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-e safety of signalized intersections is of great concern. To allow for an effective evaluation measure on the safety level of
intersections, traffic conflict analysis methods are commonly used. However, the existing literature has mainly focused on the
statistical prediction of conflicts by using surrogate measurements, among which the spatial-temporal characteristics of the
potential conflicts have been less addressed. In addition, most of the relevant studies rely on precise trajectory data, and the results
could be limited to engineering applications when real-time/comprehensive trajectory data are not available. To address these
issues, this study proposes a SICP (signalized intersection conflict probability) model to predict a straight-left traffic flow conflict
with a spatial-temporal distribution in the heat map, which could effectively evaluate the traffic safety of the existing or prebuilt
signalized intersections on urban roads. Firstly, the impact of vehicle movement characteristics on traffic conflict at signalized
intersections was considered by incorporating the vehicle movement trajectory. Secondly, the signal phase was categorized in
several stages (each phase contains switching and nonswitching stages); then, a vehicle-vehicle conflicts probability prediction
model was established by integrating both horizontal and vertical arrival probability. Finally, to validate the performance of the
proposed model, the measured data were collected from the intersection of Wushan road and Yuehan road in Tianhe District,
Guangzhou, China. SSAM（Surrogate Safety Assessment Model）traffic conflict simulation was used to analyze the traffic
conflict in the actual data and compared to the SICP model. A case study was conducted to reveal the evolution mechanism of the
conflict risk coefficient at the signalized intersection and to estimate the safety status under the various security optimization
strategies. -e experimental results verified the effectiveness of the SICP model, indicating that the proposed model is effective in
evaluating the safety level of existing or prebuilt signalized intersections.

1. Introduction

As the bottleneck of the urban road network, signalized
intersections play an important role in the operation of
urban transportation, as various road users exist, such as
motor vehicles, nonmotor vehicles, pedestrians, and other
road users. However, signalized intersections are nodes with
frequent traffic conflicts and congestion, as well as the
common place of traffic accidents. As a key component to
realize the distribution of the right way at intersections,
signal control facilities are responsible for maintaining the
normal operation of the traffic order. Although the existing
urban traffic managers separate the right-going and left-
turning traffic flows at signalized intersections in time or

space, there are still some small-sized intersections with
right-left mixed lanes, or the straight-going and left-turning
traffic flows are released at the same time due to unrea-
sonable signal timing. At this time, there is the right-of-way
competition between the straight-going traffic flow and the
left-turning traffic flow, and this is an important cause of the
frequent blocking and traffic conflicts at intersections, as
shown in Figure 1(a). In addition, all-red intervals of some
signalized intersections are not set or are too short to clear
the vehicles of the last phase, which leads to serious conflicts
during the phase switch, as shown in Figure 1(b). -erefore,
the frequency and severity of traffic conflicts at such sig-
nalized intersections are higher than those in other areas.
-erefore, traffic conflicts and collisions are more likely to
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Figure 1: -e traffic conflicts of some signalized intersections in one signal cycle. (a) Two common cases of traffic conflicts at signalized
intersections during a phase. (b) Two common cases of traffic conflicts at signalized intersections during the phase switch.
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occur at signalized intersections with the simultaneous re-
lease of straight and left traffic flow, and the safety assess-
ment of this issue deserves more attention.

-e safety evaluation methods of signalized intersections
are mainly divided into two categories: one is the direct
evaluation method based on traffic accident statistics, and
the other is the indirect evaluation method based on traffic
conflict analysis. -e direct evaluation methods mainly
include empirical modelling [1], gray evaluation [2], re-
gression modelling [3], and other methods. -e expected
number of traffic accidents is taken as the evaluation index,
which strongly relies on the historical accident data. By
analyzing the historical data of road traffic accidents in 20
European countries, Al-Ghamdi [4] studied the correlation
between the death toll of road traffic accidents and the
population and the number of motor vehicles, performed
regression analysis, and proposed the Smeed model. Guo
et al. [5] collected historical traffic accident data by mobile
apps, established an improved k-means algorithm, evaluated
road traffic safety, and identified traffic accident black spots.
Chen et al. [6] collected traffic and accident data from 246
nonsignalized intersections and proposed a generalized
negative binomial regression model based on zero censor-
ings to comprehensively evaluate the safety of intersections.
Although the application of this method is direct and simple,
the drawback is also acknowledged that it requires a sig-
nificant amount of high-quality accident statistical data in
most cases. -erefore, the application of the direct evalua-
tionmethod in traffic safety analysis is somewhat limited due
to the difficulties of obtaining traffic accident data, its un-
stable quality, and long collection period.

In contrast, indirect evaluation methods based on traffic
conflict analysis are more widely used in traffic safety
analysis. -ese studies use the frequency and severity of
traffic conflicts to indirectly reflect the level of traffic safety,
which mainly focuses on the effectiveness of traffic conflicts
[7–19], traffic conflict evaluation indicators [20, 21], and data
methods [22, 23]. To facilitate the extension and application
of the definition of traffic conflict in practice, scholars have
proposed a variety of traffic conflict indicators to quantify
the proximity and interaction between two or more road
users in time or space. -e most commonly used conflict
indicators include the time to collision (TTC) [24, 25], the
postencroachment time (PET) [26–28], and the stopping
distance index (SDI) [29–31]. For example, Hayward [25]
proposed TTC as a measurement index of traffic conflict,
which is defined as the time to collision when two vehicles
maintain their existing speed and direction unchanged, to
evaluate the traffic safety level of intersections. Mohamed
et al. [32] collected TTC and the traffic parameters of each
signal cycle at signal intersections and proposed a safety
performance function based on traffic conflict by using a
generalized linear model, which evaluated the traffic safety
status of signalized intersections. Guo [33] collected traffic
conflict data of vehicles at signalized intersections and
proposed safety evaluation methods of conflicts between
motor vehicles and motor vehicles, motor vehicles and
nonmotor vehicles, and motor vehicles and pedestrians at
signalized intersections based on the Bayesian method. Ma

et al. [34] built a traffic conflict identificationmodel based on
the PET algorithm in ramp merging areas, considering
vehicle movement information and the influence of vehicle
size on traffic conflict and provided a method for deter-
mining the severity of traffic conflict. Laureshyn et al. [35]
proposed a traffic conflict measurement method based on
extended Delta-V to evaluate the safety status of various
intersections, from the perspective of traffic accident se-
verity. Oh et al. [30] proposed stopping sight distances based
on SDI to estimate whether a given car-following condition
is safe. Hyden [36] proposed time to accident (TA) as an
indicator to identify road traffic conflicts and then evaluated
road safety. -is kind of method is widely used, of which the
model is stable and flexible, and the evaluation index is
diversified, but it does not consider the actual size of the
vehicle and is unable to evaluate the future situation of
intersections. In addition, most of the previous studies
deeply rely on real-time vehicle trajectory data, which are
hard to access in engineering applications. -us, these
methods can only evaluate the safety of the existing sig-
nalized intersections and fail to assess the safety level of the
design scheme or optimization scheme of the signalized
intersections. Furthermore, few studies have focused on the
spatial-temporal characteristics of the potential conflicts at
signalized intersections, and instead they tend to pay more
attention to the recognition accuracy of traffic conflicts.
Finally, according to our latest knowledge, there is no lit-
erature concerning traffic conflict when two phases switch,
which may be the most serious period of traffic conflict.

To address the above issues, this paper proposes a new
method of conflict probability prediction for signalized
intersections, considering the micro operation characteris-
tics of vehicles based on their actual size. -e best feature of
the proposed model is that it has low traffic data require-
ments and only needs traffic flow and signal timing pa-
rameters instead of real-time vehicle trajectories or an
enormous body of historical data. In other words, the model
can not only evaluate the existing signalized intersections,
but also analyze the traffic conflicts of prebuilt signalized
intersections as long as the design scheme provides the
related data. -e secondary superiority is to consider the
spatial-temporal characteristics of the potential conflicts to
evaluate the comprehensive safety level of signalized in-
tersections. On the one hand, the spatial distribution of
traffic conflicts is deduced by merging areas of different
vehicle running trajectories. Besides, the signal timing is
divided into several stages based on the changes in the spatial
distribution of the traffic conflicts. Another crucial creativity
of this study is that the proposed model is especially con-
cerned with traffic conflicts during phase switching, which is
a very important period but is usually ignored in other
researches. -e simulation experiment and case analysis
results are conducted to verify the effectiveness of the SICP
model. -ese findings can provide theoretical and technical
support for the channelization design and signal timing
optimization of signalized intersections for traffic engineers.

-e remainder of this paper is arranged as follows.
Section 2 describes how to construct the cell system of a
signalized intersection. Section 3 explains the modelling
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process of the SICP model and the calculation of the safety
assessment index. Section 4 gives some comparative ex-
periments and results based on the actual data. -ree typical
case studies and discussions are illustrated in Section 5.
Eventually, this paper ends with some conclusions and
future work in Section 6.

2. Analysis on Micro Operation
Characteristics of Vehicles at
Signalized Intersections

2.1. Cell Division and Its Approximation. To effectively
evaluate the internal traffic safety status of a signalized in-
tersection, a two-dimensional Cartesian plane coordinate
system is constructed by taking the intersection of the east-
west direction and the north-south direction of the inter-
section as the coordinate origin. -e east approach road is
the positive direction of the X-axis, while the north approach
road is the positive direction of the Y-axis. It is assumed that
the width of the approach and exit lanes in all directions of
the intersection are symmetrical. Let M and N denote the
length and width of the intersection, respectively.M− 1 and
N− 1 points are evenly inserted on the X-axis and Y-axis,
respectively, and the intersection conflict area is evenly
divided into M×N cells, as shown in Figure 2.

−
M

2
� x0 < · · · < xj < · · · < xn �

M

2
,

−
N

2
� y0 < · · · <yi < · · · <ym �

N

2
,

(1)

where i� 1, 2,. . .,m, j� 1, 2,. . ., n. m and n are positive
integers, and its value must meet that the length and width of
each cell are less than the vehicle width to reflect the arrival
of vehicles. At this time, vehicles occupying any part of a cell
are regarded as vehicles arriving at the cell.

In the coordinate system, the cell in row i and column j is
denoted as Rec(i, j). -e probability of the vehicle occupying
the cell can be approximately regarded as the probability of
the vehicle appearing in the centroid of the cell. (xij, yij) is
used to represent the centroid coordinates of the cell Rec(i,
j), as shown in

xij �
xi + xi+1

2
, yij �

yj + yj+1

2
. (2)

2.2. Analysis of theVehicle Trajectories. Taking the signalized
intersection with six two-way lanes where straight and left-
turn vehicles are released simultaneously as an example, this
paper describes the vehicle trajectories under different signal
phases by corresponding mathematical expressions, as
shown in Figure 3. Additionally, the trajectory equation used
in this paper can also be applied to straight and left turn
mixed traffic and the signalized intersections of other
geometric conditions.

According to the lane function setting of the intersec-
tion, the vehicle trajectory equation of each approach is
established. Taking the signalized intersection in Figure 3 as

an example, let a (a� 3) denote the number of lanes at each
approach road. -e lanes are numbered from inside to
outside in the order of small to large; that is, the lane number
h� 1,. . .,a. -en, the vehicle trajectory equations of going
straight and turning left and right at each approach road are
as follows:

A

2
+(h − 1)D≤yij ≤

A

2
+ hD,

xij − xdw 
2

+ yij − ydw 
2

� R
2
w,

(3)

where Rw denotes the left turning or right turning radius of
the vehicle in each approach, and
Rw ∈ [Rdw − 0.5D, Rdw + 0.5D]. Rdw denotes the designed
radius of left-turning or right-turning of the vehicle in each
approach. (xdw, ydw) denotes the center coordinates of the
turning track circle at each approach. d represents the di-
rection of the approach, and d� {d1, d2, d3, d4} denote the
directions east, west, south, and north, respectively. w �

l, r{ } indicate the left and right turn directions, respectively.
D denotes the width of the single lane, and A denotes the
width of the median.

3. Signalized Intersection Conflict
Probability Model

3.1. Signal PhaseDecomposition considering the Temporal and
Spatial Evolution of Traffic Conflict. In this paper, the SICP
model divides signal phases at intersections based on the
evolution of conflict mechanisms. Some small intersections
may not set the all-red time or the all-red time is too short.
When the signal phase switches periodically, the vehicles in
the previous phase often fail to leave the intersection in time,
which is likely to cause traffic conflicts with the vehicles
starting in the next phase. During this period, the traffic
conflict situation is relatively complex, and the composition
of participants in the conflict changes. -us, this process is

S1 S2 S3

E1

E2

E3

W3

W2

W1
N

D

N3 N2 N1
M

Y

XO

Figure 2: Coordinate system and cell division of conflict area in a
signalized intersection.
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defined as a phase switching stage, and other processes of the
same phase are called the nonphase switching stage. -eir
critical time is the moment when the vehicles at the end of
the previous phase leave the intersection.

To describe the generality of the phase division, the phase
number in the signal timing scheme is set as Z. Each signal
cycle can be divided into 2Z phase stages based on the
evolution of the conflict probability. -at is, one phase
includes the phase switching stage and nonphase switching
stage, as shown in Figure 4. Suppose Ti denotes the duration
of the ith phase, Lj denotes the distance of each traffic flow in
the previous phase from the stop line to leave the inter-
section, and vj denotes the average driving speed of each
traffic flow in the previous phase.-e durations of the phase
switching stage and nonphase switching stage in the ith
phase are

Ti1 � max
L1

v1
, . . . ,

Lj

vj

 ,

Ti2 � Ti − Ti1,

(4)

where Ti1 and Ti2 are the duration of the phase switching
phase and the nonphase switching phase in phase number i,
respectively. For example, T11 and T21 denote the duration of
the phase switching stage, and T12 and T22 denote the du-
ration of the nonphase switching stage. j is the number of
traffic flow at a signalized intersection, i� 1,. . .,Z.

3.2. Conflict Probability Models considering Micro Operation
Characteristics of Vehicles. Considering the rear-end colli-
sion and the front or side collision from different angles, a
conflict probability model of the vehicle for any cell at
signalized intersections is established. Let k denote the ve-
hicle trajectory, and there are at most three vehicle trajec-
tories passing through a cell simultaneously (k≤ 3) [28].
-en, the probability of traffic conflict in cell Rec(i, j) is

Pij � 
3

k�1
P

k
Aij 

2
+ P

1
Aij × P

2
Aij + P

1
Aij × P

3
Aij

+ P
2
Aij × P

3
Aij + P

1
Aij × P

2
Aij × P

3
Aij,

P
k
Aij � P

k
Dij × P

k
Lij, k≤ 3,

(5)

where Pij denotes the conflict probability of cell Rec(i, j), and
Pk

Aij
denotes the probability that the vehicle reaches cell

Rec(i, j) along with vehicle trajectory k. If there is no traffic
flow arriving at cell Rec(i, j) along the vehicle trajectory, the
arrival probability of the vehicle in cell Rec(i, j) is 0. Pk

Lij

denotes the longitudinal arrival probability of the vehicle in
cell Rec(i, j) along vehicle trajectory K; Pk

Dij
denotes the

probability that the vehicle appears in cell Rec(i, j) along with
vehicle trajectory k due to lateral offset.

3.2.1. 9e Longitudinal Arrival Probability of Vehicle con-
sidering the Interference of the Signal Light. It is assumed
that most of the vehicles travel along the path set by the
motion trajectory equation and ignore the heterogeneity of
individual vehicles. -e probability of vehicles appearing in
the cell outside the coverage area of the vehicle trajectory
equation can be approximately zero. For the cell covered by
the vehicle trajectory equation, the longitudinal arrival
probability of the vehicle in the cell is discussed in two cases

N2

W1
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W3

E3
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E1

N3 N1

S2S1 S3

(a)

W1

W2
W3

E3
E2
E1

N2N3 N1

S2S1 S3

(b)

Figure 3: Vehicle trajectories at a signalized intersection. (a) Phase 1: vehicle trajectories of east-west approach. (b) Phase 2: vehicle
trajectories of north-south approach.

Phase 1: North and
south direction 

Phase 2: East and
west direction 

Time : t

T21T11 T12 T22

Figure 4: Diagram of phase decomposition of the signalized in-
tersection (green, yellow, and red indicate the duration of the green,
yellow, and red lights respectively).
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considering the signal light. (1) If the signal light is green or
yellow, the vehicles are allowed to enter the intersection, and
the longitudinal arrival probability of that in the cell is not
zero. (2) If the signal light is red, the vehicles are not allowed
to enter the intersection, and the longitudinal arrival
probability of that appearing in the cell is zero. -erefore,
this paper mainly focuses on the longitudinal arrival
probability of the vehicle in the cell in the first case.

Due to the limitation of signal control facilities, the way
that the vehicles pass the intersection is mainly divided into
two cases: one is to pass after waiting in line, and the other is
to pass freely (without stopping to pass). When the signal
light turns green from red, the vehicles begin to pass through
the intersection successively from stop status, and their
headways obey the lognormal distribution model [37]. If the
green time is greater than the queue dissipation time, the
headway of the vehicles arriving at the intersection in the
remaining green time obeys the Poisson distribution model.
In a statistical sense, the arrival probability of traffic flow
during the green light can be regarded as the weighted result
of the arrival probability of the above two types of traffic
flows. -e proportion of the two types of traffic flow can be
determined by the ratio of dissipation time of the queue
length to the effective green time. Hence, the longitudinal
arrival probability of the vehicle appearing in cell Rec(i, j)
along with trajectory k in conflict time t is

P
k
Lij �

1−
gd

ge

 × 1−e
−qkt

 +
gd

ge

×
e

− lnt−μ1( )
2/2σ2

tσ1
���
2π

√ ,ge>gd,

1
tσ1

���
2π

√ e
− lnt−μ1( )

2/2σ21 ,ge≤gd,
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⎪⎪⎪⎪⎪⎪⎪⎩

gd �
qkC

S
,

t�min
L+B

V1
,
L+B

V2
 ,

(6)

where gd is the dissipation time of the queue length, ge is the
effective green time, qk is the traffic flow along with the
vehicle trajectory k, C is the signal period, S is the saturation
flow rate, and t is the conflict time. If the time difference
between the two cars appearing in the same cell successively
is less than t, it would be seen as a traffic conflict. μ1 and σ21
are the moment estimations of expectation and the variance
of time headway, respectively. L is the length of the vehicle, B
is the width of the vehicle, and B� f1B1 + f2B2 + f3B3. f1, f2 and
f3 are the vehicle proportions of small, medium, and large
vehicles, respectively. B1, B2, and B3 are the width of a small
vehicle, medium vehicle, and large vehicle, respectively. V1
and V2 are the designed speed of the road where traffic flow
may cause traffic conflicts. All vehicles are assumed to be
small cars during the example verification.

3.2.2. 9e Lateral Deviation Probability in Vehicle Trajectory.
Because the driver can not completely avoid operation error,
there is a certain deviation (the distance between the

centerline of the vehicle and the centerline of the lane) in
lane-keeping, and the deviation is subject to a normal dis-
tribution [34, 38, 39]. -us, the probability of straight and
turning vehicles appearing in cell Rec(i, j) due to lateral
deviation can be obtained from
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where PDij is the probability that the vehicle appears in cell
Rec(i, j) due to lateral offset; μ2 and σ22 are the mean and
variance of the lateral deviation of straight or turning ve-
hicles, respectively. -e data can be obtained by fitting the
lateral deviation position with the MATLAB toolbox.

3.3. Safety Assessment of Signalized Intersections

3.3.1. Risk Level Classification. -e conflict probability
output by the SICP model refers to the probability that two
or more vehicles appear in a cell at the same time during the
conflict time. -erefore, it can be converted into the ratio
between the frequency of traffic conflicts and the traffic
volume in the cell within a period (TC/MPCU). Pei et al. [40]
conducted statistics on TC/MPCU values of 295 intersec-
tions in 33 cities in China and obtained four value ranges of
risk levels. -is paper adopts green, yellow, orange, and red
to represent the change in risk level from low to high based
on the statistical results. Detailed values are shown in
Table 1.

3.3.2. Risk Coefficient Calculation Based on the Duration of
Different Phases. To describe the overall safety of the in-
tersection, the risk coefficient δ is introduced as the com-
prehensive measurement, and its calculation formula is as
follows:

δ � 
Z

i�1
αi1δi1 + αi2δi2( ,

αik �
Tik

C
, k � 1, 2,

(9)
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where δ is the risk coefficient of the intersection, αi1 and αi2
are the proportion of the duration of phase switching stage
and nonphase switching stage of phase i in a signal period,
respectively, and αik � 1. δi1 and δi2 are the risk coefficients
of phase switching stage and nonphase switching stage in
phase i, respectively, which can be obtained as follows:

δik � 
4

j�1
βjsij, k � 1, 2,

sij �
nij

m × n
,

(10)

where βj is the weight of risk level j, which is used for risk
calculation and analysis. -e high-risk level is accompanied
by large weight βj. sij represents the ratio of the number of
cells with risk level j to the total number of cells in phase i,
and nij represents the number of cells with risk level j in
phase i.

4. Model Verification

4.1. Data Collection. A SONY 4K HD camera was used to
collect the traffic data of the intersection of Wushan Road
and Yuehan Road in Guangzhou, China, from 16:00 to 18:00
on August 12, 2021.-e collected parameters mainly include
the geometric parameters of the intersection, the average
speed of the traffic flow, traffic volume, steering ratio, large
vehicle ratio, lateral deviation, time headway, and signal
timing scheme. Among them, the geometric data of inter-
section is obtained by means of an artificial survey with a
tape measure. -e traffic speed is calculated by counting the
time that the vehicles pass through the preset speed mea-
suring interval after the green light (ignoring the first 5
vehicles), and the average value is taken. -e calibration of
all parameters is shown in Table 2.-e signal timing scheme,
traffic volume, steering ratio, large vehicle ratio, lateral
deviation, and time headway are obtained through manual
statistics. -e signal timing scheme and traffic volume are
shown in Table 3.

-e data from the above table is input into the SICP
model, and the heat maps of the predicted conflict proba-
bility distribution of four-phase stages are obtained, as
shown in Figure 5. Figure 5(a) shows the heat map of traffic
conflict probability in phase 1. At this time, part of the traffic
flow on the north entrance of the previous phase does not
completely leave the intersection, and the traffic flow on the
east and west entrance is released at the same time.
Figure 5(b) shows the heat map of traffic conflict probability
in phase 2.-e east-west traffic flow is normal, and the north
traffic flow has completely left the intersection. Figures 5(c)
and 5(d) show the heat map of traffic conflict probability in
phase 3 and 4. Due to the setting of long full red time, the

traffic flow at the east-west entrance has completely left the
intersection, and only the traffic flow at the north entrance
can pass normally.

4.2. Comparison of Conflict Distribution Based on SSAM.
-e VISSIM simulation model is established according to
the geometric parameters, traffic flow parameters, and signal
timing scheme of the intersection. Using the track file data
output by VISSIM, traffic conflicts are analyzed in the
surrogate safety assessment model (SSAM), as shown in
Figure 6.

It can be found that the SICP model predicts the traffic
conflict distribution of the intersection, and the result is
consistent with SSAM. -ere are subtle differences between
the twomodels, because the traffic conflicts of SSAM include
rear-end conflicts, which are not within the scope of the
SICP model. To verify the accuracy of the SICP model,
sixteen conflict cells are selected on the heat maps of SICP
and SSAM. -e number of traffic conflicts is calculated by
the SICP model and SSAM within an hour, as shown in
Table 4. However, the conflict probability in this paper is
defined as the probability that two or more vehicles arrive at
the same cell during conflict time t. -us, the number of
traffic conflicts of a cell in an hour is that its conflict
probability is multiplied by the number of conflict times.

From Table 4, it is found that the number of traffic
conflicts between SSAM and SICP is similar in terms of the
same conflict positions, and a little error is inevitable. -e
main reason for the difference is the lack of conflict sample
size, and the prediction time is only one hour. If there are
enough sample data, the SICP model will be better. How-
ever, the conflict number and the evolution trend of traffic
conflicts given by the SICP model are close to those of
SSAM, which indicates the effectiveness of the SICP model
in terms of the prediction of traffic conflicts.

5. Case Study

To analyze the impact of typical optimization strategies on
the safety level of intersections, this study adopts the SICP
model to evaluate the risk status of intersections under three
strategies, including nonsignalized strategies, signal timing
optimization strategies, and traffic flow control strategies. A
case study is conducted to provide feasible strategies for the
safety optimization of nonsignalized or signalized inter-
sections. -is study takes the T-shaped intersection of
Wushan road and Yuehan road in Guangzhou, China, as a
case study. In this case, βj is set as 1, 3, 5, and 7 according to
the risk level based on previous research experience [28, 31].

5.1. Safety Analysis of Nonsignalized Strategy. -e SICP
model is used to analyze the safety status of the case

Table 1: Risk level classification.

Risk level 1 2 3 4
Conflict probability 0∼0.001 0.001∼0.025 0.025∼0.036 ≥0.036
Color

Journal of Advanced Transportation 7



Table 3: Traffic flow and signal timing parameters at the intersection of Wushan road and Yuehan road.

Approach direction East West North
Symbol E W N
Lane function Straight and right Straight Straight and left Straight Left Right
Flow (pcu/h) 358 484 324 416 43 108
Large car ratio (%) 20.16 7.02 5.99 27.44 0 0
Turn ratio (%) 8.7 — 18.66 — — —
Phase East-west North
Green time(s) 49 22
Yellow time(s) 3 3
Full red time(s) 25 0
Cycle(s) 102

(a) (b)

(c) (d)

Figure 5: -e heat map of the predicted conflict probability in different phases. (a) Phase stage 1. (b) Phase stage 2. (c) Phase stage 3.
(d) Phase stage 4.

Table 2: Parameter calibration.

Parameter Value Explanation
D (m) 3.75 Lane width
M (m) 21.5 -e length of intersection
N (m) 22.5 -e width of intersection
A (m) 0.5 -e width of the median
B1 (m) 1.78 -e width of a small car
L (m) 3.5 -e length of vehicle
m 40 Cell rows
n 40 Cell columns
Vj (km/h) 12.8 Average speed
S (pcu/h) 1800 Saturated flow rate
μ1 3.25 Moment estimations of expectation of time headway
σ21 10.32 Moment estimations of variance of time headway
μ2 0.294 -e mean of the lateral deviation of straight or turning vehicles
σ22 0.0098 -e variance of the lateral deviation of straight or turning vehicles
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intersection under the nonsignalized strategy and the
existing signalized strategy and compare their difference in
terms of the traffic conflict distribution. Due to the signif-
icant differences of vehicle arrival characteristics between
the nonsignalized strategy and the signalized strategy, the
Poisson distribution model is introduced to calculate the
longitudinal arrival probability of vehicles in the SICPmodel
[28, 31]. -e heat maps of traffic conflict probability and
conflict distribution under nonsignalized strategy at inter-
sections are shown in Figure 7.

In Figure 7, the safety status of the signalized intersection
changes with the signal phase, and the evolution of conflict
probability and distribution area present with obvious peri-
odicity, while the safety status of the nonsignalized inter-
section remains unchanged. In Figure 7(a), the traffic flow of
each approach to the nonsignalized intersection can pass at
any time. -us, the traffic conflict probability of a non-
signalized intersection is static, and its conflict distribution is
more intensive. Compared with phase 1 of the signalized

strategy, the conflict distribution of intersection under the
nonsignalized strategy is similar, but the value of the conflict
probability is smaller. -e conflict area of the intersection
under the nonsignalized strategy is larger than that in phase 2
of the signalized strategy, but its conflict probability is smaller.
-e conflict area and conflict probability of intersection under
the nonsignalized strategy are both larger than those in phases
3 and 4 of the signalized strategy. In Figure 7(b), the conflict
distribution of nonsignalized intersection is partially different
from that of the original signalized intersection, such that
conflicts are more frequent and the severe conflict area is
wider. In terms of the distribution and severity of traffic
conflict, the safety level of an intersection under the signalized
strategy is higher than that under the nonsignalized strategy.

5.2. Safety Analysis of Signal Timing Optimization Strategy.
Based on the actual lane flow and the design conditions of
the intersection, the mature Webster timing method is used
to optimize the signal timing of the existing intersections.
-e signal timing parameters are shown in Table 5.-e SICP
model is taken to evaluate the safety status of the intersection
after signal timing optimization. -e heat map of conflict
probability of intersection in different phases under the
signal timing optimization strategy is given in Figure 8.

From Table 5, the signal timing scheme of the Webster
method is quite different from the original signal timing
scheme, which is mainly reflected in the all-red intervals and
green split. -e all-red intervals refer to the time when the
traffic lights approaches of the intersection are red.-e green
split refers to the ratio of the green light time of each phase to
the signal cycle. In terms of all-red intervals, there are two
changes between two continuous phases. After the traffic
flow in the east-west direction is released, the all-red in-
tervals are shortened to improve traffic efficiency. Fur-
thermore, all-red intervals of 3 seconds are newly added to
clear the vehicles after the traffic flow in the north direction
is released. In terms of phase time, the green split of each

Table 4: Comparison of conflict number between SSAM and SICP
model.

Cell coordinate SSAM SICP
(−2, 2.5) 60 59
(−2.5, 2) 69 62
(−1.5, 1.5) 74 62
(3.5, −4.5) 0 0
(0, 5) 4 2
(5, 2) 1 1
(−3.5, 1.5) 66 59
(4.9, −2.5) 0 0
(−5, −2) 0 0
(−6, 1.5) 51 52
(−2,2) 64 62
(3, 5) 2 1
(5, 1.8) 7 8
(4.7, −3) 0 0
(3, 3) 8 7
(2, 1.5) 6 8

0 10 20 30 40 50 60

(a) (b)

Figure 6: Comparisons between SSAM and SICP model. (a) -e distribution of traffic conflict predicted by SICP. (b) -e distribution of
traffic conflict predicted by SSAM.
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Figure 7: -e traffic conflict probability and conflict distribution of intersection under nonsignalized strategy. (a) -e heat map of traffic
conflict probability. (b) Traffic conflict distribution in an hour.

Table 5: -e signal timing parameters based on the Webster method.

Approach direction Lane function Phase Green time (s) Yellow time (s) Full red time (s) Cycle (s)

East Straight and right

East-west 48 3 3
80

Straight

West Straight and left
Straight

North Left North 20 3 3Right

(a) (b)

(c) (d)

Figure 8: -e heat map of conflict probability of intersection in different phases under signal timing optimization strategy. (a) Phase 1. (b)
Phase 2. (c) Phase 3. (d) Phase 4.
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phase is positively correlated with the traffic flow. -e larger
traffic flow of the approach tends to go along with the larger
green split of the associated phase.

From Figure 8, all red intervals of 3 seconds are added
before phase 1, which avoids the traffic flow of the north
approach leaving the intersection in time. -e traffic con-
flicts between traffic flows of the north approach and the
east-west approach in the original signal timing scheme are
effectively eliminated. -us, the conflict probability of phase
1 in the new signal timing scheme turns to zero. In other
words, the conflict probability of the intersection is reduced
after adopting the signal timing optimization scheme de-
rived from the Webster method. -e heat maps of the
conflict distribution at intersections before and after signal
timing optimization are shown in Figure 9.

In Figure 9, the conflict areas of the intersection under
the optimized signal timing scheme significantly decline,
and the conflict times slightly increase. -e results show that
the all-red intervals between two continuous phases can
effectively cut down traffic conflict areas and improve the
local safety of the intersection.

5.3. Safety Analysis of Traffic Flow Control Strategy. To an-
alyze the internal mechanism between the traffic flow of the
approach and the safety level of the signalized intersection,
this paper adopts flow control measures for each approach.

Flow control is a commonly used management and control
measure in intersections and can be implemented by
restricting and guiding the traffic flow at upstream inter-
sections. Under the condition that the design speed of each
approach remains unchanged, the traffic flow of different
approaches is adjusted and outputs the associated heat map of
conflict distribution. -is case has designed 3 kinds of traffic
flow control schemes, as shown in Table 6. Scheme 0 is the
existing scenario. From scheme 1 to scheme 3, the traffic flow
of the East, West, and North approaches is reduced by 30%.

-e safety assessment results of each flow control scheme
are obtainedby implementing the SICPmodel, and the related
heat maps of the conflict times are shown in Figure 10.

From Table 6 and Figure 10, the traffic flow control
strategy helps to reduce the conflict area with risk levels 3
and 4. Compared with the existing scheme, the serious
conflict areas in each scheme have been lessened to varying
degrees. -e greater the reduction in traffic flow, the better
the optimization effect on the safety level of the entire in-
tersection, such as scheme 1 and scheme 2. To further clarify
the inherent relationship between the safety status of the
intersection and the flow in each approach, the traffic flow of
each approach increases from 0 to 3000pcu/h, and the
numerical change in the risk coefficient at the intersection is
shown in Figure 11.

From Figure 11, the risk coefficient of intersections
presents a stepped growth trend with the increase in the

0 10 20 30 40 50 60

(a)

0 10 20 30 40 50 60

(b)

Figure 9: Conflict distribution of intersections before and after signal timing optimization. (a) Conflict distribution of intersection under
original signal timing scheme. (b) Conflict distribution of intersection under the optimized signal timing scheme.

Table 6: Parameters and safety assessment of flow control measures (pcu/h).

/ East approach West approach North approach /
Scheme Straight and right Straight Straight and left Straight Left Right δ
0 358 484 324 416 43 108 1.0465
1 251 339 324 416 43 108 1.0251
2 358 484 227 292 43 108 1.0451
3 358 484 324 416 31 76 1.0458
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(d)

Figure 10: -e heat maps of conflict times of intersection under different flow control schemes. (a) Existing scenario. (b) Scenario 1. (c)
Scenario 2. (d) Scenario 3.
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Figure 11: -e relationship between risk index and traffic flow. (a) -e relationship between risk index and the traffic flow of different
approaches. (b) -e relationship between risk factor and traffic flow of each approach.
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traffic flow of each approach. In Figure 11(a), the risk co-
efficient is less affected by the changes in the traffic flow of
the north approach and has a greater correlation with the
traffic flow of the east-west approach. -is means that the
risk coefficient of the intersection is more influenced by the
traffic flow of straight-left mixed lanes. In Figure 11(b), when
the traffic flow of each approach increases from 0 pcu/h to
180 pcu/h, 520 pcu/h to 920 pcu/h, and 1180 pcu/h to
1300 pcu/h, the risk coefficient of the intersection rises
rapidly. When the approach flow increased from 180 pcu/h
to 52 0pcu/h, 920 pcu/h to 1180 pcu/h, and 1300 pcu/h to
3000 pcu/h, the growth rate of the risk coefficient tended to
be flat. -erefore, when a signalized intersection is allowed
to release straight and left-turn vehicles at the same time and
the traffic flow in that approach is greater than 1300 pcu/h,
the safety level of the intersection is less affected by an
increase in traffic flow.

6. Conclusions

To address the problem of potential traffic conflict prediction
at signalized intersections, this study proposes a safety as-
sessment method that considers the impact of signal timing
and does not rely on real-time and historical data.-e micro
motion characteristics of vehicles are introduced to con-
struct a vehicle conflict probability prediction model. By
collecting the traffic data of actual signalized intersections,
the effectiveness of the model is verified. Furthermore, the
safety state of intersections under the nonsignalized strategy,
signal timing optimization, and flow control strategy is
exploited to provide feasible safety improvement suggestions
for traffic engineers. -e research findings can be summa-
rized as follows:

(i) -e conflict probability of a signalized intersection
tends to vary periodically with the change in phase,
which cannot be described by the static safety as-
sessment method.

(ii) Under the same conditions, the overall safety level
of signalized intersections is higher than that of
nonsignalized intersections, with fewer conflicts per
unit time and smaller conflict areas.

(iii) -e optimization of the signal timing scheme based
on the Webster method is helpful to improve the
safety of signalized intersections and effectively
reduce the probability and number of traffic
conflicts.

(iv) -e risk coefficient of a signalized intersection is
significantly affected by the traffic flow of straight
and left mixed lanes and goes up with the increasing
traffic flow. When the approach flow of the inter-
section is greater than a critical value, the growth
rate of the risk coefficient tends to be stable.

Although some encouraging progress has been made,
developing an appropriate safety assessment of signalized
intersections with the high-precision prediction of traffic
conflict is less successful and still requires further research.
Due to the heterogeneity of intersection geometric

conditions and drivers’ driving habits, it is difficult to use a
unified vehicle trajectory equation to summarize the vehicle
trajectory at each approach. -us, future research work will
focus on improving the vehicle trajectory modeling of each
approach. Additionally, the prediction effect of the SICP
model is easily affected by parameter calibration and de-
serves further development. More traffic data of typical
intersections will be introduced to calibrate the model in the
future, to improve the prediction accuracy of the model.
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As a typical spatiotemporal problem, there are three main challenges in traffic forecasting. First, the road network is a nonregular
topology, and it is difficult to extract complex spatial dependence accurately. Second, there are short- and long-term dependencies
between traffic dates. *ird, there are many other factors besides the influence of spatiotemporal dependence, such as semantic
characteristics. To address these issues, we propose a spatiotemporal DeepWalk gated recurrent unit model (ST-DWGRU), a deep
learning framework that fuses spatial, temporal, and semantic features for traffic speed forecasting. In the framework, the spatial
dependency between nodes of an entire road network is extracted by graph convolutional network (GCN), whereas the temporal
dependency between speeds is captured by a gated recurrent unit network (GRU). DeepWalk is used to extract semantic in-
formation from road networks. *ree publicly available datasets with different time granularities of 15, 30, and 60min are used to
validate the short- and long-time prediction effect of this model. *e results show that the ST-DWGRU model significantly
outperforms the state-of-the-art baselines.

1. Introduction

With the advancement of society and economy, traffic
congestion is an inevitable common problem in big cities,
which affects the development of cities and people’s travel
safety. Traffic speed prediction is a basic and important
function of the intelligent transportation system (ITS).
Accurate and real-time traffic speed prediction can effec-
tively save travel costs and provide a reliable traffic man-
agement support for traffic management and route
recommendation. However, traffic forecasting has many
challenges because of traffic changes in different locations
throughout the different timestamps and weather and ac-
cidents, etc., and factors will also have an impact on traffic.
*erefore, there are complex spatiotemporal relationships in
traffic data.

Several temporal- and spatial-dependent prediction
methods are reported in the existing literature. *e analysis
methods are represented by the time-series analysis model
“auto-regressive integrated moving average” (ARIMA) [1, 2]

and the Kalman filtering model [3, 4]. However, these
models cannot effectively respond to the nonlinear and
uncertain characteristics of the traffic data. Meanwhile, with
the development of deep learning, numerous intelligent
traffic prediction models have emerged [5, 6]. But, these
models ignore the spatial characteristics in the traffic net-
work. Several studies [7, 8] have used convolutional neural
networks (CNN) to learn the spatial feature of road networks
according to historical traffic maps. But, CNN is suitable for
extracting Euclidean spatial features while the traffic road
network involves a complex non-Euclidean spatial network.
To solve this problem, graph convolution-based methods
have been extensively developed recently [9, 10]. In sum-
mary, most of the existing literature considers only the traffic
temporal and spatial correlations for traffic prediction,
without considering the semantic information of the traffic
road network; for example, similar functional areas have
similar traffic patterns.

To better capture the complex spatiotemporal depen-
dencies and semantic correlation hidden in traffic data, we
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further propose a spatiotemporal DeepWalk gated recurrent
unit model (ST-DWGRU), which can simultaneously learn
the temporal, spatial, and semantic correlations of the road
network. When validated using three real traffic datasets, the
proposed model outperforms the state-of-the-art traffic
forecasting baselines.

*e main contributions of our work are as follows:

(1) *e ST-DWGRUmodel learns the spatial correlation
between traffic speeds by GCN. *e connectivity
between traffic roads is represented by the adjacency
matrix. Spatial correlation in traffic speed can be
learned effectively by GCN

(2) GRU was introduced in order to learn the temporal
correlation between traffic speed data. Traffic speed
itself is time-series, and historical traffic speed data
and future data have time-series relationship, and
GRU is used to obtain the hidden time-series rela-
tionship between traffic speed

(3) Since the traffic patterns are different between dif-
ferent locations, DeepWalk is a position-aware graph
embedding algorithm. DeepWalk can effectively
obtain semantic information and enhance the ac-
curacy of traffic speed prediction

(4) Spatial features, temporal features, and semantic
features are fused to improve the predictive power of
the model. Traffic speed data are affected by other
factors besides spatial and temporal correlation, such
as semantic correlation, and the ST-DWGRU model
that incorporates semantic correlation can effectively
improve prediction accuracy.

2. Literature Review

Traffic forecasting problem is to predict traffic indicators
such as traffic volume, speed, and travel time at a certain
location at a certain time. Forecasting methods can generally
be divided into two types of approaches: model-based and
data-driven forecasting methods. *e model-based fore-
casting methods rely on queueing theory [11] and traffic
velocity models [12]. *ese models require some assump-
tions and prior knowledge. However, in reality, there are
many factors that can have an impact on traffic such as
weather and unforeseen events. *erefore, it is difficult for
the model-based methods to accurately predict.

*e data-driven methods are more flexible because they
discover patterns from historical data and automatically
deduce intrinsic connections between data without requir-
ing many assumptions. *ese methods are divided into
statistical prediction and machine learning methods. *e
main statistical prediction methods include ARIMA, linear
regression models, the Kalman filtering model, and expo-
nential smoothing (ES). For example, Ahmed and Cook [13]
first introduced ARIMA to the traffic-forecasting problem.
Hamed and others [14] used a simple ARIMA model to
predict traffic volumes on urban arterials with good results.
Ding and others [15] proposed a spatiotemporal STARIMA
model for predicting traffic volumes. Moreover, there are

various variants of the ARIMA model for predicting traffic,
such as Kohonen map ARIMA [16] and seasonal ARIMA
[17]. Sun et al. [18] used a local linear predictor to address
the issue of interval forecasting. Guo et al. [19] used an
adaptive Kalman filtering model to predict traffic flow.
Hinsbergen et al. [20] used an extended Kalman filtering
model to estimate traffic state. Williams et al. [21] used
seasonal ARIMA and winter’s ES model to perform traffic
flow prediction.

Statistical prediction methods do not respond well to
traffic uncertainty. Compared with the statistical methods,
the machine learning methods are more flexible. *e ma-
chine learning methods are mainly used to learn traffic
patterns in the road network using large amounts of his-
torical data, and the main methods include the K-nearest
neighbor algorithm model (KNN) [22], SVM model
[23–25], and neural network (NN) model [26]. KNN pre-
dicts traffic speed by the distance between features; however,
it has high time complexity and space complexity. SVM uses
kernel functions for traffic prediction, but it is relatively
difficult to find the right kernel function.

Recently, deep learning methods have evolved rapidly.
Huang et al. [27] used a deep belief network (DBN) to learn
features, a multitask regression layer for traffic flow pre-
diction. Tan et al. [28] used DBN based on restricted
Boltzmann machines for traffic flow prediction. However,
none of these methods considered long-time dependencies
in traffic; therefore, to solve this problem, an RNN and its
variants LSTM and GRU were used to learn temporal fea-
tures in traffic. Tian and others [29] used LSTM NN to
predict short-term traffic flow; Fu and others [5] used LSTM
and GRU NN to predict traffic flow. All these methods
consider only the temporal dependency but ignore the
spatial dependency. Wu et al. [30] proposed a novel deep
architecture that combined CNN and LSTM to predict traffic
flow (CLTFP). A 1-dimension CNN is used to capture spatial
features of traffic flow, and two LSTMs are used to mine
short-term variability and traffic flow periodicities. Cao et al.
[31] proposed an interactive temporal recurrent convolution
network for traffic prediction, where the CNN part learns
network traffic as images to capture network-wide services’
correlations, and the GRU part learns temporal features to
help the interactive network traffic prediction. Although the
above methods have made considerable progress in spa-
tiotemporal learning, the CNNs are more effective in Eu-
clidean space and cannot obtain spatial features more
accurately for complex road network structures. Recently,
with the development of graph CNN, it can acquire the
spatial features of complex road networks more effectively.
Yu et al. [32] proposed an ST-GCNN model for traffic
prediction and achieved good results; Cui et al. [33] pro-
posed a TGC-LSTMmodel to learn the interactions between
roadways in the traffic network and proposed a network-
wide traffic state; Zhao et al. [10] combined the GCN and
GRU models for traffic prediction; Bogaerts et al. [34]
combined the GCN and LSTM for long- and short-term
traffic prediction using trajectory (GPS) data to achieve good
results. However, the abovementioned methods only con-
sidered spatial and temporal dependencies, ignoring other
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factors that affect traffic, such as emergencies. Wu et al. [35]
analyzed the impact of weather and accidents on traffic;
Zhang et al. [36] proposed a spatiotemporal residual net-
work (ST-ResNet) model to predict the traffic flow while
integrating weather factors; Yao et al. [8] proposed a deep
multiview spatial-temporal network (DMVST-Net) model
to learn temporal, spatial, and semantic features simulta-
neously; Song et al. [37] propose a match-then-predict
method which integrates contextual matching and time-
series prediction based on group method of data handling
(GMDH) algorithm; Qu et al. [38] used deep neural net-
works to predict daily traffic flows while considering his-
torical traffic flow data and contextual factor data. Ma et al.
[39] propose a novel deep-learning-based method for daily
traffic flow forecasting by taking contextual factors and
traffic flow patterns into account. Ma et al. [40] use con-
textual factors to select historical days with the similar
pattern to the target day as the training data for prediction
algorithm. However, these methods do not consider the
non-Euclidean topological relationship of the road network
through clustering or CNN and cannot fully explore the
spatial correlation and temporal correlation.

Based on the abovementioned background, this study
proposes a new NN model that learns spatial, temporal, and
semantic information simultaneously. Moreover, it makes
accurate short- and long-term traffic predictions based on
urban traffic road network information.

3. Methodology

3.1. Problem Definition. *is study aims to predict future
traffic speed after a time step T based on historical traffic
speed information. To predict the traffic speed more accu-
rately, this study not only considers the traffic-timing in-
formation and the spatial structure characteristics of the
road network but also adds the semantic information of the
road network, where similar functional areas have similar
traffic patterns, as shown in the objective function.

yt+T � f xt−h,...,t; mt−h,...,t; A , (1)

where T denotes the predicted time step, xt denotes the
historical traffic speed data, mt−h,...,t denotes the semantic
information of the road network, and A denotes the road
network structure information.*e objective of the model is
to derive the function f from the complex temporal, spatial,
and semantic information. As shown in Figure 1, the inputs
to the model are the historical traffic speed data x1, . . . , xt,
the road network structure matrix, and the final traffic se-
mantic matrix.

3.2. Traffic Speed Prediction Based on ST-DWGRU. In this
section, we elaborate on the architecture of the ensemble
deep learning framework (ST-DWGU). As shown in Fig-
ure 2, ST-DWGRU is composed of several ST-DWGRU
layers, each of which contains three components: spatial
feature extraction component, temporal feature extraction
component, and semantic feature extraction component.

*e final prediction component outputs the prediction
results.

In addition, each layer of ST-DWGRU learns spatio-
temporal feature and semantic feature, which is different
from the previous prediction model. Since most graph
neural networks compute node embedding by aggregating
information from each node’s q-hop neighborhood and are
thus structure-aware, GCNs cannot fully learn the location
information of nodes [41]. *e role of different location
intersections in the road network is different, so we need
the position information embedded in the nodes to rep-
resent the semantic information of different intersections.
*e proposed ST-DWGRU learns spatiotemporal feature
and semantic feature, which is more suited to the actual
situation. *e details of each component are described as
follows.

3.3. Spatial Feature Extraction Component. A CNN extracts
spatial effects by summing the weights of surrounding
pixels, which is particularly effective for Euclidean space.
However, a CNN cannot be directly used for extracting
the spatial features of road network structure because the
number of neighboring intersections or road segments
around the intersection or road segment in the actual
road network is not fixed. Defferrard et al. [42] defined
the convolution operation for graph structures, based on
spectral theory. *e urban road network is considered an
undirected graph G � (V, E), where V is the set of vertices
in the graph and E is the set of the graph edges. Using the
road network adjacency matrix as input, the graph
convolution operation provides the road network
structure features, and a two-layer GCN can be repre-
sented as [43].

Z � f(X, A)

� softmax AReLU AXW
(0)

 W
(1)

 ,
(2)

where A � D
− 1/2 A D

− 1/2, A � A + IN is the adjacency matrix
of the road network with its connectivity, A is the adjacency
matrix of the road network, Dii � j

Aij, W(0) is the weight
parameter of the first layer, and W(1) denotes the weight
parameter of the second layer.

3.4. Temporal Feature Extraction Component. GRU is an
LSTM network variant with only two gates: an updated gate
and resets gate, as compared with the input gate, output gate,
and forget gate of LSTM. It has only two gates: update gate
and reset gate. Let the input sequence be X � (x1, x2 . . . xt)

and then input to GRU to learn temporal features by GCN in

X1 X2 X3........Xj...................Xt

X1 X2 X3........Xj...................Xt

.............

A11

An1

A1n

Ann

...

...

... .... . .

M11

Mm1

M1n

Mmn

...

...
... .... . .

Figure 1: Model input.
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advance. *e specific calculation formula is shown as
follows.

st � GCN xt( ,

rt � σ Wr · ht−1, st · xt  + br( ,

zt � σ Wz · ht−1, st · xt  + bz( ,

ht � tanh W h · rt ⊙ ht−1, st · xt  + bh( ,

ht � 1 − zt( ⊙ ht−1 + zt ⊙ ht,

(3)

where st is the GCN output at time t, ht is the hidden
state at time t, xt is the current input, ht−1 is the hidden state
at the previous time, rt is the reset gate, zt is the update gate,
ht is the current memory content, and ht is the current
hidden state. Where W and b denote the weights and biases
of the network, respectively, σ denotes the sigmoid activa-
tion function, and tanh is the tanh activation function.
*erefore, the final GRU output has temporal and spatial
features.

3.5. Semantic Feature Extraction Component. Generally,
similar functional attribute areas exhibit similar traffic
patterns. For example, traffic speed near city parks will be
lower on weekends, while industrial parks will have smaller

traffic speed during morning and evening peak traffic pe-
riods. *erefore, the traffic pattern correlation for similar
areas is relatively high, and this study uses the graph em-
bedding technique to learn the representation of similar
functions.

DeepWalk [44] is a position-aware node embedding
representation learning algorithm used widely recently
[41]. *e algorithm is divided into two main steps:
random walk and update procedure. A path with the root
node is si denoted by Wsi, and the nodes in the path are
labeled as W1

si
,W2

si
,W3

si
, . . . ,Wk

si , where Wk
si
denotes the

kth intersection or section in the path. All random walks
are the same length in a truncated random walk, and the
random walk sequence matrix of the entire path is ob-
tained after traversing all intersections or road sections.
*e corresponding vector representation is sit obtained
from the Skip-gram algorithm, and the optimization
objective is

minimize
Φ − logPr

vi−w, . . . , vi+w 

vi

|Φ vi(  . (4)

*is study obtains the final semantic information rep-
resentation through a fully connected layer after obtaining
the vector representation.

ST-DWGRU Layer

ST-DWGRU Layer

Prediction Component

.

..

Semantic
Component

Spatial
Component

Temporal
Component

Vt Xl–1

Xl

Y

.

..
Vt–H+1

+

Figure 2:*e left image is the framework of ST-DWGRU, whereVt is the traffic speed data andY is the prediction.*e right image is an ST-
DWGRU layer.
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s � f Wi · si + bi( , (5)

where Wi and bi are the learnable weights and biases.

3.6. Prediction Component. *is study predicts traffic speed
change information in the future based on the historical
traffic speed information. Because the output of GRU has
spatial and temporal features, the outputs of the three
components are stitched together, and the concatenate
operation is expressed as follows:

o
i
t � h

i
t ⊕ st. (6)

*e concatenated result is then passed through a fully
connected network to obtain the predicted output of the
model yit+T, where T is the predicted time step, of the fol-
lowing form:

y
i
t+T � sigmoid Wso

i
t + bs , (7)

where Ws and bs are the learnable weights and biases.

4. Experiments

4.1. Dataset Description. In the experiments of this paper,
three real-world traffic datasets are used for the experi-
ments. *ey are PeMSD4, PeMSD8 [45], and PeMS-BAY
[46]. *e three datasets are collected by California Per-
formance of Transportation (PeMS). Details of the dataset
are shown in Table 1. *e sensor network of PeMS is shown
in Figure 3.

PeMSD4 [45]: PeMSD4 has 307 detectors distributed
across 29 roadways spanning January to February 2018. *e
dataset was collected from Caltrans Performance Mea-
surement System (PeMS) and traffic data from the San
Francisco Bay Area.

PeMSD8 [45]: PeMSD8 has 170 detectors distributed on
8 roads, between July and August 2016 in San Bernardino.

PeMS-BAY [46]: It is collected from Caltrans PeMS too,
which has 325 sensors in the Bay Area, spanning from Jan
1, 2017, to May 31, 2017.

4.2. Experimental Settings. A PC (CPU : Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz, Memory: 64GB, GPU :
NVIDIA TiTANXP) was used as the experimental platform,
and TensorFlow1.14 was used to build the model.

In this study, the data are divided into two parts,
respectively, 80% of the data as the training set, and the
remaining as the test set. Predictions are performed for
15, 30, and 60min, respectively.

*e model’s hyperparameters include learning
rate, training rounds, number of hidden units, window
size, and length of prediction time, where the
learning rate is 0.001, the number of training epoch is
800, the number of hidden units is 64, the window size is
10, and the prediction time is 15, 30, and 60min,
respectively.

4.3. Evaluation. *e root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage errors
(MAPE) are used to evaluate the model. RMSE, MAE, and
MAPE are defined as

RMSE �

�������������

1
m



m

i�1
Yi − Yi 

2




,

MAE �
1
m



m

i�1
Yi − Yi


,

MAPE �
1
m



m

i�1

Yi − Yi

Yi




,

(8)

where m denotes the number of road sections and Yt, Yt

denote the true and predicted values of speed, respectively.

4.4. Baselines. *e baseline methods for comparison with
the ST-DWGRU are as follows:

(i) HA : historical average
(ii) ARIMA [17]: auto-regressive integrated moving

average, which is often used in time series
prediction

(iii) STGCN [32]: spatiotemporal graph convolutional
networks (STGCN), which combines graph con-
volution with gated CNNs

(iv) DCRNN [47]: diffusion convolutional recurrent
neural network (DCRNN), which combines bidi-
rectional random walks with gated recurrent units

(v) GWN [48]: graph neural network GraphWaveNet,
which consists of stacked spatial-temporal layers
and an output layer

(vi) ASTGCN [49]: attention-based spatial-temporal
graph convolutional network (ASTGCN), which
mainly consists of three independent components
to, respectively, model recent, daily-periodic, and
weekly periodic dependencies

(vii) LSGCN [50]: long short-term graph convolutional
networks, which integrate both cosAtt and graph
convolution networks (GCN) to handle spatial
dependency and use gated linear units convolution
(GLU) to capture complex temporal feature

(viii) USTGCN [51]: unified spatiotemporal graph
convolution network, which performs both spatial
and temporal aggregation through spectral graph
convolution on a spatiotemporal graph

4.5. Experiment Results. As shown in Table 2, the ST-
DWGRU model performs the best in both short- and long-
term predictions on all evaluation metrics. In particular, all
metrics are optimal on the PeMSD4 dataset, while MAE is
the second best on the PeMS-BAY dataset, the GWNmodel
is the best, RMSE is second only to the USTGCN model on
the PeMSD8 dataset, and the other metrics are still the best
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Table 2: Performance comparison of ST-DWGRU and other approaches on the datasets PeMSD4, PeMSD8, and PeMS-BAY.

Model
PeMSD4 (15/30/60min)

MAE RMSE MAPE (%)
HA 2.54 4.96 5.56
ARIMA (2003) 2.51/2.75/3.21 5.72/6.34/7.36 5.32/5.69/6.56
DCRNN (2018) 1.35/1.77/2.26 2.94/4.06/5.28 2.68/3.71/5.10
STGCN (2018) 1.47/1.93/2.55 3.01/4.21/5.65 2.92/3.98/5.39
ASTGCN (2019) 2.12/2.42/2.73 3.96/4.59/5.21 4.16/4.80/5.46
GWN (2019) 1.30/1.70/2.03 2.68/3.82/4.65 2.67/3.73/4.60
LSGCN (2020) 1.45/1.82/2.22 2.93/3.92/4.83 2.90/3.84/4.85
USTGCN (2021) 1.40/1.64/2.03 2.69/3.19/4.25 2.81/3.23/4.32
ST-DWGRU (ours) 1.20/1.48/1.90 2.40/3.12/4.01 2.21/2.75/3.53

Model PeMSD8 (15/30/60min)
MAE RMSE MAPE (%)

HA 1.98 4.11 3.94
ARIMA (2003) 1.90/2.12/2.79 4.87/5.24/6.22 5.11/5.21/5.62
DCRNN (2018) 1.17/1.49/1.87 2.59/3.56/4.50 2.32/3.21/4.28
STGCN (2018) 1.19/1.59/2.25 2.62/3.61/4.68 2.34/3.24/4.54
ASTGCN (2019) 1.49/1.67/1.89 3.18/3.69/4.13 3.16/3.59/4.22
LSGCN (2020) 1.16/1.46/1.81 2.45/3.28/4.11 2.24/3.02/3.89
USTGCN (2021) 1.14/1.25/1.70 2.15/2.58/3.27 2.07/2.35/3.22
ST-DWGRU (ours) 1.005/1.25/1.57 2.08/2.70/3.49 1.81/2.24/2.78

Model PeMS-BAY (15/30/60min)
MAE RMSE MAPE (%)

HA 2.88 5.59 6.84
ARIMA (2003) 1.62/2.33/3.38 3.30/4.76/6.50 3.5/5.4/8.3
DCRNN (2018) 1.38/1.74/2.07 2.95/3.97/4.74 2.9/3.9/4.9
STGCN (2018) 1.46/2.00/2.67 3.01/4.31/5.73 2.9/4.1/5.4
GWN (2019) 1.30/2.63/1.95 2.74/3.70/4.52 2.7/3.7/4.6
ST-DWGRU (ours) 1.33/1.68/2.08 2.52/3.28/4.17 2.59/3.32/4.14
Bold is the best; underline is the second best.

(a) (b)

Figure 3: Sensor distribution of (a) PeMSD4 and (b) PeMS-BAY.

Table 1: *e details for PeMSD4, PeMSD8, and PEMS-BAY.

PeMSD4 PeMSD8 PeMS-BAY
#Nodes 307 170 325
#Edges 340 295 2369
#Time steps 16992 17856 52116
Time span 2018/1–2018/2 2016/7–2016/8 2017/1–2017/6
Time interval 5mins
Daily range 0 : 00–24 : 00

6 Journal of Advanced Transportation



on the ST-DWGRU model. From the results, it is shown
that the ST-DWGRU model can capture spatiotemporal
features and semantic features effectively for traffic
prediction.

In contrast, traditional statistical methods such as HA
and ARIMA perform the worst in short- and long-term
prediction on three datasets because they cannot effectively
capture complex spatiotemporal and semantic features.
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Figure 4: Trends in MAE and RMSE on PeMSD4, PeMSD8, and PeMS-BAY. (a) MAE of PeMSD4. (b) RMSE of PeMSD4. (c) MAPE of
PeMSD4. (d)MAE of PeMSD8. (e) RMSE of PeMSD8. (f ) MAPE of PeMSD8. (g)MAE of PeMS-BAY. (h) RMSE of PeMS-BAY. (i) MAPE of
PeMS-BAY
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*e GWN model uses stacked spatiotemporal layers to
handle spatial dependencies at different temporal levels,
while the DCRNN uses diffusion convolution can effectively
obtain complex spatial dependencies. Besides, it uses bidi-
rectional graph random walk in combination with a se-
quence-to-sequence learning framework and scheduled
sampling to obtain long-term temporal dependency. Be-
cause of the cumulative error of STGCN, STGCN does not
perform as well as GWN and DCRNN.

*e USTGCN performs both spatial and temporal ag-
gregation through spectral graph convolution on a spatio-
temporal graph. In addition to the relationship of
spatiotemporal, USTGCN considers the important historical
and current-day pattern. So, it performs better than GWN
and LSGCN in the short- and long-term prediction of
PeMSD4 and PeMSD8.

*e ST-DWGRU model has the best overall perfor-
mance on three datasets in addition to the second best MAE
on the PeMS-BAY and RMSE on the PeMSD8. It is implied
that in traffic prediction, in addition to spatiotemporal
correlations, semantic correlation also has an important
impact.

As can be seen from Figure 4, the errors of all models
grow in the 15-, 30-, and 60-minute predictions on the three
datasets, except for the GWNmodel in which the 60-minute
MAE is smaller than the 30-minute on the PeMS-BAY
dataset. However, the ST-DWGRU model has more flat
growth. *is indicates that the ST-DWGRU model is more
robust on the short- and long-term forecasts.

Especially in the extreme moments of the morning and
evening peaks, as the ST-DWGRU model can effectively
obtain the spatiotemporal features and semantic features,
the ST-DWGRU model can well predict the changes of
traffic in extreme moments. *e ST-DWGRU model can
accurately predict extreme situations, as shown in
Figure 5.

4.6. Parameter Sensitivity Analysis. As shown in Figure 6, to
determine the number of hidden units, we experimentally
validate the hidden units as 8,16, 32, 64, and 128, respec-
tively. *e results are shown in Figure 6, where the X-axis
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Figure 5: Speed prediction in extreme moments of the dataset PeMSD4.
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Figure 6: RMSE and MAE change with the number of hidden of
the PeMSD8.

Table 3: Impact of different number of DeepWalk window size on
PeMSD8 dataset.

Prediction (min) Metrics W� 5 W� 10 W� 15 W� 20

15
MAE 1.009 1.005 1.010 1.009
RMSE 2.094 2.077 2.092 2.089
MAPE 1.815 1.805 1.815 1.812

30
MAE 1.252 1.245 1.253 1.253
RMSE 2.705 2.699 2.708 2.702
MAPE 2.250 2.239 2.250 2.242

60
MAE 1.614 1.569 1.626 1.582
RMSE 3.456 3.485 3.470 3.458
MAPE 2.859 2.783 2.870 2.799

Bold shows the best.
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represents the number of hidden units and the Y-axis
represents the values of RMSE and MAE. As shown in the
figure, when the number of hidden units is 64, the values of
RMSE and MAE are minimum.

To determine how different DeepWalk window size in
short- and long-term prediction, we have listed the per-
formance of ST-DWGRU with different DeepWalk window
size (W) in Table 3. In Table 3, we can observe that in short-
and long-term prediction, the performance of ST-DWGRU
with W� 10 is the best. With the increase of DeepWalk
window size, it is not that the ST-DWGRU model is getting
better. When W� 10, the ST-DWGRU model is more ac-
curate in obtaining semantic information.

5. Conclusion

*is paper proposes an urban road network traffic speed
prediction model, which explores the potential spatiotem-
poral relationships and semantic information in the traffic
speed data. *e model is validated by applying three public
datasets. Experimental results verify that compared with
traditional HA and ARIMA prediction methods, the ST-
DWGRU model has better prediction performance. Com-
pared with the state-of-the-art traffic prediction methods
DCRNN, STGCN, ASTGCN, GWN, LSGCN, and
USTGCN, the ST-DWGRU model is also performed better.
Due to the complexity of traffic, future research will focus on
combining the attention mechanism, considering the in-
fluence of key road sections or intersections on traffic speed,
and further exploring the effective acquisition of spatio-
temporal relationships and the interpretability of the model
in complex networks.
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Because traffic flow data has complex spatial dependence and temporal correlation, it is a challenging problem for researchers in
the field of Intelligent Transportation to accurately predict traffic flow by analyzing spatio-temporal traffic data. Based on the idea
of spatio-temporal data fusion, fully considering the correlation of traffic flow data in the time dimension and the dependence of
spatial structure, this paper proposes a new spatio-temporal traffic flow predictionmodel based on GraphNeural Network (GNN),
which is called Bidirectional-Graph Recurrent Convolutional Network (Bi-GRCN). First, aiming at the spatial dependence
between traffic flow data and traffic roads, Graph Convolution Network (GCN) which can directly analyze complex non-Eu-
clidean space data is selected for spatial dependence modeling, to extract the spatial dependence characteristics. Second,
considering the temporal dependence of traffic flow data on historical data and future data in its time-series period, Bidirectional-
Gate Recurrent Unit (Bi-GRU) is used to process historical data and future data at the same time, to learn the temporal correlation
characteristics of data in the bidirectional time dimension from the input data. Finally, the full connection layer is used to fuse the
extracted spatial features and the learned temporal features to optimize the prediction results so that the Bi-GRCN model can
better extract the spatial dependence and temporal correlation of traffic flow data. )e experimental results show that the model
can not only effectively predict the short-term traffic flow but also get a good prediction effect in themedium- and long-term traffic
flow prediction.

1. Introduction

Traffic flow prediction is to predict the future traffic flow of
the road according to the historical traffic flow data. It is an
important part of the Intelligent Transportation System and
also provides a scientific suggestion for traffic planning and
control [1, 2]. According to the predicted traffic flow con-
ditions, the Transport Department can deploy and guide
vehicles driving in advance to reduce traffic congestion, and
the transport agency can select appropriate transport routes
to improve travel efficiency [3]. However, due to the
complex spatial and temporal characteristics of traffic flow,
real-time and accurate traffic flow prediction is a huge
challenge. Traffic flow shows correlation and dependence in
time and space. )erefore, comprehensively considering the

time and space characteristics of traffic flow is the key to
realize traffic flow prediction.

)e time characteristic of traffic flow refers to the
periodicity [4] and trend of changes [5] in traffic conditions
over time.)e traffic flow data shows periodic changes over
time. For example, the traffic flow in the morning and
evening peak periods on weekdays is significantly higher
than that at other times and the traffic flow in the early
morning is very small. )e traffic flow data has a certain
trend change with time, and the traffic flow at the historical
time will have an impact on the traffic flow at the future
time, especially on the flow at the adjacent time. For ex-
ample, the traffic flow of a road bayonet from 8:00 to 8:15
A.M. will affect the traffic flow of the bayonet from 8:15 to 8:
30 A.M.
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)e spatial correlation [6] of traffic flow means that the
traffic condition of any road in the traffic road will be af-
fected by the other roads, and has a spatial correlation with
its adjacent or connected roads. )e spatial dependence [7]
of traffic flow is that the traffic conditions of the upstream
roads will be transmitted to the downstream roads, and the
traffic conditions of the downstream roads will also have a
corresponding retrospective effect on the upstream roads,
that is, from a spatial point of view, the geographically
adjacent areas show strong spatial dependence. For example,
if there are novice drivers on the upstream road driving
slowly, the road congestion will directly lead to traffic
congestion on the downstream road, and if there is slow
traffic on the downstream road, the speed of the upstream
road will also be affected accordingly.

)e traditional traffic flow prediction method [8, 9] is to
predict the future traffic flow by considering the time cor-
relation of traffic flow data and learning the data charac-
teristics of historical traffic flow, such as Kalman filtering
model (KFM) [10, 11], Autoregressive Integrated Moving
Average (ARIMA) model [12, 13], k-nearest neighbor model
[14, 15], Bayesian model [16, 17], and so on. )ese methods
consider the dynamic changes of traffic conditions with time
but ignore the influence of space, so they can not accurately
predict traffic conditions. To better describe the relationship
between traffic flow and spatial characteristics, Neural
Network is introduced to model the spatial characteristics of
traffic flow data. However, traditional Neural Networks are
usually used for the analysis of neatly arranged Euclidean
data, such as text, images, and audio, and are not suitable for
irregular traffic roads with complex topology. )erefore, the
traditional Neural Network cannot deeply explore the spatial
characteristics of traffic flow.

To better learn the complex spatial dependence and
temporal correlation of traffic flow data and predict traffic
flow more accurately, this paper proposes a spatio-temporal
traffic flow prediction model based on a new Graph Neural
Network (GNN), which is called Bidirectional-Graph Re-
current Convolutional Network (Bi-GRCN). )e main
contributions of this paper are as follows:

(1) Aiming at the spatial dependence of traffic flow data,
the Graph Convolution Network (GCN) is intro-
duced and improved, and a new spatio-temporal
traffic flow prediction model is proposed based on
GNN. )e spatial relationship between traffic flow
and traffic road is studied, and the adjacency matrix
without weight is constructed to represent the
connection relationship of traffic road. )rough the
learning of GCN, the spatial dependence in traffic
flow data is better captured, and a new traffic flow
prediction model is constructed.

(2) A traffic flow prediction model which could extract
time features is constructed based on Bidirectional-
Gate Recurrent Unit (Bi-GRU). Bi-GRU uses bidi-
rectional layer-by-layer training and has good per-
formance in feature extraction. Considering that
traffic flow is time series data and has time-series
correlation characteristics, Bi-GRU is used to

capture the time correlation characteristics hidden in
the data time-series, and to learn the correlation
relationship among traffic flow data, historical data,
and future data, so that the predicted value can be
obtained.

(3) )e idea of integrating spatio-temporal data is
adopted to improve the prediction ability of the
model. Traffic flow is the data that integrates spatial
and temporal information. )e temporal correlation
between the traffic flow data which is divided by time
slices and the hidden spatial dependence in each time
slice is learned, and the temporal and spatial char-
acteristics are fused through the full connection layer
to improve the prediction accuracy of the model.

)e rest of the paper is organized as follows: Section 2
shows the related research of traffic flow prediction. Section
3 introduces the definition and method of traffic flow
prediction in detail. Section 4 explains the Bi-GRCN model
for traffic flow prediction. Section 5 evaluates the prediction
performance of the Bi-GRCN model through real-world
traffic data sets, includingmodel parameters, results analysis,
and model interpretation. Section 6 is the conclusion of the
paper.

2. Related Work

)e existing traffic flow prediction models are divided into
traditional traffic flow prediction models and traffic flow
prediction models based on Machine Learning. )e
commonly used traditional flow prediction models in-
clude the Historical Average Model (HAM) [18], Kalman
Filtering Model (KFM) [10, 11], and Autoregressive In-
tegrated Moving Average Model (ARIMA) [12, 13]. HAM
takes the average data of historical traffic flow as the result
and the calculation is simple and efficient. KFM is a linear
regression analysis model and it has the advantages of
high precision and flexible selection of predictors. ARIMA
forecasts the traffic flow by analyzing the relationship
between historical and current traffic flow data and has
strong interpretability.

)e commonly used classical Machine Learning
methods for traffic flow prediction include K-Nearest
Neighbor (KNN) [14, 15], Support Vector Machine (SVM)
[19, 20], and Decision Tree (DT) [21]. KNN is to find the flow
data of K historical periods closest to the traffic flow in the
predicted period; however, it has high computational
complexity. SVM uses the trained SVMmodel of traffic flow
prediction to forecast the traffic flow; however, the pre-
diction ability of the model depends on the kernel function.
DT realizes the Classification Forecasting of traffic flow
through continuous feature selection, and it has the ad-
vantages of high calculating speed and high prediction ac-
curacy, but it is easy to overfit.

Deep Learning models considering the temporal cor-
relation of data include Recurrent Neural Networks (RNN)
[22, 23], Long Short-TermMemory (LSTM) [24], and Gated
Recurrent Unit (GRU) [25], while comprehensively con-
sidering spatial dependence and temporal correlation
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include Convolutional Neural Network(CNN) [26, 27],
Deep Belief Network(DBN) [28], and Stacked Autoencoder
(SAE) [29]. RNN can effectively use the self-circulation
mechanism, and they can learn long-term temporal corre-
lation of traffic flow data well. LSTM transmits the time data
through the gate unit, uses the memory unit to continuously
store the updated data, and obtains the short-term and long-
term temporal correlation of the traffic flow data. GRU has a
simpler structure and fewer parameters compared with
LSTM. )erefore, GRU is better than LSTM in training
speed and operational efficiency. CNN is a classical feed-
forward propagation Deep Learning model, which can
capture the spatial dependence and temporal correlation of
data at the same time. DBN consists of multiple Restricted
Boltzmann Machine (RBM) [30] and can learn the traffic
flow under the influence of spatial dependence between
roads. SAE consists of multiple self-encoders and can learn
multi-level features, so it can effectively mine the spatial
dependence and temporal correlation in traffic flow data.

In recent years, Graph Neural Network (GNN) [31, 32]
has become the most discussed topic in deep learning re-
search, showing state-of-the-art performance in various
traffic applications [33], such as traffic congestion, traffic
safety, travel demand, automatic driving, and traffic mon-
itoring. Because of GNN’s ability to capture spatial de-
pendency, which is represented using non-Euclidean graph
structures, it is ideally suited to solve traffic prediction
problems; for example, the Diffusion Convolutional Re-
current Neural Network (DCRNN) [34], Graph Attention
Network (GAT) [35], and Graph WaveNet [36] models.

Binary Graph Convolutional Network (Bi-GCN) [37]
binarizes both the network parameters and input node
features, and Bi-Directional Graph Convolutional Networks
(Bi-GCN) [38] explore both characteristics by operating on
both top-down and bottom-up, and Graph Convolution [39]
introduced into the segmentation task and proposes an
improved Laplacian.)e historical days [40] are selected and
added for daily traffic flow forecasting through contextual
mining. Incorporating contextual factors and traffic flow
patterns [41], and a deep-learning-based method for daily
traffic flow forecasting could be introduced. A deep neural
network [42] based on historical traffic flow data and
contextual factor data is proposed.

)e GNN-based method utilizes various graph formu-
lations, so it has been extended to other transportation
modes. Based on this background, this paper proposes a new
Deep Learning model on GNN [43], which can capture
complex spatio-temporal characteristics from traffic flow
data to further improve the accuracy of prediction.

3. Problem Definition

3.1. Related Definition. Traffic information is spatio-tem-
poral data that has both spatial dependence and temporal
correlation. )erefore, traffic conditions are not only af-
fected by historical traffic conditions, but also by the up-
stream and downstream relationships in the road. )e
purpose of traffic flow prediction is to predict future traffic
conditions based on historical information. Usually, traffic

conditions are mainly described by variables such as traffic
flow, vehicle speed, and road occupancy. In this study, the
traffic conditions are measured by vehicle speed. Taking
account of the spatial and temporal characteristics of the
vehicle speed, the vehicle speed is transformed into a spatio-
temporal matrix containing time series data of historical
traffic conditions and spatial characteristic data of road
connections, to predict the vehicle speed for a while in the
future.

Definition 1. Topology Graphic G of Traffic Networks.
G � (V, E) is an unweighted matrix that represents the spatial
dependence between traffic roads.V � v1, v2, · · · , vN , Vi ∈ V.
In this situation, V is the collection of traffic roads, Vi presents
one link in the road network, and N is the number of roads in
the traffic networks. E is the set of all the edges in the road
graphic reflecting the connection between roads. Meanwhile,
the adjacency matrix A shown in equation (1) stores the
connection information of roads in graphic G.

Aij �
1, eij ∈ E

0, eij ∉ E

⎧⎪⎨

⎪⎩
(1)

)e matrix A contains elements of 0 and 1 in equation
(1), where eij represents the edge from vi to vj in the graphic
G. If Aij � 1, there is a link between vi to vj, and if Aij � 0,
there exist no links.

)e graph structure is transformed into an unweighted
adjacency matrix A, as shown in Figure 1.

Definition 2. Temporal Feature Matrix XN×P. )e traffic
information on the road networks suggests the temporal
attribute features of roads, which is expressed as XN×P. N
represents the number of roads and P represents the number
of temporal attribute features of roads. xt

i � (1/m) 
m
i�1 vt

i ,
wherem represents the number of vehicles in tminutes, vt

i is
the average speed of the i-th vehicle, and xt

i represents the
average speed of vehicles on the i-th road section in t
minutes.

Definition 3. Spatio-Temporal Graphic Gt of Traffic Infor-
mation. )e spatio-temporal situations of traffic information
containing both the spatial characteristic information of
traffic networks and the time-series characteristic data in-
formation of traffic conditions, which is expressed as
Gt � (V, E , Xt). In this way, Gt represents the traffic
conditions attributed to the vehicle speed dynamically
changing with time.V presents the collection of traffic roads,
E presents the set of all the edges in roads networks, and Xt

presents the time-series characteristic matrix of the vehicle
speed at time t.

To solve traffic flow prediction problems, we could
regard it as the mapping function f on the premise of ac-
quiring temporal feature matrix X and road network to-
pology G, and then calculate the traffic flow at the next T
moment, as shown in
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Xt+1, · · · , Xt+T  � f G; Xt− n, . · · · , Xt( ( , (2)

where n is the length of the historical time series and T is the
length of the time series to be predicted.

3.2. Overview. We proposed a model Bi-GRCN for traffic
flow prediction, which is composed of both GCN and Bi-
GRU. At first, input the data with spatial characteristics at
historical moments into the GCN, and then obtain the
spatial characteristics by using GCN to capture the topo-
logical structure of the traffic roads. Second, input the time
series data with spatial characteristics into the Bi-GRU, and
obtain the bidirectional time characteristics through the
forward and backward information transmission between
the gate units. Finally, the traffic flow prediction results will
be obtained through the fusion of spatio-temporal data on
the fully connected layer. )e framework of the Bi-GRCN is
shown in Figure 2.

4. The Proposed Method

)e key problem to be solved in traffic flow prediction is to
obtain the complex spatial dependence and temporal cor-
relation of traffic flow data.

4.1. Spatial DependencyModeling. )e traffic flow in the real
world is changing with the transformation of traffic road
topology. )e commonly used CNN Modeling method can
obtain the spatial characteristics of data, but it can only act
on regular Euclidean space data, and cannot capture the
spatial dependence of complex traffic roads. GCN can widely
process non-Euclidean space data and has been successfully
applied to image classification, document analysis, and other
fields. Considering the spatial dependence of traffic flow data
on road topology, this paper uses GCN to process traffic flow
data to better capture the spatial characteristics of the data.
)e structure of GCN is shown in Figure 3.

)e GCN constructs a filter in the Fourier domain, and
then acts on the nodes of the graph to capture the spatial
characteristics between nodes. )e GCN model is estab-
lished by stacking multiple convolution layers. )e calcu-
lation process of GCN is described in

H
(l+1)

� σ D
− (1/2) A D

− (1/2)
H

(l)
W

(l)
 

A � A + IN

D � 
j

Aij,

(3)

where A is the matrix with additional self-connections, IN is
the identity matrix, D is the degree matrix, H(l) is the output
of l layer, H(l+1) is the output of l + 1 layer, W(l) is the weight
matrix, and σ is the sigmoid activation function.

In this model, the two-layer GCN is used to obtain the
spatial characteristics of traffic flow data, as described in

f(X, A) � σ AReLU AXW0 W1 ,

A � D
−
1
2 A D

−
1
2,

W0 ∈ R
P×H

W1 ∈ R
H×T

.

(4)

A is a symmetric normalized Laplacian, which is ob-
tained by symmetrically normalizing the adjacency matrix
A. W0 represents the weight matrix from the input layer to
the hidden layer, and W1 represents the weight matrix from
the hidden layer to the output layer. P is the length of the
characteristic matrix X, H is the number of hidden cells, and
T is the prediction length. ReLU is a commonly used acti-
vation function in neural networks.

GCN learns the spatial characteristics of traffic flow data
by setting the corresponding adjacency matrix for the traffic
road code and the connection between traffic roads through
a road is abstracted as a node. )e spatial dependence
characteristics of traffic roads are shown in Figure 4.

4.2. Temporal Correlation Modeling. )e traffic flow in the
real world fluctuates with the change of time. At present, the
most commonly used neural network model for processing
time series is the RNN model, but RNN has the defects of
gradient explosion, gradient disappearance, and unable to
save data for a long time. LSTM is a variant of RNN, which
effectively solves the defects of RNN. LSTM is composed of
input gate, forget gate, and output gate. )e input gate and
the forget gate are used to retain and forget the input in-
formation, and the output gate is used to export the current
state. However, LSTM has some defects, such as complex
model structure and long training time. GRUmodel replaces
the input gate and forget gate with an update gate based on
the LSTM model, which reduces the complexity of the
model, reduces the training time, and improves the training
efficiency.

As shown in Figure 5, xt represents the traffic flow
information at time t. zt is the update gate used to retain the
status information of the previous time to the current status.
rt is the reset gate for ignoring the state information of the
previous time. ht is the memory for storing the information
at time t. ht− 1 represents the hidden state at time t − 1, ht

represents the output state at time t. GRU model obtains the
state at time t through the hidden state at time t − 1 and the
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Labeled Graph Adjacency Matrix

0 1 1 1 1 1 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 1 1 0
1 0 0 1 0 0 1
1 0 0 1 0 0 1
0 0 0 0 1 1 0

Figure 1: Transformation of the graph structure into an adjacency
matrix without weights.
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current traffic flow data as inputs. )e GRU model can not
only capture the traffic flow information at the current time,
but also retain the traffic flow information at the historical
time, so it can learn temporal correlation. )e structure of
GRU is shown in Figure 5.

Considering traffic flow data has a bidirectional temporal
correlation on historical data and future data. Bi-GRU is
used to learn historical data and future data at the same time,
to fully extract the temporal correlation. )e structure of Bi-
GRU is shown in Figure 6.
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Figure 2: Framework of Bi-GRCN.
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Figure 3: Structure of GCN.
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4.3. Spatio-Temporal Correlation Modeling. To capture the
spatial and temporal characteristics from traffic flow data
at the same time, a new Graph Neural Network Model

based on GCN and Bi-GRU, which is called Bi-GRCN, is
proposed in this paper. )e calculation process is de-
scribed in

Figure 4: Spatial dependence characteristics of traffic roads.
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Figure 5: Structure of GRU.
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ztf � σ Wz f A, Xt( , ht− 1  + bz( , (5)

rtf � σ Wr f A, Xt( , ht− 1  + br( , (6)

htf � tanh Wh f A, Xt( , rtf ∗ ht− 1   + bh , (7)

htf � ztf ∗ ht− 1 + 1 − ztf ∗ htf, (8)

ztb � σ Wz f A, Xt( , ht+1  + bz( , (9)

rtb � σ Wr f A, Xt( , ht+1  + br( , (10)

htb � tanh Wh f A, Xt( , rtb ∗ ht+1(   + bh( , (11)

htb � ztb ∗ ht+1 + 1 − ztb( ∗ htb, (12)

ht � 50%∗ htf + 50%∗ htb. (13)

ht− 1 represents the output at time t − 1, ht represents the
output at time t, and ht+1 represents the output at time t+ 1.
ztf is the update gate of the forward GRU at time t, and ztb is
the update gate of backward GRU at time t. rtf is the reset
gate of the forward GRU at time t, rtb is the reset gate of
backward GRU at time t. htf is the memory for storing the
forward information at time t. htb is the memory for storing
the backward information at time t.

Bi-GRCN obtains the topology of traffic road through
GCN and the dynamic change of traffic flow with time
through Bi-GRU. It then processes the complex spatial
and temporal characteristics of traffic flow through the
fully connected layer, and realizes traffic flow prediction
finally.

4.4. Loss Function. Yt represents the actual traffic speed and
Yt represents the predicted traffic speed in Bi-GRCN. )e
goal of the model training is to minimize the error between
the actual traffic speed and the predicted traffic speed. )e
loss function of the Bi-GRCN is shown in

loss � Yt − Yt

����
����2 + λLreg. (14)

λ is a hyperparameter. Lreg is introduced to avoid
overfitting, and Lreg is the regularization term of L2.

5. Experiments and Analysis

5.1. Experimental Settings

5.1.1. Experimental Data. )e experimental data set is the
trajectory of taxis in Shenzhen from January 1 to January
31, 2015. )e research area is 96 main roads in Luohu
District. )e experimental data are composed of an ad-
jacency matrix that represents spatial dependence and a
characteristic matrix that represents temporal correla-
tion. )e adjacency matrix has 96 rows and 96 columns to
describe the spatial dependence between 96 roads. )e

row number and column number have corresponded to
the road number in the adjacency matrix. )e values in
the adjacency matrix represent the connection rela-
tionship between roads, 0 represents that the two roads
are not connected, and 1 represents that the two roads are
connected. )e characteristic matrix describes the vehicle
speed on the road, which changes with time. Each column
represents a road, and each row represents the speed of a
road in different periods. )e vehicle speed on the road is
calculated every 15 minutes, so the characteristic matrix
has 2976 rows in total. Use 70% of the data as the training
set and 30% of the data as the test set to predict the vehicle
speed in the next 15 minutes, 30 minutes, 45 minutes, and
60 minutes.

5.1.2. Baseline Methods. To evaluate the performance of the
proposed method, this paper uses the following baseline
methods in comparison with Bi-GRCN:

HA [18]: the average value of historical traffic flow data
is used as the predicted value of traffic flow.
ARIMA [12, 13]: traffic flow data are treated as random
time series. )e non-stationary data are transformed
into stationary series data through multiple differential
calculations, and then the traffic prediction value is
obtained by using Autoregressive Moving Average
(ARMA) [44].
SVR [45]: Support Vector Regression (SVR) uses re-
gression analysis to solve the problem of traffic flow
prediction based on the principle of SVM [19, 20]. )e
traffic parameters such as vehicle speed inputs the
trained SVR and outputs the traffic flow prediction
results in the corresponding period. )e kernel func-
tion that has been selected is the key to using SVR. )e
kernel function used is a linear kernel in this paper.
GCN [31, 32]: GCN is a GNN [43] that uses the
convolution operation. )e traffic flow with spatial
relationship inputs the trained GCN and outputs the
traffic flow prediction results in the corresponding
period.
GRU [25]: GRU uses a gate unit to select information
and forget data at the same time, and the model has
high training efficiency. )e traffic flow with time at-
tribute characteristics inputs the trained GRU and
outputs the traffic flow prediction results in the cor-
responding period.

5.1.3. Evaluation Methods. Four metrics are used to evaluate
the performance of Bi-GRCN, as shown in equations (15) to
(18).

Root Mean Squared Error (RMSE):

RMSE �

������������������

1
MN



M

j�1


N

i�1
y

j

i − y
j

i 
2




. (15)
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Mean Absolute Error (MAE):

MAE �
1

MN


M

j�1

N

i�1
y

j

i − y
j

i



. (16)

Accuracy � 1 −
‖Y − Y‖F

‖Y‖F

. (17)

var � 1 −
Var Y − Y 

Var Y{ }
, (18)

y
j
i represents the real speed of the i-th road at time j, and y

j
i

represents the predicted speed of the i-th road at time j.N is the
number of roads andM is the number of time samples. Y is the
set of y

j
i , which represents the real speed of the road at different

times. Y is the set of y
j
i , which represents the predicted speed of

the road at different times. RMSE andMAE are used to evaluate
the prediction error.)e smaller the values of RMSE andMAE,
the better the prediction effect. Accuracy and var are used to
evaluate the prediction effect.)e greater the values of Accuracy
and var, the better the prediction effect.

5.2. Prediction of Performance Analysis

5.2.1. Hyperparameters. )e setting of hyperparameters de-
termines the prediction effect of Bi-GRCN. In the experiment,
the hyperparameters of the Bi-GRCNmainly include batch size,
training epoch, learning rate, and the number of hidden units.
Comparing the prediction effect of batch size set to 32 or 64, the
batch size is set to 32 in the experiment. Comparing the pre-
diction effect of the training epoch set to 3000 or 5000, the
training epoch is set to 3000 in the experiment.Wemanually set
the learning rate to 0.001. )e number of hidden units is the
most important parameter of the Deep Learning Model. Dif-
ferent numbers of hidden units have a great impact on the
prediction results. To choose the best value, we experiment with
different hidden units. We choose the number of hidden units
from [16, 32, 64, 80, 96, 100, 128] and analyze the change of
prediction precision.

As shown in Figure 7, the horizontal axis represents the
number of hidden units, and the vertical axis represents the
values of RMSE and MAE. Figure 7 shows the results of
RMSE and MAE for different hidden units. It can be seen
that the prediction error is the smallest when the number is
128. As shown in Figure 8, the horizontal axis represents the
number of hidden units, and the vertical axis represents the
values of accuracy and var. Figure 8 shows the results of
accuracy and var for different hidden units. It can be seen
that the prediction precision is the maximum when the
number is 128. Based on the four evaluation metrics in
Figures 7 and 8, the prediction result is the best when the
number of hidden units is set to 128. )erefore, we set the
number of hidden units to 128 in the experiment.

5.2.2. Comparative of Experiments Using Different Models.
We set the batch size to 32, training epoch to 3000, learning
rate to 0.001, and the number of hidden units to 128 in the

Bi-GRCN model. 70% of the overall data set is used as the
training dataset, and the remaining data is used as the testing
dataset. )e Bi-GRCN model is trained using the Adam
optimizer. )e prediction performance of the model is
learned at four different time intervals of 15 minutes, 30
minutes, 45 minutes, and 60 minutes on the dataset. )e
prediction results of the Bi-GRCN model and other baseline
methods are shown in Table 1.

5.2.3. Analysis of Experimental Results. Spatio-temporal
prediction capability. To verify whether the Bi-GRCNmodel
could capture spatial and temporal features from the dataset,
we compare the Bi-GRCN with the GCN and the GRU.
Compared with the GRU, which considers only temporal
features, for 15 minutes, 30 minutes, 45 minutes, and 60
minutes traffic forecasting, the accuracy of the Bi-GRCN is
increased by approximately 2.59%, 1.16%, 0.25%, and 0.85%,
indicating that the Bi-GRCN can capture temporal corre-
lation well. Compared with the GCN, which considers only
spatial features, for 15 minutes, 30 minutes, 45 minutes, and
60 minutes traffic forecasting, the accuracy of the Bi-GRCN
is increased by approximately 11.77%, 14.11%, 14.72%, and
16.02%, indicating that the Bi-GRCN can capture spatial
dependence well. )e accuracy comparison between GRU
and Bi-GRCN is shown in Figure 9. )e accuracy com-
parison between GCN and Bi-GRCN is shown in Figure 10.

Model prediction ability. According to the analysis of the
data in Table 1, Bi-GRCN has better prediction performance
than other baseline models. Compared with the GRU, GCN,
HA, ARIMA, and SVR for 15 minutes, the RMSE of the Bi-
GRCN is decreased by approximately 5.29%, 18.9%, 3.63%,
35%, and 7.57%, indicating that the Bi-GRCN can capture
spatial dependence and temporal correlation well. )e main
reason for the worse prediction of ARIMA is that it is
difficult to deal with long series of non-stationary data, and
GCN ignores the temporal correlation of traffic flow data
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Table 1: Prediction results of the Bi-GRCN model and other baseline methods.

T (min) Metric
Models

HA ARIMA SVR GCN GRU Bi-GRCN

15

RMSE 4.389446 6.998807 4.228722 5.609166 4.802862 4.548942
MAE 3.006430 4.991264 2.882457 4.410619 3.464756 3.239479

Accuracy 0.699633 0.455428 0.710631 0.616168 0.671343 0.688718
var 0.788113 − 0.000145 0.803415 0.654015 0.746349 0.772483

30

RMSE 4.389446 6.998712 4.252060 5.635812 4.487037 4.369150
MAE 3.006430 4.990788 2.935113 4.453700 3.218210 3.101176

Accuracy 0.699633 0.455422 0.709021 0.614327 0.692941 0.701008
var 0.788113 − 0.000347 0.802071 0.650719 0.778851 0.790520

45

RMSE 4.389446 6.997727 4.280222 5.664346 4.372606 4.347006
MAE 3.006430 4.990163 2.978076 4.462996 3.116036 3.077341

Accuracy 0.699633 0.455437 0.707092 0.612372 0.700769 0.702521
var 0.788113 − 0.000512 0.800080 0.647190 0.789771 0.792385

60

RMSE 4.389446 6.989135 4.307416 5.677034 4.333217 4.245528
MAE 3.006430 4.986023 3.011925 4.489186 3.086672 3.000904

Accuracy 0.699633 0.455653 0.705231 0.611504 0.703465 0.709466
var 0.788113 0.000986 0.798030 0.645671 0.793562 0.801980
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Figure 9: Accuracy comparison between GRU and Bi-GRCN.
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which is only considered the spatial dependence. RMSE of
various models is shown in Figure 11.

Long-term prediction ability. As shown in Figure 12,
the horizontal axis represents different times, and the
vertical axis represents four evaluation metrics. RMSE
and MAE represent the prediction error of Bi-GRCN.
Accuracy and var represent the prediction accuracy of Bi-
GRCN. )e prediction results show that the prediction
error and prediction accuracy of Bi-GRCN change little
with time, indicating that Bi-GRCN has certain stability.
No matter how the time changes, the model can obtain
the best prediction results. )erefore, Bi-GRCN can be
used not only for short-term traffic flow prediction, but
also for medium-term and long-term traffic flow
prediction.

6. Conclusion

We propose a new traffic flow prediction model Bi-GRCN
based on GNN, which combines GCN and Bi-GRU. )e
traffic flow graph network is modeling, the road is repre-
sented by the nodes, the connection relationship between
roads is represented by the edges, and the traffic flow in-
formation on the road is represented by the attributes of the
nodes. We use real traffic data in the experiment, and
compare Bi-GRCN with other Neural Network models and
traditional traffic prediction methods. )e experimental
results show that compared with GCN and GRU, Bi-GRCN
has higher accuracy and better traffic prediction perfor-
mance. Compared with the traditional traffic prediction
methods HA, ARIMA and SVR, Bi-GRCN is also more
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effective. As weather, weekdays, holidays, traffic accidents,
and other factors will also affect the prediction results, we
will consider these factors in future research.
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Overfitting in a deep neural network leads to low recommendation precision and high loss. To mitigate these issues in a deep
neural network-based recommendation algorithm, we propose a recommendation algorithm, LG-DropEdge, joint light graph
convolutional network, and the DropEdge. First, to reduce the cost of data storage and calculation, we initialize user and item
embedding in the embedding layer of the algorithm. +en, to obtain high-order interaction relationships to optimize the
embedding representation, we enrich the embedding by injecting high-order connectivity relationships in the convolutional layer.
In the training phase, DropEdge is used to randomly discard connected relationships (interaction edges) to prevent overfitting.
Finally, to reasonably aggregate the embedding results learned on all layers, the weighted average is expressed as the final
embedding, so that users can make preferences in the item. We conduct experiments on three public datasets, using two
performance indicators; namely, recall and NDCG, are used for evaluation. For the Gowalla dataset, compared with the optimal
baseline method, recall@20 and ndcg@20 increased by 2.53% and 2.39%, respectively. For the Yelp2018 dataset, recall@20 and
ndcg@20 increased by 6.17% and 5.58%, respectively. For the Amazon-book dataset, recall@20 and ndcg@20 increased by 4.82%
and 4.67%, respectively. +e results show that LG-DropEdge can not only reduce the degree of neural network overfitting but also
improve the recommended results’ precision.

1. Introduction

Personalized recommendation is a common recommenda-
tion method that has been widely used in social media,
advertising, e-commerce [1], and other online services. It
effectively alleviates the difficulties involved in a user
obtaining personalized content due to the explosive growth
of information. Its goal is to estimate the likelihood of users
to adopt a product based on historical interaction behaviors,
such as purchases and clicks. +us, many studies have fo-
cused on recommendation algorithms that are in line with
user needs and are practical.

Collaborative filtering (CF) is a method used to build a
large-scale recommendation system. Its advantages are
strong interpretability and high maturity.+e general idea of
the algorithm is to predict the items that users may be
interested in by analyzing the interaction between users and
items. At a high level, the similarity measure between users is

based on user rating history, so that ratings from like-
minded users can be used to predict the ratings of interested
users; it can also be based on the ratings of users who were
interested in the past. To realize this idea, a common ap-
proach is to reconstruct historical interactions by parame-
terizing users and items and then predict user preferences
based on parameters [2]. Traditional CF recommendation
algorithms can be grouped into two categories: neighbor-
hood-based CF methods [3, 4] and matrix factorization
(MF) [5–7] methods. MF have been studied more exten-
sively. It is usually assumed that the scoring matrix can be
approximated by two lower triangular matrices. On the basis
of matrix factorization, probabilistic MF (PMF) optimizes
the maximum likelihood by minimizing the mean square
error between the observed items and the reconstructed level
[5]. Biased MF improves PMF by merging user and item
specific deviations and global deviations [6]. In practical
applications, the CF method has some problems, such as a
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learning process not being displayed, the high-level inter-
action information between the user and the item not being
considered, and the implicit relationship between the user
and the item being ignored.

In recent years, the deep-learning algorithm repre-
sented by Convolutional Neural Networks (CNNs) has
made great progress in many aspects [8, 9], but its design
mostly uses regular Euclidean data (which can be
expressed in the form of a sequence or a two-dimensional
grid), such as image, voice, and natural language. CNNs
are suitable for Euclidean data [10] but have limitations in
networks with non-Euclidean structures. +is is an issue
because not everything can be represented as a sequence or
two-dimensional grid, such as social networks or chemical
molecules. As these data can be regarded as special cases of
graph-structured data, researchers naturally think of
generalizing CNN to graphs.

2. Related Research

2.1. Graph Convolutional Network. A graph convolutional
network (GCN) [11] can overcome the problems of CNNs
only being applicable to Euclidean data and can capture the
characteristics of a network structure. Development has
been rapid and research in this direction is generally divided
into two categories: methods based on spectral decompo-
sition and methods based on spatial structure. Spectral
decomposition methods mainly deal with the spectral do-
main of the graph. A spectral network [12] defines the
convolution operation in the Fourier domain by calculating
the feature decomposition of the Laplacian matrix of the
graph, but this convolution operation will cause the con-
volution kernel not to meet the locality. Henaff et al. pro-
posed introducing a parameter term with smooth
coefficients to solve the locality problem of the convolution
kernel [13]. Defferrard et al. proposed ChebNet, using
K-order convolution to define the graph; the convolution
can avoid the calculation of redundant Laplacian matrix
eigenvectors [14]. Kipf and Welling proposed reducing the
convolution operation to first order [15], which greatly
reduces the calculation of graph convolution. As a simpli-
fication of spectral decomposition methods, the GCN was
formally proposed. To learn the implicit relationship be-
tween different nodes, Li et al. proposed a residual Laplacian
that an adaptive graph convolution network should be added
to the original graph [16]. Methods based on spatial
structure mainly deal with graphs of different structures and
directly define the convolution operation on the graph.
GraphSAGE (Graph Sample and AggreGatE) is a method to
generate the embedding vector of the target vertex by
learning a function that aggregates the representation of
neighbor nodes and calculates the node representation in-
ductively [17]. Unlike earlier methods, the graph attention
network (GAT) innovatively uses a self-attention mecha-
nism to provide different weights for the heterogeneity of
different nodes [18]. Based on GAT, the heterogeneous
graph attention network (HAT) refined two attention
mechanisms, namely, node-level attention and semantic-
level attention [19].

Due to the powerful expressive ability of graphs, graph-
based recommendation algorithms have become one of the
most popular research methods.+e goal is to reorganize the
interactive data into a user-item bipartite graph and use the
high-level connectivity between users and items to enrich its
representation. PinSage [20] uses local convolution to mark
the nodes of the graph-structured data and uses multiple
convolution modules to aggregate the local neighborhood
features of the nodes to generate node embeddings. Graph
Convolutional Matrix Completion (GC-MC) [21] applies a
GCN to the user-item graph but only uses the signal of the
first-order neighbor. +rough random browsing on the
graph, Hop-Rec [22] combines matrix decomposition and a
graph structure from the neighborhood of each user to
obtain high-level information from items. Neural Graph
Collaborative Filtering (NGCF) proposed by Wang et al.
[23] encodes collaborative signals hidden in user-item in-
teractions and spreads and embeds them in bipartite graphs
to achieve high-level neighborhood aggregation. However,
its direct inheritance of GCN makes the design quite sub-
stantial with high algorithm complexity and difficult algo-
rithm training. Based on the improvement of the traditional
GCN, a series of new algorithms have been proposed. Simple
Graph Convolution (SGC) [24] eliminates the GCN layer
and employs a nonlinear relation between time and a linear
algorithm to reduce the complexity of the algorithm.

2.2. LightGCNAlgorithm. +e previous works that combine
GCNs with recommendation mostly inherit GCN and in-
crease its generalization ability. Based on an in-depth
analysis of GCN, from the perspective of simplifying GCN
design to make it more concise and more suitable for rec-
ommendation algorithms, a new algorithm was proposed:
light graph convolutional network (LightGCN) [25]. It uses
only the GCN as the foundation for neighborhood aggre-
gation. It has been verified via thorough ablation experi-
ments on the special transformation and nonlinear
activation of NGCF inherited from the GCN. +e study
concluded that the two operations inherited from GCN,
nonlinear activation and feature transformation, do not
make a positive contribution to NGCF. Furthermore, re-
moving them can significantly improve recommendation
precision, showing that certain operations in the GCN bring
no benefit to the recommendation task and reduce the ef-
fectiveness of the algorithm. +erefore, in LightGCN, each
user (or item) is first associated with ID embedding, which is
then propagated on the user-item interaction graph to en-
rich its representation. Finally, the embeddings and weights
learned in different layers are combined for recommenda-
tion prediction. +is not only makes the entire algorithm
concise in structure, but also gives a great performance
improvement compared to other recommendationmethods.

2.3. DropEdge. DropEdge [26] involves randomly removing
a certain number of edges from the input graph in each
training phase to address overfitting and oversmoothing.
Overfitting occurs due to the use of a parameter algorithm to
fit the distribution of limited training data. +e learned
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algorithm fits the training data well but is not suitable for the
test data. Overfitting weakens the generalization ability of
small dataset. Oversmoothing isolates the output repre-
sentation from the input features as the network depth
increases, thus hindering algorithm training. DropEdge can
be regarded as a data enhancement technique that increases
the randomness and diversity of input data, thereby better
preventing overfitting. It can also be regarded as reducing
message passing. Losing some edges makes the node con-
nections sparser, which avoids oversmoothing to a certain
extent when the GCN is deep.

In addition, DropEdge is different fromDropout [27] and
DropNode [28]. Dropout disrupts the feature matrix by
randomly setting the feature dimension to zero, but because it
does not change the adjacency matrix, it does not have an
obvious impact on the overfitting problem. DropNode
samples the subgraph and is used for small batch processing.
Its principle is that discarding certain nodes can be under-
stood as a special kind of edge discarding. DropNode is for
nodes, and edge discarding is achieved indirectly by dis-
carding nodes, whereas DropEdge is edge-oriented and can
retain the characteristics of all nodes. +at is, with DropEdge,
the node only loses the interaction with a certain node, but
this does not affect the interaction between the node and other
nodes, providing greater flexibility and wider applicability.

+erefore, we propose a joint LightGCN and DropEdge
recommendation algorithm named LG-DropEdge. +is al-
gorithm is based on the concept of the LightGCN algorithm
and integrates the DropEdge which slightly improves the
algorithm prediction.

+e main contributions of this paper are as follows: (1)
we proposed new hybrid recommendation algorithm (2)
adding DropEdge to the GCN to enrich input and reduce
message passing and (3) changing the final representation of
LightGCN from the original average of each layer to a
weighted average. Experiments on multiple public datasets
verified its advantages and performance.

3. Methods

+is section describes the proposed LG-DropEdge. +e al-
gorithm can be divided into two parts: a light graph con-
volution algorithm, which is the basic core part of the
algorithm and DropEdge to mitigate overfitting and over-
smoothing problems caused by deep networks.

3.1. LG-DropEdge Algorithm. +e recommendation algo-
rithm based on the GCN uses the topological structure of the
graph to spread and aggregate the information of neigh-
boring nodes and learn the embedding of nodes. +e al-
gorithm structure is shown in Figure 1. It is usually divided
into three layers: an embedding layer, a convolution layer,
and a prediction layer. LightGCN is based on NGCF [23].
Ablation experiments show that the two operations
inherited from GCN feature transformation and nonlinear
activation do not bring any benefits but negatively impact
algorithm training by increasing difficulty. Removing them
can significantly improve precision. +is reflects that adding

useless operations to the target task in GCN does not bring
any benefits and reduces effectiveness.

3.1.1. Embedding Layer. In the LG-DropEdge, the main tasks
of the embedding layer are to express the entities (users and
items) and relationships in the user-item interaction diagram
as low-dimensional vectors and to retain all the information
of the interaction diagram, which can reduce data storage and
calculation costs and filter out some noise data. Following the
mainstream recommendation algorithm [23], the IDs of users
and items are mapped to vectors using one-hot encoding,
denoted by vu ∈ Rh and vu ∈ Rh, where h is the embedding
size. Here, v(0)

u and v
(0)
i are the initial vectors of user em-

bedding and item embedding, respectively. +e number of
users u is N and the number of items i is M.

3.1.2. Convolutional Layer. After obtaining the embedding
representation of the user (item) node, based on the graph
neural network message passing method rule [23], the
collaborative signal is obtained on the interactive graph
structure and the embeddings of the user and item are
optimized. +is mainly involves the construction of signals
and the aggregation (update) of node embedding. +e ad-
vantage lies in the embedded representation that can be
displayed to associate users and items with high-level col-
laboration information. +is section shows the embedding
learning process of the first-order signal and the higher-
order signal extended from the first-order signal.

(1) First-Order Signal. +e consumer interaction between the
user and the item can be used as a characteristic of the user
and can be regarded as a collaborative signal of two users.

Structure of the signal: for users and items (u, i) that
have an interactive relationship, the resulting signal is de-
fined as

Su←i � f vu, vi, dui( , (1)

where Su←i is the propagated signal, vu and vi are embedded
inputs, and dui is the attenuation coefficient of each prop-
agation on the control (u, i). Finally, f(·) is the signal
encoding function, expressed as

Su←i �
1

�������
Nu


 Ni




 vi, (2)

where dui is set to the graph Laplacian norm 1/
�������
|Nu||Ni|



and Nu and Ni denote the first-order neighbor sets of the
user u and the item i, respectively.

Aggregation of node embedding: this is used to enrich
the form of u embedding by summarizing the signals of
neighbors near the user node u. +e aggregate function is
defined as

v
(1)
u � 

i∈Nu

1
�������
Nu


 Ni




 Su←i, (3)

where v(1)
u represents the embedded representation of the

user u obtained after the first embedding and propagation.
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+e self-connection S
u←u

of u is not considered here. Simi-
larly, the representation of the item obtained through em-
bedding and propagation can be obtained.

(2) High-Order Signals. +rough the improvement of first-
order signals, multiple layers of embedding can be stacked to
represent high-order collaborative signals. +is high-level
signal enables better interpretability in estimating the cor-
relation between users and items.

Signal structure: enrich the signal by stacking multiple
layers of embedding, defined as follows:

S
(l)
u←i �

1
�������
Nu


 Ni




 v
(l− 1)
i . (4)

Node embedding aggregation: aggregate multilayer
signals, which can receive signals propagated from layer
neighbors, are defined as follows:

v
(l)
u � 

i∈Nu

1
�������
Nu


 Ni




 S
(l− 1)
u←i , (5)

where S
(l− 1)
u←i is the representation generated from the pre-

vious signal transfer step, which is used to store collaborative
signals from (l − 1) layer neighbours. Similarly, the l layer
representation of the item i can be obtained.

3.1.3. Prediction Layer. After spreading the l layer, the l

representation of the user u, namely, v(1)
u , v(2)

u , . . . , v(l)
u , can

be obtained. +e embeddings obtained at each layer are
further combined to form the final representation of the user
(item):

vu
′ �


L
l�0 αlv

(l)
u


L
l�0 αl

vi
′ �


L
l�0 αlv

(l)
i


L
l�0 αl

,

(6)

where αl > 0 represents the importance of layer embedding
in forming the final embedding, which is equivalent to an
attention mechanism. +is is because, when the number of
layers increases, the weight is on a downward trend.+e final
representation is changed from the original average of each
layer to a weighted average. +e deeper the layer, the greater
the weight, which emphasizes the importance of the deep
signal. To prevent the algorithm becoming too complex, αl is
set to (1/k + 1).

Finally, the inner product is used to estimate the user’s
preference for the item:

yui
′ � v
′T
u vi
′. (7)
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Figure 1: LG-DropEdge algorithm structure.

4 Journal of Advanced Transportation



It can be used as the ranking score generated by the
recommendation.

3.2.DropEdgeModule. +emain task of DropEdge [26] is to
randomly lose a certain number of edges from the input
graph at each training phase, which can be understood as
data enrichment. +is can increase the randomness and
diversity of the input data, which can mitigate overfitting.
DropEdge’s approach can also be understood as the sim-
plification of data transmission. Losing some edges makes
node connections sparser, which can effectively avoid
oversmoothing.

To apply the DropEdge, (5) is transformed into a matrix
form, as follows:

V
(l)

� LV(l− 1)
, (8)

where V(l) ∈ R(N+M)×d is the representation of users and
items obtained after embedding in the propagation layer and
d is the embedding size.+e initial signal V(0) is set toV; that
is, v(0)

u � vu and v
(0)
i � vi. Finally, L is the Laplacian matrix

(symmetrical normalization) of the user-item interaction
graph, which is defined as

L � D
− (1/2)AD− (1/2)

A �
0 R

R
T 0

 ,
(9)

where A is the adjacency matrix, D ∈ R(M+N)×(M+N) is the
pair angle matrix, Dii � |Ni| is the number of nonzero
entries in the l-th row vector of the adjacency matrix A, and
R ∈ RM×N is the user-item interaction matrix. Finally, the
final embedding matrix used for algorithm prediction is

V � α0V
(0)

+ α1V
(1)

+ · · · + αLV
(L)

� α0V
(0)

+ α1LV
(0)

+ · · · + αLL
(L)

V
(0)

.
(10)

In each training phase, DropEdge randomly selects a
certain percentage of edges of the input graph. In other
words, it randomly sets Vp nonzero elements in the adja-
cency matrix A to zero, where V is the total number of edges,
and p is the loss rate. +e obtained adjacency matrix Adrop is
expressed as

Adrop � A − A′, (11)

where A′ is expanded from a random subset of the original
edge size of Vp. +en, the matrix is normalized and
expressed as Adrop, which is used to replace A in the con-
volution operation in (9).

3.3. Algorithm Training. Reference algorithm [2], using
paired Bayesian Personalized Ranking (BPR) loss [29],
considers the relative order between observed and unob-
served user-item interactions and encourages the prediction
of observed items to be higher than that of unobserved items;
the interactions with corresponding observed items are
more reflective of user preferences.

+e loss function of the algorithm is

Loss � − 
(u,i,j)∈O

ln σ yui
′ − yuj
′  + λ V

(0)
�����

�����
2

2
, (12)

where O � (u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−  is the paired
training data, R+ is the observed interaction, R− is the
unobserved interaction, σ(·) is a sigmoid function, λ con-
trols the intensity of L2 regularization, and the training
parameter is only the embedding of the 0th layer; that is,
Θ � V(0) . A small batch of the Adam [30] optimizer is used
to predict the algorithm and update the algorithm
parameters.

4. Experiments

To verify the recommended performance of the proposed
LG-DropEdge, this study used the PyTorch deep-learning
framework. +e operating system used in the experiment
was Windows 10, the graphics card was a Nvidia Titan V,
and the CPU was an i7-8700K. +e Python version was 3.6.
Experiments and analysis were conducted using the
Pycharm2020 development tool and PyTorch deep-learning
framework.

To compare the performance of the proposed algorithm
with other algorithms and verify the effectiveness of the
algorithm’s own modules, we designed three sets of
experiments:

(Q1) Compared with the most advanced LightGCN,
how is the performance of LG-DropEdge compared?
(Q2) How do the settings of different improved
modules affect the performance of LG-DropEdge?
(Q3) How do the hyperparameter settings (such as edge
loss rate) impact the effectiveness of LG-DropEdge?

4.1. Experimental Dataset. To evaluate the effectiveness of
LG-DropEdge, we conducted experiments on three public
datasets: Gowalla, Yelp2018, and Amazon-book. +e
Gowalla dataset uses the login dataset from Gowalla [31],
where users share their location by logging in. Yelp2018
comes from the 2018 version of the Yelp Challenge, in
which companies such as hotels and coffee shops were
used as items. Amazon-book [32] comes from book data
in Amazon reviews. +ere are differences in data entities,
numbers of interactions, and sparsity, which can meet the
needs of different data characteristics as required by the
algorithm. Table 1 summarizes the statistics of the three
datasets.

Inspired by mainstream recommendation algorithms
[23, 25], for each dataset, 80% of each user’s historical
interactions were randomly selected to form the training
set, and the rest were used as the test set. From the training
set, 10% of the interactions were randomly selected as the
validation set to adjust the hyperparameters. Each ob-
served user-item interaction was treated as a positive
instance. A negative sampling strategy was then used to
pair it with a negative item that the user had not previ-
ously consumed.
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4.2. Experimental Setup

4.2.1. Evaluation Index. +e performance assessment of the
recommendation algorithm has many aspects, divided into a
quantitative calculation and qualitative description. +is
section describes the performance of the algorithm from the
perspective of prediction precision. When calculating this
indicator, an offline dataset is required that contains his-
torical user behavior data. +e dataset is then divided into a
training set and a test set, and finally the user’s behavior on
the test set is predicted by establishing a user’s behavior and
interest algorithm on the training set. +e coincidence de-
gree of the predicted behavior and the actual behavior on the
test set are calculated as the prediction precision. For users’
Top-N recommendations, algorithm [14, 29] used evaluation
indicators, such as precision, recall, and Normalized Dis-
counted Cumulative Gain (NDCG) for N� {20, 100}.

Let R(u) denote the recommendation list given to the
user through training and let T(u) denote the behavior list
on the test set.

+e precision represents the proportion of the number of
samples that are correctly predicted to the total number of
samples and is defined as

precision@N �
u∈N|R(u)∩T(u)|

u∈N|T(u)|
. (13)

+e recall of the recommended result represents the
probability that the sample is correctly predicted to occupy
the actual sample, which is defined as

recall@N �
u∈N|R(u) ∩T(u)|

u∈N|R(u)|
. (14)

+e NDCG of the recommended result is defined as

ndcg@N �
dcg
idcg

,

dcg � 
N

i�1

2reli − 1
log2(i + 1)

,

idcg � 

RELN| |

i�1

2reli − 1
log2(i + 1)

,

(15)

where dcg is the cumulative gain of loss, idcg is the maxi-
mum value of dcg under ideal conditions, and reli ∈ 0, 1{ }

indicates the user’s rating for the i-th item. Finally, |RELN|

indicates that the results are sorted in descending order of
relevance, where the set consisting of the previous N results
is adopted; that is, according to the most, sort the results in
an optimal way.

4.2.2. Baseline. To demonstrate the effectiveness of the
proposed algorithm, we compared it with the following
methods:

NeuMF [2]: this method is an advanced neural col-
laborative filtering algorithm that uses multiple hidden
layers above elements and the concatenation of user
and item embeddings to capture their nonlinear
characteristic interactions.
Hop-Rec [22]: this method combines matrix decom-
position and graphs through random walks on the
graph, combined with the degree of the vertices,
sampling different positive samples with a certain
probability, and assigning attenuation coefficients to
the ranking pairs obtained in different orders.
NGCF [23]: this method explicitly introduces the
collaborative signal into the collaborative filtering al-
gorithm and achieves this by using the high-level
connectivity in the user-item interaction graph.
LightGCN [25]: based on NGCF, this method removes
feature changes and nonlinear activation through ab-
lation experiments and adds a weight factor to the final
aggregation, which is greatly improved. It is the latest
direction of graph convolution.

4.2.3. Parameter Settings. With reference to NGCF [23] and
LightGCN [25], the LG-DropEdge algorithm is imple-
mented in PyTorch. Considering the settings of the com-
parison experiment, choose the same hyperparametric
settings as NGCF and LightGCN, etc. To ensure the accuracy
and fairness of the comparison results, the embedding size of
all algorithms is set to 64; the learning rate is set to 1e− 3; the
number of layers is set to 3; the batch size is set to 2048; the
regularization coefficient is set to 1e− 3; considering the
convergence of loss, the number of training is set to 1500.
Grid search is performed on the hyperparameters and the
edge loss rate is determined in 0.8, 0.6, 0.5, 0.4, 0.2{ }.

4.3. Performance Comparison (Q1)

4.3.1. Performance Comparison with LightGCN.
Compared with the LightGCN algorithm, Table 2 records
the algorithm performance for different datasets and dif-
ferent indicators and shows the percentage improvement of
each indicator. It reveals the clear improvement made by the
proposed LG-DropEdge.

In the three sets of comparative experiments, LG-Dro-
pEdge performs better than LightGCN. In the three datasets,
the algorithm performance on the Yelp2018 dataset has been
greatly improved; the precision index has increased by 6.04%

Table 1: Statistics of the tested datasets.

Dataset Gowalla Yelp2018 Amazon-book
User 29,858 31,668 52,643
Item 40,981 38,048 91,599
Interaction 1,027,370 1,561,406 2,984,108
Density 0.000,84 0.001,30 0.000,62
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on average. +e main reason for this is that the Yelp2018
datasets are sparser than the other two datasets. A dataset
with high sparseness has a large number of user interaction
items, and the data characteristics can be better retained
after multiple algorithm training phases. In addition, the
average precision of the three datasets increased by 4.89%,
recall increased by 4.51%, ndcg increased by 4.21%, and
overall performance improved.

4.3.2. Overall Comparison. To verify the advantages of the
LG-DropEdge recommendation algorithm in terms of
precision, we implemented performance comparisons with
other classic algorithms (NeuMF [2], Hop-Rec [22], NGCF
[23], and LightGCN [25]). +e experimental results are
shown in Table 3.

+e following can be seen from Table 3:

(1) NeuMF performs better than Hop-Rec on the
Amazon-book dataset. Since Hop-Rec is imple-
mented by combining MF and graphs, its perfor-
mance largely depends on the random walk
algorithm, and the effect is not very obvious because
it does not make full use of hight-order connectivity
of graphs.

(2) Since Hop-Rec is implemented by combining MF
and graphs, it does not make full use of high-order
connectivity. Its performance largely depends on
the random walk, and the effect is not very
obvious.

(3) NGCF yields a significantly better performance than
NeuMF and Hop-Rec because it explicitly introduces
the collaborative signal into the system filtering algo-
rithm and spreads it on the interactive graph. However,
its algorithm directly inherits GCN, which leads to
increased algorithm complexity and training time.

(4) LightGCN, as a simplification of NGCF, yields a
powerful performance, but its algorithm does not
solve the problem of deep-network overfitting.
Further, it uses relatively simple aggregation func-
tions, which limit the effect of improvement.

(5) LG-DropEdge yields the best performance on all
datasets, particularly Yelp2018, which showed an
increase of more than 5%. +us, the LG-DropEdge
algorithm can be used to improve the precision of a
recommendation system.

4.4. Ablation Experiment (Q2). To demonstrate the feasi-
bility of LG-DropEdge, the algorithm is subjected to ablation
experiments. To verify the effectiveness of the combined
modules, we performed several sets of experiments on the
three datasets: removing the improved aggregation function
and keeping DropEdge, named LightGCN+DropEdge;
removing DropEdge and keeping the improved aggregation
function, named LightGCN+ f; removing both DropEdge
and the improved aggregation function, which is the original
LightGCN; and the proposed method, LG-DropEdge.

+e results are as shown in Table 4.
+e following findings can be made from Table 4:

(1) Compared with LightGCN, precision, recall, and
ndcg increased by 2.33%, 1.48%, and 1.23%, re-
spectively, in the LightGCN+ f algorithm

(2) Compared with LightGCN, precision, recall, and
ndcg decreased by 0.72%, 0.49%, and 0.19% re-
spectively, in the LightGCN+DropEdge algorithm

(3) Compared with LightGCN, precision, recall, and
ndcg increased by 3.04%, 2.53%, and 2.39%, re-
spectively, in the LG-DropEdge algorithm

+e results are as shown in Table 5.
+e following findings can be made from Table 5:

(1) Compared with LightGCN, precision, recall, and
ndcg increased by 5.65%, 5.38%, and 5.00%, re-
spectively, in the LightGCN+ f algorithm

(2) Compared with LightGCN, precision, recall, and
ndcg decreased by 2.12%, 2.58%, and 2.69%, re-
spectively, in the LightGCN+DropEdge algorithm

(3) Compared with LightGCN, precision, recall, and
ndcg increased by 6.36%, 6.17%, and 5.58%, re-
spectively, in the LG-DropEdge algorithm

+e results are as shown in Table 6.
+e following Findings can be made from the Table 6:

(1) Compared with LightGCN, precision, recall, and
ndcg increased by 2.92%, 1.69%, and 1.56%, re-
spectively, in the LightGCN+ f algorithm

(2) Compared with LightGCN, precision, recall, and
ndcg increased by 2.34%, 2.65%, and 2.49%, re-
spectively, in the LightGCN+DropEdge algorithm

(3) Compared with LightGCN, precision, recall, and
ndcg increased by 5.26%, 4.82%, and 4.67%, re-
spectively, in the LG-DropEdge algorithm

Table 2: Performance comparison of LG-DropEdge and LightGCN.

Dataset Method Precision@20 Recall@20 ndcg@20

Gowalla LightGCN 0.0558 0.1821 0.1545
LG-DropEdge 0.0575 (+3.04%) 0.1867 (+2.53%) 0.1582 (+2.39%)

Yelp2018 LightGCN 0.0283 0.0632 0.0520
LG-DropEdge 0.0301 (+6.36%) 0.0671 (+6.17%) 0.0549 (+5.58%)

Amazon-book LightGCN 0.0171 0.0415 0.0321
LG-DropEdge 0.0180 (+5.26%) 0.0435 (+4.82%) 0.0336 (+4.67%)

+e bold values represent the experimental results of the algorithm proposed in this paper and the improvement effect on the classical experiment.
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Combining Tables 4–6, the following can be obtained:

(1) Compared with LightGCN, LightGCN+ f algorithm
has different degrees of improvement in the three
datasets of precision, recall, and ndcg

(2) Compared with LightGCN, the Light-
GCN+DropEdge algorithm has decreased in the
precision, recall, and ndcg indicators of the Gowalla
and Yelp2018 datasets, but there has been a small
increase in the Amazon-book dataset. It can be seen
that adding DropEdge has less impact on the per-
formance of less sparse datasets

(3) Compared with LightGCN, LG-DropEdge has a
greater improvement over LightGCN-f on the three
indicators of precision, recall, and ndcg in three
datasets, which fully demonstrates that modifying
the aggregation function and adding DropEdge
make the algorithm more accurate

To explain the effectiveness of the DropEdge, we compared
the loss tested under the three datasets at the same ndcg level.
+e performance on the test set measures the true performance
of the algorithm. Under the same test set index (ndcg@20), the
training performancewas the same, and the train_loss produced
by addingDropEdge with the training set was higher, indicating

that it is at the same level and there is no mitigation of
overfitting. Figure 2 compares the train_loss for 23 sets of data
in Gowalla dataset, Figure 3 compares the train_loss for 55 sets
of data in Yelp2018 dataset, and Figure 4 compares the
train_loss for 41 sets of data in Amazon-book dataset (ndcg is
arranged in increasing order), showing that it has increased to
different degrees. It can be seen that adding DropEdge is ef-
fectively mitigating overfitting. Furthermore, as ndcg increases,
LG-DropEdge performs more smoothly in terms of loss, in
contrast to the irregular fluctuations of LightGCN. +erefore,
the algorithm proposed in this paper has many advantages in
mitigating overfitting and oversmoothing problems.

4.5. Hyperparameter Experiment (Q3). To verify the degree
of influence of the edge loss rate on the algorithm, the edge
loss rate p is determined in 0.8, 0.6, 0.5, 0.4, 0.2{ } (using three
datasets), as in [26].

Figure 5 shows the performance for precision, recall,
train_time, and ndcg under different edge loss rates. As seen in
Figure 5(a), starting from 0.0, precision and recall maintain the
same upward trend as the edge loss rate increases.+e first peak
is reached at 0.4, after which the two indicators decrease steadily
and slightly between 0.4 and 0.5, increase significantly between
0.5 and 0.6, and achieve their best performance at 0.6. After 0.6,

Table 6: Performance of the Amazon-book dataset under the four algorithms.

Algorithm Precision Recall ndcg
LightGCN 0.0171 0.0415 0.0321
LightGCN+ f 0.0176 0.0422 0.0326
LightGCN+DropEdge 0.0175 0.0426 0.0329
LG-DropEdge 0.0180 0.0435 0.0336

Table 3: Overall performance comparison.

Dataset method
Gowalla Yelp2018 Amazon-book

Recall@20 ndcg@20 Recall@20 ndcg@20 Recall@20 ndcg@20
NeuMF 0.1339 0.1050 0.0445 0.0359 0.0327 0.0248
Hop-Rec 0.1399 0.1201 0.0517 0.0428 0.0296 0.0211
NGCF 0.1547 0.1313 0.0562 0.0459 0.0324 0.0250
LightGCN 0.1821 0.1545 0.0632 0.0520 0.0415 0.0321
LG-DropEdge 0.1867 0.1582 0.0671 0.0549 0.0435 0.0336
+e bold values represent the experimental results of the algorithm proposed in this paper.

Table 4: Performance of the Gowalla dataset under the four algorithms.

Algorithm Precision Recall ndcg
LightGCN 0.0558 0.1821 0.1545
LightGCN+ f 0.0571 0.1848 0.1564
LightGCN+DropEdge 0.0554 0.1812 0.1542
LG-DropEdge 0.0575 0.1867 0.1582

Table 5: Performance of the Yelp2018 dataset under the four algorithms.

Algorithm Precision Recall ndcg
LightGCN 0.0283 0.0632 0.0520
LightGCN+ f 0.0299 0.0666 0.0546
LightGCN+DropEdge 0.0277 0.0614 0.0506
LG-DropEdge 0.0301 0.0671 0.0549
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they begin to decline sharply. +e precision index is at its worst
value at 0.8. Meanwhile, as seen in Figure 5(b), the ndcg index
maintains a steady increase from 0.0, achieves maximum value
at 0.6, after which it drops sharply, and reaches its worst value at

0.8. +e train_time index starts at the lowest value at 0.0 and
then increases rapidly to 0.2, before declining slowly.+erefore,
the overall trends for precision, recall, and ndcg are increasing
from the start 0.0, achieving a maximum at 0.6, and thereafter
declining rapidly. Time is expressed as the average train_time
for an epoch. It is obvious that whenDropEdge is increased, the
train_time increases significantly. Undoubtedly, it increases the
difficulty of training. From Figure 5, when the train_time is
relatively short, the precision index performs the best and the
edge loss rate p of DropEdge is finally determined to be 0.6.

Figure 6 shows the performance for precision, recall,
train_time, and ndcg under different edge loss rates. As can be
seen from the figure, in Figure 6(a), the precision and recall
both increase between 0.0 and 0.2, and they begin to decline
between 0.2 and 0.4, increase between 0.5 and 0.6, and then
continue to decline. +e only trend difference is between 0.4
and 0.5, precision increases, and recall decreases, but the
overall trend is the same, first increasing to the highest point
(p � 0.2) and then slightly lowering, then slightly increasing,
and finally falling to the lowest. In Figure 6(b), the ndcg
indicator increases between 0.0 and 0.2, reaches the highest
point at that time, drops to the lowest point between 0.2 and
0.4, and then increases sharply between 0.4 and 0.5; it
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increases slowly between 0.5 and 0.6 and begins to decline
after 0.6; while train_time indicator starts to decline after
rising from 0.0 to 0.2 to the highest point. Combined with the

two subgraphs, all three accuracy indicators reach the best
state at that time (p � 0.2), then begin to decline, then rise and
reach the second peak at p � 0.6, and then begin to decline.
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Figure 6: Algorithm performance under different edge drop rates (Yelp2018).
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According to the rule of relatively little train_time and priority
in accuracy index performance, the edge loss rate p of
DropEdge is finally determined to be 0.2.

Figure 7 shows the performance for precision, recall,
train_time, and ndcg under different edge loss rates. It
can be seen from the figure that, in Figure 7(a), the two
indicators generally show a continuous increase trend.
Only precision has a small decline between 0.4 and 0.5,
both of which reach the maximum value at p � 0.8; in
Figure 7(b), ndcg also shows an increase trend, reaching
the maximum value at p � 0.8, while train_time at p � 0.2
reaches the maximum value and then continues to de-
cline. +e two indicators have an intersection between 0.5
and 0.6. After the intersection, they both develop in a
positive direction and reach the optimal state of the al-
gorithm at p � 0.8, especially after p � 0.6 showing a
rapid positive growth, so the edge loss rate p of DropEdge
is finally determined to be 0.8.

+e purpose of this section is to fully verify the im-
provement of the performance of the algorithm after adding
the DropEdge module. It can be seen that the final boundary
edge loss rate for different datasets is different. It can be seen
that, in machine learning, the algorithm’s adaptability to
different datasets is different. Based on the results of the
above three datasets, there is reason to believe that the
performance of arithmetic has been greatly improved by
adding the DropEdge module.

5. Conclusion

+is paper proposed a joint light graph convolutional network
and DropEdge recommendation algorithm (LG-DropEdge).
+e DropEdge was developed based on the LightGCN
framework, which improves the final multilayer fusion aggre-
gation function, mitigates the overfitting problem caused by the
deep network algorithm, and improves the precision, recall, and
ndcg, and enhances the interpretability of the recommendation
algorithm. +e proposed algorithm has improved the recom-
mendation accuracy in the offline experiments of the three
datasets, but it has not been verified in practical application. In
the later research, wewill continue to apply other public datasets
to our algorithm and gradually apply them to the actual rec-
ommendation system to improve the generalization of the
algorithm. +e existing recommendation algorithm based on
graph convolution network generally controls the number of
convolution layers at 3 layers considering the attenuation degree
of propagation factor, while DropEdge fully demonstrates that
its performance is generally in deeper convolutional networks.
+is paper sets the number of convolution layers to be 3 layers
considering the sparseness of datasets and the needs of contrast
algorithms. +erefore, future research is to select more sparse
datasets for comparative experiments and further analyse the
relationship between the number of convolutional layers and
the recommendation accuracy.
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Traffic accident management as an approach to improve public security and reduce economic losses has received public attention
for a long time, among which traffic accidents post-impact prediction (TAPIP) is one of the most important procedures. However,
existing systems and methodologies for TAPIP are insufficient for addressing the problem. (e drawbacks include ignoring the
recovery process after clearance and failing to make comprehensive prediction in both time and space domain. To this end, we
build a 3-stage TAPIP model on highways, using the technology of spiking neural networks (SNNs) and convolutional neural
networks (CNNs). By dividing the accident lifetime into two phases, i.e., clean-up phase and recovery phase, the model extracts
characteristics in each phase and achieves prediction of spatial-temporal post-impact variables (e.g., clean-up time, recovery time,
and accumulative queue length). (e framework takes advantage of SNNs to efficiently capture accident spatial-temporal features
and CNNs to precisely represent the traffic environment. Integrated with an adaptation and updating mechanism, the whole
system works autonomously in an online manner that continues to self-improve during usage. By testing with a new dataset
CASTA pertaining to California statewide traffic accidents on highways collected in four years, we prove that the proposed model
achieves higher prediction accuracy than other methods (e.g., KNN, shockwave theory, and ANNs).(is work is the introduction
of SNNs in the traffic accident prediction domain and also a complete description of post-impact in the whole accident lifetime.

1. Introduction

People’s living standards have increased all over the world,
leading to an increase in the ownership of private vehicles
[1]. While private vehicles have improved people’s traveling
experience, they have also contributed to several traffic
problems, where traffic safety is one of the main concerns.
According to statistical data released by World Health
Organization in 2004, road traffic accidents are among the
main causes of deaths and injuries all over the world, leading
to 1.2 million deaths and 50 million injuries each year [2]. In
2019, the number of traffic accidents in China was 248,000,
and the direct property loss was as high as 1.35 billion yuan
(China Statistical Yearbook).

Besides the costs of fatalities and injuries, indirect effects
brought by traffic accidents such as congestion and energy
consumption also have tremendous impacts on socioeco-
nomic development. Typically, accident congestion can

spread rapidly and even cause a chain breakdown in the
entire system, especially in closed roads like highways. In
severe cases, the delays of clearance for an accident may
increase the occurrence probability of a secondary accident
[3]. In 1988, the total extra travel time and fuel consumption
caused by traffic congestion, both regular and occasional, in
50 major cities in the United States was estimated at 35
billion U.S. dollars [4].

Traffic accident management (TAM) is of great impor-
tance to government and transportation agencies, which can
not only improve public security but also reduce economic
losses. (ere are usually two main tasks in TAM: analysis and
prediction. By analyzing the features of historical accident
records, accident prediction can be realized to foresee the time
and place of the accident in advance. Furthermore, traffic
accidents post-impact prediction (TAPIP) is also an essential
part in TAM but have not caught enough attention. When an
accident occurs, if the spatial and temporal impact scope can
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be quickly determined, then the transportation agency can
induce vehicles to avoid unnecessary congestion, and travelers
can also plan their routes in advance.

(e lifetime of a traffic accident is usually divided into
five phases, namely, detection, verification, response,
clearance, and recovery [5]. Most TAPIP-related research
studies till now concentrate only on the first four phases,
which means the duration from accident occurrence to the
reopening of all blocked traffic lanes. (e existing research
studies use traffic wave theory, regression model, and other
methods to analyze the influence of various factors on ac-
cident indicators, but have not established a complete re-
lationship between the influencing factors and the spatial-
temporal impact of the accidents. Furthermore, the clear-
ance is never the end of an accident, and the process that the
traffic gradually recovers to normal conditions cannot be
ignored. For the convenience of expression, this work
proposes a two-phase accident lifetime. As shown in Fig-
ure 1, the four phases before clearance are grouped into
clean-up phase, while the recovery phase remains un-
changed. (e reason for this division is that in the clean-up
phase, at least one lane will be blocked, while after that, the
whole lanes will be reopened.

As the third-generation neuron model, spiking neural
networks (SNNs) [6] are closer to biological principle
compared with other artificial neural networks (ANNs). Due
to the advantage of being sensitive to spatial-temporal
characteristics of information [7], SNNs already improve the
traditional neural models on accuracy in many application
areas. However, SNNs till now are rarely used in traffic
domain and have even never been applied to accident
prediction related research.

(is study proposes a traffic accident spatial-temporal
post-impact prediction model on highways, using the
technology of SNNs and CNNs. In the 3-stage model, the
duration of clean-up phase (clean-up time) is first estimated,
and then, several post-impact variables such as recovery time
and accumulative queue length are predicted. Additional
online stage is used to make adaptation and update the
model. In this regard, the main contributions of this work
can be summarized as follows:

(1) (e development of a framework to predict post-
impact in the complete accident lifetime, which
contains the recovery process.

(2) (e prediction of highway accident post-impact in
both spatial and temporal domain, and the outputs
are specific and effective variables that can help both
transportation agencies and travelers.

(3) (e first use of SNNs in the traffic accident pre-
diction domain and the implementation of encoding
the traffic spatial-temporal features into time spikes.

(4) (e processing of a new highway spatial-temporal
traffic accident dataset CASTA and the use of it in
testing the performance of the proposed model.

(5) (e proposal of an online adaptation and updating
method to revise the error and modify the model, for
self-improvement during usage.

(e rest of this study is organized as follows. Section 2
describes literature review on SNNs and TAPIP. Section 3
defines the general framework of the 3-stage prediction
model, including the specific input, output, and structure of
SNNs and CNNs. (e processing of the new dataset is in-
troduced in Section 4, and Section 5 presents the experiment
results. Finally, Section 6 provides concluding statements on
our work.

2. Literature Review

2.1. Spiking Neural Networks in Traffic Domain. With the
rapid development of artificial intelligence and computer
technology, deep learning has been widely applied in traffic
domain, including traffic state prediction [8, 9], traffic signal
control [1, 10], and driving model development [11].

(e works mentioned above are all based on artificial
neural networks (ANNs), where the neurons use differen-
tiable, nonlinear activation functions. Although ANNs have
achieved great performance in wide areas including classi-
fication, pattern recognition, and prediction, they are fun-
damentally different in structure, neural computations, and
learning rule compared to the brain [7]. (e way of in-
formation propagation between units is one of the most
obvious differences. While ANNs rely on 32 bit or 64 bit
continuous messages sent between units [12], the neurons in
biological brain broadcast trains of action potentials, also
known as spike trains to downstream neurons. As the third-
generation neuron model, spiking neural networks (SNNs)
are close to biological principle by utilizing spikes. When
dealing with complex or large datasets, while ANNs face the
concern of huge computational consumption, SNNs achieve
energy efficiency since output spike trains can be made
sparse in time [13]. Besides that, SNNs improve the tradi-
tional neural models on accuracy due to the advantage of
being sensitive to the spatial-temporal characteristics of
information [7]. Although still in the early stages of de-
velopment, SNNs have become the focus of many appli-
cation areas and made progress in visual processing [12],
speech recognition [14], and medical diagnosis [15].

However, SNNs till now are rarely used in traffic domain,
despite their specialized capability in representing spatial-
temporal data. Laña et al. [16] presents an approach for
spatial-temporal road traffic forecasting that relies on the
adoption of the NeuCube architecture based on SNNs.
Taking advantages of the NeuCube platform, this work
focuses on the spatially-aware traffic variable forecasts and
on the exploration of the spatial-temporal relationships
among different sensor locations within a traffic network. In
another work of Laña et al. [17], an evolving spiking neural
networks (eSNNs) based adaptive long-term traffic state
estimation model is proposed. By using similarity-based
clustering of daily traffic volume data and monitoring them

Detection verification Response Clearance Recovery

Clean-up Phase Recovery Phase

Time

Figure 1: Two-phase traffic accident lifetime.
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in real time, the model encodes traffic data into spikes over
the time domain effectively and achieves high accuracy in
online prediction when new data samples arrive.

2.2. Post-Impact Prediction of Traffic Accident. At present,
the main research methods in predicting the impact of
highway accidents are the traffic wave theory [18, 19], vehicle
arriving-departure model [20, 21], regressionmodel [22, 23],
decision tree model [5], and ANNs [23, 24]. Yu et al. [18]
analyzed the accumulation and dissipation process of the
accident location on two-lane highway, using the shockwave
theory as a foundation, and finally estimated the spatial-
temporal impact of the accident. However, such methods
based on theoretical analysis considered only limited
influencing factors (flow and density of upstream) and only
showed general laws that lead to poor applicability. Zhu et al.
[23] established two kinds of forecasting models of spatial-
temporal impact for traffic accidents based on nonlinear
regression and BP neural networks, where the influence of
factors were analyzed such as upstream flowrate, ratio of
cargos, and accident handling time. (e results showed that
the BP neural network achieves higher accuracy. Lin and Li
[24] embedded three machine learning algorithms in a hi-
erarchical scheme to perform sequential prediction. (e
result outperformed others by achieving a MAPE range of
5.5–53.8%. However, it just considered the time duration of
an accident rather than spatial impact. In contrast, Lee et al.
[25] only focused on estimation of vehicle accident queue
length using the ANN model with relatively abundant
influencing factors.

(e methods above theoretically described and inferred
the characteristics of incidental accidents and analyzed the
influence of various factors on accident indicators. But they
have not established a complete relationship model between
the influencing factors and the spatial-temporal impact of
the accidents. Furthermore, related works all used onemodel
to output all prediction variables regardless of the charac-
teristics in different phases of accidents. However, the five
phases are closely related and can have great influence on
each other. (us, in order to fully capture the spatial-
temporal features in the whole process, the prediction
should be made separately according to the order of phase.

Since the prediction of accident impact highly relies on
feature extraction of spatial and temporal data, SNNs are
considered to be a more suitable method due to its char-
acteristics compared with the models mentioned above.
However, no such SNNs-related models have been proposed
till now.

3. Methodology

(is work proposes a spatial-temporal post-impact pre-
diction model of traffic accidents. (e 3-stage process is
shown in Figures 2 and 3, where Figure 2 corresponds to the
training process using historic accident records (training set)
and Figure 3 corresponds to the predicting process using
new accident records (test set). Stage 1 is the prediction of
accident clean-up time; it uses clusters to define length

hierarchy of clean-up time and then extract accident features
to train the SNNs classifier. Stage 2 concerns with a pre-
diction model of spatial-temporal impact based on CNNs
and backpropagation neural networks (BPNNs), feeds with
flow and speed data, and outputs the recovery time and
accumulative queue length. When a new accident record
comes to the model after being processed with the above two
stages, another online updating stage will be promoted to
correct error and revise model. (e notations used fre-
quently in the 3-stage model are given in Table 1.

3.1. Stage 1: Accident Clean-Up Time Prediction.
According to the two-phase accident lifetime defined in
Section 1, phases are not completely independent and can
influence each other. (erefore, in order to figure out the
spatial-temporal impact in the whole process, we need to
predict the duration of clean-up phase first.

Mean-shift clustering is first performed on the clean-up
time, which groups the clean-up time into several intervals.
(us, the accidents with similar cleaning difficulty are la-
beled as a cluster. Furthermore, the accident records with
attributes and corresponding class labels are input to train an
SNNs classifier. Whenever a new accident record comes in,
the accident attributes are extracted and then classified using
the trained classifier. (e predicting clean-up time is rep-
resented by the centroid value of its corresponding cluster.

3.1.1. Clustering Using Mean-Shift. According to the sta-
tistics in Section 4, the clean-up time of the accidents dis-
tributes unevenly throughout the interval. It exists the case
where some of the interval lack records.(us, to improve the
prediction accuracy and remove exceptional, clustering the
clean-up time into groups and using the centroid value to
present the predicted value is better than a direct prediction
model.

(e mean-shift algorithm [26] is chosen to cluster the
clean-up time for two main reasons: it does not require a
predefined number of clusters; and such density-based al-
gorithms are less affected by the mean value compared with
the K-means algorithm. (e key operation of the algorithm
is to calculate the drift vector of the centroid through the
data density change in the region of data, so as to move the
centroid in the next iteration until it reaches the maximum
density. Algorithm 1 shows the procedure of clustering the
traffic records according to the clean-up time. (e band-
width is set as 10.

3.1.2. Accident Characterization. When a new accident re-
cord comes to the model, in order to predict the clean-up
time, the cluster that the records belongs to needs to be
figured out. (us, a number of attributes that represent the
characteristics of accidents are used to train a classifier,
which outputs the corresponding cluster.

In a previous work, three kinds of attributes are usually
extracted to demonstrate the accident: accident information
(e.g. accident type [24, 25, 27–29], blocked area size [5, 25],
number of vehicles involved [5, 25, 28], and casualties
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Figure 3: 3-stage model for accident post-impact prediction–predicting process.

Table 1: Notations.

Notation Meaning Units
CA (e actual cluster that the clean-up time of an accident belongs to —
CP (e predicted cluster that the clean-up time of an accident belongs to —
TclA (e actual clean-up time Minute
TclP (e predicted clean-up time Minute
LclA (e actual accumulative queue length in the clean-up phase Mile
LclP (e predicted accumulative queue length in the clean-up phase Mile
LmaxA (e actual maximum accumulative queue length Mile
LmaxP (e predicted maximum accumulative queue length Mile
LaveA (e actual average accumulative queue length Mile
LaveP (e predicted average accumulative queue length Mile
TfrA (e actual full-recovery time Minute
TfrP (e predicted full-recovery time Minute
ThrA (e actual half-recovery time Minute
ThrP (e predicted half-recovery time Minute
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Figure 2: 3-stage model for accident post-impact prediction–training process.
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[5, 25, 29]), spatial-temporal attributes (e.g. lane location
[25, 27, 29], road type [24, 25], and time [5, 24, 25, 27–29]),
and weather information (e.g. humidity [24, 25, 28], wind
[24, 25], and visibility [24, 25]). In this model, considering the
dataset used, 6 attributes are selected as the input in this stage:

(i) Block lanes: a number between 1 and 6 represents
the number of lanes blocked by the accident. (e
value is determined according to TMC event code
[30].

(ii) Block distance: a value represents the length of road
blocked by the accident in miles.

(iii) Day or night: a binary digit, where 0 represents
daytime while 1 represents night.

(iv) Workday or not: a binary digit, where 0 represents
workday while 1 represents holiday or weekend.

(v) Peak hour or not: a number between 0 and 2, where
0 represents morning peak (8 a.m.–10 a.m.), 1
represents evening peak (4 p.m.–6 p.m.), and 2
represents the normal period [31].

(vi) Weather condition: a number between 0 and 4,
which represents sunny/rain/snow/thunderstorm/
fog, respectively, when accident happens.

More detailed information of data processing can be
found in Section 4.

3.1.3. Classification Using SNNs. A classifier is trained to
match the accident attributes to the cluster it belongs to. Due
to the characteristics of being sensitive to the spatial-tem-
poral features, SNNs are applied in building the classifier. It
is the first time of applying SNNs in traffic accident pre-
diction domain.

After being first proposed in 1997 by Maass [6], SNNs
have attracted researchers to explore different research di-
rections. (e main technique directions of SNNs can be
concluded in four main categories: encoding and decoding
of spiritual information, neuron models and network sim-
ulation strategy, similarity measurement of spiking se-
quence, and synaptic weight learning rules [32].

(e classification problem in this work concerns with the
supervised learning in SNNs, which refers to finding a
suitable synaptic weight matrix for a series of given input
spike trains and target spike trains, so that the output of the
neurons is as close as the corresponding target spike trains,
that is, the error evaluation function of the two reaches
minimum [33].

(1) Leaky Integrate-and-Fire Neural Model. Neural
computing relies on the construction of the spiking neuron
model. In order to do numerical analysis, an efficient
mathematical neural model should be built based on the
geometry and electrical properties of neuron. Leaky Inte-
grate-and-Fire neural (LIF) model [34], as the single com-
partment model with fixed threshold which has been widely
used in neural computing, can directly describe the rela-
tionship between membrane potential V and input electric
current I. When V is between the resting potential Vrest and
the threshold Vthre, it is given by the following equation:

τm

dV

dt
� − V − Vrest(  + RmI, (1)

where τm is a time constant, and I is the sum of current
released by presynaptic neurons. Once V crosses Vthre from
below, a spike is generated and V is reset to Vrest. (e LIF
model, with the advantages of using simple structure to realize
accurate simulation of SNNs by event-driven simulation
strategy, is chosen as the basic neuron model in our work.

(1) Input
(2) Tc  ≔ dataset of clean-up time over which the procedure is performed
(3) Initialization
(4) r ≔ the radius of a region
(5) d ≔ the minimum distance between clusters
(6) F(i, Cj) ≔ probability that point i belongs to Cluster Cj

(7) Repeat
(8) Randomly select an unvisited point from the dataset as the starting centre point oc

(9) Repeat
(10) Find all the points that appear in the circle ⊙(oc, r) and group into cluster Coc

(11) For point i in Coc

, F(i, Coc

)←F(i, Coc

) + 1
(12) Calculate the shift vector of oc as Mc � 1/Kxi∈C(xi − oc)

(13) Update oc towards the shift vector as oc←oc + Mc

(14) Until Mc reaches minimum threshold
(15) If ∃Coi

, distance(Coc

, Coi

)<d, then merge Coc and Coi

(16) Else, label Coc as a new cluster
(17) Until all points are visited
(18) For point i in Tc , i belongs to cluster C with maximum probability F(i, C) � maxCj F(i, Cj)

(19) Output
(20) Coc

  ≔ all clusters
(21) CTc

  ≔ clusters that each point in Tc  belongs to

ALGORITHM 1: Mean-shift clustering of clean-up time.
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(2) Gaussian Tuning Curve Coding. In the biological neural
system, spikes are transmitted between neurons with dif-
ferent combinations. (e corresponding rules and mecha-
nisms of conversion between the stimulation signal and the
spike trains are called neural coding [35]. When neuron feels
external stimuli, encoding module encodes the stimulation
signal to specific spike trains and responses; in turn,
decoding module can estimate the stimulation signal from
spike trains.

Researchers put forward various coding methods, which
can be divided into two main categories: frequency-based
coding [36] and time-based coding [37]. Evidence confirms
that time-based coding is the more effective, since the time
structure of the spike trains carries stimulus signals on a
millisecond or even smaller scale, not just the average firing
frequency [38]. With the introduction of more complex
systems, single-neuron coding cannot effectively present the
huge amount of information. Population coding [39] is thus
proposed to solve complex information coding problem,
where each neuron has a unique spike response distribution
for a given stimulus, and the responses of the neuron
population are combined to represent the overall
information.

(e population coding method used in this model is
Gaussian tuning curve coding [40], as shown in Figure 4. A
neuron covers a certain range of analog quantity in the form
of Gaussian function, while the height of the corresponding
Gaussian function to a certain value of the analog quantity
determines the time for the neuron to emit spike. In this
work, a population containing six neurons is used to encode
the six accident attributes mentioned above. Figure 4 shows
an example of how “block distance” of 0.18 miles is encoded
into spike trains 0.79, 0.04, 0.52, 0.96, 1.00, 1.00{ }(ms).

(3) Multi-ReSuMe Training Algorithm. (e supervised
learning algorithm in SNNs can be divided into three
categories based on the learning rules of synaptic weight:
gradient-descent based method, synaptic plasticity-based
method, and convolution-based method [41]. Gradient-
descent based methods such as SpikeProp [40] learn from
the error back propagation algorithm of traditional ANNs,
where the state variables of the neuron model must have
analytical expressions and lack biological realism. From a
biological perspective, a training algorithm should update
synaptic weights based on the temporal correlation of
presynaptic and postsynaptic spikes, in keeping with the
spike timing-dependent plasticity (STDP) theory [42]. In
this work, a synaptic plasticity-based method called the
multilayer remote supervised method (Multi-ReSuMe) [43]
is used to train the classifier. Multi-ReSuMe extends the
single-layer impulse neural network ReSuMe algorithm
[41] to the multilayer network and overcomes some lim-
itations as it can be applied to neurons firing multiple
spikes, and it can in principle be applied to any linear
neuron model.

(e main contribution of Multi-ReSuMe is the combi-
nation of the STDP and anti-STDP mechanism in one
process, where synaptic weight update between hidden layer
H and output layer O satisfies the following equation:

d
dt

woh(t) �
1
nh

Sh(t) 
∞

0
a
pre

S
d
o (t) − S

a
o(t) ds 

+
1
nh

S
d
o (t) − S

a
o(t)  a + 

∞

0
a
post

(s)Sh(t − s)ds .

(2)

For any excitatory synaptic connection from hidden
neuron h to output neuron o, a synaptic strength woh is
potentiated whenever a target spike Sd

o (t) is observed and
depressed whenever the trained neuron fires Sa

o(t). Here, s

denotes a delay between the presynaptic and postsynaptic
firing times, where s � t

f
o − t

f

h . (e role of the noncorrelative
factor a in equation (2) is to adjust the average strength of
the synaptic inputs so as to impose on a neuron a desired
level of activity. (e kernels apre and apost are STDP-related
terms that define the shape of a learning window W(s) [44],

W(s) �

a
pre

(−s) � −A− · exp
s

τ−

 , s≤ 0,

a
post

(s) � +A+ · exp
−s

τ+

 , s> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where parameters A+, A− > 0 are the amplitudes and
τ+, τ− > 0 are the time constants of the learning process.
apre(−s) gives the weight change if the presynaptic spike
(the spike of the hidden neuron occurs) comes after the
postsynaptic spike (the spike of the output and target
neurons), while apost(s) gives the weight change if the
presynaptic spike comes before the postsynaptic spike [43].

Similarly, synaptic weight update between input layer I
and hidden layer H satisfies the following equation:

d
dt

whi(t) �
1

ninh

Si(t) 
o∈O


∞

0
a
pre

S
d
o (t) − S

a
o(t)  woh

+
1

ninh


o∈O

S
d
o(t) − S

a
o(t) 

a + 
∞

0
a
post

(s)Si(t − s)ds  woh.

(4)

As Figure 5 shows, the network has 36 input neurons
corresponding to six accident attributes, and an output
neuron representing the cluster that the input sample be-
longs to. (e hidden layer contains 80 neurons which are
fully connected with other layers. (e output neuron’s spike
train contains a single spike, where the timing differs from
each other, as given in Table 2. (e process of building and
training a Multi-ReSuMe-based classifier is given in Algo-
rithm 2. (e parameters are initialized as follows: A+ � 1.2,
A− � 0.5, τ+ � τ− � 0.5, and a � 0.05 [45].

3.2. Stage2:AccidentSpatial-TemporalPost-ImpactPrediction.
After the clean-up phase of an accident, the traffic flow will
begin to recover from congestion to normal condition.
Recovery phase is an important process which is often
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Table 2: (e target spike-time of output neuron corresponding to each cluster.

Cluster no. Output spike-time (ms)
0 0
1 1
2 2
3 3
⋮ ⋮
n n
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neglected by the travelers and traffic management depart-
ment, since people always regard clearance as the end of an
accident, while the evacuation process afterwards plays a
vital role in reasonable path planning. (us, in this phase,
several important values in the recovery phase will be
predicted.

First, the predicted clean-up time, matrixes of traffic
volume, and speed at the occurrence of the accident are used
to estimate the queue length at the end of the clean-up phase
(or the beginning of recovery phase). A CNNs-based pre-
dictor is used in order to better capture the spatial features of
the congested road. Second, the analysis of the recovery
phase is based on a backpropagation neural networks
(BPNNs), where the estimated queue length together with
the historical average traffic condition are used as input. (e
final output of this stage can include full-recovery time, half-
recovery time, maximum accumulative queue length, and
average accumulative queue length. Whenever a new acci-
dent record comes in, stage 2 will start when it receives the
output clean-up time of stage 1.

3.2.1. Queue Length Estimation at the End of Clean-Up Phase
Using CNNs. During the clean-up phase, one or several
lanes of the highway will be affected which leads to the
reduction of capacity. According to the specific number of
block lanes and block distance, there will be varying degrees
of vehicle accumulation. If the block area is relatively small
or the traffic volume is low, the traffic flow itself will absorb
disturbance and cause little congestion. However, if high
traffic volume meets the large block area, the accumulated
queue will be very long, and it will be necessary for the
travelers to change the travel plan.

Convolutional neural network (CNN) is a class of deep,
feed-forward artificial neural network, which has been suc-
cessfully employed to analyze visual imagery. Since the var-
iables that influence the queue length in our model include

traffic flow, speed, and the geometry of the block area, they
can all be better presented by pictures. (us, CNNs are the
best choice since they behave well in extracting spatial features
from images so as to fully understand the spatial character-
istics around the block area. A CNN consists of an input and
an output layer, multiple convolutional layers, and optional
hidden layers such as pooling layers, fully connected layers,
and normalization layers. Figure 6 shows the demonstration
of how these layers can be combined to build a CNN
according to the requirement [1]. Convolutional layers apply a
convolution operation to the input and pass the result to the
next layer, so as to achieve feature extraction [46].

(1) Traffic Environment Preprocessing. (e definitions and
representations of the traffic environment are very impor-
tant, as the accuracy of prediction is dependent on the ef-
fectiveness of the information received about the
environment. To take advantage of the CNNs, the envi-
ronment is processed as three pictures in the model: a
picture of geometry showing the block area, a picture of the
vehicle speed, and a picture of the traffic flow. A repre-
sentation of this process is shown in Figure 7, where an
accident blocks two lanes with 0.23 miles on a four-lane
highway. Noticing that the red arrow shows the location of
sensors (spread unevenly), and the grey dotted lines in
Figure 7(a) represents how the picture is divided into grids
that is long in 0.1 miles and wide in lane width. Figure 7(b)
shows the trafficability of each grid, where the block area is
set to 0, and other normal area is set to 1. (e corresponding
average flow (vehicles/hour) and average speeds (miles/
hour) are shown in Figures 7(c) and 7(d). (e data in each
grid are always accessed from the nearest sensor and later
normalized. (e total length is set as 5 miles, which means
4 × 50 grids. (ese settings ensure that the environment is
accurately and sufficiently represented and also not too
complex for the CNNs to understand.

(1) Definition
(2) A{ } ≔ Historic accident dataset
(3) Ai ≔ accident data in A{ } where Ai � (a1, a2, a3, a4, a5, a6, c)

(4) etarget ≔ the minimum value of network error to reach when learning is considered converged
(5) W ≔ synaptic weight between all neurons
(6) M ≔ maximum number of iterations
(7) Initialization
(8) W← Initial synaptic weight with random value θ ∼ U(0.2, 0.8)

(9) For iteration � 1, M do
(10) For Ai ∈ A{ } do
(11) Encode Ai � (a1, a2, a3, a4, a5, a6, c) to a series of spike trains Ai � (S1i , S2i , S3i , S4i , S5i , S6i , Sd

o )

(12) Set membrane potential of all neurons to the resting potential (set to 0)
(13) Pass input spike trains to the network and find actual output spike Sa

o

(14) Calculate network error eAi
� 1/2(Sd

o − Sa
o)2

(15) Compute weight modifications ΔW for all layers according to equation (2) and equation (4)
(16) Update synaptic weight W←W + ΔW
(17) End for
(18) Calculate summed network error e �  eAi

(19) While e≥ etarget

ALGORITHM 2: Multi-ReSuMe-based classifier.
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(2) Network Structure. For highways with different
number of lanes in the dataset, we separately trained three
CNNs, namely, the 4-lane model, 5-lane model, and 6-lane
model. Each CNN receives three traffic environment pic-
tures mentioned in 3.2.1.1 together with the predicted clean-
up time as input, and after processing through six layers
(three convolutional layers and three fully connected layers),
it outputs a number representing the predicted queue length
LclP. (e structure of the 5-lane CNN model, including the
processing method in each layer and the picture size before
and after each layer, is shown in Figure 8. (e network
structure of the 4-lane model and 6-lane model is not
presented here. Learning rate is set as 0.005, and the training
ends when mean square error reaches 0.001.

3.2.2. Prediction of Spatial-Temporal Impact in Recovery
Phase Using BPNNs. At the beginning of the recovery phase,
the block area will be removed and the traffic will gradually
return to normal condition. (us, the environment in this
phase can be described as a simple congestion propagation
model in the straight closed road. Shock wave theory [47],
proposed in 1955, regards traffic flow as a continuous fluid
with a linear flow-density relationship and has been applied
widely in the congestion propagation analysis. However, it
only concerns constant flow and density and neglects sto-
chastic effects. (is work fully considers the uneven dis-
tribution of traffic in the upstream and downstream and uses
a BPNNs-based predictor to capture the nonlinear rela-
tionship between model input and output that estimate
spatial-temporal impact variables such as full-recovery time,

half-recovery time, maximum accumulative queue length,
and average accumulative queue length.

Similar to Section 3.2.1, we also train three BPNNs
models corresponding to 4-lane case, 5-lane case, and 6-lane
case. Each BPNN receives inputs including the speed and
flow of each lane at the beginning of recovery phase together
with the predicted queue length, and after processing
through a hidden layer, it outputs a number representing the
spatial-temporal impact variable. Note that a separate BPNN
is trained for each variable. It is worth mentioning that in the
predicting process shown in Figure 3, the instant traffic data
are represented by the historical average value to improve
accuracy. For example, if the predicted recovery phase of an
accident starts at 2021/6/20, 8 : 00 (Sunday), the speed and
flow data will be accessed through calculating the average
value at the four most recent “Sunday 8:00.” . Figure 9 shows
the structure of the 4-lane BPNN model, which has 17 input
neurons and 9 hidden neurons. (e 5-lane model has 21
input neurons and 11 hidden neurons, while the 6-lane
model has 25 and 13. Learning rate is set as 0.005, and the
training ends when mean square error reaches 0.001.

(e process of acquiring actual recovery time and ac-
cumulative queue length is detailed in Section 4.

3.3. Stage 3: Online Updating. After stage 1 and stage 2, the
whole lifetime of an accident has already been predicted. It is
expected that most accidents will be classified accurately,
and the predicted spatial-temporal variables will match the
actual one within a fault tolerance. However, some of the
predictions can have long time span using the information at
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Figure 7: Example of processing traffic environment pictures. (a) Four-lane highway map. (b) Geometry picture. (c) Traffic flow (vehicles/
hour). (d) Average speed (miles/hour).
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the first beginning. Long-term prediction has always been a
difficulty and errors must exist. (e most influencing part
would be the clustering and classification accuracy, since the
error will continue to propagate and cause more serious
errors in the following stages. (at is the reason for pro-
posing stage 3: detecting the error during the development of
the accident and making timely adaptation and revision.
Furthermore, the revised values can also help to modify and
update the models in stage 1, namely, mean-shift-based
clustering and SNNs-based classification.

3.3.1. Error Detection and Adaptation. (e first step in the
online updating stage is to detect if the predicted clean-up
time is excessively deviating from the true value. As Fig-
ure 10 shows, the detection process is carried out every 5
minutes starting from the occurrence of an accident. (e
cause of errors can be divided into two situations:

(i) TclA >TclP: the accident has not been totally cleaned
in the predicted clean-up time; then, the stage 2 is
repeated every 5 minutes until the accident is
cleaned.

(ii) TclA <TclP: the accident is cleaned earlier than
predicted; then, the current time is set as the actual
clean-up time and is used to repredict in stage 2.

(is process makes up for the shortcomings of long-term
prediction and helps the model to predict more accurately.

3.3.2. Clustering and Classification Updating. Another
benefit of online stage is the modification of the clustering
and prediction model when new knowledge is found along
with the incoming accidents. As Figure 11 shows, the process
starts with finding the actual closest cluster CA for TclA.
(en, it can be divided into the following two situations:
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(i) CA � CP: the accident is classified into the proper
cluster and the error is caused by the difference from
the centroid value. In this case, only a clustering
updating is carried out to add a new instance and
recompute new centroid of CA;

(ii) CA ≠CP: the accident is not classified into the proper
cluster and the error is caused by the misclassifi-
cation of the SNNs classifier. (en, another classi-
fication updating is needed where the accident
attributes and its actual cluster CA is added to the
SNNs training set and later used to retrain the SNNs
model.

(is process helps to describe accidents that are not
available in the training dataset and further improve the
overall accuracy of the model.

4. Dataset

(is section describes the process of constructing a Cal-
ifornia statewide spatial-temporal traffic accident dataset
(CASTA), using two datasets named US accident [48] and
California Department of Transportation (Caltrans) Per-
formance Measurement System (PeMS) [49].

US accident is a countrywide traffic accident dataset,
which covers 49 states of the United States. (e data are
continuously being collected from February 2016, con-
taining about 3.5 million accident records currently.

PeMS provides access to real-time and historical per-
formance data in many useful formats and presentation
styles, including a consolidated database of traffic data
collected by Caltrans placed on state highways throughout
California, as well as other Caltrans and partner agency
datasets.

To figure out the spatial-temporal impact of each acci-
dent, we use the process shown in Figure 12 to match and
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updating start

Add new instance
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Add new
instance (a,CA) to
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Figure 11: Clustering and classification updating process.
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merge the two datasets—US accident and PeMS. It includes
three important steps: data filter, integration, and extraction.

4.1. Data Filter. 12,000 traffic accident records in California
between February 2016 and February 2020 are filtered from
the US accident datasets. (e locations of the samples are all
state motorways in California, and their distributions are
given in Table 3. For better representing the spatial char-
acteristics of accidents, the statistical distribution of clean-up
time (sum of detection, verification, response, and clearance
time) of the selected records is shown in Figure 13, from
16min to 8 h 40min. It can be figured out that the clean-up
time is not distributed evenly in the range, where more than
96% of the records fall in (25, 120], and (25, 30] is the
interval with the highest amount. However, the records with
clean-up time less than 25min or higher than 240min are
not representative and not enough to train the model. (us,
we only include 11940 pieces of records with clean-up time
fallen in (25, 240] minutes in the experiment.

4.2. Data Integration. (e data integration process is about
matching the traffic flow and speed data with traffic accident
records. First, we extract the latitude and longitude coor-
dinates and time of each accident record, denoted as
〈lat, lng, t〉. Second, we find the nearest sensor to that
coordination in PeMS and extract the flow and speed data
after te. (ird, concatenate the PeMS and US accident to
form the new raw dataset. Note that disabled detectors have
already been filtered out.

4.3. Data Extraction. By comparing with the upstream flow/
speed after te, figure out the accident full-recovery time TfrA,
half-recovery time ThrA, maximum accumulative queue
length LmaxA, and average accumulative queue length LaveA
according to Algorithm 3. (e final dataset CASTA consists
of 20 attributes that fall in 6 main types as given in Table 4.

5. Experiments and Results

Methods proposed in Section 3 have been tested with the
CASTA dataset, and the results are discussed in this section.
Among the 11940 pieces of records, 9940 of them are
randomly chosen as the training set, while the rest 2000 are

used as the test set. Since no similar previous work that
predicts the whole accident process has been proposed yet,
the comparison is carried out in each stage, respectively.
First, the outcomes of the first two stages without the online
adaptation are presented. Second, the online stage is added
to test how the outcomes have been improved. Experiments
have been implemented on the server with four CPU (Intel
Xeon (R) CPU E5-2650 v2 @ 2.60GHz), 32GB RAM.

5.1. Offline Prediction Analysis

5.1.1. Clean-Up Time Analysis. (e efficiency of the initial
clean-up time prediction is essential to the following stages,
since the error will be further propagated and lead to larger
mistakes. According to the cluster results, the clean-up time
has been divided into 13 groups, where group 13 is a noise
cluster. Table 5 presents the interval of each group and its
corresponding centroid value.

When comparing the performance of classifiers, the
classification accuracy which means the proportion that
predicted class is equal to the real class is usually calculated.
However, in this case, since the specific value of clean-up
time is more important than the class, the classification
accuracy is replaced by the MAPE and RMSE in the fol-
lowing equations, respectively, by comparing the predicted
clean-up time TclP and actual clean-up time TclA.

MAPE � 
n

i�1

TclA − TclP

TclA




×
100
n

, (5)

RMSE �

���������������

1
n



n

i�1
TclA − TclP( 

2




. (6)

In order to verify the suitability of our proposed model
(mean-shift clustering and SNNs classifier), several methods
have been selected as comparison benchmarks: nonlinear
regression [50], KNN [51], ANNs, and mean-shift clustering
and ANNs classifier. Noticing that the first three bench-
marks directly build the relationship between accident at-
tributes and clean-up time without the clustering process,
while the fourth replaces the SNNs classifier by ANNs. (e
experiment results are given in Table 6. Our proposed
method outperforms all other benchmarks in accuracy and

US-Accident

PeMS

(1)Filter

(2)Integration Raw Dataset (3)Extraction

Final Dataset:
CASTA

Figure 12: Process of creating spatial-temporal accident dataset CASTA.
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Table 3: Locations of traffic accident records.

County
Motorway

I-5 I-805 I-8 I-15 I-405 I-605 I-10 I-880 I-80 I-280 I-680 Total
San Diego 694 484 391 258 0 0 0 0 0 0 0 1827
Orange 523 0 0 0 410 25 0 0 0 0 0 958
Riverside 0 0 0 284 0 0 178 0 0 0 0 462
Los Angeles 708 0 0 0 1320 690 1741 0 0 0 0 4459
San Bernardino 0 0 0 259 0 0 863 0 0 0 0 1122
Santa Clara 0 0 0 0 0 0 0 307 0 317 216 840
Alameda 0 0 0 0 0 0 0 818 242 0 379 1439
Solano 0 0 0 0 0 0 0 0 605 0 57 662
San Francisco 0 0 0 0 0 0 0 0 137 94 0 231
Total 1925 484 391 801 1730 715 2782 1125 984 411 652 12000

Table 4: Attributes in CASTA.

Attribute category Attributes Value and description

Accident attribute

Id Unique identifier of the accident record

TMC event code

202 serious accidents
203 multivehicle accidents

245 two-lane blocked
246 three-lane blocked

. . .. . .

Block lanes (e number of lanes affected by the accident
Block distance (e length of the road extent blocked by the accident

Spatial attribute

Latitude Latitude in GPS coordinate of the accident point
Longitude Longitude in GPS coordinate of the accident point
County County in address field

Motorway ID Motorway name in address field
Sensor ID Unique identifier of the nearest sensor to the accident point

Temporal attribute

Day or night 0 day
1 night

Workday or not 0 workday
1 holiday or weekend

Peak hour or not
0 morning peak hour
1 evening peak hour
2 normal period

Weather attribute

0 sunny
1 rain
2 snow

3 thunderstorm
4 fog

Traffic flow characteristic
attribute

Flow data series A matrix of flowrate of upstream sensors after accident happens
Speed data series A matrix of speed of upstream sensors after accident happens
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Table 4: Continued.

Attribute category Attributes Value and description

Impact attribute

Accident clean-up time Sum of detection, verification, response, and clearance time
Full-recovery time Time duration from clearance to the moment when no vehicle is accumulated

Half-recovery time Time duration from clearance to the moment when queue length is half of
maximum accumulative queue length

Maximum accumulative
queue length —

Average accumulative queue
length —

(1) Input
(2) se ≔ the nearest sensor in PeMS to the location of traffic accident e

(3) S ≔ upstream sensors set of se denoted by S � s1, s2, . . . sn 

(4) te ≔ the closest time point in PeMS to the start time of traffic accident e

(5) T ≔ time point set in PeMS after te denoted by T � t1, t2, . . . tn , where ti − ti−1 � 5min
(6) Vi ≔ speed of sensor si in T denoted by Vi � vsi ,t1

, vsi ,t2
, . . . , vsi,tn

 

(7) Tc ≔ sum of detection, verification, response, and clearance time of traffic accident e

(8) Initialization
(9) Fdissipate←false means if the traffic flow is in dissipating process
(10) vthreshold←10mile/h means the vehicle is low-speed driving or waiting
(11) For ti in T do
(12) For sj in S do
(13) If vsj,ti

> vthreshold

(14) (en If LmaxA < distance(se, sj)

(15) (en update LmaxA � distance(se, sj)

(16) Else
(17) Fdissipate � true
(18) If distance(se, sj)<LmaxA/2
(19) (en ThrA � ti − te

(20) End if
(21) End if
(22) Update LaveA←((j − 1)∗LaveA + distance(se, sj))/j
(23) Break
(24) End for
(25) If j � 1 andFdissipate � true
(26) (en update Ttotal � ti − te

(27) Break
(28) End for
(29) TfrA � Ttotal − Tc

(30) Output
(31) TfrA ≔ full-recovery time of traffic accident e

(32) ThrA ≔ half-recovery time of traffic accident e

(33) LmaxA ≔ maximum accumulative queue length
(34) LaveA ≔ average accumulative queue length

ALGORITHM 3: Data extraction from dataset.

Table 5: Clustering results.

Cluster no. Clean-up time interval Centroid value
1 [25, 30) 28.73
2 [30, 34) 30.89
3 [34, 40) 36.65
4 [40, 48) 43.02
5 [48, 53) 49.22
6 [53, 58) 56.87
7 [58, 62) 60.11
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training time. Mean-shift clustering and ANNs classifier
ranks first in the comparing methods, but still needs more
running time and higher MAPE and RMSE. (e other three
benchmarks achieves unsatisfied prediction accuracy due to
the lacks of combination of clustering and classification. (e
results prove that clustering the records into classes and
using the centroid value to present the predicted value is
better than direct prediction model when the data are
dispersive distributed, as well as the suitability of applying
SNNs in capturing spatial and temporal features.

For better analysis of the model performance, the ac-
curacy in each interval is calculated, respectively, as given in
Table 7. It can be figured out that MAPE and RMSE are
relatively low in intervals with abundant records, e.g.,
[25, 30) and [40, 50). In contrast, the prediction difficulty of
intervals that clustered as noise (e.g., [120, 240)) is relatively
high and the accuracy is not satisfied due to insufficient
training. Fortunately, the probability of such severe acci-
dents is low enough and will not cause frequent impact on
traffic. Furthermore, with the increase of historic accident
data, those outliers can be removed from the noise cluster
and the accuracy can be further improved.

5.1.2. Clean-Up Phase Queue Length Analysis. In this sec-
tion, the performance of CNNs based queue length pre-
diction is analyzed, using the output of the previous stage.
Comparison benchmarks include the shockwave theory [18],
nonlinear regression, and ANNs. Shockwave theory assumes
that the traffic flow and speed is constant at the accident site
and upstream. It takes traffic flow as a continuous fluid with
a flow (q)-density (k) relationship and uses equation (7) to
calculate the shockwave when the state of a traffic stream
changes from (qi, ki) to (qj, kj) [18].(e length of block area
is neglected in the shockwave theory.

Wij �
qj − qi

kj − ki

. (7)

Due to inability of capturing picture input, other two
benchmarks set up relationships between constant flow,
speed, block length, and queue length.

In Table 8, MAPE and RMSE of the proposed model and
other benchmarks are listed based on number of lanes. 4-
lane cases, 5-lane cases, and 6-lane cases account for 19%,
27%, and 54%, respectively. (e proposed CNNs based
model still outperforms other benchmarks in MAPE and
RMSE in all three cases. Shockwave theory is unable to make
efficient prediction due to unrealistic assumption, while
nonlinear regression and ANNs make similar performance
but are still not satisfied due to constant traffic information.
Considered together with the distribution of queue length
shown in Figure 14, the 4-lane model and 5-lane model have
simple environment that leads to high prediction accuracy.
With the increase of lanes, the traffic itself can absorb the
disturbance better; thus, the accumulated queue length
becomes shorter. (at explains the high MAPE but low
RMSE in 6-lane case.

(e MAPE of 6-lane cases grouped according to the
length of the queue is also calculated and shown in Figure 15.
It can be concluded that the MAPE of queue length in
[0.4, 2.2) miles is below 20%, while the model performs
relatively poor when the queue length is below 2 miles and
above 2.2 miles. (e cause of error in low queue length is the
quality of the PeMS dataset, where the distance between
sensors is not small enough to give accurate queue length.
For example, if the actual queue length of an accident is 0.06
miles while the distance between the closet sensors is 0.1
miles, then the queue length will be regarded as 0. (at kind
of errors will greatly affect themodel performance, especially
in low queue length cases. Meanwhile, when the accumu-
lative queue length is greater than 2.2 miles, the model needs
larger input to capture the environment, and thus, 5-mile is
not enough to make accurate prediction.

(ough the proposed model has already achieved better
performance than other methods, the accuracy would still
improve if trained by a more complete dataset. (e merging

Table 5: Continued.

Cluster no. Clean-up time interval Centroid value
8 [62, 76) 68.35
9 [76, 91) 84.25
10 [91, 108) 98.37
11 [108, 116) 113.03
12 [116, 125) 118.08
13 (noise cluster) [125, 240) 130.90

Table 6: Prediction performance comparison of clean-up time.

Method MAPE (%) RMSE Training time (h)
Nonlinear regression 29.33 30.97 —
KNN 30.02 28.05 —
ANNs 28.58 23.64 5.50
Mean-shift clustering and ANNs classifier 14.30 11.19 4.88
Mean-shift clustering and SNNs classifier (ours) 12.07 8.13 3.20
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process of US accident and PeMS can expand the error in
some situation. For example, the coordination bias errors in
US accident will result in an offset when matching the closet
sensor in PeMS.

5.1.3. Recovery Phase Spatial-Temporal Impact Analysis.
In the last stage of the offline prediction, the model will give
out the final predicted spatial-temporal impact during the
recovery process. Comparison benchmarks include
shockwave theory, nonlinear regression, and BPNNs
(base). (e proposed model will use the output data of the
CNNs model in the previous stage, while shockwave theory
and nonlinear regression will still be based on the result
using the same method, which means the performance
analysis already includes the error of previous stages.
Comparing to our proposed model that uses historical
average flow/speed as input, the BPNN (base) only uses the
value at the beginning of the recovery phase. According to
the results given in Table 9, the error of the shockwave
theory and nonlinear regression continues to expand. (e
MAPE of maximum accumulative queue length even
reaches 40.47%, which losses its reference value. (e BPNN
(base) stably ranks the second under all assessment criteria,
just behind our proposed method. Due to the compre-
hensive representation of traffic environment and the use of
historical average value, the proposed model achieves
satisfying performance, where the MAPE of four impact
variables are all below 20%.

Although there is no existing work considering the
whole accident process that can be used as comparing
benchmark, the above separate comparison in each offline
stage still illustrates the effectiveness of our proposed
method. (e offline part can be regarded as the combination
of three different models developed for the characteristics in
each stage, and the advantages are further expanded after the
combination.

5.2. Online Prediction Analysis. Although the accuracy of
offline prediction is already much higher than other com-
paring benchmarks, it is still not satisfying enough for
providing precise information and guidance for govern-
ments and travelers. Especially for accidents with long time
span, as shown in Figure 16, the error can be as large as 40%.

Table 7: MAPE and RMSE in clean-up time intervals.

Clean-up time interval (min) MAPE (%) RMSE
[25, 30) 3.62 2.64
[30, 40) 9.06 4.32
[40, 50) 5.30 3.08
[50, 60) 10.87 6.37
[60, 120) 9.01 18.26
[120, 240) 43.90 50.20

Table 8: Prediction performance comparison of queue length.

Method
4-lane (19%) 5-lane (27%) 6-lane (54%) Average

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE
Shockwave theory 30.03 0.17 28.98 0.15 36.79 0.15 33.40 0.15
Nonlinear regression 22.30 0.13 21.07 0.13 27.09 0.12 24.55 0.12
ANNs 22.09 0.12 23.50 0.10 26.85 0.08 25.04 0.09
CNNs (ours) 16.81 0.07 15.06 0.06 20.77 0.05 18.48 0.06
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Figure 14: Distribution of clean-up phase queue length.
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To compensate for the difficulty in long-term prediction, the
online prediction phase is carried out and analyzed to see
how much improvement it can bring.

Taking the 6-lane cases as examples, 10 accidents in each
clean-up time interval given in Table 10 are chosen as the test
set (60 accidents in total) in this stage. According to sta-
tistical results given in Table 10, the actual clean-up time of
29 accidents is larger than the predicted ones, while 28 is
smaller, and the rest 3 are equal. Apply error detection and
adaptation mechanism to these test cases, and an averaged
result per interval is given in Table 11. Reduction of MAPE is
visible from any interval and impact variable when the final
adaptation is done.

To further find out how the improvement is made in
each test case, the detailed MAPE difference in full-recovery

time of 60 cases is shown in Figure 17, where values above 0
represent cases with less error, while negative values rep-
resent cases with more error. It can be concluded that most
of the cases except for one accident (in red) experienced
lower MAPE, and the differences range from −0.28% to
32.98%. Along with the increase of accident clean-up time,
the improvement becomes more evident. (at is reasonable
since cases with longer clean-up time always experience
more times of adaptation.

In Figure 18, 6 accidents are randomly picked to show
how MAPE of full-recovery time changes along with the
increase in adaptation times, where the adaptation interval is
5 minutes. (e overall trend for all cases is gradually de-
creasing, where the least of them has experienced one ad-
aptation, while the most has experienced 8 times of

Table 9: Prediction performance comparison of spatial-temporal impact.

Method
4-lane (19%) 5-lane (27%) 6-lane (54%) Average

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE
Full-recovery time (minute)
Shockwave theory 30.88 33.96 30.05 32.77 27.28 29.88 28.71 31.44
Nonlinear regression 29.07 31.54 27.96 31.08 26.03 26.03 27.13 28.44
BPNNs (base) 24.55 26.05 25.37 25.73 24.07 22.36 24.51 23.97
BPNNs (ours) 19.30 18.03 20.05 17.99 17.93 15.02 18.76 16.39

Half-recovery time (min)
Shockwave theory 36.52 22.58 32.95 20.30 33.84 20.17 34.11 20.66
Nonlinear regression 27.33 18.07 27.74 17.94 26.32 17.72 26.90 17.85
BPNNs (base) 21.80 16.33 22.93 15.02 21.01 13.22 21.68 14.30
BPNNs (ours) 18.71 11.26 17.97 10.38 18.02 9.96 18.14 10.32

Maximum accumulative queue length (mile)
Shockwave theory 38.74 0.52 38.55 0.50 42.03 0.47 40.47 0.49
Nonlinear regression 29.75 0.37 28.03 0.33 32.55 0.34 30.80 0.34
BPNNs (base) 21.74 0.31 23.09 0.31 24.11 0.27 23.38 0.29
BPNNs (ours) 18.24 0.24 18.01 0.21 21.39 0.19 19.88 0.20

Average accumulative queue length (mile)
Shockwave theory 35.52 0.43 36.04 0.36 40.54 0.35 38.37 0.37
Nonlinear regression 26.22 0.26 22.34 0.19 25.62 0.25 24.85 0.23
BPNNs (base) 18.41 0.20 20.03 0.16 22.57 0.19 21.09 0.18
BPNNs (ours) 16.28 0.19 17.26 0.12 20.09 0.13 18.60 0.14
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Figure 16: MAPE in spatial-temporal impact in accident duration intervals of 6-lane cases. (e cross-point represents the average value in
that interval.
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adaptation. Even after a few times of adaptation, the model
can achieve a much better accuracy, which conveys the
effectiveness of this mechanism.

In the second step of online stage, the clustering and
prediction model will be modified and updated to improve
the future prediction. To reduce workload, this process
should be carried out until a batch of data has been gathered.
Due to the dataset size limit, there is no enough cases to
support to show the obvious change in model parameters
and improvements after retraining. (us, the result analysis
of this step is not represented in this work, but can be
supplemented when applied to more datasets in the future.

All of the results and discussion above point to the same
conclusion: the introduction of online stage can greatly
improve the model performance.

6. Conclusions

Traffic accidents post-impact prediction (TAPIP) plays an
important role in traffic management. In this study, a 3-stage
TAPIP model on highway is proposed and tested by the
dataset CASTA. Using the advantages of SNNs, the model
builds a comprehensive relationship between the spatial-
temporal features of accidents and clean-up time. (e

Table 10: Clean-up time differences distribution in intervals.

Clean-up time interval [25, 60) [60, 90) [90, 120) [120, 150) [150, 180) [180, 240) Total
TclA >TclP 5 4 6 5 2 7 29
TclA � TclP 2 0 1 0 0 0 3
TclA <TclP 3 6 3 5 8 3 28

Table 11: Average MAPE in clean-up time intervals before and after adaptation.

Clean-up time
interval [25, 60) (%) [60, 90) (%) [90, 120) (%) [120, 150) (%) [150, 180) (%) [180, 240) (%) Average (%)

Tfr
Offline 18.40 13.36 15.62 14.39 21.07 44.80 21.27
Online 16.33 10.52 10.07 12.35 17.09 24.37 15.12

Thr
Offline 20.95 16.07 12.45 14.89 20.05 38.58 20.50
Online 17.86 15.01 10.99 11.37 17.29 20.55 15.51

Lmax
Offline 19.37 20.28 20.80 22.36 22.55 27.64 22.17
Online 17.70 17.25 16.83 18.77 17.05 18.42 17.67

Lave
Offline 18.14 19.47 16.14 23.76 21.65 30.48 21.61
Online 15.17 17.93 14.82 19.90 18.95 21.07 17.97
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combination of clustering and classification improves the
prediction accuracy. Due to the capability of CNNs to fully
capture the spatial characteristics of traffic environment and
the use of historical average data, the model achieves ef-
fective prediction of post-impact variables (e.g., fully-re-
covery time, half-recovery time, maximum accumulative
queue length, and average accumulative queue length). A
new dataset CASTA that describes California statewide
spatial-temporal traffic accidents is constructed and used to
test the model. Experiment results prove that our model
performs better in accuracy and running time than several
existing benchmarks, including nonlinear regression and
KNN. (e introduction of online adaptation and updating
the mechanism further expands the advantages of the model.

(is work implements a framework that describes the
whole process of a traffic accident and captures the spatial-
temporal characteristics in each phase. When applied in real
world, whenever an accident takes place, the whole process
can be predicted immediately. It proves the reliability and
efficiency in applying SNNs in traffic domain, especially in
accident prediction research. With regards to future work,
we acknowledge that this work is not perfect and that there
are still many aspects that can be improved upon. First, the
dataset with more detailed accident information and higher
quality traffic data can be used to improve the model per-
formance. Second, accidents with clean-up time longer than
240 or shorter than 25 minutes can be further added into the
model when enough records have been gathered. (ird,
clustering and classification updating in online stage needs
further experimental demonstration. Last, the model can be
extended to city roads rather than limited to highways.
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Passenger flow forecasting plays an important role in urban rail transit (URT) management. However, complex spatial and
temporal correlations make this task extremely challenging. Previous work has been done by capturing spatiotemporal cor-
relations of historical data. However, the spatiotemporal relationship between stations not only is limited to geospatial adjacency,
but also lacks different perspectives of station correlation analysis. To fully capture the spatiotemporal correlations, we propose a
deep learning model based on graph convolutional neural networks called MDGCN. Firstly, we identify the heterogeneity of
stations under two spaces by the Multi-graph convolutional layer. Secondly, we designed the Diff-graph convolutional layer to
identify the changing trend of heterogeneous features and used the attention mechanism unit with the LSTM unit to achieve
adaptive fusion of multiple features and modeling of temporal correlation. We evaluate this model on real datasets. Compared to
the best baselines, the root-mean-square errors of MDGCN are improved by 1%–15% for different prediction intervals.

1. Introduction

With the expansion of urban traffic congestion, URT has
become one of the important solutions to alleviate the
congestion problem. As an important research topic in URT,
short time passenger flow forecasting can help decision-
makers to make timely emergency plans and enhance se-
curity forces [1], as well as providing an important reference
basis for the optimization of bus line networks.

Accurate, real-time passenger flow forecasting in URT is
a challenging task..is is because the accuracy of forecasting
can be affected by various aspects, such as the URTnetwork’s
development, its topology, and spatiotemporal correlation.
.e short-term prediction models of URT passenger flow
range from the initial mathematical-statistical models such
as Autoregressive Integrated Moving Average (ARIMA) [2]
to traditional machine learning models such as Support
Vector Machines (SVM) [3] to various deep learning
models. However, mathematical-statistical models cannot
mine the nonlinear features of traffic flow data, and tradi-
tional machine learning models rely on feature extraction, so

their adaptability to data is not stable. Compared with
traditional mathematical-statistical models and machine
learning models, deep learning models perform better in the
extraction of spatiotemporal features and are mainly clas-
sified into three categories: CNN-based, RNN-based, and
GCN-based.

In the earliest stage, many scholars treated traffic data as
image pixels and used a convolutional neural network
(CNN) for local spatiotemporal feature extraction. For ex-
ample, Luo et al. [4] modeled the traffic flow as a two-di-
mensional spatiotemporal matrix to describe the images of
spatiotemporal relationships of traffic flow and used CNN to
predict the traffic speed. Similarly, based on converting the
passenger flow data into images, Zhang et al. [5] introduced
the residuals into CNN. However, applying CNN to the
passenger flow prediction cannot accurately capture the
spatiotemporal correlation. Regarding this problem, Zhang
et al. [6] proposed a multitask learning prediction model
called MTL-TCNN that considered the relevance of multiple
regions for the prediction problem, but CNN is only suitable
for Euclidean space, and traffic data is typical non-Euclidean
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data. Recurrent neural network (RNN) and its variant
models have good performance in handling time-series data
because of their self-circulationmechanism. For example, Fu
et al. [7] used gate recurrent unit (GRU) for traffic flow
prediction for the first time. Ma et al. [8] and Yang et al. [9]
used long-short term memory (LSTM) to capture the trend
of long and short time series. Abduljabbar et al. [10] ex-
tended the one-way LSTM into a two-way LSTM; thus, the
accuracy was further improved by training the data twice by
forward and backward. However, RNN and CNN cannot
reasonably extract the correlation of spatial dimensions and
are not suitable for traffic flow data processing.

Researchers gradually realize the advantages of GCN in
dealing with non-Euclidean data such as traffic flow. Many
scholars tend to apply GCN to traffic flow prediction with
other models that perform well in capturing temporal
correlations. Some studies [11–13] integrated GCN- and
RNN-based models to predict. For example, Zhao et al. [14]
and Lv et al. [15] combined GCN with GRU; Geng et al. [16]
combined GCN with RNN; Zhang et al. [1], Chai et al. [17],
and He et al. [18] combined GCNwith LSTM to make up for
the shortcoming of GCN in capturing temporal dependence
poorly. Zhang et al. [19] proposed a model including at-
tention mechanism, GCN, and sequence-to-sequence for
multistep prediction. Besides, some studies tried to propose
novel models, such as Wu et al. [20], who proposed an
adaptive adjacency matrix to change the structure of a fixed
graph and used extended convolution to capture temporal
correlation. Park et al. [21] used the transformer model [22]
and the self-attention mechanism with encoder-decoder
architecture. Hao et al. [23] constructed a sequence-to-se-
quence architecture with attentional mechanisms. Also, a
hybrid prediction model [24] based on kernel ridge re-
gression (KRR) and Gaussian process regression (GPR) is
proposed to predict the short-term passenger flow. However,
these studies only consider the topological structure of the
URTnetwork. More correlations between stations should be
explored. Effectively exploring correlations among stations
could further improve the prediction performance. For
example, Geng et al. [16], Chai et al. [17], Wang et al. [25],
and Wang et al. [26] reconstructed the relationship graph
from different perspectives. However, they ignored the
correlation hidden in historical data and the changing trend
which could help capture the movement patterns of pas-
senger flow.

.e above research indicates that there are still two
problems to be solved in the current research on URT
passenger flow prediction: the correlation between stations
and the extraction of changing trends. To be exact, the
relationship between stations is not limited to the adjacency
relationship of geographical space; there is a lack of station
correlation analysis from different perspectives. And it is
necessary to construct an appropriate model to mine the
changing trends.

In this paper, we propose MDGCN (Multi-Graph Dif-
ferential Convolutional Network). It can mine the corre-
lations between stations in heterogeneous space for URT
passenger flow prediction. .e contributions of this paper
are as follows:

(i) .e correlation of boarding and alighting passenger
flows between stations that are physically distant
from each other is also important for passenger flow
prediction. .erefore, to more accurately represent
the connectivity between stations, we reconstruct
the connectivity of stations by historical passenger
flow data and station geographic information.

(ii) We design a layer of Multi-GCN that can jointly
mine the correlation between stations in physical
space and nonphysical space to gain the heteroge-
neous spatial correlation between stations.

(iii) We introduce the concept of difference and con-
struct the difference feature extraction layer called
Diff-GCN to extract the changing trends of het-
erogeneous spatial features.

(iv) We conducted experiments on two datasets. .e
experimental results show that the prediction error
of the proposed model is reduced by 1%–15%
compared with the optimal baseline.

.e arrangement of the paper is shown below. Section 2
introduces the basic problem definition of passenger flow
forecasting. Section 3 presents themodel framework. Section
4 discusses the experimental results. Conclusions are made
in Section 5.

2. Preliminary

In this section, we define some key concepts and give the
problem definition of the studied content.

Definition 1 (urban rail transit network).We define the URT
network using the graph as G(V, E, A), where the set of
stations is used as nodesV � v1, v2, . . . , vn  ofG, and n is the
number of stations. Figure 1 illustrates sample lines related
to the URT network. .e connection relationships between
stations are used as edges E � ek: (vi, vj) ∈ V × V  of G.
We use the matrix A ∈ Rn∗n to record the adjacent rela-
tionships between stations, and the value δi,j represents the
strength of the association between stations. So, we re-
construct the spatial relationships of the URTnetwork from
two perspectives.

Definition 2 (node characteristics). We take the passenger
flow of a station as the characteristics of a network node; i.e.,
given a station Vi and a period t, the passenger flow of the
station at that period is denoted as X

Vi

t , and the passenger
flow of all stations in the past m periods is denoted as
X � Xt, Xt− 1 , Xt− 2, . . . , Xt− m− 1 ; then the temporal char-
acteristics of the set V of stations in the past m periods can be
written as X ∈ Rn∗m.

Problem. Definition. .is problem can be defined as
learning a mapping function to predict the passenger flow
data at the next moment given the URTnetwork G(V, E, A)

with the historical passenger flow data X. .e process can be
referred to as
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Xt+1 � f(G, X). (1)

3. Study Methodology

.is section introduces the framework of our model, re-
search methods, and pseudocode.

3.1. Modeling Framework. .is model (Figure 2) can be
divided into four main parts: the reconstruction of the re-
lationship of station, the layer of Multi-GCN, the layer of
Diff-GCN, and the layer of output.

(i) .e first part is based on the relationship between
the physical space and the nonphysical space of
stations and combines the historical passenger flow
data as the input of the subsequent model.

(ii) .e second part is the Multi-GCN (Multiple-Graph
Convolutional Network) layer, which can jointly
model the correlation between stations in both
physical space and nonphysical space; i.e., the
Multi-GCN layer is constructed to capture the
heterogeneous spatial correlation between stations.

(iii) .e third part is a Diff-GCN (Differential Graph
Convolutional Network) layer, a differential feature
extraction module, to extract the changing trends of
heterogeneous spatial features. Besides, the atten-
tion mechanism is used to adaptively fuse the fea-
tures of the Multi-GCN layer and the Diff-GCN
layer.

(iv) .e fourth part is the LSTM unit for global temporal
correlation extraction and the fully connected
network layer for prediction result output.

3.1.1. Reconstruction of the Correlation of Stations. .e key
for a neural network being able to be trained is in the input
data. And the input to a GCN consists of two parts: the
adjacency matrix and the node features. Whether the ad-
jacency matrix correctly encodes the relationships of the
network nodes is related to the performance of the model.
.erefore, we interpret the URT network from two per-
spectives. Stations in close geographical proximity may have
similar passenger flow patterns. Given this, we construct the
topology of the physical space GD(V, ED, AD) based on the
physical adjacency and distances between station i and
station j.

Firstly, we obtain the adjacency matrix A (in (2)) be-
tween stations using the physical adjacency relationship of
stations. .en, we build the distance matrix D (in (3)) based
on the inverse of the distance between stations. Finally, we
reconstruct the topology matrix AD using the Hadamard
product formula [1] (in (4)).

A �

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31

⋮

an1

a32

⋮

. . .

a33

⋮

. . .

. . .

aij

. . .

a3n

⋮

ann
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Figure 1: A sample of an urban rail transit network.
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AD � A ∘D. (4)

However, the flow pattern could make two stations with
no spatial adjacency have a certain association, and the
strength of the association is determined by the passenger
flow. .is flow pattern truly reflects the trend of passenger
flow movement between stations. .erefore, we describe the
passenger flow movement pattern and movement intensity
between stations based on the data of historical passenger
flow (in (5)) to construct the associated graph
GC(V, EC, AC). Denote pij as the passenger flow from
station i to j.
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p21 p22 p23 . . . p2n
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⋮

pn1
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⋮

pn2
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⋮
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. . .

pij

. . .

p3n

⋮

pnn
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. (5)

3.1.2. Multi-GCN Network. Two different network topolo-
gies are obtained by spatial relationship reconstruction of
stations. We propose the layer of Multi-GCN to extract
heterogeneous spatial correlation by GCN. .e propagation
rule of GCN can be expressed as

H(l+1) � δ D
− (1/2) A D

− (1/2)
H(l)W(l) , (6)

where H(l) is the input of l-layer and its original value is X.
A � Normalization (A + I) is the adjacent of a graph with
added self-connections, D � j

Aij is degree matrix, δ
represents the sigmoid function for a nonlinear model, and
W(l) is a weight matrix of the current layer.

In particular, GCN has a powerful ability to model
higher-order neighborhood interactions by stacking mul-
tiple layers. As shown in Figure 3, taking the red site as an
example, the first layer of GCN can capture the influence of
two neighboring stations of the red one. As the number of
network layers deepens, the correlation of all stations can be
captured completely. .e spatial features in the URT net-
work, i.e., the topology AD based on the physical space and
the station association matrix AC in the passenger space, will
be extracted by the N-layer GCN. So we input them into the
layer ofMulti-GCN to obtain the outputs ZD (in (7)) andZC

(in (8)) of the multigraph convolutional layers, respectively.

ZD � ZD(N)

� δ D
− (1/2) AD

D
− (1/2)

ZD(N− 1)W ,
(7)

ZC � ZC(N)

� δ D
− (1/2) AC

D
− (1/2)

ZC(N− 1)W .
(8)

3.1.3. Diff-GCN Network. .e difference reflects the varia-
tion between two discrete quantities. We introduce the
concept of differencing to construct the layer of Diff-GCN to
extract the tendency of heterogeneous spatial features. As
shown in Figure 4, the passenger flow data Xt, Xt− 1 based on
time t and t − 1, and the adjacent matrix A are put into
Multi-GCN, respectively, and the respective feature matrices
Z(N,t) and Z(N,t− 1) are obtained after Multi-GCN, the dif-
ference is calculated, and the final difference factor ΔZ (in
(9)) is obtained by using GCN for spatial feature extraction.

Graph Conv

Graph Conv

Graph Conv

...

Historical Data
Time

Fully Connected Layer

LSTM Cell LSTM Cell LSTM Cell...

Attention Layer

Results

Network Graph

Diff-GCN Layer Multi-GCN

Figure 2: .e architecture of MDGCN.
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Here, we obtain two factors ΔZD (in (10)) and ΔZC (in
(11)) based on two spatial relationships.

ΔZ � δ D
− (1/2) A D

− (1/2)
Z(N,t) − Z(N,t− 1) W , (9)

ΔZD � ΔZD(N)

� δ D
− (1/2) AD

D
− (1/2)

ZD(N,t) − ZD(N,t− 1) W ,
(10)

ΔZC � ΔZC(N)

� δ D
− (1/2) AC

D
− (1/2)

ZC(N,t) − ZC(N,t− 1) W .
(11)

3.1.4. Attention. For ZD and ZC obtained from the layer of
Multi-GCN and ΔZD and ΔZC obtained from the layer of
Diff-GCN, we use the attention mechanism to learn the
importance α1, α2, α3, α4 of these four features as follows (in
(12)). Firstly, we calculate the hidden state vector scoring S1
of ZD using a nonlinear transformation and one shared
attention vector Q (in (13)). Here, W is the weight matrix
and b is the bias vector. Similarly, the embedding
ZC, ΔZD, ΔZC do the same operation to get S2, S3, S4.
Secondly, we perform a normalization operation (in (14)) to
obtain the coefficient (αi) of the individual embedding
vector. Finally, the linear operation is used to combine the
four components to obtain Z (in (15)).

α1, α2, α3, α4(  � Attention ZD, ZC,ΔZD,ΔZC( , (12)

S1 � Q
T

· tanh W · ZD( 
T

+ b , (13)

αi � softmax Si( 

� exp Si(  
4
i�1 exp Si( ,

(14)

Z � α1 · ZD + α2 · ZC + α3 · ΔZD + α4 · ΔZC. (15)

3.1.5. Prediction. After obtaining Z by attention, we use
LSTM that is shown in Figure 5 to capture temporal features.
LSTM is one of the most common neural network structures
in time series forecasting problems. It uses the concept of
gates to control the selective passage of information. As can
be seen in (16) and Figure 5, it has three gates: Forget Gate,
Input Gate, and Output Gate. Forget Gate filters the input
information. Input Gate decides what newmemory is stored.
And Output Gate gets the processed results. .e processing
of each gate can be seen in (16).

As can be seen in Figure 5, after Z|Z1, Z2, . . . , Zt  is
inputted into LSTM, the result h|h1, h2, · · · , ht  is gained.
.en we obtain the predicted output
Xt+1 |X

V1
t+1, X

V2
t+1, . . . , X

Vt

t+1  via the layer of fully connected
with n neurons which means the number of stations.

Forget Gate: ft � σ Wf · ht− 1, zt  + bf ,

Input Gate : it � σ Wi · ht− 1, zt  + bt( ,

Ct � tanh Wc · ht− 1, zt  + bc( ,

Ct � ft · Ct− 1 + it · Ct,

Output Gate: ot � σ Wo · ht− 1, zt  + bo( ,

ht � ot · tanh Ct( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

3.2. Pseudocode. MDGCN pseudocode is shown in Algo-
rithm 1. Besides, to evaluate the complexity of this deep
learning algorithm, we use two indicators, FLOPs and
Params. .e time complexity is determined by the number
of operations of the model, i.e., FLOPs (0.0126G), and the
space complexity is determined by the number of param-
eters, i.e., Params (2, 147, 895).

Subtraction GCN

ΔZ'=Z(N,t)–Z(N,t-1)

Z(N,t)

Z(N,t-1)

ΔZ

Figure 4: .e architecture of Diff-GCN.

Input

...

1-Layer 2-Layer N-Layer

Figure 3: .e process of capturing the spatial correlation of passenger flows using GCNs (taking red station as an example).
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4. Results and Discussion

4.1. Experimental Settings. .is model is implemented in
Tensorflow and Keras. All experiments were run on a
graphics processing unit (GPU) platform with an NVIDIA
GeForce GTX 1070 Ti graphics card and 8GB GPUmemory.
We train our model using Adam optimizer with a learning
rate of 0.0001. .e training epoch is 150. Two kinds of
evaluationmetrics are adopted, including rootmean squared
errors (RMSE), mean absolute errors (MAE), and the
evaluation indicators which are shown in

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




, (17)

MAE �
1
n



n

i�1
yi − yi( 

2


, (18)

where yi is the true value, yi is the predicted value, and n is
the number of samples.

4.2.Dataset. We used two real-world datasets from China to
evaluate our model, i.e., data collected from Xiamen and
Shanghai subway Automatic Fare Collection (AFC) System.

SH dataset was collected from 1 April to 31 April 2015.
.is dataset includes records from 14 lines and 313 stations.
.e example of this dataset is shown in Table 1. Each record
contains the card number (ID), travel date (DATE), card-
swiping time (TIME), the name of stations (STA-
TION_NAME), the number of lines (LINE_ID), and TPYE.
Passenger flow is calculated by formula (19). xa

t− b represents
the number of passenger flows of station a in period t − b.
Here, a is determined by “STATION_NAME” and t − b is
determined by “DATE” and “TIME.”

XM dataset was collected from 1 December to 31 De-
cember 2019. .is dataset includes records from two lines
and 52 stations. .e example of this dataset is shown in
Table 2. We use the same procedure of data preprocessing to
gain passenger flow.

X �

x
1
t x

1
t− 1 x

1
t− b . . . x

1
t− m− 1

x
2
t x

2
t− 1 x

2
t− b . . . x

2
t− m− 1

x
a
t x

a
t− 1 xat− b . . . x

a
t− m− 1

⋮ ⋮ ⋮ ⋱ ⋮

x
n
t x

n
t− 1 x

n
t− b . . . x

n
t− m− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

Input: Historical passenger flow X|X1, X2, . . . , Xt  (described in Section 4.2.);
GC, GD (described in Section 3.1.1).
Output: Passenger flow Xt+1 of t + 1.
Process:
(1) for i� 1, 2, . . ., n do
(2) Z(D,t− 1), Z(D,t) ⟵Multi GCN( X

Vi

1 , X
Vi

2 , . . . , X
Vi

t , AD) by equation (7)

(3) Z(C,t− 1), Z(C,t) ⟵Multi GCN( X
Vi

1 , X
Vi

2 , . . . , X
Vi

t , AC) by equation (8)

(4) ΔZD,ΔZC ⟵Diff GCN( (Z(D,t− 1), Z(D,t)), (Z(C,t− 1), Z(C,t)) ) by equations (10) and (11)
(5) Z⟵Attention(Z(D,t), Z(C,t),ΔZD,ΔZC)

(6) X
Vi

t+1⟵ FC(LSTM(Z))

(7) end
(8) Xt+1|X

V1
t+1, X

V2
t+1, . . . , X

Vn

t+1  (Forecasted passenger flow of all stations)

ALGORITHM 1: MDGCN.

σ σ σ

h1

h1

ZiZ1

C1 Ci–1

Xt+1

hi–1 hi

Ci

hi

ht

Ct

ht
Ct–1

ht–1

Zt

V1 Xt+1
Vn

σ σ σ σ σ σtanh

tanh

tanh

tanh

tanh

tanh

... ...

......

.........

... ...

...

Figure 5: .e architecture of prediction.

6 Journal of Advanced Transportation



4.3. Experiment Results. In this section, we conducted four
main parts of experiments to demonstrate the validity of the
proposed model and the reasonableness of each module.

4.3.1. Evaluation of the Number of GCN Layers. To deter-
mine the optimal value of the number of GCN stacks, we
conduct experiments at different stacking values to obtain
the corresponding prediction values, and the prediction
results are shown in Figure 6. We found that the experiment
worked best when N � 3, so we set the number of stacks to 3
in the experiment.

4.3.2. 9e Results in Baselines. To evaluate the competitive
performance of the proposed method (i.e., MDGCN), we
compared it with two types of models, covering the most
basic mathematical-statistical models and the deep learning
models. All baselines are optimized to output the best
performance.

(i) HA [27]: it means historical average model, which
uses the average of several previous periods as the
prediction. In this paper, we use the average of the
last ten periods as the forecast value.

(ii) ARIMA [28]: we used SPSS software to make
predictions so that we could get the best
predictions.

(iii) SVR: we used support vector regression (SVR) to
predict passenger flow. Here, the kernel function is
rbf, epsilon is 0.2.

(iv) GBDT: we used gradient boosting decision tree
(GBDT) to predict passenger flow. Here, n_esti-
mators is 100, min_samples_split is 2, and lear-
ning_rate is 0.1.

(v) LSTM: Ma et al. [8] used this method to predict
traffic flow. In this paper, we use the same method
to predict passenger flow.We used a stacked LSTM
which has 128 and 276 neurons for the first and
second layers.

(vi) GCN+LSTM: Chai et al. [17] used this method to
predict bike flow. Likewise, we use the same
method to predict passenger flow. We used a 2-
layer GCN and a layer of LSTM which has 64
neurons.

(vii) ResLSTM: it refers to the method in [29], which
combines ResNet and GCN with LSTM to predict
the traffic flow. Here we use the same setting as it is
without branch 4.

(viii) Conv-GCN: it refers to the method in [1], which
combines the 3D-Conv with GCN to predict the
traffic flow. Also, we use the same setting as is.

.e results are shown in Table 3. .e following trends
can be seen from the results. Firstly, deep learning models
(including LSTM, Conv-GCN, ResLSTM, GCN+LSTM,
and MDGCN) have a better performance than traditional
mathematical-statistical (including HA and ARIMA) and
shallow machine learning models (including SVR and
GBDT). .is result shows that deep learning methods can
better capture nonlinear spatiotemporal correlations. Sec-
ond, the variant of recurrent neural network (including
LSTM and ResLSTM) outperforms machine learning
methods (including SVR and GBDT). It indicates these
time-series models can capture temporal correlation deeply.
By comparison, the spatial deep learning-based models
(including Conv-GCN, GCN+LSTM, and MDGCN) out-
perform the variant of LSTM. It demonstrates the effec-
tiveness of spatial correlation in passenger flow prediction.
Also, MDGCN mines the relationship of all the stations
deeply to have the best performance compared to all
baselines. .irdly, almost all the models behave much better
on XM than SH. .e biggest reason must be the complexity
of the dataset. SH dataset has more lines and stations than

Table 1: .e sample of Shanghai dataset.

ID DATE TIME STATION_NAME LINE_ID FARE TYPE
6021∗∗128 2015/4/17 9 : 34 : 30 Xinzhuang 1 2 Discount
2801∗∗273 2015/4/17 18 : 23 : 59 Dalian Road 4 1 Nondiscount
1014∗∗819 2015/4/17 9 :16 :18 Guanglan Road 2 4 Discount

0
2
4
6
8
10
12
14
16
18

0

5

10

15

20

25

30

N=1 N=2 N=3 N=4 N=5 N=6

M
A

E

RM
SE

RMSE
MAE

Figure 6: Performance with different number of GCN layer.

Table 2: .e sample of Xiamen dataset.

ID DATE TIME STATION_ID STATION_NAME LINE_ID KHTYPE
17∗∗25 20191224 51090 21 DongFu 2 E-card
82∗∗47 20191210 73725 11 HuoJuYuan 1 E-card
94∗∗60 20191231 68397 26 GuanYin 2 E-card
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XM. .us, the traffic condition patterns in Shanghai would
be much more complex than in Xiamen. Finally, MDGCN
has the best performance in these two datasets. Compared
with the optimal baseline, it reduced error by 1% to 15%.
.is shows that it can get better performance by capturing
various correlations (including spatial and temporal) and
deeply mining the historical passenger flow.

4.3.3. Evaluation of Spatial Relationship Reconstruction of
MDGCN. In the third experiment, we try to evaluate the
effectiveness of spatial relationship reconstruction. Specifi-
cally, we compare the performance of the following three
variants of MDGCN. Here, AM represents the adjacent
matrix that is put into the Multi-GCN layer.

(i) MDGCN-A: it concludes only the most basic ad-
jacency matrix (i.e., AM � A)

(ii) MDGCN-AD: it concludes only the physical to-
pology matrix based on the adjacency matrix with
distance inverse recoding (i.e., AM � AD)

(iii) MDGCN-AC: it concludes only the topological
matrix based on the passenger space (i.e., AM � AC)

(iv) MDGCN: it combines the topological matrix of
both physical space and passenger space (i.e.,
AM � AD ∪AC)

.e experiment results are shown in Table 4. On the one
hand, MDGCN has the best overall performance and
MDGCN-A has the worst. It demonstrates the importance
and effectiveness of recoding. On the other hand, MDGCN-
AC outperforms MDGCN-A and MDGCN-AD, and it has
almost the same level of accuracy as MDGCN. It suggests
that the topology of the passenger space more accurately
describes the correlations between stations.

Table 3: .e performance in different baselines.

Model
SH

RMSE MAE
10min 15min 30min 10min 15min 30min

HA 69.812 89.210 95.574 35.954 49.034 54.601
ARIMA 51.044 81.012 156.256 29.057 44.257 82.964
SVR 30.454 36.214 39.754 17.207 19.903 21.169
GBDT 29.935 39.364 32.542 16.561 20.001 17.342
LSTM 28.059 26.541 29.354 15.705 14.672 15.584
Conv-GCN 22.154 21.097 25.645 11.254 14.360 14.391
ResLSTM 26.387 29.548 29.642 14.087 15.265 16.005
GCN+LSTM 20.165 21.364 24.608 13.904 14.367 13.927
MDGCN 17.041 20.962 22.354 10.552 12.786 13.452

Model
XM

RMSE MAE
10min 15min 30min 10min 15min 30min

HA 67.241 85.455 95.147 35.264 47.751 53.813
ARIMA 50.695 79.568 175.265 28.564 43.561 95.556
SVR 29.365 35.524 36.524 16.454 18.428 19.658
GBDT 33.635 37.652 50.562 17.058 19.952 26.895
LSTM 28.545 26.421 30.241 14.214 16.754 19.241
Conv-GCN 19.421 20.145 24.245 12.256 13.978 15.842
ResLSTM 24.007 23.557 26.352 14.545 15.812 18.731
GCN+LSTM 18.954 19.145 22.296 11.925 10.770 13.754
MDGCN 16.713 16.927 18.560 9.924 10.247 11.155

Table 4: .e evaluation results of spatial relationship reconstruction.

Model
SH

RMSE MAE
10min 15min 30min 10min 15min 30min

MDGCN-A 35.548 30.674 29.541 19.066 16.078 15.597
MDGCN-AD 25.685 35.547 36.545 14.950 16.635 18.654
MDGCN-AC 20.365 26.654 23.315 11.027 14.028 12.389
MDGCN 17.041 20.962 22.354 10.552 12.786 13.452

Model
XM

RMSE MAE
10min 15min 30min 10min 15min 30min

MDGCN-A 27.241 27.624 30.148 18.279 18.698 23.039
MDGCN-AD 22.148 55.512 27.539 14.208 26.384 14.257
MDGCN-AC 18.214 19.012 22.351 10.852 11.109 13.691
MDGCN 16.713 16.927 18.560 9.924 10.247 11.155
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4.3.4. Evaluation of the Diff-GCN Layer of MDGCN. In the
last experiment, we evaluate the performance of the layer of
Diff-GCN. We compare the performance of MDGCN with
its variant called MGCN which does not conclude the
module of Diff-GCN. .e experiment results are shown in
Figure 7.

It is clear from the results on these two datasets are
consistent with each other. .e layer of Diff-GCN reduces
the prediction error because it can fully extract the trend
information among passenger flow.

5. Conclusions

In this paper, we propose a deep learning model called
MDGCN to predict passenger flow. We construct the Multi-
GCN layer to extract heterogeneous correlations under two
spatial relationships, and we use the Diff-GCN layer to
extract the changing trend of heterogeneous features to fully
capture the spatiotemporal correlations. Eventually, it is
validated in the actual datasets and obtained better results.
However, there are still many points for improvement in the
above work, for example, how to construct dynamic con-
nectivity of stations using historical passenger flow data and
how to consider the impact of various factors such as
weather and unexpected accidents on the prediction results.
.erefore, future work will focus on addressing these issues.
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To provide reliable traffic information and more convenient visual feedback to traffic managers and travelers, we proposed a
prediction model that combines a neural network and a Macroscopic Fundamental Diagram (MFD) for predicting the traffic state
of regional road networks over long periods. ,e method is broadly divided into the following steps. To obtain the current traffic
state of the road network, the traffic state efficiency index formula proposed in this paper is used to derive it, and the MFD of the
current state is drawn by using the classification of the design speed and free flow speed of the classified road. ,en, based on the
collected data from the monitoring stations and the weighting formula of the grade roads, the problem of insufficient measured
data is solved. Meanwhile, the prediction performance of NARX, LSTM, and GRU is experimentally compared with traffic
prediction, and it is found that NARX NN can predict long-term flow and the prediction performance is slightly better than both
LSTM and GRU models. Afterward, the predicted data from the four stations were integrated based on the classified road
weighting formula. Finally, according to the traffic state classification interval, the traffic state of the road network for the next day
is obtained from the current MFD, the predicted traffic flow, and the corresponding speed. ,e results indicate that the
combination of the NARX NN with the MFD is an effective attempt to predict and describe the long-term traffic state at the
macroscopic level.

1. Introduction

Transportation is a key link to social development.
According to the latest statistics from the Traffic Manage-
ment Bureau of the Ministry of Public Security, the number
of motor vehicles in China reached 384 million until June
2021, and this figure is still growing. It is difficult to meet the
increasing demand for comfort in traveling, and the negative
effects of congestion on various routes within the road
network in urban areas are even more serious. In this
context, accurate and reliable traffic information is very
important for intelligent transportation systems (ITS), ad-
vanced traffic management systems (ATMS), and advanced
traveler information systems (ATIS) [1]. In detail, it is
important to use traffic information wisely and accurately
determine the future traffic situation of the regional road
network to support traffic managers and travelers in their
management or travel decisions. ,e key to the problem is

how to accurately predict traffic trips and induce travelers to
choose travel routes, thus spreading the pressure of traffic
trips within the road network.

To tackle the traffic problems mentioned above, some
scholars have proposed forecasting traffic events [2, 3] and
traffic demand [4–6] in the study of traffic state prediction.
Others have proposed short-term prediction of various
traffic state parameters and have designed various prediction
models [7, 8]. As a key component in achieving the purpose
of traffic congestion mitigation, short-term prediction of
traffic state is a combination of traffic information and
mathematical algorithms. ,e future short-term traffic state
parameters are predicted by building the corresponding
prediction models. Usually, the time interval of short-term
prediction does not exceed 15min [9, 10]. However, due to
the randomness and complexity of the traffic state, the traffic
flow shows strong nonlinearity as the time interval is
shortened [11]. It will add difficulty to the short-term traffic
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state prediction. Meanwhile, although the parameter pre-
diction of short-term traffic flow can enable traffic managers
to discover abnormal traffic operation states in time and take
corresponding control measures, it is difficult to satisfy the
demand for long-term traffic trips, and the information
obtained by users is limited by the form of information
output. In contrast, long-term traffic state prediction can
provide the most direct traffic operation information for
travelers and has greater application value.

In the studies on the state of regional road networks,
many studies only focused on the prediction target on a
single section of varying length within the road network. It
failed to consider the complex road conditions at the re-
gional level and cannot demonstrate generalisability. And
there are fewer studies on the traffic state prediction of road
networks, which need to be improved and supplemented.
,erefore, the challenges of current research in both traffic
state prediction and highway network state studies are as
follows:

(i) With limited data collection devices and the impact
on the COVID-19 pandemic, how can traffic pa-
rameters and corresponding states of the entire road
network be obtained?
Despite the more advanced and diverse means of
data collection on the road network at the present
stage, some cities are relatively underdeveloped and
lack sufficient data collection equipment and services
(as in the area selected for this paper) to represent the
effects of the data. ,e key in this situation is the
effective mining and processing of the available
collection data.

(ii) Expanding from both temporal and spatial dimen-
sions, how can the traffic state of a road network be
represented and predicted by using cross-sectional
flows when faced with a larger road network?
From a spatial perspective, basic traffic flow pa-
rameters are required as quantitative criteria to
characterize traffic, whether it is a section, road, or
network. However, the distinction is that the ana-
lytical methods utilized, the forms of representation,
and their meanings are similar but different at the
microscopic scale and the macroscopic scale. From a
temporal perspective, it is unclear what time scales
are defined for long-term traffic prediction and
short-term traffic prediction, and what duration of
time can achieve optimum performance.

To address the above challenges, we have proposed a
long-term prediction model that combines nonlinear
autoregressive with exogenous inputs (NARX) neural net-
work and Macroscopic Fundamental Diagram (MFD) for
the state of the road network. First, the traffic state needs to
be classified by the proposed formula of traffic state effi-
ciency index and the design speed of the classified highway,
and the MFD of the current state is drawn. To achieve the
best prediction performance, the performance parameters
were adjusted, such as the number of nodes and delay pa-
rameters of the NARX neural network (NARX NN). Finally,

with the traffic state efficiency index and the predicted traffic
output, the predicted MFD is drawn to express the traffic
operation state. In this model, the capabilities of MFD to
characterize traffic state relationships at the macroscopic
scale and the capabilities of the NARX NN to handle traffic
flows with time-series characteristics are utilized, respec-
tively. To the best knowledge of the authors, this paper is one
of the first attempts to combine a neural network forecasting
model with theMFD and employ it for long-term traffic flow
prediction on a regional road network.

,e main contributions of the paper are summarised as
follows: (1) ,e NARX-MFD method for predicting long-
term traffic state parameters is proposed and the NARX NN
is verified to be capable of long-term traffic prediction. (2)
,e formula of the traffic state efficiency index is proposed.
With the analysis of the traffic flow parameter curves, the
traffic state of the regional road network is classified into
four categories by using the smooth speeds in the curves and
the design speeds of the classified highway. ,is will be used
as an evaluation classification for the predicted state. (3)
With the predicted traffic flow parameters and traffic state
efficiency indicators, the predicted traffic state curve is
produced and provides the traveler with more intuitive
feedback on the future state of the road network.

Our work is presented as follows. ,e second section
introduces the related works of prediction methods of traffic
state parameters and macroscopic evaluation of traffic state
and analyzes the reasons for choosing NARX NN and MFD.
,e third section addresses the theoretical system of traffic
state evaluation. It introduces the formulas of traffic state
efficiency index and the evaluation grading of regional road
networks derived from it. ,e fourth section mainly focuses
on data description and experimental design and describes
several time-series prediction models involved in the ex-
periments. Section 5 then presents the results of the com-
parison experiments of the prediction models and the
outputs of the predicted traffic states and analyzes the
reasons for them. Finally, in Section 6, we conclude our
paper and outlook future research.

2. Related Work

In this chapter, the related work is reviewed and summarised
in terms of two aspects: prediction methods of traffic state
parameters and macroscopic evaluation of traffic state.

2.1. Traffic State Parameters Prediction. In the context of the
ITS, numerous prediction methods for traffic state param-
eters have emerged. In the past research, prediction models
for various types of traffic state parameters have been
proposed in the relevant literature. According to the type of
parameter, these include traffic flow, speed, density, occu-
pancy, and the resulting travel time and travel time index.
Based on the traffic flow parameter relationships proposed
by Greenshields, when conducting the selection of indica-
tors, some have argued that the selection of volumes is
important because of the stability of volumes [12].
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Some have argued that speed prediction is more critical
[1, 13], while others have argued that prediction accuracy
can be improved by the combined effect of multiple traffic
metrics, such as simultaneous characterization of volume
and density [14]. In recent years, with the continuous im-
provement of algorithms and the development of data
collection equipment, travel time and travel time index have
received increasing attention as predictors. Li et al. [15]
proposed a model based on an ensemble empirical mode
decomposition and random vector functional link network
to predict the travel time of a highway network. Xu et al. [16]
chose the travel time index when dealing with the prediction
of regional road networks. In contrast, due to the limitations
of the collection equipment, other indices are difficult to
obtain. So for the current work, we use traffic data for
consideration. However, when these data are available, a
multi-index prediction approach is taken.

A comparative study by Smith et al. [17] found that
studies of flow prediction models can be divided into
parametric and nonparametric methods, with parametric
methods being more time consuming and nonparametric
methods being more effective when dealing with the random
data.

Research on parametric methods is much earlier and
more established. Jensen [18] used linear regressionmethods
for traffic forecasting in 1972, and Hogberg [19] used
nonlinear regression methods to estimate the parameters in
traffic forecasting models in 1973. Lee et al. [20] used the
ARIMA model for short-term freeway traffic volume fore-
casting and proved to be able to accurately predict traffic
variations with time-series characteristics. ,e method
contains fewer parameters but has better forecasting results.
ARIMA is widely applied as a parametric model for time-
series forecasting, which is obtained by introducing hidden
variables through moving average (MA). Tatsuya [21]
eliminated the seasonal factor based on ARIMA and applied
the SARIMA model to forecast both short-term and long-
term traffic flows, which proved that SARIMA is more
suitable for long-term prediction. On the freeway, the
sudden changes in traffic conditions are often caused by the
effects of weather, accidents, and surges in demand. ,us
Bezuglov [22] tested three grey system theory models and
demonstrate that grey system models are better adapted to
the sudden changes in parameters. Cai et al. [23] then
formulated a noise-immune Kalman filter model applied to
short-term traffic flow prediction, which solved the problem
that the Kalman filter is insensitive to traffic flows satisfied by
non-Gaussian noises.

,e research on nonparametric methods mainly in-
cludes neural network models, support vector regression
(SVM), and K-nearest neighbor (KNN) algorithms. Among
them, the first application of KNN in traffic flow prediction
was in [24]. Meanwhile, Harrou et al. [25] monitored the
traffic congestion problem with the KNN algorithm, which
was very effective and was based on the advantages of the
Kalman filter (KF) and a piecewise switched linear traffic
(PWSL). Support vector regression (SVR) models were
applied and proven to be appropriate for traffic flow

forecasting on urban roads, e.g., [26]. And Castro-Neto et al.
[27] demonstrated that the OL-SVR model can well deal
with the atypical conditions when they occur and is better
than other prediction models. ,e Gauss-SVR model pro-
posed by Li et al. [28] has better predictive performance than
the neural network when it comes to urban traffic flow
forecasting, but it should be noted that the structure of the
BP neural network used in the paper is simpler.

Although neural network models have been considered
to be better suited for short-term traffic forecasting [29–31],
and it has been argued that the accuracy of predictions
gradually decreases as the range of predictions increases,
neural networks do not work well for long-term traffic
forecasting. However, Çetiner et al. [32] applied an artificial
neural network (ANN) to predict long-term (1h) data and
short-term (5min) data for one day in a historical dataset
for the city of Istanbul and discovered that better results
were obtained with the long-term dataset. Hao et al. [33]
demonstrated that Long Short-Term Memory (LSTM)
neural networks can consistently and effectively achieve
long-term traffic forecasting based on dynamic traffic flow
probability graphs and alleviate the effect of missing data
on the forecasting results. ,erefore, the neural network
can enable long-time forecasting. It has been demonstrated
that NARX NN is also capable of predicting long time-
series tasks [34].

While parametric and nonparametric methods have
their advantages and disadvantages, both should be tested
and compared with the baseline model to obtain the optimal
model. However, the use of combined a model, or algo-
rithms, or heuristic approach for forecasting seems to be the
current rage. ,is is very common in complex traffic
forecasting, e.g., [23, 28]. But some problems have remained.
In [35], Vlahogianni has discussed comparing the use of
baseline and combined models and raised the question of
when to combine predictions. It addressed the situation
where combined models may make it difficult to control
errors in long-term prediction.

In the studies of traffic parameter prediction mentioned
above, most of them were for single sites or individual road
sections. In contrast, when analyzing macroscopic charac-
teristics, traffic flow parameters have to be predicted for
multiple sections on the road and the entire road network in
an integrated manner. In a previous study, Williams [36]
used the ARIMAmodel to predict traffic flows at several test
sections within the city of Bonn, Germany. Kamananakis
[37, 38] applied the STARIMA model to traffic flow fore-
casting on major arterial road sections in the city of Athens,
Greece, and described the topological distance relationship
with the sections by using a weight matrix. A comparison
with ARIMA and VARMA revealed similar prediction
performance. In a recent study, Li et al. [39] proposed a
short-term multistep traffic prediction model for macro-
scopic road networks, Dynamic Graph Convolutional
Network (DGCN), which is based on the Dynamic Graph
Convolutional (DGC) model. ,erefore, the above study
shows that it is feasible to forecast the traffic state of the
regional road network.
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2.2. Macroscopic Evaluation of Traffic State. In macroscopic
traffic state evaluation, the range of study is often extended
to multiple cross sections or the entire road network based
on the fundamental diagram theory of traffic flow. To de-
scribe the traffic state of urban road networks, scholars have
proposed various theories, such as dimensional analysis
theory [40] and two-fluid theory [41–43]. ,e MFD was
proposed by Godfrey in 1969 [44]. Daganzo et al. [45, 46] in
2008 revealed the characterization of flows and trip com-
pletion rates by using GPS data of taxis in Yokohama, Japan,
which has a high level of congestion. ,e existence of the
MFD was formulated and verified, and a new paradigm was
initiated. With the MFD, it is possible to significantly reduce
the complexity of the traffic flow model, thus achieving a
controlled design of the model for the urban network.

After that, analytical modeling and control researches on
MFD have been continuously proposed.,emain difference
between these models is that the controlling strategies are
different and the controlled models are summarised as
follows.

(1) ,ree-parameter baseline model: according to Edie’s
[47] simple definition of road network traffic flow,
the arithmetic mean or weighted mean of the section
traffic flow parameters can be obtained, as shown in
the following equation:

Q �
1
N


i

Qi, K �
1
N


i

Ki, V �
Q

K
, (1)

where Q, K, and V are the averages of the volume
(pcu/h), density (pcu/km), and speed (km/h) in the
road network, while N is the number of sections or
road segments detected.

(2) Perimeter control models [48]: By defining a generic
mathematical model for multireservoir networks
with well-defined MFDs for each reservoir, maxi-
mizing the throughput of the system without the
necessity to calculate workload and future demand
data is achieved.

(3) Adaptive control models [49]: ,ese models opti-
mize the controller through real-time observation of
changes to adapt the model to uncertainties and state
delays under different parameters.

(4) Hierarchical perimeter control models [50]: ,is
model is proposed to address the problem of traffic
congestion with high traffic demand and heteroge-
neous distribution. ,e hierarchical control strategy
is introduced, and each layer solves the corre-
sponding problem according to different demands to
achieve the stability of the traffic system.

(5) Robust control models [51, 52]: ,is model mainly
considers the parameter uncertainty of single or
multiple regional networks and sets different algo-
rithms for robust controllers according to various
demands to ensure stable operation of the model.

And in addition to the MFD, new progress has been
introduced to the study of macroscopic traffic flow

analysis. ,onfer et al. [53] modularized the urban traffic
network and proposed a model that contains signal
control and is adapted to large-scale urban road net-
works, which can improve operational efficiency through
parallel computation. Xiao et al. [54] presented traffic
speed cloud maps that can dynamically capture the
process of congestion formation and degradation, but the
scale of data resources required is larger than that of the
MFD.

In summary, scholars have demonstrated in previous
studies that traffic data is highly nonlinear, periodic, and
time-varying, and that the NARX model also supports the
prediction of traffic data with time-series features compared
to the SARIMA model [55]. Although NARX NN has long-
term forecasting capability, whether it can fulfill the task of
long-term traffic state parameter prediction or not still needs
to be verified [56]. In this paper, we decided to conduct
comparative experiments using the NARX model with the
other baseline models. While the MFD is better than other
methods of macroscopic state evaluation in presenting the
traffic state characteristics in terms of data relationships, we
chose MFD.

3. EvaluationModelofRegionalRoadNetwork’s
Traffic State Based on the MFD

For our study, considering the large scope of road network
evaluation, the traditional microscopic traffic models are not
effective, so the MFD is used to reflect the traffic conditions
of the road network.

3.1. Traffic State Classification and Index Calculation. As
multiple indicators can reflect traffic conditions, the selec-
tion of the appropriate indicators is a key step.,erefore, the
selection steps of indicators in this paper will follow the
following principles: (1) Clear purpose, (2) comprehensive
scope of the evaluation, and (3) being practical and operable.
After reviewing the relevant literature [57, 58], the current
commonly used traffic state evaluation indicators were
compiled and shown in the following figure.

,e parameters of flow, speed, and occupancy were the
most commonly used (see Figure 1). Considering the dif-
ficulty of index acquisition, evaluation criteria, and model
applicability, the traffic flow parameters of flow, density, and
speed were selected in this paper to reflect the condition of
the road network.

,e essence of road network condition evaluation fol-
lows the basic evaluation principles and discriminates the
traffic state through scientific and reasonable methods. In
traditional traffic evaluation systems, the traffic flow fun-
damental diagram model is based on the analysis of his-
torical data. It is established with statistical methods and
characterizes the relationship between the parameters of a
single section of road and has a limited scope of application.
,e relationships between spatially averaged flow variables
of multiple sections or regional road networks are analyzed
with MFDs, which provide an intuitive and systematic
description of the overall structure of the road network.
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To discern whether the road network is congested or not,
it is assumed that the road network is homogeneous and all
the cross-sectional traffic parameters are compatible with the
flow relationship curve. According to the critical speed in the
flow model proposed by Greenshields, it is divided into
congested and noncongested areas.

Let zQ/zV � 0; then, Vm � V/2 corresponding to Qmax
can be obtained and thus the point (Vf/2, Qm) is the
maximum value of the flow-velocity curve.

,e extreme value of the flow-velocity curve Qm can be
used as a dividing point between the uncongested and
congested areas (see Figure 2).

In this paper, we have introducedM, the road network’s
traffic condition efficiency index, which characterizes the
state of vehicles per time in the road network. Its calculation
is shown as follows:

M � QVL � Kj V
2

−
V

3

Vf

 L, (2)

where L is the length of the road section in the road network.
From equation (2), it can be seen that there is a threefold

functional relationship betweenM and V, and there must be
an Mmax corresponding to a V.

When zM/zV � 0, VA � 2/3Vf can be obtained, which
corresponds to Mmax. At this time, the point (2/3Vf, VA)

can be regarded as the dividing point between the free flow
(F) state and the harmonic flow (H) state in uncongested
areas. Similarly, VA corresponds to VD � 1/3Vf of the same
flow; then the point (1/3VM, QD) can be regarded as the
dividing point between the synchronous flow (S) state and
the blocked flow (B) state in the congested area, as shown in
Figure 3.

In summary, the traffic state of the road network can be
divided into four classes based on the traffic state curve. ,e
intervals of each class are shown in Table 1.

3.2.EvaluationModel ofRoadNetworkTrafficState. ,e road
network is composed of highways of many different tech-
nical grades. ,e state of the road network cannot be

generalized due to the technical variability of the different
highway grades. ,erefore, it is necessary to evaluate the
traffic state of the same highway levels first, then divide the
weights according to the different technical highway grades
and calculate them, and finally formulate the traffic state
model of the road network.

(1) ,e traffic state evaluation model for road networks
of the same level uses the average speed of all vehicles
in the road network as the state evaluation index, as
shown in the following equation:

Vjk �


n
i�1 Vijk

n
, (3)
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Figure 1: Usage of common indicators for traffic state assessment.
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Figure 3: Traffic state curve.

Table 1: Traffic state classification intervals.

State Interval State Interval
Blocked flow [1/3, 0)Vf Harmonic flow [2/3, 1/2)Vf

Synchronous flow [1/2, 1/3)Vf Free flow [1, 2/3)Vf
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whereVjk (km/h) is speed state for all roads of grade j
at the k-th inspection time interval; Vijk (km/h) is the
speed state for the i-th road monitoring station of the
grade j roads at the k-th inspection time interval, and
n is the number of j-grade road monitoring stations
in the road network.

(2) Equation for calculating road weights:
,e importance of a road section is related to its
capacity and length. Variations in the operational
state of road sections with higher capacities or
smaller lengths will have a greater impact on the
operational state of the road network. ,e impor-
tance weights of intersections and sections are
modeled as follows in equation (4), where traffic
monitoring stations are calculated as intersections:

ωc Lij  �
C Lij 

l Lij 
≈

Q Lij 

l Lij 
, (4)

where ωc (Lij) is the section importance weight; C
(Lij) is the section capacity, in veh/h; and l (Lij) is the
section length, in m.
Using the road section level and weights, a com-
prehensive weighting model for road sections is
established using the following equation:

ωk Lij  �
ωc Lij 


h
i�1 ωc Lij 

�


n
i,j�1 Qk Lij 


m
j�1 Qk Lj 

, (5)

where ωk (Lij) is the comprehensive weight for the i-
th road monitoring station of the grade j roads at the
k-th inspection time interval; Qk (Lij) is the flow for
the i-th road monitoring station of the grade j roads
at the k-th inspection time interval, in veh/h; Qk (Lj)
is the flow for all roads of grade j at the k-th in-
spection time interval, in veh/h; m is the number of
technical grade types and h is the number of road
sections in the road network.

(3) Road network traffic state evaluation model:

,e traffic state evaluation model of the road network
within the evaluation range is obtained by multiplying and
adding each grade of the road according to the corre-
spondence in equations (4) and (5), as shown in the fol-
lowing equation:

Fk � 
m

j�1
ωk Lij Vjk, (6)

where Fk is the traffic state value of the road network in the k-
th time interval, in (km/h).

In this study, we only include primary roads and sec-
ondary roads due to the limitations of road network grades
and monitoring devices in the selected areas. ,e higher the
grade is, the more the transport functions it corresponds to
undertake, and the more the weights that need to be
assigned. In terms of the capacity of each road class, the
weights of these two classes of roads were determined to be
0.6 and 0.4.

4. Experiment

After analyzing and obtaining the above method, the ex-
perimental flowchart of this paper is summarised as follows
(see Figure 4).

4.1.DataDescription. To test the operational effectiveness of
the state prediction model over a large area, the location
chosen for this study was in Linzi District, Zibo City,
Shandong Province, which has an area of 672.58 km2 for the
study. ,e area has long latitudinal boundaries as it is
crossed by many roads of various grades to Qingzhou City.
,e traffic flow is inevitably high as vehicles must pass
through the area to enter Qingzhou. Considering the large
area of collection, the monitoring stations were selected to
monitor four sites, Zi River, Bei Liu, Reed River, andWu Tai,
which are distributed on the main national roads (e.g., G308,
G309, and G233) and provincial roads (e.g., S227, S228, and
S102) in the region (see Figure 5(a)). Among them, there are
more factories near the Reed River monitoring stations, and
large vehicles will pass through the station, so the sectional
traffic volume is larger than the other stations. ,e locations
are relatively dispersed to reflect the intrinsic links of the
regional road network. ,e weights are then divided
according to the grade of each road, as shown in Figure 5(b).

To reflect the correlation and weight expression of ad-
jacent links in the road network more intuitively, a spatial
weight matrix W (0.6,0.4) was established, as shown in
Figure 6. In the figure, “0.6″ and “0.4″ indicate the corre-
sponding road level weights between two nodes, and “0″
indicates that the two nodes are not connected.

,e total length of the roads involved is 122.135 km.
From 12/01/2019 to 02/28/2020, the raw data was provided
by the Shandong Provincial Highway Traffic Investigation
and Management Institute in Zibo, Shandong Province,
China. All vehicles passing on these roads are recorded in the
station’s database with radar-based detectors and video
collecting equipment at the monitoring stations. ,e traffic
flow data was measured every 1 hour and the speed data is
measured every 5min. In addition, due to the epidemic,
some roads were closed and the communication of the
detector was faulty during the collecting period and resulting
in some traffic data being missing (1.94%). To minimize the
influence, the missing values were recovered by the average
values of other days measured at the same time during data
processing. To avoid any loss of monitor accuracy during
rain and snow, which could have an impact on the accuracy
of the acquired data, the data was recalibrated using video
equipment to ensure accuracy. After the above steps and
data processing and data imputation, the traffic flow data
and average speeds obtained from each of the four detection
points were grouped by hour, with 8,640 sets of data each
(see Figure 7). It implies that 90 days∗ 24 h of data were
recorded for each monitoring station.

4.2. Traffic Flow Prediction Modeling and Baseline. As pre-
viously mentioned, one of the main objectives of this paper
aims to investigate the feasibility of NARX NN in long-term
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traffic flow forecasting and compares it with other types of
artificial intelligence methods. To make a fair comparison,
the LSTM NN and GRU NN were chosen as the two
methods.

4.2.1. NARX NN. ,e NARX NN can be seen as a neural
network version of the time-series model, which can con-
sider external time-series inputs. Its predictions are based on

historical data from the same series. As a standard NARX
neural network architecture, the parallel architecture feeds
the output back into the input of the feedforward neural
network, where TDL is the tapped delay line. ,e other
architectural mode is a series-parallel architecture that uses
the real output rather than the output estimated by the
feedback. It enables the input to the feedforward network to
be more accurate and can be trained by using static
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backpropagation [59, 60]. ,e simple structure is shown in
Figure 8.

As a typical nonlinear prediction model with input and
output delays, in the NARX model, the traffic flow y(t+1) is
obtained from the input and output flow predictions before
t.,emodel’s expression is shown in the following equation:

y(t + 1) � f(x(t − 1), . . . x(t − d), y(t), y(t − 1), . . . y(t − d)),

(7)

where f is a nonlinear function and d is the order of delay of
the input and output.

4.2.2. LSTM NN. As a special form derived from the RNN
model, LSTM NN can better deal with data of longer se-
quences. Long-term memory is preserved through gating
and cell state updates, and time-related information is
retained through storage cells to solve the gradient disap-
pearance and gradient explosion problems in RNN models.

4.2.3. GRU NN. ,e GRU NN, as well as the LSTM NN
mentioned above, is excellent variant of the RNN [61].
However, differing from the LSTM NN, the GRU network
simplifies the structure by merging the forgetting gate and
the input gate into an update gate. ,e updated state of the
cell is controlled through the update gate, and the reset gate
determines how to combine the new input information with
the previous memory to make convergence faster.

To compare the traffic flow prediction effect of the
NARX NN, LSTM NN, and GRU NN models, the same
traffic flow datasets are chosen. ,e root means square error
(RMSE), mean absolute percentage error (MAPE), and R2

were selected to evaluate the difference between the real
results Y(t) � y1, y2, . . . yn  and predicted results
Y(t) � y1, y2, . . . yn , as shown in equations (8)-(10):

RMSE �

�������������

1
m



m

i�1
yi − yi( 

2




, (8)

MAPE �
1
p



p

i�1

yi − yi




yi

, (9)

R
2

� 1 −
i yi − y( 

2

i(y − y)
2 , (10)

where p is the number of samples, yiis the flow’s measured
value, and yi is the corresponding predicted value.

4.3. Experimental Settings. ,e purpose of this experiment
would be to predict future day traffic values with three-
month data and then obtain the predicted traffic status
from MFD and traffic status evaluation intervals. For the
structure of the dataset described in Section 4.1 and the
baseline model in Section 4.2, the dataset of each moni-
toring station is partitioned into a training set, a validation
set, and a test set, corresponding to a ratio of 7 : 1.5 : 1.5. It is

worth noting that the datasets of the methods used were
uniform to be fair for comparisons between different
methods. Moreover, some of the parameters were taken as
constant or default values to facilitate the control of var-
iables. ,e open-closed loop control (see Figure 8(a)) is
chosen for the training of the NARX NN, while the closed
loop control (see Figure 8(b)) is chosen for its prediction
with a learning rate of 0.005, which is intended to obtain
better prediction results in long-term traffic flow predic-
tion. ,e corresponding training algorithm used the
Levenberg-Marquardt (LM) algorithm to obtain a faster
iteration rate. ,e training process for both LSTM NN and
GRU NN utilized the Adam optimizer, with the Max-
Epochs set to 250, the gradient threshold of 1, and an initial
learning rate of 0.01. After the 125th training round, the
learning rate is multiplied by 0.2 to reduce the learning rate.
As it is a sequence of input and output data, both input and
output are set to 1 dimension.

To compare different prediction methods and to ensure
the uniformity of the platform, the experimental equipment
is composed of a 6-core AMD3600X 3.80GHz CPU, 16GB
of RAM, a GEFORCE RTX 2060S 8GB GPU, and MATLAB
2021a is chosen for the experimental platform.

5. Results

According to the above progress, the corresponding steps of
Figure 4 and the obtained results are as follows.

Step 1. In this step, when classifying the regional states, the
traffic state classification intervals in Table 1 and the design
speeds of the corresponding roads are used. We can obtain
the smooth flow speed Vf, consequently 2Vf/3, Vf/2, Vf/3,
and the boundary value of each state. In this study, we used
the data for the three months from December 2019 to
February 2020 as the basis to obtain the actual state clas-
sification intervals of the regional road network by the above
method (see Table 2).

According to the relationship between the traffic flow
parameters within the regional road network and the speed
classification interval in the table above, we can obtain the
MFD of the road network (see Figure 9). At this time, the
traffic flow of the overall network is classified into four
different states according to the average speed values, with
different colors representing different traffic flow states. As
there are a large number of primary roads in the network
and the monitoring stations are mainly located at the in-
tersection of the two grades of roads, the classification in-
tervals will be based on the primary roads.

Step 2. After Step 1, we first evaluated and compared the
performance of several of the above prediction models on
the datasets from the four monitoring stations based on the
experimental design in Section 4.3. By varying the number of
hidden layers or units, we were able to filter out the best
method of setting the model parameters to ensure higher
prediction accuracy. ,e specific parameter data are shown
in Tables 3–5.
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Table 2: State classification intervals of the regional road network.

Technical grade Blocked flow Synchronous flow Harmonic flow Free flow
Primary roads [0, 30) [30, 40) [40, 190/3) [190/3, 100]

Secondary roads [0, 20) [20, 30) [30, 40) [40, 60]

2400

Q
 (v

eh
/h

)

2000

1600

1200

800

400

0
0 20 40 60

V (km/h)

Blocked flow
Synchronous flow
Harmonic flow
Free flow

80 100

(a)

2500
Q

 (v
eh

/h
)

2000

1500

1000

500

0
0 20 40 60

K (veh/h)

Free flow
Harmonic flow
Synchronous flow
Blocked flow

80 100 120

(b)

Figure 9: MFD of the overall road network: (a) Q-V curve, (b) Q-K curve.

Table 3: Traffic flow prediction accuracy evaluation of NARX NN

Stations NARX NN

Parameters Hidden layer 8 9 10 11 12
Delay layer 2 2 2 2 2

Wu Tai
R2 76.749% 85.321% 88.433% 79.343% 77.545%

RMSE 122.759 97.463 73.736 114.381 123.269
MAPE 7.53% 6.93% 4.98% 8.24% 14.18%

Zi River
R2 92.784% 93.494% 94.983% 93.923% 89.621%

RMSE 62.047 56.492 39.835 58.277 75.53
MAPE 1.77% 2.21% 1.61% 1.82% 1.98%

Bei Liu
R2 93.442% 94.249% 96.600% 92.101% 92.509%

RMSE 183.368 171.490 131.763 210.467 195.711
MAPE 1.11% 2.87% 1.09% 1.35% 2.54%

Reed River
R2 88.094% 94.853% 95.047% 94.756% 89.006%

RMSE 245.781 167.633 174.916 166.907 252.857
MAPE 2.47% 1.13% 1.22% 1.18% 1.61%
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,e optimal selection of parameters for the different
prediction models was collated for each monitoring station
as shown in the figure below (see Figure 10).

As a result of the above comparison experiments, it
can be seen from the comparison of the indicators in
Tables 3–5 and Figure 10 that, due to the similar trend of
the flow data at each monitoring station, it resulted in a
very similar selection of parameter and evaluation indices
for each location in each method. By comparing the
performance evaluation metrics of each model with the
best parameters, it was found that the R2 values of NARX
NN are larger than both LSTM NN and GRU NN, but the
RMSE values were smaller at some monitoring stations,
and the MAPE values of NARX NN were smaller than
both models.

Furthermore, it is surprising that when the number of
nodes in the hidden layer of the LSTM NN is continuously
increased, there is no gain in performance, but rather a
decrease. ,e reason for this is that the method is already

approaching the optimal number of nodes for this dataset,
and increasing the number of nodes will complicate the
network and tend to “overfit” or prolong the training time.
Due to its simpler structure, the GRU NN converges faster
than the LSTM model during training but has lower pre-
diction accuracy than the LSTM.

,erefore, the traffic flow of the four observation stations
was predicted based on the optimal number of hidden layers
or units for the above-mentioned models. ,e results ob-
tained are shown in Figure 11 below.

After observing and analyzing the above prediction
curves, it can be seen that all three models fit well at all four
monitoring stations and that the NARXNN converges faster
and with relatively smaller errors than the other two models.
However, in some time intervals, the NARXmodel oscillates
less than the other two models. ,is indicates that while the
model is well adapted to the time-varying characteristics of
the traffic flow data, it is not able to cope with sudden
variations in the flow at some sites.

Table 4: Traffic flow prediction accuracy evaluation of LSTM NN.

Stations LSTM NN

Parameters
HiddenUnites 276 282 288 294 300

SequenceInputLayer 1 1 1 1 1
FullyConnectedLayer 1 1 1 1 1

Wu Tai
R2 92.979% 94.380% 94.036% 92.305% 91.237%

RMSE 75.93 65.582 72.511 78.963 82.293
MAPE 5.27% 5.81% 5.02% 5.50% 6.35%

Zi River
R2 99.039% 99.081% 99.112% 99.105% 99.007%

RMSE 21.846 21.499 21.292 21.158 22.365
MAPE 1.64% 1.59% 1.67% 1.60% 1.74%

Bei Liu
R2 93.340% 94.916% 95.774% 94.480% 95.665%

RMSE 198.882 174.465 159.654 181.866 162.147
MAPE 1.789% 1.295% 1.105% 1.368% 1.122%

Reed River
R2 86.063% 87.124% 91.011% 90.481% 86.132%

RMSE 275.21 180.68 162.572 198.024 228.13
MAPE 2.86% 2.31% 1.98% 2.38% 2.15%

Table 5: Traffic flow prediction accuracy evaluation of GRU NN.

Stations GRU NN

Parameters
HiddenUnites 270 276 282 288 294

SequenceInputLayer 1 1 1 1 1
FullyConnectedLayer 1 1 1 1 1

Wu Tai
R2 81.181% 93.552% 88.85% 79.53% 84.01%

RMSE 118.076 73.332 94.207 147.014 113.782
MAPE 6.617% 5.063% 5.45% 7.44% 6.10%

Zi River
R2 98.971% 98.966% 98.865% 99.068% 99.091%

RMSE 22.805 22.642 24.005 21.542 21.242
MAPE 1.807% 1.727% 1.863% 1.626% 1.604%

Bei Liu
R2 95.736% 96.024% 96.145% 95.882% 96.117%

RMSE 160.169 154.73887 152.6051 157.25165 153.57241
MAPE 1.144% 1.097% 1.090% 1.149% 1.085%

Reed River
R2 79.014% 85.961% 88.093% 81.664% 83.526%

RMSE 281.021 190.011 170.425 236.447 200.634
MAPE 3.02% 2.54% 2.12% 2.83% 2.51%
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Step 3. After the first two steps, the flow for the entire
network is calculated with equations (4) and (5), the clas-
sified road weights, and the predicted flows for the four
monitoring stations obtained. After processing the traffic
data for the next day, a comparison of the three neural
network models shows that the NARX model is highly
adaptable and real-time for nonlinear traffic data, while the
LSTM has better lagging performance (see Figure 12). ,e
original values of traffic flowmatched well with the predicted
values. ,e predicted results are then evaluated. As can be
seen from Table 6, the three evaluation indicators of the
NARX model are slightly better than the other two models
for predicting traffic flow for the next day. ,ough similar, it
converges more quickly.

Finally, according to the traffic state classification
interval, the traffic state of the road network for the next
day is obtained from the current MFD, the predicted
traffic flow, and the corresponding speed (see Figure 13).
,e analysis in the figure shows that the free flow is
distributed during the low peak hours of the day. ,e
blocked flows are mainly distributed during the morning
and evening peak hours, and the synchronic flows are
distributed after them with the temporal progression, as
the main state after the peak hours. Harmonic flows occur
less frequently and occupy fewer hours. ,e main reason
for the above phenomenon is that most of the selected
monitoring stations are located in the surroundings of the
central city. Residents have to pass through these points
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Figure 10: Comparison of evaluation indicators for predicted results at the four monitoring stations.
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when entering and leaving the city. Due to a large number
of factories in the selected areas, the frequent presence of
large vehicles caused the blocked flow from midday until
the evening peak.

6. Conclusions and Prospects

In this paper, we developed a state prediction model for
regional road networks (NARX-MFD) and proposed a traffic
state efficiency index formula.,e traffic state of the regional
road network is classified into four categories by using and
analyzing the free flow speed and the design speed of the
classified road in the traffic flow parameter curves. ,is will
be used as the evaluation classification of the predicted state.
,en, according to the traffic state parameters measured
from the four monitoring stations, the MFD of the road
network in Linzi District of Zibo City is obtained for the
selected period.

Afterward, a comparison experiment of LSTM, GRU,
and NARX with the same dataset showed that NARX had
slightly better prediction performance than LSTM and GRU
and converged fastest and can cope well with long-time
traffic data. However, it did not cope well with the sudden
phenomenon of traffic changing and the oscillation am-
plitude was not large. ,e main reason for this is that only
the test set has mutation data, and the model trained using
the training set with regular variation can only cope well
with such data. Finally, a prediction diagram of the future
day’s traffic state is obtained with MFD, predicted flows, and
corresponding speeds based on the state classification in-
tervals of the regional road network. It realizes the functions

of data quality control, prediction, and visualization of the
operation state of the road network. In summary, the road
network operation state prediction model can provide a
reliable basis for traffic managers’ decision-making and
provide effective real-time traffic information for travelers,
thus reducing travel time and improving travel efficiency.

However, as there are still shortcomings in both mac-
roscopic traffic state evaluation and predicted models in this
paper, our future work will be carried out from these two
aspects. In the macroscopic traffic evaluation section, the
number of class categories affects the calculation of weights,
the calculation of capacity, and even the classification of the
road network state. And there are only three selected road
class categories in the network, which could be further
refined. In the prediction model section, firstly, as it is
difficult to obtain data and the amount of data is not large
enough, considering the scale of data under the practical
application of the model, further research is needed to see
whether the NARX model can maintain the current pre-
diction effect when dealing with a large dataset. Secondly,
trying to combine the NARX model with other models to
improve the prediction accuracy of traffic flow is a part of
future research.

Data Availability

,e data used to support the results of this study were
obtained from the Shandong Provincial Highway Traffic
Investigation and Management Institute in Zibo, Shandong
Province, China, and are available from the corresponding
author upon request.
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Table 6: Accuracy evaluation of traffic flow forecasting with three models.

R2 (%) MAPE (%) RMSE
NARX NN 99.576 0.374 60.060
LSTM NN 99.579 0.395 65.034
GRU NN 99.518 0.403 69.039
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Speech enhancement in a vehicle environment remains a challenging task for the complex noise. ,e paper presents a feature
extraction method that we use interchannel attention mechanism frame by frame for learning spatial features directly from the
multichannel speech waveforms. ,e spatial features of the individual signals learned through the proposed method are provided
as an input so that the two-stage BiLSTM network is trained to perform adaptive spatial filtering as time-domain filters spanning
signal channels. ,e two-stage BiLSTM network is capable of local and global features extracting and reaches competitive results.
Using scenarios and data based on car cockpit simulations, in contrast to other methods that extract the feature frommultichannel
data, the results show the proposed method has a significant performance in terms of all SDR, SI-SNR, PESQ, and STOI.

1. Introduction

In the process of driving, the speech signals recorded by a
microphone are often corrupted by reverberation and
background noise, such as wind noise, engine noise, and tire
noise, leading to considerable degradation in speech quality,
particularly at low signal-to-noise ratios (SNRs) [1]. Speech
enhancement technology can improve the speech quality of
the interphone system and the ability of the speech recog-
nition system. Multichannel enhancement in vehicle sce-
narios uses microphone arrays that are convenient and
flexible for speech-enabled applications [2]. ,e multi-
channel structure could provide more spatial information
from the interchannel data and better results than the signal
channel.

Although the technology of microphone array has been
developed for a long time, multichannel speech enhance-
ment is still a great challenge in the field of speech recog-
nition. ,e methods can be divided into two categories: one
is based on the frequency domain, and the other is based on
the time domain. Researchers mostly use the frequency-
domain methods, which are based on the short-time
spectrum estimation. Chakrabarty and Habets [3] proposed

a multichannel online speech enhancement method based
on time-frequency masking. Convolutional recurrent neural
network (CRNN) is used to estimate the mask, and the
effects of the ideal ratio mask (IRM) and ideal binary mask
(IBM) on the results are discussed. ,e results show that the
method is robust to different angles of sound sources. In [4],
a multichannel speech enhancement system based on a deep
neural network is proposed. Firstly, the audio signal is
transformed into the frequency domain by STFT, the time-
frequency mask is estimated by DNN, and the multichannel
Wiener filtering is performed by using the power spectral
density of speech and noise. ,e experimental results show
that the method is effective. A beamforming method dif-
ferent from the traditional DNN is proposed in [5]. ,e
spectrum of each channel is mapped to the non-Euclidean
space, usually using the phase information to improve real-
time performance, and the graph neural network is used for
end-to-end training. Compared with the existing methods,
the experiment result is better. A time-domain beamforming
method named FaSNet (Filter and Sum Network) suitable
for the low delay is proposed in [6]. ,e author selects the
reference channel for filtering, calculates the filter of other
channels by the reference channel, and then adds the filtered
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speech of each channel as the denoised speech. ,e model
size of the algorithm is small, and the performance is better
than that of traditional beamforming methods. In [7], a
streaming speech enhancement system is proposed, which
adopts the Wave-U-Net framework, adds temporal con-
volution and attention mechanism into the encoding and
decoding structure, and explores the history caching
mechanism. ,is method achieves almost the same noise
reduction effect as the nonstreaming model. ,e time-do-
main convolutional denoising autoencoders (TCDAEs)
method is proposed in [8]. It is used to learn the mapping
structure between noisy speech waveform and clean speech
waveform and solve the problem of speech signal delay
between different channels effectively. Compared with the
traditional denoising autoencoder, the effect has been sig-
nificantly improved.

,e multichannel speech enhancement model has the
most significant advantage of obtaining abundant infor-
mation between channels compared with the single channel.
,erefore, for the multichannel model, the way that extracts
the spatial features between channels more effectively be-
comes the key to achieving better performance. In [9], a
multichannel convolution sum (MCS) is used to extract
features between channels. On the contrary, in [9], inspired
by the IPD [10] feature, the interchannel convolution feature
(ICD) is proposed. ,e method is to perform one-dimen-
sional convolution subtraction on a pair of microphones.
Based on GCC-PHAT, [6, 11] considered the normalized
cross-correlation (NCC) method, which uses cosine simi-
larity to calculate the information between channels. All the
above methods achieve better performance improvement for
multichannel speech enhancement. To address the problem
of speech enhancement in the car cockpit, this paper pro-
poses a novel method based on interchannel attention
mechanism frame by frame (IAF), which helps analyse the
influence of each channel on speech signal by using the
characteristic information of the channel. Moreover, the
proposed method also explores interchannel relationships
and achieves more information representation on channel
structure. It provides a new idea for multichannel speech
enhancement based on vehicle environment and can also be
applied to smart homes, teleconference, and other scenes.

,e main contents of this paper are as follows: Section 1
introduces the related research work in this field. ,e
structure of the multichannel speech enhancement model
based on IAF is proposed in Section 2. ,e algorithm
performance in the vehicle environment is evaluated in
Section 3. ,e experimental results of the algorithm on
several microphone arrays are analysed and discussed in
Section 4, and Section 5 draws the conclusion and points out
the future of the research work.

2. Problem Formulation

,e proposed method aims to obtain an accurate estimate of
the features for all the channels of a single time frame, given
the input feature representation of the corresponding frame.
,emultichannel speech enhancement process of vehicle data
is divided into four successive steps. First, spatial features

from multichannel data added context information is
extracted by IAF. ,en, the frame-level beamforming filters
are estimated by a well-trained two-stage BiLSTM model
using spatial features, and the original waveforms computed
by 1-dimensional convolution, for N(N> � 2) micro-
phones, N beamforming filters are estimated. Next, the filters
are adopted to filter the noisy speech in every channel, thereby
obtaining the beamformed speech. Finally, add the beam-
formed speech as the denoised speech. ,e detail is presented
in the following sections. A block diagram of the proposed
multichannel enhancement framework is shown in Figure 1.

2.1. Data Preprocessing. It is assumed that the input signal
corresponding to each microphone is represented as (2).
Here, the frame length isM, the frameshift is K ∈ [0, M − 1],
the total length of the speech signal is l, and the total number
of frames is Z:

Z �
l

K
+ 2, (1)

x
i
t � x

i
[tK: tK + M − 1], t ∈ [0, Z], i � 1, . . . , N, (2)

where t is the frame index value and i is the channel index.
xi

t ∈ R
1×M indicates that the signal vector of frame t is

collected by microphone i.
Due to the different distance between each microphone

and the sound source, there is a time delay between the
signals received by each microphone. Add a context window
to make sure the model can capture interchannel delays of
signal samples [12]. We add a group of contextual speech
information in xi

t and define it as xi
t:

x
i
t � x

i
[tK − W: tK + W + M − 1], (3)

where W is the size of the context window and xi
t ∈ R

2W+M

is the signal vector of the microphone i containing the
context information at frame t. ,e input sequence to these
networks consists of W past and W future time frame.

2.2. Interchannel Attention Mechanism Frame by Frame.
We calculate the corresponding weights of different parts of
the channel by constructing the score function to describe
the transmission characteristics of the signal in the channel.
,e principle of interchannel attention mechanism frame by
frame is shown in Figure 2.

In order to extend the context information xi
t, firstly,

average pooling is performed in the frame length dimension:

Fa � z
i
t �

1
2W + M



t K+W+M−1

j�t K−W

x
i
[j], i � 1, . . . , N. (4)

zi
t ∈ R

1 is the average value of microphone i at the
number of frames t. ,en, the results are input into multiple
fully connected layers:

Fb � Gt � S P z
1
t , z

2
t , . . . , z

N
t   , Gt ∈ [0, 1]. (5)

Gt ∈ R1×N is the microphone array feature at the frame t.
P(∗ ) is a set of fully connected layers with parameter
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modified linear unit (PReLU) activation function, S(∗ ) is a
set of fully connected layers with sigmoid activation func-
tion, and the output of P(∗ ) and S(∗ ) are [128, 64, 128]
and [N].\, respectively. ,en, input Gt into the softmax
activation function:

Fs � Ft � Softmax Gt( , (6)

where Ft is a vector whose sum is 1. ,e final output out is
obtained by multiplying with Ft and xt:

outit � F
i

t × x
i
t, i � 1, . . . , N. (7)

outit ∈ R
1×(2W+M) presents the speech feature sequence

of the t -th frame data in the i -th channel.
By using the attention mechanism frame by frame of the

speech signal in multiple channels, the model could learn the
characteristics of each channel and capture spatial features
between channels more accurately.

2.3. Two-Stage BiLSTM Network. ,e two-stage bidirec-
tional LSTM (TsBiLSTM) is used to derive a beamformer as
BiLSTM is adopted to estimate the global feature. For the
beamformer, the approach aims to improve the SNRwithout
destroying the target speech.

Figure 3 shows the TsBiLSTM architecture employed in
this work. We divide the data into blocks, consider using the
BiLSTMnetworkmodel to obtain local and global features of
the blocks and establish the timing relationship of the signal,
and use the residual connections to alleviate the gradient
dispersion problem.

In this work, we combine the speech signal with context
information in the first stage. ,e observed signal can be
expressed as follows:

yt � GroupNorm Conv1 d xt( ( , (8)

xbt � concat outt, yt ( . (9)

xbt ∈ RN×2(M+W) represents the speech features of frame
t and xb ∈ RZ×N×2(M+W) represents all the speech features;
then, we do the one-dimensional convolution on xb:

c � Conv1 d(xb), (10)

where c ∈ RZ×(N×M), then divide c into S blocks of the same
size. Each block presents Bs ∈ RU×(N×M), s ∈ [1, S], and all
the blocks will be connected to form a four-dimensional
vector O ∈ RN×M×S×U.

We transform the shape O ∈ RN×M×S×U to O ∈ R(S×N)×U

×M and input the first BiLSTM:

(a)

(b)

IAF

GroupNorm
Conv1d

TsBiLSTM
+

Beamforming
Filter

*

Figure 1:,e overall process of multichannel speech enhancement model based on IAF. (a),e speech signal with context. (b),e original
speech signal. “IAF” and “TsBiLSTM” denote the feature extraction and feature filter using the TsBiLSTM model, respectively.

Z
(2W + M)

N Fa Fb Fs

(2W + M)

Z

N

(Z, N) (Z, N)

(N,128)
Prelu ()

(128,64)
Prelu ()

(64,128)
Prelu ()

(128,N)
Sigm

(Z, N)

Figure 2: ,e module of the frame-level interchannel attention mechanism: different colors represent different weight values, and multiply
the weight values with the original data.
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out � reshape(O),

out1 � GroupNorm(Linear(BiLSTM(out))),

out � reshape out1(  + O.

(11)

,e output of BiLSTM passes through the linear layer and
GroupNorm operation and then output out1 ∈ R (S×N)×U×M.
Reshape out1 ∈ R(S×N)×U×M to out1 ∈ RN×M×S×U, add the
vector using the residual connection to reduce the problem of
gradient disappearance or gradient explosion, and finally ob-
tain out ∈ RN×M×S×U.

In the next stage, change out ∈ RN×M×S×U into out ∈ R
(U×N)×S×M, then input the next BiLSTM, as the first BiLSTM
block, and finally, obtain out ∈ RN×M×S×U. Because the
signals are transmitted to the BiLSTM model in different
block forms, we can obtain the local and global features of
the signals, respectively:

out1 � reshape(out),

out2 � GroupNorm Linear BiLSTM out1( ( ( ,

out � reshape out2(  + out.

(12)

,en, use the overlap-add operation to convert the
segmented block back to the original sequence:

out3 � O D(out), (13)

where out3 ∈ RZ×(N×M), O D(·) is the overlap-add method,
which means to restore the partitioned data. ,en, convolve
out3 ∈ RZ×(N×M) in two dimensions with the convolution
kernel of size set one:

out4 � Conv2 d out3( , (14)

where out4 ∈ RZ×(N×M). We perform twice one-dimensional
convolution operations on out4, then use the activation
function of Tanh and Sigmoid, respectively, and multiply the
results to get the filters for each channel:

h � Tanh Conv1 d out4( ( ⊙ Sigmoid Conv1 d out4( ( ,

(15)

where h ∈ RN×Z×(2W+1), ⊙ is the Hadamard product symbol,
Tanh(·)⊙ Sigmoid(·) is the gating mechanism of filter that
controls the output data.

Figure 4 shows the structure of the BiLSTM block. ,e
input layer is the feature vector of noisy speech with di-
mension 64, which is input into the BiLSTM layer with
dimension 128. ,e output dimension is 256 since bidi-
rectional LSTM is used. ,en, input the linear hidden layer
of 64, and get the output after the GroupNorm operation.

2.4. Summation. Integrating the signals of multiple channels
into one signal output is an important step in the multi-
channel speech enhancement problem. After passing the
signals of each channel through the channel filter, the results
obtained are summed and averaged, that is, the final en-
hanced speech signal:

y �
1
N



N

i�1
h

i ⊛ x
i
, i � 1, . . . , N, (16)

BiLSTM Block
Tanh Sigmoid

Conv1d Conv1d

BeamForming
Filter

Repeat A times

Conv1d

residual

Concat

out x

residual

1x1 Conv2d

(a) (b) (c)

Divide

BiLSTM Block

S

U

(MxN)

U
M

(SxN)

(UxN)

M
S

(MxN)S
U

overlap-add

Figure 3: ,e structure of the TsBiLSTM module and illustration of the proposed module architecture. (a) ,e input of the TsBiLSTM
includes interchannel features and original waveform. (b) ,e processing chain shows the two-stage BiLSTM with residual connections. (c)
Carry out 1× 1 convolution on the output after overlap-add method operation, then operate conv1d layer with sigmoid and tanh activation
function, respectively, and obtain beamforming filter.
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where y ∈ RN×Z×M and ⊛ is convolution operation. Ulti-
mately, y is inversed from segmentation into an enhanced
speech waveform by overlapping.

2.5. Loss Function. In training and evaluation, the scale-
invariant source-to-noise ratio (SI-SNR) is used as the loss
function.

starget �
〈x, x〉x

‖x‖
2 ,

enoise � x − starget,

SI − SNR � 10log10
starget

�����

�����
2

enoise
����

����
2 ,

(17)

where x is the denoised speech and x is pure speech signal.

3. Experiment Section

,e speech enhancement tasks are evaluated in four kinds of
microphone array structures to simulate the location of the
microphone in the car. ,e speech source and locations of the
noise source are shown in Figure 5, where the black circle
represents the microphones, the green square represents the
speech source, and the red five-pointed star represents the
noise source. ,e design of the microphone array is as follows:

(i) C onsider a uniform linear array with 2 microphones
with intermicrophone distance of 3 cm, and the
microphone array is located in the front of the car
cockpit, as Figure 5(a)

(ii) Consider a uniform linear array with 2-uniform
linear distributed 2-channel microphone array with
intermicrophone distance of 3 cm, and the micro-
phone array is located in the front and middle of the
car cockpit, respectively, as shown in Figure 5(b)

(iii) Consider a uniform linear array with 4 micro-
phones with intermicrophone distance of 3 cm,
and the microphone array is located in the front of
the car cockpit, as shown in Figure 5(c)

(iv) Consider a distributed array with 4 microphones
with intermicrophone distance of 80 cm, and the
microphone is located around the car cockpit, as
shown in Figure 5(d)

Different microphone array structures can reflect dif-
ferent spatial characteristics. In order to make the method
independent of the spatial position of the required speech
source, each microphone array position and source-array
distance are considered under the training condition.

3.1. Datasets Building. For training, we used 3000 randomly
chosen speech utterances from the LibriSpeech [13] dataset
which are open and well-studied dataset used for speech en-
hancement, each 4 s long, with sampling frequency of 16 kHz,
and 500 were used as a validation set. Volvo car noise [14] was
added to the training data as noisy speech in the car cockpit with
randomly chosen SNRs between −10dB and −5dB. Addi-
tionally, since the number of noise is small, spsquare noise [15]
as a noise source, with randomly chosen SNRs between −10dB
and −5dB, was also added. All dataset are divided into frames
with 64 sampling points length, 50% overlapping, and the
context window is 256.

BiLSTM Layer (256)

Linear Layer (64)

Input Layer (64)

GroupNorm Layer (64)

...

Forward

backward

BiLSTM Layer

s'n s'0A'nA'0 A'1 A'2
S0 A0 A1 A2 An sn

y0 y1 y2 yn

x0 x1 x2 xn

(a)

(b)

Figure 4: ,e structure of the BiLSTM block. (a) ,e module contains BiLSTM, linear, and GroupNorm layers, where the numbers in
parentheses indicate the size of the output dimension. (b) ,e internal structure diagram of the BiLSTM layer, where A refers to the LSTM
module, x is the input data, s is the output of the hidden layer, and y is the output result BiLSTM.
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To simulate a car cockpit, we designed the space size to
be 3.4 meters long, 1.8 meters wide, and 1.4 meters high.,e
vehicle cockpits impulse responses required to simulate real
acoustic conditions are generated by gpuRIR toolbox [16],
with the reverberation time (T60) selected from 0.1 seconds
to 0.3 seconds randomly.

3.2. Experiment Settings. ,e experiment aims to verify the
generalization capability of the proposed method over dif-
ferent microphone arrays and compare the performance to
that of traditional beamformers. For a fair comparison, we
make the comparison as all models, including NCC, MCS,
and ICD, are based on the same two-stage BiLSTM modules
presented in Section 2.3 for each microphone channel. ,e
architecture of each BiLSTM network consists of 128 hidden
layers. Set layer number 4. For MCS and ICD, the size of the
convolution kernel is 64, the number of convolution kernels
is 16, the step size is 2, and the expansion number is 2,
leading to the output where the filter estimate for each
microphone is obtained.

,e BiLSTM network was trained using the Adam-based
optimizer, with minibatches of 128 input signals and a
learning rate of 0.001. Meanwhile, the L2 norm of 5 is used
for gradient pruning to prevent gradient explosion. During
training, if the loss value of the latest 10 epoch model does
not decrease on the validation sets, the training will stop
automatically. Dynamic strategy warmup [17] is used to
adjust the learning rate during the training. ,is operation
can warm up the model at a small learning rate in the initial
stage to increase the stability of the model and then gradually
reduce it with a decay rate of 0.98 every 2 epochs.,e specific
approach is similar to [18]. All the implementations were
done in PyTorch:

lr � a1 · n · d
−0.5
model · n warmups− 1.5

, n≤ n warmups,

lr � a2 · 0.98[epoch/2]
, n> n warmups,

(18)

where n is the number of training steps anda1, a2, warmups,
and dmodel present the hyperparameter. In the experiment, we
set a1 � 0.2, a2 � 1e− 3, n warmups � 4000 , and dmodel � 64.

4. Results and Discussion

Following the common speech enhancement metrics, we
adopt average SI-SNR, SDR, PESQ, and STOI improvement
to evaluate the performance of multichannel speech en-
hancement. For a more comprehensive evaluation of the
speech quality, we also report the performances under
different SNRs of speech and noise to give a more com-
prehensive model assessment. ,e experimental results are
summarized in Table 1, where the highlighted numbers with
black are the best scores for each model. ,e results indicate
that the performance of proposed method is better than
other methods when tested at different SNRs, which verifies
the effectiveness of the model. By assigning weight values to
each channel frame by frame, using attention mechanism to
learn the feature expression between channels, the proposed
method leads to the best improvement in terms of four
metrics. It learns from the magnitude spectrum and phase
spectrum of the individual microphone signals and exploits
the difference in the spatial characteristics of the speech and
noise sources.

In the four kinds of microphone array structures
designed in the experiment, we obtain 13.60 dB improve-
ment in SI-SNR in the structure of 2 microphones with
−10 dB SNR and 14.76 dB improvement in SI-SNR in the
distributed 4-microphone array structure.

Another conclusion from the experimental results is that
the array structure with four microphones is better than that
with the two microphones, indicating that the more the
channels are, the more the feature information can be
provided to the speech enhancement model. In addition,
compared with the other structures, the 4-channel distrib-
uted microphone array has the optimum performance. ,e
SDR increase [15.24, 13.87], respectively, in SNR� −10 dB
and −5 dB, and the performance improvement of the other

(a) (b) (c) (d)

Figure 5: ,e distribution map of four microphone arrays. (a) Uniform linear 2-channel microphone array. (b) Two-uniform linear
distributed 2-channel microphone array. (c) Uniform linear 4-channel microphone array. (d) Distributed 4-channel microphone array.
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Table 1: Evaluation results of our proposed model compared with other methods on the same dataset. Four metrics and two SNRs are
considered.

Method # Mics
SDR SI-SNR PESQ STOI

−10 dB −5 dB −10 dB −5 dB −10 dB −5 dB −10 dB −5 dB

Noise

2 linear −6.72 0.34 −7.19 0.24 1.07 1.13 0.40 0.64
4 linear −5.93 0.11 −6.40 0.02 1.06 1.11 0.40 0.64
2× 2 dB −6.72 0.32 −6.18 0.22 1.07 1.13 0.40 0.64
4 dB −6.89 0.68 −7.17 0.60 1.07 1.13 0.46 0.70

+NCC

2 linear 7.45 11.98 6.42 11.30 1.20 1.76 0.73 0.87
4 linear 8.89 12.44 7.86 11.75 1.28 1.83 0.75 0.88
2× 2 dB 7.63 13.14 7.50 12.37 1.23 1.85 0.71 0.89
4 dB 8.38 14.58 7.60 13.96 1.30 2.02 0.76 0.91

+ICD

2 linear 7.42 11.95 6.39 11.27 1.19 1.75 0.72 0.86
4 linear 8.80 12.38 7.79 11.68 1.27 1.82 0.74 0.87
2× 2 dB 7.55 13.06 7.44 12.30 1.22 1.83 0.71 0.89
4 dB 8.33 14.51 7.56 13.93 1.27 2.01 0.76 0.91

+MCS

2 linear 7.40 11.92 6.36 11.25 1.19 1.75 0.72 0.86
4 linear 8.83 12.40 7.83 11.72 1.27 1.82 0.74 0.87
2× 2 dB 7.52 13.04 7.42 12.28 1.21 1.82 0.70 0.88
4 dB 8.28 14.46 7.52 13.79 1.25 2.00 0.75 0.90

Proposed

2 linear 7.52 12.06 6.48 11.36 1.22 1.77 0.74 0.88
4 linear 8.94 12.49 7.91 11.83 1.29 1.83 0.75 0.88
2× 2 dB 7.72 13.23 7.58 12.45 1.24 1.86 0.72 0.90
4 dB 8.41 14.66 7.66 14.07 1.33 2.04 0.76 0.91

,e best evaluation results are shown in bold, comparing the results of the four speech enhancement methods used in the four microphone arrays.

(i)

(ii)

(iii)

(a)

(i)

(ii)

(iii)

(b)

(i)

(ii)

(iii)

(c)

(i)

(ii)

(iii)

(d)

Figure 6: ,e spectrum of four methods under distributed 4-channel microphone array. (a) NCC method. (b) ICD method. (c) MCS
method. (d) IAF method, where (i) represents clear speech, (ii) represents noisy speech with SNR� −10 dB, and (iii) represents denoised
speech.
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structures are [14.16, 11.63], [14.79, 12.31], [14.32, 12.79],
respectively. ,e distributed microphone array structure has
advantages in obtaining the spatial characteristics of the
entire cockpit due to the difference in the location of the
speech source and the noise source, which is helpful to train
a better beamforming filter.

Figure 6 is the speech spectrogram, including the pure
speech spectrogram, the noisy speech spectrogram with
SNR� −10 dB, and the speech spectrogram enhanced by
four methods. ,e four methods have good noise reduction
effects. Compared with the enhanced noise energy spectrum
in the box, the method proposed in this paper has significant
advantages. At the same time, compared with the enhanced
speech spectrogram and pure speech spectrogram, the
method did not cause speech damage and ensured the in-
tegrity of the speech signal.

5. Conclusions

,is work proposed an interchannel attention mechanism
frame by frame (IAF) method and jointed with the two-stage
BiLSTM network to learn the spatial features directly from
multichannel waveforms to solve the problem of multi-
channel speech enhancement in the car cockpit. Experi-
mental results show the IAF method is more effective than
the traditional NCC, MCS, and ICD method in learning
spatial features directly from the multichannel speech
waveforms. ,e proposed model based on four distributed
microphone arrays obtains the optimal enhancement per-
formance in terms of SDR, SI-SNR, STOI, and PESQ. ,e
results indicated that the method is suitable for different
structures of the microphone array and has good robustness.
,is work provided valuable conclusions for improving the
performance of multichannel speech enhancement in the
vehicle cockpit. In future work, we will explore the effect of
the position of the voice source on the performance using the
proposed method.

Data Availability
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spsquare noise data can be found at https://zenodo.org/
record/1227121#.YP0sjo4zZhG.
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)e graphical progression method can obtain grand coordinated schemes with minimal computational complexity. However,
there is no standardized solution for this method, and only a few related studies have been found thus far. )erefore, based on the
in-depth discussion of the graphical optimization theory mechanism, a process-oriented and high-efficiency graphical method for
symmetrical bidirectional corridor progression is proposed in this study. A two-round rotation transformation optimization
process of the progression trajectory characteristic lines (PTC lines) is innovatively proposed. By establishing the updated
judgment criteria for coordinated mode, the first round of PTC line rotation transformation realizes the optimization of co-
ordinated modes and initial offsets. Giving the conditions for stopping rotation transformation and determining rotation points,
rotation directions, and rotation angles, the second round of PTC line rotation transformation achieves the final optimization of
the common signal cycle and offsets.)e case study shows that the proposed graphical method can obtain the optimal progression
effect through regular graphing and solving, although it can also be solved by highly efficient programming.

1. Introduction

Intersections are the road network nodes that frequently
cause traffic disruption, severe delays, and accidents in a city
[1]. )erefore, corridor progression has always been an
effective way to ensure traffic safety and efficiency at in-
tersections [2, 3]. Generally speaking, the solution methods
of the corridor progression design scheme can be roughly
divided into three types: model method, algebraic method,
and graphical method.

In comparison, the model method can obtain multiple
different ideal coordination design schemes. However, its
modeling process is complex, requiring a long solution time
for the sizeable calculated amount. )e algebraic method,
which can meet the requirements of corridor progression in
various situations, has the advantages of good operability
and robust reproducibility. However, practitioners often
need to have a relatively complete theoretical knowledge of
coordination planning. Meanwhile, the graphical method

obtains coordination planning using time-space diagrams,
illustrating the relationship between intersection spacing,
signal timing, and vehicle movement. Although the
graphical method is challenging to ensure the optimal
corridor progression effect and measure the solution effi-
ciency by manual drawing, it is suitable for engineering
applications due to its slight computational complexity,
strong operability, and intuitive reflection of the coordinated
optimization process.

)e model method constructs a linear or nonlinear
programming optimization model based on the relation-
ships between the progression bandwidth and signal timing
parameters, travel time, and progression boundary trajec-
tory [4]. Moreover, the mixed-integer linear programming
method is usually used to realize the optimal solution of
signal timing parameters. )e most classic models are the
MAXBAND model proposed by Morgan and Little [5] and
the MULTIBAND model constructed by Gartner et al. [6].
)e MAXBAND model optimized common signal cycle,
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offsets, vehicle speed, and the order of left-turn phases to
maximize the bandwidths, ensuring that most vehicles can
drive through the downstream signal intersections without
stopping [7]. )e MULTIBAND model designed an indi-
vidually weighted bandwidth for each directional road
section, considering the traffic volumes and flow capacities.
Extensive research has been constantly provided based on
the MAXBAND and MULTIBAND models [8–10]. Opti-
mizing the left-turn phase sequence of the MAXBAND
model, Chang et al. [11] further established theMAXBAND-
86 model. Lu et al. [12] introduced a bandwidth proration
impact factor to improve the bandwidth maximization
model further. Defining the signal phase sequence as a
decision variable, Yang et al. [13] constructed three types of
multipath progression models based on the MAXBAND
model. Zhang et al. [14] established an asymmetrical mul-
tiband (AM-BAND) model and successfully achieved an
excellent coordination effect. Zhang et al. [15] constructed
the MAXBANDLA model, and numerical tests proved that
the model could significantly reduce the number of stops
and the average delay of vehicles on long corridors. Zhou
et al. [16] built two multiobjectives uneven double cycles. By
doing this, they allowedminor intersections to adopt uneven
double cycling models to ensure the coordinated efficiency
of minor intersections. Aiming to provide progression bands
for all major O-D flows, Arsava et al. [17] constructed the
OD-BAND model, which considered the significant turning
traffic flows from and to cross streets. Arsava et al. [18]
expanded the OD-BAND model to the OD-NETBAND
model, solving the OD-based traffic signal coordination
problem in multiarterial grid networks.

)e algebraic method utilizes the numerical calculation
method to obtain the optimal corridor progression design
schemes, realizing the comprehensive optimization of signal
phases. Xu [19] expounded on the classical algebraic
method, that is, to determine the optimal common signal
cycle and offsets according to the ideal intersection distance
that best matches the actual one. Moreover, this method is
only applicable under symmetrical phasing. On this basis,
the related research of the algebraic method has gradually
gained traction. Lu et al. [20] first addressed the theoretical
limitations of the classical algebraic method and improved
the algebraic method for symmetrical corridor progression.
Analyzing the advantages and disadvantages of the classical
algebraic method, Wang et al. [21] further improved the
calculationmethod of the bandwidths and the offsets and the
location matching method of actual intersection and ideal
intersection. As research progressed, the research focus of
the corridor progression has been gradually expanded from
the algebraic method under the symmetrical phasing to split
phasing and asymmetrical phasing. Lu et al. [22] established
a bidirectional algebraic method under the split phasing,
which can adapt to different corridor conditions, such as
asymmetric geometry, large left-turn traffic volume, uneven
traffic flow. Ji and Song [23] proposed an asymmetrical
bidirectional algebraic method and analyzed the effects of
vehicle speed and queued vehicles during the red light. Using
the speed transformation and phase combination method,
Lu et al. [24] also constructed a bidirectional algebraic

method under asymmetrical phasing, effectively solving each
road section’s asymmetric bidirectional distance and un-
equal speed.

)e graphical method establishes a set of easy-to-un-
derstand drawing rules and utilizes the transformation of
basic elements on the time-space diagram to obtain ideal
progression bandwidths. However, scholars have done little
research on the graphical method of corridor progression
until now. China Highway Association [25] defined the
intuitive and straightforward graphical method as one of the
earliest timing design methods for corridor progression. Xu
[19] provided the basic solution idea of the graphical
method, but there are still many deficiencies during the
solution process. It lacked a specific design principle and
well-defined rules for optimizing the common signal cycle
and offsets. Lu and Cheng [26] introduced the concept of the
NEMA phase based on the graphical method and optimized
the phase sequence and offsets by the graphical way. Al-
though an ideal bidirectional bandwidth was obtained, there
was no amendment to the shortcomings of the existing
graphical method.

In this study, we define the trajectory lines that reflect the
unrestrained movement of characteristic vehicles in the
progression as progression trajectory characteristic lines
(PTC lines). )en, based on the rotation transformation of
the PTC line, a graphical method for symmetrical bidirec-
tional corridor progression is proposed to improve further
and optimize the overall process of the graphical method.
)e corresponding progression coordination design process
will also be presented in detail.)e remainder of the article is
organized as follows: Section 3 introduces the design
principle of the proposed method. Section 4 presents a case
study, which helps to compare the coordinated optimization
effect between the proposed method, the improved algebraic
method, and the MAXBAND model. Concluding remarks
are provided in the last section.

2. Materials and Methods

2.1. Design Process. )e graphical method proposed can be
solved by a normal step-by-step graphical process and
programming. We define the horizontal scaling of the time-
space diagram to convert the progression design speed of the
road section to the corridor progression design speed V.
Meanwhile, we also define the vertical scaling of the time-
space diagram to realize the transformation of the optimi-
zation of the common signal cycle into the optimization of
the corridor progression speed. )e design process of the
proposed graphical method is refined and organized as
shown in Figure 1, which is mainly divided into four parts:
initialization, the first round of rotation transformation, the
second round of rotation transformation, and scheme
generation.

2.2. Initialization

2.2.1. Initial Common Signal Cycle. Let us suppose that there
are n signalized intersections along the corridor and number
the intersections in the ascending order in the outbound
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direction. )en, the pth (1≤p≤ n) intersection is defined as
Ip in sequence along the outbound direction.

)e common signal cycle range will be determined by
the signal cycle range of each intersection, denoted as [Cmin,
Cmax]. )e initial common signal cycle C1 can be valued as
the midpoint between the minimum common signal cycle
Cmin and the maximum common signal cycle Cmax.

2.2.2. Adjusted Distance and Speed. Let dp and vp be the
actual distance and the progression design speed between
intersection Ip and Ip + 1 (1≤p≤ n-1), respectively. )en, we
find that the optimal effect of progression coordination does
not change in the time-space diagram as long as the travel
time of the road section remains unchanged. For example, as

shown in Figure 2, when we simultaneously change the
progression design speed and distance of the road section
highlighted by the blue and purple arrows in Figure 2(a), but
keep the vehicle travel time unchanged, the progression
bandwidth of the corridor remains unchanged in
Figure 2(b). )erefore, it can be said that the proposed
method can be applied to coordinate corridors with in-
consistent progression design speeds across road segments.
We define it as the horizontal scaling of the time-space
diagram.

)erefore, to facilitate the diagrammatic design process,
when the design speed of the road section is inconsistent
with the corridor progression design speed V, we will
convert the progression design speed of the road section toV
by adjusting the intersection distance. )e adjusted distance

Offset calculation

Initial common signal cycle calculation 

Adjusted distance and speed range determination

Start

No

Possible coordinated mode definition

Have all intersections completed the
first round rotation transformation? 

 Primary judgment factor calculation

Optimal coordinated mode calculation

Progression trajectory characteristic line optimization

Is any condition for stopping the
rotation satisfied? 

No

Bottleneck intersection recognition

Rotation angle calculation
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Figure 1: )e design flow chart of the proposed method.
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Dp between intersection Ip and intersection I1 can be cal-
culated by the following equation:

Dp � V · 

p−1

k�1

dk

vk

. (1)

On the other hand, we find that the optimal effect of
progression coordination does not change in the time-space
diagram as long as the product of V and C remains un-
changed. For example, as shown in Figure 3, when we
change the common signal cycle and corridor progression
design speed but keep their product unchanged in
Figure 3(a), the percentage of progression bandwidth of the
corridor remains unchanged in Figure 3(b). We define it as
the vertical scaling of the time-space diagram.

)en, we can first keep the common signal cycle C1
unchanged and optimize the adjusted speed to find their
optimal product value to obtain the best coordination effect.
Finally, the final adjusted speed is adjusted to V, and the
optimal common signal cycle CB can be obtained.

According to the corridor progression design speed V
and the range of the common signal cycle [Cmin, Cmax], the
adjusted speed V(i, j) obtained after the jth rotation trans-
formation in the ith round should satisfy the following
equation:

V · Cmin

C1
≤V(i,j) ≤

V · Cmax

C1
. (2)

2.2.3. Possible Coordinated Mode. To balance the effect of
bidirectional corridor progression, the coordinated mode of
each intersection must adopt synchronous coordination or
backstepping coordination. Synchronous coordination
means that the green center point of the coordinated phase is
consistent with intersection I1, whereas backstepping co-
ordination means that the red center point is consistent with
the green center point of the coordinated phase at I1. )e

progressions in the outbound direction and the inbound
direction have the characteristic of time symmetry, and then,
only the outbound direction needs to be considered. )en,
we define a Boolean variable Fp as the coordinated mode
judgment factor. When Fp is 0, the optimal coordinated
mode of the intersection Ip is synchronous coordination.
When Fp is 1, the optimal coordinated mode of Ip is
backstepping coordination.

2.3. /e First Round of Rotation Transformation. )e opti-
mization of the intersection coordinated mode can be re-
alized by defining the rules of the first round of PTC line
rotation transformation. First, we define the green center
point of the coordinated phase at I1 as the reference point
OL1 of the time-space diagram coordinate system. A hori-
zontal line can be drawn from OL1 and rotated until the
cotangent of its angle with the x-axis equals the corridor
progression design speed V. )is process is defined as the
first rotation transformation of the PTC line in the first
round. We define the rotated ray as the initial PTC line L1
and then assign V to adjusted speed V(1, 1).

)e following steps have to be executed cyclically until
the coordinated modes of all intersections have been
determined.

2.3.1. Primary Judgment Factor Calculation. )e intersec-
tion Ip is selected as the current coordinated intersection
during the first round’s pth (2≤ p≤ n) rotation transfor-
mation. According to PTC line Lp-1 obtained by the last
rotation transformation, the crossing point of Lp-1 and the
timeline of Ip is marked as OLp as shown in Figure 4(a). )e
coordinated phase horizontal red center lines at I1 have
crossing points with the timeline of Ip and so we define the
point closest toOLp asORp.)e coordinated phase horizontal
green center lines at I1 have crossing points with the timeline
of Ip and so we define the point closest to OLp as OGp.

C
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Figure 2: )e horizontal scaling of the time-space diagram. (a) Before the horizontal scaling. (b) After the horizontal scaling.
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Starting at the point OL1, we can make a ray lRp (lGp)
passing through the point ORp (OGp), and the corresponding
adjusted speed VRp (VGp) satisfies the following:

VRp VGp  �
Dp

yRp

Dp

yGp

 . (3)

I3I1 I2 I4 I5

�e red interval of coordinated phase
�e green interval of coordinated phase
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V1·C1 = CB·V

CB

b
bV

C1 CB

b1 b=

(b)

Figure 3: )e vertical scaling of the time-space diagram. (a) Before the vertical scaling. (b) After the vertical scaling.

Our first step is to define and calculate some basic parameters, and the initialization routine can be presented below.
Initialization procedure
Step0. Determine the range of the common signal cycle [Cmin, Cmax] and calculate the initial common signal cycle
C1 � 0.5·(Cmin +Cmax).
Step1.Make a judgment of whether the progression design speeds of all road sections equal the corridor progression design speed or
not. If there is an inequality, calculate the intersection adjusted distance Dp for the corresponding road section as shown in Equation
(1).
Step2. Determine the range of adjusted speed V(i, j) obtained after the jth rotation transformation in the ith round, as shown in
Equation (2).

ALGORITHM 1: Initialization procedure.
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Figure 4: )e determination of the coordinated mode when fp≥ 0.
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)e time difference between points OLp and ORp (OGp),
which corresponds to the distance between the ordinate of
points yLp and yRp (yGp), is recorded as TRp (TGp). )en, the
primary judgment factor fp can be constructed according to
TRp and TGp:

fp � TRp − TGp � yLp − yRp



 − yLp − yGp



. (4)

2.3.2. Optimal Coordinated Mode Calculation. We define
fR(p, q) (fG(p, q)) (1< q< p) as a Boolean variable. When ray lRp
(lGp) does not pass through the red interval of the inter-
section Iq (1< q< p), fR (p, q) (fG (p, q)) is 0. When ray lRp (lGp)
passes through the red interval of Iq, fR (p,q) (fG (p, q)) is 1.
Also, the red interval crossing amount of lRp (lGp) in Iq can be
defined as TR (p, q) (TG (p, q)).

When fp≥ 0, the situation is shown in Figure 4. If ray lGp
does not pass through any red interval of the coordinated
phase, all fG(p,q) equals 0. )e current coordinated inter-
section can form a synchronous coordinated mode with I1,
where Fp � 0. If ray lGp passes through any red interval of the
coordinated phase while ray lRp does not pass through any
red interval, as shown in Figure 4(b), the backstepping
coordinated mode can be chosen, where Fp � 1. If both lGp
and lRp pass through the red interval of the coordinated
phase, and if the maximum red interval crossing amount of
lGp is less than or equal to lRp, as shown in Figure 4(c), these
two intersections can form a synchronous coordinated
mode, where Fp � 0. Otherwise, the backstepping coordi-
nated mode will be chosen as Fp � 1.

Similarly, when fp< 0, if ray lRp does not pass through
any red interval of the coordinated phase, all fR (p,q) equals 0,
Fp � 1. If ray lRp passes through any red interval of the co-
ordinated phase while ray lGp does not pass through any red
interval, then Fp � 0. If both lRp and lGp pass through the red
interval of the coordinated phase, and if the maximum red
interval crossing amount of lRp is less than or equal to lGp,
Fp � 1. Otherwise, Fp � 0.

2.3.3. PTC Line Optimization. If the current coordinated
intersection has formed a synchronous coordinated mode
with I1 and VGp is within the rotation range of the PTC line,
we can define lGp as PTC line Lp and assign the value of VGp
to the adjusted speed V(1, p), as shown in Figure 5(a). When
VGp is out of the rotation range, we can keep the PTC line
unchanged, that is, as shown in Figure 5(b), Lp is the same as
Lp-1, and V(1, p) equals V(1, p-1).

Similarly, if the current coordinated intersection has
formed a backstepping coordinated mode with I1 and VRp is
within the rotation range of the PTC line, we can define lRp as
PTC line Lp and assign the value ofVRp toV(1,p). WhenVRp is
out of the rotation range, we can keep the PTC line un-
changed. Lp is the same as Lp-1, and V(1, p) equals V(1, p-1).

2.4./e Second Round of Rotation Transformation. )e final
optimization of the common signal cycle and the offsets will
be determined upon completing second round of PTC line
rotation transformation.

After the first round of rotation transformation, the
coordinated modes of all signalized intersections have been
determined. We assign adjusted speed V(1,n) to V(2,0). )en,
the beginning PTC line LB0 and the end PTC line LE0 of the
outbound progression can be obtained. )en, the initial
bandwidth b0 and ratio R0 can also be calculated. Meanwhile,
the bottleneck intersections of the beginning PTC line are
put into the intersection set SB0, and the bottleneck inter-
sections of the end PTC line are put into the intersection set
SE0. )e calculation of related parameters will be introduced
in the next section.

We define a termination decision parameter FA, which is
a Boolean variable. )e following steps have to be executed
cyclically until the termination decision parameter FA equals
1.

2.4.1. Bottleneck Intersection Recognition. We assume that
the obtained beginning PTC line, end PTC line, adjusted
speed, bandwidth, and bandwidth ratio after the mth ro-
tation transformation in the second round are defined as
LBm, LEm, V(2, m), bm, and Rm, respectively. )e parameters
obtained from them-1th rotation transformation need to be
used during the mth rotation transformation in the second
round.

According to Fp, V(2, m-1), C1, and λp, we can draw the
beginning and end PTC lines in the time-space diagram. We
define the Boolean variables KB (m-1,p) and KE (m-1,p) as the
judgment factors of the bottleneck intersection of the be-
ginning and end PTC lines. When KB (m-1,p) equals 1, in-
tersection Ip is the bottleneck intersection of the beginning
PTC line after the m-1th rotation transformation, Ip ∈ SBm-

1, and the corresponding bottleneck point is defined as PBp.
When KE (m-1,p) equals 1, Ip is the bottleneck intersection of
the end PTC line after the m-1th rotation transformation,
Ip ∈ SEm-1, and the corresponding bottleneck point is
recorded as PEp.

Before the other calculation steps of the mth rotation
transformation in the second round, it is necessary to judge
whether the sets SBm-1 and SEm-1 meet the conditions for
stopping rotation. If the conditions for stopping rotation are
unsatisfied, then it must be continued to complete the mth
rotation transformation until the bottleneck intersections
meet the conditions of stopping rotation, where FA � 1.

2.4.2. Conditions for Stopping the Rotation

Condition 1. ∃ Ik ∈ (SBm-1∩  SEm-1), that is, there are both
bottleneck points of the beginning and end PTC lines at
intersection Ik. At this time, the ratio of the bandwidth Rm
equals the split of the coordinated phase at Ik, which means
that it has already reached the maximum value of the
bandwidth ratio. )erefore, there is no need to continue the
rotation transformation of the PTC line.

Condition 2. ∃ Ii ∈ SEm-1, Ij ∈ SBm-1, Ik ∈ SEm-1, and
i< j< k, that is, there are two bottleneck intersections of the
end PTC line located upstream and downstream of a bot-
tleneck intersection of the beginning PTC line, respectively.
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)e corresponding bandwidth will decrease when we in-
crease the progression speed and rotate the PTC line
clockwise, as shown in Figure 6(a). Furthermore, when we
reduce the progression speed and rotate the PTC line
counter-clockwise the corresponding bandwidth will de-
crease, as shown in Figure 6(b). )erefore, the further ro-
tation transformation of the PTC line has to be finished.

Condition 3. ∃ Ii ∈ SBm-1, Ij ∈ SEm-1, Ik ∈ SBm-1, and
i< j< k, that is, there are two bottleneck intersections of the
beginning PTC line located upstream and downstream of a
bottleneck intersection of the end PTC line, respectively.)e

corresponding bandwidth will decrease when we increase
the progression speed and rotate the PTC line clockwise, as
shown in Figure 7(a). Furthermore, when we reduce the
progression speed and rotate the PTC line counter-clock-
wise, the corresponding bandwidth will decrease, as shown
in Figure 7(b). )erefore, the further rotation transforma-
tion of the PTC line has to be finished.

2.4.3. Rotation Points and Direction Recognition. It is nec-
essary to determine the rotation points and direction
according to the relationship between the rotation
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Figure 5: )e PTC line updating under synchronous coordinated mode.

Our second step is to optimize the intersection coordinated modes, and the first round of the rotation transformation routine can be
presented below.
First Round Rotation Transformation Procedure
Step0. Determine the crossing point OLp, ORp, and OGp.
First, let yLp � Dp/V(1,p−1).
)en, if mod((yLp |(C1/2)), 2) � 0, yRp equals C1 · (yLp |(C1/2))/2 + C1/2 and yGp equals C1 · (yLp |(C1/2))/2, else yRp � C1 ·

(yLp |(C1/2))/2 − C1/2 and yGp � C1 · (yLp |(C1/2) + 1)/2.
Step1. Calculate the primary judgment factor fp as shown in Equation (4).
Step2. Make a judgment of whether ray lRp and lGp pass through the red interval of any intersection Iq (1<q< p) or not.
If |Dq/VRp − yR(p,q)|≤ 0.5 · C1 · λq, fR(p, q) � 0, otherwise fR(p, q) � 1 and TR(p,q) � |Dq/VRp − yR(p,q)| − 0.5 · C1 · λq.
If |Dq/VGp − yG(p,q)|≤ 0.5 · C1 · λq, fG(p, q) � 0, otherwise fG(p, q) � 1 and TG(p,q) � |Dq/VGp − yG(p,q)| − 0.5 · C1 · λq.
yR(p, q) (yG(p, q)) is the ordinate of the green center point of Iq, which is closest to the crossing point of lRp (lGp) and the timeline of Iq,

and λq is the green split of Iq.
Step3. Determine the coordinated mode of Ip.
If fp ≥ 0 and 

p−1
q�2fG(p,q) � 0, or fp < 0, 

p−1
q�2fR(p,q) > 0 and 

p−1
q�2fG(p,q) � 0, or 

p−1
q�2fR(p,q) > 0, 

p−1
q�2fG(p,q) > 0 and max

(TG(p,2), . . . , TG(p,p−1)) < max (TR(p,2), . . . , TR(p,p−1)), the coordinated mode judgment factor Fp equals 0.
If fp < 0 and 

p−1
q�2fR(p,q) � 0, or fp ≥ 0, 

p−1
q�2fG(p,q) > 0 and 

p−1
q�2fR(p,q) � 0, or 

p−1
q�2fR(p,q) > 0, 

p−1
q�2fG(p,q) > 0 and max

(TG(p,2), . . . , TG(p,p−1)) > max (TR(p,2), . . . , TR(p,p−1)), the coordinated mode judgment factor Fp equals 1.
Step4. PTC line optimization.
If Fp � 0 and VGp is within the rotation range, calculate VGp as shown in Equation (3), and then let V(1,p) equal VGp, else if Fp � 1

and VRp is within the rotation range, calculate VRp and then let V(1,p) equal VRp, else V(1,p) � V(1,p−1).
Step5. Make a judgment of whether p equals n or not. If p < n, let p equal p+ 1 and then return to Step0.

ALGORITHM 2: First round rotation transformation procedure.
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transformation and the progression bandwidth during the
mth rotation transformation in the second round.

When increasing the progression speed, that is,
V(2, m)>V(2, m-1), the rotation point of LBm should fall at the
most downstream bottleneck intersection in SBm-1, and the
rotation point of LEm should fall at the most upstream

bottleneck intersection in SEm-1, as shown in Figures 8(a)
and 8(b). )erefore, when rotating the PTC line clockwise,
we should select intersections Ii ∈ SEm-1, Ij ∈ SBm-1 to en-
sure that ∀ Ik ∈ SEm-1 satisfies i≤ k and ∀ Il ∈ SBm-1 satisfies
j≥ l. )en, the bottleneck point PEi and PBj should be taken
as the rotation points.
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Figure 6: Condition 2 for stopping the rotation. (a) V(2,m) >V(2,m−1). (b) V(2,m) <V(2,m−1).
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Figure 7: Condition 3 for stopping the rotation. (a) V(2,m) >V(2,m−1). (b) V(2,m) <V(2,m−1).
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When reducing the progression speed, that is,
V(2, m) <V(2, m-1), the rotation point of LEm should fall at
the most downstream bottleneck intersection in SEm-1,
and the rotation point of LBm should fall at the most
upstream bottleneck intersection in SBm-1, as shown in

Figures 8(c) and 8(d). )erefore, when rotating the PTC
line counter-clockwise, we should select intersections
Ii ∈ SEm-1, Ij ∈ SBm-1 to ensure that ∀ Ik ∈ SEm-1 satisfies
i ≥ k and ∀ Il ∈ SBm-1 satisfies j ≤ l. )en, the bottleneck
point PEi and PBj should be taken as the rotation points.
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Figure 8: )e relationship between the rotation transformation and the progression bandwidth. (a) V(2,m) >V(2,m−1) and Dm > 0.
(b) V(2,m) >V(2,m−1) and Dm < 0. (c) V(2,m) <V(2,m−1) and Dm > 0. (d) V(2,m) <V(2,m−1) and Dm < 0.
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Dm is defined as the abscissa difference between the
bottleneck rotation points PBj and PEi in the mth rotation
transformation in the second round, that is, Dm � xj-xi.
)en, the bandwidth bm can be calculated as follows:

bm � bm−1 + Δbm � bm−1 + Dm ·
1

V(2,m)

−
1

V(2,m−1)

 , (5)

where Δbm is the bandwidth increment resulting from the
transformation of the progression speed from V(2,m-1) to
V(2,m).

We define a Boolean variable KDm as the judgment factor
of the rotation direction. When KDm equals 0, the rotation
direction is the counter-clockwise rotation, whereas the ro-
tation direction is the clockwise rotation when KDm equals 1.

Scenario 1. If ∀ Ik ∈ SEm-1, and ∀ Il ∈ SBm-1 satisfy k< l, that
is, all the bottleneck intersections of the end PTC line are
located upstream of any bottleneck intersection of the be-
ginning PTC line, then Dm > 0. At this time, if the PTC line is
rotated clockwise, V(2,m)>V(2,m-1), the obtained bandwidth
after the rotation will decrease according to Equation (5). If
the PTC line is rotated counter-clockwise, V(2,m)<V(2,m-1),
the obtained bandwidth after the rotation will increase
according to Equation (5). )erefore, the rotation direction
in Scenario 1 should be determined as the counter-clockwise
rotation, KDm � 0.

Scenario 2. If ∀ Ik ∈ SEm-1, and ∀ Il ∈ SBm-1 satisfy k> l, that
is, all of the bottleneck intersections of the end PTC line are
located downstream of any bottleneck intersection of the
beginning PTC line, then Dm < 0. At this time, if the PTC
line is rotated clockwise, V(2,m)>V(2,m-1), the obtained
bandwidth after the rotation will increase according to
Equation (5). If the PTC line is rotated counter-clockwise,
V(2,m)<V(2,m-1), the obtained bandwidth after the rotation
will decrease according to Equation (5). )erefore, the ro-
tation direction in Scenario 2 should be determined as the
clockwise rotation, KDm � 1.

2.4.4. Rotation Angle Calculation. Taking the bottleneck
point of the end PTC line PEi and the bottleneck point of the
beginning PTC line PBj as extreme points, we can calculate
the rotation angle formed with other designated crossing
points and determine the adjusted speed comprehensively
after the rotation transformation.

)e green endpoint of the coordinated phase crossed by
the end PTC line LEm-1 at intersection Ik (1≤ k≤ n) is defined
as PFk, and the green start point of the coordinated phase
crossed by the beginning PTC line LBm-1 at Ik (1≤ k≤ n) is
defined as PSk.

)e adjusted speed VFk (VSk) corresponding to the ro-
tation line LFk (LSk) formed by connecting points PEi (PBj)
and PFk (PSk) can be calculated by the following equation:

VFk VSk(  �
xk − xi

yFk − yEi

xk − xj

ySk − yBj

 . (6)

Here, yFk and yEi represent the ordinate of points PFk and
PEi, respectively; ySk and yBj represent the ordinate of points
PSk and PBj, respectively.

If KDm equals 0, we should connect points PEi and PFg
(i+ 1≤g≤ n) in turn to form the rotation line LFg. When the
corresponding adjusted speed VFg is within the adjusted
speed range, the eligibleVFg is incorporated into the optional
vehicle speed set, SVm, obtained after the mth rotation
transformation. Meanwhile, PBj and PSh (1≤ h≤ j-1) are
connected to form the rotation line LSh. When the corre-
sponding adjusted speed VSh is within the adjusted speed
range, the eligible VSh is incorporated into SVm. )en, we
have to select the maximum value in SVm as the adjusted
speed V(2,m) determined by the mth rotation transformation
of the vehicle PTC line in the second round, as shown in
Figure 9(a).

If KDm equals 1, we should connect points PEi and PFg
(1≤g≤ i-1) in turn to form the rotation line LFg. WhenVFg is
within the adjusted speed range, the eligible VFg is incor-
porated into SVm. Meanwhile, points PBj and PSh
(j+ 1≤ h≤ n) are connected to form the rotation line LSh.
When VSh is within the adjusted speed range, the eligible VSh
is incorporated into SVm. )en, we have to select the
minimum value in SVm as V(2,m), as shown in Figure 9(b).

According to V(2,m), the end PTC line LEm and the
beginning PTC line LBm in the outbound direction can be
obtained after the rotation transformation. Before entering
the next rotation transformation in the second round, the
sets of the bottleneck intersections can be updated as SEm
and SBm according to LEm and LBm.

2.5. Scheme Generation

2.5.1. Optimal Common Signal Cycle Calculation. )e op-
timal adjusted speed VB can be calculated according to the
final PTC line obtained after the rotation transformations in
the second round. According to the vertical scaling of the
time-space diagram, the optimal common signal cycle CB
can be calculated by the following equation:

CB �
C1 · VB

V
. (7)

2.5.2. Offset Calculation. When the coordinated mode of
each intersection and the optimal common signal cycle have
been determined, combined with the known split distri-
bution scheme, the green interval of the coordinated phase
and absolute offset of each intersection can be calculated.
)e absolute offset of the intersection Ip (1≤ p≤ n) is the
beginning of the coordinated phase at Ip defined asOp. While
the green center point of the coordinated phase at inter-
section I1 is defined as the offset reference point with a value
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of zero, the absolute offset of each intersection can be cal-
culated by the following equation:

Op �
CB − 0.5 · CB · λp, 1≤p≤ n andFp � 0,

0.5 · CB − 0.5 · CB · λp, 1≤p≤ n andFp � 1.

⎧⎨

⎩

(8)

2.6. Case Study. To facilitate the comparative analysis of the
optimization effect of the graphical method proposed in this
paper, we cite a case study that has been used in many books

and papers [19, 20, 25]. )e corridor being analyzed is an
east-west roadway, and there are eight signalized intersec-
tions along the corridor. )e direction from west to east is
defined as the outbound direction, and the western-most
intersection is selected as intersection I1. )e schematic
diagram of the selected corridor is shown in Figure 10. It has
already known that each intersection adopts symmetrical
phasing. )e split of each intersection is 55%, 60%, 65%,
65%, 60%, 65%, 70%, and 50%, respectively. )e optimi-
zation range of the common signal cycle is [60, 100] s, and
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Figure 9: Rotation angle determination.

Our third step is to optimize the common signal cycle and offsets, and the second round of the rotation transformation routine can be
presented below.
Second Round Rotation Transformation Procedure
Step0. Determine the bottleneck intersections and the set SBm-1 and SEm-1.
According to Fp, V(2,m-1), C1, and λp, draw the beginning and end PTC lines in the time-space diagram. If Ip is the bottleneck

intersection of the beginning PTC line, let KB(m−1,p) � 1 and add Ip in set SBm-1, else KB(m−1,p) � 0. And if Ip is the bottleneck
intersection of the end PTC line, let KE(m−1,p) � 1 and add Ip in set SEm-1, else KE(m−1,p) � 0.
Step1. Make a judgment of whether the sets SBm-1 and SEm-1 meet any condition for stopping rotation.
If ∃ Ik ∈ (SBm−1 ∩ SEm−1), or ∃ Ii ∈ SEm−1, Ij ∈ SBm−1, Ik ∈ SEm−1 and i< j< k, or ∃ Ii ∈ SBm−1, Ij ∈ SEm−1, Ik ∈ SBm−1 and i< j< k,

then FA � 1, finish the second round of rotation transformation. Otherwise, FA � 0, proceed to Step 2.
Step2. Determine the rotation direction.
If ∀ Ik ∈ SEm−1,∀ Il ∈ SBm−1, and k< l, let KDm � 0, else if ∀ Ik ∈ SEm−1,∀ Il ∈ SBm−1, and k> l, let KDm � 1.

Step3. Determine the rotation angle.
If KDm � 0, connect points PEi and PFg (i+ 1≤ g≤ n), points PBj and PSh (1≤ h≤ j-1) in turn, calculate the corresponding VFg and

VSh as shown in Equation (6), add the eligible VFg and VSh in set SVm, then select the maximum value in SVm as the updated adjusted
speed V(2,m).
If KDm � 1, connect points PEi and PFg (1≤g≤ i-1), points PBj and PSh (j+ 1≤ h≤ n) in turn, calculate the corresponding VFg and

VSh as shown in Equation (6), add the eligible VFg and VSh in set SVm, then select the minimum value in SVm as the updated adjusted
speed V(2,m).
Step4. Let m�m+ 1, and return to Step 0.

ALGORITHM 3: Second round rotation transformation procedure.
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the progression design speed is 40 km/h, which approxi-
mately equals 11m/s.

2.7. Scheme Generation. )e proposed method can obtain
the scheme through a limited number of rule-guided
drawings, and it is suitable for engineering applications. )e
related process can be shown as follows:

2.7.1. Initialization. )e initial common signal cycle C1 is
valued as the midpoint between the minimum common
signal cycle Cmin and the maximum common signal cycle
Cmax, which is 80 s. Because the progression design speeds of
all the road sections are 11m/s, there is no need to adjust the
intersection distance. When the initial common signal cycle
C1 is unchanged, the adjusted speed range can be determined
as [8.25, 13.75] m/s.

2.7.2. /e First Round of Rotation Transformation. )e
green center point of the coordinated phase at intersection I1
is defined as the reference pointOL1 of the coordinate system
of the time-space diagram. A horizontal line from the ref-
erence point OL1 can be drawn, and then, it is rotated until
the cotangent of its angle with the x-axis equals the corridor
progression design speed V. We can define the rotated ray as
the initial PTC line L1 and assign the value of V to adjusted
speed V(1, 1). )en, the first rotation transformation in the
first round is completed.

)e intersection I2 is selected as the current coordinated
intersection. According to PTC line L1 obtained by the first
rotation transformation, the crossing point of the PTC line
L1 and the timeline of I2 is marked as OL2. )e nearest
crossing point of the coordinated phase horizontal red
(green) center line at I1, and the timeline of I2 is identified
and recorded as OR2 (OG2), as shown in Figure 11(a). )e
time difference TR2 between points OL2 and OR2 is 8 s, and
the time difference TG2 between points OL2 and OG2 is 32 s.
)en, f2 � −24 s.

Ray lR2 does not pass through the red interval of the
coordinated phase, and f2< 0, and then, I2 can form a
backstepping coordinated mode with I1, where F2 �1.

)e corresponding adjusted speed VR2 of lR2 is 8.75m/s,
within the adjusted speed range [8.25, 13.75] m/s. )erefore,
lR2 is defined as PTC line L2, and the value of VR2 is assigned
to the adjusted speed V(1, 2). Up to now, the second rotation
transformation in the first round is finished.

Repeat the above steps to complete the 3rd to 8th ro-
tation transformation in the first round in turn. )en, the
coordinated mode between I1 and I3, I4, I5, I6, I7, and I8 can
be determined, respectively. )e coordination process is
shown in Figures 11(b)–11(g).

After the first round of rotation transformation, I2, I5,
and I8 form a backstepping coordinated mode with I1,
F2 � F5 � F8 �1, whereas the intersections I3, I4, I6, and I7
form a synchronous coordinated mode with I1,
F3 � F4 � F6 � F7 � 0. )e adjusted speed is 11.40m/s, and the
time-space diagram obtained after the first round of rotation
transformation is shown in Figure 11(h). )e corresponding
bandwidth is 24 s, and the bandwidth ratio is 30.0%.

2.7.3. /e Second Round of Rotation Transformation.
According to the adjusted speed V(1,8) finally obtained after
the first round of rotation transformation, the end PTC line
of vehicle band LE0 and the beginning PTC line of vehicle
band LB0 of the outbound progression can be drawn, as
shown in Figure 12. Meanwhile, the bottleneck intersections
of the end PTC line are put into the set SE0 � {I7}. Also, the
bottleneck intersections of the beginning PTC line are put
into the set SB0 � {I3}.

)e set SB0 and SE0 do not meet any conditions for
stopping rotation. )en, we have to complete the first ro-
tation transformation in the second round.

Because the only bottleneck intersection of the end PTC
line I7 is located downstream of the only bottleneck inter-
section of the beginning PTC line I3, it corresponds to the
rotation direction judgment Scenario 2. )erefore, the PTC

Our final step is to obtain the final optimized scheme, and the scheme generation routine can be presented below.
Scheme Generation Procedure
Step0. Calculate the optimal common signal cycle CB as shown in Equation (7).
Step1. Calculate the absolute offset Op of each intersection as shown in Equation (8).
Step2. Make the time-space diagram to check the coordination effect of the final optimized scheme obtained by the proposed
graphical optimization method.

ALGORITHM 4: Scheme generation procedure.

350 m 400 m 160 m 540 m 280 m 280 m 270 m

I1 I2 I3 I4 I5 I6 I7 I8

Figure 10: Structure diagram of the selected corridor.
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Figure 11: Continued.
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line can be rotated clockwise. Furthermore, the most up-
stream bottleneck point PE7 is selected as the rotation point
of the end PTC line, whereas the most downstream bot-
tleneck point PB3 is selected as the rotation point of the
beginning PTC line.

As shown in Figure 12, we can connect points PE7 (PB3)
and PFg (1≤g≤ 6) (PSh (4≤ h≤ 8)) to form the rotation line
LFg (LSh) and determine whether the corresponding adjusted
speed VFg (VSh) is within the adjusted speed range. )e
calculation results are shown in Table 1.

It can be seen from Table 1 that SV1 � {VF1, VF2, VF4, VF5,
VS6, VS8}. )en, select the minimum value VF1 in SV1 as the
adjusted speed V(2, 1). )en, V(2, 1) is 12.11m/s.

According to V(2,1), the end PTC line LE1 and the be-
ginning PTC line LB1 of the outbound progression can be
drawn. Determine the bottleneck intersections set of the end
PTC line SE1 � {I1, I7} and the beginning PTC line bottleneck
intersections set SB1 � {I3}, according to LE1 and LB1. )en,

the updating of the sets of bottleneck intersections is
completed, as shown in Figure 13.

)e sets SE1 and SB1 meet one of the conditions for
stopping rotation. At this time, ∃ I1 ∈ SE1, I3 ∈ SB1,
I7 ∈ SE1, that is, there are two bottleneck intersections of
the end PTC line located upstream and downstream of a
bottleneck intersection of the beginning PTC line, which
satisfies Condition 2 for stopping the rotation. )erefore,
we can stop the further rotation transformation of the PTC
line, and the second round of rotation transformation is
finished.

2.7.4. Scheme Generation. )e optimal adjusted speed VB is
12.11m/s, according to the final PTC line obtained after the
second round of rotation transformation. Combined with
the progression design speed V, it can be calculated that the
optimal common signal cycle CB is 88 s.
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Figure 11:)e coordination process of the first round of rotation transformation. (a))e 2nd rotation transformation. (b))e 3rd rotation
transformation. (c) )e 4th rotation transformation. (d) )e 5th rotation transformation. (e) )e 6th rotation transformation. (f ) )e 7th
rotation transformation. (g) )e 8th rotation transformation. (h) )e obtained time-space diagram.
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According to the coordinated mode of each intersection
and the optimal common signal cycle obtained after the two
rounds of rotation transformation, combined with the green
signal ratio distribution scheme, the green interval of the
coordinated phase and absolute offset of each intersection
can be calculated. )e time-space diagram finally obtained is
shown in Figure 14. )e corresponding progression band-
width is 32.85 s, and the bandwidth ratio reaches 37.3%.

2.7.5. Programmatic Solution. )e proposed solution logic
steps can be solved graphically and programmed to quickly
obtain an optimal signal coordination control scheme. )e
above case can be solved by python programming to obtain
the optimal signal coordination control scheme. )e ex-
perimental environment of the model solver is the Win-
dows10 64-bit operating system, and the CPU is intel i5-
6600 3.30GHz. )e optimal signal coordination control
scheme obtained by programming is the same as the
graphical way, with a solution time of only 2.3×10−3 s.

2.8. Model Comparison. )e MAXBAND model [7] and the
improved algebraic method [20] can also be used to design
the corridor progression schemes for the same case, and the
calculation results are shown in Table 2. As for the

coordinated mode between intersection I1 and other in-
tersections, the graphical method proposed in this study is
consistent with the improved algebraic method and the
MAXBAND model. As for the bandwidth ratio, the pro-
posed graphical method can obtain 37.3% in both coordi-
nation directions, which is higher than the improved

Table 1: )e optional vehicle speed set during the first rotation transformation in the second round.

Bottleneck points )e start point/endpoint
of the coordinated phase Adjusted speed (m/s) Optional vehicle speed SV1

PE7 (2010, 268)

PF1 (0, 102) VF1 � 12.11 VF1 ∈ SV1
PF2 (350, 144) VF2 �13.39 VF2 ∈ SV1
PF3 (750, 186) VF3 �15.37 VF3 ∉ SV1
PF4 (910, 186) VF4 �13.41 VF4 ∈ SV1
PF5 (1450, 224) VF5 �12.73 VF5 ∈ SV1
PF6 (1730, 266) VF6 �140.00 VF6 ∉ SV1

PB3 (750, 134)

PS4 (910, 134) VS4 �∞ VS4 ∉ SV1
PS5 (1450, 176) VS5 �16.67 VS5 ∉ SV1
PS6 (1730, 214) VS6 �12.25 VS6 ∈ SV1
PS7 (2010, 212) VS7 �16.15 VS7 ∉ SV1
PS8 (2280, 260) VS8 �12.14 VS8 ∈ SV1
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Figure 13: Updating the sets of bottleneck intersections.
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algebraic method. Moreover, it also achieves the global
optimal coordination effect, the same as the MAXBAND
model.

Using the LINGO programming solution, the MAX-
BAND model can be solved in 3 s. Meanwhile, the proposed
graphical method obtains the global optimal scheme in
2.3×10−3 s, which means the solving efficiency is more than
a thousand times higher than the MAXBAND model.

It can be seen from Table 2 that for the symmetrical
corridor progression design, the method proposed in this
study has the advantages of solid operability, solving sim-
plicity, and a small amount of calculation. It can obtain an
ideal coordination effect and be solved by a rule-guided
graphical method with a limited number of steps.

3. Conclusions

In summary, a symmetrical bidirectional corridor pro-
gression method based on graphical optimization theory
is established in this study. According to the internal
relationship between the PTC lines rotation transfor-
mation and the progression bandwidth, a step-by-step
optimization process of symmetrical corridor progression
based on the rotation transformation of the PTC lines is
proposed. After a two-round rotation transformation of
the PTC line, the comprehensive optimization of the
intersection coordinated mode, common signal cycle, and
offsets are realized.

In the first round of PTC line rotation transformation,
based on the existing graphical method designing flow, we
have innovatively added a process for judging whether the
PTC line passes through the red interval of the intersections
with a determined coordinated mode or not, achieving a
more optimized choice of coordinated mode at each in-
tersection. Meanwhile, we have innovatively proposed the
second round of PTC line rotation transformation. In the
second round of PTC line rotation transformation, the
regular bandwidth pattern during the rotation transfor-
mation of the PTC line is explored. Innovative rules for
rotation transformation stop conditions and selection of the
rotation points and direction are given to achieve the re-
optimization of the common signal cycle.

)e proposed graphical method can be used to obtain
a signal coordination control scheme by a rule-guided
graphical method and be programmed. It can be seen from
the case study that the bandwidth ratio obtained by the

first round of rotation transformation of the proposed
graphical method is 30.0%, with the optimization of the
coordinated mode and the initial offsets. )en, through
the second round of rotation transformation, the reop-
timization of the common signal cycle and the offsets
increases the bandwidth ratio to 37.3%. Finally, the effect
of the corridor progression control scheme, which is
better than the improved algebraic method, is ultimately
the same as the global optimal result of the MAXBAND
model with a more than a thousand times higher solving
efficiency.

)e graphical method proposed in this study has the
advantages of intuitive readability, strong operability, and is
particularly suitable for engineering applications. )e hor-
izontal and vertical scaling of the time-space diagram is one
of the few attempts to standardize a graphic solution to
corridor traffic coordination control. However, extending
the graphical method to the corridor progression under the
asymmetrical phasing and constructing a more applicable
graphical method for corridor progression will be important
for future follow-up research.

Notations

ap: )e ideal distance between intersection Ip
and I1

bm: )e bandwidth obtained after the mth
rotation transformation in the second
round

C: )e common signal cycle
C1 (CB): )e initial (optimal) common signal cycle
Cmax (Cmin): )e maximum (minimum) common signal

cycle
dp: )e actual distance between intersection Ip

and Ip + 1 (1≤ p≤ n-1)
dp
′: )e adjusted distance between intersection

Ip and Ip + 1 (1≤ p≤ n-1)
Dp: )e adjusted distance between the

nonbenchmark intersection Ip and the
benchmark intersection I1

Dm: )e difference between the abscissa of the
bottleneck rotation point of the beginning
and end PTC line in the mth rotation
transformation in the second round

fp: )e primary judgment factor for the
coordinated mode of intersection Ip

Table 2: )e comparison table of the coordination effects of various models.

Model Intersection I1 I2 I3 I4 I5 I6 I7 I8

Proposed graphical method (MAXBAND model)

Coordinated mode S∗ B∗ S∗ S∗ B∗ S∗ S∗ B∗
Absolute offset (s) 63.8 17.6 59.4 59.4 17.6 59.4 57.2 22.0

Common signal cycle (s) 88
Bandwidth ratio (%) 37.3

Improved algebraic method

Coordinated mode S∗ B∗ S∗ S∗ B∗ S∗ S∗ B∗
Absolute offset (s) 66.0 18.2 61.4 61.4 18.2 61.4 59.2 22.8

Common signal cycle (s) 91
Bandwidth ratio (%) 30.5

S∗ � “synchronous coordinated mode” and B∗ � “backstepping coordinated mode”.
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fG(p,q) (fR(p,q)): )e judgment factor of whether ray lGp (lRp)
passes through the red interval of the
intersection Iq (1< q< p) or not

Fp: )e coordinated mode judgment factor of
intersection Ip

FA: )e termination decision parameter of the
second round of rotation transformation

Ip: )e pth signalized intersection along the
corridor in the outbound direction

KDm: )e rotation direction judgment factor in
the mth rotation transformation in the
second round

KE (m-1,p)
(KB(m-1,p)):

)e judgment factors of the bottleneck
intersection of the end and beginning PTC
lines

lGp (lRp): A ray passes through point OGp (ORp)
started at point OL1

Lp: )e PTC line obtained after the pth rotation
transformation in the first round

LBm (LEm): )e beginning (end) PTC line obtained
after themth rotation transformation in the
second round

LFk (LSk): )e rotation line formed by connecting the
bottleneck rotation point of the end and
beginning PTC line and the coordinated
phase endpoint PFk (start point PSk)

n: )e number of signalized intersections on
the corridor

Op: )e absolute offset of the intersection Ip
(1≤ p≤ n)

OGp (ORp): )e nearest crossing point of the
coordinated phase horizontal green (red)
center line at the intersection I1 and the
timeline of Ip

OLp: )e crossing point of PTC line Lp-1 and the
timeline of intersection Ip

PEj (PBi): )e bottleneck point of the end (beginning)
PTC line at the bottleneck intersection Ij

PFk (PSk): )e green interval end (start) point of the
coordinated phase that is crossed by the
PTC line at intersection Ik

Rm: )e ratio of the bandwidth obtained after
the mth rotation transformation in the
second round

SEm (SBm): )e set of bottleneck intersections of the
end (beginning) PTC line obtained after the
mth rotation transformation in the second
round

SVm: )e set of optional vehicle speed obtained
after themth rotation transformation in the
second round

TGp (TRp): )e time difference between points OLp and
OGp (ORp)

TR(p,q)
(TG(p,q)):

)e red interval crossing amount of lRp (lGp)
in Iq (1< q< p)

vp: )e progression design speed between
intersection Ip and Ip + 1 (1≤ p≤ n-1)

V: )e corridor progression design speed
V(i, j): )e adjusted speed obtained after the jth

rotation transformation in the ith round
VB: )e optimal adjusted speed
VFk (VSk): )e adjusted speed corresponding to the

rotation line LFk (LSk)
VGp (VRp): )e adjusted speed corresponding to the

line lGp (lRp)
xp: )e abscissa of intersection Ip in the time-

space diagram
yGp (yRp): )e ordinate of point OGp (ORp)in the time-

space diagram
yG(p,q) (yR(p,q)): )e ordinate of the green center point of Iq,

which is closest to the intersection of ray lRp
(lGp) and the timeline of Iq (1< q< p)

yLp: )e ordinate of point OLp in the time-space
diagram

λp: )e split of the coordinated phase of the
intersection Ip.
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An airport ferry vehicle is a ground service vehicle used to transfer passengers between the far apron and the terminal. )e travel
time of ferry tasks in the airport ferry network is an important decision-making basis for ferry vehicle scheduling. )is paper
presents a graph-based method to mine the travel time between nodes in the airport ferry network. Firstly, combined with map
and trajectory information, the method takes the terminal boarding gates, parking lots, and remote stands as road network nodes
to build a complete airport ferry road network. )en, this paper uses big data processing technology to identify the travel time
between regional connection nodes by data fusion through the temporal and spatial relationship between flight schedule and ferry
vehicle GPS travel trajectory. Finally, the Floyd shortest path algorithm in graph theory is used to obtain the shortest path and
travel time of all OD points.)e experimental results show that all the ferry times calculated by the method proposed in this paper
can better reflect the actual driving situation. )is method saves the manpower, material resources, and time cost of on-site
investigation and lays a foundation for the scheduling of ferry vehicles.

1. Introduction

When the aircraft is parked at a far apron, passengers need
ferry vehicles to transfer between the aircraft and the terminal.
After the airport operation center obtains the flight schedule
and gate assignment [1, 2] results in a period of time, it will
consider the travel time consumed by the ferry task in the
road network and reasonably arrange the ferry vehicles for
each flight parked in a remote stand. Only a reasonable ferry
scheduling plan can ensure the normal implementation of the
flight schedule. At present, the scheduling of ferry vehicles in
many airports mainly depends on experienced staff. )e ef-
ficiency of the scheduling results is difficult to be ensured,
which is easy to lead to flight delays. )erefore, how to es-
tablish the optimal scheduling model of ferry vehicles by
scientific means and improve the service level of airport ferry
vehicles has attracted the attention of some scholars.

)e premise of ferry vehicle scheduling modeling is to
know the travel time information between OD points in the

ferry network. However, due to the closed environment in
the airport flight area, nonstaff cannot enter the interior for
field measurement. With the rapid development of smart
airports, in order to realize the digitization and intelligence
of airport management and meet the needs of airport safety
management, some airports have established ground service
vehicle GPS real-time monitoring and management systems
to realize vehicle positioning, real-time tracking, track
playback, cross-border alarm, and other functions. )e
historical GPS track data of ferry vehicles recorded by the
system can reflect the time information and spatial infor-
mation of vehicles in the process of performing flight
support tasks. )erefore, using the trajectory data to mine
and extract the travel time of the airport ferry network is a
new idea.

)is paper proposed a novel graph-based method to
mine the travel time in the airport ferry network. )e re-
search work is mainly divided into three aspects. Firstly,
combined with the map and trajectory information, this
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paper takes the terminal boarding gates, parking lots, and
remote stands as the road network nodes to build a complete
airport ferry road network. )en, the nodes are divided into
different regions, and the travel time between regional
connecting nodes is identified by data fusion through the
temporal and spatial relationship between flight schedule
and ferry vehicle GPS travel trajectory. Finally, the Floyd
shortest path algorithm in graph theory is used to obtain the
shortest path and travel time of all OD points. )e research
results of this paper can save the manpower, material re-
sources, and time cost of on-site investigation and provide a
decision-making basis for the optimal scheduling model of
ferry vehicles.

)e rest of this paper is organized as follows. In Section
2, the literature on the optimal scheduling of airport ground
support vehicles and GPS trajectory mining is reviewed.
Section 3 takes Kunming Changshui International Airport
in China as the research object and introduces the method of
constructing the airport ferry network. In Section 4, the
calculation method of OD point travel time in the road
network is designed.)e example verification and results are
given in Section 5. Finally, conclusions and future research
directions are proposed in Section 6.

2. Literature Review

With the rapid development of civil aviation, the disad-
vantages of airport management and operation relying only
on manual experience are becoming more and more
prominent. In order to ensure the normal operation of
flights, how to improve the service level of airport ground
support services through scientific means has attracted more
and more attention of scholars. From the optimal operation
of special vehicles providing various ground services to the
overall optimization of joint scheduling of multiple vehicles,
many achievements have been made.)is paper summarizes
the research literature of different ground service vehicles as
a reference. Although there are differences in service content
with ferry vehicles, there are many similarities in the op-
timization objectives and constraints in their scheduling.

Norin et al. [3] constructed an airport deicing vehicle
optimal scheduling model aiming at minimizing the delay
time and the minimum number of deicing vehicles and
designed the corresponding solution algorithm based on a
greedy randomized adaptive search algorithm. Du et al. [4]
studied the trailer scheduling problem in flight transit
service, described the problem as VRPTW, and constructed
an integer programming model with minimizing the trailer
operation cost as the optimization objective and the vehicle
operation restriction as the constraint. Starting from the
flexibility of vehicle service, Wang et al. [5] proposed a
scheduling algorithm based on a greedy strategy to deal with
the dynamic scheduling problem of airport refueling vehi-
cles. With the diversification of airport ground service and
considering the interaction between various vehicle services,
many studies begin to pay attention to the joint scheduling
of airport ground service vehicles. Padron et al. [6] con-
structed a double objective optimization model to minimize
waiting time and turnaround time for the joint scheduling of

airport service equipment. Xu and Shao [7] evaluated the
fluctuation of service equipment operation time by ana-
lyzing the airport historical data and proposed an optimi-
zation model of ground service support equipment with
uncertain operation time. Fei and Shu’an [8] studied the
optimization problem of airport service vehicle scheduling
in peak hours and constructed a joint scheduling model of
ground service vehicles to minimize the purchase cost and
operation cost of service equipment. In terms of ferry ve-
hicles, Zhao et al. [9] established an integer programming
model with the goal of minimizing the number of ferry
vehicles required in peak hours or a certain period and
constructed a ferry vehicle sharing network, which trans-
formed the model into the problem of maximum network
flow. Han et al. [10] also proposed a ferry capacity network
model, in which the directed edge indicates that the two
associated nodes may be continuously served by the same
ferry. )e model aims to minimize the number of ferry
vehicles required and is solved by the method of the graph.
However, their research only roughly estimated the travel
time between the terminal and the far apron area in the
process of building the ferry network. For large airports, the
terminal covers a wide area and is far away from different
boarding gates. )e unified estimation method will cause
great errors in practical application.

With the development of positioning technology, many
vehicles are equipped with GPS receivers. During the
moving process, the vehicle continuously collects real-time
information, including position, motion parameters, and
positioning time, and transmits it to the data center. )is
type of data is called floating car data [11, 12].)e emergence
of these data makes it possible to mine rich knowledge from
GPS trajectory data by using big data analysis technology
[13]. Palma et al. and Bhattacharya et al. [14, 15] proposed
the method of analyzing motion characteristics (velocity,
azimuth, acceleration, etc.) to mine important places related
to people and objects. Zheng and Xie [16] proposed a tra-
jectory mining algorithm to analyze the user’s GPS trajectory
data, so as to recommend personalized tourist attractions. In
addition, Li et al. [17] analyzed the typical characteristics of
the data of floating vehicles in the parking lot and used the
DBSCAN algorithm to extract the parking lot location.
Wang et al. [18] proposed the identification of key nodes and
sections of urban road networks based on GPS trajectory
data. In terms of path extraction, Schoredl et al. and Li et al.
[19, 20] proposed two methods to extract a high-precision
roadmap from GPS trajectory, which are applicable to high
sampling frequency and low sampling frequency of posi-
tioning data respectively. Unlike them, Cao and Krumm [21]
proposed a new gravity model to transform the original GPS
track into a road network that can guide path selection. Tang
et al. [22] proposed a lane-level road network information
mining method based on lane number and turning rules. In
addition to the region of interest and path recognition,
scholars have also done a lot of research on spatiotemporal
pattern extraction based on trajectory data, for example, the
method of automatically extracting passenger train opera-
tion information from historical track data [23]. Dong et al.
[24] proposed a study on the temporal and spatial change of
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traffic accessibility under public health emergencies based on
GPS trajectory. Lei et al. and Zhao et al. [25, 26] proposed a
spatiotemporal analysis model to capture the motion mode
of the object. Different from those, Lu et al. [27] proposed a
visual analysis method to study the behavior of vehicles on a
certain route. Some scholars have also studied periodic
pattern recognition, such as the probabilistic periodic de-
tection method of moving objects [28]. In general, most of
the GPS data mining and analysis research by scholars is
based on the road traffic network, and few studies use the
GPS track of airport ferry vehicles to extract the road net-
work structure and travel time of the flight area. )erefore,
the research content of this paper is innovative.

3. Construction of Airport Ferry Network

)is paper takes the real data of Kunming Changshui In-
ternational Airport in China as the research object. )e
airport terminal covers an area of 548300 square meters,
with 78 boarding gates, 104 remote stands, 2 entry ports, and
3 parking lots. Figure 1 shows the spatial layout of the airport
flight area. )e boarding gates and entry ports are distrib-
uted around the terminal, while the parking lots and remote
stands are distributed at the far apron.

When a flight is assigned to an apron, the ferry vehicle
needs to arrive at the corresponding stand in advance for the
arriving flight. After the plane arrives, the ferry vehicle will
drive along the planned route to deliver the passengers to the
entrance port of the terminal. For departure flights,
according to the flight schedule, the ferry vehicle needs to
arrive at the boarding gate before ticket check-in. After the
gate is opened, passengers will be sent to the designated
parking stand. )ere is also a necessary transfer time be-
tween two consecutive services of the ferry vehicle, that is,
the travel time required for the ferry vehicle from the end of
the last service to the start of the next service. According to
the arrival and departure attributes of two adjacent service
flights, the transfer between two services can be divided into
four categories, as shown in Table 1. After a ferry task, when
the buffer time is sufficient, the ferry vehicle can go to the
parking lot first and then go to the starting place of the next
service when the next task is approaching. When the buffer
time is insufficient, in order to avoid flight delays, the ferry
vehicle can go directly to the starting point of the next
service. )e security efficiency of ferry vehicles is mainly
affected by the transfer time. Flights with a remote stand at
the airport usually change the boarding gate flexibly
according to the situation. For large airports, the terminal
covers a wide area and different boarding gates are far away
from each other. )erefore, calculating the transfer path and
time between all OD points in the whole airport is the
prerequisite for the optimal scheduling of ferry vehicles.

Regarding the boarding gates and remote stands as road
network nodes, directly calculating the travel time of any two
points in the road network according to the coordinate
information and the travel track of ferry vehicles will cause a
large workload. In order to simplify the airport road network
structure, firstly, the airport terminal boarding gate and
apron are divided into several relatively independent areas

according to the adjacent relationship, and the spatial
transfer of ferry vehicles between service points is regarded
as the transfer between regions. According to the number of
remote stands, apron 3 is divided into 1 to 4 parts, apron 5 is
divided into 1 to 4 parts, and apron 7 is divided into 1 to 2
parts.)e boarding gate area of the terminal is divided into 1
to 4 parts for the convenience of the road network structure.
Figure 2 shows the historical track of ferry vehicles. Com-
bined with the actual road network distribution of the
airport, the connection relationship between regions can be
obtained, as shown in Figure 3.)e arrangement structure of
service points in one region is relatively simple, including
series and parallel. As shown in Figure 4, there are two rows
of remote stands in area 5-2, which are distributed in
parallel. Area 3-4 has only a single row of stands, which are
distributed in series. )erefore, combined with the road
network structure between regions, a complete road network
structure of airport service points can be obtained, as shown
in Figure 5. After obtaining the spatial connection rela-
tionship between all service points from the road network
diagram of service points, any service point can commu-
nicate with other service points through the road network,
and when combined with the distance information on the
edge, the travel time between any two points can be cal-
culated. )erefore, the next section will explore the travel
time of each edge of the road network.

4. Calculation Method of Travel Time

According to the ferry road network established in the
previous section, this section uses the historical GPS track
data of ferry vehicles to obtain the weight of each edge. For
the convenience of description, the following definitions are
made in this paper: all nodes in the ferry network are
represented by V � [D1, D2, . . . , Di, . . . , Dn], where Di

represents different regions. )e nodes in one region are
divided into internal nodes and connection nodes,
Di � [Pi1, Pi2, . . . Pim, Qi1, Qi2, . . . Qik], the internal node Pim

is only connected with the nodes in the region, and the
connection node Qik can be connected with the nodes in
other regions. )e GPS tracks of all ferry vehicles are rep-
resented by R � [G1, G2, . . . , Gi, . . . , Gn], where Gi repre-
sents the track set of ferry vehicle i, including the longitude
and latitude coordinates [lngi, lati, t] of the vehicle at each
time. )e flight set is represented as F � [f1, f2, . . . ,

fi, . . . , fn], where the arrival and departure attributes, time,
and OD point of the ferry task of flight fi are known.

4.1.TravelTimebetweenTerminal andFarApron. During the
flight support task, the ferry vehicle will travel between the
boarding gate area and the far stand area.)erefore, the path
and time of the connecting edge between the gate area and
the far stand area can be mined according to the temporal
and spatial correlation between the flight schedule and the
GPS track of the ferry vehicle. For arrival flights, the service
flow of ferry vehicles is shown in Figure 6. tETAi indicates the
estimated arrival time of the flight. )e ferry service starts
from the time of arriving at the remote stand in advance, and
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the service start time TSA
i can be calculated according to

equation (1). After the flight arrives at the remote stand, it
takes time Twait to wait for passengers to board. )e ferry
service ends after the passengers get off at the port, and the
service end time TEA

i can be calculated according to
equation (2).

TSA
i � t

ETA
i − T

A
adv, (1)

TEA
i � t

ETA
i + 2∗Twait + T

ferry
i . (2)

Similarly, for departure flights, according to the flight
schedule, the ferry vehicle arrives at the boarding gate before

Figure 2: Historical GPS track of ferry vehicles.

Figure 3: Road network connection between the regions.

Figure 1: Spatial layout of the airport flight area.

Table 1: OD point conversion of continuous flights.

Flight 1 Flight 2 Origin Destination
Arrive flight Arrive flight Arrive gate Remote stand
Arrive flight Departure flight Arrive gate Departure gate
Departure flight Departure flight Remote stand Remote stand
Departure flight Arrive flight Remote stand Departure gate
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ticket check-in. After passengers get off at the parking stand,
the service of the ferry vehicle ends. Figure 7 shows the ferry
vehicle service process of departure flights. Assuming that
the opening time of the boarding gate is 40 minutes
(according to the service standards of China’s civil transport
airport) before the departure time tETDi of the flight, the start
time of the ferry vehicle for the departure flight is calculated
by equation (3) and the end time of the service is calculated
by equation (4).

TSD
i � t

ETD
i − 40min − T

D
adv, (3)

TED
i � t

ETD
i − 40min + 2∗Twait + T

ferry
i . (4)

According to the ferry service process, the algorithm
steps of mining the travel time T

ferry
i between the boarding

gate area and the apron by integrating GPS track data and
flight data are as follows.

Step 1. According to the road network structure, find out the
connecting nodes between the boarding gate area and the far
apron area to formOD pairs [Qik, Qjl]. Search the flight set F

and find the flight i whose starting and ending point of the
ferry task is [Qik, Qjl].

Step 2. If flight i found is a departure flight, obtain the
departure time tETDi from the flight information, take time t

and distance m as the search range parameters, form a set
Ferrystart of all ferry vehicles that appear at the boarding gate
Qik in the period [tETDi − 40min − t, tETDi − 40min + t], and
record the time Tstart when each ferry car leaves the search

B-4
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B-1
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7-1 5-2

5-3
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Figure 5: A complete structure diagram of airport ferry network.
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range. Similarly, find out all the ferry vehicles that appear at
the remote stand Qjl in the period [tETDi − 40min + t, tETDi ],
form a set Ferryend, and record the time Tend when each ferry
car enters the search range. If flight i found is an arrival
flight, obtain the arrival time tETAi from the flight infor-
mation, and change the starting point to the remote stand
Qjl, the time range is [tETAi − t, tETAi + t], the end point is the
port Qik, and the time range is [tETAi , tETAi + tmax] where tmax
represents the maximum ferry time range.

Step 3. Take the ferry car Gi existing in both Ferrystart and
Ferryend as the ferry car i serving the flight, and calculate the
travel time Ti

end − Ti
start of the ferry car as the travel time

from the boarding gate to the stand.
When judging whether the ferry car enters the search

range, take the boarding gate or stand as the center of the
circle, first calculate the longitude and latitude distance
between the ferry car and the center of the circle, and then
compare this distance with the reference distance m. If the
calculated distance is less than the reference distance, judge
whether the ferry car enters the search range.

4.2. Travel Time between Different Far Aprons. )e starting
and ending point of flight service is from the boarding gate
to the stand, so it is impossible to obtain the time when OD
points are both stands through flight information. )ere are
two situations for the travel time of the ferry car between two
target stands. )e first situation is that the ferry car directly
travels from the starting stand to the ending stand. At this
time, the travel time represents the distance between the two
stands. Another situation is that the ferry car drives from the
starting stand to other places and then to the target stand. At
this time, the travel time is obviously greater than the
distance between the two stands. )erefore, without the
mining time range, we can only intercept the GPS track of
the ferry vehicle through the coordinate values of the
connecting nodes in two far aprons, then count a large
number of travel time values, and select the smaller value as
the travel time between the aprons. In this way, the distance
from the parking lot to other service points can also be
obtained.

4.3. Travel Time between Any Two Nodes. After mining the
travel time information of edges in the road network
through the above method, the nodes, edges, and the weight
of edges of the road network have been obtained. )e travel
time between any two nodes can be calculated by using the
shortest path algorithm. Calculating the shortest path is a
classical problem in graph theory. At present, there has been

a very mature research. )e commonly used shortest path
algorithms include Floyd [29], Dijkstra [30], and SPFA [31].
It is necessary to select the appropriate algorithm according
to different use scenarios. From the characteristics of the
algorithm, the Floyd algorithm is suitable for finding the
shortest path from multiple sources, but the high time
complexity makes the algorithm not suitable for road net-
work maps with many nodes; the Dijkstra algorithm is the
basis of all basic shortest path algorithms. It is the most
stable algorithm, but it is suitable for finding the shortest
path of a single source. It needs repeated operation to obtain
the shortest path of all points; the SPFA algorithm is a queue
optimization of the Bellman Ford algorithm. It is the shortest
path algorithm based on BFS. It solves the problem of
changing weight to negative value that the Dijkstra algo-
rithm cannot solve. At the same time, the implementation of
the algorithm is the most troublesome. )e road network
constructed in this paper has a total of 187 service points.
Considering the scale of the road network, the positive right
of way, and the need to obtain the path information between
all points, the Floyd algorithm is selected to solve the
shortest path.

Floyd algorithm is an algorithm that uses the idea of
dynamic programming to find the shortest path between
multiple source points in a given weighted graph. )e al-
gorithm has the characteristics of clear structure and fast
implementation. Its core idea is as follows: for each pair of
shortest vertices u and v, if there is a vertex w that makes the
path from u to w and then to v shorter than the known path,
update it. Considering that the nodes have been divided into
different regions, this paper first uses the Floyd algorithm to
calculate the shortest circuit between different regions and
then calculates the shortest circuit between the nodes in the
region and the connecting nodes. )e algorithm flow of
finding the shortest path of OD points of ferry task is as
follows (Algorithm 1):

After the shortest path between regions is obtained by
the above algorithm, combined with the distance from the
internal node to the connecting node in the region, the
shortest travel time between any two points can be obtained.
)e edge inside the area mainly represents the distance
between two gates, and the fixed value Cgate can be adopted.
If n stands are separated between the internal node and the
connecting node, the distance is n∗Cgate.

5. Experimental Results and Analysis

In order to verify the proposed travel timemining method of
the ferry network, this paper uses the actual data of
Changshui International Airport to verify the effectiveness
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leave the

boarding gate

Boarding gate
open

Departure
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Figure 7: Ferry vehicle service process of departure flight.
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and practicability of the method. Flight data from January to
June 2019, historical GPS track data of ferry vehicles, and
coordinate information of each parking stand and boarding
gate of the airport are collected. )e data samples are shown
in Tables 2 to 4.

Since the airport does not record the daily scheduling
historical data of ferry vehicles, we do not know which
vehicle performs each task. )erefore, we need to identify
them according to the data fusion method proposed in
Section 4 to obtain the specific ferry vehicles corresponding
to the task and the time nodes of their entry and departure
starting and ending points. According to the method in
Section 4, we first excavate the distance between the
boarding gate area and the far apron area. Ferry vehicles will
not stop too far away from the aircraft and stop at the task

site for too long, so we set the time scaling parameter t �

10min and the space distance scaling parameter m � 20m.
Take boarding gate area B-1 and far apron 5-2 as examples,
according to the identification results, the corresponding
starting waiting time, travel time, and terminal waiting time
can be calculated, and the GPS track of the vehicle can be
checked back according to the identification time of the
starting and ending points to obtain the support path, as
shown in Figure 8. )e yellow circle indicates the search
range, and the time difference of these seven GPS data can be
calculated as the travel time of connection nodes gate B48
and stand 521L. According to this, the results of each cal-
culation are collected, and the mean value of all results is
taken as the transfer time between the two. For the distance
between different far apron areas, we count a lot of travel

(i) Input: region ferry network G � (Q, E), Q is the set of connection nodes representing each region, and E is the travel time between
regions obtained by data mining as the weight of edges.

(1) InitializationmatrixM, mij represents the travel time between vertices i and j. If i and j are not directly connected, the weight is set
to ∞. If i and j come from the same region, the weight is set to 0.

(2) Starting from the first node q1, calculate that m
(1)
ij � min m

(0)
ij , m

(0)
i1 + m

(0)
1j  is the shortest path from i to j that only allows the

middle to pass through q1, and update the matrix M.
(3) Similarly, calculate that m

(k)
ij � min m

(k−1)
ij , m

(k−1)
ik + m

(k−1)
kj  is the shortest path from i to j that only allows the middle to pass

through q1, q2, . . . qk, and update the matrix M.
(4) When k � n, mij in matrix M is the shortest path from node i to j

(ii) Output: matrix M.

ALGORITHM 1: Calculating the shortest path between ferry OD points by the Floyd algorithm.

Table 2: Flight information (partial departure flight).

Flight number Stand Boarding gate Check-in time Close time Departure time
TV6031 153 27 2019/1/1 0 : 01 2019/1/1 0 :13 2019/1/1 0 : 37
3U8837 155 17 2019/1/1 0 : 03 2019/1/1 0 : 24 2019/1/1 0 : 51
3U8107 326 4 2019/1/1 0 :12 2019/1/1 0 : 36 2019/1/1 1 : 03
KY8335 521L 55 2019/1/1 0 :15 2019/1/1 0 : 49 2019/1/1 0 : 59
CA5785 521L 55 2019/1/1 0 :15 2019/1/1 0 : 49 2019/1/1 0 : 59
ZH5335 521L 55 2019/1/1 0 :15 2019/1/1 0 : 49 2019/1/1 0 : 59
MU2569 109 70 2019/1/1 0 :18 2019/1/1 0 : 32 2019/1/1 0 : 50
ZH3181 145 59 2019/1/1 0 : 23 2019/1/1 0 : 45 2019/1/1 0 : 56
KY8281 145 59 2019/1/1 0 : 23 2019/1/1 0 : 45 2019/1/1 0 : 56
CZ3416 141 60 2019/1/1 0 : 23 2019/1/1 0 : 34 2019/1/1 0 : 50

Table 3: GPS trajectory information of the ferry car (partial).

Car ID GPS time Longitude Latitude
1 2019/1/1 12 : 01 : 03 102.932983 25.111266
1 2019/1/1 12 : 02 : 01 102.936 25.108516
1 2019/1/1 12 : 03 : 01 102.938266 25.10955
1 2019/1/1 12 : 04 : 01 102.939033 25.109433
1 2019/1/1 12 : 05 : 31 102.939066 25.109433
1 2019/1/1 12 : 06 : 29 102.939066 25.109416
1 2019/1/1 12 : 06 : 59 102.939066 25.109416
1 2019/1/1 12 : 08 : 59 102.939083 25.1094
1 2019/1/1 12 : 09 : 29 102.939066 25.1094
1 2019/1/1 12 :10 : 59 102.93905 25.1094
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time between two connection nodes. Figure 9 shows the
distance distribution characteristics from gate 48 to P-1
parking lot connection point p5|p6 and from stand 526L to
stand 531. )e corresponding distance is represented by

selecting a smaller value, which can be taken as 0.5 and 1.0
minutes. )rough the above two methods, the transfer time
between regional connection nodes in the outlet network
can be calculated, as shown in Table 5.

With the travel time between connection nodes, the
shortest travel time between any regions can be calculated
according to the Floyd shortest path algorithm.)e distance
between aircraft stands in the area is Cgate � 40m according
to the actual situation of Changshui airport. When the
maximum allowable speed of the ferry vehicle in the flight
area is 25 km/h, the travel time between the inner edges of
the area can be calculated as about 0.1 minutes. )erefore,
the distance between any two nodes in the airport ferry
network is equal to the distance between regions plus the
distance between these two points and the connecting nodes
in the region. )e calculation results are shown in Table 6.

In order to check the accuracy of the distance information
mined in this paper, we directly calculate the distance between
the internal nodes of the two randomly selected areas as the
real value through the above distance calculation method and

Table 4: Latitude and longitude information of service point (partial).

Boarding gates Remote stands
Number Longitude Latitude Number Longitude Latitude
b1 102.9274531 25.1011307 311 102.9290611 25.0955317
b2 102.9265117 25.1012863 312 102.9295471 25.0951637
b3 102.9271301 25.1010857 313 102.9300271 25.0946687
b4 102.9268037 25.1012533 314 102.9359601 25.1012577
b5 102.9257167 25.1015113 315 102.9362391 25.1016377
b6 102.9252457 25.1018223 316 102.9364991 25.1019157
b7 102.9248317 25.1021203 317 102.9367597 25.1021916
b8 102.9243962 25.1024135 318 102.9370517 25.1025726
b9 102.9236602 25.1022575 321 102.9222547 25.1004473
b10 102.9238932 25.1027735 322 102.9216707 25.1006893

Table 5: Distances between areas in the road network.

Region 1 Region 2
Travel time (min)

Number Connection node Number Connection node
B-1 b9 3-1 321 1.6
B-1 b56 3-3 328 1.7
B-2 b72 3-2 311 1.5
B-2 b40 3-4 318 2.3
B-3 b48 P-1 p5|p6 0.5
B-4 b32 P-1 p5|p6 0.5
P-1 p5|p6 7-1 330 3.1
P-1 p5|p6 5-2 521L 6.5
P-1 p5|p6 5-3 520 8.5
P-1 p5|p6 5-3 516 9.5
P-2 p1 B-1 b13 2.2
P-2 p1 3-3 324 1.4
P-3 p3 B-2 b78 2.1
P-3 p3 B-2 b40 2.8
P-3 p3 3-4 314 1.3
3-3 328 7-1 722a 1.8
3-3 328 5-1 531 3.6
5-2 526L 5-1 531 1.0
5-3 519R 5-4 516 1.4
5-4 501 7-2 710 1.3

Figure 8: Example of ferry car path calculation.
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Figure 9: Histogram of OD distance distribution from b48 to p5|p6 (a) and 526L to 531 (b).

Table 6: OD distances calculated by the Floyd algorithm (partial).

328 329 330 521 521L 521R 522 522L 522R 523
328 0.0 2.3 2.4 4.8 4.9 4.7 4.5 4.6 4.4 5.0
329 2.3 0.0 0.1 7.1 7.2 7.0 6.8 6.9 6.7 7.3
330 2.4 0.1 0.0 7.2 7.3 7.1 6.9 7.0 6.8 7.4
521 4.8 7.1 7.2 0.0 0.1 0.1 0.3 0.2 0.4 0.2
521L 4.9 7.2 7.3 0.1 0.0 0.2 0.4 0.3 0.5 0.1
521R 4.7 7.0 7.1 0.1 0.2 0.0 0.2 0.1 0.3 0.3
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523 5.0 7.3 7.4 0.2 0.1 0.3 0.5 0.4 0.6 0.0
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compare it with the corresponding distance in the distance
matrix obtained by Floyd algorithm. In order to better
measure this difference, this paper introduces absolute error
(Error), mean absolute error (MAE), and root mean square
error (RMSE) as evaluation indexes to test the accuracy of the
distance matrix, as shown in equations (5) to (7).

Error � Y − Y, (5)

MAE �
1
n



n

i�1
Yi − Yi


, (6)

RMSE �

�������������

1
n



n

i�1
Yi − Yi 

2




. (7)

)e error is shown in Figure 10, and theMAE and RMSE
calculation results are shown in Table 7. )e results show
that the mean value of the distance error between the dis-
tance calculated by the road network and the GPS track is
kept at about zero, and the deviation is kept at about 1
minute. Considering that there are many random factors in
the actual driving of the ferry car, the current results can
better reflect the actual driving situation and meet the needs
of data accuracy for modeling.

6. Conclusion

)is paper studies the ferry vehicles in the airport flight area.
Based on the analysis and mining of ferry vehicle trajectory
data, the ferry road network map is established, and a new
method is proposed to extract the travel time between OD
points in the ferry network. )e experimental results show
that the shape of the ferry road network constructed in this
paper and the calculation results of travel time can reflect the
real operation to a great extent. )e purpose of this research
paper is exactly to solve the problem of ferry vehicles’ dy-
namic scheduling. With the travel time between OD points
of the ferry network obtained in this paper, combined with
the real-time GPS data of ferry vehicles, we can study how to
predict the task state of vehicles and schedule vehicles dy-
namically and reasonably in the future.
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To study the influence mechanism of dedicated bus lanes on the urban road network, this paper proposes a novel analytical model
of macroscopic fundamental diagram (MFD) and passenger macroscopic fundamental diagram (p-MFD) and the corresponding
indicators based on MFD and p-MFD to evaluate the operation of the network. Taking the grid network as an example, this paper
collects traffic flow to calibrate the developed MFD and p-MFD and evaluates the network performance under different pro-
portions of dedicated bus lanes. (e simulation results show that the larger the proportion of dedicated bus lanes, the greater the
impact on the rising section and the stable section of MFD and the descending section and post-stable section of p-MFD. Further
analysis for the sensitivity of simulation experiments found that the strategy of setting dedicated bus lanes will improve the
efficiency of vehicle and passenger transport when the road network is in a smooth state and ensure the continuous output of
passengers when the network is in a congested state.

1. Introduction

(e increasing number of vehicles causes the traffic demand
for the road network in cities to increase rapidly, and
corresponding traffic congestion in many cities is serious.
(e transit priority strategy of setting dedicated bus lanes
plays an important role in improving bus operating effi-
ciency and the level of service. (e dedicated bus lane is an
economical implementation method to improve the level of
public transport service and ease the pressure of urban traffic
[1]. A large number of cities in the world have implemented
dedicated bus lanes to promote public transport. By the end
of 2019, the total length of dedicated bus lanes in China was
14,951.7 km [2]. (e planning and implementation of
dedicated bus lanes aim to optimize the allocation of road
resources in urban cities and improve traffic conditions for
bus priority [3, 4].

(e implementation of dedicated bus lanes has a certain
degree of impact on road network traffic. A comprehensive
evaluation of dedicated bus lanes is a necessary step to
analyse the feasibility and benefits of its implementation that
concerns the trade-off of the benefits of public and private

transport in the urban road network. Urban transport
systems should meet the travel needs of urban residents.
(erefore, when setting up dedicated bus lanes, the impact
on the vehicle transport and passenger transport of urban
road networks should be comprehensively considered.
Moreover, the benefits of dedicated bus lanes are related to
the traffic state of the urban road network. In order to
determine the effect of setting up dedicated bus lanes, it is
important to propose a group of indicators to analyse the
overall performance of the road network, which are helpful
capture the impact of dedicated bus lanes on the urban road
network and understand how it will change with the varying
traffic status.

In recent years, the latest trend in the study of urban road
network transport is to use the macroscopic fundamental
diagram (MFD) to model and analyse urban-scale road
network traffic. Daganzo proposed the concept and basic
description of the MFD of the urban network in 2007 and
verified the existence ofMFD using traffic simulation [5] and
empirical data [6]. (rough the analysis of MFD, Daganzo
[7] found that MFD is an inherent attribute of the road
network itself, and it remains unchanged when traffic
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demand changes. (e basic curve of MFD is a parabola.
However, in the actual analysis, it is often simplified to a
triangle or trapezoid [8]. MFD not only reflects the general
relationship between network traffic flow and network
operation level but also describes the relationship between
the number of vehicles in the road network and the output
flow of the road network [9]. However, the MFD can only
express the performance of vehicles in the transport system
but not consider the average number of passengers of each
transport mode.

In order to improve the concept of MFD, Zheng [10] and
Nicolas [11] proposed the concept of passenger macroscopic
fundamental diagram (p-MFD) to evaluate the passenger
transport capacity of the multimodal urban network with
cars and buses. (e existence of MFD [9, 12–15] and p-MFD
[16] has been verified by the empirical data of urban road
networks around the world. As the inherent attributes of the
road network, MFD and p-MFD, respectively, indicate the
relationship between the density of vehicles in the road
network and the output flow of vehicles of the road network,
and also the relationship between the density of vehicles in
the road network and the output flow of passengers of the
road network. (ey help to evaluate the performance of the
urban multimodal network. In recent years, MFD has been
extensively studied and applied, including model formula-
tion [17, 18], optimization [19–22], traffic control [23, 24],
and perimeter control [25, 26].

Most previous studies of the impact of dedicated bus
lanes on MFD and p-MFD mainly focus on data sources,
modelling methods, analysis factors, and the impact on
road network transport. In terms of data sources, MFD can
be obtained through traffic software simulation [27–30],
theoretical model [3, 10, 31], and empirical data [12, 16],
and p-MFD can be derived by fixed passenger occupancy
rate [30], estimating passenger occupancy rate
[3, 11, 12, 16, 28] or using theoretical models [32] on the
passenger occupancy rate of each transport mode in the
multimodal urban road network. Most previous studies of
the impact of dedicated bus lanes on MFD and p-MFD
focus on theoretical road networks [3, 10, 11, 31] or actual
road networks [12, 16, 27–30, 32]. In terms of modelling
methods, the existing modelling methods of MFD and
p-MFD include scattering plot method [10, 12, 16, 28–30],
contour map (3D-MFD) [12, 16, 19, 20], measured or
simulated data fitting method [16, 27, 28], and analytical
model method [3, 11, 32]. (e literature review on the
impact of bus lanes on MFD and p-MFD is summarized in
Table 1.

Although existing literature has found that dedicated
bus lanes have a certain impact on the road network MFD
and p-MFD, they pay more attention to the changes in
shape and the maximum value of MFD and p-MFD under
different conditions. Limited attention is paid to propose
comprehensively a group of indicators for urban road
networks based on MFD and p-MFD and use them as the
basis to study the influence of dedicated bus lanes on the
operation of the road network under different conditions of
the road network, regarding vehicles and passengers,
respectively.

Microcosmic traffic evaluation indicators only focus on
traffic operations of a certain road section or under a certain
network state. (rough in-depth study of MFD and p-MFD,
the road network can be viewed as a whole, and the traffic
state under different conditions can be evaluated. Com-
paring microcosmic traffic evaluation indicators, MFD-
based indicators can more fully reflect the transport effi-
ciency, capacity, and reliability of the road network under
different conditions at the network level.

(erefore, this paper proposes a novel description and
modelling methods of MFD and p-MFD based on the
Gaussian mixture model (GMM). (e indicators based on
MFD and p-MFD are proposed to analyse comprehensively
the operation of the road network. (is methodology is
suitable for various urban networks, which can be extended
to multiple modes (cars, buses, etc.) to evaluate the efficiency
and other aspects of the urban network from vehicles and
passengers’ perspectives. (is paper takes the grid network
as an example and uses traffic simulation to obtain the traffic
data when the proportion of dedicated bus lanes is changed.
(e characteristic parameters of MFD and p-MFD are
analysed in detail to study and summarize the impact
mechanism of dedicated bus lanes on the urban network and
to support and expand existing research on the impact of
dedicated bus lanes on MFD and p-MFD.

2. Analytical Framework Based on MFD
and p-MFD

2.1. Description of Macroscopic Fundamental Diagram.
MFD (macroscopic fundamental diagram) is composed of a
series of scattered points, which are from the empirical or
experimental data at a certain time interval Δt during the
operation process of the urban road network. In this paper,
MFD takes the vehicle density in the road network K (veh/
km/ln) as the abscissa and the vehicle flow leaving the road
network Q (veh/ln/h) as the ordinate. According to the
definition of MFD, the relevant parameter calculation
equation is as follows:

q(t) � q(t − Δt) + q
i
(t) − q

o
(t), (1)

Q(t) �
q

o
(t) · 3600
Δt · N

, (2)

K(t) �
q(t)

L
, (3)

where Δt represents the time interval for data collection (s),
q(t) denotes the number of vehicles running in the road
network at time t (veh), qi(t) is the number of vehicles
entering the road network at time t (veh), qo(t) represents
the number of vehicles leaving the road network at time t

(veh), Q(t) means the flow of vehicles leaving the road
network at time t (veh/ln/h), N represents the total number
of exit lanes of the road network (ln), K(t) represents the
density of running vehicles in the road network at time t

(veh/km/ln), and L denotes the total length of lanes in the
road network (km).
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Using network traffic empirical or experimental data,
according to equations (1)–(3), a scatter diagram of MFD
can be obtained as shown in Figure 1. In-depth research
found that in the complete road network MFD, as the
density of running vehicles in the road network K increases
from 0, the flow of vehicles leaving the road network Q has a
significant upward, stable, and downward trend. (en, Q

drops to the minimum value Qmin since the downtrend
occurred. As K continues to increase, Q maintains fluctu-
ations within a certain range above and belowQmin. IfQmin is
obviously greater than 0 at this time, it means that there are
still a small number of vehicles in the road network that can
leave the road network, such as the vehicles near the exit of
the road network. If Qmin is close to 0 at this time, it means
that the road network has a deadlock and the majority of
vehicles on the road network cannot leave the road network.

2.2. Description of Passenger Macroscopic Fundamental
Diagram. (e concept of the p-MFD is proposed to eval-
uate the passenger transport capacity of the multimodal
road network in this study. Cars can travel according to the
demand of car users when the road network condition
permits. As the public transport mode, the bus must travel

along the preset bus lanes, and the departure interval has
certain restrictions. (e bus is an independent mode of
transport, which is different from the car in terms of vehicle
structure, passenger capacity, and driving characteristics.
(erefore, there are much difference in operation char-
acteristics between cars and buses. As the road network
traffic facilities or traffic management measures (bus lanes,
bus priority, etc.) change, the differences between the two
are significant. Car p-MFD and bus p-MFDwill also change
accordingly, and there may be differences in the changing
patterns. (erefore, this paper studies the bus p-MFD and
car p-MFD of urban road networks separately to study
better the changes in the capacity of these two modes to
transport passengers when the states of the road network
change.

p-MFD is composed of a series of scattered points. (e
scattered points are the empirical or experimental data at a
certain time interval Δt during the operation process of the
road network. In this paper, p-MFD takes the vehicle
density in the road network of K (veh/km/ln) as the
abscissa and the passenger flow leaving the road network of
PAX (person/ln/h) as the ordinate. According to the def-
inition of p-MFD, the relevant parameter calculation
equation is as follows:

Table 1: Literature review on implementation of dedicated bus lanes on MFD and p-MFD.

MFD p-MFD

Data sources
Traffic software simulation [27–30]

(eoretical model [3, 10, 31]
Empirical data [12, 16]

Fixed passenger occupancy rate [30]
Estimated passenger occupancy rate [3, 11, 12, 16, 28]

(eoretical models [32]

Road network (eoretical road network [3, 10, 31]
Actual road network [12, 16, 27–30]

(eoretical road network [3, 11]
Actual road network [12, 16, 28, 30, 32]

Modelling method

Scatter plot [10, 12, 29] and contour map (3D-MFD)
[12, 29]

Empirical or simulated data fitting: least square method
and exponential function fitting (3D-MFD) [16, 27, 28]

Analytical model: variational method [3]

Scatter plot [12, 28, 30] and contour map (3D-MFD)
[12, 16, 30]

Empirical or simulated data fitting: least square method and
exponential function fitting (3D-MFD) [16]

Analytical model: variational method [3, 32], the analytical
model considering the proportion of passengers choosing car

transport and public transport [11]
Analysis factors (e shape of MFD (maximum) [3, 10, 16, 27–29] (e shape of p-MFD (maximum) [3, 11, 12, 16, 28, 30, 32]

Impact on road
network transport

(i) (e shape of the MFD of the dedicated bus lane is
similar to the shape of the MFD of the mixed traffic
[27, 28], and its shape is related to the average bus dwell
time [28] and headway [3].
(ii) (e number of vehicles in the road network when
setting up dedicated bus lanes will not reach the
maximum value of the MFD of the previous road
network [10, 11, 29].
(iii) With a very low accumulation of buses, the road
network achieves the best operating conditions
(maximum capacity value). When the proportion of
dedicated bus lanes increases, the transport
performance of cars gets worse and the transport
performance of buses improves [29].
(iv) When dedicated bus lanes are available, buses have
significantly improved speed and flow compared with
mixed flow conditions [16].
(v) In the case of car traffic congestion, increasing the
space of dedicated bus lanes can reduce the total cost of
society and increase the share rate of buses [31].

(i) (e number of passengers in the road network when
setting up dedicated bus lanes will not reach the maximum
value of the p-MFD of the previous road network [3].
(ii) To obtain more passenger throughput, when the road
network has implemented dedicated bus lanes, more buses
can be deployed in the network [28]. A certain number of
buses can improve the transport performance of the road
network [30].
(iii) (e increase in the proportion of bus lanes will reduce
the marginal effect of the speed of the bus fleet [12].
(iv) Under noncongested traffic conditions, mixed lanes can
always produce higher passenger throughput. However, as
the degree of congestion increases, the passenger throughput
of dedicated bus lanes is greater than that of mixed lanes [32].
(v) (e dedicated bus lane ensures that the bus system can
still operate even when the road network is very crowded
[11].
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Pc(t) �
nc · qc(t − Δt) + q

i
c(t) − q

o
c(t)  · 3600

Δt · N
, (4)

Pb(t) �
nb · qb(t − Δt) + q

i
b(t) − q

o
b(t)  · 3600

Δt · N
, (5)

P(t) � Pc(t) + Pb(t), (6)

K(t) �
q(t)

L
, (7)

where Δt represents the time interval for data collection (s),
q(t) means the number of vehicles running in the road
network at time t (veh), qi

c(t) represents the number of cars
entering the road network at time t (veh), qi

b(t) represents
the number of buses entering the road network at time t

(veh), qo
c(t) represents the number of cars leaving the road

network at time t (veh), qo
b(t) denotes the number of buses

leaving the road network at time t (veh), nc represents the
average passenger occupancy of cars (person), nb represents
the average passenger occupancy of buses (person), Pc(t)

means the flow of car passengers leaving the road network at
time t (person/ln/h), Pb(t) represents the flow of bus pas-
sengers leaving the road network at time t (person/ln/h), N

represents the total number of exit lanes of the road network
(ln), K(t) represents the density of running vehicles in the
road network at time t (veh/km/ln), and L represents the
total length of lanes in the road network (km).

2.3. Segmented Linear Model of MFD and p-MFD. (e MFD
scatter plots of different road networks, car p-MFD, and bus
p-MFD have similar changing trends, namely the rising,
stable, descending, and post-stable trends. (e post-stable
trend with consistently low value means that a very small
number of vehicles still can leave the road network even
when the road network is seriously congested, such as the
vehicles near the exit. However, there are still some dif-
ferences between MFD and p-MFD. (erefore, the scattered
points of MFD and p-MFD can be clustered into several

categories according to the changing trend. Based on re-
search [33], this paper uses Gaussian mixture clustering to
classify the scattered points of MFD and p-MFD. (e
Gaussian mixture model (GMM) is a linear combination of
multiple Gaussian models and is a common clustering
method. (is method uses the Gaussian probability density
function to calculate the probability that the scatter points
belong to each category. (e category with the highest
probability of the scatter points is regarded as the category to
which the scatter points belong, and the scatter points are
aggregated into several categories with obvious differences.
GMM can divide the data with any shape of an ellipse and
has a better clustering effect on curved data points. (e
sklearn.mixture library is used in the open-source software
of python to implement GMM in this paper.

(e probability distribution of the Gaussian mixture
model is shown in the following equation:

P(x | θ ) � 
M

m�1
αmφ x|θm( , (8)

where M represents the number of sub-Gaussian models in
the mixture model, m � 1, 2, . . . , M, M≥ 3; αm means the
probability that the scatter points belong to the mth sub-
model, am ≥ 0, 

M
m�1 am � 1; and φ(x|θm) represents the

Gaussian distribution density function of themth sub-model,
θm � (μm, σ2m).

According to equations (1)–(3) and (7)–(10), MFD and
p-MFD scatter plots of various modes can be obtained. (e
GMM model is used to cluster the MFD and the p-MFD
scattered points of cars and buses separately and divide them
into M categories. (e M-segment scatter points of the road
network MFD, the car p-MFD, and the bus p-MFD are
linearly fitted and represented by a segmented linear model
as follows:

Fw(k) �

a
1
wk + b

1
w, 0≤ k≤ k

1
w,

a
2
wk + b

2
w, k

1
w < k≤ k

2
w,

. . .

a
M−1
w k + b

M−1
w , k

M−2
w < k≤ k

M−1
w ,

a
M
w k + b

M
w , k

M−1
w < k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

k
j
w �

b
j
w − b

j−1
w

a
j−1
w − a

j
w

, j � 2, . . . , M, (10)

where F � Q,PAX{ }. When F � Q, Qw(k) represents the
flow of vehicles leaving the road network when the density is
k (veh/ln/h). w � net{ }, net represents the road network.
When F � PAX, PAXw(k) represents the passenger flow of
cars or buses leaving the road network when the density is k

(person/ln/h). w � c, b, net{ }, where c represents cars, b is
buses, and net means the road network. F

j
w(k) � a

j
wk + b

j
w,

where j � 1, 2, . . . , M, j represents the corresponding
number of each segment, a

j
w denotes the slope of the

function, b
j
w means the constant of the function, and k

j
w
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Figure 1: MFD.
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represents the corresponding vehicle density k in the road
network at the beginning of the j segment of MFD or
p-MFD. In this paper, k1

w is generally considered to be 0.
To avoid state mutation in MFD and p-MFD, if

a
j
wa

j+2
w < 0, j � 1, 2, . . . , M − 2, then a

j
w � 0. When a

j
w > 0,

the segment is in a rising state. When a
j
w � 0, the segment is

in a steady state.When a
j
w < 0, the segment is in a descending

segment. (e rising section consists of multiple consecutive
rising segments, and the descending section consists of
multiple consecutive descending segments.

2.4. MFD and p-MFD Modelling

2.4.1. MFD Modelling

Step1: Use empirical or experimental data to calculate
the vehicle density K(t) in the road network and the
flow of vehicles leaving the road network Q(t)

according to equations (1)–(3)
Step2:Use K(t) as the abscissa andQ(t) as the ordinate
to obtain the scatter plot of road network MFD
Step3: Employ GMM to cluster road network MFD
scatters and divide scatters into M categories
Step4: Linear fitting is performed on the M-segment
scatters of the road network MFD, and the piecewise
linear function is used to represent the road network
MFD model

According to the changing trend of the scatter plot of
road network MFD, the number of clusters of MFD M is set
to 4 in this paper. (e 4-segment scattered points of MFD
classified by GMM are linearly fitted, and MFD is repre-
sented by a piecewise linear function,. MFD obtained by the
above modelling method is shown in Figure 2.

According to Figure 2, each section of MFD can be
described as follows:

(1) Rising Section. (e traffic in the road network is in a
smooth state, and the throughput of cars and buses in the
road network is smooth. At this section, Q(t) increases with
the increase of K(t).

(2) Stable Section. (e traffic in the road network is still
in a saturated state, and the road network continues to
transport cars and buses. As K(t) increases, Q(t) stabilizes
within a certain range, and Q(t) reaches the maximum value
Qmax. If K(t) continues to increase, Q(t) fluctuates around
Qmax.

(3) Descending Section. (e traffic in the road network
is in a front-congested state. Some intersections and road
sections in the road network are blocked, and part of
vehicles cannot leave the road network due to traffic
congestion. At this time, the road network has reached the
critical point where it can effectively bear no more ve-
hicles. As K(t) continues to increase, Q(t) continues to
decrease.

(4) Post-Stable Section. (e traffic in the road network is
in a post-congested state, and most intersections and road
sections in the road network remain seriously blocked, and
the corresponding most vehicles cannot leave the road
network. Q(t) is stable within a certain range, and Q(t)

reaches the minimum value Qmin since MFD enters the
descending stage. If K(t) continues to increase, Q(t) will
fluctuate around Qmin.

2.4.2. p-MFD Modelling

Step1: Use empirical or experimental data to calculate
the vehicle density K(t) in the road network, the
number of passenger-car users leaving the road net-
work Pc(t) and bus passengers leaving the road net-
work Pb(t) according to equations (4)–(7)
Step2: Use K(t) as the abscissa and Pc(t) and Pb(t) as
the ordinate separately to obtain the scatter plot of car
p-MFD and bus p-MFD, respectively
Step3: Use GMM to cluster the car p-MFD and the bus
p-MFD scatters and divide scatters into M categories
separately
Step4: Linear fitting is performed on the M-segment
scatters of car p-MFD and bus p-MFD, and the
piecewise linear function is used to represent car
p-MFD and bus p-MFD model
Step5: Add the piecewise linear function of car p-MFD
and bus p-MFD to get road network p-MFD model,
namely

PAX(k) � PAXc(k) + PAXb(k),

gp(k) � gpc(k) + gpb(k),
(11)

where PAX(k) denotes the passenger volumes leaving
the road network when the density is k (persons/ln/h),
PAXc(k) denotes the flow of car passengers leaving the road
network when the density is k (persons/ln/h), PAXb(k)

represents the flow of bus passengers leaving the road
network when the density is k (persons/ln/h), gpb(k) de-
notes the slope of road network p-MFD when the density is
k, gpc(k) means the slope of car p-MFD when the density is
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Figure 2: MFD obtained by the proposed method.
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k, and gpb(k) denotes the slope of bus p-MFD when the
density is k.

According to the changing trend of p-MFD, the number
of p-MFD scatter clusters for cars and buses in this paper is
set to 4, namely, M � 4. (erefore, there are 3 inflection
points for the p-MFD of the car and the bus, ki

w, w � c, b{ },
i � 1, 2, 3. Because the operating characteristics of cars and
buses are different, the inflection points of car p-MFD and
bus p-MFD may also be different. (erefore, the road
network p-MFD obtained by equation (12) is a linear
function with s inflection points (3≤ s≤ 6), and s � M − 1.
(e p-MFD obtained using the above method is shown in
Figure 3.

In Figure 3, the sections of car p-MFD, bus p-MFD, and
road network p-MFD are described as follows:

(1) Rising Section. (e traffic in the road network is in a
smooth state, and the throughput of car users and bus
passengers in the road network is smooth. Pc(t), Pb(t), and
P(t) increase with the increase of K(t), respectively. (e
rising section of P(t) may have multiple segments
depending on the slope.

(2) Stable Section. (e traffic in the road network is in a
saturated state, and the road network continues to carry car
and bus passengers. As K(t) increases, Pc(t) and Pb(t)

stabilize within a certain range and reach the maximum
Pcmax and Pbmax, respectively. As K(t) continues to increase,
Pc(t) fluctuates around Pcmax, and Pb(t) fluctuates around
Pbmax. Notably, Pc(t) and Pb(t) do not reach the maximum
value at the same time, that is, k1c and k1

b are not necessarily
the same, respectively.When Pc(t) and Pb(t) enter the stable
section, P(t) enters the stable section, too.

(3) Descending Section.(e traffic in the road network is
in a front-congested state. Some intersections and road
sections in the road network are blocked, and some bus and
car passengers cannot leave the road network. As K(t)

continues to increase, Pc(t), Pb(t), and P(t) continues to
decrease. (e descending section of P(t) may have multiple
segments depending on the slope.

(4) Post-Stable Section. (e traffic in the road network is
in a post-congested state, and most of the intersections and
road sections are seriously blocked. Without public bus
priority measures (dedicated bus lanes, bus signal priority,
etc.), most of the car and bus passengers cannot leave the
road network. As K(t) increases, Pc(t) and Pb(t) are stable
within a certain range. (en, Pc(t) and Pb(t) reach the
minimum value Pcmin and Pbmin since car p-MFD and bus
p-MFD entered the descending stage separately. As K(t)

continues to increase, Pc(t) fluctuates around Pcmin, and
Pb(t) fluctuates around Pbmin. It is worth noting that Pc(t)

and Pb(t) do not reach the minimum value at the same time,
namely k3

c and k3
b are not necessarily the same, respectively.

When Pc(t) and Pb(t) enter the post-stable section, P(t)

also enters the post-stable section.

3. Network Evaluation Based on MFD
and p-MFD

(is study proposes several indicators to evaluate the urban
road network based on MFD and p-MFD from different

perspectives. (rough the analysis of these indicators, it is
helpful analyse more comprehensively the operation of the
urban road network under different scenarios.

3.1.RoadNetworkTransportEfficiency. (e indicators in this
section are proposed to evaluate the operational efficiency of
the urban road network based on MFD and p-MFD pro-
posed in the previous section.

(e slope of the MFD gc (p-MFD gp) is defined as the
ratio between the increment of traffic flow ΔQ (passengers
ΔPAX) leaving the road network and the increment of
vehicle density in the road network ΔK:

gc �
ΔQ
ΔK

, (12)

gp �
ΔPAX
ΔK

. (13)

In this study, the slopes of the rising section and the
descending section are mainly studied. When the slope of
the rising section is larger, the increment in the flow of
passengers (vehicles) leaving the road network is larger when
the increment in vehicle density is the same. (us, the ef-
ficiency of transporting passengers (vehicles) improves when
traffic flow on the road network is in a smooth state; oth-
erwise, the efficiency of transporting passengers (vehicles)
deteriorates when the road network is in a smooth state.
When the absolute value of the slope of the descending
section is larger, the increment of passengers (vehicles) flow
leaving the road network is greater when the increment in
vehicle density is the same. It reveals that the efficiency of
transporting passengers (vehicles) improves when the road
network is in a congested state; otherwise, it reveals that the
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efficiency of transporting passengers (vehicles) deteriorates
when the road network is in the congested state.

(e value of the stable section F2
w(k) is defined as the

corresponding flow of vehicles leaving the road network in
the stable section. In the same way, the value of the post-
stable section F4

w(k) is defined as the corresponding flow of
vehicles leaving the road network in the post-stable section
as follows:

F
2
w(k) � a

2
wk + b

2
w,

F
4
w(k) � a

4
wk + b

4
w.

(14)

In this study, when the stable or post-stable section is
close to horizontal, a2

w � 0 or a4
w � 0, and F2

w(k) � b2w,
F2

w(k) � b2w. Within the density range of the stable section,
when the value of the stable section is larger, the flow of
passengers (vehicles) leaving the road network is larger,
which indicates that the road network is more efficient in
transporting passengers (vehicles) in a saturated state. (e
above indication also applies to the post-stable section.

3.2. Road Network Capacity and Reliability. (e indicators
proposed in this section are used to evaluate the capacity and
reliability of the urban road network based on MFD and
p-MFD.

(e front-inflection point (k1 and qmax) is defined as the
connecting point between the rising and the stable sections,
and the back-inflection point (k2, qmax) is defined as the
connecting point between the stable and the descending
sections. (e schematic diagram is shown in Figure 4.

When the inflection point moves toward the zero point,
the abscissa and ordinate values of the inflection point
decrease. If the front-inflection point is closer to the zero
point, it means that the road network quickly enters the
stable state from the smooth one; if the back-inflection point
is closer to zero, it shows the road network quickly changes
from the stable state to the congested one. (erefore, the
faster the road network state changes and the lower the road
network throughput is, the less effective the resource uti-
lization of road network is.

(e density range of x section Δkx
range is defined as the

difference of the vehicle density corresponding to the end of
the x section minus the vehicle density corresponding to the
beginning of the x section. (e expression is as follows:

Δkx
range � k

x
e − k

x
b , (15)

where kx
2 denotes the vehicle density corresponding to the

end of the x section, kx
1 denotes the vehicle density corre-

sponding to the beginning of the x section, Δkx
range denotes

the density range of x section. x � r, s, d, p , where r

represents the rising section, s represents the stable section, d
represents the descending section, and p represents the post-
stable section.When the density range is larger, it means that
the road network has a stronger ability to output traffic
continuously in this state, and the road network has a
stronger continuity in this state.

(e goodness of fit, R2, is defined as the degree of the
regression line fitting the observed values:

R
2

�


G
g�1 yg − y 

2


G
g�1 yg − y 

2, (16)

where R2 denotes the goodness of linear fitting; yg denotes
the value of the fitted data, which is the data value obtained
by linear fitting in this paper; y denotes themean value of the
empirical data or experimental data, which is the mean value
of the simulated data in this paper; yg denotes the empirical
data or experimental data, which is the simulated data in this
paper; G denotes the number of data samples; and g denotes
the gth data sample. When the goodness of fit, R2, is larger,
the scattered points of this section are more concentrated,
which means that the stability of the road network transport
in this state is better. (is study mainly studied the goodness
of fit of the rising section and the descending section,
respectively.

To sum up, the aforementioned indicators and the
symbolic meanings corresponding to the changes in indi-
cators for road network evaluation are summarized in
Table 2.

4. Experimental Design and Results

4.1. Introduction of the Experiment. Actually, the MFD and
p-MFD method and the corresponding indicators proposed
in this paper can be extended to multiple modes (cars, buses,
etc.) to evaluate the operation of various urban road net-
works when the traffic improvement is implemented. For
example, the implementation of a dedicated bus lane is a
very effective measure to improve bus operation. How-
ever, it may cause traffic congestion for private cars due to
the reduction of road resources. Next, MFD and p-MFD
are used to evaluate the influences of dedicated bus lanes
on the road network operation in this experiment. A grid
road network with signalized intersections is taken for
experiments, which is similar to the urban network
studied in reference [10]. (e roads are divided into main
roads, secondary roads, and branch roads. (e main roads
are 3,000 meters long with six lanes, and each lane is 3.5
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meters wide. (e secondary roads are 2,100 meters long with
four lanes, and each lane is 3.5 meters wide. (e main roads
and the secondary roads are both two-way roads. (e branch
roads are 100meters long. Two pairs of harbour-style bus
stops are set up on each main road. (ere are two types of
vehicles in the road network, cars and buses. In this exper-
iment, the dedicated bus lanes are set on the roadside. (e
schematic diagram of the dedicated bus lanes and road
network are shown in Figures 5 and 6, respectively. In order to
facilitate simulation, bus lanes are only set up on the main
roads, and the average bus flow on the dedicated bus lanes is
set as 75 veh/ln/h based on the field investigation of the
average interval on dedicated bus lanes.

(e network traffic data under the different scenarios are
obtained by a microscopic traffic simulation software of PTV
Vissim.(is study has simulated five scenarios with different
proportions of dedicated bus lanes, which are 0, 0.05, 0.11,
0.16, and 0.21.

In the simulation network, data detectors are installed at
the road network boundary, internal entrances, and exits.
(e data collection time interval is 60 s, and the total du-
ration of one simulation is 10,500 s. To study the efficiency
and capacity of the network comprehensively, cars are
continuously input with the time increment of Δt in each
scenario. By continuously increasing the input of vehicles in
the road network, the number of vehicles running on the

road network increases continuously. As the density of
vehicles in the road network increases, the network traffic
state ranges from a smooth state to a saturated state, then
congested state, and finally severe congestion state. (ere-
fore, one can collect the traffic parameters from the smooth
state to the severely congested state for MFD and p-MFD
modelling. In this paper, Δt is set to 200 s, and the car arrival
patterns on each grade of the road are shown in Table 3. (e
flow of cars entering the road network increases according to
a certain pattern, which makes the road network transit to a
severely congested state from a smooth state. (e number of
vehicles entering and leaving the road network at each in-
terval during the simulation period is obtained. Five sim-
ulations are run for each scenario by changing the random
seed such as to reduce the random errors.

In this experiment, nc � 1.3, and nb � 72. Notably, for a
realistic purpose, the value of nc in this paper is set as the
observed average occupancy of cars, similar to reference
[28].(e values of nc and nb can be determined through field
investigation in practice. Every set of data is processed by
equations (1)–(3) and (4)–(7). (e four-segment linear
function model of MFD, car p-MFD, and bus p-MFD under
different scenarios are obtained by the modelling methods
proposed, and then road network p-MFD is obtained by
equation (12). Finally, the characteristic parameters of the
road network MFD and p-MFD are analysed.

Table 2: Road network evaluation indicators based on MFD and p-MFD.

Category Indicator Trend Symbolic meaning

Road network
transport efficiency

(e slope of the rising section of
MFD (p-MFD)

Increase (e efficiency of transporting vehicles (passengers) improves
when the road network is in the smooth state

Decrease (e efficiency of transporting vehicles (passengers)
deteriorates when the road network is in the smooth state

(e value of the stable section of
MFD (p-MFD)

Increase
(e efficiency of transporting vehicles (passengers) and the
ability to endure the access of vehicles improve when the

road network is in the saturated state

Decrease
(e efficiency of transporting vehicles (passengers) and the
ability to endure the access of vehicles deteriorate when the

road network is in the saturated state

(e absolute value of the slope of the
descending section of MFD (p-

MFD)

Increase (e efficiency of transporting vehicles (passengers) improves
when the road network is in the congested state

Decrease (e efficiency of transporting vehicles (passengers)
deteriorates when the road network is in the congested state

(e absolute value of the post-stable
section of MFD (p-MFD)

Increase (e efficiency of transporting vehicles (passengers) improves
when the road network is in the post-congested state

Decrease
(e efficiency of transporting vehicles (passengers)

deteriorates when the road network is in the post-congested
state

Road network
capacity and
reliability

(e inflection point of
MFD (p-MFD)

Move toward
(0, 0)

(e utilization of road network deteriorates resources from
vehicles (passengers) perspective

Move away
from (0, 0)

(e utilization of road network resources improves from
vehicles (passengers) perspective

(e density range of MFD (p-MFD)
Increase (e continuity of the road network at this state improves

from vehicles (passengers) perspective

Decrease (e continuity of the road network at this state deteriorates
from vehicles (passengers) perspective

(e goodness of fit of MFD (p-MFD)
Increase (e stability of the road network improves from vehicles

(passengers) perspective

Decrease (e stability of the road network deteriorates from vehicles
(passengers) perspective
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In addition, the values of nb is related to the average
number of passengers carried by buses. It mainly affects bus
p-MFD, which reflects the network performance of carrying
bus passengers. Compared with car passenger occupancy,
the value and fluctuation of bus passenger occupancy are
greater, which has a more significant impact on p-MFD.
(erefore, taking the proportion of dedicated bus lanes as
0.11 as an example, the bus p-MFD and network p-MFD
with the values of nb changing from 10 to 90 are analysed.

4.2. Experimental Results

4.2.1. MFD. When the dedicated bus lane proportion is 0.11,
the MFD is taken as an example to show the modelling result
of MFD, as shown in Figure 7(a). Figures 7(b) and 7(c) show

the comparisons of the MFD linear functions under the
different proportions of dedicated bus lanes.Table 4 shows
the segmented expressions of MFD with different propor-
tions of dedicated bus lanes obtained by GMM clustering
and linear fitting.

In Figure 7, it can be seen that the road network has not
reached the final paralysis point at the end of the simulation,
which means the flow of vehicles leaving the road network is
not 0. Although the entire road network has serious con-
gestion, and most vehicles cannot leave the road network,
there are still a small number of vehicles near the exits that
can still leave the road network. Figures 7(b) and 7(c) show
the trend of MFD as the proportion of dedicated bus lanes
increases. With the increase of the proportion of dedicated
bus lanes, the slope of the rising section gradually increases,
and the front- and the back-inflection points gradually move
toward zero. (e difference in the value of the post-stable
section is not obvious. (e indicators proposed in Section 3
on MFD are analysed in detail in Section 5.

4.2.2. p-MFD. (e car p-MFD, bus p-MFD, and road
network p-MFD under the proportion of 0.11 of dedicated
bus lanes are taken as the example to show the modelling
result of p-MFD, as shown in Figures 8(a)–8(c). It can be
seen that both car p-MFD and bus p-MFD have consistent
curve shape of rising, stable, descending, and finally stable
trends in Figures 8(a) and 8(b). However, there are many
differences in the inflection points, peak value, and slopes.
Tables 5 and 6 show the segmented expressions of car
p-MFD and bus p-MFD with different proportions of
dedicated bus lanes obtained by GMM clustering and linear
fitting.

According to Figure 8(c), there are three different in-
flection points for the car p-MFD and the bus p-MFD.
(erefore, the road network p-MFD by equation (12) has six
inflection points with a seven-segment linear function ex-
pression. (e rising section (gp > 0) has two segments; the
descending section (gp < 0) has three; and the stable and the
post-stable sections (gp � 0) both have one segment. (is
shows that the number of network p-MFD segments is
determined by the inflection points of the car p-MFD and
the bus p-MFD, which has a certain degree of uncertainty.
However, the general trend of the road network p-MFD is
still rising and stable, descending until it reaches a plateau
near the minimum value.(e rising and descending sections
may have multiple segments, which is determined by the

Main road
Secondary road

Branch road
Bus station

N

Figure 6: Experimental grid road network.

Table 3: Traffic arrival pattern in the experimental simulation
network.

Road grade Increase of car flow
(veh)

Maximum value of car flow
(veh/ln/h)

Main road 100 1,500
Secondary
road 50 800

Branch road 10 150∼ 300

Dedicated bus lane

Dedicated bus lane

Figure 5: Schematic diagram of dedicated bus lanes.
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speed of the car p-MFD and the bus p-MFD entering and
leaving the rising and descending sections, respectively.
Notably, when the proportion of dedicated bus lanes is 0.21,
all buses in the road network can freely enter and exit the
road network through dedicated bus lanes. (erefore, the
bus p-MFD has only the rising and the stable sections.

(e road network p-MFD with different proportions of
dedicated bus lanes is obtained by using equation (12) and
the segmented expression of p-MFD for cars and buses.
Figures 8(d) and 8(e) show the comparison of the linear
function models of p-MFD with different proportions of
dedicated bus lanes. From the p-MFD obtained, when the
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Figure 7: (a) MFD cluster fitting results with dedicated bus lane proportion of 0.11, (b) MFD with different proportions of dedicated bus
lanes, and (c) MFD with different proportions of dedicated bus lanes.

Table 4: MFD expressions with different proportions of dedicated bus lanes.

Proportion of dedicated bus lanes 0 0.05 0.11 0.16 0.21
Rising section 8.094k + 12.650 8.032k + 9.511 9.169k− 2.224 10.133k− 5.309 13.201k− 16.332
Stable section 262.915 252.181 240.344 230.968 222.027
Descending section −4.301k + 461.961 −6.470k + 603.528 −5.451k + 505.999 −5.326k + 425.497 −6.755k + 441.243
Post-stable section 16.955 20.477 19.398 18.283 20.423
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Figure 8: (a) p-MFD cluster fitting results of cars with dedicated bus lane proportion of 0.11, (b) p-MFD cluster fitting results of buses with
bus lane proportion of 0.11, (c) p-MFD of road network with dedicated bus lane proportion of 0.11, (d) p-MFDwith different proportions of
dedicated bus lanes, and (e) p-MFD with different proportions of dedicated bus lanes.
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proportion of dedicated bus lanes is no greater than 0.16,
the road network p-MFD has a seven-segment linear
function; the rising section (gp > 0) has two segments; and
the stable and the post-stable sections have one segment,
and the descending section (gp < 0) has three segments.
When the proportion of dedicated bus lanes is 0.21, the
road network p-MFD is a five-segment linear function; the
rising section (gp > 0) has two segments; the stable and the
post-stable sections have one segment, and the descending
section (gp < 0) has also one section. (e indicators pro-
posed in Section 3 on p-MFD are analysed in detail in
Section 6.

4.2.3. Impact Analysis of nb on p-MFD. (e bus p-MFD and
network p-MFDwith the values of nb changing from 10 to 90
when the proportion of dedicated bus lanes is 0.11 are taken
as the example to demonstrate the impact of nb on p-MFD,
as shown in Figures 9(a) and 9(b). When the average pas-
senger occupancy of buses in the road network increases, the
basic shapes of the bus p-MFD and the network p-MFD
remain unchanged. It shows that with the increase of the
vehicle density, the passenger flow first increases, then
stabilizes, and then drops to a certain small value.

For bus p-MFD and network p-MFD, when the values of
nb increases, changing from 10 to 90, the slopes of the rising
section, the values of the stable section, and the post-stable
section become larger. According to the indicators based on
the p-MFD, it means that when the number of passengers
carried by buses in the network becomes larger, the effi-
ciency of transporting passengers improves.

(is shows that when the average passenger occupancy
of cars in the network is certain, appropriately increasing the
average passenger occupancy of buses can improve the
transport efficiency of the road network.(e optimization of
the network transport efficiency can be realized from two
aspects. On the one hand, the passenger capacity of buses
should be improved, and the carriages should be rationally
optimized to increase the number of passengers that can be
accommodated. On the other hand, the level of public
transportation services should be improved to increase the
attractiveness of public transportation.

5. Impact Analysis of Dedicated Bus
Lanes on MFD

5.1. Geometric Features. (e proportion of dedicated bus
lanes affects the geometric characteristics of MFD, mainly
including the rising section, the descending section, the
stable section, the points of inflection, and the density range
of each section.

5.1.1. :e Rising and Descending Sections. (e absolute
values of the slopes of the rising and the descending sections
of the MFD under different proportions of dedicated bus
lanes are compared as shown in Figure 10. In general, as the
proportion of dedicated bus lanes in the road network in-
creases from 0 to 0.21, the slope of the rising section in-
creases. However, the absolute value of the slope of the
descending section is less affected. It indicates that the
implementation of dedicated bus lanes is conducive to the
transport of vehicles in the smooth state of the road network,
and as the proportion of dedicated bus lanes increases, this
advantage becomes more obvious. When traffic flow in the
road network is small, the vehicles in the road network are in
a noncongested state. Cars and buses driving in separate
lanes can ensure that their speeds are maintained within the
ideal range, thereby improving the overall transport effi-
ciency of the road network. Meanwhile, the implementation
of dedicated bus lanes has little effect on network efficiency
when the road network is congested.

5.1.2.:e Stable Section. (e values of the stable section qmax
with different proportions of dedicated bus lanes are
compared as shown in Figure 11. As the proportion of
dedicated bus lanes increases from 0 to 0.21, the value of the
stable section decreases. It indicates that the implementation
of dedicated bus lanes reduces the capacity of transporting
vehicles when the road network is in a saturated state. (e
impact is more significant with the increase in the pro-
portion of dedicated bus lanes. Due to the limited road
resources, the increase in the number of dedicated bus lanes
will cause the reduction of the number of passenger-car

Table 5: Car p-MFD expression with different proportions of dedicated bus lanes.

Proportion of dedicated bus lanes 0 0.05 0.11 0.16 0.21
Rising section 9.436k− 0.132 8.819k + 3.010 10.428k− 17.927 11.140k− 17.496 14.101k− 27.883
Stable section 311.952 295.718 273.427 267.126 260.573
Descending section −5.421k + 594.830 −7.473k + 721.232 −6.419k + 609.990 −6.673k + 541.792 −8.861k + 586.643
Post-stable section 20.890 21.754 18.479 14.609 15.780

Table 6: Bus p-MFD expression with different proportions of dedicated bus lanes.

Proportion of dedicated bus lanes 0 0.05 0.11 0.16 0.21
Rising section 80.497k− 365.479 76.460k− 319.657 73.042k− 270.203 78.423k− 252.100 104.309k− 333.356
Stable section 488.711 487.780 484.173 481.680 483.791
Descending section −8.715k + 811.437 −6.389k + 756.586 −4.182k + 657.039 −3.765k + 641.574 —
Post-stable section 12.843 126.845 245.322 364.262 —
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lanes.(e number of buses running in the dedicated bus lane
is related to the setting of the bus lanes, the bus departure
interval, and so on. Due to its transport characteristics and
public service attributes, the output flow of the dedicated bus
lanes is less than the output flow of the passenger-car lanes.
(erefore, the implementation of dedicated bus lanes re-
duces the number of vehicles that can be served by the road
network.

5.1.3. :e Points of Inflection. (e horizontal and vertical
coordinates of the inflection points of the MFD with dif-
ferent proportions of dedicated bus lanes are compared as
shown in Figure 12. As the proportion of dedicated bus lanes
increases from 0 to 0.21, the values of ks

b and qmax both show
a decreasing trend, and the value of kd

b first increases and
then decreases. (e position of the front-inflection point
moves roughly toward the zero point. It shows that the
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Figure 9: (a) Bus p-MFD with different nb (person/veh) and (b) network p-MFD with different nb (person/veh).
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implementation of dedicated bus lanes makes the road
network transit from the smooth state to the saturated state
faster, and as the proportion of dedicated bus lanes increases,
the changing speed of the transport state increases. (e
abscissa of the back-inflection point first increases and then
decreases, indicating that when the proportion of dedicated
bus lanes is set in the range of 0∼ 0.11, the speed at which the
road network enters congestion will slow down. As the
proportion of dedicated bus lanes continues to increase, the
road network will quickly change from a saturated state to a
congested state.

(e implementation of dedicated bus lanes in the road
network causes the reduction of the number of passenger-
car lanes and also the access of vehicles that the road network
can withstand. When the proportion of dedicated bus lanes
is in the range of 0∼ 0.11, buses and cars running in different
lanes effectively reduce the influence of each other. It is
beneficial to increase the number of vehicles effectively
borne by the road network. However, as the proportion of
dedicated bus lanes continues to increase, passenger-car
lanes are reduced more, and the number of vehicles effec-
tively borne by the road network decreases sharply.

5.1.4. :e Density Range of Each Section. (e density range
of each section Δkx

range with different proportions of dedi-
cated bus lanes is compared as shown in Figure 13.When the
proportion of dedicated bus lanes in the road network is
within the range of 0∼ 0.11, Δks

range and kd
b are relatively

large, respectively. It means the road network can effectively
bearmore vehicles andmaintain high-efficiency operation in
a long density range. In addition, it can be seen that the
implementation of dedicated bus lanes has led to a decrease
in traffic density on the road network, which indicates that
the traffic density on dedicated bus lanes is less than that on
the normal lanes. (e reason is that dedicated bus lanes can
maintain a certain driving speed. However, the provision of
dedicated bus lanes reduces the utilization of road resources
by vehicles to a certain extent.

5.2. Goodness of Fit. (e proportion of dedicated bus lanes
affects the clustering of MFD scattered points, and the
goodness of fit is studied.

(e goodness of fit of the rising section and that of the
descending section, R2, with different proportions of ded-
icated bus lanes are compared as shown in Figure 14. As the
proportion of dedicated bus lanes increases from 0 to 0.21,
the R2 of the rising and the descending sections shows an
increasing trend. (e scatter points of the MFD with a
certain proportion of dedicated bus lanes are more con-
centrated than the ones with no dedicated bus lanes. (e
implementation of dedicated bus lanes is conducive to
maintain the stability of road network operation. (e main
reason is that the dedicated bus lanes allow buses and cars to
drive in different lanes, reducing the mutual influence
caused by the difference in operating characteristics between
them, thereby improving the stability of road network
operation.

In summary, the proportion of dedicated bus lanes has
certain influences on MFD, especially from the following
perspective: the slopes of the rising section, the value of the
stable section, the inflection points, density range, and
goodness of fit. (e impacts of the proportion of dedicated
bus lanes on the slopes of the descending section and the
value of the post-stable section are not obvious.

6. Impact Analysis of Dedicated Bus
Lanes on p-MFD

(e proportion of dedicated bus lanes affects the geometric
characteristics of p-MFD, mainly including the rising, the
descending, the stable and the post-stable sections.

6.1.:eRising and theDescending Sections. (e slopes of the
rising section of the p-MFD with different dedicated bus
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lanes proportions are compared as shown in Figure 15. (e
slope of the first segment belonging to the rising section is
greater than the second, indicating that there are two stages in
the process of transporting passengers when the road network
is in a smooth state. According to equation (13), the slope of
the p-MFD rising section is the sum of the slopes of the rising
section of the corresponding car p-MFD and the bus p-MFD.
When 0< k<min k1

b, k1
c , the bus p-MFD enters the stable

section first since k1c > k1
b. At this time, gpb(k) � 0, so the slope

of the second segment that belongs to the rising section of
p-MFD is equal to the slope of car p-MFD.(is shows that in
the first stage, with the continuous input of vehicles, passenger
transport of cars and buses is in a smooth state, and the
passenger transport efficiency reaches the maximum. In the
second stage, as the density of vehicles in the road network
continues to increase, bus passenger transport reaches satu-
ration first. At this time, the flow of the road network to
transport passengers continues to increase. It is worth noting
that the speed at which the passenger transport of buses
reaches saturation is related to the interval between bus de-
partures and the number of bus routes on dedicated bus lanes.

(e absolute slopes of the p-MFD descending section
with different dedicated bus lanes proportions are compared
as shown in Figure 16. (e slope value of the descending
section changes twice, indicating that there are three stages
in the process of transporting passengers when the road
network is in a congested state.

When the proportion of bus lanes is 0, the slope of the first
stage corresponds to that of the bus p-MFD. (e slope of the
second stage is corresponding to the sum of the slope of the
descending section of the car p-MFD and the bus p-MFD.(e
slope of the third stage is corresponding to that of the car
p-MFD. (is shows that when the road network is not
implemented with dedicated bus lanes, in the first stage, with
the continuous input of vehicles, some intersections and road
sections on the road network will be blocked, and the pas-
senger transport of the bus first reaches the congested state. At
this time, the flow of the road network to transport passengers
continues to decline, and the efficiency of bus passenger
transport has slowed down. In the second stage, as the traffic
density continues to increase, both bus and car passenger
transports have reached the congested state. At this time, the
passenger flow of the road network continues to drop, and the
efficiency of the passenger transport is significantly reduced.
In the third stage, the passenger transport capacity of buses is
reduced to the minimum, and most bus passengers cannot
leave the road network. At this time, the flow of the road
network to transport passengers continues to decline.

If the proportion of dedicated bus lanes is greater than 0,
the slope of the first and third stages of the descending
section corresponds to that of the bus, and the slope of the
second stage of the p-MFD descending section is the sum of
the slopes of the descending sections of the corresponding
car p-MFD and the bus p-MFD. It indicates that the pas-
senger transport in the first and second stages of the road
network is the same as the transport without dedicated bus
lanes. (e difference is that in the third stage, the passenger
transport capacity of cars is reduced to the minimum, and
most car passengers cannot leave the road network. At this

time, the flow of the road network to transport passengers
continues to decline. (is indicates that when the road
network is congested, bus passengers can use the dedicated
bus lanes to enter quickly and exit the road network, while
the serious blockage of passenger-car lanes makes it difficult
for car passengers to do so.

It can be seen from Figure 16 that as the proportion of
dedicated bus lanes increases from 0 to 0.21, the absolute
value of the slope of the descending section in the second
stage has a decreasing trend. It indicates that the dedicated
bus lanes improve the transport efficiency of passengers
when a road network is in a congested state. As the pro-
portion increases, the impact becomes more significant.

6.2.:e Stable Section. (e values of the stable section of the
p-MFD with different proportions of dedicated bus lanes are
compared as shown in Figure 17(a). As the proportion of
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dedicated bus lanes increases from 0 to 0.21, the value of the
stable section continues to decrease. It indicates that dedi-
cated bus lanes reduce the capacity of the road network to
transport passengers in a saturated state. (e proportion
increases, and the impact is more significant.

(e values of the stable section of the bus p-MFD and the
car p-MFD with different proportions of dedicated bus lanes
are compared, as shown in Figure 17(b). It can be seen from
Figure 17(b) that as the proportion of dedicated bus lanes
increases, the value of the stable section of bus p-MFD
fluctuates around 484 persons/lane/h, while the value of the
stable section of car p-MFD continues to decrease. (is
indicates that the dedicated bus lanes reduce the ability of the
road network to withstand the entry and exit of car pas-
sengers. At this time, dedicated bus lanes do not bring
obvious benefits to the road network to transport bus
passengers. (e main reason is that in this state, the road
network transport is able to maintain efficient operation.
Most of the roads have not been congested, and at the same
time, the passenger transport of buses is saturated according
to the bus service level. (erefore, even if there is no ded-
icated bus lane, buses can still efficiently transport passen-
gers in and out of the road network.

6.3. :e Post-Stable Section. (e values of the post-stable
section of the p-MFD with different proportions of dedi-
cated bus lanes are compared as shown in Figure 18. As the
proportion of dedicated bus lanes increases from 0 to 0.21,
the value of the post-stable section continues to increase. It
indicates that the dedicated bus lanes improve the ability of
the road network to transport passengers in the post-con-
gested state. (e impact is more significant when the pro-
portion increases. (e main reason is that when the road
network is in a post-congested state, most of the intersec-
tions and road sections in the road network are severely
congested.Without dedicated bus lanes, most car passengers
and bus passengers cannot leave the road network. However,
the dedicated bus lanes can ensure the passage of buses;

therefore, the road network can maintain efficient transport
of bus passengers when most roads are blocked.

In summary, the proportion of dedicated bus lanes has
certain influences on p-MFD, specifically from the following
perspective: the slopes of the rising and the descending
sections and the values of the stable and the post-stable
sections. Since the number of segments of network p-MFD is
flexible, the patterns of the other indicators caused by the
impacts of the proportion of dedicated bus lanes are not
obvious.

7. Conclusions

(is paper proposes the description and modelling methods
of MFD and p-MFD based on GMM and linear fitting and
the corresponding performance indicators of urban road
networks. (e methodology proposed in this study can be
applicable to various scenarios of urban road networks and
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even can be extended to multiple modes (cars, buses, etc.). A
grid network is taken as a case study such as to analyse the
impact of different dedicated bus lane proportions on
network performance via microscopic traffic simulation for
MFD and p-MFD modelling. (ere are some interesting
findings as follows:

(i) (e larger the proportion of dedicated bus lanes, the
more the rising and the stable sections of MFD, and
the descending and post-stable sections of p-MFD
are affected.

(ii) (e slope of the MFD rising section tends to in-
crease, and the value of the MFD stable section
tends to decrease as the proportion of dedicated bus
lanes increases, which indicates that dedicated bus
lane improves the efficiency of vehicle transport
under the smooth state of the road network.
However, it might reduce the vehicle throughput of
the road network.

(iii) (e slope of the p-MFD descending section and the
value of the post-stable section tend to increase
when the proportion of dedicated bus lanes is in-
creased. It indicates that dedicated bus lanes im-
prove the efficiency of passenger transport under
the saturated state of the road network. (e impact
is more significant when the proportion grows.

(iv) When the proportion of dedicated bus lanes on the
road network is within the range of 0 to 0.11, the
road network can effectively bear more vehicles and
maintain a longer density range with efficient
operation.

(v) As the proportion of dedicated bus lanes increases,
the goodness of fit of the MFD rising and
descending sections tend to increase, which indi-
cates that dedicated bus lanes are conducive to
improve the transport stability of the road network.

(vi) As the bus passenger occupancy increases, the
slopes of the rising section and the values of the
stable and the post-stable sections of p-MFD be-
come larger.

To sum up, for the simulated road network, dedicated
bus lanes can improve the efficiency of vehicle and passenger
transport in the smooth state of the road network, also
ensure that the road network continues to carry passengers
in the congested state, and improve the stability of the road
network transport. However, in themeantime, dedicated bus
lanes also affect the ability of the road network to withstand
the entry and exit of car passengers. (erefore, when
implementing dedicated bus lanes, reasonable consideration
should be given to the proportion and the operating period.
(e operation state of the road network is recommended to
be monitored in real-time, and dedicated bus lanes are
suggested to be implemented when the road network is in
the smooth and the post-congested states. In addition, the
proportion of dedicated bus lanes should be reasonably
allocated based on bus demand and operation conditions,
which provides a reference for better implementation of

dedicated bus lanes. Besides, the bus passenger capacity and
bus service should be improved to increase the attractiveness
of public transportation.

(is paper proposes a group of indicators based onMFD
and p-MFD and summarizes the influence mechanism of
dedicated bus lanes on road network transport in different
states, aiming to support and expand existing research. In
the future, the influence of different forms of bus lanes,
operating periods of bus lanes, as well as the influence of bus
signal priority on MFD and p-MFD should be studied to
assist traffic planning and management departments to
optimize the public transport system further. Meanwhile, it
will help increase the attractiveness of public transport and
improve the comprehensive transport utility of the road
network.
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In order to accurately analyse the impact of the rainy environment on the characteristics of highway traffic flow, a short-term
traffic flow speed prediction model based on gate recurrent unit (GRU) and adaptive nonlinear inertia weight particle swarm
optimization (APSO) was proposed. Firstly, the rainfall and highway traffic flow data were cleaned, and then they are matched
according to the spatiotemporal relationship. Secondly, through the method of multivariate analysis of variance, the significance
of the impact of potential factors on traffic flow speed was explored. *en, a GRU-based traffic flow speed prediction model in
rainy environment is proposed, and the actual road sections under different rainfall scenarios were verified. After that, in view of
the problem that the prediction accuracy of the GRU model was low in the continuous rainfall scenario, the APSO algorithm was
used to optimize the parameters of the GRU network, and the APSO-GRU prediction model was constructed and verifications
under the same road section and rain scene were carried out. *e results show that the APSO-GRU model has significantly
improved prediction stability than the GRU model and can better extract rainfall features during continuous rainfall, with an
average prediction accuracy rate of 96.74%.

1. Introduction

Rainfall is the most frequently occurring severe weather,
which brings serious impact to highway traffic safety. It is
important to study the traffic flow characteristics of
highways under rainy environment and grasp the regu-
larities of rainfall on traffic flow, making stable prediction
and analysis of traffic flow to implement effective traffic
control [1–4].

In terms of the impact of adverse weather on traffic flow
characteristics, with the improvement of the highway
system and the continuous development of information
observation and collection technology, scholars at home
and abroad have conducted continuous research [5–8]. At
present, the data analysis and modelling system for the

impact of weather factors on highway traffic flow is well
established. In 1994, Ibrahim and Hall [9] studied the
impact of adverse weather on the flow-occupancy and
speed-flow relationships through regression analysis and
showed that heavy rain and snow caused a 10–20% and
30%–48% reduction in maximum highway flow, respec-
tively. In 2005, Agarwal et al. [10] used years of traffic flow
data and contemporaneous weather data of the Northern
United States to quantify the effects of adverse weather
conditions and roadway conditions on highway traffic flow.
*e results showed that heavy rain, snow, and low visibility
resulted in a 10%–17%, 19%–27%, and 12% of reduction in
capacity, respectively, and a reduction of vehicle speed by
4%–7%, 11%–15%, and 10%–12%, respectively. In 2015, Li
[11] derived the mean values of vehicle speeds of different
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rainfall intensities on highways based on statistical analysis
of data, used standard deviations to measure the dispersion
of vehicle speeds, and investigated the variability of vehicle
speed on different lane locations, vehicle types, and time
periods during rainfall.

In terms of traffic flow prediction models, they are
mainly divided into prediction models based on statistical
theory analysis, nonlinear theory prediction models, ma-
chine learning prediction models, and combined predic-
tion models [12]. However, nonlinear theoretical model
related theories are very complex, especially in terms of
mathematical processing. *e model has a high degree of
complexity and a large amount of calculation, which is
suitable for more complicated emergency transportation
systems. With the rise of artificial intelligence, machine
learning has been more often applied to the field of traffic
flow prediction, and related prediction algorithms have
emerged. *ey are mainly divided into support vector
machines, artificial neural networks, and deep learning
[13]. In 2009, Castro-Neto et al. [14] proposed a supervised
online SVR statistical learning model, which optimized the
problem of limited applicability of general models in
atypical cases. *e developed model outperformed models
such as Gaussian maximum likelihood, Holt exponential
smoothing, and artificial neural networks in typical and
atypical traffic flow prediction. In 2013, Jeong et al. [15]
proposed an online learning weighted SVR model
(OLWSVR) for short-term traffic flow prediction, which
outperformed prediction models such as locally weighted
regression, conventional SVR, and online learning SVR.
Smith and Demetsky [16] analysed short-term traffic flow
prediction models based on neural network and non-
parametric regression. Cai et al. [17] proposed a neural
network based on improved cuckoo algorithm with opti-
mized radial basis function (CS-RBF) for highway traffic
flow prediction under heavy rainfall, and the study showed
that the algorithm has better prediction accuracy and
convergence speed. In 2015, Lv et al. [18] proposed traffic
flow feature learning using a stacked autoencoder model
and trained it with greedy hierarchical unsupervised
learning deep learning model. Zhang and Wang [19] built
an urban trunk road travel time prediction model based on
GRU network and simulated it using real road network
data. In 2020, Wang et al. [20] proposed an LSTM travel
time prediction model considering rainfall data, and the
results showed that the prediction results with the inclusion
of rainfall features were more accurate than when the
rainfall features were not included. Meng proposed the
LSTM-GRU combined model to predict the short-term
traffic flow speed of highways in rainy days. *is model is
well adapted to the uncertainty and sudden change of traffic
flow speed in rainy days [21].

Reviewing the above literature, we can find the following
research trends regarding the influence of rainy weather
environment on traffic flow characteristics and traffic flow
prediction. (1) For the research on the influence of rainy
weather environment on traffic flow characteristics, most
domestic and foreign scholars divide the rainfall intensity
into levels [22]. Using the traffic flow data and rainfall data of

the actual road section, the changes of the macro traffic flow
parameter values of the road section under different levels of
unfavorable weather are given. However, there is a lack of
comprehensive consideration of the impact of multiple
factors on traffic flow. (2) In terms of traffic flow prediction,
various prediction models have different principles. Cur-
rently, machine learning and deep learning models have
become the mainstream of research in the field of traffic flow
prediction. *roughout the many previous studies on traffic
flow prediction, there are fewer studies on traffic flow
prediction under rainy environment, and more related
studies only add the verification of rainy weather scenarios
on the traditional prediction.

*erefore, in this paper, we consider the influence of
various factors to carry out the research on traffic flow
characteristics of highways under rainy environment. Also,
we add rainfall features to the deep learning model to carry
out the prediction of highway traffic flow speed under rainy
environment. In view of the fact that the PSO algorithm can
adjust the hyperparameters of the deep learning model and
bring better prediction performance, this article will build
the APSO-GRU model.

2. Data Preprocessing

2.1. Preprocessing of Traffic Flow Data. *e data in this
article come from the floating car data of Beijing-Harbin
Highway (JingHa Highway), Beijing-Tianjin Highway
(JingJin Highway), Beijing-Taipei Highway (JingTai High-
way), and Beijing-Kaifeng Highway (JingKai Highway). By
fusing multisource floating car data and combining the
original data with relevant geographic information through
the MapInfo interface, the space-time matching of traffic flow
data is completed. After data preprocessing, the proportion of
abnormal data accounts for 5% of the total original data.

*e raw traffic flow data are recorded in 5-minute in-
tervals, spanning a total of six months from June 1 to August
31, 2018, and June 1 to August 31, 2019.*e raw data include
information such as highway section ID, section direction,
average vehicle speed, and traffic flow. *e data format is
shown in Table 1.

In the table, the first 13 digits of Section_id indicate the
number of a section of the highway, and the last digit in-
dicates the direction of vehicle travel on the section, with 1
representing upward and 0 representing downward; Spee-
d_avg indicates the average speed of all vehicles passing the
section during the collection time; volume indicates the
traffic volume of the section during the collection time.

*e data cleaning is divided into two parts: rejection of
erroneous data and repair of missing data. For the rejection
of erroneous data, a “rule rejection method” is used, which
integrates the threshold method and the basic theory of
traffic flow [23]. For the missing original data [24] of traffic
flow, a simple nearest neighbor mean fill method is used to
fill the data, which combines the mean filling method of
replacing the missing data with the mean of the existing data
and the nearest neighbor interpolation method using the
observation values near the missing value to replace the
missing value. *e nearest neighbor interpolation method of
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missing values is combined. *en, we take the average value
of the valid data adjacent to the missing data as filling, as in
the following equation:

Ht �
Ht−1 + Ht+1( 

2
, (1)

where Ht represents the missing traffic flow data of the tth

cycle, including V and Q, and Ht−1, Ht+1 are traffic flow data
of the two adjacent cycles of the tth cycle.

2.2. Preprocessing of Rainfall Data. *e rainfall data were
obtained from Beijing Nanjiao Observatory Station (No.
54511), Tongzhou Station (No. 54431), and Daxing Station
(No. 54594). In this paper, only hourly rainfall data and their
corresponding dates and times are extracted. A total of 4397
meteorological data from Daxing District and 4401 mete-
orological data from Tongzhou District were extracted, and
the format of rainfall data is shown in Table 2. *e time item
indicates the end moment of the data collection time, and
the rainfall amount is the accumulated rainfall amount
within the data collection time.

Only a small amount of rainfall data was found to be
missing through inspection. According to the method of
traffic flow data filling, the average value of rainfall in the
adjacent hours of the missing data was used to fill in the
missing data.

2.3. Spatial and Temporal Matching. *e recording period
of traffic flow data is 5 minutes, while the recording period of
rainfall data is 1 hour. It is necessary to match two data from
time granularity. High-precision rainfall data are currently
not available, and it is difficult to decompose long-period
data into short-period data. In addition, the time accuracy of
the floating car data acquisition system needs to be im-
proved. Even if high-precision rainfall data are obtained, the
time-space error of the two data matching is difficult to
evaluate. So, it is more reasonable to combine the traffic flow
data from 5-minute recording period to 1-hour recording
period, and the combination rule is expressed as follows:

C � 

12

i�1
Ci,

V � 

12

i�1

ViCi

C
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where C represents traffic flow on the section in one hour
(veh/h); Ci represents traffic flow on the section in 5 minutes
(veh/5min); V represents the average speed of vehicles on
the section in one hour (km/h); and Vi represents the av-
erage vehicle speed on the section in 5 minutes (km/h).

Based on the weighted average method, the average
vehicle speed time series and traffic flow time series of each
highway are calculated. *e weight of the road section is the
proportion of its length in the whole highway. *e calcu-
lation method is shown in the following equation:

V � 
K

n�1

Vn · Ln

L
,

C � 
K

n�1

Cn · Ln

L
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where V represents the average speed of vehicles on the
highway (km/h); Vn represents the average vehicle speed of the
road section (km/h); Ln represents the length of the road
section (m); L represents the length of highway (m); K rep-
resents the total number of sections of the highway; C rep-
resents the overall traffic volume of the highway (veh/h); and
Cn represents the traffic volume of the road section (veh/h).

*e traffic flow time series and the rainfall time series in
the region are integrated according to the corresponding
time to complete the spatiotemporal matching, and the
format of the matched data is shown in Table 3. In the table,
Date_hour indicates the date and time; precipitation indi-
cates the rainfall amount in mm/h; Volume_sum indicates
the traffic flow in veh/h; and Speed_avg indicates the average
vehicle speed in km/h.

3. Analysis of the Influence of RainyWeather on
Traffic Flow Speed of Highway

3.1. Analysis of the Factors Influencing the Traffic Flow Speed.
*e traffic flow speed of highway is affected by many factors.
Four potential factors, such as rainfall intensity, date cate-
gory, time period, and number of lanes, are selected to
explore whether these factors affect the traffic flow speed of
highway by multivariate analysis of variance. According to
the statistical analysis of the characteristics of highway traffic
flow, it can be seen that the “morning peak hour” of highway
is relatively lagging behind that of urban roads. Before the
arrival of the peaking hour, it can be clearly seen that both
traffic flow speed and traffic flow have experienced two
processes of first decreasing and then increasing. *rough
observation, it is found that it is more reasonable to divide
every four hours as a time period, as shown in Table 4.

Table 1: Format of raw traffic flow data.

Section_id Speed_avg (km/h) Volume (veh/5min)
59565500000081 86.52 267
59565500000090 85.57 238
59565500000101 86.34 314
59565500000221 85.61 284
59565500000231 85.82 329
59565600000010 85.66 283

Table 2: Rainfall data format.

Station ID Date Time Rainfall
54594 20190615 22:00 0
54594 20190615 23:00 0.2
54594 20190615 24:00 1.0
54594 20190616 1:00 1.7
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SPSS software was used for multivariate analysis of
variance, and the output of SPSS is shown in Figure 1. *e
results show that the four factors have significant influence
on the traffic flow speed. In addition, the interaction of date
category, time period, and number of lanes has a significant
impact on traffic flow speed. *e combination of other
factors has no significant effect on traffic flow speed.

3.2. Influence of Rainfall on Traffic Flow Speed of Highway

3.2.1. Distribution Characteristics of Traffic Flow Speed under
Different Rainfall Intensities. Considering the different
levels of date categories and number of lanes, the distri-
bution statistics of standard traffic flow speed under different
rainfall intensities are carried out, which are divided into
Tongzhou District and Daxing District, as shown in Figure 2.

It can be seen that the standard speed of highway vehicles
in rainy days decreases with the increase of rainfall intensity.
In terms of date category, weekend is more vulnerable to
rainfall than working day. *e slope of “rainfall intensity
standard speed” of the four-lane highway in the two areas is
greater than that of the three-lane highway, which indicates
that the four-lane highway is more vulnerable to rainfall.

3.2.2. Speed Distribution Characteristics of Traffic Flow in
Different Periods. Considering the different levels of rainfall
intensity, date category, and number of lanes, the distri-
bution statistics of the standard speed of vehicles in different
periods of each highway are carried out, as shown in
Figure 3.

It can be seen from Figure 3 that the standard speed of
four-lane highway is generally lower than that of three-lane
highway when other factors are the same, which indicates
that its traffic flow speed is more easily affected. *e same
rainfall intensity has different influence on the traffic flow
speed in different periods of the day, and the morning peak
and evening peak are more easily affected by rainfall.
Similarly, the speed of traffic flow in the first period, the
second period, and the sixth period is relatively less

susceptible to rainfall. With the increase of rainfall intensity,
the above differences will be more obvious.

4. The Establishment of the PredictionModel of
the Traffic Flow Speed of APSO-GRU

4.1. Design of Traffic Flow Speed Prediction Model Based on
GRU. *e proposed GRU model is composed of three
sections, i.e., input layer, hidden layer, and output layer. *e
output layer is a fully connected dense layer. Adam algo-
rithm is selected as the weight optimizer to optimize the
internal weight of the model. *e structure of the prediction
model is shown in Figure 4 [25].

*e input of the model is a time series matrix composed
of traffic flow speed, traffic flow, and rainfall, the output is
traffic flow speed, and the loss function is MAE.MSE is more
affected by outliers, while MAE is more stable. After actual
data validation, the parameters of the GRU prediction model
are set as follows: the number of hidden layer nodes is 15,
dropout parameter is 0.3, batch size is 200, epoch is 180, and
learning rate is 0.004. And the training set and test set are
divided in a ratio of 4:1.

4.2. PSO Algorithm. Part of the parameters of the GRU
model is automatically adjusted by the model, and the other
part of the parameters needs to be set artificially, which are
called superparameters, including the number of hidden
layers, the number of hidden layer nodes, the number of
iterations, etc., and the rationality of superparameter setting
directly affects the convergence speed of model calculation
and the accuracy of prediction. *erefore, this section uses
PSO algorithm to optimize the GRU model.

Particle swarm optimization algorithm is described in
the D-dimensional search space, and N different particles
form a search population. *e current position of the ith

particle is xi � (xi1, xi2, . . . , xiD), current speed is
vi � (vi1, vi2, . . . , viD), and the best location currently
searched by the individual is pi � (pi1, pi2, . . . , piD); it is
called individual extremum [26].*e optimal position of the

Table 4: *e division of different periods of the day.

Period number Time span Characteristic
1 0:00–4:00 During the low period in the morning, the speed and flow decrease slowly
2 4:00–8:00 During the rising period, the speed and flow increase rapidly
3 8:00–12:00 In the morning peak, the speed and flow are high
4 12:00–16:00 In the afternoon, the peak was flat, and the speed and flow decreased smoothly and slowly
5 16:00–20:00 In the evening peak, the flow reaches the peak again, and the speed decreases gradually
6 20:00–24:00 In the low period of night, the speed and flow decrease rapidly

Table 3: Data format after spatiotemporal matching.

Highway Date_hour Precipitation Volume_sum Speed_avg
Beijing-Harbin Highway 20190706_09 0 1106 89.61
Beijing-Harbin Highway 20190706_10 9 1051 85.34
Beijing-Harbin Highway 20190706_11 2.8 1137 87.74
Beijing-Harbin Highway 20190706_12 2.1 963 87.93
Beijing-Harbin Highway 20190706_13 1.5 897 88.57
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whole population is called global extremum, and it is
g � (gi1, gi2, . . . , giD).

*e current position of the particle corresponds to a
candidate solution of the optimization problem, and the
flight process is the search process of the individual. Each
particle iterates continuously to update its speed and po-
sition, which are determined by equations (4) and (5),
respectively:

vi(t + 1) � vi(t) + cp · r1 · pi(t) − xi(t)( 

+ cg · r2 · g(t) − xi(t)( ,
(4)

xi(t + 1) � xi(t) + vi(t + 1), (5)

where vi(t) represents the velocity of the ith particle at time t;
xi(t) represents the position of the ith particle at time t; cp, cg

represent the acceleration coefficients, where cp is the
cognitive learning factor and cg is the social learning factor,
respectively, representing the self-learning ability of particles

and the ability to learn from the optimal individual of the
group, cp, cg > 0; r1, r2 represent random numbers with (0, 1)
interval uniform distribution; pi(t) represents the historical
optimal position of the ith particle at time t; and g(t)

represents global optimal position of particle swarm opti-
mization at time t.

In order to further optimize the performance of the PSO
algorithm, Shi introduced a new parameter inertia weight
[27] into the particle velocity update formula of the original
PSO algorithm, and equation (4) becomes

vi(t + 1) � w · vi(t) + cp · r1 · pi(t) − xi(t)( 

+ cg · r2 · g(t) − xi(t)( .
(6)

Inertia weight determines the influence of particle ve-
locity at the previous time on the current velocity, which can
effectively balance the role of global search and local search.
Equation (5) consists of three parts. *e first part is inertial
motion, which indicates the degree to which the particle

Intersubjective effect test
Dependent variable: traffic flow speed

category Mean square F Significance

Revised model 34335.592a
95 361.427 434.476 .000

Bias 4594866.533 1 4594866.535 5523544.621 .000

rainfall intensity 11347.833 3 3782.611 4547.122 .000

date category 28.831 1 28.831 34.658 .000

number of lanes 2532.155 1 2532.155 3043.934 .000

time period 13278.496 5 2655.699 3192.448 .000

rainfall intensity∗ date category 50.508 3 16.836 20.239 .000

rainfall intensity∗ number of lanes 6.983 3 2.328 2.798 .039

rainfall intensity∗ time period 31.436 15 2.096 2.519 .001

date category∗ number of lanes 22.878 1 22.878 27.502 .000

date category∗ time period 138.678 5 27.736 33.341 .000

number of lanes∗ time period 181.608 5 36.322 43.663 .000

rainfall intensity∗ date category∗
number of lanes

1.339 3 .446 .537 .657

rainfall intensity∗ date category∗
time period

1.971 15 .131 .158 1.000

rainfall intensity∗ number of lanes∗
time period

2.142 15 .143 .172 1.000

date category∗ number of lanes∗
time period

35.738 5 7.148 8.592 .000

rainfall intensity∗ date category∗
number of lanes* time period

2.787 15 .186 .223 .999

deviation 625.566 752

total 6023624.627 848

Revised total 34961.157 847

a. R square = .982 (revisedR square = .980)

Type III sum
of squares

Degree of 
freedom

Figure 1: SPSS output.
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Figure 2: Standard speed distribution of highway under different rainfall intensities: (a) highway in Tongzhou District; (b) highway in
Daxing District.
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Figure 3: Continued.
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maintains its velocity at the previous moment; the second is
cognitive learning, which means that the particles memorize
their historical optimal position and make them close to the
historical optimal position. Finally, social learning, which
means the information exchange between particles, makes
particles close to the historical optimal position of the
population [28]. It can be seen from equation (4) that
particles have memory, and they move towards the direction
of the optimal particle combined with their own and group
experience. Equations (5) and (6) constitute a new PSO
algorithm called standard PSO algorithm (SPSO).

4.3. Adaptive Nonlinear Inertia Weight PSO. In order to
further improve the problem that PSO algorithm is easy to

fall into local optimal solution and reasonably balance the
ability of local search and global search of PSO algorithm, an
adaptive nonlinear inertia weight method is used to adjust,
as shown in the following equation:

w �

wmin +
wmax − wmin( ∗ fi − fmin( 

farg − fmin
, fi ≤farg,

wmax, fi >farg,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where wmax, wmin are the maximum and minimum values of
inertia weight; fi represents the adaptation value of particle
i; fmin represents the minimum fitness of all current
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Figure 3: Time distribution characteristics of standard speed of highway in rainy environment: (a) Beijing-Harbin Highway; (b) Beijing-
Tianjin Highway; (c) Beijing-Kaifeng Highway; (d) Beijing-Taipei Highway.
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Figure 4: Structure of the GRU prediction model.
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particles; fmax represents the maximum fitness of all current
particles; and farg represents the average fitness value of all
current particles.

4.4. Establishment of APSO-GRU Prediction Model. Based
on the adaptive nonlinear inertia weight PSO algorithm
proposed in the previous section, an APSO-GRU pre-
diction model is proposed, and the parameters of GRU
network are optimized by PSO algorithm. It is finally
determined that the number of hidden layers of the model
is 2, the number of nodes in the first layer is 20, and the
number of nodes in the second layer is 15 through cross
combination test. And the relevant parameters of the
APSO are set as follows: the population number is 20, the
number of iterations is 30, the acceleration coefficients are
both 2, and the maximum and minimum inertia weights
are 0.9 and 0.1, respectively, [h1min, h1max] and
[h2min, h2max] both are [1, 50], [ηmin, ηmax] is [0.001, 0.01],
and [nmin, nmax] is [1, 500]. *e model flow is shown in
Figure 5.

5. Instance Verification

5.1. Experimental Verification Scenario and Evaluation
Indexes. In the field of traffic flow prediction, the most
common loss functions include mean absolute error (MAE),
root mean square error (RMSE), and mean absolute per-
centage error (MAPE) [29]. *eir calculations are shown in
equations (8)–(10). RMSE and MAPE are used as error
functions to evaluate the performance of the prediction
model.

MAE �
1
L



L

t�1
Y(t) − Yp(t)



, (8)

RMSE �

������������������
1
L


L

Yp(t) − Y(t) 
2



, (9)

MAPE �
1
L


L

Yp(t) − Y(t)




Y(t)
× 100%, (10)

where L represents the total length of time series; Yp(t)

represents prediction value at time t; and Y(t) represents
true value at time t.

Based on the established model of the traffic flow speed
prediction of GRU and APSO-GRU, the traffic flow speed of
Beijing-Harbin Highway, Beijing-Tianjin Highway, Beijing-
Taiwan Highway, and Beijing-Kaifeng Highway in Beijing is
predicted, respectively. At the same time, the support vector
regression (SVR) model is compared with the APSO-LSTM
model on prediction performance.

In order to more comprehensively and accurately
evaluate the performance of the model under different
rainfall scenarios, the rainy environment is divided into two
categories: noncontinuous rainfall and continuous rainfall.
Noncontinuous rainfall is the situation that the rainfall
process is relatively short and sparse in a specific period of

time, while continuous rainfall is the situation that the
rainfall process is relatively long and dense in a specific
period of time.

5.2. Analysis of Prediction Results of APSO-GRU

5.2.1. Prediction Results of Noncontinuous Rainfall. *e time
span of noncontinuous rainfall in Tongzhou District is the
interval between 0:00 on 9th August (working day) and 24:
00 on 10th August (weekend) in 2019, and the time span of
noncontinuous rainfall in Daxing District is from 0:00 on
11th August (weekend) to 24:00 on 12th August (working
day) in 2019.

Due to article content limitation, this paper only selects
to visualize prediction results of Beijing-Harbin Highway, as
shown in Figure 6. *e horizontal axis represents the time,
and the left vertical axis represents the speed, corresponding
to the broken line chart. *e right vertical axis represents
precipitation, corresponding to the histogram.*is setting is
used in the following.

Under the noncontinuous rainfall scenario, the traffic
flow speed of highway is obviously disturbed during the
rainfall (moderate rain and heavy rain), and the change

Start

Normalize the data and construct the training data matrix

Initialize the parameters of the GRU and the related
parameters of the particle swarm

Initialize the fitness value of each particle, record the individual
extreme value and the global extreme value of the particle

Update the velocity and position of particles

Update the individual extreme value and global extreme value
of the particle

No

Whether the global optimal fitness value is less
than the set value

Whether to reach the maximum number of iterations Yes

Output the globel optimal particles and pass them to the GRU

Get the predicted value and denormalize the data

End

Figure 5: Process of the APSO-GRU prediction model.
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trend of the predicted value of each model is basically
consistent with the real value. *e prediction error is shown
in Table 5.

5.2.2. Prediction Results of Continuous Rainfall. *e time
span of continuous rainfall in Tongzhou District and Daxing
District is from 0:00 on 28th July 2019 (weekend) to 24:00 on
29th July 2019 (working day).

*e prediction results of traffic flow speed of Beijing-
Harbin Highway during continuous rainfall are shown in
Figure 7.

It can be seen from the figure that under the continuous
rainfall scenario, the traffic flow speed of highway is greatly
affected, and the operation state continuously fluctuates. In
this unstable situation, the trend of the predicted values of
each model is basically consistent with the real values, but
the prediction accuracy is significantly lower than that of
noncontinuous rainfall. *e prediction error is shown in
Table 6.

5.2.3. Comparative Evaluation and Analysis of Prediction
Results. *e statistics of the average prediction error of the
traffic flow speed of each model under different rainfall
scenarios on each highway can be seen in Table 7.

In the aspect of traffic flow speed prediction, the pre-
diction accuracy of the APSO-GRUmodel is better than that
of the GRU model and APSO-LSTM model under the two
rainfall scenarios, and the accuracy of the SVR model is the
lowest, which verifies the performance improvement of the

built deep learning model. *e average prediction accuracy
of the GRUmodel, APSO-GRUmodel, APSO-LSTMmodel,
and SVR model is 95.96%, 97.16%, 96.42%, and 94.25%,
respectively. *e average prediction accuracy of the APSO-
GRUmodel is 1.20% higher than that of the GRUmodel and
0.74% higher than that of the APSO-LSTM model.

*e average prediction accuracy of the APSO-GRU
model is 96.75% under the continuous rainfall scenario,
which is 2.38% and 2.22% higher than that of the GRU
model and APSO-LSTMmodel, respectively. *e prediction
accuracy of each model has declined, but the decline of the
APSO-GRU model is not obvious, followed by the GRU

60

65

70

75

80

85

90

95

100

Sp
ee

d 
(k

m
/h

)
0

5

10

15

Pr
ec

ip
ita

tio
n 

(m
m

/h
)

4010 20 30
Time (h)

Actual Data
GRU
APSO-GRU

APSO-LSTM
SVR
Precipitation

Figure 6: Prediction results of traffic flow speed during unsustained rainfall on Beijing-Harbin Highway.

Table 5: Errors in traffic flow speed prediction during unsustained rainfall.

Model
Beijing-Harbin

Highway
Beijing-Tianjin

Highway
Beijing-Kaifeng

Highway
Beijing-Taiwan

Highway
MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE

GRU 3.78 2.91 4.15 3.22 4.04 3.07 4.20 3.13
APSO-GRU 2.84 2.15 3.27 2.76 2.53 1.80 2.71 2.09
APSO-LSTM 3.17 2.68 3.77 2.93 4.23 3.26 3.13 2.75
SVR 6.02 4.63 5.89 4.39 6.21 4.78 4.87 3.89
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Figure 7: Prediction results of traffic flow speed during sustained
rainfall on Beijing-Harbin Highway.
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model. *e prediction accuracy of the APSO-LSTM model
and SVR model is lower than that of the former two models.

6. Conclusions

*e main conclusions obtained in this paper are as follows:

(1) Based on the results of the multivariate analysis of
variance, rainfall intensity, date category, time of
day, and number of lanes have significant effects on
traffic flow speed. *e higher the intensity of rainfall
is, the more the traffic flow is affected. Traffic flow is
more likely to be affected by rainfall on weekends
than weekdays, and it is more likely to be affected by
rainfall during daytime (especially AM peak and PM
peak) than at night.

(2) An APSO-GRU traffic flow speed prediction model
was built for the rainy environment. Under the
noncontinuous rainfall scenario, the average pre-
diction accuracy of the APSO-GRU model reaches
97.33%, which is 1.19% and 0.71% higher than that
of the GRU model and the APSO-LSTM model,
respectively. Under the continuous rainfall sce-
nario, the average prediction accuracy of the APSO-
GRU model reaches 96.74%, which is 2.69% and
2.39% higher than that of the GRU model and the
APSO-LSTM model, respectively. *e results show
that the prediction accuracy and stability of the
APSO-GRU model are significantly improved
compared with the APSO-LSTM model under
different rainfall scenarios.

(3) Comparison of the traffic flow speed prediction
results between the machine learning model SVR
and the APSO-LSTM model in deep learning shows
that the prediction accuracy of APSO-LSTM is
higher than that of the SVR model by 2.18% and
5.55% under noncontinuous rainfall and continuous
rainfall scenarios, respectively. It indicates that the
prediction accuracy and stability of the model based
on LSTM are better than those of the SVR model,

which fully proves that the prediction performance
of the deep learning model is better than the tra-
ditional SVR model.
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In railway operation, unsafe events such as faults may occur, and a large number of unsafe event records are generated in the
process of unsafe events’ recording and reporting. Unsafe events have been described in unstructured natural language, which
often has inconsistent structure and complex sources, involvingmultiple railway specialties, withmultisource, heterogeneous, and
unstructured characteristics. In practical application, the efficiency of processing is extremely low, leading to potentially unsafe
management utilization. Based on the data on unsafe events, this paper utilizes big data processing technology, conducts as-
sociation rules mining and association degree analysis, extracts the word segmentation, and obtains the feature vector of unsafe
fault event data. At the same time, the unsafe event data analysis model is constructed in combination with regular expression and
pattern matching technology. )is paper establishes the matching model of high-speed railway derailment-based external
environment risk factors and applies it to the occurrence of unsafe events.)is model could be utilized to analyze and excavate the
link between external environment risk factors and the occurrence of unsafe events and carry out the automatic extraction of
characteristic information such as risk possibility and consequence severity; hence, it has potential for identifying, with enhanced
accuracy, high-risk factors that may lead to high-speed railway derailment. Based on this study, we could make full use of the
unsafe event data, forecast the risk trend, and discover the law of high-speed railway derailment. )is study introduces a viable
approach to analyzing the unsafe event data, forecasting risk trend, and conceptualizing high-speed railway derailment. It could
also enforce the accurate quantification of high-speed railway safety situation, refine the risk index and conduct in-depth analysis
combined with the model, and effectively support the digitalization and intellectualization of high-speed railway operation safety.

1. Introduction

)e occurrence of high-speed railway derailment accident
may result in severe financial and human losses, which have
significant disaster characteristics and strong nonlinear
characteristics and pose a challenge to high-speed railway
safety management. Technological advances have helped to
mitigate the internal factors behind railway derailment, but
the external factors remain an underexplored area of
research.

Advances in computer technology have benefited large-
scale numerical calculation by enhancing operation speed,
storage capacity, and operation scale. Big data analysis,
furthermore, has been building on progress in accuracy,
quality, and reliability and has become a major area of
academic interest in the context of high-speed railway safety.

To minimize risks that may lead to unsafe events, the
railway corporation has accordingly built the reporting
system to keep the records, and it has generated a large
amount of data thereof. Figure 1 exemplifies a typical record
of an unsafe event.

However, the records on unsafe events, which are now
described in natural language as shown above, could be
incorporated into a digital database, and it could not be
established without a consistent description standard. At the
same time, the railway infrastructure, rolling stock, and
other equipment are diverse and complicated, and the data
sources are complex, involving many specialties, such as
track maintenance, power supply equipment maintenance,
signal and communication equipment maintenance, EMU
maintenance, passenger transportation, and external envi-
ronment. )e database covers a wide range of faults’ fixed
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equipment faults, mobile equipment faults, perimeter in-
trusion events, and others. A sizable amount of data have
been gathered. In practice, the information needs to be
retrieved, read, and updated manually, which costs a huge
amount human and material resources, and the processing
efficiency is considerably low, resulting in the low utilization
rate of railway unsafe event data.

For the requirements of railway safety management and
risk analysis for real time and accuracy to be met, it is urgent
to carry out railway risk effect factors association analysis
based on unstructured data, while taking into account
different data structures, different sources, and scattered and
independent records of railway unsafe events. )rough this
research, the heterogeneous data sources could be inte-
grated, the heterogeneity of data can be eliminated, and the
accurate association between data and railway risk could be
achieved. )erefore, this paper will take the external envi-
ronment risk of high-speed railway derailment as the re-
search focus and carry out a correlation analysis of external
environment risk factors of high-speed railway derailment
based on unstructured data. )e study seeks to identify the
risk factors of high-speed railway derailment and select
appropriate models to process unstructured data, including
data collection, data cleaning, data dictionary construction,
data extraction, data storage, and other steps. Accordingly,
the association between data and risk occurrence possibility
and consequence severity will be realized. )e paper then
moves on analyzing the high-speed railway derailment risk
factors and effective extraction of unstructured data.

In recent years, with the breakthrough of big data and
artificial intelligence technology, a number of investigations
have been carried out regarding the railway safety index,
unstructured data analysis, and multisource heterogeneous
railway safety data identification and extraction. In terms of
railway safety index, since 2015, the International Union of
Railways (UIC) has started to build the global safety index
(GSI) [1]. Based on safety data and accident information, it
evaluates the safety level of railway in Europe, some Asian,
and Middle Eastern countries and regions and analyzes the
statistical data of safety accidents, the impact of accidents,
and the safety level and development trend. Zhao et al. [2]
established a railway accident index by measuring the oc-
currence frequency and consequence severity of railway
accidents, which is used to evaluate the overall situation of
China’s railway safety. In the aspect of unstructured data
analysis and mining, Zhang [3] built an unstructured data
analysis platform based on report documents with Chinese

word segmentation technology, unstructured data extrac-
tion method, pattern matching, and other methods. Zhu
et al. [4] put forward a newHGD tree index technology and a
new partition method, in order to use probability density
function to partition data and improve the speed of data
access, and gave a solution based on the optimization op-
eration method. Wang et al. [5, 6] analyzed and studied the
safety data of dangerous goods transportation based on the
data mining method. In the aspect of multisource hetero-
geneous railway safety data extraction and data analysis,
Wang et al. [7] conducted quantitative analysis on railway
derailment and the change of accident rate based on
American railway safety data. Lin. et al. [8] analyzed the data
of American trunk line passenger trains and quantitatively
analyzed the causes of passenger train accidents. Liu et al. [9]
analyzed the causes of major train derailment and their effect
on accident rates. Turla et al. [10] analyzed the freight train
collision risk in the United States. Li [11] recognized and
extracted the fault features of high-speed railway equipment
by establishing the +bilstm and +CRF method for character
representation and the +transformer method for word
segmentation representation. Zhou and Li [12] established a
method of fault data feature recognition and extraction for
railway signal equipment based on MCNN.

To sum up, previous studies on high-speed railway risks
mostly employ the expert evaluation method, which is ar-
guably based on subjective deliberation and may undermine
the research validity. Besides, past investigations mainly
focus on feature recognition, extraction for specific structure
of safety data, and the processing of unstructured data. As
such, there still lacks research on the correlation analysis
between safety data and risk. )is study proposes a data-
driven risk judgment method for analysis to facilitate ac-
curate association between data and railway risk, with im-
plications that the proposed model can contribute to
improving the feasibility and accuracy of risk judgment.

2. Analysis of External Environment Risk
Associated Factors

To explore the derailment mechanism of high-speed railway,
this paper establishes a dynamic derailment-related element
model of high-speed railway. As shown in Figure 2, the
derailment of high-speed railway is mainly related to EMU
subsystem and line subsystem, and the coupling relationship
between wheel and rail has an important impact on the
derailment of high-speed railway. In addition, the external

10:17 on April 18, 2021, at 191km 188m on XX line of XX railway corporation the
mountain watcher inspected and found that the mountain on the right side of 191km 201m
was cracked, and about 3 cubic meters rockfall intruded into the clearance (the largest one
was 1.1 ∗ 0.9 ∗ 1.2m). �e mountain watcher immediately informed the relevant personnel
to block the line. At 10:21, the line was blocked. A�er being handled by the track
maintenance staff, the line was opened at 11:17. �e incident affected the train traffic and
caused the train no. XXX to change its parking place. �e rockfall at 191km 201m, and this
site is the straight line section of the line, half dike and half cutting section, and the right side
is 4 meters away from the track center of the line.

Figure 1: Example of unstructured unsafe event data of railway.
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environmental factors such as natural geology and perimeter
intrusion factors also play an important role in the derail-
ment of high-speed railway. )e external environmental
safety for high-speed railway derailment has been widely
investigated and is the focus of the current study [13].

Based on the above analysis, the paper puts forward the
framework model of risk associated external environmental
factors for high-speed railway derailment, which fall into
two categories:: natural and geological factors (natural
hazard factors and geological hazard factors) and perimeter
intrusion factors (perimeter intrusion of animals, perimeter
intrusion of objects and plants, and perimeter intrusion of
people), as shown in Figure 3, and the classification is de-
tailed in Table 1 [14–17].

3. Unstructured Data Mining Method

)e raw data stem from a database of a railway company that
has kept its records of, as many as, 15,000 past unsafe events
is obtained.

3.1. General Analysis. At the same time, based on the sci-
entific analysis for the unsafe event data, the study combines
regular expression and pattern matching technology and
establishes the matching model of external environmental
factors for high-speed railway derailment risk associated
unsafe events. )is paper analyzes and mines the relation-
ship between the external environmental factors of high-
speed railway derailment and the unsafe events, automati-
cally, quickly, and accurately extracts the key characteristic
information such as the possibility of risk occurrence and the

severity of the consequences, so as to transform unstruc-
tured data into structured information. )e main data
analysis and mining process is shown in Figure 4. )e
process includes (1) unstructured railway safety data, (2)
split and match keywords, and (3) association rules’ mining
and association degree analysis. )rough the process, the
accurate association between data and railway risk could be
acquired [18–20].

3.2.KeywordExtractionandMatching. If you want to extract
keywords in the text, it is relatively simple for English and
other languages. Keywords’ extraction can be achieved in a
number of languages, including English. In the case of
English, for example, there are spaces between words as
segmentation. In Chinese, however, such expressions are
unavailable, so it is necessary to break coherent sentences
into keywords. Expressions in Chinese may vary widely,
leading to potential ambiguity in the word segmentation. In
keyword extraction and matching, the railway safety dic-
tionary is designed, and the algorithms and models such as
tire tree, DAG, Viterbi, HMM (hidden Markov model), and
keyword matching are comprehensively used. )e main
processing of keyword extraction and matching is shown in
Figure 5 [21–23].

3.3. Association Analysis-Based Apriori Algorithm. )is
study utilizes the association rules to explore the correlations
between data generated by different mode methods, so as to
build rules that may inform the decision-making.

)e data mining of association rules mainly includes two
processes. First, identify the frequent item sets whose
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Figure 3: Framework model of external environmental factors associated with high-speed railway derailment.

Table 1: Main external environmental factors associated with derailment of high-speed railway.

No. Serial number Class I factors Class II factors Name of related factors
1 Z11 Natural and geological factors Natural hazard factors Earthquake
2 Z12 Flood
3 Z13 Strong wind (gale, typhoon, and tornado)
4 Z14 Blizzard (ice)
5 Z21 Geological hazard factors Collapse
6 Z22 Landslide
7 Z23 Debris flow
8 Z24 Ground collapse
9 Z25 Ground fissure
10 Z26 Land subsidence
11 Y11 Perimeter intrusion factors Perimeter intrusion of animals Collision with livestock
12 Y12 Collision with other animals
13 Y21 Perimeter intrusion of objects and plants Falling objects
14 Y22 Dangerous trees
15 Y23 Tower not satisfying lodging distance
16 Y24 Objects (a vehicle) slide into a track
17 Y25 Tools and equipment left behind
18 Y26 Obstacles artificially placing on the track
19 Y31 Perimeter intrusion of people Suicide (including attempted suicide)
20 Y32 Fall off the platform
21 Y33 Crossing the track illegally
22 Y34 Disabled people without care
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frequency is not less than the minimum support degree of all
item sets. Second, conduct mining strong association rules
that satisfy the minimum confidence based on the frequent
item sets obtained. )e overall performance of association

rule data mining is determined by the operation of the
previous process [24–28].

Finding frequent item sets is not easy because the
data explosion involved in the calculation process may

Unstructured
railway safety

data

Split and
match

keywords

Association rules
mining and

association degree
analysis

Associated
information

Hazard
information

Matching
fields Matrix Mean

value Possibility and severity
of related factors

Coefficient

Tire tree DAG Viterbi HMM

Figure 4: Data analysis and mining process.
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Figure 5: Keyword extraction and matching method.
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lead to unacceptable computational complexity. How-
ever, as long as frequent item sets are obtained, associ-
ation rules whose confidence is not less than minimum
confidence could be explored. )e association rules’
mining algorithm used in this paper is Apriori algo-
rithm. )e following data in Table 2 is an example to
illustrate the implementation process of Apriori algo-
rithm [29–32].

Apriori algorithm could be used to mine association
rules. )e process of mining frequent item sets is shown in
Figure 6.

Lk: frequent item sets of length k
Ck: candidate item set of length k
Support_count (k): the support count of k-item sets

It is concluded that all item sets of L1, L2, and Ln are
frequent item sets, and then, the confidence of each frequent
item set is calculated. When the support threshold is set to

40% and the confidence threshold is set to 50%, the results
shown in Table 3 can be obtained.

3.4.GreyRelationAnalysis. Grey relation analysis (GRA) is a
multifactor statistical analysis method. )e basic method of
calculating the correlation degree is to initialize the original
data sequence, then calculate the correlation coefficient, get
the correlation degree and the correlation matrix through
the combination of the correlation coefficient, and finally
sort them according to the correlation degree calculation
results of each correlation factor sequence [33].

Table 2: Sample data set of Apriori algorithm.

No. Key words
1 Error Violation Conflict Class D accident
2 Violation Discipline Derailment Class D accident
3 Violation Collision Class D accident
4 Error Violation Train delay Class D accident
5 Violation Dispatch command Train delay Class D accident
6 Equipment Control Error Train delay Class D accident
7 Vehicle Construction machinery Train delay Class D accident
8 Error Loading and unloading Train delay Class D accident
9 Equipment Fault Train delay Class D accident

Generate 1-item set,
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minimum support
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set, based on L1

Scan the set, count
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Figure 6: Frequent item sets’ mining method.

Table 3: Calculation results of Apriori algorithm example.

Relationship Support (%) Confidence (%)
Train delay-class D accident 66.67 100
Error-class D accident 44.44 100
Class D accident-train delay 66.67 66.67
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)e calculation method is as follows.
Let the characteristic behavior sequence of the system

be

Xi � xi(1), xi(2), . . . , xi(n)( . (1)

Because the units or initial values of each data sequence
are different, in order to make them comparable, it is
necessary to implement dimensionless processing on the
original data so that the data of different dimensions (or

magnitudes) could be compared, and the initial value
method could be used for calculation:

Xi
′ �

Xi

xi(1)
� xi
′(1), xi
′(2), . . . , xi

′(n)( , i � 0, 1, 2, . . . , m.

(2)

Correlation coefficient refers to the degree of correlation
based on the geometric shape and development trend of each
factor sequence. )e expression is as follows:

c0i(k) �
minimink x0′(k) − xi

′(k)


 + ρmaximaxk x0′(k) − xi
′(k)




x0′(k) − xi
′(k)


 + ρmaximaxk x0′(k) − xi

′(k)



, ρ ∈ (0, 1), k � 1, 2, . . . , n, i � 1, 2, . . . , m. (3)

Among them, ρ is called resolution coefficient. )e
smaller the ρ value is, the greater the resolution is.

)e characteristic of association sequence is that it has a
huge amount of data. When the information is processed in
a centralized way, it is necessary to summarize the

association coefficients at different positions of different
times into a specific value and calculate their average value.
)e average value obtained is the correlation degree. )e
expression is as follows:

c0i(k) �
1
n



n

k�1

minimink x0′(k) − xi
′(k)


 + ρmaximaxk x0′(k) − xi

′(k)




x0′(k) − xi
′(k)


 + ρmaximaxk x0′(k) − xi

′(k)



, ρ ∈ (0, 1), k � 1, 2, . . . , n, i � 1, 2, . . . , m. (4)

4. Risk Analysis Based on Unstructured Data

)is paper attempts to analyze the risk of external envi-
ronment associated with high-speed railway derailment
from the possibility and the severity of the consequences and

realizes the scientific measurement of the risk by mining the
possibility and the severity of the consequences of the unsafe
events related to the external environment risk factors as-
sociated with high-speed railway derailment. )e determi-
nation of the occurrence possibility is mainly based on the
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unstructured safety data mining and then accurately asso-
ciates the unsafe events with the corresponding risk factors.
It is realized by accumulating the occurrence frequency of
the unsafe events associated with the risk factors outside the

high-speed railway derailment. Because the basic data in-
volved in the study is mainly unsafe event data, the con-
sequence is mainly the interruption time, so the severity of
the consequence is mainly considered to mine the
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interruption time caused by the unsafe events associated
with the risk factors of high-speed railway derailment
[34–37].

For a small number of factors with low probability of
occurrence, they may not be associated with events in the
data. In this case, we could consider using some evaluation
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methods based on expert experience as a supplement, such
as analytical hierarchy process. Based on the above method,
after analysis, mining, and unifying the dimensions, the
probability of external environment factors associated with
high-speed railway derailment is shown in Figure 7, the
consequence severity of external environment factors as-
sociated with high-speed railway derailment are shown in
Figure 8, the risk distribution scatter diagram of natural and
geological factors is shown in Figure 9, and the risk dis-
tribution scatter diagram of perimeter intrusion factors is
shown in Figure 10.

)e distribution of comprehensive risk index of external
environment factors related to high-speed railway derail-
ment is shown in Figure 11. It could be seen that Z13, Y21,
and Y33 are high-risk factors, especially Y33. Risk man-
agement procedures should be implemented, and targeted
measures should be taken to control them. When imple-
menting control measures, we should pay attention to the
actual effect and offer feedback to the implementation to
ensure the full implementation of control measures [38–41].

5. Conclusion

Utilizing data on railway fault unsafe events, this paper
establishes a matching model that builds correlations be-
tween unsafe events and external environment factors in the
context of high-speed railway derailment. Operating in an
automatic fashion, the model may be employed to analyze
and mine the relationship between external environment
factors of high-speed railway derailment and unsafe events.
)e model may also be used, with an enhanced accuracy for
identifying high-risk elements, to extract the key feature
information such as risk possibility and consequence
severity.

)e current investigation contributes to the field of re-
search by introducing a statistical method for analyzing
unsafe events’ data. It seeks to identify high-risk elements of
high-speed railway derailment, refines external environment
risk index for high-speed railway derailment, and analyzes
data in combination with the proposed model. As such, the
study achieves a dynamic display of the results arising from
external environment risk analysis in the context of high-
speed railway derailment. )e study is significant in which it
seeks to rationalize the methods for analyzing external en-
vironment risk and to better visualize the safety laws of high-
speed railway derailment. )erefore, the study helps to ad-
vance the operation of high-speed railway and its safety ar-
rangements towards a more digitalized and smarter system.

Previous studies on high-speed railway risks mostly
employ the expert evaluation method, which is arguably
based on subjective deliberation and may undermine the
research validity. )e current project proposes a data-driven
method of risk judgment, which may help to advance the
feasibility and accuracy of the analysis. )is study con-
tributes to improving the safety level of railway operation by
putting forward a method for integrating heterogeneous
data sources, minimizing data heterogeneity, and thus, with
enhanced accuracy, and building the association between the
data and railway risks.

According to the needs of high-speed railway operation
safety management, with the continuous accumulation of
railway unsafe event data, the external environment risk
model related to high-speed railway derailment could be
continuously modified and improved, and the correlation
matching between risk and unsafe event could be more
accurate, which could ensure the continuous improvement
of high-speed railway operation safety.
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