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Background. Hypoxia is regarded as a key factor in promoting the occurrence and development of ovarian cancer. In ovarian
cancer, hypoxia promotes cell proliferation, epithelial tomesenchymal transformation, invasion, andmetastasis. Long non-coding
RNAs (lncRNAs) are extensively involved in the regulation of many cellular mechanisms, i.e., gene expression, cell growth, and
cell cycle.Materials and Methods. In our study, a hypoxia-related lncRNA prediction model was established by applying LASSO-
penalized Cox regression analysis in public databases. Patients with ovarian cancer were divided into two groups based on the
median risk score. Te survival rate was analyzed in the Cancer Genome Atlas (TCGA) and International Cancer Genome
Consortium (ICGC) datasets, and the mechanisms were investigated. Results. Trough the prognostic analysis of DElncRNAs
(diferentially expressed long non-coding RNAs), a total of 5 lncRNAs were found to be closely associated with OS (overall
survival) in ovarian cancer patients. It was evaluated through Kaplan–Meier analysis that low-risk patients can live longer than
high-risk patients (TCGA: p � 1.302e − 04; ICGC: 1.501e− 03). Te distribution of risk scores and OS status revealed that higher
risk score will lead to lower OS. It was evaluated that low-risk group had higher immune score (p � 0.0064) and lower stromal
score (p � 0.00023). Conclusion. It was concluded that a hypoxia-related lncRNA model can be used to predict the prognosis of
ovarian cancer. Our designed model is more accurate in terms of age, grade, and stage when predicting the overall survival of the
patients of ovarian cancer.

1. Introduction

Ovarian cancer is a type of malignant tumor that cannot be
easily detected in the early stage and has a poor prognosis.
Tere are many risk factors associated with its occurrence
and development, i.e., family history of ovarian or breast
cancer, obesity (BMI of 30 and above), genetic mutations,
delayed menopause, fertility treatments, polycystic ovary
syndrome, and smoking. Te mortality rate of this type of
tumor is ranked ffth among other female malignant tumors
[1]. Due to the concealment of the incidence of ovarian
cancer, more than half of the patients lost the opportunity
for early diagnosis, which seriously afects its prognosis [2].
Surgery plus chemotherapy is a classic treatment for ovarian
cancer. First-line maintenance therapy, including bev-
acizumab or PARP inhibitors, can prolong progression-free

survival (PFS), which is diferent fromOS [3, 4].Terefore, it
is necessary to explore more treatments to prolong the
lifespan of ovarian cancer patients. At present, immuno-
therapy is the new major therapeutic tool of ovarian cancer.
However, the efect of single immunotherapy for ovarian
cancer is not obvious [5, 6].

When malignant tumors increase in their size, tumors
gradually form a hypoxia environment, due to which the
cancer cells undergo some adaptive changes, such as pro-
liferation and angiogenesis [7]. Te direct reaction of
molecules to reverse hypoxia is to stabilize the HIFs. Oth-
erwise, HIF can enhance cell viability and increase angio-
genesis and cell invasion. HIF can help in the survival of
cancer cells that can undergo apoptosis [8, 9]. Hypoxia can
also alter the immune microenvironment of malignant tu-
mors [10]. In ovarian cancer, hypoxia promotes cell
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proliferation [11], epithelial to mesenchymal trans-
formation, invasion, and metastasis [12]. Te aforemen-
tioned phenomenon may lead to higher mortality of
patients [13].

lncRNAs consist of more than 200 nucleotides and can
interact with various kinds of biomolecules such as DNA,
RNA, and proteins, which have attracted increasing atten-
tion. lncRNAs are extensively involved in the regulation of
many important cellular processes, such as gene expression,
dosage compensation, and regulation of the cell growth and
cell cycle [14]. lncRNAs may play their role in the nucleus as
well as in the cytoplasm.Te lncRNAs can act as modulators
to afect the protein-coding gene expression by regulating
the transcriptional and post-transcriptional processes. As
there is diference in expression of IncRNAs in various
tissues, some of them have been identifed for their impli-
cation in the pathogenesis of the diseases, such as tumor,
neurological, cardiovascular, and orthopedic disease. Recent
evidence suggests that lncRNAs precipitated the malignant
phenotype of cancer through genomic or transcriptional
changes. In addition to these changes, changing the immune
environment may also promote the malignant phenotype
[15, 16]. However, a study on hypoxia-related lncRNA in
ovarian cancer is still need of the hour.Terefore, a hypoxia-
related lncRNA model was established in our study. Tis
model can be applied to pre-calculate the prognosis of
ovarian cancer. More importantly, the immune status can be
predicted by this model, which can act as a guiding tool for
better clinical treatment.

2. Materials and Methods

2.1. Data Acquisition. TCGA database (TCGA-OV, 379
samples) (https://tcga-data.nci.nih.gov/tcga/) and the ICGC
portal (OV-AU, 81 samples) (https://dcc.icgc.org) were used
to extract the RNA sequence data. At the same time, the
corresponding clinical features were also downloaded. One
of the inclusion criteria of the study was that the patients
must survive more than 30 days. Te gene expression
profles of normal ovarian tissue as a controlled study were
downloaded from the GTEx database (88 samples).

2.2. Obtention of Genes and lncRNAs Tat Are Related to
Hypoxia. We downloaded 200 genes related to hypoxia
(Table S1 of GSEA). In TCGA database, using Pearson
correlation (|R|> 0.4, p< 0.001), 1330 lncRNAs that have
a relationship with hypoxia were selected. Ten, the dif-
ference analysis was performed by a limma R package.
To screen the hypoxia-related diferentially expressed
lncRNAs (DElncRNAs), we set the standard as (FDR)
< 0.05 and |log2FC|≥ 1.

2.3. Risk Scoring of Candidate Genes for Hypoxia-Related
lncRNAs. To identify candidate genes for hypoxia-related
lncRNAs from TCGA cohort, we analyzed OS by univariate
Cox analysis. Firstly, we built the prognostic model using
LASSO-penalized Cox regression analysis. Te risk score
was calculated using the following formula.

RiskScore � (CoeCCLlncRNACC

× expressCConoCClncRNACC).
(1)

Ovarian cancer patients were then categorized into two
groups on the basis of median of TCGA cohort risk scores
and named as high or low risk. PCA was performed with the
“stats” R packages to explore the distribution of the groups.
OS of the two groups was analyzed by Kaplan–Meier
analysis. ROC curves with “survival ROC” R package were
plotted for 1/3/5 years. Cox regression was utilized to predict
the independent values. Te above analyses were carried out
simultaneously in TCGA and ICGC datasets. After that, the
nomogram including risk, grade, stage, and age was set up by
the “rms” R package. Finally, we plotted the correction curve
to evaluate the diference between the predicted values and
actual values.

2.4. GSEA. GSEA between the two groups was performed in
the gene set with the parameter kegg.v7.4.symbols.gmt. To
detect the signifcantly enriched pathways, the criterion was
p< 0.05 and FDR< 0.05.

2.5. ImmunityAnalysis. Te following methods were used to
calculate the immune penetration status between TCGA
project samples, including XCell, TIMER, QUANTISEQ,
EPIC, CiberSort-ABS, and CiberSort. All these methods are
in silico techniques that were used to integrate the advan-
tages of gene enrichment. Tese are deconvolution tech-
niques to reanalyze the data in comprehensive way [17, 18].
Meanwhile, we compared the TME scores between the two
risk groups by the “ggpubr” R package.

2.6.Division ofClusters byRiskModel. Using the “Consensus
Cluster Plus” R package, two molecular subgroups were
grouped based on the prognostic model in ovarian cancer
patients. Kaplan–Meier survival analysis, PCA, and tSNE
were performed. In addition, analysis of immune-related
indexes including immune infltration cells and TME scores
was carried out between the two molecular subgroups.

3. Results

3.1.Hypoxia-Related lncRNAs inOvarianCancer. In ovarian
cancer, we identifed 1330 hypoxia-related lncRNAs. Te
network of the hypoxia-related genes and lncRNAs is pre-
sented in Figure 1(a). Tere were a total of 145 hypoxia-
related DElncRNAs, of which 111 lncRNAs were down-
regulated, and 34 were upregulated (Table S2). Trough the
prognostic analysis of DElncRNAs, a total of 5 lncRNAs
were found closely associated with OS of ovarian cancer
patients, serving as candidate lncRNAs for modeling
(Figure 1(b)).

3.2.EvaluationofPrognosticRoleofHypoxia-Related lncRNAs
by Risk Model. We constructed a risk model including 5
lncRNAs (DNM3OS, AC073046.1, AC083799.1, C6orf223, and
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HCP5) in TCGA cohort. Te formula we used to calculate the
risk score is risk score�DNM3OS× 0.152+AC073046.1× 0.126-
AC083799.1× 0.184-C6orf223× 0.097-HCP5× 0.082. After cal-
culations, we evaluated revisions to the risk models established in
TCGA and ICGC databases. Kaplan–Meier analysis showed that
low-risk patients can live longer than high-risk patients (TCGA:
p � 1.302e − 04; ICGC: 1.501e− 03) (Figures 2(a) and 2(b)). At
the same time, we analyzed the OS time of patients in diferent
clinical groups in TCGA dataset. Tere was no signifcant dif-
ference in OS time when patients were diagnosed with stage I-II
or grade 1-2 (p � 0.765, 0.651). But, signifcant diferences were
observed in OS time for the stage III-IV group (p< 0.001), G3
group (p< 0.001), under 60 years (p � 0.033), and over 60 years
(p � 0.003) (Figures 2(c)–2(h)).

In ROC curve analysis, the one-year AUC in TCGA
cohort was 0.652, while the 3- and 5-year AUCs were 0.641
and 0.613, respectively (Figures 3(a) and 3(c)). Te value
of AUC in the ICGC cohort was calculated as 0.707, 0.626,
and 0.626, respectively (Figures 3(b) and 3(d)). We also
found that the model was more accurate in terms of age,
grade, and stage when predicting the OS. Te distribution
of risk scores and OS status indicated that a higher risk
score will lead to a lower OS (Figures 3(e)–3(h)).

When univariate Cox regression analysis was per-
formed, core risk showed its association to OS. Te HR
value of TCGA cohort was 2.714 (95% CI � 1.652–4.458,
p> 0.001). For the ICGC cohort, the HR value was 3.248
(95% CI � 1.189–8.869), and the p value was 0.022. (Fig-
ures 4(a) and 4(b)). Diferent from univariate analysis,
multivariate analysis demonstrated an independent role of
the risk score in predicting OS in the both cohorts. For
TCGA cohort, the HR value was 2.574, 95% CI was 1.560

to 4.248, and the p value was 0.001. For the ICGC cohort,
the HR value was 3.404 (95% CI � 1.123–10.324, p � 0.030)
(Figures 4(c) and 4(d)). PCA verifed that the predictive
model could divide ovarian cancer patients into two
diferent groups in two datasets (Figures 4(e) and 4(f )).

Finally, we used other factors including risk, grade, age,
and stage to predict 1-/3-/5-year OS (Figure 5(a)). Cali-
bration chart was used to judge whether the result of the
nomogram is accurate (Figure 5(b)).

3.3. Cancer-Related Pathways Are Enriched. In the high-risk
group, the pathways enriched in cancer-related pathways
were adherens junction, TGF-beta, Wnt, Notch, GnRH
signaling pathway, and glycerophospholipid metabolism. In
the low-risk group, the pathways were enriched in oxidative
phosphorylation, antigen processing, antigen presentation,
graft-versus-host disease, metabolism related to glutathione,
allograft rejection, and protein export (Figure 6).

3.4. Immune Scoring of Risks Groups Evaluated by GSEA.
We further analyzed the immune status of the two groups
with diferent risks in TCGA database. More M1 mac-
rophages, myeloid dendritic, activated NK, and
CD8 + T cells were detected in the low-risk group, while
fewer cancer-associated fbroblasts (CAFs) and neutro-
phils were detected in the low-risk group (Figure 7(a),
Supplementary 1). Te low-risk group had a higher im-
mune score (p � 0.0064) and a lower stromal score
(p � 0.00023). However, the ESTIMATE score did not
show signifcant diferences between the two risk groups
(Figures 7(b)–7(d)).
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Figure 1: (a) Te network of the hypoxia-related genes and lncRNAs. (b) DElncRNAs related to prognosis.
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Figure 2: Continued.
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Figure 2: Kaplan–Meier analysis in TCGA cohort (a) and ICGC cohort (b). Kaplan–Meier analysis of the OS time in diferent clinical
groups in TCGA cohort ((c, d) stage; (e, f ) grade; (g, h) age).
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3.5. Analyses Related to Molecular Subtype. Based on this
hypoxia-related lncRNAmodel, we redivided ovarian cancer
patients into two clusters (Figure 8(a)). Te OS of cluster1
patients was shorter than cluster2 patients (Figure 8(b)).
Most of the patients of cluster2 were in the low-risk group,
while most patients of cluster1 were in the high-risk group
(Figure 8(c)). PCA and tSNE2 clearly showed that patients
can be grouped as two completely various subgroups
(Figures 8(d) and 8(e)).

Cluster1 showed lower stromal score (p � 0.0071)
(Figure 9(a)), lower immune score (p � 1.2e − 14)
(Figure 9(b)), and lower ESTIMATE score (p � 7.7e − 09)
(Figure 9(c)).

Te heatmap of immune cells was drawn by using the
following methods, including TIMER, CIBERSORT,
CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER,
XCELL, and EPIC. All the graphs are presented in Figure 10.

4. Discussion

Ovarian cancer is a malignant disease that cannot be cured
completely. Surgery, chemotherapy, and targeted therapy
are the most commonly used methods for its treatment

nowadays, but the prognosis remains poor [19, 20]. Many
research studies have evaluated that hypoxia-related
lncRNAs are involved in the progression of various can-
cers. Hypoxic regions are commonly found in solid tumors,
and the appearance of these regions often harms the pro-
gression of tumors and triggers tumor immunosuppression
and may afect the therapeutic response. However, the
underlying mechanism is not fully understood. In our study,
hypoxia-related lncRNA was selected as the standard to
subgroup patients with various risks. Patients in diferent
groups have diferent prognoses and diferent immune
statuses. Tis model can help the clinicians to classify and
individualize the treatment of ovarian cancer patients and
inspire researchers to gain insight into the important role of
hypoxia-related lncRNAs in ovarian cancer.

Hypoxia can change the repair mechanism of DNA [21],
promote tumorigenesis [22] andmetastasis [23, 24], and lead
to the development of cancer stem cells [25, 26], which are
resistant to chemotherapy and radiotherapy [27, 28].
Terefore, the relationship between hypoxia and cancer
needs further study, including hypoxia-related coding genes
and non-coding genes. However, it is reported that DNA
damage is not induced by hypoxia; instead this hypoxia leads
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to some genomic instabilities [21].Temodeling of hypoxia-
related lncRNA to stratify patients with malignant tumors
has been a concern by some scholars. For example, related
research has been carried out on hepatocellular cancer and
renal cell cancer [29, 30]. In our study, a prognostic model
consisting of fve lncRNA was constructed, including
DNM3OS, AC073046.1, AC083799.1, C6orf223, and HCP5.
DNM3OS was overexpressed in ovarian cancer and facili-
tated ovarian cancer progression, and its high expression
might lead to a poor prognosis [31]; the conclusion is similar
to our research. At the same time, the role of DNM3OS in
other malignant tumors has been confrmed. Tumor-
associated mesenchymal stem cells can target DNM3OS,
leading to the progression of hepatocellular cancer [32]. In
retinoblastoma, the DNM3OS-miR-134-5p-SMAD6 axis
can promote cell proliferation, migration, and the EMT
process [33]. DNM3OS can also promote tumor progression
in gastric cancer [34] and oral cancer [35]. HCP5 has been
studied in several kinds of tumors, including ovarian [36],
esophageal [37], gastric [38], and colorectal cancer [39]. It

has been demonstrated that HCP5 can target miR-525-5p/
PRC1 signaling pathway and can target the Wnt/beta-
catenin pathway [36]. Other types of lncRNAs are presented
for the frst time, through our study.

In the high-risk group, enriched Wnt, Notch, TGF-beta,
and tumor-related pathways were found. It has been
regarded as one of the leading factors of highmortality in the
high-risk group. Wnt/beta-catenin pathway played an im-
portant role in ovarian cancer cells’ carcinogenesis, stem-
ness, and resistance ability against chemotherapy [40]. Te
hyperactivation of the Wnt signaling pathway mediated
some drug resistance in ovarian cancer, such as olaparib
[41]. Te synergistic efect of Wnt and Notch signaling
pathway can promote the proliferation of cancer cells and
further increase the migration of cancer cells [42]. Studies
have shown that the Notch pathway is closely related to
angiogenesis and chemotherapy resistance of ovarian cancer
[43, 44]. Te Notch signal pathway was regarded as the
characteristic of enriched ovarian cancer stem cells induced
by hypoxia [45]. TGFβ pathway also facilitates epithelial-
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mesenchymal transition (EMT) of epithelial ovarian cancer
(EOC) [46].

Hypoxia can promote the development of malignant
tumors, including ovarian cancer. At the same time, ascites
can also induce hypoxia [47]. One reason is that the function
of anti-tumor immune cells is inhibited in a hypoxia en-
vironment [10]. Terefore, the immune environment of the
two groups was compared. More M1 macrophages, myeloid
dendritic cells, activated NK cells, and CD8+T cells were
detected in the low-risk group, while less cancer-associated
fbroblasts (CAFs) and neutrophils were detected in the low-
risk group. M1 macrophages have an anti-tumor efect,
while M2 macrophages can promote tumor [48]. M2
macrophages were also closely related to the progression of
cancer cells [49]. We found higher M1/M2 values in the low-
risk group, which did not difer from previous fndings, and
patients with higher M1/M2 values lived longer [50].

Dendritic cells can activate T cells such as CD4+ and CD8+
cells to fght tumors by presenting an antigen [51, 52]. Other
studies have shown that NK cells had abilities that could lead
to ovarian cancer cell death, and they often co-infltrate with
CD8+Tcells [53]. CD8+Tcells are quite important in anti-
tumor immunity, and further, we can predict patients’ OS
[54]. In ovarian cancer, CAF may lead to deterioration and
drug resistance of the ovarian cancer [55]. Regarding the
former research, ovarian tumors are generally regarded as
cold tumors, which pose a challenge to the treatment. Te
immune activity of patients in the low-risk group tends to be
“hot” and may be sensitive to immunotherapy, which
provides new opportunities for patients.

lncRNAs play many roles in cancer diagnosis and treat-
ment, but the most important role of these RNAs is to control
gene expression and regulate many important biological
processes in the body, such as proliferation, genome stability,
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apoptosis, pyrolysis, autophagy, and immunity, and dysregu-
lation of these functions contributes to the progression ofmany
tumors. We can conclude that the model is verifed in the
external dataset; the model can be further stratifed through
analysis of patients with diferent clinicopathological charac-
teristics, which can provide more accurate guidance for clinical
treatment. Te limitation of study is that there is no experi-
mental verifcation of lncRNA in the model. Te reason is that
it is impossible to accumulate enough fresh tissue specimens
for survival analysis in a short period.

5. Conclusion

It was concluded the hypoxic microenvironment is closely
related to the occurrence and development of ovarian
cancer. Our established hypoxia-related lncRNA model can
be applied to pre-calculate the prognosis of ovarian cancer.
In addition, the immune status can be predicted using this
model. Our result indicates that the hypoxia-related lncRNA
model can serve as a guiding tool for better clinical treatment
of ovarian cancer.
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Background. Clear cell renal cell carcinoma’s (ccRCC) occurrence and development are strongly linked to the metabolic
reprogramming of tumors, and thus far, neither its prognosis nor treatment has achieved satisfying clinical outcomes. Methods.
Te Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively, provided us with information
on the RNA expression of ccRCC patients and their clinical data. Cuproptosis-related genes (CRGS) were discovered in recent
massive research. With the help of log-rank testing and univariate Cox analysis, the prognostic signifcance of CRGS was
examined. Diferent cuproptosis subtypes were identifed using consensus clustering analysis, and GSVA was used to further
investigate the likely signaling pathways between various subtypes. Univariate Cox, least absolute shrinkage and selection operator
(Lasso), random forest (RF), and multivariate stepwise Cox regression analysis were used to build prognostic models. After that,
the models were verifed by means of the C index, Kaplan–Meier (K-M) survival curves, and time-dependent receiver operating
characteristic (ROC) curves. Te association between prognostic models and the tumor immune microenvironment as well as the
relationship between prognostic models and immunotherapy were next examined using ssGSEA and TIDE analysis. Four online
prediction websites-Mircode, MiRDB, MiRTarBase, and TargetScan-were used to build a lncRNA-miRNA-mRNA ceRNA
network. Results. By consensus clustering, two subgroups of cuproptosis were identifed that represented distinct prognostic and
immunological microenvironments. Conclusion. A prognostic risk model with 13 CR-lncRNAs was developed. Te immune
microenvironment and responsiveness to immunotherapy are substantially connected with the model, which may reliably predict
the prognosis of patients with ccRCC.

1. Introduction

CCRCC is the most prevalent subtype of renal malignancy,
accounting for nearly 70% of all cases [1]. In addition, it
exhibits higher rates of recurrence, metastasis, and mortality
when compared to chromophobe cell renal carcinoma
(cRCC) and papillary renal cell carcinoma (pRCC) [2, 3].
Due to the insidious nature of ccRCC, 30% of patients have
metastases when they are frst diagnosed [4]. Currently,
partial or radical nephrectomy is the best treatment option

for nonmetastatic ccRCC patients, but this procedure has
a postoperative recurrence rate that can range from 20 to
40%, which has a substantial impact on patient prognosis
[5]. In addition, radiation and chemotherapy frequently
have poor results for patients with metastatic ccRCC, and
drug resistance brought on by prolonged medication fre-
quently results in a terrible prognosis. Despite the fact that
immunotherapies such as programmed death-1 (PD-1) and
programmed death ligand 1 (PD-L1) have been employed in
the treatment of ccRCC recently and have demonstrated
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some therapeutic results, some patients still do not respond
well to this course of action [6, 7].

According to previous research, copper can induce tumor
angiogenesis, which aids in the progression of cancer, as well
as be directly linked to the occurrence and growth of a variety
of malignancies [8–10]. Besides that, certain outcomes have
been attained previously based on the use of copper ion
chelators in the therapy of cancer [11, 12]. Te key to
pathological and physiological processes is cell death, and
cuproptosis is the most recent type of death that difers from
previous cell deaths such as apoptosis [13], necrosis [14], and
ferroptosis [15]. According to the research, iron-sulfur cluster
protein loss and fatty acylated protein aggregation are in-
duced by copper binding to tricarboxylic acid (TCA) cycle
fatty acyl proteins, which results in death from toxic protein
stress [16]. In this regard, it is worth noting that studies have
shown that the occurrence and development of ccRCC fre-
quently involve reprogramming of the TCA cycle. Tis is
primarily accomplished by afecting the upregulation of the
VHL/HIF pathway, which results in the inhibition of the TCA
cycle, thereby promoting the occurrence and development of
ccRCC [17–19]. In view of this, the cuproptosis theory may
provide a novel approach to the therapy of ccRCC.

Long noncoding RNA (LncRNA) is a subclass of non-
coding RNAs that can take part in and control a number of
pathophysiological processes. lncRNA is a noncoding RNA
whose biological function is more than 209 bases long.
Similar to coding genes, lncRNAs can be chromatin
reprogrammed. Dysregulation and posttranscriptional reg-
ulation of enhancers are widely involved in biological,
physiological, and pathological processes. As a newly dis-
covered class of RNA molecules, several lncRNAs have been
identifed as biomarkers of cancer, which control tumor
proliferation, immune evasion, cell death resistance, and
regional or distant metastasis. Terefore, lncRNA represents
an important improvement in our understanding of copper
worm disease and evidence that lncRNA is a therapeutic
target that can induce GC copper Fibrobacteres. However,
the specifc role of lncRNA in the adjustment of aeruginosa
is largely unknown. By controlling metabolic reprogram-
ming, lncRNA can regulate carcinogenesis [20]. Addition-
ally, studies have shown that lncRNAs play a variety of roles
in the development of ccRCC, including upregulating
lncRNA PVT1 and activating the HIF2α pathway to promote
the growth and progression of ccRCC cells, as well as
lncRNA HCG18, which promotes ccRCC migration and
transfer by modulating the miR-152-3/RAB14 axis [21, 22].
LncRNA can also be used to predict the progression of
ccRCC [23, 24]. In a recent study, it was found that CRGS is
linked to immune infltration and the immune checkpoint
PD-1, which can help predict how well ccRCC patients
would fare and ofer new information about how to treat the
disease [25]. Nevertheless, there is still a lack of knowledge
about the mechanism of action of CR-lncRNA in ccRCC,
particularly its infuence on prognosis. Tis study in-
vestigated the function of CR-lncRNA in ccRCC and de-
veloped a new prognostic model based on CR-lncRNA,
which may ofer fresh perspectives for future studies on
ccRCC and patient-specifc management.

Te proposed CR-lncRNA-based prognostic model in-
cludes the following advantages. (1) Due to the discrete
Fourier transform data, its main information components
are concentrated in the low-frequency part of the frequency
domain, and the high-frequency part is mainly secondary
information or noise. Terefore, the lengthening lncRNA
sequence can be truncated into a fxed-length vector by
intercepting the fxed-length part of the low frequency. (2)
Two traditional convolutional models were used vgg16_bn
build task models with Resnet18. Firstly, to adapt the data
dimension, the commonly used two-dimensional convolu-
tion and pooling are adjusted to one-dimensional convo-
lution and pooling. At the same time, since the label data are
a twenty-four-dimensional data, the task model is extended
to a multioutput model. LncRNA tissue-specifc analysis was
performed on multiple output regression, multiple output
classifcation, and multilabel classifcation, respectively.

2. Methods and Materials

2.1. Data Collection. A recent signifcant study investigated
the cuproptosis subtypes and built a predictive model to
improve the prognosis of patients with CRC. Gene ex-
pression data were downloaded from the TCGA database to
identify distinct molecular subtypes using a nonnegative
matrix factorization algorithm [16]. Samples with a survival
time of less than 30 days were disregarded as we downloaded
the gene expression profle data, clinical information data,
mutation data, and copy number variation (CNV) data of
ccRCC from the TCGA ofcial website. Finally, 71 normal
samples and 511 tumor samples were comprised. Te GEO
database provided the CRGS gene expression profle in
ccRCC. Gene count values were employed for diferential
analysis, and for downstream analysis, count values were
converted to log2 (TPM +1) values.

2.2. Analysis of Genetic Mutation Data of CRGS. Te TCGA
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) cohort
was used to investigate the diferences in CRGS expression
between normal andmalignant samples.Tese discrepancies
in gene expression were then re-examined in the GSE53757
and GSE40435 cohorts. We further confrmed them using
the immunohistochemistry results of proteins in the Human
Protein Atlas (HPA) database to assess their alterations in
protein expression. Te location of these genes on diferent
chromosomes was visualized using the “RCircos” package,
the “maftools” package was used to plot the mutational
landscape of these genes, and fnally, univariate COX re-
gression analysis and log-rank test were performed to in-
vestigate the impact of these genes on the prognosis of
ccRCC patients.

2.3. ConsensusClusteringAnalysis Based onCRGS. Using the
“ConsensusClusterPlus” R package, we performed un-
supervised clustering of the ccRCC samples based on the
expression patterns of the 19 CRGS. To ensure the stability of
the clusters, 1000 random repeated samplings were carried
out on 80% of the samples and all genes. Te Euclidean
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distance clustering algorithm was selected. Te appropriate
number of clusters was established through using cumula-
tive distribution function (CDF) and intra-group correla-
tion. To confrm the discriminating of various subtypes,
principal component analysis (PCA) was utilized. Te
variations in survival among various subtypes were then
shown using K-M survival curves, and the log-rank test was
used to determine whether the diferences were statistically
signifcant.

2.4. Identifcation of Molecular Characteristics, Immune In-
fltration Characteristics, and Immunotherapeutic Response
Based on Diferent Subtypes. Te “GSVA” package was used
to study the pathways implicated in various subtypes
through gene set variation analysis (GSVA). To further
investigate the diferences in immune infltration features
across distinct subtypes, the infltration abundance of di-
verse immune cells in diferent subtypes was estimated using
the single sample genes enrichment analysis (ssGSEA) al-
gorithm of the aforementioned R package. Te tumor im-
mune dysfunction and exclusion (TIDE) approach, which
was developed in recent years, can be used to anticipate
whether immunotherapy will beneft tumor patients. Tis
research thorough investigation of hundreds of distinct
tumor expression profles looked for indicators to predict
whether patients would respond to immune checkpoint
blockade (ICB) therapy, i.e., a higher TIDE score indicates
a lower likelihood of responding to immunotherapy [26].
Te website it created (https://tide.dfci.harvard.edu/) was
subsequently used to forecast the immunotherapy response
in patients from diferent subtypes. Te results of the
analysis were visualized using the R packages “tinyarray,”
“pheatmap,” and “ggplot2.” Statistical signifcance was set at
a P-value <0.05.

2.5. Diferential Analysis of mRNA, lncRNA, and MicroRNA.
Te three approaches of “Edger,” “DESeq2,” and “limma”
were utilized to produce the overlapping mRNAs, lncRNAs,
and microRNAs (miRNAs), which were then employed as
the diferential genes. |Log2fold change|>1 and false dis-
covery rate (FDR)<0.05 were the screening criteria
thresholds for the approaches described above.

2.6. WGCNA Identifes Cuproptosis-Related Modules. Te
“WGCNA” R package was used to conduct the WGCNA
analysis of the lncRNAs from the ccRCC samples. According
to the scale-free network criteria, the best soft threshold was
chosen. Te modules with distances of less than 0.25 were
then combined, and the minimum number of genes for the
modules was set at 30. Te modules having the strongest
association with cuproptosis were chosen for further analysis
after a correlation analysis between the modules and
cuproptosis phenotypic data was completed.

2.7. Construction and Evaluation of Prognostic Risk Scoring
Models. Te R package “Caret” was used to frst randomly
divide the ccRCC samples in the TCGA queue into training

and test sets in a ratio of 7 : 3. Te training set and test set are
used to train and test the model, respectively, to create
a stable model. After intersecting the diferential lncRNA of
the ccRCC with the lncRNA in the module most associated
with cuproptosis discovered by the aforementioned
WGCNA, a univariate Cox regression analysis and log-rank
test were carried out. Subsequently, lncRNAs with a P value
<0.05 obtained by both of the above two test methods were
considered as candidate lncRNAs. We selected characteristic
genes using two machine learning approaches, namely,
Lasso regression and RF, to avoid the overftting of the
model. A well-known machine learning technique called
lasso regression decreases the dimensionality of high-
dimensional data by assigning each feature a penalty co-
efcient that makes the coefcient of unimportant features
0 and therefore eliminates collinearity across features. Is
frequently employed to tune the COX proportional hazards
model (CPH) [27]. Studies have proven that RF can also be
used to model survival analyses, and a minimal depth (MD)
strategy has also been developed to identify key prognostic
characteristics, and recent studies have pointed out that tree-
based machine learning methods outperform deep learning
in dealing with tabular data [28–30]. Te overlapping
lncRNAs chosen by the two machine learning methods
above were subjected to multivariate stepwise Cox re-
gression analysis, and the best CPH model was found
according to the Akaike information criterion (AIC) criteria,
which states that the smaller the AIC value, the better the
model’s performance [31].Te performance and precision of
the model in the training set were assessed by using the time-
dependent ROC curve and the C-index, and the perfor-
mance of the risk score as an independent prognostic in-
dicator was confrmed utilizing univariate and multivariate
Cox regression analysis. In order to more thoroughly assess
the performance of our prognostic model, we gathered
a number of lncRNA-based prognostic risk scoring models
developed based on the TCGA-KIRC cohort in recent years,
computed the time-dependent ROC curve and C index of
the lncRNA model based on the entire TCGA-KIRC cohort,
and compared them with our developed prognostic model
[32–37].

2.8. Construction of Competing Endogenous RNA (ceRNA)
Network. We predicted the target miRNAs of these
lncRNAs by applying the mircode website (https://mircode.
org/download.php) based on the overlapping lncRNAs
identifed by the aforementioned univariate Cox analysis
and log-rank test. Te resulting target miRNAs were
crossed with the diferential miRNAs and then submitted to
miRDB (https://mirdb.org/), miRTarBase (https://
mirtarbase.cuhk.edu.cn/), and targets can (https://www.
targetscan.org/). Te target mRNAs of the aforemen-
tioned miRNAs were predicted by the three websites in
turn. Te fnal target mRNAs were chosen based on pre-
dictions made simultaneously by the three websites’ pre-
dicted targets. We created a lncRNA-miRNA-mRNA
ceRNA network in the Cytoscape based on the above
predicted results.
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2.9. Functional Enrichment Analysis. Using the LNCSEA
online platform (https://bio.liclab.net/LncSEA/), the func-
tional enrichment analysis of the aforementioned prognostic
CR-lncRNAs was carried out [38]. Functional enrichment
annotation of CR-lncRNA target miRNAs was performed
using the miEAA online tool (https://ccb-compute2.cs.uni-
saarland.de/mieaa2/) [39]. In order to investigate the
probable biological pathways of patients in diferent risk
groups, we simultaneously performed gene set enrichment
analysis (GSEA) on patients in high- and low-risk groups
using the R package “clusterProfler.” Te adjusted Pvalue
<0.05 and q value <0.05 were used to identify statistically
signifcant enriched pathways.

2.10. Immunotherapy Response Prediction and Drug Sensi-
tivity Analysis. ICB therapy has now been proven to be
benefcial for some tumor patients, although the majority of
patients do not gain from it, which may be partially at-
tributed to tumor heterogeneity and varied immune
checkpoint expression. In order to determine whether pa-
tients might beneft from immunotherapy, we compared the
immune checkpoint expression between high- and low-risk
patients. We then used the TIDE website to estimate the
immunotherapy response for ccRCC patients in diferent
risk groups. Sensitive anticancer drugs were examined using
the “pRRophetic” R package for two risk groups. Te
Wilcoxon rank test was used to analyze diferences between
various risk groups, and a P value lower than 0.05 was
regarded as statistically signifcant.

2.11. Statistical Analysis. R software was used to perform all
analyses (version 4.1.2). Te association analysis of two
categorical variables and the sample rate (composition ratio)
of two or more groups were both compared using the chi-
square test. To determine whether there were any diferences
in the distribution of measurement data or grade data be-
tween the two groups, a Wilcoxon rank-sum test was uti-
lized. Te Kruskal–Wallis test was used for nonparametric
comparisons when there were three or more groups. For
correlation testing in the correlation analysis, Spearman, and
distance correlation tests were employed. Te statistical
signifcance was defned as a P value of 0.05, where ∗ denotes
P value <0.05, ∗∗ denotes P value <0.01 and ∗∗∗ denotes P

value <0.001, and ns denotes no statistical signifcance.

3. Results

3.1. Landscape of Genetic Mutations in CRGS. Te 19 CRGS
were acquired through recent signifcant scientifc dis-
coveries [16]. Following that, diferential analysis of the
previously mentioned genes in the TCGA cohort
revealed that, with the exception of LIPT1, LIPT2, and
ATP7A, which revealed no statistically signifcant dif-
ferences, the expression of the majority of CRGS difered
signifcantly between normal and tumor samples and
most of them were downregulated (Figure 1(a)). Next,
the expression levels of these CRGS were checked again
in the two GEO cohorts, GSE40435 and GSE53757, and

although the results were slightly diferent from the
TCGA cohort, the general results were similar
(Figures 1(b) and 1(c)). It is common knowledge that
proteins carry out the majority of biological processes in
humans. To this end, we further assessed the variance in
these genes protein expression in the HPA database
between tumor and normal tissues. Te outcomes
demonstrated that most genes expressed diferently at
the protein level as well (Figure 1(f )). Te fndings from
the K-M survival curve were similar to those from the
univariate Cox analysis, with the exception that
CDKN2A and GCSH were risk factors, whereas the
remaining genes were protective (Figure 1(d)). Te so-
matic mutation rate of each CRGS was incredibly low,
and just 23 (6.44%) of 357 ccRCC samples showed ge-
netic alterations, according to our analysis of somatic
mutations in these genes (Figure 1(e)). Figure 1(f )
demonstrates that the majority of CRGS have low
CNV frequencies. Te frequency of copy number de-
letions is almost 9% for only PDHB. On the chromosome,
CRGS is located, as shown in Figure 1(c). We hypoth-
esized that the genetic variation in ccRCC is largely stable
because both somatic mutations and CNV frequencies
had very small sample sizes. Of course, additional ele-
ments such as methylation and histone modifcations
might also be at work. According to the aforementioned
fndings, CRGS has a signifcant impact on the prognosis
of ccRCC patients as well as the occurrence and pro-
gression of cancer.

3.2. Identifcation of Molecular Subtypes Based on CRGS.
We used the “ConsensusClusterPlus” R package, a consen-
sus clustering method based on a machine learning algo-
rithm, to perform unsupervised clustering of ccRCC
patients-based on the expression levels of the 19 CRGS.
Finally, as shown in Figures 2(a) and 2(b), we were able to
distinguish the cuproptosis molecules into two optimum
clusters, A and B, each of which had 335 and 176 samples,
respectively. Based on the abovementioned results, we can
infer that patients in clusters A and B refect two distinct
cuproptosis phenotypes, with cluster A presenting the ac-
tivating subtype of cuproptosis and cluster B representing
the suppressing subtype. Te PCA results demonstrated
good discrimination between the two distinct subtypes
(Figure 2(c)). A subsequent study of survival analysis
revealed that patients in cluster A had signifcantly higher
overall survival (OS) than those in cluster B (Figure 2(d)).
For the two subtypes, GSVA analysis identifed separate
underlying biological processes and pathways (Figure 2(e)).
Te pathways DNA repair, Myc targets, Reactive Oxygen
Species pathway, and Kras Signaling pathway, which are
typically linked to tumor development and tumor immune
infammation, were signifcantly enriched in patients in
cluster B compared with patients in cluster A. Terefore, the
reason that cluster B patients have a poor prognosis may be
due to the activation of the aforementioned pathways.
However, the spermatogenesis, pancreas beta cells, heme
metabolism, and androgen response of patients in cluster A
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were signifcantly enriched. In light of the variations in the
biological pathways mentioned above, we investigated the
immune infltration traits of the two subtypes. As can be seen
in Figure 2(f ), cluster A had a larger concentration of in-
fltrating neutrophil, mast, and eosinophil cells, whereas
cluster B had a higher concentration of infltrating activated
CD8 T cells, CD4 T cells, activated B cells, and myeloid-
derived suppressor cells (MDSC) cells. Ten, using the TIDE
website, we predicted whether certain patient subgroups

would respond to immunotherapy. According to
Figure 2(g), patients in cluster A had lower TIDE scores,
making them more likely to beneft from immunotherapy.
Figure 2(h) compares the immunotherapy responses of
diferent patient subgroups (cluster A, 89% vs. cluster B,
72%). Our fndings imply that therapeutic regimens de-
veloped for cuproptosis may be a potential anticancer target
in ccRCC patients and may improve ccRCC patients’ re-
sponsiveness to immunotherapy.
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Figure 1: Identifcation of 19 CRGS and their genetic mutational landscape. (a) Diferential expression of CRGS in the TCGA cohort;
(b) diferential expression of CRGS in the GSE40435 cohort; (c) diferential expression of CRGS in the GSE53757 cohort; (d) co-expression
network between CRGS; (e) mutation frequency of CRGS; (f ) copy number variation frequency of CRGS. ∗P value <0.05, ∗∗P value <0.01,
∗∗∗P value <0.001, ∗∗∗∗P value <0.0001.
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3.3. Identifcation of CR-lncRNAs. As master regulators of
gene expression, lncRNAs have been implicated in a number
of malignancies in recent years. A notable illustration is
PCAT-1 dysregulation, which is strongly linked to the de-
velopment of prostate cancer [40]. Additionally, lncRNAs
can be employed independently to forecast tumor prognosis,
tumor progression, and disease diagnosis [41, 42].Terefore,
we retrieved the lncRNA expression profles of ccRCC pa-
tients from the TCGA database and, after deleting the
lncRNAs that were barely expressed, acquired 9024 lncRNAs
forWGCNA analysis.TeWGCNA network was built using
the one-step method, and Figure 3(a) shows that there were
no outlier samples discovered and that the samples were well
clustered. Te ideal soft threshold of 3 was identifed using
the scale-free topology ftting index of 0.85 and network
connectivity as the standard (Figure 3(b)). A hierarchical
clustering dendrogram that obtained 10modules is shown in
Figure 3(c). As can be seen from Figure 3(d), the blue, green,
and magenta modules are all signifcantly associated with
tumor and cuproptosis, but the blue module has the
strongest correlation with tumor (r� −0.5, P< 0.001). As
a result, we chose the lncRNAs identifed in the bluemodules
to further develop the prognostic molecular characteristics
of ccRCC patients.

3.4. Construction and Validation of Prognostic Risk Scoring
Model. We eventually discovered 4229 overlapping
mRNAs, 2287 overlapping lncRNAs, and 181 overlapping
miRNAs using the three methods of “EdgeR,” “DESeq2,”
and “limma” for gene diferential analysis. Te diferential
lncRNAs were intersected with the 1033 lncRNAs in the blue
module above to provide 630 overlapping lncRNAs as
candidate lncRNAs. Subsequently, univariate Cox regression
analysis and the log-rank test yielded 116 lncRNAs with
prognostic signifcance (P value <0.05). Figure 4(a) displays
the optimum parameter (λ) interval for Lasso regression
using 10-fold cross-validation. When we selected the λ value

with the smallest mean error, we got 33 lncRNAs
(Figure 4(b)). Te relationship between the number of trees
and the error rate in the RF algorithm is illustrated in
Figure 4(c), along with the characteristic genes the algorithm
identifed. It is clear that as the tree expands, the error rate
curve gradually fattens out, showing that the number of
trees chosen was sound. Te MD approach yielded
a threshold of 7.9681, and using this threshold, we were able
to derive 44 signifcant eigengenes (Figure 4(d)). By inter-
secting the lncRNAs produced by the previous two ap-
proaches, we identifed 23 potential lncRNAs (Figure 4(e)).
Based on the aforementioned potential lncRNAs, a multi-
variate stepwise CPH model was created, and with an
AIC� 1234.71, we were able to generate the ideal CPH
model for 13 lncRNA combinations in the training set
(Figure 4(f )).

Te expression of lncRNA in the aforementioned model
and the regression coefcient obtained by multivariate
stepwise Cox regression analysis were used to generate the
risk score for each patient. Te following is the calculating
formula: risk score� (−0.3586∗AC007637.1 exp) + (−0.2050
∗ LINC00113 exp) + (−0.5718∗AL162377.1 exp) + (−1.1979
∗AL353803.2 exp) + (−0.5197∗ PSMG3-AS1 exp) + (1.3177
∗TFAP2A-AS2 exp) + (0.5387∗AC007881.3 exp) + (1.5752
∗ LINC01460 exp) + (0.9538∗ LCMT1-AS1 exp) + (0.9434∗
HMGA2-AS1 exp) + (2.0661∗AC007993.3 exp) + (2.1685∗
AC117382.2 exp) + (−0.3046∗AC008556.1 exp). Based on
the median risk score, patients were separated into high- and
low-scoring groups. Te risk score’s area under the curve
(AUC) at one year, three years, and fve years is 0.800, 0.793,
and 0.819, respectively, according to the ROC curve of the
training set (Figure 5(a)). Te ROC curve of the test set also
displays greater accuracy, with AUCs exceeding 0.75 at one
year, three years, and fve years (Figure 5(d)). Te C index,
which was 0.77 in the training set (Figure 5(b)) and 0.71 in the
validation set (Figure 5(e)), both of which were considerably
higher than the remaining clinicopathological variables, also
showed that the model had great consistency. In the training
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Figure 2: Consensus cluster analysis, immune infltration analysis, and immunotherapy response analysis based on 19 CRGS. (a) Consensus
clustering-based on CRGS; (b) cumulative distribution function plot; (c) PCA analysis between two cuproptosis clusters; (d) survival
analysis between two cuproptosis clusters; (e) GSVA analysis; (f ) diferences between 23 immune cells in diferent cuproptosis clusters;
(g) diferences in TIDE scores among diferent cuproptosis clusters; and (h) diferences in immunotherapy response among diferent
cuproptosis clusters. ∗P value <0.05, ∗∗P value <0.01, ∗∗∗P value <0.001, ∗∗∗∗P value <0.0001.

Journal of Oncology 7



and test sets, the OS of patients in the high-score grouping
was considerably lower than that in the low-risk category
(Figures 5(c) and 5(f), P value <0.001). Additionally, the
prognostic risk model we created performs better than some
current models when comparing the two indicators of AUC
and the C index (Figure 5(g)).Te results above show that the
prognostic risk score model based on 13 CR-lncRNAs can
precisely predict the prognosis of ccRCC patients.

3.5.CorrelationofPrognosticRiskScoringModelswithClinical
Pathological Features. Te association between risk scores
and clinicopathological characteristics was also demon-
strated by our investigation. As observed in Figure 6(a),
grade and stage vary among various risk groups even if risk
scores are really not related to age and gender. Furthermore,
a greater risk score was signifcantly correlated with both
a higher grade and stage (Figure 6(b)). Likewise, the out-
comes of patients in the high-risk group were considerably
worse than those in the low-risk group in all clinical sub-
groups, according to the fndings of the subsequent survival
analysis (Figure 6(c)). Te risk score was also revealed to be

an independent prognostic factor in ccRCC patients by
univariate and multivariate Cox regression analysis
(Figures 6(d) and 6(e)). In light of the aforementioned
fndings, the prognostic risk score model, which is made up
of 13 CR-lncRNAs, is a very promising biomarker that can
not only accurately predict the prognosis of ccRCC patients
but also assess their clinical progression.

3.6. Correlation of Prognostic Models with Tumor Immune
Microenvironment and Immunotherapy Responses. Te
ssGSEA analysis suggests that the immune infltration fea-
tures of the patients in the two risk groups varied. While
patients in the low-risk group had higher rates of neutrophil,
immature dendritic cell, andmast cell infltration, patients in
the high-risk group had higher rates of activated CD4 Tcell,
activated CD8 Tcell, and MDSC infltration (Figure 7(a)). It
was further revealed by PCA analysis that the two patient
groups represented various immune cell infltration mi-
croenvironments (Figure 7(b)). Te majority of immuno-
logical checkpoints were more strongly expressed in the
high-risk group, whereas PD-L1 and PD-L2 expression were

Cluster Dendrogram

H
ei

gh
t

20

40

60

80

120

140

100

(a)

1

2

3
4

5
6

7
8

9
10 11

12
13 14

15
16

17
18

19 20

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sof Treshold (power)

Sc
al

e F
re

e T
op

ol
og

y 
M

od
el

 F
it,

sig
ne

d 
R^

2

Scale independence

1

2

3
4

5 6 7 8 9 10
11

12
13

14
15

16
17 18

19
200

500

1000

1500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sof Treshold (power)

M
ea

n 
Co

nn
ec

tiv
ity

Mean connectivity

(b)

0.65

0.70

0.75

0.80H
ei

gh
t 0.85

0.90

0.95

1.00
Cluster Dendrogram

Module colors

(c)

Tumor

Cuproptosis

MEgrey

MEpink

MEblue

MEmagenta

MEturquoise

MEblack

MEyellow

MEred

MEgreen

MEbrown

P value
<0.001
0.001−0.01
>=0.05

Spearman's r
−0.31~−0.5
−0.3~0.3
0.31~0.5
>0.5

0.0

0.5

1.0
Pearson's r

M
Eb

ro
w

n

M
Eg

re
en

M
Er

ed

M
Ey

el
lo

w

M
Eb

la
ck

M
Et

ur
qu

oi
se

M
Em

ag
en

ta

M
Eb

lu
e

M
Ep

in
k

M
Eg

re
y

(d)

Figure 3:Weighted correlation network analysis. (a) Cluster analysis of all samples in the TCGA cohort; (b) analysis of network topology for
various soft thresholding powers. Te left panel shows the scale-free ft index (y-axis) as a function of the soft thresholding power (x-axis).
Te right panel displays the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis); (c) clustering
dendrogram of diferent similarity genes-based on topological overlap; and (d) the module-traits associations diagram. Each grid cor-
responds to a module, the color of the grid represents the size of the correlation between diferent modules, the thickness of the lines
represents the size of the correlation between modules and phenotypes, and the color of the lines represents the size of the P value of the
correlation test between modules and phenotypes.
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Figure 4: Continued.
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more prominent in the low-risk group (Figure 7(c)).
According to the current understanding, immunotherapy
has a greater chance of helping tumor patients the more
PD-L1 is expressed. Additionally, because the majority of
immune checkpoints are signifcantly expressed in the high-
risk group, it is more likely to produce immunosuppression,
which will cause the cancer to advance in those people. We
next used the TIDE online tool to predict immunotherapy
responses for patients in the two groups once more. Te
fndings demonstrated that the low-risk group had lower
TIDE scores than the high-risk group (Figure 7(d)).
Moreover, Figures 7(e) and 7(f) show that better immu-
notherapy outcomes are signifcantly correlated with lower
risk scores. Terefore, we can conclude that immunotherapy
is more likely to be benefcial for patients in the low-risk
group. Together, the prognostic risk score model may be

helpful in identifying patients’ TIME and forecasting their
response to immunotherapy.

3.7. Construction of ceRNA Networks. It is generally known
that miRNA can infuence mRNA expression via binding to
mRNA. As a ceRNA, lncRNA can also control the expression
of mRNA by competitively binding to miRNA, infuencing
the occurrence and progression of cancer. To learn more
about the regulatory role of CR-lncRNA at the gene level, we
frstly predicted the target miRNAs of the aforementioned
prognostic CR-lncRNAs using the website miRcode,
yielding 23 diferential miRNAs (Figure 8(a)). Te target
miRNAs identifed above were then used to predict the
target mRNAs via the miRDB, miRTarBase, and TargetScan
websites, and a total of 174 diferentially overlapping
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Figure 4: Construction of a prognostic risk scoring model. (a) Tuning parameter map for lasso regression based on 10-fold cross-validation;
(b) the selected lncRNAs and their regression coefcients based on lambda with the smallest mean error of lasso regression; (c) prognostic
feature lncRNAs selected based on the random forest algorithm; (d) prognostic signature lncRNAs selected based on the MD method;
(e) venn diagram showing overlapping lncRNAs obtained by the lasso algorithm and random forest algorithm; (f ) forest plot showing
13 CR-lncRNAs obtained by multivariate stepwise COX regression analysis.
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mRNAs were discovered (Figure 8(b)). We created
a lncRNA-miRNA-mRNA ceRNA network based on the
results above (Figure 8(c)).

3.8. Functional Enrichment Annotation. We discovered that
the aforementioned prognostic CR-lncRNAs were consid-
erably enriched in cell proliferation, metastasis, stemness,
and EMT as well as being signifcantly related with a variety
of immune cells by enrichment analysis (Figures 9(a) and
9(b)). Te miRNA enrichment analysis revealed that the

aforementioned miRNAs were signifcantly enriched in
pathways involved in the development of cancer and im-
mune infammation, including the p53 signaling pathway,
the JAK-STAT signaling pathway, the expression of PD-L1,
the PD-1 checkpoint pathway in cancer, the chemokine
signaling pathway, and other pathways (Figure 9(c)). Te
underlying biological pathways in patients in the high-risk
and low-risk groups were then further investigated using
GSEA analysis. According to the fndings, the IL-6/JAK/
STAT3 signaling, E2f targets, and epithelial-mesenchymal
transition (EMT) pathways were considerably enriched in

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 – specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.800
AUC at 3 years: 0.793
AUC at 5 years: 0.819

Train

(a)

Time (years)

C
on

co
rd

an
ce

 in
de

x

0 2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

0.9

Risk score
Age
Gender

Grade
Stage

Train

(b)

+

p<0.001

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (years)

O
ve

ra
ll 

su
rv

iv
al

Risk
+
+

High risk
Low risk

179 139 110 87 64 43 30 17 11 10 3 0 0
179 162 143 125 100 70 41 28 20 15 9 2 1Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (years)

Ri
sk

Train

(c)

1 – specificity

AUC at 1 years: 0.781
AUC at 3 years: 0.757
AUC at 5 years: 0.772

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

Test

(d)

Risk score
Age
Gender

Grade
Stage

Time (years)

C
on

co
rd

an
ce

 in
de

x

0 2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

0.9

Test

(e)

Risk
+
+

High risk
Low risk

p<0.001

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (years)

O
ve

ra
ll 

su
rv

iv
al

67 53 40 28 15 10 6 5 3 2 1 1 0
86 79 60 49 37 25 20 11 6 4 0 0 0Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (years)

Ri
sk

Test

(f )

Shen Lulu, et al

Tingting Cui, et al

Tinghao Li, et al

Zhang D, et al

Yang Su, et al

Han Zhang, et al

RiskScore

0.0 0.2 0.4 0.6 0.8
1−year's AUC

Tingting Cui, et al

Yang Su, et al

Shen Lulu, et al

Zhang D, et al

Tinghao Li, et al

Han Zhang, et al

RiskScore

0.0 0.2 0.4 0.6 0.8
3−year's AUC

Yang Su,et al

Tingting Cui, et al

Zhang D, et al

Shen Lulu, et al

Tinghao Li, et al

Han Zhang, et al

RiskScore

0.0 0.2 0.4 0.6 0.8
5−year's AUC

Tingting Cui, et al

Yang Su, et al

Zhang D, et al

Shen Lulu, et al

Tinghao Li, et al

Han Zhang, et al

RiskScore

0.0 0.2 0.4 0.6 0.8
C−index

(g)
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the high-risk group. Patients in the low-risk group, on the
contrary side, had signifcantly higher levels of pathways
such oxidative ylation, protein metabolism, fat acid meta-
bolism, and androgen response (Figure 9(d)).

3.9. Sensitivity Analysis of Antitumor Drugs. With the use of
the “pRRophetic” R package, we acquired 6 potentially sen-
sitive medications to help further direct the individualized
treatment of ccRCC patients. Results showed that in the high-

risk group, acadesine (AICAR), all-trans retinoic acid (ATRA),
palbociclib (PD-0332991), and cisplatin were more sensitive,
whereas in the low-risk group, GSK1904529A and KIN001102
were more sensitive (Figure 10).

4. Discussion

Using the TCGA and GEO datasets, this study investigated
the expression diferences of CRGS at the gene level between
normal tissue and tumor samples, and further confrmed the
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expression variations of CRGS at the protein level in the
HPA datasets. In ccRCC, the majority of CRGS were lowly
expressed, and a survival study afterward indicated that most
CRGS were protective genes in ccRCC patients. In addition,
the genetic mutation data analysis confrmed that the genetic
mutation of the above genes in ccRCC is relatively rare. Te
two subtypes of cuproptosis clusters were then established
by consensus clustering-based on the expression of 19
CRGS, and further analysis proved that the subtype with
high CRGS expression was substantially associated with
higher survival. Tese fndings imply that cuproptosis might

be a therapeutic target for people with ccRCC. It is in-
teresting to note that there were signifcant diferences be-
tween the TIME of the two subtypes, with the subtype
considerably downregulated in CRGS having a larger
abundance of cytotoxic T lymphocytes (CTLs) infltration
but also more MDSC infltration. It is well recognized that
MDSC infuence immunosuppressive tolerance through
a variety of methods as signifcant elements of the milieu that
suppresses the immune response to cancer. Numerous
studies have proven that MDSC, in particular, suppress the
T-cell immunological response by creating a lot of reactive

(a) (b)

DownlncRNA
UpmiRNA
DownmiRNAUplncRNA

DownmRNA
UpmRNA

(c)

Figure 8: Construction of the ceRNA network. (a) Interaction network diagram between lncRNA and miRNA; (b) interaction network
diagram between mRNA and miRNA; (c) ceRNA network diagram of lncRNA-miRNA-mRNA. Yellow means upregulation, blue means
downregulation.
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oxygen species (ROS) [43–45]. Also, MDSCs have been
linked to a number of tumor-related events, including an-
giogenesis, treatment resistance, and metastasis [46]. Tis
may also explain why cluster B subtypes have lower survival
rates and higher CTLs infltration. Notably, subsequent
GSVA analysis also supported the fnding that patients with
the cluster B subtype had substantial ROS PATHWAY
enrichment. Te outcomes of the TIDE online tool also
revealed that patients with the cluster B subtype responded
to immunotherapy less favorably. Te statistics shown above
clearly demonstrate that cuproptosis is highly related to the
prognosis and immunotherapy of patients with ccRCC,
opening up new research directions.

LncRNA, which acts as master regulator of gene ex-
pression, has been linked to a number of cancers and can be
used independently to predict a patient’s prognosis and
make a diagnosis of the disease [40–42]. By using WGCNA,
we were able to recognize CR-lncRNA. Subsequently,
prognostic characteristic genes were further screened using
univariate Cox regression analysis, log-rank test, LASSO
regression, and RF. Finally, using multiple stepwise Cox
regression, an optimal prognostic risk score model made up
of 13 CR-lncRNAs was constructed. Te model has strong
predictive performance and consistency, as indicated by the
ROC curve and the C index. Furthermore, it was discovered
that the CR-lncRNA-based prognosis models developed
using WGCNA and various machine learning algorithms
were typically superior to some current models when

compared to some lncRNA-based prognostic models de-
veloped in the TCGA-KIRC cohort in recent years.

Besides that, we investigated the relationship between
predictive risk scores and clinicopathological characteristics
and discovered that there was a substantial relationship
between risk scores and clinicopathological variables in
ccRCC. Furthermore, studies showed a signifcant positive
correlation between the risk score and the tumor’s aggres-
siveness, with the greater the risk score, the higher the tumor
grade and stage. Subsequent analysis of immune checkpoint
expression and immune infltration analysis confrmed that,
except for PD-L1 and PD-L2, the remaining immune
checkpoints were more highly expressed in the high-risk
group, and the infltration abundance of MDSC was also
higher. Tis demonstrates that patients with higher risk
scores are more likely to produce an immunosuppressive
microenvironment, enabling tumor cells to elude the im-
mune system’s surveillance and promoting the growth and
development of malignancies. Furthermore, evidence that
patients with greater risk scores had a worse response to
immunotherapy came from the TIDE study. We conducted
the GSEA analysis to investigate the mechanism underlying
this diference. Pathways including EMT and IL6 Jak Stat3
Signaling were discovered to be considerably enriched in the
high-risk group. Studies have already shown that activating
the EMTpathway can promote tumor cell infltration, tumor
migration, and metastasis. It can also cause the formation of
an immunosuppressive microenvironment, which helps
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tumor cells to escape the immune system [47, 48]. Mean-
while, the IL-6/JAK/ STAT3 Signaling pathway is over-
activated in many forms of cancer, and it is implicated in
driving cancer cell proliferation, invasion, and metastasis, as
well as interacting with TIME to inhibit antitumor immune

responses [49]. Moreover, it has been shown that the Stat3
transcription factor in the Stat3 signaling pathway can in-
crease the expression of S100A8 and S100A9, preventing
dendritic cell (DC) diferentiation and stimulating the ac-
cumulation of MDSC, which in turn mediates the
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Figure 10: 6 potential antitumor drugs-based on prognostic risk score model. ∗P value <0.05, ∗∗P value <0.01, ∗∗∗P value <0.001.
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immunosuppressive efects [50]. According to the results
above, there may be a connection between the activation of
the aforementioned pathways and the diferences in TIME
and immunotherapy responses amongst diferent risk
subgroups.

We developed a lncRNA-miRNA-mRNA ceRNA network
to more thoroughly elucidate the regulatory role of CR-lncRNA
at the gene level. Following enrichment analysis, it was dis-
covered that the aforementioned lncRNAs and miRNAs were
strongly linked to tumor development,metastasis, prognosis, cell
proliferation, and TIME. AICAR, ATRA, PD-0332991, Cis-
platin, GSK1904529A, and KIN001-102 were among the six
possible anticancer medications that were tested using drug
sensitivity analysis. And research has shown that ATRA can
enhance the survival of tumor-specifc CD8 T cells and upre-
gulated MHC I expression in tumor cells to function as anti-
tumor immunity [51–53]. Additionally, it can also promote
MDSC diferentiation and maturation, which in turn lowers
their population, triggering the immune system to inhibit tumor
growth [54]. A highly selective CDK4/6 inhibitor known as PD-
0332991 has been shown to have antiproliferative efects in
a variety of malignancies, including renal cell carcinoma and
liver cancer [55, 56].

Tis study has some relative merits overall. First of, the
CR-lncRNA-based prognostic model created by the
WGCNA and several machine learning algorithms can
successfully predict the prognosis of ccRCC patients. It
ofers greater prediction performance and consistency
when compared to several other lncRNA-based models
already in use. Signifcant relationships between the model,
TIME, and immunotherapy were also discovered in the
fnal research. Tere are, however, some restrictions-based
on bioinformatics analysis, and multicenter prospective
studies are still required for validation in the latter phase,
which is also the main objective of our future
research work.

5. Conclusion

We explore the potential function of CRGS in ccRCC after
a thorough investigation. Based on CR-lncRNA, a model for
prognostic risk scoring was developed. Tis model can
distinguish TIME, predict the efectiveness of immuno-
therapy, and provide great and independent prognostic
performance in ccRCC patients, allowing for more per-
sonalized treatment. For upcoming ccRCC research, it ofers
fresh perspectives and ideas.
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Background. 5-methylcytosine (m5C) is a major site of RNA methylation modifcation, and its abnormal modifcation is associated
with the development of gastric cancer (GC). Tis study aimed to explore the value of m5C-related genes on the prognosis of GC
patients through bioinformatics. Methods. First, m5C-related genes were obtained by nonnegative matrix factorization (NMF)
analysis and diferentially expressed analysis. Te m5C-related model was established and validated in distinct datasets. Moreover,
a diferential analysis of risk scores according to clinical characteristics was performed. Te enrichment analysis was carried out to
elucidate the underlying molecular mechanisms. Furthermore, we calculated the diferences in immunotherapy and chemotherapy
sensitivity between the high- and low-risk groups. Finally, we validated the expression levels of identifedmodel genes by quantitative
real-time polymerase chain reaction (qRT-PCR). Results. A total of fve m5C-related subtypes of GC patients in the TCGA database
were identifed. Te m5C-related model was constructed based on APOD, ASCL2, MFAP2, and CREB3L3. Functional enrichment
revealed that the m5C-related model might involve in the cell cycle and cell adhesion. Moreover, the high-risk group had a higher
abundance of stromal and immune cells inmalignant tumor tissues and a lower tumor purity than the low-risk group.Te patients in
the high-risk group were more sensitive to chemotherapy and had better sensitivity to CTLA4 inhibitors. Furthermore, qRT-PCR
results from our specimens verifed an over-expression of ASCL2, CREB3L3, and MFAP2 in the cancer cells compared with the
normal cells. Conclusion. A total of fve GC subtypes were identifed, and a risk model was constructed based on m5C modifcation.

1. Introduction

GC is the ffth most commonmalignancy worldwide and the
third leading cause of global cancer-related mortality [1, 2].
Although clinical and surgical conditions improved signif-
icantly, the 5-year survival rate for GC patients remains very
low, as more than 80% of patients are diagnosed at an
advanced stage [3, 4]. Now, surgical resection is still the most
efective treatment for early GC. Besides, chemotherapy,
radiotherapy, immunotherapy, and molecular targeted
therapy also play essential roles in the prognosis for GC
[5, 6]. However, the mechanism of GC progression and

metastasis is still unclear, and the prognosis leading to
metastasis, recurrence, and advanced GC is not yet satis-
factory.Terefore, it is urgent to study the mechanism of GC
progression to develop new therapeutic strategies.

RNAmodifcations, such as N6methyladenosine (m6A),
play a visible role in epigenetic gene regulation and cell
function and are closely related to many human diseases
such as cancer, neurological diseases, and immune disorders
[7–11]. As another important RNA modifcation, m5C has
attracted more and more attention, and like m6A, m5C has
its methyltransferase, demethylase, and binding proteins
[12]. Members of the NOP2/Sun domain family 1-7
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(NSUN1-7) and DNA methyltransferase (DNMT) homolog
DNMT2 act as m5C writers in mammals and catalyze
methylation at the C5 site of RNA [13, 14]. In contrast, TET2
oxidizes m5C to 5-hmC and then removes the methyl group
[15, 16]. Subsequently, the Aly/REF output factor (ALYREF)
and Y-box binding protein 1 (YBX1), which are charac-
terized by readers, recognize and bind the m5C motif and
then perform diferent biological functions [17, 18]. In
addition, these regulatory factors are known to be syner-
gistically involved in multiple tumor progressions with m5C
modifcation. Chen et al. [19] found TRDMT1, an RNA
methyltransferase known to methylate tRNA, is a writer of
RNA m5C at sites of DNA damage and contributes to the
resistance of cancer cells to radiotherapy and PARP in-
hibitors. Breast tumors expressing low levels of TRDMT1 are
more responsive to radiotherapy. Du et al. [20] analyzed the
clinical relevance of m5C regulators in pan-cancer. Liu et al.
[21] wrote that the RNAm5Cmodifcation and its regulators
have been shown to be involved in the progression of various
cancers, including hepatocellular carcinoma, bladder cancer,
glioblastoma multiforme, breast cancer, and head and neck
carcinoma, indicating that RNA m5C might play an im-
portant role in tumorigenesis and progression.

In the present study, the efect of m5C on the prognosis
of GC patients was explored by bioinformatics methods,
which identifed fve m5C-related subtypes and mined four
m5C-related genes as biomarkers, and based on the re-
lationship of the prognosis model, patient survival, thera-
pies, and the role of m5C in GC were demonstrated roundly.

2. Materials and Methods

2.1. Data Source. GC-related datasets were obtained from
Te Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/) and the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/gds). Te
TCGA-GC dataset contains 32 normal cases and 373 cancer
cases. Te 345 cancer samples that have complete survival
data were split into a training set (242 cases) and a testing set
(103 cases) according to a ratio of 7 : 3. Te t-test was used to
compare the diferent characteristics between patients in
training and testing sets. Te results are shown in Table 1.
Moreover, the GSE15459 dataset containing 192 cancer
cases was obtained from the GEO database as a validation
set. Te 13 m5C RNA regulators (NOP2, NSUN2, NSUN3,
NSUN4, NSUN5, NSUN6, NSUN7, DNMT1, TRDMT1,
DNMT3A, DNMT3B, TET2, and ALYREF) were obtained
from the previous literature [22].

2.2. Identifcation of m5C-Related Subtypes. 373GC samples
from the TCGA database and the expression of 13m5C RNA
genes from the previous study were used for the nonnegative
matrix factorization (NMF) analysis (R language, Version
0.23.0) [23] to identify m5C-related subtypes for GC pa-
tients. Ten, overall survival (OS) and disease-specifc
survival (DSS) analyses of diferent subtypes were per-
formed to screen the two subtypes with the most signifcant
prognostic diferences.Tese two subtypes were then used in

subsequent analyses. Moreover, the clinical characteristics of
the two subtypes were analyzed, and the results were vi-
sualized by ggplot2 (R package, Version 3.3.5) [24]. Te
immune cell infltration of the two subtypes was calculated
using the ssGSEA algorithm in the GSVA (R package) based
on 24 immune cell types [25] and the MCPcounter algo-
rithm by immunedeconv (R package, Version 2.0.4) based
on 8 immune cell types and 2 stromal cell types.

2.3. Construction and Validation of an m5C-Related Model.
Te edgeR (R package) (Version 4.1) is used to perform
diferential expression analysis [26, 27]. P< 0.05 and |
log2FC|> 1 were considered as a diference. Te DEGs
between the two subtypes with the most signifcant difer-
ences were detected, and the DEGs between the GC samples
(n� 373) and para-cancerous samples (n� 32) in the TCGA
dataset were also screened. By overlapping DEGs selected
above, the DEm5CRGs were fnally screened. Ten, Cox
regression analyses and the LASSO algorithm were adopted
to construct the risk signature. Te threshold was P< 0.05.
Te risk score of each sample was calculated by the following
formula: risk score� h0(t)× exp (β1X1 + β2X2 + ... βnXn). Te
h0(t) was the baseline hazard function, and the β was the
regression coefcient. GC patients in the training set were
split into high- and low-risk groups based on the median risk
score. At last, R package Survminer and survival ROC were
used to plot the Kaplan–Meier (KM) and ROC curves to
evaluate the risk model in the training set, and then the
testing and validation sets were used to validate [28, 29].

2.4. Diferential Analysis of Risk Values in Clinical
Characteristics. Te stratifcation survival analysis was
performed to confrm whether the risk model could apply in
diferent clinicopathological characteristics (including age,
gender, radiotherapy, and chemotherapy). Meanwhile, the
clinicopathological data were involved in variance analysis
to investigate diferences between clinicopathological fea-
tures and risk values.

2.5. Construction of a Nomogram. Te risk score and clin-
icopathological data were merged into Cox regression an-
alyses to detect the independent prognosis factors. Ten, the
selected independent prognostic factors were integrated to
establish a nomogram. Furthermore, the calibration curves
and the decision curve analysis (DCA) were plotted to assess
the nomogram.

2.6. Diference Analysis andGSEA. Te DEGs between high-
and low-risk groups were detected by the “limma” package.
P< 0.05 and |log2FC|> 1 were considered as a diference. R
package clusterProfler (Version 4.0.2) was selected to
perform GO enrichment and KEGG pathway analyses on
these DEGs. Moreover, to further explore the related sig-
naling pathways and potential biological mechanisms, R
package clusterProfler (Version 3.18.1) [30] was adopted to
perform GSEA enrichment analysis. Te signifcance
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thresholds for GSEA were |NES|> 1, q< 0.25, and NOM
P< 0.05.

2.7. Analysis of Immunotherapy and Chemotherapy. Te
immune cell infltration situations of the sample are inferred
by the ESTIMATE and the CIBERSORT algorithms, and
diferences were analyzed between the high- and low-risk
groups from the training set [31]. Te tumor purity of the
two groups was assessed using ABSOLUTE software. Te
expression of targeted immune checkpoints and the sensi-
tivity to immunotherapy were analyzed in the two groups,
and the prediction of susceptibility to PD-1 and CTLA4
inhibitors was analyzed in the two groups using the SubMap
algorithm. We used oncoPredict (Version 0.2) in R language
to analyze the sensitivity of commonly used chemotherapy
drugs of GC samples [32].

2.8. Expression Validation of Prognostic lncRNAs. GC cell
lines (MKN-27, MKN-45, and SMU-1) and human im-
mortalized normal gastric cells CES-1 were obtained from
CyberKang (Shanghai) Biotechnology Co., Ltd. and main-
tained in complete RPMI-1640 and DMEM medium
(Welgene, Inc., Gyeongsan-si, Korea) at 37°C in a humidifed
5% CO2 incubator. Te prognostic gene expression levels
were vilifed by qRT-PCR. All cells were lysed with the
TRIzol Reagent (cat.:356281), and total RNA was isolated.

Te RNA was reverse-transcribed to cDNA using the Script
RT I First strand cDNA SynthesisAll-in-OneTMFirst-Strand
cDNA Synthesis Kit (cat: G33330-50) before qRT-PCR. PCR
was conducted in a BIO-RAD CFX96 Touch TM PCR de-
tection system (Bio-Rad Laboratories, Inc., USA). Te de-
tailed forward and reverse primers are shown in
supplementary table 1. All primers were synthesized by
Servicebio (Servicebio, Wuhan, China). Te experiment was
repeated in triplicate on independent occasions.

2.9. Statistical analyses. Te Wilcoxon test was used to
perform a diferent comparison between the two groups.
Associations between risk scores and gene function or re-
lated pathways were calculated by Pearson correlation.

3. Results

3.1. Identifcation of m5C-Related Subtypes. NMF analysis
fnally identifed fve m5C-related subtypes (Figures S1 and
1(a)). OS and DSS analyses showed that survival diferences
between group3 and group4 were the most signifcant
(P< 0.05; Figure S2). Te distribution features of the clinical
characteristics and the infltration of immune cell types in
group3 and group4 are shown (Figures 1(b) and 1(c)). Te
two groups were quite diferent in 5-cell concentrations
(Figure 1(d)). Nine 5mC genes were signifcantly diferent
between them (Figure 1(e)).

Table 1: Characteristics of patients in the training set and the testing set from the TCGA-GC cohort.

Characteristics n Training set Testing set P value
Total cases 148 102 46
Age
≤60 65 43 22
>60 83 59 24 0.074

Metastasis
M0 139 96 43
M1 9 6 3 0.627

Node
N0 30 20 10
N1 46 31 15
N2 32 23 9
N3 40 28 12 0.00 

Stage grouping
Stage I 7 4 3
Stage II 49 32 17
Stage III 77 56 21
Stage IV 15 10 5 0.310

Tumor
T1 1 1 0
T2 27 16 11
T3 80 60 20
T4 40 25 15 0.330

Treatment type
Pharmaceutical therapy 86 58 28
Radiation and pharmaceutical therapy 61 44 17
Radiation therapy 1 0 1 0.385

Gender
Female 51 35 16
Male 97 67 30 0.250

Statistical signifcance is shown in bold.
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3.2. Construction and Validation of an m5C-Related Model.
In group3 and group4, 377 DEGs (245 up, 132 down) were
identifed (Figure 2(a)). In contrast, a total of 1196 DEGs
(748 up and 448 down) were identifed from normal and GC
samples (in the TCGA dataset) (Figures 2(b)–2(d)). Finally,
102 DEm5CRGs were extracted from the intersection
(Figure 2(e)). Cox regression (univariate) analysis showed
that 8 DEm5CRGs were related to OS (P< 0.05; Table 2).
Subsequently, a model involving 4 DEm5CRGs (APOD,
ASCL2, MFAP2, CREB3L3) was constructed by LASSO and
Cox regression (multivariable) analysis (Table 3 and
Figure 2(f )). Ten, the risk score of each sample was cal-
culated with the following equation: risk
score � 0.0807× expAPOD+ (0.1439)× expASCL2 + 0.1296
× expMFAP2 + 0.1091 × expCREB3L3, and the samples
were grouped according to the median risk score. Te high
scores patients had a shorter OS (Figure 2(g)). Te AUCs
were 0.628, 0.695, and 0.641 (1, 3, and 5 years) (Figure 2(h)).
Te results showed that MFAP2, APOD, and CREB3L3
were highly expressed in the high score group, while ASCL2
was low. Similarly, the 103GC (testing set) cases were split
into high- (n� 52) and low-score (n � 51) groups, and the
192GC cases (validation set) were split into high- (n� 96)
and low-score (n � 96) groups. Results are consistent with
the training set (Figures S(3a) and (3b)). Te AUCs of the
testing set were 0.670, 0.658, and 0.869 (1, 3, 5-year)
(Figure S3(c)), and the AUCs of the validating set were
0.627, 0.671, and 0.700 (for 1, 3, 5-year OS) (Figure S3(d)).

Te risk scores, patient survival status, survival time, and
gene expression pattern are shown in Figures S4(a)–S4(c).

3.3. Diferential Analysis of Risk Values. To implore the
clinicopathological characteristics and the survival of
cases in the two groups, a hierarchical analysis of the km
curve in the TCGA cases was performed. High score
patients younger than 60 years old or whose pathological
stage were T3 or T4 had a worse prognosis (Figure 3).
Diferences analysis between clinicopathological features
and risk values showed that M0 and M1 and Stage II,
Stage III, and Stage IV had signifcant diferences
(Figure S5).

3.4. Construction of a Nomogram. Score and treatment type
were associated with GC cases prognosis and were the factor
that were independent prognostic (Figures 4(a) and 4(b)).
Ten, the nomogram model was constructed to predict the
survival of GC patients (Figure 4(c)). Te calibration curves
(C-index� 0.6547) and DCA curves of the nomogram were
also plotted (Figures 4(d) and 4(e)).

3.5. Diference Analysis and GSEA. A total of 151 DEGs (139
up and 12 down) were identifed (Figures 5(a) and 5(b)).

Te main enriched cellular functions and KEGG path-
way of DEGs between high- and low-risk groups are ex-
tracellular matrix organization, complement and
coagulation cascades, ECM-receptor interaction, and so on
(Figures 5(c) and 5(d)).

Te results of GSEA analysis showed that the expression
of focal adhesion, etc. were up-regulated (Figures 5(e) and
5(f )).
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3.6. Analysis of Immunotherapy and Chemotherapy. Te
stromal score, the immune score, and the ESTIMATE
composite score were obtained, and there were diferences in
the ESTIMATE composite score and the stromal score
between high- and low-risk groups (Figure 6(a); P< 0.0001).
Te high-risk group has lower tumor purity (Figure 6(b)).
Tere are eight immune cell (macrophages M1, mast cells
resting, etc.) abundances that difer between high- and low-
risk groups (Figure 6(c)). Te results of the correlation
analysis between the risk score and immune cell abundance

suggest that the abundance of monocytes, mast cells resting,
and T cells CD4 memory resting was positively correlated
with a risk score and the abundance of NK cells resting,
T cells follicular helper, and T cells CD4 memory activated
was negatively correlated with the risk score (Figure 6(d)).

Te immune checkpoint PD-L1 expression levels dif-
fered signifcantly between high- and low-risk groups
(Figure 7(a)). Te expression of routine immune check-
points in high- and low-risk groups is shown in supple-
mentary table 2. Te high-risk group was more sensitive to
the overall immune checkpoint and had better sensitivity to
CTLA4 inhibitors (Figure 7(b)).

Among 198 commonly used drugs for the treatment of
GC, 182 species showed signifcant diferences between
high- and low-risk groups, and most high-risk groups were
more sensitive to these drugs than low-risk groups
(Figure 7(c)).

3.7. Expression Validation of Prognostic lncRNAs. Te qRT-
PCR results from our specimens verifed an over-expression
of ASCL2, CREB3L3, and MFAP2 in GC cells compared
with the human immortalized normal gastric cells
(Figure 8).

4. Discussion

It is well known that GC is one of the leading causes of
cancer-related deaths globally [33]. Although signifcant
advancements in the treatments for GC have been acquired
in recent years, the overall prognosis of GC patients is still
poor [34]. m5C, in which the methyl group is attached to the
ffth position of the cytosine ring, is catalyzed by RNA
methyltransferase. m5C modifcation has also been closely
related to cancer progression [35]. Meanwhile, bio-
informatic studies have shown that m5C regulators could be
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Figure 2: Construction of an m5C-related risk model. (a) Te volcano map of DEGs of two subtypes of survival diferences in GC. Te
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Te KM survival curve of high-andlow-risk groups in the training set. (h) Te ROC curve and AUC for four DEm5CRGs.

Table 2: Cox regression (univariate) analysis 8 DEm5CRGs related
to OS (P< 0.05).

Variable HR Lower 95% CI Upper 95% CI P value
APOD 1.1320 1.0342 1.2390 0.007148
GAMT 1.2210 1.0477 1.4229 0.010569
FKBP10 1.1510 1.0105 1.3111 0.034305
ASCL2 0.8947 0.8045 0.9949 0.039988
MFAP2 1.1789 1.0068 1.3804 0.040913
CREB3L3 1.1468 1.0051 1.3085 0.041760
PLEKHS1 0.8649 0.7516 0.9954 0.042918
AGT 1.1425 1.0013 1.3036 0.047765
CI: confdence interval.

Table 3: Cox regression (multivariable) analysis 4 DEm5CRGs as
biomarkers.

Variable coef HR Lower 95%
CI

Upper 95%
CI P value

ASCL2 −0.1439 0.8659 0.7746 0.968 0.01136
APOD 0.0807 1.0840 0.9808 1.198 0.11401
CREB3L3 0.1091 1.1153 0.9691 1.284 0.12800
MFAP2 0.1296 1.1384 0.9601 1.350 0.13573
CI: confdence interval.
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used as a prognostic factor for lung adenocarcinoma
(LUAD), head and neck squamous cell carcinoma
(NHSCC), and hepatocellular carcinoma (HCC) [36–38].

With the development of molecular biology and clinical
treatment with precision therapy, researchers have been
exploring new prognostic markers of GC at the molecular
level. Zhu et al. [3] revealed the expression, prognostic value,
potential functional networks, protein interactions, and
immune infltration of MTFR2 (mitochondrial fssion reg-
ulator 2) in GC, concluding that MTFR2 may be a potential
prognostic marker and therapeutic target for GC patients.
Zhu et al. [34] explored the association between VEGFR-2
and the prognosis of GC. Tey showed that the high ex-
pression of VEGFR-2 as well as the VEGFR-2 rs1870377
A>T genetic polymorphism may be prognostic factors for
patients with resected GC. Zu et al. [39] considered that the

preoperative prealbumin level was an independent prog-
nostic factor for GC patients, and it is essential to predict the
prognosis of patients with GC. Here, we established
a prognosis model for GC based on fve m5C-related sub-
types and four DEm5CRGs (APOD, ASCL2, MFAP2, and
CREB3L3) as biomarkers, employing 405 GC samples about
second-generation sequencing data, clinical information,
and copy gene variation information from the TCGA da-
tabase, and at last, verifying the four biomarkers in GC cells
compared with the human immortalized normal gastric cells
by the RT-qPCR method, which is usually missing in bio-
informatic analysis.

Te four m5C-related genes based on 2 m5C-related
subtypes afect the occurrence and development of cancer.
Firstly, APOD (apolipoprotein D) is a lipocalin that par-
ticipates in various cellular processes, including
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cytoprotection, and is a biomarker positively correlated with
the prognosis of breast and prostate cancer [40]. APOD was
also reported to be the prognostic factor of GC. Patients with
high expression of APOD might have a shorter OS time,
correlating with worse prognosis [41]. Second, ASCL2
(Achaete-scute homolog 2) is an essential helix-loop-helix
transcription factor and a cancer stem cell marker, and
specifc reports have revealed that ASCL2 promotes cell
proliferation and migration in colon cancer [42, 43]. In the
meantime, ASCL2 also serves an essential role in the growth
of GC. It was able to downregulate the expression level of
miR223, contribute to EMT (the epithelial-mesenchymal
transition), and promote gastric tumor metastasis, which
indicated that ASCL2 might serve as a therapeutic target in
the treatment of GC [44]. Tird, MFAP2 (microfbril-
associated protein 2) plays a vital role in the regulation of the
integrin signal pathway in cancer cell-ECM (extracellular
matrix) interaction. Te intracellular form of MFAP2 can

induce the transcription of integrin α4 in human osteo-
sarcoma cell line SAOS-2 in vascular development [45].
Scholars also validated that MFAP2 was up-regulated in GC
tissue, and it was implicated in themalignant behavior of GC
cells, such as proliferation, migration, and invasion [46].Te
fourth biomarker is CREB3L3, a member of the basic leucine
zipper family and the AMP-dependent transcription factor
family. It can link to acute infammatory response and
hepatocellular carcinoma [47]. Dewaele et al. illustrated that
EWSR1-CREB3L3 gene fusion is associated with a mesen-
teric sclerosing epithelioid fbrosarcoma [48]. In GC,
CREB3L3 is related to the OS derived from univariate and
multivariate Cox regression analysis and is highly expressed
in cancer tissues [49]. In a word, the four biomarkers can
afect the occurrence and development of cancer in various
degrees, including GC, and the guiding signifcance is great
to analyze the relationship between the prognosis model and
the survival of GC patients.
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Moreover, GO and KEGG function analysis indicated
that DEGs among the four gene biomarkers were closely
correlated with biological processes and signaling pathways,
such as ECM organization, extracellular structure organi-
zation, external encapsulating structure organization,
complement and coagulation cascades, vascular smooth
muscle contraction, and focal adhesion.

Te m5C locus has been reported to be involved in
a variety of biological processes, including structural stability
and metabolism of RNA, tRNA recognition, and stress re-
sponse [8]. A recent study has shown that in human uro-
thelial cell carcinoma of the bladder, m5C regulators bound
to the 3′UTR of oncogene mRNA, stabilizing its expression,
thereby promoting cancer progression [50]. Yang et al. [17]
found that NSUN2 (NOP2/Sun domain family, member 2;
MYC-induced SUN domain-containing protein, Misu) was
the main enzyme catalyzing m5C formation, while the Aly/
REF export factor (ALYREF, an mRNA transport adaptor,
also named THOC4) functioned as a specifc mRNA m5C-
binding protein regulating mRNA export. In addition,
p57Kip2 was an important downstream gene regulated by

NSUN2 in GC. p57Kip2 is the recently found CDK inhibitor
of the Cip/Kip family and has been involved in many bi-
ological processes, including cell cycle control, diferentia-
tion, apoptosis, tumorigenesis, and development, which is in
accordance with GO terms and KEGG pathways of 4 m5C-
related genes [51, 52]. Previous studies found that the ex-
pression level of NSUN2 was negatively correlated with
p57Kip2, and the ability of NSUN2 to knockdown cells
proliferation was enhanced after p57Kip2 silencing in GC. It
revealed another regulatory mechanism that NSUN2 plays
an oncogenic role by repressing p57Kip2 expression in GC.
Te cause may be NSUN2 destabilizing the p57Kip2 mRNA
relying on its methyltransferase activity and m5C modif-
cations in the 3′-untranslated region (UTR) of p57Kip2
mRNA [53].

It has been reported that m5C modifcation is involved in
immunemicroenvironment regulation, and the tumor immune
microenvironment plays a role in the efect of m5C regulators
on patient prognosis [54]. ALYREF, the Aly/REF nuclear export
factor, functions as an m5C reader; its expression levels were
signifcantly associated with immune infltrating cells, such as
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B cells, macrophages, NK cells, and dendritic cells [55]. In an
eight-lncRNAm5C-related prognostic signature, monocytes,
memory B cells, activated mast cells, and näıve CD4 T cells
presented a signifcant diferences in high- and low-risk groups
[56]. In the present study, signifcant diferences existed in 5
types immune infltrating cells obtained by the MCP counter
algorithm, including NK cells, monocytic lineage, myeloid
dendritic cells, cytotoxic lymphocytes, and neutrophils, which
have similarities with previous studies.

5. Conclusion

Four DEm5CRGs were identifed as biomarkers of the prog-
nostic model in GC using three cohort profle datasets and
integrated bioinformatics analysis. Te expression pattern and
prognostic value of m5C genes in GC were determined, and
a novel m5C gene-based risk scoring system was established to
predict the clinical outcomes of GC patients. It was found that
m5C genes can reliably predict theOS of GCpatients, providing
a new target for the treatment of GC. However, to provide
patients with a better prognosis and fnd the ideal individualized
and targeted therapy, further prospective trials to test clinical
efcacy are necessary.
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Background. Hypoxia contributes to tumor progression and confers drug resistance. We attempted to microdissect the hypoxia
landscape in colon cancer (CC) and explore its correlation with immunotherapy response. Materials and Methods. Te hypoxia
landscape in CC patients was microdissected through unsupervised clustering. Te “xCell” algorithms were applied to decipher
the tumor immune infltration characteristics. A hypoxia-related index signature was developed via the LASSO (least absolute
shrinkage and selection operator) Cox regression in Te Cancer Genome Atlas (TCGA)-colon adenocarcinoma (COAD) cohort
and validated in an independent dataset from the Gene Expression Omnibus (GEO) database. Te tumor immune dysfunction
and exclusion (TIDE) algorithm was utilized to evaluate the correlation between the hypoxia-related index (HRI) signature and
immunotherapy response. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting were
performed to verify themRNA expression levels of fve key genes.Te Cell Counting Kit-8 (CCK-8) assay and fow cytometry were
performed to examine the cell viability and cell apoptosis. Results. Patients were classifed into hypoxia-high, hypoxia-median, and
hypoxia-low clusters in TCGA-COAD and verifed in the GSE 17538 dataset. Compared with the hypoxia-low cluster, the
hypoxia-high cluster consistently presented an unfavorable prognosis, higher immune scores, and stromal scores and elevated
infltration levels of several critical immune and stromal cells. Otherwise, we also found 600 hypoxia-related diferentially
expressed genes (HRDEGs) between the hypoxia-high cluster and the hypoxia-low cluster. Based on the 600 HRDEGs, we
constructed the HRI signature which consists of 11 genes and shows a good prognostic value in both TCGA-COAD and GSE
17538 (AUC of 6-year survival prediction >0.75). Patients with low HRI scores were consistently predicted to be more responsive
to immunotherapy. Of the 11 HRI signature genes, RGS16, SNAI1, CDR2L, FRMD5, and FSTL3 were diferently expressed
between tumors and adjacent tissues. Low expression of SNAI1, CDR2L, FRMD5, and FSTL3 could induce cell viability and
promote tumor cell apoptosis. Conclusion. In our study, we discovered three hypoxia clusters which correlate with the clinical
outcome and the tumor immune microenvironment in CC. Based on the hypoxia cluster and HRDEGs, we constructed a reliable
HRI signature that could accurately predict the prognosis and immunotherapeutic responsiveness in CC patients and discovered
four key genes that could afect tumor cell viability and apoptosis.

1. Introduction

Colon cancer (CC) is the ffth most frequent malignant
disease with 1,148,515 new cases diagnosed in 2020 and
accounting for 576,858 cancer-associated deaths around the
world [1]. Te 5-year survival probability for colorectal
cancer ranges from 90% in early-stage patients to 14% in

distant-stage patients [2].Te American Joint Committee on
Cancer (AJCC) staging is a critical assessment system for the
treatment management of CC [3], and patients with stage III
or high-risk stage II may need to undergo a combination
treatment of curative resection and adjuvant therapy [4].
However, most of the distant-stage patients miss the radical
surgical opportunity and die due to metastasis or recurrence.
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Owing to the tumor heterogeneity and diverse molecular
pattern, patients with the same AJCC stage exhibit tre-
mendous survival diferences. Tus, it is imperative to
conduct in-depth microdissection and develop new prog-
nostic biomarkers for patients with CC.

Hypoxia is a specifc hallmark of solid tumors, owing to
the unrestricted growth and abnormal vascularization
during the tumor progression [5]. Hypoxia promotes the
tumor metastatic cascade, including invasion, migration,
and distant metastasis [6]. Te hypoxia-inducible factor
(HIF)-1α pathway contributes greatly to the modulation of
hypoxia-related downstream gene expression and pathway
activity in cancer cells under hypoxic conditions [7].
Hypoxia also promotes the epithelial-to-mesenchymal
transition (EMT) process and facilitates the invasion of
CC cells by activation of HIF1A, whereas treatment with
HIF1A-specifc small interfering RNAs (siRNAs) suppresses
these processes [8]. Our previous study [9] has constructed
a hypoxia-related long noncoding RNAs signature that is
tightly associated with the prognosis and drug sensitivity in
patients with hepatocellular carcinoma. Te HIF-1α sig-
naling pathway also confers drug resistance under hypoxic
stress in colorectal carcinoma [10, 11]. Hence, we speculate
that the hypoxic exposure level in tumor tissues probably has
a critical impact on the prognosis and treatment efective-
ness of CC.

Over the past decade, immunotherapeutic treatment
based on immune checkpoint inhibitors (ICIs) has resulted
in revolutionary long-term benefts in the therapy of several
cancer types [12]. ICIs such as anti-PD-1 (programmed cell
death 1) and anti-PD-L1 (programmed cell death 1 ligand
1) have achieved a durable response in a subset of
microsatellite instability-high (MSI-H) patients [12],
whereas the MSI-L/MSS (MSI-low/microsatellite stability)
patients who constitute the majority of CC patients have
not obtained satisfactory benefts from ICI treatment. In-
terestingly, hypoxia has been reported to afect tumor
plasticity, heterogeneity, and the immune resistance phe-
notype [13]. Hypoxia not only recruits myeloid-derived
suppressive cells (MDSCs), cancer-associated fbroblasts
(CAFs), and regulatory T cells (Tregs) to induce tumor
immunosuppression [14] but also augments the expression
level of immune checkpoints such as PD-L1 to promote
tumor immune evasion [15]. Hence, targeting the hypoxic
microenvironment may improve the efcacy of cancer
immunotherapy [16]. Nevertheless, there is still a defciency
in comprehensive delineation of the interplay among
hypoxia, tumor immune infltrating patterns, and immu-
notherapy response in patients with CC.

In the current study, we discovered the hypoxia cluster in
CC patients using unsupervised clustering based on two
publicly available datasets (TCGA-COAD and GSE17538)
and investigated the intrinsic correlation between hypoxia
and the tumor immune microenvironment by the xCell
algorithm and TIDE. Additionally, we developed a reliable
hypoxia-related index (HRI) prognostic signature that
exhibited good performance in predicting clinical prognosis
and immunotherapy response in two independent datasets
by the LASSO cox regression model. Finally, in vitro

experiments were supplied to explore the results at the cell
level. Our fndings may deepen the understanding of the
hypoxia role in the tumor microenvironment and provide
benefcial information for immunotherapy in CC.

2. Materials and Methods

2.1. Data Preprocessing. Te fragments per kilobase per
million mapped reads (FPKM) profles of the level-3 se-
quencing transcriptomic data in TCGA-COAD cohort were
obtained from TCGA database (https://portal.gdc.cancer.
gov/). We subsequently converted the FPKM values into
the log2-transformed TPM (transcripts per million) values
for further analysis. Te corresponding detailed clinical
parameters were publicly acquired from the cBioPortal
database [17] (https://cbioportal.org).

Another publicly available, independent microarray
dataset, GSE17538, was downloaded from the Gene Ex-
pression Omnibus database (https://www.ncbi.nlm.nih.
gov/geo/). Te TCGA-COAD cohort consisted of 402
primary CC samples and 39 adjacent normal tissues. Only
348 patients with complete clinical data and overall
survival (OS) time of ≥1month and 39 normal samples
were used as the discovery cohort. Te GSE17538 dataset
was composed of two subsets, GSE17536 (177 CC patients)
and GSE17537 (55 CC patients), and the nonbiological
batch was corrected using the “ComBat” function via the R
“sva” package. In total, 210 patients with CC in GSE17538
with complete clinical and histopathological grade in-
formation were enrolled as the independent validation
cohort. Detailed information on all enrolled patients in
the previous two datasets is listed in Supplemental Table 1
(Table S1).

2.2. Microdissecting the Hypoxia-Specifc Cluster of CC.
Te “HALLMARK_HYPOXIA” gene set (“h.all.v7.2.sym-
bols.gmt”) includes 200 hypoxia-specifc genes (Table S2),
which have been demonstrated to typically represent the
biological process under hypoxia conditions and was
gathered from the molecular signatures database (MsigDB)
[18]. TCGA-COAD cohort (348 patients) and GSE17538
dataset (210 patients) were assigned into diferent groups by
the unsupervised clustering method according to the ex-
pression of the previous 200 hypoxia-specifc genes, re-
spectively, via the “km” method in the R
“ConsensusClusterPlus” package. Survival analysis for
hypoxia-specifc clusters was performed by the R “survival”
package, and the survival diference among these clusters
was determined by the log-rank test.

2.3. Gene Set Variation Analysis (GSVA). Overall, 50 hall-
mark gene sets (h.all.v7.2.symbols.gmt) were downloaded
from the MSigDB database [18]. In addition, 13 typical
metabolic pathways (Table S3) associated with “GLYCOL-
YSIS,” “OXIDATIVE_PHOSPHORYLATION,” and “CIT-
RATE_CYCLE_TCA_CYCLE” were curated from the
MSigDB database. Te activity diferences of these hallmark
pathways and metabolic pathways among diferent hypoxia-
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specifc clusters were explored by GSVA [19], which can
calculate a specifc pathway score for each sample using an
unsupervised nonparametric algorithm.

2.4. Identifying Hypoxia-Related Diferentially Expressed
Genes (HRDEGs). Analysis of diferentially expressed genes
(DEGs) between the 348 COAD cancer samples and 39
adjacent normal samples in TCGA-COAD cohort was
carried out by the “limma” package, according to the
standard of the absolute value of log2 (fold change) greater
than 1 and an adjusted p value less than 0.05. With the same
method and criteria, DEGs between the hypoxia-high and
hypoxia-low clusters were further examined. HRDEGs were
defned as the intersection of the previous two gene lists.

2.5. Development of the HRI Signature. A univariable Cox
regression model was applied to screen the prognostic
HRDEGs in TCGA-COAD cohort. Te LASSO penalty Cox
regression model, which can avoid overftting and select the
most contributive variables through tuning the penalty
parameter, was employed to develop the optimal HRI sig-
nature using the “glmnet” package [20]. Te fnal HRI score
formula is defned as follows: risk score � 

n
k�1

expk∗ coefk, where k is the sequence number of the
prognostic gene in the HRI signature, expk represents the
corresponding gene expression of each patient, and coefk
represents the corresponding LASSO coefcient.

2.6. Evaluation and Validation of the Prognostic Capability of
the HRI Signature. HRI scores of CC patients in TCGA--
COAD cohort (discovery dataset) and GSE17538 (validation
dataset) were calculated using the previous formula. Patients
in each dataset were assigned to the HRI high- or low-risk
group according to their respective median HRI scores.
Survival analysis for each dataset was carried out by the
“survival” package, and the survival diferences were de-
termined by the log-rank test. Time-dependent receiver
operating characteristic (ROC) curves were drawn to eval-
uate the performance for prognosis prediction using the
“timeROC” package. Multivariable Cox regression was
conducted to determine whether the HRI signature was
independent of other clinical parameters (age, sex, AJCC
stage, and histopathological grade) in prognostic prediction.

2.7. Single Sample Gene Set Enrichment Analysis (GSEA).
Te gene list of critical immune function pathways
(Table S4) was collected from the previous studies [21].
Single-sample GSEA (ssGSEA) [22], a particular kind of
GSEA that can calculate the relative score for a predefned
gene list at a single sample level, was utilized to calculate the
relative scores of the previous immune function pathways
using the “GSVA” package in R.

2.8. Analyzing the Immune Landscape of Hypoxia-Specifc
Clusters. Te “xCell” algorithm, which can efectively infer
immune and stromal cell abundance from the mixture

transcriptomic profles [23], was applied to comprehen-
sively delineate the tumor immune microenvironment
(TIME).

2.9. Evaluating the HRI Predictive Ability of Immunotherapy
Response. Te tumor immune dysfunction and exclusion
(TIDE) algorithm, which can calculate the TIDE scores
representing the dysregulation of tumor immune escape for
tumor samples and function as a representative biomarker to
predict responsiveness to immune checkpoint blockade [24],
was employed to examine the HRI predictive capability of
immunotherapy response in CC patients.

2.10. Quantitative Reverse Transcription Polymerase Chain
Reaction (qRT-PCR). Tirty pairs of clinical samples (in-
cluding tumors and corresponding adjacent normal sam-
ples) of patients diagnosed with CC were gathered at
Nanfang Hospital of Southern Medical University. Te
samples were immediately preserved at −80°C postcollection
after surgical resection until RNA extraction. All patients
gave informed consent for sample collection and usage. Te
present research was supported by the Institutional Ethical
Committee Board of Nanfang Hospital (NFEC-201809-K3).
Total RNA from 30 pairs of clinical tissues was isolated using
an RNAex Pro Reagent (Accurate Biology, China). qRT-
PCR reactions were performed using the Evo M-MLV RT
Premix for qPCR (Accurate Biology, China) and SYBR®Green Premix Pro Taq HS qPCR Kit (Accurate Biology,
China). GAPDH was utilized as the internal standard, and
each sample was analyzed in triplicate. All PCR primer
sequences are presented in Table S5. Relative quantifcation
of mRNA expression levels of RGS16, SNAI1, CDR2L,
FRMD5, and FSTL3 was analyzed via the 2−ΔΔCt method.

2.11. Cell Culture and Cell Transfection. Human colon cell
line HCT116 was obtained from ATCC. Ten, the cells were
cultured in DMEM with 10% FBS at 37°C in 5% CO2.

Te plasmid and scramble were purchased from Bio-
systems (General Biosystems, Anhui, China). siRNA and
siRNA scramble were obtained from the GenePharma
Corporation (Shanghai, China). According to the in-
troduction, all siRNA and vectors were transfected using
a lipofectamine 3000 transfection kit (Invitrogen, USA).
qRT-PCR was performed to test the transfection efciency.

2.12. Western Blot. Proteins were extracted using RIPA
(CWBIO, China), subjected to SDS-PAGE gel electropho-
resis, and then transferred to a nitrocellulose membrane,
incubated with primary antibodies, and incubated overnight
at 4°C. Te secondary antibody was then incubated for 1 h at
room temperature. Immobilon ECL substrate was used for
signal detection and image acquisition.

2.13. CCK-8 Assay. Te Cell Counting Kit-8 (CCK-8,
ImmunoWay Biotechnology Company, Plano, TX, USA)
assay was used to monitor cell proliferation. In brief, the cells
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transfected with siRNA or plasmid were placed on 96-well
plates and cultured for 24 h, 48 h, 72 h, and 96 h. Ten, the
OD450 value was detected using the Termo Scientifc
Varioskan Flash spectrophotometer (Termo Scientifc,
Finland).

2.14. Flow Cytometry. Stably transfected tumor cells were
placed in 6-well plates, 3×105 cells per well. Te purifed
tumor cells were adjusted to 1× 106/L. Te apoptosis rate of
tumor cells was evaluated by fow cytometry (FACScan, BD
Bioscience) with an Annexin-V-FITC/PI apoptosis kit
(ads5001; Absin, Shanghai, China).

2.15. Statistical Analysis. Numerical variable diferences
with normal distribution were determined using Student’s t-
test or analysis of variance for two or more groups, re-
spectively. Te Wilcoxon rank-sum test or Kruskal–Wallis
test were performed to determine the numerical variable
diferences with nonnormal distribution for two or more
groups, respectively. Categorical variable diferences were
examined via the chi-square test. Spearman correlation
analysis was conducted to investigate the correlation be-
tween the continual variables. Univariate Cox and LASSO
penalty Cox regression analyses were utilized to perform
survival analyses. Survival diferences were examined by the
Kaplan–Meier curve and log-rank test. A two-tailed p value
of <0.05 was set to indicate statistical signifcance. For
multiple testing, the p value was corrected by the Benja-
mini–Hochberg method. We utilized R software (version
3.6.3) to perform all the statistical analyses.

3. Results

3.1. Te Discovery of Hypoxia-Related Cluster Using Un-
supervised Clustering. In total, 348 patients with complete
clinical information in TCGA-COAD cohort were catego-
rized into three diferent clusters by unsupervised clustering
(Figure 1(a) and Figures S1A-S1B). Clusters 1, 2, and 3
consisted of 82, 182, and 84 patients, respectively. Te de-
tailed lists are shown in Table S6. Te principal component
analysis confrmed a clear distinction among the three
clusters (Figure 1(c)). To clarify the relationship between the
clusters and hypoxia, the HIF1A messenger RNA (mRNA)
expression, which represents the mRNA level of the master
regulator HIF-1α under hypoxic conditions, was compared
among the three clusters. Notably, cluster 3 possessed the
highest HIF1A mRNA level, while cluster 1 exhibited the
lowest HIF1A mRNA level (Figure 1(d)). GSVA further
showed that cluster 3 had the highest activity in the
“HALLMARK_HYPOXIA” pathway, whereas cluster 1
displayed the lowest pathway activity (Figure 1(e)). Tese
results demonstrated that the previous three clusters were
strongly correlated with hypoxia exposure in CC tissues.
Henceforth, we defned clusters 3, 2, and 1 as the hypoxia-
high, hypoxia-median, and hypoxia-low subtypes, re-
spectively. Survival analysis revealed a signifcant OS dif-
ference among the three hypoxia-specifc clusters (global p

value� 0.045, Figure 1(f )). Te hypoxia-high subtype had

the poorest OS outcome compared with the hypoxia-low (p
� 0.031) and hypoxia-median (p � 0.046) subtypes.

To further verify the hypoxic landscape in CC, the in-
dependent microarray dataset GSE17538 was explored using
the same unsupervised clustering method. Notably, 210
patients with complete clinical characteristics in GSE17538
were likewise classifed into three diferent clusters
(Figures 1(b), S1C-S1D, and 1(g)), with detailed lists shown
in Table S7), namely, cluster 1 (77 patients), cluster 2 (68
patients), and cluster 3 (65 patients). Similarly, cluster 3 had
the highest level of HIF1A mRNA expression and the ac-
tivity of the “HALLMARK_HYPOXIA” pathway, while
cluster 1 exhibited the lowest level for the previous two
indices (Figures 1(h) and 1(i)). Tus, we also defned clusters
3, 2, and 1 in GSE17538 as the hypoxia-high, hypoxia-
median, and hypoxia-low subtypes, respectively. In addi-
tion, there was a signifcant OS diference among the three
clusters (global p value� 1.35e− 04, Figure 1(j)). Te
hypoxia-high cluster showed the poorest OS outcome
compared with the hypoxia-low (p value 3.22e− 05) and
hypoxia-median (p value 0.019) clusters. Te previous re-
sults confrmed that the hypoxia exposure landscape is
closely correlated with the clinical outcomes in patients
with CC.

3.2. Distinct Molecular Patterns among the Hypoxia-Specifc
Clusters. Owing to the close relationship between hypoxia-
specifc clusters and clinical outcomes, we continued to
explore the underlying molecular mechanisms. GSVA re-
sults for the hallmark gene sets showed that the relative
activities of several tumor aggression-associated pathways,
including “EPITHELIAL_MESENCHYMAL_TRANSITI
ON,” “ANGIOGENESIS,” “MYOGENESIS,” “API-
CAL_JUNCTION,” “APICAL_SURFACE,” “HYPOXIA,”
and “IL6_JAK_STAT3_SIGNALING,” were elevated in the
hypoxia-high group compared with those in the hypoxia-
low group in both TCGA-COAD and GSE17538 datasets
(Figures 2(a) and 2(b)).

3.3. Identifcation of HRDEGs. In total, 1756 DEGs (1748
upregulated and 8 downregulated genes, Figure 3(a)) be-
tween the hypoxia-high and hypoxia-low clusters (|log2FC|
greater than 1 and adjusted p value less than 0.05) were
identifed. Using the same criteria, we acquired 2745 DEGs
(1442 upregulated and 1303 downregulated genes,
Figure 3(b)) between the tumor tissues and adjacent normal
samples. Furthermore, 600 overlapping genes for the pre-
vious two gene lists (Figure 3(c), detailed lists shown in
Table S8) were categorized as HRDEGs. Gene Ontology
(GO) function enrichment analysis demonstrated that these
HRDEGs were predominantly enriched in several biological
process (BP) terms, including “extracellular matrix orga-
nization,” “positive regulation of cell adhesion,” and “cell-
substrate adhesion” (Figure 3(d)). KEGG pathway analysis
further showed a strong linkage between the HRDEGs and
the following pathways: “cytokine-cytokine receptor in-
teraction,” “PI3K−Akt signaling pathway,” and “focal ad-
hesion” (Figure 3(e)). Tese enriched terms were closely
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Figure 1: Continued.
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Figure 1: Microdissection of the hypoxia landscape in TCGA-COAD cohort and GSE17538 cohort. Consensus matrix plot of unsupervised
clustering in TCGA-COAD cohort (a) and GSE17538 cohort (b), when k� 3 representing the optimal cluster number. (c) and (g) PCA plot
of hypoxia-specifc clusters. Comparison of HIF1A expression (d) and (h), HALLMARK_HYPOXIA pathway score (e) and (i), and the
survival diference (f ) and (j) among hypoxia-specifc clusters. COAD: colon adenocarcinoma. PCA: principal component analysis.
Hypoxia-L: hypoxia-low; hypoxia-M: hypoxia-median; hypoxia-H: hypoxia-high. OS: overall survival.
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associated with extracellular signal communication and
cancer cell invasion, indicating that our defned HRDEGs
probably participated in the tumor progression.

3.4. Development of HRI Signature. TCGA-COAD cohort
with 348 patients was utilized as the discovery cohort to
construct an HRI signature. Te univariate Cox regression
model yielded 22 prognostic genes out of the aforemen-
tioned 600 HRDEGs (Figure 4(a)). LASSO penalty Cox
regression selected the optimal HRI signature according to
the “lambda. min” standard, which represents the lambda
(tuning parameter) with minimal cross-validation error.
Ultimately, 11 selected optimal prognostic HRDEGs were
incorporated to develop the HRI score signature
(Figures S2A-S2B, detailed gene list shown in Table S9). Te
fnal HRI calculation formula was as follows (detailed for-
mula development is described in the “Methods” section):
HRI = (−0.140) ∗ CD177 expression + 0.045 ∗ CP expres-
sion + 0.006 ∗ RGS16 expression + 0.013 ∗ PGM5
expression + 0.206 ∗ SNAI1 expression + 0.010 ∗ CALB2
expression + 0.041 ∗ OSBPL1A expression + 0.043 ∗
CDR2L expression + 0.012 ∗ FRMD5 expression + 0.096 ∗
FSTL3 expression + 0.069 ∗ TUBB2B expression. Te HRI
scores for CC patients in TCGA-COAD cohort were cal-
culated using the previous HRI calculation formula
(Table S10). Patients were assigned into the HRI high- or
low-risk groups based on the median HRI score. Survival
analysis uncovered that the HRI high-risk group exhibited
a signifcantly poorer OS outcome than the low-risk group

(p= 6.321e− 06, Figure 4(b)). Time-dependent ROC curves
showed that the areas under the curve (AUCs) of 1-, 3-, 5-,
and 6-year survival predictions were 0.682, 0.699, 0.768, and
0.753, respectively (Figure 4(c)), indicating good prognostic
prediction. To further validate the reliability of the signature,
the HRI scores for 210 patients in the validation cohort
GSE17538 were calculated using the same formula
(Table S11). Because the data type of dataset GSE17538
(microarray data) was diferent from that of the TCGA-
COAD cohort (sequencing data), we classifed all patients in
GSE17538 into HRI high-risk or low-risk groups according
to the median HRI score of the dataset GSE17538. Similarly,
the HRI high-risk group possessed a poorer OS prognosis
than the low-risk counterpart (p= 7.956e− 06, Figure 4(d)).
Te AUCs for 1-, 3-, 5-, and 6-year survival predictions were
0.647, 0.645, 0.716, and 0.754, respectively (Figure 4(e)).
Tese results verifed the robustness and reliability of the
HRI signature in diferent platform datasets.

Subsequently, we investigated the relationship between
HRI scores and HIF1A mRNA expression. Notably, the HRI
high-risk group consistently showed higher HIF1A ex-
pression than the low-risk counterpart in both TCGA--
COAD (Figure 4(f )) and GSE17538 (Figure 4(g)),
demonstrating that the HRI scores indeed refected the
hypoxic exposure level in CC tissues.

3.5. Correlation between the HRI Signature and Clinical
Parameters. Owing to the remarkable impact of the HRI
scores on the patient’s clinical outcomes, we investigated the
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Figure 2:Te distinct molecular pattern among the hypoxia-specifc clusters. Comparison of the relative activities of the hallmark gene sets
among hypoxia-specifc clusters in TCGA-COAD (a) and GSE 17538 (b). COAD: colon adenocarcinoma. Hypoxia-L: hypoxia-low;
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Figure 3: Identifcation of the hypoxia-related diferentially expressed genes (HRDEGs) in TCGA-COAD cohort. (a) Volcano plot of
hypoxia-specifc genes between hypoxia-high and hypoxia-low clusters. (b) Volcano plot of diferentially expressed genes (DEGs) between
tumor and adjacent normal tissues. (c) Venn diagram of HRDEGs. Bubble plots for GO (d) and KEGG (e) functional annotation of the 600
HRDEGs. GO: gene ontology. KEGG: Kyoto encyclopedia of genes and genomes.
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correlation between HRI scores and several critical clinical
parameters. Results for TCGA-COAD cohort indicated that
patients with T3-4, M1, N2, stage III-IV, and “Vascular
Invasion” possessed higher HRI scores than patients with
T1-2, M0, N0, stage I-II, and “nonvascular invasion,” re-
spectively (Figures 5(a)–5(e)). Furthermore, patients with
stage III-IV, histopathological grade 3, and recurrence in
GSE17538 had elevated HRI scores compared with patients
with stage I-II, grade 1 or 2, and nonrecurrence, respectively
(Figures S3A–S3C). Additionally, patients with high HRI
scores had poorer disease-free survival outcomes in
TCGA-COAD (p= 9.12e− 05, Figure 5(f)) and poorer
recurrence-free survival outcomes in GSE17538 (p= 0.006,
Figure S3D) than patients with low HRI scores.

To identify the independent predictive ability of the HRI
signature, a multivariable Cox regression model was further
performed on the TCGA-COAD and GSE17538 datasets.
Te results indicated that age, AJCC stage, and HRI scores
were independent prognostic predictors after adjusting for
other clinical parameters such as sex in TCGA-COAD co-
hort (Figure 5(g)). Similarly, stage and HRI risk scores were
consistently independent of age, sex, and histopathological
grade in GSE17538 (Figure S3E). Te previous evidence
demonstrated that the HRI signature can act as an in-
dependent indicator of prognosis in CC.

3.6. DiferentMolecular Patterns, TIME, and Immunotherapy
Response between theHigh- andLow-RiskGroups. To further
explore the underlying molecular mechanism, we in-
vestigated the diferent molecular patterns and TIME be-
tween the two HRI risk groups. GSEA results displayed that
several critical hallmark pathways, including “API-
CAL_JUNCTION,” “APICAL_SURFACE,” “ANGIOGEN-
ESIS,” “HYPOXIA,” “EPITHELIAL_MESENCHYMAL_
TRANSITION,” and “P53_PATHWAY,” were substantially
enriched in the high-risk group in both TCGA-COAD
(Figure S4A) and GSE17538 (Figure S4C) datasets. Fur-
thermore, KEGG pathways such as

“ADHERENS_JUNCTION,” “FOCAL_ADHESION,” and
“PATHWAYS_IN_CANCER” were signifcantly enriched in
the group with high HRI scores in both TCGA-COAD
(Figure S4B) and GSE17538 (Figure S4D) datasets. Tese
results suggest that hypoxia contributes to tumor aggression
through the abovementioned oncogenic pathways. Te
“xCell” algorithm revealed that the high-risk group holds
a higher abundance of macrophages, fbroblasts, and en-
dothelial cells and higher stroma scores and microenvi-
ronment scores than the low-risk group in TCGA-COAD
(Figure 6(a)). Te high-risk group in GSE17538 possessed
a higher infltrating level of macrophages and higher im-
mune scores andmicroenvironment scores than the low-risk
counterpart (Figure S5A). Te ssGSEA results displayed that
the high-risk group consistently possessed higher scores in
several critical immune pathways such as “check−point” and
“T_cell_co−inhibition” than the low-risk group in both
TCGA-COAD (Figure 6(b)) and GSE17538 (Figure S5B)
cohorts. Moreover, the mRNA expression level of PD-L1
(CD274) was signifcantly elevated in the HRI high-risk
group compared with the low counterpart in both
TCGA-COAD (Figure 6(c)) and GSE17538 (Figure S5C)
cohorts, suggesting distinct immune infltration character-
istics between the two groups.In addition, compared with
the hypoxia-low cluster, the hypoxia-high clusterconsis-
tently presented higher immune scores, stromal scores, and
elevatedinfltration levels of several critical immune and
stromal cells (endothelialcells, fbroblasts, macrophages,
dendritic cells, CD8+ T cells, CD4+ memory Tcells, B cells,
and monocytes) in both TCGA-COAD and GSE17538
(Figure S7A-B). Teabove evidence demonstrated that ele-
vated hypoxia exposure levels in CC tissuescorrelated with
higher stromal and immune cell infltration.

Using the TIDE algorithm, we estimated the TIDE scores
for CC patients in the TCGA-COAD (Table S12) and
GSE17538 (Table S13), respectively. Patients in the HRI
high-risk group possessed higher TIDE scores than the
corresponding low-risk patients in both TCGA-COAD
(Figure 6(d)) and GSE17538 (Figure S5D). Moreover, HRI
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Figure 4: Development of the HRI signature. (a) Forest plot of twenty-two prognostic genes obtained by univariate Cox regression.
Kaplan–Meier curves and the log-rank test p value for TCGA-COAD (b) and GSE17538 (d) datasets.Te AUCs of the time-dependent ROC
curves for TCGA-COAD (c) and GSE17538 (e) datasets. Comparison of HIF1A mRNA expression between HRI high-risk and low-risk
groups in TCGA-COAD (f) and GSE17538 (g). AUC: area under the curve. ROC: receiver operating characteristic.
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scores consistently displayed a positive correlation with the
TIDE scores in TCGA-COAD (Figure 6(e)) and GSE17538
(Figure S5E), indicating that higher HRI scores represent
greater immune evasion and immunotherapeutic resistance.
Accordingly, the low-risk group was predicted to have
a signifcantly higher ratio of immunotherapeutic re-
sponders than the high-risk group in both TCGA-COAD
(Figure 6(f )) and GSE17538 (Figure S5F). Te previous
results demonstrated that HRI scores representing hypoxia
levels in CC tissues have the potential to predict the im-
munotherapy response.

3.7. Correlation Analysis of MSI Status with HRI Signature.
Te MSI status information for CC patients in the
TCGA-COAD cohort was curated from TCIA (Te Cancer
Immunome Atlas) database (https://tcia.at/home) [25].
Tere were 335 CC patients with complete MSI status in
our TCGA-COAD dataset, including 46 MSI-H, 64 MSI-L,
and 210 MSS (microsatellite stability), and 15 in-
determinate cases, respectively.Te chi-square test revealed
a statistically signifcant diference in the constitutive
proportion of MSI status between the two HRI risk groups
(p � 0.019, Figure S6A). Te HRI high-risk group presented
an elevated ratio of MSI-H (17%) and MSI-L (25%) cases
compared with the low-risk counterpart (11% and 15% of
MSI-H and MSI-L cases, respectively). Subsequently, we
stratifed CC patients into diferent subgroups according to
their MSI status and performed a subgroup survival
analysis. Notably, patients with high HRI scores consis-
tently exhibited poorer OS prognosis than those in the HRI
low-risk group, irrespective of MSI status
(Figures S6B–S6D).

3.8. Validating the mRNA Expression of Five Key Genes by
qRT-PCR. Te HRI signature consisted of 11 HRDEGs,
namely, CD177, CP, RGS16, PGM5, SNAI1, CALB2,
OSBPL1A, CDR2L, FRMD5, FSTL3, and TUBB2B. Among
the HRI prognostic signatures, CD177 was the only pro-
tective factor, and the other 10 genes were all risk factors for
prognostic prediction in CC.TemRNA expression levels of
RGS16, SNAI1, CDR2L, FRMD5, and FSTL3 were higher in
tumor samples than that in adjacent normal tissues in
TCGA-COAD cohort (Figure 7(a)), suggesting that these
fve key genes participate in the progression of CC. Tus, we
experimentally investigated their mRNA expression levels in
30 pairs of clinical samples by qRT-PCR. Te results
demonstrated that RGS16 (Figure 7(b)), SNAI1
(Figure 7(c)), CDR2L (Figure 7(d)), FRMD5 (Figure 7(e)),
and FSTL3 (Figure 7(f )) consistently exhibited signifcantly
higher relative mRNA expression levels in CC tumor
samples than in paired adjacent normal tissues.

3.9. Te Validation Experiment In Vitro. To further de-
termine the infuence of the previously selected diferentially
expressed genes (RGS16, SNAI1, CDR2L, FRMD5, and
FSTL3) on cell proliferation and apoptosis, we interfered
with the expression of fve diferential genes and detected the

cell proliferation and apoptosis levels. First, we tested the
transfection level of the disruptor or plasmid. Te results
showed that the expression of mRNA (Figure 8(a)) and
protein levels (Figure 8(b)) in the siRNA group was induced,
while the pLenti group could signifcantly upregulate the
expression of mRNA and protein levels of genes. Sub-
sequently, we detected the cell activity by CCK-8 experi-
ment. Te results showed that the expression of RGS16 had
no signifcant efect on cell proliferation and apoptosis
(Figures 9(a) and 10(a)), while the high expression of SNAI1,
CDR2L, FRMD5, and FSTL3 could promote the pro-
liferation of cancer cells and inhibit the apoptosis of cancer
cells, but inhibiting their expression could inhibit the pro-
liferation of cancer cells and promote the apoptosis of cancer
cells (Figures 9(b)–9(e) and 10(b)–10(e)).

4. Discussion

CC ranks the ffth most frequent malignant disease
worldwide, and advanced-stage cases are associated with
high mortality [2]. Tus, it is urgent to identify novel
prognostic predictors and targeted biomarkers. Hypoxia
in the tumor microenvironment is a specifc hallmark of
solid tumors [5] and contributes to the tumor metastatic
cascade [6]. Several studies have constructed diferent
hypoxia-related gene signatures for predicting the clinical
outcomes of colorectal cancer [26–28]. However, these
studies mainly aimed to establish a prognostic signature
for CC patients and lacked comprehensive microdissec-
tion of the hypoxia landscape and its correlation with
immunotherapy in CC. Compared with the previously
published literature, we identifed three hypoxia-specifc
clusters and developed a novel HRI prognostic signature.
As far as we know, this is the frst comprehensive in-
vestigation of the correlation of the hypoxia landscape
with metabolic reprogramming, TIME, and immuno-
therapeutic response prediction in CC.

Te hypoxic tumor microenvironment in solid tumors
maintains a selective pressure for tumor cells to adapt to the
hypoxia response and promotes their invasion, migration,
and dissemination [6]. Moreover, the HIF-1α pathway plays
a pivotal role in the modulation of hypoxia-related down-
stream gene expression and biological processes in cancer
cells under hypoxic conditions [7]. Hence, we classifed the
CC patients into three diferent clusters based on the ex-
pression levels of the 200 genes in the “HALLMAR-
K_HYPOXIA” gene set and verifed the relationship
between the clusters and the HIF1A mRNA expression level.
Hypoxia stress can decrease the expression of DUSP2 and
increase cancer stemness and tumor growth in CC cells [29].
Hypoxia may promote EMT, invasion, and migration of CC
cells by activation of HIF1A, whereas treatment with
HIF1A-specifc siRNAs suppresses these processes [8]. In
agreement with the fndings of the abovementioned studies,
the hypoxia-high cluster in our study possessed a higher
HIF1A mRNA expression and elevated relative scores in
tumor aggression-associated pathways including “EPI-
THELIAL_MESENCHYMAL_TRANSITION” and “AN-
GIOGENESIS.” Accordingly, the hypoxia-high cluster had
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more CC patients with “Vascular_Invasion” and “Recurred/
Progressed.”

Cancer cells undergo metabolic reprogramming to
reconcile themselves to hypoxic stress [30]. Te HIF-1α
pathway contributes greatly to metabolism alteration via
glycolysis stimulation and oxidative phosphorylation
(OXPHOS) suppression under hypoxic conditions during
tumor development [14]. Upon hypoxic conditions, pan-
creatic ductal adenocarcinoma cells exhibited elevated
HIF1A and HIF2A expression levels, increased expression of
carbonic anhydrase 9, and activated glycolysis [31]. Our
study also showed similar results in both TCGA-COAD and
GSE17538 datasets.Tis phenomenonmay be because of the
cancer cells’ metabolic plasticity and metabolic

heterogeneity, depending on the complex tumor
microenvironment [32].

Hypoxia stress also impacts TIME by inducing an im-
mune suppression or immune evasion phenotype [33]. Te
local hypoxic microenvironment recruits immunosuppres-
sive cells, such as MDSCs, tumor-associated macrophages,
and CAFs, and upregulates immune checkpoint expression
to induce antitumor resistance [15]. CAFs at the invasive
front of tumor tissues boost tumor progression and me-
tastasis in CC [34]. In our study, the hypoxia-high cluster
consistently had a higher immune score, stromal score, and
estimate score than the hypoxia-low cluster. Furthermore,
macrophages and fbroblasts showed elevated infltrating
levels in the hypoxia-high group, supporting a positive
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correlation between hypoxia and tumor immune dysfunc-
tion. Accordingly, we speculate that the poor clinical out-
comes of the patients in the hypoxia-high group partly
depend on the immune suppression or evasion mechanism.

To further examine the clinical applicability, we de-
veloped a reliable HRI prognostic signature that is strongly
correlated with critical clinical characteristics (T, N, M,
AJCC stage, and tumor histological grade). Hypoxia-treated
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Figure 9: Te CCK-8 assay. Te efect of expression of RGS16 (a), SNAI1 (b), CDR2L (c), FRMD5 (d), and FSTL3 (e) on cell viability was
examined using the CCK-8 assay. ∗∗∗p< 0.001; ∗∗p< 0.01; ∗p< 0.05.
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CC cells have been reported to strengthen the metastatic
ability of normoxic cancer cells [35]. HIF-1α is a master
regulator of the hypoxia-response process of tumor cells
under hypoxic conditions [7]. Hypoxia can promote EMT,
invasion, and migration of CC cells by the activation of
HIF1A [8]. In our study, the high HRI score group

consistently possessed a higher HIF1A expression level than
the low-risk counterpart, indicating the efectiveness of the
HRI score to refect hypoxia exposure in CC tumor tissues.
Additionally, patients with M1, N2, T3–4, stage 3–4, and
tumor grade 3 had higher HRI risk scores than those with
M0, N0, T1–2, stage 1–2, and grade 1, respectively. Tis
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Figure 10: Te fow cytometry assay. Te efect of expression of RGS16 (a), SNAI1 (b), CDR2L (c), FRMD5 (d), and FSTL3 (e) on cell
viability was examined using the fow cytometry assay.
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further demonstrated that the HRI signature was strongly
related to tumor progression and metastasis in CC.

Immunotherapy involving anti-PD-1/PD-L1 has resul-
ted in revolutionary therapeutic benefts for various cancer
types, and MSI-H status has proven to be an efective
predictor of immunotherapeutic efcacy [36]. However,
MSI-L/MSS patients, who represent most CC patients, have
not acquired a satisfactory response from immunotherapy.
High tumor mutational burden (TMB) in tumors is linked to
favorable clinical outcomes; however, the TMB varies
markedly among diferent cancer types, and there is a lack of
a well-defned standard of high TMB [37]. Our study
demonstrated that the HRI signature is positively correlated
with the TIDE score, which represents the immune dys-
function and exclusion of tumor samples, and patients with
a low HRI score are predicted to be more responsive to
immunotherapy. Te previous evidence suggests that the
HRI score has the potential to be a complementary measure
to MSI-H status and TMB in the personalized management
of immunotherapy. Hypoxia gene sets were reported to be
enriched in nonresponding pre-anti-PD-1 tumor samples
with melanoma [38]. In agreement with these studies, CC
patients with a high HRI score representing severe hypoxia
exposure are predicted to have a lower response to im-
munotherapy. As targeting the hypoxic microenvironment
may ameliorate the efects of cancer immunotherapy [16],
we speculate that these patients with high HRI scores may
acquire greater efcacy of immunotherapy in combination
with antihypoxia drugs.

Te HRI signature consists of 11 HRDEGs, and we
focused on the 5 key genes (RGS16, SNAI1, CDR2L,
FRMD5, and FSTL3), which exhibited elevated expression
levels in tumor tissues and are prognostic risk factors for CC.
RGS16 has already been reported to possess a higher ex-
pression level in colorectal cancer tissue than in the cor-
responding normal tissue and serves as an unfavorable
prognostic marker [39]. Overexpression of SNAI1 (also
known as SNAIL) is linked to increased stemness and de-
creased radiation sensitivity in CC cells [40]. A previously
published study [41] reported the FRMD5 is a novel
downstream gene targeted by the β-catenin/TCF7L2 com-
plex in CC cells. CDR2L is widely present in ovarian cancer
tissues and is abundantly expressed in testicular and prostate
cancer tissues [42]. Knockdown of FSTL3 remarkably
inhibited the aggression phenotype of lung cancer cells [43].
In the subsequent cell activity and apoptosis experiments, we
found that the low expression of SNAI1, CDR2L, FRMD5,
and FSTL3 could reduce the activity of cancer cells and
increase the apoptosis rate of cancer cells. But RGS16 does
not exhibit similar functions. According to previous liter-
ature reports, high expression of SNAI1 can promote the
invasion ability of cancer cells [44], low expression of
FRMD5 can weaken the metastatic ability of cancer cells
[45, 46], and low expression of FSTL3 also has similar
functions [47, 48]. Te reason why RGS16 has no similar
function may be that its mechanism of afecting prognosis is
diferent from other genes. According to previous reports,

the population with low expression of RGS16 presents
a better prognosis than the population with high expression
[39]. Terefore, RGS16 may afect the prognosis of patients
by regulating the activity of immune cells and has no direct
impact on the activity and apoptosis rate of cancer cells [49].
Collectively, these fve key genes may act as oncogenic genes
that contribute to the progression of CC, and their molecular
mechanism is worth further studying to explore new ther-
apeutic targets.

Nevertheless, there are still several limitations to our
study. Te HRI signature was identifed in TCGA-COAD
cohort and validated in another independent dataset, but
these public datasets are mostly attributed to retrospective
studies and may induce indispensable biases to some extent.
Tus, prospective research will be required at a future date.
Furthermore, although the HRI score is demonstrated to
have a reliable predictive capability of immunotherapy re-
sponse in CC by bioinformatical analysis, well-designed
clinical trials should be performed to further prove its
clinical efectiveness.

5. Conclusion

In conclusion, we discover three hypoxia clusters (hypoxia-
H, hypoxia-L, and hypoxia-M) which correlate with the
clinical outcome and the tumor immune microenvironment
in CC. Furthermore, we found 600 HRDEs. Based on the 600
HRDEGs, we constructed a reliable HRI signature that could
accurately predict the prognosis and immunotherapeutic
responsiveness in CC patients. Finally, we discover fve key
genes which are diferently expressed between tumors and
adjacent tissues. Of them, four genes could afect tumor cell
viability and apoptosis.
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Traditional studies mostly focus on the role of single gene in regulating clear cell renal cell carcinoma (ccRCC), while it ignores the
impact of tumour heterogeneity on disease progression. Te purpose of this study is to construct a prognostic risk model for
ccRCC by analysing the diferential marker genes related to immune cells in the single-cell database to provide help in clinical
diagnosis and targeted therapy. Single-cell data and ligand-receptor relationship pair data were downloaded from related
publications, and ccRCC phenotype and expression profle data were downloaded fromTCGA and CPTAC. Based on the DEGs of
each cluster acquired from single-cell data, immune cell marker genes, and ligand-receptor gene data, we constructed a multilayer
network.Ten, the genes in the network and the genes in TCGAwere used to construct theWGCNA network, which screened out
prognosis-associated genes for subsequent analysis. Finally, a prognostic risk scoring model was obtained, and CPTAC data
showed that the efectiveness of this model was good. A nomogram based on the predictive model for predicting the overall
survival was established, and internal validation was performed well. Our fndings suggest that the predictive model built and
based on the immune cell scRNA-seq will enable us to judge the prognosis of patients with ccRCC and provide more accurate
directions for basic relevant research and clinical practice.

1. Introduction

RCC is a typical type ofmalignant tumour of the urinary system.
According to the most recent report on cancer statistics, the
number of newly diagnosed cases has climbed to 65,000 annually
in the United States, resulting in around 15,000 fatalities an-
nually, making it the sixth most prevalent tumour [1]. Clear cell
renal cell carcinoma (ccRCC) accounts for around 80% of renal
cancer pathological types, and its survival results were poorer
than other subtypes of kidney tumours (such as papillary renal
cell carcinoma and chromophobe renal cell carcinoma) [2].
Nearly 20% of ccRCC cases progress to an advanced stage at the
beginning of diagnosis, and the fve-year overall survival (OS)
rate of metastatic cases dropped to about 10% [3]. With the

development of immunotherapy, radiotherapy, and surgical
intervention, combined strategies have greatly promoted car-
cinoma control. However, the actual clinical efcacy still needs
to be improved, and 30% of patients with local ccRCC inevitably
experience cancer-related progression and recurrence [4]. Re-
cently, although targeted therapy has been shown to prolong the
survival time of patients with metastases, the median survival
time is still less than 3 years [5]. In addition, drug resistance and
economic burden are unavoidable major problems in clinical
practice [6]. Terefore, exploring the molecular mechanism of
ccRCC pathogenesis and new therapeutic targets is still
a challenging issue.

A crucial aspect of carcinoma is its comprehensive
heterogeneity, which can cause individuals to react
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diferently to the same treatment. Despite many eforts to
clarify tumour heterogeneity, so far, the understanding of it
is still mainly limited to the level of tumour cells [7]. Pre-
viously, it has also been proved that stromal cells and
tumour-infltrating immune cells exhibit heterogeneity [8].
Similarly, the tumour microenvironment (TME) is gradually
regarded as a potential solution for drug treatment targets
[9]. In addition to anti-PD-1/PD-L1 or anti-CTLA-4
treatment strategies, tumour-associated macrophages
(TAMs) [10] and cancer-associated fbroblasts (CAFs) [11]
have also been previously reported as potential strategies for
cancer treatment research. ROS is also an important factor in
cancer treatment, it causes structural proteins to oxidise,
which disables the proteolytic process. Tese reactions
change how an enzyme works or how proteins are created.
Te latter could have a wide range of functional impacts
downstream, including inhibition of binding and enzymatic
activity, an increase or decrease in cellular uptake, in-
activation of DNA repair enzymes, and a reduction in the
fdelity of damaged DNA polymerases during DNA repli-
cation [12]. Te successful implementation of these treat-
ment plans requires a deeper insight of intratumoural
heterogeneity.

It is obviously impossible to analyse intratumoural het-
erogeneity at the cellular level since traditional bulk RNA se-
quencing is predicated on the idea that every gene is expressed
equally in each cell. However, through the application of single-
cell RNA sequencing (scRNA-seq), it is possible to conduct
single-cell transcriptome analysis. Te latest progress in scRNA-
seq has facilitated the transcriptional classifcation of many
malignant tumour cell types, including breast cancer, lung
cancer, and pancreatic ductal adenocarcinoma [13, 14]. More-
over, scRNA-seq is expected to have clinical utility in refractory
cancer cases and is a noninvasive method for monitoring cir-
culating cancer cells, analysing intratumoural heterogeneity, and
sensitively estimating recurrent tumours [15].

We conducted a series of bioinformatics analyses using
data from other publications about scRNA-seq in order to
investigate the intratumour heterogeneity in ccRCC. We
combined these analyses with ligand-receptor network
analysis, immune cell multilayer network analysis, and
weighted gene co-expression network analysis (WGCNA) to
identify hub genes for creating an immune cell-related
prognostic model. It would have several potential targets
for ccRCC therapy. Moreover, we also investigated the
prognostic value of immune cell clusters by correlating the
scRNA-seq data with the data from Te Cancer Genome
Atlas (TCGA) and Clinical Proteomic Tumor Analysis
Consortium (CPTAC) datasets. Our work will help elucidate
the biology of ccRCC and promote the improvement of
clinical diagnosis and treatment strategies for patients with
ccRCC.

2. Methods

2.1. Raw Data Acquisition. ccRCC single-cell transcriptome
data was downloaded from a database published by Young
et al. [16]. Te datasets of RNA sequencing profles and the
related patient clinical traits of ccRCC were downloaded

from TCGA (https://portal.gdc.cancer.gov/) and CPTAC
(https://cptac-data-portal.georgetown.edu/study-summary/
S050), separately. Ligand and receptor data for building the
multilayer network were acquired from [17].

2.2. Data Processing. For single-cell data, “limma,” “Seurat,”
“dplyr,” and “magrittr” R packages were used for analysis. Data
fltering criteria included the following: (1) the number of genes
in the data sample was controlled between 200 and 5,000; (2) the
number of gene sequenceswasmainly distributed between 0 and
20,000; and (3) the percentage of mitochondria was controlled
below 5%. Ten, the log was taken for standardisation, and the
frst 2,000 genes with the larger coefcient of variation between
cells were selected for analysis. Next, principal component
analysis (PCA) dimensionality reduction was performed, the
data were standardised before dimensionality reduction, and
fnally, signifcant dimensions were selected for subsequent
analysis. Since the formof data downloaded fromTCGA is log2-
(data+1), log processing is not necessary and the stand-
ardisation was done directly. Before standardisation, the data
must be processed using log2-(data+1) after being retrieved
from the CPTAC database.Te “limma” R package was used to
carry out the standardisation.

2.3. Cell Type Recognition and Clustering Analysis. Te rec-
ognition of diferent cell types was based on the “limma,”
“Seurat,” “dplyr,” and “magrittr” R packages. We used the 20
principal components (PCs) selected in the previous step to
perform TSNE clustering. Subsequently, the cell type was an-
notated through the “singleR” R package. In order to facilitate
the display of subsequent results, we have annotated both
subpopulations and single cells.

2.4. Identifcation of Diferentially Expressed Genes in Each
Cluster. We used several R packages, including “limma,”
“Seurat,” “dplyr,” and “magrittr” to analyse the genes
contained in each cluster. Te FindAllMarkers algorithm
was used to screen and calculate the diferentially expressed
genes (DEGs) in each cluster. Te screening standard is
|logFC|> 0.5, and the P value after correction is <0.05.

2.5. ImmuneCell FunctionStatusAnalysis. We used “GSVA”
and “GSEABase” R packages to conduct functional status
analysis on samples annotated by single cell, and we referred
to the marker genes of immune cell functional status pro-
vided by the CancerSEA (https://biocc.hrbmu.edu.cn/
CancerSEA/home.jsp) database to clarify the functional
status of DEGs in immune cells.

2.6. Immune Cell Marker Gene Expression Analysis. Te
marker genes of immune cells in kidney cancer tissues were
obtained from the CellMarker (https://bio-bigdata.hrbmu.
edu.cn/CellMarker/) database. In addition, marker genes
associated with macrophages and monocytes were acquired
from [18]. Te expression levels of these marker genes were
analysed and displayed through a heat map.
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2.7. Construction of Ligand-Receptor and Immune Cell
Multilayer Networks. Te construction of the ligand-receptor
network was carried out using the “igraph” R package. Tomake
sure that the ligand genes and associated receptor genes were all
included in the gene set taken in union, we frst took the
intersection of the genes in the ligand-receptor table provided
in the literature [17] and the diferential genes in all immune
cell clusters and the marker genes of all included immune cells.
Ten, we obtained the data for transcription factors and their
target genes from the TRRUST (https://www.grnpedia.org/
trrust/) database and combined it with the data for ligand-
receptor network genes, which is the intersection of the
transcription factors’ target genes and network genes.

2.8. Weighted Gene Co-Expression Network Analysis.
Trough theWGCNAalgorithm [19], the genes in the immune
cell multifactor network were used to construct a co-expression
network to fnd the keymodules related toOS andOS time. An
appropriate soft threshold value was determined by an R
software package (https://www.r-project.org/) to implement
according to theWGCNAalgorithm.Te gradientmethodwas
used to test diferent power values (ranging from 1 to 20) in
both the scale independence degree and the module’s average
connectivity. Te most suitable power value could be fxed
when the independence degree was above 0.9, as well as when
the average connectivity degree was relatively higher [20, 21].
Te WGCNA algorithm was also implemented in the con-
struction of scale-free gene co-expression networks. Mean-
while, the corresponding gene sequencing information in each
module was extracted. To assess modular feature associations,
correlations between module eigengenes (MEs) and clinical
features were applied.MEs are themost important components
in the PCA of each genemodule.Te determination of relevant
modules needs to be based on the calculation of the correlation
strength betweenMEs and clinical features.Te correlationwas
assessed by gene signifcance (GS� lgP), where the P value was
derived from the linear regression analysis of gene expression
and clinical information. Te key module takes the highest
correlation coefcient among all modules, which was selected
out for the next step [22].

2.9. Key Module Functional Enrichment Analysis. Te se-
quencing information of genes in the key modules from
WGCNA was utilized by using the “clusterProfler” R
package to perform gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analyses.
Among them, GO is to annotate biological processes (BPs),
molecular functions (MFs), and cellular components (CCs).
Te criterion for screening in GO term is P value <0.05. Te
screening criteria for the KEGG pathway are minGSSize� 5,
maxGSSize� 500, and qvalueCutof� 0.05.

2.10. Selection of Candidate Prognostic Related Genes.
Univariate Cox regression analysis was performed through
the “survival” R package to screen prognostic characteristic
genes from the previous OS-related WGCNA key modules.
When the P value is less than 0.05, that is, when the

diferential expression of these genes has a signifcant impact
on the patient’s OS, these genes can be regarded as potential
prognostic related genes. Data in this step were from ccRCC
cancer samples in TCGA.

2.11. Construction, Evaluation, and Validation of Disease
Prognosis Risk Model. For the candidate prognostic related
genes, combined with their expression in TCGA, univariate
Cox regression analysis was used to obtain genes with more
signifcant risk. Ten, LASSO dimensionality reduction with
1,000 iterations was performed to screen out redundant genes
to obtain more precise prognostic related genes with high
hazard ratio (HR) to construct a risk prognosis model. Te
following formula was used to calculate the risk score for each
patient by using a linear combination of specifc features that
were weighted by their respective coefcients from LASSO:

risk score � 
n

i�1
expi ∗ ßi, (1)

where n is the number of prognostic genes, expi is the ex-
pression value of the i-th gene, and ßi is the regression
coefcient of the i-th gene in the LASSO algorithm.
According to the risk score of each patient given by the
model, the median was taken as the cutof value, and the
samples were divided into high and low risk groups. Te
time-dependent receiver operating characteristic (ROC)
curve was used to evaluate the predictive ability of the
model’s 1-, 3-, and 5-year survival periods. Te survival
curves of the high and low risk groups were also analysed.
Te CPTAC dataset was taken as the external validation
database to verify the prognostic risk model.

2.12. Construction and Assessment of a Predictive Nomogram.
Nomograms are widely used to predict the prognosis of cancer
patients, mainly because they can simplify statistical prediction
models into a single numerical estimate of OS probability
tailored to individual patient conditions. In this study, the
prognostic model was used to construct a nomogram to assess
the probability of OS in patients with ccRCC at one, three, and
fve years. Subsequently, discrimination and calibration were
carried out. Te discrimination of the nomogram was calcu-
lated by the bootstrap method using the consistency index (C-
index), with 1,000 resamples. Te value of the C-index is
between 0.5 and 1.0, where 1.0 means that the results of the
model can be correctly distinguished and 0.5 means random
chance. Te calibration curve of the nomogram is evaluated
graphically by plotting the relationship between the predicted
probability of the nomogram and the observed rate. Over-
lapping with the reference line indicates that the model is
exactly the same. In addition, we also compared the predictive
accuracy between nomogram built only with risk score and
nomogram combined with all factors using ROC analysis.

3. Results

3.1. Pretreated Data. Te single-cell data of the downloaded
ccRCC were preprocessed as described in the Methods
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section, and we obtained 30,092 cells in total. In addition, we
found that the correlation between the sequencing depth and
the detected genes was 0.95, indicating that the deeper the
sequencing depth was, the more the genes were detected.
Subsequently, we selected 2,000 genes with large variances
for PCA analysis. Te diferences of all 20 PCs were ex-
tremely signifcant, indicating that the theoretical value and
the actual value are quite diferent which can be used for
subsequent analysis.

Tere were 607 samples in the KIRC expression profle
data of TGCA, of which 72 were paracancerous samples, 535
were cancer samples, and one sample had incomplete
clinical information which was then removed. Finally, the
data of 534 ccRCC tumour tissue samples were used for
subsequent relative analysis. Among the data downloaded
from the CPTAC database, there were 110 cancer samples
and 75 paracancerous samples. Only 103 cancer samples
contained clinical information. As a result, the data of these
103 samples were eventually used for analysis.

3.2. ccRCC Heterogeneity. For cluster analysis of single-cell
data, we obtained a total of 23 subgroup clusters. After
annotating by cell type, we found that immune cells were
mainly concentrated in subgroups 0, 1, 2, 3, 4, 5, 6, 7, 9, 12,
13, 15, 16, 18, and 22 (Figure 1, Supplementary Table 1).
Specifcally, CD8+ Tcells were distributed in clusters 0, 2, 3,
7, 12, and 18. NK cells were only annotated in cluster 1.
Monocytes assembled in clusters 4, 5, 13, and 22. Clusters 6,
9, and 15 were annotated to macrophages. B cells annotated
only cluster 16.

3.3.DiferentiallyExpressedGenesandFunctionalEnrichment
in Diferent Immune Cell Subgroups. We performed difer-
ential expression analysis on the genes in 23 clusters ob-
tained in the above step and displayed the frst fve genes in
each cluster (Figure 2(a), Supplementary Table 2). According
to the results of gene diferential expression, we analysed the
functional status of the annotated immune cell clusters. In
each immune cell type, the enrichment degree of hypoxia
and quiescence was relatively high. Besides the enrichment
levels of EMT, invasion and stemness in B cells were also
relatively high (Figures 2(b)–2(f)).

3.4. Identifcation of Immune Cell Marker Gene Expression.
A total of 42 immune cell marker genes related to ccRCC
were downloaded from the CellMarker database [18] and
subjected to diferential expression analysis. Te results are
shown in the heat map (Figure 2(g)).

3.5. Ligand-Receptor Network. In order to construct the
ligand-receptor network, we frst took the union of the
diferential genes of all immune cell clusters and the marker
genes of all these immune cells. Afterwards, we intersected
them with the ligand-receptor relationship pairs down-
loaded from [17]. Finally, a total of 981 pairs of ligand-
receptor relationships were obtained (Figure 3(a), Supple-
mentary Table 3).

3.6. Immune Cell Multifactor Network Based on Ligand-
Receptor Network Combined with Transcription Factors.
Intersecting genes in 981 ligand-receptor relationship pairs
with transcription factor target genes, we obtained 7,987
immune cell multifactor network relationship pairs (Sup-
plementary Table 4). Ten, 966 genes were obtained by
intersecting the 973 genes contained in the network and the
genes in TCGA dataset about ccRCC (Supplementary Ta-
ble 5). Because there are many relationship pairs, Figure 3(b)
only shows a network diagram of partial genes.

3.7. Co-Expression Network. Te construction of co-
expression modules included 966 genes from the immune
cell multifactor network. Te appropriate scale-free power
value was screened out as 4 (Figure 4(a)). All constructed
modules are painted with diferent colours, and the cluster
trees of genes are also shown in Figure 4(b). Te black and
magenta modules were chosen as the key modules, since
they had the highest correlations with OS and OS time of
ccRCC (Figures 4(c) and 4(d)). Te correlations between
MEs and clinic traits are shown in Figure 4(e). Tere were 53
genes in these two modules (Supplementary Table 6). For
a deeper understanding about the biofunctions of these
modules, genes in these modules were carried out to conduct
GO and KEGG pathway analyses by using the “cluster-
Profler” R package. According to the P value of each term,
the top terms in the GO and KEGG pathways were extracted
out and visualized (Figures 4(f )–4(i)).

3.8. Prognostic Risk Scoring Model. Using the “survival” R
package to perform univariate Cox regression analysis on the
53 genes contained in the key modules ofWGCNA, 28 genes
with P value <0.05 were obtained. Figures 5(a)–5(d) show
the survival analysis results of four genes among them.Ten,
the 28 genes with signifcant prognostic diferences were
subjected to LASSO regression analysis. We adopted the Cox
proportional hazard model (family = “Cox”) to calculate the
HR and P values of these genes (Figure 5(e)) and then
randomly simulated 1,000 times (maxit = 1000) to fnd the
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most suitable λ value in LASSO regression (Figure 5(f)).
Finally, “lambda.min” was used to screen out 16 genes for

constructing a risk scoring model from these 28 genes
(Figure 5(g)).

Risk score � PAX2∗ (−0.00104) + NFKBIZ∗ 0.11197 + TEAD4∗ 0.212538 + HIPK2∗ (−0.09059) + CD14∗ 0.051547

+ COL1A1∗ 0.084915 + NRG1∗ (−0.10501) + GPR182 ∗ (−0.30944) + ITGA6∗ (−0.08147) + HDAC1

∗ 0.225345 + HOXA9∗ 0.078825 + E2F5∗ 0.436804 + APP∗ (−0.14625) + FGF1∗ (−0.27736) + L1CAM

∗ 0.149607 + DDR1∗ (−0.11874).

(2)

3.9. Prognostic Model Prediction Efectiveness Evaluation and
External Dataset Verifcation. In the evaluation of the
predictive efcacy of the prognosis model, Kaplan–Meier
(KM) survival analysis was performed on the high and low
risk groups, and the diference was signifcant (Figure 5(h)).
Moreover, in its ROC curve, the one-year AUC value was
0.794, the three-year AUC value was 0.746, and the fve-year
AUC value was 0.763 (Figure 5(j)). In the external CPTAC
dataset, KM survival analysis was performed on the high and
low risk groups, and the diference was also signifcant
(Figure 5(i)). In addition, the one-year AUC value in its ROC
curve was 0.783, and the three-year AUC value was 0.762
(Figure 5(k)). Because the external data do not have fve-year
survival data, only one-year and three-year ROC analysis
was performed.

3.10. Predictive Nomogram. For the purpose of building
a clinically applicable method to estimate the survival
possibility of patients with ccRCC, we developed a nomo-
gram to predict the probability of 1-, 3-, and 5-year OS based
on the data in TCGA. Te predictors of the nomogram
included age, gender, T, N, M, grade, risk score, and stage
(Figure 6(a)).TeC-index for themodel for evaluation of OS
was 0.799. Te visual calibration chart was used to evaluate
the performance of the nomogram. When the angle of the
line is 45°, it represents the best prediction result. Tus, our
calibration chart indicated that the nomogram has a good
predictive ability (Figures 6(b)–6(d)). Te AUC values of the
nomograms combined with all factors were greater than the
nomograms built only with risk score in spite of the fact that
their values were all more than 0.7. Tis indicated that the
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Figure 2: Continued.
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predictive precision of the nomogram combined with all
factors was better (Figures 6(e)–6(g)).

4. Discussion

Te emergence of next-generation sequencing (NGS) has
provided a feasible and cost-efective way to determine
the transcriptional landscape of human cancers, in-
cluding both bulk and single-cell resolution with un-
precedented base-pair precision [23–25]. It has been

established that cancer is attributed to dysregulated
evolution [26, 27] in acquiring inheritable genetic/epi-
genetic traits [28–30]. However, the presence of tumour
heterogeneity poses substantial challenges in the di-
agnosis and treatment of tumours [31–34]. Tumour
heterogeneity exerts a vital role in various aspects (e.g.,
intertumour, intratumour, and intermetastasis hetero-
geneity, interdisease and interpatient heterogeneity,
epigenetic and metabolic heterogeneity, TME hetero-
geneity, and tumour-intrinsic genetic heterogeneity)
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Figure 2: (a) Heat map of the top fve diferential genes in each cluster. (b) B cell functional status analysis. (c) T cell functional status
analysis. (d) Monocyte functional status analysis. (e) Macrophage functional status analysis. (f ) NK cell functional status analysis. (g) Heat
map of immune cell marker genes.
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[35, 36, 36–38]. A landmark paper has demonstrated that
ccRCC is a heterogeneous disease with marked genetic
intermetastases and intratumour heterogeneity (G-IMH
and G-ITH) [39]. Further studies have elucidated
whether somatic mutation landscape and genetic het-
erogeneity infuence the clinical outcomes of ccRCC
tumour management [40]. Because of this, we adopted
a series of bioinformatics methods to use the ccRCC
single-cell data in published articles and the ccRCC-
related data in public databases to study whether im-
mune cell-related genes can construct a predictive
prognostic model for patients with ccRCC, which may be
helpful for further understanding of the intratumour
heterogeneity of ccRCC, and provide corresponding
support for related basic research and clinical applica-
tions in the future.

Since there are many genes used to annotate a certain
cell, it is usually difcult to determine which of these

genes are critical. As a result, we built some networks,
hoping to better fnd key genes related to our target
clinical traits to construct a risk prediction model. Re-
searchers have traditionally been concerned with a few or
linear pathways between diferent cells. Identifying the
signalling network of communication within diferent
cell types is invaluable in the diagnosis and treatment of
ccRCC tumours. Furthermore, a complete network of
cell-cell signalling includes not only intercellular sig-
nalling pathways but also intracellular signalling trans-
duction and gene expression [41]. Tus, a complete
network of molecular signalling mechanisms is required
to show the interaction between the TME and related cell
types. A study has proved a potential scRNA-
seqtranscriptome-based multilayer network approach,
which can be considered as a useful technique to identify
the interplay between the TME and tumour cells, further
predicting the prognostic and predictive signatures of
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Figure 5: Construction and assessment of disease prognosis risk model. (a–d) Survival analysis of four genes among the candidate genes
used to construct the risk prediction model. (e) Forest plot for univariate regression analysis of 28 genes. (f ) Selection of appropriate λ value
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Figure 6: (a) Nomogram predicting 1-, 3-, and 5- year OS for patients with ccRCC. (b–d)Te calibration curve for predicting 1-, 3-, and 5-
year OS for patients with ccRCC. (e–g) Time-dependent ROC curve analysis evaluates the accuracy of the nomograms.
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cancer patients [17]. In addition to the multilayer net-
work, we also applied the WGCNA algorithm to explore
the hub genes in key modules associated with the OS and
OS time. Te WGCNA algorithm explores the re-
lationship between co-expression modules and clinical
traits, which provides an opportunity to identify the hub
genes in a module but not a downstream gene; thus, it
possesses the distinct advantage of making the results
more reliable and higher in biological signifcance [42].
In our study, we found all the genes related to the im-
mune cells in the ccRCC samples through multilayer
networks, then divided these genes into multiple mod-
ules using the WGCNA method, and used the genes in
the modules with the strongest correlation with OS and
OS time as the candidate genes for risk scoring model
construction. Trough the survival diference analysis of
the genes in the key modules of the WGCNA algorithm,
the genes with signifcant prognostic signifcance were
found and the genes used to construct the risk prediction
model were confrmed after LASSO dimensionality re-
duction processing. Subsequently, we verifed the fea-
sibility and efectiveness of the model for assessing the
prognosis of patients with ccRCC through nomogram,
which also showed that the immune cells in ccRCC do
have an impact on the prognosis of patients.

Some genes in the prognostic risk scoring model have
been proven to exert various efects on the regulation of
certain tumours or diseases. Previous study has found
that an imbalance of APP may be involved with the
negative correlation between cancer and Alzheimer’s
disease [43]. As a vital target in the TLR signalling
pathway, CD14 exerts a dual efect on oncogenesis, which
can initiate several tumour-related signalling pathways
or alter the immune microenvironment in the tumour
[44]. COL1A1 was considered to be associated with the
pathogenesis of COL1A1-PDGFB fusion uterine sarcoma
[45]. It was reported that DDR1 is involved in the de-
velopment of cancer and fbrotic diseases [46]. Regu-
lating E2F5 is of great signifcance in maintaining
genome stability and the cell cycle [47]. Study has shown
that if certain signal mutations cause the destruction of
FGF1, it is likely to give rise to cancer [48]. Te dysre-
gulation of HDAC1, a chromatin modifer, may cause
harmful efects on cell fate and function, which could
lead to cancer [49]. HIPK2, a multitalented protein,
utilizes its kinase activity to regulate several pathways to
limit the proliferation and diferentiation of tumour cells
and induce positive responses to therapies [50]. Since
they are susceptible to ROS, proteins are typically the
target of increased free radical production. ROS lead to
the oxidation of structural proteins, which shuts down
the proteolytic mechanism. Tese reactions alter the way
proteins are built or how an enzyme functions. Te latter
could have many diferent downstream functional ef-
fects, such as inhibition of enzymatic and binding ac-
tivities, an increase or decrease in cellular absorption,
inactivation of DNA repair enzymes, and a decrease in
the fdelity of damaged DNA polymerases in DNA
replication [12]. HOXA9, a homeodomain-containing

transcription factor, exerts a vital role in the pro-
liferation of hematopoietic stem cells and is commonly
negatively afected in acute leukaemias [51]. Recent study
has shown that ITGA6 can be a useful biomarker for early
detection of colorectal cancer cells in a noninvasive assay
and as a prognostic factor [52]. L1CAM has been found
in various types of human cancers, which indicates a bad
prognosis [53]. NFKBIZ is a psoriasis susceptibility gene
that encodes the functions of TRAF6 signalling players,
especially in terms of positive and regulatory immune
controls by interactions between immune cells and ep-
ithelial cells [54]. Oncogenic gene fusion involving
NRG1 contributes to the activation of ErbB-mediated
pathways, representing a potential target for tumour
management [55]. PAX2 has been found in epithelial
tumours of the kidney and the female genital tract [56].
TEAD4 binds with YAP, TAZ, VGLL, and other tran-
scription factors to modulate various tumour-related
processes, including tumour cell proliferation, cell sur-
vival, tissue regeneration, and stem cell maintenance, in
cancer via its transcriptional output [57]. Te above-
reported functions and mechanisms of these genes could
help elucidate their correlations with ccRCC and provide
reliable evidence for further determination of diagnostic
and therapeutic methods.

Although our study only used published data and
information in public databases and did not directly use
clinical samples for experimental testing and analysis, it
is still sufcient to show that the data obtained through
single-cell sequencing is able to provide an efective
support to predict the prognosis of patients with ccRCC.
Additionally, our research can also provide ideas for
clinical diagnosis and treatment. For example, the genes
in the risk prediction model we have established are more
likely to become marker genes for clinical screening of
ccRCC or therapeutic targets for metastatic ccRCC.
Furthermore, our methods and results would enhance
theoretical assistance for other researchers to explore
other cancers related to tumour heterogeneity in the
future.

5. Conclusion

Cancer has been proven to be caused by dysregulated
evolution [27] that results in the acquisition of heritable
genetic or epigenetic characteristics. However, the oc-
currence of tumour heterogeneity creates signifcant
difculties for both tumour identifcation and treatment.
ccRCC is a heterogeneous disease with marked genetic
intermetastases and intratumour heterogeneity (G-IMH
and G-ITH). Te purpose of this study is to determine
whether immune cell-related genes can be used to build
a predictive prognostic model for patients with ccRCC.

In our study, we used multilayer networks to identify all
the immune cell-related genes in the ccRCC samples. We
then used the WGCNA method to separate these genes into
various modules, and we used the genes in the modules with
the strongest correlation with OS and OS time as the can-
didate genes for risk scoring model construction. Following
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all steps as detailed in result and discussion section, we then
used a nomogram to validate the viability and efcacy of the
model for determining a patient’s prognosis for ccRCC,
which also demonstrated that the immune cells in ccRCC do
afect the prognosis of patients.

In a nutshell, our results indicate that the immune cell
scRNA-seq predictive model will help us to assess the prognosis
of patients with ccRCC and provide more precise guidelines for
basic related research and clinical management. As a result, it
may help to further our understanding of the intratumour
heterogeneity of ccRCC and support future basic research and
clinical applications.
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N6-methyladenosine (m6A) is an abundant eukaryotic mRNA modifcation involved in regulating the formation and metastasis
of nonsmall cell lung cancer (NSCLC). We collected clinical NSCLC tissue and paracarcinoma tissue.Ten methyltransferase-like
14 (METTL14), pleomorphic adenoma gene like-2 (PLAGL2), and β-catenin expressions were assessed using quantitative real-
time PCR and western blot. PLAGL2, and β-catenin (nuclear) expressions were increased in NSCLC tissues. Cell proliferation,
migration, invasion, and death were examined. PLAGL2 could activate β-catenin signaling to afect cell proliferation and
migration abilities. RNA immunoprecipitation assay was operated to identify m6A modifcation levels of PLAGL2 after
knockdown and overexpression of METTL14. PLAGL2 was regulated by METTL14-mediated m6A modifcation. Knockdown of
METTL14 repressed cell proliferation, migration, and invasion, and promoted cell death. Interestingly, these efects were reversed
when PLAGL2 was overexpressed. Finally, tumor formation in nude mice was performed to verify the role of the METTL14/
PLAGL2/β-catenin signaling axis. Tumor formation in nude mice demonstrated METTL14/PLAGL2/β-catenin axis promoted
NSCLC development in vivo. In brief, METTL14 promoted NSCLC development by increasing m6A methylation of PLAGL2 to
activate β-catenin signaling. Our research provided essential clues for in-depth comprehension of the mechanism of NSCLC
occurrence and development and also provided the basis for NSCLC treatment.

1. Introduction

Nonsmall cell lung cancer (NSCLC) accounts for 85% of all
lung cancer incidence [1]. While it afects the quality of
patients’ life, it also increases the global economic burden.
Due to a large number ofmutations and general heterogeneity
in this type of cancer, the use of traditional therapies has been
challenging [2]. Small molecule tyrosine kinase inhibitors and
immunotherapy have brought unprecedented survival ben-
efts to selected patients. But overall cure rate and survival rate
of NSCLC are still low [3]. At present, molecular-targeted
therapy has also made great progress in the NSCLC treatment
feld [4].Terefore, it is particularly essential to investigate the
internal mechanism of NSCLC and provide potential scien-
tifc clues for subsequent treatment of NSCLC.

N6-methyladenosine (m6A) is an abundant eukaryotic
mRNAmodifcation and a common transcriptomemodifcation

in cancer. It was recently found to be involved in the regulation
of NSCLC formation and metastasis [5]. Methyltransferase-like
14 (METTL14) is a core component of the m6A methyl-
transferase complex, and METTL14-induced abnormal m6A
levels are related to tumorigenesis, proliferation, metastasis, and
invasion [6]. METTL14 regulated various cancer occurrences
and development, including breast cancer [7], colorectal cancer
[8], and endometrioid epithelial ovarian cancer [9]. In NSCLC,
knockdown ofMETTL14 inhibited Twist-mediated activation of
AKT signaling to suppress NSCLC malignancy. Tis revealed
METTL14 might be a potential therapeutic target for NSCLC
[10]. As a writer of m6A methylation modifcation, METTL14
could promote the methylation modifcation of mRNA, thereby
afecting its protein expression [11, 12]. Pleomorphic adenoma
gene like-2 (PLAGL2) is the zinc fnger protein transcription
factor. It is overexpressed in many malignant tumors (gastric
cancer, colorectal cancer, and breast cancer) and could facilitate
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tumor proliferation, migration, and invasion [13–15]. Over-
expression of PLAGL2 has been implicated in lung cancer [16].
We predicted m6A modifcation of PLAGL2 and METTL14
acting on PLAGL2 by RMBase and m6A2Target. However,
METTL14 and PLAGL2 mechanism in NSCLC remains to be
investigated.

β-catenin is the complete structural component of
cadherin-based and adherent junctions [17]. Abnormal
β-catenin activating in nuclear is related to many human
cancers [18]. Furthermore, METTL14 attenuated cardiac
ischemia-reperfusion injury via activating Wnt/β-catenin in
an m6A-dependent manner, which provided a new thera-
peutic target for ischemic heart disease [19]. In addition,
related studies have shown PLAGL2 could regulate
β-catenin and its downstream pathways and promote tumor
genesis and development [14, 20]. However, there have been
no studies of PLAGL2 with β-catenin in NSCLC.

In our research, we hypothesized METTL14 promoted
PLAGL2 expression by increasing m6A methylation mod-
ifcation of PLAGL2, activating β-catenin signaling, thereby
afecting NSCLC development. To this end, we collected
clinical NSCLC tissue and paracarcinoma tissue for relevant
testing. METTL14/PLAGL2/β-catenin role was also in-
vestigated in vivo and in vitro to investigate whether
METTL14 regulated PLAGL2/β-catenin signaling axis to
promote the development of NSCLC. Our research provided
essential clues for an in-depth comprehension of the
mechanism of NSCLC occurrence and development and also
provided the basis for NSCLC treatment.

2. Materials and Methods

2.1. Collection of Clinical Samples. Tumor tissue and para-
carcinoma tissue samples from NSCLC patients by ico-
nography, serological or histopathological examination in
Zhuzhou Central Hospital from November 2020 to August
2021 were collected. Clinical samples were divided into two
groups: the NSCLC group (n� 5) and the paracarcinoma
tissues group (n� 5). Tis study was approved by the
Medical Ethics Committee of Zhuzhou Central Hospital
(ZZCHEC2021092-01). Te research was conducted
according to the World Medical Association Declaration of
Helsinki. All the information about the study will be fully
explained to the subjects by the researchers. All the par-
ticipants provided informed consent before sampling.

2.2. Cell Culture andTreatment. NSCLC cell A549 (ZQ0003)
was obtained from Zhongqiao Xinzhou Biotech (Shanghai,
China). It was cultured in DMEMhigh glucose mediumwith
10% FBS and 1% double antibodies. PLAGL2 andMETTL14
were knocked down and overexpressed in A549 cells, and
divided into NC (sh-PLAGL2 NC+oe-PLAGL2 NC), sh-
PLAGL2 (sh-PLAGL2+ oe-PLAGL2 NC), and oe-PLAGL2
(sh-PLAGL2 NC+ oe-PLAGL2) groups; NC (sh-
METTL14 NC+oe-METTL14 NC), sh-METTL14 (sh-
METTL14+ oe- METTL14 NC), and oe-METTL14 (sh-
METTL14 NC+oe-METTL14) groups. To further study

PLAGL2 and β-catenin function, we performed interference
PLAGL2 and overexpression of β-catenin. Te subgroups
were sh-NC, sh-PLAGL2, sh-PLAGL2+ oe-NC, and sh-
PLAGL2 + oe-β-catenin groups. Next, to verify METTL14
and PLAGL2’s infuence on NSCLC development,
METTL14 was knocked down, and PLAGL2 was overex-
pressed. Te subgroups were sh-NC, sh-METTL14, sh-
METTL14 + oe-NC, and sh-METTL14 + oe-PLAGL2
groups. sh-PLAGL2, oe-PLAGL2, sh-METTL14, oe-
METTL14, oe-β-catenin, and their control were provided
in GenePharma (Shanghai, China). Cell transfection was
performed according to Lipofectamine 3000 (L3000015,
Invitrogen, USA) kit.

2.3. Hematoxylin-Eosin (HE) Staining. HE staining was
performed to assess the pathological status of the tumor and
paracarcinoma tissues [21]. Te slices were placed in xylene.
Each grade of ethanol was placed for 5min. After dyeing
with hematoxylin for 3min, they were returned to blue with
PBS. Eosin was dyed 5 s. Gradient alcohol (95–100%) was
dehydrated. After taking them out, they were placed in
xylene, sealed with neutral gum, and observed under the
microscope (BA210T, Motic).

2.4. Quantitative Real-Time PCR (qRT-PCR). In simple
terms, total RNA was extracted through Trizol and reverse
transcribed into cDNAs through cDNA reverse transcrip-
tion kit (CW2569, CoWin Biosciences, Beijing, China). Ultra
SYBR Mixture (CW2601, CoWin Biosciences, Beijing,
China) was performed to evaluate the expression on ABI
7900 system. Using β-actin and U6 as reference genes, gene
levels were calculated by 2−ΔΔCt. Primer sequences were as
follows: METTL14-F: GTAGCACAGACGGGGACTTC,
METTL14-R: TTGGTCCAACTGTGAGCCAG; PLAGL2-F:
ACAATGCACCGCACAATGGC, PLAGL2-R: AAACAA
TCTCTTCACCGCGCTC;β-catenin-F: ATTCTTGGCTAT
TACGACAGACT,β-catenin-R: AGCAGACAGATAGCA
CCTT;β-actin-F: ACCCTGAAGTACCCCATCGAG,β-ac-
tin-R: AGCACAGCCTGGATAGCAAC.

2.5. Western Blot (WB). RIPA kit (P0013B, Beyotime,
Shanghai, China) extracted total protein from cells and
tissues. Proteins were quantifed according to the BCA
protein assay kit (#7780, Cell Signaling Technology, USA)
and isolated by 10% SDS-PAGE electrophoresis. Electro-
transfer transferred the protein to the nitrocellulose flter
membrane. Te membrane was sealed with 5% skim milk to
bind to nonspecifc cells and incubated with primary anti-
body at 4°C overnight. For primary antibodies, METTL14
(26158-1-AP, 1 : 3000, Proteintech, USA), PLAGL2 (11540-
1-AP, 1 : 300, Proteintech, USA), β-catenin (51067-2-AP, 1 :
1000, Proteintech, USA), PCNA (10205-2-AP, 1 :1500,
Proteintech, USA), and β-actin (60008-1-Ig, 1 : 5000, Pro-
teintech, USA) were used. Ten secondary antibodies were
incubated. β-actin or PCNA acted as internal reference, and
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Odyssey Infrared Imaging System (Li-COR Biosciences,
USA) assessed the protein bands.

2.6. RNA Immunoprecipitation (RIP) Assay. RIP lysis was
frst prepared. A549 cells were lysed with RIP lysis bufer and
then incubated with RIP immunoprecipitation bufer con-
taining magnetic beads coupled to antibodies against Ago2
(CST, USA) or anti-rabbit IgG (negative control, CST, USA).
Precipitated RNA was evaluated by qRT-PCR. Total RNA
was used as input controls. Te primer sequences were
PLAGL2-F: TCAGCTCCCTCCAAAATACCAG, PLAGL2-
R: CTCCGCCAGAAAACTATCCAC.

2.7. Immunofuorescence (IF). Cells were treated with slices,
fxed with 4% paraformaldehyde. Slices were added 0.3%
triton, permeated at 37°C. Slices were sealed with 5% BSA at
37°C. Cell slices were dropped with the appropriate dilution
of primary antibody β-catenin (51067-2-AP, 1 :100, Pro-
teintech, USA). Ten we added appropriate anti-rabbit-IgG-
labeled fuorescent antibody and incubated them at 37°C for
90min. DAPI working solution was nucleated for 10min at
37°C, and then cells were sealed with bufer glycerol and
observed under the fuorescence microscope.

2.8. Plate Clone Formation Assay. Cells were removed from
each group at the exponential growth stage. Cells in each
group were inoculated with 200 cells in each well in 6-well
plates containing 1mL culture medium restored to room
temperature. Cells were placed in the 5% CO2, 37°C, and
saturated humidity incubator for 2 to 3weeks, during which
the liquid was appropriately changed. We discarded the
culture medium, carefully soaked PBS twice, and added 4%
paraformaldehyde (1mL) to fx the cells. We removed the
fxing solution and added 1mL of dye solution to the
working solution to stain. After decolorization, the absor-
bance (OD) value at 550 nm was assessed by using the
enzyme-plate reader.

2.9.TrypanBlueStaining. Cells were collected after digestion
with trypsin and EDTA. We centrifuged collected cells at
1500 g for 1min, discarded the supernatant, and resus-
pended cells with 1mL or an appropriate cell suspension
depending on the number of cells. Trypan blue staining was
performed according to previous reports [22].

2.10.WoundHealingAssay. Cells were digested with trypsin
to form single cell suspension and inoculated on 6-well
culture plates (5×105 cells per well). Cells were cultured
in a 5% CO2 incubator at 37°C for 24 h until cells were
covered with six-well plates. We scratched with a horizontal
line perpendicular to the back of the six-hole plate. Serum-
free DMEM medium (D5796, Sigma, USA) was added.
Scratches at 0 h were photographed and taken under the

inverted biological microscope (DSZ2000X, Cnmicro,
China) after incubation for 24 and 48 h.

2.11. Transwell Assay. Cell invasion assays were applied in
the Transwell chamber (3428, Corning, USA) with a matrix
gel (354262, BD, USA). Cells were digested with trypsin into
a single cell suspension and suspended in serum-free me-
dium to 2×106 cells/mL. Te upper chamber was inoculated
with 100 μL cells, and the lower chamber was inoculated with
10% FBS complete medium (500 μL). After being cultured in
a 37°C incubator for 48 h, they were washed in the upper
chamber with PBS. We fxed them with paraformaldehyde
and removed the flm. We dyed the flm with crystal violet
(0.1%) for 5min. Upper outdoor surface cells were observed
under the inverted microscope (DSZ2000X, Cnmicro,
China). After decolorization by soaking in acetic acid, the
number of cells was counted [23].

2.12. In Vivo Tumorigenesis. Twenty BALB/c nude mice
(4–6weeks) were randomly assigned to sh-NC, sh-
METTL14, sh-METTL14+oe-NC, and sh-METTL14+oe-
PLAGL2, with 5 mice in each group. Mice were raised under
sterile conditions of ambient room temperature of 26–28°C,
the humidity of 40–60%, and alternating day and night for
10 h/14 h. Te Mice were fed sterile food and water. After
1 week of adaptive feeding, A549 cells that transfected with
sh-NC, sh-METTL14, oe-NC, and oe-PLAGL2 were sub-
cutaneously injected. Te cell concentration was 5×106/mL,
and 200 μL was injected [24, 25]. Te formation of the
transplanted tumor was observed, and tumors with a di-
ameter ≥0.5 cm were considered tumor formation. Tumor
volume was calculated. After the experiment was completed,
we euthanized the mice under animal ethics. Te mice were
sacrifced with 150mg/kg sodium pentobarbital.

2.13. Statistical Analysis. GraphPad Prism 8.0 software was
applied for statistical analysis. Data were expressed as
mean± standard deviation (SD). First, normality and ho-
mogeneity of variance tests were performed. When the test
conformed to the normal distribution and the variance was
homogeneous, Student’s t-test was used between the two
groups. Comparisons among multiple groups were con-
ducted by one-way analysis of variance (ANOVA), followed
by Tukey’s post hoc test. P< 0.05 indicated the diference
was statistically signifcant.

3. Results

3.1. PLAGL2 LevelWas Elevated in NSCLCTissues. First, HE
staining assessed the pathological status. Compared with
paracarcinoma tissues, NSCLC tissues had larger nuclei,
larger nucleoplasmic ratio, more obvious histopathological
atypia, and unclear tissue structure (Figure 1(a)). Sub-
sequently, PLAGL2 expression was measured by qRT-PCR.
Compared with paracarcinoma tissues, PLAGL2 expression
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was elevated in NSCLC tissues (Figure 1(b)). PLAGL2 ex-
pression was further verifed by WB, and WB results were
consistent with the trend of qRT-PCR (Figure 1(c)).

3.2. PLAGL2 Activated β-catenin Signaling to Afect Cell
Proliferation andMigration. Trough a literature search, we
found PLAGL2 regulated β-catenin and its downstream
pathways and promoted tumor genesis and development
[14, 20]. Terefore, we wanted to investigate PLAGL2’s role
in β-catenin. First, β-catenin (total) and β-catenin (nuclear)
expressions were evaluated by WB. β-catenin (nuclear) level
was promoted in NSCLC tissues than paracarcinoma tissues,
but β-catenin (total) was not signifcantly diferent
(Figure 2(a)). Subsequently, PLAGL2 was knocked down
and overexpressed in A549 cells. PLAGL2 level in the sh-
PLAGL2 group was repressed, and that in the oe-PLAGL2
group was increased than the NC group, indicating that
PLAGL2 was successfully knocked down and overexpressed.
At the same time, β-catenin expression was repressed in the
sh-PLAGL2 group and accelerated in the oe-PLAGL2 group
compared with the NC group (Figure 2(b)). WB further
verifed that β-catenin (nuclear) expression was inhibited in
the sh-PLAGL2 group and accelerated in the oe-PLAGL2
group compared with the NC group. β-catenin (total)
showed no signifcant diference (Figure 2(c)). IF further
demonstrated β-catenin location. Compared with the NC
group, β-catenin in the oe-PLAGL2 group showed nuclear
transfer (Figure 2(d)). Ten we performed interference with
PLAGL2 and overexpression of β-catenin. PLAGL2 level was
repressed in sh-PLAGL2 group than sh-NC. β-catenin ex-
pression was elevated in the sh-PLAGL2+ oe-β-catenin
group compared with the sh-PLAGL2+ oe-NC group, in-
dicating that we successfully interfered with PLAGL2 and
overexpressed β-catenin (Figure 2(e)). Plate clone formation
and wound healing assays showed that the number of clones
and migration were repressed in the sh-PLAGL2 group than
the sh-NC group. After β-catenin was overexpressed, the
number of clones and migration increased (Figures 2(f ) and
2(g)). Tis suggested that PLAGL2 activated β-catenin
signaling to infuence cell proliferation and migration.

3.3.PLAGL2SignalingWasRegulatedbyMETTL14-Mediated
m6AModifcation. First, we predicted m6A modifcation of
PLAGL2 by RMBase and predicted METTL14 acted on
PLAGL2 via m6A2Target. Terefore, we knocked down and
overexpressed METTL14 to explore the mechanism of
METTL14 and PLAGL2. METTL14 level in the sh-
METTL14 group was suppressed and that in the oe-
METTL14 group was increased than the NC group, in-
dicating that METTL14 was successfully knocked down and
overexpressed. In addition, PLAGL2 expression was re-
pressed in the sh-METTL14 group, and accelerated in the
oe-METTL14 group compared with the NC group
(Figure 3(a)). Ten we used RIP to identify the m6A
modifcation of PLAGL2 after knockdown and over-
expression of METTL14. Te results revealed the m6A
modifcation of PLAGL2 was repressed in the sh-METTL14
group and accelerated in the oe-METTL14 group than the
NC group (Figure 3(b)). Collectively, PLAGL2 signaling was
regulated by METTL14-mediated m6A modifcation.

3.4. METTL14 Regulated PLAGL2 Signaling to Afect NSCLC
Cell Function. Next, to verify METTL14 and PLAGL2’s
infuence on NSCLC development deeply, METTL14 was
knocked down, and PLAGL2 was overexpressed. qRT-PCR
showed METTL14 level was repressed in the sh-METTL14
than the sh-NC. In the sh-METTL14 + oe-PLAGL2 group,
PLAGL2 expression was increased compared with the sh-
METTL14 + oe-NC group. Tis indicated METTL14 was
knocked down successfully, and PLAGL2 was successfully
overexpressed (Figure 4(a)). WB showed decreased ex-
pressions of METTL14, PLAGL2, and β-catenin (nuclear) in
the sh-METTL14 than in the sh-NC. PLAGL2 and β-catenin
(nuclear) expressions were elevated in the sh-
METTL14 + oe-PLAGL2 compared with the sh-
METTL14 + oe-NC. β-catenin (total) showed no signifcant
diference (Figure 4(b)). Cell function experiments showed
knockdown of METTL14 reduced cell proliferation, mi-
gration, and invasion and facilitated cell death (cell viability
decreased). After PLAGL2 was overexpressed, cell pro-
liferation, migration, and invasion were increased, and cell
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Figure 1: PLAGL2 level was elevated in NSCLC tissues. (a) HE staining assessed the pathological status. (b) PLAGL2 mRNA expression.
(c) PLAGL2 protein expression. Student’s t-test was used between the two groups. ∗P< 0.05 vs. paracarcinoma tissues.
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Figure 2: Continued.
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death was suppressed (cell viability increased) (Figures 4(c)–
4(f)).

3.5. METTL14/PLAGL2/β-Catenin Axis Promoted NSCLC
Development In Vivo. To further validate METTL14/
PLAGL2/β-catenin function, we performed in vivo experi-
ments. Knockdown of METTL14 reduced tumor volume
and weight. Tumor volume and weight increased after
PLAGL2 was overexpressed (Figures 5(a) and 5(b)). Com-
pared with sh-NC, METTL14 expression was decreased in
sh-METTL14. In comparison with sh-METTL14 + oe-NC,
PLAGL2 was elevated in sh-METTL14 + oe-PLAGL2, in-
dicating METTL14 was successfully knocked down and
PLAGL2 was successfully overexpressed. Besides, β-catenin

expression was inhibited after the knockdown of METTL14.
After PLAGL2 was overexpressed, β-catenin expression
increased (Figure 5(c)). WB also showed decreased ex-
pressions of METTL14, PLAGL2, and β-catenin (nuclear) in
sh-METTL14 compared to sh-NC. PLAGL2 and β-catenin
(nuclear) expressions were elevated in sh-METTL14 + oe-
PLAGL2 than sh-METTL14+oe-NC. β-catenin (total)
showed no signifcant diference (Figure 5(d)). All in all,
METTL14/PLAGL2/β-catenin axis promoted NSCLC de-
velopment in vivo.

4. Discussion

NSCLC is one of the most devastating cancers, with high
mortality worldwide [26]. New treatment options for NSCLC
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Figure 5: METTL14/PLAGL2/β-catenin axis promoted NSCLC development in vivo. (a) Tumor images and tumor volume. (b) Tumor
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have become available through extensive in-depth genomic
studies to improve preclinical disease patterns and identify
specifc toxicity of targeted therapies [27]. In our research, we
collected clinical NSCLC and paracarcinoma tissues and in-
vestigated METTL14/PLAGL2/β-catenin’s role in vivo and
in vitro. Our results demonstratedMETTL14 promoted NSCLC
development by increasing m6A methylation of PLAGL2 to
activate β-catenin signaling.Tere has been no reported research
on the related mechanism of the METTL14/PLAGL2/β-catenin
axis in NSCLC, which is also our innovation of study.

Researchers believed PLAGL2 was overexpressed in
diferent malignant tumors, and it could facilitate tumor
proliferation, migration, invasion, and self-renewal [28]. We
also found that PLAGL2 expression was elevated in NSCLC
tissues. Wu et al. reported PLAGL2 facilitated β-catenin
expression and nuclear translocation by inhibiting β-catenin
phosphorylation level [20]. Liu et al. showed that lncRNA
HCP5 could activate Wnt/β-catenin/Cyclin D1 signal
through PLAGL2 in multiple myeloma [29]. In addition,
PLAGL2 may be a very upstream key molecule regulating
epithelial-mesenchymal transition and participated in Wnt/
β-catenin signaling in colorectal adenocarcinoma [30].
Tese studies suggest that PLAGL2 may play an important
role in cancer by modulating β-catenin signaling. In this
study, we revealed β-catenin (nuclear) level was elevated in
NSCLC tissues than paracarcinoma tissues. Moreover,
PLAGL2 activated β-catenin signaling to infuence cell
proliferation and migration, suggesting that PLAGL2 played
an important role in NSCLC by regulating β-catenin sig-
naling. Tis is also the frst time we have reported the study
of PLAGL2 and β-catenin signaling in NSCLC.

m6A is the enzyme that plays a vital role in mRNA
splicing, translation, and stabilization [31]. It regulates
biological metabolism, cell diferentiation and cycle,
and responses to heat shock stress and cancer [32].
METTL14 is a well-known RNA m6A that plays a vital
role in tumor growth by controlling RNA work [33].
Previous studies have reported that METTL14 can in-
crease m6A modifcation of pri-miR-19a and promote
mature miR-19a processing, thereby facilitating ath-
erosclerotic vascular endothelial cell proliferation and
invasion [34]. m6A regulator METTL14 has been re-
ported to be diferentially expressed between TP53-
mutant and wild-type NSCLC [35]. But the mecha-
nism of METTL14-mediated m6A modifcation with
PLAGL2 is still unclear. We found that PLAGL2 sig-
naling was regulated by METTL14-mediated m6A
modifcation. Furthermore, METTL14 regulated
PLAGL2 signaling to afect NSCLC cell function. Tis is
also our frst report of METTL14-mediated m6A
modifcation and PLAGL2 in NSCLC. Trough in vivo
experiments, we further validated METTL14/PLAGL2/
β-catenin axis promoted NSCLC development.

However, our study has some limitations. To verify
whether PLAGL2 signaling was regulated by METTL14-
mediated m6A modifcation, we should frst apply RIP to
identify whether PLAGL2 was modifed by m6A and then
use RIP to identify the m6A modifcation of PLAGL2 after
knockdown and overexpression of METTL14. However, due

to time and fnancial constraints, we directly used RIP to
identify the m6A modifcation of PLAGL2 after the
knockdown and overexpression of METTL14. Although our
results also confrmed that PLAGL2 signaling was regulated
by METTL14-mediated m6A modifcation, the results need
to be proved step by step. In the future, we will further verify
whether PLAGL2 was modifed by m6A. Furthermore, the
mechanism of METTL14 and the m6A methylation modi-
fcation of PLAGL2 in vivo and the signaling pathways
involved need to be further explored.

In conclusion, we demonstrated increased PLAGL2 and
β-catenin (nuclear) expressions in NSCLC tissues. Fur-
thermore, we conducted a preliminary exploration of the
mechanisms involved in METTL14/PLAGL2/β-catenin. We
found METTL14/PLAGL2/β-catenin axis promoted NSCLC
development in vitro and in vivo experiments. Our research
provides important clues for an in-depth comprehension of
the mechanism of NSCLC occurrence and development and
also provides a reference for NSCLC treatment.
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Background. Acute myeloid leukemia (AML) is a malignant clonal disease of the myeloid hematopoietic system. Clinically,
standard treatment options include conventional chemotherapy as well as hematopoietic stem cell transplantation. Among them,
chemotherapy has a remission rate of 60% to 80% and nearly 50% relapse in consolidation therapy. Some patients have a poor
prognosis due to the presence of unfavorable factors such as advanced age, hematologic history, poor prognosis karyotype, severe
infection, and organ insufciency, which cannot tolerate or are not suitable for standard chemotherapy regimens, and scholars
have tried to fnd new treatment strategies to improve this situation. In the pathogenesis and treatment of leukemia, epigenetics
has received attention from experts and scholars.Objective. To investigate the relationship betweenOLFML2A overexpression and
AML patients. Methods. From Te Cancer Genome Atlas, researchers used the data of OLFML2A gene to analyze and study the
pan-cancer using R language and then divided the high and low levels of this protein into two groups to study its relationship with
the clinical characteristics of the disease.Te relationship between the high levels of OLFML2A and various clinical features of the
disease was studied with emphasis on the relationship between the high levels of OLFML2A and various clinical features of the
disease. A multidimensional Cox regression analysis was also performed to study the factors afecting patient survival. Te
correlation between OLFML2A expression and immune infltration through the immune microenvironment was analyzed. Te
researchers then conducted a series of studies to analyze the data collected in the study.Te focus was on the relationship between
the high levels of OLFML2A and immune infltration. Gene ontology analysis was also performed to study the interactions
between the diferent genes associated with this protein. Results. According to the pan-cancer analysis, OLFML2A was dif-
ferentially expressed in diferent tumors. More importantly, the analysis of OLFML2A in the TCGA-AML database revealed that
OLFML2A was highly expressed in AML. Te researchers found that the high levels of OLFML2A were associated with diferent
clinical features of the disease, and that the expression of the protein was diferent in diferent groups.Tose patients with the high
levels of OLFML2Awere found to have substantially longer survival times compared to those with low-protein levels. Conclusions.
Te OLFML2A gene is able to act as a molecular indicator involved in the diagnosis, prognosis, and immune process of AML. It
improves the molecular biology prognostic system of AML, provides help for the selection of AML treatment options, and
provides new ideas for future biologically targeted therapy of AML.

1. Introduction

Acute myeloid leukemia (AML) is a malignant disease of the
hematological system with strong biological and clinical
heterogeneity. Currently, patients are generally stratifed
according to their cytogenetic and molecular biological

fndings to predict their treatment outcome [1]. In practice,
we have found that the prognosis of patients graded
according to the current risk stratifcation system still has
some variability in treatment outcome and survival time for
patients in the same risk stratum, suggesting that we should
have a more detailed stratifcation prognosis system. In
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recent years, studies have found that AML is associated with
multiple mutated genes, suggesting that the development of
leukemia may be the result of accumulation of mutations in
multiple genes [2, 3]. In recent years, with the widespread
use of high-throughput sequencing, i.e., second-generation
sequencing technology, the role of leukemia-related mutated
genes in diagnosis and treatment has been gradually high-
lighted [4]. Applying sequencing technology, we have suc-
cessively discovered a variety of mutated genes related to the
development and treatment of AML, and a large number of
studies of these genes in AML have also emerged.

Te OLFML2A (olfactomedin-like 2A) gene is located
on chromosome 9q33.3 and encodes a protein also known as
“photomedin-1,” which belongs to the OLFM (Olfactome-
din, OLFM) family IV [5]. Olfactomedin, an exocrine gly-
coprotein secreted by the epithelial cells of the olfactory
organ and deposited in large quantities on its surface, was
discovered in 1991 and was the frst member of the OLFM
family [6]. More than half of the OLFM family proteins are
expressed in the neural tissue [7]. A large body of evidence
suggests that OLFM family proteins play an important
regulatory role in neurogenesis, neural crest formation,
intercellular adhesion, tumor development, and cell cycle
regulation [8, 9]. Related studies have shown that the OLFM
family proteins are key regulatory molecules of cellular
signaling pathways such as the Wnt signaling pathway
[10, 11]. Tere is increasing evidence that the OLFM family
proteins play important roles in the normal tissue devel-
opment and disease development, e.g., myocilin and
olfactomedin 2 are key molecules in the development of
glaucoma [12], and OLFM4 is associated with the devel-
opment of common malignancies such as gastric and
pancreatic cancers [13, 14].

OLFML2A is a member of OLFM family IV, which
contains at least eight exons spanning 37.7 kb and encodes
a protein with an olfactomedin structural domain at the C-
terminus and a unique serine/threonine region that dis-
tinguishes it from other proteins in the family, two to three
potential glycosylation sites at the N-terminus, and
homodimers or oligomers with disulfde bonds. Northern-
blot of diferent tissue specimens from mice showed that
OLFML2A transcription products were not found in the
brain tissue [15]. OLFML2A is an exocrine glycoprotein that
binds specifcally to chondroitin sulphate-E (CS-E) and
heparin [16]. CS-E binds to a number of heparin-binding
growth factors, including midkine, Pleiotrophin, several
FGFs, and HB-EGF. Specifc binding of OLFML2A to CS-E
may promote the local action of growth factors bound to CS-
E. To date, the specifc functions of the OLFML2A gene and
its encoded protein remain unknown, and its role in the
development of AML has not been reported in the literature.

Based on this, from Te Cancer Genome Atlas, re-
searchers analyzed the data using OLFML2A gene data,
analyzed and studied pan-cancer using R language, and then
divided the high and low levels of the protein into two
groups in order to study its relationship with the clinical
features of the disease. Finally, it was concluded that the
OLFML2A gene, as a molecular indicator, can be involved in
the diagnosis, prognosis, and immune process of AML and

has the potential to be a reliable prognostic assessment
indicator W and a potential therapeutic boot point for AML
patients.

2. Methods

2.1. Preprocessing of Raw Data. We collected TCGA-AML
expression profles and clinical information from TCGA
Genomic Data Commons Data Portal (https://portal.gdc.
cancer.gov/). We excluded the insufcient cases or missing
data in the later information processing. Te genomic ex-
pression information of OLFML2A was calculated from the
TCGA database by high-throughput sequencing. Because all
information was publicly available, no ethical approval was
required.

2.2. Pan-Cancer Analysis. Pan-cancer analysis was per-
formed through the TIMER2 (Tumor Immunology Esti-
mation Resource, version 2) network (https://timer.
cistrome.org/) 16 to observe diferences in OLFML2A ex-
pression in tumors and nearby normal tumor tissue or
particular tumor subtypes in the TCGA program.

2.3. Gene Expression Analysis. We studied the correlation
between diferent tissue characteristics and OLFML2A ex-
pression through the Wilcoxon rank-sum test.

2.4. Survival andClinical StatisticalAnalysis. Te association
of OLFML2A with clinical features and overall survival was
evaluated using the log-rank tests, Kaplan–Meier survival
curves, and one-way Cox analysis. Te correlation between
high and low OLFML2A expression and clinical features was
researched in this study (age, grade, BM blasts, cytogenetic
risk, FLT3 mutation, IDH R132 mutation, IDH R140 mu-
tation, NPM1 mutation, PB blasts, RAS mutation, and WBC
count) between OLFML2A mutations. In addition,
OLFML2A was split into high and low expression groups.
Te OLFML2A expression was judged in relation to overall
survival by confrming the high and low OLFML2A ex-
pression based on the median. We applied survROC soft-
ware to measure the accuracy of risk scores on prognosis
using time-dependent subject operating characteristic
(ROC) curves. We conducted univariate and multivariate
analyses of risk scores after adjusting for age, sex, race, BM
blasts, PB blasts, Cytogenetic risk, and FAB classifcations. In
addition, we analyzed the expression of OLFML2A with
diferent clinicopathological features, and we investigated
the association of OLFML2A expression with BM cells,
cytogenetic risk, FAB classifcation, IDH1 R132 mutation,
IDH1 R132 mutation, NPM1 mutation, and race.

2.5. Construction of Nomograms. Since the development of
nomograms, they have been used to forecast cancer prog-
nosis. Tis method uses a statistical method to score various
factors, such as age, gender, and the TNM stage. It can then
produce a total score that provides a personalized estimate of
the likelihood of the disease returning. In the study, the

2 Journal of Oncology

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://timer.cistrome.org/
https://timer.cistrome.org/


researchers used nomograms to predict the likelihood of
patients with cancer returning.Te R package rms generated
them.Te nomograms were then validated by implementing
a series of calibration curves. Subsequently, we utilized the c-
index to estimate nomogram accuracy.

2.6. Immunological Analysis. Te researchers then per-
formed a series of studies to analyze the data collected from
the studies. Tey frst used a computer program known as
the CIBERSORT deconvolution to determine the relative
composition of immune cells in each sample. Ten, they
performed an immune diferential analysis to study the two
groups’ immune cell content diferences.

2.7.GeneOntology (GO) andKyotoEncyclopedia ofGenes and
Genomes (KEGG). Te cluster profle package was used for
GO and KEGG enrichment analysis and underlying bi-
ological pathways that were likely to adjust the cancer de-
velopment. Tey were also able to identify promising signals
that could be linked to the disease.

3. Results

3.1. OLFML2A Had a High Expression in Multiple Cancer
Tissues. To detect the diferential expression of OLFML2A,
we frst investigated OLFML2A gene expression in 33 hu-
man cancers in TCGA using the TIMER database. Com-
pared with normal samples, OLFML2A had higher
expression in 27 cancers, including LUSC, BLCA, DLBC,
BRCA, CESC, GBM, COAD, ESCA, KIPR, HNSC, KIRC,
LGG, LAML, LUAD, READ, LIHC, PAAD, OV, PRAD,
STAD, CHOL, PCPG, SKCM, TGCT, THYM, UCEC, and
UCS, shown in Figure 1(a). By comparing the expression of
OLFML2A gene in AML and normal samples, OLFML2A
had a large overexpression in AML (as shown in Figure 1(b);
P< 0.001).

3.2. Te Diference in Clinical Characteristics. We grouped
high and low OLFML2A gene expression, and the corre-
lation between OLFML2A gene expression and clinical
features were explored. We incorporated age, grade, BM
blasts, cytogenetic risk, FLT3mutation, IDH R132mutation,
IDH R140 mutation, NPM1 mutation, PB blasts, RAS
mutation, and WBC count for picture mapping. After an-
alyzing the data collected from the studies, the researchers
concluded that the high levels of the OLFML2A were dif-
ferent from the low levels of the protein.Tey also noted that
the diference was signifcant when it came to age, BM blasts,
and FLT3 mutations (P< 0.05; Figure 2).

3.3. Te Prognosis and Diagnosis of OLFML2A Value.
Compared with high-risk patients, according to
Kaplan–Meier survival curves, the survival of low
OLFML2A expression patients was longer (log-rank test;
P< 0.001) (Figure 3(b)). Figure 3(a) shows 0.977, indicating
the area under the curve (AUC) value.

3.4. Te Diference in Clinicopathological Feature.
Trough the analysis between OLFML2A expression and
diferent clinicopathological characteristics, it could be seen
that there was a relationship between OLFML2A expression
and FAB classifcations, BM blasts, IDH1 R132 mutation,
IDH1 R132mutation, cytogenetic risk, NPM1mutation, and
race (Figure 4 and Tables 1 and 2). In addition, univariate
and multifactorial Cox regression analyses presented that an
independent risk factor for AML was OLFML2A expression
(Table 3).

3.5. Construction of the Nomogram. We constructed
a prognostic nomogram in LUAD to predict the 1-, 3-, and
5 year survival probabilities of individuals by gender, race,
age, WBC, BM blasts, PB blasts, cytogenetic risk, FLT3
mutation, IDH R132 mutation, IDH R140 mutation, IDH
R172 mutation, RAS mutation, NPM1 mutation, PB blasts,
and OLFML2A (Figure 5).

OLFML2A expression was positively correlated with
iDC, macrophages, NK CD56dim cells, Tem, TFH, TGD,
TH1 cells, TH17 cells, iDC, macrophages, NK CD56dim
cells, Tem, TFH, TGD, TH1 cells, and TH17 cells (P< 0.05;
Figure 6).

3.6. GO and KEGG. We performed GO analysis on
OLFML2A. CC terms contain “focal adhesion,” “cell-
substrate adherence junction,” “cell-substrate junction,”
“coated vesicle membrane,” and “transport vesicle”. BP
terms include “positive regulation of dephosphorylation,”
“regulation of autophagy,” “sterol metabolic process,”
“positive regulation of phosphatase activity,” and “platelet
activation,”. MF terms were associated with “O-
acyltransferase activity,” “ubiquitin binding,” “phosphatase
activator activity,” “phosphatidic acid binding,” and “protein
phosphatase activator activity”. KEGG analysis shows that
OLFML2A is associated with numerous pathways, including
“Aldosterone synthesis and secretion,” “cGMP-PKG sig-
naling pathway,” “Melanogenesis,” “Adrenergic signaling in
cardiomyocytes,” and “Parathyroid hormone synthesis se-
cretion and action” (Figure 7).

4. Discussion

Acute myeloid leukemia (AML) is a common aggressive
hematologic malignancy characterized by impaired leuko-
cyte maturation and excessive proliferation of hematopoietic
stem cells, which can spread to other organs such as the
central nervous system, skin, and gums. Due to impaired
normal hematopoietic function, AML patients often present
with anemia, bleeding, and severe infections [3]. In the past
two decades, genomic, transcriptomic, and epigenomic
studies of AML have made great progress. Te latest 2017
European Leukemia Network (ELN) risk stratifcation
guidelines combining cytogenetic abnormalities and genetic
mutations have been widely used to predict the prognosis of
AML patients [4]. Furthermore, based on these advances,
several drugs have been approved for the treatment of AML,
such as sorafenib for FMS-like tyrosine kinase 3 (FLT3)
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Figure 1: Te higher expression of OLFML2A was displayed in AML from the TCGA database.
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mutations and Evonib for isocitrate dehydrogenase 1 and 2
(IDH1 and IDH2) mutations [17]. However, most patients
with AML who receive chemotherapy relapse [18]. Te next
step in the approach to treat AML may be to uncover the
molecular pathways involved in AML progression, che-
motherapeutic efcacy, and relapse, with particular

emphasis on the potential role of proteins in AML. Tere is
growing evidence that proteins play an important role in the
pathogenesis of cancer, including AML [19].

OLFML2A is an abnormal protein that can be found in
various tissues such as the breast, colon, ovary, and liver [1].
Researchers have also found that high levels of this protein
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Figure 2: Association between OLFML2A expression and clinical characteristics in the TCGA database.
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are detrimental to patients with acute lymphoblastic leu-
kemia. Te researchers hypothesized that the presence of
OLFML2A in these patients could help to predict the
likelihood of their cancer recurrence. Tey noted that the
high levels of this protein could be a target for novel cancer
treatments. In a previous study, researchers found that the
presence of OLFML2A in breast cancer cells could hinder

the development and metastasis of cancer cells [20]. Te
knockdown of OLFML2A in glioma cells inhibits the Wnt/
β-catenin signaling pathway, which leads to upregulation of
amyloid precursor protein (APP) expression and a decrease
in the degree of stable β-catenin, resulting in having reduced
MYC, CD44, and CSKN2A2 expression, thereby inhibiting
cell proliferation and promoting apoptosis [21, 22].
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Figure 4: Analysis between OLFML2A expression and diferent clinicopathological features.
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Table 1: Association analysis between OLFML2A expression levels and clinicopathologic features in the TCGA-AML database.

Characteristic Low expression of OLFML2A High
expression of OLFML2A P value

n 75 76
Gender, n (%) 1.000
Female 34 (22.5%) 34 (22.5%)
Male 41 (27.2%) 42 (27.8%)

Race, n (%) 1.000
Asian 0 (0%) 1 (0.7%)
Black or African American 6 (4%) 7 (4.7%)
White 67 (45%) 68 (45.6%)

Age, n (%) 0.211
≤60 48 (31.8%) 40 (26.5%)
>60 27 (17.9%) 36 (23.8%)

WBC count (×109/L), n (%) 0.191
≤20 43 (28.7%) 34 (22.7%)
>20 32 (21.3%) 41 (27.3%)

BM blasts (%), n (%) 0.444
≤20 27 (17.9%) 33 (21.9%)
>20 48 (31.8%) 43 (28.5%)

PB blasts (%), n (%) 0.372
≤70 39 (25.8%) 33 (21.9%)
>70 36 (23.8%) 43 (28.5%)

Cytogenetic risk, n (%) 0.035
Favorable 21 (14.1%) 10 (6.7%)
Intermediate 40 (26.8%) 42 (28.2%)
Poor 13 (8.7%) 23 (15.4%)

FAB classifcations, n (%) 0.278
M0 6 (4%) 9 (6%)
M1 17 (11.3%) 18 (12%)
M2 23 (15.3%) 15 (10%)
M3 7 (4.7%) 8 (5.3%)
M4 14 (9.3%) 15 (10%)
M5 4 (2.7%) 11 (7.3%)
M6 2 (1.3%) 0 (0%)
M7 1 (0.7%) 0 (0%)

Cytogenetics, n (%) 0.014
Normal 32 (23.7%) 37 (27.4%)
+8 7 (5.2%) 1 (0.7%)
Del (5) 0 (0%) 1 (0.7%)
Del (7) 3 (2.2%) 3 (2.2%)
Inv (16) 8 (5.9%) 0 (0%)
t (15; 17) 5 (3.7%) 6 (4.4%)
t (8; 21) 4 (3%) 3 (2.2%)
t (9; 11) 0 (0%) 1 (0.7%)
Complex 7 (5.2%) 17 (12.6%)

FLT3 mutation, n (%) 0.005
Negative 59 (40.1%) 43 (29.3%)
Positive 14 (9.5%) 31 (21.1%)

IDH1 R132 mutation, n (%) 0.579
Negative 67 (45%) 69 (46.3%)
Positive 8 (5.4%) 5 (3.4%)

IDH1 R172 mutation, n (%) 0.245
Negative 72 (48.3%) 75 (50.3%)
Positive 2 (1.3%) 0 (0%)

IDH1 R140 mutation, n (%) 0.745
Negative 67 (45%) 70 (47%)
Positive 7 (4.7%) 5 (3.4%)

RAS mutation, n (%) 1.000
Negative 71 (47.3%) 71 (47.3%)
Positive 4 (2.7%) 4 (2.7%)

NPM1 mutation, n (%) 1.000
Negative 59 (39.3%) 58 (38.7%)
Positive 16 (10.7%) 17 (11.3%)
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Furthermore, by exploring the signifcance of OLFML2A
expression in many clinical parameters, we found an associ-
ation between OLFML2A and AML survival and clinical
features. Tis study performed an immune cell infltration
analysis to gain insight into the role of OLFML2A. From Te
Cancer Genome Atlas, researchers used OLFML2A gene data
to analyze the data. Pan-cancer was analyzed and studied using
the R language.Tey then divided the high and low levels of the

protein into two groups to study their relationship with clinical
features of the disease. Te researchers then conducted a series
of studies to analyze the data collected from the study. Tey
focused on the relationship between the high levels of
OLFML2A and various clinical features of the disease. Tey
also performed a multidimensional Cox regression analysis to
examine the factors that afect patient survival. We analyzed
the correlation between OLFML2A expression and immune

Table 2: Logistic analysis of the relationship between OLFML2A expression and the clinicopathological features in the TCGA-AML
database

Characteristics Total (N) Odds ratio (OLFML2A) P value
Gender (male vs. female) 151 1.024 (0.539–1.948) 0.941
Race (White vs. Asian and Black or African American) 149 0.761 (0.239–2.305) 0.630
Age (>60 vs. ≤60) 151 1.600 (0.836–3.090) 0.158
WBC count (×10̂9/L) (>20 vs. ≤20) 150 1.620 (0.853–3.106) 0.142
BM blasts (%) (>20 vs. ≤20) 151 0.733 (0.379–1.408) 0.352
PB blasts (%) (>70 vs. ≤70) 151 1.412 (0.745–2.692) 0.292
Cytogenetic risk (intermediate and poor vs. favorable) 149 2.575 (1.140–6.156) 0.027
FAB classifcations (M1&M2&M3&M4&M5&M6&M7 vs. M0) 150 0.657 (0.210–1.923) 0.448
Cytogenetics (+8&del (5) &del (7) &inv (16) &t (15; 17) &t (8; 21) &t (9; 11)
&complex vs. normal) 135 0.814 (0.413–1.600) 0.551

FLT3 mutation (positive vs. negative) 147 3.038 (1.467–6.541) 0.003
IDH1 R132 mutation (positive vs. Negative) 149 0.607 (0.176–1.912) 0.402
IDH1 R140 mutation (positive vs. negative) 149 0.684 (0.194–2.245) 0.533
RAS mutation (positive vs. negative) 150 1.000 (0.228–4.378) 1.000
NPM1 mutation (positive vs. negative) 150 1.081 (0.498–2.357) 0.844

Table 3: Univariate and multivariate Cox regression analysis of factors associated with OS in TCGA-AML.

Characteristics Total
(N)

HR (95% CI)
univariate
analysis

P value
univariate
analysis

HR (95% CI)
multivariate
analysis

P value
multivariate
analysis

Gender 140
Female 63 Reference
Male 77 1.030 (0.674–1.572) 0.892

Race 138
Asian and Black or African American 11 Reference
White 127 1.200 (0.485–2.966) 0.693

Age 140
≤60 79 Reference
>60 61 3.333 (2.164–5.134) <0.001 2.859 (1.819–4.494) <0.001

WBC count (×109/L) 139
≤20 75 Reference
>20 64 1.161 (0.760–1.772) 0.490

BM blasts (%) 140
≤20 59 Reference
>20 81 1.165 (0.758–1.790) 0.486

PB blasts (%) 140
≤70 66 Reference
>70 74 1.230 (0.806–1.878) 0.338

Cytogenetic risk 138
Favorable 31 Reference
Intermediate 76 2.957 (1.498–5.836) 0.002 2.031 (1.003–4.113) 0.049
Poor 31 4.157 (1.944–8.893) <0.001 2.506 (1.134–5.535) 0.023

FAB classifcations 139
M0 14 Reference
M1&M2&M3&M4&M5&M6&M7 125 1.033 (0.517–2.062) 0.927

OLFML2A 140
Low 71 Reference
High 69 2.362 (1.534–3.639) <0.001 2.198 (1.409–3.429) <0.001
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Figure 6: Relationship analysis between OLFML2A expression and immune infltration in the AML microenvironment.
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Figure 7: GO and KEGG enrichment analysis of OLFML2A associated genes in the TCGA-AML database.
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infltration in the immune microenvironment.Te researchers
then conducted a series of studies to analyze the data collected
from the study. Tey focused on the relationship between the
high levels of OLFML2A and immune infltration. Tey also
performed gene ontology analysis to examine the interaction
between diferent genes associatedwith the protein. OLFML2A
was diferentially expressed in a variety of tumors based on
pan-cancer analysis, including the brain cell counting system,
DLBC, ESCA, BRCA, CHOL, LGG, COAD, lipocytes, Kipres,
GBM, chronic cell count, oligosaccharide nucleic acid, oligos
nucleic acid, adipocyte leukocyte leukemia, adipocyte count
enzyme, hyaluronidase, cycloplasmic carcinoma, growth
hormone, paclitaxel leukocyte leukemia, prostaglandin, cere-
broside leukocyte acid, goitre, and auscocis. In addition, the
analysis of OLFML2A in the TCGA-AML database revealed
that OLFML2A is highly expressed in AML. Te researchers
found that high OLFML2A levels were associated with dif-
ferent clinical features of the disease. Tey also noted that
protein expression was diferent in diferent groups. Patients
with the high levels of OLFML2Awere found to survive longer
compared to those with low-protein levels. Te researchers
found that the high levels of OLFML2A were associated with
various clinical features of the disease. Tey also noted that the
protein was expressed diferently in diferent groups. Some of
these clinical features include BM primitive cells, cytogenetic
risk, and IDH1R132mutations. Using columnar line graphs, it
was possible to predict patient survival based on OLFML2A
levels. A relationship was also found between this protein and
the growth of acute lymphoblastic leukemia. In the immune
microenvironment, the researchers discussed the positive
correlation between OLFML2A and various immune cell ac-
tivities. In parallel, we completed a GO analysis. Te CC
terminology encompasses “encapsulated vesicle membrane,”
“cell-matrix junction,” “focal adhesion,” “focal adhesion,” and
“cell-matrix junction.” BP terms include “autophagy regula-
tion,” “positive regulation of phosphatase activity,” “sterol
metabolic process,” and “phosphorylation.”

5. Conclusion

Te OLFML2A gene is able to act as a molecular indicator
involved in the diagnosis, prognosis, and immune process of
AML. It improves the molecular biology prognostic system
of AML, provides help for the selection of AML treatment
options, and provides new ideas for future biologically
targeted therapy of AML.
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Background. Aging is recognized as a main tumor risk factor, and thus aging has become a feld of interest in the tumor research
feld. Glioblastoma multiforme represents the most typical primary malignant intracranial tumor, particularly in the elderly.
However, the association between aging-related genes (AGs) and GBM prognosis remains unknown. As a result, the primary goal
of this study was to determine the association among AGs and the prognosis of GBM. Methods. A total of 307 human AGs were
downloaded from the HAGR database, while the expression profles of GSE4290 and GSE4412 were obtained from the GEO
database. Furthermore, data on GBM expression profles were obtained from the Chinese Glioma Genome Atlas (CGGA)
database. Te DEAGs that were diferentially expressed among the AG and GBM gene expression profles derived from GSE4290
were then identifed, followed by functional analysis of the DEAGs. Te survival-related AGs were then screened using univariate
Cox regression analysis , which was used to build and validate a prognostic risk model. Furthermore, the ESTIMATE and
CIBERSORT algorithms were utilized to explore the association between the survival-related AGs and the tumor immune
microenvironment. Results. In entire, 29 DEAGs were identifed in the GSE4290. Tis was monitored by the construction of the
prognosis risk model using four DEAGs from the CGGA training set, including C1QA, CDK1, EFEMP1, and IGFBP2. Next, the
risk model was confrmed in the CGGA experiment set and the GSE 4412 dataset. Results showed that C1QA, CDK1, EFEMP1,
and IGFBP2 levels were remarkably higher in the high-risk score groups, and they had a good association with immune and
stromal scores. Conclusion. A robust prognostic risk model was constructed and validated using four AGs, including C1QA,
CDK1, EFEMP1, and IGFBP2, which had a close relationship with the immune microenvironment of GBM. Tis study ofers
a new reference to further explore the pathogenesis of GBM and recognize new and more efective GBM treatments.

1. Introduction

Glioblastomamultiforme (GBM) represents the most typical
primary malignant intracranial tumor, particularly in the
elderly [1]. Te standard frst-line treatment for GBM at this
time involves the most extensive surgical resection along
with radiotherapy and adjuvant chemotherapy [1–3]. Al-
though considerable eforts have been made in the dealing of
GBM in current years, the prognosis is still poor [4]. A

previous study reported that the median survival time is only
about one year, and about 5% of people survive for fve years
overall [5]. Te patients’ age has been measured as a major
prognostic factor for clinical outcomes [6]. Recent statistics
indicate that the percentage of elderly patients with GBM is
up to 25%, which can be attributed to the gradual expansion
of the digits in advanced aging patients [6]. However, the
exact molecular pathogenesis of GBM in elderly patients has
not yet been fully elucidated. As a result, more research on
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this disease is needed to predict therapeutic efcacy and
guide clinical treatment decisions.

Notably, ageing is recognized as a major tumor risk
factor, and thus ageing has become a focus in tumor research
[7]. Many studies indicate that aging and aging-related
diseases are mainly regulated by AGs which can suppress
tumors through modulation of tumor cell senescence but
may also enhance tumor enlargement, invasion, and me-
tastasis [7]. However, the association between AGs and
GBM prognosis has received little attention. Furthermore,
there is no clear relationship between infammation and
tumor immunity in GBM. To address the essential issue of
genomic erosion, a sophisticated network of DNA damage
response (DDR) systems has been developed.

Cell-cycle checkpoint pathways, damage tolerance
mechanisms, and DNA repair mechanisms are a few of
them [8].

Te HAGR is an important database for human aging-
related gene expression studies. Te value of AGs as
prognostic factors for GBM patients was assessed in this
research. Te aging-related gene expression profles were
obtained from HAGR, while the GBM expression profles
were derived from the CGGA database.Te main aim of this
study was to elucidate the association between AGs and the
prognosis of GBM by constructing a prognostic risk model.
Meanwhile, the study also investigated the efects of AGs on
GBM-related infammation and immunity.

2. Methods

2.1. Acquisition of Data. All gene expression profles were
obtained from three public databases: the HAGR (HAGR,
https://genomics.senescence.info/genes/), the GEO S (GEO,
https://www.ncbi.nlm.nih.gov/gds), and the (CGGA) data-
base (CGGA, https://www.cgga.org.cn/). A total of 307
human AGs was downloaded from the HAGR, and the
GEOquery package was used to access the expression
profles of GSE4290 and GSE4412 from the GEO database.
Te GSE4290 dataset contained 81GBM samples, while the
GSE4412 dataset contained 85GBM samples and was used as
an independent verifcation group. Moreover, the GBM
appearance profle statistics were downloaded from the
CGGA database. An entire set of 406GBM samples with
continuation information were acquired from the CGGA
database and randomly allocated into two groups using a 7 :
3 ratio: the GBM training set (n� 284) and the GBM test set
(n� 122). R software (version 3.6.3, https://www.r-project.
org/) was utilized to analyze the data.

2.2. Analysis of Diferentially Expressed AGs (DEAGs).
TeR package limma was used to identify the DEAGs between
the AGs and the GBM gene expression profles derived from
GSE4290. |LogFC|> 1.5 and false fnding rate (FDR< 0.05)
were set as the cut-of value. Finally, theDEAGswere visualized
by a volcano plot using the ggpolt2 R package.

2.3. GO and KEGG Pathway Analyses. Pathway enrichment
analyses using the gene ontology (GO) and KEGG databases

were conducted using the cluster Profler R package with
a cut-of criterion of p value and FDR value <0.05 to in-
vestigate the gene function of the DEAGs. Biological pro-
cesses (BP), cellular components (CC), and molecular
functions make up the three categories that make up
GO (MF).

2.4. Construction of a Prognostic Gene Signature. To further
screen DEAGs related to survival, univariate cox regression
evaluation was used. Notably, the candidate prognostic
genes were chosen using the 0.05 p value threshold. Next, in
the CGGA training set, LASSO regression analysis was used.
Te risk score was designed using the regression coefcient
of each gene according to the following formula:

Risk score � 
n

k�1
coeff icient genek( ∗ Expk. (1)

In the above formula, “n” indicates the number of the
selected prognostic genes, “genek” is the kth selected genes,
“coefcient” represents the estimated regression coefcient
of genes from the multivariate Cox regression analysis, and
“Expk” indicates the expression value of the kth selected
genes. Te GBM training set retrieved from the CGGA
database was then dichotomized into a high-risk and low-
risk groups according to the median risk score. A heatmap
was used to show the relationship between candidate genes
and risk scores, and Kaplan–Meier (KM) survival analysis
and receiver operating characteristic (ROC) curve analysis
were used to evaluate the risk score model’s
predictive power.

2.5. Gene Set Variation Analysis. Te nonparametric, un-
supervised technique for enriching gene sets is called gene
set variation analysis (GSVA). Te CGGA dataset was
subjected to GSVA using the GSVA R package to score the
high-risk and low-risk groups in order to compare the
signaling pathway activity between the two groups. In ad-
dition, gene-set enrichment analysis was used to pinpoint
changes in gene expression at the pathway level in order to
evaluate the biological utility of the risk model. Te Mo-
lecular Signatures Database v7.0 was used for running GSVA
within the hallmark gene sets.

2.6. Evaluation of Immune Scores and Immune Cell
Infltration. Te ESTIMATE algorithm and the estimate R
package were used to determine the immune and stromal
scores for GBM samples. In addition, we imputed the
composition of immune cell infltration in GBM through the
CIBERSORTalgorithm. It is worth noting that CIBERSORT
provides a tool that is able to quantify the abundance of cell
types in complex tissues using gene expression data [9].

2.7. Statistical Analysis. R version 3.6.3 was utilized to
conduct the statistical investigation. While survival statistics
were conducted using the Kaplan–Meier curve and log-rank
test, diferences in the distribution of the Chi-square test or

2 Journal of Oncology

https://genomics.senescence.info/genes/
https://www.ncbi.nlm.nih.gov/gds
https://www.cgga.org.cn/
https://www.r-project.org/
https://www.r-project.org/


Fisher’s exact tests were used to compare categorical data.
Te association between prognostic AGs and survival in
GBM patients was also examined using univariate and
multivariate Cox regression analysis. ROC curves were
applied to validate the diagnostic value of the risk model, and
the correlation between variables was determined using
Spearman’s rank correlation test. p< 0.05 was recognized to
be statistically signifcant.

3. Results

3.1. Analysis of DEAGs in GBM Samples. In entire, 307
human AGs were downloaded from the HAGR, and the AGs
were recognized using the gene expression profle of
GSE4290. Te GSE4290 contained 29 DEAGs, of which 22
were upregulated and 7 were downregulated, according to
the results. In order to see the DEAGs, a volcano plot was
used (Figure 1(a)).

3.2. Functional Analysis of DEAGs. Te biological functions
and association of DEAGs in GSE4290 were explored using
GO and KEGG pathway analysis. Figure 2(b) shows the top

30 KEGG enrichment terms. Functional analysis indicated
that the DEAGs were enriched in cellular senescence,
microRNAs in cancer, cell cycle, and other diverse tumor-
associated pathways. Figure 2(a) shows the top 10 improved
GO terms, including BP, CC, and MF. Notably, aging and
cell aging were signifcantly developed in the GO BP terms.
Tese results suggest that the DEAGs are intimately related
with aging and tumor.

3.3. Identifcation of a Prognostic Risk Model in the CGGA
Training Set. Te univariate Cox regression analysis method
was used to analyze the expression of the 29 DEAGs
identifed from the CGGA training set to assess the prog-
nostic value of DEAGs in GBM (Figures 1(c) and 1(d)).
Results represented in the forest plot showed that four
DEAGs were signifcantly associated with the survival time,
including C1QA, CDK1, EFEMP1, and IGFBP2
(Figure 1(b)). Regarding that, LASSO regression was utilized
to develop a prognostic risk technique for the four survival-
associated DEAGs. Te resulting formula was used to an-
alyze the prognostic risk score:

Risk  score � 0.143∗C1QA + 0.223∗CDK1 + 0.118∗EFEMP1 + 0.152∗ IGFBP2. (2)

Based on their median risk scores, the patients in the
CGGA training set were then categorised as high-risk or
low-risk. Patients in the low-risk group had better overall
survival (OS) than those in the high-risk group, according to
the results of the survival analysis (p< 0.001, Figure 3(a)).
Te AUC (area under the ROC curve) of the prognostic
model was 0.747, 0.843, and 0.837 for the 1-, 3-, and 5-year
OS, respectively, indicating a robust performance for sur-
vival prediction (Figure 3(b)). Figure 4(a) shows the risk plot
for both high- and low-risk score groups, patient survival
data, and gene expression information for the risk genes.

3.4. Verifcation of the Prognostic RiskModel in theValidation
Datasets. Te prognostic risk method was tested using
CGGA test data to further validate its stability and reliability.
Similarly, the GBM test set of the CGGA database was
specifed into either high-risk (n� 61) or low-risk (n� 61)
groups. Te K-M survival curve suggested that the overall
survival (OS) of patients in the low-risk set was superior
compared to those in the high-risk group (p< 0.001,
Figure 3(c)). Te AUC for the GBM test set was 0.681, 0.785,
and 0.738 for the 1-, 3-, and 5-year OS, respectively, in-
dicating great performance for survival prediction
(Figure 3(d)). Figure 4(b) shows the risk distribution, patient
survival status, and gene expression data of the risk genes in
the CGGA test. Furthermore, the stability and reliability of
the prognostic risk model were validated using an in-
dependent dataset, the GSE4412 dataset retrieved from the
GEO database. Te same risk model was applied, and the
GBM test set obtained from the GEO was split into two

groups: high-risk (n� 43) and low-risk (n� 42). Results
showed signifcant diferences in the overall survival (OS) of
patients between the low-risk group and the high-risk group
(p< 0.001, Figure 3(e)). Moreover, the AUC was 0.725,
0.808, and 0.793 for the 1-, 3-, and 5-year OS, respectively
(Figure 3(f )). Te corresponding risk distribution, patient
survival status, and gene expression data of the risk genes in
the GSE4412 test set are displayed in Figure 4(c).

3.5. GSVA of Risk Score-Related Signaling Pathways.
GSVA was conducted to assess potential functional en-
richment in the high-risk and low-risk groups in the CGGA
dataset. Figure 5 shows the top 10 signaling pathways de-
veloped in the high-risk group, including angiogenesis,
coagulation, epithelial-mesenchymal transition, hypoxia, IL-
6/JAK/STAT3 signaling, provocative response, interferon-
gamma response, and beta signaling. Most of them are
common signaling pathways in the tumor immune mi-
croenvironment, metabolism, and progression.

3.6. Association between the Risk Score and Tumor Immunity.
Te immune and stromal scores in the CGGA and GSE4412
datasets, respectively, were computed using the ESTIMATE
algorithm to clarify the association between the risk score
and the immune/stromal score. Te low-risk group had
better immune scores than the high-risk group, according to
the fndings (Figures 6(a) and 7(a)). Moreover, Spearman’s
rank test results showed signifcant positive correlations
among the risk score and immune score in CGGA and
GSE4412 samples (Figures 6(b) and 7(b)). Meanwhile, the
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risk score also had a signifcantly positive association with
the stromal score and ESTIMATE score in CGGA and
GSE4412 samples (Figures 6(c), 6(d), 7(c), and 7(d)).
Considering that immune cells include many diferent
subtypes, CIBERSORT was used to deconvolute the

composition fraction of immune cells in the CGGA dataset.
In order to evaluate the relevance, the proportions of im-
mune cells in the low-risk and high-risk groups were
compared. According to the fndings, the low-risk group had
a higher percentage of naive CD4+ T cells, regulatory T cells
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Figure 1: Identifcation of DEAGs related to GBM and 4 AGs of prognostic risk models in GBM patients. (a) 22 upregulated and 7
downregulated DEAGs in volcano plot (FDR< 0.05 and |logFC|> 1). (b) Forest plot for the characteristics of 4 risk DEAGs in the prognostic
risk models. (c) LASSO coefcient profles of candidate prognostic-related AGs.Te coefcient profle plot was generated versus the log (λ).
(d) Partial likelihood deviance map for the LASSO coefcient profles.
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(Tregs), gamma delta T cell monocytes, and activated mast
cells than the high-risk group did (Figure 7(e)). Instead,
fewer neutrophils, follicular helper T cells, M0 and M1
macrophages, and stimulated NK cells were present in the
low-risk group compared to the high-risk group.

4. Discussion

Aging is a complex natural procedure, which involves aging-
related immune remodeling and dysfunction [10]. It is worth
noting that the incidence of tumors increases signifcantly
with age, which can be attributed to a decline in immune
function [11]. To date, the technique of aging in GBM has
not yet been fully illuminated, and there are no corre-
sponding studies in such patients [7]. Terefore, studies
should be conducted to determine the role of AGs in GBM
and explore the association of AGs with the prognosis
of GBM.

Tis study identifed the relationship between 29 DEAGs
(Figures 1(a) and 1(b)) and GBM prognosis, and assembled
a risk model with four DEAGs, including C1QA, CDK1,
EFEMP1, and IGFBP2 to predict GBM prognosis. Following
that, the model’s prognostic value was determined using
training and independent validation cohorts, with the results
demonstrating a valid and robust performance for survival
prediction. C1QA, CDK1, EFEMP1, and IGFBP2 were all
signifcantly upregulated in high-risk score groups, which
means that these patients have a worse prognosis.

Te C1QA gene, which encodes the C1q protein in
macrophages, dendritic cells, and THP1 cells, has been
implicated in the aging response and is involved in some
neurodegenerative diseases [12]. Interestingly, increased
gene expression of C1QA has been proven to cause a high
infammatory state in the brain of people with psychosis
[13]. In addition, a previous study concluded that increased
C1QA expression may facilitate tumor progression and
contribute towards an adverse outcome [8]. CDK1

participates in the regulation of the G2/M phase of the cell
cycle [14]. Furthermore, CDK1 is frequently overexpressed
in many human malignant tumor tissues, and it has been
investigated as a PB for a variety of tumors. Over-expression
of CDK1 in glioma and GBM cells contributes to glioma cell
senescence escape and growth [15]. As a result, CDK1 has
been proposed as a promising therapeutic target. Previous
research has found that EFEMP1, also known as fbulin-3, is
involved in ageing, age-related diseases, and tumor for-
mation [16, 17]. EFEMP1 knockout mice aged faster and
lived shorter lives. However, previous research on the role of
EFEMP1 in GBM has been inconsistent. On the one hand,
some studies have shown that it has an antitumor efect by
inhibiting glioma growth [18]. On the other hand, some
studies found that over-expression of EFEMP1 may enhance
glioma growth and contribute to resistance through the
infuence of multiple oncogenic waving pathways, such as
Notch, AKT, and EGFR waving pathways [19, 20]. Results
obtained in this study are consistent with the latter con-
clusion. However, this shows that more studies are essential
to clarify the function of EFEMP1 in the pathogenesis of
GBM. It has been informed that IGFBP-2 appearance is
expressively increased after 50 years of age [21]. Moreover,
several studies have indicated that there is an expressively
positive correlation between IGFBP-2 concentrations and
mortality in healthy elderly populations [22, 23]. Over-
expression of IGFBP-2 has also been found in GBM and
many other types of human tumors [24–26]. Unfortunately,
the high expression of IGFBP-2 was strongly associated with
a signifcant shortening of survival, which is consistent with
the results of this study [27, 28]. Terefore, most of the
existing studies propose using IGFBP-2 as a biomarker or
potential novel target for GBM treatment [29, 30].

For the frst time, a GBM prognostic risk model based on
four AGs was developed in this study. Subsequent GSVA
analysis disclosed that the risk genes’ signaling pathways are
elaborated in immunomodulatory and infammatory
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Figure 2: Functional enrichment analysis of DEAGs of the GSE4290 dataset. (a) Te top 10 enrichment GO terms of BP, CC, and MF for
DEAGs. (b) Te top 30 enrichment pathways from KEGG pathway analysis for DEAGs.
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Figure 3: Continued.
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Figure 3: Identifcation and verifcation of the prognostic risk model in GBM. (a) Kaplan–Meier survival analysis of high-risk and low-risk
groups in the CGGA training set. (b) Time-dependent ROC curves for 1-, 3-, and 5-y OS in the CGGA training set. (c, e) Kaplan–Meier
survival analysis of high-risk and low-risk groups in the CGGA test set and GEO test set, respectively. (d, f ) Time-dependent ROC curves for
1-, 3-, and 5-y OS in the CGGA test set and GEO test set, respectively.
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responses. Te results strongly suggested a relationship
between the risk genes and the GBM immune microenvi-
ronment. Based on the above fndings, we further explored

the relationship among the risk score and immune score and
deconvoluted the conformation fraction of immune cells in
the CGGA data set and GSE4412 data set. Te immune and
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Figure 4: Prognosis and expression of risk genes of the high-risk and low-risk GBM patients. (a) Risk plot distribution, survival status, and
risk gene expression in the CGGA training set. (b) Risk plot distribution, survival status, and expression of the risk genes in the CGGA test
set. (c) Risk plot distribution, survival status, and expression of the risk genes in the GEO test set.
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stromal scores were found to be positively associated with
the risk score. Tis implies that the higher the immune and
stromal scores, the greater the immune cell infltration and
the worse the prognosis. Recent studies have proposed that
the immune score serves as an important prognostic factor
of GBM. Furthermore, this study analyzed the GBM data
using the CIBERSORT algorithm in order to investigate the
compositional diferences of 22 immune cell types based on
the risk model. Te fndings showed that the high-risk
group’s NK cells, M0 macrophages, M1 macrophages, and

neutrophils were activated by the infltration of follicular
helper T cells and suggested a poor prognosis. On the other
hand, the infltration of naive CD4+ Tcells, regulatory Tcells
(Tregs), gamma-delta T cells, monocytes, and activated mast
cells in the low-risk group suggested a relatively good
prognosis in GBM patients.

Notably, macrophages are the most abundant tumor
immune infltration cell types in human GBM.Macrophages
have two main phenotypes, M1 and M2, which are difer-
entiated from untreated macrophages (M0). Several
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previous studies indicate that M1 macrophages can perform
antitumorigenic functions, whereas M0 and M2 macro-
phages can perform protumorigenic functions [12, 31, 32].
Despite the fact that M1 macrophages have proin-
fammatory and antitumor efects, a previous study found
that they were inversely related to survival in GBM patients
[33]. Tis study has shown that the proportion of M0 and
M1 macrophages was signifcantly higher in the high-risk
group than in the low-risk group. Terefore, more com-
prehensive and in-depth studies should be conducted to
elucidate the mechanism of action of macrophages in GBM.

Te role of monocytes and mast cells in tumor devel-
opment and progression has previously been established.
Nonetheless, the interactions of monocytes and mast cells in
the tumor microenvironment are complex and contradic-
tory [34, 35]. Tis study has shown that monocytes and
activated mast cells were signifcantly lower in the high-risk
group. NK cells are capable of directly killing tumor cells
[36]. Although it has great cytotoxicity, the proportion of
NK cells was low in the GBM immune microenvironment
[37]. Interestingly, a previous study found that NK cell

defciency in GBM improves prognosis, which is in line with
our results [38]. With regard to Tcells, CD4+ Tcells seem to
play a dual role in tumor immunity, while follicular helper
T cells and gamma-delta T cells are relatively good prog-
nostic signatures. Te results obtained in this study are in
accordance with the above-mentioned conclusions, with the
exception of follicular helper T cells [39–42]. Accumulating
evidence suggests that regulatory T cells are involved in
immunosuppression and are associated with tumor escape
and tumor progression, which is unfavorable for the out-
come [43, 44]. Terefore, this discrepancy with our results
should be explored more intensively. Overall, the occurrence
and development of GBM involve a complex immune mi-
croenvironment [45], and thus more research is needed to
explore the complex tumor immune relationships.

Tis study had some limitations as well. Although there
was a correlation among the four AGs and the tumor im-
mune microenvironment, further experimental verifcation
is needed to assess the robustness of the prognostic risk
model. Future studies should investigate how the four genes
are elaborated in the regulation of tumor immunity.

B_
ce
lls
_n

ai
ve

B_
ce
lls
_m

em
or
y

T_
ce
lls
_C

D
8

T_
ce
lls
_C

D
4_
na
iv
e

T_
ce
lls
_f
ol
lic
ul
ar
_h

elp
er

T_
ce
lls
_r
eg
ul
at
or
y_
(T
re
gs
)

T_
ce
lls
_g
am

m
a_
de
lta

N
K_

ce
lls
_r
es
tin

g

D
en
dr
iti
c_
ce
lls
_r
es
tin

g

M
as
t_
ce
lls
_r
es
tin

g

N
K_

ce
lls
_a
ct
iv
at
ed

D
en
dr
iti
c_
ce
lls
_a
ct
iv
at
ed

M
as
t_
ce
lls
_a
ct
iv
at
ed

M
on

oc
yt
es

Eo
sin

op
hi
ls

N
eu
tro

ph
ils

M
ac
ro
ph

ag
es
_M

0

M
ac
ro
ph

ag
es
_M

2

M
ac
ro
ph

ag
es
_M

1

T_
ce
lls
_C

D
4_
m
em

or
y_
re
st
in
g

T_
ce
lls
_C

D
4_
m
em

or
y_
ac
tiv

at
ed

Pl
as
m
a_
ce
lls

p=0.093

p=0.08

p=0.664

p=0.609

p=0.001

p=0.763

p=0.771

p=0.001

p=0.026
p=0.001

p=0.875
p=0.003

p<0.001

p<0.001

p=0.009

p=0.221

p=0.685

p=0.923

p=0.502

p=0.107

p=0.007

p=0.005

Group
Low
High

0.0

0.2

0.4

0.6

0.8

Fr
ac
tio

n

(e)

Figure 7: Correlation between the risk score and tumor immunity in the GSE4412 data set. (a) Comparisons of the immune scores in high-
risk and low-risk GBM patients. (b) Association among the risk score and the immune score in GBM samples. (c) In GBM samples, there is
an association between the risk score and the stromal score. (d) Association among the risk score and the ESTIMATE score in GBM samples.
(e) Comparisons of the fractions of 22 types of immune cells among the high-risk and low-risk groups in the CGGA data set.
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In conclusion, a robust prognostic risk model was
constructed and validated using four AGs, including C1QA,
CDK1, EFEMP1, and IGFBP2, which had a close relation-
ship with the immune microenvironment of GBM. Tis
study ofers a new reference to further explore the patho-
genesis and identify new and more efective GBM
treatments.
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Background. Non-small cell lung cancer (NSCLC) is a crucial crux of cancer-related death, and M2 macrophage polarization
facilitates NSCLC development. MicroRNA-613 (miR-613) is a tumor suppressor. Tis research aimed to clarify the miR-613
function in NSCLC and its impact on M2 macrophage polarization. Methods. miR-613 expressions in NSCLC tissues and cells
were evaluated using quantitative real-time PCR. For miR-613 function in NSCLC, cell proliferation analysis, cell counting kit-8,
fow cytometry, western blot, transwell, and wound-healing were conducted. Meanwhile, the miR-613 impact on M2macrophage
polarization was assessed by the NSCLC models. Results. miR-613 was lessened in NSCLC cells and tissues. It was corroborated
that miR-613 overexpression retrained NSCLC cell proliferation, invasion, and migration but facilitated cell apoptosis. Moreover,
miR-613 overexpression restrained NSCLC development by repressing M2 macrophage polarization. Conclusion. Tumor sup-
pressor miR-613 ameliorated NSCLC by restraining M2 macrophage polarization.

1. Introduction

Lung cancer is a malignant tumor worldwide with high
frequency in morbidity and mortality [1]. Nearly, 85% of
lung cancer is non-small-cell lung cancer (NSCLC) [2, 3].
Although multiple progress has been achieved in NSCLC
treatment, the efect is unsatisfactory [4, 5]. Tus, there is an
urgent need to better understand NSCLC pathogenesis and
identify novel therapeutic targets to alleviate NSCLC.

In search for more efective intervention methods for
NSCLC, the importance of targeting the tumor microen-
vironment (TME) has gradually attracted wide attention
[6, 7]. TME forms of cancer and stromal cells containing
macrophages, and endothelial cells [8, 9]. As one of the
pivotal components of TME, tumor-associatedmacrophages
(TAMs) are major coordinators of immune cells [10]. TAMs
mainly include M1 and M2, and M2 macrophages accelerate
tumorigenesis [11, 12]. Crucially, accumulated studies
demonstrate that M2 macrophages drive proliferation,

migration, invasion, and other malignant phenotypes of
NSCLC, thereby aggravating NSCLC [13, 14]. Nevertheless,
the defnite mechanism of M2 macrophages facilitating the
NSCLC occurrence is not fully clarifed.

MicroRNAs (miRNAs) are highly conserved small
noncoding RNAs [15], exert pivotal functions in various
human malignancies, and are promising targets for tumor
therapy [16, 17]. Recently, increasing miRNAs have been
confrmed to mediate the NSCLC process. For instance,
miR-130amediates macrophage polarization in NSCLC, and
miR-130a loss is interrelated to NSCLC-poor prognosis and
increased tumor stage [18]; miR-4319 knockdown acceler-
ates NSCLC tumor progression by accelerating M2 mac-
rophage polarization, which might supply promising
strategies for NSCLC treatment [19].

miR-613 is a widely functional miRNA in various tu-
mors. It has been reported that miR-613 slows down the
process of cervical squamous cell cancer by targeting LETM1
[20]. miR-613 can regulate gastric cancer progression by
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regulating reactive oxygen species (ROS) production, glu-
tathione content (GSH), and superoxide dismutase (SOD)
activity [21]. miR-613 represses cell migration and invasion
in esophageal squamous cell carcinoma via mediating G6PD
to inactivate the STAT3 signaling pathway [22]. miR-613
induces NSCLC cell sensitivity to cisplatin by targeting GJA1
[23]. However, it remains unknown whether miR-613 me-
diates M2 macrophage polarization in NSCLC.

Te current research confrmed the low expression of
miR-613 in NSCLC tissues and cells. On this basis, this study
attempted to further investigate whether miR-613 partici-
pated in the NSCLC regulation by mediating M2 macro-
phage polarization.

2. Materials and Methods

2.1. Samples. NSCLC and adjacent normal tissues (n� 20 for
each) were gathered from patients at Afliated Hospital of
Nantong University and stored with liquid nitrogen for the
follow-up research. Informed consent was signed by all
patients before performing surgery. Te present research
was permitted by the Ethics Committee.

2.2. Cell Culture. Normal human lung cell lines HLF-A was
from Procell (Wuhan, China), NSCLC cells HCC827,
H1299, H1650, and A549 were from the American Type
Culture Collection (ATCC, Maryland, USA), and THP-
1 cells were from ATCC.

HLF-A cells were put in minimum essential medium
(Termo Fisher Scientifc, Waltham, Massachusetts, USA)
containing 1% penicillin, 10% FBS, and streptomycin
(Gibco, New York, USA). NSCLC cells HCC827, H1299, and
H1650 were put in RPMI-1640 with 10% FBS. THP-1 cells
were put in RPMI-1640 with 10% FBS and 0.05mM 2-
mercaptoethanol. A549 cells were grown in ATCC-
formulated F-12K (ATCC) containing 10% FBS. All cells
were cultivated at 37°C, 5% CO2.

For macrophage induction, THP-1 cells were diferen-
tiated into macrophages by treatment with phorbol 12-
myristate 13-acetate (150 nM, Sigma-Aldrich, St Louis,
USA) for 1 d [24]. Te cells were developed with 20 ng/mL
IL-4 (MedChemExpress, New Jersey, USA) for 48 h to
achieve M2 macrophages [13].

2.3. Cell Transfection. miR-613 mimic and NC-mimic were
obtained from Ribobio (Guangzhou, China). H1650 cells
and M2 macrophages (1× 106) were placed in six-hole plates
and cultured overnight, followed by cell transfection with
miR-613mimic or NC-mimic after 24 h using Lipofectamine
2000 following the manufacturer’s protocols.

2.4. Co-Culture System. Transwell inserts with 0.4 μM ap-
erture from Corning (New York, USA) were applied as a co-
culture system. THP-1 cells (2×105) were placed in Trans-
well inserts and handled with 20 ng/mL IL-4 for 2 d to
diferentiate to M2 macrophages, and the miR-613 mimic
was transfected into M2 macrophages. Afterward, the upper

chambers were transferred into Petri dishes with H1650 cells
and co-cultured for 24 h.

2.5. RNA Extraction. Total RNA was extracted in a TRIzol
reagent (Beyotime, Shanghai, China) as per standard pro-
cedure, and then, RNA content and quality were evaluated
via detecting optical density (A260, A280, and A230).

2.6. Quantitative Real-Time PCR. cDNA was synthesized
with A cDNA synthesis kit (Termo Fisher Scientifc) and
one step PrimeScript miRNA cDNA synthesis kit (TaKaRa,
Dalian, China), referring to manufacturers’ protocol. Real-
time was run on ABI 7300 real-time qPCR system (ABI
company) with SYBR green PCR kits (Termo Fisher Sci-
entifc). For the miR-613 expression analysis, qRT-PCR was
conducted with TaqMan microRNA assay. U6 and β-actin
were internal references. Te relative level was tested
through 2−∆∆CT [25]. Table 1 lists all primer sequences.

2.7. Cell Counting Kit-8 (CCK-8) Assay. H1650 cells treated
diferently (1× 103) were inoculated in plates with 96 holes.
Te plates were placed in the incubator and incubated for
24 h, 48 h, or 72 h (at 37°C, 5% CO2). Ten, the cells were
handled for 1.5 h at 37 °C using 10 μL CCK-8 solution
(Beyotime). Afterward, cell viability was assessed with
a microplate reader (Bio-Rad, California, USA).

2.8. Cell Proliferation. Te proliferation of H1650 cells was
determined using EdU Cell Proliferation Kits (Ribobio)
following a standard procedure. H1650 cells (1× 103) were
placed in 96-well plates and cultured for one day. EdU
(50 μM) was incubated with cells for two hours. Cells were
then fastened with 4% paraformaldehyde (Solarbio, Beijing)
and dyed by Hoechst 33342 and an Apollo reaction cocktail.
Te images were obtained by fuorescence microscopy
(Olympus, Tokyo, Japan). Te percentage of positive cells
was counted and calculated using ImageJ2X (Rawak
Software Inc.).

2.9. FlowCytometry. Te apoptosis condition of H1650 cells
was assessed via FITC Annexin V Apoptosis Detection Kit I
(BD Biosciences, New Jersey, USA). After H1650 cells were
harvested, the cells were resuspended, handled for 20min
with FITC Annexin V at 37°C, and further handled for
20min with propidium iodide (PI) in the dark. H1650 cell
apoptosis was tested with a FACSCalibur Flow Cytometer
(BD Biosciences).

2.10.Western Blot. RIPA lysis bufer (Solarbio) was adopted
to extract total proteins following protocol. After protein
content was tested by BCA assay kits (Abcam), the same
amount of protein was segregated with SDS-PAGE (Termo
Fisher Scientifc) before transferring it onto PVDF mem-
branes (Millipore, Massachusetts). Ten, membranes were
fostered for one hour with 5% skimmed milk and further
treated at 4°C overnight with primary antibodies containing
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anti-Bax (Abcam, 1 :1000, ab32503), anti-Bcl2 (Abcam, 1 :
1000, ab32124), anti-β-actin (Abcam, 1 µg/mL, ab8226), and
anti-cleaved-caspase-3 (Abcam, 1 : 500, ab32042). Sub-
sequently, these membranes were incubated with secondary
antibodies (Abcam). Proteins were visualized using an
electrochemiluminescence system (Solarbio) and were
evaluated by ImageJ2X (Rawak Software Inc.).

2.11. Wound-Healing Assay. H1650 cells were fostered to
50% confuence in six-hole plates; the 1% double-antibody
serum-free medium was replaced. Ten, the plate surface
was lightly scratched by 200 μL pipette tips and put into
a 37°C 5% CO2 incubator for culture. After scratching with
an inverted optical microscope (Olympus), H1650 cell mi-
gration was monitored at 0 h and 48 h. Te migration area
was measured using ImageJ2X (Rawak Software Inc.), and
the mobility was calculated.

2.12. Transwell Analysis. For cell migration analysis,
H1650 cells (5×104) were suspended in a FBS-free medium
(100 μL) and transferred onto an upper chamber (Corning,
Cambridge) with noncoated membranes. Lower chambers
were flled with standard medium (Termo Fisher Scien-
tifc). After incubating for 24 h, the cells on the membrane
upper surface were removed and stained cells on the
membrane lower surface with crystal violet (0.1%, Solarbio).

For cell invasion analysis, Matrigel chambers were
conducted. After H1650 cells were harvested, they were
resuspended in a serum-free medium and transferred to
hydrated matrix chambers (50 μL). Te bottom chambers
were put in RPMI-1640 (500 μL) containing 10% FBS. On the
next day, cells on the upper surface were scraped and stained
infltrating cells on the lower surface by 0.1% crystal violet
(Solarbio). All cells were counted with 3–5 random felds.
Ten, we use ImageJ2X (Rawak Software Inc.) to quantify.

2.13.Enzyme-Linked ImmunosorbentAssay. IL-10 and TGF-
β levels in M2 macrophage culture supernatant were tested
with enzyme-linked immunosorbent assay with IL-10 ELISA

Kit (Termo Fisher Scientifc) and TGF-β ELISA Kit (Spbio,
Wuhan, China), referring to manufacturer’s instructions.

2.14. In Vivo Assay. C57BL/6 mice (5 weeks old) were from
Vital River Laboratory Animal Technology (Beijing, China).

Macrophageswith diferent treatmentswere co-culturedwith
H1650cells. H1650 cells were grouped: H1650+MNCmimic,
H1650+MIL-4+NCmimic and H1650+MIL-4+miR-613mimic. Te mice
were subcutaneously injected with the abovementioned
H1650cells (5×105) [13]. Te tumor volumes were tested with
a vernier caliper.Treeweeks after inoculation, sacrifced all mice
with an intraperitoneal injection of pentobarbital sodium
(100mg/kg), gathered and weighed tumor tissues for subsequent
studies.

2.15.TUNELandKi-67Staining. TUNEL kit (Beyotime) was
applied for TUNEL staining following instructions. Xeno-
graft tissues were fastened in 4% paraformaldehyde, em-
bedded in parafn, and deparafnized and rehydrated.
Followed by the antigen retrieval, sections (5 μm) were in-
cubated for 1.5 h with a 50 μL TUNEL mix at 37°C, washed,
and DAPI (2 µg/mL) was added for nuclei staining, followed
by washing using PBS and observing under a fuorescence
microscope (OLYMPUS).

For Ki-67 staining, the abovementioned sections were
handled by anti-Ki-67 (Abcam, 1 µg/mL, ab15580) at 4°C
and handled by secondary antibodies (Abcam, biotin con-
jugated goat polyclonal vector, 1 : 250) and observed with
a microscope. Mean intensities for positive Ki-67 expression
were determined with Image software. Randomly selected
the percentage of Ki-67 positive staining from fve felds.

2.16. Statistical Analysis. Data are measured as mean-
± standard deviation. Statistically signifcant diferences
were evaluated with one-way or two-way ANOVA or an
unpaired student’s t-test followed by a Tukey’s post-test.
P< 0.05 was statistical signifcance.

3. Results

3.1. miR-613 Is Lessened in NSCLC. To clarify the miR-613
function in NSCLC, we determined the miR-613 level in
NSCLC tissues and found a decreased miR-613 level in
NSCLC tissues (Figure 1(a)). Meanwhile, miR-613 dropped
in NSCLC cells HCC827, H1299, H1650, and A549 com-
pared with normal human lung cell lines HLF-A, and the
decrease was most notable in H1650 cells (Figure 1(b)),
which shows that the diferential expression of miR-613 is
most obvious in H1650 cells. Terefore, we selected
H1650 cells for subsequent experiments. In summary, our
study confrmed that miR-613 is lowly expressed in NSCLC
tissues and cells, which suggests that miR-613 may be
a potential therapeutic target for NSCLC.

3.2. miR-613 Overexpression Advances NSCLC Cell Apoptosis
and Represses Cell Proliferation. Due to the decreased miR-
613 in H1650 cells being most remarkable, H1650 cells were

Table 1: Primer sequence used in qRT-PCR.

Gene name Primer sequence (5′-3′)

miR-613 Forward: GTGAGTGCGTTTCCAAGTGT
Reverse: TGAGTGGCAAAGAAGGAACAT

Arg-1 Forward: AGGCGCTGTCATCGATTTCT
Reverse: TGGAGTCCAGCAGACTCAAT

CD206 Forward: CTCTGTTCAGCTATTGGACGC
Reverse: CGGAATTTCTGGGATTCAGCTTC

iNOS Forward: GCGCTCTAGTGAAGCAAAGC
Reverse: AGTGAAATCCGATGTGGCCT

CD86 Forward: CTTTGCTTCTCTGCTGCTGT
Reverse: GGCCATCACAAAGAGAATGTTAC

β-actin Forward: CTCCATCCTGGCCTCGCTGT
Reverse: GCTGTCACCTTCACCGTTCC

U6 Forward: CTCGCTTCGGCAGCACA
Reverse: AACGCTTCACGAATTTGCGT
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selected to verify the miR-613 function in NSCLC de-
velopment. After transfecting the miR-613 mimic
into H1650 cells, CCK-8 results corroborated that the
miR-613 overexpression reduced the H1650 cell viability
(Figure 2(a)). Meanwhile, the H1650 cell proliferation was
weakened after the transfection of the miR-613 mimic
(Figure 2(b)). By contraries, fow cytometry analysis
expounded that the miR-613 overexpression enhanced the
H1650 cell apoptosis (Figure 2(c)). Bax, Bcl-2, and
cleaved-caspase-3 were apoptosis-related proteins [26].
As displayed in Figure 2(d), Bax and cleaved-caspase-3
were elevated after miR-613 mimic transfection, while the
Bcl-2 was decreased. Overall, the miR-613 overexpression
restrained NSCLC cell proliferation and accelerated cell
apoptosis.

3.3. miR-613 Overexpression Weakens NSCLC Cell Invasion
and Migration. Subsequently, we continued to evaluate
miR-613 impact on NSCLC cell invasion and migration. As
exhibited in Figure 3(a), miR-613 mimic repressed
H1650 cell migration, and this conclusion was further val-
idated by Transwell analysis (Figure 3(b)). Meanwhile, the
H1650 cell invasion was restrained after the miR-613
overexpression (Figure 3(c)). To sum up, the miR-613
overexpression restrained NSCLC cell invasion and
migration.

3.4. miR-613 Represses the M2 Macrophage Polarization.
Previous studies authenticate that M2 macrophage polari-
zation accelerates NSCLC progression [27, 28]. Tus, we
attempted to clarify whether miR-613 had an inhibitory
efect on M2 macrophage polarization. After THP-1 cells
were induced to diferentiate into macrophages, a miR-613
mimic was transfected into IL-4-induced M2 macrophages.
miR-613 mimic transfection efciency in M2 macrophages
was verifed, and miR-613 was lowly expressed in M2
macrophages (Supplementary Figure 1). Arg-1, CD206 are
M2 macrophage markers, iNOS, CD86 are M1 macrophage
markers [29]. We found that Arg-1 and CD206 were ele-
vated, while iNOS and CD86 were decreased after IL-4

treatment, and these trends were partially reversed by
miR-613 mimic transfection (Figure 4(a)).

M2 macrophages usually excrete anti-infammatory
factors such as TGF-β and IL-10 [30]. Tus, we further
evaluated the TGF-β and IL-10 levels in the cell culture
supernatant. ELISA results clarifed that the IL-10 and TGF-
β contents were elevated after IL-4 treatment, while miR-613
mimics partially reversed this trend (Figure 4(b)). Te
abovementioned experimental results illustrated that miR-
613 restrained the M2 macrophage polarization.

3.5. miR-613 Restrains NSCLC Cell Growth by Reducing M2
Macrophage Polarization. We further determined whether
miR-613 regulated the NSCLC cell growth by repressing M2
macrophage polarization. Macrophages with diferent
treatments (as in Figure 4) were co-cultured with
H1650 cells. Figure 5(a) presents a schematic diagram of the
co-culture system. CCK-8 assay authenticated that co-
culture of M2 macrophages increased H1650 cell viability,
while this increase was partially inverted after the miR-613
was overexpressed in M2 macrophages (Figure 5(b)). Te
same trend was discovered in the H1650 cell proliferation
analysis (Figure 5(c)). On the contrary, the co-culture of M2
macrophages weakened H1650 cell apoptosis, while the
miR-613 overexpression partially reversed this efect
(Figure 5(d)). Meanwhile, the co-culture ofM2macrophages
accelerated H1650 cell migration, while this trend was
partially inverted after the miR-613 was overexpressed inM2
macrophages, and the Transwell assay further confrmed this
fnding (Figures 5(e)–5(f)). Moreover, we further evaluated
the H1650 cell invasion, and the results expounded that the
co-culture of M2 macrophages facilitated H1650 cell in-
vasion, while the miR-613 overexpression partially reversed
this efect (Figure 5(g)). In summary, miR-613 restrained
NSCLC cell growth by reducing M2 macrophage
polarization.

3.6. miR-613 Represses Tumor Growth via Restraining
M2 Macrophage Polarization in Vivo. We further
evaluated the in vivo function of miR-613. As displayed in
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Figure 1: miR-613 expression in non-small cell lung cancer tissues and cells. (a) After harvesting twenty pairs of NSCLC and adjacent
normal tissues, the miR-613 expression was tested in NSCLC and control groups using quantitative real-time PCR (qRT-PCR). (b) qRT-
PCR analysis for miR-613 expression in human lung cell lines HLF-A and NSCLC cells HCC827, H1299, H1650, and A549. ∗∗P< 0.01 vs.
HLF-A. ∗∗∗P< 0.001 vs. Normal or HLF-A.
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Figures 6(a) and 6(b), the co-culture of M2 macrophages
facilitated tumor growth, but this trend was inverted in
part after the miR-613 was overexpressed in M2 macro-
phages. Meanwhile, Ki67 staining confrmed that the co-
culture of M2 macrophages accelerated the proliferation,
and the miR-613 overexpression partially reversed this
trend (Figure 6(c)). On the contrary, TUNEL staining
demonstrated that the co-culture of M2 macrophages

restrained the apoptosis, while this restraint was partially
reversed after the miR-613 was overexpressed in M2
macrophages (Figure 6(c)). Furthermore, miR-613 was
decreased after co-culture of M2 macrophages, and this
decrease was partially reversed by miR-613 over-
expression (Figure 6(d)). Tese data confrmed miR-613
overexpression restrained tumor growth by repressing M2
macrophage polarization.

**

0.0

0.5

1.0

1.5
C

el
l v

ia
bi

lit
y 

(O
D

 v
al

ue
)

24 48 720
Time (h)

NC mimic
miR-613 mimic

(a)

DAPI EdU Merge

N
C 

m
im

ic
m

iR
-6

13
m

im
ic

**

0

20

40

60

Ed
U

 p
os

iti
ve

 ce
lls

 (%
)

NC mimic
miR-613 mimic

(b)

miR-613 mimicNC mimic

Q2
3.02

Q1
1.33

Q3
2.60

Q4
93.0

Q2
16.2

Q1
2.65

Q3
5.83

Q4
75.3

Comp-FL1-H :: FITC-H

C
om

p-
FL

2-
H

 ::
 P

E-
H

107

106

105

104

103

102

101

102 104 106 108

0

C
om

p-
FL

2-
H

 ::
 P

E-
H

107

106

105

104

103

102

101

0

0

Comp-FL1-H :: FITC-H

102 104 106 1080

***

0

5

10

15

20

25

A
po

pt
ot

ic
 ce

lls
 (%

)

NC mimic
miR-613 mimic

(c)

NC mimic miR-613 mimic

Bax

Bcl-2

Cleaved-caspase3

β-actin

***

***

***

0

1

2

3

4

Re
lat

iv
e p

ro
te

in
 ex

pr
es

sio
n

Bcl-2Bax Cleaved-caspase-3

NC mimic
miR-613 mimic

(d)

Figure 2: Analysis of miR-613 on NSCLC cell proliferation and apoptosis. miR-613 mimic was transfected into H1650 cells. (a) Evaluation
of H1650 cell viability by cell counting kit-8 (CCK-8). (b) Edu method was conducted to assess H1650 cell proliferation (scale bar: 100 μm).
(c) H1650 cell apoptosis was determined by fow cytometry. (d) Te levels of apoptosis-related proteins Bax, Bcl2, and cleaved caspase-3
were tested by Western blot. ∗∗P< 0.01, ∗∗∗P< 0.001 vs. NC-mimic. NC: negative control.
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4. Discussion

Te high global mortality rate from NSCLC is a major issue
and the challenges of cancer-related treatment [31]. Various
miRNAs are pivotal regulatory molecules in NSCLC [7, 32].
Similarly, our study authenticated that miR-613 was lessened
in NSCLC. Furthermore, our research demonstrated that
miR-613 overexpression restrained NSCLC cell pro-
liferation, migration, invasion, and enhanced apoptosis.
Meanwhile, we confrmed that miR-613 overexpression
restrained NSCLC growth by repressing M2 macrophage

polarization. Te completion of this research might provide
promising biomarkers for NSCLC treatment.

Accumulated evidence suggests that miR-613 is in-
terrelated to various tumor genesis and development. For
instance, miR-613 is lowly expressed in colorectal cancer and
has diagnostic and prognostic functions in colorectal cancer
[33]; miR-613 represses hepatocellular carcinoma cell de-
diferentiation through the SOX9 signaling, which provides
novel therapeutic targets for hepatocellular carcinoma [34].
It has been authenticated that miR-613 initiates NSCLC cell
cycle arrest via regulating CDK4 [35]. Similarly, we verifed
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Figure 3: Regulation of miR-613 on NSCLC cell migration and invasion. miR-613 mimic and NC-mimic were transfected into H1650 cells.
Wound-healing (a) (scale bar: 400 μm) and Transwell analyses (b) (scale bar: 200 μm) were conducted to evaluate H1650 cell migration. (c)
Te H1650 cell invasion was assessed using Transwell (scale bar: 200 μm). ∗∗∗P< 0.001 vs. NC-mimic.
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Figure 5: miR-613 regulates NSCLC cell growth by repressingM2macrophage polarization.Macrophages with diferent treatments (as in Figure 4)
were co-cultured with H1650 cells. H1650 cells were grouped: H1650+MNCmimic, H1650+MIL-4+NCmimic and H1650+MIL-4+miR-613mimic. (a) Te
schematic diagram of the co-culture system. (b) CCK-8 was conducted to assess H1650 cell viability. (c) Evaluation of H1650 cell proliferation by the
Edumethod (scale bar: 100μm). (d) Detection of H1650 cell apoptosis by fow cytometry. (e and f) H1650 cell migration was tested using Transwell
(scale bar: 200μm) and wound-healing analyses (scale bar: 400μm). (g) H1650 cell invasion was measured by Transwell (scale bar: 200μm).
∗∗∗P< 0.001 vs. H1650+MNCmimic. ##P< 0.01, ###P< 0.001 vs. H1650+MIL-4+NCmimic.
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that miR-613 was lessened in NSCLC cells and tissues. Si-
multaneously, we further confrmed that the transfection of
miR-613 mimic advanced cell apoptosis and weakened
NSCLC cell proliferation, migration, and invasion through
various gain-of-function assays, which was similar to
a previous conclusion [36].

Previous reports state that macrophages with carcino-
genic functions in tumor environments are considered as
TAMs and typically exhibit an M2 phenotype [37, 38].
Increasing studies authenticate that M2 macrophages are
interrelated to multiple tumors development. For instance,
Sousa et al. confrmed that the high number of M2 mac-
rophages is relevant to rapid proliferation and poor prog-
nosis of human primary breast tumors [39]; Yamaguchi et al.
clarifed that the peritoneal TAMs polarization into M2
phenotype facilitates the gastric cancer tumor growth,

prompting that intraperitoneal TAMs is a promising target
for gastric cancer [40]. Recently, the pivotal function of M2
macrophage polarization in NSCLC has attracted wide-
spread attention from researchers. M2 macrophages activate
the ERK1/2/Fra-1/slug pathway through epithelial-
mesenchymal transformation to accelerate the malignant
development of NSCLC [41]. Puerarin reduces the M2
macrophage metastasis and polarization of NSCLC trans-
plant-tumor-associated macrophages by inactivating MEK/
ERK 1/2 signaling, thereby alleviating NSCLC [42]. Con-
sidering the critical functions of miR-613 and M2 macro-
phages in NSCLC, this study attempted to clarify whether
miR-613 alleviated NSCLC by mediating M2 macrophage
polarization. As expected, our experimental data revealed
that miR-613 restrained NSCLC growth through repressing
M2 macrophage polarization.
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Figure 6: miR-613 infuences tumor growth by reducing the M2 macrophage polarization in vivo. Macrophages with diferent treatments (as in
Figure 4) were co-cultured with H1650 cells. H1650 cells were grouped: H1650+MNCmimic, H1650+MIL-4+ NCmimic and H1650+MIL-4+miR-613mimic.
TeC57BL/6mice were subcutaneously injected with the aboveH1650 cells (5×105 cells). (a, b) Analysis of the tumor weight. (c)Te proliferation
and apoptosis were analyzed by Ki-67 staining and TUNEL staining (scale bar: 100μm). (d) miR-613 expression in tumors by qRT-PCR.
∗∗∗P< 0.001 vs. H1650+MNCmimic. ##P< 0.01, ###P< 0.001 vs. H1650+MIL-4+NCmimic.
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However, there are still some limitations in this study,
and although, we found that miR-613 regulated NSCLC
development by inhibiting M2 macrophage polarization,
whether miR-613 would regulate NSCLC development by
regulating downstream gene targets or oxidative stress re-
sponse to inhibit M2 macrophage polarization still needs
further investigation.

In general, we confrmed miR-613 overexpression en-
hanced apoptosis and restrained NSCLC cell proliferation,
migration, and invasion. Meanwhile, miR-613 over-
expression restrained NSCLC growth by repressing M2
macrophage polarization, which provides novel insights and
strategies for treating NSCLC.
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Background. Te mortality rate of breast cancer (BC) ranks frst among female tumors worldwide and presents a trend of younger
age, which poses a great threat to women’s health and life. Neoadjuvant chemotherapy (NAC) for breast cancer is defned as the
frst step of treatment for breast cancer patients without distant metastasis before planned surgical treatment or local treatment
with surgery and radiotherapy. According to the current NCCN guidelines, patients with diferent molecular types of BC should
receive neoadjuvant chemotherapy (NAC), which can not only achieve tumor downstaging, increase the chance of surgery, and
improve the breast-conserving rate. In addition, it can identify new genetic pathways and drugs related to cancer, improve patient
survival rate, and make new progress in breast cancer management.Objective. To explore the role of the nomogram established by
the combination of ultrasound parameters and clinical indicators in the degree of pathological remission of breast cancer.
Methods. A total of 147 breast cancer patients who received neoadjuvant chemotherapy and elective surgery in the Department of
Ultrasound, Nantong Cancer Hospital, from May 2014 to August 2021 were retrospectively included. Postoperative pathological
remission was divided into two groups according to Miller–Payne classifcation: no signifcant remission group (NMHR group,
n� 93) and signifcant remission group (MHR group, n� 54). Clinical characteristics of patients were recorded and collected. Te
multivariate logistic regression model was used to screen the information features related to the MHR group, and then,
a nomogram model was constructed; ROC curve area, consistency index (C-index, CI), calibration curve, and H-L test were used
to evaluate the model. And the decision curve is used to compare the net income of the single model and composite model. Results.
Among 147 breast cancer patients, 54 (36.7%) had pathological remission. Multivariate logistic regression showed that ER,
reduction/disappearance of strong echo halo, Adler classifcation after NAC, PR+CR, and morphological changes were in-
dependent risk factors for pathological remission (P< 0.05). Based on these factors, the nomogram was constructed and verifed.
Te area under the curve (AUC) and CI were 0.966, the sensitivity and specifcity were 96.15% and 92.31%, and the positive
predictive value (PPV) and negative predictive value (NPV) were 87.72% and 97.15%, respectively. Temean absolute error of the
agreement between the predicted value and the real value is 0.026, and the predicted risk is close to the actual risk. In the range of
HRTof about 0.0∼0.9, the net beneft of the composite evaluation model is higher than that of the single model. H-L test results
showed that χ2 � 8.430, P � 0.393> 0.05. Conclusion. Te nomogram model established by combining the changes of ultrasound
parameters and clinical indicators is a practical and convenient prediction model, which has a certain value in predicting the
degree of pathological remission after neoadjuvant chemotherapy.
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1. Introduction

Breast cancer (BC) has the highest mortality rate among
female tumors worldwide, with an incidence rate of about
23%, posing a great threat to women’s health and life [1, 2].
Neoadjuvant chemotherapy (NAC) is an important part of
comprehensive therapy for BC patients with diferent mo-
lecular types, which can not only achieve tumor down-
staging, increase the chance of surgery, and improve the
breast-conserving rate. In addition, new genetic pathways
and drugs related to cancer can be identifed to improve the
survival rate of patients and make new progress in BC
management [3–7]. At present, the WHO and Response
Evaluation Criteria In Solid Tumors (RECIST) are the most
tumors used in clinical evaluation of NAC tumors [8–9], and
all of them have their own advantages. Te gold standard for
NAC response has always been pathological assessment [10],
including residual cancer burden (RCB) [11] and Miller-
Payne score system [12]. Relevant data show that the
pathological complete remission rate is 3% to 30% [13], not
all patients are sensitive to NAC, and some patients may
gradually develop drug resistance during chemotherapy,
which limits the clinical efcacy of drugs and leads to
treatment failure. Some patients (less than 5%) may progress
during neoadjuvant therapy and even lose the opportunity to
receive surgery [14]. Terefore, it is more and more im-
portant to accurately monitor and evaluate the efcacy of
NAC and to observe the sensitivity of patients with advanced
breast cancer to chemotherapy drugs, so as to realize in-
dividualized treatment and improve the breast-conserving
rate and survival period of patients [15]. Imaging exami-
nation can not only evaluate the efcacy, pathological status,
and prognosis of NAC but also help to select the most
appropriate surgical method. Multiple imaging evaluation
methods, including magnetic resonance imaging (MRI),
computed tomography (CT), positron emission tomography
(PET-CT), mammography (MM), and ultrasound (US),
have been widely used around the world. Current studies
generally believe thatMRI is more objective than the US, and
its characteristics of tomography make the lesion display
more accurately and have advantages in predicting the
degree of pathological remission and prognosis of the pri-
mary lesion. However, due to the high cost, it has not been
fully popularized around the world, especially in developing
countries [16–19]. At the same time, some studies have
shown that breast cancer patients with ER negative before
NAC and high expression of Ki67 are more sensitive to
chemotherapy and beneft more after chemotherapy, which
may be sensitive factors to predict the efcacy of chemo-
therapy [20, 21]. Studies have shown that many changes will
occur in ultrasound images of patients with pcR after NAC,
such as PR and CR in clinical efcacy evaluation, attenuation
and disappearance of posterior echo, elevation of internal
echo, narrowing or disappearance of strong echo halo
around the tumor, all of which are efective related in-
dicators of tumor NAC [22]. In order to develop a clinical
applicable, cost-efective, and easy to promote the new
approach, this study will be commonly used two-

dimensional gray-scale ultrasound, color Doppler fow
imaging (CDFI), and clinical common testing of immu-
nohistochemical and serum index together, to develop and
validate based on ultrasonic features and clinical pathology
nomogram, and to predict the postoperative pathological
remission after NAC. Based on the changes of various pa-
rameters in theMHR group after the end of NAC, we believe
that the changes in these ultrasound parameters most in-
tuitively refect the changes of tumors during the entire
process of NAC and are closely related to the degree of
pathological remission. Te aim of this study was to explore
the role of the nomogram established by the combination of
ultrasound parameters and clinical indicators in the degree
of pathological remission of breast cancer.

2. Materials and Methods

2.1. Basic Information. Tis study retrospectively collected
147 breast cancer patients who underwent neoadjuvant
chemotherapy and elective surgery in the Ultrasound
Department of Nantong Cancer Hospital fromMay 2014 to
August 2021. Inclusion criteria were as follows: ① female;
② primary breast cancer, confrmed by ultrasound biopsy
and in line with the diagnostic criteria of “Chinese Society
of Clinical Oncology Breast Cancer Guideline version 2021:
updates and interpretations” [23]; ③ TNM stage II to III,
no disease distant metastases to contralateral or other
organs. Exclusion criteria were as follows:① patients who
have received other related treatments before neoadjuvant
chemotherapy; ② patients with multiple lesions and ma-
lignant tumors of other organs;③ patients with incomplete
clinical and imaging data;④ the chemotherapy cycle is not
within 4–8 cycles (Figure 1). Tis study has passed the
ethics approval of the Medical Ethics Committee of
Nantong Cancer Hospital, and patients’ informed consent
forms are exempted due to the retrospective nature of
this study.

2.2. Methods

2.2.1. Data Collection. Demographic and clinical data of
patients were collected, including age, gender, menopause,
history of childbearing and breastfeeding, family history of
breast cancer (referring to immediate family members, in-
cluding mothers, daughters, and sisters who have breast
cancer), lymph node metastasis, and NAC course of treat-
ment, NAC treatment plan, and breast cancer pathological
type and stage.

2.2.2. Ultrasound Image Acquisition and Evaluation.
Before and after neoadjuvant chemotherapy, 2D gray-scale
ultrasound and color Doppler examination were performed.
Ultrasound-related parameters were collected, including
diameter, morphology, aspect ratio, hyperechoic halo, cal-
cifcation, tumor boundary, internal echo of the mass,
posterior echo, Adler grade, and RI resistance index before
and after NAC treatment.
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Diameter is defned as the maximum diameter line.
According to the efcacy evaluation criteria for solid tumors,
the efcacy was divided into four parts by the change of focal
diameter; complete response (CR) : all target lesions disap-
pear and no new lesions appear; partial response (PR): the
total baseline longest diameter of all target lesions was re-
duced by ≥30%; progression disease (PD): the total baseline
maximum diameter of all target lesions increased by ≥20%;
and stable disease (SD): the total length of baseline diameter
of all target lesions decreased but did not reach PR or in-
creased but did not reach PD. CR and PR were considered to
have signifcant therapeutic efects, while SD and PD were
not.

Morphological change observation whether the mor-
phology becomes regular was defned as the shape of the
mass becomes more regular after the end of NAC, which can
be described by geometric shapes, with fewer lobulations
and no angular protrusions.

Aspect ratio: an aspect ratio <1 indicates that the long
axis of the lump is parallel to the skin and an aspect ratio >1
indicates that the front and rear diameter is greater than the
horizontal diameter. Te aspect ratio changes the anterior
and posterior diameter and horizontal meridian of the mass
change.

Calcifcation changes refer to the increase in the number
of strong echo spots in the mass on two-dimensional gray-
scale ultrasound images compared with that before NAC.

Tumor boundary changes refer to the fuzzy, angular,
minute lobulation, and burr of the original sharp and clear
tumor edges after the end of NAC.

Internal echogenicity: compared with the glandular
tissue of the breast to determine the echogenicity of the
mass, it can be classifed as very low, low, mixed, or iso-
echoic. Echogenicity refers to the increased echogenicity of
the mass compared to that before the onset of NAC.

Posterior echo attenuation is defned as the contrast
between the echo in the depth of the tumor and the tissue
echo at the same depth in the area around the tumor on the
same section, which is lower than the tissue echo at the same
depth in the surrounding area. It is generally believed that
posterior echo attenuation can represent malignant signs.
Similar ones are said to have no change in rear echo. Te
change of the posterior echo was located as an enhancement
of the posterior echo compared to the ultrasound image
before the NAC began.

Adler grading observes the distribution and richness of
blood fow, fnds the section with the most abundant blood
fow, calculates the number of blood vessels, and defnes the
blood fow characteristics according to the semiquantitative
grading of Adler: Level 0: no blood fow in the lesion; Level I:
a small amount of blood fow, with 1 or 2 punctured or thin
rod blood fow; Grade II: moderate blood fow, one major
blood vessel can be seen, its length is close to or beyond the
radius of the lesion or 3∼4 punctured or fne rod-shaped
blood vessels; Grade III: abundant blood fow, visible more
than 4 blood vessels or interconnected, intertwined into
a network.Te defnition of Alder grading change is whether
grading decreases after NAC.

Resistance index (RI) is the ratio of the diference be-
tween peak systolic and end diastolic velocity to peak systolic
velocity, refecting the distal resistance index of the vessel. RI
was measured before and after NAC treatment to determine
whether RI decreased.

2.2.3. Collection and Evaluation of Immunohistochemical
and Serum Indicators. Te biopsy specimen of the breast
mass was fxed and sent to the pathology department for
immunohistochemistry. Te results of immunohistochem-
ical staining were evaluated by two senior pathologists,
respectively, in a double-blind method with reference to the

Patients (n=189) diagnosed with
breast cancer by needle biopsy in our
hospital from May 2014 to April 2021

were collected

Eligible patients before
NAC initiation (n=167)

Patients who were
fnally entered into the

group (n=147)

Ruled out:
Te course of NAC was not within 4-8
cycles (n=7);
Patients with incomplete postoperative
pathological results and follow-up data
(n=8);
Afer NAC, the ultrasound image data
were incomplete (n=5).

Ruled out:
Patients who had received other related
treatments before NAC (n=4);
Multiple lesions or other malignant
tumors or distant metastasis (n=8);
Te ultrasound image data before NAC
was not complete (n=10).

Figure 1: Flowchart of the study.
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staining evaluation criteria proposed by Fromowitz et al.Te
percentage of positive cells in tumor cells was calculated to
evaluate the status of ER (estrogen receptor), PR (pro-
gesterone receptor), proliferative nuclear antigen KI67, and
human epidermal growth factor receptor C-erbb-2. ER, PR
≥1% was defned as ER, PR positive; Her-2 (0∼+) was de-
termined as negative, her-2 (3+) was determined as positive,
and HER-2(2+) was determined by fuorescence in situ
hybridization. K-67≥ 20% was highly expressed.

After the frst admission, 3ml fasting venous blood was
collected from the subjects in the morning before NAC, and
the levels of CEA (carcinoembryonic antigen), sugar antigen
CA153, sugar antigen CA125, and sugar antigen 50CA50
were determined by electrochemiluminescence immuno-
assay. After the treatment of NAC, the above indicators were
tested again, and the results of the two tests were recorded.

2.3.GroupingandEvaluation. Teoutcome of this study was
the degree of postoperative pathological remission after
NAC. Te degree of postoperative pathological remission
was evaluated according to Miller–Payne’s modifed grading
criteria for pathological response. Grade I: no change or
slight change in tumor cells, no overall reduction, or no
signifcant change; Grade II: the number of tumor cells
decreased by <30%; Grade III: tumor cells reduced by 30%∼
90%; Grade IV: reduction of tumor cells >90%, with only
small clusters or widely dispersed residual cells; Grade V: no
malignant cells in the tumor site, only fbrotic stroma. Grade
I to III were nonmajor histological response (NMHR)
groups, and grade IV to V were major histological response
(MHR) groups.

2.4. Statistical Methods. SPSS 26.0 (Statistical Product and
Service Solutions) and R Studio software were used for
statistical analysis, Shapiro–Wilk test was used to test the
normality of the data, and measurement data subject to
normal distribution were expressed as mean± standard
deviation (mean± SD). Measurement data that do not obey
normal distribution are described by quartile M (P25, P75);
enumeration data were described by [n(%)]; two in-
dependent samples t-test was used to compare the mea-
surement data of the two groups with normal distribution,
and Mann–Whitney U test was used to compare the mea-
surement data of the two groups. Te chi-square test was
used for the comparison, and the variables with P< 0.05 in
the univariate analysis results were used as independent
variables in the multivariate analysis and were included in
the multivariate logistic regression model analysis. Te
predicted probability of disease and the actual situation were
plotted on the ROC curve, and the area under the curve was
calculated. Te independent risk factors were introduced
into R Studio to establish a nomogram model for in-
dividualized prediction of disease, and the Bootstrap self-
sampling method was used to conduct internal validation of
the nomogram model. To measure the degree of discrimi-
nation of the model, the Hosmer–Lemeshow test is used to
evaluate the model and the calibration curve to measure the
degree of calibration of the model and used the decision

curve to compare the net returns of the composite model
and the single model.

3. Results

3.1. BaselineData. FromMay 2014 to August 2021, a total of
189 candidates from Nantong Cancer Hospital were col-
lected, and a total of 147 candidates met the inclusion
criteria, including 93 in the NMHR group and 54 in the
MHR group. Te age of the NMHR group was greater than
that of the MHR group (P � 0.009). Te rate of treatment ≥6
periods in the MHR group was higher than that in the
NMHR group (P � 0.015). Te MHR group and NMHR
group had diferent treatment regimens (P< 0.001). Te
positive rate of ER in the NMHR group was higher than that
in the MHR group (P< 0.001). Te positive rate of PR in the
NMHR group was higher than that in the MHR group
(P< 0.001). Te positive rate of Ki67 was higher than that in
the NMHR group (P � 0.010) as shown in Table 1.

3.2. Comparative Analysis of Diferences between Ultrasound
and Serum Indexes before and after Treatment. Table 2 shows
that the hyperechoic halo rate of the MHR group before
treatment was higher than that of the NMHR group
(P< 0.001); the posterior echo attenuation rate of the
NMHR group before treatment was higher than that of the
MHR group (P � 0.013); MHR was displayed before and
after treatment; Adler grades were diferent between the
MHR group and NMHR group (both P< 0.001); RI and
CA153 in the NMHR group were higher than those in the
MHR group before treatment (P< 0.001 and P � 0.003,
respectively). After treatment, the hyperechoic halo rate of
the NMHR group was higher than that of the MHR group
(P< 0.001); the diameter, RI, CEA, and CA153 of the NMHR
group were higher than those of the MHR group after
treatment (P< 0.001, P< 0.001, P � 0.003 and P � 0.006) as
shown in Table 2.

3.3. Comparative Analysis of the Changes in Ultrasound Pa-
rameters between the NMHR Group and the MHR Group.
Table 3 shows that in the MHR group, the diameter changes
reaching PR+CR, regular morphological changes, nar-
rowing/disappearance of hyperechoic halos, clear borders,
posterior echo changes, decreased blood fow grade, and
decreased RI were higher than those of the NMHR group (all
P< 0.05) as shown in Table 3.

3.4. Multivariate Analysis of the Degree of Pathological
Remission. Te results of single-factor analysis of P< 0.05
variables as a multifactor analysis of the independent var-
iable have a diameter change, shape change rules, strong
echo halo narrow/disappear, boundary clear, rear echo
change, blood fow and RI level lower eight indicators, bi-
nary classifcation multivariable logistic regression analysis,
screening method of the independent variables selection
method step by step forward. Te results show that ER,
narrowing/disappearance of strong echo halo, Adler
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classifcation after NAC, PR+CR, and morphological
change rule enter themodel.Te response rate of ER positive
was 0.176 times that of negative (OR� 0.176, 95%CI:
0.046∼0.663). Te remission rate of hyperechoic halo nar-
rowing/disappearance was 10.661 times that of no nar-
rowing/disappearing echogenic halo (OR� 10.661, 95% CI:
2.608∼43.568). Each time Adler increased by one grade, and
the remission rate became 0.129 times the original
(OR� 0.129, 95% CI: 0.050∼0.333). Te remission rate of
PR+CR positive was 5.846 times that of negative
(OR� 5.846, 95% CI: 1.077∼31.742). Te remission rate of
the morphological change rule was 6.223 times that of the
rule (OR� 6.223, 95% CI: 1.696∼22.824) as shown in Table 4.

3.5. Establishment of theNomogramModel. According to the
risk factors screened out from the multivariate logistic re-
gression analysis results, a nomogram model for predicting
the degree of remission was established. After adding the
specifc scores of the fve variable indicators, the total score is
obtained, and the specifc probability value of the patient’s
remission can be obtained by the corresponding probability
line, as shown in Figure 2.

3.6. Evaluation of Nomograms. Te area under the curve
(AUC) was 0.996 (95%CI: 0.921–0.989), the sensitivity was

96.15%, and the specifcity was 92.31%. PPV and NPV were
87.27% and 97.15%, respectively (Table 5 and Figure 3). Te
nomogrammodel was internally validated by Bootstrap self-
sampling for 2000 times, and the resulting C-index for
predicting remission rate was 0.966, indicating a good
resolution (Figure 4(a)). Te calibration curve results show
that the average absolute error of coincidence between the
predicted value and the real value is 0.026, and the predicted
risk is close to the actual risk, indicating that the predicted
coincidence is high. In the HRT range of approximately
0.0–0.9, the net beneft rate of the composite evaluation
model was higher than that of the simple model
(Figure 4(b)). Te results of the Hosmer–Lemeshow test
showed that � 8.430, P � 0.393> 0.05, indicating that
through the HL test, there was no signifcant diference
between the predicted value and the true value.

3.7. Typical Case Application. In the nomogram, by sum-
ming the scores of these 5 variables and locating them on
a total subscale, the predicted probability of the degree of
postoperative pathological response of the patient can be
obtained. For example, Figures 5(a) and 5(b) are the ul-
trasound images of a 56-year-old female breast cancer pa-
tient before and after NAC, ER positive (0 points), the
disappearance of hyperechoic halo after NAC (38 points),
Alder grade 0 (100 points) points), the diameter change

Table 1: Basic demographic data of patients.

Demographic indicators NMHR (n� 93) MHR (n� 54) P

Age (years) 57.0 (49.0, 63.5) 52.5 (48.0, 57.0) 0.009

Whether menopause No 49 (52.7) 33 (61.1) 0.322Yes 44 (47.3) 21 (38.9)

History of birth and lactation No 6 (6.5) 0 (0.0) 0.141Yes 87 (93.5) 54 (100.0)

Family history No 91 (97.8) 54 (100.0) 0.278Yes 2 (2.2) 0 (0.0)

Lymph node metastasis No 22 (23.9) 14 (25.9) 0.785Yes 70 (76.1) 40 (74.1)

Period of treatment <6 issues 39 (41.9) 12(22.2) 0.015≥6 periods 54 (58.1) 42 (77.8)

Program

TAC 47 (50.5) 20 (37.0)

<0.001

TCbHP 2 (2.2) 13 (24.1)
AT 11 (11.8) 8 (14.8)
TP 4 (4.3) 5 (9.3)
AC 8 (8.6) 1 (1.9)
TC 21 (22.6) 7 (13.0)

Pathological type

Catheter 80 (86.0) 45 (83.3)

0.728Leafet 6 (6.5) 3 (5.6)
Myeloid 4 (4.3) 2 (3.7)
Unknown 3 (3.2) 4 (7.4)

ER Feminine 32 (35.2) 39 (75.0) <0.001Positive 59 (64.8) 13 (25.0)

PR Feminine 51 (56.0) 46 (88.5) <0.001Positive 40 (44.0) 6 (11.5)

CerbB-2 Feminine 7 (7.6) 3 (5.6) 0.893Positive 85 (92.4) 51 (94.4)

Ki67 Feminine 20 (22.2) 3 (5.8) 0.010Positive 70 (77.8) 49 (94.2)
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reached PR (28 points), and the morphological changes were
more regular (30 points). Te fnal total score is 196. Te
probability of predicting the degree of pathological re-
mission as MHR was more than 90%, and the fnal MP grade
was 5, which belonged to the MHR group.

Figures 5(c) and 5(d) are the ultrasound images of a 63-
year-old female breast cancer patient before and after NAC,
ER negative (28 points), hyperechoic halo narrowing after
NAC (38 points), Alder grade 1 (66 points) points), the
diameter change reached PR (28 points), and the mor-
phological changes were not obvious (0 points). Te fnal
total score is 160. Judging from the experience of two senior
physicians, this patient has a low probability of achieving
MHR, but the model shows that the probability of predicting
MHR is more than 70%, and the fnal MP grade is 4, which
belongs to the MHR group. Tis shows that the model has
a good predictive ability.

4. Discussion

Imaging examinations can not only evaluate the efcacy,
pathological status, and prognosis of NAC but also help to
choose the most appropriate surgical approach. Current
research generally believes that magnetic resonance imaging
(MRI) is more objective than ultrasound (Ultrasound, US).
Te degree of remission and prognosis has advantages, but
due to the high cost, it has not been fully popularized in all
parts of the world, especially in developing countries

[16–19]. At the same time, some studies have shown that
breast cancer patients with negative ER before NAC and
high expression of Ki67 are more sensitive to chemotherapy
and beneft more after chemotherapy, and the two may be
sensitive factors for predicting the efcacy of chemotherapy
[24, 25]. Some studies have shown that many changes will
occur in the ultrasound images of patients who achieve pcR
after NAC, such as clinical efcacy assessment achieves PR
and CR, posterior echo attenuation disappears, internal echo
increases, and the hyperechoic halo around the tumor
narrows or disappears, and these are the relevant indicators
of tumor NAC efective [26]. Diferent breast cancer patients
have diferent sensitivities to neoadjuvant chemotherapy,
and ultrasound diagnosis is an important means to assess the
efcacy of neoadjuvant chemotherapy early and formulate
individualized treatment plans for patients. Many studies
have shown that the nomogram can be considered as an
efective tool for predicting the degree of pathological re-
mission after NAC [27, 28]. However, few studies have
developed models for predicting NAC efcacy based on
ultrasound and clinical indicators. In order to develop a new
method that is clinically applicable, cost-efective, and easy
to promote, this study combined commonly used two-
dimensional gray-scale ultrasound and color Doppler ul-
trasound with immunohistochemical and serum markers
commonly detected in clinics.

In this study, not only the ultrasound images before and
after NAC were included but also the changes in parameters

Table 2: Comparative analysis of diferences in ultrasound and serum indexes between the NMHR group and MHR group.

Index
Before therapy After treatment

NMHR (n� 93) MHR (n� 54) P NMHR (n� 93) MHR (n� 54) P

Form Rule 3 (3.2) 1 (1.9) 0.622 5 (5.4) 3 (5.8) 1.000Irregular 90 (96.8) 53 (98.1) 88 (94.6) 49 (94.2)

Direction Level 83 (89.2) 51 (94.4) 0.442 85 (91.4) 46 (92.0) 1.000Vertical bit 10 (10.8) 3 (5.6) 8 (8.6) 4 (8.0)

Strong echo halo None 59 (63.4) 18 (33.3) <0.001 66 (71.0) 52 (96.3) <0.001Have 34 (36.6) 36 (66.7) 27 (29.0) 2 (3.7)

Calcifcation None 43 (46.2) 23 (42.6) 0.668 22 (23.7) 16 (32.0) 0.281Have 50 (53.8) 31 (57.4) 71 (76.3) 34 (68.0)

Boundary Clear 53 (57.0) 22 (40.7) 0.057 22 (23.7) 7 (13.0) 0.116Not clear 40 (43.0) 32 (59.3) 71 (76.3) 47 (87.0)

Echo

Very low 16 (17.2) 5 (9.4)

0.412 0.662Low 74 (79.6) 44 (83.0) 69 (75.0) 35 (70.0)
Mix 2 (2.2) 3 (5.7) 3 (3.3) 1 (2.0)

Wait for an echo 1 (1.1) 1 (1.9) 20 (21.7) 14 (28.0)

Rear echo attenuation None 64 (68.8) 47 (87.0) 0.013 49 (52.7) 32 (59.3) 0.440Have 29 (31.2) 7 (13.0) 44 (47.3) 22 (40.7)

Adler

Level 0 0 (0.0) 2 (3.7)

<0.001

10 (10.8) 38 (70.4)

<0.001Level 1 13 (14.0) 29 (53.7) 27 (29.0) 14 (25.9)
Level 2 46 (49.5) 22 (40.7) 38 (40.9) 2 (3.7)
Level 3 34 (36.6) 1 (1.9) 18 (19.4) 0 (0.0)

Diameter 3.60 (2.40,5.05) 3.00 (2.08,4.80) 0.164 2.30 (1.40,4.00) 1.00 (0.70,1.80) <0.001
RI 0.74 (0.68,0.80) 0.62 (0.60,0.68) <0.001 0.68 (0.61,0.76) 0.00 (0.00,0.51) <0.001
CEA 2.71 (1.68,5.71) 2.34 (1.41,5.18) 0.436 2.60 (1.60,3.81) 1.85 (1.28,3.07) 0.003
CA125 16.23 (10.74,25.22) 14.11 (10.29,24.74) 0.674 14.41 (10.67,19.52) 13.97 (10.19,17.27) 0.210
CA153 18.49 (12.22,28.50) 12.70 (7.95,21.83) 0.003 20.47 (15.73,28.55) 15.65 (12.48,23.61) 0.006
CA50 5.40 (2.61,11.00) 4.95 (2.70,9.65) 0.629 7.35 (4.30,11.25) 6.80 (3.90,11.20) 0.591
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between them were analyzed. We believe that the changes in
ultrasound parameters during treatment can more directly
refect the degree of pathological remission of NAC.
Terefore, the pretreatment, posttreatment, changes in ul-
trasound image parameters, and commonly used clinical
indicators are all incorporated into the nomogram-based
prediction model for the degree of postoperative patho-
logical remission after NAC, and these indicators are easy to
obtain in daily clinical work. Tis means that ER(−),

hyperechoic halo narrowing/disappearance, post-NAC Adler
grade, PR+CR, andmorphological changes aremore likely to
achieve signifcant responses. Based on the risk factors (ER,
narrowing/disappearance of strong echo halo, Adler classi-
fcation after NAC, PR+CR, and morphological change rule)
selected from the results of multifactor logistic regression
analysis, a line chart model was established to predict the
remission degree. Evaluation of the model found that the
nomogram performed well, and the AUC/C index under the

Table 3: Comparative analysis of the changes in ultrasound parameters between the NMHR group and the MHR group.

Variables and their classifcation NMHR (n� 93) MHR (n� 54) P value

PR+CR None 48 (51.6) 6 (11.1) <0.001Have 45 (48.4) 48 (88.9)

Morphology rules None 64 (68.8) 9 (16.7) <0.001Have 29 (31.2) 45 (83.3)

Change of direction None 81 (87.1) 46 (85.2) 0.745Have 12 (12.9) 8 (14.8)

Hyperechoic halo narrows/disappears None 86 (92.5) 20 (37.0) <0.001Have 7 (7.5) 34 (63.0)

Increased number of calcifcations None 54 (58.1) 40 (74.1) 0.051Have 39 (41.9) 14 (25.9)

Clear boundaries None 65 (69.9) 29 (53.7) 0.049Have 28 (30.1) 25 (46.3)

Echo becomes high None 73 (78.5) 36 (66.7) 0.114Have 20 (21.5) 18 (33.3)

Rear echo change None 70 (75.3) 32 (59.3) 0.042Have 23 (24.7) 22 (40.7)

Decreased blood fow None 49 (52.7) 10 (18.5) <0.001Have 44 (47.3) 44 (81.5)

RI decreased None 38 (40.9) 1 (1.9) <0.001Have 55 (59.1) 53 (98.1)

Table 4: Multivariate analysis of the degree of pathological remission.

Variable
Multiactor

OR 95% CI P

ER (control: negative) 0.176 0.046∼0.663 0.010
Hyperechoic halo narrows/disappears (control: negative) 10.661 2.608∼43.568 0.001
NAC after Adler (control: grade 0) 0.129 0.050∼0.333 <0.001
PR+CR (control: negative) 5.846 1.077∼31.742 0.041
Morphology rules (control: negative) 6.223 1.696∼22.824 0.006
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Figure 2: Nomogram predicting postoperative remission rate.
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ROC curve reached a respectable 0.96. Sensitivity and
specifcity were 96.15% and 92.31%, both satisfactory. PPV
and NPV were 87.27% and 97.15%, respectively. Tis means
that the nomogram performed well. It is helpful to clarify the
independent risk factors of postoperative pathological re-
mission and to provide guidance for the choice of subsequent
treatment. Te predicted values obtained by the nomogram
are in good agreement with the actual observed values. Te
results showed that the mean absolute error of the agreement
between the predicted value and the true value was 0.026, and
the predicted risk was close to the actual risk, indicating that
the degree of agreement for predicting postoperative path-
ological remission was high.

Te emerging deep learning representation of ultra-
sound image features, based on pre-NAC and post-NAC
ultrasound images, uses deep learning radiomics to establish
a pCR prediction model, which can provide an efective
diagnostic reference for clinical routine pCR identifcation
[29, 30]. Studies have shown that during the whole process of
preoperative NAC treatment, ultrasound can dynamically
observe the changes in the tumor and evaluate the efec-
tiveness of NAC, so that the treatment plan can be changed
in time when it is inefective [31]. In the nomogram
established by some scholars, it was also found that diameter
reduction after NAC was an important dependent factor for
predicting pCR, and the characteristics of ultrasound images
and the changes between these characteristics were related to
pCR [32, 33]. Te change in diameter after the end of NAC,
i.e., whether PR and CR are achieved, is the most important
feature and also occupies an important position in the
nomogram constructed in our study.

Many studies have found that the Adler grade, RI, and PI
of the lesions after efective chemotherapy are lower than
those before chemotherapy [34]. Tere are also studies
showing that CR is a valid and valuable surrogate prognostic
factor for survival after treatment [35]. Te results of this
study show that the blood fow grade after NAC is an in-
dependent infuencing factor of MHR. Previous studies have
shown that two-dimensional gray-scale ultrasound features,
including hyperechoic halos, and tumor morphology are
closely related to the diagnosis of breast cancer. Te dis-
appearance of the hyperechoic halo in the nomogram and
the changes in tumor morphology were considered to be
associated with a signifcant degree of pathological
remission.

5. Limitations and Prospects

5.1. Limitations

(1) Since this is a single-center retrospective study, the
exact parameters regarding the machine setup were
not initially available. Furthermore, even for the
same type of machine, the settings of diferent in-
stitutions may difer to some extent; therefore, it is
difcult to assess whether the type of machine afects
the parameters of the image and the performance of
the prediction model.

(2) Tere is a lack of prospective validation to determine
the infuence of sonographers on the future per-
formance of the model.

(3) Te sonographer’s judgment is subject to a certain
degree. Te evaluation of various characteristics of
breast tumor ultrasonic images is qualitative and
depends on the doctor’s experience.

(4) Te sample size contained is insufcient, and the
obtained results may be biased. Moreover, the
follow-up time is short, which can be used as a ref-
erence for evaluating the short-term prognosis of
breast cancer NAC, and multisample and long-term
follow-up studies are still needed for long-term
prognosis. Furthermore, additions and improve-
ments are needed.

5.2. Prospects

(1) Tis study developed a predictive model for the
degree of pathological remission after NAC based on
pre- and post-NAC ultrasound images and the
changes in parameters between them and obtained
good performance in an internal validation cohort.
Tis model can provide an efective reference for
evaluating the degree of pathological remission after
routine surgery.

Table 5: ROC analysis of emission degree and prediction probability.

Variable AUC Standard error P value 95% CI PPV (%) NPV (%)
Prediction probability 0.996 0.059 <0.001 0.921 ∼ 0.989 87.72 97.15

AUC = 0.966
P < 0.001
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Figure 3: ROC analysis.
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(2) In the future, we hope to continue prospective
studies of ultrasound using and comparing the ef-
fectiveness of this method in various molecular
subtypes of breast cancer and larger sample sizes. At
the same time, more factors were introduced into the
nomogram, such as serum change percentage, lymph
node metastasis status, and hope to predict the re-
sponse before NAC administration, which will be the

focus of our future research. Tis operation needs to
be continuously accumulated and improved in
practical applications, which will also be the di-
rection of the next research work.

(3) In the future, we hope to continue prospective
studies with ultrasound to use and compare the
efectiveness of this method in various molecular
subtypes of breast cancer with larger sample sizes.
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6. Conclusions

In conclusion, this study developed a predictive model for
the degree of pathological remission after NAC based on US
images before and after NAC, and the nomogram estab-
lished by the combination of changes in ultrasound pa-
rameters and clinical indicators showed satisfactory
efciency, which means that the nomogram is a reliable
method to predict the degree of postoperative pathological
remission after NAC. It should be further explored in the
future to give full play to the combination of changes in
ultrasound image parameters and clinical indicators to
better show the predictive value of US in predicting post-
operative pathological remission [3].
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Objective. Clear cell renal cell carcinoma (ccRCC) is one of the common renal cell carcinomas (RCC) with a high risk of re-
currence. Considering that SLC9A1 is involved in various cellular physiological processes and probably mediates the course of
mTOR signaling in tumors, this study constructed a risk model for SLC9A1 combined with mTOR signaling in ccRCC, aiming at
better predicting the prognosis of patients. Methods. ccRCC expression matrices were downloaded from TCGA and ICGC
databases to compare the expression of SLC9A1 in TCGA, and qRT-PCR was adopted to validate the SLC9A1 expression in
diferent RCC cells and normal kidney cells. Te CIBERSORT and ESTIMATE algorithms were used to assess samples for
immunity. mTOR signaling-associated genes were downloaded from the KEGG website, and then the genes were adopted to
screen genes associated with SLC9A1 expression and mTOR signaling pathway colleagues, based on which univariate COX
regression and lasso regression Cox analyses were conducted to construct a ccRCC prognostic risk model. ROC curves and
nomograms were used to assess the validity of the models. Results. ccRCC tumor samples showed lower SLC9A1 expression than
normal samples, as also evidenced by qRT-PCR.Te SLC9A1 expression was highly correlated with tumor immunity. Totally, 564
key genes associated with both SLC9A1 expression and mTOR signaling were screened out, and the risk model consisting of 11
gene signatures was constructed in ccRCC based on the 564 genes. Since patients at a high risk had poorer survival outcomes, the
high-risk group presented poorer immunotherapy outcomes. Moreover, a higher clinical grade of patients suggested a higher risk
score. Te risk score can serve as one independent prognostic factor for the prognosis prediction of ccRCC patients. Conclusion.
An extremely promising prognostic indicator for ccRCC based on SLCA9A1 andmTOR signaling has been constructed to provide
reference for clinical treatment.

1. Introduction

Renal cell carcinoma (RCC) is one of themost common solid
tumors of the adult kidney [1]. Among its subtypes, clear cell
renal cell carcinoma (ccRCC) is the major one, with a high
rate of occurrence (accounting for 80–90% of all cases) and
relapse risk [2, 3]. Moreover, about 30% of patients

presented distant metastasis during initial diagnosis [4].
Although the treatment of ccRCC has achieved great
progress in recent years, especially immunotherapy, which
has been considered an efective therapeutic method for
advanced patients [5–7], cancer-specifc morbidity and
mortality continue to rise, and drug resistance persists
unfortunately worldwide [8, 9]. Te prognostic staging
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system currently does not provide adequate guidance for
treatment and cannot accurately predict clinical outcomes
[10, 11]. Accordingly, it is urgent to identify the efcient
prognostic model of ccRCC patients.

SLC9A1, also named Na/H exchanger 1 (NHE1) [12],
belongs to the NHE exchanger family [13]. As a membrane
protein, SLC9A1 exists in many mammalian cell types and is
involved in intracellular pH (pHi) regulation [14, 15]. Many
physiological processes are dependent on SLC9A1, including
cell proliferation, cell volume regulation, cellular immunity,
and cell death [16]. Furthermore, prior research has revealed
that potential downstream impacts of mTOR on cell growth,
survival, and tumorigenesis were under medication by
SLC9A1 [17]. Reportedly, in gastric cancer, hepatocellular
carcinoma (HCC), ovarian cancer, and gliomas, SLC9A1
favors tumorigenesis and predicts poor prognosis
[13, 18, 19]. In breast cancer, SLC9A1 acts as a facilitator in
tumor invasiveness [20]. Based on these fndings, SLC9A1
protein has emerged as an important marker for tumori-
genesis and prognosis, whereas the potential role of SLC9A1
in ccRCC has not been fully understood.

Tis study analyzed the SLC9A1 expression in ccRCC
and its association with immunity. A prognostic risk model
was established on the basis of SCL9A1 as well as mTOR
signaling in ccRCC, with the purpose of fnding possible
prognostic markers in ccRCC and providing a theoretical
basis for prognostic prediction of patients.

2. Materials and Methods

2.1. Cell Strains andReagents. Human RCC cell strains (786-
O, A498, OS-RC-2, ACHN, 769-P, Caki-1, and Caki-2) and
human normal renal cells (293T and HK-2) were provided
by American Type Culture Collection (ATCC, Rockville,
MD, and the States). A498, ACHN, and HK-2 were in-
cubated inMEM (Invitrogen, 11090-081). 786-O, 769-P, and
OS-RC-2 were subjected to incubation in RPMI-1640
(Gibco, 11875500BT). Caki-1 and Caki-2 were subjected to
incubation in Mccoy 5A (Gibco, 12330031). 293T was
cultured in DMEM (Gibco, 11995500BT).Temedium were
supplemented with 10% fetal bovine serum (Gibco, the
States). All the cell strains were maintained in an incubator
(37°C, 5% CO2).

2.2. RNA Isolation and Quantitative Real-Time PCR (qRT-
PCR). Total RNA was extracted from cells through TRIzol
reagent (Invitrogen). First-strand cDNAwas generated from
1 μg total RNA using Hifair® II 1st Strand cDNA Synthesis
Kit (11119ES60) fromYeasen (Shanghai, CN). qRT-PCRwas
conducted three times with a SYBR Green premix qPCR kit
(Accurate Biotechnology, Changsha, Hunan, CN,
AG11701). Sequences of primers for qRT-PCR were pro-
vided as follows: SLC9A: forward: 5′-ACCACGAGAACG
CTCGATTG-3′, reverse: 5′-ACGTGTGTGTAGTCGATG
CC-3′. GAPDH: forward: 5′- GGAGCGAGATCCCTCCAA
AAT-3′, reverse: 5′-GGCTGTTGTCATACTTCTCATGG-
3′. Te specifc experimental procedures were carried out in
strict accordance with the kit instructions. Gene expression

was measured and normalized relative to the GAPDH level
using the 2−ΔΔCt method.

2.3. Data Collection and Processing. Expression matrices for
526 ccRCC samples and 72 normal ones were acquired from
TeCancer GenomeAtlas (TCGA, https://portal.gdc.cancer.
gov/repository) database and fltered for samples with
missing clinical and survival information, with gene ex-
pression as the mean value. Data about mutation data and
copy number variation for ccRCC were also obtained from
TCGA. Additionally, ninety-one primary renal cell cancer
samples with complete prognostic and clinical information
in the International Cancer Genome Consortium (ICGC,
https://dcc.icgc.org/) were screened, and their expression
profles were downloaded.

2.4. Tumor Immunity. Te relative proportions of the 22
immune cell compositions in the expression matrix were
assessed using CIBERSORT, and p< 0.05 was used for
subsequent comparisons. In addition, immune scores in
tumor samples were calculated using the ESTIMATE al-
gorithm, outputting scores for immune, stromal, and
ESTIMATES.

2.5. Screening for SLC9A1andmTOR-RelatedGenes andGene
Sets. Te mTOR pathway-related genes were acquired from
the ofcial website of the Kyoto Encyclopedia of Genes and
Genomes (KEGG, https://www.genome.jp/kegg/), and
sample mTOR pathway scores were calculated using the
ssGSEA algorithm. Te correlation between gene sets and
genes was calculated, respectively, on the basis of the Hmisc
package rcorr function of the R language, and the correlated
gene sets were screened by |cor|> 0.25 and p< 0.001.

2.6. Enrichment Analysis. Gene ontology (GO) enrichment
analysis was conducted to explore the possible biological
functions of the relevant genes in biological processes,
cellular components, and molecular functions through the
cluster Profler package in R. A separate KEGG pathway
enrichment analysis was performed to search for potential
mechanisms.

2.7. Construction andValidation of the Prognostic RiskModel.
Prognostic signifcance of genes was calculated by single and
multifactor Cox analyses performed with the survival
package. p< 0.05 was the selection criterion for screening for
subsequent analyses. Candidate genes were subjected to
lasso regression analysis using the R package glmnet for
screening for prognosis-associated gene signatures, and
models were constructed by 10-fold cross-validation.

Risk score(patient) � 

n

i�1
expressiongene i × coff icientGene i. (1)

Te median risk score was defned with the R package
survminer, and samples were classifed according to the risk
level. Kaplan–Meier (K–M) curves were drawn through the
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R package time ROC to predict the prognostic classifcation
efciency of the risk score.

Module genes were extracted from published articles
[21–23], and the c-index of these models was calculated and
compared by the survcomp package.

2.8. Immunotherapy. Te online software Tumor Immune
Dysfunction and Exclusion (TIDE, https://tide.dfci.harvard.
edu/) is used to assess the potential clinical efects of samples
in immunotherapy.

2.9. Nomogram. Te rms package was used along with the
risk score and clinical characteristics to create nomogram
that quantify the prognostic risk and likelihood of survival
for patients at 1, 3, and 5 years. Moreover, usefulness of the
model is also assessed by performing a decision curve
analysis (DCA).

2.10. Statistical Analyses. With R software (3.6.1) and
GraphPad Prism (9), statistical analyses were conducted, and
the ggplot2 package was adopted for visualization. Te
correlation between gene expression and the pathway score
was determined through Spearman correlation analysis and
compared between the groups using the Wilcox test,
p< 0.05.

3. Results

3.1. SLC9A1 Is Lowly Expressed in ccRCC. Te overall
fowchart is shown in Supplementary Figure 1. Comparison
of TCGA expression profles revealed lowly expressed
SLC9A1 in ccRCC tumor tissues as compared with normal
paracancerous tissues (Figure 1(a)). Moreover, qRT-PCR
results revealed downregulated SLC9A1 in RCC cell strains
as compared with normal kidney cell strains (Figure 1(b)).
Next, we sorted out the mutation information of SLC9A1
through the SNV data of TCGA, and 2 samples had mu-
tations in SLC9A1 gene, while 524 samples did not have
mutations. As shown in Figure 1(c), gene expression in
samples without SLC9A1 mutation was higher than that of
the sample with SLC9A1 mutation, but there was no sig-
nifcant diference (maybe because of the too small sample
size). Ten, based on the CNV data of TCGA, the samples
were divided into amplifcation, deletion, and diploid groups
based on the CNV mutation of SLC9A1. We found that the
samples without CNV mutation in SLC9A1 were signif-
cantly higher (Figure 1(d)).

3.2. Relationship between the Expression of SLC9A1 and
Immunity. We found that some immune cells’ scores
expressed diferently depending on the SLC9A1’s expression

level (Figure 2(a)). Te immune scores of the tumor samples
showed that the highly expressed group of SLC9A1 had
higher immune infltration than the lowly expressed one
(Figure 2(b)). Correlation analysis revealed a positive as-
sociation between SLC9A1 expression and the immune
score (Figure 2(c)). On the other hand, we also examined the
correlation of the SLC9A1 expression with 22 types of
immune cell scores. Among them, there was a positive
correlation between SLC9A1 expression and score about
Macrophages M0, T regulatory cells (Tregs), etc., and
a negative correlation between it and cells, scores such as NK
cells activated (Figure 2(d)). We extracted the genes of
immune-related pathways, and the expression of some genes
(e.g., IL6 and MMP9) in immune-related pathways also
increased with the increased expression of SLC9A1
(Figure 2(e)).

3.3. Relationship between the SLC9A1 and mTOR Pathway
and Gene Set Enrichment Analysis. Te Spearman correla-
tion analysis revealed positive association of SLC9A1 ex-
pression with the mTOR signaling pathway scores of the
patients calculated by the ssGSEA method (Figure 3(a)).
Further analysis screened 1502 genes positively associated
with SLC9A1 expression, 1077 ones negatively associated
with it, 3061 genes with positive association with the mTOR
signaling pathway score, and 1611 ones with negative as-
sociation with the score. By overlapping analysis, 564 genes
were found to be associated with both SLC9A1 and mTOR
(Figure 3(b)). Meanwhile, enrichment analysis of 564 related
genes was conducted and the genes were found to be as-
sociated with actin flament-related biological processes,
phagocytosis, and the cGMP-PKG signaling pathway
(Figure 3(c)).

3.4. Construction andValidation of the ccRCCPrognostic Risk
Model. We identifed 39 genes mostly associated with the
prognosis in both TCGA and ICGA datasets of ccRCC
through univariate Cox regression analysis. Supplementary
Table 1 presents the results of the one-way Cox analysis for
the 564 genes in both TCGA and the ICGC datasets. Ten,
Lasso regression was performed to further reduce model
genes for model optimization.Te change trajectory of every
independent variable was analyzed as shown in Figures 4(a)
and 4(b). According to the results, with the gradual increase
of lambda, the number of independent variable coefcients
close to 0 also increased gradually. We used 10-fold cross-
validation for model establishment. Te confdence interval
under every lambda was analyzed, and when
lambda� 0.0344, the model is optimal. For this reason, we
chose eleven genes with lambda� 0.0344 as the target genes.
Te risk score was calculated using the following formula:

Risk score � 0.158∗COL6A2 − 0.218∗EXTL3 + 0.357∗HEATR6 − 0.276∗HSPG2 − 0.015∗MAML3

+ 0.389∗PPP1R18 + 0.316∗RCC2 + 0.173∗ SEMA7A + 0.022∗ SERPINH1 − 0.484∗TLN1 + 0.177∗TM9SF4.
(2)
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Te expression of these 11 genes in cancer and normal
paracancerous tissues is described in detail in Supplemen-
tary Figure 2. Next, we used TCGA dataset as the training
dataset and calculated the risk score of every sample through
the expression of 11 genes. Te ROC curve assisted in
evaluating the accuracy of OS estimates derived from the
prognostic risk model. Te classifcation efciency of

1–5 year prognosis prediction was analyzed, and the area
under curve (AUC) in 1–5 years reached above 0.7. In ad-
dition, the patients were assigned to a high- or low- risk
group in the light of the mean value of the risk score. Te
K–M survival curve showed a notably worse overall survival
(OS) in the high-risk group than that in the other group
(Figures 4(c) and 4(d)). Te same method was used to
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Figure 1: SLC9A1 is lowly expressed in ccRCC samples. (a) Expression of SLC9A1 in ccRCC cancer tissues and normal tissues in TCGA
database. (b) qRT-PCR analysis of SLC9A1 in RCC cells vs. human normal renal cells (293T and HK-2). (c) Comparison of SLC9A1
expression between samples with or without SNV mutation. (d) Comparison of SLC9A1 expression between samples with or without CNV
mutation. Note: SNV: single nucleotide variants; CNV: copy number variation. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001.
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validate the ICGC dataset, and the similar results were
observed (Figures 4(e) and 4(f)). Compared with the pre-
vious studies, our model is superior as shown in Supple-
mentary Figure 3.

3.5. Association of the Prognostic Risk Model with Clinico-
pathological Characteristics. Te diferences in risk scores
were compared for diferent clinicopathological character-
istics, as shown in Figures 5(a)–5(f). Te higher risk scores
were signifcantly associated with higher TNM, histological
grade, and advanced clinical staging.Te risk score increases
with T, M, and N stage, clinical stage, and
histopathological grade.

3.6. Relationship between the Prognostic Risk Model and
Immune Infltration. We calculated scores for TCGA cohort
samples at diferent risk levels in terms of 22 immune cells
(Figure 6(a)), and the higher risk group had higher immune
cell scores in some cells including CD8 Tcells. Additionally,
we also found higher immune scores in the high-risk group
(Figure 6(b)). Immune checkpoint inhibitor therapy has
gradually become the dominant method of systemic ccRCC
treatment options [6]. Hence, the immune checkpoint genes
in the high- and low-risk groups were analyzed, and the
result showed signifcant diferences in some immune
checkpoint genes (Figure 6(c)). Next, as shown in
Figure 6(d), the high-risk group got a higher TIDE score

than the low-risk group, which indicated that the high-risk
group was more likely to have immune escape and less likely
to beneft from immunotherapy.

3.7. Establishment and Validation of a Nomogram for Pre-
diction of OS. Univariate and multivariate Cox regression
analyses of the risk score and clinicopathological charac-
teristics revealed that M stage, age, and the risk score were
signifcant prognostic factors (Figures 7(a) and 7(b)). For
quantifying the risk assessment and survival probability of
ccRCC patients, we combined the risk score with other
clinicopathological features to establish a nomogram
(Figure 7(c)). Moreover, the results suggest that the risk
score had the strongest infuence on survival prediction.
Furthermore, the calibration curve was adopted to evaluate
the prediction accuracy of the model. It can be observed
that the predicted calibration curves of the three calibration
points at 1, 3, and 5 years were nearly coincident with the
standard curve, which suggests the good performance of
the nomogram (Figure 7(d)). From the results of decision
curve analysis (DCA), the risk score and nomogram pro-
vided notably higher benefts than the extreme curves. In
contrast to other clinicopathological characteristics, both
the nomogram and the risk score exhibited the most
powerful survival prediction ability (Figures 7(e) and 7(f )).
Tese data demonstrate that our prognostic risk model is
reliable and efective at predicting the prognosis of ccRCC
patients.
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Figure 2: Expression of SLC9A1 correlates with the immune score and promotes immune cell infltration. (a) Comparison of 22 types of
immune cell scores with high and low expression of SLC9A1. (b) Comparison of immune cell infltration between high and low expression
of SLC9A1. (c) Correlation between the expression of SLC9A1 and the immune score. (d) Correlation between the expression of SLC9A1
and 22 immune cell scores. (e) A heatmap of the correlation between SLC9A1 and the expression of immune-related pathway genes.
∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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4. Discussion

SLC9A1 expression and potential function are becoming
increasingly important in various cancers. For instance,
tumor tissues showed signifcantly higher SLC9A1 ex-
pression than normal tissues in HCC and revealed that
SLC9A1 expression can serve as a crucial prognostic factor
for immunotherapy against HCC [24]. By contrast, as
a novel prognostic biomarker in colorectal cancer, a lower
level of SLC9A1 mRNA expression was observed [25].
According to analysis of TCGA data and qRT-PCR analysis
in this study, SLC9A1 was downregulated in ccRCC. Prior
research has shown that cell proliferation, motility, sur-
vival, and metabolism are all under control by the mTOR

signaling pathway, and SLC9A1 may contribute to mTOR’s
tumor-promoting efects [17, 26, 27]. Te mTOR inhibitors
have been approved as a therapeutic option for metastatic
ccRCC [28]. Given this, this relationship between SLC9A1
and the mTOR pathway in ccRCC is worth investigating. By
analyzing genes related to prognosis step by step using Cox
regression, Lasso regression, K–M survival analysis, and
multi-cox regression, we constructed a prognosis gene
panel with eleven genes having a prognostic risk score
model (including COL6A2, EXTL3, HEATR6, HSPG2,
MAML3, PPP1R18, RCC2, SEMA7A, SERPINH1, TLN1,
and TM9SF4). Additionally, the prognostic risk model was
used to determine the risk scores for TCGA cohort and
ICGC cohort patients, and a high- and low-risk subgroup

R = 0.13, p = 0.0033
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Figure 3: Te expression of SLC9A1 combined with the expression of the mTOR signal pathway score. (a) Scatter plot of correlation
between the expression of SLC9A1 and the mTOR signaling pathway score. (b) Te Venn diagram shows 564 genes from both TCGA and
ICGC gene sets. (c) Go and KEGG enrichment analysis of the 564 genes from both TCGA and ICGC gene sets. Note: GO: gene ontology; BP:
biological process: CC: cellular components; MF: molecular functions.
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for ccRCC patients was identifed. Based on the K–M
survival analysis and ROC curve, the eleven genes exhibited
efective and reliable predictive abilities in the training set,
with a signifcantly shorter OS in high-risk patients than
that in low-risk ones. Furthermore, the association of the
prognostic risk model with clinicopathological character-
istics was verifed. Te results revealed association of the
risk score with clinicopathological characteristics. Te risk
Score and other clinicopathological characteristics were
combined to establish a nomogram, and the calibration
curve showed the efectiveness of the nomogram. We also
used DCA to evaluate the models, and the results showed
that the constructed prognostic risk model is strong and
generalizable.

In liver HCCs, SLC9A1 was strongly related with im-
mune cell infltration [24]. SLC9A1 blockade boosts im-
munity to glioma tumors by restoring oxidative stress in
myeloid cells [29]. During this research, we found that the
highly expressed group of SLC9A1 had higher immune
infltration in tumor samples and was closely associated with
multiple immune cell scores. Alternatively, SLC9A1 par-
ticipated in partial immune-related signaling pathways.
Immune cell infltrating tumors play an important prog-
nostic role [30]. Terefore, we explored the immune sig-
natures of the prognostic risk model. According to the
results, the high-risk group presented a stronger immune
cell infltration and got a higher TIDE score, which indicated
that the group was less likely to beneft from immuno-
therapy. Tese results may spark novel ideas for research,
diagnosis, and treatment of ccRCC.

Eleven genes, COL6A2, EXTL3, HEATR6, HSPG2,
MAML3, PPP1R18, RCC2, SEMA7A, SERPINH1, TLN1,
and TM9SF4, were selected as important prognostic
markers. COL6A2 is a member of the Collagen VI family
and widely expressed in various cancers and promotes
cancer progression. COL6A2 was also positively associated
with an increased risk in the model of the current study
(coefcient> 0). Zhong et al. found an up-regulation of
COL6A2, which could be a factor in poor prognosis in
metastatic ccRCC [31]. Exostosin-like glycosyltransferase 3
(EXTL3), belonging to the EXTfamily, takes a crucial part in
predicting the prognosis of various cancers and immune
defciencies [32], but its role in ccRCC remains unknown.
HEAT repeat containing 6 (HEATR6) is part of a highly
expressed breast cancer amplicon. Prior research indicated
that endometrial tumors from African-American women
express elevated levels of HEATR6 [33]. Tere are few re-
search studies of HEATR6 in ccRCC. A recent study showed
that heparan sulfate proteoglycan 2(HSPG2) participates in
tumor and stromal cell binding to the extracellular matrix of
ccRCC, and HSPG2 showed the strongest binding to FN1,
COL6, and COL12 in all cells [34]. Zhang et al. confrmed
that silencingMAML3 suppresses the proliferation of gastric
cancer by acting as a transcriptional coactivator in the Notch
signaling pathway [35]. Genetic alterations in MAML3 and
the Notch pathway in which it resides also appear to give
a better prognosis for patients with ccRCC [36]. As a bio-
marker for immunotherapy, protein phosphatase 1 regu-
latory subunit 18 (PPP1R18) serves as an oncogenic role in
ccRCC andwas signifcantly related with immunity [37].Te
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Figure 4: Construction of the prognostic risk model in TCGA cohort and ICGC cohort. (a) Te trajectory of each gene coefcient with
lambda. (b) 10-fold cross-validation was used to fnd the best values for the penalty parameter. (c) Te Kaplan–Meier (K–M) survival curve
showed patients in the high- and low-risk group in TCGA dataset. (d) Te prognostic signature’s ROC curve at 1, 2, 3, 4, and 5 years in
TCGA dataset. (e) Te K–M survival curve showed that patients in the high- and low-risk group in the ICGC dataset. (f ) Te prognostic
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literature confrmed that chromosome condensation 2
(RCC2) was an oncogene and took a crucial part in pro-
moting the proliferation of lung adenocarcinoma, esopha-
geal squamous cell carcinoma, and acute myeloid leukemia
[38]. Te GPI-anchored semaphorin 7A (SEMA7A) afects
infammatory diseases, and Wang et al. found association of
a high SEMA7A level with poor outcomes in ccRCC [39].
Serpin peptidase inhibitor clade H member 1 (SERPINH1),
also known asHSP47, belongs to the serpin superfamily. Te
level of SERPINH1 is signifcantly elevated at the four TNM

stages of ccRCC tissues and strongly correlates with un-
favorable clinical outcomes [40].Te talin 1 (TLN1) receptor
mediates cell adhesion, regulates integrin signaling, and
promotes metastasis in various cancers, such as prostate,
colon, and oral cancer [41]. According to Guazzi et al.,
transmembrane 9 superfamily 4 (TM9SF4) is a highly
specifc cancer biomarker that can be adopted to detect and
stage gastrointestinal cancers [42], and its role in ccRCC
remains unclear. Te results of the present study show that
these 11 genes are related with the prognosis of ccRCC
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Figure 7: Construction of a nomogram and verifcation that the risk score has a powerful survival prediction ability. Univariate (a) and
multivariate (b) Cox regression analysis of the risk score and clinicopathological characteristics in ccRCC patients. (c) Te development of
a nomogram based on the risk score and clinicopathological characteristics. (d) Te calibration curve of the nomogram in 1, 3, and 5 years.
(e) Decision curve of the nomogram. (f ) Compared with other clinicopathological features, the nomogram and the risk score exhibited the
more powerful capacity for survival prediction.

12 Journal of Oncology



patients, but the exact mechanism still involves a huge
network of gene regulation, which needs further exploration.

Because of the sample specifcity of ccRCC, the dataset
that could be selected for this study was small. Further
validation of how SLC9A1 mediates mTOR signaling in
ccRCC through ex vivo experimental data will be the di-
rection of our subsequent studies. We also expect more
scholars to explore this direction and more relevant datasets
in the future for early validation of this risk model in
a clinical cohort.

5. Conclusion

In summary, we have constructed a risk model consisting of
11 genes based on SLCA9A1 and mTOR signaling-related
genes in ccRCC, which has great potential for prognostic
assessment in ccRCC. Te model can guide clinical im-
munotherapy to accurately identify high-risk patients for
early clinical intervention.
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Long noncoding (lnc) RNAs regulate cancer progression. However, the importance of lncRNAs and how they are regulated in
colorectal cancer (CRC) are unclear. We aim to evaluate the function of lncRNA ADAMTS9-AS2 in CRC and its fundamental
mechanism. Levels of ADAMTS9-AS2, miR-27a-3p, and B-cell translocation gene 2 (BTG2) were measured by qPCR. Cell
viability was analyzed by CCK-8 and colony formation. Migration and invasion were tested by transwell assay. Te interactions
among ADAMTS9-AS2, miR-27a-3p, BTG2, and YTHDF2 were analyzed by luciferase test, immunoblotting, RNA pull-down, or
RNA immunoprecipitation (RIP). An animal model was adopted to assess ADAMTS9-AS2’s function. Overexpressing
ADAMTS9-AS2 inhibited cell migration, invasion, colony formation capacity, and proliferation in vitro. Te direct targeting of
miR-27a-3p by ADAMTS9-AS2 abrogated the latter’s efect in CRC cells. BTG2 was identifed a target of miR-27a-3p, and
silencing BTG2 weakened miR-27a-3p’s efect. Knocking down ADAMTS9-AS2 abolished sh-YTHDF2’s inhibitory efect on cell
proliferation and invasion. Finally, overexpressing ADAMTS9-AS2 restrained xenograft growth. M6A reader YTHDF2-mediated
degradation of ADAMTS9-AS2 promotes colon carcinogenesis via miR-27a-3p/BTG2 axis.

1. Introduction

Colorectal cancer (CRC) is a leading gastrointestinal sys-
tem’s malignancy, and a major reason of tumor-related
deaths globally due to increased morbidity. Given the un-
clear symptoms of early CRC, almost 60% are diagnosed at
the advanced stage [1]. A key reason for CRC death is tumor
recurrence and metastasis, which is closely linked to mi-
gration [2]. Hence, it is critical to better understand CRC’s
progression and metastasis.

Long noncoding RNAs (lncRNAs) regulate gene ex-
pression through various mechanisms [3]. Several lncRNAs
have been identifed in recent years that regulate tumor
progression. A study reported that lncRNA HOTAIRM1

promoted thyroid cancer cells’ growth and invasiveness [4].
Furthermore, data showed that the lncRNA FGD5-AS1
promoted chemoresistance of CRC cells [5]. ADAMTS9 is
a tumor suppressor, and its antisense RNA 2 (ADAMTS9-
AS2) transcript is a lncRNA that may impede tumor pro-
gression and metastasis [6]. Wang et al. reported that
ADAMTS9-AS2 suppressed gastric tumor cell growth via
regulating the expression of SPOP [7]. However,
ADAMTS9-AS2’s function in CRC is elusive.

N6-methyladenosine (m6A) is a common mRNAs
modifcation [8]. m6A readers, such as YTHDF2, recognize
m6A-containing mRNAs to regulate their stability [9].Tere
is evidence that aberrant m6A modifcation afects tumor-
igenesis. For instance, reduced m6A methylation in EC cells
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suppressed PHLPP2, and increased the positive regulator
mTORC2 [10].

MicroRNAs (miRNAs) modulate gene expression
through interaction with mRNA’s 3′UTR [11]. Data dem-
onstrated that miR-27a-3p promotes CRC cell proliferation
and motility [12]. It is also a biomarker for various malig-
nancies and inhibits the tumor suppressor BTG2 [13].
LncRNAs can bind miRNAs as sponges and relieve the
inhibitory efect of the latter on target mRNAs. Kong et al.
reported that the lncRNA MCF2L-AS1 enhanced CRC cells’
EMT via regulating miR-105-5p/RAB22A [14].

Among malignant tumors, the incidence and mortality
of lung cancer have always been among the top in the world.
Lung cancer is histopathologically divided into non-
small-cell lung cancer (NSCLC) and small cell lung cancer.
About 85% of lung cancer patients have non-small-cell lung
cancer. Advances in the diagnosis and treatment have helped
to improve the survival of cancer patients; However, the 5-
year survival rate for NSCLC was 17.7. In addition, about
85% of patients with NSCLC are diagnosed at advanced
stages. Terefore, further study of the pathogenesis of
NSCLC, identifcation of new therapeutic targets, and
prognostic biomarkers are the key to improve patient
survival.

In this study, through bioinformatics analysis, the au-
thors frst found that RMRP may play an important role in
NSCLC. Further studies showed that m6A modifcation
improved the stability of methylated RMRP transcripts by
reducing the rate of RNA degradation. In addition, RMRP
can promote cell proliferation, migration, and invasion.
Mechanistically, RMRP promotes TGFBR1 transcription by
recruiting YBX1 to the TGFBR1 promoter. Here, we in-
vestigated the function of ADAMTS9-AS2 in CRC pro-
gression, and its regulatory infuence of m6A modifcation.
Data demonstrated that the novel ADAMTS9-AS2/miR-
27a-3p/BTG2 ceRNA regulatory network might regulate
CRC progression.

2. Materials and Methods

2.1. Patient Samples. Seventy-eight paired tumor and ad-
jacent colorectal tissues from CRC patients who underwent
surgical resection between February, 2016, and February,
2019, at the 1st People’s Hospital of Foshan were included.
Patients underwent no radio- or chemotherapy. Informed
consents were received. Tis research has the approval from
Ethics Committee of Nanfang Hospital.

2.2. Cell Culture and Transfection. Human CRC cells (LoVo,
RKO, SW480, HCT116, and HT-29) and normal colon
mucosa cells (NCM460) purchased from ATCC were kept in
RPMI-1640 with 10% FBS (Gibco) at 37°C. Te pcDNA3.1-
ADAMTS9-AS2, pcDNA3.1-FTO and pcDNA3.1-YTHDF2
plasmids, the small interfering RNAs (siRNAs) specifc for
BTG2 (si-BTG2) and ADAMTS9-AS2 (si-ADAMTS9-AS2),
and short hairpin (sh) RNA for YTHDF2 (sh-YTHDF2)
were obtained from GenePharma (Suzhou). Hsa-miR-
27a-3p mimics/inhibitors/negative control (NC) were

obtained from GenePharma. Lipo2000 was adopted for
transfections.

2.3. RT-qPCR. RNAs were isolated using TRIzol (Invi-
trogen), and cDNA was synthesized with a kit (Takara).
qPCR was done with SYBR-Green Mix (ABI). Te expres-
sion change was calculated by 2−ΔΔCq [15]. Primers are
shown as follows:

2.4. Methylated RNA Immunoprecipitation (MeRIP) Assay.
Methylated RNA immunoprecipitation (MeRIP) is based on
the principle of specifc antibody specifc binding to
methylated modifed bases and on the basis of RNA im-
munoprecipitation enrichment of methylated modifed
fragments, and then through high-throughput sequencing,
the results were obtained by studying the RNA regions
where methylation occurred on a transcriptome scale. m6A
abundance was tested by EpiQuik. m6A RNA methylation
quantitative kit (Biovision) was used for the m6A abundance
test for the EpiQuik assay. In brief, 250 ng RNA was probed
with m6A antibodies. Te immunoprecipitation was
reverse-transcribed to cDNA, then m6A-lncRNA levels were
measured by qRT-PCR.

2.5. Immunoblotting. Proteins were isolated by RIPA bufer
(Termo), resolved by 8% SDS-PAGE, and blotted to PVDF
membranes (Termo). After blocking, membranes were
probed with anti-YTHDF2 (1 : 3,000; ab220163), anti-BTG2
(1 : 2,000; ab244260), and anti-GAPDH (1 : 5000; ab8245)
antibodies at 4°C. After washing, blots were probed with the
2nd antibody.

2.6. CCK-8 Analysis. Cells were cultured for 24, 48, 72, and
96 h; then, 10 µl CCK-8 was provided and kept for 2 h.
OD470 was recorded with a plate reader.

2.7. Transwell Assay. Transwell inserts (8m, Costar, Corn-
ing) with (invasion assay) or without (migration assay)
Matrigel (Matrigel Basement Membrane Matrix, Corning)
coating were placed in 24-well plates. Cells were cultured in
top chambers without serum at a concentration of 0.1
million cells/well (invasion) or 0.5×105 cells/well (migra-
tion), and bottom chambers were loaded with RPMI-1640
(10% FBS). Two days later, cells on the top surface were
discarded, while cells traveled through membranes were
fxed and counted.

2.8. Colony Formation Assay. Cells were cultured
(2×103 cells/well) for 8 days. Colonies were fxed by 3.8%
PFA, stained with hematoxylin, air-dried, and counted.

2.9. Luciferase Reporter Assay. Te potential miRNAs that
bind to ADAMTS9-AS2 were predicted using DIANA-
LncBase Predicted v2, and its downstream target of the
candidate miRNAs was predicted by TargetScan. Te
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pmirGLO-ADAMTS9-AS2-wild-type (WT) or pmirGLO-
ADAMTS9-AS2-mutant (MUT) reporter plasmids (Sangon
Bio) and hsa-miR-27a-3p mimic/inhibitor/NC were
cotransfected to CRC cells. Luciferase activity was detected
2 days later (Promega). Cells were cotransfected withWT- or
MUT-pmirGLO-BTG2 and miR-27a-3p mimic/inhibitor/
NC.

2.10. RNA Immunoprecipitation (RIP)Assay. EZ-Magna RIP
kit was used. Cells were broken using RIPA bufer and
probed with anti-YTHDF2, anti-IgG or anti-Ago2 anti-
bodies, or NC IgG (Abcam, USA). Precipitated RNA was
measured by qPCR.

2.11. RNAPull-DownAssay. Lysates of SW480 and HCT116
were incubated with biotin-labeled ADAMTS9-AS2 probe
(RiboBio) and streptavidin-coupled magnetic beads. Pro-
teins in the complex pulled down by ADAMTS9-AS2 were
analyzed by immunoblotting.

2.12. Xenograft Growth Assay. SW480-ADAMTS9-AS2 or
control cells were seeded to female BALB/c nude mice.
Tumors were monitored every week. Four weeks later, tu-
mors were collected. Expressions of ADAMTS9-AS2, miR-
27a-3p, and BTG2 were detected.

2.13. Data Analysis. SPSS 22.0 was adopted for analyzing
data (mean± SD). Comparisons between two or more
groups were done by t-test or ANOVA. P< 0.05 was des-
ignated as signifcant.

3. Results

3.1. ADAMTS9-AS2 Is Decreased in CRC. Levels of
ADAMTS9-AS2 in the CRC and normal colon tissues were
analyzed using microarray data downloaded from TCGA
database. Te heatmap revealed that ADAMTS9-AS2 was
drastically downregulated in CRC tissues (Figure 1(a)). In
the GEPIA datasets as well, ADAMTS9-AS2 in CRC was
considerably decreased than normal colon tissues
(Figure 1(b)). Furthermore, patients with lower ADAMTS9-
AS2 showed a shorter overall survival (OS) (Figure 1(c)). To
verify the in silico data, we analyzed 78 pairs of CRC and
adjacent tissues, CRC cells, and colon epithelial cells.
ADAMTS9-AS2 was sharply suppressed in the CRC tissue
(Figure 1(d)) and cell (Figure 1(e)). Tus, ADAMTS9-AS2 is
downregulated in CRC and portends a poor prognosis.

3.2. Te Efects of ADAMTS9-AS2 Are Partially Returned
When TargetedmiR-27a-3p Is Highly Expressed on CRCCells.
Bioinformatics analysis suggested that ADAMTS9-AS2
binds to miR-27a-3p via complementary base pairing
(Figure 2(a)), which was proved by the luciferase assay. Te
luciferase activity was reduced in HCT116/SW480
cotransfected with miR-27a-3p mimic and pmirGLO-
ADAMTS9-AS2-WT, whereas ADAMTS9-AS2-MUT
showed no efect. In contrast, the luciferase activity was

increased in cells cotransfected with miR-27a-3p inhibitor
and pmirGLO-ADAMTS9-AS2-WT but not ADAMTS9-
AS2-MUT (Figure 2(b)). Te RIP assay further showed
signifcantly higher enrichment of ADAMTS9-AS2 in miR-
27a-3p mimic (Figures 2(c) and 2(d)). miR-27a-3p was
upregulated in CRC tissues (Figure 2(e)). pcDNA3.1-
ADAMTS9-AS2 transfection strikingly downregulated miR-
27a-3p, which was partially reversed by miR-27a-3p
(Figures 2(f ) and 2(g)). CCK-8 and colony formation proved
that pcDNA3.1-ADAMTS9-AS2-inhibited cell growth was
diminished after miR-27a-3p (Figures 2(h) and 2(i)). Te
inhibitory efect on cell migration (Figure 2(j)) and invasion
(Figure 2(k)) caused by pcDNA3.1-ADAMTS9-AS2 were
alleviated by miR-27a-3p.

3.3. Knockdown of BTG2 Relieved miR-27a-3p-Silencing-
Induced Efects on CRC Cells. We next identifed BTG2 as
a miR-27a-3p’s target by analyzing 3′-UTR in the Starbase
v3.0 database (Figure 3(a)). Transfecting miR-27a-3p and
BTG2 3′ UTR-WT suppressed luciferase activity, while no
diference was detected in BTG2 3′ UTR-MUT treatment.
Transfecting miR-27a-3p inhibitor and BTG2-WT also in-
creased the luciferase activity, whereas no diference was
found in BTG2 3′ UTR-MUT treatment (Figure 3(b)). Te
RIP assay revealed greater enrichment of BTG2 in miR-
27a-3p mimic (Figures 3(c) and 3(d)). In addition, BTG2
protein levels were downregulated in CRC tissues
(Figure 3(e)). We then overexpressed BTG2 in cells trans-
fected miR-27a-3p, and demonstrated BTG2 reversed miR-
27a-3p’s efects in cell growth (Figure 3(f)) and colony-
forming capacity (Figure 3(g)). Furthermore, miR-27a-3p
enhanced the migration (Figure 3(h)) and invasion
(Figure 3(h)) and invasion of the CRC cells (Figure 3(i)),
which was abrogated by BTG2. Furthermore, overexpressing
ADAMTS9-AS2 upregulated BTG2 mRNA in HCT116 and
SW480 cells, which was counteracted by miR-27a-3p mimic
and siRNA-mediated BTG2 knockdown. Consistent with
this, inhibiting miR-27a-3p also upregulated BTG2 mRNA
in the CRC cell lines and was neutralized by si-BTG2
(Figure 3(j)). Taken together, ADAMTS9-AS2 may regu-
late BTG2 levels in CRC cells through an indirect interaction
with miR-27a-3p.

3.4. YTHDF2 Enhanced the Degradation of m6A-ADAMTS9-
AS2 in CRC Cells. Te m6A demethylase FTO was overex-
pressed in the CRC cell lines. We therefore hypothesized that
FTO may afect ADAMTS9-AS2 expression levels in CRC
cells by altering its methylation status. As illustrated in
Figure 4(a), overexpressing FTO in the SW480 and
HCT116 cells signifcantly reduced m6A-ADAMTS9-AS2
levels. Furthermore, the hypomethylation of ADAMTS9-AS2
was related to a signifcant increase in its expression levels
(Figure 4(b)), indicating that ADAMTS9-AS2 is regulated by
m6A modifcation. In comparison to IgG immunoprecipi-
tation, a RIP experiment demonstrated a higher concentra-
tion of ADAMTS9-AS2 in YTHDF2 immunoprecipitation
(Figures 4(c) and 4(d)). RNA pull-down indicated that the
complex pulled down by ADAMTS9-AS2 contained an
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Figure 1: ADAMTS9-AS2 was decreased in CRC. (a) Heatmap of the lncRNA expression. (b) ADAMTS9-AS2 levels from TCGA datasets.
(c) Kaplan–Meier analysis of ADAMTS9-AS2 levels and OS. (d) Te level of ADAMTS9-AS2. (e) ADAMTS9-AS2 levels in CRC cells.
∗P < 0.05 and ∗∗P < 0.01.
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Table 1: Oligonucleotide sequences.

Name Sequence (5′-3′)

ADAMTS9-AS2 F: TCTGTTGCCCATTTCCTACC
R: CCCTTCCATCCTGTCTACTCTA

miR-27a-3p F: CTAATCGTGTTCACAGTGGCTAAG
R: TATGGTTTTGACGACTGTGTGAT

BTG2 F: GCGCGGGCTCTTCCTCTTTG
R: AAGGAAGGCTGGAAGAGTGC

GAPDH F: TGTTCGTCATGGGTGTGAAC
R: ATGGCATGGACTGTGGTCAT

U6 F: GCATCTGCAACACTTATCCTATAAT
R: CGATTCGCGCATATGCTTGTGAT

ADAMTS9-AS2-WT 5′ ...CUGGGGG...UGGUUAUGCCUGUGAAA...3′

ADAMTS9-AS2-MUT 5′ ...CGCCUUG...AUCGGUUGCGACACUU.........3′

miR-27a-3p 3′ ...CGCCUUGAAUCGGU.........GACACUU.........5′
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Figure 2: ADAMTS9-AS2-targeted miR-27a-3p returned the efects of ADAMTS9-AS2 on CRC cells. (a) miRNA target of ADAMTS9-
AS2. (b–d) ADAMTS9-AS2 interaction with miR-27a-3p. (e) miR-27a-3p in CRC tissues. (f, g) Levels of ADAMTS9-AS2 and miR-27a-
3p. (h, i) CCK-8 and clone formation. (j, k) Cell migration and invasion. ∗P < 0.05 and ∗∗P < 0.01.
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abundance of YTHDF2 protein (Figures 4(e) and 4(f)). Te
results revealed that YTHDF2 recognized ADAMTS9-AS2.
YTHDF2 knockdown efectively reduced ADAMTS9-AS2
degradation (Figures 4(g) and 4(h)).

3.5. YTHDF2 Silencing Inhibited CRC Cells by Preventing the
Degradation of Methylated ADAMTS9-AS2. To assess
YTHDF2’s function in CRC, we silenced it in cells over-
expressing ADAMTS9-AS2. sh-YTHDF2’s promotive efect
on ADAMTS9-AS2 level was inhibited by si-ADAMTS9-
AS2 (Figure 5(a)). YTHDF2 knockdown inhibited cell
growth (Figure 5(b)), colony formation (Figure 5(c)), and
invasion (Figure 5(d)), and the malignant phenotype was
rescued by ADAMTS9-AS2 silencing.

3.6. ADAMTS9-AS2 Prevents Tumor Growth. Te suppres-
sive efects of ADAMTS9-AS2 on CRC growth was also
evaluated by establishing xenografts. Te CRC cells over-
expressing ADAMTS9-AS2 showed less tumor volume
(Figures 6(a) and 6(b)) and weight (Figure 6(c)) compared to
controls, indicating that ADAMTS9-AS2 suppressed tumor
growth. Te ADAMTS9-AS2 levels were reduced in the
tumor tissues (Figure 6(d)). Moreover, the overexpression of
ADAMTS9-AS2 upregulated BTG2 (Figure 6(e)) and
downregulated miR-27a-3p in CRC (Figure 6(f)).

4. Discussion

Increasing evidence shows that aberrant lncRNAs are linked
to the development of CRC. For example, ENO1-IT

modulates KAT7 histone acetyltransferase and consequently
altered CRC biological function [16]. Furthermore,
LINC00265 is upregulated in CRC, and its knockdown in
mice signifcantly reduced colorectal carcinogenesis [17]. We
found that ADAMTS9-AS2 was decreased in the CRC
samples in TGCA database, and associated with the worse
survival rate. ADAMTS9-AS2 (Ensembl, ENSG00000241684)
has been linked to several tumor-associated genes in multiple
cancers. For example, ADAMTS9-AS2 was increased in
TMZ-resistant glioblastoma cells to enhance chemoresistance
by upregulating the FUS/MDM2 axis [18]. We also dem-
onstrated that ADAMTS9-AS2 decreased in CRC. Decreased
ADAMTS9-AS2 was linked to poor diferentiation, lymph
nodemetastases, and advanced TNM staging. Overexpressing
ADAMTS9-AS2 in CRC cells inhibited their malignant po-
tential in vitro. Tus, ADAMTS9-AS2 is a potential marker
for the CRC prognosis and may function as a tumor
suppressor.

Te hypothesis that ceRNA (competitive endogenous
RNA), proposed by Pier Paolo Pandolf’s group at Harvard
Medical School in 2011, is amode of regulating gene expression.
Transcripts that sharemiRNA-binding sites compete to bind the
same miRNA, thereby regulating each other’s expression levels.
Based on ceRNA hypothesis, lncRNAs regulate mRNAs post-
transcriptionally by competitively binding to miRNAs con-
taining response regions [19, 20]. For instance, lncRNA UCA1
sponges miR-143 and upregulates MYO6, thereby promoting
CRC [21]. Likewise, UICLM promotes CRC metastasis by
upregulating ZEB2 via its sponging action on miRNA-215 [22].
A previous study showed that miR-27a-3p was upregulated in
CRC, and silencing it decreased cell growth [12].
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BTG2 was proved as a miR-27a-3p’s target by the lucif-
erase assay and RIP assay. BTG2 regulates cell division, DNA
repair, transcriptional control, and mRNA stability [23].

BTG2 was decreased in diferent cancers. For instance, BTG2
decrease promoted breast cancer’s metastasis [24]. Likewise,
miR-6875-3p afects cancer cells’ invasiveness via BTG2 [25].
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Figure 5: YTHDF2 knockdown suppressed growth and invasion of CRC cells by reducing m6A-modifed ADAMTS9-AS2 degradation.
(a) Levels of ADAMTS9-AS2. (b, c) Cell proliferation and colony formation assay. (d) Cell invasion assay. ∗P < 0.05 and ∗∗P < 0.01.
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We revealed that BTG2 was decreased in CRC, and its si-
lencing abrogated miR-27a-3p’s pro-oncogenic efects. Given
the abundance of m6A modifcation in eukaryotic mRNAs, it
has received considerable attention as a regulatory factor in
cancer and other pathological and developmental states.

Studies demonstrated that m6A binding protein YTHDF2
destabilized EGFR via binding to m6A site, and inhibited
hepatocellular carcinoma cells [26]. YTHDF2 also regulates
the stability of lncRNAs and mRNA during cancer devel-
opment. Another study revealed that YTHDF2 inhibited
lncRNA GAS5 in cervical cancer cells by promoting its
degradation [27]. Consistent with this, hypermethylation of
ADAMTS9-AS2 increased its degradation through the re-
cruitment of YTHDF2. Tese fndings show that aberrant
m6A modifcation of ADAMTS9-AS2 is reliant on YTHDF2.
Knocking down YTHDF2 inhibited CRC cell proliferation
and invasion by restoring ADAMTS9-AS2 expression, im-
plying that YTHDF2 may have an oncogenic role in CRC.

5. Conclusions

Our data indicated miR-27a-3p as a direct target of
ADAMTS9-AS2 for the frst time. Overexpression of
ADAMTS9-AS2 downregulated miR-27a-3p. miR-27a-3p
was increased in HT-29/SW480, and its overexpression
ameliorated its inhibitory efects of elevated ADAMTS9-
AS2. Te results indicated that ADAMTS9-AS2 may inhibit
CRC through regulating miR-27a-3p. In summary,
ADAMTS9-AS2 is downregulated in CRC, and its over-
expression inhibited growth and invasion of CRC cells.
Mechanistically, ADAMTS9-AS2 functions as a ceRNA
against miR-27a-3p, which upregulates BTG2. Furthermore,
aberrant m6A modifcation was associated with the de-
creased levels of ADAMTS9-AS2 in CRC. Te YTHDF2/
ADAMTS9-AS2/miR-27a-3p/BTG2 modulatory network is
a novel pathway participated in CRC development, and
ADAMTS9-AS2 may function as a novel therapeutic target.
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Long noncoding RNAs (lncRNAs) have been reported to be involved in the development and progression of various human
malignancies. However, the role of lncRNA CASC2 in hepatocellular carcinoma (HCC) remains mostly unknown.Te aim of this
study was to investigate the potential roles and underlying mechanisms of CASC2 in HCC progression. We found that CASC2
expressions were downregulated in HCC tissue samples and cell lines.Te clinical assays revealed that lower levels of CASC2 were
associated with the TNM stage, lymph node metastasis, and a poorer prognosis specifc to HCC patients. Overexpression of
CASC2 inhibited the proliferating, migratory, and invasion capacity of HCC cells. Bioinformatics analysis and the luciferase
reporter assay revealed that CASC2 worked as a molecular sponge for miR-155. And CASC2 could upregulate SOCS1 expression
by inhibiting miR-155 expression in HCC cells. Furthermore, SOCS1 inhibition partially inverses the suppression efect of cell
proliferation, migration, and invasion regulated by CASC2 in Huh7 and HepG2 cells. Taken together, our fndings identifed
CASC2 as a tumor suppressor to inhibit HCC development by regulating the miR-155/SOCS1 axis, and CASC2 might be
a potential therapeutic target of HCC for future clinical treatment.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most prev-
alent malignant tumors with a high morbidity and mortality
rate worldwide. Due to the lack of diagnostic biomarkers and
other methods for detecting HCC in the early stages, many
HCC patients are diagnosed at an advanced stage, and some
efective interventions like surgery and liver transplantation
are not suitable to conduct [1]. Although there are more and
more advances in therapy for treating HCC, such as surgical
operation, radiotherapy, and molecularly targeted therapy,
the 5-year survival rate of HCC patients still remains dismal
[2]. Tumor metastasis and recurrence after surgery are the
main reasons which lead to the poor prognosis [3]. Hence, it
is urgent to investigate the underlying molecular mecha-
nisms of HCC and explore novel therapeutic targets to
improve the diagnosis and prognosis of HCC patients.

Long noncoding RNAs (lncRNAs) are a class of non-
coding RNAs longer than 200 nucleotides and have no

protein-coding capacity. In recent years, accumulating
studies have shown lncRNAs play an essential role in a broad
range of cellular mechanisms like transcriptional activation,
intranuclear trafcking, and epigenetic modifcations [4]. It
has been reported that lncRNAs are diferently expressed in
many cancers and play essential roles in tumorigenesis by
regulating oncogenes or tumor suppressor genes, which
prompts growing interest in the potential clinical application
as therapeutic targets of tumors. Some well-studied lncRNAs
such as HOX Transcript Antisense RNA (HOTAIR), X-
Inactive Specifc Transcript (XIST), and Nuclear Enriched
Abundant Transcript1 (NEAT1) [5–7] demonstrated to
participate in tumor progression, including regulating cell
proliferation, cell cycle, apoptosis, and metastasis.

LncRNA Cancer Susceptibility Candidate 2 (CASC2)
was frst found in endometrial cancer in 2004 and could
inhibit endometrial cancer carcinogenesis, which serves as
a tumor suppressor [8]. Recent studies indicate that CASC2
is expressed at low in many human malignancies including
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cervical cancer, pancreatic cancer, and thyroid cancer
[9–11]. In gastric cancer, CASC2 acts as a tumor suppressor,
and overexpression of CASC2 could inhibit proliferation,
colony formation, migration, and invasion of cancer cells
[12]. Moreover, CASC2 was found downregulated in ma-
lignant melanoma, and low CASC2 expression was corre-
lated with tumor size, TNM stage, and poor overall and
disease-free survival (DFS) of malignant melanoma patients
[13]. CASC2 also acts as a ceRNA for miR-18a-regulated
STAT3 expression and inhibits the proliferative and met-
astatic capability of colorectal cancer cells [14]. And it is
reported that CASC2 may afect cell growth and apoptosis of
HCC cells through diferent mechanisms [15]. However, the
involvement of CASC2 in the regulation of HCC patho-
genesis remains largely unknown.

In this study, we confrmed the low expression of CASC2
in HCC tissues and cell lines and explored the regulatory
efect of CASC2 on cell proliferation, migration, and in-
vasion. Furthermore, we revealed that CASC2 could serve as
the miR-155 sponge and promote the expression of sup-
pressor of cytokine signaling 1 (SOCS1). Our fndings
suggest that CASC2might inhibit the progression of HCC by
regulating the miR-155/SOCS1 axis.

2. Materials and Methods

2.1.Clinical Specimens. 42 pairs of HCC tissues and adjacent
normal tissues were obtained from Zhongnan Hospital of
Wuhan University between May 2018 and October 2019. All
samples were immediately frozen in liquid nitrogen after
surgery and stored at −80°C. Te specimens were confrmed
by two senior independent pathologists, and tumor staging
was performed following the tumor node metastasis (TNM)
staging method of UICC and AJCC 2008. Subjects were
excluded if they exhibited any evidence of other malig-
nancies or any other type of liver disease. And all HCC
patients were free from human immunodefciency virus
(HIV), hepatitis virus and any other viral infections. All
patients did not receive radiotherapy, chemotherapy, or any
other antitumor therapy before surgery. Tis study was
approved by the ethics committee of Zhongnan Hospital of
the Wuhan University. Written informed consents were
obtained from all participants before the study.

2.2. Cell Culture. Human HCC cell lines (HepG2, Huh7,
SMMC-7721, and QGY-7701) and the normal liver cell line
LO2 were obtained from the American Type Culture Col-
lection (ATCC,Manassas, VA, USA).Te cells were cultured
using Roswell Park Memorial Institute 1640 (RPMI 1640)
medium (Gibco, Rockville, MD, USA) supplemented with
10% fetal bovine serum (Gibco, Rockville, MD, USA), 100U/
ml penicillin, and 100U/ml streptomycin. All cells were in
a humidifed incubator at 37°C and 5% CO2.

2.3. Cell Transfection. MiR-155 mimics and miR-con were
obtained from RiboBio (Guangzhou, China), and 100 pmol
miR-155 mimics were transfected into each well, re-
spectively. Plasmids with the pcDNA3.1 vector (Invitrogen,

Carlsbad, CA, USA) containing CASC2 and SOCS1 over-
expression sequences were constructed, and 2 μg plasmid
were transfected into each well. Transfection of HCC cells
was conducted using Lipofectamine 3000 (Termo Fisher
Scientifc, Waltham, MA, USA) following the manufac-
turer’s instructions. Cells were harvested after 48 h trans-
fection for subsequent experiments.

2.4. qRT-PCR Assay. Total RNA was extracted from HCC
tissues, adjacent tissues, and HCC cells using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA). Ten the reverse tran-
scription kit (Invitrogen, Carlsbad, CA, USA) was used to
reverse-transcribe the RNA into cDNA.TeQRT-PCR assay
was performed using the SYBR Green Real-Time Kit
(TaKaRa, Tokyo, Japan) and real-time PCR system (Applied
Biosystems 7500, Foster City, CA, USA) according to the
manufacturer’s guidelines. U6 was used to normalize the
relative expression of CASC2 and miR-155, and GAPDH
was used to normalize the relative expression of SOCS1. Te
relative fold changes of target genes were evaluated by the
2−∆∆Ct method. lncRNA CASC2 forward, 5′-GCT CGG
ACG AAG ATT GGA GA-3′ and reverse, 5′-ATA AGG
TCAGTAATGAGAACTGC-3’; U6 forward, 5′-CTC CTT
GTA AGC ATT GAG T-3′ and reverse, 5′-AAC AGG CAG
TTTACGCGCTC-3’; GAPDH forward, 5′-AGTGTCACC
GTT CAG CCC TTG-3′ and reverse, 5′-ACC AAG TTG
CAA CAG GTC AAG-3′.

2.5. CCK-8 Assay. Te Cell Counting Kit 8 (CCK-8) assay
(Solarbio, Beijing, China) was used to detect cell pro-
liferation ability. Approximately 1× 104 Huh7 cells were
seeded in each well of 96-well plates overnight at 37°C. 10 μl
of CCK-8 reagent was added to each well after incubation.
After incubating for another 2 h at 37°C, the absorbance at
450 nm was determined by a microplate reader (Enspire,
USA), and all results were recorded.

2.6. Transwell Assay. Transwell assays were used to evaluate
the cell migration and invasion abilities. For the migration
assay, 1× 105 cells were suspended in 500 μl serum-free
RPIM-1640 medium and seeded into the upper chamber
(Corning, Corning, NY, USA), and 700 μl RPIM-1640
containing 10% Fetal Bovine Serum(FBS) was added to the
lower chamber. After 24 h incubation at 37°C, the cells on the
lower surface were fxed with paraformaldehyde, stained
with 0.2% crystal violet, and then imaged and enumerated
with an inverted microscope (Nikon, Tokyo, Japan). For
invasion assay, the upper chamber was coated with Matrigel
(BD, Franklin Lakes, NJ, USA) before cells seeded, and the
other steps were the same as for migration assay.

2.7. Luciferase Reporter Assay. Te potential complementary
sequences of CASC2 and miR-155 were predicted using
StarBase (https://starbase.cysu.edu.cn/). Sequences of wild-
type (Wt) or mutant-type (Mut) CASC2 or 3′UTR of SOCS1
were synthesized and cloned into the commercial pmirGLO
reporter vectors (TermoFisher, Waltham, MA, USA). Te
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vectors were cotransfected withmiR-155 mimics or miR-NC
into 239T cells with Lipofectamine 2000. Subsequently, the
luciferase assays were performed using the dual-luciferase
reporter assay system (Promega, Madison, WI, USA) after
24 h of transfection, according to the manufacture’s
protocols.

2.8.WesternBlotAnalysis. Radioimmunoprecipitation assay
(RIPA) lysis bufer (Beyotime, Shanghai, China) was used to
extract the total proteins from HCC tissues and cell lines,
and the protein concentrations were quantifed by bicin-
choninic acid (BCA) assay (Pierce, Rockford, IL, USA). 50 μg
of total proteins were separated using 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to a polyvinylidene fuoride (PVDF) membrane
(Millipore, Billerica, MA, USA). After incubating with
nonfat milk for 2 h at room temperature to block the
membrane, the PVDF membrane was incubated with pri-
mary antibody (Abcam, Cambridge, MA, USA) at 4°C
overnight, and then they were incubated with secondary
antibody. Finally, proteins were visualized using dia-
minobenzidine (DAB) chromogenic kit (Solarbio, Beijing,
China), and the intensity of bands was quantifed using
Image J software (NIH, Bethesda, MD, USA).

2.9. Statistical Analysis. All data were analyzed using the
statistical product and service solutions (SPSS) 22.0 software
(IBM, Armonk, NY, USA) and presented as the mean-
± standard deviation (x ± s). Te Student’s t-test was used
to analyze the signifcance of the diference between two
groups. Te Spearman’s correlation analysis was used to
analyze correlation among genes. P< 0.05 was considered as
statistically signifcant diference.

3. Results

3.1. CASC2 isHighly Expressed andAfect theClinical Progress
ofHCC. Quantitative real-time PCR was used to identify the
expression of CASC2 in HCC tissues and cells. Te results
showed that CACS2 was signifcantly decreased in HCC
tissues compared to adjacent normal tissues (Figure 1(a)).
Similarly, we also found the expression of CASC2 was
distinctly low-regulated in HCC cell lines (HepG2, Huh7,
SMMC-7721, QGY-7701) compared to normal liver cell LO2
(Figure 1(b)). Ten the 42 patients were divided into 2
groups depending on the median value of CASC2 expression
(low CASC2 group n� 21; high-CASC2 group n� 21). As the
results showed, low expression of CASC2 presented a pos-
itive correlation with an advanced TNM stage (Figure 1(c))
and positive lymph nodemetastasis (Figure 1(d)). To explore
whether CASC2 may infuence the survivals of HCC pa-
tients, Kaplan–Meier assays were performed, and the results
showed that patients with high-CASC2 expression possessed
longer overall survival (OS) and disease-free survival (DFS)
compared to the low-CASC2 group (P< 0.05). Furthermore,
univariate analyses showed that CASC2 expression, TNM
stage, and lymph node metastasis were signifcantly asso-
ciated with OS and DFS. Moreover, multivariate analyses

revealed that CASC2 expression was an independent
prognostic indicator of HCC patients regarding OS and DFS
(Table 1), suggesting CASC2 might be a promising bio-
marker of prognosis.

3.2. Overexpression of CASC2 Inhibits HCCCell Proliferation,
Migration, and Invasion in HCC Cells. To validate the bi-
ological role of CASC2 in HCC cells, the Huh7 and HepG2
cell lines were chosen for functional experiments due to their
low CASC2 expression. As shown in Figure 2(a), the ex-
pression of CASC2 in Huh7 and HepG2 cell lines were
signifcantly upregulated after cell transfection. Te CCK-8
assay demonstrated that overexpression of CASC2 signif-
cantly suppressed the proliferative abilities of Huh7 and
HepG2 cells (Figure 2(b)). Furthermore, the colony for-
mation assay showed that overexpression of CACS2 sig-
nifcantly decreased the number and size of cell colonies
(Figure 2(c)). Transwell migration and invasion assays
revealed that after CASC2 was overexpressed, the number of
cells penetrating the inserts was signifcantly decreased,
indicating that CASC2 could obviously inhibit the migratory
and invasive capabilities of Huh7 and HepG2 cells
(Figures 2(d) and 2(e)).

3.3. CASC2 Is a ceRNA and Functions as a Molecular Sponge
formiR-155. To reveal the underlying molecular mechanism
of CASC2 in regulating HCC cells, the bioinformatics
analysis website StarBase 2.0 was adopted to predict the
downstream target of CASC2. Te results showed there
was a binding sequence between CASC2 and miR-155
(Figure 3(a)). Dual-luciferase reporter assay indicated that
miR-155 mimics could weaken the luciferase activities when
transfected with the Wt-CASC2. However, miR-155 mimics
did not reduce the luciferase activities when transfected with
the Mut-CASC2, which indicated that CASC2 could bind to
miR-155 directly (Figure 3(b)). In addition, we observed the
distinct increase in miR-155 expression in 4 HCC cell lines
(Figure 3(c)). We also found that overexpression of CASC2
inhibit the level of miR-155 in Huh7 cells markedly
(Figure 3(d)). Moreover, miR-155 was upregulated in HCC
tissues compared to adjacent normal tissues (Figure 3(e)).
Pearson’s correlation analysis was used to analysis the re-
lationship between the expression of CASC2 andmiR-155 in
HCC specimens. Te results showed the expression of
CASC2 was negative correlated with miR-155 (Figure 3(f )).
Taken together, our fndings indicated that CASC2 acted as
a competing endogenous RNA to sponge miR-155 in
HCC cells.

3.4. SOCS1Acts as a Target Gene regardingmiR-155. We also
used StarBase 2.0 to predict the potential target genes of
miR-155 and found that suppressor of cytokine signaling 1
(SOCS1) might serve as a candidate target of miR-155 with
high scores (Figure 4(a)). A dual-luciferase reporter assay
indicated that miR-155 mimics could signifcantly weaken
the luciferase activities of the vector carrying SOCS1 (Wt)
3′UTR instead of a mutant-type in Huh7 cell (Figure 4(b)),
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indicating that miR-155 could bind the 3′UTR of SOCS1
mRNA. Moreover, the mRNA and protein expression of
SOCS1 were signifcantly downregulated in the miR-
155stably-overexpressing Huh7 cells compared with con-
trol group (Figure 4(c)). Besides, as revealed by the
expressing correlation analysis, SOCS1 expression was
negative correlated with miR-155 (Figure 4(d)), and positive
correlated with CASC2 (Figure 4(e)) in HCC specimens. A
rescue assay was conducted to clarify whether CASC2
regulates the biological function of HCCs cell through the
miR-155/SOCS1 axis. We transfected CASC2-NC, CASC2-
OE, and CASC2-OE+ si-SOCS1 into Huh7 cells.Te CCK-8
assay demonstrated that SOCS1 knockdown partially in-
verses the suppression efect of cell proliferation regulated by
CASC2. Meanwhile, the transwell assays demonstrated that
SOCS1 inhibition led to increased cell migration and

invasion of Huh7 cells. Overall, these fndings indicated that
CASC2 may display the biological activity through regu-
lating the miR-155/SOCS1 axis in HCC.

4. Discussion

During recent years, increasing evidence revealed that
IncRNAs involve in clinical progression of many tumors
including HCC. Several lncRNAs have been reported to play
a vital role in regulating the tumorigenesis and cancer
progression of HCC. He et al. [16] demonstrated that
lncRNA maternally expressed gene 3 (MEG3) was down-
regulated in HCC and inhibited cell proliferation in vitro
and tumor growth in vivo. Yang et al. [17] found that
overexpression of HOTAIR could improve the carcinogenic
activity of HCC cells and inhibit cell apoptosis. MALAT1

Table 1: Univariate and multivariate analyses for correlation of CASC2 expression with OS of HCC patients.

Variable
Univariate Cox’s regression analysis Multivariate Cox’s regression analysis

Hazard
ratio (95% CI) P value Hazard

ratio (95% CI) P value

CASC2 expression (high vs. low) 1.237 (0.775–2.044) 0.008 1.879 (0.711–2.425) 0.004∗
Sex (male vs. female) 2.432 (1.337–3.212) 0.304 — —
Age (<60 years vs. ≥60 years) 2.099 (1.225–3.108) 0.112 — —
Tumor size (≥5 cm vs. <5 cm) 0.974 (0.582–1.706) 0.284 — —
TNM staging (I∼II vs. III∼IV) 1.262 (0.897–1.981) 0.016 1.765 (0.892–2.241) 0.012∗
Diferentiation (poor vs. good/moderate) 1.417 (0.692–2.288) 0.492 — —
Lymph node metastasis (yes vs. No) 1.696 (1.125–2.198) 0.005 1.233 (1.108–2.491) 0.002∗

P value was acquired by Cox proportional hazards regression. ∗Statistically signifcant (P< 0.05).
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was reported to promote the growth activity and in-
vasiveness of HCC cells. Further research showed MALAT1
served as an oncogene by sponging miR-204 and releasing
SIRT1 [18]. Besides, CTBP1-AS2 was associated with the
occurrence and progression of HCC. Many studies pre-
viously demonstrated that CASC2 could function as a tumor

suppressor in human cancers [19]. Jiang et al. [20] revealed
that CASC2 could obviously inhibit the glioma cell pro-
liferation and the growth of tumor xenografts in vivo by
targeting miR-21. Wang et al. [21] found CASC2 repressed
epithelial-mesenchymal transition (EMT) process of HCC
cells by regulating the miR-367/FBXW7 axis. Tere is
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however limited investigation regarding the development
efects and mechanisms by which CASC2 exerts on HCC.

In our study, we found that lncRNA CASC2 was sig-
nifcantly downregulated in HCC tissues compared with
adjacent normal tissues and lowly expressed in four HCC
cell lines. Ten we analyzed the correlation between CASC2
expression and clinicopathological parameters of HCC
patients and found that CASC2 were closely associated with
TNM stage and lymph nodes metastasis. CASC2 expression
was higher at a lower TNM stage compared to a higher TNM
stage, and low expression of CASC2 presented a positive
lymph node metastasis. Furthermore, Kaplan–Meier assays
were performed to explore the prognostic value of CASC2
expression for HCC patients. Te analysis indicated that
HCC patients with higher expression of CASC2 have
a longer OS and DFS than patients with low expression. A
cox regression analysis showed that CASC2 expression was
an independent prognostic indicator of HCC patients. Tese
results showed that CACS2 might be a potential biomarker
for the diagnosis and prognosis prediction of HCC. In order
to investigate the biological function of CASC2 in HCC,
CASC2 was overexpressed in Huh7 and HepG2 cells by cell
transfection. We found that overexpression of CASC2 re-
markably inhibited the proliferation, migration, and in-
vasion of Huh7 and HepG2 cells, determined by CCK-8 and
Transwell experiments, which indicated the tumor sup-
pressor role of CASC2 in HCC.

MiRNAs are an abundant class of small, noncoding
RNAs, which have been identifed as important regulators of
many biological process. It has been reported that lncRNAs
can regulate miRNA expression by acting as competing
endogenous RNA (ceRNA) [22]. In recent years, miRNAs

were determined to regulate protein-coding gene expression
by suppressing mRNA translation or reducing mRNA sta-
bility. And many miRNAs are identifed to afect cancer
phenotype by inhibiting the expression of oncogenes or
tumor suppressors [23]. MiR-155 has been implicated in
many human cancers, and aberrant expression of miR-155
displays an oncogenic feature. It is reported that miR-155
directly targets and inhibits many genes such as ATG5,
SOCS3, SHIP1, and BCL2, which are involved in DNA
damage response, cell cycle, hypoxia, infammation, and
tumorigenesis [24–26]. For instance, miR-155 is highly
expressed in breast cancer, and high expression levels of
miR-155 are associated with tumor subtype, metastasis, and
poor survival rate of breast cancer patients [27]. Liu et al.
[28] revealed that miR-155 could regulate the expression of
PTEN, SOCS6, and SOCS1 protein by targeting the 3′ UTR
of their mRNA directly, and inhibition miR-155 decreased
cell proliferation and migration in cell lines H1299 and
A549. Ahmadvand et al. [29] found that miR-155 is highly
expressed in patients with difuse large B cell lymphoma and
directly inhibits HGAL expression.

To further investigate the underlying mechanisms of
CASC2, we determined the potential miRNA of CASC2 with
StarBase 2.0, and the results showed there was a binding
sequence between CASC2 and miR-155. As shown in the
luciferase reporter assay, the activity of luciferase in WT-
CASC2 was distinctly inhibited by miR-155, which indicated
that CASC2 could directly bound to miR-155. Ten, we
observed the distinct increase in miR-155 expression in 4
HCC cell lines, and found that overexpression of CASC2
could inhibit the level of miR-155 in Huh7 cells markedly.
Also, we found that miR-155 was upregulated in HCC
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tissues, and correlation analysis presented a negative cor-
relation between CASC2 and miR-155 expression in HCC
tissues. Taken together, CASC2 may exhibit its tumor
suppressor roles by acting as a competing endogenous RNA
to sponge miR-155.

Growing studies have reported that SOCS1 displayed
a displayed a dysregulated expression in gastric cancer,
HCC, breast cancer and pancreatic cancer [30–32]. In this
study, we found that SOCS1 was predicted as a candidate
target of miR-155, and dual-luciferase reporter assays
confrmed the direct targeting by miR-155 over SOCS1.

Furthermore, SOCS1 was low-expressed in HCC tissue
samples and cell lines and exhibited a negative relationship
with miR-155 and a positive relation with CASC2 in HCC
samples. Te mRNA and protein levels of SOCS1 were
signifcantly upregulated compared with the control group
after miR-155 was overexpressed in Huh7. Finally, we
performed rescue experiments, fnding that SOCS1 in-
hibition partially inverses the suppression efect of cell
proliferation regulated by CASC2. And transwell assays
showed that SOCS1 knockdown led to increased cell mi-
gration and invasion of Huh7 cells. Functionally, these
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results confrmed that CASC2 could function as a tumor
suppressor by acting as a ceRNA to bind to miR-155 and
downregulate the expression of SOCS1.

In conclusion, our fndings uncovered that CASC2 could
act as a tumor suppressor gene and inhibit cell proliferation,
migration, and invasion through binding to miR-155, thus
increasing the expression of its target gene SOCS1, dem-
onstrating the ceRNA function of CASC2. In our study, we
have partially elucidated the role of the CASC2/miR-155/
SOCS1 axis in HCC development.
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LncRNAHOTAIR exhibited diferent efects in human cancers. However, the role of HOTAIR was not reported in osteosarcoma.
Tis study aimed to explore the function of HOTAIR in osteosarcoma. Firstly, we examined HOTAIR expression in breast cancer
tissues by the RT-qPCR assay and examined HOTAIR protein expression via immunocytochemistry, to chemical assay, and
Western blot. Ten, for further exploring the function of HOTAIR, we also examined it by CCK-8 and transwell assays.
Downregulation of HOTAIR was detected in osteosarcoma, which predicted poor prognosis of patients with osteosarcoma.
Moreover, cell migration, invasion, and proliferation were suppressed by HOTAIR overexpression in osteosarcoma. Furthermore,
LPR5 was a direct target of HOTAIR, which was upregulated in osteosarcoma. Especially, the upregulation of LPR5 could impair
the suppressive efect of HOTAIR in breast cancer. HOTAIR was found to negatively regulate the EMT and Wnt/β-cadherin
pathways in osteosarcoma. HOTAIR repressed the progression of osteosarcoma via regulating LPR5 and suppressing the Wnt/
β-cadherin pathway. Our fndings will provide a positive reference for studying the function of HOTAIR in osteosarcoma.

1. Introduction

Osteosarcoma (OS) is caused by bone cells’ abnormal dif-
ferentiation and proliferation. According to epidemiological
data, the incidence of OS is around 0.2–3/100000 per year
[1]. In children and teenagers with a high rate of malignancy,
it is the most prominent primary bone tumor. OS usually
shows a high tendency to metastatic spread [2]. OS is also
associated with procedures that may require them: che-
motherapy and radiology [3, 4]. However, in recent years,
the survival rate of patients with OS accompanied by distant
metastases has not been signifcantly improved [5, 6], the
efect of chemotherapy has not been signifcantly improved,
and the treatment of OS is still controversial. Terefore, new
therapeutic targets need to be found to provide clinical
treatment options to improve the survival rate.

Long noncoding RNAs (LncRNAs) are a family of 200 nt
length RNA molecules [7, 8]. While proteins cannot be
encoded, lncRNAs can participate in multiple levels of gene

expression regulation, including epigenetic, transcriptional,
and post-transcriptional modifcation, thus taking part in
a variety of in vivo pathophysiological processes, including
cancer proliferation and invasion [9, 10]. Gene expression
analysis suggests LncRNA HOTAIR is situated at human
chromosome 12q13 and consists of 5 short exons and 1 long
exon within the antisense strand of the HOXC gene cluster
[11]. HOTAIR is a typical molecular occurrence of epige-
netic malignancy that has been shown to have great im-
portance in the production and prediction of diferent
tumors. New research suggests that HOTAIR is a chromatin
regulation system that routinely controls tumor metabolism,
proliferation, etc. [12–14]. A number of studies indicate that
HOTAIR could bind these genes to the repressive polycomb
complex 2 (PRC2) directly and silently [11]. In addition,
HOTAIR may also interact with the LSD1/REST complex
and H3K4 histone demethylation. HOTAIR knock-out can
prevent invasion and metastasis of the breast tumor. Te
production of HOTAIR by improving the epithelial-
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mesenchymal transformation in gastric cancer was shown to
facilitate cellular invasion and migration. HOTAIR is re-
ported to be involved in Wnt/β-catenin signaling through
directly decreasing HIF-1 expression.

Terefore, in this study, we selected the human osteo-
sarcoma cell line SAOS-2 and the human osteoblast cell line
OB3. We applied RT-qPCR Western blot to our cells. In
addition, we analyzed the lncRNA HOTAIR expression and
its interaction with LPR5, attempting to establish a con-
nection between HOTAIR and LPR5 in OS. Our fndings
indicate that HOTAIR and LRP5 expressions are upregu-
lated, and levels of LRP5 expression have a positive corre-
lation with HOTAIR in OS tissues and cell lines.

2. Methods

2.1. Cell Lines and Culture. Human osteosarcoma cell line
SAOS-2 and human osteoblast cell line OB3 were purchased
from the ScienCell Research Laboratories and the American
Type Culture Collection (ATCC) (Manassas, VA, USA).

2.2. RT-qPCR. Te TRIzol reagent was used to extract
complete RNA (Sangon Biotech, Shanghai, China). For the
qRT-PCR experiment, 2 μg of complete RNA for reverse
transcript and cDNA synthesis is used with TransScript ® IIReverse Transcriptase (TransGen Biotech Co,, Beijing,
China). Quantitative, real-time PCR experiments have been
carried out with PerfectStartTM Green qPCR SuperMix
(TransGen Biotech Co., Beijing, China). Te results were
normalized to GAPDH, a gene with constitutive expression.
Te PCR primers are for HOTAIR forward, 5′-GGTAGA
AAAAGCAACCACGAAGC-3′; for HOTAIR reverse, 5′-
ACATAAACCTCTGTCTGTGAGTGCC-3′; and for
GAPDH, 5′-TGTTCGTCATGGGTGTGAA-3′ (forward)
and 5′-ATGGCATGGACTGTGGTCAT-3′ (reverse). Using
the 2-Ct process, the relative MFI2 and FOXP4 expression
levels were identifed and normalized.

2.3. Western Blot. A complete protein was extracted for
30minutes, and the protein concentration was measured
using a BCA protein measuring kit (Termo Scientifc, MA,
USA). Te Mammalian Complete Protein Extraction Kit
(TransGen Biotech Co., Beijing, China) was used on ice. Te
corresponding numbers of total proteins, which were
transferred to 0.22 μm polyvinylidene fuoride (PVDF)
membranes (Millipore, Billerica, MA, USA.) and incubated
with LRP5 (1 :1000) or GAPDH (1 :1500) anticorps are 12
per cent SDS-polyacrylamide gel electrophoresis (SDS-
PAGE). Te manufacturer’s (Beyotime) identifcation of
enhanced chemiluminescence (CEL) and the quantifed
densitometry of the band amplitude (Quantity One software;
Bio-Rad, Hercules, CA) as proteins measured.

2.4. siRNATransfection. As previously defned, the pENTR-
shHOTAIR vector was constructed (Liu et al., 2014). In brief,
Genepharmacy Technology (China) synthesized unique
oligonucleotides targeting HOTAIR: sense, 5′-GATCCG

CCACATGAACGCCCAGAGATTTTCAAGAGAAAT
CTCTGGGCGTTCATGTGGTT TTTTG-3′; antisense, 5′-
AATTCAAAAAACCACATGAACGCCCAGAGATTT
CTCTTGAAAATCTCTGGGCGTTCATGTGGC G-3′. Te
pENTR-shHOTAIR plasmids and empty vectors were then
transfected into U2OS cells, and G418 (400 μg/ml) was
chosen for the HOTAIR overexpression subclones. To
validate the upregulation of HOTAIR, real-time PCR was
conducted.

2.5. Cell Viability Assay. Te manufacturers’ instructions
using a cell counting kit-8 (CCK-8) (Dojindo, Kumamoto,
Japan) observed the cell viability of siRNA Duplex osteo-
marcoma cells at 24 h, 48 h, and 72 h. Briefy, 1 to 104 cells
were placed on 96-well tissue culture plate for 24, 48, and
72 hours. OS cells were subsequently treated with CCK-8 for
1 hour at 37°C. OS cells were used to measure 450 nm of
absorption with a microplate reader, Termo Plate (Rayto
Life and Analytical Research, Co., Ltd.).

2.6. MTT Assay. Te MTT test determined the cell pro-
liferation efect of HOTAIR. In short, 2–103 cells/button
were sown on 96-well plates and cultivated periodically. At
the specifed timepoints, the 10mg MTT solution (5mg/ml;
Sigma-Aldrich) was used for each well, and the reaction was
completed with 200 μl DMSO 2hours later. Te absorbance
on a microplate reader was estimated at 570 nm. Te ex-
periment was repeated atleast three times.

2.7.TranswellAssay. Te researchers used 24-well transwells
with 8 μm pores (Corning Costar, Inc., Corning, NY, USA)
and conducted migration and invasion assays, respectively.
In the migration assay, the upper transwell chamber was
flled with a noncoated membrane with 2–104 OS cells
suspended in a 100 μl serum-free culture medium.Te upper
chamber for the invasion procedure was replaced with 3 to
104 OS cells plated without FBS in 100 μl of the required
culture medium. In the samples, 500 μl culture medium
containing 20 percent FBS was found in the lower culture
chamber. In a wet climate, the cells were cultivated for
24 hours at 37°C and 5% CO2. Set to 100 percent methanol
for 30minutes, 0.5% violet (Sigma, St. Louis, MO, USA) cells
have been dyed over a 20-minute span, and a phase-contrast
microscope (Olympus, Tokyo, China) has been compared.

3. Result

3.1. LncRNAHOTAIR Expression was Increased in OS Tissue.
Figure 1 shows that HOTAIR expression was increased in
OS tissues. Figure 1(a) shows the expression of HOTAIR in
the tissues of OS. Figure 1(b) shows that high HOTAIR
expression was detected in OS cell lines. First, in OS tissue
and normal tissue using RT-qPCR, lncRNA expression was
studied. It was shown that lncRNA HOTAIR expression was
higher than in normal tissue. Similarly, high HOTAIR ex-
pression was also observed in the OB-3 and SAOS-2 tumor
cell lines.
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3.2.HOTAIRDownregulationPreventedOSCellProliferation.
Te knockdown experiment was conducted to demonstrate
the efect of HOTAIR on the proliferation of OS cells.
Figures 2(a) and 2(b) show the HOTAIR expression in
normal OB-3, SAOS-2 cell lines, and siRNA knockdown cell
lines, and the expression of HOTAIR in OS cell lines is
successfully knocked down. Te cell proliferation was
measured in the cell lines OB-3 and SAOS-2 by the CCK-8
assay. As shown in Figures 2(c) and 2(d), in the CCK-8 assay,
we observed that in two OS cell lines, declining HOTAIR
expression substantially suppressed cell proliferation. A
central role of HOTAIR in the proliferation of OS was in-
dicated by the fndings.

3.3. HOTAIR Downregulation Inhibited the Invasion and
Migration of OS Cells. Figures 3(a) and 3(b) show the rep-
resentative images of the cell invasion results of HOTAIR
knockdown on OB-3 and SAOS-2 cells. It was used to
compare cell invasiveness before and after HOTAIR
knockdown by transwell assay. Figures 3(c) and 3(d) show the
quantifcation of outcomes for OS cell lines in cell invasion
and migration assays. As shown in Figures 3(c) and 3(d), the
downregulation of HOTAIR inhibited the migration of OS
cell lines OB3 and SAOS-2 in the transwell migration assay.

3.4. Protein LPR5 was Positively Correlated with HOTAIR
Expression. LRP5, which is a part of the LDL receptor
family, comprises the VLDL receptor and the apolipoprotein
E receptor 2. LRP5, which is a coreceptor of Wnt, is situated
between Frizzled and Kremen receptors on the osteoblast
membrane. Figure 4(a) shows the protein expression of
LRP5 in osteosarcoma tissues detected by WB. It has been
demonstrated that LPR5 is a potential oncogenic protein in
OS. Figure 4(b) shows the quantifcation of the results for
LPR5 expression in osteosarcoma tissues (∗P< 0.05). To
explore whether there is any relationship between the ex-
pression of LPR5 andHOTAIR, we examined the correlation
between HOTAIR and LPR5 expression. Figure 4(c) shows
that the expression of HOTAIR and LPR5 has a positive
correlation. As shown in Figure 4(c), we found a positive
correlation between the two expressions. HOTAIR knock-
down reduced the expression of LPR5 (Figure 4(d)). It
suggested that the possible mechanism by which HOTAIR
promotes cancer growth is the regulation of LPR5
expression.

4. Discussion

A number of lncRNAs have played a signifcant part in
essential cellular processes in previous research, for example,
gene expression regulation, and post-transcriptional mod-
ifcation [10, 15]. LncRNA expression is increasingly known
to be implicated in pathological advancements such as the
growth of human cancer, culminating in unchecked pro-
liferation [10, 16]. An increased understanding of the bi-
ological role of lncRNA can also provide new approaches for
human OS diagnosis and treatment. OS has been the most
common bone cancer in the younger crowd, like children
and young adults. It has remained poorly treated and has
a poor prognosis [17].Wnt is the secreted protein that causes
tumor growth and skeletal development [18]. It includes 10
Frizzled receptors and 19 Wnt ligands, as well as LRP5,
LRP6, and two low-density lipoprotein receptor-related
protein (LRP) coreceptors [19]. As Wnt ligands were con-
necting to LRP5/6, the carboxyl end of Lrp5/6 was phos-
phorylated, and a binding position for Axin was formed [20].
It leads to the b-catenin level increased in the cytoplasm and
nucleus [21, 22]. Ultimately, this leads to abnormal gene
expression and tumor formation. It has been demonstrated
that the expression of LRP5 is a common event in OS [23].

Despite numerous studies, the molecular mechanisms of
OS proliferation and metastasis have remained unclear [24].
With the deepening understanding of lncRNA, it has been
recognized that lncRNA is involved in every aspect of human
physiology and pathology, which may be related to the
molecular mechanism of proliferation and metastasis of OS.
Earlier research found HOTAIR participates in multiple
tumor forming and metastasis pathways [25]. In esophageal
squamous cell cancer, HOTAIR knockdown may reduce the
ability of cells to proliferate, migrate, and invade the extra-
cellular matrix [26]. In gastric cancer, HOTAIR expression is
upregulated to promote the proliferation of gastric cancer
cells [27]. In human OS tissues, HOTAIR expression was
substantially upregulated. Te role of HOTAIR in the in-
cidence and invasion of OS has been explored in this report.

Our fndings found that HOTAIR downregulation
prevented OS cell proliferation. CCK-8 and transwell assay
fndings indicated that HOTAIR knockdown by RNA in-
terference greatly decreased cell proliferation, migration,
and invasion in OS cells. To sum up, we demonstrated that
HOTAIR and LRP5 expressions were upregulated, and levels
of LRP5 expression were positively correlated with
HOTAIRs in OS tissues and cell lines. However, there are
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Figure 1: HOTAIR expression was increased in OS tissues. ∗P< 0.05, ∗∗P< 0.01.
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still some limitations in our study, such as limited data. In
the future, we need to collect more data for more in-depth
data analysis, which will greatly improve the reliability and
scientifcness of our results.

Data Availability

Te datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.
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Purpose. Papillary renal cell carcinoma (pRCC) is the second most common histological subtype of adult kidney tumors, with
a poor prognosis due to limited understanding of the disease mechanism. Herein, we have performed high-throughput
bioinformatic screening to explore and identify potential biomarkers of DNA damage and oxidative stress for pRCC.
Methods. RNA sequencing data related to pRCC were downloaded from the TCGA database, and diferentially expressed
genes (DEG) were identifed by a wide variety of clustering and classifcation algorithms, including self-organized maps
(SOM), artifcial neural networks (ANN), support vector machines (SVM), fuzzy logic, and hyphenated techniques such as
neuro-fuzzy networks. Ten DAVID and STRING online biological information tools were used to analyze functional
enrichment of the regulatory networks of DEG and construct a protein-protein interaction (PPI) network, and then the
Cytoscape software was used to identify hub genes. Te importance of key genes was assessed by the analysis of the
Kaplan–Meier survival curves using the R software. Lastly, we have analyzed the expression of hub genes of DNA damage
and oxidative stress (BDKRB1, NMUR2, PMCH, and SAA1) in pRCC tissues and adjacent normal tissues, as well as the
relationship between the expression of hub genes in pRCC tissues and pathological characteristics and prognosis of pRCC
patients. Results. A total of 1,992 DEGs for pRCC were identifed, with 1,142 upregulated ones and 850 downregulated ones.
Te DEGs were signifcantly enriched in activities including DNA damage and oxidative stress, chemical synaptic
transmission, an integral component of the membrane, calcium ion binding, and neuroactive ligand-receptor interaction.
cytoHubba in the Cytoscape software was used to determine the top 10 hub genes in the PPI network as BDKRB2, NMUR2,
NMU, BDKRB1, LPAR5, KNG1, LPAR3, SAA1, MCHR1, PMCH, and NCAPH. Furthermore, the expression level of hub
genes BDKRB1, NMUR2, PMCH, and SAA1 in pRCC tissues was signifcantly higher than that in the adjacent normal
tissues. Meanwhile, the expression level of hub genes BDKRB1, NMUR2, PMCH, and SAA1 in pRCC tissues was sig-
nifcantly positively correlated with tumor stage, lymph node metastasis, and the histopathology grade of pRCC. In addition,
high expression levels of hub genes BDKRB1, NMUR2, PMCH, and SAA1 were associated with a poor prognosis for patients
with pRCC. Univariate and multivariate analyses showed that the expression of hub genes BDKRB1, NMUR2, PMCH, and
SAA1 were independent risk factors for the prognosis of patients with pRCC. Conclusion. Te results of this analysis
suggested that BDKRB1, NMUR2, PMCH, and SAA1 might be potential prognostic biomarkers and novel therapeutic
targets for pRCC.
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1. Introduction

Renal cell carcinoma (RCC), also known as kidney cancer, is
derived from renal tubular epithelial cells and is the most
common solid tumor of the kidney, accounting for 3% of adult
malignant tumors [1]. It is a heterogeneous group of cancers
arising from renal tubular epithelial cells that encompasses 85%
of all primary renal neoplasms. Papillary renal cell carcinoma
(pRCC) is the second most common histological subtype after
clear cell renal cell carcinoma (ccRCC), and 10–15% of RCC
histological types are papillary renal cell carcinoma [2]. Tere
are two subtypes of pRCC, type I (basophilic) and type II
(acidophilic), and type I has a better prognosis than type II [3].
Most research studies on kidney cancer has focused on ccRCC,
and the related studies have shown that compared with ccRCC
patients, pRCCpatients typically have a lower stage and grade of
tumor as well as longer overall survival [4]. Te molecular
mechanism of pRCC has not been clearly defned. With poor
sensitivity to radiotherapy and chemotherapy, surgery is the
preferred method for treatment of pRCC, but some patients are
prone to metastasis and relapse after surgery. With continued
advances inmolecular medicine in recent years, the study of the
occurrence, development, and metastasis mechanisms of pRCC
can help to guide clinical diagnosis and treatment.

Te cancer genome atlas (TCGA) project is a joint project
of the National Cancer Institute and the National Human
Genome Research Institute and aims to apply high-throughput
genome analysis technology and to improve the ability to
prevent, diagnose, and treat cancer. Te cancer genome atlas
(TCGA) research network includes analysis of a large number
of human tumors to discover molecular aberrations at the
DNA, RNA, protein, and epigenetic levels [5]. In this study,
TCGA data were used to investigate genes that are deferentially
expressed in pRCC. To mine the key genes related to pRCC
occurrence and development, we conducted diferential gene
enrichment (Gene Ontology, GO) analysis and KEGGpathway
enrichment analysis, constructed PPI interaction networks,
screened hub genes, and performed survival analysis.

2. Materials and Methods

2.1. Data Collection. Te published transcriptome data re-
lated to papillary renal cell carcinoma were downloaded
from TCGA (https://cancergenome.nih.gov/). Te data in-
cluded 289 papillary renal cell carcinoma samples and 32
normal kidney tissues.

2.2. Identifcation of DEGs. We have performed the edgeR
software package in R language (version 3.5.3, https://www.
r-project.org/) and a wide variety of clustering and classi-
fcation algorithms, including self-organized maps (SOM),
artifcial neural networks (ANN), support vector machines
(SVM), fuzzy logic, and hyphenated techniques such as
neuro-fuzzy networks to standardize the data and analyze
diferential expression. Genes with |logFC|> 2.0 and FDR
<0.05 were considered diferentially expressed genes. To
visualize the data graphically, the ggplot2 software package
was used.

2.3. GO and KEGG Pathway Analysis. Te DAVID database
(DAVID; https://david.ncifcrf.gov) was used to perform
annotation, visualization, and integrated discovery on the
genes identifed as signifcantly diferently expressed [6].
Using DAVID, GO analysis was performed, including the
analysis of cellular components (CC), molecular functions
(MF), and biological process (BP) terms. A value of P < 0.05
was considered statistically signifcant. Te Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (https://www.
genome.jp/kegg/) is a knowledge base for systematic anal-
ysis of gene functions, linking genomic information with
higher order functional information [7]. An adjusted P value
<0.05 was considered statistically signifcant.

2.4. Hub Genes Selection and Analysis of Modules from PPI
Networks. Te STRING database (http://string-db.org) aims
to provide a critical assessment and integration of protein-
protein (PPI) interactions [8]. STRING was used to analyze
the selected diferentially expressed genes and construct
a PPI network. Ten, cytoHubba in Cytoscape software
(version 3.7.2) was used to screen the top 10 hub genes in the
PPI network [9].

2.5. Survival Analyses of Hub Genes. Te expression profles
and clinical data of 289 pRCC samples were downloaded
from TCGA (http://tcga-data.nci.nih.gov) for the survival
analysis of hub genes. Te Kaplan–Meier method was used
for the survival analysis, and log-rank P values were cal-
culated. A log-rank P value <0.05 was considered statistically
signifcant.

2.6. Clinical Specimens. A total of 60 paired pRCC samples
and adjacent normal renal specimens were collected from
Zhuzhou Central Hospital between June 2016 and June 2021.
Inclusion criteria for specimen collection: (1) Postoperative
pathology examination confrmed pRCC; (2) the patients
with neither radiotherapy nor chemotherapy; (3) complete
follow-up data were available; (4) the patients understood
the purpose and requirements of the study, agreed to par-
ticipate in the study, and signed a written informed consent,
which was reviewed and approved by the Ethics Committee
of Zhuzhou Central Hospital.

2.7. Total RNA Isolation and Quantitative Real-Time Poly-
meraseChainReaction (qRT-PCR). TeRNAwas isolated by
TRIzol® reagent (Ambion; USA) from pRCC tissues
according to the manufacturer’s protocols. And cDNA was
reversely transcribed by PrimeScript RT reagent kit (Takara,
China). We conducted RT-qPCR on an ABI 7500 RT-PCR
system using the SYBR Premix Ex TaqII Kit (Takara, China).
All quantifcations were normalized to the level of glycer-
aldehyde phosphate dehydrogenase (GAPDH) in the
reaction.

rimers of
BDKRB1 was Forward (5′–3′) CAC-TGT-CCT-ACC-
GTC-TTT-GTCT,
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Reverse (5′–3′) CGC-AAA-TCT-TGG-TAG-GTG-GT;
NMUR2 forward (5′–3′) GGC-AAG-GCC-ATG-TGT-
AAG-ATC,
Reverse (5′–3′) GTA-AAA-CGA-CGG-CCAG;
PMCH forward (5′–3′) CAC-TGT-CCT-GAC-CGT-
CTT-TGT-CT,
Reverse (5′–3′) CCA-TAT-GCC-TGT-GGA-GTG-
GAA;
SAA1 forward (5′–3′) ACC-TGA-GGA-GCC-CCA,
Reverse (5′–3′) TCT-GCT-CCT-GGC-AGG-CC.

Te comparative threshold cycle (CT) method, which
compares the diferences in CT values between common
reference RNA and target gene RNA, was used to obtain the
relative fold changes in gene expression. Te expressions
were calculated by 2−ΔΔct method. Each experiment was
performed in triplicate and repeated three times.

2.8. Statistical Analysis. SPSS 24.0 software was used for
statistical analysis, and GraphPad Prism 7.0 software was used
for analysis and mapping. All measurement data in the form
of mean± standard deviation (SD), according to two groups
and multiple groups of measuring data comparison using
Student’s t-tests and one-way ANOVA. Te relationship
between the RNA expression levels of hub genes BDKRB1,
NMUR2, PMCH, and SAA1 in the patients with pRCC tissue
samples and the clinical pathological characteristics of pa-
tients with pRCC was analyzed through Pearson’s Chi-
squared test, and the relationship between the expression
of hub genes BDKRB1, NMUR2, PMCH, and SAA1 and the
prognosis of pRCC patients was analyzed by Kaplan–Meier
survival analysis and the Cox proportional hazard model.
P < 0.05 was considered to be signifcantly diferent.

3. Results

3.1. Identifcation of DEGs. Te data for 289 cases of pap-
illary renal cell carcinoma and 32 cases of normal kidney
tissue were downloaded from TCGA and used for this study.
Te data were normalized and logarithmized, probes
without corresponding gene annotation information were
removed, and repeated probes were removed to fnally get
the expression profles of 17,894 genes and 321 samples.
Using the edgeR software package, with |logFC|> 2.0 and
FDR <0.05 as the screening conditions for diferentially
expressed genes, a total of 1,992 DEGs were screened for
pRCC, including 1,142 upregulated genes and 850 down-
regulated genes. Using these selected genes, a volcano map
(Figure 1) was generated, and the top 50 gene heat maps with
the most signifcant diferences were selected (Figure 1(b)).

3.2.GOTermandKEGGPathwayAnalyses. In order to better
understand the relationships between DEGs and pRCC, we
input all DEGs into the online tool DAVID to perform GO
analysis. Te results revealed that, for GO BP analysis, the
DEGs of pRCC were mainly enriched in excretion, epidermis
development, ion transmembrane transport, chemical

synaptic transmission, chloride transmembrane transport, ion
transport, and potassium ion transmembrane transport. For
GO CC analysis, DEGs were mainly enriched in integral
component of plasma membrane, extracellular region, ex-
tracellular space, plasma membrane, apical plasma mem-
brane, anchored component of membrane, proteinaceous
extracellular matrix, integral component of membrane, and
basolateral plasma membrane. For GO analysis, DEGs were
mainly enriched in calcium ion binding, heparin binding,
sequence-specifc DNA binding, transporter activity, and
carbohydrate binding. Te GO analysis fndings are shown in
Figure 2 and Table 1.

We next performed KEGG pathway analysis to analyze
the pathways at the functional level. Te results showed that
DEGs were mainly enriched in neuroactive ligand-receptor
interaction, calcium signaling pathway, gastric acid secretion,
bile secretion, and pancreatic secretion. Te KEGG pathways
associated with enriched DEGs associated with pRCC are
presented in Figure 2(b) and Table 2.

3.3. Identifcation of HubGenes and Analysis ofModules from
PPI Networks. Te STRING database was used to construct
PPI networks for DEGs related to the pathogenesis of
papillary renal cell carcinoma. We used the MCODE in
Cytoscape software to obtain the main PPI network
(Figure 2(c)), and then used cytoHubba in Cytoscape
software to identify the top 10 hub genes in the PPI network
(Figure 2(c)): recombinant bradykinin receptor B2
(BDKRB2), neuromodulin U receptor 2 (NMUR2), neu-
romodulin U (NMU), recombinant bradykinin receptor B1
(BDKRB1), lysophosphatidic acid receptor 5 (LPAR5),
Kininogen-1 (KNG1), lysophosphatidic acid receptor
3(LPAR3), serum amyloid A1 (SAA1), melanin-
concentrating hormone receptor 1 (MCHR1), and pre-
cursor melanin-concentrating hormone (PMCH). Tese 10
hub genes are presented in Figure 2(c).

3.4. SurvivalAnalysis ofHubGenes. Expression data for a total
of 289 pRCC samples were downloaded from TCGA. Te 10
hub genes were grouped by expression levels, and the data were
used to conduct survival analyses. Increased expression levels of
BDKRB1, NMUR2, PMCH, and SAA1 were associated with
a worse survival rate for pRCC patients (Figure 3).

3.5. Te Expression of Hub Genes BDKRB1, NMUR2, PMCH,
and SAA1 in pRCC Tissues and Adjacent Normal Tissues of
pRCC Patients. We selected 120 tissue samples (including 60
pRCC tissues and 60 normal adjacent tissues) to analyze the
expression of hub genes BDKRB1, NMUR2, PMCH, and SAA1
in pRCC tissues by qRT-PCR. Te results showed that the
expression of hub genes BDKRB1, NMUR2, PMCH, and SAA1
in pRCC tissues was signifcantly higher than that in the normal
adjacent tissues (Figures 4(a), 4(c), 4(e), and 4(g)). To further
investigate the correlation between hub genes BDKRB1,
NMUR2, PMCH, and SAA1 expression and pathological fea-
tures of pRCC, the above samples were divided into high (above
the mean) and low (below the mean) hub genes expression
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groups. Subsequently, the Chi-square test was used to analyze
the relationship between hub genes BDKRB1,NMUR2, PMCH,
and SAA1 expression level and pathological characteristics of
pRCC patients, and the results showed that the expression level
of hub genes BDKRB1, NMUR2, PMCH, and SAA1 expression

in pRCC tissues were signifcantly positively correlated with
tumor stage, lymph node metastasis, and histopathological
grade of pRCCpatients (Figures 4(b), 4(d), 4(f), and 4(h)), while
the relationship with gender and age of patients was not sta-
tistically signifcant (Tables 3–6).
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Figure 1: Identifcation of DEGs in papillary renal cell carcinoma. (a) Volcano plot of the DEGs (|logFC| >2.0 and FDR <0.05 were as the
screening conditions). (b) Heatmaps of the top 50 DEGs in papillary renal cell carcinoma and normal kidney tissue. Red indicates that the
expression of genes is relatively upregulated, green indicates that the expression of genes is relatively downregulated.
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3.6. Relationship between Hub Genes BDKRB1, NMUR2,
PMCH, and SAA1 Expression and Prognosis of Patients with
pRCC. Te Kaplan–Meier survival analysis was used to
study the relationship between hub genes BDKRB1,
NMUR2, PMCH, and SAA1 expression and prognosis of
patients with pRCC. Te results showed that the overall
survival rate of patients with high hub genes BDKRB1,
NMUR2, PMCH, and SAA1 expression was signifcantly
lower than that of patients with low hub genes BDKRB1,
NMUR2, PMCH, and SAA1 expression (Figure 5). Ten we
conducted the COX proportional risk model analysis. Te

univariate and multivariate analyses showed that the ex-
pression of hub genes BDKRB1, NMUR2, PMCH, and SAA1
were independent risk factor for prognosis in patients with
pRCC (Tables 7–10).

4. Discussion

Most patients with pRCC have no obvious symptoms or
signs at the time of diagnosis, but the disease is often found
by B-ultrasound or CT examination during a physical ex-
amination. Very few patients exhibit the typical triad signs of
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Figure 2: Te pathway analyses of DEGs in pRCC. (a) GO enrichment analysis of DEGs in pRCC. GO, Gene Ontology; CC, cellular
component; MF, molecular function; BP, biological process. (b) KEGG pathway analysis of DEGs in pRCC. (c)Te top 10 hub genes selected
from the PPI network.
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Table 1: Gene ontology analysis of DEGs associated with pRCC.

Category Term Description Count P value
BP GO:0007588 Excretion 18 4.00E− 05
BP GO:0008544 Epidermis development 27 2.31E− 04
BP GO:0034220 Ion transmembrane transport 47 4.69E− 04
BP GO:0007268 Chemical synaptic transmission 51 7.34E− 04
BP GO:1902476 Chloride transmembrane transport 26 0.005783318
BP GO:0006811 Ion transport 31 0.011414198
BP GO:0071805 Potassium ion transmembrane transport 29 0.034687627
CC GO:0005887 Integral component of plasma membrane 279 2.76E− 27
CC GO:0005576 Extracellular region 293 8.03E− 23
CC GO:0005615 Extracellular space 252 8.22E− 21
CC GO:0005886 Plasma membrane 543 1.13E− 10
CC GO:0016324 Apical plasma membrane 69 2.70E− 08
CC GO:0031225 Anchored component of membrane 37 2.04e− 07
CC GO:0005578 Proteinaceous extracellular matrix 61 2.45E− 06
CC GO:0016021 Integral component of membrane 620 3.43E− 05
CC GO:0016323 Basolateral plasma membrane 44 6.86E− 05
MF GO:0005509 Calcium ion binding 119 8.07E− 06
MF GO:0008201 Heparin binding 41 2.33E− 05
MF GO:0043565 Sequence-specifc DNA binding 89 1.82E− 04
MF GO:0005215 Transporter activity 43 0.002430787
MF GO:0030246 Carbohydrate binding 40 0.017062891

Table 2: KEGG pathway analysis of DEGs associated with pRCC.

Category Term Description Count P value
KEGG hsa04080 Neuroactive ligand-receptor interaction 72 4.38E− 11
KEGG hsa04020 Calcium signaling pathway 46 5.31E− 06
KEGG hsa04971 Gastric acid secretion 23 0.002127995
KEGG hsa04976 Bile secretion 21 0.012213919
KEGG hsa04972 Pancreatic secretion 24 0.046905158
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Figure 3: Te prognostic values for the 10 hub genes for overall survival of patients with pRCC. (a) Kaplan-Meier plot for BDKRB2,
P � 0.06154; (b) Kaplan-Meier plot for KNG1, P � 0.26273; (c) Kaplan-Meier plot for NMU, P � 0.07959; (d) Kaplan-Meier plot for
NMUR2, P � 0.00327; (e) Kaplan-Meier plot for BDKRB1, P � 0.00088; (f ) Kaplan-Meier plot for LPAR3, P � 0.29168; (g) Kaplan-Meier
plot for LPAR5, P � 0.2717; (h) Kaplan-Meier plot for PMCH, P � 0.02432; (i) Kaplan-Meier plot for MCHR1, P � 0.50043; (j) Kaplan-
Meier plot for SAA1, P � 0.01031. A value of P < 0.05 was considered statistically signifcant.
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kidney cancer: hematuria, abdominal mass, and lumbar
pain, and the patients that do exhibit these signs typically
have advanced disease. Te overall prognosis of pRCC is
better than that of ccRCC, but pRCC prognosis is signif-
cantly worse than that of ccRCC when pRCC invades the
renal vein and/or the inferior vena cava [10]. Tere is
currently no specifc treatment for pRCC, and surgical

treatment is the frst choice in clinical practice. Te prog-
nosis of advanced patients is poor, a pRCC is insensitive to
radiotherapy and chemotherapy. Terefore, the study of the
mechanisms of pRCC development and metastasis will help
improve clinical diagnosis and treatment.

In this study, bioinformatics technology was used to
mine pRCC transcriptomic data downloaded from TCGA. A
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Figure 4:Te expression of hub genes BDKRB1 (a), NMUR2 (b), PMCH (c), and SAA1 (d) in pRCC tissues and adjacent normal tissues, as
well as the relationship between the expression of hub genes in pRCC tissues and pathological characteristics of pRCC patients (e–h).

Table 3: Te relationship between BDKRB1 expression level in pRCC and pathology features of pRCC patients (n� 60).

Characteristics
BDKRB1

Chi-squared test P value
Low no. cases High no. cases

All patients (n� 23) (n� 37)
Gender 0.035 0.852
Male 13 20
Female 10 17

Age (years) 0.012 0.914
≤60 9 15
>60 14 22

Tumor stage 7.274 0.007
≤T2 15 11
>T2 8 26

Lymph-node metastasis 5.711 0.017
Negative 16 14
Positive 7 23

Pathology grade 6.332 0.012
Low grade 13 9
High grade 10 28
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Table 4: Te relationship between NMUR2 expression level in pRCC and pathology features of pRCC patients (n� 60).

Characteristics
NMUR2

Chi-squared test P value
Low no. cases High no. cases

All patients (n� 25) (n� 35)
Gender 1.009 0.315
Male 14 15
Female 11 20

Age (years) 0.156 0.693
≤60 12 15
>60 13 20

Tumor stage 6.251 0.012
≤T2 16 11
>T2 9 24

Lymph-node metastasis 7.096 0.008
Negative 18 13
Positive 7 22

Pathology grade 6.898 0.009
Low grade 14 8
High grade 11 27

Table 5: Te relationship between PMCH expression level in pRCC and pathology features of pRCC patients (n� 60).

Characteristics
PMCH

Chi-squared test P value
Low no. cases High no. cases

All patients (n� 30) (n� 30)
Gender 0.067 0.795
Male 17 16
Female 13 14

Age (years) 0.278 0.598
≤60 13 11
>60 17 19

Tumor stage 4.344 0.037
≤T2 17 9
>T2 13 21

Lymph-node metastasis 6.667 0.01
Negative 20 10
Positive 10 20

Pathology grade 7.177 0.007
Low grade 16 6
High grade 14 24

Table 6: Te relationship between SAA1 expression level in pRCC and pathology features of pRCC patients (n� 60).

Characteristics
SAA1

Chi-squared test P value
Low no. cases High no. cases

All patients (n� 31) (n� 29)
Gender 0.012 0.913
Male 17 15
Female 15 14

Age (years) 0.63 0.427
≤60 15 17
>60 16 12

Tumor stage 8.21 0.004
≤T2 20 8
>T2 11 21

Lymph-node metastasis 4.312 0.038
Negative 19 10
Positive 12 19

Pathology grade 9.121 0.003
Low grade 17 5
High grade 14 24
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total of 1,992 DEGs were identifed, including 1,142 upre-
gulated genes and 850 downregulated genes. We performed
GO and KEGG pathway enrichment analyses to explore
interactions between DEGs. Te GO analysis revealed that
1,992 DEGs were signifcantly enriched in 21 terms, in-
cluding excretion, epidermis development, ion trans-
membrane transport, chemical synaptic transmission,
chloride transmembrane transport, ion transport, potassium
ion transmembrane transport, integral component of
plasma membrane, extracellular region, extracellular space,
plasma membrane, apical plasma membrane, anchored

component of membrane, proteinaceous extracellular
matrix, integral component of membrane, basolateral
plasma membrane, calcium ion binding, heparin binding,
sequence-specifc DNA binding, transporter activity, and
carbohydrate binding. In addition, the KEGG pathway
analysis revealed that 1,992 DEGs were signifcantly
enriched in fve pathways, including neuroactive ligand-
receptor interaction, calcium signaling pathway, gastric
acid secretion, bile secretion, and pancreatic secretion.
According to the STRING results, we constructed the PPI
network. Ten hub genes were selected with a high degree
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Figure 5: Relationship between hub genes BDKRB1 (a), NMUR2 (b), PMCH (c), and SAA1 (d) expression and prognosis of patients with
pRCC.
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of interaction in the PPI network, including BDKRB2,
NMUR2, NMU, BDKRB1, LPAR5, KNG1, LPAR3, SAA1,
MCHR1, and PMCH. Further analysis of survival related to
the expression of these hub genes revealed that BDKRB1,
NMUR2, PMCH, and SAA1 are the key genes for the
development of pRCC.

One hub gene, BDKRB1, is a well-established tumor
suppressor gene, which is frequently mutated in familial
breast and ovarian cancers. Te gene product of BDKRB1
functions in a number of cellular pathways that maintain
genomic stability, including DNA damage-induced cell cycle
checkpoint activation, DNA damage repair, protein

Table 7: Univariate and multivariate analysis of overall survival in patients with pRCC (n� 60).

Variable for
overall survival

Univariate analysis Multivariate analysis
HR 95% CI P HR 95% CI P

Gender 0.108
Male vs. female 0.581 0.3–1.126

Ages (years) 0.134
≤60 vs. >60 1.659 0.855–3.218

Pathology grade 0.403
Low grade vs. high grade 1.331 0.681–2.603

Tumor stage 0.03 0.716
≤T2 vs. >T2 2.11 1.076–4.137 1.616 0.806–3.239

Lymph-node metastasis 0.012 0.111
Negative vs. positive 2.31 1.2–4.448 1.743 0.880–3.450

BDKRB1 expression 0.005 0.065
Low vs. high 2.829 1.366–5.858 2.082 0.957–4.532

Abbreviations: HR, hazard ratio; CI, confdence interval.

Table 8: Univariate and multivariate analysis of overall survival in patients with pRCC (n� 60).

Variable for
overall survival

Univariate analysis Multivariate analysis
HR 95% CI P HR 95% CI P

Gender 0.727
Male vs. female 1.118 0.598–2.089

Ages (years) 0.308
≤60 vs. >60 1.386 0.74–2.598

Pathology grade 0.489
Low grade vs. high grade 1.254 0.661–2.38

Tumor stage 0.007 0.086
≤T2 vs. >T2 2.461 1.278–4.739 0.548 0.276–1.089

Lymph-node metastasis 0.012 0.209
Negative vs. positive 2.252 1.198–4.234 0.652 0.335–1.270

NMUR2 expression 0.002 0.021
Low vs. high 2.95 1.488–5.847 0.432 0.212–0.882

Abbreviations: HR, hazard ratio; CI, confdence interval.

Table 9: Univariate and multivariate analysis of overall survival in patients with pRCC (n� 60).

Variable for
overall survival

Univariate analysis Multivariate analysis
HR 95% CI P HR 95% CI P

Gender 0.16
Male vs. female 0.629 0.329–1.201

Ages (years) 0.107
≤60 vs. >60 1.716 0.89–3.31

Pathology grade 0.49
Low grade vs. high grade 1.259 0.654–2.423

Tumor stage 0.131
≤T2 vs. >T2 0.608 0.318–1.16

Lymph-node metastasis 0.02 0.373
Negative vs. positive 0.468 0.246–0.889 0.732 0.368–1.456

PMCH expression 0 0.001
Low vs. high 0.256 0.13–0.507 0.289 0.139–0.601

Abbreviations: HR, hazard ratio; CI, confdence interval.
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ubiquitination, chromatin remodeling, as well as tran-
scriptional regulation and apoptosis. In this study, we found
the role of BRCA1 in tumor suppression and DNA damage
response, including DNA damage-induced cell cycle
checkpoint activation and DNA damage repair. Te other
hub gene KNG1 (Kininogen-1) is expressed at low level in
glioma cells. KNG1 can exert antiangiogenic properties and
inhibit the proliferation of endothelial cells [11]. Previous
work showed that KNG1 can be used as a serum biomarker
for colorectal cancer [12]. Overexpression of the KNG1
inhibited proliferation and induces apoptosis of glioma cells
[11]. In this study, KNG1 expression was downregulated in
pRCC, which may be associated with the viability and an-
giogenesis of pRCC, but the analysis revealed no statistical
impact of expression of this gene on survival, suggesting
further investigation into the relationship between this gene
and pRCC is required. Lysophosphatidic acid (LPA) is an
extracellular biological lipid that interacts with G protein-
coupled LPA receptors (LPAR1 to LPAR6) [13]. Te lyso-
phosphatidic acid receptor-3 (LPAR3) mediates viability
among malignant cells and aggressiveness among certain
tumors [14]. LPAR3 has been characterized as the major
promoter of long-term viability in melanoma cells [15].
Other studies found that increased expression of LPAR3
increases malignancy in breast and ovarian cancers in vivo
[16, 17]. In this study, LPAR3 was identifed as a down-
regulated gene in pRCC. It was reported with the in-
volvement of LPA5 in the activation of tumor progression in
pancreatic cancer cells [13]. Bradykinin (BK) is produced in
the infammatory tissue microenvironment, where it acts in
cell proliferation, leukocyte activation, cell migration, and
endothelial cell activation [18]. BDKRB1 and BDKRB2
belong to the rhodopsin family of G protein-coupled re-
ceptors. Te activation of BDKRB1 leads to the activation of
macrophages, dendritic cells, and other cells in the tumor
microenvironment, which have angiogenic properties and is
related to the proliferation of malignant tumors [19].
BDKRB1 contributes to interleukin-8 production and
glioblastoma migration [20]. Wang et al. reported that in-
hibition of BDKRB2, but not the B1 receptor, attenuated
bradykinin-mediated invasion and migration in colorectal

cancer cells and inhibited ERK1/2 activation and IL-6
production [21]. Tus, the identifcation of inhibitors
against BDKRB1 may be a reasonable strategy to suppress
pRCC. Neuromodulin U (NMU) activates the G protein-
coupled receptor NMUR2, and NMU signaling interacts
with several cancer-related pathways, including the WNT
receptor cascade, resulting in increased activation of WNT/
planar cell polarity (PCP) efector RAC1, which promotes
tumor cell invasion and metastasis [22]. NMUR2 is a re-
ceptor that enhances NMU-mediated cell motility and in-
vasion in human pancreas and endometrial cancer cells
[23, 24]. Hub genes NMU and NMUR2 have not previously
been reported to play roles in pRCC. PMCH encodes the 165
aa prohormone promelanin-concentrating hormone
(PMCH), which is proteolytically processed into several
peptides, including the oncogenic peptide melanin-
concentrating hormone (MCH) [25]. In this study we
found that increased expression of PMCH was associated
with poor survival in patients with pRCC, suggesting PMCH
may be a potential diagnostic biomarker or predictor of
prognosis. Human serum amyloid A (SAA) is a high-density
lipoprotein (HDL)-related lipoprotein with major roles in
the regulation of infammation and cholesterol transport
[26]. Human serum amyloid A (SAA) has been widely
regarded as an accurate and sensitive indicator of in-
fammation, which can be synthesized by the liver and
cancer cells [27]. SAA1 regulates cell adhesion andmigration
and binding to laminin by inducing cytokine expression
[28]. A previous study reported a relationship between in-
creased SAA1 concentration and poor prognosis and distant
metastasis in ccRCC patients [29].

In conclusion, bioinformatics analysis was used to
identify DEGs that may be involved in the development or
progression of the pRCC. Tis study identifed several genes
that may be involved in the pathology of papillary renal cell
carcinoma. BDKRB1, NMUR2, PMCH, and SAA1 may
contribute to the occurrence and development of papillary
renal cell carcinoma.Tis identifcation of specifc biological
functions that may be involved in the mechanism of pRCC
development provides new clues and directions for eforts to
develop future treatments for papillary renal cell carcinoma.

Table 10: Univariate and multivariate analysis of overall survival in patients with pRCC (n� 60).

Variable for
overall survival

Univariate analysis Multivariate analysis
HR 95% CI P HR 95% CI P

Gender 0.381
Male vs. female 0.75 0.393–1.429

Ages (years) 0.572
≤60 vs. >60 1.202 0.635–2.275

Pathology grade
Low grade vs. high grade 1.335 0.683–2.609 0.399

Tumor stage 0.016 0.209
≤T2 vs. >T2 0.443 0.228–0.861 0.639 0.318–1.284

Lymph-node metastasis 0.036 0.333
Negative vs. positive 0.497 0.259–0.956 0.714 0.361–1.413

SAA1 expression 0 0.004
Low vs. high 0.261 0.132–0.516 0.332 0.158–0.7

Abbreviations: HR, hazard ratio; CI, confdence interval.
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Purpose. Osteosarcoma is the most common primary bone tumor. Polypeptide N-acetylgalactosaminyltransferase 14 (GALNT14),
a member of the N-acetylgalactosaminyltransferase family, has been considered to be associated with various cancers. However, its
role in osteosarcoma remains unknown. Here, we aimed to explore the expression and potential mechanism of GALNT14 in
osteosarcoma through bioinformatics analysis and in vitro experiments. Methods. We investigated GALNT14 expression in
osteosarcoma using GEO, the TIMER database, and clinical samples. Protein-protein interaction (PPI) network analysis on
GALNT14 was performed by STRING. TARGETwas used to identify diferentially expressed genes (DEGs) between high and low
GALNT14 expression. Te correlation between GALNT14 and cuproptosis-related genes in osteosarcoma was analyzed by R
language. Te prognostic signifcance of GALNT14 was examined by Kaplan–Meier survival analysis. Additionally, we inhibited
GALNT14 function in an osteosarcoma cell line by transfecting siRNA and subsequently explored the efect on drug sensitivity by
CCK-8, clonogenic assay, and fow cytometry. Results. GALNT14 was signifcantly elevated in osteosarcoma tissue, osteosarcoma
cell lines, and metastatic osteosarcoma. PPI analysis revealed that GALNT14 was associated with MUC7, MUC13, MUC5AC,
C1GALT1, MUC15, MUC16, MUC1, MUC4, MUC21, and MUC17. In the high GALNT14 expression group, we discovered 81
upregulated DEGs and 73 downregulated DEGs. Functional enrichment analysis of DEGs showed signifcant enrichment in the
Wnt, TGF-β, Hippo, PI3K signaling pathways and cell adhesion molecules. Expression of cuproptosis-related genes was closely
related in osteosarcoma, and GALNT14 expression was signifcantly positively correlated with FDX1, a key regulator of
cuproptosis. Kaplan–Meier survival showed that GALNT14 was linked to poor overall survival and disease-free survival in
osteosarcoma. In vitro experiments suggested that GALNT14 was associated with chemotherapy resistance in osteosarcoma.
Conclusion. We identifed a GALNT family gene, GALNT14, that was highly expressed in osteosarcoma. Tis gene was closely
associated with metastasis, progression, cuproptosis-related genes, and chemosensitivity of osteosarcoma, and showed correlation
with poor overall survival and disease-free survival in osteosarcoma.

1. Introduction

Osteosarcoma, the most prevalent primary bone cancer,
mostly occurs in children and adolescents, with the second
highest incidence among older adults [1]. Multiagent che-
motherapy combined with surgical resection is the standard
treatment for patients with localized disease, and it results in
long-term survival rates of approximately 70% [2]. Metas-
tasis contributes to more than 90% of all cancer-related
deaths, including osteosarcoma [3]. Te lung is the site of

more than 75% of osteosarcomametastases, andmost deaths
from osteosarcoma are attributed to lung metastases. It is
well understood how tumor cell dispersion and metastatic
colonization of distant sites physically occur [4]. Whole-
genome sequencing has elucidated many genes responsible
for the metastatic progression of osteosarcoma. However,
the underlying mechanisms are not well defned. Un-
derstanding the underlying mechanisms of the progression
and metastasis of osteosarcoma may help to improve the
prognosis.
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Te enzymes that make up the N-
acetylgalactosaminyltransferase (GALNT) family add an
N-acetylgalactosamine (GalNAc) to a threonine or serine
residue of a mucin-type protein to start the process of O-
glycosylation [5]. Tomsen-nouvelle (Tn) antigens, which
are well-knowncancer-associated molecules, are synthesized
largely as a result of this process [6].Tere are 20members in
the GALNTfamily, ranging fromGALNT1 to GALNT14 and
from GANLTL1 to GANLTL6 [5]. Te modifcation of O-
glycosylation by GALNTs may impact a variety of biological
functions associated with cancer, including tumor devel-
opment, proliferation, and migration [7].

Te GALNT14 gene, which is over 228kb in length, is
located on chromosome 2p23.1. Te 552-amino acid type II
membrane protein GALNT14 has a catalytic domain, a trans-
membrane domain, a stem region, and an N-terminal cyto-
plasmic domain [6]. GALNT14 has been found in various
human tissues since it was frst discovered in the gastric cancer
cell line MKN45 in 2003 [8]. Further, the roles of GALNT14 in
many malignancies have been identifed, including the modi-
fcation of migration characteristics, transformation of tissue
invasiveness, and change in apoptotic signaling [9]. Clinically,
GALNT14 has been proposed as a biomarker for anticancer
therapy and prognosis [9]. However, the function of GALNT14
in osteosarcoma is still unclear.

In this study, we analyzed the expression of GALNT14 in
osteosarcoma using expression data found in public data-
bases. Ten protein-protein interaction (PPI) analysis, GO/
KEGG enrichment analysis, and correlation analysis of
cuproptosis-related genes preliminarily revealed the po-
tential function of GALNT14. Finally, we assessed the sig-
nifcance of GALNT14 in chemosensitivity and prognosis in
osteosarcoma.

2. Methods

2.1. Diferential Expression Analysis. Te microarray tran-
scriptome data were collected from three osteosarcoma
datasets (GSE12865, GSE11414, and GSE21257) in the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo) database. Te three datasets contained samples from
osteosarcoma tumor samples and normal human osteo-
blasts, osteosarcoma and human osteoblast cell lines, and
osteosarcoma patients who developed metastases or not,
respectively. GEO2R was used for GALNT14 expression
analysis [10]. Te Tumor Immune Estimation Resource
(TIMER, https://cistrome.shinyapps.io/timer/) is a trust-
worthy and practical database that ofers extensive gene
expression data for a variety of cancer types. Using the
DifExp module of the TIMER database, we assessed the
levels of GALNT14 in adjacent normal tissues and cancerous
tissues across cancers [11].

2.2. Functional Enrichment Analysis. With online PPI data
obtained from the STRING database (https://cn.string-db.
org/) [12], we examined the GALNT14 PPI network.

Gene expression data of 98 osteosarcoma patients were
obtained from the Terapeutically Applicable Research to

Generate Efective Treatments (TARGET, https://ocg.
cancer.gov/programs/target) database, an open database
for childhood cancers. To examine the mRNA that difered
in expression between groups (high GALNT14 expression
vs. low GALNT14 expression), we used the limma package in
the R programming language. Te criterion for the difer-
ential expression of mRNAs was established as “adjusted
p< 0.05 and Log2 (fold change)> 1 or Log2 (fold change)
≤1.”

Te diferential expression data were evaluated by
functional enrichment in order to better support the un-
derlying function of GALNT14. Gene Ontology (GO) is
a popular approach for annotating genes with functions,
particularly molecular function (MF), biological pathways
(BP), and cellular components (CC). Te Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) enrichment analysis is
a useful tool for learning about gene functions and related
high-level genome functional data. Te ClusterProfler
package (version: 3.18.0) in R was used to examine the GO
function and the enriched KEGG pathway of possible targets
in order to better understand the carcinogenesis of
GALNT14. Te boxplot was created using the R package
ggplot2. Te heatmap was created using the R software’s
pheatmap package [13].

2.3. Te Correlations among Cuproptosis-Related Genes and
GALNT14. Te cuproptosis-related genes (CDKN2A,
FDX1, DLD, DLAT, LIAS, GLS, LIPT1, MTF1, PDHA1, and
PDHB) [14] and GALNT14 expression data were obtained
from the TARGET database. A parametric (Pearson) or
nonparametric (Spearman) test method was employed for
the correlation analysis based on the data normality test.
Next, the correlations between cuproptosis-related genes
and GALNT14 were displayed via the R software package
heatmap. Te R software package circlize (version 0.4.12)
was used to display the chord diagram. Te correlation
between quantitative variables without a normal distribution
was described using Spearman’s correlation analysis. Sta-
tistics were considered signifcant for p values< 0.05.

2.4. Kaplan–Meier Survival Analysis of GALNT14. Te gene
expression and clinical information of 98 individuals with
osteosarcoma were retrieved from the TARGET database.
Te diference in overall survival (OS) and disease-free
survival (DFS) between the high GALNT14 expression
group and the low GALNT14 expression group was com-
pared using the log-rank test. p values and the hazard ratio
(HR) with a 95% confdence interval (CI) were calculated for
Kaplan–Meier curves using log-rank testing and univariate
Cox proportional hazards regression. All analyses were
performed in R version 4.0.3. Statistics were considered
signifcant if p< 0.05.

2.5. Clinical Tissues and Cell Culture. Normal human oste-
oblasts and osteosarcoma tumor samples were obtained
from healthy donors or patients with osteosarcoma at Tird
Xiangya Hospital. Fresh tissues were preserved with liquid
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nitrogen. All patients provided informed consent. Human
osteosarcoma cell lines MG-63 and U-2 osteosarcoma were
purchased from the American Type Culture Collection
(ATCC; Manassas, VA, United States). Cell culture was
performed based on the recommended protocols. Osteo-
sarcoma cell lines were transfected with siRNA (5′-CCA
UCC AGA AGG GCA AUA UTT-3′ (sense) and 5′- AUA
UUG CCC UUC UGG AUG GTT-3′ (antisense)) using
LipofectamineTM 3000 (Invitrogen, MA,
United States) [15].

2.6. Cell Viability Assay and Clonogenic Assay. Te cell
counting kit-8 (CCK-8) assay was used to determine the
viability of the cells. 96-well plates were seeded with MG-63
or U-2 osteosarcoma cells. Following adhesion, the cells
were given the indicated concentrations and times of cis-
platin or doxorubicin. Each well was then flled with 10 μl of
CCK-8 reagent, and each was cultured at 37°C for 1 hour.
Te optical density of the cell lysates at 450 nm was mea-
sured in order to calculate the relative number of
surviving cells.

For colony formation assays, MG-63 or U-2 osteosar-
coma cells were seeded at 500 cells/well in 6-well plates and
treated with various concentrations of cisplatin or doxo-
rubicin for 14 days. After that, cells were fxed with 4%
paraformaldehyde, followed by three washes in PBS and two
washes in ddH2O.

2.7. Extraction of RNA and qPCR. Using the usual TRIzol
(Invitrogen, United States) RNA extraction technique, total
RNA was isolated from the cells. Using a DNA/RNA
GeneQuant Calculator, the quantity of RNA samples was
determined by UV absorbance at 260–280 nm (Amersham
Biosciences, Piscataway, NJ, USA). Using the PrimeScript
RT Reagent Kit, reverse transcription was carried out
(Takara, China). Real-time qPCR was carried out with the
use of the Brilliant II SYBR Green RT-qPCR kit. For RT-
PCR, the following primers were utilized: GALNT14
(474 bp): sense 5′-ACCTGGACACCT TCACCTACAT-3′,
antisense 5′- CCAATCTGCTCTCAACATTCC-3′; GAPDH
(230 bp): sense 5′- CTCTCTGCTCCTCCTGTTCGACAG-
3′, antisense 5′- GTGGAATCATATTGGAACATGT -3′.

2.8. Flow Cytometry. Apoptosis was measured using
Annexin V/PI double-staining (KeyGEN BioTECH, China).
Briefy, cells were incubated with the required conditions
and then washed with PBS and trypsinized to get a single cell
suspension. Next, 105 cells/ml of suspension was suspended
in 100 μL binding bufer and stained with Annexin V/PI in
the dark for 30min. Te analysis was performed with
FACSVerse (BD Biosciences) and FlowJo software (Tree
Star, United States).

2.9. Statistical Analyses. Each result was independently
verifed by at least three separate experiments, and all data
were displayed as mean± standard deviation (SD). To de-
termine whether diferences were statistically signifcant,

two-sided Student’s t-tests or analysis of variance tests were
utilized. Statistics were considered to be signifcant at
p< 0.05.

3. Results

3.1. GALNT14 Expression in Osteosarcoma and Pan-Cancer.
GSE12865 provided the expression profles of osteosarcoma
tumor samples and normal human osteoblasts. As shown in
Figure 1(a), GALNT14 expression was signifcantly elevated
in osteosarcoma (p � 0.002). We also observed upregulation
of GALNT14 in the osteosarcoma cell line U2OS compared
to GALNT14 expression in the human osteoblast cell line
HOB (p< 0.001) (Figure 1(b)). Furthermore, osteosarcoma
at the metastatic stage showed an increased GALNT14 level
compared to that at the nonmetastatic stage (p � 0.004)
(Figure 1(c)). Te levels of GALNT14 across cancers were
examined using the TIMER database. Compared with ad-
jacent normal tissues, GALNT14 presented with a signif-
cantly higher expression in the tumor tissues of bladder
urothelial carcinoma, cholangiocarcinoma, head and neck
squamous cell carcinoma, kidney renal clear cell carcinoma,
kidney renal papillary cell carcinoma, lung adenocarcinoma,
lung squamous cell carcinoma, and uterine corpus endo-
metrial carcinoma. However, kidney chromophobe, liver
hepatocellular carcinoma, and prostate adenocarcinoma had
lower GALNT14 expression than adjacent normal tissues
(Figure 1(d)). All the p values of pan-cancer analysis were
summarized in Supplementary Table 1.

3.2. PPI and Diferentially Expressed Genes Associated with
GALNT14. We used the STRING database to analyze the
GALNT14 PPI network and revealed a link between
GALNT14 and MUC7, MUC13, MUC5AC, C1GALT1,
MUC15, MUC16, MUC1, MUC4, MUC21, and MUC17
(Figure 2(a)). We analyzed diferentially expressed genes
associated with GALNT14 levels using the osteosarcoma
expression profle from the TARGET database, which
contains the largest sample size of osteosarcoma. Difer-
entially expressed genes were represented by a heatmap and
a volcano plot (Figures 2(b) and 2(c)). In the high GALNT14
expression group, we discovered 81 upregulated genes and
73 downregulated genes. Te functional enrichment analysis
showed signifcant enrichment in pathways related to tu-
morigenesis and progression, such as the Wnt, TGF-β,
Hippo, and PI3K signaling pathways. In addition, we also
observed the enrichment of cell adhesion molecules, which
may be closely related to tumor metastasis (Figure 3).

3.3. GALNT14 Was Associated with Cuproptosis-Related
Genes in Osteosarcoma. We analyzed the correlation of
the expression of GALNT14 and 10 cuproptosis-related
genes by using the TARGET osteosarcoma dataset. As
shown in Figure 4(a) and Supplementary Table 2, the ex-
pression levels of genes associated with cuproptosis were
strongly correlated with osteosarcoma.Ten the relationship
between GALNT14 and cuproptosis-related genes was dis-
played separately. GALNT14 expression was signifcantly
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positively correlated with FDX1 (R� 0.33, p< 0.001), a key
regulator of copper ionophore-induced cell death
(Figure 4(b)). Additionally, there was some association
between DLAT and GALNT14 expression (R� 0.17,
p � 0.103). Te gene expression distributions are displayed
in a dot plot (Figure 4(c))..

3.4. GALNT14 Was Associated with Poor OS and DFS in
Osteosarcoma. We frst performed a detailed analysis of the
impact of GALNT14 on OS in osteosarcoma.Te correlation
between gene expression and survival time and status is
depicted in Figure 5(a); high GALNT14 expression was
associated with poor OS in osteosarcoma. Kaplan–Meier
survival curves also demonstrated this trend (p � 0.0305,
HR� 2.074, 95% CI (1.071, 4.016)) (Figure 5(b)). In addition,
GALNT14 was also associated with poor DFS in osteosar-
coma (p � 0.00416, HR� 2.41, 95% CI (1.32, 4.398)) (Sup-
plementary Figure 1 and Figure 5(c)).

3.5. GALNT14 Was Related to Chemosensitivity in
Osteosarcoma. First, we measured the expression of
GALNT14 in normal human osteoblasts, drug-sensitive
osteosarcoma, and drug-resistant osteosarcoma by RT-
qPCR. As shown in Figure 6(a), the expression of
GALNT14 was increased in osteosarcoma compared with
normal osteoblasts, especially in drug-resistant osteosar-
coma. Ten, we explored the efect of GALNT14 on drug
sensitivity in vitro. A siRNA was used to inhibit the ex-
pression of GALNT14 in the osteosarcoma cell lines MG-6
and U-2 (Figure 6(b)). We found that inhibition of
GALNT14 improved sensitivity to the chemotherapeutics
cisplatin and doxorubicin in MG-6 and U-2 cell lines by
detecting cell proliferation with CCK-8 (Figure 6(c)), and
consistent trends were also observed in the clonogenic assay
(Figure 6(d)). In addition, as shown in Figure 7, fow
cytometry revealed that inhibition of GALNT14 resulted in
an increased rate of apoptosis after cisplatin or doxorubicin
treatment.
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Figure 1: GALNT14 expression in osteosarcoma and pan-cancer. (a) GALNT14 expression data in an osteosarcoma from GSE12865. (b)
GALNT14 expression data in osteosarcoma cell line from GSE11414. (c) GALNT14 expression data in metastatic osteosarcoma from
GSE21257. (d) GALNT14 pan-cancer expression in TIMER. ∗∗p< 0.01, ∗∗∗p< 0.001.
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4. Discussion

Te association between GALNT14 expression and cancer
characteristics has been studied in multiple tumors. For
example, GALNT14 was found to be overexpressed in most
breast cancer tissues and associated with lung metastasis
[16, 17]. Overexpression of GALNT14 was also found in

ovarian cancer [15, 18]. In summary, previous reports have
suggested abnormal expression of GALNT14 in cancer and
metastatic tissues. Our study revealed for the frst time the
expression of GALNT14 in osteosarcoma. Consistently,
increased expression of GALNT14 was identifed in osteo-
sarcoma. GALNT14 expression was also elevated in meta-
static osteosarcoma compared to the nonmetastatic stage.
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Figure 2: GALNT14 PPI network and coexpression genes in osteosarcoma. (a) PPI network of GALNT14. Diferentially expressed genes
associated with GALNT14 level showing in heatmap (b) and volcano plot (c).
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Our results support the potential application of GALNT14 as
a predictive biomarker for the diagnosis and metastasis of
osteosarcoma.

Previous studies have suggested the signifcance of
GALNT14 for the metastasis of a wide variety of cancers
[19–21]. In this study, in addition to aberrant expression in
metastatic osteosarcoma, GALNT14 was also found to in-
teract with mucins (except for C1GALT1) by PPI analysis.
Altered mucin glycosylation patterns during malignant
transformation have been considered to promote cancer cell
diferentiation, proliferation, invasion, and metastasis [22].
Additionally, we observed that multiple cancer-related
pathways were enriched through functional enrichment
analysis of genes associated with GALNT14 levels, such as
the Wnt, TGF-β, Hippo, and PI3K signaling pathways. Te

Wnt signaling pathway is one of the key cascades regulating
development and has also been tightly associated with os-
teosarcoma [23]. TGF-βs have been considered to exhibit
protumoral and promigratory efects on osteosarcoma [24].
TeHippo signaling pathway shows a close relationship with
osteosarcoma and is a potential therapeutic target in the
future [25]. Tese results reveal the underlying mechanism
by which GALNT14 promotes tumorigenesis and metastasis
in osteosarcoma.

Te elimination of superfuous and damaged cells is
achieved by the vital process of cell death. Apoptosis,
necroptosis, and ferroptosis are a few examples of pro-
grammed and nonprogrammed cell death that have been
uncovered in previous research [26]. Recently, abnormal
copper ion elevations have been linked to a previously
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unidentifed death pathway called cuproptosis [27]. Tere-
fore, signifcant interest has developed in the association of
cuproptosis-related genes with osteosarcoma. Our results
showed that the expression of multiple cuproptosis-related
genes was closely correlated with osteosarcoma. In addition,
GALNT14 is also closely associated with the expression of
FDX1, a key gene in cuproptosis. In summary, our results
suggest a possible novel mechanism of GALNT14 in-
volvement in osteosarcoma cell proliferation and death.

Prognostic signifcance is currently a hot topic in on-
cology research. Multiple genes have been determined to be
associated with the prognosis of osteosarcoma, and some
prognostic models have been established [28, 29]. However,
the prognostic signifcance of GALNT14 in osteosarcoma
remains unknown. Previous studies have reported an as-
sociation between GALNT14 and the prognosis of a variety
of cancers, including gastric cancer, cholangiocarcinoma,
ovarian cancer, and breast cancer [18, 21, 30, 31]. Our
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research revealed a strong correlation between high
GALNT14 expression and poor OS and DFS in osteosar-
coma. Tis fnding indicates the potential of GALNT14 as
a prognostic biomarker for osteosarcoma.

Trough an extensive repertoire of resistance mecha-
nisms, tumors elude targeted cancer therapy.Tis is also one
of the main reasons for the poor prognosis of tumors.
Osteosarcoma is a kind of disease that is particularly re-
sistant to chemotherapy. Tis disease, according to clinical
trials, only responds to high doses of chemotherapy and
rapidly acquires resistance [32, 33]. Chemotherapy re-
sistance in osteosarcoma potentially correlates to drug build-
up in the cell, DNA damage repair, intracellular de-
toxifcation, signal transduction, apoptosis, the tumor mi-
croenvironment, and immunity [34]. GALNT14 serves as an
emerging marker for predicting therapeutic outcomes in
multiple tumors [9], and it has also been identifed to be
related to paclitaxel resistance in lung adenocarcinoma [35].

Here, we reveal for the frst time the signifcance of
GALNT14 in the chemosensitivity of osteosarcoma.

Tere are some limitations to this study. For example,
the molecular interaction of GALNT14 and the mechanism
of GALNT14 on drug sensitivity need further experimental
verifcation. In conclusion, we identifed a GALNT family
gene, GALNT14, that was highly expressed in osteosarcoma.
GALNT14 was closely associated with metastasis, progres-
sion, cuproptosis-related genes, and the chemosensitivity of
osteosarcoma. Finally, the poor prognostic signifcance of
GALNT14 in osteosarcoma was also elucidated. Tis dis-
covery is anticipated to ofer fresh perspectives on osteo-
sarcoma diagnosis and therapy.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.
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Figure 7: Interfering with GALNT14 expression promotes the apoptotic efect of cisplatin and doxorubicin on osteosarcoma cell lines. MG-
63 and U-2 OS cells were treated with Cis (20 μmol/L) or Dox (0.2 μg/mL) for 24 h. Ten, apoptosis was determined by fow cytometry. Cis,
cisplatin; Dox, doxorubicin.

10 Journal of Oncology



Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis study was supported by the Natural Science Foundation
of Hunan Province (Grant number: 2021JJ31017).

Supplementary Materials

Supplementary Figure 1: the gene expression, survival time,
and DFS survival status of the TARGET dataset. Te top
scatterplot represents gene expression from low to high. Te
scatter plot distribution represents the gene expression of
diferent samples corresponding to the survival time and
survival status. Te bottom fgure is the gene expression
heatmap. Supplementary Table 1: p values of GALNT14
expression in pan-cancer analysis. Supplementary Table 2:
the expression levels of cuproptosis-related genes were
strongly correlated in osteosarcoma. (Supplementary
Materials)

References

[1] L. Mirabello, R. J. Troisi, and S. A. Savage, “Osteosarcoma
incidence and survival rates from 1973 to 2004: data from the
surveillance, epidemiology, and end results program,” Cancer,
vol. 115, no. 7, pp. 1531–1543, 2009.

[2] S. S. Bielack, B. Kempf-Bielack, G. Delling et al., “Prognostic
factors in high-grade osteosarcoma of the extremities or
trunk: an analysis of 1, 702 patients treated on neoadjuvant
cooperative osteosarcoma study group protocols,” Journal of
Clinical Oncology, vol. 20, no. 3, pp. 776–790, 2002.

[3] S. Valastyan and R. A. Weinberg, “Tumor metastasis: mo-
lecular insights and evolving paradigms,” Cell, vol. 147, no. 2,
pp. 275–292, 2011.

[4] A. F. Chambers, A. C. Groom, and I. C. MacDonald, “Dis-
semination and growth of cancer cells in metastatic sites,”
Nature Reviews Cancer, vol. 2, no. 8, pp. 563–572, 2002.

[5] E. P. Bennett, U. Mandel, H. Clausen, T. A Gerken, T. A Fritz,
and L. A Tabak, “Control of mucin-type O-glycosylation:
a classifcation of the polypeptide GalNAc-transferase gene
family,” Glycobiology, vol. 22, no. 6, pp. 736–756, 2012.

[6] K. G. Ten Hagen, T. A. Fritz, and L. A. Tabak, “All in the
family: the UDP-GalNAc:polypeptide N-
acetylgalactosaminyltransferases,” Glycobiology, vol. 13,
no. 1, pp. 1R–16R, 2003.

[7] E. M. Beaman and S. A. Brooks, “Te extended ppGalNAc-T
family and their functional involvement in the metastatic
cascade,” Histology & Histopathology, vol. 29, no. 3,
pp. 293–304, 2014.

[8] H. Wang, K. Tachibana, Y. Zhang et al., “Cloning and
characterization of a novel UDP-GalNAc:polypeptide N-
acetylgalactosaminyltransferase, pp-GalNAc-T14,” Bio-
chemical and Biophysical Research Communications, vol. 300,
no. 3, pp. 738–744, 2003.

[9] W. R. Lin and C. T. Yeh, “GALNT14: an emerging marker
capable of predicting therapeutic outcomes in multiple
cancers,” International Journal of Molecular Sciences, vol. 21,
no. 4, p. 1491, 2020.

[10] S. Davis and P. S. Meltzer, “GEOquery: a bridge between the
gene expression Omnibus (GEO) and BioConductor,” Bio-
informatics, vol. 23, no. 14, pp. 1846-1847, 2007.

[11] T. Li, J. Fan, B. Wang et al., “TIMER: a web server for
comprehensive analysis of tumor-infltrating immune cells,”
Cancer Research, vol. 77, no. 21, pp. e108–e110, 2017.

[12] D. Szklarczyk, A. L. Gable, D. Lyon et al., “STRING v11:
protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experi-
mental datasets,” Nucleic Acids Research, vol. 47, no. D1,
pp. D607–D613, 2019.

[13] M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers
diferential expression analyses for RNA-sequencing and
microarray studies,” Nucleic Acids Research, vol. 43, no. 7,
p. e47, 2015.

[14] Z. Bian, R. Fan, and L. Xie, “A novel cuproptosis-related
prognostic gene signature and validation of diferential ex-
pression in clear cell renal cell carcinoma,” Genes, vol. 13,
no. 5, p. 851, 2022.

[15] R. Wang, C. Yu, D. Zhao, M. Wu, and Z. Yang, “Te mucin-
type glycosylating enzyme polypeptide N-
acetylgalactosaminyltransferase 14 promotes the migration
of ovarian cancer by modifying mucin 13,” Oncology Reports,
vol. 30, no. 2, pp. 667–676, 2013.

[16] K. H. Song, M. S. Park, T. S. Nandu, S. Gadad, S. C. Kim, and
M. Y. Kim, “GALNT14 promotes lung-specifc breast cancer
metastasis by modulating self-renewal and interaction with
the lung microenvironment,” Nature Communications, vol. 7,
no. 1, Article ID 13796, 2016.

[17] C. Wu, X. Guo, W. Wang et al., “N-Acetylgalactosaminyl-
transferase-14 as a potential biomarker for breast cancer by
immunohistochemistry,” BMC Cancer, vol. 10, no. 1, p. 123,
2010.

[18] R. Sheta, M. Bachvarova, M. Plante et al., “Altered expression
of diferent GalNActransferases is associated with disease
progression and poor prognosis in women with high-grade
serous ovarian cancer,” International Journal of Oncology,
vol. 51, no. 6, pp. 1887–1897, 2017.

[19] M. Y. Kim, “Role of GALNT14 in lung metastasis of breast
cancer,” BMB Reports, vol. 50, no. 5, pp. 233-234, 2017.

[20] O. S. Kwon, H. Lee, H. J. Kong et al., “Correction to: con-
nectivity map-based drug repositioning of bortezomib to
reverse the metastatic efect of GALNT14 in lung cancer,”
Oncogene, vol. 40, no. 10, p. 1921, 2021.

[21] K. H. Liang, T. S. Yeh, R. C. Wu, C. N. Yeh, and C. T. Yeh,
“GALNT14 genotype is associated with perineural invasion,
lymph node metastasis and overall survival in resected
cholangiocarcinoma,” Oncology Letters, vol. 13, no. 6,
pp. 4215–4223, 2017.

[22] R. Bhatia, S. K. Gautam, A. Cannon et al., “Cancer-associated
mucins: role in immune modulation and metastasis,” Cancer
and Metastasis Reviews, vol. 38, no. 1-2, pp. 223–236, 2019.

[23] K. Matsuoka, L. Bakiri, L. I. Wolf et al., “Wnt signaling and
Loxl2 promote aggressive osteosarcoma,” Cell Research,
vol. 30, no. 10, pp. 885–901, 2020.

[24] A. Lamora, J. Talbot, M. Mullard, B. Brounais-Le Royer,
F. Redini, and F. Verrecchia, “TGF-Beta signaling in bone
remodeling and osteosarcoma progression,” Journal of
Clinical Medicine, vol. 5, no. 11, p. 96, 2016.

[25] E. Rothzerg, E. Ingley, B. Mullin, W. Xue, D. Wood, and J. Xu,
“Te Hippo in the room: targeting the Hippo signalling
pathway for osteosarcoma therapies,” Journal of Cellular
Physiology, vol. 236, no. 3, pp. 1606–1615, 2021.

Journal of Oncology 11

https://downloads.hindawi.com/journals/jo/2023/1083423.f1.docx
https://downloads.hindawi.com/journals/jo/2023/1083423.f1.docx


[26] P. Lei, T. Bai, and Y. Sun, “Mechanisms of ferroptosis and
relations with regulated cell death: a review,” Frontiers in
Physiology, vol. 10, p. 139, 2019.

[27] P. Tsvetkov, S. Coy, B. Petrova et al., “Copper induces cell
death by targeting lipoylated TCA cycle proteins,” Science,
vol. 375, no. 6586, pp. 1254–1261, 2022.

[28] S. Bakhshi and V. Radhakrishnan, “Prognostic markers in
osteosarcoma,” Expert Review of Anticancer Terapy, vol. 10,
no. 2, pp. 271–287, 2010.

[29] G. Wu and M. Zhang, “A novel risk score model based on
eight genes and a nomogram for predicting overall survival of
patients with osteosarcoma,” BMC Cancer, vol. 20, no. 1,
p. 456, 2020.

[30] T. H. Chen, W. R. Lin, C. Lee et al., “Prognostic stratifcation
of advanced gastric signet ring cell carcinoma by clinico-
pathological factors and GALNT14 genotype,” Journal of
Cancer, vol. 9, no. 19, pp. 3540–3547, 2018.

[31] K. Milde-Langosch, D. Schutze, L. Oliveira-Ferrer et al.,
“Relevance of βGal–βGalNAc-containing glycans and the
enzymes involved in their synthesis for invasion and survival
in breast cancer patients,” Breast Cancer Research and
Treatment, vol. 151, no. 3, pp. 515–528, 2015.

[32] C. M. Hattinger, M. Fanelli, E. Tavanti et al., “Advances in
emerging drugs for osteosarcoma,” Expert Opinion on
Emerging Drugs, vol. 20, no. 3, pp. 495–514, 2015.

[33] X. Yang, P. Yang, J. Shen et al., “Prevention of multidrug
resistance (MDR) in osteosarcoma by NSC23925,” British
Journal of Cancer, vol. 110, no. 12, pp. 2896–2904, 2014.

[34] I. Lilienthal and N. Herold, “Targeting molecular mechanisms
underlying treatment efcacy and resistance in osteosarcoma:
a review of current and future strategies,” International
Journal of Molecular Sciences, vol. 21, no. 18, p. 6885, 2020.

[35] J. Pu, J. Shen, Z. Zhong, M. Yanling, and J. Gao, “KANK1
regulates paclitaxel resistance in lung adenocarcinoma A549
cells,” Artifcial Cells, Nanomedicine, and Biotechnology,
vol. 48, no. 1, pp. 639–647, 2020.

12 Journal of Oncology



Retraction
Retracted: Screening of Key Prognosis Genes of Lung
AdenocarcinomaBasedonExpressionAnalysis onTCGADatabase

Journal of Oncology

Received 11 July 2023; Accepted 11 July 2023; Published 12 July 2023

Copyright © 2023 Journal of Oncology. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Peer-review manipulation

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] Y. Shen, X. Tang, X. Zhou et al., “Screening of Key Prognosis
Genes of Lung Adenocarcinoma Based on Expression Analysis
on TCGA Database,” Journal of Oncology, vol. 2022, Article ID
4435092, 13 pages, 2022.

Hindawi
Journal of Oncology
Volume 2023, Article ID 9815674, 1 page
https://doi.org/10.1155/2023/9815674

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9815674


RE
TR
AC
TE
DResearch Article

Screening of Key Prognosis Genes of Lung Adenocarcinoma Based
on Expression Analysis on TCGA Database

Youfeng Shen,1 Xiaoqing Tang,2 Xiaoqin Zhou,2 Yuanxue Yi,1 Yuan Qiu,3 Jian Xu ,1,4

and Xingzhong Tian 5

1Chongqing Precision Medical Industry Technology Research Institute, Chongqing 400000, China
2Department of Laboratory Medicine, Nanan People’s Hospital, Chongqing 400060, China
3Department of Laboratory Medicine, Kaizhou District People’s Hospital, Chongqing 405400, China
4College of Laboratory Medicine, Chongqing Medical University, Chongqing 400000, China
5The Fifth Hospital of Zhangjiakou, China

Correspondence should be addressed to Jian Xu; jimxj@foxmail.com and Xingzhong Tian; 402809170@qq.com

Received 29 July 2022; Revised 3 September 2022; Accepted 16 September 2022; Published 26 December 2022

Academic Editor: Muhammad Muddassir Ali

Copyright © 2022 Youfeng Shen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. The data of lung adenocarcinoma- (LUAD-) related gene expression profiles were mined from the Cancer Genome
Atlas (TCGA) database using bioinformatics methods and potential biomarkers related to the occurrence, development, and
prognosis of LUAD were screened out to explore the key prognostic genes and clinical significance. Methods. Following the
LUAD gene expression profile data that were initially exported from the TCGA database, R software DESeq2 was employed
to analyze the difference between the expression profiles of LUAD and normal tissues. The R package “clusterProfiler” was
subsequently utilized to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses of the differential genes. A protein-protein interaction (PPI) network was constructed via the String database, and
cytohubba, a plugin of Cytoscape, was applied to screen hub genes using the MCC algorithm. The Gene Expression Profile
Data Interactive Analysis (GEPIA) was used to analyze expressions of 10 candidate genes in LUAD samples and healthy
lung samples, and the selected genes were employed for survival analysis. Results. A total of 1,598 differential genes were
identified through differential analyses and data mining, with 1,394 genes upregulated and 204 downregulated. A total of
10 hub genes CCNA2, CDC20, CCNB2, KIF11, TOP2A, BUB1, BUB1B, CENPF, TPX2, and KIF2C were obtained using
the cytohubba plugin. The results of the GEPIA analysis indicated that compared with normal lung tissue, the mRNA
expression level of the described hub genes in LUAD tissue was significantly increased (P < 0:05). Survival analysis revealed
that these genes had a significant impact on the overall survival time of LUAD patients (P < 0:05). Conclusion. The
previously described key genes related to LUAD identified in the TCGA database may be used as potential prognostic
biomarkers, which will contribute to further comprehension of the occurrence and development of LUAD and provide
references for its diagnosis and treatment.

1. Introduction

Lung cancer has become the most common malignant
tumor worldwide and the leading cause of cancer-related
death, which is usually closely associated with a poor prog-
nosis. According to the latest report of the Global Cancer
Statistics Center, lung cancer has the highest incidence and
mortality among all male patients with malignant tumors,

while the incidence of lung cancer in female patients is lower
than that of breast cancer and colon cancer, and the mortal-
ity rate is second only to that of breast cancer [1]. Lung ade-
nocarcinoma (LUAD) is the most common pathological
type of non-small-cell lung cancer, accounting for 85% of
the incidence of lung cancer [2, 3]. In recent years, it has
been characterized by rapid onset, younger age, high mortal-
ity, and poor prognosis. Therefore, it is increasingly
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important to explore new prognostic genes for LUAD in the
era of precision medicine.

The Cancer Genome Atlas (TCGA) is currently the larg-
est tumor gene expression profile database in the world,
including clinical sample data and genomic data of a variety
of tumors, which promotes the discovery of de novo markers
[4]. Based on TCGA studies, it was found that ZNF695 may
be indirectly associated with proliferation in lung cancer. In
LUAD, ZNF695 expression was significantly higher in bron-
chial and magnolia mRNA isoforms, exhibiting overrepre-
sentation of growth and proliferation pathways,
respectively [5]. RRM2 is upregulated in LUAD, and high
RRM2 expression is associated with clinical progression
and is considered an independent risk factor for OS in
LUAD patients [6].

In this study, based on the TCGA database, the bioinfor-
matics method was applied to screen and integrate the
expression profile data of LUAD, analyze and find differen-
tial genes, and perform functional enrichment analysis, PPI
network construction, key gene screening, survival analysis,
etc. This provides a theoretical basis for further screening
of prognostic genes in LUAD.

2. Material and Methods

2.1. Data Acquisition. “Lung cancer” was used as the key-
word to search in TCGA (https://portal.gdc.cancer.gov/)
database, and the data category was selected as “tran-
scriptome profiling”. Publicly available genomic data on
LUAD were downloaded, including 551 samples, of which
497 were LUAD-associated and 54 were normal samples.
The clinical information of 486 cases including gender, sur-
vival status, survival time, race, and pathological stage were
obtained for subsequent analysis.

2.2. Method

2.2.1. Data Processing and Screening of Differentially
Expressed Genes. After removing the repeated genes in
the downloaded original data and the genes with 0 expres-
sions in the multiple copies, differential analysis and
screening of differentially expressed genes were undertaken
using the R software package DESeq2. The selection cri-
teria are as follows: jlog 2ðFoldChangeÞj > 3 and correct
after P values (false discovery rate, FDR)<0.05. The top
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Figure 1: Heat map and volcano map of differentially expressed genes. (a) Heat map of the top 50 genes with the most significant
differences. (b) Volcano map of differential genes (red dots: significantly upregulated genes, blue dots: significantly downregulated genes,
gray dots: genes with no significant differences).
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50 cluster heat map of differential genes between normal
samples and tumor samples was drawn using the R soft-
ware package PheATMap. The R package GGPubR and

GGThemes were used to draw the volcano map to observe
the relationship between differential change times and
FDR.
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Figure 2: GO and KEGG enrichment analysis of differential genes. (a) GO enrichment analysis of 1394 upregulated genes. (b) KEGG
enrichment analysis of 1394 upregulated genes. (c) GO enrichment analysis of 204 downregulated genes. (d) KEGG enrichment analysis
of 204 downregulated genes.
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2.2.2. GO and KEGG Enrichment Analysis of Differential
Genes. Based on the R4.1.1 environment, four R packages
(clusterProfiler, Stringr, org.hs.eg.db, and ggploT2) were
performed using gene function analysis, including Biological
process (BP), Cellular components (CC) and Molecular
function (MF), and pathway analysis based on KEGG. The
screening criterion is as follows: FDR < 0:05. The top 10
results of significantly enriched BP, CC, MF, and KEGG
pathways were selected and graphed.

2.2.3. Protein Interaction Network Construction and Hub
Gene Screening. The STRING Database (https://string-db
.org/) is an online analytical tool for identifying known pro-

teins or predicting protein-protein interactions. The selected
differential genes were imported into the database for
protein-protein interaction (PPI) analysis, and the confi-
dence score threshold was set to 0.9. The PPI network results
were then imported into Cytoscape 3.6.1 in TSV format for
visualization. The top 10 genes were screened from the PPI
network as hub genes using the MCC method in the Cyto-
hubba plugin of Cytoscape.

2.2.4. Expression of 10 Hub Genes in LUAD. Using GEPIA
(http://gepia.cancer-pku.cn/index.html) online analysis web-
site (“Datasets” select “LUAD”, “Matched normal data”
select “TCGA normal and the Genotype-Tissue Expression

(a)
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KIF2C
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CCNB2CCNA2

KIF11

(b)

Figure 3: Screening of top 10 hub genes based on PPI network. (a) Top 50 gene-protein interaction network diagram. (b) MCC algorithm
was used to screen the top 10 central genes.
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(GTEx) data”), the expression of 10 candidate genes in
LUAD tumor samples and normal lung samples were ana-
lyzed and compared.

2.2.5. Survival Analysis of Key Genes. Based on R 4.1.1 envi-
ronment, Survival package and SurvMiner package were
used for survival analysis, Kaplan-Meier survival curve con-
struction, and to estimate and screen the prognostic
markers. The log-rank test was used to evaluate the survival
difference between the expression level of key genes and the
overall survival rate of lung adenocarcinoma patients, and
P < 0:05 was considered statistically significant.

3. Result

3.1. Screening of Differentially Expressed Genes in LUAD. In
this study, a total of 551 LUAD-related patient data were
downloaded, collated, and analyzed from the TCGA data-
base, including 497 tumor samples and 54 normal samples.
DESeq2 R package was used for differential analysis, and a
total of 1598 differential genes were screened, including
1397 upregulated genes and 204 downregulated genes. A
heat map of the top 50 genes with the most significant differ-
ences (Figure 1(a)) and a volcano plot of the 1,598 differen-
tial genes (Figure 1(b)) were plotted.

3.2. Functional Enrichment Analysis of Differential Genes. R
software was used for GO and KEGG enrichment analysis
of 1,394 upregulated genes and 204 downregulated genes,
respectively. The GO results of 1,394 upregulated genes

showed that they were mainly involved in the positive regu-
lation of RNA polymerase II transcription, mitotic mitosis,
nucleosome assembly, and other biological processes, but
they were also involved in the extracellular region, extracel-
lular space, protein extracellular matrix, nucleosome, and
other cytological components. It also plays the molecular
biological functions of serine endothase activity, calcium
ion binding, nucleosome binding, chromatin binding, and
so on (Figure 2(a)). KEGG enrichment results showed that
the pathways involved mainly protein digestion and absorp-
tion, tumor transcription dysregulation, and amino acid bio-
synthesis, etc. (Figure 2(b)). The 204 downregulated genes
were mainly involved in biological processes such as oxygen
transport, synaptic transmission, and cell response to TGF-β
stimulation. It also participates in cytological components
such as hemoglobin-haptoglobin complex, lateral basement
plasma membrane, extracellular space, and cell-cell junction.
It also plays molecular biological functions such as oxygen
transporter activity, haptoglobin binding, iron binding, per-
oxidase activity, and G-protein-coupled acetylcholine recep-
tor activity (Figure 2(c)). KEGG enrichment results also
showed that the pathways involved mainly neural ligand-
receptor interaction, calcium signaling pathway, PI3K-Akt
signaling pathway, etc. (Figure 2(d)).

3.3. Protein Interaction Network Construction and Central
Gene Screening. A PPI interaction network was constructed
for LUAD-related differentially expressed genes based on
String database. The MCC algorithm in Cytoscape plug-in
CytoHubba was used to screen the top 50 genes in the PPI
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Figure 4: Expression levels of 10 hub genes in lung adenocarcinoma. (a–j) BUB1, BUB1B, CCNA2, CCNB2, CDC20, CENPF, KIF2C,
KIF11, TOP2A, and TPX2 (Red: lung adenocarcinoma tissue, Grey: normal lung tissue.). ∗ represents P < 0:05, the difference is significant.
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Figure 5: Continued.
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network to construct the protein interaction network dia-
gram (Figure 3(a)). The top 10 genes were selected as central
genes, which were CCNA2, CDC20, CCNB2, KIF11, TOP2A,
BUB1, BUB1B, CENPF, TPX2, and KIF2C (Figure 3(b).

3.4. GEPIA Analysis of the Expression of 10 Hub Genes in
Lung Adenocarcinoma. Compared with normal lung tissue,
the mRNA expression levels of 10 hub genes (CCNA2,
CDC20, CCNB2, KIF11, TOP2A, BUB1, BUB1B, CENPF,
TPX2, and KIF2C) in LUAD tissues were significantly
increased (P < 0:05, Figure 4).

3.5. Survival Analysis of Key Genes. The survival of 10 hub
genes screened from PPI network was analyzed using R soft-
ware, and the Kaplan-Meier survival curve was drawn. Log-
rank test revealed that these genes had a significant effect on
the overall survival of patients with LUAD (P < 0:05,
Figure 5). Therefore, it can be concluded that these genes
play an important role in the occurrence and development
of LUAD.

4. Discussion

Based on the TCGA database, this study used bioinformatics
methods to explore the key genes related to the development
and prognosis of LUAD. A total of 551 LUAD-related gene
expression profiles were screened, including 497 LUAD
samples and 54 normal samples. A total of 1598 differen-
tially expressed genes were identified, including 1394 upreg-
ulated genes and 204 downregulated genes. The information
on biological functions and regulated pathways involved in
these differential genes were analyzed by clusterProfiler R
package. GO analysis showed that it was mainly involved
in the positive regulation of RNA polymerase II transcrip-
tion, mitotic mitosis, nucleosome assembly, oxygen trans-
port, synaptic transmission, and other biological processes.
At the same time, they also participate in the extracellular
space, extracellular matrix of proteins, nucleosomes, and
other cytological components and participate in some pro-
tein binding. KEGG pathway analysis showed that this dif-
ferentially expressed gene was mainly involved in neural
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Figure 5: Overall survival analysis of 10 hub genes. (a–j) BUB1, BUB1B, CCNA2, CCNB2, CDC20, CENPF, KIF2C, KIF11, TOP2A, and TPX2.
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active ligand-receptor interaction, amino acid biosynthesis,
calcium ion signaling pathway, PI3K-Akt signaling pathway,
etc. The differential gene PPI interaction network was con-
structed through the String database, combined with the
MCC algorithm in Cytohubba plug-in Cytoscape, and 10
key genes were finally identified, namely CCNA2, CDC20,
CCNB2, KIF11, TOP2A, BUB1, BUB1B, CENPF, TPX2,
and KIF2C. The GEPIA database is a visual big data analysis
platform for cancer based on two well-known transcriptome
databases, which are TCGA and GTEx. GEPIA database was
used to analyze the expression of each gene in normal and
cancer cells. Survival and SurvMiner of R package analyzed
the influence of each gene on the overall survival rate of
LUAD patients and further verified the accuracy of key gene
screening.

Cyclin A2 (CCNA2) and cyclin B2 (CCNB2) belong to
the cyclin family and are key regulators of a cell cycle [7].
They have been shown to be significantly overexpressed
in a variety of cell cycles and are associated with the
development and recurrence of lung cancer, breast cancer,
colorectal cancer, and other cancers [8–12]. CDC20, a
class of proteins encoding periodic kinases, belongs to
the cell division cycle gene family. It has been reported
that it is likely to be an oncogenic protein, which is over-
expressed in a variety of poorly differentiated tumor cells,
including lung cancer, colorectal cancer, breast cancer
and bladder cancer, and is associated with their poor
prognosis [13–16].

KIF11, a kinesin superfamily gene, is a spindle motor
protein encoded by kinesin Eg5 gene and involved in the
formation of mitotic spindles [17]. Ling et al. found that
the overexpression of KIF11 in lung cancer was related to
advanced pathological grade and lymph node metastasis,
suggesting that KIF11 may be an effective target for lung
cancer prevention and treatment [18]. DNA topoisomer-
ase II Alpha (TOP2A) is encoded by TOP2A gene, which
controls and changes the topological state of DNA during
transcription and is involved in mitosis of various malig-
nant tumor cells. It has been reported that TOP2A over-
expression is closely related to the proliferation, invasion,
and interference of NSCLC [19]. BUB1 is a serine/threo-
nine protein kinase encoded by the human BUB1 gene,
which plays a key role in centromere binding and spindle
checkpoint activation during mitosis. Jiang et al. showed
that phosphorylation of CDC20 may help BUB1 to
achieve effective regulation of cell cycle [20]. BUB1B, an
enzyme encoded by BUB1B gene, is significantly overex-
pressed in lung cancer, bladder cancer, gastric cancer,
colon cancer, liver cancer, and other tumors and plays
an important role in the occurrence and development of
tumors [21]. Centromere Protein F(CENPF) is a key pro-
tein in cell cycle regulation. Previous studies have shown
that overexpression of CENPF may be closely related to
the occurrence, development, and prognosis of prostate
cancer, liver cancer, breast cancer, and other malignant
tumors, but its effect on LUAD is rarely reported [22].
Targeting Xenopus kinesin-like protein 2 (TPX2), a
microtubule-associated protein involved in spindle assem-
bly, plays a vital role in the induction of peripheral

assembly and growth in M phase, and is also overex-
pressed in a variety of human tumors to promote tumor-
igenesis develop. It has been reported that TPX2
overexpression is associated with a poor prognosis of
NSCLC, suggesting that TPX2 may become a prognostic
gene [23]. KIF2C, a mitotic centromere-associated kine-
sin, is involved in microtubule depolymerization and
chromosome segregation and regulates mitosis and cell
cycle. Abnormal expression of KIF2C can lead to chro-
mosome misalignment in S phase, chromosome misse-
paration in G2 phase, and stimulate the occurrence and
development of tumors [24].

This study provides a basis for the treatment of LUAD,
but it lacks validation from relevant in vivo and in vitro
experiments, so the next step of work will be to conduct
experiments to validate the mechanism of these hub genes
with a view to providing new directions for clinical
treatment.

5. Conclusion

In summary, 10 key genes related to the occurrence, devel-
opment, and prognosis of LUAD were screened out based
on the TCGA database. CCNA2, CDC20, CCNB2, KIF11,
TOP2A, BUB1, BUB1B, CENPF, TPX2 and KIF2C were sig-
nificantly overexpressed in LUAD as well as plays an impor-
tant role in the LUAD cell cycle. These results suggest that
these genes have great potential in the subsequent preven-
tion, treatment, and prognosis of LUAD, which can provide
a certain reference value for the diagnosis and drug treat-
ment of LUAD.
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Background. Diabetic retinopathy (DR), including retinal angiogenesis and endothelial cell proliferation and migration, is
a serious complication in diabetic patients. It has been reported that ginsenoside Rg1 can prevent retinal damage. However, the
mechanism by which Rg1 prevents retinal damage is unknown. Terefore, the aim of the present study was to investigate the
mechanism by which Rg1 inhibits high glucose-induced complications through the regulation of the lncRNA SNHG7/miR-2116-
5p/SIRT3 axis.Methods. Under high glucose (HG) conditions, human retinal endothelial cells (HRECs) were cultured to simulate
a DR environment, and Rg1 was added after 48 h. Negative control (NC), miR-2116-5p mimic, si-SNHG7, pc-DNA SIRT3, and
miR-2116-5p inhibitor were transfected into HRECs, and CCK-8 assay was used to detect the cell viability. Angiogenesis and
transwell assays were used to evaluate angiogenesis and cell migration, respectively. qRT–PCR and Western blot were used to
detect the expression of related genes and proteins. Luciferase reporter assays and bioinformatics were used to analyze the target
binding sites of miR-2116-5p to lncRNA SNHG7 and SIRT3. Results. Te proliferation, migration and angiogenesis of HRECs
were induced by HG. As expected, HG upregulated miR-2116-5p and VEGF expression but downregulated lncRNA SNHG7 and
SIRT3 expression. Importantly, Rg1 inhibited HG-induced HREC proliferation, migration, and angiogenesis by upregulating the
lncRNA SNHG7, and miR-2116-5p had a target regulatory relationship with both lncRNA SNHG7 and SIRT3. Conclusion. Rg1
inhibits HG-induced proliferation, migration, angiogenesis, and VEGF expression in retinal endothelial cells through the lncRNA
SNG7/miR-2116-5p/SIRT3 axis. Tis fnding provides theoretical evidence for the clinical application of Rg1 in DR.

1. Introduction

Numerous studies have shown that diabetes causes various
complications (diabetic nephropathy, diabetic retinopathy
(DR) and cardiovascular disease), which have become the
main cause of morbidity andmortality of diabetes [1]. Type 2
diabetes can lead to serious neurovascular complications,
leading to visual impairment and blindness, and DR is one of
the main causes [2]. Te basic pathological changes in DR
include the selective loss of pericytes, capillary basement

membrane thickening, microangioma formation, endothe-
lial cell proliferation, and retinal detachment due to neo-
vascularization [3]. Te frst barrier to monitoring blood
glucose changes is the retinal endothelium. Te existing
evidence suggests that a high concentration of glucose can
lead to increasing numbers and migration of retinal en-
dothelial cells, which is a key step in the occurrence of DR
[4]. Although some new drugs and vitreoretinal microsur-
gery have been used in clinical DR treatment, the incidence
of DR has dramatically increased in recent decades [5, 6].
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Terefore, further revealing the etiology of DR is important
for improving the available treatment methods [7, 8].
Ginsenoside Rg1 (Rg1) is a component of ginsenoside,
which mainly exists in ginseng medicinal materials. Rg1 can
quickly relieve fatigue, delay aging, stimulate the central
nervous system, inhibit platelet aggregation, and improve
learning and memory [9]. Rg1 has also been shown to be
useful in the treatment of myocardial infarction [10], di-
abetic limb infarction [11], and ischemic necrosis of the skin
[12]. Rg1 promotes neovascularization after myocardial
infarction, diabetic limb infarction, skin ischemic necrosis,
and neonatal hypoxic encephalopathy [13]. Experimental
studies have shown that Rg1 has strong antioxidant and
blood glucose-lowering activities [14, 15]. Rg1 can promote
angiogenesis and enhance endothelial progenitor cell an-
giogenesis. Moreover, Rg1 can improve endoplasmic re-
ticulum stress-induced apoptosis in diabetic
cardiomyopathy induced by streptozotocin (STZ) [16]. Rg1
prevents retinal damage by inhibiting retinal cell apoptosis
[17]. Moreover, experimental studies have shown that
ginsenoside Rg1 plays a role in promoting vascular re-
generation and enhancing endothelial progenitor cell
angiogenesis [18].

LncRNAs have been shown to afect the progression
mechanisms of DR through various methods [19]. In human
retinal endothelial cells, HG-induced angiogenesis can be
inhibited by the lncRNA SNHG7 through the miR-543/
SIRT1 cascade [20]. Whether SNHG7 participates in the
regulation of vascular growth in DR andwhether it promotes
angiogenesis in human retinal endothelial cells (HRECs)
remain unclear. Notably, in the pathogenesis of DR, miR-
NAs also play an indispensable role. Tere have been reports
of the abnormal expression of miRNAs in the retina of
diabetic rats induced by STZ [21, 22]. In addition, it has been
shown that miR-3197 and miR-2116-5p are immensely
upregulated in DR patients and are efective diagnostic
markers of DR [23].

As a conservative nicotinic adenine dinucleotide-
dependent (NAD-dependent) deacetylase, sirtuins consist
of seven isomers [24]. In addition, sirtuin-3 (SIRT3), a core
member of the sirtuin family, is located on the mitochon-
drial membrane. SIRT3 can deacetylate the target protein,
which plays an important role in antioxidation, biosynthesis,
and energy metabolism of mitochondria [25]. For example,
under the mediation of SIRT3, autophagy-related proteins
can be acetylated, thus afecting autophagy [26]. SIRT3 is
necessary for coronary angiogenesis and glycolysis [27]. In
type 2 diabetic mice, retinal dysfunction may be related to
the loss of SIRT3 and SIRT5 [28] because SIRT3 may
promote autophagy by downregulating the expression of
angiogenesis-related genes in retinal endothelial cells [29].
In addition, in a rat model of diabetes and retinopathy, the
expression of autophagy-related proteins was promoted by
the overexpression of SIRT3, while VEGFwas inhibited [30].
Tese fndings suggest that SIRT3 is a key therapeutic target
for DR.

In the present study, StarBase website prediction sug-
gested that miR-2116-5p has target binding sites for both the
lncRNA SNHG7 and SIRT3, implying that miR-2116-5p,

lncRNA SNHG7, and SIRT3 may act as an axis. Terefore,
we investigated the mechanism by which ginsenoside Rg1
inhibits retinal endothelial cell lesions induced by high
glucose by regulating the lncRNA SNHG7/miR-2116-5p/
SIRT3 axis.

2. Methods

2.1. Animal Breeding and Modeling. In total, 120 healthy
male SD rats of SPF class (Animal Experiment Center of
Kunming Medical University), weighing 200± 25 g, were
utilized, and all rats had no pathological changes in the
anterior and anterior segments of the eyes after the ex-
amination.Te blood glucose levels were within the normal
range as detected by a blood glucose meter after tail vein
collection. Te rats were randomly divided into 3 groups
(40/group): normal rats group (NC); DR rats (Model); Rg1-
treated DR rats group (Rg1).Te rats were acclimatized and
housed for 1 week before the experiment, and they were fed
and watered ad libitum. Te rats in the diabetic group were
fasted for 12 h before modeling and weighed before the
experiment. In the diabetic group, freshly prepared STZ in
bufer (55mg/kg; Sigma–Aldrich, Germany) was injected
once into the left lower abdominal cavity, and the rats ate
and drank normally after the injection. After the rats were
injected with STZ for 48 h, the blood glucose and body
weight were measured. Additionally, in the diabetic rat
models, blood glucose >16.7mmol/L, polyuria, and poly-
phagia were considered. Te blood glucose and body
weight of the rats were observed once every 2 weeks. In the
Rg1 group, gavage was started on the day of modeling, and
0.5mL (12–5 g/ml) of Rg1 solution (Solarbio, Beijing,
China) was given by gavage every day, while the same dose
of saline was given to the model and NC groups. Te rats
were sacrifced 8weeks after modeling, and fresh retinal
specimens were removed and preserved for the relevant
assays. Te experimental scheme of this study was ap-
proved by the Animal Ethics Committee of Kunming
Medical University and fully met the requirements of the
National Institutes of Health Laboratory Animal Care
Guide.

2.2. Cell Culture and Transfection. HRECs (American Type
Culture Collection, Inc.) were cultured at 37°C with
saturated humidity for two days before passaging. Before
adding 1mL of trypsin, the cells were washed with PBS 3
times, which covered the entire cell layer. Te cells were
observed under an inverted microscope until they shrank
into a round shape, and then, 10% fetal bovine serum was
added to neutralize trypsin. Te samples were centrifuged
at 1000 rpm for 5min to collect the cells. Ten percent fetal
bovine serum was added, and the cells were inoculated in
75 cm2 culture fasks at 10mL/bottle (104 cells/ml). A
concentration of 5mM glucose is a normal glucose
condition, and 25mM is a high glucose condition. Te
cells were incubated with 25mM glucose for 48 h before
adding 10 μM Rg1, followed by incubation for 48 h for the
subsequent experiments. Using Lipofectamine™ 2000
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(Med Chem Express, USA), the negative control (NC), si-
SNHG7, miR-2116-5p mimic, miR-2116-5p inhibitor, and
pc-DNA SIRT3 were transfected into HRECs.

2.3. HE Staining of Retinal Tissue. For the HE staining, rat
retinal sections were routinely dewaxed and washed with
ddH2O for 10 s. Subsequently, hematoxylin staining solution
was used to treat the rat retinal sections for 10min, and the
sections were washed with ddH2O, subjected to 1%
hydrochloric acid alcohol fractionation for 10 s, washed with
ddH2O, returned to blue in warm water for 1min, subjected
to eosin staining solution for 30 s, washed with water for 10 s,
subjected to gradient alcohol dehydration, cleared with
xylene, sealed with neutral gum and observed for the de-
tection of infammatory cell infltration under a microscope.

2.4. Immunohistochemistry. After the glass slide was baked
at 65°C for 2 h, it was placed in xylene for 10 minutes.Te rat
retinal sections were incubated in the following ethanol
gradient (5min per solution): 100%, 95%, 80% and distilled
water. In a wet room, citric acid bufer was used to treat the
slices, and hydrogen peroxide (3%) was used to remove
endogenous peroxidase (25°C, 10min). Te sections were
blocked with 5% bovine serum at 37°C for 30min and then
incubated with an anti-SIRT3 antibody (1 : 200) for 12 h at
4°C. Te sections were incubated with goat anti-rabbit (IgG,
1 :100) for 30min at 37°C after washing the slices with PBS
bufer. 3,3′-diaminobenzidine (DAB) was used to observe
the sections, and a light microscope was used to acquire the
images.

2.5. Cell Viability Assay. In total, 5×104 cells/well were
inoculated into a 96-well plate, 10 μL CCK-8 solution
(Sangon, Shanghai, China) was added, and the cells were
incubated for 4 h at 25°C. Te OD value was measured at
450 nm.

2.6. Angiogenesis Experiments. Cells were inoculated into
a 24-well plate at 37°C, and Matrigel (Sigma–Aldrich,
Germany) was added to each well and allowed to harden for
30min. HRECs were inoculated at a density of 1.2×105 cells/
well on top of the Matrigel-coated wells and cultured in
a sterile incubator at 100% humidity, 37°C and 5% CO2 for
6 h. An inverted microscope was used to observe the tube
lumen and acquire the images. Image-Pro Plus software was
used to calculate the number of Matrigel tubule formations
in the feld of view and the tube formation capacity.

2.7. Transwell Experiment. Cells were collected from each
group 48 h after transfection and washed, and serum-free
DMEM was used to adjust the cell concentration to 1× 105
cells/mL. In 24-well Transwell plates (Corning, USA), 200 μL
of cell suspension was added to the upper chamber, and in
the lower chamber, 500 μL of DMEM containing 10% fetal
bovine serum was added. After culturing for 24 h, the un-
stained cells were wiped of, while the stained cells were

stained with crystal violet for 20min. An inverted micro-
scope was used to observe the cells, and fve randomly se-
lected visual felds were imaged and counted.

2.8. qRT-PCR Experiments. Te total RNA was extracted
from tissues and cells using a Total RNA Extractor (Sangon
Biotech). A cDNA synthesis kit (Vazyme, Nanjing, China)
was used to reverse transcribe 2 μgmRNA into cDNA, which
was then diluted 10 times. One microliter of the prepared
cDNA was used for qPCR, and the U6 or GAPDH gene was
used as the reference gene. All primers (Table 1) used in this
study were designed with Premier 5.0. Te two-step reaction
conditions for PCR were as follows: predenaturation
(maintained at 95°C for 5min), maintenance at 95°C for 10 s,
annealing (30 s) and extension (30 s). Both annealing and
extension were cycled 40 times. Te confdence of the PCR
results was assessed by the dissociation curve and cycle
threshold (CT) values. Te results were calculated by the
2−ΔΔCt method after repetition at least 3 times.

2.9.WesternBlotAssay. Proteins were extracted from retinal
tissue utilizing RIPA lysis bufer (Sangon Biotech, Shanghai),
and a BCA assay (Sangon Biotech, Shanghai) was used to
determine the total protein content. 10% SDS‒PAGE gel was
used to separate the total proteins, which were then
transferred to PVDF membranes by a constant current fow
at 200mA. Subsequently, the PVDF membranes were in-
cubated with antibodies (Abcam, USA) for 12 h at 4°C. Te
PVDF membranes were washed with TBS bufer and in-
cubated with secondary antibodies at 25°C for 1 h. After
washing the membranes three times, chemiluminescent
reagents were added, and the bands were analyzed for
grayscale values using ImageJ software. Each experiment was
repeated 3 times independently.

2.10. Bioinformatics and Dual Luciferase Gene Reporter
Analysis. In this study, StarBase (http://starbase.sysu.edu.
cn/) was used to predict the binding sites of miRNAs and
lncRNAs. Te dual-luciferase reporter vectors containing
WT and mutant-type binding sites for SNHG7 or SIRT3
sequences were constructed by a rapid cloning kit (Vazyme,
Nanjing, China) and namedWT-SNHG7 or WT-SIRT3 and
MUT- SNHG7 or SIRT3, respectively. Subsequently, WT-
SNHG7 or WT-SIRT3 and MUT-SNHG7 or SIRT3 vectors
were transfected into HRECs (Chinese Academy of Sciences
Culture Collection) with NC mimic or miR-29b-3p mimic.
After transfection for 48 h, a dual luciferase reporter assay
was used to detect luciferase activity.

2.11. Statistical Analysis. GraphPad Prism 8 software was
used to analyze and prepare graphs of the experimental data.
In this study, the results are shown as the mean± standard
deviation (SD). As expected, two groups andmultiple groups
of data were analyzed by unpaired Student’s t-test and one-
way analysis of variance, followed by Tukey’s post-hoc test.
Te P value representing statistical signifcance was 0.05.
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3. Results

3.1. Efect of Rg1 on the Expression of SIRT3, the lncRNA
SNHG7, andmiR-2116-5p in theRetinaofDRRats. Te efect
of Rg1 on the expression of SIRT3, the lncRNA SNHG7 and
miR-2116-5p in the retina of DR rats was investigated.
Compared with the control group, the detection of blood
glucose values in the diferent treatment groups revealed
that the model group rats had signifcantly higher blood
glucose after the STZ injection, and the blood glucose level
was higher than 16.7mmol/L, demonstrating a successful
diabetic model. In contrast, the treatment group had sig-
nifcantly lower blood glucose (Figure 1(a)). Compared
with the control group, SNHG7 and SIRT3 were signif-
cantly lower in the model group, and the expression of both
SNHG7 and SIRT3 increased after the Rg1 treatment as
shown by qRT-PCR (Figures 1(b) and 1(d)). As expected,
compared with the control group, the expression of miR-
2116-5p was signifcantly higher in the model group, and
the expression of miR-2116-5p was signifcantly lower after
the Rg1 treatment (Figure 1(c)). Te HE staining results
showed that the control rats had a clear and continuous
inner boundary membrane and only a few vascular en-
dothelial cells in the vitreous near the inner retinal
boundary membrane. Te model rats showed edema on the
retinal surface, and the number of vascular endothelial cells
was considerably increased. Moreover, the rats in the Rg1-
treated group had a clear and continuous inner boundary
membrane, reduced edema and decreased vascular endo-
thelial cells (Figure 1(e)). Compared to the control group,
SIRT3 was signifcantly reduced in the retinal tissues of the
rats in the model group in the immunohistochemical assay.
In contrast, SIRT3 in the Rg1-treated rats was signifcantly
higher than that in the model group (Figure 1(f )). Te
VEGF-immunopositive product was indicated by
brownish-yellow granular staining, and immunopositive
cells were mainly distributed in the retinal ganglion cell
layer, which was opposite to that observed with SIRT3
(Figure 1(g)), and in the inner nuclear layer. Te results of
Western blot detection also showed that compared with the
control group, the expression of SIRT3 was down-regulated
and VEGF was up-regulated in the model group, and Rg1
treatment reversed this phenomenon (Figure 1(h)). In
summary, these fndings show that Rg1 downregulates

miR-2116-5p and VEGF but upregulates the lncRNA
SNHG7 and SIRT3 in the retinas of diabetic rats.

3.2. Efect of Rg1 on the Proliferation, Migration, and An-
giogenesis of HG-Treated HRECs. Cell viability was assessed
using a CCK-8 assay to investigate the efect of Rg1 on HG-
induced pathological phenomena (HREC proliferation,
migration and angiogenesis). Te results showed that the
HG treatment signifcantly increased the viability of HRECs,
while the Rg1 treatment signifcantly inhibited cell viability
(Figure 2(a)). As expected, in the HG group, the qRT–PCR
analysis showed that the lncRNA SNHG7 and miR-2116-5p
were signifcantly lower and higher, respectively, and they
were signifcantly reversed after the addition of Rg1
(Figures 2(b) and 2(c)). Te number of migrating cells and
angiogenesis were signifcantly higher in the HG group in
the Transwell and angiogenesis assays, and the number of
migrating cells and angiogenesis were decreased after the
addition of Rg1 (Figures 2(d) and 2(e)). Similarly, the
protein expression of SIRT3 was signifcantly lower and
VEGF was elevated in the HG group as shown by the
Western blot analysis. Te treatment with Rg1 signifcantly
increased the protein level of SIRT3 but signifcantly de-
creased VEGF (Figure 2(f)). Tus, these fndings demon-
strate that high glucose induces pathological phenomena in
HRECs, but Rg1 signifcantly inhibits these changes.

3.3. Te Targeting Relationship between the lncRNA SNHG7
and miR-2116-5p. StarBase online software was used to
predict the binding sites of lncRNA SNHG7 in miR-2116-5p
(Figure 3(a)). As verifed by the dual luciferase assays, the
luciferase activity of wild-type SNHG7 could be reduced by
miR-2116-5p but had almost no efect on mutant SNHG7
(Figure 3(b)). Te transfection of diferent siRNAs, in-
cluding siRNA NC (si-NC) and siRNA-SNHG7 (si-S1/2/3),
was used to knockdown SNHG7. Because the transfection of
si-S2 showed the best knockdown of SNHG7, it was used in
the subsequent experiments (Figure 3(c)). Te knockdown
or overexpression of SNHG7 was verifed by a qRT-PCR
analysis. Te results showed that miR-2116-5p was signif-
cantly decreased after the overexpression of SNHG7, while
miR-2116-5p was signifcantly increased after the knock-
down of SNHG7 (Figure 3(d)). Tus, these fndings

Table 1: Primer sequences.

Target Sequence

SNHG7 Forward: 5′-GCCCTGCAGCCTCGC-3′
Reversed: 5′-CAGCGGCGCCTCCTC-3′

miR-2116-5p Forward: 5′-GGGTTCTTAGCATAGGAGGTC-3′
Reversed: 5′-GAATCGAGCACCAGTTACGCAATG-3′

SIRT3 Forward: 5′- CAATGTCGCTCACTACTTCCTT-3′
Reversed: 5′- CGTCAGCCCGTATGTCTTC-3′

U6 Forward: 5′-CTCGCTTCGGCAGCACA-3′
Reversed: 5′-AACGCTTCACGAATTTGCGT-3′

GAPDH Forward: 5′-AATCCCATCACCATCTTCCA-3′
Reversed: 5′-TGGACTCCACGACGTACTCA-3′
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demonstrate that the lncRNA SNHG7 negatively regulates
miR-2116-5p by targeting the modulation of miR-2116-5p.

3.4. Rg1 Inhibits HG-Induced Cell Proliferation, Migration,
and Angiogenesis by Upregulating the lncRNA SNHG7 in
HRECs. Next, we investigated the efects of Rg1 in HG-
induced HRECs via the lncRNA SNHG7. Compared with
the HG group, the cell viability was reduced in the Rg1
group, however, si-SNHG7 reversed the inhibitory efect of
Rg1 on cell proliferation. Furthermore, compared with the
Rg1+si-SNHG7 group, the cell viability was signifcantly
reduced in the Rg1+si-SNHG7+miR-2116-5p inhibitor
group (Figure 4(a)). Te results of qRT-PCR assay showed
that compared with the HG group, the expression of SNHG7
was signifcantly increased and the expression of miR-2116-
5p was signifcantly down-regulated in the Rg1 group, which
was reversed by si-SNHG7. At the same time, compared with
the Rg1+si-SNHG7 group, in the Rg1+si-SNHG7+miR-
2116-5p inhibitor group, the expression of SNHG7 was up-
regulated and the expression of miR-2116-5p was down-
regulated (Figures 4(b) and 4(c)). Transwell and angio-
genesis experiments showed that Rg1 treatment could ef-
fectively inhibit HG-induced cell proliferation and
angiogenesis, while knockdown of SNHG7 could signif-
cantly attenuate the efect of Rg1. In addition, co-
transfection of si-SNHG7+miR-2116-5p inhibitor could
maintain the inhibitory efect of Rg1 on cell proliferation

and angiogenesis to a certain extent (Figures 4(d) and 4(e)).
Tese results suggest that Rg1 inhibits HG-induced HREC
pathological phenomena through the upregulation of the
lncRNA SNHG7.

3.5. Validation of the Targeting Relationship between miR-
2116-5p and SIRT3. StarBase online software was used to
predict the miR-2116-5p-binding sites in SIRT3, and the
results are shown in Figure 5(a). As verifed by the dual
luciferase assays, miR-2116-5p reduced the activity of
wild-type SIRT3 but had almost no efect on mutant
SIRT3 (Figure 5(b)). SIRT3 was decreased after the
transfection of the miR-2116-5p mimic, and the trans-
fection of the miR-2116-5p inhibitor increased the SIRT3
expression levels (Figure 5(c)). At the expression level,
SIRT3 was reduced under high glucose conditions and
after the transfection of miR-2116-5p under normal
glucose and HG conditions (Figure 5(d)). Tus, these data
illustrate that miR-2116-5p acts by targeting the negative
regulation of SIRT3.

3.6. Rg1 Afects the Proliferation, Migration and Angiogenesis
of HG-Induced HRECs via miR-2116-5p/SIRT3. We further
explored the efects of Rg1 via miR-2116-5p/SIRT3. Te
results of CCK-8 assay showed that compared with the HG
group, the cell viability of the Rg1 group was reduced, but the
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Figure 1: Te efect of Rg1 on the lncRNA SNHG7, miR-2116-5p, and SIRT3 in the retinas of DR rats. (a) Blood glucose values of rats after
diferent treatments. qRT-PCR was used to analyze the expression of the lncRNA SNHG7 (b), miR-2116-5p (c), and SIRT3 (d). (e) HE
staining of rat retinal tissues. Immunohistochemical staining of SIRT3 (f) and VEGF (g). (h) SIRT3 and VEGF protein levels were detected
by Western blot analysis. ∗∗P< 0.01 and ∗∗∗P< 0.001 compared to the control group; #P< 0.05, ##P< 0.01 and ###P< 0.001 compared to the
model group.
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Figure 2: Efect of Rg1 on the proliferation, migration, and angiogenesis of HRECs under HG-induced conditions. (a) CCK-8 assay of cell
viability. Qrt-PCR analysis of the lncRNA SNHG7 (b) and miR-2116-5p (c). (d) Transwell assay of cell migration. (e) Comparison of
angiogenesis in diferent groups. (f ) Analysis of the SIRT3 and VEGF protein levels by a Western blot analysis. ∗P< 0.05, ∗∗P< 0.01,
∗∗∗P< 0.001 and ∗∗∗∗P< 0.0001 compared to the NC group; #P< 0.05, ##P< 0.01, ###P< 0.001 and ####P< 0.0001 compared to the HG group.
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Figure 3: Validation of the relationship between the lncRNA SNHG7 and miR-2116-5p. (a)Te predicted lncRNA SNHG7-binding sites in
miR-2116-5p. (b) Te targeting relationship between the lncRNA SNHG7 and miR-2116-5p was verifed through a dual luciferase reporter
assay, ∗∗∗P< 0.001 compared to the NC mimic group. (c) Analysis of the lncRNA transfection efciency of SNHG7 by qRT-PCR, ∗P< 0.05
and ∗∗P< 0.01 compared to the si-NC group. (d) Te expression of miR-2116-5p was detected by qRT–PCR, ∗∗∗P< 0.001 compared to the
pc-NC group; ###P< 0.001 compared to the si-NC group.
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Figure 4: Rg1 inhibits HG-induced cell proliferation, migration, and angiogenesis in HRECs through the upregulation of the lncRNA
SNHG7. (a) CCK-8 assay of cell viability. qRT-PCR analysis of the expression level of the lncRNA SNHG7 (b) and miR-2116-5p (c). (d)
Transwell assay of cell migration. (e) Comparison of angiogenesis in diferent groups. ∗∗∗∗P< 0.0001 compared to the HG group;
####P< 0.0001 compared to the Rg1 group; △P< 0.05, △△P< 0.01 and △△△△P< 0.0001 compared to- the Rg1+si-SNHG7 group.
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transfection of miR-2116-5p mimic reversed the inhibitory
efect of Rg1 on cell proliferation to a certain extent. In
addition, compared with the Rg1 +miR-2116-5p mimic
group, the Rg1 +miR-2116-5p mimic + pc-DNA SIRT3
group had lower cell proliferation activity (Figure 6(a)). Te
results of qRT-PCR assay showed that compared with the
HG group, Rg1 could inhibit the expression of miR-2116-5p
and promote the expression of SIRT3, but this phenomenon
was reversed by transfection of miR-2116-5p mimic.
Meanwhile, compared with the Rg1+miR-2116-5p mimic
group, the expression of miR-2116-5p was down-regulated
and the expression of SIRT3 was up-regulated in the
Rg1+miR-2116-5p mimic + pc-DNA SIRT3 group
(Figures 6(b) and 6(c)). Te results of Transwell and

angiogenesis assays showed that the inhibitory efect of Rg1
on cell proliferation and angiogenesis could be reversed by
transfection of miR-2116-5p mimic, but co-transfection of
miR-2116-5p mimic + pc-DNA can maintain the inhibitory
efect of Rg1 on cell proliferation and angiogenesis to
a certain extent (Figures 6(d) and 6(e)). Similarly, Western
blot detection results showed that the promoting efect of
Rg1 on SIRT3 expression and the inhibitory efect of VEGF
expression were reversed by the transfection of miR-2116-5p
mimic, but the transfection of miR-2116-5p mimic + PC-
DNA SIRT3 maintained this efect of Rg1 to a certain extent
(Figure 6(f)). Tus, these fndings demonstrate that Rg1
afects the proliferation, migration, and angiogenesis of HG-
induced HRECs via miR-2116-5p/SIRT3.

SIRT3-WT:5'-GACUUUBCBCCUUAA-UAAGAACA-3'
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Figure 5: Validation of the relationship between miR-2116-5p and SIRT3. (a): Te predicted miR-2116-5p binding sites in SIRT3. (b):
Verifcation of the relationship between miR-2116-5p and SIRT3 by a dual luciferase reporter assay, ∗P< 0.05 compared to the NC mimic
group. (c) Analysis of the transfection efciency of SIRT3 by qRT-PCR, ∗∗∗P< 0.001 compared to the NCmimic group; ##P< 0.01 compared
to the NC inhibitor group. (d) Te expression of SIRT3 was detected by qRT–PCR. ∗∗P< 0.01 compared to the NC group; ###P< 0.001
compared to the NC-HG group.

12 Journal of Oncology



0

50

100

150

C
el

l v
ia

bi
lit

y 
(%

)

Rg
1

H
G

Rg
1+

m
iR

-2
11

6-
5p

 m
im

ic
s+

pc
-D

N
A

 S
IR

T3

Rg
1+

m
iR

-2
11

6-
5p

m
im

ic
s

****

####
▷▷▷

(a)

0.0

0.5

1.0

1.5

Re
lat

iv
e e

xp
re

ss
io

n 
of

 m
iR

-2
11

6-
5p

Rg
1+

m
iR

-2
11

6-
5p

m
im

ic
s

Rg
1+

m
iR

-2
11

6-
5p

 m
im

ic
s+

pc
-D

N
A

 S
IR

T3Rg
1

H
G

***

##

▷

(b)

0

2

4

6

8

Re
lat

iv
e e

xp
re

ss
io

n 
of

 S
IR

T3

Rg
1

Rg
1+

m
iR

-2
11

6-
5p

m
im

ic
s

Rg
1+

m
iR

-2
11

6-
5p

 m
im

ic
s+

pc
-D

N
A

 S
IR

T3H
G

****

####

▷▷

(c)

Figure 6: Continued.
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4. Discussion

Retinopathy caused by diabetes is a serious ocular com-
plication that mainly manifests as retinal endocrine and
hematological damage [31]. Hyperglycemia and hyperlip-
idemia are direct factors in the development of DR [32].
Endothelial cell damage caused by HG is one of the main
clinical features of DR; therefore, endothelial cell activity
regulation-related molecules are considered to play a key
role in the pathogenesis of DR [33]. In diabetes modeling,
higher blood glucose concentrations are an important
marker of success [34]. During the construction of the di-
abetes model in this study, we successfully constructed
a diabetic rat model because the blood glucose concentration
of the rats was higher than 16.7mmol/L. One month after
the onset of diabetes, peripapillary cell degeneration, retinal
thickness, and retinal apoptosis were reduced in the diabetic
rats [35]. In this study, the pathological features of the retinal
tissue in the rats with diabetes mellitus were described, and
new blood vessels were observed in the diabetic retina [36].
Moreover, there was a signifcant increase in cellular an-
giogenesis in HRECs under HG induction and a signifcant
increase in cell viability and migration. As a key factor in
diabetes, Rg1 can protect molecules from damage. In di-
abetic rats treated with Rg1, cardiomyocyte apoptosis is
inhibited, and caspase 3 expression is downregulated [37]. In
the present study, Rg1 had a protective efect on the retina of
DR rats and HRECs under HG induction. Regarding the
gene expression level, Rg1 increased SIRT3 but decreased
VEGF in rat retinal tissue and inhibited HRECs pro-
liferation, migration and angiogenesis. It is consistent with
the fnding by Gao et al. [17] that Rg1 can prevent DR by
reducing apoptosis.

Te lncRNA SNHG7 was reduced in HRMECs under
HG stimulation, and lncRNA SNHG7 overexpression
inhibited HG-induced pathological phenomena (cell mi-
gration, proliferation and angiogenesis) by regulating the
miR-543/SIRT1 axis [20]. Our study also demonstrated that
HG conditions downregulated SNHG7 and its inhibitory
efect on HG-induced pathological phenomena. Tere is
a targeted binding site between SNHG7 and miR-2116-5p,
and the inhibition of miR-2116-5p can efectively attenuate
the efect of knockdown of SNHG7 on the proliferation and
angiogenesis of RG1 cells. Furthermore, we found that the
target of miR-2116-5p is SIRT3. As expected, as a down-
stream pathway of SNHG7, miR-2116-5p/SIRT3 mediated
its protective efect on HRECs, while Rg1 functioned by
upregulating SNHG7 to regulate the miR-2116-5p/SIRT3
axis. As a result, these fndings show that SIRT3 may play
a role in regulating neovascularization [29]. Te over-
expression of SIRT3 has been shown to inhibit retinal
neovascularization under HG and insulin-induced condi-
tions [29]. Our study found that overexpression of SIRT3
could reverse the promoting efect of miR-2116-5p on an-
giogenesis, which also indicated that SIRT3 could inhibit
angiogenesis. In this study, SIRT3 was signifcantly reduced
after the development of DR. VEGF can maintain ocular
vascular integrity, and its expression is low and necessary in
normal healthy eyes [38]. However, in DR, the levels of
VEGF are higher than normal in cells and body fuids.
Elevated VEGF levels alter capillary permeability, leading to
retinal neovascularization, retinal vascular hemorrhage,
exudation and increased angiogenesis and visual impair-
ment. Importantly, inhibiting the expression of VEGF can
inhibit the formation of retinal neovascularization [39]. Tis
study shows that in the DR model, VEGF expression was
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Figure 6: Rg1 afects the proliferation, migration and angiogenesis of HG-induced HRECs throughmiR-2116-5p/SIRT3. (a) CCK-8 assay of
cell viability. qRT-PCR analysis of miR-2116-5p (b) and SIRT3 (c) expression. (D) Transwell assay of cell migration. (E) Comparison of
angiogenesis in diferent groups. (f ) Analysis of the SIRT3 and VEGF protein levels by a western blot analysis. ∗∗∗P< 0.001 and
∗∗∗∗P< 0.0001 compared to the HG group; ##P< 0.01 and ####P< 0.0001 compared Rg1 group; △P< 0.05, △△P< 0.01 and △△△△P< 0.0001
compared to the Rg1+miR-2116-5p mimic group.
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increased. However, VEGF can be inhibited by SIRT3
overexpression, which may afect the formation of new
blood vessels in the retina by regulating VEGF expression to
protect against retinal injury.

In summary, the present study investigated the molec-
ular mechanisms related to the alleviation of DR by Rg1. We
demonstrated that Rg1 inhibits HG-induced cell pro-
liferation, migration and angiogenesis and VEGF expression
in retinal endothelial cells through the lncRNA SNHG7/
miR-2116-5p/SIRT3 axis. Tese fndings provide a theoret-
ical basis for the clinical use of Rg1 for the treatment of DR.
In addition, our study has the limitation of not verifying our
molecular mechanism in vivo experiments. In the next
study, we will verify that Rg1 alleviates DR through the
lncRNA SNHG7/miR-2116-5p/SIRT3 axis in animal
experiments.
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Background. Prior research has identifed ANGPTL4 as a key player in the control of the body’s lipid and glucose metabolism and
a contributor to the onset of numerous cardiovascular conditions. Recently, it has been shown that ANGPTL4 also plays a critical role
in tumor growth and progression. Nowadays, the number of EGFR-TKI resistant patients is increasing, and it is important to
investigate the role of ANGPTL4 in regulating geftinib resistance in PC9/GR non-small-cell lung cancer (NSCLC). Methods. Te
expression of ANGPTL4 in A549, PC9, H1975, BEAS-2B and PC9/GR cells was verifed byWestern blot and qRT-PCR assays, and the
efect of geftinib on the proliferative ability of each cell was probed by CCK-8 assay. By using shRNA to inhibit ANGPTL4 expression
in cells, the efect of ANGPTL4 on cell migratory ability was examined and the efect of ANGPTL4 on cellular geftinib sensitivity was
confrmed using the CCK-8 assay and the edu proliferation test. Mouse transplantation tumors were constructed, and the efect of
ANGPTL4 on cellular geftinib sensitivity was investigated in vivo by fow cytometry, Tunel staining assay, immunohistochemical
staining, and ROS fuorescence staining assay. ANGPTL4 expression in homoRNA overexpression cells was constructed, and the
changes in the expression levels of ASC\NLRP3\Caspase 8 pathway and focal and apoptotic proteins were investigated in vitro, in vivo,
afterknockdown and overexpression of ANGPTL4 expression by Westen blot assay. Results. ANGPTL4 was highly expressed in PC9/
GR cells. Interfering with ANGPTL4 expression resulted in decreased proliferation and migration ability, decreased resistance to
geftinib, and increased scorching and apoptosis in PC9/GR cells. Interfering with ANGPTL4 expression in PC9/GR cells was shown to
promote sensitivity to geftinib and tomediate theNLRP3/ASC/Caspase 8 pathway to induce cell scorching and apoptosis.Conclusions.
ANGPTL4 promotes geftinib resistance in PC9/GR cells by regulating the NLRP3/ASC/Caspase 8 pathway to inhibit scorch death.
ANGPTL4 may be an efective new target for inhibiting EGFR-TKI resistance in lung adenocarcinoma cells.

1. Background

For many years, lung cancer has been one of the most
common malignant tumours worldwide, accounting for
approximately 21% of the incidence and 27% of the
mortality of all cancers. Approximately 49 of every 100,000
people in China die of lung cancer [1, 2]. Non-small-cell
lung cancer accounts for approximately 85% of the total
lung cancer cases and is associated with a fve-year survival
rate of only 15% in China [3]. Non-small-cell lung cancer
shows heterogeneity. Mutations in multiple genes, in-
cluding epidermal growth factor receptor (EGFR),

anaplastic lymphoma kinase (ALK), ROS1, and KRAS, can
promote the progression of this cancer. EGFR mutation is
the most common gene mutation among patients with
non-small-cell lung cancer and occurs in 50%–60% of
Asian patients; most patients with these mutations have
a low survival rate [4]. Treatment with EGFR-tyrosine
kinase inhibitors (TKIs) is associated with progression-
free survival (PFS) of 10–14 months in patients with EGFR-
positive mutations [5].

Adenosine triphosphate cannot bind to the tyrosine
kinase region of the intracellular domain of EGFR when
used in combination with the frst-generation EGFR-TKI
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medication geftinib. Tis prevents the receptor from being
phosphorylated [6]. Meta-analyses have shown that using
geftinib as a frst-line treatment can improve the PFS of
these patients, whereas combined chemotherapy and anti-
angiogenesis therapy can improve prognosis [7–9]. How-
ever, some patients show acquired drug resistance after
9–14 months of treatment, which afects the overall survival
(OS) rate of patients [10].

Angiopoietin-like 4 (ANGPTL4) is widely present in the
liver and adipose tissue and can regulate the activity of li-
poprotein lipase by regulating the nutritional status of the
body to regulate lipid metabolism [11]. Because of its im-
portant role in lipid metabolism, ANGPTL4 was once
considered a regulator of lipid metabolism, but, in recent
years, studies have found that ANGPTL4 is closely related to
the proliferation and metastasis of a variety of malignant
tumours. For instance, Zhu et al. [12] discovered that
ANGPTL4 is substantially expressed in non-small-cell lung
cancer tissues and is linked to the advancement of the
malignancy and a poor prognosis. Furthermore, Gong et al.
[13] found that ANGPTL4 promotes the occurrence of brain
metastasis of breast cancer through the TGF-β2/ANGPTL4
axis. In addition, some researchers believe ANGPTL4 is
closely related to the prognosis of malignant tumours, such
as thyroid, cervical, and pancreatic cancer [14, 15]. Zhou
et al. found high expression of ANGPTL4 in ovarian cancer
cells and a positive correlation with secondary resistance to
carboplatin [16], suggesting that ANGPTL4 may be asso-
ciated with secondary resistance in the treatment of tumour
patients. However, to the best of our knowledge, there have
been no studies on the mechanism of acquired EGFR-TKI
resistance in relation to ANGPTL4 in lung adenocarcinoma
cells, and it remains unknown whether ANGPTL4 is in-
volved in EGFR-TKI resistance.

By examining the characteristics of geftinib-resistant
PC9/GR cells in nonsmall cell lung cancer cells, we in-
vestigated the function and mechanism of ANGPTL4 in the
process of acquiring drug resistance in lung adenocarcinoma
in the current study. Te results confrm that ANGPTL4
promotes the development of resistance to EGFR-TKIs in
lung adenocarcinoma cells and that ANGPTL4 may be
a potential target for overcoming resistance to EGFR-TKIs.

2. Method

2.1. Cells and Culture Conditions. Te PC9, A549, H1945
(lung adenocarcinoma cells, Beijing Cell Bank, Beijing,
China), BEAS-2B (bronchial epithelial cells, Beijing Cell
Bank), and PC9/GR (geftinib-resistant lung adenocarci-
noma cells, Cell Center of Central South University,
Changsha, China) cells were cultured in Dulbecco’s
modifed Eagle medium supplemented with 10% foetal
bovine serum and 1% penicillin-streptomycin solution.Te
PC9/GR cell culture medium was supplemented with
1 μmol/L geftinib to maintain cell resistance. Cells were
cultured at 37°C with 5% CO2 in cell incubators. Te
medium was changed every 24 h, and a passage was con-
ducted every 48 h. Cells were cryopreserved or resuscitated
as required.

2.2. Short Hairpin (sh)RNA Transfection. ANGPTL4 ex-
pression was interfered with by transfecting shRNA into
cells. Tree shRNAs were purchased from Jikai Gene
(Shanghai, China). Te shRNA sequences were as follows:
ANGPTL4-shRNA1, CCACAAGCACCTAGACCAT;
ANGPTL4-shRNA2, ACAGCAGGATCCAGCAACT;
ANGPTL4-shRNA3, ATCTTGGAAACTTGTGGACA.Te
control group was transfected with an empty vector (NC-
shRNA)—the sequence was TTCTCCGAACGTGTCACGT.
Te PC9/GR cells were evenly spread into a six-well plate,
with approximately 1× 105 cells/well, and incubated at 37°C
for 16–24 h. When the cell fusion degree reached 70–80%,
we confgured the lip3000-shRNA liposome complex by
allowing the Lipofectamine 3000 reagent to react with
shRNA at 25°C for 20min and added this to each well. Te
transfected cells were cultured for 12 h, and the medium was
changed. After 48 h, fuorescence was observed under an
inverted fuorescence microscope (Termo Fisher Scientifc,
Shanghai, China). After 48–72 h of transfection, the ef-
ciency was detected based on mRNA and protein expression
using quantitative reverse transcription-polymerase chain
reaction (qRT-PCR) and western blotting.

HomoRNA was used to increase the expression level of
ANGPTL4. Te former, the sequence of which was TCC
AGGTTGGGGAGAGGCAGAGTGGACTAT, was pur-
chased from Wanlei Biotechnology (Shenyang, China). Te
Lipofectamine 3000-homoRNA liposome complex was
confgured as described in the previous section to transfect
PC9/GR cells, and the transfection efciency was evaluated
using western blotting.

2.3. qRT-PCR. Cellular mRNA or mouse tumor total RNA
was extracted using the RNAeasy Animal RNA Extraction
Kit (Beyotime, Shanghai, China). Ten, we used the Pri-
meScript One-step RT-PCR Kit (Takara, Kyoto, Japan) to
reverse transcribe mRNA into cDNA, which was subjected
to PCR using LightCycler96 PCR (Roche, Basel, Switzerland)
and the TB Green Premix Ex Taq II Kit (Takara). Using
glyceraldehyde 3-phosphate dehydrogenase as an internal
reference, the gene expression level was calculated according
to formula 2−ΔΔCT. Te names and sequences of the primers
used in the experiment are shown in Table 1.

2.4. Western Blot. We gently rinsed the cells in the six-well
plate with phosphate-bufered saline (PBS) and added
200–300 μL of preconfgured radioimmunoprecipitation
assay bufer and phenylmethylsulfonyl fuoride (99 :1) cell
lysate to each well. After completing cell lysis, the sample was
centrifuged at 4°C (12,000× g, 10min). Ten, we added 5×

loading bufer (1/5th of the supernatant volume) and placed
the tube containing this mixture in a 100°C water bath for
10min. After 10% SDS-PAGE, the bands were transferred to
a polyvinylidene fuoride membrane and incubated with
specifc antibodies against ANGPTL4 (1 :1000), NOD-like
receptor thermal protein domain associated protein 3
(NLRP3, 1 : 2000), B-cell lymphoma 2 (BCL-2, 1 : 2000),
apoptosis-associatedspeck-like protein containing CARD
(ASC, 1 :1000), cellular FLICE-like inhibitory protein
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(cFLIPL, 1 : 2000), caspase-8 (1 :1500), cleaved caspase-8 (1 :
1500), and β-actin (1 : 2000) (Abcam, Cambridge, MA,
USA). Te next day, after incubation with IgG (H&L)-HRP
antibody (1 : 5000), the bands were visualised on an in-
tegrated chemiluminescence imager helped by an enhanced
chemiluminescence exposure solution.

2.5. Cell Viability Assay. Cells were spread evenly on a 96-
well plate (3×104 cells/well). After culturing for 24 h, the
cells were switched to a 5% serum medium containing
diferent concentrations of geftinib (0.01, 0.5, 1, 2, 4, 8, 16,
32, and 100 μmol/L) and 10 μL of CCK-8 solution was added
to each well after 48 h. Te absorbance was measured at
570 nm after incubation for 2 h. Cell survival rate was cal-
culated as follows: cell survival rate (%)� ((administration
group X− negative control group X)/(nonadministration
group X− negative control group X))× 100.

2.6. Transwell. A 12-well plate was used to construct a small
chamber model; the cells were spread in the upper chamber
(6×104 cells/well) with 200 μL/well medium, and 400 μL/
well medium was added to the lower chamber. After cul-
turing for 24 h, we gently wiped away the remaining cells
from the upper chamber and placed the lower chamber in
a 4% paraformaldehyde solution for 30min; after subjecting
the cells to 0.4% crystal violet staining, we used a microscope
to observe the cells, as well as to count them in three
randomly selected felds/well.

2.7. Apoptosis Detection by Flow Cytometry. Te stabilised
PC9/GR cells were plated into a six-well plate (4×105 cells/
well), and the cells were cultured for 48 h in a medium
containing diferent concentrations of geftinib (0.5 and
8 μmol/L). After digestion and centrifugation (500× g,
5min), the cell density was adjusted to 1× 106/mL, and the
apoptosis level was measured using fow cytometry
(FACScan, Shanghai, China) with an Annexin-VFITC/PI
Apoptosis Kit (Univ, Shanghai, China).

2.8. EDU Cell Proliferation Assay. After adjusting the cell
status, we transferred the cells in the logarithmic phase into
a six-well plate (4×106 cells/well). When cell confuence
reached 70%, we added prewarmed EdU staining solution (a
fnal concentration of 10 μM/L) to each group of cells. After
incubating for 3 h, we fxed them with 4% paraformaldehyde
for 20min at 25°C. Subsequently, we washed them twice with
PBS, added 0.1mL of 0.5% Triton X-100 (Termo Fisher

Scientifc, Shanghai, China) in PBS to each well, incubated
them at 25°C for 20min, washed them twice, added Click-iT
(Termo Fisher Scientifc) to the reaction solution, in-
cubated them at 25°C for 30min in the dark, washed the cells
twice, and treated them with diluted Hoechst 33342 staining
solution (1 : 2000;Termo Fisher Scientifc) for 15min. After
staining, the cells were washed twice again with PBS and
photographed under a fuorescence microscope.

2.9. Nude Mouse Xenograft Model. Six-week-old BALB/c
nude female mice, purchased from Beijing Vitalriver Ex-
perimental Animal Technology, were randomly divided into
three groups (8 mice in each group, n= 24). PC-9/GR cells,
Sh-NC PC-9/GR cells, and Sh-ANGPTL4 PC9/GR cells
mixed with an equal number of Matrigel-9/GR cells (1× 106)
were injected subcutaneously into the left side of the mouse
to construct a nude xenograft mouse model (100 μL each).
All mice were fed in a specifc pathogen-free animal room.
When the tumor was palpable, the volume of the sub-
cutaneously transplanted tumor was measured and recorded
daily. As the tumour volume reached 50mm3 (calculation
for volume: long diameter× short diameter× short di-
ameter/2), the ANGPTL4-shRNA components were divided
into two groups: A and B. To assess the survival rate of nude
mice, the control group, NC-shRNA group, and ANGPTL4-
shRNA A group were orally administered 150mg of gef-
tinib/day for treatment, and the ANGPTL4-shRNA B group
was orally administered an equal volume of PBS. Te mice
were weighed and photographed every 3 days, and the body
weight curve was drawn. After 21 days of oral administra-
tion, all mice were euthanised and the tumour tissues were
excised and photographed; in addition, the long diameter,
short diameter, and tumor volume were calculated, and the
weight of the tumour was measured. All animal experiments
were conducted according to the institutional guidelines of
the Animal Care and Use Committee of the First Afliated
Hospital of Anhui University.

2.10. Immunohistochemistry. Slices of the tissue embedded
in wax were sequentially placed in xylene I and II; absolute
ethanol I and II; 95%, 85%, and 75% ethanol; and distilled
water. Subsequently, they were soaked in PBS and wiped dry.
Slices were incubated in 3% H2O2 for 15min at 25°C and
soaked in PBS for 5min three times. Tey were incubated in
1% BSA at 25°C for 15min and a mixture of antibodies (1 :
50) overnight in a humid environment. On the next day, we
washed them twice with PBS (7min/wash). Te IgG (H&L)-
HRP antibody (1 : 500) was added dropwise to the tissue,

Table 1: qRT-PCR primer names and sequences.

Primers Primer sequences (5′-3′)

ANGPTL4 F: GTCCACCGACCTCCCGTTA
R: CCTCATGGTCTAGGTGCTTGT

GAPDH F: GGAGCGAGATCCCTCCAAAAT
R: GGCTGTTGTCATACTTCTCATGG
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which was subsequently placed in a humid environment for
1 h. After the reaction, the cells were washed with PBS for
10min. After washing, DAB staining solution and haema-
toxylin counterstaining were performed.Te counterstained
sections were dehydrated and sealed with neutral gum. Te
sections were observed under a microscope and
photographed.

2.11. Detection of Apoptosis by Tunel Assay. After depar-
afnisation of the tissue sections, 45 μL of 0.1% Triton X-100
was added to them dropwise. Te sections were then placed
at 25°C for 7min and washed with PBS. Subsequently, they
were treated with 50 μL of preconfgured terminal deoxy-
nucleotidyl transferase-mediated reaction solution of dUTP-
biotin nick end labelling (TUNEL) (enzyme solution: label
solution� 1 : 9) for 1 h, washed with PBS, counterstained
with 4′,6-diamidino-2-phenylindole, and incubated in the
dark for 4min. Te residual reagent was washed away with
PBS, and the fuorescent quencher was added dropwise to
mount the slide. Te sections were examined and photo-
graphed using an inverted fuorescence microscope.

2.12. ROS Fluorescence Staining. After the frozen portions
had dried, the tissue was circled with a histochemical pen.
400 μl of ROS staining solution (Servicebio G1045) was
added dropwise to the circles and incubated for 30min at
37°C in the dark. Te slides were washed three times for
6min each time by shaking in PBS on a decolorizing shaker.

Te slides were slightly shaken and dried; then, DAPI
staining solution was added dropwise in a circle and in-
cubated at room temperature for 10min in the dark. Te
slides were then soaked in PBS and washed 3 times with
shaking on a decolorizing shaker for 5min each time. Te
slices were slightly shaken and then sealed with an anti-
fuorescence quenching sealer. Slices were observed under
a fuorescence microscope, and images were acquired
(emission wavelength 515–555 nm).

2.13. Statistics. All experiments in this study were repeated
three times. GraphPad Prism software (version 7.0)
(GraphPad Software, Beijing, China) was used to generate
graphs, and SPSS 22.0 (IBM, Armonk, New York, NY, USA)
was used for the statistical analysis of the data. Te exper-
imental data are expressed as mean± standard deviation
(x ± s). We used the t-test for comparisons between groups
and a one-way analysis of variance for comparison among
multiple groups. Te threshold of statistical signifcance was
set at p< 0.05.

3. Results

3.1. ANGPTL4 Is Highly Expressed in PC9 and PC9/GR Cells.
To explore ANGPTL4 expression in A549, PC9, H1975, and
BEAS-2B cell lines, we performed qRT-PCR and western
blotting. ANGPTL4 expression was very low in BEAS-2B
cells but high in A549, PC9, and H1975 cells (p< 0.05);
mRNA expression in PC9 cells was higher than that in A549

and H1975 cells (p< 0.05, Figures 1(a) and 1(b)). Terefore,
the PC9 geftinib-resistant cells and PC9 cells were cultured
for subsequent experiments.

Furthermore, ANGPTL4 mRNA and protein expression
in PC9 and PC9/GR cells was analysed, and it was found that
ANGPTL4 expression in PC9/GR cells was signifcantly
higher than that in PC9 cells (p< 0.05; Figures 1(c) and 1(d)).

3.2. ANGPTL4 Is Associated with Resistance to Geftinib in
Lung Adenocarcinoma Cells. Te efect of diferent con-
centrations of geftinib on the cell viability of A549, PC9,
H1975, and BEAS-2B cells was investigated by CCK-8 assay.
Te IC50 of A549, PC9, H1975, and BEAS-2B cells was
2.44± 0.36, 2.93± 0.27, 2.23± 0.43 and 1.35± 0.51 μmol/l,
respectively, with the IC50 of PC9 cells being signifcantly
higher than the other three groups (Figures 2(a) and 2(b),
p< 0.05).

Ten, we transfected PC9/GR cells with shRNA and
performed western blotting and qRT-PCR to verify the
knockdown efect. We found that both shRNA1 and
shRNA3 had a stable knockdown efect (p< 0.01) and that
the knockdown efect of shRNA3 wasmore evident than that
of shRNA1 (Figures 2(c) and 2(d)).

In subsequent experiments, shRNA3 was used to knock
down ANGPTL4. Cell viability studies on PC9, PC9/GR,
NC-shRNA, and ANGPTL4-shRNA3 cells revealed the IC50
values of the PC9 group (2.597± 0.154 μmol/L) and
ANGPTL4-shRNA3 group (2.817± 0.245 μmol/L) were
lower than those of the PC9/GR group (20.73± 0.25 μmol/L;
both, p< 0.001) and NC-shRNA (20.71± 0.592 μmol/L;
p> 0.05; Figures 2(e) and 2(f)).

3.3. ANGPTL4 Correlates with the Level of Invasion and
Apoptosis of PC9/GRCells. Te results of the Transwell assay
and scratch assay showed (Figures 3(a) and 3(b)) that in-
creasing geftinib concentration could inhibit PC9/GR cell
invasion and migration, but the efect was lower than in-
terfering with ANGPTL4 expression, and knocking down
ANGPTL4 while increasing geftinib drug induction could
further inhibit PC9/GR cell invasion and migration ability.
Te results of fow cytometry and Edu proliferation assays
showed that the knockdown of ANGPTL4 expression
inhibited PC9/GR cell proliferation and promoted apoptosis
(Figures 3(c) and 3(d)), while knockdown of ANGPTL4
expression signifcantly inhibited PC9/GR cell proliferation
and promoted apoptosis under geftinib induction. Te
above experimental results showed that ANGPTL4 posi-
tively correlated with the invasive migration and pro-
liferation viability of PC9/GR cells, while negatively
correlated with the apoptosis level.

3.4. Interference with ANGPTL4 Expression In Vivo can In-
hibit Tumour Progression. To further understand the efect
of ANGPTL4 on the acquired resistance of geftinib, we used
PC9/GR and ANGPTL4-shRNA cells to construct a nude
xenograft mouse model (Figures 4(a) and 4(b)). Under the
same treatment with geftinib, the growth rate and weight of
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Figure 1: ANGPTL4 expression in A549, PC9, BEAS-2B, and PC9/GR cells (x ± s, n� 3). (a, b) ANGPTL4 protein andmRNA expression in
A549, PC9, and BEAS-2B cells; (c) CCK-8 test revealed the IC50 in A549, PC9, and BEAS-2B cells; (c, d) ANGPTL4 protein and mRNA
expression in PC9 and PC9/GR cells. #p< 0.001 compared to the BEAS-2B group; ∗, ∗∗, and ∗∗∗p< 0.05, 0.01, and 0.001, respectively,
compared to the PC9 cell group.
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Figure 2: Continued.
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the tumor in the ANGPTL4-shRNA+G group were lower
than those in the control +G group (p< 0.05, Figures 4(d)
and 4(e)). However, there was no signifcant diference in the
body weights of the mice in each group (Figure 4(c)).

Te TUNEL assay revealed that knockdown with
ANGPTL4 expression increased the level of apoptosis
(p< 0.001, Figure 5(a)). Furthermore, it showed that the
apoptotic level of the ANGPTL4-shRNA group was higher
than that of the control +G group (p< 0.001, Figure 5(d)).
Tis suggests that ANGPTL4 is better than geftinib for the
regulation of apoptosis in vivo. Furthermore, immunohis-
tochemical staining showed that Ki-67 levels in transplanted
tumour tissue from the ANGPTL4-shRNA and ANGPTL4-
shRNA+G groups were lower than those in the control +G
group (both, p< 0.001), which suggests that ANGPTL4
promotes tumor proliferation in vivo (Figure 5(b)). To-
gether, the inhibition of ANGPTL4 expression can inhibit
tumor growth and proliferation.

Te results of the ROS fuorescence staining experiment
also showed that geftinib treatment combined with re-
duction of ANGPTL4 increased the degree of ROS ex-
pression in PC9/GR cells.

3.5.ANGPTL4InhibitsPyroptosis andApoptosisbyRegulating
the NLRP3\ASC\Caspase 8 Pathway. To explore the specifc
mechanism by which lung adenocarcinoma cells acquire
geftinib resistance, the expression levels of the pyroptosis-
related proteins ACS, NLRP3, cFLIPL, and Caspase 8 in
ANGPTL4 knockdown were detected by western blotting. In
ANGPTL4-knockdown cells, NLRP3, ACS and cleaved-
caspase 8 expression decreased and increased, respectively
(p< 0.001, Figure 6(a)). In contrast, the expression levels of
cFLIPL in ANGPTL4-knockdown cells were increased and
decreased, respectively (p< 0.001, Figure 6(a)).

Since both in vivo and ex vivo research demonstrated
that cells’ levels of apoptosis rose after being knocked down
with ANGPTL4, we also looked at the expression of proteins
linked to apoptosis in the knockdown cells. After the
knockdown of ANGPTL4, the expression of inhibitory
proteins, such as Bcl-2, decreased signifcantly (p< 0.05,
Figure 6(b)).

To confrm that ANGPTL4 can regulate the occurrence
of pyroptosis and apoptosis through the NLRP3\ASC\-
Caspase 8 pathway, we used tissue proteins from the xe-
nograft tumor to re-verify the results. Under the conditions
of drug treatment and culture, in nude mice treated with
ANGPTL4-shRNA cells, ASC, NLRP3, and cleaved-caspase
8 expression was higher than that in the control group and
Bcl-2 and cFLIPL expression was lower than that in the
control group (p< 0.05, Figures 6(c) and 6(d)). Collectively,
ANGPTL4 inhibits lung adenocarcinoma cell pyroptosis and
apoptosis by regulating the NLRP3\ASC\Caspase 8 pathway
both in vivo and in vitro.

4. Discussion

More andmore specialized medications have been created as
targeted lung cancer therapy research has progressed. Te
most frequent location of mutation among the several
targets is EGFR [4]. Currently, EGFR-TKIs have been de-
veloped to the fourth generation, while the frst-generation
drugs, represented by geftinib, are still widely used in Asia
and other regions for their high therapeutic efectiveness and
low side efects [6, 17]. However, the issue regarding the
secondary resistance to EGFR-TKIs in lung adenocarcinoma
patients has still not been adequately addressed. In our
previous study, we found high expression of ANGPTL4 in
PC9/GR cells [18], suggesting that ANGPTL4 may be one of
the potential targets for geftinib resistance in lung
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Figure 2: Knockdown with ANGPTL4 expression reduces the resistance of PC9/GR to geftinib (x ± s, n� 3). (a, b)Te CCK-8 test revealed
the cell viability and IC50 of geftinib in A549, PC9, H1975, and BEAS-2B cells. (c, d) ANGPTL4 protein and mRNA expression in PC9/GR
cells after transfection with ANGPTL4-shRNA and NC-shRNA. (e, f ) CCK-8 test revealed the cell viability and IC50 of geftinib in PC9/GR
cells after ANGPTL4 knockdown. Control: blank control group; NC-shRNA: PC9/GR cells transfected with NC-shRNA; G: PC9/GR
cells + geftinib; ANGPTL4-shRNA: PC9/GR cells transfected with ANGPTL4-shRNA; ANGPTL4-shRNA+G: PC9/GR cells transfected
with ANGPTL4-shRNA+ geftinib. ∗, ∗∗, and ∗∗∗: p< 0.05, 0.01, and 0.001, respectively, compared to the control group; #, ## and ###: p< 0.05,
0.01, and 0.001, respectively, compared to the PC9 group.
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Figure 3: Continued.
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adenocarcinoma cells. In this study, we further confrmed
that high expression of ANGPTL4 promoted secondary
resistance to PC9 geftinib in lung adenocarcinoma cells
through in vivo and ex vivo experiments and explored the
specifc mechanism, which helps to improve the un-
derstanding of the correlation between ANGPTL4 and re-
sistance to EGFR-TKIs.

ANGPTL4 belongs to the ANGPTL superfamily and can
regulate lipid metabolism, leading to coronary heart disease
and many other cardiovascular diseases [19]. Previous
studies have confrmed the high expression of ANGPTL4 in
a variety of malignant tumor cells and tissues, such as
pancreatic cancer [20], gastric cancer [21], chol-
angiocarcinoma cells [22], and breast cancer [13, 19]. In our
study, by comparing the expression levels of ANGPTL4 in
three diferent lung adenocarcinoma cells and human
bronchial epithelial cells BEAS-2B, we found that the ex-
pression levels of ANGPTL4 were higher in all three lung
adenocarcinoma cells than in BEAS-2B cells, demonstrating
that ANGPTL4 expression was upregulated in lung ade-
nocarcinoma cells. Tis fnding is consistent with the study
by Zhu et al. [12]. A gap in the literature exists regarding the
relationship between ANGPTL4 and resistance to EGFR-
TKIs, despite the fact that ANGPTL4 has been identifed as
a tumor-promoting factor based on the series of studies
mentioned above that suggest it can be upregulated and
contribute to the progression of a number of malignancies.

In our study, we found that the expression of ANGPTL4
was upregulated in PC9/GR cells, which was signifcantly

higher than that in PC9 cells. And the resistance of cells to
geftinib was signifcantly decreased after knockdown with
ANGPTL4 expression in PC9/GR cells. In addition,
knockdown with ANGPTL4 led to a decrease in the pro-
liferation, migration, and invasion ability of PC9/GR cells
and an increase in the level of apoptosis and the expression
level of ROS in vivo and vitro.

Consistent with our study, ANGPTL4 was also found to
be negatively correlated with apoptosis and ROS levels in
ovarian cancer cells in the study by Yang et al. [23].

Pyroptosis is the same as apoptosis, and both are a type
of programmed cell death [24]. Te onset of pyroptosis is
often accompanied by chromatin condensation and DNA
breakage, cell membrane pore formation, cell swelling, and
membrane rupture, which in turn leads to the release of
cellular contents and pro-infammatory mediators [24].

Te current study found that intracellular focal death is
activated mainly through two pathways; one of them is the
classic pathway that relies on GSDMD [25]. As a central
target in the classical pathway, NLRP3 has been found to be
aberrantly expressed in a variety of malignancies, such as
ovarian cancer [26] and breast cancer [27]. However, to date,
there are still no studies on the correlation between
ANGPTL4 and pyroptosis.

In the present study, we observed that after discrimi-
nating between knockdown of ANGPTL4 in PC9/GR cells,
expression of pyroptosis-related proteins NLRP3, ASC, and
cleaved-caspase8 were subsequently upregulated and de-
creased, but the expression levels of the pyroptosis inhibitor
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Figure 3: Knockdown with ANGPTL4 expression reduces the resistance of PC9/GR to geftinib (x ± s, n� 3). (a) Transwell test revealed the
correlation between ANGPTL4 knockdown and PC9/GR cell migration ability (×400). (b) Scratching experiments revealed a correlation
between ANGPTL4 knockdown and the migration ability of PC9/GR cells (×200). (c) EdU proliferation test revealed the correlation
between ANGPTL4 knockdown and PC9/GR cell proliferation (×400). (d) Flow cytometry showed the correlation between ANGPTL4
knockdown and PC9/GR cell apoptosis. Control: blank control group; NC-shRNA: PC9/GR cells transfected with NC-shRNA;G: PC9/GR
cells + geftinib; ANGPTL4-shRNA: PC9/GR cells transfected with ANGPTL4-shRNA; ANGPTL4-shRNA+G: PC9/GR cells transfected
with ANGPTL4-shRNA+ geftinib. ∗, ∗∗, and ∗∗∗: p< 0.05, 0.01, and 0.001, respectively, compared to the control group; # and ##: p< 0.05 and
0.01, respectively, compared to the G group; &, &&, and &&&: p< 0.05, 0.01, and 0.001, respectively, compared to the ANGPTL4-
shRNA group.
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Figure 5: Continued.
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Figure 5: Efect of interfering ANGPTL4 on transplanted tumor tissue (x ± s, n� 3). (a) TUNEL assay was performed to detect the level of
apoptosis in xenograft tissue (×400). (b) Ki-67 expression in the tumour tissue of each group. (c) ROS fuorescence staining was performed
to detect the level of ROS in xenograft tissue (×400). (d) Flow cytometry showed the level of apoptosis in xenograft tissue. ∗and ∗∗∗: p< 0.05
and 0.001, respectively, compared to the control +G group; &and &&&: p< 0.05 and 0.001, respectively, compared to the ANGPTL4-
shRNA3 group.
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protein cFLIPL were increasing and decreasing, respectively,
in vivo and vitro. Tis suggests that ANGPTL4 regulates
geftinib resistance in lung adenocarcinoma cells through the
NLRP3/ASC/Caspase8 pathway.

Additionally, according to certain research, pyroptotic
cell death is frequently accompanied by both necrosis and
apoptosis traits [28]. Moreover, our research discovered that
levels of apoptosis in cells rose following ANGPTL4
knockdown. Fritsch et al. showed that caspase 8 is not only
involved in the scorching of tumour cells but also plays an
important role in the process of apoptosis [29]. In a study by
ChiW et al., the expression levels of NLRP3, ASC, Caspase8,
and apoptosis-related proteins were signifcantly increased
in an acute diabetic mouse model [30]. Chen et al. further
demonstrated that pannexin-1 promotes caspase-8 or cas-
pase-9-dependent apoptosis by promoting the activation of
NLRP3 infammatory vesicles through the construction of
GSDMD D88A knock-in mice [31]. Our study also found
that the expression levels of NLRP3, ASC, and Cleaved-

caspase 8 increased and decreased after knockdown and
overexpression of ANGPTL4, respectively, while the ex-
pression levels of the apoptosis suppressor protein Bcl-2
were reversed suggesting that ANGPTL4 regulates apoptosis
in PC9/GR cells through mediating the NLRP3/ASC/Cas-
pase 8 pathway.

In summary, our research explored the regulatory ability
and mechanism of ANGPTL4 in the resistance of PC9/GR
cells to geftinib through in vivo and in vitro experiments.
ANGPTL4 inhibited pyroptosis and apoptosis by regulating
the NLRP3/ASC/Caspase 8 pathway, leading to resistance to
geftinib in lung adenocarcinoma. ANGPTL4 may be an
important regulator of EGFR-TKI resistance in patients with
non-small-cell lung cancer. Targeting ANGPTL4 may in-
hibit the development of EGFR-TKI resistance, which may
improve the survival rate of patients with non-small-cell
lung cancer. However, our experiments had shortcomings.
For example, due to the strong proliferation ability of PC9/
GR cells, geftinib treatment was added to the control group
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Figure 6: Changes in the expression of NLRP3\ASC\Caspase 8 pathway-related proteins after ANGPTL4 knockdown and overexpression in
cells and transplanted tumour tissues (x ± s, n� 3). (a) NLRPS\ASC\Caspase 8 and pyroptosis-related protein expression after ANGPTL4
knockdown in PC9/GR cells. (b) Changes in the expression of NLRP3\ASC\Caspase 8 and apoptosis-related protein expression after
ANGPTL4 knockdown in PC9/GR cells. (c) NLRP3\ASC\Caspase 8 and pyroptosis-related protein expression after ANGPTL4 knockdown
in xenograft tumours. (d) NLRP3\ASC\Caspase 8 and apoptosis-related protein expression after ANGPTL4 knockdown in xenograft
tumours. Control: PC9/GR cells; NC-shRNA: PC9/GR cells transfected with NC-shRNA;G: PC9/GR cells + geftinib; ANGPTL4-shRNA:
PC9/GR cells transfected with ANGPTL4-shRNA;ANGPTL4-shRNA+G: PC9/GR cells transfected with ANGPTL4-shRNA+ geftinib;
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treated with PC9/GR cells + geftinib. ∗, ∗∗ and ∗∗∗: p< 0.05,0.01 and 0.001, respectively, compared to the control or control +G group.

14 Journal of Oncology



to improve the survival rate of nude mice, which may have
led to the loss of the true blank control group in animal
experiments.
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Objective. This study is aimed at exploring the function of KIF21B in colorectal cancer. Methods. The expression of KIF21B was
analyzed by the UALCAN database, GEPIA site, and TIMER site. The survival rate was analyzed by Kaplan-Meier curves, and the
prognosis was analyzed by ROC. Relevant signaling pathways and biological processes were analyzed by GO-KEGG enrichment
analysis. The correlation between KIF21B and cancer immune infiltrates was analyzed by TIMER. The functional state of KIF21B
in various types of cancers was conducted by single-cell RNA-sequencing. Furthermore, the expression of KIF21B was verified by
real-time qPCR and Western blotting. The cell proliferation was measured by CCK8 assay. The cell apoptosis was analyzed by
flow cytometry. Cell migration and invasion were determined by the transwell assay. Results. Combination analysis of
bioinformatics methods revealed that KIF21B is high expression in CRC, associated with poor survival. KIF21B and associated
genes were significantly enriched in covalent chromatin modification. The expression of KIF21B was positively correlated with
infiltrating levels of CD4+ T cells and neutrophils, cell apoptosis, and metastasis. KIF21B was upregulated expression in CRC
cell lines. KIF21B deficiency reduced cell proliferation, migration, and invasion. Conclusions. Our study suggested that KIF21B
may be a biomarker in CRC.

1. Introduction

Colorectal cancer is the third most common cancer in the
world and the second leading cause of cancer-related deaths.
In 2018, there were approximately 1.8 million new cases and
860,000 deaths [1]. By 2040, the annual global burden of
colorectal cancer is expected to increase to more than 3 mil-
lion new cases and 6 million deaths [1]. The incidence of
colorectal cancer varies between countries, and studies on
international immigrants have shown that diet and other
lifestyle factors play a role in disease progression [2].
Therefore, people are paying more and more attention to
formulating public health programs to reduce the incidence
of colorectal cancer by targeting modifiable risk factors.
Despite advances in treatment and early diagnosis in recent
decades, the 5-year survival rate of CRC patients is still
unsatisfactory [3]. At present, the prognosis model estab-

lished based on clinical predictive indicators such as age,
gender, and TNM staging is a commonly used clinical prog-
nosis model for CRC. However, due to the high degree of het-
erogeneity of the disease, the prognosis based on conventional
clinical predictors is not accurate, resulting in inaccurate
prediction of the survival of CRC patients [4]. Therefore, the
establishment of more comprehensive predictive indicators
has important implications for more effective treatment.

Kinesin superfamily proteins belong to a class of
microtubule-dependent molecular motors that utilize ATP
hydrolysis yield in eukaryotes to move cargo such as pro-
teins, macromolecules, and organelles such as chromosomes
and vesicles along the cytoskeletal microtubule network.
They play important roles in all aspects of intracellular traf-
ficking and are involved in a wide variety of physiological
processes, including embryonic development, axonal trans-
port, and cell division. Many kinesins play important roles

Hindawi
Journal of Oncology
Volume 2022, Article ID 7905787, 10 pages
https://doi.org/10.1155/2022/7905787

https://orcid.org/0000-0003-2483-0108
https://orcid.org/0000-0002-3179-6692
https://orcid.org/0000-0001-6111-8019
https://orcid.org/0000-0002-4121-5660
https://orcid.org/0000-0002-8280-5501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7905787


ACC.tumor
BLCA.tumor

CESC.tumor
CHOL.tumor

DLBC.tumor
ESCA.tumor

GBM.tumor
HNSC.tumor

KICH.tumor

KIRC.tumor

KIRP.tumor

LAML.tumor
LGG.tumor

LIHC.tumor

LUAD.tumor

LUSC.tumor

MESO.tumor
OV.tumor

PAAD.tumor
PCPG.tumor
PRAD.tumor

READ.tumor

SARC.tumor
SKCM.tumor

STAD.tumor

TGCT.tumor
THCA.tumor

THYM.tumor
UCEC.tumor

UCS.tumor
UVM.tumor

UCEC.normal

THCA.normal

STAD.normal

SKCM.metastasis

READ.normal

PRAD.normal

LUSC.normal

LUAD.normal

LIHC.normal

KIRP.normal

KIRC.normal

KICH.normal

HNSC.normal
HNSC-HPVpos.tumor
HNSC-HPVneg.tumor

ESCA.normal

CHOL.normal

COAD.normal
COAD.tumor

BRCA.tumor
BRCA.normal

BRCA.-basal.tumor
BRCA.-her2.tumor

BRCA.-luminal.tumor

BLCA.normal

KIF21B expression level (log2 TPM)
0 2 4 6

(a)

TCGA samples

20

15

10

5

0

Tr
an

sc
rip

t p
er

 m
ill

io
n

⁎⁎⁎

Expression of KIF21B in COAD
based on sample types

Normal
(n = 41)

Primary tumor
(n = 286)

20

15

10

5

0

Tr
an

sc
rip

t p
er

 m
ill

io
n

⁎⁎⁎
⁎⁎⁎⁎⁎⁎

Expression of KIF21B in COAD
based on histological subtypes

Normal
(n = 41)

Adenocarcinoma
(n = 243)

Mucinous
adenocarcinoma

(n = 37)

TCGA samples

(b)

Figure 1: Continued.

2 Journal of Oncology



in cell division, and kinesin overexpression is associated with
cancers such as retinoblastoma [5]. Recent study reported
that KIFs participate in the division of mitotic cells by partic-
ipating in the movement of chromosomes and spindles, sug-
gesting that the release of KIFs may be related to the
occurrence of tumors [6]. KIF21B is a classical kinesin that
inhibits the growth of microtubules through the tail domain
and participates in the regulation of microtubule dynamics
as a potential microtubule suspension factor [7, 8]. Both play
important roles in intercellular signal transduction, malig-
nancy, tumorigenesis, and metastasis [9]. Studies have
shown that increasing expression of KIF21B is correlated
with poor disease-free survival in patients with prostate can-
cer [10]. KIF21B is upregulated in hepatocellular carcinoma
and is significantly associated with prognosis [11]. KIF21B is
abnormally expressed in osteosarcoma and affects the prolif-
eration and apoptosis of osteosarcoma cells by regulating the
PI3K/AKT pathway [12]. However, the function of KIF21B
in colorectal cancer has not been reported.

In this study, the TCGA data platform was used to ana-
lyze the expression of KIF21B in colorectal cancer and its
impact on survival and prognosis and to provide potential
molecular markers for the diagnosis and treatment of colo-
rectal cancer.

2. Methods and Materials

2.1. Cells and shRNA. NCM460, HT29, HCT116, SW48, and
HCT15 cells were purchase from Procell. All cells were cul-
tured in DMEM with 10% FBS and penicillin-streptomycin.
shRNA were purchased from Sigma. Lipofetamine 3000
reagent was used to related transfection assays as direction
of manual handbook.

2.2. Gene Expression Analysis. The expression of KIF21B in
COAD was analyzed by online platform, including TIMER

(https://cistrome.shinyapps.io/timer/), UALCAN (http://ualcan
.path.uab.edu/analysis.html), and GEPIA (http://gepia.cancer-
pku.cn/).

2.3. Kaplan-Meier Analysis and ROC Analysis. Based on
TCGA-COAD dataset to draw the survival prognosis curve
by using the survivor package in R. Based on TCGA-
GTEx-COAD and TCGA-COAD dataset to do ROC analy-
sis by using the pROC package.

2.4. GO-KEGG Enrichment Analysis. Firstly, the genes with
an expression correlation to KIF21B in COAD were selected
from UALCAN dataset, then the genes with Pearson score
≥ 0:4 were screened for GO-KEGG enrichment analysis
through the enrichplot package of R.

2.5. Correlation Analysis. Correlation analysis was per-
formed as described as previously depicted [13, 14]. The cor-
relation between KIF21B and genes associated with immune
infiltration were analyzed by Spearman score. The data
comes from TIMER.

2.6. Single-Cell RNA-Sequence Analysis. Single-cell RNA iso-
lation and sequencing were performed as previously
depicted [15]. The functional status of KIF21B in different
kinds of cancers was analyzed by CancerSEA (http://biocc
.hrbmu.edu.cn/CancerSEA/). The expression profile of
KIF21B in single cells obtained from CRC tissue was ana-
lyzed by t-SNE. The correlation between KIF21B and apo-
ptosis, metastasis, DNA damage, and hypoxia was analyzed
by Pearson score.

2.7. RT-qPCR and Western Blotting Analysis. RNA isolation
and protein extraction were performed as previously
described [16]. Cell were harvested, washed, and treated
with TRIzol reagent for the extraction of RNA, then cDNA
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Figure 1: The expression of KIF21B was increased in colorectal cancer. (a) KIF21B expression in CRC was analyzed by TIMER database
(https://cistrome.shinyapps.io/timer/). (b) KIF21B expression in CRC was analyzed by UALCAN database (http://ualcan.path.uab.edu/
analysis.html). (c) KIF21B expression in CRC was analyzed by GEPIA database (http://gepia.cancer-pku.cn/).
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was produced by the reverse transcription of RNA. The
primers were list as follows:

KIF21B forward: 5′-ACCTATGACTTTGTCTTCGAC
CT-3′;

KIF21B reverse: 5′-CAGCACCGTGGCATTATAGC-3′;
GAPDH forward: 5′-AGGTCGGTGTGAACGGATT

TG-3′; and
GAPDH reverse: 5′-GGGGTCGTTGATGGCAACA-3′.
For Western blotting, protein lysate was deprived from

cell lysis by RIPA buffer with protein inhibitor. And immu-
noblotted with the following antibodies: antimouse KIF21B
(1 : 1000, Santa, sc-517174, USA) and antimouse β-actin
(1 : 1000, Santa, sc-8432, USA).

2.8. Cell Viability and Apoptosis Analysis. The survival anal-
ysis of CRC cell lines was performed as described as previ-
ously depicted [17]. CCK8 assay was used to analyze cell
viability. Cell lines were counted, seeded into 96-well plate,

then analyzed the cell viability at 0h, 24h, 48h, 72h, and
96h. Cell apoptosis was analyzed by flow cytometry. Cells were
harvested, washed, then stained with PI or/and annexin V.

2.9. Cell Migration and Invasion. For migration assays,
transwells with an 8μm pore size filter are inserted into a
24-well plate. The cell serum was starved overnight and then
added to the upper chamber (2:5 × 104 cells per insertion),
and the lower chamber used a complete culture medium
supplemented with 10% fetal bovine serum as a chemical
attractant. After 24 hours of incubation, the remaining unin-
vaded cells on the upper surface of the filter were removed.
The cells that passed through the filter and attached to the
bottom of the membrane were fixed and stained. In each
experiment, under a phase-contrast microscope, 7 areas
were randomly selected from 3 repeated cells, and the num-
ber of invading cells was counted. For invasion assays, the
Matrigel was spread in filter, then 4 × 104 cells were seeded
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Figure 2: The high expression of KIF21B in colorectal cancer was related to poor prognosis. (a) Kaplan-Meier analysis of the correlation
between KIF21B and prognosis from TCGA-COAD database. (b) ROC curve analysis of KIF21B in clinical diagnosis from
GTEx-COAD, TCGA-COAD.
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into chamber. And the subsequent steps were same with
migration assays.

2.10. Statistical Analysis. Student’s t-test and two-way
ANOVA were used in statistical analyses and performed by
SPSS 22.0 software. Data were presented as mean ± SEM of
three independent experiments. A P value of 0.05 or less were
considered to be significant.

3. Results

3.1. KIF21B Was Increased Expression in Colorectal Cancer.
First of all, we analyzed the expression of KIF21B in CRC
from TIMER database. As shown in Figure 1(a), KIF21B
was upregulated expression in tumor tissues compared to
normal tissues of COAD. Moreover, KIF21B was also signif-
icant overexpression in primary tumor specimens compared
with normal group based on the sample type in COAD.
Based on the histological subtype of COAD, the expression
of KIF21B was also increased expression in adenocarcinoma

(n = 243)/mucinous adenocarcinoma (n = 37) compared to
normal tissues (n = 43) from UALCAN database. In addi-
tion, KIF21B was elevated expression in tumor specimens
(n = 275) compared with normal specimens (n = 349) from
GEPIA database. Collectively, our data indicated that
KIF21B is upregulated expression in CRC.

3.2. Overexpression of KIF21B in Colorectal Cancer Was
Related to Poor Prognosis. Then, we analyzed the correlation
between KIF21B expression and survival of patients. As
shown in Figure 2(a), there was a better survival, including
overall survival, disease specific survival, and progress free
interval, in patients with low expression of KIF21B com-
pared to the high expression groups from TCGA–COAD
dataset. In addition, the AUC values were all greater than
0.8, and the confidence interval was between 0.8 and 0.9 by
AUC analysis from GTEx-COAD and TCGA-COAD data-
base (Figure 2(b)). Taken together, our data suggested that
KIF21B has a value as a diagnostic marker in CRC.

Inositol phosphate metabolism
Notch signaling pathway

Phosphatidylinositol signaling system
Small GTPase binding

Ras guanyl-nucleotide exchange factor activity
Guanyl-nucleotide exchange factor activity

Methyltransferase complex
Trans-golgi network

Nuclear speck

Histone modification
Regulation of small GTPase mediated signal transduction

Covalent chromatin modification

−Log10 (p.adjust)

0 2 4 6 8 10 12

BP
CC

MF
KEGG

(a)

Phosphatidylinositol signaling system
Inositol phosphate metabolism

Notch signaling pathway
Small GTPase binding

Guanyl-nucleotide exchange factor activity
Ras guanyl-nucleotide exchange factor activity

Nuclear speck
Trans-golgi network

Methyltransferase complex

Regulation of samll GTPase mediated signal transduction

Counts

p.adjust

Gene ratio

0.02 0.03 0.04 0.05 0.06 0.07

0.01

11
41
71

0.02

0.03

Covalent chromatin modification
Histone modification

(b)

Figure 3: Enrichment analysis of KIF21B expression-related genes in colorectal cancer. (a, b) Based on UALCAN database analysis of genes
associated with KIF21B expression in COAD, genes with PearsonCC ≥ 0:4 were selected for GO-KEGG enrichment analysis. Data was
shown as column chart (a) and bubble chart (b).
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3.3. Enrichment Analysis of KIF21B Expression-Related
Genes in Colorectal Cancer. In order to clarify the underlying
function of KIF21B, we used GO-KEGG signal pathway
analysis to confirm the networks of KIF21B in CRC. As
shown in Figures 3(a) and 3(b), KIF21B mainly exerted
important role in notch signaling pathway, inositol phos-
phate metabolism, phosphatidylinositol signaling system,
and histone modification. Moreover, KIF21B and related
genes are significantly enriched in covalent chromatin mod-
ification. There was a positive correlation between KIF21B
expression with CD4+ T cells (cor = 0:352, P = 1:12e − 10)
and neutrophil cells (cor = 0:352, P = 9:26e − 3) (Figure 4).
Collectively, our data indicated that KIF21B is correlated
with immune infiltrates in CRC.

3.4. The Correlation between KIF21B and the Biological
Function of Colorectal Cancer Cells. Next, to better under-
stand the expression correlation and underlying mechanisms
of KIF21B in cancer, we analyzed the functional status of
KIF21B in diversity cancers from the CancerSEA database.
KIF21B has been studied at the single-cell level in 12 kinds
of cancer (Figure 5(a)), including AML, ALL, CML, GBM, Gli-
oma, AST, ODG, LUAD, MEL, RCC, BRCA, and PC. KIF21B
was positively correlated with CRC cell apoptosis (cor = 0:414,
P = 0:007) and migration (cor = 0:352, P = 0:024). However,
KIF21B was not significantly associated with any of the 14
functional states in CRC except for apoptosis and metastasis.
We also analyzed the single-cell expression distribution of
KIF21B in CRC tissues by t-SNE plot, as shown in
Figure 5(b), there was a differential expression of KIF21B in
single-cell level. Furthermore, KIF21B expression was signifi-
cantly positive correlation with apoptosis (cor = 0:41) and
metastasis (cor = 0:35) (Figure 5(c)). And there was also a
positive correlation between KIF21B expression and DNA
damage (cor = 0:89) and hypoxia (cor = 0:79) (Figure 5(d)).

Taken together, our data suggested that KIF21B is involved
in the phenotype of CRC.

3.5. KIF21B Was Upregulated Expression in CRC Cells and
Promotes Cell Migration and Invasion. To better clarify the
function of KIF21B in CRC, we analyzed the expression of
KIF21B in cell level, as shown in Figures 6(a) and 6(b).
KIF21B was upregulated expression in CRC cell lines,
including HT29, HCT116, SW480, and HCT15, compared
with normal intestinal epithelial cells NCM460. Then, we
constructed KIF21B knockdown HCT116 and HT29 cell
lines by shRNA (Figure 6(c)). And we analyzed cell prolifer-
ation in the cell lines by CCK8 assay, as shown in
Figure 6(d), knockdown of KIF21B decreased cell prolifera-
tion in HT29 and HCT116 cell lines. Moreover, KIF21B
deficiency induced cell apoptosis in HT29 and HCT116 cell
lines (Figure 6(e)). Apart from this, cell migration and inva-
sion were also suppressed in HT29 and HCT116 cell lines
with shKIF21B treatment (Figures 6(f) and 6(g)). Collec-
tively, our data suggested that KIF21B positively regulates
cell proliferation, migration, and invasion in CRC.

4. Discussion

Colorectal cancer (CRC) as the third most common malig-
nancy and the second mortality in diversities of cancer,
which accounts for 10.2% morbidity and 9.2% mortality in
all types of cancer worldwide [1]. And with the development
of society, the morbidity and mortality of CRC have
increased year by year in the past three decades. Therefore,
it is essential to find out the key biomarker of poor survival
in regulating of CRC development and progression. In this
study, KIF21B was high expression in CRC cells and tissues.
Overexpression of KIF21B was associated with poor sur-
vival. KIF21B was correlated with immune infiltrates in
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CRC. Furthermore, single-cell sequencing indicated that
KIF21B exerts positive correlation with cell apoptosis and
metastasis. In addition, knockdown of KIF21B reduced cell
viability, metastasis, and invasion, whereas increased cell
apoptosis in CRC cell lines.

KIF21B belongs to a superfamily of motor proteins,
exerted critical role in intracellular trafficking, cell mitosis,
and cytoskeletal reorganization [8]. In the past few years,
many research reported that the change of kinesins acts

important role in cell growth, cell migration, cell invasion,
and tumorigenesis in diversity of cancers, including prostate
cancer, breast cancer, bladder cancer, pancreatic cancer, gastric
cancer, hepatocellular carcinoma, colorectal cancer, and lung
cancer [18]. And KIF21B, as a member of kinesins family pro-
teins, also exerted important role in gastric cancer [19], HCC
[11], and NSCLC [20]. Here, we were firstly demonstrated that
KIF21B plays key role in CRC. Generally, KIF21B exerted a
function of ATP-dependent microtubule motor protein, which
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Figure 5: Single-cell-sequencing to analyze the correlation between KIF21B and the biological function of colorectal cancer cells. (a)
Function analysis of KIF21B in different kinds of cancer CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/). (b) The expression profile
of KIF21B in single cell from CRC tissue was analyzed by T-SNE. (c) The correlation analysis of KIF21B with apoptosis and migration.
(d) The correlation analysis of KIF21B with DNA damage and hypoxia.
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Figure 6: KIF21B was upregulated in colorectal cancer cells and promotes survival, increases migration and invasion. (a) KIF21B mRNA
expression in CRC cell lines was measured by RT-qPCR. (b) Western blotting assay was used to analyze KIF21B protein expression in
CRC cell lines. (c) HT29 and HCT116 cell lines were transfected with shNC and shKIF21B, respectively. The expression of KIF21B was
measured by Western blotting. (d) KIF21B-knockdown HCT116 and HT29 cell lines were cultured as the indicated time (0 h, 24 h, 48 h,
72 h, and 96 h), then the cell proliferation was measured by CCK8 assay. (e) Cell apoptosis in KIF21B deficiency HCT116 and HT29 cell
lines was measured by flow cytometry. (f, g) Cell migration and invasion were measured by transwell assay without or with matrigel.

8 Journal of Oncology



participates in regulation of microtubule dynamics, including
growth rate and mutation frequency [7]. Based on the impor-
tant role of kinesins and microtubules in signaling transduc-
tion, transport, metastasis, malignancy, and tumorigenesis, we
also clarified the key role of KIF21B in cell proliferation, apo-
ptosis, migration, and invasion in CRC.

Previous study reported that KIF21B is overexpression in
HCC cells and tissues, and KIF21B deficiency significantly
suppressed cell proliferation and increased cell apoptosis,
which indicated that KIF21B is a potential diagnostic and
prognostic marker for HCC [11]. Moreover, Sun et al. also
reported that KIF21B was overexpression in non-small-cell
lung cancer tissues and associated with poor prognosis.
Knockdown of KIF21B remarkably reduced cell proliferation,
cell migration, cell invasion, and increased cell apoptosis in
NSCLC [20]. Similarly, we confirmed the result of KIF21B in
regulation of cell viability and apoptosis in CRC. Apart from
this, KIF21B deficiency reduced the expression of Bcl-2 and
induced the expression of Bax and active caspase 3 in NSCLC
[20]. KIF21B decreasing expression facilitated cell apoptosis
and impeded cell growth and tumorigenesis in nude mice
through the inhibition of PI3K/AKT pathway and decreasing
of Bcl-2 and increasing of Bax expression in osteosarcoma
[12]. The underlying mechanism of KIF21B in regulating of
cell apoptosis in CRC needs to be further investigated.

In our research, KIF21B mainly exerted important role in
notch signaling pathway, inositol phosphate metabolism, and
phosphatidylinositol signaling system by KEGG enrichment
analysis, which was similar with the previous study of critical
role of KIF21B in osteosarcoma [12]. They also demonstrated
that KIF21B expression regulates cell proliferation and apopto-
sis through the PI3K/AKT pathway. Here, the underlying
mechanism of KIF21B involved in phosphatidylinositol signal-
ing needs further study. KIF21B was associated with DNA
damage and hypoxia by single-cell sequencing. For the devel-
opment and progression of cancer, hypoxia and DNA damage
acted as an inducer in promoting cancer [21, 22]. Therefore, we
speculated that KIF21Bmay induce CRC via DNA damage and
hypoxia-related signal pathway by single-cell-sequencing anal-
ysis. Additionally, KIF21B was positively correlated with CD4+
T cell and neutrophil cell, which involved in regulation of
immune infiltrate of cancer cells. Next, we plan to further study
the underlying molecular mechanisms of KIF21B in regulation
of DNA damage and immunity in CRC.

In conclusion, KIF21B was an increasing expression in
Colorectal cancer cell lines and tissue specimens, which
was correlated with poor survival, immune infiltrates, cell
growth, and metastasis. KIF21B may be a biomarker in the
diagnosis of CRC.
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Background. Hepatocellular carcinoma (HCC) is a kind of primary liver cancer that accounts for more than 90% of primary
hepatocellular carcinomas. Hyperuricemia is closely related to the development, recurrence, metastasis, and prognosis of cancer.
Previous studies have proved that the serum uric acid level can increase the incidence rate and mortality of malignant tumors.
However, the specifc pathogenesis remains unstudied.Methods. RT-qPCR analysis showed that the mRNA expression of PDZK1
and ABCG2 increased signifcantly after HCC cells were exposed to diferent concentrations of soluble uric acid (2.5, 5, 10, 20mg/
dl) for 24 hours. Ten, in HCC shRNAs, PDZK1, or over expression PDZK1 were used. CCK8, wound healing, and Transwell
assay showed that PDZK1 regulates cell proliferation, invasion, andmigration. Flow cytometry results revealed that PDZK1 afects
cell apoptosis. Western blot results show that PDZK1 afects the STAT3/C-myc pathway.Ten, in vivo tumorigenesis, allopurinol
maybe an efective drug to advance: the prognosis of HCC. Results. In our study, RT-qPCR analysis showed that the mRNA
expression of PDZK1 and ABCG2 increased signifcantly after diferent concentrations of soluble uric acid in HCC.Ten, PDZK1
afects the proliferation, migration, and apoptosis of HCC through the STAT3/C-myc pathway. Conclusions. Hyperuricemia
response afects the expression of PDZK1; PDZK1 afects the proliferation, migration, and apoptosis through the STAT3/C-myc
pathway in hepatocellular carcinoma. It is suggested that PDZK1 maybe closely related to the occurrence, development, and
prognosis of HCC and allopurinol maybe have potential anticancer efects.

1. Introduction

Hepatocellular carcinoma (HCC) is a type of primary liver
cancer that accounts for more than 90% of primary hepa-
tocellular carcinomas. HCC is currently the ffth most
common cause of cancer in the world [1]. Te second-
leading cause of cancer death in men is HCC. Te fve-
year survival rate of HCC is about 18%, just after pancreatic
cancer [2, 3]. Important risk factors for hepatocellular
carcinoma include viral hepatitis B or viral hepatitis C, al-
coholic liver disease, nonalcoholic fatty liver disease, and so
on [4, 5]. Approximately 80%–90% of patients with cirrhosis

develop liver cancer [6]. Terefore, it is very important to
explore the occurrence, development, and potential mo-
lecular mechanism of liver cancer.

A product of purine oxidative metabolism is uric acid
(UA). Some studies point out that the proportion of tumor
patients with ranges hyperuricemia from high to low for
vocal cord cancer, maxillary cancer, hypopharyngeal cancer,
bladder cancer, liver cancer, and ovarian cancer [7–10].
Because of its proinfammatory characteristics, hyperuri-
cemia may have an important role in the pathogenesis of
cancer. Its mechanism may be related to reactive oxygen
species (ROS), infammatory corpuscle activation, and
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xanthine oxidoreductase (XO) mediated production of ac-
tive free radicals [11–15]. It is closely related to the incidence,
mortality, and prognosis of many solid tumors.

Allopurinol is the frst-line medicine to treat hyperuri-
cemia. Combining allopurinol with other medicines had
been extensively explored. Previous clinical trials have
shown that allopurinol has a positive association with
prostate cancers, patients treated with allopurinol could
decreased the incidence of prostate cancer. And the com-
bined use of allopurinol for one month can reduce the level
of NF kappaB in patients with colonic adenoma [16–19]. It is
suggested that the drug that reduces uric acid levels have
potential anticancer efects and provides a new idea for
tumor treatment.

PDZ domain-containing 1 (PDZK1) is located on
chromosome 1 q21.1. It has a relative molecular mass of
63KDa and contains 519 amino acids. It contains 4 protein
domains; the PDK domain of PDZK1 is mainly involved in
regulating the subcellular localization of various uric acid
transporters, and some studies have found that its
rs12129861 mutation is bound up with hyperuricemia and
gout pathogenesis [20–22]. In recent years, studies have
found that the abnormal expression level of PDZK1 was
found in various tumors, for example breast cancer, renal
cell carcinoma, and gastric cancer [23–25]. However, the
molecular mechanism of PDZK1 in HCC remains unclear.

In our study, the mRNA expression of PDZK1 was
signifcantly increased after HCC after diferent concen-
trations of soluble uric acid treatment, and PDZK1 afects
the proliferation, migration, and apoptosis of HCC through
the STAT3/C-myc pathway. PDZK1maybe closely related to
the occurrence, development, and prognosis of HCC and
allopurinol may have potential anticancer efects.

2. Materials and Methods

2.1. Cell Culture and Construction Lentivirus Vectors.
HepG2 and Hep3B cells were acquired from ATCC, Huh7,
and PVTT cells were acquired from the Institute of Cell
Biochemistry, Chinese Academy of Sciences. Te cells were
incubated in RPMI-1640 (Gibco, CA, USA) medium con-
taining 10% FBS (Invitrogen, CA, USA) and cultured at 37°C
and 5%CO2 incubator. sh-PDZK1 (SH1, SH2) and sh-
control (SC) were constructed by ribobio Biotechnology
Co., Ltd (GuangZhou China). Te overexpression vector of
PDZK1 (pcDNA-PDZK1, PDZK1) and control lntivirus
vectors (pcDNA-NC, vector) were constructed by Gene-
Pharma Biotechnolog Co., Ltd (Suzhou, China). Te cells
were transfected by using Lipofectamine™ 3000 (Invitrogen,
CA, USA) followed by the protocols of the manufacturer.

2.2. CCK8 Analysis. HepG2, Hep3B cells (2×103) or Huh7,
and PVTT cells (4×103) were incubated in a 96-hole plate
after 48 hours of transfection, after 24 hours, 48 hours, and
72 hours. CCK8 reagent (10 μL) was added into each hole for
2 h, and each group repeated 3 times.Te absorbance of each
hole was measured by a microplate assay (EnSpire 2300,
PerkinElmer, USA) at a wavelength of 450 nm.

2.3.WoundHealing. HepG2, Hep3B cells (5×105) or Huh7,
and PVTTcells (8×105) were incubated into the 6-hole plate
after 48 hours of transfection, after 24 hours, a vertical line
was drawn evenly in themiddle of the hole base using a 20 μL
pipette tip, and each group was repeated 3 times. Images
were taken at 0 and 24 hours under a light microscope to
observe cell migration.

2.4. Transwell Assay. Cells (1× 105) were added to the
Transwell upper chamber without fetal bovine serum after
48 hours of transfection. A culture medium (600 μL) con-
taining 15% fetal bovine serum was added into the lower
chamber. After 48 hours, the noninvasive cells in the upper
chamber were gently wiped away by a cotton swab. Te
lower chamber cells were stained with crystal violet. Ten,
observed and counted cells by inverted microscope. Each
group was repeated 3 times.

2.5. Flow Cytometry Assay. 5×107 cells were collected in
centrifuge tubes after 48 hours of transfection, then, PBS was
washed twice. Cells were stained with 5–10 μL propidium
iodides (PI) and 5–10 μL Annexin V-FITC into 100ul stain
bufer, 15mins later, cell apoptosis was detected by BD
FACSCalibur (BD, USA), each group was repeated 3 times,
and analyzed by Cell Quest software.

2.6. RNA Extraction and RT-PCR Analysis. Cells (5 ×106)
were collected after 48 hours of transfection, and total
RNA was extracted by Trizol. 1 μg RNA was used to
synthesis of cDNA according to the instructions of the
reverse transcription kit (Agilent, USA). Te mRNA ex-
pression of PDZK1 was determined by RT-PCR on the
CFX96Tm real-time System (Bio-Rad, USA), as follow:
95°C, 3min, then, 95°C20 s and 70°C 1min for 40 cycles.
Te calculation method of relative expression used the
comparative Ct (2−ΔΔCt) method [26], and each group was
repeated 3 times.

2.7. Western Blot Assay. Transfected HCC cells were col-
lected after 48 hours, the culture mediumwas discarded, PBS
was washed twice, and then, cell lysate was added. Following
the manufacturer’s protocol of the BCA Kit (Termo Sci-
entifc, USA) to quantify total protein, then, the primary
antibodies (STAT3, p-STAT3, C-myc, and GAPDH) (Cell
Signaling Technology, USA) were incubated for 12 hours,
and the second antibody (Cell Signaling Technology, USA)
were added for 2 hours. Future, chemiluminescent reagent
was added and incubated in the dark for 5min, developed
for 30 s, fxed for 10 s, and each group was repeated 3 times.
Te gray value of electrophoresis band of the protein was
analyzed by Image J software.

2.8. In Vivo Tumorigenesis. Transfected HCC cells were
collected after 48 hours. Ten, digestion by trypsin,
centrifuged, counted. Te corresponding volume of cell
suspension was measured by the subcutaneous injection of
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5×106 cells into mice with hyperuricemia. After sub-
cutaneous transplantation of mice, allopurinol was fed every
four days. After 4 weeks, the serum of the tail vein of nude
mice was taken, the animals were killed, and the tumor tissue
was taken. Measure the tumor size with a vernier caliper and
calculate the tumor volume formula: volume� 0.5 ∗ length
∗ width ∗ width.

2.9. Statistical Analysis. SPSS 20 was used to analyze the
experimental data. A Mean± standard was used to represent
data between groups. A one-way ANOVA test was used for
statistical analysis, and a t-test was used for the comparison
between two groups.

3. Results

3.1. Te Expression of PDZK1 and ABCG2 in Hepatocellular
Cells Is Mediated by the Stimulation of Soluble Uric Acid.
RT-qPCR analysis showed that the mRNA expression of
PDZK1 and ABCG2 increased signifcantly were exposed to
diferent concentrations of soluble uric acid (2.5, 5, 10, and
20mg/dl) in HCC cells (Figures 1(a) and 1(b)). After the cells
were treated with 10mg/dl soluble uric acid for 4, 8, 16, 32,
48, and 64 hours, the expression of PDZK1 and ABCG2
peaked at 32 hours (Figures 1(c) and 1(d)). It indicates that
hyperuricemia response afects the expression changes of
PDZK1 is more obvious, and then, we choose PDZK1 in the
next study.

3.2. PDZK1Afects theProliferation,Migration, andApoptosis
ofHCC. We used shRNAs to knock down PDZK1 in HepG2
andHep3B cells.Te interfering shRNAwas transfected into
negative control cells. Western blot and RT-qPCR analysis
showed that PDZK1 shRNAs strongly inhibited the ex-
pression of PDZK1, and the expression level decreased
signifcantly (Figures 2(a)–2(d)). CCK8, wound healing, and
transwell assay showed that sh-PDZK1 could inhibit ell
proliferation, invasion and migration (Figures 2(e)–2(h)).
Flow cytometry results revealed that sh-PDZK1 induced cell
apoptosis (Figures 2(i) and 2(j)).

Western blot and RT-qPCR analysis showed that
pcDNA3.1-PDZK1 strongly over expression of PDZK1
(Figures 3(a)–3(c)), and the expression level increased sig-
nifcantly. CCK8, wound healing, and Transwell assay
showed that pcDNA3.1- PDZK1 promote cell proliferation,
invasion and migration (Figures 3(d)–3(i)), fow cytometry
results revealed that sh-PDZK1 induced cell apoptosis
(Figures 3(j) and 3(k)).

3.3. PDZK1 Afects HCC Function through STAT3/C-myc
Pathway. Uric acid may cause tumor immune response, so
PDZK1 may also be related to tumor immune progress. Te
STAT3/C-myc pathway is closely related to tumor immune
response. To investigated whether PDZK1 can afect liver
cancer cell processes through the STAT3/C-myc pathway.
Western blot results show that, compared with the control
group, p-STAT3, C-myc protein expression signifcantly

increased in the pcDNA3.1-PDZK1 groups, and the ex-
pression of these proteins were signifcantly decreased in the
sh-PDZK1 group (Figures 4(a) and 4(b)).

3.4.Allopurinol Is anEfectiveDrug to Improve thePrognosis of
HCC. We used high uric acid mice for tumorigenesis, 2∗
106 cells into mice with hyperuricemia. After subcutaneous
transplantation of mice, allopurinol was fed every four days.
Te tumor volume of PDZK1 overexpression group are
increased, and treat with allopurinol, the tumor volume is
decreased (Figure 5(a)). Ki67 result showed that after
treatment with allopurinol, the proliferation of tumor was
more reduced compare with PDZK1 overexpression group
(Figure 5(b)). Immunofuores result showed that, the
p-STAT3 and C-myc expression was increased in PDZK1
overexpression group, and p-STAT3 and C-myc was de-
creased after treatment with allopurinol (Figure 5(c)).

3.5. PDZK1 Is Related to the Occurrence and Development of
HCC in Clinically. We used the publicly online tools TGCA
database, and showed that compared with normal, the ex-
pression of PDZK1 are increased in HCC, and increased in
base individual cancer stage (1, 2, 3, and 4) and tumor grade
(1, 2, 3, and 4) (Figures 6(a)–6(c)). Kaplan–Meier Plotter
results showed the prognosis of high expression of PDZK1 is
poor in HCC (Figure 6(d)).

4. Discussion

Hyperuricemia is a metabolic disease, which can be sec-
ondary to gout and increase the risk of other diseases, es-
pecially cardiovascular diseases, metabolic diseases, and
kidney diseases, such as metabolic syndrome or heart failure
[27, 28]. In recent years, through various clinical observa-
tions and studies, it has been found that hyperuricemia
maybe an independent risk factor for a variety of solid
tumors, including prostate cancer, colon cancer, and breast
cancer [29–34]. In our study, the mRNA expression of
PDZK1 was signifcantly increased after HCC after diferent
concentrations of soluble uric acid treatment, which is
similar to Chen et al. results [35]. Te tumor volume of
PDZK1 overexpression group are increased and after treat
with allopurinol the tumor volume is decreased. Hyper-
uricemia may be related to the occurrence, development,
and metastasis of malignant tumors.

With the deepening of research on the relationship
between hyperuricemia and tumor, it is found that diferent
immune cell subsets, cell surface receptors, and cytokines
have signifcant efects on the pathogenesis of gout and
tumor, and the relationship between hyperuricemia and
tumor shows a complex trend. On the one hand, urate
crystals can activate efective immune stimulants and trigger
anticancer immune responses directly by reversing immu-
nosuppression or as adjuvants. On the other hand, the in-
teraction between urate crystals and immune cells can
enhance immunosuppression and promote angiogenesis
[36], thus, afecting the biological characteristics of malig-
nant tumors.
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Studies have shown that almost all PDZK1 proteins can
combine with SLC17A1, ABCG2, URAT1, SLC17A3, and
other transporters related to uric acid transport to form
a complex regulating the absorption and excretion of uric
acid [37], and act on the reabsorption and excretion of uric
acid together. Our study shows that PDZK1 protein is highly
expressed in HCC. Regulatory PDZK1 expression can afect
the proliferation, migration, and apoptosis of HCC; uric acid

may cause tumor immune response. It suggests that PDZK1
may be related to tumor immunity [38–40]. We detected the
expression changes of STAT3/C-myc signal pathway protein
after sh-PDZK1 or over expression of PDZK1. Knockdown
of PDZK1 can reduce the expression of p-STAT3 and C-
myc, Similar to previous results [41]. We also found that
allopurinol maybe an efective drug to improve the prog-
nosis of liver cancer.
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Figure 1:Te expression of PDZK1 and ABCG2 in HCC is mediated by the stimulation of soluble uric acid. (a, b)Te mRNA expression of
PDZK1 and ABCG2 were signifcantly increased in hepatocellular cells were exposed to diferent concentrations of soluble uric acid (2.5, 5,
10, and 20mg/dl) for 24 hours. (c, d) Te mRNA expression of PDZK1 and ABCG2 after treated with 10mg/dl soluble uric acid for 4, 8, 16,
32, 48, and 64 hours, data represent mean± SD. ∗P< 0.05 compare with negative control.
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Figure 2: sh-PDZK1 inhibit the proliferation, migration, and promote apoptosis of HCC. (a, b, c, d) Western blot and RT-qPCR analysis
showed that PDZK1 shRNAs strongly inhibited the expression of PDZK1, and the expression level decreased signifcantly. (e, f, g, h) CCK8,
wound healing, and transwell assay showed that sh-PDZK1 induced the inhibition of cell proliferation, invasion, and migration. (i, j) Flow
cytometry results revealed that sh-PDZK1 induced cell apoptosis. Data represent mean± SD. ∗P< 0.05 compare with negative control.
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Figure 3: pcDNA3.1-PDZK1 afects the proliferation, migration, and apoptosis of HCC. (a, b, c) Western blot and RT-qPCR analysis
showed that pcDNA3.1-PDZK1 strongly overexpression of PDZK1. (d, e, f, g, h, i) CCK8, wound healing, and transwell assay showed that
pcDNA3.1-PDZK1 promote cell proliferation, invasion andmigration. (j, k) Flow cytometry results revealed that pcDNA3.1-PDZK1 inhibit
cell apoptosis. Data represent mean± SD. ∗P< 0.05 compare with negative control.
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Background. Cervical lymph node metastasis is commonly seen in papillary thyroid carcinoma. Surgery is the preferred treatment
for PTC with cervical lymph node metastasis. There is no alternate ultrasound, neck CT, and thyroglobulin (Tg) methods to assess
the occult lymph node metastasis. For moderate-and high-risk PTC, the number of lymph nodes to be dissected should be
increased to remove the occult lymph node metastasis. Objective. This study was designed to develop a nodal staging score
model to predict the likelihood of lymph node metastasis in papillary thyroid carcinoma (PTC), and further guide the
treatments. Material and Methods. Data were collected from the SEER database. Patients with PTC from 2000 to 2005 were
selected. The beta-binomial model was adopted to establish a nodal staging score (NSS)-based model. The NSS-based model
was built according to gender, age, extrathyroidal invasion, tumor multifocality, tumor size, and T stage of the patients. A total
of 12,431 PTC patients were included in our study. Various types of lymph nodes were examined based on various categories
(incidence, risk assessment) to evaluate the results. Results. 5,959 (47.9%) patients in the study were positive and 6,472 (52.1%)
were confirmed negative for lymph node metastasis. The corrected incidence of lymph node metastasis was higher than that of
direct calculation, regardless of the factors that affected lymph node metastasis. There were significant differences in the OS of
PTC patients among the four groups and T stage (p is less than 0.05), indicating that cervical lymph node metastasis would have
an impact on the prognosis of patients. Conclusion. In conclusion, an NSS-based model base on a variety of clinicopathological
factors can be used to predict lymph node metastasis. It is important to evaluate the risk of occult lymph node metastasis in the
treatment of PTC.. Since, this statistical model can describe the risk of occult lymph node metastasis in patients; therefore, it can
be used as basis for decision-making related to the number of lymph nodes that can be dissected in operations.

1. Introduction

Papillary thyroid carcinoma (PTC) is the most common
pathological type of thyroid cancer [1–15]. Cervical lymph
node metastasis is commonly seen in PTC and occurs in
20–50% of patients before the initial treatment [1–3]. Sur-
gery is the preferred treatment for PTC with cervical lymph
node metastasis. At present, the American Thyroid Associa-
tion (ATA) recommends that preventive central lymph node
dissection should be performed in the treatment of primary
tumors for patients with moderate-and high-risk PTC, and
cervical or mediastinal lymph node dissection should be per-

formed after the metastasis is confirmed through puncture
pathology [4]. Currently,ultrasound is recommended as the
main means of preoperative lymph node evaluation [2, 5,
6]. However, for patients with no abnormal lymph nodes
clinically before surgery, 77% of them still developed persis-
tent disease of lymph nodes after receiving thyroid cancer
surgery [7], requiring reoperation. Now there is no better
method to assess occult lymph node metastasis other than
ultrasound, neck CT, and thyroglobulin (Tg) [8]. So, lymph
node metastasis can be detected by postoperative pathology.
In the case of moderate-and high-risk PTC, the number of
lymph nodes that are involved in dissection should be
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increased to remove the occult lymph node to the maximum
extent [9]. But if this number is increased, an individual’s life
might be at risk. Therefore, an individualized plan for this
purpose can increase the thoroughness of the procedure
and additional trauma can be averted as much as possible.
This study offers a quantitative and intuitive assessment
method for the negative predictive value of lymph node
examination. The prediction of metastasis and recurrence
by the NSS model has not been carried out due to a data type
limitation in the SEER database. In the SEER database, the
metastatic areas have not been classified, so a further search
cannot be carried out. Therefore, a perfect NSS model
requires further research with a larger sample size and more
comprehensive data.

2. Materials and Methods

2.1. Sample Collection. Sample data was collected from
Surveillance, Epidemiology, and End Results (SEER),
National Cancer Institute, USA [10]. A total of 12,431
patients with PTC (ICD-O-3 codes: 8050, 8260, 8340,
8341, 8343, and 8344) from 2000−2005 were selected for
our study. The patients were divided into two groups
according to their ages: (1) patients who were of age 45 or
under 45 and (2) patients older than 45. Four groups accord-
ing to tumor size included: (1) patients whose tumor sizes
were less than 1 cm, (2) between 1 cm and 2 cm, (3) between
2 cm and 4 cm, and (4) larger than 4 cm.

The patients’ gender, age, extrathyroidal invasion, multi-
focality, tumor size, and T stage were the inclusion criteria
for the study. Indicators such as lymph node metastasis,
the extent of surgical dissection, pathological subtype, and
gene mutation were the exclusion criteria. The ratio of males
to females was about 1 : 3, and the median age was 43 years.

2.2. The Nodal Staging Score (NSS) Statistical Model. In this
study, the beta-binomial distribution was used to establish a
nodal staging score (NSS) model [11, 12]. The beta-binomial
distribution is a compound distribution that assumes that
the parameter p in the binomial distribution is a random
variable and obeys the β distribution [13]. Thus, this method
was adopted.

2.3. Statistical Analysis. The NSS model was built through R
3.3.2 (R Foundation for Statistical Computing, Vienna,
Austria). The parameters α and β to be estimated in the
beta-binomial distribution were calculated by the maximum
likelihood estimation method using the VGAM package.
Other data were statistically analyzed using SPSS version
22.0 (SPSS Inc., Chicago, IL, USA). Comparisons were made
using the χ2 test for categorical variables and the t-test for
continuous variables in the basic patient characteristics. It
was believed that there was a statistically significant differ-
ences where p is less than 0.05.

3. Results

3.1. Basic Information of the Patients. A total of 12,431
patients with PTC in the SEER database from 2000 to 2005
met the inclusion/exclusion criteria and were included in

this study. Six clinicopathological factors that may affect
lymph node metastasis and the negative predictive value of
lymph nodes were grouped and analyzed. In addition,
4,866 (39.1%) patients received total thyroidectomy and
2,450 (19.7%) underwent lateral cervical lymphadenectomy.
Among the 12,431 patients, 5,959 (47.9%) were positive
for lymph node metastasis, and 6,472 (52.1%) were con-
firmed negative, which shows a significant difference in
the proportion of patients with all study factors between
these two groups (p > 0:05). The basic information about
the patients and the number of examined lymph nodes
are shown in Table 1.

3.2. Calculation of the Probability of False-Negative Lymph
Node Metastasis. A total of 5,959 patients with PTC had at
least one lymph node metastasis. The beta-binomial distri-
bution model was used to analyze the distribution of lymph
node metastasis rates in patients, and the parameters to be
estimated were α = 1:51 and β = 1:15. As shown in
Figure 1, when one, three, five, or eight nodes are examined,
the false-negative probabilities of metastatic lymph nodes in
PTC patients are 42.2%, 18.3%, 9.3%, and 5.6%, respectively.
When more than eight lymph nodes are examined, the prob-
ability of false-negative lymph node metastasis is less than
5%. The calculation of the false-negative probability of
lymph node metastasis is determined only by the total num-
ber of lymph nodes examined, and there is no correlation
between tumor pathology and patient factors.

3.3. Evaluation of the Incidence of Lymph Node Metastasis.
The incidence of lymph node metastasis should be evaluated
based on the total number of examined lymph nodes and
possible factors. The incidence of lymph node metastasis
was assessed in all 12,431 PTC patients (Table 2). The cor-
rected incidence of lymph node metastasis was higher than
that of direct calculation, regardless of which factors affected
lymph node metastasis.

3.4. Assessment of Occult Lymph Node Metastasis Risks.
Based on the previous calculation of the possibility of false-
negative lymph node metastasis and the adjusted incidence
of lymph node metastasis, we have further assessed the risk
of occult lymph node metastasis in PTC patients after receiv-
ing lymphadenectomy, i.e., the nodal staging score (NSS)
model. The gender, age, extrathyroidal invasion, multifocal-
ity, tumor size, and T stage of patients were included in the
derivation process, respectively, and the corresponding NSS
results are shown in Figure 2. Regardless of the influencing
factors of lymph node metastasis, these results suggest the
number of lymph nodes to be removed to achieve a certain
predictive value (Table 3) and illustrate the risk of residual
occult lymph node metastasis after a certain number of
lymph nodes are removed (Table 4).

To achieve a negative predictive value of more than
90%, 12 and 6 lymph nodes were examined in males and
females, respectively; for PTC patients who were at age of
45 or less or more, 8 and 6 lymph nodes were examined,
respectively; twenty-two and five lymph nodes were
examined in individuals with and without extrathyroidal
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invasion, respectively; patients with and without multifocal
tumors, examination of seven and six lymph nodes was
required, respectively; for patients whose tumor sizes
were> 1 cm, 1-2 cm, 2-4 cm, and> 4 cm, four, seven, nine,
and thirteen lymph nodes were examined, respectively;
and for patients in T1, T2, and T3 stages, four, six, and 1

fifteen
lymph nodes were examined, respectively.

3.5. Impact of NSS Assessment on Patient Survival. The NSS
results calculated based on the affecting factors of lymph
node metastasis were divided into four groups following
their respective quartiles to evaluate the impact of the risk
of occult lymph node metastasis on the prognosis of
patients, and the overall survival (OS) among the four
groups was compared by Log-rank method. The results
showed that there were significant differences in the OS of
PTC patients among the four groups in terms of gender,
age, extrathyroidal invasion, tumor multifocality, tumor size,
and T stage (p is less than 0.05), indicating that cervical
lymph node metastasis would have an impact on the prog-
nosis of patients, and the NSS model can better predict the
cervical lymph node metastasis.

4. Discussion

Cervical lymph node metastasis often occurs in PTC, and
cervical lymph node recurrence is a common type of postop-
erative recurrence in PTC [1, 3, 14]. Therefore, both proper
assessments of lymph node metastasis and appropriate treat-
ment are very important for improving the disease-free
survival of patients. The inaccuracy of preoperative lymph
node metastasis assessment will affect the formulation of
treatment plans. Occult central lymph node metastases are
easily missed due to the occlusion of the thyroid lobes

Table 1: Basic information of the patients and the number of examined lymph nodes.

The number of patients (%)&
p value

The number of
examined lymph nodes

Total (n = 12431) LN + n = 5959ð Þ LN − n = 6472ð Þ The median IQR#

Gender <0.05
Male 2886(23.2) 1825(30.6) 1061(16.4) 3 1(-10)

Female 9545(76.8) 4134(69.4) 5411(83.6) 2 1(-6)

Age (years old) <0.05
≤45 7127(57.3) 3706(62.2) 3421(52.9) 3 1(-7)

>45 5304(42.7) 2253(38.7) 3051(47.1) 2 1(-5)

Extrathyroidal invasion <0.05
Negative 9496(76.4) 3752(63.0) 5744(88.8) 2 1(-5)

Positive 2935(23.6) 2207(37.0) 728(11.2) 4 2(-12)

Multifocal <0.05
No 8431(67.8) 4157(69.8) 4274(66.0) 3 1(-7)

Yes 4000(32.2) 1802(30.2) 2198(34.0) 2 2(-3)

Tumor size∗ <0.05
≤1 cm 3517(28.3) 1137(19.1) 2380(36.8) 2 1(-4)

1–2 cm 3803(30.6) 1817(30.5) 1986(30.7) 2 1(-6)

2–4 cm 3190(25.7) 1780(29.9) 1410(21.8) 3 1(-7)

> 4 cm 1062(8.5) 683(11.5) 379(5.9) 4 1(-12)

T stage <0.05
T1 6121(49.2) 2072(34.8) 4049(62.6) 2 1(-5)

T2 2237(18.0) 1060(17.8) 1177(18.2) 2 1(-6)

T3 3146(25.3) 2094(35.1) 1052(16.3) 3 1(-10)

T4 927(7.5) 733(12.3) 194(3.0) 4 2(-14)

Note: ∗Tumor size data were not available for 859 (6.9%) of these patients; #IQR refers to interquartile range; &: In the number of patients, LN+ indicates
patients with positive lymph node metastasis, and LN- indicates patients with negative lymph node metastasis.
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Figure 1: The relationship between the number of lymph nodes
examined and the probability of false-negative lymph node
metastasis.

3Journal of Oncology



during preoperative ultrasonography, and 66% of the central
lymph node metastases are smaller than 5mm [15]. There-
fore, the Guideline for Diagnosis and Treatment of Thyroid
Nodule and Differentiated Thyroid Cancer (2012 edition) of
China recommends that at least an ipsilateral lobule and
isthmus resection and ipsilateral central lymph node dissec-
tion should be operated on patients with differentiated thy-
roid cancer, but there is still a lack of opinions on the
number of lymph nodes to be dissected [16]. Furthermore,
lymph node metastasis in PTC patients is one of the indica-
tors to be evaluated for postoperative radioactive iodine
therapy. It is particularly important to correctly assess the
patient’s lymph node metastasis considering the possible
side effects of radioactive iodine therapy [4]. However, for
patients with no evidence of lymph node metastasis by pre-
operative ultrasound and Tg evaluation, who had received
thyroid and/or lymph node dissection, and were followed
up regularly with ultrasound and Tg after surgery, 77% still
showed abnormalities within one year after the surgery [7],
which may be related to postoperative occult lymph node
metastasis. Preventive central lymph node dissection is
widely adopted recently, while lateral cervical lymph node
dissection is only carried out upon high suspicion/confirma-

tion of metastasis through pathological biopsy [17]. For PTC
patients, we would study how many lymph nodes will be
removed for examination during lymph node dissection is
enough to determine metastasis, and determine that patients
with negative lymph node metastases are still at risk for
occult metastases based on postoperative pathology reports.
The lymph node dissection for thyroid cancer still lacks an
“indicator” like “the sentinel lymph node” for breast cancer
[14] due to the advanced cervical lymphatic circulation
system. The thoroughness of surgery is still needed in the
treatment of the occult metastatic lymph nodes. Therefore,
this study is aimed at exploring the NSS model of cervical
lymph node metastasis in PTC patients with the help of a large
sample database and statistical analysis model. Individualized
therapy is increasingly important in oncology treatment, and
the NSS model can provide an individualized assessment of
the risk of occult lymph node metastasis in patients with PTC.

Occult lymph node metastases are lymph node metasta-
ses that are not detected by clinical examination and proce-
dure and are later confirmed by pathological examination,
with a reported incidence of up to 50% in PTC. The current
preoperative examination of lymph node metastases in
patients with PTC is primarily based on ultrasonography
[2, 14]. The inaccuracy of preoperative lymph node metasta-
sis assessment will affect the formulation of the treatment
plan. Because occult lymph node metastases are commonly
observed in the central area, many physicians are in support
of prophylactic central lymph node dissection, but there is a
lack of opinions on the number of lymph nodes removed.

The NSS model is mainly used to assess the negative
predictive value of lymph nodes in patients through a com-
prehensive analysis of the number, metastasis, and factors
affecting the lymph nodes, and therefore can be used in
assessments of the patient’s condition and guide for relevant
treatment strategies. Robinson et al. have reported the estab-
lishment of an assessment system for lymph node metastasis
in patients with colon cancer using the NSS model, and
Gonen et al. later preliminarily explored the application of
the NSS model in PTC patients [11, 12].

Following are the main conditions for establishment of
this model: (1) no false-positive metastasis in lymph nodes;
(2) all lymph nodes have the same possibility of metastasis;
and (3) the examinations are equally sensitive to true posi-
tives and false negatives. The adjusted incidence is higher
than the incidence of lymph node metastasis calculated
which evaluates the possibility of lymph nodes.

Based on the analysis of the survival data in patients with
PTC, we have found that cervical lymph node metastasis can
affect the prognosis of patients, and the NSS can better
predict cervical lymph node metastasis. Besides, the NSS cal-
culation was also carried out on age and extrathyroidal inva-
sion. For any patient, however, the impact of each factor on
lymph node metastasis was not completely independent.
Moreover, one of the premises of this study is that each
lymph node has the same probability of metastasis. But for
PTC, the possibility of lymph node metastasis varies in dif-
ferent areas, with the most common metastasis in the central
area, followed by the metastasis in the cervical area, while
the incidence of mediastinal metastasis is the lowest [2].

Table 2: Incidence of lymph node metastasis in patients with PTC
and its adjustment results.

Incidence of lymph node metastasis
Incidence of the
sample (%)

The adjusted
incidence (%) #

Gender

Male 63.2 77.6

Female 43.3 53.8

Age

≤45 52.0 63.2

>45 42.5 53.8

Extrathyroidal
invasion

Negative 39.5 49.5

Positive 75.2 90.5

Multifocal

No 49.3 60.6

Yes 45.1 56.3

Tumor size

≤1 cm 32.3 40.2

1-2 cm 47.8 59.1

2-4 cm 55.8 68.8

> 4 cm 64.3 76.0

T stage

T1 33.9 42.4

T2 47.4 58.3

T3 66.6 81.5

T4 79.1 95.7

Note: #: In consideration of the possibility of false-negative lymph node
metastasis, the incidence of lymph node metastasis calculated directly was
revised.

4 Journal of Oncology
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Figure 2: NSS results of lymph node metastasis corresponding to different clinicopathological factors. (a) Patient’s gender; (b) patient’s age
(age 45 and under 45; older than 45 years old); (c) extrathyroidal invasion; (d) multifocal tumor; (e) T stages in line with the 7th edition of
AJCC staging (T1, T2, T3, and T4); (f) tumor size (less than 1 cm; between 1 cm and 2 cm; between 2 cm and 4 cm; larger than 4 cm).
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Table 3: NSS corresponds to the number of lymph nodes examined.

NSS
The number of lymph nodes examined

80% 85% 90% 95%

Gender

Male 7 9 12 21

Female 3 4 6 10

Age

≤45 4 5 8 13

>45 3 4 6 10

Extrathyroidal invasion

Negative 2 3 5 9

Positive 14 18 22 40

Multifocal

No 4 5 7 12

Yes 3 4 6 10

Tumor size

≤1 cm 2 2 4 6

1-2 cm 3 5 7 11

2-4 cm 5 6 9 15

> 4 cm 4 8 13 20

T stage

T1 2 3 4 7

T2 3 5 6 11

T3 3 11 15 25

T4 25 32 — —

Table 4: Number of lymph nodes examined corresponding to NSS values.

The number of lymph nodes examined
NSS (%)

1 5 10 15 20 25

Gender

Male 40.0 74.7 87.6 92.4 94.8 96.0

Female 66.5 89.8 95.5 97.3 98.2 98.7

Age

≤45 57.4 85.6 93.4 96.1 97.4 98.1

>45 66.5 89.8 95.5 97.3 98.2 98.6

Extrathyroidal invasion

Negative 70.2 91.3 96.1 97.7 98.5 98.9

Positive 19.4 51.7 71.9 81.6 88.3 91.8

Multifocal

No 60.0 86.9 94.1 96.5 97.6 98.3

Yes 64.2 88.8 95.0 97.1 98.0 98.5

Tumor size

≤1 cm 77.4 93.9 97.4 98.5 99.0 99.2

1-2 cm 61.5 87.7 94.5 96.7 97.8 98.3

2-4 cm 51.2 82.3 91.8 95.1 96.9 97.4

> 4 cm 42.1 76.4 88.6 93.1 95.0 95.9

T stage

T1 75.9 93.3 97.1 98.3 98.9 99.2

T2 62.3 88.0 94.6 96.8 97.5 98.0

T3 34.4 69.9 84.7 90.6 93.3 95.0

T4 9.4 31.6 49.0 65.6 73.3 80.0
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5. Conclusion

This paper provides an intuitive and quantitative assessment
for the predictive value of a negative lymph node examination
based on factors such as gender, age, extrathyroidal invasion,
tumor multifocality, tumor size, and T stage, and establishes
a lymph node assessment system, which is mainly used for
the assessment of the risk of occult lymph node metastasis
and offers guidance on patient treatment strategies.
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Common chromophobe renal cell carcinoma (chRCC) has a good prognosis when cured by surgery. However, clinical practice
shows that a small number of patients with chRCC will produce metastasis, and the prognosis after metastasis is poor. In this
regard, we try to find potential biological targets to prevent CRCC metastasis. In this experiment, we analyzed the clinical traits
and gene expression data of chRCC samples which were provided by the TCGA database by the WGCNA method. On this
basis, we selected MEtan, a module with a significant positive correlation with the M phase of chRCC, for subsequent analysis.
The MEtan module genes in the biological process of chRCC were mainly related to steroid metabolic process, cholesterol
metabolic process and STEM cell differentiation. KEGG analysis showed that these genes were mainly enriched in cancer-related
signaling pathways, such as Neuroactive Ligand−receptor interaction, cAMP signaling pathway, and Wnt signaling pathway.
Subsequently, we mapped the PPI interaction network and screened the key gene beta-arrestin 2 (ARRB2). Expression analysis
showed that there was a significantly increased expression of ARRB2 in chRCC patients in comparison to the normal group.
Expression survival analysis indicated that ARRB2 was inversely associated with overall survival. We firmly believe that the key
genes identified in this study would be able to provide new clues and research basis for the treatment of chRCC.

1. Introduction

Over 400,000 cases of renal cell carcinoma (RCC) are diag-
nosed each year in the world, making it one of the most
common renal malignancies [1]. Pathologically, RCC is
divided into three types: clear cell renal cell carcinoma
(ccRCC), papillary carcinoma (pRCC), and chromophobe
carcinoma (chRCC). ChRCC is the third subtype of RCC
recognized by the World Health Organization (WHO) in
2016 [2]. An estimated 5-10% of all kidney cancers are
chRCC, which are equally common in men and women,
with a higher incidence in those aged 50-60 [3–5]. ChRCC
behaves differently than other types of renal cell carcinomas.
Recent statistics indicate an increase in chRCC incidence [6,
7]. Patients with chRCC may present with hematuria or
tumor compression symptoms, and a few show diffuse
growth and invasion of the perirenal region [8, 9].

A large number of clinical practices have shown that
chRCC is usually cured by surgery, and the prognosis of
patients is good, with 5-year survival rates of 78-100% and
10-year survival rates of 80-90%; however, there are still 5-
10% of patients with chRCC who will develop metastases [10,
11]. Approximately 14 percent of patients with metastatic
RCCwill survivefive years, similar to thosewithdefinitemetas-
tatic chRCC [12]. Therefore, an in-depth study of the genes
related to the pathogenesis of chRCC will comprehensively
explain the pathogenesis and disease progression of chRCC,
which is of great significance for its treatment and prevention.

There is currently no more comprehensive tumor gene
expression profile database than the Cancer Genome Atlas
(TCGA), which is distinguished by its large sample size
and rich clinical information [13]. An analysis of gene-
phenotype relationships called Weighted Gene Coexpression
Network Analysis (WGCNA) has gained popularity for its
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ability to investigate complex relationships between genes
and phenotypes. With the WGCNA method, researchers
are able to transform gene expression data into coexpression
modules and provide insights into signaling networks that
may be responsible for the phenotypic characteristics of
the object of interest [14].

Data from gene chips related to chRCC disease were
integrated and analyzed using bioinformatics technology:
GO and KEGG pathway enrichment analyses were per-
formed first to filter out the differential genes; then, we com-
menced WGCNA to analyze the clinical characteristics and
gene expression data of chRCC samples provided by TCGA
database, and made PPI interaction network to find the key
genes in the pathogenesis and development of renal chromo-
phobe cell carcinoma; the final step of our study was to
investigate the survival of the genes mined to reconstruct
the mechanism of renal chromophobe cell carcinoma.

2. Materials and Methods

2.1. Data Capturing. The TCGA Datasets (https://www
.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga) in the database were accessed with the key-
word of chromophobe takes cell carcinoma to search, and
the genome data of renal color cell cancer was downloaded.
The data included 65 chromophobe cell carcinoma tumor
samples and 25 normal tissue samples.

2.2. DEG Capturing. Standardizing and analyzing renal chro-
mophobe cell carcinoma datasets were done by using the
DESeq2 algorithm in R software. A difference factor (log2)
absolute value higher than 1 was used to screen upregulated
genes.Ggplot2 software packagewas used for data visualization.

2.3. WGCNA Analysis. WGCNA provides R functions that
help analyze gene expression data using weighted correlation
networks.

The source code and other materials for this R package
are available for free at http://genetics.ucla.edu/labs/
horvath/CoexpressionNetwork/Rpackages/WGCNA. Our
coexpression network was built using the WCCNA R pack-
age. In the first step, clustering the samples was performed
to identify any outliers. Next, the coexpression network
was constructed using the automatic network construction
function. Coexpression similarity is proposed to reckon the
adjacency with the R function pickSoftThreshold.

2.4. Module-Trait Relationship Analysis. The corresponding
gene modules were sorted according to the WGCNA
modules; then, the ME for each module was calculated and
correlated with clinical parameters, with statistical signifi-
cance defined as P < 0:05.

2.5. Differentially Expressed Genes Enriched in GO and
KEGG. DAVID database (DAVID; https://david.ncifcrf
.gov) was used to analyze GO enrichment and KEGG path-
way enrichment of significant different genes screened. The
R software and clusterProfiler package were used for annota-
tion and visualization, and a P value less than 0.05 was
considered statistically significant.

2.6. Screening for Hub Genes in the PPI Network and
Construction of a Protein-Protein Interaction Network.
Interactions between proteins were identified and predicted
using the STRING database (https://string-db.org/).
Protein-protein interaction (PPI) networks were con-
structed using STRING for analysis of differentially
expressed genes, and screening for hub genes in the
STRING PPI network was performed using the Cytohubba
plug-in in Cytoscape software.

2.7. Key Gene Survival Analysis. R software was used to
analyze the survival of the selected key genes, and an anal-
ysis to Kaplan-Meier survival curves was carried out to
determine the relationship between the key genes and
renal chromophobe cell carcinoma recurrence. An evalua-
tion of the survival difference between key genes was
conducted via a log-rank test and the overall survival rate
for renal chromophobe cell carcinoma patients was P <
0:05, deemed significant.

3. Results

3.1. Differentially Expressed Genes Analysis. An analysis of
the transcriptome data from TCGA database was conducted
on 65 chromophobe cell carcinoma tumor samples and 25
normal tissue samples. The DESeq2 tool identified 13472
DEGs, of which 6066 were upregulated and 7406 were down-
regulated (Figures 1(a) and 1(b)). We ran KEGG enrichment
analyses on the top 30 DEGs with a P < 0:05 standard, and
results showed that they mainly concentrated on pathways
of cAMP, Cytokine−cytokine receptor interaction, Calcium,
and Neuroactive Ligand−receptor interaction, etc.
(Figures 2(a) and 2(b)). A GO enrichment analysis identified
three biological processes associated with DEGs: ion trans-
membrane transport, membrane potential regulation, and
organic anion transport; cell composition included an apical
area, extracellular matrix containing collagen, and synaptic
membrane; there were several molecular functions that were
examined, such as passive transmembrane transporter activ-
ity, channel activity, receptor ligand activity, and signaling
receptor activator activity (Figures 2(c) and 2(d)).

3.2. A Weighted Coexpression Network Analysis. Our first
step in constructing the WGCNA network was to calculate
the soft threshold power β. It was determined that the soft
threshold power was 3-; the scale independence was 0.9,
and the average connectivity was relatively high
(Figure 3(a)). Our gene network construction and module
identification was done via the WGCNA R package’s one-
step network construction function. Figure 3(b) displayed
the color-coded coexpressed gene modules identified via
WGCNA method, where the grey by default was those genes
that could not be classified into any module. It was found
that these modules could be classified into two categories
and 23 subclasses, and that there was correlation amid these
modules (Figures 3(c) and 3(d)). A second purpose of
WGCNA is to analyze the correlation between modules
and clinical parameters (R value). Analysis to the correlation
amid the module genes and chRCC showed that the modules
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MEblack, MEgreen, and MEtan were significantly positively
correlated with the M phase of chRCC, and the correlation
coefficients r were 0.28, 0.26, and 0.32, respectively
(P < 0:05, Figure 3(e)). According to Figure 3(e), MEdarkred
was positively correlated with T phase, and the correlation
coefficient r was 0.21 (P < 0:05). Figure 3(e) illustrated a pos-
itive correlation between MEdarkred and T phase (r = 0:21;
P < 0:05).

3.3. Module MEtan Gene Functional Enrichment Analysis.
The above analysis led us to select MEtan for further analy-
sis, because it has a significant positive correlation with the
M phase of chRCC. GO analysis revealed that steroid metab-
olism, cholesterol metabolism, and stem cell differentiation
were the top chRCC biological processes of MEtan module
genes (Figures 4(a) and 4(b)). Genes enriched in cancer-
related pathways, such as Neuroactive–Ligand receptor inter-
action, cAMP signaling pathway, and Wnt signaling pathway,
were identified in KEGG analysis. (Figures 4(c) and 4(d)).

3.4. Screening to Hub Genes. With the help of the STRING
online database and Cytoscape software, DEGs from MEtan
modules were analyzed, and PPI networks were constructed
in order to identify key genes. Cytoscape’s CytoHubba plu-
gin was used to screen the PPI network for key genes.
MAG, CHRM1, and ARRB2 were in the center of the 36
nodes in the PPI network for module MEtan (Figure 5(a)).

Finally, ARRB2 and MAG were the main genes we screened
out (Figure 5(b)).

3.5. Survival Analysis. In contrast to the normal group,
chRCC patients expressed significantly more ARRB2 than
do normal individuals (Figure 6(a), P < 0:05). Kaplan-
Meier survival curves were constructed to analyze chRCC
‘s overall survival rate. All chRCC samples were divided into
high expression group and low expression group of key
genes, and compared with the median value of key genes;
according to expression survival analysis, ARRB2 was nega-
tively correlated with overall survival (Figure 6(b), P > 0:05).

4. Discussion

ChRCC develops from dark cells in the collecting duct epi-
thelium of the kidney [15]. There was 89.3% recurrence-
free survival (RFS) and 93% cancer-specific survival (CSS)
rates for chRCC after 5 years [16]. Metastatic disease
accounts for only 6% of chRCC patients [17]. However,
patients with metastatic chRCC illness have a poor progno-
sis, who more frequently show nodular characteristics and
have a low incidence of treatment response [18, 19]. On
postoperative follow up, Geramizadeh et al. found that only
20 (16%) of 123 CRCC patients progressed (local recurrence,
metastasis, or death) [20]. Therefore, an in-depth study to
related genes coexpressed in various stages and links of

Module−trait relationships
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Figure 3: DEG analysis was carried out by weighted gene coexpression network analysis (WGCNA) method and gene cluster tree analysis of
modular feature genes. (a) Scale-free exponential analysis to various soft threshold powers (β). (b) The color of the module represented by
each dendrogram of the cluster module of the DEG (top) and the color band (bottom). (c) Clustering dendrograms of different genes based
on topological overlap, and the colors assigned to the corresponding modules. (d) Correlation analysis onto different modules. (e)
Correlation analysis onto modules and traits. ME: module characteristic gene.
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Figure 4: Continued.
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Figure 4: GO and KEGG analysis for module genes. (a and b) GO-term analysis and (c and d) KEGG enrichment analysis of MEtan module.
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chRCC and discovery of genes that play a crucial regulatory
role in its occurrence; furthermore, the development of the
disease is indispensable for understanding its mechanism
and improving treatment measures.

An in-depth analysis of the key genes involved in renal
chromophobe cell carcinoma development and progression
was undertaken in this study. A total of 13466 differentially
expressed genes of renal chromophobe cell carcinoma were
screened and mined by searching TCGA database, among
which 6066 genes were upregulated and 7406 genes were
downregulated. Several of these DEGs converged on the
signaling pathways involving cAMP, cytokine-cytokine
receptor interaction, calcium signaling pathway, and Neuro-
active Ligand–receptor interaction.

An advantage of the WGCNA method is that it explores
the association between clinical traits and coexpression
modules, with higher reliability and biological significance
[21]. TCGA database samples were analyzed through the
WGCNA method to analyze clinical traits and gene expres-
sion data. According to the results, the modules MEblack,
MEgreen, and MEtan were positively correlated with the M
phase of chRCC; the module MEdarkred was positively cor-
related with the T phase of chRCC; moreover, MEsalmon is
also positively correlated with the stage of chRCC. MEtan,
which has a significant positive correlation with the M phase
of chRCC, was selected for further analysis. Main chRCC

biological processes of MEtan module genes include steroid
metabolic process, cholesterol metabolic process, and STEM
cell differentiation; besides, KEGG analysis revealed that
these genes were primarily enriched in cancer-related signal-
ing pathways such as Neuroactive Ligand−receptor interac-
tion, cAMP signaling pathway, and Wnt signaling pathway.

Studies have shown that cyclic adenosine monopho-
sphate (cAMP) plays an important role in controlling cell
proliferation [22]. A total of 19 secreted glycoproteins make
up the Wnt family, which regulates cell proliferation, differ-
entiation, survival, migration, and stem cell self-renewal [23,
24]. There is an association between high Wnt1 expression
in ccRCCs, increased tumor diameter, and more advanced
stages [25]. A significant increase in WNT10A expression
was also observed in RCC cells and tissues, and it plays an
oncogenic role [26].

With the help of the STRING online database and
Cytoscape software, DEGs from MEtan modules were
analyzed, and PPI networks were constructed in order to
identify key genes, and the key gene was ARRB2. In compar-
ison with the normal group, ARRB2 expression was signifi-
cantly higher in chRCC patients. ARRB2 expression was
negatively correlated with overall survival, according to an
expression survival analysis. There is a widespread expres-
sion of Arrb2, a multifunctional protein that regulates the
desensitization and intracellular transport of G protein-
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Figure 6: Overall survival analysis. (a) expression analysis to ARRB2 the key gene in MEtan module; (b) correlation analysis to ARRB2
expression and chRCC patients’ overall survival; KICH: kidney chromophobe.
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coupled receptors (GPCRs) [27, 28]. Furthermore, Arrb2 is
involved in a variety of signaling pathways, including those
that involve extracellular signal-regulated kinases (ERK)
and protein kinase B (Akt) [29, 30].ARRB2 has been shown
to be involved in the metastasis of a variety of cancer cells.
Defective SUMOylation of ARRB2 inhibits the migration
of breast cancer cells and has been shown to be involved in
ARRB2-dependent metabolic regulation of breast cancer
cells [31]. ARRB2 plays a negative regulatory role in glioma
growth, invasion, and metastasis by reducing HIF-1α
expression and inhibiting angiogenesis [32]. It was found
that inhibition of ARRB2 expression reduced local and
metastatic RCC tumor growth [33]. In summary, ARRB2
may consider as a target for therapeutic intervention against
tumour development and metastasis in the studies of future.
This study provides a reference for the clinical application of
ARRB2 as a prognostic biomarker and potential therapeutic
target, and we will enrich its mechanism of action in chRCC
through more experiments in the future.

5. Conclusion

This study screened TCGA databases for genes associated
with chRCC occurrence and development and discussed
key genes related to chRCC. A possible therapeutic target
and prognostic marker for renal chromophobe cell carci-
noma may be ARRB2. However, since there have been no
studies on the gene level related to chRCC, there is an urgent
need for more research into the biological role of chRCC in
renal chromophobe cell carcinoma pathogenesis, so that new
clues and directions will be offered for the treatment of renal
chromophobe cell carcinoma.
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Background. Hepatocellular carcinoma (HCC) is one of the most common malignancies, and although there are several treatment
options, the overall results are not satisfactory. Cancer-associated fibroblasts (CAFs) can promote cancer progression through
various mechanisms. Methods. HCC-associated mRNA data were sourced from The Cancer Genome Atlas database (TCGA)
and International Cancer Genome Consortium (ICGC) database. First, the differentially expressed CAF-related genes (CAF-
DEGs) were acquired by difference analysis and weighted gene coexpression network analysis (WGCNA). Moreover, a CAF-
related risk model was built by Cox analysis. Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves
were utilized to evaluate the validity of this risk model. Furthermore, enrichment analysis of differentially expressed genes
(DEGs) between the high- and low-risk groups was executed to explore the functions relevant to the risk model. Furthermore,
this study compared the differences in immune infiltration, immunotherapy, and drug sensitivity between the high- and low-
risk groups. Finally, we verified the mRNA expression levels of selected prognostic genes by quantitative real-time polymerase
chain reaction (qRT-PCR). Results. 107 CAF-DEGs were identified in the HCC samples, and five prognosis-related genes
(ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1) were obtained by Cox analysis and utilized to build a CAF-related risk model.
K-M analysis illustrated a low survival in the high-risk group, and ROC curves revealed that the risk model could accurately
predict the 1-, 3-, and 5-year overall survival (OS) of HCC patients. In addition, Cox analysis demonstrated that the risk score
was an independent prognostic factor. Enrichment analysis illustrated that DEGs between the high- and low-risk groups were
related to immune response, amino acid metabolism, and fatty acid metabolism. Furthermore, risk scores were correlated with
the tumor microenvironment, CAF scores, and TIDE scores, and CAF-related marker genes were positively correlated with all
five model genes. Notably, the risk model was relevant to the sensitivity of chemotherapy drugs. Finally, the results of qRT-
PCR demonstrated that the expression levels of 5 model genes were in accordance with the analysis. Conclusion. A CAF-
related risk model based on ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1 was built and could be utilized to predict the
prognosis and treatment of HCC.

1. Introduction

Liver cancer is one of the commonest malignancies. In
accordance with the Global Cancer Statistics 2020, liver can-
cer is the 6th for incidence and 3rd in mortality among

malignancy-related deaths [1–3]. Secondary, liver cancer
includes hepatocellular carcinoma (HCC) and intrahepatic
cholangiocarcinoma (ICC), of which HCC accounts for about
75-85%. Although various options such as chemotherapy with
sorafenib, surgical resection, and liver transplantation are
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applied in treating HCC, but there is still a poor overall prog-
nosis, with an overall survival (OS) of 3-5% [4–6]. Therefore, it
is essential to find available targets for HCC treatment [7].

Cancer-associated fibroblasts (CAFs) can secrete growth
factors, cytokines, and inflammatory ligands, which stimu-
late epithelial-mesenchymal transformation (EMT), pro-
mote tumor proliferation and migration, and induce
therapy resistance and immune exclusion [8–10]. Studies
showed that CAFs engaged in bidirectional signaling with
liver progenitor cells and can act as cancer stem cells, sug-
gesting a close link between cirrhosis and liver cancer devel-
opment [11]. In addition, CAFs support tumor growth in
the liver. For example, CAFs can influence tumorigenesis
by altering ECM stiffness. For example, CAFs can influence
tumorigenesis by altering ECM stiffness; moreover, the cyto-
kines and other factors secreted by CAFs may promote
tumor growth, tumor angiogenesis, and epithelial to mesen-
chymal transition (EMT) [12].

In this study, samples in the TCGA dataset were grouped
into high CAF/low CAF score groups with CAF scores, and
then, 107 differentially expressed CAF-associated genes
(CAF-DEGs) were utilized for risk regression analysis. Fur-
thermore, 5 prognostic genes were gotten and utilized to
establish a risk model, which provided a reference for apply-
ing CAF-associated genes (CAFGs) in the clinical prognosis
and treatment outcome of HCC.

2. Materials and Methods

2.1. Data Source. The mRNA expression data of 50 normal
and 371 HCC samples, of which 360 HCC samples have
available survival data, were sourced from The Cancer
Genome Atlas database (TCGA). The mRNA expression
data of 243 HCC samples were acquired from the Interna-
tional Cancer Genome Consortium (ICGC) database as a
validation set.

2.2. Evaluation of the CAF Status in HCC. xCell can calculate
the abundance of various cells based on the single-sample
gene set enrichment analysis (ssGSEA), which includes
cancer-associated fibroblasts [13]. This study counted the
mass of 21 immune cells in 421 samples of TCGA-HCC
dataset by xCell. The samples were grouped into high and
low CAF with the median number of CAF cells. Kaplan-
Meier (K-M) survival analysis was performed based on the
high and low CAF groups and the survival information of
the HCC samples. Then, we collated the clinical traits of
the samples, STAGE subgroups, and GRADE subgroups
and compared the differences in the proportion of CAF cells
between the STAGE subgroups and GRADE subgroups
using chi-square tests.

2.3. Identification of CAFGs by Weighted Gene Co-expression
Network Analysis (WGCNA). The genes with similar expres-
sion patterns can be gathered, and the module that was
highly correlated with traits can be filtered by WGCNA, thus
finding the target genes relevant to the study [14]. To further
identify CAFGs, we performed a WGCNA analysis. First, we
clustered the 371 HCC samples to see the overall correlation

of all samples in the dataset. The soft threshold was deter-
mined to ensure that the interaction between genes maxi-
mally conformed to the scale-free distribution, and then,
the coefficient of dissimilarity between genes was introduced
based on the adjacency between genes, and the systematic
clustering tree between genes was obtained accordingly.
Similar modules analyzed by the dynamic tree cutting algo-
rithm were merged (MEDissThres = 0:2). Finally, the corre-
lations between the modules and CAF were calculated, and
the key modules were selected with the criteria of jcorj >
0:4, p < 0:05. Moreover, the genes in the key modules were
the CAFGs.

2.4. Identification of CAF-DEGs.We performed a differential
analysis in the TCGA dataset for high CAF samples and low
CAF samples to obtain differentially expressed genes (DEGs)
between high and low CAF samples and differential analysis
for normal and HCC samples. The screening condition for
the differential analysis was p adjust. < 0.05 and jlog 2FCj
> 0:5. To identify CAF-DEGs, we crossed CAFGs, DEGs
between high and low CAF, and DEGs between normal
and HCC samples.

2.5. Construction and Validation of the Risk Model. In this
study, 360 samples containing survival information in the
TCGA dataset were grouped into a training set and a test
set with 7 : 3 (252 : 108), and the data in the training set were
utilized to establish the risk model; firstly, the genes were
verified as risk factors by univariate Cox regression analysis.
Then, the genes with p < 0:05 were used to construct the
multivariate Cox regression model, using the stepwise
regression function step, with the parameter direction set
to both, to adjust the multivariate regression model, and
the obtained genes were used as prognostic factors to build
the model.

The risk value of each patient was counted by the expres-
sion of the genes, and the patients were grouped into high
and low risk with the median risk value. Then, the risk pro-
file was plotted and survival analysis for the high- and low-
risk groups was conducted. In addition, we plotted the
receiver operating characteristic (ROC) curve, and the area
under curve (AUC) was used to indicate the prediction accu-
racy. Finally, the correlations between the risk model and
clinical traits (age, gender, M, N, T, and other clinical data)
were assessed using the chi-square test.

Next, we validated the risk model using the TCGA test
set and the ICGC validation set. In these two datasets, cases
were spanided into high and low risks, respectively, and risk
profiles, survival curves, and ROC plots were plotted, and
correlations between risk factors and clinical traits were
analyzed.

2.6. Correlation of Risk Model and Clinical Traits. The clini-
cal traits in the training set of TCGA-HCC data were col-
lated, including age, sex, disease stage, T, N, and M. The
samples were grouped according to the different clinical
traits, and the risk values were compared between the differ-
ent groups to see if there were significant differences and
visualized by box plots.
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2.6.1. Independent Prognostic Analysis. The clinicopathologi-
cal factors in the training set samples were added to the Cox
analysis to investigate the independent prognosis of the risk
model and clinicopathological factors. On this basis, a
nomogram graph of the survival rate of the risk model and
clinical factors was constructed. The factors that obtained
significant results from the above multivariate Cox analysis
were plotted, and the OS was predicted according to the total
score. The correction curve was utilized to evaluate the pre-
diction results of the model.

2.6.2. Enrichment Analysis. We divided the TCGA dataset
into the high- and low-risk groups. The samples in the high-
and low-risk groups were analyzed for differences using the
“limma” R package, and the log2|FC| were then sorted from
highest to lowest. Gene Set Enrichment Analysis (GSEA)
was conducted using the “clusterProfiler” R package to find
the common functions and related pathways of a large num-
ber of genes in the differentially expressed gene set [15]. The
thresholds set were jNESj > 1, NOM p < 0:05, and q < 0:25,
and the databases used for GSEA were Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Gene Ontology (GO).

2.7. Correlation of Risk Score with Other Scores. To further
validate the accuracy of the risk model in predicting CAF,
we executed Spearman correlation analysis on the risk score,
stroma score, immune score, ESTIMATE score, tumor score,
the proportion of CAF predicted by xCell, and the propor-
tion of CAF predicted by EPIC, MCP-counter, and Tumor
Immune Dysfunction and Exclusion (TIDE). Firstly, the
“ESTIMATE” R package was utilized for ESTIMATE analy-
sis to obtain the immune score, stromal score, ESTIMATE
score, and tumor score for each sample. The EPIC algorithm
analyzed the percentage of infiltration of eight-cell types,
including CAFs, based on expression data [16]. We used
the MCP-counter to attribute the content of CAFs in the
samples. The xCell algorithm can also predict the proportion
of CAFs. Finally, the CAF content was obtained using TIDE.
The correlations between risk scores and each index were
calculated using the Spearman correlation analysis. p < 0:05
represents significant correlation.

2.8. Correlation between CAF Marker Genes and Prognostic
Genes. There were 23 CAF-associated marker genes, includ-
ing ACTA2, ASPN, CAV1, COL11A1, COL1A1, COL1A2,
COL3A1, EMILIN1, FAP, FN1, FOXF1, MFAP5, MMP11,
MMP2, OGN, PDGFRA, PDGFRB, PDPN, S100A4, SLC16A4,
SPARC, TNC, and ZEB1 [17, 18]. Then, we calculated the cor-

relations between prognostic genes and risk scores with CAF
marker genes.

2.9. Inferring Immune Cell Abundance in High- and Low-
Risk Groups Using the ssGSEA Algorithm. ssGSEA is a
single-sample GSEA method by which we can obtain the
immune cell, of each sample [19]. Using 28 immune-
related gene sets, we can get the immune activity. Then,
the differences in 28 immune activities between the high-
and low-risk groups were compared, and the differential
immune activities were related to the risk scores.

2.10. Chemotherapy Drug Sensitivity Prediction. We know
that the Genomics of Drug Sensitivity in Cancer (GDSC)
database has many drug sensitivity and genomic datasets
that are important for the discovery of potential oncology
therapeutic targets. IC50 refers to the half amount of a drug
that inhibits specific biological processes. The “pRRophetic-
Predict” R package (version 0.5) was utilized to calculate 138
drugs included in the database and compare differences in
drug IC50 between the high- and low-risk groups.

2.11. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR) Validation. First, RNA was extracted from con-
trol cells WRL68 and HCC cells Huh7, Hepg2, and sk-sep-
1, followed by a reverse transcription reaction, and finally,
the target gene was amplified by PCR reaction. The RNA
extraction kit was TRIzol Reagent (ref.: 15596018) kit pro-
vided by Ambion. The reverse transcription kit was the Swe-
Script RT I First-strand cDNA Synthesis All-in-OneTM

First-Strand cDNA Synthesis Kit (cat.: G33330-50) from
Servicebio. PCR reactions were performed with the 2x Uni-
versal Blue SYBR Green qPCR Master Mix (cat.:G3326-05)
kit from Servicebio. Primer sequences are shown in Table 1.
The PCR reaction process was 95°C predenaturation for
1min and then 40 cycles. Each cycle included 95°C denatur-
ation for 20 s, 55°C annealing for 20 s, and 72°C extension for
30 s. The internal reference for gene detection is GAPDH.
The expression of ACTA2, IGJ, CTHRC1, CXCL12, and
LAMB1 in normal cell WRL68 and HCC cells Huh7, Hepg2,
and sk-sep-1 were compared by analysis of variance
(ANOVA), and p < 0:05 was a difference.

3. Results

3.1. Evaluation of the CAF Status in HCC. We calculated the
immune cell content of 421 samples in the TCGA dataset
(Figure 1(a)). After screening out the normal samples, there

Table 1: Primer sequences of genes used in qRT-PCR validation.

Gene Forward Reverse

GAPDH CCCATCACCATCTTCCAGG CATCACGCCACAGTTTCCC

ACTA2 CACAGAGCAAAAGAGGAATC TCAGCAGTAGTAACGAAGGA

IGJ CTCAAGAAGGTGAAAGGATT TTTTTACAGAGGTCAGACAA

CTHRC1 AAGGAAGCCCTGAAATGAAT CCACAGAAGAAGTGCGATGA

CXCL12 CACTCCAAACTGTGCCCTTC CTTGTCTGTTGTTGTTCTTC

AMB1 GTTGTAAATCTTGTGCTTGC CTCCGCTTCATAGAGGTAGT
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were 158 high CAF samples and 213 low CAF samples. The
results of K-M analysis of the high and low CAF groups were
shown (Figure 1(b)), and it can be seen that there was a sig-
nificant survival difference between the high and low CAF
groups. The results of clinical trait correlation between high
and low CAF groups showed that CAF cells were different
between different STAGE groups and between different
GRADE groups (Figures 1(c) and 1(d)).

3.2. Identification of CAFGs by WGCNA Analysis. The clus-
tering of the samples in the TCGA dataset was shown in
Figure 2(a), and the samples were not deleted. The power
threshold was chosen as 13, so that the interactions between
genes conformed to the scale-free network (Figure 2(b)).
From the module clustering tree, we can see that 12 modules
were clustered, and after merging, 6 modules were obtained
(Figure 2(c)). Finally, the key modules were filtered accord-
ing to their correlation with CAF, and we got the green mod-
ule (Figure 2(d)). Therefore, 898 genes in the green module
were used as CAFGs.

3.3. Identification of CAF-DEGs. There were 676 DEGs
between the high and low CAF groups (Figure 3(a)). 6265
DEGs were found between normal and HCC samples
(Figure 3(b)). CAFGs and DEGs between high and low
CAF and DEGs between normal and HCC samples were
crossed to obtain 107 CAF-DEGs, and the Venn diagram
is shown (Figure 3(c), Table S1).

3.4. A Risk Model Based on 5 Genes Was Built. In the TCGA
training set, univariate Cox analysis yielded 7 genes
(Figure 4(a), Table 2). After multivariate Cox analysis, 5
genes appeared in multivariate Cox analysis (Figure 4(b),
Table 3): ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1.
The risk value of each patient was counted from the expres-
sion of these five genes, and the cases were classified into
high and low risks (median value = 0:988) (Figure 4(c)).
The survival analysis of the high- and low-risk groups illus-
trated there was a significant survival difference between the
high- and low-risk groups (Figure 4(d)). The AUC at 1, 3,
and 5 years in the ROC curve were 0.661, 0.686, and 0.608,
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Figure 1: The changing trend of CAF in the TCGA-LIHC queue analyzed by the XCELL algorithm. (a) Heat map of different cell
concentrations calculated by xCell. (b) K-M curve of high and low CAF group. (c) Correlation of CAF cells in different STAGE groups.
(d) Correlation of CAF cells in different GRADE groups.
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Figure 4: Identification of prognostic genes and evaluation of risk regression models. (a) Forest map of univariate Cox results. (b) Forest
map with multivariate Cox results. (c) K-M survival curve of risk score. (d) Risk curves for the high- and low-risk groups. (e) The ROC
curve evaluating the validity of the risk model.

Table 2: Univariate Cox regression analysis results.

Id z HR HR.95L HR.95H p value

ACTA2 -2.382667536 0.7794916 0.635062344 0.956767726 0.017187709

MMP14 2.354059963 1.237687278 1.036344401 1.478147415 0.018569615

IGJ -2.321172984 0.861330023 0.759325083 0.977037931 0.02027751

CTHRC1 2.184086222 1.176830023 1.016848758 1.361981212 0.028955913

CXCL12 -2.086278679 0.833517888 0.702454325 0.989035222 0.036953387

LAMB1 2.044172937 1.224712344 1.008385361 1.487447541 0.040936466

MFAP4 -1.973675604 0.871707401 0.760598958 0.999046587 0.048418641

Table 3: Multivariate cox regression analysis results.

Id Coef HR HR.95L HR.95H p value

ACTA2 -0.379760522 0.684025199 0.531595384 0.880162783 0.003153906

IGJ -0.152683995 0.858400938 0.751217636 0.980877092 0.024851869

CTHRC1 0.236265717 1.266510799 1.075666699 1.491214339 0.004578553

CXCL12 -0.153407609 0.857780012 0.69754989 1.054815661 0.145913422

LAMB1 0.313651044 1.368412138 1.104754211 1.694994017 0.004075463
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Figure 5: Continued.
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respectively (Figure 4(e)). In addition, in both the TCGA test
set and ICGC validation set, the survival of the high-risk
group was lower, and the AUC at 1, 3, and 5 years was more
significant than 0.65 (Figures 5(a)–5(g)). In addition, in the
ICGC validation set, grade was different between the high-
and low-risk groups. It indicated that the risk model could
be effectively used as a prognostic model.

3.5. Correlation of Risk Model and Clinical Traits. The corre-
lation between the risk model and clinical traits showed that
the risk values differed significantly between stages I-II and
stages III-IV. And the risk values were quite different
between T1 − 2 and T3 − 4 stages. The results were shown
(Figures 6(a)–6(f)).

3.6. Risk Score and Stage Were Independent Prognostic
Factors. The factors with p < 0:05 in the univariate Cox regres-
sion analysis were T, risk score, and stage (Figure 7(a),
Table 4). The three significant factors were added to the mul-
tivariate Cox analysis (Figure 7(b), Table 5), and the results
showed that risk score and stage were significant. The survival
nomogram graph was shown (Figure 7(c)). In the corrected
curve, the c-index was 0.703, and the corrected c-index was
0.696, and the slopes were calculated to be 0.697, 0.406, and
0.300 at 1, 3, and 5 years, which demonstrated the best predic-
tion at one year (Figure 7(d)).

3.7. Enrichment Analysis of High- and Low-Risk Groups. A
total of 73 KEGG paths and 1968 GO paths were enriched

by GSEA, and we selected the top 10 KEGG paths and GO
paths to visualize them. As can be seen (Figure 8(a)), the
top 10 KEGG pathways obtained have activation of the
immune response, alcohol metabolic process, alpha-amino
acid metabolic process, and B cell-mediated immunity. The
top 10 GO functions were autoimmune thyroid disease, cell
cycle, graft versus host disease, peroxisome, PPAR signaling
pathway, and retinol metabolism (Figure 8(b)).

3.8. Correlation of Risk Scores with Other Scores and
Correlation of CAF Marker Genes with Prognostic Genes.
The correlation results of the risk score with other scores
suggested that the risk score was negatively relevant to the
immune score, ESTIMATE score, stromal score, xCell-
predicted CAF ratio, and TIDE-predicted CAF ratio, and
positively relevant with the tumor score (Figure 9(a)). The
correlations between prognostic genes and risk scores with
CAF marker genes were calculated, and the results were as
follows. The correlation results illustrated that risk scores
were negatively related toACTA2, ASPN, COL1A1, COL1A2,
COL3A1, EMILIN1, FAP, FOXF1, MFAP5, MMP2, OGN,
PDGFRA, PDPN, S100A4, SLC16A4, SPARC, and TNC
genes. FN1 with LAMB1, CTHRC1, and SLC16A4 was pos-
itively associated with ACTA2, IGJ, CXCL12, and LAMB1. In
addition, the remaining 21 CAF-related marker genes were
positively associated with five prognostic genes (Figure 9(b)).

3.9. Inferring Immune Cell Abundance Using the ssGSEA
Algorithm. As can be seen (Figure 10(b)), among the 28 cells,
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Figure 5: Testing and validation of the risk model. (a) K-M survival curve of risk score in the test set. (b) Risk curves for the high- and low-
risk groups in the test set. (c) ROC curve in the test set evaluating the validity of the risk model. (d) K-M survival curve of risk score in the
validation set. (e) Risk curves for the high- and low-risk groups in the validation set. (f) ROC curve in the validation set evaluating the
validity of the risk model. (g) Overview of the correlation between risk score and clinical features in validation.
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20 cells were different between the high- and low-risk
groups, including activated B cell, CD56bright natural killer
(NK) cell, CD56dim NK cell, central memory CD4 T cell,

central memory CD8 T cell, and Type 1 T helper cell, and
the 20 significant cells were plotted separately from the risk
score in a lollipop plot as follows (Figure 10(a)).
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Figure 7: Risk model-independent prognosis in the training set. (a) Forest map of univariate Cox results. (b) Forest map with multivariate
Cox results. (c) Survival nomogram graph. (d) Correction curve for line graph.

Table 4: Independent prognostic univariate cox analysis results.

Variable Coef HR HR.95 L HR.95H p value

riskScore 0.554622883 1.741284194 1.41049963 2.149642991 2.47E-07

STAGE 0.543228104 1.721555261 1.274933191 2.324633586 0.000392502

T 0.499131316 1.647289675 1.245504476 2.178686088 0.000467059

M 1.131809556 3.101263336 0.748842494 12.8436011 0.118512375

Age 0.016505353 1.016642319 0.993511015 1.040312175 0.15985152

Gender -0.17646729 0.838226197 0.472510705 1.486999448 0.546261178

N 0.15060375 1.162535912 0.159530784 8.471654902 0.88185331

Grade 0.011591034 1.01165847 0.696375217 1.469685933 0.951493367

Table 5: Independent prognostic multivariate cox analysis results.

Id Coef HR HR.95L HR.95H p value

STAGE 0.47806429 1.612949176 1.181104647 2.202688011 0.002639371

riskScore 0.493909346 1.638709999 1.323983571 2.028250591 5:65E − 06
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3.10. Chemotherapy Drug Sensitivity Prediction. According
to the calculation results, 65 drugs showed differences in
the high- and low-risk groups, which were temsirolimus,
CI.1040, NU.7441, AZD8055, AICAR, AMG.706, DMOG,
KU.55933, Metformin, EHT.1864, Dasatinib, NVP.BEZ235,
PD.0325901, AZD.0530, NVP.TAE684, AKT.inhibitor.VIII,
Vorinostat, GDC0941, PD.173074, Erlotinib, Docetaxel,
WO2009093972, Rapamycin, AZD6244, JNJ.26854165,
BI.D1870, MG.132, BX.795, A.770041, PD.0332991,
Z.LLNle.CHO, AP.24534, Parthenolide, GW.441756, Niloti-
nib, OSI.906, X17.AAG, GDC.0449, AZD6482, WH.4.023,

PF.4708671, Axitinib, TW.37, SB590885, Thapsigargin,
NSC.87877, Cyclopamine, CMK, RDEA119, Gefitinib, Sorafe-
nib, CEP.701, Imatinib, Methotrexate, ABT.263, Vinblastine,
AZD7762, Lapatinib, AZ628, GNF.2, Bryostatin.1, Campto-
thecin, Nutlin.3a, FH535, and ZM.447439 (Table S2); they
were visualized as a box plot as shown in the figure below.
Figure 11 showed box plots for just the six drugs in the high-
and low-risk groups.

3.11. qPCR Validation. The results of qPCR demonstrated
that expression levels of ACTA2, IGJ, CTHRC1, CXCL12,
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Figure 8: Enrichment analysis of the high- and low-risk groups. (a) The top10 KEGG pathways. (b) The top10 GO pathways.
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Figure 9: Correlation of risk scores with other scores and correlation of CAF marker genes with prognostic genes. (a) Heat map of
correlations between risk score and other scores. (b) Heat map of correlations between CAF marker genes and prognostic genes.
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and LAMB1 genes were different in normal cells WRL68 and
HCC cells Huh7, Hepg2, and sk-sep-1. Specifically, ACTA2,
CTHRC1, and LAMB1 genes were significantly upregulated
in HCC cells Huh7, Hepg2, sk-sep-1, and IGJ, CXCL12 were
downregulated in HCC cells (Figure 12).

4. Discussion

While there have been advances in diagnostic techniques
and treatment of HCC, [20, 21] the survival prognosis
remains poor because of its high recurrence and metastasis

rates [22]. CAFs are the main cellular component that can
affect the formation of liver fibrosis, which in turn results
in the development of HCC [10, 12]. Many prognostic
models for HCC have been presented by far. Zhang et al.
built a prognostic model which was able to reasonably pre-
dict the prognosis of HCC patients and provided a new idea
to study HCC of different histological grades [21]. Long et al.
developed a four-gene prognostic model to probe the differ-
ences in mRNA expression between HCC and neighboring
liver to obtain potential genetic biomarkers [2]. Wang et al.
screened immune-related differentially expressed genes

Type 1 T helper cell
Activated B cell

Effector memory CD8 T cell
Activated CD8 T cell

Immature B cell
Mast cell

Regulatory T cell
Eosinophil

Macrophage
Gamma delta T cell

T follicular helper cell 
MDSC

Natural killer cell
Monocyte

CD56b right natural killer cell
Central memory CD4 T cell
Central memory CD8 T cell

Effector memory CD4 T cell
Immature dendritic cell

CD56dim natural killer cell

–0.5 –0.4 –0.3 –0.2 –0.1 0.0
Partial.cor

0.001

0.002

0.003

0.004

0.005

p

abs (partial.cor)
(0.2)
(0.3)

(0.4)
(0.5)

(a)

ns ns ns ns ns ns ns ns

–0.4

–0.2

0.0

0.2

0.4

0.6

Acti
vat

ed
 B ce

ll

Acti
vat

ed
 CD4 T

 ce
ll

Acti
vat

ed
 CD8 T

 ce
ll

Acti
vat

ed
 den

drit
ic c

ell

CD56
b rig

ht n
atu

ral
 kille

r c
ell

CD56
dim

 natu
ral

 kille
r c

ell

Cen
tra

l m
em

ory 
CD4 T

 ce
ll

Cen
tra

l m
em

ory 
CD8 T

 ce
ll

Effect
or m

em
ory 

CD4 T
 ce

ll

Effect
or m

em
ory 

CD8 T
 ce

ll

Eosin
ophil

Gam
ma d

elt
a T

 ce
ll

Im
matu

re 
B ce

ll

Im
matu

re 
den

drit
ic c

ell

Macr
ophage

Mast
 ce

ll

MDSC

Mem
ory 

B ce
ll

Monocyt
e

Natu
ral

 kille
r c

ell

Natu
ral

 kille
r T

 ce
ll

Neu
tro

phil

Plas
macy

toid den
drit

ic c
ell

Regu
lat

ory 
T ce

ll

T fo
llic

ular
 help

er 
cel

l 

Typ
e 1

 T help
er 

cel
l

Typ
e 1

7 T
 help

er 
cel

l

Typ
e 2

 T help
er 

cel
l

Cell

High

Low

Type

(b)

Figure 10: Inferring immune cell abundance in the high- and low-risk groups by the ssGSEA algorithm. (a) Correlation between cell
contents and risk values. (b) Box plots of cell contents between the high- and low-risk groups.

–10

–5

0

5

10

Es
tim

at
ed

 IC
50

Temsirolimus

0

5

Es
tim

at
ed

 IC
50

CI-1040

0.0

2.5

5.0

Es
tim

at
ed

 IC
50

ZM-447439

0

2

4

6

Es
tim

at
ed

 IC
50

GNF-2

–5

0

5

10

15

Es
tim

at
ed

 IC
50

AZ628

–5

0

5

10

15

Es
tim

at
ed

 IC
50

CEP-701

⁎ ⁎ ⁎

⁎⁎⁎

HighLow HighLow HighLow

HighLow HighLow HighLow

Figure 11: Significant differences of 6 drugs between the high- and low-risk groups.

12 Journal of Oncology



closely related to HCC and further detected genes associated
with prognosis [23]. However, because of the limitations of
the public database data, further validation of the proposed
prediction models is necessary or regression modeling
methods need to be applied to determine if the prediction
accuracy can be further improved. More than that, the valid-
ity of the prediction model should be confirmed in a large
sample of HCC. In this study, we sought five biomarkers
basing CAFGs for a prognostic model for HCC by bioinfor-
matics method, conducted an independent prognostic anal-
ysis and functional enrichment analysis, and calculated the
differences between immunoassay (immune infiltration,
immunotherapy) and drug sensitivity at all levels. At last,
qRT-PCR verified the expression levels of ACTA2, IGJ,
CTHRC1, CXCL12, and LAMB1 genes in normal and HCC
cells, which is a relatively complete work for the prognostic
building.

In the present study, five genes have been obtained for
the HCC prognostic model. ACTA2, actin alpha 2, which
contributed to cell-generated mechanical tension and main-
tenance of cell shape and movement, was highly expressed in
carcinomas [24]. Meanwhile, a previous study showed that
CAFs enhanced the tumor-initiating and tumorigenic prop-
erties of HCC cells, and ACTA2 was exactly a biomarker of
CAFs. The upregulation of ACTA2 level indicated poor sur-
vival HCC patients [25]. It was demonstrated that a linking
chain of multisomal IgA and IgM is also present in IGJ
[26]. It is possible that their upregulation may enhance the
anticancer immune response to sorafenib treatment and
facilitate the survival of HCC [27, 28]. In addition, overex-

pression of CTHRC1 contributes to tumorigenesis and
progression through positive regulation of tumor spread,
invasion, migration, adhesion, and metastasis [29–31].
Immunohistochemical analysis demonstrated that CTHRC1
expression levels were elevated in HCC tissues [32]. Stromal-
derived-factor-1 (SDF-1) was expressed in more than 23
different types and participated in tumor metastasis [33].
Interestingly, SDF-1 protein for the HCC cells was expressed
in the cytoplasm and nucleus [34]. Notably, the level of SDF-
1 was lower in HCC. Patients with relatively high SDF-1
showed longer OS [35]. LAMB1 consists of laminins [36].
LamB1 mediated β1 integrin signaling and can regulate cell
migration, proliferation, and survival by activating specific
p67kDa laminin receptors (LamR) [37–39]. HCC patients
have shown elevated levels of LamB1 in cirrhotic tissues,
with further increased expression in HCC [40]. In HCC,
the expression of the b1 integrin receptor and LamR were
upregulated, which was relevant with enhanced tumor
aggressiveness and poor patient survival [41, 42].

Based on the enrichment analysis of the high- and low-
risk groups by GSEA, function ways of fatty acid metabo-
lism, amino acid metabolism, and immune response were
related to the progress of HCC seriously. Firstly, a specific
reprogramming xiang of fatty acid metabolism has been
found in the nonalcoholic steatohepatitis (NASH) stage of
nonalcoholic fatty liver disease (NAFLD). The liver is
involved in the context of MetS and simple steatosis can
progress to liver fibrosis or even cirrhosis, and eventually
to HCC [43]. Metabolic reprogramming can support hepa-
tocyte proliferation by participating in fatty acid synthesis
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and oxidation [44]. Second, the synthesis of nonessential
amino acids is vital for the maintenance of liver function
[45, 46]. In HCC, abnormalities in amino acid and protein
metabolism occur [47].

Tumor immune cells can be participated in the immune
response to cancer and also predict treatment efficacy and
survival [48]. In the current study, there were 20 immune
cells that differed between the high- and low-risk groups,
including B cells, T cells, and NK cells. Regulatory B (Breg)
cells accumulate in the tumor environment, and it can pro-
duce high levels of IL-10. Breg can suppress the host
immune responses to promote tumorigenesis in HCC [49].
Regulatory T cells (Tregs), expressing CD25 and forkhead
boxP3 (FoxP3), were negative during immune surveillance,
resulting in tumor tolerance [50]. There are fewer NK cells
in HCC tissue and NK cells can inhibit cytokine produc-
tion and cytotoxic activity [51]. Zhu et al. constructed
the prognostic model and the recurrence risk model and
found that patients with high risk scores responded
strongly to immune checkpoint inhibitor therapy and that
low-risk patients may derive more significant clinical ben-
efit from chemotherapy [52].

65 drugs showed differences in the high- and low-risk
groups. Temsirolimus is a prodrug of sirolimus. Studies have
shown that temsirolimus has an inhibitory effect on HCC
cells, and in phase I/II clinical trial, it was well-tolerated in
HCC patients [53]. Moreover, temsirolimus is an mTOR
inhibitor that can block cell cycle transition and affects cell
proliferation by inhibiting mTOR and growth factors [54].
CI-1040, another drug predicted by our prognostic model,
is an oral inhibitor of extracellular signal-regulated kinase
(MEK) [55], It is a new candidate for targeted treatment of
HCC because of its potential antitumor efficacy [56].
ZM447439 (ZM) induces apoptosis in HCC cells by interfer-
ing with spindle integrity and chromosome segregation [57].
These three drugs are representatives of anti-HCC drugs.
However, among the 65 drugs, there are also some news,
of which the effects on HCC are not definite. For example,
GNF-2 inhibits the enzymatic and cellular kinase activities
of ABL1, ABL2, and recombinant ABL and can inhibit the
proliferation of fibroblasts. Still, its effect on anti-HCC have
not been elucidated [58]. Then, AZ628, another new drug
for HCC, can be involved in fibrosarcoma formation, and
AstraZeneca can effectively inhibit cancer cell proliferation
by inhibiting the activity of Raf [59]. CEP-701 can effectively
inhibit trk receptors, leading to cell death in prostate cancer
(PC), and it can also limit tissue penetration by binding
serum proteins [60].

5. Conclusion

This study concentrated on the prognostic value of CAFs for
HCC and identified CAF-related genes. A prognostic model
of 5 CAFGs for HCC was developed in this research, and the
expression of the five genes were verified by the qRT-PCR
method. It provides new directions for the treatment of
HCC. Nonetheless, one shortcoming of this study should
be addressed, there are no clinical trials.
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Purpose. Cancer development and immune escape involve DNA methylation, copy number variation, and other molecular events.
However, there are remarkably few studies integrating multiomics genetic pro�les into endometrial cancer (EC). �is study aimed to
develop a multiomics signature for the prognosis and immunotherapy response of endometrial carcinoma. Methods. �e gene ex-
pression, somatic mutation, copy number alteration, and DNA methylation data of EC were analyzed from the UCSC Xena database.
�en, a multiomics signature was constructed by a machine learning model, with the ROC curve comparing its prognostic power with
traditional clinical features. Two computational strategies were utilized to estimate the signature’s performance in predicting im-
munotherapy response in EC. Further validation focused on the most frequently mutant molecule, ARID1A, in the signature. �e
association of ARID1A with survival, MSI (Microsatellite-instability), immune checkpoints, TIL (tumor-in�ltrating lymphocyte), and
downstream immune pathways was explored.Results.�e signature consisted of 22multiomicsmolecules, showing excellent prognostic
performance in predicting the overall survival of patients with EC (AUC� 0.788). After stratifying patients into a high and low-risk
group according to the signature’s median value, low-risk patients displayed a greater possibility of respond to immunotherapy. Further
validation on ARID1A suggested it could induce immune checkpoints upregulation, promote interferon response pathway, and interact
with Treg (regulatory T cell) to facilitate immune activation in EC. Conclusion. A novel multiomics prognostic signature of EC was
identi�ed and validated in this study, which could guide clinical management of EC and bene�t personalized immunotherapy.

1. Introduction

As the most prevalent gynecologic malignancy, endometrial
carcinoma (EC) is one of the leading causes of female mortality
worldwide [1]. Endometrial cancer develops in about 142,000
women worldwide every year, and an estimated 42,000 women
die from this cancer. �e introduction of ICB (Immune
Checkpoint Blockade) has achieved favorable clinical e£ects in
patients with end-stage EC where the chemotherapy regimen
has little progression [2, 3]. However, more than 80% of pa-
tients are nonresponders, or NDB (no durable clinical bene�t),
to immunotherapy, and the underlying factors resulting in

heterogeneous prognoses are poorly understood. In fact, cancer
development and immune response are determined by mul-
tiple factors, including genomic mutation [4], DNA methyl-
ation [5], and copy number variance [6], et al. �erefore,
analysis incorporating multiomics data is urgently needed for
EC management.

We utilized meta-dimensional strategies to seek genet-
ically susceptible molecules from gene expression, somatic
mutation, copy number alteration, and DNA methylation
data of EC, aiming to develop a multiomics signature for
prognosis and immunotherapy response of EC. �e signa-
ture was built by machine learning model, and its e¥ciency
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was compared with traditional clinical features. Two com-
putational approaches were also deployed to estimate the
signature’s performance in predicting immunotherapy re-
sponse. Further validation focused on the most frequently
mutant molecule in the signature: ARID1A. ,e association
of ARID1A with survival, MSI (Microsatellite-instability),
immune checkpoints, TIL (tumor-infiltrating lymphocyte),
and downstream immune pathways were explored and
potential mechanisms was given.

,e present study constructed a novel multiomics
prognostic signature for prognosis and immunotherapy
response of EC, which could guide clinical management of
EC and benefit from personalized immunotherapy.

2. Methods and Materials

2.1. Data Acquisition. Multiomics data of EC (endometrial
carcinoma) were acquired from databases, such as the
TCGA-UCEC cohort (,e Cancer Genome Atlas Endometrial
Cancer, 543 tumors, and 35 normal samples) at the UCSC
Xena website [7] (https://xenabrowser.net/datapages/).,ese
data included datasets of Copy Number Variation (CNV),
DNA methylation (450k), RNA-seq of raw counts, somatic
mutation (MuTect2 method), and survival data. In parallel,
gene sets of 482 mutated genes with alteration frequency >5%
and 380 copy number varied genes with alteration frequency
>1% in EC were retrieved from Cbioportal [8] (https://www.
cbioportal.org) and OncoKB [9] database (https://oncokb.org).

2.2. Differential Expression and Function Enrichment
Analysis. To reveal the molecules of real value for EC in
these multiomics datasets, a series of R packages were used
for screening, for example, the limma package [10] to seek
out differentially expressed genes between 543 tumor and 35
normal samples with |log2 Fold Change (FC)|> 1.5 and P

value< 0.05 as the threshold, as well as the ChAMP package
[11] to identify differential methylation loci with |log2 Fold
Change (FC)|> 0.5 and P value< 10−15.

A heatmap and volcano plot were used to display the 457
differentially expressed genes (DEG) and 746 CpG sites
between tumor and normal samples, with GO (https://wego.
genomics.org.cn) and KEGG (https://wego.genomics.org.
cn) enrichment analysis to dissect their biological func-
tion and related signaling pathways. Meanwhile, oncoprint-
plot was employed to present the top 30 mutated and copy
number varied genes in EC.

2.3. Construction of the Multiomics Prognostic Signature for
EC. Subsequent filtration of the 457 significant DEGs, 746
differential methylation loci, 482 mutated, and 380 copy
number varied genes was completed by LASSO penalized
Cox regression with overall survival as the dependent var-
iable. Finally, 22 molecules were adopted for modeling. Next,
Kaplan–Meier curves were depicted to show the prognostic
power of the 22-gene-signature where the risk score of each
patient was calculated with the following formula: 

n
i

Coefi∗Xi (Coefi: cox regression coefficient, Xi: expression
value of corresponding molecule, n� 22). Following that,

patients were stratified into a high- and low-risk group
according to the median risk score. A ROC (receiver op-
erator characteristic) curve and multivariate Cox regression
were also used to evaluate its prognostic performance and
independent prognostic efficiency.

2.4. Relationship of the Prognostic Signature with Immuno-
therapy Response in EC. To assess the relationship of the
signature with immunotherapy, algorithms of TIDE [12]
(tumor immune dysfunction and exclusion) and Immune
Cell AI [13] were applied to predict patients’ responses to
ICB (immune checkpoint blockade) treatment. A hundred-
percent bar-chart and a heatmap were used to display the
response difference to ICB between the high and low-risk
groups.

2.5. Validation on ARID1A for Its Prognostic Ability and
Association with Immunotherapy. Further validation fo-
cused on the most frequently mutant molecule in the sig-
nature: ARID1A. ,e association of ARID1A mutation with
patients’ survival, MSI (microsatellite-instability), immune
checkpoints or Tcell exhaustionmarkers (LAG3, SIGLEC15,
CTLA4, HAVCR2 (TIM3), PDCD1LG2 (PD-L2), CD274
(PD-L1), PDCD1 (PD1), and TIGIT) and downstream
immune pathways were explored. In addition, the impact of
the ARID1A mutation on the abundances of 22 tumor-
infiltrating immune cells was assessed by the CIBERSORT
algorithm.

2.6.UnderlyingMechanism fromARID1AMutation toCancer
Immune Activation. To identify the underlying mechanism
from ARID1A mutation to cancer immune activation,
a ternary interaction network was constructed. First, dif-
ferential expression analysis was carried out between
235 ARID1A-mut samples and 291 ARID1A-wild tumor
samples of the UCEC cohort, with 25 upregulated and 46
downregulated DEGs being obtained. By performing cor-
relation analyses between the71 DEGs, abundances of 22
immune cells computed by the CIBERSORT, and enrich-
ment scores of 29 cancer specialized immune pathways [14]
quantified by GSVA [15], the interaction pairs of DEG-
Immune Cell and DEG-Immune Pathway with a correlation
coefficient >0.3 were screened out. A further regulating
network of 71 DEG, 22 immune cells, and 29 immune
pathways was completed by Cytoscape software (https://
cytoscape.org/).

2.7. Statistical Analysis. Data processing and all analyses
were accomplished by R 4.0.4. (Package: limma, ggplot2,
survminer, ChAMP, ggcorrplot, GSVA, CIBERSORT, and
so on). A chi-square test was used for counting data. Wil-
coxon or Kruskal–Wallis tests were applied for comparisons
between groups, while the Pearson and Spearman’s rank
correlation were adopted to estimate the statistical corre-
lation of parametric or nonparametric variables. Two-sided
P< 0.05 was considered a significant threshold for all
statistical tests.
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3. Results

3.1. Differential Expression Analysis between Tumor and
Normal Samples. ,e study protocol was illustrated in
Figure 1 and Table 1 summarized the demographic features
of the TCGA-UCEC cohort. 457 differentially expressed
genes (DEG) and 746 differential CpG sites are shown in the
heatmap and volcano-plot (Figure 2(a)-2(b)). ,ose DEGs
were mainly enriched in thermogenesis and neutrophil
activation involved in immune response pathways
(Figures 2(c) and 2(d)).,e top 30 mutant and copy number
varied genes are displayed in the oncoprint-plot
(Figures 2(e) and 2(f )).

3.2. Construction of the Multiomics Prognostic Signature.
22 molecules stood out in LASSO-Cox analysis after shrinking
most factors’ coefficient towards zero (Figure 3(a)-3(b)), in-
cluding 9 genes with somatic mutation, 4 with copy number
variance, 3 with differential CpG sites, and 6 DEGs, their
regression coefficients are shown in Table 2. ,e risk score of
each patient was illustrated which well-stratified patients into
two groups, according to the median value, with a huge dis-
crepancy in survival probability (Figures 3(c)–3(d)). Patients
were illustrated from a database. ROC curve showed a better
prognostic performance of the signature than traditional
clinical features, such as pathological stage and tumor grade
(Figure 3(e)). Subsequent univariate and multivariate Cox
analyses proved the signature can be an independent factor for
the prognosis of EC (Figures 3(f)–3(g)).

3.3. Relationship of the Prognostic Signature with Immuno-
therapy Response. In light of immunotherapy, no matter
TIDE or Immune Cell AI algorithm,more patients were seen
to be responders to ICB treatment (anti-PD-1 or anti-
CTLA4) in the low-risk group than people in the high-risk
group (71 vs 46 and 130 vs 74, respectively, P< 0.001) with
statistically significant difference (Figure 4(a) and 4(b)).

3.4. Validation on ARID1A for Its Prognostic Ability and
Association with Immunotherapy. As the most frequently
mutant gene in EC (Figures 4(c)–4(d), ARID1A can well
stratify patients into two groups with noticeable survival
differences in the UCEC cohort (4E-4 F), but did not affect
their mRNA transcription. ARID1A mutation was also as-
sociated with MSI-H status, higher level of immune
checkpoints expression, and TIL (tumor-infiltrating lym-
phocyte) (Figure 5(a)–5(c)).

3.5. ARID1A May Interact with Treg and Promote Type-
I–IFN–Response Pathway to Facilitate Tumor Immune Acti-
vation in EC. Of the 71 DEGs, 25 were upregulated and 46
were downregulated between ARID1A mut and ARID1A-
wild tumor samples (Figure 6(a)). ,ey were mainly
enriched into the p53 signaling, mTOR, DNA damage, and
stem cell development signaling pathways (Figure 6(b)).
,ese DEGs also exhibited extensive association with 22
immune cells and 29 immune pathways in the correlation

heatmap (Figures 6(c) and 6)(d). Within the final interaction
network, the type-I–IFN–Response pathway and T cell
regulatory showed a major connection with DEGs, in-
dicating that ARID1A may interact with Treg and promote
Type-I–IFN–Response pathway to facilitate tumor immune
response in EC (Figure 6)(e).

TCGA Cohort of Endometrial Cancer (EC)
RNA-seq, Mutation, CNV, DNA Methylation and Survival Data

457 DEGs, 746 CpG Sites, 482
Mutation, 380 CNV

1. Overall Survival

2. Immunotherapy

Lasso-Cox
Analysis

Multi-omics Prognostic Signature

Overall Survival
ROC Evaluating

Immunotherapy response
(lmmuneCellAI, TIDE)

Association with Tumor
Mutation Burden

3. Gene-Cell-Pathway
Interacting Network

Association with 8
Immune Checkpoints

Association with 26
Immune Cells

Association with 29
Immune Pathways

Model Construction Validation

Figure 1: Study protocol.

Table 1: Clinical feature of TCGA-UCEC cohort.

ARID1A-mut ARID1A-wild Pvalue
SAMPLE 233 288
AGE 61.49± 10.66 65.89± 11.02 <0.001
BMI 34.11± 15.06 33.54± 9.28 0.608
STAGE 0.009
Stage I 164 (70.39%) 159 (55.21%)
Stage II 21 (9.02%) 29 (10.07%)
Stage III 44 (18.87%) 77 (26.73%)
Stage IV 4 (1.72%) 23 (7.99%)
DIABETES 0.76
NO 120 (74.07%) 138 (72.63%)
YES 42 (25.93%) 52 (27.37%)
HYPERTENSION 0.992
NO 75 (42.37%) 84 (42.42%)
YES 102 (57.63%) 114 (57.58%)
GRADE 0.025
G1 52 (22.32%) 44 (15.28%)
G2 58 (24.89%) 57 (19.79%)
G3 121 (51.93%) 180 (62.50%)
High grade 2 (0.86%) 7 (2.43%)
STATUS <0.001
Alive 213 (91.42%) 223 (77.43%)
Dead 20 (8.58%) 65 (22.57%)
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4. Discussion

,e present study constructed a novel multiomics prog-
nostic signature for prognosis and immunotherapy response
of EC, which could guide clinical management of EC and
benefit personalized immunotherapy. Following validation,
it indicated the ARID1A mutation may interact with Treg
and promote Type-I–IFN–Response pathway to facilitate
tumor immune response and better survival outcomes for
EC patients.

ARID1A (BAF250a), though connected with a superior
outcome of ICB treatment in several cancer types, has rarely
been reported for its prognostic and predictive ability in the
immunotherapy cohort of EC [16–18]. As a subunit of the
SWI/SNF chromatin-remodeling complex, it harbors an N-
terminal DNA binding ARID (∼110 residues) and a C-
terminal folded region (∼250 residues) [19], which are es-
sential to increasing chromatin accessibility, binding to the
promoter regions and facilitating transcription of multiple
genes [20]. Inconsistently, the majority of DEGs were found
to be downregulated in the ARID1A-mut group in our study

(46 vs 25), partly accounting for the tumor suppression effect
of ARID1A deficiency in a wide range of cancer types
[21–23]. ,ese results were in line with the advantageous
role of ARID1A mutation for patients’ survival outcomes in
the TCGA-UCEC in this study.

In fact, association between ARID1A mutation and fa-
vorable ICB treatment outcome in other cancer types is not
scarce. Shen J et al. have reported a greater proportion of ICB
responses in the ARID1A-deficient group than in the
ARID1A-wild group in ovarian cancer mouse models [24].
A similar result was also observed in two melanoma cohorts
[25–27] (42.86% responders versus 25.81% nonresponders
and 100% responders versus 51.43% nonresponders, re-
spectively). In addition, favorable survival outcomes in
ARID1A mutant patients when receiving ICB treatment
were also revealed in a pan-cancer study [16], but merely 10
EC samples with the ARID1A mutation were included, not
sufficient to demonstrate the survival difference.

Elsewhere, ARID1A mutation was seen to be involved in
Type-I–IFN–Response pathway and regulatory T cell to
interact with EC development, partly accounting for its
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Table 2: 22 key molecules identified by LASSO-Cox regression.

Molecules Annotation Coefficient
ACVR1 (Activin A Receptor Type 1) Mutation −0.31351085
ARID1A (AT-Rich Interaction Domain 1A) Mutation −0.230538257
ATM (Ataxia Telangiectasia Mutated) Mutation −0.095420173
BIRC6 (Baculoviral IAP Repeat Containing 6) Mutation −0.13931703
ERBB3 (Erb-B2 Receptor Tyrosine Kinase 3) Mutation −0.167684278
HOXA11 (Homeobox A11) Mutation 0.340669897
POLE (DNA Polymerase Epsilon) Mutation −0.18491545
POLQ (DNA Polymerase ,eta) Mutation −0.035077258
SPOP (Speckle Type BTB/POZ Protein) Mutation −0.094758819
GINS4 (SLD5,GINS Complex Subunit 4) CNV 0.058592508
GORAB (Golgin, RAB6 Interacting) CNV 0.074299734
GSTM1 (Glutathione S-Transferase Mu 1) CNV 0.172758754
KCNMB3 (Potassium Calcium-Activated Channel Subfamily M Regulatory Beta
Subunit 3) CNV −0.111711137

PTPN22 (Protein Tyrosine Phosphatase Non-Receptor Type 22) DEG −0.074886487
CDH18 (Cadherin 18) DEG 0.197447688
KCNK3 (Potassium Two Pore Domain Channel Subfamily K Member 3) DEG 0.047114247
PCSK1 (Proprotein Convertase Subtilisin/Kexin Type 1) DEG 0.114882922
KCNJ12 (Potassium Inwardly Rectifying Channel Subfamily J Member 12) DEG 0.131411471
NCMAP (Non-Compact Myelin Associated Protein) DEG −0.024703756
cg07792478 CpG of IR124-2 0.327359364
cg13703871 CpG of NF177 0.583394392
cg14398860 CpG of INPP5A 0.133967149
(CNV, copy number variance; DEG, differentially expressed genes)
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advantageous role in many kinds of cancer. ,e previous
study has already linked IFN I [28] and IFN II [29] pathway
to ICB therapy outcome in multiple cancers and there was
data also connecting the ARID1Amutation with IFN I and II
Response pathway activity [17]. Apart from IFN pathways,
in agreement with our findings, ARID1A mutation could
also result in a higher level of PD-1, MSI, and T cell in-
filtration [30–32] to promote cancer immunity and po-
tentiating favorable ICB treatment response.

Given the inherent fault of bioinformatics analysis-
lacking of convincing data from reality. ,e conclusion of
this study may be constrained. Furthermore, multicentric
clinical studies and experiments at the cell and animal levels
are warranted to validate the results under different cir-
cumstances. Following validation, it indicated that ARID1A
mutation may interact with Treg and promote Type-
I–IFN–Response pathway to facilitate tumor immune re-
sponse and better survival outcomes for EC patients.
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Figure 5: Effect of ARID1A mutation on MSI (microsatellite instability), 8 immune checkpoints and 26 immune cells in EC (endometrial
carcinoma). (a) ARID1A mutant group showed higher proportion of MSI-H than wild group in EC. (b) ARID1A mutant group displayed
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5. Conclusion

,e present study constructed a novel multiomics prog-
nostic signature for prognosis and immunotherapy response
of EC, which could guide clinical management of EC and
benefit from personalized immunotherapy.

Abbreviation

EC: Endometrial carcinoma
TCGA-
UCEC:

,e Cancer Genome Atlas-Uterine Corpus
Endometrial Carcinoma cohort

ICB: Immune checkpoint blockade
CNV: Copy number variation
MSI: Microsatellite instability
MSI: Microsatellite-instability
TIL: Tumor infiltrating lymphocyte
DEG: Differentially expressed genes
OS: Overall survival
PFS: Progression-Free survival.
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Breast cancer is the most common malignancy among women worldwide, and patients easily develop resistance to the first-line
drug doxorubicin. To elucidate the molecular mechanism of drug resistance in breast cancer is imperative. Exosomes mediate
the crosstalk between neighboring cells and intercellular communication. Incorporation of miRNAs into exosomes prevents the
degradation and facilitates the intercellular communication, which has been indicated in regulation of drug resistance. qRT-
PCR revealed that miR-3613-5p is upregulated in drug-resistant breast cancer, and miR-3613-5p exists in exosomes. It is
predicted that miR-3613-5p can bind to the tumor suppressor gene PTEN. In this study, our results showed that miR-3613-5p
was upregulated in drug-resistant tissue and in exosomes of breast cancer cells resistant to doxorubicin. CCK8, crystal violet
staining, and flow cytometry analysis demonstrated that exosome mediated miR-3613-5p transfer and enhanced the resistance
to doxorubicin of breast cancer cells. Western blotting showed that miR-3613-5p could target PTEN and regulate the
expression of PTEN. Exosome-mediated transfer of miR-3613-5p enhanced the resistance to doxorubicin by inhibition of
PTEN in breast cancer cells.

1. Introduction

Breast cancer is the most common malignancy in women
worldwide, and the incidence continues to rise [1]. Despite
substantial progress and improvements have been achieved
over past few decades, it is still a major cause of mortality
[1]. Metastasis remains a leading cause of mortality in breast
cancer patients, accounting for more than 90% of mortality
[1, 2]. Doxorubicin is the most extensively used first-line
drug for breast cancer treatment. However, the rapid devel-
opment of drug resistance has fundamentally weakened its
anticancer efficacy [3]. Therefore, it is imperative to explore
the potential molecular mechanisms of doxorubicin resis-
tance and find new therapeutic targets for breast cancer.

Emerging studies have demonstrated that exosomes
secreted by cells can alleviate drug resistance and improve

prognosis of malignancies [4–6]. Exosomes are nanoscale
membrane vesicles with a diameter of 30-150 nm, and they
participate in intercellular communication by transporting
of lipids and nucleic acids to recipient cells [7]. Cell-
secreted exosomes mediate the crosstalk between neighbor-
ing cells and transport to distal tissues, where signals and
messages were sent to specific recipient cells [7].

MicroRNAs (miRNAs) are small noncoding RNAs with
a length of about 22 nucleotides, which can posttranscrip-
tionally regulate gene expression [8, 9]. Dysregulated miR-
NAs have been implicated in many different
pathophysiological processes [10]. Multiple evidence indi-
cate that miRNAs are involved in the regulation of drug
resistance. miRNAs are protected by bilateral membrane
structures upon its incorporation into exosomes, thereby
reducing miRNA degradation and promoting intercellular
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communication [11]. Overexpressed miR-567 can be pack-
aged into exosomes and incorporated into recipient cells,
which then inhibits autophagy and reverses chemoresistance
by targeting ATG5 [12]. miR-155 is induced in exosomes
isolated from cancer stem cells and resistant breast cancer
cells, and exosome-mediated transfer of miR-155 into breast
cancer cells enhances resistance to chemotherapeutic
drugs [13].

Based on the GEO database, miR-3613-5p is found to be
upregulated in chemoresistant breast cancer, indicating that
miR-3613-5p may be involved in the drug resistance of
breast cancer. However, exosome-mediated miR-3613-5p

transfer in drug resistance of breast cancer has not been
studied yet. This present work demonstrated that exosome-
mediated transfer of miR-3613-5p enhanced the resistance
of breast cancer cells to doxorubicin by inhibition of PTEN.

2. Materials and Methods

2.1. Human Cell Lines and Reagents. MDA-MB-231 and
MCF-7 cells were purchased from ATCC and maintained
in rich DMEM. Fetal bovine serum was purchased from
Thermo Fisher Scientific. CCK8 kit (96992) was purchase
from Sigma-Aldrich.
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Figure 1: miR-3613-5p is upregulated in drug-resistant tissue and breast cancer cells. (a) The expression level of miR-3613-5p in GEO chip
(GSE73736) of drug-sensitive tissue and drug-resistant tissue. ∗p < 0:05, n = 10. (b) Cell viability of doxorubicin nonresistant and resistant
breast cancer cell lines (MCF-7 and MDA-MB-231, MCF-7/DOX, and MDA-MB-231/DOX, respectively) after different doses of
doxorubicin treatments was assessed with CCK8. (c) qRT-PCR was performed to assess the relative levels of miR-3613-5p in MCF-7,
MCF-7/DOX, MDA-MB-231, and MDA-MB-231/DOX. ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments.

2 Journal of Oncology



2.2. RNase A Treatment. The culture medium was supple-
mented with 10mg/ml RNase A and incubated at 37°C for
1 h to remove RNA contamination.

2.3. GEO Data Analysis. Gene Expression Omnibus (GEO)
series dataset (GSE73736) was downloaded from GEO. Dif-
ferential expression analysis in drug-resistant and sensitive
tissue of breast cancer was conducted. Estimation of the rel-
ative subsets of RNA transcript was performed.

2.4. Transmission Electron Microscopy (TEM). Exosomes
solution was dropped onto the formvar grid. Filter paper

was used to remove excess water. The exosomes were fixed
with 2% phosphotungstic acid for 10min and then rinsed
with deionized water. Then, exosomes were stained with
1% uranyl acetate for 15min. Philips EM208S TEM (Nether-
lands) at 100 kV was used to photograph the exosome’s
morphology.

2.5. Real-Time Quantitative PCR (qRT-PCR). TRIzol (Invi-
trogen) was used for total RNA extraction. The reaction
mixture was prepared according to the instruction of SYBR
Green (Takara, Japan). The reaction was initiated and
detected with ABI Prism 7500 RT PCR instrument. The
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Figure 2: The expression of miR-3613-5p is upregulated in exosomes of doxorubicin-resistant breast cancer cells. (a) qRT-PCR was
performed to assess the relative level of miR-3613-5p in MCF-7/DOX, MDA-MB-231/DOX, MCF-7, and MDA-MB-231 after the
treatments of RNase A and Triton X-100. ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments. (b) Exosomes were isolated,
and the structure was observed by TEM. (c) Western blotting was used to detect the protein expression of TSG101 and CD63 in
supernatant and exosomes of MCF-7/DOX and MDA-MB-231/DOX cells. (d) qRT-PCR was performed to assess the relative level of
miR-3613-5p in the exosomes of MCF-7, MCF-7/DOX, MDA-MB-231, and MDA-MB-231/DOX. ∗∗p < 0:01. Data are mean ± S:D: of 3
independent experiments.
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relative level of mRNA was quantified with the 2-△△Ct

method. The primers were as follows: U6-forward: 5′-
GCTTCGGCAGCACATATACTAAAAT-3′ and U6-
reverse: 5′-CGCTTCACGAATTTGCGTGTCAT-3′; miR-
3613-5p-forward: 5′-CTTGTTTTTTTTTTCATGTTGT-3′
and miR-3613-5p-reverse: 5′-AGTCTCAGGGTCCGAG
GTATTC-3′; PTEN-forward: 5′-TGGATTCGACTTAGAC
TTGACCT-3′ and PTEN-reverse: 5′-GGTGGGTTATG
GTCTTCAAAAGG-3′; and GAPDH-forward: 5′-GTCTCC
TCTGACTTCAACAGCG-3′ and GAPDH-reverse: ACCA
CCCTGTTGCTGTAGCCAA.

For generation of PTEN knockdown cell line, the
primers used to generate into pLKO.1-puro vector were as
follows: sh-NC-sense strand: 5′-ACTGCCCTGATGCTAG
CTAGCACCGGT-3′ and sh-NC-antisense strand: 5′-
GCUCGATCCTGCTAGATCUUCGCUAC-3′; sh-PTEN-
sense strand: 5′-GACAAAGCCAACCGATACTTT-3′; and
sh-PTEN-antisense strand: 5′-AAAGTATCGGTTGGCT
TTGTC-3′.

2.6. Exosome Isolation. Exosomes were isolated and purified
with an ExoQuick precipitation kit (System Biosciences,
LLC, Palo Alto, CA). Briefly, cell culture medium was col-
lected and centrifuged at 3000× g for 15min. Supernatant
was collected and mixed with ExoQuick precipitation solu-
tion. The mixture was incubated at 4°C for 30min and cen-

trifuged at 1500× g for 30min. The supernatant was
carefully removed and resuspended in 100μl PBS.

2.7. Flow Cytometry. Cells were collected and washed with
prechilled PBS. Cells were incubated with Annexin V-PE/
7-AAD and propidium iodide (PI) for 10min at room tem-
perature in accordance with the manufacturer’s instruction.
Cell apoptosis was detected with a flow cytometer.

2.8. Soft Agar Colony Formation Assay. The base layer was
prepared with 5ml rich medium supplemented with 0.75%
agar. The top layer was prepared with 3ml rich medium
supplemented with 0.36% agar at a concentration of 3 ×
104 cells/ml, incubated at 37°C for 3 weeks, and stained with
0.04% crystal violet in PBS and photographed with a
scanner.

2.9. Dual-Luciferase Activity Assay. Cells were harvested and
washed with PBS by centrifugation at 600× g for 5min. Cells
were resuspended in reporter lysis buffer and kept on ice for
20min. After a centrifugation at maximum speed for 10min,
the supernatant was collected. 20μL supernatant and 100μL
luciferase assay reagent were mixed together. A luminometer
was used to detect the fluorescence.

2.10. Cell Transfection. NC mimic, miR-3613-5p-mimic, and
miR-3613-5p inhibitor were synthesized by GenePharma.
Cells were transfected with a polyethylenimine- (PEI-)
mediated method. Briefly, DNA was mixed with PEI at a
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Figure 3: Exosome-mediated miR-3613-5p transfer enhances the resistance of breast cancer cells to doxorubicin. (a) qRT-PCR was used to
assess the relative level of miR-3613-5p in MCF-7 and MDA-MB-231 cells after incubation with exosomes isolated from doxorubicin-
resistant cells (EXO) and with the treatments of NC inhibitor (NC inhibitor-EXO) or miR-3613-5p inhibitor (miR-3613-5p inhibitor-
EXO). ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments. (b) CCK8 was used to assess cell viability of MCF-7 and MDA-
MB-231 cells after the treatments of PBS, EXO, NC inhibitor-EXO, or miR-3613-5p inhibitor-EXO. (Upper and middle) Curve of cell
viability after indicated treatments in MCF-7 and MDA-MB-231 cells. (Lower) Half maximal inhibitory concentration (IC50) values of
doxorubicin (DOX) in MCF-7 and MDA-MB-231 cells. ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments. (c) Crystal
violet staining to detect colony formation of MCF-7 and MDA-MB-231 cells after the cells treated with 20μM DOX combined with
treatments of PBS, EXO, NC inhibitor-EXO, or miR-3613-5p inhibitor-EXO. (d) Colony forming area (%) detected by crystal violet
staining in (c). ∗p < 0:05, ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments. (e, f) Flow cytometry was used to detect the
cell apoptosis rate of MCF-7 and MDA-MB-231 cells after the cells treated with 20μM DOX combined with treatment of PBS, EXO, NC
inhibitor-EXO, or miR-3613-5p inhibitor-EXO. ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments.
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Figure 4: miR-3613-5p targets PTEN. (a) qRT-PCR was used to assess the relative level of PTEN in MCF-7, MCF-7/DOX, MDA-MB-231,
and MDA-MB-231/DOX cells. ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments. (b) Western blotting was used to detect the
protein expression of PTEN in MCF-7, MCF-7/DOX, MDA-MB-231, and MDA-MB-231/DOX cells. ∗∗p < 0:01. Data are mean± S.D. of 3
independent experiments. (c) Website TargetScan predicted the binding site of PTEN to miR-3613-5p. (d) Dual luciferase reporter assay was
performed to detect the luciferase activity in wild-type (WT) and mutant (MUT) of MCF-7/DOX and MDA-MB-231/DOX cells after
transfection with NC mimics and miR-3613-5p mimics. ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments. (e) qRT-PCR
was used to assess the relative levels of miR-3613-5p and PTEN in MCF-7/DOX and MDA-MB-231/DOX cells. ∗∗p < 0:01. Data are
mean ± S:D: of 3 independent experiments. (f) Western blotting was used to detect the protein expression of PTEN in MCF-7/DOX and
MDA-MB-231/DOX cells after the treatments of NC inhibitor and miR-3613-5p inhibitor. ∗∗p < 0:01. Data are mean ± S:D: of 3
independent experiments.

6 Journal of Oncology



ratio of 1 : 3 and diluted with free DMEM medium, followed
by incubation at room temperature for 15min. The mixture
was added to the cell culture rich medium.

2.11. Western Blotting. Cells were harvested and washed with
PBS for three times by centrifugation at 600× g for 5min.
Cells were lysed in RIPA lysis buffer supplemented with pro-
tease and phosphatase inhibitors. Proteins were subjected to
SDS-PAGE electrophoresis and transferred to PVDF mem-
branes. The membranes were blocked with 5% (w/v) dry
milk and then incubated with corresponding primary anti-
bodies at 4°C overnight. The membranes were washed with
1× TBST for three times and then incubated with an HRP
conjugated secondary antibody at room temperature for
1 h. After the membranes were washed with 1× TBST for
three times, an enhanced chemiluminescence was used to
visualize the blots. The primary antibodies were supplied
by Abcam (Cambridge, UK). The information of antibodies
was as follows: TSG101 (ab30871), CD63 (ab134045), PTEN
(ab32199), and GAPDH (ab8245). All the antibodies were
diluted in TBST at 1 : 1000.

2.12. Statistical Analysis. Data shown are as mean ± SD. Sta-
tistical significance was evaluated by GraphPad Prism soft-
ware. Student’s t-test or two-way ANOVA was used for
statistical analysis. p < 0:05 was considered as statistically
significant.

3. Results

3.1. miR-3613-5p Is Upregulated in Drug-Resistant Tissue
and Breast Cancer Cells. In drug-resistant tissue, the expres-
sion of miR-3613-5p was upregulated compared with drug-
sensitive tissue (Figure 1(a)). Exosome-mediated transfer of
long noncoding RNA H19 was used to generate resistant
breast cancer cells to doxorubicin [14, 15]. Breast cancer
cells became significantly resistant to the cytotoxicity of
doxorubicin (Figure 1(b)). In breast cancer cells resistant to
doxorubicin, the expression of miR-3613-5p was signifi-
cantly increased (Figure 1(c)). These data demonstrated
miR-3613-5p was upregulated in drug-resistant tissue and
in breast cancer cells resistant to doxorubicin.

3.2. Expression of miR-3613-5p Is Upregulated in Exosomes of
Doxorubicin-Resistant Breast Cancer Cells. The addition of
RNase A to the culture medium had no effect on the miR-
3613-5p level, but the combined addition of Triton X-100
led to dramatical decrease in miR-3613-5p level
(Figure 2(a)). This observation indicated that miR-3613-5p
was surrounded by membranes but not directly released into
the medium. Exosomes were isolated, the structure was
observed by TEM, and the images showed that the particles
were typical goblet-shaped vesicles with a double-membrane
structure, approximately 100nm in diameter (Figure 2(b)).
Immunoblotting analysis of exosome markers TSG101 and
CD63 confirmed the presence of exosome (Figure 2(c)). In
the exosomes from doxorubicin-resistant breast cancer cells,
the relative level of miR-3613-5p was significantly enhanced
(Figure 2(d)). These observations demonstrated that miR-

3613-5p level was upregulated in exosomes from
doxorubicin-resistant breast cancer cells.

3.3. Exosome-Mediated miR-3613-5p Transfer Enhances the
Resistance of Breast Cancer Cells to Doxorubicin. Incubation
with exosomes from doxorubicin-resistant breast cancer
cells promoted the relative level of miR-3613-5p, and miR-
3613-5p inhibitor led to a significantly decrease in miR-
3613-5p level in exosomes from breast cancer cells
(Figure 3(a)). Cell viability (Figure 3(b)), colony formation
(Figures 3(c) and 3(d)), and flow cytometry (Figures 3(e)
and 3(f)) analysis revealed that incubation with exosomes
from doxorubicin-resistant breast cancer cells increased the
cell resistance to doxorubicin, and miR-3613-5p inhibitor
treatment sensitized cell death to doxorubicin
(Figures 3(b)–3(f)). These results indicated that exosome
mediated miR-3613-5p transfer and enhanced doxorubicin
resistance in breast cancer cells.

3.4. miR-3613-5p Targets PTEN. The molecular mechanism
through which miR-3613-5p enhanced the resistance of
breast cancer cells to doxorubicin was further explored.
The relative mRNA and protein levels of PTEN were dra-
matically declined in doxorubicin-resistant breast cancer
cells (Figures 4(a) and 4(b)). The website TargetScan pre-
dicted that miR-3613-5p could bind to PTEN (Figure 4(c)).
The overexpression of miR-3613-5p induced the suppres-
sion of luciferase activity in wild-type, which was abolished
in PTEN mutant, indicating that miR-3613-5p could inter-
act with PTEN (Figure 4(d)). In MDA-MB-231 cells resis-
tant to doxorubicin, the relative level of miR-3613-5p was
much lower, while the relative level of PTEN was much
higher than that in doxorubicin-resistant MCF-7 cells
(Figure 4(e)). miR-3613-5p inhibitor strikingly enhanced
the expression level of PTEN in doxorubicin-resistant breast
cancer cells (Figure 4(f)). These data suggested that miR-
3613-5p could target PTEN and regulate the expression of
PTEN, which was involved in doxorubicin resistance of
breast cancer cells.

3.5. Exosome-Mediated Transfer of miR-3613-5p Enhances
the Resistance of Breast Cancer Cells to Doxorubicin by
Targeting PTEN. Incubation with exosomes from
doxorubicin-resistant breast cancer cells or knockdown of
PTEN led to the significant decrease in the PTEN expres-
sion, which was rescued by the treatment of miR-3613-5p
inhibitor (Figures 5(a) and 5(b)). Incubation with exosomes
from doxorubicin-resistant breast cancer cells or knockdown
of PTEN enhanced the resistance to doxorubicin, which was
prevented by the treatment of miR-3613-5p inhibitor
(Figures 5(c)–5(e)). These data indicated that exosome-
mediated transfer of miR-3613-5p enhanced the resistance
of breast cancer cells to doxorubicin by inhibition of PTEN.

4. Discussion

Breast cancer is one of the most common malignancies with
increasing incidence in women worldwide [1]. Doxorubicin
is a well-accepted compound for breast cancer therapy, but
patients easily develop doxorubicin resistance [3]. Therefore,
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it is urgent to further explore the molecular mechanisms of
drug resistance and novel therapeutic strategy for breast
cancer.

Exosomes participate in intercellular communication
and mediate crosstalk between neighboring cells [7]. miR-
NAs are involved in many diseases and have been shown
in the regulation of drug resistance [10, 11]. miRNAs are
protected by bilateral membrane structures after incorpora-
tion into exosomes, which prevents the degradation of miR-
NAs and facilitates the intercellular communication [11].
miR-3613-5p is abnormally expressed and carcinogenic in
a variety of tumors, including pancreatic cancer [16] and
non-small-cell lung cancer [17]. miR-3613-5p can be present
in exosomes [18]. However, whether exosome-mediated
miR-3613-5p transfer can regulate the drug resistance and
the molecular mechanism remains to be investigated.

According to GEO database analysis, miR-3613-5p is
upregulated in drug-resistant breast cancer. It is predicted
that miR-3613-5p can bind to PTEN, which is a well-
known tumor suppressor gene that participates in tumor cell
proliferation, cell apoptosis, invasion, migration, drug resis-
tance, and many signaling pathways [19, 20]. It has been
shown that inhibition of PTEN promotes cell proliferation
of doxorubicin-resistant breast cancer cells and inhibits apo-
ptosis, thus promoting drug resistance of breast cancer [21].

In this study, exosome-mediated transfer of long non-
coding RNA H19 was used to generate doxorubicin-
resistant breast cancer cells, and the expression of miR-
3613-5p was significantly increased in these cells. It has been
validated that miRNAs including miR-3613-5p was
expressed in exosomes [18, 22], but the expression levels of
miRNAs were significant differential [22]. In the exosomes
from doxorubicin-resistant breast cancer cells, the relative
level of miR-3613-5p was significantly enhanced. Incubation
with exosomes from doxorubicin-resistant breast cancer
cells promoted the relative level of miR-3613-5p and
increased the resistance of breast cancer cells to doxorubicin.
These results indicated that exosome mediated miR-3613-5p
transfer and enhanced the resistance of breast cancer cells to
doxorubicin. The molecular mechanism through which
miR-3613-5p promoted drug resistance was then investi-
gated. PTEN was known to be a key regulator of doxorubicin
resistance in breast cancer [23]. miR-3613-5p could target
PTEN and regulate the expression of PTEN, which was
involved in doxorubicin resistance of breast cancer cells.
Incubation with exosomes from doxorubicin-resistant breast
cancer cells or knockdown of PTEN enhanced the resistance
of breast cancer cells to doxorubicin, which was prevented
by the treatment of miR-3613-5p inhibitor. These observa-
tions suggested that exosome-mediated transfer of miR-

PI

FITC

PBS EXO
miR-3613-5p 
nhibitor-EXO

(miR-3613-5p inhibitor
+ sh PTEN)-EXO

105 Q1
0.23

Q2

Q3

7.43

14.8

Q1
0.081

Q2

Q3

2.12

5.18

Q1
0.12

Q2

Q3

6.94

13.9

Q1
0.10

Q2

Q3

2.19

5.23

Q1
0.74

Q2

Q3

4.02

6.36

Q1
0.040

Q2

Q3

3.61

25.0

Q1
0.70

Q2

Q3

4.60

6.19

Q1
0.22

Q2

Q3

5.43

19.0

104

103

102

101

100

100 101 102 103 104 105

105

104

103

102

101

100

100 101 102 103 104 105

105

104

103

102

101

100

100 101 102 103 104 105

105

104

103

102

101

100

100 101 102 103 104 105

105

104

103

102

101

100

100 101 102 103 104 105

105

104

103

102

101

100

100 101102 103104 105

105

104

103

102

101

100

100 101 102 103 104 105

105

104

103

102

101

100

100 101 102 103 104105

+D
O

X 
20
𝜇

M

M
D

A-
M

B-
23

1
M

CF
-7

Ap
op

to
so

s r
at

e (
%

) 40

30

20

10

0

PBS

(miR-3613-5p
inhibitor + shP tTEN)-EXO

miR-3613-5p inhibitor-EXO
EXO

MCF-7 MDA-MB-231
+DOX 20𝜇M

⁎⁎
⁎⁎ ⁎⁎

⁎⁎
⁎⁎ ⁎⁎

(e)

Figure 5: Exosome-mediated transfer of miR-3613-5p enhances the resistance of breast cancer cells to doxorubicin by targeting PTEN. (a)
qRT-PCR was used to assess the relative level of PTEN in MCF-7 and MDA-MB-231 cells after incubation with PBS or exosomes isolated
from doxorubicin resistant cells (EXO) and with the treatment of miR-3613-5p inhibitor (miR-3613-5p inhibitor-EXO) and knockdown of
PTEN ((miR-3613-5p inhibitor+shPTEN)-EXO). ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments. (b) Western blotting was
used to detect the protein expression of PTEN in MCF-7 and MDA-MB-231 cells after treatments of PBS or EXO or miR-3613-5p inhibitor-
EXO or (miR-3613-5p inhibitor+shPTEN)-EXO. ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments. (c) CCK8 was used to
assess cell viability of MCF-7 and MDA-MB-231 cells after the cells treated with PBS or EXO or miR-3613-5p inhibitor-EXO or (miR-
3613-5p inhibitor+shPTEN)-EXO. (Left and middle) Curve of cell viability after indicated treatments in MCF-7 and MDA-MB-231 cells.
(Right) IC50 values of doxorubicin (DOX) after indicated treatments in MCF-7 and MDA-MB-231 cells. ∗p < 0:05, ∗∗p < 0:01. Data are
mean ± S:D: of 3 independent experiments. (d) Crystal violet staining to detect colony formation of MCF-7 and MDA-MB-231 cells after
the cells treated with 20 μM doxorubicin (DOX) combined with treatments of PBS or EXO or miR-3613-5p inhibitor-EXO or (miR-
3613-5p inhibitor+shPTEN)-EXO. ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments. (e) Flow cytometry was used to
detect the cell apoptosis rate of MCF-7 and MDA-MB-231 cells after the cells treated with PBS or EXO or miR-3613-5p inhibitor-EXO
or (miR-3613-5p inhibitor+shPTEN)-EXO. ∗∗p < 0:01. Data are mean ± S:D: of 3 independent experiments.
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3613-5p enhanced the resistance of breast cancer cells to
doxorubicin by inhibition of PTEN. This finding will pro-
vide a therapeutic target and strategy for breast cancer
treatment.
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Background. Patients with melanoma have poor response and low long-term survival to conventional cisplatin (CP). Recently,
biomimetic nanoparticles have played a significant role in tumor therapy. The purpose of this study was to mechanistically
evaluate the effect of red blood cell membrane camouflaged gold nanoparticles loaded with CP (RBCm@AuNPs-CP) on
enhancing chemotherapy in melanoma. Methods. Treated B16-F10 cells with RBCm@AuNPs-CP, the antimelanoma effect
in vitro was explored by detecting cell viability, apoptosis rate, level of reactive oxygen species (ROS), and singlet oxygen.
RBCm@AuNPs-CP was injected into the melanoma-bearing mice via tail vein, and the target-ability, therapeutic effect, and
toxicity were detected in melanoma tumor-bearing mice. Results. RBCm@AuNPs-CP had an antiproliferation and apoptosis-
inducing effect on B16-F10 cells, which might be mediated by oxidative stress of ROS, and its effect was significantly enhanced
compared with the CP treatment group. In vivo experiments suggested the same outcome, with better target-ability of
RBCm@AuNPs-CP. Conclusion. The erythrocyte camouflage nanosystem RBCm@AuNPs-CP exhibited well passive tumor
target-ability and promoted apoptosis of melanocytes by inducing ROS. RBCm@AuNPs-CP as a novel safe and effective
targeted drug delivery system may provide a promising choice for the treatment of melanoma.

1. Introduction

Melanoma is a type of skin cancer caused by melanocytes.
The pigment-producing cells are found in tissues such as
epidermis, hair follicles, and iris. Melanomas most com-
monly occur in sun-exposed areas of the skin (such as the
chest, neck, and legs), and these can also be found in the
eyes and areas of the body that are not exposed to the sun-
shine. In most countries, the incidence of melanoma has
been increasing over the past few decades [1]. Melanoma
accounts for only about 1% of skin cancer, far less than
other types of skin cancer [2]. Despite rarity, it is the major
cause of skin cancer-related death [3]. The poor prognosis
of melanoma is mainly due to the high metastatic capacity
of melanoma cells [4].

Cisplatin (CP) is a kind of common chemotherapeutic
medication for melanoma. It is used to postoperative adju-

vant chemotherapy to reduce metastasis of lymph node
and improve the survival rate of patients [5]. However, due
to the resistance of patients to CP, conventional therapy
has a disappointing effect [6]. Besides, CP also has systemic
toxicity, including central nervous system damage and neph-
rotoxicity [7]. All of these factors limit its application in the
treatment of melanoma.

Nanoparticles are a type of particles with size between 10
and 100 nm, which make themselves easy to penetrate and
retain into the tumor microenvironment (TME) for coming
into force. With small volume, high specific surface area, and
low toxicity [8, 9], nanoparticles are ideal drug delivery plat-
forms for tumor therapy. Gold nanoparticles (AuNPs) are
recognized as safe and effective nanodrug delivery systems,
but they are easily cleared by the mononuclear macrophage
system in vivo, which might exist low bioavailability or
potential hazards [10, 11].
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Erythrocyte membrane is a kind of biomimetic mem-
brane that is easy to obtain with excellent biocompatibility.
In our study, AuNPs were encapsulated by erythrocyte
membrane, with CP efficiently loaded, to construct a nano-
drug loading system RBCm@AuNPs-CP. RBCm@AuNPs-
CP passively targeted melanoma through permeability and
retention (EPR) effect and controlled release of CP. We eval-
uate the effect and mechanism in treatment of melanoma
(Figure 1).

2. Method

2.1. Synthesis of RBCm@AuNPs-CP. AuNPs were synthe-
sized according to the method described [9], combining
nanoparticles, 1-ethyl-3-(3-dimethylaminopropyl)-carbodii-
mide (EDC), and N-hydroxysuccinimide (NHS) with CP
by mixing in borate buffer (50mM pH8.8) for 1 hour. CP
was then added to the mixture to give a final concentration
of 1μM for Au, 50μM for CP, 5mM for EDC, and 10mM
for NHS. Conjugation was performed in the dark at 20°C
for 24 h, then filtered through a 2K MWCO membrane,
and washed 3 times with ddH2O.

Whole blood from heparin-anticoagulated mice (Balb/
c-nu, female) was taken, centrifuged at 2500 rpm, and
washed 3 times to obtain red blood cells. Add hypotonic solu-
tion (PBS : ddH20 = 1 : 1) and shake for 2 hours to break red
blood cells. After sonication (42 kHz, 100W) for 2min,
RBCm vesicles with a size of about 200nm were obtained.

Equal volume of RBCm vesicle suspension and AuNPs-
CP was dispersed and fused by sonication (5min, 42 kHz,
100W) and then squeezed back and forth through 200 nm
needle filter for 20 times. The surplus RBCm was centrifuged
(2500 rpm for 10min, 4°C), and the supernatant was dis-
carded, while the RBCm@AuNPs-CP was prepared.

2.2. Characterization of RBCm@AuNPs. The morphology
and size of RBCm@AuNPs and AuNPs were observed by
transmission electron microscope (TEM) to confirm
whether RBCm was encapsulated on the nanoparticles. The
size and surface charge of RBCm@AuNPs and AuNPs were
detected by Zetasizer Nano ZS (Malvern Nano series, Mal-
vern, UK). Polyacrylamide gel electrophoresis (SDS-PAGE)
was used to detect the proteins on RBCm@AuNPs, RBCm,
and AuNPs to verify whether RBCm@AuNPs completely
retained the whole surface proteins of RBCm.

2.3. CP Loading and Releasing of RBCm@AuNPs. 1mL of
RBCm@AuNPs-CP (CP 50μM) was placed in the dialysis
membrane, placed in 20mL of PBS with pH7.4 and
pH5.4, respectively, and dialyzed at 37°C for 1, 2, 3, 4, 6, 8,
12, 24, and 48 h; the dialysate was collected; and the concen-
tration of CP in the dialysate was detected to calculate the
cumulative release rate of RBCm@AuNPs-CP at different
pH. The concentration of CP was detected by microplate
reader EnSpire 2300 Multilabel Plate Reader (Waltham,
MA) at 300 nm and calculated by the standard curve. The
encapsulation efficiency (EE) and loading efficiency (LE) of
the calculated drug of RBCm@AuNPs-CP were calculated
by the following formulas.

EE = RL

Ri

� �
× 100%: ð1Þ

RL is the amount of rosmarinic acid entrapped in lipo-
somes, and Ri is the initial amount of rosmarinic acid added
to the liposomes.

The LE was calculated using the following equation:

LE = Rt

Lt

� �
× 100%: ð2Þ

Rt is the amount of rosmarinic acid entrapped in liposo-
mal formulation, and Lt is the amount of phospholipid and
cholesterol added to the liposomal formulation.

2.4. Antiphagocytic Ability of RBCm@AuNPs. The in vitro
immune evasion ability of RBCm@AuNPs was detected.
First, AuNPs and Rhodamine B (RhoB) were mixed and stir-
red overnight, washed 3 times with PBS, and then resus-
pended. RAW264.7 was plated in a 6-well plate, about
3 × 105 cells per well, and RBCm@AuNPs-RhoB was added.
After coincubating RAW 264.7 cells for 4 h, Hoechst 33342
was used to stain the nuclei, confocal microscopy (CLSM)
(LSM 800, Carl Zeiss, Oberkochen, Germany) was used to
observe the phagocytosis of RBCm@AuNPs-RhoB, and flow
cytometry (FCM) (FACSCantoTM II, BD, USA) was used to
calculate the fluorescence intensity.

2.5. Biocompatibility of RBCm@AuNPs. The hemolysis rate
of RBCm@AuNPs was detected to reflect their compatibil-
ity in blood. Different concentrations of RBCm@AuNPs
(3.125 to 100μg/ml) were mixed with 5% mouse erythro-
cyte suspension and incubated at 37°C for 2 h. Centrifuge
at 3500 rpm for 5min, took the supernatant to measure
its absorbance at 545nm with microplate reader, and
added ultrapure water and PBS as positive and negative
controls.

The hemolytic rate was calculated as follows:

Hemolytic rate = experimental sample A − negative control Að Þ
positive control A − negative control Að Þ × 100%:

ð3Þ

2.6. In Vitro Target-Ability of RBCm@AuNPs. To explore the
in vitro targeting ability of RBCm@AuNPs, the B16-F10
Cells uptake experiment was executed. B16-F10 cells were
plated in a 6-well plate, about 3 × 105 cells per well, and
AuNPs-RhoB and RBCm@AuNPs-RhoB were added. After
coincubating B16-F10 cells for 24h, confocal microscopy
(CLSM) (LSM 800, Carl Zeiss, Oberkochen, Germany) was
used to observe the fluorescence of RBCm@AuNPs-RhoB
in cells, and flow cytometry (FCM) (FACSCantoTM II,
BD, USA) was used to calculate the fluorescence intensity.

2.7. Evaluation of In Vitro Antimelanoma Effects of
RBCm@AuNPs. The cytotoxicity of RBCm@AuNPs-CP
on B16-F10 cells was detected by CCK-8, treated with
PBS, AuNPs, CP, AuNPs-CP, and RBCm@AuNPs-CP for
24 h, respectively. The concentration of CP in each group
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was 0.3μM, and the cell viability in each treatment group
was calculated.

In order to further prove the in vitro anti-tumor effect of
RBCm@AuNPs-CP, Annexin V-FITC/PI apoptosis detec-
tion kit was used to detect the apoptosis of B16-F10 cells
in each group after 24 h treatment. The cells were plated in
small culture flasks (1 × 106/flask), and the above treatments
were added, respectively. After 24 hours of digestion with
EDTA-free trypsin, the cell suspension was taken and centri-
fuged at 1000 g for 5min, the supernatant was discarded,
and 195μL Annexin was added. The cells were gently resus-
pended in V-FITC binding solution, 5μL Annexin V-FITC
staining solution was added, 10μL PI was added and mixed,
and the apoptosis of cells was analyzed by FCM.

2.8. ROS and Singlet Oxygen Levels Detected. B16-F10 cells
were seeded in 6-well plates, and the cells were collected 24
hours after adding each treatment group. After washing 3
times with PBS, adding DCFH-DA, incubating at 37°C for
20 minutes, and washing three times, the level of ROS was
detected by FCM.

The singlet oxygen detection kit was used in above
treated cells, and the expression level of singlet oxygen was
observed under the CLSM.

2.9. Construction of Melanoma-Bearing Mice. 6-8-week-old
BALb/c-nu mice were adaptively fed for 1 week at an SPF
animal breeding center. The B16-F10 cells cultured in vitro
were digested, washed, and resuspended to obtain a cell sus-
pension. Cell suspensions were injected into the subcutane-
ous tissue of the legs of nude mice at an injection volume
of 1 × 106/cell. The tumor was observed, and the tumor size
was measured every other day. All animal procedures were
approved by the Animal Welfare and Research Ethics Com-
mittee of Xiangya Hospital.

2.10. In Vivo Target-Ability of RBCm@AuNPs. The AuNPs
and RBC@AuNPs were mixed with Cy-5 and stirred for
24h, and the unbound Cy-5 was removed using a 2KD dialysis
bag. On the 10th day, tumor-bearing Cy-5-labeled AuNPs and
RBC@AuNPs were injected into B16-F10 tumor-bearing mice
through the tail vein. Tumor-bearing mice were anesthetized
with isoflurane after 6h and 24h, respectively, and the distri-
bution of AuNPs and RBC@AuNPs in mice was detected on
Xenogen IVIS lumina XR imaging system (Caliper Life Sci-
ence, USA). After 48 hours, the tumor-bearing mice were
euthanized. The tumor, heart, liver, spleen, lung, and kidney
were removed, and the fluorescence intensity of AuNPs and
RBC@AuNPs in the tumor site of each tissue was detected
by the XR imaging system, respectively.

2.11. In Vivo Antimelanoma Ability of RBCm@AuNPs.
When the tumor volume was about 100mm3, it was
recorded as day 0 (D0), and they were randomly divided into
5 groups (n = 3 per group) by tail vein injection of PBS,
AuNPs, CP, AuNPs-CP, and RBCm@AuNPs-CP, in which
the dose of CP was 10μmol/kg/d, once a day for 3 consecu-
tive days. Tumor size and mouse body weight were recorded
every other day, and all animals were anesthetized and
euthanasia on day 14 (D14). Anticoagulated whole blood,
tumors, and major organs (heart, liver, spleen, lung, and kid-
ney) were collected. The major organs and tumors were
fixed with 4% paraformaldehyde, then paraffin-embedded
and then stained with H&E.

3. Results

3.1. Construction and Characterization of RBCm@AuNPs-
CP. As shown in Figures 2(a) and 2(b), AuNPs were spher-
ical nanoparticles with the size of 45:3 ± 12:34 nm and zeta
potential of −42:1 ± 6:3mV, which showed well dispersion
and uniformity. Red blood cell membrane vesicles (RBCm)
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Figure 1: Schematic illustration of RBCm@AuNPs-CP fabrication and application for tumor-targeted chemotherapy therapy in mice.
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were 156:1 ± 18:3 nm with zeta potential of −27:3 ± 2:0mV.
The size of the erythrocyte membrane-coated gold nanopar-
ticles (RBCm@AuNPs) synthesized was 181:4 ± 16:1 nm,
while zeta potential was −29:1 ± 2:6mV. The increase in size
and potential indicated that the erythrocyte membrane was
successfully encapsulated. The same results could also be
observed in the TEM image, where multiple AuNPs were
encapsulated in the RBCm.

From the SDS-PAGE test (Figure 2(c)), it could be found
that RBCm@AuNPs and RBCm had the same protein bands,
indicating that the synthesized RBCm@AuNPs retain the
integrated protein on RBCm, which provided the possibility
of good biocompatibility.

3.2. Drug Loading and Release of RBCm@AuNPs. As shown
in Figure 3(a), the EE of RBCm@AuNPs loaded with CP was
88:2 ± 4:6%, and LE was 158:3 ± 21:4%, indicating a high
loading efficiency. Figure 3(b) showed the drug release curves
of the nanoplatforms at different time points. After AuNPs-
CP was incubated in the buffer at pH7.4 and pH5.4 for 48h,
the release rates of CP were 17:6 ± 2:1% and 79:8 ± 5:4%,
respectively; the release rates of RBCm@AuNPs-CP in the
pH7.4 and pH5.4 buffers at 48h were 18:2 ± 1:9% and 77:3

± 10:0%, respectively. The AuNPs-CP after erythrocyte mem-
brane camouflaged (RBC@AuNPs-CP group) was no signifi-
cant different from AuNPs-CP on the release of CP.
RBCm@AuNPs-CP released a little drug in the normal phys-
iological status (pH7.4), while released mounts of CP in the
acidic microenvironment as melanoma (pH5.4), which was
significantly increased. The RBCm@AuNPs-CP constructed
in this study could efficiently transport CP to melanoma and
achieve the goals of controlled release.

3.3. Antiphagocytosis of RBCm@AuNPs-CP. After being coin-
cubated RhoB-labeled RBCm@AuNPs with macrophages for
4h, it was suggested by CLSM and FSM analysis that the red
fluorescence was strong in macrophages in the AuNPs group,
with an average fluorescence intensity of 3075:9 ± 256:3.
While the same concentration of RBCm@AuNPs was incu-
bated for the same time, the fluorescence in macrophages
was decreased significantly, with a mean fluorescence intensity
of 247:7 ± 62:4 (Figures 4(a) and 4(b)). The nanoplatform
RBCm@AuNPs camouflaged by the red blood cell membrane
could significantly reduce the recognition and clearance of
nanoparticles by the monocyte-macrophage system and
improve bioavailability.
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Figure 2: A characterization of the RBCm@AuNPs. (a) The TEM micrographs of nanovehicles. Scale bar: 50 nm. (b) The particle size and
zeta potential of AuNPs after coating with RBCm. (c) SDS-PAGE protein analysis.
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3.4. Biocompatibility of Nanoplatforms. As shown in
Figures 5(a) and 5(b), there was no distinct hemolysis (the
hemolysis rate was less than 1%) after coincubated erythro-
cytes with AuNPs or for 2 h, furthermore, the hemolysis rate
of RBCm@AuNPs was lower than that of unmodified
AuNPs. It was proved that the RBCm@AuNPs nanoplat-
form was well compatible in circulation and, therefore, was
safe for intravenous administration into the blood.

3.5. In Vitro Antitumor Therapy of RBCm@AuNPs-CP. In
vitro antitumor effect of RBCm@AuNPs-CP was detected by
CCK-8 assay. As shown in Figure 6(a), the viability rates of
B16-F10 cells treated with PBS, AuNPs, CP, AuNPs-CP, and
RBCm@AuNPs-CP for 24h were 100:1 ± 3:9%, 95:2 ± 11:6
%, 72:6 ± 18:3%, 35:4 ± 13:4%, and 30:2 ± 17:0%, respec-
tively. Among them, the inhibition rate of melanoma cells by
the traditional chemotherapeutic CP was only 17.4%, but the
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Figure 3: Drug loading and release of RBCm@AuNPs-CP. (a) EE and LE of RBCm@AuNPs-CP with CP. (b) The release of CP from
AuNPs-CP and RBCm@AuNPs-CP at different pH (5.4 and 7.4). Data are mean ± SD (n = 3). ∗P < 0:05. EE: encapsulation efficiency; LE:
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Figure 4: The biocompatibility of RBCm@AuNPs. (a) CLSM micrographs of macrophages after cultured with AuNPs-CP and
RBCm@AuNPs for 4 h. The scale bar: 50 μm. (b) Fluorescence intensities of collected cells after treatment with AuNPs and
RBCm@AuNPs, as quantified by FCM. ∗∗P < 0:01.
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constructed nanocomposite system RBCm@AuNPs-CP could
inhibit 70.8% growth of the melanoma cells.

The results of the apoptosis analysis were also consistent
with those of FCM. As shown in Figure 6(b), after
RBCm@AuNPs-CP treated for 24 h, the early and late apo-
ptosis rates of B16-F10 cells were 51.2% and 29.3%, respec-
tively. This was significantly higher than 35.9% and 39.1%
for AuNPs-CP, 26.4% and 20.7% for CP, and 7.6% and
4.8% for AuNPs. This showed that the biomimetic nanocar-
rier constructed in this study had a more prominent antitu-

mor effect than the traditional CP and could induce
apoptosis in a large number of melanoma cells.

3.6. RBCm@AuNPs-CP Induced ROS. In order to further
explore the mechanism of RBCm@AuNPs-CP induced
death in melanoma cells, the level of ROS in B16-F10 cells
after differently treated was detected by FCM. As shown in
Figure 7(a), it was found that RBCm@AuNPs-CP could
increase the expression of ROS in cells (the positive rate
was 85.5%), which was much higher than that treated by
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Figure 5: Imaging (a) and hemolysis rate (b) of RBCs at various concentrations of AuNPs and RBCm@AuNPs at 37°C after 2 h. Different
concentrations of RBCm@AuNPs and AuNPs (3.125 to 100 μg/mL) were mixed with 5% mouse erythrocyte suspension. Data are
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Figure 6: In vitro antitumor efficiency of RBCm@AuNPs-CP. (a) Cell viability and (b) analysis of apoptosis rate by FCM of B16-F10 cells
treated with PBS, AuNPs, CP, AuNPs-CP, and RBCm@AuNPs-CP for 24 h. Data are mean ± SD (n = 3). ∗P < 0:05 and ∗∗P < 0:01 vs. PBS.
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CP alone (65.6%). As shown in Figure 7(b), RBCm@AuNPs-
CP induced an increase in the expression of singlet oxygen
with stronger green fluorescence in B16-F10 cells. These
suggested that RBCm@AuNPs-CP might induce melanoma
cells apoptosis through ROS oxidative stress damage.

3.7. Target-Ability of RBCm@AuNPs. To probe the target-
ability of RBCm@AuNPs in vitro, the cellular uptake exper-
iments of RBCm@AuNPs in B16-F10 were carried out. After
coincubated RhoB-labeled RBCm@AuNPs and AuNPs with
B16-F10 for 24 h, the red fluorescence was stronger in cells
treated with RBCm@AuNPs than which in AuNP9s groups,
with an average fluorescence intensity of 4873:1 ± 2973:2
and 538:7 ± 62:1, respectively (Figures 8(a) and 8(b)).

To further evaluate the tumor targeting ability of
RBCm@AuNPs camouflaged by erythrocyte membrane
in vivo, Cy5-labeled AuNPs-CP and RBCm@AuNPs were
injected into B16-F10 tumor-bearing mice via the tail vein.
At different time periods, the distribution of nanocomplexes
in mice was analyzed by in vivo imaging. As shown in
Figure 8(c), both AuNPs and RBCm@AuNPs were distributed
evenly throughout the body at 6h. However, due to the
immune evasion effect and the EPR effect of RBCm@AuNPs
after red blood cell camouflage, the fluorescence intensity of
RBCm@AuNPs was significantly higher than that of AuNPs
at 24h in tumor site.

After 24 hours, the major organs and tumors were taken
out for additional imaging analysis of their fluorescence
intensity, as shown in Figures 8(d) and 8(e). It was found
that AuNPs mainly accumulated in the liver, lung, spleen,
kidney, and tumor. In contrast, the fluorescence intensity
of RBCm@AuNPs at the tumor site was 5.1 times higher
than that of AuNPs (P < 0:01), and the accumulation of
RBCm@AuNPs in other organs was also reduced.

The erythrocyte membrane camouflage nanocarriers
RBCm@AuNPs had the ability to passively target tumors

in vivo. This provided the possibility of effectively transport
pharmaceuticals to tumor sites for antitumor effects.

3.8. In Vivo Antimelanoma Effects of RBCm@AuNPs-CP. To
evaluate the antitumor effect of RBCm@AuNPs-CP, the
tumor size of B16-F10 tumor-bearing mice treated with
PBS, AuNPs, CP, AuNPs-CP, and RBCm@AuNPs-CP
groups was dynamically observed and recorded. The tumor
tissue was sectioned and stained with H&E. As shown in
Figure 9(a), the tumor growth curves of the nanoparticle
AuNPs group were similar to those of the control group,
with tumor size 8.4 and 9.5 times lager after 14 days of treat-
ment than before the initial treatment. On the 14th day of
treatment with CP and AuNPs-CP alone, the tumor size
was 4.2 times and 1.6 times than that before initial treat-
ment, respectively, which inhibited the growth of tumors.
It suggested that the RBCm@AuNPs-CP nanocomposites
constructed significantly inhibited the growth of tumors,
furthermore, the tumors showed a decreasing trend, which
was 0.5 times than initial tumor size on the 14th day of treat-
ment (P < 0:01). The body weight of the mice did not differ
significantly between the groups, although it changed com-
pared to the control group (Figure 9(b)). After the mice were
sacrificed on D14, ex vivo representative tumor tissue was
taken a picture (Figure 9(c)), which showed the same result
that the tumor size of the RBCm@AuNPs-CP group was
smaller than that of the control group. This indicated that
the constructed AuNPs-CP nanoplatform exerts an excellent
antimelanoma effect, and that RBCm@AuNPs-CP, camou-
flaged by the erythrocyte membrane, could further enhance
antitumor effect as high pharmaceuticals concentration at
the tumor site by evading from mononuclear macrophage
system and EPR effect.

As shown in Figure 9(d), it could be found from the H&E
staining of ex vivo tumor tissues that after RBCm@AuNPs-CP
treatment, extensive and distinct cell damage, necrosis, and
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Figure 7: RBCm@AuNPs-CP induces oxidative stress damage. (a) ROS levels of B16-F10 cells after treatment with PBS, AuNPs, CP,
AuNPs-CP, and RBCm@AuNPs-CP for 24 h were detected by FCM. (b) Singlet oxygen in B16-F10 cells detected by singlet oxygen
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Figure 8: Targeting ability of RBCm@AuNPs. (a) The cellular uptake ability of Rho B-labeled AuNPs and Rho B-labeled RBCm@AuNPs in
B16-F10. (b) Fluorescence intensities of collected B16-F10 after treatment with AuNPs and RBCm@AuNPs, as quantified by FCM. (c) In
vivo fluorescence images of B16-F10 xenograft model at 6 h, 24 h after intravenous injection of cy5-labeled RBCm@AuNPs and AuNPs.
(d) Ex vivo bioluminescent images of the main organs and tumor at 24 h post injection. (e) Semiquantitative analysis of fluorescence
intensity from tumor and other tissues. Data are mean ± SD (n = 3). ∗∗P < 0:01, and ∗∗∗P < 0:001.
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even lysis occurred at the tumor site. Different degrees of cell
necrosis morphological characteristics appeared in tumor sites
of the CP or AuNPs-CP treatment groups, while the PBS and
AuNPs groups maintained the original morphological charac-
teristics of the tumor tissue.

3.9. Biosafety of RBCm@AuNPs-CP. Since the constructed
RBCm@AuNPs-CP nanocomposite is a heterologous sub-
stance, verifying its safety is crucial for its clinical applica-
tion. This study verified the safety of RBCm@AuNPs-CP
in terms of body weight and H&E staining of major tissues.
As shown in Figure 9(b), no significant changes in animal
body weight were found throughout the treatment period,
provided that RBCm@AuNPs-CP had less systemic toxicity.

According to the H&E staining of major organ in mela-
noma mice after treatment (Figure 10), there was no distinct
abnormality observed from micrographs in all treatment
groups. RBCm@AuNPs-CPs showed good biocompatibility
in vivo, which provided the possibility of further clinical
applications.

4. Discussion

One of the important factors that make traditional nanodrug
delivery systems difficult to apply in the clinic are heteroge-
neity, immunogenicity, and toxicity. Nanoparticles are easily
recognized and eliminated by the mononuclear macrophage
system and immune system in vivo; meanwhile, their parti-
cle size is too small to long-term retention in circulation as
it is metabolized by the liver and/or kidney [12]. In our
study, the red blood cell membrane camouflaged nanoparti-
cles RBCm@AuNPs-CP constructed in a simple and eco-
nomical way to reduce the clearance rate of the nanodrug
delivery system by the mononuclear macrophage system
and improve the therapeutic efficiency of the nanodrug.

CP is a commonly used chemotherapeutic pharmaceuti-
cals for the treatment of melanoma. It exerts excellent anti-
tumor effects by entering into cells to damage DNA and
induce apoptosis in oxidatively damaged cells [13, 14]. How-
ever, the accompanying side effects limit its clinical applica-
tion. Studies have found that in tumor sites, cisplatin seems
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Figure 9: In vivo antitumor effect of RBCm@AuNPs-CP. (a) Tumor growth patterns after various treatments for 14 days. Tumor volumes
were normalized to the baseline values. (b) The body weight changes of B16-F10 xenograft model during treatments were normalized to
baseline values. (c) Representative images of tumors after intravenous injection of different formulations at day 14. (d) The histological
observation of the tumor tissues after the treatment with different group stained with hematoxylin and eosin (H&E). Scale bar: 200 μm.
Data are mean ± SD (n = 3). ∗∗∗P < 0:001.
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to be more likely to accumulate in the following specific
sites, such as kidney, liver, neurons, and inner ear [15–17],
resulting in nephrotoxicity [18], hepatotoxicity [19], neuro-
toxicity [20], and ototoxicity [21]. The biomimetic nanopar-
ticles loaded with CP constructed in this study could target
tumor site specifically through the EPR effect of the nano-
particles at tumor site, which greatly reduces its aggregation
in the liver, kidney, and other sites. It provides the possibility
of reducing the toxicity of CP. Subsequent experiments
could also show that there was no distinct damage to vital
organs after RBCm@AuNPs-CP treatment.

At present, the engineered nanodrugs that have been
widely used in clinical antitumor therapy are mainly chemo-
therapeutic drugs in the form of liposomes, like cytarabine
liposome injection (Dypocyt) [22] and doxorubicin (Doxil)
[23]. Many of these drugs have been approved by the FDA
and are widely used in clinical practice. Liposomal drug
delivery represents a highly adaptable therapeutic platform,
which could reduce the toxicity of chemotherapy drugs;
however, it does not own tumor-targeting properties, result-
ing in low bioavailability [24]. Although new multifunc-
tional nanoscale antitumor drugs are emerging in an
endless stream, it is embarrassing to achieve clinical transla-
tion. The huge obstacle is their safety and immunogenicity.
The RBCm-wrapped gold nanoparticle biomimetic drug
delivery system constructed in this study completely retains
the surface proteins of the RBCm. These characteristic pro-
teins achieve its targeted and safe role, which provides the
possibility of its later clinical transformation.

In this study, RBCm@AuNPs-CP treatment of mela-
noma cells was found to promote the expression of singlet

oxygen, increase the level of ROS, and induce apoptosis in
B16-F10 cells. ROS could cause DNA damage through
lipid peroxidation, depletion of sulfhydryl groups, and
induction of signal transduction pathways, resulting in
apoptosis [6]. Mitochondria are one of the most important
targets of oxidative stress, and ROS might affect mitochon-
drial respiratory function and lead to cellular dysfunction
[25]. ROS cause mtDNA damage and lead to a decrease
in mitochondrial permeability transition [26], thereby pro-
moting mitochondrial rupture [27]. Mitochondrial rupture
releases cytochrome C and procaspase-9 [28]. Activated
caspase-9 then interacts with other caspases to activate
caspase-3, caspase-6 and caspase-7, thereby inducing apo-
ptosis [29].

5. Conclusion

The erythrocyte camouflage nanosystem RBCm@AuNPs-
CP possessed excellent monodispersity and high drug
loading rate. The red blood cell membrane wrapped on
its surface could effectively escape the immune system
with well EPR effect at the tumor site, so that it could
be retained at the tumor site and reduce its concentration
in the heart, liver, spleen, lung, kidney, and other tissues,
which was passive tumor target-ability. Meanwhile,
RBCm@AuNPs-CP promoted early apoptosis and necrosis
of melanocytes by inducing oxidative stress damage. This
makes RBCm@AuNPs-CP a potentially novel, safe, and
effective targeted drug delivery system for the treatment
of melanoma.
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Lung
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Figure 10: Histological observation of major organs collected from the B16-F10 tumor-bearing mice after the treatment. The major organ
sections were stained with hematoxylin and eosin (H&E). Scale bar: 50μm.
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Background. Gastric cancer (GC) is one of the gastrointestinal tumors with the highest mortality rate. The number of GC patients
is still high. As a way of iron-dependent programmed cell death, ferroptosis activates lipid peroxidation and accumulates large
reactive oxygen species. The role of ferroptosis in GC prognosis was underrepresented. The objective was to investigate the role
of ferroptosis-related genes (FRGs) in the prognosis and development of GC. Methods. Datasets of GC patients were obtained
from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database that include clinical information
and RNA seq data. Through nonnegative matrix factorization (NMF) clustering, we identified and unsupervised cluster
analysis of the expression matrix of FRGs. And we constructed the co-expression network between genes and clinical
characteristics by consensus weighted gene co-expression network analysis (WGCNA). The prognostic model was constructed
by univariate and multivariate regression analysis. The potential mechanisms of development and prognosis in GC were
explored by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology (GO), tumor immune
microenvironment (TIME), and tumor mutation burden (TMB). Results. Two molecular subclusters with different expression
patterns of FRGs were identified, which have significantly different survival states. Ferroptosis subcluster-related modular genes
were identified by WGCNA. Based on 8 ferroptosis subcluster-related modular genes (collagen triple helix repeat containing 1
(CTHRC1), podoplanin (PDPN), procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2), glutamine-fructose-6-phosphate
transaminase 2 (GFPT2), ATP-binding cassette subfamily A member 1 (ABCA1), G protein-coupled receptor 176 (GPR176),
serpin family E member 1 (SERPINE1), dual specificity phosphatase 1 (DUSP1)) and clinicopathological features, a nomogram
was constructed and validated for their predictive efficiency on GC prognosis. Through receiver operating characteristic (ROC)
analysis, the results showed that the area under the curve (AUC) of 1-, 3-, and 5-year survival were 0.721, 0.747, and 0.803,
respectively, indicating that the risk-scoring model we constructed had good prognosis efficacy in GC. The degree of
immune infiltration in high-risk group was largely higher than low-risk group. It indicated that the immune cells have a
good response in high-risk group of GC. The TMB of high-risk group was higher, which could generate more mutations and
was more conducive to the body’s resistance to the development of cancer. Conclusion. The risk-scoring model based on 8
ferroptosis subcluster-related modular genes has shown outstanding advantages in predicting patient prognosis. The
interaction of ferroptosis in GC development may provide new insights into exploring molecular mechanisms and targeted
therapies for GC patients.
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1. Introduction

GC is one of the gastrointestinal tumors with the highest
mortality rate [1]. The number of GC patients is still high.
By 2022, about 26,380, new cases are expected with a mor-
tality rate of 42% [2]. Although the current predominant
treatment for GC takes the standard surgical strategy com-
bined limited lymph node dissection strategy [3], there are
still patients with heterogeneous prognosis, such as distant
metastases, significant drug resistance, and toxic effects [4].
Meanwhile, early GC commonly lacked dysphagia, weight
loss, and typical gastrointestinal symptoms. So most peo-
ple are diagnosed with advanced GC. The survival for
advanced GC is always low [5]. Therefore, identifying
high-tech diagnostic and prognostic biomarkers is crucial
for the management of GC. Relevant advances in the field
of tumor mutational burden and gene mutation might be
immediately applicable to guide immunotherapeutic effect
of GC [6, 7].

Programmed cell death (PCD) includes cell apoptosis,
necroptosis, autophagy, pyroptosis, cuproptosis, and ferrop-
tosis. They have different morphologies and biochemical
characteristics. For example, apoptosis is usually associated
with cell contraction, while necrotizing apoptosis involves
cell swelling and leakage of cell contents [8]. Necroptosis is
a form of regulated cell death that critically depends on
receptor-interacting serine-threonine kinase 3 (RIPK3) and
mixed lineage kinase domain-like (MLKL) and generally
manifests with morphological features of necrosis [9].
Autophagy is a process by which cellular material is
degraded by lysosomes or vacuoles and recycled [10].
Cuproptosis is a new type of cell death and is characterized
by the dependence on mitochondrial respiration and protein
lipoylation [11]. As a way of iron-dependent programmed
cell death, ferroptosis activates lipid peroxidation and accu-
mulates large reactive oxygen species [12]. The main mech-
anism of ferroptosis is to catalyze the production of lipid
peroxidation of highly expressed unsaturated fatty acids on
cell membranes under the action of divalent ferroxygenase
or ester oxygenase, thereby inducing cell death. In addition,
it also showed a decrease of GPX4, the core enzyme regulat-
ing the antioxidant system (glutathione system) [13]. The
main characteristics of ferroptosis were as follows: (1) In
terms of cell morphology, ferroptosis could lead to smaller
mitochondria, increase membrane density, and reduce crest.
There was no obvious morphological change in the nucleus.
(2) In terms of cell components, iron death showed
increased lipid peroxidation and ROS. This process is pres-
ent in tumor development and therapeutic response, includ-
ing genetic mutations, stress response pathways, and
epithelial-to-mesenchymal transition [14]. Ferroptosis was
closely associated with antitumor, drug resistance and
metastasis. Ni et al. have illustrated miR-375/SLC7A11 reg-
ulatory axes triggering gastric cancer stem cell iron sagging,
attenuated metastasis, and drug resistance [15]. Other stud-
ies have shown that poor prognosis in patients with GC was
largely associated with cancer cell antiferroptosis, and its
underlying mechanisms may involve alterations in cancer
stem cells and regulation of cell cycle-related proteins [16].

In addition, inducing ferroptosis was one of the main mech-
anisms mediating antitumor activity. Liu et al. found that
Jiyuan oridonin A (JDA) was a natural compound isolated
from Jiyuan Rabdosia rubescens with antitumor activity,
which could inhibit the growth of GC cells by inducing fer-
roptosis [17]. However, the role of ferroptosis in GC progno-
sis was underrepresented, especially with the presence of
mutant types of GC. Therefore, in this study, a novel GC
prognosis model was constructed through ferroptosis
subgroup-related module genes.

In this study, we aimed to identify FRG co-expression
modules in GC through WGCNA, develop a risk-scoring
model to quantify the level of ferroptosis in individual
patients, and explore its prognostic role in GC patients. In
addition, functional studies were conducted on tumor
immune microenvironment and mutation burden to initially
elucidate the mechanisms that affect prognosis, providing a
basis for clinical diagnosis, personalized immune targeted
therapy, and antitumor drug resistance.

2. Methods

2.1. Sources of Data. The mRNA sequencing and somatic
mutation data of GC patients were obtained from the Cancer
Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov/tcga/),
which contains 375 GC samples. And these samples were
used as a training set for this study, while the validation set
was selected from the GSE84437 dataset in the Gene Expres-
sion Omnibus (GEO) database (https://www.ncbi.nlm.nih
.gov/geo/). The dataset contains gene expression data from
433 patients with GC. 383 FRGs were derived from ferropto-
sis database (http://www.zhounan.org/ferrdb/) [18–20]. The
“limma” package was used for integration and difference
analysis between datasets [21].

2.2. Identification of Subclusters of FRGs in GC. The NMF
algorithm has a great advantage in the distance [22]. The
“NMF” package in R was used to identify and unsuper-
vised cluster analysis of the expression matrix of FRGs
obtained from the TCGA dataset. Each parameter was
selected in the following way, using the “brunet” package
in R, with the number of iterations (nrun) set to 10 and
ranks set from 2 to 10. Then the new subcluster classifica-
tion was obtained.

2.3. Identification of Ferroptosis Subcluster-Related Modular
Genes in GC. The differential expression genes with different
ferroptosis genotyping between cluster 1 (C1) and cluster 2
(C2) group were identified with the “limma” R package
according to the cut-off value FDR<0.05, log2|fold change
(FC)|≥2. The co-expression network between genes and
clinical characteristics was constructed using the “WGCNA”
R package [23], and the samples with an expression less than
0.5 were removed. Subsequently, we computed the topolog-
ical matrix of the scale-free distribution. We used the “Pick-
SoftThreshold” function to select the optimal soft threshold
β and then calculated the Pearson correlation coefficient
for each gene. We construct a neighbor-joining matrix using
weighted correlation coefficients. Then, a topological overlap
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matrix was constructed based on the neighbor-joining
matrix to construct a clustering tree. The number of genes
in the module greater than 150 was retained, and the mod-
ules with similarities greater than 0.25 were merged. Finally,
the significant models were identified, and the genes of the
significant modules were extracted.

The “VennDiagram” package was applied to calculate
the intersection genes of difference genes between C1 and
C2 and the FRGs of the significant modules. That is the fer-
roptosis subcluster-related modular genes.

2.4. Construction and Validation of a Prognostic Model. The
TCGA dataset was used as the training set, and the genes
associated with patients’ prognosis were screened out
through COX regression analysis. Using the least absolute
shrinkage and selection operator (LASSO) regression
method, these genes were analyzed by the “glmnet” soft-
ware package in R. And the λ min with the lowest error
was chosen after 10-fold cross-validation [24] to construct
a stable prognostic model. Followed by multivariable cox
regression analysis to construct the best risk-scoring model
and calculate regression coefficient for each gene regression
coefficient. The risk score in the model was calculated by
the following formula: riskScore =∑n

x=1ðcoef mRNA × Expr
mRNAÞ. The risk score for each sample was calculated

using this formula, and the low- and high-risk groups were
divided by the median [25]. Through “survival” and “time-
ROC” package in R, the Kaplan-Meir (K-M) survival curve
and ROC curve were, respectively, plotted to determine the
efficacy of the model. In addition, for more intuitive pre-
diction, we incorporated clinical characteristics (including
age, gender, tumor location, and metastasis) into the
model, constructed a nomogram using the “Regplot” pack-
age in R, and validated the stability with calibration and
ROC curves.

To demonstrate accuracy of the model, we used the
GSE84437 dataset for external validation of the risk model
construction, including survival curves and ROC curves.

2.5. Functional Analysis of Prognostic FRGs. Functional
enrichment analysis of GO and KEGG pathways were per-
formed to describe functions of prognostic FRGs. Through
the “clusterProfiler” package in R, functional enrichment
analysis of prognostic FRGs was performed. Items with
adjusted P < 0:05 were selected from the enrichment results
for display.

2.6. Analysis between Immune Infiltration and Risk Score of
GC. Through the single-sample GSEA (ssGSEA) algorithm,
the “GSVA” package of R was applied to calculate the
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Figure 1: Identification of ferroptosis-associated subclusters. (a) Through NMF consensus clustering using FRGs, the optimal k value was
determined to be 2. Patients were divided into C1 and C2. (b) K-M survival curves of OS in C1 and C2. (c) K-M survival curves of PFS in C1
and C2. C1: cluster 1; C2: cluster 2; OS: overall survival; PFS: progression-free survival; GC: gastric cancer; NMF: nonnegative matrix
factorization; K-M: Kaplan-Meir; FRG: ferroptosis-related genes.

4 Journal of Oncology



0

10

20

30

–3 0 3 6
logFC

–l
og

10
 (f

dr
)

Significant
Down
Not
Up

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Gene dendrogram and module colors

hclust (*, "average")
as.dist(dissTOM)

H
ei

gh
t

Dynamic tree cut

(b)

Figure 2: Continued.

5Journal of Oncology



relative content of different kinds of immune cells in the
TCGA cohorts and explore the differences in immune infil-
tration. And we applied the “estimate” package to perform
ESTIMATE algorithm to analyze the data of TCGA cohorts
and evaluate the TIME from three aspects: tumor purity,
immunity score, and matrix score.

2.7. Tumor Mutational Burden (TMB) Analysis of GC. Based
on the corresponding mutation data, we calculated their
nonsynonymous mutations to determine the TMB of GC
patients with different ferroptosis subclusters. We extracted
GC patient driver gene data from the R “maftool” package
and compared the somatic changes in driver genes of differ-
ent ferroptosis subtypes. Finally, the overall mutation level
was represented by the top 20 driver genes by mutation
frequency.

2.8. Statistical Analysis. All data were statistically analyzed
using R (Version 3.6.2). K-M method, Log-rank test, and
Cox regression were used to analyze the prognosis of each
characteristic value, the survival curve, and the independent
prognostic factors, respectively. ROC curve analysis was

used to predict overall survival with R package “pROC”.
Continuous variables (e.g., age, gender, stage, and tumor
grade) were transformed into dichotomous variables. Stu-
dent’s t-test and chi-square test were adopted to compare
differences in pathology and molecular characteristics
between different patient groups. And Welch’s t test was
used when appropriate. When P < 0:05, analysis was consid-
ered statistically significant.

3. Results

3.1. Construction of Subclusters of FRGs in GC. Through
NMF clustering analysis of FRGs, 375 GC samples from
TCGA were divided into two subclusters: C1 and C2
(Figure 1(a)). Survival analysis showed that there were sig-
nificant differences between the C1 and C2 in the overall
survival (OS) and progression-free survival (PFS). The sur-
vival rate of the C1 is superior to the C2, and K-M curve is
shown in Figures 1(b) and 1(c).

3.2. Difference Analysis of Subclusters in GC and
Construction of Ferroptosis-Related Modules by WGCNA.
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Figure 2: Identification of differential molecular subcluster genes associated with ferroptosis. (a) Volcano plots of mRNA-seq differential
analysis for C1 and C2. (b) Based on the hierarchical clustering analysis of the TCGA dataset, genes with similar characteristics are
assigned to modules of the same color. (c) Heat map of correlations between eigenvalues and individual modules. C1: cluster 1; C2:
cluster 2; TCGA: the Cancer Genome Atlas.
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Difference analysis of C1 and C2 was performed through the
“limma” package, and a total of 1846 differential genes met
the requirements, and the differential genes were displayed
in a volcanic map (Figure 2(a)). During the analysis of
WGCNA, we calculated the soft threshold β = 5 using R,
and then obtained a hierarchical cluster tree by dynamic cut-
ting method (Figure 2(b)), and combined similar modules to
obtain a total of 15 modules. From the Pearson correlation
analysis matrix of the module features, the green yellow
and yellow modules were related to the ferroptosis-related
phenotype in GC. The green yellow module showed the
highest correlation (R = −0:5, P < 0:001) (Figure 2(c)). To
construct a risk-scoring model associated with ferroptosis,
555 genes in the green yellow module were taken to intersect
with 1846 DEGs for C1 and C2, and finally, 80 key genes
were obtained.

3.3. Construction and Validation of Risk-Scoring Model.
Through univariate Cox regression analysis, with P < 0:01
as a filter, 29 genes associated with GC prognosis were
obtained in the training set (Figure 3(a)). To prevent the
model from overfitting, we took Lasso regression analysis
to test these 29 genes and determined that there was no
over-fitting of the model for these 29 genes (Figures 3(b)
and 3(c)). Finally, we identified 8 prognostic-related genes
using multivariate Cox regression analysis (Figure 3(d))

and plotted K-M curves for 8 genes (Figure 4). Based on
these 8 genes, we constructed a risk-scoring model for GC.
Risk Score = 0:320∗CTHRC1 + ð−0:364Þ∗PDPN + 0:410∗
PLOD2 + ð−0:575Þ∗GFPT2 + 0:418∗ABCA1 + 0:570∗GPR
176 + 0:237∗SERPINE1 + 0:192∗DUSP1. According to the
median risk score value, the GC samples were divided into
high- and low-risk group. And we have drawn the K-M
curve through “survival” package of R (Figure 5(a)). It was
demonstrated that there was a significant survival difference
between the low- and high-risk groups. In addition, the ROC
analysis showed that the AUC of 1-, 3-, and 5-year survival
were 0.721, 0.747, and 0.803, respectively. (Figure 5(b)) It
meant that the model we constructed had great diagnostic
efficacy in GC.

To ensure the accuracy of the risk-scoring model, we
verified the model on an external validation set (GEO data-
base) and found that the survival of low- and high-risk
groups of the GEO dataset was significantly different in the
K-M survival curve (Figure 5(c)). The ROC analysis showed
that the AUC of 1, 3, and 5 years were 0.605, 0.615, and
0.594, respectively (Figure 5(d)). It demonstrated that the
prognostic model of FRGs had good accuracy in the valida-
tion set.

3.4. Nomogram Construction through Risk Score and
Clinicopathological Features. In the risk-scoring model
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Figure 3: Screening of prognostic FRGs. (a) Univariate Cox regression analysis screened out 29 prognostic FRGs. (b) Trajectory changes of
8 genes. (c) Confidence interval for each λ value. (d) Multivariate Cox regression analysis screened out 8 prognostic FRGs. C1: cluster 1; C2:
cluster 2; FRGs: ferroptosis-related genes.
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constructed based on 8 ferroptosis subcluster-related modu-
lar genes, we incorporated clinicopathological features in
GC. Then, the analysis of eigenvalues was followed by Cox
regression analysis. Prognosis of GC was correlated with
age and risk score. And both of them were independent
prognostic factors (Figure 6). At the same time, the analysis
of K-M survival curves showed significant differences in sur-
vival at different age, gender, tumor grade, and stage
(Figure 7). Based on clinicopathological features and risk
score, we established a nomogram that could predict the
prognosis of GC (Figure 8(a)). The 1-, 3-, and 5-year survival
of GC could be predicted by scoring each characteristic
value. Besides, we used ROC curves to determine their accu-
racy (Figure 8(b)). Through results of decision curve analysis
(DCA), we believe that the nomogram has high clinical
application value (Figure 8(c)). In conclusion, the model
could accurately predict the survival of GC patients.

3.5. Functional Enrichment Analysis.We preformed GO and
KEGG enrichment analysis to annotate the biological char-
acteristics of 8 genes by “clusterProfiler” package in R
(Figures 9(a) and 9(b)). GO enrichment analysis indicated
that these genes were mainly enriched in extracellular
matrix, organization extracellular structure, organization
external encapsulating, wound healing, and other biological
processes (BP). Besides, they were enriched in collagen-
containing extracellular matrix, endoplasmic reticulum
lumen, collagen trimer, and other cellular constituents
(CC). Molecular functions (MF) were enriched in growth
factor binding, extracellular matrix structural constituent,
and cytokine binding extracellular matrix. KEGG analysis
indicated that they were related to PI3K−Akt, TGF, JAK
−STAT, and other metabolic signaling pathway.

3.6. Analysis of Immune Cell Infiltration. Through ssGSEA
algorithm, we obtained 16 kinds of immune cells and 13 kinds
of immune-related mechanisms in GC. It demonstrated that
the degree of immune infiltration in low-risk group was
lower than that in high-risk group (Figures 10(a) and

10(b)). Macrophages, mast cells, neutrophils, Treg, and T
helper cells showed significantly different distribution,
and T cells were the most abundant immune cells in GC
tissue infiltration. The result suggested that the immune
cells have a good response in high-risk group of GC.
According to the ESTIMATE algorithm of “estimate” R
package, the heat map showed that compared with the
low-risk group, the high-risk group had lower tumor
purity and higher stromal score, immune score, and esti-
mate score. The tumor purity of TME decreased, and the
infiltration of stromal and immune cells increased signifi-
cantly (P < 0:05) (Figure 10(c)).

3.7. Analysis of TMB for GC. The TMB was a way for
somatic cells to increase the types of antigens by mutation
and thus resist cancer [26]. The TMB was calculated and
compared between two groups by “maftools” package
(Figures 11(a) and 11(b)). Higher TMB could generate more
mutations and was more conducive to the body’s resistance
to the development of cancer. In this study, the waterfall dia-
grams showed that TTN and TP53 genes in the two groups
had the highest mutation rates. TTN gene was 44% of muta-
tions in both groups, while TP53 was 43% of the mutations
in high-risk group and 33% of the mutations in low-risk
group.

4. Discussion

GC is a common tumor worldwide, with a large number of
cases, especially in East Asian countries. The prognosis of
GC varies widely between countries. Early detection and
intervention could improve the prognosis [1]. In this study,
we developed a unique prognostic model for FRG in GC
using TCGA and GSE84437 cohort data. Then, we con-
structed a quantitative scoring system and further evaluated
the effect of FRG on immune infiltration. Ferroptosis, a
novel form of cell death, is characterized by unique mor-
phology, gene expression, and molecular pathways. Previous
studies identified that GSH, GPX4 activity inhibition, and
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Figure 4: K-M survival curves of 8 genes with independent prognostic potency. K-M: Kaplan-Meir.
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iron-dependent ROS burst were the critical factors inducing
ferroptosis [27]. FRGs are associated with TIME and TMB,
which is helpful to predict the prognosis of GC. Mutations
in DNA damage-responsive genes are the main cause of ele-
vated TMB and can be used to predict immune checkpoint
inhibitor responses. Many mutations in the exon region of
somatic cells lead to an increase in the production of neoan-
tigens recognized by T cells, thereby enhancing the antitu-

mor immune response. As a result, patients with high
TMB may develop a stronger immune response and be more
sensitive to immune checkpoint inhibitor therapy [28]. For
example, activation of the Keap1/Nrf2/HO-1 pathway and
ferritin phage-mediated ferroptosis contributed to EMT
inhibition of GC cell proliferations and altered the cellular
redox environment [29]. Besides, ferroptosis-related
lncRNA regulated the invasiveness of GC. lncRNA-BDNF-
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0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Risk

High risk

Low risk

262 140 46 16 8 0 0 0 0 0 0
264 186 98 54 32 28 14 6 6 6 2Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10
Time (years)

Ri
sk

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 − specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.721
AUC at 3 years: 0.747
AUC at 5 years: 0.803

(b)

Risk

High risk

Low risk

p = 1.78e−04

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

222 186 151 134 111 104 94 80 72 60 40 25 8 1
211 193 175 156 136 125 112 91 86 71 47 19 6 0Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time (years)

Ri
sk

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 − specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.605
AUC at 3 years: 0.615
AUC at 5 years: 0.594

(d)

Figure 5: Identification and validation of FRGs signatures. (a) K-M survival curves of low- and high-risk groups in TCGA total cohort. (b)
ROC curves of 1-, 3-, and 5-year survival for TCGA total cohort. (c) K-M survival curves of low- and high-risk groups in GEO cohort. (d)
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AS/WDR5/FBXW7 axis regulated VDAC3 ubiquitination
and then mediates ferroptosis in GC peritoneal metastasis
[30]. Ferroptosis can also inhibit drug resistance in GC. Fer-
roptosis induced by ATF3 overexpression can reduce cis-
platin resistance in GC [31]. Other studies have shown that
change in lipid metabolism around cancer cells under stress
determines the ferroptosis sensitivity of GC [32]. Interest-
ingly, TMB was significant in high-risk group. Therefore,
we can reasonably speculate that FRGs were key genes for
the prognosis of GC.

In this study, through TCGA dataset, we identified two
FRGs subclusters (C1 and C2) through NMF cluster analy-
sis. There were significant differences in the survival status
of the two clusters. WGCNA was applied to identify ferrop-
tosis subcluster-related modular genes. Through Cox regres-
sion analysis, we selected the prognostic genes related to
ferroptosis and established the prognostic risk-scoring
model. We also used GSE84437 dataset to externally verify
the prognostic risk-scoring model. At the same time, we

integrated clinicopathological features and risk-scoring
model to construct a nomogram for clinical application.
The function of TIME and TMB was studied to preliminarily
clarify the mechanism of its influence on prognosis, so as to
provide basis for clinical diagnosis, individualized immune-
targeted therapy, and antitumor drug resistance.

Based on the above intersection genes, a novel prognos-
tic model integrating 8 FRGs (CTHRC1, PDPN, PLOD2,
GFPT2, ABCA1, GPR176, SERPINE1, and DUSP1) was
firstly constructed. For example, CTHRC1 was used as a
marker of colorectal cancer (CRC) intratumoral metastasis,
and Zhang et al. confirmed that CTHRC1 promoted liver
metastasis of CRC and earlier predicted targets by TGF-β
remodeling infiltrating macrophage signaling [33]. PDPN
(+) CAF, the representative of immunosuppressive microen-
vironment of lung adenocarcinoma, can induce macrophage
M2 polarization and inhibit immune-related lymphocytes,
serving as a bridge between fiber microenvironment and
immunosuppression [34]. In patients with large tumor or
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Figure 6: (a) Univariate and (b) multivariate Cox regression analysis of clinicopathological features.
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Figure 7: Survival analysis of clinicopathological features. (a–h) K-M survival curves of low- and high-risk groups at age (≤65, >65), gender
(female, male), stage (stage I-II, stage III-IV), and grade (G2, G3).
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solid tumor metastases, PDPN expression induced poor
prognosis in cancer-associated fibrous tissue [35]. And
PLOD family genes can affect the progression and prognosis
of human digestive tract tumors. As a member of them,
PLOD2 was not only related to the histological grading of
pancreatic cancer, but also overexpressed in TP53 and KRAS
types [36]. GFPT2 in the study was also closely related to the
prognosis, microenvironment, immunity, and drug sensi-
tivity of other digestive system tumors, and the specific
internal mechanism remained to be further studied [37].
Besides, GFPT2 expression was inhibited by the oxidative
stress regulator GSK3-β. GFPT2 was a marker of poor
prognosis in the D492 EMT model of breast cancer, which
controlled growth and invasion [38]. Compared with other
FRGs, ABCA1 may be a tumor suppressor that was meth-
ylated after dysregulation of transforming growth factor-β
signaling in ovarian cancer, presenting a poor prognosis.
In contrast, SERPINE1-upregulated GC patients showed
poor OS and PFS. It was considered that it may regulate
VEFF and JAK-STAT3 inflammatory signaling pathways
to affect GC cell proliferation and migration [39]. DUSP1
was also observed to be an oncogene associated with drug
resistance during cancer intervention. At present, the role

of GPR176 in GC prognosis is unclear. Upregulation of
GPR176 stimulates the function of Sirtuin6. Sirtuin6 over-
expression inhibited breast cancer stem cell biogenesis in
cells with a PI3K mutation and murine PyMT mammary
tumor progression in vivo [40]. And there are few reports
on the use of ferroptosis to correlate TIME and TMB in
GC prognostic models.

FRGs plays a crucial role in TME, as shown in
Figure 10(a). By comparing the immune infiltration
between risk score groups, we found that T cells were
the most extensively infiltrated immune cells in GC sam-
ples, and macrophages, mast, and T helper cells showed
significantly different distribution [41, 42]. Some studies
have reported the immune potential of tertiary lymphocyte
structures around primary GC, in which DC was a set that
affected the reactivity, cytotoxicity, and monitoring escape
status of anticancer cells [43]. Clinical validation of GC
suggested that TAM M1 macrophages were associated
with antitumor activity. M2 promoted pro-angiogenic
and immunosuppressive signals in tumors, such as diffuse
GC subtypes [44]. In the high-risk group, T cell infiltra-
tion levels were elevated. It meant that high-risk group
with FRGs had a better chance of taking advantage of
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Figure 9: GO and KEGG analysis of prognostic FRGs. (a) Histogram of GO enrichment analysis for prognostic FRGs. (b) Histogram of
KEGG enrichment analysis for prognostic FRGs. GO: gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FRGs:
ferroptosis-related genes.
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cellular immune-personalized therapy regiments. We also
enriched biological signaling pathways, for instance, PI3K
−Akt, TGF-β, and JAK-STAT. Recent studies have indi-
cated that MAPK pathway participated in resistance to
GC ferroptosis. And inhibition of MAPK signaling can
protect GC cells from ferroptosis [45]. In addition, acti-
vated TGF-β was identified to promote ferroptosis [46].
In our study, the tumor purity of TME decreased, and
the infiltration of stromal and immune cells increased sig-
nificantly. Low purity of GC in high-risk group was asso-
ciated with poor prognosis. Therefore, these results

detailed the conditions and ways in which FRGs regulate
GC development, which may be conducive to further
study of immune escape surveillance. In addition,
ferroptosis-related reactive oxygen species and iron uptake
could lead to somatic nonsynonymous mutations and
microsatellite instability, resulting in increasing immuno-
genicity and immune infiltrates [47, 48], which was consis-
tent with our findings.

There are still a few limitations. First, all data sources
came from public databases. There is a lack of real world
samples and prospective clinical data validation. Secondly,
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ferroptosis is not a unique mechanism in GC, and whether
ferroptosis is involved in the mechanism of TIME is still
uncertain. Besides, FRGs obtained from previous studies
may be incomplete, which requires further improvement of
the FRGs database from future studies. Finally, whether
prognosis FRGs directly regulates the ferroptosis process in
GC requires further experimental verification.

5. Conclusion

In conclusion, the risk-scoring model based on 8 ferroptosis
subcluster-related modular genes has shown outstanding
advantages in predicting patient prognosis. The interaction
of ferroptosis in GC development may provide new insights
into exploring molecular mechanisms and targeted therapies
for GC patients.
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Background/objective. LIM and LIM zinc finger domain containing 2 (LIMS2) is one of the two members of LIMS family, which
plays crucial roles in regulating cell-extracellular matrix adhesion and cell motility. Here, we explored the expression and
methylation levels of LIMS2 in osteosarcoma (OS) and the role of LIMS2 in OS progression. Methods. GEO, GEPIA, and
UALCAN databases were used to assess LIMS2 expression in OS. UALCAN and CCLE databases were applied to assess the
methylation levels of LIMS2 in OS tissues and cells, which was verified in OS cells using the methylation specific PCR. The
effects of LIMS2 on regulating OS cell growth, migration and invasion were determined by CCK-8, Edu staining, and transwell
chambers, respectively. The role of LIMS2 in the activation of MAPK signaling was assessed using western blotting assay in OS
cells. Results. LIMS2 expression was declined in OS tissues and cells, while its methylation level was increased. The low
expression of LIMS2 was associated with shorter overall survival and disease-free survival. Overexpression of LIMS2 inhibited
cell growth, migration, and invasion and decreased the levels of p-ERK/ERK, p-P38/P38, and p-JNK/JNK. Conclusion. LIMS2
expression was decreased in OS, which was associated with hypermethylation level and poor prognosis. LIMS2 overexpression
inhibited OS cell growth and migration, which may be caused by the suppression of MAPK signaling.

1. Introduction

Osteosarcoma (OS), which mostly affects adolescents, is the
most frequently detected primary bone malignant tumor [1,
2]. The 5-year survival rate of low-grade OS is >70%, but
drops significantly to below 20% in patients with high-
grade OS, which is characterized by early metastasis and
high recurrence rate [3, 4]. Unfortunately, about 20% of
OS are diagnosed with metastasis at first diagnosis, resulting
in poor response rate and prognosis [1]. Thus, it is of great
significance to further reveal the mechanisms underlying
the progression of OS.

LIMS family consisting of two members, LIMS1 (also
known as PINCH-1) and LIMS2 (also known as PINCH-2),

plays crucial roles in regulation cell-extracellular matrix
adhesion and movement [5–7]. LIMS1 and LIMS2 share
92% sequence homology and compete for binding to the
ankyrin repeat domain of ILK with similar affinities [8]. Like
LIMS1, studies have shown that LIMS2 takes part in cancer
migration and invasion [9–11]. The expression of LIMS2
was decreased in gastric cancer, which was significantly asso-
ciated with the increased CpG island methylation. In addi-
tion, silencing of LIMS2 promoted the proliferation and
migration of gastric cancer cells [12]. Moreover, LIMS2
expression was declined in colon cancer, and LIMS2 overex-
pression could inhibit the migration of colon cancer cells
[11]. However, the role of LIMS2 in the progression of other
types of cancers, such as OS remains unknown.
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In this study, we analyzed LIMS2 expressions in OS
using GEO and TCGA databases, and the results revealed
that LIMS2 expression was decreased in OS biopsy samples.
In addition, UALCAN and CCLE databases revealed that the
methylation level of LIMS2 promoter in OS tissues and cells
were increased. All these findings suggested that LIMS2 may
play a role in the progression of OS. To this end, we con-
ducted this study to explore LIMS2 expression in OS and
to reveal its role in the progression of OS and its potential
mechanisms.

2. Materials and Methods

2.1. GEO Datasets and Identification of DEGs. The raw RNA
transcriptome dataset (GSE42352) containing the expression
data of 84 high-grade OS biopsy samples and 13 normal tis-
sue samples was obtained from the Gene Expression Omni-
bus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database. The
mRNA expression profiling was assessed from the chip-
based platform GPL10295 Illumina human-6 v2.0 expres-
sion beadchip with nuIDs as an identifier. The DEGs (differ-
ently expressed genes) between OS tissues and normal
tissues were screened using the R software version 4.1.3
(http://www.R project. Org/) [13, 14]. Background correc-
tion, standardization, and the calculation of expression
values were carried out using package Affy, Impute, and
Limma of R software. The limma package was applied to
normalize the median value of all samples. After that, a
robust multichip average (RMA) was created, and the raw
data were log-transformed. Once the p adjust value <0.05
and jlog 2 fold change ðFCÞj > 1, the genes were identified
as DEGs. Pheatmap and ggplot2 in R software were applied
to build the heat map and Volcano plot, respectively [15].

2.2. GEPIA, UALCAN, and CCLE Databases. GEPIA (http://
gepia.cancer-pku.cn/index.html) was used to assess LIMS2
expression and its association with the overall survival in
OS; UALCAN database (http://ualcan.path.uab.edu/) was
used to evaluate the expression methylation levels of LIMS2
in OS, as well as predict the genes correlated to LIMS2;
CCLE database (https://portals.broadinstitute.org/ccle/) was
also applied to analyze the methylation level of LIMS2.

2.3. Functional Enrichment. R software was applied to assess
the enriched pathways of LMIS2 and its associated genes
identified from the UALCAN database with a Pearson −
CC ≥ 0:4, including Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways. Three
modules, biological processes (BP), cellular component
(CC), and molecular function (MF), were included in the
GO analysis. p adjust value < 0:05 was thought as statistically
significant.

2.4. Cell Culture. U-2OS, MG-63, Saos-2 and MNNG/HOS, 4
human OS cell lines, and one human normal osteoblast cell
line hFOB 1.19 were obtained from American Type Culture
Collection (Manassas, VA, USA). Another lung cancer cell
line PC-9 was obtained from BeNa Culture Collection (Bei-
jing, China). U-2OS and Saos-2 cells were cultured inMcCoy’s
5a Medium, while MG-63 and MNNG/HOS cells were grown
in Eagle’s Minimum Essential Medium, all with the supple-
mentation of 10% FBS (Fetal Bovine Serum) and 1% (v/v)
penicillin/streptomycin. hFOB 1.19 cells were maintained in
a 1 : 1 mixture of Ham’s F12 Medium and Dulbecco’s Modi-
fied Eagle’s Medium, supplemented with 2.5mML-glutamine,
0.3mg/mlG418, and 10% FBS. All cell lines were placed at
37 °C with 5% CO2. Cell culture mediums were purchased
from Thermo Fisher Scientific (MA, USA).

2.5. Upregulation of LIMS2 Expression. Cells were trans-
fected with the overexpressed plasmid to overexpress LIMS2
and the negative control vector (NC) (cat no. RC229173,
Beijing, China) with the help of lipofectamine 2000
(Thermo) according to the manufacture’s descriptions.

2.6. Methylation-Specific PCR (MS-PCR). Genomic DNA
(gDNA) was extracted with a QIAamp DNA Mini Kit (Qia-
gen, Germany) and submitted to sodium bisulfite modifica-
tion with DNA Methylation Detection Kit (BioChain, USA)
in the light of the manufacturer’s descriptions. Then, PCR
was carried out using the modified DNA in reaction system
of 25μL with the following conditions: 35 cycles of 95 °C for
30 s, 58 °C for 30 s, and 72 °C for 30 s. PCR products were sep-
arated in 3% agarose gel supplemented with ethidium bromide
and the DNA blots were visualized under UV illumination.
Unmethylation-specific primers: forward-5′-GGTTGGATT
TTTAGATTGTAGATGA-3′, reverse-5′-AACAATAAAAA
TAAACAAAAACAAA-3′;

methylation-specific primers: forward-5′-TGGGTTGGA
TTTTTAGATTGTAGAC-3′, reverse-5′-AACGATAAAAA
TAAACGAAAACGAA-3′.

2.7. Quantitative Reverse Transcription-PCR (qRT-PCR).
Total RNA samples were extracted using TRIzol reagent
(Invitrogen, USA). The RNAs were then reverse transcribed
into cDNA using PrimeScript RT Master Mix kit (RR036A;
Takara) in accordance with the descriptions. Next, the PCRs
detection was performed using 2× SYBR Green PCR Mas-
termix (Solarbio, Beijing, China) in a 7500 Real-Time PCR
System (Applied Biosystems, USA). Primers applied are
shown in Table 1.

2.8. Western Blotting. Total proteinwas isolatedwith theRIPA
lysis buffer (Solarbio, Beijing, China) and addedwith 1%prote-
ase inhibitor (Solarbio) from cells. Subsequently, same amount

Table 1: Primer sequences.

Gene Sense (5′-3′) Antisense (5′-3′)
LIMS2 GAGCGGCTCTTGGCCTTTTT GTACAGCTCCCCATTGCTGT

β-Actin TGGAACGGTGAAGGTGACAG CGCATCTCATATTTGGAATGACT
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of proteins (about 20μg) from each group were separated by
10% SDS-polyacrylamide gelsis and transferred onto the poly-
vinylidene difluoride membranes (PVDF; Millipore, Billerica,
MA, USA). After that, the membranes were blocked with 5%
non-fat milk at room temperature for 60min to prevent the
nonspecific bindings, followed by primary antibody incubation
at 4 °C for overnight, including anti-β-actin antibody (cat no.
ab8226, Abcam,MA, USA; 1 : 5000 dilution), anti-LIMS2 anti-
body (cat no. ab272666, Abcam; 1: 2000 dilution), anti-p-ERK
(cat no. 4370, CST; 1: 2000 dilution), anti-ERK (cat no. 4695,
CST; 1: 2000 dilution), anti-p-P38 (cat no. 4511, CST; 1: 1000
dilution), anti-P38 (cat no. 8690, CST; 1: 1000 dilution), anti-
p-JNK (cat no. 9251, CST; 1: 1000 dilution), and anti-JNK
(cat no. 9252, CST; 1: 1000 dilution) antibodies. After that,
the membranes were probed with HRP-conjugated secondary
antibodies at room temperature for 1 hour. ProfiBlot-48
(Tecan, Switzerland) was applied to evaluate protein signaling
following immersing in ECL reagent (Millipore, USA). ImageJ
software was used for protein quantification.

2.9. CCK-8 (Cell Counting Kit-8) Assay. Cells were placed in
96-well plates with 4,000 cells in each well. For cell growth
assessment, cells were cultured with 10% (v/v) CCK-8 solu-
tion (Beyotime, Beijing, China) for 4 hours at 37 °C. Then,
the OD values (450 nm) were detected with a Spectropho-
tometer (Fisherbrand™ accuSkan™ GO UV/Vis, Thermo).

2.10. Edu (5-Ethynyl-2′-Deoxyuridine) Staining. EdU stain-
ing was performed to assess cell proliferation using the
EdU Assay/EdU Staining Proliferation Kit (cat no.
ab222421, Abcam). Each well of the 24-well plate 6 × 104

cells were plated into each well of the 24-well plate and then
transfected with indicated plasmids. After 48hours, the cells
were cultured with 50μM EdU reagent for 2 hours and fixed
with 4% formaldehyde for 0.5 hour, followed by incubation
with glycine (2mg/mL) for 0.25 hour and 0.5% Triton X-
100 for 0.33 hour to permeabilize. Next, the cells were incu-
bated with Hoechst 33342 for nuclear staining. The percent-
age of EdU positive cells was assessed under a fluorescence
microscopy (Olympus IX73, Japan).

2.11. Transwell Chamber Assay. Transwell chambers (pore
size, 8μm; BD Biosciences) were applied to detect the effect
of LIMS2 on cell migration and invasion capacities. To
detect cell migration, 5 × 104 cells were seeded into the upper
chamber, while 0.60ml of cell culture medium containing
15% FBS were added into the lower chamber. Following
incubation at 37 °C for 24 hours, the cells on the upper side
of the filters were removed with cotton swabs, while cells
below the filters were first fixed with methanol for 15min
and then stained with 0.1% crystal violet. To detect cell inva-
sion, the transwell chambers precoated with Matrigel were
used and proceed as described as the migration assay. The
number of migrated and invaded cells was counted under
the microscope.

2.12. Statistical Analysis. Each experiment was repeated for
three independent times in the current study. SPSS21.0 soft-
ware (IBM, Armonk, NY, USA) was applied for the statisti-
cal analysis with student’s t-test or one-way ANOVA with
Tukey’s tests. The p value less than 0.05 was considered a
statistical significance.
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Figure 1: Identification of the DEGs in OS using the GEO database. (a) The correction histogram of removing batch of tumor and normal
groups. (b) PCA of the tumor group and normal group. (c) Correlation heat maps of different groups and genes. (d) DEGs were shown in
the volcano plot (blue dots represented the significantly downregulated genes, and red dots represented the significantly upregulated genes).
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3. Results

3.1. Bioinformatics Analysis Showed that LIMS2 Expression
Was Downregulated While Its Methylation Level Was
Increased in OS. To reveal the mechanisms underlying the
progression of OS, first, the transcription data of 84 OS tis-
sues and 13 normal tissues were downloaded from the
GEO database to identify the DEGs. Figure 1(a) was the cor-
rection diagram of removing batch. The PCA (principal
component analysis) showed that the tumor group and nor-
mal group could be well districted (Figure 1(b)). Moreover,
we observed a good correlation between groups and genetic
characteristics (Figure 1(c)). A total of 429 upregulated
genes and 418 downregulated genes (including LIMS2) were
found between tumor and normal groups, as shown by the
volcano plot (Figure 1(d)). These results indicated that
LIMS2 was downregulated in OS.

To further explore the expression of LIMS2 in OS, we
recruited the GEPIA and UALCAN database. We observed

that the expression of LIMS2 was decreased in many kinds
of cancers, including sarcoma (SARC) (Figures 2(a)–2(c))
regardless of race, gender, and age (Figure 2(b)). In addition,
the promoter methylation level of LIMS2 was significantly
increased in sarcoma compared to normal group, as shown
in the UALCAN database (Figure 2(d)). Consistently, the
CpG island methylation level of LIMS2 showed a high level
in OS cell lines (Figure 2(e)). Moreover, the low expression
level of LIMS2 was linked to lower overall survival rate and
lower disease-free survival rate in OS (Figures 3(a) and
3(b)). These results further revealed a lower expression pat-
tern of LIMS2 in OS, which was accompanied by high meth-
ylation level and related to poor prognosis.

3.2. LIMS2-Related Genes Were Enriched in MAPK Signaling
Pathway. Then, we assessed the enriched pathways involved
LIMS2 and its related genes identified by the UALCAN data-
base. The GO analysis showed that the genes were enriched
in muscle system process, cell-substrate junction, cell
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Figure 2: Bioinformatics analysis of the expression and methylation levels of LIMS2 in OS. (a) LIMS2 expressions in different kinds of
cancers were assessed using the GEPIA database. (b) LIMS2 expression in sarcoma was assessed by UALCAN database. (c) LIMS2
expression in normal and tumor tissues was evaluated from the GEO (GSE42352). (d) The methylation levels of LIMS2 in sarcoma
tissues and normal tissues were analyzed using the ualcan database. (e) CCLE database was applied to assess the methylation levels of
LIMS2 in OS cells.
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Figure 3: Low expression of LIMS2 was linked to poor prognosis in OS. The relationships between LIMS2 expression levels and (a) the
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adhesion, actin binding, and cadherin binding pathways
(Figure 4(a)). KEGG analysis showed that the genes were
mainly enriched in focal adhesion, tight junction, MAPK
signaling pathway, and adherens junction (Figure 4(b)).
These results indicated that LIMS2-related genes may play
a role in regulating cell motility.

3.3. LIMS2 Expression Was Downregulated in OS Cells. Next,
we assessed LIMS2 expression and methylation levels in OS
tissues. Compared with the expression level of LIMS2 in nor-
mal osteoblast cell line hFOB 1.19, both the mRNA
(Figure 5(a)) and protein (Figures 5(b) and 5(c)) levels of
LIMS2 were decreased in OS cell lines (U-2OS, MG-63,
Saos-2, and MNNG/HOS). In contrast, LIMS2 methylation

level was increased in OS cell lines compared with hFOB
1.19 cells (Figure 5(d)). These results verified LIMS2 level
was declined in OS.

3.4. LIMS2 Inhibited OS Cell Growth and Migration. Addi-
tionally, we assessed the role of LIMS2 in OS progression
in vitro. LIMS2 expression was remarkable increased in U-
2OS and Saos-2 cells following the cell transfection with
LIMS2 plasmid (Figure 6(a)). In comparison with the con-
trol group, cell growth was significantly suppressed when
LIMS2 expression was upregulated, as determined by the
CCK-8 assay (Figure 6(b)) and Edu staining (Figure 6(c)).
In addition, LIMS2 overexpression caused significant inhibi-
tion in cell migration (Figure 6(d)) and invasion
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Figure 4: Enrichment analysis of LIMS2 and its correlated genes. (a) GO and (b) KEGG analysis of the LIMS2 and its correlated genes.
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(Figure 6(e)). These results demonstrated that LIMS2 over-
expression could suppress cell growth and migration in OS.

3.5. LIMS2 Overexpression Inhibited the Activation of MAPK
Signaling in OS Cells. Since the LIMS2 and its associated
genes were enriched in the MAPK signaling pathway, we
assessed the effects of LIMS2 on the activation of MAPK sig-
naling in vitro. The results demonstrated that LIMS2 overex-
pression significantly decreased the levels of p-ERK/ERK, p-
P38/P38, and p-JNK/JNK in U-2OS and Saos-2 cell lines
(Figure 7). These results confirmed that LIMS2 overexpres-
sion could repress the activation of MAPK signaling in OS.

4. Discussion

Bioinformatics databases have shown that LIMS2 expression
was decreased in OS tissues, indicating that LIMS2 may be
involved in OS progression. In the current study, we first
explored LIMS2 role in the motility of OS. The results veri-
fied a downregulated expression of LIMS2 in OS, while its
methylation level was increased, and overexpression of
LIMS2 caused significant suppressions of cell growth and
migration abilities in OS.

Currently, evidence has demonstrated that LIMS2 is
implicated in the carcinogenesis of several kinds of cancers.
For example, Kim et al. [12] reported that hypermethylation
induced silencing of LIMS2 was observed in majority of the
gastric cancer cell lines and about half of primary gastric
tumors and silencing of LIMS2 promoted the viability and
migration of gastric cancer cells. LIMS2 expression was
declined in colon cancer, and overexpression of LIMS2 sig-
nificantly inhibited the migration of colon cancer cells [11].
In addition, LIMS2 was highly expressed in melanoma cells
with heparinase gene silencing (HPSE), leading to cell apo-
ptosis [16]. Consistently, it has been shown by the online
database that LIMS2 expression was decreased in OS, which
was then verified in OS cells using the western blotting assay.
Moreover, the low expression of LIMS2 was related to lower
overall survival and disease-free survival rates of patients
with OS. Interestingly, we found that the methylation level
at the promoter of LIMS2 gene was increased in OS cells
compared with the normal osteoblast, which was consistent
with the finding in gastric cancer [12]. However, LIMS2
mRNA level was increased in malignant mesothelioma com-
pared with carcinomas involving serosal cavities [17], with
its function in the progression of malignant mesothelioma
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Figure 5: LIMS2 expression was declined in OS cells. (a) qRT-PCR and (b,cC) western blotting assays were applied to assess the mRNA and
protein levels of LIMS2 in normal hFOB 1.19 cells and OS cell lines (U-2OS, MG-63, Saos-2, and MNNG/HOS). (d) MS-PCR was applied to
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remaining unknown. Different cancer types may cause this
expression difference. Moreover, the in vitro assay showed
that LIMS2 overexpression inhibited the growth, migration,
and invasion of OS cells, suggesting that LIMS2 functioned
as a tumor suppressor in OS, which was similar as reported
in gastric cancer [12] and colon cancer [11].

The MAPK signaling exerts an important role in the reg-
ulation of the progression of OS [18–20]. Here, the pathway

enrichment analysis showed that LIMS2 and its correlated
genes were mainly enriched in the MAPK signaling. West-
ern blotting assay results showed that LIMS2 overexpression
led to significant inhibitions in the levels of p-ERK, p-P38,
and p-JNK, further suggesting that the MAPK signaling
may be a downstream pathway through which LIMS2 inhib-
ited the progression of OS. Chen et al. [21] reported that
LIMS1 regulated the ERK-Bim pathway and triggered
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Figure 6: LIMS2 inhibited OS cell growth and migration. U-2OS and Saos-2 cells divided into control, NC and LIMS2 groups were collected
for the following assays. (a) LIMS2 protein levels in different groups were determined using western blotting assay. (b) CCK-8 assay and (d)
Edu staining were applied for cell growth detection. (d, e) Cell migration and invasion capacities were tested with the transwell chambers
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apoptosis resistance in cancer cells, indicating a link between
PINCH family and MAPK signaling. Montanez et al. [22]
demonstrated that deletion of LIMS1 led to a sustained
activity of JNK in primitive endoderm (PrE) cells. Here, we
first explored LIMS2 effect on the activation of MAPK sig-
naling in cancer cells, and our results demonstrated that
overexpression of LIMS2 could significantly inhibit the acti-
vation of MAPK signaling. However, whether MAPK signal-
ing is involved in LIMS2-mediated inhibitions of cell growth
and migration in OS remains to be further studied.

There are still limitations for the current study. The
expression of LIMS2 should be detected in human OS tis-
sues, and its association with patients’ prognosis should also
be explored. As mentioned earlier, another limitation is that
we did not explore the underlying mechanisms by which
LIMS2 inhibits cell growth and migration in OS, such as
the MAPK signaling. We intend to explore these in future
studies.

In summary, this study demonstrated that LIMS2
expression was decreased in OS, which was associated with
hypermethylation level and poor prognosis. LIMS2 overex-
pression inhibited OS cell proliferation and migration,
which may be mediated by the suppression of MAPK signal-
ing. Regents used to upregulate LIMS2 expression, such as
the methylation inhibitor, might be a potential treatment
method to repress cell migration in OS.

Data Availability

All data generated or analyzed during this study are included
in this published article.

Conflicts of Interest

The authors state that there are no conflicts of interest to
disclose.

Authors’ Contributions

Chenying Su and Xiaona Cai designed the study, completed
the experiment, and supervised the data collection, Taotao
Xu and Yungang Wu analyzed the data and interpreted the
data. Licong Wang, Pinjie Chen, and Chenxian Su prepared
the manuscript for publication and reviewed the draft of the
manuscript. All authors have read and approved the
manuscript.

References

[1] S. Wagle, S. H. Park, K. M. Kim et al., “DBC1/CCAR2 is
involved in the stabilization of androgen receptor and the pro-
gression of osteosarcoma,” Scientific Reports, vol. 5, no. 1,
p. 13144, 2015.

[2] X. Zhao, Q. Wu, X. Gong, J. Liu, and Y. Ma, “Osteosarcoma: a
review of current and future therapeutic approaches,” BioMed-
ical Engineering Online, vol. 20, no. 1, p. 24, 2021.

[3] M. S. Isakoff, S. S. Bielack, P. Meltzer, and R. Gorlick, “Osteo-
sarcoma: current treatment and a collaborative pathway to
success,” Journal of Clinical Oncology, vol. 33, no. 27,
pp. 3029–3035, 2015.

[4] L. Kager, G. Tamamyan, and S. Bielack, “Novel insights and
therapeutic interventions for pediatric osteosarcoma,” Future
Oncology, vol. 13, no. 4, pp. 357–368, 2017.

[5] T. Fukuda, K. Chen, X. Shi, and C. Wu, “PINCH-1 is an obli-
gate partner of integrin-linked kinase (ILK) functioning in cell
shape modulation, motility, and survival,” The Journal of Bio-
logical Chemistry, vol. 278, no. 51, pp. 51324–51333, 2003.

[6] Y. Zhang, K. Chen, L. Guo, and C. Wu, “Characterization of
PINCH-2, a new focal adhesion protein that regulates the
PINCH-1-ILK interaction, cell spreading, and migration,”
The Journal of Biological Chemistry, vol. 277, no. 41,
pp. 38328–38338, 2002.

[7] C. Wu, “PINCH, N (i) ck and the ILK: network wiring at cell-
matrix adhesions,” Trends in Cell Biology, vol. 15, no. 9,
pp. 460–466, 2005.

[8] A. Braun, R. Bordoy, F. Stanchi et al., “PINCH2 is a new five
LIM domain protein, homologous to PINCHand localized to
focal adhesions,” Experimental Cell Research, vol. 284, no. 2,
pp. 239–250, 2003.

[9] J. Wang-Rodriguez, A. D. Dreilinger, G. M. Alsharabi, and
A. Rearden, “The signaling adapter protein PINCH is up-
regulated in the stroma of common cancers, notably at inva-
sive edges,” Cancer, vol. 95, no. 6, pp. 1387–1395, 2002.

[10] J. T. Zhang, Q. X. Li, D. Wang et al., “Up-regulation of PINCH
in the stroma of oral squamous cell carcinoma predicts nodal
metastasis,” Oncology Reports, vol. 14, no. 6, pp. 1519–1522,
2005.

[11] C. H. Park, S. Y. Rha, J. B. Ahn et al., “PINCH-2 presents func-
tional copy number variation and suppresses migration of
colon cancer cells by paracrine activity,” International Journal
of Cancer, vol. 136, no. 10, pp. 2273–2283, 2015.

[12] S. K. Kim, H. R. Jang, J. H. Kim et al., “The epigenetic silencing
of LIMS2 in gastric cancer and its inhibitory effect on cell
migration,” Biochemical and Biophysical Research Communi-
cations, vol. 349, no. 3, pp. 1032–1040, 2006.

[13] M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, article e47,
2015.

[14] B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed, “A
comparison of normalization methods for high density oligo-
nucleotide array data based on variance and bias,” Bioinfor-
matics, vol. 19, no. 2, pp. 185–193, 2003.

[15] C. B. Dean and J. D. Nielsen, “Generalized linear mixed
models: a review and some extensions,” Lifetime Data Analy-
sis, vol. 13, no. 4, pp. 497–512, 2007.

[16] T. Song and D. Spillmann, “Transcriptomic analysis reveals
cell apoptotic signature modified by heparanase in melanoma
cells,” Journal of Cellular and Molecular Medicine, vol. 23,
no. 7, pp. 4559–4568, 2019.

[17] Y. Yuan, H. P. Dong, D. A. Nymoen, J. M. Nesland, C.Wu, and
B. Davidson, “PINCH-2 expression in cancers involving sero-
sal effusions using quantitative PCR,” Cytopathology, vol. 22,
no. 1, pp. 22–29, 2011.

[18] M. Mikulcic, N. G. Tabrizi-Wizsy, E. M. Bernhart et al., “15d-
PGJ2 Promotes ROS-Dependent Activation of MAPK-
Induced Early Apoptosis in Osteosarcoma Cell In Vitro and
in an Ex Ovo CAM Assay,” International Journal of Molecular
Sciences, vol. 22, no. 21, article 11760, 2021.

[19] D. Zhu, X. Xu, M. Zhang, and T. Wang, “Enhanced expression
of KIF4A in osteosarcoma predicts a poor prognosis and

12 Journal of Oncology



facilitates tumor growth by activation of the MAPK pathway,”
Experimental and Therapeutic Medicine, vol. 22, no. 5, p. 1339,
2021.

[20] M. K. Fan, G. C. Zhang, W. Chen et al., “Siglec-15 promotes
tumor progression in osteosarcoma via DUSP1/MAPK path-
way,” Frontiers in Oncology, vol. 11, article 710689, 2021.

[21] K. Chen, Y. Tu, Y. Zhang, H. C. Blair, L. Zhang, and C. Wu,
“PINCH-1 regulates the ERK-Bim pathway and contributes
to apoptosis resistance in cancer cells,” The Journal of Biologi-
cal Chemistry, vol. 283, no. 5, pp. 2508–2517, 2008.

[22] E. Montanez, E. Karakose, D. Tischner, A. Villunger, and
R. Fassler, “PINCH-1 promotes Bcl-2-dependent survival sig-
nalling and inhibits JNK-mediated apoptosis in the primitive
endoderm,” Journal of Cell Science, vol. 125, pp. 5233–5240,
2012.

13Journal of Oncology



Research Article
Identification and Development of an Age-Related Classification
and Signature to Predict Prognosis and Immune
Landscape in Osteosarcoma

Jinjiong Hong ,1 Xiaofeng Wang,1 Liang Yu,2 Jie Li,3 Haoliang Hu,1 and Weisheng Mao 1

1Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No. 6 Hospital, Ningbo 315040, China
2Department of Spine Surgery, Ningbo No. 6 Hospital, Ningbo 315040, China
3Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, China

Correspondence should be addressed to Weisheng Mao; nblymws@163.com

Received 11 August 2022; Accepted 17 September 2022; Published 12 October 2022

Academic Editor: İbrahim Hakkı Cigerci

Copyright © 2022 Jinjiong Hong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. In childhood and adolescence, the prevailing bone tumor is osteosarcoma associated with frequent recurrence and
lung metastasis. This research focused on predicting the survival and immune landscape of osteosarcoma by developing a
prognostic signature and establishing aging-related genes (ARGs) subtypes. Methods. The training group comprised of the
transcriptomic and associated clinical data of 84 patients with osteosarcoma accessed at the TARGET database and the
validation group consisted of 53 patients from GSE21257. The aging-related subtypes were identified using unsupervised
consensus clustering analysis. The ARG signature was developed utilizing multivariate Cox analysis and LASSO regression. The
prognostic value was assessed using the univariate and multivariate Cox analyses, Kaplan-Meier plotter, time-dependent ROC
curve, and nomogram. The functional enrichment analyses were performed by GSEA, GO, and KEGG analysis, while the
ssGSEA, ESTIMATE, and CIBERSORT analyses were conducted to reveal the immune landscape in osteosarcoma. Results. The
two clusters of osteosarcoma patients formed based on 543 ARGs, depicted a considerable difference in the tumor
microenvironment, and the overall survival and immune cell infiltration rate varied as well. Among these, the selected 23
ARGs were utilized for the construction of an efficient predictive prognostic signature for the overall survival prediction. The
testing in the validation group of osteosarcoma patients confirmed the status of the high-risk score as an independent indicator
for poor prognosis, which was already identified as such using the univariate and multivariate Cox analyses. Furthermore, the
ARG signature could distinguish different immune-related functions, infiltration status of immune cells, and tumor
microenvironment, as well as predict the immunotherapy response of osteosarcoma patients. Conclusion. The aging-related
subtypes were identified and a prognostic signature was developed in this research, which determined different prognoses and
allowed for treatment of osteosarcoma patients to be tailored. Additionally, the immunotherapeutic response of individuals
with osteosarcoma could also be predicted by the ARG signature.

1. Introduction

Osteosarcoma (OS) is the major prevailing bone tumor in
childhood and adolescence worldwide that originates from
the bone marrow mesenchymal stem cells or osteoclasts [1,
2]. Osteosarcoma occurs mostly in the metaphysis of long
bones near an active bone growing region and is generally
more prevalent in the femur (42%), the tibia (19%), and
the humerus (10%) [3]. The incidence rate of osteosarcoma
is relatively low with only 3-4 people being affected per mil-

lion annually, but the high probability of recurrence and dis-
tant metastasis and the absence of identifying symptoms at
an early stage together with its highly malignant nature leads
to poor prognosis of osteosarcoma patients [4]. Currently,
therapeutic management for patients with osteosarcoma
mainly depends on surgical resection, chemotherapy, radia-
tion therapy, immunotherapy, and targeted therapy which
has caused the 5-year survival rate to increase to 60%-70%
in osteosarcoma patients without metastasis, whereas
patients with recurrence or metastasis still have a 5-year
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survival rate less than 30% [5, 6]. The identification of the
process behind the occurrence and progression of osteosar-
coma is extremely necessary to create effective treatments.
The examination of biomarkers to identify effective prog-
nostic markers for osteosarcoma that can enhance the active
interventions for the disease and the development of novel
therapies may help in increasing the survival rate.

Aging presents the characteristics of gradual deteriora-
tion in internal physiological function and is linked to the
onset and progression of multiple chronic conditions,
including cancers [7]. Cytologically, aging has been linked
to the cumulative damage caused by abnormalities such as
genomic instability, mitochondrial dysfunction, cellular
senescence, which has been related to the development of
aging-linked malignancies [8]. Cellular senescence occurs
in response to many different triggers, including DNA dam-
age, telomere dysfunction, oncogene activation, and organ-
elle stress, and has been linked to the aging processes [9].
Senescence cells have a highly complex effect on the growth
of cancers. The consequent activation of the SASP system
results in the secretion of a variety of signaling molecules
such as cytokines or chemokines, as well as growth factors,
and extracellular matrix proteases which affect tumor
growth by either arresting the cell cycle or regulating the
immune clearance [10]. The onset of aging-associated malig-
nancies can be delayed by targeting the aging mechanism,
which makes the identification of these aging-related
markers extremely necessary [11, 12]. The reports from mul-
tiple recent studies have demonstrated the involvement of
specific genes in modulating cellular senescence, such as
APOE [13] and FOXO3 [14]. Peters et al. [15] also per-
formed a population-based large-scale transcriptomic analy-
sis to determine aging-related genes (ARGs). Although
osteosarcoma is an age-dependent disease, nevertheless,
there is a lack of systemic research on the association
between ARGs and the prognosis of osteosarcoma.

In this research, the expression profile of ARGs was uti-
lized to identify two aging-related molecular subtypes in the
TARGET database, and the underlying differences between
subtypes were systematically revealed. Afterward, the ARGs
associated with independent prognosis were filtered out,
and an ARGs prognostic signature was constructed to pro-
vide a new method for assessing clinical outcomes in
patients with osteosarcoma, which was further verified uti-
lizing the Gene Expression Omnibus (GEO) dataset,
GSE21257. Moreover, a predictive nomogram utilized for
the prediction of accurate survival rates among patients with
osteosarcoma was established comprising the ARG signature
and clinical features. Finally, the link between the risk model
and the immune infiltration landscape was studied to search
for new targeted therapies for osteosarcoma.

2. Materials and Methods

2.1. Data Source. The RNA-seq expression profiles and cor-
responding clinical and pathological information of 88 oste-
osarcoma patients were accessed at TARGET datasets
(https://ocg.cancer.gov/programs/target, updated January
16, 2022). Afterward, three patients without prognostic

information and one patient without clinicopathological
information were excluded, and 84 individuals with osteo-
sarcoma were left in the training set. For the validation set,
53 osteosarcoma patients in the GSE21257 were obtained
from the Gene Expression Omnibus database (https://www
.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21257).
Table 1 demonstrates the relevant clinical data of patients
with osteosarcoma studied in this research.

2.2. Consensus Clustering. A total of 543 aging-related genes
were accessed at the Human Aging Genome Resource data-
set [16] (HAGR, https://www.genomics.senescence.info/)
and the CellAge dataset (https://genomics.senescence.info/
cells/) after the elimination of duplicate genes. The different
aging-related molecular subtypes were identified according
to the aging-related genes by employing the ConsensusClus-
terPlus package of R. The increase from 2 to 9 in the cluster-
ing variable (k) was carried out to select the optimum
number of subtypes, and the stability of the results was
enhanced by replicating the process 1,000 times.

2.3. Functional Enrichment Analyses between Aging-Related
Subtypes. The differentially expressed genes (DEGs) were
identified utilizing the “limma” R package by applying
the criteria |log2FC|≥0.5 and FDR P<0.05 to study the
biological function and pathways between aging-related
subtypes. These DEGs were analyzed using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis and Gene Ontology (GO) enrichment analyses.
The annotation and visualization were carried out by the
“clusterProfiler,” “http://org.Hs.eg.db,” “ggplot2,” and
“enrichment plot” R packages. The different pathways
between aging-related subtypes were assessed as described
previously utilizing the Gene Set Enrichment Analysis
(GSEA) [17].

2.4. Evaluation of Immune Characteristics between Aging-
Related Subtypes. The tumor microenvironment (TME)
scores such as stromal content (StromalScore), tumor purity,
and the degree of infiltration of immune cells (Immune-
Score) were measured utilizing the program ESTIMATE
[18]. The immune cells infiltration score and the activity
level of pathways associated with the immune system were
measured using the single-sample Gene Set Enrichment
Analysis (ssGSEA) by applying the “gsva” package.

2.5. Construction of an Aging-Related Risk Signature for
Osteosarcoma. A prognostic predictive risk model was con-
structed, and the coefficients were identified using the multi-
variate Cox regression, which was utilized for predicting the
risk scores of individuals with osteosarcoma. For the con-
struction of this model, the relevant genes were identified
by univariate Cox regression in the TARGET cohort, and
the Least Absolute Shrinkage and Selection Operator
(LASSO) regression was applied to define the optimum
range of aging-related genes utilized in the model. The prog-
nostic aging-relevant genes were identified using the “sur-
vival” package and were optimized in the signature by
utilizing the “glmnet” package in the aforementioned analy-
ses. The formula mentioned below was utilized to derive the
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risk score of each individual in the validation and TARGET
cohorts:

Risk score = 〠
n

i=1
coefficient × aging‐related gene expression:

ð1Þ

The individuals with osteosarcoma were divided based
on the median into two groups: the high- and low-risk
groups. The prognostic value of the risk model for individ-
uals with osteosarcoma was analyzed using the principal
component analysis (PCA), Kaplan-Meier curves, time-
dependent receiver operating characteristics (ROC) curves,
C-index, decision curve analysis (DCA) [19], univariate
and multivariate Cox regression analysis, and survival sub-
group analyses. The risk model performance was verified
using the validation cohort, which consisted of 53 osteosar-
coma patients from the GSE21257. To determine whether
our ARG signature had a superior predictive ability
[20–23], four previous signatures were selected with which
the values of the following parameters were compared such
as time-dependent ROC, C-index, and restricted mean sur-
vival time (RMST).

2.6. Development of Nomograms to Predict the Outcome of
Patients with Osteosarcoma. The nomogram was generated
for the prediction of the 1-, 3-, and 5-year rates of survival
of individuals with osteosarcoma, and its performance was
analyzed using various software. The risk score and clinico-
pathological parameters such as age, gender, and metastasis
were utilized for the prediction of the overall survival (OS)
rate by using the “rms” package, while the time-dependent
ROC and calibration curves were utilized to analyze the
nomogram’s performance in prognosis prediction.

2.7. Evaluation of Immune Characteristics between High-Risk
and Low-Risk Group. The variation in the ESTMATEScore,

StromalScore, and ImmuneScore content in the TME and
the score of pathways associated with the immune system
were analyzed between the two risk groups. The ssGSEA
was utilized for the comparison of the pathway scores,
whereas the CIBERSORT algorithm [24] examined 22
immune cells to determine their infiltration degree. The
treatment response of immune checkpoint inhibitors was
predicted by examining the level of expression of several
important genes associated with immune checkpoints
between the two groups.

2.8. Statistical Analysis. The R software 4.1.0 was utilized for
statistical analysis and visualization of the data involved in
this research. The differences between groups were deter-
mined by utilizing Wilcoxon signed-rank and chi-square
tests. The Pearson correlation analysis analyzed the link
between groups. The significant level was selected as P values
<0.05.

3. Results

3.1. Consensus Clustering Analysis Based on ARGs. The
workflow was drawn (Figure 1(a)), and 543 ARGs were iden-
tified in total from the CellAge and HAGR database
(Figure 2(a)). The ARGs clusters of individuals with osteo-
sarcoma were determined by employing the consensus clus-
tering method based on the aforementioned genes. The
value of (clustering variable) k = 2 results in similarity in
values in the same group, while group-to-group variation
in the values exists (Figures 2(b) and 2(c)). Therefore, indi-
viduals with osteosarcoma in the TARGET cohort were cat-
egorized into Cluster 1 (57 samples) and Cluster 2 (27
samples) with distinct ARG expression patterns.

3.2. Functional Enrichment Analysis. The Kaplan-Meier sur-
vival curves (Figure 3(a)) indicated that the OS status of the
Cluster 1 subtype was considerably poorer as compared to
the Cluster 2 subtype (P = 0:023). The Gene Set Enrichment

Table 1: Clinical characteristics of the individuals with osteosarcoma in this research.

Covariates Type
Target GSE21257

Number Percent Number Percent

Age
≤14 39 46.43% 15 28.30%

>14 45 53.57% 38 71.70%

Gender
Female 37 44.05% 19 35.85%

Male 47 55.95% 34 64.15%

Race

White 51 60.71% — —

Asian 6 7.14% — —

Black or African American 7 8.33% — —

Primary tumor site

Leg 76 90.48% 44 83.02%

Arm 6 7.14% 8 15.09%

Pelvis 2 2.38% — —

Metastatic status
Yes 21 25.00% 14 26.42%

No 63 75.00% 39 73.58%

Survival status
Dead 27 32.14% 23 43.40%

Alive 57 67.86% 30 56.60%
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Analysis (GSEA) analyzed the enrichment of signaling path-
ways associated with the immune system in the Cluster 2
group, including IgA production using the intestinal
immune pathway, cytokine-cytokine receptor interaction,
and primary immunodeficiency, as well as B cell and T cell
receptor signaling pathways (Figure 3(b)). The molecular
mechanism between two clusters was examined using 278
DEGs which included 119 upregulated and 159 downregu-
lated genes utilizing the Limma R package (Figure 3(c)).
The GO analysis (Figures 3(d)–3(f)) and KEGG analysis
(Figures 3(g)–3(i)) depicted the enrichment of DEGs in
functions linked to immunity, including neutrophil-
mediated immunity, neutrophil activation involved in
immune response, T cell activation, B cell differentiation,
and immune receptor activity. This analysis demonstrated
that the Cluster 2 subtype was closely linked to the increased
immune activity in the microenvironment.

3.3. Immune Landscape Analysis between Cluster 1 and
Cluster 2 Subtype. The above findings were taken into con-
sideration, and the composition of the TME and immune-
related function between the two subtypes was analyzed
(Figure 4(a)). The ImmuneScore and StromalScore were
higher in Cluster 2 compared to the Cluster 1 subtype
(Figure 4(b)), indicating that Cluster 2 harbored more
immune cells and stromal components. The variation in
the TME of both the subtypes was analyzed by conducting
a ssGSEA in each sample, which resulted in an increased
enrichment of immune-related cells (including CD8+ T
cells, macrophage, and helper T cells; Figure 4(c)) and
immune-related functions (Figure 4(d)) in Cluster 2
subtype.

3.4. Construction and Validation of an ARG Signature for
Osteosarcoma. The univariate Cox analysis resulted in the
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Figure 1: Study flow chart.
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identification of 52 ARGs that showed a considerable link to
OS for individuals with osteosarcoma (Figure 5(a)). After-
ward, a total of 23 ARGs were identified as hub genes to
establish the ARG signature for osteosarcoma utilizing the
LASSO analysis and the multivariate Cox regression
(Figures 5(b) and 5(c)). Each sample was scored using the
formula, and the coefficients were shown in Table 1S.
Afterward, the patients were then classified based on the
median value into the two risk groups. The PCA analysis
demonstrated that ARGs in the signature (Figure 5(d))
could discriminate and differentiate the two risk groups to
a higher degree as compared to all ARGs (Figure 5(e)) and
the whole genome (Figure 5(f)). The OS time
demonstrated a negative link to the risk score (r = −0:58)
(Figures 6(a) and 6(b)), which can be depicted using the
Kaplan-Meier analysis that illustrated a link between the
high-risk group and a shorter OS time compared to the
low-risk group (Figure 6(c)). The risk model was further
evaluated for its prediction accuracy by deriving the area

under the curve (AUC). The AUCs of the 1-, 3-, and 5-
years OS yielded the following respective values of 0.901,
0.927, and 0.950 (Figure 6(d)), which outperformed the
AUCs obtained with clinicopathological variables
(Figure 6(e)), including age, stage, and metastasis with
respective values of 0.469, 0.437, and 0.694. C-index
(Figure 6(f)) and DCA analysis (Figure 6(g)) also
confirmed that the prediction capacity of the risk score
outperformed that of age, stage, and metastasis. The risk
score could also function as an independent predictor of
the poor OS of patients with osteosarcoma, as
demonstrated by the univariate (Figure 6(h)) and
multivariate (Figure 6(i)) Cox analyses. The survival
probability and the risk score relationship in age
(Figure 7(a)), gender (Figure 7(b)), metastasis (Figure 7(c)),
and tumor site (Figure 7(d)) subgroup were also
investigated. The analysis indicated that the OS duration of
the patients with the higher risk score was shorter in each
subgroup, except in the no leg group, possibly due to too
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Figure 3: Functional enrichment analysis. (a) Kaplan-Meier curves of OS in Cluster 1 and Cluster 2 subtypes. (b) Gene Set Enrichment
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small sample size. Subsequently, the validation cohort was
set as 53 osteosarcoma patients in the GSE21257 where the
risk score was negatively linked to OS time (r = −0:29,
Figures 8(a) and 8(b)). In this cohort, the link between the
higher risk score of patients and the poor survival rate was
established using the Kaplan-Meier analysis (Figure 8(c)).
The respective AUCs of the 1-, 3-, and 5-years OS were
0.827, 0.713, and 0.827 (Figure 8(d)). These results were
further verified by the univariate Cox analysis that linked
the risk score values with the OS rates (Figure 8(e); HR =
1:816, P = 0:022). Furthermore, multivariate Cox analysis

indicated a poor prognosis for individuals with
osteosarcoma who demonstrated higher risk scores
(Figure 8(f); HR = 1:887, P = 0:017).

3.5. The ARG Signature Performed Better than Others in
Prognostic Prediction for Osteosarcoma. The ARG prognosis
model was compared with four other previously published
gene signatures to examine their relative performance in
prognosis prediction such as autophagy-related [20],
ferroptosis-related [21], immune-related [22], and
metabolism-related genes signatures [23]. Although these

Tumor purity

Tumor purity

ESTIMATE score

Estimate score

Immune score

Immune score

Stromal score

Stromal score

Subtype

Subtype

aDCs

B_cells
NK_cells
Macrophages

iDCs

T_helper_cells
MHC_class_1
Type_I_IFN_Response
Inflammation-promoting
T_cell_co-stimulation
TIL
Check-point
T_cell_co-inhibition
HLA
pDCs
Neutrophils
APC_co_stimulation
APC_co_inhibition
Treg
CCR
Parainflammation
CD8+_T_cells
Th1_cells
DCs
Tfh
Cytolytic_activity
Th2_cells
Mast_cells
Type_II_IFN_Response

0.9

0.4

4000

2000

1500

Cluster 1
Cluster 2

−1000

−1000

−500

4

2

−2

−4

0

(a)

Es
tim

at
e s

co
re

Im
m

un
e s

co
re

St
ro

m
al

 sc
or

e

⁎⁎⁎ ⁎⁎⁎⁎

Cluster 1

Cluster 2

4000

2000

−2000

0TM
E 

sc
or

e

(b)

1.00

0.75

0.50

0.25

0.00

Sc
or

e

aD
Cs

B_
ce

lls
CD

8+
_T

_c
el

ls
D

Cs
iD

Cs

M
ac

ro
ph

ag
es

M
as

t_
ce

lls
N

eu
tro

ph
ils

N
K_

ce
lls

pD
Cs

T_
he

lp
er

_c
el

ls
Tfh

Th
1_

ce
lls

Th
2_

ce
lls TI
L

Tr
eg

ns ns ns ns ns ns ns ns ns⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎⁎⁎ ⁎⁎⁎⁎

Cluster 1
Cluster 2

(c)

A
PC

_c
o_

in
hi

bi
tio

n

A
PC

_c
o_

sti
m

ul
at

io
n

CC
R

Ch
ec

k-
po

in
t

Cy
to

ly
tic

_a
ct

iv
ity

H
LA

In
fla

m
m

at
io

n-
pr

om
ot

in
g

M
H

C_
cla

ss
_I

Pa
ra

in
fla

m
m

at
io

n

T_
ce

ll_
co

-in
hi

bi
tio

n

T_
ce

ll_
co

-s
tim

ul
at

io
n

Ty
pe

_I
_I

FN
_R

es
po

ns
e

Ty
pe

_I
I_

IF
N

_R
es

po
ns

e

1.0

0.8

0.6Sc
or

e

0.4

0.2

ns ns ns ns ns ns ns⁎ ⁎ ⁎ ⁎ ⁎ ⁎

Cluster 1
Cluster 2

(d)
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Figure 5: Construction of an aging-related risk model with prognostic value in osteosarcoma. (a) Forest plot utilizing the univariate Cox
analysis to depict the prognosis-related aging-associated genes linked to OS. (b and c) The Least Absolute Shrinkage and Selection
Operator (LASSO) regression analysis; the super parameter value was validated by means of 10-fold cross-validation. Principal
component analysis (PCA) of genes in the signature (d), all aging-related genes (e), and the whole genome (f).
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gene signatures were effective in creating two subgroups
with considerably varied prognostic outcomes for the
patients (Figures 9(a), 9(c), 9(e), and 9(g)), however, the
ROC curve analysis and restricted mean survival time
(RMST) values indicated the superiority of the model devel-
oped in this research. The aforementioned models depicted
lower values of AUC as calculated by the former analysis
for 1-, 3-, and 5-year survival compared to this model
(Figures 9(b), 9(d), 9(f), and 9(h)), while this model had
the highest C-index at 0.905 as calculated by RMST and
obtained after comparison with the other models
(Figures 9(i) and 9(j)).

3.6. Construction and Validation of the Nomogram Based on
the Risk Model. To enable the nomogram to give a very accu-
rate prediction, the clinical factors such as sex and age of the
individual as well as tumor metastasis and tumor site were
integrated into the prognostic signature (Figure 10(a)). The
respective AUC of the 1-, 3-, and 5-year nomograms were
0.941, 0.884, and 0.896 (Figure 10(b)). The performance of
nomograms was visualized utilizing the calibration curves
for 1-, 3-, and 5-year OS, where the 45° line stands for the
most accurate prediction ability. The closer the calibration
curves for 1-, 3-, and 5-year were to the ideal curve, the bet-
ter the nomogram performed (Figure 10(c)).

3.7. Correlation between Risk Model and Clinicopathological
Parameters, as well as Infiltrating Immunocyte Fractions.
The heatmap (Figure 11(a)) showed the clinicopathological
parameters of patients in the two risk groups. The chi-
squared test (Figure 11(b)) and Wilcoxon signed-rank test
(Figure 11(c)) confirmed that the risk scores in individuals
experiencing metastasis were increased as compared to those
with no metastasis. The increased TME scores (including the

StromalScore, ImmuneScore, and ESTIMATEScore) of the
group with low-risk scores were further analyzed by TME
analysis (Figure 12(a)), indicating that of the two risk
groups, the one with the lower risk scores had an increased
infiltration level of immune cells as compared to the group
with higher risk scores. The analysis of the immune-related
function through ssGSEA in the two risk groups demon-
strated a higher level of enrichment of these functions in
the group with low-risk scores. The level of infiltration of
immune cells was analyzed through CIBERSORT where
the immune cells were plotted using a bar graph to estimate
their percentage in each risk group (Figure 12(c)). The abun-
dance of activated memory CD4+ T cells and CD8+ T cells
was significantly increased in the low-risk group
(Figure 12(d)).

3.8. Immunotherapy Response Prediction. The correlation
between the risk model and the expression of genes related
to the immune checkpoints was studied, which indicated
an enhanced immune activity in the TME that led to arrest-
ing the tumor growth in the low-risk group. The enhanced
immunological activity was seen due to an increase in the
expression levels of genes associated with the immunological
checkpoints such as PD-L1 (CD274), CTLA4, LAG3, GZMB,
CD8A, PRF1, HAVCR2, IFNG, and GZMA (Figure 13).
These results demonstrate the increased effectiveness of
immunotherapy in targeting the immune checkpoints in
the group with low risk scores.

4. Discussion

Osteosarcoma is a common malignant tumor originating
from bone tissue in children and adolescents. Osteosarcoma
has a high degree of invasion and potential for distant
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Figure 6: Validation of the gene signature linked to aging in the TARGET cohort. (a) Risk score, survival time, and survival status of
individuals with osteosarcoma in the TARGET cohort. (b) The correlation between the risk score and survival time in the TARGET
cohort. (c) Kaplan-Meier survival curve generated on the basis of an aging-related gene signature in the TARGET cohorts. (d) Risk
model’s ROC curve for 1-, 3-, and 5-year OS in the TARGET cohort. (e) ROC curve of the risk score, age, gender, and metastasis. (f) C-
index for the risk score, age, gender, and metastasis. (g) Decision curve analysis (DCA) for the risk score, age, gender, and metastasis.
Univariate (h) and multivariate (i) Cox analyses assess the risk model’s independent prognostic value for individuals with osteosarcoma
in the TARGET cohort using Cox analyses.
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Figure 7: Continued.
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metastases and is prone to hematogenous metastases at the
early stage and after surgery, especially in the case of lung
metastases [25, 26]. In recent years, despite great progress
in surgery and adjuvant chemotherapy, such patients still
exhibit a poor prognosis, with a high recurrence rate [27].
Therefore, identifying effective prognostic markers for risk
stratification of osteosarcoma patients to adopt more aggres-
sive interventions is expected to improve OS and might
serve as potential therapeutic targets.

Aging is characterized by the accumulation of damage to
macromolecules and cell architecture resulting in a progres-

sive decrease in the function of tissue and organ due to
nutrition, genetic and environmental factors, and lifestyle
[28]. The accumulation of these damaged arrested cells was
observed with the increase in age [29], and these senescent
cells were noted to contribute to diseases that are related to
aging, such as renal damage [30], alcoholic fatty liver disease
[31], cerebrovascular disorders [32], diabetes [12], and Alz-
heimer’s disease [33]. Cellular senescence is an inherent pro-
cess that inhibits tumor progression, contributing to
arresting the cells autonomously in the cell cycle and pre-
venting further divisions. This process also causes the
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Figure 7: Kaplan-Meier survival curves in subgroup analyses on the basis of various clinical variables. (a) Subgroup survival analysis of risk
model per age. (b) Subgroup survival analysis of risk model per gender. (c) Subgroup survival analysis of risk model as per metastatic status.
(d) Subgroup survival analysis of risk model as per primary tumor site.
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removal of these damaged cells by activating the immune
system through the SASP, but if the cells evade this fate, it
may lead to tumorigenesis [34]. Emerging evidence showed
that several ARGs may be the cause of onset and advance-
ment of cancers due to regulation of the process of aging
and cellular senescence by these ARGs and could be used
as a target for cancer therapy [35, 36]. Consequently, to ana-
lyze the exact role that aging plays in osteosarcoma, the tran-
scriptome of the ARGs needs to be investigated thoroughly.

In the current study, using the unsupervised consensus
clustering analysis, two subtypes in the TARGET cohort
were determined that were related to aging, and both groups
exhibited considerably varied outcomes regarding the prog-
nosis. Furthermore, various analyses gave results that were
favorable for Cluster 2 that indicated an enrichment of the
signaling pathways associated with the immune response
and an enhanced infiltration rate of immune cells in the
TME. The GSEA was carried out for the former to determine
the extent of the response by the immune system as those
values could be used for observation of the progression of
cancer [37]. In addition, the active immune response led to
a good prognosis of the Cluster 2 subtype. The TME is an
intricate network of immune cells, tumor cells, and stromal
cells that contribute to tumor biology and therapeutic
response. An increased infiltration level due to increased
enrichment of immune effector cells was detected in Cluster
2 during the analysis of the TME, such as CD8+ T cells,
macrophages, and helper T cells which can act as a protec-
tive factor against multiple cancers, such as epithelial ovar-
ian cancer [38], head and neck squamous cell carcinoma
[17, 39], and non-small-cell lung cancer [40]. These partly
explain that patients belonging to the Cluster 2 subtype

had a higher antitumor immune response and good
prognosis.

The construction of an accurate and efficient model for
cancer monitoring has become a research hotspot due to
advances in RNA-sequencing and bioinformatics tools.
Research has shown a considerable correlation of several
ARG signatures with the prognosis of cancers such as Zhang
et al. [41], Wang et al. [42], and others who developed gene
signatures. In both cases, gene signatures that were aging-
related were designed to evaluate the potential prognosis
prediction efficiency of a biomarker for malignancy and
study the effect of chemo- and immunotherapies. The for-
mer studied lung adenocarcinoma, while the latter studied
rectal cancer. In other studies, results similar to these were
detected such as in malignant melanoma [43] and lung
squamous carcinoma [44]. Nevertheless, there are fewer
studies about the function of ARGs as a prognosis-
determining factor in osteosarcoma. In this research, an
ARG signature was demonstrated to better predict the prog-
nosis of osteosarcoma than conventional clinicopathological
characteristics utilizing LASSO regression and multivariate
Cox regression analysis. The risk scores and metastasis could
predict the patients’ prognosis independently as depicted by
the univariate and multivariate Cox regression analyses,
which was consistent with the finding in the validation
cohort. Moreover, compared to previously reported signa-
tures for osteosarcoma prognosis [20–23], the time-
dependent ROC curve analysis and C-index revealed a better
ability of this ARG model to predict the prognosis of
patients with osteosarcoma. Subsequently, using risk scores
and clinical characteristics, a nomogram was developed that
depicted more convenient usage in clinical settings. The
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Figure 9: Comparison of the performance of the constructed seven-gene signature to previous signatures in the TARGET cohort. Kaplan-
Meier survival analysis of autophagy-related genes signature (a), ferroptosis-related genes signature (b), immune-related genes signature (c),
and metabolism-related genes signature (d). Time-dependent ROC curves of autophagy-related genes signature (e), ferroptosis-related genes
signature (f), immune-related genes signature (g), and metabolism-related genes signature (h). (i) Restricted mean survival time (RMST)
curve for all signatures. (j) C-index for all signatures.
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nomogram exhibited better performance than the single
ARG risk model in predicting short-term OS. Based on the
above finding, the ARG risk model was a promising novel
prognostic marker and could improve individualized treat-
ment strategy.

Emerging immunotherapy, including anti-CTLA4 [45],
anti-LAG3 [46], anti-PD-1, and anti-PD-L1 antibodies
[47], has been proven to be efficacious and increased the sur-

vival rate of patients with several advanced cancers, includ-
ing metastatic osteosarcoma patients [48]. However,
considering the heterogeneity and complexity of osteosar-
coma, only a few patients had a favorable response to immu-
notherapy [49]. The components and activity of TME are
critical determinants of the response to immunotherapy
[50]. As compared with other cancers, osteosarcoma has
low immune infiltration in TME, which may be one reason
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for unsatisfactory immunotherapy results [49, 51]. In this
research, the group with the lower risk scores had increased
StromalScore, ImmuneScore, and immune functions, indi-
cating that the risk group with low scores demonstrated
increased immune infiltration level and immunogenicity in
comparison with the high-risk group, which probably con-
tributed to the better survival outcomes. The CIBERSORT
analysis showed that CD8+ T cells and activated memory
CD4+ T cells were more infiltrated in the low-scoring risk
group. CD8+ T cells are essential in the antitumor activity
and are a favorite prognosis marker for osteosarcoma
patients [52]. The CD8+ T cells can be differentiated into
cytotoxic T lymphocytes (CTLs) by CD4+ T cells through
multiple mechanisms, as well as maintaining and enhancing
the antitumor response of CTLs [53]. Intriguingly, CD4+ T
cells have been identified as having direct antitumor cyto-
lytic function [54]. The efficiency of blockade therapy based
on immune checkpoints is primarily dependent on the
expression of genes associated with immune checkpoints
and T cell-dependent immune response [55]. Unsurpris-
ingly, in the low-risk group, the immune checkpoint genes
were expressed more, particularly PD-L1, CTLA4, and
LAG3, showing that the low-risk patients could be more
benefited from the immune checkpoint blockade therapy.

Therefore, this study indicates that the ARG signature may
be useful in filtering patients who can benefit from
immunotherapy.

This study had some limitations. Both the TARGET-OS
cohort and the GSE21257 cohort have relatively small sam-
ple sizes, and the finding based on bioinformatics analysis
was insufficient for clinical practice. Therefore, the results
need to be verified by utilizing large study samples and
in vitro or in vivo experimental verification. Furthermore,
the specific functions of ARGs in the signature in osteosar-
coma remain ambiguous and need more study.

5. Conclusion

In conclusion, this study identified two aging-related sub-
types and an ARG prognostic signature that depicted robust
performance in the prognosis prediction of osteosarcoma
patients, which might help in guiding clinical management.
Furthermore, ARG prognostic signature showed the differ-
ent immune landscapes for osteosarcoma patients, which
guide the personalized application of immunotherapy. How-
ever, before applying aging-related subtypes and prognostic
signatures, these findings need to be verified by more clinical
samples.
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Figure 12: Immune landscape between the high-risk and low-risk groups. (a) Violin plots show the StromalScore, ImmuneScore, and
ESTIMATEScore between the high-risk and low-risk groups. (b) Box plots present the difference in immune-related pathways between
the high-risk and low-risk groups. (c) Relative proportion of infiltration levels of immune cells in the high-risk and low-risk groups. (d)
Violin plot illustrates the considerable variation in immune cells between both risk groups.
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Background. The association between oxidative stress and lncRNAs within the cancer-related researching field has been a
controversial subject. At present, the exact function of oxidative stress as well as lncRNAs exert in breast cancer (BC) are still
unclear. Therefore, the present study examined the lncRNAs oxidative stress-related in BC. Methods. Transcriptome data of BC
obtained from TCGA (The Cancer Genome Atlas) database were used to generate synthetic matrices. Patients with breast
cancer were randomly assigned to training, testing, or combined groups. The prognostic signature of oxidative stress was
created using the selection operator Cox regression method, and the difference in prognosis between groups was examined
using Kaplan-Meier curves, the accuracy of which was calculated using a receiver-operating characteristic-area through the
curve (ROC-AUC) analysis with internal validation. Also, the Gene Set Enrichment Analyses (GSEA) was applied for the
analysis of the risk groups. To conclude, the half-maximal inhibitory concentration (IC50) of these groups were investigated by
immunoassay assay. Results. A model based on 7 lncRNAs related to oxidative stress was proposed, and the calibration plots
and projected prognosis matched well. For prognosis at 5, 3, and 1 year, the area under the ROC curve (AUC) values were
0.777, 0.777, and 0.759. The functions of target genes identified by GSEA appear to be mainly expressed in metabolism, signal
transduction, tumorigenesis, and also the progression. The remarkable differences in IC50 and gene expression between risk
groups in this study provide a deep insight for further systemic treatment. Higher macrophage scores were acquired in the
high-risk group, of which patients showed more response to conventional chemotherapy drugs, such as AKT inhibitor VIII
and Lapatinib, as well as immunotherapy strategies including anti-CD80, TNF SF4, CD276, and NRP1. Conclusion. The
prognosis of breast cancer can be independently predicted by the markers, which sheds light on further research of the specific
role of lncRNAs which are oxidative stress-related and clinical treatment of breast cancer.

1. Introduction

Breast cancer is the most commonly diagnosed feminine
malignant tumor with an increasing incidence. Studies have

shown that in 2018 there were approximately 2.08 million
new diagnosed cases and 630,000 deaths globally [1]. With
the improvement of surgery, radiotherapy, and chemother-
apy, the overall survival condition of breast cancer patients
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has improved significantly. However, breast cancer is insid-
ious in its onset and highly malignant. By the time a patient
presents with typical symptoms of BC, the tumor has often
progressed to an intermediate to advanced stage. At this
time, common interventions are less likely to yield desired
results, and this significantly affects the prognosis of patients
[2, 3]. Therefore, it is very important to dig into the molec-
ular biological mechanism of breast cancer and to find
molecular biological markers for early identification and
development of breast cancer.

Oxidative stress refers to the overproduction of highly
reactive molecules including reactive oxygen species (ROS)
and reactive nitrogen species (RNS), by the body in response
to various damaging stimuli. Physiological and pathological
reactions in cells and tissues are caused by the imbalance
of oxidation-antioxidation in vivo. Many factors, such as

radiation, age, infectious diseases, and heat stress, may lead
to increased intracellular ROS concentrations, which stimu-
late intracellular oxidative stress response and protect or
destroy cells [4]. In recent years, scholars have gradually clar-
ified the participation of oxidative stress in the occurrence
and prognosis of tumors. Oxidative stress causes DNAmuta-
tions in tumor cells, mediates the action of proto-oncogenes,
and causes aberrant cell amplification and tumor formation
[5]. Moreover, oxidative stress can also promote the metabo-
lism of tumor by altering the key enzymes of metabolism,
inducing changes in the metabolic genome and activating
signaling pathways, thus promoting the further development
of tumors [6].

Long noncoding RNA (lncRNA) is considered as one of
the important members among the noncoding RNA family,
whose length was more than 200 nucleotides and are a
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Figure 1: GO and KEGG analyzing of DEGs related to oxidative stress in cancer and normal tissues. (a) Volcano plot of 794 genes related to
oxidative stress in BC. Light salmon dots represent for upregulated genes and blue dots for downregulated ones. (b, c) GO analysis of DEGs
related to oxidative stress. (d, e) KEGG analysis of DEGs related to oxidative stress. GO: Gene Ontology; DEGs: differentially expressed
genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; fdr: false discovery rate; FC: fold change; CC: cellular components; BP:
biological process; MF: molecular function.
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subtype of RNA transcripts [7]. In recent years, researches
have proved that multiple lncRNAs participate in various
biological processes as a vital part, especially in the incidence
and progression of invasive tumors. Many lncRNAs have
been illustrated to be closely linked to the breast cancer
development and can be broadly classified into two types:
cancer-promoting and cancer-inhibiting [7]. Their mecha-
nisms of action are to affect the amplification, invasion,

distant metastasis, apoptosis, and drug resistance of breast
cancer cells. lncRNAs which are oxidative stress-related have
not been studied in breast cancer.

In this research, we aimed to identify lncRNAs associated
with oxidative stress regarding breast cancer and to elucidate
the participation of lncRNAs in tumor microenvironment
(TME) and breast cancer prognosis. To identify the underly-
ing mechanisms, a gene enrichment analysis was performed.
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Figure 2: Oxidative stress-associated lncRNA selection through the screening of Lasso model. (a) Lasso coefficients of the 15 lncRNAs
which are oxidative stress-related in BC, where the optimal log (lambda) value is marked by vertical dashed lines. (b) Lasso coefficient
profiles.
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2. Materials and Methods

2.1. Data Identification and Acquisition of Oxidative Stress-
Associated lncRNAs. In order to obtain comprehensive data
matrices about BC with normal tissue, the RNA tran-
scriptome datasets (HTSeq-FPKM) and the germane clinical
information were acquired online from The Cancer Genome
Atlas (TCGA) database (https://http://portal.gdc.cancer.gov/
). 1109 BC tissue samples and 113 normal breast tissue sam-
ples were acquired as control samples. Furthermore, exten-
sive clinical information on patients was obtained from the
TCGA. Samples with a follow-up period of less than a
month were excluded from further screening using clinical
information. As all the data enrolled were obtained from
The Cancer Genome Atlas Database and strictly followed
guidelines of TCGA publication (http://cancergenome.nih
.gov/abouttcga/policies/publicationguidelines), ethics com-
mittee approval was not required.

2.2. Screening Analysis of Oxidative Stress-Related Genes and
lncRNAs. The lncRNA profiles were acquired firstly from the
dataset of RNA seq. Total RNA expressing panel was nor-
malized before the analyzation through log2 transformation.
A list of genes related to oxidative stress was downloaded
from an online website (https://www.genecards.org/) to
screen for gene sets associated with oxidative stress with a
correlation score greater than 7.

2.3. Functional Enrichment Analyzation of Differentially
Expressed Genes Linked to Oxidative Stress. A false
discovery rate ðFDRÞ < 0:05 and jlog 2 − fold change ðFCÞ >
1j were applied in this experiment as screening criteria to
acquire the panel of oxidative stress-related different
expressing genes (DEGs). Gene Ontology (GO) were con-
ducted for the research aim, as well as Genes Kyoto Encyclo-
pedia and Genomes (KEGG) analyzation in the “ggplot2”
package (Figure 1).

2.4. Identification of Prognostic lncRNAs Related to Oxidative
Stress.We utilized the “limma” package for the calculation of
the correlation between genes related to oxidative stress as
well as lncRNAs. The square of correlation coefficient jR2j
> 0:3 in combination of p < 0:001 was identified as lncRNAs
which are oxidative stress-related. We performed univariate
Cox regression analysis for lncRNAs which are oxidative
stress-related associated to the cancer prognosis in breast
cancer patients, followed by Lasso Cox regression and mul-
tivariate Cox regression analyzation of lncRNAs which are
oxidative stress-related for constructing the predictive signa-
ture of lncRNAs which are oxidative stress-related. The
computational equation adapted is descried as follows:

risk score = 〠
n

i=1
∗ Coef i ∗ xið Þ: ð1Þ

Coef stands for the coefficient value, and x for selected
lncRNAs expressing value. This formula was utilized to assess
the risk score for each individual diagnosed with breast cancer.
The patients were divided into two separate groups on the

basis of the median risk score: low-risk along with high-risk
groups [8, 9]. Differences of survival condition between groups
were compared through the log-rank test.

2.5. The Prognostic Model Development. A model for inde-
pendent prognostic was developed using Cox regression.
Nomogram was applied for the prediction of the patient sur-
vival. The calibration curves, receiver-operating characteris-
tic (ROC), and concordance index (C-index) curves were
developed for exploring this model’s accuracy. Demographic
variables were included in the multivariate Cox regression
analysis to see if the risk score could independently predict
the development of breast cancer. The stability of the predic-
tion model conducted in this experiment was also examined
within the testing and training groups.

2.6. Functional Analysis. The online CBioPortal (http://www
.cbioportal.org/) was taken to describe the mutation profiles
of each key gene. Gene set enrichment analysis was applied
for interpreting the functional enrichment of gene express-
ing panel [10]. The enrichment of lncRNAs related to oxi-
dative stress with a classified prognosis value was explored
and 10 GO and KEGG pathways related to oxidative stress
were visualized.

2.7. The Investigation of the Immunocheckpoints, TME, and
the Model in the Clinical Treatment. Limma, GSVA, ggpubr
R, and ggplot2 packages as well as GSEABase were utilized
to determine the expression differences of 29 immunocells
and 47 immune checkpoint genes within the studied groups
and to guide the immunotherapy of breast cancer [9].
“pRRophetic,” “ggpubr,” “ggplot2,” etc. R packages were
applied to classify the differential expression of IC50 in the
two groups of breast cancer and to perform clinical chemo-
therapy against breast cancer [11].

2.8. Statistical Analysis. All statistical analyzation involved
were completed using R software (Version 4.1.2). The Wil-
coxon test was used to compare the expression levels of
DEGs in cancer and normal tissue samples. Univariate Cox
regression analyzation was performed for determination of
the relationship of lncRNAs which are oxidative stress-
related with overall survival, and lncRNAs which are oxida-
tive stress-related were screened using multivariate Cox
analysis for the construction of predicting signature
discussed in this research. The Kaplan-Meier method

Table 1: Multivariate Cox analyzation towards the lncRNAs on the
basis of TCGA COAD data.

lncRNA Coefficient HR 95% CI of HR

DLG5-AS1 -0.651 0.521 0.307-0.887

LINC01235 0.400 1.492 1.184-1.881

SEMA3B-AS1 -0.245 0.783 0.563-1.088

LINC00987 -0.684 0.504 0.303-0.841

ST7-AS1 -1.181 0.307 0.139-0.675

MAPT-AS1 -0.782 0.458 0.281-0.744

LINC01871 -0.714 0.490 0.332-0.721
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combined with log-rank test were applied for analyzation of
the OS of patients in the two groups. The “survival ROC”
package was applied for drawing the ROC curves and for
determination of the area below the curve (AUC) values.
Principal component analysis (PCA) method was utilized
to discover the distribution of patients ranked at differed
risk scores. Statistical tests turned out to be bilateral, with
p < 0:05 being significant.

3. Results

3.1. Identification of Prognostic lncRNAs Which Were
Oxidative Stress-Related. 14,142 counted lncRNAs were
gained from TCGA-COAD, among which 1086 lncRNAs
linked to oxidative stress were identified. Univariate Cox
regression analyzation uncovered that 50 of them were
linked to the development of BC. Lasso Cox regression

analyzation displayed in Figure 2 showed that 15 lncRNAs
which are oxidative stress-related had a connection with
the BC development. Finally, multivariate Cox regression
analysis uncovered that 7 lnccRNAs which are oxidative
stress-related were linked to the development of BC. DLG5-
AS1, LINC01235, SEMA3B-AS1, LINC00987, ST7-AS1,
MAPT-AS1, and LINC01871 were identified as construct pre-
dictive signatures (Table 1). The risk scores were calculated as:
risk score=−0.65107016×DLG5−AS1expressing level
+ 0.40027496×LINC01235 expressing level +−0.244710708
× SEMA3B−AS1expressing level +−0.684301493×LINC0
0987 expressing level +−1.181200718× ST7−AS1 expressin-
g level +−0.781949407×MAPT−AS1 expressing level +−0.
713957256×LINC01871 level. The lncRNAs were further
visualized with the ggalluvial, ggplot R software package.
From the Sankey diagram, one lncRNA (LINC01235)
was a detrimental prognostic factor, and the others
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(DLG5-AS1, SEMA3B-AS1, LINC00987, ST7-AS1, MAPT-
AS1, and LINC01871) were positive prognostic factors
(Figure 3).

3.2. The Prognostic Impact of the Signature Established. Risk
score was linked to the survival condition of BC patients sig-
nificantly. There was a shorter OS in the group with high-
risk (p < 0:001, log-rank test) (Figure 4). Cox regression
suggested significant developing impact on the risk score
for the BC patients (Figure 5).

3.3. Clinical Value of the Signature regarding lncRNA
Oxidative Stress-Related. The results of univariate cox
regression analysis suggested that general information
including age, T stage, N stage, M stage, stage, and risking
score was related to the survival condition in BC patients
(Figure 6(a)). As suggested by multivariate Cox regression
analyzation, age and risk score appear to be separate predic-
tors of OS in BC patients (Figure 6(b) and Table 2). The
AUC of the risk score was 0.807, which outperformed clini-
copathological variables in predicting the development of
BC (Figure 6(c)). The AUCs of 5-, 3-, and 1-year survival
ratios were accordingly recorded as 0.777, 0.777, and 0.759,
which indicated positive predictive capability (Figure 6(d)).
The clinicopathological variable differences between the
groups were analyzed, while N stage (p < 0:05) along with
stage (p < 0:05) were uncovered to be different between the
two groups discussed (Figure 6(e) and Table 3).

To predict the development of breast cancer further, a
nomogram including clinicopathological variable as well as
the risk score was constructed, which could predict the 1-,
3-, and 5-year prognosis (Figure 7(a)). Curves of calibration
implied a positive consistency of the actual OS conditions
along with the predicted survival conditions at separate
period (Figures 7(b)–7(d)).

3.4. Internal Validation of the Predictive Characteristics. For
the verification of the applicability of the predictive charac-
teristics for OS on the basis of the TCGA dataset, 856
patients with BC were randomly separated into two group-
ing cohorts (training cohort n = 427, test cohort n = 429).
The demographic information of patients enrolled are illus-
trated in Table 4. Complying with the results observed, OS
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Figure 6: The correlation of the predictive signature with the development of BC. (a) The forest plot regarding univariate Cox regression
analyzation. (b) The forest plot regarding multivariate Cox regression analyzation. (c) The ROC curve illustrating the clinicopathological
variables and the risk scores. (d) ROC curves along with corresponding AUCs at 1-, 3-, and 5-year survival with the predictive signature.
(e) The heat map of distribution for the clinicopathological variables and seven prognostic lncRNAs in the two risk groups.

Table 2: Risk scores as well as clinical characteristics regarding BC
through analysis of multivariate Cox regression.

Variable HR HR95L HR95H p value

Age 1.041 1.025 1.056 1.55E-07

Gender 0.572 0.079 4.168 0.582

Stage 1.770 1.057 2.963 0.030

T 0.962 0.712 1.299 0.802

M 1.420 0.616 3.273 0.411

N 1.191 0.892 1.591 0.235

Risk score 1.068 1.050 1.087 3.91E-14
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rates of patients in the group with high-risk tended to be
lower (p = 9:65e − 10). (Figure 8(a)) In the testing cohort,
the prognosis of the group with high-risk turns to be worse
(p = 1:15e − 05) (Figure 8(c)) The ROC curves of two
cohorts appears to be a positive predictive capability. In
the training cohort, the AUCs of 5-, 3-, and 1-year prognosis
conditions were, respectively, 0.797, 0.807, and 0.85
(Figure 8(b)), while within the test cohort, the AUCs of 5-,
3-, and 1-year survival conditions were, respectively, 0.747,
0.761, and 0.689. (Figure 8(d)).

3.5. Function Analyzation. 5484 GO analysis and 178 KEGG
analysis were conducted. In GO analysis, the lncRNAs oxi-
dative stress-related were enriched in biological processes
like regulation of cell cycle and of mitosis (Figure 9(a)).
KEGG analysis uncovered that these lncRNAs were mainly
enriched into metabolism, malignant tumor formation,
signal transduction, etc. (Figure 9(b)). Furthermore, it was
proposed that the gene clusters were associated to critical
biological processes, genesis functional pathways, and cancer
prognosis, for example, JAK-STAT as well as VEGF signal-
ing pathway (p < 0:05) was solidly linked to the cancer inva-
sion and metastasis.

3.6. Immune Cell Infiltration. With PCA maps, it was feasi-
ble to visualize the patients’ distribution based on oxidative
stress-related gene sets, the entire genome, oxidative stress-
related lncRNAs, and important genes. The results implied
that the key gene appears to be the best for patients. Patients
with differential risking score were distributed in differed
quadrants (Figure 10).

To discover the correlation between risking score and
immune cells further, the GSEA enrichment scores for dif-
ferent immune cell clusters were assessed. The results
showed DCs, aDCs, B_cells, plasmacytoid dendritic cells
(pDCs), CD8+_T_cells, mast cells, immature dendritic cells
(iDCs), neutrophils, macrophages, NK cells, T follicular
helper (Tfh) cells, tumor infiltrating lymphocyte (TIL), T
helper cells, T helper type 1 (Th1) cells, and T helper type
2 (Th2) cells were significantly varied between the groups
discussed (Figure 11). Only macrophages in the group with
high risk exhibited a high score, suggesting that the function
of macrophages was more active.

3.7. Linage Between the Predictive Signature and BC
Therapy. The expression of CD80, TNFSF4, CD276, and
NRP1 was higher significantly in the group with high risk,
suggesting a potential response to anti-CD80, TNFSF4,
CD276, and NRP1 immunotherapy in high-risk patients
(Figure 12(a)). This provides a new therapeutic target for
immunotherapy of BC. Combined with immunotherapy,
we also surveyed the linkage between the predicting feature
and the general chemotherapy efficacy, then revealed that
the AKT inhibitor VIII, AZD6482, bicalutamide,
BMS.708163, imatinib, lapatinib, pazopanib, and thapsigar-
gin in the high-risk group exhibited a lower IC50 compared
with the other group (Figures 12(b)–12(i)), and the metho-
trexate exhibited a higher IC50 in the group with high-risk
(Figure 12(j)), which could help explore personalized treat-
ment schemes appropriate for both high- and low-risk group
individualized patients.

3.8. Mutation Landscape of Key Genes. The OncoPrint view
of key genes in the CBioPortal database were applied to visu-
alize mutations within the seven key genes on the basis of
data acquired from 1084 BC patients. Nearly 1/4 of these
patients (23.7%) had mutations in all seven key genes. The
highest rate of mutations was found in DLG5-AS1 (7%)
and ST7-AS1 (7%) (Figure 13).

4. Discussion

Breast cancer looks to be a large malignant tumor that
endangers both women’s physical and mental well-being.
The incidence of BC appears to be growing year by year in
recent years, with a definite trend toward younger age. It is
therefore essential to establish an accurate tool for the pre-
diction of the development of BC to guide clinical diagnosis
and treating strategy.

Tumor generation is a complex multistep process requir-
ing three stages: onset, promotion, and development. A large
number of studies have illustrated that reactive oxygen spe-
cies (ROS), products of oxidative stress, are involved in all
stages of tumor formation [12]. Tumorigenesis is closely
correlated with ROS-induced oxidative damage to nuclear
chromosome, and ROS can also promote the activation
and transformation of tumoral cells. What has been reported
is that the ROS level in tumors correlates with the degree of
malignancy [13]. As ROS levels rise in hypoxia, malignant
tumor cells become more aggressive and more likely to

Table 3: Clinical impacts of the risk score characteristics (as
identified by the TCGA-COAD data).

Clinical n Mean SD t p

Risk score

Age

>65 222 2.064 2.442 1.378 0.169

≤65 634 1.805 2.304

Gender

Female 845 1.878 2.354 1.322 0.212

Male 11 1.465 1.001

Stage

I-II 655 1.708 2.169 -3.282 0.001

III-IV 201 2.408 2.773

T

T1-2 734 1.794 2.21 -1.938 0.055

T3-4 122 2.342 2.987

M

M0 840 1.851 2.323 -1.504 0.153

M1 16 3.014 3.076

N

N0 420 1.661 2.087 -2.605 0.009

N1-3 436 2.076 2.55
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spread. Chronic and ongoing oxidative stress induces
epithelial-mesenchymal transition (EMT) and migration
[14]. It is evident that oxidative stress participates as a vital
part in tumorigenesis and progression. At present, there
is no report on predicting the development of breast can-
cer patients by building oxidative stress-related lncRNA
prediction signals.

With this study, lncRNAs which are oxidative stress-
related were screened by generating a lncRNA coexpression
network and genes which are oxidative stress-related.
Furthermore, using Lasso as well as Cox regression, the

following seven lncRNAs which are oxidative stress-related
with good prognosis were obtained: DLG5-AS1, LINC01235,
SEMA3B-AS1, LINC00987, ST7-AS1, MAPT-AS1, and
LINC01871. These seven lncRNAs which are oxidative
stress-related may be targeting markers of potential clinical
therapy and development for the BC patients. We also found
mRNAs (MRPS34, HSPB1, GFER, NTHL1, UCN, F3,
CDK5, GDF15, S100B, EGFR, STAT1, CALR, IL18, and
IDO1) coexpressed significantly with the lncRNAsmentioned.

Five lncRNAs associated with oxidative stress
(LINC01235, SEMA3B-AS1, LINC00987, ST7-AS1, and
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Figure 7: The nomogram construction and verification. (a) A nomogram in combination of risk scores and clinicopathological variables.
(b–d) Calibration curves across the actual and predicted OS rates at 1, 3, and 5 years.

Table 4: The different clinical features of patients across separate cohorts.

Variables Entire TCGA dataset (n = 856) Validation cohort
Training cohort (n = 427) Testing cohort (n = 429)

Age (%)

≤65 634 (74.1) 321 (75.2) 313 (73.0)

>65 222 (26.9) 106 (24.8) 116 (27.0)

Gender (%)

Female 845 (98.7) 419 (98.1) 426 (99.3)

Male 11 (1.3) 8 (1.9) 3 (0.7)

Stage (%)

I + II 655 (76.5) 324 (75.9) 331 (77.2)

III + IV 201 (23.5) 103 (24.1) 98 (22.8)

T (%)

T1+T2 734 (85.7) 369 (86.4) 365 (85.1)

T3+T4 122 (14.3) 58 (13.6) 64 (14.9)

M (%)

M0 840 (98.1) 420 (98.4) 420 (97.9)

M1 16 (1.9) 7 (1.6) 9 (2.1)

N (%)

N0 420 (49.1) 210 (49.2) 2109 (49.0)

N1+N2+N3 436 (50.9) 217 (50.8) 219 (51.0)

M: metastasis; N: lymph node; T: tumor.
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MAPT-AS1) have been reported to be linked to cancer. (1)
Functional loss experiments suggest that upregulated
LINC01235 promotes gastric cancer cell metastasis
through EMT and may be a valuable prognostic biomarker
and treating target for metastatic gastric cancer [15]. (2)

Overexpression of SEMA3B-AS1 inhibits gastric cancer
cell proliferation and invasion in vitro. Sema3b-as1 can
be used as a tumor suppressor and as a clinical therapy
target for antitumor therapy [16]. (3) Silencing LINC00987
inhibits proliferation and invasion of osteosarcoma cells by
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Figure 8: Internal confirmation of the predictive feature for over survival condition on the basis of the TCGA dataset. (a) Kaplan-Meier
survival curving plot in the internal training cohort. (b) ROC curving plot and AUCs at 1-year, 3-year, and 5-year survival condition in
the training internal cohort. (c) Kaplan-Meier survival curving plot in the internal testing cohort. (d) ROC curving plot and AUCs at 1-,
3-year, and 5-year survival in the internal testing cohort. AUC: area under the curve; ROC: receiver-operating characteristic; TCGA: The
Cancer Genome Atlas; OS: overall survival.
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regulating FNBP1 expression through cavernous Mir-
376A-5p [17]. (4) ST7-AS1 promotes the lung adenocarci-
noma cells malignancy by regulating Mir-181B-5p/KPNA4
axis. Therefore, aiming at ST7-AS1 and KPNA4 or upreg-
ulation of Mir-181B-5p may be beneficial for the treating
lung adenocarcinoma [18]. (5) MAPT-AS1 has been iden-

tified as a solid prognostic marker of renal clear cell carci-
noma (ccRCC), inhibiting the invasion and proliferation of
ccRCC [19]. And its upregulation were associated with
positive survival in breast cancer patients [20].

One of the lncRNAs associated with oxidative stress,
LINC01871, may serve as a marker of BC prognosis, but
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Figure 12: Comparison of sensitivity to treating drugs across high- and low-risk groups. (a) CD80, TNFSF4, CD276, and NRP1 expressions
between groups. (b) IC50 of AKT inhibitor VIII between groups. (c) IC50 of AZD6482 between groups. (d) IC50 of bicalutamide between
groups. (e) IC50 of BMS.708163 in the two risk groups. (f) IC50 of imatinib in the two risk groups. (g) IC50 of lapatinib in the two risk
groups. (h) IC50 of pazopanib between groups, (i) IC50 of thapsigargin in the two risk groups, and (j) IC50 of methotrexate between groups.
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has not been studied in depth for the pathogenesis of BC
[21]. Another lncRNA, DLG5-AS1, has not been studied
for its prognostic significance in cancer. As a result, more
research is needed to determine how this lncRNA affects
the development of patients with BC via oxidative stress.

The development of BC was significantly predicted based
on the characteristics of seven lncRNAs associated with oxi-
dative stress. Consistent with previous studies, the OS of the
low-risk group was higher. These results suggest that risk
score features have some potential in prediction of survival
condition. Univariate and multivariate Cox analysis results
indicated that this trait might be used as an independent
prognostic predictor. The model demonstrated superior dis-
tinction and accuracy based on the c-index, calibration
curve, ROC curve, and internal validation data, indicating
that it can be used as a possible predictive tool.

Subsequent GSEA results showed that macrophages
scored higher in the group with high-risk. The results indi-
cate that tumor-associated macrophages (TAMs) are key
cells promoting tumor in tumoral microenvironment. Pre-
clinical TAM stimulates progression of breast tumor, includ-
ing tumor cell growth and metastasis. In BC models, TAMs
also causes resistance to a number of therapies. The previous
work found that oxidative stress signalling has a role in BC
cell proliferation and migration. Initially, important compo-
nents of oxidative stress signalling were discovered to
substantially correlate with clinical and pathological charac-
teristics of BC. These connections were not independent of
TNM staging or clinical subtype, implying that oxidative
stress activation is a common feature associated with BC
development. Internal identification proved that the predict-
ing signature has positive predictive performance. PCA
suggested that seven lncRNAs associated with oxidative
stress could be differentiated according to the oxidative
stress condition of the patients.

The results of GSEA implied that macrophages scored
higher in the high-risk group. It was revealed that tumor-
associated macrophages (TAMs) are key cells promoting
tumor in tumoral microenvironment. Preclinical TAMs
stimulate progression of breast tumor, including tumor cell

growth and metastasis. TAMs also attributed to resistance
to a series of treatment in BC models [22].

Our study also showed that patients high ranked may
be sensitive to and resistant to demethotrexate against
TNF, CD80, CD276, SF4, and NRP1 immunotherapy and
conventional chemotherapy drugs including AZD6482,
bicaluamide, AKT inhibitor VIII, BMS.708163, imatinib,
lapatinib, pazolparib, and toxic carotene. This suggests that
the group of patients with high risk may alleviate the dis-
ease from the combination of immunotherapy and chemo-
therapy, providing the basis for precise, individualized
treatment of BC patients.

However, there are some limitations to our study. First,
external validation of data from other databases is required
to test the suitability of the predictive signatures. Secondly,
the mechanism of lncRNA oxidative stress in BC needs
further experimental verification.

5. Conclusions

In conclusion, lncRNAs with oxidative stress features can
independently predict BC prognosis, providing support for
the underlying mechanism of oxidative stress of lncRNAs
and their response to clinical treatment therapy within BC;
however, more research is needed.
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Background. The accurate detection of circulating tumor (ct) DNA is affected by multiple factors, and several controversies still
persists regarding clinical applications. In order to assess the consistency of ctDNA gene mutation detection findings in
matched melanoma tissue samples and peripheral blood, a meta-analysis was performed and provided evidence-based analysis
for its clinical applications. Method. As of May 20, 2019, the database has been searched using the Embase, PubMed, and
Cochrane Library search engines. The ctDNA investigations mentioned in this review may be used to directly or indirectly get
the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values of melanoma patients. To be
excluded from the study are duplicate publications, research that do not offer a full text, inadequate material or an inability to
extract data, and animal trials. Results. Overall, the pooled specificity, sensitivity, NLR, PLR, and DOR were 0.94 (95% CI:
0.91-0.96), 0.73 (95% CI: 0.70-0.75), 0.32 (95% CI: 0.22-0.45), 8.21 (95% CI: 4.67-14.43), and 32.72 (95% CI: 14.81-72.30),
respectively. Additionally, we calculated AUC by drawing the SROC curve, and the value of AUC is 0.9287, which indicates
that the accuracy of ctDNA in diagnosing melanoma is 92.87% of the gold standard. Furthermore, we conducted a subgroup
analysis for different countries, sample sources, and ctDNA detection methods. The pooled results showed that different
countries, sample sources, and ctDNA detection methods showed significantly large differences in terms of sensitivity of
ctDNA in diagnosing melanoma, while the specificity basically remained the same. Conclusion. We discovered that the
diagnostic outcomes between matched tumor samples and ctDNA remained more reliable in melanoma patients. ctDNA has
the advantages of low trauma, convenient dynamic monitoring, and simple operation. ctDNA is expected to become an
auxiliary method for the diagnosis of melanoma gene mutations.

1. Introduction

Melanoma is a very aggressive skin tumor caused by the
excessive proliferation of melanocytes. It mostly occurs in
the skin, mucous membrane, and extremities. Although its
incidence is only 10% of skin tumors, it is related to 80%
of skin tumor deaths [1]. The 2018 Global Cancer Report
indicated that there were 287,723 new cases of melanoma
and 60,712 deaths [2]. In the early stage of melanoma, surgi-
cal resection is the first choice, while for advanced patients,

traditional radiotherapy and chemotherapy showed very lit-
tle effects for melanoma patients who cannot be surgically
removed or who have metastasized and have BRAF V600E
mutations. The treatment of melanoma has entered the age
of targeted therapy after the U.S. Food and Drug Adminis-
tration (U.S. Food and Drug Administration, FDA) autho-
rized vemurafenib as a targeted drug in 2011 [3].

Traditionally, archival formalin-fixed, paraffin-embedded
(FFPE) tumor tissues obtained after diagnosis and/or addi-
tional biopsies or surgery are used to identify somatic
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mutations. The high risk of puncture, the inability to find the
tumor in an anatomical position, the high expense, and the
intricacy of the tumor tissue are just a few of the problems with
mutation testing on archival tumor material, though [4, 5].
Circulating tumor DNA (ctDNA) detection is an emerging
method that has been used to detect genetic mutations in
humans in recent years. ctDNA is a DNA fragment that enters
the blood circulatory system after the DNA of tumor cells falls
off or undergoes apoptosis, which can be used as a special
tumor marker. It is possible that ctDNA analysis might pro-
vide a more comprehensive view of the tumor’s subclones
[6]. A larger amount of tumor-specific somatic mutations
may be discovered in circulating free DNA (ctDNA) in indi-
viduals with advanced cancer than in healthy persons [7, 8].
Pinzani et al. [9] pointed out that in patients with melanoma,
the sensitivity of ctDNA detection was 72%, the specificity was
89%, and the consistency with tumor pathology detection
results was 80% compared with the results of tumor tissue
detection. A report by Tang et al. [10]. Demonstrated that

the test results between tumor tissue and ctDNA were 70%
consistent in 58 melanoma patients. There is still debate over
the relevance of ctDNA detection in clinical settings because
its accuracy depends on a number of variables, including the
detection tool, sample source, and area.

In this study, quantitative Meta-analysis was used to eval-
uate the consistency of ctDNA genemutation detection results
in matched melanoma tissue samples and peripheral blood
and provide evidence-based basis for clinical application.

2. Methods

2.1. Inclusion/Exclusion Criteria for Literature. The follow-
ing were the inclusion criteria: (1) true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
values of patients with melanoma may be directly retrieved
from the original article or indirectly based on the informa-
tion supplied in the literature. (2) ctDNA were used for the
diagnosis of melanoma in patients with the following
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Figure 1: Showing the flowchart for selected studies.
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exclusionary conditions: (1) FeNO patients’ true positive
(TP), false positive (FP), true negative (TN), and false nega-
tive (FN) diagnostic values are not included in the study data
and cannot be estimated; (2) studies lacking full text, inade-
quate information, or the incapacity to extract data; (3) case
reports, reviews, and systematic reviews. (4) Repeated
publishing.

2.2. Search Strategy. We searched Pubmed, Embase, and the
Cochrane Library from the time the databases were first
launched until May 2021 for the purposes of this meta-
analysis. The following are the mesh glossary terms: “Circu-
lating Tumor DNA,” “Cell-Free Tumor DNA,” and
“Melanoma”.

2.3. Literature Screening and Data Extraction. The literature
review, screening, and data extraction are carried out inde-
pendently by two researchers. Disagreements are settled
through discussion or by asking a third party for their opin-
ion. An author’s name and year, as well as a sample’s size
and origin, as well as the technique used to identify ctDNA
and TP, FP, TN, and FN may all be found in the data that
is extracted and used to diagnose patients with melanoma.

2.4. Literature Quality Assessment. Two researchers used the
QUADAS-2 tool [11] to assess the quality of each piece of
included literature, which consists of 11 different compo-
nents (for details, see the labelling of the bias risk graph
and the bias risk summary graph in the results section).
After cross-checking the findings, if there are still differences
of opinion, a decision will be reached via discussion or con-
sultation with a third party based on the assessment results
being classified as “high” or “low” risk. Review manager

5.3 software is used to build bias risk maps and bias risk
summary maps once all items have been evaluated.

2.5. Data Synthesis and Statistical Analysis. Using Meta-
Disc1.4 software, which also did heterogeneity testing, the
sensitivity, specificity, and 95 percent confidence interval of
each independent research were calculated. First, the Spear-
man correlation coefficient P value is determined. This is
done if the correlation coefficient P value falls below 0.05,
which indicates a threshold effect. The area under the SROC
curve (AUC) is determined. The opposite is true, which sug-
gests that there is no threshold effect. In this case, we may
combine the sensitivity, specificity, positive likelihood ratio
(PLR), negative likelihood ratio (NLR), and diagnostic odds
ratio (DOR) as well as other indications and construct a
complete SROC curve. The heterogeneity test caused by
nonthreshold effects is calculated by calculating the χ2 or
Q value and the I2 value. Random effects models are utilized
if I2 is more than 50%; otherwise, the fixed effects models are
used. Heterogeneity may be tracked down via sensitivity
analysis or subgroup analysis. If the heterogeneity still exists,
a random effects model is used; otherwise, a descriptive anal-
ysis is used instead. Deeks’ funnel plot asymmetry test may
be performed using STATA15.1 software to determine pub-
lication bias.

3. Results

3.1. The Results of Literature Search. A total of 237 studies
were selected from the database for this research. 114 studies
remained after removing duplicates. After going through the
titles and abstracts, 73 papers were found. It was eventually

Table 1: Baseline characteristics of the included studies.

Author Year Country
Sample
size

TNM
staging

Sample
source

ctDNA detection
method

Mutation
alleles

TP FP FN TN Sensitivity Specificity

Yancovitz
[12]

2007 USA 17 IV Plasma
Mutant-specific

PCR
BRAF 7 2 5 3 58% 60%

Board [13] 2009 USA 94 IV Serum
Allele-specific

PCR
BRAF 25 3 20 46 56% 94%

Pinzani [9] 2010 Italy 46 II-IV Plasma
Allele-specific

PCR
BRAF 45 3 1 15 97% 83%

Aung [14] 2014 UK 108 IV
Serum

Allele-specific
PCR

BRAF 31 2 43 32 42% 94%

Plasma
Allele-specific

PCR
BRAF 38 2 36 32 51% 94%

Santiago-
Walker [15]

2015 USA 746 III-IV Plasma BEAMing BRAF 504 2 157 83 72% 89%

Janku [16] 2016 USA 36 IV Plasma
Allele-specific

PCR
BRAF 17 2 9 8 65% 80%

Mosko [17] 2016 UK 122 III-IV Plasma UltraSEEK BRAF 53 2 19 48 74% 96%

Rowe [18] 2018 USA 55 IV Plasma BEAMing BRAF 33 0 5 17 87% 100%

Long-Mira
[19]

2018 France 19 IV Plasma
Allele-specific

PCR
BRAF 8 1 2 8 80% 89%

Haselmann
[20]

2018 USA 187 III-IV Plasma BEAMing BRAF 56 8 9 114 86% 93%

3Journal of Oncology



completed by going through the full-texts of the 10 studies
(Figure 1).

3.2. Baseline Characteristics and Study Quality

3.2.1. Baseline Characteristics. Additionally, Table 1 displays
the baseline characteristics and quality rating of the included
studies. 10 publications with 1430 patients were included in
this meta-analysis. There are 4 articles from Europe and 6
articles from North America. Most of the literature has been
published in the past 5 years; the research objects are mainly
patients with stage III to IV; ctDNA detection methods were
mainly allele-specific polymerase chain reaction (Allele-
specific polymerase chain reaction, allele-specific PCR),
BEAMing, UltraSEEK, etc.

3.2.2. Quality Assessment of the Included Studies. We
assessed the methodological quality of each study in accor-
dance with the QUADAS-2 criteria from four angles. Six of
the trials to be reviewed did not mention the use of testing
blinding, and the other three studies were carried out know-
ing the outcomes of the tissue test (Figure 2), so there may
be unknown or significant risk variations. Since not all
patients were included, or there was an inappropriate time
interval between the study to be evaluated and the gold stan-
dard, the risk of deviation of the case flow and progress of 8
studies was unknown or high. In all studies, the applicability
is very high (Figure 3).

3.3. Results of Meta-Analysis. The Spearman correlation
value is -0.564 (P = 0:090 > 0:05), suggesting the absence of
a threshold effect. The combined sensitivity of χ2 = 91:34
(P ≤ 0:001) and I2 = 89:1 percent indicates that there is het-
erogeneity produced by nonthreshold effects, hence the ran-
dom effects model is employed to combine sensitivity. The
combined specificity of χ2 = 15:09 (P = 0:1289), I2 = 33:7
percent, indicates that there is no heterogeneity produced
by nonthreshold effects, hence the fixed effects model is
employed to combine the specificity. There is heterogeneity
due to nonthreshold effects in the combined PLR of
Cochran-Q = 21:86 (P = 0:0158), I2 = 54:3 percent, hence
the random effects model is employed to combine the PLR.
The random effects model is utilized to combine the NLR
because the combined NLR of Cochran-Q = 96:48

(P ≤ 0:001), I2 = 89:6 percent, demonstrating heterogeneity
driven by nonthreshold effects. Random effects model is
used to combine Cochran-combined Q’s DOR of 24.88
(P = 0:0056) and I2 of 59.8 percent, which indicates that
there is heterogeneity due by nonthreshold effects. The
pooled sensitivity, specificity, PLR, NLR, and DOR are 0.73
(95% CI: 0.70-0.75), 0.94 (95% CI: 0.91-0.96), 8.21 (95%
CI: 4.67-14.43), 0.32 (95% CI: 0.22-0.45), and 32.72 (95%
CI: 14.81-72.30), respectively. Additionally, we calculate
AUC by drawing the SROC curve, and the value of AUC is
0.9287, which indicates that the accuracy of ctDNA in diagnos-
ing melanoma is 92.87% of the gold standard (Figures 4–9).
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Yancovitz 2007
Board 2009
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Aung 2014
Aung 2014
Santiago-Walker 2015
Janku 2016
Mosko 2016
Rowe 2018
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Pooled sensitivity = 0.94 (0.91 to 0.96)
𝜒2 = 15.09; df = 10 (p = 0.1289)
Inconsistency (I2) = 33.7%
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Figure 5: The specificity of ctDNA in diagnosing melanoma.
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1
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Figure 6: The PLR of ctDNA in diagnosing melanoma.

0.58 (0.28 – 0.85)Yancovitz 2007
Board 2009
Pinzani 2010
Aung 2014
Aung 2014
Santiago-Walker 2015
Janku 2016
Mosko 2016
Rowe 2018
Long-Mira 2018
Haselmann 2018

Pooled sensitivity = 0.73 (0.70 to 0.75)
𝜒2 = 91.34; df = 10 (p = 0.0000)
Inconsistency (I2) = 89.1%

Sensitivity (95% CI)

0.2 0.4
Sensitivity

0.6 0.8 10

0.56 (0.40 – 0.70)
0.98 (0.88 – 1.00)
0.42 (0.31 – 0.54)
0.51 (0.39 – 0.63)
0.76 (0.73 – 0.79)
0.65 (0.44 – 0.83)
0.74 (0.62 – 0.83)
0.87 (0.72 – 0.96)
0.80 (0.44 – 0.97)
0.86 (0.75 – 0.93)

Figure 4: The sensitivity of ctDNA in diagnosing melanoma.
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3.4. Subgroup Analysis. The research is somewhat heteroge-
neous, which may be due to various nations, sample sources,
and ctDNA detection techniques. For the three aforemen-
tioned potential causes, we thus performed a subgroup
study. The pooled sensitivity of North America is 0.76
(0.73-0.79), while the pooled sensitivity of Europe is 0.63
(0.57-0.69). The pooled specificity of North America is
0.94 (0.91-0.97), and the pooled specificity of Europe is
0.93 (0.88-0.97). The AUC of ctDNA in European mela-
noma patients is higher than that in North American
patients (0.9576 vs. 0.8018).

In terms of sample source, the pooled sensitivity of
plasma is 0.76 (0.73-0.78), while the pooled sensitivity of
serum is 0.47 (0.38-0.56). The pooled specificity of plasma
is 0.94 (0.91-0.96), and the pooled specificity of serum is
0.94 (0.86-0.98).

In addition, the results of the detection method showed
that the sensitivity of Allele-specific PCR detection was
0.60 (0.54-0.65), while the sensitivity of BEAMing detection
was 0.78 (0.74-0.81). The pooled specificity of Allele-specific

PCR detection was 0.92 (0.86-0.95), and the sensitivity of
BEAMing detection was 0.96 (0.92-0.98) (Table 2).

3.5. Publication Bias. The following is an example of the
study’s funnel plot. In this research, the P value of Deek’s
funnel plot asymmetry test is 0,12, which indicates that there
is no apparent publication bias (Figure 10).

3.6. Sensitivity Analysis. Analyzing each included study one
at a time to see if single included research has an undue
influence on meta-analysis findings is known as a sensitivity
analysis. Findings from the meta-analysis indicated no stud-
ies had a significant influence on its findings; this suggests
the remaining studies’ findings are consistent and credible.

4. Discussion

The new ctDNA can be utilized as a supplement to tissue
biopsy for clinical diagnosis and disease monitoring due to
its advantages of noninvasiveness, ease of access, continuous

2.10  (0.25 – 17.59)Yancovitz 2007
Board 2009
Pinzani 2010
Aung 2014
Aung 2014
Santiago-Walker 2015
Janku 2016
Mosko 2016
Rowe 2018
Long-Mira 2018
Haselmann 2018

Pooled diagnostic odds ratio = 32.72 (14.81 to 72.30)
Random efects model

Cochran-Q = 24.88; df = 10 (p = 0.0056)
Inconsistency (I2) = 59.8%
𝜏2 = 1.0043

Diagnostic OR (95% CI)

1
Diagnostic odds ratio

100.00.01

19.17 (5.18 – 70.86)
225.00 (21.73– 2,329.71)
11.53 (2.57 – 51 .77)
16.89 (3.77 – 75.66)

133.22 (32.40 – 547.81)
7.56 (1.32 – 43.37)

66.95 (14.81 – 302.58)
213.18 (11.13 – 4,082.09)
32.00 (2.39 – 427.75)
88.67 (32.47 – 242.14)

Figure 8: The DOR of ctDNA in diagnosing melanoma.
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𝜏2 = 0.2705
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1
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0.15 (0.07 – 0.32)
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Figure 7: The NLR of ctDNA in diagnosing melanoma.
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sampling, and overcoming tumor heterogeneity [21]. Tradi-
tional tissue biopsy has numerous inherent drawbacks.
However, due to the existence of many influencing factors,
the diagnostic value of ctDNA in melanoma is still contro-
versial. In this study, 10 articles that met the inclusion cri-
teria were meta-analyzed, and the subjects involved a total
of 1430 melanoma patients.

The combined sensitivity of ctDNA for melanoma detec-
tion was 0.73 (95% CI: 0.70-0.75), combined specificity was
0.94 (95% CI: 0.91-0.96), and combined AUC was 0.9287.
It should be noted that AUC is a comprehensive index,
and the closer its value is to 1, the higher the diagnostic
value. Our pooled results show that the diagnostic accuracy
of ctDNA is 92.87% of the gold standard, indicating that it
has a higher diagnostic value in melanoma.

The pooled PLR is 8.21 (95% CI: 4.67-14.43), which indi-
cates that the probability of ctDNA detection in melanoma
patients is about 8.21 times that of false positives. The com-
bined NLR is 0.32 (95% CI: 0.22-0.45), indicating that 32%
of false negatives may be present in the negative results of
ctDNA. DOR is the ratio of the positive results in the exper-
imental group to the positive results in the control group,
which can better reflect the “differentiation” ability of the
diagnostic test, and the DOR value is positively correlated
with its discrimination ability. The pooled DOR is 32.72
(95% CI: 14.81-72.30), indicating that ctDNA detection has
a higher comprehensive diagnostic efficiency.

The accuracy of ctDNA detection was examined in this
study along with its influencing factors. [13] Board et al.
pointed noted that there is a strong correlation between
ctDNA level and tumor stage, that ctDNA mutations rely

on tumor stage, and that early detection is typically inaccu-
rate. Compared with stage I patients, stage IV patients have
higher levels of ctDNA [22], and ctDNA levels are related to
tumor metastasis [23]. In addition, the heterogeneity of the
tumor may result in inconsistent gene mutation detection
results between ctDNA and the corresponding tumor tissue.
Tumor heterogeneity comes from three aspects: intratumor,
intertumor, and temporal heterogeneity. Tissue only repre-
sents the mutation information of the tumor tissue site,
while ctDNA represents the mutation information of all
tumor tissues [6, 24]. The preprocessing and testing
methods of blood samples will also affect the test results.
Our pooled results found that there is a big difference in sen-
sitivity between plasma and serum-derived ctDNA [0.76
(0.73-0.78) vs 0.47 (0.38-0.56)] but are basically the same
in specificity [0.94 (0.91-0.96) vs 0.94 (0.86-0.98)]. At pres-
ent, the ctDNA extraction efficiency of different extraction
kits vary greatly, and there is no uniform quality judgment
standard between different extraction methods [25, 26]. In
the investigation of detection methods, we found that
BEAMing (0.78, 95% CI: 0.74-0.81) has a higher sensitivity
than Allele-specific PCR (0.60, 95% CI: 0.54-0.65). In addi-
tion, we also found that ctDNA has a higher sensitivity in
the diagnosis of melanoma patients in North America
[0.76 (0.73-0.79) vs. 0.63 (0.57-0.69)], while the specificity
difference is small [0.94 (0.91-0.97) vs. 0.93 (0.88-0.97)].
The above results indicate that different regions, different
sample sources, and different detection methods will have
an impact on the diagnostic performance.

There are still the following issues with this study: first,
there aren’t many research on the reliability of melanoma

1
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Figure 9: The SROC curve of ctDNA in diagnosing melanoma.
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diagnosis by ctDNA; as a result, the group’s literature is
smaller and of varying quality. In the future, more studies
of higher quality need to be included, and further studies
on possible heterogeneity factors will be made. Second, the
included literature uses the assessment of the consistency
of ctDNA and tissue biopsy results as evaluation indicators,
and there is a possibility that the authors prefer to publish
positive results. Third, the number of cases included in the
enrollment literature is small, which will affect the accuracy
of the statistical results.

5. Conclusion

In patients with melanoma, the diagnostic outcomes
between ctDNA and matched tumor tissues were more reli-
able, according to our pooled results. ctDNA has the advan-
tages of low trauma, convenient dynamic monitoring, simple
operation, etc., and it is expected to become an auxiliary
method for the diagnosis of melanoma gene mutations.
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According to statistics released by the WHO, China has the highest prevalence of myopia in the world, with a frequency that is 1.5
times higher than the global average. Asians have the highest prevalence of myopia worldwide. The Ministry of Education and the
State General Administration of Sports “2010 National Student Physical Fitness and Health Research Results” show that the
incidence of poor vision among primary and secondary school students in China is 67.3%, and elementary school students’
vision has decreased by 40.9%. Low vision among youth has become a major cause of affecting the quality of the population
and improving national physical fitness; therefore, how to improve and enhance the vision level of youth has become a major
issue for the government, sports, and educators face as a major issue. In order to address this issue, this research suggests a
deep learning-based vision monitoring and risk prediction model for high myopia eyes and develops a deep artificial neural
network that unsupervised learns essential characteristics of physiological time-series data.

1. Introduction

When the eye is in a relaxed state, when parallel light passes
through the refractive system of the eye and forms a focal point
in front of the retina, it is called myopia. There are two types of
myopia: simple myopia and pathological myopia. The normal
range for simple myopia is -6.00 D. This type of myopia is free
of pathological changes. Pathological myopia usually exceeds
-6.00 D. In addition to poor distance vision, it is associated with
flying mosquitoes, night vision loss, floaters, and flashing lights
[1]. In addition to the accompanying clinical manifestations, the
eye axis of highly myopic patients will gradually elongate and
the posterior polar region will overstretch, forming posterior
scleral chylomalacia, causing a series of fundus changes: myopic
arc (optic disc temporal choroidal atrophy arc). In the macular
area, choroidal and pigment epithelial cells all show varying
degrees of atrophy. In the macula, there is a vitreous
membrane-like rupture with hemorrhagic patches, yellow-
white streaks (lacquer-like fractures), black circular microraised
spots, and choroidal neovascularization. Because of retinal and
choroid atrophy, those with high myopia are more likely to suf-
fer from severe retinal detachment. Myopic patients are prone

to exotropia or strabismus due to the inability to utilize visual
accommodation mechanisms when viewing at close range [2],
resulting in a relatively reduced ability to gather. Myopia is
the result of a combination of genetics, lifestyle habits, andmul-
tiple environmental factors, and one study showed that patients
with myopic parents had 7.15 times the myopia rate of the gen-
eral population.

Infants are generally farsighted. There is a gradual transi-
tion to orthophoria until development reaches school age.
Adolescence is the period of high prevalence of myopia, espe-
cially from 10-16 years old. Living and learning habits, unsci-
entific parental education management, and poor learning
environment may cause the onset, development, and deterio-
ration of myopia. In recent years, with the increasing pressure
of study [3], work, and life, the incidence of myopia has
increased significantly for both elementary school students,
middle school students, high school students, and adults.

With the rapid development of electronic devices such as
large screen cell phones, computers, and tablets, people’s
lives have become more convenient and colorful. Nowadays,
adults, students, and children use electronic products for
work, study, and entertainment. As for whether watching

Hindawi
Journal of Oncology
Volume 2022, Article ID 4537021, 8 pages
https://doi.org/10.1155/2022/4537021

https://orcid.org/0000-0002-8910-8901
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4537021


RE
TR
AC
TE
D

RE
TR
AC
TE
D

TV for a long timewill affect vision, there is no clear conclusion
yet. Many studies have reported that women are more likely to
suffer from myopia than men, probably because they prefer to
do some indoor sports at home and have fewer opportunities
to look far away [4].

In the United States, more than $3.9 billion is spent annu-
ally on screening and treatment of refractive errors, including
glasses, contact lenses, or refractive orthoptic surgery. Myopia
is already a global health problem. Not only does it have
adverse physical and psychological effects during school [5]
but also, it can easily lead to injuries when wearing glasses
for activities outside and certain related professions such as
further education and employment, which can also pose hid-
den risks to the quality of life in the future and increase the
financial burden on families [6–8]. The pathogenesis of myo-
pia is still unclear, and there is no cure for it [9]. Therefore, this
paper proposes a deep learning-based health management
model for visual acuity monitoring and risk assessment of
patients with high myopia, combining relevant research on
myopia at home and abroad in recent years.

The paper’s organization paragraph is as follows: the intro-
duction to related work is presented in Section 2. Section 3 ana-
lyzes application method design. Section 4 discusses the
applications of practical experiments. Finally, in Section 5, the
research work is concluded.

Vision Data
monitoring Data pre-processing

Data dimensionality
reduction 

High myopia
risk prediction 

Evaluation of
prediction results 

Start

End

Data feature
classification 

Figure 1: Flow chart of multilevel prediction model.
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Figure 2: Flow chart of feature fusion with dimensionality reduction.
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Figure 3: Venn diagram.
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2. Introduction to Related Theories

2.1. Deep Learning Theory. Deep learning is an emerging dis-
cipline based on machine learning, which is the latest theo-
retical achievement of ANN in recent years. There have
been significant advances in temporal data prediction,
speech recognition, image recognition, and computer vision
research. Deep ANN was originally designed to build a
model that emulates the neurons of the human brain to
mimic the work of the human brain [10]. The method uses
multiple higher-order function levels for data characteristics
based on data characteristics, such as temporal data, images,
speech ,and text, and thus obtains an efficient representation
for recognizing the characteristics of the task.

An algorithm having more levels than its hidden layers—-
shallow learning—is the “depth of deep learning.” When the
network algorithm is finally utilized for learning, the resulting
feature representation is shallow since many shallow learning

techniques entail manually generalizing the data’s features
before training the algorithm. However, in the unsupervised
case, deep learning maps the sample data from a feature repre-
sentation in one space to a new feature space; resulting in a
feature with hierarchical features that are more useful for clas-
sification and regression prediction.

Another feature of deep learning is that if a model can be
represented by a network structure with k layers, then its
parameters increase exponentially, thus overfitting the net-
work and thus losing generality; thus, the number of network
layers is a very critical parameter in deep neural networks.

2.2. Medical Data Mining and Medical Examination Data.
Because of the tremendous advancements in science and
technology, the medical system has benefited greatly from
information technology. The current medical system has a large
amount of medical data and pathological data, which allows
medical personnel to classify patients according to their condi-
tions and risk factors and make corresponding predictions so
that appropriate treatment plans can be developed [11].

The physical database is a medical database, the same as
a general database, but with its own unique features. The
physical examination database contains data on physical
examinations performed on patients who have no symptoms

Distinguishing 

Training
samples 

Logistic
regression 

Support
vector 

machines 
GKRMC

Analysis of regression analysis
prediction results compared with

traditional algorithms 

Classifier
accuracy
metric 

Classifier
accuracy
metric 

Classifier
accuracy
metric 

Test
samples 

Figure 4: Flow chart of regression analysis prediction experiment.

Table 1: Information about the dataset.

Dataset Class Sample distribution Attributes

CRC 2 369 : 929 85
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or are long-term patients. Certain chronic diseases can be
tracked if a physical examiner performs a yearly physical
examination and collects a series of physical examination
data [12]. The health screening database is important for
the prevention and diagnosis of chronic diseases. This thesis
explores a risk prediction model for patients with high myo-
pia based on data mining techniques, using health checkup
information as the basis.

3. Application Method Design

3.1. Construction of Health Management Model. The health
management model of this research project is partly mod-
eled by using three key steps: classification of myopia phys-
ical examination data, data downscaling and high myopia
risk prediction analysis, so as to monitor high myopia risk
as well as prediction feedback. The flow chart of the health
management model is shown in Figure 1.

Figure 1 illustrates the detailed flow of the high myopia
prediction model proposed in this thesis [13]. The whole
prediction model is divided into four parts.

3.2. Data Preprocessing. We analyzed information on high
myopia, which included incompleteness (missing attribute
values), noise (including errors or deviations from expected
values), and inconsistency [14]. The quality of the data can
be significantly increased by the use of data preparation
techniques, which also aid in the precision and efficiency
of subsequent data mining.

First, we found that certain properties of much of the orig-
inal highly myopic information were not recorded. We used a
common way of handling missing data values in data mining.

Moreover, our data often have some random errors or
are very different due to different data. Therefore, when per-
forming data analysis, it is often necessary to normalize the
data to remove the scale relationship between the features
to ensure the comparability of the data. Commonly used
data normalization methods include automatic, random,

and standard scan. In this paper, the standard scan method
is used. Standard scan, also known as z-scan [15], is to divide
the difference between the current data and the attribute in
which the current data is located by the standard deviation.
It is calculated by the formula z = ð−uÞ/σ where x is a spe-
cific score, u is the mean, and σ is the standard deviation.

3.3. Data Dimensionality Reduction. In light of this, we are
interested in the crucial role that data dimensionality reduc-
tion approaches play when working with large-scale, com-
plexly structured datasets. Before regression forecasting, we
also need to further streamline the data by data dimensionality
reduction techniques to reduce the impact on regression fore-
casting, reduce the impact on regression forecasting, andmake
it more generalized [16].

For a large amount of data, the partial features obtained
by one dimensionality reduction method can reflect most of
the information of the original variable more accurately,
while the local features obtained by one dimensionality
reduction method can only represent a part of the original
high myopia data, and the regional features obtained by dif-
ferent dimensionality reduction methods have different
focuses, which leads to the height described by the regional
features obtained by a single dimensionality reduction
method. Myopia information is more one-sided, thus limit-
ing the accuracy of regression prediction. In order to obtain
traits with significant effects, we will use three methods in
dimensionality reduction, namely, principal component
analysis, information entropy, and linear discriminant anal-
ysis to deal with four aspects of genetic information, namely,
demographic characteristics [17], lifestyle, and food; then,
we will use Venn diagram to fuse the dimensionality reduc-
tion results of the above datasets; finally, we will use U test to
select traits with significant differences, and the experimental
process is shown in Figure 2.

In these steps, the process of fusion is described in detail.
Assuming that a dataset containsN features, the data obtained
by sparse principal component analysis is dimensioned down
to the set SPCA, the dimensionality reduction obtained by
information entropy is the set Entropy, and the dimensionality
reduction obtained by linear discriminant is the set LDA. In
the Venn diagram, we select the intersection of three dimen-
sionality reduction data such as SPCA, Entropy, and LDA
and dimension them down as shown in Figure 3 in the the
overlapping region that is shown.

3.4. High Myopia Risk Prediction. After the data were down-
scaled, we discovered a number of factors that significantly
impacted high myopia. We must gather pertinent informa-
tion from numerous trials and observations in order to bet-
ter understand the association between these traits and high
myopia. We next utilize regression analysis to discover the
relationship between the data. One of the commonly used
methods is regression analysis. The prediction of regression
analysis is well understood, it is equal to y = f ðxÞ, which
shows the relationship between the independent variable x
due to the variable y. The most common problem is to look,
smell, ask, and cut as a way to determine if a person is sick or
what kind of disease they have. To look and smell is to

Table 3: Comparison of visual acuity of myopic children aged 7-8
years in the experimental and control groups before training
(M± SD).

Experimental
group

Control
group

Visual acuity in the right eye 4:63 ± 0:16 4:65 ± 0:11
Visual acuity test left eye
vision

4:67 ± 0:08 4:66 ± 0:10

Table 2: p values of GKRMC and conventional methods.

Measures
GKRMC and

LR
GKRMC and

SVM
GKRMC and

KRLS

Sensitivity 1.5085e-04 1.8243e-04 6.1475e-04

Specificity 1.2106e-04 3.4075e-04 5.7708e-04

Precision 2.3059e-04 3.1205e-04 3.3256e-04

Accuracy 1.1208e-04 1.6654 e-04 6.2045e-04

5Journal of Oncology



RE
TR
AC
TE
D

RE
TR
AC
TE
D

obtain an independent variable x, which is an eigenvalue, to
determine if a person is sick [18].

In the previous data downscaling, we have classified the
characteristics of people with high myopia, which is equiva-
lent to the large amount of data we have used to identify the
environment and genes associated with the risk of high
myopia [19, 20]. Therefore, in this part, we will use regression
analysis to predict the risk of high myopia patients using the
above factors. The experimental procedure is shown in Figure 4.

4. Application of Practical Experiments

4.1. Experimental Data Preparation. The data used in this
paper were mined from hospital ophthalmology patients
using data mining techniques. The clinical data of 369
patients with high myopia are reported in this paper. The
control group was made up of 929 individuals with low to
moderate myopia, whose age, gender, and lifestyle choices
were very similar to those of the case group. All of the con-
trols came from the same hospital’s case group of patients
who underwent ophthalmology. The initial collection of
raw high myopia data was preprocessed with data to obtain
1298 data, a typical dichotomy, including 369 patients with
high myopia and 929 in the nonhigh myopia group with
85 characteristics. Table 1 gives the information about the
high myopia dataset.

4.2. Results of Data Downscaling. In the data downscaling
phase, we found 10 items that may have a significant effect
on high myopia, including 4 behaviors, 5 genes, and 1 life-
style habit. In fact, a large number of epidemiological sur-
veys provided the basis for our data on risk/protective
factors for high myopia. In conclusion, the biomarkers we
selected, after extensive studies, showed that they were sig-
nificantly associated with the risk of high myopia, so these
10 biomarkers could be used as a classification for the pre-
diction phase of the high myopia risk prediction analysis.

4.3. Model Prediction Performance Analysis Experiments.
This part focuses on the application of the GKRMC algo-
rithm in the regression analysis. The results showed that
the data of highly myopic patients were preprocessed to
obtain 1298 samples, including 369 cases of highly myopic
patients and 929 cases of those who did not develop high
myopia. We used a random sampling method to randomly
select 973 samples, and the remaining 325 were trial data.
Simultaneously, to avoid the randomness created by a single
trial and to ensure the algorithm’s stability and the rigour of
scientific research; this study used the maintenance method
for ten trials before averaging the overall value by ten trials.
In each trial, we randomly selected a sample from three-
fourths of the sampled data, and one-fourth of the sample
was used as the test sample for categorical prediction, and
feedback was provided on the prediction results of the indi-
cators. Finally, the prediction results of the regression analy-
sis were evaluated using risk indicators.

The results are shown in Figure 5, which shows the mean
and variance of the four indicators of sensitivity, specificity,
precision, and accuracy, respectively, after 10 predictions of
regression analysis using the GKRMC algorithm.

Figure 5 demonstrates that the GKRMC algorithm con-
tinues to produce positive outcomes in terms of sensitivity, pre-
cision, and accuracy. We decide to contrast it with the
conventional regression techniques of logistic regression and
support vector machine in order to ascertain whether the
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Figure 7: Comparison of the results of the left and right eye visual acuity tests between the two groups before prediction.

Table 4: Comparison of visual acuity of myopic children aged 7-8
years in the experimental and control groups after training (M± SD).

Experimental
group

Control
group

Visual acuity of the right eye 4:89 ± 0:08∗∗ 4:61 ± 0:11
Visual acuity test left eye visual
acuity

4:85 ± 0:07∗∗ 4:62 ± 0:10

Note: ∗∗indicates that the visual acuity test results of the experimental group
after training were very significantly different from the visual acuity
condition of the control group, p < 0:01.
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regression prediction outcomes of the GKRMC algorithm are
accurate and reliable. The results are shown in Figure 6.

As shown in Figure 6, the GKRMC algorithm was com-
pared with the other three regression methods, and the results
showed that the stability of the GKRMC algorithm was better
than the other three methods after 10 trials. In conclusion,
from the results, the GKRMC algorithm proposed in this
paper can perform regression analysis and forecasting better.

The p values were used to assess if the test results of the
GKRMC and the conventional test were statistically signifi-
cant after the 10 test data measured by the GKRMC were
tested against 10 test data from four angles using the statis-
tical test method. The p values for the statistical analysis
are shown in Table 2.

As can be seen from Table 2, the p values of GKRMC
and the conventional method show that the experimental
results calculated by the GKRMC method are very different
from the conventional ones, which illustrates the superiority
of the GKRMC method in terms of prediction accuracy and
precision.

4.4. High Myopia Monitoring and Risk Prediction Experiment

(1) Experimental preparation

Before the experiment, the visual acuity of the two
groups of students was tested, not only to verify the rational-
ity of the experimental group but also to provide a basis for
future comparative studies. The experimental group used the
risk prediction model for prevention, while the control
group did not use the risk prediction model for prevention.

The children in the experimental group and the control
group’s visual acuity before the experiment was conducted
were tested, and the results are displayed in Table 3.

The results showed that the right eye visual acuity and
left eye visual acuity of the experimental group were 4.63
and 4.67, respectively; and those of the control group were

4.65 and 4.66, respectively. Compared with the control
group, the right eye visual acuity of the experimental group
was slightly inferior to that of the control group, but the left
eye visual acuity was slightly better, and the statistical analy-
sis showed that there was no significant difference between
the experimental and control groups in terms of left eye
visual acuity (p > 0:05), which indicated that the grouping
status of the study met the experimental requirements.

In order to understand and predict the visual acuity of
the first two groups more clearly, we sorted out the visual
acuity test results of the experimental group and the control
group before the experiment as shown in Figure 7.

(2) Predicted visual acuity of myopic children in the two
groups

As can be seen from Table 4 and Figure 8, the mean
visual acuity of the right and left eyes in the experimental
group was 4.89 and 4.85, respectively, after the test, and their
mean visual acuity was 4.61 and 4.62 in the right and left
eyes, respectively, in the control group. The results showed
that there was a significant difference between the visual acu-
ity of the left and right eyes in both the experimental and
control groups (p < 0:01), indicating that the risk of high
myopia prediction application was very effective in improv-
ing the visual acuity of myopic children.

5. Conclusion

This paper proposes a deep learning-based health manage-
ment model for high myopia eye vision monitoring and risk
prediction, for which the relevant background and related
theories are first introduced, followed by an explanation of
the model construction method, and finally the model’s per-
formance analysis experiments and specific application
experiments. After the experiments, it can be known that
the formation of high myopia is a combination of multiple
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Figure 8: Comparison of visual acuity prediction results between the two groups.
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Background. As a crucial epigenetic modification, DNA 5-hydroxymethylcytosine (5-hmC) plays a key role during colorectal
cancer (CRC) carcinogenesis. Nevertheless, the levels of 5-hmC-related genes in the circulating DNA of CRC remain largely
unknown. Methods and Results. The GSE81314 dataset from the Gene Expression Omnibus (GEO), which was generated by
chemical marking-based low-input shotgun sequencing to detect 5-hmC in circulating cell-free DNA (cfDNA) was used in the
present study. The GSE81314 dataset includes data for 8 plasma samples from healthy individuals and 4 plasma samples from
CRC patients. The difference in the 5-hmC levels in cfDNA between the CRC group and healthy individuals was analyzed by
the differentially expressed genes (DEG) package. Weighted gene coexpression network analysis (WGCNA) was conducted to
analyze gene coexpression modules associated with sample characteristics. DEG analysis identified 19 upregulated and 9
downregulated 5-hmC-related genes. WGCNA showed that the pink, purple, and brown modules, which contain 531 genes in
total, were significantly correlated with CRC (0.66, 0.61, and -0.59, respectively). We used gene set enrichment analysis (GSEA)
software to compare 5-hmC-related genes and pathways between CRC patients and healthy controls. We further performed a
protein–protein interaction (PPI) analysis and identified 4 nodes (LCN2, LRG1, S100P, and TACSTD2) that played key roles
in the network, and we analyzed the expression of these nodes S100P in the GEPIA database. Consistent with the 5-hmC levels
in CRC patient plasma, our external validation results from the GEPIA and UALCAN databases showed that LCN2, LRG1,
S100P, and TACSTD2 were highly expressed in CRC tissue compared with controls. The DNA promoter methylation levels of
LCN2, LRG1, and S100P were lower in CRC tissue than in normal control tissue. Conclusion. The present findings suggest that
abnormality in cell-free DNA hydroxylation in plasma may be associated with CRC. In addition, the 5-hmC levels of LCN2,
LRG1, S100P, and TACSTD2 in circulating cfDNA may be used as potential noninvasive markers for CRC.

1. Introduction

Colorectal cancer (CRC), which involves neoplastic trans-
formation in normal intestinal epithelial cells due to the
accumulation of anomalous genetic and epigenetic alter-
ations, is one of the most frequent malignant gastrointesti-
nal neoplasms worldwide. The diagnosis of CRC is
showing an upward trend in China [1–5]. Colonoscopy,
as the gold standard method for detecting colorectal can-

cer, is widely used for screening and has an obvious effect
on the early diagnosis, prevention, and treatment of CRC.
However, endoscopic screening requires a specific time for
preparation, bowel preparation, and laxatives to ensure
visibility of the intestinal tract, and it is invasive and
uncomfortable, thereby dissuading participation. Therefore,
the compliance rate of colonoscopy is still low. Recently,
the use of easily accessible sample types, such as stool
and blood, for CRC noninvasive screening has gradually
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been applied in the clinic due to their advantages com-
pared to colonoscopy. Blood-based liquid biopsy has been
utilized in the clinic for CRC noninvasive screening
because it is noninvasive and rapid, and it is more accept-
able than stool-based assays [6]. In recent studies, circulat-
ing cell-free DNA (cfDNA) has become the predominant
tool for liquid biopsies to understand the mutational land-
scape of cancer. Cancer cells shed naked DNA molecules

into the circulation, and these molecules are called circu-
lating tumor DNA (ctDNA). ctDNA has been used for
clinical diagnosis and prognosis prediction. Few but prom-
ising data are available about the use of liquid biopsy for
the early diagnosis of CRC, and the main limitation is sen-
sitivity due to low concentrations of ctDNA in this setting.
In terms of the prediction of the response to chemoradia-
tion, only inconclusive data are available about the utility
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Figure 1: Heatmap clustering and volcano plot of 5-hmC-related DEG in the plasma of CRC patients and healthy individuals. (a) Heatmap
clustering of the DEG. The red bars represent the CRC group, and the green bars represent the healthy group. (b) Volcano plot of the DEG.
The red nodes represent upregulated DEG, and the green nodes represent downregulated DEG.
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of a pretreatment liquid biopsy, whereas some studies report a
positive correlation with dynamic (pre/posttreatment) moni-
toring. The presence of minimal residual disease by ctDNA
is consistently associated with a poor prognosis across studies
[7]. Laboratory tests of DNA-related epigenetic changes in
cfDNA can be performed from plasma or serum fractions,
which are primarily derived from tumor cells. Epigenetic
changes are important causes of CRC, and abnormal DNA
methylation and 5-hmC modification impair cancer develop-
ment and progression [8–11]. 5-hmC is generated from 5-mC
by the Tet protein family. 5-hmCmodifications are ubiquitous
in the DNA of embryonic stem cells and many other issues,
and they are implicated in many human diseases, including
CRCs [10–12]. Li et al. found robust cancer-associated 5-
hmC signatures in cfDNA that were characteristic of specific
cancer types. 5-hmC-based biomarkers of circulating cfDNA
are highly predictive of colorectal and gastric cancer prognosis
and are superior to conventional biomarkers and comparable
to 5-hmC biomarkers from tissue biopsies [13]. Nonetheless,
no previous studies have investigated the potential for CRC
detection based on the presence of colorectal-related 5-hmC
genes in circulating cfDNA, a concept that may help to
develop noninvasive screening tools in CRC detection.

In the present study, microarray data (GSE81314) were
used to compare the 5-hmC levels of hub genes between healthy
controls and CRC patients. First, we downloaded the data
(GSE81314) from the GEO database and analyzed the differ-
ences in the 5-hmC level of cfDNA in plasma between the
healthy and CRC groups by the DEG package. We then per-
formed weighted gene coexpression network analysis
(WGCNA) to identify hub genes at the 5-hmC level that are
closely related to CRC. In addition, protein–protein interaction
(PPI) studies were conducted to determine the interaction net-
work of genes that showed critical expression. Finally, we veri-
fied the expression level, stage characteristics, and survival
time of the 5-hmC-related genes between the CRC and healthy
control groups in the Gene Expression Profiling Interactive
Analysis (GEPIA) database. The present study aimed to identify
5-hmC-related genes and pathways that are highly associated
with CRC in plasma and to elucidate the potential mechanisms.

2. Materials and Methods

2.1. Data. The GSE81314 dataset was downloaded from the
Gene Expression Omnibus (GEO) database (https://www
.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81314). This
dataset contains sequenced cfDNA with 5-hmC data from
49 patients with seven different cancer types, including 8
plasma samples from healthy individuals and 4 plasma sam-
ples from CRC patients, and it also contains distinct features
that can be used for monitoring disease status and progres-
sion. The dataset was based on the GPL18573 Illumina
NextSeq 500 (Homo sapiens) platform.

2.2. DEG Analysis. We analyzed the DEG to evaluate the
different 5-hmC levels of cfDNA in plasma between
healthy individuals and CRC patients by the limma pack-
age [14]. The parameter settings were set according to a
previous study [15].

2.3. WGCNA. We used the WGCNA package [16] to deter-
mine the coexpression modules and the interconnectedness
between each module, and the coexpressed genes in the con-
trol and CRC patients according to a previously published
method [15].

2.4. GSEA. We downloaded the hallmark gene set and gene
symbols from the GSEA website to obtain 5-hmC-
associated genes in CRC.

2.5. GO and KEGG Pathway Enrichment Analyses. We used
Gene Ontology (GO) [17] to annotate the GO function of
5-hmC-related genes in cfDNA, and we performed Kyoto
Encyclopedia of Genes and Genomes (KEGG) [18] path-
way analysis to determine the 5-hmC-related signaling
pathways. GO and KEGG pathway analyses were per-
formed to identify the related functions of 5-hmC-related
genes, and they were based on the DEG and WGCNA
results, which provided 5-hmC-related genes significantly
associated with CRC. The threshold for statistical signifi-
cance was set at p < 0:05. The detailed operation procedure
was performed as previously reported [15].

Table 1: Different 5-hmC levels of hub genes with logFC>1.

logFC t P value

PGLYRP1 2.55 2.77 0.012

LCN2 1.88 3.20 0.008

LRFN4 1.60 2.28 0.041

RNF208 1.57 2.40 0.033

FLJ40292 1.53 2.70 0.019

EID3 1.53 2.79 0.016

FLJ34208 1.41 3.94 0.002

S100P 1.24 4.40 0.001

MIR210HG 1.20 4.09 0.001

PMEPA1 1.16 3.11 0.009

LRG1 1.16 2.93 0.013

TACSTD2 1.15 3.94 0.002

HSD17B1 1.13 3.76 0.003

LOC728819 1.13 2.56 0.025

C20orf195 1.11 3.08 0.009

MTRNR2L3 1.10 2.89 0.013

S1PR4 1.07 2.33 0.038

GPER 1.06 3.42 0.005

NKX6-3 1.03 3.07 0.009

MRGPRX4 -1.06 -3.20 0.008

MFSD6L -1.20 -4.83 0.0004

CROCCP2 -1.20 -3.19 0.008

DAPK3 -1.20 -2.91 0.0132

SCGB1C1 -1.21 -2.64 0.022

LOC653486 -1.30 -2.90 0.013

OR51B2 -1.31 -4.79 0.0004

OR51M1 -1.34 -3.81 0.002

MRGPRX1 -1.39 -2.83 0.015
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2.6. PPI Network Analysis. GeneMANIA software [19] was
used to assess gene interactions and to predict gene function.
The 5-hmC-related genes in the cfDNA of CRC patients
were identified using the GeneMANIA plugin in Cytoscape
3.8.0. Network analysis was performed according to
methods described in a previous study [15]. Genes with
degree values of three or greater were considered hub genes
and used for further analysis.

2.7. Analysis of the RNA Expression Level and DNA Promoter
Methylation of 5-hmC-Related Hub Genes in CRC Tissue in
Public Databases. We analyzed the mRNA levels analyzing
the DNA promoter methylation levels of the 5-hmC-
related target genes linked to CRC via the GEPIA data-
base [20] (including 275 CRC tissues and 349 normal
samples from the TCGA and the GTEx projects), and
the UALCAN database [21] (including 41 normal tissues
and 286 primary CRC tissues for mRNA expression anal-
ysis, 37 normal tissues and 313 primary CRC tissues for
prompter methylation level analysis, and 279 CRC cases
for survival analysis).

2.8. Analysis of the Correlations of 5-hmC-Related Hub Genes
with Clinical Characteristics in Public CRC Datasets. We
analyzed the relationship between CRC stage, overall sur-
vival, and the mRNA expression levels of the 5-hmC-
related target genes linked to CRC in the GEPIA database
and the UALCAN database.

3. Results

3.1. DEG Analysis. The 5-hmC levels of the hub genes in
plasma between healthy controls and CRC patients were
analyzed by the DEG package. Figure 1 shows that 28 genes,
including 19 upregulated genes and 9 downregulated genes,
were differentially expressed. The average logFC values of
the upregulated and downregulated genes were 1.35 and
-1.25, respectively. The genes with logFC >1 or logFC <-1
are shown in Table 1.

3.2. WGCNA. With a soft threshold of 4, all genes were
grouped into 23 modules by cluster analysis, and the corre-
lations of the 5-hmC level genes with phenotype were ana-
lyzed. As shown in Figure 2, the pink, purple, and brown
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Figure 2: Identification of key modules associated with CRC. (a) Network topology of different soft-thresholding powers of the CRC
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modules were significantly correlated with CRC with values
of 0.66, 0.61, and -0.59, respectively. These three modules
contained 531 genes in total (pink, 147; purple, 84; and
brown, 300). The detailed results are shown in Supplement
table 1.

3.3. GSEA, GO, and KEGG Analyses. We performed GSEA
software to extract the 5-hmC-associated genes and path-
ways between CRC patient and healthy control plasma.
GSEA and GO results of the microarray data (GSE81314)
showed that the upregulated 5-hmC-related genes were
highly enriched in angiogenesis sprouting, specific granule
lumen, antigen processing, embryonic skeletal system devel-
opment, and positive regulation of T-cell-mediated cytotox-
icity. The 5-hmC-associated genes upregulated in CRC
patients compared to healthy controls were enriched in
pathways related to immune functions, platelet activation,
and platinum drug resistance (Figures 3(a)–3(d)). The other
related pathways are shown in Table 2.

3.4. GO and KEGG Pathway Enrichment Analyses. GO,
Reactome, and KEGG pathway analyses were utilized to
determine the upregulated 5-hmC genes, downregulated 5-
hmC genes, and 5-hmC genes significantly correlated with
CRC (pink, purple, and brown modules). The GO results
indicated that the upregulated 5-hmC-related genes were

highly enriched in leukocyte activation involved in the
immune response and secretory activity process. The down-
regulated DEG was mainly associated with the cellular che-
motaxis process (Table 2).

In CRC, the genes in the 5-hmC-related modules were
enriched in platelet activation, the B-cell receptor signaling
pathway, the chemokine signaling pathway, cytokine–cyto-
kine receptor interaction, and the cell metabolism-related
pathway. The KEGG and Reactome pathway results indi-
cated the involvement of the upregulated molecules in the
B-cell signaling pathway and in diseases of the immune sys-
tem (Figure 3(e) and Table 3).

3.5. PPI Network Analysis. PPI network analysis was per-
formed to investigate the 28 genes that were both DEG
and in the highly correlated modules. Based on previously
reported criteria [15], we obtained a total of four genes, all
of which were upregulated. As shown in Figure 4(a), the four
molecules with the highest degree value in the network were
LCN2 (logFC=1.88), S100P (logFC=1.24), TACSTD2
(logFC=1.16), and TACSTD2 (logFC=1.15), and these
genes significantly impacted the network.

3.6. Exploration of the Expression and DNA Promoter
Methylation Levels of Critical Genes. The four genes that
had a significant influence on the PPI network were used
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Figure 3: Potential functions of the 5-hmC-related genes in plasma according to GSEA. Plasma 5-hmC-related genes of CRC were
significantly enriched in the listed BPs (a), CCs (b), MFs (c), and KEGG pathways (d).
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for further analysis. We used the GEPIA database to analyze
the expression difference between CRC and normal tissues.
Consistent with our results, the four genes were all upregu-

lated in CRC tissues (Figure 4(b)). 5-Methylcytosine (5mC)
in DNA can be iteratively oxidized by Tet proteins to gener-
ate 5-hmC, which can be further processed by thymine-

Table 2: GO analysis of the DEG and genes in the highly correlated modules.

GO ID Description P value No. genes

Upregulated genes

GO:0035580 Specific granule lumen 2.83E-06 5

GO:0043312 Neutrophil degranulation 8.04E-06 10

GO:0002283 Neutrophil activation involved in immune response 8.44E-06 10

GO:0002446 Neutrophil-mediated immunity 1.00E-05 10

GO:0042119 Neutrophil activation 1.00E-05 10

GO:0036230 Granulocyte activation 1.12E-05 10

GO:0043299 Leukocyte degranulation 1.81E-05 10

GO:0042581 Specific granule 1.97E-05 6

GO:0034774 Secretory granule lumen 2.00E-05 8

GO:0060205 Cytoplasmic vesicle lumen 2.16E-05 8

GO:0002275 Myeloid cell activation involved in immune response 2.18E-05 10

GO:0031983 Vesicle lumen 2.25E-05 8

GO:0002444 Myeloid leukocyte-mediated immunity 2.41E-05 10

GO:0002274 Myeloid leukocyte activation 9.22E-05 10

GO:0030141 Secretory granule 1.58E-04 11

GO:0002366 Leukocyte activation involved in immune response 1.76E-04 10

GO:0002263 Cell activation involved in immune response 1.85E-04 10

GO:0031960 Response to corticosteroid 3.83E-04 5

GO:0045055 Regulated exocytosis 4.58E-04 10

GO:0099503 Secretory vesicle 6.86E-04 11

GO:0002443 Leukocyte-mediated immunity 1.13E-03 10

Downregulated genes

GO:0034341 Response to interferon-gamma 2.54E-06 7

GO:0071346 Cellular response to interferon-gamma 1.92E-05 6

GO:0001909 Leukocyte-mediated cytotoxicity 2.04E-05 5

GO:0045087 Innate immune response 2.57E-05 12

GO:0098542 Defense response to other organisms 3.88E-05 13

GO:0002688 Regulation of leukocyte chemotaxis 4.38E-05 5

GO:0051270 Regulation of cellular component movement 4.70E-05 12

GO:0002685 Regulation of leukocyte migration 4.86E-05 6

GO:0002687 Positive regulation of leukocyte migration 7.21E-05 5

GO:0002699 Positive regulation of immune effector process 7.40E-05 6

GO:0002697 Regulation of immune effector process 9.47E-05 8

GO:2000145 Regulation of cell motility 1.01E-04 11

GO:0040012 Regulation of locomotion 1.46E-04 11

GO:0002703 Regulation of leukocyte-mediated immunity 4.34E-04 5

GO:0050920 Regulation of chemotaxis 6.42E-04 5

GO:0030595 Leukocyte chemotaxis 7.56E-04 5

GO:0004930 G protein-coupled receptor activity 9.04E-04 9

GO:0032103 Positive regulation of response to external stimulus 9.04E-04 7

GO:0030335 Positive regulation of cell migration 1.03E-03 7

GO:2000147 Positive regulation of cell motility 1.31E-03 7

GO:0040017 Positive regulation of locomotion 1.53E-03 7

Notes. GO, Gene Ontology; DEG, differentially expressed genes.
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DNA glycosylase (TDG) followed by base excision repair or
by replication-dependent dilution leading to DNA demeth-
ylation. In summary, Tet proteins suppress gene methylation
by increasing the 5-hmC level. We performed external vali-

dation of this mechanism by exploring the DNA promoter
demethylation level of the hub genes in the public database
UALCAN. As expected, the DNA promoter demethylation
levels of LCN2, LRG1, and S100P were significantly lower

Table 3: KEGG and Reactome pathway enrichment analyses of the DEG and genes in the highly correlated modules.

ID Description P value NES_abs

hsa04611 Platelet activation 1.96E-03 1.82

hsa00480 Glutathione metabolism 2.02E-03 1.72

hsa05414 Dilated cardiomyopathy 2.01E-03 1.70

hsa04662 B-cell receptor signaling pathway 2.00E-03 1.69

hsa04062 Chemokine signaling pathway 2.10E-03 1.65

hsa01524 Platinum drug resistance 5.93E-03 1.65

hsa04650 Natural killer cell-mediated cytotoxicity 2.00E-03 1.63

hsa00410 Beta-alanine metabolism 3.75E-02 1.57

hsa00670 One carbon pool by folate 2.94E-02 1.51

hsa04060 Cytokine–cytokine receptor interaction 3.96E-03 1.51

hsa04550 Signaling pathways regulating pluripotency of stem cells 8.08E-03 1.49

hsa00515 Mannose type O-glycan biosynthesis 4.70E-02 1.48

hsa02010 ABC transporters 3.43E-02 1.47

Abbreviations. KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed genes.
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Figure 4: PPI network analysis and expression of plasma 5-hmC hub genes in tissue. (a) PPI network analysis of the DEG. (b) Expression
levels in tissue of the plasma 5-hmC hub genes between CRC and healthy controls in the GEPIA database.
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in CRC tissue than in the normal tissues (Figure 5). Because
the DNA promoter demethylation level can often affect the
RNA level, lower DNA promoter methylation level can often
lead to a higher RNA expression level, which is consistent
with the results shown in Figure 4(b).

3.7. Analysis of the Correlations of 5-hmC-Related Hub Genes
with Clinical Characteristics in Public CRC Datasets. The
four genes that had a significant influence on the PPI net-
work were used for clinical correlation analysis. We used
the GEPIA database to analyze the mRNA expression levels
of the 5-hmC related hub genes at different CRC stages. We
also explored the relationship between the overall survival
time and the mRNA levels of the four genes in the UALCAN
database. We found that TACSTD2 was associated with the
stage of CRC (Figure 6), and S100P was associated with the
overall survival of CRC patients. A high expression level of

S100P was a predictor of a poor prognosis in CRC patients
(Figure 7).

4. Discussion

Recent studies have reported that 5-hmC may be associated
with human cancer [22, 23]. In the present study, the 5-hmC
level of the hub genes in CRC patients was different from
that in healthy patients. Our study found 19 upregulated
genes and 9 downregulated 5-hmC-related hub genes in
plasma between healthy controls and CRC patients. Next,
we set the criteria of degree more than or equal to three to
screen hub genes as biomarkers of circulating cfDNA in can-
cer by PPI analysis The present findings suggested that the
5-hmC levels of LCN2, LRG1, S100P, and TACSTD2 in cir-
culating cfDNA may be used as potential noninvasive
marker genes for CRC, resulting in several notable
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advantages. First, in contrast to previous genome-wide anal-
yses of hydroxylation, we used sequencing and bioinformat-
ics to analyze the differential level of hydroxylation-related
genes between CRC patients and healthy controls. Second,
we analyzed genes with different levels of hydroxylation
modification of cfDNA in plasma to offer a new strategic
method for noninvasive screening of CRC.

In humans, DNA methylation is an important epigenetic
modification that is closely related to tumor development
and progression. DNA methylation includes various patterns,
such as 5-mC and 5-hmC. 5-mC is converted by oxidative
demethylation by the ten-eleven translocation enzyme family
(TET1, TET2, and TET3) or by passive demethylation of cop-
ies [24]. It is reported that 5-methylcytosine (5mC) in DNA
can be iteratively oxidized by a family of proteins known as
Tet proteins to generate 5-hydroxymethylcytosine (5hmC),
which can be further processed by thymine-DNA glycosylase
(TDG) followed by base excision repair or replication-

dependent dilution leading to DNA demethylation. In sum-
mary, Tet proteins downregulated gene methylation by upreg-
ulating the 5-hmc level [21]. In addition, 5-hmC levels are low
inmany cancers, including CRC [25, 26]. Li etal found that the
correlation of 5-hmC changes in cancer between the discovery
and validation datasets was higher in plasma cfDNA (cancer
patients vs. healthy individuals) than in tissue gDNA (tumors
vs. adjacent tissues), especially for 5-hmC in gene bodies. The
predicted cancer probability based on the 5-hmC classifier
from plasma cfDNA showed a significant trend associated
with clinical stage. After surgery, patients had predicted
scores undistinguishable from those of healthy individuals.
However, the hub 5-hmC-related genes for CRC remain
largely unknown, and whether 5-hmC-related genes can
be used as CRC diagnostic biomarkers needs to be verified
in future studies [13]. In the present study, we identified
aberrant changes in the 5-hmC levels of 28 genes in the
plasma of CRC individuals. WGCNA, GSEA, and GO
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analysis demonstrated that the 5-hmC levels of some hub
genes in the plasma of CRC patients were significantly dif-
ferent than those in the plasma of healthy controls, and
these hubs were mainly enriched in the immune response,
angiogenesis, drug resistance, and other related signaling
pathways. Cell motility is a complex, multistep, and multi-
component process intrinsic to progression and metastasis.
Motility is dependent on the activities of integrin receptors
and Rho family GTPases, resulting in the remodeling of the
actin cytoskeleton and the formation of various motile
actin-based protrusions [27]. In our study, GO and KEGG
pathway enrichment analyses showed that the 5-hmC level
of motility pathway-related genes was downregulated in
CRC patients. The lower 5-hmC level of motility

pathway-related genes was related to increase mRNA
expression of motility pathway-related genes. This may play
an important role in CRC progression and metastasis. GO
and KEGG pathway enrichment analyses showed that the
B-cell receptor signaling pathway related gens was in a
higher 5-hmC level in CRC patients’ plasma but T-cell
immunity was not. This phenomenon may be related to
the type of sample we studied. In this study, we used
plasma to detect 5-hmC in circulating cfDNA. B-cell immu-
nity is humoral immunity, which mainly depends on anti-
bodies and receptors. Its receptors and antibodies can exist
in plasma. T-cell immunity is a type of cellular immunity
and mainly plays a role in tissues. T-cells in the blood mainly
exist in the monolayer. Because we used plasma samples, no
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differences were detected in the T-cell immunity pathway. Our
study found elevated levels of 5-hmC in the B-cell receptor
pathway in CRC patients, suggesting that the B-cell receptor
pathway is inhibited in CRC patients.

The PPI network analysis and further analyses in the
GEPIA and UALCAN databases suggested that LCN2,
LRG1, S100P, and TACSTD2 are both expressed and methyl-
ated in the plasma of CRC patients. 5-hmC is used as a marker
of DNA demethylation. Examples of aberrant methylation
levels in the genome include hypermethylation of tumor sup-
pressor genes and hypermethylation of oncogenes. Although
PGLYRP1 is the highest difference expression gene in the
DEGs analysis list, it shows that PGLYRP1 is only two related
genes in PPI analysis. So, we did not verified PGLYRP1 in the
GEPIA database or ULCAN database.

LCN2, also known as neutrophil gelatinase-associated
lipocalin (NGAL), was first discovered as a protein related
to neutrophil gelatinase. Recent studies have shown that
LCN2 is mainly involved in cellular immunity. LCN2
expression starts in the fetal stages but is fairly low in healthy
adult humans. LCN2 has been reported to play a key role in
the development and progression of several tumors, such as
breast cancer [28], thyroid cancer, CRC, non-small-cell lung
cancer, hepatocellular carcinoma, and leukemia [27, 29]. In
most cancers, LCN2 is upregulated, but the underlying
mechanism remains largely unknown. The present study
demonstrated that LCN2 was upregulated in CRC tissue
and that the 5-hmC level of LCN2 in CRC patient plasma
was also upregulated. We speculated that in CRC patients,
the 5-hmC level of LCN2 is increased, leading to upregulated
LCN2 demethylation, thereby promoting its expression.
LRG1 is a highly conserved member of the leucine-rich
repetitive sequence family, which was first identified in
human serum in 1977 [30]. LRG1 is a secreted glycoprotein
that mediates the interaction between proteins and has been
studied as a tumor-promoting factor that participates in sig-
nal transduction, cell proliferation, migration, invasion,
adhesion, survival, and apoptosis [31–33]. Previous studies
have identified LRG1 as a new proangiogenic gene that
enhances cancer growth and diabetic retinopathy. Zhang
found that overexpression of LRG1 significantly enhances
the migration and tube formation capabilities of HUVECs
[34]. Similar to LCN2, the present study showed that the
5-hmC and mRNA levels of LRG1 were upregulated in
CRC patients compared to healthy individuals. LRG1 was
enriched in the angiogenesis-related pathway. Abnormal
levels of TACSTD2 are associated with the progression of
many tumors. The present study demonstrated that
TACSTD2 was upregulated in CRC tissue and CRC patient
plasma compared to plasma from healthy individuals, and
the mRNA level of TACSTD2 is positive associated with
CRC stage. Similar to our study, Katzendorn et al. reported
that the DNA methylation of TACSTD2 loci is related to
clinically aggressive renal cell cancers [35]. S100P is S100 cal-
cium binding protein P, and the protein encoded by this gene
is a member of the S100 family of proteins containing 2 EF-
hand calcium-binding motifs. S100 proteins are localized in
the cytoplasm and/or nucleus of a wide range of cells and are
involved in the regulation of a number of cellular processes such

as cell cycle progression and differentiation. Recent studies have
reported that S100P is a new target gene of MACC1 that drives
colorectal cancer metastasis and serves as a prognostic bio-
marker [36]. Consistent with this, we found that the 5-hmC
level of S100P in CRC patients’ plasm was significant higher
than that in the plasma of healthy individuals. The mRNA
expression level was upregulated in CRC tissue, which was asso-
ciated with a poor prognosis in CRC patients. It is reported that
DNA hydroxymethylation increases the susceptibility to reacti-
vation of methylated P16 alleles in cancer cells, and 5-hmc may
play an important role in gene transcription [37]. This may
partly explain our research that LCN2, LRG1, S100P, and
TACSTD2 DNA hydroxymethylation levels were positively
correlated with their mRNA levels. In addition, the 5-hmC
levels ofLCN2, LRG1, S100P, and TACSTD2 in circulating
cfDNA may be used as potential noninvasive markers for
CRC. Although we found that abnormalities in cell-free DNA
hydroxylation in plasma may be associated with an abnormal
immune response to CRC. However, this study only used 4
CRC samples from the GEO, so the number of samples is lim-
ited, and more samples are needed for validation. On the other
hand, due to the level of 5-hmC in the blood is very low, quan-
titative and high-resolution analysis of active DNA demethyla-
tion activity remains challenging. We have not verified the 5-
hmC level of the hub genes in clinical samples; we are looking
forward to advances in the new technology. In addition, the
underline mechanism on how the LCN2, LRG1, S100P, and
TACSTD2 function in CRC occurrence, development, and out-
come needs to be explored in the further researches.

5. Conclusion

The abnormal expression of some 5-hmC-related genes in
the plasma of patients with CRC may influence the 5-hmC
expression level through the methylation level of related
genes in CRC. The 5-hmC level of some genes in plasma
may act as biomarker for CRC.
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Family with sequence similarity 83, member A (FAM83A) plays an essential and fundamental role in the proliferation,
progression, and apoptosis of many malignant tumors, including lung cancer. This study aimed to determine the expression
pattern of FAM83A in lung adenocarcinoma (LUAD) and its correlation with the prognosis of cancer and the survival of the
patients. Bioinformatics analysis, immunohistochemistry, and Western blotting were used to explore and detect the expression
of FAM83A in LUAD cells. The mechanism of FAM83A in proliferation and migration was examined. The correlation
between FAM83A expression and survival rate was assessed by the Kaplan-Meier and Cox regression. FAM83A expression was
elevated in LUAD tissues and was related to shorter overall survival (P < 0:05). A significant increase in FAM83A protein was
observed in the LUAD tissue (P < 0:05). Compared with patients with early-stage tumors (stage I-II), those with advanced
stage tumors (stage III-IV) had significantly higher FAM83A expression levels (P < 0:05). Downregulation of FAM83A led to a
reduction in cell proliferation, a decrease in migration ability, and diminished epithelial-mesenchymal transition (EMT) in the
lung cancer cell lines. Overexpression of FAM83A was associated with early lymph node metastasis and poor overall survival
among LUAD patients. The findings indicated that FAM83A may play a critical role in promoting the LUAD progression and
thus might serve as a novel prognostic marker in LUAD.

1. Introduction

Lung cancer is one of the most common forms of cancer
worldwide and also the leading cause of cancer mortalities
worldwide [1]. In the recent years, the rate of incidence
and mortality has significantly increased with significant
gender and geographic differences. This is due to diversity
in lifestyles and socioeconomic development [2]. GLOBO-
CAN reported approximately 2.21 million new lung cancer
cases (11.4% of the total new cancer cases) and 1.80 million
deaths (18.0% of the total cancer deaths) worldwide in 2020
[3]. Despite many therapies for cancer, no satisfactory clini-
cal results have been observed because of early metastasis of

tumor. Therefore, the main concern is on targeted therapies
in order to increase the rate of recovery of the disease [4].
Traditional chemotherapies as the cornerstone of therapy
in the first line setting in an advanced stage of lung cancer.
In the past decade, significant improvements in survival rate
have been observed. These improvements are due to the
development of targeted therapies, i.e., epidermal growth
factor receptor tyrosine kinase inhibitors (EGFR-TKIs), for
lung adenocarcinoma through specific driver genes. Previ-
ous studies have demonstrated better therapeutic outcomes
and fewer toxic effects via EGFR-TKIs compared with the
traditional chemotherapies in patients with non-small cell
lung cancer (NSCLC) and EGFR mutations [5–8]. However,
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resistance to EGFR-TKIs seems inevitable and limits its
application in clinical practice. Despite the initial response,
patients who were treated with third-generation EGFR-TKI
Osimertinib would develop acquired resistance and disease
progression occurred 9 to 18 months after treatment
[9–11]. The patients’ disease usually deteriorates rapidly fol-
lowing drug resistance.

FAM83A consists of 8 genes, FAM83A-H, and is a mem-
ber of the FAM83 protein family which is located on chro-
mosome 8q24 [12]. The FAM83 family of proteins
contains a highly conserved DUF1699 domain at the N-ter-
minal, which is thought to be closely related to the biological
characteristics of the tumor [13]. Previous studies indicated
the overexpression of FAM83A in a variety of tumors, such
as lung and breast cancers, and suggested it as a potential
biomarker for cancer prognosis and a therapeutic target
[14]. FAM83A could be used to predict LUAD prognosis,
while FAM83B could predict the prognosis of lung squa-
mous cell carcinoma [15]. In addition to that, FAM83A (ser-
ine and protein rich) is correlated with the poor prognosis,
in the case of lung adenocarcinoma. In EMT of lung cancer,
FAM83A is also involved in the Wnt/β-catenin signaling
pathway [16, 17]. The public databases of bioinformatics
analysis demonstrated the possible role of FAM83A overex-
pressed in lung cancer. Several experimental studies have
reported high expression levels of FAM83A mRNA in lung
cancer tissue and circulating tumor cells [18, 19]. It is also
evaluated by a bioinformatics analysis that there is correla-
tion between the expression of FAM83A and programmed
death-ligand-1(PD-L1) [20]. Shi et al. proposed that long
non-coding antisense RNA FAM83A-AS1 could increase
FAM83A expression and promote lung cancer cell growth
[21]. However, most of the conducted studies mainly
focused on detecting FAM83A expression at mRNA or anti-
sense RNA levels, rather than on protein levels. Clear that
increased mRNA expression does not always indicate high
protein expression, while protein is the basic and ultimate
biological functional unit of genes. Consequently, to clarify
the biological significance of FAM83A in lung cancer, stud-
ies on protein levels rather than mRNA levels are required.
In this regard, FAM83A expression at the protein level, the
role of FAM83A in LUAD biological characteristics, and its
effects on the clinical and pathological characteristics of
LUAD patients were investigated in the present study.

2. Materials and Methods

2.1. Collection of LUAD Tissue Samples and Clinical
Information. The tissue chip contained 84 paraffin-
embedded LUAD and para-cancer tissue samples of lung
cancer specimens surgically removed from patients. The sur-
gical procedures were performed in The First Affiliated Hos-
pital of the University of Science and Technology of China
(USTC) from October 2004 to August 2008. The correlation
of clinical and pathological features with FAM83A expres-
sion is shown in Table 1. All experimental protocols were
approved by the Institutional Research Ethics Committee
of The First Affiliated Hospital of USTC (No. 2019-P-017).

2.2. Immunohistochemistry. The expression of FAM83A
protein in the lung tissue was assessed by immunohisto-
chemistry. The tissue sections were deparaffinized and rehy-
drated by a LEICA Autostainer (Leica ST5010, Autostainer
XL, Germany) at room temperature. Antigen retrieval (AR)
was performed with the citric acid solution. The tissue pieces
were washed and covered with rabbit anti-FAM83A anti-
body (1 : 400; No: orb183622, Biorbyt, Cambridge, UK) and
incubated overnight at 4°C. Then, the slides were washed
with phosphate buffer saline (PBS) and incubated with sec-
ondary antibody (Envision+/HRP, Rabbit, Dako, Sweden)
and diaminobenzidene (DAB) solution for 30 and 5min at
room temperature, respectively, and counterstained with
hematoxylin. The stained slides were examined and quanti-
tatively analyzed using Image J, and average optical density
(AOD) was evaluated. The AOD median value (MAOD) of
the detected LUAD samples was calculated. The specimen
with AOD ≥ MAOD and AOD < MAOD were defined as
high and low expression, respectively [17].

2.3. Cell Culture. A549, H1395, H1795, and Calu-3 cells were
purchased from the American Tissue Tradition Collection
(ATCC) (Manassas, VA, USA). The cells were cultured in
Roswell Park Memorial Institute (RPMI) 1640 medium
(HyClone, Logan, UT, Aldrich, St. Louis, MO) at 37°C in a
humidified incubator with a 5% CO2 atmosphere. The cells

Table 1: Correlations between FAM83A expression and clinical/
pathological characteristics in LUAD.

Characteristics
FAM83A

P-value
Low High

Age (y) 0.547

≥60 13 20

<60 23 28

Gender 0.784

Male 19 27

Female 17 21

T classification 0.634

T1 8 8

T2 21 26

T3 6 10

T4 1 4

N classification 0.007

N0 22 13

N1 8 17

N2 4 15

N3 2 3

M classification 0.235

M0 35 44

M1 1 4

Clinical stage 0.008

I 17 8

II 10 12

III 8 24

IV 1 4
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in the logarithmic growth phase (full to 70%-90%) were
selected, shaken, and cleaned with 2mL PBS, and then
digested with trypsin at 37°C for about 1min. The digestion
was stopped by adding a complete medium, and the cell pre-
cipitation was used in subsequent experiments.

2.4. Western Blotting Assay. Western blotting was used to
detect FAM83A and EMT-related protein expression in the
cells. Standard procedures were performed according to the
manufacturer’s instructions. Briefly, proteins in cell lysates
were separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and subsequently trans-
ferred onto polyvinylidene difluoride (PVDF) membranes
(Millipore, Massachusetts, USA) and incubated with the fol-
lowing primary antibodies against FAM83A (1 : 1000; Sigma,
Saint Louis, MO, USA), β-Actin (1 : 10000; Abcam, Cam-
bridge, MA, USA), vimentin (1 : 1000; Cell Signaling Tech-
nology, Danvers, MA, USA), E-cadherin (1 : 1000; Cell
Signaling Technology, Danvers, MA, USA), and Snail
(1 : 1000 Cell Signaling Technology, Danvers, MA, USA).
The β-actin was used as a loading control [17].

2.5. Lentivirus Transduction and Generation of Stable Cell
Lines. An HIV-1-based, lentiviral expression vector designed
to express a small hairpin RNA (pLVX-shRNA1) was used
for cell transduction. The small hairpin RNA (shRNA) oli-
gonucleotide sequences targeting human FAM83A gene
mRNA was designed and synthesized by Huada Gene Scien-
tific and Technological Co., Ltd. (Shenzhen, China). The tar-
get sequence of FAM83A was 5′-CCGGAGGAAATTCGCT
GGCCAAATCTTCAAGAGAGATTTGGCCAGCGAATT
TCCTTTTTTT-3′. The lentivirus with shFAM83A-gene was
produced by co-transfection of 293T cells and transfected
into A549 and H1795 cells. Control cells were transfected
with an empty vector. Stable cells were selected with puro-
mycin (Beyotime, Nanjing, China) after infection. Positive
clones were selected for further analysis [17].

2.6. Real-Time PCR (RT-PCR). Total RNA was extracted
from cultured cells using the E.Z.N.A Total RNA Kit
(R6834-02, Omega, US). Reverse transcription was carried
out using Prime Script RT Reagent Kit (Takara, Japan)
according to the manufacturer’s protocol. Reverse transcrip-
tion polymerase chain reaction (RT-PCR) was then per-
formed using SYBR Premix Ex Taq TM II Perfect Real-
Time (DRR081A, TaKaRa, Japan) in Eppendorf Realplex
2S (Eppendorf, Germany). All primers were synthesized by
Suzhou Jinweizhi Biotechnology Co., Ltd. (Suzhou, China).
The primer sequences are as follows: FAM83A-F: 5′-
CCAGACCGTCAAGCACAACA-3′, FAM83A-R: 5′-
GGAGCACACAAACGAACACC-3′ [17].

2.7. Cell Proliferation Assay. Cell viability was assessed by a
cell proliferation assay using cell counting kit-8 (CCK-8,
Dojindo, Kumomoto, Japan). Briefly, the cell suspension
was cultured in 96-well plates at a density of 1× 104 cells
per well. They were detected at 0, 12, 24, 48, and 72h follow-
ing the protocol. Cell growth rates were determined by mea-
suring absorbance at 450 nm [17].

2.8. Wound-Healing Assay. Cells were cultured in a 6-well
plate at a density of 1× 106 cells per well overnight. A wound
was created using a 10μL pipette tip across the center of the
well. After scratching, the wells were washed three times
with PBS and incubated in a CO2 incubator at 37

°C. Images
were obtained immediately and 12h after wounding. The
healing of the wound surface areas was calculated and ana-
lyzed using the Image J tool (The healing areas =0-h areas
– 24-h areas) [17].

2.9. Transwell Cell Assay. The cell invasion assays were per-
formed using a Matrigel invasion chamber (pore size: 8mm,
BD Biosciences, USA) at a density of 1× 106/ml. Cells in
serum-free medium were plated in the upper chamber. The
chemoattractant in the lower chamber was 10% fetal bovine
serum. After a 24-h incubation, the invaded cells were fixed
with paraformaldehyde (PFA) and then stained with crystal
violet. Finally, invaded cells were observed under an inverted
microscope (Leica DMI 4000 B, Leica, Wetzlar, Germany)
and manually quantified.

2.10. Bioinformatics Analysis. The study data and clinical
information were provided from The Cancer Genome Atlas
(TCGA) database. The University of Alabama at Birming-
ham cancer (UALCAN) data analysis portal (http://ualcan
.path.uab.edu/analysis.html) was used to analyze the data.
The Kaplan-Meier analysis was used to determine the rela-
tionship between FAM83A expression and the prognosis of
the disease.

2.11. Statistical Analysis. Data was analyzed by SPSS 13.0
(Chicago, IL, USA). Correlation analysis was performed
using Pearson’s chi-square test. Prognostic factor analyses
were performed using univariate and multivariate Cox
regression analysis. P < 0:05 value was considered statisti-
cally significant.

3. Results

3.1. Upregulation of FAM83A in LUAD by Bioinformatics/
UALCAN Analysis. UALCAN analysis of TCGA (http://
ualcan.path.uab.edu/analysis.html) showed that overexpres-
sion of FAM83A occurred in NSCLC, especially LUAD
(Figure 1(a)). The cluster analysis of the LUAD gene showed
a significant increase in transcriptional expression of
FAM83A between LUAD and the normal lung tissues
(Figures 1(b) and 1(c)). Furthermore, the Kaplan-Meier
analysis reported that patients with high FAM83A expres-
sion had shorter overall survival (P < 0:0001), as shown in
Figure 1(d). In conclusion, the obtained results of the TCGA
database demonstrated that FAM83A overexpressed in
LUAD and closely correlated with a worse prognosis.

3.2. High Expression of FAM83A in LUAD is Related to
Advanced Clinical and Pathological Characteristics. Immu-
nohistochemical staining was used to detect FAM83A pro-
tein in the LUAD tissue chip. The obtained results
indicated that the FAM83A protein was dyed brown and
located mostly in the cytoplasm, with a few in the nucleus
(Figure 2(a)). Moreover, high expression of FAM83A in
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LUAD and low expression in the adjacent normal tissue
were found (P < 0:01, Figure 2(b)). Subgroup analysis
showed that stage III-IV patients had higher FAM83A
expression than stage I-II patients (P < 0:05, Figure 2(c)).
Subsequent correlation analysis suggested that FAM83A
expression was correlated with clinical stages (P = 0:008)
and lymph node classifications (P = 0:007), but not with T
classification (P = 0:634) or metastasis classification
(P = 0:235). Univariate and multivariate Cox regression
analyses indicated that FAM83A expression was an indepen-
dent prognostic factor for survival in patients with LUAD
(hazard ratio: 1.745, 1.879, 95% confidential interval:
1.167–2.945, 1.075–3.321, P=0.023, 0.020, respectively)
(Table 2). Furthermore, the Kaplan-Meier analysis revealed
that patients with high FAM83A expression had shorter
overall survival (P < 0:01, Figure 2(d)). Consequently, the
results indicated a high FAM83A expression in LUAD,
which was related to advanced clinical and pathological fea-
tures and poor prognosis.

3.3. FAM83A Modulated Proliferation of LUAD Cells. To
investigate FAM83A expression in cancer cells, its expres-
sion in several adenocarcinoma cell lines including A549,
H1395, H1795, and Calu-3 cells was detected by Western
blotting assay. The results showed that FAM83A expression

was higher in A549 and H1795 cells and lower in H1395 and
Calu-3 cells (Figures 3(a) and 3(b)). In RT-PCR, A549 and
H1795 cells were treated for stable FAM83A-knockdown
by shRNA (shFAM83A) and a decrease in FAM83A mRNA
levels was observed (Figure 3(c)). A CCK8 cell proliferation
assay revealed that FAM83A knockdown could suppress cell
proliferation activity in H1795 cells. The proliferation rate of
H1795-shFAM83A decreased significantly compared with
the control H1795-shRNA-NC cells at each time point (0,
12, 24, 48, and 72h) (Figure 3(e), P < 0:001). In contrast,
the suppression was not observed in A549 cells and it was
indicated that FAM83A knockdown had no obvious effects
on A549 cell proliferation (Figure 3(d), P > 0:05).

3.4. FAM83A Promoted LUAD Cell Migration Ability. To
investigate the roles of FAM83A in cell migration, wound-
healing and transwell cell assays were performed in A549
and H1795 cells. The wound-healing assay showed a signif-
icant decrease in the healing area in FAM83A knocked down
cells (A549, H1795) (Figures 4(a) and 4(b)), indicating that
FAM83A knockdown significantly inhibited the migration
ability of A549 and H1795 cells. In addition, FAM83A
knockdown in A549 and H1795 cells significantly impaired
cell migration ability, as shown in the transwell cell migra-
tion assay (Figures 4(c) and 4(d)). More cells passed through
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Figure 1: UALCAN analysis of TCGA showed FAM83A is overexpressed in LUAD. (a) UALCAN analysis showed FAM83A is
overexpressed in lung adenocarcinoma (LUAD) and lung squamous carcinoma (LUSC), especially the former. (b, c) Cluster analysis
showed a significant over expression of FAM83A in LUAD (tumor) than in normal lung tissue (normal). (d) Kaplan-Meier analysis
showed that patients with high FAM83A expression had shorter overall survival, P < 0:0001.
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the basement membrane of the transwell in FAM83A
knocked-down cells, compared with in the controls. The
results indicated the promotion of invasion and migration
of FAM83A in the lung cancer cell.

3.5. FAM83A Induced EMT in LUAD Cells. EMT can pro-
mote tumor invasion and is a vital step during the early stage
of metastasis. In this study, the expression of EMT-related
markers was observed in A549 and H1795 cells. FAM83A
depletion resulted in upregulation of epithelial marker E-
cadherin expression and downregulation of vimentin
expression as a mesenchyme marker. Furthermore, the
EMT-related transcription factor Snail was downregulated
when FAM83A was depleted (Figures 5(a)–5(d)). The results

indicated that FAM83A depletion impaired the EMT ability
of LUAD cells.

4. Discussion

In the present study, high expression of FAM83A was
observed in LUAD tissues and it was noticed that FAM83A
could affect tumor biological characteristics including cell
proliferation, invasion, and metastasis. FAM83A overex-
pression was associated with advanced clinical and patho-
logical features in LUAD patients. These findings
recommended FAM83A as a LUAD oncogene and a poten-
tial biomarker for the diagnosis and prognosis of LUAD.

Similar to the results of TCGA database bioinformatics
analysis, the previous studies showed an increase in
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Figure 2: FAM83A protein was overexpressed in LUAD and higher FAM83A expressions related to poor overall patient survival. (a)
Representative hematein-eosin (HE) and immunohistochemistry (IHC) images of FAM83A expressions in adjacent normal tissues
(NORMAL) and LUAD with low (LOW) and high (HIGH) FAM83A expressions. The short bar is equal to 50 microns; the long bar is
equal to 100 microns. (b) The average optical density (AOD) of FAM83A in LUAD tissues and adjacent normal lung tissues. (c) AOD of
FAM83A in LUAD tissues in stage I-II and stage III-IV. (d) Kaplan-Meier survival analysis showed a significant difference in 84 LUAD
patients grouped by low and high FAM83A expression. ∗P < 0:05, ∗∗P < 0:01.

Table 2: Univariate and multivariate analyses for over survival in patients with LUAD.

Characteristics
Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

FAM83A 1.745 1.167-2.945 0.023 1.879 1.075-3.321 0.020

HR: hazard ratio; CI: confidence interval.
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FAM83A expression in LUAD patients [18, 19]. Immuno-
histochemical staining confirmed that FAM83A expression
was increased in LUAD tissue at the protein level. The
results allayed the suspicion of whether FAM83A expression
was increased at the mRNA and protein levels, as mRNA
expression is not always coincident with protein expres-
sion [22].

It is well known that FAM83A plays an important role in
regulating cell proliferation, differentiation, and invasion. Its
role in some tumors has also been well investigated. Lee et al.
reported that overexpression of FAM83A in breast cancer
promoted cell proliferation and invasion [23]. Chen et al.
found that overexpression of FAM83A markedly increased,
whereas inhibition of FAM83A decreased cell proliferation
in an in-vivo mouse model of pancreatic cancer [24]. The
phosphorylation of FAM83A, downstream of EGFR, and
upstream of ERK might activate the PI3K/AKT and MAPK
signaling pathways, promoting the proliferation, differentia-

tion, apoptosis, and invasion of cells [25, 26]. In the present
study, depletion of FAM83A expression inhibited the prolif-
eration, migration, and invasion of lung adenocarcinoma
cells. Interestingly, the proliferation capacity of A549 cells
exhibited a significant decreasing trend after FAM83A
depletion. A possible reason might be a rather limited
FAM83A overexpression in A549 cells compared to the
H1795 cells. Consequently, the effectiveness of FAM83A
knockdown by shRNA remained obscure. A recent study
that detected FAM83A expression in nine adenocarcinoma
cell lines including A549 cells was detected by the study of
Zhou et al. High expression of FAM83A in some cell lines
and relatively low expression in A549 cells were
observed [27].

EMT is an essential process that promotes adherent epi-
thelial cell movement. EMT can enhance cell mobility and
promote tumor progression, and affect cancer features, espe-
cially invasion and metastasis [28–31]. In the current study,
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Figure 3: FAM83Apromoted proliferation of LUAD cells. (a, b) Western blotting analysis showed that FAM83A levels were higher in A549
and H1795 cells. (c) The reverse transcription-polymerase chain reaction (RT-PCR) assay demonstrated that A549 and H1795 cells
transfected with FAM83A lentivirus (A549/H1795-shFAM83A), showed less FAM83A RNA expressions. (d) The cell proliferation assay
showed no differences between A549-shFAM83A and A549-shRNA-NC cells at each time point. (e) The cell proliferation assay showed
significant differences between H1795-shFAM83A and H1795-shRNA-NC cells. ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001.
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it was found that FAM83A depletion resulted in the absence
of mesenchymal markers, indicating that FAM83A was
involved in LUAD EMT processes. In addition, it was
observed that under-expression of FAM83A reduced Snail
expression, suggesting that FAM83A might regulate the
EMT phenotype by inhibiting Snail expressions. Previous
studies have shown that constitutive activation of the
PI3K/AKT signaling cascade was closely correlated with
Snail upregulation and diverse tumor cell metastasis
[32–37]. Therefore, investigating whether FAM83A activates
Snail and regulates EMT through the PI3K/AKT pathway is
worth further studies.

The clinical significance of FAM83A in some cancer
types such as breast cancer has been well studied [23]. There
is convincing evidence that FAM83A is also related to the
prognosis of lung cancer [15]. In the present study, the bio-
informatics analysis demonstrated that overexpression of
FAM83A was correlated with poor patient survival. Further-
more, immunohistochemical experiments revealed an
increase in staining of FAM83A expression in stage III and
IV patients, where FAM83A overexpression was positively
associated with disease stage and lymph node classification.
The results indicated that high FAM83A expression was
related to advanced clinical and pathological LUAD
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characteristics. In breast cancer, FAM83A regulates the pro-
liferation and invasion of cancer cells through the PI3K/
AKT pathway. Inhibition of related kinases on this pathway
can block the regulator effects of FAM83A on breast cancer
[23, 37].

In the present study, the molecular mechanism of
FAM83A in the regulation of proliferation, invasion, and
EMT was evaluated. It is not clear whether the PI3K/AKT
pathways are similarly involved in the regulatory mechanism
of FAM83A in LUAD. As well as further studies are required
to identify novel drug targets which may provide new thera-
peutic targets for LUAD. Therefore, it is suggested that these
factors must be investigated and should be considered in
future studies.

5. Conclusion

According to the results, at advanced stages of cancer, tran-
scriptional expression as well as the protein level of
FAM83A is increased in lung adenocarcinoma. Due to

depletion of FAM83A, there is an increased expression of
various types of markers, i.e., epithelial and mesenchyme.
This overexpression shown the poor prognosis of FAM83A
in lung cancer. In the future, FAM83A might be a potential
new target for molecular targeted therapy of patients to its
strong association with prognosis and expression of the
disease.
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Figure 5: FAM83A induced EMT in LUAD cells. (a, b) Western blotting showed that FAM83A and E-cadherin expression increased, while
Vimentin and Snail decreased when FAM83A was knocked down in A549 cells. (c, d) The same results were seen in H1795 cells. β-Actin
was used as the loading control. ∗∗∗P < 0:001.
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Background. Kidney renal clear cell carcinoma (KIRC) is considered as a highly immune infiltrative tumor. Necroptosis is an
inflammatory programmed cell death associated with a wide range of diseases. Long noncoding RNAs (lncRNAs) play
important roles in gene regulation and immune function. lncRNA associated with necroptosis could systematically explore the
prognostic value, regulate tumor microenvironment (TME), etc. Method. The patients’ data was collected from TCGA datasets.
We used the univariate Cox regression (UCR) to select prediction lncRNAs that are related to necroptosis. Meanwhile, risk
models were constructed using LASSO Cox regression (LCR). Kaplan–Meier (KM) analysis, accompanied with receiver
operating characteristic (ROC) curves, was performed to assess the independent risk factors of different clinical characteristics.
The evaluated factors are age, gender, disease staging, grade, and their related risk score. Databases such as Gene Ontology
(GO), Kyoto encyclopedia of genes and genomes (KEGG), and Gene set enrichment analysis (GSEA) were used to search the
probable biological characteristics that could influence the risk groups, containing signaling pathway and immue-related
pathways. The single-sample gene set enrichment analysis (ssGSEA) was chosen to perform gene set variation analysis
(GSVA), and the GSEABase package was selected to detect the immune and inflammatory infiltration profiles. The TIDE and I
C50 evaluation were used to estimate the effectiveness of clinical treatment on KIRC. Results. Based on the above analysis, we
have got a conclusion that patients who show high risk had higher immune infiltration, immune checkpoint expression, and
poorer prognosis. We identified 19 novel prognostic necroptosis-related lncRNAs, which could offer opinions for a deeper
study of KIRC. Conclusion. The risk model we constructed makes it possible to predict the prognosis of KIRC patients and
offers directions for further research on the prognostication and treatment strategies for KIRC.

1. Introduction

Renal cell carcinoma (RCC) is a branch of urologic tumors
that extensively occurred in the world. Studies have reported
that RCC is the third occurred tumor among the urinary sys-
tem, the incidence of RCC is next to prostate cancer and
bladder cancer [1], and almost 30% of the patients were
present with distant metastases when they were diagnosed
[2]. The five-year survival rate of metastatic RCC (mRCC)

is only 10%, worser than nonmetastatic RCC [3]. KIRC is
the most frequent pathological subtype in adults and is
responsible for 80%–90% of the RCC cases [1]. In most
patients with KIRC, proper surgical method remains the
preferred treatment. However, the tumor that is not sensitive
to chemotherapy and radiotherapy is more likely to metasta-
sis or recur compared with other pathological RCCs [4]. For-
tunately, recent studies have demonstrated that KIRC is
sensitive to immunotherapy and some big data on clinical
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trials have proven its worth in KIRC [5]. KIRC has been
reported to be linked to significant infiltration of immune
cells, and the clinical outcomes differ based on the type of
cell involved [6]. Thus, identifying the cells related to
immune factors would prove helpful.

lncRNAs is one type of the transcribed noncoding RNAs
(ncRNAs). The length of it was longer than 200 nucleotides
and they are distributed widely in cells [7]. However, lncRNAs
exhibited vital roles in multifarious functions of gene expres-
sion, such as transcription, chromatin organisation, and transla-
tion [8]. Recently, some studies reported that tumor-related
lncRNAs could regulate the progression of cancer by affecting
the tumor microenvironment (TME) [9], cell differentiation
[10], and apoptosis [11]. In addition, lncRNAs could signifi-
cantly influence the immune system, including immune cell
infiltration and immune activation [12]. Some studies reported
that the lncRNALINK-A could downregulate antigen presenta-
tion by inactivating the PKA pathway [13]. Moreover, the clin-
ical progression and prognosis of some tumors, including lung
cancer, prostate cancer, and BC, are associated with dysfunction
of lncRNAs [7]. For instance, the lncRNA HOXD-AS1 was
found to have high expression in castration-resistant prostate
cancer (CRPC) cells. The multiplication could be inhibited by
knockdown of HOXD-AS1 and it could be sensitive to chemo-
therapy after knockdown. Therefore, HOXD-AS1 showed
important role in cancer development [14].

With the development of bioinformatics, several studies
have been published recently regarding signature construction
based on lncRNAs to handle the therapeutic effect on patients
with KIRC. For instance, Sun et al. constructed a 5-immune-
related-lncRNA signature to distinguish whether KIRC
patients prognosis is good or not. In addition, the study ana-
lyzed the relationship between lncRNA and mRNA to find
out the behavior and relationship of these RNAs [15]. Cui
et al. reported that seventeen autophagy-associated lncRNAs
were successfully identified and a risk profile associated with
KIRC prognosis was constructed. This feature is a valid prog-
nostic indicator and not dependent on other features for
patients with KIRC [16]. However, the prediction of lncRNAs
associated with necroptosis in KIRC and their relationship
with immune status has not been clearly described.

In recent years, there are many ways of cell death that
have been discovered and via a number of different path-
ways, including apoptosis, necrosis, programmed necrosis,
pyroptosis, iron death, and autophagy. Apoptosis, which is
the well-known programmed cell death, had characteristic
morphological change with a number of specific biochemical
processes. Necrosis is the uncontrolled cellular death, which
is often followed by spillage of the cellular contents into sur-
rounding tissues. For the other forms of cell death, for exam-
ple, pyroptosis is also a kind of programmed cell death with
collateral damage (nuclear integrity is maintained) and
autophagy, which is a mechanism for both killing stressed
cells and to recycle cellular components. Necroptosis is a
freshly detected mechanism of cell programmed death medi-
ated by RIP1, MLKL, and RIP3 [17, 18]. More and more
studies are available suggesting that necroptosis is caught
up in various diseases, such as cardiovascular disease, can-
cers, and neuroinflammation [18–20]. Additionally, a recent

study showed that necroptosis may boost the cancer metasta-
sis and T cells death in tumors [21]. Necroptosis serves as one
of the programmed cell death in the cell, it contains the fea-
tures of necrosis combined with apoptosis, suggesting it might
cause and enhance antitumor immunity of tumors [17]. Park
et al. have found that the key regulatory genes in necroptosis
could influence the therapeutic effect in non-small-cell lung
cancer [22]. In alcoholic cirrhosis, RIPK3-mediated necropto-
sis was always associated with poor prognosis [23]. Nonethe-
less, how necroptosis affect the prognosis and inflammation
mechanism in KIRC is not yet clear.

Here we established risk signatures to explore the con-
nection between necroptosis-related lncRNAs (NRLs) and
the prognosis of KIRC. In addition, we studied how NRLs
influenced the tumor microenvironment (TME) and their
drug sensitivity in KIRC. We have provided novel prognos-
tic predictors and data for a clearer understanding of the
immune infiltrates of necroptosis in patients with KIRC.

2. Materials and Methods

2.1. Data Availability. The patients’material and their related
RNA sequencing data were downloaded from The Cancer
Genome Atlas (TCGA) (https://cancergenome.nih.gov/) data-
base. Transcribed RNA data were obtained from the frag-
ments per kilobase million (FPKM) for our study. The
lncRNAs genes were analyzed using the GENCODE project
(https://www.gencodegenes.org/) [24]. Patients with unavail-
able survival information and incomplete data were excluded.

2.2. Identification of Genes Associated with Necroptosis. 67
mRNAs related to necroptosis were extracted for identifica-
tion [25]. We performed the Pearson correlation coefficient
analysis in R software (version 4.0.4) to determine the
lncRNAs that has a relationship with the pyroptosis-related
genes. A correlation coefficient (jRj) value larger than 0.5
defined that a strong correlation exist, and p value less than
0.01 was regarded as the difference was different. The pro-
tein–protein interaction (PPI) network of the necroptosis-
related genes was analyzed using the Search Tool for the
Retrieval of Interacting Genes (STRING) (https://string-db
.org/). Thereafter, PPI network was observed by the Cytos-
cape software (version 3.7.1).

2.3. Qualification of the Necroptosis-Associated lncRNA
Prognostic Signature. The association between NRLs expres-
sion and survival data was assessed by using UCR analysis to
identify necrosis-associated lncRNAs. NRLs which has been
found to have a significant relationship (p < 0:05) were chosen
as the necroptosis-related lncRNAs for KIRC. Subsequently,
LCR analysis with the ‘glmnet’ package was applied to estab-
lish a prediction model of possible genes. The following for-
mula could be utilized to calculate risk score:

Expressiongene1 × Coefficientgene1 + Expressiongene2
× Coefficientgene2+⋯+Expressiongene n
× Coefficientgene n

ð1Þ
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An individual risk score was assigned to each patient.
Next, KIRC patients were separated as different risk groups
using the median cut-off of risk score according to the risk
model. Protective and risk prognostic factors were determined
using the hazard ratios (HR) by the UCR and the multivariate
Cox regression (MCR). The factor was considered risky when
HR was >1 and protective when HR was <1.

2.4. Survival and ROC Analysis. We analyzed survival with
the R packages survival and survminer, and the differences
were distinguished via the KM analysis. We calculated
whether our model for different overall survival (OS) is sen-
sitive and specific using the package timeROC of R (version
4.0.4). In addition, we used timeROC to evaluate the inde-
pendent risk factors of different clinical factors, including
age, gender, stage, grade, and risk score.

2.5. Construction of Alignment Diagram and PCA of the Risk
Genes. An alignment diagram was created on the basis of
the NRLs with ‘rms’ package to evaluate the various years
OS of KIRC patients. Plotting calibration curves was per-
formed to estimate the accuracy of alignment charts.
PCA was utilized to categorize the patients into groups
according to the NRLs.

2.6. GO, KEGG, GSEA, and ssGSEA Analysis. For bioinfor-
matics analysis, GO and KEGG were used to search possible

biological characteristics that may influence the risk groups,
including the changed signaling pathway. GSEA was used to
explore the immune-related pathways. The ssGSEA was
accompanied with the GSEABase package to explore the
immune and inflammatory infiltration profiles.

2.7. Effectiveness of the Necroptosis-Related lncRNA
Trademark in Clinical Trial. The effectiveness of immuno-
therapy on KIRC was estimated using TCIA. Relationship
between the risk score and immunotherapy sensitive genes
including PDL1, PD1, CTLA4, and TIGIT was also checked.
The IC50 value of chemotherapeutic agents was selected to
explore the response of KIRC to first-line targeted therapy
based on the R package ‘pRRophetic’.

3. Results

3.1. Identification of Genes Related to Necroptosis.We down-
loaded a total of 15,142 lncRNA expression profiles using the
R package. We screened 67 necroptosis-related mRNAs ana-
lyzed using the Pearson correlation coefficient based on jRj
larger than 0.5 and p value smaller than 0.01 to identify
NRLs. At last, 2,180 NRLs were exported. Following this,
we performed “limma” R package to get 428 DE
necroptosis-related lncRNAs difference from the tumor tis-
sues and normal tissue samples (Figures 1(a) and 1(b)).
Then we used GO and KEGG to search the potential
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Figure 3: The risk predictive model of NRLs in KIRC. The differences of OS in the two groups (a). Time-dependent ROC curves (b). The
risk score distribution of various groups (c). The survival status of patients in the two groups (d). The expression levels of 19 NRLs in risk
models (e).
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biological characteristics and related pathways of the DE
NRLs (Figures 1(c) and 1(d)).

3.2. Construction of the Prognostic Signature. Following this,
UCR analysis was utilized to separate the lncRNAs that have
prognosis functions from the DE NRLs, and 348 lncRNAs
have significant association with OS in KIRC patients (Sup-
plementary Table S1). From a total of 348 lncRNAs, we
identified 19 lncRNAs by LCR to build up the prediction
model (Figures 2(a) and 2(b)), the forest plot exhibited the
corresponding HRs and 95% CIs of the 19 lncRNAs
(IGFL2-AS, LINC01943, LINC01126, U62317.1, LASTR,
MYOSLID, ENTPD3-AS1, UBE2Q1-AS1, NARF-IT1,
APCDD1L-DT, MIRLET7A1HG, AC007376.2,
AC0026401.3, AC008050.1, AC025580.3, AC026992.1,
AC007743.1, AL162186.1, and AL158212.3). The results in
Figure 2 indicate UBE2Q1-AS1 could be a risk factor of
prediction in KIRC (Figure 2(c)). We separated 258
patients equally in the high and low-risk group according
to the median. We performed the PCA to know the risk
patterns in KIRC to estimate the effectiveness of the risk
model (Figures 2(d)–2(f)). We can see that a risk model
containing 19 lncRNAs had great efficiency to separate
patients into different risk groups.

3.3. Survival Analysis and Proof of the NRLs Trademark. We
took the KM survival analysis to figure out the OS of the risk
signature. We found that the high-risk group was more

likely to die than the other group (p < 0:001, Figure 3(a)).
We also approved the accuracy of the risk model with the
ROC curve. The AUC value of one-year OS was 0.763, while
the value for three- and five-year OS was 0.758 and 0.804,
respectively. These results indicated that the prediction risk
model can precisely forecast the OS (Figure 3(b)). We also
found that with an increase in the risk score, the high-risk
group has more possibilities to die (Figures 3(c)–3(d)). The
NRLs expression in the risk signature was also visualized
(Figure 3(e)).

3.4. Affirmation of the NRLs Trademark. To confirm the
truthfulness of our risk trademark in predicting the progno-
sis in KIRC, the KM survival analysis was further executed.
Better OS was found in the low-risk groups (Figure 4(a)).
The AUC values of ROC curve suggested the well predictiv-
ity of the risk trademark (Figure 4(b)). As the risk scores
were increasing, the more patients were dead
(Figures 4(c)–4(d)). NRLs expression was observed in the
testing set (Figure 4(e)), we found different set expressed
more in various groups.

3.5. Autonomous Prognostic Factors and Significance of the
Prediction Model. Risk score was found to act as the auton-
omous factor according to UCR and MCR (HR = 1:614,
95% CI: 1.454−1.793 and HR = 1:341, 95% CI: 1.173
−1.534, respectively) Figures 5(a) and 5(b). In addition, the
clinical characteristics, including age (AUC = 0:692), grade
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Figure 4: Affirmation of the risk model in test groups. The differences of OS in the two groups (a). Time-dependent ROC curves (b). The risk
score distribution of various groups (c). The survival status of patients in the two groups (d). The expression levels of 19 NRLs in risk models (e).
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Figure 5: The clinical values of the necroptosis-related lncRNAs risk model. The connection of clinical elements and risk score by UCR and
MCR (a, b). ROC curves of risk score, age, AJCC stage, gender, sex, and T, N, and M stages (c). The clinical features in two groups (d). The
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(AUC = 0:694), AJCC stage (AUC = 0:829), T stage
(AUC = 0:778), and M stage (AUC = 0:722), are all vital
for KIRC prediction (Figure 5(c)). The Chi-squared analysis
suggested that higher risk seems to have higher levels of
grade, AJCC stage, T stage, and M stage (Figure 5(d)). We
built a nomogram model using risk scores to predict OS in
KIRC patients (Figure 5(e)). The predictions of OS were
effective as presented in the calibration plot (Figure 5(f)).
The results suggested that both the risk and nomogram
models were accurate. The prognostic value of various clin-
ical features was demonstrated in the DCA plot
(Figure 5(g)). To detect the prognosis in diverse clinical ele-
ments, we evaluated the survival differences of KIRC
patients in various risk groups. Except for N stage, patients
in the low-risk groups have longer OS than the other group.
(Figures 6(a)–6(n)).

3.6. Functional Assessment of the Risk Feature. We per-
formed GSEA to assess the action of the risk model. Pro-
cesses significantly influenced the development of cancer,
including MYC targets V2, DNA repair, IL-6/JAK/STAT3
signaling, and immune response. These processes existed
more in the high-risk group, whereas metabolic processes
were embellished in the low-risk group (Figures 7(a)–7(t)).
The high-risk group can upregulate several pathways and
processes linked with tumor progression and immune
response, suggesting that necroptosis might influence the
treatment outcomes of immunotherapy according to analy-
sis using GSEA.

3.7. The Immune Infiltration Landscapes in Various Groups.
Immune checkpoint expression can influence the therapeu-
tic effects of chemotherapy and immunotherapy. We

assessed the levels of MSH6, BTLA, LOXL2, MSH2, POLE2,
BTNL2, PDCD1, TIGIT, and CTLA4 of patients from the
two risk groups. More immune checkpoints were found
among patients in the high-risk group (Figure 8(a)). More-
over, the interrelationship among risk scores and the
immune checkpoints, indicating that higher levels of
PDCD1, CTLA4, POLE2, TIGIT, BTLA, and BTNL2 were
related to higher risk scores, but the levels of MSH6 and
MSH2 were negative with the risk scores (Figure 8(b)).

ssGSEA were executed to catch the immune landscape
in the risk groups and verified the different infiltration
and components of the TME. Notably, we found that
the majority of the immune cells were not the same in
the two risk groups (p < 0:05). There were more immune
cells, including APC_co_stimulation (p < 0:001), CCR
(p < 0:001), CD8+_T cells (p < 0:001), cytolytic activity
(p < 0:001, HLA (p < 0:001), inflammation-promoting
(p < 0:001), macrophages (p < 0:001), parainflammation
(p < 0:001), pDCs (p < 0:005), T cell coinhibition
(p < 0:001), T cell costimulation (p < 0:001), T helper cells
(p < 0:001), Tfh (p < 0:001), Th1 cells and Th2 cells
(p < 0:001) in the high-risk group (Figure 8(c)). In addi-
tion, we identified 11 immune infiltration cells that has
a connection with risk score (Figure 8(d)).

Then “CIBERSORT” was applied to determine how
immune cell is expressed, indicating immune cells such as
plasma cells (p < 0:001), T cells CD8 (p = 0:02), T cells follic-
ular helper (p = 0:004), T cells regulatory (Tregs) (p < 0:001),
NK cells resting (p = 0:044), and macrophages M0 (p = 0:04)
expressed more in the high-risk groups, which further con-
firmed our conclusions (Figure 8(e)). Additionally, as the
risk scores were increasing, there were higher levels of the
aforementioned cells (Figure 8(f)).
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Figure 6: The different prognosis of clinical features in the risk model (a–n).
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3.8. Sensitivity in the Clinical Response. Immunotherapy
scores data was collected from TCIA database to differenti-
ate the immune responses of the two groups. We found that
patients without CTLA4 and PD-1 expressed had no differ-

ences in immunotherapy scores (Figure 9(a)). But either one
or two of them positive would lead to greater immunother-
apy scores (Figures 9(b)–9(d)). Subsequently, we examined
whether there exist a relationship in the risk groups and
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Figure 7: The GSEA analysis of the risk model (a–t).
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Figure 8: Continued.
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Figure 8: The immune infiltration in two groups. The immune check points expression and differences in two groups (a). The connection among
immune check points and the risk score (b). The immune infiltration with ssGSEA (c). The interaction in the immune cells and the risk score (d).
The immune infiltration with CIBERSORT in the two groups (e). The connection of immune cells changing along with risk score (f).
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chemotherapy sensitivity based on the IC50 values. The
results seem the same in axitinib or pazopanib
(Figures 9(e) and 9(f)). But more low-risk patients are sensi-
tive to sorafenib (p = 0:048), sunitinib (p < 0:001), and tem-
sirolimus (p < 0:001) (Figures 9(g)–9(i)). In conclusion, our
prognostic model can be a potential indicator of the effec-
tiveness of clinical treatment.

3.9. The Correlation between our Risk NRLs and the Related
Genes. We analyzed how our prognostic NRLs could influ-
ence each other, and what interested us was that the levels
of the prognostic NRLs including IGFL2-AS1, LINC01943,
U62317.1, LASTR, LINC01126, AC026401.3, MYOSLID,
APCDD1L-DT, AL162586.1, and NARF-IT1 were positive
in increasing risk scores (Figure 10(a)). Both lncRNA-
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Figure 9: The effectiveness of clinical treatment in two groups. The therapeutic effect of immunotherapy (a–d). IC50 values in two groups
(e–i).
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mRNA expressed network was built up according to our risk
signature to find the related necroptosis genes
(Figure 10(b)). The Sankey diagram demonstrated the pro-
tective and risk factors of NRLs and the related mRNAs
(Figure 10(c)). Finally, we explored the biological function
of the related mRNAs, which were significantly associated
with the procession of the cell death and progression of the
cancer (Figure 10(d)).

3.10. Affirmation of 19 lncRNAs Expression in Tissues. We
explored 19 NRLs expression in normal (n = 72) and tumor
tissues (n = 539) of KIRC using datasets from TCGA
(Figure 11(a)). We found that, with the exception of the levels
of AC026992.1 (p < 0:01), AL158212.3, and ENTPD3-AS1
(p < 0:01), higher in normal tissues, other lncRNAs were all
higher in tumor tissues (Figures 11(b)–11(t)).

4. Discussion

lncRNAs have been identified as crucial regulators of various
kinds of cellular processes since they could function as
tumor suppressors. The upregulation of lncRNA will pro-
mote the proliferation and invasion of tumor, while knock-
down of its expression suppresses this process. It has been
reported in many studies that the lncRNAs are altered in
many types of cancers, and therefore the aberrant lncRNAs
expression levels can be applied as effective diagnostic

markers, and deregulated lncRNAs can be used as targets
in cancer treatment. In our study, a 19-NRL risk model
was built up by us to estimate the prognosis of KIRC
patients. The model presented unique advantages. We used
the UCR to select prognostic lncRNAs that are related to
necroptosis. In the meantime, risk models were constructed
using LCR. Finally, 258 patients were equally separated in
the high- or low-risk group to know the 19 lncRNAs. The
KM and ROC curve analyses were performed to know the
treatment effect of KIRC patients, which revealed that the
model was a powerful prediction tool. In addition, this
model could assess the different clinical characteristics; the
evaluated factors are age, gender, disease staging, grade,
and their related risk score. The estimated risk score was
independent with excellent sensitivity and specificity. Fur-
thermore, via GSEA, the high-risk group was found to
enhance tumor development and progression, which con-
firmed the differences in prognostic property based on clas-
sification by risk.

Some previous studies have contributed to the construc-
tion of the lncRNA-related model to predict the immune
infiltration landscape in KIRC. Chen et al. identified four
lncRNA predictive risk scoring models and found that
higher risk scores were associated with higher levels of
immune infiltration in the KIRC microenvironment. Higher
risk score will increase activation of six immune cells, the cell
types were mentioned before. [26]. Based on the extensive

TNF signaling pathway

Necroptosis

Cellular response to inorganic substance

Condensed nuclear chromosome, centromeric region

Cytokine receptor binding

Protein serine/threonine kinase activity

Tumor necrosis factor receptor superfamily binding

Programmed necrotic cell death

Necrotic cell death

Apoptosis

Heterochromatin

Condensed nuclear chromosome

Gene ratio

Te
rm

Count
2
3

4

5

0.01

0.02

0.03

0.04

0.05

FDR

(d)

Figure 10: Coexpression between mRNAs and lncRNAs in our risk models and biological pathways of related mRNAs coexpressed with 14
lncRNAs. Interrelationship between the NRLs and the risk score (a). The network of our 19 lncRNAs related with coexpressed mRNAs (b).
Sankey diagram was presented to show the connection between mRNAs, lncRNAs, and the proposed factors (c). The biological function of
the coexpression mRNA (d).

28 Journal of Oncology



LINC01943
AC026401.3
LASTR
MYOSLID
AC007376.2
AC008050.1
AC007743.1
AC025580.3
U62317.1
LINC01126
UBE2Q1−AS1
AL162586.1
NARF−IT1
IGFL2−AS1
APCDD1L−DT
ENTPD3−AS1
AC026992.1
AL158212.3
MIRLET7A1HG

Type

Type

N

T

−5

0

5

(a)

0

1

2

3

4

Normal Tumor

A
C0

07
37

6.
2 

ex
pr

es
sio

n

Normal
Tumor

⁎⁎⁎

(b)

0

1

2

3

4

Normal Tumor

A
C0

07
74

3.
1 

ex
pr

es
sio

n

⁎⁎⁎

Normal
Tumor

(c)

Figure 11: Continued.

29Journal of Oncology



0

3

6

9

Normal Tumor

A
C0

08
05

0.
1 

ex
pr

es
sio

n

⁎⁎⁎

Normal
Tumor

(d)

0

10

20

30

40

Normal Tumor

A
C0

25
58

0.
3 

ex
pr

es
sio

n

Normal
Tumor

⁎⁎⁎

(e)

0

5

10

15

20

Normal Tumor

A
C0

26
40

1.
3 

ex
pr

es
sio

n

⁎⁎⁎

Normal
Tumor

(f)

0

1

2

3

4

Normal Tumor

A
C0

26
99

2.
1 

ex
pr

es
sio

n

⁎⁎⁎

Normal
Tumor

(g)

0

2

4

6

Normal Tumor

A
L1

58
21

2.
3 

ex
pr

es
sio

n

Normal
Tumor

⁎⁎⁎

(h)

0

3

6

9

Normal Tumor

A
L1

62
58

6.
1 

ex
pr

es
sio

n

⁎⁎⁎

Normal
Tumor

(i)

Figure 11: Continued.

30 Journal of Oncology



0

20

40

Normal Tumor

A
PC

D
D

1L
−D

T 
ex

pr
es

sio
n

⁎⁎⁎

Normal
Tumor

(j)

0

5

10

Normal Tumor

EN
TP

D
3−

A
S1

 ex
pr

es
sio

n

⁎⁎⁎

Normal
Tumor

(k)

0

100

200

300

Normal Tumor

IG
FL

2−
A

S1
 ex

pr
es

sio
n

⁎⁎⁎

Normal
Tumor

(l)

0

10

20

Normal Tumor

LA
ST

R 
ex

pr
es

sio
n

⁎⁎⁎

Normal
Tumor

(m)

0

1

2

3

Normal Tumor

LI
N

C0
11

26
 ex

pr
es

sio
n

⁎⁎⁎

Normal
Tumor

(n)

0

2

4

6

Normal Tumor

LI
N

C0
19

43
 ex

pr
es

sio
n

⁎⁎⁎

Normal
Tumor

(o)

Figure 11: Continued.

31Journal of Oncology



0

3

6

9

Normal Tumor

M
IR

LE
T7

A
1H

G
 ex

pr
es

sio
n

⁎⁎⁎

Normal
Tumor

(p)

0

10

20

30

40

50

Normal Tumor

M
YO

SL
ID

 ex
pr

es
sio

n

⁎⁎⁎

Normal
Tumor

(q)

0

1

2

3

4

Normal Tumor

N
A

RF
−I

T1
 ex

pr
es

sio
n

⁎⁎⁎

Normal
Tumor

(r)

0

10

20

30

40

Normal Tumor

U
62

31
7.

1 
ex

pr
es

sio
n

⁎⁎⁎

Normal
Tumor

(s)

0

1

2

3

4

Normal Tumor

U
BE

2Q
1−

A
S1

 ex
pr

es
sio

n

⁎⁎⁎

Normal
Tumor

(t)

Figure 11: 19 lncRNAs expression in normal and tumor tissues in TCGA. (a) Heatmap showed the distribution of our 19 risk lncRNAs in
different tissues. (b) lncRNAs expression we found in normal tissues.

32 Journal of Oncology



participation of lncRNAs in biological processes, predicting
tumor immune infiltration and the prognosis by studying
the mechanism of action of lncRNAs would prove to be
helpful [27]. KIRC is considered an immunogenic tumor,
and infiltration of immunosuppressive cells would lead to
the development of a TME [28]. However, there are limited
studies on how necroptosis-related genes influence the TME
in KIRC. High-risk patients may have a higher immune
score and a poor prognosis, the same was reported by Xin
et al. They demonstrated that better OS was related to lower
immune scores. In addition, the high-risk group was infil-
trated with seven immune cells, followed by worse prognosis
[29]. Furthermore, we found that low-risk patients were
more susceptible to sunitinib, sorafenib, and temsirolimus
immunotherapy. High-risk groups expressed more immune
checkpoint genes, suggesting that TME could influence the
therapeutic effects in patients with KIRC. In conclusion,
necroptosis probably influenced the TME and immune cell
infiltration. Our risk model may provide a new perspective
to explore TMR in the future and could be applied to predict
immune cell infiltration.

Among the lncRNAs included in our model, IGFL2-AS1
was reported as a facilitation factor in metastatic tongue
squamous cancer [30]. LINC01943 was upregulated in triple
negative breast cancer (TNBC) tissues, which could regulate
TGF-β expression to promote tumorigenesis, leading to
worse OS [31]. U62317.1 acts as a risk factor in oral cancer
and tends to be associated with the lipid metabolic process
[32]. LASTR has been proved to promote the stomach ade-
nocarcinoma growth and lung cancer [33, 34]. LINC01126
could repress proliferation, increase apoptosis, and cause
inflammatory of hPDLCs in anaerobic environment via
sponging miR-518a-5p to promote periodontitis pathogene-
sis in humans [35]. AC026401.3 and IGFL2-AS1 were
involved in glycolysis and as a prognostic signature in KIRC
[36]. MYOSLID was involved in the growth of osteosarcoma
and amplifies the vascular smooth muscle differentiation
program [37, 38]. ENTPD3-AS1 could suppress renal cancer
via miR-155/HIF-1 signaling, which confirmed our results
[39]. Overall, referred to former researches, we observed that
the necroptosis-related risk lncRNAs identified in our study
are strongly associated with immune functions. Through the
identification of immune system gene set and NRL biomark-
ers, AC007376.2, AC007743.1, AC008050.1, AC026401.3,
AC026992.1, and L158212.3, and the analysis of how
immune checkpoint genes express, this work got a conclu-
sion for the association with the risk score and the predictive
genes of immunotherapeutic sensitivity such as PDL1, PD1,
CTLA4, and TIGIT.

The findings in this study can provide novel mechanisms
for KIRC. Novel biomarkers were identified, which may be
of significance in future studies. The effectiveness of clinical
treatment and differences in two groups were studied, to
predict tumor microenvironment and immunotherapy
response. We found that patients without CTLA4 and PD-
1 expressed had no differences in immunotherapy score.
However, either one or two of them positive would lead to
greater immunotherapy scores. Studying the certain connec-
tion with the risk groups and chemotherapy sensitivity

according to the IC50 values, there were no differences in
axitinib or pazopanib. To the contrary, patients in the low-
risk group were more sensitive to sorafenib, sunitinib, and
temsirolimus, allowing for clustering KIRK affected individ-
uals for a positive or negative response to immunotherapy.

Recently, several publications on NRLs have been pro-
duced, associated with different types of cancer, showing
the importance of necroptosis genes and their regulation
by lncRNAs. For instance, Luo et al. studied the association
of lncRNAs with stomach adenocarcinoma, focusing on a
twelve NRL signature which included LASTR, one of the
lncRNAs identified in this work as NRL for KIRC [40]. Liu
et al. studied lncRNAs in colon cancer and identified MYO-
SLID as associated to pyroptosis, linking this lncRNA to reg-
ulation of SKP1 expression via MIR-589-5p and to the miR-
29c-3p-mcl-1 axis [41]. The function of lncRNAs in seques-
tering and inactivating one or more miRNA species was
studied also in the necroptosis response in HCC [42]. In
breast cancer, Xu et al., Chen et al., Xie et al., and Zhang
et al. studied the link between tumor microenvironment
and NLR signatures [43–46], as well as miRNA signatures
[47]. An axis linking an lncRNA with a microRNA and the
target gene was shown in bladder cancer progression and
metastasis [48, 49]. A similar approach has been used to
study laryngeal squamous cell carcinoma [50].

However, there are several mechanisms of action per-
formed by lncRNAs, one of which is structural, interacting
with protein complexes and epigenetic regulators, such as
histone modifiers, polycomb complexes, and chromatin
complexes. Although several publications have indicated
the occurrence of necroptosis regulators in KIRC, very few
data are available on the involvement of lncRNAs in control-
ling or decreasing the neurotrophic signaling in kidney can-
cer, in particular based on OTUD6B-AS1, AL162377.1,
AC108449.2, AF111167.2, and hsa-miR-21-5p targeting
KLF9 [51–53]. To improve the therapeutic potential of kid-
ney cancer treatment, this paper provides an improved and
extended NRL signature model for KIRC that is able to dis-
tinguish low and high overall survival rates and response to
immunotherapies.

Still, this study has several limitations. Firstly, the valida-
tion of the test model is required. Secondly, larger multicen-
tre trials are required to endorse the accuracy of the model.
Moreover, more molecular experiments should be per-
formed on the selected lncRNAs to explore how they influ-
ence the progression of tumorigenesis and immune
infiltration in KIRC.

5. Conclusion

In conclusion, we established risk signatures to explore the
connection between necroptosis-related lncRNAs (NRLs)
and the prognosis of KIRC. Meanwhile, the relationship
between NRLs and the TME, immune infiltration, prognosis
prediction ability, and therapeutic effects in KIRC was inves-
tigated. The NRL risk model was constructed with the LCR
to categorize patients with various risks. The risk model sug-
gested that higher immune score might lead to worse prog-
nosis, and low-risk patient could be cured using
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chemotherapy and immunotherapy. Our research could
offer new opinions regarding the importance of necroptosis
in the TME and KIRC development.
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This study investigated the role of the family with sequence similarity 201-member A (FAM201A), as previously reported
oncogenic, in cervical cancer (CC). FAM201A expression in CC was analyzed through bioinformatics analyses, and its
distribution in CC tissues/cells was determined by in situ hybridization. CC cells were transfected/cotransfected with
FAM201A/flotillin-1 (FLOT1) overexpression plasmids and miR-1271-5p mimics, followed by functional analysis on viability,
migration and invasion. Pearson’s correlation tests were performed to analyze the correlation between FAM201A and miR-
1271-5p in CC tissues. The targeting relationship between miR-1271-5p and FLOT1 was confirmed by dual-luciferase reporter
assay. The expressions of FAM201A, miR-1271-5p, FLOT1, matrix metalloproteinases (MMP)-9, MMP-2, E-cadherin, N-
cadherin, and the Wnt/β-catenin pathway-related molecules (Wnt1, β-catenin and p-β-catenin) in CC cells or tissues were
assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and/or western blot. The results showed
that FAM201A was abundantly expressed and miR-1271-5p expression was downregulated in CC. FAM201A was enriched in
CC cell cytoplasm and negatively correlated with miR-1271-5p in CC tissues. FAM201A overexpression enhanced the cell
viability, migration, invasion, and tumorigenesis of CC in vivo and increased FLOT1 expression. These trends were all reversed
by upregulating miR-1271-5p, which induced opposite effects to FAM201A overexpression. MiR-1271-5p upregulation
depleted the levels of MMP-9, MMP-2, N-cadherin, and the Wnt/β-catenin pathway-related molecules and upregulated E-
cadherin expression. FLOT1 was a direct target of miR-1271-5p. FLOT1 overexpression induced effects contrary to the
upregulation of miR-1271-5p and abolished miR-1271-5p upregulation-induced effects in CC cells. Overall, this study showed
that FAM201A promoted cervical cancer progression and metastasis by targeting the miR-1271-5p/FLOT1 axis-induced Wnt/
β-catenin pathway.

1. Introduction

Cervical cancer (CC) is one of the most common malignant
tumors affecting women worldwide, second to breast cancer
[1], and is the leading cause of cancer-related mortality in
some developing countries [2]. The progression of CC is fea-
tured as amultistage andmultistep process involving the acti-
vation of proto-oncogenes and (or) inhibiting tumor-
suppressive genes [3]. Currently, the antitumor treatment
forCC remains less effective owing to its late-appearing symp-
tom, leading to unsuccessful disease diagnoses and advanced-
stage disease by the time of diagnosis [4]. It is reported that the

five-year survival rate for metastatic CC patients is 16.5%,
compared to 91.5% for localized CC patients [5]. Therefore,
metastasis is accountable for most unfavorable prognoses,
recurrence and high morbidity of CC [6].

Long noncoding RNAs (lncRNAs), a type of transcripts
constituted by over 200 nucleotides with no translation abil-
ity, have emerged as pivotal regulators for the carcinogenesis
and progression of cancers, including CC [6]. Epithelial-
mesenchymal transition (EMT), a highly conserved trans-
differentiation program considered the major driver of can-
cer progression, is reported to facilitate metastasis of cancer
cells by promoting migration and invasion and conferring
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an apoptosis-resistant property [7]. By directly or indirectly
reversing EMT, lncRNAs can repress tumorigenesis, cancer
progression, and metastasis, demonstrating their therapeutic
potential [8]. The family with sequence similarity 201-
member A (FAM201A) is a long nonprotein coding RNA
derived from an open reading frame (ORF)-lacking RNA
transcripts transcribed from a 2.9 Kbp-long gene that is
located in genomic 9p13.1 [9]. Several studies exploring
anticancer strategies have revealed the involvement of
FAM201A in inducing carcinogenesis and promoting the
progression of triple-negative breast cancer (TNBC) [10],
lung squamous cell cancer (LSCC) [11], and lung adenocar-
cinoma (LUAD) [12]. Additionally, highly expressed
FAM201A was reported to provoke short-term radio-resis-
tance, leading to inferior survival in patients with esophageal
squamous cell cancer [13] and nonsmall-cell lung cancer
[14]. However, little is known about the biological roles
and clinical significance of FAM201A in CC.

Interactive analyses have identified FAM201A as a key
regulator in cancer progression in a lncRNA-miRNA-
mRNA competing endogenous RNA (ceRNA) network, via
which FAM201A was found to indirectly regulate the
expression of messenger RNA (mRNA) by sponging its tar-
geted microRNAs (miRNAs) [10, 14, 15]. Without lncRNA-
directed sponging effects, miRNAs, a class of small noncod-
ing RNAs with 18-24 nucleotides in length that are endoge-
nous and evolutionarily conserved, can destabilize mRNAs
or inhibit translation, thereby repressing mRNA expression

by complementarily binding to the 3’-untranslated regions
of the mRNAs [16, 17].

A large number of miRNAs have been implicated in CC-
associated ceRNA networks. For instance, MiR-1271-5p
expression was previously reported to be aberrantly down-
regulated in acute myeloid leukemia [18], colon cancer
[19], multiple myeloma [20], and LUAD [21], indicating
that it played a tumor-suppressive role in the progression
of these cancers through related ceRNA networks. Mean-
while, upregulated miR-1271-5p expression was shown to
induce oncogenic effects and associated with unfavorable
prognoses in hepatocellular carcinoma (HCC) [22]. How-
ever, whether FAM201A regulates miR-1271-5p through
the ceRNA network and thus participates in CC progression
remains unconfirmed.

In this study, we investigated the effects of FAM201A in
CC progression using bioinformatics tools and determined
the potential miR-1271-5p-targeted mRNA for identifying
a FAM201A-miR-1271-5p-mRNA ceRNA regulatory net-
work in CC, with the hope to propose an original molecular
therapy for CC.

2. Materials and Methods

2.1. Ethics Statement.Written informed consent was obtained
from all human participants. All animal experiments were
performed following the guidelines of the China Council on
Animal Care and Use [23]. The human and animal studies

Table 1: Primers used in quantitative reverse transcription polymerase chain reaction for target genes.

Genes Species Forward Reverse

FAM201A Human 5′-TCTCTGATGGGAGCCTCTTTA-3′ 5′-CAAGCCACAGA
CGGAGAAA-3′

miR-1271-5p Human 5′-CTTGGCACCTAGCAAGCACTCA-3′ 5′-GCGAGCACAGA
ATTAATACGAC-3′

Flotillin-1 Human 5′-CCATCTCGTCACTGGCATT-3′ 5′-CGCCAACATCT
CCTTGTTC-3′

MMP-2 Human 5′-TACAGGATCATTGGCTACACACC-3′ 5′- GGTCACATCGC
TCCAGACT-3′

MMP-9 Human 5′-TGTACCGCTATGGTTACACTCG -3′ 5′- GGCAGGGACAG
TTGCTTCT-3′

E-cadherin Human 5′-ATTCTGATTCTGCTGCTCTTG-3′ 5′-AGTCCTGGTCC
TCTTCTCC-3′

N-cadherin Human 5′- AACCTAGCCTACTGGCCAAA -3′ 5′- AACATCGAGGT
CGTAAACCC-3′

Wnt1 Human 5′- CGATGGTGGGGTATTGTGAAC-3′- 5′- CCGGATTTTGG
CGTATCAGAC-3′

β-Cadherin Human 5′- GAGCTGCCATGTTCCCTGAG -3′ 5′- CAGTTGTCAAT
TTGATTAAC-3′

GAPDH Human 5′-GAGAAGGCTGGGGCTCATTT-3′ 5′-AGTGATGGCAT
GGACTGTGG-3′

U6 Human 5′-CTCGCTCGGCAGAACA-3′ 5′-AACGCTTCACG
AATTTGCGT-3′
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were approved by the Ethics Committee and the Committee
of Experimental Animals of Nanfang Hospital (approval
number: GD202004020/GD202007027), respectively.

2.2. Clinical Sample. CC tissues (n = 33) and adjacent normal
tissues (n

̲
= 33) were collected during surgical operation at

the Second Hospital of Shanxi Medical University in 2020
from CC patients without preoperative chemotherapy,
radiotherapy, or immunotherapy. Fresh samples were
immediately frozen in liquid nitrogen and stored at -80°C.

2.3. Cell Culture. Human cervical endometrial epithelial cells
(HCerEpiC; CP-H058, Procell Life Science&Technology Co.,
Ltd, Wuhan, China) were cultured in EpiLife Media
(MEPI500CA, ThermoFisher, Waltham, MA, USA) to reach
a confluence around 75% within 10–14 days. CC cell lines,
including HeLa (CCL-2), C33a (HTB-31), SiHa (HTB-35),
and ME180 (HTB-33) purchased from American Type Cul-
ture Collection (ATCC, Manassas, VA, USA), were culti-
vated in high-glucose Dulbecco’s Modified Eagle Medium
complete media (DMEM; 11965092, ThermoFisher, USA)
supplemented with 2mML-glutamine (25030081, Thermo-
Fisher, USA), 10% Fetal Bovine Serum (FBS; 16140071,
ThermoFisher, USA), and 1% penicillin-streptomycin
(V900929, Sigma-Aldrich, St. Louis, MO, USA) at 37°C with
5% CO2.

2.4. General/Fluorescent in Situ Hybridization. The expres-
sion and subcellular location of FAM201A were determined
by General/Fluorescent in situ hybridization using
Digoxigenin-labeled Probe Detection kits (Boster Biological
Technology, Wuhan, China). As per the manufacturer’s

instructions, CC tissues and adjacent normal tissues were
fixed in 4% paraformaldehyde (16005, Sigma-Aldrich,
USA), dehydrated by ethanol, and transparentized by xylene
(95682, Sigma-Aldrich, USA). Then, the tissues were embed-
ded in paraffin (1496904, Sigma-Aldrich, USA) and cut into
4μm-thick sections, following which the sections underwent
dewaxation with xylene and rehydration by ethanol. SiHa
and ME180 cells were cultured to reach a concentration of
1 × 105 cells/mL and fixed in 4% paraformaldehyde for 4
hours (h). Afterward, the sections and cells were treated with
a standard prehybridization buffer at 68°C for 20 h.
Digoxigenin-labeled DNA probes complementary to
FAM201A were denaturalized via boiling water bath for 10
minutes (min) and added into the standard prehybridization
buffer to formulate prehybridization buffer. The prehybridi-
zation buffer was then incubated with the tissues and cells at
68°C for another 20h. After washing using Wash Solution I,
a biotin-labeled anti-Digoxigenin antibody was added to the
tissues, followed by the 3,3’-Diaminobenzidine (DAB) treat-
ment for the color-development of the tissues. The cells were
supplemented with anti-Digoxigenin antibody (ab420,
Abcam, Cambridge, MA, USA) and incubated with Goat
anti-mouse IgG H&L (ab150115, Abcam, USA). The nuclei
of the cells were dyed using 4’,6-diamidino-2-phenylindole
(DAPI; D21490, ThermoFisher, USA). Color and fluorescent
color signals were observed by a confocal microscope
(Raman DXR™3, ThermoFisher, USA) at the magnification
of ×200.

2.5. Cell Transfection. The pcDNA™3.1/Hygro(+) mamma-
lian expression vectors were used to construct overexpression
plasmids of FAM201A and FLOT1, and the empty vector was

MYLK-AS1 DAPI Merge

100 μm100 μm100 μm

× 
20

0

M
E1

80

(k)

Figure 1: FAM201A was highly expressed in CC and enriched in CC cell cytoplasm, and its expression was negatively correlated with miR-
1271-5p. (a) The expression of FAM201A was analyzed in the TCGA-CESC database, including CC samples (n = 306) and normal samples
(n = 13) by GEPIA. (b, c, f, g) The expressions of FAM201A (b, f) and miR-1271-5p (c, g) in CC tissues and the adjacent normal tissues (b, c)
as well as in HeLa, C33a, SiHa, ME180 and human endocervical epithelial HCerEpiC cells (f, g) were analyzed by qRT-PCR. (d) The
correlation between FAM201A and miR-1271-5p in CC tissues was analyzed by Pearson’s correlation tests. (e) The expression of
FAM201A in CC tissues and the adjacent normal tissues was assessed by fluorescence in situ hybridization (magnification: ×200; scale:
100μm). (h, i) The subcellular localization of FAM201A was determined by qRT-PCR. (j, k) The expression of FAM201A in SiHa cells
and ME180 cells was evaluated by fluorescent in situ hybridization (magnification: ×200; scale: 100 μm). ##P < 0:01; ###P < 0:001; # vs.
HCerEpiC. CC: cervical cancer; qRT-PCR: quantitative reverse transcription polymerase chain reaction; NC: negative control; FAM201A:
the family with sequence similarity 201-member A; M: miR-1271-5p mimic; MC: mimic control; GEPIA: Gene Expression Profiling
Interactive Analysis; TCGA-CESC: Cancer Genome Atlas Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma; qRT-
PCR: quantitative reverse transcription polymerase chain reaction.
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set as negative control (NC). MiR-1271-5p mimic/mimic
control (MC) (miR10005796-1-5/miR1N0000001-1-5) was
purchased from RIBOBIO (Guangzhou, China). C33a or
ME180 cells (4 × 104) were seeded in 96 well plates until
80% confluence was reached. Transfection working solutions
(0.15μL) were prepared by mixing Lipofectamine 3000
transfection reagents (L3000015, ThermoFisher, USA) and
Opti-MEM media (31985062, ThermoFisher, USA). Subse-
quently, the above plasmids were (2μg) added into Opti-
MEM media (10μL) together with a P3000 reagent (0.4μL).
Next, the processed plasmids were mixed with the transfec-
tion working solution at a ratio of 1 : 1 to obtain an RNA-
lipid complex, of which 10μL of the complex mixture was
incubated with the cells at 37°C for 24 h or 48 h.

2.6. Cell Counting Kit- (CCK-) 8 Assay. The viability of SiHa
or ME180 cells was evaluated using a CCK-8 kit (96992,
Sigma-Aldrich, USA). After transfection with FAM201A/
FLOT1 overexpression plasmids or miR-1271-5p mimic
alone or in combination, SiHa or ME180 cells were seeded
into 96-well plates at a density of l × l04 cells/well supple-
mented with complete media and cultured. The cells in each
well were treated with the CCK-8 reagent (10μL) and incu-
bated for 4 h, at 24-, 48- and 72-h post-transfection. The
optical density at a wavelength of 450nm was determined

by a microplate reader (ELx808, BioTek, Winooski, VT,
USA).

2.7. Bioinformatics Analysis. The targeting relation between
FLOT1 and miR-1271-5p was predicted by Targetscan
(http://www.targetscan.org/vert_71/).

2.8. Dual-Luciferases Reporter Assay. Dual-Luciferase
Reporter Assay System (E1910, Promega, Madison, WI,
USA) was used to verify the targeting relationships between
FAM201A and miR-1271-5p and between miR-1271-5p and
FLOT1. SiHa or ME180 cells (4 × 104) were then cultured to
attain 70% confluence. Sequences of wild type FLOT1 (WT)
(5′-CCCCTCATCUCTCCTTGCCAAAT-3′) and mutant
FLOT1 (MUT) (5′-CCCCTCATCUCTCCTGGACAAAT-
3′) were cloned onto pMirGLO luciferase vectors (50 ng,
E1330, Promega, USA). The cells were cotransfected with
the pMirGLO cloned with FLOT1-WT or FLOT1-MUT
(2μg) and miR-1271-5p mimic (2μg) using Lipofectamine
3000 transfection reagent for 48 h. After cotransfection, the
cells were lysed by diluted Lysis Buffer (50μL, 16189, Ther-
moFisher, USA) and added with Luciferase Assay Reagent II
(100μL). The activity of firefly luciferase, which was normal-
ized to that of Renilla luciferase, was measured using a
luminometer (GloMax®20/20, Promega, USA).

0

C
on

tro
l

N
C 

+ 
M

C

FA
M

20
1A

 +
 M

C

N
C 

+ 
m

iR
-1

27
1-

5P
 m

im
ic

s

FA
M

20
1A

 +
 m

iR
-1

27
1-

5P
 m

im
ic

s

150

200

100

50

Re
lat

iv
e m

ig
ra

tio
n 

ra
te

 (%
)

SiHa

+++

+++

^^^
###

(h)

0

C
on

tro
l

N
C 

+ 
M

C

FA
M

20
1A

 +
 M

C

N
C 

+ 
m

iR
-1

27
1-

5P
 m

im
ic

s

FA
M

20
1A

 +
 m

iR
-1

27
1-

5P
 m

im
ic

s

150

200

100

50

Re
lat

iv
e m

ig
ra

tio
n 

ra
te

 (%
)

ME180
+++

++

^^^
###

(i)

Figure 2: FAM201A overexpression increased CC cell viability and promoted migration by downregulating miR-1271-5p expression. (a-d)
The expressions of FAM201A (a, b) and miR-1271-5p (C/D) in CC (SiHa and ME180) cells transfected with FAM201A overexpression
plasmids or miR-1271-5p mimic alone or in combination were analyzed by qRT-PCR. (e, f) The viability of CC (SiHa and ME180) cells
after transfection with FAM201A overexpression plasmids or miR-1271-5p mimic alone or in combination was measured by CCK-8
assay at 24-, 48-, and 72-h post-transfection. (g-i) The migration of CC (SiHa and ME180) cells after transfection with FAM201A
overexpression plasmids or miR-1271-5p mimic alone or in combination was evaluated by the Transwell assay (magnification: ×250;
scale: 50μm). +P or #P < 0:05; ++P or ^^P or##P < 0:01; +++P or ^^^P or ###P < 0:001; + vs. NC+MC; ^vs. FAM201A+MC; # vs. NC+miR-
1271-5p M. CC: cervical cancer; qRT-PCR: quantitative reverse transcription polymerase chain reaction; CCK-8: cell counting kit-8; NC:
negative control; FAM201A: the family with sequence similarity 201-member A; M: miR-1271-5p mimic; MC: mimic control.
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Figure 3: Continued.
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2.9. Transwell Assay. Transwell chambers (3428, Corning,
Corning, NY, USA) were used to assess the migratory and
invasive abilities of SiHa cells and ME180 cells after transfec-
tion with FAM201A/FLOT1 overexpression plasmids or
miR-1271-5p M alone or in combination. The upper cham-
ber was precoated by Matrigel (dilution: 1 : 3; 356234, Corn-

ing, USA) for cell invasion assay, while that without Matrigel
was used for cell migration assay. The cells were cultured to
prepare a cell suspension at a concentration of 5 × 105 cells/
ml. Then, 100μL of the cell suspension was poured into the
upper chamber, and 600μL of DMEM containing 10% FBS
was added to the lower chamber. The whole Transwell set
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Figure 3: FAM201A overexpression promoted CC cell invasion and CC tumorigenesis in vivo by downregulating miR-1271-5p expression.
(a-c) The invasion of CC (SiHa and ME180) cells transfected with FAM201A overexpression plasmids or miR-1271-5p mimic alone or in
combination was evaluated by the Transwell assay (magnification: ×250; scale: 50 μm). (d) Pictures of subcutaneous xenografts formed by
SiHa cells with stable overexpressed FAM201A, miR-1271-5p or both (e, f). The volume (e) and weight (f) of subcutaneous xenografts
formed by SiHa cells with stable overexpressed FAM201A, miR-1271-5p or both were measured weekly (e) or at the fifth week after
resection (f). +P or #P < 0:05; ++P or ^^P < 0:01; +++P or ^^^P or ###P;+ vs. NC+MC; ^ vs. FAM201A+MC; # vs. NC+miR-1271-5p M.
CC: cervical cancer; qRT-PCR: quantitative reverse transcription polymerase chain reaction; NC: negative control; FAM201A: the family
with sequence similarity 201-member A; M: miR-1271-5p mimic; MC: mimic control.
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was incubated at 37°C for 24 h. Later, the lower chamber was
washed twice with phosphate-buffered saline (P5493, Sigma-
Aldrich, USA), fixed with 4% paraformaldehyde (P6148
Sigma-Aldrich, USA) and stained with 800μL Giemsa
(10092013, ThermoFisher, USA). After removing nonmigra-
tory or noninvading cells, the remaining cells were observed
under × 200 magnification using an inverted microscope
(IX71; Olympus, Tokyo, Japan). Cells in five randomly
selected fields were counted using ImageJ software and cell
migration and invasion rates were calculated.

2.10. Murine Xenograft Assay. BALB/c nude mice (Male, 5–
6-week-old) were purchased from the Vital River Laborato-
ries (Beijing, China). The mice were maintained under a spe-
cific condition (22~ 24°C, 50% humidity, a 12 h:12 h
circadian cycle), with free access to a standard mice chow
and water. Then, the mice were randomized into four groups
(n = 6 per group): NC+MC group, FAM201A+MC group,
NC+miR-1271-5p M group, and FAM201A+miR-1271-5p
M group. After transfection, SiHa cells (5 × 106) with stable
expressions of FAM201A, miR-1271-5p or both were subcu-
taneously injected into the posterior flank of the mice. The
size of subcutaneous xenografts (length and width) was mea-
sured by a caliper every 7 days, with 5 times in total, and the
volume of the xenografts was calculated according to the for-
mula: 0:5 × length × width2. Five weeks after the injection,
the mice were sacrificed via spinal dislocation under anesthe-

tization using pentobarbital sodium (P010, Sigma-Aldrich,
USA), following which the subcutaneous xenografts were
resected and weighed.

2.11. Quantitative Reverse Transcription Polymerase Chain
Reaction (qRT-PCR). Total mRNAs and miRNAs from CC
cell lines and HCerEpiC, as well as CC tissues and the adja-
cent normal tissues, were extracted by TRIzol lysis buffer
(15596018, ThermoFisher) and Small RNA kits (9753Q,
TaKaRa, Liaoning, China), respectively. Chloroform
(48520-U, Sigma-Aldrich, USA) was used to extract the
lysate of mRNA and miRNA. The extracted lysate was cen-
trifuged (12000 × g) at 4°C for 15min. Then, isopropanol
(W292907, Sigma-Aldrich, USA) was applied to precipitate
the lysate from water layers via centrifugation (12000 × g)
at 4°C for 10min, which was then washed with 75% ethanol
(32205, Sigma-Aldrich, USA) and then isolated from the
supernatant. Next, it was resuspended and centrifugated
(7500 × g) at 4°C for 10min and dissolved in 20μL diethyl
pyrocarbonate (DEPC; 40718, Sigma-Aldrich, USA). First-
strand cDNAs of the isolated mRNA and miRNA were syn-
thesized using a Synthesis Kit (K1621, ThermoFisher, USA).
qPCR was performed on an Applied Biosystems 7500 FAST
real-time PCR machine (Applied Biosystems, Foster City,
CA, USA) with TB Green® Premix Ex Taq II (Tli RNaseH
Plus, RR820Q, TAKARA, China). The primers used are
shown in Table 1. The thermocycling conditions were set
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Figure 4: FAM201A sponged miR-1271-5p to increase the expression of FLOT1, a direct target of miR-1271-5p, in CC cells. (a) The
targeting relationship between miR-1271-5p and LINC01106 was identified by Targetscan. (b, c) FLOT1 was confirmed as the target of
LINC01106 by dual-luciferase reporter assay. (d-g) The expression of FLOT1 in CC (SiHa and ME180) cells after transfection with
FAM201A overexpression plasmids or miR-1271-5p mimic alone or in combination was analyzed by qRT-PCR (f, g) and western blot
(d, e), with GAPDH as the reference gene. +P < 0:05; ++P or ##P < 0:01; +++P or ^^^P or ###P < 0:001; + vs. NC+MC; ^ vs. FAM201A
+MC; # vs. NC+miR-1271-5p M; & vs. control+ FLOT1-3’-UTR; §vs. miR-1271-5p+FLOT1-3’-UTR. CC: cervical cancer; qRT-PCR:
quantitative reverse transcription polymerase chain reaction; NC: negative control; M: miR-1271-5p mimic; MC: mimic control; FLOT1:
flotillin 1; 3’-UTR: 3’-untranslated regions.
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Figure 5: Continued.
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as follows: 95°C for 10min, followed by 40 cycles of 95°C for
15 s, and 60°C for 1min. The expressions of relative genes
normalized to U6 or GAPDH were calculated using the
2−ΔΔCT method [24].

2.12. Western Blot Analysis. RIPA Lysis and Extraction
Buffer (89901, ThermoFisher, USA) was used to harvest total
protein from SiHa cells and ME180 cells. The protein con-
centration was quantitated by the bicinchoninic acid
(BCA) Protein Assay Kits (23227, ThermoFisher, USA).
The protein (40μg) and marker (4μL) (PR1910, Solarbio,
Beijing, China) were separated by 10%-12% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels
(P0670, P0672, Beyotime, Shanghai, China) and laid onto
polyvinylidene fluoride (PVDF) membranes (FFP28, Beyo-
time, China). Afterward, the membranes were blocked with
5% skim milk in Tris Buffered Saline and Tween 20 (TA-
999-TT, ThermoFisher, USA) at room temperature for 1 h.
Primary antibodies against FLOT1 (ab133497, 47 kDa,
1 : 10000, Abcam, USA), matrix metalloproteinase (MMP)-
9 (ab73734, 78 kDa, 1 : 1000, Abcam, USA), MMP-2
(ab37150, 72 kDa, 1 : 1000, Abcam, USA), E-cadherin
(ab40772, 97 kDa, 1 : 10000, Abcam, USA), N-cadherin
(ab18203, 130 kDa, 1μg/ml, Abcam, USA), Wnt1

(ab15251, 41 kDa, 1 : 1000, Abcam, USA), β-catenin
(ab16051, 95 kDa, 1 : 1000, Abcam, USA), p-β-catenin
(ab27798, 92 kDa, 1 : 500, Abcam, USA), and GAPDH
(ab8245, 36 kDa, 1 : 1000, Abcam, USA) were incubated with
the membranes at 4°C overnight. Then, secondary anti-
bodies, including Goat Anti-Rabbit IgG (ab205718, 1 : 2000,
Abcam, USA) and Goat Anti-Mouse IgG (ab6789, 1 : 2000,
Abcam, USA), were incubated with the membranes. The
obtained protein was photo-developed using Enhanced
Chemiluminescent (ECL) Substrate Reagent Kit (WP20005,
ThermoFisher, USA) on an imaging system (iBright
CL1500, ThermoFisher, USA). Analysis of the gray value
of protein bands was conducted using the ImageJ software
(version. 1.52 s, National Institutes of Health, Bethesda,
MA, USA).

2.13. Statistical Analysis. Measurement data with normal
distribution were expressed as mean ± standard deviation
(SD). All the experiments were conducted in triplicate. SPSS
software (version 21.0, SPSS Inc., Chicago, IL, USA) was
used for statistical analysis. The differences between CC tis-
sues and the adjacent normal tissues were analyzed by paired
t-test. Comparison between the other two groups was per-
formed by independent t-test, and those between multiple
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Figure 5: FLOT1 expression was repressed by miR-1271-5p upregulation in CC cells. (a, b, c, d) The expressions of miR-1271-5p (a, b) and
FLOT1 (c, d) in CC (SiHa and ME180) cells following transfection with FLOT1 overexpression plasmids or miR-1271-5p mimic alone or in
combination were analyzed by qRT-PCR. (e, f) The expression of FLOT1 in CC (SiHa and ME180) cells after transfection with FLOT1
overexpression plasmids or miR-1271-5p mimic alone or in combination was analyzed by western blot, with GAPDH as the reference
gene. +P or ^P < 0:05; ^^P < 0:01; +++P or ^^^P or ###P < 0:001; + vs. FLOT1+MC; ^ vs. NC+MC; # vs. FLOT1+miR-1271-5p M. CC:
cervical cancer; qRT-PCR: quantitative reverse transcription polymerase chain reaction; NC: negative control; M: miR-1271-5p mimic;
MC: mimic control; WT: wild type; MUT: mutant type; FLOT1: flotillin 1.
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Figure 6: FLOT1 overexpression resisted miR-1271-5p upregulation-induced viability and inhibition in migration and invasion of CC cells.
(a, b) The viability of CC (SiHa and ME180) cells transfected with FLOT1 overexpression plasmids or miR-1271-5p mimic alone or in
combination was measured by CCK-8 assay at 24-, 48-, and 72-h posttransfection. (c-h). The migration (c-e) and invasion (f-h) of CC
(SiHa and ME180) cells after transfection with FLOT1 overexpression plasmids or miR-1271-5p mimic alone or in combination were
evaluated by the Transwell assay (magnification: ×250; scale: 50 μm). +P or ^P or #P < 0:05; ++P or ^^P or ##P < 0:01; +++P or ^^^P or
###P < 0:001; + vs. FLOT1+MC; ^ vs. NC+MC; # vs. FLOT1+miR-1271-5p M. CC: cervical cancer; qRT-PCR: quantitative reverse
transcription polymerase chain reaction; CCK-8: cell counting kit-8; NC: negative control; M: miR-1271-5p mimic; MC: mimic control;
FLOT1: flotillin 1.
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groups were conducted by one-way analysis of variance
(ANOVA) followed by Dunnett’s or Turkey’s post-hoc test.
Pearson’s correlation tests were used to analyze the correla-
tion between FAM201A and miR-1271-5p in CC tissues.
Statistics with P < 0:05 were considered statistically
significant.

3. Results

3.1. FAM201A Was Highly Expressed in CC, Enriched in CC
Cell Cytoplasm, and Its Expression Was Negatively
Correlated with miR-1271-5p. According to Gene Expression
Profiling Interactive Analysis (GEPIA) based on Cancer
Genome Atlas Cervical Squamous Cell Carcinoma and
Endocervical Adenocarcinoma (TCGA-CESC) database,
FAM201A expression level was higher in CC tissues than
that in normal tissues (P < 0:05; Figure 1(a)). Then, we har-
vested 33 pairs of clinical samples including CC tissues and
the adjacent normal tissues for the examination of

FAM201A expression. The results showed that FAM201A
was highly expressed in CC tissues compared with adjacent
normal tissues (Figure 1(b)). Considering that miR-1271-
5p has been widely reported as a regulator of tumor growth,
in this present study, miR-1271-5p expression was downreg-
ulated CC clinical samples and compared with adjacent nor-
mal tissues (Figure 1(c)), which showed a negative
correlation between miR-1271-5p and lncRNA FAM201A
via Pearson’s correlation analysis (Figure 1(d)). Meanwhile,
fluorescence in situ hybridization assay confirmed that
FAM201A was highly expressed in CC tissues compared
with adjacent normal tissues (Figure 1(e)). Moreover, in
comparison with HCerEpiC, FAM201A expression level
was also highly expressed in CC (HeLa, C33a, SiHa, and
ME180) cells, while miR-1271-5p expression was decreased
(P < 0:01; Figures 1(f) and 1(g)). A relatively higher expres-
sion level of FAM201A was seen in SiHa cells and ME180
cells than in other cells above. Therefore, to investigate the
role of FAM201A during the progression of CC, SiHa cells
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Figure 7: FLOT1 overexpression resisted miR-1271-5p upregulation-induced inhibition of EMT in CC cells. (a-e) The expressions of
MMP2, MMP9, E-cadherin and N-cadherin in CC (SiHa and ME180) cells after transfection with FLOT1 overexpression plasmids or
miR-1271-5p mimic alone or in combination were analyzed by qRT-PCR (a-c) and western blot (d, e), with GAPDH as the reference
gene. +P or ^P or #P < 0:05; ++P or ^^P or ##P < 0:01; +++P or ^^^P or ###P < 0:001; + vs. FLOT1+MC; ^ vs. NC+MC; # vs. FLOT1+miR-
1271-5p M. CC: cervical cancer; qRT-PCR: quantitative reverse transcription polymerase chain reaction; NC: negative control; M: miR-
1271-5p mimic; MC: mimic control; FLOT1: flotillin 1; MMP2: matrix metalloproteinase-2; MMP9: matrix metalloproteinase-9.
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and ME180 cells were chosen as cell models in the following
related experiments to achieve obvious overexpression of
FAM201A. Subsequently, qRT-PCR and fluorescent in situ
hybridization were performed to determine the subcellular
localization of FAM201A. As shown in Figures 1(h) and
1(i) (qRT-PCR) and Figures 1(j) and 1(k) (fluorescent in situ
hybridization), FAM201A was abundantly expressed in the
cytoplasm rather than in the nucleus, suggesting a role of
FAM201A in post-transcriptional regulation.

3.2. FAM201A Overexpression Increased the Cell Viability,
Migration, Invasion and Tumorigenesis of CC In Vivo by
Downregulating miR-1271-5p Expression. Here, functional
experiments, including CCK-8, qRT-PCR, Transwell, and
murine xenograft assays, were performed. Prior to these
assays, the transfection efficiency of FAM201A overexpres-
sion plasmids and miR-1271-5p mimic was validated by
qRT-PCR, through which we observed that the transfection
of both FAM201A overexpression plasmid and miR-1271-
5p mimic induced the upregulation of FAM201A and miR-
1271-5p expression, respectively (P < 0:001; Figures 2(a)
and 2(c)). Moreover, upregulation of miR-1271-5p via
miR-1271-5p mimic decreased the level of FAM201A, and
likewise, FAM201A overexpression caused a lower level of
miR-1271-5p (P < 0:05; Figures 2(a)–2(d)). Meanwhile,
FAM201A overexpression plasmid and miR-1271-5p mimic
counteracted the effect of each other on the expressions of
FAM201A and miR-1271-5p (P < 0:001; Figures 2(a)–
2(d)). Then, assays for FAM201A functional examination
were performed. CCK-8 assay revealed that FAM201A over-
expression enhanced the viability of CC cells at 24, 48, and
72 h, while miR-1271-5p upregulation decreased the viability
of CC cells at 24, 48, and 72 h (P < 0:05) (Figures 2(e) and

2(f)). Transwell assay demonstrated that CC cells transfected
with FAM201A overexpression plasmid migrated and
invaded to a greater extent, while the transfection with
miR-1271-5p mimic led to repressed migration and invasion
(P < 0:01; Figures 2(g)–2(i) and 3(a)–3(c)). In murine xeno-
graft assay, the increased trends of tumor volumes and
weight gain were found under the promotion of FAM201A
overexpression but inhibited by miR-1271-5p upregulation
(P < 0:05; Figures 3(e)–3(f)). FAM201A overexpression
and miR-1271-5p upregulation mutually reversed the effects
of each other (Figures 2(e)–2(i) and 3(a)–3(f)).

Taken together, the above results suggested that
FAM201A-directed sponging of miR-1271-5p was associ-
ated with CC progression.

3.3. FAM201A Sponged miR-1271-5p to Increase the
Expression of FLOT1, a Direct Target of miR-1271-5p, in
CC Cells. Prediction using StarBase displayed the comple-
mentary binding sites of miR-1271-5p and FLOT1
(Figure 4(a)). Dual-luciferase reporter assay showed that
transfection of miR-1271-5p mimic suppressed the lucifer-
ase activity of CC cells transfected with vectors inserted with
FLOT1-WT (P < 0:001), but exerted no obvious effects on
the luciferase activity of CC cells transfected with vectors
inserted with FLOT1-MUT (Figures 4(b) and 4(c)). Further-
more, FLOT1 expression was found to be upregulated by
FAM201A overexpression, but the mRNA and protein levels
were knocked down by miR-1271-5p upregulation com-
pared with those in the NC+MC group (P < 0:05;
Figures 4(d)–4(g)). Also, FAM201A overexpression reversed
the miR-1271-5p upregulation-induced FLOT1 knockdown
(P < 0:01). This trend was further offset by miR-1271-5p
upregulation (P < 0:001; Figures 4(d)–4(g)).
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Figure 8: FLOT1 overexpression resisted miR-1271-5p upregulation-induced suppression on the Wnt/β-catenin signaling pathway in CC
cells. (a-h). The expressions of Wnt1, β-catenin, p-β-catenin and p-β-catenin/β-catenin in CC (SiHa and ME180) cells transfected with
FLOT1 overexpression plasmids or miR-1271-5p mimic alone or in combination were determined by qRT-PCR (G/H) and western blot
(a-f), with GAPDH as the reference gene. +P < 0:05; ++P or ^^P or ##P < 0:01; +++P or ^^^P or ###P < 0:001; + vs. FLOT1+MC; ^ vs. NC
+MC; # vs. FLOT1+miR-1271-5p M. CC: cervical cancer; qRT-PCR: quantitative reverse transcription polymerase chain reaction; NC:
negative control; M: miR-1271-5p mimic; MC: mimic control; FLOT1: flotillin 1.
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We observed that no obvious change on miR-1271-5p
expression in CC cells after transfection with FLOT1 overex-
pression plasmid (Figures 5(a) and 5(b)), but CC cells trans-
fected with miR-1271-5p mimic still increased miR-1271-5p
expression in cells transfected with the plasmid overexpres-
sing FLOT1 (P < 0:001; Figures 5(a) and 5(b)). In addition,
compared with miR-1271-5p mimic control, miR-1271-5p
upregulation decreased FLOT1 mRNA and protein expres-
sions in negative control-transfected and FLOT1 overex-
pression plasmid-transfected CC cells, while FLOT1
overexpression plasmid demonstrated the opposite results
(P < 0:05). Moreover, the effects of miR-1271-5p upregula-
tion and FLOT1 overexpression plasmid were mutually
counteractive (P < 0:05; Figures 5(c)–5(f)).

3.4. FLOT1 Overexpression Resisted miR-1271-5p
Upregulation-Induced Decrease in Viability and Inhibition
in Migration, Invasion and EMT in CC Cells. The miRNA-
mRNA networks are widely known to regulate CC progres-
sion [25]. Here, as FLOT1 was identified as a target mRNA
of miR-1271-5p, we investigated FLOT1-miR-1271-5p
network-delivered regulation on CC cell phenotypes. The
results showed that CC cells transfected with plasmid over-
expressing FLOT1 exhibited increased viability at 48 h and
72 h (P < 0:05; Figures 6(a) and 6(b)) and more aggressive
migration and invasion (P < 0:001; Figures 6(c)–6(h)). Addi-
tionally, FLOT1 overexpression could counteract miR-1271-
5p upregulation-induced effects on the viability of CC cells
at 48 h and 72 h (P < 0:05), together with their migration
and invasion (P < 0:05); in turn, miR-1271-5p upregulation
also reversed the effects of FLOT1 overexpression on the via-
bility at 48 h and 72 h, migration and invasion of CC cells
(P < 0:05; Figures 6(a)–6(h)).

EMT, a biological process, displays distinctive cellular
phenotypes and plays vital roles in both cell growth and can-
cer progression [26]. Thus, the protein and mRNA levels of
EMT-related markers were assessed by western blot and
qRT-PCR. Both the protein and mRNA levels of MMP-9,
MMP-2, and N-cadherin were upregulated by FLOT1 over-
expression in CC cells compared with those in the NC+MC
group (P < 0:05), while compared with those in the NC+MC
group, miR-1271-5p upregulation depleted the expressions
of these markers (P < 0:01) and abolished the FLOT1
overexpression-induced effects on the expressions of these
markers (P < 0:05) (Figures 7(a)–7(e)). Additionally, the
effects of miR-1271-5p upregulation on these EMT-related
markers were counteracted by FLOT1 overexpression
(P < 0:05) (Figures 1(f) and 7(a)). Conversely, E-cadherin,
an EMT-related marker, and its protein and mRNA levels
were downregulated by FLOT1 overexpression but elevated
by miR-1271-5p upregulation (P< 0.05), compared with
those in the NC+MC group (Figures 8(a)–8(f)). Further-
more, FLOT1 overexpression counteracted the effects of
miR-1271-5p upregulation on E-cadherin expression, and
miR-1271-5p upregulation also reversed the effects of
FLOT1 overexpression (P < 0:05) (Figures 8(a)–8(f)).

Collectively, these results indicated that FAM201A
sponged miR-1271-5p to induce FLOT1 expression, thereby
promoting CC progression.

3.5. FLOT1 Overexpression Resisted miR-1271-5p
Upregulation-Induced Suppression on the Wnt/β-Catenin
Signaling Pathway in CC Cells. The Wnt/β-catenin signaling
pathway, a developmental pathway, is crucial in normal
stem cell function and is frequently aberrantly activated in
various types of cancer [27–29]. In this research study, the
protein and mRNA levels of Wnt1, β-catenin and p-β-
catenin were determined by western blot and qRT-PCR
assays. The result showed they were uniformly upregulated
by FLOT1 overexpression but downregulated by miR-
1271-5p upregulation (P < 0:001), compared with those in
the NC+MC group (Figures 8(a)–8(e) and 8(g)–8(h)). More-
over, when compared with the NC+MC group, the p-β-
catenin/β-catenin ratio was also depleted by miR-1271-5p
upregulation in CC cells but not significantly changed by
FLOT1 overexpression (P < 0:01) (Figures 8(g) and 8(h)).

Besides, FLOT1 overexpression resisted the miR-1271-
5p upregulation-induced inhibitory effect in the protein
and mRNA expressions of Wnt1 and β-catenin (P < 0:01).
It also increased the p-β-catenin/β-catenin ratio in CC cells
transfected with miR-1271-5p mimic and the increase in
these markers expression levels by FLOT1 overexpression
were reversed by miR-1271-5p upregulation (P < 0:01)
(Figures 8(a)–8(e) and 8(g)–8(h)).

Overall, these results indicated that FAM201A
overexpression-mediated miR-1271-5p/FLOT1 axis pro-
moted CC progression by activating the Wnt/β-catenin sig-
naling pathway.

4. Discussion

In 2003, the World Health Organization considered CC pre-
ventable in women [20]. However, due to metastasis, the
median survival time of CC patients remains mediocre
[30]. Metastasis is a distinctive malignant sign that can be
subdivided into two types, hematogenous metastasis and
lymphatic metastasis [6, 31], of which lymph metastasis is
the leading factor for CC-associated poor prognosis and
death [32]. Metastasis in most human cancers implicates
both cellular and molecular alterations [33], identifying that
the molecular mechanism in CC is very important for hin-
dering the development of metastasis and other malignant
phenotypes.

LncRNA-mediated mechanisms have been widely
unveiled in the carcinogenesis, progression, and therapy
resistance of CC [34]. Numerous lncRNAs, including
FAM201A, have been confirmed to function as an oncogene
in multiple types of human cancers by suppressing malig-
nant phenotypes such as cancer cell proliferation, migration,
invasion, and in vivo tumorigenesis [10–12]. In line with
these studies, our study newly identified FAM201A as a
key player in promoting CC carcinogenesis and progression.
Analysis of the TCGA-CESC database showed that
FAM201A was highly expressed in CC. To increase the cred-
ibility of this study’s results, CC tissues and cell lines (HeLa,
C33a, SiHa, and ME180) were used to assess FAM201A
expression. We detected a unanimous increase in FAM201A
expression in all CC in vitro and in vivo samples, which was
consistent with the FAM201A expression patterns in TNBC
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and lung cancer, where FAM201A played oncogenic roles
[10–12]. The specific tumor-promoting role of FAM201A
was illustrated in previous studies, which reported that
knocking down FAM201A led to significantly suppressed
proliferation, migration, and invasion of TNBC or LSCC
cells [10–12]. In line with the role of FAM201A in TNBC
and LSCC, our study discovered a positive association
between FAM201A overexpression and the biological behav-
iors of CC, including cell viability, migration, invasion, and
in vivo tumorigenesis, which suggested that this oncogenic
role of FAM201A also existed in CC.

Functional analyses of FAM201A-miRNA-mRNA
ceRNA networks indicated that FAM201A could sponge
miRNAs and unleash mRNAs from the binding of
FAM201A, with miRNAs critical for the promotion of
cancer progression [10]. Our study found that miR-1271-
5p was negatively correlated with FAM201A in CC tissues,
implying that FAM201A sponged miR-1271-5p in CC.
Previous studies reported that miR-1271-5p expression
was significantly downregulated and miR-1271-5p exerted
a tumor-suppressive effect in several cancers [18, 35]. Pre-
venting oncogene-directed sponging of miR-1271-5p led to
the inhibition of cancer progression, as evidenced by
Zhang et al. [35], who found that miR-1271-5p upregula-
tion from the knockdown of lncRNA-ZFAS1 constrained
in vitro development of glioma. In light of Zhang et al.’s
evidence, our findings demonstrated that miR-1271-5p
upregulation reversed the promotive effect of FAM201A
overexpression on the progression of CC, suggesting that
FAM201A facilitated the progression of CC by sponging
miR-1271-5p.

Furthermore, it was reported that miRNA-mRNA
interaction emerged following the interaction between
lncRNA and miRNA in ceRNA networks associated with
the pathological conditions in cancer [36]. Wang et al.
showed that the upregulation of miR-1271-5p by
MALAT1 knockdown inhibited the growth and migration
of ovarian cancer cells and simultaneously silenced its tar-
get mRNA E2F5 [37]. In our study, bioinformatics predic-
tion theoretically identified FLOT1 as the target of miR-
1271-5p, which was subsequently validated by our dual-
luciferase reporter assay results. Similarly, our findings
showed that FAM201A overexpression downregulated
miR-1271-5p expression to elevate FLOT1 expression and
concomitantly promoted in vitro CC progression, indicat-
ing that the overexpressed FAM201A-directed ceRNA net-
work with the miR-1271-5p/FLOT1 axis promoted CC
progression.

FLOT1, a pivotal marker of lipid rafts that modulates
membrane receptor signaling, has been reported to partici-
pate in membrane trafficking and affect cell adhesion and
invasion, thereby displaying a role in tumorigenesis [38,
39]. The overexpression of FLOT1 has been previously dis-
covered to promote migration and invasion and induce
recurrence of bladder transitional cell carcinoma [38], acti-
vate oncogenic ALK signaling to drive malignant pheno-
types of neuroblastoma [40], and sustain inflammatory
signaling to facilitate the growth and invasion of esophageal
squamous cell carcinoma cells [40, 41]. For CC, FLOT1 was

shown to serve as the downstream target of miR-1294 to
form a miR-1294/FLOT1 axis, and its expression can be
repressed by the upregulation of miR-1294, thereby inhibit-
ing the progression of CC malignant phenotypes [42, 43].
Likewise, in our in vitro experiments, miR-1271-5p upregu-
lation decreased FLOT1 expression and offset FLOT1
overexpression-induced promotion. Meanwhile, FLOT1
overexpression could also counteract the inhibitory effects
of miR-1271-5p upregulation on cell viability, migration
and invasion. According to these findings, we concluded that
targeting the miR-1271-5p/FLOT1 axis could be the under-
lying mechanism via which FAM201A induced CC
progression.

Accumulating evidence indicated that EMT, a hallmark
of carcinogenesis, functionally contributed to tumor inva-
sion, migration and metastatic dissemination [44]. The phe-
notype of EMT mainly involves the transformation of
epithelial cells to mesenchymal-like cells, allowing them to
invade surrounding tissues [45, 46]. Induction of EMT is
accompanied by the loss of epithelial adhesion molecule E-
cadherin [47] and an increase in mesenchymal marker N-
cadherin [48]. Moreover, during EMT, MMPs, a family of
zinc-dependent endoproteases, degrade the extracellular
matrix to facilitate EMT [49]. Secretion of MMP-2 and
MMP-9 was shown to break down the basement membrane
and promote lymph node invasion and cancer metastasis,
thus leading to poor prognoses [50, 51]. In this study, we
found that E-cadherin levels in CC cells were decreased by
FLOT1 overexpression but increased by miR-1271-5p
upregulation, and an opposite trend was seen on the levels
of N-cadherin, MMP-2, and MMP-9 when FLOT1 was over-
expressed or miR-1271-5p expression was upregulated.
Besides, we discovered that FLOT1 overexpression counter-
acted miR-1271-5p upregulation-induced effects on the
expressions of these EMT-related markers and vice versa.
Collectively, these findings indicated that FAM201A facili-
tated EMT and promoted CC progression by targeting the
miR-1271-5p/FLOT1 axis.

The Wnt/β-catenin pathway, which plays an essential role
in embryogenesis, homeostasis, and stem cell regeneration and
pluripotency, is activated in CC as a promoter of cancer pro-
gression [52, 53]. Likewise, our results demonstrated that the
levels of Wnt1, β-catenin and p-β-catenin in CC cells were
positively correlated with FLOT1 overexpression, while the
levels of these markers were negatively correlated with miR-
1271-5p upregulation. Besides, our study revealed that FLOT1
overexpression could also restore the expressions of Wnt1, β-
catenin, and p-β-catenin in CC cells after the upregulation of
miR-1271-5p, which indicated that FLOT1 overexpression
counteracted the inhibitory effects induced by miR-1271-5p
upregulation on the Wnt/β-catenin pathway, thus promoting
the progression of CC.

Considering that FAM201A was overexpressed in CC
cells and acted through the FAM201A-miR-1271-5p-FLOT1
ceRNA network, they might be targeted and used to develop
novel potential molecular target to improve CC treatment
outcomes, with FAM201A as a potential diagnostic bio-
marker for CC and possible indicator of FAM201A-
targeted treatment for individualized treatment of patients
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expressing high levels of FAM201A. However, considering
limitations such as lack of survival analysis, no assessment
to determine the association of FAM201A with pharmaco-
logical treatment, and others, these findings should be fur-
ther verified in translational and clinical studies.

5. Conclusion

In conclusion, the current study revealed that FAM201A,
which was highly expressed in CC, promoted CC progres-
sion via sponging miR-1271-5p to upregulate FLOT1
expression. Moreover, CC progression was also promoted
via regulating the miR-1271-5p/FLOT1 axis by activating
the Wnt/β-catenin pathway. Thus, this study proposed the
FAM201A-miR-1271-5p-FLOT1 ceRNA network as an
original molecular target for prevention against CC.
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Objective. To construct a nomogram-based prediction model for the clinical prognosis of patients with stage II and III colon
cancer who underwent Xelox chemotherapy after laparoscopic radical resection based on large data sets. Methods. A total of
7,832 patients with colorectal cancer who received postoperative Xelox-based chemotherapy were screened from the
Surveillance, Epidemiology, and End Results database (USA) as the training data set. In addition, 348 domestic patients
were screened as the validation data set. Multivariate Cox regression analysis was performed to identify variables for
inclusion in the nomogram-based prediction model. The predictive accuracy of the model was assessed using C-index and
calibration curve. Results. Age, cell differentiation, nerve invasion, T and N stages of tumours, number of dissected lymph
nodes, and carcinoembryonic antigen (CEA) level were found to influence the efficacy of postoperative chemotherapy. The
nomogram-based prediction model was successfully constructed. The C-index of both the training set and validation set
were higher than those of the 7th edition of TNM staging system published by the American Joint Commission on
Cancer (C − index of training data set = 0:728, C − index of validation data set = 0:734). The prediction results of the model in the
calibration curve showed a good fit with the actual situation. Conclusion. We successfully constructed a nomogram-based model
to predict the clinical prognosis of patients with colorectal cancer receiving postoperative Xelox-based chemotherapy after
laparoscopic radical resection, which showed good clinical application value for predicting the efficacy of postoperative
Xelox-based chemotherapy in patients with colorectal cancer.

1. Introduction

Colorectal cancer is a common malignant tumour in
China and is associated with a high mortality rate. Cur-
rently, surgical resection supplemented with chemotherapy
is the main treatment modality for colorectal cancer. Most
patients undergoing surgery have advanced stage disease
and are at a high risk of postoperative recurrence and/or
metastasis. Therefore, chemotherapy is typically used to
achieve disease control in clinical settings [1]. The National

Comprehensive Cancer Network guidelines recommend
Xelox-based chemotherapy (Oxaliplatin: 130mg/m2, intra-
venically given, 2 h, d1; Capecitabine: 1800mg/(m2·d), two
oral cycles, d1-14, every 21 days) as the first-line regimen
after surgery for colorectal cancer. It is a widely used chemo-
therapy regimen in clinical settings owing to the ease of
administration and high efficacy [2]. Despite the advances
in surgery and chemotherapy regimens, a large proportion
of patients with colorectal cancer develop postoperative
recurrence and metastasis, leading to poor prognosis. Thus,
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identification of prognostically relevant clinical factors and
their use to predict the treatment outcomes may help individ-
ualise the treatment plan and improve the prognosis of
patients [3]. Nomograms assign scores for various influenc-
ing factors calculated by the statistical model; the obtained
total score of individual risk can help predict the risk of mor-
bidity. Therefore, in this study, a nomogram-based model
was constructed to predict the prognosis of patients with
colorectal cancer receiving postoperative Xelox-based che-
motherapy by analysing the relevant data.

2. Subjects and Methods

2.1. Subjects. Data pertaining to patients with colorectal can-
cer recorded in the Surveillance, Epidemiology, and End
Results (SEER) database (USA) from 2011 to 2016 was used
as the training data set. The inclusion criteria were as fol-
lows: age ≥ 18 years; primary tumour, located at the colorec-
tum (code: C18.0, C18.2–C18.7, C19.0, C20.0, C20.X01);
pathological diagnosis: adenocarcinoma (code: M81400);
patients who underwent surgery (code: 20~80) and received
postoperative Xelox-based chemotherapy. The exclusion
criteria were as follows: patients with incomplete clinically
relevant data, including age, gender, tumour stage and grade,
laboratory examination results, and follow-up data. Accord-
ing to the inclusion and exclusion criteria, 7,832 patients
were finally screened as the training data set. Simulta-
neously, a validation data set was established. From 2014
to 2016, a total of 348 patients who underwent colorectal
resection and Xelox-based chemotherapy were identified
from the electronic medical record system at our hospital.
Complete clinical information was available for all patients.
Identical inclusion and exclusion criteria were adopted for
both the training and validation data sets.

2.2. Methods

2.2.1. Data Collection. Detailed clinical data were retrieved
for patients in both the training and validation data sets,
including gender, age, tumour location, tumour stage, cell
differentiation, depth of cancer invasion, lymph node metas-
tasis, and carcinoembryonic antigen (CEA) level.

2.2.2. Follow-Up. Complete follow-up data was available
for all patients in the training data set. All patients in
the validation set were followed up for 3 years; the
patients were followed up once a month in the first year,
every three months in the second year, and at six-month
intervals in the third year. Follow-up data of patients were
obtained mainly through face-to-face interview in the doc-
tors’ office or through telephonic contact. If the patient
could not be contacted, the relevant information was
obtained from the patient’s family or community doctors.
A follow-up record was established for every patient to
document the detailed prognosis of patients after dis-
charge. According to the follow-up results, the overall sur-
vival (OS) and progression-free survival (PFS) were
calculated and a detailed list was made, which were used
as the end points of the study. OS was defined as the time
from diagnosis to death or the end of follow-up; PFS was

defined as the time from diagnosis to the first tumour pro-
gression, death, or the end of follow-up.

2.2.3. Statistical Analysis. Data were sorted and analysed
using SPSS Statistics 26 (IBM) and R language 3.6.2 (Bell
Laboratories). The categorical variables were expressed as
percentage (%) and between-group differences assessed
using the chi-squared test. For the analysis of prognostic
factors, univariate analysis was performed with the log-
rank χ2 test. Variables that showed a significant associa-
tion with prognosis on univariate analysis (P < 0:05) were
included in multivariate Cox regression analysis to identify
the factors influencing OS and PFS. Finally, the
nomogram-based prediction model was constructed using
variables screened by the multivariate analysis. The accu-
racy of the model was verified by Harrell’s C-statistic
and calibration curve. Two-tailed P < 0:05 were considered
indicative of statistical significance. Calibration, which
refers to how closely the predicted probabilities by the
nomogram agree with the observed survival probabilities,
was visually assessed by plotting actual survival probabilities
against predicted survival probabilities for each group. The
horizontal and vertical axes of the calibration plot showing
the predicted versus the observed probability of the 5-year
overall survival and progression-free survival. The gray line
represents the optimal line in case of complete concordance
between predicted and observed progression-free survival.
Decision curve analysis (DCA) was used to evaluate the clin-
ical benefits and utility of the nomogram compared with an
American Joint Council on Cancer (AJCC) staging system
alone.

3. Results

3.1. Baseline Data of Patients. The 7,832 patients in the
training data set included 3,822 males and 4,010 females
(mean age: 54:7 ± 8:9 years); the OS was 30.4 (10.3–36)
months and PFS was 18.3 (6.2–31.8) months. The 348
patients included in the validation data set included 172
males and 176 females (mean age: 53:2 ± 8:5 years; the OS
was 29.8 (10.1–36) months and PFS was 18.4 (5.9–32.7)
months). The baseline data in the two data sets are com-
pared in Table 1.

3.2. Factors Influencing the Efficacy of Postoperative
Chemotherapy. On univariate analysis, age, cell differentia-
tion, nerve invasion, T and N stages of tumours, number
of dissected lymph nodes, and CEA level were found to have
a significant influence on OS and PFS (P < 0:05). Multivari-
ate Cox regression analysis showed that the above variables
were independent predictors of OS and PFS (P < 0:05)
(Table 2).

3.3. Construction and Validation of Nomogram-Based
Prediction Model. Cox regression analysis identified seven
variables that influenced the prognosis of patients with colo-
rectal cancer receiving Xelox-based chemotherapy. The
nomogram-based prediction model was constructed; on
the basis of the model, individualised risk scoring was
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performed, and the 3-year and 5-year survival rates (OS and
PFS) were predicted (Figures 1 and 2).

For OS, the C-index of the training data set and vali-
dation data set was 0.792 and 0.753, respectively. For
PFS, the C-index was 0.783 and 0.761, respectively. All
these values were higher than those of the 7th edition of
TNM staging system published by the American Joint
Commission on Cancer (AJCC) (C − index of training
data set = 0:728, C − index of validation data set = 0:734). The
results suggested a slightly more accurate prediction ability
of the model compared with the traditional staging method.
In addition, the calibration curve was drawn using the sur-
vival rate predicted by the model as the horizontal ordinate
and the actual survival as the longitudinal ordinate. For the

end-point indicators OS and PFS, the results of the predic-
tion model showed a good fit with the actual situation; this
suggested high discriminative ability and accuracy of the predic-
tion model constructed in this study (Figure 3). The 5-year
DCA curves also revealed that the nomogram had better clinical
performance than the AJCC staging system among all study
subjects (Figure 4).

4. Discussion

4.1. Application of Xelox Regimen in Patients with Colorectal
Cancer after Surgery. Currently, colorectal cancer is one of
the common malignant tumours of the digestive tract and
is associated with high mortality and poor prognosis.

Table 1: Comparison of baseline data of patients.

Variable
Training data set (n = 7832)

n (%)
Validation data set (n = 348)

n (%)
χ2 P

Gender 0.052 0.819

Male 3822 (48.8) 172 (49.4)

Female 4010 (51.2) 176 (50.6)

Age 0.167 0.682

≤60 3305 (42.2) 143 (41.1)

>60 4527 (57.8) 205 (58.9)

Tumour location 0.146 0.703

Rectum 5325 (68.0) 240 (69.0)

Colon 2507 (32.0) 108 (31.0)

Cell differentiation 0.496 0.920

High 407 (5.2) 16 (4.6)

Middle 5864 (74.9) 266 (76.4)

Low 1253 (16.0) 53 (15.2)

Undifferentiated 308 (3.9) 13 (3.7)

Nerve invasion 0.001 0.976

Invasive 6657 (85.0) 296 (85.1)

Noninvasive 1175 (15.0) 52 (14.9)

T staging 0.407 0.939

T1 289 (3.7) 12 (3.4)

T2 971 (12.4) 46 (13.2)

T3 4825 (61.6) 216 (62.1)

T4 1747 (22.3) 74 (21.3)

Number of lymphadenectomy 0.250 0.883

None 110 (1.4) 6 (1.7)

1~3 71 (0.9) 3 (0.9)

≥4 7651 (97.7) 339 (97.4)

N staging 5.009 0.082

N0 4104 (52.4) 163 (46.8)

N1 2318 (29.6) 109 (31.3)

N2 1410 (18.0) 76 (21.8)

CEA level 0.618 0.432

Rise 3344 (42.7) 156 (44.8)

Normal 4488 (57.3) 192 (55.2)
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Surgery is the only potential curative treatment recognised
in clinical practice [1]. However, owing to the lack of
obvious symptoms in the early stage of the disease,
patients with colorectal cancer are typically diagnosed in
the middle and late stages; most of these patients are past
the optimal time to achieve radical cure. Moreover, there
is a high risk of postsurgical recurrence and metastasis
[4]. Therefore, postoperative chemotherapy is typically
administered to patients with colorectal cancer who undergo
surgery. However, patients with colorectal cancer often have
digestive dysfunction, physical weakness, and multiple
comorbid conditions. All these factors contribute to chemo-
therapy intolerance; therefore, selection of the appropriate
chemotherapy regimen is a key imperative for these patients.

Xelox-based chemotherapy (also known as the CapeOX
regimen) consists of oxaliplatin injection administered in
combination with oral Xeloda. Owing to its efficacy and ease
of administration, it is used as the main postoperative adju-
vant chemotherapy regimen for patients with colorectal can-
cer in clinical settings [5]. However, approximately 50% of
patients who received postoperative Xelox-based chemo-
therapy were found to develop recurrence and metastasis
at different time points after surgery; in addition, the prog-
nosis of these patients is still not very ideal [6]. Therefore,
construction of statistical models based on appropriate clin-
ical indicators to predict the prognosis of patients can facil-

itate individualised treatment decision-making and help
improve the prognosis of patients.

4.2. Factors Influencing the Efficacy of Postoperative
Chemotherapy in Patients with Colorectal Cancer. In this
study, age, cell differentiation, nerve invasion, T and N
stages of tumours, number of dissected lymph nodes, and
CEA level were found to influence OS and PFS. Our results
are consistent with those of previous studies, but not exactly
the same.

In our study, age was the most important determinant
of prognosis. The older the patient, the worse was the
prognosis. Therefore, the benefit of surgical treatment for
older patients should be carefully considered based on
individualised analysis and assessment of the general con-
dition of the patient [7]. For elderly patients with poor tol-
erance, the risk of surgery may outweigh the benefits.
Additionally, dissection of 1–3 lymph nodes was found
to be more dangerous than no dissection; therefore, clini-
cians should consider increasing the number of dissected
lymph nodes in patients scheduled to undergo lymph node
dissection [7, 8]. The prognostic value of cell differentia-
tion, nerve invasion, and tumour stage was in line with
that found in previous studies [9–11]. In this study, levels
of CEA were included in the model as factors influencing
the prognosis. The final results showed that all three
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Figure 1: OS nomogram of 3-year and 5-year prognoses for colorectal cancer patients.
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factors were independent predictors of prognosis. As a
proteoglycan compound of the digestive system, CEA is
a commonly used tumour marker; the correlation of the
CEA level with the prognosis of patients with colorectal
cancer is well documented [12–15].

4.3. Advantages of the Prediction Model Constructed in
This Study. Nomogram-based prediction models provide
visual representation of individual risk assessment. It
employs multiple clinical indicators, scores the value of
each indicator, and finally predicts the corresponding situ-
ation of patients according to the total score of individ-
uals. Use of nomograms to predict the incidence and
prognosis is a current research hot spot. It can intuitively
and accurately display complex mathematical formulas in
the form of images and has high clinical application value
[16]. However, the prediction model for the efficacy of
postoperative chemotherapy in patients with colorectal
cancer has rarely been reported.

In this study, we constructed a nomogram-based pre-
diction model using variables identified on multivariate
analysis; the prediction model was found to accurately
predict individual prognosis. The model showed high dis-
criminative ability and accuracy in the validation cohort.
In addition, we compared our nomogram-based model
with the 7th edition of the TNM staging system published

by the AJCC; our model showed higher prediction ability
in both the training and validation data sets. Visual anal-
ysis of the calibration curve showed a good fit of the pre-
diction of the training data set with the actual situation;
however, the fit of the verification data set showed a cer-
tain deviation. This deviation may be attributable to bias
caused by insufficient sample size, ethnic differences, and
variable selection of the verification data set. The DCA
results also demonstrated that our nomogram provided
greater clinical value than the AJCC grading system.

4.4. Limitations and Reflection. The prediction model con-
structed in this study effectively predicted the efficacy of post-
operative chemotherapy in patients with colorectal cancer;
however, some limitations of the study should be considered
while interpreting the results. Firstly, due to the limitations
of SEER data, the grouping criteria for some indicators were
different from those used in actual clinical practice. For exam-
ple, for the grouping of the number of dissected lymph nodes,
a cut-off value of 12 lymph nodes is used in clinical settings;
however, four lymph nodes were used as the cut-off value in
the database [17]. Secondly, there were inevitable limitations
during data acquisition owing to the retrospective nature of
the study. Moreover, there may be a certain bias in the selec-
tion of variables. Further studies are required to confirm our
results and to further improve the prediction model.
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5. Conclusion

Based on the SEER database and our institutional medical
record database, we successfully constructed a prediction

model for OS and PFS. The model showed good clinical
application value for predicting the efficacy of postoperative
Xelox-based chemotherapy in patients with colorectal can-
cer. Both the training and validation data sets showed higher
predictive ability when compared with the 7th edition of the
TNM staging system published by the AJCC.
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Background. Cholangiocarcinoma (CCA) is a cancerous tumor that leads to a high rate of morbidity and death. Complement
factor H-related 3 (CFHR3) is a gene belonging to the CFHR gene family. In this study, we investigated the usefulness of
CFHR3 in the diagnostic stage and CCA prognosis prediction. In the interim, we looked at its coexpressed genes and their
roles. The correlation between CFHR3 and immunological infiltration was also investigated. Methods. The expression of the
genes data and the clinical information were obtained from the databases of The Cancer Genome Atlas (TCGA) together with
the Gene Expression Omnibus (GEO). The crucial gene was found to be the overlapping gene in the two databases. The area
under the curve (AUC) and the Kaplan-Meier survival curve were used to describe the usefulness of the predictive prognosis of
CCA patients. Univariate regression analysis and multivariate survival analysis were performed to find the independent
prognosis factors. The PPI network was constructed based on the STRING database, and the coexpression approach was
utilized in predicting the coexpression genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were also performed to identify the related functions. Additionally, the probable mechanism of the
important gene was examined using gene set enrichment analysis (GSEA). The correlation between CFHR3 and immune
infiltration was discovered using TIMER. The LncACTdb 3.0 database was used to analyze the location of CFHR3 in the cell.
The cBioPortal database was used to find the mutation in CFHR3. Results. TCGA datasets and GEO datasets revealed an
elevated expression level of CFHR3 in normal tissues as well as a lower expression level in cholangiocarcinoma tissues in the
present research. The low expression level of CFHR3 was related to an unfavorable prognosis. Using CFHR3 expression in
diagnosis and predicting the patient prognosis (AUC = 1:000) is valuable. Using the CFHR3 gene and a time-lapse prediction,
we could estimate survival rates over 1, 2, and 3 years. The AUC values were more than 0.6(AUC = 0:808 ; 0:760 ; 0:711).
Functional enrichment analysis revealed a substantial correlation between this signature and complement and coagulation
cascades. The same outcomes from GSEA were achieved. We found the key gene widely exists in the nucleus, exosomes, and
cytoplasm of normal cells using the LncACTdb 3.0 database. In immune regulation analysis, we identified that the expression
level of CFHR3 had a positive correlation with infiltrating levels of B cells, neutrophils, and macrophages, but correlated
negatively with cholangiocarcinoma cells, CD8+ T cells, and monocytes.

1. Introduction

Cholangiocarcinoma (CCA) is the second most common
tumor found in the liver. CAA is characterized as such by
originating from the biliary system [1]. The incidence and
mortality rates of cholangiocarcinoma are increasing year
by year all over the world [2]. The primary method for treat-
ing tumors is surgical resection, however, patients frequently

miss the best window for surgery and pass away because the
tumor is discovered at an advanced stage [3]. Therefore, it is
important to screen certain valuable genes for a more effi-
cient prognosis prediction and to provide optimal custom-
ized treatment.

Recent studies have shown that some genes, such as
LIMA1, HDAC1, ITGA3, ACTR3, GSK3B, ITGA2, THOC2,
PTGES3, HEATR1, and ILF2, are associated with the
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prognosis of patients with cholangiocarcinoma [4]. How-
ever, there is still an urgent need to identify more genes to
obtain more accurate predictions. CFHR3 belongs to a gene
family that also consists of CFHR1, CFHR2, CFHR4, and
CFHR5. A collection of complement proteins with these
genes are closely related [5]. According to reports, CFHR3
may be a potential biomarker for the disease hepatocellular
carcinoma (HCC) [6]; however, as the second highest type
of cancer in the liver, the correlation between CFHR3
expression and its clinical significance of CCA remains
unclear.

Here, we identified CFHR3 as a key gene and hypothe-
sized that CFHR3 has a correlation with prognosis and
immune regulation of cholangiocarcinoma. Bioinformatics
was used to assess this theory. To better understand CFHR3
function, we also looked into the coexpression genes and the
protein-protein interaction (PPI) network. Immune infiltra-
tion was also explored to confirm that the expression of
CFHR3 correlates with immune regulation. Finally, we per-
formed a further investigation of the molecular mechanism
of CFHR3. CFHR3 might be employed as a marker in pre-
dicting immune and prognosis-related status in patients
with CCA.

The paper’s organization paragraph is as follows: the
materials and methods is presented in Section 2. Section 3
discusses the experiments and results. Section 4 analyzes
the discussion of the proposed work. Finally, in Section 5,
the research work is concluded.

2. Materials and Methods

2.1. Data Obtaining. The TCGA database (https://portal.gdc
.cancer.gov/) was utilized in evaluating the CFHR3 expres-
sion. Other datasets, including GSE40367, GSE31370, and
GSE32879 [7–9], were collected from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) and utilized to examine
CFHR3 expression and further validate our findings.

2.2. Differential Analysis of the Key Gene. In the four data-
sets, differentially expressed genes were evaluated with the
aid of the online tools UCSC Xena (https://xena.ucsc.edu/)
[10] together with GEO2R (https://www.ncbi.nlm.nih.gov/
geo/geo2r/) with the condition used being adjusted p value
< 0.05 coupled with jlog 2 fold change ðFCÞj > 1.

Using univariate regression analysis, the survival-related
genes in the TCGA database were initially identified. In
order to give further clinical details, the Genotype-Tissue
Expression Project (GTEx) database was also utilized. The
overlapping gene was selected and illustrated using the
“Venn” package [11]. The volcano maps and box plots were
completed using ggplot2 package R software and GEO2R
online tools to illustrate the differential appearance.

2.3. Survival Analysis. The TCGA database provided the data
necessary for the survival analysis. The Kaplan–Meier curves
were constructed with the aid of GEPIA (http://gepia
.cancer-pku.cn/index.html) [12].

The Kaplan-Meier curves were used to compare the dif-
ferences reported in the OS and DFS. We were thorough in

our evaluation and got rid of some information that did not
match the requirements. Patients were classified into two
groups according to their CFHR3 expression levels, namely,
the high- and low-CFHR3 expression groups. This data was
used to build the baseline data table and to perform both the
univariate and multivariate regression analyses. To confirm
the key gene’s accuracy as a prognostic molecule, ROC
curves of patient diagnosis were generated using R packages
pROC and ggplot2.

2.4. Enrichment Analysis and Construction of PPI Network.
CFHR3-related genes were screened with the use of STRING
(http://string.embl.de/) [13].

The medium confidence rate > 0:4 was regarded as sig-
nificant. The enrichment analysis was conducted with the
aid of DAVID (https://david.ncifcrf.gov/) [14]. Gene ontol-
ogy (GO) analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGGs) pathway analyses are the two types of
enrichment analysis for the key gene. The criterion was fixed
at p < 0:05. ggplot2 package and R software were used to
complete visualization. GSEA software (http://software
.broadinstitute.org/gsea/index.jsp) was utilized in perform-
ing the gene set enrichment analysis [15].

Table 1: The genes related with prognosis in TCGA-CHOL
database.

Gene KM HR HR.95 L HR.95H p value

GCNT4 0.002408 0.618419 0.453554 0.843211 0.002382

APBA2 0.006801 0.727395 0.547252 0.966837 0.028361

TTC29 0.041737 5.246029 1.065476 25.82960 0.041556

KLRB1 0.012578 0.575461 0.371508 0.891383 0.013325

NPY2R 0.000147 15.56928 1.694302 143.0692 0.015271

EIF5AL1 0.005824 5.862329 1.983363 17.32759 0.001382

TRIM31 0.037284 1.454294 1.103465 1.916662 0.007838

FAM183A 0.010867 1.629543 1.091789 2.432163 0.016860

AVPR1B 0.041278 0.445101 0.201530 0.983055 0.045259

SPDYE2 0.002466 0.306656 0.110388 0.851887 0.023362

MYBPC1 0.002620 1.759721 1.206972 2.565610 0.003305

COL4A4 0.001696 0.641426 0.454693 0.904844 0.011420

CFHR3 0.009203 1.216593 1.007963 1.468405 0.041092

GOLGA7B 0.046302 0.624614 0.411890 0.947201 0.026740

PPP1R2P1 0.024259 0.321206 0.121624 0.848299 0.021906

GRK1 0.035320 10.98407 1.455779 82.87638 0.020116

GH1 0.002271 0.005099 5.94E-05 0.437617 0.020138

C5orf46 0.015935 1.356822 1.021947 1.801428 0.034851

SERPINB13 0.007693 5.151513 1.167473 22.73123 0.030433

SLC6A14 0.035360 1.209221 1.000416 1.461608 0.049500

CRLF1 0.034175 1.656919 1.047114 2.621856 0.031038

ACR 0.024025 0.309656 0.124652 0.769232 0.011567

CST1 0.047236 1.220925 1.014977 1.468661 0.034202

PRSS35 0.001770 0.534249 0.296876 0.961419 0.036509

KRT40 0.005217 0.228907 0.053879 0.972522 0.045748

CHRM5 0.015362 0.363946 0.143565 0.922629 0.033202
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2.5. Coexpression Gene Screening and Functional Annotation.
To determine the coexpression relationship, Pearson’s correla-
tion coefficients were computed between the main gene and
other genes. We selected genes having a jPearson’s
correlation coefficientj > 0:5 as well as p value < 0.05. We

selected the top15 lncRNA, mRNA, and all miRNAs to create
a heat map using R software. Alluvial plotting was performed
to show the associations between these genes. The functional
annotation of the genes was completed with the aid of Metas-
cape (http://metascape.org/gp/index.html#/main/step1) [16].
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Figure 1: The difference expression of CFHR3 in CCA. (a) A Venn diagram of intersection of genes related with prognosis from the TCGA
and GSE40367, GSE31370, and GSE32879. (b) The expressions of CFHR3 in common tumors. (c) A line diagram of the difference
expression of CFHR3 in CCA. (d) A box plot of the difference expression of CFHR3 in CCA. (e–g) The volcano maps of CFHR3 in
GSE40367, GSE31370, and GSE32879.
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2.6. Immune Cell Infiltration Analysis. To examine the
expression profiles of several immune cells, we utilized the
Human Protein Atlas (HPA, https://www.proteinatlas.org/).
TIMER (https://cistrome.shinyapps.io/timer/) was utilized to
investigate the relationship between the expression of CFHR3
and immune cell infiltration and immune cell biomarkers in
cholangiocarcinoma [17, 18].

2.7. CFHR3 Genetic Location and Alteration Analysis. The
position of CFHR3 in the cell was analyzed using LncACTdb
3.0 database (http://www.bio-bigdata.net/LncACTdb/) [19].
The cBioPortal database (http://www.cbioportal.org/) was
used to show the key gene alteration [20, 21].

2.8. Statistical Analysis. R software and its resource packages
were used for statistical analysis and to create related visual-
ization graphics. A Wilcoxon rank-sum test or Student’s t
-test was used to calculate the difference in expression
between normal and cholangiocarcinoma tissues. The rela-
tionship between other genes and CFHR3 was determined
using Pearson’s correlation.

To determine the significance of the difference among
the survival curves, Kaplan-Meier plots were plotted and
log-rank tests were conducted. Statistically significant differ-
ences were defined as those with a value of p < 0:05. For all
statistical tests in this passage, p < 0:05 was set as the crite-
rion of the statistical significance.
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Figure 2: The value of CFHR3 in predicting the prognosis. (a) The OS survival curves comparing patients with high (red) and low (blue)
CFHR3 expression in CCA (p < 0:05) (b) The DFS survival curves comparing patients with high (red) and low (blue) CFHR3 expression in
CCA (p < 0:05). (c) The ROC curve to confirm accurate value of CFHR3 expression in diagnosis and predicting prognosis (AUC = 1:000)
(d) Time-dependent survival ROC curve of CFHR3 to predict 1-, 2-, and 3-year survival rates. All AUC values were above
0.6(AUC = 0:808 ; 0:760 ; 0:711).
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3. Results

3.1. Key Gene Identified and Differential Expression Analysis.
Data was collected from TCGA and GEO datasets. We com-
pleted the differential analysis and preliminary univariate
regression analysis. Twenty-six (26) genes were selected as
target genes (Table 1). Upon examination, we found three
datasets, the GSE40367, GSE31370, and GSE32879, which
contained the cholangiocarcinoma information and normal
information. Differential analysis was performed to find

the target genes. Finally, the overlapping gene was screened
by the Venn diagram as our key gene (Figure 1(a)).

We did a series of differential expression analyses after
identifying the crucial gene, CFHR3. We first discovered a
difference in expression between cholangiocarcinoma and
other malignancies. The expression of CFHR3 varies widely
across 21 cancer types (Figure 1(b)). A higher expression of
CFHR3 in normal tissues and a lower expression in cholan-
giocarcinoma tissues was observed in TCGA datasets
(Figures 1(c) and 1(d)). Low expression of CFHR3 in CCA
was observed in GSE40367, GSE31370, and GSE32879 based
on the GEO database data (Figures 1(e)–1(g)). This data
demonstrates that CFHR3 expression differs between nor-
mal tissues and cholangiocarcinoma tissues.

3.2. Correlation between Clinical Features and CFHR3
Expression of Cholangiocarcinoma. We used GEPIA to cre-
ate Kaplan-Meier survival curves to evaluate the relationship
between clinical prognosis and the main gene. As the curves
shown, cholangiocarcinoma patients with lower CFHR3
expression showed a lower OS (log-rank p = 0:0036) and a
poorer DFS (log-rank p = 0:038). The low expression level
of CFHR3 is related to an unfavorable prognosis.
(Figures 2(a) and 2(b)).

The ROC curve was used to confirm accurate values of
CFHR3 expression in diagnosis and prognosis prediction
(AUC = 1:000) (Figure 2(c)). To predict the survival rates
over 1, 2, and 3 years, the time-dependent survival ROC
curve of CFHR3 was generated. AUC values were all more
than 0.6(AUC = 0:808 ; 0:760 ; 0:711) (Figure 2(d)). All of
these results suggest that our key gene has an effective prog-
nostic value.

The clinical data was gathered from the TCGA database
and utilized to screen for the independent prognostic factor.
Variables including age, gender, TNM stages, pathology
stage, histological type, CA199 level, vascular invasion, and
perineural invasion were included.

These results are shown in the baseline information table
(Table 2). Next, we completed both univariate cox analysis
and multivariate cox analysis (Table 3). Consequently, the
perineural invasion was identified as an independent prog-
nostic factor (p < 0:05).

3.3. PPI Network Construction and Underlying Function
Analysis of CFHR3. Ten (10) genes were screened for
CFHR3-related genes with remarkable interaction, including
CFHR1, CFH, CF8, CFI, C3, NIPA2, MNS1, NIPA1,
TUBGCP5, and CYFIP1. With the aid of the STRING data-
base, we carried out the PPI network analysis of CFHR3 and
CFHR3-related genes (Figure 3(a)).

The key gene and its corresponding genes were strongly
enriched in the BP category, which included regulation of
humoral immune response, regulation of complement acti-
vation, and regulation of protein activation cascade, accord-
ing to the GO analysis.

In the CC category, there was an enrichment of genes in
blood microparticles, mRNA cap-binding complex, as well
as dendrite terminus.

Table 2: The baseline table of clinical information in CCA.

Characteristic
Low

expression
of CFHR3

High
expression
of CFHR3

p value

n 18 18

Age, n (%) 1.000

≤65 9 (25%) 8 (22.2%)

>65 9 (25%) 10 (27.8%)

Gender, n (%) 0.315

Female 12 (33.3%) 8 (22.2%)

Male 6 (16.7%) 10 (27.8%)

T stage, n (%) 0.651

T1 8 (22.2%) 11 (30.6%)

T2 7 (19.4%) 5 (13.9%)

T3 3 (8.3%) 2 (5.6%)

T4 0 (0%) 0 (0%)

N stage, n (%) 1.000

N0 14 (45.2%) 12 (38.7%)

N1 3 (9.7%) 2 (6.5%)

M stage, n (%) 0.656

M0 15 (45.5%) 13 (39.4%)

M1 2 (6.1%) 3 (9.1%)

Pathologic stage, n (%) 0.543

Stage I 8 (22.2%) 11 (30.6%)

Stage II 6 (16.7%) 3 (8.3%)

Stage III 1 (2.8%) 0 (0%)

Stage IV 3 (8.3%) 4 (11.1%)

Histological type, n (%) 0.346

Distal 2 (5.6%) 0 (0%)

Hilar/perihilar 1 (2.8%) 3 (8.3%)

Intrahepatic 15 (41.7%) 15 (41.7%)

CA19-9 level, n (%) 0.299

Abnormal 9 (30%) 7 (23.3%)

Normal 5 (16.7%) 9 (30%)

Vascular invasion, n (%) 0.648

No 16 (47.1%) 13 (38.2%)

Yes 2 (5.9%) 3 (8.8%)

Perineural invasion, n (%) 1.000

No 14 (42.4%) 12 (36.4%)

Yes 4 (12.1%) 3 (9.1%)

Age, mean ± SD 60.56
± 15.45 65.5± 9.39 0.254
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Magnesium ion transmembrane transporter activity,
serine-type endopeptidase activity, and serine-type peptidase
activity were all enriched in the MF category.

Results recorded from the KEGG pathway analysis indi-
cated that the enrichment of genes was primarily in two
pathways, namely, complement and coagulation cascades,
and staphylococcus aureus infection. (Figure 3(b)).

We also analyzed the GSEA results of the TCGA data-
base. As the maps show, the CFHR3 expression group was
enriched in the drug metabolism cytochrome P450, comple-
ment and coagulation cascades, steroid hormone biosynthe-
sis, and primary bile acid biosynthesis (Figures 3(c)–3(g)).

Finally, we observed CFHR1 in the PPI network, which
is a member of the CFHR gene family; therefore, we per-

formed the differential analysis of the CFHR gene family in
cholangiocarcinoma. It was surprising that the data showed
that all of the genes in this gene family had low expression
in tumor tissue and high expression in normal tissues
(Figures 3(h)–3(k)).

3.4. Coexpression Molecular Analysis of CFHR3 and
Functional Annotation. The coexpression method was used
to predict the correlations among DElncRNAs, DEmiRNAs,
and DEmRNAs with CFHR3 expression in patients with
cholangiocarcinoma. The differential expression found in
lncRNAs, miRNAs, and mRNAs is shown in the volcano
maps and heat maps (Figures 4(a)–4(f)). The interrelation-
ships between these genes are also illustrated in Figure 4(g).

Table 3: The univariate and multivariate regression analysis of cholangiocarcinoma.

Characteristics Total (n)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) P value

CFHR3 36 1.265 (0.987-1.621) 0.063 1.252 (0.937-1.672) 0.128

Age 36

≤65 17 Reference

>65 19 1.268 (0.499-3.221) 0.617

Gender 36

Female 20 Reference

Male 16 1.387 (0.544-3.534) 0.494

T stage 36

T1 19 Reference

T2 12 2.612 (0.939-7.263) 0.066

T3 5 0.986 (0.204-4.767) 0.986

N stage 31

N0 26 Reference

N1 5 2.289 (0.602-8.700) 0.224

M stage 33

M0 28 Reference

M1 5 1.650 (0.462-5.891) 0.440

Pathologic stage 36

Stage I 19 Reference

Stage II 9 2.046 (0.646-6.476) 0.223

Stage III 1 0.000 (0.000-Inf) 0.998

Stage IV 7 2.279 (0.719-7.224) 0.162

Histological type 36

Distal 2 Reference

Hilar/perihilar 4 130157029.581 (0.000-Inf) 0.998

Intrahepatic 30 69806426.989 (0.000-Inf) 0.998

CA19-9 level 30

Abnormal 16 Reference

Normal 14 1.003 (0.349-2.883) 0.995

Vascular invasion 34

No 29 Reference

Yes 5 1.764 (0.488-6.372) 0.387

Perineural invasion 33

No 26 Reference

Yes 7 4.264 (1.184-15.352) 0.026 4.871 (1.308-18.139) 0.018
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Both GO and KEGG analyses showed that the functions of
these genes were highly enriched in lipid catabolic process,
monocarboxylic acid metabolic process, regulation of comple-
ment cascade, and gene silencing by miRNA (Figure 4(h)).

3.5. CFHR3 Is Associated with Immune Infiltration. The
Human Protein Atlas (HPA) and TIMER database were uti-
lized for additional investigation on the correlation between
tumor immune microenvironment and genes.

The HPA database was used to determine the expression
of eight (8) different types of immune cells: granulocytes,
monocytes, T cells, B cells, dendritic cells, NK cells, progen-
itors, and total peripheral blood mononuclear cells
(PBMCs). To investigate the relationship between immune
cells and CFHR3, TIMER was utilized (Figure 5(a)). The
results were as follows; the expression level of CFHR3 had
a positive relationship with the infiltrating levels of B cells
(r = 0:354, p = 3:67e − 02), neutrophils (r = 0:364, p = 3:15e
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Figure 3: The PPI network and GO, KEGG analysis. (a) PPI network of CFHR3 in STRING. (b) GO and KEGG enrichment of interacted
genes of CFHR3. (c–g) GSEA enrichment analysis of CFHR3. (h-k) The expression of CFHR1, CFHR2, CFHR4, and CFHR5.
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− 02), macrophages (r = 0:613, p = 9:00e − 05), but nega-
tively correlated with tumor purity (r = −0:207, p = 2:25e −
01), CD8+ T cell (r = −0:477, p = 3:79e − 03), and monocytes
(r = −0:414, p = 1:33e − 02) (Figure 5(b)).

3.6. CFHR3 Genetic Location and Alteration Analysis in
Patients with Cholangiocarcinoma. To further understand
the molecular mechanism, we undertook location and alter-
ation analysis. The LncACTdb 3.0 database was retrieved in
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analyzing the CFHR3 location in the cells. As demonstrated
in Figure 6(a), the key gene widely exists in the nucleus, exo-
some, and cytoplasm (Figure 6(a)).

cBioPortal was used to show the key gene alteration. As
the OncoPrint plot shows, there was an 8% genetic alteration
in the key gene in the TCGA CHOL dataset (Figure 6(b)).
One diagram shows an alteration of the CFHR3 (Figure 6(c)).

4. Discussion

Cholangiocarcinoma is a slow-growing malignancy of the
bile duct [22]. In recent years, the incidence of cholangiocar-
cinoma has been increasing worldwide, which makes chol-
angiocarcinoma a health problem of increasing concern.
Current treatment options for cholangiocarcinoma are lim-
ited because early detection and surgical treatment are diffi-
cult [2]. There is an urgent need to understand the genes
associated with prognosis in cholangiocarcinoma. As medi-
cal technology advances, immune checkpoint blockade
(ICB) has become a new method of cancer treatment. Chol-
angiocarcinoma (CCA) has an abundant tumor immune
microenvironment [23]. According to these findings,
immune research performs a crucial role in cholangiocarci-
noma treatment.

In this work, we discovered a crucial gene for predicting
prognosis in CCA patients. First, we found that decreased
CFHR3 expression was associated with a poor prognosis in
cholangiocarcinoma patients, including overall survival and
recurrence-free survival. Second, we used Cox regression
analysis to show that our prognostic signature had good pre-
dictive accuracy. After 1, 2, and 3 years, low-expression
CFHR3 was still a risk factor for CCA. Additionally, in the
univariate and multivariate regression analysis, we found
that perineural invasion could be an independent prognosis
factor. A recent report has shown that an important feature
of cholangiocarcinoma is peripheral nerve invasion. This
may be connected with the aggressive behaviour of CCA
and its poor response to treatment [24]. Therefore, CFHR3
could be a biomarker for prognosis in cholangiocarcinoma.
So, the role of CFHR3 should be further investigated.

According to functional annotation, we discovered the
function and pathways of CFHR3 and other coexpression
genes. We analyzed the results from the GSEA analysis of
the TCGA database. The drug metabolism cytochrome
P450, complement and coagulation cascades, steroid hor-
mone biosynthesis, and primary bile acid biosynthesis were
all enhanced in the CFHR3 expression group. Some epide-
miologic research have found that bile production and
excretion may play a role in the aetiology of cholangiocarci-
noma. Therefore, we identified and screened the potential
coexpression genes, and the lncRNA-miRNA and lncRNA-
mRNA regulation network was completed. Next, we con-
ducted the GO and KEGG analyses for the purpose of dem-
onstrating that these genes might participate in the
complement and coagulation cascades, monocarboxylic acid
metabolic process, and lipid catabolic process.

By performing the TIMER analysis, we established that
there was a positive relationship between CFHR3 and the
infiltration of B cells, neutrophils, and macrophages but neg-

atively correlated with tumor purity, CD8+ T cells, and
monocytes. Tumor occurrence, development, and evolution
can be coordinated by immune mechanisms. B cells have
been identified as a type of tumor infiltration with the adap-
tive immune system’s ability to identify and target emerging
tumor cells [25]. Recent studies indicate that the inflamma-
tory response plays a crucial role in the microenvironment
alterations of normal tissue. Neutrophils and macrophages
are the important cells involved in this process [26]. There-
fore, these immune cells have a close relationship with chol-
angiocarcinoma, which is of great significance in the
treatment of CCA.

Our research has some limitations. First, our data came
from the GEO and TCGA datasets, and the amount of clin-
ical data we had was modest. Hence, larger-sample studies
are needed to estimate the clinical relevance of CFHR3.
Besides, in this passage, we found the difference expression
of CFHR family in cholangiocarcinoma and the specific
molecular mechanism should be further studied.

5. Conclusions

In conclusion, our findings show that reduced CFHR3
expression is associated with a poor prognosis and immune
regulation in CCA patients. Further studies should be per-
formed to study the molecular effects of CFHR3 in CCA.
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Triple-negative breast cancer (TNBC) is a widely prevalent breast cancer, with a mortality rate of up to 25%. TNBC has a lower
survival rate, and the significance of N7-methylguanosine (m7G) modification in TNBC remains unclear. Thus, this study is
aimed at investigating m7G-related miRNAs in TNBC patients through in silico analysis. In our research, RNA sequencing
and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The miRNAs targeting typical m7G
modification regulators Methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) were predicted on the
TargetScan website. A miRNA risk model was built, and its prognostic value was evaluated by R soft packages. Single-sample
gene set enrichment analysis was used to assess immune infiltration, and further expression of immune checkpoints was
investigated. As a result, miR-421, miR-5001-3p, miR-4326, miR-1915-3p, miR-3177-5p, and miR-4505 were identified to
create the risk model. A nomogram consisting of the stage N and risk model predicted overall survival effectively among
TNBC patients. Treg and TIL were shown to be strongly linked to the risk model, and the high-risk group had higher levels of
four immune checkpoints expression (CD28, CTLA-4, ICOS, and TNFRSF9). A risk model consisting of m7G-related miRNAs
was constructed. The findings of the current study could be used as a prognostic biomarker and can provide a novel
immunotherapy insight for TNBC patients.

1. Introduction

Breast cancer has become the first killer threatening women’s
health recently. Triple-negative breast cancer (TNBC) is con-
sidered an independent clinicopathological type, accounting
for 15% to 20% of all breast cancers, with a mortality rate of
up to 25% [1]. It has the clinical characteristics of early-onset
age, large primary tumor size, high pathological grade, strong
invasiveness, early recurrence, and metastasis [2–4]. In addi-
tion, regardless of tumor stage, TNBC patients have the poor-

est prognosis of any kind of breast cancer [5]. Therefore,
appropriate prognostic strategies for TNBC are considered of
vital importance in disease management [6]. A thorough anal-
ysis of publicly available genetic data to discover novel and dis-
tinctive gene prediction signals might assist patients with
prognostic categorization and precise treatment.

N7-methylguanosine (m7G) modification is a type of
posttranscriptional regulation base modification, which exists
on tRNA, rRNA, and eukaryotic mRNA 5′caps [7–9], and is
essential for the biological functions of RNA [10]. Unlike
m6A regulators, the studies of m7G modification regulators
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influencing cancer are limited. Methyltransferase-like 1
(METTL1) and WD repeat domain 4 (WDR4) are the most
typical regulators, and they form the methyltransferase com-
plex, where the former is the m7G catalytic enzyme, while
the latter stabilizes that complex [11]. Several studies showed
that m7G modification was associated with lung cancer, squa-
mous cell carcinoma of the head and neck, acute myeloid leu-
kemia, and esophageal squamous cell carcinoma in tumor
proliferation and progression [12–15], which indicated the
key impact of METTL1 and WDR4 on m7G modification in
tumors. Williams-Beuren syndrome chromosome region 22
(WBSCR22) is also a type of methyltransferases and mediates

m7Gmodification in rRNA [16]. Several studies indicated that
WBSCR22 overexpressed in glioma and colon cancer [17, 18],
while downregulated in pancreatic cancer [19], similarly
affected tumor occurrence and invasion. To our knowledge,
only one research has involved regulators of m7G modifica-
tion in breast cancer. In their study, they discovered that
METTL1 was overexpressed in the MCF7 cell line [20]; how-
ever, further researches about the influence on tumor biologi-
cal functions have not been performed.

MicroRNA (miRNA) is a form of RNA molecule found
in eukaryotes that is 21 to 23 nucleotides in length. The miR-
NAs are noncoding RNAs that cannot be translated further
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Figure 1: The expression of METTL1 and WDR4 in TNBC patients from TCGA database. (a, b) METTL1 and WDR4 upregulated in
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into proteins. They are involved in gene expression, cell pro-
liferation and apoptosis, and fat metabolism [21, 22]. Many
miRNAs could promote or inhibit TNBC occurrence and
metastasis [23]. Previous studies have revealed that RNA
modification, especially N6-methyladenosine (m6A), exists
on miRNAs [24]. In addition, the study by Pandolfini et al.
demonstrated that METTL1 mediated m7G modification
of miRNA and participated in the progression of lung cancer
[25]. However, the possible involvement of METTL1/
WDR4-related miRNAs in TNBC progression needs further
investigation. So, the current study was designed to explore
this mechanism.
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Figure 2: DEmiRNAs targeting METTL1 or WDR4. (a) Heatmap of top 20 DEmiRNAs between normal breast (N) tissues and TNBC (T)
tissues. (b) The volcano plot of 126 DEmiRNAs.

Table 1: Six m7G-related miRNAs identified from univariate Cox
regression analysis.

miRNA HR (95% CI) p

miR-421 1.2387 (1.0312, 1.4878) 0.0221

miR-5001-3p 1.3397 (1.0363, 1.7318) 0.0256

miR-4326 1.3298 (1.0145, 1.7432) 0.0390

miR-1915-3p 2.1104 (1.1069, 4.0237) 0.0233

miR-3177-5p 2.2276 (1.0612, 4.6758) 0.0343

miR-4505 5.4048 (1.9407, 15.0528) 0.0012

HR: hazard ratio; CI: confidence interval.
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2. Materials and Methods

2.1. Data Source. The miRNA and mRNA sequencing data of
TNBC were acquired from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/). The related
clinical data were obtained from TCGA and UCSC Xena web-
site (https://xena.ucsc.edu/). TNBC patients with unknown
OS information were excluded. Out of those, 104 normal
breast tissues and 154 TNBC tumor tissues were included. In
addition, based on previous researches, METTL1/WDR4-
mediated m7G RNA methylation was demonstrated; thus,
the miRNAs targeting METTL1 or WDR4 were predicted
from the TargetScan database (http://www.targetscan.org/).

2.2. METTL1/WDR4 Expression and Protein-Protein
Interaction Network. To make the gene expression analysis
more reliable, the expression data of METTL1 andWDR4 were
normalized from counts to TPM. Moreover, the association
between METTL1 and WDR4 in TNBC patients was investi-
gated. An assumed protein-protein interaction (PPI) network
forMETTL1 andWDR4 was created by the online analysis tool
GeneMANIA (http://genemania.org/).

2.3. Construction and Validation of m7G-Related miRNA
Prognostic Signature. TNBC patients were further divided
into training set (n = 116) and testing set (n = 38) randomly,
using the 3 : 1 ratio. The differentially expressed miRNAs
(DEmiRNAs) targeting METTL1 or WDR4 were identified
between TNBC and normal tissues by the R software package
“limma” (jlog2FCj > 0:5, p < 0:05). Firstly, prognostic DEmiR-
NAs were assessed by univariate Cox regression analysis. miR-
NAs with p < 0:05 were then selected to build a risk model for
TNBC patients. The risk score was calculated with the “pre-
dict” function in the R software package:

Risk score = h0 tð Þe
〠
n

i=1
Coef i×xi

: ð1Þ

To determine the predictive capability of the risk score
model, the areas under the receiver operating characteristic
(ROC) curve (AUC) were computed by the “timeROC” pack-
age. TNBC patients were grouped depending on the risk score
median, and then, risk-related survival curves were plotted.
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Figure 4: Prognostic value of the risk model in the training, testing, and total sets. (a–c) OS analyses of the risk model. (d–f) ROC curves for
TNBC survival rates at 1, 3, and 5 years. (g–i) The distribution of patients’ risk scores. (j–l) Survival time and status of patients.
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Furthermore, principal component analysis (PCA) was used
to estimate the accuracy of grouping. Subsequently, uni- and
multivariate Cox regression analyses including clinicopatholo-
gical factors and the risk score were performed. The final
model predicting the OS of TNBC was shown by a visualized
nomogram. The concordance index (C-index) assessed the
final model’s discriminant capacity, followed by calibration
plots.

2.4. Enrichment Analyses. Gene Ontology (GO) enrichment
analysis was carried out to reveal the association of the GO
terms and differentially expressed mRNAs (DEmRNAs), which
were identified between two groups, with jlog2FCj > 1 and p
< 0:05. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis was performed to reveal the associated signal-
ing pathways. The analyses were performed by “org.Hs.eg.db,”
“clusterProfiler,” and “enrichplot” packages of R.

2.5. Immunological Analysis. Single-sample gene set enrich-
ment analysis (ssGSEA)was used to quantify the immune activ-
ity or enrichment levels of 29 immune signatures, including 13
types of immune-associated functions and 16 types of immune
cells in each patient. The internal correlation of various immune
signatures was investigated using the Pearson coefficient test,
and then, the Wilcoxon test was applied to analyze the differ-
ences between two groups in immune cells and functions. We
then performed correlation analyses between immune cells
and METTL1 and WDR4 by the Spearman coefficient test.
Finally, immune checkpoint-related genes acquired from prior

research were examined for differences in expression between
the two groups, in order to anticipate the effect of immune
checkpoint blocking treatment.

2.6. Statistical Analysis. R software was used to conduct all
analyses and plots (version 4.1.3). To compare the two groups’
differences, the Wilcoxon test was used. The statistical signifi-
cance level was set at p < 0:05.

3. Results

3.1. METTL1 and WDR4 Upregulated and Interplayed in
TNBC. Both METTL1 and WDR4 were overexpressed in
TNBC patients (Figures 1(a) and 1(b)), and their expression
correlation was positive (r = 0:36, p < 0:001) (Figure 1(c)). Fur-
thermore, we imported METTL1 and WDR4 into the Gene-
MANIA tool for establishing a PPI network. As Figure 1(d)
showed, a total of 22 genes and 128 links were contained in
the PPI network. These 22 genes were mostly involved in
RNA methylation modification and methyltransferase activity.

3.2. Construction and Validation of m7G-Related miRNA
Risk Model. A total of 760 miRNAs targeting METTL1 or
WDR4 were predicted from the TargetScan website. Among
them, 126 DEmiRNAs were identified between 154 TNBC
and 104 normal samples, with 84 upregulated and 42 down-
regulated (Figures 2(a) and 2(b)). Furthermore, six miRNAs
related to OS were identified from the DEmiRNAs (miR-
421, miR-5001-3p, miR-4326, miR-1915-3p, miR-3177-5p,
and miR-4505) using the univariate Cox regression analysis
(Table 1). Subsequently, we performed a multivariate Cox
analysis including six miRNAs and conducted the risk
model in the training set: Risk score = exp ð0:06813 ×miR‐
421 + 0:29448 × miR‐5001‐3p + 0:08756 × miR‐4326 +
0:38769 ×miR‐1915‐3p − 0:02726 ×miR‐3177‐5p + 1:65602
×miR‐4505 − 0:9681Þ. TNBC patients were categorized into
two groups by the risk score median. The risk scores of the
testing set and the total sample set were also calculated based
on the above formula. The cutoff point of grouping was the
same as the training set. PCA results revealed the accuracy in
grouping of the risk model (Figures 3(a)–3(c)). The survival
curves indicated longer OS among low-risk patients in the
three data sets (Figures 4(a)–4(c)). The risk model per-
formed well in predicting OS, as evidenced by ROC curves.
The AUCs of 1-, 3-, and 5-year OS in the training, testing,
and total sets were 0.718, 0.747, and 0.745, 0.738, 0.691,
and 0.602 and 0.737, 0.727, and 0.705, respectively
(Figures 4(d)–4(f)). Figures 4(g)–4(l) depicted the patients’
risk score distribution and their survival status in three data
sets.

3.3. Independent Prognostic Factors of Final Model. The clin-
ical characteristics of 154 TNBC patients were illustrated in
Table 2. The risk model was combined with age and clinico-
pathological factors for uni- and multivariate Cox regression
analyses. The univariate analysis showed that pathologic
stage (p < 0:0001), stage T (p = 0:001), stage N (p < 0:0001),
stage M (p = 0:0025), and risk score (p < 0:0001) were
related to the OS of TNBC patients (Figure 5(a)). However,
only stage N (p < 0:001) and the risk score (p = 0:0184) were

Table 2: Characteristics of TNBC patients.

Clinical characteristic N (154)

Age (years) 54:29 ± 11:71
Stage

I 28

II 93

III 29

IV 2

Unknown 2

T stage

T1 39

T2 94

T3 15

T4 5

TX 1

N stage

N0 96

N1 36

N2 14

N3 8

M stage

M0 133

M1 2

MX 19
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<0.0001
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Figure 5: Nomogram construction of the prognostic model. (a, b) Cox regression analysis with the risk score and clinicopathological
covariates. (c) The nomogram of prediction model.
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Figure 6: Continued.
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retained as independent factors for OS after the multivariate
Cox analysis (Figure 5(b)).

3.4. Prognostic Model Construction and Detection. A nomo-
gram was created for predicting visually, including the stage
N and risk score, and the overall scores could predict the
likelihood of overall survival for TNBC patients
(Figure 5(c)). The nomogram model’s C-index was found
to be 0.868, which indicated the excellent discriminant per-
formance of the final model. Moreover, 1-, 3-, and 5-year
AUCs were 0.843, 0.878, and 0.886, respectively, which were
all better than clinicopathological characteristics in predic-
tive ability (Figures 6(a)–6(c)). The calibration curve dem-
onstrated good discrimination of the nomogram model
(Figures 6(d)–6(f)). In general, the nomogram model accu-
rately predicted the OS of TNBC patients.

3.5. Enrichment Analyses. Analyses of 658 DEmRNAs using
GO and KEGG were carried out (Figure 7). GO analysis
identified 97 biological processes (BP), 42 molecular func-
tions (MF), and 24 cellular components (CC). Under BP,
significant enrichments were observed in keratinization, epi-
dermis development, and skin development. For CC,
DEmRNAs were enriched in synaptic membrane, postsyn-
aptic membrane, and cornified envelope. The MF involved
in receptor ligand activity, channel activity, and signaling
receptor activator activity. In addition, KEGG analysis
revealed 8 related pathways and the results showed that the
DEmRNAs were mostly enriched in drug metabolism-
cytochrome P450 and neuroactive ligand-receptor
interaction.

3.6. Relationship between the Risk Model and Immune
Signatures. Since the treatment of TNBC patients is limited
and could only benefit from chemotherapy, immunotherapy
may provide new treatment strategies for TNBC patients.
Thus, we performed immunological analyses related to our
risk model. We used ssGSEA to calculate the enrichment

scores for the immune activity or enrichment level in each
sample (Figure 8(a)). The correlation analysis of immune
cells revealed that pDCs were positively and strongly corre-
lated with TIL (r = 0:91), while the correlations of
immune-related functions were all positive, where the T cell
coinhibition and checkpoint were found to have the stron-
gest correlation (r = 0:98) (Figures 8(b) and 8(c)). The box
plot revealed the differences in the immune cells, of which
Treg, TIL, Th1 cells, and T helper cells were upregulated in
high-risk patients. Similarly, the immune functions, of
which T cell costimulation/inhibition, MHC class I, check-
point, and APC costimulation, were also upregulated
(Figures 8(d) and 8(e)). Thus, the m7G-related miRNAs risk
model is envisaged to have a potential role in predicting the
immune response. Furthermore, the connection between
immune cells and METTL1 and WDR4 was investigated
using the Spearman coefficient test. It was discovered that
Treg, TIL, T helper cells, neutrophils, mast cells, macro-
phages, and B cells were negatively correlated with METTL1
and WDR4 (Figure 8(f)). The intersection of different
immune cells and m7G-related immune cells was taken to
obtain the significant m7G-related immune cells (Treg and
TIL). In addition, the high-risk group had higher levels of
CD28, CTLA-4, ICOS, and TNFRSF9 (p < 0:01), indicating
that these four immune checkpoints may be potential targets
of immune therapy for TNBC patients at high risk
(Figure 9).

4. Discussion

Unlike ER, PR, or Her-2 positive breast cancer, the treatment
strategies for TNBC patients are limited [26]. Thus, identifying
novel biomarkers could provide novel methods for TNBC
patients. In total, 154 TNBCpatients were obtained in this study
to assess the prognostic role of m7G-related miRNAs. The
patients were grouped depending on the risk score median,
where high-risk patients were found to have a shorter OS. A
multivariate Cox regression analysis was performed combining
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Figure 6: Assessment of the prognostic model. (a–c) ROC curves for 1-, 3-, and 5-year OS rate of nomogram and clinicopathological factors.
(d–f) Nomogram calibration curves for 1-, 3-, and 5-year OS prediction.
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clinicopathological parameters and the risk score, revealing the
independent prognostic effect of the risk model on OS.

Several researches have suggested that m7G modification
may have an essential role in carcinogenesis, but how it
functions in regulating miRNAs during TNBC remains
unknown. Only one research by Pandolfini et al. has success-
fully detected internal m7G mediated by METTL1 in miR-
NAs, demonstrating that m7G not only exists on tRNAs,

rRNAs, and mRNAs but also on miRNAs. Their study found
that m7G modifications showed features different from the
m6A and 5′-methyl phosphate features. The m7G affected
the pri-miRNAs’ secondary structure to promote miRNAs
processing and suppress cell migration [25]. miRNA m7G
modification mediated by METTL1 promotes lung cancer
occurrence and inhibits cancer metastasis; however, the
researchers did not rule out the effect of METTL1 onmRNA.
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Internal m7G inmiRNAs have been detected by another study
and they revealed that m7G inmiRNAs remained to be shown
[27]. In the current study, it was assumed that miRNAs may
participate in m7G modification by regulating their target
genes (m7G modification regulators METTL1 and WDR4).
Thus, the interaction ofm7Gmodification andmiRNAs needs
further research. The m7G modification might be a new func-
tion regulator of miRNA and could help find new therapeutic
strategies in cancer.

Additionally, six m7G-related prognostic miRNAs from
154 TNBC patients were identified. miR-421 upregulates in
cancer [28, 29], and it can promote disease progression
and shorten OS [30–32]. miR-4326 has a proliferative effect
in lung cancer and activates the Wnt pathway [33]. miR-
1915-3p has been demonstrated as a feasible biomarker for
liver cancer, immune diseases, and gastric and thyroid can-
cer [34–37]. A few miRNAs have been associated with tumor
progression. However, few reports have been published
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regarding TNBC, and reports on the correlation between
miRNAs and m7G-related genes have been even rarer. Thus,
this study may help identify the prognostic miRNAs that tar-
get m7G modifications to contribute ideas of potential value
in TNBC occurrence and progress.

In the last part of our study, we found two immune cells,
TIL and Treg, were closely associated with the m7G-related
miRNAs risk model. TIL and Treg were upregulated in high-
risk patients, while they were negatively correlated with

m7G regulators METTL1 and WDR4. Treg cells can inhibit
anticancer immunity and block the effective antitumor
immune response of tumor hosts; thus, they accelerate the
occurrence and development of tumors [38]. And immune
checkpoint inhibitors (ICIs) mainly affect Treg cells, for
example, ICIs targeting programmed cell death 1 could
strengthen the ability of Treg cells for immunosuppression,
which is the reason for the unsatisfactory efficacy of ICIs
on TNBC patients. However, Treg cells could be depleted
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by CTLA-4 inhibitors [39]. In this study, high-risk patients
had a higher level of Treg cell infiltration and CTLA-4
expression, so CTLA-4 inhibitors may treat high-risk TNBC
patients effectively. Among early TNBC patients receiving
adjuvant chemotherapy, the increase of TIL level meant a
prognosis improvement [40]. Another research about neo-
adjuvant therapy of TNBC revealed that patients with high
TIL level meant high pathological complete response so that
the patients could obtain a better prognosis [41]. The high-
risk patients had a higher level of TIL in our study, which
meant our risk model may not only predict the OS but also
predict the response of adjuvant therapy for TNBC patients.
For high-risk patients, their poor prognosis could be
improved after regular therapies. In recent years, TIL ther-
apy has been increasingly used in the treatment of cancers.
Like CAR-T therapy, TIL therapy is also a form of adoptive
immunotherapy. TILs are derived from tumor tissues and
could naturally target patients’ tumor-specific antigens,
while other cellular immunotherapies are mostly derived
from blood, which reduces the ability to recognize tumors.
Six patients with metastatic breast cancer were adopted
TIL therapy in a Phase II Pilot Clinical Trial, half of whom
experienced measurable tumor shrinkage [42]. Further
researches for TIL immunotherapy in TNBC patients are
needed, which could bring hope to cancer patients. Overall,
high-risk patients may benefit from CTLA-4 inhibitors and
TIL therapy. However, further understanding of the m7G-
related miRNAs and immune activity is needed to improve
the immunotherapy strategies for TNBC patients.

Nevertheless, the limitations of our study are that we
were unable to gather our own data to validate the model.
In addition, further verified experiments on the expression,
function, and mechanism of action of these miRNAs are
needed.

5. Conclusion

Genomics and clinical data from the public database using
bioinformatics and medical statistical analysis were gath-
ered. Six m7G-related prognostic miRNAs and established
prognostic risk signature for TNBC patients were identified.
Findings of the current study will give an insight towards the
role of miRNA m7G modification mechanisms in TNBC.
Moreover, this will also help in the early diagnosis of this
cancer.
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Sepsis is a severe immune system reaction to infection and a major cause of ICU-related fatalities. Because of the high mortality,
high cost of treatment, and complex aetiology of sepsis, sepsis has a huge impact on healthcare. Some of the health complications
in sepsis are abnormal cardiac functions, hypoperfusion, hypotension, tissue damage, multiple organ failure, and ultimately death.
Individuals with weak immune systems and chronic medical conditions are highly vulnerable to sepsis. In sepsis, a patient shows
the extreme immune response in the initial stage while prolonged immunosuppression in the later stages. Sepsis-driven
immunosuppression ushers in death because sepsis cases develop secondary infections postrecovery. The later
immunocompromised state in sepsis is attributed myeloid-derived suppressor cell upregulation and reduced immune activity
displayed by lymphocytes (lymphocyte anergy). As a result, it is currently suggested that regulating the immune response is a
better therapeutic approach than focusing on inflammation to improve the immune system’s capacity to fight infections.
Moreover, finding novel and accurate prognostic biomarkers that can help in rapid sepsis diagnoses and deciding better
therapeutic strategies will significantly lower clinical case mortality rates.

1. Introduction

Sepsis reflects a mortality-driving clinical status identified
through immunological dysregulation during an infection.
Annually, 31,500,000 patients and 5,300,000 mortalities
due to sepsis are reported. Septic shock describes a clinical
scenario, whereby patient develops vascular-circulatory dys-
function together with profound immune response (IR)
against an infection leading to a high mortality. Such IRs
are characterized through systemic hyperinflammation early
stage, called systemic inflammatory response syndrome
(SIRS), together with prolonged immunosuppression during
late-phase, termed compensatory anti-inflammatory
response syndrome (CARS) [1–4]. Sepsis represents a major
mortality driver within severely affected cases residing
within intensive care units (ICUs) but degrees of septicemia
vary among individuals and depend on the age, overall
nutritional status, preexisting medical condition, immune
response, and the virulence displayed by the invading path-
ogen [5]. Sepsis increases the duration of hospital stay, and
sepsis patients show 8 times higher mortality than others.

According to some estimates, >50% mortality in ICUs are
attributed to sepsis [6]. The IR mounted against the infec-
tious agent involves all host immune system components
[7]. According to the “host theory” of sepsis, the “cytokine
storm,” or unchecked host production of proinflammatory
cytokines, is what causes the clinical signs of sepsis [8].
Recent research, however, demonstrates that unchecked pro-
duction of pro- and anti-inflammatory cytokines is present
in this situation. Moreover, cytokine-class also varies among
individuals with certain individuals who show increased
synthesis of proinflammatory cytokines whereas others show
higher production of anti-inflammatory cytokines [8]. The
availability of better treatment options has certainly reduced
the mortality associated with sepsis, but unfortunately, sepsis
survivors are burdened with life-long health complications
such as immune dysfunction, increased susceptibility for
secondary infections, and poor quality of life [9, 10]. The
“postsepsis syndrome” is a relatively new term and indicates
a consistent compromised life at cognitive, psychological,
physical, and medical level after aggravated sepsis [10]. Sev-
eral common symptoms of sepsis are tachycardia,
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tachypnea, body temperature > 38°C or <36°C, WBC-count
of >12 × 109/L or <4 × 109/L, and hypotension [11]. Septic
condition was found to drastically downregulate circulating
numbers of CD4+/CD8+ lymphocytes leading to impaired
host IR [7].

The present review is focused on the role of myeloid and
lymphocyte cells within immunity issues identified in such
cases and several potential biobiomarkers that can be used
in improved prognosis and prediction of adverse outcomes
during the hospital/ICU admission.

2. Etiology of Sepsis

The nonhomeostatic, systemic, and damaging IR that sepsis
imposes on the host against infection/s leads to organ fail-
ure. Through aberrant stimulation of immune cell compo-
nents and release of proinflammatory cytokines, the innate
immune system supports systemic inflammatory-based
responses. The duration and intensity of the inflammatory
response have a significant role in sepsis prognosis, and a
hyperinflammatory environment is typically associated with
negative outcomes [12]. The early IRs in sepsis are mediated
by various pattern recognition receptors (PRRs) and
pathogen-associated molecular patterns (PAMPs), whereby
most share complementary and overlapping functions. PRRs
and PAMPs activate host-IR against invading pathogen/s
[13]. As per the latest definition of sepsis, the International
Consensus for Sepsis and Septic Shock describes it to be a
life-threatening condition of organ dysfunction caused by a
dysregulated IR to an infection [14]. The diagnosis of sepsis
depends upon inflammation-based response-strength within
the patient. In sepsis, both overexuberant inflammation and
immunosuppression develops simultaneously in a patient.
During the initial stages, a sepsis patient generates an
inflammatory response against the infection. It progresses
towards severe sepsis, a clinical situation in which sepsis is
accompanied with organ dysfunction. The final stage is sep-
tic shock where a patient develops sepsis with tissue hypo-
perfusion [15]. The outcome of sepsis cases largely
depends on the type of microorganism responsible for sep-
sis. The European Prevalence of Infection in Intensive Care
(EPIC II) investigation reported Gram-negative bacteria
are more common in sepsis than Gram-positive species
(62.2% vs. 46.8%). The study also noted that the duration
of ICU stay increased the risk for sepsis by drug-resistant
strains of Staphylococci, Acinetobacter, Pseudomonas, and
Candida species [16]. Of note, Gram-negative bacteria
caused increased mortality in sepsis patients than Gram-
positive bacteria [17]. It was observed that Staphylococcus/
E. coli were linked to lower deaths (20% and 19%) than Can-
dida (43%) or Acinetobacter (40%). The highest mortality
(73%) was observed in Pseudomonas aeruginosa infections
[18]. The lungs are the most frequently colonized site of bac-
terial colonization, and pulmonary sepsis is more common
than abdominal sepsis (56.3% vs. 37.3%), and pulmonary
sepsis was more common in old age patients. Both ICU mor-
tality and one-year mortality associated with pulmonary-
sepsis prevailed over abdominal sepsis (31.7% vs. 12.6 and
45.4% vs. 24.4%) [19]. One of the major causes for mortality

is sepsis which is a multiorgan failure contributed by abnor-
mal activation of blood platelets and immune cells.

An essential mediator in the body’s overall response to
sepsis is blood platelets. In fact, the main causes of sepsis-
induced organ failures are activated platelets and immune
system cells. However, a low platelet count is an independent
and more potent predictor of poor outcomes in sepsis; there-
fore, routine platelet testing can aid in accurate risk assess-
ment and the use of alternative therapeutic approaches in
the management of sepsis [20]. Sepsis is also more common
in individuals with preexisting health complications. For
instance, a population level study in the US showed that
16% patients of acute myeloid leukemia (AML) developed
sepsis in contrast to 4% patients without AML. The mortal-
ity rate of AML patients with sepsis was 30% compared to
21% observed in non-AML patients [21]. Of note, the
heightened inflammatory phase in sepsis is followed by an
immunosuppression. Recent trends have demonstrated that
the immunosuppressive stage of sepsis is the major cause
for mortality due to increased risk for secondary infections
attributed to “immune paralysis” within a few weeks or
month after recovery [22]. This is one of the possible reasons
that adjunctive therapy targeted to dampen the inflamma-
tory situation does not yield conclusive results, and the sci-
entific community is of the view that restoration of normal
immune functions by utilizing immunostimulants is more
promising than anti-inflammatory agents. However, person-
alized decisions regarding the sepsis therapy must be taken
to target inflammation, immunosuppression, or any other
metabolism [23].

3. Prognostic Biomarkers for Sepsis

A common occurrence in patients with sepsis, trauma,
burns, or serious traumas is lymphocyte anergy. Addition-
ally, loss of delayed-type hypersensitivity, which increases
the risk of sepsis and death [24], is linked to lymphocyte
anergy. The neutrophil-to-lymphocyte ratio (NLR) is an
important indicator for sepsis prognosis. A significantly
higher ratio of NLR is observed in sepsis nonsurvivors
together with exacerbated NLR linked to poor prognoses in
septic cases [25]. Additionally, a higher NLR ratio was
observed within acute kidney injury (AKI) patients in sepsis
and acted as an independent indicator for AKI within sepsis/
septic-shock cases [26]. Statistically validated variations
within salivary C-reactive protein levels within septic neo-
nates were denoted, in comparison to control cohort
(12:0 ± 4:6 ng/L versus 2:8 ± 1:2 ng/L). Moreover, the sali-
vary CRP levels were also a good indicator of subsequent rise
in the serum CRP levels within such cases. Furthermore, the
mean platelet volume and NLR were also markedly exacer-
bated within such cases in comparison to control cohort
[27]. Recently, neutrophils-to-lymphocytes-and-platelets
(N/LP) ratio was also suggested as proxy prognostic bio-
marker for inflammatory stati in sepsis. In patients with
AKI, an exacerbated ratio of N/LP indicated aggravated dan-
ger of death and a separate prediction biomarker for death
within septic-AKI cases admitted to ICUs [28]. The soluble
triggering receptor expressed on myeloid cells-1 (sTREM-
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1) represent valuable biomarkers for understanding sepsis/
septic shock intensities. Additionally, it helps distinguish
between septic and nonseptic illnesses. Compared to CRP
and procalcitonin, sTREM-1 is thought to have improved
sensitivity and specificity, making it a viable biomarker for
the quick identification of infectious illnesses [29]. Saldir
et al. reported septic neonates showed markedly exacerbated
levels of IL-6, sTREM-1, endocan, and immature/total neu-
trophil ratio (I/T ratio) than nonseptic neonates. The mea-
surement of these biomarkers can help in early
identification of sepsis in neonates. The study showed that
IL-6 was the most accurate biomarker for sepsis followed
by sTREM-1 [30]. Plasma levels of sTREM-1 were markedly
exacerbated within sepsis, compared to SIRS. Moreover,
plasma sTREM-1 levels varied within (severe) sepsis/septic
shock cases. This indicates that sTREM-1 is a functional bio-
marker for sepsis progression and a direct indicator of dis-
ease severity [31]. Another useful biomarker for sepsis is
myeloid-related protein complex 8/14 because MRP8/14
expression levels increase with sepsis severity. The nonsurvi-
vors had an exacerbated level of MRP8/14 than survivors in
a 28 day follow-up. Moreover, AKI-carrying sepsis cases
showed upregulated MRP8/14 than patients without AKI.
This indicated that MRP8/14 acts as a functional biomarker
for sepsis diagnoses/progression in ICU cases exhibiting AKI
[32]. Recent observations have shown that the ratio of
platelet-to-lymphocyte (PLR) is an important prognosis bio-
marker regarding inflammation in sepsis. A PLR > 200 indi-
cated markedly exacerbated mortality, and a ratio of
PLRs ≤ 200 was not significant [33].

4. Myeloid Cells in Sepsis

Myeloid-derived suppressor cells represent Gr1+ CD11b+

immune components defined through reduced expression
of several characteristic biomarkers used to classify mature
myeloid cells. They are also known as null cells, myeloid
suppressor cells, or immature myeloid cells. These elements
are the granulocyte and monocyte progenitors, and they may
suppress the T cell response during an inflammatory state.
To avoid any confusion, such immunological components
were given the generic designation myeloid-derived suppres-
sor cells (MDSCs) in 2007 [34, 35]. MDSCs express Gr1 and
CD11b, two myeloid differentiation biomarkers, and first
identified their crucial role in antitumor and immune sur-
veillance. The heterogeneous population of MDSCs com-
prises the precursor of immune components including
dendritic cells, macrophages, together with granulocytes,
strongly inhibiting T cell function by exacerbating nitric
oxide and reactive oxygen species generation [36]. Apart
from their central role in immunosuppression, MDSCs also
play certain nonimmunological roles in tumor angiogenesis
and tumor metastasis [37, 38]. MDSCs are immunosuppres-
sive, and their number increases in medical conditions char-
acterized by acute or chronic inflammatory milieu such as
cancer. Recent studies have linked MDSCs to the pathogen-
esis of sepsis. Strikingly, an increased number of MDSCs
were responsible for nosocomial infections, adverse out-
comes in sepsis patients, and exacerbated mortality in ICU

admitted sepsis patients. Since MDSCs are present in very
low numbers in healthy subjects, such could be employed
as biomarkers and drug-action sites in sepsis therapy [39].
Primary function of MDSCs is immunosuppression by control-
ling the inflammation in sepsis. The role that this MDSC func-
tion plays in sepsis is dual. The host immune system mounts a
potent IR during the early stages of septic shock, which causes
hyperinflammation. Immunosuppression brought on by
MDSCs during this phase prevents organ malfunction and
restricts the harmful effects of hyperinflammation. In contrast,
persistent inflammation-immunosuppression and catabolism
syndrome (PICS) and chronic critical illness (CCC) are both
brought on by long-term immunosuppression brought on by
MDSCs [40]. During the first three days of the septic phase,
MDSCs were produced. These cells enhanced proinflammatory
cytokine populations, released nitric oxide, and raisedmortality.
However, MDSCs in the late phase of sepsis (12 day) are anti-
inflammation, expressing IL-10/TGF-beta. Late MDSCs
showed more immature phenotype than early MDSCs and cre-
ated less macrophages/dendritic cells in comparison to primor-
dial MDSCs when treated with GM-CSF. This suggests that as
septic inflammation developed, MDSCs skew towards a more
immature phenotype and change their nature from proinflam-
matory to anti-inflammatory immune cells [35]. MDSCs sup-
press the activity of both adaptive and innate immune systems
and promote chronic immunosuppression observed across late
septic phases [41]. MDSCs were upregulated during several
health complications where acute or chronic inflammatory con-
ditions are a common underlying cause. For instance, sepsis,
autoimmune disorders, burns, cancer, and trauma are certain
clinical conditions where MDSC numbers increase. MDSCs
are powerful immunosuppressive immune-system components
stemming from their ability to reduce the suppress CD8(+) and
CD4(+) T cell activation [42]. MDSC-induced immunosup-
pression is attributed to degradation of L-arginine, discharging
anti-inflammatory/immunosuppressive cytokines such as IL-
10 and TGF-β, activating immunosuppressive T regulatory cells
(Tregs) and exacerbated generation of reactive oxygen and reac-
tive nitrogen species (ROS, RNS) [39]. Xu et al. reported that
95% of esophageal tumor cases displayed upregulated granulo-
cyte derived-MDSCs (G-MDSCs), correlating with elevated
postsurgical morbidities. Moreover, an exacerbated number of
monocyte-derived MDSCs indicated poor prognosis in
cancer-related sepsis [43]. At molecular level, generation of
MDSCs is linked with miR-21 and miR-181b expressions. The
CCAAT enhancer-binding protein (C/EBPβ) upregulated
miR-21 and miR-181b, leading onto transcription factor NFI-
A upregulation and promoting MDSCs within spleen/bone
marrow within a murine model for sepsis. However, C/
EBPβ-deficient myeloid progenitors showed reduced NFI-A
and consequently reduced generation of MDSCs in septic
mice. This suggests that reducing the expression of C/EBPβ
can be used as a therapeutic strategy to reduce immunosup-
pression in sepsis treatment [44]. In mouse model of Gram+

sepsis, a massive upregulation in Gr1+ CD11b+ MDSC popu-
lations was observed. Both G-MDSCs (Ly6G- CD11b+) and
M-MDSCs (Ly6C+Ly6G-CD11b+) were increased but M-
MDSCs showed a stronger increase in the numbers for longer
duration than G-MDSCs. At molecular level, the postseptic
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immunosuppression is mediated by IL-6-dependent MyD88
and TLR signaling [45].

5. Lymphocytes in Sepsis

The adaptive immune system’s B and T lymphocytes are
crucial parts because they trigger an antigen-specific
immune response to an invading disease. B (humoral immu-
nity) and T cells are required for the initial antigen recogni-
tion and subsequent IR to eliminate the foreign antigen (cell-
based immunity). While B cells differentiate into plasma
cells and generate bespoke antibodies to clear infections, T
cells are responsible for cell-mediated clearance of the invad-
ing pathogen [46]. Sepsis is characterized by reduced num-
bers of both B and T lymphocytes, a clinical condition
called B and T lymphopenia, which causes immunosuppres-
sion in the patient. The B and T lymphopenia in sepsis is
attributed to extensive apoptosis of lymphocytes, and pre-
venting lymphocyte apoptosis by using caspase inhibitors
markedly reduced the mortality in sepsis [7]. Anergy is a tol-
erance mechanism in immune cells where the cells do not
mount a normal IR against an antigen. The cells remain in
an inactivated but live stage for a prolonged duration in a
hyporesponsive state [47]. Anergy of T lymphocytes is asso-
ciated with immunodepression and indicates loss of activa-
tion through TCR signaling or Ca(2+) mobilization [48].
CD4+, CD8+, and total T lymphocyte downregulations were
reported within sepsis cases. Lymphocyte downregulation
was, however, induced by the type of bacterial infection,
and Gram-negative bacteria more severely suppress the
immune system than Gram-positive bacteria. For instance,
sepsis induced by Gram-positive bacteria Streptococcus
pneumoniae and Staphylococcus aureus caused an extended
reduction (≥14 days) for CD4+, CD8+, total T lymphocyte,
and NK cellular populations. Conversely, sepsis by Gram-
negative pathogens, Neisseria meningitidis and Enterobac-
teria, caused reduction for a smaller duration, and the
patients fully recovered in 3 days. Moreover, B cell/CD3+/
DR+ and CD4+ T lymphocyte populations within Neisseria
meningitidis and Enterobacteria-infected patients were rap-
idly and markedly increased during the recovery phase com-
pared to Gram-positive septic cases [49]. Population
statistics for total T lymphocytes and CD4+ T lymphocytes
were markedly reduced within septic patients than normal
controls. Moreover, septic patients also showed lower num-
bers of NK cells, CD3+/DR + lymphocytes and CD4/CD8
ratio than healthy controls. However, the number of B lym-
phocytes was increased [50]. Treatment with Rg1 markedly
increased the survival rate by suppressing systemic inflam-
matory response and enhancing the bacterial clearance.
Moreover, Rg1 also inhibited lymphocyte apoptosis and
attenuated lung and liver injury in septic mice which sug-
gests that Ginsenoside Rg1 is protective in CLP-induced
polymicrobial sepsis due to its anti-inflammatory and
immunomodulatory activities [51]. Sepsis-induced lympho-
penia was observed in patients during a 28-day follow-up.
Sepsis nonsurvivors lowered degrees of CD19+ CD23+
across a one-week follow-up compared to sepsis survivors
and a CD19+CD23+ value of 64.6% on receiver-operating

characteristic curve was able to discriminate between sepsis
nonsurvivors and sepsis survivors. Moreover, sepsis nonsur-
vivors showed an exacerbated percentage of CD80+ and
CD95+ B cells than survivors. This suggests that a lower per-
centage of CD23+ and exacerbated CD80+ and CD95+ B
cell percentages were linked to exacerbated death incidences
during ICU admission in septic shock patients [52].

Recently, a “lymphocyte apoptosis model” is proposed to
stratify risks together with improving prognoses within sep-
tic cases. The model is based on the biomarkers for lympho-
cyte apoptosis/immune-function and have potential in
predicting survival in septic cases. The study observed that
on the day 1 of admission, sepsis perishers showed markedly
exacerbated levels of lymphocyte apoptosis and plasma cyto-
chrome C, together with markedly reduced lymphocytes,
Th1/Th2 ratios, and HLA-DR expression than sepsis survi-
vors [53].

It has been observed that ICU-admitted septic cases
showed reduction in all major lymphocytes: B, T, and NK
cells. Moreover, critically ill patients also showed downregu-
lated T cells together with a markedly reduced ICU mortality
was observed in patients which showed an exacerbated total
T cell count (>0.36/nL) on ICU presentation, independent of
the patient’s age. Also, sepsis survivors showed restoration of
lymphocytes, and T cells and sepsis perishers were failed to
overcome lymphopenia and T cell depletion [54].

6. Therapeutic Approach to Combat Sepsis

For many years, an uncontrolled inflammation was consid-
ered as the major cause for sepsis-associated symptoms
including pyrexia and respiratory distress, together with
shock. Further supporting our belief that targeting inflam-
matory pathways to minimise cytokine storm is the key to
combating sepsis and lowering sepsis-related mortality is
the finding that proinflammation cytokines like TNF- and
IL-1 become elevated within sepsis. Alternative therapeutic
approaches are required to treat septic cases, as shown by
clinical trials targeting inflammatory pathways that either
failed or even reduced the survival rate in septic patients.
In actuality, immunoparalysis—which is a direct result of
elevated lymphocyte apoptosis—causes the majority of sep-
sis individuals to pass away [55]. This suggests that prevent-
ing immunosuppression by reducing lymphocyte apoptosis
is a promising strategy to reduce late phase complications
in sepsis. Several studies have been undertaken to study the
therapeutic potential of natural products and supplements.
For instance, genipin treatment reduced late-phase lympho-
cyte apoptosis by reducing the expression of FADD, caspase-
8, and caspase-3 and consequently increased the survival
rate of mice in the CLP model of sepsis. Moreover, genipin
prevented a reduction in the numbers of CD4+ and CD8+

T cell population and reduced the number of immunosup-
pressive regulatory T cell (Treg). Genipin also reduced
immunosuppression by increasing the splenic expression of
interferon-γ and interleukin (IL)-2 and reducing the levels
of IL-4 and IL-10 [56]. In a related study, ASI-IV therapy
enhanced overall survival in septic mice, decreased patho-
logical damage to the lung and spleen, suppressed NF-B

4 Journal of Oncology



and ERK1/2 signalling pathways, decreased bacterial load,
and decreased levels of proinflammatory cytokines. These
biological effects of ASI-IV protected mice against sepsis
[3]. Glutamine also protected against sepsis-induced inflam-
matory reactions by increasing the numbers of CD8αα+

TCRαβ+ IELs and reducing the apoptosis in these cells. Glu-
tamine also reduced the expression of proinflammatory
cytokines from CD8αα+ TCRαβ+ IELs and mitigated intesti-
nal epithelial injury during sepsis [57]. Martire-Greco et al.
reported reduced lymphocytes and increased MDSCs in
the lymph nodes of immunocompromised mice along with
abnormal T cell proliferation. However, treatment with all-
trans-retinoic acid (ATRA) restored the immunocompe-
tence by increasing the numbers of CD4+ and CD8+ T cells
which consequently improved the humoral immunity indi-
cating that ATRA administration can be a promising strat-
egy to ameliorate the immunosuppressive state in septic
cases [58].

7. Conclusion

An early inflammatory condition and a subsequent yet lin-
gering immunosuppressive condition define sepsis, an
inflammatory clinical condition. The biochemical pathways
and immunological cells involved in the genesis of sepsis
make up a very complex network. Because of its complicated
origin, high death rate, and dearth of effective treatments,
sepsis places a heavy burden on healthcare systems. The
advanced stages of sepsis can cause organ dysfunction and
ultimately death. In sepsis, a cytokine storm is followed by
a compromise immunity called immunoparalysis which
increases the chances of secondary infection and associated
mortality. Sepsis remains a main driver for mortalities
within ICU-admitted cases, and early diagnosis and appro-
priate treatment options can improve prognosis and reduced
mortality. Moreover, early prognosis also helps in choosing
appropriate antibiotics which can improve treatment out-
comes. In recent years, it has been established that a majority
of septic patients succumb to their illness due to immuno-
compromised state and not due to hyperinflammation.
MDSCs are a mixed combination of myeloid cells and
reduce the IR by inhibiting T cell-based immunity. The
severely immunocompromised state in sepsis is attributed
to increased numbers of MDSCs and lower levels of various
types of lymphocytes. In contrast, some studies have even
suggested that absence of MDSCs remains a main driver
for mortalities within sepsis. This suggests that the role
and immune functions of MDSCs want further exploration
due to their controversial role in sepsis. Although treating
infections and other sepsis-related complications continues
to be the mainstay of treating sepsis, recent developments
in the study of immune cells, such as MDSCs and lympho-
cytes, have opened the door for newer therapeutic
approaches to combat the condition’s immunosuppressive
state. Numerous studies have demonstrated that one method
for overcoming reduced IR in septic infections is to reduce
lymphocyte apoptosis. Additionally, the strategies are aimed
at reducing secondary infections in septic cases postrecovery

which must also be explored for lowering mortality and
enhancing quality-of-life in septic cases postrecovery.
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Background. It is well known that hypoxia and ferroptosis are intimately connected with tumor development. �e purpose of this
investigation was to identify whether they have a prognostic signature. To this end, genes related to hypoxia and ferroptosis scores
were investigated using bioinformatics analysis to stratify the risk of lung adenocarcinoma. Methods. Hypoxia and ferroptosis
scores were estimated using �e Cancer Genome Atlas (TCGA) database-derived cohort transcriptome pro�les via the single
sample gene set enrichment analysis (ssGSEA) algorithm.�e candidate genes associated with hypoxia and ferroptosis scores were
identi�ed using weighted correlation network analysis (WGCNA) and di�erential expression analysis. �e prognostic genes in
this study were discovered using the Cox regression (CR) model in conjunction with the LASSO method, which was then utilized
to create a prognostic signature. �e e�cacy, accuracy, and clinical value of the prognostic model were evaluated using an
independent validation cohort, Receiver Operator Characteristic (ROC) curve, and nomogram. �e analysis of function and
immune cell in�ltration was also carried out. Results. Here, we appraised 152 candidate genes expressed not the same, which were
related to hypoxia and ferroptosis for prognostic modeling in �e Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD)
cohort, and these genes were further validated in the GSE31210 cohort. We found that the 14-gene-based prognostic model,
utilizing MAPK4, TNS4, WFDC2, FSTL3, ITGA2, KLK11, PHLDB2, VGLL3, SNX30, KCNQ3, SMAD9, ANGPTL4, LAMA3, and
STK32A, performed well in predicting the prognosis in lung adenocarcinoma. ROC and nomogram analyses showed that risk
scores based on prognostic signatures provided desirable predictive accuracy and clinical utility. Moreover, gene set variance
analysis showed di�erential enrichment of 33 hallmark gene sets between di�erent risk groups. Additionally, our results indicated
that a higher risk score will lead to more �broblasts and activated CD4 T cells but fewer myeloid dendritic cells, endothelial cells,
eosinophils, immature dendritic cells, and neutrophils. Conclusion. Our research found a 14-gene signature and established a
nomogram that accurately predicted the prognosis in patients with lung adenocarcinoma. Clinical decision-making and
therapeutic customization may bene�t from these results, which may serve as a valuable reference in the future.

1. Introduction

Lung cancer is one of the most frequent malignancies with
high mortality and poor prognosis [1, 2]; 80% of lung
malignancies diagnosed were NSCLC [3]. LUAD accounts

for nearly 40% of NSCLC cases [4, 5], and its incidence is
continually increasing [6]. In recent years, several thera-
peutic advances have been made, including targeted ther-
apies and emerging immunotherapy [7, 8]. Although both
methods are e�ective in a restricted range of lung cancer
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subtypes, the rate of survival for LUAD is still poor [9].
According to statistics, LUAD has a poor prognosis that only
18% could survive longer than 5 years [10]. As a result, the
search for valid biomarkers might lead to the establishment
of individualized diagnosis and therapy for LUAD patients
[11]. ,e cancer tissue has many specific characteristics,
including accelerated cell cycle, alterations of the genome,
increase in cell mobility and invasive growth of the cells,
incapable of going through normal apoptosis process, and
depletion of normal cell functions. Because of these phys-
iological and pathological characteristics, it is difficult for
tumors to be treated.

Recently, it has been studied that ferroptosis is a rela-
tively new type of cell death. ,is process is often accom-
panied by significant iron buildup and lipid peroxidation in
dying cells [12]. It can be distinguished from apoptosis,
necrosis, and autophagy by certain key characteristics.
Firstly, it is iron-dependent and is induced by the buildup of
harmful lipid reactive oxygen species. In addition, poly-
unsaturated fatty acids are consumed during the process
[12]. With the rapid development of the role of iron ions in
cancer, new prospects have emerged for their use in cancer
therapy [13]. ,e expression of the S100 calcium-binding
protein A4 (FSP1) in lung cancer cell lines is related to
resistance to ferroptosis, suggesting that overexpression of
FSP1 may be a method for ferroptosis escape [14]. In ad-
dition, MAPK pathway activation is associated with the
susceptibility to ferroptosis triggered by cystine deprivation
in NSCLC cell lines [15]. Alvarez et al. [16] recently found
that inhibiting the iron-sulfur cluster biosynthesis enzyme
NFS1 induced ferroptosis in vitro and slowed tumor de-
velopment in LUAD. Additionally, Liu et al. [17] discovered
that brusatol, an inhibitor of NRF2, increased the response
rate of cystine deprivation-triggered ferroptosis through the
FOCAD-FAK signaling pathway in NSCLC cell lines. What
is more surprising is that the merger of brusatol and erastin
demonstrated a superior therapeutic effect on NSCLC. ,e
findings in these prior studies suggest that ferroptosis is
quite important for lung cancer treatment. Based on the
above research, we made the following hypothesis that
ferroptosis is connected with the prognosis of LUAD, and
thus ferroptosis-related genes may function as prognostic
biomarkers.

Hypoxia or oxygen deprivation is a feature of most solid
tumors because the growth of a tumor requires a large
amount of oxygen. As the rapid tumor growth outstrips the
supply of oxygen, an imbalance between decreased oxygen
supply and increased oxygen demand was formed. ,is is a
typical feature observed in the tumor microenvironment
(TME) that increases the aggressiveness of many tumors and
also causes abnormal blood vessel formation due to impaired
blood supply, leading to poorer clinical outcomes [18–20].
Many transcription factors are active in tumor cells when the
environment is hypoxic, and these transcription factors
regulate cell proliferation, motility, and apoptosis via a
variety of downstream signaling mechanisms [21].,is leads
to an immunosuppressive TME that reduces the effective-
ness of immunotherapy [22] and upregulates the expression
of PD-L1, further supporting cancer escape [23, 24].

Although several studies have shown that intratumoral
hypoxia and HIF1A expression affect overall survival (OS) in
LUAD [25–27], hypoxia-based cannot be used to estimate
who are at a high risk very early.

According to recent research, HIF1Amay influence lipid
metabolism and cause lipids to be stored in droplets, which
reduces peroxidation-mediated endosomal damage and
limits cellular ferroptosis [28]. Additionally, HIF-2α has
been reported to activate hypoxia-inducible lipid droplet-
associated (HILPDA) expression and selectively enrich
polyunsaturated lipids, thus promoting cellular ferroptosis
[29]. Furthermore, increased ferritin heavy chains under
hypoxic conditions can protect HT1080 tumor cells from
ferroptosis [30]. ,ese findings suggest a potential rela-
tionship between ferroptosis and hypoxia. But more research
is needed to further investigate how ferroptosis and hypoxia
interact with each other and how they can affect LUAD
patients’ prognosis.

A variety of models have been created to predict the
prognostication in LUAD according to the TME [31], fer-
roptosis [32], hypoxia [33], and tumor immunology [34].
However, to our knowledge, there is no reported prognostic
role of hypoxia and ferroptosis-interrelated features in
LUAD. To fill the gap and broaden the diagnostic and
therapeutic potential of LUAD, we performed a compre-
hensive analysis using TCGA and Gene Expression Om-
nibus (GEO), aiming to endorse the least prognostic genes
for LUAD. Finally, a signature on hypoxia- and ferroptosis-
interrelated genes was constructed to know the prognostic
value in LUAD patients.

2. Materials and Methods

2.1. Data Source. Transcriptomic data from 593 samples,
composed of 59 normal and 534 LUAD, from TCGA da-
tabase were used in this study. A total of 476 LUAD samples
had available survival data. ,e GSE31210 dataset [35, 36]
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc�GSE31210), containing transcriptomic data and survival
information for 226 LUAD patients, was obtained from the
GEO database to validate the established model.

2.2. Single Sample Gene Set Enrichment Analysis. ,e
MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/) was
performed to acquire the hallmark gene sets of hypoxias,
which consisted of 200 genes. ,e results show that there are
259 genes related to ferroptosis in total, which were gathered
from the FerrDb database (https://www.zhounan.org/
ferrdb/). ,e TCGA-LUAD database matched the expres-
sion patterns of the aforementioned genes. ,e ssGSEA
method (from the R package GSVA) was performed to
analyze all samples, and the hypoxia and ferroptosis scores
for each sample were then calculated [37].

2.3. Coexpression Network Construction. ,e TCGA-LUAD
transcriptome data were selected for the establishment of
gene coexpression networks using the R package WGCNA
[38]. Hypoxia and ferroptosis scores were used as
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phenotypic characteristics. To assess the correlation of all
samples in the TCGA-LUAD database, we performed a
cluster analysis to ensure the completeness of the samples.
As shown in Supplementary Figure 1(a), TCGA-44-3917-
01A-01R-A278-07 was identified as an outlier and therefore
was not included in this section of the subsequent analysis.
During the network construction phase, the soft thresh-
olding power β was obtained above 0.90, with the fit index of
the scale-free topology. A dendrogram of all genes was
established using the dissimilarity measure to group them
together (1-TOM) (Supplementary Figure 1(b)).We set 30 as
the minimum module size, and modules with similar gene
expressions were clustered and displayed in a tree diagram
with color assignments according to the dynamic tree-
cutting algorithm. To identify the modules associated with
hypoxia and ferroptosis scores, a heatmap of module-feature
relationships with correlation coefficients and P-values was
drawn. Modules that had a strong dependency on both
scores were identified as modules of interest, and the genes
in these modules of interest were defined as hub genes.

2.4. Analysis of Differentially Expressed Genes (DEGs).
Transcriptome data from 53 normal and 539 LUAD samples
were used as the foundation for comparison to analyze genes
expressed differently. DEGs were analyzed using the R
package limma, with significance criteria of |log2 fold change
(FC)|> 1 and P< 0.05 as significance thresholds.

2.5. Overlap Analysis. Overlap analysis was used to identify
common genes between the identified hub genes and DEGs,
which were defined as DE-hypoxia and ferroptosis score-
related genes for the subsequent analysis.

2.6. Functional Enrichment. Using Metascape (https://
metascape.org) [39], the researchers were able to confirm
the functional enrichment of DE-hypoxia and ferroptosis
score-related genes in this investigation. P< 0.05 was the
significant threshold.

,e active signaling was analyzed using gene set varia-
tion analysis (GSVA) [37], which could compute sample
gene set enrichment using a Kolmogorov–Smirnov-like rank
statistical analysis. In the present study, a GSVA assessment
was used to establish the t score and to allocate 50 hallmark
gene signature activity conditions to the groups with high or
low risk. At last, we compared the values. ,e cutoff value
was set to |t|> 2.

2.7. Identification and Establishment of the Gene Signature.
TCGA’s 476 LUAD cases were randomly separated into two
groups by using a 7 : 3 split ratio. One group was used for
training and another one for testing. ,e DE-hypoxia and
ferroptosis score-interrelated genes that are related to OS
were discovered using the TCGA training dataset. ,e
characteristics related to LUAD prognosis were determined
by using univariate Cox regression (UCR) analysis. P< 0.05
was considered as significant. After the LASSO-penalized
Cox regression (LCR) analysis of the proposed predictive

panels, 10-fold cross-validation was used. Risk scores can be
generated by using prognostic gene signature. In accordance
with the appropriate cutoff of the risk score, patients from
the TCGA training and TCGA test sets, as well as GSE31210,
were split into two groups. ,e AUC of the ROC curve and
Kaplan–Meier (KM) analyses were applied. External vali-
dation was performed using the GSE31210 dataset.

2.8. Nomogram Construction and Validation. To identify
whether the risk model can be influenced by clinical factors,
UCR andMCR analysis together with the survival R package
were performed. Following those analyses, a nomogram was
obtained usingMCR coefficients of the risk score and clinical
variables in the TCGA cohort, which was then analyzed. It
was necessary to create calibration curves to determine
whether OS for one, three, or five years were consistent with
the actual findings (bootstrap-based 1000 iterations
resampling validations). We developed these analyses based
on the R package rms.

2.9. ImmuneCells Infiltration (ICI). ,e ICI into two groups
was determined using the ssGSEA method and the R soft-
ware [40]. ,e analysis considered only values with a
P< 0.05.,e violin diagrams used to illustrate the changes in
ICI between separate categories were drawn with the ggplot2
package.

2.10. Patients and Tissue Samples. We performed experi-
mental validation on specimens from five LUAD patients
who underwent surgery at Yan’an Affiliated Hospital,
Kunming Medical University, to validate 14 hypoxia and
ferroptosis score-related signature expression status in
LUAD and adjacent normal tissues (ANT). ANTs were used
as controls. ,e institutional and national research com-
mittees were followed in the conduct of all procedures, as
well as the Helsinki Declaration. ,e hospital’s Ethics
Committee gave its approval before any of the operations
could be carried out (Permit No. 2017-014-01). All of the
patients who took part in the trial gave their informed
permission before participation.

2.11. RNA Isolation and qRT-PCR. ,e 20 tissues were
dissociated using TRIzol Reagent (Life Technologies); then,
total RNA was collected and determined the concentration
using NanoDrop 2000FC-3100 (,ermo Fisher Scientific).
Prior to performing qRT-PCR, the SureScript-First-strand-
cDNA-synthesis kit (GeneCopoeia) was used to reverse
transcription reaction. ,e qRT-PCR reaction was as fol-
lows: 4 μL of reverse transcription product, 2 μL of
5×BlazeTaq qPCR Mix (GeneCopoeia, Guangzhou, China),
0.5 μL primers, and 3 μL of ddH2O. A BIO-RAD CFX96
TouchTM PCR detection system (Bio-Rad Laboratories,
Inc., USA) was utilized to perform the PCR reaction as
follows: 95°C for 30 s, 40 cycles of incubation at 95°C for 10 s,
60°C for 20 s, and 72°C for 30 s. In this study, the primers
used were synthesized by Servicebio (Servicebio Co., Ltd.,
Guangzhou, China) as follows: for KLK11:5′-
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AGGGCTTGTAGGGGGAGA-3′, 5′-TGGGGAGGCTGTT
GTTGA-3′; for MAPK4: 5′-TCAAGATTGGGGATTTCG-
3′, 5′-TATGGGCTCATGTAGGGG-3′; for ITGA2: 5′-ATC
AGGCGTCTCTCAGTTTC-3′, 5′-GTTTTCTTCTTGGCT
TTCAC-3′; for WFDC2: 5′-CAGGCACAGGAGCAGAGA
AG-3′, 5′-TCATTGGGCAGAGAGCAGAA-3′; for TNS4:
5′-GGGGCTTTTGTCATAAGGG-3′, 5′-TTTGAAGTGG
ACCACGGTG-3′; for LAMA3: 5′-GGTTTTGGTCCGT
GTTCT-3′, 5′-ACTGCCCCGTCATCTCTT-3′; for SMAD
9: 5′-GGAGATGAAGAGGAAAAGTGG-3′, 5′-GAAAGA
GTCAGGATAGGTGGC-3′. GAPDH was chosen to be an
internal control, and the 2−ΔΔCt method was used to cal-
culate the hub genes’ relative expression level [41]. ,e
experiment was repeated in triplicate on independent
occasions.

2.12. Statistical Analysis. Statistical analysis was performed
using R 3.4.3 and GraphPad Prism V9. P-value <0.05 means
significant difference. To evaluate survival, both UCR and
MCR analyzes were used. Both hazard ratios (HRs) and 95
percent CIs were reckoned to identify genes that were related
to OS. Paired t-tests were performed for statistical differ-
ences in this study using GraphPad Prism V9.

3. Results

3.1. Filtering for Hypoxia Score- and Ferroptosis Score-Related
Genes in TCGA-LUAD Database. A total of 200 hypoxia-
interrelated and 259 ferroptosis-interrelated genes were
gained from MSigDB and FerrDB, respectively. ,e ex-
pression conditions of these genes in 593 samples (normal:
59, LUAD: 534) were then matched and utilized as the basis
for ssGSEA, which aimed to derive the hypoxia and fer-
roptosis scores in TCGA database. ,e ssGSEA outputs for
the detailed score results are shown in Supplementary
Table 1.

WGCNA was performed by applying the obtained
hypoxia and ferroptosis scores as phenotypic data. After
excluding the outlier samples, we constructed a sample-
clustering tree (Figure 1(a)). Herein, a scale-free network
was built when β� 3, which was defined as a soft threshold
parameter (Figure 1(b)). Finally, 23 modules were identified
according to the dynamic tree-cutting algorithm and were
labeled with different colors (Figure 1(c)). ,e turquoise
module was most irrelevant to ferroptosis score (cor� −0.69,
P � 3e − 10) and hypoxia score (cor� −0.63, P � 8e − 68),
whereas the red module correlated more strongly with both
ferroptosis score (cor of −0.47, P � 6e − 34) and hypoxia
score (cor� −0.49, P � 2e − 36) (Figure 1(d)). ,erefore,
these two models were identified as the modules of interest.
Collectively, 8314 genes (Supplementary Table 2) and 660
genes (Supplementary Table 3) were identified as hub genes
and considered as hypoxia and ferroptosis score-related
genes for subsequent analysis.

3.2. Identification of LUAD-Related DEGs. Differential ex-
pression analysis was used to acquire transcriptome data
from TCGA (59 normal and 534 LUAD samples), which was

produced using the R program limma.When LUAD samples
were compared to normal samples, a total of 1,969 eligible
DEGs were obtained, among which 906 were significantly
increased in LUAD samples, and 1,063 were significantly
decreased (Figure 2(a); Supplementary Table 4).

3.3. Analysis of DE-Hypoxia and Ferroptosis Score-Related
Genes. Based on the overlap analysis, we identified 152
common genes from the list of 8,974 hypoxia and ferroptosis
score-related genes and the list of 1,969 LUAD-related
DEGs, which were defined as DE-hypoxia and ferroptosis
score-related genes (Figure 2(b)). In LUAD, 86 of these
genes were upregulated, while 66 were inversed. ,e ex-
pression patterns of DE-hypoxia and ferroptosis score-re-
lated genes in the TCGA-LUAD database are described in
Supplementary Table 5.

Functional annotations obtained from Metascape indi-
cated that DE-hypoxia and ferroptosis score-related genes
were mainly augmented in “transcriptional misregulation in
cancer,” “spermatogenesis,” and “positive regulation of cell
projection organization” (Figures 2(c) and 2(d)).

3.4. Establishment of the Hypoxia and Ferroptosis Score-Re-
lated Signature. In the TCGA training set (n� 334), the
association of the 152 identified DE-hypoxia and ferroptosis
score-related genes with survival in LUAD patients was
analyzed using UCR. As shown in Table 1, only 17 of the 152
genes met the set significance threshold of P< 0.05. ,e HRs
of SMAD9, SNX30, STK32A, WFDC2, KLK11, and
CTD.2589M5.4 were all <1, indicating that they were po-
tential protective factors for LUAD. In contrast, ANGPTL4,
LAMA3, VGLL3, ITGA2, TNS4, KCNQ3, PHLDB2,
FAM83A.AS1, SLC16A3, FSTL3, and MAPK4, all with HR
>1, were possible oncogenes. We performed LLR analysis
based on 17 variables in the TCGA training set (Figures 3(a)
and 3(b)) to obtain the best genes for constructing the
prognostic signature. Ultimately, the hypoxia and ferrop-
tosis score-related signature involved 14 genes: MAPK4,
TNS4, WFDC2, FSTL3, ITGA2, KLK11, PHLDB2, VGLL3,
SNX30, KCNQ3, SMAD9, ANGPTL4, LAMA3, and STK32A.
We estimated the risk score of each individual in TCGA set
based on the coefficient of each gene (Figure 3(c); Supple-
mentary Table 6).

,e patients with LUAD in the TCGA training set were
separated into two groups with the cutoff value at 1.0803
(Supplementary Table 7). ,e allocation of risk scores is
shown in Figure 3(d). Association analyses revealed a sig-
nificant correlation (P< 0.05) between the T stage and
various risk groups in the TCGA training set (Table 2). A
significant association between a high-risk score and a poor
outcome (P< 0.0001; Figure 3(e)) was shown in the
Kaplan–Meier survival curves. ROC curves indicated that
hypoxia and ferroptosis score-related signature could be
used to predict OS in the TCGA training group (Figure 3(f )).
Additionally, the heatmap indicated that the expression
levels of KCNQ3, ITGA2, ANGPTL4, TNS4, FSTL3, LAMA3,
MAPK4, PHLDB2, and VGLL3 were upregulated with en-
hancing risk score, but the expression levels of KLK11,
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SMAD9, WFDC2, SNX30, and STK32A were reduced. Ad-
ditionally, in individuals with LUAD, T stages are also
relevant to these genes expression (Figure 4).

3.5. Validation Prognostic Signature with 14 Genes. We used
the same algorithm to compute the risk scores for the pa-
tients in the TCGA test cohort (n� 142; Supplementary
Table 8) and the GSE31210 dataset (n� 226; Supplementary
Table 9). According to cutoff values determined for each
dataset, patients were separated into two risk groups. ,e
results corroborated those from the TCGA training set.
Figures 5(a) and 5(d) indicated that mortality status was
more concentrated in the domain of high-risk scores. In
both validation datasets, Figures 5(b) and 5(e) showed that
high-risk patients had a considerably poorer outcome. In

both datasets, the 14-gene prognostic signature performed
well. ,e risk scores of AUCs for 1-, 3-, and 5-year OS
predictions were 0.666, 0.652, and 0.637 in the TCGA test
set, respectively (Figure 5(c)), while the AUCs of the 14-gene
signature were 0.741, 0.648, and 0.677 for the three kinds of
OS predictions, respectively, using the GSE31210 dataset
(Figure 5(f )). ,e distribution of LUAD patients with dif-
ferent groups according to each clinical feature in the TCGA
test set is shown in Table 3. Association studies revealed a
significant (P< 0.01) correlation between the clinical stage
and different risk groups in the GSE31210 dataset (Table 4).

3.6. Correlation Analysis of Risk Score with Clinical Charac-
teristics of LUAD. We observed the allocation of patient risk
scores according to different clinical characteristics.
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Figure 1: (a) Sample-clustering dendrogram with feature heatmap. (b) Network topology analysis with different soft threshold power.
(c) Cluster dendrograms of genes based on topological overlap of dissimilarities, andmodule colors were assigned. (d) Heatmap showing the
relationship between gene modules and phenotypic traits. Each row and column correspond to a module e-gene and a trait. ,e correlation
coefficient in each cell represents the same relationship with heatmap in decreasingmagnitude from red to green.,e number in parentheses
in each cell represents the correlation P-value.
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Figure 2: Continued.

6 Journal of Oncology



Interestingly, the distribution of patient risk scores was
highly related to the stages of the patients. Risk scores in
patients in stage III were increased compared to those in
stage I (P< 0.05; Figure 6(a)). In terms of the T stage
(Figure 6(b)), patients with LUAD in T4 had the highest risk

scores, which have a significant difference in T1 and T2,
but comparable to T3. Patients with LUAD in the T3 stage
had slightly higher risk scores than those in the T1 stage
(P< 0.01); in the N stage (Figure 6(c)), patients in the N2
stage had higher risk scores than those in the N0 stage
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Figure 2: (a) Volcano map of significant DEGs. Red spots: upregulated genes; blue spots: downregulated genes; gray: genes with no change
in expression. (b) Venn diagram showing the repetitious genes of DEGs and WGCNA. (c, d) Function analysis of DE-hypoxia and
ferroptosis score-related genes using Metascape.

Table 1: UCR analysis of the 152 identified DE-hypoxia and ferroptosis score-related genes explores 17 genes associated with LUAD patient
survival.

ID z HR HR. 95L HR. 95H P-value
MAPK4 4.21113029756985 1.46745295679297 1.22755540646437 1.75423298130611 2.54E− 05
TNS4 4.02119788604733 1.29938376610491 1.14367045280752 1.47629779843681 5.79E− 05
WFDC2 −3.79860720374219 0.811653740106402 0.728800938850636 0.903925555951741 0.000145511488661
FSTL3 3.68304906615447 1.40517139515741 1.17250302799022 1.68400985126077 0.000230460779083
FAM83A.AS1 3.19219681770566 1.38043585405413 1.13252613465791 1.68261295597717 0.00141195086371
ITGA2 3.1297146270081 1.26268315773328 1.0910870928145 1.46126626125743 0.001749761967554
KLK11 −2.89081539413551 0.817085437051864 0.712500352475736 0.937022149003037 0.003842437575419
SLC16A3 2.69059352882516 1.38307857948644 1.09206101692107 1.75164787259545 0.007132503883482
PHLDB2 2.67561048467087 1.36825660397289 1.08747876280116 1.72152891472853 0.007459328240577
VGLL3 2.48631904817044 1.24621454130366 1.04770025500438 1.48234256462046 0.012907219145633
SNX30 −2.41280356238469 0.718205289102291 0.548879152164541 0.939767588658339 0.015830348860021
KCNQ3 2.23280002150132 1.34420966442955 1.03680712106375 1.74275386929437 0.025562134874828
SMAD9 −2.20299987655253 0.660110772189965 0.456177215306126 0.955212616809054 0.02759475734267
ANGPTL4 2.17133207596654 1.15838922218355 1.01441557907091 1.32279670951033 0.029906079314469
LAMA3 2.05948665187877 1.18322521780815 1.00816336324203 1.38868557130958 0.039447642418345
CTD.2589M5.4 −1.98163055774902 0.831910477060721 0.693468992502609 0.997989887544674 0.047520604494006
STK32A −1.97258211072512 0.789000052327525 0.623465515365524 0.998485188403512 0.048543192818321
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Figure 3: (a–c) ,e LCR was used to figure out the lowest criteria (a, b) and coefficients (c). (d) Allocations of risk scores (based on the
hypoxia and ferroptosis score-related prognostic signature); (e)K-M survival curves. (f ) Hypoxia and ferroptosis score-related signature can
be utilized to predict OS in the TCGA training set according to ROC curves.
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Table 2: Association analysis shows that clinical characteristics correlate results with different risk groups in the TCGA training set.

Expression

Total (N� 309) High Low
P-value(N� 129) (N� 180)

Gender
Female 165 (53.4%) 66 (51.2%) 99 (55.0%) 0.582
Male 144 (46.6%) 63 (48.8%) 81 (45.0%)

Age (years)
≥60 229 (74.1%) 95 (73.6%) 134 (74.4%) 0.979
<60 80 (25.9%) 34 (26.4%) 46 (25.6%)

Pathologic stage
Stage I 168 (54.4%) 62 (48.1%) 106 (58.9%) 0.0815
Stage II 74 (23.9%) 30 (23.3%) 44 (24.4%)
Stage III 50 (16.2%) 28 (21.7%) 22 (12.2%)
Stage IV 17 (5.5%) 9 (7.0%) 8 (4.4%)

T stage
T1 102 (33.0%) 31 (24.0%) 71 (39.4%) 0.0128
T2 166 (53.7%) 76 (58.9%) 90 (50.0%)
T3 29 (9.4%) 13 (10.1%) 16 (8.9%)
T4 10 (3.2%) 8 (6.2%) 2 (1.1%)
TX 2 (0.6%) 1 (0.8%) 1 (0.6%)

M stage
M0 198 (64.1%) 82 (63.6%) 116 (64.4%) 0.47
M1 16 (5.2%) 9 (7.0%) 7 (3.9%)
MX 95 (30.7%) 38 (29.5%) 57 (31.7%)

N stage
N0 202 (65.4%) 75 (58.1%) 127 (70.6%) 0.16
N1 54 (17.5%) 26 (20.2%) 28 (15.6%)
N2 46 (14.9%) 25 (19.4%) 21 (11.7%)
N3 1 (0.3%) 0 (0%) 1 (0.6%)
NX 6 (1.9%) 3 (2.3%) 3 (1.7%)
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Figure 4: Continued.
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Figure 4: Heatmap of the relationship between the expression of 14 genes associated with hypoxia and ferroptosis scores and clinico-
pathological features in the (a) TCGA training, (b) TCGA test, and (c) GSE31210 dataset.
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(P< 0.01). Although the risk score in stage N3 was lower
than in stage N2 (P< 0.05), the sample size in stageN3 was
too small to be considered valid. Subsequently, the impact
of clinical characteristics on the OS in LUAD patients was
investigated using KM survival analysis. Specifically, in
the stratified analysis of stage (Figure 6(d)), patients with
a lower stage are more likely to have a better prognosis,
which showed the same trend with distribution of risk
score levels. In the stratified analysis of the T stage
(Figure 6(e)), the T1 stage had a better OS, whereas T3
and T4 stages exhibited a poor prognosis. ,e worst
prognosis in LUAD patients in the T4 stage was con-
sistent with the previous result that patients with T4 stage
had the highest risk score. In terms of the N stage
(Figure 6(f )), the N3 stage contained only one LUAD
sample, and therefore, its impact on patient prognosis
was ignored. Patients with the N0 stage had the longest
survival time compared with those with the N2 stage who
had the shortest survival time. ,e allocation of risk

scores and stratified prognosis according to other clinical
characteristics, including age, sex, and M stage, are de-
tailed in Supplementary Figure 2.

3.7. Subgroup Analysis of the Prognostic Signature. After
establishing a correlation between hypoxia and ferroptosis
score-related gene signatures and the aforementioned
clinicopathological traits, we aimed to measure whether
our model’s prognostic efficacy can be utilized for clinical
factors. Five patients were separated according to the in-
dicated subgroups, and then data stratification was exe-
cuted according to age, sex, pathological tumor stage,
pathological T stage, pathological N stage, and pathological
M stage. ,e hypoxia and ferroptosis score-related gene
signature was able to differentiate between prognoses in all
subgroups except for T3-T4 and M1 features, implying a
clinically and statistically significant prognostic value
(Figure 7).
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Figure 5: (a, d) Allocations of risk scores. (b), (e),e K-M survival curves showed that a high-risk score was related to less OS. Hypoxia and
ferroptosis score-related signature can be utilized to predict OS in the (c) TCGA test and (d) GSE31210 dataset according to ROC curves.
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3.8. Independent Prognostic Role of Risk Scores. We inves-
tigated whether the risk score could be the only prognostic
factor in LUAD patients using UCR and MCR. Based on the
data from in TCGA set, UCR analyses showed that the risk
score, stage, T stage, and N stage were significantly related to
LUAD prognosis (Figure 8(a)). Subsequently, the above-
mentioned variables (P< 0.05) were subjected to MCR
analysis.,e results identified hypoxia and ferroptosis score-

related gene signature (risk score) and stage as two inde-
pendent prognostic factors predicting prognosis in LUAD
patients (Figure 8(b)).

LUAD patients’ OS were predicted using a compound
nomogram incorporating the risk score and stage. ,is
approach was developed to provide a more accurate pre-
diction tool for clinical practice (Figure 8(c)). It was evident
from the calibration plots that the prognostic nomogram
model accurately predicted patient survival with only a slight
divergence from the actual outcomes (Figure 8(d)).

3.9. Differences in Hallmark Gene Sets between Two Group
Patients. According to the results of the analysis of signature
gene sets, signaling pathways converging in numerous bi-
ological processes were found to vary in two groups. No-
tably, hypoxia, TNFα signaling via NF-κB, mitotic spindle,
and glycolysis were decreased in the low-risk group. On the
other hand, the other group was preferentially associated
with bile acid metabolism, pancreatic beta cells, and KRAS
signaling (Figure 9 and Supplementary Table 10).

3.10. TME Infiltration Pattern of LUAD Based on Risk Score.
,e ssGSEA algorithms were used on the data to investigate
how risk scores affect TME components. As the results of
heatmaps and Wilcoxon tests performed on TCGA-LUAD
datasets, the infiltration of several TME contents, such as

Table 3: Association analysis shows that clinical characteristics correlate results with different risk groups in the TCGA test set.

Expression

Total (N � 135) High Low
P-value(N � 56) (N � 79)

Gender
Female 73 (54.1%) 28 (50.0%) 45 (57.0%) 0.532
Male 62 (45.9%) 28 (50.0%) 34 (43.0%)

Age (years)
≥60 97 (71.9%) 35 (62.5%) 62 (78.5%) 0.0658
<60 38 (28.1%) 21 (37.5%) 17 (21.5%)

Pathologic stage
Stage I 73 (54.1%) 25 (44.6%) 48 (60.8%) 0.159
Stage II 31 (23.0%) 13 (23.2%) 18 (22.8%)
Stage III 23 (17.0%) 13 (23.2%) 10 (12.7%)
Stage IV 8 (5.9%) 5 (8.9%) 3 (3.8%)

T stage
T1 48 (35.6%) 16 (28.6%) 32 (40.5%) 0.506
T2 68 (50.4%) 31 (55.4%) 37 (46.8%)
T3 13 (9.6%) 7 (12.5%) 6 (7.6%)
T4 5 (3.7%) 2 (3.6%) 3 (3.8%)
TX 1 (0.7%) 0 (0%) 1 (1.3%)

M stage
M0 91 (67.4%) 35 (62.5%) 56 (70.9%) 0.381
M1 8 (5.9%) 5 (8.9%) 3 (3.8%)
MX 36 (26.7%) 16 (28.6%) 20 (25.3%)

N stage
N0 86 (63.7%) 31 (55.4%) 55 (69.6%) 0.094
N1 27 (20.0%) 13 (23.2%) 14 (17.7%)
N2 18 (13.3%) 11 (19.6%) 7 (8.9%)
N3 1 (0.7%) 1 (1.8%) 0 (0%)
NX 3 (2.2%) 0 (0%) 3 (3.8%)

Table 4: Association analysis shows that clinical characteristics
correlate results with different risk groups in the GSE31210 dataset.

Expression
Total High Low

P-value(N� 226) (N� 106) (N� 120)
Gender
Female 121 (53.5%) 53 (50.0%) 68 (56.7%) 0.385
Male 105 (46.5%) 53 (50.0%) 52 (43.3%)

Age (years)
≥60 130 (57.5%) 58 (54.7%) 72 (60.0%) 0.505
<60 96 (42.5%) 48 (45.3%) 48 (40.0%)

Pathologic stage
I 168 (74.3%) 65 (61.3%) 103 (85.8%) <0.001
II 58 (25.7%) 41 (38.7%) 17 (14.2%)

Smoke
Ever-smoker 111 (49.1%) 58 (54.7%) 53 (44.2%) 0.147
Never-
smoker 115 (50.9%) 48 (45.3%) 67 (55.8%)
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Figure 6: Wilcoxon analysis of the differing risk score distributions among various (a) stages, (b) T stages, and (c) N stages in the TCGA-
LUAD cohort. ,e K-M survival curves of patients with different (d) stages, (e) T stages, and (f) N stages. ∗P< 0.05, ∗∗P< 0.01, and
∗∗∗P< 0.001.
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Figure 7: Continued.
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Figure 7: K-M survival analysis of the fourteen-gene risk score level in subgroups: (a) younger than 60 years old and older than 60 years old,
(b) male and female, (c) stages I-II and stages III-IV, (d) T1 2 stage and T3-4 stage, (e)N0 stage andN+ stage, and (f)M0 stage andM1 stage.
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eosinophils and immature dendritic cells, was increased in
the less-risk group, whereas the ICI of activated CD4 T cells
and others was more in the other group, as depicted in
Figure 10.

3.11. Validation of Seven Selected Prognostic Genes Based on
qRT-PCR. According to the expression profiles of the
identified DEGs (Supplementary Table 5), TNS4, WFDC2,
and ITGA2 were revealed to be all highly expressed, while
MAPK4, SMAD9, KLK11, and LAMA3 were all down-
regulated in LUAD samples from the TCGA dataset. As
shown in Figure 11, the high expression of TNS4, WFDC2,
and ITGA2 and the low expression of MAPK4, SMAD9,
KLK11, and LAMA3 in LUAD tissues (n� 10) were con-
firmed compared with the expression levels in the ANTs
(n� 10).

4. Discussion

As well known, lung cancer is one of the general forms of
malignancy globally. Nearly 80% of lung cancer patients
have NSCLC, and nearly 50% have LUAD [42]. LUAD is a
malignant tumor that affects the lungs and has a poor

prognosis [43]. Although there have been breakthroughs in
the treatment of patients with LUAD, the OS rate in these
individuals remains low.

Ferroptosis is a particular kind of programmed cell death
[17]. Ferroptosis-related research on lung cancer has mostly
focused on the identification of related biomarkers that could
induce ferroptosis [16, 44–46]. Hypoxia is also related to high
proliferation rates in tumor cells [47]. Tumor hypoxia has a
broad range of consequences, affecting a variety of biological
systems, including metabolic changes, angiogenesis, and
metastasis [48–50]. Numerous hypoxia-associated genes are
associated with lung adenocarcinoma [51, 52]. However, no
high-throughput research has been conducted to date to
explore the possible prognostic value of them in LUAD.

Here, the ferroptosis and hypoxia Z-scores of each
sample were estimated as clinical features based on the
expression of ferroptosis and hypoxia-related genes iden-
tified in each sample, respectively. We obtained 23 modules,
and the turquoise module showed no relationship with
ferroptosis scores (cor� −0.69, P � 3e − 10) and hypoxia
scores (cor� −0.63, P � 8e − 68), while the red module
correlated more strongly with both scoring phenotypes, with
ferroptosis score and hypoxia score. We then identified 152
common genes from the list of 8,974 hypoxia and ferroptosis
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Figure 9: Gene set variation analysis. Differences in hallmark gene set activities scored by GSVA between two groups. T values are figured
out using a linear model and the |t|> 2 as a cutoff value.
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score-related genes and 1,969 LUAD-related DEGs, which
were defined as DE-hypoxia and ferroptosis score-related
genes, respectively.

Functional annotations obtained from Metascape indi-
cated that DE-hypoxia and ferroptosis score-related genes
were mainly enriched in “transcriptional misregulation in
cancer,” “endopeptidase inhibitor activity,” and “positive
regulation of cell projection organization.” Overexpression
of oncogenic transcription factors has been proven in recent
research to change cells’ core autoregulatory circuitry, which
has long been recognized to induce tumorigenesis due to
mutations in transcription factor genes [53]. ,erefore, it is
possible to intervene in this pathway to prevent the devel-
opment of LUAD.

Of the 152 DE-hypoxia and ferroptosis score-related
genes, 7.3% (17/152) were associated with prognosis in
univariate Cox analysis. In addition, univariate Cox analysis
identified six genes as protective markers and 11 genes as risk
factors for patients with LUAD. Fourteen genes were iden-
tified using LASSO Cox regression (MAPK4, TNS4,WFDC2,
FSTL3, ITGA2, KLK11, PHLDB2, VGLL3, SNX30, KCNQ3,
SMAD9, ANGPTL4, LAMA3, and STK32A) to construct
prognostic-related gene signatures and develop prognostic
models to classify LUAD patients into two groups with
various risks. Herein, we suggested that lower-risk patients
seem to live longer. Additionally, we built a nomogram using
MCR analysis and proved its predictive ability using ROC
curves, calibration plots, and decision curves.

MAPK4 overexpression promotes LUAD progression
[54]. Tensin 4 (TNS4) is involved in MET-induced cell
motility and is connected to the GPCR signaling pathway.
According to one study, increased TNS4 expression leads
to poor treatment outcomes in gastric cancer patients [55].
WFDC2 is upregulated in lung cancer [56–58] and has thus
recognized the clinical application of WFDC2 as a serum
tumor marker in the early diagnosis and efficacy moni-
toring of lung cancer [59]. In addition, in a study of in-
dividuals with LUAD, Song et al. [34] reported that
WFDC2 was substantially related to the TNM stage of
LUAD and prognosis of patients. Recent studies have
reported substantial overexpression of FSTL3 in a subset of
cancers [60–62]. Additionally, in patients with NSCLC and
thyroid carcinoma, FSLT3 expression is substantially
linked to lymph node metastasis and poor prognosis
[60, 61]. ITGA2 overexpression is essential for tumor
development, metastasis, and motility, and this molecule
triggers the overexpression of the STAT3 signaling
pathway, thus promoting tumor progression [63]. KLK11
protein is expressed more in NSCLC serum, although
KLK11 mRNA levels are lower in cancerous lung tissues
than in ANTs [64]. Leakage of these secreted proteins into
the systemic circulation due to disruption of lung structure
during angiogenesis or development may be the reason for
this discrepancy between low mRNA levels and elevated
serum protein levels in lung cancer [65]. It has been well
studied that PHLDB2 is linked to a variety of malignancies
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Figure 10: (a, b) Heatmap illustrating the distributions of immune cell subsets, fibroblasts, and endothelial cells assessed via MCP-counter
(a) and ssGSEA (b) algorithms in the TCGA-LUAD cohort. (c, d)Wilcoxon analysis of the differing TME subtype distributions between two
groups in the TCGA-LUAD cohort. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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[66, 67]. PHLDB2’s primary role is to control migration
through interacting with the transcription factors
CLASPS, prickle 1, and liprin 1 [68, 69]. According to Ge
et al., patients with lower PHLDB2 expression have a better
prognosis [70]. VGLL3 is a unique Ets1 interacting partner
that inhibits adipocyte differentiation and controls tri-
geminal nerve development [71]. VGLL3 acts as a coac-
tivator of mammalian toxicity equivalency factors and is
implicated in many kinds of cancers, including breast,
colon, and lung cancers [72, 73]. Methylation, phos-
phorylation [74], and dephosphorylation of SMAD9 may
function in the progression of lung cancer [75]. Tumor
cell-derived human angiopoietin-like protein 4
(ANGPTL4) has been shown to disrupt vascular endo-
thelial cell connections, enhance pulmonary capillary
permeability, and facilitate tumor cell protrusion through
the vascular endothelium, which is involved in lung cancer
[76]. ,rough the synergistic action of AP-1 binding sites
[77], the epithelial enhancer mediates the production of
laminin subunit alpha 3 (LAMA3), which is associated
with tumor progression. Xu et al. [78] reported that it was
discovered that the inhibition of LINC00628 decreased
LUAD cell proliferation and drug resistance by lowering
the methylation of the LAMA3 promoter. STK32A is
important in cellular balance and transcription factor

phosphorylation, together with cell cycle regulation, and
its overexpression leads to enhanced NSCLC cell pro-
gression, as well as enhanced NF-κB p65 phosphorylation
and inhibition of apoptosis [79]. SNX30 encodes sorted
nexin-30 protein, a member of the sorted nexin, which a
large class of proteins localized in the cytoplasm with
membrane-bound potential via a phospholipid-binding
domain [80]. KCNQ3 encodes a protein that regulates
neuronal excitability, and GCSH encodes a mitochondrial
protein that forms the glycine cleavage system [81].
However, there is a lack of research on the mechanisms of
action of these two genes in cancer.

Following this assessment, KM survival studies dem-
onstrated that the 14 prognosis-associated genes may have a
contribution to the initiation and development of LUAD in
certain individuals. It came as a surprise to observe that risk
scores for the 14-gene prognostic profile were shown to be
strongly correlated with the OS in LUAD patients in two
cohorts split by the TCGA and one GEO validation cohort.
We discovered that modulation of the prognostic gene
profile was linked with the LUAD survival models (T, N,M,
stage, sex, and age) in our study. Furthermore, the nomo-
gram of independent risk factors, which included risk score
models, had a good predictive value and might assist cli-
nicians in making optimum treatment choices to enhance
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Figure 11:,e high expression of TNS4 (a), WFDC2 (b), and ITGA2 (c) and the low expression of MAPK4 (d), SMAD9 (e), KLK11 (f), and
LAMA3 (g) in LUAD tissues were confirmed compared to the paracancerous tissues.
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the OS rates of patients with LUAD in the future. ,ese
results suggest that hypoxia- and ferroptosis-related genes
were indispensable in the construction of prognostic models
for LUAD development and that they may have the potential
to act as OS biomarkers.

Our findings suggested that the signaling pathways that
converge in various biological processes differ between two
groups, and the hypoxia, TNFα, signaling via NF-κB,
mitotic spindle, and glycolysis were significantly down-
regulated in the less-risk group. Additionally, 14 prognosis-
related genes in LUAD, including one hypoxia-related
gene, ANGPTL4, were significantly expressed in the tumor
tissues. ,is finding reflects the dependence of LUAD on
hypoxia and the heterogeneity of hypoxia responses in the
low- and high-risk groups. Hypoxia heterogeneity indicates
its involvement in promoting a phenotypic variety of
cancer cells in the TME, which promotes metastasis and
therapeutic resistance. Li et al. [82] demonstrated that
suppressing NLRP2 boosted cell proliferation through NF-
κB signaling activation, thus resulting in an EMT pheno-
type in LUAD cells. ,erefore, the regulatory pathways
involved in NF-κB also function in the progression of
LUAD. ,e evidence implies that LUAD pathogenesis is a
complicated biological process involving multiple genes.
Apart from that, dysregulation of multiple genes may
contribute to the progression of LUAD by a variety of
distinct processes. ,e differences in GSVA signatures and
prognostic genes between the two groups have the potential
to be explored in a more in-depth study. ,ese discoveries
may, in general, open new avenues of investigation of
additional molecular mechanisms of LUAD for academics
and physicians.

Significant differences in immune infiltrating cell types
between two groups were shown in this study. Interest-
ingly, the enrichment fraction of activated CD4 T cells and
neutrophils was enhanced in the high-risk group, whereas
the enrichment fraction of eosinophil and immature
dendritic cells was found in the low-risk group. Immune
cells, neutrophils that infiltrate tumor tissue, called TANs,
also play a role in antitumor immunity. TANs stimulate T
cell responses in lung cancer rather than have an immu-
nosuppressive effect [83]. In LUAD, overexpression of
bridging granule genes is associated with a significant
enhancement in infiltration of activated CD4 and CD8 T
cells [84]. We hypothesize that the inflammatory response
induced by immune cells may function in accelerating
tumor cell mutations, which in turn may affect patient
prognosis. ,e specific mechanisms by which the tumor
immune microenvironment affects prognosis remain to be
explored.

Here, a prognostic model of LUAD with general ap-
plicability was successfully developed and validated based on
hypoxia and ferroptosis. In addition, we performed exper-
iments to validate the 14 molecules in the model. Of these,
seven molecules were validated by qRT-PCR to be signifi-
cantly different between tumor and paracancerous tissues.
However, our study has some limitations. Due to the lack of
studies on hypoxia and ferroptosis in tumors, the infor-
mation provided by MSigDB and FerrDB websites may be

inaccurate, as the references were manually obtained from
previous studies. More studies will do to validate the roles of
these fundamental prognostic genes’ hypoxia- and ferrop-
tosis regulation roles in LUAD [3]. Both cohorts (TCGA-
LUAD and 1 GEO cohort) were used to construct predictive
signature. ,is hypoxia- and ferroptosis-predictive signal
may be more reliable if examined in our research center’s
prospective clinical trial cohort.

5. Conclusion

Hypoxia and ferroptosis are two major mechanisms associated
with lung adenocarcinoma development. In this research, the
candidate genes associated with hypoxia and ferroptosis scores
were identified; as a result, we have found a 14-gene signature
and developed a predictive nomogram that could accurately
predict OS in individuals with LUAD. ,ese results may be
useful in facilitating the making of medical decisions and
personalizing therapeutic interventions.
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FSP1: S100 calcium-binding protein

A4
MAPK: Mitogen-activated kinase-like

protein
NRF2: Nuclear factor erythroid 2-like 2
TME: Tumor microenvironment
HIF1A:Hypoxia-
inducible factor 1-
αHILPDA:

Hypoxia-inducible factor 1-
αHILPDA:Hypoxia-inducible
lipid droplet-associated
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DEGs: Differentially expressed genes
GSVA: Gene set variation analysis
K-M: Kaplan–Meier
AUC: Area under the curve
OS: Overall survival
HR: Hazard ratio
CI: Confidence interval
TANs: Tumor-associated neutrophils.
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Background. Idiopathic hypogonadotropin hypogonadism (IHH) is caused by hypothalamic-pituitary-gonadal axis dysfunction.
This is divided into Kallmann syndrome which has an impaired sense of smell and hypogonadotropin hypogonadism with normal
olfactory (nIHH sense. Approximately 60% of patients are associated with Kallmann syndrome, whereas there are approximately
40% with hypogonadotropin hypogonadism (nIHH). This disease is associated with various variants in genes along with different
phenotypic characteristics, and even those gene variations could also lead to the cancer formation in patients. So, current study has
been designed to investigate and to better understand the characteristics of various IHH-associated genes and the correlation
between IHH genes and phenotype. Methods. The cohort included 14 children with IHH (6 patients of KS and 8 patients of IHH),
including 13 boys and 1 girl. Exclusion criteria are as follows: diagnosis of secondary hypogonadotropin hypogonadism due to
tumor, trauma, drugs, or other systemic diseases. Clinical data and genetic results were analyzed. Results. Almost all male patients
showed micropenis (12/13, 92.3%), and few of them had cryptorchidism (5/13, 41.7%). A total of 6 genes, CHD7, PROKR2,
ANOS1, FGFR1, SEMA3A, and NDNF, were detected. CHD7 was the most common (11/17, 64.7%), and the main mutation type
was missense mutation (14/16, 87.5%). Six reported variants and 10 new variants (5 genes, including entire ANSO1 duplicates)
were found. Neonatal variation was detected in 3 patients with IHH. Eight patients inherited the variation from their father, while
five patients inherited it from their mother. One patient had both FGFR1 and SEMA3A gene variants, while the other had two
different CHD7 gene variants and entire ANSO1 repeats. According to ACMG criteria, 4 variants were pathogenic (P), 2 were
possibly pathogenic (LP), and 8 had uncertain significance (US). In patients with P or LP (5/6, 83.3%), we found that extragonadal
symptoms were more common. Conclusions. It was concluded that variations in the studied genes could lead to the IHH. Ten new
variants have been reported which may lead to different symptoms of IHH. For CHD7 variants, the rare sequencing variants
(RSVs) of P or LP showed commonly associated with CHARGE syndrome. Findings of the current study may help for the better
diagnosis and treatment of IHH.

1. Introduction

Idiopathic hypogonadotropin hypogonadism (IHH) is due to
the hypothalamic gonadotropin-releasing hormone (GnRH)
neuron damage. This damage leads to impair secretion, or
insufficient action, or decrease in pituitary gonadotropic
hormone secretion which results in lack of sex gland function
[1]. Its incidence is 1-10/100,000 with a male to female ratio
of about 3.6 : 1 [1]. According to the presence of olfactory
abnormalities, it can be divided into Kallmann syndrome (KS)

and idiopathic hypogonadotropin hypogonadism of normal
olfactory (nIHH). IHH has genetic heterogeneity and more
than 40 genes have been confirmed to be associated with
IHH, which accounts for more than 50% of all patients [2,
3]. In fact, the list of uncommon genes and candidate genes
continues to grow [4]. Anosmin-1 gene (ANOS1), also named
KAL1, is dominated by X-linked inheritance, and CHD7,
FGFR1, FGF8, PROKR2, and SOX10 are dominated by auto-
somal dominant inheritance. In addition, autosomal recessive
FEZF1 and PROK2 are mainly inherited in families with high
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suspicion of KS. In recent years, IL17RD, SEMA3A, SEMA3E,
NDNF, and ANOS1 genes have been found to be closely
related to olfactory sense. In addition to hypothalamic
gonadotropin-releasing hormone (GnRH) neurons and olfac-
tory damage, several gene mutations have also been found to
be associated with other physical abnormalities. ANOS1 may
present unilateral renal hypoplasia [5], CHD7 may be associ-
ated with tooth development, hearing abnormality, short stat-
ure, and intellectual impairment, and FGF8 may be associated
with hearing loss and cleft lip and palate, while FGFR1 may be
associated with tooth development and cleft lip and palate [5].
Nevertheless, the association between the characteristic IHH
phenotype and genotype has not been fully established. The
purpose of this study was to better understand the characteris-
tics of IHH genes and the correlation between IHH genes and
phenotype, so as to help make better treatment plans for IHH
patients and lay the foundation for further research.

2. Materials and Methods

2.1. Sampling and Study Plans.We reviewed all IHH patients
with genetic diagnosis in the Children’s Hospital of Zhejiang
University School of Medicine and the Hangzhou Children’s
Hospital from 2017 to 2022. Their family history, clinical
features, biochemical indicators including sexual hormone,
imaging (bone age, sexual gonad, olfactory bulb, and pitui-
tary), and genetic testing were collected.

Inclusion criteria are as follows: for children > 13 years of
age in females or >14 years of age in males: (1) no spontaneous
pubertal development or pubertal development arrest, (2) the
level of sex hormones showed prepuberty (lower than normal,
i.e., male serum androgen level ≤ 1ng/mL and female serum
estrogen level≤20pg/mL) [6], (3) there were no space-
occupying lesions in imaging of hypothalamus and pituitary
region, and (4) chromosome karyotype is normal and for
female < 13 years old or male < 14 years old, (1) KS was diag-
nosed by MRI olfactory bulb, (2) the absence of minipuberty
and , low levels of gonadotropins and sex hormones, and (3)
genetic tests that may support diagnosis. Exclusion criteria are
as follows: diagnosis of secondary hypogonadotropin hypogo-
nadism due to tumor, trauma, drugs, or other systemic diseases.

This study was approved by the Ethics Committee of
Children’s Hospital of Zhejiang University School of Medi-
cine and Hangzhou Children’s Hospital.

2.2. Gene Analysis. In general, gonadal panel and whole exon
sequencing (WES) were used for detection, and the genes con-
tained were all IHH gene pointed out in the consensus [2].
Through ClinVar (http://www.ncbi.nlm.nih.gov/clinvar), path-
ogenic mutations were checked. Data interpretation rules were
followed as per ACMG guidelines. For the variable names, refer
to the rules of HGVS (http://www.hgvs.org/mutnomen/).

2.3. Annotation for Variants. Various database searches,
general population database search, disease database search,
literature search, mutation type specificity analysis, and com-
putational prediction were performed. Allele frequencies in
the gnomAD database were used to calculate OR and define
RSV (MAF < 0:0001). Computational prediction consists of

three parts: pathogenicity prediction in computer tools, align-
ment conservative analysis, and 3D visualization in 3Dmodel-
ing software. Six computer tools (SIFT [7], Polyphen-2 [8],
PROVEAN [9], Mutation Taster [10], CADD [11], and
MetaSVM [12]) are used for predicting the pathogenicity of
missense or code shifter, and two (Splice Site Score calculation
and SpliceAI [13]) are used for splicing sites. We used Clustal
W to align each human gene sequence with homolog of 25
other related species in UniProt database to judge the evolu-
tionary conservation of each amino acid site. The more con-
served the site, the more important it is for protein function,
which indirectly reveals its pathogenicity. Amino acid changes
were visualized using 3Dmodeling software ChimeraX. Using
these spatial models, we compare the nature changes of wild
and mutant amino acids and their contact relationships with
other amino acids to predict the potential pathogenic effects
of specific mutations on proteins.

2.4. Statistical Analysis. SPSS version 23 software package
was used to check the normal distribution of continuous
variables. Normal distribution variables are described by
mean ± standard deviation, and nonnormal distribution var-
iables were described by median and quartile distance. Cate-
gory variables were expressed as percentages.

3. Results and Discussion

3.1. Clinical Features and Auxiliary Examination. The age of
diagnosed children ranged from 2.1 to 18.7 years with a
mean age of 12:44 ± 4:98 years. There were 13 males and 1
female. Among the 13 male children, 11 (84.6%) were 7.9
to 18.7 years old, and 6 (46.2%) were ≥14 years old. The
female patient was diagnosed at 16.2 years old. There were
6 patients (42.9%) of KS and 8 patients (57.1%) of nIHH.
In terms of genital characteristics, among the 13 male chil-
dren, 12 patients (92.3%) had micropenis or (and) cryptor-
chidism, including 6 (50.0%) of simple micropenis and 5
(41.7%) of micropenis and cryptorchidism. There was no
simple cryptorchidism, but one (nIHH3) had micropenis
combined with penis descent and scrotal division. Of the
14 patients, 2 (14.3%) had normal genitalia.

In other clinical manifestations, 4 patients (28.6%) were
obese or overweight, of which nIHH1, nIHH5, and nIHH7
were obese and nIHH2 was overweight. Three patients
(21.4%), including KS1, KS2, and nIHH5, had short stature.
Two patients (14.3%), KS5 and nIHH8, had slurred speech
and mental retardation. One (7.1%, KS1) had psychomental
abnormalities and gradually developed depression after diag-
nosis. One (7.1%, KS5) had hearing damage (mainly left
ear), male breast development, and hypopigmentation in addi-
tion to pronunciation and intelligence defects. One (nIHH1)
had a history of nephrotic syndrome at the age of 3 and had
received glucocorticoids for 2 years with stable controlling.
The only female patient (nIHH8) had a history of ovarian ter-
atoma in addition to slurred speech and mental retardation.
nIHH5 is not only short stature and obesity but also diabetes
and fatty liver caused by obesity. In the family history, 3
(21.4%) had fathers or mothers with delayed pubertal develop-
ment, with KS3 and nIHH7 as fathers and nIHH6 as mothers.
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In laboratory tests, except for one male infant, the luteinizing
hormone (LH), follicle-stimulating hormone (FSH), and testos-
terone (T)measured at 6months were 0.28mIU/mL, 0.91mIU/
mL, and 0.2ng/mL, respectively. The levels of LH, FSH, and T
in 1 infant and 3 school-age boys were all lower than the normal
level in this age group. T of 8 male children ≥ 12 years old were
all lower than 0.5ng/mL, and their LH and FSH levels were
normal or lower than normal [14, 15]. In one female child,
LH, FSH and estradiol (E2) were far below the normal low limit
[14, 15]. Five of the 13 boys underwent human chorionic
gonadotropin (HCG) stimulation test to assess testicular func-
tion, of which only one was normal (testosterone > 1ng/mL),
and the other four did not reach 1ng/mL, nor increased by
more than 3 times compared with the baseline value. Five
patients underwent gonadotropin-releasing hormone (GnRH)
stimulation test. The statistics of the post-LH and -FSH levels
ranged from 0.44mIU/mL to 6.16mIU/mL and 1.11mIU/mL
to 6.3mIU/mL, respectively. B ultrasound of testis in 13 boys
showed that testis was significantly smaller than normal range.
All of the above can be seen in Tables 1 and 2. In the imaging
examination, the girl’s uterus and ovary B ultrasound indicated
that she was in the state of puberty. The pituitary MR of 14
patients showed no space occupying or organic lesions, MRI
examination of olfactory bulb was completed in 10 boys, and
absence or dysplasia of olfactory bulb, olfactory groove, and
olfactory bundle was found in 6 boys (Figure 1).

3.2. Molecular Genetic Analysis. A total of 7 genes associated
with IHH were identified in 14 patients, including 10 of
CHD7, one of NDNF, one of ANOS1, one of FGFR1, one
of SEMA3A, one of FGF8, and one of PROKR2, respectively.
There were 16 variants in 14 patients. Copy number varia-
tion of ANOS1 was found in one patient. The remains were
all point mutations, including 2 splicing site mutations of
CHD7 gene (KS1 and KS4), one coding mutation (insertion)
of PROKR2 gene (nIHH7), and 12 missense mutations.
nIHH1 has two missense mutations of CHD7 and ANOS1
repeat. nIHH5 had a missense mutation in FGFR1 and
SEMA3A, respectively. Neonatal variation was found in 2
patients with IHH; 9 of the patients inherited the variation
from their father and 5 from their mother, both of whose
parents carried the heterozygous variation. There were 2
patients with c.1565G>T(p.G522V) variant.

Among the 15 point mutations, there were 9 novel variants
including 2 splice site mutations and 1 frameshift mutation.
The amino acid sites of 5 CHD7 variants were retrieved from
ExAC database: c.409T>G(p.S137A), c.749G>A(p.R250H),
c.1565G>T(p.G522V), c.59G>A(p.G20D), and c.2182G>A
(p.D728N). However, in each gene variation database, CHD7
retrieved c.2182G>A(p.D728N), NDNF, FGFR1, FGF8, and
SEMA3A but did not retrieve the mutations in this cohort.
CHD7 c.1565G>T(p.G522V) in ClinVar database was reported
in CHARGE syndrome, primary ovarian insufficiency, KS, and
other diseases, and in MASTERMIND database notes 2007-
2022, this variant was reported in as many as 10 studies. The
mutation frequency was significantly higher than that of other
mutations and was classified as hot spot mutation and
currently classified as benign or likely benign. CHD7
c.409T>G(p.S137A) in the ClinVar database was also reported

to be benign or likely benign, with no specific disease descrip-
tion. Other studies reported c.2182G>A(p.D728N) of CHD7
in IHH or CHARGE syndrome [16–18], c.1369A>G(p.T457A)
of SEMA3A [19], and c.749G>A(p.R250H) of CHD7 in abnor-
mal sexual development [20]. At the same time, no focal dupli-
cation of ANOS1 gene has been reported, and only multiple
abnormal patients with multiple gene duplication have been
reported [21]. After ClinGen and ClinVar data retrieval, at
present, only prompt ANOS1 has sufficient evidence for
haploinsufficiency, but no evidence for triplosensitivity; hence,
it is currently considered to be uncertain significance.

We calculated pathogenicity predictions for all variants
except copy number duplicates. First, the prediction results of
c.409T>G(p.S137A) and c.1565G>T(p.G522V) of CHD7 in
the three missense mutation software were consistent with the
benign or likely benign conclusion suggested in the database
(none of which was defined as pathogenicity). The remaining
10 missense mutations and 7 variants were predicted to have
obvious pathogenicity. The c.59G>A(p.G20D) and c.2182G>A
(p.D728N) amino acid sites of CHD were predicted to be path-
ogenic in only one of the three software. The R424H variant of
FGFR1 was positive for all three predictors, but its predictive
value was close to normal (Table 3). Then, 10 missense muta-
tions (except c.409T>G(p.S137A) and c.1565G>T(p.G522V)
of CHD7) were calculated again with three software of predict-
able coding and noncoding regions. The pathogenicity of the
two splicing sites was predicted. Results suggested pathogenic-
ity in all (at least 2 out of 3) (Table 4). Second, using all 12
missense mutations as subjects, the results showed that in
c.59G>A(p.G20D), c.749G>A(p.R250H), c.2724G>T(p.W9
08C), c.2744A>G(p.D915G), and c.4153G>C(p.D1385H) of
CHD7, c.1369A>G(p.T457A) of SEMA3A, and c.368G>A(p.
G123E) of FGF8, wild-type residues at these seven specific
sites were highly conserved in 25 different species (Figures 2
and 3). Third, since 3D models of Trp908Cys, Asp915Gly,
and Asp1385His for CHD7, Thr457Ala for SEMA3A,
Ile480Asn for NDNF, and Arg298Thrfs∗2 for PROKR2 (man-
ufactured by Swiss Model) are available, we can see macro-
scopic changes in protein structure as well as the direct
effects of individual amino acid changes. For all six variants,
the residue size, charge, and hydrophobicity varied at specific
sites. In addition, the Arg298Thrfs∗2 of PROKR2, due to
frameshift variation, leads to the premature termination of
protein synthesis and the disappearance of long sequences of
amino acids on the structure. In CHD7, for Trp908Cys, 16
contacts disappeared, forming a new hydrogen bond (H-
bond). For Asp915Gly, it changed from acidic amino acid to
nonpolar hydrophobic amino acid. One old contact broke.
For Asp1385His, from acidic amino acid to alkaline amino
acid, 4 old contacts and 2 H-bonds broke; meanwhile, 6 new
contacts and 1 clashes formed. For NDNF Ile480Asn, nonpo-
lar hydrophobic amino acids became acidic, changing from 6
old contacts to 8 new contacts, and 1 clash formed. For
Thr457Ala of SEMA3A, the polar neutral amino acid becomes
nonpolar hydrophobic, and 2 new contacts and 1 H-bonded
formed. For Arg298Thrfs∗2 of PROKR2, in addition to the
disappearance of amino acid sequence, there was also a great
change at the termination codon, from alkaline amino acid
to polar neutral amino acid, 7 contacts lost, and 1 new H-
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bond formed (Figure 4). According to the above findings,
combined with classification according to the guidelines of
ACMG, 4/16 (25%) variants were classified as pathogenic, 2/
16 (12.5%) as likely pathogenic, and 8/16 (50%) as uncertain
(Table 4).

IHH is an inherited and clinically heterogeneous disease.
Different pathogenic genes produce similar clinical pheno-
types, and the same pathogenic genes have different clinical
characteristics. KS patients are more likely to have abnormal

olfactory function, but it is also common for patients with
abnormal olfactory bulb to have normal olfactory function.
In this study cohort, most male patients had reproductive sys-
tem abnormalities with a high incidence, such as micropenis
(92.3%), cryptorchidism (41.7%), penis retraction (7.7%),
and scrotal division (7.7%), which were consistent with litera-
ture reports [16–19]. These findings suggest the possibility and
necessity of early diagnosis of IHH. Abnormal male gonadal
development may indicate defects in the HPG axis during

A1 A2 B E1 E2 E3

C1 C2 D F1 F2 F3

Figure 1: MR abnormalities of olfactory bulb in 6 boys with IHH.

Table 3: Genetic analysis of 14 children with IHH.

Case Gene Variant Novel Amino acid Pathogenicityb Inheritance
Source

of variant
MAF
(%)

Polyphen-
2

SIFT PROVEAN

KS1 CHD7 c.2442+1G>A Yes /
Likely

pathogenic
AD, Het De novo No / / /

KS2 CHD7 c.2744A>G Yes p.D915G Uncertain AD, Het Paternal No 0.991 0.001 5.7

KS3 CHD7 c.409T>G No p.S137A Likely benign AD, Het Paternal 0.020 0.002 0.19 0.62

KS4 CHD7 c.2698-1G>T Yes / Pathogenic AD, Het Paternal No / / /

KS5 CHD7 c.2724G>T Yes p.W908C Uncertain AD, Het Maternal No 1 0.00 12.43

KS6 NDNF c.1439T>A Yes p.I480N Uncertain AD, Het Paternal No 0.963 0.002 5.23

nIHH1

CHD7
c.749G>A No p.R250H Uncertain AD, Het Paternal 0.006471 0.999 0.011 0.76

c.1565G>T No p.G522V Likely benign AD, Het Paternal 0.619 0.099 0.05 0.47

ANOS1a
GRCh38/hg38:chrX:

(8528874-8732137)dup
Uncertain XLR De novo No

nIHH2 CHD7 c.1565G>T No p.G522V Likely benign AD, Het Maternal 0.619 0.099 0.05 0.47

nIHH3 CHD7 c.59G>A No p.G20D Uncertain AD, Het Maternal 0.001057 0.916 0.285 0.44

nIHH4 CHD7 c.2182G>A No p.D728N Uncertain AD, Het Paternal 0.01164 0.155 0.011 2.34

nIHH5
FGFR1 c.1271G>A Yes p.R424H Uncertain AD, Het Paternal No 0.060 0.041 2.51

SEMA3A c.1369A>G No p.T457A Uncertain AD, Het Maternal No 0.789 0.005 3.58

nIHH6 FGF8 c.368G>A Yes p.G123E Uncertain AD, Het Maternal No 0.974 0.000 4.99

nIHH7 PROKR2 c.891-892insA Yes p.R298Tfs∗2 Likely
pathogenic

AD, Het Paternal No / / /

nIHH8 CHD7 c.4153G>C Yes p.D1385H Uncertain AD, Het De novo No 1 0.000 6.71

a: represents copy number variation, and represents variant if no hint is given. Uncertain is recorded after checking two databases; b: records after checking
according to hospital laboratory report and multiple databases. SIFT score: Less than 0.05 is expected to be Deleterious, greater than or equal to 0.05 is
expected to be Tolerated. Polyphen-2 score: If the score is between 0.909 and 1, it is Probably damaging;Scores between 0.447 and 0.908 are "potentially
Damaging", while 0 and 0.447 are Benign. PROVEAN score: Less than -2.5 is expected to be Deleterious, more than -2.5 is expected to be Neutral AD:
autosomal dominant,Het: heterozygous, XLR: X-linked recessive.
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embryonic development [22]. Therefore, for male children
with the above abnormalities found in the neonatal period,
based on existing and ongoing studies on the reference range
of sex hormones and other endocrine hormones in children
of all ages [14, 15], the sex hormone profile of 4-8 weeks can
be used to diagnose IHH [23–25]. There were very few female
patients, only 1 case, and indeed no abnormal manifestations
of secondary sexual characteristics. This is similar to previous
reports [26, 27]. After entering puberty, the female patient
delayed menarche and was found to have ovarian teratoma,
which has since been diagnosed. This woman also had a num-

ber of nonreproductive abnormalities, and other IHH patients
in the cohort also had various types of extragonadal abnormal-
ities, including overweight or obesity, short stature, hearing
impairment, mental retardation, pronunciation impairment,
hypopigmentation, and mental abnormalities. This laid a
foundation for us to study the relationship between IHH gene
type and clinical phenotype.

The sex hormone levels of the IHH group were generally
low in the study. IHH is caused by decreased GnRH secre-
tion in the hypothalamus or by dysregulation of its receptor.
Testis function is normally normal. In this study, 4/5 male

Table 4: Further genetic pathogenicity analysis of 12 children with IHH (excluding benign or likely benign variants).

Case Gene Variant Amino acid
Source of
variant

Mutation
taster

CADD_
raw

CADD_
phred

MetaSVM_
score

Classification (ACMG)

KS1∗ CHD7 c.2442+1G>A / De novo 1 / / / P (PVS1, PS2, PM2, PP3, PP4)

KS2 CHD7 c.2744A>G p.D915G Paternal 0.999 4.436 32 0.31 LP (PM1, PM2, PP3, PP4)

KS4∗ CHD7 c.2698-1G>T / Paternal 1 / / / P (PVS1, PM2, PP3)

KS5 CHD7 c.2724G>T p.W908C Maternal 1 4.566 32 1.068 LP (PM1, PM2, PP3, PP4)

KS6 NDNF c.1439T>A p.I480N Paternal 0.999 4.094 28.5 0.508 US (PM2, PP2, PP3)

nHH1 CHD7 c.749G>A p.R250H Paternal 0.999 3.505 25 0.08 US (PP3, PP4)

nHH3 CHD7 c.59G>A p.G20D Maternal 0.986 2.865 23.3 1.045 US (PP3, PP4)

nHH4 CHD7 c.2182G>A p.D728N Paternal 0.999 2.819 23.2 0.488 US (PP3, PP4)

nHH5
FGFR1 c.1271G>A p.R424H Paternal 0.999 3.489 24.9 0.062 US (PM2, PP3, PP4)

SEMA3A c.1369A>G p.T457A Maternal 0.999 3.672 25.6 1.111 US (PM2, PP2, PP3, PP5, PP6)

nHH6 FGF8 c.368G>A p.G123E Maternal 0.999 3.812 26.3 1.017 US (PM2, PP3, PP6)

nHH7 PROKR2 c.891_892insA p.R298Tfs∗2 Paternal / / / / P (PVS1, PM2, PM4, PP4)

nHH8 CHD7 c.4153G>C p.D1385H De novo 0.999 4.305 31 1.004 P (PS2, PM1, PM2, PP3, PP4)
∗ : Splice Site Score Calculation and SpliceAI for Splicing Sites: Test positive. The 12 variants predicted by MutationTaster are all classified as "pathogenic".
CADD_raw is the initial score, and CADD_phred is the converted score. The higher the score, the greater the harmful effect.The CADD_phred score is
recommended to be greater than 15. MetaSVM fractional cut value is 0.0 (higher score indicates greater harmful effects). ACMG: American College of
Medical Genetics Laboratory Practice Committee Working Group, Described as P:pathogenic; LP:likely pathogenic; US: uncertain significance. B: benign
;LB: likely benign. PVS: pathogenic very strong, PS: pathogenic strong, PM: pathogenic moderate,PP: pathogenic supporting.

20 137 250 522 728 908 915 1385

Figure 2: Sequence alignment of CHD7 protein from 25 different species.
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children had poor response to the standard HCG test. Unfortu-
nately, no prolonged test was conducted to confirm this. The
GnRH test does not determine whether gonadotropin
deficiency is caused by hypothalamus or pituitary gland and
may be negative in patients with hypothalamic gonadotropin
deficiency and positive in some patients with pituitary defi-
ciency. In this cohort, 3/6 children had LH peak value < 4
mIU/mL, and some studies believed that gonadotropin-
releasing hormone stimulation test was suggestive for the differ-
ential diagnosis of IHH and CDGP, and LH peak value < 4
mIU/mL was meaningful for the diagnosis of IHH [28]. How-
ever, there were also 3/6 patients with LH peak value > 4mIU/
mL, of which 2/6 patients > 5mIU/mL. KS5 and nIHH8 genita-
lia showed no obvious abnormalities and entered the Tanner
stage 2. This may be because gonadotropin pulsating patterns
in IHH patients have a fairly wide range of abnormal develop-
mental patterns, from the complete absence of GnRH-
induced LH impulses to sleep-induced GnRH release, indistin-

guished from early adolescence [29–31]. This broad spectrum
of neuroendocrine activity explains the various reproductive
phenotypes observed in patients with IHH [32]. Olfactory func-
tion examination and MRI examination of olfactory organs in
286 patients with IHH and 2183 normal controls found that
IHH patients’ self-evaluation of olfactory far underestimated
the proportion of true olfactory defects. The results of olfactory
function examination showed that all the patients who com-
plained of olfactory abnormalities had olfactory abnormalities,
so the chief complaint of anosmia was reliable. In this study,
olfactory function was mainly evaluated by children and par-
ents during consultation, whichmay underestimate the propor-
tion of olfactory abnormalities, but it is still reliable for patients
with olfactory defects with clear complaints.

The main gene detected in our cohort was CHD7: 11/17
(64.7%). Among the 6 variants assessed as pathogenic or
possibly pathogenic, 5 were CHD7 genes (83.3%), which was
significantly different from many study cohorts. CHD7

SEMA3A-457 NDNF-480 FGF8-123 FGFR1-424

Figure 3: Sequence alignment of four other proteins from 25 different species.

CHD7-TRP908

Mutant type

Wide type

CHD7-ASP915 CHD7-ASP1385 NDNF-ILE480 SEMEA3A-THR457 PROKR2-ARG298 (entirety) PROKR2-ARG298 (locality)

Contacts

H-bond

Clashes

CHD7-CYS908 CHD7-GLY915 CHD7-HIS1385 NDNF-ASN480 SEMEA3A-ALA457 PROKR2-THR298 (entirety) PROKR2-THR298 (locality)

Figure 4: 3D structural modeling of wild and mutant proteins.
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accounted for 4% [33], 8.2% [34], and 26.7% [26, 27] of the
detected genes inmultiple cohorts. CHD7 is a large nucleopro-
tein containing two N-terminal chromosomal domains, a cen-
tral Snf2-like ATPASE and helicase domain, a histone/DNA
binding SANT domain, and two C-terminal BRK domains.
Our variation distribution in the first half, CHD7 gene and pro-
tein area tend to gather at the genetic model of exon 2 and 10
around, proteinmodel on the distribution regularity, no known
protein model function domain, and of pathogenic or possibly
pathogenic variation is not show the inclination “hot spots”
(see Figure 5). To further explore unknown protein regions,
we looked them up on the InterPro website and found no con-
servative areas. This may be hypothetical evidence that rare
CHD7 variants in humans may cause various phenotypes of
IHH, which is only a milder manifestation of CHARGE syn-
drome and is also reported to be supported by Kim et al. [35]
and Bergman et al. [36]. In their patients with CHARGE syn-
drome, pathogenic missense mutations mainly occurred in
the functional domain aggregation region of CHD7 gene. Clin-
ical features that have been reported that may be associated
with CHD7 gene are high palatal arch or cleft palate, dental
hypoplasia, auricle dysplasia, perceptual deafness and semicir-
cular canal hypoplasia, short stature, mental retardation, eye
defect, or coloboma [35, 37, 38]. These may be monogenic or
oligogenic inheritance. Anosmia is not absolutely related to
CHD7.

Therefore, both KS and nIHHhave CHD7 variants detected
in the queue. The presence or absence of anosmia depends on
penetrance of the gene, especially in the case of penetrance,
especially in the heterozygous state. With the exception of
KS3 and nIHH2 (variants classified as benign and possibly
benign), 5 of the 8 children with CHD7 variants detected had
extragonadal abnormalities (62.5%). Both KS1 (C.2442+1G>A
of CHD7) and KS2 (C.2744A>G of CHD7) showed short
stature, with olfactory abnormalities and olfactory bulb abnor-
malities. Both KS5 (C.2724G>T of CHD7) and nIHH8
(C.4153G>C of CHD7) had mental retardation. KS5 found a
hearing deficit. These are consistent with known reports. In
addition, KS5 and nIHH8 also have pronunciation defects,
which may also be related to CHD7 gene, and more sample
studies are needed. However, the variants assessed as P or LP

(4/5, 80%) weremore common to have extragonadal manifesta-
tions than the single-gene variants assessed as US (0/2, 0%),
which was consistent with the report by Sun et al. [16]. nIHH1
detected 3 gene variants, and on the condition that the pathoge-
nicity of each variant (including the CHD7 variant classified as
US) was not clear, the link between gene and phenotype does
not allow the possibility of a linear correlation. Similarly,
detailed phenotypic analysis of 17 patients reported by Xu
et al. [39] showed that 80% (4/5) of patients with P or LP vari-
ants showed multiple CHARGE features (mostly extragonadal
abnormalities), compared with 8% (1/12) of patients with non-
pathogenic (US, B, and LB) variants. The B or LB variants
assessed in this group also showed no extragonadal abnormali-
ties (0/2, 0%).However, in Jongmans et al. [40] and Bergman
et al. [41], there was no association between genotype and phe-
notype in CHARGE syndrome patients. However, the sample
size of patients with P and LP variants was small, so US variants
need to be further confirmed by functional tests or/and reclassi-
fied with additional evidence. Therefore, variations in specific
clinical manifestations that may provide information related
to genetic types need to be carefully interpreted.

Another variant evaluated as P in our cohort was C. 891_
892insA of PROKR2, which not only resulted in a change in a
single amino acid but also resulted in the termination of all
nucleotide encoding after the mutation site due to frameshift
mutation and the disappearance of amino acid sequence.
Prokineticin-2 (PROK2) is a protein that plays an important
role in olfactory nerve development. Human regulation of
GnRH neurons and physiology requires its receptor PROKR2.
PROKR2 was first reported in 2006 to be associated with syn-
dromic hypogonadotropin with/without anosmia [42]. RSV in
PROKR2 is always heterozygous, as reported by this patient
(nIHH7) and others [38]. Combined with the fact that the
father of the child has a history of CDGP, the child may have
a reversal of reproductive defects. Some heterozygous varia-
tions in PROKR2 may act in a dominant inhibitory manner
[43]. PROKR2-associated hypogonadotropin hypogonadism
has been hypothesized to be caused by the interaction of other
gene products, since the overexpression of the variant allele
does not inhibit the function of the coexpressed wild-type pro-
tein [44]. Larger queues are needed to validate the results. The

G20D
S137A

R250H

G522A

Med

ATG

Chromo

32

D728N C.2442+1

W908C

D915G

C.2698–1 D1385H

CHD7
S137A
G20D

R250H
G522A

1

1–

4

SNF2

D728 W908C

D915G D1385H

Helicase

5 6 7 8 9 1 1 1 1 1 1
4 5

1 1 1 1
6 7 8 9 0 1

2 2
2

2 2 2 2 2 2 2 3 3 33
3210987654

3 3 3 3 38

TAA

–2997

BRKC-terminal)( ATP-binding

76543
2

0 1 2 3

Figure 5: Schematic diagram of CHD7 gene and protein.
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extragonadal manifestations of the children were only obesity,
without synkinesia, and other manifestations, but there were
few nonreproductive manifestations similar to those reported
previously [38]. SEMA3A is a key signaling protein for axon
development and plays an important role in many physiolog-
ical processes. It is involved in axon rejection, dendrite
branching, synaptic formation, and neuronal migration by
binding NRP1, NRP2, and PLXNA complex receptors. nIHH5
has both SEMA3A c.1369A>G and FGFR1 c.1271G>A vari-
ants. Here, the focus is on the SEMA3A variant recently
reported by Dai et al. [19], which is not a new variant. This
study provides strong evidence to support its pathogenic role
in patients with nIHH. The study identified families with the
mutation in 196 patients with IHH. Interestingly, the child
carried 5 variants of 5 genes (including this variant), the
mother carried 4 variants of the other 4 genes, and both the
father and one sister carried only c.1369A>G (SEMA3A).

The other sister had one of the five genes and the corre-
sponding variant (not c.1369A>G of SEMA3A), and only the
child had IHHmanifestations, while the other four had normal
phenotypes. At the same time, the researchers completed
functional tests of the variant. The results suggest that the
SEMA3A variant (c.1369A>G(p.T457A)) leads to defects in
FAK phosphorylation and GN11 cell migration and supports
its pathogenic role in nIHH patients. However, as it is a single
experimental evidence, according to ACMG genetic classifica-
tion, this experiment has not been reported and verified so
far, so it cannot be classified as reproducible and confirmed as
stable and effective. Therefore, it cannot be applied to PS3 evi-
dence and can only be evaluated as PP5 evidence. Moreover,
PP6 was temporarily classified as US because the evidence came
from the conserved judgment sites of homologous alignment of
other species and the prediction of protein model software of
computer. We need to validate the changes in protein function
caused by this variant and further strengthen the experimental
evidence to support the hypothesis of its pathogenicity. The
FGFR1 protein is a member of the receptor tyrosine kinase
(RTK) superfamily. FGFR1 signaling has been shown to play
critical roles in the development of the olfactory system, as well
as normal GnRH neuronal migration, differentiation, and sur-
vival within the hypothalamus. The pathogenesis of nIHH5 fol-
lows the oligogenic pattern of disease development, suggesting
that these mutations act synergistically to bring about the
IHH phenotype. The nongonadal abnormalities in this child
are short stature, obesity, and obesity-related complications,
which are not synkinesia, cleft lip, and/or palate; hypoplasia of
teeth was mentioned in the literature. Digit malformations [6,
38, 45] and others require a summary ofmore samples. Another
possible oligogenic genetic pattern is nIHH1, which has both
c.749G>A and c.1565G>T of CHD7 and whole repeats of
ANOS1. Having looked at CHD7 in detail, let us expand on
ANOS1. ANOS1, also known as Kallmann syndrome 1
(KAL1) gene, is one of the most common genes involved in
IHH and is responsible for the X-linked recessive form of KS.
ANOS1 is located on chromosome Xp22.31 and consists of 14
exons encoding an extracellular cell adhesion protein
anosmin-1 with 680 amino acids, which is essential for olfactory
guidance and migration of olfactory and GnRH neurons from
the nasal cavity to their final destination [46]. Because the dele-

tion and variation of this gene has clear pathogenic evidence, it
is highly correlated with anosmia or hypoxia, digital synkinesia,
high-arched palate, unilateral renal agenesis, and other clinical
phenotypes [5]. However, the child in this case only had the
duplication of this gene, and in addition to sexual dysplasia,
he only had a 2-year history of nephropathy without renal
structural abnormalities. At present, there is no clear support
for the variation of these genes to cause the IHH phenotype of
the child. The last gene to discuss is NDNF. NDNF is a secreted
neurotrophic factor that promotes neuronal migration, growth,
and survival, as well as the growth of neural processes. A recent
study demonstrated statistical enrichment of PTV in NDNF,
which encodes glycosylated disulfide proteins in the FN3
domain, by studying 240 IHH-independent precursor bands
[47]. The enrichment of PTV in NDNF suggests that deletions
in NDNF may explain some patients of IHH. NDNF is
expressed in the nasal region after formation of the olfactory
placode inmice and humans [47]. The positive effects of recom-
binant NDNF on GnRH neuronal migration in vitro and the
migration defects of GnRH neurons in zebrafish injected with
z-ndnf MO and ndnf-null mice provide strong evidence for
the role of NDNF in GnRH neuronal migration [47]. Even
though c.1439T>A (NDNF) mutation of KS6 is currently
classified as US, we should keep an eye on it and complete func-
tional tests to supplement more clinical data of patients associ-
ated with this variant.

We believe that more support will be provided in the
future.

4. Conclusion

Abnormalities in CHD7, PROKR2, ANOS1, FGFR1, SEMA3A,
or NDNF genes can lead to IHH, with or without extragenital
manifestations. IHH should be highly suspected in males with
small penises and/or cryptorchidism. New 6 reported variants
and 10 new variants (5 genes, including entire duplicates of
ANSO1) were identified in IHH with different symptoms. A
small proportion of patients may be affected by oligogenic
inheritance. For CHD7 variants, the RSV of P or LP is more
commonly associated with CHARGE syndrome. These find-
ings provide more references and suggestions for the diagnosis
and research of IHH.
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The tumor suppressor protein B-cell translocation gene 2 (BTG2) is downexpressed in lung adenocarcinoma (LUAD); however,
its role in LUAD survival remains unknown. This investigation is aimed at exploring the activity of BTG2 in LUAD. We analyzed
BTG2 expression in LUAD datasets of the TCGA database and examined that BTG2 was markedly downregulated in comparison
with adjacent normal tissues. The prognostic analysis suggested that higher expression of BTG2 protein correlates with prolonged
survival in patients. Vectors expressing BTG2 were stably transduced into lung adenocarcinoma A549 cells. The overexpression of
BTG2 in A549 cells causes cellular G1 phase arrest but did not affect cell proliferation, accompanied by increased activation of NF-
κB. Our data indicate that BTG2 overexpression may trigger an autoregulatory prosurvival NF-κB pathway, which is resistant to
environmental intervention owing to an increased level of BTG2.

1. Introduction

Among the most frequently occurring cancers is that associ-
ated with the lungs. It is one of the major causes of mortality
worldwide [1, 2]. Lung adenocarcinoma (LUAD) is one of
the most frequently occurring non-small-cell cancer [3].
Early disease diagnosis and new treatment methods need
further investigation to determine the underlying molecular
mechanisms responsible for the incidence and development
of LUAD.

Tumor suppressor genes (TSGs) generally regulate cell cycle
arrest, apoptosis, or protein ubiquitination [4–9]. Despite the
importance of TSGs in tumorigenesis, the underlyingmolecular
mechanisms of TSGs in lung cancer progression are still
unclear. Therefore, more studies are required to understand
the roles of TSGs in LUAD.

B-cell translocation gene-2 (BTG2) is a BTG/TOB gene
family member [10]. Studies have shown that overexpression
of BTG2 can repress in vitro cellular growth [11] and BTG2
serves as a tumor suppressor gene in various types of malignant
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tumors [12–14]. Previous reports suggest that BTG2 is down-
regulated in various malignant tumors, including prostate
cancer [15], lung cancer [16], and hepatic cell carcinoma
[17]. It has been discovered that the downregulation of BTG2
is linked with substandard breast carcinoma prognosis [18,
19]. Many investigations have indicated that BTG2 overexpres-
sion could stimulate cellular apoptosis and restrain cell
invasion in prostate cancer [20], medulloblastoma [21], and
breast cancer [22]. However, the underlying molecular mecha-
nisms of BTG2 in LUAD remained unclear.

The current study is aimed at using the TCGA database
to locate the gene BTG2 as a downregulated gene and pre-
dict prognosis and survival in LUAD patients, developing
the human lung adenocarcinoma A549 cell line with BTG2
overexpression, and investigating its function experiments
to assess its role in tumor progression.

2. Materials and Methods

2.1. Identification of Differentially Expressed Genes (DEGs).
The expression data of RNA was acquired from The Cancer
Genome Atlas (TCGA, https://cancergenome.nih.gov/). Log2
fold change > 1 and adjusted P < 0:05 were set as the cutoff
values to screen for DEGs. Data analysis was done via R pack-
age limma 3.38.3.

2.2. Overall Survival Analysis. R packages survival 2.43.3 and
survminer 0.4.3 were used to sketch the Kaplan-Meier curve
and perform a log-rank test to detect the effect of the BTG2
gene on prognosis.

2.3. Plasmid Construction and Cell Transfection. The BTG2
sequence was synthesized and cloned into the vector
pCDNA3.1+ (Invitrogen, USA), and Sanger sequencing was
then carried out for verifying the final construct. Plasmids were
purified with the help of DNA Midiprep Kits (Qiagen, Ger-
many) and transfected into lung adenocarcinoma A549 cells
through lipofectamine 2000 transfection reagent (Invitrogen,
USA). For establishing controls, cells were transfected with
blank plasmid and then screened (1.2mg/mL G418) after 48h
transfection. Clones were selected by the limiting dilution
method to obtain the stable clones with BTG2 overexpression.

2.4. Western Blot Analysis. The BTG2 overexpression effi-
ciency in A549 and H1299 was detected by western blot
according to standard methods. For internal control, GAPDH
was used.

2.5. Flow Cytometry and Cell Cycle. A549 cells were grown at
a concentration of 1 × 106 cells per 10 cm flask, in 1640
medium with 10% FBS for 24 h, followed by harvestation
for cell cycle analysis. Briefly, cells were fixed at 4°C. Prior
to incubation with 50μg/mL of propidium iodide (PI), cells
were collected. Finally, the stained cells were proceeded to
flow cytometry analysis.

2.6. RNA Sequencing. Triplicate samples of vector A549 cells
and BTG2 overexpressed cells were delivered to the company
GENEWIZ for RNA sequencing. Using the list of DEGs iden-
tified above, GO and KEGG pathway analyses were conducted

using Metascape. Metascape was also utilized for visualizing
the network of protein-protein interaction (PPI). Modular
analysis was carried out via Metascape.

2.7. Statistical Analysis. GraphPad Prism 8.3.0 was utilized
for statistical calculations. Intergroup comparisons were
done via an independent sample t-test. A P value of < 0.05
was deemed statistically significant.

3. Results

3.1. BTG2 is Downregulated in LUAD and Correlates with a
Poor Prognosis. The mRNA expression data of 594 lung ade-
nocarcinoma patients were downloaded from the LUAD
dataset collected from TCGA. The BTG2 expression in
LUAD was assessed by R package limma 3.38.3. Our study
demonstrated that BTG2 is downregulated in LUAD than
in nondiseased tissues (Figure 1(a)). The lower BTG2 levels
in LUAD than the normal tissues were further validated in
the Gene Expression Profiling Interactive Analysis database
(GEPIA, http://gepia.cancer-pku.cn/) (Figure 1(b)). Further-
more, the association between the expression BTG2 and
overall survival was assessed by the Kaplan-Meier survival
curve with a log-rank comparison. LUAD patients express-
ing lower BTG2 showed poorer survival than those with
higher BTG2 levels (Figure 2). Aforementioned results indi-
cate that BTG2 is downregulated in LUAD, and the low
expression of BTG2 predicts poor prognosis. Thus, it seems
that BTG2 is a tumor suppressor in LUAD.

3.2. Construction of BTG2 Eukaryotic Expression Vector and
A549-BTG2 Cell Clone. To generate the BTG2 eukaryotic
expression vector, the BTG2 DNA fragment was amplified
and digested. The 548 bp BTG2 fragment was inserted into
the plasmid pDNA3.1+ resulting in the pcDNA-BTG2 vec-
tor construct. The result of Sanger sequencing confirmed
that the BTG2 coding sequence was successfully cloned into
pcDNA3.1 (+) vectors. Meanwhile, the Sanger recombinant
plasmid sequence was proved correct (data not shown).

To explore the functional role of BTG2 at the cellular
level, we established stably pcDNA-BTG2-transfected A549
cell clones in vitro. G418 was used to select the stably trans-
fected cell clones. It turned out that 5 cell clones survived in
G418. Western blotting results showed that the five cell
clones express BTG2, while the cells without BTG2 transfec-
tion had no significant product. The cell clone A549-BTG2-
1 expressed BTG2 and was considered the cell model for fur-
ther experiments (Figure 3(a)).

3.3. Cell Function Experiments of A549 Cells. Cell proliferation
and apoptosis analysis were studied by CCK-8 assay and flow
cytometry analysis, respectively, to determine the effects of
BTG2 overexpression on A549 cells. The data revealed that
overexpression of BTG2 did not inhibit cell proliferation and
apoptosis (Figures 3(b) and 3(c)). Later on, the effect of BTG2
overexpression was examined for the cell cycle. It revealed a sig-
nificant increase in the sub-G1 phase in the BTG2 overex-
pressed cells compared with wild-type A549 (Figure 3(d)),
which suggests that BTG2 induced cell cycle arrest. All these
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indicate that BTG2 induces cell cycle arrest but has no apparent
effects on tumor cell growth.

3.4. BTG2 Downregulates the Cell Cycle-Related Genes and
Activates the NF-κB Pathway. To further determine the
underlying mechanisms, we performed RNA sequencing of
A549 cells after overexpressing BTG2 to evaluate the effects
of BTG2 on the transcriptome.

All text samples were compared with the entire control sam-
ple group for obtaining differentially expressed genes (DEGs).

1040 genes were found to have significantly altered expression,
including 601 upregulated and 439 downregulated genes.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses were carried out to evaluate
if DEGs are up- or downregulated to predict mRNA func-
tions and molecular interactions among these genes. The
top 20 enriched GO and KEGG terms are shown in Figure 4.

The GO analysis indicated that downexpressed genes
were significantly enriched in the functional categories asso-
ciated with protein acylation, cellular response to hormone
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stimulus, and regulation of defense response to the virus.
The pathway analysis demonstrated that cell cycle, chromo-
some maintenance, metabolism of RNA, host interactions of
HIV factors, TGF-beta receptor signaling, and iron uptake

and transport were significantly enriched (Figure 4(a)). The
protein-protein interaction (PPI) analysis identified in the
downregulated genes is shown in Figure 5. The most signif-
icant molecular complex detection (MCODE) components
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Figure 3: (a) The Western blot of BTG2 expression in selected clones of parental and BTG2 overexpressed cells. BTG2 expression level in
HeLa cells served as a positive control and β-actin level as an internal control. (b) Cell growth determined by CCK-8 assays in BTG2- or
vector-transfected A549 cells. (c) Representative cell cycle and flow cytometry data. (d) Cellular apoptosis was assessed via flow
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Figure 4: Analysis of GO and KEGG pathways of downregulated genes (a) and upregulated genes (b).
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were extracted from the PPI network. Twelve genes, DAXX,
PSME2, RAN, RBBP7, RFC4, UBC, HJURP, NUP107,
NUP85, CENPL, CENPW, and HSF1, were highlighted in
MCODE 1 including cell cycle pathway (Figure 5).

The most significantly enriched GO terms of upregulated
genes were a response to adhesion junction, blood vessel devel-
opment, and regulation of cell adhesion, respectively. KEGG
enrichment analysis revealed that highly expressed genes
participated in the NF-κB signaling pathway (Figure 4(b)).
The PPI enrichment analysis of upregulated genes identified
eight MCODE components. Three genes, NFKBIA, RELB,
and ERC1, were enriched in the MCODE5 containing NF-κB
signaling pathway and NIK/NF-κB signaling (Figure 6).

BTG2 overexpression led to significant downregulation
of genes involved in cell cycle progression, consistent with
findings in the flow cytometry analysis. Conversely, genes
involved in the NF-κB signaling pathway were significantly
upregulated, indicating activation of the survival pathway
upon BTG2 overexpression.

4. Discussion

We investigated the BTG2 function in LUAD. First, we evalu-
ated the mRNA expression level of BTG2 and its effect on
prognosis in LUAD. For further determining BTG2 gene activ-
ity, we used A549 cells with low BTG2 expression as our target
cells. Then, the cell strain with BTG2 stable expression was ana-
lyzed through in vitro studies. Our results might provide some
clues on the functional role of this gene in adenocarcinoma
cancer.

Previous studies showed that BTG2 was significantly
downregulated and linked with poor lung cancer patient
prognosis. In line with these findings, our present data indi-
cated that the BTG2 expression level was decreased consid-

erably compared to normal lung tissues, and low BTG2
expression tended to have poor survival in LUAD. All these
findings indicated that BTG2 is a potential lung cancer
tumor suppressor.

To understand the activity of BTG2 in lung cancer, we
transfected BTG2 into A549 cells. We found that BTG2 sig-
nificantly induced a G1 phase cell cycle arrest, whereas cell
proliferation was not influenced after BTG2 overexpression.
To reveal the potential molecular mechanism, we performed
RNA sequencing of BTG2 overexpressed A549 cells, and the
data were then checked for DEGs. 1040 DEGs were identi-
fied; these included 601 upregulated and 439 downregulated
genes. These genes may provide insight into what processes,
mechanisms, and pathways are affected by BTG2.

GO enrichment analysis revealed that highly expressed
genes were involved in adhesion junction response, blood
vessel development, and regulation of cell adhesion. Accord-
ing to the KEGG pathway analysis, upregulated genes, such
as NFκB1, NFκBIA, PLAU, PTGS2, RELB, TNFAIP3,
TRAF1, ERC1, BIRC3, ATM, CD14, CD40, CXCL2, ICAM1,
CXCL8, and LTB, were involved in NF-κB signal pathway.
NF-κB transcription factors are dimers that comprise RELA,
c-REL, NF-κB1 (p105/p50), RELB, and NF-κB2. The NF-κB
signaling pathway is one of the most important survival-
signaling cascades after extracellular stimuli. In our study,
the CCK-8 assay revealed that cell growth was not markedly
decreased in overexpressed BTG2 A549 cells. On the other
hand, we noted that downregulated genes affected the cell
cycle pathways, which supports the outcome of FACS anal-
ysis. Such findings revealed that the NF-κB activation
weakens BTG2 overexpression’s effect on the cell cycle.
Therefore, the NF-κB signaling pathway may be involved
in rescuing from apoptosis in BTG2 overexpression A549
cells and helping tumor cells survive.

(b)

Figure 5: PPI network and MCODE components identified in downregulated genes. (a) PPI network of proteins. (b) MCODE1 was selected
from the PPI network. Genes associated with the cell cycle are colored in yellow.
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The TGA database assessment of the TCGA database for
LUAD patients revealed that individuals with elevated levels
of endogenous BTG2 expression (in tumor tissues) tend to
have better clinical outcomes. Differences were also observed
for the BTG2 overexpression in LUAD A549 cells. Exoge-
nous BTG2 gene expression did not affect cell proliferation
or apoptosis of A549 cells, as revealed by CCK8 and flow
cytometry analyses. BTG2, as a foreign gene, randomly inte-
grates into the host genome and will have a high expression
level when inserted at a favorable position.

5. Conclusion

In conclusion, our results demonstrated that the overexpression
of BTG2 in A549 cells might trigger survival-signaling path-
ways. And the p105: p50 NF-κB signaling has been revealed
to participate in response to BTG2 exogenous overexpression.
Therefore, a potential therapeutic approach for LUAD may
involve targeting BTG2 by disrupting the NF-κB pathway.
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Lung cancer is increasing every year and it has high morbidity and mortality. Antitumor immunotherapy is a new method for the
treatment of lung cancer. Currently, tumor immunotherapy mainly includes classical immunotherapy and immune-targeted
therapy To explore the in�uence of tumor T-lymphocyte (T-cell) in�ltration in non-small-cell lung cancer (NSCLC) patients, 100
NSCLC patients diagnosed and treated in Changde Second People’s hospital were recruited. Patients were followed up for 3 years.
�e subjects were divided into a survival group (group S) and a death group (group D). �e patient’s pathological tissue sections
weremade, and the degree of T-cell in�ltration was counted by H&E (Hematoxylin and eosin) staining.�e in�ltration degree was
graded, and the positive rate of T-cell subsets was calculated by immunohistochemical staining. �e 3-year positive rate was 48%,
with 48 cases in group S and 52 cases in group D.�e positive rate of H&E staining of group S was 100%, including 0 cases of grade
0, 5 cases of grade 1 (10.42%), 16 cases of grade 2 (33.33%), and 27 cases of grade 3 (56.25%). �e positive rate of group D was
86.54%, including 4 cases of grade 0 (8.89%), 10 cases of grade 1 (22.22%), 25 cases of grade 2 (55.56%), and 6 cases of grade 3
(13.33%).�e total number of T-cell in�ltrates in group S was much higher than that in group D (P< 0.05). Immunohistochemical
results showed that the mean positive rate of CD8+ T-cell in�ltration was 72.1% in group S and 47.6% in group D, with
a considerable di�erence (P< 0.05). No remarkable di�erence was found in CD4+ and CD25+ (P< 0.05). CD8+ +CD4+, CD8+/
CD4+, CD25+/CD8+, CD25+/CD4+, and CD25+/(CD8+ +CD4+) positive rates were calculated, and the di�erence between group S
and group D was substantial in CD8+ +CD4+ (P< 0.05). �e results showed that T cells in�ltrated by tumors had an immu-
nosuppressive e�ect on tumor cells.

1. Introduction

Lung cancer is a malignant tumor with high morbidity and
mortality that occurs in the upper bronchial mucosa, and its
morbidity and mortality are increasing every year [1–3]. In
2020, the morbidity and mortality of lung cancer patients in
China were 37.0% and 39.8%, respectively, worldwide, with
816,000 new cases, accounting for 17.9% of new cancers in
China [4]. �e number of deaths were 715,000, accounting
for 23.8% of the total deaths due to malignant tumors in
China. Among them, 80%–85% of lung cancer patients have
non-small-cell lung cancer (NSCLC). NSCLC includes ad-
enocarcinoma, squamous cell carcinoma, and large cell
carcinoma, and treatment is generally carried out according

to clinical stage [5–7]. �e survival time of lung cancer
patients is closely related to clinical stage. Early screening
and diagnosis can improve the positive rate of NSCLC
patients and reduce mortality. Since 2005, China has carried
out malignant tumor screening programs, including lung
cancer, in rural and urban areas. It aims to improve the
medical level and strengthen the publicity of tumor
knowledge (including the symptoms of di�erent tumors,
examination methods, and prevention measures), improve
the national lung cancer screening rate, and achieve early
detection and early treatment. Despite the continuous
progress of medical technology and the increasing number
of treatment methods in recent years, the positive rate of
NSCLC patients is still not high. Some studies have found
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that the 5-year positive rate is less than 20%, and local re-
currence and distant metastasis are the two main reasons
leading to the high mortality of patients [8, 9].

At present, the main treatments include surgery, ra-
diotherapy, chemotherapy, and immunotherapy. *e tumor
immune microenvironment is closely related to the oc-
currence and development of tumors. Immune cells, espe-
cially the T lymphocyte subpopulation, maintain normal
immune function and monitor the body’s immune function.
Immune suppression lead to the tumors formation. *e
factors that affect mutant cells to avoid immune surveillance
mainly include tumor immunosuppression and tolerance.
*e first kind is tumor immunosuppression. Tumors induce
the body to produce immunosuppressive cells and factors,
such as regulatory T cells (Treg) and myeloid-derived
suppressor cells (MDSCs). Tregs are produced by CD4+
and CD25+ T-cell subsets in the thymus to maintain the
immune function and stability of the internal environment.
*ese cells account for 2%–5% of peripheral T cells. Tregs
inhibit T-cell function and secrete immunosuppressive
factors to promote tumors. Bone marrow cells are derived
from MDSCs, a population of cells that can accumulate
gradually in cancer patients and suppress immune function.
*e second is tumor immune tolerance. Due to the lack of
one or more components to stimulate the body’s immune
system, tumor cells have low immunogenicity and even
induce the death of immune functional cells [10–14].

Antitumor immunotherapy is a new method for the
treatment of lung cancer. Currently, tumor immunotherapy
mainly includes classical immunotherapy and immune
targeted therapy [15–20]. Classical immunotherapy gener-
ally includes three strategies, namely, active, passive, and
supportive immunotherapy. *e first is active immuno-
therapy. By injecting a tumor vaccine, CD4+ and CD8+
effector T cells can be induced to clear tumor cells in the
patient and enable host cells to avoid attack. At present,
many tumor vaccines have been developed in the clinic,
including antigen specific, tumor cell, and DC cell vaccines
[21]. *e second is passive immunotherapy. *e immune
effector is produced outside the body and delivered into the
tumor patient. *e most common forms are injections of
recombinant cytokines, immune effector cells, and mono-
clonal antibodies [22]. *e efficacy of immunotherapy
generally does not decrease with advanced age, but the ef-
ficacy generally decreases in patients with autoimmune
diseases and long-term use of hormone-based drugs [23].

*e parameter, which is used commonly for evaluating
anti-tumor efficacy, is the Response Evaluation Criteria in
Solid Tumors (RECIST) for solid tumors [24]. Patients were
graded into complete response (CR), partial response (PR),
progressive disease (PD), and stable disease (SD) rates.
However, it is now evaluated that this standard evaluation is
not a good evaluation of the efficacy of immunotherapy for
tumor treatment. For example, RECIST can be evaluated as
PD after immunotherapy, which may change to CR, PR, or
SD. *erefore, researchers have proposed a new efficacy
evaluation criterion, the immune-related Response Criteria
(IRRC), which can more accurately and objectively evaluate
the efficacy of tumor immunotherapy [25]. Tumor-

infiltrating T cells have been proven to be a predictor of
the efficacy of immunotherapy by many studies. Anti-PD-1
mainly inhibits tumor proliferation by inducing tumor in-
filtration of CD8+ T cells, while anti-CTLA-4 plays an im-
munotherapy role by inducing CD8+ effector T cells and
CD8+ T-cell proliferation. *e content of CTLA-4 +PD-1+
tumor-infiltrating cells is correlated with the therapeutic
effect of PD-1, and the higher the content is, the stronger the
effect [26].

Studies have shown that approximately two-third of the
infiltrated cells in the stroma of NSCLC tumors are lym-
phocytes, and approximately 80% of the lymphocytes are
T cells [27]. Tumor-infiltrating lymphocytes (TILs) refer to
T cells that mainly exist in the local part of the tumor.
Lymphocytes are immersed in the tumor microenvironment
to participate in tumor immunity, and TILs can suppress
tumor growth to a certain extent, which represents the
body’s anti-tumor immune response. TILs with different
densities have different prognostic effects on tumors. Studies
have confirmed that certain types of TILs, such as CD4+ T
and CD8+ T cells, can inhibit tumor growth and have im-
mune effects on tumor patients. It was found that the total
number of tumor-infiltrating T cells was related to the
prognosis of the tumor due to the immune effect on the
tumor, and the tumor-infiltrating T-cell subpopulation also
had a strong relationship with the prognosis. Abnormal
immune function will weaken the body’s ability to defend
against tumors and cause abnormal proliferation and dif-
fusion of tumor cells, so the immune function of most
patients with malignant tumors will have problems. Studies
have confirmed that T-cell dysfunction can occur and fail to
inhibit tumor growth, even with a high degree of tumor
invasion [28]. Tumor-infiltrating T cells are populations
containing many different subsets of cells, which can be
divided into different subsets according to different differ-
entiated antigens, including five types, namely, CD3+, CD4+,
CD8+, CD16+, and CD25+. Under normal circumstances,
the ratios of TILs and T-cell subsets from different tumor
sources are different, but the ratios remain constant and
cooperate and restrict each other to maintain the normal
immune function of the body. Higher or lower ratios of
either of them will lead to immune disorders. For example,
CD8+ T cells increased and the CD4+/CD8+ ratio decreased
in infiltrating lymphocytes of oral squamous cell carcinoma.
*e lower the degree of differentiation, the lower the ratio.
*e content of CD25+ T cells in freshly isolated tumor-
infiltrating T cells was low, and the percentage of CD25+ T-
cells increased with increasing CD25+ Tcells In Vitro. CD3+
subsets represent the immune function of Tcells in the body
and are mainly composed of CD4+ and CD8+ cells. CD4+
T cells represent helper T cells (*), which can assist cellular
immunity, while CD8+ cells represent inhibitory Tcells (Ts),
which can inhibit humoral immunity. CD8+ cells are pro-
posed to be the effector cells of the body’s immune cells that
directly kill the tumor, and themore CD8+ cells there are, the
better the prognosis of the tumor. Observing the status of
tumor-infiltrating T cells in NSCLC patients can analyze
their immune effect on tumors and analyze the development
of tumors [29–35].
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2. Materials and Methods

2.1. *e Research Objective. One hundred NSCLC patients
diagnosed and treated in Changde Second People’s hospital
from December 2017 to December 2018 were recruited.
Patients were followed up for 3 years. *e inclusion criteria
for patients is as follows: (i) patients aged ≥18 years; (ii)
patients diagnosed with NSCLC by pathological examination
and imaging examination; and (iii) patients without pre-
operative chemoradiotherapy. *e exclusion criteria for pa-
tients is (i) patients with other malignant tumors; (ii) patients
with heart, liver, kidney, and other life-threatening diseases;
(iii) patients with certain mental diseases who could not
cooperate with the experiment on their own; and (iv) patients
with incomplete or lost clinical data. All subjects signed in-
formed consent forms, and the study was approved by the
ethics committee of Changde Second People’s hospital.

2.2. Main Instruments and Reagents. Table 1 shows the re-
agents used for the detection of various CD T cells.

2.3.*e Experimental Methods. *e survival of patients was
followed up by telephone or letter. *e total follow-up time
was 3 years, and the survival of patients over 3 years was
recorded. *e study subjects were divided into group S and
group D, and the positive rate of patients was counted.

*ree years later, pathological specimens of the patients
were collected, and tissue sections were made. H&E staining
was performed to calculate the degree of T-cell infiltration
and grade the infiltration degree. Specific indicators are
shown in Table 2. *e positive rates of CD8+, CD4+, and
CD25+ lymphocyte subsets were calculated by immuno-
histochemical staining.

(i) Section dewaxing. Paraffin was removed from tissue
sections by xylene and placed in ethanol gradient
concentration solution (80%, 70%, 50%) and dis-
tilled water for 1min each.

(ii) H&E staining. After section dewaxing process, the
staining of nucleus was done by placing section in
hematoxylin dye solution for 10min and then
washed with water for 5min. In the separation, 1.0%
hydrochloric acid + ethanol solution was used for
30 s, and then washed with water for 30 s. Blue
staining was done by dilute lithium carbonate so-
lution for 1min. After staining, samples were
washed with water. Cytoplasm staining was done
with 0.5% eosin solution for 1min, followed by
washing. 50%, 70%, 80%, and 95% gradient con-
centration ethanol solution was used for gradual
dehydration for 1min, xylene was used to make the
section transparent (neutral gum seal). After that
microscopic observations were done.

(iii) Immunohistochemical staining. Section dewaxing
was performed and sections were incubated with 3%
H2O2 at room temperature for 10min and then
rinsed with distilled water, Sections were immersed
with PBS for 5min (repeated twice). Primary an-
tibody working solution (anti-CD4, CD8, CD25
mAb) was added and incubated at 37°C for 1.5 h.
After that, sections were rinsed with PBS for 2min
(repeat rinsing 3 times), secondary antibody
working solution was added and incubated at 37°C
for 30min. Rinsing with PBS for 2min (repeat
rinsing 3 times) was done and chromogenic agent
for 10min (DAB solution) added, which was fol-
lowed by rinsing with tap water, redye, transparent,
and sealed. At the end, microscope observation was
performed.

Accumulate survival rate �
Number of survivors

Total number
∗ 100%,

Positive rate of HE staining �
Number of cases with lymphocyte infiltration

Total number of this group
∗ 100%,

Immunohistochemical staining positive rate �
Number of positive cells in 1000 lymphocytes/number of randomnumber

1000 lymphocytes in field of vision
∗ 100%.

(1)

2.4. *e Counting Methods. H&E staining was used to
display the counts of CD8+ Tcells, CD4+ Tcells, and CD25+
Tcells. T-cell-positive cells were stained tan-yellow. Staining
numbers of CD8+ Tcells, CD4+ Tcells, and CD25+ Tcells in
each field were counted.*e three visual fields were selected,
and the count was averaged. *e colored cells were pressed,
the upper line and the right line were counted, and the lower
line and the left line were discarded.

*e method used to determine the immunohisto-
chemical results is as follows. Pathological sections were
observed under a high-power microscope (×400). *e field
with more tumor cells and fewer tumor stroma and normal
cells was selected, and the field with more tumor stroma and
fewer tumor cells was selected. *ree fields were randomly
selected, each field was counted three times, and the average
value was taken.

Table 1: Main reagents used in the experiment.

Reagent Detection Company
CD8 monoclonal antibody (McAb) CD8+ T cell

BD, USACD4 McAb CD4+ T cell
CD25 McAb CD25+ T cell
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*e technical route followed in this study is shown in
Figure 1.

2.5. Statistical Methods. All the data were analyzed by SPSS
26.0. *e counting data were indicated with a percentage
(%), tested using the χ2(Chi-squared) test. P< 0.05 was
considered statistically significant.

3. Results

3.1. Statistical Results of Patient Survival. *ere were 100
patients with TNM stages as follows. *ere were 16 patients
in stage I, 15 in stage II, 32 in stage III, and 37 in stage IV.
*ere were 59 male patients and 41 female patients. *e
average age was 59.2± 4.51 years (Figure 2). Forty-eight
patients (26 males and 22 females) survived, and 52 pa-
tients (33 males and 19 females) died at 3 years, with an SR of
48% (48/100). *e 100 patients were divided into group S
and group D according to 3-year survival (Figure 3).

3.2. Relationship between Total T-Cell Infiltration and the
Postoperative Survival Rate of NSCLC Patients. Patients in
group S (48 cases) had lymphocyte infiltration in patho-
logical tissue sections, with a positive rate of 100%, including
0 cases of grade 0, 5 cases of grade 1 (10.42%), 16 cases of
grade 2 (33.33%), and 27 cases of grade 3 (56.25%). In
patients in group D (52 cases), 7 cases did not have lym-
phocytic infiltration, and 45 cases had lymphocytic in-
filtration, with a positive rate of 86.54%, including 4 cases of
grade 0 (8.89%), 10 cases of grade 1 (22.22%), 25 cases of
grade 2 (55.56%), and 6 cases of grade 3 (13.33%). *e total
number of T-cell infiltrates in group S was notably higher
than that in group D (P< 0.05) (Figures 4 and 5).

3.3. Relationship between CD8+, CD4+, CD25+ T-Cell In-
filtration and the Postoperative Survival Rate of NSCLC
Patients. Immunohistochemistry was performed on
pathological sections of all patients with CD8+ mono-
clonal antibody, and the positive cells were brown-yellow.
In Figure 6(a), the average positive rate of patients in
group S (48 cases) was 72.1% and that of patients in group
D (52 cases) was 47.6%. *e average positive rate of the
CD8+ subgroup in group S was obviously superior to that
in group D (P< 0.05). Immunohistochemistry was per-
formed on pathological sections of all patients with CD4
mAbs, and the positive cells were brown-yellow. *e
results showed that the average positive rate of group S (48
cases) was 15.3%, and the average positive rate of group D
(52 cases) was 11.7%. *e average positive rate of CD4+

subsets in group S was higher than that in group D, and
the difference was not remarkable (P> 0.05) (Figure 6(b)).
Immunohistochemistry was performed on pathological
sections of all patients with CD25 mAbs, and the positive
cells were brownish yellow.*e results in Figure 6(c) show
that the average positive rate of group S (48 cases) was
13.2%, and the average positive rate of group D (52 cases)
was 8.9%. *e average positive rate of the CD25+ sub-
group in group S was superior to that in group D, but the
difference was not substantial (P> 0.05).

3.4. Relationship between CD8+ +CD4+ and CD8+/CD4+ and
the Postoperative Survival Rate of NSCLC Patients. *e sum
of CD8+ T cells and the positive percentage of CD4+
T cells (CD8+ + CD4+) represents the degree of T-cell
infiltration. Figure 7(a) shows that the average degree of
T-cell infiltration in group S (48 cases) was 87.4% and
that in group D (52 cases) was 59.3%. *e degree of T-cell
infiltration in group S was evidently higher than that in
group D (P< 0.05). Figure 7(b) shows that the ratio of the
CD8+/CD4+ T-cell positive percentage in group S (48
cases) was 4.71 on average and that in group D (52 cases)
was 4.07 on average. Group S was higher than group D
(P< 0.05).

3.5. Relationship between (CD25+/CD8+) (CD25+/CD4+)
(CD25+/(CD8+ +CD4+)) and Postoperative Survival Rate of
NSCLC Patients. In Figure 8(a), the average CD25+/CD8+
T-cell ratio of group S (48 cases) was 0.183, and the av-
erage CD25+/CD8+ T-cell ratio of group D (52 cases) was
0.187, showing no significant difference (P> 0.05). In
Figure 8(b), the average CD25+/CD4+ T-cell ratio of group
S (48 cases) was 0.863, and the average CD25+/CD4+T-cell
ratio of group D (52 cases) was 0.761, showing no sig-
nificance (P> 0.05). Figure 8(c) shows that the average
CD25+/(CD8+ + CD4+) T-cell ratio of group S (48 cases)
was 0.151, and the average CD25+/CD8+ T-cell ratio of
group D (52 cases) was 0.150, showing no significance
(P> 0.05).

4. Discussion

Lung cancer is a malignant tumor with high morbidity and
mortality, among which 80%–85% of lung cancer patients
have NSCLC. Despite the continuous progress of medical
technology in recent years, the positive rate of NSCLC
patients is still not high, and some studies have found that
the 5-year SR is less than 20%. *e immune system of the
body, especially T cells, is closely related to the occurrence
and development of tumors. Zylbermann et al. speculated

Table 2: Grade indicators of lymphocyte infiltration.

Level Indicator
0 No lymphocyte
1 A small amount, approximately 1/3 of the field of vision
2 Distributed in clusters, accounting for approximately 1/3 to 2/3 of the field of vision
3 A lot, more than 2/3 of the field of view

4 Journal of Oncology



A total of 100 cases were
included

Clinical data of patients
were collected

Patients' survival and disease
progression were analyzed and
divided into survival group and

death group

Pathological specimens
were stained with HE

immumohistochemical
staining

To analyze the relationship between
total T lymphocyte infiltration and

survival of patients with non-small cell
lung cancer

To analyze the relationship between
tumor infiltrating lymphocyte

subsets and survival of non-small
cell lung cancer

Figure 1: Technical flowchart to analyze the relationship between T-cell infiltration and survival of S and D group.
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Figure 2: Patient general data statistical results. (a) TNM staging of patients; (b) the sex distribution of patients.
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patients of both sexes.
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that tumor-infiltrating lymphocytes can defend against tu-
mors [36]. Tumor-infiltrating T cells are lymphocytes
dominated by T cells that exist locally in tumors and can
inhibit tumor growth, representing the body’s anti-tumor
immune response [37]. TILs with different densities have
different prognostic effects on tumors. Studies have con-
firmed that certain types of CD3+ Tand CD8+ Tcells in TILs
can inhibit tumor growth and have immune effects on tumor
patients [38]. It was found that the total number of tumor-
infiltrating T cells was related to the prognosis of the tumor
due to the immune effect on the tumor, and the tumor-
infiltrating T-cell subpopulation also had a strong re-
lationship with the prognosis [39]. Tumor-infiltrating Tcells
are populations containing many different subsets of cells,
which can be divided into different subsets according to
different differentiated antigens, including 5 types, namely,
CD3+, CD4+, CD8+, CD16+, and CD25+ [40]. Under normal
circumstances, the ratios of TILs and T-cell subsets from
different tumor sources are different, but the ratios remain
constant and cooperate and restrict each other to maintain
the normal immune function of the body. Higher or lower
ratios of either of them will lead to immune disorders.

Observing the status of tumor-infiltrating T cells in NSCLC
patients can analyze their immune effect on tumors and
analyze the development of tumors.

*e results showed that 48 patients (26 males and 22
females) survived and 52 patients (33 males and 19 fe-
males) died at 3 years, with an positive rate of 48% (48/
100). *e 100 patients were divided into group S (n � 48)
and group D (n � 52) according to 3-year survival. No
great difference was indicated in age or sex between group
S and group D, P> 0.05, which was comparable. HE
staining of the pathological sections of 48 patients in
group S showed lymphocyte infiltration, with a positive
rate of 100%, including 0 cases of grade 0, 5 cases of grade
1 (10.42%), 16 cases of grade 2 (33.33%), and 27 cases of
grade 3 (56.25%). In group D (52 cases), 7 cases did not
have lymphocytic infiltration, and 45 cases had lym-
phocytic infiltration, with a positive rate of 86.54%, in-
cluding 4 cases of grade 0 (8.89%), 10 cases of grade 1
(22.22%), 25 cases of grade 2 (55.56%), and 6 cases of
grade 3 (13.33%). *e total number of T-cell infiltrates in
group S was higher than that in group D (P< 0.05). *is
finding indicates that tumor-infiltrating T cells have
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Figure 4: Comparison of the total number and positive rate of infiltrating lymphocytes between group S and group D.
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a certain immune effect on NSCLC patients. *e higher
the total number of T-cell infiltrates, the slower the tumor
development and the higher the survival rate of patients.

Immunohistochemical staining of pathological sec-
tions of all patients with CD8, CD4, and CD25 mAbs
showed that the average positive rate of CD8+ T-cell
infiltration in group S (48 cases) was 72.1%, and in
group D (52 cases), it was 47.6%. *e average positive rate
of the CD8+ subgroup in group S was higher than that in
group D (P< 0.05). *e average positive rate of CD4+ T-
cell infiltration in group S (48 cases) was 15.3%, and in
group D (52 cases), it was 11.7%. *e average positive rate
of CD4+ subsets in group S was superior to that in group

D, and the difference was not substantial (P> 0.05). *e
average positive rate of CD25+ T-cell infiltration in group
S (48 cases) was 13.2% and that in group D (52 cases) was
8.9%. *e average positive rate of the CD25+ subgroup in
group S was slightly higher than that in group D (P> 0.05).
*is finding indicates that the postoperative survival rate
of NSCLC patients is related to T-cell infiltration, espe-
cially CD8+ cell infiltration, which has an immunosup-
pressive effect on local tumors. CD4+ and CD25+ also have
certain immune effects on tumors, but the inhibitory
activity is not strong, which may be related to the TNM
stage of the disease, and the activity gradually increases
with the development of the disease. However, it was
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Figure 6: Relationship between CD8+, CD4+, and CD25+ cell infiltration and postoperative positive rate in NSCLC patients. (a) *e
relationship between CD8+ cell infiltration and postoperative positive rate of NSCLC patients; (b) the relationship between CD4+ cell
infiltration and postoperative positive rate of NSCLC patients; (c) the relationship between CD25+ cell infiltration and postoperative positive
rate NSCLC patients. #indicates that the average positive rate of the CD8+ subgroup in group S was substantially higher than that in group D
(P< 0.05).
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found that the number of CD4+ cells is closely related to
tumor growth [41], which was not found in this study and
may be related to TNM stage and the differentiation
degree of patients.

*e percentages of CD8+ and CD4+ cells were 87.4% in
group S (48 cases) and 59.3% in group D (52 cases), re-
spectively (P< 0.05). *e ratio of the CD8+ to CD4+ T-cell-
positive percentage in group S (48 cases) was 4.71 on av-
erage. In group D (52 cases), the average was 4.07, and group
S was higher than group D, with no notable difference
(P> 0.05). *e results showed that the sum of the CD8+ and
CD4+ percentages was related to the postoperative survival
of patients, which may be related to the immune effect of
CD8+; the higher the CD8+ CD4+ value is, the stronger the
immune effect of the tumor, and the higher the SR. Some
studies have shown that the CD8+/CD4+ ratio can evaluate
the balance of the immune system and reflect regulatory
ability, but there was no evident difference between the two
groups of patients in this study, which may still need to be
confirmed by many studies [42]. *e average ratio of CD25+
to CD8+ Tcells in group S (48 cases) was 0.183, and in group
D (52 cases), it was 0.187, showing no statistical significance
(P> 0.05). *e average ratio of CD25+ to CD4+ T cells was
0.863 in group S (48 cases) and 0.761 in group D (52 cases)
(P> 0.05). *e average ratio of CD25+ to (CD8+ +CD4+)
Tcells in group S (48 cases) was 0.151 and that in groupD (52
cases) was 0.150 (P> 0.05).*e results showed that there was
no obvious relationship between CD25+/CD8+, CD25+/
CD4+, CD25+/(CD8+ CD4+) and the SR of NSCLC patients.
Nevertheless, there are still some limitations in this study.
First, the sample size was small and single, requiring larger

samples to verify the results. Second, the follow-up period
was 3 years, and patients were not followed up for 5 years or
longer. All these factors will lead to errors in exploring the
tumor immunity effect of tumor-infiltrating T cells on
NSCLC.

5. Conclusion

In summary, the postoperative survival rate of NSCLC
patients was related to T-cell infiltration, especially CD8+

cell infiltration, which had an immunosuppressive effect on
local tumors. In addition, it was also related to the sum of the
CD8+ and CD4+ percentages. *e higher the CD8+ +CD4+
value, the stronger the immune effect on the tumor, and the
higher the SR of patients. *erefore, tumor-infiltrating
T cells can inhibit tumor growth, which is related to the
postoperative SR of NSCLC patients. In conclusion, tumor-
infiltrating T cells had an immunosuppressive effect on
tumor cells, and the total number and subsets of tumor-
infiltrating T cells had a great impact on the survival rate of
patients.
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[19] Á. Rodŕıguez Pérez, D. Campillo-Davo, V. F. I. Van Tendeloo,
and D. Benitez-Ribas, “Cellular immunotherapy: a clinical
state-of-the-art of a new paradigm for cancer treatment,” Clin
Transl Oncol, vol. 22, no. 11, pp. 1923–1937, 2020.

[20] E. H. Castellanos and L. Horn, “Immunotherapy in lung
cancer,” Cancer Treat Res, pp. 203–223, 2016.

[21] T. Chodon, R. C. Koya, and K. Odunsi, “Active immuno-
therapy of cancer,” Immunological Investigations, vol. 44,
no. 8, pp. 817–836, 2015.

[22] T. Schlake, A.*ess, M.*ran, and I. Jordan, “mRNA as novel
technology for passive immunotherapy,” Cell Mol Life Sci,
vol. 76, no. 2, pp. 301–328, 2019.

[23] G. Galli, A. De Toma, F. Pagani et al., “Efficacy and safety of
immunotherapy in elderly patients with non-small cell lung
cancer,” Lung Cancer, vol. 137, pp. 38–42, 2019.

[24] J. D. Wolchok, A. Hoos, S. O’Day et al., “Guidelines for the
evaluation of immune therapy activity in solid tumors:
immune-related response criteria,” Clinical Cancer Research,
vol. 15, no. 23, pp. 7412–7420, 2009.

[25] E. A. Eisenhauer, P.*erasse, J. Bogaerts et al., “New response
evaluation criteria in solid tumours: revised RECISTguideline
(version 1.1),” European Journal of Cancer, vol. 45, no. 2,
pp. 228–247, 2009.

[26] Y. Zhao, C. K. Lee, C. H. Lin et al., “PD-L1:CD80 Cis-
Heterodimer triggers the Co-stimulatory receptor CD28
while repressing the inhibitory PD-1 and CTLA-4 pathways,”
Immunity, vol. 51, no. 6, pp. 1059–1073.e9, 2019.

[27] A. Kataki, P. Scheid, M. Piet et al., “Tumor infiltrating
lymphocytes and macrophages have a potential dual role in
lung cancer by supporting both host-defense and tumor
progression,” Journal of Laboratory and Clinical Medicine,
vol. 140, no. 5, pp. 320–328, 2002.

[28] P. Jiang, S. Gu, D. Pan et al., “Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response,” Nat
Med, vol. 24, no. 10, pp. 1550–1558, 2018.

[29] S. Wang, J. Sun, K. Chen et al., “Perspectives of tumor-
infiltrating lymphocyte treatment in solid tumors,” BMC
Med, vol. 19, no. 1, p. 140, 2021.

[30] S. Su, J. Liao, J. Liu et al., “Blocking the recruitment of naive
CD4+ T cells reverses immunosuppression in breast cancer,”
Cell Res, vol. 27, no. 4, pp. 461–482, 2017.

[31] J. Sehouli, C. Loddenkemper, T. Cornu et al., “Epigenetic
quantification of tumor-infiltrating T-lymphocytes,” Epige-
netics, vol. 6, no. 2, pp. 236–246, 2011.

[32] N. P. Iurchenko, N. M. Glushchenko, and L. G. Buchynska,
“Comprehensive analysis of intratumoral lymphocytes and
FOXP3 expression in tumor cells of endometrial cancer,” Exp
Oncol, vol. 36, no. 4, pp. 262–266, 2014.
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Background. We aimed to study the relationship between transcription factor 19 (TCF19) and cancer immunotherapy in the 33
types of human cancers.Methods.�e Cancer Genome Atlas database was analyzed to obtain the gene expression data and clinical
characteristics for the cases of 33 types of cancers. GSE67501, GSE78220, and IMvigor 210 were included in the immunotherapy
cohorts. Relevant data were obtained by analyzing the gene expression database. �e prognostic value of TCF19 was determined
by analyzing various clinical parameters, such as survival duration, age, the stage of the tumor, and sex of the patients. �e single-
sample gene set enrichment analysis method was used to determine the activity of TCF19 and the method was also used to assess
the di�erences between the TCF19 transcriptome and protein levels. �e correlation between TCF19 and various immune
processes and elements such as immunosuppressants, stimulants, and major histocompatibility complexes were analyzed to gain
insights into the role of TCF19. �e coherent paths associated with the process of TCF19 signal transduction and the in�uence of
TCF19 on immunotherapy biomarkers have also been discussed herein. Finally, three independent immunotherapymethods were
used to understand the relationship between TCF19 and immunotherapy response. Results. It was observed that TCF19 was not
signi�cantly in�uenced by the age (5/33), sex (3/33), or tumor stage (3/21) of cancer patients. But the results revealed that TCF19
exhibited a potential prognostic value and could predict the survival rate of the patients. In some cases of this study, the activity
and expression of TCF19 were taken at the same level (7/33). Conclusion. TCF19 is strongly related to immune cell in�ltration,
immunomodulators, and immunotherapy markers. Our study demonstrated that high expression levels of TCF19 are strongly
linked with the immune-related pathways. Nevertheless, it is noteworthy that TCF19 is not signi�cantly associated with im-
munotherapy response.

1. Introduction

�e renal tumor is one of the most common tumors in
urology. Results from the statistical analysis conducted with
the data associated with cancer revealed that renal tumors
ranked second in terms of incidence of urinary system
malignant tumors in China [1]. Clear cell renal cell carci-
noma (ccRCC) is themajor pathological type of renal cancer,
which accounts for 70–80% of the cancers in urology. �e
annual percentage of increase in the rate of incidence is 3%
in Europe and in the United States [2]. CcRCC is

characterized as an aggressive tumor and approximately
one-third of the patients su�ering from ccRCC were di-
agnosed while tumor metastasis already occurred [3]. Cel-
lular molecular-targeted therapy is the most e�ective
method of treating metastatic ccRCC as patients su�ering
from kidney cancer do not respond to radiotherapy and
chemotherapy. �e European Urology Association (EUA)
and the United States National Comprehensive Cancer
Network (NCCN) recommended the molecular-targeted
drugs as the �rst and second-line medicine for metastatic
ccRCC [4, 5]. �e prognostic factors of ccRCC include
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histological factors, tumor anatomical factors, molecular
factors, and clinical factors. Among these, currently known
molecular markers such as carbonic anhydrase 9, CRP [6, 7] ,
and cabozantinib [8] are not of high prognostic value and
accuracy, and these have not been recommended for clinical
application. At present, there are no universally accepted
and reliable standard predictors for the diagnosis and
prognosis of ccRCC at an early stage. *e exploration of
abnormally expressed genes in ccRCC tissues can potentially
help identify new molecular biomarkers for the diagnosis
and prognosis of ccRCC.

Transcription Factor 19 (TCF19) is a protein-coding
gene that encodes a protein with a PHD-type zinc finger
domain that is involved in transcriptional regulations [9]. At
first, TCF19 was isolated from human, mouse, and hamster
cells and it acts as a growth regulatory molecule [10]. TCF19
is associated with cell growth and regulation by affecting the
G1S phase of the cell cycle. *e genetic coding region of
TCF19 is located on the short arm 6P21.3 of autoch-
romosome 6, with a total length of 5.60KB [11]. TCF19 is
present in almost all human tissues, and its levels of ex-
pression are high in various tumor tissues [12–15]. Although
current studies indicate that TCF19 may be associated with
the progression of various tumors, few mechanisms have
been reported for the role of TCF19 in carcinogenesis and
immune regulation.

*e processes of carcinogenesis and immune regulation
are significantly affected by the physiological effects of TCF19
activation. Since TCF19 is chronically activated, it is highly
expressed in various solid tumors [12–15] and chronic in-
flammatory tissues [16–18]. *e presence of highly expressed
TCF19 has been found not only in invasive tumor tissues but
also in malignant tumor cell lines. *is potentially indicates
that TCF19 is correlated to the responses of inflammation and
cell cycle progression [11, 16]. *e genes associated with the
TCF family regulate innate immunity and adaptive immunity
[19, 20]. It has been previously reported that TCF1 helps
achieve a balance between the CD8+ Tcells by regulating the
internal IL-10 signaling pathway which in turn influences
immunotherapy [21]. Macrophages, a substantial component
of the innate immune system, are related to the antitumor
immune response in various cancers. It was stated that the
M2 tumor-associated macrophages (TAMs) promote the
processes of tumor progression, recurrence, and distal me-
tastasis [22]. Macrophages are polarized by the stimulation of
transcription factors in the tumor microenvironment by
controlling their antitumor activity and by affecting their
immunotherapy [23, 24]. Our previous study also confirmed
that changes in macrophage polarization play substantial
activities to regulate the inflammatory traumatic urethral
stricture [25] and resistance to chemotherapy and endocrine
therapy in advanced prostate cancer [26]. In general, TCF
family genes significantly influence the immune system and
the state of tumor tissue. Nevertheless, the immunothera-
peutic value of TCF19 in the cases of human cancer has been
rarely studied.

Herein, we described the expression profile of TCF19 in
33 different cancers and studied the potential regulatory
roles of TCF19 for controlling the ccRCC immune

microenvironment. Also, we studied the microsatellite in-
stability (MSI) and tumor mutation burden (TMB) in
ccRCC. Moreover, the association of the expression level of
TCF19 with immune checkpoint blocking therapy was also
investigated. In brief, this research provides data that help
understand the immunotherapeutic role of TCF19 in ccRCC
which may potentially help design various functional
experiments.

2. Methods

(See Figure 1) shows the flowchart of this research.

2.1.DataCollection. *eTCGA database (https://portal.gdc.
cancer.gov/), a robust database, provides information on
cancer genes. *e database includes information on gene
expression profiles, copy number variation (CNV), and
single nucleotide polymorphism (SNP). We downloaded the
mRNA expression and SNP data of 33 tumors for this study.
Also, we downloaded the data from the GTEX database
(https://commonfund.nih.gov/GTEx). Following the merg-
ing with the TCGA data and correction, we identified the
differential expressions for various types of cancers.
Moreover, we downloaded the corresponding tumor cell
lines data from the CCLE database (https://portals.
broadinstitute.org/ccle/), and we investigated the expres-
sion level of the gene in these tumor tissues. Furthermore, we
investigated the significant correlation of this gene with the
stages of tumor progression.

2.2. Association of TCF19 Expression with Clinical Charac-
teristics of 33 Cancers. We downloaded the progression-free
survival (PFS) and overall survival (OS) TCGA data of
patients from the Xena database to evaluate the association
of this gene with the prognosis of the patients. We utilized
the Kaplan–Meier (K-M) method to analyze the survival
curve (P< 0.05) for every cancer type. We employed “sur-
vival” and “SurvMiner” R packages for the survival analysis.
Also, we used “survival” and “forest-plot”R packages for the
Cox analysis to evaluate the interrelation of gene expression
with the magnitude of survival of the patients.

2.3. TCF19 Enrichment Analysis

2.3.1. Gene Set Variation Analysis (GSVA) Enrichment
Analysis. GSVA, a package for the R program, was used to
identify the enrichment of transcriptomic gene sets. GSVA
identifies the changes from the level of the gene to the level of
the pathway. *is is achieved by using the specific gene sets of
biological function. We utilized the Molecular Signatures Da-
tabase (v7.0) for downloading the gene sets. GSVA algorithm
identified the score of each gene set to determine the ability of
changes in biological function within the different samples.

2.3.2. Gene Set Enrichment Analysis (GSEA) Enrichment
Analysis. In the GSEA analysis, we used predefined gene sets
and sequencing gene sets (based on the differential
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expression level between the two types of samples). *is
method identifies whether the predefined gene sets were
significantly enriched in the sequencing table. *e “cluster
profiler” and the “enrich-Plot” packages were used for the
GSEA analysis and for exploring the imaginable mechanisms
at the molecular level for the differential prognosis of different
patients with different tumors.*e differences in the signaling
pathways associated with the high and low gene expression
groups were studied, and the findings were compared.

2.3.3. �e Expression Level of TCF19 Is Correlated with
Immune-Related Factors. RNA-seq data from patients with
different subgroups of 33 cancers were analyzed by using the
CIBERSORT algorithm to understand the content of in-
filtrating immune cells. *is method also identifies the re-
lation of gene expression with the content of immune cells.
Moreover, we used the TISIDB website to identify the re-
lation of gene expression with various immune factors,
including chemokines, immune-stimulators, immune-
suppressants, and MHC molecules.

2.3.4. Correlation Analysis of TCF19 Expression and Tumor
Mutation. *e total number of mutations, including base
substitutions, deletions, and insertions in tumor cells is
called TMB. *e frequency and number of variation/exon
lengths were calculated for every sample tumor, and TMB
was calculated by dividing the nonsynonymous mutation
sites by the total length of the protein-coding region. *e
MSI of every TCGA sample was obtained from the data
presented in previously published reports [27].

2.3.5. Correlation Analysis of TCF19 Expression with Drug
Sensitivity and Immunotherapy Response. *e National
Cancer Institute (NCI) listed the Cellminer database which
contains the information on 60 cancer cells [1]. At present,

the widely used database is the NCI-60 cell line with a broad
range of cancer cell samples and it is used to investigate the
anticancer drugs. In our study, we downloaded the NCI-60
drug sensitivity data and the RNA-seq gene expression data
to evaluate the relations of gene expression with the sen-
sitivity of antitumor drugs. *e correlation analysis method
was utilized to achieve the results. We considered a Pvalue
<0.05 for the statistical threshold.

We analyzed the immunotherapeutic response accord-
ing to the previous method [2]. We used three independent
immunotherapeutic cohorts in our present study. Usually,
immunotherapeutic ways provided four outcomes, in-
cluding complete response (CR), partial response (PR),
progressive disease (PD), and stable disease (SD). We di-
vided the patients into responders and nonresponders.
Patients who had CR or PR signs were categorized as re-
sponders compared to the nonresponders, who had signs of
SD or PD. We utilized the Wilcoxon rank-sum test to in-
vestigate the expression differences of TCF19 between the
responder and the nonresponder groups.

2.3.6. Statistical Analyses. R (version 4.0) was used for all
statistical analyses. We calculated the hazard ratios (HRs)
and 95% confidence intervals followed by applying the
univariate survival analysis model. We applied the K-M
survival analysis to investigate patient survival time. We
divided the patients into the high gene expression level and
the low gene expression level to arrive at the appropriate
results. *e statistical tests were bilateral, and we considered
a Pvalue<0.05 for the statistical threshold.

3. Results

3.1. Results of the Analysis of TCF19 Expression and Clinical
Correlation in 33 Cancers. We analyzed the expression level
of TCF19 in 33 types of human cancers using the data

Clinical correlation
in 33 human cancers

Immune mechanism
in Renal Clear cell carcinoma

Immunotherapeutic
response

Drug sensitivity correlation
in renal clear cell carcinoma

Age

MHC molecules
Estimate score
Immune cells infilatration based on CIBERSORT
Immune inhibitors
Microsatellite instability
Tumor mutation burden
Immune stimulatore

IMvigor210 cohort
GSE67501
GSE78220

Relevant signaling pathways (GSVA and GSEA)

Stage
Gender

Survival
Tomor and normal

TCF19 in Renal
Renal Clear cell carcinoma

Figure 1: *e flowchart of the study. Firstly, the expression of TCF19 is investigated within the different ages, stages, genders, and tissues,
then the GSEA is utilized to explore the relevant immune signaling pathways based on the expression level of TCF19. Secondly, we apply the
univariate Cox regression model and the Wilcoxon test between the nonresponder and responder groups of the immunotherapeutic
response cohort to identify the survival association. Finally, we perform the drug sensitivity correlation with TCF19 expression in renal clear
cell carcinoma.
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presented in the TCGA and GTEX datasets. Table 1 pre-
sented the full names of the 33 cancer types utilized in this
comprehensive study. *e high levels of expression of the
gene were observed in 27 types of carcinomas, including
ACC, BLCA, BRCA, CHOL, CESC, COAD, ESCA, GBM,
HNSC, KIRC, LAML, LGG, LIHC, LUAD, LUSC, OV,
PCPG, PAAD, PRAD, READ, SARC, SKCM, STAD,
TCGT, THCA, UCEC, and UCS (Figure 2(a)). TCF19
expression levels in most normal tissues were lower than
that in cancer cells. In the CCLE expression profile of
various cell lines, the expression level of TCF19 is illus-
trated in figure 2(b). Moreover, we found that TCF19
expression was related to the stages of various tumors, such
as ACC, BRCA, TGCT, KICH, KIRC, and LIHC (Figure 3).
*is work studied the correlation between the expression
levels of TCF19 and survival prognosis in patients suffering
from cancer. We found that the expression level of TCF19
was closely associated with the OS of patients in 14 different
types of cancers (such as KIRC, ACC, KICH, KIRP, LAML,
THYM, LGG, HNSC, LIHC, MESO, PRAD, SKCM, UVM,
and PAAD; Figure 4(a)). In addition, the results from the
KM-curve survival analysis suggested that the highly
expressed TCF19 was correlated with poor OS in 13 types of
malignant cancers, including ACC, BRCA, KICH, LIHC,
GBM, SKCM, KIRC, KIRP, LGG, LUAD, PAAD, PCPG,
and MESO (Supplementary Figure 1). *e expression level
of TCF19 was closely linked with PFI in 12 cancer types,
including PAAD, ACC, MESO, KICH, LIHC, PCPG,
PRAD, LGG, SARC, THCA, KIRC, UCEC, and other tu-
mors (Figure 4(b)). *e K-M curve analysis for survival
prognosis suggested that a highly expressed group of
TCF19 was associated with a shorter PFI in 10 kinds of
malignant cancers (such as UCEC, ACC, KICH, PAAD,
KIRC, LGG, LIHC, PCPG, PRAD, and THCA; Supple-
mentary Figure 2).

A nomogram prediction model was constructed using
the TCF19 expression level and the clinical features. *e
results obtained from regression analysis were displayed in
the form of alignment charts. Variables such as gender, age,
tumor stage, and grade were analyzed, and the results were
presented. *e gene correlation column diagram model of
TCF19 of the constructed TCGA-KIRC sample is shown in
Figure 5(a). Correction curves corresponding to the two
periods were generated in the fifth and seventh years. *e
model effect was quite consistent (Figure 5(b)).

3.2. �e TCF19 Expression Is Potentially Associated with
Immune-Associated Factors. Tumor-associated fibroblasts,
extracellular matrix, immune cells, various growth factors,
inflammatory factors (characterized by special physico-
chemical characteristics), cancer cells, etc., are present in the
tumor microenvironment. *e microenvironment signifi-
cantly affects the diagnosis of tumors, survival outcome, and
degree of the response generated toward clinical treatment.
Our findings indicated that the TCF19 expression level was
substantially correlated with the infiltration of immune
factors. TCF19 expression level was significantly related to
the CD4memory-activated cells in 14 kinds of cancers. In 15

kinds of cancers, the TCF19 expression level was signifi-
cantly related to the follicular helper cells, and in the other 14
kinds of cancers the TCF19 expression level were correlated
significantly with the macrophages M1 cell (Figure 6).
Further analysis of the tumor microenvironment in kidney
carcinoma (KIRC) revealed that TCF19 expression level was
significantly related to the various gene set scores including
the CD_8_T effector, TME score A, TME score, DNA
damage response, base excision repair, immune checkpoint,
antigen processing machinery, mismatch repair, nucleotide
excision repair, DNA replication, Pan F TBRs, EMT1, and
EMT2 in kidney carcinoma ().

3.3. GSVA/GSEA Correlation Analysis of TCF19. *e GSVA
scores were determined for all tumors to elucidate the
molecular mechanism associated with the TCF19 gene as-
sociated with pan-cancer. We divided the tumor samples
into two groups based on the higher expression level and the
lower expression levels. *e median value of the gene ex-
pression level in each tumor was utilized for comparison. It
was observed that in the case of kidney carcinoma, highly

Table 1: 33 types of human cancer studied in this research.

Abbreviation Full name
ACC Adrenocortical carcinoma
BLCA Bladder urothelial carcinoma
BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma

CHOL Cholangiocarcinoma
COAD Colon adenocarcinoma
DLBC Lymphoid neoplasm diffuse large B-cell lymphoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme
HNSC Head and neck squamous cell carcinoma
KICH Kidney chromophobe
KIPAN Pan-kidney cohort (KICH+KIRC+KIRP)
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LAML Acute myeloid leukemia
LGG Brain lower grade glioma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
MESO Mesothelioma
OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and paraganglioma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
STAD Stomach adenocarcinoma
SKCM Skin cutaneous melanoma
STES Stomach and esophageal carcinoma
TGCT Testicular germ cell tumors
THCA *yroid carcinoma
THYM *ymoma
UCEC Uterine corpus endometrial carcinoma
UCS Uterine carcinosarcoma
UVM Uveal melanoma
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expressed TCF19 genes were primarily associated with some
specific pathways such as interferon alpha response, E2F
targets, allograft rejection, IL-6-JAK-STAT3 signaling, in-
terferon gamma response, and G2M checkpoint
(Figure 8(a)–8(c)). Results from the GSEA analyses of
TCF19 and kidney carcinoma are presented in Figures 8(d)–
8(f).

3.4. Correlation Analysis of TCF19 Expression with Tumor
Mutations and Gene Regulation. *e study further con-
structed the WGCNA net based on the KIRC expression
profile for exploring the coexpression network linked with
TCF19 in pan-cancer. *e clustering chart of patients is
shown in Supplementary Figure 3. We utilized the “soft
power Estimate” function in the WGCNA package to
identify the soft threshold β value and the value of β is set to
12. We detected 17 gene modules using the Tom matrix.
*ese are black (298), blue (519), brown (446), cyan (357),
green (354), green yellow (489), grey (3788), grey60 (82),
light cyan (129), light green (74), light yellow (57), night blue
(155), pink (449), purple (230), red (308), turquoise (1822),
and yellow (443) (Supplementary Figure 3). *e modules
and traits were further analyzed, and it was found that the

maximum correlation was observed for the ME green yellow
module (COR� 0.35, P � (5E-19)) (Supplementary Fig-
ure 3).*e coexpression analysis method was further used to
explore the relationship between the level of TCF19 ex-
pression and 33 tumor immune-related genes. *e analyzed
genes included genes associated with MHC, immune acti-
vator, chemokine receptor proteins, immunosuppressor,
and chemokine. It was observed that TCF19 was signifi-
cantly associated with most of the immune-related genes
(Supplementary Figure 4). Moreover, TCF19 was signifi-
cantly associated with the crucial tumor-related marker
genes that controlled the various biological processes, in-
cluding the TGF beta signaling pathway, TNFA signaling,
hypoxia, coking death, repair of DNA, autophagy, and
ferroptosis (Supplementary Figure 5).

*e immunotherapy response was crucially associated
with some biomarkers, including TMB and MSI. We in-
vestigated the relation of TCF19 expression level with TMB
in this study. We revealed that the TCF19 expression level
was significantly correlated with TMB in all tumors, in-
cluding P ACC, CPG, UCEC, SKCM, COAD, PRAD, STAD,
KICH, LIHC, LUAD, and THCA (Figure 9(a)). A significant
difference was observed for MSI in various cancers,
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Figure 2:*e expression of TCF19. (a)*e TCF19 expression level in 33 human cancers using the TCGA combined with GTEx datasets and
(b) the CCLE expression profile revealed that TCF19 is expressed in different tumor cell lines.
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Figure 3: *e correlation analysis of TCF19 with the stage of multiple tumors.
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including UCEC, KIRC, GBM, COAD, BRCA, STAD,
PRAD, and DLBC (Figure 9(b)).

3.5. Correlation Analysis of TCF19 Expression with Drug
Sensitivity and Immunotherapeutic Response. *e effect of
surgery and chemotherapy on the conditions of early-stage
tumors had been widely explored. We investigated the cell
miner database to identify the association of TCF19 ex-
pression level with IC50 values of antitumor drugs. We
revealed that the higher expression level of TCF19 was
correlated with the tolerance level of multiple antitumor
drugs (Supplementary Figure 6). It was observed that TCF19
correlated positively with fludarabine, 6-mercaptopurine,
dexamethasone decadron, nelarabine, and fenretinide. *e
gene negatively correlated with AFP464, trametinib, ami-
noflavone, cobimetinib (isomer 1), palbociclib, and lificguat.

*e dataset corresponding to IMvigor 210 tumor im-
munotherapy was downloaded and 348 patients subjected to
the conditions of PD-L1 therapy (and presenting complete
survival information) were enrolled. *e K-M survival
analysis was used for the studies, and the results revealed that
high TCF19 expression levels reflected the poor prognosis of
patients (figure 5(c)).

4. Discussion

In China, kidney carcinoma is the second-highest malignant
tumor in urology [1]. Approximately 1/3rd of the patients
developed metastatic carcinoma before diagnosis [5]. Ad-
vanced renal clear cell carcinoma showed resistance to the
treatment strategies including radiotherapy and chemo-
therapy. Hence, the cellular and molecular-targeted treat-
ment method is widely used to treat ccRCC. Multiple
guidelines recommend molecular-targeted therapy as the
first and second choice of treatment for metastatic ccRCC
[6, 7]. *erefore, it is important to explore new therapeutic
targets for advanced ccRCC.

At the beginning of the research, we identified the
expression differences of TCF19 in tumor tissues relative to
the normal samples. *e results helped identify the po-
tential immunotherapeutic value of TCF19. TCF19 is
a gene that is associated with cell growth regulation which
primarily regulates the cell cycle and the process of apo-
ptosis. TCF19 was first isolated from mouse, human, and
hamster cells. *e previous report indicated that the TCF19
expression level was higher in various cancerous tissues,
including the liver, colon, rectum, head and neck, lung, and
gastrointestinal tract [12–15]. In this work, TCF19 was
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Figure 4: *e association between TCF19 expression and prognosis of patients with multiple cancers. (a) *e univariate regression model
identifies the association of TCF19 expression with the overall survival (OS) rate in multiple cancer patients and (b) the univariate regression
model identifies the association of TCF19 expression with the progression-free interval (PFI) of patients with multiple cancers.
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highly expressed in ACC, BLCA, KIRC, PRAD, TCGT, and
other urinary system tumors which were under previous
findings. In addition, the results from the K-M survival
investigation suggested that a higher expression level of
TCF19 is significantly associated with a shorter prognosis
of various tumors in both OS and PFI. *ese studies might

suggest that TCF19 is crucially linked with a shorter
prognosis of multiple tumors.

Since TCF19 significantly affects the tumor immune
microenvironment, more studies need to be conducted on
the immune cells, tumor microenvironment, immuno-
modulators, and immunotherapy responses to gain in-depth

0.95
7-year survival Probability

5-year survival Probability

Linear Predictor

Total Points

TCF19

grade

stage

gender

age

Points

0.9 0.8 0.7 0.6 0.30.40.5 0.2 0.1

1.51.5 0.50.5 2.52.5 22 11 0

0.95 0.9

0

1 3

31

1
0

0

2

2

4

4

0

20 40 60

7030

80

3530

302010

25 40

40

45 50

50

55 60

60

65 70

70

75 80

80

85 90

90 100

100 120 140 160 180 200 220 240

0.8 0.7 0.6 0.30.40.5 0.2 0.1

(a)

5-year

0.0

n = 919 d = 327 p = 5, 130 subjects per group
Gray: Ideal

0.0

0.2

0.2

0.4

0.4

0.6
Nomogram-predicted OS (%)

0.6

O
bs

er
ve

d 
O

S 
(%

)

0.8

0.8

1.0

1.0

7-year

x-resampling optimism added, B = 1000
Based on observed-predicted

(b)

0.00

171

177

High

TC
F1

9

TCF19

Low

High
Low

111

112 88

68

74

45

41

25

0

0

0 5 10
Time (Years)

15 20 25

0 5 10
Time (Years)

15 20 25

0.25

0.50

Su
rv

iv
al

 p
ro

ba
bi

lit
y 0.75

1.00

p = 0.0044

(c)

Figure 5: *e TCF19 expression level is associated with the risk and prognosis of patients. (a) It shows the gene correlation column line
graph model for TCF1, (b) it shows the correction curves plotted for two periods of five and seven years, and (c) it shows the Kaplan–Meier
survival analysis plots of TCF19 expression versus patients treated with PD-L1.

8 Journal of Oncology



B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
na

iv
e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng
T 

ce
lls

 C
D

4 
m

em
or

y 
ac

tiv
at

ed
T 

ce
lls

 fo
lli

cu
la

r h
elp

er
T 

ce
lls

 re
gu

lat
or

y 
(T

re
gs

)
T 

ce
lls

 g
am

m
a d

elt
a

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
M

as
t c

el
ls 

re
sti

ng
M

as
t c

el
ls 

ac
tiv

at
ed

Eo
sin

op
hi

ls
N

eu
tro

ph
ils

ns ns
KICH

variable

ns

0.0

0.1

0.2

0.3

va
lu

e

0.4
ns* * *? ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Group

Hexp

Lexp

(a)

ns ns ns

0.0

0.1

0.2

0.3

va
lu

e

0.4
nsns * ***** *******? ns ns ns ns ns ns ns ns ns ns ns

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
na

iv
e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng
T 

ce
lls

 C
D

4 
m

em
or

y 
ac

tiv
at

ed
T 

ce
lls

 fo
lli

cu
la

r h
elp

er
T 

ce
lls

 re
gu

lat
or

y 
(T

re
gs

)
T 

ce
lls

 g
am

m
a d

elt
a

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
M

as
t c

el
ls 

re
sti

ng
M

as
t c

el
ls 

ac
tiv

at
ed

Eo
sin

op
hi

ls
N

eu
tro

ph
ils

variable

KIRP

Group

Hexp

Lexp

(b)

Group

Hexp

Lexp

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
na

iv
e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng
T 

ce
lls

 C
D

4 
m

em
or

y 
ac

tiv
at

ed
T 

ce
lls

 fo
lli

cu
la

r h
elp

er
T 

ce
lls

 re
gu

lat
or

y 
(T

re
gs

)
T 

ce
lls

 g
am

m
a d

elt
a

N
K 

ce
lls

 re
sti

ng
N

K 
ce

lls
 ac

tiv
at

ed
M

on
oc

yt
es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed
M

as
t c

el
ls 

re
sti

ng
M

as
t c

el
ls 

ac
tiv

at
ed

Eo
sin

op
hi

ls
N

eu
tro

ph
ils

KIRC

variable

0.0

0.1

0.2

0.3

va
lu

e

0.4
ns***** * * * * * ****** ******** **** ** *? ns ns ns ns ns ns

(c)

Hexp

Lexp

KIRP

20

10

0

10

Si
gn

at
ur
e_
sc
or
e

20 nsnsns ns** *************** **** ** *nsns ns

TMEcluster

TM
Es
co
re

CD
_8
_T

_e
ffe
ct
or

Im
m
un

e_
Ch

ec
kp

oi
nt

A
nt
ig
en
_p

ro
ce
ss
in
g_
m
ac
hi
ne
ry

TM
Es
co
re
A

M
ism

at
ch
_R

ep
ai
r

N
uc
le
ot
id
e_
ex
ci
sio

n_
re
pa
ir

D
N
A
_d

am
ag
e_
re
sp
on

se

D
N
A
_r
ep
lic
at
io
n

Ba
se
_e
xc
isi
on

_r
ep
ai
r

Pa
n_

F_
TB

Rs

EM
T1

EM
T2

EM
T3

TM
Es
co
re
B

Signature

(d)
KICH

10

0

10

Si
gn

at
ur
e_
sc
or
e

20 nsns ns ns** ****** ******* **** ns nsns ns ns

TM
Es
co
re

CD
_8
_T

_e
ffe
ct
or

Im
m
un

e_
Ch

ec
kp

oi
nt

A
nt
ig
en
_p

ro
ce
ss
in
g_
m
ac
hi
ne
ry

TM
Es
co
re
A

M
ism

at
ch
_R

ep
ai
r

N
uc
le
ot
id
e_
ex
ci
sio

n_
re
pa
ir

D
N
A
_d

am
ag
e_
re
sp
on

se

D
N
A
_r
ep
lic
at
io
n

Ba
se
_e
xc
isi
on

_r
ep
ai
r

Pa
n_

F_
TB

Rs

EM
T1

EM
T2

EM
T3

TM
Es
co
re
B

Signature

Hexp

Lexp

TMEcluster

(e)

KIRC

20

10

0

10

Si
gn

at
ur
e_
sc
or
e

20
******************************** **** *** nsns

TM
Es
co
re

CD
_8
_T

_e
ffe
ct
or

Im
m
un

e_
Ch

ec
kp

oi
nt

A
nt
ig
en
_p

ro
ce
ss
in
g_
m
ac
hi
ne
ry

TM
Es
co
re
A

M
ism

at
ch
_R

ep
ai
r

N
uc
le
ot
id
e_
ex
ci
sio

n_
re
pa
ir

D
N
A
_d

am
ag
e_
re
sp
on

se

D
N
A
_r
ep
lic
at
io
n

Ba
se
_e
xc
isi
on

_r
ep
ai
r

Pa
n_

F_
TB

Rs

EM
T1

EM
T2

EM
T3

TM
Es
co
re
B

Signature

Hexp

Lexp

TMEcluster

(f )

Figure 6: Continued.
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knowledge. *is study aimed to gain insights into the un-
derlying mechanisms associated with the TCF19 gene that
was associated with immune-related factors. 33 types of
human cancers were studied to obtain relevant information.
*is work also aimed to explore the immune-related
mechanisms associated with urinary tumors. *e expres-
sion of TCF19 and clinical characteristics was analyzed, and
the results obtained from COX regression analysis revealed
that TCF19 was a prognostic factor of ccRCC. Correction
curves were generated for the ccRCC patients in the fifth and
seventh years and the consistent model effects were ob-
served. Daniela Ruggiero reported the increased level of
expression of the TCF19 gene in two major histological
subtypes (squamous cell carcinoma (SCC) and lung ade-
nocarcinoma) and revealed that TCF19 promoted the
progression of the cell cycle in NSCLC cells. *is validated
the fact that TCF19 was a therapeutic target [28]. Du WB
reported that TCF19 was significantly upregulated in co-
lorectal cancer and TCF19 was closely related to the pro-
gression of malignancy, distant metastasis, and poor
prognosis of colorectal cancer. So, he speculated that TCF19
could aggravate the malignant progression of CRC [29]. Ji,
Xu, and Miao further reported that TCF19 was highly
expressed in cancer cells associated with head and neck SCC,
liver cancer, and gastric cancer. *ey reported that TCF19
could be potentially correlated with tumor prognosis by
conducting gene assays, K–M survival analysis, and western-
blot tests [12, 13, 15]. It is worth noting that the results of our
research reflected the association of the gene with a sub-
stantial prognosis of these tumors and confirmed the re-
liability of the analytical results obtained. Moreover, the
correlation between TCF19 and the prognosis of ccRCC was
also reported. But now the mechanism involving TCF19 in
the occurrence of ccRCC has not been clearly described. We
may infer that the modulation of the TCF19 activity

associated with ccRCC could potentially help obtain results
that can help improve the therapeutic techniques.

Conventional surgical treatment and radiotherapy and
chemotherapy cannot be effective to treat patients suffering
from late-stage ccRCC. Maybe more research should be
conducted on the gene targets and immune checkpoint
inhibitors associated with pan-cancer as the results can
potentially help predict the prognosis of antitumor immu-
notherapy. *is research studied the relation of TCF19 with
the process of immune cell infiltration for further in-
vestigating the crucial immunotherapeutic potential of
TCF19. *e results revealed that the expression level of
TCF19 significantly correlated with the infiltration of the
immune cells, including CD4 memory T cells, T follicular
helper cells, and M1 macrophages. Analysis of the re-
lationship between tumor microenvironment and KIRC
revealed that KIRC was significantly correlated with some
scores such as TMEscoreA, TMEscore, mismatch repair,
CD8+ T effector, immune checkpoint, antigen processing
machinery, nucleotide excision repair, and DNA damage.
*e scores of the responses, Pan F TBRs, DNA replication,
base excision repair, EMT1, and EMT2 significantly corre-
lated with KIRC. And this study further investigated the
relations of TCF19 with the immune-related genes, in-
cluding genes associated with MHC, immune activator,
immuno-suppressive markers, chemokine, and their re-
ceptor protein. Interestingly, we found that immune-
associated factors were significantly correlated with the
expression level of the TCF19 gene. Our previous study
reported that several immune-prognostic genes influenced
the process of immunotherapy associated with urinary
bladder cancer [30]. Besides, it has been reported that the
regulation of macrophage polarization attenuated the in-
flammatory traumatic urethral stricture in New Zealand
rabbits [25]. Another study recently reported that M2-
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with the infiltration of immune cells in multiple cancers and (g) it indicates the correlation analysis of TCF19 expression with multiple
tumors.

10 Journal of Oncology



tumor-associated macrophages (TAMs) were able to pro-
mote the process of bone metastasis and were able to in-
fluence the chemotherapy and drug resistance ability of the
cells of prostate cancer. *e regulation of the process of
macrophage polarization can influence the effect of im-
munotherapy in patients suffering from prostate cancer [26].
Sen, Yang GH, and Mondal reported that TCF19, a novel
pancreatic islet regulator, regulated the processes of energy
metabolism and stress adaptation associated with the tumor
cells by regulating gluconeogenesis. It was associated with
the inflammatory responses in the beta cells of the pancreas
and the DNA damage response network.*e occurrence and

progression of pan-cancer were also affected [16–18]. It has
been reported recently that TCF19 influences the effect of
immunotherapy in lung cancer through nanotechnology by
regulating the polarity of the tumor-associated macrophages
[31]. *ose results revealed that TCF19 might influence the
process of immunotherapy by regulating the immune-
related genes and the inflammatory cells such as macro-
phages associated with tumor cell immunotherapy.

Furthermore, we observed that two immunotherapy
biomarkers (TMB and MSI) were associated with TCF19 in
various tumors. In general, as the number of somatic mu-
tations in a tumor increase, the ability to generate neo-
antigens increases. It was also observed that the tumor
neoantigen load could be efficiently determined by analyzing
the TMB [32]. MSI is a robust mutant factor phenotype, the
generation of which can be attributed to the presence of
defects in mismatch repairing of DNA. MSI is a crucial
predictor for immunotherapy responses [33]. *is study
showed that TMB andMSI were significantly associated with
the TCF19 expression level in various tumors. However, the
TCF19 expression level was not significantly associated with
immunotherapy responses. Despite all 3 cohorts responded
to antiPD1 therapy. We hypothesized that TCF19 might
influence the extent of the response generated toward im-
munotherapy by targeting the various immune checkpoints.
Also, our study only analyzed 3 relevant cohorts, which
makes it difficult to elucidate the actual immunotherapy
response of TCF19. More relevant immunotherapy cohort
studies should be conducted in the future.

And finally, we followed the gene enrichment analysis to
arrive at the result which revealed that the highly expressed
TCF19 gene was primarily associated with specific pathways
such as E2F, IL6, and G2M. *e E2F and IL6 families are
classical tumor signaling pathways. It has been reported that
they exhibit unique and overlapping properties during the
processes of transcription, proliferation, and apoptosis of
tumor cells [34, 35]. *e results might indicate that TCF19
potentially affects the extent of proliferation, infiltration, and
metastasis realized by regulating multiple classical signaling
pathways.Also, this specific mechanism associated with the
processes needs to be explored further. *e Cellminer
database was analyzed to determine the relationship be-
tween TCF19 and IC50 to explore the correlation between
TCF19 and antitumor drug sensitivity. *e results revealed
that the high level of expression of TCF19 reflected the
tolerance level toward multiple antitumor drugs. *e
factors and mechanisms affecting the sensitivity of anti-
tumor drugs are complex and diverse but results from the
analysis of the K-M survival plot revealed that the higher
expression group of TCF19 was significantly linked with
a shorter prognosis for cancer patients. It was also observed
that TCF19 negatively correlated with the effect of im-
munotherapy.*e results indicated that TCF19 can be used
as a potential indicator of the extent of the response
generated toward renal cancer immunotherapy. Cancer
immunotherapy based on TCF19 can also be explored and
the results can potentially open a new avenue for the
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Figure 7: *e analysis of TCF19 expression and the tumor mi-
croenvironment in the ccRCC.
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development of tumor immunotherapy strategies. For
example, Han [36] predicted the clinical outcome when
patients suffering from lung adenocarcinoma were

subjected to conditions of radiotherapy and immuno-
therapy by analyzing the genetic characteristics of the
B cells. Dai [37] constructed an immune-related gene
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Figure 8: *e results of GSVA analysis of TCF19. (a–c) It shows the GSVA analysis of TCF19 in KIRC, KIRP, and KICH, and (d–f)
represents the GSEA analysis of TCF19 in KIRC, KIRP, and KICH.

12 Journal of Oncology



prognostic index (IRGPI) based on 11 immune-related
genes, which can accurately forecast the immune cell in-
filtrations in the tumor microenvironment of hepatocel-
lular carcinoma and the response generated toward
immunotherapy. Feng Xu [38] studied lung adenocarci-
noma cases and reported that immune-related genes were
independently predicting the poor survival rate of patients.

As per we know, there is a minor number of relevant
researches currently available to explain the functions of
TCF19 in ccRCC. *is study provided valuable information
on how the TCF19 gene participated in cancer immuno-
therapy. *e results also revealed the relationship between
TCF19 and various immune indicators (such as the in-
filtration process of immune cells, immune-modulatory
factors, and the biomarkers of the immune system). *e
obtained data can potentially help understand the

underlying mechanisms associated with TCF19 and the
immune system. Although the correlation between tumor
immunemicroenvironment and TCF19 cannot be applied to
all kinds of tumors, our work revealed the immune effects of
TCF19 on the microenvironment of specific cancer cells
which may potentially help improve the processes of
TCRCC targeting therapy. However, preliminary results
have been reported using various bioinformatics methods.
*erefore, further research should be conducted to un-
derstand how TCF19 influences cancer immunotherapy. In
our next step, we need to extend the existing analysis da-
tabase and mutually authenticate with the existing database.
Authentication should be realized at the molecular, cyto-
logical, and animal levels by conducting experiments to
investigate the relationship between the prognosis of the
patients and the properties of the clinical tumor tissue

BLCA

BRCA***

CESC
GBM

HNSC

KIRCKIRP

LGGLIHC

LUAD*

LUSC

OV

PRAD***

SKCM

STAD* THCA

UCEC***

0.1 0.0 0.1 0.2 0.3

Correlation of NEO

(a)

BLCA
BRCA

CHOL

COAD*
GBM

KIRC

LAML

READ
ESCA

UCS
CESC

THYMKICH***
ACC***

LGG

LIHC**

LUAD***

MESOOV

PAAD

LUSC

STAD***

SKCM***

PRAD***

DLBC

TGCT

HNSC

THCA*

UCEC**

PCPG*

SARC

UVM

KIRP

0.20.0 0.4 0.6 0.8

Correlation of TMB

(b)

ACC

BLCA

BRCA*

CESC

CHOL

COAD*

DLBC*

ESCA

GBM***

HNSC

KICH

KIRC*

KIRP LAML

LGG

LIHC

LUAD

LUSC

MESO

OV

PAAD

PCPG

PRAD***

READ

SARC

SKCM

STAD*** TGCT

THCA

THYM
UCEC***

UCS

UVM

0.2 0.20.0

Correlation of MSI

(c)

Figure 9: *e relationship of TMB and MSI with the TCF19 expression in cancers. (a) Shows the relationship between TCF19 expression
and TMB, (b) indicates the relations of TCF19 expression with MSI, and (c) represents the correlations of TCF19 expression with
Neoantigen.

Journal of Oncology 13



samples. We believe that the results can potentially help for
improving the efficiency of diagnosis, treatment methods,
and survival prognosis of cancer patients.

5. Conclusion

*is is one of the few studies that focus on the immuno-
therapeutic value of TCF19 associated with ccRCC. We
believe that the results reported herein can potentially help
design functional experiments that can help develop the field
of clinical treatment.
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Background. Anlotinib is a novel multitarget tyrosine kinase inhibitor for tumor angiogenesis and has antitumor activity in
a variety of solid tumors. Given that, our study was designed to unearth the mechanism of anlotinib in radioresistant esophageal
cancer (EC) cells. Methods. Radioresistant EC cell lines TE-1R and KYSE-150R were established by multiple fractionated ir-
radiation. Detection of cell proliferation was governed by the MTT assay, angiogenesis by the tube formation assay, and cell
migration and invasion by the transwell assay. Lastly, RT-qPCRWestern blotting was employed to detect the expression of related
genes. Cancerous cells showing tumor growth were then detected by tumor xenografts inmice. Results. Radioresistant EC cell lines
TE-1R and KYSE-150R were successfully established. Anlotinib downregulated EphA2 inhibited proliferation, angiogenesis,
migration, and invasion of radioresistant EC cells in vitro. �e up-regulated expression of EphA2 in both EC cell lines and
radioresistant EC cells, along with anlotinib, in turn, inhibited the expression of EphA2 in radioresistant EC cells. Inhibiting
EphA2 also enhanced anlotinib-mediated e�ects on radioresistant EC cells, so as to restrain cell proliferation, angiogenesis,
migration, and invasion. Correspondingly, overexpression of EphA2 is capable of reversing the therapeutic e�ect of anlotinib on
radioresistant EC cells. Also, anlotinib enhances the inhibitory e�ect of irradiation on mice. Conclusion. It is concluded that
anlotinib inhibits EphA2 expression, thereby suppressing angiogenesis and resensitizing EC cells to radiotherapy, providing
another perspective to overcome radioresistance in EC.

1. Introduction

As a heterogeneous malignancy, esophageal cancer (EC) is
mostly diagnosed in advanced stages and esophageal
squamous cell carcinoma (ESCC) and accounts for most
cases of the disease [1]. Smoking, alcohol consumption,
gastroesophageal re�ux disease, obesity, and diet are com-
mon risk factors for EC [2]. EC is usually asymptomatic in
the early stages, and in advanced disease one may complain
of heartburn unresponsive to medication, unconscious

weight loss, progressive dysphagia, signs of blood loss, chest
pain, and odynophagia [3]. Multimodality approaches such
as endoscopic mucosal resection and endoscopic sub-
mucosal dissection, surgical treatment, neoadjuvant and
adjuvant chemotherapy, as well as concurrent chemo-
radiotherapy have been developed for the treatment of EC
[4]. However, tumor-associated microenvironmental factors
and cellular mechanisms may somehow lead to radio-
resistance [5]. �us, dealing with radioresistance may be
a practical approach to manage EC. Blood vessel
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normalization in tumors could reduce tumor uptake.
Intratumoral accumulation, [6] tumor blood vessel nor-
malization, and ES radiotherapy need further research
studies.

Anlotinib is an orally administered tyrosine kinase in-
hibitor that is designed to inhibit angiogenesis and growth of
tumors [7]. Anlotinib could reduce blood vessel sprout and
microvessel density (MVD), and restrain migration and tube
formation in tumors [8]. In fact, anlotinib has great ther-
apeutic efficacy in treating cancers, such as advanced
nonsmall cell lung cancer (NSCLC), advanced soft tissue
sarcoma, and metastatic renal cell carcinoma [9]. In ESCC, it
has been reported that anlotinib combined with radio-
therapy and chemotherapy has strong antitumor effects on
patient-derivedxenografts-bearing mice [10]. In a clinical
trial, it has been found that anlotinib combined with che-
motherapy could improve the survival of patients with
advanced ESCC [11]. Considering the essence of anlotinib,
tyrosine kinase receptors attracted our attention to de-
termine the mechanism of anlotinib in EC. Belonging to the
tyrosine kinase receptor group, EphA2 is abundantly pro-
duced in tumors and the regulation of EphA2 confers
a potential in managing tumors [12]. EphA2 is a tumor-
associated surface antigen of chimeric antigen receptor used
in the treatment of ESCC [13]. It has been further analyzed
that regulating EphA2 expression mediates vasculogenic
mimicry of EC cells [14]. In ESCC samples after radio-
therapy, the genomic profile of EphA2 is altered and the
absence of mutation of EphA2 confers radioresistance [15].
In endometrial cancer, EphA2 overexpression is positively
correlated with high VEGF expression, which is associated
with angiogenesis and disease-specific survival of patients
[16]. Referring to these reports, we assumed that anlotinib
suppresses radioresistance and tumor angiogenesis of EC
cells through inhibiting EphA2, and it may renew the
mechanism underlying radioresistance in EC and provide
for therapeutic reference.

2. Materials and Methods

2.1. Ethics Statement. Animal experiments were reviewed
and approved by the animal ethics committee of “(e Af-
filiated Huaian No.1 People’s Hospital of Nanjing Medical
University.”

2.2. Cell Culture. Human normal esophageal epithelial cells
(THEECs) and EC cell lines TE-1 and KYSE-150 (ATCC,
VA, USA) were kept in Roswell Park Memorial Institute
(RPMI)-1640 (10% fetal bovine serum [FBS], 100 unit/mL
penicillin, and 100mg/mL streptomycin). (e media were
all provided by Gibco (NY, USA).

2.3. Induction of Radioresistance in EC Cells.
Radioresistant EC cell lines (TE-1R and KYSE-150R) were
induced through multiple fractionated irradiation [17]. TE-1
and KYSE-150 cells (1.5×106 cells) in a culture flask (25 cm2)
were irradiated with 1Gy X-ray, immediately supplemented
with a fresh medium, and were grown to 90% confluence.

(en, cells were cultured in a new culture flask to 50%
confluence and treated with a second irradiation. Totally,
cells were irradiated at 1Gy three times, 2 Gy three times,
and 4Gy three times.

2.4. Colony Formation Assay. A colony formation assay was
utilized to assess the radioresistance of parental and resistant
EC cells. Parental and resistant EC cells in the log phase were
trypsinized and seeded into 100-mm petri dishes. Upon cell
adherence, cells were irradiated with 0, 2, 4, 6, 8, and 10Gy
X-ray, respectively, and were continuously cultured for
12 days to form cell colonies.

2.5.CellTransfection. Cells in the log phase were cultured on
a 6-well plate containing RPMI-1640 (2×105 cells/well).
Cells at 90% confluence were transfected with EphA2-
negative control (CTRL), siRNA-EphA2, or over-
expression (OE)-EphA2 (GenePharma, Shanghai, China)
via Lipofection™ (InivoGene, CA, USA). (ree replicate
wells were set.

2.6. Anlotinib Treatment. Cells were treated with anlotinib
(CTTQ, Jiangsu, China) at 2, 4, and 8 μmol/L, respectively,
for 48 h. A control was established with cells treated with
normal saline [18].

2.7. 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
Bromide (MTT)Assay. Cells were placed in a 96-well plate at
3×103 cells/well. After 48 h, cells were combined with MTT
solution at 20 μL/well (Beyotime, Shanghai, China) for 4 h,
and treated with dimethyl sulfoxide at 100 μL/well. (e D
value at 490 nm was recorded on an automatic microplate
reader (Tecan M200, TECAN, Switzerland).

2.8. Tube Formation Assay. Cells were cultured in a serum-
free medium for 24 h and then in a medium containing 10%
FBS. (en, the supernatant was centrifuged at 1000 r/min
and filtered through a filter (0.22 μm) to obtain the condi-
tioned medium (CM), which was preserved at 4 °C. A
mixture (40 μL) made by the CM and Matrigel (1 :1) was
spread on a 96-well plate overnight and incubated with
human umbilical vein endothelial cell suspension
(1× 105 cells/mL) at 200 μL/well. (e formed tubes were
observed and counted in 4 fields of view under a microscope
(Olympus, Tokyo, Japan) [18].

2.9. Transwell Assay. Cells were prepared into a single cell
suspension with serum-free Dulbecco’s Modified Eagle
Medium (DMEM).(e cell suspension (100 μL, 3×105 cells/
mL) was added to the upper side of the Transwell chamber
(Corning, N.Y., USA). Matrigel (BD Company, NJ, USA)
was used for the invasion assay but not for the migration
assay. (e bottom chamber was supplemented with 10%
FBS-DMEM (600 μL). After 24 h, cells were fixed with 95%
ethanol, stained with crystal violet, and counted under
a microscope.
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2.10. Tumor Xenografts in Nude Mice. Male and female
BALB/c(nu/nu) nude mice (4–6weeks old; 15–18 g) were
provided by Beijing Vital River Laboratory Animal Tech-
nology Co., Ltd. (Beijing, China). Mice were housed in
specific pathogen-free-level animal barriers (18–23°C, hu-
midity 50–60%, 12 h day/night alternate, disinfected food
and water). A week later, the skin on the left back of the mice
was sterilized with ethanol, and the mice were sub-
cutaneously injected with 100 μL of cell suspension
(1× 106 cells/mL) into the back. In the following 2weeks, the
general condition of the mice and the local condition of the
injection site were observed. (e mice were divided into
three groups: KYSE-150R group, KYSE-150R+X-ray group,
and KYSE-150R+Anlotinib +X-ray group. (e mice in the
KYSE-150R+Anlotinib +X-ray group were given anlotinib
at 1.5mg/kg by intragastric administration for 2weeks. (e
mice in the KYSE-150R+X-ray group and KYSE-
150R+Anlotinib +X-ray group were irradiated with 6Gy X-
rays every week. At 4weeks postinjection, the mice were
euthanized, the excised tumors were weighed, and tumor
volume was measured [18].

2.11. Reverse Transcription Quantitative Polymerase Chain
Reaction (RT-qPCR). After extraction of total RNA in tis-
sues and cells by Trizol (Invitrogen, CA, USA), RNA con-
centration was determined with Nanodrop 2000 ((ermo
Fisher Scientific, MA, USA). RNAwas reverse-transcribed to
cDNA using the PrimeScript RT kit (Takara, Kyoto, Japan).
Using the SYBR Premix Ex Taq kit (Tli RNase H Plus) kit
(Takara), real-time PCR was performed on an ABI7500
((ermo Fisher Scientific). EphA2 expression was calculated
by the 2-△△Ct method [16] and normalized to glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH). (e primers
(GenePharma) are shown in Table 1.

2.12. Western Blot Assay. After extraction of protein from
tissues and cells, protein concentration was measured by the
bicinchoninic acid method. (e protein was mixed with
loading buffer at 2 :1 and denatured. After separation by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis,
the protein was transferred to a polyvinylidene fluoride
membrane and combined with primary antibodies EphA2
(1 : 2000, (ermo Fisher Scientific), VEGF (1 : 2000, Abcam),
basic fibroblast growth factor (bFGF; 1 :1000, Abcam), and
GAPDH (1 :1000, Millipore, MA, USA). Afterward, an HRP-
labeled secondary antibody (1 : 5,000, Abcam) reacted with
the membrane which was then developed by enhanced
chemiluminescence. GAPDH was referred to as an internal
control. Target protein expression was calculated by the gray
analysis software.

2.13. Statistical Analysis. Data were assessed with SPSS 21.0
(IBM, NY, USA) and measurement data were expressed as
mean± standard deviation. Measurement data in normal
distribution were compared by the t-test between the two
groups. One-way analysis of variance (ANOVA), followed
by Tukey’s multiple comparisons test was applied to analyze

data among multiple groups. At P< 0.05, statistical signif-
icance was established.

3. Results

3.1. Induction of Radioresistance in EC Cells. Colony for-
mation assay was applied to assess the radioresistance of
parental and radioresistant EC cells. (e outcomes in-
dicated that after irradiation at 0, 2, 4, 6, 8, and 10Gy,
respectively, for 12 days, the number of formed colonies
decreased with the increase in the irradiation dose. Also,
when irradiated at the same dose, the number of colonies of
radioresistant EC cells increased as compared to parental
EC cells. Since the results indicated that radioresistant EC
cells had stronger radioresistance and colony-forming
ability, it was confirmed that radioresistant EC cell lines
TE-1R and KYSE-150R were successfully established
(Figures 1(a)–1(d)).

3.2. Anlotinib Inhibits Proliferation, Angiogenesis, Migration,
and Invasion of Radioresistant EC Cells. Anlotinib has an-
titumor activity in various solid tumors, however, its effect
on the anticancer effect of radiotherapy in EC was unclear at
times. To further explore this issue, we established TE-1R
and KYSE-150R cell lines and treated the cells with different
concentrations of anlotinib (2, 4, and 8 μmol/L). It was found
from the MTT assay that after anlotinib treatment, the
proliferation of TE-1R and KYSE-150R cells was impaired in
a concentration-dependent manner (Figure 2(a)). (e in-
hibitory effect of anlotinib on proliferation was more ef-
fective at 4 μmol/L; therefore, anlotinib at 4 μmol/L was used
for later experiments.

In tube formation and transwell assays, along with the
Western blot assay, we disclosed that after anlotinib treat-
ment, tumor angiogenesis, migration, and invasion of TE-1R
and KYSE-150R cells were inhibited, and protein expression
of angiogenesis-related factors VEGF and bFGF was reduced
(Figures 2(b)–2(e)).

3.3. EphA2 Expression Is Raised in Radioresistant EC Cells.
EphA2, a tyrosine kinase receptor, has been reported to be
upregulated in ESCC [13]. In the present study, we applied
RT-qPCR andWestern blot to measure EphA2 expression in
cells. (e outcome reflected that EphA2 expression was
higher in TE-1 and KYSE-150 cells than in THEECs, and was
higher in TE-1R and KYSE-150R cells than in TE-1 and
KYSE-150 cells (Figures 3(a) and 3(b)). In addition, we also
found that EphA2 was upregulated in EC on the Starbase
website (Figure 3(c)).

3.4. Inhibiting EphA2EnhancesAnlotinib-MediatedEffects on
Radioresistant EC Cells. We utilized RT-qPCR and Western
blot to test EphA2 expression in TE-1R and KYSE-150R cells
and revealed that anlotinib treatment reduced EphA2 ex-
pression (Figure 4(a)). (en, we applied siRNA-EphA2 or
OE-EphA2 to downregulate or upregulate EphA2 expression
in TE-1R and KYSE-150R cells, and we treated these cells
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with anlotinib at 4 μmol/L. Subsequently, the experimental
data from in vitro cell function experiments indicated that
OE-EphA2-mediated the upregulation of EphA2 and re-
versed the inhibitory effect of anlotinib on VEGF and bFGF
protein expression, as well as on proliferation, tumor an-
giogenesis, andmigration, and on invasion abilities of TE-1R
and KYSE-150R cells. By contrast, siRNA-EphA2-induced
downregulation of EphA2 which further enhanced
anlotinib-mediated effects on TE-1R and KYSE-150R cells
(Figures 4(b)–4(f)).

3.5. Downregulating EphA2 Depresses Proliferation, Angio-
genesis, Migration, and Invasion of Radioresistant EC Cells.
Next, we further explored the effect of EphA2 on cells and
transfected siRNA-EphA2 or OE-EphA2 into TE-1R and
KYSE-150R cells. At first, RT-qPCR and Western blot were
employed to verify that EphA2 expression in cells was
successfully downregulated or upregulated by siRNA-
EphA2 or OE-EphA2 (Figure 5(a)). Next, through in vitro
cell function experiments, we noticed that silencing EphA2
reduced proliferation, tumor angiogenesis, migration, and
invasion, as well as VEGF and bFGF protein expression in
cells, while restoring EphA2 had opposite effects
(Figure 5(b)–5(f)).

3.6. Anlotinib Suppresses Growth of Radioresistant ECCells In
Vivo. (e tumor formation rate of 24 nude mice was 100%,
and no natural death occurred during the experiment. For
mice exposed to irradiation, it was recognized that tumor
volume, weight, and EphA2 expression were all suppressed.
(en, further treatment with anlotinib was found to enhance
the inhibitory effects of irradiation on mice (Figures 6(a)–
6(d)).

4. Discussion

Radiation has an established role in definitive, palliative, and
neoadjuvant environments, having a vital effect on the
treatment of local EC [19]. Multiple drugs have been in-
troduced to overcome radioresistance in EC, including
anlotinib. In our research, we have recognized the thera-
peutic efficacy of anlotinib and further disclosed the un-
derlying mechanism of anlotinib by regulating EphA2 in EC.
Collectively, anlotinib inhibited tumor angiogenesis of
radioresistant EC cells by inhibiting EphA2.

To specify the action of anlotinib in radioresistance of
EC, we administrated anlotinib at 4 μmol/L to treat radio-
resistant EC cells and observed its inhibitory impacts on
cellular proliferation, angiogenesis, migration, and invasion,
as well as tumor growth. In a case report, it has been
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Figure 1: Induction of radioresistance in EC cells. (a) Colony-forming ability of TE-1 and TE-1R cells irradiated with different doses,
(b) survival curve of TE-1 and TE-1R cells irradiated with different doses, (c) colony-forming ability of KYSE-150 and KYSE-150R cells
irradiated with different doses, and (d) survival curve of KYSE-150 and KYSE-150R cells irradiated with different doses. ∗P< 0.05 and
∗∗P< 0.01; repetition� 3; the data were expressed in the form of mean± standard deviation and were compared by the t-test.
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observed that administration of anlotinib has a better re-
sponse for the fourth-line therapy and prolongs the overall
survival time of patients with ESCC [11]. In another clinical
trial, it has been noticed that combined administration of
nivolumab and anlotinib as a second-line therapy could
improve the physical condition of the patient with advanced
ESCC [20]. In addition to that, a recent report has high-
lighted that anlotinib and chemoradiotherapy in combina-
tion have the ideal antitumor effect to suppress the process of

ESCC in mice [10]. Besides, a double-blind randomized
phase 2 trial has mentioned that the use of anlotinib has
a great advantage in improving progression-free survival
(PFS) of patients within recurrent and metastatic ESCC [21].
A case report has observed that for ESCC patients with failed
immunotherapy course, their survival is greater than
19months, and the overall patient survival is greater than
32months after a fourth-line therapy (anlotinib combined
with chemotherapy) [11]. Anlotinib combined with
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Figure 2: Anlotinib inhibits proliferation, angiogenesis, migration, and invasion of radioresistant EC cells. (a) (e MTTassay detected cell
proliferation, (b) the tube formation assay detected cell angiogenesis, (c) Western blot detected VEGF and bFGF expression in cells, (d) the
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concurrent chemoradiotherapy improves the clinical effi-
cacy and safety of locally advanced ESCC patients [22]. Not
only limited to EC but treatment with anlotinib works ac-
tively in other cancer types. For instance, treatment with
anlotinib in thyroid cancer cells causes impairments in cell
viability and migration in vitro and tumor growth in vivo
[23]. Moreover, some studies have emerged on the regu-
latory mechanism of anlotinib in suppressing tumorigenesis.
It is revealed that anlotinib could limit lung cancer cells to
proliferate, invade, and migrate and can limit tumor growth
by blocking the mitogen-activated protein kinase/extracel-
lular signal-regulated kinase (ERK) pathway [24]. Other
than that, anlotinib-induced inhibition of proliferation,
migration, invasion, and tube formation, as well as tu-
morigenicity in vivo is recognized in colorectal cancer
through suppressing the AKT/ERK pathway [18]. Our study

also mentioned that anlotinib also exhibited great effects on
promoting the efficacy of radiotherapy in EC. Consistently, it
is noted that in the setting of lung cancer, the synergism of
radiotherapy and anlotinib is more effective to suppress cell
proliferation and tumor cell growth than the administration
of anlotinib alone [25]. Overall, anlotinib is a promising drug
for managing the process of cancer and improving the
survival of cancer patients; moreover, anlotinib and radio-
therapy synergistically function to control the tumorigenic
activities of malignant cells.

Next, we studied that EphA2 was upregulated in EC cell
lines and radioresistant EC cells, and further validated that
anlotinib suppressed EphA2 expression in radioresistant EC
cells. Subsequently, we performed cell function assays and
finally uncovered that upregulating EphA2 enhanced the
proliferation, invasion, migration, and angiogenesis of
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Figure 4: Inhibiting EphA2 enhances anlotinib-mediated effects on radioresistant EC cells. (a) RT-qPCR andWestern blot detected EphA2
expression in cells, (b) the MTT assay detected cell proliferation, (c) the tube formation assay detected cell angiogenesis, (d) Western blot
detected VEGF and bFGF expression in cells, (e) the transwell assay detected cell migration, and (f) the transwell assay detected cell invasion.
∗P< 0.05 and ∗∗P< 0.01; repetition ∗, ∗∗� 3; the data were expressed in the form of mean± standard deviation and compared by one-way
ANOVA and Tukey’s multiple comparisons tests.
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Figure 5: Continued.
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radioresistant EC cells. On the contrary, downregulating
EphA2 had opposite effects. Deeply, we analyzed the syn-
ergism of EphA2 and anlotinib and revealed that inhibiting
EphA2 strengthened the effects of anlotinib on radio-
resistant EC cells. In fact, phosphotyrosine profiling has
indicated that EphA2 expression is raised in ESCC, and
knocking down EphA2 could decrease the proliferation and

invasion of malignant cells [26]. Other researchers have also
identified the role of EphA2 in various tumors. For example,
EphA2 expression is elevated in small-cell lung cancer, and
suppression of EphA2 has the ability to restrain cell pro-
liferation [27]. Concerning the regulatory role of EphA2 in
cancer radioresistance, it has been described that blocking
EphA2 could suppress the radioresistance of NSCLC cells, as
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Figure 5: Downregulating EphA2 depresses proliferation, angiogenesis, migration, and invasion of radioresistant EC cells. (a) RT-qPCR
andWestern blot detected EphA2 expression in cells, (b) the MTTassay detected cell proliferation, (c) the tube formation assay detected cell
angiogenesis, (d) Western blot detected VEGF and bFGF expression in cells, (e) the transwell assay detected cell migration, and (f) the
transwell assay detected cell invasion. ∗P< 0.05 and ∗∗P< 0.01; ∗, ∗∗repetition� 3; the data were expressed in the form of mean± standard
deviation and compared by one-way ANOVA and Tukey’s multiple comparisons tests.
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Figure 6: Anlotinib suppresses the growth of radioresistant EC cells in vivo. (a) Representative images of tumors, (b) tumor volume in nude
mice, (c) tumor weight in nude mice, and (d) RT-qPCR andWestern blot detected EphA2 expression in tumors of nude mice. ∗P< 0.05 and
∗∗P< 0.01; ∗, ∗∗n� 5; the data were expressed in the form of mean± standard deviation and compared by one-way ANOVA and Tukey’s
multiple comparisons tests.
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well as the migration, proliferation, and invasion of ma-
lignant cells [28]. It is known that miR-200c-induced ra-
diosensitivity, as well as invasion, migration, and tube
formation reduction, is associated with EphA2 down-
regulation in human cancer cells [29]. VEGF and bFGF are
both proangiogenic factors [30]. Regarding the molecular
mechanism of VEGF and bFGF inhibition by EphA2, there
are studies explaining that EphA2 is involved in the p38
MAPK/VEGF pathway [31, 32] and EphA2 promotes bFGF
expression by activating the AKT signaling pathway [33],
suggesting that EphA2 may positively regulate the expres-
sion of VEGF and bFGF through the p38 MAPK and AKT
pathways.

5. Conclusion

(e research concludes in a manner that it provides a novel
perspective on the regulatory mechanism of anlotinib in EC,
and delineates that anlotinib could circumstantially inhibit
EphA2 expression, thus suppressing angiogenesis and
resensitizing EC cells to radiotherapy. However, our study is
at the preclinical level, and many efforts are required to
develop the results in clinics. [34].
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*is research was developed to explore the clinical characteristics and related risk factors of postoperative recurrence and
malignant transformation of low-grade glioma (LGG). *e subjects were rolled into observation group (19 cases) and control
group (51 cases) according to recurrence and malignant transformation during the follow-up period. *e clinical data of the two
groups were compared, and the risk factors of recurrence andmalignant transformation were analyzed with the time of recurrence
and malignant transformation as independent variables. *e experimental results showed that the proportion of patients aged
over 45 years in the observation group (63.16%) was higher than that in the control group (50.98%). *e proportion of pre-
operative functional status score (KPS) ≥80 in the observation group (68.42%) was lower than that in the control group (78.43%).
*e proportion of patients with tumor over 5 cm in the control group (27.45%) was lower than that in the observation group
(52.63%), and the proportion of total resection of tumor in the control group (47.06%) was higher than that in the observation
group (21.05%). Furthermore, the multivariate analysis showed that preoperative KPS score, preoperative duration of disease,
resection scope, postoperative treatment, oncotesticular antigen (OY-TES-1) mRNA, P53, mouse double microbody amplification
gene (MDM2), vascular endothelial growth factor (VEGF), and epidermal growth factor receptor (EGFR) were independent risk
factors (all P< 0.05). In summary, patients with postoperative recurrence and malignant transformation had poorer physical
condition and higher degree of malignancy before surgery. Preoperative KPS score, duration of disease, surgical resection scope,
postoperative treatment, OY-TES-1 mRNA, P53, MDM2, VEGF, and EGFR were the risk factors.

1. Introduction

Intracranial tumors are classified into primary and sec-
ondary types according to their specific causes. Tumor types
are also different in different age groups. For younger
children, intracranial tumors mainly occur in the posterior
fossa and midline. For adults, it is mainly a glioma of the
cerebral hemisphere [1]. *e cerebral hemisphere is part of
the brain that controls movement, language, and emotion.
Gliomas occur in the cerebral hemisphere and can cause
headaches, nausea, vomiting, seizures, and limb movement

disorders. Glioma, as a primary intracranial tumor, has
a high recurrence rate and fatality rate [2]. At present, the
main clinical diagnosis methods are skull CT and nuclear
magnetic examination. Existing studies suggested that gli-
oma, as a malignant tumor, is mainly formed by inter-
mutations between astrocytes, oligodendrocytes, ependymal
cells, and neurons [3]. According to statistics, there are more
male patients than female patients, and the age of patients is
generally younger. *e growth of mesenchymal tumors is
usually slow, and the time from onset of symptoms to
medical treatment is usually several weeks to several months
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and a few years. In addition, glioma has the possibility of
metastasizing to other parts of the body [4], and the me-
tastasis path generally occurs through the subarachnoid
space, blood, and lymphatic system. *e first is through the
subarachnoid space. Medulloblastoma among gliomas is
easily transplanted along the subarachnoid space and may
induce tube meningiomas and intraorbital tumors. To avoid
this kind of metastasis, it is necessary to have whole-brain or
spinal cord radiation therapy after surgery. *e second path
of metastasizing the tumor is blood transfer. *e most
common way gliomas metastasize is through blood, through
which patients can develop lung, breast, and skin cancers,
and this route of metastasis is very difficult to prevent. *e
third way is metastasis through the lymphatic system. Gli-
oma can also metastasize through the lymphatic system, and
tumors may enter specific organs or parts of the body along
the lymphatic space around spinal nerves or cranial nerves to
induce diseases [5]. Because all parts of the body are lym-
phatic, this metastasis is very harmful to the body. To
prevent lymphatic system metastasis, patients must actively
take countermeasures after the occurrence of disease.

Gliomas include low-grade glioma (LGG) and high-
grade glioma (HGG) according to their clinical character-
istics and degree of malignancy [6]. LGG patients have slow
disease progression and good postoperative prognosis. Al-
though there is a possibility of recurrence, the overall
chances of recurrence are less. HGGs develop rapidly, and
relapse occurs in a short period of time after surgery [7].
Clinically, both intraoperative and postoperative images
accurately showed that the tumor was removed, and then the
tumor grew at the original site again, which was called
recurrence [8]. However, recurrence is rare for LGG, and the
main clinical findings are incomplete surgical resection and
a small amount of residual tissue. Intraoperative neglect and
postoperative image reflection are not obvious, with a small
residual site, and continued growth leads to a second op-
eration [9]. *e tumor has an indistinct border with the
surrounding brain tissue or is located in important func-
tional areas. *is tumor was conservatively excised for fear
of damaging the surrounding functional areas. Some tumors
are deep and have a poor surgical field of vision, resulting in
residue. *ere are also large tumors that are left intra-
operatively for different reasons, and these residues can also
cause recurrence. *erefore, regular follow-up and even
chemotherapy and radiotherapy are recommended to re-
duce the risk of recurrence. In addition, even though the
postoperative prognosis of ground-based glioma is good,
malignant transformation (MTF) also occurs in some pa-
tients [10]. MTF refers to LGG progression to World Health
Organization (WHO) grade III or IV tumor [11]. According
to the literature, the incidence of LGG MTF is 23–72%, and
the median time of MTF is 2.7–5.4 years [12]. For patients
with LGG, craniotomy under general anesthesia is often
used for treatment. According to the patient’s situation,
maximum tumor resection or total tumor resection can be
selected. However, due to the characteristics of diffuse
growth, recurrence may occur after surgery, so postoperative

radiotherapy and chemotherapy are generally used [13]. In
addition, after surgical treatment, physical therapy, speech
therapy, and other rehabilitation treatments can be carried
out to avoid disease recurrence and prolong the survival time
of patients. Since LGG can also be a high-grade glioma with
MTF grade III or IV in the course of disease, regular dy-
namic follow-up observation is required even after surgery
[14, 15].

Although LGG has a relatively good prognosis after
surgery, there will be a certain possibility of recurrence and
MTF if it is not prevented after surgery. If advanced glioma
develops, it will pose a serious threat to the survival of
patients. *erefore, understanding the postoperative re-
currence of LGG and the clinical characteristics of MTF and
grasping the related factors causing recurrence andMTF can
prejudge the postoperative situation of patients to avoid the
occurrence of such phenomena. In this experiment, the
patients with LGG were followed up after surgery, the re-
currence and MTF time of patients with recurrence and
MTF were recorded, and the basic information of patients
without progression of the disease was compared to obtain
the clinical characteristics of patients with recurrence and
MTF.*e existing research data were reviewed to determine
the relevant factors affecting the progression of the patient’s
disease and were included in the study scope to explore the
risk factors related to relapse and MTF among the relevant
factors. *e above experiments are expected to provide
a reference for the clinical prevention of postoperative re-
currence and MTF in LGG patients.

2. Materials and Methods

2.1. Research Objects. Seventy patients who received LGG
surgery in the Neurosurgery Department of the First Affili-
ated Hospital of Kunming Medical University from 2019 to
2021 were selected as the study subjects. *ere were 49 males
and 21 females, ranging from 30 to 70 years old, with an
average age of 42.7± 11.5 years. According to the diagnostic
criteria of recurrence and malignant transformation, a total of
19 patients showed recurrence andmalignant transformation,
and the rate of recurrence and malignant transformation was
27.14%. According to the progress of postoperative disease,
patients without postoperative disease changes were set as the
control group, and patients with postoperative recurrence and
malignant transformation were set as the observation group.
*is study had been approved by the Medical Ethics Com-
mittee of the First Affiliated Hospital of Kunming Medical
University. Patients and their families understood the re-
search content andmethods and agreed to sign corresponding
informed consent forms.

Inclusion criteria were as follows: (i) pathological di-
agnosis of LGG; (ii) patients aged ≥18 years; (iii) patients
with complete clinical data.

Exclusion criteria were as follows: (i) patients with other
tumors; (ii) patients with liver and kidney dysfunction; (iii)
patients unwilling to cooperate with the whole follow-up
process.
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2.2. Research Methods. General information (sex, age, and
preoperative physical status score), preoperative epilepsy
and preoperative duration, tumor status (tumor size and
tumor location), and related surgical treatment information
(resection scope) of 70 patients who met the criteria were
collected before surgery. Related protein levels after the
operation, including proliferating cell nuclear antigen
(PCNA), matrix metalloproteinase 9 (MMP-9), cancer
testicular antigen OY-TES-1 protein, OY-TES-mRNA
protein expression, P53, mouse double microsomal ampli-
fied gene MDM2, vascular endothelial growth factor
(VEGF), and epidermal growth factor receptor (EGFR),
were detected. Methods of treatment (chemotherapy, ra-
diotherapy, and radiotherapy + chemotherapy), post-
operative Karnofsky Performance Scale (KPS) score,
epilepsy, and other conditions were analyzed. After that,
patients were followed up. During the follow-up, patients’
postoperative recovery was known by phone or text message,
and the recurrence time of patients with recurrence and
MTF was counted. Based on the above information, the
clinical characteristics of patients with recurrence and MTF
were analyzed, and the risk factors for recurrence and MTF
were analyzed with the time of recurrence and MTF as
independent variables. *e related technical route or data
collection of the research participants and concluding re-
ports is shown in Figure 1.

2.3. Relative Protein Detection. *e immunohistochemical
streptomycin biotin-peroxidase method (SP) and poly-
merase chain reaction (PCR) were used to determine the
expression of related proteins (Figure 2).

2.4. Observation Indicators. General data of the patients,
including sex, age, preoperative KPS score, preoperative
duration of disease, postoperative KPS score, and post-
operative epilepsy, were collected.

Tumor conditions, such as tumor size and tumor lo-
cation, were recorded.

Surgical treatment information, such as surgical re-
section scope and postoperative treatment, was collected.

Protein levels, including PCNA, MMP-9, OY-TES-1,
OY-TES-mRNA, P53, MDM2, VEGF, and EGFR, were
detected.

2.5. Statistical Methods. SPSS 22.0 was used for statistical
analysis of the study. Measurement data were indicated as
the mean± standard deviation. *e X2 (Chi-square) test was
used for comparisons between groups, the Kaplan–Meier
method was used for univariate analysis, and Cox regression
analysis was used for multivariate analysis. P< 0.05 was
considered statistically significant.

3. Results

3.1. General Information. *e comparison of general data
between the observation group and the control group
showed that there were statistically significant differences in

age, preoperative KPS score, and preoperative epilepsy be-
tween the two groups, P< 0.05. *e proportion of patients
aged over 45 years in the observation group was 63.16%, and
that in the control group was 50.98%. *e proportion of
patients aged over 45 years in the observation group was
higher than that in the control group. Of those with a pre-
operative KPS score ≥80, the observation group accounted
for 68.42%, the control group accounted for 78.43%, and that
of the observation group was less than that of the control
group. *e proportion of patients with epilepsy before
surgery was 15.79% in the observation group and 35.29% in
the control group, which was smaller in the observation
group than that in the control group. *e details are shown
in Table 1.

3.2. Tumor Size and Location. *e tumor size difference
between the observation group and the control group was
statistically significant, P< 0.05. *e proportion of patients
with tumor over 5 cm was 27.45% in the control group and
52.63% in the observation group, which was larger in the
observation group than that in the control group.*e details
are shown in Table 2.

3.3.Comparisonof SurgicalResectionRangeandPostoperative
Treatment. *e surgical resection range and postoperative
treatment were compared between the two groups, and the
differences were remarkable, P< 0.05. Total resection
accounted for 47.06% in the Ctrl group and 21.05% in the
Obs group, which was smaller in the Obs group than that in
the Ctrl group. *e proportion of patients receiving ra-
diotherapy plus chemotherapy after surgery in the Ctrl
group was 41.18%, and that in the Obs group was 15.79%,
which was smaller in the Obs group than that in the Ctrl
group (Table 3).

3.4. Relative Protein Expression. *e positive expression of
each protein was compared between the observation group
and the control group, and the difference was statistically
significant (all P< 0.05). *e proportion of patients with
positive PCNA expression was 37.25% in the control group
and 94.74% in the observation group, which was smaller in
the control group than that in the observation group. *e
proportion of MMP-9 positive patients was 15.69% in the
control group and 100% in the observation group, which was
smaller in the control group than that in the observation
group. *e proportion of patients with positive OY-TES-1
expression was 29.41% in the control group and 42.11% in
the observation group, which was smaller in the control
group than that in the observation group. *e proportion of
patients with positive OY-TES-mRNA expression was
33.33% in the control group and 47.37% in the observation
group, which was smaller in the control group than that in
the observation group. *e proportion of patients with
positive P53 expression was 49.02% in the control group and
89.47% in the observation group, which was smaller in the
control group than that in the observation group. *e
proportion of MDM2 positive patients was 52.94% in the

Journal of Oncology 3



RE
TR
AC
TE
D

control group and 78.95% in the observation group, which
was smaller in the control group than that in the observation
group. *e proportion of patients with positive VEGF ex-
pression was 33.33% in the control group and 57.89% in the
observation group, which was smaller in the control group
than that in the observation group. *e proportion of pa-
tients with positive EGFR expression was 60.78% in the
control group and 89.47% in the observation group, which

was smaller in the control group than that in the observation
group. *e details are shown in Table 4 and Figure 3.

3.5. Risk Factor Analysis. Univariate analysis showed that
preoperative KPS score, preoperative duration of disease,
surgical resection scope, postoperative treatment, and ex-
pression of PCNA, OY-TES-1, OY-TES-mRNA, P53,
MDM2, VEGF, and EGFR proteins were all related to

Draw conclusions, conclude reports

Using the time of recurrence and
malignant transformation as a non-

independent variable, the risk factors of
recurrence and malignant

transformation were analyzed

Comparative analysis of clinical
characteristics of patients with

recurrence and malignant
transformation

The postoperative recovery status of patients is
known by phone or text message, and the

recurrence time is counted for patients with
recurrence and malignant transformation.

Postoperative follow-up

The general information of 70 patients who
met the criteria (patient's gender, age,

preoperative physical condition score),
whether there was epilepsy before surgery

and preoperative duration of disease),
tumor conditions (tumor size, tumor

location) and related surgery were
collected before surgery. Treatment
Information (Extent of Resection)

Postoperative related protein expression (proliferating
cell nuclear antigen PCNA expression, matrix

metalloproteinase 9 MMP-9 expression, cancer testis
antigen OY-TES-1 protein expression, OY-TES-mRNA

protein expression, P53, mouse double microsome
amplification Gene MDM2, vascular endothelial growth
factor VEGF, epidermal growth factor receptor EGFR)
and treatment methods (chemotherapy, radiotherapy,
radiotherapy + chemotherapy), postoperative physical
status score (KPS) and whether there is epilepsy and

other conditions are statistically analyzed

70 patients with low-grade glioma

Figure 1: Technical route for data collection of the research participants and concluding reports.
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OY-TEs-1 protein expression and OY.
TEs-1 mRNA expression

DAB-H2O2 color development, 
hematoxylin counterstaining, neutral gum

mounting. Each time, PBS was used
instead of primary antibody as a negative

control.

Rinse with PBS for 5 min between each
step, 3 times in a row.

The secondary antibody was incubated at
room temperature for 20 min, and then

horseradishase-labeled streptomycin was
added dropwise

Antigen microwave retrieval, drop
primary antibody Incubate overnight at

4°C and add dropwise

SP immunohistochemistry
PCR method

RNA extraction kit (Beijing Tiangen
Biotechnology Co., Ltd.) polymerase chain
reaction (PCR) kit, 5×TBE electrophoresis

buffer as the main reagents

Detected by PcR method and
immunohistochemical staining

technique.

Detection method

Figure 2: Related protein expression detection process through PCR and SP immunohistochemistry methods.

Table 1: Comparison of general data between the two groups.

Information Ctrl group (n� 51) Obs group (n� 19) X2 P
Sex

0.098 0.867Male 35 14
Female 16 5

Age
5.465 0.026≤45 25 7

>45 26 12
Preoperative KPS score

7.836 0.013<80 11 6
≥80 40 13

Preoperative epilepsy
4 0.024Yes 18 3

No 33 16
Preoperative duration of disease (month)

0.113 0.076≤3 14 5
3–6 27 7
>6 10 7

Journal of Oncology 5
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recurrence and MTF in Obs group, all P< 0.05. Sex, age,
tumor site, tumor size, postoperative KPS score, and post-
operative epilepsy were not associated with recurrence or
MTF (P> 0.05). *e details of single factor analysis in the
observation group are shown in Table 5. Cox regression
analysis of P< 0.05 in univariate analysis showed that pre-
operative KPS score, preoperative duration of disease, surgical
resection scope, postoperative treatment, and expression of
OY-TES-mRNA, P53, MDM2, VEGF, and EGFR proteins
were independent risk factors affecting recurrence and MTF,
all P< 0.05. *e details of the multifactor analysis of relapse
and malignant transformation are shown in Table 6.

4. Discussion

Glioma is a tumor disease in neurosurgery. *e most
common clinical manifestation is tumor growth to a certain
extent. It can cause obvious symptoms of high cranial
pressure, which mainly manifest as headache, vomiting, and
blurred vision. Other manifestations and secondary glioma
growth areas have very large relations. If glioma grows in the
motor area, it can cause contralateral limb activity obstacles.
If glioma grows in the optic nerve, it can cause vision
problems, tending to develop glioma in the cortex. If it
involves the cortex, it can cause epilepsy [16]. *e survival
time of a patient with glioma mainly depends on the
treatment, degree of malignancy of the tumor, and patient
constitution. LGG refers to malignant LGG of the brain [17].
Generally, astrocytoma and oligodendroglioma have a good
prognosis for LGG [18]. For LGG patients, craniotomy
under general anesthesia is often used for treatment, and
maximum tumor resection or total tumor resection is se-
lected according to the patient’s situation. Due to its
characteristics of diffuse growth, there is a possibility of
recurrence and MTF after surgery, so postoperative radio-
therapy and chemotherapy are generally used [16]. In ad-
dition, after surgical treatment, physical therapy, speech
therapy, and other rehabilitation treatments can be carried
out to avoid disease recurrence and prolong the survival time
of patients. LGG usually includes grade I gliomas and grade
II gliomas. Grade I gliomas have low proliferative potential,
are relatively confined, and can be cured by surgical re-
section. Grade II gliomas generally refer to invasive growth,
which is characterized by low proliferative activity and a low
degree of malignancy. However, if the degree of resection is
insufficient, residual lesions will relapse and even develop
into high-grade lesions, thus affecting life [6, 19]. Generally,
LGG is more commonly seen in well-differentiated diffuse
astrocytoma, also known as low-grade diffuse astrocytoma.
*e onset age is 30–40 years, and there are more males than
females. In addition, CT neuroimaging examination shows
low-density lesions with unclear inner edges of the brain,
obvious enhancement, or cystic changes. MRI will display
a relatively low signal in T1 and a relatively high space-
occupying lesion in T2 [20]. Patients with LGG receive
comprehensive treatment based on surgical resection, thus
providing the possibility of long-term and high-quality
survival. For some cases of relapse and MTF after treat-
ment of glioma, this consideration is due to the following
reasons.*e first is environmental. If patients continue to go
to places with high radiation levels after glioma treatment,
the tumor cells will mutate again, and the disease will recede.
*e second is improper postcare. Care after glioma treat-
ment is critical, and if the care is not appropriate, it is very
easy to cause disease recurrence and malignant change. *e
third is that the operation excision is not clean. *e post-
operative progression of glioma may be caused by unclean
surgical resection. *e shape and location of glioma vary
from person to person. *e tumor location of some patients
is special, and there may be many tissues or blood vessels
around it. In this case, it is difficult to remove the tumor, and
only part of the tumor may be removed, but not completely.

Table 2: Comparison of tumor-related conditions between the two
groups.

Type
Group

X2 P
Ctrl group Obs group

Tumor site
Cerebral hemisphere 38 13 0.223 0.572Others 13 6
Tumor size (cm)
≤5 37 9 5.184 0.037>5 14 10

Table 3: Surgical resection range and postoperative treatment
comparison between the two groups.

Type
Group

X2 PCtrl
group

Obs
group

Surgical resection range
Total resection 24 4

6.962 0.021Subtotal resection 15 7
Local total resection 12 8
Postoperative treatment
Radiation therapy 14 9

5.134 0.028Chemotherapy 16 7
Radiotherapy + chemotherapy 21 3

Table 4: Positive comparison of related protein expression between
the two groups.

Type
Group

X2 PCtrl group
(n� 51)

Obs group
(n� 19)

PCNA 19 (37.25%) 18 (94.74%) 4.596 0.035
MMP-9 8 (15.69%) 19 (100%) 6.812 0.005
OY-TES-1 15 (29.41%) 8 (42.11%) 3.563 0.041
OY-TES-1
mRNA 17 (33.33%) 9 (47.37%) 5.977 0.022

P53 25 (49.02%) 17 (89.47%) 9.856 0.001
MDM2 27 (52.94%) 15 (78.95%) 7.263 0.030
VEGF 17 (33.33%) 11 (57.89%) 5.160 0.017
EGFR 31 (60.78%) 17 (89.47%) 4.035 0.039
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*is kind of glioma that is not completely resected needs
adjuvant therapy after surgery to control tumor regrowth
[21, 22]. If there is no postoperative adjuvant therapy, then
the probability of glioma recurrence and MTF is very large.
People who are susceptible to this disease in daily life are
mainly the following: (i) people who have been infected with
cytomegalovirus are more likely to suffer from this disease,
but there is no conclusion at present; (ii) people with familial
genetic factors are more prone to this disease; and (iii)
people with long-term exposure to ionizing radiation are
more likely to experience glioma. For example, they often
use mobile phones and computers for a long time [23].

LGG patients can live up to 30 years if treated promptly.
However, according to the current overall treatment results,
it is still difficult to cure. According to statistics, the 5-year
and 10-year survival rates of LGG patients are 60% and 35%,
respectively, while the median survival period of LGG is
between 8 and 10 years [24]. *erefore, understanding the
clinical characteristics of postoperative recurrence and
malignant transformation of LGG and grasping the related
factors causing recurrence and malignant transformation
can prejudge the postoperative situation of patients so as to
avoid the occurrence of disease progression and reduce the
survival time of patients. In this experiment, LGG patients

a1 a2 b1 b2

c1 c2 d

1 2 3 4 5 6

e1 e2 f1 f2

h2h1g1 g2

Figure 3: Expression of related proteins in primary, recurrent, and malignant transformed gliomas (SP400×). Note: a1, a2, b1, b2, c1, c2, e1,
e2, f1, f2, g1, g2, and h1, h2 are the levels of PCNA, MMP-9, OY-TES-1, P53, MDM2, VEGF, and EGFR in primary and malignant
transforming gliomas, respectively. d is the positive expression of OY-TES-1 mRNA, where 1 is DNAmarker, 2 is testicular cDNA (positive
control), 3 is positive expression of OY-TES-1 mRNA in primary glioma tissues, and 4–6 are positive expression of OY-TES-1 mRNA in
recurrent and MTF glioma tissues.
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Table 5: Single factor analysis of recurrence and malignant transformation in the Obs group.

Type Cases of recurrence
and malignant transformation

Mean time to
recurrence and malignant
transformation (months)

t P

Sex
Male 14 21.69± 2.13

−0.081c 0.987Female 5 23.56± 1.58
Age
≤45 7 24.23± 2.54

−0.795 0.524>45 12 21.77± 2.36
Preoperative KPS score
<80 6 15.02± 2.13 4.846 0.046≥80 13 22.67± 2.61

Preoperative duration of disease (month)
≤3 5 15.13± 1.54

4.563 0.0033–6 7 13.61± 2.99
>6 7 9.75± 3.32

Tumor site
Half of the brain 13 19.86± 2.31 0.522 0.087Others 6 14.12± 2.04

Tumor size (cm)
≤5 9 23.75± 3.46 0.565 0.325>5 10 20.91± 2.78

Surgical resection range
Total resection 4 20.05± 2.06

11.042 0.036Subtotal resection 7 18.47± 2.35
Local total resection 8 13.32± 2.89

Postoperative KPS score
<80 8 10.02± 2.54 0.786 0.261≥80 11 12.58± 2.96

Preoperative epilepsy
Yes 3 12.35± 1.86 0.092 0.872No 16 10.78± 2.05

Postoperative treatment
Radiation therapy 9 9.56± 2.16

3.746 0.023Chemotherapy 7 10.48± 1.88
Radiotherapy + chemotherapy 3 13.59± 2.04

PCNA expression
Negative 1 14.12± 2.84

3.976 0.031Positive 11 11.04± 3.10
Strong positive 7 8.67± 2.55

MMP-9 expression
Positive 8 12.83± 3.56 0.495 0.043Strong positive 11 9.86± 3.28

OY-TES-1 protein expression
Negative 11 20.62± 2.43 3.562 <0.001Positive 8 27.54± 2.61

OY-TES-1 mRNA protein expression
Negative 10 19.85± 2.79 3.336 <0.001Positive 9 26.93± 3.15

P53
Negative 2 23.41± 2.09 2.875 0.003Positive 17 11.26± 2.54

MDM2
Negative 4 22.43± 3.24 3.594 0.026Positive 15 16.68± 3.38

VEGF
Negative 8 19.64± 3.08 3.119 0.009Positive 11 15.44± 2.61
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were followed up after surgery, and the time of recurrence
and malignant transformation of patients with recurrence
and malignant transformation was recorded. Moreover, the
basic information of patients without progression of disease
was compared so as to obtain the clinical characteristics of
patients with recurrence and malignant transformation. By
referring to existing research data, the relevant factors af-
fecting the progression of patients’ disease were determined
and included in the research scope, and the risk factors
related to relapse and malignant transformation among the
relevant factors were explored. *e experimental results
showed that the proportion of patients aged over 45 years in
the observation group was 63.16%, and that in the control
group was 50.98%. *e proportion of patients aged over
45 years in the observation group was larger than that in the
control group. It indicates that older patients are vulnerable
to disease recurrence and malignant transformation due to
the decline of autoimmune function and metabolic ability
after surgery. KPS score is also known as the tumor patient
quality of life score. Patients with a score greater than 80
performed well in all physical indicators [25]. In this ex-
periment, the proportion of patients with preoperative KPS
score ≥80 in the observation group was 68.42%, and that in
the control group was 78.43%, which was smaller in the
control group than that in the observation group. It indicates
that patients with malignant progression of postoperative
disease are mostly patients with poor physical condition
before surgery. *e proportion of patients with epilepsy
before surgery was 15.79% in the observation group and
35.29% in the control group, which was smaller in the
observation group than that in the control group. It was
found that the mechanism of epilepsy induced by glioma
may be that the invasive tumor cells change the excitability
of the surrounding normal neurons, making them the
pacemakers of seizures. However, the destructive effect of

malignant tumors on peripheral neurons and their axons
obstructs the occurrence and transmission of epilepsy [26,
27]. In addition, patients with tumor over 5 cm accounted
for 27.45% in the control group and 52.63% in the obser-
vation group, which was larger in the observation group than
that in the control group. *e malignant degree of disease
was higher in patients with disease progression after op-
eration. *e total resection accounted for 47.06% in the
control group and 21.05% in the observation group, which
was smaller in the observation group than that in the control
group. Meanwhile, the postoperative radiotherapy plus
chemotherapy accounted for 41.18% in the control group
and 15.79% in the observation group, which was smaller in
the observation group than that in the control group. *ese
results indicate that the patients with disease progression
after surgery were mostly patients with incomplete surgical
resection and single postoperative adjuvant therapy. Tumor
markers can indicate the existence and growth of tumors,
and monitoring tumor markers can help judge the treatment
effect, prognosis, recurrence, and metastasis [28]. Pro-
liferating cell nuclear antigen (PCNA) was first identified
and named by Miyachi in 1978 in sera from patients with
systemic lupus erythematosus (SLE). In the scholar’s study,
PCNA was found to be closely related to cell DNA synthesis
and played an important role in the initiation of cell pro-
liferation, which was a good indicator of cell proliferation
status.*erefore, PCNA research has been very hot in recent
years, especially in the field of cancer. In this experiment, the
proportion of patients with positive PCNA expression was
37.25% in the control group and 94.74% in the observation
group, which was smaller in the control group than that in
the observation group. MMP-9 is an enzyme belonging to
the zinc-metalloproteinase family. In this study, the pro-
portion of MMP-9 positive patients was 15.69% in the
control group and 100% in the observation group, which was

Table 6: Multifactor analysis of relapse and malignant transformation.

Item Parameter estimates *e standard deviation Wald X2 P
Preoperative KPS score 0.650 0.361 6.489 0.032
Preoperative duration of disease 1.269 0.359 5.419 0.027
Surgical resection range 0.631 0.204 9.206 0.003
Postoperative treatment 0.725 0.435 4.086 0.041
PCNA 1.123 0.608 3.564 0.065
OY-TES-1 1.232 0.713 3.385 0.078
OY-TES-1 mRNA 0.657 0.579 4.513 0.034
P53 0.656 0.198 7.897 0.006
MDM2 0.631 0.294 6.261 0.003
VEGF 1.104 0.328 4.266 0.020
EGFR 0.827 0.211 9.581 0.004

Table 5: Continued.

Type Cases of recurrence
and malignant transformation

Mean time to
recurrence and malignant
transformation (months)

t P

EGFR
Negative 2 20.15± 2.87 2.967 0.043Positive 17 13.47± 2.64
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smaller in the control group than that in the observation
group. As a tumor marker, the expression of cancer tes-
ticular antigen OY-TES-1 mRNA was generally low in
normal tissues and high in cancer lesion tissues. In this
study, the proportion of patients with positive OY-
TES-mRNA expression was 33.33% in the control group and
47.37% in the observation group, which was smaller in the
control group than that in the observation group. Since its
discovery in 1979, P53 has been a focus of oncology research.
P53 is a tumor suppressor gene, and P53 mutations occur in
many tumors, so it is common to see reports of immuno-
histochemical staining of P53 in tumors. In this study, the
proportion of patients with positive P53 expression was
49.02% in the control group and 89.47% in the observation
group, which was smaller in the control group than that in
the observation group. MDM2 has been found to be am-
plified and expressed in a variety of tumors and can coadjust
with P53 tumor suppressor gene to promote tumor for-
mation and development. In this study, the proportion of
MDM2-positive patients was 52.94% in the control group
and 78.95% in the observation group, which was smaller in
the control group than that in the observation group. EGFR,
which plays an important role in physiological processes
such as cell growth, proliferation, and differentiation, is
overexpressed in a variety of solid tumors. VEGF plays an
important role in angiogenesis, invasion, and metastasis of
various tumors. In this study, the proportion of patients with
positive VEGF expression was 33.33% in the control group
and 57.89% in the observation group, which was smaller in
the control group than that in the observation group. *e
proportion of patients with positive EGFR expression was
60.78% in the control group and 89.47% in the observation
group, which was smaller in the control group than that in
the observation group. *e above protein expression results
indicate that patients with postoperative recurrence and
malignant transformation also have a higher positive rate of
related tumor markers. Furthermore, the single factor
analysis of the related factors causing the progression of
postoperative disease showed that preoperative KPS score,
preoperative duration of disease, surgical resection scope,
postoperative treatment, and PCNA, OY-TES-1, OY-TES-
mRNA, P53, MDM2, VEGF, and EGFR protein expression
were all related to recurrence and malignant transformation
(all P< 0.05). Multivariate analysis showed that preoperative
KPS score, preoperative duration of disease, surgical re-
section scope, postoperative treatment, and expression of
OY-TES-mRNA, P53, MDM2, VEGF, and EGFR proteins
were independent risk factors affecting recurrence and
malignant transformation (all P< 0.05).

5. Conclusion

*e clinical characteristics of postoperative recurrence and
MTF in LGG patients were older patients, lower pre-
operative KPS score, larger tumor, incomplete surgical re-
section, single postoperative treatment, and higher
preoperative malignancy. Independent risk factors included
preoperative KPS score, preoperative duration of disease,
surgical resection scope, postoperative treatment, and

expression of OY-TES-mRNA, P53, MDM2, VEGF, and
EGFR proteins.
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Background.  is study aimed to explore the relationships between the sex-determining region on Y (SRY) box transcription
factor 17 (SOX17), Cyclin D1, vascular endothelial cadherin (VE-cadherin), and vasculogenic mimicry (VM) in the occurrence
and development of esophageal squamous cell carcinoma (ESCC). Methods.  e expressions of SOX17, Cyclin D1, and VE-
cadherin, as well as VM, in tissues, were determined using immunohistochemistry. SOX17, Cyclin D1, and VE-cadherinmRNA in
ESCC and their corresponding adjacent normal tissues were quanti�ed using quantitative reverse transcription polymerase chain
reaction analysis. Cell invasion, migration, and proliferation were determined after the silencing of VE-cadherin. SOX17, Cyclin
D1, and VE-cadherin protein were quanti�ed usingWestern blotting. Results.  e expression levels of SOX17, Cyclin D1, and VE-
cadherin signi�cantly correlated with the clinical characteristics of ESCC. After the VE-cadherin silencing, cell invasion, mi-
gration, and proliferation decreased, along with the Cyclin D1 levels, while the SOX17 levels increased. Conclusion. SOX17, Cyclin
D1, and VE-cadherin are involved in the development of ESCC.

1. Introduction

 e incidence of esophageal cancer (EC) has been steadily
increasing year by year, making EC the sixth most common
cause of cancer-related death in the world [1].  e incidence
and mortality of EC in China remain high [2], with 90% of
cases being esophageal squamous cell carcinoma (ESCC) [3].
However, the process of tumorigenesis in EC remains
unclear.

 e growth of a solid tumor depends on its vascularity
[4]. Anti-angiogenic therapies are designed to target vascular
endothelial cells and prevent the formation of tumor blood

vessels [4]. VM is a recently identi�ed tumor microcircu-
lation model that is independent of the organism’s endo-
thelial cells; its growth model is completely di�erent from
the classical tumor vascular growth model [5]. VE-cadherin
is a speci�c transmembrane adhesion protein found on the
surface of vascular endothelial cells. It maintains the in-
tegrity of vessels and promotes adhesion between the ad-
jacent endothelial cells [6, 7]. Recent studies have shown that
the overexpression of VE-cadherin may be an important
regulatory mechanism for VM [4, 8].

In the early 1990s, the discovery of the sex-determining
region of the Y (SRY) gene led to the identi�cation of the
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SRY-related box (SOX) transcription factors [9, 10]. )ese
factors often have pleiotropic functions that can lead to the
activation of alternate transcriptional programs [11–13].
SOX17, first cloned from cDNA libraries of mouse testicular
tissue, was found to have a stage-specific function in
spermatogenesis [14]. Later, SOX17 was found to have anti-
proliferative effects in endometrial cancer by suppressing the
transcription of Notch effector mastermind-like 3, a co-
activator of β-catenin [15]. In a colonic carcinoma model,
SOX17 antagonizes β-catenin signaling by redirecting
β-catenin away from Wnt target genes and by depleting its
protein levels via the glycogen synthase kinase-3β (GSK3β)
independent promotion of its proteasomal degradation [16].
In structure-function analysis, SOX17 was found to be
inactivated in colon cancer [17], lung cancer [18], and he-
patocellular carcinoma.

Cyclin D1 protein is a type of cyclin encoded by a gene
located on human chromosome 11q13. It has a molecular
weight of approximately 120 kDa and contains 295 amino
acids [19]. Cyclin D1 forms cyclin D1-CDK4 or cyclin D1-
CDK6 complexes by binding to CDK4 or CDK6. )ese
complexes phosphorylate the key substrate Rb gene, which
leads to the release of the transcription factor E2F bound to
Rb, thereby regulating and accelerating the process of G1 to
S phase transition. )is transition enhances deoxy-
ribonucleic acid (DNA) transcription, shortens the cell cycle,
and promotes cell proliferation [20]. Studies have reported
that cells overexpressing Cyclin D1 continue to proliferate
even in the absence of a growth factor, indicating that Cyclin
D1 is a proto-oncogene [21]. Multiple studies have shown
that the abnormal expression of Cyclin D1 protein is the first
stage in the development of a number of malignant tumors
[22, 23].

We previously reported the involvement of VE-cadherin
in VM formation. In addition, tumor cells with a VM
structure were found to be separated from the lumen by only
one layer of periodic acid-Schiff (PAS) positive substance
[24]. However, the exact mechanism in ESCC remains
unclear. Whether SOX17 participates in the formation of
VM in ESCC is not yet known. )e aim of this experimental
study was to observe the effect of VE-cadherin silencing via
small interfering ribonucleic acid (siRNA) interference on
the expression of SOX17 and Cyclin D1 in ESCC and the
corresponding impact on the invasion and metastasis
of ESCC.

2. Materials and Methods

In this study, tissue samples from 210 patients with ESCC, 60
patients with normal esophageal mucosa, and 60 patients
with esophageal squamous epithelial dysplasia or squamous
cell carcinoma (SCC) in situ were collected from the First
Affiliated Hospital of Bengbu Medical College between
January 2014 and December 2015 (Anhui, China). )e tissue
samples of ESCC were obtained from surgical specimens.
None of the patients with ESCC included in this study had
received chemotherapy or radiotherapy before the surgery.
Among the specimens of ESCC, 169 were obtained from
males, and 41 were obtained from females; there were 86

ulcer types, 89 cases medullary types, 22 mushroom types,
and 13 constricted types; 28 cases were well differentiated;
139 cases were moderately differentiated; and 43 cases were
poorly differentiated; with regard to tumor location, 19 cases
were in the upper segment, 97 cases in the middle segment,
and 94 cases in the lower segment; in terms of tumor di-
ameter, there were 110 cases of <3.5 cm and 100 cases of
≥3.5 cm; with respect to infiltration depth, 132 cases broke
through the serosal layer, while 78 cases did not; 80 cases had
lymph node metastasis, while 130 cases had none; and re-
garding the pathological tumor, node, and metastasis
(pTNM) stage, 145 cases were in stages I and II, while 65
cases were in stages III and IV. Additionally, fresh saline
tissue samples of ESCC and adjacent normal tissues were
collected from 10 patients between August 2019 and De-
cember 2019 from our hospital (Anhui, China). )ese
samples were immediately placed in liquid nitrogen for later
use in western blot analysis. For detection of mRNA levels,
the fresh tissues were immersed in RNA store solution
(TIANGEN, Beijing, China) in the ratio of 1:10 and stored in
liquid nitrogen at 4°C overnight.

2.1. Immunohistochemistry. )eparaffin-embedded samples
were sectioned into 3 μm-thick slices. After dewaxing and
debenzenization, limonic acid high-pressure antigen repair,
anti-SOX17 antibody (dilution ratio 1:150, AB224637,
Abcam, USA), anti-Cyclin D1 antibody (dilution ratio 1:300,
ab40754, Abcam, USA), anti-VE-cadherin antibody (di-
lution ratio 1:200, AF6265, Affinity Biosciences, USA), and
CD34 (dilution ratio 1:250, AB110643, Abcam, USA) were
added one by one. Diaminobenzidine (DAB) color was
added to the treated slices.

In the SOX17- and Cyclin D1-positive cells, granular
brownish yellow staining was seen in the nucleus, while the
VE-cadherin-positive cells showed granular brownish yel-
low staining of the cell membrane and cytoplasm. )e
staining results included the proportion of positive cells and
staining intensity [25]. )e proportion of positive cells refers
to the percentage of positive cells among the total observed
cells of the same species: 0 (≤10%), 1 point (11–25%), 2
points (26–50%), 3 points (51–75%), and 4 points (>75%).
Staining intensity was graded as 0, 1, 2, and 3 points for no
staining, light yellow, brownish yellow, and tan yellow
staining, respectively. )e points for the percentage of
positive cells and the staining intensity were multiplied, and
the mean value was calculated to decide the staining results
as follows: 0–3 was considered negative, and 4–12 was taken
as positive.

For all CD34-stained immunohistochemical sections,
DAB color development was performed, and the color
development reaction was stopped by washing with flowing
water for 1min. )e cells were rinsed with water for 2min
and then stained with PAS for 15–30min. )e cells were
rinsed with distilled water three times, for 1min each time.
VM was detected by the presence of tumor cells around the
PAS-positive and CD34-negative tubes with few necrotic
tumor cells and inflammatory cells infiltrating the sur-
rounding tissues and the absence of red blood cells in the
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lumen of the tubes. Endothelium-lined normal vessels were
identified by the presence of CD34-positive endothelial cells
in their wall.

2.2. Cell Lines and Cell Culture. )e human ESCC cell lines
EC9706 and Eca109 were grown in Dulbecco’s Modified
Eagle’s Medium (Hyclone, USA), supplemented with 10%
fetal bovine serum (FBS; Gibco, USA) in 5% CO2 at 37°C.
)e cell lines were divided into three groups: the untrans-
fected group, the control siRNA group, and the VE-cadherin
siRNA group. In the control group, the EC9706 and Eca109
cells were not treated, and in the control siRNA group, the
EC9706 and Eca109 cells were infected with an empty
plasmid. In the VE-cadherin siRNA group, the EC9706 and
Eca109 cells were infected with a lentivirus encoding pre-
cursor VE-cadherin or vector and treated with puromycin
for two weeks to obtain stably-transfected cells.

2.3. siRNA Transfection. )e EC9706 and Eca109 cells were
seeded into six-well plates and transfected with VE-cadherin
siRNA and negative control (NC, GenePharma, China)
using Lipofectamine 2000 (Invitrogen, USA), in accordance
with the manufacturer’s instructions. )e VE-cadherin
siRNA was as follows: forward: CCAUUGUGCAAGUCC
ACACAUTT and reverse: AUGUGGACUUGCACAAUG
GTT.)e cells were subjected to analysis, as described in the
“Results” section.

2.4.WesternBlotting. An appropriate amount (250–500mg)
of fresh tissue was immersed in 1ml of strong radio-
immunoprecipitation assay (RIPA) buffer containing phe-
nylmethylsulfonyl fluoride (PMSF). An electric
homogenizer was used to produce the homogenate. )e
samples were collected after the addition of lysis buffer and
placed on ice for cracking for 20–30min. )en centrifu-
gation was performed at 12,000 rpm for 10min. )e ESCC
cells were lysed in RIPA buffer with proteinase inhibitors.
)e protein concentrations were quantified using a bicin-
choninic acid assay kit (Beyotime Biotechnology, China).
Subsequently, the proteins were isolated by sodium.

Dodecyl sulfate-polyacrylamide gel electrophoresis and
transferred onto polyvinylidene fluoride membranes (Mil-
lipore, USA). )e membranes were incubated in 5% nonfat
milk and immunoblotted with the following antibodies:
anti-SOX17 antibody (diluted 1:500, AB224637, Abcam,
USA), anti-Cyclin D1 antibody (diluted 1:1,000, ab40754,
Abcam, USA), anti-VE-cadherin antibody (diluted 1:1,000,
AF6265, Affinity Biosciences, USA), and anti-β-actin
antibody (Cell Signaling Technology, USA).

2.5. Quantitative Real-Time PCR. Trizol (Invitrogen, USA)
was used to extract mRNA from the ESCC tissues or cells,
and the extracted mRNA samples were reversely transcribed
into cDNA templates. Quantitative real-time PCR was
performed using an ABI7900 System with SYBR Green (SG;
TaKaRa, China). )e primers were as follows: Cyclin D1
forward: TGTGCATCTACACCGACAACTC, Cyclin D1

reverse: TGGAAATGAACTTCACATCTGTG; SOX17 for-
ward: GGTTTTTGTTGCTGTTG, SOX17 reverse AACTTG
GAAATAGGGTTTTGAC;VE-cadherin forward: TAC-
CAGCCAAGTTGTGA, VE-cadherin reverse: GCCGTG
TTATCGTGATTATCC; and β-actin forward: 5′-CTGGGC
TACACTGAGCACC,β-actin reverse: AAGTGGTCGTTG
AGGGCAATG.

2.6. Wound Healing Assays. Two cell lines were seeded
overnight in six-well plates followed by transfection with
VE-cadherin siRNA or negative control (NC) siRNA. When
the cells reached greater than 90% confluency, the tip of
a pipette was used to make a wound, and the detached cells
were rinsed away with phosphate-buffered saline (PBS).
Images of the scratches were taken at 0 h and 24 h.

2.7. MTT Assay. )e ESCC cell lines were seeded overnight
into 96-well plates at 5×103 cells per well. Subsequently, the
cells were transfected with VE-cadherin siRNA for 72 h. Cell
viability was measured by MTT assay, as described
previously [26].

2.8. Transwell Migration and Invasion Assay. Cell migration
and invasion were evaluated by transwell assay, as previously
described [27]. Briefly, the transfected ESCC cells were
seeded in 24-well plates with 8 µm-pore-size chamber inserts
(Corning, USA). )e upper chambers were coated with
Matrigel (BD Biosciences, USA) before cell seeding. After
incubation for 48 h, the invading and migrating cells on the
bottom surface of each chamber were stained with Giemsa
solution and photographed. )e migrating cells were then
counted into5random fields for quantification.

2.9. StatisticalAnalyses. )e continuous and categorical data
are presented as mean± standard deviation and frequency
(percentage). Comparisons of quantitative data between two
and multiple groups were conducted with a Student’s t-test
and one-way analysis of variance, respectively, using
GraphPad Prism 8.0. Kaplan–Meier curves with log-rank
tests were used for univariate overall survival (OS) analysis.
Cox regression models were used for multivariate OS
analysis. )e differences were considered to be statistically
significant if P< 0.05.

3. Results

3.1. �e Association of SOX17, Cyclin D1, VE-Cadherin Ex-
pression, and VM with the Clinical Characteristics of ESCC.
)e positivity rates for SOX17 expression in the normal
esophageal mucosa, esophageal squamous epithelial dys-
plasia, or SCC in situ and ESCC samples were 83.3% (50/60),
60% (36/60), and 41.4% (87/210), respectively, and the
difference was statistically significant (P< 0.05). )ere was
no significant correlation between SOX17 protein expres-
sion and clinicopathological characteristics such as gender,
age, or tumor location (P> 0.05). SOX17 protein expression
showed inverse correlations with tumor size, grade of
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differentiation, depth of invasion, and pTNM stage. )e rate
of SOX17 expression was lower among cases with lymph
node metastasis than among those without lymph node
metastasis (P< 0.05). )e positivity rates for Cyclin D1
expression in the normal esophageal mucosa, esophageal
squamous epithelial dysplasia or SCC in situ, and ESCC
samples were 25.0% (15/60), 50.0% (30/60), and 67.6% (68/
210), respectively, and the difference was statistically sig-
nificant (P< 0.05). )e Cyclin D1 expression rate showed
positive correlations with the tumor size, depth of in-
filtration, lymph node metastasis, and pTNM stage of the
ESCC (P< 0.05). )e positivity rates for VE-cadherin ex-
pression in the normal esophageal mucosa, esophageal
squamous epithelial dysplasia or SCC in situ, and ESCC
samples were 3.3% (2/60), 16.7% (10/60), and 51.9% (109/
210), respectively, and the difference was statistically sig-
nificant (P< 0.05). )e rate of VE-cadherin protein ex-
pression in the ESCC was significantly higher than in the
normal esophageal mucosa (51.9% vs. 3.3%, P< 0.05).
Moreover, VE-cadherin protein expression showed no
correlation with patient age and gender. VE-cadherin
protein expression was positively correlated with tumor
size, grade of differentiation, lymph node metastasis, pTNM
stage, and depth of infiltration of the ESCC (P< 0.05). And
the endothelium-lined normal vessels were identified by the
presence of CD34-positive endothelial cells in their wall; the
results showed positive staining of normal blood vessels. )e
positive rate of VM in the ESCCwas 50% (105/210), while no
VM was found in the esophageal squamous epithelial
dysplasia, SCC in situ, or the normal esophageal mucosa.
VM positivity was not correlated with gender, age, tumor
location, or histological grade (P< 0.05), but it did correlate
with tumor size, gross type, infiltration depth, LNM, and
pTNM stage (P< 0.05). )e above results are summarized in
Table 1 and Figures 1(a)–1(h).

3.2. Correlation Analysis. On the one hand, Spearman
correlation analysis revealed that SOX17 expression in the
ESCC was negatively correlated with Cyclin D1 expression
(rs� −0.451), VE-cadherin expression (rs� −0.487), and VM
(rs� −0.609, all P< 0.001; Table 2). On the other hand,
Cyclin D1 expression was positively correlated with VE-
cadherin expression (rs� 0.556) and VM (rs� 0.448,
P< 0.001; Table 2). VE-cadherin expression also showed
a positive correlation with VM (rs� 0.715, P< 0.001;
Table 2).

3.3. Survival Analysis. )e five-year OS rate in the ESCC
group was 37.1% (78/210). )e OS of patients with SOX17
expression was significantly better than that of patients
without SOX17 expression (P< 0.001; Table 3, Figure 2(a)).
)e OS of patients with Cyclin D1 expression, VE-cadherin
expression, and VM was, however, significantly lower than
that of patients negative for these factors (P< 0.001; Table 3,
Figures 2(b)–2(d)).

On Cox regression model analysis, various factors, such
as gender, age, tumor type, tumor location, tumor diameter,
histological grade, lymph nodemetastasis, depth of invasion,

pTNM stage, VM, SOX17 expression, Cyclin D1 expression,
and VE-cadherin expression, were identified as prognostic
factors. It was found that the expression of SOX17, Cyclin
D1, VE-cadherin, and VM were independent risk factors
affecting the long-term prognosis of ESCC patients (Table 4).

3.4. �e Comparison of SOX17, Cyclin D1, and VE-Cadherin
Protein Levels and mRNA Levels in Fresh ESCC and Adjacent
Tissue Samples. In fresh samples from 10 ESCC patients, the
mean SOX17 protein (0.826± 0.212 vs. 1.196± 0.483,
P< 0.05) and mRNA (0.223± 0.373 vs. 1.611± 1.978,
P< 0.05) expression levels in the ESCC tissues were sig-
nificantly lower than the corresponding levels in the adjacent
tissues (>5 cm away from the tumor). However, the mean
Cyclin D1 protein (0.914± 0.537 vs. 0.684± 0.381, P< 0.05)
and mRNA (1.980± 0.592 vs. 0.442± 0.317, P< 0.05) ex-
pression levels in the ESCC tissues were higher than the
corresponding levels in the adjacent tissues. )e mean VE-
cadherin protein (0.683± 0.295 vs. 0.414± 0.087, P< 0.055)
and mRNA (0.350± 0.293 vs. 0.092± 0.071, P< 0.05) ex-
pression levels were also significantly higher in the ESCC
tissues than in the adjacent tissues. )e results are shown in
Figure 3.

3.5. �e Inhibition of the Invasion and Migration of EC Cells
due to the Silencing of VE-Cadherin. )e transwell experi-
ments demonstrated that the migration and invasion abil-
ities of the EC9706 and Eca109 cell lines were significantly
lower in the VE-cadherin siRNA group than in the corre-
sponding control groups (P< 0.05). No difference was ob-
served between the untransfected group and the control
siRNA group (Figures 4(a)–4(d)). In addition, the wound
healing speed of the cells in the VE-cadherin siRNA group
was significantly slower than that of the corresponding
control groups (Figures 5(a)–5(c)).

3.6.�e Reduction of ECCell Proliferation due to the Silencing
of VE-Cadherin. )e proliferative abilities of the EC9706
and Eca109 cells were significantly weakened after the si-
lencing of VE-cadherin (P< 0.05) (Figure 5(d)). No sig-
nificant difference was observed between the untransfected
group and the control siRNA group (Figure 5(d)).

3.7. �e Increase in SOX17 Expression and Decrease in Cyclin
D1 Expression due to the Silencing of VE-Cadherin. After
transfection, VE-cadherin protein expression was signifi-
cantly lower in the VE-cadherin siRNA group than in the
control groups (P< 0.05). Moreover, SOX17 protein ex-
pression was significantly upregulated, and Cyclin D1
protein expression was downregulated in the VE-cadherin
siRNA group (Figure 6).

4. Discussion

)e formation of VM can provide a blood supply for the
rapid proliferation of tumors, relieve the ischemic and
hypoxic microenvironment around tumors, and further
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accelerate the invasion and metastasis of tumors, which
influences the clinical stage and long-term prognosis of
cancer patients [5, 28]. )is study confirmed the existence of
VM in ESCC by carrying out an immunohistochemical
analysis of tumor tissues. At the same time, it was found that
VM is closely associated with the depth of invasion, pTNM
stage, and lymph node metastasis. )e above findings are
consistent with those of previous studies [6]. In survival
analysis, the presence of VM is an independent poor
prognostic factor in ESCC patients.

VE-cadherin, as an adhesion protein, can mediate the
adhesion of cells to each other and maintain the further
formation of tumor blood vessels. In the present study, VE-
cadherin was found to be highly expressed in ESCC, and its
positive expression was directly related to the depth of in-
vasion, the occurrence of lymph nodemetastasis, and pTNM
stage of ESCC. VE-cadherin expression was also found to be
an independent poor prognostic factor for ESCC patients. In
vitro experiments suggested that the high expression of VE-
cadherin can accelerate ESCC invasion and metastasis,

(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 1: Immunohistochemical analysis of SOX17, Cyclin D1, and VE-cadherin expression and VM in ESCC and normal esophageal
tissues (×400 magnification): negative staining of SOX17 in ESCC (a), positive staining of SOX17 in the nucleus of normal esophageal tissue
(b), positive staining of cyclin D1 in the nucleus of ESCC (c), negative staining of Cyclin D1 in the normal esophageal tissue (d), positive
staining of VE-cadherin in the cell membrane and plasma of ESCC (e), negative staining of VE-cadherin in the normal esophageal tissue (f ),
VM in ESCC (g) (red arrow), and positive staining of normal blood vessels with CD34 (h) (black arrow).
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which was similar to the findings of previous reports [6].
Notably, after siRNA-mediated interference of bcl-2 ex-
pression in EC9706 cells under hypoxic conditions, the
expression of VM-related molecules, such as VE-cadherin
and matrix metalloproteinase (MMP) -2, was significantly

inhibited, and VM generation was significantly reduced [29].
Moreover, VE-cadherin downregulation in melanoma is
associated with the loss of VM formation [30]. Heinolainen
et al. [31] and Han et al. [32] speculated that VE-cadherin
might be an important determinant of VM in EC. Based on
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Figure 2: Kaplan–Meier analysis of the survival rates of patients with ESCC: higher overall survival of patients with positive SOX17
expression (a), log rank� 61.200 (P< 0.001); lower overall survival of patients with positive Cyclin D1 expression (b), log-rank� 70.109
(P< 0.001); overall survival of patients in relation to VE-cadherin (c); log-rank� 32.174 (P< 0.001); and lower overall survival of patients
with presence of VM (d) log-rank� 92.811 (P< 0.001). Blue lines: cases positive for SOX17, Cyclin D1, VE-cadherin expression and VM and
red lines: cases negative for SOX17, Cyclin D1, and VE-cadherin expression and VM.
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Table 4: Results of multivariate logistic regression analyses of OS (n� 210).

B SE Wald df p Exp (B)
95% CI for Exp(B)
Lower Upper

Age (years) 0.948 0.192 24.378 1 ≤0.001 2.579 1.771 3.757
Sex −0.195 0.234 0.693 1 0.405 0.823 0.520 1.302
General type 0.035 0.117 0.091 1 0.764 1.036 0.823 1.304
Location 0.138 0.155 0.796 1 0.372 1.148 0.848 1.555
Diameter (cm) −0.301 0.200 2.269 1 0.132 0.740 0.500 1.095
Differentiation 0.107 0.155 0.477 1 0.490 1.113 0.822 1.507
Infiltration depth −0.512 0.248 4.258 1 0.039 0.599 0.368 0.975
Lymph node metastasis −0.553 0.348 2.531 1 0.112 0.575 0.291 1.137
pTNM −0.287 0.314 0.836 1 0.361 0.750 0.406 1.389
SOX17 0.571 0.290 3.884 1 0.049 1.771 1.003 3.125
Cyclin D1 −0.873 0.313 7.787 1 0.005 0.418 0.226 0.771
VE-cadherin −0.774 0.346 4.996 1 0.025 0.461 0.234 0.909
VM −0.691 0.300 5.297 1 0.021 0.501 0.278 0.903
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Figure 3: Continued.
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Figure 3: SOX17, Cyclin D1, and VE-cadherin protein and mRNA expression: (a)–(c) Graphical representation of SOX17, Cyclin D1, and
VE-cadherin protein expression, respectively (∗P< 0.05); (d) Western blot analysis of SOX17, Cyclin D1, and VE-cadherin protein levels
in ESCC tissues and nontumor tissues (T1 and T2 correspond to ESCC tissues; N1 and N2 correspond to normal mucosal tissues); and
(e)–(g) Graphical representation of SOX17, Cyclin D1, and VE-cadherin mRNA expression, respectively (∗P< 0.05 vs. adjacent normal
tissues).
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Figure 4: (a)–(d). Migration and invasion abilities of EC cells after VE-cadherin silencing. Transwell assay showing the migration of the
EC9706 and Eca109 cells (a); transwell assay showing the invasion of EC9706 and Eca109 cells (b); and graphical representation of migration
and invasion among EC9706 and Eca109 cells (c) and (d), respectively. ∗∗P< 0.01 and ∗∗∗P< 0.01 vs. untransfected group or control siRNA.
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the findings of the present study, we firmly believe that VE-
cadherin promotes the formation of VM in ESCC.

SOX17 overexpression suppresses colony formation and
cell migration/invasion in ESCC cell lines. In addition,
SOX17 overexpression was found to inhibit tumor growth
and metastasis in an ESCC xenograft model [17, 33, 34]. )e
SOX17 transcription factor has been known to have tumor
suppressive function in ESCC [34–36]. In the present study,
a significantly lower SOX17 expression was found in ESCC
compared to the normal esophageal epithelium, confirming
the tumor suppressive function of SOX17. A previous study
demonstrated that hypermethylation of the promoter of the
SOX17 gene leads to the silencing of SOX17 protein ex-
pression in >50% of ESCC patients [33]. In this study, the
low expression of SOX17 was significantly correlated with
tumor differentiation, depth of invasion, lymph node me-
tastasis, and pTNM stage, suggesting that SOX17 acts as
a tumor suppressor gene in ESCC. Moreover, SOX17

expression was an independent predictor of prognosis in
this study.

)e present study found that Cyclin D1 protein and
mRNA expression levels were significantly increased in
ESCC. Moreover, the high expression of Cyclin D1 pro-
moted the invasion of ESCC. Cyclin D1, an important
regulator of the cell cycle, participates in the transition from
G0/G1 to the S phase and is commonly expressed at ab-
normally high levels in cancers. It participates in tumor
progression and is used as a cancer biomarker phenotype
[37]. Studies have shown that upregulation of Cyclin D1 can
promote the progression of various tumors, including en-
dometrial cancer [38], liver cancer [42], and colorectal
cancer [43]. Yang et al. found that the Cancer Genome Atlas
data showed a trend between higher Cyclin D1 levels and
shorter survival time, indicating the importance of Cyclin
D1 in the development of colon cancer [44]. )is study also
confirmed that the high expression of Cyclin D1 was related
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Figure 5: )e wound healing experiment showed the effect of silencing VE-cadherin on the migration and healing ability of EC9706 and
Eca109 cells (a) and (b), respectively. Comparison of in vitro proliferation of EC9706 and Eca109 cells (c) and (d). ∗∗P< 0.01, ∗∗∗P< 0.001,
and ∗∗∗∗P< 0.0001 vs. untransfected group or control siRNA.
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to a poor prognosis of ESCC and can be used as an in-
dependent prognostic factor for evaluating patients with
ESCC. Some researchers have pointed out that tumor in-
hibition can be achieved by inhibiting Cyclin D1 expression.
Liang et al. reported that oncogenic Cyclin D1 is a novel
target gene of tumor suppressor molecule miR-520e in
breast cancer. MiR-520e is capable of directly binding to the
3′ untranslated region of Cyclin D1 mRNA to promote the

degradation of Cyclin D1mRNA, leading to the inhibition of
cyclin D1 in breast cancer [45]. Jiang et al. predicted that
mesenchymal-epithelial transition (MET), Cyclin D1, and
CDK4 of the hepatocyte growth factor/MET signaling
pathway form a regulatory network around miR-1, which is
then involved in the regulation of ESCC development [46].

Li et al. proved that SOX17 can inhibit the formation of
tumors by inhibiting the proliferation of cervical cancer cells
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Figure 6: Top panel: Western blot analysis to detect the expression of SOX17, Cyclin D1, and VE-cadherin in the three groups of EC9706
and Eca109 cells after VE-cadherin silencing (A, B). Quantitative western blot data (C, D). (a indicates the control group; b indicates the
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in vivo and in vitro [39]. )e specific mechanism of in-
hibition is the induction of cell cycle arrest by trans-
inhibiting the Wnt/β-catenin pathway in cervical cancer
cells and blocking the transition from G0/G1 phase to the S
phase [39]. Ye [40] noted that by downregulating SOX17
expression, the expression levels of cyclin D1 and P27 were
upregulated, thereby shortening the cell cycle and pro-
moting the proliferation and invasion of MKN45 gastric
cancer cells. Accordingly, SOX17 may participate in cell
proliferation and cell cycle regulation by inhibiting the Wnt
signaling pathway.

VM is closely related to tumor growth, invasion, me-
tastasis, and the long-term prognosis of cancer patients
[41–43]. )e present study confirmed that VM formation in
ESCC was positively correlated with high Cyclin D1 ex-
pression and low SOX17 expression. )ese findings indicate
that VE-cadherin may promote the formation of VM in
ESCC by affecting the expression levels of Cyclin D1 and
SOX17. In a previous study, we confirmed that SOX4 may
promote the formation of VM by promoting EMT in ESCC
[24]. Studies have shown that in a hypoxic environment,
hypoxia-induciblefactor-2α, a VM-initiating factor, is acti-
vated, which increases VE-cadherin transcription. VE-
cadherin, in turn, induces the repositioning of ephrin
type-A receptor 2 (EphA2) to the cell membrane. Fur-
thermore, PI3K is activated by VE-cadherin and EphA2
simultaneously. )e activated PI3K regulates the activation
of the pre-gene of membrane type 1-matrix metal-
loproteinase (MT1-MMP). )e combination of MT1-MMP
and MMP2 promotes the fragmentation of laminin 5c25c2
chains into fragments (5c2 and 5c2χ), and increased levels of
these two fragments in the extracellular microenvironment
eventually lead to the formation of a VM net-like
structure [44].

Research has shown that HT29 colon cancer cells with
high Wnt3a expression have a stronger ability to form tu-
bular structures in three-dimensional culture, and the ex-
pression of endothelial phenotype-related proteins, such as
vascular endothelial growth factor 2 (VEGFR2) and VE-
cadherin, are increased [45]. A mouse xenograft model
showed that high Wnt3a expression led to larger tumor
masses and more VM. In addition, the Wnt/β-catenin signal
antagonist Dickkopf-1 can reverse the ability of Wnt3a-
overexpressing cells to form tubular structures and reduce
the expression of VEGFR2 and VE-cadherin. )erefore, it
has been speculated that Wnt/β-catenin signal transduction
is involved in the formation of VM in colon cancer [45].

)e results of the present study revealed that the high
expression of VE-cadherin, low expression of SOX17, and
high expression of Cyclin D1 are closely related to ESCC.
)e interaction of these three factors promotes the forma-
tion of VM. However, the silencing of VE-cadherin ex-
pression significantly inhibits Cyclin D1 expression and
enhances SOX17 expression, which can inhibit tumor
progression. Given that VE-cadherin directly regulates
SOX17 and Cyclin D1, as found in this study, it is hy-
pothesized that VE-cadherin regulates cell proliferation and
promotes VM in two ways: (i) by regulating Wnt signaling
molecule expression, thereby affecting the expression of the

upstream molecule SOX17 and the downstream molecule
Cyclin D1, and (ii) by targeting SOX17 and Cyclin D1 di-
rectly through other signals. Further research is required to
validate the findings of this study.

In conclusion, the present study found low SOX17 ex-
pression, high Cyclin D1 expression, and high VE-cadherin
expression in ESCC. Moreover, the expression of these
proteins was closely associated with VM in ESCC. We be-
lieve that the development of targeted therapies to suppress
Cyclin D1 expression or enhance SOX17 expression may
impair the formation of VM, thereby prolonging the survival
of ESCC patients. Further studies are required to determine
the exact pathophysiological mechanism linking Cyclin D1,
SOX17, VE-cadherin, and VM [46–48].
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Aim. We studied in�ammatory response-related genes in cholangiocarcinoma by bioinformatics analysis. Methods. �e expression
pro�les and clinical information of cholangiocarcinoma patients were downloaded from the TCGA cohort and the Gene Expression
Omnibus. �e greatest absolute shrinking and selecting operator Cox analyses were utilized to build a multigene predictive signature.
Results. An in�ammation response-related gene pro�le was generated using LASSO-Cox regression analysis of Homo sapiens
bestrophin 1 (BEST1), Chemokine (C–Cmotif) ligand 2 (CCL2), and plasminogen activator, urokinase receptor (PLAUR). Individuals
in the highest category had a signi�cantly lower overall survival time than those from the low-risk group. A receiver operating curve
analysis was used to demonstrate the predictive ability of the predictive gene signature.�roughmultivariate Cox analysis, the risk score
was discovered to be a predictor of overall survival (OS). According to functional assessments, the immunological state andmilieu of the
two risk areas were signi�cantly di�erent.�e expression levels of predictive genes were found to be strongly linked to the sensitivity of
cancer cells to antitumor therapy. Conclusion. A new signature made up of three respective response-relevant genes is found to be
a promising indicator of prognosis by in�uencing the immune condition and tumor microenvironment.

1. Introduction

Hepatocellular carcinoma and cholangiocarcinoma are
common primary cancers of the liver responsible for an
increasing number of cancer-related deaths [1]. Chol-
angiocarcinoma has become more commonly diagnosed
across the world in recent decades [2, 3]. Despite numerous
improvements in recent decades to better comprehend the
pathology of cholangiocarcinoma, its prognosis remains
poor [4, 5]. Surgery is the optimal method for patients with
limited, resectable cholangiocarcinoma. Yet, the prognosis
for these patients remained poor, with a median overall
survival (OS) ranging from 12 to 31 months [6]. With the
well-established correlation between in�ammation and
cancer, the in�ammatory role in the onset and progression
of cancer has long been the subject of current studies. In-
�ammation can both promote and prevent cancer growth
[7]. Scientists can investigate the association between cancer

and in�ammatory indicators by assessing parameters that
are typically available in the blood [8, 9]. �e Glasgow
Prognostic Score, which includes C-reactive protein and
albumin, exhibits independent predictive signi�cance in
cancer patients [10]. A growing number of studies utilize
various acute-phase proteins to create comprehensive pre-
dictive scores for malignancies based on in�ammation.
Some in�ammatory response-related genes, in addition to
serum indicators, were employed to predict the metastatic
potential and prognosis of hepatocellular carcinoma [10].
However, the link between in�ammatory response-related
genes and the prognosis of cholangiocarcinoma remains
unstudied.

�e use of 3D bioprinting to reconstruct tumor mi-
croenvironments could be exploited to develop novel an-
titumor medications. [11] In�ammatory response genes are
associated with tumor microenvironments and antitumor
drug sensitivity and thus could be exploited in the 3D
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bioprinting of new antitumor therapies. In this study, we
investigated the predictive significance of inflammatory
response-related genes in cholangiocarcinoma and gener-
ated an inflammatory response-related gene signature. Our
study assessed the relationship between the signature and
immunological state along with the microenvironment in
cholangiocarcinoma.

2. Methods

2.1. Data Collection. ,e TCGA cohort and the Gene Ex-
pression Omnibus were used to acquire mRNA expression
data and clinical information of individuals with chol-
angiocarcinoma (GEO). GSE107943 was chosen for further
analysis after being screened from the GEO database. ,e
fragments per kilobase of exon model per million mapped
fragments (FPKM) format were used to acquire data from the
GSE107943 dataset. ,e TCGA RNA-seq transcriptome data
were converted to FPKM values. Data from the TCGA and
GSE107943 datasets were transformed to normalized counts.

2.2. Inflammatory Response-Related Gene Signature. A
sample size of 200 genes associated with the inflammatory
response was identified, along with their expression profiles.
In the TCGA and GEO cohorts, the differentially expressed
genes (DEGs) between tumor and nontumor tissues were
identified using the R package “limma” with a fold change
greater than 2 and a false discovery rate of 0.05. After
Bonferroni correction, univariate Cox analysis was utilized
to screen for predictive significance in inflammatory
response-related genes. To reduce overfitting, our study used
LASSO-penalized Cox regression analysis to build a prog-
nostic model. [12, 13] ,e “glmnet” R package was used to
select and reduce variables using the LASSO technique.
Using tenfold cross-validation, the penalty parameter of the
prognostic model was defined using the minimum criterion
(i.e., the value corresponding to the lowest partial likelihood
deviation). ,e risk ratings of patients were calculated using
the expression of each inflammatory reaction gene or its
corresponding regression coefficient. Based on their median
risk scores, patients were divided into high-risk and low-risk
groups. By using the R packages “Rtsne” and “ggplot2,” PCA
and t-SNE analysis were used to explore the distribution of
distinct groups in terms of gene expression levels in the
created model. Survival studies of the OS of high and low-
risk groups were performed using the R tool “survminer.”
,e “survival” R package and the “time ROC” R package
were used to perform the time-dependent ROC curve
method in order to assess the predictive power of the
prognosis signature. Univariate and multivariate Cox ana-
lyses were used to explore the signature’s independent
prognostic relevance.

2.3. Immune Status and Tumor Microenvironment Analysis.
,e “GSVA” R package was used to evaluate the invasion
scores of 16 immune cells and the activity of 13 immune-
related pathways between both the high-risk and low-risk
groups using single-sample gene set enrichment analysis

(ssGSEA). ,e levels of immune and stromal malignant cells
in various malignant cells were measured using the immune
and stromal scores. To investigate whether there exists a link
between the risk rating and other scores, the Spearman
correlation was applied. [14] To examine if there was a link
between the risk score and the immune infiltration subtype,
we utilized a two-way ANOVA analysis. Tumor stem cell
characteristics were assessed utilizing information extracted
from the transcriptome and epigenetics of tumor samples.
[15] ,e Spearman correlation test was used to investigate
the relationship between tumor stemness and the risk score.

2.4.ChemotherapySensitivityAnalysis. ,eNCI-60 database
contains 60 distinct cancer cell lines from 9 different types of
tumors, including Cholangiocarcinoma, Bladder Cancer,
Colorectal Cancer, Esophageal Cancer, Melanoma, Ovarian
Cancer, Pancreatic Cancer, Prostate Cancer, and Small Cell
Lung Cancer, and was accessed using the CellMiner interface
(https://discover.nci.nih.gov/cellminer). Pearson correlation
analysis was used to explore the relationship between
prognostic gene expression and drug sensitivity. Correlation
analysis was used to examine the efficacy of 263 drugs ap-
proved by the FDA or in clinical studies.

2.5. Statistical Analysis. To compare DEGs between the
tumor and adjacent tissues, the Wilcoxon test was per-
formed. ,e chi-square test was used to compare different
proportions. ,e ssGSEA scores of immune cells and im-
munological pathways were compared between high-risk
groups using the Mann–Whitney test. ,e Kaplan–Meier
analysis was used to compare the differences in OS across
subgroups. Univariate and multivariate Cox analyses were
used to screen the different factors for OS. ,e correlations
of the prognostic model risk score and the prognostic gene
expression level with stemness score, stromal score, immune
score, and drug sensitivity were investigated using Spearman
or Pearson correlation analysis. R software (version 4.0.3)
was used to create the plots, which included the utility, venn,
igraph, ggplot2, pheatmap, ggpubr, corrplot, and survminer.
In all statistical outcomes, a two-tailed P value less than 0.05
indicated statistical significance.

3. Results

3.1. Prognostic Inflammation-Related DEGs Identification.
Samples of this study consisted of 45 cholangiocarcinoma
patients (45 cancer samples) from the TCGA cohort and 30
patients (30 cancer samples and 27 nontumorous samples)
from the GSE107943 cohort (See Table 1). ,ese samples
have complete clinical and transcriptomic data. Results
showed that 59 genes were associated with inflammatory
responses expressed in tumor and nontumorous tissues
(Figure 1(a)). In a univariate Cox analysis, inflammation
response-related genes were found to be linked to OS
(Figure 1(b)). Among the analyzed genes, 5 overlapping
inflammatory response-related genes were selected for
further analysis (Figures 1(c) and 1(d)).
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3.2. Construction of a Prognostic Model. ,e expression
profiles of the above 5 genes were assessed using LASSO-Cox
regression analysis and a prognostic model was built (Fig-
ure 2(a)). A three-gene marker was created using the best
value of λ (Figure 2(b)). Score� 0.899∗BEST1 expression

level + 0.169∗CCL2 expression level + 0.395∗ PLAUR ex-
pression level. Patients were divided into low-risk and high-
risk groups based on the median cut-off value (Figure 3(a)).
Confounding factors such as age, gender, and tumor stage
were evenly distributed between low-risk and high-risk

Table 1: ,e characteristics of patients from various cohorts at the start of their treatment.

Characteristics TCGA cohort GSE107943 cohort
N� 45 N� 30

Age
≤65 21 (46.7%) 16 (53.3%)
>65 24 (53.3%) 14 (46.7%)

Gender
Female 25 (55.6%) 6 (20.0%)
Male 20 (44.4%) 24 (80.0%)

Grade
Grades 1-2 23 (51.1%) 23 (76.7%)
Grades 3-4 22 (48.9%) 7 (23.3%)

AJCC stage
Stages I-II 31 (68.9%) 21 (70.0%)
Stages III-IV 14 (31.1%) 9 (30.0%)

(a) (b)

DEGs Prognostic genes

59 5 14

(c)

(d)

Figure 1: Genes involved in the inflammatory response have been identified as potential candidates. (a) Genes that differ between tumor
and nontumor tissues in terms of expression. (b) Forest plots demonstrating 14 genes that linked to patient survival. (c) A Venn diagramwas
used to determine which genes were differentially expressed and which ones were predictive. (d) Prognostic and differentially expressed
genes in tumor and nontumor regions.
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groups (Table 2). According to the scatter chart, individuals
at high-risk are more likely to die from cancer than those at
low-risk (Figure 3(b)). According to PCA and t-SNE
analysis, individuals in different risk categories were scat-
tered in two directions (Figures 3(c) and 3(d)). Patients at
high-risk had a significantly shorter OS than those at low-
risk, according to the Kaplan–Meier curve (Figure 3(e),
P0.001). Time-dependent ROC curves were produced to
investigate survival prediction using the prognostic model,
with the area under the curve (AUC) reaching 0.730 at
1 year, 0.683 at 2 years, and 0.779 at 3 years (Figure 3(f)).

3.3. Independent PrognosticValue of the 3-Gene Signature and
Association with Clinical Features. We conducted both
univariate and multivariate Cox analyses of covariates to
evaluate if the risk score was an independent predictor of OS.

In a univariate Cox analysis, the risk score in the total
population was significantly related to OS (HR� 3.144, 95%
CI� 1.908–5.178, P< 0.001) (Figure 2(c)). Multivariate Cox
analysis demonstrated that the risk score remained an in-
dependent predictor of OS after controlling for additional
confounding variables (HR� 2.792, 95% CI� 1.651–4.721,
P< 0.001) (Figure 2(d)). No meaningful association between
the risk rating and clinical characteristics of chol-
angiocarcinoma patients, including age, gender, tumor
grade, and stage, was found (Figures 4(a) and 4(d)).

3.4. Immune Status and Tumor Microenvironment Analysis.
To study the relationship between risk score and immu-
nological condition, ssGSEA was used to calculate the
enriched scores of various immune cell subpopulations,
associated components, and pathways. In the high-risk
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Figure 2: A gene signature that is associated with inflammation was generated. (a) LASSO-Cox regression analysis of possible inflammatory
response-related genes. (b) ,e optimal value of the LASSO-Cox regression analysis. (c) Prognosis-related factors were screened using
univariate Cox regression analysis. (d) Prognosis-related factors were screened using multivariate Cox regression analysis.
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Table 2: Patients in various risk groups have varied characteristics.

Characteristics Low-risk cohort High-risk cohort
N� 32 N� 32

Age
≤65 17 (53.1%) 16 (50.0%)
>65 15 (46.8%) 16 (50.0%)

Gender
Female 15 (46.8%) 9 (28.1%)
Male 17 (53.1%) 23 (71.8%)

Grade
Grades 1-2 16 (50.0%) 22 (68.7%)
Grades 3-4 16 (50.0%) 10 (31.2%)

AJCC stage
Stages I-II 25 (78.1%) 22 (68.7%)
Stages III-IV 7 (21.8%) 10 (31.2%)

Ri
sk

 sc
or

e

10

9

8

7

0.79

<=65
Age

>65

Age
<=65
>65

(a)

Ri
sk

 sc
or

e

10

9

8

7

Gender

0.4

Female Male

Gender
Female
Male

(b)

Ri
sk

 sc
or

e

10

9

8

7

G1–2 G3–4
Grade

0.36

Grade
G1–2
G3–4

(c)

Ri
sk

 sc
or

e

10

9

8

7

Stage

0.13

Stage I-II Stage III-IV

Stage
Stage I-II
Stage III-IV

(d)

Figure 4: (a) Age, (b) gender, (c) tumor grade, and (d) tumor stage were used to split the risk score into various groups.
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group, the antigen presentation pathways, including aDCs,
pDCs, APC co-inhibition, APC co-stimulation, HLA, and
MHC class I, were significantly higher (all adjusted P< 0.05,
Figures 5(a) and 5(b)). Furthermore, the high-risk group had
larger proportions of,1 cells,,2 cells, TIL cells, Treg cells,
T cell co-stimulation, and T cell co-inhibition compared to
the low-risk group, indicating differences in Tcell regulation
between the two groups.

To investigate how the risk score was linked to immu-
nological components, the association between the risk score
and immune infiltrates was studied. C1 (wound healing), C2
(INF-g dominating), C3 (inflammatory), C4 (lymphocyte
deficient), C5 (immunologically silent), and C6 (tumor-
suppressing) immune infiltrates were observed in human
malignancies, ranging from tumor-promoting to tumor-
suppressing (TGF-b dominant). ,e C5 and C6 immune
subtypes were eliminated from the study because no patient
specimens in HCC belonged to the C5 immune subtype and
that merely one sample belonged to the C6 immunological
subtype. ,e correlation between the immune infiltrate of
cholangiocarcinoma in the cohort and the risk score was
investigated. Results showed that high-risk scores highly
associated with C1, while low-risk scores were strongly
correlated with C3 and C4 (Figure 5(c)).

,e RNA stemness score (RNAss) and DNA stemness
score (DNAss) based on DNA methylation patterns were
used to ascertain cancer stemness. Stromal and immune
scores were used to estimate the tumor immune micro-
environment. ,e correlation study was performed to in-
vestigate whether the risk score was linked to cancer stem
cells and the immune microenvironment. Results revealed
that the risk score was highly associated with RNAss rather
than DNAss, and it was positively correlated with both
immunologic and stromal ratings (Figure 5(d)–5(g)). ,e
PD-1/PD-L1 pathway plays a crucial role in the immune
evasion of cancer. ,e degree of expression of the im-
munological checkpoint PD-L1 was a vital indicator for
specific targeting. ,e expression level of PD-L1 was
considerably higher in the highest quintile than in the
lowest quartile (Figure 5(i)), and immune checkpoint ex-
pression levels were positively correlated with risk as-
sessment (Figure 5(h)).

3.5. Prognostic Gene Expression and Cancer Cell Sensitivity to
Chemotherapy. ,e expressions of prognostic genes in
NCI-60 cell lines were compared to drug sensitivity and it
was found that all prognostic alleles were linked to che-
motherapeutic treatment sensitivity (P< 0.01) (Figure 6).
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4. Discussion

In this study, we investigated the expression of 200 in-
flammatory response-related genes in cholangiocarcinoma
tissues and analyzed their correlation to the prognosis. 49
DEGs were eliminated from the TCGA and GEO cohorts. In
a univariate Cox analysis, five of the DEGs were associated
with overall survival. ,ree inflammatory response-related
genes were incorporated into a predictive model using
LASSO regression analysis, namely Homo sapiens bestro-
phin 1 (BEST1), Chemokine (C–C motif) ligand 2 (CCL2),
and plasminogen activator, urokinase receptor (PLAUR).
Depending on their median risk score, patients were cate-
gorized into high-risk and low-risk groups. In a multivariate
Cox regression analysis, the risk score was demonstrated to
be an independent predictor of OS. ,e relationships be-
tween the risk score and immunological status and mi-
croenvironment were then investigated.,ree inflammatory
response-related genes were shown to have a high re-
lationship with cancer cell susceptibility to antitumor drugs.

CCL2, also known as the inflammation-associated ex-
pression signature, was mostly derived from cancer-
associated fibroblasts, which were components of the
cholangiocarcinoma tumor microenvironment. [16, 17] Its
risk score in the total population was significantly related to
OS (HR� 3.144, 95% CI� 1.908–5.178, P< 0.001). Multi-
variate Cox analysis demonstrated that the risk score
remained an independent predictor of OS after controlling
for additional confounding variables (HR� 2.792, 95%

CI� 1.651–4.721, P< 0.001). By stimulating the STAT3-
CCL2 signaling pathway, the FAP induces immunosup-
pression by cancer-associated fibroblasts in the tumor mi-
croenvironment. ,e TWEAK/Fn14 signaling pathway may
also increase the development and progression of chol-
angiocarcinoma niches through the downstream target
CCL2. [18] Due to the lack of investigations on these genes, it
remains unclear if BEST1 and PLAUR affect the prognosis of
cholangiocarcinoma through inflammatory response and
tumor microenvironment.

To gain a better knowledge of the connection between
the risk score and immunological elements, a study on the
role of risk rating in immune infiltration type was con-
ducted. We observed that a higher risk score was sub-
stantially linked to C1, whereas a lower score was clearly
connected to C3 and C4, meaning that C1 encourages cancer
initiation and development while C3 and C4 are good
preventative factors [19]. Furthermore, macrophages and
regulatory Tcells (Treg cells) presentedmore in the high-risk
group than in the low-risk group. Because of their roles in
the immunological invasion, scientists have associated
a higher number of tumor-associated macrophages and Treg
cells with a worse prognosis. When utilized as tumor im-
munotherapies, anti-PD-L1 antibodies, for example, have
shown clinical activity in a variety of cancer types. Increased
immune checkpoint suppressed antitumor immune re-
sponses from T cells by increasing the expression of PD-1
and CTLA4 receptors. In this study, immune checkpoint
scores were greater in the high-risk group than in the low-
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risk group, and the risk score was strongly linked to PD-L1
expression. As a result, the prognostic model can forecast
immune checkpoint expression levels and may be used to
guide treatment decisions. Our research also has a few
drawbacks. ,e predictive results in the study will need
further supportive data from experiments, and the regula-
tory mechanism of inflammation response-related gene
profile regulators on tumor growth as well as the immune
microenvironment is unknown, necessitating additional
research to gain a better understanding.

In conclusion, our research identified three genes in-
volved in the inflammatory response as a new predictive
signature. ,e signature was found to be associated in-
dependently with overall survival and to have played a role in
functional analysis, tumor microenvironment, and treat-
ment compassion, providing insights into chol-
angiocarcinoma prognosis. ,e mechanism underlying the
association between inflammatory response-related genes
with tumor immunity in cholangiocarcinoma remains un-
clear. Furthermore, these genes could be exploited to de-
velop new antitumor medications as therapeutic
alternatives.
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