÞ be a complete convex C∗-
AVMS and Y : ℧⟶ KYð℧Þ be a C∗-AVFM. Suppose that
FixðYÞ ≠∅ and every a ∈ FixðYÞ is a stationary point of Y .
Let fjngn∈ℕ be the Mann iterative scheme set-up by (14). If
there exist α ∈D \ f0g and λ ∈A with ∥λ∥<1 such that for
all j, ℓ ∈℧,

D∗
α Yj, Yℓð Þ ≤ λ∗σ j, ℓð Þλ, ð32Þ

then fjngn∈ℕ converges to a fuzzy FP of Y , provided
limn⟶∞σðjn, FixðYÞÞ = 0A .
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Proof. Since for all j, ℓ ∈℧ and α ∈D \ f0g,

∥D∗
α Y j, Yℓð Þ∥ ≤ ∥σ∞ Y j, Yℓð Þ∥: ð33Þ

Theorem 17 can be followed to complete the proof.

On the same steps in deriving Corollary 19, we can also
deduce the following result.

Corollary 20. Let ð℧,A ,Ψ, σÞ be a complete convex C∗-
AVMS and Y ,Λ : ℧⟶ KðY ,ΛÞð℧Þ be any two C∗-AVFMs.
Assume further that CðY ,ΛÞ = FixðYÞ ∩ FixðΛÞ ≠∅ and every
a ∈ FixðYÞ is a common stationary point of Y and Λ. Let
fjngn∈ℕ be the Ishikawa iterative scheme set-up by (23). If
there exist α ∈D \ f0g and λ ∈A with ∥λ∥<1 such that for
all j, ℓ ∈℧,

D∗
α Y j,Λℓð Þ ≤ λ∗σ j, ℓð Þλ, ð34Þ

then fjngn∈ℕ converges to a common fuzzy FP of Y and Λ,
provided

lim
n⟶∞

σ jn, C Y ,Λð Þ
	 


= 0A : ð35Þ

3. Open Problems

For some future examinations of our main results, the fol-
lowing two problems are highlighted:

(P1) It is well-known that the importance of contractive
mapping is to guarantee the existence and uniqueness of a
fixed point of certain self-mappings in complete spaces. On
this note, following Theorem 17 and Theorem 18, sufficient
criteria guaranteeing the existence of fixed points of C∗

-algebra-valued fuzzy λ-contractions is still a gap that
needed to be filled.

(P2) In this article, Mann and Ishikawa iterations are
used to develop the ideas of C∗-algebra-valued fuzzy λ
-contractions and associated fixed point theorems. Hence,
it is natural to ask whether Picard iteration for C∗-algebra-
valued fuzzy λ-contraction mapping converges or not.

4. Conclusions

Based on the ideas of fuzzy mappings and C∗-AVMSs in the
sense of Heilpern [16] and Ma et al. [2], respectively, ana-
logue notions of C∗-algebra-valued fuzzy contractions in
convex C∗-AVMSs and associated FP theorems are estab-
lished. The obtained fuzzy FP results are analysed using
Mann and Ishikawa iterative schemes. It is pertinent to note
that the ideas of this paper being discussed in fuzzy setting
are very fundamental. Hence, it can be improved upon when
presented in the framework of some generalized fuzzy map-
pings such as L-fuzzy, intuitionistic fuzzy, and soft set-
valued mappings. The underlying space can also be fine-
tuned in some other pseudo or quasi metric spaces. For
some future considerations of our results, two open prob-
lems are posed regarding sufficient conditions under which
C∗-algebra-valued fuzzy λ-contraction has a fixed point

and whether or not the Picard iteration for C∗-algebra-
valued fuzzy λ-contraction converges.
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We introduce an additive ðs, tÞ-functional inequality where s and t are nonzero complex numbers with
ffiffiffi
2

p jsj + jtj < 1: Using the
direct method and the fixed point method, we give the Hyers–Ulam stability of such functional inequality in Banach spaces.

1. Introduction and Preliminaries

A problem regarding the stability of homomorphisms was
mentioned by Ulam [1] in 1940. The first answer was then
found by Hyers in [2] which motivating the study of the sta-
bility problems of functional equations. We may roughly say
that a given functional equation is stable on a class of func-
tions A when any function in A approximately satisfies such
equation. One of the well-known functional equations is the
(additive) Cauchy functional equation f ða + bÞ = f ðaÞ + f ðbÞ
which is a useful tool in natural and social sciences. The sta-
bility of functional equations has been widely acknowledged
as Hyers–Ulam stability. It was notably weakened by Rassias
in [3] by making use of a direct method. The result was later
extended in [4] which uses a general control function instead
of the unbounded Cauchy difference. The concept of stability
has been also developed for functional inequalities. Recently,
Park introduced additive ρ-functional inequalities (s-type
functional inequalities) and investigated the Hyers–Ulam
stability in [5, 6]. Over the last decades, stability of functional
equations and functional inequalities have been extensively
studied, see [7–13], for example.

Not only the direct method, the fixed point method is
also one of the most popular methods of proving the stability
of functional equations and functional inequalities. Applica-

tions of stability of functional equations in a fixed point the-
ory and in nonlinear analysis were introduced in [14]. It was
known that Hyers–Ulam stability results can be derived
using fixed point theorems while the latter can often be
obtained from the former, see [15–20] and there references.

The Hyers–Ulam stability concept is very useful in many
applications (i.e., optimization, numerical analysis, biology,
and economics), since it can be very difficult to find the exact
solutions for those physical problems. It is remarkably used
in the field of differential equations. For some recent works,
see [21–23] (and references therein) where the Hyers–Ulam
stability results concerning (fractional) stochastic functional
differential equations were given.

We denote ℂ,ℕ, and ℝ+ the set of complex numbers, the
set of positive integers and the set of positive real numbers,
respectively, and let ℕ0 =ℕ ∪ f0g and ℝ+

0 =ℝ+ ∪ f0g:
Now, let s, t ∈ℂ \ f0g such that

ffiffiffi
2

p jsj + jtj < 1: Yun
and Shin [24] investigated the additive ðs, tÞ-functional
inequality:

2f a + b
2

� �
− f að Þ − f bð Þ

����
����

≤ s f a + bð Þ + f a − bð Þ − 2f að Þð Þk k
+ t f a + bð Þ − f að Þ − f bð Þð Þk k,

ð1Þ
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while Park [25] proposed the additive ðs, tÞ-functional
inequality:

f a + bð Þ − f að Þ − f bð Þk k
≤ s f a + bð Þ + f a − bð Þ − 2f að Þð Þk k

+ t 2f a + b
2

� �
− f að Þ − f bð Þ

� �����
����,

ð2Þ

and provided the Hyers–Ulam stability results in a Banach
space.

In this article, motivated by those ðs, tÞ-type inequalities
mentioned above, we introduce the additive ðs, tÞ-functional
inequality:

2f a + b
2

� �
+ f a − bð Þ − 2f að Þ

����
����

≤ s f a + bð Þ + f a − bð Þ − 2f að Þð Þk k
+ t f a + bð Þ − f að Þ − f bð Þð Þk k:

ð3Þ

We first investigate the Hyers–Ulam stability of such
functional inequality using the direct method in Section 2.
Then, in Section 3, we use the fixed point method to prove
the Hyers–Ulam stability of such inequality. We also include
some example and remarks in the last section. Note that,
since ðs, tÞ-type functional inequalities generalize s-type
functional inequalities, our results simply extend existing
Hyers–Ulam stability results for functional inequalities of s
-type in the literature. These results span alongside those
regarding other ðs, tÞ-type functional inequalities.

Throughout this article, let X and B be a normed space
and a Banach space, respectively, and let s, t ∈ℂ \ f0g such
that

ffiffiffi
2

p jsj + jtj < 1: For convenience, we also require the fol-
lowing classes of mappings:

F0 X, Bð Þ≔ g : X ⟶ B : g 0ð Þ = 0f g,
A X, Bð Þ≔ g : X⟶ B : g satisfies 1:1ð Þf g,

A0 X, Bð Þ≔F0 X, Bð Þ ∩A X, Bð Þ:
ð4Þ

2. Stability Results: Direct Method

In this section, the stability results of the additive ðs, tÞ
-functional inequality (3) are proposed by using the direct
method. We begin with the lemma showing that any map
g in AðX, BÞ is additive.

Lemma 1. If g ∈AðX, BÞ, then g is additive.

Proof. Taking a = b = 0 into (3), we obtain that ð1 − jtjÞkg
ð0Þk ≤ 0: However, jtj < 1 implies that gð0Þ = 0. Also, if we
let b = 0 in (3), then

g að Þ = 2g a
2

� �
, ð5Þ

for all a ∈ X: From (3) and (5),

1 − sj jð Þ g a + bð Þ + g a − bð Þ − 2g að Þk k
≤ tj j g a + bð Þ − g að Þ − g bð Þk k, ð6Þ

for all a, b ∈ X. Next, taking c = a + b and d = a − b in (3), we
have that

1 − sj jð Þ g cð Þ + g dð Þ − 2g c + d
2

� �����
����

≤ tj j g cð Þ − g
c + d
2

� �
− g

c − d
2

� �����
����:

ð7Þ

Then, from (5),

1 − sj jð Þ g c + dð Þ − g cð Þ − f dð Þk k
≤

tj j
2 g c + dð Þ + g c − dð Þ − 2g cð Þk k,

ð8Þ

for all c, d ∈ X. Applying (6) and (8),

1 − sj jð Þ2 g a + bð Þ − g að Þ − g bð Þk k

≤
tj j
2
2
g a + bð Þ − g að Þ − g bð Þk k,

ð9Þ

for all a, b ∈ X. Finally, since
ffiffiffi
2

p jsj + jtj < 1, we obtain that g
is additive.

We are now ready to present the main result.

Theorem 2. Let φ : X × X⟶ℝ+
0 be a map such that

Φ a, bð Þ≔ 〠
∞

j=0
2jφ 2−ja, 2−jb

� 	
<∞, ð10Þ

for all a, b ∈ X: For any f ∈F0ðX, BÞ satisfying

2f
a + b
2

� �
+ f a − bð Þ − 2f að Þ

����
����

≤ s f a + bð Þ + f a − bð Þ − 2f að Þð Þk k
+ t f a + bð Þ − f að Þ − f bð Þð Þk k + φ a, bð Þ,

ð11Þ

for all a, b ∈ X, there exists a unique F ∈A0ðX, BÞ such that

f að Þ − F að Þk k ≤Φ a, 0ð Þ, ð12Þ

for all a ∈ X.

Proof. We first let b = 0 in (11). This implies that

2f a
2

� �
− f að Þ

���
��� ≤ φ a, 0ð Þ, ð13Þ
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for all a ∈ X. It follows that for any m, l ∈ℕ0 with m > l,

2l f 2−la
� �

− 2mf 2−mað Þ
���

���

≤ 〠
m−1

j=l
2j f 2−ja

� 	
− 2j+1 f 2− j+1ð Þa

� ����
���

≤ 〠
m−1

j=l
2jφ 2−ja, 0

� 	
,

ð14Þ

for all a ∈ X: The completeness of B confirms that the Cau-
chy sequence f2k f ð2−kaÞg is convergent for any a ∈ X:
Define F : X⟶ B by

F að Þ = lim
k⟶∞

2k f 2−ka
� �

, ð15Þ

for all a ∈ X. Clearly, F ∈F0ðX, BÞ: Next, choosing l = 0 and
letting m⟶∞ in (14), we have that F satisfies (12). Then,
from (10) and (11),

2F a + b
2

� �
+ F a − bð Þ − 2F að Þ

����
����

= lim
n⟶∞

2n 2f 2− n+1ð Þ a + bð Þ
� �

+ f 2−n a − bð Þð Þ − 2f 2−nað Þ
���

���
≤ sj j lim

n⟶∞
2n f 2−n a + bð Þð Þ + f 2−n a − bð Þð Þ − 2f 2−nað Þk k

+ tj j lim
n⟶∞

2n f 2−n a + bð Þð Þ − f 2−nað Þ − f 2−nbð Þk k
+ lim

n⟶∞
2nφ 2−na, 2−nbð Þ = s F a + bð Þ + F a − bð Þ − 2F að Þð Þk k

+ t F a + bð Þ − F að Þ − F bð Þð Þk k,
ð16Þ

for all a, b ∈ X. By Lemma 1, F ∈A0ðX, BÞ: Finally, let G be
another map in A0ðX, BÞ satisfying (12). Then, for any a ∈
X,

F að Þ − G að Þk k = 2pF 2−pað Þ − 2pG 2−pað Þk k
≤ 2pF 2−pað Þ − 2p f 2−pað Þk k

+ 2pG 2−pað Þ − 2p f 2−pað Þk k
≤ 2p+1Φ 2−pa, 0ð Þ:

ð17Þ

Therefore, kFðaÞ − GðaÞk⟶ 0 as p⟶∞: The
uniqueness of F follows.

Corollary 3. For r, ϑ ∈ℝ+
0 with r > 1, if f ∈F0ðX, BÞ satisfy-

ing

2f
a + b
2

� �
+ f a − bð Þ − 2f að Þ

����
����

≤ s f a + bð Þ + f a − bð Þ − 2f að Þð Þk k
+ t f a + bð Þ − f að Þ − f bð Þð Þk k + ϑ ak kr + bk krð Þ,

ð18Þ

for all a, b ∈ X, then there exists a unique F ∈A0ðX, BÞ such
that

f að Þ − F að Þk k ≤ 2rϑ
2r − 2

ak kr , ð19Þ

for all a ∈ X.

Proof. Let φða, bÞ = ϑðkakr + kbkrÞ for all a, b ∈ X in Theo-
rem 2. The result immediately follows.

Theorem 4. Let φ : X × X⟶ℝ+
0 be a map satisfying

Ψ a, bð Þ≔ 〠
∞

j=1
2−jφ 2ja, 2jb

� 	
<∞, ð20Þ

for all a, b ∈ X, and let f ∈F0ðX, BÞ satisfy (11). Then,
there exists a unique F ∈A0ðX, BÞ such that

f að Þ − F að Þk k ≤Ψ a, 0ð Þ, ð21Þ

for all a ∈ X.

Proof. It follows from (13) that k f ðaÞ − ð1/2Þf ð2aÞk ≤ ð1/2Þ
φð2a, 0Þ for all a ∈ X. Then, for m, l ∈ℕ0 with m > l,

2−l f 2la
� �

− 2−mf 2mað Þ
���

���

≤ 〠
m−1

j=l
2−j f 2ja

� 	
− 2− j+1ð Þ f 2j+1a

� 	���
���

≤ 〠
m

j=l+1
2−jφ 2ja, 0

� 	
,

ð22Þ

for all a ∈ X. Now, let a ∈ X: It follows from the complete-
ness of B that f2−n f ð2naÞg is convergent in X. Next, define
a map F : X⟶ B by

F að Þ = lim
n⟶∞

2−n f 2nað Þ, ð23Þ

for all a ∈ X. Choosing l = 0 and taking m⟶∞ in (22), we
have that F satisfies (21). The rest is similar to the Proof of
Theorem 2.

Let φða, bÞ = ϑðkakr + kbkrÞ for all a, b ∈ X: The follow-
ing result is straightforward.

Corollary 5. Let r, ϑ ∈ℝ+
0 with r < 1: If f ∈F0ðX, BÞ satisfies

(18), then there exists a unique F ∈A0ðX, BÞ such that

f að Þ − F að Þk k ≤ 2rϑ
2 − 2r

ak kr , ð24Þ

for all a ∈ X.

3. Stability Results: Fixed Point Method

In this section, we apply the fixed point method to present
the Hyers–Ulam stability of the functional inequality (3).
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We first state a useful tool in the field of fixed point
theory.

Proposition 6. [26, 27]. Let ðX, dÞ be a complete generalized
metric space, and let L : X ⟶ X be a strict Lipschitz con-
traction with the Lipschitz constant α < 1: Then, for a ∈ X,
either

(a) dðLna,Ln+1aÞ =∞ for all n ∈ℕ0 or

(b) dðLna,Ln+1aÞ <∞ for all n ≥ n0 for some n0 ∈ℕ;
Lna⟶ b∗ where b∗ is a unique fixed point of L
in X0 ≔ fb ∈ X ∣ dðLn0a, bÞ<∞g and dðb, b∗Þ ≤ ð1/ð
1 − αÞÞdðb,LbÞ for all b ∈ X0

Theorem 7. Let φ : X × X ⟶ℝ+
0 be a function such that

φ
a
2
, b
2

� �
≤
L
2
φ a, bð Þ, ð25Þ

for all a, b ∈ X for some L ∈ℝ+
0 with L < 1: Then, for f ∈F0

ðX, BÞ satisfying (11), there exists a unique F ∈A0ðX, BÞ such
that

f að Þ − F að Þk k ≤ 1
1 − L

φ a, 0ð Þ, ð26Þ

for all a ∈ X.

Proof. Firstly, let us equip F0ðX, BÞ with the generalized
metric d defined by

d g, hð Þ = inf μ ∈ℝ+ : g að Þ − h að Þk k ≤ μφ a, 0ð Þ, for all a ∈ Xf g:
ð27Þ

Then, from [28], ðF0ðX, BÞ, dÞ is complete. Next, define
a map J : F0ðX, BÞ⟶F0ðX, BÞ by

Jg að Þ = 2g a
2

� �
, ð28Þ

for all a ∈ X. Let g, h ∈F0ðX, BÞ where dðg, hÞ = ε. Then,

g að Þ − h að Þk k ≤ εφ a, 0ð Þ, ð29Þ

for all a ∈ X. Consequently,

Jg að Þ − Jh að Þk k = 2g a
2

� �
− 2h a

2
� ����

��� ≤ 2εφ a
2 , 0

� �

≤ 2ε L2 φ a, 0ð Þ = Lεφ a, 0ð Þ,
ð30Þ

for all a ∈ X: Then, dðJg, JhÞ ≤ Lε which means that

d Jg, Jhð Þ ≤ Ld g, hð Þ, ð31Þ

for all g, h ∈F0ðX, BÞ: By (13), we have that dð f , J f Þ ≤ 1:

Now, let a ∈ X: From Proposition 6, there exists F : X
⟶ B satisfying the following:

(i) F is a unique fixed point of J , i.e., FðaÞ = 2Fða/2Þ
for all a ∈ X

(ii) dðJ l f , FÞ⟶ 0 as l⟶∞

d f , Fð Þ ≤ 1
1 − L

d f , J fð Þ: ð32Þ

It follows that

f að Þ − F að Þk k ≤ μφ a, 0ð Þ ð33Þ

(a) liml⟶∞2l f ð2−laÞ = FðaÞ and

f að Þ − F að Þk k ≤ 1
1 − L

φ a, 0ð Þ ð34Þ

Using the same method as in the proof of Theorem 2, we
can prove that F ∈A0ðX, BÞ:

Corollary 8. Let r, ϑ ∈ℝ+
0 with r > 1: If f ∈F0ðX, BÞ satisfies

(18), then there exists a unique F ∈A0ðX, BÞ such that

f að Þ − F að Þk k ≤ 2rϑ
2r − 2

ak kr , ð35Þ

for all a ∈ X.

Proof. By taking L = 21−r and φða, bÞ = ϑðkakr + kbkrÞ for all
a, b ∈ X in Theorem 7, the result follows.

Theorem 9. Let φ : X × X⟶ℝ+
0 be a map such that

φ a, bð Þ ≤ 2Lφ
a
2
, b
2

� �
, ð36Þ

for all a, b ∈ X, for some L ∈ℝ+
0 with L < 1: Then, for any f

∈F0ðX, BÞ satisfying (11), there exists a unique F ∈A0ðX,
BÞ such that

f að Þ − F að Þk k ≤ L
1 − L

φ a, 0ð Þ, ð37Þ

for all a ∈ X.

Proof. We first consider the complete metric space ðF0ðX,
BÞ, dÞ given as in the proof of Theorem 7. Define a mapping
J : F0ðX, BÞ⟶F0ðX, BÞ by

Jg að Þ = 1
2g 2að Þ, ð38Þ
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for all a ∈ X. It follows from (13) and (36) that

f að Þ − 1
2 f 2að Þ

����
���� ≤

1
2φ 2a, 0ð Þ ≤ Lφ a, 0ð Þ, ð39Þ

for all a ∈ X. As in the proof of Theorem 2 and Theorem 7,
there exists a unique F ∈A0ðX, BÞ satisfying (37).

Corollary 10. Let r, ϑ ∈ℝ+
0 with r < 1, and let f ∈F0ðX, BÞ be

a map satisfying (18). Then, there exists a unique F ∈A0ðX
, BÞ such that

f að Þ − F að Þk k ≤ 2rϑ
2 − 2r

ak kr , ð40Þ

for all a ∈ X.

Proof. Taking L = 2r−1 and φða, bÞ = ϑðkakr + kbkrÞ for all a
, b ∈ X in Theorem 9, the result follows.

4. Conclusions and Final Remarks

We have obtained several Hyers–Ulam stability results for
the functional inequality (3) using the direct method and
the fixed point method. We now discuss some example for
Theorem 2 (via Corollary 3). Consider the sequence space
l2 equipped with the 2-norm. Define f : l2 ⟶ l2 by

f að Þ = a1 + a2, a1 − a2, 2a3, 0, 0, 0,⋯ð Þ, ð41Þ

for all a = ða1, a2, a3,⋯Þ ∈ l2. Let ϑ = r = 2. Then, f ∈F0ðX,
BÞ satisfies (18). By Corollary 3, there exists a unique F ∈
A0ðX, BÞ such that k f ðaÞ − FðaÞk2 ≤ 4kak22 for all a ∈ l2.
This example is also valid for the other corollaries in the
paper.

There could also be other ðs, tÞ-type functional inequal-
ities to be investigated, and thus, of course, their stability
results to be examined. Moreover, these functional inequal-
ities can still be possibly generalized in several ways.
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The aim of this work is to investigate the concept of a new hybrid Suzuki contractive by using the Rus-Reich-Ćirić-type
interpolative mappings in b-metric spaces. We seek the presence and uniqueness of a fixed point of such new contraction type
mappings and prove some related results. We further give an application of Ulam-Hyers-type stability to show the well-
posedness of our results.

1. Introduction and Preliminaries

Fixed point hypothesis has been a considerable area of
research for mathematics and other sciences for the last cen-
tury. It is the basis of functional analysis in mathematics,
which is one of the critical topics of mathematics. The first
concept of fixed point theory is knowing to appear in the
work of Liouville in 1837 and Picard in 1890. But the main
fixed point theorem was introduced by Banach [1]. The the-
orem is named after Banach. There are many generalizations
of Banach theorem in the literature. In 1968, one of the most
famous generalizations due to know, Kannan [2] introduced
a new and useful contraction using Banach’s theorem.
Suzuki [3] introduced important extensions of Banach’s
main theorem, which we refer to [4–6]. In one of these stud-
ies [7], the researchers investigated a new extensive result by
using simulation function. On the other hand, in [8], by
using other auxiliary functions, called the Wardowski func-
tions, they observed a contraction that combines both linear
and nonlinear contractions. We also mention that in [9], the
author obtained a fixed point theorem without the Picard
operator. For more interesting results, see, e.g., [10–19]. In
addition, Banach’s fixed point theorem is a significant mean
in the theory of metric spaces. The metric concept has been
generalized from different angles. One of the significant gen-
eralizes is defined b-metric which was defined as follows.

Definition 1 (see [20, 21]). Let L be a (nonempty) set and
s ≥ 1 a real number. A function b : L ×L ⟶ ½0,∞Þ is a b
-metric space on L if following conditions are satisfied:

(i) bðr, vÞ = 0, if r = v

(ii) bðr, vÞ = bðv, rÞ
(iii) bðr, vÞ ≤ s½bðr, qÞ + bðq, vÞ�, for every r, v, q ∈L

In this case, the pair ðL , b, sÞ is called a b-metric space.

We recollect some basic notions that are used in our
study.

A map φ : ½0,∞Þ⟶ ½0,∞Þ is defined as a comparison
function if it is increasing and φqðzÞ⟶ 0, q⟶∞, for
any z ∈ ½0,∞Þ. We state by Φ the class of all the compar-
ison functions φ : ½0,∞Þ⟶ ½0,∞Þ, see, e.g., [22–24].
Defined by Ψ = fψ : ½0,∞Þ⟶ ½0,∞Þ jψis the b‐
comparison functiong.

Lemma 2 (see [22, 23]). For a comparison function, φ : ½0,
∞Þ⟶ ½0,∞Þ satisfying the below statements take

(1) every iterate φl of φ, l ≥ 1 is a comparison function

(2) φ is continuous
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(3) φðzÞ < z, for any z > 0

Lemma 3 (see [25]). If φ : ½0,∞Þ⟶ ½0,∞Þ is a b-compari-
son function, then,

(1) the series ∑∞
l=0s

lφlðzÞ converges for any z ∈ ½0,∞Þ
(2) the function bs : ½0,∞Þ⟶ ½0,∞Þ defined by bsðzÞ =

∑∞
l=0s

lφlðzÞ, z ∈ ½0,∞Þ is increasing and continuous
at 0:

We state that any b-comparison function is a comparison
function because of Lemma 2.3, and thus, in Lemma 2.2 any
b-comparison function ψ satisfies ψðzÞ < z.

Karapinar [26] introduced interpolation Kannan-type
contraction generalized from the famous Kannan fixed point
theorem by using interpolative operator. In the following,
the common fixed point theorem for this contraction was
obtained [27]. In [28], the authors extended the results in
[26] by introducing the interpolative Reich-Rus-Ćirić con-
tractive in a general framework, in the setting of partial met-
ric space. In addition, the interpolative Hardy-Rogers-type
contractive was defined and discussed in [28]. The contrac-
tion, defined in [29], was generalized in [30] by involving
the admissibility into the contraction inequality. Further-
more, in [31], hybrid contractions were considered. Indeed,
the notion of hybrid contraction here refers to combination
of interpolative (nonlinear) contraction and linear contrac-
tion. For more interesting papers, see [32–34].

In 2019, inspired by interpolative contraction,
researchers [35] obtained and published a hybrid contractive
that integrates Reich-Rus-Ćirić-type contractive and
interpolative-type mappings. In particular, this approach
was applied for Pata-Suzuki-type contraction in [36]. On
the other hand, by using hybrid contraction, a solution for
a Volterra fractional integral equation was proposed in
[37]. Furthermore, the hybrid contractions were discussed
in a distinct abstract space, namely, Branciari-type distance
space, in [38]. Another advance was recorded in [39] where
the authors investigated the Ulam-type stability of this con-
sideration. In addition, new hybrid contractions were devel-
oped in b-metric spaces [40]. As a result, as can be seen in
the literature review, many papers were published on the
subject of interpolative contraction and hybrid contraction
inspired by it. The contractions are a current study topic
for fixed point theory. Therefore, the results of the study
contribute to the existing literature.

Now we give the idea of α-admissibility defined by Samet
et al. [41] and Karapnar and Samet [42].

Definition 4. A mapping M : L ⟶L is defined α-admis-
sible if for each r, v ∈L we have

α r, vð Þ ≥ 1⇒ α Mr, Mvð Þ ≥ 1, ð1Þ

where α : L ×L ⟶ ½0,∞Þ is a given function.

The mapping of w-orbital admissibility was presented by
Popescu [43] as a modification of α-admissibility as follows:

Definition 5. Let w : L ×L ⟶ ½0,∞Þ be a mapping and
L ≠∅. A mapM : L ⟶L is defined w-orbital admissible
if for every r ∈L , we get

w r, Mrð Þ ≥ 1⇒w Mr, M2r
� �

≥ 1: ð2Þ

The following condition has often been considered on
account of refraining from the continuity of the concerned
contractive mappings.

Definition 6. A space ðL , b, sÞ is defined w-regular, if frqg is
a sequence in L such that αðrq, rq+1Þ ≥ 1 for all q ∈ℕ and
rq ⟶ r ∈L as q⟶∞; then, there exists a subsequence
frqðpÞg of frqg such that wðrqðpÞ, rÞ ≥ 1 for all p.

The framework of this study is organized into four sec-
tions. After the first introduction section, in Section 2, we
introduced the definitions, theorems, and some results on
the Ćirić-Rus-Reich-Suzuki-type hybrid. In Section 3, we
give an application Ulam-Hyers-type stability to show the
well-posedness for our fixed point theorem. Finally, in the
last section, the conclusions are drawn.

2. Main Results

We begin with the definition of the Ćirić-Rus-Reich-Suzuki-
type hybrid contraction:

Definition 7. Let ðL , b, sÞ be a b-metric space and w : L ×
L ⟶ ½0,∞Þ be a function. A map M : L ⟶L is a
Ćirić-Rus-Reich-Suzuki-type hybrid contraction (CRRS-
type hybrid contraction) if there exist ψ ∈Ψ such that

1
2s b r,Mrð Þ ≤ b r, vð Þ⇒w r, vð Þb Mr,Mvð Þ ≤ ψ χa

M r, vð Þð Þ,
ð3Þ

for each r, v ∈L , where a ≥ 0 and ρi ≥ 0, i = 1,2,3, such that
ρ1 + ρ2 + ρ3 = 1,

χa
M r, vð Þ = ϱ1 b r, vð Þð Þa + ϱ2 b r, Mrð Þð Þa + ϱ3 b v, Mvð Þð Þa½ �1/a, for a > 0, r ≠ v

b r, vð Þð Þρ1 b r, Mrð Þð Þρ2 b v, Mvð Þð Þρ3 , for a = 0, r, v ∈L \ Fix Mð Þ:

(

ð4Þ

Theorem 8. Let ðL , b, sÞ be a complete b-metric space and w
-orbital admissible map also wðr0,Mr0Þ ≥ 1 for some r0 ∈L .
Given that M : L ⟶L be a CRRS-type hybrid contraction
satisfying one of the following conditions:

(h1) ðL , b, sÞ is w-regular
(h2) M is continuous
(h3) M

2 is continuous and wðr,MrÞ ≥ 1, where r ∈ Fixð
M2Þ:

Thereupon, M admits a fixed point in L .
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Proof. We install an iterative sequence frqg of points such
that Mqðr0Þ = rq for q = 0,1,2,⋯ and r0 ∈L with wðr0, Mr0
Þ ≥ 1. If rq0 = rq0+1 for some integers q0, then rq0 = Mrq0 .
Thus, suppose that rq ≠ rq+1, as M is w-orbital admissible,
then wðr0, Mr0Þ =wðr0, r1Þ ≥ 1 implies that wðr1, Mr1Þ =w
ðr1, r2Þ ≥ 1. Continuing this process, we get

w rq, rq+1
� �

≥ 1: ð5Þ

Condition 1: a > 0, by taking χa
Mðr, vÞ choosing r = rq−1

and v =Mrq−1 = rq in (3) we get

1
2s b rq−1,Mrq−1

� �
= 1
2s b rq−1, rq

� �
≤ b rq−1, rq

� �
⇒ , ð6Þ

w rq−1, rq
� �

b Mrq−1, Mrq
� �

≤ ψ χa
M rq−1, rq
� �� �

, ð7Þ

where

χa
M rq−1, Mrq−1
� �

= ϱ1 b rq−1, Mrq−1
� �� �a + ϱ2 b rq−1, Mrq−1

� �� �a�
+ ϱ3 b Mrq−1, M2rq−1

� �� �ai1/a = ϱ1 b rq−1, rq
� �� �a�

+ ϱ2 b rq−1, rq
� �� �a + ϱ3 b rq, rq+1

� �� �a�1/a
:

ð8Þ

Whereupon, we deduce that

b rq, rq+1
� �

≤w rq−1, rq
� �

b Mrq−1, Mrq
� �

≤ ψ χa
M rq−1, rq
� �� �

= ψ ϱ1 b rq−1, rq
� �� �a + ϱ2 b rq−1, rq

� �� �a + ϱ3 b rq, rq+1
� �� �a� �1/a� �

= ψ ϱ1 + ϱ2ð Þ b rq−1, rq
� �� �a + ϱ3 b rq, rq+1

� �� �a� �1/a� �
:

ð9Þ

If we have given that bðrq, rq+1Þ ≥ bðrq−1, rqÞ, then,
accompanying that ψ is nondecreasing with (9), we get

b rq, rq+1
� �

≤ ψ ϱ1 + ϱ2ð Þ b rq−1, rq
� �� �a + ϱ3 b rq, rq+1

� �� �a� �1/a� �
≤ ψ ϱ1 + ϱ2ð Þ b rq, rq+1

� �� �a + ϱ3 b rq, rq+1
� �� �a� �1/a� �

= ψ ϱ1 + ϱ2 + ϱ3ð Þ b rq, rq+1
� �� �a� �1/a� �

= ψ b rq, rq+1
� �� �a� �1/a� �

= ψ b rq, rq+1
� �� �

< b rq, rq+1
� �

,

ð10Þ

which is a contradiction. Thus, we obtain

b rq, rq+1
� �

< b rq−1, rq
� �

: ð11Þ

As a result, from (9), we will turn into

b rq, rq+1
� �

≤ ψ b rq−1, rq
� �� �

< b rq−1, rq
� �

, ð12Þ

and by similarly this process, we obtain that

b rq, rq+1
� �

≤ ψq b r0, r1ð Þð Þ: ð13Þ

for any q ∈ℕ.
We argue that frqg is a fundamental sequence in ðL , b

, sÞ. Then, let q, l ∈ℕ such that l > q and using the triangle
inequality with (13), we take

b rq, rl
� �

≤ sb rq, rq+1
� �

+ s2b rq+1, rq+2
� �

+⋯+sl−qb rl−1, rlð Þ
≤ sψq b r0, r1ð Þð Þ + s2ψq+1 b r0, r1ð Þð Þ+⋯+sl−qψl−1 b r0, r1ð Þð Þ
= 1
sq−1

sqψq b r0, r1ð Þð Þ + sq+1ψq+1 b r0, r1ð Þð Þ+⋯+sl−1ψl−1 b r0, r1ð Þð Þ
� �

= 1
sq−1

〠
l−1

q=q
sqψq b r1, r0ð Þð Þ:

ð14Þ

By using Lemma 3, the series ∑∞
q=0s

qψqðbðr1, r0ÞÞ is con-
vergent where Ht =∑t

q=0s
qψqðbðr0, r1ÞÞ, the above inequality

finds

b rq, rl
� �

≤
1

sq−1
Hl−1 −Hq−1
� � ð15Þ

and q, l⟶∞, we obtain

b rq, rl
� �

⟶ 0: ð16Þ

Thus, frqg is a fundamental sequence. Accompanying
this together with the fact that the space ðL , b, sÞ is com-
plete, it will imply that there exists p ∈L such that

lim
q⟶∞

b rq, p
� �

= 0: ð17Þ

We argue that p is a fixed point of M.
If the suppose ðh1Þ takes, we get wðrq, pÞ ≥ 1, and we

assert that

either 12s b rq,Mrq
� �

≤ b rq, p
� �

or 12s b Mrq,M Mrq
� �� �

≤ b Mrq, p
� �

,

ð18Þ

for every q ∈ℕ. Since, if we have given that

1
2s b rq,Mrq

� �
> b rq, p

� �
and 1

2s b Mrq,M Mrq
� �� �

> b Mrq, p
� �

,

ð19Þ

then, by using conditions of b-metric spaces ðL , b, sÞ, since
the sequence fbðrq, rq+1Þg is decreasing, we write that

b rq, rq+1
� �

= b rq, Mrq
� �

≤ s b rq, p
� �

+ b p, Mrq
� �� �

< 1
2 b rq, Mrq

� �
+ 1
2 b Mrq, M Mrq

� �� �
= 1
2 b rq, rq+1

� �
+ 1
2 b rq+1, rq+2

� �
< 1
2 b rq, rq+1

� �
+ 1
2 b rq, rq+1

� �
= b rq, rq+1

� �
ð20Þ
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a contradiction. Therefore, for all q ∈ℕ, either

1
2s b rq, Mrq

� �
≤ b rq, p

� �
, ð21Þ

or

1
2s b Mrq, M Mrq

� �� �
≤ b Mrq, p

� � ð22Þ

provides. In the condition that (21) takes, then by (3), we get

b rq+1, Mp
� �

≤w rq, p
� �

b Mrq, Mp
� �

≤ ψ ϱ1 b rq, p
� �� �a + ϱ2 b rq, Mrq

� �� �a + ϱ3 b p, Mpð Þð Þa� �1/a
< ϱ1 b rq, p

� �� �a + ϱ2 b rq, Mrq
� �� �a + ϱ3 b p, Mpð Þð Þa� �1/a

= ϱ1 b rq, p
� �� �a + ϱ2 b rq, rq+1

� �� �a + ϱ3 b p, Mpð Þð Þa� �1/a
:

ð23Þ

If the second condition, (22) holds, we obtain

b rq+2, Mp
� �

≤w rq+1, p
� �

b M2rq, Mp
� �

≤ ψ ϱ1 b Mrq, p
� �� �a + ϱ2 b Mrq, M2rq

� �� �a + ϱ3 b p, Mpð Þð Þa
h i1/a

< ϱ1 b Mrq, p
� �� �a + ϱ2 b Mrq, M2rq

� �� �a + ϱ3 b p, Mpð Þð Þa
h i1/a

= ϱ1 b rq+1, p
� �� �a + ϱ2 b rq+1, rq+2

� �� �a + ϱ3 b p, Mpð Þð Þa� �1/a
:

ð24Þ

Thereupon, taking q⟶∞ in (23) and (24),

b p, Mpð Þ < ϱ1/a3 b p, Mpð Þ ≤ b p, Mpð Þ ð25Þ

which is contraction. Therefore, we get that bðp, MpÞ = 0
that is p =Mp:

If the presume ðh2Þ is correct, and the map M is contin-
uous, we get

Mp = lim
q⟶∞

Mrq = lim
q⟶∞

rq+1 = p: ð26Þ

In case that last supposition, ðh3Þ holds, from above, we
write M2p = limq⟶∞M2rq = limq⟶∞rq+2 = p, we want to
show that Mp = p. Let us pretend otherwise, that is, p ≠Mp
from

1
2s b Mp,M2p

� �
= 1
2s b Mp, pð Þ ≤ b Mp, pð Þ ð27Þ

using (3) we obtain that

b p, Mpð Þ = b M2p, Mp
� �

≤w Mp, pð Þb M2p, Mp
� �

≤ ψ ϱ1 b Mp, pð Þð Þa + ϱ2 b Mp, M2p
� �� �a + ϱ3 b p, Mpð Þð Þa

h i1/a
< ϱ1 b Mp, pð Þð Þa + ϱ2 b Mp, M2p

� �� �a + ϱ3 b p, Mpð Þð Þa
h i1/a

= ϱ1 + ϱ2 + ϱ3ð Þ b p, Mpð Þð Þa½ �1/a = b p, Mpð Þ
ð28Þ

a contradiction. Eventually, p =Mp.

Condition 2: if a = 0, in the equation χa
Mðr, vÞ taking r

= rq−1 and v =Mrq−1 = rq in (3) we write

1
2s b rq−1,Mrq−1

� �
= 1
2s b rq−1, rq

� �
≤ b rq−1, rq

� �
⇒ , ð29Þ

b rq, rq+1
� �

≤w rq−1, rq
� �

b Mrq−1, Mrq
� �

≤ ψ χa
M rq−1, rq
� �� �

= ψ b rq−1, rq
� �� �ρ1 ⋅ b rq−1, Mrq−1

� �� �ρ2 ⋅ b rq, Mrq
� �� �ρ3� �

< b rq−1, rq
� �� �ρ1 ⋅ b rq−1, rq

� �� �ρ2 ⋅ b rq, rq+1
� �� �ρ3 :

ð30Þ
From (30), we find

b rq, rq+1
� �� �1−ϱ3 < b rq−1, rq

� �� �ϱ1+ϱ2 ð31Þ

and from ϱ1 + ϱ2 + ϱ3 = 1, we attain that bðrq, rq+1Þ < bðrq−1
, rqÞ for every q ∈ℕ. Using (30), we take

b rq, rq+1
� �

≤ ψ b rq−1, rq
� �� � ð32Þ

and as in condition 1, we can prove that

b rq, rq+1
� �

≤ ψq b r0, r1ð Þð Þ: ð33Þ

Since the equal methods as in the case of a > 0, we clearly
prove that frqg is a fundamental sequence in a complete b
-metric space. Additionally, for p ∈L so, limq⟶∞bðrq, pÞ
= 0 also we assert that p =Mp. In the meanwhile, ðL , b, sÞ
is w-regular; thus, as frqg confirm (5), and wðrq, rq+1Þ ≥ 1
for each q ∈ℕ, we obtain wðrq, pÞ ≥ 1. Moreover, as in the
proof of condition 1, we know that either

1
2s b rq, Mrq

� �
≤ b rq, p

� �
, ð34Þ

or

1
2s b Mrq, M Mrq

� �� �
≤ b Mrq, p

� � ð35Þ

holds, for each q ∈ℕ. If (34) is taken, we conclude that

b rq+1, Mp
� �

≤w rq, p
� �

b Mrq, Mp
� �

≤ ψ b rq, p
� �� �ϱ1 ⋅ b rq, Mrq

� �� �ϱ2 ⋅ b p, Mpð Þ½ �ϱ3� �
,

= ψ b rq, p
� �� �ϱ1 ⋅ b rq, rq+1

� �� �ϱ2 ⋅ b p, Mpð Þ½ �ϱ3� �
,

< b rq, p
� �� �ϱ1 ⋅ b rq, rq+1

� �� �ϱ2 ⋅ b p, Mpð Þ½ �ϱ3 ,

ð36Þ

Let us assume that inequality (35) is satisfied, then

b rq+2, Mp
� �

≤w rq+1, p
� �

b M2rq, Mp
� �

≤ ψ b Mrq, p
� �� �ϱ1 ⋅ b Mrq, M2rq

� �� �ϱ2 ⋅ b p, Mpð Þ½ �ϱ3
� �

,

= ψ b rq+1, p
� �� �ϱ1 ⋅ b rq+1, rq+2

� �� �ϱ2 ⋅ b p, Mpð Þ½ �ϱ3� �
,

< b rq+1, p
� �� �ϱ1 ⋅ b rq+1, rq+2

� �� �ϱ2 ⋅ b p, Mpð Þ½ �ϱ3 ,
ð37Þ
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Then, getting to the limit, we conclude that bðp, MpÞ = 0,
and p =Mp: Now, the continuity of M implies p =Mp (from
condition 1). Therefore, supposition ðh3Þ lead to M2p =
limq⟶∞M2rq = limq⟶∞rq+2 = p. We will prove that Mp =
p. Let’s presume otherwise, that is, p ≠Mp

1
2s b Mp, M2p

� �
= 1
2s b Mp, pð Þ ≤ b Mp, pð Þ ð38Þ

using (3) we find that

b p, Mpð Þ = b M2p, Mp
� �

≤w Mp, pð Þb M2p, Mp
� �

≤ ψ b Mp, pð Þ½ �ϱ1 ⋅ b Mp, M2p
� �� �ϱ2 ⋅ b p, Mpð Þϱ3½ �

� �
< b Mp, pð Þ½ �ϱ1 ⋅ b Mp, pð Þ½ �ϱ2 ⋅ b p, Mpð Þϱ3½ � = b Mp, pð Þ,

ð39Þ

a contradiction. Consequently, p =Mp. Thus, the proof of
the Theorem is completed.

Theorem 9. Adding wðp, p∗Þ ≥ 1 for any p, p∗ ∈ FixMðLÞ
and if supplying to all the hypothesis of Theorem 8, we prove
the uniqueness of fixed point.

Proof. Supposing that different p∗ is fixed point of M, that is
Mp∗ = p∗ with p ≠ p∗:In the case that a > 0, then, from (3)
we have

1
2s b p,Mpð Þ = 0 ≤ b p, p∗ð Þimplies ð40Þ

b p, p∗ð Þ ≤w p, p∗ð Þb Mp, Mp∗ð Þ ≤ ψ χa
M p, p∗ð Þð Þ < χa

M p, p∗ð Þ
= ϱ1 d p, p∗ð Þð Þa + ϱ2 b p, Mpð Þð Þa + ϱ3 b p∗, Mp∗ð Þð Þa½ �1/a:

ð41Þ
Thus,

b p, p∗ð Þ < ϱ1ð Þ1/ab p, p∗ð Þ ≤ b p, p∗ð Þ ð42Þ

which is contradiction. In the case that a = 0, then, from (4)
we get that

0 < b p, p∗ð Þ < 0, ð43Þ

a contradiction. Eventually, p = p∗, so p is a unique fixed
point of M.

Example 1. Let b : L ×L ⟶ ½0,+∞Þ, bðr, vÞ = jr − vj2 for
every r, v ∈L with s = 2 and

w r, vð Þ =
4, ifr, v ∈ 0, 1½ �
1, ifr = 0, v = 2
0, otherwise

8>><
>>: ð44Þ

also, the function ψ ∈Ψ with ψðtÞ = t/4. Define a mapping

M : L ⟶L as

Mr =
1
5 , if r ∈ 0, 1½ �
r
5 , if r ∈ 1, 2ð �

8><
>: ð45Þ

also, M2 = r/10, we get that M2 is continuous but M is not
continuous, where L = ½0, 2�.

We choose a = 2 and ϱ1 = ϱ2 = ϱ3 = 1/3, then we obtain
the following conditions:

(a) : For r, v ∈ ½0, 1� we get bðMr, MvÞ = 0, then, (3)
holds

(b) : If r = 0 and v = 2

1
2s b 0, M0ð Þ = 1

100 < 4 = b 0, 2ð Þ⇒ : ð46Þ

w 0, 2ð Þb M0, M2ð Þ = 0:04 ≤ 0:3708099243547831 = 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 2ð Þ2 + 1

3
1
5

	 
2
+ 1
3 2 − 2

5

	 
2
s

= ψ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1 b r, vð Þð Þð 2 + ρ2 b r, Mrð Þð Þ2 + ρ3 b v, Mvð Þð Þ2

q
:

ð47Þ
Other conditions are confirmed, from wðr, vÞ = 0: Con-

sequently, the assumptions of Theorem 8, being supplied,
M has a fixed point (r = 1/5).

Corollary 10. Let ðL , b, sÞ be a complete b-metric space and
let M : L ⟶L a continuous map satisfying the following
inequality:

1
2s
b r,Mrð Þ ≤ b r, vð Þ implies b Mr,Mvð Þ ≤ ψ χa

M r, vð Þð Þ, ð48Þ

where χa
Mðr, vÞ is defined by (4), ψ ∈Ψ and for all r, v ∈L ,

where a ≥ 0 and ϱi ≥ 0, i = 1; 2; 3 with ϱ1 + ϱ2 + ϱ3 = 1: In
the case of M or M2 functions continuity, M admits a fixed
point in L .

Proof. It is sufficient to get wðr, vÞ = 1 for r, v ∈L in Theo-
rem 8.

Corollary 11. Let ðL , b, sÞ be a complete b-metric space and
let M : L ⟶L a continuous map satisfying the following
inequality

1
2s
b r,Mrð Þ ≤ b r, vð Þ implies b Mr,Mvð Þ ≤ η χa

M r, vð Þð Þ, ð49Þ

where χa
Mðr, vÞ is defined by (4), η ∈ ½0, 1Þ and for each r, v

∈L where a ≥ 0 and ρi ≥ 0, i = 1; 2; 3 with ρ1 + ρ2 + ρ3 = 1.
In the event of M or M2 functions continuity, M admits a
fixed point in L .

Proof. It is adequate get ψðνÞ = ην for any ν ≥ 0 in Corollary
10.
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Corollary 12. Let ðL , b, sÞ be a complete b-metric space and
M : L ⟶L a continuous map. If there exist η ∈ ½0, 1Þ such
that

1
2s
b r,Mrð Þ ≤ b r, vð Þimplies ð50Þ

b Mr,Mvð Þ ≤ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b r, vð Þb r,Mrð Þb v,Mvð Þ3

p ð51Þ
for each r, v ∈L \ FixðMÞ, in the case of M or M2 functions
continuity, M admits a fixed point in L .

Proof. If a = 0, using Corollary 11, getting ρ1 = ρ2 = ρ3 = 1/3.

Corollary 13. Let ðL , b, sÞ be a complete b-metric space and
M : L ⟶L a continuous map. If there exist η ∈ ½0, 1Þ such
that

1
2s
b r,Mrð Þ ≤ b r, vð Þimplies ð52Þ

b Mr,Mvð Þ ≤ η

3
b r, vð Þ + b r,Mrð Þ + b v,Mvð Þð Þ ð53Þ

for each r, v ∈L \ FixðMÞ, in the case of M or M2 functions
continuity, M admits a fixed point in L .

Proof. By using Corollary 11, letting ϱ1 = ϱ2 = ϱ3 = 1/3 and
a = 1.

Corollary 14. Let ðL , b, sÞ be a complete b-metric space and
M : L ⟶L a continuous map. If there exist η ∈ ½0, 1Þ such
that

1
2s
b r,Mrð Þ ≤ b r, vð Þimplies ð54Þ

b Mr,Mvð Þ ≤ ηffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b r, vð Þð Þ2 + b r,Mrð Þð Þ2 + b v,Mvð Þð Þ2

q	
ð55Þ

for each r, v ∈L \ FixðMÞ, in the case of M or M2 functions
continuity, M admits a fixed point in L .

Proof. By using Corollary 11, taking ϱ1 = ϱ2 = ϱ3 = 1/3 and
a = 2.

3. An Application: Ulam-Hyers-Type Stability

The stability of the solution is a considerable important sub-
ject of nonlinear analysis. Recently, Ulam stability [44, 45]
results in fixed point theory have been investigated heavily.
In what follows. we investigate the Ulam stability of our
main theorem.

Consider the following function:

ϒ : γ : 0,∞½ Þ⟶ 0,∞½ Þsuch that γ is continuous at zerowithf
ð56Þ

γ 0ð Þ = 0 and increasingg ð57Þ

Assume thatM : L ⟶L is a map on a b-metric spaces
ðL , b, sÞ. The fixed point problem ofM is to notice an r ∈L
such that

r =Mr: ð58Þ

Equality (58) is also known as fixed point implication.
The fixed point implication is called to be general Ulam-
Hyers stable if and only if there exists a function γ ∈ϒ so
that for all ε > 0 also for every v∗ ∈L which satisfies the fol-
lowing inequality,

b v∗, Mv∗ð Þ ≤ ε ð59Þ

there exists u ∈L providing the equation (58) such that

b u, v∗ð Þ ≤ γ εð Þ: ð60Þ

Moreover, if there exists a P > 0 such that γðtÞ = Pt for all
t ∈ℝ+, then the fixed point equation (58) is said to be Ulam-
Hyers stable. On the b-metric spaces ðL , b, sÞ, fixed point
problem (58) and M : L ⟶L are defined to be well-
known if the following suppositions are satisfy:

(l1) M has a unique fixed point u ∈L
(l2) limq⟶∞bðu, rqÞ = 0 for every sequence rq ∈L such

that

limq⟶∞b rq, Mrq
� �

= 0 ð61Þ

Theorem 15. Let ðL , b, sÞ be a complete b-metric space. If we
joint the condition a > 0 and eðaÞsaρ1 < 1, where eðaÞ =max
f1, 2a−1g and saρ1 + eðaÞsaðρi + 1Þ < 1, where i = 1 or i = 2
or i = 3, also suppositions of Theorem 9, thus the following
conditions hold:

(a) the fixed point problem (58) is Ulam-Hyers stable, if
wðn,mÞ ≥ 1 for any n,m satisfying the condition (59)

(b) the fixed point problem (58) is well-known, if wðrq,
uÞ ≥ 1 for any frqg in L such that limq⟶∞bðMrq,
rqÞ = 0 and FixMðLÞ = u:

Proof.

(a) Taking into account Theorem 9, we consider that
there is a unique u in L such that Mu = u: Assume
that v∗ is a solution of (59), that is bðv∗, Mv∗Þ ≤ ε
for ε > 0: Clearly, u holds (59), then we get that wð
u, v∗Þ ≥ 1 and using triangular inequality satisfies

b u, v∗ð Þ = b Mu, v∗ð Þ ≤ s b Mu, Mv∗ð Þ + b Mv∗, v∗ð Þ½ � ð62Þ
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Since M is CRRS-type hybrid contraction, we obtain

1
2s b u,Muð Þ = 0 ≤ b u, v∗ð Þimplies ð63Þ

b u, v∗ð Þ ≤ s b Mu, Mv∗ð Þ + b Mv∗, v∗ð Þ½ �
≤ s w u, v∗ð Þb Mu, Mv∗ð Þ + b Mv∗, v∗ð Þ½ �
≤ s ψ χa

M u, v∗ð Þð Þ + b Mv∗, v∗ð Þ½ �
< s χa

M u, v∗ð Þ + b Mv∗, v∗ð Þ½ �
≤ s ρ1 b u, v∗ð Þð Þa + ρ2 d u, Muð Þð Þa + ρ3 b Mv∗, v∗ð Þð Þa½ �1/a

+ sb Mv∗, v∗ð Þ ≤ s ρ1 b u, v∗ð Þð Þa + ρ3ε
a½ �1/a + sε

ð64Þ
Thus, we get

b u, v∗ð Þð Þa ≤ e að Þ saϱ1 b u, v∗ð Þð Þa + saϱ3ε
a + saεa½ � ð65Þ

then,

b u, v∗ð Þð Þa ≤ 1 + ρ3ð Þe að Þsa
1 − ρ1e að Þsa εa ð66Þ

b u, v∗ð Þ ≤ nε ð67Þ
where n = ½ð1 + ϱ3ÞeðaÞsa/1 − ϱ1eðaÞsa�1/a for any a > 0 and
ϱ1 ∈ ½0, 1Þ such that ϱ1 < 1/eðaÞsa:.

(b) The Picard iterations is M-stable, that is, let rq ∈L
such that limq⟶∞bðrq+1, MrqÞ = 0 and FixMðLÞ =
u: From the triangular inequality, we can write

b rq, u
� �

≤ s b rq, Mrq
� �

+ b Mrq, Mu
� �� �

: ð68Þ

Thus, M is a CRRS contraction, we have

1
2s b rq, Mrq

� �
≤ b rq, u

� �
implies ð69Þ

b rq, u
� �

≤ s b rq, Mrq
� �

+ b Mrq, Mu
� �� �

≤ s b rq, Mrq
� �

+w rq, u
� �

b Mrq, Mu
� �� �

≤ s ψ χa
M rq, u
� �� �

+ b rq, Mrq
� �� �

< s χa
M rq, u
� �

+ b rq, Mrq
� �� �

≤ s ρ1 b rq, u
� �� �a + ρ2 b rq, Mrq

� �� �a + ρ3 b Mu, uð Þð Þa� �1/a + sb rq, Mrq
� �

≤ s ρ1 b rq, u
� �� �a + ρ2 b rq, Mrq

� �� �a� �1/a + sb rq, Mrq
� �

:

ð70Þ
Then, we calculate process

b rq, u
� �� �a ≤ e að Þ saϱ1 b rq, u

� �� �a + saϱ2 b rq, Mrq
� �� �a + sa b rq, Mrq

� �� �a� �
ð71Þ

then,

b rq, u
� �� �a ≤ 1 + ϱ2ð Þe að Þsa

1 − ϱ1e að Þsa b rq, Mrq
� �� �a

: ð72Þ

Taking q⟶∞ in the above inequality and using

limq⟶∞bðrq, MrqÞ = 0, we obtain limq⟶∞bðrq, uÞ = 0 the
fixed point equation (58) is well posed.

4. Conclusion

In this study, we present new hybrid fixed point theorems in
b-metric spaces. We obtain the extended results of the inter-
polative Reich-Rus-Ćirić fixed point theorem by using w
-orbital admissible and Suzuki-type mapping. We also offer
an example to show the availability of introduced results.
Further, we obtain Ulam-Hyers-type stability of the fixed
point theorem which is the application of our study.
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In the article, we have proposed a new type of hybrid iterative scheme which is a hybrid of Picard and Thakur et al. repetitive
schemes. This new hybrid iterative scheme converges faster than all leading schemes like Picard-S∗ hybrid, Picard-S, Picard-
Ishikawa hybrid, Picard-Mann hybrid, Thakur et al. and Abbas and Nazir, S-iterative, Ishikawa and Mann iterative schemes for
contraction mapping. By using the Picard-Thakur hybrid iterative scheme, we can find the solution of delay differential equations
and also prove some convergence results for nonexpansive mapping in a uniformly convex Banach space.

1. Introduction

In this article, the set of all positive integers is denoted by I+.
Let N denote the nonempty convex subset of a normed space
and S be its convex subset, and V : S⟶ S is called contrac-
tion mapping if ∥V j −V k∥≤δ∥j − k∥ for all j, k ∈ S and δ ∈ ð0
, 1Þ. If δ = 1, then, themappingV is called nonexpansive map-
ping. An element j ∈ S is said to be a fixed point ofV ifV j = j,
and the set of fixed points of V is denoted by FðV Þ:

In 1890, Picard [1] presented an iterative scheme for
approximating the fixed point which is defined by the
sequence fjng as

j1 = j ∈ S,
jn+1 =V jn,

(
n ∈ I+: ð1Þ

The Krasnoselskii [2] iterative sequence fung is defined as

u1 = u ∈ S,
un+1 = 1 − μð Þun + μV un,

(
n ∈ I+, ð2Þ

where μ ∈ ð0, 1Þ.
In 1953, Mann [3] proposed an iterative scheme which is

defined as

v1 = v ∈ S,
vn+1 = 1 − θnð Þvn + θnV vn,

(
n ∈ I+, ð3Þ

where fθng ∈ ð0, 1Þ:
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In 1974, Ishikawa [4] gave the concept of the two-step
iterative scheme and the sequence fwng of this iterative is
defined as

w1 =w ∈ S,
wn+1 = 1 − θnð Þwn + θnV tn,
tn = 1 − ϑnð Þwn + ϑnVwn,

8>><
>>: n ∈ I+, ð4Þ

where fθng, fϑng ∈ ð0, 1Þ.
In 2007, Agarwal et al. [5] introduced a more generalized

form of the Ishikawa iterative scheme and they called it the S
-iterative scheme and the sequence fpng of the iterative
scheme is defined as

p1 = p ∈ S,
pn+1 = 1 − θnð ÞV pn + θnV qn,
qn = 1 − ϑnð Þpn + ϑnV pn,

8>><
>>: n ∈ I+, ð5Þ

where fθng, fϑng ∈ ð0, 1Þ.
In 2016, Sahu et al. [6] and Thakur et al. [7] proposed a

new scheme which converges faster than all the existing
schemes. The iterative sequence fkng of this scheme is
defined as

k1 = k ∈ S,
kn+1 = 1 − θnð ÞVmn + θnV ln,
ln = 1 − ϑnð Þmn + ϑnVmn,
mn = 1 − σnð Þkn + σnV kn,

8>>>>><
>>>>>:

n ∈ I+, ð6Þ

where fθng, fϑng, and fσng ∈ ð0, 1Þ.
Thakur et al. [7] proposed another iterative scheme which

converges faster than all the above schemes and the iterative
sequence fjng of Thakur et al. is defined as

j1 = j ∈ S,
jn+1 =V kn,
kn =V 1 − θnð Þjn + θnV lnð Þ,
ln = 1 − ϑnð Þjn + ϑnV jnÞ,

8>>>>><
>>>>>:

n ∈ I+, ð7Þ

where fθng, fϑng ∈ ð0, 1Þ.
Recently, Lamba and Panwar [8] introduced a new

three-step iteration process for Susuzki’s nonexpansive map-
ping and called it the Ap iterative scheme whose rate of con-

vergence is faster than those of the leading schemes. The
sequence of the Ap iterative scheme is defined as

j1 = j ∈ S,
jn+1 =V kn,
kn =V 1 − θnð ÞV jn + θnV lnð Þ,
ln =V 1 − ϑnð Þjn + ϑnV jnð Þ,

8>>>>><
>>>>>:

n ∈ I+, ð8Þ

where fθng, fϑng ∈ ð0, 1Þ.
Many physical problems of engineering and applied sci-

ences are mostly constructed in the form of fixed point equa-
tions. In the existence of a fixed point equation involving an
operator, V is guaranteed but the exact solution is not pos-
sible. We can only approximate the solution which becomes
very relevant and this necessitated various iterative schemes
[9–14]. Also, the iterative schemes are used for solving dif-
ferent problems like minimization, equilibrium, viscosity
approximation, and many more problems in different spaces
[15–18].

The Picard iterative scheme is the simplest iteration to
estimate the solution of a fixed point equation. Chidume
[19] introduced some basic results on this iterative scheme.
Chidume generalized and improved the existing results of
the fixed point equation in [20]. Okeke and Abbas [21]
proved the convergence and almost V -stability of Mann-
type and Ishikawa-type random iterative schemes.

In 2013, Khan [22] proposed the Picard-Mann hybrid
iterative scheme. The sequence frng of this scheme is
defined as

r1 = r ∈ S,
rn+1 =V sn,
sn = 1 − θnð Þrn + θnV rn,

8>><
>>: n ∈ I+, ð9Þ

where fθng ∈ ð0, 1Þ.
In 2017, Okeke and Abbas [23] proposed the Picard-

Krasnoselskii hybrid iterative scheme and the sequence frn
g of this iterative scheme is defined as

r1 = r ∈ S,
rn+1 =V sn,
sn = 1 − νð Þrn + νV rn,

8>><
>>: n ∈ I+, ð10Þ

where ν ∈ ð0, 1Þ.
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In 2019, Okeke [24] proposed the Picard-Ishikawa
hybrid iterative scheme and the sequence f f ng of this itera-
tion defined as

f1 = f ∈ S,
f n+1 =V gn,
gn = 1 − θnð Þf n + θnV hn,
hn = 1 − ϑnð Þf n + ϑnV f n,

8>>>>><
>>>>>:

n ∈ I+, ð11Þ

where fθng and fϑng ∈ ð0, 1Þ.
Recently, Srivastava [25] introduced a new type of

hybrid iterative scheme from Picard and S-iteration
(Picars-S hybrid iterative scheme). The sequence fang of
the scheme is defined as

a1 = a ∈ S,
an+1 =V bn,
bn = 1 − θnð ÞV an + θnV cn,
cn = 1 − ϑnð Þan + ϑnV an,

8>>>>><
>>>>>:

n ∈ I+, ð12Þ

where fθng and fϑng ∈ ð0, 1Þ.
Also Lamba and Panwar [26] introduced another hybrid

scheme from Picard and S∗-iteration (Picard-S∗ hybrid iter-
ative scheme) and the sequence fang of the scheme is
defined as

a1 = a ∈ S,
an+1 =V bn,
bn = 1 − θnð ÞV an + θnV cn,
cn = 1 − ϑnð ÞV an + ϑnV dn,
dn = 1 − σnð Þan + σnV an,

8>>>>>>>><
>>>>>>>>:

n ∈ I+, ð13Þ

where fθng, fϑng, and fσng ∈ ð0, 1Þ.
With the motivation towards the usage of hybridization

of iterative schemes, we proposed another type of hybrid
scheme which is the Picard-Thakur hybrid iterative scheme,
defined by the sequence fjng as

j1 = j ∈ S,
jn+1 =V kn,
kn = 1 − θnð ÞVmn + θnV ln,
ln = 1 − ϑnð Þmn + ϑnVmn,
mn = 1 − σnð Þjn + σnV jn,

8>>>>>>>><
>>>>>>>>:

n ∈ I+, ð14Þ

where fθng, fϑng and fσng ∈ ð0, 1Þ.
Rhoades [27] commented on the convergence of two

iterative schemes that converges to a certain fixed point is
as follows:

Let fang and fbng be the two fixed point iterative
schemes that converge to a certain fixed point j∗ of a given

operator V . The sequence fang is better than fbng if

an − j∗k k ≤ bn − j∗k k ∀n ∈ I+: ð15Þ

2. Preliminaries

Berinde and Takens [10] gave the following definitions.

Definition 1 (see [10]). Let ftng and fwng be the two
sequences of the real number converging to t and w, respec-
tively. Suppose that

lim
n⟶∞

tn − tj j
wn −wj j = k: ð16Þ

(i) If k = 0, then, ftng⟶ t faster than fwng⟶w

(ii) If 0 < k <∞, then, the rate of convergence of both
sequences are the same

Definition 2 (see [10]). Let ftng and fwng be the two
sequences of a fixed point iterative scheme, both converges
to a fixed point ξ for a given operator V and fpng,fqng
are two sequences of positive numbers. Suppose that the
error estimates,

tn − ξk k ≤ pn ∀n ∈ I+,
wn − ξk k ≤ qn ∀n ∈ I+,

ð17Þ

are available and fpng,fqng converge to zero. If fpng con-
verges faster than fqng, then, ftng converges faster than f
wng⟶ ξ: Most of the literature on the iterative schemes
deals with the convergence rate and some analyzes its stabil-
ity [28–34]. For proving the results, we need the following
lemma.

Lemma 3 (see [35]). Let frng ∈ℝ+ be a sequence with rn+1
≤ ð1 − τnÞrn: If fτng ⊂ ð0, 1Þ and ∑∞

n=1 =∞, then, limn⟶∞
rn = 0:

Definition 4 (see [36]). Let S be a subset of Banach space B
which is nonempty closed and convex. A mapping V : S
⟶ S is demiclosed w.r.t. b ∈ B, if for each sequence fjng
in S and a ∈ S, fjng converges weakly at a and fV jng con-
verges strongly at b⇒V a = b.

Definition 5 (see [37]). A Banach space B is said to satisfy
Opial’s condition if for any sequence fjng ∈ B,fjng⇀ a,
implies that

liminf
n⟶∞

jn − ak k ≤ liminf
n⟶∞

jn − bk k, ð18Þ

for all b ∈ B with a ≠ b.
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Lemma 6 (see [38]). Let B be a uniformly convex Banach
space and 0 < x ≤ ρn ≤ y < 1∀n ∈ I+. Let fjng, fkng be the
two sequences such that lim supn⟶∞kjnk ≤ l, lim supn⟶∞
kknk ≤ l, and lim supn⟶∞kð1 − σnÞjn + σnknk = l hold for
some l ≥ 0, then limn⟶∞kjn − knk = 0:

Lemma 7 (see [36]). Let V : S⟶ S be a nonexpansive map-
ping with Opial’s property. If fjng⇀ a and limn⟶∞kjn −
V jnk = 0, then, V a = a, i.e., I −V is demiclosed at zero,
where I is the identity mapping on B.

Proposition 8 (see [39]). Let S be a subset of Banach space B
and V : S⟶ S a nonexpansive mapping. Then, for all p, q
∈ S

p −V qk k ≤ 3 p −V pk k + p − qk k: ð19Þ

Senter and Dotson [40] introduced the concept of condi-
tion (I) which is defined as

Definition 9. Let V be a self-mapping on S which is said to
satisfy condition (I), if there is an increasing function Z : ½
0,∞Þ⟶ ½0,∞Þ with Zð0Þ = 0 and ZðtÞ > 0, for all t > 0 such
that

d j,V jð Þð Þ ≥ Z d j, F Vð Þð Þð Þ, ∀j ∈ S, ð20Þ

where dðj, FðV ÞÞ = inf fdðj, j∗Þ: j∗ ∈ FðV Þg.

In this article, we proposed a new hybrid iterative scheme
which converges faster than Mann [3], Ishikawa [4], S-itera-
tion [5], Abbas et al. [9], Thakur et al. [7], Picard-Mann hybrid
[22], Picard-Krasnoselskii [23], Picard-Ishikawa [24], and
Picard-S hybrid iterative schemes [25]. Recently, Srivastava
[25] already proved that the Picard-S hybrid iterative scheme
converges faster than all of the above iterative schemes. There-
fore, we show that our hybrid iterative scheme converges faster
than all the leading schemes. We find the solution of delay dif-
ferential equations using our proposed hybrid iterative scheme
while in last section, we prove some results of this scheme for
nonexpansivemapping in the uniformly convex Banach space.

3. Convergence Analysis

This section deals with the rate of convergence of the Picard-
Thakur hybrid iterative scheme (14) with Picard-S (12),
Picard-Ishikawa (11), Picard-Mann (9), and Thakur et al.
(6).

Proposition 10. Assume that S be a nonempty closed convex
subset of a normed space N and let V : S⟶ S be a contrac-
tion mapping. Suppose that the iterative schemes (12), (11),
(10), (9), and (6) converge to the same fixed point j∗ of V
where fθng, fϑng, and fσng are sequences in ð0, 1Þ such that
0 < μ ≤ fθng, fϑng, fσng < 1, ∀n ∈ I+, and for some μ and δ
∈ ð0, 1Þ: Then, the Picard-Thakur hybrid iterative scheme
(14) converges faster than all the other schemes.

Proof. Let j∗ be a fixed point of an operator V . Using the
definition of contractive mapping and the Thakur et al. iter-
ative scheme (6), we have

kn+1 − j∗k k = 1 − θnð ÞVmn + θnV ln − j∗k k
≤ 1 − θnð Þ Vmn − j∗k k + θn V ln − j∗k k
≤ 1 − θnð Þδ mn − j∗k k + θnδ ln − j∗k k
≤ 1 − θnð Þδ 1 − 1 − δð Þσnð Þ kn − j∗k k

+ δθn 1 − 1 − δð Þϑnð Þ 1 − 1 − δð Þσnð Þ kn − j∗k k
≤ δ 1 − 1 − δð Þσnð Þ 1 − θn + ϑn 1 − 1 − δð Þσnð Þf g½ � kn − j∗k k
≤ δ 1 − 1 − δð Þσnð Þ 1 − 1 − 1 − δð Þθnσnð Þð½ � kn − j∗k k
≤ δ 1 − 1 − δð Þσn − 1 − δð Þθnϑnð Þ½

+ 1 − δð Þ2θnϑnσn
�
kn − j∗k k ≤ δ 1 − 1 − δð Þσnð½

− 1 − δð ÞθnϑnÞ + 1 − δð Þθnϑnσn� kn − j∗k k
≤ δ 1 − 1 − δð Þσnð Þ kn − j∗k k:

ð21Þ

Let

an = δn 1 − 1 − δð Þσð Þn k1 − j∗k k: ð22Þ

Now, for (14),

mn − j∗k k = 1 − σn jn +V jn − j∗ðk k ≤ 1 − σnð Þ jn − j∗k k
+ σnδ jn − j∗k k ≤ 1 − 1 − δð Þσnð Þ jn − j∗k k,

ln − j∗k k = 1 − ϑnð Þmn + ϑnVmn − j∗k k ≤ 1 − ϑnð Þ mn − j∗k k
+ ϑnδ mn − j∗k k ≤ 1 − 1 − δð Þϑnð Þ mn − j∗k k

≤ 1 − 1 − δð Þϑn 1 − 1 − δð Þσnð Þð jn − j∗k k,

kn − j∗k k = 1 − θnð ÞVmn + θnV ln − j∗k k
≤ δ 1 − θnð Þ mn − j∗k k + δθn ln − j∗k k
= δ 1 − θnð Þ 1 − 1 − δð Þσnðð Þ jn − j∗k k

+ θn 1 − 1 − δð Þϑnð Þ 1 − 1 − δð Þσnð Þ jn − j∗k kÞ
= δ 1 − 1 − δð Þσnð Þ 1 − θn + θn − 1 − δð Þθnϑn½ �
� jn − j∗k k = δ 1 − 1 − δð Þσn − 1 − 1 − δð Þσnð Þð
� 1 − δð Þθnϑnð ÞÞ jn − j∗k k = δ 1 − 1 − δð Þσnð
− 1 − δð Þθnϑn + 1 − δð Þ2θnϑnσn

�
jn − j∗k k

≤ δ 1 − 1 − δð Þσn − 1 − δð Þθnϑn + 1 − δð Þθnϑnσnð Þ
� jn − j∗k k ≤ δ 1 − 1 − δð Þ σn + θnϑnðð
− θnϑnσnÞÞ jn − j∗k k:

ð23Þ

Also,

jn+1 − j∗k k = V kn − j∗k k ≤ δ kn − j∗k k
≤ δ δ 1 − 1 − δð Þ σn + θnϑn − θnϑnσnð Þð Þð jn − j∗k k
≤ δ2 1 − 1 − δð Þ σn + θnϑn − θnϑnσnð Þð Þ jn − j∗k k:

ð24Þ
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Let

bn = δ2n 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k: ð25Þ

Then,

bn
an

= δ2n 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k
δn 1 − 1 − δð Þσð Þn k1 − j∗k k

= δn 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k
1 − 1 − δð Þσð Þn k1 − j∗k k ⟶ 0, as n⟶∞:

ð26Þ

Thus, fjng converges faster than fkng, i.e., the Picard-
Thakur iterative scheme converges faster than the Thakur
iterative scheme. Similarly, the inequality proved in Proposi-
tion 3.1 of the Picard-S hybrid iterative scheme [25] is as fol-
lows:

cn = δ2n 1 − 1 − δð Þθϑð Þn a1 − j∗k k: ð27Þ

Then,

bn
an

= δ2n 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k
δ2n 1 − 1 − δð Þθϑð Þn a1 − j∗k k

= 1 − 1 − δð Þ σ + θϑ − θϑσð Þð Þn j1 − j∗k k
1 − 1 − δð Þθϑð Þn a1 − j∗k k ⟶ 0, as n⟶∞:

ð28Þ

Thus, fjng converges faster than fang., i.e., the Picard-
Thakur iterative scheme converges faster than the Picard-S
iterative scheme. Similarly, we can show that Picard-
Thakur hybrid iterative scheme (14) converges faster than
(11), (10), and (9).

Next, we gave an example to show that the Picard-
Thakur hybrid iterative scheme (14) converges faster than
the Picard-S hybrid, Picard-Ishikawa hybrid, Picard-Mann
hybrid, and Thakur iterative schemes.

Example 11. Let V : S⟶ S where S = ½0, 2� ⊂N =ℝ be an
operator defined by

V jð Þ =
1, if j ∈ 0, 1½ �,ffiffiffiffiffiffiffiffiffiffiffi
4 − j2

3

r
, if j ∈ 1, 2½ �:

8><
>: ð29Þ

Choose θn = ðn + 2Þ/ðn + 6Þ, ϑn = ðn2 + 1Þ/ðn2 + n + 1Þ,
σn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn + 1Þ/ð2n + 7Þp
, for each n ∈ I+ with an initial value

j1 = 0:6:V is nonexpansive mapping. All the iterative
schemes converge to the fixed point j∗ = 1. Clearly, in the
Table 1 and Figure 1, we can see that the Picard-Thakur
hybrid iterative scheme (14) converges faster than the
schemes discussed above.

4. Application: Delay Differential Equations

In this section, we can find the solution of the delay differen-
tial equation by using our proposed iterative scheme.

Let the space of all continuous real-valued functions be
denoted by Cð½u, v�Þ on closed interval ½u, v� endowed with
the Chebyshev norm kj −mk∞ and defined as kj −mk∞ =
supr∈½u,v�jjðrÞ −mðrÞj, and it is clear that in [41] that
(Cð½u, v�, k:k∞Þ) is a Banach space. Now, consider the follow-
ing delay differential equation

j′ rð Þ = ψ r, j rð Þ, j r − γð Þð Þ, r ∈ r0, v½ �, ð30Þ

with initial condition

j rð Þ = ζ rð Þ,  r ∈ r0 − γ, r0½ �: ð31Þ

By the solution of the above delay differential equation,
we mean a function j ∈ Cð½r0 − γ, v�,ℝÞ ∩ C1ð½r0, v�,ℝÞÞ sat-
isfying (30) and (31).

Assume that the following conditions are satisfied.

(1) r0, v ∈ℝÞ, γ > 0
(2) ψ ∈ Cð½r0, v� ×ℝ2,ℝÞ
(3) ζ ∈ Cð½r0 − γ, v�,ℝÞ
(4) There exists Lψ > 0 such that

ψ r, s1, s2ð Þ − ψ r, t1, t2ð Þj j ≤ LψΣ
2
i=1 si − tij j, ∀si, ti ∈ℝ, r ∈ r0, v½ �

ð32Þ

(5) 2Lψðv − r0Þ < 1

Now, we construct (30) and (31) by the integral equation
as

j rð Þ =
ζ rð Þ, r ∈ r0 − γ, v½ �,

ζ r0ð Þ +
ðr
r0

ψ t, j tð Þ, j t − γð Þð Þdt, r ∈ r0, v½ �:

8><
>:

ð33Þ

The following result is the generalization of the result of
Coman et al. [42].

Theorem 12. Let the conditions ∗1Þ to ∗5Þ be satisfied. Then,
(30) and (31) have unique solution j∗ ∈ Cð½r0 − γ�,ℝÞ ∩ C1ð½
r0v�,ℝÞ and

j∗ = lim
n⟶∞

V n jð Þ, for any j ∈ C r0 − γ, v½ �,ℝð Þ: ð34Þ

Now, by using the Picard-Thakur hybrid iterative
scheme (14), we prove the following result.
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Theorem 13. Let the conditions ∗1Þ − ∗5Þ be satisfied. Then,
(30) and (31) have a unique solution j∗ ∈ Cð½r0 − γ�,ℝÞ ∩
C1ð½r0, v�,ℝÞ and the Picard-Thakurb hybrid iterative
scheme (14) converges to j∗.

Proof. Let fjng be a sequence generated by the Picard-
Thakur hybrid iterative scheme (14) for an operator V

defined by

V j rð Þ =
ζ rð Þ, r ∈ r0 − γ, v½ �,

ζ r0ð Þ +
ðr
r0

ψ p, j pð Þ, j p − γð Þð Þdp, r ∈ r0, v½ �:

8><
>:

ð35Þ

Let j∗ be a fixed point of V . Now, we prove that jn ⟶ j∗

as n⟶∞. It is easy to see that jn ⟶ j∗ as n⟶∞ for
each r ∈ ½r0 − γ, r0�.

Now, for each r ∈ ½r0, v�, we have

jn+1 − j∗k k∞ ≤ V kn − j∗k k∞ ≤ sup
r0∈ r0,v½ �

V kn −V j∗j j ≤ sup
r0∈ r0,v½ �

ζ r0ð Þj

+
ðr
r0

ψ p, kn pð Þ, kn p − γð Þð Þdp

− ζ r0ð Þ +
ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
 !�����

≤ sup
r0∈ r0,v½ �

ðr
r0

ψ p, kn pð Þ, kn p − γð Þð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r0∈ r0,v½ �

ðr
r0

Lψ kn pð Þ − j∗ pð Þj j + kn p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ sup
r0∈ r0,v½ �

kn pð Þ − j∗ pð Þj j + kn p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ kn − j∗k k∞ + kn − j∗k k∞
� �

dp ≤ 2Lψ v − r0ð Þ kn − j∗k k∞:

ð36Þ

Now,

kn − j∗k k∞ = 1 − θnð ÞVmn + θnV ln − j∗k k∞
≤ 1 − θnð Þ Vmn − j∗k k∞ + θn V ln − j∗k k∞,

ð37Þ

As

V ln − j∗k k∞ = V ln −V j∗k k∞ ≤ sup
r∈ r0−γ,v½ �

� ζ r0ð Þ +
ð
rr0

ψ p, ln pð Þ, ln p − γð Þð Þdp
�����
− ζ r0ð Þ +

ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
 !����� ≤ sup

r∈ r0−γ,v½ �

�
ðr
r0

ψ p, ln pð Þ, ln p − γð Þð Þdp
�����
−
ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
�����

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ pð , ln pð Þ, ln p − γð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ pð , ln pð Þ, ln p − γð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

Lψ ln pð Þ − j∗ pð Þj j + ln p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ sup
r∈ r0−γ,v½ �

ln pð Þ − j∗ pð Þj j + sup
r∈ r0−γ,v½ �

ln p − γð Þ − j∗ p − γð Þj j
 !

dp

≤
ðr
r0

Lψ ln − j∗k k∞ + ln − j∗k k∞
� �

dp

≤ 2Lψ r − r0ð Þ ln − j∗k k∞ ≤ 2Lψ v − r0ð Þ ln − j∗k k∞,

ð38Þ

ln − j∗k k∞ = 1 − ϑnð Þmn + ϑnVmn − j∗k k∞
≤ 1 − ϑnð Þ mn − j∗k k∞ + ϑn Vmn − j∗k k∞:

ð39Þ
For

Vmn − j∗k k∞ = Vmn −V j∗k k∞ ≤ sup
r∈ r0−γ,v½ �

� ζ r0ð Þ +
ð
rr0

ψ p,mn pð Þ,mn p − γð Þð Þdp
�����
− ζ r0ð Þ +

ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
 !�����

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ p,mn pð Þ,mn p − γð Þð Þdp
�����

−
ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
�����

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ pð ,mn pð Þ,mn p − γð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ pð ,mn pð Þ,mn p − γð Þ − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

Lψ mn pð Þ − j∗ pð Þj j + mn p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ sup
r∈ r0−γ,v½ �

mn pð Þ − j∗ pð Þj j + sup
r∈ r0−γ,v½ �

mn p − γð Þ − j∗ p − γð Þj j
 !

dp

≤
ðr
r0

Lψ ∥mn − j∗ mn − j∗k k∥∞+∣mn − j∗ mn − j∗k k∥∞ð Þ dp

≤ 2Lψ r − r0ð Þ mn − j∗k k∞ ≤ 2Lψ v − r0ð Þ mn − j∗k k∞,

ð40Þ

mn − j∗k k∞ = 1 − σnð Þjn + σnV jn − j∗k k∞
≤ 1 − σnð Þ jn − j∗k k∞ + σn V jn − j∗k k∞,

ð41Þ

as

V jn − j∗k k = V jn −V j∗k k∞ ≤ sup
r∈ r0−γ,v½ �

� ζ r0ð Þ +
ð
rr0

ψ p, jn pð Þ, jn p − γð Þð Þdp
�����
− ζ r0ð Þ +

ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
 !����� ≤ sup

r∈ r0−γ,v½ �

�
ðr
r0

ψ p, jn pð Þ, jn p − γð Þð Þdp
�����
−
ðr
r0

ψ p, j∗ pð Þ, j∗ p − γð Þð Þdp
�����
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≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ p, jn pð Þ, jn p − γð Þð − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

ψ p, jn pð Þ, jn p − γð Þð − ψ p, j∗ pð Þ, j∗ p − γð Þð Þj jdp

≤ sup
r∈ r0−γ,v½ �

ðr
r0

Lψ jn pð Þ − j∗ pð Þj j + jn p − γð Þ − j∗ p − γð Þj jð Þdp

≤
ðr
r0

Lψ sup
r∈ r0−γ,v½ �

jn pð Þ − j∗ pð Þj j + sup
r∈ r0−γ,v½ �

jn p − γð Þ − j∗ p − γð Þj j
 !

dp

≤
ðr
r0

Lψ jn − j∗k k∞ + jn − j∗k k∞
� �

dp ≤ 2Lψ r − r0ð Þ jn − j∗k k∞
≤ 2Lψ v − r0ð Þ jn − j∗k k∞:

ð42Þ

Putting (42) in (41), we get

mn − j∗k k∞ ≤ 1 − σnð Þ jn − j∗k k∞ + σn2Lψ v − r0ð Þ jn − j∗k k∞
≤ 1 − 1ð − 2Lψ v − r0ð Þσn
� �

jn − j∗k k∞:

ð43Þ

Putting (43) in (40), we get

Vmn − j∗k k∞ ≤ 2Lψ v − r0ð Þ 1 − 1ð 1 − 2Lψ v − r0ð Þσn
�� �

jn − j∗k k∞:

ð44Þ

Putting (44) and (43) in (39), we get

ln − j∗k k∞ ≤ 1 − ϑnð Þ 1 − 11 − 2Lψ v − r0ð Þσn

��� �
jn − j∗k k∞

+ ϑn2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þσn

�� �
jn − j∗k k∞

≤ 1 − 1 − 2Lψ v − r0ð Þσn

� ��
1 − 1 −ðð 1 − 2Lψ v − r0ð Þϑn

� �
jn − j∗k k∞

≤ 1 − 1 − 2Lψ v − r0ð Þσn

� �
− 1 −ð 1 − 2Lψ v − r0ð Þσn

� �
1 − 2Lψ v − r0ð Þϑn
� �� �

� jn − j∗k k∞ ≤ 1 − 1 − 2Lψ v − r0ð Þ� �
σn − 1 − 2Lψ v − r0ð Þ� �

ϑn
�

+ 1 − 2Lψ v − r0ð Þ�� �2ϑnσnÞ
�
jn − j∗k k∞ ≤ 1 − 1 − 2Lψ v − r0ð Þ� �

σn

�
− 1 − 2Lψ v − r0ð Þ� �

ϑn + 1 − 2Lψ v − r0ð Þ� �
ϑnσn

�
jn − j∗k k∞

≤ 1 − 1 − 2Lψ v − r0ð Þ� �
σn − ϑn + ϑnσnð Þ� �

jn − j∗k k∞:

ð45Þ

Putting (45) in (38), we get

∥V ln − j∗∥∞ ≤ 2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þ� �
σn − ϑn + ϑnσnð Þ� �

∥jn − j∗∥∞:

ð46Þ

Putting (46) and (40) in (37), we get

kn − j∗k k∞ ≤ 1 − θnð Þ2Lψ v − r0ð Þ mn − j∗k k∞ + θn2Lψ v − r0ð Þ
� ln − j∗k k∞ ≤ 2Lψ v − r0ð Þ 1 − θnð Þ mn − j∗k k∞ + θn ln − j∗k k∞

� �
≤ 2Lψ v − r0ð Þ 1 − θnð Þ 1 − 1 − 2Lψ v − r0ð Þσn

�� �
jn − j∗k k∞

�
+ θn 1 − 1 − 2Lψ v − r0ð Þ� �

σn − ϑn + ϑnσnð Þ� �
∥jn − j∗∥∞

�
≤ 2Lψ v − r0ð Þ 1 − θnÞ½ 1 − 1 − 2Lψ v − r0ð Þσn

� ��
+ θn 1 − 1 − 2Lψ v − r0ð Þ� �

σn − ϑn + ϑnσnð Þ� �
∥jn − j∗∥∞

≤ 2Lψ v − r0ð Þ 1 − θn − 1 − 2Lψ v − r0ð Þσn

�
+ 1 − 2Lψ v − r0ð Þθnσn

��
+ θn − 1 − 2Lψ v − r0ð Þθn σn − ϑn + ϑnσnð Þ� �

∥jn − j∗∥∞
≤ 2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þ�

σn − θnσnð�
+ θn σn + ϑn − ϑnσnð Þ�∥jn − j∗∥∞ ≤ 2Lψ v − r0ð Þ
� 1 − 1 − 2Lψ v − r0ð Þ σn − θnσn + θnσn + θnϑn − θnϑnσnð Þ�� �

∥jn
− j∗∥∞ ≤ 2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þ σn + θnϑn − θnϑnσnð Þ�� �
� ∥jn − j∗∥∞:

ð47Þ

Let σn + θnϑn − θnϑnσn = ρn, and by using condition ∗5Þ,
we have

kn − j∗k k∞ ≤ 1 − 1 − 2Lψ v − r0ð Þρn
�� �

jn − j∗k k∞: ð48Þ

Putting (48) in (36), we have

jn+1 − j∗k k∞ ≤ 2Lψ v − r0ð Þ 1 − 1 − 2Lψ v − r0ð Þρn
�� �

jn − j∗k k∞:

ð49Þ

Again, using condition ∗5Þ, we get

jn+1 − j∗k k∞ ≤ 1 − 1 − 2Lψ v − r0ð Þρn
�� �

jn − j∗k k∞: ð50Þ

Let ð1 − 2Lψðv − r0Þρn = τn < 1 and ∥jn − j∗∥∞ = rn. So,
the conditions of Lemma 3 are satisfied. Hence, limn⟶∞∥
jn − j∗∥ = 0:

Table 1: Convergence behavior of Thakur et al. (7), Ap (8), Picard-S (12), Picard-S∗ (13), and Picard-Thakur hybrid Iterative schemes (14).

Steps Picard-Ishikawa hybrid Thakur et al. Ap iterative scheme Picard-S hybrid Picard-S∗ hybrid Picard-Thakur hybrid

1 0.6000000000 0.6000000000 0.6000000000 0.6000000000 0.6000000000 0.6000000000

2 1.0172938494 1.0023262974 1.0033992688 1.0028485141 0.9942090597 0.9992233640

3 0.9991010616 0.9999896158 0.9999617294 0.9999670218 0.9998760856 0.9999988412

4 1.0000463544 1.0000000464 1.0000004299 1.0000003808 0.9999973348 0.9999999983

5 0.9999976087 0.9999999997 0.9999999952 0.9999999956 0.9999999427 0.9999999999

6 1.0000001234 1.0000000000 1.0000000001 1.0000000001 0.9999999988 0.9999999999

7 0.9999999936 0.9999999999 0.9999999999 0.9999999999 0.9999999999 1.0000000000

8 1.0000000003 1.0000000000 1.0000000000 1.0000000000 0.9999999999 1.0000000000

9 0.9999999999 1.0000000000 1.0000000000 1.0000000000 0.9999999999 1.0000000000

10 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
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5. Convergence Results for
Nonexpansive Mapping

Lemma 14. Let S be a nonempty closed and convex subset of
uniformly convex Banach space B and V : S⟶ S be a non-
expansive mapping. If fjng be a sequence generated by
Picard-Thakur hybrid iterative scheme (14) and FðV Þ ≠∅,
then, limn⟶∞∥jn − j∗∥ exists.

Proof. Let j∗ ∈ FðV Þ, and V is nonexpansive then

∥mn − j∗∥ = ∥ 1 − σnð Þjn + σnV jn − j∗∥ ≤ 1 − σnð Þ∥jn
− j∗∥+σn∥V jn − j∗∥ ≤ 1 − σnð Þ∥jn − j∗∥+σn∥jn
− j∗∥ ≤ ∥jn − j∗:

ð51Þ

Also,

∥ln − j∗∥ = ∥ 1 − ϑnð Þmn + ϑnVmn − j∗∥ ≤ 1 − ϑnð Þ∥mn

− j∗∥+ϑn∥Vmn − j∗∥ ≤ 1 − ϑnð Þ∥mn − j∗∥+ϑn∥mn

− j∗∥ ≤ ∥mn − j∗:

ð52Þ

Similarly,

∥kn − j∗∥ = ∥ 1 − θnð ÞVmn + θnV ln − j∗∥ ≤ 1 − θnð Þ∥Vmn

− j∗∥+θn∥V ln − j∗∥ ≤ 1 − θnð Þ∥mn − j∗∥+θn∥ln − j∗∥
≤ 1 − θnð Þ∥mn − j∗∥+θn∥mn − j∗∥ ≤ ∥mn − j∗∥ ≤ ∥jn − j∗∥:

ð53Þ

Now,

∥jn+1 − j∗∥ = ∥V kn − j∗∥ ≤ ∥kn − j∗∥ ≤ ∥jn − j∗∥: ð54Þ

This shows that f∥jn − j∗∥g is a decreasing sequence and
bounded below ∀j∗ ∈ FðV Þ: Hence, limn⟶∞∥jn − j∗∥ exists.

Lemma 15. Let S and V : S⟶ S be as in Lemma 14. Let
fjng be a sequence defined by Picard-Thakur hybrid iterative
scheme (14) with FðV Þ ≠∅: Then, limn⟶∞∥jn −V jn∥ = 0.

Proof. As from the above Lemma 14, limn⟶∞∥jn − j∗∥ exists
for each j∗ ∈ FðV Þ: Suppose that for some l ≥ 0, we have

lim
n⟶∞

∥jn − j∗∥ = l: ð55Þ

As from (53), (52), and (51), we have

∥mn − j∗∥ ≤ ∥jn − j∗∥, ð56Þ

∥ln − j∗∥ ≤ ∥jn − j∗∥, ð57Þ
∥kn − j∗∥ ≤ ∥jn − j∗∥: ð58Þ

Taking lim sup as n⟶∞ of (58), (57), and (56), we get

lim sup
n⟶∞

mn − j∗k k ≤ l, ð59Þ

lim sup
n⟶∞

ln − j∗k k ≤ l, ð60Þ
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Figure 1: Convergence behavior of Thakur et al. (7), Ap (8), Picard-S (12), Picard-S∗ (13), and Picard-Thakur hybrid iterative schemes (14).
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lim sup
n⟶∞

kn − j∗k k ≤ l: ð61Þ

Since V is nonexpansive, we have

lim sup
n⟶∞

V jn − j∗k k ≤ l, ð62Þ

l = liminf
n⟶∞

∥jn+1 − j∗∥ = liminf
n⟶∞

∥V kn − j∗∥ ≤ liminf
n⟶∞

∥kn − j∗∥,

ð63Þ

From (63) and (61), we get

lim
n⟶∞

∥kn − j∗∥ = l: ð64Þ

Now, from (53), we have

∥kn − j∗∥ ≤ ∥mn − j∗∥: ð65Þ

Taking liminf as n⟶∞, we have

liminf
n⟶∞

∥kn − j∗∥ ≤ liminf
n⟶∞

∥mn − j∗∥, ð66Þ

l ≤ liminf
n⟶∞

∥mn − j∗∥: ð67Þ

So, from (67) and (59), we have

l = lim
n⟶∞

∥mn − j∗∥ = lim
n⟶∞

∥ 1 − σnð Þjn + σnV jn

− j∗∥ = lim
n⟶∞

∥ 1 − σnð Þ jn − j∗ð Þ + σn V jn −V j∗ð Þ∥:
ð68Þ

From (68), (62), and (55) and applying Lemma 6, we get

lim
n⟶∞

∥jn −V jn∥ = 0: ð69Þ

Theorem 16. Let S, V , fjng be as in Lemma 14. Let B be the
uniformly convex Banach space which satisfies Opial’s condi-
tion; then, fjng converges weakly to a fixed point of V :

Proof. Let j∗ ∈ FðV Þ; then, by Lemma 14, limn⟶∞∥jn − j∗∥
exists. Now, we show that fjng has a unique weak subse-
quential limit in FðV Þ.

Let fang and fbng be two subsequences of fjng and a, b
be the weak limits of the subsequences of fjng, respectively.
From Lemma 15, limn⟶∞∥jn −V ðjnÞ∥ = 0 and I −V is
demiclosed at zero. By Lemma 7.

Therefore, we get V a = a: For b ∈ FðV Þ, we follow the
same manner.

From Lemma 14, we know that limn⟶∞∥jn − j∗∥ exists.

For uniqueness, supposing that a ≠ b, then, by using
Opial’s condition,

lim
n⟶∞

∥jn − a∥ = lim
n⟶∞

∥an − a∥ < lim
n⟶∞

∥an − b∥ = lim
n⟶∞

∥jn

− b∥ = lim
n⟶∞

∥bn − b∥ < lim
n⟶∞

∥bn − a∥ = lim
n⟶∞

∥jn − a∥:

ð70Þ

This is a contradiction, so a = b. Hence, fjng converges
weakly to FðV Þ:

Theorem 17. Let S, V , fjng be as in Lemma 14. Then, fjng
converges to a point of FðV Þ if and only if liminfn⟶∞dðjn
, FðV ÞÞ = 0 or lim supn⟶∞ðjn, FðV ÞÞ = 0, where dðan, Fð
V ÞÞ = inf f∥jn − j∗∥ : j∗ ∈ FðV Þg:

Proof. If the sequence fjng⟶ j∗ ∈ FðV Þ, then, it is oblivi-
ous that liminfn⟶∞dðjn, FðV ÞÞ = 0 or lim supn⟶∞ðjn, Fð
V ÞÞ = 0.

Conversely, assume that liminfn⟶∞dðjn, FðV ÞÞ = 0.
From Lemma 14,

limn⟶∞∥jn − j∗∥ exists, ∀j∗ ∈ FðV Þ. Therefore, by
assumption,

limn⟶∞d jn, F Vð Þð Þ = 0: ð71Þ

Now, to show, the sequence fjng is cauchy in S. As
limn⟶∞dðjn, FðV ÞÞ = 0, for given λ > 0, there exists m0 ∈
I+ such that ∀n ≥m0,

d jn, F Vð Þð Þ < λ

2 ⇒ inf ∥jn − j∗∥ : j∗ ∈ F Vð Þf g < λ

2 : ð72Þ

Particularly, inf f∥jn − j∗∥ : j∗ ∈ FðV Þg < λ/2. Therefore,
there is j∗ ∈ FðV Þ such that

∥jm0
− j∗∥ < λ

2 : ð73Þ

Now, for m, n ≥m0,

∥jn+m − jn∥ ≤ ∥jm+n − j∗∥+∥jn − j∗∥ ≤ ∥jm0
− j∗∥+∥jm0

− j∗∥

= 2∥jm0
− j∗∥ < λ:

ð74Þ

This shows that the sequence fjng is cauchy in S. As S
⊂ B, so, p is a point in S such that limn⟶∞ jn = p. Now,
limn⟶∞dðjn, FðV ÞÞ = 0 gives that limn⟶∞dðjn, FðV ÞÞ = 0
⇒ p ∈ FðV Þ:

Theorem 18. Let S, V , fjng be as in Lemma 14. Then, fjng
converges strongly to FðV Þ ≠∅:

Proof. By Lemma 15, we have

limn⟶∞∥jn −V jn∥ = 0: ð75Þ
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Since, S is compact, then, let fjnkg be a subsequence of
fjng which converges strongly to j∗, for some j∗ ∈ S. By
Proposition 8, we have

∥jnk −V j∗∥ ≤ 3∥jnk −V jnk∥+∥jnk − j∗∥ ∀k ≥ 1: ð76Þ

Letting k⟶∞, we get

jnk ⟶V j∗ ⇒V j∗ = j∗, i:e:,j∗ ∈ F Vð Þ: ð77Þ

Also, by Lemma 14, limn⟶∞∥jn − j∗∥ exists. Thus, fjng
converges strongly to j∗.

Now, by using condition (I), we prove the strong conver-
gence result.

Theorem 19. Let S, V be as in Lemma 14. Let B be a uni-
formly convex Banach space which is satisfying condition
(I). Then, the sequence fjng defined by the Picard-Thakur
hybrid iterative scheme (14) converges strongly to FðV Þ ≠∅
:

Proof. As by Lemma 15, we have

lim
n⟶∞

∥jn −V jn∥ = 0: ð78Þ

By condition (I) and (78), we get

0 ≤ lim
n⟶∞

Z d jn, F Vð Þð Þð Þ
≤ lim

n⟶∞
∥jn −V jn∥⇒ lim

n⟶∞
Z d jn, F Vð Þð Þð Þ = 0:

ð79Þ

Since Z : ½0,∞Þ⟶ ½0,∞Þ is an increasing function sat-
isfying Zð0Þ = 0,ZðtÞ > 0∀t > 0:

Hence, we have

lim
n⟶∞

d jn, F Vð Þð Þ = 0: ð80Þ

Since all the conditions of Theorem 17 are satisfied,
therefore, we can say that fjng converges strongly to FðV Þ
:

6. Conclusion

In this paper, we present a new hybrid scheme of Picard and
Thakur et al. We discuss the convergence of this scheme to
the iterative scheme of Mann, Ishikawa, Picard-Mann,
Picard-Ishikawa, Picard-S, and Thakur et al. We showed
the convergence of Picard-Thakur hybrid iterative with
other iterative schemes on graphs and gave application to
delay differential equations. We also generalize and extend
various results for nonexpansive mapping in a uniformly
convex Banach space including [7, 24, 25, 43].
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We present a fixed point result in quasi b-metric spaces. Our result generalizes recent fixed point results obtained by Aleksić et al.,
Dung and Hang, Jovanović et al., Sarwar, and Rahman and classical results obtained by Hardy, Rogers, and Ćirić. Also, we obtain a
common fixed point result in b-metric spaces. As a special case, we get a result of Ćirić and Wong.

1. Introduction

The notion of a generalized contraction was presented by
Ćirić in his dissertation [1]. In [1], Ćirić proved the first
fixed point result for this class of mappings, which was pub-
lished in [2]. Ćirić also published several papers on general-
ized contractions, such as for multivalued mappings in [3],
on common fixed point of not necessarily commuting map-
pings in [4], for probabilistic metric spaces in [5, 6] and fixed
point result of Meir-Keeler type in [7]. For further historical
remarks of the papers of Ćirić, see [8].

In 1973, Hardy and Rogers [9] proved a result of fixed
point on metric space, which was extended to common fixed
point result by Wong [10].

The results of common fixed points of Wong [10] and
Ćirić [4] are independent. More concepts of common fixed
points can be seen in [11, 12].

Also, Fréchet in the paper [13] introduced a class of metric
spaces which are included in the class b-metric spaces. First,
fixed point result in a b-metric space was presented by Bakhtin
[14] and Czerwik [15] (for more on b-metric spaces see
[16–23]). In the last few decades, many generalizations of a
metric space appeared in literature. For some historical aspects

of various generalizations of a metric space, the reader may
refer to [24].

In this paper, we present a fixed point theorem for a
mapping defined on a quasi b-metric space which general-
izes recent fixed point results obtained by Aleksić et al.
[16], Dung and Hang [18], Jovanović et al. [25], and Sarwar
and Rahman [22]. Further, we obtain a result of common
fixed point on a b-metric space. Our result generalizes the
classical results presented by Ćirić [4] and Wong [10].

2. The Quasi b-Metric Spaces

We start with definition of quasi b-metric spaces, which was
introduced by Shah and Hussain [23].

Definition 1. Let X be a nonempty set, d : X × X ⟶ ½0,+∞Þ
and s ∈ ½0,+∞Þ. Then, ðX, d, sÞ is a quasi b-metric space if

(1) dðμ, νÞ = 0 if and only if μ = ν

(2) dðμ, ξÞ ≤ s½dðμ, νÞ + dðν, ξÞ�, for all μ, ν, ξ ∈ X

Clearly, ðX, d, 1Þ is a quasi metric space.
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Remark 2. Let ðX, d, sÞ be a quasi b-metric space and dðμ,
νÞ = dðν, μÞ for all μ, ν ∈ X. Then, ðX, d, sÞ is a b-metric
space.

Lemma 3. Let ðX, d, sÞ be a quasi b-metric space. Then, s ≥ 1.

Proof. Let μ, ν ∈ X. Then, dðμ, νÞ ≤ s½dðμ, νÞ + dðν, νÞ� = sdð
μ, νÞ. So, s ≥ 1.☐

Remark 4. Let ðrnÞ be a sequence of nonnegative real num-
bers such that rn+1 ≤ rn and limn⟶+∞rn = 0. A quasi b
-metric space is a topological space with fBnðμÞgn∈ℕ, as a
base of neighborhood filter of the point μ where BnðμÞ = f
ν ∈ X : dðμ, νÞ < rng:

Definition 5. Let ðX, d, sÞ be a quasi b-metric space and a
sequence ðμnÞ ⊆ X.

(1) Sequence ðμnÞ is a left Cauchy sequence, if dðμn,
μmÞ⟶ 0 as m, n⟶ +∞

(2) A quasi b-metric space ðX, d, sÞ is left complete if
every left Cauchy sequence converges to some μ ∈
X

Definition 6. Let ðX, d, sÞ be a quasi b-metric space and the
sequences ðμnÞ, ðνnÞ in X be such that limn⟶+∞μn = μ
and limm⟶+∞νn = ν: A mapping d is sequentially continu-
ous if limn,m⟶+∞dðμn, νmÞ = dðμ, νÞ.

We will use the following lemma in our main results.

Lemma 7 (see [26]). Let ðX, d, sÞ be a quasi b-metric space
and ðμnÞ ⊆ X. If there exists λ ∈ ½0, 1Þ such that

d μn, μn+1ð Þ ≤ λd μn−1, μnð Þ, ð1Þ

for all n ∈ℕ, then ðμnÞ is a left Cauchy sequence.

3. A Fixed Point Theorem in Quasi b-
Metric Spaces

Let X ≠∅ and f : X⟶ X be a given mapping. Then, μ∗ ∈ X
is a fixed point of mapping f if f ðμ∗Þ = μ∗. Let μ0 ∈ X, and
consider the sequence ðμnÞ defined by μn = f nðμ0Þ, i.e., ðμn
Þ is a sequence of Picard iterates of mapping f at point μ0.

Now, we present our first result, which generalizes recent
fixed point results obtained in [16, 18, 22, 25] for generalized
contractive mappings defined on b-metric spaces.

Theorem 8. Let ðX, d, sÞ be a left complete quasi b-metric
space and a mapping f : X⟶ X. If there exist α, β, γ ∈ ½0,
1� such that α + β + γ < 1, β ≤ γ and

d f μ, f νð Þ ≤ α max d μ, νð Þ, d μ, f μð Þ, d ν, f νð Þ, d μ, f νð Þ + d f μ, νð Þ
2s

� �
+ β

d μ, f νð Þ
s

+ γd f μ, νð Þ,
ð2Þ

for any μ, ν ∈ X, then for any μ0 ∈ X sequence of Picard
iterates ðμnÞ defined by mapping f at μ0 is left Cauchy
sequence. Moreover, if f is sequentially continuous or d is
sequentially continuous, then, f has unique fixed point μ∗ ∈
X and μn ⟶ μ∗ as n⟶ +∞.

Proof. Let μ0 ∈ X be arbitrary and ðμnÞ sequence of Picard
iterates defined by f at μ0. Then

d μn+1, μn+2ð Þ = d f μn, f μn+1ð Þ
≤ α max d μn, μn+1ð Þ, d μn, f μnð Þ, d μn+1, f μn+2ð Þ, d μn, f μn+1ð Þ + d f μn, μn+1ð Þ

2s

� �

+ β
d μn, f μn+1ð Þ

s
+ γd f μn, μn+1ð Þ

≤ α max d μn, μn+1ð Þ, d μn+1, μn+2ð Þ, d μn, μn+1ð Þ + d μn+1, μn+2ð Þ
2

� �
+ β

d μn, μn+2ð Þ
s

≤ α max d μn, μn+1ð Þ, d μn+1, μn+2ð Þf g + βd μn, μn+1ð Þ + βd μn+1, μn+2ð Þ:
ð3Þ

If dðμn, μn+1Þ < dðμn+1, μn+2Þ, then,

1 − α − βð Þd μn+1, μn+2ð Þ < βd μn, μn+1ð Þ, ð4Þ

which implies

d μn+1, μn+2ð Þ ≤ β

1 − α − β
d μn, μn+1ð Þ < d μn, μn+1ð Þ: ð5Þ

So, dðμn, μn+1Þ ≥ dðμn+1, μn+2Þ which implies

1 − βð Þd μn+1, μn+2ð Þ ≤ α + βð Þd μn, μn+1ð Þ: ð6Þ

Hence, we get that

d μn+1, μn+2ð Þ ≤ α + β

1 − β
d μn, μn+1ð Þ < α + β

α + γ
d μn, μn+1ð Þ = λd μn, μn+1ð Þ,

ð7Þ

where λ = α + β/α + γ < 1: So, by Lemma 7, we obtain that
ðμnÞ is left Cauchy sequence. It is convergent because ðX, d
, sÞ is left complete. Thus, exists μ∗ ∈ X such that μ∗ = lim
μn.☐

Case 9. Let a mapping f be a sequentially continuous.
Then

μ∗ = limμn = limf μn = f μ∗: ð8Þ

Case 10. Let d be a sequentially continuous.
Then

d f μn, f μ∗ð Þ ≤ α max d μn, μ∗ð Þ, d μn, μn+1ð Þ, d μ∗, f μ∗ð Þ, d μn, f μ∗ð Þ + d f μn, μ∗ð Þ
2s

� �

+ β
d μn, μn+2ð Þ

2s + γd fμn, μ∗ð Þ,

ð9Þ
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which implies

limd f μn, f μ∗ð Þ ≤ lim α d μn, μ∗ð Þ, d μ∗, f μ∗ð Þ, d μn, f μ∗ð Þ + d f μn, μ∗ð Þ
2s

� ��

+ β
d μn, μn+2ð Þ

2s + γd f μn, μ∗ð Þ
�
:

ð10Þ

So, we get that

d limμn+1, f μ∗ð ÞÞ ≤ lim α max d limμn, μ∗ð Þ, d limμn, limμn+1ð Þ, d μ∗, f μ∗ð Þ,f½
� d limμn, f μ∗ð Þ + d limμn+1, μ∗ð Þ

2s

�
+ β

d μn, μn+2ð Þ
2s

+ γd limμn+1, μ∗ð Þ�:
ð11Þ

Hence,

d μ∗, fμ∗ð Þ ≤ α max d μ∗, μ∗ð Þ, d μ∗, μ∗ð Þ, d μ∗, f μ∗ð Þ, d μ∗, fμ∗ð Þ + d μ∗, μ∗ð Þ
2s

� �

+ β
d μ∗, μ∗ð Þ

2s + γd μ∗, μ∗ð Þ = αd μ∗, fμ∗ð Þ:

ð12Þ

It follows that μ∗ = f ðμ∗Þ because α ∈ ½0, 1Þ. Finally, sup-
pose that there are two fixed points of mapping f , i.e., f μ∗

= μ∗, f ν∗ = ν∗. Then, we get

d μ∗, ν∗ð Þ = d fμ∗, f ν∗ð Þ ≤ α d μ∗, ν∗ð Þ, d μ∗, μ∗ð Þ, d ν∗, ν∗ð Þ, d μ∗, ν∗ð Þ + d μ∗, ν∗ð Þ
2s

� �

+ β
d μ∗, ν∗ð Þ

2s + γd μ∗, ν∗ð Þ ≤ α + β + γð Þd μ∗, ν∗ð Þ:

ð13Þ

which implies that μ∗ = ν∗.

Corollary 11. Let ðX, d, sÞ be a left complete quasi b-metric
space and a mapping f : X⟶ X. If there exist α ∈ ½0, 1Þ such
that

d f μ, f νð Þ ≤ αd μ, νð Þ, ð14Þ

for any μ, ν ∈ X, then for any μ0 ∈ X sequence of Picard
iterates ðμnÞ defined by mapping f at μ0 is left Cauchy
sequence. Moreover, if f is sequentially continuous or d is
sequentially continuous, then, f has unique fixed point μ∗ ∈
X and μn ⟶ μ∗ as n⟶ +∞.

Example 12. Let X = ½0, 1� and mapping f : X ⟶ X defined
by f μ = μ/2, μ ∈ X: Let d : X × X ⟶ ½0,+∞Þ defined by

d μ, νð Þ =
μ − νð Þ2, μ > ν,
μ − νð Þ4, μ < ν,
0, μ = ν:

8>><
>>:

ð15Þ

Since, ða + bÞ2 ≤ 2ða2 + b2Þ and ða + bÞ4 ≤ 8ða4 + b4Þ, for

all a, b ∈ℝ, we obtain that for d holds

d μ, ξð Þ ≤ 8 d μ, νð Þ + d ν, ξð Þ½ �, ð16Þ

for all μ, ν, ξ ∈ X. Also, dðμ, νÞ = 0 if and only if μ = ν. So,
ðX, d, 8Þ is a quasi b-metric space. Note that dðμ, νÞ = dðν,
μÞ does not hold in the general case. In this case, all the con-
ditions of Corollary 11 are valid, and we conclude that the
mapping f has a fixed point.

4. A Common Fixed Point Theorem in b-
Metric Spaces

Now we obtain a common fixed point result for mappings
defined on b-metric spaces. Our result improves the classical
results presented by Ćirić [4] and Wong [10].

Theorem 13. Let ðX, d, sÞ be a complete b-metric space and
the mappings f , g : X ⟶ X. If there exist α, β ∈ ½0, 1� such
that α + 2β < 1 and

d f μ, gνð Þ ≤ α max d μ, νð Þ, d μ, f μð Þ, d ν, gνð Þ, d μ, gνð Þ + d f μ, νð Þ
2s

� �
+ β

d μ, gνð Þ
s

+ β
d f μ, νð Þ

s
,

ð17Þ

for any μ, ν ∈ X, then for any μ0 ∈ X sequence of Picard
iterates ðμnÞ defined by g ∘ f at μ0 is left Cauchy sequence.
If f and g are sequentially continuous or d is sequentially
continuous then f and g has unique fixed point which is
unique limit of all Picard sequences defined by g ∘ f .

Proof. Let μ0 ∈ X be arbitrary and ðμnÞ sequence defined by
μ2n+1 = f μ2n and μ2n+2 = gμ2n+1. Then

d μ2n+1, μ2n+2ð Þ = d fμ2n, gμ2n+1ð Þ ≤ α max d μ2n, μ2n+1ð Þ, d μ2n, f μ2nð Þ, d μ2n+1, gμ2n+1ð Þ,f
� d μ2n, gμ2n+1ð Þ + d μ2n, μ2n+1ð Þ

2s

�
+ β

d μ2n, f μn+1ð Þ
s

+ β
d fμ2n, μ2n+1ð Þ

s

≤ α max d μ2n, μ2n+1ð Þ, d μ2n+1, μ2n+2ð Þ, d μ2n, μ2n+1ð Þ + d μ2n+1, μ2n+2ð Þ
2

� �

+ β
d μ2n, μn+2ð Þ

s
≤ α max d μ2n, μ2n+1ð Þ, d μ2n+1, μ2n+2ð Þf g

+ βd μ2n, μ2n+1ð Þ + βd μ2n+1, μ2n+2ð Þ:

ð18Þ

If dðμ2n, μ2n+1Þ < dðμ2n+1, μn+2Þ then

1 − α − βð Þd μ2n+1, μ2n+2ð Þ < βd μ2n, μ2n+1ð Þ: ð19Þ

So, we get that

d μ2n+1, μ2n+2ð Þ ≤ β

1 − α − β
d μ2n, μ2n+1ð Þ < d μ2n, μ2n+1ð Þ,

ð20Þ

therefore, dðμ2n, μ2n+1Þ ≥ dðμ2n+1, μ2n+2Þ which implies

1 − βð Þd μn+1, μn+2ð Þ ≤ α + βð Þd μ2n, μ2n+1ð Þ: ð21Þ
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Hence, we get that

d μ2n+1, μ2n+2ð Þ ≤ α + β

1 − β
d μ2n, μ2n+1ð Þ: ð22Þ

So, we obtained

d μ2n+1, μ2n+2ð Þ ≤ λd μ2n, μ2n+1ð Þ, ð23Þ

where λ = α + β/1 − β < 1: Further, we have

d μ2n, μ2n+1ð Þ = d gμ2n−1, f μ2nð Þ = d fμ2n, gμ2n−1ð Þ
≤ α max d μ2n−1, μ2nð Þ, d μ2n, f μ2nð Þ, d μ2n−1, gμ2n−1ð Þ,f
� d μ2n−1, f μ2nð Þ + d μ2n, gμ2n−1ð Þ

2s

�
+ β

d μ2n, gμ2n−1ð Þ
s

+ β
d fμ2n, μ2n−1ð Þ

s

≤ α max d μ2n−1, μ2nð Þ, d μ2n, μ2n+1ð Þ, d μ2n, μ2n+1ð Þ + d μ2n−1, μ2nð Þ
2

� �

+ β
d μ2n−1, μ2n+1ð Þ

s
≤ α max d μ2n, μ2n+1ð Þ, d μ2n+1, μ2n+2ð Þf g

+ βd μ2n−1, μ2nð Þ + βd μ2n, μ2n+1ð Þ:

ð24Þ

If dðμ2n−1, μ2nÞ < dðμn, μn+1Þ then

1 − α − βð Þd μ2n, μ2n+1ð Þ < βd μ2n−1, μ2nð Þ, ð25Þ

which implies

d μ2n, μ2n+1ð Þ ≤ β

1 − α − β
d μ2n, μ2n−1ð Þ < d μ2n−1, μ2nð Þ, ð26Þ

therefore, dðμ2n−1, μ2nÞ ≥ dðμ2n, μ2n+1Þ which implies that

d μ2n, μ2n+1ð Þ ≤ αd μ2n−1, μ2nð Þ + βd μ2n−1, μ2nð Þ + βd μ2n, μ2n+1ð Þ:
ð27Þ

Therefore, we obtain

1 − βð Þd μ2n, μ2n+1ð Þ ≤ α + βð Þd μ2n−1, μ2nð Þ: ð28Þ

It follows

d μ2n, μ2n+1ð Þ ≤ α + β

1 − β
d μ2n−1, μ2nð Þ: ð29Þ

So we obtain,

d μ2n, μ2n+1ð Þ ≤ λd μ2n−1, μ2nð Þ, ð30Þ

where λ = α + β/1 − β < 1: Hence,

d μn, μn+1ð Þ ≤ λd μn−1, μnð Þ, ð31Þ

for each positive integer n. So, by Lemma 7, we obtain that
ðμnÞ is a Cauchy sequence. It is convergent because ðX, d, s
Þ is complete. Therefore, there exists ξ ∈ X such that ξ =
limμn.☐

Case 14. Let f and g be sequentially continuous functions.
Then, we have

ξ = limμn = limf μn = f ξ = limμn = limgμn = gξ: ð32Þ

Case 15. Let d be a sequentially continuous. Then,

d f ξ, gμ2n+1ð Þ
≤ α max d ξ, μ2n+1ð Þ, d ξ, f ξð Þ, d μ2n+1, gμ2n+1ð Þ, d μ2n+1, f ξð Þ + d gμ2n+1, ξð Þ

2s

� �

+ β
d μ2n+1, f ξð Þ

2s + β
d gμ2n+1, ξð Þ

s
,

ð33Þ

which implies

limd f ξ, gμ2n+1ð Þ ≤ lim α max d ξ, μ2n+1ð Þ, d ξ, f ξð Þ, d μ2n+1, gμ2n+1ð Þ,f½
� d μ2n+1, f ξð Þ + d gμ2n+1, ξð Þ

2s

�
+ β

d μ2n+1, f ξð Þ
2s

+ β
d gμ2n+1, ξð Þ

s

�
:

ð34Þ

So, we get that

d limgμ2n+1, f ξð Þ ≤ α max d limμ2n+1, ξð Þd ξ, f ξð Þ, d limμ2n+1, limf μ2n+1ð Þ,f
� d limμ2n+1, f ξð Þ + d limgμ2n+1, ξð Þ

2s

�
+ β

d limμ2n+1, f ξð Þ
2s

+ β
d limgμ2n+1, ξð Þ

s

�
:

ð35Þ

Hence,

d ξ, f ξð Þ ≤ α max d ξ, ξð Þ, d ξ, f ξð Þ, d ξ, ξð Þ, d ξ, f ξð Þ + d ξ, ξð Þ
2s

� �
+ β

d ξ, f ξð Þ
2s + βd ξ, ξð Þ

< α + βð Þd ξ, f ξð Þ:
ð36Þ

It follows that ξ = f ξ because ðα + βÞ ∈ ½0, 1Þ. Further, we
have

d fμ2n, gξð Þ ≤ α max d μ2n, ξð Þ, d μ2n, f μ2nð Þ, d ξ, gξð Þ, d μ2n, gξð Þ + d f μ2n, ξð Þ
2s

� �

+ β
d μ2n, gξð Þ

2s + β
d f μ2n, ξð Þ

s
,

ð37Þ

which implies

limd fμ2n, gξð Þ ≤ lim α max d μ2n, ξð Þ, d μ2n, fμ2nð Þ, d ξ, gξð Þ, d μ2n, gξð Þ + d fμ2n, ξð Þ
2s

� ��

+ β
d μ2n, gξð Þ

2s + β
d fμ2n, ξð Þ

s

�
:

ð38Þ
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So, we get that

d limf μ2n, gξð Þ ≤ α max d limμ2n, ξð Þ, d limμ2n, limf μ2nð Þ, d ξ, gξð Þ,f
� d limμ2n, gξð Þ + d limf μ2n, ξð Þ

2s

�
+ β

d limμ2n, gξð Þ
2s

+ β
d limfμ2n, ξð Þ

s

�
:

ð39Þ

Hence,

d ξ, gξð Þ ≤ α max d ξ, ξð Þ, d ξ, ξð Þ, d ξ, gξð Þ, d ξ, gξð Þ + d ξ, ξð Þ
2s

� �
+ β

d ξ, gξð Þ
2s + βd ξ, ξð Þ

< α + βð Þd ξ, gξð Þ:
ð40Þ

It follows that ξ = gðξÞ because ðα + βÞ ∈ ½0, 1Þ.
Now, we prove that the fixed point is unique. Suppose

that there are ξ and ξ′, i.e., gξ = f ξ = ξ and gξ′ = f ξ′ = ξ′.
Then, we obtain

d ξ, ξ′
� �

= d f ξ, gξ′
� �

≤ α d ξ, ξ′
� �

, d ξ, ξð Þd ξ′, ξ′
� �

,
d ξ, ξ′
� �

+ d ξ, ξ′
� �

2s

8<
:

9=
;

+ β
d ξ, ξ′
� �
2s + βd ξ, ξ′

� �
≤ α + 2βð Þd ξ, ξ′

� �
:

ð41Þ

which implies that ξ = ξ′.

Corollary 16. Let ðX, d, sÞ be a complete b-metric space and
mapping f : X ⟶ X. If there exist α, β, γ ∈ ½0, 1� such that
α + β + γ < 1 and

d f μ, f νð Þ ≤ α max d μ, νð Þ, d μ, f μð Þ, d ν, f νð Þ, d μ, f νð Þ + d f μ, νð Þ
2s

� �

+ β
d μ, f νð Þ

s
+ γ

d f μ, νð Þ
s

,

ð42Þ

for any μ, ν ∈ X, then for any μ0 ∈ X sequence of Picard
iterates ðμnÞ defined by f at μ0 is Cauchy sequence. If f is
sequentially continuous or d is sequentially continuous, then,
f has unique fixed point which is unique limit of all Picard
sequences defined by f .

Proof. From

d f μ, f νð Þ ≤ α max d μ, νð Þ, d μ, fμð Þ, d ν, f νð Þ, d μ, f νð Þ + d fμ, νð Þ
2s

� �

+ β
d μ, f νð Þ

s
+ γ

d fμ, νð Þ
s

,

ð43Þ

and

d f ν, f μð Þ ≤ α max d ν, μð Þ, d ν, f νð Þ, d μ, fμð Þ, d ν, fμð Þ + d f ν, μð Þ
2s

� �

+ β
d ν, fμð Þ

s
+ γ

d f ν, μð Þ
s

,

ð44Þ

it follows

d f μ, f νð Þ ≤ α max d μ, νð Þ, d μ, fμð Þ, d ν, f νð Þ, d μ, f νð Þ + d fμ, νð Þ
2s

� �

+ δ
d μ, f νð Þ

s
+ δ

d f μ, νð Þ
s

,

ð45Þ

where δ = β + γ/2:☐

Example 17. Let X = ½0, 4� and dðμ, νÞ = ðμ − νÞ2, for each μ
, ν ∈ X. Then ðX, d, 2Þ is a b-metric space. Define a mapping
f : X⟶ X by

f tð Þ =
t
3 , t ∈ 0, 3½ �,
t
6 , t ∈ 3, 4ð �,

8>><
>>:

ð46Þ

for any t ∈ X. For μ, ν ∈ ½0, 3�, we have

d f μ, f νð Þ = 1
9 μ − νð Þ2: ð47Þ

For μ, ν ∈ ð3, 4�, we have

d f μ, f νð Þ = 1
36 d μ, νð Þ: ð48Þ

For μ ∈ ½0, 3� and ν ∈ ð3, 4�, we have

d f μ, f νð Þ = μ

3 −
ν

6
� �2

≤
4
9 < 1

2 d ν, f νð Þ, ð49Þ

because dðν, f νÞ = ð5ν/6Þ2 > 25 · 9/36.
For ν ∈ ½0, 3� and μ ∈ ð3, 4�, we have

d f μ, f νð Þ = μ

3 −
ν

6
� �2

≤
16
9 < 3

4 d μ, f μð Þ, ð50Þ

because dðμ, f μÞ = ð5μ/6Þ2 > 25 · 9/36.

Since conditions of Corollary 16 is satisfied for α = 3/4
and β = γ = 0. So, f has unique fixed point which is unique
limit of all Picard sequences defined by f , because d is
sequentially continuous.
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The term “learning” is often used to refer to a generally stable behavioral change resulting from practice. However, it is a
fundamental biological capacity far more developed in humans than in other living beings. In an animal or human being, the
learning phase may often be viewed as a series of choices between multiple possible reactions. Here, we analyze a specific type
of human learning process related to gambling in which a subject inserts a poker chip to operate a two-armed bandit device
and then presses one of the two keys. Through the use of an electromagnet, one or more poker chips are given to the
individual in a container located in the apparatus’s center. If a chip is provided, it is declared a winner; otherwise, it is
considered a loser. The goal of this paper is to look at the subject’s actions in such situations and provide a mathematical
model that is appropriate for it. The existence of a unique solution to the suggested human learning model is examined using
relevant fixed point results.

1. Introduction

Learning is a fundamental biological capacity that is much
more evolved in humans than in any other living being.
The central topic in learning philosophy is how multiple
forms of learning take place in a human brain and body
since this was explicitly formulated in the discipline of learn-
ing psychology, but with additional feedback from other
psychological disciplines and the adjacent areas of sociology,
pedagogy, and biology, including contemporary brain
science.

In modern mathematical learning experiments, the
researchers concluded that a basic learning experiment was
compatible with any stochastic process. Thus, it is not a
novel concept (for detail, see [1]). However, after 1950, two
critical features emerged mainly in the research initiated by
Bush, Estes, and Mosteller. Firstly, the learning method egal-
itarian essence was a core feature of the developed model.

Secondly, these frameworks were studied and applied in
areas that did not conceal their quantitative aspects.

Several studies on human actions in probability-learning
scenarios have produced different results (for the detail, see
[2–5]).

In 2019, Turab and Sintunavarat [6, 7] proposed a func-
tional equation to examine the experimental work of Bush
and Wilson [8] on a paradise fish. In this experiment, a fish
was given two options for swimming. The fish had options
to swim on either side (right or left) of the tank’s far end.

In [9], the authors recently addressed a kind of traumatic
avoidance learning experiment for normal dogs suggested by
Solomon and Wynne [10]. They examined the psychological
responses of 30 dogs enclosed in a small steel grid cage and
proposed a mathematical model. The suggested avoidance
learning model’s existence and uniqueness of a solution
result were investigated using the appropriate fixed point
method.
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For the research in this area, especially related to the
two-choice behavior, we refer to [11–13] and the references
therein. It is worth noting that most animal behavior studies
in a two-choice situation discussed above have focused only
on the animals’ approach toward an inevitable conclusion.
Bush and Wilson [8], on the other hand, divided such
responses into four categories depending on the food source
and side chosen (right-reward, right nonreward, left reward,
and left nonreward).

In this work, by following the work presented by Turab
and Sintunavarat [6, 9] and the idea discussed in [8, 14],
our aims are to discuss the two-armed bandit experiment
proposed by Goodnow and Pettigrew [15] and propose a
convenient mathematical model. We evaluate our findings
under the experimenter-subject controlled events to see the
feasibility of the suggested model. The existence of a unique
solution to the proposed model is examined by using the
appropriate fixed point theorem. In the end, we raise some
open problems for the interested readers.

2. A Two-Armed Bandit Experiment

In [15], Goodnow and Pettigrew presented an experiment
related to the gambling theory. This gambling activity
involves playing a poker game with chips worth one penny
each (see Figure 1). The subject (S) is given 200 chips by
an experimenter (E). He/She inserts into the machine one
of these chips and pushes one of two buttons. A chip drops
into the payout box with a clatter of noise when the bet is
successful. The payoff box has a glass face, and the heap of
chips he/she has won can be seen by S. The subject is not
permitted until the end of the experiment to carry the chips
out of this box. Whatever the outcome of the bet, between
each test, the machine becomes unusable for several seconds,
and S wait until two signal lights and a loud buzz appear,
indicating that the device is ready to take the next bet. The
apparatus is fully programmed such that inserting a chip
before the device’s ready is useless for S.

When the subject S implants a chip (upper center light)
and clicks a key (left or right lower), the lights on the face of
the machine flash on successively (upper outer lights in
Figure 1). These lights are parallel to the control machine’s
lights controlled in an adjacent space by E. A master switch
to turn the device on or off is also included in the control
machine, along with a key that allows the machine to eject
a chip into the pay-off box when pushed. The one-way mir-
ror enables E from the control room to view S’s activities.

2.1. Procedure. The assignment’s method and directions
were given to S and E. The S was instructed that he/she is
playing for cash and that he/she would be paid for the dis-
crepancy between the number of wins and losses. There were
120 trials allowed for every S, divided into 12 blocks of 10
trials each. The probability of the above task was 50 : 50,
70 : 30, and 90 : 10. When the experiment is completed, S
was asked the following questions:

(1) How did you decide which alternative you should
choose?

(2) How he/she thought about the strategy of always
betting on one key?

2.2. Results. The results were described in terms of the aver-
age proportion of choices of one alternative: pushing the ‘left
button’ in the gambling experiment provided the greater
likelihood of these alternatives outside the 50 : 50 scenario.
In Table 1, the findings are presented.

3. Mathematical Modeling of the Two-Armed
Bandit Experiment

In the above experiment, significant interest lies in the
behavior of a subject S; press right or left button, `A1

’ or
`A2,’ and get the reward in terms of a poker chip. In our
view, if a subject chooses the reward side, there would be
an occurrence of alternative O1, and if the subject made a
move to the other side, then there will be an occurrence of
alternative O2. Thus, according to the mathematical point
of view, there would be four possibilities of events, depend-
ing on the action of the subject and the reward. These events
are listed in Table 2.

Depending on the action of the subject and getting the
chance of the reward, we have the following four events
(see Table 3).

The probability of the outcomes A1 and A2 are x and ð
1 − xÞ, respectively, where x ∈ 0, 1]. The experimental pat-
tern asks for the outcomes of the responses (whether the
subject get the reward or not), trials’ fixed proportion of p
∈ 0, 1]. Therefore, we get the event probabilities stated below
(see Table 4).

A2
(Le� button) A1

(Right button)

Figure 1: A sketch of a two-armed bandit machine.
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We define η1, η2, η3, η4 ∈ ð0, 1Þ as the learning rate
parameters and their values can be recognized as a measure
of the ineffectiveness of the corresponding events E1 − E4 in
altering the response probability.

If, on some trial, px is the possibility of response A1 with
outcome O1 and A1 is fulfilled, the next possibility of A1
with outcome O1 will be η1x + ð1 − η1Þ, and if A1 is achieved
with outcome O2 then the new probability would be η2x +
ð1 − η2Þ with the event probability ð1 − pÞx: Similarly, if A2
is performed with outcomes O1 and O2, then the new prob-
abilities of A2 are η3x + ð1 − η3Þ and η4x + ð1 − η4Þ, with the

event probabilities pð1 − xÞ and ð1 − pÞð1 − xÞ, respectively.
For the four events E1 − E4, we can define the transition
operators Q1 −Q4 : ½0, 1�⟶ 0, 1] as

Q1x = η1x + 1 − η1ð Þ,
Q2x = η2x + 1 − η2ð Þ,
Q3x = η3x + 1 − η3ð Þ,
Q4x = η4x + 1 − η4ð Þ,

8
>>>>><

>>>>>:

ð1Þ

for all x ∈ 0, 1].
By considering the work presented in [6, 8, 9] and the

above transition operators with their corresponding proba-
bilities and events given in Table 4, we introduce the follow-
ing functional equation, which can discuss all the aspects of
the two-armed bandit model.

Q x, η1, η2, η3, η4ð Þ = pxQ η1x + 1 − η1ð Þ, η1ð Þ + 1 − pð ÞxQ η2x + 1 − η2ð Þ, η2ð Þ
+ p 1 − xð ÞQ η3x + 1 − η3ð Þ, η3ð Þ
+ 1 − pð Þ 1 − xð ÞQ η4x + 1 − η4ð Þ, η4ð Þ:

ð2Þ

Fixed point theory, on the other hand, began in the sec-
ond half of the nineteenth century as a method of using iter-
ative estimations to demonstrate the existence and
uniqueness of solutions to ordinary differential and integral
equations. It is a wonderful combination of basic and
applied analysis, geometry, and topology. A fixed point the-
oretic viewpoint can be seen in Picard’s work, which is a fun-
damental notion in the field of metric fixed point theory.
Nevertheless, it is credited to the Polish mathematician
“Banach,” who abstracted the underlying principles into a
framework that can be applied to find the existence of a
unique solution to the broad range of applications beyond
differential and integral equations. It has been extended
and generalized in numerous directions (for the detail, see
[16–18]). We suggest the reader to see [19–21] for further
information on fixed point theory and its applications in
various spaces.

The following stated outcome will be required in the
progression.

Theorem 1 (see [22]). Let ðO, dÞ be a complete metric space
and J : O⟶ O be a Banach contraction mapping (shortly,
BCM), that is,

d Jω, Jϖð Þ ≤ δd ω, ϖð Þ, ð3Þ

for some δ < 1 and for all ω, ϖ ∈ O: Then, O has one fixed
point. Furthermore, the Picard iteration fωng in O that can
be defined as ωn = Oωn−1 for all n ∈ℕ, where ω0 ∈ O, con-
verges to the unique fixed point of O.

4. Existence and Uniqueness Results

We let O = ½0, 1�: For the rest of this article, D represents the
class J : O⟶ℝ with J ð0Þ = 0 consisting of all real-valued

Table 1: Mean proportional choices by group and by blocks of 20
trials of pressing a ‘left key’ in gambling experiment.

Group
Trials 50 : 50 70 : 30 90 : 10

1-20 0.430 0.489 0.765

21-40 0.505 0.664 0.878

41-60 0.550 0.721 0.950

61-80 0.495 0.722 0.954

81-100 0.465 0.782 0.965

101-120 0.515 0.815 0.964

N 10 14∗ 14∗

∗Those two groups where N was increased to 14 because the data were
required for another purpose (an analysis of choice sequences), and the
incidence of 100 : 0 choice distributions was cutting down on the amount
of data available for such analysis.

Table 2: The possible four responses in two-armed bandit
experiment.

Responses Outcomes

A1 : press right button O1 : reward (poker chips)

A1 : press right button O2 : no reward (no poker chips)

A2 : press left button O1 : reward (poker chips)

A2 : press left button O2 : no reward (no poker chips)

Table 3: The corresponding events of the subject.

Response Outcomes Events

A1 O1 E1

A1 O2 E2

A2 O1 E3

A2 O2 E4

Table 4: Probabilities of the four events.

Event Probability of occurrence

E1 px

E2 1 − pð Þx
E3 p 1 − xð Þ
E4 1 − pð Þ 1 − xð Þ
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continuous functions which satisfy the following relation

sup
ω≠ϖ

J ωð Þ − J ϖð Þj j
ω − ϖj j <∞: ð4Þ

Clearly, ðD, k·kÞ is a Banach space with

Jk k = sup
ω≠ϖ

J ωð Þ − J ϖð Þj j
ω − ϖj j , ð5Þ

for all J ∈D.
Following that, we can rewrite the functional equation

(2) as

J xð Þ = pxJ η1x + 1 − η1ð Þ + 1 − pð ÞxJ η2x + 1 − η2ð Þ
+ 1 − xð ÞpJ η3x + 1 − η3ð Þ + 1 − pð Þ 1 − xð ÞJ η4x + 1 − η4ð Þ,

ð6Þ

where J : O⟶ℝ is an unknown function, 0 < η1, η2, η3,
η4 < 1.

Theorem 2. For 0 < η1, η2, η3, η4 < 1 and p ∈ O with Θ1 < 1,
where

Θ1 ≔ 2p η1 + η3ð Þ + 2 1 − pð Þ η2 + η4ð Þ + 2p½ �: ð7Þ

If there is a C ⊆D such that C is W -invariant, that is,
W ðCÞ ⊆C , where W : C ⟶C is defined for each J∈C as

W Jð Þ xð Þ = pxJ η1x + 1 − η1ð Þ + 1 − pð ÞxJ η2x + 1 − η2ð Þ
+ 1 − xð ÞpJ η3x + 1 − η3ð Þ + 1 − pð Þ 1 − xð ÞJ η4x + 1 − η4ð Þ,

ð8Þ

for all x ∈ O, then W is a BCM.

Proof. Let J 1, J 2 ∈C . For each distinct points ω, ϖ ∈ O, we
obtain

W J 1 −W J 2ð Þ ωð Þ − W J 1 −W J 2ð Þ ϖð Þj j
∣ω − ϖ ∣

= 1
ω − ϖ

pω J 1 − J 2ð Þ η1ω + 1 − η1ð Þ + 1 − pð Þω J 1 − J 2ð Þ η2ω + 1 − η2ð Þ + p 1 − ωð Þ J 1 − J 2ð Þ η3ω + 1 − η3ð Þ½
�
�
�
�

+ 1 − pð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ω + 1 − η4ð Þ − pϖ J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ − 1 − pð Þϖ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ − p 1 − ϖð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ
− 1 − pð Þ 1 − ϖð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ�j = 1

ω − ϖ
pω J 1 − J 2ð Þ η1ω + 1 − η1ð Þ − pω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ + 1 − pð Þω J 1 − J 2ð Þ η2ω + 1 − η2ð Þ½

�
�
�
�

− 1 − pð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ + p 1 − ωð Þ J 1 − J 2ð Þ η3ω + 1 − η3ð Þ − p 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ + 1 − pð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ω + 1 − η4ð Þ
− 1 − pð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ + pω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ − pϖ Z1 − J 2ð Þ η1ϖ + 1 − η1ð Þ + 1 − pð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ
− 1 − pð Þϖ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ + p 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ − p 1 − ϖð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ + 1 − pð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ
− 1 − pð Þ 1 − ϖð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ�j = 1

ω − ϖ
pω J 1 − J 2ð Þ η1ω + 1 − η1ð Þ − pω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ½ � + 1

ω − ϖ
1 − pð Þω J 1 − J 2ð Þ η2ω + 1 − η2ð Þ½

�
�
�
�

− 1 − pð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ� + 1
ω − ϖ

p 1 − ωð Þ J 1 − J 2ð Þ η3ω + 1 − η3ð Þ − p 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ½ �

+ 1
ω − ϖ

1 − pð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ω + 1 − η4ð Þ − 1 − pð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ½ � + 1
ω − ϖ

pω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ − pϖ J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ½ �

+ 1
ω − ϖ

1 − pð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ − 1 − pð Þϖ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ½ � + 1
ω − ϖ

p 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ − p 1 − ϖð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ½ �

+ 1
ω − ϖ

1 − pð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ − 1 − pð Þ 1 − ϖð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ½ �
�
�
�
� ≤

pω J 1 − J 2ð Þ η1ω + 1 − η1ð Þ − pω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þj j
η1ω − η1ϖj j

× η1ω − η1ϖj j
ω − ϖj j + 1 − pð Þω J 1 − J 2ð Þ η2ω + 1 − η2ð Þ − 1 − pð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þj j

η2ω − η2ϖj j × η2ω − η2ϖj j
ω − ϖj j

+ p 1 − ωð Þ J 1 − J 2ð Þ η3ω + 1 − η3ð Þ − p 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þj j
η3ω − η3ϖj j × η3ω − η3ϖj j

ω − ϖj j
+ 1 − pð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ω + 1 − η4ð Þ − 1 − pð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þj j

η4ω − η4ϖj j × η4ω − η4ϖj j
ω − ϖj j + p J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þj j

+ 1 − pð Þ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þj j + p J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þj j + 1 − pð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þj j:
ð9Þ
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By applying the definition of the norm (5), we obtain

W J 1 −W J 2ð Þ ωð Þ − W J 1 −W J 2ð Þ ϖð Þj j
ω − ϖj j ≤ η1pω J 1 − J 2k k + η2 1 − pð Þω J 1 − J 2k k

+ η3p 1 − ωð Þ J 1 − J 2k k + η4 1 − pð Þ 1 − ωð Þ J 1 − J 2k k + p J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þj
− p J 1 − J 2ð Þ 0ð Þj + 1 − pð Þ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ − 1 − pð Þ J 1 − J 2ð Þ 1ð Þj j
+ p J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ − p J 1 − J 2ð Þ 0ð Þj j + 1 − pð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þj
− 1 − pð Þ J 1 − J 2ð Þ 1ð Þj = η1pω J 1 − J 2k k + η2 1 − pð Þω J 1 − J 2k k
+ η3p 1 − ωð Þ J 1 − J 2k k + η4 1 − pð Þ 1 − ωð Þ J 1 − J 2k k + p η1ϖ + 1 − η1ð Þ J 1 − J 2k k
+ 1 − pð Þ η2ϖ − η2ð Þ W 1 − J 2k k + p η3ϖ + 1 − η3ð Þ J 1 − J 2k k
+ 1 − pð Þ η4ϖ − η4ð Þ J 1 − J 2k k ≤Θ1 J 1 − J 2k k,

ð10Þ

where Θ1 is defined in (7). This gives that

d W J 1,W J 2ð Þ = W J 1 −W J 2k k ≤Θ1 J 1 − J 2k k =Θ1d J 1, J 2ð Þ:
ð11Þ

As a result of 0 <Θ1 < 1, we can claim that W is a BCM
with the metric d imposed by k·k.

We get the following conclusion from Theorem 2 about
the uniqueness of a functional equation (6)’s solution.☐☐

Theorem 3. The stochastic equation (6) has a unique solution
with Θ1 < 1, where Θ1 is defined in (7). Assume that there is a
C ⊆D such that C is W -invariant, that is, W ðCÞ ⊆C ,
where W : C ⟶C defined for each J ∈C as

W Jð Þ xð Þ = pxJ η1x + 1 − η1ð Þ + 1 − pð ÞxJ η2x + 1 − η2ð Þ
+ p 1 − xð ÞJ η3x + 1 − η3ð Þ + 1 − pð Þ 1 − xð ÞJ η4x + 1 − η4ð Þ,

ð12Þ

for all x ∈ O: Furthermore, the following iteration fJ ng in C

ð∀n ∈ℕ and J 0 ∈CÞ defined by

J nð Þ xð Þ = pxJ n−1 η1x + 1 − η1ð Þ + 1 − pð ÞxJ n−1 η2x + 1 − η2ð Þ
+ p 1 − xð ÞJ n−1 η3x + 1 − η3ð Þ
+ 1 − pð Þ 1 − xð ÞJ n−1 η4x + 1 − η4ð Þ,

ð13Þ

converges to the unique solution of (12).

Proof. We reach the conclusion of this theorem by combin-
ing the Banach fixed point theorem with Theorem 2.☐

The following corollaries arise from the preceding
findings.

Corollary 4. For 0 < η1 ≤ η2 ≤ η3 ≤ η4 < 1 and p ∈ O with ~Θ1
< 1, where

~Θ1 ≔ 2 p + η4ð Þð Þ: ð14Þ

If there is a C ⊆D such that C is W -invariant, that is,
W ðCÞ ⊆C , where W : C ⟶C defined for each J∈C as

W Jð Þ xð Þ = pxJ η1x + 1 − η1ð Þ + 1 − pð ÞxJ η2x + 1 − η2ð Þ
+ 1 − xð ÞpJ η3x + 1 − η3ð Þ
+ 1 − pð Þ 1 − xð ÞJ η4x + 1 − η4ð Þ,

ð15Þ

for all x ∈ O, then W is a BCM.

Corollary 5. The stochastic equation (6) has a unique solu-
tion with ~Θ1 < 1, where ~Θ1 is defined in (7). Assume that
there is a C ⊆D such that C is W -invariant, that is, W ðCÞ
⊆C , where W : C ⟶C defined for each J∈C as

W Jð Þ xð Þ = pxJ η1x + 1 − η1ð Þ + 1 − pð ÞxJ η2x + 1 − η2ð Þ
+ p 1 − xð ÞJ η3x + 1 − η3ð Þ
+ 1 − pð Þ 1 − xð ÞJ η4x + 1 − η4ð Þ,

ð16Þ

for all x ∈ O: Furthermore, the iteration fJ ng in C

(∀n ∈ℕ and J 0 ∈C) defined by

J nð Þ xð Þ = pxJ n−1 η1x + 1 − η1ð Þ + 1 − pð ÞxJ n−1 η2x + 1 − η2ð Þ
+ p 1 − xð ÞJ n−1 η3x + 1 − η3ð Þ
+ 1 − pð Þ 1 − xð ÞJ n−1 η4x + 1 − η4ð Þ,

ð17Þ

converges to the unique solution of (12).

5. A Certain Case with Experimenter-Subject-
Controlled Events

It has been highlighted that the examination of any experi-
ment is truly based on suppositions. Therefore, experiments

Table 5: Four events under conditional probability of occurrence.

Events Outcomes
Transition
operators

Probabilities of
occurrence

A1 O1 Q1x = η1x + 1 − η1 p1x

A1 O2 Q2x = η2x + 1 − η2 1 − p1ð Þx
A2 O1 Q3x = η3x + 1 − η3 p2 1 − xð Þ
A2 O2 Q4x = η4x + 1 − η4 1 − p2ð Þ 1 − xð Þ
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are classified into contingent and noncontingent, based on
the occurrences of the results. It has been suggested that
the correspondence of contingent experiments is for the
events of experimental-subject (contingent) and noncontin-
gent experiments are for the events of experimental control.

In the previous models on imitation problems such as T-
maze experiments with fish and dog (see [6, 9]), it was
already mentioned that such experiments required a contin-
gent approach; the result of the trials was entirely dependent
on the subject’s choice. Thus, such types of models required
experimenter-subject-controlled events. The two responses
A1 and A2, along with outcomes O1 and O2, are choosing
the right or left side or pushing the right or left button,
which coincides with rewarding and non-rewarding or cor-
rect and incorrect, respectively. Now we define the probabil-
ities p1 and p2 which indicate the conditional probability of
outcomes O1 and O2 of the given alternatives A1 and A2,
respectively. With such conditions, we have the following
Table 5.

We have the following functional equation from the data
given above:

J xð Þ = p1xJ η1x + 1 − η1ð Þ + 1 − p1ð ÞxJ η2x + 1 − η2ð Þ
+ p2 1 − xð ÞJ η3x + 1 − η3ð Þ
+ 1 − p2ð Þ 1 − xð ÞJ η4x + 1 − η4ð Þ,

ð18Þ

where J : O⟶ℝ is an unknown function, 0 < η1, η2, η3,
η4 < 1 and p1, p2 ∈ O. We shall begin with the following
finding.

Theorem 6. For 0 < η1, η2, η3, η4 < 1 and p1, p2 ∈ O with Θ2
< 1, where

Θ2 ≔ 2p1 η1 − η2ð Þ + 2p2 η3 − η4ð Þ + 2 η2 + η4ð Þ + p1 + p2ð Þ½ �:
ð19Þ

Assume that, if there is a C ⊆D such that C is W

-invariant, that is, W ðCÞ ⊆C , where W : C ⟶C defined
for each J∈C as

W Jð Þ xð Þ = p1xJ η1x + 1 − η1ð Þ + 1 − p1ð Þ 1 − xð ÞJ η2x + 1 − η2ð Þ
+ p2 1 − xð ÞJ η3x + 1 − η3ð Þ
+ 1 − p2ð Þ 1 − xð ÞJ η4x + 1 − η4ð Þ,

ð20Þ

for all x ∈ O, then W is a BCM.

Proof. Let J 1, J 2 ∈C . For each distinct points ω, ϖ ∈ O, we
obtain

∣ W J 1 −WJ 2ð Þ ωð Þ − W J 1 −WW 2ð Þ ϖð Þ ∣
∣ω − ϖ ∣

= 1
ω − ϖ

p1ω J 1 − J 2ð Þ η1ω + 1 − η1ð Þ + 1 − p1ð Þω J 1 − J 2ð Þ η2ω + 1 − η2ð Þ½
�
�
�
�

+ p2 1 − ωð Þ J 1 − J 2ð Þ η3ω + 1 − η3ð Þ + 1 − p2ð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ω + 1 − η4ð Þ
− p1ϖ J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ − 1 − p1ð Þϖ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ
− p2 1 − ϖð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ − 1 − p2ð Þ 1 − ϖð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ�j

= ∣
1

ω − ϖ
p1ω J 1 − J 2ð Þ η1ω + 1 − η1ð Þ − p1ω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ½

+ 1 − p1ð Þω J 1 − J 2ð Þ η2ω + 1 − η2ð Þ − 1 − p1ð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ
+ p2 1 − ωð Þ J 1 − J 2ð Þ η3ω + 1 − η3ð Þ − p2 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ
+ 1 − p2ð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ω + 1 − η4ð Þ − 1 − p2ð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ
+ p1ω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ − p1ϖ J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ
+ 1 − p1ð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ − 1 − p1ð Þϖ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ
+ p2 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ − p2 1 − ϖð Þ J 1 − J 2ð Þη3ϖ + 1 − η3Þ
+ 1 − p2ð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ − 1 − p2ð Þ 1 − ϖð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ�∣

= 1
ω − ϖ

p1ω J 1 − J 2ð Þ η1ω + 1 − η1ð Þ − p1ω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ½ �
�
�
�
�

+ 1
ω − ϖ

1 − p1ð Þω J 1 − J 2ð Þ η2ω + 1 − η2ð Þ − 1 − p1ð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ½ �

+ 1
ω − ϖ

p2 1 − ωð Þ J 1 − J 2ð Þ η3ω + 1 − η3ð Þ − p2 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ½ �

+ 1
ω − ϖ

1 − p2ð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ω + 1 − η4ð Þ½

− 1 − p2ð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ� + 1
ω − ϖ

p1ω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ½

− p1ϖ J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ� + 1
ω − ϖ

1 − p1ð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ½

− 1 − p1ð Þϖ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ� + 1
ω − ϖ

p2 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ½

− p2 1 − ϖð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ� + 1
ω − ϖ

1 − p2ð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ½
− 1 − p2ð Þ 1 − ϖð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ�j

≤
p1ω J 1 − J 2ð Þ η1ω + 1 − η1ð Þ − p1ω J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þj j

η1ω − η1ϖj j × η1ω − η1ϖj j
ω − ϖj j

+ 1 − p1ð Þω J 1 − J 2ð Þ η2ω + 1 − η2ð Þ − 1 − p1ð Þω J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þj j
η2ω − η2ϖj j × η2ω − η2ϖj j

ω − ϖj j
+ p2 1 − ωð Þ J 1 − J 2ð Þ η3ω + 1 − η3ð Þ − p2 1 − ωð Þ J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þj j

η3ω − η3ϖj j × η3ω − η3ϖj j
ω − ϖj j

+ 1 − p2ð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ω + 1 − η4ð Þ − 1 − p2ð Þ 1 − ωð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þj j
η4ω − η4ϖj j

× η4ω − η4ϖj j
ω − ϖj j + p1 J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þj j + 1 − p1ð Þ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þj j

+ p2 J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þj j + 1 − p2ð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þj j:

ð21Þ

By applying the definition of the norm (5), we obtain

W J 1 −W J 2ð Þ ωð Þ − W J 1 −W J 2ð Þ ϖð Þj j
ω − ϖj j

≤ η1p1ω J 1 − J 2k k + η2 1 − p1ð Þω J 1 − J 2k k + η3p2 1 − ωð Þ J 1 − J 2k k
+ η4 1 − p2ð Þ 1 − ωð Þ J 1 − J 2k k + p1 J 1 − J 2ð Þ η1ϖ + 1 − η1ð Þ − p1 J 1 − J 2ð Þ 0ð Þj j
+ 1 − p1ð Þ J 1 − J 2ð Þ η2ϖ + 1 − η2ð Þ − 1 − p1ð Þ J 1 − J 2ð Þ 1ð Þj j
+ p2 J 1 − J 2ð Þ η3ϖ + 1 − η3ð Þ − p2 J 1 − J 2ð Þ 0ð Þj j
+ 1 − p2ð Þ J 1 − J 2ð Þ η4ϖ + 1 − η4ð Þ − 1 − p2ð Þ J 1 − J 2ð Þ 1ð Þj j = η1p1ω J 1 − J 2k k
+ η2 1 − p1ð Þω J 1 − J 2k k + η3p2 1 − ωð Þ J 1 − J 2k k + η4 1 − p2ð Þ 1 − ωð Þ J 1 − J 2k k
+ p1 η1ϖ + 1 − η1ð Þ J 1 − J 2k k + 1 − p1ð Þ η2ϖ + 1 − η2ð Þ J 1 − J 2k k
+ p2 η3ϖ + 1 − η3ð Þ J 1 − J 2k k + 1 − p2ð Þ η4ϖ + 1 − η4ð Þ J 1 − J 2k k ≤Θ2 J 1 − J 2k k,

ð22Þ

where Θ2 is defined in (19). Thus, we have

d W J 1,W J 2ð Þ = W J 1 −W J 2k k ≤Θ2 J 1 − J 2k k =Θ2d J 1, J 2ð Þ:
ð23Þ

As a result of 0 <Θ2 < 1, one can see that W is a
BCM.☐☐
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For the unique solution of (18), we get the subsequent
conclusion from Theorem 6.

Theorem 7. The stochastic equation (18) has a unique solu-
tion with Θ2 < 1: Assume that, there is a C ⊆D such that
C is W -invariant, that is, W ðCÞ ⊆C , where W : C ⟶C

defined for each J∈C as

W Jð Þ xð Þ = p1xJ η1x + 1 − η1ð Þ + 1 − p1ð Þ 1 − xð ÞJ η2x + 1 − η2ð Þ
+ p2 1 − xð ÞJ η3x + 1 − η3ð Þ + 1 − p2ð Þ 1 − xð ÞJ η4x + 1 − η4ð Þ,

ð24Þ

for all x ∈ O: Furthermore, the iteration fJ ng in C

ð∀n ∈ℕ and J 0 ∈CÞ defined by

J nð Þ xð Þ = p1xJ n−1 η1x + 1 − η1ð Þ + 1 − p1ð Þ 1 − xð ÞJ n−1 η2x + 1 − η2ð Þ
+ p2 1 − xð ÞJ n−1 η3x + 1 − η3ð Þ
+ 1 − p2ð Þ 1 − xð ÞJ n−1 η4x + 1 − η4ð Þ,

ð25Þ

converges to the unique solution of (24).

Proof. The conclusion of this theorem can be found by com-
bining Theorem 6 with the Banach fixed point theorem.☐☐

6. Conclusion

In this work, we have discussed a special type of stochastic
process related to the two-armed bandit experiment [15]
which plays a vital role in observing the subject’s behavior
in a two-choice situation. We reviewed the operant’s
responses under such conditions and provided a mathemat-
ical model for it. The Banach fixed point theorem was used
to determine the existence of a unique solution to the two-
armed bandit learning model. We investigated the proposed
model’s adaptability by subjecting it to some controlled
events. Moreover, the presented approach is straightforward
and easy to verifiable. Thus, the proposed approach can be
used to investigate more psychological learning experiments
related to animals and humans in the future.

Now, for the interested readers, we propose the following
open problems.

Question 1. Assume that if a subject does not press any but-
ton on a specific trial k, how can we describe such an event
by a model?

In the end, we also leave the stability problem (for the
detail, see [23–27]) of the stochastic equation given below
as an open problem:

J xð Þ = pxJ η1x + 1 − η1ð Þð Þ + 1 − pð ÞxJ η2x + 1 − η2ð Þð Þ
+ p 1 − xð ÞJ η3x + 1 − η3ð Þð Þ
+ 1 − pð Þ 1 − xð ÞJ η4x + 1 − η4ð Þð Þ,

ð26Þ

where 0 < η1, η2, η3, η4 < 1 and J : O⟶ℝ is an unknown
function.
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This paper is aimed at establishing some unique common fixed point theorems in complex-valued b-metric space under the
rational type contraction conditions for three self-mappings in which the one self-map is continuous. A continuous self-map is
commutable with the other two self-mappings. Our results are verified by some suitable examples. Ultimately, our results have
been utilized to prove the existing solution to the two Urysohn integral type equations. This application illustrates how
complex-valued b-metric space can be used in other types of integral operators.

1. Introduction

In 1922, Banach [1] proved a fixed point theorem (FP-
theorem), which is stated as the following: “a single-valued
contractive type mapping on a complete metric space has a
unique fixed point.” After the publication of the Banach FP-
theorem, many researchers have contributed their ideas to
the theory of FP. Chandok [2, 3], Jungck and Rhoades [4],
and Al-Shami and Abo-Tabl [5, 6] proved different contrac-
tive types of FPs and a-fixed soft point results in the context
of metric spaces.

Bakhtin [7] introduced the idea of b-metric space, while
Czerwik [8] proved some fixed point results for nonlinear
set-valued contractive type mappings in b-metric spaces.
Suzuki in [9] proved basic inequality and some FP-
theorems. Jain and Kaur [10] presented a new class of
functions to define new contractive maps and established
FP-results for these maps. They also extended some results
in the framework of b-metric-like spaces. They presented
examples and established the application of their main

results. They also presented some open problems. Petrusel
et al. [11] considered coupled FP-problems for single-
valued operators satisfying contraction in said space. They
discussed uniqueness, data dependence, and shadowing-
property of coupled FP-problem and also established an
application for main results. Ameer et al. [12], Boriceanu
[13, 14], Bota et al. [15], Czerwik et al. [16, 17], Hussain
and Shah [18], Karapinar et al. [19], and Samreen et al.
[20] established different contractive type FP and common
FP (CFP) results in the context of b-metric spaces.

In 2011, the concept of complex-valued metric space
was given by Azam et al. [21], and they proved some
CFP-theorems for self-mappings. The notion of said space
was proposed by Rouzkard and Imdad [22] which general-
izes the results of Azam et al. [21] and established some
CFP-results. Abbas et al. [23] presented some generalized
CFP-results by using cocyclic mappings in complex-
valued metric space. They provided examples to indicate
the authenticity of his expressions. Sarwar and Zada [24]
used the ideas of ðE:AÞ and ðCLRÞ properties and proved
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FP-results for six self-mappings. They showed the exis-
tence of their results by establishing some examples. Abbas
et al. [25], Nashine et al. [26], Mohanta and Maitra [27],
Sintunavarat and Kumam [28], and Verma and Pathak
[29] proved some results in the context of complex-
valued metric space.

In 2013, Rao et al. [30] introduced the notion of
complex-valued b-metric space. Mukheimer et al. [31]
established CFP-results on said space by extending and
generalizing the results of [30, 31]. In [32], Chantakun
et al. extend the work of Dubey et al. [33] by introducing
sufficient conditions to prove some CFP-results in
complex-valued b-metric space. Yadav et al. [34] used
compatible and weakly compatible maps to find CFP-
results. They proved the validity of the results by provid-
ing some examples and establishing an application. Berrah
et al. [35], Hasana [36], Mehmood et al. [37], and
Mukheimer [38] established some FP and CFP theorems
in complex-valued b-metric spaces.

In this paper, we provide some extended and effective
CFP-results for commuting three self-maps on complex-
valued b-metric spaces. To verify the validity of our work,
we present some illustrative examples in the main section.
Further, our results have been utilized to prove the existing
solution to the two Urysohn integral type equations. This
application is also illustrative of how complex-valued b
-metric space can be used in other integral type operators.
This paper is organized as follows: In Section 2, we present
the preliminary concepts. In Section 3, we establish some
extended and modified CFP-results for commuting self-
maps in complex-valued b-metric space under the general-
ized rational type conditions. We also provide authentic
examples to indicate the effectiveness of these results. In Sec-
tion 4, we present an application of the two UITEs to sup-
port our main work. Finally, in Section 5, we discuss the
conclusion.

2. Preliminaries

Let ℂ be the set of all complex numbers and zi, zii ∈ℂ.
Define ≤ as zi ≤ zii, iff ReðziÞ ≤ ReðziiÞ and ImðziÞ ≤ ImðziiÞ,
where Re denotes the real part and Im denotes the imaginary
part of a complex number. Accordingly, zi ≤ zii, if any one of
the following conditions holds:

ðC1ÞReðziÞ = ReðziiÞ and ImðziÞ = ImðziiÞ
ðC2ÞReðziÞ < ReðziiÞ and ImðziÞ = ImðziiÞ
ðC3ÞReðziÞ = ReðziiÞ and ImðziÞ < ImðziiÞ
ðC4ÞReðziÞ < ReðziiÞ and ImðziÞ < ImðziiÞ
Know that zi ⪇ zii if zi ≠ zii and one of (C2), (C3), and (C4)

is satisfied.

Remark 1 (see [31]). We can easily check the following:

(i) If a1, a2 ∈ℝ and a1 ≤ a2 ⇒ a1y ≤ a2y, ∀y ∈ℂ

(ii) 0 ≤ zi ⪇ zii ⇒ jzij < jziij
(iii) zi ≤ zii and zii < ziii ⇒ zi < ziii

Definition 2 (see [8]). Let Ω be a nonempty set and b ≥ 1 a
given real number. A mapping ð : Ω ×Ω⟶ ½0,∞Þ is called
a b-metric on Ω if the following conditions are satisfied:

ðbm1Þððρ1, ρ2Þ = 0 if and only if ρ1 = ρ2
ðbm2Þððρ1, ρ2Þ = ððρ2, ρ1Þ
ðbm3Þððρ1, ρ2Þ ≤ b½ððρ1, ρ3Þ + ððρ3, ρ2Þ�,
for all ρ1, ρ2, ρ3 ∈Ω. Then, ðΩ, ðÞ is called a b-metric

space.

Definition 3 (see [30]). Let Ω be a nonempty set and b ≥ 1 a
given real number. A mapping ð : Ω ×Ω⟶ℂ is called a
complex-valued b-metric on Ω if the following conditions
are satisfied:

ðCbm1Þððρ1, ρ2Þ ≥ 0 and ððρ1, ρ2Þ = 0 if and only if ρ1
= ρ2

ðCbm2Þððρ1, ρ2Þ = ððρ2, ρ1Þ
ðCbm3Þððρ1, ρ2Þ ≤ b½ððρ1, ρ3Þ + ððρ3, ρ2Þ�,
for all ρ1, ρ2, ρ3 ∈Ω. Then, ðΩ, ðÞ is called a complex-

valued b-metric space.

Example 4. Let Ω = R+. Define the mapping ð : Ω ×Ω⟶ℂ
by ððρ1, ρ2Þ = 7/17jρ1 − ρ2j2 + i7/17jρ1 − ρ2j2, for all ρ1, ρ2
∈Ω.

Then, ðΩ, ðÞ is a complex-valued b-metric space with
b = 2.

Definition 5 (see [30, 31]). Let ðΩ, ðÞ be a complex-valued b
-metric space and fρng a sequence in Ω and ρ ∈Ω. Then,

(1) fρng is said to converge to ρ if for every 0 < c∗ ∈ℂ
there exists N∗ ∈ℕ such that ððρn, ρÞ < c∗, ∀n >N∗.
We denote this by lim

n⟶∞
ρn = ρ or fρng⟶ ρ as n

⟶∞

(2) if for every 0 < c∗ ∈ℂ there exists N∗ ∈ℕ such that
ððρn, ρn+mÞ < c∗ for all n >N∗, m ∈ℕ, then fρng is
called a Cauchy sequence

(3) if every Cauchy sequence is convergent, then ðΩ, ðÞ
is called a complete complex-valued b-metric space

Lemma 6 (see [30, 31]). Let ðΩ, ðÞ be a complex-valued b
-metric space and let fρng be a sequence in Ω. Then, fρng
converges to ρ iff jððρn, ρÞj⟶ 0 as n⟶∞.

Lemma 7 (see [30, 31]). Let ðΩ, ðÞ be a complex-valued b
-metric space and let fρng be a sequence in Ω. Then, fρng
is a Cauchy sequence iff jððρn, ρn+mÞj⟶ 0 as n⟶∞.

Definition 8 (see [39]). Let ðΩ, ðÞ be a complex-valued b
-metric space. The self-mappings f1 and f2 are said to be
commuting if f1 f2ρ = f2 f1ρ for all ρ ∈Ω.

3. Main Result

In this section, we prove some CFP theorems in complex-
valued g-metric space under the generalized rational type
contraction conditions for three self-mappings in which
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one is continuous. We present some examples for the valida-
tion of our work.

Theorem 9. Let ðΩ, ðÞ be a complete complex-valued b-metric
space and f1, f2, f : Ω⟶Ω be three self-maps satisfying

ð f1ρ1, f2ρ2ð Þ ≤ κ1ð f ρ1, f ρ2ð Þ
+ κ2

ð f ρ1, f2ρ2ð Þ · ð f ρ2, f1ρ1ð Þ
1/2 ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þð Þ

+ κ3 min

ð f ρ1, f1ρ1ð Þ, ð f ρ2, f2ρ2ð Þ,
ð f ρ1, f1ρ1ð Þ · ð f ρ2, f2ρ2ð Þ

1 + ð f ρ1, f ρ2ð Þ ,

ð f ρ1, f1ρ1ð Þ · ð f ρ1, f2ρ2ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ ,

ð f ρ2, f2ρ2ð Þ · ð f ρ2, f1ρ1ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

,

ð1Þ

for all ρ1, ρ2 ∈Ω, κ1, κ2, κ3 ∈ ½0, 1Þ such that ðκ1 + κ2Þ < 1 and
b ≥ 1. If f is continuous and ð f , f1Þ, ð f , f2Þ are commutable
pairs, then f , f1, and f2 have a unique CFP in Ω.

Proof. Fix ρ0 ∈Ω, and define a sequence fρng sequences in
Ω such that

Γ2n = f ρ2n+1 = f1ρ2n,
Γ2n+1 = f ρ2n+2 = f2ρ2n+1,

∀n ≥ 0:
ð2Þ

Now, by using (1),

ð Γ2n, Γ2n+1ð Þ = ð f1ρ2n, f2ρ2n+1ð Þ ≤ κ1ð f ρ2n, f ρ2n+1ð Þ
+ κ2

ð f ρ2n, f2ρ2n+1ð Þ · ð f ρ2n+1, f1ρ2nð Þ
1/2 ð f ρ2n, f2ρ2n+1ð Þ + ð f ρ2n+1, f1ρ2nð Þð Þ

+ κ3 min

ð f ρ2n, f1ρ2nð Þ, ð f ρ2n+1, f2ρ2n+1ð Þ,
ð f ρ2n, f1ρ2nð Þ · ð f ρ2n+1, f2ρ2n+1ð Þ

1 + ð f ρ2n, f ρ2n+1ð Þ ,

ð f ρ2n, f1ρ2nð Þ · ð f ρ2n, f2ρ2n+1ð Þ
ð f ρ2n, f2ρ2n+1ð Þ + ð f ρ2n+1, f1ρ2nð Þ ,

ð f ρ2n+1, f2ρ2n+1ð Þ · ð f ρ2n+1, f1ρ2nð Þ
ð f ρ2n, f2ρ2n+1ð Þ + ð f ρ2n+1, f1ρ2nð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

= κ1ð Γ2n−1, Γ2nð Þ + κ2
ð Γ2n−1, Γ2n+1ð Þ · ð Γ2n, Γ2nð Þ

1/2 ð Γ2n−1, Γ2n+1ð Þ + ð Γ2n, Γ2nð Þð Þ

+ κ3 min

ð Γ2n−1, Γ2nð Þ, ð Γ2n, Γ2n+1ð Þ,
ð Γ2n−1, Γ2nð Þ · ð Γ2n, Γ2n+1ð Þ

1 + ð Γ2n−1, Γ2nð Þ ,

ð Γ2n−1, Γ2nð Þ · ð Γ2n−1, Γ2n+1ð Þ
ð Γ2n−1, Γ2n+1ð Þ + ð Γ2n, Γ2nð Þ ,

ð Γ2n, Γ2n+1ð Þ · ð Γ2n, Γ2nð Þ
ð Γ2n−1, Γ2n+1ð Þ + ð Γ2n, Γ2nð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð3Þ

This implies that

ð Γ2n, Γ2n+1ð Þj j ≤ κ1 ð Γ2n−1, Γ2nð Þj j
+ κ2

ð Γ2n−1, Γ2n+1ð Þj j · ð Γ2n, Γ2nð Þj j
1/2 ð Γ2n−1, Γ2n+1ð Þj j + ð Γ2n, Γ2nð Þj jð Þ

+ κ3 min

ð Γ2n−1, Γ2nð Þj j, ð Γ2n, Γ2n+1ð Þj j,
ð Γ2n−1, Γ2nð Þj j · ð Γ2n, Γ2n+1ð Þj j

1 + ð Γ2n−1, Γ2nð Þj j ,

ð Γ2n−1, Γ2nð Þj j · ð Γ2n−1, Γ2n+1ð Þj j
ð Γ2n−1, Γ2n+1ð Þj j + ð Γ2n, Γ2nð Þj j ,

ð Γ2n, Γ2n+1ð Þj j · ð Γ2n, Γ2nð Þj j
ð Γ2n−1, Γ2n+1ð Þj j + ð Γ2n, Γ2nð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð4Þ

After simplification, we get that

ð Γ2n, Γ2n+1ð Þj j ≤ κ1 ð Γ2n−1, Γ2nð Þj j: ð5Þ

Again, by using (1) and (2),

ð Γ2n−1, Γ2nð Þ = ð f2ρ2n−1, f1ρ2nð Þ = ð f1ρ2n, f2ρ2n−1ð Þ ≤ κ1ð f ρ2n, f ρ2n−1ð Þ
+ κ2

ð f ρ2n, f2ρ2n−1ð Þ · ð f ρ2n−1, f1ρ2nð Þ
1/2 ð f ρ2n, f2ρ2n−1ð Þ + ð f ρ2n−1, f1ρ2nð Þð Þ

+ κ3 min

ð f ρ2n, f1ρ2nð Þ, ð f ρ2n−1, f2ρ2n−1ð Þ,
ð f ρ2n, f1ρ2nð Þ · ð f ρ2n−1, f2ρ2n−1ð Þ

1 + ð f ρ2n, f ρ2n−1ð Þ ,

ð f ρ2n, f1ρ2nð Þ · ð f ρ2n, f2ρ2n−1ð Þ
ð f ρ2n, f2ρ2n−1ð Þ + ð f ρ2n−1, f1ρ2nð Þ ,

ð f ρ2n−1, f2ρ2n−1ð Þ · ð f ρ2n−1, f1ρ2nð Þ
ð f ρ2n, f2ρ2n−1ð Þ + ð f ρ2n−1, f1ρ2nð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

= κ1ð Γ2n−1, Γ2n−2ð Þ + κ2
ð Γ2n−1, Γ2n−1ð Þ · ð Γ2n−2, Γ2nð Þ

1/2 ð Γ2n−1, Γ2n−1ð Þ + ð Γ2n−2, Γ2nð Þð Þ

+ κ3 min

ð Γ2n−1, Γ2nð Þ, ð Γ2n−2, Γ2n−1ð Þ,
ð Γ2n−1, Γ2nð Þ · ð Γ2n−2, Γ2n−1ð Þ

1 + ð Γ2n−1, Γ2n−2ð Þ ,

ð Γ2n−1, Γ2nð Þ · ð Γ2n−1, Γ2n−1ð Þ
ð Γ2n−1, Γ2n−1ð Þ + ð Γ2n−2, Γ2nð Þ ,

ð Γ2n−2, Γ2n−1ð Þ · ð Γ2n−2, Γ2nð Þ
ð Γ2n−1, Γ2n−1ð Þ + ð Γ2n−2, Γ2nð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð6Þ

This implies that

ð Γ2n−1, Γ2nð Þj j ≤ κ1 ð Γ2n−1, Γ2n−2ð Þj j
+ κ2

ð Γ2n−1, Γ2n−1ð Þj j · ð Γ2n−2, Γ2nð Þj j
1/2 ð Γ2n−1, Γ2n−1ð Þj j + ð Γ2n−2, Γ2nð Þj jð Þ

+ κ3 min

ð Γ2n−1, Γ2nð Þj j, ð Γ2n−2, Γ2n−1ð Þj j,
ð Γ2n−1, Γ2nð Þj j · ð Γ2n−2, Γ2n−1ð Þj j

1 + ð Γ2n−1, Γ2n−2ð Þj j ,

ð Γ2n−1, Γ2nð Þj j · ð Γ2n−1, Γ2n−1ð Þj j
ð Γ2n−1, Γ2n−1ð Þj j + ð Γ2n−2, Γ2nð Þj j ,

ð Γ2n−2, Γ2n−1ð Þj j · ð Γ2n−2, Γ2nð Þj j
ð Γ2n−1, Γ2n−1ð Þj j + ð Γ2n−2, Γ2nð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð7Þ
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After simplification, we get that

ð Γ2n−1, Γ2nð Þj j ≤ κ1 ð Γ2n−2, Γ2n−1ð Þj j: ð8Þ

Now, from (8) and (5) and by induction, we have that

ð Γ2n, Γ2n+1ð Þj j ≤ κ1 ð Γ2n−1, Γ2nð Þj j
≤ κ21 ð Γ2n−2, Γ2n−1ð Þj j ≤⋯≤ κ2n1 ð Γ0, Γ1ð Þj j:

ð9Þ

So, for m, n ∈ℕ with m > n,

ð Γn, Γmð Þj j ≤ b ð Γn, Γn+1ð Þj j + b ð Γn+1, Γmð Þj j ≤ b ð Γn, Γn+1ð Þj j
+ b2 ð Γn+1, Γn+2ð Þj j+⋯+bm−n ð Γm−1, Γmð Þj j

≤ bκn1 ð Γ0, Γ1ð Þj j + b2κn+11 ð Γ0, Γ1ð Þj j+⋯
+bm−nκm−1

1 ð Γ0, Γ1ð Þj j
≤ bκn1 + b2κn+11 +⋯+bm−nκm−1

1
� �

ð Γ0, Γ1ð Þj j
= bκn1 + b2κn+11 +⋯+bm−nκm−1

1
� �

ð Γ0, Γ1ð Þj j
= bκn1 1 + bκ1 + b2κ21 ⋯ +bm− n+1ð Þκm− n+1ð Þ

1
h i

� ð Γ0, Γ1ð Þj j = bκn1 〠
m− n+1ð Þ

t=0
btκt1 ð Γ0, Γ1ð Þj j

≤ bκn1 〠
∞

t=0
btκt1 ð Γ0, Γ1ð Þj j

= bκn1
1 − bκ1

ð Γ0, Γ1ð Þj j⟶ 0, as n⟶∞:

ð10Þ

Therefore, the sequence fΓng is Cauchy. Since Ω is com-
plete, there exists s ∈Ω such that Γn ⟶ s, as n⟶∞, or
lim

n⟶∞
Γn = s, and from (2), we have

lim
n⟶∞

f ρ2n+1 = s,

lim
n⟶∞

f1ρ2n = s,

lim
n⟶∞

f2ρ2n+1 = s:

ð11Þ

As f is continuous, so

lim
n⟶∞

f f ρ2n+1ð Þ = f s,

lim
n⟶∞

f f1ρ2nð Þ = f s,

lim
n⟶∞

f f2ρ2n+1ð Þ = f s:

ð12Þ

Since, ð f , f1Þ and ð f , f2Þ are commutable pairs, therefore,
from (12), we have that

lim
n⟶∞

f1 f ρ2nð Þ = f s,

lim
n⟶∞

f2 f ρ2n+1ð Þ = f s:
ð13Þ

Now, we have to show that f s = s, so by putting ρ1 = f ρ2n
and ρ2 = ρ2n+1, in (1),

ð f1 f ρ2nð Þ, f2ρ2n+1ð Þ ≤ κ1ð f f ρ2nð Þ, f ρ2n+1ð Þ
+ κ2

ð f f ρ2nð Þ, f2ρ2n+1ð Þ · ð f ρ2n+1, f1 f ρ2nð Þð Þ
1/2 ð f f ρ2nð Þ, f2ρ2n+1ð Þ + ð f ρ2n+1, f1 f ρ2nð Þð Þð Þ

+ κ3 min

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þ, ð f ρ2n+1, f2ρ2n+1ð Þ,
ð f f ρ2nð Þ, f1 f ρ2nð Þð Þ · ð f ρ2n+1, f2ρ2n+1ð Þ

1 + ð f f ρ2nð Þ, f ρ2n+1ð Þ ,

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þ · ð f f ρ2nð Þ, f2ρ2n+1ð Þ
ð f f ρ2nð Þ, f2ρ2n+1ð Þ + ð f ρ2n+1, f1 f ρ2nð Þð Þ ,

ð f ρ2n+1, f2ρ2n+1ð Þ · ð f ρ2n+1, f1 f ρ2nð Þð Þ
ð f f ρ2nð Þ, f2ρ2n+1ð Þ + ð f ρ2n+1, f1 f ρ2nð Þð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð14Þ

This implies that

ð f1 f ρ2nð Þ, f2ρ2n+1ð Þj j ≤ κ1 ð f f ρ2nð Þ, f ρ2n+1ð Þj j
+ κ2

ð f f ρ2nð Þ, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1 f ρ2nð Þð Þj j
1/2 ð f f ρ2nð Þ, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1 f ρ2nð Þð Þj jð Þ

+ κ3 min

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þj j, ð f ρ2n+1, f2ρ2n+1ð Þj j,
ð f f ρ2nð Þ, f1 f ρ2nð Þð Þj j · ð f ρ2n+1, f2ρ2n+1ð Þj j

1 + ð f f ρ2nð Þ, f ρ2n+1ð Þj j ,

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þj j · ð f f ρ2nð Þ, f2ρ2n+1ð Þj j
ð f f ρ2nð Þ, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1 f ρ2nð Þð Þj j ,

ð f ρ2n+1, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1 f ρ2nð Þð Þj j
ð f f ρ2nð Þ, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1 f ρ2nð Þð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð15Þ

Taking lim
n⟶∞

and using (11), (12), and (13), we get that

ð f s, sð Þj j ≤ κ1 ð f s, sð Þj j + κ2
ð f s, sð Þj j · ð s, f sð Þj j

1/2 ð f s, sð Þj j + ð s, f sð Þj jð Þ

+ κ3 min

ð f s, f sð Þj j, ð s, sð Þj j,
ð f s, f sð Þj j · ð s, sð Þj j

1 + ð f s, sð Þj j ,

ð f s, f sð Þj j · ð f s, sð Þj j
ð f s, sð Þj j + ð s, f sð Þj j ,

∣ð s, sð Þ ∣ · ∣ ð s, f sð Þ ∣
∣ð f s, sð Þ∣+∣ð s, f sð Þ ∣

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð16Þ

After simplification, we get that

ð f s, sð Þj j ≤ κ1 + κ2ð Þ ð f s, sð Þj j⇒ 1 − κ1 − κ2ð Þ ð f s, sð Þj j ≤ 0:
ð17Þ

4 Journal of Function Spaces



Since ð1 − κ1 − κ2Þ ≠ 0⇒ ∣ðð f s, sÞ ∣ = 0, hence, we get that

f s = s: ð18Þ

Next, we have to show that f1s = s, by the view of (1),

ð f1s, f ρ2n+2ð Þ = ð f1s, f2ρ2n+1ð Þ ≤ κ1ð f s, f ρ2n+1ð Þ
+ κ2

ð f s, f2ρ2n+1ð Þ · ð f ρ2n+1, f1sð Þ
1/2 ð f s, f2ρ2n+1ð Þ + ð f ρ2n+1, f1sð Þð Þ

+ κ3 min

ð f s, f1sð Þ, ð f ρ2n+1, f2ρ2n+1ð Þ,
ð f s, f1sð Þ · ð f ρ2n+1, f2ρ2n+1ð Þ

1 + ð f s, f ρ2n+1ð Þ ,

ð f s, f1sð Þ · ð f s, f2ρ2n+1ð Þ
ð f s, f2ρ2n+1ð Þ + ð f ρ2n+1, f1sð Þ ,

ð f ρ2n+1, f2ρ2n+1ð Þ · ð f ρ2n+1, f1sð Þ
ð f s, f2ρ2n+1ð Þ + ð f ρ2n+1, f1sð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð19Þ

This implies that

ð f1s, f ρ2n+2ð Þj j ≤ κ1 ð f s, f ρ2n+1ð Þj j
+ κ2

ð f s, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1sð Þj j
1/2 ð f s, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1sð Þj jð Þ

+ κ3 min

ð f s, f1sð Þj j, ð f ρ2n+1, f2ρ2n+1ð Þj j,
ð f s, f1sð Þj j · ð f ρ2n+1, f2ρ2n+1ð Þj j

1 + ð f s, f ρ2n+1ð Þj j ,

ð f s, f1sð Þj j · ð f s, f2ρ2n+1ð Þj j
ð f s, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1sð Þj j ,

ð f ρ2n+1, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1sð Þj j
ð f s, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1sð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð20Þ

Now, again applying lim
n⟶∞

on both sides and by using (11)

and (18), we have that

ð f1s, sð Þj j ≤ κ1 ð s, sð Þj j + κ2
ð s, sð Þj j · ð s, f1sð Þj j

1/2 ð s, sð Þj j + ð s, f1sð Þj jð Þ

+ κ3 min

∣ð s, f1sð Þ∣,∣ð s, sð Þ∣,
∣ð s, f1sð Þ ∣ · ∣ ð s, sð Þ ∣

∣1 + ð s, sð Þ ∣ ,

∣ð s, f1sð Þ ∣ · ∣ ð s, sð Þ ∣
∣ð s, sð Þ∣+∣ð s, f1sð Þ ∣ ,

∣ð s, sð Þ ∣ · ∣ ð s, f1sð Þ ∣
∣ð s, sð Þ∣+∣ð s, f1sð Þ ∣

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð21Þ

This implies that ∣ðð f1s, sÞ ∣ ≤0. Hence,

f1s = s: ð22Þ

Now, we have to show that f2s = s, by using (1),

ð f ρ2n+1, f2sð Þ = ð f1ρ2n, f2sð Þ ≤ κ1ð f ρ2n, f sð Þ
+ κ2

ð f ρ2n, f2sð Þ · ð f s, f1ρ2nð Þ
1/2 ð f ρ2n, f2sð Þ + ð f s, f1ρ2nð Þð Þ

+ κ3 min

ð f ρ2n, f1ρ2nð Þ, ð f s, f2sð Þ,
ð f ρ2n, f1ρ2nð Þ · ð f s, f2sð Þ

1 + ð f ρ2n, f sð Þ ,

ð f ρ2n, f1ρ2nð Þ · ð f ρ2n, f2sð Þ
ð f ρ2n, f2sð Þ + ð f s, f1ρ2nð Þ ,

ð f s, f2sð Þ · ð f s, f1ρ2nð Þ
ð f ρ2n, f2sð Þ + ð f s, f1ρ2nð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð23Þ

This implies that

ð f ρ2n+1, f2sð Þj j ≤ κ1 ð f ρ2n, f sð Þj j
+ κ2

ð f ρ2n, f2sð Þj j · ð f s, f1ρ2nð Þj j
1/2 ð f ρ2n, f2sð Þj j + ð f s, f1ρ2nð Þj jð Þ

+ κ3 min

ð f ρ2n, f1ρ2nð Þj j, ð f s, f2sð Þj j,
ð f ρ2n, f1ρ2nð Þj j · ð f s, f2sð Þj j

1 + ð f ρ2n, f sð Þj j ,

ð f ρ2n, f1ρ2nð Þj j · ð f ρ2n, f2sð Þj j
ð f ρ2n, f2sð Þj j + ð f s, f1ρ2nð Þj j ,

ð f s, f2sð Þj j · ð f s, f1ρ2nð Þj j
ð f ρ2n, f2sð Þj j + ð f s, f1ρ2nð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð24Þ

Taking lim
n⟶∞

and using (11) and (18), we get

ð s, f2sð Þj j ≤ κ1 ð s, sð Þj j + κ2
ð s, f2sð Þj j · ð s, sð Þj j

1/2 ð s, f2sð Þj j + ð s, sð Þj jð Þ

+ κ3 min

ð s, sð Þj j, ð s, f2sð Þj j,
ð s, sð Þj j · ð s, f2sð Þj j

1 + ð s, sð Þj j ,

ð s, sð Þj j · ð s, f2sð Þj j
ð s, f2sð Þj j + ð s, sð Þj j ,

∣ð s, f2sð Þ ∣ · ∣ ð s, sð Þ ∣
∣ð s, f2sð Þ∣+∣ð s, sð Þ ∣

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð25Þ

This implies that ∣ððs, f2sÞ ∣ ≤0. Hence,

 f2s = s: ð26Þ

Thus, from (18), (22), and (26), we find that s is a CFP of
f , f1, and f2, i.e.,

f s = f1s = f2s = s: ð27Þ
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Uniqueness: suppose that s∗ ∈Ω is another CFP of f , f1,
and f2 such that

f s = f1s = f2s = s,
f s∗ = f1s

∗ = f2s
∗ = s∗:

ð28Þ

Then, from (1), we have that

ð s, s∗ð Þ = ð f1s, f2s∗ð Þ ≤ κ1ð f s, f s∗ð Þ + κ2
ð f s, f2s∗ð Þ · ð f s∗, f1sð Þ

1/2 ð f s, f2s∗ð Þ + ð f s∗, f1sð Þð Þ

+ κ3 min

ð f s, f1sð Þ, ð f s∗, f2s∗ð Þ,
ð f s, f1sð Þ · ð f s∗, f2s∗ð Þ

1 + ð f s, f s∗ð Þ ,

ð f s, f1sð Þ · ð f s, f2s∗ð Þ
ð f s, f2s∗ð Þ + ð f s∗, f1sð Þ ,

ð f s∗, f2s∗ð Þ · ð f s∗, f1sð Þ
ð f s, f2s∗ð Þ + ð f s∗, f1sð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

= κ1 + κ2ð Þð s, s∗ð Þ:

ð29Þ

This implies that ∣ððs, s∗Þ ∣ ≤ðκ1 + κ2Þ∣ððs, s∗Þ∣⇒ ð1 − κ1
− κ2Þ∣ððs, s∗Þ∣ ≤ 0. Since ð1 − κ1 − κ2Þ ≠ 0⇒ ∣ððs, s∗Þ ∣ = 0
⇒ s = s∗. Hence, prove that f , f1, and f2 have a unique CFP
in Ω.

If we put κ3 = 0 in Theorem 9, we get the following
corollary.

Corollary 10. Let ðΩ, ðÞ be a complete complex-valued b-metric
space and f1, f2, f : Ω⟶Ω be three self-maps satisfying

ð f1ρ1, f2ρ2ð Þ ≤ κ1ð f ρ1, f ρ2ð Þ
+ κ2

ð f ρ1, f2ρ2ð Þ · ð f ρ2, f1ρ1ð Þ
1/2 ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þð Þ ,

ð30Þ

for all ρ1, ρ2 ∈Ω, κ1, κ2 ∈ ½0, 1Þ such that ðκ1 + κ2Þ < 1 and
b ≥ 1. If f is continuous and ð f , f1Þ, ð f , f2Þ are commutable
pairs, then f , f1, and f2 have a unique CFP in Ω.

If we put κ2 = 0 in Theorem 9, we can get the following
corollary.

Corollary 11. Let ðΩ, ðÞ be a complete complex-valued b-metric
space and f1, f2, f : Ω⟶Ω be three self-maps satisfying:

ð f1ρ1, f2ρ2ð Þ ≤ κ1ð f ρ1, f ρ2ð Þ

+ κ3 min

ð f ρ1, f1ρ1ð Þ, ð f ρ2, f2ρ2ð Þ,
ð f ρ1, f1ρ1ð Þ · ð f ρ2, f2ρ2ð Þ

1 + ð f ρ1, f ρ2ð Þ ,

ð f ρ1, f1ρ1ð Þ · ð f ρ1, f2ρ2ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ ,

ð f ρ2, f2ρ2ð Þ · ð f ρ2, f1ρ1ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

,
ð31Þ

for all ρ1, ρ2 ∈Ω, κ1, κ3 ∈ ½0, 1Þ and b ≥ 1. If f is continuous
and ð f , f1Þ, ð f , f2Þ are commutable pairs, then f , f1, and f2 have
a unique CFP in Ω.

Theorem 12. Let ðΩ, ðÞ be a complete complex-valued b-metric
space and f1, f2, f : Ω⟶Ω be three self-maps satisfying

ð f1ρ1, f2ρ2ð Þ ≤ κ1ð f ρ1, f ρ2ð Þ + κ2
ð f ρ1, f2ρ2ð Þ · ð f ρ2, f1ρ1ð Þ

1/2 ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þð Þ

+ κ3 max

ð f ρ1, f1ρ1ð Þ, ð f ρ2, f2ρ2ð Þ,
ð f ρ1, f1ρ1ð Þ · ð f ρ2, f2ρ2ð Þ

1 + ð f ρ1, f ρ2ð Þ ,

ð f ρ1, f1ρ1ð Þ · ð f ρ1, f2ρ2ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ ,

ð f ρ2, f2ρ2ð Þ · ð f ρ2, f1ρ1ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

,

ð32Þ

for all ρ1, ρ2 ∈Ω, κ1, κ2, κ3 ∈ ½0, 1Þ such that ðκ1 + κ2Þ < 1, ðκ1
+ κ3Þ < 1 and b ≥ 1. If f is continuous and ð f , f1Þ, ð f , f2Þ are
commutable pairs, then f , f1, and f2 have a unique CFP in Ω.

Proof. Fix ρ0 ∈Ω, and define a sequence fρng sequences in
Ω such that

Γ2n = f ρ2n+1 = f1ρ2n,
Γ2n+1 = f ρ2n+2 = f2ρ2n+1,

∀n ≥ 0:
ð33Þ

Now, by using (32),

ð Γ2n, Γ2n+1ð Þ = ð f1ρ2n, f2ρ2n+1ð Þ ≤ κ1ð f ρ2n, f ρ2n+1ð Þ
+ κ2

ð f ρ2n, f2ρ2n+1ð Þ · ð f ρ2n+1, f1ρ2nð Þ
1/2 ð f ρ2n, f2ρ2n+1ð Þ + ð f ρ2n+1, f1ρ2nð Þð Þ

+ κ3 max

ð f ρ2n, f1ρ2nð Þ, ð f ρ2n+1, f2ρ2n+1ð Þ,
ð f ρ2n, f1ρ2nð Þ · ð f ρ2n+1, f2ρ2n+1ð Þ

1 + ð f ρ2n, f ρ2n+1ð Þ ,

ð f ρ2n, f1ρ2nð Þ · ð f ρ2n, f2ρ2n+1ð Þ
ð f ρ2n, f2ρ2n+1ð Þ + ð f ρ2n+1, f1ρ2nð Þ ,

ð f ρ2n+1, f2ρ2n+1ð Þ · ð f ρ2n+1, f1ρ2nð Þ
ð f ρ2n, f2ρ2n+1ð Þ + ð f ρ2n+1, f1ρ2nð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

= κ1ð Γ2n−1, Γ2nð Þ + κ2
ð Γ2n−1, Γ2n+1ð Þ · ð Γ2n, Γ2nð Þ

1/2 ð Γ2n−1, Γ2n+1ð Þ + ð Γ2n, Γ2nð Þð Þ

+ κ3 max

ð Γ2n−1, Γ2nð Þ, ð Γ2n, Γ2n+1ð Þ,
ð Γ2n−1, Γ2nð Þ · ð Γ2n, Γ2n+1ð Þ

1 + ð Γ2n−1, Γ2nð Þ ,

ð Γ2n−1, Γ2nð Þ · ð Γ2n−1, Γ2n+1ð Þ
ð Γ2n−1, Γ2n+1ð Þ + ð Γ2n, Γ2nð Þ ,

ð Γ2n, Γ2n+1ð Þ · ð Γ2n, Γ2nð Þ
ð Γ2n−1, Γ2n+1ð Þ + ð Γ2n, Γ2nð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð34Þ
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This implies that,

ð Γ2n, Γ2n+1ð Þj j ≤ κ1 ð Γ2n−1, Γ2nð Þj j
+ κ2

ð Γ2n−1, Γ2n+1ð Þj j · ð Γ2n, Γ2nð Þj j
1/2 ð Γ2n−1, Γ2n+1ð Þj j + ð Γ2n, Γ2nð Þj jð Þ

+ κ3 max

ð Γ2n−1, Γ2nð Þj j, ð Γ2n, Γ2n+1ð Þj j,
ð Γ2n−1, Γ2nð Þj j · ð Γ2n, Γ2n+1ð Þj j

1 + ð Γ2n−1, Γ2nð Þj j ,

ð Γ2n−1, Γ2nð Þj j · ð Γ2n−1, Γ2n+1ð Þj j
ð Γ2n−1, Γ2n+1ð Þj j + ð Γ2n, Γ2nð Þj j ,

ð Γ2n, Γ2n+1ð Þj j · ð Γ2n, Γ2nð Þj j
ð Γ2n−1, Γ2n+1ð Þj j + ð Γ2n, Γ2nð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð35Þ

After simplification, we get that

ð Γ2n, Γ2n+1ð Þj j ≤ κ1 ð Γ2n−1, Γ2nð Þj j
+ κ3 max ∣ð Γ2n−1, Γ2nð Þ∣,∣ð Γ2n, Γ2n+1ð Þ ∣f g: ð36Þ

Now, there are two possibilities:

(i) If ððΓ2n−1, Γ2nÞ is a maximum term in f∣ððΓ2n−1,
Γ2nÞ∣,∣ððΓ2n, Γ2n+1Þ ∣ g, then after simplification, (36)
can be written as

ð Γ2n, Γ2n+1ð Þj j ≤ g1 ð Γ2n−1, Γ2nð Þj j, where g1 = κ1 + κ3 < 1
ð37Þ

(ii) If ððΓ2n, Γ2n+1Þ is a maximum term in fððΓ2n−1,
Γ2nÞ∣,∣ððΓ2n, Γ2n+1Þ ∣ g, then after simplification,
(36) can be written as

ð Γ2n, Γ2n+1ð Þj j ≤ g2 ð Γ2n−1, Γ2nð Þj j, whereg2 =
κ1

1 − κ3
< 1

ð38Þ

Let g≔max fg1, g2g < 1, then from (37) and (38), for all
n ≥ 0, we have

ð Γ2n, Γ2n+1ð Þj j ≤ g ð Γ2n−1, Γ2nð Þj j: ð39Þ

Similarly,

ð Γ2n−1, Γ2nð Þj j ≤ g ð Γ2n−2, Γ2n−1ð Þj j: ð40Þ

Now, from (40) and (39) and by induction, we have that

ð Γ2n, Γ2n+1ð Þj j ≤ g ð Γ2n−1, Γ2nð Þj j ≤ g2 ð Γ2n−2, Γ2n−1ð Þj j
≤⋯ ≤ g2n ð Γ0, Γ1ð Þj j:

ð41Þ

Now, for m, n ∈ℕ with m > n,

ð Γn, Γmð Þj j ≤ b ð Γn, Γn+1ð Þj j + b ð Γn+1, Γmð Þj j ≤ b ð Γn, Γn+1ð Þj j
+ b2 ð Γn+1, Γn+2ð Þj j+⋯+bm−n ð Γm−1, Γmð Þj j

≤ bgn ð Γ0, Γ1ð Þj j + b2gn+1 ð Γ0, Γ1ð Þj j+⋯+bm−ngm−1 ð Γ0, Γ1ð Þj j
≤ bgn + b2gn+1+⋯+bm−ngm−1� �

ð Γ0, Γ1ð Þj j
= bgn + b2gn+1+⋯+bm−ngm−1� �

ð Γ0, Γ1ð Þj j
= bgn 1 + bg + b2g2 ⋯ +bm− n+1ð Þgm− n+1ð Þ

h i
ð Γ0, Γ1ð Þj j

= bgn 〠
m− n+1ð Þ

t=0
btgt ð Γ0, Γ1ð Þj j ≤ bgn 〠

∞

t=0
btgt ð Γ0, Γ1ð Þj j

= bgn

1 − bg
ð Γ0, Γ1ð Þj j⟶ 0, as n⟶∞:

ð42Þ

Therefore, sequence fΓng is Cauchy. Since Ω is complete,
there exists s ∈Ω such that Γn ⟶ s, as n⟶∞, or lim

n⟶∞
Γn = s, and from (33), we have

lim
n⟶∞

f ρ2n+1 = s,

lim
n⟶∞

f1ρ2n = s,

lim
n⟶∞

f2ρ2n+1 = s:

ð43Þ

As f is continuous, so

lim
n⟶∞

f f ρ2n+1ð Þ = f s,

lim
n⟶∞

f f1ρ2nð Þ = f s,

lim
n⟶∞

f f2ρ2n+1ð Þ = f s:

ð44Þ

Since, ð f , f1Þ and ð f , f2Þ are commutable pairs, therefore,
from (44), we have that

lim
n⟶∞

f1 f ρ2nð Þ = f s,

lim
n⟶∞

f2 f ρ2n+1ð Þ = f s:
ð45Þ

Now, we have to show that f s = s, so by putting ρ1 = f ρ2n
and ρ2 = ρ2n+1, in (32):

ð f1 f ρ2nð Þ, f2ρ2n+1ð Þ ≤ κ1ð f f ρ2nð Þ, f ρ2n+1ð Þ
+ κ2

ð f f ρ2nð Þ, f2ρ2n+1ð Þ · ð f ρ2n+1, f1 f ρ2nð Þð Þ
1/2 ð f f ρ2nð Þ, f2ρ2n+1ð Þ + ð f ρ2n+1, f1 f ρ2nð Þð Þð Þ

+ κ3 max

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þ, ð f ρ2n+1, f2ρ2n+1ð Þ,
ð f f ρ2nð Þ, f1 f ρ2nð Þð Þ · ð f ρ2n+1, f2ρ2n+1ð Þ

1 + ð f f ρ2nð Þ, f ρ2n+1ð Þ ,

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þ · ð f f ρ2nð Þ, f2ρ2n+1ð Þ
ð f f ρ2nð Þ, f2ρ2n+1ð Þ + ð f ρ2n+1, f1 f ρ2nð Þð Þ ,

ð f ρ2n+1, f2ρ2n+1ð Þ · ð f ρ2n+1, f1 f ρ2nð Þð Þ
ð f f ρ2nð Þ, f2ρ2n+1ð Þ + ð f ρ2n+1, f1 f ρ2nð Þð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð46Þ
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This implies that

ð f1 f ρ2nð Þ, f2ρ2n+1ð Þj j ≤ κ1 ð f f ρ2nð Þ, f ρ2n+1ð Þj j
+ κ2

ð f f ρ2nð Þ, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1 f ρ2nð Þð Þj j
1/2 ð f f ρ2nð Þ, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1 f ρ2nð Þð Þj jð Þ

+ κ3 max

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þj j, ð f ρ2n+1, f2ρ2n+1ð Þj j,
ð f f ρ2nð Þ, f1 f ρ2nð Þð Þj j · ð f ρ2n+1, f2ρ2n+1ð Þj j

1 + ð f f ρ2nð Þ, f ρ2n+1ð Þj j ,

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þj j · ð f f ρ2nð Þ, f2ρ2n+1ð Þj j
ð f f ρ2nð Þ, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1 f ρ2nð Þð Þj j ,

ð f ρ2n+1, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1 f ρ2nð Þð Þj j
ð f f ρ2nð Þ, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1 f ρ2nð Þð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð47Þ

Taking lim
n⟶∞

and using (43), (44), and (45), we get that

ð f s, sð Þj j ≤ κ1 ð f s, sð Þj j + κ2
ð f s, sð Þj j · ð s, f sð Þj j

1/2 ð f s, sð Þj j + ð s, f sð Þj jð Þ

+ κ3 max
ð f s, f sð Þj j, ð s, sð Þj j, ð f s, f sð Þj j · ð s, sð Þj j

1 + ð f s, sð Þj j ,

ð f s, f sð Þj j · ð f s, sð Þj j
ð f s, sð Þj j + ð s, f sð Þj j ,

ð s, sð Þj j · ð s, f sð Þj j
ð f s, sð Þj j + ð s, f sð Þj j

8>>><
>>>:

9>>>=
>>>;
:

ð48Þ

After simplification, we get that

ð f s, sð Þj j ≤ κ1 + κ2ð Þ ð f s, sð Þj j⇒ 1 − κ1 − κ2ð Þ ð f s, sð Þj j ≤ 0:
ð49Þ

Since ð1 − κ1 − κ2Þ ≠ 0⇒ ∣ðð f s, sÞ ∣ = 0; hence, we get
that

f s = s: ð50Þ

Next, we have to show that f1s = s, by the view of (32),

ð f1s, f ρ2n+2ð Þ = ð f1s, f2ρ2n+1ð Þ ≤ κ1ð f s, f ρ2n+1ð Þ
+ κ2

ð f s, f2ρ2n+1ð Þ · ð f ρ2n+1, f1sð Þ
1/2 ð f s, f2ρ2n+1ð Þ + ð f ρ2n+1, f1sð Þð Þ

+ κ3 max

ð f s, f1sð Þ, ð f ρ2n+1, f2ρ2n+1ð Þ,
ð f s, f1sð Þ · ð f ρ2n+1, f2ρ2n+1ð Þ

1 + ð f s, f ρ2n+1ð Þ ,

ð f s, f1sð Þ · ð f s, f2ρ2n+1ð Þ
ð f s, f2ρ2n+1ð Þ + ð f ρ2n+1, f1sð Þ ,

ð f ρ2n+1, f2ρ2n+1ð Þ · ð f ρ2n+1, f1sð Þ
ð f s, f2ρ2n+1ð Þ + ð f ρ2n+1, f1sð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð51Þ

This implies that

ð f1s, f ρ2n+2ð Þj j ≤ κ1 ð f s, f ρ2n+1ð Þj j
+ κ2

ð f s, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1sð Þj j
1/2 ð f s, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1sð Þj jð Þ

+ κ3 max

ð f s, f1sð Þj j, ð f ρ2n+1, f2ρ2n+1ð Þj j,
ð f s, f1sð Þj j · ð f ρ2n+1, f2ρ2n+1ð Þj j

1 + ð f s, f ρ2n+1ð Þj j ,

ð f s, f1sð Þj j · ð f s, f2ρ2n+1ð Þj j
ð f s, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1sð Þj j ,

ð f ρ2n+1, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1sð Þj j
ð f s, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1sð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð52Þ

Now, again applying lim
n⟶∞

on both sides and by using

(43) and (50), we have that

∣ð f1s, sð Þ∣ ≤ κ1∣ð s, sð Þ∣ + κ2
ð s, sð Þj j · ð s, f1sð Þj j

1/2 ð s, sð Þj j + ð s, f1sð Þj jð Þ

+ κ3 max

ð s, f1sð Þj j, ð s, sð Þj j,
ð s, f1sð Þj j · ð s, sð Þj j

1 + ð s, sð Þj j ,

ð s, f1sð Þj j · ð s, sð Þj j
ð s, sð Þj j + ð s, f1sð Þj j ,

ð s, sð Þj j · ð s, f1sð Þj j
ð s, sð Þj j + ð s, f1sð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

= κ3 ð s, f1sð Þj j:

ð53Þ

This implies that ð1 − κ3Þ ∣ ðð f1s, sÞ ∣ ≤0. Since ð1 − κ3Þ
≠ 0⇒ ∣ðð f1s, sÞ ∣ = 0. Hence,

f1s = s: ð54Þ

Now, we have to show that f2s = s, by using (32),

ð f ρ2n+1, f2sð Þ = ð f1ρ2n, f2sð Þ ≤ κ1ð f ρ2n, f sð Þ
+ κ2

ð f ρ2n, f2sð Þ · ð f s, f1ρ2nð Þ
1/2 ð f ρ2n, f2sð Þ + ð f s, f1ρ2nð Þð Þ

+ κ3 max

ð f ρ2n, f1ρ2nð Þ, ð f s, f2sð Þ,
ð f ρ2n, f1ρ2nð Þ · ð f s, f2sð Þ

1 + ð f ρ2n, f sð Þ ,

ð f ρ2n, f1ρ2nð Þ · ð f ρ2n, f2sð Þ
ð f ρ2n, f2sð Þ + ð f s, f1ρ2nð Þ ,

ð f s, f2sð Þ · ð f s, f1ρ2nð Þ
ð f ρ2n, f2sð Þ + ð f s, f1ρ2nð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð55Þ
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This implies that

ð f ρ2n+1, f2sð Þj j ≤ κ1 ð f ρ2n, f sð Þj j + κ2
ð f ρ2n, f2sð Þj j · ð f s, f1ρ2nð Þj j

1/2 ð f ρ2n, f2sð Þj j + ð f s, f1ρ2nð Þj jð Þ

+ κ3 max

ð f ρ2n, f1ρ2nð Þj j, ð f s, f2sð Þj j,
ð f ρ2n, f1ρ2nð Þj j · ð f s, f2sð Þj j

1 + ð f ρ2n, f sð Þj j ,

ð f ρ2n, f1ρ2nð Þj j · ð f ρ2n, f2sð Þj j
ð f ρ2n, f2sð Þj j + ð f s, f1ρ2nð Þj j ,

ð f s, f2sð Þj j · ð f s, f1ρ2nð Þj j
ð f ρ2n, f2sð Þj j + ð f s, f1ρ2nð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

:

ð56Þ

Taking lim
n⟶∞

and using (43) and (50), we get

∣ð s, f2sð Þ∣ ≤ κ1∣ð s, sð Þ∣ + κ2
ð s, f2sð Þj j · ð s, sð Þj j

1/2 ð s, f2sð Þj j + ð s, sð Þj jð Þ

+ κ3 max

ð s, sð Þj j, ð s, f2sð Þj j,
ð s, sð Þj j · ð s, f2sð Þj j

1 + ð s, sð Þj j ,

ð s, sð Þj j · ð s, f2sð Þj j
ð s, f2sð Þj j + ð s, sð Þj j ,

ð s, f2sð Þj j · ð s, sð Þj j
ð s, f2sð Þj j + ð s, sð Þj j

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

= κ3 ð s, f2sð Þj j:
ð57Þ

This implies that ð1 − κ3Þ ∣ ððs, f2sÞ ∣ ≤0. Since ð1 − κ3Þ ≠
0⇒ ∣ððs, f2sÞ ∣ = 0. Hence,

f2s = s: ð58Þ

Thus, from (50), (54), and (58), we find that s is a CFP of
f , f1, and f2, i.e.,

f s = f1s = f2s = s: ð59Þ

Uniqueness: suppose that s∗ ∈Ω is another CFP of f , f1,
and f2 such that

f s = f1s = f2s = s,
f s∗ = f1s

∗ = f2s
∗ = s∗:

ð60Þ

Then, from (32), we have that

ð s, s∗ð Þ = ð f1s, f2s∗ð Þ ≤ κ1ð f s, f s∗ð Þ + κ2
ð f s, f2s∗ð Þ · ð f s∗, f1sð Þ

1/2 ð f s, f2s∗ð Þ + ð f s∗, f1sð Þð Þ

+ κ3 max

ð f s, f1sð Þ, ð f s∗, f2s∗ð Þ,
ð f s, f1sð Þ · ð f s∗, f2s∗ð Þ

1 + ð f s, f s∗ð Þ ,

ð f s, f1sð Þ · ð f s, f2s∗ð Þ
ð f s, f2s∗ð Þ + ð f s∗, f1sð Þ ,

ð f s∗, f2s∗ð Þ · ð f s∗, f1sð Þ
ð f s, f2s∗ð Þ + ð f s∗, f1sð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

= κ1 + κ2ð Þð s, s∗ð Þ:
ð61Þ

This implies that ∣ððs, s∗Þ ∣ ≤ðκ1 + κ2Þ∣ððs, s∗Þ∣⇒ ð1 − κ1
− κ2Þ∣ððs, s∗Þ∣ ≤ 0. Since ð1 − κ1 − κ2Þ ≠ 0⇒ ∣ððs, s∗Þ ∣ = 0
⇒ s = s∗, hence proving that f , f1, and f2 have a unique
CFP in Ω.

If we put κ2 = 0 in Theorem 12, we can get the following
corollary.

Corollary 13. Let (Ω, ð) be a complete complex-valued b
-metric space and f1, f2, f : Ω⟶Ω be three self-maps satis-
fying

ð f1ρ1, f2ρ2ð Þ ≤ κ1ð f ρ1, f ρ2ð Þ

+ κ3 max

ð f ρ1, f1ρ1ð Þ, ð f ρ2, f2ρ2ð Þ,
ð f ρ1, f1ρ1ð Þ · ð f ρ2, f2ρ2ð Þ

1 + ð f ρ1, f ρ2ð Þ ,

ð f ρ1, f1ρ1ð Þ · ð f ρ1, f2ρ2ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ ,

ð f ρ1, f1ρ1ð Þ · ð f ρ1, f2ρ2ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

,
ð62Þ

for all ρ1, ρ2 ∈Ω, κ1, κ2, κ3 ∈ ½0, 1Þ such that ðκ1 + κ2Þ < 1, ðκ1
+ κ3Þ < 1 and κ1/ð1 − κ3Þ < 1, where b ≥ 1. If f is continuous
and ð f , f1Þ, ð f , f2Þ are commutable pairs, then f , f1, and f2
have a unique common fixed point in Ω.

Corollary 14. Let ðΩ, ðÞ be a complete complex-valued b
-metric space and f1, f2, f : Ω⟶Ω be three self-maps satis-
fying

ð f1ρ1, f2ρ2ð Þ ≤ κ1ð f ρ1, f ρ2ð Þ

+ κ3 max

ð f ρ1, f1ρ1ð Þ, ð f ρ2, f2ρ2ð Þ,
ð f ρ1, f1ρ1ð Þ · ð f ρ2, f2ρ2ð Þ

1 + ð f ρ1, f ρ2ð Þ ,

ð f ρ1, f1ρ1ð Þ · ð f ρ1, f2ρ2ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ ,

ð f ρ2, f2ρ2ð Þ · ð f ρ2, f1ρ1ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

,
ð63Þ

for all ρ1, ρ2 ∈Ω, κ1, κ2, κ3 ∈ ½0, 1Þ such that ðκ1 + κ2Þ < 1,
ðκ1 + κ3Þ < 1 and κ1/ð1 − κ3Þ < 1, where b ≥ 1. If f is continu-
ous and ð f , f1Þ, ð f , f2Þ are commutable pairs, then f , f1, and
f2 have a unique common fixed point in Ω.

Example 15. Let ðΩ, ðÞ be a complex-valued b -metric space,
where Ω = ½0, 1� and ð : Ω ×Ω⟶ℂ with ððρ1, ρ2Þ = 4
jρ1 − ρ2j2/9 + ið4jρ1 − ρ2j2/9Þ, for all ρ1, ρ2 ∈Ω. Now, we
find b,
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ð ρ1, ρ2ð Þ = 4 ρ1 − ρ2j j2
9 + i

4 ρ1 − ρ2j j2
9 ≤

4 ρ1 − ρ3ð Þ + ρ3 − ρ2ð Þj j2
9

+ i
4 ρ1 − ρ3ð Þ + ρ3 − ρ2ð Þj j2

9

≤
4 ρ1 − ρ3j j2

9 + 4 ρ3 − ρ2j j2
9 + 4

9 2 ρ1 − ρ3j j ρ3 − ρ2j jð Þ
� �

+ i
4 ρ1 − ρ3j j2

9 + 4 ρ3 − ρ2j j2
9 + 4

9 2 ρ1 − ρ3j j ρ3 − ρ2j jð Þ
� �

≤
4 ρ1 − ρ3j j2

9 + 4 ρ3 − ρ2j j2
9 + 4 ρ1 − ρ3j j2

9 + 4 ρ3 − ρ2j j2
9

� �

+ i
4 ρ1 − ρ3j j2

9 + 4 ρ3 − ρ2j j2
9 + 4 ρ1 − ρ3j j2

9 + 4 ρ3 − ρ2j j2
9

� �

= 2 4 ρ1 − ρ3j j2
9 + 4 ρ3 − ρ2j j2

9

� �
+ 2i 4 ρ1 − ρ3j j2

9 + 4 ρ3 − ρ2j j2
9

� �

= 2 4 ρ1 − ρ3j j2
9 + i

4 ρ1 − ρ3j j2
9 + 4 ρ3 − ρ2j j2

9 + i
4 ρ3 − ρ2j j2

9

� �
= 2 ð ρ1, ρ3ð Þ + ð ρ3, ρ2ð Þ½ �:

ð64Þ

That is ððρ1, ρ2Þ ≤ b½ððρ1, ρ3Þ + ððρ3, ρ2Þ�, where b = 2.
Now, define f1, f2, f : Ω⟶Ω as

f1ρ1 = f2ρ1 =
3ρ1
20 ,

f ρ1 =
ρ1
4 for ρ1 ∈Ω:

ð65Þ

Notice that

∣ð f ρ1, f ρ2ð Þ∣, ∣ð f ρ1, f2ρ2ð Þ ∣ · ∣ ð f ρ2, f1ρ1ð Þ ∣
1/2 ∣ð f ρ1, f2ρ2ð Þ∣+∣ð f ρ2, f1ρ1ð Þ ∣ð Þ ,

max

ð f ρ1, f1ρ1ð Þj j, ð f ρ2, f2ρ2ð Þj j,
ð f ρ1, f1ρ1ð Þj j · ð f ρ2, f2ρ2ð Þj j

1 + ð f ρ1, f ρ2ð Þj j ,

ð f ρ1, f1ρ1ð Þj j · ð f ρ1, f2ρ2ð Þj j
ð f ρ1, f2ρ2ð Þj j + ð f ρ2, f1ρ1ð Þj j ,

∣ð f ρ2, f2ρ2ð Þ ∣ · ∣ ð f ρ2, f1ρ1ð Þ ∣
∣ð f ρ1, f2ρ2ð Þ∣+∣ð f ρ2, f1ρ1ð Þ ∣

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

≥ 0:

ð66Þ

In all regards, it is enough to show that ðð f1ρ1, f2ρ2Þ ≤
κ1ðð f ρ1, f ρ2Þ, for all ρ1, ρ2 ∈ ½0, 1� and κ1, κ2, κ3 ∈ ½0, 1Þ, such
that ðκ1 + κ2Þ < 1 and ðκ1 + κ3Þ < 1, where b ≥ 1, we have

ð f1ρ1, f2ρ2ð Þ = 4 f1ρ1 − f2ρ2j j2
9 + i

4 f1ρ1 − f2ρ2j j2
9

 !

= 4 3ρ1/20 − 3ρ2/20j j2
9 + i

4 3ρ1/20 − 3ρ2/20j j2
9

� �

= 3
5

� �2 4 ρ1/4 − ρ2/4j j2
9 + i

4 ρ1/4 − ρ2/4j j2
9

� �

= 9
25

4 ρ1/4 − ρ2/4j j2
9 + i

4 ρ1/4 − ρ2/4j j2
9

� �
,

ð67Þ

ð f ρ1, f ρ2ð Þ = 4 f ρ1 − f ρ2j j2
9 + i

4 f ρ1 − f ρ2j j2
9

 !

= 4 ρ1/4 − ρ2/4j j2
9 + i

4 ρ1/4 − ρ2/4j j2
9

� �
:

ð68Þ

For ρ1, ρ2 ∈ ½0, 1�, we discuss different cases with κ1 =
2/5, κ2 = 1/5, κ3 = 1/10, and b = 2. Hence,

κ1 + κ2 =
2
5 + 1

5 = 3
5 < 1,

κ1 + κ3 =
2
5 + 1

10 = 1
2 < 1:

ð69Þ

Case 1. Let ρ1 = 0, ρ2 = 0, then from (67) and (68), directly,
we get that ðð f1ρ1, f2ρ2Þ ≤ κ1ðð f ρ1, f ρ2Þ. Hence, (32) is
satisfied with κ1 = 2/5, κ2 = 1/5, κ3 = 1/10, and b = 2.

Case 2. Let ρ1 = 1, ρ2 = 0, then from (67) and (68), we find
ðð f1ρ1, f2ρ2Þ ≤ κ1ðð f ρ1, f ρ2Þ, satisfied with κ1 = 2/5, i.e.,

9
25

4 1/4 − 0/4j j2
9 + i

4 1/4 − 0/4j j2
9

� �

≤ κ1
4 1/4 − 0/4j j2

9 + i
4 1/4 − 0/4j j2

9

� �
0:0099 1 + ið Þ

≤ 0:0110 1 + ið Þ:

ð70Þ

Thus, (32) is true for κ1 = 2/5, κ2 = 1/5, κ3 = 1/10, and
b = 2.

Case 3. Let ρ1 = 1/2, ρ2 = 1/4; then, from (67) and (68), we
find ðð f1ρ1, f2ρ2Þ ≤ κ1ðð f ρ1, f ρ2Þ is satisfied with κ1 = 2/5,
i.e.,

9
25

4 1/8 − 1/16j j2
9 + i

4 1/8 − 1/16j j2
9

� �

≤ κ1
4 1/8 − 1/16j j2

9 + i
4 1/8 − 1/16j j2

9

� �
0:00061 1 + ið Þ

≤ 0:00068 1 + ið Þ:
ð71Þ

Thus, (32) is true for κ1 = 2/5, κ2 = 1/5, κ3 = 1/10, and
b = 2.

Case 4. Let ρ1 = 1/2, ρ2 = 1; then, from (67) and (68), we find
ðð f1ρ1, f2ρ2Þ ≤ κ1ðð f ρ1, f ρ2Þ is satisfied with κ1 = 2/5, i.e.,

9
25

4 1/8 − 1/4j j2
9 + i

4 1/8 − 1/4j j2
9

� �

≤ κ1
4 1/8 − 1/4j j2

9 + i
4 1/8 − 1/4j j2

9

� �
0:0024 1 + ið Þ

≤ 0:0027 1 + ið Þ:

ð72Þ

Hence, (32) is satisfied with κ1 = 2/5, κ2 = 1/5, κ3 = 1/10,
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and b = 2. The pairs of self-mappings ð f , f1Þ and ð f , f2Þ are
commutable; that is,

f1 f ρ1ð Þð Þ = f f1 ρ1ð Þð Þ = 3ρ1
80 ,

f2 f ρ1ð Þð Þ = f f2 ρ1ð Þð Þ = 3ρ1
80 ,∀ρ1 ∈Ω:

ð73Þ

Thus, all the conditions of Theorem 12 are satisfied with
noticing that the point 0 ∈Ω, which remains fixed under
mappings f , f1, and f2, is indeed unique.

Theorem 16. Let ðΩ, ðÞ be a complete complex-valued b-metric
space and f1, f2, f : Ω⟶Ω be three self-maps satisfying

ð f1ρ1, f2ρ2ð Þ ≤ κ1ð f ρ1, f ρ2ð Þ + κ2
ð f ρ1, f2ρ2ð Þ · ð f ρ2, f1ρ1ð Þ

1/2 ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þð Þ

+ κ3

ð f ρ1, f1ρ1ð Þ + ð f ρ2, f2ρ2ð Þ

+ ð f ρ1, f1ρ1ð Þ · ð f ρ2, f2ρ2ð Þ
1 + ð f ρ1, f ρ2ð Þ

+ ð f ρ1, f1ρ1ð Þ · ð f ρ1, f2ρ2ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ

+ ð f ρ2, f2ρ2ð Þ · ð f ρ2, f1ρ1ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
,

ð74Þ

for all ρ1, ρ2 ∈Ω, κ1, κ2, κ3 ∈ ½0, 1Þ, such that ðκ1 + κ2Þ < 1,
ðκ1 + 4κ3Þ < 1 and b ≥ 1. If f is a continuous self-map and
ð f , f1Þ, ð f , f2Þ are commutable pairs, then f , f1, and f2 have
a unique CFP in Ω.

Proof. Fix ρ0 ∈Ω, and define a sequence fρng sequences in
Ω such that

Γ2n = f ρ2n+1 = f1ρ2n,
Γ2n+1 = f ρ2n+2 = f2ρ2n+1,

∀n ≥ 0:
ð75Þ

Now, by the view of (74) and (75),

ð Γ2n, Γ2n+1ð Þ = ð f1ρ2n, f2ρ2n+1ð Þ ≤ κ1ð f ρ2n, f ρ2n+1ð Þ
+ κ2

ð f ρ2n, f2ρ2n+1ð Þ · ð f ρ2n+1, f1ρ2nð Þ
1/2 ð f ρ2n, f2ρ2n+1ð Þ + ð f ρ2n+1, f1ρ2nð Þð Þ

+ κ3

ð f ρ2n, f1ρ2nð Þ + ð f ρ2n+1, f2ρ2n+1ð Þ

+ ð f ρ2n, f1ρ2nð Þ · ð f ρ2n+1, f2ρ2n+1ð Þ
1 + ð f ρ2n, f ρ2n+1ð Þ

+ ð f ρ2n, f1ρ2nð Þ · ð f ρ2n, f2ρ2n+1ð Þ
ð f ρ2n, f2ρ2n+1ð Þ + ð f ρ2n+1, f1ρ2nð Þ

+ ð f ρ2n+1, f2ρ2n+1ð Þ · ð f ρ2n+1, f1ρ2nð Þ
ð f ρ2n, f2ρ2n+1ð Þ + ð f ρ2n+1, f1ρ2nð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

= κ1ð Γ2n−1, Γ2nð Þ + κ2
ð Γ2n−1, Γ2n+1ð Þ · ð Γ2n, Γ2nð Þ

1/2 ð Γ2n−1, Γ2n+1ð Þ + ð Γ2n, Γ2nð Þð Þ

+ κ3

ð Γ2n−1, Γ2nð Þ + ð Γ2n, Γ2n+1ð Þ

+ ð Γ2n−1, Γ2nð Þ · ð Γ2n, Γ2n+1ð Þ
1 + ð Γ2n−1, Γ2nð Þ

+ ð Γ2n−1, Γ2nð Þ · ð Γ2n−1, Γ2n+1ð Þ
ð Γ2n−1, Γ2n+1ð Þ + ð Γ2n, Γ2nð Þ

+ ð Γ2n, Γ2n+1ð Þ · ð Γ2n, Γ2nð Þ
ð Γ2n−1, Γ2n+1ð Þ + ð Γ2n, Γ2nð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð76Þ

This implies that

ð Γ2n, Γ2n+1ð Þj j ≤ κ1 ð Γ2n−1, Γ2nð Þj j
+ κ2

ð Γ2n−1, Γ2n+1ð Þj j · ð Γ2n, Γ2nð Þj j
1/2 ð Γ2n−1, Γ2n+1ð Þj j + ð Γ2n, Γ2nð Þj jð Þ

+ κ3

�
ð Γ2n−1, Γ2nð Þj j + ð Γ2n, Γ2n+1ð Þj j

+ ð Γ2n−1, Γ2nð Þj j · ð Γ2n, Γ2n+1ð Þj j
1 + ð Γ2n−1, Γ2nð Þj j

+ ð Γ2n−1, Γ2nð Þj j · ð Γ2n−1, Γ2n+1ð Þj j
ð Γ2n−1, Γ2n+1ð Þj j + ð Γ2n, Γ2nð Þj j

+ ð Γ2n, Γ2n+1ð Þj j · ð Γ2n, Γ2nð Þj j
ð Γ2n−1, Γ2n+1ð Þj j + ð Γ2n, Γ2nð Þj j

�
:

ð77Þ

After simplification, we get that

ð Γ2n, Γ2n+1ð Þj j ≤ g ð Γ2n−1, Γ2nð Þj j, where g = κ1 + 2κ3
1 − 2κ3

< 1: ð78Þ

Again, by the view of (74) and (75),

ð Γ2n−1, Γ2nð Þ = ð f2ρ2n−1, f1ρ2nð Þ = ð f1ρ2n, f2ρ2n−1ð Þ ≤ κ1ð f ρ2n, f ρ2n−1ð Þ
+ κ2

ð f ρ2n, f2ρ2n−1ð Þ · ð f ρ2n−1, f1ρ2nð Þ
1/2 ð f ρ2n, f2ρ2n−1ð Þ + ð f ρ2n−1, f1ρ2nð Þð Þ

+ κ3

ð f ρ2n, f1ρ2nð Þ + ð f ρ2n−1, f2ρ2n−1ð Þ

+ ð f ρ2n, f1ρ2nð Þ · ð f ρ2n−1, f2ρ2n−1ð Þ
1 + ð f ρ2n, f ρ2n−1ð Þ

+ ð f ρ2n, f1ρ2nð Þ · ð f ρ2n, f2ρ2n−1ð Þ
ð f ρ2n, f2ρ2n−1ð Þ + ð f ρ2n−1, f1ρ2nð Þ

+ ð f ρ2n−1, f2ρ2n−1ð Þ · ð f ρ2n−1, f1ρ2nð Þ
ð f ρ2n, f2ρ2n−1ð Þ + ð f ρ2n−1, f1ρ2nð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

= κ1ð Γ2n−1, Γ2n−2ð Þ + κ2
ð Γ2n−1, Γ2n−1ð Þ · ð Γ2n−2, Γ2nð Þ

1/2 ð Γ2n−1, Γ2n−1ð Þ + ð Γ2n−2, Γ2nð Þð Þ

+ κ3

ð Γ2n−1, Γ2nð Þ + ð Γ2n−2, Γ2n−1ð Þ

+ ð Γ2n−1, Γ2nð Þ · ð Γ2n−2, Γ2n−1ð Þ
1 + ð Γ2n−1, Γ2n−2ð Þ

+ ð Γ2n−1, Γ2nð Þ · ð Γ2n−1, Γ2n−1ð Þ
ð Γ2n−1, Γ2n−1ð Þ + ð Γ2n−2, Γ2nð Þ

+ ð Γ2n−2, Γ2n−1ð Þ · ð Γ2n−2, Γ2nð Þ
ð Γ2n−1, Γ2n−1ð Þ + ð Γ2n−2, Γ2nð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð79Þ
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This implies that

ð Γ2n−1, Γ2nð Þj j ≤ κ1 ð Γ2n−1, Γ2n−2ð Þj j
+ κ2

ð Γ2n−1, Γ2n−1ð Þj j · ð Γ2n−2, Γ2nð Þj j
1/2 ð Γ2n−1, Γ2n−1ð Þj j + ð Γ2n−2, Γ2nð Þj jð Þ

+ κ3

ð Γ2n−1, Γ2nð Þj j + ð Γ2n−2, Γ2n−1ð Þj j

+ ð Γ2n−1, Γ2nð Þj j · ð Γ2n−2, Γ2n−1ð Þj j
1 + ð Γ2n−1, Γ2n−2ð Þj j

+ ð Γ2n−1, Γ2nð Þj j · ð Γ2n−1, Γ2n−1ð Þj j
ð Γ2n−1, Γ2n−1ð Þj j + ð Γ2n−2, Γ2nð Þj j

+ ð Γ2n−2, Γ2n−1ð Þj j · ð Γ2n−2, Γ2nð Þj j
ð Γ2n−1, Γ2n−1ð Þj j + ð Γ2n−2, Γ2nð Þj j

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð80Þ

After simplification, we get that

ð Γ2n−1, Γ2nð Þj j ≤ g ð Γ2n−2, Γ2n−1ð Þj j, sinceg = κ1 + 2κ3
1 − 2κ3

< 1:

ð81Þ

Now, from (81) and (78) and by induction, we have

∣ð Γ2n, Γ2n+1ð Þ∣ ≤ g∣ð Γ2n−1, Γ2nð Þ∣ ≤ g2∣ð Γ2n−2, Γ2n−1ð Þ∣
≤⋯ ≤ g2n ð Γ0, Γ1ð Þj j:

ð82Þ

So, for m, n ∈ℕ with m > n,

ð Γn, Γmð Þj j ≤ b ð Γn, Γn+1ð Þj j + b ð Γn+1, Γmð Þj j ≤ b ð Γn, Γn+1ð Þj j
+ b2 ð Γn+1, Γn+2ð Þj j+⋯+bm−n ð Γm−1, Γmð Þj j

≤ bgn ð Γ0, Γ1ð Þj j + b2gn+1 ð Γ0, Γ1ð Þj j
+⋯+bm−ngm−1 ð Γ0, Γ1ð Þj j

≤ bgn + b2gn+1+⋯+bm−ngm−1� �
ð Γ0, Γ1ð Þj j

= bgn 1 + bg + b2g2 ⋯ +bm− n+1ð Þgm− n+1ð Þ
h i

ð Γ0, Γ1ð Þj j

= bgn 〠
m− n+1ð Þ

t=0
btgt ð Γ0, Γ1ð Þj j ≤ bgn 〠

∞

t=0
btgt ð Γ0, Γ1ð Þj j

= bgn

1 − bg
ð Γ0, Γ1ð Þj j⟶ 0, as n⟶∞:

ð83Þ

Therefore, sequence fΓng is Cauchy. Since Ω is com-
plete, there exists s ∈Ω such that Γn ⟶ s, as n⟶∞, and
from (75), we have that

lim
n⟶∞

f ρ2n+1 = s,

lim
n⟶∞

f1ρ2n = s,

lim
n⟶∞

f2ρ2n+1 = s:

ð84Þ

As f is continuous, so

lim
n⟶∞

f f ρ2n+1ð Þ = f s,

lim
n⟶∞

f f1ρ2nð Þ = f s,

lim
n⟶∞

f f2ρ2n+1ð Þ = f s:

ð85Þ

Since, ð f , f1Þ and ð f , f2Þ are commutable pairs, therefore,
from (85), we have that

lim
n⟶∞

f1 f ρ2nð Þ = f s,

lim
n⟶∞

f2 f ρ2n+1ð Þ = f s:
ð86Þ

Now, we prove f s = s. So, for this, we put ρ1 = f ρ2n and
ρ2 = ρ2n+1 in (74),

ð f1 f ρ2nð Þ, f2ρ2n+1ð Þ ≤ κ1ð f f ρ2nð Þ, f ρ2n+1ð Þ
+ κ2

ð f f ρ2nð Þ, f2ρ2n+1ð Þ · ð f ρ2n+1, f1 f ρ2nð Þð Þ
1/2 ð f f ρ2nð Þ, f2ρ2n+1ð Þ + ð f ρ2n+1, f1 f ρ2nð Þð Þð Þ

+ κ3

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þ + ð f ρ2n+1, f2ρ2n+1ð Þ

+ ð f f ρ2nð Þ, f1 f ρ2nð Þð Þ · ð f ρ2n+1, f2ρ2n+1ð Þ
1 + ð f f ρ2nð Þ, f ρ2n+1ð Þ

+ ð f f ρ2nð Þ, f1 f ρ2nð Þð Þ · ð f f ρ2nð Þ, f2ρ2n+1ð Þ
ð f f ρ2nð Þ, f2ρ2n+1ð Þ + ð f ρ2n+1, f1 f ρ2nð Þð Þ

+ ð f ρ2n+1, f2ρ2n+1ð Þ · ð f ρ2n+1, f1 f ρ2nð Þð Þ
ð f f ρ2nð Þ, f2ρ2n+1ð Þ + ð f ρ2n+1, f1 f ρ2nð Þð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð87Þ

This implies that

ð f1 f ρ2nð Þ, f2ρ2n+1ð Þj j ≤ κ1 ð f f ρ2nð Þ, f ρ2n+1ð Þj j
+ κ2

ð f f ρ2nð Þ, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1 f ρ2nð Þð Þj j
1/2 ð f f ρ2nð Þ, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1 f ρ2nð Þð Þj jð Þ

+ κ3

ð f f ρ2nð Þ, f1 f ρ2nð Þð Þj j + ð f ρ2n+1, f2ρ2n+1ð Þj j

+ ð f f ρ2nð Þ, f1 f ρ2nð Þð Þj j · ð f ρ2n+1, f2ρ2n+1ð Þj j
1 + ð f f ρ2nð Þ, f ρ2n+1ð Þj j

+ ð f f ρ2nð Þ, f1 f ρ2nð Þð Þj j · ð f f ρ2nð Þ, f2ρ2n+1ð Þj j
ð f f ρ2nð Þ, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1 f ρ2nð Þð Þj j

+ ð f ρ2n+1, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1 f ρ2nð Þð Þj j
ð f f ρ2nð Þ, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1 f ρ2nð Þð Þj j

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð88Þ

Taking lim
n⟶∞

and using (84), (85), and (86), we get that

ð f s, sð Þj j ≤ κ1 ð f s, sð Þj j + κ2
ð f s, sð Þj j · ð s, f sð Þj j

1/2 ð f s, sð Þj j + ð s, f sð Þj jð Þ

+ κ3

ð f s, f sð Þj j + ð s, sð Þj j

+ ∣ð f s, f sð Þ ∣ · ∣ ð s, sð Þ ∣
∣1 + ð f s, sð Þ ∣

+ ∣ð f s, f sð Þ ∣ · ∣ ð f s, sð Þ ∣
∣ð f s, sð Þ∣+∣ð s, f sð Þ ∣

+ ∣ð s, sð Þ ∣ · ∣ ð s, f sð Þ ∣
∣ð f s, sð Þ∣+∣ð s, f sð Þ ∣

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

= κ1 + κ2ð Þ ð f s, sð Þj j:

ð89Þ
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This implies that ð1 − κ1 − κ2Þ ∣ ðð f s, sÞ ∣ ≤0. Since, ð1 −
κ1 − κ2Þ ≠ 0⇒ ∣ðð f s, sÞ ∣ = 0. Hence,

f s = s: ð90Þ

Next, we have to show that f1s = s, by using (74),

ð f1s, f ρ2n+2ð Þ = ð f1s, f2ρ2n+1ð Þ ≤ κ1ð f s, f ρ2n+1ð Þ
+ κ2

ð f s, f2ρ2n+1ð Þ · ð f ρ2n+1, f1sð Þ
1/2 ð f s, f2ρ2n+1ð Þ + ð f ρ2n+1, f1sð Þð Þ

+ κ3

ð f s, f1sð Þ + ð f ρ2n+1, f2ρ2n+1ð Þ

+ ð f s, f1sð Þ · ð f ρ2n+1, f2ρ2n+1ð Þ
1 + ð f s, f ρ2n+1ð Þ

+ ð f s, f1sð Þ · ð f s, f2ρ2n+1ð Þ
ð f s, f2ρ2n+1ð Þ + ð f ρ2n+1, f1sð Þ

+ ð f ρ2n+1, f2ρ2n+1ð Þ · ð f ρ2n+1, f1sð Þ
ð f s, f2ρ2n+1ð Þ + ð f ρ2n+1, f1sð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð91Þ

This implies that

ð f1s, f ρ2n+2ð Þj j ≤ κ1 ð f s, f ρ2n+1ð Þj j
+ κ2

ð f s, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1sð Þj j
1/2 ð f s, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1sð Þj jð Þ

+ κ3

ð f s, f1sð Þj j + ð f ρ2n+1, f2ρ2n+1ð Þj j

+ ð f s, f1sð Þj j · ð f ρ2n+1, f2ρ2n+1ð Þj j
1 + ð f s, f ρ2n+1ð Þj j

+ ð f s, f1sð Þj j · ð f s, f2ρ2n+1ð Þj j
ð f s, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1sð Þj j

+ ð f ρ2n+1, f2ρ2n+1ð Þj j · ð f ρ2n+1, f1sð Þj j
ð f s, f2ρ2n+1ð Þj j + ð f ρ2n+1, f1sð Þj j

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð92Þ

Taking lim
n⟶∞

and using (84) and (90), we get

ð f1s, sð Þj j ≤ κ1 ð s, sð Þj j + κ2
ð s, sð Þj j · ð s, f1sð Þj j

1/2 ð s, sð Þj j + ð s, f1sð Þj jð Þ

+ κ3

ð s, f1sð Þj j + ð s, sð Þj j

+ ∣ð s, f1sð Þ ∣ · ∣ ð s, sð Þ ∣
∣1 + ð s, sð Þ ∣

+ ∣ð s, f1sð Þ ∣ · ∣ ð s, sð Þ ∣
∣ð s, sð Þ∣+∣ð s, f1sð Þ ∣

+ ð s, sð Þj j · ð s, f1sð Þj j
ð s, sð Þj j + ð s, f1sð Þj j

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð93Þ

Thus, we get that ∣ðð f1s, sÞ ∣ ≤κ3∣ððs, f1sÞ∣⇒ ð1 − κ3Þ∣ðð
f1s, sÞ∣ ≤ 0. Since ð1 − κ3Þ ≠ 0, therefore, ∣ðð f1s, sÞ ∣ = 0.
Hence,

f1s = s: ð94Þ

Now, we have to show that f2s = s, by using (74),

ð f ρ2n+1, f2sð Þ = ð f1ρ2n, f2sð Þ ≤ κ1ð f ρ2n, f sð Þ
+ κ2

ð f ρ2n, f2sð Þ · ð f s, f1ρ2nð Þ
1/2 ð f ρ2n, f2sð Þ + ð f s, f1ρ2nð Þð Þ

+ κ3

ð f ρ2n, f1ρ2nð Þ + ð f s, f2sð Þ

+ ð f ρ2n, f1ρ2nð Þ · ð f s, f2sð Þ
1 + ð f ρ2n, f sð Þ

+ ð f ρ2n, f1ρ2nð Þ · ð f ρ2n, f2sð Þ
ð f ρ2n, f2sð Þ + ð f s, f1ρ2nð Þ

+ ð f s, f2sð Þ · ð f s, f1ρ2nð Þ
ð f ρ2n, f2sð Þ + ð f s, f1ρ2nð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð95Þ

This implies that

ð f ρ2n+1, f2sð Þj j ≤ κ1 ð f ρ2n, f sð Þj j
+ κ2

ð f ρ2n, f2sð Þj j · ð f s, f1ρ2nð Þj j
1/2 ð f ρ2n, f2sð Þj j + ð f s, f1ρ2nð Þj jð Þ

+ κ3

ð f ρ2n, f1ρ2nð Þj j + ð f s, f2sð Þj j

+ ð f ρ2n, f1ρ2nð Þj j · ð f s, f2sð Þj j
1 + ð f ρ2n, f sð Þj j

+ ð f ρ2n, f1ρ2nð Þj j · ð f ρ2n, f2sð Þj j
ð f ρ2n, f2sð Þj j + ð f s, f1ρ2nð Þj j

+ ð f s, f2sð Þj j · ð f s, f1ρ2nð Þj j
ð f ρ2n, f2sð Þj j + ð f s, f1ρ2nð Þj j

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð96Þ

Taking lim
n⟶∞

and using (84) and (90), we get

ð s, f2sð Þj j ≤ κ1 ð s, sð Þj j + κ2
ð s, f2sð Þj j · ð s, sð Þj j

1/2 ð s, f2sð Þj j + ð s, sð Þj jð Þ

+ κ3

ð s, sð Þj j + ð s, f2sð Þj j

+ ∣ð s, sð Þ ∣ · ∣ ð s, f2sð Þ ∣
∣1 + ð s, sð Þ ∣

+ ∣ð s, sð Þ ∣ · ∣ ð s, f2sð Þ ∣
∣ð s, f2sð Þ∣+∣ð s, sð Þ ∣

+ ∣ð s, f2sð Þ ∣ · ∣ ð s, sð Þ ∣
∣ð s, f2sð Þ∣+∣ð s, sð Þ ∣

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

ð97Þ

So, we get that ∣ððs, f2sÞ ∣ ≤κ3∣ððs, f2sÞ∣⇒ ð1 − κ3Þ∣ððs,
f2sÞ∣ ≤ 0. Since ð1 − κ3Þ ≠ 0, therefore, ∣ððs, f2sÞ ∣ = 0.
Hence,

f2s = s: ð98Þ
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Thus, from (90), (94), and (98), we find that s is a CFP
of f , f1, and f2, i.e.,

f s = f1s = f2s = s: ð99Þ

Uniqueness: suppose that s∗ ∈Ω is another CFP of f ,
f1, and f2 such that

f s = f1s = f2s = s,
f s∗ = f1s

∗ = f2s
∗ = s∗:

ð100Þ

Then, from (74), we have that

ð s, s∗ð Þ = ð f1s, f2s∗ð Þ ≤ κ1ð f s, f s∗ð Þ
+ κ2

ð f s, f2s∗ð Þ · ð f s∗, f1sð Þ
1/2 ð f s, f2s∗ð Þ + ð f s∗, f1sð Þð Þ

+ κ3

ð f s, f1sð Þ + ð f s∗, f2s∗ð Þ

+ ð f s, f1sð Þ · ð f s∗, f2s∗ð Þ
1 + ð f s, f s∗ð Þ

+ ð f s, f1sð Þ · ð f s, f2s∗ð Þ
ð f s, f2s∗ð Þ + ð f s∗, f1sð Þ

+ ð f s∗, f2s∗ð Þ · ð f s∗, f1sð Þ
ð f s, f2s∗ð Þ + ð f s∗, f1sð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

= κ1 + κ2ð Þð s, s∗ð Þ:
ð101Þ

This implies that ∣ððs, s∗Þ ∣ ≤ðκ1 + κ2Þ∣ððs, s∗Þ∣⇒ ð1 −
κ1 − κ2Þ∣ððs, s∗Þ∣ ≤ 0. Since ð1 − κ1 − κ2Þ ≠ 0, therefore, ∣ððs,
s∗Þ ∣ = 0⇒ s = s∗, hence proving that f , f1, and f2 have a
unique CFP in Ω.

Corollary 17. Let ðΩ, ðÞ be a complete complex-valued b
-metric space and f1, f2, f : Ω⟶Ω be three self-maps satis-
fying

ð f1ρ1, f2ρ2ð Þ ≤ κ1ð f ρ1, f ρ2ð Þ
+ κ2

ð f ρ1, f2ρ2ð Þ ⋅ ð f ρ2, f1ρ1ð Þ
1/2 ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þð Þ

+ κ3

ð f ρ1, f1ρ1ð Þ ⋅ ð f ρ2, f2ρ2ð Þ
1 + ð f ρ1, f ρ2ð Þ

+ ð f ρ1, f1ρ1ð Þ ⋅ ð f ρ1, f2ρ2ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ

+ ð f ρ2, f2ρ2ð Þ ⋅ ð f ρ2, f1ρ1ð Þ
ð f ρ1, f2ρ2ð Þ + ð f ρ2, f1ρ1ð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð102Þ

for all ρ1, ρ2 ∈Ω, κ1, κ2, κ3 ∈ ½0, 1Þ, such that ðκ1 + κ2Þ < 1
and ðκ1 + κ3Þ/ð1 − κ3Þ < 1, with b ≥ 1. If f is a continuous self-
mapping and (f , f1), (f , f2) are commutable pairs, then f , f1,
and f2 have a unique common fixed point in Ω.

Example 18. Let Ω = ½0,∞Þ and ð : Ω ×Ω⟶ℂ be defined
as ððρ1, ρ2Þ = 3jρ1 − ρ2j2/13 + i3jρ1 − ρ2j2/13 for all ρ1, ρ2 ∈
Ω. Then, ðΩ, ðÞ is a complex-valued b -metric space. Now,
we find b:

ð ρ1, ρ2ð Þ = 3 ρ1 − ρ2j j2
13 + i

3 ρ1 − ρ2j j2
13 ≤

3 ρ1 − ρ3ð Þ + ρ3 − ρ2ð Þj j2
13

+ i
3 ρ1 − ρ3ð Þ + ρ3 − ρ2ð Þj j2

13

≤
3 ρ1 − ρ3j j2

13 + 3 ρ3 − ρ2j j2
13 + 3

13 2 ρ1 − ρ3j j ρ3 − ρ2j jð Þ
� �

+ i
3 ρ1 − ρ3j j2

13 + 3 ρ3 − ρ2j j2
13 + 3

13 2 ρ1 − ρ3j j ρ3 − ρ2j jð Þ
� �

≤
3 ρ1 − ρ3j j2

13 + 3 ρ3 − ρ2j j2
13 + 3 ρ1 − ρ3j j2

13 + 3 ρ3 − ρ2j j2
13

� �

+ i
3 ρ1 − ρ3j j2

13 + 3 ρ3 − ρ2j j2
13 + 3 ρ1 − ρ3j j2

13 + 3 ρ3 − ρ2j j2
13

� �

= 2 3 ρ1 − ρ3j j2
13 + 3 ρ3 − ρ2j j2

13

� �
+ i2 3 ρ1 − ρ3j j2

13 + 3 ρ3 − ρ2j j2
13

� �

= 2 3 ρ1 − ρ3j j2
13 + i

3 ρ1 − ρ3j j2
13 + 3 ρ3 − ρ2j j2

13 + i
3 ρ3 − ρ2j j2

13

� �
= 2 ð ρ1, ρ3ð Þ + ð ρ3, ρ2ð Þ½ �:

ð103Þ

That is ððρ1, ρ2Þ ≤ b½ððρ1, ρ3Þ + ððρ3, ρ2Þ�, where b = 2.
Now, we define f1, f2, f : Ω⟶Ω by

f1ρ1 = f2ρ1 = ln 1 + ρ1
4 + ρ1

� �
,

f ρ1 = e4ρ1 − 1,
for all ρ1 ∈Ω:

ð104Þ

Notice that

∣ð f ρ1, f ρ2ð Þ∣, ∣ð f ρ1, f2ρ2ð Þ ∣ · ∣ ð f ρ2, f1ρ1ð Þ ∣
1/2 ∣ð f ρ1, f2ρ2ð Þ∣+∣ð f ρ2, f1ρ1ð Þ ∣ð Þ ,

ð f ρ1, f1ρ1ð Þj j + ð f ρ2, f2ρ2ð Þj j

+ ∣ð f ρ1, f1ρ1ð Þ ∣ · ∣ ð f ρ2, f2ρ2ð Þ ∣
∣1 + ð f ρ1, f ρ2ð Þ ∣

+ ∣ð f ρ1, f1ρ1ð Þ ∣ · ∣ ð f ρ1, f2ρ2ð Þ ∣
∣ð f ρ1, f2ρ2ð Þ∣+∣ð f ρ2, f1ρ1ð Þ ∣

+ ∣ð f ρ2, f2ρ2ð Þ ∣ · ∣ ð f ρ2, f1ρ1ð Þ ∣
∣ð f ρ1, f2ρ2ð Þ∣+∣ð f ρ2, f1ρ1ð Þ ∣

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

≥ 0:

ð105Þ

In all regards, it is enough to show that ðð f1ρ1, f2ρ2Þ ≤
κ1ðð f ρ1, f ρ2Þ, for all ρ1, ρ2 ∈ ½0,∞Þ and κ1, κ2, κ3 ∈ ½0, 1Þ,
such that ðκ1 + κ2Þ < 1 and ðκ1 + 4κ3Þ < 1, where b ≥ 1, we
have
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ð f1ρ1, f2ρ2ð Þ = 3 f1ρ1 − f2ρ2j j2
13 + i

3 f1ρ1 − f2ρ2j j2
13

 !

= 3 ln 1 + ρ1/ 4 + ρ1ð Þð Þ − ln 1 + ρ2/ 4 + ρ2ð Þð Þj j2
13

 

+ i
3 ln 1 + ρ1/ 4 + ρ1ð Þð Þ − ln 1 + ρ2/ 4 + ρ2ð Þð Þj j2

13

!

≤
3 ρ1/ 4 + ρ1ð Þ − ρ2/ 4 + ρ2ð Þj j2

13

 

+ i
3 ρ1/ 4 + ρ1ð Þ − ρ2/ 4 + ρ2ð Þj j2

13

!

≤
3 4ρ1 − 4ρ2ð Þ/16j j2

13 + i
3 4ρ1 − 4ρ2ð Þ/16j j2

13

 !

= 1
162

3 4ρ1 − 4ρ2j j2
13 + i

3 4ρ1 − 4ρ2j j2
13

� �

≤
1
256

3 e4ρ1 − e4ρ2
�� ��2

13 + i
3 e4ρ1 − e4ρ2
�� ��2

13

 !
,

ð106Þ

ð f ρ1, f ρ2ð Þ = 3 f ρ1 − f ρ2j j2
13 + i

3 f ρ1 − f ρ2j j2
13

 !

= 3 e4ρ1 − 1
� �

− e4ρ2 − 1
� ��� ��2

13 + i
3 e4ρ1 − 1
� �

− e4ρ2 − 1
� ��� ��2

13

 !

= 3 e4ρ1 − e4ρ2
�� ��2

13 + i
3 e4ρ1 − e4ρ2
�� ��2

13

 !
:

ð107Þ

For ρ1, ρ2 ∈ ½0,∞Þ, we discuss different cases with κ1 =
1/5, κ2 = 1/4, and κ3 = 1/10, where b = 2. Hence,

κ1 + κ2 =
1
5 + 1

4 = 9
20 < 1,

κ1 + 4κ3 =
1
5 + 2

5 = 3
5 < 1:

ð108Þ

Case 1. Let ρ1 = 0, ρ2 = 0. Then, from (106) and (107),
directly, we get that ðð f1ρ1, f2ρ2Þ ≤ κ1ðð f ρ1, f ρ2Þ. Hence,
(74) is satisfied with κ1 = 1/5, κ2 = 1/4, κ3 = 1/10, and b = 2.

Case 2. Let ρ1 = 0, ρ2 = 1, then from (106) and (107), we find
ðð f1ρ1, f2ρ2Þ ≤ κ1ðð f ρ1, f ρ2Þ is satisfied with κ1 = 1/5, as

1
256

3 e0 − e4
�� ��2

13 + i
3 e0 − e4
�� ��2

13

 !

≤ κ1
3 e0 − e4
�� ��2

13 + i
3 e0 − e4
�� ��2

13

 !
:

ð109Þ

By using κ1 = 1/5 and after simplifying, we get that

1
256

3 −53:5981j j2
13 + i

3 −53:5981j j2
13

� �

≤
1
5

3 −53:5981j j2
13 + i

3 −53:5981j j2
13

� �
2:5896 1 + ið Þ

≤ 132:5887 1 + ið Þ:
ð110Þ

Thus, (74) is true for κ1 = 1/5, κ2 = 1/4, κ3 = 1/10, and
b = 2.

Case 3. Let ρ1 = 1/2, ρ2 = 1/4, then from (106) and (107), we
find ðð f1ρ1, f2ρ2Þ ≤ κ1ðð f ρ1, f ρ2Þ is true for κ1 = 1/5, as

1
256

3 e2 − e1
�� ��2

13 + i
3 e2 − e1
�� ��2

13

 !
≤ κ1

3 e2 − e1
�� ��2

13 + i
3 e2 − e1
�� ��2

13

 !
:

ð111Þ

By using κ1 = 1/5 and after simplifying, we get that

1
256

3 4:6708j j2
13 + i

3 4:6708j j2
13

� �
≤
1
5

3 4:6708j j2
13 + i

3 4:6708j j2
13

� �
� 0:0196 1 + ið Þ ≤ 1:0069 1 + ið Þ:

ð112Þ

Thus, (74) is true for κ1 = 1/5, κ2 = 1/4, κ3 = 1/10, and
b = 2.

Case 4. Let ρ1 = 1/2, ρ2 = 1, then from (106) and (107), we
get that ðð f1ρ1, f2ρ2Þ ≤ κ1ðð f ρ1, f ρ2Þ is true for κ1 = 1/5, as

1
256

3 e2 − e4
�� ��2

13 + i
3 e2 − e4
�� ��2

13

 !
≤ κ1

3 e2 − e4
�� ��2

13 + i
3 e2 − e4
�� ��2

13

 !
:

ð113Þ

By using κ1 = 1/5 and after simplifying, we get that

1
256

3 −51:8799j j2
13 + i

3 −51:8799j j2
13

� �

≤
1
5

3 −51:8799j j2
13 + i

3 −51:8799j j2
13

� �
2:4262 1 + ið Þ

≤ 124:2241 1 + ið Þ:
ð114Þ

Thus, (74) is true for κ1 = 1/5, κ2 = 1/4, κ3 = 1/10, and
b = 2.

So, all conditions of Theorem 16 are satisfied to get a
unique CFP, that is “0” of the mappings f , f1, and f2.
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4. Applications

Here, we provide an application to support our main result.
To do this, we take a couple of UITEs to obtain the existing
result of a common solution to check the effectiveness of our
result. Let the set Ω = Cð½k1, k2�,ℝÞ contain real-valued con-
tinuous functions defined on ½k1, k2�. In the following, we use
Theorem 9 to obtain the existing result of a common solu-
tion. This enables us to establish a theorem based on UITEs
to attain the existing result of a common solution.

Theorem 19 (see [28]). Let Ω = Cð½k1, k2�,ℝÞ, where ½k1, k2
� ⊆ℝ and ð : Ω ×Ω⟶ℂ is defined as

ð ρ1, ρ2ð Þ = ρ1 yð Þ − ρ2 yð Þk k2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1 ð115Þ

for all ρ1, ρ2 ∈Ω and y ∈ ½k1, k2�. Consider that the UITEs
are

ρ1 yð Þ =
ðk2
k1

Q1 y, r, ρ1 rð Þð Þdr + Γ1 yð Þ,

ρ2 yð Þ =
ðk2
k1

Q2 y, r, ρ2 rð Þð Þdr + Γ2 yð Þ,
ð116Þ

where r ∈ ½k1, k2�. Let Q1,Q2 : ½k1, k2� × ½k1, k2� ×ℝ⟶ℝ be
such that Dρ1

, Eρ2
∈Ω for every ρ1, ρ2 ∈Ω, we have that

Dρ1
yð Þ =

ðk2
k1

Q1 y, r, ρ1 rð Þð Þdr,

Eρ2
yð Þ =

ðk2
k1

Q2 y, r, ρ2 rð Þð Þdr:
ð117Þ

If there exists μ ∈ ð0, 1Þ such that, for all ρ1, ρ2 ∈Ω,

Dρ1
yð Þ − Eρ2

yð Þ + Γ1 yð Þ − Γ2 yð Þ



 


2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 + k21

q
ei cot k1

≤ μM ρ1, ρ2ð Þ,
ð118Þ

where

M ρ1, ρ2ð Þ =max A1 ρ1, ρ2ð Þ yð Þ, A2 ρ1, ρ2ð Þ yð Þ, A3 ρ1, ρ2ð Þ yð Þf g,
ð119Þ

with

A1 ρ1, ρ2ð Þ yð Þ = ρ1 yð Þ − ρ2 yð Þk k2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1 ,

A2 ρ1, ρ2ð Þ yð Þ

=
Eρ2

yð Þ + Γ2 yð Þ − ρ1 yð Þ
��� ���2����

���� Dρ1
yð Þ + Γ1 yð Þ − ρ2 yð Þ

��� �������
2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 + k21

q
ei cot k1

� �

1/2 Eρ2
yð Þ + Γ2 yð Þ − ρ1 yð Þ




 


2 + Dρ1
yð Þ + Γ1 yð Þ − ρ2 yð Þ




 


2� � ,

ð120Þ

A3 ρ1, ρ2ð Þ yð Þ =min a1 ρ1, ρ2ð Þ yð Þ, a2 ρ1, ρ2ð Þ yð Þ,f
a3 ρ1, ρ2ð Þ yð Þ, a4 ρ1, ρ2ð Þ yð Þ, a5 ρ1, ρ2ð Þ yð Þg,

ð121Þ
where

a1 ρ1, ρ2ð Þ yð Þ = Dρ1
yð Þ + Γ1 yð Þ − ρ1 yð Þ




 


2 ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1 ,

a2 ρ1, ρ2ð Þ yð Þ = Eρ2
yð Þ + Γ2 yð Þ − ρ2 yð Þ




 


2 ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1 ,

a3 ρ1, ρ2ð Þ yð Þ

=
Dρ1

yð Þ + Γ1 yð Þ − ρ1 yð Þ



 


2 Eρ2

yð Þ + Γ2 yð Þ − ρ2 yð Þ



 


2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 + k21

q
ei cot k1

� �2

1 + ρ1 yð Þ − ρ2 yð Þk k2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1

,

a4 ρ1, ρ2ð Þ yð Þ

=
Dρ1

yð Þ + Γ1 yð Þ − ρ1 yð Þ



 


2 Eρ2

yð Þ + Γ2 yð Þ − ρ1 yð Þ



 


2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 + k21

q
ei cot k1

Eρ2
yð Þ + Γ2 yð Þ − ρ1 yð Þ




 


2 + Dρ1
yð Þ + Γ1 yð Þ − ρ2 yð Þ




 


2 ,

a5 ρ1, ρ2ð Þ yð Þ

=
Eρ2

yð Þ + Γ2 yð Þ − ρ2 yð Þ



 


2 Dρ1

yð Þ + Γ1 yð Þ − ρ2 yð Þ



 


2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 + k21

q
ei cot k1

Eρ2
yð Þ + Γ2 yð Þ − ρ1 yð Þ




 


2 + Dρ1
yð Þ + Γ1 yð Þ − ρ2 yð Þ




 


2 :

ð122Þ

Then, the two UITEs, i.e., (41), have a unique common
solution.

Proof. Define f1, f2, f : Ω⟶Ω as

f1ρ1 = f1ρ1 yð Þ =Dρ1
yð Þ + Γ1 yð Þ =Dρ1

+ Γ1,
f ρ1 = f ρ1 yð Þ = ρ1 yð Þ = ρ1,

f2ρ2 = f2ρ2 yð Þ = Eρ2
yð Þ + Γ2 yð Þ = Eρ2

+ Γ2,
f ρ2 = f ρ2 yð Þ = ρ2 yð Þ = ρ2:

ð123Þ

Then, we have the following three cases:

(1) If A1ðρ1, ρ2ÞðyÞ is the maximum term in fA1ðρ1, ρ2
ÞðyÞ, A2ðρ1, ρ2ÞðyÞ, A3ðρ1, ρ2ÞðyÞg, then from (118),
(119), and (123), we have that

ð f1ρ1, f2ρ2ð Þ ≤ μ ρ1 − ρ2j jj j2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1 , ð124Þ

for all ρ1, ρ2 ∈Ω. Thus, f1, f2, and f satisfy all conditions
of Theorem 9 with μ = κ1 and κ2 = κ3 = 0 in (1). Then, two
UITEs, i.e., (116), have a unique common solution in Ω.

(2) If A2ðρ1, ρ2ÞðyÞ is the maximum term in fA1ðρ1, ρ2Þ
ðyÞ, A2ðρ1, ρ2ÞðyÞ,A3ðρ1, ρ2ÞðyÞg, then from (118),
(119), and (123), we have that
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ð f1ρ1, f2ρ2ð Þ ≤ μ

Eρ2
+ Γ2 − ρ1

��� ���2����
���� Dρ1

+ Γ1 − ρ2

��� �������
2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 + k21

q
ei cot k1

� �

1/2 Eρ2
+ Γ2 − ρ1




 


2 + Dρ1
+ Γ1 − ρ2




 


2� � ,

ð125Þ

for all ρ1, ρ2 ∈Ω. Thus, f1, f2, and f satisfy all conditions
of Theorem 9 with μ = κ2 and κ1 = κ3 = 0 in (1). Then, two
UITEs, i.e., (116), have a unique common solution in Ω.

(3) If A3ðρ1, ρ2ÞðyÞ is the maximum term in fA1ðρ1, ρ2
ÞðyÞ, A2ðρ1, ρ2ÞðyÞ, A3ðρ1, ρ2ÞðyÞg, then from (119),
we have that

M ρ1, ρ2ð Þ = A3 ρ1, ρ2ð Þ yð Þ: ð126Þ

Then, there are furthermore five subcases arising:

(i) If a1ðρ1, ρ2ÞðyÞ is the minimum term in fa1ðρ1, ρ2Þ
ðyÞ, a2ðρ1, ρ2ÞðyÞ, a3ðρ1, ρ2ÞðyÞ, a4ðρ1, ρ2ÞðyÞ, a5ðρ1,
ρ2ÞðyÞg. Then from (118), (121), (123), and (126),
we have that

ð f1ρ1, f2ρ2ð Þ ≤ μ Dρ1
+ Γ1 − ρ1

��� ������ ���2 ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1 , ð127Þ

for all ρ1, ρ2 ∈Ω

(ii) If a2ðρ1, ρ2ÞðyÞis the minimum term in fa1ðρ1, ρ2Þ
ðyÞ, a2ðρ1, ρ2ÞðyÞ, a3ðρ1, ρ2ÞðyÞ, a4ðρ1, ρ2ÞðyÞ, a5ðρ1,
ρ2ÞðyÞg. Then from (118), (121), (123), and (126),
we have that

ð f1ρ1, f2ρ2ð Þ ≤ μ Eρ2
+ Γ2 − ρ2

��� ������ ���2 ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1 , ð128Þ

for all ρ1, ρ2 ∈Ω

(iii) If a3ðρ1, ρ2ÞðyÞ is the minimum term in fa1ðρ1,
ρ2ÞðyÞ, a2ðρ1, ρ2ÞðyÞ, a3ðρ1, ρ2ÞðyÞ, a4ðρ1, ρ2ÞðyÞ, a5
ðρ1, ρ2ÞðyÞg. Then from (118), (121), (123), and
(126), we have that

ð f1ρ1, f2ρ2ð Þ ≤ μ

Dρ1
+ Γ1 − ρ1

��� ���2����
���� Eρ2

+ Γ2 − ρ2

��� �������
2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 + k21

q
ei cot k1

� �2

1 + ρ1 − ρ2k k2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1

,

ð129Þ

for all ρ1, ρ2 ∈Ω

(iv) If a4ðρ1, ρ2ÞðyÞ is the minimum term in fa1ðρ1,
ρ2ÞðyÞ, a2ðρ1, ρ2ÞðyÞ, a3ðρ1, ρ2ÞðyÞ, a4ðρ1, ρ2ÞðyÞ, a5
ðρ1, ρ2ÞðyÞg. Then from (118), (121), (123), and
(126), we have that

ð f1ρ1, f2ρ2ð Þ ≤ μ

Dρ1
+ Γ1 − ρ1

��� ���2����
���� Eρ2

+ Γ2 − ρ1

��� �������
2 ffiffiffiffiffiffiffiffiffiffiffiffi

1 + k21

q
ei cot k1

Eρ2
+ Γ2 − ρ1




 


2 + Dρ1
+ Γ1 − ρ2




 


2 ,

ð130Þ

for all ρ1, ρ2 ∈Ω

(v) If a5ðρ1, ρ2ÞðyÞ is the minimum term in fa1ðρ1, ρ2Þ
ðyÞ, a2ðρ1, ρ2ÞðyÞ, a3ðρ1, ρ2ÞðyÞ, a4ðρ1, ρ2ÞðyÞ, a5ðρ1,
ρ2ÞðyÞg. Then from (118), (121), (123), and (126),
we have that

ð f1ρ1, f2ρ2ð Þ ≤ μ

Eρ2
+ Γ2 − ρ2

��� ���2����
���� Dρ1

+ Γ1 − ρ2

��� �������2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + k21

q
ei cot k1

Eρ2
+ Γ2 − ρ1




 


2 + Dρ1
+ Γ1 − ρ2




 


2 ,

ð131Þ

for all ρ1, ρ2 ∈Ω. Thus, the subcases of Case 3 (Case (i-v))
for the mappings f1, f2, and f satisfy all the conditions of
Theorem 9 with μ = κ3 and κ1 = κ2 = 0 in (1). Then, two
UITEs, i.e., (116), have a unique common solution in Ω.

5. Conclusions

We have established some unique CFP-results in complex-
valued b-metric space by using rational contraction condi-
tions for three self-mappings in which one self-map is con-
tinuous and commutable with the other two self-mappings.
In our main work, we have generalized the results (e.g., see
[28, 37, 38]). To show the authenticity of our results, we
have given some useful examples in the main section. We
have also provided an application for our main result to
indicate its utility. In this direction, many results can be con-
tributed to the said space by applying different contractions
with different types of integral operators.

Data Availability

Data sharing is not applicable to this article as no data set
was generated or analyzed during the current study.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was funded by the Deanship of Scientific Research
(DSR), King Abdulaziz University, Jeddah, under Grant No.
FP-043-43.

References

[1] S. Banach, “Sur les opérations dans les ensembles abstraits et
leur application aux équations intégrales,” Fundamenta Math-
ematicae, vol. 3, pp. 133–181, 1922.

17Journal of Function Spaces



[2] S. Chandok, “Common fixed points, invariant approximation
and generalized weak contractions,” International Journal of
Mathematics and Mathematical Sciences, vol. 2012, Article
ID 102980, 11 pages, 2012.

[3] S. Chandok, “Some common fixed point theorems for Ciric
type contraction mappings,” Tamkang Journal of Mathemat-
ics, vol. 43, no. 2, pp. 187–202, 2012.

[4] G. Jungck and B. E. Rhoades, “Fixed point theorems for occa-
sionally weakly compatible mappings,” Fixed Point Theory,
vol. 7, no. 2, pp. 287–296, 2006.

[5] T. M. Al-Shami, “Soft separation axioms and fixed soft points
using soft semiopen sets,” Journal of Applied Mathematics,
vol. 2020, Article ID 1746103, 11 pages, 2020.

[6] T. M. Al-Shami and E. A. Abo-Tabl, “Soft $ \alpha $-separa-
tion axioms and $ \alpha $-fixed soft points,” AIMS Mathe-
matics, vol. 6, no. 6, pp. 5675–5694, 2021.

[7] I. A. Bakhtin, “The contraction mapping principle in almost
metric spaces,” Journal of Functional Analysis, vol. 30,
pp. 26–37, 1989.

[8] S. Czerwik, “Nonlinear set-valued contraction mapping in b
-metric spaces,” Atti. Sem. Mat. Univ. Modena, vol. 46,
pp. 263–276, 1998.

[9] T. Suzuki, “Basic inequality on a b-metric space and its appli-
cations,” Journal of Inequalities and Applications, vol. 2017,
no. 1, 2017.

[10] K. Jain and J. Kaur, “Some fixed point results in b-metric
spaces and b-metric-like spaces with new contractive map-
pings,” Axioms, vol. 10, no. 2, p. 55, 2021.

[11] A. Petrusel, B. Samet, G. Petrusel, and J. Yao, “Coupled fixed
point theorems for symmetric contractions in b-metric spaces
with applications to operator equation systems,” Fixed Point
Theory, vol. 17, no. 2, pp. 457–476, 2016.

[12] E. Ameer, H. Aydi, M. Arshad, H. Alsamir, and M. S. Noorani,
“Hybrid multivalued type contraction mappings in αK-com-
plete partial b-metric spaces and applications,” Symmetry,
vol. 11, no. 1, p. 86, 2019.

[13] M. Boriceanu, “Strict fixed point theorems for multivalued
operators in b-metric spaces,” International Journal of Modern
Mathematics, vol. 4, no. 3, pp. 285–301, 2009.

[14] M. Boriceanu, M. Bota, and A. Petrusel, “Multivalued fractals
in b-metric spaces,” Central European Journal of Mathematics,
vol. 8, no. 2, pp. 367–377, 2010.

[15] M. Bota, A. Molnar, and C. S. Varga, “On EkelandÂ’s varia-
tional principle in b-metric spaces,” Fixed Point Theory,
vol. 12, pp. 21–28, 2011.

[16] S. Czerwik, “Contraction mappings in b-metric spaces,” Acta
Mathematica et Informatica Universitatis Ostraviensis, vol. 1,
1993.

[17] S. Czerwik, K. Dlutek, and S. L. Singh, “Round-off stability of
iteration procedures for set-valued operators in b-metric
spaces,” Journal of Nature Physical Science, vol. 11, pp. 87–
94, 2007.

[18] N. Hussain andM. H. Shah, “KKMmappings in cone b-metric
spaces,” Computers and Mathematics with Applications,
vol. 62, no. 4, pp. 1677–1684, 2011.

[19] E. Karapinar, S. Czerwik, and H. Aydi, “Meir-Keeler contrac-
tion mappings in generalized -metric spaces,” Journal of Func-
tion Spaces, vol. 2018, Article ID 3264620, 4 pages, 2018.

[20] M. Samreen, T. Kamran, and N. Shahzad, “Some fixed point
theorems in -metric space endowed with graph,” Abstract

and Applied Analysis, vol. 2013, Article ID 967132, 9 pages,
2013.

[21] A. Azam, B. Fisher, and M. Khan, “Common fixed point theo-
rems in complex valued metric spaces,” Numerical Functional
Analysis and Optimization, vol. 32, no. 3, pp. 243–253, 2011.

[22] F. Rouzkard and M. Imdad, “Some common fixed point theo-
rems on complex valued metric spaces,” Computers and Math-
ematics with Applications, vol. 64, no. 6, pp. 1866–1874, 2012.

[23] M. Abbas, M. De la Sen, and T. Nazir, “Common fixed points
of generalized cocyclic mappings in complex valued metric
spaces,” Discrete Dynamics in Nature and Society, vol. 2015,
Article ID 147303, 11 pages, 2015.

[24] M. Sarwar andM. B. Zada, “Common fixed point theorems for
six self-maps satisfying common ðE:AÞ and common ðCLRÞ
properties in complex valued metric space,” Electronic Journal
of Mathematical Analysis and Applications, vol. 3, no. 1,
pp. 228–244, 2015.

[25] M. Abbas, B. Fisher, and T. Nazir, “Well-posedness and peri-
odic point property of mappings satisfying a rational inequal-
ity in an ordered complex valued metric space,” Scientific
Studies and Research Series: Mathematics and Informatics,
vol. 22, no. 1, pp. 5–24, 2012.

[26] H. K. Nashine, M. Imdad, and M. Hasan, “Common fixed
point theorems under rational contractions in complex valued
metric spaces,” The Journal of Nonlinear Science and Applica-
tions, vol. 7, pp. 42–50, 2015.

[27] S. K. Mohanta and R. Maitra, “Common fixed point of three
self mappings in complex valued metric spaces,” International
Journal of Mathematical Archive, vol. 3, no. 8, pp. 2946–2953,
2012.

[28] W. Sintunavarat and P. Kumam, “Generalized common fixed
point theorems in complex valued metric spaces and applica-
tions,” Journal of Inequalities and Applications, vol. 2012,
no. 1, 2012.

[29] R. K. Verma and H. K. Pathak, “Common fixed point theo-
rems using property (E.a) in complex valued metric space,”
Thai Journal of Mathematics, vol. 11, no. 2, pp. 347–355, 2013.

[30] K. P. R. Rao, P. R. Swamy, and J. R. Prasad, “A common fixed
point theorem in complex valued b-metric spaces,” Bulletin of
Mathematics and Statistics Research, vol. 1, no. 1, 2013.

[31] A. A. Mukheimer, “Some common fixed point theorems in
complex valued -metric spaces,” Scientific World Journal,
vol. 2014, article 587825, pp. 1–6, 2014.

[32] W. Chantakun, C. Khun-inpho, and I. Inchan, “Some property
of common fixed point in complex valued b-metric spaces,”
Thai Journal of Mathematics, vol. 18, no. 3, pp. 851–859, 2020.

[33] A. K. Dubey, R. Shukla, and R. P. Dubey, “Some fixed point
theorems in complex valued b-metric spaces,” Journal of Com-
plex Systems, vol. 2015, Article ID 832467, 7 pages, 2015.

[34] G. Yadav, R. K. Sharma, and G. L. Prajapati, “Common fixed
point theorems of compatible maps in complex valued b-
metric spaces,” Journal of Scientific Research, vol. 12, no. 4,
pp. 431–446, 2020.

[35] K. Berrah, A. Aliouche, and T. Oussaeif, “Applications and
theorem on common fixed point in complex valued b-metric
space,” AIMS Mathematics, vol. 4, no. 3, pp. 1019–1033, 2019.

[36] D. Hasana, “Fixed point theorems in complex-valued b-metric
spaces,” Jurnal Matematika Murni Dan Aplikasi, vol. 4, no. 4,
pp. 138–145, 2017.

[37] S. Mehmood, S. U. Rehman, N. Jan, M. Al-Rakhami, and
A. Gumaei, “Rational type compatible single-valued mappings

18 Journal of Function Spaces



via unique common fixed point findings in complex-valued b
-metric spaces with an application,” Journal of Function
Spaces, vol. 2021, Article ID 9938959, 14 pages, 2021.

[38] A. A. Mukheimer, “Some fixed point theorems in complex val-
ued b-metric spaces,” Italian Journal of Pure and Applied
Mathematics-N, vol. 42, pp. 115–125, 2019.

[39] G. Jungck, “Commuting mappings and fixed points,” The
American Mathematical Monthly, vol. 83, no. 4, pp. 261–263,
1976.

19Journal of Function Spaces



Research Article
Some Fixed Point Results in Premodular Special Space of
Sequences and Their Associated Pre-Quasi-Operator Ideal

Awad A. Bakery ,1,2 Elsayed A. E. Mohamed ,1,3 and O. M. Kalthum S. K. Mohamed 1,4

1University of Jeddah, College of Science and Arts at Khulis, Department of Mathematics, Jeddah, Saudi Arabia
2Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
3Department of Mathematics, Faculty of Education, Alzaiem Alazhari University, Khartoum, Sudan
4Academy of Engineering and Medical Sciences, Department of Mathematics, Khartoum, Sudan

Correspondence should be addressed to O. M. Kalthum S. K. Mohamed; om_kalsoom2020@yahoo.com

Received 24 August 2021; Accepted 3 December 2021; Published 23 December 2021

Academic Editor: Anita Tomar

Copyright © 2021 Awad A. Bakery et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A weighted Nakano sequence space and the s-numbers it contains are the subject of this article, which explains the concept of the
pre-quasi-norm and its operator ideal. We show that both Kannan contraction and nonexpansive mappings acting on these spaces
have a fixed point. A slew of numerical experiments back up our findings. The presence of summable equations’ solutions is
shown to be useful in a number of ways. Weight and power of the weighted Nakano sequence space are used to define the
parameters for this technique, resulting in customizable solutions.

1. Introduction

The spaces of all, bounded, r-absolutely summable, and null
sequences of real numbers will be denoted throughout the
article by ℝℕ0 , ℓ∞, ℓr , and c0, respectively, where ℕ0 is the
set of nonnegative integers. ey = f0, 0,⋯, 1, 0, 0,⋯g, while
1 lies in the yth place, with y ∈ℕ0.

Definition 1 (see [1]). A function s : LðE,HÞ⟶ ½0,∞Þℕ0 ,
where LðE,HÞ is the space of all bounded linear operators
from a Banach space E into a Banach spaceH and if E =H ,
we write LðEÞ, which transforms every mapping J ∈LðE,
HÞ to ðsyðJÞÞ∞y=0 is said to be s-number, if it is satisfying the

following conditions:

(a) kJk = s0ðJÞ ≥ s1ðJÞ ≥ s2ðJÞ ≥⋯≥0, for every J ∈L
ðE,HÞ

(b) sx+y−1ðJ1 + J2Þ ≤ sxðJ1Þ + syðJ2Þ, for every J1, J2 ∈L
ðE,HÞ and x, y ∈ℕ0

(c) Ideal property: syðWHJÞ ≤ kWksyðHÞ kJk, for every
J ∈LðE0,EÞ, H ∈LðE,HÞ, and W ∈LðH ,H 0Þ,
where E0 and H 0 are any two Banach spaces

(d) If J ∈LðE,HÞ and δ ∈ℝ, we have syðδJÞ = ∣δ ∣ syðJÞ
(e) Rank property: if rank ðJÞ ≤ y, then syðJÞ = 0, for all

J ∈LðE,HÞ
(f) Norming property: sk≥yðIyÞ = 0 or sk<yðIyÞ = 1

The yth approximation number, αyðJÞ, is defined as

αy Jð Þ = inf J −Kk k: K ∈L E,Hð Þ and rank Kð Þ ≤ yf g:
ð1Þ

Notations 2 (see [2]). SC ≔ fSCðE,HÞg, where SCðE,HÞ≔
fJ ∈LðE,HÞ: ððsyðJÞÞ∞y=0 ∈ Cg. Also, fS

app
C ðE,HÞg, where

SappC ðE,HÞ≔ fJ ∈LðE,HÞ: ððαyðJÞÞ∞y=0 ∈ Cg.
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Fixed point theory, Banach space geometry, normal
series theory, ideal transformations, and approximation
theory are all examples of ideal operator theorems and
summability. The concept of a pre-quasi-operator ideal is
introduced and studied by Faried and Bakery [2]. Bakery
and Abou Elmatty investigated some topological and geo-
metric structures of ℓðγ, λÞ in [3]. They proved that the
space Sappℓðγ,λÞ is a small pre-quasi-operator ideal and gave a

strictly inclusion relation for different weights and powers.
Several mathematicians were able to investigate many exten-
sions for contraction mappings defined on the space or on
the space itself thanks to the Banach fixed point theorem
[4]. Kannan [5] investigated an example of a class of opera-
tors that perform the same fixed point actions as contrac-
tions but are not continuous. Ghoncheh [6] demonstrated
the existence of a Kannan mapping fixed point in complete
modular spaces with Fatou property (also see [7–10]).
Bakery and Mohamed [11] examined the sufficient require-
ments on ℓððλzÞÞ, variable exponent in ð0, 1� under definite
pre-quasi-norm so that there is a fixed point of Kannan
pre-quasi-norm contraction mappings on this space. For
the construction of pre-quasi-Banach and closed spaces, we
use a weighted Nakano sequence space, ðℓðγ, λÞÞP, with
various pre-quasi-norms in this study. Weighted Nakano
sequence space’s pre-quasi-normal structural features,
including the fixed point idea of Kannan pre-quasi-norm
contraction and the Kannan pre-quasi-norm nonexpansive
mapping in weighted Nakano sequence space, are improved.
The existence of a fixed point for the Kannan pre-quasi-
norm contraction mapping has been demonstrated using
weighted Nakano sequence space and s-numbers. Our talk
concluded with various instances of how the information
gathered could be put to good use in resolving a problem.

2. Preliminaries and Definitions

We indicate the space of all mappings P : A⟶ ½0,∞Þ, by
½0,∞ÞA.

Definition 3 (see [12]). If A is a vector space and θ = ð0,
0, 0,Þ, a mapping P ∈ ½0,∞�A is said to be modular:

(a) If g ∈A, g = θ⟺ PðgÞ = 0 with PðgÞ ≥ 0
(b) PðδgÞ = PðgÞ holds, for each g ∈A and ∣δ∣ = 1
(c) The inequality Pðδg + ð1 − δÞf Þ ≤ PðgÞ + Pð f Þ

verifies, for every g, f ∈A and δ ∈ ½0, 1�.

Definition 4 (see [2]). If the following conditions hold:

ey
� �

y∈ℕ0
⊆A: ð2Þ

(1) A is solid. This means if g = ðgyÞ ∈ℝℕ0 , f = ð f yÞ
∈A, and ∣gy ∣ ≤∣f y∣, for every y ∈ℕ0, then g ∈A

(2) ðg½y/2�Þ∞y=0 ∈A, where ½y/2� denotes the integral part

of y/2, when ðgyÞ∞y=0 ∈A

Then, A is said to be a special space of sequences (sss).

Definition 5 (see [2]). If we have P ∈ ½0,∞ÞA with the
following:

(i) if g ∈A, g = θ⟺ PðgÞ = 0
(ii) suppose g ∈A and δ ∈ℝ, then there is B ≥ 1 for

which PðδgÞ ≤ B ∣ δ ∣ PðgÞ
(iii) the inequality, Pðg + f Þ ≤ JðPðgÞ + Pð f ÞÞ, for each

g, f ∈A, verifies for some J ≥ 1
(iv) if z ∈ℕ0 and ∣gz ∣ ≤∣f z∣, then PððgzÞÞ ≤ Pðð f zÞÞ
(v) the inequality, PððgzÞÞ ≤ Pððg½z/2�ÞÞ ≤ J0PððgzÞÞ,

satisfies, for some J0 ≥ 1
(vi) assume F is the space of finite sequences, one has

�F =AP

(vii) we have σ > 0 so that Pðη, 0, 0, 0,⋯Þ ≥ σ ∣ η ∣ P
ð1, 0, 0, 0,⋯Þ, for every η ∈ℝ

Then, AP ⊆A is said to be a premodular sss.

Example 1. Since for all v, t ∈ ℓððða + 1Þ/ð2a + 5ÞÞ∞a=0Þ, we have

P
v + t
2

� �
= 〠

a∈ℕ0

va + ta
2

����
����
a+1ð Þ/ 2a+5ð Þ !5

≤ 8 P vð Þ + P tð Þð Þ:

ð3Þ

Hence, PðvÞ = ð∑a∈ℕ0
jvajða+1Þ/ð2a+5ÞÞ

5
is a premodular (not

a modular) on ℓððða + 1Þ/ð2a + 5ÞÞ∞a=0Þ.

Definition 6 (see [11]). Assume A is a sss. The function P
∈ ½0,∞ÞA is called a pre-quasi-norm on A, if it satisfies the
conditions (i), (ii), and (iii) of Definition 5.

Theorem 7 (see [11]. Suppose A is a premodular sss; then, A
is a pre-quasi-normed sss.

Theorem 8 (see [11]). Quasinormed sss is contained in pre-
quasi-normed sss.

Definition 9 (see [13]).

(a) The pre-quasi-norm P on ℓðγ, ΔÞ is called P-convex,
if Pðεg + ð1 − εÞf Þ ≤ εPðgÞ + ð1 − εÞPð f Þ, for each ε
∈ ½0, 1� and g, f ∈ ℓðγ, ΔÞ

(b) fgzgz∈ℕ0
⊆ ðℓðγ, ΔÞÞP is P-convergent to g ∈

ðℓðγ, ΔÞÞP , if and only if limz⟶∞Pðgz − gÞ = 0: If
the P-limit exists, then it is unique
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(c) fgzgz∈ℕ0
⊆ ðℓðγ, ΔÞÞP is P-Cauchy, if limz,y⟶∞P

ðgz − gyÞ = 0

(d) Δ ⊂ ðℓðγ, ΔÞÞP is P-closed, if for every P-converging
fgzgz∈ℕ0

⊂ Δ to g, then g ∈ Δ

(e) Δ ⊂ ðℓðγ, λÞÞP is P-bounded, if δPðΔÞ = sup fPðg
− f Þ: g, f ∈ Δg <∞

(f) The P-ball of radius l ≥ 0 and center g, for every g
∈ ðℓðγ, λÞÞP, is defined as

BP g, lð Þ = f ∈ ℓ γ, λð Þð ÞP : P g − fð Þ ≤ l
� � ð4Þ

(g) A pre-quasi-norm P on ℓðγ, λÞ satisfies the Fatou
property, when for every sequence f f zg ⊆ ðℓðγ, λÞÞP
with limz⟶∞Pð f z − f Þ = 0 and every g ∈ ðℓðγ, λÞÞP
then Pðg − f Þ ≤ supy inf z≥yPðg − f zÞ

Recall that the Fatou property implies the P-closed of
the P-balls.

Definition 10 (see [14]). Let L be the class of each bounded
linear operators between any two Banach spaces. A subclass
U of L is known as an operator ideal, if all element UðE,
HÞ =U ∩LðE,HÞ fulfills the following conditions:

(i) IΓ ∈U, where Γ indicates Banach space of one
dimension

(ii) The space UðE,HÞ is linear over ℝ
(iii) If G1 ∈LðE0,EÞ, G2 ∈UðE,HÞ, and G3 ∈LðH ,

H 0Þ, then G3G2G1 ∈UðE0,H 0Þ, where E0 and
H 0 are normed spaces

Pre-quasi-operator ideals are more general than quasio-
perator ideals.

Definition 11 (see [2]). A mapping ℙ ∈ ½0,∞ÞU is called a
pre-quasi-norm when

(a) let J ∈UðE,HÞ, ℙðJÞ ≥ 0, and ℙðJÞ = 0⇔ J = 0
(b) we have D ≥ 1 with ℙðγJÞ ≤D ∣ γ ∣ℙðJÞ, when J ∈

UðE,HÞ and γ ∈ℝ

(c) we have J ≥ 1 so that ℙðJ1 + J2Þ ≤ J½ℙðJ1Þ +ℙðJ2Þ�,
for all J1, J2 ∈UðE,HÞ

(d) we have τ ≥ 1 such that J ∈LðE0,EÞ, J1 ∈UðE,HÞ
and J2 ∈LðH ,H 0Þ then ℙðJ2 J1 JÞ ≤ τ∥J2∥ℙðJ1Þ∥J∥

Theorem 12 (see [11]). Suppose AP is a premodular sss, then
ℙðJÞ = PðszðJÞÞ∞z=0 is a pre-quasi-norm on SAP

.

Theorem 13 (see [2]). Quasi-normed ideal is contained in
pre-quasi-normed ideal.

Lemma 14 (see [15]). If λ ≥ 2 and for all g, f ∈ℝ, then

g + f
2

����
����
λ

+ g − f
2

����
����
λ

≤
1
2

gj jλ + fj jλ
� �

: ð5Þ

Lemma 15 (see [16]). Let 1 < λ ≤ 2 and g, f ∈ℝ with ∣g ∣ +∣
f ∣ ≠ 0; then,

g + f
2

����
����
λ

+ λ λ − 1ð Þ
2

g − f
∣g∣+∣f ∣

����
����
2−λ g − f

2

����
����
λ

≤
1
2

gj jλ + fj jλ
� �

:

ð6Þ

Lemma 16 (see [17]). Suppose λz > 0 and gz , f z ∈ℝ, for all
z ∈ℕ0; then,

gz + f zj jλz ≤ 2K−1 gzj jλz + f zj jλz
� �

, ð7Þ

where K =max f1, supzλzg.

3. Main Results

3.1. The Sequence Space ℓðγ, λÞ. Assume λ = ðλzÞ ∈ℝ+ℕ0 and
γ = ðγzÞ ∈ℝ+ℕ0 , where ℝ+ denotes the set of positive reals.
In [3], the weighted Nakano sequence space was defined as

ℓ γ, λð Þ = v = vað Þ ∈ℝℕ0 : P μvð Þ<∞ , for some μ > 0
� �

, ð8Þ

while PðvÞ =∑∞
a=0 γajvajλa :

Theorem 17. If ðλaÞ ∈ ℓ∞, then

ℓ γ, λð Þ = v = vað Þ ∈ℝℕ0 : P μvð Þ<∞, for any μ > 0
� �

: ð9Þ

Proof.

ℓ γ, λð Þ = v = vað Þ ∈ℝℕ0 : P μvð Þ<∞ , for some μ > 0
� �

= v = vað Þ ∈ℝℕ0 : inf
a

μj jλa 〠
∞

a=0
γa vaj jλa

(

≤ 〠
∞

a=0
γa μvaj jλa<∞, for someμ > 0

)

= v = vað Þ ∈ℝℕ0 : 〠
∞

a=0
γa vaj jλa<∞

( )
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= v = vað Þ ∈ℝℕ0 : P μvð Þ<∞ , for any μ > 0
� �

:

ð10Þ

(1) If γa = 1, with a ∈ℕ0, then ℓðγ, λÞ = ℓððλaÞÞ defined
and considered in [18, 19]

(2) If γa = 1/λa, with a ∈ℕ0, then ℓðγ, λÞ = ℓλð:Þ exam-
ined by many authors [16, 20, 21]

Theorem 18. The space ðℓðγ, λÞ,∥:∥Þ is a Banach space, where
∥v∥ = inf fκ > 0 : Pðv/κÞ ≤ 1g.

Proof. Since we have the following:

(i) ∥v∥≥0, for each v ∈ ℓðγ, λÞ and ∥v∥ = 0, if and only
if, v = θ

(ii) suppose ν ∈ℝ, v ∈ ℓðγ, λÞ without loss of generality,
let ν ≠ 0 then

∥νv∥ = inf ζ > 0 : P
νv
ζ

� �
≤ 1

	 


= inf νj jμ > 0 : P
v
μ

� �
≤ 1

	 

= νj j vk k

ð11Þ

(iii) assume v, t ∈ ℓðγ, λÞ, then there are ζ1 > 0 and ζ2 > 0
be such that Pðv/ζ1Þ ≤ 1 and Pðt/ζ2Þ ≤ 1: Let ζ = ζ1
+ ζ2; since P is nondecreasing and convex, one has

P
v + t
ζ

� �
= P

v + t
ζ1 + ζ2

� �
≤

ζ1
ζ1 + ζ2

P
v
ζ1

� �
+ ζ2
ζ1 + ζ2

P
t
ζ2

� �
≤ 1

ð12Þ

As the ζ’s are nonnegative, one can see

∥v + t∥ = inf ζ > 0 : P
v + t
ζ

� �
≤ 1

	 


≤ inf ζ1 > 0 : P
v
ζ1

� �
≤ 1

	 


+ inf ζ2 > 0 : P
t
ζ2

� �
≤ 1

	 

= ∥v∥+∥t∥:

ð13Þ

Then, the space ðℓðγ, λÞ,∥:∥Þ is a normed space. Next, let
gx = ðgxzÞ∞z=0 be a Cauchy sequence in ℓðγ, λÞ. Therefore,
for every ε ∈ ð0, 1Þ, we have x0 ∈ℕ0 such that for all x, y
≥ x0, we obtain

∥gx − gy∥ = inf ζ > 0 : P
gx − gy

ζ

� �
≤ 1

	 

< ε: ð14Þ

So, for x, y ≥ x0 and z ∈ℕ0, one can see ∣gxz − gyz ∣ <ε:
Hence, ðgyzÞ is a Cauchy sequence in ℝ, for fixed z ∈ℕ0.
This implies limy⟶∞gyz = g0z , for fixed z ∈ℕ0. Hence, ∥
gx − g0∥<ε, for every x ≥ x0. Since ∥g0∥≤∥gx − g0∥+∥gx∥<
∞, therefore, g0 ∈ ℓðγ, λÞ. This implies that ðℓðγ, λÞ,∥:∥Þ
is a Banach space.

4. Pre-Quasi-Normed Sequence Space

To create pre-quasi-Banach and closed sequence space, we

study the conditions on ðℓðγ, λÞÞP , where PðgÞ =
½∑∞

z=0 γzjgzjλz �
1/K

, for each g ∈ ℓðγ, λÞ. The Fatou property
of ðℓðγ, λÞÞP has been investigated for various P.

Theorem 19.

(a1) Let ðλzÞ ∈ℝ+ℕ0 ∩ ℓ∞ be an increase.

(a2) Either ðγzÞ is a monotonic decrease or monotonic
increase so that there is E ≥ 1, where γ2a+1 ≤ Eγz .

Then, ðℓðγ, λÞÞP is a premodular sss.

Proof.

(i) Evidently, PðgÞ ≥ 0 and PðgÞ = 0⟺ g = θ.

(1-i) and (iii). Let g, f ∈ ℓðγ, λÞ. As ðλzÞ ∈ℝ+ℕ0 ∩ ℓ∞,
one gets

P g + fð Þ = 〠
∞

z=0
γz gz + f zj jλz

" #1/K

≤ 〠
∞

z=0
γz gzj jλz

" #1/K
+ 〠

∞

z=0
γz f zj jλz

" #1/K

= P gð Þ + P fð Þ <∞:

ð15Þ

Hence, g + f ∈ ℓðγ, λÞ.
(1-ii) and (ii). Let η ∈ℝ and g ∈ ℓðγ, λÞ. Since ðλzÞ ∈

ℝ+ℕ0 ∩ ℓ∞, one has

P ηgð Þ = 〠
∞

z=0
γz ηgzj jλz

" #1/K

≤ sup
z

ηj jλz/K 〠
∞

z=0
γz gzj jλz

" #1/K

≤D∣η∣P gð Þ <∞,

ð16Þ

where D =max f1, supzjηjðλz /KÞ−1g ≥ 1. Therefore, ηg ∈ ℓ
ðγ, λÞ. From conditions (1-i) and (1-ii), one hasℓðγ, λÞ
which is linear. And ez ∈ ℓðγ, λÞ, for all z ∈ℕ0, as
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P ezð Þ = 〠
∞

r=0
γr ez rð Þj jλr

" #1/K
= γzð Þλz/K : ð17Þ

(2) and (iv). Let ∣gz ∣ ≤∣f z∣, for all z ∈ℕ0 and f ∈ ℓðγ, λÞ.
Since γz > 0, for all z ∈ℕ0, then

P gð Þ = 〠
∞

z=0
γz gzj jλz

" #1/K
≤ 〠

∞

z=0
γz f zj jλz

" #1/K
= P fð Þ <∞,

ð18Þ

we get g ∈ ℓðγ, λÞ.
(3) and (v). Suppose ðgzÞ ∈ ℓðγ, λÞ and ðγzÞ is increasing.

There is E ≥ 1 so that γ2z+1 ≤ Eγz and ðλzÞ ∈ℝ+ℕ0 ∩ ℓ∞ is
increasing; one can see

P g z
2½ �

� �� �
= 〠

∞

z=0
γz g z/2½ �
��� ���λz

" #1/K

= 〠
∞

z=0
γ2z gzj jλ2z + 〠

∞

z=0
γ2z+1 gzj jλ2z+1

" #1/K

≤ 〠
∞

z=0
γ2z gzj jλz + 〠

∞

z=0
γ2z+1 gzj jλz

" #1/K

≤ 2Eð Þ1/K 〠
∞

z=0
γz gzj jλz

" #1/K

= 2Eð Þ1/KP gzð Þð Þ,

ð19Þ

Then, ðg½z/2�Þ ∈ ℓðγ, λÞ.
(vi) Obviously, �F = ℓðγ, λÞ
(vii) We have 0 < κ ≤ jξjðλ0/KÞ−1, for ξ ≠ 0 or κ > 0, for

ξ = 0 such that

P ξ, 0, 0, 0,⋯ð Þ ≥ κ ξj jP 1, 0, 0, 0,⋯ð Þ ð20Þ

Theorem 20. Let the conditions (a1) and (a2) of Theorem 19
be satisfied, then ðℓðγ, λÞÞP be a pre-quasi-Banach sss.

Proof. From Theorems 19 and 7, we have ðℓðγ, λÞÞP which is
a pre-quasi-normed sss. Suppose gx = ðgx

zÞ∞z=0 is a Cauchy
sequence in ðℓðγ, λÞÞP . Therefore, for all ε ∈ ð0, 1Þ, we have
x0 ∈ℕ0 such that for all x, y ≥ x0, we get

P gx − gyð Þ = 〠
∞

z=0
γz g

x
z − gyzj jλz

" #1/K
< ε: ð21Þ

Hence, for x, y ≥ x0 and z ∈ℕ0, one obtains ∣gx
z − gy

z ∣ <ε:
This implies ðgy

zÞ is a Cauchy sequence inℝ, for fixed z ∈ℕ0.
This explains limy⟶∞gy

z = g0z , with fixed z ∈ℕ0. Therefore,
Pðgx − g0Þ < ε, for all x ≥ x0. Also, one has Pðg0Þ = Pðg0 −
gx + gxÞ ≤ Pðgx − g0Þ + PðgxÞ <∞; hence, g0 ∈ ℓðγ, λÞ.

Theorem 21. The space ðℓðγ, λÞÞP is a pre-quasi-closed
sss, whenever the conditions (a1) and (a2) of Theorem
19 are satisfied.

Proof. Let gx = ðgx
zÞ∞z=0 ∈ ðℓðγ, λÞÞP and limx⟶∞Pðgx − g0Þ

= 0; hence, for all ε ∈ ð0, 1Þ, one has x0 ∈ℕ0 such that for
every x ≥ x0, we obtain

ε > P gx − g0
� �

= 〠
∞

z=0
γz g

x
z − g0z

�� ��λz" #1/K
: ð22Þ

This gives ∣gxz − g0z ∣ <ε: Therefore, ðgx
zÞ is a convergent

sequence in ℝ, for constant z ∈ℕ0. Hence, limx⟶∞gx
z = g0

z ,
with constant z ∈ℕ0. Also, one gets

P g0� �
= P g0 − gx + gx� �

≤ P gx − g0� �
+ P gxð Þ<∞:

ð23Þ

Hence, g0 ∈ ℓðγ, λÞ.

Theorem 22. The function PðgÞ = ½∑∞
z=0 γzjgzjλz �

1/K
, for

every g ∈ ℓðγ, λÞ, has the Fatou property, if the conditions
(a1) and (a2) of Theorem 19conditions (a1) and (a2) of The-
orem 19 are satisfied.

Proof. Assume f f yg ⊆ ðℓðγ, λÞÞP and limy⟶∞Pð f y − f Þ = 0:
As ðℓðγ, λÞÞP is a pre-quasi-closed space, this implies f ∈
ðℓðγ, λÞÞP . Hence, for all g ∈ ðℓðγ, λÞÞP , we have

P g − fð Þ = 〠
∞

z=0
γz gz − f zj jλz

" #1/K

≤ 〠
∞

z=0
γz gz − f yzj jλz

" #1/K
+ 〠

∞

z=0
γz f yz − f zj jλz

" #1/K

≤ sup
l

inf
y≥l

P g − f yð Þ:

ð24Þ

Theorem 23. The function PðgÞ =∑∞
z=0 γzjgzjλz does not hold

the Fatou property, if the setups (a1) and (a2) of Theorem 19
are satisfied with λ0 > 1.

Proof. Assume f f yg ⊆ ðℓðγ, λÞÞP and limy⟶∞Pð f y − f Þ = 0:
As ðℓðγ, λÞÞP is a pre-quasi-closed space, this implies f ∈
ðℓðγ, λÞÞP . Hence, for all g ∈ ðℓðγ, λÞÞP , we have
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P g − fð Þ = 〠
∞

z=0
γz gz − f zj jλz

≤ 2
sup
z

λz−1
〠
∞

z=0
γz gz − f yzj jλz + 〠

∞

z=0
γz f yz − f zj jλz

" #

≤ 2
sup
z

λz−1
sup
l

inf
y≥l

P g − f yð Þ:

ð25Þ

Example 2. The function PðgÞ = ½∑∞
z=0 γzjgzjλz �

1/K
is a pre-

quasi-norm and not quasi-norm, for all g ∈ ℓðγ, λÞ.

Example 3. The function PðgÞ = ½∑∞
z=0 γzjgzjλ�

1/λ
is a pre-

quasi-norm, quasi-norm, and not a norm on ℓðγ, ðλÞÞ,
for 0 < λ < 1.

Example 4. The function PðgÞ = inf fκ > 0 : ∑∞
z=0 γz

ð∣gz∣/κÞλz ≤ 1g is a norm on ℓðγ, λÞ.

5. Kannan Contraction’s Fixed Points

Here, P-Lipschitzian mapping acting on ðℓðγ, λÞÞP as
Kannan P-Lipschitzian mapping has been defined. We
investigate the adequate requirements for a fixed point of
Kannan contraction mapping on ðℓðγ, λÞÞP equipped with
various pre-quasi-norms.

Definition 24. A mapping J : AP ⟶AP is said to be a
Kannan P-Lipschitzian, if there exists ι ≥ 0, such that

P Jg − J fð Þ ≤ ι P Jg − gð Þ + P J f − fð Þf g, ð26Þ

for every g, f ∈AP.

(1) Let ι ∈ ½0, 1/2Þ; then, the operator J is called Kannan
P-contraction

(2) For ι = 1/2, then the operator J is said to be Kannan
P-non-expansive

A vector v ∈AP is said to be a fixed point of J, if JðgÞ = g:

Theorem 25. Assume the conditions (a1) and (a2) of Theo-
rem 19 are satisfied, and J : ðℓðγ, λÞÞP ⟶ ðℓðγ, λÞÞP is Kan-

nan P-contraction mapping, where PðgÞ = ½∑∞
z=0 γzjgzjλz �

1/K
,

for all g ∈ ℓðγ, λÞ; hence, J has a unique fixed point.

Proof. Let the setups be satisfied. Assume g ∈ ℓðγ, λÞ; hence,
Jxg ∈ ℓðγ, λÞ. Since J is a Kannan P-contraction mapping,
we obtain

P Jx+1g − Jxg
� �

≤ ι P Jx+1g − Jxg
� �

+ P Jxg − Jx−1g
� �� �

⟹

P Jx+1g − Jxg
� �

≤
ι

1 − ι
P Jxg − Jx−1g
� �

≤
ι

1 − ι

� �2
P Jx−1g − Jx−2g
� �

≤≤
ι

1 − ι

� �x
P Jg − gð Þ:

ð27Þ

Therefore, for y > x with x, y ∈ℕ0, one has

P Jxg − Jygð Þ ≤ ι P Jxg − Jx−1g
� �

+ P Jyg − Jy−1g
� �� �

≤ ι
ι

1 − ι

� �x−1
+ ι

1 − ι

� �y−1� �
P Jg − gð Þ:

ð28Þ

Hence,fJxgg is a Cauchy sequence inðℓðγ, λÞÞP , since
ðℓðγ, λÞÞP is pre-quasi-Banach space. We have f ∈
ðℓðγ, λÞÞP withlimx⟶∞ Jxg = f , to show that J f = f . As P
verifies the Fatou property, we get

P J f − fð Þ ≤ sup
l

inf
x≥l

P Jx+1g − Jxg
� �

≤ sup
l

inf
x≥l

ι

1 − ι

� �p
P Jg − gð Þ = 0:

ð29Þ

Hence, J f = f . So f is a fixed point of J . To show the
uniqueness of f , let us have two different fixed points f ,
g ∈ ðℓðγ, λÞÞP of J . So, one has

P f − gð Þ ≤ P J f − Jgð Þ ≤ ι P J f − fð Þ + P Jg − gð Þð Þ = 0:
ð30Þ

This implies f = g:

Example 5. Assume J : ðℓððða + 2Þ/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ ða
+ 2ÞÞ∞a=0ÞÞP ⟶ ðℓððða + 2Þ/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ða + 2Þ
Þ∞a=0ÞÞP , where PðgÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a∈ℕ0

ða + 2Þ/ð2a + 3Þjgajð2a+3Þ/ða+2Þ
q

,

for every g ∈ ℓððða + 2Þ/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ða + 2ÞÞ∞a=0Þ
and

J gð Þ =
g
4 , P gð Þ ∈ 0, 1½ Þ,
g
5 , P gð Þ ∈ 1,∞½ Þ:

8><
>: ð31Þ

As for each g1, g2 ∈ ðℓððða + 2Þ/ð2a + 3ÞÞ∞a=0,
ðð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞP with Pðg1Þ, Pðg2Þ ∈ ½0, 1Þ, one has

P Jg1 − Jg2ð Þ = P
g1
4 −

g2
4

� �
≤

1ffiffiffiffiffi
274

p P
3g1
4

� �
+ P

3g2
4

� �� �

= 1ffiffiffiffiffi
274

p P Jg1 − g1ð Þ + P Jg2 − g2ð Þð Þ:

ð32Þ

For all g1, g2 ∈ ðℓððða + 2Þ/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ða + 2Þ
Þ∞a=0ÞÞP with Pðg1Þ, Pðg2Þ ∈ ½1,∞Þ, one has
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P Jg1 − Jg2ð Þ = P
g1
5 −

g2
5

� �
≤

1ffiffiffiffiffi
644

p P
4g1
5

� �
+ P

4g2
5

� �� �

= 1ffiffiffiffiffi
644

p P Jg1 − g1ð Þ + P Jg2 − g2ð Þð Þ:

ð33Þ

For all g1, g2 ∈ ðℓððða + 2Þ/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ða + 2Þ
Þ∞a=0ÞÞP with Pðg1Þ ∈ ½0, 1Þ and Pðg2Þ ∈ ½1,∞Þ, we get

P Jg1 − Jg2ð Þ = P
g1
4 −

g2
5

� �
≤

1ffiffiffiffiffi
274

p P
3g1
4

� �
+ 1ffiffiffiffiffi

644
p P

4g2
5

� �

≤
1ffiffiffiffiffi
274

p P
3g1
4

� �
+ P

4g2
5

� �� �

= 1ffiffiffiffiffi
274

p P Jg1 − g1ð Þ + P Jg2 − g2ð Þð Þ:

ð34Þ

Hence, J is Kannan P-contraction and holds one element
θ ∈ ðℓððða + 2Þ/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞP, so that
JðθÞ = θ, by Theorem 25.

Corollary 26. Let conditions (a1) and (a2) of Theorem 19 be
satisfied, and J : ðℓðγ, λÞÞP ⟶ ðℓðγ, λÞÞP is Kannan P -con-

traction mapping, where PðgÞ = ½∑∞
z=0 γzjgzjλz �

1/K
, for all g

∈ ℓðγ, λÞ; then, J has a unique fixed point f with PðJxg − f Þ
≤ ιðι/ð1 − ιÞÞx−1PðJg − gÞ.

Proof. In view of Theorem 25, we have a unique fixed point f
of J . Therefore, one gets

P Jxg − fð Þ = P Jxg − J fð Þ
≤ ι P Jxg − Jx−1g

� �
+ P J f − fð Þ� �

= ι
ι

1 − ι

� �x−1
P Jg − gð Þ:

ð35Þ

Definition 27. Assume AP is a pre-quasi-normed sss, J : AP
⟶AP and f ∈AP: The operator J is said to be P-sequen-
tially continuous at f , if and only if, when limx⟶∞Pðgx − f Þ
= 0, then limx⟶∞PðJgx − J f Þ = 0.

Example 6. Suppose J : ðℓððð2z + 4Þ/ðz + 1ÞÞ∞z=0,
ððz + 1Þ/ð2z + 4ÞÞ∞z=0ÞÞP ⟶ ðℓððð2z + 4Þ/ðz + 1ÞÞ∞z=0, ððz + 1Þ
/ð2z + 4ÞÞ∞z=0ÞÞP , where PðgÞ = ½∑z∈N ð2z + 4Þ/ðz + 1Þ
jgzjðz+1Þ/ð2z+4Þ�4, for every g ∈ ℓððð2z + 4Þ/ðz + 1ÞÞ∞z=0,
ððz + 1Þ/ð2z + 4ÞÞ∞z=0Þ and

J gð Þ =

1
18 e0 + gð Þ, g0∈ −∞, 117

� �
,

1
17 e0, g0 =

1
17 ,

1
18 e0, g0 ∈

1
17 ,∞
� �

:

8>>>>>>>><
>>>>>>>>:

ð36Þ

J is clearly both P-sequentially continuous and discon-
tinuous at ð1/17Þe0 ∈ ðℓððð2z + 4Þ/ðz + 1ÞÞ∞z=0, ððz + 1Þ/ð2z +
4ÞÞ∞z=0ÞÞP.

Example 7. Assume J is defined as in Example 5. Suppose
fgðnÞg ⊆ ðℓðððz + 2Þ/ð2z + 3ÞÞ∞z=0, ðð2z + 3Þ/ðz + 2ÞÞ∞z=0ÞÞP is
such that limn⟶∞PðgðnÞ − gð0ÞÞ = 0, where gð0Þ ∈
ðℓðððz + 2Þ/ð2z + 3ÞÞ∞z=0, ðð2z + 3Þ/ðz + 2ÞÞ∞z=0ÞÞP with Pðgð0ÞÞ
= 1.

As the pre-quasi-norm P is continuous, we have

lim
n⟶∞

P Jg nð Þ − Jg 0ð Þ
� �

= lim
n⟶∞

P
g nð Þ

4 −
g 0ð Þ

5

� �
= P

g 0ð Þ

20

� �
> 0:

ð37Þ

Therefore, J is not P-sequentially continuous at gð0Þ.

Theorem 28. If the conditions (a1) and (a2) of Theorem 19
are satisfied with λ0 > 1 and J : ðℓðγ, λÞÞP ⟶ ðℓðγ, λÞÞP,
where PðgÞ =∑∞

z=0 γzjgzjλz , for all g ∈ ℓðγ, λÞ,

(1) suppose J is Kannan P-contraction mapping

(2) assume J is P-sequentially continuous at a point g ∈
ðℓðγ, λÞÞP

(3) we have t ∈ ðℓðγ, λÞÞP such that fJxtg has a subse-
quence fJxj tg converging to f ; then, f ∈ ðℓðγ, λÞÞP is
the only fixed point of J

Proof. Suppose the settings are verified. Assume f is not a
fixed point of J , then J f ≠ f . From parts (54) and (55),
one gets

lim
xj⟶∞

P Jxj t − fð Þ = 0 and lim
xj⟶∞

P Jxj+1t − J f
� �

= 0: ð38Þ

Since J is Kannan P-contraction, we obtain

0 < P J f − fð Þ = P J f − Jxj+1t
� �

+ Jxj t − fð Þ + Jxj+1t − Jxj t
� �� �

≤ 2
2 sup

j
λ j−2

P Jxj+1t − J f
� �

+ 2
2 sup

j
λ j−2

P Jxj t − fð Þ

+ 2
sup
j

λ j−1
ι

ι

1 − ι

� �xj−1
P Jt − tð Þ:

ð39Þ

We get a contradiction whenxj ⟶∞. To show the
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uniqueness of f , suppose we have two different fixed
points f , g ∈ ðℓðγ, λÞÞP of J . Therefore, one obtains

P f − gð Þ ≤ P J f − Jgð Þ ≤ ι P J f − fð Þ + P Jg − gð Þð Þ = 0:
ð40Þ

Hence, f = g:

Example 8. Assume J is defined as in Example 5. Let P

ðgÞ =∑a∈ℕ0
ða + 2Þ/ð2a + 3Þjgajð2a+3Þ/ða+2Þ, for every g ∈

ℓððða + 2Þ/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ða + 2ÞÞ∞a=0Þ.
As for each g1, g2 ∈ ðℓððða + 2Þ/ð2a + 3ÞÞ∞a=0,

ðð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞP with Pðg1Þ, Pðg2Þ ∈ ½0, 1Þ, one has

P Jg1 − Jg2ð Þ = P
g1
4 −

g2
4

� �
≤

2ffiffiffiffiffi
27

p P
3g1
4

� �
+ P

3g2
4

� �� �

= 2ffiffiffiffiffi
27

p P Jg1 − g1ð Þ + P Jg2 − g2ð Þð Þ:

ð41Þ

For all g1, g2 ∈ ðℓððða + 2Þ/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ða + 2Þ
Þ∞a=0ÞÞP with Pðg1Þ, Pðg2Þ ∈ ½1,∞Þ, one has

P Jg1 − Jg2ð Þ = P
g1
5 −

g2
5

� �
≤
1
4 P

4g1
5

� �
+ P

4g2
5

� �� �

= 1
4 P Jg1 − g1ð Þ + P Jg2 − g2ð Þð Þ:

ð42Þ

For all g1, g2 ∈ ðℓððða + 2Þ/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ða + 2Þ
Þ∞a=0ÞÞP with Pðg1Þ ∈ ½0, 1Þ and Pðg2Þ ∈ ½1,∞Þ, we obtain

P Jg1 − Jg2ð Þ = P
g1
4 −

g2
5

� �
≤

2ffiffiffiffiffi
27

p P
3g1
4

� �
+ 1
4 P

4g2
5

� �

≤
2ffiffiffiffiffi
27

p P
3g1
4

� �
+ P

4g2
5

� �� �

= 2ffiffiffiffiffi
27

p P Jg1 − g1ð Þ + P Jg2 − g2ð Þð Þ:

ð43Þ

So, the mapping J is Kannan P-contraction and

Jp gð Þ =
g
4p , P gð Þ ∈ 0, 1½ Þ,
g
5p , P gð Þ ∈ 1,∞½ Þ:

8><
>: ð44Þ

Obviously, J is P-sequentially continuous at θ ∈
ðℓððða + 2ð/ð2a + 3ÞÞ∞a=0, ðð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞP and fJp
gg contains a subsequence fJpigg converging to θ. From
Theorem 28, the vector θ ∈ ðℓððða + 2Þ/ ð2a + 3ÞÞ∞a=0,
ðð2a + 3Þ/ða + 2ÞÞ∞a=0ÞÞP is the unique fixed point of J.

6. Kannan Nonexpansive Fixed Points

The uniform convexity (UUC 2) defined in [22] of the space

ðℓðγ, λÞÞP has been investigated, where PðgÞ =
½∑∞

d=0 γdjgdjλd �
1/K

, for all g ∈ ℓðγ, λÞ. The property (R) and
the P-normal structure property of this space have been
discussed. Finally, we present the sufficient conditions on
this space such that the Kannan pre-quasi-norm nonexpan-
sive mapping on it has a fixed point.

Definition 29 (see [23, 24]).

(1) [25] Suppose r > 0 and h > 0. Let

ℍ1 r, hð Þ = g, fð Þ: g, h ∈AP, P gð Þ ≤ r, P fð Þ ≤ h, P g − hð Þ ≥ rhf g
ð45Þ

If ℍ1ðr, hÞ ≠∅, we put

H1 r, hð Þ = inf 1 − 1
r
P

g + f
2

� �
: g, fð Þ ∈ℍ1 r, hð Þ

	 

: ð46Þ

If ℍ1ðr, hÞ =∅, we put H1ðr, hÞ = 1: The function P
holds the uniform convexity (UC), if for all r > 0 and h > 0,
one has H1ðr, hÞ > 0: Note that for every r > 0, then ℍ1ðr,
hÞ ≠∅, for very small h > 0.

(2) [22] The function P holds (UUC1), if for every x ≥ 0
and h > 0, we have β1ðx, hÞ with

H1 r, hð Þ > β1 x, hð Þ > 0, and r > x ð47Þ

(3) [22] Let r > 0 and h > 0. Suppose

ℍ2 r, hð Þ = g, fð Þ: g, f ∈AP, P gð Þ ≤ r, P fð Þ ≤ r, P g − f
2

� �
≥ rh

	 

ð48Þ

When ℍ2ðr, hÞ ≠∅, we put

H2 r, hð Þ = inf 1 − 1
r
P

g + f
2

� �
: g, fð Þ ∈ℍ2 r, hð Þ

	 

: ð49Þ

If ℍ2ðr, hÞ =∅, we place H2ðr, hÞ = 1: The function P
supports (UC 2), if for every r > 0 and h > 0, one has H2
ðr, hÞ > 0: Note that for all r > 0, ℍ2ðr, hÞ ≠∅, with very
small h > 0.

(4) [22] P verifies (UUC 2); when x ≥ 0 and h > 0, one
has β2ðx, hÞ with
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H2 r, hð Þ > β2 x, hð Þ > 0, for r > x ð50Þ

(5) [25] The function P is strictly convex, (SC);
when g, f ∈AP with PðgÞ = Pð f Þ and Pððg + f Þ/
2Þ = ðPðgÞ + Pð f ÞÞ/2, one obtains g = f

We will need the following comment here and later: PV

ðgÞ = ½∑m∈V γmjgmjλm �
1/K , for all V ⊂ℕ0 and g ∈ ðℓðγ, λÞÞP:

If V =∅, we set PVðgÞ = 0:

Theorem 30. If the conditions (a1) and (a2) of Theorem 19
are satisfied with λ0 > 1, then the pre-quasi-norm P on ℓðγ,
λÞ is (UUC2).

Proof. Assume the settings are satisfied, r > x ≥ 0 and h > 0.
Let g, t ∈ ℓðγ, λÞ so that

 P gð Þ ≤ r,
P fð Þ ≤ r,

P
g − f
2

� �
≥ rh:

ð51Þ

From the definition of P, we have

rh ≤ P
g − f
2

� �
= 〠

∞

y=0
γy

gy − f y
2

����
����
λy

" #1/K

≤ 2−λ0 〠
∞

y=0
γy gy − f y
��� ���λy

" #1/K

≤ 2−λ0/K 〠
∞

y=0
γy gy
��� ���λy

" #1/K
+ 〠

∞

y=0
γy f y
��� ���λy

" #1/K !

= 2−λ0/K P gð Þ + P fð Þð Þ ≤ 2r,
ð52Þ

which implies h ≤ 2: Consequent, put A = fy ∈ℕ0 : λy ≥ 2g
and B = fy ∈ℕ0 : 1 < λy < 2g =ℕ0 \ A: Let κ ∈ ℓðγ, λÞ; we

get PKðκÞ = PK
AðκÞ + PK

B ðκÞ: By using the conditions, we get
PAððg − f Þ/2Þ ≥ ðrh/2Þ or PBððg − f Þ/2Þ ≥ ðrh/2Þ: Assume
first PAððg − f Þ/2Þ ≥ ðrh/2Þ: Using Lemma 14, one gets

PK
A

g + f
2

� �
+ PK

A
g − f
2

� �
≤
PK
A gð Þ + PK

A fð Þ
2 : ð53Þ

This explains

 PK
A

g + f
2

� �
≤
PK
A gð Þ + PK

A fð Þ
2 −

rh
2

� �K

: ð54Þ

Since

 PK
B

g + f
2

� �
≤
PK
B gð Þ + PK

B fð Þ
2 , ð55Þ

by adding inequalities 2 and 3, and from inequality 1,
we have

PK g + f
2

� �
≤
PK gð Þ + PK fð Þ

2 −
rh
2

� �K

≤ rK 1 − h
2

� �K
 !

:

ð56Þ

This gives

 P
g + f
2

� �
≤ r 1 − h

2

� �K
 !1/K

: ð57Þ

Next, suppose PBððg − f Þ/2Þ ≥ ðrh/2Þ: Set D = ðh/4ÞK ,

B1 = y ∈Q : gy − f y
��� ��� ≤D gy

��� ��� + f y
��� ���� �n o

,

B2 = B \ B1:
ð58Þ

As D ≤ 1 and the power function is convex, so

PK
B1

g − f
2

� �
≤ 〠

y∈B1

Dλyγy
∣gy∣+∣f y ∣

2

����
����
λy

≤
D
2

� �λ0

PK
B1

gð Þ + PK
B1

fð Þ
� �

≤
D
2 PK

B gð Þ + PK
B fð Þ� �

≤DrK :

ð59Þ

Since PBððg − f Þ/2Þ ≥ ðrh/2Þ, we get

PK
B2

g − f
2

� �
= PK

B
g − f
2

� �
− PK

B1

g − f
2

� �
≥ rK

h
2

� �K

−
h
4

� �K
 !

:

ð60Þ

For any d ∈ B2, we have

λ0 − 1 < λ0 λ0 − 1ð Þ ≤ ≤λy−1 λy−1 − 1
� �

≤ λy λy − 1
� �

,

D ≤D2−λy ≤
gy − f y

gy

��� ��� + f y
��� ���

������
������
2−λy

:

ð61Þ

By Lemma 15, one gets

γy
gy + f y

2

����
����
λy

+ λ0 − 1ð ÞD
2 γy

gy − f y
2

����
����
λy

≤
1
2 γy gy

��� ���λy + γy f y
��� ���λy� �

:

ð62Þ
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Hence,

PK
B2

g + f
2

� �
+ λ0 − 1ð ÞD

2 PK
B2

g − f
2

� �
≤
PK
B2

gð Þ + PK
B2

fð Þ
2 :

ð63Þ

This investigates

 PK
B2

g + f
2

� �
≤
PK
B2

gð Þ + PK
B2

fð Þ
2 −

λ0 − 1ð ÞD
2 rK

h
2

� �K

−
h
4

� �K
 !

:

ð64Þ

Since

 PK
B1

g + f
2

� �
≤
PK
B1

gð Þ + PK
B1

fð Þ
2 , ð65Þ

by adding inequalities 5 and 6, one has

PK
B

g + f
2

� �
≤
PK
B gð Þ + PK

B fð Þ
2 −

λ0 − 1ð ÞD
2 rK

h
2

� �K

−
h
4

� �K
 !

≤
PK
B gð Þ + PK

B fð Þ
2 −

λ0 − 1ð Þ
2

h
4

� �2K
rK 2K − 1
� �

≤
PK
B gð Þ + PK

B fð Þ
2 −

λ0 − 1ð Þ
2K − 1

h
4

� �2K
rK :

ð66Þ

Since

 PK
A

g + f
2

� �
≤
PK
A gð Þ + PK

A fð Þ
2 , ð67Þ

by adding inequalities 7 and 8, and from inequality 1, we
obtain

PK g + f
2

� �
≤
PK gð Þ + PK fð Þ

2 −
λ0 − 1ð Þ
2K − 1

h
4

� �2K
rK

≤ rK 1 − λ0 − 1ð Þ
2K − 1

h
4

� �2K
" #

:

ð68Þ

This implies

 P
g + f
2

� �
≤ r 1 − λ0 − 1ð Þ

2K − 1
h
4

� �2K
" #1/K

: ð69Þ

It is clear that

1 < λ0 ≤ K < 2K ⇒ 0 < λ0 − 1
2K − 1 < 1: ð70Þ

By using inequalities 4 and 9 and Definition 29, if
we put

β2 x, hð Þ =min 1 − 1 − h
2

� �K
 !1/K

, 1 − 1 − λ0 − 1ð Þ
2K − 1

h
4

� �2K
" #1/K !

,

ð71Þ

therefore, we have H2ðr, hÞ > β2ðx, hÞ > 0; this implies P
is (UUC2).

Definition 31. Space AP is said to satisfy the property (R), if
for all decreasing sequence fΔjgj∈ℕ0

of P -closed and P -con-

vex nonempty subsets of AP with sup j∈ℕ0
dPðg, ΔjÞ <∞, for

some g ∈AP, then one has
T

j∈ℕ0
Δj ≠∅:

Theorem 32. If conditions (a1) and (a2) of Theorem 19 are
satisfied with λ0 > 1, then

(1) Assume Δ is a nonempty P-closed and P-convex sub-
set of ðℓðγ, λÞÞP: Let g ∈ ðℓðγ, λÞÞP be with

dP g, Δð Þ = inf P g − fð Þ: f ∈ Δf g <∞ ð72Þ

Hence, one has a unique η ∈ Δ so that dPðg, ΔÞ = Pðg − ηÞ:

(2) The property (R) holds on ðℓðγ, λÞÞP

Proof. Suppose the conditions are satisfied. To show (51),
assume g ∉ Δ as Δ is P-closed. So, one has D≔ dPðg, ΔÞ > 0.
Hence, for every x ∈ℕ0, one has f x ∈ Δ with Pðg − f xÞ <
Dð1 + 1/xÞ. Assume f f x/2g is not P-Cauchy. Therefore,
we get a subsequence f f mðxÞ/2g and y0 > 0 with Pðð f mðxÞ
− f mðaÞÞ/2Þ ≥ y0, for every x > a ≥ 0: Furthermore, we have
H2ðDð1 + ð1/xÞÞ, y0/2DÞ > ι≔ β2ðDð1 + ð1/xÞÞ, y0/2DÞ > 0,
for all x ∈ℕ0: As

max P g − f m xð Þ
� �

, P g − f m að Þ
� �� �

≤D 1 + 1
m að Þ

� �
ð73Þ

and

P
f m xð Þ − f m að Þ

2

� �
≥ y0 ≥D 1 + 1

m að Þ
� �

y0
2D , ð74Þ

for all x > a ≥ 0, we obtain

P g −
f m xð Þ + f m að Þ

2

� �
≤D 1 + 1

m að Þ
� �

1 − ιð Þ: ð75Þ

So

D = dP g, Δð Þ ≤D 1 + 1
m að Þ

� �
1 − ιð Þ, ð76Þ

for any a ∈ℕ0. If we let a⟶∞, we get
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0 <D ≤D 1 + 1
m að Þ

� �
1 − ιð Þ <D, ð77Þ

which is a contradiction. So, f f x/2g is P-Cauchy. Since
ðℓðγ, λÞÞP is P-complete, then f f x/2gP-converges to some
f . For every a ∈ℕ0, one has the sequence fð f x + f aÞ/2gP
converges to f + ð f a/2Þ. As Δ is P-closed and P-convex,
one gets f + ð f a/2Þ ∈ Δ: Surely f + ð f a/2ÞP converges to 2
f , which implies 2f ∈ Δ. By setting η = 2f and using
Theorem 22, as P satisfies the Fatou property, we obtain

dP g, Δð Þ ≤ P g − ηð Þ ≤ sup
i

inf
a≥i

P g − f + f a
2

� �� �

≤ sup
i

inf
a≥i

sup
i

inf
x≥i

P g −
f x + f a

2

� �

≤
1
2 sup

i
inf
a≥i

sup
i

inf
x≥i

P g − f xð Þ + P g − f að Þ½ � = dP g, Δð Þ:

ð78Þ

Hence, Pðg − λÞ = dPðg, ΔÞ. As P is (UUC2), then P is
(SC); this implies η is only one. To show (2), let g ∉ Δx0

,
for some x0 ∈ℕ0: Since ðdPðg, ΔxÞÞx∈ℕ0

∈ ℓ∞ is increasing.
Set limx⟶∞dPðg, ΔxÞ =D. IfD > 0. Else g ∈ Δx, for all x ∈ℕ0.
From (51), we get one point f x ∈ Δx with dPðg, ΔxÞ = Pðg −
f xÞ, for every x ∈ℕ0. A consistent proof will show that f f x/
2gP converges to some f ∈ ðℓðγ, λÞÞP. Since fΔxg are P-con-
vex, decreasing, and P-closed, we get 2f ∈ ∩ x∈ℕ0

Δx.

Definition 33. ðℓðγ, λÞÞP satisfies the P -normal structure
property, if for all nonempty P -bounded, P -convex, and P
-closed subset Δ of ðℓðγ, λÞÞP not decreased to one point,
we have g ∈ Δ with

sup
f ∈Δ

P g − fð Þ < δP Δð Þ≔ sup P g − fð Þ: g, f ∈ Δf g <∞: ð79Þ

Theorem 34. If the conditions (a1) and (a2) of Theorem 19
are satisfied with λ0 > 1, then ðℓðγ, λÞÞP has the P-normal
structure property.

Proof. Suppose the setups are satisfied. Theorem 30 implies
that P is (UUC2). Let Δ be a P-bounded, P-convex, and P
-closed subset of ðℓðγ, λÞÞP not decreased to one point.
Hence, δPðΔÞ > 0. Put D = δPðΔÞ. Suppose g, f ∈ Δ with g
≠ f : Hence, Pððg − f Þ/2Þ = y > 0: For every η ∈ Δ, we have
Pðg − ηÞ ≤D and Pð f − ηÞ ≤D: Since Δ is P-convex, one
obtains ððg + f Þ/2Þ ∈ Δ. Hence,

P
g + f
2 − η

� �
= P

g − ηð Þ + f − ηð Þ
2

� �
≤D 1 −H2 D, y

D

� �� �
,

ð80Þ

for every η ∈ Δ: Hence,

sup
η∈Δ

P
g + f
2 − η

� �
≤D 1 −H2 D, y

D

� �� �
<D = δP Δð Þ: ð81Þ

Lemma 35. Let Δ be a nonempty P-bounded, P-convex, and
P-closed subset of ðℓðγ, λÞÞP, where ðℓðγ, λÞÞP verifies the
(R) property and the P -quasi-normal property, and J : Δ
⟶ Δ be a Kannan P -nonexpansive mapping. For z > 0,
suppose Gz = fg ∈ Δ : Pðg − JðgÞÞ ≤ zg ≠∅. Take

Δz =
\

BP x, yð Þ: J Kzð Þ ⊂BP x, yð Þf g ∩ Δ: ð82Þ

Then, Δz is a nonempty, P-convex, and P-closed subset of
Δ and

J Δzð Þ ⊂ Δz ⊂ Kz and δP Δzð Þ ≤ z: ð83Þ

Proof. As JðKzÞ ⊂ Δz , which implies Δz ≠∅, Δz is a P-closed
and P-convex subset of Δ, as the P-balls are P-convex and P
-closed. Assume g ∈ Δz: When Pðg − JðgÞÞ = 0, we get g ∈
Kz: Else, suppose Pðg − JðgÞÞ > 0: Take

x = sup P J κð Þ − J gð Þð Þ: κ ∈ Kzf g: ð84Þ

From the definition of x, so JðKzÞ ⊂BPðJðgÞ, xÞ: Hence,
Δz ⊂BPðJðgÞ, xÞ, which implies Pðg − JðgÞÞ ≤ x. Assume r
> 0: Hence, there is κ ∈ Kz with x − r ≤ PðJðκÞ − JðgÞÞ.
Then,

P g − J gð Þð Þ − r ≤x − r ≤ P J κð Þ − J gð Þð Þ

≤
1
2 P g − J gð Þð Þ + P κ − J κð Þð Þð Þ

≤
1
2 P g − J gð Þð Þ + zð Þ: ð85Þ

Since r is randomly positive, one has Pðg − JðgÞÞ ≤ z;
then, we have g ∈ Kz . This implies Δz ⊂ Kz . As JðKzÞ ⊂ Δz ,
we get JðΔzÞ ⊂ JðKzÞ ⊂ Δz ; this indicates Δz is J-invariant,
consequent to prove that δPðΔzÞ ≤ z. As

P J gð Þ − J fð Þð Þ ≤ 1
2 P g − J gð Þð Þ + P f − J fð Þð Þð Þ, ð86Þ

for every g, f ∈ Kz , let g ∈ Kz: Then, JðKzÞ ⊂BPðJðgÞ, zÞ.
The definition of Δz implies Δz ⊂BPðJðgÞ, zÞ. So, JðgÞ ∈T

f ∈Δz
BPð f , zÞ. Therefore, we obtain Pð f − κÞ ≤ z, for every

f , κ ∈ Δz ; this gives δPðΔzÞ ≤ z:

Theorem 36. Let Δ be a nonempty, P -convex, P -closed, and
P -bounded subset of ðℓðγ, λÞÞP, where ðℓðγ, λÞÞP holds the P
-quasi-normal property and the (R) property, and J : Δ⟶ Δ
be a Kannan P -non-expansive mapping. Then, J has a
fixed point.

Proof. Take z0 = inf fPðg − JðgÞÞ: g ∈ Δg and zx = z0 + ð1/
xÞ, for every x ≥ 1. In view of the definition of z0, we get
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Kzx
= fg ∈ Δ : Pðg − JðgÞÞ ≤ zxg ≠∅, for all x ≥ 1: Let Δzx

as defined in Lemma 35. Clearly, fΔzx
g is a decreasing

sequence of nonempty P-bounded, P-closed, and P-con-
vex subsets of Δ. One has Δ∞ =Tx≥1 Δzx

≠∅, from the
property (R). Let g ∈ Δ∞; we have Pðg − JðgÞÞ ≤ zx, for
every x ≥ 1. Suppose x⟶∞; one has Pðg − JðgÞÞ ≤ z0,
which implies Pðg − JðgÞÞ = z0. Then, Kz0

≠∅. One gets
z0 = 0. Otherwise, z0 > 0; this implies that J has no a fixed
point. Assume Δz0

is as defined in Lemma 35. Since J has
not a fixed point and Δz0

is J-invariant, then δPðΔz0
Þ > 0.

From the P-quasi-normal property, we have g ∈ Δz0
with

P g − fð Þ < δP Δz0

� �
≤ z0, ð87Þ

for every f ∈ Δz0
. According to Lemma 35, one gets Δz0

⊂ Kz0
. From definition of Δz0

, hence, JðgÞ ∈ Kz0
⊂ Δz0

.
Obviously, this explains

P g − J gð Þð Þ < δP Δz0

� �
≤ z0, ð88Þ

which contradicts the definition of z0. Therefore, z0 = 0,
which means that J has a fixed point in Δ.

We have the next corollary according to Theorems 32,
34, and 36.

Corollary 37. Pick up the conditions (a1) and (a2) of Theo-
rem 19 to be satisfied with λ0 > 1. Assume Δ is a nonempty,
P -convex, P -closed, and P -bounded subset of ðℓðγ, λÞÞP,
and J : Δ⟶ Δ is a Kannan P -nonexpansive operator.
Hence, J has a fixed point.

Example 9. Suppose J : Δ⟶ Δ, where

J gð Þ =
g
4 , P gð Þ ∈ 0, 1½ Þ,
g
5 , P gð Þ ∈ 1,∞½ Þ,

8><
>: ð89Þ

where Δ = fg ∈ ðℓðððz + 2Þ/ð2z + 3ÞÞ∞z=0, ðð2z + 3Þ/ðz + 2ÞÞ∞z=0ÞÞP
: g0 = g1 = 0g and PðgÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑z∈ℕ0

ðz + 2Þ/ð2z + 3Þjgzjð2z+3Þ/ðz+2Þ
q

,

for every g ∈ ðℓðððz + 2Þ/ð2z + 3ÞÞ∞z=0, ðð2z + 3Þ/ðz + 2ÞÞ∞z=0ÞÞP.
According to Example 5, the operator J is Kannan P-con-
traction. Hence, it is a Kannan P-nonexpansive mapping.
Evidently, Δ is a nonempty, P-convex, P-closed, and P
-bounded subset of ðℓðððz + 2Þ/ð2z + 3ÞÞ∞z=0, ðð2z + 3Þ/ðz + 2
ÞÞ∞z=0ÞÞP. In view of Corollary 37, the operator J has a fixed
point θ ∈ Δ.

7. Kannan Contraction’s Fixed Points on Pre-
Quasi-Ideal

In this part, we suppose E and H are Banach spaces. The
Kannan contraction’s fixed points on ðSðℓðγ,λÞÞP ,ℙÞ, where
ℙðCÞ = PððsaðCÞÞ∞a=0Þ, has been examined.

Theorem 38 (see [3]). If the conditions (a1) and (a2) of The-
orem 19 are fulfilled, then ðSðℓðγ,λÞÞP ,ℙÞ is a pre-quasi-Banach
operator ideal.

Theorem 39. If the conditions (a1) and (a2) of Theorem 19
are satisfied, then ðSðℓðγ,λÞÞP ,ℙÞ is a pre-quasi-closed opera-
tor ideal.

Proof. The class Sðℓðγ,λÞÞP is a pre-quasi-operator ideal and
follows from Theorems 19 and 12. Let Cy ∈ Sðℓðγ,λÞÞPðE,HÞ,
for every y ∈ℕ0 and limy⟶∞ℙðCy − CÞ = 0. Hence, there
is ς > 0 and since LðE,HÞ ⊇ Sðℓðγ,λÞÞPðE,HÞ, one obtains

ℙ Cy − C
� �

= P sx Cy − C
� �� �∞

x=0

� �
≥ P s0 Cy − C

� �
, 0, 0, 0,⋯

� �
= P ∥Cy − C∥,0, 0, 0,⋯
� �

≥ ςγ1/K0 ∥Cy − C∥:

ð90Þ

Hence, ðCyÞy∈ℕ0
is convergent in LðE,HÞ. This implies

limy⟶∞∥Cy − C∥ = 0 and while ðsxðCyÞÞ∞x=0 ∈ ðℓðγ, λÞÞP, for
every y ∈ℕ0 and ðℓðγ, λÞÞP is a premodular sss. Hence, there
exists E ≥ 1 with

ℙ Cð Þ = P sx Cð Þð Þ∞x=0
� �

= P sx C − Cy + Cy

� �� �∞
x=0

� �
≤ P s x

2½ � C − Cy

� �� �∞
x=0

� �
+ P s x

2½ � Cy

� �∞
x=0

� �� �
≤ P ∥Cy − C∥

� �∞
x=0

� �
+ 2Eð Þ1/KP sx Cy

� �∞
x=0

� �� �
< ε:

ð91Þ

Wehave ðsxðCÞÞ∞x=0 ∈ ðℓðγ, λÞÞP, thenC ∈ Sðℓðγ,λÞÞPðE,HÞ.

Definition 40. The function ℙ on SAP
satisfies the Fatou

property, if for any sequence fCxgx∈ℕ0
⊆ SAP

ðE,HÞ with
limx⟶∞ℙðCx − CÞ = 0 and any V ∈ SAP

ðE,HÞ, then

ℙ V − Cð Þ ≤ sup
x

inf
j≥x

P V − Cj

� �
: ð92Þ

Theorem 41. Suppose the conditions (a1) and (a2) of Theo-

rem 19 are satisfied, then the function ℙðCÞ =
½∑∞

x=0 γxjsxðCÞjλx �
1/K

, for all C ∈ Sðℓðγ,λÞÞPðE,HÞ, does not
hold the Fatou property.

Proof. Assume fCpgp∈ℕ0
⊆ Sðℓðγ,λÞÞPðE,HÞ with limp⟶∞ℙ

ðCp − CÞ = 0: Since the space Sðℓðγ,λÞÞP is a pre-quasi-
closed ideal, then C ∈ Sðℓðγ,λÞÞPðE,HÞ. Hence, for any V

∈ Sðℓðγ,λÞÞPðE,HÞ, we have
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ℙ V − Cð Þ = 〠
∞

x=0
γx sx V − Cð Þj jλx

" #1/K

≤ 〠
∞

x=0
γx s x/2½ � V − Cið Þ
��� ���λx

" #1/K

+ 〠
∞

x=0
γx s x/2½ � Ci − Cð Þ
��� ���λx

" #1/K

≤ 2Eð Þ1/K sup
p

inf
i≥p

〠
∞

x=0
γx sx V − Cið Þj jλx

" #1/K
:

ð93Þ

Definition 42. A mapping G : SAP
ðE,HÞ⟶ SAP

ðE,HÞ is
said to be a Kannan ℙ -Lipschitzian, if we have ι ≥ 0,
such that

ℙ GC −GAð Þ ≤ ι ℙ GC − Cð Þ +ℙ GA − Að Þf g, ð94Þ

for every C, A ∈ SAP
ðE,HÞ.

(1) The mapping G is said to be Kannan ℙ-contraction,
whenever ι ∈ ½0, 1/2Þ

(2) The mapping G is said to be Kannan ℙ-non-expan-
sive, whenever ι = 1/2

Definition 43. Suppose G : SAP
ðE,HÞ⟶ SAP

ðE,HÞ and
B ∈ SAP

ðE,HÞ:G is said to be ℙ -sequentially continuous
at B, if and only if, if limp⟶∞ℙðCp − BÞ = 0, then limp⟶∞
ℙðGCp −GBÞ = 0.

Example 10. Assume G : Sðℓððða+3Þ/ð2a+1ÞÞ∞a=0,ðð2a+1Þ/ða+3ÞÞ∞a=0ÞÞPðE
,HÞ⟶ Sðℓððða+3Þ/ð2a+1ÞÞ∞a=0,ðð2a+1Þ/ða+3ÞÞ∞a=0ÞÞPðE,HÞ, where
ℙðCÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

a=0 ða + 3Þ/ð2a + 1ÞjsaðCÞjð2a+1Þ/ða+3Þ
q

, for every C
∈ Sðℓððða+3Þ/ð2a+1ÞÞ∞a=0,ðð2a+1Þ/ða+3ÞÞ∞a=0ÞÞPðE,HÞ and

G Cð Þ =
C

263170 , ℙ Cð Þ ∈ 0, 1½ Þ,
C

263171 , ℙ Cð Þ ∈ 1,∞½ Þ:

8>><
>>: ð95Þ

Evidently, G is ℙ-sequentially continuous at the zero
operator Θ ∈ Sðℓððða+3Þ/ð2a+1ÞÞ∞a=0,ðð2a+1Þ/ða+3ÞÞ∞a=0ÞÞP .

Let fCðnÞg ⊆ Sðℓððða+3Þ/ð2a+1ÞÞ∞a=0,ðð2a+1Þ/ða+3ÞÞ∞a=0ÞÞP with

limm⟶∞ℙðCðmÞ − Cð0ÞÞ = 0, where Cð0Þ ∈
Sðℓððða+3Þ/ð2a+1ÞÞ∞a=0,ðð2a+1Þ/ða+3ÞÞ∞a=0ÞÞP with ℙðCð0ÞÞ = 1. As ℙ is
continuous, one has

lim
n⟶∞

ℙ GC nð Þ −GC 0ð Þ
� �

= lim
n⟶∞

ℙ
C nð Þ

263170 −
C 0ð Þ

263171

 !

=ℙ
C 0ð Þ

69258712070

 !
> 0:

ð96Þ

So G is not ℙ-sequentially continuous at Cð0Þ.

Theorem 44. Assume the conditions (a1) and (a2) of Theo-
rem 19 are satisfied and G : Sðℓðγ,λÞÞPðE,HÞ⟶ Sðℓðγ,λÞÞPðE,
HÞ, where ℙðCÞ = ½∑∞

y=0 γyjsyðCÞjλy �
1/K

, for every C ∈
Sðℓðγ,λÞÞPðE,HÞ.

(i) Let G is Kannan ℙ-contraction mapping

(ii) G is ℙ-sequentially continuous at a point A ∈
Sðℓðγ,λÞÞPðE,HÞ

(iii) We have Y ∈ Sðℓðγ,λÞÞPðE,HÞ such that the sequence
fGpYg has a subsequence fGpiYg converging to X

Then, X ∈ Sðℓðγ,λÞÞPðE,HÞ is the only fixed point of G .

Proof. Assume X is not a fixed point of G ; we have GX ≠ X.
By parts (ii) and (iii), one can see

lim
pi⟶∞

ℙ GpiY − Xð Þ = 0,

lim
pi⟶∞

ℙ Gpi+1Y − GX
� �

= 0:
ð97Þ

As G is Kannan ℙ-contraction mapping, we get

0 <ℙ GX − Xð Þ =ℙ GX −Gpi+1Y
� �

+ GpiY − Xð Þ�
+ Gpi+1Y −GpiY
� ��

≤ 2Eð Þ1/Kℙ Gpi+1Y −GX
� �

+ 2Eð Þ2/Kℙ GpiY − Xð Þ
+ 2Eð Þ2/K ι ι

1 − ι

� �pi−1
ℙ GY − Yð Þ:

ð98Þ

This gives a contradiction as pi ⟶∞. Hence, X is a
fixed point of G . For the uniqueness of the fixed point X,
assume we have two different fixed points X, Y ∈ Sðℓðγ,λÞÞP
ðE,HÞ of G . Therefore, one gets ℙðX − YÞ ≤ ℙðGX −GYÞ
≤ ιðℙðGX − XÞ +ℙðGY − YÞÞ = 0: This implies X = Y :

Example 11. Assume G : Sðℓðððy+2Þ/ðy+1ÞÞ∞y=0,ððy+1Þ/ðy+2ÞÞ∞y=0ÞÞPðE,
HÞ⟶ Sðℓðððy+2Þ/ðy+1ÞÞ∞y=0,ððy+1Þ/ðy+2ÞÞ∞y=0ÞÞPðE,HÞ, where ℙðCÞ
=∑∞

y=0 ðy + 2Þ/ðy + 1ÞjsyðCÞjðy+1Þ/ðy+2Þ, for every C ∈
Sðℓðððy+2Þ/ðy+1ÞÞ∞y=0,ððy+1Þ/ðy+2ÞÞ∞y=0ÞÞPðE,HÞ and
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G Cð Þ =
C
26 , ℙ Cð Þ ∈ 0, 1½ Þ,
C
37 , ℙ Cð Þ ∈ 1,∞½ Þ:

8>><
>>: ð99Þ

If C1, C2 ∈ Sðℓððða+2Þ/ða+1ÞÞ∞a=0,ðða+1Þ/ða+2ÞÞ∞a=0ÞÞP with ℙðC1Þ,ℙ
ðC2Þ ∈ ½0, 1Þ, one has

ℙ GC1 − GC2ð Þ =ℙ
C1
26 −

C2
26

� �
≤
2
5 ℙ

25C1
26

� �
+ ℙ

25C2
26

� �� �

= 2
5 ℙ GC1 − C1ð Þ +ℙ GC2 − C2ð Þð Þ:

ð100Þ

For each C1, C2 ∈ Sðℓððða+2Þ/ða+1ÞÞ∞a=0,ðða+1Þ/ða+2ÞÞ∞a=0ÞÞP with ℙ
ðC1Þ,ℙðC2Þ ∈ ½1,∞Þ, we get

ℙ GC1 − GC2ð Þ =ℙ
C1
37 −

C2
37

� �
≤
1
3 ℙ

36C1
37

� �
+ ℙ

36C2
37

� �� �

= 1
3 ℙ GC1 − C1ð Þ +ℙ GC2 − C2ð Þð Þ:

ð101Þ

For each C1, C2 ∈ Sðℓððða+2Þ/ða+1ÞÞ∞a=0,ðða+1Þ/ða+2ÞÞ∞a=0ÞÞP with ℙ
ðC1Þ ∈ ½0, 1Þ and ℙðC2Þ ∈ ½1,∞Þ, one can see

ℙ GC1 − GC2ð Þ =ℙ
C1
26 −

C2
37

� �
≤
2
5ℙ

25C1
26

� �
+ 1
3ℙ

36C2
37

� �

≤
2
5 ℙ

25C1
26

� �
+ℙ

36C2
37

� �� �

= 2
5 ℙ GC1 − C1ð Þ +ℙ GC2 − C2ð Þð Þ:

ð102Þ

So, the mapping C is Kannan ℙ-contraction and

Gp Cð Þ =
C
26p , ℙ Cð Þ ∈ 0, 1½ Þ,
C
37p , ℙ Cð Þ ∈ 1,∞½ Þ:

8>><
>>: ð103Þ

From Theorem 44, Θ ∈ Sðℓððða+2Þ/ða+1ÞÞ∞a=0,ðða+1Þ/ða+2ÞÞ∞a=0ÞÞP is
the unique fixed point of G , since G is ℙ-sequentially con-
tinuous and fGpiCg converging to Θ.

8. The Presence of Solutions to
Summable Equations

The solution to (104), which is studied by some authors
(see [26–28]), in ðℓðγ, λÞÞP, where ðλlÞ ∈ℝ+ℕ0 is an

increase and PðgÞ = ½∑∞
z=0 γzjgzjλz �

1/K
, for all g ∈ ℓðγ, λÞ,

has been examined.

Consider the summable equations

gz = xz + 〠
∞

r=0
G z, rð ÞW r, grð Þ, ð104Þ

and suppose J : ðℓðγ, λÞÞP ⟶ ðℓðγ, λÞÞP is defined by

J gzð Þz∈ℕ0
= xz + 〠

∞

r=0
G z, rð ÞW r, grð Þ

 !
z∈ℕ0

: ð105Þ

Theorem 45. Assume G : ℕ2
0 ⟶ℝ,W : ℕ0 ×ℝ⟶ℝ,

x : ℕ0 ⟶ℝ, and for all z ∈ℕ0, there exists ι ∈ ½0, 1/2Þ with

〠
r∈ℕ0

G z, rð Þ W r, grð Þ −W r, f rð Þð Þ
�����

�����
λz

≤ ιK xz − gz + 〠
∞

r=0
G z, rð ÞW r, grð Þ

�����
�����
λz

2
4

+ xz − f z + 〠
∞

r=0
G z, rð ÞW r, f rð Þ

�����
�����
λz

�:

ð106Þ

Then, the summable equation (104) has a solution in
ðℓðγ, λÞÞP:

Proof. Suppose J : ðℓðγ, λÞÞP ⟶ ðℓðγ, λÞÞP is defined by
(105). We have

P Jg − J fð Þ = 〠
z∈ℕ0

γz Jgz − J f zj jλz
" #1/K

= 〠
z∈ℕ0

γz 〠
r∈ℕ0

G z, rð Þ W r, grð Þ −W r, f rð Þ½ �
�����

�����
λz

2
4

3
5
1/K

≤ ι 〠
z∈ℕ0

γz xz − gz + 〠
∞

r=0
G z, rð ÞW r, grð Þ

�����
�����
λz

2
4

3
5
1/K0

@

+ 〠
z∈ℕ0

γz xz − f z + 〠
∞

r=0
G z, rð ÞW r, f rð Þ

�����
�����
λz

2
4

3
5
1/K!

= ι P Jg − gð Þ + P J f − fð Þð Þ:
ð107Þ

Hence, there is a unique solution of equation (104) in
ðℓðγ, λÞÞP according to Theorem 25.

Example 12. Suppose we have ðℓðððz + 2Þ/ ðz + 1ÞÞ∞z=0,
ððz + 1Þ/ðz + 2ÞÞ∞z=0ÞÞP , where PðgÞ =∑z∈ℕ0

ðz + 2Þ/ðz + 1Þ
jgzjðz+1Þ/ðz+2Þ, for all g ∈ ℓðððz + 2Þ/ðz + 1ÞÞ∞z=0, ððz + 1Þ/ ðz +
2ÞÞ∞z=0Þ. Consider the summable equations
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gz = e− 3z+6ð Þ + 〠
∞

r=0
−1ð Þz+r e∣gz ∣

z2 + r2 + 1

� �l

, ð108Þ

where l > 2, and let J : ðℓðððz + 2Þ/ðz + 1ÞÞ∞z=0,
ððz + 1Þ/ðz + 2ÞÞ∞z=0ÞÞP ⟶ ðℓðððz + 2Þ/ðz + 1ÞÞ∞z=0, ððz + 1Þ/ðz
+ 2ÞÞ∞z=0ÞÞP be defined by

J gzð Þz∈ℕ0
= e− 3z+6ð Þ + 〠

∞

r=0
−1ð Þz+r e∣gz ∣

z2 + r2 + 1

� �l
 !

z∈ℕ0

:

ð109Þ

Obviously,

〠
∞

r=0
−1ð Þz e∣gz ∣

z2 + r2 + 1

� �l

−1ð Þr − −1ð Þrð Þ
�����

�����
z+1ð Þ/ z+2ð Þ

≤
1
3 e− 3z+6ð Þ − gz + 〠

∞

r=0
−1ð Þz+r e gzj j

z2 + r2 + 1

� �l
�����

�����
z+1ð Þ/ z+2ð Þ2

4

+ e− 3z+6ð Þ − f z + 〠
∞

r=0
−1ð Þz+r e f zj j

z2 + r2 + 1

� �l
�����

�����
z+1ð Þ/ z+2ð Þ#

:

ð110Þ

By Theorem 45, the summable equation (108) has a
unique solution in ðℓðððz + 2Þ/ðz + 1ÞÞ∞z=0, ððz + 1Þ/ðz + 2Þ
Þ∞z=0ÞÞP .

Example 13. Assume we have ðℓðððz + 3Þ/ð2z + 1ÞÞ∞z=0,
ðð2z + 1Þ/ðz + 3ÞÞ∞z=0ÞÞP , where PðgÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑z∈ℕ0
ðz + 3Þ/ð2z + 1Þjgzjð2z+1Þ/ðz+3Þ

q
, for all g ∈ ℓðððz + 3Þ/

ð2z + 1ÞÞ∞z=0, ðð2z + 1Þ/ðz + 3ÞÞ∞z=0Þ. Consider the summable
equations

gz = e− 3z+6ð Þ + 〠
∞

r=0
−1ð Þz+r gz

z2 + r2 + 1
� �l

, ð111Þ

where l > 2, and let J : ðℓðððz + 3Þ/ð2z + 1ÞÞ∞z=0, ðð2z + 1Þ/ ðz
+ 3ÞÞ∞z=0ÞÞP ⟶ ðℓðððz + 3Þ/ð2z + 1ÞÞ∞z=0, ðð2z + 1Þ/ðz + 3ÞÞ∞z=0
ÞÞP be defined by

J gzð Þz∈ℕ0
= e− 3z+6ð Þ + 〠

∞

r=0
−1ð Þz+r gz

z2 + r2 + 1
� �l !

z∈ℕ0

:

ð112Þ

It is easy to see that

〠
∞

r=0
−1ð Þz gz

z2 + r2 + 1
� �l

−1ð Þr − −1ð Þrð Þ
�����

�����
2z+1ð Þ/ z+3ð Þ

≤
1
9 e− 3z+6ð Þ − gz + 〠

∞

r=0
−1ð Þz+r gz

z2 + r2 + 1
� �l�����

�����
2z+1ð Þ/ z+3ð Þ2

4

+ e− 3z+6ð Þ − f z + 〠
∞

r=0
−1ð Þz+r f z

z2 + r2 + 1

� �l
�����

�����
2z+1ð Þ/ z+3ð Þ#

:

ð113Þ

By Theorem 45, the summable equation (111) has one
solution in ðℓðððz + 3Þ/ð2z + 1ÞÞ∞z=0, ðð2z + 1Þ/ðz + 3ÞÞ∞z=0ÞÞP .

Example 14. If we have ðℓðððz + 2Þ/ð2z + 3ÞÞ∞z=0, ðð2z + 3Þ/ðz
+ 2ÞÞ∞z=0ÞÞP , where PðgÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑z∈ℕ0

ðz + 2Þ/ð2z + 3Þjgzjð2z+3Þ/ðz+2Þ
q

,

for all g ∈ ℓðððz + 2Þ/ð2z + 3ÞÞ∞z=0, ðð2z + 3Þ/ðz + 2ÞÞ∞z=0Þ.
Consider the summable equations

gz = e− 3z+6ð Þ + 〠
∞

r=0
−1ð Þz+r gz

z2 + r2 + 1
� �l

, ð114Þ

such that z ≥ 2 and l > 2, and assume J : Δ⟶ Δ, where Δ
= fv ∈ ðℓðððz + 2Þ/ð2z + 3ÞÞ∞z=0, ðð2z + 3Þ/ðz + 2ÞÞ∞z=0ÞÞP : g0
= g1 = 0g is defined by

J gzð Þz≥2 = e− 3z+6ð Þ + 〠
∞

r=0
−1ð Þz+r gz

z2 + r2 + 1
� �l !

z≥2

,

〠
∞

r=0
−1ð Þz gz

z2 + r2 + 1
� �l

−1ð Þr − −1ð Þrð Þ
�����

�����
2z+3ð Þ/ z+2ð Þ

≤
1
9 e− 3z+6ð Þ − gz + 〠

∞

r=0
−1ð Þz+r gz

z2 + r2 + 1
� �l�����

�����
2z+3ð Þ/ z+2ð Þ2

4

+ e− 3z+6ð Þ − f z + 〠
∞

r=0
−1ð Þz+r f z

z2 + r2 + 1

� �l
�����

�����
2z+3ð Þ/ z+2ð Þ#

:

ð115Þ

According to Theorem 45, the summable equation (114)
has a solution in Δ.

9. Conclusion

There is a pre-quasi-normed space theorem that is more
general than quasi-normed space. In weighted Nakano
sequence space with the well-known pre-quasi-norm, we
investigate the appropriate conditions for the generation of
pre-quasi-Banach and closed spaces. Pre-quasi-normal
structural properties of weighted Nakano sequence space,
including the fixed point idea of Kannan pre-quasi-norm
contraction and Kannan pre-quasi-norm nonexpansive
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mapping in weighted Nakano sequence space, are improved.
Using weighted Nakano sequence space and s-numbers, the
presence of a fixed point for Kannan pre-quasi-norm con-
traction mapping has been proved. Toward the end of our
discussion, we provided several examples of how the col-
lected data could be used to solve an issue. The weight and
power of the weighted Nakano sequence space can be used
to define a wide range of circumstances under which exis-
tence findings can be found. Banach lattices are introduced
in this article, and a new space of solutions for many differ-
ence equations is introduced, the spectrum of any bounded
linear operator between any two Banach spaces with s
-numbers in this sequence space.
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The purpose of this manuscript is to obtain some fixed point results under mild contractive conditions in fuzzy bipolar metric
spaces. Our results generalize and extend many of the previous findings in the same approach. Moreover, two examples to
support our theorems are obtained. Finally, to examine and strengthen the theoretical results, the existence and uniqueness of
the solution to a nonlinear integral equation was studied as a kind of applications.

1. Introduction

The notion of the continuous triangular norm was intro-
duced in 1960 by Schweizer and Sklar in their paper [1].
The concept of fuzzy set theory was initiated by Zadeh [2]
in 1965. Some references to a fuzzy logic-based education
system can be found in [3–6]. The other direction of the
fuzzy set is the fuzzy metric theory. The idea of fuzzy metric
space (FM-space) was presented by Kramosil and Michalek
[7]. With the help of continuous t-norm property, they
obtained some pivotal fixed point results under the mild
contractive conditions in the mentioned space. Many
authors worked in this direction; they either modified the
definition of FM-spaces [8] or extended the well-known
fixed point theorem of Banach to fuzzy metric spaces [9].
Moreover, Gregori and Sapena [5, 10] obtained some

contractive-type fixed point theorems in FM-spaces.
Recently, in 2020, Li et al. [11] showed some strongly
coupled fixed point theorems by using cyclic contractive-
type mappings in complete FM-spaces. In 2019, Beloul and
Tomar [12] proved integral-type common fixed point theo-
rems in modified intuitionistic fuzzy metric spaces. Prasad
et al. [13] presented coincidence theorems via contractive
mappings in ordered non-Archimedean fuzzy metric spaces.
Again Prasad [14] analyzed coincidence points of relational
ψ-contractions in 2021. The bipolar metric space has been
studied by many authors, and important results have been
obtained [15–18].

Recently, FM-space was extended and generalized to
fuzzy bipolar metric space (FBM-space) by Mutlu and Gur-
dal [19]. They gave new concepts for measurement of the
distance between the elements of two different sets. Bartwal
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et al. [20] introduced the notion of fuzzy bipolar metric
space and obtained some fixed point results under mild
conditions.

A continuation of this approach, in this manuscript, we
shall obtain some fixed point theorems via contractive-type
mappings in FBM-spaces. Our results generalize, unify,
and extend the results of Bartwal et al. [20] and many other
papers in this direction. Also, two examples are given to sup-
port our theorems. Ultimately, the existence and uniqueness
solution to an integral equation in the sense of Lebesgue
measurable functions are obtained as an application.

2. Basic Facts

This part is devoted to present some basic definitions,
lemmas, and propositions of FBM-spaces as follows.

Definition 1. (see [8]). Let Π be a nonvoid set. A 3-triple ðΩ,
Γ,∗Þ is called an FM-space if Γ is a fuzzy set on Ω2 × ð0,∞Þ
and ∗ is a continuous η-norm justifying the hypotheses
below:

(1) Γðμ, σ, ηÞ > 0
(2) Γðμ, σ, ηÞ = 1 iff μ = σ

(3) Γðμ, σ, ηÞ = Γðσ, μ, ηÞ
(4) Γðμ, ϑ, η + ζÞ ≥ Γðμ, σ, ηÞ ∗ Γðσ, ϑ, ζÞ
(5) Γðμ, σ,:Þ: ð0,∞Þ⟶ ð0, 1� is continuous
for all μ, σ, ϑ ∈Ω and η, ζ > 0.

Lemma 2. (see [21]). Let ðΠ, Γ,∗Þ be an FM-space. If for all
μ, σ ∈Π and η > 0.

Γ μ, σ, kηð Þ ≥ Γ μ, σ, ηð Þ, ð1Þ

where k ∈ ð0, 1Þ, then μ = σ.

Definition 3. (see [20]). Let Π and Ω be two nonvoid sets. A
4-tuple ðΠ,Ω, Γb,∗Þ is said to be an FBM-space, where ∗ is
continuous η-norm and Γb is a fuzzy set on Π ×Ω × ð0,∞Þ,
fulfilling the subsequent assumptions:

(1) Γbðμ, σ, ηÞ > 0 for all ðμ, σÞ ∈Π ×Ω

(2) Γbðμ, σ, ηÞ = 1 iff μ = σ for μ ∈Π and σ ∈Ω

(3) Γbðμ, σ, ηÞ = Γbðσ, μ, ηÞ for all μ, σ ∈Π ∩Ω

(4) Γbðμ1, σ2, η + ζ + rÞ ≥ Γbðμ1, σ1, ηÞ ∗ Γbðμ2, σ1, ζÞ ∗
Γbðμ2, σ2, rÞ for all μ1, μ2 ∈Π and σ1, σ2 ∈Ω

(5) Γbðμ, σ,:Þ: ½0,∞Þ⟶ ½0, 1� is left continuous
(6) Γbðμ, σ,:Þ is nondecreasing for all μ ∈Π and σ ∈Ω,

for all η, ζ, r > 0

Remark 4. (see [20]). In an FBM-space ðΠ,Ω, Γb,∗Þ, if Π
=Ω, then ðΠ, Γb,∗Þ is an FM-space.

Lemma 5. (see [20]). Let ðΠ,Ω, Γb,∗Þ be an FBM-space so
that

Γb μ, σ, kηð Þ ≥ Γb μ, σ, ηð Þ, ð2Þ

for μ ∈Π, σ ∈Ω and k ∈ ð0, 1Þ. Then, μ = σ.

Definition 6. (see [20]). Let ðΠ,Ω, Γb,∗Þ be an FBM-space. A
point σ ∈Π ∪Ω is called a left point if σ ∈Π, a right point if
σ ∈Ω, and a central point if it is both a left and a right point.
Similarly, a sequence fσαg on the set Π is called a left
sequence, and a sequence fσαg on Ω is called a right
sequence. In an FBM-space, a left or a right sequence is
called simply a sequence. A sequence fσαg is said to be con-
vergent to a point σ, iff fσαg is a left sequence, σ is a right
point, and limα⟶∞Γbðσα, σ, ηÞ = 1. A bisequence ðfσαg, f
μαgÞ on ðΠ,Ω, Γb,∗Þ is a sequence on the set Π ×Ω. If the
sequence fσαg and fμαg are convergent, then the bise-
quence ðfσαg, fμαgÞ is said to be convergent, and if fσαg
and fμαg converge to a common point, then ðfσαg, fμαgÞ
is called biconvergent. A bisequence ðfσαg, fμαgÞ is a Cau-
chy bisequence, if limα,β⟶∞Γbðσα, μβ, ηÞ = 1. An FBM-
space is called complete, if every Cauchy bisequence is con-
vergent, hence biconvergent.

Lemma 7. (see [20]). In an FBM-space, every convergent
Cauchy bisequence is biconvergent.

Lemma 8. (see [20]). LetðΠ,Ω, Γb,∗Þbe an FBM-space, and
ifμ ∈Π ∩Ωis a limit of a sequence, then it is a unique limit
of the sequence.

Definition 9. A point μ ∈Π ∩Ω is said to be common fixed
point for the mappings ðΛ,ΘÞ on μ ∈Π ∩Ω such that μ =
Λμ =Θμ.

3. Main Results

Now, we present the first main theorem.

Theorem 10. Let ðΠ,Ω, Γb,∗Þ be a complete FBM-space such
that

lim
η⟶∞

Γb μ, σ, ηð Þ = 1 for all μ ∈Π, σ ∈Ω: ð3Þ

Let Λ,Θ : Π ∪Ω⟶Π ∪Ω be two mappings satisfying

(1) ΛðΠÞ ⊆Π, ΘðΠÞ ⊆Π, and ΛðΩÞ ⊆Ω, ΘðΩÞ ⊆Ω

(2) ΓbðΛðμÞ,ΘðσÞ, kηÞ ≥ Γbðμ, σ, ηÞ for all μ ∈Π, σ ∈Ω
and η > 0, where 0 < k < 1

Then, Λ and Θ have a unique common fixed point.

Proof. Fix μ0 ∈Π and σ0 ∈Ω and assume thatΛðμ2αÞ = μ2α+1,
Θðμ2α+1Þ = μ2α+2, Λðσ2αÞ = σ2α+1, andΘðσ2α+1Þ = σ2α+2 for all
α ∈ℕ ∪ f0g. Then, we get ðμα, σαÞ as a bisequence on the

2 Journal of Function Spaces



FBM-space ðΠ,Ω, Γb,∗Þ. Now, we have

Γb μ1, σ1, ηð Þ = Γb Λ μ0ð Þ,Θ σ0ð Þ, ηð Þ ≥ Γb μ0, σ0,
η

k

� �
, ð4Þ

∀η > 0 and α ∈ℕ. By induction, we obtain

Γb μ2α+1, σ2α+1, ηð Þ = Γb Λ μ2αð Þ,Θ σ2αð Þ, ηð Þ ≥ Γb μ0, σ0,
η

k2α+1

� �
,

Γb μ2α+1, σ2α+2, ηð Þ = Γb Λ μ2αð Þ,Θ σ2α+1ð Þ, ηð Þ ≥ Γb μ0, σ1,
η

k2α+1

� �
,

ð5Þ

for all η > 0 and α ∈ℕ.

Letting α < β, for α, β ∈ℕ. Then, from the definition of
the FBM-space, we get

Γb μα, σβ, η
� �

≥ Γb μα, σα,
η

3
� �

∗ Γb μα+1, σα,
η

3
� �

∗ Γb μα+1, σβ,
η

3
� �

,

⋮

≥Γb μα, σα,
η

3
� �

∗ Γb μα+1, σα,
η

3
� �

∗⋯

∗Γb μβ−1, σβ−1,
η

3β−1
� �

∗ Γb μβ, σβ−1,
η

3β−1
� �

∗ Γb μβ, σβ,
η

3β−1
� �

:

ð6Þ

Therefore,

Γb μα, σβ, η
� �

≥ Γb μ0, σ0,
η

3kα
� �

∗ Γb μ0, σ1,
η

3kα+1
� �

∗⋯,

⋯∗Γb μ0, σ0,
η

3β−1kβ+1
� �

:

ð7Þ

From (3), as α, β⟶∞, we get

Γb μα, σβ, η
� �

≥ 1 ∀η > 0: ð8Þ

Thus, bisequence ðfμαg, fσαgÞ is a Cauchy bisequence.
Since ðΠ,Ω, Γb,∗Þ is a complete FBM-space. By Lemma 7,
bisequence ðfμαg, fσαgÞ is a biconvergent sequence. There-
fore, fμαg⟶ u and fσαg⟶ u, where u ∈Π ∩Ω. By
Lemma 8, both sequences fμαg and fσαg have a unique
limit. From the triangular property of fuzzy bipolar metric

spaces, we have

Γb Λ uð Þ, u, ηð Þ ≥ Γb Λ uð Þ, σα+1,
η

3
� �

∗ Γb μα+1, σα+1,
η

3
� �

∗ Γb μα+1, u,
η

3
� �

= Γb Λ uð Þ,Θ σαð Þ, η3
� �

∗ Γb μα+1, σα+1,
η

3
� �

∗ Γb μα+1, u,
η

3
� �

≥ Γb u, σα,
η

3
� �

∗ Γb μα+1, σα+1,
η

3
� �

∗ Γb μα+1, u,
η

3
� �

,

ð9Þ

for all α ∈ℕ and η > 0 and as α⟶∞,

Γb Λ uð Þ, u, ηð Þ⟶ 1 ∗ 1 ∗ 1 = 1: ð10Þ

From Definition 3 condition (2), ΛðuÞ = u. Again,

Γb u,Θ uð Þ, ηð Þ = Γb Λ uð Þ,Θ uð Þ, ηð Þ ≥ Γb u, u, η
k

� �
= 1:

ð11Þ

Therefore, ΘðuÞ = u. Hence, u is a common fixed point
of Λ and Θ.

Let v ∈Π ∩Ω be another fixed point of Λ and Θ. Then,

Γb u, v, ηð Þ = Γb Λ uð Þ,Θ vð Þ, ηð Þ ≥ Γb u, v, η
k

� �
, ð12Þ

for 0 < k < 1 and ∀η > 0. By Lemma 5, we have u = v.
The following example supports the above theorem.

Example 11. Let Π = ½0, 2� and Ω = f0g ∪ℕ − f1, 2g. Define
Γb = η/ðη + jμ − σjÞ for all η > 0, μ ∈Π, and σ ∈Ω. Clearly,
ðΠ,Ω, Γb,∗Þ is a complete FBM-space, where ∗ is a contin-
uous η-norm defined as p ∗ q = pq.

Let Λ,Θ : Π ∪Ω⟶Π ∪Ω be mappings defined by

Λ μð Þ =
2 − μ, if μ ∈ 0, 2½ �,
2, if μ ∈ℕ − 1, 2f g,

 

Θ μð Þ =
μ, if μ ∈ 0, 2½ �,
2, if μ ∈ℕ − 1, 2f g,

 ð13Þ

for all μ ∈Π ∪Ω. Now, suppose that k = 1/2, then for all
η > 0, we discuss the following cases:

Case 1. If μ ∈ ½0, 2� and σ ∈ℕ − f1, 2g, then

Γb Λ μð Þ,Θ σð Þ, kηð Þ = Γb 2 − μ, 2, kηð Þ = kη
kη + 2 − μ − 2j j

≥
η

η + μ − σj j = Γb μ, σ, ηð Þ:

ð14Þ
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Case 2. If μ ∈ℕ − f1, 2g and σ ∈ ½0, 2�, then

Γb Λ μð Þ,Θ σð Þ, kηð Þ = Γb 2, σ, kηð Þ = kη
kη + 2 − σj j

≥
η

η + μ − σj j = Γb μ, σ, ηð Þ:
ð15Þ

Therefore, the conditions 1 and 2 of Theorem 10 are ful-
filled byΛandΘ. By Theorem 10, Λ and Θ have a unique
common fixed point, i.e., μ = 1.

The second result of this part is as follows.

Theorem 12. Let ðΠ,Ω, Γb,∗Þ be a complete FBM-space such
that

lim
η⟶∞

Γb μ, σ, ηð Þ = 1 for all μ ∈Π, σ ∈Ω: ð16Þ

Let Λ : Π ∪Ω⟶Π ∪Ω be two mappings satisfying

(1) ΛðΠÞ ⊆Ω, ΛðΩÞ ⊆Π, and ΘðΠÞ ⊆Ω, ΘðΩÞ ⊆Π

(2) ΓbðΛðσÞ,ΘðμÞ, kηÞ ≥ Γbðμ, σ, ηÞ for all μ ∈Π, σ ∈Ω,
and η > 0, where 0 < k < 1

Then, Λ and Θ have a unique common fixed point.

Proof. Fix μ0 ∈Π and σ0 ∈Ω and assume that Λðμ2αÞ = σ2α,
Θðμ2α+1Þ = σ2α+1, Λðσ2αÞ = μ2α+1, and Θðσ2α+1Þ = μ2α+2 for
all α ∈ℕ ∪ f0g. Then, we get ðμα, σαÞ as a bisequence on
the FBM-space ðΠ,Ω, Γb,∗Þ. Now, we have

Γb μ1, σ0, ηð Þ = Γb Λ σ0ð Þ,Θ μ0ð Þ, ηð Þ ≥ Γb μ0, σ0,
η

k

� �
, ð17Þ

∀η > 0 and α ∈ℕ. By induction, we get

Γb μ2α+1, σ2α+1, ηð Þ = Γb Λ σ2αð Þ,Θ μ2α+1ð Þ, ηð Þ ≥ Γb μ0, σ0,
η

k4α+1

� �
,

Γb μ2α+1, σ2α, ηð Þ = Γb Λ σ2αð Þ,Θ μ2αð Þ, ηð Þ ≥ Γb μ0, σ0,
η

k4α

� �
,

ð18Þ

for all η > 0 and α ∈ℕ. Letting α < β, for α, β ∈ℕ. Then,
from the definition of the fuzzy bipolar metric space, we get

Γb μα, σβ, η
� �

≥ Γb μα, σα,
η

3
� �

∗ Γb μα+1, σα,
η

3
� �

∗ Γb μα+1, σβ,
η

3
� �

,

⋮

≥Γb μα, σα,
η

3
� �

∗ Γb μα+1, σα,
η

3
� �

∗⋯∗Γb μβ−1, σβ−1,
η

3β−1
� �

∗ Γb μβ, σβ−1,
η

3β−1
� �

∗ Γb μβ, σβ,
η

3β−1
� �

:

ð19Þ

Therefore,

Γb μα, σβ, η
� �

≥ Γb μ0, σ0,
η

3k2α+1
� �

∗ Γb μ0, σ0,
η

3k2α
� �

∗⋯,

⋯∗Γb μ0, σ0,
η

3β−1k2β+1
� �

:

ð20Þ

From (16), as α, β⟶∞, we get

Γb μα, σβ, η
� �

≥ 1 ∀η > 0: ð21Þ

Thus, bisequence ðfμαg, fσαgÞ is a Cauchy bisequence,
sinceðΠ,Ω, Γb,⋆Þis a complete FBM-space. By Lemma 7,
bisequence ðfμαg, fσαgÞ is a biconvergent sequence. There-
fore, fμαg⟶ u and fσαg⟶ u, where u ∈Π ∩Ω. By
Lemma 8, both sequences fμαg and fσαg have a unique
limit. From the triangular property of fuzzy bipolar metric
spaces, we have

Γb Λ uð Þ, u, ηð Þ ≥ Γb Λ uð Þ, σα+1,
η

3
� �

∗ Γb μα+1, σα+1,
η

3
� �

∗ Γb μα+1, u,
η

3
� �

= Γb Λ uð Þ,Θ μα+1ð Þ, η3
� �

∗ Γb Λσα,Θμα+1,
η

3
� �

∗ Γb μα+1, u,
η

3
� �

≥ Γb u, μα+1,
η

3k
� �

∗ Γb σα, μα+1,
η

3k
� �

∗ Γb μα+1, u,
η

3
� �

,

ð22Þ

for all α ∈ℕ and η > 0 and as α⟶∞,

Γb Λ uð Þ, u, ηð Þ⟶ 1 ∗ 1 ∗ 1 = 1: ð23Þ

From Definition 3 condition (2), ΛðuÞ = u. Again,

Γb u,Θ uð Þ, ηð Þ = Γb Λ uð Þ,Θ uð Þ, ηð Þ ≥ Γb u, u, η
k

� �
= 1:

ð24Þ

Therefore, ΘðuÞ = u. Hence, u is common fixed point of
Λ and Θ. Let v ∈Π ∩Ω be a another fixed point of Λ and Θ.
Then,

Γb u, v, ηð Þ = Γb Λ uð Þ,Θ vð Þ, ηð Þ ≥ Γb u, v, η
k

� �
, ð25Þ

for 0 < k < 1 and ∀η > 0. By Lemma 5, we have u = v.

To support the above theorem, we present the following
example.

Example 13. Let Π = f0, 1, 2, 7g and Ω = f0, 1/3, 1/2, 3g and
define a continuous η-norm as r ∗ ζ =min fr, ζg. Define
Γbðμ, σ, ηÞ = exp−ðjμ − σj/ηÞ for all η > 0, μ ∈Π, and σ ∈Ω.
Then, ðΠ,Ω, Γb,∗Þ is a complete FBM-space. Suppose we
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define a mapping Λ,Θ : Π ∪Ω⟶Π ∪Ω by

Λ μð Þ =
1
3 , if μ ∈ 7, 2f g,

0, if μ ∈ 0, 13 ,
1
2 , 1, 3

� 	
,

0
BB@

Θ μð Þ =
1
2 , if μ ∈ 7, 2f g,

0, if μ ∈ 0, 13 ,
1
2 , 1, 3

� 	
:

0
BB@

ð26Þ

Now, suppose that k = 1/2, then for all η > 0, we obtain
the following cases.

Case 1. Let μ ∈ f7, 2g and σ ∈ f0, 1/3, 1/2, 1, 3g, then

Γb Λ μð Þ,Θ σð Þ, kηð Þ = Γb

1
3 , 0, kη
� �

= kη
kη + 1/3j j

≥
η

η + μ − σj j = Γb μ, σ, ηð Þ:
ð27Þ

Case 2. Let μ ∈ f0, 1/3, 1/2, 1, 3g and σ ∈ f7, 2g, then

Γb Λ μð Þ,Θ σð Þ, kηð Þ = Γb 0, 12 , kη
� �

= kη
kη + 1/2j j

≥
η

η + μ − σj j = Γb μ, σ, ηð Þ:
ð28Þ

Therefore, the conditions 1 and 2 of Theorem 12 were
also satisfied by Λ and Θ. Based on Theorem 12, we get Λ
and Θ that have a unique common fixed point, i.e., μ = 0.

4. Supportive Application

In this section, we apply Theorem 10 to discuss the existence
and uniqueness solution to the following nonlinear integral
equations:

μ γð Þ = b γð Þ +
ð
E1∪E2

G1 γ, ζ, μ ζð Þð Þdζ, γ ∈E1 ∪E2,

μ γð Þ = b γð Þ +
ð
E1∪E2

G2 γ, ζ, μ ζð Þð Þdζ, γ ∈E1 ∪E2,

8>>><
>>>:

ð29Þ

where E1 ∪E2 is a Lebesgue measurable set with mðE1 ∪
E2Þ <∞. Let Π = L∞ðE1Þ and Ω = L∞ðE2Þ be two normed
linear spaces. Define Γb : Π ×Ω × ð0,∞Þ⟶ 0, 1� by

Γb μ, σ, ηð Þ = e
− sup

γ∈E1∪E2

μ γð Þ−σ γð Þj j/η

 !
, ð30Þ

for all μ ∈Π,σ ∈Ω. Clearly, ðΠ,Ω, Γb,∗Þ is a complete FBM-
space.

System (29) will be considered under the following
hypotheses:

(i) G1, G2 : ðE2
1 ∪E2

2Þ × 0,∞Þ⟶ 0,∞Þ and b ∈ L∞ð
E1Þ ∪ L∞ðE2Þ

(ii) There is a continuous function θ : E2
1 ∪E2

2 ⟶ 0,
∞ and k ∈ ð0, 1Þ such that jG1ðγ, ζ, μðζÞÞ −G2ðγ, ζ
, σðζÞÞj ≤ kθðγ, ζÞðjμðγÞ − σðγÞjÞ, for γ, ζ ∈E2

1 ∪E2
2

(iii) supγ∈E1∪E2

Ð
E1∪E2

θðγ, ζÞdζ ≤ 1

Theorem 14. Under hypotheses (i)–(iii), System (29) has a
unique common solution in L∞ðE1Þ ∪ L∞ðE2Þ.

Proof. Define the mappings Λ,Θ : L∞ðE1Þ ∪ L∞ðE2Þ⟶
L∞ðE1Þ ∪ L∞ðE2Þ by

Λ μ γð Þð Þ = b γð Þ +
ð
E1∪E2

G1 γ, ζ, μ ζð Þð Þdζ, γ ∈E1 ∪E2,

Θ μ γð Þð Þ = b γð Þ +
ð
E1∪E2

G2 γ, ζ, μ ζð Þð Þdζ, γ ∈E1 ∪E2:

ð31Þ

Now, we have

Γb Λμ γð Þ,Θσ γð Þ, kηð Þ

= e
− sup
γ∈E1∪E2

Λμ γð Þ−Θσ γð Þj j/kηð Þ

= e
− sup
γ∈E1∪E2

b γð Þ+
Ð

E1∪E2
G1 γ,ζ,μ ζð Þð Þdζ−b γð Þ−

Ð
E1∪E2

G2 γ,ζ,σ ζð Þð ÞdζÞ



 


/kη� �

= e
− sup
γ∈E1∪E2

b γð Þ+
Ð

E1∪E2
G1 γ,ζ,μ ζð Þð Þdζ− b γð Þ+

Ð
E1∪E2

G2 γ,ζ,σ ζð Þð Þdζ
� �


 


/kη� �

≥ e
− sup
γ∈E1∪E2

Ð
E1∪E2

G1 γ,ζ,μ ζð Þð Þ−G2 γ,ζ,σ ζð Þð Þj jdζ/kη
� �

≥ e
− sup
γ∈E1∪E2

Ð
E1∪E2

kθ γ,ζð Þ μ γð Þ−σ γð Þj jð Þdζ/kη
� �

≥ e
− sup
γ∈E1∪E2

Ð
E1∪E2

kθ γ,ζð Þ μ γð Þ−σ γð Þj jð Þdζ/kη
� �

≥ e
− sup
γ∈E1∪E2

μ γð Þ−σ γð Þj j/ηð Þ
= Γb μ, σ, ηð Þ:

ð32Þ

Hence, all hypotheses of Theorem 10 are fulfilled, and
consequently, the system (29) has a unique common solu-
tion.

Example 15. Let E1 = ½0, 1�, E2 = ½1, 2�, Π = L∞ðE1Þ, and Ω
= L∞ðE2Þ. Now, consider the following nonlinear integral
equations as
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Λ μ γð Þð Þ = γ +
ð
E1∪E2

γ + ζ + μ ζð Þ
8 1 + μ ζð Þð Þ

� �
dζ,

Θ μ γð Þð Þ = γ +
ð
E1∪E2

γ + ζ + μ ζð Þ
8 1 + μ ζð Þð Þ

� �
dζ,

ð33Þ

for all γ ∈E1 ∪E2. Then clearly, the above equation is in
the form of the following equation:

Λ μ γð Þð Þ = b γð Þ +
ð
E1∪E2

G1 γ, ζ, μ ζð Þð Þdζ,  γ ∈E1 ∪E2,

Θ μ γð Þð Þ = b γð Þ +
ð
E1∪E2

G2 γ, ζ, μ ζð Þð Þdζ, γ ∈E1 ∪E2,

ð34Þ

where bðγÞ = γ and

G1 γ, ζ, μ ζð Þð Þ = γ + ζ + μ ζð Þ
8 1 + μ ζð Þð Þ ,

G2 γ, ζ, μ ζð Þð Þ = γ + ζ + μ ζð Þ
8 1 + μ ζð Þð Þ :

ð35Þ

That is, (33) is a particular case of system (29). Now, we
have

G1 γ, ζ, μ ζð Þð Þ −G2 γ, ζ, σ ζð Þð Þj j
= μ ζð Þ

8 1 + μ ζð Þð Þ −
σ ζð Þ

8 1 + σ ζð Þð Þ











= 1

8
μ ζð Þ − σ ζð Þ

1 + μ ζð Þð Þ 1 + σ ζð Þð Þ











≤
1
8 μ ζð Þ − σ ζð Þj jð Þ:

ð36Þ

Consider a continuous function θ : E2
1 ∪E2

2 ⟶ ½0,∞Þ
defined by θðγ, ζÞ = 1/4∀γ, ζ ∈E2

1 ∪E2
2. Then, we obtain

sup
γ∈E1∪E2

ð
E1∪E2

θ γ, ζð Þdζ ≤ 1: ð37Þ

Therefore, all the conditions of Theorem 14 are satisfied.
Hence, system (33) has a unique common solution in
L∞ðE1Þ ∪ L∞ðE2Þ.

5. Conclusion

First of all, we proved common fixed point theorems on
fuzzy bipolar metric space with an application. On the basis
of the ideas of this paper along with the literature present on
FBM-spaces, we encourage the interested researcher to
explore more interesting results for these spaces.
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In this paper, we introduce some common fixed point theorems for interpolative contraction operators using Perov operator
which satisfy Suzuki type mappings. Further, some results are given. These results generalize several new results present in the
literature.

1. Introduction

Banach [1] introduced the Banach contraction principle
that generalized in various wide directions by many
researchers. One of the generalizations was supposed by
Kannan [2] in 1968 and later with other researchers such
as C′iric′ Reich Rus. In 2018, Karapınar [3] adopted the
interpolative approach to define the generalized Kannan
type contraction on a complete metric space and proved
the following.

A mapping F : P ⟶P on ðP , dÞ a complete metric
space such that

d Fx, Fzð Þ ≤ k d x, Fxð Þ½ �α · d z, Fzð Þ½ �1−α, ð1Þ

where k ∈ ½0, 1Þ and α ∈ ð0, 1Þ, for each x, z ∈P \ FixðFÞ.
Then, F has a unique fixed point in P . Afterward, this con-
cept has been extended in different aspects for example
[4–14] and also see e.g. [15–19].

On the other hand, Perov [20, 21] gave a characteriza-
tion of Banach contraction principle in the framework
vector-valued metric space.

For a nonempty set P , a function d : P ×P ⟶ℝk is
called a vector-valued metric on P if the followings are
fulfilled:

(1) dðx, zÞ ≥ 0 for all x, z ∈P ; if dðx, zÞ = 0, then x = z

(2) dðx, zÞ = dðz, xÞ for all x, z ∈P
(3) dðx, zÞ ≤ dðx, tÞ + dðt, zÞ for all x, z ∈P
(4) where 0≔ ð0, 0,⋯,0Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k−times

. We mention that, for x, y ∈ℝk

, that is, x = ðxiÞki=1 and y = ðyiÞki=1

x ≤ y⇔ xi ≤ yi  for each i ∈ 1, 2, 3,⋯, kf g: ð2Þ

The notations MmmðℝÞ (respectively, Mmmðℝ+
0 Þ) denote

the collection of all square matrices of real numbers (respec-
tively, nonnegative real numbers) where ℝ (respectively,
ℝ+

0 ≔ ½0,∞Þ) is the set of real numbers (respectively, non-
negative real numbers). Furthermore, ℂ denotes the com-
plex numbers, as usual.
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A matrix A ∈MmmðℝÞ converges to zero if and only if its
spectral radius is strictly less than 1, that is, ρðAÞ < 1, see,
e.g., [22]. It is equivalent to saying that all the eigenvalues
of A are in the open unit disc, that is, jλj < 1, for every λ ∈
ℂ with det ðA − λIÞ = 0, where I denotes the unit matrix of
MmmðℝÞ:

Theorem 1 (see, e.g., [22, 23]). Let A ∈Mmmðℝ+
0 Þ. Then, the

following assertions are equivalent:

(i) A converges to zero

ρ Að Þ < 1 ; ð3Þ

(ii) An ⟶ 0 as n⟶∞

(iii) The matrix ðI − AÞ is nonsingular and

I − Að Þ−1 = I + A+⋯+An+⋯; ð4Þ

(iv) The matrix ðI − AÞ is nonsingular and ðI − AÞ−1 has
nonnegative elements

(v) Anq and qAn are convergent towards zero as n⟶
∞, for each q ∈ℝm

Note also that if A, B ∈Mmmðℝ+
0 Þ with A ≤ B (in the

component-wise meaning), then, ρðBÞ < 1 implies ρðAÞ < 1.

Theorem 2 (Perov Cauchy, perov1966certain). Let ðP , dÞ be
a complete vector-valued metric space and the operator F
: P ⟶P with the property that there exists a matrix A ∈
Mmmðℝ+

0 Þ convergent towards zero such that

d F xð Þ, F zð Þð Þ ≤ Ad x, zð Þ, for all x, z ∈P : ð5Þ

Then, F possesses a unique fixed point.

Ali et al. [24] defined Λ admissible that a generalized of
α-admissible given by Samet et al. [25].

Definition 3 (see [24]). Let P ≠∅, Λ : P ×P ⟶Mmmðℝ+Þ
. A mapping F : P ⟶P

is said to be Λ-admissible if

Λ x, zð Þ ≥ I implies Λ Fx, Fzð Þ ≥ I, for all x, z ∈P ,
ð6Þ

where I is the m ×m identity matrix and the inequality
between matrices mans entrywise inequality.

We define some related to Λ-admissible the following
concept of admissibility using the above definition and given
by some authors [25–30].

Definition 4. Let P ≠∅, Λ : P ×P ⟶Mmmðℝ+Þ, and F
: P ⟶P be a mapping. We say that F is an Λ-orbital
admissible mapping if

Λ x, Fxð Þ ≥ I implies Λ Fx, F2x
� �

≥ I, for all x, z ∈P :

ð7Þ

Moreover, an Λ-orbital admissible mapping F is said to
be triangular Λ-orbital admissible if for all x, z ∈P , we have

Λ x, zð Þ ≥ I  and Λ z, Fzð Þ ≥ I, implies Λ x, Fzð Þ ≥ I:

ð8Þ

Definition 5. For a nonempty set P , let F, G : P ⟶P and
Λ : P ×P ⟶Mmmðℝ+Þ be mappings. We say that ðF, GÞ
is a generalized Λ -admissible pair if for all x, z ∈P , we have

Λ x, zð Þ ≥ I ⇒Λ Fx, Gzð Þ ≥ I and Λ Gz, Fxð Þ ≥ I: ð9Þ

Lemma 6. Let P ≠∅ and F : P ⟶P be a triangular Λ
-admissible map. Suppose that there exists x0 ∈P such that
Λðx0, Fx0Þ ≥ I: Identify a sequence fxng using xn+1 = Fxn:
Thus, we have Λðxn, xmÞ ≥ I for all m, n ∈ℕ ∪ f0g with n <
m.

Lemma 7. Let P ≠∅ and F, G : P ⟶P be a triangular Λ
-admissible mapping. Assume that there exists x0 ∈P such
that Λðx0, Fx0Þ ≥ I: Identify sequence x2r+1 = Fx2r , and x2r+2
=Gx2r+1, where r = 0, 1, 2,⋯: So, we have Λðxn, xmÞ ≥ I for
all m, n ∈ℕ ∪ f0g with n <m.

Recently, one of the interesting generalizations was given
by Suzuki [31, 32] which characterizes the completeness of
underlying metric spaces. Suzuki introduced and generalized
versions of Banach’s and Edelstein’s basic results. In addi-
tion, Popescu [33] has modified the nonexpansiveness situa-
tion with the weaker C-condition presented by Suzuki. As
stated, the existence of fixed points of maps satisfying the
C-condition has been extensively studied; see [34–38]. Kar-
apnar [39] investigated the definition of a nonexpansive
mapping satisfying the C-condition.

Definition 8. A mapping F on a metric space ðP , dÞ satisfies
the C-condition if

1
2 d x, Fxð Þ ≤ d x, zð Þ⇒ d Fx, Fzð Þ ≤ d x, zð Þ, ð10Þ

for each x, z ∈P :

Theorem 9. Let ðP , dÞ be a compact metric space and F
: P ⟶P be a mapping satisfying condition ðCÞ for all x, z
∈P : Then, F has a unique fixed point.
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2. Main Results

For the rest of the paper, we use the following notation:
P F =P \ FixðFÞ, where FixðFÞ = fx ∈P ∣ Fx = xg:

Definition 10. Let ðP , dÞ be a complete vector-valued metric
space and Λ : P ×P ⟶Mmmðℝ+Þ, F, G : P ⟶P be
mappings. We say that ðF, GÞ forms a pair of Perov-
interpolative C′iric′-Reich-Rus contractions of Suzuki type,
if there exist A, B ∈Mmmðℝ+Þ converges towards zero,
(where B = Aq, q > 1) such that

1
2 min d x, Fxð Þ, d z, Gzð Þf g ≤ d x, zð Þ⇒Λ x, zð Þd Fx, Gzð Þ

≤ A d x, zð Þ½ �β · d x, Fxð Þ½ �α · d z, Gzð Þ½ �1−α−β
� �

,

ð11Þ

for each ðx, zÞ ∈P F ×P G , where β ≥ 0, α > 0 are such
that β + α < 1.

Theorem 11. Let ðP , dÞ be a complete vector-valued metric
space and F, G : P ⟶P be two mappings such that ðF, G
Þ is a pair of Perov-interpolative C′iric′-Reich-Rus contrac-
tions of Suzuki type. Assume that

(i) ðF,GÞ is a generalized Λ-admissible pair

(ii) There exists x0 ∈P such that Λðx0, Fx0Þ ≥ I and Λ
ðFx0, x0Þ ≥ I

(iii) F and G are continuous mappings

Then, F and G have a common fixed point.

Proof. Let x0 ∈P such that Λðx0, Fx0Þ ≥ I. We define the
sequence fxrg in P as following

x2r+1 = Fx2r and x2r+2 =Gx2r+1, ð12Þ

for every r ∈ℕ. From (i) and (ii), Λðx0, Fx0Þ ≥ I and Λ
ðFx0, x0Þ ≥ I, and then Λðx1, x2Þ =ΛðFx0, Gx1Þ ≥ I and Λð
x2, x1Þ =ΛðGx1, Fx0Þ ≥ I. Similarly, we get Λðx2, x3Þ =ΛðF
x1, Gx2Þ ≥ I and Λðx3, x2Þ =ΛðGx2, Fx1Þ ≥ I. Repeating this
process, we write

Λ xm, xm+1ð Þ ≥ I and Λ xm+1, xmð Þ ≥ I, ð13Þ

for every m ∈ℕ.
On the other hand, we have

1
2 min d x2r , Fx2rð Þ, d x2r+1, Gx2r+1ð Þf g

= 1
2 min d x2r , x2r+1ð Þ, d x2r+1, x2r+2ð Þf g ≤ d x2r , x2r+1ð Þ:

ð14Þ

So, since the mappings F, G : P ⟶P forms a pair of

Perov-interpolative contractions of Suzuki type, we get

d x2r+1, x2r+2ð Þ = Id Fx2r , Gx2r+1ð Þ ≤Λ x2r , x2r+1ð Þd Fx2r ,Gx2r+1ð Þ
≤ A d x2r , x2r+1ð Þ½ �β · d x2r , Fx2rð Þ½ �α
�
· d x2r+1, Gx2r+1ð Þ½ �1−α−β

�
= A d x2r , x2r+1ð Þ½ �β+α · d x2r+1, x2r+2ð Þ½ �1−α−β
� �

:

ð15Þ

Therefore, it follows that

d x2r+1, x2r+2ð Þ½ �α+β ≤ A d x2r , x2r+1ð Þ½ �β+α, ð16Þ

or equivalent

d x2r+1, x2r+2ð Þ ≤ Aqd x2r , x2r+1ð Þ, ð17Þ

where q = 1/β + α > 1: Then,

d x2r+1, x2r+2ð Þ ≤ Bd x2r , x2r+1ð Þ where Aq = B: ð18Þ

Letting x = x2r and z = x2r−1, since

1
2 min d x2r , Fx2rð Þ, d x2r−1, Gx2r−1ð Þf g

= 1
2 min d x2r , x2r+1ð Þ, d x2r−1, x2rð Þf g ≤ d x2r , x2r−1ð Þ,

ð19Þ

similarly, we get

d x2r , x2r+1ð Þ ≤ Bd x2r−1, x2rð Þ: ð20Þ

Thus, combining (18) and (20), we have that

d x2r+1, x2r+2ð Þ ≤ B2rd x1, x2ð Þ, ð21Þ

d x2r , x2r+1ð Þ ≤ B2rd x0, x1ð Þ: ð22Þ
Take into account (21) and (22), we obtain that for each

m ∈ℕ

d xm, xm+1ð Þ ≤ Bmw xð Þ, ð23Þ

where wðxÞ =max fdðx0, x1Þ, dðx1, x2Þg: By this way,
using triangular inequality and (23), for p ≥ 0, we get

d xm, xm+p
� �

≤ d xm, xm+1ð Þ + d xm+1, xm+2ð Þ+⋯+d xm+p−1, xm+p
� �

= 〠
m+p−1

m=l
d xi, xi+1ð Þ ≤ Bm 〠

∞

i=0
Bi

 !
w xð Þ

= Bm I + B+⋯+Bm+⋯ð Þw xð Þ:
ð24Þ

Because B is convergent to zero, we attain that ðI − BÞ is
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nonsingular and

I − Bð Þ−1 = I + B+⋯+Bm+⋯: ð25Þ

Therefore,

d xm, xm+p
� �

Bm I − Bð Þ−1w xð Þ, ð26Þ

d xm, xm+p
� �

⟶ 0asm⟶∞: ð27Þ

So, the sequence ðxmÞ is a fundamental (Cauchy), and
using the completeness of the space ðP , dÞ, there exists t ∈
P such that

lim
m⟶∞

d xm, tð Þ = 0: ð28Þ

We claim that the point t is a common fixed point of F
and G : If (iii.) is provide, that is, the mapping F and G are
continuous, we have

lim
r⟶∞

d x2r+1, Ftð Þ = lim
r⟶∞

d Fx2r , Ftð Þ = 0, ð29Þ

then, Ft = t. Also, similarly, we get

lim
r⟶∞

d x2r+2, Gtð Þ = lim
r⟶∞

d Gx2r+1, Gtð Þ = 0: ð30Þ

Gt = t. Therefore, t is a common fixed point of F and G :
The proof is complete.☐

In the following theorem, we remove the assumption of
the continuity of the mappings F and G :

Theorem 12. Besides the hypothesis (i) and (ii) of Theorem
11, if we assume that the condition:

(i) If fxrg is a sequence in P such that xr ⟶ x ∈P as
r⟶∞ and, there exists a subsequence fxrkg of fxr
g such that Λðxrk , xÞ ≥ I andΛðx, xrkÞ ≥ I, for all k

holds, then, the mappings F and G have a common fixed
point.

Proof. From Theorem 11, the sequence fxrg defined by (12)
is a Cauchy sequence and converges to some t ∈P . Simi-
larly, using (13) and the condition ðHΛÞ, there exists a sub-
sequence fxrkg of fxrg such that Λðx2rk , tÞ ≥ I and
Λðt, x2rk−1Þ ≥ I for all k. We claim that for all k ≥ 0

1
2 min d x2rk , Fx2rk

� �
, d t, Gtð Þ� �

≤ d x2rk , t
� �

: ð31Þ

Supposing on the contrary,

1
2 min d x2rk , Fx2rk

� �
, d t, Gtð Þ� �

> d x2rk , t
� �

, ð32Þ

we get

1
2 min d x2rk , x2rk+1

� �
, d t, Gtð Þ� �

> d x2rk , t
� �

, ð33Þ

and letting k⟶∞, we acquire that a contradiction.
Therefore, the condition (31) holds, and from (11), we
obtain

d x2rk+1, Gt
� �

= Id Fx2rk ,Gt
� �

≤Λ x2rk , t
� �

d Fx2rk , Gt
� �

≤ A d x2rk , t
� �	 
β · d x2rk , Fx2rk

� �	 
α · d t,Gtð Þ½ �1−α−β
� �

= A d x2rk , t
� �	 
β · d x2rk , x2rk+1

� �	 
α · d t, Gtð Þ½ �1−α−β
� �

:

ð34Þ

On the taking k tend to infinity, it follows that we get
Gt = t. Similarly, we assert that, for all k ≥ 0

1
2 min d t, Ftð Þ, d x2rk−1 , Gx2rk−1

� �� �
≤ d t, x2rk−1
� �

, ð35Þ

Supposing on the contrary,

1
2 min d t, Ftð Þ, d x2rk−1 , Gx2rk−1

� �� �
> d t, x2rk−1
� �

, ð36Þ

and, so

1
2 min d t, Ftð Þ, d x2rk−1 , x2rk

� �� �
> d t, x2rk−1
� �

, ð37Þ

taking k⟶∞, we obtain that a contradiction. Hence,
condition (35) is true and from (11), we obtain

d Ft, x2rk
� �

= Id Ft, Gx2rk−1
� �

≤Λ t, x2rk−1
� �

d Ft, Gx2rk−1
� �

≤ A d t, x2rk−1
� �	 
β · d t, Ftð Þ½ �α · d x2rk−1 , Gx2rk−1

� �	 
1−α−β� �
= A d t, x2rk−1

� �	 
β · d t, Ftð Þ½ �α · d x2rk−1 , x2rk
� �	 
1−α−β� �

:

ð38Þ

Letting k tend to infinity, it follows that we acquire Ft = t.
Thus, t is a common fixed point of F and G :☐

Corollary 13. Let ðP , dÞ be a complete vector-valued metric
space and F, G : P ⟶P be two continuous mappings such
that

1
2
min d x, Fxð Þ, d z, Gzð Þf g ≤ d x, zð Þ⇒ d Fx, Gzð Þ
≤ A d x, zð Þ½ �β · d x, Fxð Þ½ �α · d z,Gzð Þ½ �1−α−β
� �

,
ð39Þ

for each ðx, zÞ ∈P F ×P G , where A, Aq ∈Mmmðℝ+Þ, q >
1, converges towards zero and β ≥ 0, α > 0, are such that β
+ α < 1. Then, F and G have a common fixed point.

Corollary 14. Let ðP , dÞ be a complete vector-valued metric
space and the mappings Λ : P ×P ⟶Mmmðℝ+Þ and F, G
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: P ⟶P such that

Λ x, zð Þd Fx, Gzð Þ ≤ A d x, zð Þ½ �β · d x, Fxð Þ½ �α · d z, Gzð Þ½ �1−α−β
� �

,

ð40Þ

for each ðx, zÞ ∈P F ×P G , where A, Aq ∈Mmmðℝ+Þ, q >
1, converges towards zero and the constants β ≥ 0, α > 0, are
such that β + α < 1. Assume that

(i) ðF,GÞ is a generalized Λ-admissible pair

(ii) There exists x0 ∈P such that Λðx0, Fx0Þ ≥ I and Λ
ðFx0, x0Þ ≥ I

(iii) The condition ðHΛÞ holds or F and G are continuous
mappings

Then, F and G have a common fixed point.

Letting F = G in Theorem 11, we obtain the next results.

Corollary 15. Let ðP , dÞ be a generalized metric spaces and
Λ : P ×P ⟶Mmmðℝ+Þ. Let F : P ⟶P be a Λ-orbital
admissible mapping such that

1
2
d x, Fxð Þ ≤ d x, zð Þ⇒Λ x, zð Þd Fx, Fzð Þ

≤ A d x, zð Þ½ �β · d x, Fxð Þ½ �α · d z, Fzð Þ½ �1−α−β,
ð41Þ

for each x, z ∈P F , where A, Aq ∈Mmmðℝ+Þ, q > 1, con-
verges towards zero, and β, α are constants, such that β ≥ 0,
α > 0, and β + α < 1. Assume that

(i) F is a triangular Λ-orbital admissible

(ii) There exists x0 ∈P such that Λðx0, Fx0Þ ≥ I and Λ
ðFx0, x0Þ ≥ I

(iii) Either F is continuous, or the condition ðHΛÞ holds
Then, F has a fixed point.

Definition 16. Let ðP , dÞ be a vector-valued metric space and
Λ : P ×P ⟶Mmmðℝ+Þ, F, G : P ⟶P , be mappings.
We say that F, G : P ⟶P are Perov-interpolative Kannan
contractions of Suzuki type, if there exist a real number α
∈ ð0, 1Þ and A, C ∈Mmmðℝ+Þ converges towards zero, where
A1/a = C, such that

1
2 min d x, Fxð Þ, d z, Gzð Þf g ≤ d x, zð Þ⇒Λ x, zð Þd Fx, Gzð Þ

≤ A d x, Fxð Þ½ �α · d z, Gzð Þ½ �1−α� �
,

ð42Þ

for each ðx, zÞ ∈P F ×P G .

Theorem 17. Let ðP , dÞ be a complete vector-valued metric
space and F, G : P ⟶P be Perov-interpolative Kannan
contractions of Suzuki type. Assume that

(i) ðF, GÞ is a generalized Λ-admissible pair

(ii) There exists x0 ∈P such that Λðx0, Fx0Þ ≥ I and Λ
ðFx0, x0Þ ≥ I

(iii) Either, F and G are continuous mappings or, the
condition ðHΛÞ holds

Then, F and G have a common fixed point.

Proof. Taking β = 0 in Theorem 11.☐

Remark 18. If m = 1 and A = κ ∈ ð0, 1Þ in the above Theo-
rems, then, we find the concept of the usual metric spaces
and interpolative Kannan contraction of Suzuki type and
interpolative Ćirić–Reich–Rus contraction of Suzuki type.

Example 19. Let P = ½0, 2�, d : P ×P ⟶ ½0,+∞Þ, where d

ðx, zÞ = jx − zj
jx − zj

 !
, and two mappings F, G : P ⟶P ,

defined as

Fx =
1
3 , if x ∈ 0, 1½ �,
x
4 , if x ∈ 1, 2ð �,

8><
>: ð43Þ

respectively,

Gx =
1
3 , if x ∈ 0, 1½ �,
x
8 , if x ∈ 1, 2ð �:

8><
>: ð44Þ

We choose β = 1/3, α = 1/3 and A =
1/2 0
0 1/2

 !
: Let

also Λ : P ×P ⟶M22ðℝ+Þ, where

Λ x, zð Þ =

2 0
0 2

 !
if x, z ∈ 0, 1,½ �

1 0
0 1

 !
if x = 0, z = 2,

0 0
0 0

 !
otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð45Þ

Then, we have to check that (11) holds. We have to
examine the following cases:

(1) x, z ∈ ½0, 1�. Let U1 = f1/2g × f1/2n : n ∈ f2, 3, 4,⋯g
g and U2 = f1/2n : n ∈ f2, 3, 4,⋯gg × f1/2g. For ðx
, zÞ ∈ A1 ∪ A2
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1
2 min d x, Fxð Þ, d z,Gzð Þf g ≤

1
12
1
12

0
BB@

1
CCA <

n − 1
2n
n − 1
2n

0
BB@

1
CCA

= d x, zð ÞΛ x, zð Þd Fx,Gzð Þ ≤ A d x, zð Þ½ �1/3 d xð , Fx½ �1/3 d z,Gzð Þ½ �1/3,
ð46Þ

and since dðFx, GzÞ = 0, the inequality (11) holds.

(2) x, z ∈ ð1, 2�. Similarly, since Λðx, zÞ = 0, the relation
(11) holds

(3) For x = 0 and z = 2

1
2 min dð 0, 13

� �
, d 2, 14

� � �
= 1
2 min

1
3
1
3

0
BB@

1
CCA,

7
4
7
4

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

=

1
6
1
6

0
BB@

1
CCA <

2

2

 !
= d 0, 2ð Þ⇒Λ 0, 2ð Þd F0, G2ð Þ

=

1
12
1
12

0
BB@

1
CCA <

7
48

� �1/3

7
48

� �1/3

0
BBBB@

1
CCCCA

= A d 0, 2ð Þ½ �1/3 · d 0, F0ð Þ½ �1/3 · d 2, G2ð Þ½ �1/3:
ð47Þ

Then, (11) holds. Consequently, the assumptions of The-
orem 11 being satisfied, it follows that the mappings F and G
have a fixed point, which is x = 1/3.
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