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Diego Córdoba, Spain
Toka Diagana, USA
Josef Diblı́k, Czech Republic
A. I. Domoshnitsky, Israel
Alberto d’Onofrio, Italy
O. Dosly, Czech Republic
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Volume 2011, Article ID 631412, 19 pages

Bounds of Solutions of Integrodifferential Equations, Zdeněk Šmarda
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This special issue on Recent Progress in Differential and Difference Equations contains forty-
four research articles. Most papers originate from the talks at the Conference on Differential
and Difference Equations and Applications (where all Guest Editors served as organizers)
held in Rajecké Teplice, Slovak Republic, during June 21–25, 2010 (http://fpv.uniza.sk/
cddea2010/page.php?id=19&action=show). At the conference, more than 50 contributed
papers and posters were presented along with eighteen invited lectures delivered by leading
researchers such as Professors A. A. Boichuk (Slovak Republic), T. A. Burton (USA),
V. Covachev (Oman), O. Došlý (Czech Republic), J. Džurina (Slovak Republic), J. Jaroš
(Slovak Republic), D. Khusainov (Ukraine), W. Kratz (Germany), N. Partsvania (Georgia), I.
Rachůnková (Czech Republic), V. Rǎsvan (Romania), M. Rontó (Hungary), S. Staněk (Czech
Republic), M. Tvrdý (Czech Republic), and F. Sadyrbaev (Latvia). In addition to the papers
discussed at the conference, many articles have been written for publication in this issue.
As a result, seventy-seven authors from sixteen countries contributed to the success of this
thematic collection of papers.

The issue covers a wide variety of problems for different classes of ordinary, functional,
impulsive, stochastic, fractional, partial differential equations, as well as difference and
integrodifferential equations, inclusions, and dynamic equations on time scales. The topics
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discussed in the contributed papers are traditional for qualitative theory of differential,
functional differential, difference, and other classes of equations. The issue contains papers
on asymptotic behavior of positive solutions of functional differential equations of delayed
type, solutions to third-order trinomial delay differential equations, half-linear q-difference
equations, solutions to discrete equations with two delays in the critical case, solutions
to delay difference and integrodifferential equations, as well as research on weighted
asymptotically periodic solutions to linear Volterra difference equations. Furthermore,
asymptotic properties of third-order nonlinear functional differential equations with mixed
arguments and variational equations are investigated.

Traditionally, stability problems receive a great deal of attention at various conferences.
Papers included in this issue address stability of linear differential equations with several
delays, stability of linear delay differential equations under Perron’s condition, exponential
stability of solutions to stochastic control systems with delay, and instability of the trivial
solution of autonomous differential systems with quadratic right-hand sides in a cone.

As usual, many papers deal with oscillation and nonoscillation of various classes
of equations. In particular, a number of papers are concerned with oscillation of second-
order neutral delay dynamic equations of Emden-Fowler type, second-order neutral
functional differential equations with mixed nonlinearities and of mixed type, second-order
superlinear neutral differential equations, singular nonlinear differential equations, second-
order sublinear impulsive differential equations, and half-linear differential equations. In
addition, nonoscillation of advanced differential equations with several terms, second-order
dynamic equations with several delays, and first-order neutral differential equations are
studied.

Several authors deal with different aspects of the theory of boundary value problems
for nonlinear fractional differential equations, q-difference inclusions, and weakly nonlinear
delay differential systems. Interesting results are obtained for a class of fourth-order
boundary value problems, singular boundary value problems for nonlinear fractional dif-
ferential equations, nonseparated three-point boundary value problems for linear functional
differential equations, and periodic problems for difference equations.

Papers collected in this special issue are also concerned with a maximal number
of period annuli, Lie groups in infinite dimension, Weyl-Titchmarsh theory for time-scale
symplectic systems on a half line, compatible and incompatible nonuniqueness conditions
for the classical Cauchy problem, optimization of solutions to dynamic systems with random
structure, application of discrete Mittag-Leffler functions in linear fractional difference
equations, conjugacy of self-adjoint even order difference equations, H∞ estimates for
Lipschitz nonlinear discrete-time systems with delay, and reducibility of quasiperiodic
Hamiltonian systems with a small perturbation. Existence of invariant sets for impulsive
differential equations with particularities in ω-limit set and existence of pseudosymmetric
solutions to p-Laplacian differential equations involving derivative are explored.

Finally, some applied problems are also considered—a two-species cooperative
Lotka-Volterra system of degenerate parabolic equations, equations of Emden-Fowler type,
and oscillatory periodic solutions for two differential-difference equations that model phase-
locked loop control of high-frequency generators and nonlinear growth of a fluctuating
population.

Although it is not possible to adequately represent in this special issue all directions of
current research in ordinary, functional, partial, impulsive, dynamic, stochastic differential
equations, difference, and integrodifferential equations, we believe that it reflects many
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important recent trends in research, indicates current challenging problems, and outlines new
ideas for future studies in the field.

J. Diblı́k
E. Braverman

Yu. Rogovchenko
M. Růžičková
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Δx(n) = −p(n)x(n − k) with a Positive Coefficient
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A linear (k + 1)th-order discrete delayed equation Δx(n) = −p(n)x(n − k) where p(n) a positive
sequence is considered for n → ∞. This equation is known to have a positive solution if the
sequence p(n) satisfies an inequality. Our aim is to show that, in the case of the opposite inequality
for p(n), all solutions of the equation considered are oscillating for n → ∞.

1. Introduction

The existence of positive solutions of difference equations is often encountered when
analysing mathematical models describing various processes. This is a motivation for an
intensive study of the conditions for the existence of positive solutions of discrete or
continuous equations. Such analysis is related to investigating the case of all solutions being
oscillating (for investigation in both directions, we refer, e.g., to [1–30] and to the references
therein). The existence of monotonous and nontrivial solutions of nonlinear difference
equations (the first one implies the existence of solutions of the same sign) also has attracted
some attention recently (see, e.g., several, mostly asymptotic methods in [31–42] and the
related references therein). In this paper, sharp conditions are derived for all the solutions
being oscillating for a class of linear (k + 1)-order delayed discrete equations.

We consider the delayed (k + 1)-order linear discrete equation

Δx(n) = −p(n)x(n − k), (1.1)
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where n ∈ Z
∞
a := {a, a+1, . . .}, a ∈ N := {1, 2, . . .} is fixed, Δx(n) = x(n+1)−x(n), p : Z

∞
a → R,

k ∈ N. In what follows, we will also use the sets N0 = {0} ∪ N and Z
b
a := {a, a + 1, . . . , b} for

a, b ∈ N, a < b. A solution x = x(n) : Z
∞
a → R of (1.1) is positive (negative) on Z

∞
a if x(n) > 0

(x(n) < 0) for every n ∈ Z
∞
a . A solution x = x(n) : Z

∞
a → R of (1.1) is oscillating on Z

∞
a if it is

not positive or negative on Z
∞
a1

for an arbitrary a1 ∈ Z
∞
a .

Definition 1.1. Let us define the expression lnqt, q ≥ 1, by lnqt = ln(lnq−1t), ln0t ≡ t, where t >
expq−21 and expst = exp(exps−1t), s ≥ 1, exp0t ≡ t, and exp−1t ≡ 0 (instead of ln0t, ln1t, we
will only write t and ln t).

In [4] difference equation (1.1) is considered and the following result on the existence
of a positive solution is proved.

Theorem 1.2 (see [4]). Let q ∈ N0 be a fixed integer, let a ∈ N be sufficiently large and

0 < p(n) ≤
(

k

k + 1

)k
×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2

]
(1.2)

for every n ∈ Z
∞
a . Then there exists a positive integer a1 ≥ a and a solution x = x(n), n ∈ Z

∞
a1

of
equation (1.1) such that

0 < x(n) ≤
(

k

k + 1

)n
·
√
n lnn ln2n · · · lnqn (1.3)

holds for every n ∈ Z
∞
a1
.

Our goal is to answer the open question whether all solutions of (1.1) are oscillating if
inequality (1.2) is replaced with the opposite inequality

p(n) ≥
(

k

k + 1

)k
×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + kθ

8
(
n lnn · · · lnqn

)2

]
(1.4)

assuming θ > 1, and n is sufficiently large. Below we prove that if (1.4) holds and θ > 1, then
all solutions of (1.1) are oscillatory. This means that the result given by Theorem 1.2 is a final
in a sense. This is discussed in Section 4. Moreover, in Section 3, we show that all solutions of
(1.1) will be oscillating if (1.4) holds only on an infinite sequence of subintervals of Z

∞
a .

Because of its simple form, equation (1.1) (as well as its continuous analogue) attracts
permanent attention of investigators. Therefore, in Section 4 we also discuss some of the
known results.

The proof of our main result will use the next consequence of one of Domshlak’s results
[13, Theorem 4, page 66].

Lemma 1.3. Let s and r be fixed natural numbers such that r − s > k. Let {ϕ(n)}∞1 be a bounded
sequence of real numbers and ν0 be a positive number such that there exists a number ν ∈ (0, ν0)
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satisfying

0 ≤
i∑

n=s+1

ϕ(n) ≤ π
ν
, i ∈ Z

r
s+1,

π

ν
≤

i∑
n=s+1

ϕ(n) ≤ 2π
ν
, i ∈ Z

r+k
r+1 , (1.5)

ϕ(i) ≥ 0, i ∈ Z
r
r+1−k,

i+k∑
n=i+1

ϕ(n) > 0, i ∈ Z
∞
a ,

i+k∑
n=i

ϕ(n) > 0, i ∈ Z
∞
a . (1.6)

Then, if p(n) ≥ 0 for n ∈ Z
s+k
s+1 and

p(n) ≥ R :=

⎛
⎜⎝

n∏
�=n−k

sin
(
ν
∑�+k

i=�+1 ϕ(i)
)

sin
(
ν
∑�+k

i=� ϕ(i)
)
⎞
⎟⎠ · sin

(
νϕ(n − k))

sin
(
ν
∑n

i=n+1−k ϕ(i)
) (1.7)

for n ∈ Z
r
s+k+1, any solution of (1.1) has at least one change of sign on Z

r
s−k.

Throughout the paper, symbols “o” and “O” (for n → ∞) will denote the well-known
Landau order symbols.

2. Main Result

In this section, we give sufficient conditions for all solutions of (1.1) to be oscillatory as n →
∞. It will be necessary to develop asymptotic decompositions of some auxiliary expressions.
As the computations needed are rather cumbersome, some auxiliary computations are
collected in the appendix to be utilized in the proof of the main result (Theorem 2.1)
below.

Theorem 2.1. Let a ∈ N be sufficiently large, q ∈ N0 and θ > 1. Assuming that the function p :
Z
∞
a → (0,∞) satisfies inequality (1.4) for every n ∈ Z

∞
a , all solutions of (1.1) are oscillating as

n → ∞.

Proof. As emphasized above, in the proof, we will use Lemma 1.3. We define

ϕ(n) :=
1

n lnn ln2n ln3n · · · lnqn , (2.1)

where n is sufficiently large, and q ≥ 0 is a fixed integer. Although the idea of the proof
is simple, it is very technical and we will refer to notations and auxiliary computations
contained in the appendix. We will develop an asymptotic decomposition of the right-hand
side R of inequality (1.7) with the function ϕ(n) defined by (2.1). We show that this will lead
to the desired inequality (1.4). We set

R1 :=
∏k

i=1V (n + i)∏k
i=0V

+(n + i)
· ϕ(n − k), (2.2)
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where V and V + are defined by (A.4) and (A.5). Moreover, R can be expressed as

R =
sin
(
ν
∑n

i=n+1−k ϕ(i)
)∏n

�=n−k+1 sin
(
ν
∑�+k

i=�+1 ϕ(i)
)

∏n
�=n−k sin

(
ν
∑�+k

i=� ϕ(i)
) · sin

(
νϕ(n − k))

sin
(
ν
∑n

i=n+1−k ϕ(i)
)

=

∏n
�=n−k+1 sin

(
ν
∑�+k

i=�+1 ϕ(i)
)

∏n
�=n−k sin

(
ν
∑�+k

i=� ϕ(i)
) · sin

(
νϕ(n − k))

=

∏k
p=1 sin

(
νV
(
n + p

))
∏k

p=0 sin
(
νV +
(
n + p

)) · sin
(
νϕ(n − k)).

(2.3)

Recalling the asymptotic decomposition of sinx when x → 0: sinx = x+O(x3), we get (since
limn→∞ϕ(n−k) = 0, limn→∞V (n+ p) = 0, p = 1, . . . , k, and limn→∞V +(n+ p) = 0, p = 0, . . . , k)

sin νϕ(n − k) = νϕ(n − k) +O
(
ν3ϕ3(n − k)

)
,

sin νV
(
n + p

)
= νV

(
n + p

)
+O
(
ν3V 3(n + p

))
, p = 1, . . . , k,

sin νV +(n + p
)
= νV +(n + p

)
+O
(
ν3(V +)3(n + p

))
, p = 0, . . . , k

(2.4)

as n → ∞. Then, it is easy to see that, by (A.13), we have ϕ(n − �) = O(ϕ(n)), n → ∞ for
every � ∈ R and

R = R1 ·
(

1 +O
(
ν2ϕ2(n)

))
, n −→ ∞. (2.5)

Moreover, forR1, we will get an asymptotic decomposition as n → ∞. Using formulas (A.13),
(A.57), and (A.60), we get

R1 =
kk

(k + 1)k+1
· 1−kα(n)−(k/24)

(
k2 − 12k + 11

)
α2(n)+(k/6)

(
k2 + 5

)∑q

i=0 ωi(n)+O
(
1/n3)

1 − (k/24)(k2 + 3k + 2)α2(n) + (k/6)(k2 + 3k + 2)
∑q

i=0 ωi(n) +O(1/n3)

×
(

1 + kα(n) + k2
q∑
i=0

ωi(n) +O
(

1
n3

))
.

(2.6)

Since limn→∞α(n) = 0, limn→∞ωi(n) = 0, i = 1, . . . , q, we can decompose the denominator of
the second fraction as the sum of the terms of a geometric sequence. Keeping only terms with



Abstract and Applied Analysis 5

the order of accuracy necessary for further analysis (i.e. with order O(1/n3)), we get

(
1 − k

24

(
k2 + 3k + 2

)
α2(n) +

k

6

(
k2 + 3k + 2

) q∑
i=0

ωi(n) +O
(

1
n3

))−1

= 1 +
k

24

(
k2 + 3k + 2

)
α2(n) − k

6

(
k2 + 3k + 2

) q∑
i=0

ωi(n) +O
(

1
n3

)
.

(2.7)

We perform an auxiliary computation in R1,
(

1 − kα(n) − k

24

(
k2 − 12k + 11

)
α2(n) +

k

6

(
k2 + 5

) q∑
i=0

ωi(n) +O
(

1
n3

))

×
(

1 +
k

24

(
k2 + 3k + 2

)
α2(n) − k

6

(
k2 + 3k + 2

) q∑
i=0

ωi(n) +O
(

1
n3

))

×
(

1 + kα(n) + k2
q∑
i=0

ωi(n) +O
(

1
n3

))

=

(
1 − kα(n) − k

24

(
k2 − 12k + 11

)
α2(n) +

k

6

(
k2 + 5

) q∑
i=0

ωi(n) +O
(

1
n3

))

×
(

1 + kα(n) +
k

24

(
k2 + 3k + 2

)
α2(n) − k

6

(
k2 − 3k + 2

) q∑
i=0

ωi(n) +O
(

1
n3

))

= 1 − 3
8
k(k + 1)α2(n) +

1
2
k(k + 1)

q∑
i=0

ωi(n) +O
(

1
n3

)
= (we use formula (A.15))

= 1 +
1
8
k(k + 1)Ω(n) +O

(
1
n3

)

= 1 +
1
8
k(k + 1)

(
1
n2

+
1

(n lnn)2
+

1

(n lnn ln2n)
2
+ · · · + 1(

n lnn ln2n · · · lnqn
)2

)

+O
(

1
n3

)
.

(2.8)

Thus, we have

R1 =
kk

(k + 1)k+1
×
[

1 +
1
8
k(k + 1)

(
1
n2

+
1

(n lnn)2
+

1

(n lnn ln2n)
2
+ · · ·

+
1(

n lnnln2n · · · lnqn
)2

)]
+O
(

1
n3

)

=
(

k

k + 1

)k
×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2

]
+O
(

1
n3

)
.

(2.9)
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Finalizing our decompositions, we see that

R = R1 ·
(

1 +O
(
ν2ϕ2(n)

))

=

((
k

k + 1

)k
×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2

]
+O
(

1
n3

))

×
(

1 +O
(
ν2ϕ2(n)

))

=
(

k

k + 1

)k
×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2

]

+O

(
ν2

(
n lnn · · · lnqn

)2

)
.

(2.10)

It is easy to see that inequality (1.7) becomes

p(n) ≥
(

k

k + 1

)k
×
[

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2

]

+O

(
ν2

(
n lnn · · · lnqn

)2

) (2.11)

and will be valid if (see (1.4))

1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + kθ

8
(
n lnn · · · lnqn

)2

≥ 1
k + 1

+
k

8n2
+

k

8(n lnn)2
+ · · · + k

8
(
n lnn · · · lnqn

)2
+O

(
ν2

(
n lnn · · · lnqn

)2

) (2.12)

or

θ ≥ 1 +O
(
ν2
)

(2.13)

for n → ∞. If n ≥ n0, where n0 is sufficiently large, (2.13) holds for ν ∈ (0, ν0) with ν0

sufficiently small because θ > 1. Consequently, (2.11) is satisfied and the assumption (1.7)
of Lemma 1.3 holds for n ∈ Z

∞
n0

. Let s ≥ n0 in Lemma 1.3 be fixed, r > s + k + 1 be so large
(and ν0 so small if necessary) that inequalities (1.5) hold. Such choice is always possible since
the series

∑∞
n=s+1 ϕ(n) is divergent. Then Lemma 1.3 holds and any solution of (1.1) has at

least one change of sign on Z
r
s−k. Obviously, inequalities (1.5) can be satisfied for another pair

of (s, r), say (s1, r1) with s1 > r and r1 > s1 + k sufficiently large and, by Lemma 1.3, any
solution of (1.1) has at least one change of sign on Z

r1
s1−k. Continuing this process, we will get

a sequence of pairs (sj , rj) with limj→∞sj = ∞ such that any solution of (1.1) has at least one
change of sign on Z

rj
sj−k. This concludes the proof.
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3. A Generalization

The coefficient p in Theorem 2.1 is supposed to be positive on Z
∞
a . For all sufficiently large

n, the expression R, as can easily be seen from (2.10), is positive. Then, as follows from
Lemma 1.3, any solution of (1.1) has at least one change of sign on Z

r
s−k if p is nonnegative on

Z
s+k
s+1 and satisfies inequality (1.4) on Z

r
s+k+1.

Owing to this remark, Theorem 2.1 can be generalized because (and the following
argumentation was used at the end of the proof of Theorem 2.1) all solutions of (1.1) will be
oscillating as n → ∞ if a sequence of numbers {si, ri}, ri > si + k + 1, s1 ≥ a, i = 1, 2, . . . exists
such that si+1 > ri (i.e., the sets Z

ri
si , Z

ri+1
si+1 are disjoint and limi→∞si = ∞), and, for every pair

(si, ri), all assumptions of Lemma 1.3 are satisfied (because of the specification of function ϕ
by (2.1), inequalities (1.6) are obviously satisfied). This means that, on the set

M := Z
∞
a \

∞⋃
i=1

Z
ri
si , (3.1)

function p can assume even negative values, and, moreover, there is no restriction on the
behavior of p(n) for n ∈ M. This leads to the following generalization of Theorem 2.1 with a
proof similar to that of Theorem 2.1 and, therefore, omitted.

Theorem 3.1. Let a ∈ N be sufficiently large, q ∈ N0, ν0 be a positive number, θ > 1 and p : Z
∞
a →

R. Let there exists a sequence on integers {sj , rj}, rj > sj + k + 1, j = 1, 2, . . ., s1 ≥ a, s1 sufficiently
large and sj+1 > rj such that, for function ϕ (defined by (2.1)) and for each pair (sj , rj), j = 1, 2, . . .,
there exists a number νj ∈ (0, ν0) such that

0 ≤
i∑

n=sj+1

ϕ(n) ≤ π

νj
, i ∈ Z

rj
sj+1,

π

νj
≤

i∑
n=sj+1

ϕ(n) ≤ 2π
νj
, i ∈ Z

rj+k
rj+1 , (3.2)

p(n) ≥ 0 for n ∈ Z
sj+k
sj+1 , and (1.4) holds for n ∈ Z

rj
sj+k+1, then all solutions of (1.1) are oscillating as

n → ∞.

4. Comparisons, Concluding Remarks, and Open Problems

Equation (1.1) with k = 1 was considered in [5], where a particular case of Theorem 2.1 is
proved. In [4], a hypothesis is formulated together with the proof of Theorem 1.2 (Conjecture
1) about the oscillation of all solutions of (1.1) almost coinciding with the formulation of
Theorem 2.1. For its simple form, (1.1) is often used for testing new results and is very
frequently investigated.

Theorems 1.2 and 2.1 obviously generalize several classical results. We mention at least
some of the simplest ones (see, e.g., [16, Theorem 7.7] or [19, Theorem 7.5.1]),

Theorem 4.1. Let p(n) ≡ p = const. Then every solution of (1.1) oscillates if and only if

p >
kk

(k + 1)k+1
. (4.1)

Or the following result holds as well (see, e.g., [16, Theorem 7.6]) [18, 19]).
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Theorem 4.2. Let p(n) ≥ 0 and

sup
n
p(n) <

kk

(k + 1)k+1
. (4.2)

Then (1.1) has a nonoscillatory solution.

In [9] a problem on oscillation of all solutions of equation

Δu(n) + p(n)u(τ(n)) = 0, n ∈ N (4.3)

is considered where p : N → R+, τ : N → N, and limn→∞τ(n) = +∞. Since in (4.3) delay τ is
variable, we can formulate

Open Problem 1. It is an interesting open question whether Theorems 1.2 and 2.1 can be
extended to linear difference equations with a variable delay argument of the form, for
example,

Δu(n) = −p(n)u(h(n)), n ∈ Z
∞
a , (4.4)

where 0 ≤ n − h(n) ≤ k. For some of the related results for the differential equation

ẋ(t) = −p(t)x(h(t)), (4.5)

see the results in [3, 12] that are described below.

Open Problem 2. It is well known [19, 22] that the following condition is also sufficient for the
oscillation of all solutions of (4.5) with h(n) = n − k:

lim inf
n→∞

1
k

n−1∑
i=n−k

pi >
kk

(k + 1)k+1
. (4.6)

The right-hand side of (4.6) is a critical value for this criterion since this number cannot be
replaced with a smaller one.

In [30] equation (1.1) is considered as well. The authors prove that all solutions
oscillate if p(n) ≥ 0, ε > 0 and

lim sup
n→∞

p(n) >
kk

(k + 1)k+1
− ε
k
+ 4kε1/4, (4.7)

where

ε =
(

k

k + 1

)k+1

− lim inf
n→∞

n−1∑
i=n−k

pi. (4.8)
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An open problem is to obtain conditions similar to Theorem 2.1 for this kind of oscillation
criteria. Some results on this problem for delay differential equations were also obtained in
paper [3].

In [26] the authors establish an equivalence between the oscillation of (1.1) and the
equation

Δ2y(n − 1) +
2(k + 1)k

kk+1

(
p(n) − kk

(k + 1)k+1

)
y(n) = 0 (4.9)

under the critical state

lim inf
n→∞

p(n) =
kk

(k + 1)k+1
, (4.10)

p(n) ≥ kk

(k + 1)k+1
. (4.11)

Then they obtain some sharp oscillation and nonoscillation criteria for (1.1). One of the results
obtained there is the following.

Theorem 4.3. Assume that, for sufficiently large n, inequality (4.11) holds. Then the following
statements are valid.

(i) If

lim inf
n→∞

[(
p(n) − kk

(k + 1)k+1

)
n2

]
>

kk+1

8(k + 1)k
, (4.12)

then every solution of (1.1) is oscillatory.

(ii) If, on the other hand,

(
p(n) − kk

(k + 1)k+1

)
n2 ≤ kk+1

8(k + 1)k
, (4.13)

then (1.1) has a nonoscillatory solution.

Regarding our results, it is easy to see that statement (i) is a particular case of
Theorem 2.1 while statement (ii) is a particular case of Theorem 1.2.

In [27], the authors investigate (1.1) for n ≥ n0 and prove that (1.1) is oscillatory if

∞∑
i=n0

p(i)

⎧⎨
⎩
k + 1
k
· k+1

√√√√ i+k∑
j=i+1

p
(
j
) − 1

⎫⎬
⎭ =∞. (4.14)
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Comparing (4.14) with Theorem 2.1, we can see that (4.14) gives not sharp sufficient
condition. Set, for example, k = 1, θ > 1 and

p(n) =
1
2

[
1
2
+

θ

8n2

]
. (4.15)

Then,

k + 1
k
· k+1

√√√√ i+k∑
j=i+1

p
(
j
) − 1 = 2 ·

√√√√1
4

(
1 +

θ

4(i + 1)2

)
− 1 =

θ/4(i + 1)2

1 +
√

1 + θ/4(i + 1)2
(4.16)

and the series in the left-hand side of (4.14) converges since

∞∑
i=n0

p(i)

⎧⎨
⎩
k + 1
k

k+1

√√√√ i+k∑
j=i+1

p
(
j
) − 1

⎫⎬
⎭

=
∞∑
i=n0

1
2

[
1
2
+

θ

8i2

]
θ/4(i + 1)2

1 +
√

1 + θ/4(i + 1)2
≤ θ

∞∑
i=n0

1
i2

[
1 +

θ

i2

]
<∞.

(4.17)

But, by Theorem 2.1 all solutions of (1.1) are oscillating as n → ∞. Nevertheless (4.14) is not
a consequence of Theorem 2.1.

Let us consider a continuous variant of (1.1): a delayed differential linear equation of
the form

ẋ(t) = −a(t)x(t − τ), (4.18)

where τ > 0 is a constant delay and a : [t0,∞) → (0,∞) (or a : [t0,∞) → R), t0 ∈ R. This
equation, too, for its simple form, is often used for testing new results and is very frequently
investigated. It is, for example, well known that a scalar linear equation with delay

ẋ(t) +
1
e
x(t − 1) = 0 (4.19)

has a nonoscillatory solution as t → ∞. This means that there exists an eventually positive
solution. The coefficient 1/e is called critical with the following meaning: for any α > (1/e),
all solutions of the equation

ẋ(t) + αx(t − 1) = 0 (4.20)

are oscillatory while, for α ≤ (1/e), there exists an eventually positive solution. In [10], the
third author considered (4.18), where a : [t0,∞) → (0,∞) is a continuous function, and t0 is
sufficiently large. For the critical case, he obtained the following result (being a continuous
variant of Theorems 1.2 and 2.1).
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Theorem 4.4. (a) Let an integer k ≥ 0 exist such that a(t) ≤ ak(t) if t → ∞ where

ak(t) :=
1
eτ

+
τ

8et2
+

τ

8e(t ln t)2
+ · · · + τ

8e(t ln t ln2t · · · lnkt)2
. (4.21)

Then there exists an eventually positive solution x of (4.18).
(b) Let an integer k ≥ 2 and θ > 1, θ ∈ R exist such that

a(t) > ak−2(t) +
θτ

8e(t ln t ln2t · · · lnk−1t)
2
, (4.22)

if t → ∞. Then all solutions of (4.18) oscillate.

Further results on the critical case for (4.18) can be found in [1, 11, 14, 17, 24].
In [12], Theorem 7 was generalized for equations with a variable delay

ẋ(t) + a(t)x(t − τ(t)) = 0, (4.23)

where a : [t0,∞) → (0,∞) and τ : [t0,∞) → (0,∞) are continuous functions. The main
results of this paper include the following.

Theorem 4.5 (see [12]). Let t − τ(t) ≥ t0 − τ(t0) if t ≥ t0. Let an integer k ≥ 0 exist such that
a(t) ≤ akτ(t) for t → ∞, where

akτ(t) :=
1

eτ(t)
+
τ(t)
8et2

+
τ(t)

8e(t ln t)2
+ · · · + τ(t)

8e(t ln t ln2t · · · lnkt)2
. (4.24)

If moreover
∫ t
t−τ(t)

1
τ(ξ)

dξ ≤ 1 when t −→ ∞,

lim
t→∞

τ(t) ·
(

1
t

ln t ln2t · · · lnkt
)

= 0,

(4.25)

then there exists an eventually positive solution x of (4.23) for t → ∞.

Finally, the last results were generalized in [3]. We reproduce some of the results given
there.

Theorem 4.6. (A) Let τ > 0, 0 ≤ τ(t) ≤ τ for t → ∞, and let condition (a) of Theorem 4.4 holds.
Then (4.23) has a nonoscillatory solution.

(B) Let τ(t) ≥ τ > 0 for t → ∞, and let condition (b) of Theorem 4.4 holds. Then all solutions
of (4.23) oscillate.

For every integer k ≥ 0, δ > 0 and t → ∞, we define

Ak(t) :=
1

eδτ(t)
+

δ

8eτ(t)s2
+

δ

8eτ(t)(s ln s)2
+ · · · + δ

8eτ(t)(s ln s ln2s · · · lnks)2
, (4.26)
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where

s = p(t) :=
∫ t
t0

1
τ(ξ)

dξ. (4.27)

Theorem 4.7. Let for t0 sufficiently large and t ≥ t0: τ(t) > 0 a.e., 1/τ(t) be a locally integrable
function,

lim
t→∞

(t − τ(t)) =∞,
∫∞
t0

1
τ(ξ)

dξ =∞, (4.28)

and let there exists t1 > t0 such that t − τ(t) ≥ t0, t ≥ t1.
(a) If there exists a δ ∈ (0,∞) such that

∫ t
t−τ(t)

1
τ(ξ)

dξ ≤ δ, t ≥ t1, (4.29)

and, for a fixed integer k ≥ 0,

a(t) ≤ Ak(t), t ≥ t1, (4.30)

then there exists an eventually positive solution of (4.23).

(b) If there exists a δ ∈ (0,∞) such that

∫ t
t−τ(t)

1
τ(ξ)

dξ ≥ δ, t ≥ t1, (4.31)

and, for a fixed integer k ≥ 2 and θ > 1, θ ∈ R,

a(t) > Ak−2(t) +
θδ

8eτ(t)(s ln s ln2s · · · lnk−1s)
2
, (4.32)

if t ≥ t1, then all solutions of (4.23) oscillate.

Appendix

A. Auxiliary Computations

This part includes auxiliary results with several technical lemmas proved. Part of them
is related to the asymptotic decomposition of certain functions and the rest deals with
computing the sums of some algebraic expressions. The computations are referred to in the
proof of the main result (Theorem 2.1) in Section 2.
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First we define auxiliary functions (recalling also the definition of function ϕ given by
(2.1)):

ϕ(n) :=
1

n lnn ln2 n ln3n · · · lnqn ,

α(n) :=
1
n
+

1
n lnn

+
1

n lnn ln2n
+ · · · + 1

n lnn ln2n · · · lnqn ,

ω0(n) :=
1
n2

+
3

2n2 lnn
+

3
2n2 lnn ln2n

+ · · · + 3
2n2 lnn ln2n · · · lnqn

,

ω1(n) :=
1

(n lnn)2
+

3

2(n lnn)2ln2n
+ · · · + 3

2(n lnn)2ln2n · · · lnqn
,

...

ωq−1(n) :=
1(

n lnn · · · lnq−1n
)2

+
3

2
(
n lnn · · · lnq−1n

)2lnqn
,

ωq(n) :=
1(

n lnn · · · lnqn
)2
,

Ω(n) :=
1
n2

+
1

(n lnn)2
+

1

(n lnn ln2n)
2
+ · · · + 1(

n lnn ln2n · · · lnqn
)2
,

(A.1)

where n is sufficiently large and q ∈ N0. Moreover, we set (for admissible values of
arguments)

Σ
(
p
)

:=
k∑
�=1

(
k − p − �), (A.2)

Σ+(p) := Σ
(
p
)
+
(
k − p), (A.3)

V
(
n + p

)
:=

k∑
�=1

ϕ
(
n + p − k + �

)
, (A.4)

V +(n + p
)

:= V
(
n + p

)
+ ϕ
(
n + p − k), (A.5)

S
(
p
)

:=
k∑
�=1

(
k − p − �)2

, (A.6)

S+(p) := S
(
p
)
+
(
k − p)2

. (A.7)

A.1. Asymptotic Decomposition of Iterative Logarithms

In the proof of the main result, we use auxiliary results giving asymptotic decompositions of
iterative logarithms. The following lemma is proved in [11].
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Lemma A.1. For fixed r, σ ∈ R \ {0} and a fixed integer s ≥ 1, the asymptotic representation

lnσs (n − r)
lnσs n

= 1 − rσ

n lnn · · · lnsn −
r2σ

2n2 lnn · · · lnsn

− r2σ

2(n lnn)2ln2n · · · lnsn
− · · · − r2σ

2(n lnn · · · lns−1n)
2lnsn

+
r2σ(σ − 1)

2(n lnn · · · lnsn)2
− r3σ(1 + o(1))

3n3 lnn · · · lnsn

(A.8)

holds for n → ∞.

A.2. Formulas for Σ(p) and for Σ+(p)

Lemma A.2. The following formulas hold:

Σ
(
p
)
=
k

2
· (k − 2p − 1

)
, (A.9)

Σ+(p) = k + 1
2
· (k − 2p

)
. (A.10)

Proof. It is easy to see that

Σ
(
p
)
=

k−p−1∑
�=−p

� =
(
k − p − 1

)
+
(
k − p − 2

)
+ · · · + (−p)

=
(
k − (p + 1

))
+
(
k − (p + 2

))
+ · · · + (k − (p + k)) = k

2
· (k − 2p − 1

)
,

Σ+(p) = Σ
(
p
)
+
(
k − p) = k + 1

2
· (k − 2p

)
.

(A.11)

A.3. Formula for the Sum of the Terms of an Arithmetical Sequence

Denote by u1, u2, . . . , ur the terms of an arithmetical sequence of kth order (kth differences
are constant), d′1, d

′
2, d

′
3, . . ., the first differences (d′1 = u2 − u1, d′2 = u3 − u2,. . .), d′′1, d

′′
2, d

′′
3, . . .,

the second differences (d′′1 = d′2 − d′1,. . .), and so forth. Then the following result holds (see,
e.g., [43]).

Lemma A.3. For the sum of r terms of an arithmetical sequence of kth order, the following formula
holds

r∑
i=1

ui =
r!

(r − 1)! · 1!
· u1 +

r!
(r − 2)! · 2!

· d′1 +
r!

(r − 3)! · 3!
· d′′1 + · · · . (A.12)
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A.4. Asymptotic Decomposition of ϕ(n − l)
Lemma A.4. For fixed � ∈ R and q ∈ N0, the asymptotic representation

ϕ(n − �) = ϕ(n)
(

1 + �α(n) + �2
q∑
i=0

ωq(n)

)
+O
(
ϕ(n)
n3

)
(A.13)

holds for n → ∞.

Proof. The function ϕ(n) is defined by (2.1). We develop the asymptotic decomposition of
ϕ(n − �) when n is sufficiently large and � ∈ R. Applying Lemma A.1 (for σ = −1, r = � and
s = 1, 2, . . . , q), we get

ϕ(n − �) = 1
(n − �) ln(n − �)ln2(n − �)ln3(n − �) · · · lnq(n − �)

=
1

n(1 − �/n) ln(n − �)ln2 (n − �)ln3(n − �) · · · lnq(n − �)

= ϕ(n) · 1
1 − �/n ·

lnn
ln(n − �) ·

ln2n

ln2 (n − �) ·
ln3n

ln3(n − �) · · ·
lnqn

lnq (n − �)

= ϕ(n)

(
1 +

�

n
+
�2

n2
+O
(

1
n3

))

×
(

1 +
�

n lnn
+

�2

2n2 lnn
+

�2

(n lnn)2
+O
(

1
n3

))

×
(

1 +
�

n lnn ln2n
+

�2

2n2 lnn ln2n
+

�2

2(n lnn)2ln2n
+

�2

(n lnn ln2n)
2
+O
(

1
n3

))

×
(

1 +
�

n lnn ln2n ln3n
+

�2

2n2 lnn ln2n ln3n
+

�2

2(n lnn)2ln2n ln3n

+
�2

2(n lnn ln2n)
2ln3n

+
�2

(n lnn ln2n ln3n)
2
+O
(

1
n3

))

× · · · ×
(

1 +
�

n lnn ln2n ln3n · · · lnqn +
�2

2n2 lnn · · · lnqn
+

�2

2(n lnn)2ln2 · · ·n lnqn

+ · · · + �2

2
(
n lnn · · · lnq−1n

)2lnqn
+

�2

(
n lnn · · · lnqn

)2
+O
(

1
n3

))
.

(A.14)

Finally, gathering the same functional terms and omitting the terms having a higher order of
accuracy than is necessary, we obtain the asymptotic decomposition (A.13).
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A.5. Formula for α2(n)

Lemma A.5. For fixed q ∈ N0, the formula

α2(n) =
4
3

q∑
i=0

ωi(n) − 1
3
Ω(n) (A.15)

holds for all sufficiently large n.

Proof. It is easy to see that

α2(n) =
1
n2

+
2

n2 lnn
+

2
n2 lnn ln2n

+ · · · + 2
n2 lnn ln2n · · · lnqn

+
1

(n lnn)2
+

2

(n lnn)2ln2n
+ · · · + 2

(n lnn)2ln2n · · · lnqn

+
1

(n lnn ln2n)
2
+

2

(n lnn ln2n)
2ln3n

+ · · · + 2

(n lnn ln2n)
2 · · · lnqn

+ · · · + 1(
n lnnln2n · · · lnqn

)2

=
4
3

(
1
n2

+
3

2n2 lnn
+

3
2n2 lnn ln2n

+ · · · + 3
2n2 lnn ln2n · · · lnqn

+
1

(n lnn)2
+

3

2(n lnn)2ln2n
+ · · · + 3

2(n lnn)2ln2n · · · lnqn

+
1

(n lnn ln2n)
2
+

2

(n lnn ln2n)
2ln3n

+ · · · + 2

(n lnn ln2n)
2 · · · lnqn

+ · · · + 1(
n lnn ln2n · · · lnqn

)2

)

− 1
3

(
1
n2

+
1

(n lnn)2
+

1

(n lnn ln2n)
2
+ · · · + 1(

n lnn ln2n · · · lnqn
)2

)

=
4
3

q∑
i=0

ωi(n) − 1
3
Ω(n).

(A.16)

A.6. Asymptotic Decomposition of V (n + p)

Lemma A.6. For fixed p ∈ N and q ∈ N0, the asymptotic representation

V
(
n + p

)
= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O
(
ϕ(n)
n3

)
(A.17)

holds for n → ∞.
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Proof. It is easy to deduce from formula (A.13) with � = k − p − 1, k − p − 2, . . . ,−p that

V
(
n + p

)
:= ϕ
(
n + p − k + 1

)
+ ϕ
(
n + p − k + 2

)
+ · · · + ϕ(n + p

)
=

k−p−1∑
�=−p

ϕ(n − �) = ϕ(n)

×
k−p−1∑
�=−p

(
1 +

�

n
+

�

n lnn
+

�

n lnn ln2n
+ · · · + �

n lnn ln2n · · · lnqn

+
�2

n2
+

3�2

2n2 lnn
+ · · · + 3�2

2n2 lnn ln2n · · · lnqn
+

�2

(n lnn)2

+
3�2

2(n lnn)2ln2n
+

3�2

2(n lnn)2ln3n
+ · · · + 3�2

2(n lnn)2ln3n · · · lnqn

+
�2

(n lnn ln2n)
2
+

3�2

2(n lnn ln2n)
2ln3n

+ · · · + 3�2

2(n lnn ln2n)
2ln3n · · · lnqn

+
�2

(n lnn ln2n ln3n)
2
+ · · · + 3�2

2(n lnn ln2n ln3n)
2ln4n · · · lnqn

+ · · · + �2

(
n lnn ln2n · · · lnq−1n

)2
+

3�2

2
(
n lnn ln2n · · · lnq−1n

)2lnqn

+
�2

(
n lnn ln2n · · · lnqn

)2
+O
(

1
n3

))
.

(A.18)

Then

V
(
n + p

)
:= ϕ(n)

k−p−1∑
�=−p

[
1 + �α(n) + �2

q∑
i=0

ωi(n) +O
(

1
n3

)]

= ϕ(n)

⎡
⎣k−p−1∑

�=−p
1 + α(n) ·

k−p−1∑
�=−p

� +
k−p−1∑
�=−p

�2 ·
q∑
i=0

ωi(n) +O
(

1
n3

)⎤
⎦

= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) ·

q∑
i=0

ωi(n) +O
(

1
n3

)]

= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O
(
ϕ(n)
n3

)
.

(A.19)
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A.7. Asymptotic Decomposition of V +(n + p)

Lemma A.7. For fixed p ∈ N0 and q ∈ N0, the asymptotic representation

V +(n + p
)
= ϕ(n)

[
k + 1 + Σ+(p)α(n) + S+(p)

q∑
i=0

ωi(n)

]
+O
(
ϕ(n)
n3

)
(A.20)

holds for n → ∞.

Proof. By (A.5), (A.13), (A.17), (A.10), and (A.7), we get

V +(n + p
)

:= V
(
n + p

)
+ ϕ
(
n + p − k)

= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O
(
ϕ(n)
n3

)
+ ϕ
(
n + p − k)

= ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O
(
ϕ(n)
n3

)

+ ϕ(n)
(

1 +
(
k − p)α(n) + (k − p)2

ω0(n) +
(
k − p)2

ω1(n)

+ · · · + (k − p)2
ωq−1(n) +

(
k − p)2

ωq(n) +O
(

1
n3

))

= ϕ(n)

[
k + 1 +

(
Σ
(
p
)
+
(
k − p))α(n) + (S(p) + (k − p)2

) q∑
i=0

ωi(n)

]
+O
(
ϕ(n)
n3

)

= ϕ(n)

[
k + 1 + Σ+(p)α(n) + S+(p)

q∑
i=0

ωi(n)

]
+O
(
ϕ(n)
n3

)
.

(A.21)

A.8. Formula for
∑k

p=1 Σ(p)

Lemma A.8. For the above sum, the following formula holds:

k∑
p=1

Σ
(
p
)
= −k2. (A.22)

Proof. Using formula (A.9), we get

k∑
p=1

Σ
(
p
)
= Σ(1) + Σ(2) + Σ(3) + · · · + Σ(k)

=
k

2
· [(k − 3) + (k − 5) + (k − 7) + · · · + (k − (2k + 1))]

=
k

2
· (−2k) = −k2.

(A.23)
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A.9. Formula for
∑k

p=1 Σ
2(p)

Lemma A.9. For the above sum, the following formula holds:

k∑
p=1

Σ2(p) = k3

12

(
k2 + 11

)
. (A.24)

Proof. Using formula (A.9), we get

k∑
p=1

Σ2(p) = k2

4

k∑
p=1

(
k − 2p − 1

)2

=
k2

4
·
[
(k − 3)2 + (k − 5)2 + (k − 7)2 + · · · + (k − (2k + 1))2

]
.

(A.25)

We compute the sum in the square brackets. We use formula (A.12). In our case,

r = k, u1 = (k − 3)2, u2 = (k − 5)2, u3 = (k − 7)2, . . . , uk = (k − 2k − 1)2 = (k + 1)2,

d′1 = u2 − u1 = (k − 5)2 − (k − 3)2 = −4k + 16,

d′2 = u3 − u2 = (k − 7)2 − (k − 5)2 = −4k + 24,
(A.26)

the second differences are constant, and

d′′1 = d′2 − d′1 = (−4k + 24) − (−4k + 16) = 8. (A.27)

Then the sum in the square brackets equals

k!
(k − 1)! · 1!

· (k − 3)2 +
k!(−4)

(k − 2)! · 2!
· (k − 4) +

k!
(k − 3)! · 3!

· 8 =
k

3

(
k2 + 11

)
, (A.28)

and formula (A.24) is proved.

A.10. Formula for 2
∏k

i,j= 0,i >jΣ(i)Σ(j)

Lemma A.10. For the above product, the following formula holds:

2
k∏

i,j=0
i>j

Σ(i)Σ
(
j
)
= k4 − k

3

12

(
k2 + 11

)
. (A.29)
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Proof. We have

2
k∏

i,j=0
i>j

Σ(i) Σ
(
j
)
=

⎛
⎝ k∑

p=1

Σ
(
p
)
⎞
⎠

2

−
k∑
p=1

(
Σ
(
p
))2

. (A.30)

Then, using formulas (A.22), and (A.24), we get

⎛
⎝ k∑

p=1

Σ
(
p
)
⎞
⎠

2

−
k∑
p=1

(
Σ
(
p
))2 =

(
−k2
)2 − k

3

12

(
k2 + 11

)
= k4 − k

3

12

(
k2 + 11

)
. (A.31)

A.11. Formula for
∑k

p=0 Σ
+(p)

Lemma A.11. For the above sum, the following formula holds:

k∑
p=0

Σ+(p) = 0. (A.32)

Proof. Using formulas (A.9), (A.10), and (A.22), we get

k∑
p=0

Σ+(p) = Σ(0) +
k∑
p=1

Σ
(
p
)
+

k∑
p=0

(
k − p) = k

2
(k − 1) − k2 +

k

2
(k + 1) = 0. (A.33)

A.12. Formula for
∑k

p=0 (Σ
+(p))2

Lemma A.12. For the above sum, the following formula holds:

k∑
p=0

(
Σ+(p))2 =

(k + 1)2k

12
·
(
k2 + 3k + 2

)
. (A.34)

Proof. Using formula (A.10), we get

k∑
p=0

(
Σ+(p))2 =

(k + 1)2

4

[
(k − 0)2 + (k − 2)2 + (k − 4)2 + · · · + (k − 2k)2

]
. (A.35)

We compute the sum in the square brackets. We use formula (A.12). In our case,

r = k + 1, u1 = k2, u2 = (k − 2)2, u3 = (k − 4)2, . . . , uk+1 = (k − 2k)2 = k2,

d′1 = u2 − u1 = (k − 2)2 − k2 = −4k + 4,

d′2 = u3 − u2 = (k − 4)2 − (k − 2)2 = −4k + 12,

(A.36)
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the second differences are constant, and

d′′1 = d′2 − d′1 = (−4k + 12) − (−4k + 4) = 8. (A.37)

Then, the sum in the square brackets equals

(k + 1)!
k! · 1!

· k2 +
4(k + 1)!
(k − 1)! · 2!

· (−k + 1) +
(k + 1)!

(k − 2)! · 3!
· 8 =

k

3

(
k2 + 3k + 2

)
, (A.38)

and formula (A.34) is proved.

A.13. Formula for 2
∏k

i,j=0, i>jΣ
+(i)Σ+(j)

Lemma A.13. For the above product, the following formula holds:

2
k∏

i,j=0
i>j

Σ+(i)Σ+(j) = − (k + 1)2k

12

(
k2 + 3k + 2

)
. (A.39)

Proof. We have

2
k∏

i,j=0
i>j

Σ+(i)Σ+(j) =
⎛
⎝ k∑

p=0

Σ+(p)
⎞
⎠

2

−
k∑
p=0

(
Σ+(p))2

. (A.40)

Then, using formulas (A.32), and (A.34), we get

⎛
⎝ k∑

p=1

Σ+(p)
⎞
⎠

2

−
k∑
p=1

(
Σ+(p))2 = −

k∑
p=1

(
Σ+(p))2 = − (k + 1)2k

12
·
(
k2 + 3k + 2

)
. (A.41)

A.14. Formula for S(p)

Lemma A.14. For a fixed integer p, the formula

S
(
p
)
=
k

6

[
2k2 − 3

(
1 + 2p

)
k +
(

6p2 + 6p + 1
)]

(A.42)

holds.
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Proof. We use formula (A.12). In our case

r = k, u1 =
(
k − p − 1

)2
, . . . , uk =

(
k − p − k)2 = p2,

d′1 = u2 − u1 =
(
k − p − 2

)2 − (k − p − 1
)2 =

(
2k − 2p − 3

)
(−1),

d′2 = u3 − u2 =
(
k − p − 3

)2 − (k − p − 2
)2 =

(
2k − 2p − 5

)
(−1),

(A.43)

the second differences are constant, and

d′′1 = d′2 − d′1 =
(
2k − 2p − 5

)
(−1) − (2k − 2p − 3

)
(−1) = 2. (A.44)

Then the formula

S
(
p
)
=

k!
(k − 1)! · 1!

· (k − p − 1
)2 +

k!(−1)
(k − 2)! · 2!

· (2k − 2p − 3
)
+

k!
(k − 3)! · 3!

· 2 (A.45)

directly follows from (A.12). After some simplification, we get

S
(
p
)
= k · (k − p − 1

)2 − k(k − 1)
2

· (2k − 2p − 3
)
+
k(k − 1)(k − 2)

3

=
k

6
·
[
6
(
k2 − 2k

(
p + 1

)
+
(
p + 1

)2
)
− 3
(

2k2 − k(2p + 5
)
+
(
2p + 3

))
+ 2
(
k2 − 3k + 2

)]

=
k

6

[
2k2 − 3

(
1 + 2p

)
k +
(

6p2 + 6p + 1
)]
.

(A.46)

Formula (A.42) is proved.

A.15. Formula for
∑k

p=1 S(p)

Lemma A.15. For a fixed integer p, the formula

k∑
p=1

S
(
p
)
=
k

6

(
k3 + 5k

)
(A.47)

holds.

Proof. Since, by (A.42),

6
k
S
(
p
)
= 2k2 − 3

(
1 + 2p

)
k +
(

6p2 + 6p + 1
)
, (A.48)
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we get

6
k

k∑
p=1

S
(
p
)
= 2

k∑
p=1

k2 − 3k
k∑
p=1

(
1 + 2p

)
+ 6

k∑
p=1

p2 + 6
k∑
p=1

p +
k∑
p=1

1

= 2k3 − 3k
(
k2 + 2k

)
+ k
(

2k2 + 3k + 1
)
+ 3
(
k2 + k

)
+ k

= k3 + 5k.

(A.49)

This yields (A.47).

A.16. Formula for S+(p)

Lemma A.16. The above expression equals

S+(p) = k + 1
6

[
2k2 +

(−6p + 1
)
k + 6p2

]
. (A.50)

Proof. We have the following:

S+(p) = (k − p)2 + S
(
p
)

=
[(
k − p)2 +

k

6

[
2k2 − 3

(
1 + 2p

)
k +
(

6p2 + 6p + 1
)]

−k + 1
6

[
2k2 +

(−6p + 1
)
k + 6p2

]]
+
k + 1

6

[
2k2 +

(−6p + 1
)
k + 6p2

]

=
1
6

[
6k2 − 12kp + 6p2 + k

[−4k + 6p + 1
] − 2k2 +

(
6p − 1

)
k − 6p2

]

+
k + 1

6

[
2k2 +

(−6p + 1
)
k + 6p2

]

=
k + 1

6

[
2k2 +

(−6p + 1
)
k + 6p2

]
.

(A.51)

This yields (A.50).

A.17. Formula for
∑k

p=0 S
+(p)

Lemma A.17. The above expression equals

k∑
p=0

S+(p) = (k + 1)k
6

(
k2 + 3k + 2

)
. (A.52)

Proof. Since, by (A.50),

6
k + 1

S+(p) = 2k2 +
(−6p + 1

)
k + 6p2, (A.53)
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we get

6
k + 1

k∑
p=0

S+(p) = 2
k∑
p=0

k2 + k
k∑
p=0

(−6p + 1
)
+ 6

k∑
p=0

p2

= 2k2(k + 1) + k(−3k(k + 1) + (k + 1)) + k
(

2k2 + 3k + 1
)

= k3 + 3k2 + 2k.

(A.54)

This yields (A.52).

A.18. Formula for (1/k)
∑k

p=1 S(p) − (1/(k + 1))
∑k

p=0 S
+(p)

Lemma A.18. The above expression equals

1
k

k∑
p=1

S
(
p
) − 1

k + 1

k∑
p=0

S+(p) = 1
2
·
(
−k2 + k

)
. (A.55)

Proof. By (A.47) and (A.50), we obtain

1
k

k∑
p=1

S
(
p
) − 1

k + 1

k∑
p=0

S+(p) = 1
6
·
(
k3 + 5k

)
− 1

6
·
(
k3 + 3k2 + 2k

)

=
1
6
·
(
−3k2 + 3k

)
=

1
2
·
(
−k2 + k

)
.

(A.56)

This yields (A.55).

A.19. Asymptotic Decomposition of
∏k

p=1V (n + p)

Lemma A.19. For a fixed q ∈ N0, the asymptotic representation

k∏
p=1

V
(
n + p

)
= kkϕk(n)

[
1 − kα(n) − k

24

(
k2 − 12k + 11

)
α2(n) +

k

6

(
k2 + 5

) q∑
i=0

ωi(n)

]

+O

(
ϕk(n)
n3

) (A.57)

holds for n → ∞.
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Proof. Using formula (A.17), we get

k∏
p=1

V
(
n + p

)
=

k∏
p=1

[
ϕ(n)

[
k + Σ

(
p
)
α(n) + S

(
p
) q∑
i=0

ωi(n)

]
+O
(
ϕ(n)
n3

)]

= ϕk(n)

⎡
⎢⎢⎣kk + kk−1α(n)

k∑
i=1

Σ(i) + kk−2α2(n)
k∏

i,j=0
i>j

Σ(i) Σ
(
j
)
+ kk−1

k∑
i=1

S(i)
q∑
j=0

ωj(n)

⎤
⎥⎥⎦

+O

(
ϕk(n)
n3

)
= (∗).

(A.58)

Now, by (A.22), (A.29), and (A.47)

(∗) = ϕk(n)

⎡
⎢⎢⎣kk + kk−1(−k)2α(n) +

1
2
kk−2

(
k4 − k

3

12

(
k2 + 11

))
α2(n)

+
1
6
kk−1k

(
k3 + 5k

) q∑
j=0

ωj(n)

⎤
⎥⎥⎦ +O

(
ϕk(n)
n3

)

= kkϕk(n)

⎡
⎢⎢⎣1 − kα(n) − k

24

(
k2 − 12k + 11

)
α2(n)

+
k

6

(
k2 + 5

) q∑
j=0

ωj(n)

⎤
⎥⎥⎦ +O

(
ϕk(n)
n3

)
.

(A.59)

A.20. Asymptotic Decomposition of
∏k

p=0V
+(n + p)

Lemma A.20. For a fixed q ∈ N0, the asymptotic representation

k∏
p=0

V +(n + p
)
= (k + 1)k+1ϕk+1(n)

[
1 − k

24

(
k2 + 3k + 2

)
α2(n) +

k

6

(
k2 + 3k + 2

) q∑
i=0

ωi(n)

]

+O

(
ϕk+1(n)
n3

)

(A.60)

holds for n → ∞.
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Proof. Using formula (A.20), we get

k∏
p=0

V +(n + p
)
=

k∏
p=0

[
ϕ(n)

[
k + 1 + Σ+(p)α(n) + S+(p)

q∑
i=0

ωi(n)

]
+O
(
ϕ(n)
n3

)]

= ϕk+1(n)

⎡
⎢⎢⎣(k + 1)k+1 + (k + 1)kα(n)

k∑
i=0

Σ+(i)

+ (k + 1)k−1α2(n)
k∏

i,j = 0
i > j

Σ+(i)Σ+(j)

+(k + 1)k
k∑
i=0

S+(i)
q∑
j=0

ωj(n)

⎤
⎥⎥⎦ +O

(
ϕk+1(n)
n3

)
= (∗).

(A.61)

Now, by (A.32), (A.39), and (A.52), we derive

(∗) = ϕk+1(n)

⎡
⎢⎢⎣(k + 1)k+1 − (k + 1)k−1 (k + 1)2k

24

(
k2 + 3k + 2

)
α2(n)

+(k + 1)k
(k + 1)k

6

(
k2 + 3k + 2

) q∑
j=0

ωj(n)

⎤
⎥⎥⎦ +O

(
ϕk+1(n)
n3

)

= (k + 1)k+1ϕk+1(n)

⎡
⎣1 − k

24

(
k2 + 3k + 2

)
α2(n) +

k

6

(
k2 + 3k + 2

) q∑
j=0

ωj(n)

⎤
⎦

+O

(
ϕk+1(n)
n3

)
.

(A.62)
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[12] J. Diblı́k, Z. Svoboda, and Z. Šmarda, “Explicit criteria for the existence of positive solutions for a
scalar differential equation with variable delay in the critical case,” Computers & Mathematics with
Applications, vol. 56, no. 2, pp. 556–564, 2008.

[13] Y. Domshlak, “Oscillation properties of discrete difference inequalities and equations: the new
approach,” in Functional-Differential Equations, vol. 1 of Functional Differential Equations Israel Seminar,
pp. 60–82, Coll. Judea Samaria, Ariel, Israel, 1993.

[14] Y. Domshlak and I. P. Stavroulakis, “Oscillations of first-order delay differential equations in a critical
state,” Applicable Analysis, vol. 61, no. 3-4, pp. 359–371, 1996.
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We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations.
We are interested in the coexistence of the species in a bounded domain. We establish the existence
of global generalized solutions of the initial boundary value problem by means of parabolic
regularization and also consider the existence of the nontrivial time-periodic solution for this
system.

1. Introduction

In this paper, we consider the following two-species cooperative system:

ut = Δum1 + uα(a − bu + cv), (x, t) ∈ Ω × �+ , (1.1)

vt = Δvm2 + vβ
(
d + eu − fv), (x, t) ∈ Ω × �+ , (1.2)

u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂Ω × �+ , (1.3)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.4)

where m1, m2 > 1, 0 < α < m1, 0 < β < m2, 1 ≤ (m1 − α)(m2 − β), a = a(x, t), b = b(x, t),
c = c(x, t), d = d(x, t), e = e(x, t), f = f(x, t) are strictly positive smooth functions and
periodic in time with period T > 0 and u0(x) and v0(x) are nonnegative functions and satisfy
um1

0 , vm2
0 ∈W1,2

0 (Ω).
In dynamics of biological groups, the system (1.1)-(1.2) can be used to describe the

interaction of two biological groups. The diffusion terms Δum1 and Δvm2 represent the effect
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of dispersion in the habitat, which models a tendency to avoid crowding and the speed of the
diffusion is rather slow. The boundary conditions (1.3) indicate that the habitat is surrounded
by a totally hostile environment. The functions u and v represent the spatial densities of the
species at time t and a, d are their respective net birth rate. The functions b and f are intra-
specific competitions, whereas c and e are those of interspecific competitions.

As famous models for dynamics of population, two-species cooperative systems like
(1.1)-(1.2) have been studied extensively, and there have been many excellent results, for
detail one can see [1–6] and references therein. As a special case, men studied the following
two-species Lotka-Volterra cooperative system of ODEs:

u′(t) = u(t)(a(t) − b(t)u(t) + c(t)v(t)),
v′(t) = v(t)

(
d(t) + e(t)u(t) − f(t)v(t)). (1.5)

For this system, Lu and Takeuchi [7] studied the stability of positive periodic solution and
Cui [1] discussed the persistence and global stability of it.

When m1 = m2 = α = β = 1, from (1.1)-(1.2) we get the following classical cooperative
system:

ut = Δu + u(a − bu + cv),

vt = Δv + v
(
d + eu − fv). (1.6)

For this system, Lin et al. [5] showed the existence and asymptotic behavior of T-
periodic solutions when a, b, c, e, d, f are all smooth positive and periodic in time with
period T > 0. When a, b, c, e, d, f are all positive constants, Pao [6] proved that the Dirichlet
boundary value problem of this system admits a unique solution which is uniformly bounded
when ce < bf , while the blowup solutions are possible when the two species are strongly
mutualistic (ce > bf). For the homogeneous Neumann boundary value problem of this
system, Lou et al. [4] proved that the solution will blow up in finite time under a sufficient
condition on the initial data. When c = e = 0 and α = β = 1, from (1.1) we get the single
degenerate equation

ut = Δum + u(a − bu). (1.7)

For this equation, Sun et al. [8] established the existence of nontrivial nonnegative periodic
solutions by monotonicity method and showed the attraction of nontrivial nonnegative
periodic solutions.

In the recent years, much attention has been paid to the study of periodic boundary
value problems for parabolic systems; for detail one can see [9–15] and the references therein.
Furthermore, many researchers studied the periodic boundary value problem for degenerate
parabolic systems, such as [16–19]. Taking into account the impact of periodic factors on
the species dynamics, we are also interested in the existence of the nontrivial periodic
solutions of the cooperative system (1.1)-(1.2). In this paper, we first show the existence of
the global generalized solution of the initial boundary value problem (1.1)–(1.4). Then under
the condition that

blfl > cMeM, (1.8)
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where fM = sup{f(x, t) | (x, t) ∈ Ω × �}, fl = inf{f(x, t) | (x, t) ∈ Ω × �}, we show
that the generalized solution is uniformly bounded. At last, by the method of monotone
iteration, we establish the existence of the nontrivial periodic solutions of the system (1.1)-
(1.2), which follows from the existence of a pair of large periodic supersolution and small
periodic subsolution. At last, we show the existence and the attractivity of the maximal
periodic solution.

Our main efforts center on the discussion of generalized solutions, since the regularity
follows from a quite standard approach. Hence we give the following definition of
generalized solutions of the problem (1.1)–(1.4).

Definition 1.1. A nonnegative and continuous vector-valued function (u, v) is said to be
a generalized solution of the problem (1.1)–(1.4) if, for any 0 ≤ τ < T and any functions
ϕi ∈ C1(Qτ) with ϕi|∂Ω×[0,τ) = 0 (i = 1, 2), ∇um1 ,∇vm2 ∈ L2(Qτ), ∂um1/∂t, ∂vm2/∂t ∈ L2(Qτ)
and
∫∫

Qτ

u
∂ϕ1

∂t
− ∇um1∇ϕ1 + uα(a − bu + cv)ϕ1dx dt =

∫
Ω
u(x, τ)ϕ1(x, τ)dx −

∫
Ω
u0(x)ϕ1(x, 0)dx,

∫∫
Qτ

v
∂ϕ2

∂t
− ∇vm2∇ϕ2 + vβ

(
d + eu − fv)ϕ2dxdt =

∫
Ω
v(x, τ)ϕ2(x, τ)dx −

∫
Ω
v0(x)ϕ2(x, 0)dx,

(1.9)

where Qτ = Ω × (0, τ).
Similarly, we can define a weak supersolution (u, v) (subsolution (u, v)) if they satisfy

the inequalities obtained by replacing “=” with “≤” (“≥”) in (1.3), (1.4), and (1.9) and with
an additional assumption ϕi ≥ 0 (i = 1, 2).

Definition 1.2. A vector-valued function (u, v) is said to be a T-periodic solution of the
problem (1.1)–(1.3) if it is a solution in [0, T] such that u(·, 0) = u(·, T), v(·, 0) = v(·, T) in
Ω. A vector-valued function (u, v) is said to be a T-periodic supersolution of the problem
(1.1)–(1.3) if it is a supersolution in [0, T] such that u(·, 0) ≥ u(·, T), v(·, 0) ≥ v(·, T) in Ω. A
vector-valued function (u, v) is said to be a T-periodic subsolution of the problem (1.1)–(1.3),
if it is a subsolution in [0, T] such that u(·, 0) ≤ u(·, T), v(·, 0) ≤ v(·, T) in Ω.

This paper is organized as follows. In Section 2, we show the existence of generalized
solutions to the initial boundary value problem and also establish the comparison principle.
Section 3 is devoted to the proof of the existence of the nonnegative nontrivial periodic
solutions by using the monotone iteration technique.

2. The Initial Boundary Value Problem

To solve the problem (1.1)–(1.4), we consider the following regularized problem:

∂uε
∂t

= div
((
mum1−1

ε + ε
)
∇uε
)
+ uαε (a − buε + cvε), (x, t) ∈ QT, (2.1)

∂vε
∂t

= div
((
mvm2−1

ε + ε
)
∇vε
)
+ vβε

(
d + euε − fvε

)
, (x, t) ∈ QT, (2.2)

uε(x, t) = 0, vε(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (2.3)

uε(x, 0) = u0ε(x), vε(x, 0) = v0ε(x), x ∈ Ω, (2.4)



4 Abstract and Applied Analysis

whereQT = Ω×(0, T), 0 < ε < 1, u0ε, v0ε ∈ C∞0 (Ω) are nonnegative bounded smooth functions
and satisfy

0 ≤ u0ε ≤ ‖u0‖L∞(Ω), 0 ≤ v0ε ≤ ‖v0‖L∞(Ω),

um1
0ε −→ um1

0 , vm2
0ε −→ vm2

0 , in W1,2
0 (Ω) as ε −→ 0.

(2.5)

The standard parabolic theory (cf. [20, 21]) shows that (2.1)–(2.4) admits a nonnegative
classical solution (uε, vε). So, the desired solution of the problem (1.1)–(1.4) will be obtained
as a limit point of the solutions (uε, vε) of the problem (2.1)–(2.4). In the following, we show
some important uniform estimates for (uε, vε).

Lemma 2.1. Let (uε, vε) be a solution of the problem (2.1)–(2.4).

(1) If 1 < (m1 − α)(m2 − β), then there exist positive constants r and s large enough such that

1
m2 − β

<
m1 + r − 1
m2 + s − 1

< m1 − α, (2.6)

‖uε‖Lr (QT ) ≤ C, ‖vε‖Ls(QT ) ≤ C, (2.7)

where C is a positive constant only depending onm1, m2, α, β, r, s, |Ω|, and T .

(2) If 1 = (m1 − α)(m2 − β), then (2.7) also holds when |Ω| is small enough.

Proof. Multiplying (2.1) by ur−1
ε (r > 1) and integrating over Ω, we have that

∫
Ω

∂urε
∂t

dx = − 4r(r − 1)m1

(m1 + r − 1)2

∫
Ω

∣∣∣∇u(m1+r−1)/2
ε

∣∣∣2dx + r
∫
Ω
uα+r−1
ε (a − buε + cvε)dx. (2.8)

By Poincaré’s inequality, we have that

K

∫
Ω
um1+r−1
ε dx ≤

∫
Ω

∣∣∣∇u(m1+r−1)/2
ε

∣∣∣2dx, (2.9)

where K is a constant depending only on |Ω| and N and becomes very large when the
measure of the domain Ω becomes small. Since α < m1, Young’s inequality shows that

auα+r−1
ε ≤ Kr(r − 1)m1

(m1 + r − 1)2u
m1+r−1
ε + CK−(α+r−1)/(m1−α),

cuα+r−1
ε vε ≤ Kr(r − 1)m1

(m1 + r − 1)2u
m1+r−1
ε +CK−(α+r−1)/(m1−α)v(m1+r−1)/(m1−α)

ε .

(2.10)
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For convenience, here and below, C denotes a positive constant which is independent of ε
and may take different values on different occasions. Complying (2.8) with (2.9) and (2.10),
we obtain

∫
Ω

∂urε
∂t

dx ≤ −2Kr(r − 1)m1

(m1 + r − 1)2

∫
Ω
um1+r−1
ε dx + CK−(α+r−1)/(m1−α)

∫
Ω
v
(m1+r−1)/(m1−α)
ε dx

+ CK−(α+r−1)/(m1−α).

(2.11)

As a similar argument as above, for vε and positive constant s > 1, we have that

∫
Ω

∂vsε
∂t

dx ≤ −2Ks(s − 1)m2

(m2 + s − 1)2

∫
Ω
vm2+s−1
ε dx + CK−(β+s−1)/(m2−β)

∫
Ω
u
(m2+s−1)/(m2−β)
ε dx

+ CK−(β+s−1)/(m2−β).

(2.12)

Thus we have that

∫
Ω

(
∂urε
∂t

+
∂vsε
∂t

)
dx ≤ −2Kr(r − 1)m1

(m1 + r − 1)2

∫
Ω
um1+r−1
ε dx + CK−(β+s−1)/(m2−β)

∫
Ω
u
(m2+s−1)/(m2−β)
ε dx

− 2Ks(s − 1)m2

(m2 + s − 1)2

∫
Ω
vm2+s−1
ε dx + CK−(α+r−1)/(m1−α)

∫
Ω
v
(m1+r−1)/(m1−α)
ε dx

+ CK−(α+r−1)/(m1−α) +CK−(β+s−1)/(m2−β).
(2.13)

For the case of 1 < (m1 − α)(m2 − β), there exist r, s large enough such that

1
m1 − α <

m2 + s − 1
m1 + r − 1

< m2 − β. (2.14)

By Young’s inequality, we have that

∫
Ω
u
(m2+s−1)/(m2−β)
ε dx ≤ r(r − 1)m1K(m2+s−1)/(m2−β)

C(m1 + r − 1)2

∫
Ω
um1+r−1
ε dx + CK−γ1 ,

∫
Ω
v
(m1+r−1)/(m1−α)
ε dx ≤ s(s − 1)m2K(m1+r−1)/(m1−α)

C(m2 + s − 1)p2

∫
Ω
vm2+s−1
ε dx +CK−γ2 ,

(2.15)

where

γ1 =
(m2 + s − 1)2[

m2 − β
][(

m2 − β
)
(m1 + r − 1) − (m2 + s − 1)

] ,

γ2 =
(m1 + r − 1)2

[m1 − α][(m1 − α)(m2 + s − 1) − (m1 + r − 1)]
.

(2.16)
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Together with (2.13), we have that

∫
Ω

(
∂urε
∂t

+
∂vsε
∂t

)
dx ≤ −K

∫
Ω

(
um1+r−1
ε + vm2+s−1

ε

)
dx + C

(
K−θ1 +K−θ2

)

+ CK−(α+r−1)/(m1−α) + CK−(β+s−1)/(m2−β),

(2.17)

where

θ1 =
(m2 + s − 1) + (m1 + r − 1)

(
β + s − 1

)
(
m2 − β

)
(m1 + r − 1) − (m2 + s − 1)

, θ2 =
(m1 + r − 1) + (m2 + s − 1)(α + r − 1)
(m1 − α)(m2 + s − 1) − (m1 + r − 1)

.

(2.18)

Furthermore, by Hölder’s and Young’s inequalities, from (2.17) we obtain

∫
Ω

(
∂urε
∂t

+
∂vsε
∂t

)
dx ≤ −K

∫
Ω
(urε + v

s
ε)dx + C

(
K−θ1 +K−θ2

)
+ 2K|Ω|

+ CK−(α+r−1)/(m1−α) +CK−(β+s−1)/(m2−β).

(2.19)

Then by Gronwall’s inequality, we obtain

∫
Ω
(urε + v

s
ε)dx ≤ C. (2.20)

Now we consider the case of 1 = (m1 − α)(m2 − β). It is easy to see that there exist
positive constants r, s large enough such that

1
m1 − α =

m2 + s − 1
m1 + r − 1

= m2 − β. (2.21)

Due to the continuous dependence of K upon |Ω| in (2.9), from (2.13) we have that

∫
Ω

(
∂urε
∂t

+
∂vsε
∂t

)
dx ≤ −K

∫
Ω

(
um1+r−1
ε + vm2(p2−1)+s−1

ε

)
dx + C (2.22)

when |Ω| is small enough. Then by Young’s and Gronwall’s inequalities we can also obtain
(2.20), and thus we complete the proof of this lemma.

Taking um1
ε , vm2

ε as the test functions, we can easily obtain the following lemma.

Lemma 2.2. Let (uε, vε) be a solution of (2.1)–(2.4); then

∫∫
QT

|∇um1
ε |2dxdt ≤ C,

∫∫
QT

|∇vm2
ε |2dxdt ≤ C, (2.23)

where C is a positive constant independent of ε.
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Lemma 2.3. Let (uε, vε) be a solution of (2.1)–(2.4), then

‖uε‖L∞(QT ) ≤ C, ‖vε‖L∞(QT ) ≤ C, (2.24)

where C is a positive constant independent of ε.

Proof. For a positive constant k > ‖u0ε‖L∞(Ω), multiplying (2.1) by (uε − k)m1
+ χ[t1,t2] and

integrating the results over QT , we have that

1
m1 + 1

∫∫
QT

∂(uε − k)m1+1
+ χ[t1,t2]

∂t
dx dt +

∫∫
QT

∣∣∇(uε − k)m1
+ χ[t1,t2]

∣∣2dx dt

≤
∫∫

QT

auα+m1
ε (a + cvε)dx dt,

(2.25)

where s+ = max{0, s} and χ[t1,t2] is the characteristic function of [t1, t2] (0 ≤ t1 < t2 ≤ T). Let

Ik(t) =
∫
Ω
(uε − k)m1+1

+ dx; (2.26)

then Ik(t) is absolutely continuous on [0, T]. Denote by σ the point where Ik(t) takes its
maximum. Assume that σ > 0, for a sufficient small positive constant ε. Taking t1 = σ − ε,
t2 = σ in (2.25), we obtain

1
(m1 + 1)ε

∫σ
σ−ε

∫
Ω

∂(uε − k)m1+1
+

∂t
dx dt +

1
ε

∫σ
σ−ε

∫
Ω

∣∣∇(uε − k)m1
+

∣∣2dxdt

≤ 1
ε

∫σ
σ−ε

∫
Ω
uα+m1
ε (a + cvε)dxdt.

(2.27)

From

∫σ
σ−ε

∫
Ω

∂(uε − k)m1+1
+

∂t
dx dt = Ik(σ) − Ik(σ − ε) ≥ 0, (2.28)

we have that

1
ε

∫σ
σ−ε

∫
Ω

∣∣∇(uε − k)m1
+

∣∣2dx dt ≤ 1
ε

∫σ
σ−ε

∫
Ω
uα+m1
ε (a + cvε)dx dt. (2.29)



8 Abstract and Applied Analysis

Letting ε → 0+, we have that

∫
Ω

∣∣∇(uε(x, σ) − k)m1
+

∣∣2dx ≤
∫
Ω
uα+m1
ε (x, σ)(a + cvε(x, σ))dx. (2.30)

Denote Ak(t) = {x : uε(x, t) > k} and μk = supt∈(0,T)|Ak(t)|; then

∫
Ak(σ)

∣∣∇(uε − k)m1
+

∣∣2dx ≤
∫
Ak(σ)

uα+m1
ε (a + cvε)dx. (2.31)

By Sobolev’s theorem,

(∫
Ak(σ)

(
(uε − k)m1

+
)p
dx

)1/p

≤ C
(∫

Ak(σ)

∣∣∇(uε − k)m1
+

∣∣2dx
)1/2

, (2.32)

with

2 < p <

⎧⎪⎪⎨
⎪⎪⎩
+∞, N ≤ 2,

2N
N − 2

, N > 2,
(2.33)

we obtain

(∫
Ak(σ)

(
(uε − k)m1

+
)p
dx

)2/p

≤ C
∫
Ak(σ)

∣∣∇(uε − k)m1
+

∣∣2dx

≤ C
∫
Ak(σ)

uα+m1
ε (a + vε)dx

≤ C
(∫

Ak(σ)
urεdx

)(m1+α)/r(∫
Ak(σ)

(a + vε)
r/(r−m1−α)dx

)(r−m1−α)/r

≤ C
(∫

Ak(σ)
(a + vε)

r/(r−m1−α)dx

)(r−m1−α)/r

≤ C
(∫

Ak(σ)
(a + vε)sdx

)1/s

|Ak(σ)|(s(r−m1−α)−r)/sr

≤ Cμ(s(r−m1−α)−r)/sr
k

,

(2.34)
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where r > p(m1 + α)/(p − 2), s > pr/(p(r − m1 − α) − 2r) and C denotes various positive
constants independent of ε. By Hölder’s inequality, it yields

Ik(σ) =
∫
Ω
(uε − k)m1+1

+ dx =
∫
Ak(σ)

(uε − k)m1+1
+ dx

≤
(∫

Ak(σ)
(uε − k)m1p

+ dx

)(m1+1)/m1p

μ
1−(m1+1)/m1p

k

≤ Cμ1+[sp(r−m1−α)−pr−2sr](m1+1)/2psrm1

k .

(2.35)

Then

Ik(t) ≤ Ik(σ) ≤ Cμ1+[sp(r−m1−α)−pr−2sr](m1+1)/2psrm1

k , t ∈ [0, T]. (2.36)

On the other hand, for any h > k and t ∈ [0, T], we have that

Ik(t) ≥
∫
Ak(t)

(uε − k)m1+1
+ dx ≥ (h − k)m1+1|Ah(t)|. (2.37)

Combined with (2.35), it yields

(h − k)m1+1μh ≤ Cμ1+[sp(r−m1−α)−pr−2sr](m1+1)/2psrm1

k
, (2.38)

that is,

μh ≤ C

(h − k)m1+1
μ

1+[sp(r−m1−α)−pr−2sr](m1+1)/2psrm1

k . (2.39)

It is easy to see that

γ = 1 +

[
sp(r −m1 − α) − pr − 2sr

]
(m1 + 1)

2psrm1
> 1. (2.40)

Then by the De Giorgi iteration lemma [22], we have that

μl+d = sup|Al+d(t)| = 0, (2.41)

where d = C1/(m1+1)μ
(γ−1)/(m1+1)
l

2γ/(γ−1). That is,

uε ≤ l + d a.e. in QT. (2.42)

It is the same for the second inequality of (2.24). The proof is completed.
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Lemma 2.4. The solution (uε, vε) of (2.1)–(2.4) satisfies the following:

∫∫
QT

∣∣∣∣∂u
m1
ε

∂t

∣∣∣∣
2

dxdt ≤ C,
∫∫

QT

∣∣∣∣∂v
m2
ε

∂t

∣∣∣∣
2

dx dt ≤ C, (2.43)

where C is a positive constant independent of ε.

Proof. Multiplying (2.1) by (∂/∂t)um1
ε and integrating over Ω, by (2.3), (2.4) and Young’s

inequality we have that

4m1

(m1 + 1)2

∫∫
QT

∣∣∣∣ ∂∂tu
(m1+1)/2
ε

∣∣∣∣
2

dx dt

=
∫∫

QT

∂uε
∂t

∂um1
ε

∂t
dx dt

=
1
2

∫
Ω
|∇um1

ε (x, 0)|2dx − 1
2

∫
Ω
|∇um1

ε (x, T)|2dx

+
∫∫

QT

m1u
α+m1−1
ε (a − buε + cvε)∂uε

∂t
dx dt

=
1
2

∫
Ω
|∇um1

ε (x, 0)|2dx − 1
2

∫
Ω
|∇um1

ε (x, T)|2dx

+
∫∫

QT

2m1

m1 + 1
u
(2α+m1−1)/2
ε (a − buε + cvε)∂u

(m1+1)/2
ε

∂t
dx dt

≤ 1
2

∫
Ω
|∇um1

ε (x, 0)|2dx + 2m1

∫∫
QT

u2α+m1−1
ε (a − buε + cvε)2dxdt

+
2m1

(m1 + 1)2

∫∫
QT

∣∣∣∣ ∂∂tu
(m1+1)/2
ε

∣∣∣∣
2

dx dt,

(2.44)

which together with the bound of a, b, c, uε, vε shows that

∫∫
QT

∣∣∣∣∣
∂u

(m1+1)/2
ε

∂t

∣∣∣∣∣
2

dx dt ≤ C, (2.45)

where C is a positive constant independent of ε. Noticing the bound of uε, we have that

∫∫
QT

∣∣∣∣∂u
m1
ε

∂t

∣∣∣∣
2

dx dt =
4m2

1

(m1 + 1)2

∫∫
QT

um1−1
ε

∣∣∣∣ ∂∂tu
(m1+1)/2
ε

∣∣∣∣
2

dx dt ≤ C. (2.46)

It is the same for the second inequality. The proof is completed.

From the above estimates of uε, vε, we have the following results.
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Theorem 2.5. The problem (1.1)–(1.4) admits a generalized solution.

Proof. By Lemmas 2.2, 2.3, and 2.4, we can see that there exist subsequences of {uε}, {vε}
(denoted by themselves for simplicity) and functions u, v such that

uε −→ u, vε −→ v, a.e in QT,

∂um1
ε

∂t
−→ ∂um1

∂t
,

∂vm2
ε

∂t
−→ ∂vm2

∂t
, weakly in L2(QT ),

∇um1
ε −→ ∇um1 , ∇vm2

ε −→ ∇vm2 , weakly in L2(QT ),

(2.47)

as ε → 0. Then a rather standard argument as [23] shows that (u, v) is a generalized solution
of (1.1)–(1.4) in the sense of Definition 1.1.

In order to prove that the generalized solution of (1.1)–(1.4) is uniformly bounded, we
need the following comparison principle.

Lemma 2.6. Let (u, v) be a subsolution of the problem (1.1)–(1.4) with the initial value (u0, v0) and
(u, v) a supersolution with a positive lower bound of the problem (1.1)–(1.4) with the initial value
(u0, v0). If u0 ≤ v0, u0 ≤ v0, then u(x, t) ≤ u(x, t), v(x, t) ≤ v(x, t) onQT .

Proof. Without loss of generality, we might assume that ‖u(x, t)‖L∞(QT ), ‖u(x, t)‖L∞(QT ),
‖v(x, t)‖L∞(QT ), ‖v(x, t)‖L∞(QT ) ≤ M, where M is a positive constant. By the definitions of
subsolution and supersolution, we have that

∫ t
0

∫
Ω
−u∂ϕ

∂t
+∇um1∇ϕdxdτ +

∫
Ω
u(x, t)ϕ(x, t)dx −

∫
Ω
u0(x)ϕ(x, 0)dx

≤
∫ t

0

∫
Ω
uα
(
a − bu + cv

)
ϕdx dτ,

∫ t
0

∫
Ω
−u∂ϕ

∂t
+∇um1∇ϕdxdτ +

∫
Ω
u(x, t)ϕ(x, t)dx −

∫
Ω
v0(x)ϕ(x, 0)dx

≥
∫ t

0

∫
Ω
uα(a − bu + cv)ϕdxdτ.

(2.48)

Take the test function as

ϕ(x, t) = Hε

(
um1(x, t) − um1(x, t)

)
, (2.49)

where Hε(s) is a monotone increasing smooth approximation of the function H(s) defined
as follows:

H(s) =

⎧⎨
⎩

1, s > 0,

0, otherwise.
(2.50)
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It is easy to see that H ′
ε(s) → δ(s) as ε → 0. Since ∂um1/∂t, ∂um1/∂t ∈ L2(QT ), the test

function ϕ(x, t) is suitable. By the positivity of a, b, c we have that

∫
Ω

(
u − u)Hε

(
um1 − um1

)
dx −

∫ t
0

∫
Ω

(
u − u)∂Hε

(
um1 − um1

)
∂t

dx dτ

+
∫ t

0

∫
Ω
H ′

ε

(
um1 − um1

)∣∣∇(um1 − um1
)∣∣2dx dτ

≤
∫ t

0

∫
Ω
a
(
uα − uα)Hε

(
um1 − um1

)
+ c
(
uαv − uαv)Hε

(
um1 − um1

)
dx dτ,

(2.51)

where C is a positive constant depending on ‖a(x, t)‖C(Qt), ‖c(x, t)‖C(Qt). Letting ε → 0 and
noticing that

∫ t
0

∫
Ω
H ′

ε

(
um1 − um1

)∣∣∇(um − um)∣∣2dx dτ ≥ 0, (2.52)

we arrive at

∫
Ω

[
u(x, t) − u(x, t)]+dx ≤ C

∫ t
0

∫
Ω

(
uα − uα)+ + v(uα − uα)+ + uα(v − v)+dx dτ. (2.53)

Let (u, v) be a supsolution with a positive lower bound σ. Noticing that

(
xα − yα)+ ≤ C(α)(x − y)+, for α ≥ 1,

(
xα − yα)+ ≤ xα−1(x − y)+ ≤ yα−1(x − y)+, for α < 1,

(2.54)

with x, y > 0, we have that

∫ t
0

∫
Ω

(
uα − uα)+ + v(uα − uα)+ + uα(v − v)+dx dτ ≤ C

∫ t
0

∫
Ω

(
u − u)+ + (v − v)+dxdτ,

(2.55)

where C is a positive constant depending upon α, σ,M.
Similarly, we also have that

∫
Ω

[
v(x, t) − v(x, t)]+dx ≤ C

∫ t
0

∫
Ω

(
u − u)+ + (v − v)+dx dτ. (2.56)
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Combining the above two inequalities, we obtain

∫
Ω

[
u(x, t) − u(x, t)]+ + [v(x, t) − v(x, t)]+dx ≤ C

∫ t
0

∫
Ω

(
u − u)+ + (v − v)+dxdτ. (2.57)

By Gronwall’s lemma, we see that u ≤ u, v ≤ v. The proof is completed.

Corollary 2.7. If blfl > cMeM, then the problem (1.1)–(1.4) admits at most one global solution
which is uniformly bounded in Ω × [0,∞).

Proof. The uniqueness comes from the comparison principle immediately. In order to prove
that the solution is global, we just need to construct a bounded positive supersolution of
(1.1)–(1.4).

Let ρ1 = (aMfl + dMcM)/(blfl − cMeM) and ρ2 = (aMeM + dMbl)/(blfl − cMeM), since
blfl > cMeM; then ρ1, ρ2 > 0 and satisfy

aM − blρ1 + cMρ2 = 0, dM + eMρ1 − flρ2 = 0. (2.58)

Let (u, v) = (ηρ1, ηρ2), where η > 1 is a constant such that (u0, v0) ≤ (ηρ1, ηρ2); then we have
that

ut −Δum1 = 0 ≥ uα(a − bu + cv), vt −Δvm2 = 0 ≥ vβ(d + eu − fv). (2.59)

That is, (u, v) = (ηρ1, ηρ2) is a positive supersolution of (1.1)–(1.4). Since u, v are global and
uniformly bounded, so are u and v.

3. Periodic Solutions

In order to establish the existence of the nontrivial nonnegative periodic solutions of the
problem (1.1)–(1.3), we need the following lemmas. Firstly, we construct a pair of T-periodic
supersolution and T-periodic subsolution as follows.

Lemma 3.1. In case of blfl > cMeM, there exists a pair of T-periodic supersolution and T-periodic
subsolution of the problem (1.1)–(1.3).

Proof. We first construct a T-periodic subsolution of (1.1)–(1.3). Let λ be the first eigenvalue
and φ be the uniqueness solution of the following elliptic problem:

−Δφ = λφ, x ∈ Ω, φ = 0, x ∈ ∂Ω; (3.1)

then we have that

λ > 0, φ(x) > 0 in Ω,
∣∣∇φ∣∣ > 0 on ∂Ω, M = max

x∈Ω
φ(x) < ∞. (3.2)
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Let

(
u, v
)
=
(
εφ2/m1(x), εφ2/m2(x)

)
, (3.3)

where ε > 0 is a small constant to be determined. We will show that (u, v) is a (time
independent, hence T-periodic) subsolution of (1.1)–(1.3).

Taking the nonnegative function ϕ1(x, t) ∈ C1(QT ) as the test function, we have that

∫∫
QT

(
u
∂ϕ1

∂t
+ Δum1ϕ1 + uα

(
a − bu + cv

)
ϕ1

)
dx dt

+
∫
Ω
u(x, 0)ϕ1(x, 0) − u(x, T)ϕ1(x, T)dx

=
∫∫

QT

(
uα
(
a − bu + cv

)
+ Δum1

)
ϕ1dx dt

=
∫∫

QT

uα
(
a − bu + cv

)
ϕ1dxdt −

∫∫
QT

∇um1∇ϕ1dxdt

=
∫∫

QT

uα
(
a − bu + cv

)
ϕ1dxdt − 2εm1

∫∫
QT

φ∇φ · ∇ϕ1dx dt

=
∫∫

QT

uα
(
a − bu + cv

)
ϕ1dxdt − 2εm1

∫∫
QT

∇φ∇(φϕ1
) − ∣∣∇φ∣∣2ϕ1dx dt

=
∫∫

QT

uα
(
a − bu + cv

)
ϕ1dxdt − 2εm1

∫∫
QT

− div
(∇φ)φϕ1 −

∣∣∇φ∣∣2ϕ1dxdt

=
∫∫

QT

uα
(
a − bu + cv

)
ϕ1dxdt − 2εm1

∫∫
QT

(
λφ2 − ∣∣∇φ∣∣2)ϕ1dx dt.

(3.4)

Similarly, for any nonnegative test function ϕ2(x, t) ∈ C1(QT ), we have that

∫∫
QT

(
v
∂ϕ2

∂t
+ Δvm2ϕ2 + vβ

(
d + eu − fv)ϕ2

)
dx dt +

∫
Ω
v(x, 0)ϕ2(x, 0) − v(x, T)ϕ2(x, T)dx

=
∫∫

QT

vβ
(
d + eu − fv)ϕ2dxdt − 2εm2

∫∫
QT

(
λφ2 − ∣∣∇φ∣∣2)ϕ2dx dt.

(3.5)

We just need to prove the nonnegativity of the right-hand side of (3.4) and (3.5).
Since φ1 = φ2 = 0, |∇φ1|, |∇φ2| > 0 on ∂Ω, then there exists δ > 0 such that

λφ2 − ∣∣∇φ∣∣2 ≤ 0, x ∈ Ωδ, (3.6)
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where Ωδ = {x ∈ Ω | dist(x, ∂Ω) ≤ δ}. Choosing

ε ≤ min

{
al

bMM2/m1
,

dl

fMM2/m2

}
, (3.7)

then we have that

2εm1

∫T
0

∫
Ωδ

(
λφ2 − ∣∣∇φ∣∣2)ϕ1dx dt ≤ 0 ≤

∫T
0

∫
Ωδ

uα
(
a − bu + cv

)
ϕ1dx dt,

2εm2

∫T
0

∫
Ωδ

(
λφ2 − ∣∣∇φ∣∣2)ϕ2dx dt ≤ 0 ≤

∫T
0

∫
Ωδ

vβ
(
d + eu − fv)ϕ2dx dt,

(3.8)

which shows that (u, v) is a positive (time independent, hence T-periodic) subsolution of
(1.1)–(1.3) on Ωδ × (0, T).

Moreover, we can see that, for some σ > 0,

φ(x) ≥ σ > 0, x ∈ Ω \Ωδ. (3.9)

Choosing

ε ≤ min

{
al

2bMM2/m1
,

(
al

4λM2(m1−α)/m1

)1/(m1−α)
,

dl
2fMM2/m2

,

(
dl

4λM2(m2−β)/m2

)1/(m2−β)
}
,

(3.10)

then

εαφ2α/m1a − bεα+1φ2(α+1)/m1 + cεαφ2α/m1εφ2/m2 − 2εm1λφ2 ≥ 0,

εβφ2β/m2d + eεφ2/m1εβφ2β/m2 − fεβ+1φ2(β+1)/m2 − 2εm2λφ2 ≥ 0
(3.11)

on QT , that is

∫∫
QT

uα
(
a − bu + cv

)
ϕ1dx dt − 2εm1

∫∫
QT

(
λφ2 − ∣∣∇φ∣∣2)ϕ1dx dt ≥ 0,

∫∫
QT

vβ
(
d + eu − fv)ϕ2dx dt − 2εm2

∫∫
QT

(
λφ2 − ∣∣∇φ∣∣2)ϕ2dx dt ≥ 0.

(3.12)

These relations show that (u, v) = (εφ2/m1
1 (x), εφ2/m2

2 (x)) is a positive (time independent,
hence T-periodic) subsolution of (1.1)–(1.3).

Letting (u, v) = (ηρ1, ηρ2), where η, ρ1, ρ2 are taken as those in Corollary 2.7, it is easy
to see that (u, v) is a positive (time independent, hence T-periodic) subsolution of (1.1)–(1.3).

Obviously, we may assume that u(x, t) ≤ u(x, t), v(x, t) ≤ v(x, t) by changing η, ε
appropriately.
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Lemma 3.2 (see [24, 25]). Let u be the solution of the following Dirichlet boundary value problem

∂u

∂t
= Δum + f(x, t), (x, t) ∈ Ω × (0, T),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T),
(3.13)

where f ∈ L∞(Ω × (0, T)); then there exist positive constants K and α ∈ (0, 1) depending only upon
τ ∈ (0, T) and ‖f‖L∞(Ω×(0,T)), such that, for any (xi, ti) ∈ Ω × [τ, T] (i = 1, 2),

|u(x1, t1) − u(x2, t2)| ≤ K
(
|x1 − x2|α + |t1 − t2|α/2

)
. (3.14)

Lemma 3.3 (see [26]). Define a Poincaré mapping

Pt : L∞(Ω) × L∞(Ω) −→ L∞(Ω) × L∞(Ω),

Pt(u0(x), v0(x)) := (u(x, t), v(x, t)) (t > 0),
(3.15)

where (u(x, t), v(x, t)) is the solution of (1.1)–(1.4) with initial value (u0(x), v0(x)). According to
Lemmas 2.6 and 3.2 and Theorem 2.5, the map Pt has the following properties:

(i) Pt is defined for any t > 0 and order preserving;

(ii) Pt is order preserving;

(iii) Pt is compact.

Observe that the operator PT is the classical Poincaré map and thus a fixed point of the
Poincaré map gives a T-periodic solution setting. This will be made by the following iteration
procedure.

Theorem 3.4. Assume that blfl > cMeM and there exists a pair of nontrivial nonnegative T-periodic
subsolution (u(x, t), v(x, t)) and T-periodic supersolution (u(x, t), v(x, t)) of the problem (1.1)–(1.3)
with u(x, 0) ≤ u(x, 0); then the problem (1.1)–(1.3) admits a pair of nontrivial nonnegative periodic
solutions (u∗(x, t), v∗(x, t)), (u∗(x, t), v∗(x, t)) such that

u(x, t) ≤ u∗(x, t) ≤ u∗(x, t) ≤ u(x, t), v(x, t) ≤ v∗(x, t) ≤ v∗(x, t) ≤ v(x, t), in QT. (3.16)

Proof. Taking u(x, t), u(x, t) as those in Lemma 3.1 and choosing suitable B(x0, δ), B(x0, δ′),Ω′,
k1, k2, andK, we can obtain u(x, 0) ≤ u(x, 0). By Lemma 2.6, we have that PT (u(·, 0)) ≥ u(·, T).
Hence by Definition 1.2 we get PT (u(·, 0)) ≥ u(·, 0), which implies P(k+1)T (u(·, 0)) ≥ PkT(u(·, 0))
for any k ∈ �. Similarly we have that PT (u(·, 0)) ≤ u(·, T) ≤ u(·, 0), and hence P(k+1)T (u(·, 0)) ≤
PkT (u(·, 0)) for any k ∈ �. By Lemma 2.6, we have that PkT(u(·, 0)) ≤ PkT (u(·, 0)) for any k ∈ �.
Then

u∗(x, 0) = lim
k→∞

PkT
(
u(x, 0)

)
, u∗(x, 0) = lim

k→∞
PkT(u(x, 0)) (3.17)

exist for almost every x ∈ Ω. Since the operator PT is compact (see Lemma 3.3), the above
limits exist in L∞(Ω), too. Moreover, both u∗(x, 0) and u∗(x, 0) are fixed points of PT . With
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the similar method as [26], it is easy to show that the even extension of the function u∗(x, t),
which is the solution of the problem (1.1)–(1.4) with the initial value u∗(x, 0), is indeed a
nontrivial nonnegative periodic solution of the problem (1.1)–(1.3). It is the same for the
existence of u∗(x, t). Furthermore, by Lemma 2.6, we obtain (3.16) immediately, and thus we
complete the proof.

Furthermore, by De Giorgi iteration technique, we can also establish a prior upper
bound of all nonnegative periodic solutions of (1.1)–(1.3). Then with a similar method as
[18], we have the following remark which shows the existence and attractivity of the maximal
periodic solution.

Remark 3.5. If blfl > cMeM, the problem (1.1)–(1.3) admits a maximal periodic solution
(U,V ). Moreover, if (u, v) is the solution of the initial boundary value problem (1.1)–(1.4)
with nonnegative initial value (u0, v0), then, for any ε > 0, there exists t depending on u0, v0,
and ε, such that

0 ≤ u ≤ U + ε, 0 ≤ v ≤ V + ε, for x ∈ Ω, t ≥ t. (3.18)
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This contribution is devoted to the investigation of the asymptotic behavior of delayed difference
equations with an integer delay. We prove that under appropriate conditions there exists at least
one solution with its graph staying in a prescribed domain. This is achieved by the application of
a more general theorem which deals with systems of first-order difference equations. In the proof
of this theorem we show that a good way is to connect two techniques—the so-called retract-type
technique and Liapunov-type approach. In the end, we study a special class of delayed discrete
equations and we show that there exists a positive and vanishing solution of such equations.

1. Introduction

Throughout this paper, we use the following notation: for an integer q, we define

Z
∞
q :=

{
q, q + 1, . . .

}
. (1.1)

We investigate the asymptotic behavior for n → ∞ of the solutions of the discrete delayed
equation of the (k + 1)-th order

Δv(n) = f(n, v(n), v(n − 1), . . . , v(n − k)), (1.2)

where n is the independent variable assuming values from the set Z
∞
a with a fixed a ∈ N. The

number k ∈ N, k ≥ 1 is the fixed delay, Δv(n) = v(n + 1) − v(n), and f : Z
∞
a × R

k+1 → R.
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A function v : Z
∞
a−k → R is a solution of (1.2) if it satisfies (1.2) for every n ∈ Z

∞
a .

We will study (1.2) together with k + 1 initial conditions

v(a + s − k) = va+s−k ∈ R, s = 0, 1, . . . , k. (1.3)

Initial problem (1.2), (1.3) obviously has a unique solution, defined for every n ∈ Z
∞
a−k. If the

function f is continuous with respect to its last k + 1 arguments, then the solution of (1.2)
continuously depends on initial conditions (1.3).

Now we give a general description of the problem solved in this paper.

Problem 1. Let b, c : Z
∞
a−k → R be functions such that b(n) < c(n) for every n ∈ Z

∞
a−k. The

problem under consideration is to find sufficient conditions for the right-hand side of (1.2)
that will guarantee the existence of a solution v = v∗(n) of initial problem (1.2), (1.3) such
that

b(n) < v∗(n) < c(n), n ∈ Z
∞
a−k. (1.4)

This problem can be solved with help of a result which is valid for systems of first-
order difference equations and which will be presented in the next section. This is possible
because the considered equation (1.2) can be rewritten as a system of k + 1 first-order
difference equations, similarly as a differential equation of a higher order can be transformed
to a special system of first-order differential equations. Although the process of transforming
a (k + 1)-st order difference equation to a system of first order equations is simple and well-
known (it is described in Section 3), the determination of the asymptotic properties of the
solutions of the resulting system using either Liapunov approach or retract-type method
is not trivial. These analogies of classical approaches, known from the qualitative theory
of differential equations, were developed for difference systems in [1] (where an approach
based on Liapunov method was formulated) and in [2–5] (where retract-type analysis was
modified for discrete equations). It occurs that for the mentioned analysis of asymptotic
problems of system (1.2), neither the ideas of Liapunov, nor the retract-type technique can
be applied directly. However, in spite of the fact that each of the two mentioned methods fails
when used independently, it appears that the combination of both these techniques works
for this type of systems. Therefore, in Section 2 we prove the relevant result suitable for the
asymptotic analysis of systems arising by transformation of (1.2) to a system of first-order
differential equations (Theorem 2.1), where the assumptions put to the right-hand side of the
system are of both types: those caused by the application of the Liapunov approach and those
which are typical for the retract-type technique. Such an idea was applied in a particular case
of investigation of asymptotic properties of solutions of the discrete analogue of the Emden-
Fowler equation in [6, 7]. The approach is demonstrated in Section 3 where, moreover, its
usefulness is illustrated on the problem of detecting the existence of positive solutions of
linear equations with a single delay (in Section 3.4) and asymptotic estimation of solutions
(in Section 3.3).

Advantages of our approach can be summarized as follows. We give a general method
of analysis which is different from the well-known comparison method (see, e.g., [8, 9]).
Comparing our approach with the scheme of investigation in [10, 11] which is based on
a result from [12], we can see that the presented method is more general because it unifies
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the investigation of systems of discrete equations and delayed discrete equations thanks to
the Liapunov-retract-type technique.

For related results concerning positive solutions and the asymptotics of solutions of
discrete equations, the reader is referred also to [13–25].

2. The Result for Systems of First-Order Equations

Consider the system of m difference equations

Δu(n) = F(n, u(n)), (2.1)

where n ∈ Z
∞
a , u = (u1, . . . , um), and F : Z

∞
a × R

m → R
m, F = (F1, . . . , Fm). The solution of

system (2.1) is defined as a vector function u : Z
∞
a → R

m such that for every n ∈ Z
∞
a , (2.1) is

fulfilled. Again, if we prescribe initial conditions

ui(a) = uai ∈ R, i = 1, . . . , m (2.2)

the initial problem (2.1), (2.2) has a unique solution. Let us define a set Ω ⊂ Z
∞
a × R

m as

Ω :=
∞⋃
n=a

Ω(n), (2.3)

where

Ω(n) := {(n, u) : n ∈ Z
∞
a , ui ∈ R, bi(n) < ui < ci(n), i = 1, . . . , m} (2.4)

with bi, ci : Z
∞
a → R, i = 1, . . . , m, being auxiliary functions such that bi(n) < ci(n) for each

n ∈ Z
∞
a . Such set Ω is called a polyfacial set.

Our aim (in this part) is to solve, in correspondence with formulated Problem 1, the
following similar problem for systems of difference equations.

Problem 2. Derive sufficient conditions with respect to the right-hand sides of system (2.1)
which guarantee the existence of at least one solution u(n) = (u∗1(n), . . . , u

∗
m(n)), n ∈ Z

∞
a ,

satisfying

(
n, u∗1(n), . . . , u

∗
m(n)

) ∈ Ω(n) (2.5)

for every n ∈ Z
∞
a .

As we mentioned above, in [1] the above described problem is solved via a Liapunov-
type technique. Here we will combine this technique with the retract-type technique which
was used in [2–5] so as the result can be applied easily to the system arising after
transformation of (1.2). This brings a significant increase in the range of systems we are able
to investigate. Before we start, we recall some basic notions that will be used.
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2.1. Consequent Point

Define the mapping C : Z
∞
a × R

m → Z
∞
a × R

m as

C : (n, u) �−→ (n + 1, u + F(n, u)). (2.6)

For any point M = (n, u) ∈ Z
∞
a × R

m, the point C(M) is called the first consequent point of the
point M. The geometrical meaning is that if a point M lies on the graph of some solution of
system (2.1), then its first consequent point C(M) is the next point on this graph.

2.2. Liapunov-Type Polyfacial Set

We say that a polyfacial set Ω is Liapunov-type with respect to discrete system (2.1) if

bi(n + 1) < ui + Fi(n, u) < ci(n + 1) (2.7)

for every i = 1, . . . , m and every (n, u) ∈ Ω. The geometrical meaning of this property is this:
if a point M = (n, u) lies inside the set Ω(n), then its first consequent point C(M) stays inside
Ω(n + 1).

In this contribution we will deal with sets that need not be of Liapunov-type, but they
will have, in a certain sense, a similar property. We say that a polyfacial set Ω is Liapunov-type
with respect to the jth variable (j ∈ {1, . . . , m}) and to discrete system (2.1) if

(n, u) ∈ Ω =⇒ bj(n + 1) < uj + Fj(n, u) < cj(n + 1). (2.8)

The geometrical meaning is that if M = (n, u) ∈ Ω(n), then the uj-coordinate of its first
consequent point stays between bj(n + 1) and cj(n + 1), meanwhile the other coordinates of
C(M) may be arbitrary.

2.3. Points of Strict Egress and Their Geometrical Sense

An important role in the application of the retract-type technique is played by the so called
strict egress points. Before we define these points, let us describe the boundaries of the sets
Ω(n), n ∈ Z

∞
a , in detail. As one can easily see,

⋃
n∈Z∞a

∂Ω(n) =

⎛
⎝ m⋃

j=1

Ωj

B

⎞
⎠ ∪

⎛
⎝ m⋃

j=1

Ωj

C

⎞
⎠ (2.9)

with

Ωj

B :=
{
(n, u) : n ∈ Z

∞
a , uj = bj(n), bi(n) ≤ ui ≤ ci(n), i = 1, . . . , m, i /= j

}
,

Ωj

C :=
{
(n, u) : n ∈ Z

∞
a , uj = cj(n), bi(n) ≤ ui ≤ ci(n), i = 1, . . . , m, i /= j

}
.

(2.10)
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In accordance with [3, Lemmas 1 and 2], a point (n, u) ∈ ∂Ω(n) is a point of the type of strict
egress for the polyfacial set Ω with respect to discrete system (2.1) if and only if for some
j ∈ {1, . . . , m}

uj = bj(n), Fj(n, u) < bj(n + 1) − bj(n), (2.11)

or

uj = cj(n), Fj(n, u) > cj(n + 1) − cj(n). (2.12)

Geometrically these inequalities mean the following: if a point M = (n, u) ∈ ∂Ω(n) is a point
of the type of strict egress, then the first consequent point C(M) /∈ Ω(n + 1).

2.4. Retract and Retraction

If A ⊂ B are any two sets in a topological space and π : B → A is a continuous mapping
from B onto A such that π(p) = p for every p ∈ A, then π is said to be a retraction of B onto
A. If there exists a retraction of B onto A, then A is called a retract of B.

2.5. The Existence Theorem for the System of First-Order Equations
(Solution of Problem 2)

The following result, solving Problem 2, gives sufficient conditions with respect to the right-
hand sides of (2.1) which guarantee the existence of at least one solution satisfying (2.5) for
every n ∈ Z

∞
a .

Theorem 2.1. Let bi(n), ci(n), bi(n) < ci(n), i = 1, . . . , m, be real functions defined on Z
∞
a and let

Fi : Z
∞
a × R

m → R, i = 1, . . . , m, be continuous functions. Suppose that for one fixed j ∈ {1, . . . , m}
all the points of the sets Ωj

B, Ω
j

C are points of strict egress, that is, if (n, u) ∈ Ωj

B, then

Fj(n, u) < bj(n + 1) − bj(n), (2.13)

and if (n, u) ∈ Ωj

C, then

Fj(n, u) > cj(n + 1) − cj(n). (2.14)

Further suppose that the set Ω is of Liapunov-type with respect to the ith variable for every i ∈
{1, . . . , m}, i /= j, that is, that for every (n, u) ∈ Ω

bi(n + 1) < ui + Fi(n, u) < ci(n + 1). (2.15)

Then there exists a solution u = (u∗1(n), . . . , u
∗
m(n)) of system (2.1) satisfying the inequalities

bi(n) < u∗i (n) < ci(n), i = 1, . . . , m, (2.16)

for every n ∈ Z
∞
a .
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Proof. The proof will be by contradiction. We will suppose that there exists no solution
satisfying inequalities (2.16) for every n ∈ Z

∞
a . Under this supposition we prove that there

exists a continuous mapping (a retraction) of a closed interval onto both its endpoints which
is, by the intermediate value theorem of calculus, impossible.

Without the loss of generality we may suppose that the index j in Theorem 2.1 is equal
to 1, that is, all the points of the sets Ω1

B and Ω1
C are strict egress points. Each solution of

system (2.1) is uniquely determined by the chosen initial condition

u(a) = (u1(a), . . . , um(a)) =
(
ua1 , . . . , u

a
m

)
= ua. (2.17)

For the following considerations, let uai with uai ∈ (bi(a), ci(a)), i = 2, . . . , m, be chosen
arbitrarily but fixed. Now the solution of (2.1) is given just by the choice of ua1 , we can write

u = u
(
n, ua1

)
=
(
u1
(
n, ua1

)
, . . . , um

(
n, ua1

))
. (2.18)

Define the closed interval I := [b1(a), c1(a)]. Hereafter we show that, under the supposition
that there exists no solution satisfying inequalities (2.16), there exists a retraction R (which
will be a composition of two auxiliary mappings R1 and R2 defined below) of the set B := I
onto the set A := ∂I = {b1(a), c1(a)}. This contradiction will prove our result. To arrive at
such a contradiction, we divide the remaining part of the proof into several steps.

Construction of the Leaving Value n∗

Let a point ũ1 ∈ I be fixed. The initial condition u1(a) = ũ1 defines a solution u = u(n, ũ1) =
(u1(n, ũ1), . . . , um(n, ũ1)). According to our supposition, this solution does not satisfy inequal-
ities (2.16) for every n ∈ Z

∞
a . We will study the moment the solution leaves the domain Ω for

the first time. The first value of n for which inequalities (2.16) are not valid will be denoted
as s.

(I) First consider the case ũ1 ∈ int I. Then there exists a value s > 1 in Z
∞
a+1 such that

(s, u(s, ũ1)) /∈ Ω(s) (2.19)

while

(r, u(r, ũ1)) ∈ Ω(r) for a ≤ r ≤ s − 1. (2.20)

As the set Ω is of the Liapunov-type with respect to all variables except the first one and
(s − 1, u(s − 1, ũ1)) ∈ Ω(s − 1), then

bi(s) < ui(s, ũ1) < ci(s), i = 2, . . . , m. (2.21)

Because j = 1 was assumed, and Ω is of Liapunov-type for each variable ui, i /= j, then the
validity of inequalities (2.16) has to be violated in the u1-coordinate. The geometrical meaning
was explained in Section 2.2.

Now, two cases are possible: either (s, u(s, ũ1)) /∈ Ω(s) or (s, u(s, ũ1)) ∈ ∂Ω(s). In
the first case u1(s, ũ1) < b1(s) or u1(s, ũ1) > c1(s). In the second case u1(s, ũ1) = b1(s) or
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u1(s, ũ1) = c1(s) and, due to (2.13) and (2.14), u1(s+1, ũ1) < b1(s+1) or u1(s+1, ũ1) > c1(s+1),
respectively.

(II) If ũ1 ∈ ∂I, then (a, u(a, ũ1)) /∈ Ω(a). Thus, for this case, we could put s = a. Further,
because of the strict egress property of Ω1

B and Ω1
C, either u1(a+1, ũ1) < b1(a+1) (if ũ1 = b1(a))

or u1(a + 1, ũ1) > c1(a + 1) (if ũ1 = c1(a)) and thus (a + 1, u(a + 1, ũ1)) /∈ Ω(a + 1).
Unfortunately, for the next consideration the value s (the first value of the independent

variable for which the graph of the solution is out of Ω) would be of little use. What we will
need is the last value for which the graph of the solution stays in Ω. We will denote this value
as n∗ and will call it the leaving value. We can define n∗ as

n∗ = s − 1 if (s, u(s, ũ1)) /∈ Ω(s),
n∗ = s if (s, u(s, ũ1)) ∈ ∂Ω(s).

(2.22)

As the value of n∗ depends on the chosen initial point ũ1, we could write n∗ = n∗(ũ1) but
we will mostly omit the argument ũ1, unless it is necessary. From the above considerations it
follows that

b1(n∗) ≤ u1(n∗, ũ1) ≤ c1(n∗),

u1(n∗ + 1, ũ1) < b1(n∗ + 1) or u1(n∗ + 1, ũ1) > c1(n∗ + 1).
(2.23)

Auxiliary Mapping R1

Now we construct the auxiliary mapping R1 : I → R × R. First extend the discrete functions
b1, c1 onto the whole interval [a,∞):

b1(t) := b1(�t) + (b1(�t + 1) − b1(�t))(t − �t),
c1(t) := c1(�t) + (c1(�t + 1) − c1(�t))(t − �t),

(2.24)

�t being the integer part of t (the floor function). Note that b1, c1 are now piecewise linear
continuous functions of a real variable t such that b1(t) < c1(t) for every t and that the original
values of b1(n), c1(n) for n ∈ Z

∞
a are preserved. This means that the graphs of these functions

connect the points (n, b1(n)) or (n, c1(n)) for n ∈ Z
∞
a , respectively. Denote V the set

V := {(t, u1) : t ∈ [a,∞), b1(t) ≤ u1 ≤ c1(t)}. (2.25)

The boundary of V consists of three mutually disjoint parts Va, Vb, and Vc:

∂V = Va ∪ Vb ∪ Vc, (2.26)

where

Va := {(a, u1) : b1(a) < u1 < c1(a)},
Vb := {(t, u1) : t ∈ [a,∞), u1 = b1(t)},
Vc := {(t, u1) : t ∈ [a,∞), u1 = c1(t)}.

(2.27)
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Define the mapping R1 : I → Vb ∪ Vc as follows: let R1(ũ1) be the point of intersection of
the line segment defined by its end points (n∗, u1(n∗, ũ1)), (n∗ + 1, u1(n∗ + 1, ũ1)) with Vb ∪ Vc
(see Figure 1). The mapping R1 is obviously well defined on I and R1(b1(a)) = (a, b1(a)),
R1(c1(a)) = (a, c1(a)).

Prove that the mapping R1 is continuous. The point R1(ũ1) = (t(ũ1), u1(ũ1)) lies either
on Vb or on Vc. Without the loss of generality, consider the second case (the first one is
analogical). The relevant boundary line segment for t ∈ [n∗, n∗ + 1], which is a part of Vc,
is described by (see (2.24))

u1 = c(n∗) + (c(n∗ + 1) − c(n∗))(t − n∗), (2.28)

and the line segment joining the points (n∗, u1(n∗, ũ1)), (n∗ + 1, u1(n∗ + 1, ũ1)) by the equation

u1 = u1(n∗, ũ1) + (u1(n∗ + 1, ũ1) − u1(n∗, ũ1))(t − n∗), t ∈ [n∗, n∗ + 1]. (2.29)

The coordinates of the point R1(ũ1) = (t(ũ1), u1(ũ1)), which is the intersection of both these
line segments, can be obtained as the solution of the system consisting of (2.28) and (2.29).
Solving this system with respect to t and u1, we get

t(ũ1) = n∗ +
u1(n∗, ũ1) − c1(n∗)

c1(n∗ + 1) − u1(n∗ + 1, ũ1) + u1(n∗, ũ1) − c1(n∗)
, (2.30)

u1(ũ1) = c1(n∗) +
(u1(n∗, ũ1) − c1(n∗))(c1(n∗ + 1) − c1(n∗))

c1(n∗ + 1) − u1(n∗ + 1, ũ1) + u1(n∗, ũ1) − c1(n∗)
. (2.31)

Let {vk}∞k=1 be any sequence with vk ∈ I such that vk → ũ1. We will show that R1(vk) →
R1(ũ1). Because of the continuity of the functions Fi, i = 1, . . . , m,

u1(n, vk) → u1(n, ũ1) for every fixed n ∈ Z
∞
a . (2.32)

We have to consider two cases:

(I) (n∗, u(n∗, ũ1)) ∈ Ω(n∗), that is, b1(n∗) < u1(n∗, ũ1) < c1(n∗),

(II) (n∗, u(n∗, ũ1)) ∈ ∂Ω(n∗), that is, u1(n∗, ũ1) = c1(n∗).

Recall that (due to our agreement) in both cases u1(n∗ + 1, ũ1) > c1(n∗ + 1).

(I) In this case also u1(n∗, vk) < c1(n∗) and u1(n∗ + 1, vk) > c1(n∗ + 1) for k sufficiently
large. That means that the leaving value n∗(vk) is the same as n∗ given by ũ1 and
thus the point R1(vk) = (t(vk), u1(vk)) is given by

t(vk) = n∗ +
u1(n∗, vk) − c1(n∗)

c1(n∗ + 1) − u1(n∗ + 1, vk) + u1(n∗, vk) − c1(n∗)
, (2.33)

u1(vk) = c1(n∗) +
(u1(n∗, vk) − c1(n∗))(c1(n∗ + 1) − c1(n∗))

c1(n∗ + 1) − u1(n∗ + 1, vk) + u1(n∗, vk) − c1(n∗)
. (2.34)
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tn∗ + 1n∗n∗ − 1a + 1a

Vb

Va Vc

u1(n∗ + 1)

R1(ũ1)

u1(a)

u1(a + 1)
u1(n∗)

b1(a)

ũ1

c1(a)

u1

Figure 1: Construction of the mapping R1.

The desired convergence R1(vk) → R1(ũ1) is implied by equations (2.30) to (2.34).

(II) Suppose n∗ = a. Then ũ1 = c1(a), vk = u1(a, vk) < c1(a) for all k and as k → ∞,
u1(a + 1, vk) > c1(a + 1). A minor edit of the text in the case (I) proof provides the
continuity proof.

Suppose n∗ > a. In this case there can be u1(n∗, vk) ≤ c1(n∗) for some members of the
sequence {vk} and u1(n∗, vk) > c1(n∗) for the others. Without the loss of generality,
we can suppose that {vk} splits into two infinite subsequences {vqk} and {vrk} such
that

u1
(
n∗, vqk

) ≤ c1(n∗), u1
(
n∗ + 1, vqk

)
> c1(n∗ + 1)

u1(n∗, vrk) > c1(n∗).
(2.35)

For the subsequence {vqk}, the text of the proof of (I) can be subjected to a minor
edit to provide the proof of continuity. As for the subsequence {vrk}, the leaving
value n∗(vrk) is different from n∗ given by ũ1 because (n∗, u1(n∗, vrk)) is already out
of Ω. For k sufficiently large,

n∗(vrk) = n
∗ − 1 (2.36)

because u1(n∗ − 1, ũ1) < c1(n∗ − 1) and thus, as k → ∞, u1(n∗ − 1, vrk) < c1(n∗ − 1).

Hence, the value of the mapping R1 for vrk is (in (2.33), (2.34) we replace n∗ by
n∗ − 1)

t(vrk) = n
∗ − 1 +

u1(n∗ − 1, vrk) − c1(n∗ − 1)
c1(n∗) − u1(n∗, vrk) + u1(n∗ − 1, vrk) − c1(n∗ − 1)

,

u1(vrk) = c(n
∗ − 1) +

(u1(n∗ − 1, vrk) − c1(n∗ − 1))(c1(n∗) − c1(n∗ − 1))
c1(n∗) − u1(n∗, vrk) + u1(n∗ − 1, vrk) − c1(n∗ − 1)

.

(2.37)
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Due to (2.32), u1(n∗, vrk) → u1(n∗, ũ1) = c1(n∗) and thus

t(vrk) −→ n∗ − 1 +
u1(n∗ − 1, vrk) − c1(n∗ − 1)
u1(n∗ − 1, vrk) − c1(n∗ − 1)

= n∗,

u1(vrk) −→ c(n∗ − 1) +
(u1(n∗ − 1, vrk) − c1(n∗ − 1))(c1(n∗) − c1(n∗ − 1))

u1(n∗ − 1, vrk) − c1(n∗ − 1)
= c1(n∗),

R1(vrk) = (t(vrk), u1(vrk)) −→ (n∗, c1(n∗)) = R1(ũ1).

(2.38)

We have shown that R1(vqk) → R1(ũ1) and R1(vrk) → R1(ũ1) and thus R1(vk) →
R1(ũ1).

Auxiliary Mapping R2

Define R2 : Vb ∪ Vc → {b1(a), c1(a)} as

R2(P) =

⎧⎨
⎩
b1(a) if P ∈ Vb,
c1(a) if P ∈ Vc.

(2.39)

The mapping R2 is obviously continuous.

Resulting Mapping R and Its Properties

Define R := R2 ◦ R1. Due to construction we have

R(b1(a)) = b1(a), R(c1(a)) = c1(a), (2.40)

and R(I) = ∂I. The mapping R is continuous because of the continuity of the two mappings
R1 and R2. Hence, it is the sought retraction of I onto ∂I. But such a retraction cannot exist
and thus we get a contradiction and the proof is complete.

3. Application of Theorem 2.1 to the Delayed Discrete Equation

Now, let us return to the original delayed discrete equation (1.2), that is,

Δv(n) = f(n, v(n), v(n − 1), . . . , v(n − k)). (3.1)

As it was said in Section 1, this equation will be transformed to a system of k + 1 first-order
discrete equations. Then we will apply Theorem 2.1 to this system and prove that under
certain conditions there exists a solution of delayed equation (1.2) that stays in the prescribed
domain. In the end, we will study a special case of (1.2).
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3.1. Transformation of (1.2) to the System of First-Order Equations

We will proceed in accordance with the well-known scheme similarly as when constructing
the system of first-order differential equations from a differential equation of a higher order.
Put

u1(n) := v(n),

u2(n) := v(n − 1),

· · ·
uk+1(n) := v(n − k),

(3.2)

where u1, u2, . . . , uk+1 are new unknown functions. From (1.2) we get Δu1(n) = f(n, u1(n),
u2(n), . . . , uk+1(n)). Obviously u2(n + 1) = u1(n), . . . , uk+1(n + 1) = uk(n). Rewriting these
equalities in terms of differences, we have Δu2(n) = u1(n) − u2(n), . . . ,Δuk+1(n) = uk(n) −
uk+1(n). Altogether, we get the system

Δu1(n) = f(n, u1(n), . . . , uk+1(n)),

Δu2(n) = u1(n) − u2(n),

· · ·
Δuk+1(n) = uk(n) − uk+1(n)

(3.3)

which is equivalent to (1.2).

3.2. The Existence Theorem for the Delayed Equation (1.2)
(Solution of Problem 1)

The following theorem is a consequence of Theorem 2.1. In fact, this theorem has been already
proved in [12]. There, the proof is based upon a modification of the retract method for delayed
equations. Our method (rearranging a delayed equation to a system of first-order equations)
is, by its principle, more general than that used in [12].

Theorem 3.1. Let b(n), c(n), b(n) < c(n), be real functions defined on Z
∞
a−k. Further, let f : Z

∞
a ×

R
k+1 → R be a continuous function and let the inequalities

b(n) + f(n, b(n), v2, . . . , vk+1) < b(n + 1), (3.4)

c(n) + f(n, c(n), v2, . . . , vk+1) > c(n + 1) (3.5)

hold for every n ∈ Z
∞
a and every v2, . . . , vk+1 such that

b(n − i + 1) < vi < c(n − i + 1), i = 2, . . . , k + 1. (3.6)
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Then there exists a solution v = v∗(n) of (1.2) satisfying the inequalities

b(n) < v∗(n) < c(n) (3.7)

for every n ∈ Z
∞
a−k.

Proof. We have shown that (1.2) is equivalent to system (3.3) which can be seen as a special
case of system (2.1) with m = k + 1 and F = (F1, . . . Fk+1) where

F1(n, u1, . . . , uk+1) := f(n, u1, . . . , uk+1),

F2(n, u1, . . . , uk+1) := u1 − u2,

· · ·
Fk(n, u1, . . . , uk+1) := uk−1 − uk,
Fk+1(n, u1, . . . , uk+1) := uk − uk+1.

(3.8)

Define the polyfacial set Ω as

Ω := {(n, u) : n ∈ Z
∞
a , bi(n) < ui < ci(n), i = 1, . . . , k + 1} (3.9)

with

bi(n) := b(n − i + 1), ci(n) := c(n − i + 1), i = 1, . . . , k + 1. (3.10)

We will show that for system (3.3) and the set Ω, all the assumptions of Theorem 2.1 are
satisfied.

As the function f is supposed to be continuous, the mapping F is continuous, too. Put
the index j from Theorem 2.1, characterizing the points of egress, equal to 1. We will verify
that the set Ω is of Liapunov-type with respect to the ith variable for any i = 2, . . . , k + 1, that
is, (see (2.8)) that for every (n, u) ∈ Ω

bi(n + 1) < ui + Fi(n, u) < ci(n + 1) for i = 2, . . . , k + 1. (3.11)

First, we compute

ui + Fi(n, u) = ui + ui−1 − ui = ui−1 for i = 2, . . . , k + 1. (3.12)

Thus we have to show that for i = 2, . . . , k + 1

bi(n + 1) < ui−1 < ci(n + 1). (3.13)

Because (n, u) ∈ Ω, then bp(n) < up < cp(n) for any p ∈ {1, . . . , k + 1}, and therefore

bi−1(n) < ui−1 < ci−1(n) for i = 2, . . . , k + 1. (3.14)
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But, by (3.10), we have

bi−1(n) = b(n − i + 1 + 1) = b(n − i + 2), (3.15)

meanwhile

bi(n + 1) = b(n + 1 − i + 1) = b(n − i + 2), (3.16)

and thus bi−1(n) = bi(n + 1). Analogously we get that ci−1(n) = ci(n + 1). Thus inequalities
(3.11) are fulfilled.

Further we will show that all the boundary points M ∈ Ω1
B ∪ Ω1

C are points of strict
egress for the set Ω with respect to system (3.3). According to (2.11), we have to show that if
u1 = b1(n) and bi(n) < ui < ci(n) for i = 2, . . . , k + 1, then

b1(n) + F1(n, u) < b1(n + 1), (3.17)

that is,

b1(n) + f(n, b1(n), u2, . . . , uk+1) < b1(n + 1). (3.18)

Notice that the condition bi(n) < ui < ci(n) for i = 2, . . . , k + 1 is equivalent with condition
b(n−i+1) < ui < c(n−i+1) (see (3.10)). Looking at the supposed inequality (3.4) and realizing
that b1(n) = b(n) and b1(n + 1) = b(n + 1), we can see that inequality (3.18) is fulfilled.

Analogously, according to (2.12), we have to prove that for u1 = c1(n) and bi(n) < ui <
ci(n) for i = 2, . . . , k + 1 the inequality

c1(n) + F1(n, u) > c1(n + 1), (3.19)

that is,

c1(n) + f(n, c1(n), u2, . . . , uk+1) > c1(n + 1) (3.20)

holds.
Again, considering (3.5) and the fact that c1(n) = c(n) and c1(n + 1) = c(n + 1), we can

see that this inequality really holds.
Thus, by the assertion of Theorem 2.1, there exists a solution u = u∗(n) of system (3.3)

such that for every n ∈ Z
∞
a

bi(n) < u∗i (n) < ci(n) for i = 1, . . . , k + 1. (3.21)

In our case, v = v∗(n) = u∗1(n) is the solution of the original equation (1.2). Further,
b1(n) = b(n) and c1(n) = c(n), and thus the existence of a solution of the delayed equation
(1.2) such that inequalities (3.7) are satisfied is guaranteed.
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3.3. Asymptotic Solution Estimates for Delayed Difference Equations

Let us suppose that two functions u,w : Z
∞
a−k → R are given such that

u(n) < w(n), n ∈ Z
∞
a−k, (3.22)

Δu(n) ≥ f(n, u(n), u(n − 1), . . . , u(n − k)), n ∈ Z
∞
a , (3.23)

Δw(n) ≤ f(n,w(n), w(n − 1), . . . , w(n − k)), n ∈ Z
∞
a . (3.24)

Consider the problem of whether there exists a solution v = v∗(n), n ∈ Z
∞
a−k of (1.2) such that

u(n) < v∗(n) < w(n), n ∈ Z
∞
a−k. (3.25)

The following corollary of Theorem 3.1 presents sufficient conditions for the existence of
a solution of this problem.

Corollary 3.2. Let functions u,w : Z
∞
a−k → R satisfy inequalities (3.22)–(3.24). Let f : Z

∞
a ×

R
k+1 → R be a continuous function such that

f
(
n, u(n), y2, . . . , yk+1

)
> f(n, u(n), z2, . . . , zk+1), (3.26)

f
(
n,w(n), y2, . . . , yk+1

)
> f(n,w(n), z2, . . . , zk+1) (3.27)

for every n ∈ Z
∞
a and every y2, . . . , yk+1, z2, . . . , zk+1 ∈ R such that

yi < zi, i = 2, . . . , k + 1. (3.28)

Then there exists a solution v = v∗(n) of (1.2) satisfying inequalities (3.25) for every n ∈ Z
∞
a−k.

Proof. This assertion is an easy consequence of Theorem 3.1.
Put b(n) := u(n), c(n) := w(n). Considering inequalities (3.23) and (3.26), we can see

that

Δu(n) > f(n, u(n), v2, . . . , vk+1) (3.29)

for every n ∈ Z
∞
a and every v2, . . . , vk+1 such that

b(n − i + 1) < vi < c(n − i + 1), i = 2, . . . , k + 1. (3.30)

Similarly,

Δw(n) < f(n,w(n), v2, . . . , vk+1) (3.31)

for every n ∈ Z
∞
a and every b(n − i + 1) < vi < c(n − i + 1), i = 2, . . . , k + 1.
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Obviously, inequalities (3.29) and (3.31) are equivalent with inequalities (3.4) and
(3.5), respectively. Thus, all the assumptions of Theorem 3.1 are satisfied and there exists a
solution v = v∗(n) of (1.2) satisfying inequalities (3.25) for every n ∈ Z

∞
a−k.

Example 3.3. Consider the equation

Δv(n) = v2(n) − v(n − 1) (3.32)

for n ∈ Z
∞
3 which is a second-order delayed discrete equation with delay k = 1. We will show

that there exists a solution v = v∗(n) of (3.32) that satisfies the inequalities

1 < v∗(n) < n (3.33)

for n ∈ Z
∞
2 .

We will prove that for the functions

u(n) := 1, w(n) := n, f(n, v1, v2) := v2
1 − v2 (3.34)

all the assumptions of Corollary 3.2 are satisfied. Inequality (3.22) is obviously fulfilled for
n ∈ Z

∞
2 . Inequality (3.23) can be also proved very easily:

Δu(n) = 0, f(n, u(n), u(n − 1)) = 12 − 1 = 0, (3.35)

and thus for every n ∈ Z
∞
3 , Δu(n) ≥ f(n, u(n), u(n − 1)).

As for inequality (3.24), we get

Δw(n) = 1, f(n,w(n), w(n − 1)) = n2 − n + 1 (3.36)

and thus Δw(n) ≤ f(n,w(n), w(n − 1)) for n ∈ Z
∞
3 .

Finally, the functions

f(n, u(n), v2) = 1 − v2, f(n,w(n), v2) = n2 − v2 (3.37)

are decreasing with respect to v2. Therefore, conditions (3.26) and (3.27) are satisfied, too.
Hence, due to Corollary 3.2, there exists a solution of (3.32) satisfying (3.33).

3.4. Positive Solutions of a Linear Equation with a Single Delay

We will apply the result of Theorem 3.1 to the investigation of a simple linear difference
equation of the (k + 1)-st order with only one delay, namely, the equation

Δv(n) = −p(n)v(n − k), (3.38)

where, again, n ∈ Z
∞
a is the independent variable and k ∈ N, k ≥ 1, is the fixed delay. The

function p : Z
∞
a → R is assumed to be positive. Our goal is to give sharp sufficient conditions
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for the existence of positive solutions. The existence of such solutions is very often substantial
for a concrete model considered. For example, in biology, when a model of population
dynamics is described by an equation, the positivity of a solution may mean that the studied
biological species can survive in the supposed environment.

For its simple form, (3.38) often serves for testing new results and is very frequently
investigated. It was analyzed, for example, in papers [10, 11, 26]. A sharp result on existence
of positive solutions given in [26] is proved by a comparison method [8, 9]. Here we will use
Theorem 3.1 to generalize this result.

For the purposes of this section, define the expression lnqt, where q ∈ N, as

lnqt := ln
(
lnq−1t

)
ln0t := t.

(3.39)

We will write only ln t instead of ln1t. Further, for a fixed integer � ≥ 0 define auxiliary
functions

μ�(n) :=
1

8n2
+

1

8(n lnn)2
+ · · · + 1

8(n lnn · · · ln�n)2
,

p�(n) :=
(

k

k + 1

)k
·
(

1
k + 1

+ kμ�(n)
)
,

(3.40)

ν�(n) :=
(

k

k + 1

)n
·
√
n lnn ln2n · · · ln�n. (3.41)

In [26], it was proved that if p(n) in (3.38) is a positive function bounded by p�(n) for some
� ≥ 0, then there exists a positive solution of (3.38) bounded by the function ν�(n) for n
sufficiently large. Since limn→∞ν�(n) = 0, such solution will vanish for n → ∞. Here we
show that (3.38) has a positive solution bounded by ν�(n) even if the coefficient p(n) satisfies
a less restrictive inequality (see inequality (3.58) below). The proof of this statement will be
based on the following four lemmas. The symbols “o” and “O” stand for the Landau order
symbols and are used for n → ∞.

Lemma 3.4. The formula

ln
(
y − z) = lny −

∞∑
i=1

zi

iyi
(3.42)

holds for any numbers y, z ∈ R such that y > 0 and |z| < y.

Proof. The assertion is a simple consequence of the well-known Maclaurin expansion

ln(1 − x) = −
∞∑
i=1

1
i
xi for − 1 ≤ x < 1. (3.43)
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As ln(y − z) − lny = ln(1 − z/y), substituting x = z/y we get

ln
(
y − z) − lny = −

∞∑
i=1

zi

iyi
for − y ≤ z < y (3.44)

and adding lny to both sides of this equality, we get (3.42).

Lemma 3.5. For fixed r ∈ R \ {0} and fixed q ∈ N, the asymptotic representation

lnq(n − r) = lnqn − r

n lnn · · · lnq−1n
− r2

2n2 lnn · · · lnq−1n

− r2

2(n lnn)2ln2n · · · lnq−1n
− · · · − r2

2
(
n lnn · · · lnq−1n

)2

− r3(1 + o(1))
3n3 lnn · · · lnq−1n

(3.45)

holds for n → ∞.

Proof. We will prove relation (3.45) by induction with respect to q. For q = 1, (3.45) reduces to

ln(n − r) = lnn − r
n
− r2

2n2
− r

3(1 + o(1))
3n3

(3.46)

which holds due to Lemma 3.4. Suppose that relation (3.45) holds for some q. We can write
lnq(n − r) = y − z with y = lnqn and

z =
r

n lnn · · · lnq−1n
+

r2

2n2 lnn · · · lnq−1n
+

r2

2(n lnn)2ln2n · · · lnq−1n

+ · · · + r2

2
(
n lnn · · · lnq−1n

)2
+

r3(1 + o(1))
3n3 lnn · · · lnq−1n

.

(3.47)

Now we will show that (3.45) holds for q + 1. Notice that in our case, the condition |z| < y
from Lemma 3.4 is fulfilled for n sufficiently large because z → 0 for n → ∞, meanwhile
y → ∞ for n → ∞. Thus we are justified to use Lemma 3.4 and doing so, we get
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lnq+1(n − r) = ln
(
lnq(n − r)

)

= ln
(
y − z) = lny − 1

y
z − 1

2y2
z2 − · · ·

= ln
(
lnqn

) − 1
lnqn

·
(

r

n lnn · · · lnq−1n
+

r2

2n2 lnn · · · lnq−1n
+ · · ·

+
r2

2
(
n lnn · · · lnq−1n

)2
+

r3(1 + o(1))
3n3 lnn · · · lnq−1n

)

− 1

2
(
lnqn

)2
·
(

r2

(
n lnn · · · lnq−1n

)2
+O

(
1

n3
(
lnn · · · lnq−1n

)2

))

+O

(
1(

n lnn · · · lnqn
)3

)

= lnq+1n − r

n lnn · · · lnqn −
r2

2n2 lnn · · · lnqn
− r2

2(n lnn)2ln2n · · · lnqn

− · · · − r2

2
(
n lnn · · · lnqn

)2
− r3(1 + o(1))

3n3 lnn · · · lnqn
.

(3.48)

Thus, formula (3.45) holds for q + 1, too, which ends the proof.

Lemma 3.6. For fixed r ∈ R \ {0} and fixed q ∈ N, the asymptotic representations

√
lnq(n − r)

lnqn
= 1 − r

2n lnn · · · lnqn −
r2

4n2 lnn · · · lnqn
− r2

4(n lnn)2ln2n · · · lnqn
− · · ·

− r2

4
(
n lnn · · · lnq−1n

)2lnqn
− r2

8
(
n lnn · · · lnqn

)2
− r3(1 + o(1))

6n3 lnn · · · lnqn
,

(3.49)

√
n − r
n

= 1 − r

2n
− r2

8n2
− r3

16n3
+ o
(

1
n3

)
(3.50)

hold for n → ∞.

Proof. Both these relations are simple consequences of the asymptotic formula

√
1 − x = 1 − 1

2
x − 1

8
x2 − 1

16
x3 + o

(
x3
)

for x −→ 0 (3.51)

and of Lemma 3.5 (for formula (3.49)). In the case of relation (3.49), we put

x =
r

n lnn · · · lnqn +
r2

2n2 lnn · · · lnqn
+ · · · + r2

2
(
n lnn · · · lnq−1n

)2lnqn
+

r3(1 + o(1))
3n3 lnn · · · lnqn (3.52)

and in the case of relation (3.50), we put x = r/n.
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Lemma 3.7. For fixed r ∈ R \ {0} and fixed q ∈ N, the asymptotic representation

√
(n − r)
n

ln(n − r)
lnn

· · · lnq(n − r)
lnqn

= 1 − r
(

1
2n

+
1

2n lnn
+ · · · + 1

2n lnn · · · lnqn

)
− r2μq(n) − r3

16n3
+ o
(

1
n3

) (3.53)

holds for n → ∞.

Proof. We will prove relation (3.53) by induction with respect to q. For q = 1, (3.53) reduces to

√
(n − r)
n

ln(n − r)
lnn

= 1 − r
(

1
2n

+
1

2n lnn

)
− r2μ1(n) − r3

16n3
+ o
(

1
n3

)

= 1 − r
(

1
2n

+
1

2n lnn

)
− r2

(
1

8n2
+

1

8(n lnn)2

)
− r3

16n3
+ o
(

1
n3

)
.

(3.54)

On the other hand, using Lemma 3.6, we get

√
(n − r)
n

ln(n − r)
lnn

=

(
1 − r

2n
− r2

8n2
− r3

16n3
+ o
(

1
n3

))

×
(

1 − r

2n lnn
− r2

4n2 lnn
− r2

8(n lnn)2
− r

3(1 + o(1))
6n3 lnn

)

= 1 − r

2n lnn
− r2

4n2 lnn
− r2

8(n lnn)2
− r

2n
+

r2

4n2 lnn
− r2

8n2
− r3

16n3
+ o
(

1
n3

)

= 1 − r
(

1
2n

+
1

2n lnn

)
− r2

(
1

8n2
+

1

8(n lnn)2

)
− r3

16n3
+ o
(

1
n3

)
.

(3.55)

Thus, for q = 1, relation (3.53) holds. Now suppose that (3.53) holds for some q and prove
that it holds for q + 1. In the following calculations, we use Lemma 3.6 and we skip some
tedious expressions handling.
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√

(n − r)
n

ln(n − r)
lnn

· · · lnq+1(n − r)
lnq+1n

=

√
(n − r)
n

ln(n − r)
lnn

· · · lnq(n − r)
lnqn

·
√

lnq+1(n − r)
lnq+1n

=

(
1 − r

(
1

2n
+

1
2n lnn

+ · · · + 1
2n lnn · · · lnqn

)
− r2μq(n) − r3

16n3
+ o
(

1
n3

))

×
(

1 − r

2n lnn · · · lnq+1n
− r2

4n2 lnn · · · lnq+1n
− · · ·

− r2

4
(
n lnn · · · lnqn

)2lnq+1n
− r2

8
(
n lnn · · · lnq+1n

)2
+ o
(

1
n3

))

= 1 − r
(

1
2n

+
1

2n lnn
+ · · · + 1

2n lnn · · · lnq+1n

)
− r2μq+1(n) − r3

16n3
+ o
(

1
n3

)
.

(3.56)

We can see that formula (3.53) holds for q + 1, too, which ends the proof.

Now we are ready to prove that there exists a bounded positive solution of (3.38).
Remind that functions p� and ν� were defined by (3.40) and (3.41), respectively.

Theorem 3.8. Let ω : Z
∞
a → R satisfy the inequality

|ω(n)| ≤ ε
(

k

k + 1

)k
· k
(
2k2 + k − 1

)
16n3(k + 1)

, n ∈ Z
∞
a , (3.57)

for a fixed ε ∈ (0, 1). Suppose that there exists an integer � ≥ 0 such that the function p satisfies the
inequalities

0 < p(n) ≤ p�(n) +ω(n) (3.58)

for every n ∈ Z
∞
a . Then there exists a solution v = v∗(n), n ∈ Z

∞
a−k of (3.38) such that for n

sufficiently large the inequalities

0 < v∗(n) < ν�(n) (3.59)

hold.

Proof. Show that all the assumptions of Theorem 3.1 are fulfilled. For (3.38), f(n, v1, . . . ,
vk+1) = −p(n)vk+1. This is a continuous function. Put

b(n) := 0, c(n) := ν�(n). (3.60)
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We have to prove that for every v2, . . . , vk+1 such that b(n−i+1) < vi < c(n−i+1), i = 2, . . . , k+1,
the inequalities (3.4) and (3.5) hold for n sufficiently large. Start with (3.4). That gives that
for b(n − k) < vk+1 < c(n − k), it has to be

0 − p(n) · vk+1 < 0. (3.61)

This certainly holds, because the function p is positive and so is vk+1.
Next, according to (3.5), we have to prove that

ν�(n) − p(n)vk+1 > ν�(n + 1) (3.62)

which is equivalent to the inequality

−p(n)vk+1 > ν�(n + 1) − ν�(n). (3.63)

Denote the left-hand side of (3.63) as L(3.63). As vk+1 < c(n − k) = ν�(n − k) and as by (3.40),
(3.58), and (3.57)

p(n) ≤
(

k

k + 1

)k
·
(

1
k + 1

+ kμ�(n)
)
+ ε
(

k

k + 1

)k
· k
(
2k2 + k − 1

)
16n3(k + 1)

, (3.64)

we have

L(3.63) > −
(

k

k + 1

)k( 1
k + 1

+ kμ�(n) + ε ·
k
(
2k2 + k − 1

)
16n3(k + 1)

)

×
(

k

k + 1

)n−k√
(n − k) ln(n − k) · · · ln�(n − k)

= −
(

k

k + 1

)n( 1
k + 1

+ kμ�(n) + ε ·
k
(
2k2 + k − 1

)
16n3(k + 1)

)
·
√
(n − k) ln(n − k) · · · ln�(n − k).

(3.65)

Further, we can easily see that

ν�(n + 1) − ν�(n) =
(

k

k + 1

)n√
n lnn · · · ln�n

⎛
⎝ k

k + 1

√
(n + 1)
n

ln(n + 1)
lnn

· · · ln�(n + 1)
ln�n

− 1

⎞
⎠.

(3.66)
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Thus, to prove (3.63), it suffices to show that for n sufficiently large,

−
(

1
k + 1

+ kμ�(n) + ε ·
k
(
2k2 + k − 1

)
16n3(k + 1)

)√
(n − k)
n

ln(n − k)
lnn

· · · ln�(n − k)
ln�n

>
k

k + 1

√
(n + 1)
n

ln(n + 1)
lnn

· · · ln�(n + 1)
ln�n

− 1.

(3.67)

Denote the left-hand side of inequality (3.67) as L(3.67) and the right-hand side asR(3.67). Using
Lemma 3.7 with r = k and q = �, we can write

L(3.67) = −
(

1
k + 1

+ kμ�(n) + ε ·
k
(
2k2 + k − 1

)
16n3(k + 1)

)

×
(

1 − k
(

1
2n

+
1

2n lnn
+ · · · + 1

2n lnn · · · ln�n
)
− k2μ�(n) − k3

16n3
+ o
(

1
n3

))

= − 1
k + 1

+
k

k + 1

(
1

2n
+

1
2n lnn

+ · · · + 1
2n lnn · · · ln�n

)

+
k2

k + 1
μ�(n) +

k3

16n3(k + 1)
− kμ�(n) + k2

16n3
− ε · k

(
2k2 + k − 1

)
16n3(k + 1)

+ o
(

1
n3

)

= − 1
k + 1

+
k

k + 1

(
1

2n
+

1
2n lnn

+ · · · + 1
2n lnn · · · ln�n

)

− k

k + 1
μ�(n) +

2k3(1 − ε) + k2(1 − ε) + kε
16n3(k + 1)

+ o
(

1
n3

)
.

(3.68)

Using Lemma 3.7 with r = −1 and q = �, we get for R(3.67)

R(3.67) =
k

k + 1

(
1 +

1
2n

+
1

2n lnn
+ · · · + 1

2n lnn · · · ln�n − μ�(n) +
1

16n3
+ o
(

1
n3

))
− 1

=
−1
k + 1

+
k

k + 1

(
1

2n
+

1
2n lnn

+ · · · + 1
2n lnn · · · ln�n

)

− k

k + 1
· μ�(n) + k

16n3(k + 1)
+ o
(

1
n3

)
.

(3.69)

It is easy to see that the inequality (3.67) reduces to

2k3(1 − ε) + k2(1 − ε) + kε
16n3(k + 1)

+ o
(

1
n3

)
>

k

16n3(k + 1)
+ o
(

1
n3

)
. (3.70)
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This inequality is equivalent to

k
(
2k2(1 − ε) + k(1 − ε) − (1 − ε))

16n3(k + 1)
+ o
(

1
n3

)
> 0. (3.71)

The last inequality holds for n sufficiently large because k ≥ 1 and 1 − ε ∈ (0, 1). We have
proved that all the assumptions of Theorem 3.1 are fulfilled and hence there exists a solution
of (3.38) satisfying conditions (3.59).
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[6] J. Diblı́k and I. Růžičková, “Compulsory asymptotic behavior of solutions of two-dimensional sys-
tems of difference equations,” in Proceedings of the 9th International Conference on Difference Equations
and Discrete Dynamical Systems, pp. 35–49, World Scientific Publishing, University of Southern Cali-
fornia, Los Angeles, Calif, USA, 2005.
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We derive necessary and sufficient conditions for (some or all) positive solutions of the half-
linear q-difference equation Dq(Φ(Dqy(t))) + p(t)Φ(y(qt)) = 0, t ∈ {qk : k ∈ N0} with q > 1,
Φ(u) = |u|α−1 sgnu with α > 1, to behave like q-regularly varying or q-rapidly varying or
q-regularly bounded functions (that is, the functions y, for which a special limit behavior of
y(qt)/y(t) as t → ∞ is prescribed). A thorough discussion on such an asymptotic behavior of
solutions is provided. Related Kneser type criteria are presented.

1. Introduction

In this paper we recall and survey the theory of q-Karamata functions, that is, of the functions
y : qN0 → (0,∞), where qN0 := {qk : k ∈ N0} with q > 1, and for which some special
limit behavior of y(qt)/y(t) as t → ∞ is prescribed, see [1–3]. This theory corresponds with
the classical “continuous” theory of regular variation, see, for example, [4], but shows some
special features (see Section 2), not known in the continuous case, which are due to the special
structure of qN0 . The theory of q-Karamata functions provides a powerful tool, which we use
in this paper to establish sufficient and necessary conditions for some or all positive solutions
of the half-linear q-difference equation

Dq

(
Φ
(
Dqy(t)

))
+ p(t)Φ

(
y
(
qt
))

= 0, (1.1)

where Φ(u) = |u|α−1 sgnu with α > 1, to behave like q-regularly varying or q-rapidly varying
or q-regularly bounded functions. We stress that there is no sign condition on p. We also
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present Kneser type (non)oscillation criteria for (1.1), existing as well as new ones, which are
somehow related to our asymptotic results.

The main results of this paper can be understood as a q-version of the continuous
results for

(
Φ
(
y′(t)

))′ + p(t)Φ(
y(t)

)
= 0 (1.2)

from [5] (with noting that some substantial differences between the parallel results are
revealed), or as a half-linear extension of the results for D2

qy(t) + p(t)y(qt) = 0 from [1].
In addition, we provide a thorough description of asymptotic behavior of solutions to (1.1)
with respect to the limit behavior of tαp(t) in the framework of q-Karamata theory. For an
explanation why the q-Karamata theory and its applications are not included in a general
theory of regular variation on measure chains see [6]. For more information on (1.2) see, for
example, [7]. Many applications of the theory of regular variation in differential equations
can be found, for example, in [8]. Linear q-difference equations were studied, for example, in
[1, 9–11]; for related topics see, for example, [12, 13]. Finally note that the theory of q-calculus
is very extensive with many aspects; some people speak bout different tongues of q-calculus.
In our paper we follow essentially its “time-scale dialect”.

2. Preliminaries

We start with recalling some basic facts about q-calculus. For material on this topic see
[9, 12, 13]. See also [14] for the calculus on time-scales which somehow contains q-calculus.
First note that some of the below concepts may appear to be described in a “nonclassical
q-way”, see, for example, our definition of q-integral versus original Jackson’s definition
[9, 12, 13], or the q-exponential function. But, working on the lattice qN0 (which is a time-
scale), we can introduce these concepts in an alternative and “easier” way (and, basically,
we avoid some classical q-symbols). Our definitions, of course, naturally correspond with
the original definitions. The q-derivative of a function f : qN0 → R is defined by
Dqf(t) = [f(qt) − f(t)]/[(q − 1)t]. The q-integral

∫b
a f(t)dqt, a, b ∈ qN0 , of a function

f : qN0 → R is defined by
∫b
a f(t)dqt = (q − 1)

∑
t∈[a,b)∩qN0 tf(t) if a < b;

∫b
a f(t)dqt = 0 if

a = b;
∫b
a f(t)dqt = (1 − q)∑t∈[b,a)∩qN0 tf(t) if a > b. The improper q-integral is defined by∫∞

a f(t)dqt = limb→∞
∫b
a f(t)dqt. We use the notation [a]q = (qa−1)/(q−1) for a ∈ R. Note that

limq→ 1+[a]q = a. It holds that Dqt
ϑ = [ϑ]qt

ϑ−1. In view of the definition of [a]q, it is natural
to introduce the notation [∞]q = ∞, [−∞]q = 1/(1 − q). For p ∈ R (i.e., for p : qN0 → R

satisfying 1 + (q − 1)tp(t)/= 0 for all t ∈ qN0) we denote ep(t, s) =
∏

u∈[s,t)∩qN0 [(q − 1)up(u) + 1]
for s < t, ep(t, s) = 1/ep(s, t) for s > t, and ep(t, t) = 1, where s, t ∈ qN0 . For p ∈ R, e(·, a)
is a solution of the IVP Dqy = p(t)y, y(a) = 1, t ∈ qN0 . If s ∈ qN0 and p ∈ R+, where
R+ = {p ∈ R : 1+ (q− 1)tp(t) > 0 for all t ∈ qN0}. then ep(t, s) > 0 for all t ∈ qN0 . If p, r ∈ R, then
ep(t, s)ep(s, u) = ep(t, u) and ep(t, s)er(t, s) = ep+r+t(q−1)pr(t, s). Intervals having the subscript q
denote the intervals in qN0 , for example, [a,∞)q = {a, aq, aq2, . . .}with a ∈ qN0 .
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Next we present auxiliary statements which play important roles in proving the main
results. Define F : (0,∞) → R by F(x) = Φ(x/q−1/q)−Φ(1−1/x) and h : (Φ([−∞]q),∞) →
R by

h(x) =
x

1 − q1−α

[
1 −

(
1 +

(
q − 1

)
Φ−1(x)

)1−α]
. (2.1)

For y : qN0 → R \ {0} define the operator L by

L[y](t) = Φ

(
y
(
q2t

)
qy

(
qt
) − 1

q

)
−Φ

(
1 − y(t)

y
(
qt
)
)
. (2.2)

We denote ωq = ([(α − 1)/α]q)
α. Let β mean the conjugate number of α, that is, 1/α+ 1/β = 1.

The following lemma lists some important properties of F, h, L and relations among
them.

Lemma 2.1. (i) The function F has the global minimum on (0,∞) at q(α−1)/α with

F
(
q(α−1)/α

)
= −ωq

(
q − 1

)α
qα−1

(2.3)

and F(1) = 0 = F(q). Further, F is strictly decreasing on (0, q(α−1)/α) and strictly increasing on
(q(α−1)/α,∞) with limx→ 0+F(x) =∞, limt→∞F(x) =∞.

(ii) The graph of x �→ h(x) is a parabola-like curve with the minimum at the origin. The graph
of x �→ h(x) + γα touches the line x �→ x at x = λ0 := ([(α − 1)/α]q)

α−1. The equation h(λ) + γ = λ
has

(a) no real roots if γ > ωq/[α − 1]q,

(b) the only root λ0 if γ = ωq/[α − 1]q,

(c) two real roots λ1, λ2 with 0 < λ1 < λ0 < λ2 < 1 if γ ∈ (0, ωq/[α − 1]q),

(d) two real roots 0 and 1 if γ = 0,

(e) two real roots λ1, λ2 with λ1 < 0 < 1 < λ2 if γ < 0.

(iii) It holds that F(qϑ1) = F(qϑ2), where ϑi = logq[(q−1)Φ−1(λi)+1], i = 1, 2, with λ1 < λ2

being the real roots of the equation λ = h(λ) +A with A ∈ (−∞, ωq/[α − 1]q).
(iv) If q → 1+, then h(x) → |x|β.
(v) For ϑ ∈ R it hold that Φ([ϑ]q)[1 − ϑ]qα−1 = Φ([ϑ]q) − h(Φ([ϑ]q)).
(vi) For ϑ ∈ R it hold that F(qϑ) = (q − 1)α[1 − α]qΦ([ϑ]q)[1 − ϑ]qα−1 .
(vii) For y /= 0, (1.1) can be written as L[y](t) = −(q − 1)αtαp(t).
(viii) If the limt→∞y(qt)/y(t) exists as a positive real number, then limt→∞L[y](t) =

limt→∞F(y(qt)/y(t)).

Proof. We prove only (iii). The proofs of other statements are either easy or can be found in
[3].
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(iii) Let λ1, λ2 be the real roots of λ = h(λ) + A. We have λi = Φ([ϑi]q), i = 1, 2, and so,
by virtue of identities (v) and (vi), we get F(qϑ1) = (q − 1)α[1 − α]q(λ1 − h(λ1)) =
(q − 1)α[1 − α]qA = (q − 1)α[1 − α]q(λ2 − h(λ2)) = F(qϑ2).

Next we define the basic concepts of q-Karamata theory. Note that the original
definitions (see [1–3]) was more complicated; they were motivated by the classical
continuous and the discrete (on the uniform lattices) theories. But soon it has turned out that
simpler (and equivalent)definitions can be established. Also, there is no need to introduce
the concept of normality, since every q-regularly varying or q-rapidly varying or q-regularly
bounded function is automatically normalized. Such (and some other) simplifications are not
possible in the original continuous theory or in the classical discrete theory; in q-calculus, they
are practicable thanks to the special structure of qN0 , which is somehow natural for examining
regularly varying behavior.

For f : qN0 → (0,∞) denote

K∗ = lim inf
t→∞

f
(
qt
)

f(t)
, K∗ = lim sup

t→∞

f
(
qt
)

f(t)
, K = lim

t→∞
f
(
qt
)

f(t)
. (2.4)

Definition 2.2. A function f : qN0 → (0,∞) is said to be

(i) q-regularly varying of index ϑ, ϑ ∈ R, if K = qϑ; we write f ∈ RVq(ϑ),
(ii) q-slowly varying if K = 1; we write f ∈ SVq,
(iii) q-rapidly varying of index∞ if K =∞; we write f ∈ RPVq(∞),

(iv) q-rapidly varying of index −∞ if K = 0; we write f ∈ RPVq(−∞),

(v) q-regularly bounded if 0 < K∗ ≤ K∗ <∞; we write f ∈ RBq.

Clearly, SVq = RVq(0). We have defined q-regular variation, q-rapid variation, and q-
regular boundedness at infinity. If we consider a function f : qZ → (0,∞), qZ := {qk : k ∈ Z},
then f(t) is said to be q-regularly varying/q-rapidly varying/q-regularly bounded at zero
if f(1/t) is q-regularly varying/q-rapidly varying/q-regularly bounded at infinity. But it is
apparent that it is sufficient to examine just the behavior at∞.

Next we list some selected important properties of the above-defined functions. We
define τ : [1,∞) → qN0 as τ(x) = max{s ∈ qN0 : s ≤ x}.

Proposition 2.3. (i)f ∈ RVq(ϑ)⇔ limt→∞tDqf(t)/f(t) = [ϑ]q.
(ii)f ∈ RVq(ϑ) ⇔ f(t) = ϕ(t)eψ(t, 1), where a positive ϕ satisfies limt→∞ϕ(t) = C ∈

(0,∞), limt→∞tψ(t) = [ϑ]q, ψ ∈ R+ (w.l.o.g., ϕ can be replaced by C).
(iii)f ∈ RVq(ϑ)⇔ f(t) = tϑL(t), where L ∈ SVq.
(iv)f ∈ RVq(ϑ) ⇔ f(t)/tγ is eventually increasing for each γ < ϑ and f(t)/tη is eventually

decreasing for each η > ϑ.
(v)f ∈ RVq(ϑ)⇔ limt→∞f(τ(λt))/f(t) = (τ(λ))ϑ for every λ ≥ 1.
(vi)f ∈ RVq(ϑ) ⇔ R : [1,∞) → (0,∞) defined by R(x) = f(τ(x))(x/τ(x))ϑ for x ∈

[1,∞) is regularly varying of index ϑ.
(vii)f ∈ RVq(ϑ)⇒ limt→∞ log f(t)/ log t = ϑ.

Proof. See [2].
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Proposition 2.4. (i) f ∈ RPVq(±∞)⇔ limt→∞tDqf(t)/f(t) = [±∞]q.
(ii) f ∈ RPVq(±∞) ⇔ f(t) = ϕ(t)eψ(t, 1), where a positive ϕ satisfies

lim inft→∞ϕ(qt)/ϕ(t) > 0 for index ∞, lim supt→∞ϕ(qt)/ϕ(t) < ∞ for index −∞, and
limt→∞tψ(t) = [±∞]q, ψ ∈ R+ (w.l.o.g., ϕ can be replaced by C ∈ (0,∞)).

(iii) f ∈ RPVq(±∞) ⇔ for each ϑ ∈ [0,∞), f(t)/tϑ is eventually increasing (towards ∞)
for index∞ and f(t)tϑ is eventually decreasing (towards 0) for index −∞.

(iv) f ∈ RPVq(±∞) ⇔ for every λ ∈ [q,∞) it holds, limt→∞f(τ(λt))/f(t) = ∞ for index
∞ and limt→∞f(τ(λt))/f(t) = 0 for index −∞.

(v) Let R : [1,∞) → (0,∞) be defined by R(x) = f(τ(x)) for x ∈ [1,∞). If R
is rapidly varying of index ±∞, then f ∈ RPVq(±∞). Conversely, if f ∈ RPVq(±∞), then
limx→∞R(λx)/R(x) =∞, resp., limx→∞R(λx)/R(x) = 0 for λ ∈ [q,∞).

(vi) f ∈ RPVq(±∞)⇒ limt→∞ log f(t)/ log t = ±∞.

Proof. We prove only the “if” part of (iii). The proofs of (iv), (v), and (vi) can be found in [1].
The proofs of other statements can be found in [3].

Assume that f(t)/tϑ is eventually increasing (towards∞) for each ϑ ∈ [0,∞). Because
of monotonicity, we have f(t)/tϑ ≤ f(qt)/(qϑtϑ), and so f(qt)/f(t) ≥ qϑ for large t. Since ϑ is
arbitrary, we have f(qt)/f(t) → ∞ as t → ∞, thus f ∈ RPVq(∞). The case of the index −∞
can be treated in a similar way.

Proposition 2.5. (i) f ∈ RBq ⇔ [−∞]q < lim inft→∞tDqf(t)/f(t) ≤ lim supt→∞tDqf(t)/
f(t) < [∞]q.

(ii) f ∈ RBq ⇔ f(t) = tϑϕ(t)eψ(t, 1), where 0 < C1 ≤ ϕ(t) ≤ C2 < ∞, [−∞]q < D1 ≤
tψ(t) ≤ D2 < [∞]q (w.l.o.g., ϕ can be replaced by C ∈ (0,∞)).

(iii) f ∈ RBq ⇔ f(t)/tγ1 is eventually increasing and f(t)/tγ2 is eventually decreasing for
some γ1 < γ2 (w.l.o.g., monotonicity can be replaced by almost monotonicity; a function f : qN0 →
(0,∞) is said to be almost increasing (almost decreasing) if there exists an increasing (decreasing)
function g : qN0 → (0,∞) and C,D ∈ (0,∞) such that Cg(t) ≤ f(t) ≤ Dg(t)).

(iv) f ∈ RBq ⇔ 0 < lim inft→∞f(τ(λt))/f(t) ≤ lim supt→∞f(τ(λt))/f(t) < ∞ for every
λ ∈ [q,∞) or for every λ ∈ (0, 1).

(v) f ∈ RBq ⇔ R : [1,∞) → (0,∞) defined by R(x) = f(τ(x)) for x ∈ [1,∞) is regularly
bounded.

(vi) f ∈ RBq ⇒ −∞ < lim inft→∞ log f(t)/ log t ≤ lim supt→∞ log f(t)/ log t <∞.

Proof. See [1].

For more information on q-Karamata theory see [1–3].

3. Asymptotic Behavior of Solutions to (1.1) in the Framework of
q-Karamata Theory

First we establish necessary and sufficient conditions for positive solutions of (1.1) to be q-
regularly varying or q-rapidly varying or q-regularly bounded. Then we use this result to
provide a thorough discussion on Karamata-like behavior of solutions to (1.1).

Theorem 3.1. (i) Equation (1.1) has eventually positive solutions u, v such that u ∈ RVq(ϑ1) and
v ∈ RVq(ϑ2) if and only if

lim
t→∞

tαp(t) = P ∈
(
−∞, ωq

qα−1

)
, (3.1)



6 Abstract and Applied Analysis

where ϑi = logq[(q − 1)Φ−1(λi) + 1], i = 1, 2, with λ1 < λ2 being the real roots of the equation
λ = h(λ) − P/[1 − α]q. For the indices ϑi, i = 1, 2, it holds that ϑ1 < 0 < 1 < ϑ2 provided P < 0;
ϑ1 = 0, ϑ2 = 1 provided P = 0; 0 < ϑ1 < (α − 1)/α < ϑ2 < 1 provided P > 0. Any of two conditions
u ∈ RVq(ϑ1) and v ∈ RVq(ϑ2) implies (3.1).

(ii) Let (1.1) be nonoscillatory (which can be guaranteed, for example, by tαp(t) ≤ ωq/q
α−1 for

large t; with the note that it allows (3.2)). Equation (1.1) has an eventually positive solution u such
that u ∈ RVq((α − 1)/α) if and only if

lim
t→∞

tαp(t) =
ωq

qα−1
. (3.2)

All eventually positive solutions of (1.1) are q-regularly varying of index (α − 1)/α provided (3.2)
holds.

(iii) Equation (1.1) has eventually positive solutions u, v such that u ∈ RPVq(−∞) and
u ∈ RPVq(∞) if and only if

lim
t→∞

tαp(t) = −∞. (3.3)

All eventually positive solutions of (1.1) are q-rapidly varying provided (3.3) holds.
(iv) If (1.1) is nonoscillatory (which can be guaranteed, e.g., by tαp(t) ≤ ωq/q

α−1 for large t)
and

lim inf
t→∞

tαp(t) > −∞, (3.4)

then all eventually positive solutions of (1.1) are q-regularly bounded.
Conversely, if there exists an eventually positive solution u of (1.1) such that u ∈ RBq, then

−∞ < lim inf
t→∞

tαp(t) ≤ lim sup
t→∞

tαp(t) <
1 + q1−α
(
q − 1

)α . (3.5)

If, in addition, p is eventually positive or u is eventually increasing, then the constant on the right-
hand side of (3.5) can be improved to 1/(q − 1)α.

Proof. (i) Necessity. Assume that u is a solution of (1.1) such that u ∈ RVq(ϑ1). Then, by
Lemma 2.1,

lim
t→∞

tαp(t) = −(q − 1
)−α lim

t→∞
L[u](t) = −(q − 1

)−α lim
t→∞

F

(
u
(
qt
)

u(t)

)

= −(q − 1
)−α

F
(
qϑ1

)
= −[1 − α]q

[
Φ
(
[ϑ1]q

)
− h

(
Φ[ϑ1]q

)]

=
[1 − α]qP
[1 − α]q

= P.

(3.6)

The same arguments work when dealing with v ∈ RVq(ϑ2) instead of u.
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Sufficiency. Assume that (3.1) holds. Then there exist N ∈ [0,∞), t0 ∈ qN0 , and Pη ∈
(0, ωq/q

α−1) such that −N ≤ tαp(t) ≤ Pη for t ∈ [t0,∞)q. Let X be the Banach space of all
bounded functions [t0,∞)q → R endowed with the supremum norm. Denote Ω = {w ∈ X :

Φ(q−η−1) ≤ w(t) ≤ Ñ for t ∈ [t0,∞)q}, where Ñ =N(q−1)α+q1−α, η = logq[(q−1)Φ−1(λη)+1],
λη being the smaller root of λ = h(λ) − Pη/[1 − α]q. In view of Lemma 2.1, it holds that
η < (α − 1)/α. Moreover, if Pη ≥ P (which must be valid in our case), then ϑ1 ≤ η. Further, by
Lemma 2.1, −(q − 1)Pη = Φ(q−η − 1)(1 − q(α−1)(η−1)). Let T : Ω → X be the operator defined by

(Tw)(t) = −(q − 1
)α
tαp(t) −Φ

(
1

qΦ−1
(
w
(
qt
))

+ q
− 1
q

)
. (3.7)

By means of the contraction mapping theorem we will prove that T has a fixed-point in Ω.
First we show that TΩ ⊆ Ω. Let w ∈ Ω. Then, using identities (v) and (vi) from Lemma 2.1,

(Tw)(t) ≥ −(q − 1
)α
Pη −Φ

(
1

qq−η
− 1
q

)

=
(
λη − h

(
λη

))(
q − 1

)α[1 − α]q − q(η−1)(α−1)Φ
(
1 − q−η)

= F
(
qη
) − q(η−1)(α−1)Φ

(
1 − q−η)

= Φ
(
q−η − 1

)(
1 − q(α−1)(η−1)

)
− q(η−1)(α−1)Φ

(
1 − q−η)

= Φ
(
q−η − 1

)

(3.8)

and (Tw)(t) ≤ −(q−1)αtαp(t)+q1−α ≤ Ñ for t ∈ [t0,∞)q. Now we prove thatT is a contraction
mapping on Ω. Consider the function g : (−1,∞) → R defined by g(x) = −Φ(1/(qΦ−1(x) +
q) − 1/q). It is easy to see that |g ′(x)| = q1−α(Φ−1(x) + 1)−α. Let w, z ∈ Ω. The Lagrange mean
value theorem yields |g(w(t)) − g(z(t))| = |w(t) − z(t)‖g ′(ξ(t))|, where ξ : qN0 → R is such
that min{w(t), z(t)} ≤ ξ(t) ≤ max{w(t), z(t)} for t ∈ [t0,∞)q. Hence,

|(Tw)(t) − (Tz)(t)| = ∣∣g(w(
qt
)) − g(z(qt))∣∣

=
∣∣w(

qt
) − z(qt)∣∣∣∣g ′(ξ(t))∣∣

≤ ∣∣w(
qt
) − z(qt)∣∣∣∣g ′(Φ(

q−η − 1
))∣∣

= qηα+1−α∣∣w(
qt
) − z(qt)∣∣

≤ qηα+1−α‖w − z‖

(3.9)

for t ∈ [t0,∞)q. Thus ‖Tw−Tz‖ ≤ qηα+1−α‖w−z‖, where qηα+1−α ∈ (0, 1) by virtue of q > 1 and
η < (α − 1)/α. The Banach fixed-point theorem now guarantees the existence of w ∈ Ω such
that w = Tw. Define u by u(t) =

∏
s∈[t0,t)q(Φ

−1(w(s)) + 1)−1. Then u is a positive solution of
L[u](t) = −(q − 1)αtαp(t) on [t0,∞)q, and, consequently, of (1.1) (this implies nonoscillation

of (1.1)). Moreover, q−η ≤ Φ−1(w(t)) + 1 ≤ 1/N, where N = 1/(Φ−1(Ñ) + 1), and thus
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N ≤ u(qt)/u(t) ≤ qη. Denote M∗ = lim inft→∞u(qt)/u(t) and M∗ = lim supt→∞u(qt)/u(t).
Rewrite L[u](t) = −(q − 1)αtαp(t) as

Φ

(
u
(
q2t

)
qu

(
qt
) − 1

q

)
= Φ

(
1 − u(t)

u
(
qt
)
)
− (q − 1

)α
tαp(t). (3.10)

Taking lim inf and lim sup as t → ∞ in (3.10), we get Φ(M∗/q−1/q) = Φ(1−1/M∗)−(q−1)αP
and Φ(M∗/q − 1/q) = Φ(1 − 1/M∗) − (q − 1)αP , respectively. Hence, F(M∗) = F(M∗). Since
M∗,M∗ ∈ [N, qη] and F is strictly decreasing on (0, q(α−1)/α) (by Lemma 2.1), we have M :=
M∗ =M∗. Moreover,

F(M) = −(q − 1
)α
P =

(
q − 1

)α[1 − α]q
(
Φ
(
[ϑi]q

)
− h

(
Φ[ϑi]q

))
= F

(
qϑi

)
, (3.11)

i = 1, 2, which implies M = qϑ1 , in view of the facts that M,qϑ1 ∈ (0, q(α−1)/α), qϑ2 > q(α−1)/α,
and F is monotone on (0, q(α−1)/α). Thus u ∈ RVq(ϑ1). Now we show that there exists a
solution v of (1.1) with v ∈ RVq(ϑ2). We can assume that N, t0, and Pη are the same
as in the previous part. Consider the set Γ = {w ∈ X : Φ(qζ−1 − 1/q) ≤ w(t) ≤ M̃

for t ∈ [t0,∞)q}, where M̃ = 1 + (q − 1)αN, ζ = logq[(q − 1)Φ−1(λζ) + 1], λζ being the
larger root of λ = h(λ) − Pη/[1 − α]q. It is clear that N can be chosen in such a way that

Φ(qϑ2−1 − 1/q) < M̃. It holds (α − 1)/α < ζ ≤ ϑ2 and −(q − 1)αPη = Φ(q−ζ − 1)(1 − q(α−1)(ζ−1)).
Define S : Γ → X by (Sw)(t) = Φ(1 − 1/(qΦ−1(w(t/q)) + 1)) − (q − 1)αtαp(t) for t ∈ [qt0,∞)q,
and (Sw)(t0) = Φ(qϑ2−1 − 1/q). Using similar arguments as above it is not difficult to see
that SΓ ⊆ Γ and ‖Sw − Sz‖ < qα−1−αζ‖w − z‖ for w, z ∈ Γ. So there exists w ∈ Γ such that
w = Sw. If we define v(t) =

∏
s∈[qt0,t)q(qΦ

−1(w(s/q)) + 1), then v is a positive solution of (1.1)

on [qt0,∞)q, which satisfies qζ ≤ v(qt)/v(t) ≤ qΦ−1(M̃) + 1. Arguing as above we show that
v ∈ RVq(ϑ2).

(ii) Necessity. The proof is similar to that of (i).
Sufficiency. The condition tαp(t) ≤ ωq/q

α−1 for large t implies nonoscillation of (1.1).
Indeed, it is easy to see that y(t) = t(α−1)/α is a nonoscillatory solution of the Euler type
equation Dq(Φ(Dqy(t))) + ωqq

1−αt−αΦ(y(qt)) = 0. Nonoscillation of (1.1) then follows by
using the Sturm type comparison theorem, see also Section 4(i). Let us write P as P = [1 −
α]q(h(Φ([(α − 1)/α]q)) −Φ([(α − 1)/α]q)), with noting that λ = Φ([(α − 1)/α]q) is the double
root of λ = h(λ) −ωqq

1−α/[1 − α]q, see Lemma 2.1. Then, in view of Lemma 2.1, we obtain

F
(
qϑ

)
=
(
q − 1

)α[1 − α]q
[
Φ
(
[ϑ]q

)
− h

(
Φ[ϑ]q

)]
= −

(
q − 1

)α
ωq

qα−1

= −(q − 1
)α lim

t→∞
tαp(t) = lim

t→∞
L[u](t).

(3.12)

Let us denote U∗ = lim inft→∞u(qt)/u(t) and U∗ = lim supt→∞u(qt)/u(t). It is impossible
to have U∗ = 0 or U∗ = ∞, otherwise limt→∞L[u](t) = ∞, which contradicts to (3.12). Thus
0 < U∗ ≤ U∗ < ∞. Consider (1.1) in the form (3.10). Taking lim sup, respectively, lim inf as
t → ∞ in (3.10), into which our u is plugged, we obtain F(U∗) = F(q(α−1)/α) = F(U∗). Thanks
to the properties of F, see Lemma 2.1, we get U∗ = U∗ = q(α−1)/α. Hence, u ∈ RVq((α − 1)/α).
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Since we worked with an arbitrary positive solution, it implies that all positive solutions must
be q-regularly varying of index (α − 1)/α.

(iii) The proof repeats the same arguments as that of [3, Theorem 1] (in spite of no sign
condition on p). Note just that condition (3.3) compels p to be eventually negative and the
proof of necessity does not depend on the sign of p.

(iv) Sufficiency. Let u be an eventually positive solution of (1.1). Assume by a
contradiction that lim supt→∞y(qt)/y(t) =∞. Then, in view of Lemma 2.1(vii),

∞ = lim sup
t→∞

(
Φ

(
y
(
q2t

)
qy

(
qt
) − 1

q

)
− 1

)
≤ lim sup

t→∞
L[y](t) = −(q − 1

)αlim inf
t→∞

tαp(t) <∞ (3.13)

by (3.4), a contradiction. If lim inft→∞y(qt)/y(t) = 0, then lim supt→∞y(t)/y(qt) = ∞ and
we proceed similarly as in the previous case. Since we worked with an arbitrary positive
solution, it implies that all positive solutions must be q-regularly bounded.

Necessity. Let y ∈ RBq be a solution of (1.1). Taking lim sup as t → ∞ in −(q −
1)αtαp(t) = L[y](t), we get

− (q − 1
)αlim inf

t→∞
tαp(t)

= lim sup
t→∞

L[y](t) ≤ lim sup
t→∞

Φ

(
y
(
q2t

)
qy

(
qt
) − 1

q

)
+ lim sup

t→∞
Φ

(
y(t)
y
(
qt
) − 1

)
<∞,

(3.14)

which implies the first inequality in (3.5). Similarly, the lim inf as t → ∞ yields −(q −
1)αlim supt→∞t

αp(t) > −1/qα−1−1, which implies the last inequality in (3.5). If p is eventually
positive, then every eventually positive solution of (1.1) is eventually increasing, which can
be easily seen from its concavity. Hence, y(qt)/y(t) ≥ 1 for large t. Thus the last inequality
becomes −(q − 1)αlim supt→∞t

αp(t) > −1.

We are ready to provide a summarizing thorough discussion on asymptotic behavior
of solutions to (1.1) with respect to the limit behavior of tαp(t) in the framework of q-
Karamata theory. Denote

P = lim
t→∞

tαp(t), P∗ = lim inf
t→∞

tαp(t), P ∗ = lim sup
t→∞

tαp(t). (3.15)

The set of all q-regularly varying and q-rapidly varying functions is said to be q-Karamata
functions. With the use of the previous results we obtain the following statement.

Corollary 3.2. (i) Assume that there exists P ∈ R ∪ {−∞,∞}. In this case, (1.1) possesses solutions
that are q-Karamata functions provided (1.1) is nonoscillatory. Moreover, we distinguish the following
subcases:

(a) P = −∞: (1.1) is nonoscillatory and all its positive solutions are q-rapidly varying (of index
−∞ or∞).

(b) P ∈ (−∞, ωq/q
α−1): (1.1) is nonoscillatory and there exist a positive solution which is q-

regularly varying of index ϑ1 and a positive solution which is q-regularly varying of index
ϑ2.
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(c) P = γq: (1.1) either oscillatory or nonoscillatory (the latter one can be guaranteed, e.g., by
tαp(t) ≤ ωq/q

α−1 for large t). In case of nonoscillation of (1.1) all its positive solutions are
q-regularly varying of index (α − 1)/α.

(d) P ∈ (ωq/q
α−1,∞) ∪ {∞}: (1.1) is oscillatory.

(ii) Assume that R ∪ {−∞} � P∗ < P ∗ ∈ R ∪ {∞}. In this case, there are no q-Karamata
functions among positive solutions of (1.1). Moreover, we distinguish the following subcases:

(a) P∗ ∈ (ωq/q
α−1,∞) ∪ {∞}: (1.1) is oscillatory.

(b) P∗ ∈ {−∞} ∪ (−∞, ωq/q
α−1]: (1.1) is either oscillatory (this can be guaranteed, e.g., by

P ∗ > (1 + q1−α)/(q − 1)α or by p > 0 and P ∗ ≥ 1/(q − 1)α) or nonoscillatory (this can be
guaranteed, e.g., by tαp(t) ≤ ωq/q

α−1 for large t). If, in addition to nonoscillation of (1.1),
it holds P∗ > −∞, then all its positive solutions are q-regularly bounded, but there is no
q-regularly varying solution. If P∗ = −∞, then there is no q-regularly bounded or q-rapidly
varying solution.

4. Concluding Remarks

(i) We start with some remarks to Kneser type criteria. As a by product of Theorem 3.1(i) we
get the following nonoscillation Kneser type criterion: if limt→∞tαp(t) < ωq/q

α−1, then (1.1) is
nonoscillatory. However, its better variant is known (it follows from a more general time-scale
case involving Hille-Nehari type criterion [15]), where the sufficient condition is relaxed to
lim supt→∞t

αp(t) < ωq/q
α−1. The constant ωq/q

α−1 is sharp, since lim inft→∞tαp(t) > ωq/q
α−1

implies oscillation of (1.1), see [15]. But no conclusion can be generally drawn if the equality
occurs in these conditions. The above lim sup nonoscillation criterion can be alternatively
obtained also from the observation presented at the beginning of the proof of Theorem 3.1(ii)
involving the Euler type q-difference equation. And it is worthy of note that the conclusion of
that observation can be reached also when modifying the proof of Hille-Nehari type criterion
in [15]. A closer examination of the proof of Theorem 3.1(iv) shows that a necessary condition
for nonoscillation of (1.1) is −(q − 1)αlim supt→∞t

αp(t) ≥ −q1−α − 1. Thus we have obtained
quite new Kneser type oscillation criterion: if lim supt→∞t

αp(t) > (1 + q1−α)/(q − 1)α, then
(1.1) is oscillatory. If p is eventually positive, then the constant on the right-hand side can be
improved to 1/(q − 1)α and the strict inequality can be replaced by the nonstrict one (this
is because of q-regular boundedness of possible positive solutions). A continuous analog
of this criterion is not known, which is quite natural since 1/(q − 1)α → ∞ as q → 1.
Compare these results with the Hille-Nehari type criterion, which was proved in general
setting for dynamic equations and time-scales, and is valid no matter what the graininess is
(see [15]); in q-calculus it reads as follows: if p ≥ 0 and lim supt→∞t

α−1
∫∞
t p(s)dqs > 1, then

(1.1) is oscillatory. This criterion holds literally also in the continuous case. Finally note that,
in general, lim supt→∞t

α−1
∫∞
t p(s)dqs ≤ lim supt→∞ − [1 − α]qtαp(t).

(ii) The results contained in Theorem 3.1 can understood at least in the three following
ways:

(a) As a q-version of the continuous results for (1.2) from [5]. However, there are
several substantial differences: The conditions in the continuous case are (and
somehow must be) in the integral form (see also the item (iii) of this section); there
is a different approach in the proof (see also the item (iv) of this section); the rapid
variation has not been treated in such detail in the continuous case; in the case of the
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existence of the double root, we show that all (and not just some) positive solutions
are q-regularly varying under quite mild assumptions; for positive solutions to be q-
regularly bounded we obtain quite simple and natural sufficient and also necessary
conditions.

(b) As a half-linear extension of the results for D2
qy(t) + p(t)y(qt) = 0 from [1]. In

contrast to the linear case, in the half-linear case a reduction of order formula is
not at disposal. Thus to prove that there are two q-regularly varying solutions of
two different indices we need immediately to construct both of them. Lack of a
fundamental like system for half-linear equations causes that, for the time being,
we are not able to show that all positive solutions are q-regularly varying. This is
however much easier task when p(t) < 0, see [3].

(c) As a generalization of the results from [3] in the sense of no sign condition on the
coefficient p.

(iii) From the continuous theory we know that the sufficient and necessary conditions
for regularly or rapidly varying behavior of solutions to (1.2) are in terms of limit behavior of
integral expressions, typically tα−1

∫∞
t p(s)ds or tα−1

∫λt
t p(s)ds. In contrast to that, in q-calculus

case the conditions have nonintegral form. This is the consequence of specific properties
of q-calculus: one thing is that we use a different approach which does not apply in the
continuous case. Another thing is that the limit limt→∞tα−1

∫∞
t p(s)dqs can be expressed in

terms of limt→∞tαp(t) (and vice versa), provided it exists. Such a relation does not work in
the continuous case.

(iv) As already said, our approach in the proof of Theorem 3.1 is different from what is
known in the continuous theory. Our method is designed just for q-difference equations and
roughly speaking, it is based on rewriting a q-difference equation in terms of the fractions
which appear in Definition 2.2. Such a technique cannot work in the continuous case. Since
this method uses quite natural and simple relations (which are possible thanks to the special
structure of qN0), we believe that it will enable us to prove also another results which are
q-versions of existing or nonexisting continuous results; in the latter case, such results may
serve to predict a possible form of the continuous counterpart, which may be difficult to
handle directly. We just take, formally, the limit as q → 1+.
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[8] V. Marić, Regular Variation and Differential Equations, vol. 1726 of Lecture Notes in Mathematics, Springer,
Berlin, Germany, 2000.

[9] G. Bangerezako, “An introduction to q-difference equations,” preprint.
[10] G. D. Birkhoff and P. E. Guenther, “Note on a canonical form for the linear q-difference system,”

Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 218–222, 1941.
[11] M. Bohner and M. Ünal, “Kneser’s theorem in q-calculus,” Journal of Physics A, vol. 38, no. 30, pp.

6729–6739, 2005.
[12] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, NY, USA, 2002.
[13] G. Gasper and M. Rahman, Basic Hypergeometric Series, vol. 96 of Encyclopedia of Mathematics and Its

Applications, Cambridge University Press, Cambridge, UK, 2nd edition, 2004.
[14] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications,
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Singular differential equation (p(t)u′)′ = p(t)f(u) is investigated. Here f is Lipschitz continuous on
R and has at least two zeros 0 and L > 0 . The function p is continuous on [0,∞) and has a positive
continuous derivative on (0,∞) and p(0) = 0. An asymptotic formula for oscillatory solutions is
derived.

1. Introduction

In this paper, we investigate the equation
(
p(t)u′

)′ = p(t)f(u), t ∈ (0,∞), (1.1)

where f satisfies

f ∈ Liploc(R), f(0) = f(L) = 0, f(x) < 0, x ∈ (0, L), (1.2)

∃B ∈ (−∞, 0): f(x) > 0, x ∈
[
B, 0
)
, (1.3)

F
(
B
)
= F(L), where F(x) = −

∫x
0
f(z)dz, x ∈ R, (1.4)

and p fulfils

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, (1.5)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (1.6)
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Equation (1.1) is a generalization of the equation

u′′ +
k − 1
t

u′ = f(u), t ∈ (0,∞), (1.7)

which arises for k > 1 and special forms of f in many areas, for example: in the study of phase
transitions of Van der Waals fluids [1–3], in population genetics, where it serves as a model for
the spatial distribution of the genetic composition of a population [4, 5], in the homogeneous
nucleation theory [6], in the relativistic cosmology for the description of particles which can
be treated as domains in the universe [7], in the nonlinear field theory, in particular, when
describing bubbles generated by scalar fields of the Higgs type in the Minkowski spaces [8].
Numerical simulations of solutions of (1.1), where f is a polynomial with three zeros have
been presented in [9–11]. Close problems about the existence of positive solutions can be
found in [12–14].

Due to p(0) = 0, (1.1) has a singularity at t = 0.

Definition 1.1. A function u ∈ C1[0,∞) ∩ C2(0,∞) which satisfies (1.1) for all t ∈ (0,∞) is
called a solution of (1.1).

Definition 1.2. Let u be a solution of (1.1) and let L be of (1.2). Denote usup = sup{u(t): t ∈
[0,∞)}. If usup < L (usup = L or usup > L), then u is called a damped solution (a bounding
homoclinic solution or an escape solution).

These three types of solutions have been investigated in [15–19]. In particular, the
existence of damped oscillatory solutions which converge to 0 has been proved in [19].

The main result of this paper is contained in Section 3 in Theorem 3.1, where we
provide an asymptotic formula for damped oscillatory solutions of (1.1).

2. Existence of Oscillatory Solutions

Here, we will study solutions of (1.1) satisfying the initial conditions

u(0) = B, u′(0) = 0, (2.1)

with a parameter B ≤ L. Reason is that we focus our attention on damped solutions of (1.1)
and that each solution u of (1.1) must fulfil u′(0) = 0 (see [19]).

First, we bring two theorems about the existence of damped and oscillatory solutions.

Theorem 2.1 (see [19]). Assume that (1.2)–(1.6) hold. Then for each B ∈ [B, L) problem (1.1),
(2.1) has a unique solution. This solution is damped.

Theorem 2.2. Assume that (1.2)–(1.6) hold. Further, let there exists k0 ∈ (0,∞) such that

p ∈ C2(0,∞), lim sup
t→∞

∣∣∣∣p
′′(t)
p′(t)

∣∣∣∣ <∞, lim inf
t→∞

p(t)
tk0
∈ (0,∞], (2.2)

lim
x→ 0+

f(x)
x

< 0, lim
x→ 0−

f(x)
x

< 0. (2.3)
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Then for each B ∈ [B, L) problem (1.1), (2.1) has a unique solution u. If B /= 0, then the solution u is
damped and oscillatory with decreasing amplitudes and

lim
t→∞

u(t) = 0. (2.4)

Proof. The assertion follows from Theorems 2.3, 2.10 and 3.1 in [19].

Example 2.3. The functions

(i) p(t) = tk, p(t) = tk ln(t� + 1), k, � ∈ (0,∞),

(ii) p(t) = t + α sin t, α ∈ (−1, 1),

(iii) p(t) = tk/(1 + t�), k, � ∈ (0,∞), � < k

satisfy (1.5), (1.6), and (2.2).
The functions

(i) p(t) = ln(t + 1), p(t) = arctan t, p(t) = tk/(1 + tk), k ∈ (0,∞)

satisfy (1.5), (1.6), but not (2.2) (the third condition).
The function

(i) p(t) = tk + α sin tk, α ∈ (−1, 1), k ∈ (1,∞),

satisfy (1.5), (1.6) but not (2.2) (the second and third conditions).

Example 2.4. Let k ∈ (0,∞).

(i) The function

f(x) =

⎧⎨
⎩
−kx, for x ≤ 0,

x(x − 1), for x > 0,
(2.5)

satisfies (1.2) with L = 1, (1.3), (1.4) with B = −(3k)−1/2 and (2.3).

(ii) The function

f(x) =

⎧⎨
⎩
kx2, for x ≤ 0,

x(x − 1), for x > 0,
(2.6)

satisfies (1.2) with L = 1, (1.3), (1.4) with B = −(2k)−1/3 but not (2.3) (the second
condition).

In the next section, the generalized Matell’s theorem which can be found as Theorem
6.5 in the monograph by Kiguradze will be useful. For our purpose, we provide its following
special case.

Consider an interval J ⊂ R. We write AC(J) for the set of functions absolutely
continuous on J and ACloc(J) for the set of functions belonging to AC(I) for each compact
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interval I ⊂ J . Choose t0 > 0 and a function matrix A(t) = (ai,j(t))i,j≤2 which is defined on
(t0,∞). Denote by λ(t) and μ(t) eigenvalues of A(t), t ∈ (t0,∞). Further, suppose

λ = lim
t→∞

λ(t), μ = lim
t→∞

μ(t) (2.7)

be different eigenvalues of the matrix A = limt→∞A(t), and let l and m be eigenvectors of A
corresponding to λ and μ, respectively.

Theorem 2.5 (see [20]). Assume that

ai,j ∈ ACloc(t0,∞),

∣∣∣∣∣
∫∞
t0

a′i,j(t)dt

∣∣∣∣∣ <∞, i, j = 1, 2, (2.8)

and that there exists c0 > 0 such that

∫ t
s

Re
(
λ(τ) − μ(τ))dτ ≤ c0, t0 ≤ s < t, (2.9)

or

∫∞
t0

Re
(
λ(τ) − μ(τ))dτ =∞,

∫ t
s

Re
(
λ(τ) − μ(τ))dτ ≥ −c0, t0 ≤ s < t. (2.10)

Then the differential system

x′(t) = A(t)x(t) (2.11)

has a fundamental system of solutions x(t), y(t) such that

lim
t→∞

x(t)e−
∫ t
t0
λ(τ)dτ = l, lim

t→∞
y(t)e−

∫ t
t0
μ(τ)dτ = m. (2.12)

3. Asymptotic Formula

In order to derive an asymptotic formula for a damped oscillatory solution u of problem
(1.1), (2.1), we need a little stronger assumption than (2.3). In particular, the function f(x)/x
should have a negative derivative at x = 0.

Theorem 3.1. Assume that (1.2)–(1.6), and (2.2) hold. Assume, moreover, that there exist η > 0 and
c > 0 such that

f(x)
x
∈ AC[−η, η], lim

x→ 0

f(x)
x

= −c. (3.1)
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Then for each B ∈ [B, L) problem (1.1), (2.1) has a unique solution u. If B /= 0, then the solution u is
damped and oscillatory with decreasing amplitudes such that

lim sup
t→∞

√
p(t)|u(t)| <∞. (3.2)

Proof. We have the following steps:

Step 1 (construction of an auxiliary linear differential system). Choose B ∈ [B, L), B /= 0.
By Theorem 2.2, problem (1.1), (2.1) has a unique oscillatory solution u with decreasing
amplitudes and satisfying (2.4). Having this solution u, define a linear differential equation

v′′ +
p′(t)
p(t)

v′ =
f(u(t))
u(t)

v, (3.3)

and the corresponding linear differential system

x′1 = x2, x′2 =
f(u(t))
u(t)

x1 −
p′(t)
p(t)

x2. (3.4)

Denote

A(t) =
(
ai,j(t)

)
i,j≤2 =

⎛
⎜⎝

0 1

f(u(t))
u(t)

−p
′(t)
p(t)

⎞
⎟⎠, A =

(
0 1

−c 0

)
. (3.5)

By (1.6), (2.4), and (3.1),

A = lim
t→∞

A(t). (3.6)

Eigenvalues of A are numbers λ = i
√
c and μ = −i√c, and eigenvectors of A are l = (1, i

√
c)

and m = (1,−i√c), respectively. Denote

D(t) =
(
p′(t)
2p(t)

)2

+
f(u(t))
u(t)

, t ∈ (0,∞). (3.7)

Then eigenvalues of A(t) have the form

λ(t) = − p
′(t)

2p(t)
+
√
D(t), μ(t) = − p

′(t)
2p(t)

−
√
D(t), t ∈ (0,∞). (3.8)

We see that

lim
t→∞

λ(t) = λ, lim
t→∞

μ(t) = μ. (3.9)
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Step 2 (verification of the assumptions of Theorem 2.5). Due to (1.6), (2.4), and (3.1), we can
find t0 > 0 such that

u(t0)/= 0, |u(t)| ≤ η, D(t) < 0, t ∈ (t0,∞). (3.10)

Therefore, by (3.1),

a21(t) =
f(u(t))
u(t)

∈ ACloc(t0,∞), (3.11)

and so

∣∣∣∣∣
∫∞
t0

(
f(u(t))
u(t)

)′
dt

∣∣∣∣∣ =
∣∣∣∣ lim
t→∞

f(u(t))
u(t)

− f(u(t0))
u(t0)

∣∣∣∣ =
∣∣∣∣−c − f(u(t0))u(t0)

∣∣∣∣ <∞. (3.12)

Further, by (2.2), a22(t) = −p′(t)/p(t) ∈ C1(t0,∞). Hence, due to (1.6),

∣∣∣∣∣
∫∞
t0

(
p′(t)
p(t)

)
dt

∣∣∣∣∣ =
∣∣∣∣ lim
t→∞

p′(t)
p(t)

− p
′(t0)
p(t0)

∣∣∣∣ = p′(t0)
p(t0)

<∞. (3.13)

Since a11(t) ≡ 0 and a12(t) ≡ 1, we see that (2.8) is satisfied. Using (3.8) we get Re(λ(t)−μ(t)) ≡
0. This yields

∫ t
s

Re
(
λ(τ) − μ(τ))dτ = 0 < c0, t0 ≤ s < t, (3.14)

for any positive constant c0. Consequently (2.9) is valid.

Step 3 (application of Theorem 2.5). By Theorem 2.5 there exists a fundamental system x(t) =
(x1(t), x2(t)), y(t) = (y1(t), y2(t)) of solutions of (3.4) such that (2.12) is valid. Hence

lim
t→∞

x1(t)e
− ∫ tt0 λ(τ)dτ = 1, lim

t→∞
y1(t)e

− ∫ tt0 μ(τ)dτ = 1. (3.15)

Using (3.8) and (3.10), we get

exp

(
−
∫ t
t0

λ(τ)dτ

)
= exp

(∫ t
t0

(
p′(τ)
2p(τ)

−
√
D(τ)

)
dτ

)

= exp
(

1
2

ln
p(t)
p(t0)

)
exp

(
−i
∫ t
t0

√
|D(τ)|dτ

)
,

(3.16)
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and, hence,

∣∣∣∣e−
∫ t
t0
λ(τ)dτ

∣∣∣∣ =
√

p(t)
p(t0)

, t ∈ (t0,∞). (3.17)

Similarly

∣∣∣∣e−
∫ t
t0
μ(τ)dτ

∣∣∣∣ =
√

p(t)
p(t0)

, t ∈ (t0,∞). (3.18)

Therefore, (3.15) implies

1 = lim
t→∞

∣∣∣∣x1(t)e
− ∫ tt0 λ(τ)dτ

∣∣∣∣ = lim
t→∞
|x1(t)|

√
p(t)
p(t0)

,

1 = lim
t→∞

∣∣∣∣y1(t)e
− ∫ tt0 μ(τ)dτ

∣∣∣∣ = lim
t→∞
∣∣y1(t)

∣∣
√

p(t)
p(t0)

.

(3.19)

Step 4 (asymptotic formula). In Step 1, we have assumed that u is a solution of (1.1), which
means that

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)), for t ∈ (0,∞). (3.20)

Consequently

u′′(t) +
p′(t)
p(t)

u′(t) =
f(u(t))
u(t)

u(t), for t ∈ (0,∞), (3.21)

and, hence, u is also a solution of (3.3). This yields that there are c1, c2 ∈ R such that u(t) =
c1x1(t) + c2y1(t), t ∈ (0,∞). Therefore,

lim sup
t→∞

√
p(t)|u(t)| ≤ (|c1| + |c2|)

√
p(t0) <∞. (3.22)

Remark 3.2. Due to (2.2) and (3.2), we have for a solution u of Theorem 3.1

u(t) = O
(
t−k0/2

)
, for t −→ ∞. (3.23)
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Example 3.3. Let k ∈ (1,∞).

(i) The functions f(x) = x(x − 1) and f(x) = x(x − 1)(x + 2) satisfy all assumptions of
Theorem 3.1.

(ii) The functions f(x) = x2k−1(x − 1) and f(x) = x2k−1(x − 1)(x + 2)

satisfy (1.2)–(1.4) but not (3.1) (the second condition).

Example 3.4. Consider the initial problem

(
t2u′
)′

= t2u(u − 5)(u + 10), u(0) = −3, u′(0) = 0. (3.24)

Here L0 = −10, L = 5 and we can check that B < −3. Further, all assumptions of Theorems 2.2
and 3.1 are fulfilled. Therefore, by Theorem 2.2, there exists a unique solution u of problem
(3.24) which is damped and oscillatory and converges to 0. By Theorem 3.1, we have

lim sup
t→∞

t|u(t)| <∞, that is, u(t) = O
(

1
t

)
, for t −→ ∞. (3.25)

The behaviour of the solution u(t) and of the function tu(t) is presented on Figure 1.

Remark 3.5. Our further research of this topic will be focused on a deeper investigation of
all types of solutions defined in Definition 1.2. For example, we have proved in [15, 19] that
damped solutions of (1.1) can be either oscillatory or they have a finite number of zeros or
no zero and converge to 0. A more precise characterization of behaviour of nonoscillatory
solutions are including their asymptotic formulas in as open problem. The same can be said
about homoclinic solutions. In [17] we have found some conditions which guarantee their
existence, and we have shown that if u is a homoclinic solution of (1.1), then limt→∞u(t) = L.
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In order to discover other existence conditions for homoclinic solutions, we would like to
estimate their convergence by proper asymptotic formulas.
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The aim of this paper is to study properties of the third-order delay trinomial differential equation
((1/r(t))y′′(t))′ + p(t)y′(t) + q(t)y(σ(t)) = 0, by transforming this equation onto the second-/third-
order binomial differential equation. Using suitable comparison theorems, we establish new results
on asymptotic behavior of solutions of the studied equations. Obtained criteria improve and
generalize earlier ones.

1. Introduction

In this paper, we will study oscillation and asymptotic behavior of solutions of third-order
delay trinomial differential equations of the form

(
1
r(t)

y′′(t)
)′

+ p(t)y′(t) + q(t)y(σ(t)) = 0. (E)

Throughout the paper, we assume that r(t), p(t), q(t), σ(t) ∈ C([t0,∞)) and

(i) r(t) > 0, p(t) ≥ 0, q(t) > 0, σ(t) > 0,

(ii) σ(t) ≤ t, limt→∞σ(t) =∞,

(iii) R(t) =
∫ t
t0
r(s) ds → ∞ as t → ∞.

By a solution of (E), we mean a function y(t) ∈ C2([Tx,∞)), Tx ≥ t0, that satisfies (E) on
[Tx,∞). We consider only those solutions y(t) of (E) which satisfy sup{|y(t)| : t ≥ T} > 0 for
all T ≥ Tx. We assume that (E) possesses such a solution. A solution of (E) is called oscillatory
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if it has arbitrarily large zeros on [Tx,∞), and, otherwise, it is nonoscillatory. Equation (E)
itself is said to be oscillatory if all its solutions are oscillatory.

Recently, increased attention has been devoted to the oscillatory and asymptotic
properties of second- and third-order differential equations (see [1–22]). Various techniques
appeared for the investigation of such differential equations. Our method is based on
establishing new comparison theorems, so that we reduce the examination of the third-order
trinomial differential equations to the problem of the observation of binomial equations.

In earlier papers [11, 13, 16, 20], a particular case of (E), namely, the ordinary
differential equation (without delay)

y′′′(t) + p(t)y′(t) + g(t)y(t) = 0, (E1)

has been investigated, and sufficient conditions for all its nonoscillatory solutions y(t) to
satisfy

y(t)y′(t) < 0 (1.1)

or the stronger condition

lim
t→∞

y(t) = 0 (1.2)

are presented. It is known that (E1) has always a solution satisfying (1.1). Recently, various
kinds of sufficient conditions for all nonoscillatory solutions to satisfy (1.1) or (1.2) appeared.
We mention here [9, 11, 13, 16, 21]. But there are only few results for differential equations
with deviating argument. Some attempts have been made in [8, 10, 18, 19]. In this paper
we generalize these, results and we will study conditions under which all nonoscillatory
solutions of (E) satisfy (1.1) and (1.2). For our further references we define as following.

Definition 1.1. We say that (E) has property (P0) if its every nonoscillatory solution y(t)
satisfies (1.1).

In this paper, we have two purposes. In the first place, we establish comparison
theorems for immediately obtaining results for third-order delay equation from that of third
order equation without delay. This part extends and complements earlier papers [7, 8, 10, 18].

Secondly, we present a comparison principle for deducing the desired property of (E)
from the oscillation of a second-order differential equation without delay. Here, we generalize
results presented in [8, 9, 14, 15, 21].

Remark 1.2. All functional inequalities considered in this paper are assumed to hold
eventually;0 that is, they are satisfied for all t large enough.
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2. Main Results

It will be derived that properties of (E) are closely connected with the corresponding second-
order differential equation

(
1
r(t)

v′(t)
)′

+ p(t)v(t) = 0 (Ev)

as the following theorem says.

Theorem 2.1. Let v(t) be a positive solution of (Ev). Then (E) can be written as

(
v2(t)
r(t)

(
1

v(t)
y′(t)

)′)′
+ q(t)v(t)y(σ(t)) = 0. (Ec)

Proof. The proof follows from the fact that

1
v(t)

(
v2(t)
r(t)

(
1
v(t)

y′(t)
)′)′

=
(

1
r(t)

y′′(t)
)′

+ p(t)y′(t). (2.1)

Now, in the sequel, instead of studying properties of the trinomial equation (E), we
will study the behavior of the binomial equation (Ec). For our next considerations, it is
desirable for (Ec) to be in a canonical form; that is,

∫∞
v(t)dt =∞, (2.2)

∫∞ r(t)
v2(t)

dt =∞, (2.3)

because properties of the canonical equations are nicely explored.
Now, we will study the properties of the positive solutions of (Ev) to recognize when

(2.2)-(2.3) are satisfied. The following result (see, e.g., [7, 9] or [14]) is a consequence of
Sturm’s comparison theorem.

Lemma 2.2. If

R2(t)
r(t)

p(t) ≤ 1
4
, (2.4)

then (Ev) possesses a positive solution v(t).

To be sure that (Ev) possesses a positive solution, we will assume throughout the paper
that (2.4) holds. The following result is obvious.
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Lemma 2.3. If v(t) is a positive solution of (Ev), then v′(t) > 0, ((1/r(t))v′(t))′ < 0, and, what is
more, (2.2) holds and there exists c > 0 such that v(t) ≤ cR(t).

Now, we will show that if (Ev) is nonoscillatory, then we always can choose a positive
solution v(t) of (Ev) for which (2.3) holds.

Lemma 2.4. If v1(t) is a positive solution of (Ev) for which (2.3) is violated, then

v2(t) = v1(t)
∫∞
t0

r(s)
v2

1(s)
ds (2.5)

is another positive solution of (Ev) and, for v2(t), (2.3) holds.

Proof. First note that

v′′2(t) = v
′′
1(t)

∫ t

t0

r(s)
v2

1(s)
ds = −p(t)v1(t)

∫ t

t0

v−2
1 (s)ds = −p(t)v2(t). (2.6)

Thus, v2(t) is a positive solution of (Ev). On the other hand, to insure that (2.3) holds for v2(t),
let us denote w(t) =

∫∞
t r(s)/v2

1(s)ds. Then limt→∞w(t) = 0 and

∫∞
t1

r(s)
v2

2(s)
ds =

∫∞
t1

−w′(s)
w(s)

ds = lim
t→∞

(
1

w(t)
− 1
w(t1)

)
=∞. (2.7)

Combining Lemmas 2.2, 2.3, and 2.4, we obtain the following result.

Lemma 2.5. Let (2.4) hold. Then trinomial (E) can be represented in its binomial canonical form
(Ec).

Now we can study properties of (E) with help of its canonical representation (Ec). For
our reference, let us denote for (Ec)

L0y = y, L1y =
1
v

(
L0y

)′
, L2y =

v2

r

(
L1y

)′
, L3y =

(
L2y

)′
. (2.8)

Now, (Ec) can be written as L3y(t) + v(t)q(t)y(σ(t)) = 0.
We present a structure of the nonoscillatory solutions of (Ec). Since (Ec) is in a

canonical form, it follows from the well-known lemma of Kiguradze (see, e.g., [7, 9, 14])
that every nonoscillatory solution y(t) of (Ec) is either of degree 0, that is,

yL0y(t) > 0, yL1y(t) < 0, yL2y(t) > 0, yL3y(t) < 0, (2.9)

or of degree 2, that is,

yL0y(t) > 0, yL1y(t) > 0, yL2y(t) > 0, yL3y(t) < 0. (2.10)
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Definition 2.6. We say that (Ec) has property (A) if its every nonoscillatory solution y(t) is of
degree 0; that is, it satisfies (2.9).

Now we verify that property (P0) of (E) and property (A) of (Ec) are equivalent in the
sense that y(t) satisfies (1.1) if and only if it obeys (2.9).

Theorem 2.7. Let (2.4) hold. Assume that v(t) is a positive solution of (Ev) satisfying (2.2)-(2.3).
Then (Ec) has property (A) if and only if (E) has property (P0).

Proof. → We suppose that y(t) is a positive solution of (E). We need to verify that y′(t) < 0.
Since y(t) is also a solution of (Ec), then it satisfies (2.9). Therefore, 0 > L1y(t) = y′(t)/v(t).

← Assume that y(t) is a positive solution of (Ec). We will verify that (2.9) holds. Since
y(t) is also a solution of (E), we see that y′(t) < 0; that is, L1y(t) < 0. It follows from (Ec) that
L3y(t) = −v(t)q(t)y(σ(t)) < 0. Thus, L2y(t) is decreasing. If we admit L2y(t) < 0 eventually,
then L1y(t) is decreasing, and integrating the inequality L1y(t) < L1y(t1), we get y(t) <

y(t1) + L1y(t1)
∫ t
t1
v(s) ds → −∞ as t → ∞. Therefore, L2y(t) > 0 and (2.9) holds.

The following result which can be found in [9, 14] presents the relationship between
property (A) of delay equation and that of equation without delay.

Theorem 2.8. Let (2.4) hold. Assume that v(t) is a positive solution of (Ev) satisfying (2.2)-(2.3).
Let

σ(t) ∈ C1([t0,∞)), σ ′(t) > 0. (2.11)

If

(
v2(t)
r(t)

(
1
v(t)

y′(t)
)′)′

+
v
(
σ−1(t)

)
q
(
σ−1(t)

)
σ ′
(
σ−1(t)

) y(t) = 0 (E2)

has property (A), then so does (Ec).

Combining Theorems 2.7 and 2.8, we get a criterion that reduces property (P0) of (E)
to the property (A) of (E2).

Corollary 2.9. Let (2.4) and (2.11) hold. Assume that v(t) is a positive solution of (Ev) satisfying
(2.2)-(2.3). If (E2) has property (A) then (E) has property (P0).

Employing any known or future result for property (A) of (E2), then in view of
Corollary 2.9, we immediately obtain that property (P0) holds for (E).

Example 2.10. We consider the third-order delay trinomial differential equation

(
1
t
y′′(t)

)′
+
α(2 − α)

t3
y′(t) + q(t)y(σ(t)) = 0, (2.12)
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where 0 < α < 1 and σ(t) satisfies (2.11). The corresponding equation (Ev) takes the form

(
1
t
v′(t)

)′
+
α(2 − α)

t3
v(t) = 0, (2.13)

and it has the pair of the solutions v(t) = tα and v̂(t) = t2−α. Thus, v(t) = tα is our desirable
solution, which permits to rewrite (2.12) in its canonical form. Then, by Corollary 2.9, (2.12)
has property (P0) if the equation

(
t2α−1(t−α y′(t))′)′ +

(
σ−1(t)

)α
q
(
σ−1(t)

)
σ ′
(
σ−1(t)

) y(t) = 0 (2.14)

has property (A).

Now, we enhance our results to guarantee stronger asymptotic behavior of the
nonoscillatory solutions of (E). We impose an additional condition on the coefficients of (E)
to achieve that every nonoscillatory solution of (E) tends to zero as t → ∞.

Corollary 2.11. Let (2.4) and (2.11) hold. Assume that v(t) is a positive solution of (Ev) satisfying
(2.2)-(2.3). If (E2) has property (A) and

∫∞
t0

v(s3)
∫∞
s3

r(s2)
v2(s2)

∫∞
s2

v(s1)q(s1)ds1 ds2 ds3 =∞, (2.15)

then every nonoscillatory solution y(t) of (E) satisfies (1.2).

Proof. Assume that y(t) is a positive solution of (E). Then, it follows from Corollary 2.9 that
y′(t) < 0. Therefore, limt→∞ y(t) = � ≥ 0. Assume � > 0. On the other hand, y(t) is also a
solution of (Ec), and, in view of Theorem 2.7, it has to be of degree 0; that is, (2.9) is fulfilled.
Then, integrating (Ec) from t to∞, we get

L2y(t) ≥
∫∞
t

v(s)q(s)y(σ(s))ds ≥ �
∫∞
t

v(s)q(s)ds. (2.16)

Multiplying this inequality by r(t)/v2(t) and then integrating from t to∞, we have

−L1y(t) ≥ �
∫∞
t

r(s2)
v2(s2)

∫∞
s2

v(s1)q(s1)ds1 ds2. (2.17)

Multiplying this by v(t) and then integrating from t1 to t, we obtain

y(t1) ≥ �
∫ t

t1

v(s3)
∫∞
s3

r(s2)
v2(s2)

∫∞
s2

v(s1)q(s1)ds1 ds2 ds3 −→ ∞ as t −→ ∞. (2.18)

This is a contradiction, and we deduce that � = 0. The proof is complete.
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Example 2.12. We consider once more the third-order equation (2.12). It is easy to see that
(2.15) takes the form

∫∞
t0

sα3

∫∞
s3

s1−2α
2

∫∞
s2

sα1q(s1)ds1 ds2 ds3 = ∞. (2.19)

Then, by Corollary 2.11, every nonoscillatory solution of (2.12) tends to zero as t → ∞
provided that (2.19) holds and (2.14) has property (A).

In the second part of this paper, we derive criteria that enable us to deduce property
(P0) of (E) from the oscillation of a suitable second-order differential equation. The following
theorem is a modification of Tanaka’s result [21].

Theorem 2.13. Let (2.4) and (2.11) hold. Assume that v(t) is a positive solution of (Ev) satisfying
(2.2)-(2.3). Let

∫∞
v(s)q(s)ds <∞. (2.20)

If the second-order equation

(
v2(t)
r(t)

z′(t)

)′
+
(
v(σ(t))σ ′(t)

∫∞
t

v(s)q(s)ds
)
z(σ(t)) = 0 (E3)

is oscillatory, then (Ec) has property (A).

Proof. Assume that y(t) is a positive solution of (Ec), then y(t) is either of degree 0 or of degree
2. Assume that y(t) is of degree 2; that is, (2.10) holds. An integration of (Ec) yields

L2y(t) ≥
∫∞
t

v(s)q(s)y(σ(s))ds. (2.21)

On the other hand,

y(t) ≥
∫ t

t1

v(x)L1y(x)dx. (2.22)

Combining the last two inequalities, we get

L2y(t) ≥
∫∞
t

v(s)q(s)
∫σ(s)

t1

v(x)L1y(x)dxds

≥
∫∞
t

v(s)q(s)
∫σ(s)

σ(t)
v(x)L1y(x)dxds

=
∫∞
σ(t)

L1y(x)v(x)
∫∞
σ−1(x)

v(s)q(s)dsdx.

(2.23)
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Integrating the previous inequality from t1 to t, we see that w(t) ≡ L1y(t) satisfies

w(t) ≥ w(t1) +
∫ t

t1

r(s)
v2(s)

∫∞
σ(s)

L1y(x)v(x)
∫∞
σ−1(x)

v(δ)q(δ)dδ dxds. (2.24)

Denoting the right-hand side of (2.24) by z(t), it is easy to see that z(t) > 0 and

0 =

(
v2(t)
r(t)

z′(t)

)′
+
(
v(σ(t))σ ′(t)

∫∞
t

v(s)g(s)ds
)
w(σ(t)) = 0

≥
(
v2(t)
r(t)

z′(t)

)′
+
(
v(σ(t))σ ′(t)

∫∞
t

v(s)g(s)ds
)
z(σ(t)) = 0.

(2.25)

By Theorem 2 in [14], the corresponding equation (E3) also has a positive solution. This is a
contradiction. We conclude that y(t) is of degree 0; that is, (Ec) has property (A).

If (2.20) does not hold, then we can use the following result.

Theorem 2.14. Let (2.4) and (2.11) hold. Assume that v(t) is a positive solution of (Ev) satisfying
(2.2)-(2.3). If

∫∞
v(s)q(s)ds = ∞, (2.26)

then (Ec) has property (A).

Proof. Assume that y(t) is a positive solution of (Ec) and y(t) is of degree 2. An integration of
(Ec) yields

L2y(t1) ≥
∫ t

t1

v(s)q(s)y(σ(s))ds

≥ y(σ(t1))
∫ t

t1

v(s)q(s)ds −→ ∞ as t −→ ∞,
(2.27)

which is a contradiction. Thus, y(t) is of degree 0. The proof is complete now.

Taking Theorem 2.13 and Corollary 2.9 into account, we get the following criterion for
property (P0) of (E).

Corollary 2.15. Let (2.4), (2.11), and (2.20) hold. Assume that v(t) is a positive solution of (Ev)
satisfying (2.2)-(2.3). If (E3) is oscillatory, then (E) has property (P0).

Applying any criterion for oscillation of (E3), Corollary 2.15 yields a sufficient
condition property (P0) of (E).
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Corollary 2.16. Let (2.4), (2.11), and (2.20) hold. Assume that v(t) is a positive solution of (Ev)
satisfying (2.2)-(2.3). If

lim inf
t→∞

(∫σ(t)

t0

r(s)
v2(s)

ds

)(∫∞
t

v(σ(x))σ ′(x)
∫∞
x

v(s)g(s)ds dx
)
>

1
4
, (2.28)

then (E) has property (P0).

Proof. It follows from Theorem 11 in [9] that condition (2.28) guarantees the oscillation of
(E3). The proof arises from Corollary 2.16.

Imposing an additional condition on the coefficients of (E), we can obtain that every
nonoscillatory solution of (E) tends to zero as t → ∞.

Corollary 2.17. Let (2.4) and (2.11) hold. Assume that v(t) is a positive solution of (Ev) satisfying
(2.2)-(2.3). If (2.28) and (2.15) hold, then every nonoscillatory solution y(t) of (E) satisfies (1.2).

Example 2.18. We consider again (2.12). By Corollary 2.17, every nonoscillatory solution of
(2.12) tends to zero as t → ∞ provided that (2.19) holds and

lim inf
t→∞

σ2−2α(t)
(∫∞

t

σα(x)σ ′(x)
∫∞
x

sαq(s)dsdx
)
>

2 − 2α
4

. (2.29)

For a special case of (2.12), namely, for

(
1
t
y′′(t)

)′
+
α(2 − α)

t3
y′(t) +

a

t4
y (λt)) = 0, (2.30)

with 0 < α < 1, 0 < λ < 1, and a > 0, we get that every nonoscillatory solution of (2.30) tends
to zero as t → ∞ provided that

aλ3−α

(3 − α)(1 − α)2 > 1. (2.31)

If we set a = β[(β + 1)(β + 3) + α(2 − α)]λβ, where β > 0, then one such solution of (2.12) is
y(t) = t−β.

On the other hand, if for some γ ∈ (1+α, 3−α) we have a = γ[(γ−1)(3−γ)+α(α−2)]λ−γ >
0, then (2.31) is violated and (2.12) has a nonoscillatory solution y(t) = tγ which is of degree 2.

3. Summary

In this paper, we have introduced new comparison theorems for the investigation of
properties of third-order delay trinomial equations. The comparison principle established in
Corollaries 2.9 and 2.11 enables us to deduce properties of the trinomial third-order equations
from that of binomial third-order equations. Moreover, the comparison theorems presented in
Corollaries 2.15–2.17 permit to derive properties of the trinomial third-order equations from
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the oscillation of suitable second-order equations. The results obtained are of high generality,
are easily applicable, and are illustrated on suitable examples.
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A discrete equation Δy(n) = β(n)[y(n − j) − y(n − k)] with two integer delays k and j, k > j ≥ 0
is considered for n → ∞. We assume β : Z

∞
n0−k → (0,∞), where Z

∞
n0

= {n0, n0 + 1, . . .}, n0 ∈ N and
n ∈ Z

∞
n0

. Criteria for the existence of strictly monotone and asymptotically convergent solutions for
n → ∞ are presented in terms of inequalities for the function β. Results are sharp in the sense that
the criteria are valid even for some functions β with a behavior near the so-called critical value,
defined by the constant (k − j)−1. Among others, it is proved that, for the asymptotic convergence
of all solutions, the existence of a strictly monotone and asymptotically convergent solution is
sufficient.

1. Introduction

We use the following notation: for integers s, q, s ≤ q, we define Z
q
s := {s, s + 1, . . . , q}, where

the cases s = −∞ and q = ∞ are admitted too. Throughout this paper, using the notation Z
q
s

or another one with a pair of integers s, q, we assume s ≤ q.
In this paper we study a discrete equation with two delays

Δy(n) = β(n)
[
y
(
n − j) − y(n − k)] (1.1)

as n → ∞. Integers k and j in (1.1) satisfy the inequality k > j ≥ 0 and β : Z
∞
n0− k → R

+ :=
(0,∞), where n0 ∈ N and n ∈ Z

∞
n0

. Without loss of generality, we assume n0−k > 0 throughout
the paper (this is a technical detail, necessary for some expressions to be well defined).
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The results concern the asymptotic convergence of all solutions of (1.1). We focus on
what is called the critical case (with respect to the function β) which separates the case when
all solutions are convergent from the case when there exist divergent solutions.

Such a critical case is characterized by the constant value

β(n) ≡ βcr :=
(
k − j)−1

, n ∈ Z
∞
n0− k, (1.2)

and below we explain its meaning and importance by an analysis of the asymptotic behavior
of solutions of (1.1).

Consider (1.1) with β(n) = β0, where β0 is a positive constant; that is, we consider the
following equation:

Δy(n) = β0 ·
[
y
(
n − j) − y(n − k)]. (1.3)

Looking for a solution of (1.3) in the form y(n) = λn, λ ∈ C \ {0} using the usual procedure,
we get the characteristic equation

λk+1 − λk = β0 ·
[
λk−j − 1

]
. (1.4)

Denote its roots by λi, i = 1, . . . , k + 1. Then characteristic equation (1.4) has a root λk+1 = 1.
Related solution of (1.3) is yk+1(n) = 1. Then there exists a one-parametric family of constant
solutions of (1.3) y(n) = ck+1yk+1(n) = ck+1, where ck+1 is an arbitrary constant. Equation (1.4)
can be rewritten as

λk(λ − 1) = β0 · (λ − 1)
(
λk−j−1 + λk−j−2 + · · · + 1

)
, (1.5)

and, instead of (1.4), we can consider the following equation:

f(λ) := λk − β0 ·
(
λk−j−1 + λk−j−2 + · · · + 1

)
= 0. (1.6)

Let β0 = βcr. Then (1.6) has a root λk = 1 which is a double root of (1.4). By the theory of
linear difference equations, (1.3) has a solution yk(n) = n, linearly independent with yk+1(n).
There exists a two-parametric family of solutions of (1.3)

y(n) = ckyk(n) + ck+1yk+1(n) = ckn + ck+1, (1.7)

where ck, ck+1 are arbitrary constants. Then limn→∞y(n) = ∞ if ck /= 0. This means that
solutions with ck /= 0 are divergent.

Let β0 < βcr and k − j > 1. We define two functions of a complex variable λ

F(λ) := λk, Ψ(λ) := β0 ·
(
λk−j−1 + λk−j−2 + · · · + 1

)
, (1.8)
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and (1.6) can be written as

F(λ) −Ψ(λ) = 0. (1.9)

By Rouche’s theorem, all roots λi, i = 1, 2, . . . , k of (1.6) satisfy |λi| < 1 because, on the
boundary C of a unit circle |λ| < 1, we have

|Ψ(λ)|C = β0 ·
∣∣∣λk−j−1 + λk−j−2 + · · · + 1

∣∣∣ < 1
k − j

(
k − j) = 1 = |F(λ)|C, (1.10)

and the functions F(λ), F(λ) −Ψ(λ) have the same number of zeros in the domain |λ| < 1.
The case β0 < βcr and k − j = 1 is trivial because (1.6) turns into

λk − β0 = 0 (1.11)

and, due to inequality |λ|k = β0 < βcr = 1, has all its roots in the domain |λ| < 1.
Then the relevant solutions yi(n), i = 1, 2, . . . , k satisfy limn→∞yi(n) = 0, and the limit

of the general solution of (1.3), y(n) = limn→∞
∑k+1

i=1 ciyi(n) where ci are arbitrary constants,
is finite because

lim
n→∞

y(n) = lim
n→∞

k+1∑
i=1

ciyi(n) = ck+1. (1.12)

Let β0 > βcr. Since f(1) = 1 − β0 · (k − j) < 0 and f(+∞) = +∞, there exists a root
λ = λ∗ > 1 of (1.6) and a solution y∗(n) = (λ∗)

n of (1.3) satisfying limn→∞y∗(n) = ∞. This
means that solution y∗(n) is divergent.

Gathering all the cases considered, we have the following:

(i) if 0 < β0 < βcr, then all solutions of (1.3) have a finite limit as n → ∞,

(ii) if β0 ≥ βcr, then there exists a divergent solution of (1.3) when n → ∞.

The above analysis is not applicable in the case of a nonconstant function β(n) in (1.1).
To overcome some difficulties, the method of auxiliary inequalities is applied to investigate
(1.1). From our results it follows that, for example, all solutions of (1.1) have a finite limit for
n → ∞ (or, in accordance with the below definition, are asymptotically convergent) if there
exists a p > 1 such that the inequality

β(n) ≤ 1
k − j −

p
(
k + j + 1

)
2n

(
k − j) (1.13)

holds for all n ∈ Z
∞
n0−k, where n0 is a sufficiently large natural number. The limit of the right-

hand side of (1.13) as n → ∞ equals the critical value βcr:

lim
n→∞

(
1

k − j −
p
(
k + j + 1

)
2n

(
k − j)

)
=

1
k − j = βcr. (1.14)
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It means that the function β(n) in (1.1) can be sufficiently close to the critical value βcr but
such that all solutions of (1.1) are convergent as n → ∞.

The proofs of the results are based on comparing the solutions of (1.1) with those of an
auxiliary inequality that formally copies (1.1). First, we prove that, under certain conditions,
(1.1) has an increasing and convergent solution y = y(n) (i.e., there exists a finite limit
limn→∞y(n)). Then we extend this statement to all the solutions of (1.1). It is an interesting
fact that, in the general case, the asymptotic convergence of all solutions is characterized by
the existence of a strictly increasing and bounded solution.

The problem concerning the asymptotic convergence of solutions in the continuous
case, that is, in the case of delayed differential equations or other classes of equations, is
a classical one and has attracted much attention recently. The problem of the asymptotic
convergence of solutions of discrete and difference equations with delay has not yet received
much attention. We mention some papers from both of these fields (in most of them,
equations and systems with a structure similar to the discrete equation (1.1) are considered).

Arino and Pituk [1], for example, investigate linear and nonlinear perturbations of
a linear autonomous functional-differential equation which has infinitely many equilibria.
Bereketoğlu and Karakoç [2] derive sufficient conditions for the asymptotic constancy
and estimates of the limits of solutions for an impulsive system, and Györi et al. give
sufficient conditions for the convergence of solutions of a nonhomogeneous linear system
of impulsive delay differential equations and a limit formula in [3]. Bereketoğlu and Pituk
[4] give sufficient conditions for the asymptotic constancy of solutions of nonhomogeneous
linear delay differential equations with unbounded delay. The limits of the solutions can be
computed in terms of the initial conditions and a special matrix solution of the corresponding
adjoint equation. In [5] Diblı́k studies the scalar equation under the assumption that every
constant is its solution. Criteria and sufficient conditions for the convergence of solutions
are found. The paper by Diblı́k and Růžičková [6] deals with the asymptotic behavior of a
first-order linear homogeneous differential equation with double delay. The convergence of
solutions of the delay Volterra equation in the critical case is studied by Messina et al. in [7].
Berezansky and Braverman study a behavior of solutions of a food-limited population model
with time delay in [8].

Bereketoğlu and Huseynov [9] give sufficient conditions for the asymptotic constancy
of the solutions of a system of linear difference equations with delays. The limits of the
solutions, as t → ∞, can be computed in terms of the initial function and a special matrix
solution of the corresponding adjoint equation. Dehghan and Douraki [10] study the global
behavior of a certain difference equation and show, for example, that zero is always an
equilibrium point which satisfies a necessary and suffient condition for its local asymptotic
stability. Györi and Horváth [11] study a system of linear delay difference equations such
that every solution has a finite limit at infinity. The stability of difference equations is studied
intensively in papers by Stević [12, 13]. In [12], for example, he proves the global asymptotic
stability of a class of difference equations. Baštinec and Diblı́k [14] study a class of positive
and vanishing at infinity solutions of a linear difference equation with delay. Nonoscillatory
solutions of second-order difference equations of the Poincaré type are investigated by
Medina and Pituk in [15].

Comparing the known investigations with the results presented, we can see that our
results can be applied to the critical case giving strong sufficient conditions of asymptotic
convergence of solutions for this case. Nevertheless, we are not concerned with computing
the limits of the solutions as n → ∞.
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The paper is organized as follows. In Section 2 auxiliary results are collected, an
auxiliary inequality is studied, and the relationship of its solutions with the solutions of (1.1)
is derived. The existence of a strictly increasing and convergent solution of (1.1) is established
in Section 3. Section 4 contains results concerning the convergence of all solutions of (1.1). An
example illustrating the sharpness of the results derived is given as well.

Throughout the paper we adopt the customary notation
∑k

i=k+s B(i) = 0, where k is an
integer, s is a positive integer, and B denotes the function under consideration regardless of
whether it is defined for the arguments indicated or not.

2. Auxiliary Results

Let C := C(Z0
−k,R) be the space of discrete functions mapping the discrete interval Z

0
−k into R.

Let v ∈ Z
∞
n0

be given. The function y : Z
∞
v−k → R is said to be a solution of (1.1) on Z

∞
v−k if it

satisfies (1.1) for every n ∈ Z
∞
v . A solution y of (1.1) on Z

∞
v−k is asymptotically convergent if the

limit limn→∞y(n) exists and is finite. For a given v ∈ Z
∞
n0

and ϕ ∈ C, we say that y = y(v,ϕ) is
a solution of (1.1) defined by the initial conditions (v, ϕ) if y(v,ϕ) is a solution of (1.1) on Z

∞
v−k

and y(v,ϕ)(v +m) = ϕ(m) for m ∈ Z
0
−k.

2.1. Auxiliary Inequality

The auxiliary inequality

Δω(n) ≥ β(n)[ω(n − j) −ω(n − k)] (2.1)

will serve as a helpful tool in the analysis of (1.1). Let v ∈ Z
∞
n0

. The function ω : Z
∞
v−k → R is

said to be a solution of (2.1) on Z
∞
v−k if ω satisfies inequality (2.1) for n ∈ Z

∞
v . A solution ω of

(2.1) on Z
∞
v−k is asymptotically convergent if the limit limn→∞ω(n) exists and is finite.

We give some properties of solutions of inequalities of the type (2.1), which will be
utilized later on. We will also compare the solutions of (1.1) with the solutions of inequality
(2.1).

Lemma 2.1. Let ϕ ∈ C be strictly increasing (nondecreasing, strictly decreasing, nonincreasing) on
Z

0
−k. Then the corresponding solution y(n∗,ϕ)(n) of (1.1) with n∗ ∈ Z

∞
n0

is strictly increasing (non-
decreasing, strictly decreasing, nonincreasing) on Z

∞
n∗− k too.

If ϕ is strictly increasing (nondecreasing) and ω : Z
∞
n0−k → R is a solution of inequality (2.1)

with ω(n0 +m) = ϕ(m),m ∈ Z
n0
n0−k, then ω is strictly increasing (nondecreasing) on Z

∞
n0−k.

Proof. This follows directly from (1.1), inequality (2.1), and from the properties β(n) > 0,
n ∈ Z

∞
n0−k, k > j ≥ 0.

Theorem 2.2. Let ω(n) be a solution of inequality (2.1) on Z
∞
n0−k. Then there exists a solution y(n)

of (1.1) on Z
∞
n0−k such that the inequality

y(n) ≤ ω(n) (2.2)
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holds on Z
∞
n0−k. In particular, a solution y(n0, φ) of (1.1) with φ ∈ C defined by the equation

φ(m) := ω(n0 +m), m ∈ Z
0
−k (2.3)

is such a solution.

Proof. Let ω(n) be a solution of inequality (2.1) on Z
∞
n0−k. We will show that the solution

y(n) := y(n0,φ)(n) of (1.1) satisfies inequality (2.2), that is,

y(n0,φ)(n) ≤ ω(n) (2.4)

on Z
∞
n0−k. Let W : Z

∞
n0−k → R be defined by W(n) = ω(n) − y(n). Then W = 0 on Z

n0
n0−k, and,

in addition, W is a solution of (2.1) on Z
∞
n0−k. Lemma 2.1 implies that W is nondecreasing.

Consequently, ω(n) − y(n) ≥ ω(n0) − y(n0) = 0 for all n ≥ n0.

2.2. Comparison Lemma

Now we consider an inequality of the type (2.1)

Δω∗(n) ≥ β1(n)
[
ω∗

(
n − j) −ω∗(n − k)], (2.5)

where β1 : Z
∞
n0−k → R

+ is a discrete function satisfying β1(n) ≥ β(n) on Z
∞
n0− k. The following

comparison lemma holds.

Lemma 2.3. Let ω∗ : Z
∞
n0−k → R

+ be a nondecreasing positive solution of inequality (2.5) on Z
∞
n0−k.

Then ω∗ is a solution of inequality (2.1) on Z
∞
n0−k too.

Proof. Let ω∗ be a nondecreasing solution of (2.5) on Z
∞
n0−k. We have

ω∗
(
n − j) −ω∗(n − k) ≥ 0 (2.6)

because n − k < n − j. Then

Δω∗(n) ≥ β1(n)
[
ω∗

(
n − j) −ω∗(n − k)] ≥ β(n)[ω∗(n − j) −ω∗(n − k)] (2.7)

on Z
∞
n0

. Consequently, the function ω := ω∗ solves inequality (2.1) on Z
∞
n0

, too.

2.3. A Solution of Inequality (2.1)

We will construct a solution of inequality (2.1). In the following lemma, we obtain a solution
of inequality (2.1) in the form of a sum. This auxiliary result will help us derive sufficient
conditions for the existence of a strictly increasing and asymptotically convergent solution of
(1.1) (see Theorem 3.2 below).
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Lemma 2.4. Let there exist a discrete function ε : Z
∞
n0−k → R

+ such that

ε(n + 1) ≥
n−j∑

i=n−k+1

β(i − 1)ε(i) (2.8)

on Z
∞
n0
. Then there exists a solution ω(n) = ωε(n) of inequality (2.1) defined on Z

∞
n0−k having the

form

ωε(n) :=
n∑

i=n0−k+1

β(i − 1)ε(i). (2.9)

Proof. For n ∈ Z
∞
n0

, we get

Δωε(n) = ωε(n + 1) −ωε(n)

=
n+1∑

i=n0−k+1

β(i − 1)ε(i) −
n∑

i=n0−k+1

β(i − 1)ε(i)

= β(n)ε(n + 1),

ωε

(
n − j) −ωε(n − k) =

n−j∑
i=n0−k+1

β(i − 1)ε(i) −
n−k∑

i=n0−k+1

β(i − 1)ε(i)

=
n−j∑

i=n−k+1

β(i − 1)ε(i).

(2.10)

We substitute ωε for ω in (2.1). Using (2.10), we get

β(n)ε(n + 1) ≥ β(n)
n−j∑

n−k+1

β(i − 1)ε(i). (2.11)

This inequality will be satisfied if inequality (2.8) holds. Indeed, reducing the last inequality
by β(n), we obtain

ε(n + 1) ≥
n−j∑

n−k+1

β(i − 1)ε(i), (2.12)

which is inequality (2.8).
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2.4. Decomposition of a Function into the Difference of
Two Strictly Increasing Functions

It is well known that every absolutely continuous function is representable as the difference of
two increasing absolutely continuous functions [16, page 318]. We will need a simple discrete
analogue of this result.

Lemma 2.5. Every function ϕ ∈ C can be decomposed into the difference of two strictly increasing
functions ϕj ∈ C, j = 1, 2, that is,

ϕ(n) = ϕ1(n) − ϕ2(n), n ∈ Z
0
−k. (2.13)

Proof. Let constants Mn > 0, n ∈ Z
0
−k be such that inequalities

Mn+1 > Mn + max
{

0, ϕ(n) − ϕ(n + 1)
}

(2.14)

are valid for n ∈ Z
−1
−k. We set

ϕ1(n) := ϕ(n) +Mn, n ∈ Z
0
−k,

ϕ2(n) :=Mn, n ∈ Z
0
−k.

(2.15)

It is obvious that (2.13) holds. Now we verify that both functions ϕj , j = 1, 2 are strictly
increasing. The first one should satisfy ϕ1(n + 1) > ϕ1(n) for n ∈ Z

−1
−k, which means that

ϕ(n + 1) +Mn+1 > ϕ(n) +Mn (2.16)

or

Mn+1 > Mn + ϕ(n) − ϕ(n + 1). (2.17)

We conclude that the last inequality holds because, due to (2.14), we have

Mn+1 > Mn + max
{

0, ϕ(n) − ϕ(n + 1)
} ≥Mn + ϕ(n) − ϕ(n + 1). (2.18)

The inequality ϕ2(n + 1) > ϕ2(n) obviously holds for n ∈ Z
−1
−k due to (2.14) as well.

2.5. Auxiliary Asymptotic Decomposition

The following lemma can be proved easily by induction. The symbolO stands for the Landau
order symbol.
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Lemma 2.6. For fixed r, σ ∈ R \ {0}, the asymptotic representation

(n − r)σ = nσ
[

1 − σr
n

+O
(

1
n2

)]
(2.19)

holds for n → ∞.

3. Convergent Solutions of (1.1)

This part deals with the problem of detecting the existence of asymptotically convergent
solutions. The results shown below provide sufficient conditions for the existence of
an asymptotically convergent solution of (1.1). First we present two obvious statements
concerning asymptotic convergence. From Lemma 2.1 and Theorem 2.2, we immediately get
the following.

Theorem 3.1. Let ω(n) be a strictly increasing and bounded solution of (2.1) on Z
∞
n0−k. Then there

exists a strictly increasing and asymptotically convergent solution y(n) of (1.1) on Z
∞
n0−k.

From Lemma 2.1, Theorem 2.2, and Lemma 2.4, we get the following.

Theorem 3.2. Let there exist a function ε : Z
∞
n0−k → R

+ satisfying

∞∑
i=n0−k+1

β(i − 1)ε(i) <∞ (3.1)

and inequality (2.8) on Z
∞
n0
. Then the initial function

ϕ(n) =
n0+n∑

i=n0−k+1

β(i − 1)ε(i), n ∈ Z
0
−k (3.2)

defines a strictly increasing and asymptotically convergent solution y(n0,ϕ)(n) of (1.1) on Z
∞
n0−k

satisfying the inequality

y(n) ≤
n∑

i=n0−k+1

β(i − 1)ε(i) (3.3)

on Z
∞
n0
.

Assuming that the coefficient β(n) in (1.1) can be estimated by a suitable function, we
can prove that (1.1) has a convergent solution.

Theorem 3.3. Let there exist a p > 1 such that the inequality

β(n) ≤ 1
k − j −

p
(
k + j + 1

)
2n

(
k − j) (3.4)
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holds for all n ∈ Z
∞
n0−k. Then there exists a strictly increasing and asymptotically convergent solution

y(n) of (1.1) as n → ∞.

Proof. In the proof, we assume (without loss of generality) that n0 is sufficiently large for
asymptotic computations to be valid. Let us verify that inequality (2.8) has a solution ε such
that

∞∑
i=n0−k+1

β(i − 1)ε(i) <∞. (3.5)

We put

β(n) = β∗(n) :=
1

k − j −
p∗

2n
, ε(n) :=

1
nα

(3.6)

in inequality (2.8), where p∗ > 0 and α > 1 are constants. Then, for the right-hand side R(n)
of (2.8), we have

R(n) =
n−j∑

i=n−k+1

[
1

k − j −
p∗

2(i − 1)

]
1
iα

=
1

k − j
n−j∑

i=n−k+1

1
iα
− p

∗

2

n−j∑
i=n−k+1

1
(i − 1)iα

=
1

k − j

[
1

(n − k + 1)α
+

1
(n − k + 2)α

+ · · · + 1(
n − j)α

]

− p
∗

2

[
1

(n − k)(n − k + 1)α
+

1
(n − k + 1)(n − k + 2)α

+ · · · + 1(
n − j − 1

)(
n − j)α

]
.

(3.7)

We asymptotically decompose R(n) as n → ∞ using decomposition formula (2.19) in
Lemma 2.6. We apply this formula to each term in the first square bracket with σ = −α and
with r = k − 1 for the first term, r = k − 2 for the second term, and so forth, and, finally, r = j
for the last term. To estimate the terms in the second square bracket, we need only the first
terms of the decomposition and the order of accuracy, which can be computed easily without
using Lemma 2.6. We get

R(n) = 1(
k − j)nα

[
1 +

α(k − 1)
n

+ 1 +
α(k − 2)

n
+ · · · + 1 +

αj

n
+O

(
1
n2

)]

− p∗

2nα+1

[
1 + 1 + · · · + 1 +O

(
1
n

)]
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=
1(

k − j)nα+1

[(
k − j)n + α(k − 1) + α(k − 2) + · · · + αj +O

(
1
n

)]

− p∗

2nα+1

[(
k − j) +O

(
1
n

)]

=
1
nα

+
α(

k − j)nα+1

(
k + j − 1

)(
k − j)

2
− p∗

2nα+1

(
k − j) +O

(
1

nα+2

)
,

(3.8)

and, finally,

R(n) = 1
nα

+
α

2nα+1

(
k + j − 1

) − p∗

2nα+1

(
k − j) +O

(
1

nα+2

)
. (3.9)

A similar decomposition of the left-hand side L(n) = ε(n + 1) = (n + 1)−α in inequality (2.8)
leads to

L(n) ≡ 1
(n + 1)α

=
1
nα

[
1 − α

n
+O

(
1
n2

)]
=

1
nα
− α

nα+1
+O

(
1

nα+2

)
(3.10)

(we use decomposition formula (2.19) in Lemma 2.6 with σ = −α and r = −1).
Comparing L(n) and R(n), we see that, for L(n) ≥ R(n), it is necessary to match the

coefficients of the terms n−α−1 because the coefficients of the terms n−α are equal. It means that
we need the inequality

−α > α
(
k + j − 1

)
2

− p
∗

2
(
k − j). (3.11)

Simplifying this inequality, we get

p∗

2
(
k − j) > α +

α
(
k + j − 1

)
2

,

p∗
(
k − j) > α(k + j + 1

)
,

(3.12)

and, finally,

p∗ >
α
(
k + j + 1

)
k − j . (3.13)

We set

p∗ := p
k + j + 1
k − j , (3.14)
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where p = const. Then the previous inequality holds for p > α, that is, for p > 1. Consequently,
the function β∗ defined by (3.6) has the form

β∗(n) =
1

k − j −
p
(
k + j + 1

)
2
(
k − j)n (3.15)

with p > 1, and, for the function ωε defined by formula (2.9), we have

ωε(n) =
n∑

i=n0−k+1

(
1

k − j −
p
(
k + j + 1

)
2
(
k − j)(i − 1)

)
1
iα
. (3.16)

Functionωε(n) is a positive solution of inequality (2.1), and, moreover, it is easy to verify that
ωε(∞) < ∞ since α > 1. This is a solution to every inequality of the type (2.1) if the function
β∗ fixed by formula (3.15) is changed by an arbitrary function β satisfying inequality (3.4).
This is a straightforward consequence of Lemma 2.3 if, in its formulation, we set

β1(n) := β∗(n) =
1

k − j −
p
(
k + j + 1

)
2
(
k − j)n (3.17)

with p > 1 since ω∗ ≡ ωε is the desired solution of inequality (2.5). Finally, by Theorem 3.1
with ω := ωε as defined by (3.16), we conclude that there exists a strictly increasing and
convergent solution y(n) of (1.1) as n → ∞ satisfying the inequality

y(n) < ωε(n) (3.18)

on Z
∞
n0−k.

4. Convergence of All Solutions

In this part we present results concerning the convergence of all solutions of (1.1). First we
use inequality (3.4) to state the convergence of all the solutions.

Theorem 4.1. Let there exist a p > 1 such that inequality (3.4) holds for all n ∈ Z
∞
n0−k. Then all

solutions of (1.1) are convergent as n → ∞.

Proof. First we prove that every solution defined by a monotone initial function is convergent.
We will assume that a strictly monotone initial function ϕ ∈ C is given. For definiteness,
let ϕ be strictly increasing or nondecreasing (the case when it is strictly decreasing or
nonincreasing can be considered in much the same way). By Lemma 2.1, the solution y(n0,ϕ)

is monotone; that is, it is either strictly increasing or nondecreasing. We prove that y(n0,ϕ) is
convergent.

By Theorem 3.3 there exists a strictly increasing and asymptotically convergent
solution y = Y (n) of (1.1) on Z

∞
n0−k. Without loss of generality we assume y(n0,ϕ) /≡Y (n) on
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Z
∞
n0−k since, in the opposite case, we can choose another initial function. Similarly, without

loss of generality, we can assume

ΔY (n) > 0, n ∈ Z
n0−1
n0− k. (4.1)

Hence, there is a constant γ > 0 such that

ΔY (n) − γΔy(n) > 0, n ∈ Z
n0−1
n0− k (4.2)

or

Δ
(
Y (n) − γy(n)) > 0, n ∈ Z

n0−1
n0− k, (4.3)

and the function Y (n) − γy(n) is strictly increasing on Z
n0−1
n0− k. Then Lemma 2.1 implies that

Y (n) − γy(n) is strictly increasing on Z
∞
n0− k. Thus

Y (n) − γy(n) > Y (n0) − γy(n0), n ∈ Z
∞
n0

(4.4)

or

y(n) <
1
γ
(Y (n) − Y (n0)) + y(n0), n ∈ Z

∞
n0
, (4.5)

and, consequently, y(n) is a bounded function on Z
∞
n0− k because of the boundedness of Y (n).

Obviously, in such a case, y(n) is asymptotically convergent and has a finite limit.
Summarizing the previous section, we state that every monotone solution is conver-

gent. It remains to consider a class of all nonmonotone initial functions. For the behavior of a
solution y(n0,ϕ) generated by a nonmonotone initial function ϕ ∈ C, there are two possibilities:
y(n0,ϕ) is either eventually monotone and, consequently, convergent, or y(n0,ϕ) is eventually
nonmonotone.

Now we use the statement of Lemma 2.5 that every discrete function ϕ ∈ C can be
decomposed into the difference of two strictly increasing discrete functions ϕj ∈ C, j = 1, 2.
In accordance with the previous part of the proof, every function ϕj ∈ C, j = 1, 2 defines
a strictly increasing and asymptotically convergent solution y(n0,ϕj ). Now it is clear that the
solution y(n0,ϕ) is asymptotically convergent.

We will finish the paper with two obvious results. Inequality (3.4) in Theorem 3.3 was
necessary only for the proof of the existence of an asymptotically convergent solution. If we
assume the existence of an asymptotically convergent solution rather than inequality (3.4),
we can formulate the following result, the proof of which is an elementary modification of
the proof of Theorem 4.1.

Theorem 4.2. If (1.1) has a strictly monotone and asymptotically convergent solution on Z
∞
n0− k, then

all the solutions of (1.1) defined on Z
∞
n0−k are asymptotically convergent.
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Combining the statements of Theorems 2.2, 3.1, and 4.2, we get a series of equivalent
statements below.

Theorem 4.3. The following three statements are equivalent.

(a) Equation (1.1) has a strictly monotone and asymptotically convergent solution on Z
∞
n0− k.

(b) All solutions of (1.1) defined on Z
∞
n0− k are asymptotically convergent.

(c) Inequality (2.1) has a strictly monotone and asymptotically convergent solution on Z
∞
n0−k.

Example 4.4. We will demonstrate the sharpness of the criterion (3.4) by the following
example. Let k = 1, j = 0, β(n) = 1 − 1/n, n ∈ Z

∞
n0−1, n0 = 2 in (1.1); that is, we consider

the equation

Δy(n) =
(

1 − 1
n

)[
y(n) − y(n − 1)

]
. (4.6)

By Theorems 3.3 and 4.3, all solutions are asymptotically convergent if

β(n) ≤ 1
k − j −

p
(
k + j + 1

)
2n

(
k − j) = 1 − p

n
, (4.7)

where a constant p > 1. In our case the inequality (4.7) does not hold since inequality

β(n) = 1 − 1
n
≤ 1 − p

n
(4.8)

is valid only for p ≤ 1. Inequality (4.7) is sharp because there exists a solution y = y∗(n) of
(4.6) having the form of an nth partial sum of harmonic series, that is,

y∗(n) =
n∑
i=1

1
i

(4.9)

with the obvious property limn→∞y∗(n) = +∞. Then (by Theorem 4.3), all strictly monotone
(increasing or decreasing) solutions of (4.6) tend to infinity.
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We investigate the existence of solutions for a class of second-order q-difference inclusions with
nonseparated boundary conditions. By using suitable fixed-point theorems, we study the cases
when the right-hand side of the inclusions has convex as well as nonconvex values.

1. Introduction

The discretization of the ordinary differential equations is an important and necessary step
towards finding their numerical solutions. Instead of the standard discretization based on the
arithmetic progression, one can use an equally efficient q-discretization related to geometric
progression. This alternative method leads to q-difference equations, which in the limit q →
1 correspond to the classical differential equations. q-difference equations are found to be
quite useful in the theory of quantum groups [1]. For historical notes and development of
the subject, we refer the reader to [2, 3] while some recent results on q-difference equations
can be found in [4–6]. However, the theory of boundary value problems for nonlinear q-
difference equations is still in the initial stages, and many aspects of this theory need to be
explored.

Differential inclusions arise in the mathematical modelling of certain problems in
economics, optimal control, stochastic analysis, and so forth and are widely studied by
many authors; see [7–13] and the references therein. For some works concerning difference
inclusions and dynamic inclusions on time scales, we refer the reader to the papers [14–
17].



2 Abstract and Applied Analysis

In this paper, we study the existence of solutions for second-order q-difference inclu-
sions with nonseparated boundary conditions given by

D2
qu(t) ∈ F(t, u(t)), 0 ≤ t ≤ T, (1.1)

u(0) = ηu(T), Dqu(0) = ηDqu(T), (1.2)

where F : [0, T] × � → P(�) is a compact valued multivalued map, P(�) is the family of all
subsets of �, T is a fixed constant, and η/= 1 is a fixed real number.

The aim of our paper is to establish some existence results for the Problems (1.1)-(1.2),
when the right-hand side is convex as well as nonconvex valued. First of all, an integral
operator is found by applying the tools of q-difference calculus, which plays a pivotal role
to convert the given boundary value problem to a fixed-point problem. Our approach is
simpler as it does not involve the typical series solution form of q-difference equations. The
first result relies on the nonlinear alternative of Leray-Schauder type. In the second result,
we will combine the nonlinear alternative of Leray-Schauder type for single-valued maps
with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued
maps with nonempty closed and decomposable values, while in the third result, we will use
the fixed-point theorem for generalized contraction multivalued maps due to Wegrzyk. The
methods used are standard; however, their exposition in the framework of Problems (1.1)-
(1.2) is new.

The paper is organized as follows: in Section 2, we recall some preliminary facts that
we need in the sequel, and we prove our main results in Section 3.

2. Preliminaries

In this section, we introduce notation, definitions, and preliminary facts which we need for
the forthcoming analysis.

2.1. q-Calculus

Let us recall some basic concepts of q-calculus [1–3].
For 0 < q < 1, we define the q-derivative of a real-valued function f as

Dqf(t) =
f(t) − f(qt)(

1 − q)t , Dqf(0) = lim
t→ 0

Dqf(t). (2.1)

The higher-order q-derivatives are given by

D0
qf(t) = f(t), Dn

qf(t) = DqD
n−1
q f(t), n ∈ �. (2.2)

The q-integral of a function f defined in the interval [a, b] is given by

∫x
a

f(t)dqt :=
∞∑
n=0
x
(
1 − q)qnf(xqn) − af(qna), x ∈ [a, b], (2.3)
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and for a = 0, we denote

Iqf(x) =
∫x

0
f(t)dqt =

∞∑
n=0
x
(
1 − q)qnf(xqn), (2.4)

provided the series converges. If a ∈ [0, b] and f is defined in the interval [0, b], then

∫b
a

f(t)dqt =
∫b

0
f(t)dqt −

∫a
0
f(t)dqt. (2.5)

Similarly, we have

I0
qf(t) = f(t), Inq f(t) = IqI

n−1
q f(t), n ∈ �. (2.6)

Observe that

DqIqf(x) = f(x), (2.7)

and if f is continuous at x = 0, then

IqDqf(x) = f(x) − f(0). (2.8)

In q-calculus, the integration by parts formula is

∫x
0
f(t)Dqg(t)dqt =

[
f(t)g(t)

]x
0 −
∫x

0
Dqf(t)g

(
qt
)
dqt. (2.9)

2.2. Multivalued Analysis

Let us recall some basic definitions on multivalued maps [18, 19].
Let X denote a normed space with the norm | · |. A multivalued map G : X → P(X)

is convex (closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded on bounded
sets if G(B) = ∪x∈BG(x) is bounded in X for all bounded sets B in X (i.e., supx∈B{sup{|y| :
y ∈ G(x)}} < ∞). G is called upper semicontinuous (u.s.c.) on X if for each x0 ∈ X, the set
G(x0) is a nonempty closed subset of X, and if for each open set N of X containing G(x0),
there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N. G is said to be completely
continuous if G(B) is relatively compact for every bounded set B inX. If the multivalued map
G is completely continuous with nonempty compact values, then G is u.s.c. if and only if G
has a closed graph (i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed-
point if there is x ∈ X such that x ∈ G(x). The fixed-point set of the multivalued operator G
will be denoted by FixG.

For more details on multivalued maps, see the books of Aubin and Cellina [20], Aubin
and Frankowska [21], Deimling [18], and Hu and Papageorgiou [19].
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Let C([0, T],�) denote the Banach space of all continuous functions from [0, T] into �
with the norm

‖u‖∞ = sup{|u(t)| : t ∈ [0, T]}. (2.10)

Let L1([0, T],�) be the Banach space of measurable functions u : [0, T] → � which are
Lebesgue integrable and normed by

‖u‖L1 =
∫T

0
|u(t)|dt, ∀u ∈ L1([0, T],�). (2.11)

Definition 2.1. A multivalued map G : [0, T] → P(�) with nonempty compact convex values
is said to be measurable if for any x ∈ �, the function

t �−→ d(x, F(t)) = inf{|x − z| : z ∈ F(t)} (2.12)

is measurable.

Definition 2.2. A multivalued map F : [0, T] × � → P(�) is said to be Carathéodory if

(i) t �→ F(t, x) is measurable for each x ∈ �,

(ii) x �→ F(t, x) is upper semicontinuous for almost all t ∈ [0, T].

Further a Carathéodory function F is called L1-Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0, T],�+ ) such that

‖F(t, x)‖ = sup{|v| : v ∈ F(t, x)} ≤ ϕα(t) (2.13)

for all ‖x‖∞ ≤ α and for a.e. t ∈ [0, T].

Let E be a Banach space, letX be a nonempty closed subset of E, and letG : X → P(E)
be a multivalued operator with nonempty closed values. G is lower semicontinuous (l.s.c.) if
the set {x ∈ X : G(x)∩B /= ∅} is open for any open set B in E. LetA be a subset of [0, T]×�. A is
L⊗Bmeasurable if A belongs to the σ-algebra generated by all sets of the form J×D, where
J is Lebesgue measurable in [0, T] andD is Borel measurable in �. A subset A of L1([0, T],�)
is decomposable if for all u, v ∈ A and J ⊂ [0, T] measurable, the function uχJ + vχJ−J ∈ A,
where χJ stands for the characteristic function of J.

Definition 2.3. If F : [0, T] × � → P(�) is a multivalued map with compact values and
u(·) ∈ C([0,T],�), then F(·, ·) is of lower semicontinuous type if

SF(u) =
{
w ∈ L1([0, T],�) : w(t) ∈ F(t, u(t)) for a.e. t ∈ [0, T]

}
(2.14)

is lower semicontinuous with closed and decomposable values.
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Let (X, d) be a metric space associated with the norm | · |. The Pompeiu-Hausdorff
distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a, B) : a ∈ A}, (2.15)

where d(x, B) = infy∈Bd(x, y).

Definition 2.4. A function l : �+ → �+ is said to be a strict comparison function (see [25]) if it
is continuous strictly increasing and

∑∞
n=1 l

n(t) <∞, for each t > 0.

Definition 2.5. A multivalued operator N on X with nonempty values in X is called

(a) γ -Lipschitz if and only if there exists γ > 0 such that

dH
(
N(x),N

(
y
)) ≤ γd(x, y), for each x, y ∈ X, (2.16)

(b) a contraction if and only if it is γ -Lipschitz with γ < 1,

(c) a generalized contraction if and only if there is a strict comparison function l : �+ →
�+ such that

dH
(
N(x),N

(
y
)) ≤ l(d(x, y)), for each x, y ∈ X. (2.17)

The following lemmas will be used in the sequel.

Lemma 2.6 (see [22]). Let X be a Banach space. Let F : [0, T]×X → P(X) be an L1-Carathéodory
multivalued map with SF /= ∅, and let Γ be a linear continuous mapping from L1([0, T], X) to
C([0, T], X), then the operator

Γ ◦ SF : C([0, T], X) −→ P(C([0, T], X)) (2.18)

defined by (Γ ◦ SF)(x) = Γ(SF(x)) has compact convex values and has a closed graph operator in
C([0, T], X) × C([0, T], X).

In passing, we remark that if dimX < ∞, then SF(x)/= ∅ for any x(·) ∈ C([0, T], X) with F(·, ·)
as in Lemma 2.6.

Lemma 2.7 (nonlinear alternative for Kakutani maps [23]). Let E be a Banach space, C, a closed
convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F : U → Pc,cv(C) is an upper
semicontinuous compact map; here, Pc,cv(C) denotes the family of nonempty, compact convex subsets
of C, then either

(i) F has a fixed-point inU,

(ii) or there is a u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF(u).

Lemma 2.8 (see [24]). Let Y be a separable metric space, and let N : Y → P(L1([0, T],�)) be a
lower semicontinuous multivalued map with closed decomposable values, thenN(·) has a continuous
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selection; that is, there exists a continuous mapping (single-valued) g : Y → L1([0, T],�) such that
g(y) ∈ N(y) for every y ∈ Y.

Lemma 2.9 (Wegrzyk’s fixed-point theorem [25, 26]). Let (X, d) be a complete metric space. If
N : X → P(X) is a generalized contraction with nonempty closed values, then FixN/= ∅.

Lemma 2.10 (Covitz and Nadler’s fixed-point theorem [27]). Let (X, d) be a complete metric
space. If N : X → P(X) is a multivalued contraction with nonempty closed values, then N has a
fixed-point z ∈ X such that z ∈ N(z), that is, FixN/= ∅.

3. Main Results

In this section, we are concerned with the existence of solutions for the Problems (1.1)-(1.2)
when the right-hand side has convex as well as nonconvex values. Initially, we assume that
F is a compact and convex valued multivalued map.

To define the solution for the Problems (1.1)-(1.2), we need the following result.

Lemma 3.1. Suppose that σ : [0, T] → � is continuous, then the following problem

D2
qu(t) = σ(t), a.e. t ∈ [0, T],

u(0) = ηu(T), Dqu(0) = ηDqu(T)
(3.1)

has a unique solution

u(t) =
∫T

0
G
(
t, qs
)
σ(s)dqs, (3.2)

where G(t, qs) is the Green’s function given by

G
(
t, qs
)
=

1(
η − 1

)2

⎧⎪⎨
⎪⎩
η
(
η − 1

)(
qs − t) + ηT, if 0 ≤ t < s ≤ T,

(
η − 1

)(
qs − t) + ηT, if 0 ≤ s ≤ t ≤ T.

(3.3)

Proof. In view of (2.7) and (2.9), the solution of D2
qu = σ(t) can be written as

u(t) =
∫ t

0

(
t − qs)σ(s)dqs + a1t + a2, (3.4)
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where a1, a2 are arbitrary constants. Using the boundary conditions (1.2) and (3.4), we find
that

a1 =
−η(
η − 1

)
∫T

0
σ(s)dqs,

a2 =
η2T(
η − 1

)2

∫T
0
σ(s)dqs −

η(
η − 1

)
∫T

0

(
T − qs)σ(s)dqs.

(3.5)

Substituting the values of a1 and a2 in (3.4), we obtain (3.2).

Let us denote

G1 = max
t,s∈[0,T]

∣∣G(t, qs)∣∣. (3.6)

Definition 3.2. A function u ∈ C([0, T],�) is said to be a solution of (1.1)-(1.2) if there exists a
function v ∈ L1([0, T],�) with v(t) ∈ F(t, x(t)) a.e. t ∈ [0, T] and

u(t) =
∫T

0
G
(
t, qs
)
v(s)dqs, (3.7)

where G(t, qs) is given by (3.3).

Theorem 3.3. Suppose that

(H1) the map F : [0, T]×� → P(�) has nonempty compact convex values and is Carathéodory,

(H2) there exist a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function
p ∈ L1([0, T],�+) such that

‖F(t, u)‖P := sup{|v| : v ∈ F(t, u)} ≤ p(t)ψ(‖u‖∞) (3.8)

for each (t, u) ∈ [0, T] × �,
(H3) there exists a numberM > 0 such that

M

G1ψ(M)
∥∥p∥∥

L1

> 1, (3.9)

then the BVP (1.1)-(1.2) has at least one solution.

Proof. In view of Definition 3.2, the existence of solutions to (1.1)-(1.2) is equivalent to the
existence of solutions to the integral inclusion

u(t) ∈
∫T

0
G
(
t, qs
)
F(s, u(s))dqs, t ∈ [0, T]. (3.10)
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Let us introduce the operator

N(u) :=

{
h ∈ C([0, T],�) : h(t) =

∫T
0
G
(
t, qs
)
v(s)dqs, v ∈ SF,u

}
. (3.11)

We will show that N satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof will be given in several steps.

Step 1 (N(u) is convex for each u ∈ C([0, T],�)). Indeed, if h1, h2 belong to N(u), then there
exist v1, v2 ∈ SF,u such that for each t ∈ [0, T], we have

hi(t) =
∫T

0
G
(
t, qs
)
vi(s)dqs, (i = 1, 2). (3.12)

Let 0 ≤ d ≤ 1, then, for each t ∈ [0, T], we have

(dh1 + (1 − d)h2)(t) =
∫T

0
G
(
t, qs
)
[dv1(s) + (1 − d)v2(s)]dqs. (3.13)

Since SF,u is convex (because F has convex values); therefore,

dh1 + (1 − d)h2 ∈N(u). (3.14)

Step 2 (N maps bounded sets into bounded sets in C([0, T],�)). Let Bm = {u ∈ C([0, T],�) :
‖u‖∞ ≤ m,m > 0} be a bounded set in C([0, T],�) and u ∈ Bm, then for each h ∈ N(u), there
exists v ∈ SF,u such that

h(t) =
∫T

0
G
(
t, qs
)
v(s)dqs. (3.15)

Then, in view of (H2), we have

|h(t)| ≤
∫T

0

∣∣G(t, qs)∣∣|v(s)|dqs

≤ G1

∫T
0
p(s)ψ(‖u‖∞)dqs

≤ G1ψ(m)
∫T

0
p(s)dqs.

(3.16)

Thus,

‖h‖∞ ≤ G1ψ(m)
∥∥p∥∥

L1 . (3.17)
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Step 3 (N maps bounded sets into equicontinuous sets of C([0, T],�)). Let r1, r2 ∈ [0,
T], r1 < r2 and Bm be a bounded set of C([0, T],�) as in Step 2 and x ∈ Bm. For each
h ∈N(u)

|h(r2) − h(r1)| ≤
∫T

0
|G(r2, s) −G(r1, s)||v(s)|dqs

≤ ψ(‖u‖∞)
∫T

0
|G(r2, s) −G(r1, s)|p(s)dqs

≤ ψ(m)
∫T

0
|G(r2, s) −G(r1, s)|p(s)dqs.

(3.18)

The right-hand side tends to zero as r2 − r1 → 0. As a consequence of Steps 1 to 3 together
with the Arzelá-Ascoli Theorem, we can conclude that N : C([0, T],�) → P(C([0, T],�)) is
completely continuous.

Step 4 (N has a closed graph). Let un → u∗, hn ∈ N(un), and hn → h∗. We need to show
that h∗ ∈N(u∗). hn ∈ N(un) means that there exists vn ∈ SF,un such that, for each t ∈ [0, T],

hn(t) =
∫T

0
G
(
t, qs
)
vn(s)dqs. (3.19)

We must show that there exists h∗ ∈ SF,u∗ such that, for each t ∈ [0, T],

h∗(t) =
∫T

0
G
(
t, qs
)
v∗(s)dqs. (3.20)

Clearly, we have

‖hn − h∗‖∞ −→ 0 as n −→ ∞. (3.21)

Consider the continuous linear operator

Γ : L1([0, T],�) −→ C([0, T],�), (3.22)

defined by

v �−→ (Γv)(t) =
∫T

0
G
(
t, qs
)
v(s)dqs. (3.23)

From Lemma 2.6, it follows that Γ ◦ SF is a closed graph operator. Moreover, we have

hn(t) ∈ Γ(SF,un). (3.24)
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Since un → u∗, it follows from Lemma 2.6 that

h∗(t) =
∫T

0
G
(
t, qs
)
v∗(s)dqs (3.25)

for some v∗ ∈ SF,u∗ .

Step 5 (a priori bounds on solutions). Let u be a possible solution of the Problems (1.1)-(1.2),
then there exists v ∈ L1([0, T],�) with v ∈ SF,u such that, for each t ∈ [0, T],

u(t) =
∫T

0
G
(
t, qs
)
v(s)dqs. (3.26)

For each t ∈ [0, T], it follows by (H2) and (H3) that

|u(t)| ≤ G1

∫T
0
p(s)ψ(‖u‖∞)dqs

≤ G1ψ(‖u‖∞)
∫T

0
p(s)dqs.

(3.27)

Consequently,

‖u‖∞
G1ψ(‖u‖∞)

∥∥p∥∥L1

≤ 1. (3.28)

Then by (H3), there exists M such that ‖u‖∞ /=M.

Let

U = {u ∈ C([0, T],�) : ‖u‖∞ < M + 1}. (3.29)

The operator N : U → P(C([0, T],�)) is upper semicontinuous and completely continuous.
From the choice of U, there is no u ∈ ∂U such that u ∈ λN(u) for some λ ∈ (0, 1).
Consequently, by Lemma 2.7, it follows that N has a fixed-point u in U which is a solution of
the Problems (1.1)-(1.2). This completes the proof.

Next, we study the case where F is not necessarily convex valued. Our approach here
is based on the nonlinear alternative of Leray-Schauder type combined with the selection
theorem of Bressan and Colombo for lower semicontinuous maps with decomposable values.

Theorem 3.4. Suppose that the conditions (H2) and (H3) hold. Furthermore, it is assumed that

(H4) F : [0, T] × � → P(�) has nonempty compact values and

(a) (t, u) �→ F(t, u) is L ⊗ B measurable,
(b) u �→ F(t, u) is lower semicontinuous for a.e. t ∈ [0, T],
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(H5) for each ρ > 0, there exists ϕρ ∈ L1([0, T],�+ ) such that

‖F(t, u)‖ = sup{|v| : v ∈ F(t, u)} ≤ ϕρ(t) ∀‖u‖∞ ≤ ρ and for a.e. t ∈ [0, T]. (3.30)

then, the BVP (1.1)-(1.2) has at least one solution.

Proof. Note that (H4) and (H5) imply that F is of lower semicontinuous type. Thus, by
Lemma 2.8, there exists a continuous function f : C([0, T],�) → L1([0, T],�) such that
f(u) ∈ F(u) for all u ∈ C([0, T],�). So we consider the problem

D2
qu(t) = f(u(t)), 0 ≤ t ≤ T,

u(0) = ηu(T), Dqu(0) = ηDqu(T).
(3.31)

Clearly, if u ∈ C([0, T],�) is a solution of (3.31), then u is a solution to the Problems (1.1)-
(1.2). Transform the Problem (3.31) into a fixed-point theorem

u(t) =
(
Nu
)
(t), t ∈ [0, T], (3.32)

where

(
Nu
)
(t) =

∫T
0
G
(
t, qs
)
f(u(s))dqs, t ∈ [0, T]. (3.33)

We can easily show that N is continuous and completely continuous. The remainder of the
proof is similar to that of Theorem 3.3.

Now, we prove the existence of solutions for the Problems (1.1)-(1.2) with a
nonconvex valued right-hand side by applying Lemma 2.9 due to Wegrzyk.

Theorem 3.5. Suppose that

(H6) F : [0, T] × � → P(�) has nonempty compact values and F(·, u) is measurable for each
u ∈ �,

(H7) dH(F(t, u), F(t, u)) ≤ k(t)l(|u − u|) for almost all t ∈ [0, 1] and u, u ∈ � with k ∈
L1([0, 1],�+) and d(0, F(t, 0)) ≤ k(t) for almost all t ∈ [0, 1], where l : �+ → �+ is
strictly increasing,

then the BVP (1.1)-(1.2) has at least one solution on [0, T] if γl : �+ → �+ is a strict comparison
function, where γ = G1‖k‖L1 .
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Proof. Suppose that γl : �+ → �+ is a strict comparison function. Observe that by the
assumptions (H6) and (H7), F(·, u(·)) is measurable and has a measurable selection v(·) (see
Theorem 3.6 [28]). Also k ∈ L1([0, 1],�) and

|v(t)| ≤ d(0, F(t, 0)) +Hd(F(t, 0), F(t, u(t)))

≤ k(t) + k(t)l(|u(t)|)
≤ (1 + l(‖u‖∞))k(t).

(3.34)

Thus, the set SF,u is nonempty for each u ∈ C([0, T],�).
As before, we transform the Problems (1.1)-(1.2) into a fixed-point problem by using

the multivalued mapN given by (3.11) and show that the map N satisfies the assumptions of
Lemma 2.9. To show that the map N(u) is closed for each u ∈ C([0, T],�), let (un)n≥0 ∈ N(u)
such that un → ũ in C([0, T],�), then ũ ∈ C([0, T],�) and there exists vn ∈ SF,u such that, for
each t ∈ [0, T],

un(t) =
∫T

0
G
(
t, qs
)
vn(s)dqs. (3.35)

As F has compact values, we pass onto a subsequence to obtain that vn converges to v in
L1([0, T],�). Thus, v ∈ SF,u and for each t ∈ [0, T],

un(t) −→ ũ(t) =
∫T

0
G
(
t, qs
)
v(s)dqs. (3.36)

So, ũ ∈ N(u) and hence N(u) is closed.
Next, we show that

dH(N(u),N(u)) ≤ γl(‖u − u‖∞) for each u, u ∈ C([0, T],�). (3.37)

Let u, u ∈ C([0, T],�) and h1 ∈ N(u). Then, there exists v1(t) ∈ SF,u such that for each
t ∈ [0, T],

h1(t) =
∫T

0
G
(
t, qs
)
v1(s)dqs. (3.38)

From (H7), it follows that

dH(F(t, u(t)), F(t, u(t))) ≤ k(t)l(|u(t) − u(t)|). (3.39)

So, there exists w ∈ F(t, u(t)) such that

|v1(t) −w| ≤ k(t)l(|u(t) − u(t)|), t ∈ [0, T]. (3.40)
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Define U : [0, T] → P(�) as

U(t) = {w ∈ � : |v1(t) −w| ≤ k(t)l(|u(t) − u(t)|)}. (3.41)

Since the multivalued operator U(t) ∩ F(t, u(t)) is measurable (see Proposition 3.4 in [28]),
there exists a function v2(t) which is a measurable selection for U(t) ∩ F(t, u(t)). So, v2(t) ∈
F(t, u(t)), and for each t ∈ [0, T],

|v1(t) − v2(t)| ≤ k(t)l(|u(t) − u(t)|). (3.42)

For each t ∈ [0, T], let us define

h2(t) =
∫T

0
G
(
t, qs
)
v2(s)dqs, (3.43)

then

|h1(t) − h2(t)| ≤
∫T

0

∣∣G(t, qs)∣∣|v1(s) − v2(s)|dqs

≤ G1

∫T
0
k(s)l(‖u − u‖)dqs.

(3.44)

Thus,

‖h1 − h2‖∞ ≤ G1‖k‖L1 l(‖u − u‖∞) = γl(‖u − u‖∞). (3.45)

By an analogous argument, interchanging the roles of u and u, we obtain

dH(N(u),N(u)) ≤ G1‖k‖L1 l(‖u − u‖∞) = γl(‖u − u‖∞) (3.46)

for each u, u ∈ C([0, T],�). So, N is a generalized contraction, and thus, by Lemma 2.9, N
has a fixed-point u which is a solution to (1.1)-(1.2). This completes the proof.

Remark 3.6. We notice that Theorem 3.5 holds for several values of the function l, for example,
l(t) = ln(1+t)/χ, where χ ∈ (0, 1), l(t) = t, and so forth. Here, we emphasize that the condition
(H7) reduces to dH(F(t, u), F(t, u)) ≤ k(t)|u − u| for l(t) = t, where a contraction principle
for multivalued map due to Covitz and Nadler [27] (Lemma 2.10) is applicable under the
condition G1‖k‖L1 < 1. Thus, our result dealing with a nonconvex valued right-hand side of
(1.1) is more general, and the previous results for nonconvex valued right-hand side of the
inclusions based on Covitz and Nadler’s fixed-point result (e.g., see [8]) can be extended to
generalized contraction case.
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Remark 3.7. Our results correspond to the ones for second-order q-difference inclusions with
antiperiodic boundary conditions (u(0) = −u(T), Dqu(0) = −Dqu(T)) for η = −1. The results
for an initial value problem of second-order q-difference inclusions follow for η = 0. These
results are new in the present configuration.

Remark 3.8. In the limit q → 1, the obtained results take the form of their “continuous” (i.e.,
differential) counterparts presented in Sections 4 (ii) for λ1 = λ2 = η, μ1 = 0 = μ2 of [29].

Example 3.9. Consider a boundary value problem of second-order q-difference inclusions
given by

D2
qu(t) ∈ F(t, u(t)), 0 ≤ t ≤ 1

u(0) = −u(1), Dqu(0) = −Dqu(1),
(3.47)

where η = −1 and F : [0, 1] × � → P(�) is a multivalued map given by

(t, u) −→ F(t, u) =

[
u3

u3 + 3
+ t3 + 3,

u

u + 1
+ t + 1

]
. (3.48)

For f ∈ F, we have

∣∣f∣∣ ≤ max

(
u3

u3 + 3
+ t3 + 3,

u

u + 1
+ t + 1

)
≤ 5, u ∈ �. (3.49)

Thus,

‖F(t, u)‖P := sup
{∣∣y∣∣ : y ∈ F(t, u)} ≤ 5 = p(t)ψ(‖u‖∞), u ∈ �, (3.50)

with p(t) = 1, ψ(‖u‖∞) = 5. Further, using the condition

M

G1ψ(M)
∥∥p∥∥L1

> 1, (3.51)

we find that M > 5G2, where G2 = G1|η=−1,T=1. Clearly, all the conditions of Theorem 3.3 are
satisfied. So, the conclusion of Theorem 3.3 applies to the Problem (3.47).
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Conditions are derived of the existence of solutions of nonlinear boundary-value problems for
systems of n ordinary differential equations with constant coefficients and single delay (in the
linear part) and with a finite number of measurable delays of argument in nonlinearity: ż(t) =
Az(t − τ) + g(t) + εZ(z(hi(t), t, ε), t ∈ [a, b], assuming that these solutions satisfy the initial and
boundary conditions z(s) := ψ(s) if s /∈ [a, b], �z(·) = α ∈ �

m . The use of a delayed matrix
exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and
analytical form of sufficient conditions for the existence of solutions in a given space and, moreover,
to the construction of an iterative process for finding the solutions of such problems in a general
case when the number of boundary conditions (defined by a linear vector functional �) does not
coincide with the number of unknowns in the differential system with a single delay.

1. Introduction

First, we derive some auxiliary results concerning the theory of differential equations with
delay. Consider a system of linear differential equations with concentrated delay

ż(t) −A(t)z(h0(t)) = g(t) if t ∈ [a, b], (1.1)
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assuming that

z(s) := ψ(s) if s /∈ [a, b], (1.2)

whereA is an n×n real matrix and g is an n-dimensional real column-vector with components
in the space Lp[a, b] (where p ∈ [1,∞)) of functions summable on [a, b]; the delay h0(t) ≤ t is
a function h0 : [a, b] → � measurable on [a, b]; ψ : � \ [a, b] → �

n is a given function. Using
the denotations

(Sh0z)(t) :=

⎧⎨
⎩
z(h0(t)) if h0(t) ∈ [a, b],

θ if h0(t) /∈ [a, b],
(1.3)

ψh0(t) :=

⎧⎨
⎩
θ if h0(t) ∈ [a, b],

ψ(h0(t)) if h0(t) /∈ [a, b],
(1.4)

where θ is an n-dimensional zero column-vector and assuming t ∈ [a, b], it is possible to
rewrite (1.1), (1.2) as

(Lz)(t) := ż(t) −A(t)(Sh0z)(t) = ϕ(t), t ∈ [a, b], (1.5)

where ϕ is an n-dimensional column-vector defined by the formula

ϕ(t) := g(t) +A(t)ψh0(t) ∈ Lp[a, b]. (1.6)

We will investigate (1.5) assuming that the operator L maps a Banach space Dp[a, b] of
absolutely continuous functions z : [a, b] → �

n into a Banach space Lp[a, b] (1 ≤ p < ∞)
of functions ϕ : [a, b] → �

n summable on [a, b]; the operator Sh0 maps the space Dp[a, b]
into the space Lp[a, b]. Transformations (1.3), (1.4) make it possible to add the initial function
ψ(s), s < a to nonhomogeneity generating an additive and homogeneous operation not
depending on ψ and without the classical assumption regarding the continuous connection
of solution z(t) with the initial function ψ(t) at the point t = a.

A solution of differential system (1.5) is defined as an n-dimensional column vector-
function z ∈ Dp[a, b], absolutely continuous on [a, b], with a derivative ż ∈ Lp[a, b] satisfying
(1.5) almost everywhere on [a, b].

Such approach makes it possible to apply well-developed methods of linear functional
analysis to (1.5) with a linear and bounded operator L. It is well-known (see: [1, 2]) that a
nonhomogeneous operator equation (1.5) with delayed argument is solvable in the space
Dp[a, b] for an arbitrary right-hand side ϕ ∈ Lp[a, b] and has an n-dimensional family of
solutions (dim ker L = n) in the form

z(t) = X(t)c +
∫b
a

K(t, s)ϕ(s)ds ∀c ∈ �n , (1.7)
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where the kernel K(t, s) is an n × n Cauchy matrix defined in the square [a, b] × [a, b] being,
for every fixed s ≤ t , a solution of the matrix Cauchy problem

(LK(·, s))(t) :=
∂K(t, s)

∂t
−A(t)(Sh0K(·, s))(t) = Θ, K(s, s) = I, (1.8)

where K(t, s) ≡ Θ if a ≤ t < s ≤ b, Θ is n × n null matrix and I is n × n identity matrix.
A fundamental n × n matrix X(t) for the homogeneous (ϕ ≡ θ) equation (1.5) has the form
X(t) = K(t, a), X(a) = I [2]. Throughout the paper, we denote by Θs an s × s null matrix
if s /=n, by Θs,p an s × p null matrix, by Is an s × s identity matrix if s /=n, and by θs an s-
dimensional zero column-vector if s /=n.

A serious disadvantage of this approach, when investigating the above-formulated
problem, is the necessity to find the Cauchy matrix K(t, s) [3, 4]. It exists but, as a rule, can
only be found numerically. Therefore, it is important to find systems of differential equations
with delay such that this problem can be solved directly. Below we consider the case of a
system with so-called single delay [5]. In this case, the problem of how to construct the
Cauchy matrix is successfully solved analytically due to a delayed matrix exponential defined
below.

1.1. A Delayed Matrix Exponential

Consider a Cauchy problem for a linear nonhomogeneous differential system with constant
coefficients and with a single delay τ

ż(t) = Az(t − τ) + g(t), (1.9)

z(s) = ψ(s), if s ∈ [−τ, 0], (1.10)

with an n × n constant matrix A, g : [0,∞) → �
n , ψ : [−τ, 0] → �

n , τ > 0 and an unknown
vector-solution z : [−τ,∞) → �

n . Together with a nonhomogeneous problem (1.9), (1.10),
we consider a related homogeneous problem

ż(t) = Az(t − τ),
z(s) = ψ(s), if s ∈ [−τ, 0].

(1.11)
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Denote by eAtτ a matrix function called a delayed matrix exponential (see [5]) and
defined as

eAtτ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ if −∞ < t < −τ,
I if − τ ≤ t < 0,

I +A
t

1!
if 0 ≤ t < τ,

I +A
t

1!
+A2 (t − τ)2

2!
if τ ≤ t < 2τ,

· · ·

I +A
t

1!
+ · · · +Ak (t − (k − 1)τ)k

k!
if (k − 1)τ ≤ t < kτ,

· · · .

(1.12)

This definition can be reduced to the following expression:

eAtτ =
[t/τ]+1∑
n=0

An (t − (n − 1)τ)n

n!
, (1.13)

where [t/τ] is the greatest integer function. The delayed matrix exponential equals the unit
matrix I on [−τ, 0] and represents a fundamental matrix of a homogeneous system with single
delay. Thus, the delayed matrix exponential solves the Cauchy problem for a homogeneous
system (1.11), satisfying the unit initial conditions

z(s) = ψ(s) ≡ eAsτ = I if − τ ≤ s ≤ 0, (1.14)

and the following statement holds (see, e.g., [5], [6, Remark 1], [7, Theorem 2.1]).

Lemma 1.1. A solution of a Cauchy problem for a nonhomogeneous system with single delay (1.9),
satisfying a constant initial condition

z(s) = ψ(s) = c ∈ �n if s ∈ [−τ, 0] (1.15)

has the form

z(t) = eA(t−τ)
τ c +

∫ t
0
e
A(t−τ−s)
τ g(s)ds. (1.16)

The delayed matrix exponential was applied, for example, in [6, 7] to investigation
of boundary value problems of diffferential systems with a single delay and in [8] to
investigation of the stability of linear perturbed systems with a single delay.
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1.2. Fredholm Boundary-Value Problem

Without loss of generality, let a = 0 and, with a view of the above, the problem (1.9), (1.10)
can be transformed (h0(t) := t − τ) to an equation of the type (1.1) (see (1.5))

ż(t) −A(Sh0z)(t) = ϕ(t), t ∈ [0, b], (1.17)

where, in accordance with (1.3),(1.4)

(Sh0z)(t) =

⎧⎨
⎩
z(t − τ) if t − τ ∈ [0, b],

θ if t − τ /∈ [0, b],

ϕ(t) = g(t) +A ψh0(t) ∈ Lp[0, b],

ψh0(t) =

⎧⎨
⎩
θ if t − τ ∈ [0, b],
ψ(t − τ) if t − τ /∈ [0, b].

(1.18)

A general solution of problem (1.17) for a nonhomogeneous system with single delay
and zero initial data has the form (1.7)

z(t) = X(t)c +
∫b

0
K(t, s)ϕ(s)ds ∀c ∈ �n , (1.19)

where, as can easily be verified (in view of the above-defined delayed matrix exponential) by
substituting into (1.17),

X(t) = eA(t−τ)
τ , X(0) = e−Aττ = I (1.20)

is a normal fundamental matrix of the homogeneous system related to (1.17) (or (1.9)) with
initial data X(0) = I, and the Cauchy matrix K(t, s) has the form

K(t, s) = eA(t−τ−s)
τ if 0 ≤ s < t ≤ b,

K(t, s) ≡ Θ if 0 ≤ t < s ≤ b.
(1.21)

Obviously

K(t, 0) = eA(t−τ)
τ = X(t), K(0, 0) = eA(−τ)

τ = X(0) = I, (1.22)

and, therefore, the initial problem (1.17) for systems of ordinary differential equations with
constant coefficients and single delay has an n-parametric family of linearly independent
solutions (1.16).

Now, we will deal with a general boundary-value problem for system (1.17). Using
the results [2, 9], it is easy to derive statements for a general boundary-value problem if the
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number m of boundary conditions does not coincide with the number n of unknowns in a
differential system with single delay.

We consider a boundary-value problem

ż(t) −Az(t − τ) = g(t), t ∈ [0, b],

z(s) := ψ(s), s /∈ [0, b],
(1.23)

assuming that

�z(·) = α ∈ �m, (1.24)

or, using (1.18), its equivalent form

ż(t) −A(Sh0z)(t) = ϕ(t), t ∈ [0, b],

�z(·) = α ∈ �m,
(1.25)

where α is an m-dimensional constant vector-column � is an m-dimensional linear vector-
functional defined on the space Dp[0, b] of an n-dimensional vector-functions

� = col (�1, . . . , �m) : Dp[0, b] −→ �
m, �i : Dp[0, b] −→ �, i = 1, . . . , m, (1.26)

absolutely continuous on [0, b]. Such problems for functional-differential equations are of
Fredholm’s type (see, e.g., [1, 2]). In order to formulate the following result, we need several
auxiliary abbreviations. We set

Q := �X(·) = �eA(·−τ)
τ . (1.27)

We define an n × n-dimensional matrix (orthogonal projection)

PQ := I −Q+Q, (1.28)

projecting space �n to ker Q of the matrix Q.
Moreover, we define an m ×m-dimensional matrix (orthogonal projection)

PQ∗ := Im −QQ+, (1.29)

projecting space �m to ker Q∗ of the transposed matrix Q∗ = QT , where Im is anm×m identity
matrix and Q+ is an n×m-dimensional matrix pseudoinverse to the m×n-dimensional matrix
Q. Denote d := rankPQ∗ and n1 := rankQ = rankQ∗. Since

rankPQ∗ = m − rankQ∗, (1.30)

we have d = m − n1.
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We will denote by PQ∗
d

an d × m-dimensional matrix constructed from d linearly
independent rows of the matrix PQ∗ . Denote r := rankPQ. Since

rankPQ = n − rankQ, (1.31)

we have r = n − n1. By PQr we will denote an n × r-dimensional matrix constructed from r
linearly independent columns of the matrix PQ. Finally, we define

Xr(t) := X(t)PQr , (1.32)

and a generalized Green operator

(
Gϕ
)
(t) :=

∫b
0
G(t, s)ϕ(s)ds, (1.33)

where

G(t, s) := K(t, s) − eA(t−τ)
τ Q+�K(·, s) (1.34)

is a generalized Green matrix corresponding to the boundary-value problem (1.25) (the
Cauchy matrix K(t, s) has the form (1.21)).

In [6, Theorem 4], the following result (formulating the necessary and sufficient
conditions of solvability and giving representations of the solutions z ∈ Dp[0, b], ż ∈ Lp[0, b]
of the boundary-value problem (1.25) in an explicit analytical form) is proved.

Theorem 1.2. If n1 ≤ min(m,n), then:

(i) the homogeneous problem

ż(t) −A(Sh0z)(t) = θ, t ∈ [0, b],
�z(·) = θm ∈ �m

(1.35)

corresponding to problem (1.25) has exactly r linearly independent solutions

z(t, cr) = Xr(t)cr = e
A(t−τ)
τ PQr cr ∈ Dp[0, b], (1.36)

(ii) nonhomogeneous problem (1.25) is solvable in the spaceDp[0, b] if and only if ϕ ∈ Lp[0, b]
and α ∈ �m satisfy d linearly independent conditions

PQ∗
d
·
(
α − �

∫b
0
K(·, s)ϕ(s)ds

)
= θd, (1.37)
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(iii) in that case the nonhomogeneous problem (1.25) has an r-dimensional family of linearly
independent solutions represented in an analytical form

z(t) = z0(t, cr) := Xr(t)cr +
(
Gϕ
)
(t) +X(t)Q+α ∀cr ∈ �r . (1.38)

2. Perturbed Weakly Nonlinear Boundary Value Problems

As an example of applying Theorem 1.2, we consider a problem of the branching of solutions
z : [0, b] → �

n , b > 0 of systems of nonlinear ordinary differential equations with a small
parameter ε and with a finite number of measurable delays hi(t), i = 1, 2, . . . , k of argument
of the form

ż(t) = Az(t − τ) + g(t) + εZ(z(hi(t)), t, ε), t ∈ [0, b], hi(t) ≤ t, (2.1)

satisfying the initial and boundary conditions

z(s) = ψ(s), if s < 0, �z(·) = α, α ∈ �m, (2.2)

and such that its solution z = z(t, ε), satisfying

z(·, ε) ∈ Dp[0, b],

ż(·, ε) ∈ Lp[0, b],
z(t, ·) ∈ C[0, ε0],

(2.3)

for a sufficiently small ε0 > 0, for ε = 0, turns into one of the generating solutions (1.38); that
is, z(t, 0) = z0(t, cr) for a cr ∈ �r . We assume that the n × 1 vector-operator Z satisfies

Z(·, t, ε) ∈ C1[‖z − z0‖ ≤ q
]
,

Z(z(hi(t)), ·, ε) ∈ Lp[0, b],
Z(z(hi(t)), t, ·) ∈ C[0, ε0],

(2.4)

where q > 0 is sufficiently small. Using denotations (1.3), (1.4), and (1.6), it is easy to show
that the perturbed nonlinear boundary value problem (2.1), (2.2) can be rewritten in the form

ż(t) = A(Sh0z)(t) + εZ((Shz)(t), t, ε) + ϕ(t), �z(·) = α, t ∈ [0, b]. (2.5)

In (2.5), A is an n×n constant matrix, h0 : [0, b] → � is a single delay defined by h0(t) := t−τ ,
τ > 0,

(Shz)(t) = col[(Sh1z)(t), . . . , (Shkz)(t)] (2.6)
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is an N-dimensional column vector, where N = nk, and ϕ is an n-dimensional column vector
given by

ϕ(t) = g(t) +A ψh0(t). (2.7)

The operator Sh maps the space Dp into the space

LNp = Lp × · · · × Lp︸ ︷︷ ︸
k-times

,
(2.8)

that is, Sh : Dp → LNp . Using denotation (1.3) for the operator Shi : Dp → Lp, i = 1, . . . , k, we
have the following representation:

(Shiz)(t) =
∫b

0
χhi(t, s)ż(s)ds + χhi(t, 0)z(0), (2.9)

where

χhi(t, s) =

⎧⎨
⎩

1, if (t, s) ∈ Ωi,

0, if (t, s) /∈ Ωi

(2.10)

is the characteristic function of the set

Ωi := {(t, s) ∈ [0, b] × [0, b] : 0 ≤ s ≤ hi(t) ≤ b}. (2.11)

Assume that the generating boundary value problem

ż(t) = A(Sh0z)(t) + ϕ(t), lz = α, (2.12)

being a particular case of (2.5) for ε = 0, has solutions for nonhomogeneities ϕ ∈ Lp[0, b]
and α ∈ �m that satisfy conditions (1.37). In such a case, by Theorem 1.2, the problem (2.12)
possesses an r-dimensional family of solutions of the form (1.38).

Problem 1. Below, we consider the following problem: derive the necessary and sufficient
conditions indicating when solutions of (2.5) turn into solutions (1.38) of the boundary value
problem (2.12) for ε = 0.

Using the theory of generalized inverse operators [2], it is possible to find conditions
for the solutions of the boundary value problem (2.5) to be branching from the solutions of
(2.5) with ε = 0. Below, we formulate statements, solving the above problem. As compared
with an earlier result [10, page 150], the present result is derived in an explicit analytical form.
The progress was possible by using the delayed matrix exponential since, in such a case, all
the necessary calculations can be performed to the full.
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Theorem 2.1 (necessary condition). Consider the system (2.1); that is,

ż(t) = Az(t − τ) + g(t) + εZ(z(hi(t)), t, ε), t ∈ [0, b], (2.13)

where hi(t) ≤ t, i = 1, . . . , k, with the initial and boundary conditions (2.2); that is,

z(s) = ψ(s), if s < 0 < b, �z(·) = α ∈ �m, (2.14)

and assume that, for nonhomogeneities

ϕ(t) = g(t) +A ψh0(t) ∈ Lp[0, b], (2.15)

and for α ∈ �m , the generating boundary value problem

ż(t) = A(Sh0z)(t) + ϕ(t), �z(·) = α, (2.16)

corresponding to the problem (1.25), has exactly an r-dimensional family of linearly independent
solutions of the form (1.38). Moreover, assume that the boundary value problem (2.13), (2.14) has a
solution z(t, ε) which, for ε = 0, turns into one of solutions z0(t, cr) in (1.38) with a vector-constant
cr := c0

r ∈ �r .
Then, the vector c0

r satisfies the equation

F
(
c0
r

)
:=
∫b

0
H(s)Z

(
(Shz0)

(
s, c0

r

)
, s, 0

)
ds = θd, (2.17)

where

H(s) := PQ∗
d
�K(·, s) = PQ∗

d
�e

A(·−τ−s)
τ . (2.18)

Proof. We consider the nonlinearity in system (2.13), that is, the term εZ(z(hi(t)), t, ε) as an
inhomogeneity, and use Theorem 1.2 assuming that condition (1.37) is satisfied. This gives

∫b
0
H(s)Z((Shz)(s, ε), s, ε)ds = θd. (2.19)

In this integral, letting ε → 0, we arrive at the required condition (2.17).

Corollary 2.2. For periodic boundary-value problems, the vector-constant cr ∈ �
r has a physical

meaning-it is the amplitude of the oscillations generated. For this reason, (2.17) is called an equation
generating the amplitude [11]. By analogy with the investigation of periodic problems, it is natural to
say (2.17) is an equation for generating the constants of the boundary value problem (2.13), (2.14).
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If (2.17) is solvable, then the vector constant c0
r ∈ �

r specifies the generating solution z0(t, c0
r )

corresponding to the solution z = z(t, ε) of the original problem such that

z(·, ε) : [0, b] −→ �
n ,

z(·, ε ) ∈ Dp[0, b],

ż(·, ε) ∈ Lp[0, b],
z(t, ·) ∈ C[0, ε0],

z(t, 0) = z0

(
t, c0

r

)
.

(2.20)

Also, if (2.17) is unsolvable, the problem (2.13), (2.14) has no solution in the analyzed space. Note
that, here and in what follows, all expressions are obtained in the real form and hence, we are interested
in real solutions of (2.17), which can be algebraic or transcendental.

Sufficient conditions for the existence of solutions of the boundary-value problem
(2.13), (2.14) can be derived using results in [10, page 155] and [2]. By changing the variables
in system (2.13), (2.14)

z(t, ε) = z0

(
t, c0

r

)
+ y(t, ε), (2.21)

we arrive at a problem of finding sufficient conditions for the existence of solutions of the
problem

ẏ(t) = A
(
Sh0y

)
(t) + εZ

(
Sh
(
z0 + y

)
(t), t, ε

)
, �y = θm, t ∈ [0, b], (2.22)

and such that

y(·, ε) : [0, b] −→ �
n ,

y(·, ε) ∈ Dp[0, b],

ẏ(·, ε) ∈ Lp[0, b],
y(t, ·) ∈ C[0, ε0],

y(t, 0) = θ.

(2.23)

Since the vector function Z((Shz)(t), t, ε) is continuously differentiable with respect to z and
continuous in ε in the neighborhood of the point

(z, ε) =
(
z0

(
t, c0

r

)
, 0
)
, (2.24)
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we can separate its linear term as a function depending on y and terms of order zero with
respect to ε

Z
(
Sh
(
z0

(
t, c0

r

)
+ y
)
, t, ε
)
= f0

(
t, c0

r

)
+A1(t)

(
Shy
)
(t) + R

((
Shy
)
(t), t, ε

)
, (2.25)

where

f0

(
t, c0

r

)
:= Z

(
(Shz0)

(
t, c0

r

)
, t, 0
)
, f0

(
·, c0

r

)
∈ Lp[0, b],

A1(t) = A1

(
t, c0

r

)
=
∂Z(Shx, t, 0)

∂Shx

∣∣∣∣
x=z0(t,c0

r )
, A1(·) ∈ Lp[0, b],

R(θ, t, 0) = θ,
∂R(θ, t, 0)

∂y
= Θ, R

(
y, ·, ε) ∈ Lp[0, b].

(2.26)

We now consider the vector function Z((Sh(z0+y))(t), t, ε) in (2.22) as an inhomogeneity and
we apply Theorem 1.2 to this system. As the result, we obtain the following representation
for the solution of (2.22):

y(t, ε) = Xr(t)c + y(1)(t, ε). (2.27)

In this expression, the unknown vector of constants c = c(ε) ∈ C[0, ε0] is determined from a
condition similar to condition (1.37) for the existence of solution of problem (2.22):

B0c =
∫b

0
H(s)

[
A1(s)

(
Shy

(1)
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)]
ds, (2.28)

where

B0 =
∫b

0
H(s)A1(s)(ShXr)(s)ds (2.29)

is a d × r matrix, and

H(s) := PQ∗
d
�K(·, s) = PQ∗

d
�e

A(·−τ−s)
τ . (2.30)

The unknown vector function y(1)(t, ε) is determined by using the generalized Green operator
as follows:

y(1)(t, ε) = ε
(
G
[
Z
(
Sh
(
z0

(
s, c0

r

)
+ y
)
, s, ε
)])

(t). (2.31)
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Let PN(B0) be an r × r matrix orthoprojector �r → N(B0), and let PN(B∗0) be a d × d matrix-
orthoprojector �d → N(B∗0). Equation (2.28) is solvable with respect to c ∈ �r if and only
if

PN(B∗0)

∫b
0
H(s)

[
A1(s)

(
Shy

(1)
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)]
ds = θd. (2.32)

For

PN(B∗0) = Θd, (2.33)

the last condition is always satisfied and (2.28) is solvable with respect to c ∈ �r up to an
arbitrary vector constant PN(B0)c ∈ �r from the null space of the matrix B0

c = B+
0

∫b
0
H(s)

[
A1(s)

(
Shy

(1)
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)]
ds + PN(B0)c. (2.34)

To find a solution y = y(t, ε) of (2.28) such that

y(·, ε) : [0, b] −→ Rn,

y(·, ε) ∈ Dp[0, b],

ẏ(·, ε) ∈ Lp[0, b],
y(t, ·) ∈ C[0, ε0],

y(t, 0) = θ,

(2.35)

it is necessary to solve the following operator system:

y(t, ε) = Xr(t)c + y(1)(t, ε),

c = B+
0

∫b
0
H(s)

[
A1(s)

(
Shy

(1)
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)]
ds,

y(1)(t, ε) = εG
[
Z
(
Sh
(
z0

(
s, c0

r

)
+ y
)
, s, ε
)]
(t).

(2.36)

The operator system (2.36) belongs to the class of systems solvable by the method of simple
iterations, convergent for sufficiently small ε ∈ [0, ε0] (see [10, page 188]). Indeed, system
(2.36) can be rewritten in the form

u = L(1)u + Fu, (2.37)
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where u = col (y(t, ε), c(ε), y(1)(t, ε)) is a (2n + r)-dimensional column vector, L(1) is a linear
operator

L(1) :=

⎛
⎜⎜⎝

Θ Xr(t) I

Θr,n Θr,r L1

Θ Θn,r Θ

⎞
⎟⎟⎠, (2.38)

where

L1(∗) = B+
0

∫b
0
H(s)A1(s)(∗)ds, (2.39)

and F is a nonlinear operator

Fu :=

⎛
⎜⎜⎜⎝

θ

B+
0

∫b
0
H(s)R

((
Shy
)
(s, ε), s, ε

)
ds

ε
(
G
[
Z
(
(Shz0)

(
s, c0

r

)
, s, 0

)
+A1(s)

(
Shy
)
(s, ε) + R

((
Shy
)
(s, ε), s, ε

)])
(t)

⎞
⎟⎟⎟⎠. (2.40)

In view of the structure of the operator L(1) containing zero blocks on and below the main
diagonal, the inverse operator

(
I2n+r − L(1)

)−1
(2.41)

exists. System (2.37) can be transformed into

u = Su, (2.42)

where

S :=
(
I2n+r − L(1)

)−1
F (2.43)

is a contraction operator in a sufficiently small neighborhood of the point

(z, ε) =
(
z0

(
t, c0

r

)
, 0
)
. (2.44)

Thus, the solvability of the last operator system can be established by using one of the existing
versions of the fixed-point principles [12] applicable to the system for sufficiently small ε ∈
[0, ε0]. It is easy to prove that the sufficient condition PN(B∗0) = Θd for the existence of solutions
of the boundary value problem (2.13), (2.14) means that the constant c0

r ∈ �r of the equation
for generating constant (2.17) is a simple root of equation (2.17) [2]. By using the method of
simple iterations, we can find the solution of the operator system and hence the solution of
the original boundary value problem (2.13), (2.14). Now, we arrive at the following theorem.
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Theorem 2.3 (sufficient condition). Assume that the boundary value problem (2.13), (2.14)
satisfies the conditions listed above and the corresponding linear boundary value problem (1.25) has
an r-dimensional family of linearly independent solutions of the form (1.38). Then, for any simple root
cr = c0

r ∈ �r of the equation for generating the constants (2.17), there exist at least one solution of the
boundary value problem (2.13), (2.14). The indicated solution z(t, ε) is such that

z(·, ε) ∈ Dp[0, b],

ż(·, ε) ∈ Lp[0, b],
z(t, ·) ∈ C[0, ε0],

(2.45)

and, for ε = 0, turns into one of the generating solutions (1.38) with a constant c0
r ∈ �r ; that is,

z(t, 0) = z0(t, c0
r). This solution can be found by the method of simple iterations, which is convergent

for a sufficiently small ε ∈ [0, ε0].

Corollary 2.4. If the number n of unknown variables is equal to the numberm of boundary conditions
(and hence r = d), the boundary value problem (2.13), (2.14) has a unique solution. In such a case,
the problems considered for functional-differential equations are of Fredholm’s type with a zero index.
By using the procedure proposed in [2] with some simplifying assumptions, we can generalize the
proposed method to the case of multiple roots of equation (2.17) to determine sufficient conditions for
the existence of solutions of the boundary-value problem (2.13), (2.14).

3. Example

We will illustrate the above proved theorems on the example of a weakly perturbed
linear boundary value problem. Consider the following simplest boundary value problem-a
periodic problem for the delayed differential equation:

ż(t) = z(t − τ) + ε
k∑
i=1

Bi(t)z(hi(t)) + g(t), t ∈ (0, T],

z(s) = ψ(s), if s < 0,

z(0) = z(T),

(3.1)

where 0 < τ, T = const, Bi are n × n matrices, Bi, g ∈ Lp[0, T], ψ : �1 \ (0, T] → �
n , hi(t) ≤ t

are measurable functions. Using the symbols Shi and ψhi (see (1.3), (1.4), (2.9)), we arrive at
the following operator system:

ż(t) = z(t − τ) + εB(t)(Shz)(t) + ϕ(t, ε),
�z := z(0) − z(T) = θn,

(3.2)
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where B(t) := (B1(t), . . . , Bk(t)) is an n ×N matrix (N = nk), and

ϕ(t, ε) := g(t) + ψh0(t) + ε
k∑
i=1

Bi(t)ψhi(t) ∈ Lp[0, T]. (3.3)

We will consider the simplest case with T ≤ τ . Utilizing the delayed matrix exponential, it
can be easily verified that in this case, the matrix

X(t) = eI(t−τ)τ = I (3.4)

is a normal fundamental matrix for the homogeneous generating system

ż(t) = z(t − τ). (3.5)

Then,

Q := �X(·) = e−Iττ − eI(T−τ)τ = θn,

PQ = PQ∗ = I, (r = n, d = m = n),

K(t, s) =

⎧⎨
⎩
e
I(t−τ−s)
τ = I, 0 ≤ s ≤ t ≤ T,
Θ, s > t,

�K(·, s) = K(0, s) −K(T, s) = −I,
H(τ) = PQ∗�K(·, s) = −I,

(ShiI)(t) = χhi(t, 0) · I = I ·
⎧⎨
⎩

1, if 0 ≤ hi(t) ≤ T,
0, if hi(t) < 0.

(3.6)

To illustrate the theorems proved above, we will find the conditions for which the boundary
value problem (3.1) has a solution z(t, ε) that, for ε = 0, turns into one of solutions (1.38)
z0(t, cr) of the generating problem. In contrast to the previous works [7, 9], we consider the
case when the unperturbed boundary-value problem

ż(t) = z(t − τ) + ϕ(t, 0),
z(0) = z(T)

(3.7)

has an n-parametric family of linear-independent solutions of the form(1.38)

z := z0(t, cn) = cn +
(
Gϕ
)
(t), ∀cn ∈ �n . (3.8)

For this purpose, it is necessary and sufficient for the vector function

ϕ(t) = g(t) + ψh0(t) (3.9)
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to satisfy the condition of type (1.37)

∫T
0
H(s)ϕ(s) ds = −

∫T
0
ϕ(s) ds = θn. (3.10)

Then, according to the Theorem 2.1, the constant cn = c0
n ∈ �n must satisfy (2.17), that is, the

equation

F
(
c0
n

)
:=
∫T

0
H(s)Z

(
(Shz0)

(
s, c0

n

)
, s, 0

)
ds = θn, (3.11)

which in our case is a linear algebraic system

B0c
0
n = −

∫T
0
B(s)

(
Sh
(
Gϕ
))
(s)ds, (3.12)

with the n × n matrix B0 in the form

B0 =
∫T

0
H(s)B(s)(ShI)(s)ds

= −
∫T

0

k∑
i=1

Bi(s)(ShiI)(s)ds = −
k∑
i=1

∫T
0
Bi(s)χhi(s, 0)ds.

(3.13)

According to Corollary 2.4, if detB0 /= 0, the problem (3.1) for the case T ≤ τ has a unique
solution z(t, ε) with the properties

z(·, ε) ∈ Dn
p[0, T],

ż(·, ε) ∈ Lnp[0, T],

z(t, ·) ∈ C[0, ε0],

z(t, 0) = z0

(
t, c0

n

)
,

(3.14)

for g ∈ Lp[0, T], ψ(t) ∈ Lp[0, T], and for measurable delays hi that which satisfy the criterion
(3.10) of the existence of a generating solution where

c0
n = −B+

0

∫T
0
B(s)

(
Sh
(
Gϕ
))
(s)ds. (3.15)

A solution z(t, ε) of the boundary value problem (3.1) can be found by the convergent method
of simple iterations (see Theorem 2.3).
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If, for example, hi(t) = t −Δi, where 0 < Δi = const < T , i = 1, . . . , k, then

χhi(t, 0) =

⎧⎨
⎩

1 if 0 ≤ hi(t) = t −Δi ≤ T,
0 if hi(t) = t −Δi < 0,

=

⎧⎨
⎩

1 if Δi ≤ t ≤ T + Δi,

0, if t < Δi.
(3.16)

The n × n matrix B0 can be rewritten in the form

B0 =
∫T

0
H(s)

k∑
i=1

Bi(s)χhi(s, 0)dτ

= −
k∑
i=1

∫T
0
Bi(s)χhi(s, 0)ds = −

k∑
i=1

∫T
Δi

Bi(s)ds,

(3.17)

and the unique solvability condition of the boundary value problem (3.1) takes the form

det

[
k∑
i=1

∫T
Δi

Bi(s)ds

]
/= 0. (3.18)

It is easy to see that if the vector function Z(z(hi(t)), t, ε) is nonlinear in z, for example as
a square, then (3.11) generating the constants will be a square-algebraic system and, in this
case, the boundary value problem (3.1) can have two solutions branching from the point
ε = 0.
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Some new integral inequalities are given, and bounds of solutions of the following integro-
differential equation are determined: x′(t)−F(t, x(t), ∫ t0 k(t, s, x(t), x(s))ds) = h(t), x(0) = x0, where
h : R+ → R, k : R2

+ × R2 → R, F : R+ × R2 → R are continuous functions, R+ = [0,∞).

1. Introduction

Ou Yang [1] established and applied the following useful nonlinear integral inequality.

Theorem 1.1. Let u and h be nonnegative and continuous functions defined on R+ and let c ≥ 0 be a
constant. Then, the nonlinear integral inequality

u2(t) ≤ c2 + 2
∫ t

0
h(s)u(s)ds, t ∈ R+ (1.1)

implies

u(t) ≤ c +
∫ t

0
h(s)ds, t ∈ R+. (1.2)

This result has been frequently used by authors to obtain global existence, uniqueness,
boundedness, and stability of solutions of various nonlinear integral, differential, and
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integrodifferential equations. On the other hand, Theorem 1.1 has also been extended and
generalized by many authors; see, for example, [2–19]. Like Gronwall-type inequalities,
Theorem 1.1 is also used to obtain a priori bounds to unknown functions. Therefore, integral
inequalities of this type are usually known as Gronwall-Ou Yang type inequalities.

In the last few years there have been a number of papers written on the discrete
inequalities of Gronwall inequality and its nonlinear version to the Bihari type, see [13, 16,
20]. Some applications discrete versions of integral inequalities are given in papers [21–23].

Pachpatte [11, 12, 14–16] and Salem [24] have given some new integral inequalities
of the Gronwall-Ou Yang type involving functions and their derivatives. Lipovan [7] used
the modified Gronwall-Ou Yang inequality with logarithmic factor in the integrand to the
study of wave equation with logarithmic nonlinearity. Engler [5] used a slight variant of the
Haraux’s inequality for determination of global regular solutions of the dynamic antiplane
shear problem in nonlinear viscoelasticity. Dragomir [3] applied his inequality to the stability,
boundedness, and asymptotic behaviour of solutions of nonlinear Volterra integral equations.

In this paper, we present new integral inequalities which come out from above-
mentioned inequalities and extend Pachpatte’s results (see [11, 16]) especially. Obtained
results are applied to certain classes of integrodifferential equations.

2. Integral Inequalities

Lemma 2.1. Let u, f , and g be nonnegative continuous functions defined on R+. If the inequality

u(t) ≤ u0 +
∫ t

0
f(s)

(
u(s) +

∫s

0
g(τ)(u(s) + u(τ))dτ

)
ds (2.1)

holds where u0 is a nonnegative constant, t ∈ R+, then

u(t) ≤ u0

[
1 +

∫ t

0
f(s) exp

(∫ s

0

(
2g(τ) + f(τ)

(
1 +

∫ τ

0
g(σ)dσ

))
dτ

)
ds

]
(2.2)

for t ∈ R+.

Proof. Define a function v(t) by the right-hand side of (2.1)

v(t) = u0 +
∫ t

0
f(s)

(
u(s) +

∫ s

0
g(τ)(u(s) + u(τ))dτ

)
ds. (2.3)

Then, v(0) = u0, u(t) ≤ v(t) and

v′(t) = f(t)u(t) + f(t)
∫ t

0
g(s)(u(t) + u(s))ds

≤ f(t)v(t) + f(t)
∫ t

0
g(s)(v(t) + v(s))ds.

(2.4)
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Define a function m(t) by

m(t) = v(t) +
∫ t

0
g(s)v(s)ds + v(t)

∫ t

0
g(s)ds, (2.5)

then m(0) = v(0) = u0, v(t) ≤ m(t),

v′(t) ≤ f(t)m(t), (2.6)

m′(t) = 2g(t)v(t) + v′(t)

(
1 +

∫ t

0
g(s)ds

)

≤ m(t)

[
2g(t) + f(t)

(
1 +

∫ t

0
g(s)ds

)]
.

(2.7)

Integrating (2.7) from 0 to t, we have

m(t) ≤ u0 exp

(∫ t

0

(
2g(s) + f(s)

(
1 +

∫ s

0
g(σ)dσ

))
ds

)
. (2.8)

Using (2.8) in (2.6), we obtain

v′(t) ≤ u0f(t) exp

(∫ t

0

(
2g(s) + f(s)

(
1 +

∫ s

0
g(σ)dσ

))
ds

)
. (2.9)

Integrating from 0 to t and using u(t) ≤ v(t), we get inequality (2.2). The proof is complete.

Lemma 2.2. Let u, f , and g be nonnegative continuous functions defined on R+, w(t) be a positive
nondecreasing continuous function defined on R+. If the inequality

u(t) ≤ w(t) +
∫ t

0
f(s)

(
u(s) +

∫ s

0
g(τ)(u(s) + u(τ))dτ

)
ds, (2.10)

holds, where u0 is a nonnegative constant, t ∈ R+, then

u(t) ≤ w(t)

[
1 +

∫ t

0
f(s) exp

(∫ s

0

(
2g(τ) + f(τ)

(
1 +

∫ τ

0
g(σ)dσ

))
dτ

)
ds

]
, (2.11)

where t ∈ R+.
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Proof. Since the function w(t) is positive and nondecreasing, we obtain from (2.10)

u(t)
w(t)

≤ 1 +
∫ t

0
f(s)

(
u(s)
w(s)

+
∫ s

0
g(τ)

(
u(s)
w(s)

+
u(τ)
w(τ)

)
dτ

)
ds. (2.12)

Applying Lemma 2.1 to inequality (2.12), we obtain desired inequality (2.11).

Lemma 2.3. Let u, f , g, and h be nonnegative continuous functions defined on R+, and let c be a
nonnegative constant.

If the inequality

u2(t) ≤ c2 + 2

[∫ t

0
f(s)u(s)

(
u(s) +

∫ s

0
g(τ)(u(τ) + u(s))dτ

)
+ h(s)u(s)

]
ds (2.13)

holds for t ∈ R+, then

u(t) ≤ p(t)
[

1 +
∫ t

0
f(s) exp

(∫ s

0

(
2g(τ) + f(τ)

(
1 +

∫ τ

0
g(σ)dσ

))
dτ

)
ds

]
, (2.14)

where

p(t) = c +
∫ t

0
h(s)ds. (2.15)

Proof. Define a function z(t) by the right-hand side of (2.13)

z(t) = c2 + 2

[∫ t

0
f(s)u(s)

(
u(s) +

∫ s

0
g(τ)(u(τ) + u(s))dτ

)
+ h(s)u(s)

]
ds. (2.16)

Then z(0) = c2, u(t) ≤
√
z(t) and

z′(t) = 2

[
f(t)u(t)

(
u(t) +

∫ t

0
g(s)(u(t) + u(s))ds

)
+ h(t)u(t)

]

≤ 2
√
z(t)

[
f(t)

(√
z(t) +

∫ t

0
g(s)

(√
z(t) +

√
z(s)

)
ds

)
+ h(t)

]
.

(2.17)

Differentiating
√
z(t) and using (2.17), we get

d

dt

(√
z(t)

)
=

z′(t)

2
√
z(t)

≤ f(t)
(√

z(t) +
∫ t

0
g(s)

(√
z(t) +

√
z(s)

)
ds

)
+ h(t).

(2.18)
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Integrating inequality (2.18) from 0 to t, we have

√
z(t) ≤ p(t) +

∫ t

0
f(s)

(√
z(s) +

∫ s

0
g(τ)

(√
z(s) +

√
z(τ)

)
dτ

)
ds, (2.19)

where p(t) is defined by (2.15), p(t) is positive and nondecreasing for t ∈ R+. Now, applying
Lemma 2.2 to inequality (2.19), we get

√
z(t) ≤ p(t)

[
1 +

∫ t

0
f(s) exp

(∫ s

0

(
2g(τ) + f(τ)

(
1 +

∫ τ

0
g(σ)dσ

))
dτ

)
ds

]
. (2.20)

Using (2.20) and the fact that u(t) ≤
√
z(t), we obtain desired inequality (2.14).

3. Application of Integral Inequalities

Consider the following initial value problem

x′(t) − F
(
t, x(t),

∫ t

0
k(t, s, x(t), x(s))ds

)
= h(t), x(0) = x0, (3.1)

where h : R+ → R, k : R2
+ × R2 → R, F : R+ × R2 → R are continuous functions. We assume

that a solution x(t) of (3.1) exists on R+.

Theorem 3.1. Suppose that

|k(t, s, u1, u2)| ≤ f(t)g(s)(|u1| + |u2|) for (t, s, u1, u2) ∈ R2
+ × R2,

|F(t, u1, v1)| ≤ f(t)|u1| + |v1| for (t, u1, v1) ∈ R+ × R2,
(3.2)

where f , g are nonnegative continuous functions defined on R+. Then, for the solution x(t) of (3.1)
the inequality

|x(t)| ≤ r(t)
[

1 +
∫ t

0
f(s) exp

(∫ s

0

(
2g(τ) + f(τ)

(
1 +

∫ τ

0
g(σ)dσ

))
dτ

)
ds

]
,

r(t) = |x0| +
∫ t

0
|h(t)|dt

(3.3)

holds on R+.

Proof. Multiplying both sides of (3.1) by x(t) and integrating from 0 to t we obtain

x2(t) = x2
0 + 2

∫ t

0

[
x(s)F

(
s, x(s),

∫ s

0
k(s, τ, x(s), x(τ))dτ

)
+ x(s)h(s)

]
ds. (3.4)
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From (3.2) and (3.4), we get

|x(t)|2 ≤ |x0|2 + 2
∫ t

0

[
f(s)|x(s)| ×

(
|x(s)| +

∫ s

0
g(τ)(|x(s)| + |x(τ)|)dτ

)
+ |h(s)||x(s)|

]
ds.

(3.5)

Using inequality (2.14) in Lemma 2.3, we have

|x(t)| ≤ r(t)
[

1 +
∫ t

0
f(s) exp

(∫ s

0

(
2g(τ) + f(τ)

(
1 +

∫ τ

0
g(σ)dσ

))
dτ

)
ds

]
, (3.6)

where

r(t) = |x0| +
∫ t

0
|h(t)|dt, (3.7)

which is the desired inequality (3.3).

Remark 3.2. It is obvious that inequality (3.3) gives the bound of the solution x(t) of (3.1) in
terms of the known functions.
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[23] J. Diblı́k, E. Schmeidel, and M. Růžičková, “Asymptotically periodic solutions of Volterra system of
difference equations,” Computers & Mathematics with Applications, vol. 59, no. 8, pp. 2854–2867, 2010.

[24] S. Salem, “On some systems of two discrete inequalities of gronwall type,” Journal of Mathematical
Analysis and Applications, vol. 208, no. 2, pp. 553–566, 1997.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 743815, 15 pages
doi:10.1155/2011/743815

Research Article
Compatible and Incompatible Nonuniqueness
Conditions for the Classical Cauchy Problem

Josef Diblı́k1, 2 and Christine Nowak3

1 Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering,
University of Technology, 602 00 Brno, Czech Republic

2 Department of Mathematics, Faculty of Electrical Engineering and Communication,
Brno University of Technology, 616 00 Brno, Czech Republic

3 Institute for Mathematics, University of Klagenfurt, 9020 Klagenfurt, Austria

Correspondence should be addressed to Christine Nowak, christine.nowak@uni-klu.ac.at

Received 21 September 2010; Revised 23 November 2010; Accepted 10 March 2011

Academic Editor: Yuri V. Rogovchenko

Copyright q 2011 J. Diblı́k and C. Nowak. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

In the first part of this paper sufficient conditions for nonuniqueness of the classical Cauchy
problem ẋ = f(t, x), x(t0) = x0 are given. As the essential tool serves a method which estimates the
“distance” between two solutions with an appropriate Lyapunov function and permits to show
that under certain conditions the “distance” between two different solutions vanishes at the initial
point. In the second part attention is paid to conditions that are obtained by a formal inversion
of uniqueness theorems of Kamke-type but cannot guarantee nonuniqueness because they are
incompatible.

1. Introduction

Consider the initial value problem

ẋ = f(t, x), x(t0) = x0, (1.1)

where t0 ∈ R, t ∈ J := [t0, t0 + a] with a > 0, x, x0 ∈ R
n and f : J × R

n → R
n.

In the first part (Section 2) we give sufficient conditions for nonuniqueness of the
classical n-dimensional Cauchy problem (1.1). As the essential tool serves a method which
estimates the “distance” between two solutions with an appropriate Lyapunov function and
permits to show that under certain conditions the “distance” between two different solutions
vanishes at the initial point. In the second part (Section 3) we analyze for the one-dimensional
case a set of conditions that takes its origin in an inversion of the uniqueness theorem by
Kamke (see, e.g., [1, page 56]) but cannot guarantee nonuniqueness since it contains an
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inner contradiction. Several attempts were made to get nonuniqueness criteria by using
conditions that are (in a certain sense) reverse uniqueness conditions of Kamke type. But
this inversion process has to be handled very carefully. It can yield incompatible conditions.
This is illustrated by a general set of conditions (in Theorems 3.2, 3.5 and 3.6) that would
ensure nonuniqueness, but unfortunately they are inconsistent.

In this paper we study Cauchy problems where f is continuous at the initial point.
Related results can be found in [1–5]. In literature there are several investigations for the
discontinuous case [1, 6–13] with different qualitative behaviour.

2. Main Result

In the following let R+ := [0,∞), b > 0, ρ > 0 and

Snρ(x0) :=
{
x ∈ R

n : ‖x − x0‖ < ρ
}
, (2.1)

where ‖ · ‖means the Euclidean norm.

Definition 2.1. We say that the initial value problem (1.1) has at least two different solutions
on the interval J if there exist solutions ϕ(t), ψ(t) defined on J and ϕ/≡ψ.

The following notions are used in our paper (see, e.g., [14, pages 136 and 137]).

Definition 2.2. A function ϕ : [0, ρ) → R+ is said to belong to the classKρ if it is continuous,
strictly increasing on [0, ρ) and ϕ(0) = 0.

Definition 2.3. A function V : J × Snρ(0) → R+ with V (t, 0) ≡ 0 is said to be positive definite if
there exists a function ϕ ∈ Kρ such that the relation

V (t, x) ≥ ϕ(‖x‖) (2.2)

is satisfied for (t, x) ∈ J × Snρ(0).

For the convenience of the reader we recall the definition of a uniformly Lipschitzian
function with respect to a given variable.

Definition 2.4. A function V (t, · ) : Snρ(0) → R+ is said to be Lipschitzian uniformly with
respect to t ∈ J if for arbitrarily given x∗ ∈ Snρ(0) there exists a constant k = k(x∗) such that

∥∥V (t, x∗1) − V (t, x∗2)∥∥ ≤ k∥∥x∗1 − x∗2∥∥ (2.3)

holds for every t ∈ J and for every x∗1, x∗2 within a small neighbourhood of x∗ in Snρ(0).

In [1, 15, 16] generalized derivatives of a Lipschitzian function along solutions of
an associated differential system are analyzed. A slight modification of Theorem 4.3 [15,
Appendix I] is the following lemma.
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Lemma 2.5. Let V : J × Snρ(0) → R+ be continuous and let V (t, · ) : Snρ(0) → R+ be Lipschitzian
uniformly with respect to t ∈ J . Let x1, x2 : J → Snρ(0) be any two solutions of

ẋ = f(t, x), (2.4)

where f : J ×R
n → R

n is a continuous function. Then for the upper right Dini derivative the equality

D+V (t, x2(t) − x1(t))

:= lim sup
h→ 0+

1
h
[V (t + h, x2(t + h) − x1(t + h)) − V (t, x2(t) − x1(t))]

= lim sup
h→ 0+

1
h

[
V
(
t + h, x2(t) − x1(t) + h

(
f(t, x2(t)) − f(t, x1(t))

)) − V (t, x2(t) − x1(t))
]
(2.5)

holds.

In the proof of Theorem 2.8 we require the following lemmas which are slight
adaptations of Theorem 1.4.1 [14, page 15] and Theorem 1.3.1 [1, page 10] for the left side
of the initial point.

Lemma 2.6. Let E be an open (t, u)-set in R
2, let g : E → R be a continuous function, and let u be

the unique solution of

u̇ = g(t, u), u(t2) = u2, (2.6)

to the left with t2 > t0, (t2, u2) ∈ E. Further, we assume that the scalar continuous function m :
(t0, t2] → R with (t,m(t)) ∈ E satisfiesm(t2) ≤ u(t2) and

D+m(t) ≥ g(t,m(t)), t0 < t ≤ t2. (2.7)

Then

m(t) ≤ u(t) (2.8)

holds as far as the solution u exists left of t2 in (t0, t2].

Lemma 2.7. Let S := {(t, x) : t0 − a ≤ t ≤ t0, |x − x0| ≤ b} and f : S → R be continuous and
nondecreasing in x for each fixed t in [t0 − a, t0]. Then, the initial value problem (1.1) has at most one
solution in [t0 − a, t0].

Theorem 2.8 (main result). Suppose that

(i) f : J × Sn
b
(x0) → R

n is a continuous function such that

M := sup
{∥∥f(t, x)∥∥ : t ∈ J, x ∈ Snb(x0)

}
<
b

a
. (2.9)
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Let x1 be a solution of problem (1.1) on J . Let, moreover, there exist numbers t1 ∈ (t0, t0+a],
r ∈ (0, 2b) and continuous functions g : (t0, t1] × R+ → R, V : [t0, t1] × Snr (0) → R+

such that

(ii) g is nondecreasing in the second variable, and the problem

u̇ = g(t, u), lim
t→ t0+

u(t) = 0 (2.10)

has a positive solution u∗ on (t0, t1];

(iii) V is positive definite and V (t, ·) : Snr (0) → R+ is Lipschitzian uniformly with respect to
t ∈ J ;

(iv) for t0 < t ≤ t1, ‖y − x1(t)‖ < r, the inequality

V̇
(
t, y − x1(t)

) ≥ g(t, V (t, y − x1(t)
))

(2.11)

holds where

V̇
(
t, y − x1(t)

)

:= lim sup
h→ 0+

1
h

[
V
(
t + h, y − x1(t) + h

[
f
(
t, y
) − f(t, x1(t))

]) − V (t, y − x1(t)
)]
.

(2.12)

Then the set of different solutions of problem (1.1) on interval J has the cardinality of the
continuum.

Remark 2.9. If condition (i) is fulfilled then, as it is well known, problem (1.1) is globally
solvable and every global solution admits the estimate

‖x(t) − x0‖ ≤M(t − t0), t ∈ J. (2.13)

Moreover, for any local solution x∗ of problem (1.1), defined on some interval [t0, t1] ⊂ J ,
there exists a global solution x of that problem such that x(t) = x∗(t) for t ∈ [t0, t1].

Remark 2.10. For the case M = 0 the initial value problem is unique and the assumptions of
Theorem 2.8 cannot be satisfied. Therefore, without loss of generality, we assume M > 0 in
the proof below.

Proof. At first we show that (1.1) has at least two different solutions on [t0, t∗1], where t∗1 ≤ t1,
t∗1 ≤ t0 + min{a, b/(3M)} is sufficiently close to t0. We construct a further solution of (1.1) by
finding a point (t2, x2) not lying on the solution x1(t) and starting from this point backwards
to the initial point (t0, x0).

First we show that there exist values t2 and x2, t0 < t2 ≤ t∗1, ‖x2 − x0‖ ≤ 2b/3 such that

u∗(t2) = V (t2, x2 − x1(t2)) (2.14)
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holds for the nontrivial solution u∗(t) of u̇ = g(t, u). From Lemma 2.7 it follows that u∗(t) is
determined uniquely to the left by the initial data (t2, u∗(t2)). We consider the ε-tubes

S(ε) :=
{
(t, x) : t0 ≤ t ≤ t∗1, ‖x − x1(t)‖ = ε

}
(2.15)

for ε > 0 around the solution x1(t). There exists ε1 > 0 such that S(ε) with 0 < ε ≤ ε1 < r is
contained in the set

{
(t, x) : t0 ≤ t ≤ t∗1, ‖x − x0‖ ≤ 2b

3

}
. (2.16)

For 0 ≤ δ ≤ ε1, t ∈ [t0, t∗1] we define

Ψ(δ, t) := max
‖x−x1(t)‖=δ

V (t, x − x1(t)),

Ψ(δ) := max
t∈[t0,t∗1]

Ψ(δ, t) ≡ max
(t,x)∈S(δ)

V (t, x − x1(t)).
(2.17)

The function Ψ(δ, t) is continuous in t for t0 ≤ t ≤ t∗1. Since limδ→ 0Ψ(δ) = 0, there exists a δ2,
0 < δ2 ≤ min{ε1, b/3}, such that Ψ(δ2) ≤ u∗(t∗1). It is clear that inequalities

Ψ
(
δ2, t

∗
1

) ≤ Ψ(δ2) ≤ u∗
(
t∗1
)

(2.18)

and (due to positive definiteness of V )

Ψ(δ2, t0) > 0 = lim
t→ t0+

u∗(t) (2.19)

hold. We define a function

ω(t) := Ψ(δ2, t) − u∗(t), (2.20)

continuous on [t0, t∗1]. Taking into account inequalities ω(t0) > 0 and ω(t∗1) ≤ 0 we conclude
that there exists t2, t0 < t2 ≤ t∗1, with

Ψ(δ2, t2) = u∗(t2). (2.21)

The value Ψ(δ2, t2) is taken by V (t2, x − x1(t2)) at a point x = x2 such that ‖x2 − x1(t2)‖ = δ2

and clearly (in view of the construction) x2 /=x1(t2). The above statement is proved and (2.14)
is valid for (t2, x2) determined above.

Now consider the initial value problem

ẋ = f(t, x), x(t2) = x2. (2.22)
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Obviously t2 − t0 ≤ b/(3M) since

0 < t2 − t0 ≤ t∗1 − t0 ≤ min
{
a,

b

3M

}
≤ b

3M
(2.23)

and ‖x2 − x0‖ ≤ 2b/3 because

‖x2 − x0‖ = ‖x2 − x1(t2) + x1(t2) − x0‖

≤ ‖x2 − x1(t2)‖ + ‖x1(t2) − x0‖ = δ2 +

∥∥∥∥∥
∫ t2
t0

f(s, x1(s))ds

∥∥∥∥∥

≤ δ2 +M(t2 − t0) ≤ δ2 +M
b

3M
= δ2 +

b

3
≤ 2b

3
.

(2.24)

Peano’s theorem implies that there exists a solution x2(t) of problem (2.22) on t0 ≤ t ≤ t2. We
will show that x2(t0) = x0. Set

m(t) := V (t, x2(t) − x1(t)). (2.25)

Note that m(t2) = u∗(t2). Lemma 2.5 and condition (iv) imply

D+m(t) := lim sup
h→ 0+

m(t + h) −m(t)
h

= D+V (t, x2(t) − x1(t))

= V̇ (t, x2(t) − x1(t)) ≥ g(t, V (t, x2(t) − x1(t))) = g(t,m(t))

(2.26)

for t0 < t ≤ t2.
Applying Lemma 2.6 we get m(t) ≤ u∗(t) for t0 < t ≤ t2. As m(t) ≥ 0 for t0 < t ≤ t2 and

m is continuous at t0, we find m(t0) = 0. Therefore we have x2(t0) = x1(t0) = x0 and, as noted
above, x2(t2) = x2 /=x1(t2). Thus problem (1.1) has two different solutions.

According to the well-known Kneser theorem [17, Theorem 4.1, page 15] the set
of solutions of problem (1.1) either consists of one element or has the cardinality of the
continuum. Consequently, if problem (1.1) has two different solutions on interval [t0, t∗1] and
condition (i) is satisfied, then the set of different solutions of problem (1.1) on interval J has
the cardinality of the continuum. The proof is completed.

Remark 2.11. Note that in the scalar case with V (t, x) := |x| condition (2.11) has the form

(
f
(
t, y
) − f(t, x1(t))

) · sign
(
y − x1(t)

) ≥ g(t, ∣∣y − x1(t)
∣∣). (2.27)
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Example 2.12. Consider for a = 0.1, b = 1, t0 = 0 and x0 = 0 the scalar differential equation

ẋ = f(t, x) :=

⎧⎪⎨
⎪⎩

2x1/3 − 1
2
· t1/2 · sin

|x|
t

if t /= 0,

2x1/3 if t = 0,
(2.28)

with the initial condition x(0) = 0. Let us show that the set of different solutions of this
problem on interval J has the cardinality of R. Obviously we can set x1(t) ≡ 0. Put

g(t, u) := 2u1/3 − 1
2
· t1/2, u∗(t) := t3/2, V (t, x) := |x|. (2.29)

Conditions (i), (ii), and (iii) are satisfied. Let us verify that the last condition (iv) is valid, too.
We get

V̇
(
t, y − x1(t)

)
= V̇
(
t, y
)
=
(
sign y

) ·
[

2y1/3 − 1
2
· t1/2 · sin

∣∣y∣∣
t

]

≥ 2
∣∣y∣∣1/3 − 1

2
· t1/2 = 2V

(
t, y
)1/3 − 1

2
· t1/2 = g

(
t, V
(
t, y
))

= g
(
t, V
(
t, y − x1(t)

))
.

(2.30)

Thus, all conditions of Theorem 2.8 hold and, consequently, the set of different solutions on J
of given problem has the cardinality of R.

3. Incompatible Conditions

In this section we show that the formulation of condition (iv) in Theorem 2.8 without
knowledge of a solution of the Cauchy problem can lead to an incompatible set of conditions.
In the proof of Theorem 3.2 for the one-dimensional case we use the following result given
by Nekvinda [18, page 1].

Lemma 3.1. Let D ⊂ R
2 and let f : D → R be a continuous function in D. Let equation

ẋ = f(t, x) (3.1)

has the property of left uniqueness. For any t0 ∈ R let A be the set of all x0 ∈ R such that (t0, x0) ∈ D
and, for some ε > 0, the initial-value problem (1.1) has more than one solution in the interval [t0, t0+ε).
Then A is at most countable.

Theorem 3.2. The set of conditions (i)–(iv):

(i) f : R0 → R with R0 := {(t, x) ∈ J × R, |x − x0| ≤ b} is continuous;
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(ii) g : (t0, t0 + a] × (0,∞) → R+ is continuous, nondecreasing in the second variable, and
has the following property: there exists a continuous function u∗(t) on J , which satisfies the
differential equation

u̇(t) = g(t, u) (3.2)

for t0 < t ≤ t0 + a with u∗(t0) = 0 and does not vanish for t /= t0;

(iii) V : J × S1
2b(0) → R+ is continuous, positive definite, and Lipschitzian uniformly with

respect to t ∈ J ;
(iv) for t0 < t ≤ t0 + a, |x − x0| ≤ b, |y − x0| ≤ b, x /=y,

V̇
(
t, x − y) ≥ g(t, V (t, x − y)), (3.3)

where we define

V̇
(
t, x − y) := lim sup

h→ 0+

1
h

[
V
(
t + h, x − y + h

[
f(t, x) − f(t, y)]) − V (t, x − y)] (3.4)

contains a contradiction.

Proof. Any initial value problem

ẋ = f(t, x), x(t0) = x∗ (3.5)

with |x∗ − x0| ≤ b has at least two different solutions due to Theorem 2.8. Thus we have an
uncountable set of nonuniqueness points. We show that solutions passing through different
initial points are left unique. Suppose that it does not hold. Let x1(t) be a solution starting
from (t0, x1), and let x2(t) be a solution starting from (t0, x2) with x2 /=x1. If we assume that
these solutions cross at a point t1 > t0 and if we set

m(t) := V (t, x1(t) − x2(t)) (3.6)

then m(t0) > 0, m(t1) = 0. Therefore there exists a point t ∈ (t0, t1) such that (we apply
Lemma 2.5)

D+m(t) = D+V (t, x1(t) − x2(t)) = V̇ (t, x1(t) − x2(t)) < 0, (3.7)

in contradiction to (3.3). Thus we obtain left uniqueness. From Lemma 3.1 we conclude in
contrast to the above conclusion that the set of nonuniqueness points (t0, x∗) can be at most
countable.

In [1, Theorem 1.24.1, page 99] the following nonuniqueness result (see [14, Theorem 2.2.7,
page 55], too) is given which uses an inverse Kamke’s condition (condition (3.9) below).
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Theorem 3.3. Let g(t, u) be continuous on 0 < t ≤ a, 0 ≤ u ≤ 2b, g(t, 0) ≡ 0, and g(t, u) > 0 for
u > 0. Suppose that, for each t1, 0 < t1 < a, u(t)/≡ 0 is a differentiable function on 0 < t < t1, and
continuous on 0 ≤ t < t1 for which u̇+(0) exists,

u̇ = g(t, u), 0 < t < t1,

u(0) = u̇+(0) = 0.
(3.8)

Let f ∈ C[R0,R], where R0 : 0 ≤ t ≤ a, |x| ≤ b, and, for (t, x), (t, y) ∈ R0, t /= 0,

∣∣f(t, x) − f(t, y)∣∣ ≥ g(t, ∣∣x − y∣∣). (3.9)

Then, the scalar problem ẋ = f(t, x), x(0) = 0 has at least two solutions on 0 ≤ t ≤ a.

Remark 3.4. In the proof of Theorem 3.3 at first f(t, 0) = 0 is assumed. Putting y = 0 in (3.9)
leads to the inequality

∣∣f(t, x)∣∣ ≥ g(t, |x|). (3.10)

As f(t, x) is continuous and g(t, u) > 0 for u > 0 it follows that f(t, x) must have constant
sign for each of the half planes x > 0 and x < 0. For the upper half plane this implies that

f(t, x) ≥ g(t, x),
f(t, x) ≤ −g(t, x).

(3.11)

For the first inequality nonuniqueness is shown in [1]. But a similar argumentation cannot be
used for the second inequality as the following example in [5] shows. We consider the initial
value problem ẋ = f(t, x), x(0) = 0, with

f(t, x) =

⎧⎨
⎩
−√x if x ≥ 0
√−x if x < 0

(3.12)

and g(t, u) :=
√
u. Thus inequality |f(t, x)| =

√
|x| ≥ g(t, |x|) holds. In the upper half-plane

we have f(t, x) ≤ −g(t, x). The function u(t) = t2/4 is a nontrivial solution of the comparison
equation. Therefore all assumptions are fulfilled, but the initial value problem has at most
one solution because of Theorem 1.3.1 [1, page 10].

The next theorem analyzes in the scalar case (for (t0, x0) = (0, 0)) that even fulfilling
a rather general condition (see condition (3.14) in the following theorem) cannot ensure
nonuniqueness since the set of all conditions contains an inner contradiction. The proof was
motivated by the paper [5].
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Theorem 3.5. There exists no system of three functions f , g, and V satisfying the following
suppositions:

(i) f : R0 → R with R0 := {(t, x) ∈ R × R, 0 ≤ t ≤ a, 0 ≤ x ≤ b} is a continuous function;
(ii) the continuous function g : (0, a] × R+ → R+, g(t, 0) := 0 if t ∈ (0, a], has the following

property: there exists a continuously differentiable function u∗(t) on 0 ≤ t ≤ a, satisfying
the differential equation

u̇ = g(t, u) (3.13)

for 0 < t ≤ a such that u∗(0) = 0 and u∗(t) > 0 for t /= 0;

(iii) the continuous function V : [0, a] × S1
b
(0) → R+ is positive definite, and for all 0 < t ≤ a,

0 < x < b continuously differentiable;

(iv) for 0 < t ≤ a, 0 < y < x ≤ b,

V̇
(
t, x − y) ≥ g(t, V (t, x − y)) ≥ 0, (3.14)

where we define

V̇
(
t, x − y) := V ′1

(
t, x − y) + V ′2(t, x − y) · [f(t, x) − f(t, y)] (3.15)

and subscript indices denote the derivative with respect to the first and second argument,
respectively;

(v) there exist a positive constant ϑ and a function ξ : (0, b] → (0,∞) such that for 0 < t ≤ a
and 0 < x ≤ b

0 ≤ V ′1(t, x) ≤ ϑ · ξ(x), 0 < V ′2(t, x) ≤ ϑ ·
ξ(x)
x

,

V (t, x) ≥ ξ(x);
(3.16)

(vi) for t ∈ [0, a] and x, y with 0 < y < x ≤ b the inequality

f(t, x) − f(t, y) ≥ 0 (3.17)

holds.

Proof. Let us show that the above properties are not compatible. For fixed numbers x, y with
0 < y < x ≤ b consider the auxiliary function

F(t) :=
f(t, x) − f(t, y)

x − y + 1, t ∈ [0, a] . (3.18)
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Clearly, F is continuous and assumes a (positive) maximum. Set

K = max
[0,a]

F(t) ≥ 1. (3.19)

If the function g fulfills the inequality

g(t, u) ≤ Λ · u (3.20)

with a positive constant Λ in a domain 0 < t ≤ A ≤ a, 0 ≤ u ≤ B, B > 0, then the initial value
problem

u̇ = g(t, u), u(0) = 0 (3.21)

has the unique trivial solution u = 0. Really, since u∗(t) > 0 for t ∈ (0, a], by integrating
inequality

u̇∗(t)
u∗(t)

≤ Λ (3.22)

with limits t, A∗ ∈ (0, A) we get

u∗(A∗) ≤ u∗(t) exp[Λ(A∗ − t)] (3.23)

and for t → 0+

u∗(A∗) ≤ 0 (3.24)

which contradicts positivity of u∗. Therefore problem (3.21) has only the trivial solution.
Hence, there exist a sequence {(tn, un)} with tn ∈ (0, a], un > 0, limn→∞(tn, un) = (0, 0) and a
sequence {λn}, λn > 0, with limn→∞λn =∞ such that the inequality

g(tn, un) > λnun (3.25)

holds for every n. Consider now the relation

V (t, x) = 0. (3.26)

Due to the properties of V we conclude that for all sufficiently small positive numbers tn, un
(i.e., for all sufficiently large n) there exists a (sufficiently small and positive) number ũn such
that the equation

V (tn, x) = un (3.27)
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has the solution x = ũn. Thus a sequence {ũn} with ũn > 0 and limn→∞ũn = 0 corresponds to
the sequence {(tn, un)}. For every n define a number jn as

jn =
⌈
x − y
ũn

− 1
⌉
, (3.28)

where ·� is the ceiling function. Without loss of generality we can suppose that

x − y
ũn

> 4. (3.29)

Obviously,

x − y
ũn

− 1 ≤ jn <
x − y
ũn

. (3.30)

Moreover, without loss of generality we can suppose that for every sufficiently large n the
inequality

λn > 2ϑK (3.31)

holds. Set

x0 := y,

x1 := y + ũn,

x2 := y + 2ũn,

...

xjn := y + jn · ũn,
xjn+1 := x.

(3.32)

Consider for all sufficiently large n the expression

En := jnV ′1(tn, ũn) + V
′
2(tn, ũn) ·

[
f(tn, x) − f

(
tn, y

)]
. (3.33)
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Then

En = jnV ′1(tn, ũn) + V
′
2(tn, ũn) ·

jn+1∑
i=1

[
f(tn, xi) − f(tn, xi−1)

]

= jnV ′1(tn, ũn) + V
′
2(tn, ũn) ·

jn∑
i=1

[
f(tn, xi) − f(tn, xi−1)

]
+
[
f(tn, x) − f

(
tn, xjn

)]

≥ [due to (vi)] ≥ jnV ′1(tn, ũn) + V ′2(tn, ũn) ·
jn∑
i=1

[
f(tn, xi) − f(tn, xi−1)

]

= [due to (iv) and (v)] = jnV ′1(tn, ũn) + V
′
2(tn, ũn) · jn

[−V ′1(tn, ũn) + V̇ (tn, ũn)
V ′2(tn, ũn)

]

≥ [due to (iv)]

≥ jnV ′1(tn, ũn) + V ′2(tn, ũn) · jn
[−V ′1(tn, ũn) + g(tn, V (tn, ũn))

V ′2(tn, ũn)

]

= jn · g(tn, V (tn, ũn)) = [due to (3.27)] = jn · g(tn, un) ≥ [due to (3.25)]

≥ jnλnun ≥ [due to (3.31)] ≥ jnun · 2ϑK ≥ [due to (3.30)]

≥
(
x − y
ũn

− 1
)
un · 2ϑK

=
(
x − y
ũn

− 1
)
V (tn, ũn) · 2ϑK

≥ [due to (3.16) ] ≥
(
x − y
ũn

− 1
)
ξ(ũn) · 2ϑK

=
(
x − y − ũn

) · ξ(ũn)
ũn

· 2ϑK

≥ [due to (3.29)] ≥ 3
4
· (x − y) · 2ϑK · ξ(ũn)

ũn

=
3
2
· (x − y) · ϑK · ξ(ũn)

ũn
> 0.

(3.34)

Estimating the expression En from above we get (see (3.32))

En ≤
x − y
ũn

V ′1(tn, ũn) + V
′
2(tn, ũn) ·

[
f(tn, x) − f

(
tn, y

)]

≤ [due to (v)]

≤ x − y
ũn

· ϑ · ξ(ũn) + ϑ · ξ(ũn)
ũn

· (K − 1)
(
x − y) = ϑ · ξ(ũn)

ũn
·K(x − y).

(3.35)
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These two above estimations yield

0 <
3
2
· (x − y) · ϑK · ξ(ũn)

ũn
≤ En ≤

(
x − y) · ϑK · ξ(ũn)

ũn
, (3.36)

in contrast to (3/2) � 1. Since the initially taken points x and y, 0 < y < x, can be chosen
arbitrarily close to zero, the theorem is proved.

The following result is a consequence of Theorem 3.5 if V (t, x) := |x|, ξ(x) := x and ϑ = 1.
Condition (3.38) below was discussed previously in [5].

Theorem 3.6. There exists no system of two functions f and g satisfying the following suppositions:

(i) f : R0 → R with R0 := {(t, x) ∈ R × R, 0 ≤ t ≤ a, 0 ≤ x ≤ b} is a continuous function;
(ii) the continuous function g : (0, a] × R+ → R+, g(t, 0) := 0 if t ∈ (0, a], has the following

property: there exists a continuously differentiable function u∗(t) on 0 ≤ t ≤ a, satisfying
the differential equation

u̇(t) = g(t, u) (3.37)

for 0 < t ≤ a such that u∗(0) = 0 and u∗(t) > 0 for t /= 0;

(iii) for 0 < t ≤ a, 0 < y < x ≤ b

f(t, x) − f(t, y) ≥ g(t, x − y) ≥ 0; (3.38)

(iv) for 0 < y < x ≤ b the inequality f(0, x) − f(0, y) ≥ 0 holds.

Remark 3.7. Let us note that in the singular case, that is, when we permit that the function
f(t, x) is not continuous at t = 0, the given sets of conditions in Theorems 3.5 and 3.6 can
be compatible. This can be seen from the proof where the continuity of f is substantial. Such
singular case was considered in [13].
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We study oscillation properties of 2n-order Sturm-Liouville difference equations. For these
equations, we show a conjugacy criterion using the p-criticality (the existence of linear dependent
recessive solutions at ∞ and −∞). We also show the equivalent condition of p-criticality for one
term 2n-order equations.

1. Introduction

In this paper, we deal with 2n-order Sturm-Liouville difference equations and operators

L
(
y
)
k =

n∑
ν=0

(−Δ)ν
(
r
[ν]
k

Δνyk+n−ν
)
= 0, r

[n]
k

> 0, k ∈ Z, (1.1)

where Δ is the forward difference operator, that is, Δyk = yk+1 − yk, and r[ν], ν = 0, . . . , n, are
real-valued sequences. The main result is the conjugacy criterion which we formulate for the
equation L(y)k + qkyk+n = 0, that is viewed as a perturbation of (1.1), and we suppose that
(1.1) is at least p-critical for some p ∈ {1, . . . , n}. The concept of p-criticality (a disconjugate
equation is said to be p-critical if and only if it possesses p solutions that are recessive both
at∞ and −∞, see Section 3) was introduced for second-order difference equations in [1], and
later in [2] for (1.1). For the continuous counterpart of the used techniques, see [3–5] from
where we get an inspiration for our research.

The paper is organized as follows. In Section 2, we recall necessary preliminaries.
In Section 3, we recall the concept of p-criticality, as introduced in [2], and show the first
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result—the equivalent condition of p-criticality for the one term difference equation

Δn(rkΔnyk
)
= 0 (1.2)

(Theorem 3.4). In Section 4 we show the conjugacy criterion for equation

(−Δ)n
(
rkΔnyk

)
+ qkyk+n = 0, (1.3)

and Section 5 is devoted to the generalization of this criterion to the equation with the middle
terms

n∑
ν=0

(−Δ)ν
(
r
[ν]
k Δνyk+n−ν

)
+ qkyk+n = 0. (1.4)

2. Preliminaries

The proof of our main result is based on equivalency of (1.1) and the linear Hamiltonian
difference systems

Δxk = Axk+1 + Bkuk, Δuk = Ckxk+1 −ATuk, (2.1)

where A,Bk, and Ck are n×n matrices of which Bk and Ck are symmetric. Therefore, we start
this section recalling the properties of (2.1), which we will need later. For more details, see
the papers [6–11] and the books [12, 13].

The substitution

x
[y]
k

=

⎛
⎜⎜⎜⎜⎜⎜⎝

yk+n−1

Δyk+n−2

...

Δn−1yk

⎞
⎟⎟⎟⎟⎟⎟⎠
, u

[y]
k

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
ν=1

(−Δ)ν−1
(
r
[ν]
k Δνyk+n−ν

)

...

−Δ
(
r
[n]
k

Δnyk
)
+ r[n−1]

k
Δn−1yk+1

r
[n]
k

Δnyk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

transforms (1.1) to linear Hamiltonian system (2.1) with the n × n matrices A,Bk, and Ck

given by

A =
(
aij

)n
i,j=1, aij =

⎧⎨
⎩

1, if j = i + 1, i = 1, . . . , n − 1,

0, elsewhere,

Bk = diag

⎧⎨
⎩0, . . . , 0,

1

r
[n]
k

⎫⎬
⎭, Ck = diag

{
r
[0]
k
, . . . , r

[n−1]
k

}
.

(2.3)

Then, we say that the solution (x, u) of (2.1) is generated by the solution y of (1.1).
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Let us consider, together with system (2.1), the matrix linear Hamiltonian system

ΔXk = AXk+1 + BkUk, ΔUk = CkXk+1 −ATUk, (2.4)

where the matrices A,Bk, and Ck are also given by (2.3). We say that the matrix solution
(X,U) of (2.4) is generated by the solutions y[1], . . . , y[n] of (1.1) if and only if its columns
are generated by y[1], . . . , y[n], respectively, that is, (X,U) = (x[y1], . . . , x[yn], u[y1], . . . , u[yn]).
Reversely, if we have the solution (X,U) of (2.4), the elements from the first line of the
matrix X are exactly the solutions y[1], . . . , y[n] of (1.1). Now, we can define the oscillatory
properties of (1.1) via the corresponding properties of the associated Hamiltonian system
(2.1) with matrices A,Bk, and Ck given by (2.3), for example, (1.1) is disconjugate if and only
if the associated system (2.1) is disconjugate, the system of solutions y[1], . . . , y[n] is said to be
recessive if and only if it generates the recessive solution X of (2.4), and so forth. Therefore,
we define the following properties just for linear Hamiltonian systems.

For system (2.4), we have an analog of the continuous Wronskian identity. Let (X,U)
and (X̃, Ũ) be two solutions of (2.4). Then,

XT
k Ũk −UT

k X̃k ≡W (2.5)

holds with a constant matrix W . We say that the solution (X,U) of (2.4) is a conjoined basis, if

XT
kUk ≡ UT

kXk, rank

(
X

U

)
= n. (2.6)

Two conjoined bases (X,U), (X̃, Ũ) of (2.4) are called normalized conjoined bases of (2.4) if
W = I in (2.5) (where I denotes the identity operator).

System (2.1) is said to be right disconjugate in a discrete interval [l,m], l,m ∈ Z, if the
solution

(
X
U

)
of (2.4) given by the initial condition Xl = 0, Ul = I satisfies

kerXk+1 ⊆ kerXk, XkX
†
k+1(I −A)−1Bk ≥ 0, (2.7)

for k = l, . . . , m − 1, see [6]. Here ker, †, and ≥ stand for kernel, Moore-Penrose generalized
inverse, and nonnegative definiteness of the matrix indicated, respectively. Similarly, (2.1) is
said to be left disconjugate on [l,m], if the solution given by the initial condition Xm = 0,
Um = −I satisfies

kerXk ⊆ kerXk+1, Xk+1X
†
k
Bk(I −A)T−1 ≥ 0, k = l, . . . , m − 1. (2.8)

System (2.1) is disconjugate on Z, if it is right disconjugate, which is the same as left
disconjugate, see [14, Theorem 1], on [l,m] for every l,m ∈ Z, l < m. System (2.1) is said to be
nonoscillatory at∞ (nonoscillatory at −∞), if there exists l ∈ Z such that it is right disconjugate
on [l,m] for every m > l (there exists m ∈ Z such that (2.1) is left disconjugate on [l,m] for
every l < m).
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We call a conjoined basis
(
X̃
Ũ

)
of (2.4) the recessive solution at∞, if the matrices X̃k are

nonsingular, X̃kX̃
−1
k+1(I − Ak)

−1Bk ≥ 0 (both for large k), and for any other conjoined basis(
X
U

)
, for which the (constant) matrix XTŨ −UTX̃ is nonsingular, we have

lim
k→∞

X−1
k X̃k = 0. (2.9)

The solution (X,U) is called the dominant solution at ∞. The recessive solution at ∞ is
determined uniquely up to a right multiple by a nonsingular constant matrix and exists
whenever (2.4) is nonoscillatory and eventually controllable. (System is said to be eventually
controllable if there exist N,κ ∈ N such that for any m ≥ N the trivial solution ( xu ) =

(
0
0

)
of (2.1) is the only solution for which xm = xm+1 = · · · = xm+κ = 0.) The equivalent
characterization of the recessive solution

(
X̃
Ũ

)
of eventually controllable Hamiltonian

difference systems (2.1) is

lim
k→∞

(∑
kX̃−1

j+1(I −A)−1BjX̃
T−1
j

)−1
= 0, (2.10)

see [12]. Similarly, we can introduce the recessive and the dominant solutions at −∞. For
related notions and results for second-order dynamic equations, see, for example, [15, 16].

We say that a pair (x, u) is admissible for system (2.1) if and only if the first equation in
(2.1) holds.

The energy functional of (1.1) is given by

F(y) :=
∞∑

k=−∞

n∑
ν=0

r
[ν]
k

(
Δνyk+n−ν

)2
. (2.11)

Then, for admissible (x, u), we have

F(y) =
∞∑

k=−∞

n∑
ν=0

r
[ν]
k

(
Δνyk+n−ν

)2

=
∞∑

k=−∞

⎡
⎣n−1∑
ν=0

r
[ν]
k

(
Δνyk+n−ν

)2 +
1

r
[n]
k

(
r
[n]
k

Δnyk
)2

⎤
⎦

=
∞∑

k=−∞

[
xTk+1Ckxk+1 + uTkBkuk

]
=: F(x, u).

(2.12)

To prove our main result, we use a variational approach, that is, the equivalency of
disconjugacy of (1.1) and positivity of F(x, u); see [6].

Now, we formulate some auxiliary results, which are used in the proofs of Theorems
3.4 and 4.1. The following Lemma describes the structure of the solution space of

Δn(rkΔnyk
)
= 0, rk > 0. (2.13)
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Lemma 2.1 (see [17, Section 2]). Equation (2.13) is disconjugate on Z and possesses a system of
solutions y[j], ỹ[j], j = 1, . . . , n, such that

y[1] ≺ · · · ≺ y[n] ≺ ỹ[1] ≺ · · · ≺ ỹ[n] (2.14)

as k → ∞, where f ≺ g as k → ∞ for a pair of sequences f, g means that limk→∞(fk/gk) = 0.
If (2.14) holds, the solutions y[j] form the recessive system of solutions at ∞, while ỹ[j] form the
dominant system, j = 1, . . . , n. The analogous statement holds for the ordered system of solutions as
k → −∞.

Now, we recall the transformation lemma.

Lemma 2.2 (see [14, Theorem 4]). Let hk > 0, L(y) =
∑n

ν=0(−Δ)ν(r[ν]k Δνyk+n−ν) and consider
the transformation yk = hkzk. Then, one has

hk+nL
(
y
)
=

n∑
ν=0

(−Δ)ν
(
R

[ν]
k

Δνzk+n−ν
)
, (2.15)

where

R
[n]
k

= hk+nhkr
[n]
k
, R

[0]
k

= hk+nL(h), (2.16)

that is, y solves L(y) = 0 if and only if z solves the equation

n∑
ν=0

(−Δ)ν
(
R

[ν]
k

Δνzk+n−ν
)
= 0. (2.17)

The next lemma is usually called the second mean value theorem of summation calculus.

Lemma 2.3 (see [17, Lemma 3.2]). Let n ∈ N and the sequence ak be monotonic for k ∈ [K + n −
1, L+ n− 1] (i.e., Δak does not change its sign for k ∈ [K + n− 1, L+ n− 2]). Then, for any sequence
bk there exist n1, n2 ∈ [K,L − 1] such that

L−1∑
j=K

an+jbj ≤ aK+n−1

n1−1∑
i=K

bi + aL+n−1

L−1∑
i=n1

bi,

L−1∑
j=K

an+jbj ≥ aK+n−1

n2−1∑
i=K

bi + aL+n−1

L−1∑
i=n2

bi.

(2.18)

Now, let us consider the linear difference equation

yk+n + a
[n−1]
k yk+n−1 + · · · + a[0]k yk = 0, (2.19)

where k ≥ n0 for some n0 ∈ N and a
[0]
k /= 0, and let us recall the main ideas of [18] and [19,

Chapter IX].
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An integerm > n0 is said to be a generalized zero of multiplicity k of a nontrivial solution
y of (2.19) if ym−1 /= 0, ym = ym+1 = · · · = ym+k−2 = 0, and (−1)kym−1ym+k−1 ≥ 0. Equation (2.19)
is said to be eventually disconjugate if there exists N ∈ N such that no non-trivial solution of
this equation has n or more generalized zeros (counting multiplicity) on [N,∞).

A system of sequences u[1]
k
, . . . , u

[n]
k

is said to form the D-Markov system of sequences
for k ∈ [N,∞) if Casoratians

C
(
u[1], . . . , u[j]

)
k
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u
[1]
k

· · · u
[j]
k

u
[1]
k+1 · · · u

[j]
k+1

...
...

u
[1]
k+j−1 · · · u

[j]
k+j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, j = 1, . . . , n (2.20)

are positive on (N + j,∞).

Lemma 2.4 (see [19, Theorem 9.4.1]). Equation (2.19) is eventually disconjugate if and only if
there existN ∈ N and solutions y[1], . . . , y[n] of (2.19) which form a D-Markov system of solutions
on (N,∞). Moreover, this system can be chosen in such a way that it satisfies the additional condition

lim
k→∞

y
[i]
k

y
[i+1]
k

= 0, i = 1, . . . , n − 1. (2.21)

3. Criticality of One-Term Equation

Suppose that (1.1) is disconjugate on Z and let ŷ[i] and ỹ[i], i = 1, . . . , n, be the recessive
systems of solutions of L(y) = 0 at −∞ and∞, respectively. We introduce the linear space

H = Lin
{
ŷ[1], . . . , ŷ[n]

}
∩ Lin

{
ỹ[1], . . . , ỹ[n]

}
. (3.1)

Definition 3.1 (see [2]). Let (1.1) be disconjugate on Z and let dimH = p ∈ {1, . . . , n}. Then,
we say that the operator L (or (1.1)) is p-critical on Z. If dimH = 0, we say that L is subcritical
on Z. If (1.1) is not disconjugate on Z, that is, L /≥ 0, we say that L is supercritical on Z.

To prove the result in this section, we need the following statements, where we use the
generalized power function

k(0) = 1, k(i) = k(k − 1) · · · (k − i + 1), i ∈ N. (3.2)

For reader’s convenience, the first statement in the following lemma is slightly more general
than the corresponding one used in [2] (it can be verified directly or by induction).
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Lemma 3.2 (see [2]). The following statements hold.
(i) Let zk be any sequence,m ∈ {0, . . . , n}, and

yk :=
k−1∑
j=0

(
k − j − 1

)(n−1)
zj , (3.3)

then

Δmyk =

⎧⎪⎪⎨
⎪⎪⎩
(n − 1)(m)

k−1∑
j=0

(
k − j − 1

)(n−1−m)
zj , m ≤ n − 1,

(n − 1)!zk, m = n.

(3.4)

(ii) The generalized power function has the binomial expansion

(
k − j)(n) = n∑

i=0
(−1)i

(
n

i

)
k(n−i)

(
j + i − 1

)(i)
. (3.5)

We distinguish two types of solutions of (2.13). The polynomial solutions k(i), i = 0, . . . , n − 1,
for which Δnyk = 0, and nonpolynomial solutions

k−1∑
j=0

(
k − j − 1

)(n−1)
j(i)r−1

j , i = 0, . . . , n − 1, (3.6)

for which Δnyk /= 0. (Using Lemma 3.2(i) we obtain Δnyk = (n − 1)!k(i)r−1
k

.)
Now, we formulate one of the results of [20].

Proposition 3.3 (see [20, Theorem 4]). If for some m ∈ {0, . . . , n − 1}

0∑
k=−∞

[
k(n−m−1)

]2
r−1
k =∞ =

∞∑
k=0

[
k(n−m−1)

]2
r−1
k , (3.7)

then

Lin
{

1, . . . , k(m)
}
⊆ H, (3.8)

that is, (2.13) is at least (m + 1)-critical on Z.

Now, we show that (3.7) is also sufficient for (2.13) to be at least (m + 1)-critical.

Theorem 3.4. Letm ∈ {0, . . . , n − 1}. Equation (2.13) is at least (m + 1)-critical if and only if (3.7)
holds.
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Proof. Let V+ and V− denote the subspaces of the solution space of (2.13) generated by the
recessive system of solutions at ∞ and −∞, respectively. Necessity of (3.7) follows directly
from Proposition 3.3. To prove sufficiency, it suffices to show that if one of the sums in (3.7) is
convergent, then {1, . . . , k(m)} /⊆ V+ ∩ V−. We show this statement for the sum

∑∞. The other
case is proved similarly, so it will be omitted. Particularly, we show

∞∑
k=0

[
k(n−m−1)

]2
r−1
k <∞ =⇒ k(m) /∈ V+. (3.9)

Let us denote p := n − m − 1, and let us consider the following nonpolynomial solutions of
(2.13):

y
[�]
k

=
k−1∑
j=0

(
k − j − 1

)(n−1)
j(p+�−1)r−1

j −
p∑
i=0

⎡
⎣(−1)i

(
n − 1

i

)
(k − 1)(n−1−i)

∞∑
j=0

j(p+�−1)(j + i − 1
)(i)

r−1
j

⎤
⎦,

(3.10)

where � = 1 − p, . . . ,m + 1. By Stolz-Cesàro theorem, since (using Lemma 3.2(i)) Δny
[�]
k

=
(n − 1)!k(p+�−1)r−1

k , these solutions are ordered, that is, y[i] ≺ y[i+1], i = 1 − p, . . . ,m, as well as
the polynomial solutions, that is, k(i) ≺ k(i+1), i = 0, . . . , n − 2.

By some simple calculation and by Lemma 3.2 (at first, we use (i), and at the end, we
use (ii)), we have

Δmy
[1]
k

=
(n − 1)!

(n −m − 1)!

k−1∑
j=0

(
k − j − 1

)(n−m−1)
j(p)r−1

j

−
p∑
i=0

⎡
⎣(−1)i

(
n − 1

i

)
(n − 1 − i)!

(n −m − 1 − i)! (k − 1)(n−m−1−i)
∞∑
j=0

j(p)
(
j + i − 1

)(i)
r−1
j

⎤
⎦

=
(n − 1)!
p!

k−1∑
j=0

(
k − j − 1

)(p)
j(p)r−1

j

−
p∑
i=0

⎡
⎣(−1)i

(n − 1)!(n − 1 − i)!
(n − 1 − i)!i!(p − i)!

(k − 1)(p−i)
∞∑
j=0

j(p)
(
j + i − 1

)(i)
r−1
j

⎤
⎦

=
(n − 1)!
p!

⎧⎨
⎩

k−1∑
j=0

(
k − j − 1

)(p)
j(p)r−1

j −
p∑
i=0

⎡
⎣(−1)i

(
p

i

)
(k − 1)(p−i)

∞∑
j=0

j(p)
(
j + i − 1

)(i)
r−1
j

⎤
⎦
⎫⎬
⎭

=
(n − 1)!
p!

⎡
⎣k−1∑
j=0

(
k − j − 1

)(p)
j(p)r−1

j −
∞∑
j=0

(
k − j − 1

)(p)
j(p)r−1

j

⎤
⎦
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= − (n − 1)!
p!

∞∑
j=k

(
k − j − 1

)(p)
j(p)r−1

j

= (−1)p+1 (n − 1)!
p!

∞∑
j=k

(
j + 1 − k)(p)j(p)r−1

j ,

∞∑
j=k

(
j + 1 − k)(p)j(p)r−1

j ≤
∞∑
j=k

[
j(p)

]2
r−1
j .

(3.11)

Hence, from this and by Stolz-Cesàro theorem, we get

lim
k→∞

y
[1]
k

k(m)
=

1
m!

lim
k→∞

Δmy
[1]
k

= 0, (3.12)

thus y[1]
k ≺ k(m). We obtained that {1, k, . . . , k(m−1), y[1−p], . . . , y[1]} ≺ k(m), which means that

we have n solutions less than k(m), therefore k(m) /∈ V+ and (2.13) is at most m-critical.

4. Conjugacy of Two-Term Equation

In this section, we show the conjugacy criterion for two-term equation.

Theorem 4.1. Let n > 1, qk be a real-valued sequence, and let there exist an integerm ∈ {0, . . . , n−1}
and real constants c0, . . . , cm such that (2.13) is at least (m + 1)-critical and the sequence hk :=
c0 + c1k + · · · + cmk(m) satisfies

lim sup
K↓−∞, L↑∞

L∑
k=K

qkh
2
k+n ≤ 0. (4.1)

If q /≡ 0, then

(−Δ)n
(
rkΔnyk

)
+ qkyk+n = 0 (4.2)

is conjugate on Z.

Proof. We prove this theorem using the variational principle; that is, we find a sequence y ∈
�2

0(Z) such that the energy functional F(y) =
∑∞

k=−∞[rk(Δ
nyk)

2 + qky2
k+n] < 0.

At first, we estimate the first term of F(y). To do this, we use the fact that this term is
an energy functional of (2.13). Let us denote it by F̃ that is,

F̃
(
y
)
=

∞∑
k=−∞

rk
(
Δnyk

)2
. (4.3)
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Using the substitution (2.2), we find out that (2.13) is equivalent to the linear Hamiltonian
system (2.1) with the matrix Ck ≡ 0; that is,

Δxk = Akxk+1 + Bkuk, Δuk = −ATuk, (4.4)

and to the matrix system

ΔXk = AkXk+1 + BkUk, ΔUk = −ATUk. (4.5)

Now, let us denote the recessive solutions of (4.5) at −∞ and ∞ by (X−, U−) and (X+, U+),
respectively, such that the first m + 1 columns of X+ and X− are generated by the sequences
1, k, . . . , k(m). Let K,L,M, and N be arbitrary integers such that N −M > 2n,M−L > 2n, and
L −K > 2n (some additional assumptions on the choice of K,L,M,N will be specified later),
and let (x[f], u[f]) and (x[g], u[g]) be the solutions of (4.4) given by the formulas

x
[f]
k

= X−k

⎛
⎝k−1∑

j=K

B−j

⎞
⎠

⎛
⎝L−1∑

j=K

B−j

⎞
⎠
−1(

X−L
)−1

x
[h]
L ,

u
[f]
k

= U−k

⎛
⎝k−1∑

j=K

B−j

⎞
⎠

⎛
⎝L−1∑

j=K

B−j

⎞
⎠
−1(

X−L
)−1

x
[h]
L +

(
X−k

)T−1

⎛
⎝L−1∑

j=K

B−j

⎞
⎠
−1(

X−L
)−1

x
[h]
L ,

x
[g]
k

= X+
k

⎛
⎝N−1∑

j=k

B+j

⎞
⎠

⎛
⎝N−1∑

j=M

B+j

⎞
⎠
−1(

X+
M

)−1
x
[h]
M ,

u
[g]
k

= U+
k

⎛
⎝N−1∑

j=k

B+j

⎞
⎠

⎛
⎝N−1∑

j=M

B+j

⎞
⎠
−1(

X+
M

)−1
x
[h]
M −

(
X+
k

)T−1

⎛
⎝N−1∑

j=M

B+j

⎞
⎠
−1(

X+
M

)−1
x
[h]
M ,

(4.6)

where

B−k =
(
X−k+1

)−1(I −A)−1Bk
(
X−k

)T−1
,

B+k =
(
X+
k+1

)−1(I −A)−1Bk
(
X+
k

)T−1
,

(4.7)

and (x[h], u[h]) is the solution of (4.4) generated by h. By a direct substitution, and using the
convention that

∑k−1
k = 0, we obtain

x
[f]
K = 0, x

[f]
L = x[h]

L , x
[g]
M = x[h]

M , x
[g]
N = 0. (4.8)

Now, from (4.1), together with the assumption q /≡ 0, we have that there exist k̃ ∈ Z and ε > 0
such that qk̃ ≤ −ε. Because the numbers K,L,M, and N have been “almost free” so far, we
may choose them such that L < k̃ < M − n − 1.
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Let us introduce the test sequence

yk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k ∈ (−∞, K − 1],

fk, k ∈ [K,L − 1],

hk(1 +Dk), k ∈ [L,M − 1],

gk, k ∈ [M,N − 1],

0, k ∈ [N,∞),

(4.9)

where

Dk =

⎧⎨
⎩
δ > 0, k = k̃ + n,

0, otherwise.
(4.10)

To finish the first part of the proof, we use (4.4) to estimate the contribution of the term

F̃
(
y
)
=

∞∑
k=−∞

rk
(
Δnyk

)2 =
∞∑

k=−∞
u
[y]T
k

Bku
[y]
k

=
N−1∑
k=K

u
[y]T
k

Bku
[y]
k
. (4.11)

Using the definition of the test sequence y, we can split F̃ into three terms. Now, we estimate
two of them as follows. Using (4.4), we obtain

L−1∑
k=K

u
[f]T
k

Bku
[f]
k

=
L−1∑
k=K

[
u
[f]T
k

(
Δx[f]

k
−Ax[f]

k+1

)]
=

L−1∑
k=K

[
u
[f]T
k

Δx[f]
k
− u[f]T

k
Ax

[f]
k+1

]

=
L−1∑
k=K

[
Δ
(
u
[f]T
k

x
[f]
k

)
−Δu[f]T

k
x
[f]
k+1 − u

[f]T
k

Ax
[f]
k+1

]

=
L−1∑
k=K

[
Δ
(
u
[f]T
k

x
[f]
k

)
− x[f]T

k+1

(
Δu[f]

k
+ATu

[f]
k

)]
= u

[f]T
k

x
[f]
k

∣∣∣L
K
= x[f]T

L u
[f]
L

= x[h]T
L

⎡
⎢⎣U−L(X−L)−1

x
[h]
L +

(
X−L

)T−1

⎛
⎝L−1∑

j=K

B−j

⎞
⎠
−1(

X−L
)−1

x
[h]
L

⎤
⎥⎦

= x[h]T
L

(
X−L

)T−1

⎛
⎝L−1∑

j=K

B−j

⎞
⎠
−1(

X−L
)−1

x
[h]
L =: G,

(4.12)
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where we used the fact that x[h]T
L U−L(X

−
L)
−1x

[h]
L ≡ 0 (recall that the last n − m − 1 entries of

x
[h]
L are zeros and that the first m + 1 columns of X− and U− are generated by the solutions

1, . . . , k(m)). Similarly,

N−1∑
k=M

u
[g]T
k Bku

[g]
k = −x[g]T

M u
[g]
M = x[h]T

M

(
X+
M

)T−1

⎛
⎝N−1∑

j=M

B+j

⎞
⎠
−1(

X+
M

)−1
x
[h]
M =:H. (4.13)

Using property (2.10) of recessive solutions of the linear Hamiltonian difference systems, we
can see that G → 0 as K → −∞ andH → 0 as N → ∞. We postpone the estimation of the
middle term of F̃ to the end of the proof.

To estimate the second term of F(y), we estimate at first its terms

L−1∑
k=K

qkf
2
k+n,

N−1∑
k=M

qkg
2
k+n. (4.14)

For this estimation, we use Lemma 2.3. To do this, we have to show the monotonicity of the
sequences

fk
hk

for k ∈ [K + n − 1, L + n − 1],

gk
hk

for k ∈ [M + n − 1,N + n − 1].

(4.15)

Let x[1], . . . , x[2n] be the ordered system of solutions of (2.13) in the sense of Lemma 2.1. Then,
again by Lemma 2.1, there exist real numbers d1, . . . , dn such that h = d1x

[1] + · · · + dnx[n].
Because h/≡ 0, at least one coefficient di is nonzero. Therefore, we can denote p := max{i ∈
[1, n] : di /= 0}, and we replace the solution x[p] by h. Let us denote this new system again
x[1], . . . , x[2n] and note that this new system has the same properties as the original one.

Following Lemma 2.2, we transform (2.13) via the transformation yk = hkzk, into

n∑
ν=0

(−Δ)ν
(
R

[ν]
k

Δνzk+n−ν
)
= 0, (4.16)

that is,

(−Δ)n
(
rkhkhk+nΔn−1wk

)
+ · · · −Δ

(
R

[1]
k wk+n−1

)
= 0 (4.17)
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possesses the fundamental system of solutions

w[1] = −Δ
(
x[1]

h

)
, . . . , w[p−1] = −Δ

(
x[p−1]

h

)
,

w[p] = Δ

(
x[p+1]

h

)
, . . . , w[2n−1] = Δ

(
x[2n]

h

)
.

(4.18)

Now, let us compute the Casoratians

C
(
w[1]

)
= w[1] = −Δ

(
x[1]

h

)
=
C
(
x[1], h

)
hkhk+1

> 0,

C
(
w[1], w[2]

)
=
C
(
x[1], x[2], h

)
hkhk+1hk+2

> 0,

...

C
(
w[1], . . . , w[2n−1]

)
=
C
(
x[1], . . . , x[p−1], x[p+1], . . . , x[2n], h

)
hk · · ·hk+2n−1

> 0.

(4.19)

Hence,w[1], . . . , w[2n−1] form the D-Markov system of sequences on [M,∞), forM sufficiently
large. Therefore, by Lemma 2.4, (4.17) is eventually disconjugate; that is, it has at most 2n − 2
generalized zeros (counting multiplicity) on [M,∞). The sequence Δ(g/h) is a solution of
(4.17), and we have that this sequence has generalized zeros of multiplicity n − 1 both at M
and at N; that is,

Δ
(
gM+i

hM+i

)
= 0 = Δ

(
gN+i

hN+i

)
, i = 0, . . . , n − 2. (4.20)

Moreover, gM/hM = 1 and gN/hN = 0. Hence, Δ(gk/hk) ≤ 0, k ∈ [M,N + n − 1]. We can
proceed similarly for the sequence f/h.

Using Lemma 2.3, we have that there exist integers ξ1 ∈ [K,L − 1] and ξ2 ∈ [M,N − 1]
such that

L−1∑
k=K

qkf
2
k+n =

L−1∑
k=K

[
qkh

2
k+n

(
fk+n
hk+n

)2
]
≤

L−1∑
k=ξ1

qkh
2
k+n,

N−1∑
k=M

qkg
2
k+n =

N−1∑
k=M

[
qkh

2
k+n

(
gk+n
hk+n

)2
]
≤

ξ2−1∑
k=M

qkh
2
k+n.

(4.21)
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Finally, we estimate the remaining term of F(y). By (4.9), we have

M−1∑
k=L

[
rk
(
Δnyk

)2 + qky2
k+n

]

=
M−1∑
k=L

{
rk[Δnhk + Δn(hkDk)]

2 + qk(hk+n + hk+nDk+n)
2
}

=
M−1∑
k=L

{
rk[Δn(hkDk)]

2 + qkh2
k+n + 2qkh2

k+nDk+n + qkh2
k+nD

2
k+n

}

=
k̃+n∑
k=k̃

{
rk[Δn(hkDk)]

2
}
+
M−1∑
k=L

[
qkh

2
k+n

]
+ 2qk̃h

2
k̃+n

Dk̃+n + qk̃h
2
k̃+n

D2
k̃+n

=
k̃+n∑
k=k̃

⎧⎨
⎩rk

[
(−1)k−k̃

(
n

k − k̃

)
hk̃+nδ

]2
⎫⎬
⎭ +

M−1∑
k=L

[
qkh

2
k+n

]
+ 2δqk̃h

2
k̃+n

+ δ2qk̃h
2
k̃+n

≤ δ2h2
k̃+n

k̃+n∑
k=k̃

⎡
⎣rk

(
n

k − k̃

)2⎤
⎦ +

M−1∑
k=L

[
qkh

2
k+n

]
− 2δεh2

k̃+n
− δ2εh2

k̃+n

< δ2h2
k̃+n

k̃+n∑
k=k̃

⎡
⎣rk

(
n

k − k̃

)2⎤
⎦ +

M−1∑
k=L

[
qkh

2
k+n

]
− 2δεh2

k̃+n
.

(4.22)

Altogether, we have

F
(
y
)
< δ2h2

k̃+n

k̃+n∑
k=k̃

⎡
⎣rk

(
n

k − k̃

)2⎤
⎦ +

M−1∑
k=L

[
qkh

2
k+n

]
− 2δεh2

k̃+n
+ G +H +

L−1∑
k=ξ1

qkh
2
k+n +

ξ2−1∑
k=M

qkh
2
k+n

= δ2h2
k̃+n

k̃+n∑
k=k̃

⎡
⎣rk

(
n

k − k̃

)2⎤
⎦ − 2δεh2

k̃+n
+ G +H +

ξ2−1∑
k=ξ1

qkh
2
k+n,

(4.23)

where for K sufficiently small is G < δ2/3, for N sufficiently large is H < δ2/3, and, from
(4.1),

∑ξ2−1
k=ξ1

qkh
2
k+n < δ

2/3 for ξ1 < L and ξ2 > M. Therefore,

F
(
y
)
< δ2 + δ2h2

k̃+n

k̃+n∑
k=k̃

⎡
⎣rk

(
n

k − k̃

)2⎤
⎦ − 2δεh2

k̃+n

= δ

⎧⎨
⎩δ

⎡
⎣1 + h2

k̃+n

k̃+n∑
k=k̃

⎡
⎣rk

(
n

k − k̃

)2⎤
⎦
⎤
⎦ − εh2

k̃+n

⎫⎬
⎭,

(4.24)

which means that F(y) < 0 for δ sufficiently small, and (4.2) is conjugate on Z.
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5. Equation with the Middle Terms

Under the additional condition qk ≤ 0 for large |k|, and by combining of the proof of
Theorem 4.1 with the proof of [2, Lemma 1], we can establish the following criterion for the
full 2n-order equation.

Theorem 5.1. Let n > 1, qk be a real-valued sequence, and let there exist an integerm ∈ {0, . . . , n−1}
and real constants c0, . . . , cm such that (1.1) is at least (m + 1)-critical and the sequence hk := c0 +
c1k + · · · + cmk(m) satisfies

lim sup
K↓−∞,L↑∞

L∑
k=K

qkh
2
k+n ≤ 0. (5.1)

If qk ≤ 0 for large |k| and q /≡ 0, then

L
(
y
)
k + qkyk+n =

n∑
ν=0

(−Δ)ν
(
r
[ν]
k Δνyk+n−ν

)
+ qkyk+n = 0 (5.2)

is conjugate on Z.

Remark 5.2. Using Theorem 3.4, we can see that the statement of Theorem 4.1 holds if and
only if (3.7) holds. Finding a criterion similar to Theorem 3.4 for (1.1) is still an open question.

Remark 5.3. In the view of the matrix operator associated to (1.1) in the sense of [21], we can
see that the perturbations in Theorem 4.1 affect the diagonal elements of the associated matrix
operator. A description of behavior of (1.1), with regard to perturbations of limited part of
the associated matrix operator (but not only of the diagonal elements), is given in [2].

Acknowledgment

The research was supported by the Czech Science Foundation under Grant no. P201/
10/1032.

References

[1] F. Gesztesy and Z. Zhao, “Critical and subcritical Jacobi operators defined as Friedrichs extensions,”
Journal of Differential Equations, vol. 103, no. 1, pp. 68–93, 1993.
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This paper investigates some initial value problems in discrete fractional calculus. We introduce a
linear difference equation of fractional order along with suitable initial conditions of fractional type
and prove the existence and uniqueness of the solution. Then the structure of the solutions space
is discussed, and, in a particular case, an explicit form of the general solution involving discrete
analogues of Mittag-Leffler functions is presented. All our observations are performed on a special
time scale which unifies and generalizes ordinary difference calculus and q-difference calculus.
Some of our results are new also in these particular discrete settings.

1. Introduction

The fractional calculus is a research field of mathematical analysis which may be taken for
an old as well as a modern topic. It is an old topic because of its long history starting from
some notes and ideas of G. W. Leibniz and L. Euler. On the other hand, it is a modern topic
due to its enormous development during the last two decades. The present interest of many
scientists and engineers in the theory of fractional calculus has been initiated by applications
of this theory as well as by new mathematical challenges.

The theory of discrete fractional calculus belongs among these challenges. Founda-
tions of this theory were formulated in pioneering works by Agarwal [1] and Diaz and
Osler [2], where basic approaches, definitions, and properties of the theory of fractional sums
and differences were reported (see also [3, 4]). The cited papers discussed these notions on
discrete sets formed by arithmetic or geometric sequences (giving rise to fractional difference
calculus or q-difference calculus). Recently, a series of papers continuing this research has
appeared (see, e.g., [5, 6]).

The extension of basic notions of fractional calculus to other discrete settings was
performed in [7], where fractional sums and differences have been introduced and studied
in the framework of (q, h)-calculus, which can be reduced to ordinary difference calculus
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and q-difference calculus via the choice q = h = 1 and h = 0, respectively. This extension
follows recent trends in continuous and discrete analysis, characterized by a unification and
generalization, and resulting into the origin and progressive development of the time scales
theory (see [8, 9]). Discussing problems of fractional calculus, a question concerning the
introduction of (Hilger) fractional derivative or integral on arbitrary time scale turns out
to be a difficult matter. Although first attempts have been already performed (see, e.g., [10]),
results obtained in this direction seem to be unsatisfactory.

The aim of this paper is to introduce some linear nabla (q, h)-fractional difference
equations (i.e., equations involving difference operators of noninteger orders) and investigate
their basic properties. Some particular results concerning this topic are already known, either
for ordinary difference equations or q-difference equations of fractional order (some relevant
references will be mentioned in Section 4). We wish to unify them and also present results
which are new even also in these particular discrete settings.

The structure of the paper is the following: Section 2 presents a necessary mathemat-
ical background related to discrete fractional calculus. In particular, we are going to make
some general remarks concerning fractional calculus on arbitrary time scales. In Section 3,
we consider a linear nabla (q, h)-difference equation of noninteger order and discuss the
question of the existence and uniqueness of the solution for the corresponding initial value
problem, as well as the question of a general solution of this equation. In Section 4, we
consider a particular case of the studied equation and describe the base of its solutions space
by the use of eigenfunctions of the corresponding difference operator. We show that these
eigenfunctions can be taken for discrete analogues of the Mittag-Leffler functions.

2. Preliminaries

The basic definitions of fractional calculus on continuous or discrete settings usually originate
from the Cauchy formula for repeated integration or summation, respectively. We state here
its general form valid for arbitrary time scale T. Before doing this, we recall the notion of
Taylor monomials introduced in [9]. These monomials ĥn : T

2 → R, n ∈ N0 are defined
recursively as follows:

ĥ0(t, s) = 1 ∀s, t ∈ T (2.1)

and, given ĥn for n ∈ N0, we have

ĥn+1(t, s) =
∫ t
s

ĥn(τ, s)∇τ ∀s, t ∈ T . (2.2)

Now let f : T → R be ∇-integrable on [a, b] ∩ T, a, b ∈ T. We put

a∇−1f(t) =
∫ t
a

f(τ)∇τ ∀t ∈ T, a ≤ t ≤ b (2.3)



Abstract and Applied Analysis 3

and define recursively

a∇−nf(t) =
∫ t
a
a∇−n+1f(τ)∇τ (2.4)

for n = 2, 3, . . .. Then we have the following.

Proposition 2.1 (Nabla Cauchy formula). Let n ∈ Z
+, a, b ∈ T and let f : T → R be

∇-integrable on [a, b] ∩ T. If t ∈ T, a ≤ t ≤ b, then

a∇−nf(t) =
∫ t
a

ĥn−1
(
t, ρ(τ)

)
f(τ)∇τ . (2.5)

Proof. This assertion can be proved by induction. If n = 1, then (2.5) obviously holds. Let
n ≥ 2 and assume that (2.5) holds with n replaced with n − 1, that is,

a∇−n+1f(t) =
∫ t
a

ĥn−2
(
t, ρ(τ)

)
f(τ)∇τ. (2.6)

By the definition, the left-hand side of (2.5) is an antiderivative of a∇−n+1f(t). We show that
the right-hand side of (2.5) is an antiderivative of

∫ t
a ĥn−2(t, ρ(τ))f(τ)∇τ . Indeed, it holds

∇
∫ t
a

ĥn−1
(
t, ρ(τ)

)
f(τ)∇τ =

∫ t
a

∇ĥn−1
(
t, ρ(τ)

)
f(τ)∇τ =

∫ t
a

ĥn−2
(
t, ρ(τ)

)
f(τ)∇τ, (2.7)

where we have employed the property

∇
∫ t
a

g(t, τ)∇τ =
∫ t
a

∇g(t, τ)∇τ + g
(
ρ(t), t

)
(2.8)

(see [9, page 139]). Consequently, the relation (2.5) holds up to a possible additive constant.
Substituting t = a, we can find this additive constant zero.

The formula (2.5) is a corner stone in the introduction of the nabla fractional integral
a∇−αf(t) for positive reals α. However, it requires a reasonable and natural extension of a
discrete system of monomials (ĥn, n ∈ N0) to a continuous system (ĥα, α ∈ R

+). This matter
is closely related to a problem of an explicit form of ĥn. Of course, it holds ĥ1(t, s) = t − s
for all t, s ∈ T. However, the calculation of ĥn for n > 1 is a difficult task which seems to be
answerable only in some particular cases. It is well known that for T = R, it holds

ĥn(t, s) =
(t − s)n
n!

, (2.9)
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while for discrete time scales T = Z and T = qZ = {qk, k ∈ Z} ∪ {0}, q > 1, we have

ĥn(t, s) =

∏n−1
j=0
(
t − s + j)
n!

, ĥn(t, s) =
n−1∏
j=0

qjt − s∑j

r=0 q
r
, (2.10)

respectively. In this connection, we recall a conventional notation used in ordinary difference
calculus and q-calculus, namely,

(t − s)(n) =
n−1∏
j=0

(
t − s + j), (t − s)(n)

q̃
= tn

n−1∏
j=0

(
1 − q̃

js

t

) (
0 < q̃ < 1

)
(2.11)

and [j]q =
∑j−1

r=0 q
r(q > 0), [n]q! =

∏n
j=1[j]q. To extend the meaning of these symbols also for

noninteger values (as it is required in the discrete fractional calculus), we recall some other
necessary background of q-calculus. For any x ∈ R and 0 < q /= 1, we set [x]q = (qx−1)/(q−1).
By the continuity, we put [x]1 = x. Further, the q-Gamma function is defined for 0 < q̃ < 1 as

Γq̃(x) =

(
q̃, q̃
)
∞
(
1 − q̃)1−x(

q̃x, q̃
)
∞

, (2.12)

where (p, q̃)∞ =
∏∞

j=0(1 − pq̃j), x ∈ R \ {0,−1,−2, . . .}. Note that this function satisfies the
functional relation Γq̃(x+1) = [x]q̃Γq̃(x) and the condition Γq̃(1) = 1. Using this, the q-binomial
coefficient can be introduced as

[
x

k

]

q̃

=
Γq̃(x + 1)

Γq̃(k + 1)Γq̃(x − k + 1)
, x ∈ R, k ∈ Z. (2.13)

Note that although the q-Gamma function is not defined at nonpositive integers, the formula

Γq̃(x +m)
Γq̃(x)

= (−1)mq̃xm+(m2 )
Γq̃(1 − x)

Γq̃(1 − x −m)
, x ∈ R, m ∈ Z

+ (2.14)

permits to calculate this ratio also at such the points. It is well known that if q̃ → 1− then Γq̃(x)
becomes the Euler Gamma function Γ(x) (and analogously for the q-binomial coefficient).
Among many interesting properties of the q-Gamma function and q-binomial coefficients,
we mention q-Pascal rules

[
x

k

]

q̃

=

[
x − 1

k − 1

]

q̃

+ q̃k
[
x − 1

k

]

q̃

, x ∈ R, k ∈ Z , (2.15)

[
x

k

]

q̃

= q̃x−k
[
x − 1

k − 1

]

q̃

+

[
x − 1

k

]

q̃

, x ∈ R, k ∈ Z (2.16)
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and the q-Vandermonde identity

m∑
j=0

[
x

m − j

]

q̃

[
y

j

]

q̃

q̃j
2−mj+xj =

[
x + y

m

]

q̃

, x, y ∈ R, m ∈ N0 (2.17)

(see [11]) that turn out to be very useful in our further investigations.
The computation of an explicit form of ĥn(t, s) can be performed also in a more general

case. We consider here the time scale

T
t0

(q,h) =
{
t0q

k + [k]qh, k ∈ Z

}
∪
{

h

1 − q
}
, t0 > 0, q ≥ 1, h ≥ 0, q + h > 1 (2.18)

(see also [7]). Note that if q = 1 then the cluster point h/(1 − q) = −∞ is not involved in
T
t0
(q,h). The forward and backward jump operator is the linear function σ(t) = qt + h and

ρ(t) = q−1(t − h), respectively. Similarly, the forward and backward graininess is given by
μ(t) = (q − 1)t + h and ν(t) = q−1μ(t), respectively. In particular, if t0 = q = h = 1, then T

t0
(q,h)

becomes Z, and if t0 = 1, q > 1, h = 0, then T
t0
(q,h) is reduced to qZ.

Let a ∈ T
t0
(q,h), a > h/(1 − q) be fixed. Then we introduce restrictions of the time scale

T
t0
(q,h) by the relation

T̃
σi(a)
(q,h) =

{
t ∈ T

t0

(q,h), t ≥ σ
i(a)
}
, i = 0, 1, . . . , (2.19)

where the symbol σi stands for the ith iterate of σ (analogously, we use the symbol ρi). To
simplify the notation, we put q̃ = 1/q whenever considering the time scale T

t0
(q,h) or T̃

σi(a)
(q,h) .

Using the induction principle, we can verify that Taylor monomials on T
t0
(q,h) have the

form

ĥn(t, s) =

∏n−1
j=0
(
σj(t) − s)
[n]q!

=

∏n−1
j=0
(
t − ρj(s))
[n]q̃!

. (2.20)

Note that this result generalizes previous forms (2.10) and, moreover, enables its unified
notation. In particular, if we introduce the symbolic (q, h)-power

(t − s)(n)(q̃,h) =
n−1∏
j=0

(
t − ρj(s)

)
(2.21)

unifying (2.11), then the Cauchy formula (2.5) can be rewritten for T = T
t0
(q,h) as

a∇−nf(t) =
∫ t
a

(
t − ρ(τ))(n−1)

(q̃,h)
[n − 1]q̃!

f(τ)∇τ. (2.22)
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Discussing a reasonable generalization of (q, h)-power (2.21) to real values α instead
of integers n, we recall broadly accepted extensions of its particular cases (2.11) in the form

(t − s)(α) = Γ(t − s + α)
Γ(t − s) , (t − s)(α)

q̃
= tα

(
s/t, q̃

)
∞(

q̃αs/t, q̃
)
∞
, t /= 0. (2.23)

Now, we assume s, t ∈ T
t0
(q,h), t ≥ s > h/(1 − q). First, consider (q, h)-power (2.21)

corresponding to the time scale T
t0
(q,h), where q > 1. Then we can rewrite (2.21) as

(t − s)(n)(q̃,h) =
(
t +

hq̃

1 − q̃
)n n−1∏

j=0

(
1 − q̃j s + hq̃/

(
1 − q̃)

t + hq̃/
(
1 − q̃)

)
= ([t] − [s])(n)

q̃
, (2.24)

where [t] = t+hq̃/(1− q̃) and [s] = s+hq̃/(1− q̃). A required extension of (q, h)-power (2.21)
is then provided by the formula

(t − s)(α)(q̃,h) = ([t] − [s])(α)
q̃
. (2.25)

Now consider (q, h)-power (2.21) corresponding to the time scale T
t0
(q,h), where q = 1. Then

(t − s)(n)(1,h) =
n−1∏
j=0

(
t − s + jh) = hn n−1∏

j=0

(
t − s
h

+ j
)

= hn
((t − s)/h + n − 1)!
((t − s)/h − 1)!

(2.26)

and the formula (2.21) can be extended by

(t − s)(α)(1,h) =
hαΓ((t − s)/h + α)

Γ((t − s)/h) . (2.27)

These definitions are consistent, since it can be shown that

lim
q̃→ 1−

([t] − [s])(α)
q̃

= (t − s)(α)(1,h). (2.28)

Now the required extension of the monomial ĥn(t, s) corresponding to T
t0
(q,h) takes the form

ĥα(t, s) =
(t − s)(α)(q̃,h)

Γq̃(α + 1)
. (2.29)

Another (equivalent) expression of ĥα(t, s) is provided by the following assertion.
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Proposition 2.2. Let α ∈ R, s, t ∈ T
t0
(q,h) and n ∈ N0 be such that t = σn(s). Then

ĥα(t, s) = (ν(t))α
[
α + n − 1

n − 1

]

q̃

= (ν(t))α
[−α − 1

n − 1

]

q̃

(−1)n−1q̃α(n−1)+(n2 ). (2.30)

Proof. Let q > 1. Using the relations

[t] =
ν(t)(
1 − q̃) ,

[s]
[t]

= q̃n, (2.31)

we can derive that

ĥα(t, s) =
[t]α
(
[s]/[t], q̃

)
∞

Γq̃(α + 1)
(
q̃α[s]/[t], q̃

)
∞

=

(
1 − q̃)−αν(t)α(q̃n, q̃)∞
Γq̃(α + 1)

(
q̃α+n, q̃

)
∞

= (ν(t))α
Γq̃(α + n)

Γq̃(α + 1)Γq̃(n)
= (ν(t))α

[
α + n − 1

n − 1

]

q̃

.

(2.32)

The second equality in (2.30) follows from the identity (2.14). The case q = 1 results from
(2.27).

The key property of ĥα(t, s) follows from its differentiation. The symbol ∇m(q,h) used in
the following assertion (and also undermentioned) is the mth order nabla (q, h)-derivative
on the time scale T

t0
(q,h), defined for m = 1 as

∇(q,h)f(t) =
f(t) − f(ρ(t))

ν(t)
=
f(t) − f(q̃(t − h))(

1 − q̃)t + q̃h (2.33)

and iteratively for higher orders.

Lemma 2.3. Letm ∈ Z
+, α ∈ R, s, t ∈ T

t0
(q,h) and n ∈ Z

+, n ≥ m be such that t = σn(s). Then

∇m(q,h)ĥα(t, s) =
⎧⎨
⎩
ĥα−m(t, s), α /∈ {0, 1, . . . , m − 1},
0, α ∈ {0, 1, . . . , m − 1}.

(2.34)
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Proof. First let m = 1. For α = 0 we get ĥ0(t, s) = 1 and the first nabla (q, h)-derivative is zero.
If α/= 0, then by (2.30) and (2.16), we have

∇(q,h)ĥα(t, s) =
ĥα(t, s) − ĥα

(
ρ(t), s

)
ν(t)

=
1
ν(t)

⎛
⎝(ν(t))α

[
α + n − 1

n − 1

]

q̃

− (ν(ρ(t)))α
[
α + n − 2

n − 2

]

q̃

⎞
⎠

= (ν(t))α−1

⎛
⎝
[
α + n − 1

n − 1

]

q̃

− q̃α
[
α + n − 2

n − 2

]

q̃

⎞
⎠ = ĥα−1(t, s).

(2.35)

The case m ≥ 2 can be verified by the induction principle.

We note that an extension of this property for derivatives of noninteger orders will be
performed in Section 4.

Now we can continue with the introduction of (q, h)-fractional integral and derivative
of a function f : T̃

a
(q,h) → R. Let t ∈ T̃

a
(q,h). Our previous considerations (in particular, the

Cauchy formula (2.5) along with the relations (2.22) and (2.29)) warrant us to introduce the
nabla (q, h)-fractional integral of order α ∈ R

+ over the time scale interval [a, t] ∩ T̃
a
(q,h) as

a∇−α(q,h)f(t) =
∫ t
a

ĥα−1
(
t, ρ(τ)

)
f(τ)∇τ (2.36)

(see also [7]). The nabla (q, h)-fractional derivative of order α ∈ R
+ is then defined by

a∇α
(q,h)f(t) = ∇m(q,h) a∇

−(m−α)
(q,h) f(t), (2.37)

where m ∈ Z
+ is given by m − 1 < α ≤ m. For the sake of completeness, we put

a∇0
(q,h)f(t) = f(t). (2.38)

As we noted earlier, a reasonable introduction of fractional integrals and fractional
derivatives on arbitrary time scales remains an open problem. In the previous part, we have
consistently used (and in the sequel, we shall consistently use) the time scale notation of main
procedures and operations to outline a possible way out to further generalizations.

3. A Linear Initial Value Problem

In this section, we are going to discuss the linear initial value problem

m∑
j=1

pm−j+1(t) a∇α−j+1

(q,h) y(t) + p0(t)y(t) = 0 , t ∈ T̃
σm+1(a)

(q,h) , (3.1)
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a∇α−j(q,h)y(t)
∣∣∣
t=σm(a)

= yα−j , j = 1, 2, . . . , m, (3.2)

where α ∈ R
+ and m ∈ Z

+ are such that m − 1 < α ≤ m. Further, we assume that pj(t)

are arbitrary real-valued functions on T̃
σm+1(a)
(q,h) (j = 1, . . . , m − 1), pm(t) = 1 on T̃

σm+1(a)
(q,h) and

yα−j(j = 1, . . . , m) are arbitrary real scalars.
If α is a positive integer, then (3.1)-(3.2) becomes the standard discrete initial value

problem. If α is not an integer, then applying the definition of nabla (q, h)-fractional
derivatives, we can observe that (3.1) is of the general form

n−1∑
i=0

ai(t)y
(
ρi(t)
)
= 0 , t ∈ T̃

σm+1(a)
(q,h) , n being such that t = σn(a), (3.3)

which is usually referred to as the equation of Volterra type. If such an equation
has two different solutions, then their values differ at least at one of the points
σ(a), σ2(a), . . . , σm(a). In particular, if a0(t)/= 0 for all t ∈ T̃

σm+1(a)
(q,h) , then arbitrary values of

y(σ(a)), y(σ2(a)), . . . , y(σm(a)) determine uniquely the solution y(t) for all t ∈ T̃
σm+1(a)
(q,h) . We

show that the values yα−1, yα−2, . . . , yα−m, introduced by (3.2), keep the same properties.

Proposition 3.1. Let y : T̃
σ(a)
(q,h) → R be a function. Then (3.2) represents a one-to-one mapping

between the vectors (y(σ(a)), y(σ2(a)), . . . , y(σm(a))) and (yα−1, yα−2, . . . , yα−m).

Proof. The case α ∈ Z
+ is well known from the literature. Let α /∈ Z

+. We wish to show that
the values of y(σ(a)), y(σ2(a)), . . . , y(σm(a)) determine uniquely the values of

a∇α−1
(q,h)y(t)

∣∣∣
t=σm(a)

, a∇α−2
(q,h)y(t)

∣∣∣
t=σm(a)

, . . . , a∇α−m(q,h)y(t)
∣∣∣
t=σm(a)

(3.4)

and vice versa. Utilizing the relation

a∇α−j
(q,h)y(t)

∣∣∣
t=σm(a)

=
m∑
k=1

ν
(
σm−k+1(a)

)
ĥj−1−α

(
σm(a), σm−k(a)

)
y
(
σm−k+1(a)

)
(3.5)

(see [7, Propositions 1 and 3] with respect to (2.30)), we can rewrite (3.2) as the linear
mapping

m∑
k=1

rjky
(
σm−k+1(a)

)
= yα−j , j = 1, . . . , m, (3.6)

where

rjk = ν
(
σm−k+1(a)

)
ĥj−1−α

(
σm(a), σm−k(a)

)
, j, k = 1, . . . , m (3.7)
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are elements of the transformation matrix Rm. We show that Rm is regular. Obviously,

detRm =

(
m∏
k=1

ν
(
σk(a)

))
detHm, (3.8)

where

Hm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ĥ−α
(
σm(a), σm−1(a)

)
ĥ−α
(
σm(a), σm−2(a)

) · · · ĥ−α(σm(a), a)

ĥ1−α
(
σm(a), σm−1(a)

)
ĥ1−α
(
σm(a), σm−2(a)

) · · · ĥ1−α(σm(a), a)

...
...

. . .
...

ĥm−1−α
(
σm(a), σm−1(a)

)
ĥm−1−α

(
σm(a), σm−2(a)

) · · · ĥm−1−α(σm(a), a)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.9)

To calculate detHm, we employ some elementary operations preserving the value of detHm.
Using the properties

ĥi−α
(
σm(a), σ�(a)

)
− ν(σm(a))ĥi−α−1

(
σm(a), σ�(a)

)
= ĥi−α

(
σm−1(a), σ�(a)

)

(i = 1, 2, . . . , m − 1, l = 0, 1, . . . m − 2),

ĥi−α
(
σm(a), σm−1(a)

)
− ν(σm(a))ĥi−α−1

(
σm(a), σm−1(a)

)
= 0,

(3.10)

which follow from Lemma 2.3, we multiply the ith row (i = 1, 2, . . . , m−1) ofHm by −ν(σm(a))
and add it to the successive one. We arrive at the form

⎛
⎜⎜⎜⎜⎜⎜⎝

ĥ−α
(
σm(a), σm−1(a)

)
0

...

0

ĥ−α
(
σm(a), σm−2(a)

) · · · ĥ−α(σm(a), a)

Hm−1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.11)

Then we apply repeatedly this procedure to obtain the triangular matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ĥ−α
(
σm(a), σm−1(a)

)
ĥ−α
(
σm(a), σm−2(a)

) · · · ĥ−α(σm(a), a)

0 ĥ1−α
(
σm−1(a), σm−2(a)

) · · · ĥ1−α
(
σm−1(a), a

)
...

...
. . .

...

0 0 · · · ĥm−1−α(σ(a), a)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.12)

Since ĥi−α(σk(a), σk−1(a)) = (ν(σk(a))i−α(i = 0, 1, . . . , m − 1), we get
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detHm =
m∏
k=1

(
ν
(
σk(a)

))m−k−α
, that is, detRm =

m∏
k=1

(
ν
(
σk(a)

))m−k−α+1
/= 0. (3.13)

Thus the matrix Rm is regular, hence the corresponding mapping (3.6) is one to one.

Now we approach a problem of the existence and uniqueness of (3.1)-(3.2). First we
recall the general notion of ν-regressivity of a matrix function and a corresponding linear
nabla dynamic system (see [9]).

Definition 3.2. An n × n-matrix-valued function A(t) on a time scale T is called ν-regressive
provided

det(I − ν(t)A(t))/= 0 ∀t ∈ Tκ, (3.14)

where I is the identity matrix. Further, we say that the linear dynamic system

∇z(t) = A(t)z(t) (3.15)

is ν-regressive provided that A(t) is ν-regressive.

Considering a higher order linear difference equation, the notion of ν-regressivity for
such an equation can be introduced by means of its transformation to the corresponding first
order linear dynamic system. We are going to follow this approach and generalize the notion
of ν-regressivity for the linear fractional difference equation (3.1).

Definition 3.3. Let α ∈ R
+ and m ∈ Z

+ be such that m − 1 < α ≤ m. Then (3.1) is called
ν-regressive provided the matrix

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1
. . .

...

...
...

. . . . . . 0

0 0 · · · 0 1

− p0(t)
νm−α(t)

−p1(t) · · · −pm−2(t) −pm−1(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.16)

is ν-regressive.

Remark 3.4. The explicit expression of the ν-regressivity property for (3.1) can be read as

1 +
m−1∑
j=1

pm−j(t)(ν(t))j + p0(t)(ν(t))α /= 0 ∀t ∈ T̃
σm+1(a)
(q,h) . (3.17)

If α is a positive integer, then both these introductions agree with the definition of
ν-regressivity of a higher order linear difference equation presented in [9].
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Theorem 3.5. Let (3.1) be ν-regressive. Then the problem (3.1)-(3.2) has a unique solution defined
for all t ∈ T̃

σ(a)
(q,h).

Proof. The conditions (3.2) enable us to determine the values of y(σ(a)), y(σ2 (a)),
. . . , y(σm (a)) by the use of (3.6). To calculate the values of y(σm+1(a)), y(σm+2(a)), . . ., we
perform the transformation

zj(t) = a∇α−m+j−1
(q,h) y(t), t ∈ T̃

σj (a)
(q,h) , j = 1, 2, . . . , m (3.18)

which allows us to rewrite (3.1) into a matrix form. Before doing this, we need to express y(t)
in terms of z1(t), z1(ρ(t)), . . . , z1(σ(a)). Applying the relation a∇m−α(q,h) a∇

−(m−α)
(q,h) y(t) = y(t) (see

[7]) and expanding the fractional derivative, we arrive at

y(t) = a∇m−α(q,h)z1(t) =
z1(t)
νm−α(t)

+
∫ρ(t)
a

ĥα−m−1
(
t, ρ(τ)

)
z1(τ)∇τ. (3.19)

Therefore, the problem (3.1)-(3.2) can be rewritten to the vector form

a∇(q,h)z(t) = A(t)z(t) + b(t), t ∈ T̃
σm+1(a)
(q,h) ,

z(σm(a)) =
(
yα−m, . . . , yα−1

)T
,

(3.20)

where

z(t) = (z1(t), . . . , zm(t))T , b(t) =

(
0, . . . , 0,−p0(t)

∫ρ(t)
a

ĥα−m−1
(
t, ρ(τ)

)
z1(τ)∇τ

)T

(3.21)

and A(t) is given by (3.16). The ν-regressivity of the matrix A(t) enables us to write

z(t) = (I − ν(t)A(t))−1(z(ρ(t)) + ν(t)b(t)), t ∈ T̃
σm+1(a)
(q,h) , (3.22)

hence, using the value of z(σm(a)), we can solve this system by the step method starting from
t = σm+1(a). The solution y(t) of the original initial value problem (3.1)-(3.2) is then given by
the formula (3.19).

Remark 3.6. The previous assertion on the existence and uniqueness of the solution can be
easily extended to the initial value problem involving nonhomogeneous linear equations as
well as some nonlinear equations.

The final goal of this section is to investigate the structure of the solutions of (3.1). We
start with the following notion.
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Definition 3.7. Let γ ∈ R, 0 ≤ γ < 1. For m functions yj : T̃
a
(q,h) → R(j = 1, 2, . . . , m), we define

the γ-Wronskian Wγ(y1, . . . , ym)(t) as determinant of the matrix

Vγ
(
y1, . . . , ym

)
(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a∇−γ(q,h)y1(t) a∇−γ(q,h)y2(t) · · · a∇−γ(q,h)ym(t)
a∇1−γ

(q,h)y1(t) a∇1−γ
(q,h)y2(t) · · · a∇1−γ

(q,h)ym(t)

...
...

. . .
...

a∇m−1−γ
(q,h) y1(t) a∇m−1−γ

(q,h) y2(t) · · · a∇m−1−γ
(q,h) ym(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, t ∈ T̃

σm(a)
(q,h) .

(3.23)

Remark 3.8. Note that the first row of this matrix involves fractional order integrals. It is a
consequence of the form of initial conditions utilized in our investigations. Of course, this
introduction of Wγ(y1, . . . , ym)(t) coincides for γ = 0 with the classical definition of the
Wronskian (see [8]). Moreover, it holds Wγ(y1, . . . , ym)(t) =W0( a∇−γ(q,h)y1, . . . , a∇−γ(q,h)ym)(t).

Theorem 3.9. Let functions y1(t), . . . , ym(t) be solutions of the ν-regressive equation (3.1) and let
Wm−α(y1, . . . , ym)(σm(a))/= 0. Then any solution y(t) of (3.1) can be written in the form

y(t) =
m∑
k=1

ckyk(t), t ∈ T̃
σ(a)
(q,h), (3.24)

where c1, . . . , cm are real constants.

Proof. Let y(t) be a solution of (3.1). By Proposition 3.1, there exist real scalars yα−1, . . . , yα−m
such that y(t) is satisfying (3.2). Now we consider the function u(t) =

∑m
k=1 ckyk(t), where

the m-tuple (c1, . . . , cm) is the unique solution of

Vm−α
(
y1, . . . , ym

)
(σm(a)) ·

⎛
⎜⎜⎜⎜⎜⎜⎝

c1

c2

...

cm

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

yα−m

yα−m+1

...

yα−1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.25)

The linearity of (3.1) implies that u(t) has to be its solution. Moreover, it holds

a∇α−j
(q,h)u(t)

∣∣∣
t=σm(a)

= yα−j , j = 1, 2, . . . , m, (3.26)

hence u(t) is a solution of the initial value problem (3.1)-(3.2). By Theorem 3.5, it must be
y(t) = u(t) for all t ∈ T̃

σ(a)
(q,h) and (3.24) holds.

Remark 3.10. The formula (3.24) is essentially an expression of the general solution of (3.1).
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4. Two-Term Equation and (q, h)-Mittag-Leffler Function

Our main interest in this section is to find eigenfunctions of the fractional operator a∇α(q,h),
α ∈ R

+. In other words, we wish to solve (3.1) in a special form

a∇α(q,h)y(t) = λy(t), λ ∈ R, t ∈ T̃
σm+1(a)

(q,h) . (4.1)

Throughout this section, we assume that ν-regressivity condition for (4.1) is ensured, that is,

λ(ν(t))α /= 1. (4.2)

Discussions on methods of solving fractional difference equations are just at the
beginning. Some techniques how to explicitly solve these equations (at least in particular
cases) are exhibited, for example, in [12–14], where a discrete analogue of the Laplace
transform turns out to be the most developed method. In this section, we describe the
technique not utilizing the transform method, but directly originating from the role which
is played by the Mittag-Leffler function in the continuous fractional calculus (see, e.g., [15]).
In particular, we introduce the notion of a discrete Mittag-Leffler function in a setting formed
by the time scale T̃

a
(q,h) and demonstrate its significance with respect to eigenfunctions of the

operator a∇α(q,h). These results generalize and extend those derived in [16, 17].
We start with the power rule stated in Lemma 2.3 and perform its extension to

fractional integrals and derivatives.

Proposition 4.1. Let α ∈ R
+, β ∈ R and t ∈ T̃

σ(a)
(q,h). Then it holds

a∇−α(q,h)ĥβ(t, a) = ĥα+β(t, a). (4.3)

Proof. Let t ∈ T̃
σ(a)
(q,h) be such that t = σn(a) for some n ∈ Z

+. We have

a∇−α(q,h)ĥβ(t, a) =
n−1∑
k=0

ĥα−1

(
t, ρk+1(t)

)
ν
(
ρk(t)

)
ĥβ
(
ρk(t), a

)

=
n−1∑
k=0

(ν(t))α−1

[−α
k

]

q̃

(−1)kq̃(α−1)k+
(
k+1

2

)
q̃kν(t)

×
(
ν
(
ρk(t)

))β[ −β − 1

n − k − 1

]

q̃

(−1)n−k−1q̃
β(n−k−1)+

(
n−k

2

)

= (ν(t))α+β
n−1∑
k=0

[−α
k

]

q̃

[ −β − 1

n − k − 1

]

q̃

(−1)n−1q̃k
2−k(n−1)+kα+(n2 )+β(n−1)
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= (ν(t))α+β
n−1∑
k=0

[ −α
n − k − 1

]

q̃

[−β − 1

k

]

q̃

× (−1)n−1q̃(n−k−1)2−(n−k−1)(n−1)+(n−k−1)α+(n2 )+β(n−1)

= (ν(t))α+β
n−1∑
k=0

[ −α
n − k − 1

]

q̃

[−β − 1

k

]

q̃

(−1)n−1q̃k
2−k(n−1)−kα+(α+β)(n−1)+(n2 )

= (ν(t))α+β
[−α − β − 1

n − 1

]

q̃

(−1)n−1q̃(α+β)(n−1)+(n2 ) = ĥα+β(t, a),

(4.4)

where we have used (2.30) on the second line and (2.17) on the last line.

Corollary 4.2. Let α ∈ R
+, β ∈ R, t ∈ T̃

σm+1(a)
(q,h) , wherem ∈ Z

+ is satisfyingm − 1 < α ≤ m. Then

a∇α(q,h)ĥβ(t, a) =
⎧⎨
⎩
ĥβ−α(t, a), β − α /∈ {−1, . . . ,−m},
0, β − α ∈ {−1, . . . ,−m}.

(4.5)

Proof. Proposition 4.1 implies that

a∇α(q,h)ĥβ(t, a) = ∇m(q,h)
(
a∇−(m−α)(q,h) ĥβ(t, a)

)
= ∇m(q,h)ĥm+β−α(t, a). (4.6)

Then the statement is an immediate consequence of Lemma 2.3.

Now we are in a position to introduce a (q, h)-discrete analogue of the Mittag-Leffler
function. We recall that this function is essentially a generalized exponential function, and its
two-parameter form (more convenient in the fractional calculus) can be introduced for T = R

by the series expansion

Eα,β(t) =
∞∑
k=0

tk

Γ
(
αk + β

) , α, β ∈ R
+, t ∈ R. (4.7)

The fractional calculus frequently employs (4.7), because the function

tβ−1Eα,β(λtα) =
∞∑
k=0

λk
tαk+β−1

Γ
(
αk + β

) (4.8)

(a modified Mittag-Leffler function, see [15]) satisfies under special choices of β a continuous
(differential) analogy of (4.1). Some extensions of the definition formula (4.7) and their
utilization in special fractional calculus operators can be found in [18, 19].

Considering the discrete calculus, the form (4.8) seems to be much more convenient for
discrete extensions than the form (4.7), which requires, among others, the validity of the law
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of exponents. The following introduction extends the discrete Mittag-Leffler function defined
and studied in [20] for the case q = h = 1.

Definition 4.3. Let α, β, λ ∈ R. We introduce the (q, h)-Mittag-Leffler function Es,λα,β(t) by the
series expansion

Es,λα,β(t) =
∞∑
k=0

λkĥαk+β−1(t, s)

⎛
⎝=

∞∑
k=0

λk
(t − s)(αk+β−1)

(q̃,h)

Γq̃
(
αk + β

)
⎞
⎠, s, t ∈ T̃

a
(q,h), t ≥ s . (4.9)

It is easy to check that the series on the right-hand side converges (absolutely) if |λ|(ν(t))α < 1.
As it might be expected, the particular (q, h)-Mittag-Leffler function

Ea,λ1,1 (t) =
n−1∏
k=0

1
1 − λν(ρk(t)) , (4.10)

where n ∈ Z
+ satisfies t = σn(a), is a solution of the equation

∇(q,h)y(t) = λy(t), t ∈ T̃
σ(a)
(q,h), (4.11)

that is, it is a discrete (q, h)-analogue of the exponential function.
The main properties of the (q, h)-Mittag-Leffler function are described by the following

assertion.

Theorem 4.4. (i) Let η ∈ R
+ and t ∈ T̃

σ(a)
(q,h). Then

a∇−η(q,h)E
a,λ
α,β(t) = E

a,λ
α,β+η(t). (4.12)

(ii) Let η ∈ R
+,m ∈ Z

+ be such thatm − 1 < η ≤ m and let αk + β − 1 /∈ {0,−1, . . . ,−m + 1}
for all k ∈ Z

+. If t ∈ T̃
σm+1(a)
(q,h) , then

a∇η(q,h)E
a,λ
α,β(t) =

⎧⎨
⎩
Ea,λ
α,β−η(t), β − η /∈ {0,−1, . . . ,−m + 1},

λEa,λ
α,β−η+α(t), β − η ∈ {0,−1, . . . ,−m + 1}.

(4.13)

Proof. The part (i) follows immediately from Proposition 4.1. Considering the part (ii), we
can write

a∇η(q,h)E
a,λ
α,β(t) = a∇η(q,h)

∞∑
k=0

λkĥαk+β−1(t, a) =
∞∑
k=0

λk a∇η(q,h)ĥαk+β−1(t, a) (4.14)

due to the absolute convergence property.
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If k ∈ Z
+, then Corollary 4.2 implies the relation

a∇η(q,h)ĥαk+β−1(t, a) = ĥαk+β−η−1(t, a) (4.15)

due to the assumption αk + β − 1 /∈ {0,−1, . . . ,−m + 1}. If k = 0, then two possibilities may
occur. If β − η /∈ {0,−1, . . . ,−m + 1}, we get (4.15) with k = 0 which implies the validity of
(4.13)1. If β − η ∈ {0,−1, . . . ,−m + 1}, the nabla (q, h)-fractional derivative of this term is zero
and by shifting the index k, we obtain (4.13)2.

Corollary 4.5. Let α ∈ R
+ andm ∈ Z

+ be such thatm − 1 < α ≤ m. Then the functions

Ea,λα,β(t), β = α −m + 1, . . . , α − 1, α (4.16)

define eigenfunctions of the operator a∇α
(q,h) on each set [σ(a), b] ∩ T̃

σ(a)
(q,h), where b ∈ T̃

σ(a)
(q,h) is

satisfying |λ|(ν(b))α < 1.

Proof. The assertion follows from Theorem 4.4 by the use of η = α.

Our final aim is to show that any solution of (4.1) can be written as a linear
combination of (q, h)-Mittag-Leffler functions (4.16).

Lemma 4.6. Let α ∈ R
+ andm ∈ Z

+ be such thatm − 1 < α ≤ m. Then

Wm−α
(
Ea,λα,α−m+1, E

a,λ
α,α−m+2, . . . , E

a,λ
α,α

)
(σm(a)) =

m∏
k=1

1
1 − λ(ν(σk(a)))α /= 0. (4.17)

Proof. The case m = 1 is trivial. For m ≥ 2, we can formally write λEa,λα,α−�(t) = Ea,λα,−�(t) for

all t ∈ T̃
σm(a)
(q,h) (� = 0, . . . , m − 2). Consequently, applying Theorem 4.4, the Wronskian can be

expressed as

Wm−α
(
Ea,λα,α−m+1, E

a,λ
α,α−m+2, . . . , E

a,λ
α,α

)
(σm(a)) = detMm(σm(a)), (4.18)

where

Mm(σm(a)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ea,λα,1(σ
m(a)) Ea,λα,2(σ

m(a)) . . . Ea,λα,m(σm(a))

Ea,λα,0(σ
m(a)) Ea,λα,1(σ

m(a)) . . . Ea,λα,m−1(σ
m(a))

. . . . . .
. . . . . .

Ea,λα,2−m(σ
m(a)) Ea,λα,3−m(σ

m(a)) . . . Ea,λα,1(σ
m(a))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (4.19)

Using the q-Pascal rule (2.15), we obtain the equality

Ea,λα,i (σ
m(a)) − ν(σ(a))Ea,λα,i−1(σ

m(a)) = Eσ(a),λα,i (σm(a)), i ∈ Z, i ≥ 3 −m. (4.20)
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Starting with the first row, (m2 ) elementary row operations of the type (4.20) transform the
matrix Mm(σm(a)) into the matrix

M̂m(σm(a)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E
σm−1(a),λ
α,1 (σm(a)) E

σm−1(a),λ
α,2 (σm(a)) . . . E

σm−1(a),λ
α,m (σm(a))

E
σm−2(a),λ
α,0 (σm(a)) E

σm−2(a),λ
α,1 (σm(a)) . . . E

σm−2(a),λ
α,m−1 (σm(a))

. . . . . .
. . . . . .

Ea,λα,2−m(σ
m(a)) Ea,λα,3−m(σ

m(a)) . . . Ea,λα,1(σ
m(a))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.21)

with the property detM̂m(σm(a)) = detMm(σm(a)). By Lemma 2.3, we have

E
σi(a),λ
α,p (σm(a)) − ν(σm(a))Eσi(a),λα,p−1 (σm(a)) = Eσ

i(a),λ
α,p

(
σm−1(a)

)
, i = 0, . . . , m − 2,

E
σi(a),λ
α,p (σm(a)) − ν(σm(a))Eσi(a),λα,p−1 (σm(a)) = 0, i = m − 1,

(4.22)

where p ∈ Z, p ≥ 3 − m + i. Starting with the last column, using m − 1 elementary column
operations of the type (4.22), we obtain the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E
σm−1(a),λ
α,1 (σm(a))

E
σm−2(a),λ
α,0 (σm(a))

...

Ea,λα,2−m(σ
m(a))

0 · · · 0

M̂m−1
(
σm−1(a)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.23)

preserving the value of det M̂m(σm(a)). Since

E
σm−1(a),λ
α,1 (σm(a)) =

∞∑
k=0

λk(ν(σm(a)))αk =
1

1 − λ(ν(σm(a)))α , (4.24)

we can observe the recurrence

det M̂m(σm(a)) =
1

1 − λ(σm(a))α det M̂m−1

(
σm−1(a)

)
, (4.25)

which implies the assertion.

Now we summarize the results of Theorem 3.9, Corollary 4.5, and Lemma 4.6 to obtain

Theorem 4.7. Let y(t) be any solution of (4.1) defined on [σ(a), b] ∩ T̃
σ(a)
(q,h), where b ∈ T̃

σ(a)
(q,h) is

satisfying |λ|(ν(b))α < 1. Then
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y(t) =
m∑
j=1

cjE
a,λ
α,α−m+j(t), (4.26)

where c1, . . . , cm are real constants.

We conclude this paper by the illustrating example.

Example 4.8. Consider the initial value problem

a∇α(q,h)y(t) = λ y(t), σ3(a) ≤ t ≤ σn(a), 1 < α ≤ 2,

a∇α−1
(q,h)y(t)

∣∣∣
t=σ2(a)

= yα−1,

a∇α−2
(q,h)y(t)

∣∣∣
t=σ2(a)

= yα−2,

(4.27)

where n is a positive integer given by the condition |λ|ν(σn(a))α < 1. By Theorem 4.7, its
solution can be expressed as a linear combination

y(t) = c1E
a,λ
α,α−1(t) + c2E

a,λ
α,α(t). (4.28)

The constants c1, c2 can be determined from the system

V2−α
(
Ea,λα,α−1, E

a,λ
α,α

)(
σ2(a)

)
·
(
c1

c2

)
=

(
yα−2

yα−1

)
(4.29)

with the matrix elements

v11 = v22 =
[1]q +

(
[α]q − [1]q

)
λν(σ(a))α(

1 − λν(σ(a))α)(1 − λν(σ2(a))α
) ,

v12 =
[2]qν(σ(a)) +

(
[α]q − [2]q

)
λν(σ(a))α+1

(
1 − λν(σ(a))α)(1 − λν(σ2(a))α

) ,

v21 =
[α]qλν(σ(a))

α−1

(
1 − λν(σ(a))α)(1 − λν(σ2(a))α

) .

(4.30)

By Lemma 4.6, the matrix V2−α(E
a,λ
α,α−1, E

a,λ
α,α)(σ2(a)) has a nonzero determinant, hence applying

the Cramer rule, we get

c1 =
yα−2v22 − yα−1v12

W2−α
(
Ea,λα,α−1, E

a,λ
α,α

)
(σ2(a))

,

c2 =
yα−1v11 − yα−2v21

W2−α
(
Ea,λα,α−1, E

a,λ
α,α

)
(σ2(a))

.

(4.31)
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Figure 1: α = 1.8, a = 1, λ = −1/3, yα−1 = −1, yα−2 = 1.

Now we make a particular choice of the parameters α, a, λ, yα−1 and yα−2 and consider
the initial value problem in the form

1∇1.8
(q,h)y(t) = −

1
3
y(t), σ3(1) ≤ t ≤ σn(1),

1∇0.8
(q,h)y(t)

∣∣∣∣
t=σ2(1)

= −1,

1∇−0.2
(q,h)y(t)

∣∣∣∣
t=σ2(1)

= 1,

(4.32)

where n is a positive integer satisfying ν(σn(1)) < 35/9. If we take the time scale of integers
(the case q = h = 1), then the solution y(t) of the corresponding initial value problem takes
the form

y(t) =
14
5

∞∑
k=0

(
−1

3

)k∏t−2
j=1
(
j + 1.8k − 0.2

)
(t − 2)!

− 2
15

∞∑
k=0

(
−1

3

)k∏t−2
j=1
(
j + 1.8k + 0.8

)
(t − 2)!

, t = 2, 3, . . . .

(4.33)

Similarly we can determine y(t) for other choices of q and h. For comparative reasons,
Figure 1 depicts (in addition to the above case q = h = 1) the solution y(t) under particular
choices q = 1.2, h = 0 (the pure q-calculus), q = 1, h = 0.1 (the pure h-calculus) and also the
solution of the corresponding continuous (differential) initial value problem.
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and Denys Y. Khusainov4

1 Department of Mathematics, Kyiv National Economic University, Peremogy Avenue, Kyiv 03038, Ukraine
2 Department of Mathematics, Faculty of Electrical Engineering and Communication, Brno University of
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A nonlinear stochastic differential-difference control system with delay of neutral type is
considered. Sufficient conditions for the exponential stability are derived by using Lyapunov-
Krasovskii functionals of quadratic form with exponential factors. Upper bound estimates for the
exponential rate of decay are derived.

1. Introduction

The theory and applications of functional differential equations form an important part of
modern nonlinear dynamics. Such equations are natural mathematical models for various
real life phenomena where the aftereffects are intrinsic features of their functioning. In recent
years, functional differential equations have been used to model processes in different areas
such as population dynamics and ecology, physiology and medicine, economics, and other
natural sciences [1–3]. In many of the models the initial data and parameters are subjected to
random perturbations, or the dynamical systems themselves represent stochastic processes.
For this reason, stochastic functional differential equations are widely studied [4, 5].

One of the principal problems of the corresponding mathematical analysis of
equations is a comprehensive study of their global dynamics and the related prediction of
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long-term behaviors in applied models. Of course, the problem of stability of a particular
solution plays a significant role. Therefore, the study of stability of linear equations is the first
natural and important step in the analysis of more complex nonlinear systems.

When applying the mathematical theory to real-world problems a mere statement of
the stability in the system is hardly sufficient. In addition to stability as such, it is of significant
importance to obtain constructive and verifiable estimates of the rate of convergence of
solutions in time. One of the principal tools used in the related studies is the second Lyapunov
method [6–8]. For functional differential equations, this method has been developing in two
main directions in recent years. The first one is the method of finite Lyapunov functions
with the additional assumption of Razumikhin type [9, 10]. The second one is the method
of Lyapunov-Krasovskii functionals [11, 12]. For stochastic functional differential equations,
some aspects of these two lines of research have been developed, for example, in [11, 13–19]
and [11, 18, 20–25], respectively. In the present paper, by using the method of Lyapunov-
Krasovskii functionals, we derive sufficient conditions for stability together with the rate of
convergence to zero of solutions for a class of linear stochastic functional differential equation
of a neutral type.

2. Preliminaries

In solving control problems for linear systems, very often, a scalar function u = u(x) needs to
be found such that the system

ẋ(t) = Ax(t) + bu(x(t)) (2.1)

is asymptotically stable. Frequently, such a function depends on a scalar argument which is a
linear combination of phase coordinates and its graph lies in the first and the third quadrants
of the plane. An investigation of the asymptotic stability of systems with a control function

u(x(t)) = f(σ(t)), σ(t) = cTx(t), (2.2)

that is, an investigation of systems

ẋ(t) = Ax(t) + bf(σ(t)), σ(t) = cTx(t), (2.3)

with a function f satisfying f(0) = 0, f(σ)(kσ − f(σ)) > 0 for σ /= 0 and a k > 0 is called an
analysis of the absolute stability of control systems [26]. One of the fundamental methods
(called a frequency method) was developed by Gelig et al. (see, e.g., the book [27]). Another
basic method is the method of Lyapunov’s functions and Lyapunov-Krasovskii functionals.
Very often, the appropriate Lyapunov functions and Lyapunov-Krasovskii functionals are
constructed as quadratic forms with integral terms containing a given nonlinearity [28, 29].
An overview of the present state can be found, for example, in [30, 31]. Problems of absolute
stability of stochastic equations are treated, for example, in [11, 14, 15, 24].
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3. Main Results

Consider the following control system of stochastic differential-difference equations of a
neutral type

d[x(t) −Dx(t − τ)] = [
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]
dw(t),

(3.1)

where

σ(t) := cT [x(t) −Dx(t − τ)], (3.2)

x : [0,∞) → R
n is an n-dimensional column vector, A0, A1, B0, B1, and D are real n × n

constant matrices, a2, b2, and c are n×1 constant vectors, f : R → R is a continuous function,
τ > 0 is a constant delay, and w(t) is a standard scalar Wiener process with

M{dw(t)} = 0, M
{
dw2(t)

}
= dt, M{dw(t1)dw(t2), t1 /= t2} = 0. (3.3)

An Ft-measurable random process {x(t) ≡ x(t, ω)} is called a solution of (3.1) if it satisfies,
with a probability one, the following integral equation

x(t) = Dx(t − τ) + [x(0) −Dx(−τ)]

+
∫ t

0

[
A0x(s) +A1x(s − τ) + a2f(σ(s))

]
ds

+
∫ t

0

[
B0x(s) + B1x(s − τ) + b2f(σ(s))

]
dw(s), t ≥ 0

(3.4)

and the initial conditions

x(t) = ϕ(t), x′(t) = ψ(t), t ∈ [−τ, 0], (3.5)

where ϕ, ψ : [−τ, 0] → R
n are continuous functions. Here and in the remaining part of the

paper, we will assume that the initial functions ϕ and ψ are continuous random processes.
Under those assumptions, a solution to the initial value problem (3.1), (3.5) exists and is
unique for all t ≥ 0 up to its stochastic equivalent solution on the space (Ω, F, P) [4].
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We will use the following norms of matrices and vectors

‖A‖ :=
√
λmax

(
ATA

)
,

‖x(t)‖ :=

√√√√ n∑
i=1

x2
i (t),

‖x(t)‖τ := max
−τ≤s≤0

{‖x(t + s)‖},

‖x(t)‖2
τ,γ :=

∫ t
t−τ

e−γ(t−s)‖x(s)‖2ds,

(3.6)

where λmax(∗) is the largest eigenvalue of the given symmetric matrix (similarly, the symbol
λmin(∗) denotes the smallest eigenvalue of the given symmetric matrix), and γ is a positive
parameter.

Throughout this paper, we assume that the function f satisfies the inequality

0 ≤ f(σ)σ ≤ kσ2 (3.7)

if σ ∈ R where k is a positive constant.
For the reader’s convenience, we recall that the zero solution of (3.1) is called stable

in the square mean if, for every ε > 0, there exists a δ = δ(ε) > 0 such that every solution
x = x(t) of (3.1) satisfies M{‖x(t)‖2} < ε provided that the initial conditions (3.5) are such
that ‖ϕ(0)‖τ < δ and ‖ψ(0)‖τ < δ. If the zero solution is stable in the square mean and,
moreover,

lim
t→+∞

M
{
‖x(t)‖2

}
= 0, (3.8)

then it is called asymptotically stable in the square mean.

Definition 3.1. If there exist positive constants N, γ , and θ such that the inequality

M
{
‖x(t)‖2

τ,γ

}
≤N ‖x(0)‖2

τ e
−θt (3.9)

holds on [0,∞), then the zero solution of (3.1) is called exponentially γ-integrally stable in
the square mean.

In this paper, we prove the exponential γ-integral stability in the square mean of
the differential-difference equation with constant delay (3.1). We employ the method of
stochastic Lyapunov-Krasovskii functionals. In [11, 18, 22, 24] the Lyapunov-Krasovskii
functional is chosen to be of the form

V [x(t), t] = h[x(t) − cx(t − τ)]2 + g
∫0

−τ
x2(t + s)ds, (3.10)
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where constants h > 0 and g > 0 are such that the total stochastic differential of the functional
along solutions is negative definite.

In the present paper, we consider the Lyapunov-Krasovskii functional in the following
form:

V [x(t), t] = [x(t) −Dx(t − τ)]TH[x(t) −Dx(t − τ)]

+
∫ t
t−τ

e−γ(t−s)xT (s)Gx(s)ds + β
∫σ(t)

0
f(ξ)dξ,

(3.11)

where constants γ > 0, β > 0 and n × n positive definite symmetric matrices G, H are to be
restricted later on. This allows us not only to derive sufficient conditions for the stability of
the zero solution but also to obtain coefficient estimates of the rate of the exponential decay
of solutions.

We set

P :=

(
H −HD

−DTH DTHD

)
. (3.12)

Then, by using introduced norms, the functional (3.11) yields two-sided estimates

λmin(G)‖x(t)‖2
τ,γ ≤ V [x(t), t] ≤

[
λmax(P) + 0.5βk‖c‖2

]
‖x(t)‖2

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥2
]
‖x(t − τ)‖2 + λmax(G)‖x(t)‖2

τ,γ ,

(3.13)

where t ∈ [0,∞).
We will use an auxiliary (2n + 1) × (2n + 1)-dimensional matrix:

S = S
(
β, γ, ν, G,H

)
:=

⎛
⎜⎜⎝
s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞
⎟⎟⎠, (3.14)
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where

s11 := −A0H −HA0 − BT0HB0 −G,

s12 := AT
0HD −HA1 − BT0HB1,

s13 := −Ha2 − BT0Hb2 − 1
2
(
βA0 + νI

)T
c,

s21 := sT12,

s22 := DTHA1 +AT
1HD − BT1HB1 + e−γτG,

s23 := DTHa2 − BT1Hb2 − 1
2
βA1c,

s31 := sT13,

s32 := sT23,

s33 :=
ν

k
− bT2Hb2 − βcTa2,

(3.15)

where ν is a parameter.
Now we establish our main result on the exponential γ-integral stability of a trivial

solution in the square mean of system (3.1) when t → ∞.

Theorem 3.2. Let ‖D‖ < 1. Let there exist positive constants β, γ , ν and positive definite symmetric
matricesG,H such that the matrix S is positively definite as well. Then the zero solution of the system
(3.1) is exponentially γ-integrally stable in the square mean on [0,∞). Moreover, every solution x(t)
of (3.1) satisfies the inequality

M
{
‖x(t)‖2

τ,γ

}
≤N‖x(0)‖2

τ e
−θt (3.16)

for all t ≥ 0 where

N :=
1

λmin(G)
·
(

2λmax(P) + 0.5βk‖c‖2 + 0.5βk
∥∥∥cTD∥∥∥2

+
1
γ
λmax(G)

)
,

θ := min

{
γλmin(G)
λmax(G)

,
λmin(S)

λmax(P) + 0.5βk‖c‖2

}
.

(3.17)
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Proof. We will apply the method of Lyapunov-Krasovskii functionals using functional (3.11).
Using the Itô formula, we compute the stochastic differential of (3.11) as follows

dV [x(t), t] =
([
A0x(t) +A1x(t − τ) + a2f(σ(t))

]T
dt

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T
dw(t)

)

×H[x(t) −Dx(t − τ)] + [x(t) −Dx(t − τ)]T

×H
([
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T
dw(t)

)

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T

×H[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]
d
(
w2(t)

)

+ xT (t)Gx(t)dt − e−γτxT (t − τ)Gx(t − τ)dt + βf(σ(t))cT

×
([
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt

+
[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T
dw(t)

)

− γ
∫ t
t−τ

e−γ(t−s)xT (s)Gx(s)dsdt.

(3.18)

Taking the mathematical expectation we obtain (we use properties (3.3))

M{dV [x(t), t]} =M
{[
A0x(t) +A1x(t − τ) + a2f(σ(t))

]T

×H[x(t) −Dx(t − τ)]dt
}

+M
{
[x(t) −Dx(t − τ)]T

×H[
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt
}

+M
{[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]T

×H[
B0x(t) + B1x(t − τ) + b2f(σ(t))

]
d
(
w2(t)

)}

+M
{[
xT (t)Gx(t)dt − e−γτxT (t − τ)Gx(t − τ)dt

]}

+ βM
{
f(σ(t))cT

[
A0x(t) +A1x(t − τ) + a2f(σ(t))

]
dt
}

− γM
{∫ t

t−τ
e−γ(t−s)xT (s)Gx(s)dsdt

}
.

(3.19)
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Utilizing the matrix S defined by (3.14), the last expression can be rewritten in the following
vector matrix form

d

dt
M{V [x(t), t]} = −M

{(
xT (t), xT (t − τ), f(σ(t))

)
× S ×

(
xT (t), xT (t − τ), f(σ(t))

)T}

− ν
[
σ(t) − f(σ(t))

k

]
f(σ(t)) − γM

{∫ t
t−τ

e−γ(t−s)xT (s)Gx(s)ds

}
.

(3.20)

We will show next that solutions of (3.1) decay exponentially by calculating the correspond-
ing exponential rate.

The full derivative of the mathematical expectation for the Lyapunov-Krasovskii
functional (3.11) satisfies

d

dt
M{V [x(t), t]} ≤ −λmin(S)M

{
‖x(t)‖2

}

− λmin(S)M
{
‖x(t − τ)‖2

}

− γλmin(G)M
{
‖x(t)‖2

τ,γ

}
.

(3.21)

In the following we will use inequalities being a consequence of (3.13).

λmin(G)M
{
‖x(t)‖2

τ,γ

}
≤M{V [x(t)]}

≤
[
λmax(P) + 0.5βk‖c‖2

]
×M

{
‖x(t)‖2

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥2
]
M
{
‖x(t − τ)‖2

}

+ λmax(G)M
{
‖x(t)‖2

τ,γ

}
.

(3.22)

Let us derive conditions for the coefficients of (3.1) and parameters of the Lyapunov-
Krasovskii functional (3.11) such that the following inequality:

d

dt
M{V [x(t), t]} ≤ −θM{V [x(t), t]} (3.23)

holds. We use a sequence of the following calculations supposing that either inequality

γλmin(G) − λmin(S)

λmax(P) + 0.5βk|c|2
λmax(G) ≥ 0 (3.24)
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holds, or the opposite inequality

γλmin(G) − λmin(S)

λmax(P) + 0.5βk|c|2
λmax(G) ≤ 0 (3.25)

is valid.
(1) Let inequality (3.24) holds. Rewrite the right-hand part of inequality (3.22) in the

form

−M
{
‖x(t)‖2

}
≤ 1

λmax(P) + 0.5βk‖c‖2

×
[
−M{V [x(t), t]} + λmax(G)M

{
‖x(t)‖2

τ,γ

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥2
]
M
{
‖x(t − τ)‖2

}]
(3.26)

and substitute the latter into inequality (3.21). This results in

d

dt
M{V [x(t), t]} ≤ − λmin(S)

λmax(P) + 0.5βk‖c‖2

×
[
−M{V [x(t), t]} + λmax(G)M

{
‖x(t)‖2

τ,γ

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD∥∥∥2
]
M
{
‖x(t − τ)‖2

}]

− γλmin(G)M
{
‖x(t)‖2

τ,γ

}
− λmin(S)M

{
‖x(t − τ)‖2

}
,

(3.27)

or, equivalently,

d

dt
M{V [x(t), t]} ≤ − λmin(S)

λmax(P) + 0.5βk‖c‖2
M{V [x(t), t]}

− λmin(S)

(
1 − λmax(P) + 0.5βk

∥∥cTD∥∥2

λmax(P) + 0.5βk‖c‖2

)
M
{
‖x(t − τ)‖2

}

−
(
γλmin(G) − λmin(S)

λmax(P) + 0.5βk‖c‖2
λmax(G)

)
M
{
‖x(t)‖2

τ,γ

}
.

(3.28)

The inequality

λmax(P) + 0.5βk
∥∥cTD∥∥2

λmax(P) + 0.5βk‖c‖2
≤ 1 (3.29)
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always holds. Because inequality (3.24) is valid, a differential inequality

d

dt
M{V [x(t), t]} ≤ − λmin(S)

λmax(P) + 0.5βk‖c‖2
M{V [x(t), t]}

≤ −θM{V [x(t), t]}
(3.30)

will be true as well.
(2) Let inequality (3.25) hold. We rewrite the right-hand side of inequality (3.22) in the

form

−M
{
‖x(t)‖2

τ,γ

}
≤ 1
λmax(G)

×
(
−M{V [x(t), t]} +

(
λmax(P) + 0.5βk‖c‖2

)
M
{
‖x(t)‖2

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥2
]
M
{
‖x(t − τ)‖2

}) (3.31)

and substitute the latter again into inequality (3.21). This results in

d

dt
M{V [x(t), t]} ≤ −λmin(S)M

{
‖x(t)‖2

}
− λmin(S)M

{
‖x(t − τ)‖2

}
+ γ

λmin(G)
λmax(G)

×
{
−M{V [x(t), t]} +

(
λmax(P) + 0.5βk‖c‖2

)
M
{
‖x(t)‖2

}

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥2
]
M
{
‖x(t − τ)‖2

}}
(3.32)

or in

d

dt
M{V [x(t), t]} ≤ −γ λmin(G)

λmax(G)
M{V [x(t), t]}

−
(
λmin(S) −

λmax(P) + 0.5βk‖c‖2

λmax(G)
γλmin(G)

)
M
{
‖x(t)‖2

}

−

⎛
⎜⎝λmin(S) −

γλmin(G)
[
λmax(P) + 0.5βk

∥∥cTD∥∥2
]

λmax(G)

⎞
⎟⎠M

{
‖x(t − τ)‖2

}
.

(3.33)

Because inequality (3.25) is valid, a differential inequality

d

dt
M{V [x(t), t]} ≤ −γ λmin(G)

λmax(G)
M{V [x(t), t]} ≤ −θM{V [x(t), t]} (3.34)

will be valid as well.
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Analysing inequalities (3.30) and (3.34) we conclude that (3.23) always holds. Solving
inequality (3.23) we obtain

M{V [x(t), t]} ≤M{V [x(0), 0]}e−θt. (3.35)

Now we derive estimates of the rate of the exponential decay of solutions. We use inequalities
(3.22), (3.35). It is easy to see that

λmin(G)M
{
‖x(t)‖2

τ,γ

}
≤M{V [x(t), t]} ≤M{V [x(0), 0]}e−θt

≤
((

λmax(P) + 0.5βk‖c‖2
)
‖x(0)‖2

+
[
λmax(P) + 0.5βk

∥∥∥cTD
∥∥∥2
]
‖x(−τ)‖2 + λmax(G)‖x(0)‖2

τ,γ

)
e−θt

≤
(

2λmax(P) + 0.5βk‖c‖2 + 0.5βk
∥∥∥cTD∥∥∥2

+
1
γ
λmax(G)

)
‖x(0)‖2

τe
−θt.

(3.36)

Now, inequality (3.16) is a simple consequence of the latter chain of inequalities.

4. A Scalar Case

As an example, we will apply Theorem 3.2 to a scalar control stochastic differential-difference
equation of a neutral type

d[x(t) − d0x(t − τ)] =
[
a0x(t) + a1x(t − τ) + a2f(σ(t))

]
dt

+
[
b0x(t) + b1x(t − τ) + b2f(σ(t))

]
dw(t),

(4.1)

where σ(t) = c[x(t) − d0x(t − τ)], x ∈ R, a0, a1, a2, b0, b1, d2, d0, and c are real constants,
τ > 0 is a constant delay, and w(t) is a standard scalar Wiener process satisfying (3.3). An
Ft-measurable random process {x(t) ≡ x(t, ω)} is called a solution of (4.1) if it satisfies, with
a probability one, the following integral equation:

x(t) = d0x(t − τ) + [x(0) − d0x(−τ)]

+
∫ t

0

[
a0x(s) + a1x(s − τ) + a2f(σ(t))

]
ds

+
∫ t

0

[
b0x(s) + b1x(s − τ) + b2f(σ(t))

]
dw(s), t ≥ 0.

(4.2)
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The Lyapunov-Krasovskii functional V reduces to

V [x(t), t] = [x(t) − d0x(t − τ)]2 + g
∫ t
t−τ

e−γ(t−s)x2(s)ds + β
∫σ(t)

0
f(ξ)dξ, (4.3)

where we assume g > 0 and β > 0. The matrix S reduces to (for simplicity we set H = (1))

S = S
(
g, β, γ, ν

)
:=

⎛
⎜⎜⎝
s11 s12 s13

s21 s22 s23

s31 s32 s33

⎞
⎟⎟⎠ (4.4)

and has entries

s11 := −2a0 − b2
0 − g,

s12 := a0d0 − a1 − b0b1,

s13 := −a2 − b0b2 − 1
2
(
βa0 + ν

)
c,

s21 := s12,

s22 := 2a1d0 − b2
1 + e

−γτg,

s23 := a2d0 − b1b2 − 0.5βa1c,

s31 := s13,

s32 := s23,

s33 :=
ν

k
− b2

2 − βca2,

(4.5)

where ν is a parameter. Therefore, the above calculation yields the following result.

Theorem 4.1. Let |d0| < 1. Assume that positive constants β, γ , g, and ν are such that the matrix
S is positive definite. Then the zero solution of (4.1) is exponentially γ-integrally stable in the square
mean on [0,∞). Moreover, every solution x(t) satisfies the following convergence estimate:

M
{
‖x(t)‖2

τ,γ

}
≤N‖x(0)‖2

τe
−θt (4.6)

for all t ≥ 0 where

N :=
1
g

(
2 + 2d2

0 + 0.5βkc2 + 0.5βk(cd0)
2
)
+

1
γ
,

θ := min

{
γ,

λmin(S)
1 + d2

0 + 0.5βkc2

}
.

(4.7)
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Solutions of the equation ẏ(t) = −f(t, yt) are considered for t → ∞. The existence of two
classes of positive solutions which are asymptotically different is proved using the retract method
combined with Razumikhin’s technique. With the aid of two auxiliary linear equations, which
are constructed using upper and lower linear functional estimates of the right-hand side of the
equation considered, inequalities for both types of positive solutions are given as well.

1. Introduction

Let C([a, b],�n), where a, b ∈ �, a < b, be the Banach space of the continuous mappings from
the interval [a, b] into �n equipped with the supremum norm

∥∥ψ∥∥C = sup
θ∈[a,b]

∥∥ψ(θ)∥∥, ψ ∈ C([a, b],�n), (1.1)

where ‖ · ‖ is the maximum norm in �n . In the case of a = −r < 0 and b = 0, we will denote
this space as Cn

r , that is,

Cn
r := C([−r, 0],�n). (1.2)

If σ ∈ �n , A ≥ 0, and y ∈ C([σ − r, σ +A],�n), then, for each t ∈ [σ, σ +A], we define
yt ∈ Cn

r by yt(θ) = y(t + θ), θ ∈ [−r, 0].
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The present article is devoted to the problem of the existence of two classes of
asymptotically different positive solutions of the delayed equation

ẏ(t) = −f(t, yt), (1.3)

for t → +∞, where f : Ω → � is a continuous quasibounded functional that satisfies a local
Lipschitz condition with respect to the second argument and Ω is an open subset in � × C1

r

such that conditions which use f are well defined.
The main supposition of our investigation is that the right-hand side of (1.3) can be

estimated as follows:

CA(t)yt(−r) ≤ f
(
t, yt

) ≤ CB(t)yt(−r), (1.4)

where (t, yt) ∈ Ω, and CA,CB : [t0 − r,∞) → �
+ := (0,∞), t0 ∈ � are continuous functions

satisfying

0 < CA(t) ≤ CB(t) ≤ 1
(re)

, t ∈ [t0 − r,∞), (1.5)

∫∞
t0−r

CB(t)dt < 1. (1.6)

Quite lots of investigations are devoted to existence of positive solutions of different classes
of equations (we mention at least monographs [1–6] and papers [7–12]). The investigation
of two classes of asymptotically different solutions of (1.3) has been started in the paper [13]
using a monotone iterative technique and a retract principle. Assumptions of results obtained
are too cumbersome and are applied to narrow classes of equations. In the presented paper
we derive more general statements under weaker conditions. This progress is related to more
general inequalities (1.4) for the right-hand side of (1.3) which permit to omit utilization of
properties of solutions of transcendental equations used in [13].

1.1. Ważewski’s Principle

In this section we introduce Ważewski’s principle for a system of retarded functional
differential equations

ẏ(t) = F
(
t, yt

)
, (1.7)

where F : Ω∗ 	→ �
n is a continuous quasibounded map which satisfies a local Lipschitz

condition with respect to the second argument and Ω∗ is an open subset in � × Cn
r . We recall

that the functional F is quasibounded if F is bounded on every set of the form [t1, t2] × Cn
rL ⊂

Ω∗, where t1 < t2, Cn
rL := C([−r, 0], L) and L is a closed bounded subset of �n (compare [2,

page 305]).
In accordance with [14], a function y(t) is said to be a solution of system (1.7) on [σ −

r, σ +A) if there are σ ∈ � and A > 0 such that y ∈ C([σ − r, σ +A),�n), (t, yt) ∈ Ω∗, and y(t)
satisfies the system (1.7) for t ∈ [σ, σ+A). For a given σ ∈ �, ϕ ∈ C, we say y(σ, ϕ) is a solution
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of the system (1.7) through (σ, ϕ) ∈ Ω∗ if there is anA > 0 such that y(σ, ϕ) is a solution of the
system (1.7) on [σ − r, σ +A) and yσ(σ, ϕ) = ϕ. In view of the above conditions, each element
(σ, ϕ) ∈ Ω∗ determines a unique solution y(σ, ϕ) of the system (1.7) through (σ, ϕ) ∈ Ω∗ on its
maximal interval of existence Iσ,ϕ = [σ, a), σ < a ≤ ∞ which depends continuously on initial
data [14]. A solution y(σ, ϕ) of the system (1.7) is said to be positive if

yi
(
σ, ϕ

)
> 0 (1.8)

on [σ − r, σ] ∪ Iσ,ϕ for each i = 1, 2, . . . , n. A nontrivial solution y(σ, ϕ) of the system (1.7)
is said to be oscillatory on Iσ,ϕ (under condition Iσ,ϕ = [σ,∞)) if (1.8) does not hold on any
subinterval [σ1,∞) ⊂ [σ,∞), σ1 ≥ σ.

As a method of proving the existence of positive solutions of (1.3), we use Ważewski’s
retract principle which was first introduced by Ważewski [15] for ordinary differential
equations and later extended to retarded functional differential equations by Rybakowski
[16] and which is widely applicable to concrete examples. A summary of this principle is
given below.

As usual, if a set ω ⊂ � × �n , then intω and ∂ω denote the interior and the boundary
of ω, respectively.

Definition 1.1 (see [16]). Let the continuously differentiable functions li(t, y), i = 1, 2, . . . , p
and mj(t, y), j = 1, 2, . . . , q, p2 + q2 > 0 be defined on some open set ω0 ⊂ � × �n . The set

ω∗ =
{(
t, y

) ∈ ω0 : li
(
t, y

)
< 0, mj

(
t, y

)
< 0, i = 1, . . . , p, j = 1, . . . , q

}
(1.9)

is called a regular polyfacial set with respect to the system (1.7), provided that it is nonempty,
if (α) to (γ) below hold.

(α) For (t, π) ∈ � × Cn
r such that (t + θ, π(θ)) ∈ ω∗ for θ ∈ [−r, 0), we have (t, π) ∈ Ω∗.

(β) For all i = 1, 2, . . . , p, all (t, y) ∈ ∂ω∗ for which li(t, y) = 0, and all π ∈ Cn
r for which

π(0) = y and (t + θ, π(θ)) ∈ ω∗, θ ∈ [−r, 0). It follows that Dli(t, y) > 0, where

Dli
(
t, y

) ≡ n∑
k=1

∂li
(
t, y

)
∂yk

fk(t, π) +
∂li

(
t, y

)
∂t

. (1.10)

(γ) For all j = 1, 2, . . . , q, all (t, y) ∈ ∂ω∗ for which mj(t, y) = 0, and all π ∈ Cn
r for which

π(0) = y and (t + θ, π(θ)) ∈ ω∗, θ ∈ [−r, 0). It follows that Dmj(t, y) < 0, where

Dmj

(
t, y

) ≡ n∑
k=1

∂mj

(
t, y

)
∂yk

fk(t, π) +
∂mj

(
t, y

)
∂t

. (1.11)

The elements (t, π) ∈ � × Cn
r in the sequel are assumed to be such that (t, π) ∈ Ω∗.

In the following definition, a set ω∗ is an arbitrary set without any connection with a
regular polyfacial set ω∗ defined by (1.9) in Definition 1.1.
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Definition 1.2. A system of initial functions pA,ω∗ with respect to the nonempty sets A and ω∗,
where A ⊂ ω∗ ⊂ � ×�n is defined as a continuous mapping p : A → Cn

r such that (α) and (β)
below hold.

(α) If z = (t, y) ∈ A ∩ intω∗, then (t + θ, p(z)(θ)) ∈ ω∗ for θ ∈ [−r, 0].
(β) If z = (t, y) ∈ A ∩ ∂ω∗, then (t + θ, p(z)(θ)) ∈ ω∗ for θ ∈ [−r, 0) and (t, p(z)(0)) = z.

Definition 1.3 (see [17]). If A ⊂ B are subsets of a topological space and π : B → A is a
continuous mapping from B onto A such that π(p) = p for every p ∈ A, then π is said to be
a retraction of B ontoA. When a retraction of B ontoA exists,A is called a retract of B.

The following lemma describes the main result of the paper [16].

Lemma 1.4. Let ω∗ ⊂ ω0 be a regular polyfacial set with respect to the system (1.7), and let W be
defined as follows:

W =
{(
t, y

) ∈ ∂ω∗ : mj

(
t, y

)
< 0, j = 1, 2, . . . , q

}
. (1.12)

Let Z ⊂ W ∪ ω∗ be a given set such that Z ∩W is a retract of W but not a retract of Z. Then for
each fixed system of initial functions pZ,ω∗ , there is a point z0 = (σ0, y0) ∈ Z ∩ ω∗ such that for the
corresponding solution y(σ0, p(z0))(t) of (1.7), one has

(
t, y

(
σ0, p(z0)

)
(t)

) ∈ ω∗ (1.13)

for each t ∈ Dσ0 ,p(z0).

Remark 1.5. When Lemma 1.4 is applied, a lot of technical details should be fulfilled. In order
to simplify necessary verifications, it is useful, without loss of generality, to vary the first
coordinate t in definition of the set ω∗ in (1.9) within a half-open interval open at the right.
Then the set ω∗ is not open, but tracing the proof of Lemma 1.4, it is easy to see that for
such sets it remains valid. Such possibility is used below. We will apply similar remark and
explanation to sets of the type Ω, Ω∗ which serve as domains of definitions of functionals on
the right-hand sides of equations considered.

For continuous vector functions

ρ∗ =
(
ρ∗1, ρ

∗
2, . . . , ρ

∗
n

)
, δ∗ =

(
δ∗1, δ

∗
2, . . . , δ

∗
n

)
: [t0 − r,∞) −→ �

n , (1.14)

with ρ∗(t) � δ∗(t) for t ∈ [t0 − r,∞) (the symbol � here and below means that ρ∗i (t) < δ∗i (t)
for all i = 1, 2, . . . , n), continuously differentiable on [t0,∞), we define the set

ω∗ :=
{(
t, y

)
: t ∈ [t0,∞), ρ∗(t)� y � δ∗(t)

}
. (1.15)

In the sequel, we employ the following result from [18, Theorem 1], which is proved with the
aid of the retract technique combined with Razumikhin’s approach.
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Theorem 1.6. Let there be a p ∈ {0, . . . , n} such that

(i) if t ≥ t0, φ ∈ Cn
r and (t + θ, φ(θ)) ∈ ω∗ for any θ ∈ [−r, 0), then

(
δ∗i

)′
(t) < Fi

(
t, φ

)
, when φi(0) = δ∗i(t),

(
ρ∗i

)′
(t) > Fi

(
t, φ

)
, when φi(0) = ρ∗i(t)

(1.16)

for any i = 1, 2, . . . , p, (If p = 0, this condition is omitted.)

(ii) if t ≥ t0, φ ∈ Cn
r and (t + θ, φ(θ)) ∈ ω∗ for any θ ∈ [−r, 0) then

(
ρ∗i

)′
(t) < Fi

(
t, φ

)
, when φi(0) = ρ∗i(t),

(
δ∗i

)′
(t) > Fi

(
t, φ

)
, when φi(0) = δ∗i(t)

(1.17)

for any i = p + 1, p + 2, . . . , n. (If p = n, this condition is omitted.)

Then, there exists an uncountable set Y of solutions of (1.7) on [t0−r,∞) such that each y ∈ Y
satisfies

ρ∗(t)� y(t)� δ∗(t), t ∈ [t0 − r,∞). (1.18)

1.2. Structure of Solutions of a Linear Equation

In this section we focus our attention to structure of solutions of scalar linear differential
equation of the type (1.3) with variable bounded delay of the form

ẋ(t) = −c(t)x(t − τ(t)) (1.19)

with continuous functions c : [t0 − r,∞) → �
+ and τ : [t0,∞) → (0, r].

In accordance with above definitions of positive or oscillatory solutions, we call a
solution of (1.19) oscillatory if it has arbitrary large zeros, otherwise it is called nonoscillatory
(positive or negative).

Let us mention properties of (1.19) which will be used later. Theorem 13 from [19]
describes sufficient conditions for existence of positive solutions of (1.19) with nonzero limit.

Theorem 1.7 (see [19, Theorem 13]). Linear equation (1.19) has a positive solution with nonzero
limit if and only if

∫∞
c(t)dt <∞. (1.20)
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Remark 1.8. Tracing the proof of Theorem 1.7, we conclude that a positive solution x = x(t) of
(1.19) with nonzero limit exists on [t0 − r,∞) if

∫∞
t0−r

c(t)dt < 1. (1.21)

The following theorem is a union of parts of results from [20] related to the structure
formulas for solutions of (1.19).

Theorem 1.9. Suppose the existence of a positive solution of (1.19) on [t0 − r,∞). Then there exist
two positive solutions xd and xs of (1.19) on [t0 − r,∞) satisfying the relation

lim
t→∞

xs(t)
xd(t)

= 0 (1.22)

such that every solution x = x(t) of (1.19) on [t0 − r,∞) can be represented by the formula

x(t) = Kxd(t) +O(xs(t)), (1.23)

where the constantK depends on x.

The symbol O, applied in (1.23) and below, is the Landau order symbol frequently
used in asymptotic analysis.

Moreover, Theorem 9 in [20] gives a possibility to replace the pair of solutions xd(t)
and xs(t) in (1.23) by another pairs of solutions x̃d(t) and x̃s(t) if

lim
t→∞

x̃s(t)
x̃d(t)

= 0 (1.24)

as given in the following theorem.

Theorem 1.10. Let x̃d(t) and x̃s(t) be positive solutions of (1.19) on [t0 − r,∞) such that (1.24)
holds. Then every solution x = x(t) of (1.19) on [t0 − r,∞) can be represented by the formula

x(t) = K∗x̃d(t) +O(x̃s(t)), (1.25)

where the constantK∗ depends on x.

The next definition is based on the properties of solutions xd, x̃d, xs, and x̃s described
in Theorems 1.9 and 1.10.

Definition 1.11 (see [20, Definition 2]). Suppose that the positive solutions xd and xs of (1.19)
on [t0 − r,∞) satisfy the relation (1.22). Then, we call the solution xd a dominant solution and
the solution xs a subdominant solution.

Due to linearity of (1.19), there are infinitely many dominant and subdominant
solutions. Obviously, another pair of a dominant and a subdominant solutions is the pair
x̃d(t), x̃s(t) in Theorem 1.10.
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2. Main Results

Let us consider two auxiliary linear equations:

ẋ(t) = −CA(t)x(t − r), (2.1)

ż(t) = −CB(t)z(t − r), (2.2)

where r ∈ �+ and CA, CB are positive continuous functions on [t0 − r,∞), t0 ∈ �. According
to the Theorems 1.7 and 1.9, both (2.1) and (2.2) have two types of positive solutions
(subdominant and dominant). Let us denote them xd(t), xs(t) for (2.1) and zd(t), zs(t) for
(2.2), respectively, such that

lim
t→∞

xs(t)
xd(t)

= 0, lim
t→∞

zs(t)
zd(t)

= 0. (2.3)

Without loss of generality, we can suppose that xs(t) < xd(t) and zs(t) < zd(t) on [t0 − r,∞).

2.1. Auxiliary Linear Result

The next lemma states that if zd(t), zs(t) are dominant and subdominant solutions for (2.2),
then there are dominant and subdominant solutions x∗

d
(t), x∗s(t) for (2.1) satisfying certain

inequalities.

Lemma 2.1. Let (1.5) be valid. Let zd(t), zs(t) be dominant and subdominant solutions for (2.2).
Then there are positive solutions x∗s(t), x

∗
d(t) of (2.1) on [t0 − r,∞) such that:

(a) x∗s(t) < zs(t), t ∈ [t0 − r,∞),

(b) zd(t) < x∗d(t), t ∈ [t0 − r,∞),

(c) x∗d(t) and x
∗
s(t) are dominant and subdominant solutions for (2.1).

Proof. (a) To prove the part (a), we employ Theorem 1.6 with p = n = 1; that is, we apply the
case (i). Consider (2.1), set F(t, φ) := −CA(t)φ(−r), ρ∗(t) := 0, δ∗(t) := zs(t), and assume (see
the case (i)):

0 < φ(θ) < zs(t + θ), θ ∈ [−r, 0), φ(0) = zs(t), t ≥ t0. (2.4)
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Now we have to verify the inequalities (1.16), that is, in our case:

F
(
t, φ

) − (δ∗)′(t) = −CA(t)φ(−r) − (δ∗)′(t)
= −CA(t)φ(−r) − z′s(t)
= −CA(t)φ(−r) +CB(t)zs(t − r)
≥ (we use (1.5))

≥ −CB(t)φ(−r) + CB(t)zs(t − r)
> CB(t)[zs(t − r) − zs(t − r)] = 0

(2.5)

and F(t, φ) > (δ∗)′(t) if t ∈ [t0,∞). Further, we have

−F(t, φ) + (
ρ∗
)′(t) = CA(t)φ(−r) + 0 = CA(t)φ(−r) > 0 (2.6)

and F(t, φ) < (ρ∗)′(t) if t ∈ [t0,∞). Since both inequalities are fulfilled and all assumptions
of Theorem 1.6 are satisfied for the case in question, there exists a solution x∗s(t) of (2.1) on
[t0 − r,∞) such that x∗s(t) < zs(t) for t ∈ [t0 − r,∞).

(b) To prove the part (b), we consider a solution x = x∗
d
(t) of the following initial

problem:

ẋ(t) = −CA(t)x(t − r), t ∈ [t0 − r,∞), (2.7)

x(t) = zd(t), t ∈ [t0 − r, t0]. (2.8)

Now, let us define a function

W(t, x) = zd(t) − x(t), t ∈ [t0 − r,∞). (2.9)

We find the sign of the full derivative of W along the trajectories of (2.7) if t ∈ [t0, t0 + r]:

dW(t, x)
dt

∣∣∣∣
t∈[t0,t0+r]

= −CB(t)zd(t − r) + CA(t)x(t − r)

= (due to (2.8))

= −CB(t)zd(t − r) + CA(t)zd(t − r)
≤ [CA(t) − CB(t)]zd(t − r) ≤ (due to (1.5)) ≤ 0.

(2.10)

It means that function W is nonincreasing and it holds

W(t0, x(t0)) = zd(t0) − x(t0) = zd(t0) − zd(t0)
= 0 ≥W(t0 + ε, x(t0 + ε)) = zd(t0 + ε) − x(t0 + ε), ε ∈ [0, r],

(2.11)
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and hence zd(t0 + ε) ≤ x(t0 + ε). It will be showed that this inequality holds also for every
t > t0 + r.

On the contrary, let us suppose that the inequality is not true, that is, there exists a point
t = t∗∗ such that zd(t∗∗) > x(t∗∗). Then there exists a point t∗ ∈ [t0, t∗∗) such that zd(t∗) < x(t∗),
otherwise zd(t) ≡ x(t) on [t0, t∗∗]. Without loss of generality, we can suppose that x(t) ≡ zd(t)
on [t0, t∗∗∗] with a t∗∗∗ ∈ [t0, t∗) and x(t) > zd(t) on (t∗∗∗, t∗). Then, there exists a point t� ∈
(t∗∗∗, t∗) such that x(t�) = Kzd(t�) for a constant K > 1 and

Kzd(t) > x(t), for t ∈ [t0, t�). (2.12)

Hence, for a function W∗(t, x) defined as W∗(t, x) := Kzd(t) − x(t), t ∈ [t0, t�], we get

dW∗(t, x)
dt

∣∣∣∣
t=t�

= K(−CB(t)zd(t − r)) + CA(t)x(t − r)

< (due to (2.12))

< K(−CB(t)zd(t − r)) + CA(t)Kzd(t − r)
= Kzd(t − r)[CA(t) −CB(t)] ≤

(
by (1.5)

) ≤ 0.

(2.13)

It means that Kzd(t) < x(t) on a right-hand neighborhood of t�. This is a contradiction with
inequality

zd(t) < Kzd(t) < x(t), (2.14)

hence it is proved that the existence of a solution x∗d(t) satisfies zd(t) < x∗d(t) on [t0 − r,∞).
(c) To prove the part (c), we consider limt→∞ x∗s(t)/x

∗
d(t). Due to (a) and (b), we get

0 ≤ lim
t→∞

x∗s(t)
x∗d(t)

≤ lim
t→∞

zs(t)
zd(t)

= 0, (2.15)

and x∗
d
(t) and x∗s(t) are (by Definition 1.11) dominant and subdominant solutions for (2.1).

2.2. Existence of Positive Solutions of (1.3)

The next theorems state that there exist two classes of positive solutions of (1.3) such
that graphs of each solution of the first class are between graphs of dominant solutions
of (2.1) and (2.2), and graphs of each solution of the second class are between graphs of
subdominant solutions of (2.1) and (2.2), respectively. It means that we prove there are two
classes of asymptotically different positive solutions of (1.3). Without loss of generality (see
Remark 1.5), we put Ω := [t0,∞) × C1

r . In the following, we will use our main supposition
(1.4); that is, we assume that for (t, φ) ∈ Ω inequalities,

CA(t)φ(−r) ≤ f
(
t, φ

) ≤ CB(t)φ(−r) (2.16)

hold, where φ is supposed to be positive.



10 Abstract and Applied Analysis

Theorem 2.2. Let f : Ω → � be a continuous quasibounded functional. Let inequality (1.5) be
valid, and (2.16) holds for any (t, φ) ∈ Ω with φ(θ) > 0, θ ∈ [−r, 0]. Let x(t) be a positive solution of
(2.1) on [t0 − r,∞), and let z(t) be a positive solution of (2.2) on [t0 − r,∞) such that x(t) < z(t) on
[t0 − r,∞). Then there exists an uncountable set Y of positive solutions of (1.3) on [t0 − r,∞) such
that each solution y ∈ Y satisfies

x(t) < y(t) < z(t) (2.17)

for t ∈ [t0 − r,∞).

Proof. To prove this theorem, we employ Theorem 1.6 with p = n = 1; that is, we apply the
case (i). Set F(t, yt) := −f(t, yt), ρ∗(t) := x(t), δ∗(t) := z(t); hence, the set ω∗ will be defined as

ω∗ :=
{(
t, y

)
: t ∈ [t0 − r,∞), x(t) < y(t) < z(t)

}
. (2.18)

Now, we have to verify the inequalities (1.16). In our case

F
(
t, φ

) − (δ∗)′(t) = −f(t, φ) − (δ∗)′(t)
= −f(t, φ) − z′(t)
= −f(t, φ) + CB(t)z(t − r)
≥ (we use (2.16))

≥ −CB(t)φ(−r) + CB(t)z(t − r)
>
(
we use (2.18) : φ(−r) < z(t − r))

> CB(t)[z(t − r) − z(t − r)] = 0,

−F(t, φ) + (
ρ∗
)′(t) = f(t, φ) + (

ρ∗
)′(t)

= f
(
t, φ

)
+ x′(t)

= f
(
t, φ

) − CA(t)x(t − r)
≥ (we use (2.16))

≥ CA(t)φ(−r) −CA(t)x(t − r)
>
(
we use (2.18) : φ(−r) > x(t − r))

> CA(t)[x(t − r) − x(t − r)] = 0.

(2.19)

Therefore,

F
(
t, φ

) − (δ∗)′(t) > 0,

−F(t, φ) + (
ρ∗
)′(t) > 0.

(2.20)
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Both inequalities (1.16) are fulfilled, and all assumptions of Theorem 1.6 are satisfied for the
case in question. There exists class of positive solutions Y of (1.3) on [t0 − r,∞) that for each
solution y ∈ Y from this class it is satisfied that x(t) < y(t) < z(t) for t ∈ [t0 − r,∞).

Corollary 2.3. Let, in accordance with Lemma 2.1, xs(t) be the subdominant solution of (2.1), and
let zs(t) be the subdominant solution of (2.2), that is, xs(t) < zs(t) on [t0 − r,∞). Then, there exists
an uncountable set Ys of positive solutions of (1.3) on [t0 − r,∞) such that each solution ys ∈ Ys
satisfies

xs(t) < ys(t) < zs(t). (2.21)

If inequality (1.6) holds, then dominant solutions xd(t) of (2.1) and zd(t) of (2.2) have
finite positive limits

Cx := lim
t→∞

xd(t), Cx > 0,

Cz := lim
t→∞

zd(t), Cz > 0.
(2.22)

This is a simple consequence of positivity of solutions xd(t), zd(t) and properties of dominant
and subdominant solutions (see Theorem 1.7, Remark 1.8, Theorem 1.9, formulas (1.22)–
(1.25) and (2.3)). Then, due to linearity of (2.1) and (2.2), it is clear that there are dominant
solutions xd(t), zd(t) of both equations such that zd(t) < xd(t) on [t0 − r,∞). In the following
lemma, we without loss of generality suppose that xd(t) and zd(t) are such solutions and
their initial functions are nonincreasing on initial interval [t0 − r, t0]. We will need constants
M and L satisfying

M >M∗ :=
xd(t0 − r)

Cz
,

L > L∗ :=
Mzd(t0 − r)

Cx
.

(2.23)

Lemma 2.4. Let f : Ω → � be a continuous quasibounded functional. Let inequalities (1.5) and
(1.6) be valid, and (2.16) holds for any (t, φ) ∈ Ωwith φ(θ) > 0, θ ∈ [−r, 0]. Let xd(t), t ∈ [t0−r,∞)
be a dominant solution of (2.1), nonincreasing on [t0−r, t0], and let zd(t), t ∈ [t0−r,∞) be a dominant
solution of (2.2), nonincreasing on [t0 − r, t0], such that zd(t) < xd(t), t ∈ [t0 − r,∞). Then there
exists another dominant solution z∗

d
(t) of (2.2) and a positive solution y = yd(t) of (1.3) on [t0−r,∞)

such that it holds that

xd(t) < yd(t) < z∗d(t) (2.24)

for t ∈ [t0 − r,∞) and z∗
d
(t) =Mzd(t).
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Proof. Both dominant solutions xd(t) and zd(t), of (2.1) and (2.2), respectively, have nonzero
positive limitsCx andCz. From linearity of (2.1) and (2.2), it follows that solutions multiplied
by an arbitrary constant are also solutions of (2.1) and (2.2), respectively. It holds that

z∗d(t0 − r) = Mzd(t0 − r) ≥Mzd(t) = z∗d(t) > MCz > xd(t0 − r) ≥ xd(t), (2.25)

where t ∈ [t0 − r,∞).
Now, we define the set ω∗ in the same way as (2.18) in the proof of Theorem 2.2, but

with xd(t) instead of x(t) and with z∗
d
(t) instead of z(t), that is,

ω∗ :=
{(
t, y

)
: t ∈ [t0 − r,∞), xd(t) < y(t) < z∗d(t)

}
. (2.26)

According to the Theorem 2.2 (with xd(t) instead of x(t) and with z∗
d
(t) instead of z(t)), it is

visible that there exists a positive solution y = yd(t) of (1.3) satisfying

xd(t) < yd(t) < z∗d(t), (2.27)

where t ∈ [t0,∞); that is, inequalities (2.24) hold.

Theorem 2.5. Let all suppositions of Lemma 2.4 be valid, and let yd(t) be a solution of (1.3)
satisfying inequalities (2.24). Then, there exists a positive solution x∗∗

d
(t) of (2.1) on [t0 − r,∞)

satisfying

zd(t) < yd(t) < x∗∗d (t), (2.28)

where x∗∗d (t) = Lxd(t) and t ∈ [t0 − r,∞).

Proof. Multiplying solution xd(t) by the constant L, we have

Lxd(t) > LCx > Mzd(t0 − r). (2.29)

Using (2.29) and (2.24), we get

x∗∗d (t) = Lxd(t) > Mzd(t0 − r) = z∗d(t0 − r) > z∗d(t) > yd(t) > xd(t) > zd(t), (2.30)

where t ∈ [t0 − r,∞). Hence, there exists a solution yd(t) of (1.3) such that inequalities (2.28)
hold.

2.3. Asymptotically Different Behavior of Positive Solutions of (1.3)

Somewhat reformulating the statement of Theorem 2.5, we can define a class of positive
solutions Yd of (1.3) such that every solution yd ∈ Yd is defined on [t0 − r,∞) and satisfies

Czd(t) < yd(t) < Cx∗∗d (t), (2.31)
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where t ∈ [t0 − r,∞) for a positive constant C and, for every positive constant C, there exists
a solution yd ∈ Yd satisfying (2.31) on [t0 − r,∞).

The following theorem states that positive solutions ys(t) and yd(t) of (1.3) have a
different order of vanishing.

Theorem 2.6. Let all the assumptions of Corollary 2.3 and Theorem 2.5 be met. Then there exist two
classes Ys and Yd of positive solutions of (1.3) described by inequalities (2.21) and (2.31). Every two
solutions ys, yd, such that ys ∈ Ys and yd ∈ Yd, have asymptotically different behavior, that is,

lim
t→+∞

ys(t)
yd(t)

= 0. (2.32)

Proof. Let the solution ys(t) be the one specified in Corollary 2.3 and the solution yd(t)
specified by (2.31) with a positive constant C. Now let us verify that (2.32) holds. With the
aid of inequalities (2.21) and (2.31), we get

0 ≤ lim
t→+∞

ys(t)
yd(t)

≤ lim
t→+∞

zs(t)
Czd(t)

= 0 (2.33)

in accordance with (1.22), since zs(t) and zd(t) are positive (subdominant and dominant)
solutions of linear equation (2.2).

Another final statement, being a consequence of Lemma 2.1 and Theorems 2.2 and 2.5,
is the following.

Theorem 2.7. Let f : Ω → � be a continuous quasibounded functional. Let inequalities (1.5) and
(1.6) be valid, and (2.16) holds for any (t, φ) ∈ Ω with φ(θ) > 0, θ ∈ [−r, 0]. Then on [t0 − r,∞)
there exist

(a) dominant and subdominant solutions xd(t), xs(t) of (2.1),

(b) dominant and subdominant solutions zd(t), zs(t) of (2.2),

(c) solutions yd(t), ys(t) of (1.3)

such that

0 < xs(t) < ys(t) < zs(t) < zd(t) < yd(t) < xd(t), (2.34)

lim
t→∞

xs(t)
xd(t)

= lim
t→∞

zs(t)
zd(t)

= lim
t→∞

ys(t)
yd(t)

= 0. (2.35)

Example 2.8. Let (1.3) be reduced to

ẏ(t) = −f(t, yt) := −3t exp
(
−3t +

1
2

cos
(
ty(t − 1)

)) · y(t − 1), (2.36)
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and let auxiliary linear equations (2.1) and (2.2) be reduced to

ẋ(t) = −4t exp(2 − 4t) · x(t − 1), (2.37)

ż(t) = −2t exp(1 − 2t) · z(t − 1), (2.38)

that is,

CA(t) := 4t exp(2 − 4t), CB(t) := 2t exp(1 − 2t), r = 1. (2.39)

Let t0 be sufficiently large. Inequalities (1.5), (1.6), and (2.16) hold. In view of linearity and
by Remark 1.8, we conclude that there exist dominant solutions xd(t) of (2.37) and zd(t) of
(2.38) such that

lim
t→∞

xd(t) = 11, lim
t→∞

zd(t) = 2, zd(t) < xd(t), t ∈ [t0 − 1,∞). (2.40)

Moreover, there exist subdominant solutions xs(t) of (2.37) and zs(t) of (2.38) such that
xs(t) < zs(t), t ∈ [t0 − 1,∞) which are defined as

xs(t) := exp
(
−2t2

)
, zs(t) := exp

(
−t2

)
. (2.41)

By Theorem 2.7, we conclude that there exist solutions ys(t) and yd(t) of (2.36) satisfying
inequalities (2.34), and (without loss of generality) inequalities

0 < xs(t) = exp
(
−2t2

)
< ys(t) < zs(t) = exp

(
−t2

)
< 1 ≤ zd(t) < yd(t) < 10 ≤ xd(t) (2.42)

hold on [t0 − 1,∞).

3. Conclusions and Open Problems

The following problems were not answered in the paper and present interesting topics for
investigation.

Open Problem 3.1. In Lemma 2.4 and Theorems 2.5–2.7 we used the convergence assumption
(1.6) being, without loss of generality, equivalent to

∫∞
CB(t)dt < ∞. (3.1)

It is an open question whether similar results could be proved if the integral is divergent, that
is, if

∫∞
CB(t)dt = ∞. (3.2)
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Open Problem 3.2. Dominant and subdominant solutions are used for representation of family
of all solutions of scalar linear differential delayed equation, for example, by formula (1.25).
Investigation in this line of the role of solutions yd(t) and ys(t) of (1.3) (see Theorems 2.6
and 2.7) is an important question. Namely, it seems to be an interesting question to establish
sufficient conditions for the right-hand side of (1.3) such that its every solution y = y(t) can
be represented on [t0 − r,∞) by the formula

y(t) = Kyd(t) +O
(
ys(t)

)
, (3.3)

where the constant K depends only on y(t).

Open Problem 3.3. The notions dominant and subdominant solutions are in the cited papers
defined for scalar differential delayed equations only. It is a rather interesting question if the
results presented can be enlarged to systems of differential delayed equations.

Remark 3.4. Except for papers and books mentioned in this paper we refer, for example, to
sources [21–23], treating related problems as well. Note that the topic is connected with
similar questions for discrete equations (e.g., [24–27]).
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Received 31 December 2010; Revised 1 July 2011; Accepted 1 July 2011

Academic Editor: Josef Diblı́k

Copyright q 2011 Alexander Boichuk et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The weakly perturbed linear nonhomogeneous impulsive systems in the form ẋ = A(t)x +
εA1(t)x + f(t), t ∈ R, t /∈ T := {τi}Z,Δx|t=τi = γi + εA1ix(τi−), τi ∈ T ⊂ R, γi ∈ R

n, and
i ∈ Z are considered. Under the assumption that the generating system (for ε = 0) does not
have solutions bounded on the entire real axis for some nonhomogeneities and using the Vishik-
Lyusternik method, we establish conditions for the existence of solutions of these systems bounded
on the entire real axis in the form of a Laurent series in powers of small parameter ε with finitely
many terms with negative powers of ε, and we suggest an algorithm of construction of these
solutions.

1. Introduction

In this contribution we study the problem of existence and construction of solutions of
weakly perturbed linear differential systems with impulsive action bounded on the entire real
axis. The application of the theory of differential systems with impulsive action (developed
in [1–3]), the well-known results on the splitting index by Sacker [4] and by Palmer [5]
on the Fredholm property of bounded solutions of linear systems of ordinary differential
equations [6–9], the theory of pseudoinverse matrices [10] and results obtained in analyzing
boundary-value problems for ordinary differential equations (see [10–12]), enables us to
obtain existence conditions and to propose an algorithm for the construction of solutions
bounded on the entire real axis of weakly perturbed linear impulsive differential systems.
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2. Initial Problem

We consider the problem of existence and construction of solutions bounded on the entire
real axis of linear systems of ordinary differential equations with impulsive action at fixed
points of time

ẋ = A(t)x + f(t), t ∈ R \ T,

Δx|t=τi = γi, τi ∈ T, i ∈ Z,
(2.1)

where A ∈ BCT(R) is an n × n matrix of functions, f ∈ BCT(R) is an n × 1 vector function,
BCT(R) is the Banach space of real vector functions bounded on R and left-continuous for
t ∈ R with discontinuities of the first kind at t ∈ T := {τi}Z with the norm: ‖x‖BCT(R) :=
supt∈R‖x(t)‖, γi are n-dimensional column constant vectors: γi ∈ R

n; · · · < τ−2 < τ−1 < τ0 = 0 <
τ1 < τ2 < · · · , and Δx|t=τi := x(τi+) − x(τi−).

The solution x(t) of the system (2.1) is sought in the Banach space of n-
dimensional bounded on R and piecewise continuously differentiable vector functions with
discontinuities of the first kind at t ∈ T : x ∈ BC1

T(R).

Parallel with the nonhomogeneous impulsive system (2.1), we consider the corre-
sponding homogeneous system

ẋ = A(t)x, Δx|t=τi = 0, (2.2)

which is the homogeneous system without impulses, and let X(t) be the fundamental matrix
of (2.2) such that X(0) = I.

Assume that the homogeneous system (2.2) is exponentially dichotomous (e-dicho-
tomous) [5, 10] on semiaxes R− = (−∞, 0] and R+ = [0,∞), that is, there exist projectors P
and Q (P 2 = P, Q2 = Q) and constants Ki ≥ 1, αi > 0 (i = 1, 2) such that the following
inequalities are satisfied:

∥∥∥X(t)PX−1(s)
∥∥∥ ≤ K1e

−α1(t−s), t ≥ s,

∥∥∥X(t)(I − P)X−1(s)
∥∥∥ ≤ K1e

−α1(s−t), s ≥ t, t, s ∈ R+,

∥∥∥X(t)QX−1(s)
∥∥∥ ≤ K2e

−α2(t−s), t ≥ s,

∥∥∥X(t)(I −Q)X−1(s)
∥∥∥ ≤ K2e

−α2(s−t), s ≥ t, t, s ∈ R−.

(2.3)
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For getting the solution x ∈ BC1
T(R) bounded on the entire axis, we assume that t =

0 /∈ T, that is, x(0+) − x(0−) = γ0 = 0.
We use the following notation: D = P − (I −Q); D+ is a Moore-Penrose pseudoinverse

matrix to D; PD and PD∗ are n×n matrices (orthoprojectors) projecting R
n onto N(D) = kerD

and onto N(D∗) = kerD∗, respectively, that is, PD : R
n → N(D), P 2

D = PD = P ∗D, and PD∗ :
R
n → N(D∗), P 2

D∗ = PD∗ = P ∗D∗ ; H(t) = [PD∗Q]X−1(t); d = rank[PD∗Q] = rank[PD∗(I − P)]
and r = rank[PPD] = rank[(I −Q)PD].

The existence conditions and the structure of solutions of system (2.1) bounded on the
entire real axis was analyzed in [13]. Here the following theorem was formulated and proved.

Theorem 2.1. Assume that the linear nonhomogeneous impulsive differential system (2.1) has the
corresponding homogeneous system (2.2) e-dichotomous on the semiaxes R− = (−∞, 0] and R+ =
[0,∞)with projectors P andQ, respectively. Then the homogeneous system (2.2) has exactly r linearly
independent solutions bounded on the entire real axis. If nonhomogeneities f ∈ BCT(R) and γi ∈ R

n

satisfy d linearly independent conditions

∫∞
−∞

Hd(t)f(t)dt +
∞∑

i=−∞
Hd(τi)γi = 0, (2.4)

then the nonhomogeneous system (2.1) possesses an r-parameter family of linearly independent
solutions bounded on R in the form

x(t, cr) = Xr(t)cr +

(
G

[
f

γi

])
(t), ∀cr ∈ R

r . (2.5)

Here, Hd(t) = [PD∗Q]dX
−1(t) is a d × n matrix formed by a complete system of d linearly

independent rows of matrix H(t),

Xr(t) := X(t)[PPD]r = X(t)[(I −Q)PD]r (2.6)

is an n × r matrix formed by a complete system of r linearly independent solutions bounded
on R of homogeneous system (2.2), and

(
G
[
f
γi

])
(t) is the generalized Green operator of



4 Abstract and Applied Analysis

the problem of finding bounded solutions of the nonhomogeneous impulsive system (2.1),
acting upon f ∈ BCT(R) and γi ∈ R

n, defined by the formula

(
G

[
f

γi

])
(t) = X(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t
0
PX−1(s)f(s)ds −

∫∞
t

(I − P)X−1(s)f(s)ds

+
j∑
i=1

PX−1(τi)γi −
∞∑

i=j+1

(I − P)X−1(τi)γi

+PD+

{∫0

−∞
QX−1(s)f(s)ds +

∫∞
0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
QX−1(τi)γi +

∞∑
i=1

(I − P)X−1(τi)γi

}
, t ≥ 0;

∫ t
−∞
QX−1(s)f(s)ds −

∫0

t

(I −Q)X−1(s)f(s)ds

+
−(j+1)∑
i=−∞

QX−1(τi)γi −
−1∑
i=−j

(I −Q)X−1(τi)γi

+(I −Q)D+

{∫0

−∞
QX−1(s)f(s)ds +

∫∞
0
(I − P)X−1(s)f(s)ds

+
−1∑

i=−∞
QX−1(τi)γi +

∞∑
i=1

(I − P)X−1(τi)γi

}
, t ≤ 0,

(2.7)

with the following property

(
G

[
f

γi

])
(0−) −

(
G

[
f

γi

])
(0+) =

∫∞
−∞

H(t)f(t)dt +
∞∑

i=−∞
H(τi)γi. (2.8)

These results are required to establish new conditions for the existence of solutions of
weakly perturbed linear impulsive systems bounded on the entire real axis.

3. Perturbed Problems

Consider a weakly perturbed nonhomogeneous linear impulsive system in the form

ẋ = A(t)x + εA1(t)x + f(t), t ∈ R \ T,
Δx|t=τi = γi + εA1ix(τi−), τi ∈ T, γi ∈ R

n, i ∈ Z,
(3.1)

where A1 ∈ BCT(R) is an n × n matrix of functions, A1i are n × n constant matrices.
Assume that the condition of solvability (2.4) of the generating system (2.1) (obtained

from system (3.1) for ε = 0) is not satisfied for all nonhomogeneities f ∈ BCT(R) and γi ∈ R
n,

that is, system (2.1) does not have solutions bounded on the entire real axis. Therefore, we
analyze whether the system (2.1) can be made solvable by introducing linear perturbations
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to the differential system and to the pulsed conditions. Also it is important to determine
perturbations A1(t) and A1i required to make the problem (3.1) solvable in the space of
functions bounded on the entire real axis, that is, it is necessary to specify pertubations for
which the corresponding homogeneous system

ẋ = A(t)x + εA1(t)x, t ∈ R \ T,

Δx|t=τi = εA1ix(τi−), τi ∈ T, i ∈ Z,
(3.2)

turns into a system e-trichotomous or e-dichotomous on the entire real axis [10].
We show that this problem can be solved using the d × r matrix

B0 =
∫∞
−∞

Hd(t)A1(t)Xr(t)dt +
∞∑

i=−∞
Hd(τi)A1iXr(τi−), (3.3)

constructed with the coefficients of the system (3.1). The Vishik-Lyusternik method
developed in [14] enables us to establish conditions under which a solution of impulsive
system (3.1) can be represented by a function bounded on the entire real axis in the form
of a Laurent series in powers of the small fixed parameter ε with finitely many terms with
negative powers of ε.

We use the following notation: B+
0 is the unique matrix pseudoinverse to B0 in the

Moore-Penrose sense, PB0 is the r × r matrix (orthoprojector) projecting the space Rr to the
null space N(B0) of the d × r matrix B0, that is, PB0 :Rr → N(B0), and PB∗0 is the d × d matrix
(orthoprojector) projecting the space R

d to the null space N(B∗0) of the r × d matrix B∗0 (B∗0 =
BT ), that is, PB∗0 : R

d → N(B∗0).
Now we formulate and prove a theorem that enables us to solve indicated problem.

Theorem 3.1. Suppose that the system (3.1) satisfies the conditions imposed above, and the
homogeneous system (2.2) is e-dichotomous on R+ and R− with projectors P and Q, respectively.
Let nonhomogeneities f ∈ BCT(R) and γi ∈ R

n be given such that the condition (2.4) is not satisfied
and the generating system (2.1) does not have solutions bounded on the entire real axis. If

PB∗0 = 0, (3.4)

then the system (3.2) is e-trichotomous on R and, for all nonhomogeneities f ∈ BCT(R) and γi ∈ R
n,

the system (3.1) possesses at least one solution bounded on R in the form of a series

x(t, ε) =
∞∑

k=−1

εkxk(t), (3.5)

uniformly convergent for sufficiently small fixed ε ∈ (0, ε∗].
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Here, ε∗ is a proper constant characterizing the range of convergence of the series (3.5)
and the coefficients xk(t) of the series (3.5) are determined from the corresponding impulsive
systems as

xk(t) = xk(t, ck) = Xr(t)ck +

(
G

[
A1(·)xk−1(·, ck−1)

A1ix(τi−, ck−1)

])
(t) for k = 1, 2, . . . ,

ck = −B+
0

[∫∞
−∞

Hd(t)A1(t)

(
G

[
A1(·)xk−1(·, ck−1)

A1ixk−1(τi−, ck−1)

])
(t)dt

+
∞∑

i=−∞
Hd(τi)A1i

(
G

[
A1(·)xk−1(·, ck−1)

A1ixk−1(·, ck−1)

])
(τi−)
]
,

x−1(t) = x−1(t, c−1) = Xr(t)c−1, c−1 = B+
0

{∫∞
−∞

Hd(t)f(t)dt +
∞∑

i=−∞
Hd(τi−)γi

}
,

x0(t) = x0(t, c0) = Xr(t)c0 +

(
G

[
A1(·)Xr(t)c−1 + f(·)
γi +A1iXr(τi−)c−1

])
(t),

c0 = −B+
0

[∫∞
−∞

Hd(t)A1(t)

(
G

[
A1(·)x−1(·, c−1) + f(·)
A1ix−1(τi−, c−1) + γi

])
(t)dt

+
∞∑

i=−∞
Hd(τi)A1i

(
G

[
A1(·)x−1(·, c−1) + f(·)
A1ix−1(·, c−1) + γi

])
(τi−)
]
.

(3.6)

Proof. We suppose that the problem (3.1) has a solution in the form of a Laurent series (3.5).
We substitute this solution into the system (3.1) and equate the coefficients at the same
powers of ε. The problem of determination of the coefficient x−1(t) of the term with ε−1 in
series (3.5) is reduced to the problem of finding solutions of homogeneous system without
impulses

ẋ−1 = A(t)x−1, t /∈ T,
Δx−1|t=τi = 0, i ∈ Z,

(3.7)

bounded on the entire real axis. According to the Theorem 2.1, the homogeneous system (3.7)
possesses r-parameter family of solutions

x−1(t, c−1) = Xr(t)c−1 (3.8)

bounded on the entire real axis, where c−1 is an r-dimensional vector column c−1 ∈ R
r and

is determined from the condition of solvability of the problem used for determining the
coefficient x0 of the series (3.5).
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For ε0, the problem of determination of the coefficient x0(t) of series (3.5) reduces to
the problem of finding solutions of the following nonhomogeneous system:

ẋ0 = A(t)x0 +A1(t)x−1 + f(t), t /∈ T,

Δx0|t=τi = A1ix−1(τi−) + γi, i ∈ Z,
(3.9)

bounded on the entire real axis. According to the Theorem 2.1, the condition of solvability of
this problem takes the form

∫∞
−∞

Hd(t)
[
A1(t)Xr(t)c−1 + f(t)

]
dt+

∞∑
i=−∞

Hd(τi)
[
A1iXr(τi−)c−1 + γi

]
= 0. (3.10)

Using the matrix B0, we get the following algebraic system for c−1 ∈ R
r :

B0c−1 = −
∫∞
−∞

Hd(t)f(t)dt +
∞∑

i=−∞
Hd(τi−)γi, (3.11)

which is solvable if and only if the condition

PB∗0

{∫∞
−∞

Hd(t)f(t)dt +
∞∑

i=−∞
Hd(τi−)γi

}
= 0 (3.12)

is satisfied, that is, if

PB∗0 = 0. (3.13)

In this case, this algebraic system is solvable with respect to c−1 ∈ R
r within an arbitrary

vector constant PB0c(∀c ∈ R
r) from the null space of the matrix B0, and one of its solutions

has the form

c−1 = B+
0

{∫∞
−∞

Hd(t)f(t)dt +
∞∑

i=−∞
Hd(τi−)γi

}
. (3.14)

Therefore, under condition (3.4), the nonhomogeneous system (3.9) possesses an r-parameter
set of solution bounded on R in the form

x0(t, c0) = Xr(t)c0 +

(
G

[
A1(·)x−1(·, c−1) + f(·)
γi +A1ix−1(τi−, c−1)

])
(t), (3.15)

where (G[ ∗∗ ])(t) is the generalized Green operator (2.7) of the problem of finding bounded
solutions of system (3.9), and c0 is an r-dimensional constant vector determined in the next
step of the process from the condition of solvability of the impulsive problem for coefficient
x1(t).
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We continue this process by problem of determination of the coefficient x1(t) of the
term with ε1 in the series (3.5). It reduces to the problem of finding solutions of the system

ẋ1 = A(t)x1 +A1(t)x0, t /∈ T,
Δx1|t=τi = A1ix0(τi−), i ∈ Z,

(3.16)

bounded on the entire real axis. If the condition (3.4) is satisfied and by using the condition
of solvability of this problem, that is,

∫∞
−∞

Hd(t)A1(t)

[
Xr(t)c0 +

(
G

[
A1(·)x−1(·, c−1) + f(·)
A1ix−1(τi−, c−1) + γi

])
(t)

]
dt

+
∞∑

i=−∞
Hd(τi−)A1i

[
Xr(τi−)c0 +

(
G

[
A1(·)x−1(·, c−1) + f(·)
A1ix−1(·, c−1) + γi

])
(τi−)
]
= 0,

(3.17)

we determine the vector c0 ∈ R
r (within an arbitrary vector constant PB0c, ∀c ∈ R

r) as

c0 = −B+
0

[∫∞
−∞

Hd(t)A1(t)

(
G

[
A1(·)x−1(·, c−1) + f(·)
A1ix−1(τi−, c−1) + γi

])
(t)dt

+
∞∑

i=−∞
Hd(τi)A1i

(
G

[
A1(·)x−1(·, c−1) + f(·)
A1ix−1(·, c−1) + γi

])
(τi−)
]
.

(3.18)

Thus, under the condition (3.4), system (3.16) possesses an r-parameter set of solutions
bounded on R in the form

x1(t, c1) = Xr(t)c1 +

(
G

[
A1(·)x0(·, c0)

A1ix(τi−, c0)

])
(t), (3.19)

where (G[ ∗∗ ])(t) is the generalized Green operator (2.7) of the problem of finding bounded
solutions of system (3.16), and c1 is an r-dimensional constant vector determined in the next
stage of the process from the condition of solvability of the problem for x2(t).

If we continue this process, we prove (by induction) that the problem of determination
of the coefficient xk(t) in the series (3.5) is reduced to the problem of finding solutions of the
system

ẋk = A(t)xk +A1(t)xk−1, t /∈ T,
Δxk|t=τi = A1ixk−1(τi−), i ∈ Z, k = 1, 2, . . . ,

(3.20)
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bounded on the entire real axis. If the condition (3.4) is satisfied, then a solution of this
problem bounded on R has the form

xk(t) = xk(t, ck) = Xr(t)ck +

(
G

[
A1(·)xk−1(·, ck−1)

A1kxk−1(τi−, ck−1)

])
(t), (3.21)

where (G[ ∗∗ ])(t) is the generalized Green operator of the problem of finding bounded
solutions of impulsive system (3.20) and the constant vector ck ∈ Rr is given by the formula

ck = −B+
0

[∫∞
−∞

Hd(t)A1(t)

(
G

[
A1(·)xk−1(·, ck−1)

A1ixk−1(τi−, ck−1)

])
(t)dt

+
∞∑

i=−∞
Hd(τi)A1i

(
G

[
A1(·)xk−1(·, ck−1)

A1ixk−1(·, ck−1)

])
(τi−)
] (3.22)

(within an arbitrary vector constant PB0c, c ∈ Rr).
The fact that the series (3.5) is convergent can be proved by using the procedure of

majorization.

In the case where the number r = rankPPD = rank(I − Q)PD of linear independent
solutions of system (2.2) bounded on R is equal to the number d = rank[PD∗Q] = rank[PD∗(I−
P)], Theorem 3.1 yields the following assertion.

Corollary 3.2. Suppose that the system (3.1) satisfies the conditions imposed above, and the
homogeneous system (2.2) is e-dichotomous on R+ and R− with projectors P and Q, respectively.
Let nonhomogeneities f ∈ BCT(R) and γi ∈ R

n be given such that the condition (2.4) is not satisfied,
and the generating system (2.1) does not have solutions bounded on the entire real axis. If condition

detB0 /= 0 (r = d), (3.23)

is satisfied, then the system (3.1) possesses a unique solution bounded on R in the form of series (3.5)
uniformly convergent for sufficiently small fixed ε ∈ (0, ε∗].

Proof. If r = d, then B0 is a square matrix. Therefore, it follows from condition (3.4) that
PB0 = PB∗0 = 0, which is equivalent to the condition (3.23). In this case, the constant vectors
ck ∈ R

r are uniquely determined from (3.22). The coefficients of the series (3.5) are also
uniquely determined by (3.21), and, for all f ∈ BCT(R) and γi ∈ R

n, the system (3.1) possesses
a unique solution bounded on R, which means that system (3.2) is e-dichotomous.

We now illustrate the assertions proved above.
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Example 3.3. Consider the impulsive system

ẋ = A(t)x + εA1(t)x + f(t), t ∈ R \ T,

Δx|t=τi = γi + εA1ix(τi−), γi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ
(1)
i

γ
(2)
i

γ
(3)
i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
∈ R

3, i ∈ Z,
(3.24)

where

A(t) = diag{− tanh t, − tanh t, tanh t},
f(t) = col

{
f1(t), f2(t), f3(t)

} ∈ BCT(R),

A1(t) =
{
aij(t)

}3
i,j=1 ∈ BCT(R), A1i =

{
ãij
}3
i,j=1.

(3.25)

The generating homogenous system (for ε = 0) has the form

ẋ = A(t)x, Δx|t=τi = 0 (3.26)

and is e-dichotomous (as shown in [6]) on the semiaxes R+ and R− with projectors P =
diag{1, 1, 0} and Q = diag{0, 0, 1}. The normal fundamental matrix of this system is

X(t) = diag
{

2
et + e−t

,
2

et + e−t
,
et + e−t

2

}
. (3.27)

Thus, we have

D = 0, D+ = 0, PD = PD∗ = I3,

r = rankPPD = 2, d = rankPD∗Q = 1,

Xr(t) =

⎛
⎜⎜⎜⎜⎝

2
et + e−t

0

0
2

et + e−t
0 0

⎞
⎟⎟⎟⎟⎠,

(3.28)

Hd(t) =
(

0, 0,
2

et + e−t

)
. (3.29)

In order that the generating impulsive system (2.1) with the matrix A(t) specified
above has solutions bounded on the entire real axis, the nonhomogeneities f(t) =
col{f1(t), f2(t), f3(t)} ∈ BCT(R) and γi = col{γ (1)i , γ

(2)
i , γ

(3)
i } ∈ R

3 must satisfy condition (2.4).
In this analyzed impulsive problem, this condition takes the form

∫∞
−∞

2 f3(t)
et + e−t

dt +
∞∑

i=−∞

2
eτi + e−τi

γ
(3)
i = 0, ∀f1(t), f2(t) ∈ BCT(R), ∀γ (1)i , γ

(2)
i ∈ R. (3.30)
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Let f3 and γ
(3)
i be given such that the condition (3.30) is not satisfied and the corresponding

generating system (2.1) does not have solutions bounded on the entire real axis. The system
(3.24) will be an e-trichotomous on R if the coefficients a31(t), a32(t) ∈ BCT(R) of the
perturbing matrix A1(t) and the coefficients ã31, ã32 ∈ R of the perturbing matrix A1i satisfy
condition (3.4), that is, PB∗0 = 0, where the matrix B0 has the form

B0 =
∫∞
−∞

[
a31(t)

(et + e−t)2
,

a32(t)

(et + e−t)2

]
dt +

∞∑
i=−∞

[
ã31

(eτi− + e−τi−)2
,

ã32

(eτi− + e−τi−)2

]
. (3.31)

Therefore, if a31(t), a32(t) ∈ BCT(R) and ã31, ã32 ∈ R are such that at least one of the following
inequalities

∫∞
−∞

a31(t)

(et + e−t)2
dt +

∞∑
i=−∞

ã31

(eτi− + e−τi−)2 /= 0,

∫∞
−∞

a32(t)

(et + e−t)2
dt +

∞∑
i=−∞

ã32

(eτi− + e−τi−)2 /= 0

(3.32)

is satisfied, then either the condition (3.4) or the equivalent condition rank B0 = d = 1
from Theorem 3.1 is satisfied and the system (3.2) is e-trichotomous on R. In this case,
the coefficients a11(t),a12(t),a13(t),a21(t), a22(t), a23(t), a33(t) are arbitrary functions from the
space BCT(R), and ã11, ã12, ã13, ã21, ã22, ã23, ã33 are arbitrary constants from R. Moreover, for
any

f(t) = col
{
f1(t), f2(t), f3(t)

} ∈ BCT(R) (3.33)

a solution of the system (3.24) bounded on R is given by the series (3.5) (within a constant
from the null space N(B0), dimN(B0) = r − rank B0 = 1).

Another Perturbed Problem

In this part, we show that the problem of finding bounded solutions of nonhomogeneous
system (2.1), in the case if the condition (2.4) is not satisfied, can be made solvable by
introducing linear perturbations only to the pulsed conditions.

Therefore, we consider the weakly perturbed nonhomogeneous linear impulsive
system in the form

ẋ = A(t)x + f(t), t ∈ R \ T, A, f ∈ BCT(R),

Δx|t=τi = γi + εA1ix(τi−), γi ∈ R
n, i ∈ Z,

(3.34)

where A1i are n × n constant matrices. For ε = 0, we obtain the generating system (2.1).
We assume that this generating system does not have solutions bounded on the entire
real axis, which means that the condition of solvability (2.4) is not satisfied (for some
nonhomogeneities f ∈ BCT(R) and γi ∈ R

n). Let us show that it is possible to make this
problem solvable by adding linear perturbation only to the pulsed conditions. In the case, if
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this is possible, it is necessary to determine perturbations A1i for which the corresponding
homogeneous system

ẋ = A(t)x, t ∈ R \ T,
Δx|t=τi = εA1ix(τi−), i ∈ Z,

(3.35)

turns into the system e-trichotomous or e-dichotomous on the entire real axis.
This problem can be solved with help of the d × r matrix

B0 =
∞∑

i=−∞
Hd(τi)A1iXr(τi−) (3.36)

constructed with the coefficients from the impulsive system (3.34).
By using Theorem 3.1, we seek a solution in the form of the series (3.5). Thus, we have

the following corollary.

Corollary 3.4. Suppose that the system (3.34) satisfies the conditions imposed above and the
generating homogeneous system (2.2) is e-dichotomous on R+ and R− with projectors P and Q,
respectively. Let nonhomogeneities f ∈ BCT(R) and γi ∈ R

n be given such that the condition (2.4)
is not satisfied, and the generating system (2.1) does not have solutions bounded on the entire real
axis. If the condition (3.4) is satisfied, then the system (3.35) is e-trichotomous on R, and the system
(3.34) possesses at least one solution bounded on R in the form of series (3.5) uniformly convergent
for sufficiently small fixed ε ∈ (0, ε∗].
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This paper contains some sufficient conditions for the existence of positive solutions which are
bounded below and above by positive functions for the first-order nonlinear neutral differential
equations. These equations can also support the existence of positive solutions approaching zero
at infinity

1. Introduction

This paper is concerned with the existence of a positive solution of the neutral differential
equations of the form

d

dt
[x(t) − a(t)x(t − τ)] = p(t)f(x(t − σ)), t ≥ t0, (1.1)

where τ > 0, σ ≥ 0, a ∈ C([t0,∞), (0,∞)), p ∈ C(R, (0,∞)), f ∈ C(R,R), f is nondecreasing
function, and xf(x) > 0, x /= 0.

By a solution of (1.1) we mean a function x ∈ C([t1 − m,∞), R), m = max{τ, σ}, for
some t1 ≥ t0, such that x(t) − a(t)x(t − τ) is continuously differentiable on [t1,∞) and such
that (1.1) is satisfied for t ≥ t1.

The problem of the existence of solutions of neutral differential equations has been
studied by several authors in the recent years. For related results we refer the reader to [1–
11] and the references cited therein. However there is no conception which guarantees the
existence of positive solutions which are bounded below and above by positive functions. In
this paper we have presented some conception. The method also supports the existence of
positive solutions approaching zero at infinity.
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As much as we know, for (1.1) in the literature, there is no result for the existence of
solutions which are bounded by positive functions. Only the existence of solutions which
are bounded by constants is treated, for example, in [6, 10, 11]. It seems that conditions of
theorems are rather complicated, but cannot be simpler due to Corollaries 2.3, 2.6, and 3.2.

The following fixed point theorem will be used to prove the main results in the next
section.

Lemma 1.1 ([see [6, 10] Krasnoselskii’s fixed point theorem]). Let X be a Banach space, letΩ be
a bounded closed convex subset of X, and let S1, S2 be maps of Ω into X such that S1x + S2y ∈ Ω for
every pair x, y ∈ Ω. If S1 is contractive and S2 is completely continuous, then the equation

S1x + S2x = x (1.2)

has a solution in Ω.

2. The Existence of Positive Solution

In this section we will consider the existence of a positive solution for (1.1). The next theorem
gives us the sufficient conditions for the existence of a positive solution which is bounded by
two positive functions.

Theorem 2.1. Suppose that there exist bounded functions u, v ∈ C1([t0,∞), (0,∞)), constant c > 0
and t1 ≥ t0 +m such that

u(t) ≤ v(t), t ≥ t0, (2.1)

v(t) − v(t1) − u(t) + u(t1) ≥ 0, t0 ≤ t ≤ t1, (2.2)

1
u(t − τ)

(
u(t) +

∫∞
t

p(s)f(v(s − σ))ds
)
≤ a(t)

≤ 1
v(t − τ)

(
v(t) +

∫∞
t

p(s)f(u(s − σ))ds
)
≤ c < 1, t ≥ t1.

(2.3)

Then (1.1) has a positive solution which is bounded by functions u, v.

Proof. Let C([t0,∞), R) be the set of all continuous bounded functions with the norm ‖x‖ =
supt≥t0 |x(t)|. Then C([t0,∞), R) is a Banach space. We define a closed, bounded, and convex
subset Ω of C([t0,∞), R) as follows:

Ω = {x = x(t) ∈ C([t0,∞), R) : u(t) ≤ x(t) ≤ v(t), t ≥ t0}. (2.4)
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We now define two maps S1 and S2 : Ω → C([t0,∞), R) as follows:

(S1x)(t) =

⎧⎨
⎩
a(t)x(t − τ), t ≥ t1,
(S1x)(t1), t0 ≤ t ≤ t1,

(S2x)(t) =

⎧⎪⎪⎨
⎪⎪⎩
−
∫∞
t

p(s)f(x(s − σ))ds, t ≥ t1,

(S2x)(t1) + v(t) − v(t1), t0 ≤ t ≤ t1.

(2.5)

We will show that for any x, y ∈ Ω we have S1x + S2y ∈ Ω. For every x, y ∈ Ω and t ≥ t1, we
obtain

(S1x)(t) +
(
S2y
)
(t) ≤ a(t)v(t − τ) −

∫∞
t

p(s)f(u(s − σ))ds ≤ v(t). (2.6)

For t ∈ [t0, t1], we have

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≤ v(t1) + v(t) − v(t1) = v(t).
(2.7)

Furthermore, for t ≥ t1, we get

(S1x)(t) +
(
S2y
)
(t) ≥ a(t)u(t − τ) −

∫∞
t

p(s)f(v(s − σ))ds ≥ u(t). (2.8)

Let t ∈ [t0, t1]. With regard to (2.2), we get

v(t) − v(t1) + u(t1) ≥ u(t), t0 ≤ t ≤ t1. (2.9)

Then for t ∈ [t0, t1] and any x, y ∈ Ω, we obtain

(S1x)(t) +
(
S2y
)
(t) = (S1x)(t1) +

(
S2y
)
(t1) + v(t) − v(t1)

≥ u(t1) + v(t) − v(t1) ≥ u(t).
(2.10)

Thus we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω.
We will show that S1 is a contraction mapping on Ω. For x, y ∈ Ω and t ≥ t1 we have

∣∣(S1x)(t) −
(
S1y
)
(t)
∣∣ = ∣∣a(t)‖x(t − τ) − y(t − τ)∣∣ ≤ c∥∥x − y∥∥. (2.11)

This implies that

∥∥S1x − S1y
∥∥ ≤ c∥∥x − y∥∥. (2.12)
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Also for t ∈ [t0, t1], the previous inequality is valid. We conclude that S1 is a contraction
mapping on Ω.

We now show that S2 is completely continuous. First we will show that S2 is
continuous. Let xk = xk(t) ∈ Ω be such that xk(t) → x(t) as k → ∞. Because Ω is closed,
x = x(t) ∈ Ω. For t ≥ t1 we have

|(S2xk)(t) − (S2x)(t)| ≤
∣∣∣∣
∫∞
t

p(s)
[
f(xk(s − σ)) − f(x(s − σ))

]
ds

∣∣∣∣

≤
∫∞
t1

p(s)
∣∣f(xk(s − σ)) − f(x(s − σ))∣∣ds.

(2.13)

According to (2.8), we get

∫∞
t1

p(s)f(v(s − σ))ds <∞. (2.14)

Since |f(xk(s − σ)) − f(x(s − σ))| → 0 as k → ∞, by applying the Lebesgue dominated
convergence theorem, we obtain

lim
k→∞

‖(S2xk)(t) − (S2x)(t)‖ = 0. (2.15)

This means that S2 is continuous.
We now show that S2Ω is relatively compact. It is sufficient to show by the Arzela-

Ascoli theorem that the family of functions {S2x : x ∈ Ω} is uniformly bounded and
equicontinuous on [t0,∞). The uniform boundedness follows from the definition of Ω. For
the equicontinuity we only need to show, according to Levitans result [7], that for any given
ε > 0 the interval [t0,∞) can be decomposed into finite subintervals in such a way that on
each subinterval all functions of the family have a change of amplitude less than ε. Then with
regard to condition (2.14), for x ∈ Ω and any ε > 0, we take t∗ ≥ t1 large enough so that

∫∞
t∗
p(s)f(x(s − σ))ds < ε

2
. (2.16)

Then, for x ∈ Ω, T2 > T1 ≥ t∗, we have

|(S2x)(T2) − (S2x)(T1)| ≤
∫∞
T2

p(s)f(x(s − σ))ds

+
∫∞
T1

p(s)f(x(s − σ))ds < ε

2
+
ε

2
= ε.

(2.17)
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For x ∈ Ω and t1 ≤ T1 < T2 ≤ t∗, we get

|(S2x)(T2) − (S2x)(T1)| ≤
∫T2

T1

p(s)f(x(s − σ))ds

≤ max
t1≤s≤t∗

{
p(s)f(x(s − σ))}(T2 − T1).

(2.18)

Thus there exists δ1 = ε/M, where M = maxt1≤s≤t∗{p(s)f(x(s − σ))}, such that

|(S2x)(T2) − (S2x)(T1)| < ε if 0 < T2 − T1 < δ1. (2.19)

Finally for any x ∈ Ω, t0 ≤ T1 < T2 ≤ t1, there exists a δ2 > 0 such that

|(S2x)(T2) − (S2x)(T1)| = |v(T1) − v(T2)| =
∣∣∣∣∣
∫T2

T1

v′(s)ds

∣∣∣∣∣
≤ max

t0≤s≤t1

{∣∣v′(s)∣∣}(T2 − T1) < ε if 0 < T2 − T1 < δ2.

(2.20)

Then {S2x : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,∞), and hence S2Ω is
relatively compact subset of C([t0,∞), R). By Lemma 1.1 there is an x0 ∈ Ω such that S1x0 +
S2x0 = x0. We conclude that x0(t) is a positive solution of (1.1). The proof is complete.

Corollary 2.2. Suppose that there exist functions u, v ∈ C1([t0,∞), (0,∞)), constant c > 0 and
t1 ≥ t0 +m such that (2.1), (2.3) hold and

v′(t) − u′(t) ≤ 0, t0 ≤ t ≤ t1. (2.21)

Then (1.1) has a positive solution which is bounded by the functions u, v.

Proof. We only need to prove that condition (2.21) implies (2.2). Let t ∈ [t0, t1] and set

H(t) = v(t) − v(t1) − u(t) + u(t1). (2.22)

Then with regard to (2.21), it follows that

H ′(t) = v′(t) − u′(t) ≤ 0, t0 ≤ t ≤ t1. (2.23)

Since H(t1) = 0 and H ′(t) ≤ 0 for t ∈ [t0, t1], this implies that

H(t) = v(t) − v(t1) − u(t) + u(t1) ≥ 0, t0 ≤ t ≤ t1. (2.24)

Thus all conditions of Theorem 2.1 are satisfied.
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Corollary 2.3. Suppose that there exists a function v ∈ C1([t0,∞), (0,∞)), constant c > 0 and
t1 ≥ t0 +m such that

a(t) =
1

v(t − τ)
(
v(t) +

∫∞
t

p(s)f(v(s − σ))ds
)
≤ c < 1, t ≥ t1. (2.25)

Then (1.1) has a solution x(t) = v(t), t ≥ t1.

Proof. We put u(t) = v(t) and apply Theorem 2.1.

Theorem 2.4. Suppose that there exist functions u, v ∈ C1([t0,∞), (0,∞)), constant c > 0 and
t1 ≥ t0 +m such that (2.1), (2.2), and (2.3) hold and

lim
t→∞

v(t) = 0. (2.26)

Then (1.1) has a positive solution which is bounded by the functions u, v and tends to zero.

Proof. The proof is similar to that of Theorem 2.1 and we omit it.

Corollary 2.5. Suppose that there exist functions u, v ∈ C1([t0,∞), (0,∞)), constant c > 0 and
t1 ≥ t0 +m such that (2.1), (2.3), (2.21), and (2.26) hold. Then (1.1) has a positive solution which is
bounded by the functions u, v and tends to zero.

Proof. The proof is similar to that of Corollary 2.2, and we omitted it.

Corollary 2.6. Suppose that there exists a function v ∈ C1([t0,∞), (0,∞)), constant c > 0 and
t1 ≥ t0 +m such that (2.25), (2.26) hold. Then (1.1) has a solution x(t) = v(t), t ≥ t1 which tends to
zero.

Proof. We put u(t) = v(t) and apply Theorem 2.4.

3. Applications and Examples

In this section we give some applications of the theorems above.

Theorem 3.1. Suppose that

∫∞
t0

p(t)dt =∞, (3.1)
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0 < k1 ≤ k2 and there exist constants c > 0, γ ≥ 0, t1 ≥ t0 +m such that

k1

k2
exp

(
(k2 − k1)

∫ t0
t0−γ

p(t)dt

)
≥ 1, (3.2)

exp

(
−k2

∫ t
t−τ

p(s)ds

)
+ exp

(
k2

∫ t−τ
t0−γ

p(s)ds

)

×
∫∞
t

p(s)f

(
exp

(
−k1

∫ s−σ
t0−γ

p(ξ)dξ

))
ds ≤ a(t)

≤ exp

(
−k1

∫ t
t−τ

p(s)ds

)
+ exp

(
k1

∫ t−τ
t0−γ

p(s)ds

)

×
∫∞
t

p(s)f

(
exp

(
−k2

∫ s−σ
t0−γ

p(ξ)dξ

))
ds ≤ c < 1, t ≥ t1.

(3.3)

Then (1.1) has a positive solution which tends to zero.

Proof. We set

u(t) = exp

(
−k2

∫ t
t0−γ

p(s)ds

)
, v(t) = exp

(
−k1

∫ t
t0−γ

p(s)ds

)
, t ≥ t0. (3.4)

We will show that the conditions of Corollary 2.5 are satisfied. With regard to (2.21), for
t ∈ [t0, t1], we get

v′(t) − u′(t) = −k1p(t)v(t) + k2p(t)u(t)

= p(t)v(t)

[
−k1 + k2u(t) exp

(
k1

∫ t
t0−γ

p(s)ds

)]

= p(t)v(t)

[
−k1 + k2 exp

(
(k1 − k2)

∫ t
t0−γ

p(s)ds

)]

≤ p(t)v(t)
[
−k1 + k2 exp

(
(k1 − k2)

∫ t0
t0−γ

p(s)ds

)]
≤ 0.

(3.5)

Other conditions of Corollary 2.5 are also satisfied. The proof is complete.
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Corollary 3.2. Suppose that k > 0, c > 0, t1 ≥ t0 +m, (3.1) holds, and

a(t) = exp

(
−k
∫ t
t−τ

p(s)ds

)
+ exp

(
k

∫ t−τ
t0

p(s)ds

)

×
∫∞
t

p(s)f

(
exp

(
−k
∫ s−σ
t0

p(ξ)dξ

))
ds ≤ c < 1, t ≥ t1.

(3.6)

Then (1.1) has a solution

x(t) = exp

(
−k
∫ t
t0

p(s)ds

)
, t ≥ t1, (3.7)

which tends to zero.

Proof. We put k1 = k2 = k, γ = 0 and apply Theorem 3.1.

Example 3.3. Consider the nonlinear neutral differential equation

[x(t) − a(t)x(t − 2)]′ = px3(t − 1), t ≥ t0, (3.8)

where p ∈ (0,∞). We will show that the conditions of Theorem 3.1 are satisfied. Condition
(3.1) obviously holds and (3.2) has a form

k1

k2
exp
(
(k2 − k1)pγ

) ≥ 1, (3.9)

0 < k1 ≤ k2, γ ≥ 0. For function a(t), we obtain

exp
(−2pk2

)
+

1
3k1

exp
(
p
[
k2
(
γ − t0 − 2

) − 3k1
(
γ − t0 − 1

)
+ (k2 − 3k1)t

])

≤ a(t) ≤ exp
(−2pk1

)

+
1

3k2
exp
(
p
[
k1
(
γ − t0 − 2

) − 3k2
(
γ − t0 − 1

)
+ (k1 − 3k2)t

])
, t ≥ t0.

(3.10)

For p = 1, k1 = 1, k2 = 2, γ = 1, t0 = 1, condition (3.9) is satisfied and

e−4 +
1

3e
e−t ≤ a(t) ≤ e−2 +

e4

6
e−5t, t ≥ t1 ≥ 3. (3.11)

If the function a(t) satisfies (3.11), then (3.8) has a solution which is bounded by the functions
u(t) = exp(−2t), v(t) = exp(−t), t ≥ 3.
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For example if p = 1, k1 = k2 = 1.5, γ = 1, t0 = 1, from (3.11) we obtain

a(t) = e−3 +
e1.5

4.5
e−3t, (3.12)

and the equation

[
x(t) −

(
e−3 +

e1.5

4.5
e−3t

)
x(t − 2)

]′
= x3(t − 1), t ≥ 3, (3.13)

has the solution x(t) = exp(−1.5t) which is bounded by the function u(t) and v(t).
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Asymptotic properties of solutions of the singular differential equation (p(t)u′(t))′ = p(t)f(u(t))
are described. Here, f is Lipschitz continuous on � and has at least two zeros 0 and L > 0. The
function p is continuous on [0,∞) and has a positive continuous derivative on (0,∞) and p(0) = 0.
Further conditions for f and p under which the equation has oscillatory solutions converging to 0
are given.

1. Introduction

For k ∈ �, k > 1, and L ∈ (0,∞), consider the equation

u′′ +
k − 1
t

u′ = f(u), t ∈ (0,∞), (1.1)

where

f ∈ Liploc(�), f(0) = f(L) = 0, f(x) < 0, x ∈ (0, L), (1.2)

∃B ∈ (−∞, 0) : f(x) > 0, x ∈
[
B, 0
)
. (1.3)

Let us put

F(x) = −
∫x

0
f(z)dz for x ∈ �. (1.4)
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Moreover, we assume that f fulfils

F
(
B
)
= F(L), (1.5)

and denote

L0 = inf
{
x < B : f(x) > 0

}
≥ −∞. (1.6)

Due to (1.2)–(1.4), we see that F ∈ C1(�) is decreasing and positive on (L0, 0) and increasing
and positive on (0, L].

Equation (1.1) arises in many areas. For example, in the study of phase transitions
of Van der Waals fluids [1–3], in population genetics, where it serves as a model for the
spatial distribution of the genetic composition of a population [4, 5], in the homogenous
nucleation theory [6], and in relativistic cosmology for description of particles which can
be treated as domains in the universe [7], in the nonlinear field theory, in particular, when
describing bubbles generated by scalar fields of the Higgs type in the Minkowski spaces [8].
Numerical simulations of solutions of (1.1), where f is a polynomial with three zeros, have
been presented in [9–11]. Close problems about the existence of positive solutions can be
found in [12–14].

In this paper, we investigate a generalization of (1.1) of the form

(
p(t)u′

)′ = p(t)f(u), t ∈ (0,∞), (1.7)

where f satisfies (1.2)–(1.5) and p fulfils

p ∈ C[0,∞) ∩C1(0,∞), p(0) = 0, (1.8)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (1.9)

Equation (1.7) is singular in the sense that p(0) = 0. If p(t) = tk−1, with k > 1, then p satisfies
(1.8), (1.9), and (1.7) is equal to (1.1).

Definition 1.1. A function u ∈ C1[0,∞) ∩ C2(0,∞) which satisfies (1.7) for all t ∈ (0,∞) is
called a solution of (1.7).

Consider a solution u of (1.7). Since u ∈ C1[0,∞), we have u(0), u′(0) ∈ � and the
assumption, p(0) = 0 yields p(0)u′(0) = 0. We can find M > 0 and δ > 0 such that |f(u(t))| ≤
M for t ∈ (0, δ). Integrating (1.7), we get

∣∣u′(t)∣∣ =
∣∣∣∣∣

1
p(t)

∫ t
0
p(s)f(u(s))ds

∣∣∣∣∣ ≤
M

p(t)

∫ t
0
p(s)ds ≤Mt, t ∈ (0, δ). (1.10)
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Consequently, the condition

u′(0) = 0 (1.11)

is necessary for each solution of (1.7). Denote

usup = sup{u(t) : t ∈ [0,∞)}. (1.12)

Definition 1.2. Let u be a solution of (1.7). If usup < L, then u is called a damped solution.

If a solution u of (1.7) satisfies usup = L or usup > L, then we call u a bounding
homoclinic solution or an escape solution. These three types of solutions have been
investigated in [15–18]. Here, we continue the investigation of the existence and asymptotic
properties of damped solutions. Due to (1.11) and Definition 1.2, it is reasonable to study
solutions of (1.7) satisfying the initial conditions

u(0) = u0 ∈ (L0, L], u′(0) = 0. (1.13)

Note that if u0 > L, then a solution u of the problem (1.7), (1.13) satisfies usup > L, and
consequently u is not a damped solution. Assume that L0 > −∞, then f(L0) = 0, and if we
put u0 = L0, a solution u of (1.7), (1.13) is a constant function equal to L0 on [0,∞). Since we
impose no sign assumption on f(x) for x < L0, we do not consider the case u0 < L0. In fact, the
choice of u0 between two zeros L0 and 0 of f has been motivated by some hydrodynamical
model in [11].

A lot of papers are devoted to oscillatory solutions of nonlinear differential equations.
Wong [19] published an account on a nonlinear oscillation problem originated from earlier
works of Atkinson and Nehari. Wong’s paper is concerned with the study of oscillatory
behaviour of second-order Emden-Fowler equations

y′′(x) + a(x)
∣∣y(x)∣∣γ−1

y(x) = 0, γ > 0, (1.14)

where a is nonnegative and absolutely continuous on (0,∞). Both superlinear case (γ > 1)
and sublinear case (γ ∈ (0, 1)) are discussed, and conditions for the function a giving
oscillatory or nonoscillatory solutions of (1.14) are presented; see also [20]. Further extensions
of these results have been proved for more general differential equations. For example, Wong
and Agarwal [21] or Li [22] worked with the equation

(
a(t)
(
y′(t)

)σ)′ + q(t)f(y(t)) = 0, (1.15)

where σ > 0 is a positive quotient of odd integers, a ∈ C1(�) is positive, q ∈ C(�), f ∈ C1(�),
xf(x) > 0, f ′(x) ≥ 0 for all x/= 0. Kulenović and Ljubović [23] investigated an equation

(
r(t)g

(
y′(t)

))′ + p(t)f(y(t)) = 0, (1.16)
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where g(u)/u ≤ m, f(u)/u ≥ k > 0, or f ′(u) ≥ k for all u/= 0. The investigation of oscillatory
and nonoscillatory solutions has been also realized in the class of quasilinear equations. We
refer to the paper [24] by Ho, dealing with the equation

(
tn−1Φp

(
u′
))′ + tn−1

N∑
i=1

αit
βiΦqi(u) = 0, (1.17)

where 1 < p < n, αi > 0, βi ≥ −p, qi > p − 1, i = 1, . . . ,N, Φp(y) = |y|p−2y.
Oscillation results for the equation

(
a(t)Φp

(
x′
))′ + b(t)Φq(x) = 0, (1.18)

where a, b ∈ C([0,∞)) are positive, can be found in [25]. We can see that the nonlinearity
f(y) = |y|γ−1y in (1.14) is an increasing function on � having a unique zero at y = 0.

Nonlinearities in all the other (1.15)–(1.18) have similar globally monotonous
behaviour. We want to emphasize that, in contrast to the above papers, the nonlinearity f
in our (1.7) needs not be globally monotonous. Moreover, we deal with solutions of (1.7)
starting at a singular point t = 0, and we provide an interval for starting values u0 giving
oscillatory solutions (see Theorems 2.3, 2.10, and 2.16). We specify a behaviour of oscillatory
solutions in more details (decreasing amplitudes—see Theorems 2.10 and 2.16), and we show
conditions which guarantee that oscillatory solutions converge to 0 (Theorem 3.1).

The paper is organized in this manner: Section 2 contains results about existence,
uniqueness, and other basic properties of solutions of the problem (1.7), (1.13). These results
which mainly concern damped solutions are taken from [18] and extended or modified
a little. We also provide here new conditions for the existence of oscillatory solutions in
Theorem 2.16. Section 3 is devoted to asymptotic properties of oscillatory solutions, and the
main result is contained in Theorem 3.1.

2. Solutions of the Initial Problem (1.7), (1.13)

Let us give an account of this section in more details. The main objective of this paper is
to characterize asymptotic properties of oscillatory solutions of the problem (1.7), (1.13). In
order to present more complete results about the solutions, we start this section with the
unique solvability of the problem (1.7), (1.13) on [0,∞) (Theorem 2.1). Having such global
solutions, we have proved (see papers [15–18]) that oscillatory solutions of the problem (1.7),
(1.13) can be found just in the class of damped solutions of this problem. Therefore, we give
here one result about the existence of damped solutions (Theorem 2.3). Example 2.5 shows
that there are damped solutions which are not oscillatory. Consequently, we bring results
about the existence of oscillatory solutions in the class of damped solutions. This can be found
in Theorem 2.10, which is an extension of Theorem 3.4 of [18] and in Theorem 2.16, which
are new. Theorems 2.10 and 2.16 cover different classes of equations which is illustrated by
examples.



Abstract and Applied Analysis 5

Theorem 2.1 (existence and uniqueness). Assume that (1.2)–(1.5), (1.8), (1.9) hold and that there
exists CL ∈ (0,∞) such that

0 ≤ f(x) ≤ CL for x ≥ L (2.1)

then the initial problem (1.7), (1.13) has a unique solution u. The solution u satisfies

u(t) ≥ u0 if u0 < 0,

u(t) > B if u0 ≥ 0,
for t ∈ [0,∞). (2.2)

Proof. Let u0 < 0, then the assertion is contained in Theorem 2.1 of [18]. Now, assume that
u0 ∈ [0, L], then the proof of Theorem 2.1 in [18] can be slightly modified.

For close existence results, see also Chapters 13 and 14 of [26], where this kind of
equations is studied.

Remark 2.2. Clearly, for u0 = 0 and u0 = L, the problem (1.7), (1.13) has a unique solution
u ≡ 0 and u ≡ L, respectively. Since f ∈ Liploc(�), no solution of the problem (1.7), (1.13) with
u0 < 0 or u0 ∈ (0, L) can touch the constant solutions u ≡ 0 and u ≡ L.

In particular, assume that C ∈ {0, L}, a > 0, u is a solution of the problem (1.7), (1.13)
with u0 < L, u0 /= 0, and (1.2), (1.8), and (1.9) hold. If u(a) = C, then u′(a)/= 0, and if u′(a) = 0,
then u(a)/=C.

The next theorem provides an extension of Theorem 2.4 in [18].

Theorem 2.3 (existence of damped solutions). Assume that (1.2)–(1.5), (1.8), and (1.9) hold,
then for each u0 ∈ [B, L), the problem (1.7), (1.13) has a unique solution. This solution is damped.

Proof. First, assume that there exists CL > 0 such that f satisfies (2.1), then, by Theorem 2.1,
the problem (1.7), (1.13) has a unique solution u satisfying (2.2). Assume that u is not
damped, that is,

sup{u(t) : t ∈ [0,∞)} ≥ L. (2.3)

By (1.3)–(1.5), the inequality F(u0) ≤ F(L) holds. Since u fulfils (1.7), we have

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)) for t ∈ (0,∞). (2.4)

Multiplying (2.4) by u′ and integrating between 0 and t > 0, we get

0 <
u
′2(t)
2

+
∫ t

0

p′(s)
p(s)

u
′2(s)ds = F(u0) − F(u(t)), t ∈ (0,∞), (2.5)
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and consequently

0 <
∫ t

0

p′(s)
p(s)

u
′2(s)ds ≤ F(u0) − F(u(t)), t ∈ (0,∞). (2.6)

By (2.3), we can find that b ∈ (0,∞] such that u(b) ≥ L, (u(∞) = lim supt→∞u(t)), and hence,
according to (1.5),

0 <
∫b

0

p′(s)
p(s)

u
′2(s)ds ≤ F(u0) − F(u(b)) ≤ F(B) − F(L) ≤ 0, (2.7)

which is a contradiction. We have proved that sup{u(t) : t ∈ [0,∞)} < L, that is, u is damped.
Consequently, assumption (2.1) can be omitted.

Example 2.4. Consider the equation

u′′ +
2
t
u′ = u(u − 1)(u + 2), (2.8)

which is relevant to applications in [9–11]. Here, p(t) = t2, f(x) = x(x − 1)(x + 2), L0 = −2,
and L = 1. Hence f(x) < 0 for x ∈ (0, 1), f(x) > 0 for x ∈ (−2, 0), and

F(x) = −
∫x

0
f(z)dz = −x

4

4
− x

3

3
+ x2. (2.9)

Consequently, F is decreasing and positive on [−2, 0) and increasing and positive on (0, 1].
Since F(1) = 5/12 and F(−1) = 13/12, there exists a unique B ∈ (−1, 0) such that F(B) =
5/12 = F(1). We can see that all assumptions of Theorem 2.3 are fulfilled and so, for each
u0 ∈ [B, 1), the problem (2.8), (1.13) has a unique solution which is damped. We will show
later (see Example 2.11), that each damped solution of the problem (2.8), (1.13) is oscillatory.

In the next example, we will show that damped solutions can be nonzero and
monotonous on [0,∞) with a limit equal to zero at ∞. Clearly, such solutions are not
oscillatory.

Example 2.5. Consider the equation

u′′ +
3
t
u′ = f(u), (2.10)

where

f(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−x3 for x ≤ 1,

x − 2 for x ∈ (1, 3),

1 for x ≥ 3.

(2.11)
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We see that p(t) = t3 in (2.10) and the functions f and p satisfy conditions (1.2)–(1.5), (1.8),
and (1.9) with L = 2. Clearly, L0 = −∞. Further,

F(x) = −
∫x

0
f(z)dz =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x4

4
for x ≤ 1,

−x
2

2
+ 2x − 5

4
for x ∈ (1, 3),

−x +
13
4

for x ≥ 3.

(2.12)

Since F(L) = F(2) = 3/4, assumption (1.5) yields F(B) = B
4
/4 = 3/4 and B = −31/4. By

Theorem 2.3, for each u0 ∈ [−31/4, 2), the problem (2.10), (1.13) has a unique solution u which
is damped. On the other hand, we can check by a direct computation that for each u0 ≤ 1 the
function

u(t) =
8u0

8 + u2
0t

2
, t ∈ [0,∞) (2.13)

is a solution of equation (2.10) and satifies conditions (1.13). If u0 < 0, then u < 0, u′ > 0 on
(0,∞), and if u0 ∈ (0, 1], then u > 0, u′ < 0 on (0,∞). In both cases, limt→∞u(t) = 0.

In Example 2.5, we also demonstrate that there are equations fulfilling Theorem 2.3
for which all solutions with u0 < L, not only those with u0 ∈ [B, L), are damped. Some
additional conditions giving, moreover, bounding homoclinic solutions and escape solutions
are presented in [15–17].

In our further investigation of asymptotic properties of damped solutions the
following lemmas are useful.

Lemma 2.6. Assume (1.2), (1.8), and (1.9). Let u be a damped solution of the problem (1.7), (1.13)
with u0 ∈ (L0, L) which is eventually positive or eventually negative, then

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (2.14)

Proof. Let u be eventually positive, that is, there exists t0 ≥ 0 such that

u(t) > 0 for t ∈ [t0,∞). (2.15)

Denote θ = inf{t0 ≥ 0 : u(t) > 0, t ∈ [t0,∞)}.
Let θ > 0, then u(θ) = 0 and, by Remark 2.2, u′(θ) > 0. Assume that u′ > 0 on (θ,∞),

then u is increasing on (θ,∞), and there exists limt→∞u(t) = � ∈ (0, L). Multiplying (2.4) by
u′, integrating between θ and t, and using notation (1.4), we obtain

u
′2(t)
2

+
∫ t
θ

p′(s)
p(s)

u
′2(s)ds = F(u0) − F(u(t)), t ∈ (θ,∞). (2.16)
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Letting t → ∞, we get

lim
t→∞

u
′2(t)
2

= − lim
t→∞

∫ t
θ

p′(s)
p(s)

u
′2(s)ds + F(u0) − F(�). (2.17)

Since the function
∫ t
θ
(p′(s)/p(s))u

′2(s)ds is positive and increasing, it follows that it has a
limit at ∞, and hence there exists also limt→∞u′(t) ≥ 0. If limt→∞u′(t) > 0, then L > l =
limt→∞u(t) =∞, which is a contradiction. Consequently

lim
t→∞

u′(t) = 0. (2.18)

Letting t → ∞ in (2.4) and using (1.2), (1.9) and � ∈ (0, L), we get limt→∞u′′(t) = f(�) < 0,
and so limt→∞u′(t) = −∞, which is contrary to (2.18). This contradiction implies that the
inequality u′ > 0 on (θ,∞) cannot be satisfied and that there exists a > θ such that u′(a) = 0.
Since u > 0 on (a,∞), we get by (1.2), (1.7), and (1.13) that (pu′)′ < 0 on (a,∞). Due
to p(a)u′(a) = 0, we see that u′ < 0 on (a,∞). Therefore, u is decreasing on (a,∞) and
limt→∞u(t) = �0 ∈ [0, L). Using (2.16) with a in place of θ, we deduce as above that (2.18)
holds and that limt→∞u′′(t) = f(�0) = 0. Consequently, �0 = 0. We have proved that (2.14)
holds provided θ > 0.

If θ = 0, then we take a = 0 and use the above arguments. If u is eventually negative,
we argue similarly.

Lemma 2.7. Assume (1.2)–(1.5), (1.8), (1.9), and

p ∈ C2(0,∞), lim sup
t→∞

∣∣∣∣p
′′(t)
p′(t)

∣∣∣∣ <∞, (2.19)

lim
x→ 0+

f(x)
x

< 0. (2.20)

Let u be a solution of the problem (1.7), (1.13) with u0 ∈ (0, L), then there exists δ1 > 0 such that

u(δ1) = 0, u′(t) < 0 for t ∈ (0, δ1]. (2.21)

Proof. Assume that such δ1 does not exist, then u is positive on [0,∞) and, by Lemma 2.6, u
satisfies (2.14). We define a function

v(t) =
√
p(t)u(t), t ∈ [0,∞). (2.22)

By (2.19), we have v ∈ C2(0,∞) and

v′(t) =
p′(t)u(t)

2
√
p(t)

+
√
p(t)u′(t), (2.23)

v′′(t) = v(t)

[
1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

]
, t ∈ (0,∞). (2.24)
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By (1.9) and (2.19), we get

lim
t→∞

[
1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2]
=

1
2

lim
t→∞

p′′(t)
p′(t)

· p
′(t)
p(t)

= 0. (2.25)

Since u is positive on (0,∞), conditions (2.14) and (2.20) yield

lim
t→∞

f(u(t))
u(t)

= lim
x→ 0+

f(x)
x

< 0. (2.26)

Consequently, there exist ω > 0 and R > 0 such that

1
2
p′′(t)
p(t)

− 1
4

(
p′(t)
p(t)

)2

+
f(u(t))
u(t)

< −ω for t ≥ R. (2.27)

By (2.22), v is positive on (0,∞) and, due to (2.24) and (2.27), we get

v′′(t) < −ωv(t) < 0 for t ≥ R. (2.28)

Thus, v′ is decreasing on [R,∞) and limt→∞v′(t) = V . If V < 0, then limt→∞v(t) = −∞,
contrary to the positivity of v. If V ≥ 0, then v′ > 0 on [R,∞) and v(t) ≥ v(R) > 0 for t ∈
[R,∞). Then (2.28) yields 0 > −ωv(R) ≥ −ωv(t) > v′′(t) for t ∈ [R,∞). We get limt→∞v′(t) =
−∞ which contradicts V ≥ 0. The obtained contradictions imply that u has at least one zero
in (0,∞). Let δ1 > 0 be the first zero of u. Then u > 0 on [0, δ1) and, by (1.2) and (1.7), u′ < 0
on (0, δ1). Due to Remark 2.2, we have also u′(δ1) < 0.

For negative starting value, we can prove a dual lemma by similar arguments.

Lemma 2.8. Assume (1.2)–(1.5), (1.8), (1.9), (2.19) and

lim
x→ 0−

f(x)
x

< 0. (2.29)

Let u be a solution of the problem (1.7), (1.13) with u0 ∈ (L0, 0), then there exists θ1 > 0 such that

u(θ1) = 0, u′(t) > 0 for t ∈ (0, θ1]. (2.30)

The arguments of the proof of Lemma 2.8 can be also found in the proof of Lemma 3.1
in [18], where both (2.20) and (2.29) were assumed. If one argues as in the proofs of Lemmas
2.7 and 2.8 working with a1, A1 and b1, B1 in place of 0, and u0, one gets the next corollary.
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Corollary 2.9. Assume (1.2)–(1.5), (1.8), (1.9), (2.19), (2.20), and (2.29). Let u be a solution of the
problem (1.7), (1.13) with u0 ∈ (L0, 0) ∪ (0, L).

(I) Assume that there exist b1 > 0 and B1 ∈ (L0, 0) such that

u(b1) = B1, u′(b1) = 0, (2.31)

then there exists θ > b1 such that

u(θ) = 0, u′(t) > 0 for t ∈ (b1, θ]. (2.32)

(II) Assume that there exist a1 > 0 and A1 ∈ (0, L) such that

u(a1) = A1, u′(a1) = 0, (2.33)

then there exists δ > a1 such that

u(δ) = 0, u′(t) < 0 for t ∈ (a1, δ]. (2.34)

Note that if all conditions of Lemmas 2.7 and 2.8 are satisfied, then each solution of
the problem (1.7), (1.13) with u0 ∈ (L0, 0) ∪ (0, L) has at least one simple zero in (0,∞).
Corollary 2.9 makes possible to construct an unbounded sequence of all zeros of any damped
solution u. In addition, these zeros are simple (see the proof of Theorem 2.10). In such a case, u
has either a positive maximum or a negative minimum between each two neighbouring zeros.
If we denote sequences of these maxima and minima by {An}∞n=1 and {Bn}∞n=1, respectively,
then we call the numbers |An − Bn|, n ∈ � amplitudes of u.

In [18], we give conditions implying that each damped solution of the problem (1.7),
(1.13) with u0 < 0 has an unbounded set of zeros and decreasing sequence of amplitudes.
Here, there is an extension of this result for u0 ∈ (0, L).

Theorem 2.10 (existence of oscillatory solutions I). Assume that (1.2)–(1.5), (1.8), (1.9), (2.19),
(2.20), and (2.29) hold, Then each damped solution of the problem (1.7), (1.13) with u0 ∈ (L0, 0) ∪
(0, L) is oscillatory and its amplitudes are decreasing.

Proof. For u0 < 0, the assertion is contained in Theorem 3.4 of [18]. Let u be a damped solution
of the problem (1.7), (1.13) with u0 ∈ (0, L). By (2.2) and Definition 1.2, we can find L1 ∈ (0, L)
such that

B < u(t) ≤ L1 for t ∈ [0,∞). (2.35)

Step 1. Lemma 2.7 yields δ1 > 0 satisfying (2.21). Hence, there exists a maximal interval
(δ1, b1) such that u′ < 0 on (δ1, b1). If b1 = ∞, then u is eventually negative and decreasing.
On the other hand, by Lemma 2.6, u satisfies (2.14). But this is not possible. Therefore, b1 < ∞
and there exists B1 ∈ (B, 0) such that (2.31) holds. Corollary 2.9 yields θ1 > b1 satisfying (2.32)
with θ = θ1. Therefore, u has just one negative local minimum B1 = u(b1) between its first
zero δ1 and second zero θ1.
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Step 2. By (2.32) there exists a maximal interval (θ1, a1), where u′ > 0. If a1 = ∞, then u is
eventually positive and increasing. On the other hand, by Lemma 2.6, u satisfies (2.14). We
get a contradiction. Therefore a1 < ∞ and there exists A1 ∈ (0, L) such that (2.33) holds.
Corollary 2.9 yields δ2 > a1 satisfying (2.34) with δ = δ2. Therefore u has just one positive
maximum A1 = u(a1) between its second zero θ1 and third zero δ2.

Step 3. We can continue as in Steps 1 and 2 and get the sequences {An}∞n=1 ⊂ (0, L) and
{Bn}∞n=1 ⊂ [u0, 0) of positive local maxima and negative local minima of u, respectively.
Therefore u is oscillatory. Using arguments of the proof of Theorem 3.4 of [18], we get that
the sequence {An}∞n=1 is decreasing and the sequence {Bn}∞n=1 is increasing. In particular, we
use (2.5) and define a Lyapunov function Vu by

Vu(t) =
u
′2(t)
2

+ F(u(t)) = F(u0) −
∫ t

0

p′(s)
p(s)

u
′2(s)ds, t ∈ (0,∞), (2.36)

then

Vu(t) > 0, V ′u(t) = −
p′(t)
p(t)

u
′2(t) ≤ 0 for t ∈ (0,∞), (2.37)

V ′u(t) < 0 for t ∈ (0,∞), t /=an, bn, n ∈ �. (2.38)

Consequently,

cu := lim
t→∞

Vu(t) ≥ 0. (2.39)

So, sequences {Vu(an)}∞n=1 = {F(An)}∞n=1 and {Vu(bn)}∞n=1 = {F(Bn)}∞n=1 are decreasing and

lim
n→∞

F(An) = lim
n→∞

F(Bn) = cu. (2.40)

Finally, due to (1.4), the sequence {An}∞n=1 is decreasing and the sequence {Bn}∞n=1 is
increasing. Hence, the sequence of amplitudes {An − Bn}∞n=1 is decreasing, as well.

Example 2.11. Consider the problem (1.7), (1.13), where p(t) = t2 and f(x) = x(x − 1)(x + 2).
In Example 2.4, we have shown that (1.2)–(1.5), (1.8), and (1.9) with L0 = −2, L = 1 are valid.
Since

lim
t→∞

p′′(t)
p′(t)

= lim
t→∞

1
t
= 0,

lim
x→ 0

f(x)
x

= lim
x→ 0

(x − 1)(x + 2) = −2 < 0,

(2.41)
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we see that (2.19), (2.20), and (2.29) are satisfied. Therefore, by Theorem 2.10, each damped
solution of (2.8), (1.13) with u0 ∈ (−2, 0) ∪ (0, 1) is oscillatory and its amplitudes are
decreasing.

Example 2.12. Consider the problem (1.7), (1.13), where

p(t) =
tk

1 + t�
, k > � ≥ 0,

f(x) =

⎧⎪⎨
⎪⎩
x(x − 1)(x + 3), for x ≤ 0,

x(x − 1)(x + 4), for x > 0,

(2.42)

then L0 = −3, L = 1,

lim
t→∞

p′′(t)
p′(t)

= 0, lim
x→ 0−

f(x)
x

= −3, lim
x→ 0+

f(x)
x

= −4. (2.43)

We can check that also all remaining assumptions of Theorem 2.10 are satisfied, and this
theorem is applicable here.

Assume that f does not fulfil (2.20) and (2.29). It occurs, for example, if f(x) =
−|x|α signx with α > 1 for x in some neighbourhood of 0, then Theorem 2.10 cannot be
applied. Now, we will give another sufficient conditions for the existence of oscillatory
solutions. For this purpose, we introduce the following lemmas.

Lemma 2.13. Assume (1.2)–(1.5), (1.8), (1.9), and

∫∞
1

1
p(s)

ds = ∞, (2.44)

∃ε > 0 : f ∈ C1(0, ε), f ′ ≤ 0 on (0, ε). (2.45)

Let u be a solution of the problem (1.7), (1.13) with u0 ∈ (0, L), then there exists δ1 > 0 such that

u(δ1) = 0, u′(t) < 0 for t ∈ (0, δ1]. (2.46)

Proof. Assume that such δ1 does not exist, then u is positive on [0,∞) and, by Lemma 2.6, u
satisfies (2.14). In view of (1.7) and (1.2), we have u′ < 0 on (0,∞). From (2.45), it follows that
there exists t0 > 0 such that

0 < u(t) < ε, for t ∈ [t0,∞). (2.47)
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Motivated by arguments of [27], we divide (1.7) by f(u) and integrate it over interval [t0, t].
We get

∫ t
t0

(
p(s)u′(s)

)′
f(u(s))

ds =
∫ t
t0

p(s)ds for t ∈ [t0,∞). (2.48)

Using the per partes integration, we obtain

p(t)u′(t)
f(u(t))

+
∫ t
t0

p(s)f ′(u(s))u
′2(s)

f2(u(s))
ds =

p(t0)u′(t0)
f(u(t0))

+
∫ t
t0

p(s)ds, t ∈ [t0,∞). (2.49)

From (1.8) and (1.9), it follows that there exists t1 ∈ (t0,∞) such that

p(t0)u′(t0)
f(u(t0))

+
∫ t
t0

p(s)ds ≥ 1, t ∈ [t1,∞), (2.50)

and therefore

p(t)u′(t)
f(u(t))

+
∫ t
t0

p(s)f ′(u(s))u
′2(s)

f2(u(s))
ds ≥ 1, t ∈ [t1,∞). (2.51)

From the fact that f ′(u(s)) ≤ 0 for s > t0 (see (2.45)), we have

p(t)u′(t)
f(u(t))

+
∫ t
t1

p(s)f ′(u(s))u
′2(s)

f2(u(s))
ds ≥ 1, t ∈ [t1,∞), (2.52)

then

p(t)u′(t)
f(u(t))

≥ 1 −
∫ t
t1

p(s)f ′(u(s))u
′2(s)

f2(u(s))
ds > 0, t ∈ [t1,∞), (2.53)

p(t)u′(t)

f(u(t))
(

1 − ∫ tt1 p(s)f ′(u(s))u′2(s)f−2(u(s))ds
) ≥ 1, t ∈ [t1,∞). (2.54)

Multiplying this inequality by −f ′(u(t))u′(t)/f(u(t)) ≥ 0, we get

(
ln

(
1 −
∫ t
t1

p(s)f ′(u(s))u
′2(s)

f2(u(s))
ds

))′
≥ −(ln∣∣f(u(t))∣∣)′, t ∈ [t1,∞), (2.55)

and integrating it over [t1, t], we obtain

ln

(
1 −
∫ t
t1

p(s)f ′(u(s))u
′2(s)

f2(u(s))
ds

)
≥ ln
(
f(u(t1))
f(u(t))

)
, (2.56)
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and therefore,

1 −
∫ t
t1

p(s)f ′(u(s))u
′2(s)

f2(u(s))
ds ≥ f(u(t1))

f(u(t))
, t ∈ [t1,∞). (2.57)

According to (2.53), we have

p(t)u′(t)
f(u(t))

≥ f(u(t1))
f(u(t))

, t ∈ [t1,∞), (2.58)

and consequently,

u′(t) ≤ f(u(t1)) 1
p(t)

, t ∈ [t1,∞). (2.59)

Integrating it over [t1, t], we get

u(t) ≤ u(t1) + f(u(t1))
∫ t
t1

1
p(s)

ds, t ∈ [t1,∞). (2.60)

From (2.44), it follows that

lim
t→∞

u(t) = −∞, (2.61)

which is a contradiction.

By similar arguments, we can prove a dual lemma.

Lemma 2.14. Assume (1.2)–(1.5), (1.8), (1.9), (2.44), and

∃ε > 0 : f ∈ C1(−ε, 0), f ′ ≤ 0 on (−ε, 0). (2.62)

Let u be a solution of the problem (1.7), (1.13) with u0 ∈ (L0, 0), then, there exists θ1 > 0 such that

u(θ1) = 0, u′(t) > 0 for t ∈ (0, θ1]. (2.63)

Following ideas before Corollary 2.9, we get the next corollary.

Corollary 2.15. Assume (1.2)–(1.5), (1.8), (1.9), (2.44), (2.45), and (2.62). Let u be a solution of
the problem (1.7), (1.13) with u0 ∈ (L0, 0) ∪ (0, L), then the assertions I and II of Corollary 2.9 are
valid.

Now, we are able to formulate another existence result for oscillatory solutions. Its
proof is almost the same as the proof of Theorem 2.10 for u0 ∈ (L0, 0) and the proof of
Theorem 3.4 in [18] for u0 ∈ (0, L). The only difference is that we use Lemmas 2.13, 2.14,
and Corollary 2.15, in place of Lemmas 2.7, 2.8, and Corollary 2.9, respectively.
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Theorem 2.16 (existence of oscillatory solutions II). Assume that (1.2)–(1.5), (1.8), (1.9), (2.44),
(2.45), and (2.62) hold, then each damped solution of the problem (1.7), (1.13) with u0 ∈ (L0, 0) ∪
(0, L) is oscillatory and its amplitudes are decreasing.

Example 2.17. Let us consider (1.7) with

p(t) = tα, t ∈ [0,∞),

f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−|x|λsgnx, x ≤ 1,

x − 2, x ∈ (1, 3),

1, x ≥ 3,

(2.64)

where λ and α are real parameters.

Case 1. Let λ ∈ (1,∞) and α ∈ (0, 1], then all assumptions of Theorem 2.16 are satisfied. Note
that f satisfies neither (2.20) nor (2.29) and hence Theorem 2.10 cannot be applied.

Case 2. Let λ = 1 and α ∈ (0,∞), then all assumptions of Theorem 2.10 are satisfied. If α ∈
(0, 1], then also all assumptions of Theorem 2.16 are fulfilled, but for α ∈ (1,∞), the function
p does not satisfy (2.44), and hence Theorem 2.16 cannot be applied.

3. Asymptotic Properties of Oscillatory Solutions

In Lemma 2.6 we show that if u is a damped solution of the problem (1.7), (1.13) which is not
oscillatory then u converges to 0 for t → ∞. In this section, we give conditions under which
also oscillatory solutions converge to 0.

Theorem 3.1. Assume that (1.2)–(1.5), (1.8), and (1.9) hold and that there exists k0 > 0 such that

lim inf
t→∞

p(t)
tk0

> 0, (3.1)

then each damped oscillatory solution u of the problem (1.7), (1.13) with u0 ∈ (L0, 0)∪ (0, L) satisfies

lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (3.2)

Proof. Consider an oscillatory solution u of the problem (1.7), (1.13) with u0 ∈ (0, L).

Step 1. Using the notation and some arguments of the proof of Theorem 2.10, we have the
unbounded sequences {an}∞n=1, {bn}∞n=1, {θn}∞n=1, and {δn}∞n=1, such that

0 < δ1 < b1 < θ1 < a1 < δ2 < · · · < δn < bn < θn < an < δn+1 < · · · , (3.3)
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where u(θn) = u(δn) = 0, u(an) = An > 0 is a unique local maximum of u in (θn, δn+1),
u(bn) = Bn < 0 is a unique local minimum of u in (δn, θn), n ∈ �. Let Vu be given by (2.36)
and then (2.39) and (2.40) hold and, by (1.2)–(1.4), we see that

lim
t→∞

u(t) = 0 ⇐⇒ cu = 0. (3.4)

Assume that (3.2) does not hold. Then cu > 0. Motivated by arguments of [28], we derive a
contradiction in the following steps.

Step 2 (estimates of u). By (2.36) and (2.39), we have

lim
n→∞

u
′2(δn)

2
= lim

n→∞
u
′2(θn)

2
= cu > 0, (3.5)

and the sequences {u′2(δn)}∞n=1 and {u′2(θn)}∞n=1 are decreasing. Consider n ∈ �. Then
u
′2(δn)/2 > cu and there are αn, βn satisfying an < αn < δn < βn < bn and such that

u
′2(αn) = u

′2(βn) = cu, u
′2(t) > cu, t ∈ (αn, βn). (3.6)

Since Vu(t) > cu for t > 0 (see (2.39)), we get by (2.36) and (3.6) the inequalities cu/2 +
F(u(αn)) > cu and cu/2 + F(u(βn)) > cu, and consequently F(u(αn)) > cu/2 and F(u(βn)) >
cu/2. Therefore, due to (1.4), there exists c̃ > 0 such that

u(αn) > c̃, u
(
βn
)
< −c̃, n ∈ �. (3.7)

Similarly, we deduce that there are α̃n, β̃n satisfying bn < α̃n < θn < β̃n < an+1 and such that

u(α̃n) < −c̃, u
(
β̃n
)
> c̃, n ∈ �. (3.8)

The behaviour of u and inequalities (3.7) and (3.8) yield

|u(t)| > c̃, t ∈ [βn, α̃n] ∪
[
β̃n, αn+1

]
, n ∈ �. (3.9)

Step 3 (estimates of βn − αn). We prove that there exist c0, c1 ∈ (0,∞) such that

c0 < βn − αn < c1, n ∈ �. (3.10)

Assume on the contrary that there exists a subsequence satisfying lim�→∞(β� − α�) = 0. By
the mean value theorem and (3.7), there is ξ� ∈ (α�, β�) such that 0 < 2c̃ < u(α�) − u(β�) =
|u′(ξ�)|(β� − α�). Since F(u(t)) ≥ 0 for t ∈ [0,∞), we get by (2.16) the inequality

∣∣u′(t)∣∣ <
√

2F(u0), t ∈ [0,∞), (3.11)
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and consequently

0 < 2c̃ ≤
√

2F(u0) lim
�→∞

(
β� − α�

)
= 0, (3.12)

which is a contradiction. So, c0 satisfying (3.10) exists. Using the mean value theorem again,
we can find τn ∈ (αn, δn) such that u(δn) − u(αn) = u′(τn)(δn − αn) and, by (3.6),

δn − αn =
−u(αn)
u′(τn)

=
u(αn)
|u′(τn)| <

A1√
cu
. (3.13)

Similarly, we can find ηn ∈ (δn, βn) such that

βn − δn =
u
(
βn
)

u′
(
ηn
) =

∣∣u(βn)∣∣∣∣u′(ηn)∣∣ <
|B1|√
cu
. (3.14)

If we put c1 = (A1 + |B1|)/√cu, then (3.10) is fulfilled. Similarly, we can prove

c0 < β̃n − α̃n < c1, n ∈ �. (3.15)

Step 4 (estimates of αn+1 − αn). We prove that there exist c2 ∈ (0,∞) such that

αn+1 − αn < c2, n ∈ �. (3.16)

Put m1 = min{f(x) : B1 ≤ x ≤ −c̃} > 0. By (3.9), B1 ≤ u(t) < −c̃ for t ∈ [βn, α̃n], n ∈ �.
Therefore,

f(u(t)) ≥ m1, t ∈ [βn, α̃n], n ∈ �. (3.17)

Due to (1.9), we can find t1 > 0 such that

p′(t)
p(t)

√
2F(u0) <

m1

2
, t ∈ [t1,∞). (3.18)

Let n1 ∈ � fulfil αn1 ≥ t1, then, according to (2.4), (3.11), (3.17), and (3.18), we have

u′′(t) > −m1

2
+m1 =

m1

2
, t ∈ [βn, α̃n], n ≥ n1. (3.19)

Integrating (3.19) from bn to βn and using (3.6), we get 2
√
cu > m1(bn−βn) for n ≥ n1. Similarly

we get 2
√
cu > m1(α̃n − bn) for n ≥ n1. Therefore

4
m1

√
cu > α̃n − βn, n ≥ n1. (3.20)
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By analogy, we put m2 = min{−f(x) : c̃ ≤ x ≤ A1} > 0 and prove that there exists n2 ∈ � such
that

4
m2

√
cu > αn+1 − β̃n, n ≥ n2. (3.21)

Inequalities (3.10), (3.15), (3.20), and (3.21) imply the existence of c2 fulfilling (3.16).

Step 5 (construction of a contradiction). Choose t0 > c1 and integrate the equality in (2.37)
from t0 to t > t0. We have

Vu(t) = Vu(t0) −
∫ t
t0

p′(τ)
p(τ)

u
′2(τ)dτ, t ≥ t0. (3.22)

Choose n0 ∈ � such that αn0 > t0. Further, choose n ∈ �, n > n0 and assume that t > βn, then,
by (3.6),

∫ t
t0

p′(τ)
p(τ)

u
′2(τ)dτ >

n∑
j=n0

∫βj
αj

p′(τ)
p(τ)

u
′2(τ)dτ

> cu
n∑

j=n0

∫βj
αj

p′(τ)
p(τ)

dτ = cu
n∑

j=n0

[
ln p(τ)

]βj
αj
.

(3.23)

By virtue of (3.1) there exists c3 > 0 such that p(t)/tk0 > c3 for t ∈ [t0,∞). Thus, ln p(t) >
ln c3 + k0 ln t and

∫ t
t0

p′(τ)
p(τ)

u
′2(τ)dτ > cu

n∑
j=n0

[ln c3 + k0 ln t)]
βj
αj = cuk0

n∑
j=n0

ln
βj

αj
. (3.24)

Due to (3.10) and c1 < αn0 , we have

1 <
βj

αj
< 1 +

c1

αj
< 2, j = n0, . . . , n, (3.25)

and the mean value theorem yields ξj ∈ (1, 2) such that

ln
βj

αj
=

(
βj

αj
− 1

)
1
ξj
>
βj − αj

2αj
, j = n0, . . . , n. (3.26)

By (3.10) and (3.16), we deduce

βj − αj
αj

>
c0

αj
, αj < jc2 + α1, j = n0, . . . , n. (3.27)
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Thus,

βj − αj
αj

>
c0

jc2 + α1
, j = n0, . . . , n. (3.28)

Using (3.24)–(3.28) and letting t to∞, we obtain

∫∞
t0

p′(τ)
p(τ)

u′2(τ)dτ ≥ cuk0

∞∑
n=n0

ln
βn

αn
≥ 1

2
cuk0

∞∑
n=n0

βn − αn
αn

≥ 1
2
cuk0

∞∑
n=n0

c0

nc2 + α1
=∞.

(3.29)

Using it in (3.22), we get limt→∞Vu(t) = −∞, which is a contradiction. So, we have proved
that cu = 0.

Using (2.4) and (3.4), we have

lim
t→∞

(
u
′2(t)
2

+
∫ t

0

p′(s)
p(s)

u
′2(s)ds

)
= F(u0) − F(0) = F(u0). (3.30)

Since the function
∫ t

0(p
′(s)/p(s))u

′2(s)ds is increasing, there exists

lim
t→∞

∫ t
0

p′(s)
p(s)

u
′2(s)ds ≤ F(u0). (3.31)

Therefore, there exists

lim
t→∞

u
′2(t) = �2. (3.32)

If � > 0, then limt→∞|u′(t)| = �, which contradicts (3.4). Therefore, � = 0 and (3.2) is proved.
If u0 ∈ (L0, 0), we argue analogously.
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By applying a fixed point theorem for mappings that are decreasing with respect to a cone, this
paper investigates the existence of positive solutions for the nonlinear fractional boundary value
problem: Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = u′(0) = u′(1) = 0, where 2 < α < 3, Dα
0+ is the

Riemann-Liouville fractional derivative.

1. Introduction

Many papers and books on fractional calculus differential equation have appeared recently.
Most of them are devoted to the solvability of the linear initial fractional equation in terms of
a special function [1–4]. Recently, there has been significant development in the existence
of solutions and positive solutions to boundary value problems for fractional differential
equations by the use of techniques of nonlinear analysis (fixed point theorems, Leray-
Schauder theory, etc.), see [5, 6] and the references therein.

In this paper, we consider the following boundary value problems of the nonlinear
fractional differential equation

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(0) = u′(1) = 0,
(1.1)

where Dα
0+ is the standard Riemann-Liouville fractional derivative and f(t, x) is singular at
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x = 0. Our assumptions throughout are

(H1) f(t, x) : (0, 1) × (0,∞) → [0,∞) is continuous,

(H2) f(t, x) is decreasing in x, for each fixed t,

(H3) limx→ 0+f(t, x) = ∞ and limx→∞f(t, x) = 0, uniformly on compact subsets of (0,1),
and

(H4) 0 <
∫1

0 f(t, qθ(t))dt <∞ for all θ > 0 and qθ as defined in (3.1).

The seminal paper by Gatica et al. [7] in 1989 has had a profound impact on the
study of singular boundary value problems for ordinary differential equations (ODEs). They
studied singularities of the type in (H1)–(H4) for second order Sturm-Louiville problems, and
their key result hinged on an application of a particular fixed point theorem for operators
which are decreasing with respect to a cone. Various authors have used these techniques
to study singular problems of various types. For example, Henderson and Yin [8] as well as
Eloe and Henderson [9, 10] have studied right focal, focal, conjugate, and multipoint singular
boundary value problems for ODEs. However, as far as we know, no paper is concerned with
boundary value problem for fractional differential equation by using this theorem. As a result,
the goal of this paper is to fill the gap in this area.

Motivated by the above-mentioned papers and [11], the purpose of this paper is to
establish the existence of solutions for the boundary value problem (1.1) by the use of a
fixed point theorem used in [7, 11]. The paper has been organized as follows. In Section 2,
we give basic definitions and provide some properties of the corresponding Green’s function
which are needed later. We also state the fixed point theorem from [7] for mappings that are
decreasing with respect to a cone. In Section 3, we formulate two lemmas which establish
a priori upper and lower bounds on solutions of (1.1). We then state and prove our main
existence theorem.

For fractional differential equation and applications, we refer the reader to [1–3].
Concerning boundary value problems (1.1) with ordinary derivative (not fractional one),
we refer the reader to [12, 13].

2. Some Preliminaries and a Fixed Point Theorem

For the convenience of the reader, we present here the necessary definitions from fractional
calculus theory. These definitions and properties can be found in the literature.

Definition 2.1 (see [3]). The Riemann-Liouville fractional integral of order α > 0 of a function
f : (0,∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t
0
(t − s)α−1f(s)ds, (2.1)

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 (see [3]). The Riemann-Liouville fractional derivative of order α > 0 of a con-
tinuous function f : (0,∞) → R is given by

Dα
0+f(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t
0

f(s)

(t − s)α−n+1
ds, (2.2)
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where n − 1 ≤ α < n, provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.3. By a solution of the boundary value problem (1.1) we understand a function
u ∈ C[0, 1] such that Dα

0+u is continuous on (0, 1) and u satisfies (1.1).

Lemma 2.4 (see [3]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · · + cNtα−N (2.3)

for some ci ∈ R, i = 1, . . . ,N,N = [α].

Lemma 2.5. Given f ∈ C[0, 1], and 2 < α < 3, the unique solution of

Dα
0+u(t) + f(t) = 0, 0 < t < 1,
u(0) = u′(0) = u′(1) = 0

(2.4)

is
u(t) =

∫1

0
G(t, s)f(s)ds, (2.5)

where

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

tα−1(1 − s)α−2 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−2

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.6)

Proof. We may apply Lemma 2.4 to reduce (2.4) to an equivalent integral equation

u(t) = −Iα0+f(t) + c1t
α−1 + c2t

α−2 + c3t
α−3 (2.7)

for some ci ∈ R, i = 1, 2, 3. From u(0) = u′(0) = u′(1) = 0, one has

c1 =
∫1

0

(1 − s)α−2

Γ(α)
f(s)ds, c2 = c3 = 0. (2.8)

Therefore, the unique solution of problem (2.4) is

u(t) =
∫1

0

tα−1(1 − s)α−2

Γ(α)
f(s)ds − 1

Γ(α)

∫ t
0
(t − s)α−1f(s)ds

=
∫ t

0

[
tα−1(1 − s)α−2 − (t − s)α−1

Γ(α)

]
f(s)ds +

∫1

t

tα−1(1 − s)α−2

Γ(α)
f(s)ds

=
∫1

0
G(t, s)f(s)ds.

(2.9)



4 Abstract and Applied Analysis

Lemma 2.6. The function G(t, s) defined by (2.6) satisfies the following conditions:

(i) G(t, s) > 0, 0 < t, s < 1,

(ii) q(t)G(1, s) ≤ G(t, s) ≤ G(1, s) = s(1 − s)α−2/(Γ(α)) for 0 ≤ t, s ≤ 1, where q(t) = tα−1.

Proof. Observing the expression of G(t, s), it is clear that G(t, s) > 0 for 0 < t, s < 1. For given
s ∈ (0, 1), G(t, s) is increasing with respect to t. Consequently, G(t, s) ≤ G(1, s) for 0 ≤ t, s ≤ 1.
If s ≤ t, we have

G(t, s) =
t(t − ts)α−2 − (t − s)(t − s)α−2

Γ(α)

≥ t(t − ts)
α−2 − (t − s)(t − ts)α−2

Γ(α)

=
stα−2(1 − s)α−2

Γ(α)
≥ st

α−1(1 − s)α−2

Γ(α)
= q(t)G(1, s).

(2.10)

If t ≤ s, we have

G(t, s) =
tα−1(1 − s)α−2

Γ(α)
≥ st

α−1(1 − s)α−2

Γ(α)
= q(t)G(1, s). (2.11)

Let E be a Banach space, P ⊂ E be a cone in E. Every cone P in E defines a partial
ordering in E given by x ≤ y if and only if y − x ∈ P . If x ≤ y and x /=y, we write x < y.
A cone P is said to be normal if there exists a constant N > 0 such that θ ≤ x ≤ y implies
‖x‖ ≤N‖y‖. If P is normal, then every order interval [x, y] = {z ∈ E | x ≤ z ≤ y} is bounded.
For the concepts and properties about the cone theory we refer to [14, 15].

Next we state the fixed point theorem due to Gatica et al. [7] which is instrumental in
proving our existence results.

Theorem 2.7 (Gatica-Oliker-Waltman fixed point theorem). Let E be a Banach space, P ⊂ E be
a normal cone, and D ⊂ P be such that if x, y ∈ D with x ≤ y, then [x, y] ⊂ D. Let T : D → P be
a continuous, decreasing mapping which is compact on any closed order interval contained in D, and
suppose there exists an x0 ⊂ D such that T2x0 is defined (where T2x0 = T(Tx0)) and Tx0, T2x0 are
order comparable to x0. Then T has a fixed point in D provided that either:

(i) Tx0 ≤ x0 and T2x0 ≤ x0;

(ii) x0 ≤ Tx0 and x0 ≤ T2x0; or

(iii) The complete sequence of iterates {Tnx0}∞n=0 is defined and there exists y0 ∈ D such that
Ty0 ∈ D with y0 ≤ Tnx0 for all n ∈ ��

3. Main Results

In this section, we apply Theorem 2.7 to a sequence of operators that are decreasing with
respect to a cone. These obtained fixed points provide a sequence of iterates which converges
to a solution of (1.1).
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Let the Banach space E = C[0, 1] with the maximum norm ‖u‖ = maxt∈[0,1]|u(t)|, and
let P = {u ∈ E | u(t) ≥ 0, t ∈ [0, 1]}. P is a norm cone in E. For θ > 0, let

qθ(t) = θ · q(t), (3.1)

where q(t) is given in Lemma 2.6. Define D ⊂ P by

D =
{
u ∈ P | ∃θ(u) > 0 such that u(t) ≥ qθ(t), t ∈ [0, 1]

}
, (3.2)

and the integral operator T : D → P by

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds, (3.3)

where G(t, s) is given in (2.6). It suffices to define D as above, since the singularity in f
precludes us from defining T on all of P . Furthermore, it can easily be verified that T is well
defined. In fact, note that for u ∈ D there exists θ(u) > 0 such that u(t) ≥ qθ(t) for all t ∈ [0, 1].
Since f(t, x) decreases with respect to x, we see f(t, u(t)) ≤ f(t, qθ(t)) for t ∈ [0, 1]. Thus,

0 ≤
∫1

0
G(t, s)f(s, u(s))ds ≤

∫1

0
f
(
s, qθ(s)

)
ds < ∞. (3.4)

Similarly, T is decreasing with respect to D.

Lemma 3.1. u ∈ D is a solution of (1.1) if and only if Tu = u.

Proof. One direction of the lemma is obviously true. To see the other direction, let u ∈ D. Then
(Tu)(t) =

∫1
0 G(t, s)f(s, u(s))ds, and Tu satisfies (1.1). Moreover, by Lemma 2.6, we have

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds

≥ q(t)
∫1

0
G(1, s)f(s, u(s))ds = q(t)‖Tu‖, ∀t ∈ [0, 1].

(3.5)

Thus, there exists some θ(Tu) such that (Tu)(t) ≥ qθ(t), which implies that Tu ∈ D. That is,
T : D → D.

We now present two lemmas that are required in order to apply Theorem 2.7. The first
establishes a priori upper bound on solutions, while the second establishes a priori lower
bound on solutions.

Lemma 3.2. If f satisfies (H1)–(H4), then there exists an S > 0 such that ‖u‖ ≤ S for any solution
u ∈ D of (1.1).
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Proof. For the sake of contradiction, suppose that the conclusion is false. Then there exists a
sequence {un}∞n=1 of solutions to (1.1) such that ‖un‖ ≤ ‖un+1‖ with limn→∞‖un‖ = ∞. Note
that for any solution un ∈ D of (1.1), by (3.5), we have

un(t) = (Tun)(t) ≥ q(t)‖un‖, t ∈ [0, 1], n ≥ 1. (3.6)

Then, assumptions (H2) and (H4) yield, for 0 ≤ t ≤ 1 and all n ≥ 1,

un(t) = (Tun)(t) =
∫1

0
G(t, s)f(s, un(s))ds

≤ 1
Γ(α)

∫1

0
s(1 − s)α−2f

(
s, q‖u1‖(s)

)
ds =N,

(3.7)

for some 0 < N < +∞. In particular, ‖un‖ ≤ N, for all n ≥ 1, which contradicts limn→∞‖un‖ =
∞.

Lemma 3.3. If f satisfies (H1)–(H4), then there exists an R > 0 such that ‖u‖ ≥ R for any solution
u ∈ D of (1.1).

Proof. For the sake of contradiction, suppose un(t) → 0 uniformly on [0, 1] as n → ∞. Let
M = inf{G(t, s) : (t, s) ∈ [1/4, 3/4] × [1/4, 3/4]} > 0. From (H3), we see that limx→ 0+f(t, x) =
∞ uniformly on compact subsets of (0, 1). Hence, there exists some δ > 0 such that for t ∈
[1/4, 3/4] and 0 < x < δ, we have f(t, x) ≥ 2/M. On the other hand, there exists an n0 ∈ N
such that n ≥ n0 implies 0 < un(t) < δ/2, for t ∈ (0, 1). So, for t ∈ [1/4, 3/4] and n ≥ n0,

un(t) = (Tun)(t) =
∫1

0
G(t, s)f(s, un(s))ds ≥

∫3/4

1/4
G(t, s)f(s, un(s))ds

≥M
∫3/4

1/4
f

(
s,
δ

2

)
ds ≥M

∫3/4

1/4

2
M

ds = 1.

(3.8)

But this contradicts the assumption that ‖un‖ → 0 uniformly on [0, 1] as n → ∞. Hence,
there exists an R > 0 such that R ≤ ‖u‖.

We now present the main result of the paper.

Theorem 3.4. If f satisfies (H1)–(H4), then (1.1) has at least one positive solution.

Proof. For each n ≥ 1, defined vn : [0, 1] → [0,+∞) by

vn(t) =
∫1

0
G(t, s)f(s, n)ds. (3.9)
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By conditions (H1)–(H4), for n ≥ 1,

0 < vn+1(t) ≤ vn(t), on (0, 1], (3.10)

lim
n→∞

vn(t) = 0 uniformly on [0, 1]. (3.11)

Now define a sequence of functions fn : (0, 1) × [0,+∞), n ≥ 1, by

fn(t, x) = f(t,max{x, vn(t)}). (3.12)

Then, for each n ≥ 1, fn is continuous and satisfies (H2). Furthermore, for n ≥ 1,

fn(t, x) ≤ f(t, x) on (0, 1) × (0,+∞),

fn(t, x) ≤ f(t, vn(t)) on (0, 1) × (0,+∞).
(3.13)

Note that fn has effectively “removed the singularity” in f(t, x) at x = 0, then we define a
sequence of operators Tn : P → P , n ≥ 1, by

(Tnu)(t) =
∫1

0
G(t, s)fn(s, u(s))ds, u ∈ P. (3.14)

From standard arguments involving the Arzela-Ascoli Theorem, we know that each Tn is in
fact a compact mapping on P . Furthermore, Tn(0) ≥ 0 and T2

n(0) ≥ 0. By Theorem 2.7, for each
n ≥ 1, there exists un ∈ P such that Tnun(x) = un(t) for t ∈ [0, 1]. Hence, for each n ≥ 1, un
satisfies the boundary conditions of the problem. In addition, for each un,

(Tnun)(t) =
∫1

0
G(t, s)fn(s, un(s))ds =

∫1

0
G(t, s)fn(s,max{un(s), vn(s)})ds

≤
∫1

0
G(t, s)fn(s, vn(s))ds ≤ Tvn(t),

(3.15)

which implies

un(t) = (Tnun)(t) ≤ Tvn(t), t ∈ [0, 1], n ∈ N. (3.16)

Arguing as in Lemma 3.2 and using (3.11), it is fairly straightforward to show that there exists
an S > 0 such that ‖un‖ ≤ S for all n ∈ �. Similarly, we can follow the argument of Lemma 3.3
and (3.5) to show that there exists an R > 0 such that

un(t) ≥ q(t)R, on [0, 1], for n ≥ 1. (3.17)

Since T : D → D is a compact mapping, there is a subsequence of {Tun} which converges
to some u∗ ∈ D. We relabel the subsequence as the original sequence so that Tun → u∗ as
n → ∞.
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To conclude the proof of this theorem, we need to show that

lim
n→∞

‖Tun − un‖ = 0. (3.18)

To that end, fixed θ = R, and let ε > 0 be give. By the integrability condition (H4), there exists
0 < δ < 1 such that

∫δ
0
s(1 − s)α−2f

(
s, qθ(s)

)
ds <

Γ(α)
2

ε. (3.19)

Further, by (3.11), there exists an n0 such that, for n ≥ n0,

vn(t) ≤ qθ(t) on [δ, 1], (3.20)

so that

vn(t) ≤ qθ(t) ≤ un(t) on [δ, 1]. (3.21)

Thus, for s ∈ [δ, 1] and n ≥ n0,

fn(s, un(s)) = f(s,max{un(s), vn(s)}) = f(s, un(s)), (3.22)

and for t ∈ [0, 1],

Tun(t) − un(t) = Tun(t) − Tnun(t)

=
∫1

0
G(t, s)

[
f(s, un(s)) − fn(s, un(s))

]
ds.

(3.23)

Thus, for t ∈ [0, 1],

|Tun(t) − un(t)| ≤ 1
Γ(α)

[∫δ
0
s(1 − s)α−2f(s, un(s))ds +

∫δ
0
s(1 − s)α−2f(s,max{un(s), vn(s)})ds

]

≤ 1
Γ(α)

[∫δ
0
s(1 − s)α−2f(s, un(s))ds +

∫δ
0
s(1 − s)α−2f(s, un(s))ds

]

≤ 2
Γ(α)

∫δ
0
s(1 − s)α−2f

(
s, qθ(s)

)
ds < ε.

(3.24)

Since t ∈ [0, 1] was arbitrary, we conclude that ‖Tun−un‖ ≤ ε for all n ≥ n0. Hence, u∗ ∈ [qR, S]
and for t ∈ [0, 1]

Tu∗(t) = T
(

lim
n→∞

Tun(t)
)

= T
(

lim
n→∞

un(t)
)

= lim
n→∞

Tun = u∗(t). (3.25)
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We all-sidedly consider a three-point boundary value problem for p-Laplacian differential equation
with nonlinear term involving derivative. Some new sufficient conditions are obtained for the
existence of at least one, triple, or arbitrary odd positive pseudosymmetric solutions by using
pseudosymmetric technique and fixed-point theory in cone. As an application, two examples are
given to illustrate the main results.

1. Introduction

Recent research results indicate that considerable achievement was made in the existence
of positive solutions to dynamic equations; for details, please see [1–6] and the references
therein. In particular, the existence of positive pseudosymmetric solutions to p-Laplacian
difference and differential equations attract many researchers’ attention, such as [7–11].
The reason is that the pseudosymmetry problem not only has theoretical value, such as in
the study of metric manifolds [12], but also has practical value itself; for example, we can
apply this characteristic into studying the chemistry structure [13]. On another hand, there
are much attention paid to the positive solutions of boundary value problems (BVPs) for
differential equation with the nonlinear term involved with the derivative explicitly [14–18].
Hence, it is natural to continue study pseudosymmetric solutions to p-Laplacian differential
equations with the nonlinear term involved with the first-order derivative explicitly.

First, let us recall some relevant results about BVPs with p-Laplacian, We would like
to mention the results of Avery and Henderson [7, 8], Ma and Ge [11] and Sun and Ge [16].
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Throughout this paper, we denote the p-Laplacian operator by ϕp(u); that is, ϕp(u) = |u|p−2u

for p > 1 with (ϕp)
−1 = ϕq and 1/p + 1/q = 1.

For the three-point BVPs with p-Laplacian

(
ϕp
(
u′(t)

))′ + h(t)f(t, u(t)) = 0 for t ∈ [0, 1],

u(0) = 0, u
(
η
)
= u(1),

(1.1)

here, η ∈ (0, 1) is constant, by using the five functionals fixed point theorem in a cone [19],
Avery and Henderson [8] established the existence of at least three positive pseudosymmetric
solutions to BVPs (1.1). The authors also obtained the similar results in their paper [7] for
the discrete case. In addition, Ma and Ge [11] developed the existence of at least two positive
pseudosymmetric solutions to BVPs (1.1) by using the monotone iterative technique.

For the three-point p-Laplacian BVPs with dependence on the first-order derivative

(
ϕp
(
u′(t)

))′ + h(t)f(t, u(t), u′(t)) = 0 for t ∈ [0, 1],

u(0) = 0, u
(
η
)
= u(1),

(1.2)

Sun and Ge [16] obtained the existence of at least two positive pseudosymmetric solutions
to BVPs (1.2) via the monotone iterative technique again. However, it is worth mentioning
that the above-mentioned papers [7, 8, 10, 11, 16], the authors only considered results
on the existence of positive pseudosymmetric solutions partly, they failed to further
provide comprehensive results on the existence of positive pseudosymmetric solutions to
p-Laplacian. Naturally, in this paper, we consider the existence of positive pseudosymmetric
solutions for p-Laplacian differential equations in all respects.

Motivated by the references [7, 8, 10, 11, 16, 18], in present paper, we consider all-
sidedly p-Laplacian BVPs (1.2), using the compression and expansion fixed point theorem
[20] and Avery-Peterson fixed point theorem [21]. We obtain that there exist at least one,
triple or arbitrary odd positive pseudosymmetric solutions to problem (1.2). In particular, we
not only get some local properties of pseudosymmetric solutions, but also obtain that the
position of pseudosymmetric solutions is determined under some conditions, which is much
better than the results in papers [8, 11, 16]. Correspondingly, we generalize and improve the
results in papers Avery and Henderson [8]. From the view of applications, two examples are
given to illustrate the main results.

Throughout this paper, we assume that

(S1) f(t, u, u′) : [0, 1] × [0,∞) × (−∞,+∞) → [0,∞) is continuous, does not vanish
identically on interval [0, 1], and f(t, u, u′) is pseudosymmetric about η on [0, 1],

(S2) h(t) ∈ L([0, 1], [0,∞)) is pseudosymmetric about η on [0, 1], and does not vanish
identically on any closed subinterval of [0, 1]. Furthermore, 0 <

∫1
0 h(t)dt <∞.

2. Preliminaries

In the preceding of this section, we state the definition of cone and several fixed point
theorems needed later [20, 22]. In the rest of this section, we will prove that solving BVPs
(1.2) is equivalent to finding the fixed points of a completely continuous operator.
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We first list the definition of cone and the compression and expansion fixed point
theorem [20, 22].

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex set P ⊂ E is said to
be a cone provided the following conditions are satisfied:

(i) if x ∈ P and λ ≥ 0, then λx ∈ P ,

(ii) if x ∈ P and −x ∈ P , then x = 0.

Lemma 2.2 (see [20, 22]). Let P be a cone in a Banach spaceE. Assume thatΩ1,Ω2 are open bounded
subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2. If A : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator
such that either

(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2, or

(ii) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω1 and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2.

Then, A has a fixed point in P ∩ (Ω2 \Ω1).

Given a nonnegative continuous functional γ on a cone P of a real Banach space E, we
define, for each d > 0, the set P(γ, d) = {x ∈ P : γ(x) < d}.

Let γ and θ be nonnegative continuous convex functionals on P , α a nonnegative
continuous concave functional on P , and ψ a nonnegative continuous functional on P
respectively. We define the following convex sets:

P
(
γ, α, b, d

)
=
{
x ∈ P : b ≤ α(x), γ(x) ≤ d},

P
(
γ, θ, α, b, c, d

)
=
{
x ∈ P : b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d}, (2.1)

and a closed set R(γ, ψ, a, d) = {x ∈ P : a ≤ ψ(x), γ(x) ≤ d}.
Next, we list the fixed point theorem due to Avery-Peterson [21].

Lemma 2.3 (see [21]). Let P be a cone in a real Banach space E and γ, θ, α, ψ defined as above;
moreover, ψ satisfies ψ(λ′x) ≤ λ′ψ(x) for 0 ≤ λ′ ≤ 1 such that for some positive numbers h and d,

α(x) ≤ ψ(x), ‖x‖ ≤ hγ(x), (2.2)

for all x ∈ P(γ, d). Suppose that A : P(γ, d) → P(γ, d) is completely continuous and there exist
positive real numbers a, b, c with a < b such that

(i) {x ∈ P(γ, θ, α, b, c, d) : α(x) > b}/= ∅ and α(A(x)) > b for x ∈ P(γ, θ, α, b, c, d),
(ii) α(A(x)) > b for x ∈ P(γ, α, b, d) with θ(A(x)) > c,

(iii) 0 /∈ R(γ, ψ, a, d) and ψ(A(x)) < a for all x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then, A has at least three fixed points x1, x2, x3 ∈ P(γ, d) such that

γ(xi) ≤ d for i = 1, 2, 3, b < α(x1), a < ψ(x2), α(x2) < b with ψ(x3) < a. (2.3)
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Now, let E = C1([0, 1],R). Then, E is a Banach space with norm

‖u‖ = max
{

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

∣∣u′(t)∣∣
}
. (2.4)

Define a cone P ⊂ E by

P =
{
u ∈ E | u(0) = 0, u is concave, nonnegative on [0, 1]and u is symmetricon

[
η, 1
]}
.

(2.5)

The following lemma can be founded in [11], which is necessary to prove our result.

Lemma 2.4 (see [11]). If u ∈ P , then the following statements are true:

(i) u(t) ≥ (u(ω1)/ω1)min{t, 1 + η − t} for t ∈ [0, 1], here ω1 = (η + 1)/2,

(ii) u(t) ≥ (η/ω1)u(ω1) for t ∈ [η,ω1],

(iii) maxt∈[0,1]u(t) = u(ω1).

Lemma 2.5. If u ∈ P , then the following statements are true:

(i) u(t) ≤ maxt∈[0,1]|u′(t)|,
(ii) ‖u(t)‖ = maxt∈[0,1]|u′(t)| = max{|u′(0)|, |u′(1)|},
(iii) mint∈[0,ω1]u(t) = u(0) and mint∈[ω1,1]u(t) = u(1).

Proof. (i) Since

u(t) = u(0) +
∫ t

0
u′(t)dt for t ∈ [0, 1], (2.6)

which reduces to

u(t) ≤
∫ t

0

∣∣u′(t)∣∣dt ≤ max
t∈[0,1]

∣∣u′(t)∣∣. (2.7)

(ii) By using u′′(t) ≤ 0 for t ∈ [0, 1], we have u′(t) is monotone decreasing function on
[0, 1]. Moreover,

max
t∈[0,1]

u(t) = u
(
η + 1

2

)
= u(ω1), (2.8)

which implies that u′(ω1) = 0, so, u′(t) ≥ 0 for t ∈ [0, ω1] and u′(t) ≤ 0 for t ∈ [ω1, 1].
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Now, we define the operator A : P → E by

(Au)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ t
0
ϕq

(∫ω1

s

h(r)f(r, u(r), u′(r))dr
)
ds for t ∈ [0, ω1],

w
(
η
)
+
∫1

t

ϕq

(∫s
ω1

h(r)f(r, u(r), u′(r))dr

)
ds for t ∈ [ω1, 1],

(2.9)

here, w(η) = (Au)(η).

Lemma 2.6. A : P → P is a completely continuous operator.

Proof. In fact, (Au)(t) ≥ 0 for t ∈ [0, 1], (Au)(η) = (Au)(1) and (Au)(0) = 0.
It is easy to see that the operator A is pseudosymmetric about ω1 on [0, 1].
In fact, for t ∈ [η,ω1], we have 1−t+η ∈ [ω1, 1], and according to the integral transform,

one has

∫1

1−t+η
ϕq

(∫ s
ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds

=
∫ t
η

ϕq

(∫ω1

s1

h(r1)f
(
r1, u(r1), u′(r1)

)
dr1

)
ds1,

(2.10)

here, s = 1 − s1 + η, r = 1 − r1 + η. Hence,

(Au)
(
1 − t + η) = w(η) +

∫1

1−t+η
ϕq

(∫ s
ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds

= w
(
η
)
+
∫ t
η

ϕq

(∫ω1

s1

h(r1)f
(
r1, u(r1), u′(r1)

)
dr1

)
ds1

=
∫η

0
ϕq

(∫ω1

s

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds

+
∫ t
η

ϕq

(∫ω1

s

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds

=
∫ t

0
ϕq

(∫ω1

s

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds = (Au)(t).

(2.11)

For t ∈ [ω1, 1], we note that 1 − t + η ∈ [η,ω1], by using the integral transform, one has

∫1−t+η

η

ϕq

(∫ω1

s

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds

=
∫1

t

ϕq

(∫s1

ω1

h(r1)f
(
r1, u(r1), u′(r1)

)
dr1

)
ds1,

(2.12)
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where s = 1 − s1 + η, r = 1 − r1 + η. Thus,

(Au)
(
1 − t + η) =

∫1−t+η

0
ϕq

(∫ω1

s

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds

= w
(
η
)
+
∫1−t+η

η

ϕq

(∫ω1

s

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds

= w
(
η
)
+
∫1

t

ϕq

(∫s1

ω1

h(r1)f
(
r1, u(r1), u′(r1)

)
dr1

)
ds1

= w
(
η
)
+
∫1

t

ϕq

(∫s
ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds = (Au)(t).

(2.13)

Hence, A is pseudosymmetric about η on [0, 1].
In addition,

(Au)′(t) = ϕq
(∫ω1

t

h(r)f
(
r, u(r), u′(r)

)
ds

)
≥ 0, t ∈ [0, ω1] (2.14)

is continuous and nonincreasing in [0, ω1]; moreover, ϕq(x) is a monotone increasing
continuously differentiable function

(∫ω1

t

h(s)f
(
s, u(s), u′(s)

)
ds

)′
= −h(t)f(t, u(t), u′(t)) ≤ 0, t ∈ [0, ω1], (2.15)

it is easy to obtain (Au)′′(t) ≤ 0 for t ∈ [0, ω1]. By using the similar way, we can deduce
(Au)′′(t) ≤ 0 for t ∈ [ω1, 1]. So, A : P → P . It is easy to obtain that A : P → P is completely
continuous.

Hence, the solutions of BVPs (1.2) are fixed points of the completely continuous
operator A.

3. One Solutions

In this section, we will study the existence of one positive pseudosymmetric solution to
problem (1.2) by Krasnosel’skii’s fixed point theorem in a cone.
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Motivated by the notations in reference [23], for u ∈ P , let

f0 = sup
t∈[0,1]

lim
(u,u′)→ (0,0)

f(t, u, u′)
ϕp(|u′|) ,

f0 = inf
t∈[0,1]

lim
(u,u′)→ (0,0)

f(t, u, u′)
ϕp(|u′|) ,

f∞ = sup
t∈[0,1]

lim
(u,u′)→ (∞,∞)

f(t, u, u′)
ϕp(|u′|) ,

f∞ = inf
t∈[0,1]

lim
(u,u′)→ (∞,∞)

f(t, u, u′)
ϕp(|u′|) .

(3.1)

In the following, we discuss the problem (1.2) under the following four possible cases.

Theorem 3.1. If f0 = 0 and f∞ = ∞, problem (1.2) has at least one positive pseudosymmetric
solution u.

Proof. In view of f0 = 0, there exists an H1 > 0 such that

f
(
t, u, u′

) ≤ ϕp(ε)ϕp(∣∣u′∣∣) = ϕp(ε∣∣u′∣∣) for
(
t, u, u′

) ∈ [0, 1] × (0,H1] × [−H1,H1], (3.2)

here, ε > 0 and satisfies

εϕq

(∫ω1

0
h(s)ds

)
≤ 1. (3.3)

If u ∈ P with ‖u‖ = H1, by Lemma 2.5, we have

u(t) ≤ max
t∈[0,1]

∣∣u′(t)∣∣ ≤ ‖u‖ = H1 for t ∈ [0, 1], (3.4)

hence,

‖Au‖ = max
{∣∣(Au)′(0)∣∣, ∣∣(Au)′(1)∣∣}

= max

{
ϕq

(∫ω1

0
h(r)f

(
r, u(r), u′(r)

)
dr

)
, ϕq

(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)}

≤ εmax
t∈[0,1]

∣∣u′(t)∣∣ϕq
(∫ω1

0
h(s)ds

)
≤ ‖u‖.

(3.5)

If set ΩH1 = {u ∈ E : ‖u‖ < H1}, one has ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂ΩH1 .
According to f∞ =∞, there exists an H ′2 > 0 such that

f
(
t, u, u′

) ≥ max
t∈[0,1]

ϕp(k)ϕp
(∣∣u′∣∣) = max

t∈[0,1]
ϕp
(
k
∣∣u′∣∣), (3.6)
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where (t, u, u′) ∈ [0, 1] × [H ′2,∞) × (−∞,H ′2] ∪ [H ′2,∞), k > 0 and satisfies

kϕq

(∫1

ω1

h(r)dr

)
≥ 1. (3.7)

Set

H2 = max
{

2H1,
ω1

η
H ′2

}
, ΩH∗2 = {u ∈ E : ‖u‖ < 5H2},

ΩH2 =
{
u ∈ ΩH∗2 : u(ω1) < H2

}
.

(3.8)

For u ∈ P ∩ ∂ΩH2 , we have u(ω1) = H2 since u(t) ≤ |u′(t)| for u ∈ P .
If u ∈ P with u(ω1) = H2, Lemmas 2.4 and 2.5 reduce to

min
t∈[ω1,1]

∣∣u′(t)∣∣ ≥ min
t∈[ω1,1]

u(t) = u(1) ≥ ηu(ω1)
ω1

≥ H ′2. (3.9)

For u ∈ P ∩ ∂ΩH2 , according to (3.6), (3.7) and (3.9), we get

‖Au‖ = max

{
ϕq

(∫ω1

0
h(r)f

(
r, u(r), u′(r)

)
dr

)
, ϕq

(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)}

≥ ϕq
(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)

≥ kmax
t∈[0,1]

∣∣u′(t)∣∣ϕq
(∫ω1

1
h(r)dr

)
= ‖u‖.

(3.10)

Thus, by (i) of Lemma 2.2, the problem (1.2) has at least one positive pseudosymmetric
solution u in P ∩ (ΩH2 \ΩH1).

Theorem 3.2. If f0 = ∞ and f∞ = 0, problem (1.2) has at least one positive pseudosymmetric
solution u.

Proof. Since f0 =∞, there exists an H3 > 0 such that

f
(
t, u, u′

) ≥ max
t∈[0,1]

ϕp(m)ϕp
(∣∣u′∣∣) = max

t∈[0,1]
ϕp
(
m
∣∣u′∣∣), (3.11)

here, (t, u, u′) ∈ [0, 1] × (0,H3] × [−H3,H3] and m is such that

mϕq

(∫1

ω1

h(r)dr

)
≥ 1. (3.12)
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If u ∈ P with ‖u‖ = H3, Lemma 2.5 implies that

u(t) ≤ max
t∈[0,1]

∣∣u′(t)∣∣ ≤ ‖u‖ = H3 for t ∈ [0, 1], (3.13)

now, by (3.11), (3.12), and (3.13), we have

‖Au‖ = max

{
ϕq

(∫ω1

0
h(r)f

(
r, u(r), u′(r)

)
dr

)
, ϕq

(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)}

≥ ϕq
(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)
≥ mmax

t∈[0,1]

∣∣u′(t)∣∣ϕq
(∫1

ω1

h(r)dr

)
= ‖u‖.

(3.14)

If let ΩH3 = {u ∈ E : ‖u‖ < H3}, one has ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂ΩH3 .
Now, we consider f∞ = 0.
Suppose that f is bounded, for some constant K > 0, then

f
(
t, u, u′

) ≤ ϕp(K) ∀(t, u, u′) ∈ [0, 1] × [0,∞) × (−∞,∞). (3.15)

Pick

H4 ≥ max
{
H ′4, 2H3, Kϕq

(∫ω1

0
h(s)ds

)
,
C

δ

}
, (3.16)

here, C is an arbitrary positive constant and satisfy the (3.21). Let

ΩH4 = {u ∈ E : ‖u‖ < H4}. (3.17)

If u ∈ P ∩ ∂ΩH4 , one has ‖u‖ = H4, then (3.15) and (3.16) imply that

‖Au‖ = max

{
ϕq

(∫ω1

0
h(r)f

(
r, u(r), u′(r)

)
dr

)
, ϕq

(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)}

≤ Kϕq
(∫ω1

0
h(s)ds

)
≤ H4 = ‖u‖.

(3.18)

Suppose that f is unbounded.
By definition of f∞ = 0, there exists H ′4 > 0 such that

f
(
t, u, u′

) ≤ ϕp(δ)ϕp(∣∣u′∣∣) = ϕp(δ∣∣u′∣∣), (3.19)

where (t, u, u′) ∈ [0, ω1] × [H ′4,∞) × (−∞,H ′4] ∪ [H ′4,∞) and δ > 0 satisfies

δϕq

(∫ω1

0
h(s)ds

)
≤ 1. (3.20)
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From f ∈ C([0, 1] × [0,+∞) × (−∞,∞), [0,+∞)), we have

f
(
t, u, u′

) ≤ ϕp(C) for
(
t, u, u′

) ∈ [0, 1] × [0,H ′4] × [−H ′4,H ′4], (3.21)

here, C is an arbitrary positive constant.
Then, for (t, u, u′) ∈ [0, 1] × [0,∞) × (−∞,∞), we have

f
(
t, u, u′

) ≤ max
{
ϕp(C), ϕp(δ)ϕp

(∣∣u′∣∣)}. (3.22)

If u ∈ P ∩ ∂ΩH4 , one has ‖u‖ = H4, which reduces to

‖Au‖ = max

{
ϕq

(∫ω1

0
h(r)f

(
r, u(r), u′(r)

)
dr

)
, ϕq

(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)}

≤ max
{
C, δ
∥∥u′∥∥}ϕq

(∫ω1

0
h(r)dr

)

≤ H4 = ‖u‖.

(3.23)

Consequently, for any cases, if we take ΩH4 = {u ∈ E : ‖u‖ < H4}, we have ‖Au‖ ≤ ‖u‖ for u ∈
P ∩ ∂ΩH4 . Thus, the condition (ii) of Lemma 2.2 is satisfied.

Consequently, the problem (1.2) has at least one positive pseudosymmetric solution

u ∈ P ∩
(
ΩH4 \ΩH3

)
with H3 ≤ ‖u‖ ≤ H4. (3.24)

Theorem 3.3. Suppose that the following conditions hold:

(i) there exist nonzero finite constants c1 and c2 such that f0 = c1 and f∞ = c2,

(ii) there exist nonzero finite constants c3 and c4 such that f0 = c3 and f∞ = c4.

Then, problem (1.2) has at least one positive pseudosymmetric solution u.

Proof. (i) In view of f0 = c1, there exists an H5 > 0 such that

f
(
t, u, u′

) ≤ ϕp(ε + c11)ϕp
(∣∣u′∣∣)

= ϕp
(
(ε + c11)

∣∣u′∣∣) for
(
t, u, u′

) ∈ [0, 1] × (0,H5] × [−H5,H5],
(3.25)

here, c1 = ϕp(c11 + ε), ε > 0 and satisfies

(ε + c11)ϕq
(∫ω1

0
h(s)ds

)
≤ 1. (3.26)

If u ∈ P with ‖u‖ = H5, by Lemma 2.5, we have

u(t) ≤ ∣∣u′(t)∣∣ ≤ ‖u‖ = H5 for t ∈ [0, 1], (3.27)
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hence,

‖Au‖ = max
{∣∣(Au)′(0)∣∣, ∣∣(Au)′(1)∣∣}

= max

{
ϕq

(∫ω1

0
h(r)f

(
r, u(r), u′(r)

)
dr

)
, ϕq

(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)}

≤ (ε + c11)max
t∈[0,1]

∣∣u′(t)∣∣ϕq
(∫ω1

0
h(s)ds

)
≤ ‖u‖.

(3.28)

If set ΩH5 = {u ∈ E : ‖u‖ < H5}, one has ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂ΩH5 .
According to f∞ = c2, there exists an H ′6 > 0 such that

f
(
t, u, u′

) ≥ max
t∈[0,1]

ϕp(c22 − ε)ϕp
(∣∣u′∣∣) = max

t∈[0,1]
ϕp
(
(c22 − ε)

∣∣u′∣∣), (3.29)

where (t, u, u′) ∈ [0, 1] × [H ′6,∞) × (−∞,H ′6] ∪ [H ′6,∞), c2 = ϕp(c22 − ε), ε > 0 and satisfies

(c22 − ε)ϕq
(∫1

ω1

h(r)dr

)
≥ 1. (3.30)

Set

H6 = max
{

2H5,
ω1

η
H ′6

}
, ΩH∗6 = {u ∈ E : ‖u‖ < 5H6},

ΩH6 =
{
u ∈ ΩH∗6 : u(ω1) < H6

}
.

(3.31)

If u ∈ P with u(ω1) = H6, Lemmas 2.4 and 2.5 reduce to

min
t∈[ω1,1]

∣∣u′(t)∣∣ ≥ min
t∈[ω1,1]

u(t) = u(1) ≥ ηu(ω1)
ω1

≥ H ′6. (3.32)

For u ∈ P ∩ ∂ΩH6 , according to (3.29), (3.30) and (3.32), we get

‖Au‖ = max

{
ϕq

(∫ω1

0
h(r)f

(
r, u(r), u′(r)

)
dr

)
, ϕq

(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)}

≥ ϕq
(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)

≥ (c22 − ε)max
t∈[0,1]

∣∣u′(t)∣∣ϕq
(∫ω1

1
h(r)dr

)
= ‖u‖.

(3.33)

Thus, by (i) of Lemma 2.2, the problem (1.2) has at least one positive pseudosymmetric
solution u in P ∩ (ΩH6 \ΩH5).

(ii) By using the similar way as to Theorem 3.2, we can prove to it.
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4. Triple Solutions

In the previous section, some results on the existence of at least one positive pseudosymmetric
solutions to problem (1.2) are obtained. In this section, we will further discuss the existence
criteria for at least three and arbitrary odd positive pseudosymmetric solutions of problems
(1.2) by using the Avery-Peterson fixed point theorem [21].

Choose a r ∈ (η,ω1), for the notational convenience, we denote

M = ω1ϕq

(∫ω1

0
h(r)dr

)
, N = ηϕq

(∫ω1

η

h(r)dr

)
, W = ϕq

(∫ω1

0
h(r)dr

)
. (4.1)

Define the nonnegative continuous convex functionals θ and γ , nonnegative continu-
ous concave functional α, and nonnegative continuous functional ϕ, respectively, on P by

γ(u) = max
t∈[0,1]

∣∣u′(t)∣∣ = max
{
u′(0), u′(1)

}
= ‖u‖,

ψ(u) = θ(u) = max
t∈[0,ω1]

u(t) = u(ω1) ≤ ‖u‖,

α(u) = min
t∈[η,ω1]

u(t) = u
(
η
)
.

(4.2)

Now, we state and prove the results in this section.

Theorem 4.1. Suppose that there exist constants a∗, b∗, and d∗ such that 0 < a∗ < b∗ < (N/W)d∗.
In addition, f satisfies the following conditions:

(i) f(t, u, u′) ≤ ϕp(d∗/W) for (t, u, u′) ∈ [0, 1] × [0, d∗] × [−d∗, d∗],
(ii) f(t, u, u′) > ϕp(b∗/N) for (t, u, u′) ∈ [η,ω1] × [b∗, d∗] × [−d∗, d∗],
(iii) f(t, u, u′) < ϕp(a∗/M) for (t, u, u′) ∈ [0, ω1] × [0, a∗] × [−d∗, d∗].
Then, problem (1.2) has at least three positive pseudosymmetric solutions u1, u2, and u3 such

that

‖xi‖ ≤ d∗ for i = 1, 2, 3, b∗ < min
t∈[η,ω1]

u1(t), a∗ < max
t∈[0,1]

u2(t),

min
t∈[η,ω1]

u2(t) < b∗ withmax
t∈[0,1]

u3(t) < a∗.
(4.3)

Proof. According to the definition of completely continuous operator A and its properties, we
need to show that all the conditions of Lemma 2.3 hold with respect to A.

It is obvious that

ψ
(
λ′u
)
= λ′u(ω1) = λ′ψ(u) for 0 < λ′ < 1,

α(u) ≤ ψ(u) ∀u ∈ P,
‖u‖ = γ(u) ∀u ∈ P.

(4.4)



Abstract and Applied Analysis 13

Firstly, we show that A : P(γ, d∗) → P(γ, d∗).
For any u ∈ P(γ, d∗), we have

u(t) ≤ max
t∈[0,1]

∣∣u′(t)∣∣ ≤ ‖u‖ = γ(u) ≤ d∗ for t ∈ [0, 1], (4.5)

hence, the assumption (i) implies that

‖Au‖ = max

{
ϕq

(∫ω1

0
h(r)f

(
r, u(r), u′(r)

)
dr

)
, ϕq

(∫1

ω1

h(r)f
(
r, u(r), u′(r)

)
dr

)}

≤ d∗

W
ϕq

(∫ω1

0
h(r)dr

)
= d∗.

(4.6)

From the above analysis, it remains to show that (i)–(iii) of Lemma 2.3 hold.
Secondly, we verify that condition (i) of Lemma 2.3 holds; let u(t) ≡ (tb∗/η) + b∗, t ∈

[0, 1], and it is easy to see that

α(u) = u
(
η
)

= 2b∗ > b∗,

θ(u) = u(ω1) =
ω1b

∗

η
+ b∗ ≤ ω1b

∗

η
+ b∗,

(4.7)

in addition, we have γ(u) = (b∗/η) < d∗, since b∗ < (N/W)d∗. Thus

{
u ∈ P

(
γ, θ, α, b∗,

ω1b
∗

η
+ b∗, d∗

)
: α(x) > b∗

}
/= ∅. (4.8)

For any

u ∈ P
(
γ, θ, α, b∗,

ω1b
∗

η
+ b∗, d∗

)
, (4.9)

one has

b∗ ≤ u(t) ≤ ‖u‖ ≤ d∗ ∀t ∈ [η,ω1
]
, (4.10)

it follows from the assumption (ii) that

α(Au) = (Au)
(
η
)
=
∫η

0
ϕq

(∫ω1

s

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds

≥
∫η

0
ϕq

(∫ω1

η

h(r)f
(
r, u(r), u′(r)

)
dr

)
ds

>
b∗

N
ηϕq

(∫ω1

η

h(r)dr

)
= b∗.

(4.11)
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Thirdly, we prove that the condition (ii) of Lemma 2.3 holds. In fact,

α(Au) = Au
(
η
)
,

θ(Au) = max
t∈[0,ω1]

A(u) = Au(ω1).
(4.12)

For any u ∈ P(γ, α, b∗, d∗) with θ(Au) > (ω1b
∗/η) + b∗, we have

α(Au) = Au
(
η
) ≥ η

ω1
Au(ω1) ≥

η

ω1
θ(Au) = b∗ +

ω1b
∗

η
> b∗. (4.13)

Finally, we check condition (iii) of Lemma 2.3.
Clearly, since ψ(0) = 0 < a∗, we have 0 /∈ R(γ, ψ, a∗, d∗). If

u ∈ R(γ, ψ, a∗, d∗) with ψ (u) = max
t∈[0,ω1]

u(t) = u(ω1) = a∗, (4.14)

then

0 ≤ u(t) ≤ a∗ ∀t ∈ [0, ω1],

max
t∈[0,1]

∣∣u′(t)∣∣ = ‖u‖ = γ(u) ≤ d∗. (4.15)

Hence, by assumption (iii), we have

ψ(Au) = (Au)(ω1)

≤
∫ω1

0
ϕq

(∫ω1

0
h(r)f

(
r, u(r), u′(r)

)
dr

)
ds

<
a∗

M
ω1ϕq

(∫ω1

0
h(r)dr

)
= a∗.

(4.16)

Consequently, from above, all the conditions of Lemma 2.3 are satisfied. The proof is
completed.

Corollary 4.2. If the condition (i) in Theorem 4.1 is replaced by the following condition (i′):

(i′) lim
(u,u′)→ (∞,∞)

(f(t, u, u′)/(ϕp(|u′|))) ≤ ϕp(1/W),

then the conclusion of Theorem 4.1 also holds.

Proof. From Theorem 4.1, we only need to prove that (i′) implies that (i) holds. That is, assume
that (i′) holds, then there exists a number d∗ ≥ (W/N)b∗ such that

f
(
t, u, u′

) ≤ ϕp
(
d∗

W

)
for
(
t, u, u′

) ∈ [0, 1] × [0, d∗] × [−d∗, d∗]. (4.17)
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Suppose on the contrary that for any d∗ ≥ (W/N)b∗, there exists (uc, u′c) ∈ [0, d∗] ×
[−d∗, d∗] such that

f
(
t, uc, u

′
c

)
> ϕp

(
d∗

W

)
for t ∈ [0, 1]. (4.18)

Hence, if we choose c∗n > (W/N)b∗ (n = 1, 2, . . .) with c∗n → ∞, then there exist (un, u′n) ∈
[0, c∗n] × [−c∗n, c∗n] such that

f
(
t, un, u

′
n

)
> ϕp

(
c∗n
W

)
for t ∈ [0, 1], (4.19)

and so

lim
n→∞

f
(
t, un, u

′
n

)
=∞ for t ∈ [0, 1]. (4.20)

Since the condition (i′) holds, there exists τ > 0 satisfying

f
(
t, u, u′

) ≤ ϕp
( |u′|
W

)
for
(
t, u, u′

) ∈ [0, 1] × [τ,∞) × (−∞, τ] ∪ [τ,∞). (4.21)

Hence, we have

un <
∣∣u′n∣∣ ≤ τ. (4.22)

Otherwise, if

∣∣u′n∣∣ > un > τ for t ∈ [0, 1], (4.23)

it follows from (4.21) that

f
(
t, un, u

′
n

) ≤ ϕp
(un
W

)
≤ ϕp

(
c∗n
W

)
for t ∈ [0, 1], (4.24)

which contradicts (4.19).
Let

W = max
(t,u,u′)∈[0,1]×[0,τ]×[−τ,τ]

f
(
t, u, u′

)
, (4.25)

then

f
(
t, un, u

′
n

) ≤W(n = 1, 2, . . .), (4.26)

which also contradicts (4.20).
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Theorem 4.3. Suppose that there exist constants a∗i , b
∗
i , and d

∗
i such that

0 < a∗1 < b
∗
1 <

N

W
d∗2 < a

∗
2 < b

∗
2 <

N

W
d∗3 < · · · < a∗n < b∗n <

N

W
d∗n+1, (4.27)

here, n ∈ N and i = 1, 2, . . . , n. In addition, suppose that f satisfies the following conditions:

(i) f(t, u, u′) ≤ ϕp(d∗i /W) for (t, u, u′) ∈ [0, 1] × [0, d∗i ] × [−d∗i , d∗i ],
(ii) f(t, u, u′) > ϕp(b∗i /N) for (t, u, u′) ∈ [η,ω1] × [b∗i , d∗i ] × [−d∗i , d∗i ],
(iii) f(t, u, u′) < ϕp(a∗i /M) for (t, u, u′) ∈ [0, ω1] × [0, a∗i ] × [−d∗i , d∗i ].

Then, problem (1.2) has at least 2n − 1 positive pseudosymmetric solutions.

Proof. When n = 1, it is immediate from condition (i) that

A : Pa∗1 −→ Pa∗1 ⊂ Pa∗1 . (4.28)

It follows from the Schauder fixed point theorem that A has at least one fixed point

u1 ∈ Pa∗1 , (4.29)

which means that

‖u1‖ ≤ a∗1. (4.30)

When n = 2, it is clear that Theorem 4.1 holds (with a∗ = a∗1, b
∗ = b∗1, and d∗ = d∗2).

Then, there exists at least three positive pseudosymmetric solutions u1, u2, and u3 such that

‖x1‖ ≤ d∗2, ‖x2‖ ≤ d∗2, ‖x3‖ ≤ d∗2, b∗ < min
t∈[η,ω1]

u1(t), a∗1 < max
t∈[0,1]

u2(t),

min
t∈[η,ω1]

u2(t) < b∗1 with max
t∈[0,1]

u3(t) < a∗1.
(4.31)

Following this way, we finish the proof by induction. The proof is complete.

5. Examples

In this section, we present two simple examples to illustrate our results.

Example 5.1. Consider the following BVPs:

(
ϕp
(
u′(t)

))′ + t(t + 1 +
∣∣u′(t)∣∣p−2

)
= 0, t ∈ [0, 1],

u(0) = 0, u(0.2) = u(1).
(5.1)
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Note that

f0 = inf
t∈[0,1]

lim
(u,u′)→ (0,0)

t + 1 + |u′(t)|p−2

|u′(t)|p−2u′(t)
=∞,

f∞ = sup
t∈[0,1]

lim
(u,u′)→ (∞,∞)

t + 1 + |u′(t)|p−2

|u′(t)|p−2u′(t)
= 0.

(5.2)

Hence, Theorem 3.2 implies that the BVPs in (5.1) have at least one pseudosymmetric
solution u.

Example 5.2. Consider the following BVPs with p = 3:

(
ϕp
(
u′(t)

))′ + h(t)f(t, u(t), u′(t)) = 0, t ∈ [0, 1],

u(0) = 0, u (0.2) = u(1),
(5.3)

where h(t) = 2t and

f
(
t, u, u′

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t + 4 +
(
u′

5.5

)2

, u ∈ [0, 0.9],

t + 750u − 671 +
(
u′

5.5

)2

, u ∈ [0.9, 1],

t + 79 +
(
u′

5.5

)2

, u ∈ [1, 5.5],

t + 14.364u +
(
u′

5.5

)2

, u ∈ [5.5,+∞).

(5.4)

Note that η = 0.2, ω1 = 0.6, then a direct calculation shows that

M = ω1ϕq

(∫ω1

0
h(r)dr

)
= 0.6 × 0.6 = 0.36, N ≈ 0.1131, W = 0.6. (5.5)

If we take a′ = 0.9, b′ = 1, d′ = 5.5, then a′ < b′ < (N/W)d′ holds; furthermore,

f
(
t, u, u′

)
< 82 < 84.028 ≈ ϕp

(
d′

W

)
for
(
t, u, u′

) ∈ [0, 0.6] × [0, 5.5] × [−5.5, 5.5],

f
(
t, u, u′

)
> 79 > 78.176 ≈ ϕp

(
b′

N

)
for
(
t, u, u′

) ∈ [0.6, 1] × [1, 5.5] × [−5.5, 5.5],

f
(
t, u, u′

)
< 6.2 < 6.25 = ϕp

(
a′

M

)
for
(
t, u, u′

) ∈ [0, 0.6] × [0, 0.9] × [−5.5, 5.5].

(5.6)
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By Theorem 4.1, we see that the BVPs in (5.3) have at least three positive pseudosymmetric
solutions u1,u2 and u3 such that

‖xi‖ ≤ 5.5 for i = 1, 2, 3, 1 < min
t∈[0.2,0.6]

u1(t), 0.9 < max
t∈[0,1]

u2(t),

min
t∈[0.2,0.6]

u2(t) < 1 with max
t∈[0,1]

u3(t) < 0.9.
(5.7)
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This work is concerned with a system of nonlinear wave equations with nonlinear damping
and source terms acting on both equations. We prove a global nonexistence theorem for certain
solutions with positive initial energy.

1. Introduction

In this paper we study the initial-boundary-value problem

utt − div
(
g
(
|∇u|2

)
∇u
)
+ |ut|m−1ut = f1(u, v), (x, t) ∈ Ω × (0, T),

vtt − div
(
g
(
|∇v|2

)
∇v
)
+ |vt|r−1vt = f2(u, v), (x, t) ∈ Ω × (0, T),

u(x, t) = v(x, t) = 0, x ∈ ∂Ω × (0, T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in R
n with a smooth boundary ∂Ω, m, r ≥ 1, and fi(·, ·) : R

2 →
R (i = 1, 2) are given functions to be specified later. We assume that g is a function which
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satisfies

g ∈ C1, g(s) > 0, g(s) + 2sg ′(s) > 0 (1.2)

for s > 0.
To motivate our work, let us recall some results regarding g ≡ 1. The single-wave

equation of the form

utt −Δu + h(ut) = f(u), x ∈ Ω, t > 0 (1.3)

in Ω × (0,∞) with initial and boundary conditions has been extensively studied, and many
results concerning global existence, blow-up, energy decay have been obtained. In the
absence of the source term, that is, (f = 0), it is well known that the damping term h(ut)
assures global existence and decay of the solution energy for arbitrary initial data (see [1]).
In the absence of the damping term, the source term causes finite time blow-up of solutions
with a large initial data (negative initial energy) (see [2, 3]). The interaction between the
damping term and the source term makes the problem more interesting. This situation was
first considered by Levine [4, 5] in the linear damping case h(ut) = aut and a polynomial
source term of the form f(u) = b|u|p−2u. He showed that solutions with negative initial energy
blow up in finite time. The main tool used in [4, 5] is the “concavity method.” Georgiev and
Todorova in [6] extended Levine’s result to the nonlinear damping case h(ut) = a|ut|m−2ut.
In their work, the authors considered problem (1.3) with f(u) = b|u|p−2u and introduced a
method different from the one known as the concavity method and showed that solutions
with negative energy continue to exist globally in time if m ≥ p ≥ 2 and blow up in finite time
if p > m ≥ 2 and the initial energy is sufficiently negative. This latter result has been pushed
by Messaoudi [7] to the situation where the initial energy E(0) < 0 and has been improved
by the same author in [8] to accommodate certain solutions with positive initial energy.

In the case of g being a given nonlinear function, the following equation:

utt − g(ux)x − uxxt + δ|ut|m−1 ut = μ|u|p−1u, x ∈ (0, 1), t > 0, (1.4)

with initial and boundary conditions has been extensively studied. Equation of type of (1.4)
is a class of nonlinear evolution governing the motion of a viscoelastic solid composed of
the material of the rate type, see [9–12]. It can also be seen as field equation governing the
longitudinal motion of a viscoelastic bar obeying the nonlinear Voigt model, see [13]. In two-
and three-dimensional cases, they describe antiplane shear motions of viscoelastic solids.
We refer to [14–16] for physical origins and derivation of mathematical models of motions
of viscoelastic media and only recall here that, in applications, the unknown u naturally
represents the displacement of the body relative to a fixed reference configuration. When
δ = μ = 0, there have been many impressive works on the global existence and other
properties of solutions of (1.4), see [9, 10, 17, 18]. Especially, in [19] the authors have proved
the global existence and uniqueness of the generalized and classical solution for the initial
boundary value problem (1.4) when we replace δ|ut|m−1ut and μ|u|p−1u by g(ut) and f(u),
respectively. But about the blow-up of the solution for problem, in this paper there has
not been any discussion. Chen et al. [20] considered problem (1.4) and first established an
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ordinary differential inequality, next given the sufficient conditions of blow-up of the solution
of (1.4) by the inequality. In [21], Hao et al. considered the single-wave equation of the
form

utt − div
(
g
(
|∇u|2

)
∇u
)
+ h(ut) = f(u), x ∈ Ω, t > 0 (1.5)

with initial and Dirichlet boundary condition, where g satisfies condition (1.2) and

g(s) ≥ b1 + b2s
q, q ≥ 0. (1.6)

The damping term has the form

h(ut) = d1ut + d2|ut|r−1 ut, r > 1. (1.7)

The source term is

f(u) = a1u + a2|u|p−1u (1.8)

with p ≥ 1 for n = 1, 2 and 1 ≤ n ≤ 2n/(n − 2) for n ≥ 3, a1, a2, b1, b2, d1, d2 are nonnegative
constants, and b1 + b2 > 0. By using the energy compensation method [7, 8, 22], they proved
that under some conditions on the initial value and the growth orders of the nonlinear strain
term, the damping term, and the source term, the solution to problem (1.5) exists globally
and blows up in finite time with negative initial energy, respectively.

Some special cases of system (1.1) arise in quantum field theory which describe the
motion of charged mesons in an electromagnetic field, see [23, 24]. Recently, some of the ideas
in [6, 22] have been extended to study certain systems of wave equations. Agre and Rammaha
[25] studied the system of (1.1) with g ≡ 1 and proved several results concerning local and
global existence of a weak solution and showed that any weak solution with negative initial
energy blows up in finite time, using the same techniques as in [6]. This latter blow-up result
has been improved by Said-Houari [26] by considering a larger class of initial data for which
the initial energy can take positive values. Recently, Wu et al. [27] considered problem (1.1)
with the nonlinear functions f1(u, v) and f2(u, v) satisfying appropriate conditions. They
proved under some restrictions on the parameters and the initial data several results on
global existence of a weak solution. They also showed that any weak solution with initial
energy E(0) < 0 blows up in finite time.

In this paper, we also consider problem (1.1) and improve the global nonexistence
result obtained in [27], for a large class of initial data in which our initial energy can take
positive values. The main tool of the proof is a technique introduced by Payne and Sattinger
[28] and some estimates used firstly by Vitillaro [29], in order to study a class of a single-wave
equation.
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2. Preliminaries and Main Result

First, let us introduce some notation used throughout this paper. We denote by || · ||q the Lq(Ω)
norm for 1 ≤ q ≤ ∞ and by ||∇ · ||2 the Dirichlet norm in H1

0(Ω) which is equivalent to the
H1(Ω) norm. Moreover, we set

(
ϕ, ψ
)
=
∫
Ω
ϕ(x)ψ(x)dx (2.1)

as the usual L2(Ω) inner product.
Concerning the functions f1(u, v) and f2(u, v), we take

f1(u, v) =
[
a|u + v|2(p+1)(u + v) + b|u|pu|v|(p+2)

]
,

f2(u, v) =
[
a|u + v|2(p+1)(u + v) + b|u|(p+2)|v|pv

]
,

(2.2)

where a, b > 0 are constants and p satisfies

⎧⎪⎨
⎪⎩
p > −1, if n = 1, 2,

−1 < p ≤ 4 − n
n − 2

, if n ≥ 3.
(2.3)

One can easily verify that

uf1(u, v) + vf2(u, v) = 2
(
p + 2

)
F(u, v), ∀(u, v) ∈ R

2, (2.4)

where

F(u, v) =
1

2
(
p + 2

)[a|u + v|2(p+2) + 2b|uv|p+2
]
. (2.5)

We have the following result.

Lemma 2.1 (see [30, Lemma 2.1]). There exist two positive constants c0 and c1 such that

c0

2
(
p + 2

)(|u|2(p+2) + |v|2(p+2)
)
≤ F(u, v) ≤ c1

2
(
p + 2

)(|u|2(p+2) + |v|2(p+2)
)
. (2.6)

Throughout this paper, we define g by

g(s) = b1 + b2s
q, q ≥ 0, b1 + b2 > 0, (2.7)

where b1, b2 are nonnegative constants. Obviously, g satisfies conditions (1.2) and (1.6). Set

G(s) =
∫s

0
g(s)ds, s ≥ 0. (2.8)
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In order to state and prove our result, we introduce the following function space:

Z =
{
(u, v) | u, v ∈ L∞

(
[0, T);W1,2(q+1)

0 (Ω) ∩ L2(p+2)(Ω)
)
,

ut ∈ L∞
(
[0, T);L2(Ω)

)
∩ Lm+1(Ω × (0, T)),

vt ∈ L∞
(
[0, T);L2(Ω)

)
∩ Lr+1(Ω × (0, T)), utt, vtt ∈ L∞

(
[0, T), L2(Ω)

)}
.

(2.9)

Define the energy functional E(t) associated with our system

E(t) =
1
2

(
‖ut(t)‖2

2 + ‖vt(t)‖2
2

)
+

1
2

∫
Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx −

∫
Ω
F(u, v)dx. (2.10)

A simple computation gives

dE(t)
dt

= −‖u‖m+1
m+1 − ‖v‖r+1

r+1 ≤ 0. (2.11)

Our main result reads as follows.

Theorem 2.2. Assume that (2.3) holds. Assume further that 2(p + 2) > max{2q + 2, m + 1, r + 1}.
Then any solution of (1.1) with initial data satisfying

(∫
Ω

(
G
(
|∇u0|2

)
+G
(
|∇v0|2

))
dx

)1/2

> α1, E(0) < E2, (2.12)

cannot exist for all time, where the constant α1 and E2 are defined in (3.7).

3. Proof of Theorem 2.2

In this section, we deal with the blow-up of solutions of the system (1.1). Before we prove our
main result, we need the following lemmas.

Lemma 3.1. Let Θ(t) be a solution of the ordinary differential inequality

dΘ(t)
dt

≥ CΘ1+ε(t), t > 0, (3.1)

where ε > 0. If Θ(0) > 0, then the solution ceases to exist for t ≥ Θ−ε(0)C−1ε−1.

Lemma 3.2. Assume that (2.3) holds. Then there exists η > 0 such that for any (u, v) ∈ Z, one has

‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2 ≤ η
(∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

)p+2

. (3.2)
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Proof. By using Minkowski’s inequality, we get

‖u + v‖2
2(p+2) ≤ 2

(
‖u‖2

2(p+2) + ‖v‖2
2(p+2)

)
. (3.3)

Also, Hölder’s and Young’s inequalities give us

‖uv‖p+2 ≤ ‖u‖2(p+2)‖v‖2(p+2) ≤
1
2

(
‖u‖2

2(p+2) + ‖v‖2
2(p+2)

)
. (3.4)

If b1 > 0, then we have

∫
Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx ≥ c

(
‖∇u‖2

2 + ‖∇v‖2
2

)
. (3.5)

If b1 = 0, from b1 + b2 > 0, we have b2 > 0. Since W1,2(q+1)
0 (Ω) ↪→ H1

0(Ω), we have

‖∇u‖2
2 + ‖∇v‖2

2 ≤ c1

(
‖∇u‖2

2(q+1) + ‖∇v‖2
2(q+1)

)
, (3.6)

which implies that (3.5) still holds for b1 = 0. Combining (3.3), (3.4) with (3.5) and the
embedding H1

0(Ω) ↪→ L2(p+2)(Ω), we have (3.2).

In order to prove our result and for the sake of simplicity, we take a = b = 1 and
introduce the following:

B = η1/(2(p+2)), α1 = B−(p+2/(p+1)), E1 =

(
1
2
− 1

2
(
p + 2

)
)
α2

1,

E2 =

(
1

2
(
q + 1

) − 1
2
(
p + 2

)
)
α2

1,

(3.7)

where η is the optimal constant in (3.2). The following lemma will play an essential role in
the proof of our main result, and it is similar to a lemma used first by Vitillaro [29].

Lemma 3.3. Assume that (2.3) holds. Let (u, v) ∈ Z be the solution of the system (1.1). Assume
further that E(0) < E1 and

(∫
Ω

(
G
(
|∇u0|2

)
+G
(
|∇v0|2

))
dx

)1/2

> α1. (3.8)

Then there exists a constant α2 > α1 such that

(∫
Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

)1/2

≥ α2, for t > 0, (3.9)

(
‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

)1/(2(p+2)) ≥ Bα2, for t > 0. (3.10)
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Proof. We first note that, by (2.10), (3.2), and the definition of B, we have

E(t) ≥ 1
2

∫
Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx − 1

2
(
p + 2

)(‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2

)

≥ 1
2

∫
Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx − B2(p+2)

2
(
p + 2

)
(∫

Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

)p+2

=
1
2
α2 − B2(p+2)

2
(
p + 2

)α2(p+2),

(3.11)

where α = (
∫
Ω(G(|∇u|2) + G(|∇v|2))dx)1/2. It is not hard to verify that g is increasing for

0 < α < α1, decreasing for α > α1, g(α) → −∞ as α → +∞, and

g(α1) =
1
2
α2

1 −
B2(p+2)

2
(
p + 2

)α2(p+2)
1 = E1, (3.12)

where α1 is given in (3.7). Since E(0) < E1, there exists α2 > α1 such that g(α2) = E(0).
Set α0 = (

∫
Ω(G(|∇u0|2) +G(|∇v0|2))dx)1/2. Then by (3.11) we get g(α0) ≤ E(0) = g(α2),

which implies that α0 ≥ α2. Now, to establish (3.9), we suppose by contradiction that

(∫
Ω

(
G
(
|∇u(t0)|2

)
+G
(
|∇v(t0)|2

))
dx

)1/2

< α2, (3.13)

for some t0 > 0. By the continuity of
∫
Ω(G(|∇u|2) +G(|∇v|2))dx, we can choose t0 such that

(∫
Ω

(
G
(
|∇u(t0)|2

)
+G
(
|∇v(t0)|2

))
dx

)1/2

> α1. (3.14)

Again, the use of (3.11) leads to

E(t0) ≥ g
((∫

Ω

(
G
(
|∇u(t0)|2

)
+G
(
|∇v(t0)|2

))
dx

)1/2
)
> g(α2) = E(0). (3.15)

This is impossible since E(t) ≤ E(0) for all t ∈ [0, T). Hence (3.9) is established.
To prove (3.10), we make use of (2.10) to get

1
2

∫
Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx ≤ E(0) + 1

2
(
p + 2

)(‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2

)
. (3.16)
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Consequently, (3.9) yields

1
2
(
p + 2

)(‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2

)
≥ 1

2

∫
Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx − E(0)

≥ 1
2
α2

2 − E(0) ≥
1
2
α2

2 − g(α2) =
B2(p+2)

2
(
p + 2

)α2(p+2)
2 .

(3.17)

Therefore, (3.17) and (3.7) yield the desired result.

Proof of Theorem 2.2. We suppose that the solution exists for all time and we reach to a contra-
diction. Set

H(t) = E2 − E(t). (3.18)

By using (2.10) and (3.18), we have

0 < H(0) ≤ H(t) = E2 − 1
2

(
‖ut(t)‖2

2 + ‖vt(t)‖2
2

)
− 1

2

∫
Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

+
1

2
(
p + 2

)(‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2

)
.

(3.19)

From (3.9), we have

E2 − 1
2

(
‖ut(t)‖2

2 + ‖vt(t)‖2
2

)
− 1

2

∫
Ω

(
G
(
|∇u|2

)
+G
(
|∇v|2

))
dx

≤ E2 − 1
2
α2

1 ≤ E1 − 1
2
α2

1 = − 1
2
(
p + 2

)α2
1 < 0, ∀t ≥ 0.

(3.20)

Hence, by the above inequality and (2.6), we have

0 < H(0) ≤ H(t) ≤ 1
2
(
p + 2

)(‖u + v‖2(p+2)
2(p+2) + 2‖uv‖p+2

p+2

)
, (3.21)

≤ c1

2
(
p + 2

)(‖u‖2(p+2)
2(p+2) + ‖v‖

2(p+2)
2(p+2)

)
. (3.22)

We then define

Θ(t) = H1−δ(t) + ε
∫
Ω
(uut + vvt)dx, (3.23)

where ε small enough is to be chosen later and

0 < δ ≤ min

{
p + 1

2
(
p + 2

) , 2
(
p + 2

) − (m + 1)

2m
(
p + 2

) ,
2
(
p + 2

) − (r + 1)

2r
(
p + 2

)
}
. (3.24)
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Our goal is to show that Θ(t) satisfies the differential inequality (3.1) which leads to a blow-
up in finite time. By taking a derivative of (3.23), we get

Θ′(t) = (1 − δ)H−δ(t)H ′(t) + ε
(
‖ut‖2

2 + ‖vt‖2
2

)
− ε
∫
Ω

(
g
(
|∇u|2

)
|∇u|2 + g

(
|∇v|2

)
|∇v|2

)
dx

− ε
∫
Ω

(
|ut|m−1utu + |vt|r−1vtv

)
dx + ε

∫
Ω

(
uf1(u, v) + vf2(u, v)

)
dx

= (1 − δ)H−δ(t)H ′(t) + ε
(
‖ut‖2

2 + ‖vt‖2
2

)
− b1ε

(
‖∇u‖2

2 + ‖∇v‖2
2

)
− εb2‖∇u‖2(q+2)

2(q+2)

− εb2‖∇v‖2(q+2)
2(q+2) − ε

∫
Ω

(
|ut|m−1utu + |vt|r−1vtv

)
dx + ε

(
‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

)
.

(3.25)

From the definition of H(t), it follows that

−b2‖∇u‖2(q+2)
2(q+2) − b2‖∇v‖2(q+2)

2(q+2) = 2
(
q + 1

)
H(t) − 2

(
q + 1

)
E2 +

(
q + 1

)(‖ut‖2
2 + ‖vt‖2

2

)

+
(
q + 1

)
b1

(
‖∇u‖2

2 + ‖∇v‖2
2

)
− 2
(
q + 1

) ∫
Ω
F(u, v)dx,

(3.26)

which together with (3.25) gives

Θ′(t) = (1 − δ)H−δ(t)H ′(t) + ε(q + 2
)(‖ut‖2

2 + ‖vt‖2
2

)
+ b1qε

(
‖∇u‖2

2 + ‖∇v‖2
2

)

− ε
∫
Ω

(
|ut|m−1utu + |vt|r−1vtv

)
dx + ε

(
1 − q + 1

p + 2

)(
‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

)

+ 2
(
q + 1

)
H(t) − 2

(
q + 1

)
E2.

(3.27)

Then, using (3.10), we obtain

Θ′(t) ≥ (1 − δ)H−δ(t)H ′(t) + ε(q + 2
)(‖ut‖2

2 + ‖vt‖2
2

)
+ b1qε

(
‖∇u‖2

2 + ‖∇v‖2
2

)
+ 2
(
q + 1

)
H(t)

+ εc
(
‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

)
− ε
∫
Ω

(
|ut|m−1utu + |vt|r−1vtv

)
dx,

(3.28)

where c = 1−(q+1)/(p+2)−2(q+1)E2(Bα2)
−2(p+2). It is clear that c > 0, since α2 > B

−(p+2)/(p+1).
We now exploit Young’s inequality to estimate the last two terms on the right side of (3.28)

∣∣∣∣
∫
Ω
|ut|m−1utudx

∣∣∣∣ ≤ ηm+1
1

m + 1
‖u‖m+1

m+1 +
mη

−((m+1)/m)
1

m + 1
‖ut‖m+1

m+1,

∣∣∣∣
∫
Ω
|vt|r−1vtvdx

∣∣∣∣ ≤ ηr+1
2

r + 1
‖v‖r+1

r+1 +
rη
−((r+1)/r)
2

r + 1
‖vt‖r+1

r+1,

(3.29)
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where η1, η2 are parameters depending on the time t and specified later. Inserting the last two
estimates into (3.28), we have

Θ′(t) ≥ (1 − δ)H−δ(t)H ′(t) + ε(q + 2
)(‖ut‖2

2 + ‖vt‖2
2

)
+ b1qε

(
‖∇u‖2

2 + ‖∇v‖2
2

)
+ 2
(
q + 1

)
H(t)

+ εc
(
‖u + v‖2(p+2)

2(p+2) + 2‖uv‖p+2
p+2

)
− ε η

m+1
1

m + 1
‖u‖m+1

m+1 − ε
mη

−((m+1)/m)
1

m + 1
‖ut‖m+1

m+1

− ε η
r+1
2

r + 1
‖v‖r+1

r+1 − ε
rη
−((r+1)/r)
2

r + 1
‖vt‖r+1

r+1.

(3.30)

By choosing η1 and η2 such that

η
−(m+1)/m
1 =M1H

−δ(t), η
−(r+1)/r
2 =M2H

−δ(t), (3.31)

where M1 and M2 are constants to be fixed later. Thus, by using (2.6) and (3.31), inequality
(3.31) then takes the form

Θ′(t) ≥ ((1 − δ) −Mε)H−δ(t)H ′(t) + ε
(
q + 2

)(‖ut‖2
2 + ‖vt‖2

2

)
+ b1qε

(
‖∇u‖2

2 + ‖∇v‖2
2

)

+ 2
(
q + 1

)
H(t) + εc2

(
‖u‖2(p+2)

2(p+2) + 2‖v‖2(p+2)
2(p+2)

)
− εM−m

1 Hδm(t)‖u‖m+1
m+1

− εM−r
2 Hδr(t)‖v‖r+1

r+1,

(3.32)

where M = m/(m + 1)M1 + r/(r + 1)M2 and c2 is a positive constant.
Since 2(p + 2) > max{m + 1, r + 1}, taking into account (2.6) and (3.21), then we have

Hδm(t)‖u‖m+1
m+1 ≤ c3

(
‖u‖2δm(p+2)+(m+1)

2(p+2) + ‖v‖2δm(p+2)
2(p+2) ‖u‖m+1

m+1

)
,

Hδr(t)‖v‖r+1
r+1 ≤ c4

(
‖v‖2δr(p+2)+(r+1)

2(p+2) + ‖u‖2δr(p+2)
2(p+2) ‖v‖r+1

r+1

)
,

(3.33)

for some positive constants c3 and c4. By using (3.24) and the algebraic inequality

zν ≤ z + 1 ≤
(

1 +
1
a

)
(z + a), ∀z ≥ 0, 0 < ν ≤ 1, a ≥ 0, (3.34)

we have

‖u‖2δm(p+2)+(m+1)
2(p+2) ≤ d

(
‖u‖2(p+2)

2(p+2) +H(0)
)
≤ d
(
‖u‖2(p+2)

2(p+2) +H(t)
)
, ∀t ≥ 0, (3.35)
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where d = 1 + 1/H(0). Similarly,

‖v‖2δr(p+2)+(r+1)
2(p+2) ≤ d

(
‖v‖2(p+2)

2(p+2) +H(t)
)
, ∀t ≥ 0. (3.36)

Also, since

(X + Y )s ≤ C(Xs + Ys), X, Y ≥ 0, s > 0, (3.37)

by using (3.24) and (3.34), we conclude that

‖v‖2δm(p+2)
2(p+2) ‖u‖m+1

m+1 ≤ C
(
‖v‖2(p+2)

2(p+2) + ‖u‖
2(p+2)
(m+1)

)
≤ C
(
‖v‖2(p+2)

2(p+2) + ‖u‖
2(p+2)
2(p+2)

)
,

‖u‖2δr(p+2)
2(p+2) ‖v‖r+1

r+1 ≤ C
(
‖u‖2(p+2)

2(p+2) + ‖v‖
2(p+2)
(r+1)

)
≤ C
(
‖u‖2(p+2)

2(p+2) + ‖v‖
2(p+2)
2(p+2)

)
,

(3.38)

where C is a generic positive constant. Taking into account (3.33)–(3.38), estimate (3.32) takes
the form

Θ′(t) ≥ ((1 − δ) −Mε)H−δ(t)H ′(t) + ε
(
q + 2

)(‖ut‖2
2 + ‖vt‖2

2

)

+ ε
(
2
(
q + 1

) − C1M
−m
1 − C1M

−r
2

)
H(t)

+ ε
(
c2 − C2M

−m
1 − C2M

−r
2

)(‖u‖2(p+2)
2(p+2) + ‖v‖

2(p+2)
2(p+2)

)
,

(3.39)

where C1 = max{c3d + C, c4d + C}, C2 = max{c3d, c4d}. At this point, and for large values of
M1 and M2, we can find positive constants κ1 and κ2 such that (3.39) becomes

Θ′(t) ≥ ((1 − δ) −Mε)H−δ(t)H ′(t) + ε
(
q + 2

)(‖ut‖2
2 + ‖vt‖2

2

)

+ εκ1H(t) + εκ2

(
‖u‖2(p+2)

2(p+2) + ‖v‖
2(p+2)

2(p+2)

)
.

(3.40)

Once M1 and M2 are fixed, we pick ε small enough so that (1 − δ) −Mε ≥ 0 and

Θ(0) = H1−δ(0) + ε
∫
Ω
(u0u1 + v0v1)dx > 0. (3.41)

Since H ′(t) ≥ 0, there exists Λ > 0 such that (3.40) becomes

Θ′(t) ≥ εΛ
(
H(t) + ‖ut‖2

2 + ‖vt‖2
2 + ‖u‖2(p+2)

2(p+2) + ‖v‖
2(p+2)
2(p+2)

)
. (3.42)

Then, we have

Θ(t) ≥ Θ(0), ∀t ≥ 0. (3.43)
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Next, we have by Hölder’s and Young’s inequalities

(∫
Ω
uutdx +

∫
Ω
vvtdx

)1/(1−δ)
≤ C
(
‖u‖τ/(1−δ)

2(p+2) + ‖ut‖s/(1−δ)2 + ‖v‖τ/(1−δ)
2(p+2) + ‖vt‖s/(1−δ)2

)
,

(3.44)

for 1/τ + 1/s = 1. We take s = 2(1 − δ), to get τ/(1 − δ) = 2/(1 − 2δ). Here and in the sequel,
C denotes a positive constant which may change from line to line. By using (3.24) and (3.34),
we have

‖u‖2/(1−2δ)
2(p+2) ≤ d

(
‖u‖2(p+2)

2(p+2) +H(t)
)
, ‖v‖2/(1−2δ)

2(p+2) ≤ d
(
‖v‖2(p+2)

2(p+2) +H(t)
)
, ∀t ≥ 0. (3.45)

Therefore, (3.44) becomes

(∫
Ω
uutdx +

∫
Ω
vvtdx

)1/(1−δ)
≤ C
(
‖u‖2(p+2)

2(p+2) + ‖v‖
2(p+2)
2(p+2) + ‖ut‖2

2 + ‖vt‖2
2

)
. (3.46)

Note that

Θ1/(1−δ)(t) =
(
H1−δ(t) + ε

∫
Ω
(uut + vvt)dx

)1/(1−δ)

≤ C
(
H(t) +

∣∣∣∣
∫
Ω
uutdx +

∫
Ω
vvtdx

∣∣∣∣
1/(1−δ))

≤ C
(
H(t) + ‖u‖2(p+2)

2(p+2) + ‖v‖
2(p+2)

2(p+2) + ‖ut‖
2
2 + ‖vt‖2

2

)
.

(3.47)

Combining (3.42) with (3.47), we have

Θ(t) ≥ CΘ1/(1−δ)(t), ∀t ≥ 0. (3.48)

A simple application of Lemma 3.1 gives the desired result.
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The issue of H∞ estimation for a class of Lipschitz nonlinear discrete-time systems with time delay
and disturbance input is addressed. First, through integrating the H∞ filtering performance index
with the Lipschitz conditions of the nonlinearity, the design of robust estimator is formulated
as a positive minimum problem of indefinite quadratic form. Then, by introducing the Krein
space model and applying innovation analysis approach, the minimum of the indefinite quadratic
form is obtained in terms of innovation sequence. Finally, through guaranteeing the positivity
of the minimum, a sufficient condition for the existence of the H∞ estimator is proposed and the
estimator is derived in terms of Riccati-like difference equations. The proposed algorithm is proved
to be effective by a numerical example.

1. Introduction

In control field, nonlinear estimation is considered to be an important task which is also
of great challenge, and it has been a very active area of research for decades [1–7]. Many
kinds of methods on estimator design have been proposed for different types of nonlinear
dynamical systems. Generally speaking, there are three approaches widely adopted for
nonlinear estimation. In the first one, by using an extended (nonexact) linearization of
the nonlinear systems, the estimator is designed by employing classical linear observer
techniques [1]. The second approach, based on a nonlinear state coordinate transformation
which renders the dynamics driven by nonlinear output injection and the output linear on the
new coordinates, uses the quasilinear approaches to design the nonlinear estimator [2–4]. In
the last one, methods are developed to design nonlinear estimators for systems which consist
of an observable linear part and a locally or globally Lipschitz nonlinear part [5–7]. In this
paper, the problem of H∞ estimator design is investigated for a class of Lipschitz nonlinear
discrete-time systems with time delay and disturbance input.
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In practice, most nonlinearities can be regarded as Lipschitz, at least locally when they
are studied in a given neighborhood [6]. For example, trigonometric nonlinearities occurring
in many robotic problems, non-linear softening spring models frequently used in mechanical
systems, nonlinearities which are square or cubic in nature, and so forth. Thus, in recent years,
increasing attention has been paid to estimator design for Lipschitz nonlinear systems [8–19].
For the purpose of designing this class of nonlinear estimator, a number of approaches have
been developed, such as sliding mode observers [8, 9], H∞ optimization techniques [10–
13], adaptive observers [14, 15], high-gain observers [16], loop transfer recovery observers
[17], proportional integral observers [18], and integral quadratic constraints approach [19].
All of the above results are obtained in the assumption that the Lipschitz nonlinear systems
are delay free. However, time delay is an inherent characteristic of many physical systems,
and it can result in instability and poor performances if it is ignored. The estimator design
for time-delay Lipschitz nonlinear systems has become a substantial need. Unfortunately,
compared with estimator design for delay-free Lipschitz nonlinear systems, less research has
been carried out on the time-delay case. In [20], the linear matrix inequality-(LMI-) based full-
order and reduced-order robust H∞ observers are proposed for a class of Lipschitz nonlinear
discrete-time systems with time delay. In [21], by using Lyapunov stability theory and LMI
techniques, a delay-dependent approach to theH∞ and L2−L∞ filtering is proposed for a class
of uncertain Lipschitz nonlinear time-delay systems. In [22], by guaranteeing the asymptotic
stability of the error dynamics, the robust observer is presented for a class of uncertain
discrete-time Lipschitz nonlinear state delayed systems; In [23], based on the sliding mode
techniques, a discontinuous observer is designed for a class of Lipschitz nonlinear systems
with uncertainty. In [24], an LMI-based convex optimization approach to observer design is
developed for both constant-delay and time-varying delay Lipschitz nonlinear systems.

In this paper, the H∞ estimation problem is studied for a class of Lipschitz nonlinear
discrete time-delay systems with disturbance input. Inspired by the recent study on H∞ fault
detection for linear discrete time-delay systems in [25], a recursive Kalman-like algorithm
in an indefinite metric space, named the Krein space [26], will be developed to the design
of H∞ estimator for time-delay Lipschitz nonlinear systems. Unlike [20], the delay-free
nonlinearities and the delayed nonlinearities in the presented systems are decoupling. For
the case presented in [20], the H∞ observer design problem, utilizing the technical line of this
paper, can be solved by transforming it into a delay-free system through state augmentation.
Indeed, the state augmentation results in a higher system dimension and, thus, a much
more expensive computational cost. Therefore, this paper based on the presented time-
delay Lipschitz nonlinear systems, focuses on the robust estimator design without state
augmentation by employing innovation analysis approach in the Krein space. The major
contribution of this paper can be summarized as follows: (i) it extends the Krein space linear
estimation methodology [26] to the state estimation of the time-delay Lipschitz nonlinear
systems and (ii) it develops a recursive Kalman-like robust estimator for time-delay Lipschitz
nonlinear systems without state augmentation.

The remainder of this paper is arranged as follows. In Section 2, the interest system, the
Lipschitz conditions, and the H∞ estimation problem are introduced. In Section 3, a partially
equivalent Krein space problem is constructed, the H∞ estimator is obtained by computed
Riccati-like difference equations, and sufficient existence condition is derived in terms of
matrix inequalities. An example is given to show the effect of the proposed algorithm in
Section 4. Finally, some concluding remarks are made in Section 5.

In the sequel, the following notation will be used: elements in the Krein space will
be denoted by boldface letters, and elements in the Euclidean space of complex numbers
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will be denoted by normal letters; R
n denotes the real n-dimensional Euclidean space; ‖ · ‖

denotes the Euclidean norm; θ(k) ∈ l2[0,N] means
∑N

k=0(θ
T (k)θ(k)) < ∞; the superscripts

“−1” and “T” stand for the inverse and transpose of a matrix, resp.; I is the identity matrix
with appropriate dimensions; For a real matrix, P > 0 (P < 0, resp.) means that P is
symmetric and positive (negative, resp.) definite; 〈∗, ∗〉 denotes the inner product in the Krein
space; diag{· · · } denotes a block-diagonal matrix; L{· · ·} denotes the linear space spanned by
sequence {· · ·}.

2. System Model and Problem Formulation

Consider a class of nonlinear systems described by the following equations:

x(k + 1) = Ax(k) +Adx(kd) + f(k, Fx(k), u(k))

+ h(k,Hx(kd), u(k)) + Bw(k),

y(k) = Cx(k) + v(k),

z(k) = Lx(k),

(2.1)

where kd = k − d, and the positive integer d denotes the known state delay; x(k) ∈ R
n is the

state, u(k) ∈ R
p is the measurable information, w(k) ∈ R

q and v(k) ∈ R
m are the disturbance

input belonging to l2[0,N], y(k) ∈ R
m is the measurement output, and z(k) ∈ R

r is the signal
to be estimated; the initial condition x0(s) (s = −d,−d + 1, . . . , 0) is unknown; the matrices
A ∈ R

n×n, Ad ∈ R
n×n, B ∈ R

n×q, C ∈ R
m×n and L ∈ R

r×n, are real and known constant matrices.
In addition, f(k, Fx(k), u(k)) and h(k,Hx(kd), u(k)) are assumed to satisfy the

following Lipschitz conditions:

‖f(k, Fx(k), u(k)) − f(k, Fx̆(k), u(k))‖ ≤ α‖F(x(k) − x̆(k))‖,
‖h(k,Hx(kd), u(k)) − h(k,Hx̆(kd), u(k))‖ ≤ β‖H(x(kd) − x̆(kd))‖,

(2.2)

for all k ∈ {0, 1, . . . ,N}, u(k) ∈ R
p and x(k), x̆(k), x(kd), x̆(kd) ∈ R

n. where α > 0 and β > 0
are known Lipschitz constants, and F, H are real matrix with appropriate dimension.

TheH∞ estimation problem under investigation is stated as follows. Given the desired
noise attenuation level γ > 0 and the observation {y(j)}kj=0, find an estimate z̆(k | k) of the
signal z(k), if it exists, such that the following inequality is satisfied:

sup
(x0,w,v)/= 0

∑N
k=0 ‖z̆(k | k) − z(k)‖2

∑0
k=−d ‖x0(k)‖2

Π−1(k) +
∑N

k=0 ‖w(k)‖2 +
∑N

k=0 ‖v(k)‖2
< γ2, (2.3)

where Π(k) (k = −d,−d + 1, . . . , 0) is a given positive definite matrix function which reflects
the relative uncertainty of the initial state x0(k) (k = −d,−d + 1, . . . , 0) to the input and
measurement noises.

Remark 2.1. For the sake of simplicity, the initial state estimate x̂0(k) (k = −d,−d + 1, . . . , 0) is
assumed to be zero in inequality (2.3).



4 Abstract and Applied Analysis

Remark 2.2. Although the system given in [20] is different from the one given in this paper,
the problem mentioned in [20] can also be solved by using the presented approach. The
resolvent first converts the system given in [20] into a delay-free one by using the classical
system augmentation approach, and then designs estimator by employing the similar but
easier technical line with our paper.

3. Main Results

In this section, the Krein space-based approach is proposed to design the H∞ estimator
for Lipschitz nonlinear systems. To begin with, the H∞ estimation problem (2.3) and the
Lipschitz conditions (2.2) are combined in an indefinite quadratic form, and the nonlinearities
are assumed to be obtained by {y(i)}ki=0 at the time step k. Then, an equivalent Krein
space problem is constructed by introducing an imaginary Krein space stochastic system.
Finally, based on projection formula and innovation analysis approach in the Krein space, the
recursive estimator is derived.

3.1. Construct a Partially Equivalent Krein Space Problem

It is proved in this subsection that the H∞ estimation problem can be reduced to a positive
minimum problem of indefinite quadratic form, and the minimum can be obtained by using
the Krein space-based approach.

Since the denominator of the left side of (2.3) is positive, the inequality (2.3) is
equivalent to

0∑
k=−d
‖x0(k)‖2

Π−1(k) +
N∑
k=0

‖w(k)‖2 +
N∑
k=0

‖v(k)‖2 − γ−2
N∑
k=0

‖vz(k)‖2

︸ ︷︷ ︸
�J∗N

> 0, ∀(x0, w, v)/= 0,
(3.1)

where vz(k) = z̆(k | k) − z(k).
Moreover, we denote

zf(k) = Fx(k), z̆f(k | k) = Fx̆(k | k),
zh(kd) = Hx(kd), z̆h(kd | k) = Hx̆(kd | k),

(3.2)

where z̆f(k | k) and z̆h(kd | k) denote the optimal estimation of zf(k) and zh(kd) based on
the observation {y(j)}kj=0, respectively. And, let

wf(k) = f
(
k, zf(k), u(k)

) − f(k, z̆f(k | k), u(k)),
wh(kd) = h(k, zh(kd), u(k)) − h(k, z̆h(kd | k), u(k)),

vzf (k) = z̆f(k | k) − zf(k),

vzh(kd) = z̆h(kd | k) − zh(kd).

(3.3)
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From the Lipschitz conditions (2.2), we derive that

J∗N +
N∑
k=0

∥∥wf(k)
∥∥2 +

N∑
k=0

‖wh(kd)‖2 − α2
N∑
k=0

∥∥∥vzf (k)
∥∥∥2 − β2

N∑
k=0

‖vzh(kd)‖2

︸ ︷︷ ︸
�JN

≤ J∗N.
(3.4)

Note that the left side of (3.1) and (3.4), JN , can be recast into the form

JN =
0∑

k=−d
‖x0(k)‖2

Π
−1
(k)

+
N∑
k=0

‖w(k)‖2 +
N∑
k=0

‖v(k)‖2

− γ−2
N∑
k=0

‖vz(k)‖2 − α2
N∑
k=0

∥∥∥vzf (k)
∥∥∥2 − β2

N∑
k=d

‖vzh(kd)‖2,

(3.5)

where

Π(k) =

⎧⎨
⎩
(
Π−1(k) − β2HTH

)−1
, k = −d, . . . ,−1,

Π(k), k = 0,

w(k) =
[
wT (k) wT

f (k) wT
h (kd)

]T
.

(3.6)

Since JN ≤ J∗N , it is natural to see that if JN > 0 then the H∞ estimation problem (2.3)
is satisfied, that is, J∗N > 0. Hence, the H∞ estimation problem (2.3) can be converted into
finding the estimate sequence {{z̆(k | k)}Nk=0; {z̆f (k | k)}Nk=0; {z̆h(kd | k)}Nk=d} such that JN
has a minimum with respect to {x0, w} and the minimum of JN is positive. As mentioned in
[25, 26], the formulated H∞ estimation problem can be solved by employing the Krein space
approach.

Introduce the following Krein space stochastic system

x(k + 1) = Ax(k) +Adx(kd) + f
(
k, z̆f(k | k),u(k)

)
+ h(k, z̆h(kd | k),u(k)) + Bw(k),

y(k) = Cx(k) + v(k),

z̆f(k | k) = Fx(k) + vzf (k),

z̆(k | k) = Lx(k) + vz(k),

z̆h(kd | k) = Hx(kd) + vzh(kd), k ≥ d,

(3.7)

where B = [B I I] ; the initial state x0(s) (s = −d,−d + 1, . . . , 0) and w(k), v(k), vzf (k), vz(k)
and vzh(k) are mutually uncorrelated white noises with zero means and known covariance
matrices Π(s), Qw(k) = I, Qv(k) = I, Qvzf (k) = −α−2I, Qvz(k) = −γ2I, and Qvzh(k) = −β−2I;
z̆f(k | k), z̆(k | k) and z̆h(kd | k) are regarded as the imaginary measurement at time k for the
linear combination Fx(k), Lx(k), and Hx(kd), respectively.
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Let

yz(k) =

⎧⎪⎨
⎪⎩

[
yT (k) z̆Tm(k | k)

]T
, 0 ≤ k < d,

[
yT (k) z̆Tm(k | k) z̆T

h(kd | k)
]T
, k ≥ d,

vz,a(k) =

⎧⎪⎨
⎪⎩

[
vT (k) vTzf (k) vTz (k)

]T
, 0 ≤ k < d,

[
vT (k) vTzf (k) vTz (k) vTzh(kd)

]T
, k ≥ d,

z̆m(k | k) =
[
z̆Tf (k | k) z̆T (k | k)

]T
.

(3.8)

Definition 3.1. The estimator ŷ(i | i − 1) denotes the optimal estimation of y(i) given the
observation L{{yz(j)}i−1

j=0}; the estimator ẑm(i | i) denotes the optimal estimation of z̆m(i |
i) given the observation L{{yz(j)}i−1

j=0;y(i)}; the estimator ẑh(id | i) denotes the optimal

estimation of z̆h(id | i) given the observation L{{yz(j)}i−1
j=0;y(i), z̆m(i | i)}.

Furthermore, introduce the following stochastic vectors and the corresponding
covariance matrices

ỹ(i | i − 1) = y(i) − ŷ(ii − 1), Rỹ(ii − 1) = 〈ỹ(ii − 1), ỹ(ii − 1)〉,
z̃m(i | i) = z̆m(ii) − ẑm(ii), Rz̃m(ii) = 〈z̃m(ii), z̃m(ii)〉,
z̃h(id | i) = z̆h(idi) − ẑh(idi), Rz̃h(idi) = 〈z̃h(idi), z̃h(idi)〉.

(3.9)

And, denote

ỹz(i) =

⎧⎪⎨
⎪⎩

[
ỹT (i | i − 1) z̃Tm(i | i)

]T
, 0 ≤ i < d,

[
ỹT (i | i − 1) z̃Tm(i | i) z̃T

h
(id | i)

]T
, i ≥ d,

Rỹz(i) = 〈ỹz(i), ỹz(i)〉.

(3.10)

For calculating the minimum of JN , we present the following Lemma 3.2.

Lemma 3.2. {{ỹz(i)}ki=0} is the innovation sequence which spans the same linear space as that of
L{{yz(i)}ki=0}.

Proof. From Definition 3.1 and (3.9), ỹ(i | i − 1), z̃m(i | i) and z̃h(id | i) are the linear
combination of the observation sequence {{yz(j)}i−1

j=0;y(i)}, {{yz(j)}i−1
j=0; y(i), z̆m(i | i)}, and

{{yz(j)}ij=0}, respectively. Conversely, y(i), z̆m(i | i) and z̆h(id | i) can be given by the linear

combination of {{ỹz(j)}i−1
j=0; ỹ(i | i − 1)}, {{ỹz(j)}i−1

j=0; ỹ(i | i − 1), z̃m(i | i)} and {{ỹz(j)}ij=0},
respectively. Hence,

L
{
{ỹz(i)}ki=0

}
= L
{
{yz(i)}ki=0

}
. (3.11)
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It is also shown by (3.9) that ỹ(i | i − 1), z̃m(i | i) and z̃h(id | i) satisfy

ỹ(i | i − 1) ⊥ L
{{

yz
(
j
)}i−1

j=0

}
,

z̃m(i | i) ⊥ L
{{

yz
(
j
)}i−1

j=0;y(i)
}
,

z̃h(id | i) ⊥ L
{{

yz
(
j
)}i−1

j=0;y(i), z̃m(i | i)
}
.

(3.12)

Consequently,

ỹ(i | i − 1) ⊥ L
{{

ỹz
(
j
)}i−1

j=0

}
,

z̃m(i | i) ⊥ L
{{

ỹz
(
j
)}i−1

j=0; ỹ(i | i − 1)
}
,

z̃h(id | i) ⊥ L
{{

ỹz
(
j
)}i−1

j=0; ỹ(i | i − 1), z̃m(i | i)
}
.

(3.13)

This completes the proof.

Now, an existence condition and a solution to the minimum of JN are derived as
follows.

Theorem 3.3. Consider system (2.1), given a scalar γ > 0 and the positive definite matrixΠ(k) (k =
−d,−d + 1, . . . , 0), then JN has the minimum if only if

Rỹ(k | k − 1) > 0, 0 ≤ k ≤N,

Rz̃m(k | k) < 0, 0 ≤ k ≤N,

Rz̃h(kd | k) < 0, d ≤ k ≤N.

(3.14)

In this case the minimum value of JN is given by

min JN =
N∑
k=0

ỹT (k | k − 1)R−1
ỹ (k | k − 1)ỹ(k | k − 1) +

N∑
k=0

z̃Tm(k | k)R−1
z̃m
(k | k)z̃m(k | k)

+
N∑
k=d

z̃Th(kd | k)R−1
z̃h
(kd | k)z̃h(kd | k),

(3.15)

where

ỹ(k | k − 1) = y(k) − ŷ(k | k − 1),

z̃m(k | k) = z̆m(k | k) − ẑm(k | k),
z̃h(kd | k) = z̆h(kd | k) − ẑh(kd | k),

z̆m(k | k) =
[
z̆Tf (k | k) z̆T (k | k)

]T
,

(3.16)
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ŷ(k | k − 1) is obtained from the Krein space projection of y(k) onto L{{yz(j)}k−1
j=0 }, ẑm(k | k) is

obtained from the Krein space projection of z̆m(k | k) onto L{{yz(j)}k−1
j=0 ; y(k)}, and ẑh(kd | k) is

obtained from the Krein space projection of z̆h(kd | k) onto L{{yz(j)}k−1
j=0 ; y(k), z̆m(k | k)}.

Proof. Based on the definition (3.2) and (3.3), the state equation in system (2.1) can be
rewritten as

x(k + 1) = Ax(k) +Adx(kd) + f
(
k, z̆f(k | k), u(k)

)

+ h(k, z̆h(kd | k), u(k)) + Bw(k).
(3.17)

In this case, it is assumed that f(k, z̆f(k | k), u(k)) and h(k, z̆h(kd | k), u(k)) are known at
time k. Then, we define

yz(k) =

⎧⎪⎨
⎪⎩

[
yT (k) z̆T

f (k | k) z̆T (k | k)
]T
, 0 ≤ k < d,

[
yT (k) z̆T

f (k | k) z̆T (k | k) z̆T
h(kd | k)

]T
, k ≥ d.

(3.18)

By introducing an augmented state

xa(k) =
[
xT (k) xT (k − 1) · · · xT (k − d)]T , (3.19)

we obtain an augmented state-space model

xa(k + 1) = Aaxa(k) + Bu,au(k) + Baw(k),

yz(k) = Cz,a(k)xa(k) + vz,a(k),
(3.20)

where

Aa =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0 · · · 0 Ad

I 0 · · · 0 0

0 I · · · 0 0

...
...

. . .
...

...

0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bu,a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I I

0 0

0 0

...
...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ba =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Cz,a(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
C 0 · · · 0

F 0 · · · 0

L 0 · · · 0

⎤
⎥⎥⎥⎦, 0 ≤ k < d,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C 0 · · · 0

F 0 · · · 0

L 0 · · · 0

0 · · · 0 H

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, k ≥ d,

vz,a(k) =

⎧⎪⎨
⎪⎩

[
vT (k) vTzf (k) vTz (k)

]T
, 0 ≤ k < d,

[
vT (k) vTzf (k) vTz (k) vTzh(kd)

]T
, k ≥ d,

u(k) =
[
fT
(
k, z̆f(k | k), u(k)

)
hT (k, z̆h(kd | k), u(k))

]T
.

(3.21)

Additionally, we can rewrite JN as

JN =

⎡
⎢⎢⎣
xa(0)

wN

vz,aN

⎤
⎥⎥⎦
T⎡
⎢⎢⎣
Pa(0) 0 0

0 I 0

0 0 Qvz,aN

⎤
⎥⎥⎦
−1⎡
⎢⎢⎣
xa(0)

wN

vz,aN

⎤
⎥⎥⎦, (3.22)

where

Pa(0) = diag
{
Π(0),Π(−1), . . . ,Π(−d)

}
,

wN =
[
wT (0) wT (1) · · · wT (N)

]T
,

vz,aN =
[
vTz,a(0) vTz,a(1) · · · vTz,a(N)

]T
,

Qvz,aN = diag
{
Qvz,a(0), Qvz,a(1), . . . , Qvz,a(N)

}
,

Qvz,a(k) =

⎧⎨
⎩

diag
{
I,−γ2,−α−2}, 0 ≤ k < d,

diag
{
I,−γ2,−α−2,−β−2}, k ≥ d.

(3.23)

Define the following state transition matrix

Φ(k + 1, m) = AaΦ(k,m),

Φ(m,m) = I,
(3.24)
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and let

yzN =
[
yTz (0) yTz (1) · · · yTz (N)

] T
,

uN =
[
uT (0) uT (1) · · · uT (N)

]T
.

(3.25)

Using (3.20) and (3.24), we have

yzN = Ψ0Nxa(0) + ΨuNuN + ΨwNwN + vz,aN, (3.26)

where

Ψ0N =

⎡
⎢⎢⎢⎢⎢⎢⎣

Cz,a(0)Φ(0, 0)

Cz,a(1)Φ(1, 0)

...

Cz,a(N)Φ(N, 0)

⎤
⎥⎥⎥⎥⎥⎥⎦
, ΨuN =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕ00 ϕ01 · · · ϕ0N

ϕ10 ϕ11 · · · ϕ1N

...
...

. . .
...

ϕN0 ϕN1 · · · ϕNN

⎤
⎥⎥⎥⎥⎥⎥⎦
,

ϕij =

⎧⎨
⎩
Cz,a(i)Φ

(
i, j + 1

)
Bu,a, i > j,

0, i ≤ j.

(3.27)

The matrix ΨwN is derived by replacing Bu,a in ΨuN with Ba.
Thus, JN can be reexpressed as

JN =

⎡
⎢⎢⎣
xa(0)

wN

yzN

⎤
⎥⎥⎦
T⎧⎪⎪⎨
⎪⎪⎩
ΓN

⎡
⎢⎢⎣
Pa(0) 0 0

0 I 0

0 0 Qvz,aN

⎤
⎥⎥⎦ΓTN

⎫⎪⎪⎬
⎪⎪⎭

−1⎡
⎢⎢⎣
xa(0)

wN

yzN

⎤
⎥⎥⎦, (3.28)

where

yzN = yzN −ΨuNuN,

ΓN =

⎡
⎢⎢⎣

I 0 0

0 I 0

Ψ0N ΨwN I

⎤
⎥⎥⎦.

(3.29)

Considering the Krein space stochastic system defined by (3.7) and state transition
matrix (3.24), we have

yzN = Ψ0Nxa(0) + ΨuNuN + ΨwNwN + vz,aN, (3.30)

where matrices Ψ0N , ΨuN , and ΨwN are the same as given in (3.26), vectors yzN and uN are,
respectively, defined by replacing Euclidean space element yz and u in yzN and uN given
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by (3.25) with the Krein space element yz and u, vectors wN and vz,aN are also defined by
replacing Euclidean space element w and vz,a in wN and vz,aN given by (3.23) with the Krein
space element w and vz,a, and vector xa(0) is given by replacing Euclidean space element x
in xa(k) given by (3.19) with the Krein space element x when k = 0.

Using the stochastic characteristic of xa(0), wN and vz,a, we have

JN =

⎡
⎢⎢⎣
xa(0)

wN

yzN

⎤
⎥⎥⎦
T〈⎡⎢⎢⎣

xa(0)

wN

yzN

⎤
⎥⎥⎦,
⎡
⎢⎢⎣
xa(0)

wN

yzN

⎤
⎥⎥⎦
〉−1⎡
⎢⎢⎣
xa(0)

wN

yzN

⎤
⎥⎥⎦, (3.31)

where yzN = yzN −ΨuNuN .
In the light of Theorem 2.4.2 and Lemma 2.4.3 in [26], JN has a minimum over

{xa(0), wN} if and only if RyzN
= 〈yzN,yzN〉 and Qvz,aN = 〈vz,aN,vz,aN〉 have the same inertia.

Moreover, the minimum of JN is given by

min JN = yTzNR
−1
yzN

yzN. (3.32)

On the other hand, applying the Krein space projection formula, we have

yzN = ΘN ỹzN, (3.33)

where

ỹzN =
[
ỹTz (0) ỹTz (1) · · · ỹTz (N)

]T
,

ΘN =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ00 θ01 · · · θ0N

θ10 θ11 · · · θ1N

...
...

. . .
...

θN0 θN1 · · · θNN

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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θij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
yz(i), ỹz

(
j
)〉
R−1
ỹz

(
j
)
, i > j ≥ 0,⎡

⎣ I 0

m1 I

⎤
⎦, d > i = j ≥ 0,

⎡
⎢⎢⎢⎣
I 0 0

m1 I 0

m2 m3 I

⎤
⎥⎥⎥⎦, i = j ≥ d,

0, 0 ≤ i < j,

m1 =
〈
z̆m(i | i), ỹ

(
j | j − 1

)〉
R−1
ỹ

(
j | j − 1

)
,

m2 =
〈
z̆h(id | i), ỹ

(
j | j − 1

)〉
R−1
ỹ

(
j | j − 1

)
,

m3 =
〈
z̆h(id | i), z̃m

(
j | j)〉R−1

z̃m

(
j | j),

yz(i) = yz(i) −
N∑
j=0

ϕiju
(
j
)
,

z̆m(i | i) = z̆m(i | i) −
N∑
j=0

ϕm,iju
(
j
)
,

z̆h(id | i) = z̆h(id | i) −
N∑
j=0

ϕh,iju
(
j
)
,

(3.34)

where ϕm,ij is derived by replacing Cz,a in ϕij with
[
F 0 ··· 0
L 0 ··· 0

]
, ϕh,ij is derived by replacing Cz,a

in ϕij with [0 0 · · · H] Furthermore, it follows from (3.33) that

RyzN
= ΘNRỹzNΘ

T
N, yzN = ΘNỹzN, (3.35)

where

RỹzN = 〈ỹzN, ỹzN〉,

ỹzN =
[
ỹTz (0) ỹTz (1) · · · ỹTz (N)

]T
,

ỹz(i) =

⎧⎪⎨
⎪⎩

[
ỹT (i | i − 1) z̃Tm(i | i)

]T
, 0 ≤ i < d,

[
ỹT (i | i − 1) z̃Tm(i | i) z̃T

h(id | i)
]T
, i ≥ d.

(3.36)
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Since matrix ΘN is nonsingular, it follows from (3.35) thatRyzN
andRỹzN are congruent, which

also means that RyzN
and RỹzN have the same inertia. Note that both RỹzN andQvz,aN are block-

diagonal matrices, and

Rỹz(k) =

⎧⎨
⎩

diag
{
Rỹ(k | k − 1), Rz̃m(k | k)

}
, 0 ≤ k < d,

diag
{
Rỹ(k | k − 1), Rz̃m(k | k), Rz̃h(kd | k)

}
, k ≤ d,

(3.37)

Qvz,a(k) is given by (3.23). It follows that RỹzN and Qvz,aN have the same inertia if and only if
Rỹ(k | k − 1) > 0 (0 ≤ k ≤N), Rz̃m(k | k) < 0 (0 ≤ k ≤N) and Rz̃h(kd | k) < 0 (d ≤ k ≤N).

Therefore, JN subject to system (2.1) with Lipschitz conditions (2.2) has the minimum
if and only if Rỹ(k | k − 1) > 0 (0 ≤ k ≤ N), Rz̃m(k | k) < 0 (0 ≤ k ≤ N) and Rz̃h(kd | k) <
0 (d ≤ k ≤N). Moreover, the minimum value of JN can be rewritten as

min JN = yTzNR
−1
yzN

yzN = ỹTzNR
−1
ỹzN

ỹzN

=
N∑
k=0

ỹT (k | k − 1)R−1
ỹ (k | k − 1)ỹ(k | k − 1) +

N∑
k=0

z̃Tm(k | k)R−1
z̃m
(k | k)z̃m(k | k)

+
N∑
k=d

z̃Th(kd | k)R−1
z̃h
(kd | k)z̃h(kd | k).

(3.38)

The proof is completed.

Remark 3.4. Due to the built innovation sequence {{ỹz(i)}ki=0} in Lemma 3.2, the form of the
minimum on indefinite quadratic form JN is different from the one given in [26–28]. It is
shown from (3.15) that the estimation errors ỹ(k | k−1), z̃m(k | k) and z̃h(kd | k) are mutually
uncorrelated, which will make the design of H∞ estimator much easier than the one given in
[26–28].

3.2. Solution of the H∞ Estimation Problem

In this subsection, the Kalman-like recursive H∞ estimator is presented by using orthogonal
projection in the Krein space.

Denote

y0(i) = y(i),

y1(i) =
[
yT (i) z̆Tm(i | i)

]T
,

y2(i) =
[
yT (i) z̆Tm(i | i) z̆T

h(i | i + d)
]T
.

(3.39)
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Observe from (3.8), we have

L
{
{yz(i)}ji=0

}
= L
{
{y1(i)}ji=0

}
, 0 ≤ j < d,

L
{
{yz(i)}ji=0

}
= L
{
{y2(i)}jdi=0

}
;
{
{y1(i)}ji=jd+1

}
, j ≥ d.

(3.40)

Definition 3.5. Given k ≥ d, the estimator ξ̂(i | j, 2) for 0 ≤ j < kd denotes the optimal estimate
of ξ(i) given the observation L{{y2(s)}js=0}, and the estimator ξ̂(i | j, 1) for kd ≤ j ≤ k denotes
the optimal estimate of ξ(i) given the observation L{{y2(s)}kd−1

s=0 ; {y1(τ)}jτ=kd}. For simplicity,

we use ξ̂(i, 2) to denote ξ̂(i | i − 1, 2), and use ξ̂(i, 1) to denote ξ̂(i | i − 1, 1) throughout the
paper.

Based on the above definition, we introduce the following stochastic sequence and the
corresponding covariance matrices

ỹ2(i, 2) = y2(i) − ŷ2(i, 2), Rỹ2(i, 2) = 〈ỹ2(i, 2), ỹ2(i, 2)〉,
ỹ1(i, 1) = y1(i) − ŷ1(i, 1), Rỹ1(i, 1) = 〈ỹ1(i, 1), ỹ1(i, 1)〉,
ỹ0(i, 0) = y0(i) − ŷ0(i, 1), Rỹ0(i, 0) = 〈ỹ0(i, 0), ỹ0(i, 0)〉.

(3.41)

Similar to the proof of Lemma 2.2.1 in [27], we can obtain that {ỹ2(0, 2), . . . , ỹ2(kd −
1, 2); ỹ1(kd, 1),. . . , ỹ1(k − 1, 1)} is the innovation sequence which is a mutually uncor-
related white noise sequence and spans the same linear space as L{y2(0), . . . ,y2(kd −
1);y1(kl), . . . ,y1(k − 1)} or equivalently L{yz(0), . . . ,yz(k − 1)}.

Applying projection formula in the Krein space, x̂(i, 2) (i = 0, 1, . . . , kd) is computed
recursively as

(3.42)

x̂(i + 1, 2) =
i∑
j=0

〈
x(i + 1), ỹ2

(
j, 2
)〉
R−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)

= Ax̂(i | i, 2) +Adx̂(id | i, 2) + f
(
i, z̆f(i | i),u(i)

)
+ h(i, z̆h(id | i),u(i)), i = 0, 1, . . . , kd − 1,

x̂(τ, 2) = 0, (τ = −d,−d + 1, . . . , 0).

(3.43)

Note that

x̂(i | i, 2) = x̂(i, 2) + P2(i, i)CT
2R
−1
ỹ2
(i, 2)ỹ2(i, 2),

x̂(id | i, 2) = x̂(id, 2) +
i∑

j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)
,

(3.44)
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where

C2 =
[
CT FT LT HT

]T
,

P2
(
i, j
)
=
〈
e(i, 2), e

(
j, 2
)〉
,

e(i, 2) = x(i) − x̂(i, 2),

Rỹ2(i, 2) = C2P2(i, i)CT
2 +Qv2(i),

Qv2(i) = diag
{
I,−α−2I,−γ2I,−β−2I

}
.

(3.45)

Substituting (3.44) into (3.43), we have

x̂(i + 1, 2) = Ax̂(i, 2) +Adx̂(id, 2) + f
(
i, z̆f(i | i),u(i)

)
+ h(i, z̆h(id | i),u(i))

+Ad

i−1∑
j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)
+K2(i)ỹ2(i, 2),

K2(i) = AdP2(id, i)CT
2R
−1
ỹ2
(i, 2) +AP2(i, i)CT

2R
−1
ỹ2
(i, 2).

(3.46)

Moreover, taking into account (3.7) and (3.46), we obtain

e(i + 1, 2) = Ae(i, 2) +Ade(id, 2) + Bw(i) −K2(i)ỹ2(i, 2)

−Ad

i−1∑
j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)
, i = 0, 1, . . . , kd − 1. (3.47)

Consequently,

P2
(
i − j, i + 1

)
=
〈
e
(
i − j, 2), e(i + 1, 2)

〉

= P2
(
i − j, i)AT + PT2

(
id, i − j

)
AT
d − P2

(
i − j, i)CT

2K
T
2 (i)

−
i−1∑
t=i−j

P2
(
i − j, t)CT

2R
−1
ỹ2
(t, 2)C2P

T
2 (id, t)A

T
d, j = 0, 1, . . . , d,

P2(i + 1, i + 1) = 〈e(i + 1, 2), e(i + 1, 2)〉

= AP2(i, i + 1) +AdP2(id, i + 1) + BQw(i)B
T
,

(3.48)
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where Qw(i) = I. Thus, P2(i, i) (i = 0, 1, . . . , kd) can be computed recursively as

P2
(
i − j, i + 1

)
= P2
(
i − j, i)AT + PT2

(
id, i − j

)
AT
d − P2

(
i − j, i)CT

2K
T
2 (i)

−
i−1∑
t=i−j

P2
(
i − j, t)CT

2R
−1
ỹ2
(t, 2)C2P

T
2 (id, t)A

T
d,

P2(i + 1, i + 1) = AP2(i, i + 1) +AdP2(id, i + 1) + BQw(i)B
T
, j = 0, 1, . . . , d.

(3.49)

Similarly, employing the projection formula in the Krein space, the optimal estimator
x̂(i, 1) (i = kd + 1, . . . , k) can be computed by

x̂(i + 1, 1) = Ax̂(i, 1) +Adx̂(id, 2) + f
(
i, z̆f(i | i),u(i)

)
+ h(i, z̆h(id | i),u(i))

+K1(i)ỹ1(i, 1) +Ad

kd−1∑
j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)

+Ad

i−1∑
j=kd

P1
(
id, j
)
CT

1R
−1
ỹ1

(
j, 1
)
ỹ1
(
j, 1
)
,

x̂(kd, 1) = x̂(kd, 2),

(3.50)

where

C1 =
[
CT FT LT

]T
,

P1
(
i, j
)
=

⎧⎨
⎩
〈
e(i, 2), e

(
j, 1
)〉
, i < kd,〈

e(i, 1), e
(
j, 1
)〉
, i ≥ kd,

e(i, 1) = x(i) − x̂(i, 1),

Rỹ1(i, 1) = C1P1(i, i)CT
1 +Qv1(i),

Qv1(i) = diag
{
I,−α−2I,−γ2I

}
,

K1(i) = AP1(i, i)CT
1R
−1
ỹ1
(i, 1) +AdP1(id, i)CT

1R
−1
ỹ1
(i, 1).

(3.51)

Then, from (3.7) and (3.50), we can yield

e(i + 1, 1) = Ae(i, 1) +Ade(id, 2) + Bw(i) −K1(i)ỹ1(i, 1)

−Ad

kd−1∑
j=id

P2
(
id, j
)
CT

2R
−1
ỹ2

(
j, 2
)
ỹ2
(
j, 2
)

−Ad

i−1∑
j=kd

P1
(
id, j
)
CT

1R
−1
ỹ1

(
j, 1
)
ỹ1
(
j, 1
)
.

(3.52)
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Thus, we obtain that

(1) if i − j ≥ kd, we have

P1
(
i − j, i + 1

)
=
〈
e
(
i − j, 1), e(i + 1, 1)

〉

= P1
(
i − j, i)AT + PT1

(
id, i − j

)
AT
d − P1

(
i − j, i)CT

1K
T
1 (i)

−
i−1∑
t=i−j

P1
(
i − j, t)CT

1R
−1
ỹ1
(t, 1)C1P

T
1 (id, t)A

T
d,

(3.53)

(2) if i − j < kd, we have

P1
(
i − j, i + 1

)
=
〈
e
(
i − j, 2), e(i + 1, 1)

〉

= P1
(
i − j, i)AT + PT2

(
id, i − j

)
AT
d − P1

(
i − j, i)CT

1K
T
1 (i)

−
kd−1∑
t=i−j

P2
(
i − j, t)CT

2R
−1
ỹ2
(t, 2)C2P

T
2 (id, t)A

T
d

−
i−1∑
t=kd

P1
(
i − j, t)CT

1R
−1
ỹ1
(t, 1)C1P

T
1 (id, t)A

T
d,

(3.54)

P1(i + 1, i + 1) =
〈
e
(
i − j, 2), e(i + 1, 1)

〉

= AP1(i, i + 1) +AdP1(id, i + 1) + BQw(i)B
T
.

(3.55)

It follows from (3.53), (3.54), and (3.55) that P1(i, i) (i = kd + 1, . . . , k) can be computed by

P1
(
i − j, i + 1

)
= P1
(
i − j, i)AT + PT2

(
id, i − j

)
AT
d − P1

(
i − j, i)CT

1K
T
1 (i)

−
kd−1∑
t=i−j

P2
(
i − j, t)CT

2R
−1
ỹ2
(t, 2)C2P

T
2 (id, t)A

T
d

−
i−1∑
t=kd

P1
(
i − j, t)CT

1R
−1
ỹ1
(t, 1)C1P

T
1 (id, t)A

T
d, i − j < kd,

P1
(
i − j, i + 1

)
= P1
(
i − j, i)AT + PT1

(
id, i − j

)
AT
d − P1

(
i − j, i)CT

1K
T
1 (i)

−
i−1∑
t=i−j

P1
(
i − j, t)CT

1R
−1
ỹ1
(t, 1)C1P

T
1 (id, t)A

T
d, i − j ≥ kd,

P1(i + 1, i + 1) = AP1(i, i + 1) +AdP1(id, i + 1) + BQw(i)B
T
, j = 0, 1, . . . , d.

(3.56)
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Next, according to the above analysis, ẑm(k | k) as the Krein space projections of z̆m(k |
k) onto L{{yz(j)}k−1

j=0 ;y0(k)} can be computed by the following formula

ẑm(k | k) = Cmx̂(k, 1) + CmP1(k, k)CTR−1
ỹ0
(k, 0)ỹ0(k, 0), (3.57)

where

Cm =
[
FT LT

]T
,

Rỹ0(k, 0) = CP1(k, k)CT +Qv(k).
(3.58)

And, ẑh(kd | k) as the Krein space projections of z̆h(kd | k) onto L{{yz(j)}k−1
j=0 ;y1(k)} can be

computed by the following formula

ẑ(kd | k) = Hx̂(kd, 1) +
k∑

j=kd

HP1
(
kd, j
)
CT

1R
−1
ỹ1

(
j, 1
)
ỹ1
(
j, 1
)
. (3.59)

Based on Theorem 3.3 and the above discussion, we propose the following results.

Theorem 3.6. Consider system (2.1) with Lipschitz conditions (2.2), given a scalar γ > 0 and matrix
Π(k) (k = −d, . . . , 0), then theH∞ estimator that achieves (2.3) if

Rỹ(k | k − 1) > 0, 0 ≤ k ≤N,

Rz̃m(k | k) < 0, 0 ≤ k ≤N,

Rz̃h(kd | k) < 0, d ≤ k ≤N,

(3.60)

where

Rỹ(k | k − 1) = Rỹ0(k, 0),

Rz̃m(k | k) = CmP1(k, k)CT
m − CmP1(k, k)CTR−1

ỹ0
(k, 0)CP1(k, k)CT

m +Qvm(k),

Rz̃h(kd | k) = HP1(kd, kd)HT −
k∑

j=kd

HP1
(
kd, j
)
CT

1R
−1
ỹ1

(
j, 1
)
C1P

T
1

(
kd, j
)
HT − β−2I,

Qvm(k) = diag
{
−α−2I,−γ2I

}
,

(3.61)

Rỹ0(k, 0), P1(i, j), and Rỹ1(j, 1) are calculated by (3.58), (3.56), and (3.51), respectively.
Moreover, one possible level-γ H∞ estimator is given by

z̆(k | k) = Eẑm(k | k), (3.62)

where E = [0 I], and ẑm(k | k) is computed by (3.57).
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Proof. In view of Definitions 3.1 and 3.5, it follows from (3.9) and (3.41) that Rỹ(k | k − 1) =
Rỹ0(k, 0). In addition, according to (3.7), (3.9), and (3.57), the covariance matrix Rz̃m(k | k)
can be given by the second equality in (3.61). Similarly, based on (3.7), (3.9), and (3.59), the
covariance matrix Rz̃h(kd | k) can be obtained by the third equality in (3.61). Thus, from
Theorem 3.3, it follows that JN has a minimum if (3.60) holds.

On the other hand, note that the minimum value of JN is given by (3.15) in
Theorem 3.3 and any choice of estimator satisfying min JN > 0 is an acceptable one. Therefore,
Taking into account (3.60), one possible estimator can be obtained by setting z̆m(k | k) =
ẑm(k | k) and z̆h(kd | k) = ẑh(kd | k). This completes the proof.

Remark 3.7. It is shown from (3.57) and (3.59) that ẑm(k | k) and ẑ(kd | k) are, respectively,
the filtering estimate and fixed-lag smoothing of z̆m(k | k) and z̆(kd | k) in the Krein space.
Additionally, it follows from Theorem 3.6 that z̆m(k | k) and z̆h(kd | k) achieving the H∞
estimation problem (2.3) can be, respectively, computed by the right side of (3.57) and (3.59).
Thus, it can be concluded that the proposed results in this paper are related with both the H2

filtering and H2 fixed-lag smoothing in the Krein space.

Remark 3.8. Recently, the robustH∞ observers for Lipschitz nonlinear delay-free systems with
Lipschitz nonlinear additive uncertainties and time-varying parametric uncertainties have
been studied in [10, 11], where the optimization of the admissible Lipschitz constant and
the disturbance attenuation level are discussed simultaneously by using the multiobjective
optimization technique. In addition, the sliding mode observers with H∞ performance have
been designed for Lipschitz nonlinear delay-free systems with faults (matched uncertainties)
and disturbances in [8]. Although the Krein space-based robust H∞ filter has been proposed
for discrete-time uncertain linear systems in [28], it cannot be applied to solving the H∞
estimation problem given in [10] since the considered system contains Lipschitz nonlinearity
and Lipschitz nonlinear additive uncertainty. However, it is meaningful and promising in the
future, by combining the algorithm given in [28] with our proposed method in this paper, to
construct a Krein space-based robust H∞ filter for discrete-time Lipschitz nonlinear systems
with nonlinear additive uncertainties and time-varying parametric uncertainties.

4. A Numerical Example

Consider the system (2.1) with time delay d = 3 and the parameters

A =

[
0.7 0

0 −0.4

]
, Ad =

[−0.5 0

0 0.3

]
, F =

[
0.02 0

0 0.01

]
,

H =

[
0.03 0

0 0.02

]
, B =

[
1.2

0.7

]
, C =

[
1.7 0.9

]
, L =

[
0.5 0.6

]
,

f(k, Fx(k), u(k)) = sin(Fx(k)), h(k,Hx(kd), u(k)) = cos(Hx(kd)).

(4.1)

Then we have α = β = 1. Set x(k) = [−0.2k 0.1k]T (k = −3,−2,−1, 0), and
Π(k) = I (k = −3,−2,−1, 0). Both the system noise w(k) and the measurement noise v(k)
are supposed to be band-limited white noise with power 0.01. By applying Theorem 3.1 in
[20], we obtain the minimum disturbance attenuation level γmin = 1.6164 and the observer
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Figure 1: Signal z(k) (solid), its estimate using our algorithm (star), and its estimate using algorithm in
[20] (dashed).
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Figure 2: Estimation error of our algorithm (solid) and estimation error of algorithm in [20] (dashed).

parameter L = [−0.3243 0.0945]T of (5) in [20]. In this numerical example, we compare our
algorithm with the one given in [20] in case of γ = 1.6164. Figure 1 shows the true value
of signal z(k), the estimate using our algorithm, and the estimate using the algorithm given
in [20]. Figure 2 shows the estimation error of our approach and the estimation error of the
approach in [20]. It is shown in Figures 1 and 2 that the proposed algorithm is better than the
one given in [20]. Figure 3 shows the ratios between the energy of the estimation error and
input noises for the proposedH∞ estimation algorithm. It is shown that the maximum energy
ratio from the input noises to the estimation error is less than γ2 by using our approach.
Figure 4 shows the value of indefinite quadratic form JN for the given estimation algorithm. It
is shown that the value of indefinite quadratic form JN is positive by employing the proposed
algorithm in Theorem 3.6.

5. Conclusions

A recursive H∞ filtering estimate algorithm for discrete-time Lipschitz nonlinear systems
with time-delay and disturbance input is proposed. By combining the H∞-norm estimation
condition with the Lipschitz conditions on nonlinearity, the H∞ estimation problem is
converted to the positive minimum problem of indefinite quadratic form. Motivated by the
observation that the minimum problem of indefinite quadratic form coincides with Kalman
filtering in the Krein space, a novel Krein space-based H∞ filtering estimate algorithm is
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Figure 3: The energy ratio between estimation error and all input noises for the proposed H∞ estimation
algorithm.
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Figure 4: The value of indefinite quadratic form JN for the given estimation algorithm.

developed. Employing projection formula and innovation analysis technology in the Krein
space, the H∞ estimator and its sufficient existence condition are presented based on Riccati-
like difference equations. A numerical example is provided in order to demonstrate the
performances of the proposed approach.

Future research work will extend the proposed method to investigate more general
nonlinear system models with nonlinearity in observation equations. Another interesting
research topic is theH∞ multistep prediction and fixed-lag smoothing problem for time-delay
Lipschitz nonlinear systems.
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The present investigation deals with global instability of a general n-dimensional system of
ordinary differential equations with quadratic right-hand sides. The global instability of the zero
solution in a given cone is proved by Chetaev’s method, assuming that the matrix of linear
terms has a simple positive eigenvalue and the remaining eigenvalues have negative real parts.
The sufficient conditions for global instability obtained are formulated by inequalities involving
norms and eigenvalues of auxiliary matrices. In the proof, a result is used on the positivity of a
general third-degree polynomial in two variables to estimate the sign of the full derivative of an
appropriate function in a cone.

1. Introduction

Recently, there has been a rapidly growing interest in investigating the instability conditions
of differential systems. The number of papers dealing with instability problems is rather low
compared with the huge quantity of papers in which the stability of the motion of differential
systems is investigated. The first results on the instability of zero solution of differential
systems were obtained in a general form by Lyapunov [1] and Chetaev [2].

Further investigation on the instability of solutions of systems was carried out to
weaken the conditions of the Lyapunov and Chetaev theorems for special-form systems.
Some results are presented, for example, in [3–10], but instability problems are analysed only
locally. For example, in [7], a linear system of ordinary differential equations in the matrix
form is considered, and conditions such that the corresponding forms (of the second and the
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third power) have fixed sign in some cone of the space R
n are derived. To investigate this

property another problem inverse to the known Lyapunov problem for the construction of
Lyapunov functions is solved.

In the present paper, instability solutions of systems with quadratic right-hand sides
is investigated in a cone dealing with a general n-dimensional system with quadratic right-
hand sides. We assume that the matrix of linear terms has a simple positive eigenvalue and
the remaining eigenvalues have negative real parts.

Unlike the previous investigations, we prove the global instability of the zero solution
in a given cone and the conditions for global instability are formulated by inequalities
involving norms and eigenvalues of auxiliary matrices. The main tool is the method of
Chetaev and application of a suitable Chetaev-type function. A novelty in the proof of the
main result (Theorem 3.1) is the utilization of a general third-order polynomial inequality of
two variables to estimate the sign of the full derivative of an appropriate function along the
trajectories of a given system in a cone.

In the sequel, the norms used for vectors and matrices are defined as

‖x‖ =
(

n∑
i=1

x2
i

)1/2

, (1.1)

for a vector x = (x1, . . . , xn)
T and

‖F‖ =
(
λmax

(
FTF

))1/2
, (1.2)

for any m×n matrix F. Here and throughout the paper, λmax(·) (or λmin(·)) is the maximal (or
minimal) eigenvalue of the corresponding symmetric and positive-semidefinite matrix FTF
(see, e.g., [11]).

In this paper, we consider the instability of the trivial solution of a nonlinear
autonomous differential system with quadratic right-hand sides

ẋi =
n∑
s=1

aisxs +
n∑

s,q=1

bisqxsxq, i = 1, . . . , n, (1.3)

where coefficients ais and bisq are constants. Without loss of generality, throughout this paper
we assume

bisq = b
i
qs. (1.4)

As emphasized, for example, in [2, 10–12], system (1.3) can be written in a general vector-
matrix form

ẋ = Ax +XTBx, (1.5)
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where A is an n × n constant square matrix, matrix XT is an n × n2 rectangular matrix

XT =
{
XT

1 , X
T
2 , . . . , X

T
n

}
, (1.6)

where the entries of the n × n square matrices Xi, i = 1, . . . , n are equal to zero except the ith
row with entries xT = (x1, x2, . . . , xn), that is,

XT
i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

x1 x2 · · · xn
0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.7)

and B is a rectangular n2 × n matrix such that

BT = {B1, B2, . . . , Bn}, (1.8)

where matrices Bi = {bisq}, i, s, q = 1, . . . , n, that is, matrices

Bi =

⎛
⎜⎜⎜⎜⎜⎝

bi11 bi12 · · · bi1n
bi21 bi22 · · · bi2n
· · · · · · · · · · · ·
bin1 bin2 · · · binn

⎞
⎟⎟⎟⎟⎟⎠

(1.9)

are n×n constant and symmetric. Representation (1.5) permits an investigation of differential
systems with quadratic right-hand sides by methods of matrix analysis. Such approach was
previously used, for example, in [13].

If matrix A admits one simple positive eigenvalue, the system (1.5) can be
transformed, using a suitable linear transformation of the dependent variables, to the same
form (1.5) but with the matrix A having the form

A =

(
A0 θ

θT λ

)
, (1.10)

where A0 is an (n − 1) × (n − 1) constant matrix, θ = (0, 0, . . . , 0)T is the (n − 1)-dimensional
zero vector and λ > 0. With regard to this fact, we do not introduce new notations for the
coefficients bisq, i, s, q = 1, 2, . . . , n in (1.5), assuming throughout the paper that A in (1.5) has
the form (1.10), preserving the old notations aij for entries of matrix A0. This means that we
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assume that A = {ais}, i, s = 1, 2, . . . , n with ans = asn = 0 for s = 1, 2, . . . , n − 1 and ann = λ,
and A0 = {ais}, i, s = 1, 2, . . . , n − 1.

We will give criteria of the instability of a trivial solution of the system (1.5) if the
matrix A of linear terms is defined by (1.10).

2. Preliminaries

In this part we collect the necessary material-the definition of a cone, auxiliary Chetaev-type
results on instability in a cone and, finally, a third degree polynomial inequality, which will be
used to estimate the sign of the full derivative of a Chetaev-type function along the trajectories
of system (1.5).

2.1. Instability of the Zero Solution of Systems of Differential
Equations in a Cone

We consider an autonomous system of differential equations

ẋ = f(x), (2.1)

where f : R
n → R

n satisfies a local Lipschitz condition and f(0) = 0, that is, (2.1) admits the
trivial solution. We will consider solutions of (2.1) determined by points (x, t) = (x0, 0) where
x0 ∈ R

n. The symbol x(x0, t) denotes the solution x = x(t) of (2.1), satisfying initial condition
x(0) = x0.

Definition 2.1. The zero solution x ≡ 0 of (2.1) is called unstable if there exists ε > 0 such that,
for arbitrary δ > 0, there exists an x0 ∈ R

n with ‖x0‖ < δ and T ≥ 0 such that ‖x(x0, T)‖ ≥ ε.

Definition 2.2. A set K ⊂ Rn is called a cone if αx ∈ K for arbitrary x ∈ K and α > 0.

Definition 2.3. A cone K is said to be a global cone of instability for (2.1) if x(x0, t) ∈ K for
arbitrary x0 ∈ K and t ≥ 0 and limt→∞‖x(x0, t)‖ =∞.

Definition 2.4. The zero solution x ≡ 0 of (2.1) is said to be globally unstable in a cone K if K
is a global cone of instability for (2.1).

Now, we prove results analogous to the classical Chetaev theorem (see, e.g., [2]) on
instability in a form suitable for our analysis. As usual, if S is a set, then ∂S denotes its
boundary and S its closure, that is, S := S ∪ ∂S.

Theorem 2.5. Let V : R
n → R, V (0, . . . , 0) = 0 be a continuously differentiable function. Assume

that the set

K = {x ∈ Rn : V (x) > 0} (2.2)

is a cone. If the full derivative of V along the trajectories of (2.1) is positive for every x ∈ K, that is, if

V̇ (x) := gradTV (x)f(x) > 0, x ∈ K, (2.3)

then K is a global cone of instability for the system (2.1).
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Proof. Let ε be a positive number. We define a neighborhood of the origin

Uε := {x ∈ Rn : ‖x‖ < ε}, (2.4)

and a constant

Mε := max
x∈Uε∩K

V (x). (2.5)

Moreover, define a set

Wδ :=
{
x ∈ Uε ∩K,V (x) ≥ δ

}
, (2.6)

where δ is a positive number such that δ < Mε. Then, Wδ /= ∅.
Let x0 ∈Wδ∩K, then V (x0) = δ1 ∈ [δ,Mε]. We show that there exists a t = tT = tT (ε, x0)

such that x(x0, tT ) /∈ Uε and x(x0, tT ) ∈ K.
Suppose to the contrary that this is not true and x(x0, t) ∈ Uε for all t ≥ 0. Since

V̇ (x) > 0, the function V is increasing along the solutions of (2.1). Thus x(x0, t) remains in K.
Due to the compactness of Wδ, there exists a positive value β such that for x(x0, t) ∈Wδ

d

dt
V (x(x0, t)) = gradTV (x(x0, t))f(x(x0, t)) > β. (2.7)

Integrating this inequality over the interval [0, t], we get

V (x(x0, t)) − V (x0) = V (x(x0, t)) − δ1 > βt. (2.8)

Then there exists a t = tT = tT (ε, x0) satisfying

tT >
(Mε − δ1)

β
, (2.9)

such that V (x(x0, tT )) > Mε and, consequently, x(x0, tT ) /∈ Uε. This is contrary to our
supposition. Since ε > 0 is arbitrary, we have

lim
t→∞
‖x(x0, t)‖ =∞, (2.10)

that is, the zero solution is globally unstable, and K is a global cone of instability.

Theorem 2.6. Let V : R
n → R be a continuously differentiable function and let S,Z : R

n → R,
Z(0, . . . , 0) = 0 be continuous functions such that V = S · Z. Assume that the set

K1 = {x ∈ Rn : Z(x) > 0} (2.11)
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is a cone, and S(x) > 0 for any x ∈ K1. If the full derivative (2.3) of V along the trajectories of (2.1) is
positive for every x ∈ K1, that is, if V̇ (x) > 0 for every x ∈ K1, then K1 is a global cone of instability
for the system (2.1).

Proof. The proof is a modification of the proof of Theorem 2.5. Let ε be a positive number. We
define a neighborhood Uε of the origin by formula (2.4) and a constant

Mε := max
x∈Uε∩K1

V (x). (2.12)

Moreover, define a set

Wδ :=
{
x ∈ Uε ∩K1, V (x) ≥ δ

}
, (2.13)

where δ is a positive number such that δ < Mε. Then Wδ /= ∅.
Let x0 ∈ Wδ ∩ K1. Then V (x0) = δ1 ∈ [δ,Mε]. We show that there exists a t = tT =

tT (ε, x0) such that x(x0, tT ) /∈ Uε and x(x0, tT ) ∈ K1.
Suppose to the contrary that this is not true and x(x0, t) ∈ Uε for all t ≥ 0. Since

V̇ (x) > 0, the function V is increasing along the solutions of (2.1). Due to the compactness of
Wδ, there exists a positive value β such that for x(x0, t) ∈Wδ

d

dt
V (x(x0, t)) = gradTV (x(x0, t))f(x(x0, t)) > β. (2.14)

Integrating this inequality over interval [0, t], we get

V (x(x0, t)) − V (x0) = V (x(x0, t)) − δ1 = S(x(x0, t))Z(x(x0, t)) − δ1 > βt. (2.15)

Since S(x(x0, t)) > 0, the inequality

Z(x(x0, t)) >
δ1 + βt

S(x(x0, t))
> 0 (2.16)

is an easy consequence of (2.15). Thus x(x0, t) remains in K1. Apart from this, (2.15) also
implies the existence of a t = tT = tT (ε, x0) satisfying

tT >
(Mε − δ1)

β
, (2.17)

such that V (x(x0, tT )) > Mε. Consequently, x(x0, tT ) /∈ Uε. This is contrary to our supposition.
Since ε > 0 is arbitrary, we have

lim
t→∞
‖x(x0, t)‖ =∞, (2.18)

that is, the zero solution is globally unstable and K1 is a global cone of instability.
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Definition 2.7. A function V satisfying all the properties indicated in Theorem 2.5 is called a
Chetaev function for the system (2.1). A function V satisfying all the properties indicated in
Theorem 2.6 is called a Chetaev-type function for the system (2.1).

2.2. Auxiliary Inequality

Our results will be formulated in terms of global cones of instability. These will be derived
using an auxiliary inequality valid in a given cone. Let (x, y) ∈ R

2 and let k be a positive
number. We define a cone

K :=
{(
x, y
) ∈ R

2 : y > k|x|
}
. (2.19)

Lemma 2.8. Let a, b, c, d, and k be given constants such that b > 0, d > 0, k > 0, and |c| ≤ kd.
Assume, moreover, either

|a| ≤ kb, (2.20)

or

|a| > kb, (2.21)

|c|/= kd, k ≥ max

⎧⎨
⎩
√
|a + kb|
c + kd

,

√
|a − kb|
|c − kd|

⎫⎬
⎭, (2.22)

then

ax3 + bx2y + cxy2 + dy3 > 0, (2.23)

for every (x, y) ∈ K.

Proof. We partitionK into two disjoint cones

K1 :=
{(
x, y
) ∈ R

2 : y > k|x|, x > 0
}
,

K2 :=
{(
x, y
) ∈ R

2 : y > k|x|, x ≤ 0
}
,

(2.24)

and rewrite (2.23) as

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)
> 0. (2.25)

We prove the validity of (2.23) in each of the two cones separately.
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The case of the cone K1. Suppose that (2.20) holds. Estimating the left-hand side of
(2.25), we get

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)
> x
(
ax2 + cy2

)
+ kx

(
bx2 + dy2

)

= x
[
x2(a + kb) + y2(c + kd)

]
> 0,

(2.26)

and (2.23) holds.
If inequalities (2.21) and (2.22) are valid, then, estimating the left-hand side of (2.25),

we get

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)
> x
(
ax2 + cy2

)
+ kx

(
bx2 + dy2

)

= x
[
x2(a + kb) + y2(c + kd)

]

≥ x
[
−|a + kb|x2 + (c + kd)y2

]

= (c + kd)x
[
y2 − |a + kb|

c + kd
x2
]

= (c + kd)x

⎡
⎣y −

√
|a + kb|
c + kd

x

⎤
⎦
⎡
⎣y +

√
|a + kb|
c + kd

x

⎤
⎦

= (c + kd)x2

⎡
⎣k −

√
|a + kb|
c + kd

⎤
⎦
⎡
⎣k +

√
|a + kb|
c + kd

⎤
⎦

≥ 0,

(2.27)

and (2.23) holds again.
The case of the coneK2. Suppose that (2.20) hold, then, estimating the left-hand side of

(2.25), we get

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)
= −|x|

(
ax2 + cy2

)
+ y
(
bx2 + dy2

)

> −|x|
(
ax2 + cy2

)
+ k|x|

(
bx2 + dy2

)

= −|x|
[
(a − kb)x2 + (c − kd)y2

]

≥ 0,

(2.28)

and (2.23) holds.
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If inequalities (2.21) and (2.22) are valid, then the estimation of (2.25) implies (we use
(2.28))

x
(
ax2 + cy2

)
+ y
(
bx2 + dy2

)

> −|x|
[
(a − kb)x2 + (c − kd)y2

]

= |c − kd||x|
[
y2 − a − kb

|c − kd|x
2
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≥ 0 if a − kb < 0,

|c − kd||x|
[
y −
√

a − kb
|c − kd| x

][
y +

√
a − kb
|c − kd| x

]

≥ |c − kd|x2

[
k +

√
a − kb
|c − kd|

][
k −
√

a − kb
|c − kd|

]
≥ 0 if a − kb > 0.

(2.29)

Hence, (2.23) holds again.

3. Global Cone of Instability

In this part we derive a result on the instability of system (1.5) in a cone. In order to
properly formulate the results, we have to define some auxiliary vectors and matrices (some
definitions copy the previous ones used in Introduction, but with a dimension of n − 1 rather
than n). We denote

x(n−1) = (x1, x2, . . . , xn−1)T ,

bi =
(
bi1n, b

i
2n, . . . , b

i
n−1,n

)T
, i = 1, 2, . . . , n,

b̃ =
(
b1
nn, b

2
nn, . . . , b

n−1
nn

)T
.

(3.1)

Apart from this, we define symmetric (n − 1) × (n − 1) matrices

B0
i =
{
bisq

}
, i = 1, 2, . . . , n, s, q = 1, 2, . . . , n − 1, (3.2)
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that is,

B0
i =

⎛
⎜⎜⎜⎜⎜⎝

bi11 bi12 · · · bi1,n−1

bi21 bi22 · · · bi2,n−1

· · · · · · · · · · · ·
bin−1,1 bin−1,2 · · · bin−1,n−1

⎞
⎟⎟⎟⎟⎟⎠
,

B̃ =

⎛
⎜⎜⎜⎜⎜⎝

b1
1n b1

2n · · · b1
n−1,n

b2
1n b2

2n · · · b2
n−1,n

· · · · · · · · · · · ·
bn−1

1n bn−1
2n · · · bn−1

n−1,n

⎞
⎟⎟⎟⎟⎟⎠
.

(3.3)

Finally, we define an (n − 1) × (n − 1)2 matrix

B
T
=
{
B
T

1 , B
T

2 , . . . , B
T

n−1

}
, (3.4)

where (n − 1) × (n − 1) matrices B
T

i , i = 1, 2, . . . , n − 1 are defined as

B
T

i =

⎛
⎜⎜⎜⎜⎜⎝

b1
i1 b1

i2 · · · b1
i,n−1

b2
i1 b2

i2 · · · b2
i,n−1

· · · · · · · · · · · ·
bn−1
i1 bn−1

i2 · · · bn−1
i,n−1

⎞
⎟⎟⎟⎟⎟⎠
. (3.5)

We consider a matrix equation

AT
0H +HA0 = −C, (3.6)

where H and C are (n− 1)× (n− 1) matrices. It is well-known (see, e.g., [14]) that, for a given
positive definite symmetric matrix C, (3.6) can be solved for a positive definite symmetric
matrix H if and only if the matrix A0 is asymptotically stable.

Theorem 3.1 (Main result). Assume that the matrix A0 is asymptotically stable, bnnn > 0 and h is a
positive number. Let C be an (n − 1) × (n − 1) positive definite symmetric matrix andH be a related
(n − 1) × (n − 1) positive definite symmetric matrix solving equation (3.6). Assume that the matrix
(−HB̃T − B̃H + h(B0

n)
T ) is positive definite,

∥∥∥2hbn −Hb̃
∥∥∥ ≤
√
λmin(H)h · bnnn, (3.7)
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and, in addition, one of the following conditions is valid:
either

∥∥∥∥HB
T
∥∥∥∥ ≤
√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T) (3.8)

or

∥∥∥∥HB
T
∥∥∥∥ >
√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
, (3.9)

a strong inequality holds in (3.7), and

√
λmin(H)

h
≥ max

{√
T1,
√
T2

}
, (3.10)

where

T1 =

∥∥∥∥HB
T
∥∥∥∥ −
√
λmin(H)/h · λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)

−
∥∥∥2hbn −Hb̃

∥∥∥ +√λmin(H)h · bnnn
,

T2 =

∥∥∥∥HB
T
∥∥∥∥ +
√
λmin(H)/h · λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
∥∥∥2hbn −Hb̃

∥∥∥ +√λmin(H)h · bnnn
.

(3.11)

Then the set

K :=
{(
xT(n−1), xn

)
:
√
hxn >

√
xT(n−1)Hx(n−1)

}
(3.12)

is a global cone of instability for the system (1.5).

Proof. First we make auxiliary computations. For the reader’s convenience, we recall that, for
two (n − 1) × (n − 1) matricesA,A1, two 1 × (n − 1) vectors 	, 	1, two (n − 1) × 1 vectors C, C1

and two 1 × 1 “matrices” m, m1, the multiplicative rule

(A C
	 m

)(A1 C1

	1 m1

)
=

(AA1 + C	1 AC1 + Cm1

	A1 +m	1 	C1 +mm1

)
(3.13)

holds. This rule can be modified easily for the case of arbitrary rectangular matrices under
the condition that all the products are well defined.
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We will rewrite system (1.5) in an equivalent form, suitable for further investigation.
With this in mind, we define an (n − 1)2 × (n − 1) matrix X(n−1) as

XT
(n−1) =

(
XT

1(n−1), X
T
2(n−1), . . . , X

T
n−1(n−1)

)
, (3.14)

where all the elements of the (n − 1) × (n − 1) matrices XT
i(n−1), i = 1, 2, . . . , n − 1 are equal to

zero except the ith row, which equals xT(n−1), that is,

XT
i(n−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

x1 x2 · · · xn−1

0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.15)

Moreover, we define 1 × (n − 1) vectors Yi, i = 1, 2, . . . , n − 1 with components equal to zero
except the ith element, which equals xn, that is,

Yi = (0, . . . , 0, xn, 0, . . . , 0), (3.16)

and (n − 1) × (n − 1) zero matrix Θ.
It is easy to see that matrices XT and B in (1.5) can be expressed as

XT =

(
XT

1(n−1) YT
1 · · · XT

n−1(n−1) YT
n−1 Θ θ

θT 0 · · · θT 0 xT(n−1) xn

)
,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0
1 b1

bT1 b1
nn

· · · · · ·
B0
n bn

bTn bnnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.17)
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Now we are able to rewrite the system (1.5) under the above assumption regarding the
representation of the matrix A in the form (1.10) in an equivalent form

(
ẋ(n−1)

ẋn

)
=

(
A0 θ

θT λ

)(
x(n−1)

xn

)

+

(
XT

1(n−1) YT
1 · · · XT

n−1(n−1) YT
n−1 Θ θ

θT 0 · · · θT 0 xT(n−1) xn

)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0
1 b1

bT
1 b1

nn

· · · · · ·
B0
n bn

bTn bnnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
x(n−1)

xn

)
.

(3.18)

Finally, since the equalities

n−1∑
j=1

XT
j(n−1)B

0
j = B

T
X(n−1),

n−1∑
j=1

YT
j b

T
j = B̃xn,

n−1∑
j=1

XT
j(n−1)bj = B̃x(n−1),

n−1∑
j=1

YT
j b

j
nn = b̃xn

(3.19)

can be verified easily using (3.13), we have

(
ẋ(n−1)

ẋn

)
=

⎛
⎜⎜⎝
A0 + r11

(
xT(n−1), xn

)
r12

(
xT(n−1), xn

)

r21

(
xT(n−1), xn

)
λ + r22

(
xT(n−1), xn

)

⎞
⎟⎟⎠
(
x(n−1)

xn

)
, (3.20)
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where

r11

(
xT(n−1), xn

)
=

n−1∑
j=1

[
XT
j(n−1)B

0
j + Y

T
j b

T
j

]
= B

T
X(n−1) + B̃xn,

r12

(
xT(n−1), xn

)
=

n−1∑
j=1

[
XT
j(n−1)bj + Y

T
j b

j
nn

]
= B̃x(n−1) + b̃xn,

r21

(
xT(n−1), xn

)
= xT(n−1)B

0
n + xnb

T
n ,

r22

(
xT(n−1), xn

)
= xT(n−1)bn + xnb

n
nn.

(3.21)

The remaining part of the proof is based on Theorem 2.6 with a Chetaev-type function V =
S · Z and with suitable functions S and Z. Such functions we define as

V
(
xT(n−1), xn

)
=
(
xT(n−1) xn

)(−H θ

θT h

)(
x(n−1)

xn

)
, (3.22)

that is,

V
(
xT(n−1), xn

)
= −xT(n−1)Hx(n−1) + hx2

n,

S
(
xT(n−1), xn

)
=
√
xT(n−1)Hx(n−1) +

√
hxn,

Z
(
xT(n−1), xn

)
= −
√
xT(n−1)Hx(n−1) +

√
hxn.

(3.23)

We will verify the necessary properties. Obviously, V = S · Z, the set

K1 : =
{(
xT(n−1), xn

)
∈ R

n : Z
(
x(n−1), xn

)
> 0
}

=
{(
xT(n−1), xn

)
∈ R

n :
√
hxn >

√
xT(n−1)Hx(n−1)

} (3.24)

is a cone and S(xT(n−1), xn) > 0 for every (xT(n−1), xn) ∈ K1.
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The full derivative of V (in the form (3.22)) along the trajectories of the system (1.5)
(we use its transformed form (3.20)) equals

V̇
(
xT(n−1), xn

)
=
(
ẋT(n−1) ẋn

)(−H θ

θT h

)(
x(n−1)

xn

)
+
(
xT(n−1) xn

)(−H θ

θT h

)(
ẋ(n−1)

ẋn

)

=
(
xT(n−1) xn

)⎛⎝AT
0 + rT11

(
xT(n−1), xn

)
rT21

(
xT(n−1), xn

)

rT12

(
xT(n−1), xn

)
λ + r22

(
xT(n−1), xn

)
⎞
⎠
(−H θ

θT h

)(
x(n−1)

xn

)

+
(
xT(n−1) xn

)(−H θ

θT h

)⎛
⎝A0 + r11

(
xT(n−1), xn

)
r12

(
xT(n−1), xn

)

r21

(
xT(n−1), xn

)
λ + r22

(
xT(n−1), xn

)
⎞
⎠

×
(
x(n−1)

xn

)
.

(3.25)

Using formula (3.13), we get

V̇
(
xT(n−1), xn

)
=
(
xT(n−1) xn

)
⎛
⎜⎝
c11

(
xT(n−1), xn

)
c12

(
xT(n−1), xn

)

c21

(
xT(n−1), xn

)
c22

(
xT(n−1), xn

)
⎞
⎟⎠
⎛
⎝x(n−1)

xn

⎞
⎠, (3.26)

where

c11

(
xT(n−1), xn

)
= −
[
A0 + r11(xT(n−1), xn)

]T
H −H

[
A0 + r11

(
xT(n−1), xn

)]
,

c12

(
xT(n−1), xn

)
= hrT21

(
xT(n−1), xn

)
−Hr12

(
xT(n−1), xn

)
,

c21

(
xT(n−1), xn

)
= hr21

(
xT(n−1), xn

)
− rT12

(
xT(n−1), xn

)
H = cT12

(
xT(n−1), xn

)
,

c22

(
xT(n−1), xn

)
= 2h
[
λ + r22

(
xT(n−1), xn

)]
.

(3.27)

We reduce these formulas using (3.21). Then,

c11

(
xT(n−1), xn

)
= −
(
AT

0H +HA0

)
−
(
B
T
X(n−1) + B̃xn

)T
H −H

(
B
T
X(n−1) + B̃xn

)
,

c12

(
xT(n−1), xn

)
= h
(
xT(n−1)B

0
n + xnb

T
n

)T −H(B̃x(n−1) + b̃xn
)
,

c21

(
xT(n−1), xn

)
= h
(
xT(n−1)B

0
n + xnb

T
n

)
−
(
B̃x(n−1) + b̃xn

)T
H,

c22

(
xT(n−1), xn

)
= 2h
(
λ + xT(n−1)bn + xnb

n
nn

)
.

(3.28)
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The derivative (3.26) turns into

V̇
(
xT(n−1), xn

)
= xT(n−1)c11

(
xT(n−1), xn

)
x(n−1) + xT(n−1)c12

(
xT(n−1), xn

)
xn

+ xnc21

(
xT(n−1), xn

)
x(n−1) + xnc22

(
xT(n−1), xn

)
xn

= xT(n−1)

[
−
(
AT

0H +HA0

)
−
(
B
T
X(n−1) + B̃xn

)T
H −H

(
B
T
X(n−1) + B̃xn

)]
x(n−1)

+ xT(n−1)

[
h
(
xT(n−1)B

0
n + xnb

T
n

)T −H(B̃x(n−1) + b̃xn
)]
xn

+ xn
[
h
(
xT(n−1)B

0
n + xnb

T
n

)
−
(
B̃x(n−1) + b̃xn

)T
H

]
x(n−1)

+ xn
[
2h
(
λ + xT(n−1)bn + xnb

n
nn

)]
xn

= −xT(n−1)

(
AT

0H +HA0

)
x(n−1) + 2hλx2

n

− xT(n−1)

((
B
T
X(n−1)

)T
H +HB

T
X(n−1)

)
x(n−1)

− xT(n−1)

((
B̃xn
)T
H +HB̃xn

)
x(n−1)

+ xT(n−1)

(
2h
(
B0
n

)T −HB̃ − B̃H
)
x(n−1)xn

+ 2xT(n−1)

(
hbn −Hb̃

)
x2
n

+ 2h
(
xT(n−1)bn + xnb

n
nn

)
x2
n.

(3.29)

Finally, using (3.6), we get

V̇
(
xT(n−1), xn

)
= xT(n−1)Cx(n−1) + 2hλx2

n − 2xT(n−1)HB
T
X(n−1)x(n−1)

+ 2xT(n−1)

[
−HB̃T − B̃H + h

(
B0
n

)T]
x(n−1)xn + 2xT(n−1)

(
2hbn −Hb̃

)
x2
n + 2hbnnnx

3
n.

(3.30)
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Let us find the conditions for the positivity of V̇ (xT(n−1), xn) in the cone K1. We use (3.30). If
(xT(n−1), xn) ∈ K1, then xn ≥ 0 and

V̇
(
xT(n−1), xn

)
≥ xT(n−1)Cx(n−1) + 2hλx2

n − 2
∥∥∥∥HB

T
∥∥∥∥ ·
∥∥x(n−1)

∥∥3

+ 2λmin

(
−HB̃T − B̃H + h

(
B0
n

)T) · ∥∥x(n−1)
∥∥2 · xn

− 2
∥∥∥2hbn −Hb̃

∥∥∥ · ∥∥x(n−1)
∥∥ · x2

n + 2hbnnnx
3
n.

(3.31)

We set

a = −2
∥∥∥∥HB

T
∥∥∥∥,

b = 2λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
,

c = −2
∥∥∥2hbn −Hb̃

∥∥∥,
d = 2hbnnn.

(3.32)

If

a
∥∥x(n−1)

∥∥3 + b
∥∥x(n−1)

∥∥2 · xn + c
∥∥x(n−1)

∥∥ · x2
n + dx

3
n > 0 (3.33)

in K1, then V̇ (xT(n−1), xn) > 0 since C is a positive definite matrix and

xT(n−1)Cx(n−1) + 2hλx2
n ≥ λmin(C)

∥∥x(n−1)
∥∥2 + 2hλx2

n > 0. (3.34)

If (xT(n−1), xn) ∈ K1, then

xn >

√
xT(n−1)Hx(n−1)

h
≥
√
λmin(H)

h
· ∥∥x(n−1)

∥∥, (3.35)

K1 ⊂ K∗ :=

⎧⎨
⎩
(
xT(n−1), xn

)
∈ R

n : xn >

√
λmin(H)

h
· ∥∥x(n−1)

∥∥
⎫⎬
⎭. (3.36)

Now, we use Lemma 2.8 with K = K∗, y = xn, x = ‖x(n−1)‖, with coefficients a, b, c, and d
defined by formula (3.32) and with k :=

√
λmin(H)/h.

Obviously |c| ≤ kd because, due to (3.7), inequality

∥∥∥2hbn −Hb̃
∥∥∥ ≤
√
λmin(H)h · bnnn (3.37)
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holds. Moreover, |a| ≤ kb if (3.8) holds, that is, if

∥∥∥∥HB
T
∥∥∥∥ ≤
√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
. (3.38)

Further, |a| > kb if (3.9) holds, that is, if

∥∥∥∥HB
T
∥∥∥∥ >
√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + hn

(
B0
n

)T)
, (3.39)

and (2.22) holds due to (4.10) and the condition |c|/= kd. Thus the assumptions of Lemma 2.8
are true, the inequality (3.33) holds in the coneK∗ and, due to embedding (3.36), in the cone
K1 as well.

All the assumptions of Theorem 2.6 are fulfilled with regard to system (1.5) and the
theorem is proved, because K1 = K.

Remark 3.2. We will focus our attention to Lemma 2.8 about the positivity of a third-degree
polynomial in two variables in the coneK. We used it to estimate the derivative V̇ expressed
by formula (3.30). Obviously, there are other possibilities of estimating its sign. Let us
demonstrate one of them. Let us, for example, estimate the right-hand side of (3.31) in the
cone K1 using inequality (3.35), then

V̇
(
xT(n−1), xn

)
≥ xT(n−1)Cx(n−1) + 2hλx2

n − 2
∥∥∥∥HB

T
∥∥∥∥ ·
∥∥x(n−1)

∥∥3

+ 2λmin

(
−HB̃T − B̃H + h

(
B0
n

)T) · ∥∥x(n−1)
∥∥2 · xn

− 2
∥∥∥2hbn −Hb̃

∥∥∥ · ∥∥x(n−1)
∥∥ · x2

n + 2hbnnnx
3
n

≥ λmin(C)
∥∥x(n−1)

∥∥2 + 2hλx2
n − 2

∥∥∥∥HB
T
∥∥∥∥ ·
∥∥x(n−1)

∥∥3

+ 2

√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T) · ∥∥x(n−1)
∥∥3

− 2
∥∥∥2hbn −Hb̃

∥∥∥ · ∥∥x(n−1)
∥∥ · x2

n + 2

√
λmin(H)

h
· ∥∥x(n−1)

∥∥ · hbnnn · x2
n,

(3.40)

and the positivity of V̇ (xT(n−1), xn) will be guaranteed if

∥∥∥∥HB
T
∥∥∥∥ ≤
√
λmin(H)

h
· λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
,

∥∥∥2hbn −Hb̃
∥∥∥ ≤
√
λmin(H)h · bnnn.

(3.41)
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We see that this approach produces only one set of inequalities for the positivity of
V̇ (xT(n−1), xn), namely the case when (3.7) and (3.8) holds. Unfortunately, using such
approach, we are not able to detect the second case (3.7) and (3.9) when V̇ (xT(n−1), xn) is
positive. This demonstrates the advantage of detailed estimates using the above third-degree
polynomial in two variables.

4. Planar Case

Now we consider a particular case of the system (1.5) for n = 2. This means that, in accordance
with (1.5) and (1.10), we consider a system

ẋ1(t) = ax1(t) + b1
11x

2
1(t) + 2b1

12x1(t)x2(t) + b1
22x

2
2(t),

ẋ2(t) = λx2(t) + b2
11x

2
1(t) + 2b2

12x1(t)x2(t) + b2
22x

2
2(t),

(4.1)

where a < 0 and λ > 0. The solution of matrix equation (3.6) for A0 = (a), H = (h11), and
C = (c) with c > 0, that is,

(ah11) + (h11a) = −(c) (4.2)

gives

H = (h11) =
(
− c

2a

)
, (4.3)

with h11 = −c/2a > 0. The set K defined by (3.12) where h > 0 and x(n−1) = x1 reduces to

K =

{
(x1, x2) : x2 >

√
c

2|a|h · |x1|
}
. (4.4)

Now, from Theorem 3.1, we will deduce sufficient conditions indicating K being a global
cone of instability for system (4.1). In our particular case, we have

bi =
(
bi12

)
, i = 1, 2, b̃ =

(
b1

22

)
,

B0
i =
(
bi11

)
, i = 1, 2, B̃ =

(
b1

12

)
, B

T
=
(
b1

11

)
= B0

1 .

(4.5)
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Now, we compute all necessary expressions used in Theorem 3.1. We have

−HB̃T − B̃H + h
(
B0
n

)T
= −
(
− c

2a

)(
b1

12

)
−
(
b1

12

)(
− c

2a

)
+ h
(
b2

11

)
=
(
hb2

11 −
c

|a|b
1
12

)
,

∥∥∥2hbn −Hb̃
∥∥∥ =
∣∣∣∣2hb2

12 −
c

2|a|b
1
22

∣∣∣∣,
√
λmin(H)h =

√
ch

2|a| ,

√
λmin(H)

h
=

√
c

2|a|h ,

∥∥∥∥HB
T
∥∥∥∥ =
∣∣∣∣ c

2|a|b
1
11

∣∣∣∣ = c

2|a|
∣∣∣b1

11

∣∣∣,

λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
= hb2

11 −
c

|a|b
1
12,

T1 =

∥∥∥∥HB
T
∥∥∥∥ −
√
λmin(H)/h · λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)

−
∥∥∥2hbn −Hb̃

∥∥∥ +√λmin(H)h · bnnn

=
(c/2|a|)∣∣b1

11

∣∣ −√c/2|a|h · (hb2
11 − (c/|a|)b1

12

)
−∣∣2hb2

12 − (c/2|a|)b1
22

∣∣ +√ch/2|a| · b2
22

,

T2 =

∥∥∥∥HB
T
∥∥∥∥ +
√
λmin(H)/h · λmin

(
−HB̃T − B̃H + h

(
B0
n

)T)
∥∥∥2hbn −Hb̃

∥∥∥ +√λmin(H)h · bnnn

=
(c/2|a|)∣∣b1

11

∣∣ +√(c/2|a|h) · (hb2
11 − (c/|a|)b1

12

)
∣∣2hb2

12 − (c/2|a|)b1
22

∣∣ +√(ch/2|a|) · b2
22

.

(4.6)

Theorem 4.1 (Planar Case). Assume that a < 0, b2
22 > 0, h > 0, c > 0 and hb2

11|a| > cb1
12. Let

∣∣∣∣2hb2
12 −

c

2|a|b
1
22

∣∣∣∣ ≤
√

ch

2|a| · b
2
22, (4.7)

and, in addition, one of the following conditions is valid:
either

c

2|a|
∣∣∣b1

11

∣∣∣ ≤
√

c

2|a|h ·
(
hb2

11 −
c

|a|b
1
12

)
(4.8)
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or

c

2|a|
∣∣∣b1

11

∣∣∣ >
√

c

2|a|h ·
(
hb2

11 −
c

|a|b
1
12

)
, (4.9)

strong inequality holds in (4.7), and

√
c

2|a|h ≥ max
{√
T1,
√
T2

}
, (4.10)

where T1 and T1 are defined by (4.6). Then the setK defined by (4.4) is a global cone of instability for
the system (4.1).

It is easy to see that the choice h = 1, c = |a| significantly simplifies all assumptions.
Therefore we give such a particular case of Theorem 4.1.

Corollary 4.2 (Planar Case). Assume that a < 0, b2
22 > 0 and b2

11 > b
1
12. Let

∣∣∣∣2b2
12 −

1
2
b1

22

∣∣∣∣ ≤ 1√
2
· b2

22, (4.11)

and, in addition, one of the following conditions is valid:
either

1
2

∣∣∣b1
11

∣∣∣ ≤ 1√
2
·
(
b2

11 − b1
12

)
(4.12)

or

1
2

∣∣∣b1
11

∣∣∣ > 1√
2
·
(
b2

11 − b1
12

)
, (4.13)

strong inequality holds in (4.11), and

1√
2
≥ max

{√
T1,
√
T2

}
, (4.14)

where

T1 =
(1/2)

∣∣b1
11

∣∣ − (1/
√

2
)
· (b2

11 − b1
12

)

−∣∣2b2
12 − (1/2)b1

22

∣∣ + (1/
√

2
)
· b2

22

, T2 =
(1/2)

∣∣b1
11

∣∣ + (1/
√

2
)
· (b2

11 − b1
12

)
∣∣2b2

12 − (1/2)b1
22

∣∣ + (1/
√

2
)
· b2

22

, (4.15)
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Then the set

K =
{
(x1, x2) : x2 >

1√
2
· |x1|
}

(4.16)

is a global cone of instability for the system (4.1).

Example 4.3. The set K defined by (4.16) is a global cone of instability for the system

ẋ1(t) = ax1(t) + x2
1(t) + 2

√
2x1(t)x2(t) + x2

2(t),

ẋ2(t) = λx2(t) + 2
√

2x2
1(t) + 2x1(t)x2(t) + 2

√
2x2

2(t),
(4.17)

where a < 0 and λ > 0 since inequalities (4.11) and (4.12) in Corollary 4.2 hold.

Example 4.4. The set K defined by (4.16) is a global cone of instability for the system

ẋ1(t) = ax1(t) + 4x2
1(t) + 2

√
2x1(t)x2(t) + x2

2(t),

ẋ2(t) = λx2(t) + 2
√

2x2
1(t) + 2x1(t)x2(t) + 20

√
2x2

2(t),
(4.18)

where a < 0 and λ > 0 since inequalities (4.11), (4.13), (4.14) in Corollary 4.2 hold.
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Sufficient conditions for the existence and asymptotic stability of the invariant sets of an impulsive
system of differential equations defined in the direct product of a torus and an Euclidean space are
obtained.

1. Introduction

The evolution of variety of processes in physics, chemistry, biology, and so forth, frequently
undergoes short-term perturbations. It is sometimes convenient to neglect the duration of the
perturbations and to consider these perturbations to be “instantaneous.” This leads to the
necessity of studying the differential equations with discontinuous trajectories, the so-called
impulsive differential equations. The fundamentals of the mathematical theory of impulsive
differential equations are stated in [1–4]. The theory is developing intensively due to its
applied value in simulations of the real world phenomena.

At the same time, this paper is closely related to the oscillation theory. In the middle
of the 20th century, a sharp turn towards the investigations of the oscillating processes that
were characterized as “almost exact” iterations within “almost the same” periods of time took
place. Quasiperiodic oscillations were brought to the primary focus of investigations of the
oscillation theory [5].

Quasiperiodic oscillations are a sufficiently complicated and sensitive object for
investigating. The practical value of indicating such oscillations is unessential. Due to
the instability of frequency basis, quasiperiodic oscillation collapses easily and may be
transformed into periodic oscillation via small shift of the right-hand side of the system. This
fact has led to search for more rough object than the quasiperiodic solution. Thus the minimal
set that is covered by the trajectories of the quasiperiodic motions becomes the main object of
investigations. As it is known, such set is a torus. The first profound assertions regarding the
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invariant toroidal manifolds were obtained by Bogoliubov et al. [6, 7]. Further results in this
area were widely extended by many authors.

Consider the system of differential equations

dz

dt
= F(z), (1.1)

where the function F(z) is defined in some subset D of the (m + n)-dimensional Euclidean
space Em+n, continuous and satisfies a Lipschitz condition. Let M be an invariant toroidal
manifold of the system. While investigating the trajectories that begin in the neighborhood of
the manifold M, it is convenient to make the change of variables from Euclidean coordinates
(z1, . . . , zm+n) to so-called local coordinates ϕ = (ϕ1, . . . , ϕm), x = (x1, . . . , xn), where ϕ is a
point on the surface of an m-dimensional torus Tm and x is a point in an n-dimensional
Euclidean space En. The change of variables is performed in a way such that the equation,
which defines the invariant manifold M, transforms into x = 0, ϕ ∈ Tm in the new
coordinates. In essence, the manifold x = 0, ϕ ∈ Tm is the m-dimensional torus in the space
Tm×En. The character of stability of the invariant torusM is closely linked with stability of the
set x = 0, ϕ ∈ Tm: from stability, asymptotic stability, and instability of the manifold M, there
follow the stability, asymptotic stability, and instability of the torus x = 0, ϕ ∈ Tm correspond-
ingly and vice versa. This is what determines the relevance and value of the investigation
of conditions for the existence and stability of invariant sets of the systems of differential
equations defined in Tm × En. Theory of the existence and perturbation, properties of
smoothness, and stability of invariant sets of systems defined inTm×En are considered in [8].

2. Preliminaries

The main object of investigation of this paper is the system of differential equations, defined
in the direct product of anm-dimensional torusTm and an n-dimensional Euclidean space En

that undergo impulsive perturbations at the moments when the phase point ϕ meets a given
set in the phase space. Consider the system

dϕ

dt
= a

(
ϕ
)
,

dx

dt
= A

(
ϕ
)
x + f

(
ϕ
)
, ϕ /∈ Γ,

Δx|ϕ∈Γ = B
(
ϕ
)
x + g

(
ϕ
)
,

(2.1)

where ϕ = (ϕ1, . . . , ϕm)
T ∈ Tm, x = (x1, . . . , xn)

T ∈ En, a(ϕ) is a continuous 2π-periodic with
respect to each of the components ϕv, v = 1, . . . , m vector function that satisfies a Lipschitz
condition

∥∥a(ϕ′′) − a(ϕ′)∥∥ ≤ L∥∥ϕ′′ − ϕ′∥∥ (2.2)

for every ϕ′, ϕ′′ ∈ Tm. A(ϕ), B(ϕ) are continuous 2π-periodic with respect to each of
the components ϕv, v = 1, . . . , m square matrices; f(ϕ), g(ϕ) are continuous (piecewise
continuous with first kind discontinuities in the set Γ) 2π-periodic with respect to each of
the components ϕv, v = 1, . . . , m vector functions.
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Some aspects regarding existence and stability of invariant sets of systems similar to
(2.1) were considered by different authors in [9–12].

We regard the point ϕ = (ϕ1, . . . , ϕm)
T as a point of the m-dimensional torus Tm so

that the domain of the functions A(ϕ), B(ϕ), f(ϕ), g(ϕ), and a(ϕ) is the torus Tm. We assume
that the set Γ is a subset of the torus Tm, which is a manifold of dimension m − 1 defined
by the equation Φ(ϕ) = 0 for some continuous scalar 2π-periodic with respect to each of the
components ϕv, v = 1, . . . , m function.

The system of differential equations

dϕ

dt
= a

(
ϕ
)

(2.3)

defines a dynamical system on the torusTm. Denote by ϕt(ϕ) the solution of (2.3) that satisfies
the initial condition ϕ0(ϕ) = ϕ. The Lipschitz condition (2.2) guarantees the existence and
uniqueness of such solution. Moreover, the solutions ϕt(ϕ) satisfies a group property [8]

ϕt
(
ϕτ

(
ϕ
))

= ϕt+τ
(
ϕ
)

(2.4)

for all t, τ ∈ R and ϕ ∈ Tm.
Denote by ti(ϕ), i ∈ Z the solutions of the equation Φ(ϕt(ϕ)) = 0 that are the moments

of impulsive action in system (2.1). Let the function Φ(ϕ) be such that the solutions t = ti(ϕ)
exist, since otherwise, system (2.1) would not be an impulsive system. Assume that

lim
i→±∞

ti
(
ϕ
)
= ±∞,

lim
T→±∞

i(t, t + T)
T

= p <∞
(2.5)

uniformly with respect to t ∈ R, where i(a, b) is the number of the points ti(ϕ) in the interval
(a, b). Hence, the moments of impulsive perturbations ti(ϕ) satisfy the equality [10, 11]

ti
(
ϕ−t

(
ϕ
)) − ti(ϕ) = t. (2.6)

Together with system (2.1), we consider the linear system

dx

dt
= A

(
ϕt
(
ϕ
))
x + f

(
ϕt
(
ϕ
))
, t /= ti

(
ϕ
)
,

Δx|t=ti(ϕ) = B
(
ϕti(ϕ)

(
ϕ
))
x + g

(
ϕti(ϕ)

(
ϕ
)) (2.7)

that depends on ϕ ∈ Tm as a parameter. We obtain system (2.7) by substituting ϕt(ϕ) for
ϕ in the second and third equations of system (2.1). By invariant set of system (2.1), we
understand a set that is defined by a function u(ϕ), which has a period 2π with respect to
each of the components ϕv, v = 1, . . . , m, such that the function x(t, ϕ) = u(ϕt(ϕ)) is a solution
of system (2.7) for every ϕ ∈ Tm.
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We call a point ϕ∗ an ω-limit point of the trajectory ϕt(ϕ) if there exists a sequence
{tn}n∈N in R so that

lim
n→+∞

tn = +∞,

lim
n→+∞

ϕtn
(
ϕ
)
= ϕ∗.

(2.8)

The set of all ω-limit points for a given trajectory ϕt(ϕ) is called ω-limit set of the trajectory
ϕt(ϕ) and denoted by Ωϕ.

Referring to system (2.7), the matrices A(ϕt(ϕ)) and B(ϕt(ϕ)), that influence the
behavior of the solution x(t, ϕ) of the system (2.7), depend not only on the functions A(ϕ)
and B(ϕ) but also on the behavior of the trajectories ϕt(ϕ). Moreover, in [9], sufficient
conditions for the existence and stability of invariant sets of a system similar to (2.1) were
obtained in terms of a Lyapunov function V (ϕ, x) that satisfies some conditions in the domain
Z = {ϕ ∈ Ω, x ∈ Jh}, where Jh = {x ∈ En, ‖x‖ ≤ h, h > 0},

Ω =
⋃
ϕ∈Tm

Ωϕ. (2.9)

Since the Lyapunov function has to satisfy some conditions not on the whole surface of the
torus Tm but only in the ω-limit set Ω, it is interesting to consider system (2.1) with specific
properties in the domain Ω.

3. Main Result

Consider system (2.1) assuming that the matrices A(ϕ) and B(ϕ) are constant in the domain
Ω:

A
(
ϕ
)∣∣

ϕ∈Ω = Ã,

B
(
ϕ
)∣∣

ϕ∈Ω = B̃.
(3.1)

Therefore, for every ϕ ∈ Tm

lim
t→+∞

A
(
ϕt
(
ϕ
))

= Ã,

lim
t→+∞

B
(
ϕt
(
ϕ
))

= B̃.
(3.2)

We will obtain sufficient conditions for the existence and asymptotic stability of an invariant
set of the system (2.1) in terms of the eigenvalues of the matrices Ã and B̃. Denote by

γ = max
j=1,...,n

Reλj
(
Ã
)
,

α2 = max
j=1,...,n

λj

((
E + B̃

)T(
E + B̃

))
.

(3.3)

Similar systems without impulsive perturbations have been considered in [13].
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Theorem 3.1. Let the moments of impulsive perturbations {ti(ϕ)} be such that uniformly with respect
to t ∈ R there exists a finite limit

lim
T̃→∞

i
(
t, t + T̃

)

T̃
= p. (3.4)

If the following inequality holds

γ + p lnα < 0, (3.5)

then system (2.1) has an asymptotically stable invariant set.

Proof. Consider a homogeneous system of differential equations

dx

dt
= A

(
ϕt
(
ϕ
))
x, t /= ti

(
ϕ
)
,

Δx|t=ti(ϕ) = B
(
ϕti(ϕ)

(
ϕ
))
x

(3.6)

that depends on ϕ ∈ Tm as a parameter. By Ωt
τ(ϕ), we denote the fundamental matrix of

system (3.6), which turns into an identity matrix at the point t = τ , that is, Ωτ
τ(ϕ) ≡ E. It can

be readily verified [4] that Ωt
τ(ϕ) satisfies the equalities

∂

∂t
Ωt
τ

(
ϕ
)
= A

(
ϕt
(
ϕ
))
Ωt
τ

(
ϕ
)
,

Ωt
τ

(
ϕ
)
= Ωt

τ

(
ϕ + 2πek

)
,

Ωt
t+τ

(
ϕ−t

(
ϕ
))

= Ω0
τ

(
ϕ
)

(3.7)

for all t, τ ∈ R and ϕ ∈ Tm. Rewrite system (3.6) in the form

dx

dt
= Ãx +

(
A
(
ϕt
(
ϕ
)) − Ã)

x, t /= ti
(
ϕ
)
,

Δx|t=ti(ϕ) = B̃x +
(
B
(
ϕti(ϕ)

(
ϕ
)) − B̃)x.

(3.8)

The fundamental matrix Ωt
τ(ϕ) of the system (3.6) may be represented in the following way

[4]:

Ωt
τ

(
ϕ
)
= Xt

τ

(
ϕ
)
+
∫ t

τ

Xt
s

(
ϕ
)(
A
(
ϕs

(
ϕ
)) − Ã)

Ωt
s

(
ϕ
)
ds

+
∑

τ≤ti(ϕ)<t
Xt
ti(ϕ)

(
ϕ
)(
B
(
ϕti(ϕ)

(
ϕ
)) − B̃)Ωti(ϕ)

τ

(
ϕ
)
,

(3.9)
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where Xt
τ(ϕ) is the fundamental matrix of the homogeneous impulsive system with constant

coefficients

dx

dt
= Ãx, t /= ti

(
ϕ
)
,

Δx|t=ti(ϕ) = B̃x
(3.10)

that depends on ϕ ∈ Tm as a parameter. Taking into account that the matrix Xt
τ(ϕ) satisfies

the estimate [14]

∥∥Xt
τ

(
ϕ
)∥∥ ≤ Ke−μ(t−τ), t ≥ τ (3.11)

for every ϕ ∈ Tm and some K ≥ 1, where γ + p lnα < −μ < 0, we obtain

∥∥Ωt
τ

(
ϕ
)∥∥ ≤ Ke−μ(t−τ) +

∫ t

τ

Ke−μ(t−s)
∥∥∥A(

ϕs
(
ϕ
)) − Ã∥∥∥∥∥Ωs

τ

(
ϕ
)∥∥ds

+
∑

τ≤ti(ϕ)<t
Ke−μ(t−ti(ϕ))

∥∥∥B(ϕti(ϕ)(ϕ)) − B̃
∥∥∥
∥∥∥Ωti(ϕ)

τ

(
ϕ
)∥∥∥.

(3.12)

It follows from (3.2) that for arbitrary small εA and εB, there exists a moment T such
that

∥∥∥A(
ϕt
(
ϕ
)) − Ã∥∥∥ ≤ εA,

∥∥∥B(ϕt(ϕ)) − B̃
∥∥∥ ≤ εB

(3.13)

for all t ≥ T . Hence, multiplying (3.12) by eμ(t−τ), utilizing (3.13), and weakening the
inequality, we obtain

eμ(t−τ)
∥∥Ωt

τ

(
ϕ
)∥∥ ≤ K +

∫T

τ

Keμ(s−τ)
∥∥∥A(

ϕs
(
ϕ
)) − Ã∥∥∥∥∥Ωs

τ

(
ϕ
)∥∥ds

+
∫ t

τ

KεAe
μ(s−τ)∥∥Ωs

τ

(
ϕ
)∥∥ds

+
∑

τ≤ti(ϕ)<T
Keμ(ti(ϕ)−τ)

∥∥∥B(ϕti(ϕ)(ϕ)) − B̃
∥∥∥
∥∥∥Ωti(ϕ)

τ

(
ϕ
)∥∥∥

+
∑

τ≤ti(ϕ)<t
KεBe

μ(ti(ϕ)−τ)
∥∥∥Ωti(ϕ)

τ

(
ϕ
)∥∥∥.

(3.14)

Using the Gronwall-Bellman inequality for piecewise continuous functions [4], we obtain the
estimate for the fundamental matrix Ωt

τ(ϕ) of the system (3.6)

∥∥Ωt
τ

(
ϕ
)∥∥ ≤ K1e

−(μ−KεA−p ln(1+KεB))(t−τ), (3.15)
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where

K1 = K +
∫T

τ

Keμ(s−τ)
∥∥∥A(

ϕs
(
ϕ
)) − Ã∥∥∥∥∥Ωs

τ

(
ϕ
)∥∥ds

+
∑

τ≤ti(ϕ)<T
Keμ(ti(ϕ)−τ)

∥∥∥B(ϕti(ϕ)(ϕ)) − B̃
∥∥∥
∥∥∥Ωti(ϕ)

τ

(
ϕ
)∥∥∥.

(3.16)

Choosing εA and εB so that μ > KεA + p ln(1 +KεB), the following estimate holds

∥∥Ωt
τ

(
ϕ
)∥∥ ≤ K1e

−γ1(t−τ) (3.17)

for all t ≥ τ and some K1 ≥ 1, γ1 > 0.
Estimate (3.17) is a sufficient condition for the existence and asymptotic stability of

an invariant set of system (2.1). Indeed, it is easy to verify that invariant set x = u(ϕ) of the
system (2.1) may be represented as

u
(
ϕ
)
=
∫0

−∞
Ω0
τ

(
ϕ
)
f
(
ϕτ

(
ϕ
))
dτ +

∑
ti(ϕ)<0

Ω0
ti(ϕ)

(
ϕ
)
g
(
ϕti(ϕ)

(
ϕ
))
. (3.18)

The integral and the sum from (3.18) converge since inequality (3.17) holds and limit (3.4)
exists. Utilizing the properties (3.7) of the matrix Ωt

τ(ϕ) (2.4), and (2.6), one can show that
the function u(ϕt(ϕ)) satisfies the equation

dx

dt
= A

(
ϕt
(
ϕ
))
x + f

(
ϕt
(
ϕ
))

(3.19)

for t /= ti(ϕ) and has discontinuities B(ϕti(ϕ)(ϕ))u(ϕti(ϕ)(ϕ))+g(ϕti(ϕ)(ϕ)) at the points t = ti(ϕ).
It means that the function x(t, ϕ) = u(ϕt(ϕ)) is a solution of the system (2.7). Hence, u(ϕ)
defines the invariant set of system (2.1).

Let us prove the asymptotic stability of the invariant set. Let x = x(t, ϕ) be an arbitrary
solutions of the system (2.7), and x∗ = u(ϕt(ϕ)) is the solution that belongs to the invariant
set. The difference of these solutions admits the representation

x
(
t, ϕ

) − u(ϕt(ϕ)) = Ωt
0

(
ϕ
)(
x
(
0, ϕ

) − u(ϕ)). (3.20)

Taking into account estimate (3.17), the following limit exists

lim
t→∞

∥∥x(t, ϕ) − u(ϕt(ϕ))∥∥ = 0. (3.21)

It proves the asymptotic stability of the invariant set x = u(ϕ).
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4. Perturbation Theory

Let us show that small perturbations of the right-hand side of the system (2.1) do not ruin
the invariant set. Let A1(ϕ) and B1(ϕ) be continuous 2π-periodic with respect to each of the
components ϕv, v = 1, . . . , m square matrices. Consider the perturbed system

dϕ

dt
= a

(
ϕ
)
,

dx

dt
=
(
A
(
ϕ
)
+A1

(
ϕ
))
x + f

(
ϕ
)
, ϕ /∈ Γ,

Δx|ϕ∈Γ =
(
B
(
ϕ
)
+ B1

(
ϕ
))
x + g

(
ϕ
)
.

(4.1)

Theorem 4.1. Let the moments of impulsive perturbations {ti(ϕ)} be such that uniformly with respect
to t ∈ R, there exists a finite limit

lim
T̃→∞

i
(
t, t + T̃

)

T̃
= p (4.2)

and the following inequality holds

γ + p lnα < 0. (4.3)

Then there exist sufficiently small constants a1 > 0 and b1 > 0 such that for any continuous 2π-
periodic with respect to each of the components ϕv, v = 1, . . . , m functions A1(ϕ) and B1(ϕ) such
that

max
ϕ∈Tm

∥∥A1
(
ϕ
)∥∥ ≤ a1,

max
ϕ∈Tm

∥∥B1
(
ϕ
)∥∥ ≤ b1,

(4.4)

system (4.1) has an asymptotically stable invariant set.

Proof. The constants a1 and b1 exist since the matrices A1(ϕ) and B1(ϕ) are continuous
functions defined in the torus Tm, which is a compact manifold.

Consider the impulsive system that corresponds to system(4.1)

dx

dt
= A

(
ϕt
(
ϕ
))
x +A1

(
ϕt
(
ϕ
))
x, t /= ti

(
ϕ
)
,

Δx|t=ti(ϕ) = B
(
ϕti(ϕ)

(
ϕ
))
x + B1

(
ϕti(ϕ)

(
ϕ
))
x

(4.5)



Abstract and Applied Analysis 9

that depends on ϕ ∈ Tm as a parameter. The fundamental matrix Ψt
τ(ϕ) of the system (4.5)

may be represented in the following way

Ψt
τ

(
ϕ
)
= Ωt

τ

(
ϕ
)
+
∫ t

τ

Ωt
s

(
ϕ
)
A1

(
ϕs

(
ϕ
))
Ψt
s

(
ϕ
)
ds

+
∑

τ≤ti(ϕ)<t
Ωt
ti(ϕ)

(
ϕ
)
B1

(
ϕti(ϕ)

(
ϕ
))
Ψti(ϕ)
τ

(
ϕ
)
,

(4.6)

where Ωt
τ(ϕ) is the fundamental matrix of the system (3.6). Then taking estimate (3.17) into

account,

eγ1(t−τ)∥∥Ψt
τ

(
ϕ
)∥∥ ≤ K1 +

∫ t

τ

K1a1e
γ1(s−τ)∥∥Ψs

τ

(
ϕ
)∥∥ds

+
∑

τ≤ti(ϕ)<t
K1b1e

γ1(ti(ϕ)−τ)
∥∥∥Ψti(ϕ)

τ

(
ϕ
)∥∥∥.

(4.7)

Using the Gronwall-Bellman inequality for piecewise continuous functions, we obtain the
estimate for the fundamental matrix Ψt

τ(ϕ) of the system (4.5)

∥∥Ψt
τ

(
ϕ
)∥∥ ≤ K1e

−(γ1−K1a1−p ln(1+K1b1))(t−τ). (4.8)

Let the constants a1 and b1 be such that γ1 > K1a1 + p ln(1 +K1b1). Hence, the matrix Ψt
τ(ϕ)

satisfies the estimate

∥∥Ψt
τ

(
ϕ
)∥∥ ≤ K2e

−γ2(t−τ) (4.9)

for all t ≥ τ and some K2 ≥ 1, γ2 > 0. As in Theorem 3.1, from estimate (4.9), we conclude
that the system (4.1) has an asymptotically stable invariant set x = u(ϕ), which admits the
representation

u
(
ϕ
)
=
∫0

−∞
Ψ0
τ

(
ϕ
)
f
(
ϕτ

(
ϕ
))
dτ +

∑
ti(ϕ)<0

Ψ0
ti(ϕ)

(
ϕ
)
g
(
ϕti(ϕ)

(
ϕ
))
. (4.10)

Consider the nonlinear system of differential equations with impulsive perturbations
of the form

dϕ

dt
= a

(
ϕ
)
,

dx

dt
= F

(
ϕ, x

)
, ϕ /∈ Γ,

Δx|ϕ∈Γ = I
(
ϕ, x

)
,

(4.11)
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where ϕ ∈ Tm, x ∈ Jh, a(ϕ) is a continuous 2π-periodic with respect to each of the
components ϕv, v = 1, . . . , m vector function and satisfies Lipschitz conditions (2.2); F(ϕ, x)
and I(ϕ, x) are continuous 2π-periodic with respect to each of the components ϕv, v =
1, . . . , m functions that have continuous partial derivatives with respect to x up to the second
order inclusively. Taking these assumptions into account, system (4.11) may be rewritten in
the following form:

dϕ

dt
= a

(
ϕ
)
,

dx

dt
= A0

(
ϕ
)
x +A1

(
ϕ, x

)
x + f

(
ϕ
)
, ϕ /∈ Γ,

Δx|ϕ∈Γ = B0
(
ϕ
)
x + B1

(
ϕ, x

)
x + g

(
ϕ
)
,

(4.12)

where

A
(
ϕ, x

)
=
∫1

0

∂F
(
ϕ, τx

)
∂(τx)

dτ, B
(
ϕ, x

)
=
∫1

0

∂I
(
ϕ, τx

)
∂(τx)

dτ, (4.13)

A0(ϕ) = A(ϕ, 0), A1(ϕ, x) = A(ϕ, x) − A(ϕ, 0), B0(ϕ) = B(ϕ, 0), B1(ϕ, x) = B(ϕ, x) − B(ϕ, 0),
f(ϕ) = F(ϕ, 0), and g(ϕ) = I(ϕ, 0). We assume that the matrices A0(ϕ) and B0(ϕ) are constant
in the domain Ω:

A0(ϕ)
∣∣
ϕ∈Ω = Ã,

B0(ϕ)
∣∣
ϕ∈Ω = B̃

(4.14)

and the inequality γ + p lnα < 0 holds.
We will construct the invariant set of system (4.12) using an iteration method proposed

in [8]. As initial invariant set M0, we consider the set x = 0, as Mk—the invariant set of the
system

dϕ

dt
= a

(
ϕ
)
,

dx

dt
= A0

(
ϕ
)
x +A1

(
ϕ, uk−1

(
ϕ
))
x + f

(
ϕ
)
, ϕ /∈ Γ,

Δx|ϕ∈Γ = B0
(
ϕ
)
x + B1

(
ϕ, uk−1

(
ϕ
))
x + g

(
ϕ
)
,

(4.15)

where x = uk−1(ϕ) is the invariant set on (k − 1)-step.
Using Theorem 4.1, the invariant set x = uk(ϕ), k = 1, 2, . . . may be represented as

uk
(
ϕ
)
=
∫0

−∞
Ψ0
τ

(
ϕ, k

)
f
(
ϕτ

(
ϕ
))
dτ +

∑
ti(ϕ)<0

Ψ0
ti(ϕ)+0

(
ϕ, k

)
g
(
ϕti(ϕ)

(
ϕ
))
, (4.16)



Abstract and Applied Analysis 11

where Ψt
τ(ϕ, k) is the fundamental matrix of the homogeneous system

dx

dt
=
(
A0

(
ϕt
(
ϕ
))

+A1
(
ϕt
(
ϕ
)
, uk−1

(
ϕt
(
ϕ
))))

x, t /= ti
(
ϕ
)
,

Δx|t=ti(ϕ) =
(
B0

(
ϕt
(
ϕ
))

+ B1
(
ϕt
(
ϕ
)
, uk−1

(
ϕt
(
ϕ
))))

x

(4.17)

that depends on ϕ ∈ Tm as a parameter and satisfies the estimate

∥∥Ψt
τ

(
ϕ, k

)∥∥ ≤ K2e
−γ2(t−τ) (4.18)

for all t ≥ τ and some K2 ≥ 1, γ2 > 0 only if

max
ϕ∈Tm

∥∥A1
(
ϕ, uk−1

(
ϕ
))∥∥ ≤ a1,

max
ϕ∈Tm

∥∥B1
(
ϕ, uk−1

(
ϕ
))∥∥ ≤ b1.

(4.19)

Let us prove that the invariant sets x = uk(ϕ) belong to the domain Jh. Denote by

max
ϕ∈Tm

∥∥f(ϕ)∥∥ ≤Mf,

max
ϕ∈Tm

∥∥g(ϕ)∥∥ ≤Mg.
(4.20)

Since the torus Tm is a compact manifold, such constants Mf and Mg exist. Analogously to
[4], using the representation (4.16) and estimate (4.18), we obtain that

∥∥uk(ϕ)∥∥ ≤ K2

γ2
Mf +

K2

1 − e−γ2θ1
Mg, (4.21)

where θ1 is a minimum gap between moments of impulsive actions. Condition (3.4)
guarantees that such constant θ1 exists. Assume that the constants K2 and γ2 are such that
‖u(ϕ)‖ ≤ h.

Let us obtain the conditions for the convergence of the sequence {uk(ϕ)}. For this
purpose, we estimate the difference wk+1(ϕ) = uk+1(ϕ) − uk(ϕ) and take into account that
the functions uk(ϕt(ϕ)) satisfy the relations

d

dt
uk

(
ϕt
(
ϕ
))

=
(
A0

(
ϕt
(
ϕ
))

+A1
(
ϕt
(
ϕ
)
, uk−1

(
ϕt
(
ϕ
))))

× uk
(
ϕt
(
ϕ
))

+ f
(
ϕt
(
ϕ
))
, t /= ti

(
ϕ
)
,

Δuk
(
ϕt
(
ϕ
))∣∣

t=ti(ϕ)
=
(
B0

(
ϕt
(
ϕ
))

+ B1
(
ϕt
(
ϕ
)
, uk−1

(
ϕt
(
ϕ
))))

× uk
(
ϕt
(
ϕ
))

+ g
(
ϕt
(
ϕ
))

(4.22)



12 Abstract and Applied Analysis

for all ϕ ∈ Tm, k = 1, 2, . . .. Hence, the difference wk+1(ϕ) = uk+1(ϕ)−uk(ϕ) is the invariant set
of the linear impulsive system

dϕ

dt
= a

(
ϕ
)
,

dx

dt
=
(
A0

(
ϕ
)
+A1

(
ϕ, uk

(
ϕ
)))

x +
(
A1

(
ϕ, uk

(
ϕ
)) −A1

(
ϕ, uk−1

(
ϕ
)))

uk
(
ϕ
)
, ϕ /∈ Γ,

Δx|ϕ∈Γ =
(
B0

(
ϕ
)
+ B1

(
ϕ, uk

(
ϕ
)))

x +
(
B1

(
ϕ, uk

(
ϕ
)) − B1

(
ϕ, uk−1

(
ϕ
)))

uk
(
ϕ
)
.

(4.23)

Then, taking (4.21) into account,

max
ϕ∈Tm

∥∥uk+1
(
ϕ
) − uk(ϕ)∥∥ ≤ K2

γ2

∥∥A1
(
ϕ, uk

(
ϕ
)) −A1

(
ϕ, uk−1

(
ϕ
))∥∥∥∥uk(ϕ)∥∥

+
K2

1 − e−γ2θ

∥∥B1
(
ϕ, uk

(
ϕ
)) − B1

(
ϕ, uk−1

(
ϕ
))∥∥∥∥uk(ϕ)∥∥.

(4.24)

Let the functions A1(ϕ, x) and B1(ϕ, x) satisfy the Lipschitz condition with constants LA and
LB correspondingly. Then

max
ϕ∈Tm

∥∥uk+1
(
ϕ
) − uk(ϕ)∥∥ ≤ K2

γ2
LAh

∥∥uk(ϕ) − uk−1
(
ϕ
)∥∥ +

K2

1 − e−γ2θ
LBh

∥∥uk(ϕ) − uk−1
(
ϕ
)∥∥

=
(
K2h

γ2
LA +

K2h

1 − e−γ2θ
LB

)∥∥uk(ϕ) − uk−1
(
ϕ
)∥∥.

(4.25)

Assuming that the constants LA and LB are so small that

K2h

γ2
LA +

K2h

1 − e−γ2θ
LB < 1, (4.26)

we conclude that the sequence {uk(ϕ)} converges uniformly with respect to ϕ ∈ Tm and

lim
k→∞

uk
(
ϕ
)
= u

(
ϕ
)
. (4.27)

Thus, the invariant set x = u(ϕ) admits the representation

u
(
ϕ
)
=
∫0

−∞
Ψ0
τ

(
ϕ
)
f
(
ϕτ

(
ϕ
))
dτ +

∑
ti(ϕ)<0

Ψ0
ti(ϕ)

(
ϕ
)
g
(
ϕti(ϕ)

(
ϕ
))
, (4.28)
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where Ψt
τ(ϕ) is the fundamental matrix of the homogeneous system

dx

dt
=
(
A
(
ϕt
(
ϕ
))

+A1
(
ϕt
(
ϕ
)
, u

(
ϕt
(
ϕ
))))

x, t /= ti
(
ϕ
)
,

Δx|t=ti(ϕ) =
(
B
(
ϕt
(
ϕ
))

+ B
(
ϕt
(
ϕ
)
, u

(
ϕt
(
ϕ
))))

x

(4.29)

that depends on ϕ ∈ Tm as a parameter and satisfies the estimation

∥∥Ψt
τ

(
ϕ
)∥∥ ≤ K2e

−γ2(t−τ) (4.30)

for all t ≥ τ and some K2 ≥ 1, γ2 > 0. The following assertion has been proved.

Theorem 4.2. Let the matrices A0(ϕ) and B0(ϕ) be constant in the domain Ω:

A0(ϕ)
∣∣
ϕ∈Ω = Ã,

B0(ϕ)
∣∣
ϕ∈Ω = B̃,

(4.31)

uniformly with respect to t ∈ R, there exists a finite limit

lim
T̃→∞

i
(
t, t + T̃

)

T̃
= p (4.32)

and the following inequality holds

γ + p lnα < 0, (4.33)

where

γ = max
j=1,...,n

Reλj
(
Ã
)
,

α2 = max
j=1,...,n

λj

((
E + B̃

)T(
E + B̃

))
.

(4.34)

Then there exist sufficiently small constants a1 and b1 and sufficiently small Lipschitz constants LA
and LB such that for any continuous 2π-periodic with respect to each of the components ϕv, v =
1, . . . , m matrices F(ϕ, x) and I(ϕ, x), which have continuous partial derivatives with respect to x up
to the second order inclusively, such that

max
ϕ∈Tm,x∈Jh

∥∥A1
(
ϕ, x

)∥∥ ≤ a1,

max
ϕ∈Tm,x∈Jh

∥∥B1
(
ϕ, x

)∥∥ ≤ b1

(4.35)
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and for any x′, x′′ ∈ Jh
∥∥A1

(
ϕ, x′

) −A1
(
ϕ, x′′

)∥∥ ≤ LA∥∥x′ − x′′∥∥,∥∥B1
(
ϕ, x′

) − B1
(
ϕ, x′′

)∥∥ ≤ LB∥∥x′ − x′′∥∥,
(4.36)

system (4.11) has an asymptotically stable invariant set.

5. Conclusion

In summary, we have obtained sufficient conditions for the existence and asymptotic stability
of invariant sets of a linear impulsive system of differential equations defined in Tm ×En that
has specific properties in the ω-limit set Ω of the trajectories ϕt(ϕ). We have proved that it is
sufficient to impose some restrictions on system (2.1) only in the domain Ω to guarantee the
existence and asymptotic stability of the invariant set.
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New explicit conditions of asymptotic and exponential stability are obtained for the scalar
nonautonomous linear delay differential equation ẋ(t) +

∑m
k=1 ak(t)x(hk(t)) = 0 with measurable

delays and coefficients. These results are compared to known stability tests.

1. Introduction

In this paper we continue the study of stability properties for the scalar linear differential
equation with several delays and an arbitrary number of positive and negative coefficients

ẋ(t) +
m∑
k=1

ak(t)x(hk(t)) = 0, t ≥ t0, (1.1)

which was begun in [1–3]. Equation (1.1) and its special cases were intensively studied, for
example, in [4–21]. In [2] we gave a review of stability tests obtained in these papers.

In almost all papers on stability of delay-differential equations coefficients and delays
are assumed to be continuous, which is essentially used in the proofs of main results. In real-
world problems, for example, in biological and ecological models with seasonal fluctuations
of parameters and in economical models with investments, parameters of differential equa-
tions are not necessarily continuous.

There are also some mathematical reasons to consider differential equations without
the assumption that parameters are continuous functions. One of the main methods to
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investigate impulsive differential equations is their reduction to a nonimpulsive differential
equation with discontinuous coefficients. Similarly, difference equations can sometimes be
reduced to the similar problems for delay-differential equations with discontinuous piece-
wise constant delays.

In paper [1] some problems for differential equations with several delays were re-
duced to similar problems for equations with one delay which generally is not continuous.

One of the purposes of this paper is to extend and partially improve most popular
stability results for linear delay equations with continuous coefficients and delays to equa-
tions with measurable parameters.

Another purpose is to generalize some results of [1–3]. In these papers, the sum of
coefficients was supposed to be separated from zero and delays were assumed to be bounded.
So the results of these papers are not applicable, for example, to the following equations:

ẋ(t) + |sin t|x(t − τ) = 0,

ẋ(t) + α(|sin t| − sin t)x(t − τ) = 0,

ẋ(t) +
1
t
x(t) +

α

t
x

(
t

2

)
= 0.

(1.2)

In most results of the present paper these restrictions are omitted, so we can consider all
the equations mentioned above. Besides, necessary stability conditions (probably for the first
time) are obtained for (1.1) with nonnegative coefficients and bounded delays. In particular,
if this equation is exponentially stable then the ordinary differential equation

ẋ(t) +
m∑
k=1

ak(t)x(t) = 0 (1.3)

is also exponentially stable.

2. Preliminaries

We consider the scalar linear equation with several delays (1.1) for t ≥ t0 with the initial
conditions (for any t0 ≥ 0)

x(t) = ϕ(t), t < t0, x(t0) = x0, (2.1)

and under the following assumptions:

(a1) ak(t) are Lebesgue measurable essentially bounded on [0,∞) functions;

(a2) hk(t) are Lebesgue measurable functions,

hk(t) ≤ t, lim sup
t→∞

hk(t) =∞; (2.2)

(a3) ϕ : (−∞, t0) → R is a Borel measurable bounded function.

We assume conditions (a1)–(a3) hold for all equations throughout the paper.
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Definition 2.1. A locally absolutely continuous for t ≥ t0 function x : R → R is called a solution
of problem (1.1), (2.1) if it satisfies (1.1) for almost all t ∈ [t0,∞) and the equalities (2.1) for
t ≤ t0.

Below we present a solution representation formula for the nonhomogeneous equation
with locally Lebesgue integrable right-hand side f(t):

ẋ(t) +
m∑
k=1

ak(t)x(hk(t)) = f(t), t ≥ t0. (2.3)

Definition 2.2. A solution X(t, s) of the problem

ẋ(t) +
m∑
k=1

ak(t)x(hk(t)) = 0, t ≥ s ≥ 0,

x(t) = 0, t < s, x(s) = 1,

(2.4)

is called the fundamental function of (1.1).

Lemma 2.3 (see [22, 23]). Suppose conditions (a1)–(a3) hold. Then the solution of (2.3), (2.1) has
the following form

x(t) = X(t, t0)x0 −
∫ t
t0

X(t, s)
m∑
k=1

ak(s)ϕ(hk(s))ds +
∫ t
t0

X(t, s)f(s)ds, (2.5)

where ϕ(t) = 0, t ≥ t0.

Definition 2.4 (see [22]). Equation (1.1) is stable if for any initial point t0 and number ε > 0
there exists δ > 0 such that the inequality supt<t0 |ϕ(t)|+ |x(t0)| < δ implies |x(t)| < ε, t ≥ t0, for
the solution of problem (1.1), (2.1).

Equation (1.1) is asymptotically stable if it is stable and all solutions of (1.1)-(2.1) for any
initial point t0 tend to zero as t → ∞.

In particular, (1.1) is asymptotically stable if the fundamental function is uniformly
bounded: |X(t, s)| ≤ K, t ≥ s ≥ 0 and all solutions tend to zero as t → ∞.

We apply in this paper only these two conditions of asymptotic stability.

Definition 2.5. Equation (1.1) is (uniformly) exponentially stable, if there exist M > 0, μ > 0 such
that the solution of problem (1.1), (2.1) has the estimate

|x(t)| ≤Me−μ(t−t0)
(
|x(t0)| + sup

t<t0

∣∣ϕ(t)∣∣
)
, t ≥ t0, (2.6)

where M and μ do not depend on t0.
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Definition 2.6. The fundamental function X(t, s) of (1.1) has an exponential estimation if there
exist K > 0, λ > 0 such that

|X(t, s)| ≤ Ke−λ(t−s), t ≥ s ≥ 0. (2.7)

For the linear (1.1) with bounded delays the last two definitions are equivalent. For
unbounded delays estimation (2.7) implies asymptotic stability of (1.1).

Under our assumptions the exponential stability does not depend on values of equa-
tion parameters on any finite interval.

Lemma 2.7 (see [24, 25]). Suppose ak(t) ≥ 0. If

∫ t
max{h(t),t0}

m∑
i=1

ai(s)ds ≤ 1
e
, h(t) = min

k
{hk(t)}, t ≥ t0, (2.8)

or there exists λ > 0, such that

λ ≥
m∑
k=1

Ake
λσk , (2.9)

where

0 ≤ ak(t) ≤ Ak, t − hk(t) ≤ σk, t ≥ t0, (2.10)

then X(t, s) > 0, t ≥ s ≥ t0, where X(t, s) is the fundamental function of (1.1).

Lemma 2.8 (see [3]). Suppose ak(t) ≥ 0,

lim inf
t→∞

m∑
k=1

ak(t) > 0, (2.11)

lim sup
t→∞

(t − hk(t)) <∞, k = 1, . . . , m, (2.12)

and there exists r(t) ≤ t such that for sufficiently large t

∫ t
r(t)

m∑
k=1

ak(s)ds ≤ 1
e
. (2.13)

If

lim sup
t→∞

m∑
k=1

ak(t)∑m
i=1 ai(t)

∣∣∣∣∣
∫ r(t)
hk(t)

m∑
i=1

ai(s)ds

∣∣∣∣∣ < 1, (2.14)

then (1.1) is exponentially stable.
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Lemma 2.9 (see [3]). Suppose (2.12) holds and there exists a set of indices I ⊂ {1, . . . , m}, such that
ak(t) ≥ 0, k ∈ I,

lim inf
t→∞

∑
k∈I
ak(t) > 0, (2.15)

and the fundamental function of the equation

ẋ(t) +
∑
k∈I
ak(t)x(hk(t)) = 0 (2.16)

is eventually positive. If

lim sup
t→∞

∑
k/∈I |ak(t)|∑
k∈I ak(t)

< 1, (2.17)

then (1.1) is exponentially stable.

The following lemma was obtained in [26, Corollary 2], see also [27].

Lemma 2.10. Suppose for (1.1) condition (2.12) holds and this equation is exponentially stable. If

∫∞
0

n∑
k=1

|bk(s)|ds <∞, lim sup
t→∞

(
t − gk(t)

)
<∞, gk(t) ≤ t, (2.18)

then the equation

ẋ(t) +
m∑
k=1

ak(t)x(hk(t)) +
n∑
k=1

bk(t)x
(
gk(t)

)
= 0 (2.19)

is exponentially stable.

The following elementary result will be used in the paper.

Lemma 2.11. The ordinary differential equation

ẋ(t) + a(t)x(t) = 0 (2.20)

is exponentially stable if and only if there exists R > 0 such that

lim inf
t→∞

∫ t+R
t

a(s)ds > 0. (2.21)
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The following example illustrates that a stronger than (2.21) sufficient condition

lim inf
t,s→∞

1
t − s

∫ t
s

a(τ)dτ > 0 (2.22)

is not necessary for the exponential stability of the ordinary differential equation (2.20).

Example 2.12. Consider the equation

ẋ(t) + a(t)x(t) = 0, where a(t) =

⎧⎨
⎩

1, t ∈ [2n, 2n + 1),

0, t ∈ [2n + 1, 2n + 2),
n = 0, 1, 2, . . . (2.23)

Then lim inf in (2.22) equals zero, but |X(t, s)| < ee−0.5(t−s), so the equation is exponentially
stable. Moreover, if we consider lim inf in (2.22) under the condition t − s ≥ R, then it is still
zero for any R ≤ 1.

3. Main Results

Lemma 3.1. Suppose ak(t) ≥ 0, (2.11), (2.12) hold and

lim sup
t→∞

m∑
k=1

ak(t)∑m
i=1 ai(t)

∫ t
hk(t)

m∑
i=1

ai(s)ds < 1 +
1
e
. (3.1)

Then (1.1) is exponentially stable.

Proof. By (2.11) there exists function r(t) ≤ t such that for sufficiently large t

∫ t
r(t)

m∑
k=1

ak(s)ds =
1
e
. (3.2)

For this function condition (2.14) has the form

lim sup
t→∞

m∑
k=1

ak(t)∑m
i=1 ai(t)

∣∣∣∣∣
∫ t
hk(t)

m∑
i=1

ai(s)ds −
∫ t
r(t)

m∑
i=1

ai(s)ds

∣∣∣∣∣

= lim sup
t→∞

m∑
k=1

ak(t)∑m
i=1 ai(t)

∣∣∣∣∣
∫ t
hk(t)

m∑
i=1

ai(s)ds − 1
e

∣∣∣∣∣ < 1.

(3.3)

The latter inequality follows from (3.1). The reference to Lemma 2.8 completes the proof.
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Corollary 3.2. Suppose ak(t) ≥ 0, (2.11), (2.12) hold and

lim sup
t→∞

∫ t
mink{hk(t)}

m∑
i=1

ai(s)ds < 1 +
1
e
. (3.4)

Then (1.1) is exponentially stable.

The following theorem contains stability conditions for equations with unbounded
delays. We also omit condition (2.11) in Lemma 3.1.

We recall that b(t) > 0 in the space of Lebesgue measurable essentially bounded
functions means b(t) ≥ 0 and b(t)/= 0 almost everywhere.

Theorem 3.3. Suppose ak(t) ≥ 0, condition (3.1) holds,
∑m

k=1 ak(t) > 0 and

∫∞
0

m∑
k=1

ak(t)dt =∞, lim sup
t→∞

∫ t
hk(t)

m∑
i=1

ai(s)ds < ∞. (3.5)

Then (1.1) is asymptotically stable.
If in addition there exists R > 0 such that

lim inf
t→∞

∫ t+R
t

m∑
k=1

ak(τ)dτ > 0 (3.6)

then the fundamental function of (1.1) has an exponential estimation.
If condition (2.12) also holds then (1.1) is exponentially stable.

Proof. Let s = p(t) :=
∫ t

0

∑m
k=1 ak(τ)dτ , y(s) = x(t), where p(t) is a strictly increasing function.

Then x(hk(t)) = y(lk(s)), lk(s) ≤ s, lk(s) =
∫hk(t)

0

∑m
i=1 ai(τ)dτ and (1.1) can be rewritten in the

form

ẏ(s) +
m∑
k=1

bk(s)y(lk(s)) = 0, (3.7)

where bk(s) = ak(t)/
∑m

i=1 ai(t), s − lk(s) =
∫ t
hk(t)

∑m
i=1 ai(τ)dτ . Since

∑m
k=1 bk(s) = 1 and

lim sups→∞(s − lk(s)) < ∞, then Lemma 3.1 can be applied to (3.7). We have

lim sup
s→∞

m∑
k=1

bk(s)∑m
i=1 bi(s)

∫ s
lk(s)

m∑
i=1

bi(τ)dτ

= lim sup
s→∞

m∑
k=1

bk(s)(s − lk(s))

= lim sup
t→∞

m∑
k=1

ak(t)∑m
i=1 ai(t)

∫ t
hk(t)

m∑
i=1

ai(s)ds < 1 +
1
e
.

(3.8)
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By Lemma 3.1, (3.7) is exponentially stable. Due to the first equality in (3.5) t → ∞ implies
s → ∞. Hence limt→∞x(t) = lims→∞y(s) = 0.

Equation (3.7) is exponentially stable, thus the fundamental function Y(u, v) of (3.7)
has an exponential estimation

|Y(u, v)| ≤ Ke−λ(u−v), u ≥ v ≥ 0, (3.9)

with K > 0, λ > 0. Since X(t, s) = Y(
∫ t

0

∑m
k=1 ak(τ)dτ,

∫s
0

∑m
k=1 ak(τ)dτ), where X(t, s) is the

fundamental function of (1.1), then (3.9) yields

|X(t, s)| ≤ K exp

{
−λ
∫ t
s

m∑
k=1

ak(τ)dτ

}
. (3.10)

Hence |X(t, s)| ≤ K, t ≥ s ≥ 0, which together with limt→∞x(t) = 0 yields that (1.1) is
asymptotically stable.

Suppose now that (3.6) holds. Without loss of generality we can assume that for some
R > 0, α > 0 we have

∫ t+R
t

m∑
k=1

ak(τ)dτ ≥ α > 0, t ≥ s ≥ 0. (3.11)

Hence

exp

{
−λ
∫ t
s

m∑
k=1

ak(τ)dτ

}
≤ exp

{
λR sup

t≥0

m∑
k=1

ak(t)

}
e−λα(t−s)/R. (3.12)

Thus, condition (3.6) implies the exponential estimate for X(t, s).
The last statement of the theorem is evident.

Remark 3.4. The substitution s = p(t) :=
∫ t

0

∑m
k=1 ak(τ)dτ , y(s) = x(t) was first used in [28].

Note that in [10, Lemma 2] this idea was extended to a more general equation

ẋ(t) +
∫ t
t0

x(s)dsr(t, s) = 0. (3.13)

The ideas of [10] allow to generalize the results of the present paper to equations with a
distributed delay.

Corollary 3.5. Suppose ak(t) ≥ 0,
∑m

k=1 ak(t) ≡ α > 0, condition (2.12) holds and

lim sup
t→∞

m∑
k=1

ak(t)(t − hk(t)) < 1 +
1
e
. (3.14)

Then (1.1) is exponentially stable.



Abstract and Applied Analysis 9

Corollary 3.6. Suppose ak(t) = αkp(t), αk > 0, p(t) > 0,
∫∞

0 p(t)dt = ∞ and

lim sup
t→∞

m∑
k=1

αk

∫ t
hk(t)

p(s)ds < 1 +
1
e
. (3.15)

Then (1.1) is asymptotically stable.
If in addition there exists R > 0 such that

lim inf
t→∞

∫ t+R
t

p(τ)dτ > 0, (3.16)

then the fundamental function of (1.1) has an exponential estimation.
If also (2.12) holds then (1.1) is exponentially stable.

Remark 3.7. Let us note that similar results for (3.13) were obtained in [10], see Corollary
3.4 and remark after it, Theorem 4 and Corollaries 4.1 and 4.2 in [10], where an analogue
of condition (3.16) was applied. This allows to extend the results of the present paper to
equations with a distributed delay.

Corollary 3.8. Suppose a(t) ≥ 0, b(t) ≥ 0, a(t) + b(t) > 0,

∫∞
0
(a(t) + b(t))dt =∞, lim sup

t→∞

∫ t
h(t)

(a(s) + b(s))ds <∞,

lim sup
t→∞

b(t)
a(t) + b(t)

∫ t
h(t)

(a(s) + b(s))ds < 1 +
1
e
.

(3.17)

Then the following equation is asymptotically stable

ẋ(t) + a(t)x(t) + b(t)x(h(t)) = 0. (3.18)

If in addition there exists R > 0 such that lim inft→∞
∫ t+R
t

(a(τ) + b(τ))dτ > 0 then the
fundamental function of (3.18) has an exponential estimation.

If also lim supt→∞(t − h(t)) <∞ then (3.18) is exponentially stable.

In the following theorem we will omit the condition
∑m

k=1 ak(t) > 0 of Theorem 3.3.

Theorem 3.9. Suppose ak(t) ≥ 0, condition (3.4) and the first inequality in (3.5) hold. Then (1.1) is
asymptotically stable.

If in addition (3.6) holds then the fundamental function of (1.1) has an exponential estimation.
If also (2.12) holds then (1.1) is exponentially stable.

Proof. For simplicity suppose that m = 2 and consider the equation

ẋ(t) + a(t)x(h(t)) + b(t)x
(
g(t)
)
= 0, (3.19)
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where a(t) ≥ 0, b(t) ≥ 0,
∫∞

0 (a(s) + b(s))ds = ∞ and there exist t0 ≥ 0, ε > 0 such that

∫ t
min{h(t),g(t)}

(a(s) + b(s))ds < 1 +
1
e
− ε, t ≥ t0. (3.20)

Let us find t1 ≥ t0 such that e−h(t) < ε/4, e−g(t) < ε/4, t ≥ t1, such t1 exists due to (a2). Then∫ t
min{h(t),g(t)} e

−sds < ε/2, t ≥ t1. Rewrite (3.19) in the form

ẋ(t) +
(
a(t) + e−t

)
x(h(t)) + b(t)x

(
g(t)
) − e−tx(h(t)) = 0, (3.21)

where a(t)+b(t)+e−t > 0. After the substitution s =
∫ t
t1
(a(τ)+b(τ)+e−τ )dτ , y(s) = x(t), (3.21)

has the form

ẏ(s) +
a(t) + e−t

a(t) + b(t) + e−t
y(l(s)) +

b(t)
a(t) + b(t) + e−t

y
(
p(s)

) − e−t

a(t) + b(t) + e−t
y(l(s)) = 0,

(3.22)

where similar to the proof of Theorem 3.3

s − l(s) =
∫ t
h(t)

(
a(τ) + b(τ) + e−τ

)
dτ, s − p(s) =

∫ t
g(t)

(
a(τ) + b(τ) + e−τ

)
dτ. (3.23)

First we will show that by Corollary 3.2 the equation

ẏ(s) +
a(t) + e−t

a(t) + b(t) + e−t
y(l(s)) +

b(t)
a(t) + b(t) + e−t

y
(
p(s)

)
= 0 (3.24)

is exponentially stable. Since (a(t) + e−t)/(a(t) + b(t) + e−t) + b(t)/(a(t) + b(t) + e−t) = 1, then
(2.11) holds. Condition (3.20) implies (2.12). So we have to check only condition (3.4) where
the sum under the integral is equal to 1. By (3.20), (3.23) we have

∫ s
min{l(s),p(s)}

1ds = s −min
{
l(s), p(s)

}
, s − l(s) =

∫ t
h(t)

(
a(τ) + b(τ) + e−τ

)
dτ

=
∫ t
h(t)

(a(τ) + b(τ))dτ +
∫ t
h(t)

e−τdτ < 1 +
1
e
− ε + ε

2
= 1 +

1
e
− ε

2
, t ≥ t1.

(3.25)

The same calculations give s − p(s) < 1 + (1/e) − ε/2, thus condition (3.4) holds.
Hence (3.24) is exponentially stable.
We return now to (3.22), t ≥ t1. We have ds = (a(t) + b(t) + e−t)dt, then

∫∞
t1

e−t

a(t) + b(t) + e−t
ds =

∫∞
t1

e−t

a(t) + b(t) + e−t
(
a(t) + b(t) + e−t

)
dt < ∞. (3.26)
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By Lemma 2.10, (3.22) is exponentially stable. Since t → ∞ implies s → ∞ then
limt→∞x(t) = lims→∞y(s) = 0, which completes the proof of the first part of the theorem.
The rest of the proof is similar to the proof of Theorem 3.3.

Corollary 3.10. Suppose a(t) ≥ 0,
∫∞

0 a(t)dt = ∞ and

lim sup
t→∞

∫ t
h(t)

a(s)ds < 1 +
1
e
. (3.27)

Then the equation

ẋ(t) + a(t)x(h(t)) = 0 (3.28)

is asymptotically stable. If in addition condition (2.21) holds then the fundamental function of (3.28)
has an exponential estimation. If also lim supt→∞(t − h(t)) < ∞ then (3.28) is exponentially stable.

Now consider (1.1), where only some of coefficients are nonnegative.

Theorem 3.11. Suppose there exists a set of indices I ⊂ {1, . . . , m} such that ak(t) ≥ 0, k ∈ I,

∫∞
0

∑
k∈I
ak(t)dt =∞, lim sup

t→∞

∫ t
hk(t)

∑
i∈I
ai(s)ds <∞, k = 1, . . . , m, (3.29)

∑
k/∈I
|ak(t)| = 0, t ∈ E, lim sup

t→∞, t/∈E

∑
k/∈I |ak(t)|∑
k∈I ak(t)

< 1, where E =

{
t ≥ 0,

∑
k∈I
ak(t) = 0

}
. (3.30)

If the fundamental function X0(t, s) of (2.16) is eventually positive then all solutions of (1.1)
tend to zero as t → ∞.

If in addition there exists R > 0 such that

lim inf
t→∞

∫ t+R
t

∑
k∈I
ak(τ)dτ > 0 (3.31)

then the fundamental function of (1.1) has an exponential estimation.
If condition (2.12) also holds then (1.1) is exponentially stable.

Proof. Without loss of generality we can assume X0(t, s) > 0, t ≥ s ≥ 0. Rewrite (1.1) in the
form

ẋ(t) +
∑
k∈I
ak(t)x(hk(t)) +

∑
k/∈I
ak(t)x(hk(t)) = 0. (3.32)
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Suppose first that
∑

k∈I ak(t)/= 0. After the substitution s = p(t) :=
∫ t

0

∑
k∈I ak(τ)dτ , y(s) = x(t)

we have x(hk(t)) = y(lk(s)), lk(s) ≤ s, lk(s) =
∫hk(t)

0

∑
i∈I ai(τ)dτ , k = 1, . . . , m, and (1.1) can be

rewritten in the form

ẏ(s) +
m∑
k=1

bk(s)y(lk(s)) = 0, (3.33)

where bk(s) = ak(t)/
∑

i∈I ai(t). Denote by Y0(u, v) the fundamental function of the equation

ẏ(s) +
∑
k∈I
bk(s)y(lk(s)) = 0. (3.34)

We have

X0(t, s) = Y0

(∫ t
0

∑
k∈I
ak(τ)dτ,

∫ s
0

∑
k∈I
ak(τ)dτ

)
,

Y0(u, v) = X0

(
p−1(u), p−1(v)

)
> 0, u ≥ v ≥ 0.

(3.35)

Let us check that other conditions of Lemma 2.9 hold for (3.33). Since
∑

k∈I bk(s) = 1
then condition (2.15) is satisfied. In addition,

lim sup
s→∞, p−1(s)/∈E

∑
k/∈I |bk(s)|∑
k∈I bk(s)

= lim sup
t→∞, t/∈E

∑
k/∈I |ak(t)|∑
k∈I ak(t)

< 1. (3.36)

By Lemma 2.9, (3.33) is exponentially stable. Hence for any solution x(t) of (1.1) we have
limt→∞x(t) = lims→∞y(s) = 0. The end of the proof is similar to the proof of Theorem 3.9. In
particular, to remove the condition

∑
k∈I ak(t)/= 0 we rewrite the equation by adding the term

e−t to one of ak(t), k ∈ I.

Remark 3.12. Explicit positiveness conditions for the fundamental function were presented in
Lemma 2.7.

Corollary 3.13. Suppose

a(t) ≥ 0,
∫∞

0
a(t)dt = ∞, lim sup

t→∞

∫ t
gk(t)

a(s)ds <∞,

n∑
k=1

|bk(t)| = 0, t ∈ E, lim sup
t→∞, t/∈E

∑n
k=1|bk(t)|
a(t)

< 1,

(3.37)

where E = {t ≥ 0, a(t) = 0}. Then the equation

ẋ(t) + a(t)x(t) +
n∑
k=1

bk(t)x
(
gk(t)

)
= 0 (3.38)
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is asymptotically stable. If in addition (2.21) holds then the fundamental function of (3.38) has an
exponential estimation. If also lim supt→∞(t − gk(t)) < ∞ then (3.38) is exponentially stable.

Theorem 3.14. Suppose
∫∞

0

∑m
k=1 |ak(s)|ds < ∞. Then all solutions of (1.1) are bounded and (1.1)

is not asymptotically stable.

Proof. For the fundamental function of (1.1) we have the following estimation

|X(t, s)| ≤ exp

{∫ t
s

m∑
k=1

|ak(τ)|dτ
}
. (3.39)

Then by solution representation formula (2.5) for any solution x(t) of (1.1) we have

|x(t)| ≤ exp

{∫ t
t0

m∑
k=1

|ak(s)|ds
}
|x(t0)| +

∫ t
t0

exp

{∫ t
s

m∑
k=1

|ak(τ)|dτ
}

m∑
k=1

|ak(s)|
∣∣ϕ(hk(s))∣∣ds

≤ exp

{∫∞
t0

m∑
k=1

|ak(s)|ds
}(
|x(t0)| +

∫∞
t0

m∑
k=1

|ak(s)|ds‖ϕ‖
)
,

(3.40)

where ‖ϕ‖ = maxt<0|ϕ(t)|. Then x(t) is a bounded function.
Moreover, |X(t, s)| ≤ A := exp{∫∞0 ∑m

k=1 |ak(s)|ds}, t ≥ s ≥ 0. Let us choose t0 ≥ 0 such
that

∫∞
t0

∑m
k=1 |ak(s)|ds < 1/(2A), thenX′t(t, t0)+

∑m
k=1 ak(t)X(hk(t), t0) = 0,X(t0, t0) = 1 implies

X(t, t0) ≥ 1 − ∫∞t0
∑m

k=1 |ak(s)|Ads > 1 − A(1/(2A)) = 1/2, thus X(t, t0) does not tend to zero,
so (1.1) is not asymptotically stable.

Theorems 3.11 and 3.14 imply the following results.

Corollary 3.15. Suppose ak(t) ≥ 0, there exists a set of indices I ⊂ {1, . . . , m} such that condition
(3.30) and the second condition in (3.29) hold. Then all solutions of (1.1) are bounded.

Proof. If
∫∞

0

∑
k∈I |ak(t)|dt = ∞, then all solutions of (1.1) are bounded by Theorem 3.11. Let∫∞

0

∑
k∈I |ak(t)|dt < ∞. By (3.30) we have

∫∞
0

∑
k/∈I |ak(t)|dt ≤

∫∞
0

∑
k∈I |ak(t)|dt < ∞. Then∫∞

0

∑m
k=1 |ak(t)|dt <∞. By Theorem 3.14 all solutions of (1.1) are bounded.

Theorem 3.16. Suppose ak(t) ≥ 0. If (1.1) is asymptotically stable, then the ordinary differential
equation

ẋ(t) +

(
m∑
k=1

ak(t)

)
x(t) = 0 (3.41)

is also asymptotically stable. If in addition (2.12) holds and (1.1) is exponentially stable, then (3.41)
is also exponentially stable.
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Proof. The solution of (3.41), with the initial condition x(t0) = x0, can be presented as x(t) =
x0 exp{− ∫ t

t0

∑m
k=1 ak(s)ds}, so (3.41) is asymptotically stable, as far as

∫∞
0

m∑
k=1

ak(s)ds =∞ (3.42)

and is exponentially stable if (3.6) holds (see Lemma 2.11).
If (3.42) does not hold, then by Theorem 3.14, (1.1) is not asymptotically stable.
Further, let us demonstrate that exponential stability of (1.1) really implies (3.6).
Suppose for the fundamental function of (1.1) inequality (2.7) holds and condition

(3.6) is not satisfied. Then there exists a sequence {tn}, tn → ∞, such that

∫ tn+n
tn

m∑
k=1

ak(τ)dτ <
1
n
<

1
e
, n ≥ 3. (3.43)

By (2.12) there exists n0 > 3 such that t−hk(t) ≤ n0, k = 1, . . . , m. Lemma 2.7 impliesX(t, s) > 0,
tn ≤ s ≤ t ≤ tn + n, n ≥ n0. Similar to the proof of Theorem 3.14 and using the inequality
1 − x ≥ e−x, x > 0, we obtain

X(tn, tn + n) ≥ 1 −
∫ tn+n
tn

m∑
k=1

ak(τ)dτ ≥ exp

{
−
∫ tn+n
tn

m∑
k=1

ak(τ)dτ

}
> e−1/n. (3.44)

Inequality (2.7) implies |X(tn +n, tn)| ≤ Ke−λn. Hence Ke−λn ≥ e−1/n, n ≥ n0, or K > eλn−1/3 for
any n ≥ n0. The contradiction proves the theorem.

Theorems 3.11 and 3.16 imply the following statement.

Corollary 3.17. Suppose ak(t) ≥ 0 and the fundamental function of (1.1) is positive. Then (1.1) is
asymptotically stable if and only if the ordinary differential equation (3.41) is asymptotically stable.

If in addition (2.12) holds then (1.1) is exponentially stable if and only if (3.41) is exponen-
tially stable.

4. Discussion and Examples

In paper [2] we gave a review of known stability tests for the linear equation (1.1). In this
part we will compare the new results obtained in this paper with known stability conditions.

First let us compare the results of the present paper with our papers [1–3]. In all
these three papers we apply the same method based on Bohl-Perron-type theorems and
comparison with known exponentially stable equations.

In [1–3] we considered exponential stability only. Here we also give explicit conditions
for asymptotic stability. For this type of stability, we omit the requirement that the delays are
bounded and the sum of the coefficients is separated from zero. We also present some new
stability tests, based on the results obtained in [3].

Compare now the results of the paper with some other known results [5–7, 9, 10, 22].
First of all we replace the constant 3/2 in most of these tests by the constant 1+1/e. Evidently
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1 + 1/e = 1.3678 · · · < 3/2, so we have a worse constant, but it is an open problem to obtain
(3/2)-stability results for equations with measurable coefficients and delays.

Consider now (3.28) with a single delay. This equation is well studied beginning with
the classical stability result by Myshkis [29]. We present here several statements which cover
most of known stability tests for this equation.

Statement 1 (see [5]). Suppose a(t) ≥ 0, h(t) ≤ t are continuous functions and

lim sup
t→∞

∫ t
h(t)

a(s)ds ≤ 3
2
. (4.1)

Then all solutions of (3.28) are bounded.
If in addition

lim inf
t→∞

∫ t
h(t)

a(s)ds > 0, (4.2)

and the strict inequality in (4.1) holds then (3.28) is exponentially stable.

Statement 2 (see [7]). Suppose a(t) ≥ 0, h(t) ≤ t are continuous functions, the strict inequality
(4.1) holds and

∫∞
0 a(s)ds =∞. Then all solutions of (3.28) tend to zero as t → ∞.

Statement 3 (see [9, 10]). Suppose a(t) ≥ 0, h(t) ≤ t are measurable functions,
∫∞

0 a(s)ds = ∞,
A(t) =

∫ t
0 a(s)ds is a strictly monotone increasing function and

lim sup
t→∞

∫ t
h(t)

a(s)ds < sup
0<ω<π/2

(
ω +

1
Φ(ω)

)
≈ 1.45 . . . , (4.3)

Φ(ω) =
∫∞

0 u(t, ω)dt, where u(t, ω) is a solution of the initial value problem

ẏ(t) + y(t −ω) = 0, y(t) = 0, t < 0, y(0) = 1. (4.4)

Then (3.28) is asymptotically stable.

Note that instead of the equation ẏ(t)+y(t−ω) = 0 with a constant delay, the equation

ẏ(t) + y(t − τ(t)) = 0 (4.5)

can be used as the model equation. For example, the following results are valid.

Statement 4 (see [10]). Equation (4.5) is exponentially stable if |τ(t) − ω| ≤ k/χ(ω), where
k ∈ [0, ω), 0 ≤ ω < π/2 and χ(ω) =

∫∞
0 |u(t, ω)|dt.

Obviously in this statement the delay can exceed 2.

Statement 5 (see [10]). Let τ(t) ≤ k +ω{t/ω}, where k ∈ (0, 1), 0 < ω < 1, {q} is the fractional
part of q. Then (4.5) is exponentially stable.
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Here the delay τ(t) can be in the neighbourhood of ω which is close to 1.

Example 4.1. Consider the equation

ẋ(t) + α(|sin t| − sin t)x(h(t)) = 0, h(t) ≤ t, (4.6)

where h(t) is an arbitrary measurable function such that t − h(t) ≤ π and α > 0.

This equation has the form (3.28) where a(t) = α(| sin t| − sin t). Let us check that the
conditions of Corollary 3.10 hold. It is evident that

∫∞
0 a(s)ds =∞. We have

lim sup
t→∞

∫ t
h(t)

a(s)ds ≤ lim sup
t→∞

∫ t
t−π

a(s)ds ≤ −α
∫ 2π

π

2 sin s ds = 4α. (4.7)

If α < 0.25(1 + 1/e), then condition (3.27) holds, hence all solutions of (4.6) tend to zero as
t → ∞.

Statements 1–3 fail for this equation. In Statements 1 and 2 the delay should be
continuous. In Statement 3 function A(t) =

∫ t
0 a(s)ds should be strictly increasing.

Consider now the general equation (1.1) with several delays. The following two
statements are well known for this equation.

Statement 6 (see [6]). Suppose ak(t) ≥ 0, hk(t) ≤ t are continuous functions and

lim sup
t→∞

ak(t)lim sup
t→∞

(t − hk(t)) ≤ 1. (4.8)

Then all solutions of (1.1) are bounded and 1 in the right-hand side of (4.8) is the best possible
constant.

If
∑m

k=1 ak(t) > 0 and the strict inequality in (4.8) is valid then all solutions of (1.1) tend
to zero as t → ∞.

If ak(t) are constants then in (4.8) the number 1 can be replaced by 3/2.

Statement 7 (see [7]). Suppose ak(t) ≥ 0, hk(t) ≤ t are continuous, h1(t) ≤ h2(t) ≤ · · · ≤ hm(t)
and

lim sup
t→∞

∫ t
h1(t)

m∑
k=1

ak(s)ds ≤ 3
2
. (4.9)

Then any solution of (1.1) tends to a constant as t → ∞.
If in addition

∫∞
0

∑m
k=1 ak(s)ds = ∞, then all solutions of (1.1) tend to zero as t → ∞.

Example 4.2. Consider the equation

ẋ(t) +
α

t
x

(
t

2
− sin t

)
+
β

t
x

(
t

2

)
= 0, t ≥ t0 > 0, (4.10)

where α > 0, β > 0. Denote p(t) = 1/t, h(t) = t/2 − sin t, g(t) = t/2.
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We apply Corollary 3.6. Since limt→∞[ln(t/2) − ln(t/2 − sin t)] = 0, then

lim sup
t→∞

(
α

∫ t
h(t)

p(s)ds + β
∫ t
g(t)

p(s)ds

)
≤ (α + β

)
ln 2. (4.11)

Hence if α + β < (1/ ln 2)(1 + 1/e) then (4.10) is asymptotically stable. Statement 4 fails for
this equation since the delays are unbounded. Statement 5 fails for this equation since neither
h(t) ≤ g(t) nor g(t) ≤ h(t) holds.

Stability results where the nondelay term dominates over the delayed terms are well
known beginning with the book of Krasovskii [30]. The following result is cited from the
monograph [22].

Statement 8 (see [22]). Suppose a(t), bk(t), t − hk(t) are bounded continuous functions, there
exist δ, k, δ > 0, 0 < k < 1, such that a(t) ≥ δ and

∑m
k=1 |bk(t)| < kδ. Then the equation

ẋ(t) + a(t)x(t) +
m∑
k=1

bk(t)x(hk(t)) = 0 (4.12)

is exponentially stable.

In Corollary 3.13 we obtained a similar result without the assumption that the
parameters of the equation are continuous functions and the delays are bounded.

Example 4.3. Consider the equation

ẋ(t) +
1
t
x(t) +

α

t
x

(
t

2

)
= 0, t ≥ t0 > 0. (4.13)

If α < 1 then by Corollary 3.13 all solutions of (4.13) tend to zero. The delay is unbounded,
thus Statement 8 fails for this equation.

In [31] the authors considered a delay autonomous equation with linear and nonlinear
parts, where the differential equation with the linear part only has a positive fundamental
function and the linear part dominates over the nonlinear one. They generalized the early
result of Győri [32] and some results of [33].

In Theorem 3.11 we obtained a similar result for a linear nonautonomous equation
without the assumption that coefficients and delays are continuous.

In all the results of the paper we assumed that all or several coefficients of equations
considered here are nonnegative. Stability results for (3.28) with oscillating coefficient a(t)
were obtained in [34, 35].

We conclude this paper with some open problems.

(1) Is the constant 1 + 1/e sharp? Prove or disprove that in Corollary 3.10 the constant
1 + 1/e can be replaced by the constant 3/2.
Note that all known proofs with the constant 3/2 apply methods which are not
applicable for equations with measurable parameters.
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(2) Suppose (2.11), (2.12) hold and

lim sup
t→∞

m∑
k=1

|ak(t)|∑m
i=1 ai(t)

∫ t
hk(t)

m∑
i=1

ai(s)ds < 1 +
1
e
. (4.14)

Prove or disprove that (1.1) is exponentially stable.
The solution of this problem will improve Theorem 3.3.

(3) Suppose (1.1) is exponentially stable. Prove or disprove that the ordinary
differential equation (3.41) is also exponentially (asymptotically) stable, without
restrictions on the signs of coefficients ak(t) ≥ 0, as in Theorem 3.16. The solution of
this problem would improve Theorem 3.16.
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Existence of nonoscillatory solutions for the second-order dynamic equation (A0x
Δ)Δ(t) +∑

i∈[1,n]N Ai(t)x(αi(t)) = 0 for t ∈ [t0,∞)
T

is investigated in this paper. The results involve
nonoscillation criteria in terms of relevant dynamic and generalized characteristic inequalities,
comparison theorems, and explicit nonoscillation and oscillation conditions. This allows to obtain
most known nonoscillation results for second-order delay differential equations in the case A0(t) ≡
1 for t ∈ [t0,∞)

R
and for second-order nondelay difference equations (αi(t) = t+ 1 for t ∈ [t0,∞)

N
).

Moreover, the general results imply new nonoscillation tests for delay differential equations with
arbitrary A0 and for second-order delay difference equations. Known nonoscillation results for
quantum scales can also be deduced.

1. Introduction

This paper deals with second-order linear delay dynamic equations on time scales.
Differential equations of the second order have important applications and were extensively
studied; see, for example, the monographs of Agarwal et al. [1], Erbe et al. [2], Győri and
Ladas [3], Ladde et al. [4], Myškis [5], Norkin [6], Swanson [7], and references therein.
Difference equations of the second order describe finite difference approximations of second-
order differential equations, and they also have numerous applications.

We study nonoscillation properties of these two types of equations and some of
their generalizations. The main result of the paper is that under some natural assumptions
for a delay dynamic equation the following four assertions are equivalent: nonoscillation
of solutions of the equation on time scales and of the corresponding dynamic inequality,
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positivity of the fundamental function, and the existence of a nonnegative solution for a
generalized Riccati inequality. The equivalence of oscillation properties of the differential
equation and the corresponding differential inequality can be applied to obtain new explicit
nonoscillation and oscillation conditions and also to prove some well-known results in a
different way. A generalized Riccati inequality is used to compare oscillation properties of
two equations without comparing their solutions. These results can be regarded as a natural
generalization of the well-known Sturm-Picone comparison theorem for a second-order
ordinary differential equation; see [7, Section 1.1]. Applying positivity of the fundamental
function, positive solutions of two equations can be compared. There are many results
of this kind for delay differential equations of the first-order and only a few for second-
order equations. Myškis [5] obtained one of the first comparison theorems for second-order
differential equations. The results presented here are generalizations of known nonoscillation
tests even for delay differential equations (when the time scale is the real line).

The paper also contains conditions on the initial function and initial values which
imply that the corresponding solution is positive. Such conditions are well known for first-
order delay differential equations; however, to the best of our knowledge, the only paper
concerning second-order equations is [8].

From now on, we will without furthermore mentioning suppose that the time scale T

is unbounded from above. The purpose of the present paper is to study nonoscillation of the
delay dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = f(t) for t ∈ [t0,∞)
T
, (1.1)

where n ∈ N, t0 ∈ T, f ∈ Crd([t0,∞)
T
,R) is the forcing term, A0 ∈ Crd([t0,∞)

T
,R+), and for

all i ∈ [1, n]
N

, Ai ∈ Crd([t0,∞)
T
,R) is the coefficient corresponding to the function αi, where

αi ≤ σ on [t0,∞)
T

.
In this paper, we follow the method employed in [8] for second-order delay differential

equations. The method can also be regarded as an application of that used in [9] for first-order
dynamic equations.

As a special case, the results of the present paper allow to deduce nonoscillation
criteria for the delay differential equation

(
A0x

′)′(t) + ∑
i∈[1,n]

N

Ai(t)x(αi(t)) = 0 for t ∈ [t0,∞)
R
, (1.2)

in the caseA0(t) ≡ 1 for t ∈ [t0,∞)
R

, they coincide with theorems in [8]. The case of a “quickly
growing” function A0 when the integral of its reciprocal can converge is treated separately.

Let us recall some known nonoscillation and oscillation results for the ordinary
differential equations

(
A0x

′)′(t) +A1(t)x(t) = 0 for t ∈ [t0,∞)
R
, (1.3)

x′′(t) +A1(t)x(t) = 0 for t ∈ [t0,∞)
R
, (1.4)

where A1 is nonnegative, which are particular cases of (1.2) with n = 1, α1(t) = t, and A0(t) ≡
1 for all t ∈ [t0,∞)

R
.
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In [10], Leighton proved the following well-known oscillation test for (1.4); see [10,
11].

Theorem A (see [10]). Assume that

∫∞
t0

1
A0
(
η
)dη =∞,

∫∞
t0

A1
(
η
)
dη =∞, (1.5)

then (1.3) is oscillatory.

This result for (1.4) was obtained by Wintner in [12] without imposing any sign
condition on the coefficient A1.

In [13], Kneser proved the following result.

Theorem B (see [13]). Equation (1.4) is nonoscillatory if t2A1(t) ≤ 1/4 for all t ∈ [t0,∞)
R
, while

oscillatory if t2A1(t) > λ0/4 for all t ∈ [t0,∞)
R
and some λ0 ∈ (1,∞)

T
.

In [14], Hille proved the following result, which improves the one due to Kneser; see
also [14–16].

Theorem C (see [14]). Equation (1.4) is nonoscillatory if

t

∫∞
t

A1
(
η
)
dη ≤ 1

4
∀t ∈ [t0,∞)

R
, (1.6)

while it is oscillatory if

t

∫∞
t

A1
(
η
)
dη >

λ0

4
∀t ∈ [t0,∞)

R
and some λ0 ∈ (1,∞)

R
. (1.7)

Another particular case of (1.1) is the second-order delay difference equation

Δ(A0Δx)(k) +
∑

i∈[1,n]
N

Ai(k)x(αi(k)) = 0 for ∈ [k0,∞)
N
, (1.8)

to the best of our knowledge, there are very few nonoscillation results for this equation; see,
for example, [17]. However, nonoscillation properties of the nondelay equations

Δ(A0Δx)(k) +A1(k)x(k + 1) = 0 for k ∈ [k0,∞)
N
, (1.9)

Δ2x(k) +A1(k)x(k + 1) = 0 for k ∈ [k0,∞)
N

(1.10)

have been extensively studied in [1, 18–22]; see also [23]. In particular, the following result is
valid.
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Theorem D. Assume that

∞∑
j=k0

A1
(
j
)
=∞, (1.11)

then (1.10) is oscillatory.

The following theorem can be regarded as the discrete analogue of the nonoscillation
result due to Kneser.

Theorem E. Assume that k(k + 1)A1(k) ≤ 1/4 for all k ∈ [k0,∞)
N
, then (1.10) is nonoscillatory.

Hille’s result in [14] also has a counterpart in the discrete case. In [22], Zhou and
Zhang proved the nonoscillation part, and in [24], Zhang and Cheng justified the oscillation
part which generalizes Theorem E.

Theorem F (see [22, 24]). Equation (1.10) is nonoscillatory if

k
∞∑
j=k

A1
(
j
) ≤ 1

4
∀k ∈ [k0,∞)

N
, (1.12)

while is oscillatory if

k
∞∑
j=k

A1
(
j
)
>
λ0

4
∀k ∈ [k0,∞)

N
and some λ0 ∈ (1,∞)

R
. (1.13)

In [23], Tang et al. studied nonoscillation and oscillation of the equation

Δ2x(k) +A1(k)x(k) = 0 for k ∈ [k0,∞)
N
, (1.14)

where {A1(k)} is a sequence of nonnegative reals and obtained the following theorem.

Theorem G (see [23]). Equation (1.14) is nonoscillatory if (1.12) holds, while is it oscillatory if
(1.13) holds.

These results together with some remarks on the q-difference equations will be
discussed in Section 7. The readers can find some nonoscillation results for second-order
nondelay dynamic equations in the papers [20, 25–29], some of which generalize some of
those mentioned above.

The paper is organized as follows. In Section 2, some auxiliary results are presented.
In Section 3, the equivalence of the four above-mentioned properties is established. Section 4
is dedicated to comparison results. Section 5 includes some explicit nonoscillation and
oscillation conditions. A sufficient condition for existence of a positive solution is given
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in Section 6. Section 7 involves some discussion and states open problems. Section 7 as an
appendix contains a short account on the fundamentals of the time scales theory.

2. Preliminary Results

Consider the following delay dynamic equation:

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = f(t) for t ∈ [t0,∞)
T
,

x(t0) = x1, xΔ(t0) = x2, x(t) = ϕ(t) for t ∈ [t−1, t0)T
,

(2.1)

where n ∈ N, T is a time scale unbounded above, t0 ∈ T, x1, x2 ∈ R are the initial values, ϕ ∈
Crd([t−1, t0)T

,R) is the initial function, such that ϕ has a finite left-sided limit at the initial point
t0 provided that it is left dense, f ∈ Crd([t0,∞)

T
,R) is the forcing term, A0 ∈ Crd([t0,∞)

T
,R+),

and for all i ∈ [1, n]
N

, Ai ∈ Crd([t0,∞)
T
,R) is the coefficient corresponding to the function

αi ∈ Crd([t0,∞)
T
,T), which satisfies αi(t) ≤ σ(t) for all t ∈ [t0,∞)

T
and limt→∞αi(t) = ∞.

Here, we denoted

αmin(t) := min
i∈[1,n]

N

{αi(t)} for t ∈ [t0,∞)
T
, t−1 := inf

t∈[t0,∞)
T

{αmin(t)}, (2.2)

then t−1 is finite, since αmin asymptotically tends to infinity.

Definition 2.1. A function x : [t−1,∞)
T
→ R with x ∈ C1

rd([t0,∞)
T
,R) and a derivative

satisfying A0x
Δ ∈ C1

rd([t0,∞)
T
,R) is called a solution of (2.1) if it satisfies the equation in

the first line of (2.1) identically on [t0,∞)
T

and also the initial conditions in the second line of
(2.1).

For a given function ϕ ∈ Crd([t−1, t0)T
,R) with a finite left-sided limit at the initial

point t0 provided that it is left-dense and x1, x2 ∈ R, problem (2.1) admits a unique solution
satisfying x = ϕ on [t−1, t0)T

with x(t0) = x1 and xΔ(t0) = x2 (see [30] and [31, Theorem 3.1]).

Definition 2.2. A solution of (2.1) is called eventually positive if there exists s ∈ [t0,∞)
T

such
that x > 0 on [s,∞)

T
, and if (−x) is eventually positive, then x is called eventually negative.

If (2.1) has a solution which is either eventually positive or eventually negative, then it is
called nonoscillatory. A solution, which is neither eventually positive nor eventually negative,
is called oscillatory, and (2.1) is said to be oscillatory provided that every solution of (2.1) is
oscillatory.

For convenience in the notation and simplicity in the proofs, we suppose that functions
vanish out of their specified domains, that is, let f : D → R be defined for some D ⊂ R, then
it is always understood that f(t) = χD(t)f(t) for t ∈ R, where χD is the characteristic function
of the set D ⊂ R defined by χD(t) ≡ 1 for t ∈ D and χD(t) ≡ 0 for t /∈ D.
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Definition 2.3. Let s ∈ T and s−1 := inft∈[s,∞)
T
{αmin(t)}. The solutions X1 = X1(·, s) and X2 =

X2(·, s) of the problems

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = 0 for t ∈ [s,∞)
T
,

xΔ(s) =
1

A0(s)
, x(t) ≡ 0 for t ∈ [s−1, s]T

,

(2.3)

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = 0 for t ∈ [s,∞)
T
,

xΔ(s) = 0, x(t) = χ{s}(t) for t ∈ [s−1, s]T
,

(2.4)

which satisfy X1(·, s), X2(·, s) ∈ C1
rd([s,∞)

T
,R), are called the first fundamental solution and

the second fundamental solution of (2.1), respectively.

The following lemma plays the major role in this paper; it presents a representation
formula to solutions of (2.1) by the means of the fundamental solutionsX1 andX2.

Lemma 2.4. Let x be a solution of (2.1), then x can be written in the following form:

x(t) = x2X1(t, t0) + x1X2(t, t0) +
∫ t
t0

X1
(
t, σ
(
η
))
⎡
⎣f(η) − ∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤
⎦Δη (2.5)

for t ∈ [t0,∞)
T
.

Proof. For t ∈ [t−1,∞)
T

, let

y(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t
t0

X1
(
t, σ
(
η
))
⎡
⎣f(η) − ∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤
⎦Δη for t ∈ [t0,∞)

T
,

ϕ(t) for t ∈ [t1, t0)T
.

(2.6)

We recall that X1(·, t0) and X2(·, t0) solve (2.3) and (2.4), respectively. To complete the proof,
let us demonstrate that y solves

(
A0y

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)y(αi(t)) = f(t) for t ∈ [t0,∞)
T
,

y(t0) = 0, yΔ(t0) = 0, y(t) = ϕ(t) for t ∈ [t−1, t0)T
.

(2.7)
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This will imply that the function z defined by z := x2X1(·, t0) + x1X2(·, t0) + y on [t0,∞)
T

is a solution of (2.1). Combining this with the uniqueness result in [31, Theorem 3.1] will
complete the proof. For all t ∈ [t0,∞)

T
, we can compute that

yΔ(t) =
∫ t
t0

XΔ
1

(
t, σ
(
η
))
⎡
⎣f(η) − ∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤
⎦Δη

+X1(σ(t), σ(t))

⎡
⎣f(t) − ∑

i∈[1,n]
N

Ai(t)ϕ(αi(t))

⎤
⎦

=
∫ t
t0

XΔ
1

(
t, σ
(
η
))
⎡
⎣f(η) − ∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤
⎦Δη.

(2.8)

Therefore, y(t0) = 0, yΔ(t0) = 0, and y = ϕ on [t−1, t0)T
, that is, y satisfies the initial conditions

in (2.7). Differentiating yΔ after multiplying by A0 and using the properties of the first
fundamental solutionX1, we get

(
A0y

Δ
)Δ

(t) =
∫ t
t0

(
A0XΔ

1

(·, σ(η)))Δ(t)
⎡
⎣f(η) − ∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤
⎦Δη

+Aσ
0 (t)XΔ

1 (σ(t), σ(t))

⎡
⎣f(t) − ∑

i∈[1,n]
N

Ai(t)ϕ(αi(t))

⎤
⎦

= −
∑

j∈[1,n]
N

Aj(t)
∫αj (t)
t0

X1
(
αj(t), σ

(
η
))
⎡
⎣f(η) − ∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤
⎦Δη

−
∑

i∈[1,n]
N

Ai(t)ϕ(αi(t)) + f(t)

(2.9)

for all t ∈ [t0,∞)
T

. For t ∈ [t0,∞)
T

, set I(t) = {i ∈ [1, n]
N

: χ[t0,∞)
T
(αi(t)) = 1} and J(t) := {i ∈

[1, n]
N

: χ[t−1,t0)T
(αi(t)) = 1}. Making some arrangements, for all t ∈ [t0,∞)

T
, we find

(
A0y

Δ
)Δ

(t) = −
∑
j∈I(t)

Aj(t)
∫αj (t)
t0

X1
(
αj(t), σ

(
η
))
⎡
⎣f(η) − ∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤
⎦Δη

−
∑
j∈J(t)

Aj(t)
∫αj (t)
t0

X1
(
αj(t), σ

(
η
))
⎡
⎣f(η) − ∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤
⎦Δη

−
∑

i∈[1,n]
N

Ai(t)ϕ(αi(t)) + f(t),

(2.10)
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and thus

(
A0y

Δ
)Δ

(t) = −
∑
j∈I(t)

Aj(t)
∫αj (t)
t0

X1
(
αj(t), σ

(
η
))
f
(
η
)
Δη −

∑
j∈J(t)

Ai(t)ϕ(αi(t)) + f(t)

= −
∑
j∈I(t)

Aj(t)y
(
αj(t)

) − ∑
j∈J(t)

Aj(t)y
(
αj(t)

)
+ f(t),

(2.11)

which proves that y satisfies (2.7) on [t0,∞)
T

since I(t) ∩ J(t) = ∅ and I(t) ∪ J(t) = [1, n]
N

for
each t ∈ [t0,∞)

T
. The proof is therefore completed.

Next, we present a result from [9] which will be used in the proof of the main result.

Lemma 2.5 (see [9, Lemma 2.5]). Let t0 ∈ T and assume that K is a nonnegative Δ-integrable
function defined on {(t, s) ∈ T × T : t ∈ [t0,∞)

T
, s ∈ [t0, t]T

}. If f, g ∈ Crd([t0,∞)
T
,R) satisfy

f(t) =
∫ t
t0

K
(
t, η
)
f
(
η
)
Δη + g(t) ∀t ∈ [t0,∞)

T
, (2.12)

then g(t) ≥ 0 for all t ∈ [t0,∞)
T
implies f(t) ≥ 0 for all t ∈ [t0,∞)

T
.

3. Nonoscillation Criteria

Consider the delay dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = 0 for t ∈ [t0,∞)
T (3.1)

and its corresponding inequalities

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) ≤ 0 for t ∈ [t0,∞)
T
, (3.2)

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) ≥ 0 for t ∈ [t0,∞)
T
. (3.3)

We now prove the following result, which plays a major role throughout the paper.

Theorem 3.1. Suppose that the following conditions hold:

(A1) A0 ∈ Crd([t0,∞)
T
,R+),

(A2) for i ∈ [1, n]
N
, Ai ∈ Crd([t0,∞)

T
,R+

0 ),

(A3) for i ∈ [1, n]
N
, αi ∈ Crd([t0,∞)

T
,T) satisfies αi(t) ≤ σ(t) for all t ∈ [t0,∞)

T
and

limt→∞αi(t) =∞,



Abstract and Applied Analysis 9

then the following conditions are equivalent:

(i) the second-order dynamic equation (3.1) has a nonoscillatory solution,

(ii) the second-order dynamic inequality (3.2) has an eventually positive solution and/or (3.3)
has an eventually negative solution,

(iii) there exist a sufficiently large t1 ∈ [t0,∞)
T
and a function Λ ∈ C1

rd([t1,∞)
T
,R) with

Λ/A0 ∈ R+([t1,∞)
T
,R) satisfying the first-order dynamic Riccati inequality

ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑
i∈[1,n]

N

Ai(t)e�(Λ/A0)(t, αi(t)) ≤ 0 ∀t ∈ [t1,∞)
T
, (3.4)

(iv) the first fundamental solution X1 of (3.1) is eventually positive, that is, there exists a
sufficiently large t1 ∈ [t0,∞)

T
such that X1(t, s) > 0 for all t ∈ (s,∞)

T
and all s ∈

[t1,∞)
T
.

Proof. The proof follows the scheme: (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).
(i)⇒(ii) This part is trivial, since any eventually positive solution of (3.1) satisfies (3.2)

too, which indicates that its negative satisfies (3.3).
(ii)⇒(iii) Let x be an eventually positive solution of (3.2), then there exists t1 ∈ [t0,∞)

T

such that x(t) > 0 for all t ∈ [t1,∞)
T

. We may assume without loss of generality that x(t1) = 1
(otherwise, we may proceed with the function x/x(t1), which is also a solution since (3.2) is
linear). Let

Λ(t) := A0(t)
xΔ(t)
x(t)

for t ∈ [t1,∞)
T
, (3.5)

then evidently Λ ∈ C1
rd([t1,∞)

T
,R) and

1 + μ(t)
Λ(t)
A0(t)

= 1 + μ(t)
xΔ(t)
x(t)

=
xσ(t)
x(t)

> 0 ∀t ∈ [t1,∞)
T
, (3.6)

which proves that Λ/A0 ∈ R+([t1,∞)
T
,R). This implies that the exponential function

eΛ/A0(·, t1) is well defined and is positive on the entire time scale [t1,∞)
T

; see [32, Theorem
2.48]. From (3.5), we see that Λ satisfies the ordinary dynamic equation

xΔ(t) =
Λ(t)
A0(t)

x(t) for t ∈ [t1,∞)
T
,

x(t1) = 1,

(3.7)

whose unique solution is

x(t) = eΛ/A0(t, t1) ∀t ∈ [t1,∞)
T
, (3.8)
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see [32, Theorem 2.77]. Hence, using (3.8), for all t ∈ [t1,∞)
T

, we get

xΔ(t) =
Λ(t)
A0(t)

eΛ/A0(t, t1),

(
A0x

Δ)Δ(t) = (ΛeΛ/A0(·, t1))Δ(t) = ΛΔ(t)eΛ/A0(t, t1) + Λσ(t)eΔΛ/A0
(t, t1)

= ΛΔ(t)eΛ/A0(t, t1) +
1

A0(t)
Λσ(t)Λ(t)eΛ/A0(t, t1),

(3.9)

which gives by substituting into (3.2) and using [32, Theorem 2.36] that

0 ≥ ΛΔ(t)eΛ/A0(t, t1) +
1

A0(t)
Λσ(t)Λ(t)eΛ/A0(t, t1) +

∑
i∈[1,n]

N

Ai(t)eΛ/A0(αi(t), t1)

= eΛ/A0(t, t1)

⎡
⎣ΛΔ(t) +

1
A0(t)

Λσ(t)Λ(t) +
∑

i∈[1,n]
N

Ai(t)
eΛ/A0(αi(t), t1)

eΛ/A0(t, t1)

⎤
⎦

= eΛ/A0(t, t1)

⎡
⎣ΛΔ(t) +

1
A0(t)

Λσ(t)Λ(t) +
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(t, αi(t))

⎤
⎦

(3.10)

for all t ∈ [t1,∞)
T

. Since the expression in the brackets is the same as the left-hand side of
(3.4) and eΛ/A0(·, t1) > 0 on [t1,∞)

T
, the function Λ is a solution of (3.4).

(iii)⇒(iv) Consider the initial value problem

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = f(t) for t ∈ [t1,∞)
T
,

xΔ(t1) = 0, x(t) ≡ 0 for t ∈ [t−1, t1]T
.

(3.11)

Denote

g(t) := A0(t)xΔ(t) −Λ(t)x(t) for t ∈ [t1,∞)
T
, (3.12)

where x is any solution of (3.11) and Λ is a solution of (3.4). From (3.12), we have

xΔ(t) =
Λ(t)
A0(t)

x(t) +
g(t)
A0(t)

for t ∈ [t1,∞)
T
,

x(t1) = 0,

(3.13)

whose unique solution is

x(t) =
∫ t
t1

eΛ/A0

(
t, σ
(
η
)) g(η)
A0
(
η
)Δη ∀t ∈ [t1,∞)

T
, (3.14)
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see [32, Theorem 2.77]. Now, for all t ∈ [t1,∞)
T

, we compute that

x(t) = e�(Λ/A0)(σ(t), t)

[∫σ(t)
t1

eΛ/A0

(
σ(t), σ

(
η
)) g(η)
A
(
η
)Δη − μ(t)eΛ/A0(σ(t), σ(t))

g(t)
A0(t)

]

=
A0(t)

A0(t) + μ(t)Λ(t)

[
xσ(t) − μ(t) g(t)

A0(t)

]

=
1

A0(t) + μ(t)Λ(t)
[
A0(t)xσ(t) − μ(t)g(t)

]
,

(3.15)

and similarly

x(αi(t)) = e�(Λ/A0)(σ(t), αi(t))

×
[∫σ(t)

t1

eΛ/A0

(
σ(t), σ

(
η
)) g(η)
A
(
η
)Δη −

∫σ(t)
αi(t)

eΛ/A0

(
σ(t), σ

(
η
)) g(η)
A0
(
η
)Δη

]

= e�(Λ/A0)(σ(t), αi(t))

[
xσ(t) −

∫σ(t)
αi(t)

eΛ/A0

(
σ(t), σ

(
η
)) g(η)
A0
(
η
)Δη

]

= e�(Λ/A0)(σ(t), αi(t))x
σ(t) −

∫σ(t)
αi(t)

eΛ/A0

(
αi(t), σ

(
η
)) g(η)
A0
(
η
)Δη

(3.16)

for i ∈ [1, n]
N

. From (3.12) and (3.15), we have

(
A0x

Δ
)Δ

(t) =
(
Λx + g

)Δ(t) = ΛΔ(t)xσ(t) + Λ(t)xΔ(t) + gΔ(t)

= ΛΔ(t)xσ(t) +
Λ2(t)
A0(t)

x(t) +
Λ(t)
A0(t)

g(t) + gΔ(t)
(3.17)

for all t ∈ [t1,∞)
T

. We substitute (3.14), (3.15), (3.16), and (3.17) into (3.11) and find that

f(t) =

⎡
⎣ΛΔ(t)xσ(t) +

Λ2(t)
A0(t)

x(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t))

⎤
⎦ +

Λ(t)
A0(t)

g(t) + gΔ(t)

=

⎡
⎣ΛΔ(t) +

Λ2(t)
A0(t) + μ(t)Λ(t)

+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t))

⎤
⎦xσ(t)
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−
⎡
⎣ μ(t)Λ2(t)
A0(t)

(
A0(t) + μ(t)Λ(t)

)g(t) + ∑
i∈[1,n]

N

Ai(t)
∫σ(t)
αi(t)

eΛ/A0

(
αi(t), σ

(
η
)) g(η)
A0
(
η
)Δη

⎤
⎦

+
Λ(t)
A0(t)

g(t) + gΔ(t)

=

⎡
⎣ΛΔ(t) +

Λ2(t)
A0(t) + μ(t)Λ(t)

+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t))

⎤
⎦

×
[

1 + μ(t)
Λ(t)
A0(t)

] ∫σ(t)
t1

eΛ/A0

(
t, σ
(
η
)) g(η)
A0
(
η
)Δη

−
∑

i∈[1,n]
N

Ai(t)
∫σ(t)
αi(t)

eΛ/A0

(
αi(t), σ

(
η
)) g(η)
A0
(
η
)Δη

+
Λ(t)

A0(t) + μ(t)Λ(t)
g(t) + gΔ(t)

(3.18)

for all t ∈ [t1,∞)
T

. Then, (3.18) can be rewritten as

gΔ(t) = − Λ(t)
A0(t) + μ(t)Λ(t)

g(t) + Υ(t)
∫σ(t)
t1

eΛ/A0

(
t, σ
(
η
)) g(η)
A0
(
η
)Δη

+
∑

i∈[1,n]
N

Ai(t)
∫σ(t)
αi(t)

eΛ/A0

(
αi(t), σ

(
η
)) g(η)
A0
(
η
)Δη + f(t)

(3.19)

for all t ∈ [t1,∞)
T

, where

Υ(t) := −
[

1 + μ(t)
Λ(t)
A0(t)

]⎡
⎣ΛΔ(t) +

Λ2(t)
A0(t) + μ(t)Λ(t)

+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t))

⎤
⎦
(3.20)

for t ∈ [t1,∞)
T

. We now show that Υ ≥ 0 on [t1,∞)
T

. Indeed, by using (3.4) and the simple
useful formula (A.2), we get

Υ(t) = −
⎡
⎣
(

1 + μ(t)
Λ(t)
A0(t)

)
ΛΔ(t) +

1
A0(t)

Λ2(t) +
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(t, αi(t))

⎤
⎦

= −
⎡
⎣ΛΔ(t) +

1
A0(t)

Λσ(t)Λ(t) +
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(t, αi(t))

⎤
⎦ ≥ 0

(3.21)
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for all t ∈ [t1,∞)
T

. On the other hand, from (3.11) and (3.12), we see that g(t1) = 0. Then, by
[32, Theorem 2.77], we can write (3.19) in the equivalent form

g =Hg + h on [t1,∞)
T
, (3.22)

where, for t ∈ [t1,∞)
T

, we have defined

(Hg)(t) :=
∫ t
t1

e−Λ/(A0+μΛ)
(
t, σ
(
η
))
⎡
⎣Υ(η)

∫σ(η)
t1

eΛ/A0

(
σ
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

Δζ

+
∑

i∈[1,n]
N

Ai

(
η
) ∫σ(η)

αi(η)
eΛ/A0

(
αi
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

Δζ

⎤
⎦Δη,
(3.23)

h(t) :=
∫ t
t1

eΛ/A0(t, σ(ζ))f
(
η
)
Δη. (3.24)

Note that Λ/A0 ∈ R+([t1,∞)
T
,R) implies −Λ/(A0 + μΛ) ∈ R+([t1,∞)

T
,R) (indeed, we have

1 − μΛ/(A0 + μΛ) = A0/(A0 + μΛ) > 0 on [t1,∞)
T
), and thus the exponential function

e�(Λ/A0)(·, t1) is also well defined and positive on the entire time scale [t1,∞)
T

, see [32, Exercise
2.28]. Thus, f ≥ 0 on [t1,∞)

T
implies h ≥ 0 on [t1,∞)

T
. For simplicity of notation, for

s, t ∈ [t1,∞)
T

, we let

K1(t, s) :=
1

A0(s)

∫ t
s

e−Λ/(A0+μΛ)
(
t, σ
(
η
))
Υ
(
η
)
eΛ/A0

(
σ
(
η
)
, σ(s)

)
Δη,

K2(t, s) :=
1

A0(s)

∫ t
s

e−Λ/(A0+μΛ)
(
t, σ
(
η
)) ∑

i∈[1,n]
N

Ai

(
η
)
χ[αi(η),∞)

T
(s)eΛ/A0

(
σ
(
η
)
, σ(s)

)
Δη.

(3.25)

Using the change of integration order formula in [33, Lemma 1], for all t ∈ [t1,∞)
T

, we obtain

∫ t
t1

∫σ(η)
t1

e−Λ/(A0+μΛ)
(
t, σ
(
η
))
Υ
(
η
)
eΛ/A0

(
σ
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

ΔζΔη

=
∫ t
t1

∫ t
ζ

e−Λ/(A0+μΛ)
(
t, σ
(
η
))
Υ
(
η
)
eΛ/A0

(
σ
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

ΔηΔζ

=
∫ t
t1

K1(t, ζ)g(ζ)Δζ,

(3.26)
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and similarly

∫ t
t1

∫σ(η)
t1

e−Λ/(A0+μΛ)
(
t, σ
(
η
)) ∑

i∈[1,n]
N

Ai

(
η
)
χ[αi(η),∞)

T
(ζ)eΛ/A0

(
σ
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

ΔζΔη

=
∫ t
t1

K2(t, ζ)g(ζ)Δζ.

(3.27)

Therefore, we can rewrite (3.23) in the equivalent form of the integral operator

(Hg)(t) =
∫ t
t1

[
K1
(
t, η
)
+K2

(
t, η
)]
g
(
η
)
Δη for t ∈ [t1,∞)

T
, (3.28)

whose kernel is nonnegative. Consequently, using (3.22), (3.24), and (3.28), we obtain that
f ≥ 0 on [t1,∞)

T
implies h ≥ 0 on [t1,∞)

T
; this and Lemma 2.5 yield that g ≥ 0 on [t1,∞)

T
.

Therefore, from (3.14), we infer that if f ≥ 0 on [t1,∞)
T

, then x ≥ 0 on [t1,∞)
T

too. On the
other hand, by Lemma 2.4, x has the following representation:

x(t) =
∫ t
t1

X1
(
t, σ
(
η
))
f
(
η
)
Δη for t ∈ [t1,∞)

T
. (3.29)

Since x is eventually nonnegative for any eventually nonnegative function f , we infer that
the kernel X1 of the integral on the right-hand side of (3.29) is eventually nonnegative.
Indeed, assume to the contrary that x ≥ 0 on [t1,∞)

T
but X1 is not nonnegative, then

we may pick t2 ∈ [t1,∞)
T

and find s ∈ [t1, t2)T
such that X1(t2, σ(s)) < 0. Then, letting

f(t) := −min{X1(t2, σ(t)), 0} ≥ 0 for t ∈ [t1,∞)
T

, we are led to the contradiction x(t2) < 0,
where x is defined by (3.29). To prove that X1 is eventually positive, set x(t) := X1(t, s)
for t ∈ [t0,∞)

T
, where s ∈ [t1,∞)

T
, to see that x ≥ 0 and (A0x

Δ)Δ ≤ 0 on [s,∞)
T

,
which implies A0x

Δ is nonincreasing on [s,∞)
T

. So that, we may let t1 ∈ [t0,∞)
T

so large
that xΔ (i.e., A0x

Δ) is of fixed sign on [s,∞)
T
⊂ [t1,∞)

T
. The initial condition and (A1)

together with xΔ(s) = 1/A0(s) > 0 imply that xΔ > 0 on [s,∞)
T

. Consequently, we have
x(t) = X1(t, s) > X1(s, s) = 0 for all t ∈ (s,∞)

T
⊂ [t1,∞)

T
.

(iv)⇒(i) Clearly,X1(·, t0) is an eventually positive solution of (3.1).
The proof is completed.

Let us introduce the following condition:

(A4) A0 ∈ Crd([t0,∞)
T
,R+) with

∫∞
t0

1
A0
(
η
)Δη =∞. (3.30)
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Remark 3.2. It is well known that (A4) ensures existence of t1 ∈ [t0,∞)
T

such that x(t)xΔ(t) ≥
0 for all t ∈ [t1,∞)

T
, for any nonoscillatory solution x of (3.1). This fact follows from the

formula

x(t) = x(s) +A0(s)xΔ(s)
∫ t
s

1
A0
(
η
)Δη −

∫ t
s

1
A0
(
η
)
⎡
⎣
∫η
s

∑
i∈[1,n]

N

Ai(ζ)x(αi(ζ))Δζ

⎤
⎦Δη (3.31)

for all t ∈ [t0,∞)
T

, obtained by integrating (3.1) twice, where s ∈ [t0,∞)
T

. In the case when
(A4) holds, (iii) of Theorem 3.1 can be assumed to hold with Λ ∈ C1

rd([t1,∞)
T
,R+

0 ), which
means that any positive (negative) solution is nondecreasing (nonincreasing).

Remark 3.3. Let (A4) hold and exist t1 ∈ [t0,∞)
T

and the function Λ ∈ C1
rd([t1,∞)

T
,R+

0 )
satisfying inequality (3.4), then the assertions (i), (iii), and (iv) of Theorem 3.1 are also valid
on [t1,∞)

T
.

Remark 3.4. It should be noted that (3.4) is also equivalent to the inequality

ΛΔ(t) +
Λ2(t)

A0(t) + μ(t)Λ(t)
+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t)) ≤ 0 ∀t ∈ [t1,∞)
T
, (3.32)

see (3.20) and compare with [26, 28, 29, 34].

Example 3.5. For T = R, (3.4) has the form

Λ′(t) +
1

A0(t)
Λ2(t) +

∑
i∈[1,n]

N

Ai(t) exp

{
−
∫ t
αi(t)

Λ
(
η
)

A0
(
η
)dη

}
≤ 0 ∀t ∈ [t1,∞)

R
, (3.33)

see [8] for the case A0(t) ≡ 1, t ∈ [t0,∞)
R

, and [35] for n = 1, α1(t) = t, t ∈ [t0,∞)
R

.

Example 3.6. For T = N, (3.4) becomes

ΔΛ(k) +
Λ2(k)

A0(k) + Λ(k)
+
∑

i∈[1,n]
N

Ai(k)
k∏

j=αi(k)

A0
(
j
)

A0
(
j
)
+ Λ
(
j
) ≤ 0 ∀k ∈ [k1,∞)

N
, (3.34)

where the product over the empty set is assumed to be equal to one; see [1, 18] (or (1.10)) for
n = 1, α1(k) = k + 1, k ∈ [k0,∞)

N
, and [20] for n = 1, A0(k) ≡ 1, α1(k) = k + 1, k ∈ [k0,∞)

N
.

It should be mentioned that in the literature all the results relating difference equations with
discrete Riccati equations consider only the nondelay case. This result in the discrete case is
therefore new.
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Example 3.7. For T = qZ with q ∈ (1,∞)
R

, under the same assumption on the product as in
the previous example, condition (3.4) reduces to the inequality

DqΛ(t) +
Λ2(t)

A0(t) +
(
q − 1

)
tΛ(t)

+
∑

i∈[1,n]
N

Ai(t)
logq(t)∏

η=logq(αi(t))

A0
(
qη
)

A0
(
qη
)
+
(
q − 1

)
qηΛ
(
qη
) ≤ 0 (3.35)

for all t ∈ [t1,∞)
qZ .

4. Comparison Theorems

Theorem 3.1 can be employed to obtain comparison nonoscillation results. To this end,
together with (3.1), we consider the second-order dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x(αi(t)) = 0 for t ∈ [t0,∞)
T
, (4.1)

where Bi ∈ Crd([t0,∞)
T
,R) for i ∈ [1, n]

N
.

The following theorem establishes the relation between the first fundamental solution
of the model equation with positive coefficients and comparison (4.1) with coefficients of
arbitrary signs.

Theorem 4.1. Suppose that (A2), (A3), (A4), and the following condition hold:

(A5) for i ∈ [1, n]
N
, Bi ∈ Crd([t0,∞)

T
,R) with Ai(t) ≥ Bi(t) for all t ∈ [t0,∞)

T
.

Assume further that (3.4) admits a solution Λ ∈ C1
rd([t1,∞)

T
,R+

0 ) for some t1 ∈ [t0,∞)
T
, then the

first fundamental solution Y1 of (4.1) satisfies Y1(t, s) ≥ X1(t, s) > 0 for all t ∈ (s,∞)
T
and all

s ∈ [t1,∞)
T
, whereX1 denotes the first fundamental solution of (3.1).

Proof. We consider the initial value problem

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x(αi(t)) = f(t) for t ∈ [t0,∞)
T
,

xΔ(t0) = 0, x(t) ≡ 0 for t ∈ [t−1, t0]T
,

(4.2)

where f ∈ Crd([t0,∞)
T
,R). Let g ∈ Crd([t1,∞)

T
,R), and define the function x as

x(t) =
∫ t
t1

X1
(
t, σ
(
η
))
g
(
η
)
Δη ∀t ∈ [t1,∞)

T
. (4.3)
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By the Leibnitz rule (see [32, Theorem 1.117]), for all t ∈ [t1,∞)
T

, we have

xΔ(t) =
∫ t
t1

XΔ
1

(
t, σ
(
η
))
g
(
η
)
Δη, (4.4)

(
A0x

Δ
)Δ

(t) =
∫ t
t1

(
A0XΔ

1

(·, σ(η)))Δ(t)g(η)Δη + g(t). (4.5)

Substituting (4.3) and (4.5) into (4.2), we get

f(t) =
∫ t
t1

(
A0XΔ

1

(·, σ(η)))Δ(t)g(η)Δη +
∑

i∈[1,n]
N

Bi(t)
∫αi(t)
t1

X1
(
αi(t), σ

(
η
))
g
(
η
)
Δη + g(t)

=
∑

i∈[1,n]
N

[Bi(t) −Ai(t)]
∫αi(t)
t1

X1
(
αi(t), σ

(
η
))
g
(
η
)
Δη + g(t)

=
∑

i∈[1,n]
N

[Bi(t) −Ai(t)]
∫ t
t1

X1
(
αi(t), σ

(
η
))
g
(
η
)
Δη + g(t),

(4.6)

where in the last step, we have used the fact that X1(t, σ(s)) ≡ 0 for all t ∈ [t1,∞)
T

and all
s ∈ [t,∞)

T
. Therefore, we obtain the operator equation

g =Hg + f on [t1,∞)
T
, (4.7)

where

(Hg)(t) :=
∫ t
t1

∑
i∈[1,n]

N

X1
(
αi(t), σ

(
η
))
[Ai(t) − Bi(t)]g

(
η
)
Δη for t ∈ [t1,∞)

T
, (4.8)

whose kernel is nonnegative. An application of Lemma 2.5 shows that nonnegativity of f
implies the same for g, and thus x is nonnegative by (4.3). On the other hand, by Lemma 2.4,
x has the representation

x(t) =
∫ t
t0

Y1
(
t, σ
(
η
))
f
(
η
)
Δη ∀t ∈ [t0,∞)

T
. (4.9)

Proceeding as in the proof of the part (iii)⇒(iv) of Theorem 3.1, we conclude that the first
fundamental solution Y1 of (4.1) satisfies Y1(t, s) ≥ 0 for all t ∈ (s,∞)

T
and all s ∈ [t1,∞)

T
.

To complete the proof, we have to show that Y1(t, s) ≥ X1(t, s) > 0 for all t ∈ (s,∞)
T

and all
s ∈ [t1,∞)

T
. Clearly, for any fixed s ∈ [t1,∞)

T
and all t ∈ [s,∞)

T
, we have

(
A0YΔ

1 (·, s)
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)Y1(αi(t), s) =
∑

i∈[1,n]
N

[Ai(t) − Bi(t)]Y1(αi(t), s), (4.10)
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which by the solution representation formula yields that

Y1(t, s) = X1(t, s) +
∫ t
s

X1
(
t, σ
(
η
)) ∑

i∈[1,n]
N

[
Ai

(
η
) − Bi(η)]Y1

(
αi
(
η
)
, s
)
Δη ≥ X1(t, s) (4.11)

for all t ∈ [s,∞)
T

. This completes the proof since the first fundamental solution X1 satisfies
X1(t, s) > 0 for all t ∈ (s,∞)

T
and all s ∈ [t1,∞)

T
by Remark 3.3.

Corollary 4.2. Suppose that (A1), (A2), (A3), and (A5) hold, and (3.1) has a nonoscillatory solution
on [t1,∞)

T
⊂ [t0,∞)

T
, then (4.1) admits a nonoscillatory solution on [t2,∞)

T
⊂ [t1,∞)

T
.

Corollary 4.3. Assume that (A2) and (A3) hold.

(i) If (A1) holds and the dynamic inequality

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

A+
i (t)x(αi(t)) ≤ 0 for t ∈ [t0,∞)

T
, (4.12)

where A+
i (t) := max{Ai(t), 0} for t ∈ [t0,∞)

T
and i ∈ [1, n]

N
, has a positive solution on

[t0,∞)
T
, then (3.1) also admits a positive solution on [t1,∞)

T
⊂ [t0,∞)

T
.

(ii) If (A4) holds and there exist a sufficiently large t1 ∈ [t0,∞)
T
and a function Λ ∈

C1
rd([t1,∞)

T
,R+

0 ) satisfying the inequality

ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑
i∈[1,n]

N

A+
i (t)e�(Λ/A0)(t, αi(t)) ≤ 0 ∀t ∈ [t1,∞)

T
, (4.13)

then the first fundamental solutionX1 of (3.1) satisfiesX1(t, s) > 0 for all t ∈ (s,∞)
T
and

all s ∈ [t1,∞)
T
.

Proof. Consider the dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

A+
i (t)x(αi(t)) = 0 for t ∈ [t0,∞)

T
. (4.14)

Theorem 3.1 implies that for this equation the assertions (i) and (ii) hold. Since for all
i ∈ [1, n]

N
, we have Ai(t) ≤ A+

i (t) for all t ∈ [t0,∞)
T

, the application of Corollary 4.2 and
Theorem 4.1 completes the proof.

Now, let us compare the solutions of problem (2.1) and the following initial value
problem:

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x(αi(t)) = g(t) for t ∈ [t0,∞)
T
,

x(t0) = y1, xΔ(t0) = y2, x(t) = ψ(t) for t ∈ [t−1, t0)T
,

(4.15)
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where y1, y2 ∈ R are the initial values, ψ ∈ Crd([t−1, t0)T
,R) is the initial function such

that ψ has a finite left-sided limit at the initial point t0 provided that it is left dense,
g ∈ Crd([t0,∞)

T
,R) is the forcing term.

Theorem 4.4. Suppose that (A2), (A3), (A4), (A5), and the following condition hold:

(A6) f, g ∈ Crd([t0,∞)
T
,R) and ϕ, ψ ∈ Crd([t−1, t0)T

,R) satisfy

f(t) −
∑

i∈[1,n]
N

Bi(t)ϕ(αi(t)) ≤ g(t) −
∑

i∈[1,n]
N

Bi(t)ψ(αi(t)) ∀t ∈ [t0,∞)
T
. (4.16)

Moreover, let (2.1) have a positive solution x on [t0,∞)
T
, y1 = x1, and y2 ≥ x2, then the solution y

of (4.15) satisfies y(t) ≥ x(t) for all t ∈ [t0,∞)
T
.

Proof. By Theorem 3.1 and Remark 3.3, we can assume that Λ ∈ Crd([t0,∞)
T
,R+

0 ) is a solution
of the dynamic Riccati inequality (3.4), then by (A5), the function Λ is also a solution of the
dynamic Riccati inequality

ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑
i∈[1,n]

N

Bi(t)e�(Λ/A0)(t, αi(t)) ≤ 0 ∀t ∈ [t0,∞)
T
, (4.17)

which is associated with (4.15). Hence, by Theorem 3.1 and Remark 3.3, the first fundamental
solution Y1 of (4.15) satisfies Y1(t, s) > 0 for all t ∈ (s,∞)

T
and all s ∈ [t0,∞)

T
. Rewriting (2.1)

in the form

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x(αi(t)) = f(t) −
∑

i∈[1,n]
N

[Ai(t) − Bi(t)]x(αi(t)), t ∈ [t0,∞)
T

x(t0) = x1, xΔ(t0) = x2, x(t) = ϕ(t), t ∈ [t−1, t0)T
,

(4.18)

applying Lemma 2.4, and using (A6), we have

x(t) = x2Y1(t, t0) + x1Y2(t, t0) +
∫ t
t0

Y1
(
t, σ
(
η
))

×
⎡
⎣f(η) − ∑

i∈[1,n]
N

[
Ai

(
η
) − Bi(η)]χ[t0,∞)

T

(
αi
(
η
))
x
(
αi
(
η
)) − ∑

i∈[1,n]
N

Bi
(
η
)
ϕ
(
αi
(
η
))
⎤
⎦Δη

≤ y2Y1(t, t0) + y1Y2(t, t0) +
∫ t
t0

Y1
(
t, σ
(
η
))
⎡
⎣g(η) − ∑

i∈[1,n]
N

Bi
(
η
)
ψ
(
αi
(
η
))
⎤
⎦Δη

= y(t)
(4.19)

for all t ∈ [t0,∞)
T

. This completes the proof.
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Figure 1: The graph of 10 iterates for the solutions of (4.20) and (4.22) illustrates the result of Theorem 4.4,
here y(t) > x(t) for all t ∈ (1,∞)2Z

.

Remark 4.5. If Bi ∈ Crd([t0,∞)
T
,R+

0 ) for i ∈ [1, n]
N

, f(t) ≤ g(t) for all t ∈ [t0,∞)
T

and ϕ(t) ≥
ψ(t) for all t ∈ [t−1, t0)T

, then (A6) holds.

The following example illustrates Theorem 4.4 for the quantum time scale T = 2Z.

Example 4.6. Let 2Z := {2k : k ∈ Z} ∪ {0}, and consider the following initial value problems:

D2
(
Id2ZD2x

)
(t) +

2
t4
x

(
t

4

)
= − 1

t4
for t ∈ [1,∞)2Z ,

D2x(1) = 1, x(t) ≡ 1 for t ∈
[

1
4
, 1
]

2Z

,

(4.20)

where Id2Z is the identity function on 2Z, that is, Id2Z(t) = t for t ∈ 2Z, and

D2x(t) =
1
t
(x(2t) − x(t)) for t ∈ 2Z, (4.21)

D2
(
Id2ZD2x

)
(t) +

1
t4
x

(
t

4

)
=

1
t4

for t ∈ [1,∞)2Z ,

D2x(1) = 1, x(t) ≡ 1 for t ∈
[

1
4
, 1
]

2Z

.

(4.22)

Denoting by x and y the solutions of (4.20) and (4.22), respectively, we obtain y(t) ≥ x(t) for
all t ∈ [1,∞)2Z by Theorem 4.4. For the graph of the first 10 iterates, see Figure 1.

As an immediate consequence of Theorem 4.4, we obtain the following corollary.
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Corollary 4.7. Suppose that (A1), (A2), and (A3) hold and that (3.1) is nonoscillatory, then, for
f ∈ Crd([t0,∞)

T
,R+

0 ), the dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = f(t) for t ∈ [t0,∞)
T (4.23)

is also nonoscillatory.

We now consider the following dynamic equation:

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = g(t) for t ∈ [t0,∞)
T
,

x(t0) = y1, xΔ(t0) = y2, x(t) = ψ(t) for t ∈ [t−1, t0)T
,

(4.24)

where the parameters are the same as in (4.15).
We obtain the most complete result if we compare solutions of (2.1) and (4.24) by

omitting the condition (A2) and assuming that the solution of (2.1) is positive.

Corollary 4.8. Suppose that (A3), (A4), and the following condition hold:

(A7) f, g ∈ Crd([t0,∞)
T
,R) and ϕ, ψ ∈ Crd([t−1, t0)T

,R) satisfy

f(t) −
∑

i∈[1,n]
N

Ai(t)ϕ(αi(t)) ≤ g(t) −
∑

i∈[1,n]
N

Ai(t)ψ(αi(t)) ∀t ∈ [t0,∞)
T
. (4.25)

If x is a positive solution of (2.1) on [t0,∞)
T
with x1 = y1 and y2 ≥ x2, then for the solution y of

(4.24), one has y(t) ≥ x(t) for all t ∈ [t0,∞)
T
.

Proof. Corollary 4.3 and Remark 3.3 imply that the first fundamental solution X1 associated
with (2.1) (and (4.24)) satisfies X1(t, s) > 0 for all t ∈ (s,∞)

T
and all s ∈ [t0,∞)

T
. Hence, the

claim follows from the solution representation formula.

Remark 4.9. If at least one of the inequalities in the statements of Theorem 4.4 and
Corollary 4.8 is strict, then the conclusions hold with the strict inequality too.

Let us compare equations with different coefficients and delays. Now, we consider

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x
(
βi(t)

)
= 0 for t ∈ [t0,∞)

T
. (4.26)

Theorem 4.10. Suppose that (A2), (A4), (A5), and the following condition hold:

(A8) for i ∈ [1, n]
N
, βi ∈ Crd([t0,∞)

T
,T) satisfies βi(t) ≤ αi(t) for all t ∈ [t0,∞)

T
and

limt→∞βi(t) =∞.

Assume further that the first-order dynamic Riccati inequality (3.4) has a solution Λ ∈ C1
rd([t1,

∞)
T
,R+

0 ) for some t1 ∈ [t0,∞)
T
, then the first fundamental solution Y1 of (4.26) satisfies Y1(t, s) > 0

for all t ∈ (s,∞)
T
and all s ∈ [t1,∞)

T
.
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Proof. Note that (A5) implies Ai(t) ≥ B+
i (t) for all t ∈ [t0,∞)

T
and i ∈ [1, n]

N
, then we have

0 ≥ ΛΔ(t) +
Λ2(t)

A0(t) + μ(t)Λ(t)
+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t))

≥ ΛΔ(t) +
Λ2(t)

A0(t) + μ(t)Λ(t)
+
∑

i∈[1,n]
N

B+
i (t)e�(Λ/A0)

(
σ(t), βi(t)

) (4.27)

for all t ∈ [t1,∞)
T

. The reference to Corollary 4.3 (ii) concludes the proof.

Remark 4.11. If the condition (A4) in Theorem 4.1, Theorem 4.4, Corollary 4.8, and
Theorem 4.10 is replaced with (A1), then the claims of the theorems are valid eventually.

Let us introduce the function

αmax(t) := max
i∈[1,n]

N

{αi(t)} for t ∈ [t0,∞)
T
. (4.28)

Corollary 4.12. Suppose that (A1), (A2), (A3), and (A5) hold. If

(
A0x

Δ
)Δ

(t) +

⎛
⎝ ∑

i∈[1,n]
N

Ai(t)

⎞
⎠x(αmax(t)) = 0 for t ∈ [t0,∞)

T
(4.29)

is nonoscillatory, then (4.1) is also nonoscillatory.

Remark 4.13. The claim of Corollary 4.12 is also true when αmax is replaced by σ.

5. Explicit Nonoscillation and Oscillation Results

Theorem 5.1. Suppose that (A1), (A2), and (A3) hold and that

σ(t)
2tA0(t) + μ(t)

+ 2tσ(t)
∑

i∈[1,n]
N

Ai(t)e�(1/(2IdTA0))(σ(t), αi(t)) ≤ 1 ∀t ∈ [t1,∞)
T
, (5.1)

where t1 ∈ [t0,∞)
T
and IdT is the identity function on T, then (3.1) is nonoscillatory.

Proof. The statement of the theorem yields that Λ(t) = 1/(2t) for t ∈ [t0,∞)
T+ is a positive

solution of the Riccati inequality (3.32).

Next, let us apply Theorem 5.1 to delay differential equations.
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Corollary 5.2. Let A0 ∈ C([t0,∞)
R
,R+), for i ∈ [1, n]

N
, Ai ∈ C([t0,∞)

R
,R+

0 ), and αi ∈
C([t0,∞)

R
,R) such that αi(t) ≤ t for all t ∈ [t0,∞)

R
and limt→∞αi(t) =∞. If

1
2A0(t)

+ 2t2
∑

i∈[1,n]
N

Ai(t) exp

{
−
∫ t
αi(t)

1
2ηA0

(
η
)dη
}
≤ 1 ∀t ∈ [t1,∞)

R (5.2)

for some t1 ∈ [t0,∞)
R
, then (1.2) is nonoscillatory.

Now, let us proceed with the discrete case.

Corollary 5.3. Let {A0(k)} be a positive sequence, for i ∈ [1, n]
N
, let {Ai(k)} be a nonnegative

sequence, and let {αi(k)} be a divergent sequence such that αi(k) ≤ k + 1 for all k ∈ [k0,∞)
N
. If

k + 1
2kA0(k) + 1

+ 2k(k + 1)
∑

i∈[1,n]
N

Ai(k)
k∏

j=αi(k)

2jA0
(
j
)

2jA0
(
j
)
+ 1
≤ 1 ∀k ∈ [k1,∞)

N (5.3)

for some k1 ∈ [k0,∞)
N
, then (1.8) is nonoscillatory.

Let us introduce the function

A(t, s) :=
∫ t
s

1
A0
(
η
)Δη for s, t ∈ [t0,∞)

T
. (5.4)

Theorem 5.4. Suppose that (A1), (A2), and (A3) hold, and for every t1 ∈ [t0,∞)
T
, the dynamic

equation

(
A0x

Δ
)Δ

(t) +
1

A(αmax(t), t1)

⎛
⎝ ∑

i∈[1,n]
N

Ai(t)A(αi(t), t1)

⎞
⎠x(αmax(t)) = 0, t ∈ [t2,∞)

T
(5.5)

is oscillatory, where t2 ∈ [t1,∞)
T
satisfies αmin(t) > t1 for all t ∈ [t2,∞)

T
, then (3.1) is also

oscillatory.

Proof. Assume to the contrary that (3.1) is nonoscillatory, then there exists a solution x of (3.1)
such that x > 0, (A0x

Δ)Δ ≤ 0 on [t1,∞)
T
⊂ [t0,∞)

T
. This implies that A0x

Δ is nonincreasing
on [t1,∞)

T
, then it follows that

x(t) ≥ x(t) − x(t1) =
∫ t
t1

1
A0
(
η
)A0
(
η
)
xΔ(η)Δη ≥ A(t, t1)A0(t)xΔ(t) ∀t ∈ [t1,∞)

T
, (5.6)

or simply by using (5.4),

x(t) −A(t, t1)A0(t)xΔ(t) ≥ 0 ∀t ∈ [t1,∞)
T
. (5.7)
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Now, let

ψ(t) :=
x(t)

A(t, t1)
for t ∈ (t1,∞)

T
. (5.8)

By the quotient rule, (5.4) and (5.7), we have

ψΔ(t) =
A(t, t1)A0(t)xΔ(t) − x(t)
A(σ(t), t1)A(t, t1)A0(t)

≤ 0 ∀t ∈ (t1,∞)
T
, (5.9)

proving that ψ is nonincreasing on (t1,∞)
T

. Therefore, for all i ∈ [1, n]
N

, we obtain

x(αmax(t))
A(αmax(t), t1)

= ψ(αmax(t)) ≤ ψ(αi(t)) = x(αi(t))
A(αi(t), t1)

∀t ∈ [t2,∞)
T
, (5.10)

where t2 ∈ [t1,∞)
T

satisfies αmin(t) > t1 for all t ∈ [t2,∞)
T

. Using (5.10) in (3.1), we see that x
solves

(
A0x

Δ
)Δ

(t) +
1

A(αmax(t), t1)

⎛
⎝ ∑

i∈[1,n]
N

Ai(t)A(αi(t), t1)

⎞
⎠x(αmax(t)) ≤ 0 ∀t ∈ [t2,∞)

T
, (5.11)

which shows that (5.5) is also nonoscillatory by Theorem 3.1. This is a contradiction, and the
proof is completed.

The following theorem can be regarded as the dynamic generalization of Leighton’s
result (Theorem A).

Theorem 5.5. Suppose that (A2), (A3), and (A4) hold and that

∫∞
t2

∑
i∈[1,n]

N

Ai

(
η
)
e�(1/(A0A(·,t1)))

(
σ
(
η
)
, αi
(
η
))
Δη =∞, (5.12)

where t2 ∈ (t1,∞) ⊂ [t0,∞)
T
, then every solution of (3.1) is oscillatory.

Proof. Assume to the contrary that (3.1) is nonoscillatory. It follows from Theorem 3.1 and
Remark 3.2 that (3.4) has a solution Λ ∈ Crd([t0,∞)

T
,R+

0 ). Using (3.5) and (5.7), we see that

Λ(t) ≤ 1
A(t, t1)

∀t ∈ [t2,∞)
T
, (5.13)

which together with (3.4) implies that

ΛΔ(t) +
∑

i∈[1,n]
N

Ai(t)e�(1/(A0A(·,t1)))(σ(t), αi(t)) ≤ 0 ∀t ∈ [t2,∞)
T
. (5.14)
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Integrating the last inequality, we get

Λ(t) −Λ(t2) +
∫ t
t2

∑
i∈[1,n]

N

Ai

(
η
)
e�(1/(A0A(·,t1)))

(
σ
(
η
)
, αi
(
η
))
Δη ≤ 0 ∀t ∈ [t2,∞)

T
, (5.15)

which is in a contradiction with (5.12). This completes the proof.

We conclude this section with applications of Theorem 5.5 to delay differential
equations and difference equations.

Corollary 5.6. Let A0 ∈ C([t0,∞)
R
,R+), for i ∈ [1, n]

N
, Ai ∈ C([t0,∞)

R
,R+

0 ), and αi ∈
C([t0,∞)

R
,R) such that αi(t) ≤ t for all t ∈ [t0,∞)

R
and limt→∞αi(t) =∞. If

lim
t→∞

A(t, t0) =∞,
∫∞
t0

∑
i∈[1,n]

N

Ai

(
η
)A(αi(η), t0)

A
(
η, t0
) dη =∞, (5.16)

where

A(t, s) :=
∫ t
s

1
A0
(
η
)dη for s, t ∈ [t0,∞)

R
, (5.17)

then (1.2) is oscillatory.

Corollary 5.7. Let {A0(k)} be a positive sequence, for i ∈ [1, n]
N
, let {Ai(k)} be a nonnegative

sequence and let {αi(k)} be a divergent sequence such that αi(k) ≤ k + 1 for all k ∈ [k0,∞)
N
. If

lim
k→∞

A(k, k0) =∞,
∞∑
j=k0

∑
i∈[1,n]

N

Ai

(
j
) j∏
�=αi(j)

A0(�)A(�, k0)
A0(�)A(�, k0) + 1

=∞, (5.18)

where

A(k, l) :=
k−1∑
j=l

1
A0
(
j
) for l, k ∈ [k0,∞)

N
, (5.19)

then (1.8) is oscillatory.

6. Existence of a Positive Solution

Theorem 6.1. Suppose that (A2), (A3), and (A4) hold, f ∈ Crd([t0,∞)
T
,R+

0 ), and the first-order
dynamic Riccati inequality (3.4) has a solution Λ ∈ C1

rd([t0,∞)
T
,R+

0 ). Moreover, suppose that there
exist x1, x2 ∈ R

+ such that ϕ(t) ≤ x1 for all t ∈ [t−1, t0)T
and x2 ≥ Λ(t0)x1/A0(t0), then (2.1) admits

a positive solution x such that x(t) ≥ x1 for all t ∈ [t0,∞)
T
.
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Proof. First assume that y is the solution of the following initial value problem:

(
A0y

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)y(αi(t)) = 0 for t ∈ [t0,∞)
T
,

yΔ(t0) =
Λ(t0)
A0(t0)

x1, y(t) ≡ x1 for t ∈ [t−1, t0]T
.

(6.1)

Denote

z(t) :=

⎧⎨
⎩
x1eΛ/A0(t, t0) for t ∈ [t0,∞)

T
,

x1 for t ∈ [t−1, t0)T
,

(6.2)

then, by following similar arguments to those in the proof of the part (ii)⇒(iii) of
Theorem 3.1, we obtain

g(t) :=
(
A0z

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)z(αi(t))

= x1eΛ/A0(t, t0)

⎡
⎣ΛΔ(t) +

1
A0(t)

Λσ(t)Λ(t) +
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(t, αi(t))

⎤
⎦ ≤ 0

(6.3)

for all t ∈ [t0,∞)
T

. So z is a solution to

(
A0z

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)z(αi(t)) = g(t) for t ∈ [t0,∞)
T
,

zΔ(t0) =
Λ(t0)
A0(t0)

x1, z(t) ≡ x1 for t ∈ [t−1, t0]T
.

(6.4)

Theorem 4.4 implies that y(t) ≥ z(t) ≥ x1 > 0 for all t ∈ [t0,∞)
T

. By the hypothesis of the
theorem, Theorem 4.4, and Corollary 4.8, we have x(t) ≥ y(t) ≥ x1 > 0 for all t ∈ [t0,∞)

T
. This

completes the proof for the case f ≡ 0 and g ≡ 0 on [t0,∞)
T

.
The general case where f /≡ 0 on [t0,∞)

T
is also a consequence of Theorem 4.4.

Let us illustrate the result of Theorem 6.1 with the following example.

Example 6.2. Let
√

N0 := {
√
k : k ∈ N0}, and consider the following delay dynamic equation:

(
Id√

N0
xΔ
)Δ

(t) +
1

8t
√
t2 + 1

(
x(t) +

1
2
x
(√

t2 − 1
))

=
1

t
√
t2 + 1

, t ∈ [1,∞)√
N0
,

xΔ(1) = 2, x(t) ≡ 2 for t ∈ [0, 1]√
N0
,

(6.5)
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Figure 2: The graph of 15 iterates for the solution of (6.5) illustrates the result of Theorem 6.1.

then (5.1) takes the form Φ(t) ≤ 1 for all t ∈ [1,∞)√
N0

, where the function Φ is defined by

Φ(t) :=
1

2t2 +
(√

t2 + 1 − t
)
⎛
⎜⎝√t2 + 1 +

t2

2

⎛
⎜⎝1 +

t2 − 1

2(t2 − 1) +
(
t −
√
t2 − 1

)
⎞
⎟⎠
⎞
⎟⎠ for t ∈ [1,∞)

R

(6.6)

and is decreasing on [1,∞)
R

and thus is not greater than Φ(1) ≈ 0.79, that is, Theorem 5.1
holds. Theorem 6.1 therefore ensures that the solution is positive on [1,∞)√

N0
. For the graph

of 15 iterates, see Figure 2.

7. Discussion and Open Problems

We start this section with discussion of explicit nonoscillation conditions for delay differential
and difference equations. Let us first consider the continuous case. Corollary 5.6 with n = 1
and α1(t) = t for t ∈ [t0,∞)

R
reduces to Theorem A. Nonoscillation part of Kneser’s result

for (1.4) follows from Corollary 5.2 by letting n = 1, A0(t) ≡ 1, and α1(t) = t for t ∈ [t0,∞)
R

.
Theorem E is obtained by applying Corollary 5.3 to (1.10).

Known nonoscillation tests for difference equations can also be deduced from the
results of the present paper. In [18, Lemma 1.2], Chen and Erbe proved that (1.9) is
nonoscillatory if and only if there exists a sequence {Λ(k)} with A0(k) + Λ(k) > 0 for all
k ∈ [k1,∞)

N
and some k1 ∈ [k0,∞)

N
satisfying

ΔΛ(k) +
Λ2(k)

A0(k) + Λ(k)
+A1(k) ≤ 0 ∀k ∈ [k1,∞)

N
. (7.1)

Since this result is a necessary and sufficient condition, the conclusion of Theorem F could be
deduced from

ΔΛ(k) +
Λ2(k)

1 + Λ(k)
+A1(k) ≤ 0 ∀k ∈ [k1,∞)

N
, (7.2)
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which is a particular case of (7.1) with A0(k) ≡ 1 for k ∈ [k0,∞)
N

. We present below a short
proof for the nonoscillation part only. Assuming (1.12) and letting

Λ(k) :=
1

4(k − 1)
+
∞∑
j=k

A1
(
j
)

for k ∈ [k1,∞)
N
⊂ [2,∞)

N
, (7.3)

we get

1
4(k − 1)

+
1

4k
≥ Λ(k) ≥ 1

4(k − 1)
∀k ∈ [k1,∞)

N
, (7.4)

and this yields

ΔΛ(k) +
Λ2(k)

1 + Λ(k)
+A1(k) ≤ − 1

4k2(4k − 3)
< 0 ∀ k ∈ [k1,∞)

N
. (7.5)

That is, the discrete Riccati inequality (7.2) has a positive solution implying that (1.10)
is nonoscillatory. It is not hard to prove that (1.13) implies nonexistence of a sequence
{Λ(k)} satisfying the discrete Riccati inequality (7.2) (see the proof of [23, Lemma
3]). Thus, oscillation/nonoscillation results for (1.10) in [21] can be deduced from
nonexistence/existence of a solution for the discrete Riccati inequality (7.2); see also [20].

An application of Theorem 3.1 with Λ(t) := λ/t for t ∈ [t0,∞)
qZ

+ and λ ∈ R
+ implies

the following result for quantum scales.

Example 7.1. Let T = qZ := {qk : k ∈ Z} ∪ {0} with q ∈ (1,∞)
R

. If there exist λ ∈ R
+
0 and

t1 ∈ [t0,∞)
qZ

+ such that

λ2

A0(t) +
(
q − 1

)
λ
+ t2

∑
i∈[1,n]

N

Ai(t)
logq(t)∏

η=logq(αi(t))

A0
(
qη
)

A0
(
qη
)
+
(
q − 1

)
λ
≤ λ
q
, t ∈ [t1,∞)

qZ , (7.6)

then the delay q-difference equation

Dq

(
A0Dqx

)
(t) +

∑
i∈[1,n]

N

Ai(t)x(αi(t)) = 0 for t ∈ [t0,∞)
qZ (7.7)

is nonoscillatory.

In [36], Bohner and Ünal studied nonoscillation and oscillation of the q-difference
equation

D2
qx(t) +

a

qt2
x
(
qt
)
= 0 for t ∈ [t0,∞)

qZ , (7.8)
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where a ∈ R
+
0 , and proved that (7.7) is nonoscillatory if and only if

a ≤ 1(√
q + 1

)2
. (7.9)

For the above q-difference equation, (7.6) reduces to the algebraic inequality

λ2

1 +
(
q − 1

)
λ
+
a

q
≤ λ
q

or λ2 − (1 − (q − 1
)
a
)
λ + a ≤ 0, (7.10)

whose discriminant is (1 − (q − 1)a)2 − 4a = (q − 1)2a2 − (q + 1)a + 1. The discriminant is
nonnegative if and only if

a ≥ q + 2√q + 1
q2 − 2q + 1

=
1(√
q − 1

)2
or a ≤ q − 2√q + 1

q2 − 2q + 1
=

1(√
q + 1

)2
. (7.11)

If the latter one holds, then the inequality (7.6) holds with an equality for the value

λ :=
1
2

(
1 − (q − 1

)
a +
√(

1 − (q − 1
)
a
)2 − 4a

)
. (7.12)

It is easy to check that this value is not less than 2/(√q + 1)2, that is, the solution is
nonnegative. This gives us the nonoscillation part of [36, Theorem 3].

Let us also outline connections to some known results in the theory of second-order
ordinary differential equations. For example, the Sturm-Picone comparison theorem is an
immediate corollary of Theorem 4.10 if we remark that a solution Λ ∈ C1

rd([t1,∞)
T
,R) of the

inequality (3.32) satisfying Λ/A0 ∈ R+([t1,∞)
T
,R) is also a solution of (3.32) with Bi instead

of Ai for i = 0, 1.

Proposition 7.2 (see [28, 32, 36]). Suppose that B0(t) ≥ A0(t) > 0, A1(t) ≥ 0, and A1(t) ≥ B1(t)
for all t ∈ [t0,∞)

T
, then nonoscillation of

(
A0x

Δ
)Δ

(t) +A1(t)xσ(t) = 0 for t ∈ [t0,∞)
T

(7.13)

implies nonoscillation of

(
B0x

Δ
)Δ

(t) + B1(t)xσ(t) = 0 for t ∈ [t0,∞)
T
. (7.14)

The following result can also be regarded as another generalization of the Sturm-
Picone comparison theorem. It is easily deduced that there is a solution Λ ∈ C1

rd([t1,∞)
T
,R+

0 )
of the inequality (3.4).
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Proposition 7.3. Suppose that (A4) and the conditions of Proposition 7.2 are fulfilled, then
nonoscillation of

(
A0x

Δ
)Δ

(t) +A1(t)x(t) = 0 for t ∈ [t0,∞)
T

(7.15)

implies the same for

(
B0x

Δ
)Δ

(t) + B1(t)x(t) = 0 for t ∈ [t0,∞)
T
. (7.16)

Finally, let us present some open problems. To this end, we will need the following
definition.

Definition 7.4. A solution x of (3.1) is said to be slowly oscillating if for every t1 ∈ [t0,∞)
T

there exist t2 ∈ (t1,∞)
T

with αmin(t) ≥ t1 for all t ∈ [t2,∞)
T

and t3 ∈ [t2,∞)
T

such that
x(t1)xσ(t1) ≤ 0, x(t2)xσ(t2) ≤ 0, x(t) > 0 for all t ∈ (t1, t2)T

.

Following the method of [8, Theorem 10], we can demonstrate that if (A1), (A2) with
positive coefficients and (A3) hold, then the existence of a slowly oscillating solution of (3.1)
which has infinitely many zeros implies oscillation of all solutions.

(P1) Generally, will existence of a slowly oscillating solution imply oscillation of all
solutions? To the best of our knowledge, slowly oscillating solutions have not been
studied for difference equations yet, the only known result is [9, Proposition 5.2].

All the results of the present paper are obtained under the assumptions that all
coefficients of (3.1) are nonnegative, and if some of them are negative, it is supposed that
the equation with the negative terms omitted has a positive solution.

(P2) Obtain sufficient nonoscillation conditions for (3.1) with coefficients of an arbitrary
sign, not assuming that all solutions of the equation with negative terms omitted are
nonoscillatory. In particular, consider the equation with one oscillatory coefficient.

(P3) Describe the asymptotic and the global properties of nonoscillatory solutions.

(P4) Deduce nonoscillation conditions for linear second-order impulsive equations on
time scales, where both the solution and its derivative are subject to the change at
impulse points (and these changes can be matched or not). The results of this type
for second-order delay differential equations were obtained in [37].

(P5) Consider the same equation on different time scales. In particular, under which
conditions will nonoscillation of (1.8) imply nonoscillation of (1.2)?

(P6) Obtain nonoscillation conditions for neutral delay second-order equations. In
particular, for difference equations some results of this type (a necessary oscillation
conditions) can be found in [17].

(P7) In the present paper, all parameters of the equation are rd-continuous which
corresponds to continuous delays and coefficients for differential equations.
However, in [8], nonoscillation of second-order equations is studied under a more
general assumption that delays and coefficients are Lebesgue measurable functions.
Can the restrictions of rd-continuity of the parameters be relaxed to involve,
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for example, discontinuous coefficients which arise in the theory of impulsive
equations?

Appendix

Time Scales Essentials

A time scale, which inherits the standard topology on R, is a nonempty closed subset of reals.
Here, and later throughout this paper, a time scale will be denoted by the symbol T, and the
intervals with a subscript T are used to denote the intersection of the usual interval with T.
For t ∈ T, we define the forward jump operator σ : T → T by σ(t) := inf(t,∞)

T
while the

backward jump operator ρ : T → T is defined by ρ(t) := sup(−∞, t)
T

, and the graininess function
μ : T → R

+
0 is defined to be μ(t) := σ(t)− t. A point t ∈ T is called right dense if σ(t) = t and/or

equivalently μ(t) = 0 holds; otherwise, it is called right scattered, and similarly left dense and
left scattered points are defined with respect to the backward jump operator. For f : T → R

and t ∈ T, the Δ-derivative fΔ(t) of f at the point t is defined to be the number, provided it
exists, with the property that, for any ε > 0, there is a neighborhood U of t such that

∣∣∣[fσ(t) − f(s)] − fΔ(t)[σ(t) − s]
∣∣∣ ≤ ε|σ(t) − s| ∀s ∈ U, (A.1)

where fσ := f ◦ σ on T. We mean the Δ-derivative of a function when we only say
derivative unless otherwise is specified. A function f is called rd-continuous provided that
it is continuous at right-dense points in T and has a finite limit at left-dense points, and the
set of rd-continuous functions is denoted by Crd(T,R). The set of functions C1

rd(T,R) includes
the functions whose derivative is in Crd(T,R) too. For a function f ∈ C1

rd(T,R), the so-called
simple useful formula holds

fσ(t) = f(t) + μ(t)fΔ(t) ∀t ∈ T
κ, (A.2)

where T
κ := T \ {sup T} if sup T = max T and satisfies ρ(max T)/= max T; otherwise, T

κ := T.
For s, t ∈ T and a function f ∈ Crd(T,R), the Δ-integral of f is defined by

∫ t
s

f
(
η
)
Δη = F(t) − F(s) for s, t ∈ T, (A.3)

where F ∈ C1
rd(T,R) is an antiderivative of f , that is, FΔ = f on T

κ. Table 1 gives the explicit
forms of the forward jump, graininess, Δ-derivative, and Δ-integral on the well-known time
scales of reals, integers, and the quantum set, respectively.

A function f ∈ Crd(T,R) is called regressive if 1 + μf /= 0 on T
κ, and positively regressive

if 1 + μf > 0 on T
κ. The set of regressive functions and the set of positively regressive functions are

denoted by R(T,R) and R+(T,R), respectively, and R−(T,R) is defined similarly.
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Table 1: Forward jump, Δ-derivative, and Δ-integral.

T R Z qZ, (q > 1)

σ(t) t t + 1 qt

fΔ(t) f ′(t) Δf(t)
Dqf(t) := (f(qt) − f(t))/((q − 1)t)

∫ t
s f(η)Δη

∫ t
s f(η)dη

∑t−1
η=s f(η)

∫ t
s f(η)dqη := (q − 1)

∑logq(t/q)

η=logq(s)
f(qη)qη

Table 2: The exponential function.

T R Z qZ, (q > 1)

ef (t, s) exp{∫ ts f(η)dη} ∏t−1
η=s(1 + f(η))

∏logq(t/q)

η=logq(s)
(1 + (q − 1)qηf(qη))

Let f ∈ R(T,R), then the exponential function ef(·, s) on a time scale T is defined to be
the unique solution of the initial value problem

xΔ(t) = f(t)x(t) for t ∈ T
κ,

x(s) = 1
(A.4)

for some fixed s ∈ T. For h ∈ R
+, set Ch := {z ∈ C : z/= − 1/h}, Zh := {z ∈ C : −π/h < Im(z) ≤

π/h}, and C0 := Z0 := C. For h ∈ R
+
0 , we define the cylinder transformation ξh : Ch → Zh by

ξh(z) :=

⎧⎪⎨
⎪⎩
z, h = 0,

1
h

Log(1 + hz), h > 0
(A.5)

for z ∈ Ch, then the exponential function can also be written in the form

ef(t, s) := exp

{∫ t
s

ξμ(η)
(
f
(
η
))
Δη

}
for s, t ∈ T. (A.6)

Table 2 illustrates the explicit forms of the exponential function on some well-known time
scales.

The exponential function ef(·, s) is strictly positive on [s,∞)
T

if f ∈ R+([s,∞)
T
,R),

while ef(·, s) alternates in sign at right-scattered points of the interval [s,∞)
T

provided that
f ∈ R−([s,∞)

T
,R). For h ∈ R

+
0 , let z,w ∈ Ch, the circle plus ⊕h and the circle minus �h are

defined by z⊕h w := z + w + hzw and z�hw := (z − w)/(1 + hw), respectively. Further
throughout the paper, we will abbreviate the operations ⊕μ and �μ simply by ⊕ and �,
respectively. It is also known that R+(T,R) is a subgroup of R(T,R), that is, 0 ∈ R+(T,R),
f, g ∈ R+(T,R) implies f⊕μg ∈ R+(T,R) and �μf ∈ R+(T,R), where �μf := 0�μf on T.

The readers are referred to [32] for further interesting details in the time scale theory.
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We consider equation x′′ + g(x) = 0, where g(x) is a polynomial, allowing the equation to have
multiple period annuli. We detect the maximal number of possible period annuli for polynomials
of odd degree and show how the respective optimal polynomials can be constructed.

1. Introduction

Consider equation

x′′ + g(x) = 0, (1.1)

where g(x) is an odd degree polynomial with simple zeros.
The equivalent differential system

x′ = y, y′ = −g(x) (1.2)

has critical points at (pi, 0), where pi are zeros of g(x). Recall that a critical point O of (1.2) is
a center if it has a punctured neighborhood covered with nontrivial cycles.

We will use the following definitions.

Definition 1.1 (see [1]). A central region is the largest connected region covered with cycles
surrounding O.
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Figure 2: The phase portrait for (1.1), where G(x) is as in Figure 1.

Definition 1.2 (see [1]). A period annulus is every connected region covered with nontrivial
concentric cycles.

Definition 1.3. We will call a period annulus associated with a central region a trivial period
annulus. Periodic trajectories of a trivial period annulus encircle exactly one critical point of
the type center.

Definition 1.4. Respectively, a period annulus enclosing several (more than one) critical points
will be called a nontrivial period annulus.

For example, there are four central regions and three nontrivial period annuli in the
phase portrait depicted in Figure 2.

Period annuli are the continua of periodic solutions. They can be used for constructing
examples of nonlinear equations which have a prescribed number of solutions to the Dirichlet
problem

x′′ + g(x) = 0, x(0) = 0, x(1) = 0, (1.3)

or a given number of positive solutions [2] to the same problem.
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Under certain conditions, period annuli of (1.1) give rise to limit cycles in a dissipative
equation

x′′ + f(x)x′ + g(x) = 0. (1.4)

The Liénard equation with a quadratical term

x′′ + f(x)x′2 + g(x) = 0 (1.5)

can be reduced to the form (1.1) by Sabatini’s transformation [3]

u := Φ(x) =
∫x

0
eF(s)ds, (1.6)

where F(x) =
∫x

0 f(s)ds. Since du/dx > 0, this is one-to-one correspondence and the inverse
function x = x(u) is well defined.

Lemma 1.5 (see [3, Lemma 1]). The function x(t) is a solution of (1.5) if and only if u(t) = Φ(x(t))
is a solution to

u′′ + g(x(u))eF(x(u)) = 0. (1.7)

Our task in this article is to define the maximal number of nontrivial period annuli for
(1.1).

(A) We suppose that g(x) is an odd degree polynomial with simple zeros and with a
negative coefficient at the principal term (so g(−∞) = +∞ and g(+∞) = −∞). A
zero z is called simple if g(z) = 0 and g ′(z)/= 0.

The graph of a primitive function G(x) =
∫x

0 g(s)ds is an even degree polynomial with
possible multiple local maxima.

The function g(x) = −x(x2 − p2)(x2 − q2) is a sample.
We discuss nontrivial period annuli in Section 2. In Section 3, a maximal number of

regular pairs is detected. Section 4 is devoted to construction of polynomials g(x) which
provide the maximal number of regular pairs or, equivalently, nontrivial period annuli in (1.1).

2. Nontrivial Period Annuli

The result below provides the criterium for the existence of nontrivial period annuli.

Theorem 2.1 (see [4]). Suppose that g(x) in (1.1) is a polynomial with simple zeros. Assume
that M1 and M2 (M1 < M2) are nonneighboring points of maximum of the primitive function
G(x). Suppose that any other local maximum of G(x) in the interval (M1,M2) is (strictly) less than
min{G(M1);G(M2)}.

Then, there exists a nontrivial period annulus associated with a pair (M1,M2).
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It is evident that if G(x) has m pairs of non-neighboring points of maxima then m
nontrivial period annuli exist.

Consider, for example, (1.1), where

g(x) = −x(x + 3)(x + 2.2)(x + 1.9)(x + 0.8)(x − 0.3)(x − 1.5)(x − 2.3)(x − 2.9). (2.1)

The equivalent system has alternating “saddles” and “centers”, and the graph of G(x) is
depicted in Figure 1.

There are three pairs of non-neighboring points of maxima and three nontrivial period
annuli exist, which are depicted in Figure 2.

3. Polynomials

Consider a polynomial G(x). Points of local maxima xi and xj of G(x) are non-neighboring if
the interval (xi, xj) contains at least one point of local maximum of G(x).

Definition 3.1. Two non-neighboring points of maxima xi < xj of G(x) will be called a regular
pair if G(x) < min{G(xi), G(xj)} at any other point of maximum lying in the interval (xi, xj).

Theorem 3.2. Suppose g(x) is a polynomial which satisfies the condition A. Let G(x) be a primitive
function for g(x) and n a number of local maxima of G(x).

Then, the maximal possible number of regular pairs is n − 2.

Proof. By induction, let x1, x2, . . . , xn be successive points of maxima of G(x), x1 < x2 < · · · <
xn.

(1) Let n = 3. The following combinations are possible at three points of maxima:

(a) G(x1) ≥ G(x2) ≥ G(x3),

(b) G(x2) < G(x1), G(x2) < G(x3),

(c) G(x1) ≤ G(x2) ≤ G(x3),

(d) G(x2) ≥ G(x1), G(x2) ≥ G(x3).

Only the case (b) provides a regular pair. In this case, therefore, the maximal number
of regular pairs is 1.

(2) Suppose that for any sequence of n > 3 ordered points of maxima of G(x) the
maximal number of regular pairs is n − 2. Without loss of generality, add to the right one
more point of maximum of the function G(x). We get a sequence of n + 1 consecutive points
of maximum x1, x2, . . . , xn, xn+1, x1 < x2 < . . . < xn < xn+1. Let us prove that the maximal
number of regular pairs is n − 1. For this, consider the following possible variants.

(a) The couple x1, xn is a regular pair. If G(x1) > G(xn) and G(xn+1) > G(xn), then,
beside the regular pairs in the interval [x1, xn], only one new regular pair can appear,
namely, x1, xn+1. Then, the maximal number of regular pairs which can be composed
of the points x1, x2, . . . , xn, xn+1, is not greater than (n−2)+1 = n−1. IfG(x1) ≤ G(xn)
or G(xn+1) ≤ G(xn), then the additional regular pair does not appear. In a particular
caseG(x2) < G(x3) < · · · < G(xn) < G(xn+1) andG(x1) > G(xn) the following regular
pairs exist, namely, x1 and x3, x1 and x4,. . ., x1 and xn, and the new pair x1 and xn+1

appears, totally n − 1 pairs.
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(b) Suppose that x1, xn is not a regular pair. Let xi and xj be a regular pair, 1 ≤ i < j ≤ n,
and there is no other regular pair xp, xq such that 1 ≤ p ≤ i < j ≤ q ≤ n. Let us
mention that if such a pair xi, xj does not exist, then the function G(x) does not
have regular pairs at all and the sequence {G(xk)}, k = 1, · · · , n, is monotone. Then,
if G(xn+1) is greater than any other maximum, there are exactly (n + 1) − 2 = n − 1
regular pairs.

Otherwise, we have two possibilities:

either G(xi) ≥ G(xp), p = 1, . . . , i − 1,

or G(xj) ≥ G(xq), q = j + 1, . . . , n.

In the first case, the interval [x1, xi] contains i points of maximum of G(x), i < n, and
hence the number of regular pairs in this interval does not exceed i − 2. There are no regular
pairs xp, xk for 1 ≤ p < i, i < k ≤ n + 1. The interval [xi, xn+1] contains (n + 1) − (i − 1) points
of maximum of G(x), and hence the number of regular pairs in this interval does not exceed
(n + 1) − (i − 1) − 2 = n − i. Totally, there are no more regular pairs than (i − 2) + (n − i) = n − 2.

In the second case, the number of regular pairs in [xi, xj] does not exceed j −(i−1)−2 =
j − i− 1. In [xj , xn+1],there are no more than (n+ 1)− (j − 1)− 2 = n− j regular pairs. The points
xp, p = 1, . . . , i − 1, xq, j < q ≤ n do not form regular pairs, by the choice of xp and xq. The
points xp, p = 1, . . . , i, together with xn+1 (it serves as the i+1th point in a collection of points)
form not more than (i + 1) − 2 = i − 1 regular pairs. Totally, the number of regular pairs is not
greater than (j − i − 1) + (n − j) + (i − 1) = n − 2.

4. Existence of Polynomials with Optimal Distribution

Theorem 4.1. Given number n, a polynomial g(x) can be constructed such that

(a) the condition (A) is satisfied,

(b) the primitive function G(x) has exactly n points of maximum and the number of regular
pairs is exactly n − 2.

Proof of the Theorem. Consider the polynomial

G(x) = −
(
x +

1
2

)(
x − 1

2

)(
x +

3
2

)(
x − 3

2

)(
x +

5
2

)(
x − 5

2

)(
x +

7
2

)(
x − 7

2

)
. (4.1)

It is an even function with the graph depicted in Figure 3.
Consider now the polynomial

Gε(x) = −
(
x +

1
2
+ ε

)(
x − 1

2

)(
x +

3
2

)(
x − 3

2

)(
x +

5
2

)(
x − 5

2

) (
x +

7
2

)(
x − 7

2

)
,

(4.2)

where ε > 0 is small enough. The graph of Gε(x) with ε = 0.2 is depicted in Figure 4.



6 Abstract and Applied Analysis

−500

500

−3 −2 −1 1 2 3

Figure 3: G(x) (solid) and G′(x) = g(x) (dashed).
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Figure 4: G(x) (solid line), Gε(x) (dashed line), and G(x) −Gε(x) (dotted line).

Denote the maximal values of G(x) and Gε(x) to the right of x = 0 m+
1 , m

+
2 . Denote

the maximal values of G(x) and Gε(x) to the left of x = 0 m−1 , m
−
2 . One has for G(x) that

m+
1 = m−1 < m

−
2 = m+

2 . One has for Gε(x) that m+
1 < m

−
1 < m

+
2 < m

−
2 . Then, there are two regular

pairs (resp., m−1 and m+
2 , m+

2 and m−2 ).
For arbitrary even n the polynomial

Gε(x) = −
(
x +

1
2

)(
x − 1

2

)(
x +

3
2

)(
x − 3

2

)
· · ·

(
x +

2n − 1
2

)(
x − 2n − 1

2

)
, (4.3)

is to be considered where the maximal values m+
1 , m

+
2 , . . . , m

+
n/2 to the right of x = 0 form

ascending sequence, and, respectively, the maximal values m−1 , m
−
2 , . . . , m

−
n/2 to the left of x =

0 also form ascending sequence. One has that m+
i = m−i for all i. For a slightly modified

polynomial

Gε(x) = −
(
x +

1
2
+ ε

)(
x − 1

2

)(
x +

3
2

)(
x − 3

2

)
. . .

(
x +

2n − 1
2

)(
x − 2n − 1

2

)
, (4.4)

the maximal values are arranged as

m+
1 < m

−
1 < m

+
2 < m

−
2 < · · · < m+

n/2 < m
−
n/2. (4.5)
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−2

−1

1

2

−3 −2 −1 1 2 3

Figure 6: G(x) (solid), Gε(x) (dashed), and G(x) −Gε(x) (dotted).

Therefore, there exist exactly n − 2 regular pairs and, consequently, n − 2 nontrivial period
annuli in the differential equation (1.1).

If n is odd, then the polynomial

G(x) = −x2(x − 1)(x + 1)(x − 2)(x + 2) · · · (x − (n − 1))(x + (n − 1)) (4.6)

with n local maxima is to be considered. The maxima are descending for x < 0 and ascending
if x > 0. The polynomial with three local maxima is depicted in Figure 5.

The slightly modified polynomial

G(x) = −x2(x − 1 − ε)(x + 1)(x − 2)(x + 2) · · · (x − (n − 1))(x + (n − 1)) (4.7)

has maxima which are not equal and are arranged in an optimal way in order to produce the
maximal (n − 2) regular pairs.

The graph of Gε(x) with ε = 0.2 is depicted in Figure 6.
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Existence of positive solutions for advanced equations with several terms ẋ(t) +∑m
k=1 ak(t)x(hk(t)) = 0, hk(t) ≥ t is investigated in the following three cases: (a) all coefficients

ak are positive; (b) all coefficients ak are negative; (c) there is an equal number of positive and
negative coefficients. Results on asymptotics of nonoscillatory solutions are also presented.

1. Introduction

This paper deals with nonoscillation properties of scalar advanced differential equations.
Advanced differential equations appear in several applications, especially as mathematical
models in economics; an advanced term may, for example, reflect the dependency on
anticipated capital stock [1, 2].

It is not quite clear how to formulate an initial value problem for such equations, and
existence and uniqueness of solutions becomes a complicated issue. To study oscillation, we
need to assume that there exists a solution of such equation on the halfline. In the beginning of
1980s, sufficient oscillation conditions for first-order linear advanced equations with constant
coefficients and deviations of arguments were obtained in [3] and for nonlinear equations
in [4]. Later oscillation properties were studied for other advanced and mixed differential
equations (see the monograph [5], the papers [6–12] and references therein). Overall, these
publications mostly deal with sufficient oscillation conditions; there are only few results
[7, 9, 12] on existence of positive solutions for equations with several advanced terms and
variable coefficients, and the general nonoscillation theory is not complete even for first-order
linear equations with variable advanced arguments and variable coefficients of the same sign.
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The present paper partially fills up this gap. We obtain several nonoscillation results for
advanced equations using the generalized characteristic inequality [13]. The main method
of this paper is based on fixed point theory; thus, we also state the existence of a solution in
certain cases.

In the linear case, the best studied models with advanced arguments were the
equations of the types

ẋ(t) − a(t)x(h(t)) + b(t)x(t) = 0,

ẋ(t) − a(t)x(t) + b(t)x(g(t)) = 0,
(1.1)

where a(t) ≥ 0, b(t) ≥ 0, h(t) ≥ t, and g(t) ≥ t.
Let us note that oscillation of higher order linear and nonlinear equations with

advanced and mixed arguments was also extensively investigated, starting with [14]; see
also the recent papers [15–19] and references therein.

For equations with an advanced argument, the results obtained in [20, 21] can be
reformulated as Theorems A–C below.

Theorem A (see [20]). If a, b, and h are equicontinuous on [0,∞), a(t) ≥ 0, b(t) ≥ 0, h(t) ≥ t, and
lim supt→∞[h(t) − t] <∞, then the advanced equation

ẋ(t) + a(t)x(h(t)) + b(t)x(t) = 0 (1.2)

has a nonoscillatory solution.

In the present paper, we extend Theorem A to the case of several deviating arguments
and coefficients (Theorem 2.10).

Theorem B (see [20]). If a, b, and h are equicontinuous on [0,∞), a(t) ≥ 0, b(t) ≥ 0, h(t) ≥ t,
lim supt→∞[h(t) − t] <∞, and

lim sup
t→∞

∫h(t)

t

a(s) exp

{∫h(s)

s

b(τ)dτ

}
ds <

1
e
, (1.3)

then the advanced equation

ẋ(t) − a(t)x(h(t)) − b(t)x(t) = 0 (1.4)

has a nonoscillatory solution.

Corollary 2.3 of the present paper extends Theorem B to the case of several coefficients
ak ≥ 0 and advanced arguments hk (generally, b(t) ≡ 0); if

∫maxkhk(t)

t

m∑
i=1

ai(s)ds ≤ 1
e
, (1.5)
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then the equation

ẋ(t) +
m∑
k=1

ak(t)x(hk(t)) = 0 (1.6)

has an eventually positive solution. To the best of our knowledge, only the opposite
inequality (with minkhk(t) rather than maxkhk(t) in the upper bound) was known as a
sufficient oscillation condition. Coefficients and advanced arguments are also assumed to
be of a more general type than in [20]. Comparison to equations with constant arguments
deviations, and coefficients (Corollary 2.8) is also outlined.

For advanced equations with coefficients of different sign, the following result is
known.

Theorem C (see [21]). If 0 ≤ a(t) ≤ b(t) and h(t) ≥ t, then there exists a nonoscillatory solution of
the equation

ẋ(t) − a(t)x(h(t)) + b(t)x(t) = 0. (1.7)

This result is generalized in Theorem 2.13 to the case of several positive and negative
terms and several advanced arguments; moreover, positive terms can also be advanced as far
as the advance is not greater than in the corresponding negative terms.

We also study advanced equations with positive and negative coefficients in the case
when positive terms dominate rather than negative ones; some sufficient nonoscillation
conditions are presented in Theorem 2.15; these results are later applied to the equation with
constant advances and coefficients. Let us note that analysis of nonoscillation properties of
the mixed equation with a positive advanced term

ẋ(t) + a(t)x(h(t)) − b(t)x(g(t)) = 0, h(t) ≥ t, g(t) ≤ t, a(t) ≥ 0, b(t) ≥ 0 (1.8)

was also more complicated compared to other cases of mixed equations with positive and
negative coefficients [21].

In nonoscillation theory, results on asymptotic properties of nonoscillatory solutions
are rather important; for example, for equations with several delays and positive coefficients,
all nonoscillatory solutions tend to zero if the integral of the sum of coefficients diverges;
under the same condition for negative coefficients, all solutions tend to infinity. In Theorems
2.6 and 2.11, the asymptotic properties of nonoscillatory solutions for advanced equations
with coefficients of the same sign are studied.

The paper is organized as follows. Section 2 contains main results on the existence of
nonoscillatory solutions to advanced equations and on asymptotics of these solutions: first
for equations with coefficients of the same sign, then for equations with both positive and
negative coefficients. Section 3 involves some comments and open problems.
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2. Main Results

Consider first the equation

ẋ(t) −
m∑
k=1

ak(t)x(hk(t)) = 0, (2.1)

under the following conditions:

(a1) ak(t) ≥ 0, k = 1, . . . , m, are Lebesgue measurable functions locally essentially
bounded for t ≥ 0,

(a2) hk : [0,∞) → � are Lebesgue measurable functions, hk(t) ≥ t, k = 1, . . . , m.

Definition 2.1. A locally absolutely continuous function x : [t0,∞) → R is called a solution of
problem (2.1) if it satisfies (2.1) for almost all t ∈ [t0,∞).

The same definition will be used for all further advanced equations.

Theorem 2.2. Suppose that the inequality

u(t) ≥
m∑
k=1

ak(t) exp

{∫hk(t)

t

u(s)ds

}
, t ≥ t0 (2.2)

has a nonnegative solution which is integrable on each interval [t0, b], then (2.1) has a positive solution
for t ≥ t0.

Proof. Let u0(t) be a nonnegative solution of inequality (2.2). Denote

un+1(t) =
m∑
k=1

ak(t) exp

{∫hk(t)

t

un(s)ds

}
, n = 0, 1, . . . , (2.3)

then

u1(t) =
m∑
k=1

ak(t) exp

{∫hk(t)

t

u0(s)ds

}
≤ u0(t). (2.4)

By induction we have 0 ≤ un+1(t) ≤ un(t) ≤ u0(t). Hence, there exists a pointwise limit u(t) =
limn→∞un(t). By the Lebesgue convergence theorem, we have

u(t) =
m∑
k=1

ak(t) exp

{∫hk(t)

t

u(s)ds

}
. (2.5)

Then, the function

x(t) = x(t0) exp

{∫ t

t0

u(s)ds

}
for any x(t0) > 0 (2.6)

is a positive solution of (2.1).
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Corollary 2.3. If
∫maxkhk(t)

t

m∑
i=1

ai(s)ds ≤ 1
e
, t ≥ t0, (2.7)

then (2.1) has a positive solution for t ≥ t0.

Proof. Let u0(t) = e
∑m

k=1 ak(t), then u0 satisfies (2.2) at any point t where
∑m

k=1 ak(t) = 0. In
the case when

∑m
k=1 ak(t)/= 0, inequality (2.7) implies

u0(t)∑m
k=1 ak(t) exp

{∫hk(t)
t

u0(s)ds
}

≥ u0(t)∑m
k=1 ak(t) exp

{∫maxkhk(t)
t

u0(s)ds
}

=
e
∑m

k=1 ak(t)∑m
k=1 ak(t) exp

{
e
∫maxkhk(t)
t

∑m
i=1 ai(s)ds

}

≥ e
∑m

k=1 ak(t)∑m
k=1 ak(t)e

= 1.

(2.8)

Hence, u0(t) is a positive solution of inequality (2.2). By Theorem 2.2, (2.1) has a positive
solution for t ≥ t0.

Corollary 2.4. If there exists σ > 0 such that hk(t) − t ≤ σ and
∫∞

0

∑m
k=1 ak(s)ds < ∞, then (2.1)

has an eventually positive solution.

Corollary 2.5. If there exists σ > 0 such that hk(t) − t ≤ σ and limt→∞ak(t) = 0, then (2.1) has an
eventually positive solution.

Proof. Under the conditions of either Corollary 2.4 or Corollary 2.5, obviously there exists
t0 ≥ 0 such that (2.7) is satisfied.

Theorem 2.6. Let
∫∞∑m

k=1 ak(s)ds = ∞ and x be an eventually positive solution of (2.1), then
limt→∞x(t) = ∞.

Proof. Suppose that x(t) > 0 for t ≥ t1, then ẋ(t) ≥ 0 for t ≥ t1 and

ẋ(t) ≥
m∑
k=1

ak(t)x(t1), t ≥ t1, (2.9)

which implies

x(t) ≥ x(t1)
∫ t

t1

m∑
k=1

ak(s)ds. (2.10)

Thus, limt→∞x(t) = ∞.
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Consider together with (2.1) the following equation:

ẋ(t) −
m∑
k=1

bk(t)x
(
gk(t)

)
= 0, (2.11)

for t ≥ t0. We assume that for (2.11) conditions (a1)-(a2) also hold.

Theorem 2.7. Suppose that t ≤ gk(t) ≤ hk(t), 0 ≤ bk(t) ≤ ak(t), t ≥ t0, and the conditions of
Theorem 2.2 hold, then (2.11) has a positive solution for t ≥ t0.

Proof. Let u0(t) ≥ 0 be a solution of inequality (2.2) for t ≥ t0, then this function is also a
solution of this inequality if ak(t) and hk(t) are replaced by bk(t) and gk(t). The reference to
Theorem 2.2 completes the proof.

Corollary 2.8. Suppose that there exist ak > 0 and σk > 0 such that 0 ≤ ak(t) ≤ ak, t ≤ hk(t) ≤
t + σk, t ≥ t0, and the inequality

λ ≥
m∑
k=1

ake
λσk (2.12)

has a solution λ ≥ 0, then (2.1) has a positive solution for t ≥ t0.

Proof. Consider the equation with constant parameters

ẋ(t) −
m∑
k=1

akx(t + σk) = 0. (2.13)

Since the function u(t) ≡ λ is a solution of inequality (2.2) corresponding to (2.13), by
Theorem 2.2, (2.13) has a positive solution. Theorem 2.7 implies this corollary.

Corollary 2.9. Suppose that 0 ≤ ak(t) ≤ ak, t ≤ hk(t) ≤ t + σ for t ≥ t0, and

m∑
k=1

ak ≤ 1
eσ

, (2.14)

then (2.1) has a positive solution for t ≥ t0.

Proof. Since
∑m

k=1 ak ≤ 1/eσ, the number λ = 1/σ is a positive solution of the inequality

λ ≥
(

m∑
k=1

ak

)
eλσ, (2.15)

which completes the proof.
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Consider now the equation with positive coefficients

ẋ(t) +
m∑
k=1

ak(t)x(hk(t)) = 0. (2.16)

Theorem 2.10. Suppose that ak(t) ≥ 0 are continuous functions bounded on [t0,∞) and hk are
equicontinuous functions on [t0,∞) satisfying 0 ≤ hk(t) − t ≤ δ, then (2.16) has a nonoscillatory
solution.

Proof. In the space C[t0,∞) of continuous functions on [t0,∞), consider the set

M =

{
u | 0 ≤ u ≤

m∑
k=1

ak(t)

}
, (2.17)

and the operator

(Hu)(t) =
m∑
k=1

ak(t) exp

{
−
∫hk(t)

t

u(s)ds

}
. (2.18)

If u ∈M, then Hu ∈M.
For the integral operator

(Tu)(t) :=
∫hk(t)

t

u(s)ds, (2.19)

we will demonstrate that TM is a compact set in the space C[t0,∞). If u ∈M, then

‖(Tu)(t)‖C[t0,∞) ≤ sup
t≥t0

∫ t+δ

t

|u(s)|ds ≤ sup
t≥t0

m∑
k=1

ak(t)δ <∞. (2.20)

Hence, the functions in the set TM are uniformly bounded in the space C[t0,∞).
Functions hk are equicontinuous on [t0,∞), so for any ε > 0, there exists a σ0 > 0 such

that for |t − s| < σ0, the inequality

|hk(t) − hk(s)| < ε

2

(
sup
t≥t0

m∑
k=1

ak(t)

)−1

, k = 1, . . . , m (2.21)

holds. From the relation

∫hk(t0)

t0

−
∫hk(t)

t

=
∫ t

t0

+
∫hk(t0)

t

−
∫hk(t0)

t

−
∫hk(t)

hk(t0)
=
∫ t

t0

−
∫hk(t)

hk(t0)
, (2.22)
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we have for |t − t0| < min{σ0, ε/2 supt≥t0
∑m

k=1 ak(t)} and u ∈M the estimate

|(Tu)(t) − (Tu)(t0)| =
∣∣∣∣∣
∫hk(t)

t
u(s) −

∫hk(t0)

t0

u(s)ds

∣∣∣∣∣

≤
∫ t

t0

|u(s)|ds +
∫hk(t)

hk(t0)
|u(s)|ds

≤ |t − t0|sup
t≥t0

m∑
k=1

ak(t) + |hk(t) − hk(t0)|sup
t≥t0

m∑
k=1

ak(t)

<
ε

2
+
ε

2
= ε.

(2.23)

Hence, the set TM contains functions which are uniformly bounded and equicontinuous on
[t0,∞), so it is compact in the space C[t0,∞); thus, the set HM is also compact in C[t0,∞).

By the Schauder fixed point theorem, there exists a continuous function u ∈ M such
that u = Hu, then the function

x(t) = exp

{
−
∫ t

t0

u(s)ds

}
(2.24)

is a bounded positive solution of (2.16). Moreover, since u is nonnegative, this solution is
nonincreasing on [t0,∞).

Theorem 2.11. Suppose that the conditions of Theorem 2.10 hold,

∫∞
t0

m∑
k=1

ak(s)ds =∞, (2.25)

and x is a nonoscillatory solution of (2.16), then limt→∞x(t) = 0.

Proof. Let x(t) > 0 for t ≥ t0, then ẋ(t) ≤ 0 for t ≥ t0. Hence, x(t) is nonincreasing and thus
has a finite limit. If limt→∞x(t) = d > 0, then x(t) > d for any t, and thus ẋ(t) ≤ −d∑m

k=1 ak(t)
which implies limt→∞x(t) = −∞. This contradicts to the assumption that x(t) is positive, and
therefore limt→∞x(t) = 0.

Let us note that we cannot guarantee any (exponential or polynomial) rate of
convergence to zero even for constant coefficients ak, as the following example demonstrates.

Example 2.12. Consider the equation ẋ(t) +x(h(t)) = 0, where h(t) = tt ln t, t ≥ 3, x(3) = 1/ ln 3.
Then, x(t) = 1/(ln t) is the solution which tends to zero slower than t−r for any r > 0.

Consider now the advanced equation with positive and negative coefficients

ẋ(t) −
m∑
k=1

[
ak(t)x(hk(t)) − bk(t)x

(
gk(t)

)]
= 0, t ≥ 0. (2.26)
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Theorem 2.13. Suppose that ak(t) and bk(t) are Lebesgue measurable locally essentially bounded
functions, ak(t) ≥ bk(t) ≥ 0, hk(t) and gk(t) are Lebesgue measurable functions, hk(t) ≥ gk(t) ≥ t,
and inequality (2.2) has a nonnegative solution, then (2.26) has a nonoscillatory solution; moreover,
it has a positive nondecreasing and a negative nonincreasing solutions.

Proof. Let u0 be a nonnegative solution of (2.2) and denote

un+1(t) =
m∑
k=1

(
ak(t) exp

{∫hk(t)

t

un(s)ds

}
− bk(t) exp

{∫gk(t)

t

un(s)ds

})
, t ≥ t0, n ≥ 0.

(2.27)

We have u0 ≥ 0, and by (2.2),

u0 ≥
m∑
k=1

ak(t) exp

{∫hk(t)

t

u0(s)ds

}

≥
m∑
k=1

(
ak(t) exp

{∫hk(t)

t

u0(s)ds

}
− bk(t) exp

{∫gk(t)

t

u0(s)ds

})
= u1(t).

(2.28)

Since ak(t) ≥ bk(t) ≥ 0 and t ≤ gk(t) ≤ hk(t), then u1(t) ≥ 0.
Next, let us assume that 0 ≤ un(t) ≤ un−1(t). The assumptions of the theorem imply

un+1 ≥ 0. Let us demonstrate that un+1(t) ≤ un(t). This inequality has the form

m∑
k=1

(
ak(t) exp

{∫hk(t)

t

un(s)ds

}
− bk(t) exp

{∫gk(t)

t

un(s)ds

})

≤
m∑
k=1

(
ak(t) exp

{∫hk(t)

t

un−1(s)ds

}
− bk(t) exp

{∫gk(t)

t

un−1(s)ds

})
,

(2.29)

which is equivalent to

m∑
k=1

exp

{∫hk(t)

t

un(s)ds

}(
ak(t) − bk(t) exp

{
−
∫hk(t)

gk(t)
un(s)ds

})

≤
m∑
k=1

exp

{∫hk(t)

t

un−1(s)ds

}(
ak(t) − bk(t) exp

{
−
∫hk(t)

gk(t)
un−1(s)ds

})
.

(2.30)

This inequality is evident for any 0 ≤ un(t) ≤ un−1(t), ak(t) ≥ 0, and bk ≥ 0; thus, we have
un+1(t) ≤ un(t).

By the Lebesgue convergence theorem, there is a pointwise limit u(t) = limn→∞un(t)
satisfying

u(t) =
m∑
k=1

(
ak(t) exp

{∫hk(t)

t

u(s)ds

}
− bk(t) exp

{∫gk(t)

t

u(s)ds

})
, t ≥ t0, (2.31)
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u(t) ≥ 0, t ≥ t0. Then, the function

x(t) = x(t0) exp

{∫ t

t0

u(s)ds

}
, t ≥ t0 (2.32)

is a positive nondecreasing solution of (2.26) for any x(t0) > 0 and is a negative nonincreasing
solution of (2.26) for any x(t0) < 0.

Corollary 2.14. Let ak(t) and bk(t) be Lebesgue measurable locally essentially bounded functions
satisfying ak(t) ≥ bk(t) ≥ 0, and let hk(t) and gk(t) be Lebesgue measurable functions, where hk(t) ≥
gk(t) ≥ t. Assume in addition that inequality (2.7) holds. Then, (2.26) has a nonoscillatory solution.

Consider now the equation with constant deviations of advanced arguments

ẋ(t) −
m∑
k=1

[ak(t)x(t + τk) − bk(t)x(t + σk)] = 0, (2.33)

where ak, bk are continuous functions, τk ≥ 0, σk ≥ 0.
Denote Ak = supt≥t0ak(t), ak = inft≥t0ak(t), Bk = supt≥t0bk(t), bk = inft≥t0bk(t).

Theorem 2.15. Suppose that ak ≥ 0, bk ≥ 0, Ak <∞, and Bk < ∞.
If there exists a number λ0 < 0 such that

m∑
k=1

(
ake

λ0τk − Bk
)
≥ λ0, (2.34)

m∑
k=1

(
Ak − bkeλ0σk

)
≤ 0, (2.35)

then (2.33) has a nonoscillatory solution; moreover, it has a positive nonincreasing and a negative
nondecreasing solutions.

Proof. In the space C[t0,∞), consider the set M = {u | λ0 ≤ u ≤ 0} and the operator

(Hu)(t) =
m∑
k=1

(
ak(t) exp

{∫ t+τk

t

u(s)ds

}
− bk(t) exp

{∫ t+σk

t

u(s)ds

})
. (2.36)

For u ∈M, we have from (2.34) and (2.35)

(Hu)(t) ≤
m∑
k=1

(
Ak − bkeλ0σk

)
≤ 0,

(Hu)(t) ≥
m∑
k=1

(
ake

λ0τk − Bk
)
≥ λ0.

(2.37)

Hence, HM ⊂M.
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Consider the integral operator

(Tu)(t) :=
∫ t+δ

t

u(s)ds, δ > 0. (2.38)

We will show that TM is a compact set in the space C[t0,∞). For u ∈M, we have

‖(Tu)(t)‖C[t0,∞) ≤ sup
t≥t0

∫ t+δ

t

|u(s)|ds ≤ |λ0|δ. (2.39)

Hence, the functions in the set TM are uniformly bounded in the space C[t0,∞).
The equality

∫ t0+δ
t0
− ∫ t+δt =

∫ t
t0
+
∫ t0+δ
t − ∫ t0+δt − ∫ t+δt0+δ

=
∫ t
t0
− ∫ t+δt0+δ

implies

|(Tu)(t) − (Tu)(t0)| =
∣∣∣∣∣
∫ t+δ

t

u(s) −
∫ t0+δ

t0

u(s)ds

∣∣∣∣∣

≤
∫ t

t0

|u(s)|ds +
∫ t+δ

t0+δ
|u(s)|ds ≤ 2|λ0||t − t0|.

(2.40)

Hence, the set TM and so the set HM are compact in the space C[t0,∞).
By the Schauder fixed point theorem, there exists a continuous function u satisfying

λ0 ≤ u ≤ 0 such that u = Hu; thus, the function

x(t) = x(t0) exp

{∫ t

t0

u(s)ds

}
, t ≥ t0 (2.41)

is a positive nonincreasing solution of (2.33) for any x(t0) > 0 and is a negative nondecreasing
solution of (2.26) for any x(t0) < 0.

Let us remark that (2.35) for any λ0 < 0 implies
∑m

k=1(Ak − bk) < 0.

Corollary 2.16. Let
∑m

k=1(Ak − bk) < 0,
∑m

k=1 Ak > 0, and for

λ0 =
ln
(∑m

k=1 Ak/
∑m

k=1 bk
)

maxkσk
, (2.42)

the inequality

m∑
k=1

(
ake

λ0τk − Bk
)
≥ λ0 (2.43)

holds, then (2.33) has a bounded positive solution.

Proof. The negative number λ0 defined in (2.42) is a solution of both (2.34) and (2.35); by
definition, it satisfies (2.35), and (2.43) implies (2.34).
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Figure 1: The domain of values (d, r) satisfying inequality (2.47). If the values of advances d and r are
under the curve, then (2.44) has a positive solution.

Example 2.17. Consider the equation with constant advances and coefficients

ẋ(t) − ax(t + r) + bx(t + d) = 0, (2.44)

where 0 < a < b, d > 0, r ≥ 0. Then, λ0 = (1/d) ln(a/b) is the minimal value of λ for which
inequality (2.35) holds; for (2.44), it has the form a − beλd ≤ 0.

Inequality (2.34) for (2.44) can be rewritten as

f(λ) = aeλr − b − λ ≥ 0, (2.45)

where the function f(x) decreases on (−∞,− ln(ar)/r] if τ > 0 and for any negative x if r = 0;
besides, f(0) < 0. Thus, if f(λ1) < 0 for some λ1 < 0, then f(λ) < 0 for any λ ∈ [λ1, 0). Hence,
the inequality

f(λ0) = a
(a
b

)r/d
− b − 1

d
ln
(a
b

)
≥ 0 (2.46)

is necessary and sufficient for the conditions of Theorem 2.15 to be satisfied for (2.44).
Figure 1 demonstrates possible values of advances d and r, such that Corollary 2.16

implies the existence of a positive solution in the case 1 = a < b = 2. Then, (2.46) has the form
0.5r/d ≥ 2 − (ln 2)/d, which is possible only for d > 0.5 ln 2 ≈ 0.347 and for these values is
equivalent to

r ≤ −d ln(2 − ln 2/d)
ln 2

. (2.47)
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3. Comments and Open Problems

In this paper, we have developed nonoscillation theory for advanced equations with variable
coefficients and advances. Most previous nonoscillation results deal with either oscillation
or constant deviations of arguments. Among all cited papers, only [8] has a nonoscillation
condition (Theorem 2.11) for a partial case of (2.1) (with hk(t) = t + τk), which in this case
coincides with Corollary 2.4. The comparison of results of the present paper with the previous
results of the authors was discussed in the introduction.

Finally, let us state some open problems and topics for research.

(1) Prove or disprove:
if (2.1), with ak(t) ≥ 0, has a nonoscillatory solution, then (2.26) with positive and
negative coefficients also has a nonoscillatory solution.

As the first step in this direction, prove or disprove that if h(t) ≥ t and the equation

ẋ(t) − a+(t)x(h(t)) = 0 (3.1)

has a nonoscillatory solution, then the equation

ẋ(t) − a(t)x(h(t)) = 0 (3.2)

also has a nonoscillatory solution, where a+(t) = max{a(t), 0}.
If these conjectures are valid, obtain comparison results for advanced equations.

(2) Deduce nonoscillation conditions for (2.1) with oscillatory coefficients. Oscillation
results for an equation with a constant advance and an oscillatory coefficient were
recently obtained in [22].

(3) Consider advanced equations with positive and negative coefficients when the
numbers of positive and negative terms do not coincide.

(4) Study existence and/or uniqueness problem for the initial value problem or
boundary value problems for advanced differential equations.
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For a system of linear functional differential equations, we consider a three-point problem with
nonseparated boundary conditions determined by singular matrices. We show that, to investigate
such a problem, it is often useful to reduce it to a parametric family of two-point boundary
value problems for a suitably perturbed differential system. The auxiliary parametrised two-point
problems are then studied by a method based upon a special kind of successive approximations
constructed explicitly, whereas the values of the parameters that correspond to solutions of the
original problem are found from certain numerical determining equations. We prove the uniform
convergence of the approximations and establish some properties of the limit and determining
functions.

1. Introduction

The aim of this paper is to show how a suitable parametrisation can help when dealing
with nonseparated three-point boundary conditions determined by singular matrices. We
construct a suitable numerical-analytic scheme allowing one to approach a three-point
boundary value problem through a certain iteration procedure. To explain the term, we
recall that, formally, the methods used in the theory of boundary value problems can be
characterised as analytic, functional-analytic, numerical, or numerical-analytic ones.

While the analytic methods are generally used for the investigation of qualitative
properties of solutions such as the existence, multiplicity, branching, stability, or dichotomy
and generally use techniques of calculus (see, e.g., [1–11] and the references in [12]), the
functional-analytic ones are based mainly on results of functional analysis and topological
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degree theory and essentially use various techniques related to operator equations in abstract
spaces [13–26]. The numerical methods, under the assumption on the existence of solutions,
provide practical numerical algorithms for their approximation [27, 28]. The numerical
construction of approximate solutions is usually based on an idea of the shooting method and
may face certain difficulties because, as a rule, this technique requires some global regularity
conditions, which, however, are quite often satisfied only locally.

Methods of the so-called numerical-analytic type, in a sense, combine, advantages of
the mentioned approaches and are usually based upon certain iteration processes constructed
explicitly. Such an approach belongs to the few of them that offer constructive possibilities
both for the investigation of the existence of a solution and its approximate construction. In
the theory of nonlinear oscillations, numerical-analytic methods of this kind had apparently
been first developed in [20, 29–31] for the investigation of periodic boundary value problems.
Appropriate versions were later developed for handling more general types of nonlinear
boundary value problems for ordinary and functional-differential equations. We refer, for
example, to the books [12, 32–34], the handbook [35], the papers [36–50], and the survey
[51–57] for related references.

For a boundary value problem, the numerical-analytic approach usually replaces the
problem by the Cauchy problem for a suitably perturbed system containing some artificially
introduced vector parameter z, which most often has the meaning of an initial value of
the solution and the numerical value of which is to be determined later. The solution of
Cauchy problem for the perturbed system is sought for in an analytic form by successive
approximations. The functional “perturbation term,” by which the modified equation differs
from the original one, depends explicitly on the parameter z and generates a system of
algebraic or transcendental “determining equations” from which the numerical values of
z should be found. The solvability of the determining system, in turn, may by checked by
studying some of its approximations that are constructed explicitly.

For example, in the case of the two-point boundary value problem

x′(t) = f(t, x(t)), t ∈ [a, b], (1.1)

Ax(a) +Dx(b) = d, (1.2)

where x : [a, b] → R
n,−∞ < a < b < +∞, d ∈ R

n, detD/= 0, the corresponding Cauchy
problem for the modified parametrised system of integrodifferential equations has the form
[12]

x′(t) = f(t, x(t)) +
1

b − a
(
D−1d −

(
D−1A + 1n

)
z
)
− 1
b − a

∫b
a

f(s, x(s))ds, t ∈ [a, b],

x(a) = z,

(1.3)

where 1n is the unit matrix of dimension n and the parameter z ∈ R
n has the meaning of

initial value of the solution at the point a. The expression

1
b − a

(
D−1d −

(
D−1A + 1n

)
z
)
− 1
b − a

∫b
a

f(s, x(s))ds (1.4)
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in (1.3) plays the role of a ”perturbation term” and its choice is, of course, not unique. The
solution of problem (1.3) is sought for in an analytic form by the method of successive
approximations similar to the Picard iterations. According to the formulas

xm+1(t, z) := z +
∫ t
a

(
f(s, xm(s, z))ds − 1

b − a
∫b
a

f(τ, xm(τ, z))dτ

)
ds

+
t − a
b − a

(
D−1d −

(
D−1A + 1n

)
z
)
, m = 0, 1, 2, . . . ,

(1.5)

where x0(t, z) := z for all t ∈ [a, b] and z ∈ R
n, one constructs the iterations xm(·, z), m =

1, 2, . . ., which depend upon the parameter z and, for arbitrary its values, satisfy the given
boundary conditions (1.2): Axm(a, z) + Dxm(b, z) = d, z ∈ R

n, m = 1, 2, . . .. Under suitable
assumptions, one proves that sequence (1.5) converges to a limit function x∞(·, z) for any
value of z.

The procedure of passing from the original differential system (1.1) to its ”perturbed”
counterpart and the investigation of the latter by using successive approximations (1.5) leads
one to the system of determining equations

D−1d −
(
D−1A + 1n

)
z −
∫b
a

f(s, x∞(s, z))ds = 0, (1.6)

which gives those numerical values z = z∗ of the parameter that correspond to solutions of the
given boundary value problem (1.1), (1.10). The form of system (1.6) is, of course, determined
by the choice of the perturbation term (1.4); in some other related works, auxiliary equations
are constructed in a different way (see, e.g., [42]). It is clear that the complexity of the given
equations and boundary conditions has an essential influence both on the possibility of an
efficient construction of approximate solutions and the subsequent solvability analysis.

The aim of this paper is to extend the techniques used in [46] for the system of n linear
functional differential equations of the form

x′(t) = P0(t)x(t) + P1(t)x
(
β(t)
)
+ f(t), t ∈ [0, T], (1.7)

subjected to the inhomogeneous three-point Cauchy-Nicoletti boundary conditions

x1(0) = x10, . . . , xp(0) = xp0,

xp+1(ξ) = dp+1, . . . , xp+q(ξ) = dp+q,

xp+q+1(T) = dp+q+1, . . . , xn(T) = dn,

(1.8)

with ξ ∈ (0, T) is given and x = col(x1, . . . , xn), to the case where the system of linear
functional differential equations under consideration has the general form

x′(t) = (lx)(t) + f(t), t ∈ [a, b], (1.9)
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and the three-point boundary conditions are non-separated and have the form

Ax(a) + Bx(ξ) + Cx(b) = d, (1.10)

whereA, B, and C are singular matrices, d = col(d1, . . . , dn). Here, l = (lk)
n
k=1 : C([a, b],Rn) →

L1([a, b],Rn) is a bounded linear operator and f ∈ L1([a, b],Rn) is a given function.
It should be noted that, due to the singularity of the matrices that determine

the boundary conditions (1.10), certain technical difficulties arise which complicate the
construction of successive approximations.

The following notation is used in the sequel:

C([a, b],Rn) is the Banach space of the continuous functions [a, b] → R
n with the

standard uniform norm;

L1([a, b],Rn) is the usual Banach space of the vector functions [a, b] → R
n with

Lebesgue integrable components;

L(Rn) is the algebra of all the square matrices of dimension n with real elements;

r(Q) is the maximal, in modulus, eigenvalue of a matrix Q ∈ L(Rn);

1k is the unit matrix of dimension k;

0i,j is the zero matrix of dimension i × j;
0i = 0i,i.

2. Problem Setting and Freezing Technique

We consider the system of n linear functional differential equations (1.9) subjected to
the nonseparated inhomogeneous three-point boundary conditions of form (1.10). In the
boundary value problem (1.1), (1.10), we suppose that −∞ < a < b < ∞, l = (lk)

n
k=1 :

C([a, b],Rn) → L1([a, b],Rn) is a bounded linear operator, f : [a, b] → R
n is an integrable

function, d ∈ R
n is a given vector, A, B, and C are singular square matrices of dimension n,

and C has the form

C =

(
V W

0n−q,q 0n−q

)
, (2.1)

where V is nonsingular square matrix of dimension q < n and W is an arbitrary matrix of
dimension q × (n − q). The singularity of the matrices determining the boundary conditions
(1.10) causes certain technical difficulties. To avoid dealing with singular matrices in the
boundary conditions and simplify the construction of a solution in an analytic form, we use
a two-stage parametrisation technique. Namely, we first replace the three-point boundary
conditions by a suitable parametrised family of two-point inhomogeneous conditions, after
which one more parametrisation is applied in order to construct an auxiliary perturbed
differential system. The presence of unknown parameters leads one to a certain system of
determining equations, from which one finds those numerical values of the parameters that
correspond to the solutions of the given three-point boundary value problem.
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We construct the auxiliary family of two-point problems by ”freezing” the values of
certain components of x at the points ξ and b as follows:

col(x1(ξ), . . . , xn(ξ)) = λ,

col
(
xq+1(b), . . . , xn(b)

)
= η,

(2.2)

where λ = col(λ1, . . . , λn) ∈ R
n and η = col(η1, . . . , ηn−q) ∈ R

n−q are vector parameters. This
leads us to the parametrised two-point boundary condition

Ax(a) +Dx(b) = d − Bλ −Nqη, (2.3)

where

Nq :=

(
0q,n−q

1n−q

)
(2.4)

and the matrix D is given by the formula

D :=

(
V W

0n−q,q 1n−q

)
(2.5)

with a certain rectangular matrix W of dimension q × (n − q). It is important to point out that
the matrix D appearing in the two-point condition (2.3) is non-singular.

It is easy to see that the solutions of the original three-point boundary value problem
(1.1), (1.10) coincide with those solutions of the two-point boundary value problem (1.1),
(2.3) for which the additional condition (2.2) is satisfied.

Remark 2.1. The matrices A and B in the boundary conditions (1.10) are arbitrary and, in
particular, may be singular. If the number r of the linearly independent boundary conditions
in (1.10) is less than n, that is, the rank of the (n × 3n)-dimensional matrix [A,B,C] is equal
to r, then the boundary value problem (1.1), (1.10) may have an (n − r)-parametric family of
solutions.

We assume that throughout the paper the operator l determining the system of
equations (1.9) is represented in the form

l = l0 − l1, (2.6)

where lj = (lj
k
)
n

k=1 : C([a, b],Rn) → L1([a, b],Rn), j = 0, 1, are bounded linear operators

posi-tive in the sense that (lj
k
u)(t) ≥ 0 for a.e. t ∈ [a, b] and any k = 1, 2, . . . , n, j = 0, 1, and

u ∈ C([a, b],Rn) such that mint∈[a,b]uk(t) ≥ 0 for all k = 1, 2, . . . , n. We also put l̂k := l0
k
+ l1

k
,

k = 1, 2, . . . , n, and

l̂ := l0 + l1. (2.7)
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3. Auxiliary Estimates

In the sequel, we will need several auxiliary statements.

Lemma 3.1. For an arbitrary essentially bounded function u : [a, b] → R, the estimates

∣∣∣∣∣
∫ t
a

(
u(τ) − 1

b − a
∫b
a

u(s)ds

)
dτ

∣∣∣∣∣ ≤ α(t)
(

ess sup
s∈[a,b]

u(s) − ess inf
s∈[a,b]

u(s)

)
(3.1)

≤ b − a
4

(
ess sup
s∈[a,b]

u(s) − ess inf
s∈[a,b]

u(s)

)
(3.2)

are true for all t ∈ [a, b], where

α(t) := (t − a)
(

1 − t − a
b − a

)
, t ∈ [a, b]. (3.3)

Proof. Inequality (3.1) is established similarly to [58, Lemma 3] (see also [12, Lemma 2.3]),
whereas (3.2) follows directly from (3.1) if the relation

max
t∈[a,b]

α(t)=
1
4
(b − a) (3.4)

is taken into account.

Let us introduce some notation. For any k = 1, 2, . . . , n, we define the n-dimensional
row-vector ek by putting

ek := (0, 0, . . . , 0,︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0).
(3.5)

Using operators (2.7) and the unit vectors (3.5), we define the matrix-valued function Kl :
[a, b] → L(Rn) by setting

Kl :=
[
l̂e∗1, l̂e

∗
2, . . . , l̂e

∗
n

]
. (3.6)

Note that, in (3.6), l̂e∗i means the value of the operator l̂ on the constant vector function
is equal identically to e∗i , where e∗i is the vector transpose to ei. It is easy to see that the
components of Kl are Lebesgue integrable functions.

Lemma 3.2. The componentwise estimate

|(lx)(t)| ≤ Kl(t)max
s∈[a,b]

|x(s)|, t ∈ [a, b], (3.7)

is true for any x ∈ C([a, b],Rn), where Kl : [a, b] → L(Rn) is the matrix-valued function given by
formula (3.6).
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Proof. Let x = (xk)
n
k=1 be an arbitrary function from C([a, b],Rn). Then, recalling the notation

for the components of l, we see that

lx =
n∑
i=1

e∗i lix. (3.8)

On the other hand, due to (3.5), we have x =
∑n

k=1 e
∗
kxk and, therefore, by virtue of (3.8) and

(2.6),

lx =
n∑
i=1

e∗i lix =
n∑
i=1

e∗i li

(
n∑
k=1

e∗kxk

)
=

n∑
i=1

e∗i

(
n∑
k=1

(
l0i e
∗
kxk − l1i e∗kxk

))
. (3.9)

On the other hand, the obvious estimate

σxk(t) ≤ max
s∈[a,b]

|xk(s)|, t ∈ [a, b], k = 1, 2, . . . , n, σ ∈ {−1, 1}, (3.10)

and the positivity of the operators lj , j = 0, 1, imply

l
j

i (σxk)(t) = σ
(
l
j

i xk
)
(t) ≤ lji max

s∈[a,b]
|xk(s)| (3.11)

for a.e. t ∈ [a, b] and any k, j = 1, 2, . . . , n, σ ∈ {−1, 1}. This, in view of (2.7) and (3.9), leads us
immediately to estimate (3.7).

4. Successive Approximations

To study the solution of the auxiliary two-point parametrised boundary value problem (1.9),
(2.3) let us introduce the sequence of functions xm : [a, b] × R

3n−q → R
n, m ≥ 0, by putting

xm+1
(
t, z, λ, η

)
:= ϕz,λ,η(t) +

∫ t
a

((
lxm
(·, z, λ, η))(s) + f(s))ds

− t − a
b − a

∫b
a

((
lxm
(·, z, λ, η))(s) + f(s))ds, m = 0, 1, 2, . . . ,

x0
(
t, z, λ, η

)
:= ϕz,λ,η(t)

(4.1)

for all t ∈ [a, b], z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q, where

ϕz,λ,η(t) := z +
t − a
b − a

(
D−1(d − Bλ +Nqη

) − (D−1A + 1n
)
z
)
. (4.2)

In the sequel, we consider xm as a function of t and treat the vectors z, λ, and η as parameters.
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Lemma 4.1. For anym ≥ 0, t ∈ [a, b], z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q, the equalities

xm
(
a, z, λ, η

)
= z,

Axm
(
a, z, λ, η

)
+Dxm

(
b, z, λ, η

)
= d − Bλ +Nqη,

(4.3)

are true.

The proof of Lemma 4.1 is carried out by straightforward computation. We emphasize
that the matrix D appearing in the two-point condition (2.3) is non-singular. Let us also put

(My
)
(t) :=

(
1 − t − a

b − a
)∫ t

a

y(s)ds +
t − a
b − a

∫b
t

y(s)ds, t ∈ [a, b], (4.4)

for an arbitrary y ∈ L1([a, b],Rn). It is clear that M : L1([a, b],Rn) → C([a, b],Rn) is a
positive linear operator. Using the operatorM, we put

Ql :=
[M(Kle

∗
1

)
,M(Kle

∗
2
)
, . . . ,M(Kle

∗
n)
]
, (4.5)

where Kl is given by formula (3.6). Finally, define a constant square matrix Ql of dimension
n by the formula

Ql := max
t∈[a,b]

Ql(t). (4.6)

We point out that, as before, the maximum in (4.6) is taken componentwise (one should
remember that, for n > 1, a point t∗ ∈ [a, b] such that Ql = Ql(t∗) may not exist).

Theorem 4.2. If the spectral radius of the matrix Ql satisfies the inequality

r(Ql) < 1, (4.7)

then, for arbitrary fixed z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q:

(1) the sequence of functions (4.1) converges uniformly in t ∈ [a, b] for any fixed (z, λ, η) ∈
R

3n−q to a limit function

x∞
(
t, z, λ, η

)
= lim

m→+∞
xm
(
t, z, λ, η

)
; (4.8)

(2) the limit function x∞(·, z, λ, η) possesses the properties

x∞
(
a, z, λ, η

)
= z,

Ax∞
(
a, z, λ, η

)
+Dx∞

(
b, z, λ, η

)
= d − Bλ +Nqη;

(4.9)
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(3) function (4.8) is a unique absolutely continuous solution of the integro-functional equation

x(t) = z +
t − a
b − a

(
D−1(d − Bλ +Nqη

) − (D−1A + 1n
)
z
)

+
∫ t
a

(
(lx)(s) + f(s)

)
ds − t − a

b − a
∫b
a

(
(lx)(s) + f(s)

)
ds, t ∈ [a, b];

(4.10)

(4) the error estimate

max
t∈[a,b]

∣∣x∞(t, z, λ, η) − xm(t, z, λ, η)∣∣ ≤ b − a4
Qm
l (1n −Ql)−1ω

(
z, λ, η

)
(4.11)

holds, where ω : R
3n−q → R

n is given by the equality

ω
(
z, λ, η

)
:= ess sup

s∈[a,b]

((
lϕz,λ,η

)
(s) + f(s)

) − ess inf
s∈[a,b]

((
lϕz,λ,η

)
(s) + f(s)

)
. (4.12)

In (3.6), (4.11) and similar relations, the signs | · |, ≤, ≥, as well as the operators
”max”, ”ess sup”, ”ess inf”, and so forth, applied to vectors or matrices are understood com-
ponentwise.

Proof. The validity of assertion 1 is an immediate consequence of the formula (4.1). To obtain
the other required properties, we will show, that under the conditions assumed, sequence
(4.1) is a Cauchy sequence in the Banach space C([a, b],Rn) equipped with the standard
uniform norm. Let us put

rm
(
t, z, λ, η

)
:= xm+1

(
t, z, λ, η

) − xm(t, z, λ, η) (4.13)

for all z ∈ R
n, λ ∈ R

n, η ∈ R
n−q, t ∈ [a, b], and m ≥ 0. Using Lemma 3.2 and taking equality

(3.4) into account, we find that (4.1) yields

∣∣x1
(
t, z, λ, η

) − x0
(
t, z, λ, η

)∣∣ =
∣∣∣∣∣
∫ t
a

[(
lϕz,λ,η

)
(s) + f(s)

]
ds − t − a

b − a
∫b
a

[(
lϕz,λ,η

)
(s) + f(s)

]
ds

∣∣∣∣∣
≤ α(t)ω(z, λ, η)

≤ b − a
4

ω
(
z, λ, η

)
,

(4.14)

for arbitrary fixed z, λ, and η, where α is the function given by (3.3) and ω(·) is defined by
formula (4.12).
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According to formulae (4.1), for all t ∈ [a, b], arbitrary fixed z, λ, and η andm = 1, 2, . . .
we have

rm
(
t, z, λ, η

)
=
∫ t
a

l
(
xm
(·, z, λ, η) − xm−1

(·, z, λ, η))(s)ds

− t − a
b − a

∫b
a

l
(
xm
(·, z, λ, η) − xm−1

(·, z, λ, η))(s)ds

=
(

1 − t − a
b − a

)∫ t
a

l
(
xm
(·, z, λ, η) − xm−1

(·, z, λ, η))(s)ds

− t − a
b − a

∫b
t

l
(
xm
(·, z, λ, η) − xm−1

(·, z, λ, η))(s)ds.

(4.15)

Equalities (4.13) and (4.15) imply that for all m = 1, 2, . . ., arbitrary fixed z,λ,η and t ∈ [a, b],

∣∣rm(t, z, λ, η)∣∣ ≤
(

1 − t − a
b − a

)∫ t
a

∣∣l (rm−1
(·, z, λ, η)(s))∣∣ds

+
t − a
b − a

∫b
t

∣∣l(rm−1
(·, z, λ, η))(s)∣∣ds.

(4.16)

Applying inequality (3.7) of Lemma 3.2 and recalling formulae (4.5) and (4.6), we get

∣∣rm(t, z, λ, η)∣∣ ≤
(

1 − t − a
b − a

)∫ t
a

Kl(s) max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣ds

+
t − a
b − a

∫b
t

Kl(s) max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣ds

=

((
1 − t − a

b − a
)∫ t

a

Kl(s)ds +
t − a
b − a

∫b
t

Kl(s)ds

)
max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣

= Ql(t) max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣

≤ Ql max
τ∈[a,b]

∣∣rm−1
(
τ, z, λ, η

)∣∣.
(4.17)

Using (4.17) recursively and taking (4.14) into account, we obtain

∣∣rm(t, z, λ, η)∣∣ ≤ Qm
l max
τ∈[a,b]

∣∣r0
(
τ, z, λ, η

)∣∣

≤ b − a
4

Qm
l ω
(
z, λ, η

)
,

(4.18)
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for all m ≥ 1, t ∈ [a, b], z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q. Using (4.18) and (4.13), we easily obtain

that, for an arbitrary j ∈ N,

∣∣xm+j
(
t, z, λ, η

) − xm(t, z, λ, η)∣∣ = ∣∣(xm+j
(
t, z, λ, η

) − xm+j−1
(
t, z, λ, η

))
+
(
xm+j−1

(
t, z, λ, η

) − xm+j−2
(
t, z, λ, η

))
+ · · ·

+
(
xm+1

(
t, z, λ, η

) − xm
(
t, z, λ, η

))∣∣

≤
j−1∑
i=0

∣∣rm+i
(
t, z, λ, η

)∣∣

≤ b − a
4

j−1∑
i=0

Qm+i
l ω

(
z, λ, η

)
.

(4.19)

Therefore, by virtue of assumption (4.7), it follows that

∣∣xm+j
(
t, z, λ, η

) − xm(t, z, λ, η)∣∣ ≤ b − a
4

Qm
l

+∞∑
i=0

Qi
lω
(
z, λ, η

)

=
b − a

4
Qm
l (1n −Ql)−1ω

(
z, λ, η

)
(4.20)

for all m ≥ 1, j ≥ 1, t ∈ [a, b], z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q. We see from (4.20) that (4.1) is

a Cauchy sequence in the Banach space C([a, b],Rn) and, therefore, converges uniformly in
t ∈ [a, b] for all (z, λ, η) ∈ R

3n−q:

lim
m→∞

xm
(
t, z, λ, η

)
= x∞

(
t, z, λ, η

)
, (4.21)

that is, assertion 2 holds. Since all functions xm(t, z, λ, η) of the sequence (4.1) satisfy the
boundary conditions (2.3), by passing to the limit in (2.3) as m → +∞ we show that the
function x∞(·, z, λ, η) satisfies these conditions.

Passing to the limit as m → ∞ in (4.1), we show that the limit function is a solution of
the integro-functional equation (4.10). Passing to the limit as j → ∞ in (4.20) we obtain the
estimate

∣∣x∞(t, z, λ, η) − xm(t, z, λ, η)∣∣ ≤ b − a4
Qm
l (1n −Ql)−1ω

(
z, λ, η

)
(4.22)

for a.e. t ∈ [a, b] and arbitrary fixed z, λ, η, and m = 1, 2, . . .. This completes the proof of
Theorem 4.2.

We have the following simple statement.
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Proposition 4.3. If, under the assumptions of Theorem 4.2, one can specify some values of z, λ, and
η, such that the limit function x∞(·, z, λ, η) possesses the property

D−1(d − Bλ +Nqη
) − (D−1A + 1n

)
z =
∫b
a

((
lx∞
(·, z, λ, η))(s) + f(s))ds = 0, (4.23)

then, for these z, λ, and η,it is also a solution of the boundary value problem (1.9), (2.3).

Proof. The proof is a straightforward application of the above theorem.

5. Some Properties of the Limit Function

Let us first establish the relation of the limit function x∞(·, z, λ, η) to the auxiliary two-point
boundary value problem (1.9), (2.3). Along with system (1.9), we also consider the system
with a constant forcing term in the right-hand side

x′(t) = (lx)(t) + f(t) + μ, t ∈ [a, b], (5.1)

and the initial condition

x(a) = z, (5.2)

where μ = col(μ1, . . . , μn) is a control parameter.
We will show that for arbitrary fixed z ∈ R

n, λ ∈ R
n, and η∈n−q, the parameter μ can

be chosen so that the solution x(·, z, λ, η, μ) of the initial value problem (5.1), (5.2) is, at the
same time, a solution of the two-point parametrised boundary value problem (5.1), (2.3).

Proposition 5.1. Let z ∈ R
n, λ ∈ R

n, and η ∈ R
n−q be arbitrary given vectors. Assume that condition

(4.7) is satisfied. Then a solution x(·) of the initial value problem (5.1), (5.2) satisfies the boundary
conditions (2.3) if and only if x(·) coincides with x∞(·, z, λ, η) and

μ = μz,λ,η, (5.3)

where

μz,λ,η :=
1

b − a
(
D−1(d − Bλ +Nqη

) − (D−1A + 1n
)
z
)

− 1
b − a

∫b
a

[(
lx∞
(·, z, λ, η)(s) + f(s))]ds

(5.4)

and x∞(·, z, λ, η) is the limit function of sequence (4.1).

Proof. The assertion of Proposition 5.1 is obtained by analogy to the proof of [50,
Theorem 4.2]. Indeed, let z ∈ R

n, λ ∈ R
n, and η ∈ R

n−q be arbitrary.
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If μ is given by (5.3), then, due to Theorem 4.2, the function x∞(·, z, λ, η) has properties
(4.9) and satisfies equation (4.10), whence, by differentiation, equation (5.1) with the above-
mentioned value of μ is obtained. Thus, x∞(·, z, λ, η) is a solution of (5.1), (5.2) with μ of form
(5.3) and, moreover, this function satisfies the two-point boundary conditions (2.3).

Let us fix an arbitrary μ ∈ R
n and assume that the initial value problem (5.1), (5.2) has

a solution y satisfies the two-point boundary conditions (2.3). Then

y(t) = z +
∫ t
a

[(
ly
)
(s) + f(s)

]
ds + μ(t − a), (5.5)

for all t ∈ [a, b]. By assumption, y satisfies the two-point conditions (2.3) and, therefore, (5.5)
yields

Ay(a) +Dy(b) = Az +D

(
z +
∫b
a

((
ly
)
(s) + f(s)

)
(s)ds + μ(b − a)

)

= d − Bλ +Nqη,

(5.6)

whence we find that μ can be represented in the form

μ =
1

b − aD
−1

(
d − Bλ +Nqη − (A +D)z −

∫b
a

((
ly
)
(s) + f(s)

)
(s)ds

)
. (5.7)

On the other hand, we already know that the function x∞(·, z, λ, η), satisfies the two-
point conditions (2.3) and is a solution of the initial value problem (5.1), (5.2) with μ = μz,λ,η,
where the value μz,λ,η is defined by formula (5.4). Consequently,

x∞
(
t, z, λ, η

)
= z +

∫ t
a

[(
lx∞
(·, z, λ, η)(s) + f(s))]ds + μz,λ,η(t − a), t ∈ [a, b]. (5.8)

Putting

h(t) := y(t) − x∞
(
t, z, λ, η

)
, t ∈ [a, b], (5.9)

and taking (5.5), (5.8) into account, we obtain

h(t) =
∫ t
a

(lh)(s)ds +
(
μ − μz,λ,η

)
(t − a), t ∈ [a, b]. (5.10)
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Recalling the definition (5.4) of μz,λ,η and using formula (5.7), we obtain

μ − μz,λ,η = 1
b − a

∫b
a

l
(
x∞
(·, z, λ, η) − y)(s)ds

= − 1
b − a

∫b
a

(lh)(s)ds,

(5.11)

and, therefore, equality (5.10) can be rewritten as

h(t) =
∫ t
a

(lh)(s)ds − t − a
b − a

∫b
a

(lh)(s)ds

=
(

1 − t − a
b − a

)∫ t
a

(lh)(s)ds − t − a
b − a

∫b
t

(lh)(s)ds, t ∈ [a, b].

(5.12)

Applying Lemma 3.2 and recalling notation (4.6), we get

|h(t)| ≤
((

1 − t − a
b − a

)∫ t
a

Kl(s)ds +
t − a
b − a

∫b
t

Kl(s)ds

)
max
τ∈[a,b]

|h(τ)|

≤ Ql max
τ∈[a,b]

|h(τ)|
(5.13)

for an arbitrary t ∈ [a, b]. By virtue of condition (4.7), inequality (5.13) implies that

max
τ∈[a,b]

|h(τ)| ≤ Qm
l max
τ∈[a,b]

|h(τ)| −→ 0 (5.14)

as m → +∞. According to (5.9), this means that y coincides with x∞(·, z, λ, η), and, therefore,
by (5.11), μ = μz,λ,η, which brings us to the desired conclusion.

We show that one can choose certain values of parameters z = z∗, λ = λ∗, η = η∗ for
which the function x∞(·, z∗, λ∗, η∗) is the solution of the original three-point boundary value
problem (1.9), (1.10). Let us consider the function Δ : R

3n−q → R
n given by formula

Δ
(
z, λ, η

)
:= g
(
z, λ, η

) −
∫b
a

((
lx∞
(·, z, λ, η))(s) + f(s))ds (5.15)

with

g
(
z, λ, η

)
:= D−1(d − Bλ +Nqη

) − (D−1A + 1n
)
z (5.16)

for all z, λ, and η, where x∞ is the limit function (4.8).
The following statement shows the relation of the limit function (4.8) to the solution

of the original three-point boundary value problem (1.9), (1.10).
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Theorem 5.2. Assume condition (4.7). Then the function x∞(·, z, λ, η) is a solution of the three-
point boundary value problem (1.9), (1.10) if and only if the triplet z, λ, η satisfies the system of
3n − q algebraic equations

Δ
(
z, λ, η

)
= 0, (5.17)

e1x∞
(
ξ, z, λ, η

)
= λ1, e2x∞

(
ξ, z, λ, η

)
= λ2, . . . , enx∞

(
ξ, z, λ, η

)
= λn, (5.18)

eq+1x∞
(
b, z, λ, η

)
= η1, eq+2x∞

(
b, z, λ, η

)
= η2, . . . , eq+∞x∞

(
b, z, λ, η

)
= ηn−q. (5.19)

Proof. It is sufficient to apply Proposition 5.1 and notice that the differential equation in (5.1)
coincides with (1.9) if and only if the triplet (z, λ, η) satisfies (5.17). On the other hand, (5.18)
and (5.19) bring us from the auxiliary two-point parametrised conditions to the three-point
conditions (1.10).

Proposition 5.3. Assume condition (4.7). Then, for any (zj , λj , ηj), j = 0, 1, the estimate

max
t∈[a,b]

∣∣∣x∞
(
t, z0, λ0, η0

)
− x∞

(
t, z1, λ1, η1

)∣∣∣ ≤ (1n −Ql)−1v
(
z0, λ0, η0, z1, λ1, η1

)
(5.20)

holds, where

v
(
z0, λ0, η0, z1, λ1, η1

)
:= max

t∈[a,b]

∣∣ϕz0,λ0,η0(t) − ϕz1,λ1,η1(t)
∣∣. (5.21)

Proof. Let us fix two arbitrary triplets (zj , λj , ηj), j = 0, 1, and put

um(t) := xm
(
t, z0, λ0, η0

)
− xm

(
t, z1, λ1, η1

)
, t ∈ [a, b]. (5.22)

Consider the sequence of vectors cm, m = 0, 1, . . ., determined by the recurrence relation

cm := c0 +Qlcm−1, m ≥ 1, (5.23)

with

c0 := v
(
z0, λ0, η0, z1, λ1, η1

)
. (5.24)

Let us show that

max
t∈[a,b]

|um(t)| ≤ cm (5.25)
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for all m ≥ 0. Indeed, estimate (5.25) is obvious for m = 0. Assume that

max
t∈[a,b]

|um−1(t)| ≤ cm−1. (5.26)

It follows immediately from (4.1) that

um(t) = ϕz0,λ0,η0(t) − ϕz1,λ1,η1(t) +
∫ t
a

(lum−1)(s)ds − t − a
b − a

∫b
a

(lum−1)(s)ds

= ϕz0,λ0,η0(t) − ϕz1,λ1,η1(t)

+
(

1 − t − a
b − a

)∫ t
a

(lum−1)(s)ds − t − a
b − a

∫b
t

(lum−1)(s)ds,

(5.27)

whence, by virtue of (5.21), estimate (3.7) to Lemma 3.2, and assumption (5.26),

|um(t)| ≤
∣∣ϕz0,λ0,η0(t) − ϕz1,λ1,η1(t)

∣∣

+
(

1 − t − a
b − a

)∫ t
a

|(lum−1)(s)|ds + t − a
b − a

∫b
t

|(lum−1)(s)|ds

≤ v
(
z0, λ0, η0, z1, λ1, η1

)

+
(

1 − t − a
b − a

)∫ t
a

Kl(s)ds max
t∈[a,b]

|um−1(t)| + t − a
b − a

∫b
t

Kl(s)ds max
t∈[a,b]

|um−1(t)|

≤ v
(
z0, λ0, η0, z1, λ1, η1

)
+

((
1 − t − a

b − a
)∫ t

a

Kl(s)ds +
t − a
b − a

∫b
t

Kl(s)ds

)
cm−1

≤ v
(
z0, λ0, η0, z1, λ1, η1

)
+Qlcm−1,

(5.28)

which estimate, in view of (5.23) and (5.24), coincides with the required inequality (5.25).
Thus, (5.25) is true for any m. Using (5.23) and (5.25), we obtain

max
t∈[a,b]

|um(t)| ≤ c0 +Qlcm−1 = c0 +Qlc0 +Q2
l cm−2 = · · ·

=
m−1∑
k=0

Qk
l c0 +Qm

l c0.

(5.29)

Due to assumption (4.7), limm→+∞Qm
l

= 0. Therefore, passing to the limit in (5.29) as m →
+∞ and recalling notation (5.22), we obtain the estimate

max
t∈[a,b]

∣∣∣x∗
(
t, z0, λ0, η0

)
− x∗
(
t, z1, λ1, η1

)∣∣∣ ≤
+∞∑
k=0

Qk
l c0 = (1n −Ql)−1c0, (5.30)
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which, in view of (5.24), coincides with (5.20).

Now we establish some properties of the “determining function” Δ : R
3n−q → R

n

given by equality (5.15).

Proposition 5.4. Under condition (3.10), formula (5.15) determines a well-defined function Δ :
R

3n−q → R
n, which, moreover, satisfies the estimate

∣∣∣Δ(z0, λ0, η0
)
−Δ
(
z1, λ1, η1

)∣∣∣ ≤ ∣∣∣G[z0 − z1, λ0 − λ1, η0 − η1]
∗∣∣∣

+ Rl max
t∈[a,b]

∣∣∣∣z0 − z1 +
t − a
b − aG[z

0 − z1, λ0 − λ1, η0 − η1]
∗
∣∣∣∣,
(5.31)

for all (zj , λj , ηj), j = 0, 1, where the (n × n)-matrices G and Rl are defined by the equalities

G := D−1[A +D,B,Nq

]
,

Rl :=
∫b
a

Kl(s)ds (1n −Ql)−1.
(5.32)

Proof. According to the definition (5.15) of Δ, we have

Δ
(
z0, λ0, η0

)
−Δ
(
z1, λ1, η1

)
= g
(
z0, λ0, η0

)
− g
(
z1, λ1, η1

)

−
∫b
a

(
l
(
x∞
(
·, z0, λ0, η0

)
− x∞

(
·, z1, λ1, η1

))
(s)
)
ds,

(5.33)

whence, due to Lemma 3.2,

∣∣∣Δ(z0, λ0, η0
)
−Δ
(
z1, λ1, η1

)∣∣∣ ≤ ∣∣∣g(z0, λ0, η0
)
− g
(
z1, λ1, η1

)∣∣∣

+
∫b
a

∣∣∣l(x∞
(
·, z0, λ0, η0

)
− x∞

(
·, z1, λ1, η1

))
(s)
∣∣∣ds

≤
∣∣∣g(z0, λ0, η0

)
− g
(
z1, λ1, η1

)∣∣∣

+
∫b
a

Kl(s)dsmax
τ∈[a,b]

∣∣∣x∞
(
τ, z0, λ0, η0

)
− x∞

(
τ, z1, λ1, η1

)
(s)
∣∣∣.

(5.34)
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Using Proposition 5.3, we find

∣∣∣Δ(z0, λ0, η0
)
−Δ
(
z1, λ1, η1

)∣∣∣ ≤ ∣∣∣g(z0, λ0, η0
)
− g
(
z1, λ1, η1

)∣∣∣

+
∫b
a

Kl(s)ds(1n −Ql)−1v
(
z0, λ0, η0, z1, λ1, η1

)
.

(5.35)

On the other hand, recalling (4.2) and (5.21), we get

v
(
z0, λ0, η0, z1, λ1, η1

)
= max

t∈[a,b]

∣∣∣∣z0 − z1 +
t − a
b − a

(
g
(
z0, λ0, η0

)
− g
(
z1, λ1, η1

))∣∣∣∣. (5.36)

It follows immediately from (5.16) that

g
(
z0, λ0, η0

)
− g
(
z1, λ1, η1

)
= −D−1B

(
λ0 − λ1

)
−D−1Nq

(
η0 − η1

)
−
(
D−1A + 1n

)(
z0 − z1

)

= −D−1
[
B
(
λ0 − λ1

)
+Nq

(
η0 − η1

)
+ (A +D)

(
z0 − z1

)]

= D−1[A +D,B,Nq

]
⎛
⎜⎜⎝
z0 − z1

λ0 − λ1

η0 − η1

⎞
⎟⎟⎠.

(5.37)

Therefore, (5.35) and (5.36) yield the estimate

∣∣∣Δ(z0, λ0, η0
)
−Δ
(
z1, λ1, η1

)∣∣∣

≤

∣∣∣∣∣∣∣∣
D−1[A +D,B,Nq

]
⎛
⎜⎜⎝
z0 − z1

λ0 − λ1

η0 − η1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

+
∫b
a

Kl(s)ds(1n −Ql)−1 max
t∈[a,b]

∣∣∣∣∣∣∣∣
z0 − z1 +

t − a
b − aD

−1[A +D,B,Nq

]
⎛
⎜⎜⎝
z0 − z1

λ0 − λ1

η0 − η1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
,

(5.38)

which, in view of (5.32), coincides with (5.31).

Properties stated by Propositions 5.3 and 5.4 can be used when analysing conditions
guaranteeing the solvability of the determining equations.
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6. On the Numerical-Analytic Algorithm of Solving the Problem

Theorems 4.2 and 5.2 allow one to formulate the following numerical-analytic algorithm for
the construction of a solution of the three-point boundary value problem (1.9), (1.10).

(1) For any vector z ∈ R
n, according to (4.1), we analytically construct the sequence

of functions xm(·, z, λ, η) depending on the parameters z, λ, η and satisfying the
auxiliary two-point boundary condition (2.3).

(2) We find the limit x∞(·, z, λ, η) of the sequence xm(·, z, λ, η) satisfying (2.3).

(3) We construct the algebraic determining system (5.17), (5.18), and (5.19) with
respect 3n − q scalar variables.

(4) Using a suitable numerical method, we (approximately) find a root

z∗ ∈ R
n, λ∗ ∈ R

n, η∗ ∈ R
n−q (6.1)

of the determining system (5.17), (5.18), and (5.19).

(5) Substituting values (6.1) into x∞(·, z, λ, η), we obtain a solution of the original three-
point boundary value problem (1.9), (1.10) in the form

x(t) = x∞
(
t, z∗, λ∗, η∗

)
, t ∈ [a, b]. (6.2)

This solution (6.2) can also be obtained by solving the Cauchy problem

x(a) = z∗ (6.3)

for (1.9).

The fundamental difficulty in the realization of this approach arises at point (2) and is
related to the analytic construction of the function x∞(·, z, λ, η). This problem can often be
overcome by considering certain approximations of form (4.1), which, unlike the function
x∞(·, z, λ, η), are known in the analytic form. In practice, this means that we fix a suitable m ≥
1, construct the corresponding function xm(·, z, λ, η) according to relation (4.1), and define
the function Δm : R

3n−q → R
n by putting

Δm

(
z, λ, η

)
:= D−1(d − Bλ +Nqη

) − (D−1A + 1n
)
z −
∫b
a

[(
lxm
(·, z, λ, η)(s) + f(s))]ds,

(6.4)

for arbitrary z, λ, and η. To investigate the solvability of the three-point boundary value
problem (1.9), (1.10), along with the determining system (5.17), (5.18), and (5.19), one
considers the mth approximate determining system

Δm

(
z, λ, η

)
= 0,

e1xm
(
ξ, z, λ, η

)
= λ1, e2xm

(
ξ, z, λ, η

)
= λ2, . . . , enxm

(
ξ, z, λ, η

)
= λn,

eq+1xm
(
b, z, λ, η

)
= η1, . . . , enxm

(
b, z, λ, η

)
= ηn−q,

(6.5)
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where ei, i = 1, 2, . . . , n, are the vectors given by (5.15).
It is natural to expect (and, in fact, can be proved) that, under suitable conditions, the

systems (5.17), (5.18), (5.19), and (6.5) are “close enough” to one another for m sufficiently
large. Based on this circumstance, existence theorems for the three-point boundary value pro-
blem (1.9), (1.10) can be obtained by studying the solvability of the approximate determining
system (6.5) (in the case of periodic boundary conditions, see, e.g., [35]).
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The stability of the zero solution of a system of first-order linear functional differential equations
with nonconstant delay is considered. Sufficient conditions for stability, uniform stability,
asymptotic stability, and uniform asymptotic stability are established.

1. Introduction

We begin with a classical result for the linear system

x′ = A(t)x, (L1)

where A is an n × n matrix function defined and continuous on [0,∞). By CB[0,∞), we will
denote the set of bounded functions defined and continuous on [0,∞) and by |·| the Euclidean
norm.

In 1930, Perron first formulated the following definition being named after him.

Definition 1.1 (see [1]). System (L1) is said to satisfy Perron’s condition (P1) if, for any given
vector function f ∈ CB[0,∞), the solution x(t) of

x′ = A(t)x + f(t), x(0) = 0 (N1)

is bounded.
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The following theorem by Bellman [2] is well known.

Theorem 1.2 (see [2]). If (P1) holds and |A(t)| ≤ M1 for some positive number M1, then the zero
solution of (L1) is uniformly asymptotically stable.

The proof is accomplished by making use of the basic properties of a fundamental
matrix, the Banach-Steinhaus theorem, and the adjoint system

x′ = −AT (t)x, (1.1)

where AT denotes the transpose of A.
It is shown by an example in [3] that Theorem 1.2 may not be valid if the function f

appearing in (N1) is replaced by a constant vector. However, such a theorem is later obtained
in [4] under a Perron-like condition.

Theorem 1.2 is extended by Halanay [5] to linear delay systems of the form

x′(t) = A(t)x(t) + B(t)x(t − τ), (L2)

where A, B are n × n matrix functions defined and continuous on [0,∞) and τ is a positive
real number.

Definition 1.3. System (L2) is said to satisfy Perron’s condition (P2) if for any given vector
function f ∈ CB[0,∞), the solution x(t) of

x′(t) = A(t)x(t) + B(t)x(t − τ) + f(t) (N2)

satisfying x(t) = 0, t ≤ 0, is bounded.

Theorem 1.4 (see [5]). If (P2) holds, |A(t)| ≤M1, and |B(t)| ≤M2 for some positive numbersM1

andM2, then the zero solution of (L2) is uniformly asymptotically stable.

The method used to prove Theorem 1.4 is similar to Bellman’s except that the adjoint
system

y′(t) = −AT (t)y(t) − BT (t + τ)y(t + τ) (1.2)

is not constructed with respect to an inner product but the functional

F
(
x, y

)
(t) =

∫ t+τ

t

yT (s)B(s)x(s − τ)ds + xT (t)y(t). (1.3)

For some extensions to impulsive differential equations, we refer the reader in particular to
[6, 7].

In this paper, we consider the more general linear delay system

x′(t) = A(t)x(t) + B(t)x
(
g(t)

)
, (1.4)
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where A and B are n × n matrix functions defined and continuous on [0,∞) and g is a
continuously differentiable increasing function defined on [0,∞) satisfying g(t) < t and
g ′(t) ≤ 1. We set h := g−1. Obviously, h ∈ C1[0,∞) and increases on [0,∞) and h(t) > t.

Perron’s condition takes the following form.

Definition 1.5. System (1.4) is said to satisfy Perron’s condition (P) if, for any given vector
function f ∈ CB[0,∞), the solution x(t) of

x′(t) = A(t)x(t) + B(t)x
(
g(t)

)
+ f(t) (1.5)

satisfying x(t) = 0, t ≤ 0 is bounded.

A natural question is whether the zero solution of (1.4) is uniformly asymptotically
stable under Perron’s condition (P). It turns out that the answer depends on the delay
function g.

The paper is organized as follows. In Section 2, we only state our results; the proofs are
included in Section 5. We define an adjoint system and give a variation of parameters formula
in Section 3 to be needed in proving the main results. Section 4 contains also some lemmas
concerning Perron’s condition and a relation useful for changing the order of integration.

2. Stability Theorems

The conclusion obtained by Bellman and Halanay for systems (L1) and (L2), respectively,
is quite strong. We are only able to prove the stability of the zero solution for more general
equation (1.4) under Perron’s condition. To get uniform stability or asymptotic stability or
uniform asymptotic stability, we impose restrictions on the delay function.

For our purpose, we denote

h∗(t) := h(t) − t, t ≥ 0,

g∗(t, t0) := sup
r∈[h(t0),t]

{
r − g(r)}, t, t0 ≥ 0.

(2.1)

Theorem 2.1. Let (P) hold. If there are positive numbersM1 andM2 such that

|A(t)| ≤M1, |B(t)| ≤M2 ∀t ≥ 0, (2.2)

then the zero solution of (1.4) is stable.

Theorem 2.2. Let (P) hold. If (2.2) is satisfied and if there exists a positive real number M3 such
that

h∗(t) ≤M3 ∀t ≥ 0, (2.3)

then the zero solution of (1.4) is uniformly stable.
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Theorem 2.3. Let (P) hold. If (2.2) and

lim sup
t→∞

g∗(t, t0)
t − t0 = 0 for each t0 ≥ 0 (2.4)

are satisfied, then the zero solution of (1.4) is asymptotically stable.

Theorem 2.4. Let (P) hold. If (2.2), (2.3), and

lim sup
t→∞

g∗(t, t0)
t − t0 = 0 uniformly for t0 ≥ 0 (2.5)

are satisfied, then the zero solution of (1.4) is uniformly asymptotically stable.

Remark 2.5. Note that if g(t) = t − τ , then h(t) = t + τ and hence the conditions (2.3), (2.4),
and (2.5) are automatically satisfied. In this case, all theorems become equivalent, that is, the
zero solution is uniformly asymptotically stable. Thus, the results obtained by Bellman and
Halanay are recovered.

3. Variation of Parameters Formula

To establish a variation of parameters formula to represent the solutions of (1.5), one needs
an adjoint system. The following lemma helps to define the adjoint of (1.4).

Lemma 3.1. Let x(t) be a solution of (1.4). If y(t) is a solution of

y′(t) = −AT (t)y(t) − BT (h(t))y(h(t))h′(t), (3.1)

then

d

dt
F
(
x(t), y(t)

)
= 0, (3.2)

where

F
(
x, y

)
(t) =

∫h(t)

t

yT (s)B(s)x
(
g(s)

)
ds + xT (t)y(t). (3.3)

Proof. Verify directly.

Definition 3.2. The system (3.1) is said to be adjoint to system (1.4).

It is easy to see that the adjoint of system (3.1) is system (1.4); thus the systems are
mutually adjoint to each other.
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Lemma 3.3. Let Y(t, s) be a matrix solution of (3.1) for t < s satisfying Y(s, s) = I and Y(t, s) = 0
for t > s. Then x(t) is a solution of (1.5) if and only if

x(t) = YT (s, t)x(s) +
∫ s

g(s)
YT

(
h
(
β
)
, t
)
B
(
h
(
β
))
x
(
β
)
h′
(
β
)
dβ +

∫ t

s

YT
(
β, t

)
f
(
β
)
dβ. (3.4)

Proof. Replacing t by β in (1.5) and then integrating the resulting equation multiplied by
YT (β, t) over β ∈ [s, t], we have

∫ t

s

YT(β, t)A(
β
)
x
(
β
)
dβ +

∫ t

s

YT(β, t)B(β)x(g(β))dβ +
∫ t

s

YT(β, t)f(β)dβ

=
∫ t

s

YT(β, t)x′(β)dβ

= x(t) − YT (s, t)x(s) −
∫ t

s

[
∂

∂β
YT(β, t)

]
x
(
β
)
dβ

= x(t) − YT (s, t)x(s) +
∫ t

s

[
YT(β, t)A(

β
)
+ YT(h(β), t)B(h(β))h′(β)]x(β)dβ

= x(t) − YT (s, t)x(s) +
∫ t

s

YT(β, t)A(
β
)
x
(
β
)
dβ +

∫h(t)

h(s)
YT(β, t)B(β)x(g(β))dβ.

(3.5)

Comparing both sides and using

∫h(t)

t

YT(β, t)B(β)x(g(β))dβ = 0, (3.6)

which is true in view of Y(β, t) = 0 for β > t, we get

x(t) = YT (s, t)x(s) −
∫ s

h(s)
YT(β, t)B(β)x(g(β))dβ +

∫ t

s

YT(β, t)f(β)dβ (3.7)

and hence

x(t) = YT (s, t)x(s) +
∫ s

g(s)
YT(h(β), t)B(h(β))x(β)h′(β)dβ +

∫ t

s

YT(β, t)f(β)dβ. (3.8)

It is not difficult to see from (3.4) that if X(t, s) is a matrix solution of (1.4) for t > s
satisfying X(s, s) = I and X(t, s) = 0 for t < s, then

X(t, s) = YT (s, t). (3.9)

Using this relation in Lemma 3.3 leads to the following variation of parameters formula.
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Lemma 3.4. Let X(t, s) be a matrix solution of (1.4) for t > s satisfying X(s, s) = I and X(t, s) = 0
for t < s. Then x(t) is a solution of (1.5) if and only if

x(t) = X(t, s)x(s) +
∫ s

g(s)
X
(
t, h

(
β
))
B
(
h
(
β
))
x
(
β
)
h′
(
β
)
dβ +

∫ t

s

X
(
t, β

)
f
(
β
)
dβ. (3.10)

4. Auxiliary Results

Lemma 4.1. If (P) holds, then there is a positive number K1 such that

∫ t

0
|X(t, s)|ds ≤ K1 ∀t > 0. (4.1)

Proof. The proof follows as in [5]. We provide only the steps for the reader’s convenience.
Define

(
Sf

)
(t) =

∫ t

0
X
(
t, β

)
f
(
β
)
dβ, f ∈ CB[0,∞),

Sk
(
f
)
=
∫ tk

0
X
(
tk, β

)
f
(
β
)
dβ, f ∈ CB[0,∞),

(4.2)

for each rational number tk, k ∈ �.
In view of (P), the family of continuous linear operators {Sk} from CB[0,∞) to

CB[0,∞) is pointwise-bounded. For the space of bounded continuous functions CB[0,∞),
the usual sup norm ‖ · ‖ is used.

By the Banach-Steinhaus theorem, the family is uniformly bounded. Thus, there is
a positive number M such that ‖Sk(f)‖ ≤M‖f‖ for every f ∈ CB[0,∞).

As the rational numbers are dense in the real numbers, for each t there is tk such that
tk → t as k → ∞ and so

∣∣∣∣∣
∫ t

0
X
(
t, β

)
f
(
β
)
dβ

∣∣∣∣∣ ≤M
∥∥f∥∥ ∀f ∈ CB[0,∞). (4.3)

The final step involves choosing a sequence of functions and using a limiting process.

Lemma 4.2. If (2.2) and (4.1) are true, then there is a positive number K2 such that

|Y(s, t)| ≤ K2 ∀ 0 ≤ s < t. (4.4)

Proof. From (3.1), we have

Y(s, t) = I +
∫ t

s

AT(β)Y(β, t)dβ +
∫ t

s

BT
(
h
(
β
))
Y
(
h
(
β
)
, t
)
h′
(
β
)
dβ. (4.5)
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Hence, by using (4.1), we see that for all 0 ≤ s < t,

|Y(s, t)| ≤ 1 +M1K1 +M2K1 =: K2. (4.6)

Lemma 4.3. Let G(r, t) be a continuous function satisfying G(r, t) = 0 for r > t. Then

∫ t

t0

[∫h(s)

s

G(r, t)dr

]
ds =

∫ t

h(t0)

(
r − g(r))G(r, t)dr +

∫h(t0)

t0

(r − t0)G(r, t)dr. (4.7)

5. Proofs of Theorems

Let t0 ≥ 0 be given. For a given continuous vector function φ defined on [g(t0), t0], let x(t) =
x(t, t0, φ) denote the solution of (1.4) satisfying

x(t) = φ(t), t ≤ t0. (5.1)

As usual,

∥∥φ∥∥g = sup
t∈[g(t0),t0]

∣∣φ(t)∣∣. (5.2)

Proof of Theorem 2.1. From Lemma 3.3, we may write

x(t) = YT (t0, t)φ(t0) +
∫ t0

g(t0)
YT(h(β), t)B(h(β))φ(β)h′(β)dβ. (5.3)

In view of Lemma 4.2, it follows that

|x(t)| ≤ (K2 + (h(t0) − t0)K2M2)
∥∥φ∥∥g . (5.4)

Hence, the zero solution is stable.

Proof of Theorem 2.2. Using (2.3) in (5.4), we get

|x(t)| ≤ K3
∥∥φ∥∥g , K3 = K2 +K2M2M3, (5.5)

from which the uniform stability follows.

Proof of Theorem 2.3. By Theorem 2.1, the zero solution is stable. We need to show the attrac-
tivity property.

From Lemma 3.3, for s ≥ t0, we can write

x
(
t, t0, φ

)
= YT (s, t)x

(
s, t0, φ

)
+
∫ s

g(s)
G
(
h
(
β
)
, t
)
x
(
β, t0, φ

)
h′
(
β
)
dβ, (5.6)
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where

G(s, t) = YT (s, t)B(s). (5.7)

Integrating with respect to s from t0 to t, we have

(t − t0)x
(
t, t0, φ

)
=
∫ t

t0

[
YT (s, t)x

(
s, t0, φ

)
+
∫h(s)

s

G(r, t)x
(
g(r), t0, φ

)
dr

]
ds. (5.8)

We change the order of integration by employing Lemma 4.3. After some rearrangements, we
obtain

(t − t0)x
(
t, t0, φ

)
=
∫ t

t0

YT (s, t)x
(
s, t0, φ

)
ds +

∫ t

h(t0)

(
s − g(s))G(s, t)x(g(s), t0, φ)ds

+
∫h(t0)

t0

(s − t0)G(s, t)x
(
g(s), t0, φ

)
ds.

(5.9)

It follows that

(t − t0)
∣∣x(t, t0, φ)∣∣ ≤ K1K3

∥∥φ∥∥g + g∗(t, t0)M2K1
∥∥φ∥∥g + h∗(t0)M2K1

∥∥φ∥∥g . (5.10)

In view of condition (2.4), we see from (5.10) that

lim
t→∞

∣∣x(t, t0, φ)∣∣ = 0. (5.11)

Proof of Theorem 2.4. By Theorem 2.2, the zero solution is uniformly stable. From (5.10) and
(2.3), we have

(t − t0)
∣∣x(t, t0, φ)∣∣ ≤ K1K3

∥∥φ∥∥g + g∗(t, t0)M2K1
∥∥φ∥∥g +M3M2K1

∥∥φ∥∥g. (5.12)

Using condition (2.4) in the above inequality, we see that the zero solution is uniformly
asymptotically stable as t → ∞.

Acknowledgments

This research was supported by Grant P201/11/0768 of the Czech Grant Agency (Prague),
by the Council of Czech Government MSM 0021630503 and MSM 00216 30519, and by Grant
FEKT-S-11-2-921 of Faculty of Electrical Engineering and Communication, Brno University of
Technology.



Abstract and Applied Analysis 9

References
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We consider the following real two-dimensional nonlinear analytic quasi-periodic Hamiltonian
system ẋ = J∇xH, where H(x, t, ε) = (1/2)β(x2

1 + x
2
2) + F(x, t, ε) with β /= 0, ∂xF(0, t, ε) = O(ε) and

∂xxF(0, t, ε) = O(ε) as ε → 0. Without any nondegeneracy condition with respect to ε, we prove
that for most of the sufficiently small ε, by a quasi-periodic symplectic transformation, it can be
reduced to a quasi-periodic Hamiltonian system with an equilibrium.

1. Introduction

We first give some definitions and notations for our problem. A function f(t) is called a quasi-
periodic function with frequencies ω = (ω1, ω2, . . . , ωl) if f(t) = F(ω1t, ω2t, . . . , ωlt) with θi =
ωit, where F(θ1, θ2, . . . , θl) is 2π periodic in all the arguments θj , j = 1, 2, . . . , l. If F(θ) (θ =
(θ1, θ2, . . . , θl)) is analytic on Dρ = {θ ∈ Cl/2πZl | | Im θi| ≤ ρ, i = 1, 2, . . . , l}, we call f(t)
analytic quasi-periodic on Dρ. If all qij(t) (i, j = 1, 2 . . . , n) are analytic quasi-periodic on Dρ,
then the matrix function Q(t) = (qij(t))1≤i, j≤n is called analytic quasi-periodic on Dρ.

If f(t) is analytic quasi-periodic on Dρ, we can write it as Fourier series:

f(t) =
∑
k∈Zl

fke
i〈k,ω〉t. (1.1)

Define a norm of f by ‖f‖ρ =
∑

k∈Zl |fk|e|k|ρ. It follows that |fk| ≤ ‖f‖ρe−|k|ρ. If the matrix
function Q(t) is analytic quasi-periodic on Dρ, we define the norm of Q by ‖Q‖ρ = n ×
max1≤i,j≤n‖qij‖ρ. It is easy to verify ‖Q1Q2‖ρ ≤ ‖Q1‖ρ‖Q2‖ρ. The average of Q(t) is denoted
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by [Q] = ([qij])1≤i,j≤n, where

[
qij

]
= lim

T→∞
1

2T

∫T

−T
qij(t)dt. (1.2)

For the existence of the above limit, see [1].
Denote

D
(
r, ρ, ε0

)
=

{
(x, θ, ε) ∈ Cn ×

(
Cl

2πZl

)
× C | |x| ≤ r, θ ∈ Dρ, |ε| ≤ ε0

}
, (1.3)

where x = (x1, x2, . . . , xn) and |x| = |x1| + |x2| + · · · + |xn|.
Let f(x, t, ε) be analytic quasi-periodic of t and analytic in x and ε on D(r, ρ, ε0). Then

f(x, t, ε) can be expanded as

f(x, t, ε) =
∞∑
m=0

∑
k∈Zl

fmk(x)εm ei〈k,ω〉t. (1.4)

Define a norm by

∥∥f∥∥D(r,ρ,ε0)
=
∞∑
m=0

∑
k∈Zl

∣∣fmk∣∣rεm0 eρ|k|, (1.5)

where |fmk|r = sup|x|≤r |fmk(x)|. Note that

∥∥f1 · f2
∥∥
D(r,ρ,ε0)

≤ ∥∥f1
∥∥
D(r,ρ,ε0)

· ∥∥f2
∥∥
D(r,ρ,ε0)

. (1.6)

Problems

The reducibility on the linear differential system has been studied for a long time. The well-
known Floquet theorem tells us that if A(t) is a T -periodic matrix, then the linear system
ẋ = A(t)x is always reducible to the constant coefficient one by a T -periodic change of
variables. However, this cannot be generalized to the quasi-periodic system. In [2], Johnson
and Sell considered the quasi-periodic system ẋ = A(t)x, where A(t) is a quasi-periodic
matrix. Under some “full spectrum” conditions, they proved that ẋ = A(t)x is reducible.
That is, there exists a quasi-periodic nonsingular transformation x = φ(t)y, where φ(t) and
φ(t)−1 are quasi-periodic and bounded, such that ẋ = A(t)x is transformed to ẏ = By, where
B is a constant matrix.

In [3], Jorba and Simó considered the reducibility of the following linear system:

ẋ = (A + εQ(t))x, x ∈ Rn, (1.7)
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where A is an n × n constant matrix with n different eigenvalues λ1, λ2, . . . , λn and Q(t) is
analytic quasi-periodic with respect to t with frequencies ω = (ω1, ω2, . . . , ωl). Here ε is a
small perturbation parameter. Suppose that the following nonresonance conditions hold:

∣∣∣〈k,ω〉√−1 + λi − λj
∣∣∣ ≥ α

|k|τ , (1.8)

for all k ∈ Zl \ {0}, where α > 0 is a small constant and τ > l − 1. Assume that λ0
j (ε) (j =

1, 2, . . . , n) are eigenvalues of A + ε[Q]. If the following non-degeneracy conditions hold:

d

dε

(
λ0
i (ε) − λ0

j (ε)
)∣∣∣∣

ε=0
/= 0, ∀i /= j, (1.9)

then authors proved that for sufficiently small ε0 > 0, there exists a nonempty Cantor subset
E ⊂ (0, ε0), such that for ε ∈ E, the system (1.7) is reducible. Moreover, meas((0, ε0) \ E) =
o(ε0).

Some related problems were considered by Eliasson in [4, 5]. In the paper [4], to study
one-dimensional linear Schrödinger equation

d2q

dt2
+Q(ωt)q = Eq, (1.10)

Eliasson considered the following equivalent two-dimensional quasi-periodic Hamiltonian
system:

ṗ = (E −Q(ωt))q, q̇ = p, (1.11)

where Q is an analytic quasi-periodic function and E is an energy parameter. The result in [4]
implies that for almost every sufficiently large E, the quasi-periodic system (1.11) is reducible.
Later, in [5] the author considered the almost reducibility of linear quasi-periodic systems.
Recently, the similar problem was considered by Her and You [6]. Let Cω(Λ, gl(m,C)) be the
set ofm×mmatricesA(λ) depending analytically on a parameter λ in a closed interval Λ ⊂ R.
In [6], Her and You considered one-parameter families of quasi-periodic linear equations

ẋ =
(
A(λ) + g(ω1t, . . . , ωlt, λ)

)
x, (1.12)

where A ∈ Cω(Λ, gl(m,C)), and g is analytic and sufficiently small. They proved that under
some nonresonance conditions and some non-degeneracy conditions, there exists an open
and dense set A in Cω(Λ, gl(m,C)), such that for each A ∈ A, the system (1.12) is reducible
for almost all λ ∈ Λ.

In 1996, Jorba and Simó extended the conclusion of the linear system to the nonlinear
case. In [7], Jorba and Simó considered the quasi-periodic system

ẋ = (A + εQ(t))x + εg(t) + h(x, t), x ∈ Rn, (1.13)
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where A has n different nonzero eigenvalues λi. They proved that under some nonresonance
conditions and some non-degeneracy conditions, there exists a nonempty Cantor subset E ⊂
(0, ε0), such that the system (1.13) is reducible for ε ∈ E.

In [8], the authors found that the non-degeneracy condition is not necessary for the
two-dimensional quasi-periodic system. They considered the two-dimensional nonlinear
quasi-periodic system:

ẋ = Ax + f(x, t, ε), x ∈ R2, (1.14)

where A has a pair of pure imaginary eigenvalues ±√−1ω0 with ω0 /= 0 satisfying the
nonresonance conditions

|〈k,ω〉| ≥ α

|k|τ , |〈k,ω〉 − 2ω0| ≥ α

|k|τ (1.15)

for all k ∈ Zl \ {0}, where α > 0 is a small constant and τ > l − 1. Assume that f(0, t, ε) = O(ε)
and ∂xf(0, t, ε) = O(ε) as ε → 0. They proved that either of the following two results holds:

(1) for ∀ε ∈ (0, ε0), the system (1.14) is reducible to ẏ = By +O(y) as y → 0;

(2) there exists a nonempty Cantor subset E ⊂ (0, ε0), such that for ε ∈ E the system
(1.14) is reducible to ẏ = By +O(y2) as y → 0.

Note that the result (1) happens when the eigenvalue of the perturbed matrix of A in
KAM steps has nonzero real part. But the authors were interested in the equilibrium of the
transformed system and obtained a small quasi-periodic solution for the original system.

Motivated by [8], in this paper we consider the Hamiltonian system and we have a
better result.

2. Main Results

Theorem 2.1. Consider the following real two-dimensional Hamiltonian system

ẋ = J∇xH, x ∈ R2, (2.1)

where H(x, t, ε) = (1/2)β(x2
1 + x

2
2) + F(x, t, ε) with β /= 0, F(x, t, ε) is analytic quasi-periodic with

respect to t with frequencies ω = (ω1, ω2, . . . , ωl) and real analytic with respect to x and ε on
D(r, ρ, ε0), and

J =

(
0 1

−1 0

)
. (2.2)
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Here ε ∈ (0, ε0) is a small parameter. Suppose that ∂xF(0, t, ε) = O(ε) and ∂xxF(0, t, ε) = O(ε) as
ε → 0. Moreover, assume that β and ω satisfy

|〈k,ω〉| ≥ α0

|k|τ , (2.3)

∣∣〈k,ω〉 − 2β
∣∣ ≥ α0

|k|τ (2.4)

for all k ∈ Zl \ {0}, where α0 > 0 is a small constant and τ > l − 1.
Then there exist a sufficiently small ε∗ ∈ (0, ε0] and a nonempty Cantor subset E∗ ⊂ (0, ε∗),

such that for ε ∈ E∗, there exists an analytic quasi-periodic symplectic transformation x = φ∗(t)y +
ψ∗(t) on Dρ/2 with the frequencies ω, which changes (2.1) into the Hamiltonian system ẏ = J∇yH∗,
whereH∗(y, t, ε) = 1/2β∗(ε)(y2

1 + y
2
2) + F∗(y, t, ε), where F∗(y, t, ε) = O(y3) as y → 0. Moreover,

meas((0, ε∗) \E∗) = o(ε∗) as ε∗ → 0. Furthermore, β∗(ε) = β +O(ε) and ‖φ∗ − Id‖ρ/2 + ‖ψ∗‖ρ/2 =
O(ε), where Id is the 2-order unit matrix.

3. The Lemmas

The proof of Theorem 2.1 is based on KAM-iteration. The idea is the same as [7, 8]. When
the non-degeneracy conditions do not happen, the small parameter ε is not involved in the
nonresonance conditions. So without deleting any parameter, the KAM step will be valid.
Once the non-degeneracy conditions occur at some step, they will be kept for ever and we
can apply the results with the non-degeneracy conditions. Thus, after infinite KAM steps, the
transformed system is convergent to a desired form.

We first give some lemmas. Let R = (rij)1≤i, j≤2 be a Hamiltonian matrix. Then we have
r11 + r22 = 0. Define a matrix RA = (1/2)dJ with d = r12 − r21. Let

B =
1√
2

(
1 1
√−1 −√−1

)
. (3.1)

It is easy to verify

B−1RAB =
1
2

diag
(√
−1d,−

√
−1d

)
,

B−1(R − RA)B =
1
2

(
0 σ ′ − √−1κ′

σ ′ +
√−1κ′ 0

)
,

(3.2)

where σ ′ = 2r11 and κ′ = r21 + r12.
In the same way as in [7, 8], in KAM steps we need to solve linear homological

equations. For this purpose we need the following lemma.

Lemma 3.1. Consider the following equation of the matrix:

Ṗ = AP − PA + R(t), (3.3)
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where A = β(ε)J with |β(ε)| > μ, μ > 0 is a constant, and R(t) = (rij(t))1≤i, j≤2 is a real analytic
quasi-periodic Hamiltonian matrix on Dρ with frequencies ω. Suppose β(ε) and R are smooth with
respect to ε and |εβ′(ε)| ≤ c0 for ε ∈ E ⊂ (0, ε∗), where c0 is a constant. Note that here and below
the dependence of ε is usually implied and one does not write it explicitly for simplicity. Assume
[R]A = 0, where [R] is the average of R. Suppose that for ε ∈ E, the small divisors conditions (2.3)
and the following small divisors conditions hold:

∣∣〈k,ω〉 − 2β(ε)
∣∣ ≥ α

|k|τ ′
, (3.4)

where τ ′ > 2τ + l. Let 0 < s < ρ and ρ1 = ρ− s. Then there exists a unique real analytic quasi-periodic
Hamiltonian matrix P(t) with frequencies ω, which solves the homological linear equation (3.3) and
satisfies

‖P‖ρ1 ≤
c

αsv
‖R‖ρ, ‖ε∂εP‖ρ1

≤ c

α2sv′

(
‖R‖ρ + ‖ε∂εR‖ρ

)
, (3.5)

where v = τ ′ + l, v′ = 2τ ′ + l and c > 0 is a constant.

Remark 3.2. The subset E of (0, ε∗) is usually a Cantor set and so the derivative with respect
to ε should be understood in the sense of Whitney [9].

Proof. Let P = B−1PB, where B is defined by (3.1). Similarly, define A, R, RA. Then (3.3)
becomes

Ṗ = AP − P A + R(t), (3.6)

where

A = diag
(√
−1β,−

√
−1β

)
. (3.7)

Moreover, RA and R − RA have the same forms as (3.2) and (3.2), respectively
Noting that [R]A = 0, we have [R]A = 0. Write P = (pij)i,j and R = (rij)i,j . Obviously,

we have r11 = −r22 with [rii] = 0.

Insert the Fourier series of P and R into (3.6). Then it follows that p0
ii = 0, pkii =

rkii/(〈k,ω〉
√−1) for k /= 0, and

pkij =
rkij√−1

(〈k,ω〉 ± 2β
) for i /= j. (3.8)

Since R is analytic on Dρ, we have |Rk| ≤ ‖R‖ρe−|k|ρ. So it follows

∥∥∥P∥∥∥
ρ−s
≤

∑
k∈Zl

∣∣∣Pk
∣∣∣e|k| (ρ−s) ≤ c

αsv
‖R‖ρ. (3.9)
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Note that here and below we always use c to indicate constants, which are independent of
KAM steps.

Since A and R(t) are real matrices, it is easy to obtain that P(t) is also a real matrix.
Obviously, it follows that p11 = −p22 and the trace of the matrix P is zero. So is the trace of P .
Thus, P is a Hamiltonian matrix.

Now we estimate ‖ε∂P/∂ε‖ρ1 . We only consider p12 and p21 since p11 and p22 are easy.

For i /= j we have

dpkij(ε)

dε
=
±2β′(ε)rkij −

(〈k,ω〉 ± 2β
)
rkij

’(ε)

−√−1
(〈k,ω〉 ± 2β

)2
. (3.10)

Then, in the same way as above we obtain the estimate for ‖ε(∂P/∂ε)‖ρ1 .

The following lemma will be used for the zero order term in KAM steps.

Lemma 3.3. Consider the equation

ẋ = Ax + g(t), (3.11)

whereA is the same as in Lemma 3.1, and g is real analytic quasi-periodic in t onDρ with frequencies
ω and smooth with respect to ε. Suppose that the small divisors conditions (3.4) hold. Then there exists
a unique real analytic quasi-periodic solution x(t) with frequencies ω, which satisfies

‖x‖ρ1 ≤
c

αsv
‖g‖ρ,

∥∥∥∥ε∂x∂ε
∥∥∥∥
ρ1

≤ c

α2sv′

(∥∥g∥∥ρ +
∥∥∥∥ε∂g∂ε

∥∥∥∥
ρ

)
, (3.12)

where s,ρ1,v, v′ are defined in Lemma 3.1.

Proof. Similarly, let x = B−1x,A = B−1AB and g(t) = B−1g(t). Then (3.11) becomes

ẋ = Ax + g(t), (3.13)

where A = diag(
√−1β,−√−1β). Expanding x = (x1, x2) and g = (g1, g2) into Fourier series

and using (3.13), we have

xki =
gki√−1

(
〈k,ω〉 + (−1)iβ

) . (3.14)
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Using 2k in place of k in (3.4), we have

∣∣〈k,ω〉 − β(ε)∣∣ ≥ α

2|k|τ ′
. (3.15)

Thus, in the same way as the proof of Lemma 3.1, we can estimate ‖x‖ρ1 and ‖ε∂εx‖ρ1 . We
omit the details.

The following lemma is used in the estimate of Lebesgue measure for the parameter ε
in the case of non-degeneracy.

Lemma 3.4. Let ψ(ε) = σεN + εNf(ε), whereN is a positive integer and f satisfies that f(ε) → 0
as ε → 0 and |f ′(ε)| ≤ c for ε ∈ (0, ε∗). Let φ(ε) = 〈k,ω〉 − 2β − ψ(ε). Let

O =

{
ε ∈ (0, ε∗) |

∣∣φ(ε)∣∣ ≥ α

|k|τ ′
, ∀k /= 0

}
, (3.16)

where τ ′ ≥ 2τ + l, α ≤ (1/2)α0,σ /= 0. Suppose that the small condition (2.4) holds. Then when ε∗ is
sufficiently small, one has

meas(0, ε∗) \O ≤ c α
α2

0

εN+1
∗ , (3.17)

where c is a constant independent of α0, α, ε∗

Proof. Let

Ok =

{
ε ∈ (0, ε∗) |

∣∣φ(ε)∣∣ < α

|k|τ ′
}
. (3.18)

By assumption, if ε∗ is sufficient small, we have that |ψ(ε)| ≤ 2σεN and |ψ ′(ε)| ≥ (σ/2)εN−1

for ε ∈ (0, ε∗). If εN ≤ α0/(4σ|k|τ), by (2.4) we have

∣∣φ(ε)∣∣ ≥ ∣∣〈k,ω〉 − 2β
∣∣ − ∣∣ψ(ε)∣∣ ≥ α

|k|τ ′
. (3.19)

Thus, we only consider the case that εN∗ ≥ εN ≥ (α0/(4σ|k|τ)). We have |k| ≥
(α0/(4σεN∗ ))

1/τ = K. Since

∣∣φ′(ε)∣∣ = ∣∣ψ ′(ε)∣∣ ≥ σ
2
εN−1 ≥ α0

8|k|τε∗
, (3.20)
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we have meas(Ok) ≤ ((2α)/|k|τ ′) × ((8|k|τε∗)/α0) = (16αε∗)/(|k|τ
′−τα0). So

meas((0, ε∗) \ 0) ≤
∑
|k|≥K

meas(Ok) ≤ 16α
α0

ε∗
∑
|k|≥K

1

|k|τ ′−τ

≤ cα
α0
ε∗Kl−τ ′+τ ≤ cα

α2
0

εN+1
∗ ,

(3.21)

where c is a constant independent of α0, α, and ε∗.

Below we give a lemma with the non-degeneracy conditions.

Lemma 3.5. Consider the real nonlinear Hamiltonian system ẋ = J∇xH, where

H(x, t, ε) =
1
2
β
(
x2

1 + x
2
2

)
+ F(x, t, ε) with β /= 0. (3.22)

Suppose that F(x, t, ε) is analytic quasi-periodic with respect to t with frequencies ω and real analytic
with respect to x and ε onD(r, ρ, ε0). Let f(x, t, ε) = J∇xF(x, t, ε). Assume that f(0, t, ε) = O(ε2m0)
and ∂xf(0, t, ε) = O(εm0) as ε → 0, where m0 is a positive integer. Let Q(t, ε) = ∂xf(0, t, ε) =∑

k≥m0
Qk(t)εk. Suppose there exists m0 ≤ k ≤ 2m0 − 1 such that [Qk]A /= 0 and the nonresonance

conditions (2.3) and (2.4) hold. Then, for sufficiently small ε∗ > 0, there exists a nonempty Cantor
subset E∗ ⊂ (0, ε∗), such that for ε ∈ E∗, there exists a quasi-periodic symplectic transformation
x = φ∗(t)y + ψ∗(t) with the frequencies ω, which changes the Hamiltonian system to ẏ = J∇yH∗,
where

H∗
(
y, t, ε

)
=

1
2
β∗(ε)

(
y2

1 + y
2
2

)
+ F∗

(
y, t, ε

)
, (3.23)

where F∗(y, t, ε) = O(y3) as y → 0. Moreover, meas((0, ε∗) \ E∗) = O(εm0+1
∗ ) as ε∗ → 0.

Furthermore, β∗(ε) = β +O(εm0) and ‖φ∗ − Id‖ρ/2 + ‖ψ∗‖ρ/2 = O(εm0).

Proof

KAM Step

The proof is based on a modified KAM iteration. In spirit, it is very similar to [7, 8]. The
important thing is to make symplectic transformations so that the Hamiltonian structure can
be preserved. Note that [Qk]A /= 0 for some m0 ≤ k ≤ 2m0 − 1 is a non-degeneracy condition.

Consider the following Hamiltonian system

ẋ = Ax + f(x, t, ε), (3.24)

where A = β(ε)J and f is analytic quasi-periodic with respect to t with frequencies ω and
real analytic with respect to x and ε on D = D(r, ρ, ε∗).
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Let ‖f‖D ≤ αrε̃ and ‖ε∂εf‖D ≤ αrε̃. Let Q(t, ε) = ∂xf(0, t, ε), g(t, ε) = f(0, t, ε) and

h(x, t, ε) = f(x, t, ε) − g(t, ε) −Q(t, ε)x. (3.25)

Then h is the higher-order term of f . Moreover, the matrix Q(t, ε) is Hamiltonian. Let [Q]A =
β̂(ε)J .

The system (3.24) is written as

ẋ = (A+ + R(t, ε))x + g(t, ε) + h(x, t, ε), (3.26)

where A+ = A + [Q]A = β+(ε)J and R = Q − [Q]A. By assumption we have

∥∥g∥∥ρ ≤ αrε̃, ‖Q‖ρ ≤ αε̃, ‖h‖D ≤ 3αrε̃. (3.27)

Moreover, we have

∥∥ε∂εg∥∥ρ ≤ αrε̃, ‖ε∂εQ‖ρ ≤ αε̃, ‖ε∂εh‖D ≤ 3αrε̃. (3.28)

Now we want to construct the symplectic change of variables x = T ′y = eP(t)y to (3.26),
where P is a Hamiltonian matrix to be defined later. Then we have

ẏ =
(
e−P

(
A+ + R − Ṗ

)
eP + e−P

(
ṖeP − d

dt
eP(t)

))
y

+ e−Pg(t, ε) + e−Ph
(
ePy, t, ε

)
.

(3.29)

Let W = eP − I − P and W̃ = e−P − I − P . Then the system (3.29) becomes

ẏ =
(
A+ + R − Ṗ +A+P − PA+

)
y +Q′y + e−Pg(t, ε) + e−Ph

(
ePy, t, ε

)
, (3.30)

where

Q′ = − P(R − Ṗ) + (
R − Ṗ)P − P(A+ + R − Ṗ

)
P

− P(A+ + R − Ṗ
)
W +

(
A+ + R − Ṗ

)
W

+ W̃
(
A+ + R − Ṗ

)
eP + e−P

(
ṖeP − d

dt
eP

)
.

(3.31)

We would like to have

Ṗ −A+P + PA+ = R, (3.32)
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where R = Q − [Q]A. Suppose the small divisors conditions (2.3) hold. Let E+ ⊂ (0, ε∗) be a
subset such that for ε ∈ E+ the small divisors conditions hold:

∣∣〈k,ω〉 − 2β+(ε)
∣∣ ≥ α+

|k|τ ′
, ∀k ∈ Zl \ {0}, (3.33)

where τ ′ > 2τ + l. By Lemma 3.1, we have a quasi-periodic Hamiltonian matrix P(t) with
frequencies ω to solve the above equation with the following estimates:

‖P‖ρ−s ≤
c‖Q‖ρ
α+sv

≤ cε̃
sv
,

∥∥∥∥ε∂P∂ε
∥∥∥∥
ρ−s
≤ c

α2
+sv

′

(
‖Q‖ρ +

∥∥∥∥ε∂Q∂ε
∥∥∥∥
ρ

)
≤ cε̃

α+sv
′ ,

(3.34)

where v = τ ′ + l, v′ = 2τ ′ + l and c > 0 is a constant. Then the system (3.30) becomes

ẏ = A+y + f ′
(
y, t, ε

)
, (3.35)

where f ′ = Q′y + e−Pg(t, ε) + e−Ph(ePy, t, ε).

By Lemma 3.3, let us denote by x the solution of ẋ = A+x + g ′(t, ε) on Dρ−2s, where
g ′ = e−Pg(t, ε). Then, by Lemma 3.3 we have

∥∥x∥∥ρ−2s ≤
c
∥∥g∥∥ρ−s
α+sv

≤ crε̃
sv

,

∥∥∥∥ε∂x∂ε
∥∥∥∥
ρ−2s
≤ c

α2
+sv

′

(∥∥g∥∥ρ−s +
∥∥∥∥ε∂g∂ε

∥∥∥∥
ρ−s

)
≤ crε̃

α+sv
′ .

(3.36)

Under the symplectic change of variables y = T ′′x+ = x + x+, the Hamiltonian system
(3.35) is changed to

ẋ+ = A+x+ + f+(x+, t, ε), (3.37)

where A+ = β+J and

f+ = Q′ · T ′′ + e−Ph ◦ T ′ ◦ T ′′. (3.38)
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Let the symplectic transformation T = T ′ ◦ T ′′. Then x = Tx+ = φ(t)x+ + ψ(t), where
φ(t) = eP(t) and ψ(t) = eP(t)x(t). It is easy to obtain that if ‖P‖ρ−2s ≤ 1/2, then

∥∥φ − I∥∥ρ−2s ≤
cε̃

sv
,

∥∥ε∂εφ∥∥ρ−2s ≤
cε̃

α+sv
′ ,

∥∥ψ∥∥ρ−2s ≤
crε̃

sv
,

∥∥ε∂εψ∥∥ρ−2s ≤
crε̃

α+sv
′ .

(3.39)

Under the symplectic change of variables x = Tx+, the Hamiltonian system (3.24) becomes
(3.37).

Below we give the estimates for A+ and f+. Obviously, it follows that A+(ε) − A =
[Q]A = β̂(ε)J and

∣∣β+(ε) − β(ε)∣∣ =
∣∣∣β̂(ε)

∣∣∣ ≤ cαε̃, ∣∣ε(β′+(ε) − β′(ε))∣∣ =
∣∣∣εβ̂′(ε)∣∣∣ ≤ cαε̃. (3.40)

By (3.38) we have

f+(x+, t, ε) = Q′(t)
(
x+ + x(t)

)
+ e−P(t)h

(
eP(t)

(
x+ + x(t)

)
, t, ε

)
. (3.41)

Let ρ+ = ρ−2s, and r+ = ηr with η ≤ 1/8. If cε̃/α+sv+v
′ ≤ η, it follows that ‖x‖ρ−2s ≤ (1/8)r. Let

D+ = D(r+, s+, ε∗). Note thatQ′ and h only consist of high-order terms of P and x, respectively.
It is easy to see |eP(t)(x+ +x(t))| ≤ 4ηr ≤ r. By all the estimates (3.27), (3.28), (3.34), and (3.36),
and using usual technique of KAM estimate, we have

∥∥f+∥∥D+
≤ cε̃

2

s2v
ηr + cαrε̃η2 ≤

(
cε̃

s2v
+ cαη

)
r+ε̃,

∥∥ε∂εf+∥∥D+
≤ cε̃2

α+sv+v
′ ηr + cαrε̃η

2 ≤
(

cε̃

αsv+v′
+ cαη

)
r+ε̃.

(3.42)

Let α+ = α/2 and η = cε̃/(α2sv+v
′
). Then we have

∥∥f+∥∥D+
≤ cα+r+ηε̃ = α+r+ε̃+, ε̃+ = cηε̃. (3.43)

Similarly, we have

∥∥ε∂εf+∥∥D+
≤ α+r+ε̃+. (3.44)

Note that KAM steps only make sense for the small parameter ε satisfying small
divisors conditions. However, by Whitney’s extension theorem, for convenience all the
functions are supposed to be defined for ε on [0, ε∗].



Abstract and Applied Analysis 13

KAM Iteration

Now we can give the iteration procedure in the same way as in [7] and prove its convergence.
At the initial step, let f0 = f . Let f(x, t, ε) = f(0, t, ε) + ∂xf(0, t, ε)x + h(x, t, ε). By

assumption, if ε∗ is sufficiently small, we have that for all ε ∈ [0, ε∗]

∣∣f(0, t, ε)∣∣ ≤ cε2m0 ,
∣∣∂xf(0, t, ε)∣∣ ≤ cεm0 ,

∣∣ε∂εf(0, t, ε)∣∣ ≤ cε2m0 ,
∣∣ε∂ε∂xf(0, t, ε)∣∣ ≤ cεm0 .

(3.45)

Moreover,

|h(x, t, ε)| ≤ c|x|2, |ε∂εh(x, t, ε)| ≤ c|x|2, ∀|x| ≤ εm0 , ∀ε ∈ [0, ε∗]. (3.46)

Let r0 = εm0 , ρ0 = ρ, s0 = ρ0/8, D0 = D(r0, ρ0, ε∗), and ε̃0 = cεm0/α0. Then we have

∣∣f0
∣∣
D0
≤ α0r0ε̃0,

∣∣ε∂εf0
∣∣
D0
≤ α0r0ε̃0. (3.47)

For n ≥ 1, let

αn =
αn−1

2
, sn =

sn−1

2
, ρn = ρn−1 − 2sn−1,

ηn−1 =
cε̃n−1

α2
n−1s

v+v′
n−1

, rn = ηn−1rn−1, ε̃n = cηn−1ε̃n−1.
(3.48)

Then we have a sequence of quasi-periodic symplectic transformations {Tn} satisfying
Tnx = φn(t)x + ψn(t) with

∥∥φn − I∥∥ρn+1
≤ cε̃n
svn

,
∥∥ψn∥∥ρn+1

≤ crnε̃n
svn

. (3.49)

Let Tn = T0 ◦ T1 · · · ◦ Tn−1. Then under the transformation x = Tny the Hamiltonian system
ẋ = A0x + f0(x, t, ε) is changed to ẏ = Any + fn(y, t, ε).

Moreover, An(ε) = βn(ε)J satisfies An+1 −An = [Qn]A and

∣∣βn+1(ε) − βn(ε)
∣∣ ≤ cαnε̃n, ∣∣ε(β′n+1(ε) − β′n(ε)

)∣∣ ≤ cαnε̃n, (3.50)

∥∥fn∥∥Dn
≤ αnrnε̃n. (3.51)

Convergence

By the above definitions we have ηn/ηn−1 = cε̃n/ε̃n−1 = cηn−1. Thus, we have ηn ≤ cη2
n−1

and so cηn ≤ (cηn−1)
2 ≤ (cη0)

2n . Note that η0 = cε̃0/(α2
0s

v+v′
0 ) ≤ cεm0/(α2

0ρ
v+v′
0 ). Suppose that

ε∗ is sufficiently small such that for 0 < ε < ε∗ we have cη0 ≤ 1/2. Tn are affine, so are Tn
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with Tnx = φn(t)x + ψn(t). By the estimates (3.49) it is easy to prove that φn(t) and ψn(t) are
convergent and so Tn is actually convergent on the domain D(r/2, ρ/2). Let Tn → T∗ and
T∗x = φ∗(t)x + ψ∗(t). It is easy to see that the estimates for φ∗ and ψ∗ in Theorem 2.1 hold.

Using the estimate for fn and Cauchy’s estimate, we have |fn(0, t, ε)| ≤ αnrnε̃n → 0
and |∂xfn(0, t, ε)| ≤ αnε̃n → 0 as n → ∞. Let fn → f∗. Then it follows that f∗(x, t, ε) = O(x2).

By the estimates (3.50) for βn we have βn → β∗. Thus, by the quasi-periodic symplectic
transformation x = T∗y, the original system is changed to ẏ = A∗y + f∗(y, t, ε) with A∗ = β∗J .

Estimate of Measure

Let

En =

{
ε ∈ (0, ε∗) |

∣∣〈ω, k〉 − 2βn(ε)
∣∣ ≥ αn

|k|τ ′
}
. (3.52)

Note that βn = β1 + ψ, where ψ =
∑n−1

j=1 βj+1 − βj , β1 = β + β̂, and β̂J = [Q]A. Note that
ε̃1 = cε̃2

0/(α
2
0s

v+v′
0 ) and ε̃0 = cεm0/α0. By the estimates (3.50), we have ψ(ε) = O(ε2m0) and

εψ ′(ε) = O(ε2m0). By assumption, [Q]A is analytic with respect to ε and there exists m0 ≤N ≤
2m0 − 1 such that [Q]A = δεN + O(εN+1) with δ /= 0. Thus, β1(ε) = β + δεN + O(εN+1). By
Lemma 3.4, we have meas((0, ε∗) − En) ≤ c(αn/α2

0)ε
N+1
∗ . Let E∗ =

⋂
n≥1 En. By αn = α0/2n, it

follows that meas((0, ε∗) − E∗) ≤ cεN+1
∗ /α0. Thus Lemma 3.5 is proved.

4. Proof of Theorem 2.1

As we pointed previously, once the non-degeneracy conditions are satisfied in some KAM
step, the proof is complete by Lemma 3.5. If the non-degeneracy conditions never happen,
the small parameter ε does not involve into the small divisors and so the systems are analytic
in ε. To prepare for KAM iteration, we need a preliminary step to change the original system
to a suitable form.

Preliminary Step

We first give the preliminary KAM step. Let

ẋ = Ax + f(x, t, ε), (4.1)

where A = βJ and f = J∇xF. By Lemma 3.3, denote by x the solution of ẋ = Ax + f(0, t, ε) on
D3ρ/4. Under the change of variables x = T0x+ = x+x+, the Hamiltonian system (2.1) becomes

ẋ+ = Ax+ + f1(x+, t, ε), (4.2)

where f1(x+, t, ε) = f(x + x+, t, ε) − f(0, t, ε) satisfying f1(0, t, ε) = O(ε2) and ∂x+f1(0, t, ε) =
O(ε).
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KAM Step

The next step is almost the same as the proof of Lemma 3.5 and even more simple. In the KAM
iteration, we only need consider the case that the non-degeneracy condition never happens.
In this case, the normal frequency has no shift, which is equivalent to An = A for all n ≥ 1 in
the KAM steps in the above nondegenerate case. Moreover, the small divisors conditions are
always the initial ones as (2.3) and (2.4) and are independent of the small parameter ε. Thus,
we need not delete any parameter. Moreover, the analyticity in ε remains in the KAM steps,
which makes the estimate easier. At the first step, we consider ẋ = Ax+f1(x, t, ε). In the same
way as the case of nondegenerate case, let r1 = ε, ρ1 = 3ρ/4, ε1 = ε0, D1 = D(r1, ρ1, ε1), and
ε̃1 = cε/α0. Then we have ‖f1‖D1 ≤ α0r1ε̃1.

At nth step, we consider the Hamiltonian system

ẋ = Ax + fn(x, t, ε), (4.3)

where fn is analytic quasi-periodic with respect to t with frequencies ω and real analytic with
respect to x and ε on Dn = D(rn, ρn, εn). Moreover, ‖fn‖Dn ≤ α0rnε̃n. Suppose

Qn(t, ε) = ∂xfn(0, t, ε) = O
(
ε2n−1

)
, fn(0, t, ε) = O

(
ε2n

)
. (4.4)

Since Qn is analytic with respect to ε, it follows that

Qn =
∞∑

k=2n−1

Qk
nε

k. (4.5)

Truncating the above power series of ε, we let

Rn(t, ε) =
2n−1∑
k=2n−1

Qk
nε

k, Q̃n = Qn − Rn. (4.6)

Because the non-degeneracy conditions do not happen in KAM steps, we must have
[Rn]A = 0. In the same way as the proof of Lemma 3.5, we have a quasi-periodic symplectic
transformation Tn with Tnx = φn(t)x + ψn(t) satisfying (3.49). Let Tn = T1 ◦ T2 · · · ◦ Tn−1.

By the transformation x = Tny, the system (4.3) is changed to

ẏ = Ay + fn+1
(
y, t, ε

)
, (4.7)

where fn+1 = Q̃n · T ′′n +Q′n · T ′′n + e−Pn · hn ◦ Tn = Q̃n(xn + y) +Q
′
n(xn + y) + e

−Pnhn(ePn(xn + y)).

The last two terms can be estimated similarly as those of (3.41). Note that

Q̃n = Qn − Rn =
∑
k≥2n

Qk
nε

k (4.8)
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only consists of the higher order terms of ε. So, in the same way as [8, 10], we use the
technique of shriek of the domain interval of ε to estimate the first term.

Let r1 = ε, ρ1 = 3ρ/4, ε1 = ε0 and s1 = ρ/16.

Define sn+1 = sn/2, ρn+1 = ρn − 2sn, ηn = (1/8)e−(4/3)n , rn+1 = ηnrn, δn = 1 − (2/3)n and
εn+1 = δnεn. Let Dn+1 = D(rn+1, ρn+1, εn+1).

If cε̃n/s2v
n ≤ ηn < (1/8), it follows that

∥∥fn+1
∥∥
Dn+1
≤
(
α0ε̃ne

−(4/3)n +
(
cε̃n
svn

)2
)
ηnrn + cα0rnε̃nη

2
n ≤ α0rn+1ε̃n+1, (4.9)

where ε̃n+1 = cηnε̃n. Moreover, it is easy to see

∂xfn+1(0, t, ε) = O
(
ε2n

)
, fn+1(0, t, ε) = O

(
ε2n+1

)
. (4.10)

Now we verify cε̃n/s
2v
n ≤ ηn < 1/8. Let Gn = cε̃n/s

2v
n . By Gn = ce−(4/3)n−1

16vGn−1, it follows
that

Gn = (c16v)n−1e−[(4/3)n−1+(4/3)n−2+···+(4/3)1] G1 = (c16v)n−1e4e−4(4/3)n−1
G1. (4.11)

Note that G1 = cε̃1/s
2v
1 . If ε̃1 is sufficiently small, we have cε̃n/s2v

n = Gn ≤ ηn.

Note that (crnε̃n/svn) → 0 and (cε̃n/(ηnsvn)) → 0 as n → ∞, and ε̃n ≤ cs2v
n Gn. Let

ε∗ =
∏

n≥1(1− (2/3)n)ε0. Thus, in the same way as before we can prove the convergence of the
KAM iteration for all ε ∈ (0, ε∗) and obtain the result of Theorem 2.1. We omit the details.

Remark 4.1. As suggested by the referee, we can also introduce an outer parameter to consider
the Hamiltonian function H(x, t, ε) = 〈ω, I〉+(1/2)(β∗+σ(ε))(x2

1 +x
2
2)+F(x, t, ε), where (θ, I)

are the angle variable and the action variable and x = (x1, x2) are a pair of normal variables.
In the same way as in [11], σ(ε) is the modified term of the normal frequency. Then by some
technique as in [11–13], we can also prove Theorem 2.1.
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The paper deals with the class of jump control systems with semi-Markov coefficients. The control
system is described as the system of linear differential equations. Every jump of the random
process implies the random transformation of solutions of the considered system. Relations
determining the optimal control to minimize the functional are derived using Lyapunov functions.
Necessary conditions of optimization which enables the synthesis of the optimal control are
established as well.

1. The Statement of the Problem

The optimal control theory as mathematical optimization method for deriving control policies
plays an important role in the development of the modern mathematical control theory. The
optimal control deals with the problem of finding such a control law for a given system that a
certain optimality criterion is achieved. The background for the optimization method can be
found in the work of Lev Pontryagin with his well-known Pontryagin’s maximum principle.
The optimal control has been applied in diverse fields, such as economics, bioengineering,
process control, and many others. Some real-life problems are described by a continuous-
time or discrete-time linear system of differential equations, but a lot of them are described
by dynamic systems with random jumping changes, for example economics systems. The
general theory of random structure systems can be found in the work of Artemiev and
Kazakov [1]. The optimization of linear systems with random parameters are considered
in many works, for example in [2–12]. Particularly, the original results concerning the
stabilization of the systems with random coefficients and a random process are derived using
moment equations and Lyapunov functions in [4]. These results create a more convenient
technique for applying the method in practice using suitable software for engineering
or economics investigation. Our aim is the expansion of the achieved results to a new
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class of systems of linear differential equations with semi-Markov coefficients and random
transformation of solutions performed simultaneously with jumps of semi-Markov process.
We will focus on using the particular values of Lyapunov functions for the calculation of
coefficients of the control vector which minimize the quality criterion. We will also establish
the necessary conditions of the optimal solution which enables the synthesis of the optimal
control for the considered class of systems.

Let us consider the linear control system

dX(t)
dt

= A(t, ξ(t))X(t) + B(t, ξ(t))U(t) (1.1)

on the probability basis (Ω,�,P, F ≡ {Ft : t ≥ 0}) and together with (1.1) we consider the
initial conditions

X(0) = ϕ(ω), ϕ : Ω −→ �
n . (1.2)

The coefficients of the system are semi-Markov coefficients defined by the transition
intensities qαk(t), α, k = 1, 2, . . . , n, from state θk to state θα. We suppose that the vectors U(t)
belong to the set of control U and the functions qαk(t), α, k = 1, 2, . . . , n, satisfy the conditions
[13]:

qαk(t) ≥ 0,
∫∞

0
qk(t)dt = 1, qk(t) ≡

∞∑
α=1

qαk(t). (1.3)

Definition 1.1. Let the matrices Q(t, ξ(t)), L(t, ξ(t)) with semi-Markov elements be symmetric
and positive definite. The cost functional

J =
∫∞

0
〈X∗(t)Q(t, ξ(t))X(t) +U∗(t)L(t, ξ(t))U(t)〉dt, (1.4)

defined on the space C1 ×U, where 〈·〉 denotes mathematical expectation, is called the quality
criterion.

Definition 1.2. Let S(t, ξ(t)) be a matrix with semi-Markov elements. The control vector

U(t) = S(t, ξ(t))X(t) (1.5)

which minimizes the quality criterion J(X,U) with respect to the system (1.1) is called the
optimal control.

If we denote

G(t, ξ(t)) ≡ A(t, ξ(t)) + B(t, ξ(t))S(t, ξ(t)),

H(t, ζ(t)) ≡ Q(t, ζ(t)) + S∗(t, ζ(t))L(t, ζ(t))S(t, ζ(t)),
(1.6)
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then the system (1.1) can be rewritten to the form

dX(t)
dt

= G(t, ξ(t))X(t), (1.7)

and the functional (1.4) to the form

J =
∫∞

0
〈X∗(t)H(t, ξ(t))X(t)〉dt. (1.8)

We suppose also that, together with every jump of random process ξ(t) in time tj , the
solutions of the system (1.7) submit to the random transformation

X
(
tj + 0

)
= CskX

(
tj − 0

)
, s, k = 1, 2, . . . , n, (1.9)

if the conditions ξ(tj + 0) = θs, ξ(tj − 0) = θk hold.

Definition 1.3. Let ak(t), k = 1, . . . , n, t ≥ 0 be a selection of n different positive functions. If
ξ(tj + 0) = θs, ξ(tj − 0) = θk, s, k = 1, . . . , n, and for tj ≤ t ≤ tj+1 the equality a(t, ξ(t) = θs) =
as(t − tj) holds, then the function a(t, ξ(t)) is called semi-Markov function.

The application of semi-Markov functions makes it possible to use the concept of
stochastic operator. In fact, the semi-Markov function a(t, ξ(t)) is an operator of the semi-
Markov process ξ(t), because the value of the semi-Markov function a(t, ξ(t)) is defined not
only by the values t and ξ(t), but it is also necessary to specify the function as(t), t ≥ 0 and
the value of the jump of the process ξ(t) in time tj which precedes the moment of time t.

Our task is the construction of Lyapunov function for the new class of systems of linear
differential equations with semi-Markov coefficients and then applying the function to solve
the optimization problem which minimizes the quality criterion.

2. Auxiliary Results

In the proof of Theorem 3.1 in Section 3, we will employ two results concerning the
construction of the Lyapunov function and the construction of the optimal control for the
system of linear differential equations in a deterministic case. We will derive these auxiliary
results in this part.

2.1. The Construction of the Lyapunov Function

Let us consider the system of linear differential equations

dX(t)
dt

= A(t, ξ(t))X(t) (2.1)

associated to the system (1.1).



4 Abstract and Applied Analysis

Let us define a quadratic form

w(t, x, ξ(t)) = x∗B(t, ξ(t))x, B(t, ξ(t)) > 0, (2.2)

where elements of the matrix B(t, ξ(t)) are the semi-Markov processes. The matrix B(t, ξ(t))
is defined by such a set of n different symmetric and positive definite matrices Bk(t), t ≥ 0,
k = 1, . . . , n, that the equality ξ(t) = θs for tj ≤ t ≤ tj + 1 implies

B(t, ξ(t)) = Bs
(
t − tj

)
, s = 1, 2, . . . , n. (2.3)

Our purpose in this section is to express the value of the functional

ν =
∫∞

0
〈w(t, X(t), ξ(t))〉dt (2.4)

in a convenient form, which can help us to prove the L2-stability of the trivial solution of the
system (2.1).

At first, we introduce the particular Lyapunov functions

νk(x) =
∫∞

0
〈w(t, X(t), ξ(t)) | X(t) = x, ξ(0) = θk〉dt, k = 1, 2, . . . , n. (2.5)

If we can find the values of the particular Lyapunov functions in the form νk(x) = x∗Ckx,
k = 1, 2, . . . , n, then value of the functional ν can be expressed by the formula

ν =
∫
En

n∑
k=1

νk(x)fk(0, x)dx =
n∑
k=1

∫
En

Ck ◦ xx∗fk(0, x)dx =
n∑
k=1

Ck ◦Dk(0), (2.6)

where the scalar value

N ◦ S =
l∑

k=1

m∑
j=1

νkjskj (2.7)

is called the scalar product of the two matrices N = (νkj), S = (skj) and has the property [14]

D(N ◦ S)
DS

= N. (2.8)

The first auxiliary result contains two equivalent, necessary, and sufficient conditions
for the L2-stability (see in [4]) of the trivial solution of the system (2.1) and one sufficient
condition for the stability of the solutions.
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Theorem 2.1. The trivial solution of the system (2.1) is L2-stable if and only if any of the next two
equivalent conditions hold:

(1) the system of equations

Ck = Hk +
∫∞

0

n∑
s=1

qsk(t)N∗
k(t)C

∗
skCsCskNk(t)dt, k = 1, 2, . . . , n (2.9)

has a solution Ck > 0, k = 1, 2, . . . , n forHk > 0, k = 1, 2, . . . , n,

(2) the sequence of the approximations

C
(0)
k

= 0,

C
(j+1)
k

= Hk +
∫∞

0

n∑
s=1

qsk(t)N∗
k(t)C

∗
skC

(j)
s CskNk(t)dt, k = 1, 2, . . . , n, j = 0, 1, 2,

(2.10)

converges.

Moreover, the solutions of the system (2.1) are L2-stabile, if there exist symmetric and positive
definite matrices Ck > 0, k = 1, 2, . . . , n, such that the property

Ck −
∫∞

0

n∑
s=1

qsk(t)N∗
k(t)C

∗
skCsCskNk(t)dt > 0, k = 1, 2, . . . , n (2.11)

holds.

Proof. We will construct a system of equations, which will define the particular Lyapunov
functions νk(x), k = 1, 2, . . . , n. Let us introduce the auxiliary semi-Markov functions

uk(t, x) = 〈w(t, X(t), ξ(t)) | X(0) = x, ξ(0) = θk〉, k = 1, 2, . . . , n. (2.12)

For the state ξ(t) = θk, t ≥ 0 of the random process ξ(t), the equalities

X(t) =Nk(t)x, X(0) = x (2.13)

are true. Simultaneously, with the jumps of the random process ξ(t), the jumps of solutions
of (2.1) occurred, so in view of (2.12), we derive the equations

uk(t, x) = ψk(t)wk(t,Nk(t)x) +
∫ t

0

n∑
s=1

qsk(τ)us(t − τ, CskNk(τ)x)dτ, k = 1, 2, . . . , n. (2.14)

Further, if we introduce denoting

uk(t, x) = x∗uk(t)x, k = 1, 2, . . . , n, (2.15)
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then (2.14) can be rewritten as the system of integral equations for the matrix uk(t) in the
form

uk(t) = ψk(t)N∗
k(t)Bk(t)Nk(t)

+
∫ t

0

n∑
s=1

qsk(τ)N∗
k(τ)C

∗
skus(t − τ)CskNk(τ)dτ, k = 1, 2, . . . , n.

(2.16)

We define matrices Ck, k = 1, 2, . . . , n and functions νk(t), k = 1, 2, . . . , n, with regard to (2.5)
and (2.12), by formulas

Ck =
∫∞

0
uk(t)dt, νk(x) =

∫∞
0
uk(t, x)dt. (2.17)

Integrating the system (2.16) from 0 to∞, we get the system

Ck =
∫∞

0
ψk(t)N∗

k(t)Bk(t)Nk(t)dt

+
∫∞

0

n∑
s=1

qsk(τ)N∗
k(τ)C

∗
skCsCskNk(τ)dτ, k = 1, 2, . . . , n.

(2.18)

Similarly, integrating the system of (2.14), we get the system of equations determining the
particular Lyapunov functions

νk(x) =
∫∞

0
ψk(t)wk(t,Nk(t)x)dt +

∫∞
0

n∑
s=1

qsk(t)νk(CskNk(t)x)dt. (2.19)

Let us denote

Hk =
∫∞

0
ψk(t)N∗

k(t)Bk(t)Nk(t)dt, k = 1, 2, . . . , n. (2.20)

If there exist such positive constants λ1, λ2 that

λ1E ≤ Bk(t) ≤ λ2E, (2.21)

or equivalent conditions

λ1‖x‖2 ≤ x∗Bk(t)x ≤ λ2‖x‖2 (2.22)

hold, then the matrices Hk, k = 1, 2, . . . , n are symmetric and positive definite. Using (2.17),
the system (2.18) can be rewritten to the form

Ck = Hk +
n∑
s=1

L∗skCs, k = 1, 2, . . . , n. (2.23)
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It is easy to see that the system (2.23) is conjugated to the system (2.9). Therefore, the existence
of a positive definite solution Ck > 0, k = 1, 2, . . . , n of the system (2.23) is equivalent to
the existence of a positive definite solution Bk > 0, k = 1, 2, . . . , n and it is equivalent to L2-
stability of the solution of the system (2.1). On the other hand, if the existence of the particular
Lyapunov functions νk(x), k = 1, 2, . . . , n in (2.5) implies L2-stability of the solutions of the
system (2.1), then, in view of conditions (2.22) and the convergence of the integral (2.17), we
get the inequality

∫∞
0
〈w(t, X(t), ξ(t))〉dt ≥

∫∞
0

〈
‖X‖2

〉
dt. (2.24)

The theorem is proved.

Remark 2.2. If the system of linear differential equations (2.1) is a system with piecewise
constant coefficients and the function w(t, X(t), ξ(t)) has the form

w(t, X(t), ξ(t)) = x∗B(ξ(t))x, Bk ≡ B(θk), k = 1, 2, . . . , n, (2.25)

then the system (2.18) can be written in the form

Ck =
∫∞

0
ψk(t)eA

∗
k
tBke

Aktdt +
∫∞

0

n∑
s=1

qsk(t)eA
∗
k
tC∗skCsCske

Aktdt, k = 1, 2, . . . , n. (2.26)

Particularly, if the semi-Markov process ξ(t) is identical with a Markov process, then
the system (2.26) has the form

Ck =
∫∞

0
eakkteA

∗
ktBke

Aktdt +
∫∞

0

n∑
s=1
s/= k

aske
akkteA

∗
ktC∗skCsCske

Aktdt, k = 1, 2, . . . , n, (2.27)

or, more simply

Ck =
∫∞

0
eakkteA

∗
k
t

⎛
⎜⎝Bk +

n∑
s=1
s /= k

askC
∗
skCsCsk

⎞
⎟⎠eAktdt, k = 1, 2, . . . , n. (2.28)

Moreover, under the assumption that the integral in (2.28) converges, the system (2.28) is
equivalent to the system of matrices equations

(
Eakk +A∗k

)
Ck + CkAK + Bk +

n∑
s=1
s/= k

askC
∗
skCsCsk = 0, k = 1, 2, . . . , n, (2.29)
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which can be written as the system

A∗kCk +CkAK + Bk +
n∑
s=1
s /= k

askC
∗
skCsCsk = 0, k = 1, 2, . . . , n, (2.30)

if Ckk = E, k = 1, 2, . . . , n.

Example 2.3. Let the semi-Markov process ξ(t) take two states θ1, θ2 and let it be identical
with the Markov process described by the system of differential equations

dp1(t)
dt

= −λp1(t) + λp2(t),

dp2(t)
dt

= λp1(t) − λp2(t).

(2.31)

We will consider the L2-stability of the solutions of the differential equation

dx(t)
dt

= a(ξ(t))x(t), a(θk) ≡ ak, (2.32)

constructing a system of the type (2.26) related to (2.32). The system is

c1 = 1 +
∫∞

0
e2a2tλe−λtc2dt, c2 = 1 +

∫∞
0
e2a1tλe−λtc1dt, (2.33)

and its solution is

c1 =
(λ − a1)(λ − 2a2)

2a1a2 − λ(a1 + a2)
, c2 =

(λ − a2)(λ − 2a1)
2a1a2 − λ(a1 + a2)

· (2.34)

The trivial solution of (2.32) is L2-stable, if c1 > 0 and c2 > 0. Let the intensities of semi-
Markov process ξ(t) satisfy the conditions

q11(t) ≈ 0, q22(t) ≈ 0, q21(t) − λe−λt ≈ 0, q12(t) − λe−λt ≈ 0. (2.35)

Then, using the Theorem 2.1, the conditions

1 − c1

∫∞
0
q11(t)e2a1tdt − c2

∫∞
0

(
q21(t) − λe−λt

)
e2a2tdt > 0,

1 − c1

∫∞
0

(
q12(t) − λe−λt

)
e2a1tdt − c2

∫∞
0
q22(t)e2a2tdt > 0

(2.36)

are sufficient conditions for the L2-stability of solutions of (2.32).



Abstract and Applied Analysis 9

2.2. The Construction of an Optimal Control for the System of Linear
Differential Equations in the Deterministic Case

Let us consider the deterministic system of the linear equations

dX(t)
dt

= A(t)X(t) + B(t)U(t) (2.37)

in the boundary field G, where X ∈ �m, U ∈ �l , and together with (2.37) we consider the
initial conditions

X(t) = x0. (2.38)

We assume that the vector U(t) belongs to the control set U. The quality criterion has the
form of the quadratic functional

I(t) =
1
2

∫∞
t

[X∗(τ)C(τ)X(τ) +U∗(τ)D(τ)C(τ)]dτ,

C∗(t) = C(t), D∗(t) = D(t)

(2.39)

in the space � 1(G) ×U. The control vector

U(t) = S(t)X(t), dimS(t) = l ×m, (2.40)

which minimizes the quality criterion (2.39) is called the optimal control.
The optimization problem is the problem of finding the optimal control (2.40) from

all feasible control U, or, in fact, it is the problem of finding the equation to determine S(t),
dimS(t) = l ×m.

Theorem 2.4. Let there exist the optimal control (2.40) for the system of (2.37). Then the control
equations

S = −D−1(t)B∗(t)Ψ∗, Ψ∗ = K(t)X(t), (2.41)

where the matrix K(t) satisfies the Riccati equation

dK(t)
dt

= −C(t) −K(t)A(t) −A∗(t)K(t) +K∗(t)B(t)D−1(t)B∗(t)K(t), (2.42)

determines the synthesis of the optimal control.

Proof. Let the control for the system (2.37) have the form (2.40), where the matrix S(t) is
unknown. Then, the minimum value of the quality criterion (2.39) is

min
S(t)

I(t) =
1
2
X∗(t)K(t)X(t) ≡ ν(t, X(t)). (2.43)
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Under assumption that the vector X(t) is known and using Pontryagin’s maximum principle
[1, 15], the minimum of the quality criterion (2.39) is written as

min
S(t)

I(t) =
1
2
Ψ(t)X(t), τ ≥ t, (2.44)

where

Ψ(t) =
Dν(t, x)
Dx

= X∗K(t) (2.45)

is the row-vector. If we take Hamiltonian function [15] of the form

H(t, x,U,Ψ) = Ψ(A(t)x + B(t)U) +
1
2
(x∗Cx +U∗DU), U = Sx, (2.46)

the necessary condition for optimality is

∂H

∂skj
= 0, k = 1, 2, . . . , l, j = 1, 2, . . . , m, (2.47)

where skj are elements of the matrix S. The scalar value

dH

dS
=

∥∥∥∥∥
∂H

∂skj

∥∥∥∥∥, k = 1, 2, . . . , l, j = 1, 2, . . . , m, (2.48)

is called derivative of the matrix H with respect to the matrix S.
Employing the scalar product of the two matrices in our calculation, the Hamiltonian

function (2.46) can be rewritten into the form

H = ΨA(t)x +
1
2
x∗C(t)x + B∗(t)Ψ∗x∗ ◦ S +

1
2
D(t) · Sxx∗ ◦ S, (2.49)

and its derivative with respect to the matrix S is

dH

dS
= B∗(t)Ψ∗x∗ +D(t)Sxx∗ = 0. (2.50)

Because the equality (2.50) holds for any value of x, the expression of the vector control U
has the form

U = Sx = −D−1(t)B∗(t)Ψ∗ = −D−1(t)B∗(t)K(t)x, (2.51)

which implies

S = −D−1(t)B∗(t)Ψ∗. (2.52)
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If we put the expression of matrix S to (2.49), we obtain a new expression for the Hamiltonian
function

H = Ψ(t)A(t)x +
1
2
x∗C(t)x − 1

2
ΨB(t)D−1(t)B∗(t)Ψ∗, (2.53)

for which the canonical system of linear differential equations

dx

dt
=
DH

DΨ
,

dΨ
dt

=
DH

Dx
(2.54)

has the form

dx

dt
= A(t)x − B(t)D−1(t)B∗(t)Ψ∗,

dΨ∗

dt
= −C(t)x −A∗(t)Ψ∗.

(2.55)

In the end, we define the matrix K(t) as the integral manifolds of solutions of the
system equations

Ψ∗ = K(t)X(t). (2.56)

If we derive the system (2.56) with respect to t regarding the system (2.55) and extract the
vector Ψ∗, then we obtain the matrix differential equation (2.40). This equation is known
as Riccati equation in literature, see for example in [16, 17]. The solution KT (t) of (2.42)
satisfying the initial condition

KT (t) = 0, T > 0 (2.57)

determines the minimum of the functional

min
S(τ)

∫T
t

[X∗(τ)C(τ)X(τ) +U∗(τ)D(τ)U(τ)]dτ =
1
2
X∗(t)KT(t)X(t), (2.58)

and K(t) can be obtained as the limit of the sequence {KT (t)}∞T=1 of the successive
approximations KT (t):

K(t) = lim
T→∞

KT(t). (2.59)

Remark 2.5. Similar results can be obtained from the Bellman equation [18], where the
function ν(t, x) satisfie

min
S(t)

{
∂ν(t, x)
∂t

+
Dν(t, x)
Dx

[A(t) + B(t)S(t)]x +
1
2
x∗C(t)x +

1
2
x∗S∗(t)D(t)S(t)x

}
= 0. (2.60)
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3. The Main Result

Theorem 3.1. Let the coefficients of the control system (1.1) be the semi-Markov functions and let
them be defined by the equations

dXk(t)
dt

= Gk(t)Xk(t), Gk(t) ≡ Ak(t) + Bk(t)Sk(t), k = 1, . . . , n. (3.1)

Then the set of the optimal control is a nonempty subset of the control U, which is identical with the
family of the solutions of the system

Us(t) = L−1
s (t)B∗s(t)Rs(t)Xs(t), s = 1, . . . , n, (3.2)

where the matrix Rs(t) is defined by the system of Riccati type of differential equations

dRs(t)
dt

= −Qs(t) −A∗s(t)Rs(t) − Rs(t)As(t)

+ Rs(t)Bs(t)L−1
s (t)B∗s(t)Rs(t) −

Ψ′s
Ψs(t)

Rs(t)

−
n∑
k=1

qks(t)
Ψs(t)

C∗ksRk(0)Cks, s = 1, . . . , n.

(3.3)

3.1. The Proof of Main Result Using Lyapunov Functions

It should be recalled that the coefficients of the systems (1.1), (1.7) and of the functionals
(1.4), (1.8) have the form

A(t, ξ(t)) = As
(
t − tj

)
, B(t, ξ(t)) = Bs

(
t − tj

)
,

Q(t, ξ(t)) = Qs

(
t − tj

)
, L(t, ξ(t)) = Ls

(
t − tj

)
, S(t, ξ(t)) = Ss

(
t − tj

)
,

(3.4)

if tj ≤ t < tj+1, ξ(t) = θs. In addition to this, we have

G(t, ξ(t)) = Gs

(
t − tj

) ≡ As

(
t − tj

)
+ Bs

(
t − tj

)
Ss
(
t − tj

)
,

H(t, ξ(t)) = Hs

(
t − tj

) ≡ Qs

(
t − tj

)
+ S∗s

(
t − tj

)
Ls
(
t − tj

)
Ss
(
t − tj

)
.

(3.5)

The formula

V =
n∑
k=1

Ck ◦Dk(0) =
n∑
k=1

∫
Em

νk(x)fk(0, x)dx (3.6)
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is useful for the calculation of the particular Lyapunov functions νk(x) ≡ x∗Ckx, k = 1, . . . , n
of the functional (1.8). We get

νk(x) ≡ x∗Ckx

=
∫∞

0
〈X∗(t)H(t, ξ(t))X(t) | X(0) = x, ξ(0) = θk〉dt, k = 1, 2, . . . , n,

(3.7)

or, the more convenient form

νk(x) ≡ x∗Ckx

=
∫∞

0

[
X∗k(t)

(
Ψk(t)Qk(t) +

n∑
s=1

qsk(t)C∗skCsCsk

)
U∗k(t)Ψk(t)Lk(t)Uk(t)

]
dt,

k = 1, 2, . . . , n.

(3.8)

Then the system (3.1) has the form

dXk(t)
dt

= Ak(t)Xk(t) + Bk(t)Uk(t), Uk(t) ≡ Sk(t)Xk(t), k = 1, . . . , n. (3.9)

Let us assume that for the control system (1.1) the optimal control exists in the form (1.5)
independent of the initial value X(0). Regarding the formula (3.6), there exist minimal values
of the particular Lyapunov functions νk(x), k = 1, . . . , n, which are associated with the
optimal control. It also follows from the fact that the functions νk(x), k = 1, . . . , n are particular
values of the functional (3.6). Finding the minimal values νk(x), k = 1, . . . , n by choosing the
optimal control Uk(x) is a well-studied problem, for the main results see [16]. It is significant
that all matrices Cs, s = 1, . . . , n of the integrand in the formula (3.8) are constant matrices,
hence, solving the optimization problem they can be considered as matrices of parameters.

Therefore, the problem to find the optimal control (1.5) for the system (1.1) can be
transformed to n problems to find the optimal control for the deterministic system (3.9),
which is equivalent to the system of linear differential equations of type (2.37).

3.2. The Proof of the Main Result Using Lagrange Functions

In this part, we get one more proof of the Theorem 3.1 using the Lagrange function.
We are looking for the optimal control which reaches the minimum of quality criterion

x∗Cx =
∫T

0
[(X∗(t)QA)X(t) +U∗(t)L(t)U(t)]dt. (3.10)

Let us introduce the Lagrange function

I =
∫T

0

[
X∗(t)Q(t)X(t) +U∗(t)L(t)U(t) + 2Y ∗(t)

(
A(t)X(t) + B(t)U(t) − dX(t)

dt

)]
dt,

(3.11)
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where Y(t) is the column-vector of Lagrange multipliers. In accordance with Pontryagin’s
maximum principle, we put the first variations of the functionals ∂Ix, ∂Iy equal to zero and
we obtain the system of linear differential equations

dX(t)
dt

= A(t)X(t) − B(t)L−1(t)B∗(t)Y(t),

dY(t)
dt

= −Q(t)X(t) −A∗(t)Y(t).
(3.12)

Then the optimal control U(t) can be expressed by

U(t) = L−1(t)B∗(t)Y(t), Y(T) = 0. (3.13)

The synthesis of the optimal control needs to find the integral manifolds of the solutions of
the system (3.12) in the form

Y(t) = K(t)X(t), K(T) = 0. (3.14)

According to the theory of integral manifolds [19] we construct the differential matrix
equations of the Riccati type

dK(t)
dt

= −Q(t) −A∗(t)K(t)A(t) −K(t)B(t)L−1(t)B∗(t)K(t). (3.15)

for the matrix K(t). Integrating them from time t = T to time t = 0 and using the initial
condition K(T) = 0 we obtain Lagrange functions for the optimal control

U(t) = −L−1(t)B∗(t)K(t)X(t). (3.16)

We will prove that

∫T
t

[X∗(τ)Q(τ)X(τ) +U∗(τ)L(τ)U(τ)]dτ = X∗(t)K(t)X(t). (3.17)

Differentiating the equality (3.17) with respect to t we obtain the matrix equation

−X∗(t)Q(t)X(t) −U∗(t)L(t)U(t) = X∗(t)
dK(t)
dt

X(t) +X∗(t)K(t)(A(t)X(t) + B(t)U(t))

+ (X∗(t)A∗(t) +U∗(t)B∗(t))K(t)X(t),
(3.18)

and extracting the optimal controlU(t) we obtain differential equation forK(t) identical with
(3.15). The equality K(t) = K∗(t) follows from the positive definite matrices Q(t), L(t) for
t < T . Therefore, from (3.17) we get K(t) = 0; moreover, from (3.10) it follows that C = K(0).
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Applying the formulas (3.15), (3.16) to the system (3.8) with minimal functionals (3.9), the
expression for the optimal control can be found in the form

Us(t) = −Ψ−1
s (t)L−1

s (t)B∗s(t)Ks(t)Xs(t), s = 1, 2, . . . , n, (3.19)

where symmetric matrices Ks(t) satisfy the matrix system of differential equations

dKs(t)
dt

= −Ψs(t) −Qs(t) −A∗s(t)Ks(t) −
n∑
k=1

qksC
∗
ksCkCks

+Ks(t)Bs(t)Ψ−1
s (t)L−1

s (t)Bs(t)Ks(t) s = 1, 2, . . . , n.

(3.20)

The systems (3.9), (3.20) define the necessary condition such that the solutions of the systems
(1.4) will be optimal. In addition to this, the system (3.8) defines the matrices Sk(t), k =
1, 2, . . . , n, of the optimal control in the form

Sk(t) = −Ψ−1
k (t)L−1

k (t)B∗k(t)Kk(t), k = 1, 2, . . . , n. (3.21)

We define matrices Cs from the system equations (3.20) in the view of

Cs = Ks(0), s = 1, 2, . . . , n. (3.22)

In regards to

Rs(t) = −Ψ−1
s (t)Ks(t), Ψs(0) = 1, Cs = Rs(0), s = 1, 2, . . . , n, (3.23)

it can makes the system (3.20) simpler. Then the system (3.20) takes the form (3.3), and
formula (3.2) defines the optimal control.

Remark 3.2. If the control system (1.1) is deterministic, then qks(t) ≡ 0, Ψs(t) ≡ 0, k, s =
1, 2, . . . , n and the system (3.3) is identical to the system of the Riccati type equations (3.15).

4. Particular Cases

The optimal control U(t) for the system (1.1) has some special properties, and the equations
determining it are different from those given in the previous section in case the coefficients of
the control system (1.1) have special properties or intensities qsk(t) satisfy some relations
or some other special conditions are satisfied. Some of these cases will be formulated as
corollaries.

Corollary 4.1. Let the control system (1.1) with piecewise constant coefficients have the form

dX(t)
dt

= A(ξ(t))X(t) + B(ξ(t))U(t). (4.1)
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Then the quadratics functional

V =
∫∞

0
〈X∗(t)Q(ξ(t))X(t) +U∗(t)L(ξ(t))U(t)〉dt (4.2)

determines the optimal control in the form

U(t) = S(t, ξ(t))X(t), (4.3)

where

S(t, ξ(t)) = Sk
(
t − tj

)
, (4.4)

and the matrices Sk(t) satisfy the equations

Sk(t) = −L−1B∗kRk(t), k = 1, 2, . . . , n (4.5)

if tj ≤ t < tj+1, ξ(t) = θk.
The matrices Rk(t), k = 1, 2, . . . , n are the solutions of the systems of the Riccati-type

equations:

dRk(t)
dt

= −Qk −A∗kRk(t) − Rk(t)Ak

+ Rk(t)BkL−1
k B

∗
kRk(t) −

Ψ′k(t)
Ψk(t)

Rk(t)

−
n∑
s=1

qsk(t)
Ψk(t)

C∗skRs(0)Csk, k = 1, . . . , n.

(4.6)

Remark 4.2. In the corollary we mention piecewise constant coefficients of the control system
(4.1). The coefficients of the functional (4.2) will be piecewise as well, but the optimal control
is nonstationary.

Corollary 4.3. Assume that

Ψ′
k(t)

Ψk(t)
= const,

qsk(t)
Ψk(t)

= const, k, s = 1, 2, . . . , n. (4.7)

Then the optimal controlU(t) will be piecewise constant.

Taking into consideration that the optimal control is piecewise constant, we find out
that the matrices Rk(t), k = 1, 2, . . . , n in (4.5) are constant, which implies the form of the
system (4.6) is changed to the form

Qk +A∗kRk + RkAk − RkBkL−1
k B

∗
kRk +

Ψ′
k(t)

Ψk(t)
Rk(t) +

n∑
s=1

qsk(t)
Ψk(t)

C∗skRkCsk = 0, k = 1, . . . , n.

(4.8)
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The system (4.8) has constant solutions Rk, k = 1, 2, . . . , n, if conditions (4.7) hold. Moreover,
if the random process ξ(t) is a Markov process then the conditions (4.7) have the form

Ψ′
k(t)

Ψk(t)
= akk = const,

qsk(t)
Ψk(t)

= ask = const, k, s = 1, 2, . . . , n, k /= s, (4.9)

and the system (4.8) transforms to the form

Qk +A∗kRk + RkAk − RkBkL−1
k B

∗
kRk +

n∑
s=1

askC
∗
skRsCsk = 0, k = 1, . . . , n (4.10)

for which the optimal control is

U(t) = S(ξ(t))X(t), S(θk) ≡ Sk, Sk = −L−1
k B

∗
kRk, k = 1, 2, . . . , n. (4.11)

Corollary 4.4. Let the state θs of the semi-Markov process ξ(t) be no longer than Ts > 0. Then the
system (3.8) has the form

νk(x) ≡ x∗Ckx

=
∫Ts

0

(
X∗k(t)

(
Ψk(t)Qk(t) +

n∑
s=1

qsk(t)C∗skCsCsk

)
Xk(t) +U∗k(t)Ψk(t)Lk(t)Uk(t)

)
dt,

k = 1, 2, . . . , n.
(4.12)

Because

Ks(Ts) = Ψs(t)Rs(t), s = 1, 2, . . . , n, (4.13)

then

Ks(Ts) = 0, s = 1, 2, . . . , n. (4.14)

In this case, the search for the matrix Ks(t), s = 1, 2, . . . , n in concrete tasks is reduced
to integration of the matrix system of differential equations (3.15) on the interval [0, Ts] with
initial conditions (4.14). In view of Ψs(Ts) = 0, s = 1, 2, . . . , n, we can expect that every
equation (3.15) has a singular point t = Ts. If Ψs(t) has simple zero at the point t = Ts, then
the system (4.6) meets the necessary condition

Ψs(Ts)Rs(Ts) +
n∑
k=1

qsk(Ts)C∗ksRs(0)Cks = 0, s = 1, . . . , n (4.15)

for boundary of matrix Rs(t) in the singular points.
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Some oscillation criteria are established for the second-order nonlinear neutral differential
equations of mixed type [(x(t) + p1x(t − τ1) + p2x(t + τ2))

γ ]′′ = q1(t)xγ (t − σ1) + q2(t)xγ (t + σ2),
t ≥ t0, where γ ≥ 1 is a quotient of odd positive integers. Our results generalize the results given in
the literature.

1. Introduction

This paper is concerned with the oscillatory behavior of the second-order nonlinear neutral
differential equation of mixed type

[(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)γ]′′ = q1(t)xγ (t − σ1) + q2(t)xγ (t + σ2), t ≥ t0. (1.1)

Throughout this paper, we will assume the following conditions hold.

(A1) pi, τi, and σi, i = 1, 2, are positive constants;

(A2) qi ∈ C([t0,∞), [0,∞)), i = 1, 2.

By a solution of (1.1), we mean a function x ∈ C([Tx,∞),�) for some Tx ≥ t0 which
has the property that (x(t) + p1x(t − τ1) + p2x(t + τ2))γ ∈ C2([Tx,∞),�) and satisfies (1.1) on
[Tx,∞). As is customary, a solution of (1.1) is called oscillatory if it has arbitrarily large zeros
on [t0,∞), otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its
solutions are oscillatory.
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Neutral functional differential equations have numerous applications in electric
networks. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines which rise in high speed computers where the lossless
transmission lines are used to interconnect switching circuits; see [1].

Recently, many results have been obtained on oscillation of nonneutral continuous
and discrete equations and neutral functional differential equations, we refer the reader to
the papers [2–35], and the references cited therein.

Philos [2] established some Philos-type oscillation criteria for the second-order linear
differential equation

(
r(t)x′(t)

)′ + q(t)x(t) = 0, t ≥ t0. (1.2)

In [3–5], the authors gave some sufficient conditions for oscillation of all solutions of
second-order half-linear differential equation

(
r(t)

∣∣x′(t)∣∣γ−1
x′(t)

)′
+ q(t)|x(τ(t))|γ−1x(τ(t)) = 0, t ≥ t0 (1.3)

by employing a Riccati substitution technique.
Zhang et al. [15] examined the oscillation of even-order neutral differential equation

[
x(t) + p(t)x(τ(t))

](n) + q(t)f(x(σ(t))) = 0, t ≥ t0. (1.4)

Some oscillation criteria for the following second-order quasilinear neutral differential
equation

(
r(t)

∣∣z′(t)∣∣γ−1
z′(t)

)′
+ q(t)|x(σ(t))|γ−1x(σ(t)) = 0, for z(t) = x(t) + p(t)x(τ(t)), t ≥ t0

(1.5)

were obtained by [12–17].
However, there are few results regarding the oscillatory properties of neutral

differential equations with mixed arguments, see the papers [20–24]. In [25], the authors
established some oscillation criteria for the following mixed neutral equation:

(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)′′ = q1(t)x(t − σ1) + q2(t)x(t + σ2), t ≥ t0; (1.6)

here q1 and q2 are nonnegative real-valued functions. Grace [26] obtained some oscillation
theorems for the odd order neutral differential equation

(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)(n) = q1x(t − σ1) + q2x(t + σ2), t ≥ t0, (1.7)
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where n ≥ 1 is odd. Grace [27] and Yan [28] obtained several sufficient conditions for the
oscillation of solutions of higher-order neutral functional differential equation of the form

(x(t) + cx(t − h) + Cx(t +H))(n) + qx
(
t − g) +Qx(t +G) = 0, t ≥ t0, (1.8)

where q and Q are nonnegative real constants.
Clearly, (1.6) is a special case of (1.1). The purpose of this paper is to study the

oscillation behavior of (1.1).
In the sequel, when we write a functional inequality without specifying its domain of

validity we assume that it holds for all sufficiently large t.

2. Main Results

In the following, we give our results.

Theorem 2.1. Assume that σi > τi, i = 1, 2. If

lim sup
t→∞

∫ t+σ2−τ2

t

(t + σ2 − τ2 − s)Q2(s)ds >
(

2γ−1
)2
(

1 + pγ1 +
p
γ

2

2γ−1

)
, (2.1)

lim sup
t→∞

∫ t

t−σ1+τ1

(s − t + σ1 − τ1)Q1(s)ds >
(

2γ−1
)2
(

1 + pγ1 +
p
γ
2

2γ−1

)
, (2.2)

where

Qi(t) = min
{
qi(t − τ1), qi(t), qi(t + τ2)

}
, (2.3)

for i = 1, 2, then every solution of (1.1) oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(t−τ1) > 0, x(t+τ2) > 0, x(t−σ1) > 0, and x(t+σ2) > 0
for all t ≥ t1. Setting

z(t) =
(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)γ
,

y(t) = z(t) + pγ1z(t − τ1) +
p
γ

2

2γ−1
z(t + τ2).

(2.4)

Thus z(t) > 0, y(t) > 0, and

z′′(t) = q1(t)xγ (t − σ1) + q2(t)xγ (t + σ2) ≥ 0. (2.5)
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Then, z′(t) is of constant sign, eventually. On the other hand,

y′′(t) = q1(t)xγ (t − σ1) + q2(t)xγ (t + σ2)

+ pγ1q1(t − τ1)xγ (t − τ1 − σ1) + p
γ

1q2(t − τ1)xγ (t − τ1 + σ2)

+
p
γ
2

2γ−1
q1(t + τ2)xγ (t + τ2 − σ1)

+
p
γ

2

2γ−1
q2(t + τ2)xγ (t + τ2 + σ2).

(2.6)

Note that g(u) = uγ , γ ≥ 1, u ∈ (0,∞) is a convex function. Hence, by the definition of convex
function, we obtain

aγ + bγ ≥ 1
2γ−1

(a + b)γ . (2.7)

Using inequality (2.7), we get

xγ (t − σ1) + p
γ

1x
γ (t − τ1 − σ1) ≥ 1

2γ−1

(
x(t − σ1) + p1x(t − τ1 − σ1)

)γ
,

1
2γ−1

(
x(t − σ1) + p1x(t − τ1 − σ1)

)γ + p
γ
2

2γ−1
xγ (t + τ2 − σ1)

≥ 1(
2γ−1

)2

(
x(t − σ1) + p1x(t − τ1 − σ1) + p2x(t + τ2 − σ1)

)γ = z(t − σ1)(
2γ−1

)2 .

(2.8)

Similarly, we obtain

xγ (t + σ2) + p
γ

1x
γ (t − τ1 + σ2) +

p
γ

2

2γ−1
xγ (t + τ2 + σ2) ≥ z(t + σ2)(

2γ−1
)2 . (2.9)

Thus, from (2.6), we have

y′′(t) ≥ 1(
2γ−1

)2 (Q1(t)z(t − σ1) +Q2(t)z(t + σ2)). (2.10)

In the following, we consider two cases.

Case 1. Assume that z′(t) > 0. Then, y′(t) > 0. In view of (2.10), we see that

y′′(t + τ2) ≥ 1(
2γ−1

)2Q2(t + τ2)z(t + τ2 + σ2). (2.11)
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Applying the monotonicity of z, we find

y(t + σ2) = z(t + σ2) + p
γ

1z(t − τ1 + σ2) +
p
γ

2

2γ−1
z(t + τ2 + σ2)

≤
(

1 + pγ1 +
p
γ

2

2γ−1

)
z(t + τ2 + σ2).

(2.12)

Combining the last two inequalities, we obtain the inequality

y′′(t + τ2) ≥ Q2(t + τ2)(
2γ−1

)2
(

1 + pγ1 + p
γ

2/2γ−1
)y(t + σ2). (2.13)

Therefore, y is a positive increasing solution of the differential inequality

y′′(t) ≥ Q2(t)(
2γ−1

)2
(

1 + pγ1 + p
γ

2/2γ−1
)y(t − τ2 + σ2). (2.14)

However, by [11], condition (2.1) contradicts the existence of a positive increasing solution
of inequality (2.14).

Case 2. Assume that z′(t) < 0. Then, y′(t) < 0. In view of (2.10), we see that

y′′(t − τ1) ≥ 1(
2γ−1

)2Q1(t − τ1)z(t − τ1 − σ1). (2.15)

Applying the monotonicity of z, we find

y(t − σ1) = z(t − σ1) + p
γ

1z(t − τ1 − σ1) + p
γ

2
1

2γ−1
z(t + τ2 − σ1)

≤
(

1 + pγ1 +
p
γ

2

2γ−1

)
z(t − τ1 − σ1).

(2.16)

Combining the last two inequalities, we obtain the inequality

y′′(t − τ1) ≥ Q1(t − τ1)(
2γ−1

)2
(

1 + pγ1 + p
γ

2/2γ−1
)y(t − σ1). (2.17)

Therefore, y is a positive decreasing solution of the differential inequality

y′′(t) ≥ Q1(t)(
2γ−1

)2
(

1 + pγ1 + p
γ
2/2γ−1

)y(t + τ1 − σ1). (2.18)
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However, by [11], condition (2.2) contradicts the existence of a positive decreasing solution
of inequality (2.18).

Remark 2.2. When γ = 1, Theorem 2.1 involves results of [25, Theorem 1].

Theorem 2.3. Let βi = (σi − τi)/2 > 0, i = 1, 2. Suppose that, for i = 1, 2, there exist functions

ai ∈ C1[t0,∞), ai(t) > 0, (−1)ia′i(t) ≤ 0, (2.19)

such that

Qi(t) ≥
(

2γ−1
)2
(

1 + pγ1 +
p
γ

2

2γ−1

)
ai(t)ai

(
t + (−1)iβi

)
, (2.20)

where Qi are as in (2.3) for i = 1, 2. If the first-order differential inequality

v′(t) + (−1)i+1ai
(
t + (−1)iβi

)
v
(
t + (−1)iβi

)
≥ 0 (2.21)

has no eventually negative solution for i = 1 and no eventually positive solution for i = 2, then (1.1)
is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(t−τ1) > 0, x(t+τ2) > 0, x(t−σ1) > 0, and x(t+σ2) > 0
for all t ≥ t1. Define z and y as in Theorem 2.1. Proceeding as in the proof of Theorem 2.1, we
get (2.10).

In the following, we consider two cases.

Case 1. Assume that z′(t) > 0. Clearly, y′(t) > 0. Then, just as in Case 1 of Theorem 2.1, we find
that y is a positive increasing solution of inequality (2.14). Let b2(t) = y′(t) + a2(t)y(t + β2).
Then b2(t) > 0. Using (2.19) and (2.20), we obtain

b′2(t) −
a′2(t)
a2(t)

b2(t) − a2(t)b2
(
t + β2

)

= y′′(t) − a
′
2(t)
a2(t)

y′(t) − a2(t)a2
(
t + β2

)
y
(
t + 2β2

)

≥ y′′(t) − a2(t)a2
(
t + β2

)
y
(
t + 2β2

)

≥ y′′(t) − Q2(t)(
2γ−1

)2
(

1 + pγ1 +
(
p
γ

2/2γ−1
))y(t − τ2 + σ2) ≥ 0.

(2.22)

Define b2(t) = a2(t)v(t). Then, v is a positive solution of (2.21) for i = 2, which is a
contradiction.
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Case 2. Assume that z′(t) < 0. Clearly, y′(t) < 0. Then, just as in Case 2 of Theorem 2.1, we find
that y is a positive decreasing solution of inequality (2.18). Let b1(t) = y′(t) − a1(t)y(t − β1).
Then b1(t) < 0. Using (2.19) and (2.20), we obtain

b′1(t) −
a′1(t)
a1(t)

b1(t) + a1(t)b1
(
t − β1

)

= y′′(t) − a
′
1(t)
a1(t)

y′(t) − a1(t)a1
(
t − β1

)
y
(
t − 2β1

)

≥ y′′(t) − a1(t)a1
(
t − β1

)
y
(
t − 2β1

)

≥ y′′(t) − Q1(t)(
2γ−1

)2
(

1 + pγ1 + p
γ

2/2γ−1
)y(t + τ1 − σ1) ≥ 0.

(2.23)

Define b1(t) = a1(t)v(t). Then, v is a negative solution of (2.21) for i = 1. This contradiction
completes the proof of the theorem.

Remark 2.4. When γ = 1, Theorem 2.3 involves results of [25, Theorem 2].

From Theorem 2.3 and the results given in [12], we have the following oscillation
criterion for (1.1).

Corollary 2.5. Let βi = (σi − τi)/2 > 0, i = 1, 2. Assume that (2.19) and (2.20) hold for i = 1, 2. If

lim inf
t→∞

∫ t

t−β1

a1
(
s − β1

)
ds >

1
e
, (2.24)

lim inf
t→∞

∫ t+β2

t

a2
(
s + β2

)
ds >

1
e
, (2.25)

then (1.1) is oscillatory.

Proof. It is known (see [12]) that condition (2.24) is sufficient for inequality (2.21) (for i = 1)
to have no eventually negative solution. On the other hand, condition (2.25) is sufficient for
inequality (2.21) (for i = 2) to have no eventually positive solution.

For an application of our results, we give the following example.

Example 2.6. Consider the second-order differential equation

[(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)γ]′′ = q1x
γ (t − σ1) + q2x

γ (t + σ2), t ≥ t0, (2.26)

where qi > 0 are constants and σi > τi for i = 1, 2.
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It is easy to see that Qi(t) = qi, i = 1, 2. Assume that ε > 0. Let ai(t) = (2 + ε)/(e(σi −
τi)), i = 1, 2. Clearly, (2.19) holds. If

qi >

[
2

(e(σi − τi))
]2(

2γ−1
)2
(

1 + pγ1 +
p
γ

2

2γ−1

)
(2.27)

for i = 1, 2, then (2.20) holds. Moreover, we see that

lim inf
t→∞

∫ t

t−β1

a1
(
s − β1

)
ds =

2 + ε
2e

>
1
e
,

lim inf
t→∞

∫ t+β2

t

a2
(
s + β2

)
ds =

2 + ε
2e

>
1
e
.

(2.28)

Hence by applying Corollary 2.5, we find that (2.26) is oscillatory.
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[21] J. Džurina and D. Hudáková, “Oscillation of second order neutral delay differential equations,”
Mathematica Bohemica, vol. 134, no. 1, pp. 31–38, 2009.

[22] M. Hasanbulli and Y. V. Rogovchenko, “Oscillation criteria for second order nonlinear neutral
differential equations,” Applied Mathematics and Computation, vol. 215, no. 12, pp. 4392–4399, 2010.
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We establish some new oscillation criteria for the second-order neutral delay dynamic equations

of Emden-Fowler type, [a(t)(x(t) + r(t)x(τ(t)))Δ]
Δ
+ p(t)xγ (δ(t)) = 0, on a time scale unbounded

above. Here γ > 0 is a quotient of odd positive integers with a and p being real-valued positive
functions defined on T. Our results in this paper not only extend and improve the results in the
literature but also correct an error in one of the references.

1. Introduction

The study of dynamic equations on time scales, which goes back to its founder Hilger
[1], is an area of mathematics that has recently received a lot of attention. It was partly
created in order to unify the study of differential and difference equations. Many results
concerning differential equations are carried over quite easily to corresponding results
for difference equations, while other results seem to be completely different from their
continuous counterparts. The study of dynamic equations on time scales reveals such
discrepancies and helps avoid proving results twice—once for differential equations and once
again for difference equations.

The three most popular examples of calculus on time scales are differential calculus,
difference calculus, and quantum calculus (see Kac and Cheung [2]), that is, when
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T = R, T = N, and T = qN0 = {qt : t ∈ N0}, where q > 1. Many other interesting time scales
exist, and they give rise to many applications (see [3]). Dynamic equations on a time scale
have an enormous potential for applications such as in population dynamics. For example,
it can model insect populations that are continuous while in season, die out in, for example,
winter, while their eggs are incubating or dormant, and then hatch in a new season, giving
rise to a nonoverlapping population (see [3]). There are applications of dynamic equations
on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer,
and combinatorics. A recent cover story article in New Scientist [4] discusses several possible
applications. Several authors have expounded on various aspects of this new theory; see the
survey paper by Agarwal et al. [5] and references cited therein. A book on the subject of time
scales, by Bohner and Peterson [3], summarizes and organizes much of time scale calculus;
see also the book by Bohner and Peterson [6] for advances results of dynamic equations on
time scales.

In recent years, there has been much research activity concerning the oscillation and
nonoscillation of solutions of various dynamic equations on time scales unbounded above
and neutral differential equations; we refer the reader to the papers [7–19]. Some authors are
especially interested in obtaining sufficient conditions for the oscillation or nonoscillation of
solutions of first and second-order linear and nonlinear neutral functional dynamic equations
on time scales; we refer to the articles [20–28].

Agarwal et al. [7] considered the second-order delay dynamic equations

xΔΔ(t) + p(t)x(τ(t)) = 0, t ∈ T (1.1)

and established some sufficient conditions for oscillation of (1.1). Şahiner [11] studied the
second-order nonlinear delay dynamic equations

xΔΔ(t) + p(t)f(x(τ(t))) = 0, t ∈ T (1.2)

and obtained some sufficient conditions for oscillation by employing Riccati transformation
technique. Zhang and Zhu [13] examined the second-order dynamic equations

xΔΔ(t) + p(t)f(x(t − τ)) = 0, t ∈ T, (1.3)

and by using comparison theorems, they proved that oscillation of (1.3) is equivalent to the
oscillation of the nonlinear dynamic equations

xΔΔ(t) + p(t)f(x(σ(t))) = 0, t ∈ T (1.4)

and established some sufficient conditions for oscillation by applying the results established
in [15]. Erbe et al. [16] investigated the oscillation of the second-order nonlinear delay
dynamic equations

(
r(t)xΔ(t)

)Δ
+ p(t)f(x(τ(t))) = 0, t ∈ T (1.5)
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and by employing the generalized Riccati technique, they established some new sufficient
conditions which ensure that every solution of (1.5) oscillates or converges to zero. Mathsen
et al. [20] investigated the first-order neutral delay dynamic equations

[
y(t) − r(t)y(τ(t))]Δ + p(t)y(δ(t)) = 0, t ∈ T (1.6)

and established some new oscillation criteria which as a special case involve some well-
known oscillation results for first-order neutral delay differential equations. Zhu and Wang
[21] studied the nonoscillatory solutions to neutral dynamic equations

[
y(t) + p(t)y

(
g(t)
)]Δ + f(t, x(h(t))) = 0, t ∈ T (1.7)

and gave a classification scheme for the eventually positive solutions of (1.7). Agarwal et al.
[22], Şahı́ner [23], Saker et al. [24–26], Wu et al. [27], and Zhang and Wang [28] considered
the second-order nonlinear neutral delay dynamic equations

(
r(t)
((
y(t) + p(t)y(τ(t))

)Δ)γ)Δ + f
(
t, y(δ(t))

)
= 0, t ∈ T, (1.8)

where γ > 0 is a quotient of odd positive integers, the delay function τ and δ satisfy τ : T → T

and δ : T → T for all t ∈ T, and r and p are real-valued positive functions defined on T, and

(h1) r(t) > 0,
∫∞
t0
(1/r(t))1/γ Δt =∞, and 0 ≤ p(t) < 1;

(h2) f : T × R → R is continuous function such that uf(u) > 0 for all u/= 0, and there
exists a nonnegative function q defined on T such that |f(t, u)| ≥ q(t)|u|γ .

By employing different Riccati transformation technique, the authors established some
oscillation criteria for all solutions of (1.8).

Recently, some authors have been interested in obtaining sufficient conditions for the
oscillation and nonoscillation of solutions of Emden-Fowler type dynamic equations on time
scales, differential equations, and difference equations; see, for example, [29–47].

Han et al. [32] studied the second-order Emden-Fowler delay dynamic equations

xΔΔ(t) + p(t)xγ(τ(t)) = 0, t ∈ T (1.9)

and established some sufficient conditions for oscillation of (1.9) and extended the results
given in [7].

Saker [34] studied the second-order superlinear neutral delay dynamic equation of
Emden-Fowler type

[
a(t)
(
y(t) + r(t)y(τ(t))

)Δ]Δ + p(t)
∣∣y(δ(t))∣∣γ signy(δ(t)) = 0 (1.10)

on a time scale T.
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The author assumes that

(A1) γ > 1;

(A2) the delay functions τ and δ satisfy τ : T → T, δ : T → T, τ(t) ≤ t, δ(t) ≤ t for all
t ∈ T, and limt→∞τ(t) = limt→∞δ(t) =∞;

(A3) a, r and p are positive rd-continuous functions defined on T such that aΔ(t) ≥
0,
∫∞
t0
(Δt/a(t)) =∞, and 0 ≤ r(t) < 1.

The main result for the oscillation of (1.10) in [34] is the following.

Theorem 1.1 (see, [34, Theorem 3.1]). Assume that (A1)–(A3) hold. Furthermore, assume that

∫∞
t0

p(t)(1 − r(δ(t)))γδγ(t)Δt =∞, (1.11)

and there exists a Δ-differentiable function η such that for all constantsM > 0,

lim sup
t→∞

∫ t
t0

[
η(s)p(s)(1 − r(δ(s)))γ

(
δ(s)
s

)γ
− a(s)

(
ηΔ(s)

)2

4γMγ−1η(s)

]
Δs =∞. (1.12)

Then every solution of (1.10) is oscillatory.

We note that in [34], the author gave an open problem, that is, how to establish
oscillation criteria for (1.10) when γ < 1.

In [35], the author examined the oscillation of the second-order neutral delay dynamic
equations

(x(t) − rx(τ(t)))ΔΔ +H(t, x(h1(t))) = 0, t ∈ T. (1.13)

The author assumes that

(H1) τ and h1 ∈ Crd(T,T), τ(t) < t, τ(t) → ∞ as t → ∞, h1(t) < t, h1(t) → ∞ as
t → ∞, and 0 ≤ r < 1;

(H2) H ∈ C(T × R,R) for each t ∈ T which are nondecreasing in u, and H(t, u) > 0, for
u > 0;

(H3) |H(t, u)| ≥ α(t)|u|λ,where α(t) ≥ 0, and 0 ≤ λ = p/q < 1 with p, q being odd integers.

The main result for the oscillation of (1.13) in [35] is the following.

Theorem 1.2 (see, [35, Theorem 3.4]). Assume that (H1)–(H3) hold. If for all sufficiently large
t1 ≥ t0,

∫∞
t1

α(s)(τ(h1(s)))
λΔs =∞, (1.14)

then (1.13) oscillates.
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We find that the conclusion of this theorem is wrong. The following is a counter
example of this theorem.

Counter Example. Consider the second-order differential equation

(
x(t) − 1

3
x

(
t

3

))′′
+
(

1
27
e−1/3 − e−1/3e−2t/3

)
x1/3(t − 1) = 0, t ≥ t0. (1.15)

Let α(t) = e−1/3/27 − e−1/3e−2t/3, r(t) = 1/3, τ(t) = t/3, and h1(t) = t − 1, λ = 1/3. For
all sufficiently large t1 ≥ t0, we find that

∫∞
t1

α(s)(τ(h1(s)))
λΔs=

∫∞
t1

α(s)(τ(h1(s)))
λds=

∫∞
t1

(
1

27
e−1/3−e−1/3e−2s/3

)(
s−1

3

)1/3

ds.

(1.16)

It is easy to see that

∫∞
t1

1
27
e−1/3

(
s − 1

3

)1/3

ds =∞,

∫∞
t1

e−2s/3
(
s − 1

3

)1/3

ds ≤
∫∞
t1

e−2s/3s1/3ds.

(1.17)

Integrating by parts, we obtain

∫∞
t1

e−2s/3s1/3ds = −t11/3
(

3
2
e−2t1/3

)
+

1
2

∫∞
t1

e−2s/3s−2/3ds <∞. (1.18)

Hence

∫∞
t1

α(s)(τ(h1(s)))
λds =∞. (1.19)

Therefore, by the above theorem, (1.15) is oscillatory. However, x(t) = e−t is a positive solution
of (1.15). Therefore, the above theorem is wrong. Tracing the error to its source, we find that
the following false assertion was used in the proof of the aforementioned theorem.

Assertion A

If x is an eventually positive solution of (1.13) , then z(t) = x(t) − r(t)x(τ(t)) is eventually
positive.

Abdalla [37] studied the second-order superlinear neutral delay differential equations

[
a(t)
(
y(t) + r(t)y(τ(t))

)′]′ + p(t)∣∣y(δ(t))∣∣γ signy(δ(t)) = 0, t ∈ [t0,∞). (1.20)
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Most of the oscillation criteria are unsatisfactory since additional assumptions have to be
imposed on the unknown solutions. Also, the author proved that if

∫∞
t0

dt
a(t)

=
∫∞
t0

p(t)dt =∞, (1.21)

then every solution of (1.20) oscillates for every r(t) > 0, but one can easily see that this result
cannot be applied when p(t) = t−α for α > 1.

Lin [38] considered the second-order nonlinear neutral differential equations

[
x(t) − p(t)x(t − τ)]′′ + q(t)f(x(t − σ)) = 0, t ≥ 0, (1.22)

where 0 ≤ p(t) ≤ 1, q(t) ≥ 0, τ, σ > 0. The author investigated the oscillation for (1.22) when
f is superlinear.

Wong [46, 47] studied the second-order neutral differential equations

[
y(t) − py(t − τ)]′′ + q(t)f(y(t − σ)) = 0, t ≥ 0, (1.23)

q ∈ C[0,∞), q(t) ≥ 0, f ∈ C1(−∞,∞), yf(y) > 0 whenever y /= 0, f ′(y) ≥ 0 for all y, and
0 < p < 1, τ > 0, σ > 0 are constants.

The main results for the oscillation of (1.23) in [46, 47] are the following.

Theorem 1.3 (see, [46, 47, Theorem 1]). Suppose that f is superlinear. Then a solution of (1.23) is
either oscillatory or tends to zero if and only if

∫∞
tq(t)dt =∞. (1.24)

Theorem 1.4 (see, [46, 47, Theorem 2]). Suppose that f is sublinear and in addition satisfies

f(uv) ≥ f(u)f(v), uv ≥ 0. (1.25)

Then a solution of (1.23) is either oscillatory or tends to zero if and only if

∫∞
f(t)q(t)dt =∞. (1.26)

Li and Saker [40] investigated the second-order sublinear neutral delay difference
equations

Δ
(
anΔ
(
xn + pnxn−τ

))
+ qnx

γ
n−σ = 0, (1.27)

where 0 < γ < 1 is a quotient of odd positive integers, an > 0, Δan ≥ 0,
∑∞

n=0 1/an = ∞, 0 ≤
pn < 1, for all n ≥ 0 and qn ≥ 0.

The main result for the oscillation of (1.27) in [40] is the following.



Abstract and Applied Analysis 7

Theorem 1.5 (see, [40, Theorem 2.1]). Assume that there exists a positive sequence {ρn} such that
for every α ≥ 1,

lim sup
n→∞

n∑
l=0

[
ρlQl −

al−σ(α(l + 1 − σ))1−γ(Δρl)2

4γρl

]
=∞, (1.28)

where Qn = qn(1 − pn−σ)γ . Then every solution of (1.27) oscillates.

Yildiz and Öcalan [41] studied the higher-order sublinear neutral delay difference
equations of the type

Δm(yn + pnyn−l) + qnyαn−k = 0, n ∈ N, (1.29)

where 0 < α < 1 is a ratio of odd positive integers. The authors established some oscillation
criteria of (1.29).

The main results for the oscillation of (1.29) when m = 2 in [41] are the following.

Theorem 1.6 (see, [41, Theorem 2.1(a), m = 2]). Assume that 0 ≤ pn < 1, and

∞∑
n=0

qn
[(

1 − pn−k
)
n
]α =∞. (1.30)

Then all solutions of (1.29) are oscillatory.

Theorem 1.7 (see, [41, Theorem 2.2, m = 2]). Assume that −1 < −p2 ≤ pn ≤ 0, where p2 > 0 is a
constant, and

∞∑
n=0

qnn
α =∞. (1.31)

Then every solution of (1.29) either oscillates or tends to zero as n → ∞.

Cheng [42] considered the oscillation of the second-order nonlinear neutral difference
equations

Δ
(
pn(Δ(xn + cnxn−τ))γ

)
+ qnx

β
n−σ = 0 (1.32)

and established some oscillation criteria of (1.32) by means of Riccati transformation
techniques.

Following this trend, in this paper, we are concerned with oscillation of the second-
order neutral delay dynamic equations of Emden-Fowler type

[
a(t)(x(t) + r(t)x(τ(t)))Δ

]Δ
+ p(t)xγ(δ(t)) = 0, t ∈ T. (1.33)
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As we are interested in oscillatory behavior, we assume throughout this paper that the
given time scales T are unbounded above; that is, it is a time scale interval of the form [t0,∞)
with t0 ∈ T.

We assume that γ > 0 is a quotient of odd positive integers, the delay functions τ
and δ satisfy τ : T → T, δ : T → T, τ(t) ≤ t, δ(t) ≤ t for all t ∈ T, and limt→∞τ(t) =
limt→∞δ(t) = ∞; a, r and p are real-valued rd-continuous functions defined on T, a(t) >
0, p(t) > 0,

∫∞
t0
Δt/a(t) =∞.

We note that if T = R, then σ(t) = t, μ(t) = 0, xΔ(t) = x′(t), and (1.33) becomes the
second-order nonlinear delay differential equation

[
a(t)(x(t) + r(t)x(τ(t)))′

]′ + p(t)xγ(δ(t)) = 0, t ∈ R. (1.34)

If T = Z, then σ(t) = t+ 1, μ(t) = 1, xΔ(t) = Δx(t) = x(t+ 1)− x(t), and (1.33) becomes
the second-order nonlinear delay differential equation

Δ[a(t)Δ(x(t) + r(t)x(τ(t)))] + p(t)xγ(δ(t)) = 0, t ∈ Z. (1.35)

In the case of γ > 1, (1.33) is the prototype of a wide class of nonlinear dynamic
equations called Emden-Fowler sublinear dynamic equations, and if γ < 1, (1.33) is the
prototype of dynamic equations called Emden-Fowler sublinear dynamic equations. It is
interesting to study (1.33) because the continuous version, that is, (1.34), has several physical
applications; see, for example, [1, 39], and when t is a discrete variable, it is (1.35), and it is
also important in applications.

2. Main Results

In this section, we give some new oscillation criteria of (1.33). In order to prove our main
results, we will use the formula

(
(x(t))γ

)Δ = γ
∫1

0
[hxσ(t) + (1 − h)x(t)]γ−1xΔ(t)dh, (2.1)

which is a simple consequence of Keller’s chain rule [3, Theorem 1.90]. Also, we need the
following auxiliary results.

For the sake of convenience, we assume that

z(t)=x(t)+r(t)x(τ(t)), R(t, t∗)=a(t)
∫ t
t∗

Δs
a(s)

, α(t, t∗)=

∫δ(t)
t∗

Δs/a(s)∫ t
t∗
Δs/a(s)

, t∗ ≥ t0. (2.2)

Lemma 2.1. Assume that (1.11) holds, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then an eventually positive
solution x of (1.33) eventually satisfies that

z(t)≥ tzΔ(t) > 0, zΔΔ(t)< 0,
(
a(t)zΔ(t)

)Δ
< 0,

z(t)
t

is nonincreasing. (2.3)
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Proof. From (1.11), the proof is similar to that of Saker et al. [24, Lemma 2.1], so it is omitted.

Lemma 2.2. Assume that

∫∞
t0

p(t)δγ(t)Δt =∞, (2.4)

aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) = r1 > −1. Then an eventually positive solution x
of (1.33) eventually satisfies that

z(t)≥ tzΔ(t)> 0, zΔΔ(t)< 0,
(
a(t)zΔ(t)

)Δ
< 0,

z(t)
t

is nonincreasing, (2.5)

or limt→∞x(t) = 0.

Proof. Let x be an eventually positive solution of (1.33). Then there exists t1 ≥ t0 such that
x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for all t ≥ t1. Assume that limt→∞x(t)/= 0, that is,
lim supt→∞x(t) > 0. Then, we have to show that (2.5) holds. It follows from (1.33) that

(
a(t)zΔ(t)

)Δ
= −p(t)xγ(δ(t)) < 0, t ≥ t1, (2.6)

which implies that azΔ is nonincreasing on [t1,∞)
T
. Since the function a is nondecreasing,

zΔ must be nonincreasing on [t1,∞)
T
, that is, zΔ is eventually either positive or negative. In

both cases, z is eventually monotonic, so that z has a limit at infinity (finite or infinite). This
implies that limt→∞z(t)/= 0; that is, z is eventually positive (see [19, Lemma 3]). Then we
proceed as in the proof of [24, Lemma 2.1] to obtain (2.5). The proof is complete.

Lemma 2.3. Assume that 0 ≤ r(t) < 1. Further, x is an eventually positive solution of (1.33). Then
there exists a t∗ ≥ t0 such that for t ≥ t∗,

zΔ(t)> 0,
(
a(t)zΔ(t)

)Δ
< 0, z(t)≥ R(t, t∗)zΔ(t), z(δ(t))≥ α(t, t∗)z(t). (2.7)

Proof. Let x be an eventually positive solution of (1.33). Then there exists t1 ≥ t0 such that
x(t) > 0, x(τ(t)) > 0, and x(δ(t)) > 0 for all t ≥ t1. It follows from (1.33) that (2.6) holds. From
(2.6), we know that a(t)zΔ(t) is an eventually decreasing function. We claim that zΔ(t) > 0
eventually. Otherwise, if there exists a t2 ≥ t1 such that zΔ(t) < 0, by (2.6), we have

a(t)zΔ(t) ≤ a(t2)zΔ(t2) = b < 0, t ≥ t2. (2.8)

Thus

zΔ(t) ≤ b 1
a(t)

. (2.9)
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Integrating the above inequality from t2 to t leads to limt→∞z(t) = −∞, which contradicts
z(t) > 0. Hence, zΔ(t) > 0 on [t2,∞)

T
. Therefore,

z(t) > z(t) − z(t2) =
∫ t
t2

a(s)zΔ(s)
a(s)

Δs ≥
(
a(t)zΔ(t)

)∫ t
t2

Δs
a(s)

, (2.10)

which yields

z(t) ≥
(
a(t)

∫ t
t2

Δs
a(s)

)
zΔ(t). (2.11)

Since a(t)zΔ(t) is strictly decreasing, we have

z(t) − z(δ(t)) =
∫ t
δ(t)

a(s)zΔ(s)
a(s)

Δs ≤ a(δ(t))zΔ(δ(t))
∫ t
δ(t)

Δs
a(s)

, (2.12)

and so

z(t)
z(δ(t))

≤ 1 +
a(δ(t))zΔ(δ(t))

z(δ(t))

∫ t
δ(t)

Δs
a(s)

. (2.13)

Also, we have that for large t,

z(δ(t)) ≥ z(δ(t)) − z(t2) =
∫δ(t)
t2

a(s)zΔ(s)
a(s)

Δs ≥ a(δ(t))zΔ(δ(t))
∫δ(t)
t2

Δs
a(s)

, (2.14)

so we obtain

a(δ(t))zΔ(δ(t))
z(δ(t))

≤
(∫δ(t)

t2

Δs
a(s)

)−1

. (2.15)

Therefore, from (2.13), we have

z(δ(t)) ≥ α(t, t2)z(t). (2.16)

This completes the proof.

Lemma 2.4. Assume that −1 < −r0 ≤ r(t) ≤ 0, limt→∞r(t) = r1 > −1. Then an eventually positive
solution x of (1.33) satisfies that, for sufficiently large t∗ ≥ t0,

zΔ(t)> 0,
(
a(t)zΔ(t)

)Δ
< 0, z(t)≥ R(t, t∗)zΔ(t), z(δ(t))≥ α(t, t∗)z(t), t ≥ t∗, (2.17)

or limt→∞x(t) = 0.
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Proof. The proof is similar to that of the proof Lemmas 2.2 and 2.3, so we omit the details.

Theorem 2.5. Assume that (1.11) holds, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then every solution of (1.33)
oscillates if the inequality

yΔ(t) +A(t)yγ(δ(t)) ≤ 0, (2.18)

where

A(t) = p(t)(1 − r(δ(t)))γ (δ(t))γ

(a(δ(t)))γ
, (2.19)

has no eventually positive solution.

Proof. Suppose to the contrary that (1.33) has a nonoscillatory solution x. We may assume
without loss of generality that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0 and x(δ(t)) >
0 for all t ≥ t1. From Lemma 2.1, there is some t2 ≥ t1 such that

x(t) = z(t) − r(t)x(τ(t)) ≥ z(t) − r(t)z(τ(t)) ≥ (1 − r(t))z(t), t ≥ t2. (2.20)

From (1.33), there exists a t3 ≥ t2 such that

(
a(t)zΔ(t)

)Δ
+ p(t)(1 − r(δ(t)))γ(z(δ(t)))γ ≤ 0, t ≥ t3. (2.21)

By Lemma 2.1, there exists a t4 ≥ t3 such that

z(δ(t)) ≥ δ(t)zΔ(δ(t)). (2.22)

Substituting the last inequality in (2.21) we obtain for t ≥ t4 that

(
a(t)zΔ(t)

)Δ
+ p(t)(1 − r(δ(t)))γ(δ(t))γ

(
zΔ(δ(t))

)γ ≤ 0. (2.23)

Set y(t) = a(t)zΔ(t). Then from (2.23), y is positive and satisfies the inequality (2.18), and
this contradicts the assumption of our theorem. Thus every solution of (1.33) oscillates. This
completes the proof.

By [41, Lemma 1.1] and Theorem 2.5 in this paper, we have the following result.

Corollary 2.6. If T = Z, a(t) = 1, δ(t) = t − l, l is a positive integer, and 0 ≤ r(t) < 1, then every
solution of (1.33) oscillates if

∞∑
t=n0

tγp(t)(1 − r(δ(t)))γ =∞. (2.24)
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Theorem 2.7. Assume that (2.4) holds, and aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) =
r1 > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞ if the inequality

yΔ(t) + B(t)yγ(δ(t)) ≤ 0, (2.25)

where

B(t) = p(t)
(δ(t))γ

(a(δ(t)))γ
, (2.26)

has no eventually positive solution.

Proof. Suppose to the contrary that (1.33) has a nonoscillatory solution x. We may assume
without loss of generality that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) >
0 for all t ≥ t1.

From Lemma 2.2, if (i) holds, there is some t2 ≥ t1 such that

x(t) = z(t) − r(t)x(τ(t)) ≥ z(t) > 0, t ≥ t2. (2.27)

From (1.33), there exists a t3 ≥ t2 such that

(
a(t)zΔ(t)

)Δ
+ p(t)(z(δ(t)))γ ≤ 0, t ≥ t3. (2.28)

By Lemma 2.2, there exists a t3 ≥ t2 such that

z(δ(t)) ≥ δ(t)zΔ(δ(t)). (2.29)

Substituting the last inequality in (2.28), we obtain for t ≥ t3 that

(
a(t)zΔ(t)

)Δ
+ p(t)(δ(t))γ

(
zΔ(δ(t))

)γ ≤ 0. (2.30)

Set y(t) = a(t)zΔ(t). Then from (2.30), y is positive and satisfies the inequality (2.25), and this
contradicts the assumption of our theorem.

If (ii) holds, by Lemma 2.2, we have limt→∞x(t) = 0. This completes the proof.

By [41, Lemma 1.1] and Theorem 2.7 in this paper, we have the following result.

Corollary 2.8. Assume that T = Z, a(t) = 1, δ(t) = t−l, l is a positive integer, −1 < −r0 ≤ r(t) ≤ 0,
and limt→∞r(t) = r > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞ if

∞∑
t=n0

tγp(t) =∞. (2.31)

Remark 2.9. Theorems 2.5 and 2.7 reduce the question of (1.33) to the absence of eventually
positive solution (the oscillatory) of the differential inequalities (2.18) and (2.25).
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Remark 2.10. From Theorem 2.5, Theorem 2.7, and the results given in [7–9, 12, 14], we can
obtain some oscillation criteria for (1.33) in the case when γ = 1, aΔ(t) ≥ 0.

Theorem 2.11. Assume that (1.11) holds, γ < 1, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then every solution
of (1.33) oscillates if

∫∞
t0

p(s)
(a(δ(s)))γ

(1 − r(δ(s)))γ(δ(s))γΔs =∞. (2.32)

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we get (2.21). By
Lemma 2.1, note that (a(t)zΔ(t))Δ < 0, and from Keller’s chain rule, we obtain

((
a(t)zΔ(t)

)1−γ)Δ

=
(
1 − γ)

∫1

0

[
h
(
a(t)zΔ(t)

)σ
+ (1 − h)a(t)zΔ(t)

]−γ(
a(t)zΔ(t)

)Δ
dh

≤ (1 − γ)
∫1

0

[
ha(t)zΔ(t) + (1 − h)a(t)zΔ(t)

]−γ(
a(t)zΔ(t)

)Δ
dh

=
(
1 − γ)(a(t)zΔ(t))−γ(a(t)zΔ(t))Δ < 0,

(2.33)

so

(
a(t)zΔ(t)

)−γ(
a(t)zΔ(t)

)Δ ≥
((
a(t)zΔ(t)

)1−γ)Δ
1 − γ . (2.34)

Using (2.21), we have

0 ≥
(
a(t)zΔ(t)

)Δ + p(t)(1 − r(δ(t)))γ(z(δ(t)))γ(
a(t)zΔ(t)

)γ

=
(
a(t)zΔ(t)

)−γ(
a(t)zΔ(t)

)Δ
+ p(t)(1 − r(δ(t)))γ

(
z(δ(t))
a(t)zΔ(t)

)γ

≥

((
a(t)zΔ(t)

)1−γ)Δ
1 − γ +

p(t)
(a(δ(t)))γ

(1 − r(δ(t)))γ(δ(t))γ .

(2.35)

Hence,

p(t)
(a(δ(t)))γ

(1 − r(δ(t)))γ(δ(t))γ ≤

((
a(t)zΔ(t)

)1−γ)Δ
γ − 1

. (2.36)
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Upon integration we arrive at

∫ t
t1

p(s)
(a(δ(s)))γ

(1 − r(δ(s)))γ(δ(s))γΔs ≤
∫ t
t1

((
a(s)zΔ(s)

)1−γ)Δ
γ − 1

Δs ≤
(
a(t1)zΔ(t1)

)1−γ

1 − γ . (2.37)

This contradicts (2.32) and finishes the proof.

Theorem 2.12. Assume that (2.4) holds, and γ < 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and
limt→∞r(t) = r1 > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞
if

∫∞
t0

p(s)
(a(δ(s)))γ

(δ(s))γΔs =∞. (2.38)

Proof. By Lemma 2.2, the proof is similar to that of the proof of Theorem 2.11, so we omit the
details.

Theorem 2.13. Assume that γ < 1 and 0 ≤ r(t) < 1. Then every solution of (1.33) oscillates if

∫∞
t0

p(s)
(a(δ(s)))γ

(1 − r(δ(s)))γ(R(δ(s), t∗))γΔs =∞ (2.39)

holds for all sufficiently large t∗.

Proof. By Lemma 2.3, the proof is similar to that of the proof Theorem 2.11, so we omit the
details.

Theorem 2.14. Assume that γ < 1, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) = r1 > −1. Then every
solution of (1.33) either oscillates or tends to zero as t → ∞ if

∫∞
t0

p(s)
(a(δ(s)))γ

(R(δ(s), t∗))
γΔs =∞ (2.40)

holds for all sufficiently large t∗.

Proof. By using Lemma 2.4 and (2.28), the proof is similar to that of the proof of Theorem 2.11,
so we omit the details.

Theorem 2.15. Assume that (1.11) holds, γ ≥ 1, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then every solution
of (1.33) oscillates if

lim sup
t→∞

{
t

a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ
Δs
}

=∞. (2.41)

Proof. Suppose to the contrary that (1.33) has a nonoscillatory solution x. We may assume
without loss of generality that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and
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x(δ(t)) > 0 for all t ≥ t1. By proceeding as in the proof of Theorem 2.5, we get (2.21). Thus
from Lemma 2.1, we have for T ≥ t ≥ t1,

∫T
t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs ≤ −
∫T
t

(
a(s)zΔ(s)

)Δ
Δs = a(t)zΔ(t) − a(T)zΔ(T), (2.42)

and hence

∫T
t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs ≤ a(t)zΔ(t). (2.43)

This and Lemma 2.1 provide, for sufficiently large t ∈ T,

z(t) ≥ tzΔ(t) ≥ t

a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs

≥ t

a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ
zγ(s)Δs

≥ zγ(t)
{

t

a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ
Δs
}
.

(2.44)

So

{
t

a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ
Δs
}
≤
(

1
z(t)

)γ−1

. (2.45)

We note that γ ≥ 1 and zΔ(t) > 0 imply

{
t

a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ
Δs
}
≤
(

1
z(t1)

)γ−1

. (2.46)

This contradicts (2.41) and completes the proof.

Theorem 2.16. Assume that (2.4) holds, and γ ≥ 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and
limt→∞r(t) = r1 > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞
if

lim sup
t→∞

{
t

a(t)

∫∞
t

p(s)
(
δ(s)
s

)γ
Δs
}

=∞. (2.47)

Proof. By using Lemma 2.2 and (2.28), the proof is similar to that of the proof of Theorem 2.15,
so we omit the details.
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Theorem 2.17. Assume that γ ≥ 1, 0 ≤ r(t) < 1. Then every solution of (1.33) oscillates if

lim sup
t→∞

{
R(t, t∗)
a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs
}

=∞ (2.48)

holds for all sufficiently large t∗.

Proof. Suppose to the contrary that (1.33) has a nonoscillatory solution x. We may assume
without loss of generality that there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) >
0 for all t ≥ t1. By proceeding as in the proof of Theorem 2.5, we obtain (2.21). Thus from
Lemma 2.3, we have, for T ≥ t ≥ t1,

∫T
t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs ≤ −
∫T
t

(
a(s)zΔ(s)

)Δ
Δs = a(t)zΔ(t) − a(T)zΔ(T), (2.49)

and hence

∫T
t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs ≤ a(t)zΔ(t). (2.50)

This and Lemma 2.3 provide, for sufficiently large t ∈ T,

z(t) ≥ R(t, t∗)zΔ(t) ≥ R(t, t∗)
a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ(z(δ(s)))γΔs

≥ R(t, t∗)
a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γzγ(s)Δs

≥ zγ(t)
{
R(t, t∗)
a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs
}
.

(2.51)

So

{
R(t, t∗)
a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs
}
≤
(

1
z(t)

)γ−1

. (2.52)

We note that γ ≥ 1 and zΔ(t) > 0 imply

{
R(t, t∗)
a(t)

∫∞
t

p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs
}
≤
(

1
z(t1)

)γ−1

. (2.53)

This contradicts (2.48) and completes the proof.
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Theorem 2.18. Assume that (2.4) holds, and γ ≥ 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and
limt→∞r(t) = r > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞
if

lim sup
t→∞

{
R(t, t∗)
a(t)

∫∞
t

p(s)(α(s, t∗))γΔs
}

=∞ (2.54)

holds for all sufficiently large t∗.

Proof. By using Lemma 2.4 and (2.28), the proof is similar to that of the proof of Theorem 2.17,
so we omit the details.

Theorem 2.19. Assume that (1.11) holds, γ > 1, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Then every solution
of (1.33) oscillates if

∫∞
t0

σ(s)
p(s)
a(s)

(1 − r(δ(s)))γ
(
δ(s)
σ(s)

)γ
Δs =∞. (2.55)

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we get (2.21).
Define the function

ω(t) =
ta(t)zΔ(t)
zγ(t)

, t ≥ t1. (2.56)

By Lemma 2.1, ω(t) > 0. We calculate

ωΔ(t) =
{
a(t)zΔ(t) + σ(t)

(
a(t)zΔ(t)

)Δ}(
z−γ(t)

)σ + ta(t)zΔ(t)(z−γ(t))Δ. (2.57)

From (2.21), we have

ωΔ(t)≤a(t)zΔ(t)(z−γ(t))σ−σ(t)p(t)(1 − r(δ(t)))γ
(
z(δ(t))
z(σ(t))

)γ
+ta(t)zΔ(t)

(
z−γ(t)

)Δ
, (2.58)

and by Lemma 2.1, we have

ωΔ(t) ≤ a(t)zΔ(t)(z−γ(t))σ − σ(t)p(t)(1 − r(δ(t)))γ
(
δ(t)
σ(t)

)γ
, (2.59)

because (z−γ(t))Δ ≤ 0 due to Keller’s chain rule. Since

(
(z(t))1−γ

)Δ
=
(
1 − γ)

∫1

0
[hzσ(t) + (1 − h)z(t)]−γzΔ(t)dh

≤ (1 − γ)
∫1

0
[hzσ(t) + (1 − h)zσ(t)]−γzΔ(t)dh =

(
1 − γ)(zσ(t))−γzΔ(t),

(2.60)
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thus

ωΔ(t) ≤ a(t)

(
(z(t))1−γ

)Δ
1 − γ − σ(t)p(t)(1 − r(δ(t)))γ

(
δ(t)
σ(t)

)γ
. (2.61)

Upon integration we arrive at

∫ t
t1

σ(s)
p(s)
a(s)

(1 − r(δ(s)))γ
(
δ(s)
σ(s)

)γ
Δs

≤
∫ t
t1

⎧⎪⎨
⎪⎩

(
(z(s))1−γ

)Δ
1 − γ − ω

Δ(s)
a(s)

⎫⎪⎬
⎪⎭Δs

=
(z(t))1−γ

1 − γ − (z(t1))1−γ

1 − γ −
∫ t
t1

ωΔ(s)
a(s)

Δs

=
(z(t))1−γ

1 − γ − (z(t1))
1−γ

1 − γ −ω(t)
a(t)

+
ω(t1)
a(t1)

+
∫ t
t1

ωσ(s)
(

1
a(s)

)Δ

Δs.

(2.62)

Noting that (1/a(t))Δ ≤ 0, we have

∫ t
t1

σ(s)
p(s)
a(s)

(1 − r(δ(s)))γ
(
δ(s)
σ(s)

)γ
Δs ≤ (z(t1))1−γ

γ − 1
+
ω(t1)
a(t1)

. (2.63)

This contradicts (2.55) and finishes the proof.

Theorem 2.20. Assume that (2.4) holds, and γ > 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤ 0, and
limt→∞r(t) = r1 > −1. Then every solution of (1.33) either oscillates or tends to zero as t → ∞
if

∫∞
t0

σ(s)p(s)
(
δ(s)
σ(s)

)γ
Δs =∞. (2.64)

Proof. By using Lemma 2.2 and (2.28), the proof is similar to that of the proof of Theorem 2.19,
so we omit the details.

In the following, we use a Riccati transformation technique to establish new oscillation
criteria for (1.33).

Theorem 2.21. Assume that γ ≥ 1, and 0 ≤ r(t) < 1. Furthermore, suppose that there exists a
positive Δ-differentiable function η such that for all sufficiently large t∗, and for all constantsM > 0,
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for t1 ≥ t∗,

lim sup
t→∞

∫ t
t1

[
η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γ −

a(s)
(
ηΔ(s)

)2

4γMγ−1η(s)

]
Δs =∞. (2.65)

Then every solution of (1.33) oscillates.

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we get (2.21).
Define the function ω by the Riccati substitution

ω(t) = η(t)
a(t)zΔ(t)
zγ(t)

, t ≥ t1. (2.66)

Then ω(t) > 0. By the product rule and then the quotient rule

ωΔ(t) =
(
a(t)zΔ(t)

)σ[ η(t)
zγ(t)

]Δ
+
η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ

=
η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ
+
(
a(t)zΔ(t)

)σ[zγ(t)ηΔ(t) − η(t)(zγ(t))Δ
zγ(t)(zσ(t))γ

]
.

(2.67)

In view of (2.21) and (2.66), we have

ωΔ(t)≤−η(t)p(t)(1 − r(δ(t)))γ
(
z(δ(t))
z(t)

)γ
+
ηΔ(t)
ησ(t)

ωσ(t)− η(t)
(
a(t)zΔ(t)

)σ(zγ(t))Δ
zγ(t)(zσ(t))γ

. (2.68)

By the chain rule and γ ≥ 1, we obtain

(zγ(t))Δ ≥ γzγ−1(t)zΔ(t) ≥ γMγ−1zΔ(t), (2.69)

where M = z(t1) > 0. In view of (a(t)zΔ(t))Δ < 0, we have

a(t)zΔ(t) ≥
(
a(t)zΔ(t)

)σ
, (2.70)

and by Lemma 2.3, we see that

ωΔ(t) ≤ −η(t)p(t)(1 − r(δ(t)))γ(α(t, t∗))γ +
ηΔ(t)
ησ(t)

ωσ(t) − γMγ−1η(t)

a(t)
(
ησ(t)

)2 (ω
σ(t))2. (2.71)
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Integrating (2.71) from t1 to t, we obtain

∫ t
t1

η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs

≤ −
∫ t
t1

ωΔ(s)Δs

+
∫ t
t1

ηΔ(s)
ησ(s)

ωσ(s)Δs −
∫ t
t1

γMγ−1η(s)

a(s)
(
ησ(s)

)2 (ω
σ(s))2Δs.

(2.72)

Hence

∫ t
t1

[
η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γ −

a(s)
(
ηΔ(s)

)2

4γMγ−1η(s)

]
Δs ≤ ω(t1), (2.73)

which contradicts condition (2.65). The proof is complete.

Theorem 2.22. Assume that γ ≥ 1, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) = r1 > −1. If there exists
a positiveΔ-differentiable function η such that for all sufficiently large t∗, and for all constantsM > 0,
for t1 ≥ t∗,

lim sup
t→∞

∫ t
t1

[
η(s)p(s)(α(s, t∗))γ −

a(s)
(
ηΔ(s)

)2

4γMγ−1η(s)

]
Δs =∞, (2.74)

then every solution of (1.33) either oscillates or tends to zero as t → ∞.

Proof. By Lemma 2.4 and (2.28), the proof is similar to that of the proof of Theorem 2.21, so
we omit the details.

Theorem 2.23. Assume that (1.11) holds, γ ≤ 1, aΔ(t) ≥ 0, and 0 ≤ r(t) < 1. Furthermore, suppose
that there exists a positive Δ-differentiable function η such that for all sufficiently large t1, and for all
constantsM > 0,

lim sup
t→∞

∫ t
t1

[
η(s)p(s)(1 − r(δ(s)))γ

(
δ(s)
s

)γ
− a(s)

(
ηΔ(s)

)2

4γMγ−1(σ(s))γ−1η(s)

]
Δs =∞. (2.75)

Then every solution of (1.33) oscillates.

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we obtain (2.21).
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Define the function ω by the Riccati substitution as (2.66). Then ω(t) > 0. By the product rule
and then the quotient rule

ωΔ(t) =
(
a(t)zΔ(t)

)σ[ η(t)
zγ(t)

]Δ
+
η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ

=
η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ
+
(
a(t)zΔ(t)

)σ[zγ(t)ηΔ(t) − η(t)(zγ(t))Δ
zγ(t)(zσ(t))γ

]
.

(2.76)

In view of (2.21) and (2.66), we have

ωΔ(t)≤−η(t)p(t)(1 − r(δ(t)))γ
(
z(δ(t))
z(t)

)γ
+
ηΔ(t)
ησ(t)

ωσ(t)− η(t)
(
a(t)zΔ(t)

)σ(zγ(t))Δ
zγ(t)(zσ(t))γ

. (2.77)

From the chain rule and γ ≤ 1, we get

(zγ(t))Δ ≥ γzγ−1(σ(t))zΔ(t). (2.78)

Noting that z(t)/t is nonincreasing, and there exists a constant M > 0, such that z(t) ≤ Mt,
hence we have

(zγ(t))Δ ≥ γzγ−1(σ(t))zΔ(t) ≥ γMγ−1(σ(t))γ−1zΔ(t). (2.79)

In view of (a(t)zΔ(t))Δ < 0, we have

a(t)zΔ(t) ≥
(
a(t)zΔ(t)

)σ
, (2.80)

and by Lemma 2.1, we see that

ωΔ(t) ≤ −η(t)p(t)(1 − r(δ(t)))γ
(
δ(t)
t

)γ
+
ηΔ(t)
ησ(t)

ωσ(t) − γM
γ−1(σ(t))γ−1η(t)

a(t)
(
ησ(t)

)2 (ωσ(t))2. (2.81)

Integrating (2.81) from t1 to t, we obtain

∫ t
t1

η(s)p(s)(1 − r(δ(s)))γ
(
δ(s)
s

)γ
Δs

≤ −
∫ t
t1

ωΔ(s)Δs +
∫ t
t1

ηΔ(s)
ησ(s)

ωσ(s)Δs −
∫ t
t1

γMγ−1(σ(s))γ−1η(s)

a(s)
(
ησ(s)

)2 (ωσ(s))2Δs.

(2.82)
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Hence

∫ t
t1

[
η(s)p(s)(1 − r(δ(s)))γ

(
δ(s)
s

)γ
− a(s)

(
ηΔ(s)

)2

4γMγ−1(σ(s))γ−1η(s)

]
Δs ≤ ω(t1), (2.83)

which contradicts condition (2.75). The proof is complete.

Theorem 2.24. Assume that (2.4) holds, γ ≤ 1, aΔ(t) ≥ 0, −1 < −r0 ≤ r(t) ≤
0, and limt→∞r(t) = r1 > −1. If there exists a positive Δ-differentiable function η such that for
all sufficiently large t1, and for all constantsM > 0,

lim sup
t→∞

∫ t
t1

[
η(s)p(s)

(
δ(s)
s

)γ
− a(s)

(
ηΔ(s)

)2

4γMγ−1(σ(s))γ−1η(s)

]
Δs =∞, (2.84)

then every solution of (1.33) either oscillates or tends to zero as t → ∞.

Proof. By Lemma 2.2 and (2.28), the proof is similar to that of the proof of Theorem 2.23, so
we omit the details.

Theorem 2.25. Assume that γ ≤ 1, aΔ(t) ≤ 0, and 0 ≤ r(t) < 1. Furthermore, suppose that there
exists a positive Δ-differentiable function η such that for all sufficiently large t∗, and for all constants
M > 0, for t1 ≥ t∗,

lim sup
t→∞

∫ t
t1

[
η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γ −

a(s)(σ(s))1−γ(ηΔ(s))2

4γMγ−1(a(σ(s)))1−γη(s)

]
Δs =∞. (2.85)

Then every solution of (1.33) oscillates.

Proof. We assume that (1.33) has a nonoscillatory solution such that x(t) > 0, x(τ(t)) > 0, and
x(δ(t)) > 0 for all t ≥ t1 ≥ t0. By proceeding as in the proof of Theorem 2.5, we have (2.21).
Define the function ω by the Riccati substitution as (2.66). Then ω(t) > 0. By the product rule
and then the quotient rule

ωΔ(t) =
(
a(t)zΔ(t)

)σ[ η(t)
zγ(t)

]Δ
+
η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ

=
η(t)
zγ(t)

(
a(t)zΔ(t)

)Δ
+
(
a(t)zΔ(t)

)σ[zγ(t)ηΔ(t) − η(t)(zγ(t))Δ
zγ(t)(zσ(t))γ

]
.

(2.86)

In view of (2.21) and (2.66), we have

ωΔ(t) ≤ −η(t)p(t)(1 − r(δ(t)))γ
(
z(δ(t))
z(t)

)γ
+
ηΔ(t)
ησ(t)

ωσ(t) − η(t)
(
a(t)zΔ(t)

)σ(zγ(t))Δ
zγ(t)(zσ(t))γ

.

(2.87)



Abstract and Applied Analysis 23

By the chain rule and γ ≤ 1, we obtain

(zγ(t))Δ ≥ γzγ−1(σ(t))zΔ(t), (2.88)

and noting that (a(t)zΔ(t))Δ < 0 and there exists a constant L > 0 such that a(t)zΔ(t) ≤ L, so

z(t) = z(t1) +
∫ t
t1

zΔ(s)Δs ≤ z(t1) +
∫ t
t1

L

a(s)
Δs. (2.89)

From aΔ(t) ≤ 0, there exists a positive constant M such that

z(t) ≤ z(t1) + L

a(t)
(t − t1) = z(t1)a(t) + L(t − t1)

a(t)
≤ Mt

a(t)
. (2.90)

Hence

(zγ(t))Δ ≥ γzγ−1(σ(t))zΔ(t) ≥ γMγ−1
(

σ(t)
a(σ(t))

)γ−1

zΔ(t). (2.91)

In view of (a(t)zΔ(t))Δ < 0, we have

a(t)zΔ(t) ≥
(
a(t)zΔ(t)

)σ
, (2.92)

and by Lemma 2.3, we see that

ωΔ(t) ≤ −η(t)p(t)(1 − r(δ(t)))γ(α(t, t∗))γ

+
ηΔ(t)
ησ(t)

ωσ(t) − γMγ−1η(t)

a(t)
(
ησ(t)

)2

(
σ(t)

a(σ(t))

)γ−1

(ωσ(t))2.
(2.93)

Integrating (2.93) from t1 to t, we obtain

∫ t
t1

η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γΔs

≤ −
∫ t
t1

ωΔ(s)Δs +
∫ t
t1

ηΔ(s)
ησ(s)

ωσ(s)Δs −
∫ t
t1

γMγ−1η(s)

a(s)
(
ησ(s)

)2

(
σ(s)

a(σ(s))

)γ−1

(ωσ(s))2Δs.

(2.94)

Thus

∫ t
t1

[
η(s)p(s)(1 − r(δ(s)))γ(α(s, t∗))γ −

a(s)(σ(s))1−γ(ηΔ(s))2

4γMγ−1(a(σ(s)))1−γη(s)

]
Δs ≤ ω(t1), (2.95)

which contradicts condition (2.85). The proof is complete.
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Theorem 2.26. Assume that γ ≤ 1, aΔ(t) ≤ 0, −1 < −r0 ≤ r(t) ≤ 0, and limt→∞r(t) = r > −1.
If there exists a positive Δ-differentiable function η such that for all sufficiently large t∗, and for all
constantsM > 0, for t1 ≥ t∗,

lim sup
t→∞

∫ t
t1

[
η(s)p(s)(α(s, t∗))γ −

a(s)(σ(s))1−γ(ηΔ(s))2

4γMγ−1(a(σ(s)))1−γη(s)

]
Δs =∞, (2.96)

then every solution of (1.33) either oscillates or tends to zero as t → ∞.

Proof. By Lemma 2.4 and (2.28), the proof is similar to that of the proof of Theorem 2.25, so
we omit the details.

3. Conclusions

In this paper, we consider the oscillation of second-order Emden-Fowler neutral delay
dynamic equations (1.33). In some sense, our results extend and improve the results in
[7, 32, 34, 35, 40, 41]. For example, Theorems 2.5, 2.11, 2.13, and 2.23 give some answers for the
open problem posed by [34] since these results can be applied to (1.33) when γ < 1, Theorems
2.7, 2.12, 2.14, 2.16, 2.18, 2.20, 2.22, 2.24, and 2.26 correct an error in [35]. Theorem 2.15
includes the results of [7, Theorem 4.4], [32, Theorem 3.1], Theorem 2.11 includes the result
of [32, Theorem 3.5], Theorem 2.11 and Corollary 2.6 include the result of [41, Theorem
2.1(a), m = 2], Corollary 2.8 includes result of [41, Theorem 2.2, m = 2], Theorem 2.13 does
not require the conditions aΔ(t) ≥ 0, so it improves the results of [40], and Theorems 2.17 and
2.21 improve the results in [34] since these results can be applied when aΔ(t) ≤ 0.

The main results in this paper require that
∫∞
t0
Δt/a(t) = ∞; it would be interesting to

find another method to study (1.33) when
∫∞
t0
Δt/a(t) <∞. Additional examples may also be

given; due to the limited space, we leave this to the interested reader.
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[11] Y. Şahiner, “Oscillation of second-order delay differential equations on time scales,” Nonlinear
Analysis, vol. 63, no. 5–7, pp. e1073–e1080, 2005.
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Some oscillation criteria are established for the second-order superlinear neutral differential
equations (r(t)|z′(t)|α−1z′(t))′ + f(t, x(σ(t))) = 0, t ≥ t0, where z(t) = x(t) + p(t)x(τ(t)), τ(t) ≥ t,
σ(t) ≥ t, p ∈ C([t0,∞), [0, p0]), and α ≥ 1. Our results are based on the cases

∫∞
t0

1/r1/α(t)dt = ∞ or∫∞
t0

1/r1/α(t)dt <∞. Two examples are also provided to illustrate these results.

1. Introduction

This paper is concerned with the oscillatory behavior of the second-order superlinear differ-
ential equation

(
r(t)
∣∣z′(t)∣∣α−1

z′(t)
)′

+ f(t, x(σ(t))) = 0, t ≥ t0, (1.1)

where α ≥ 1 is a constant, z(t) = x(t) + p(t)x(τ(t)).
Throughout this paper, we will assume the following hypotheses:

(A1) r ∈ C1([t0,∞),�),r(t) > 0 for t ≥ t0;

(A2) p ∈ C([t0,∞), [0, p0]), where p0 is a constant;

(A3) τ ∈ C1([t0,∞),�), τ ′(t) ≥ τ0 > 0, τ(t) ≥ t;
(A4) σ ∈ C([t0,∞),�), σ(t) ≥ t, τ ◦ σ = σ ◦ τ ;
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(A5) f(t, u) ∈ C([t0,∞)×�,�), and there exists a function q ∈ C([t0,∞), [0,∞)) such that

f(t, u) signu ≥ q(t)|u|α, for u/= 0, t ≥ t0. (1.2)

By a solution of (1.1), we mean a function x ∈ C([Tx,∞),�) for some Tx ≥ t0 which has
the property that r(t)|z′(t)|α−1z′(t) ∈ C1([Tx,∞),�) and satisfies (1.1) on [Tx,∞). We consider
only those solutions x which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. As is customary, a
solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [t0,∞), otherwise, it is
called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

We note that neutral differential equations find numerous applications in electric
networks. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines which rise in high-speed computers where the lossless
transmission lines are used to interconnect switching circuits; see [1].

In the last few years, there are many studies that have been made on the oscillation and
asymptotic behavior of solutions of discrete and continuous equations; see, for example, [2–
28]. Agarwal et al. [5], Chern et al. [6], Džurina and Stavroulakis [7], Kusano and Yoshida [8],
Kusano and Naito [9], Mirzov [10], and Sun and Meng [11] observed some similar properties
between

(
r(t)
∣∣x′(t)∣∣α−1

x′(t)
)′

+ q(t)|x(σ(t))|α−1x(σ(t)) = 0 (1.3)

and the corresponding linear equations

(
r(t)x′(t)

)′ + q(t)x(t) = 0. (1.4)

Baculı́ková [12] established some new oscillation results for (1.3) when α = 1. In 1989, Philos
[13] obtained some Philos-type oscillation criteria for (1.4).

Recently, many results have been obtained on oscillation and nonoscillation of neutral
differential equations, and we refer the reader to [14–35] and the references cited therein. Liu
and Bai [16], Xu and Meng [17, 18], Dong [19], Baculı́ková and Lacková [20], and Jiang and
Li [21] established some oscillation criteria for (1.3) with neutral term under the assumptions
τ(t) ≤ t, σ(t) ≤ t,

R(t) =
∫ t
t0

1
r1/α(s)

ds −→ ∞ as t −→ ∞, (1.5)

∫∞
t0

1
r1/α(t)

dt <∞. (1.6)

Saker and O’Regan [24] studied the oscillatory behavior of (1.1) when 0 ≤ p(t) < 1,
τ(t) ≤ t and σ(t) > t.

Han et al. [26] examined the oscillation of second-order nonlinear neutral differential
equation

(
r(t)
[
x(t) + p(t)x(τ(t))

]′)′ + q(t)f(x(σ(t))) = 0, t ≥ t0, (1.7)
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where τ(t) ≤ t, σ(t) ≤ t, τ ′(t) = τ0 > 0, 0 ≤ p(t) ≤ p0 < ∞, and the authors obtained some
oscillation criteria for (1.7).

However, there are few results regarding the oscillatory problem of (1.1) when τ(t) ≥ t
and σ(t) ≥ t. Our aim in this paper is to establish some oscillation criteria for (1.1) under the
case when τ(t) ≥ t and σ(t) ≥ t.

The paper is organized as follows. In Section 2, we will establish an inequality to prove
our results. In Section 3, some oscillation criteria are obtained for (1.1). In Section 4, we give
two examples to show the importance of the main results.

All functional inequalities considered in this paper are assumed to hold eventually,
that is, they are satisfied for all t large enough.

2. Lemma

In this section, we give the following lemma, which we will use in the proofs of our main
results.

Lemma 2.1. Assume that α ≥ 1, a, b ∈ �. If a ≥ 0, b ≥ 0, then

aα + bα ≥ 1
2α−1 (a + b)α (2.1)

holds.

Proof. (i) Suppose that a = 0 or b = 0. Obviously, we have (2.1). (ii) Suppose that a > 0, b > 0.
Define the function g by g(u) = uα, u ∈ (0,∞). Then g ′′(u) = α(α − 1)uα−2 ≥ 0 for u > 0. Thus,
g is a convex function. By the definition of convex function, for λ = 1/2, a, b ∈ (0,∞), we
have

g

(
a + b

2

)
≤ g(a) + g(b)

2
, (2.2)

that is,

aα + bα ≥ 1
2α−1 (a + b)α. (2.3)

This completes the proof.

3. Main Results

In this section, we will establish some oscillation criteria for (1.1).

First, we establish two comparison theorems which enable us to reduce the problem
of the oscillation of (1.1) to the research of the first-order differential inequalities.
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Theorem 3.1. Suppose that (1.5) holds. If the first-order neutral differential inequality

[
u(t) +

(
p0
)α

τ0
u(τ(t))

]′
+

1
2α−1

Q(t)(R(σ(t)) − R(t1))αu(σ(t)) ≤ 0 (3.1)

has no positive solution for all sufficiently large t1, where Q(t) = min{q(t), q(τ(t))}, then every
solution of (1.1) oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. In view of (1.1), we obtain

(
r(t)
∣∣z′(t)∣∣α−1

z′(t)
)′
≤ −q(t)xα(σ(t)) ≤ 0, t ≥ t1. (3.2)

Thus, r(t)|z′(t)|α−1z′(t) is decreasing function. Now we have two possible cases for z′(t): (i)
z′(t) < 0 eventually, (ii) z′(t) > 0 eventually.

Suppose that z′(t) < 0 for t ≥ t2 ≥ t1. Then, from (3.2), we get

r(t)
∣∣z′(t)∣∣α−1

z′(t) ≤ r(t2)
∣∣z′(t2)∣∣α−1

z′(t2), t ≥ t2, (3.3)

which implies that

z(t) ≤ z(t2) − r1/α(t2)
∣∣z′(t2)∣∣

∫ t
t2

r−1/α(s)ds. (3.4)

Letting t → ∞, by (1.5), we find z(t) → −∞, which is a contradiction. Thus

z′(t) > 0 (3.5)

for t ≥ t2.
By applying (1.1), for all sufficiently large t, we obtain

(
r(t)
(
z′(t)

)α)′ + q(t)xα(σ(t)) + (p0
)α
q(τ(t))xα(σ(τ(t))) +

(
p0
)α

τ ′(t)
(
r(τ(t))

(
z′(τ(t))

)α)′ ≤ 0.

(3.6)

Using inequality (2.1), (3.2), (3.5), τ ◦ σ = σ ◦ τ , and the definition of z, we conclude that

(
r(t)
(
z′(t)

)α)′ +
(
p0
)α

τ0
r(τ(t))

(
z′(τ(t))α

)′ + 1
2α−1

Q(t)zα(σ(t)) ≤ 0. (3.7)
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It follows from (3.2) and (3.5) that u(t) = r(t)(z′(t))α > 0 is decreasing and then

z(t) ≥
∫ t
t2

(
r(s)(z′(s))α

)1/α

r1/α(s)
ds ≥ u1/α(t)

∫ t
t2

1
r1/α(s)

ds = u1/α(t)(R(t) − R(t2)). (3.8)

Thus, from (3.7) and the above inequality, we find

[
u(t) +

(
p0
)α

τ0
u(τ(t))

]′
+

1
2α−1

Q(t)(R(σ(t)) − R(t2))αu(σ(t)) ≤ 0. (3.9)

That is, inequality (3.1) has a positive solution u; this is a contradiction. The proof is
complete.

Theorem 3.2. Suppose that (1.5) holds. If the first-order differential inequality

η′(t) +
τ0

2α−1
(
τ0 +

(
p0
)α)Q(t)(R(σ(t)) − R(t1))αη(σ(t)) ≤ 0 (3.10)

has no positive solution for all sufficiently large t1, where Q is defined as in Theorem 3.1, then every
solution of (1.1) oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we obtain that u(t) = r(t)(z′(t))α is
decreasing, and it satisfies inequality (3.1). Set η(t) = u(t)+ (p0)αu(τ(t))/τ0. From τ(t) ≥ t, we
get

η(t) = u(t) +

(
p0
)α

τ0
u(τ(t)) ≤

(
1 +

(
p0
)α

τ0

)
u(t). (3.11)

In view of the above inequality and (3.1), we see that

η′(t) +
τ0

2α−1
(
τ0 +

(
p0
)α)Q(t)(R(σ(t)) − R(t1))αη(σ(t)) ≤ 0. (3.12)

That is, inequality (3.10) has a positive solution η; this is a contradiction. The proof is
complete.

Next, using Riccati transformation technique, we obtain the following results.

Theorem 3.3. Suppose that (1.5) holds. Moreover, assume that there exists ρ ∈ C1([t0,∞), (0,∞))
such that

lim sup
t→∞

∫ t
t0

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

(
p0
)α

τ0

)
r(s)
(
ρ′+(s)

)α+1

(
ρ(s)

)α
]

ds =∞ (3.13)
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holds, where Q is defined as in Theorem 3.1, ρ′+(t) = max{0, ρ′(t)}. Then every solution of (1.1)
oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we obtain (3.2)–(3.7).

Define a Riccati substitution

ω(t) = ρ(t)
r(t)(z′(t))α

(z(t))α
, t ≥ t2. (3.14)

Thus ω(t) > 0 for t ≥ t2. Differentiating (3.14) we find that

ω′(t) = ρ′(t)
r(t)(z′(t))α

(z(t))α
+ ρ(t)

(
r(t)(z′(t))α

)′
(z(t))α

− αρ(t)r(t)(z
′(t))αzα−1(t)z′(t)

(z(t))2α . (3.15)

Hence, by (3.14) and (3.15), we see that

ω′(t) =
ρ′(t)
ρ(t)

ω(t) + ρ(t)

(
r(t)(z′(t))α

)′
(z(t))α

− α

ρ1/α(t)r1/α(t)
ω(α+1)/α(t). (3.16)

Similarly, we introduce another Riccati substitution

υ(t) = ρ(t)
r(τ(t))(z′(τ(t)))α

(z(t))α
, t ≥ t2. (3.17)

Then υ(t) > 0 for t ≥ t2. From (3.2), (3.5), and τ(t) ≥ t, we have

z′(t) ≥
(
r(τ(t))
r(t)

)1/α

z′(τ(t)). (3.18)

Differentiating (3.17), we find

υ′(t) = ρ′(t)
r(τ(t))(z′(τ(t)))α

(z(t))α
+ ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′
(z(t))α

− αρ(t)r(τ(t))(z
′(τ(t)))αzα−1(t)z′(t)

(z(t))2α .

(3.19)

Therefore, by (3.17), (3.18), and (3.19), we see that

υ′(t) ≤ ρ
′(t)
ρ(t)

υ(t) + ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′
(z(t))α

− α

ρ1/α(t)r1/α(t)
υ(α+1)/α(t). (3.20)



Abstract and Applied Analysis 7

Thus, from (3.16) and (3.20), we have

ω′(t) +

(
p0
)α

τ0
υ′(t) ≤ ρ(t)

(
r(t)(z′(t))α

)′ + ((p0
)α
/τ0
)(
r(τ(t))(z′(τ(t)))α

)′
(z(t))α

+
ρ′(t)
ρ(t)

ω(t) − α

ρ1/α(t)r1/α(t)
ω(α+1)/α(t) +

(
p0
)α

τ0

ρ′(t)
ρ(t)

υ(t)

−
(
p0
)α

τ0

α

ρ1/α(t)r1/α(t)
υ(α+1)/α(t).

(3.21)

It follows from (3.5), (3.7), and σ(t) ≥ t that

ω′(t) +

(
p0
)α

τ0
υ′(t) ≤ − 1

2α−1
ρ(t)Q(t) +

ρ′+(t)
ρ(t)

ω(t) − α

ρ1/α(t)r1/α(t)
ω(α+1)/α(t)

+

(
p0
)α

τ0

ρ′+(t)
ρ(t)

υ(t) −
(
p0
)α

τ0

α

ρ1/α(t)r1/α(t)
υ(α+1)/α(t).

(3.22)

Integrating the above inequality from t2 to t, we obtain

ω(t) −ω(t2) +
(
p0
)α

τ0
υ(t) −

(
p0
)α

τ0
υ(t2)

≤ −
∫ t
t2

1
2α−1

ρ(s)Q(s)ds +
∫ t
t2

[
ρ′+(s)
ρ(s)

ω(s) − α

ρ1/α(s)r1/α(s)
ω(α+1)/α(s)

]
ds

+
∫ t
t2

(
p0
)α

τ0

[
ρ′+(s)
ρ(s)

υ(s) − α

ρ1/α(s)r1/α(s)
υ(α+1)/α(s)

]
ds.

(3.23)

Define

A :=

[
α

ρ1/α(t)r1/α(t)

]α/(α+1)

ω(t), B :=

⎡
⎣ρ′+(t)
ρ(t)

α

α + 1

[
α

ρ1/α(t)r1/α(t)

]−α/(α+1)
⎤
⎦
α

. (3.24)

Using inequality

α + 1
α

AB1/α −A(α+1)/α ≤ 1
α
B(α+1)/α, for A ≥ 0, B ≥ 0 are constants, (3.25)

we have

ρ′+(t)
ρ(t)

ω(t) − α

ρ1/α(t)r1/α(t)
ω(α+1)/α(t) ≤ 1

(α + 1)α+1

r(t)
(
ρ′+(t)

)α+1

ρ(t)α
. (3.26)
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Similarly, we obtain

ρ′+(t)
ρ(t)

υ(t) − α

ρ1/α(t)r1/α(t)
υ(α+1)/α(t) ≤ 1

(α + 1)α+1

r(t)
(
ρ′+(t)

)α+1

ρ(t)α
. (3.27)

Thus, from (3.23), we get

ω(t) −ω(t2) +
(
p0
)α

τ0
υ(t) −

(
p0
)α

τ0
υ(t2)

≤ −
∫ t
t2

[
ρ(s)Q(s)

2α−1
− 1

(α + 1)α+1

(
1 +

(
p0
)α

τ0

)
r(s)
(
ρ′+(s)

)α+1

ρ(s)α

]
ds,

(3.28)

which contradicts (3.13). This completes the proof.

As an immediate consequence of Theorem 3.3 we get the following.

Corollary 3.4. Let assumption (3.13) in Theorem 3.3 be replaced by

lim sup
t→∞

∫ t
t0

ρ(s)Q(s)ds =∞,

lim sup
t→∞

∫ t
t0

r(s)
(
ρ′+(s)

)α+1

(
ρ(s)

)α ds <∞.
(3.29)

Then every solution of (1.1) oscillates.

From Theorem 3.3 by choosing the function ρ, appropriately, we can obtain different
sufficient conditions for oscillation of (1.1), and if we define a function ρ by ρ(t) = 1, and
ρ(t) = t, we have the following oscillation results.

Corollary 3.5. Suppose that (1.5) holds. If

lim sup
t→∞

∫ t
t0

Q(s)ds =∞, (3.30)

where Q is defined as in Theorem 3.1, then every solution of (1.1) oscillates.

Corollary 3.6. Suppose that (1.5) holds. If

lim sup
t→∞

∫ t
t0

[
sQ(s)
2α−1

− 1

(α + 1)α+1

(
1 +

(
p0
)α

τ0

)
r(s)
sα

]
ds = ∞, (3.31)

where Q is defined as in Theorem 3.1, then every solution of (1.1) oscillates.
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In the following theorem, we present a Philos-type oscillation criterion for (1.1).
First, we introduce a class of functions �. Let

� 0 = {(t, s) : t > s ≥ t0}, � = {(t, s) : t ≥ s ≥ t0}. (3.32)

The function H ∈ C(� ,�) is said to belong to the class � (defined by H ∈ �, for short) if

(i) H(t, t) = 0, for t ≥ t0, H(t, s) > 0, for (t, s) ∈ � 0 ;

(ii) H has a continuous and nonpositive partial derivative ∂H(t, s)/∂s on D0 with
respect to s.

We assume that ς(t) and ρ(t) for t ≥ t0 are given continuous functions such that ρ(t) > 0
and differentiable and define

θ(t) =
ρ′(t)
ρ(t)

+ (α + 1)(ς(t))1/α, ψ(t) = ρ(t)
{
[r(t)ς(t)]′ − r(t)(ς(t))(1+α)/α

}
,

φ(t, s) =
r(s)ρ(s)

(α + 1)α+1

(
θ(s) +

∂H(t, s)/∂s
H(t, s)

)α+1

.

(3.33)

Now, we give the following result.

Theorem 3.7. Suppose that (1.5) holds and α is a quotient of odd positive integers. Moreover, let
H ∈ � be such that

lim sup
t→∞

1
H(t, t0)

∫ t
t0

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)(
ψ(s) + φ(t, s)

)]
ds = ∞ (3.34)

holds, where Q is defined as in Theorem 3.1. Then every solution of (1.1) oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we obtain (3.2)–(3.7). Define the Riccati
substitution ω by

ω(t) = ρ(t)
[
r(t)(z′(t))α

(z(t))α
+ r(t)ς(t)

]
, t ≥ t2 ≥ t1. (3.35)

Then, we have

ω′(t) = ρ′(t)
[
r(t)(z′(t))α

(z(t))α
+ r(t)ς(t)

]
+ ρ(t)

[
r(t)(z′(t))α

(z(t))α
+ r(t)ς(t)

]′

=
ρ′(t)
ρ(t)

ω(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(t)(z′(t))α

)′
(z(t))α

− αρ(t)r(t)(z
′(t))α+1

(z(t))α+1
.

(3.36)
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Using (3.35), we get

ω′(t) =
ρ′(t)
ρ(t)

ω(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(t)(z′(t))α

)′
(z(t))α

− αρ(t)
r1/α(t)

[
ω(t)
ρ(t)

− r(t)ς(t)
](1+α)/α

.

(3.37)

Let

A =
ω(t)
ρ(t)

, B = r(t)ς(t). (3.38)

By applying the inequality (see [21, 24])

A(1+α)/α − (A − B)1+α/α ≤ B1/α
[(

1 +
1
α

)
A − 1

α
B

]
, for α =

odd
odd

≥ 1, (3.39)

we see that

[
ω(t)
ρ(t)

− r(t)ς(t)
](1+α)/α

≥ ω(1+α)/α(t)
ρ(1+α)/α(t)

+
1
α
(r(t)ς(t))(1+α)/α − α + 1

α

(r(t)ς(t))1/α

ρ(t)
ω(t). (3.40)

Substituting (3.40) into (3.37), we have

ω′(t) ≤
[
ρ′(t)
ρ(t)

+ (α + 1)(ς(t))1/α
]
ω(t) + ρ(t)

{
[r(t)ς(t)]′ − r(t)(ς(t))(1+α)/α

}

+ ρ(t)

(
r(t)(z′(t))α

)′
(z(t))α

− α

r1/α(t)ρ1/α(t)
ω(1+α)/α(t).

(3.41)

That is,

ω′(t) ≤ θ(t)ω(t) + ψ(t) + ρ(t)
(
r(t)(z′(t))α

)′
(z(t))α

− α

r1/α(t)ρ1/α(t)
ω(1+α)/α(t). (3.42)

Next, define another Riccati transformation u by

u(t) = ρ(t)
[
r(τ(t))(z′(τ(t)))α

(z(t))α
+ r(t)ς(t)

]
, t ≥ t2 ≥ t1. (3.43)
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Then, we have

u′(t) = ρ′(t)
[
r(τ(t))(z′(τ(t)))α

(z(t))α
+ r(t)ς(t)

]
+ ρ(t)

[
r(τ(t))(z′(τ(t)))α

(z(t))α
+ r(t)ς(t)

]′

=
ρ′(t)
ρ(t)

u(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′
(z(t))α

− αρ(t)r(τ(t))(z
′(τ(t)))αz′(t)

(z(t))α+1
.

(3.44)

From (3.2), (3.5), and τ(t) ≥ t, we have that (3.18) holds. Hence, we obtain

u′(t) ≤ ρ
′(t)
ρ(t)

u(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(τ(t))(z′(τ(t)))α

)
(z(t))α

− αρ(t)
(
r(τ(t))(z′(τ(t)))α

)(1+α)/α
r1/α(t)(z(t))α+1

.

(3.45)

Using (3.43), we get

u′(t) ≤ ρ
′(t)
ρ(t)

u(t) + ρ(t)[r(t)ς(t)]′ + ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′
(z(t))α

− αρ(t)
r1/α(t)

[
u(t)
ρ(t)

− r(t)ς(t)
](1+α)/α

.

(3.46)

Let

A =
u(t)
ρ(t)

, B = r(t)ς(t). (3.47)

By applying the inequality (3.39), we see that

[
u(t)
ρ(t)

− r(t)ς(t)
](1+α)/α

≥ u
(1+α)/α(t)
ρ(1+α)/α(t)

+
1
α
(r(t)ς(t))(1+α)/α − α + 1

α

(r(t)ς(t))1/α

ρ(t)
u(t). (3.48)

Substituting (3.48) into (3.46), we have

u′(t) ≤
[
ρ′(t)
ρ(t)

+ (α + 1)(ς(t))1/α
]
u(t) + ρ(t)

{
[r(t)ς(t)]′ − r(t)(ς(t))(1+α)/α

}

+ ρ(t)

(
r(τ(t))(z′(τ(t)))α

)′
(z(t))α

− α

r1/α(t)ρ1/α(t)
u(1+α)/α(t).

(3.49)

That is,

u′(t) ≤ θ(t)u(t) + ψ(t) + ρ(t)
(
r(τ(t))(z′(τ(t)))α

)′
(z(t))α

− α

r1/α(t)ρ1/α(t)
u(1+α)/α(t). (3.50)
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By (3.42) and (3.50), we find

ω′(t) +

(
p0
)α

τ0
u′(t) ≤

(
1 +

(
p0
)α

τ0

)
ψ(t) + ρ(t)

(
r(t)(z′(t))α

)′ + ((p0
)α
/τ0
)(
r(τ(t))(z′(τ(t)))α

)′
(z(t))α

+ θ(t)ω(t) − α

r1/α(t)ρ1/α(t)
ω(1+α)/α(t) +

(
p0
)α

τ0
θ(t)u(t)

−
(
p0
)α

τ0

α

r1/α(t)ρ1/α(t)
u(1+α)/α(t).

(3.51)

In view of the above inequality, (3.5), (3.7), and σ(t) ≥ t, we get

ω′(t) +

(
p0
)α

τ0
u′(t) ≤

(
1 +

(
p0
)α

τ0

)
ψ(t) − ρ(t)Q(t)

2α−1
+ θ(t)ω(t) − α

r1/α(t)ρ1/α(t)
ω(1+α)/α(t)

+

(
p0
)α

τ0
θ(t)u(t) −

(
p0
)α

τ0

α

r1/α(t)ρ1/α(t)
u(1+α)/α(t),

(3.52)

which follows that

∫ t
t2

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)
ψ(s)

]
ds

≤ −
∫ t
t2

H(t, s)ω′(s)ds +
∫ t
t2

H(t, s)θ(s)ω(s)ds

−
∫ t
t2

H(t, s)
αω(1+α)/α(s)
r1/α(s)ρ1/α(s)

ds −
(
p0
)α

τ0

∫ t
t2

H(t, s)u′(s)ds

+

(
p0
)α

τ0

∫ t
t2

H(t, s)θ(s)u(s)ds −
(
p0
)α

τ0

∫ t
t2

H(t, s)
αu(1+α)/α(s)
r1/α(s)ρ1/α(s)

ds.

(3.53)

Using the integration by parts formula and H(t, t) = 0, we have

∫ t
t2

H(t, s)ω′(s)ds = −H(t, t2)ω(t2) −
∫ t
t2

∂H(t, s)
∂s

ω(s)ds,

∫ t
t2

H(t, s)u′(s)ds = −H(t, t2)u(t2) −
∫ t
t2

∂H(t, s)
∂s

u(s)ds.

(3.54)
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So, by (3.53), we obtain

∫ t
t2

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)
ψ(s)

]
ds

≤ H(t, t2)ω(t2) +

(
p0
)α

τ0
H(t, t2)u(t2)

+
∫ t
t2

H(t, s)
[
θ(s) +

∂H(t, s)/∂s
H(t, s)

]
ω(s)ds −

∫ t
t2

H(t, s)
αω(1+α)/α(s)
r1/α(s)ρ1/α(s)

ds

+

(
p0
)α

τ0

∫ t
t2

H(t, s)
[
θ(s) +

∂H(t, s)/∂s
H(t, s)

]
u(s)ds −

(
p0
)α

τ0

∫ t
t2

H(t, s)
αu(1+α)/α(s)
r1/α(s)ρ1/α(s)

ds.

(3.55)

Using the inequality

By −Ay(α+1)/α ≤ αα

(α + 1)α+1

Bα+1

Aα
, (3.56)

where

A =
α

r1/α(s)ρ1/α(s)
, B = θ(s) +

∂H(t, s)/∂s
H(t, s)

, (3.57)

we have

∫ t
t2

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)(
ψ(s) + φ(t, s)

)]
ds ≤ H(t, t2)ω(t2) +

(
p0
)α

τ0
H(t, t2)u(t2)

(3.58)

due to (3.55), which yields that

1
H(t, t2)

∫ t
t2

H(t, s)

[
ρ(s)Q(s)

2α−1
−
(

1 +

(
p0
)α

τ0

)(
ψ(s) + φ(t, s)

)]
ds ≤ ω(t2) +

(
p0
)α

τ0
u(t2),

(3.59)

which contradicts (3.34). The proof is complete.

From Theorem 3.7, we can obtain different oscillation conditions for all solutions of
(1.1) with different choices of H ; the details are left to the reader.

Theorem 3.8. Assume that (1.6) and (3.30) hold. Furthermore, assume that 0 ≤ p(t) ≤ p1 < 1. If

∫∞
t0

[
1

r(s)

∫ s
t0

q(u)du

]1/α

ds =∞, (3.60)

then every solution x of (1.1) oscillates or limt→∞x(t) = 0.
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Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for all t ≥ t1. Then z(t) > 0
for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we obtain (3.2). Thus r(t)|z′(t)|α−1z′(t) is
decreasing function, and there exists a t2 ≥ t1 such that z′(t) > 0, t ≥ t2 or z′(t) < 0, t ≥ t2.

Case 1. Assume that z′(t) > 0, for t ≥ t2. Proceeding as in the proof of Theorem 3.3 and setting
ρ(t) = t, we can obtain a contradiction with (3.31).

Case 2. Assume that z′(t) < 0, for t ≥ t2. Then there exists a finite limit

lim
t→∞

z(t) = l, (3.61)

where l ≥ 0. Next, we claim that l = 0. If not, then for any ε > 0, we have l < z(t) < l + ε,
eventually. Take 0 < ε < l(1 − p1)/p1. We calculate

x(t) = z(t) − p(t)x(τ(t)) > l − p1z(τ(t)) > l − p1(l + ε) = m(l + ε) > mz(t), (3.62)

where

m =
l

l + ε
− p1 =

l
(
1 − p1

) − εp1

l + ε
> 0. (3.63)

From (3.2) and (3.62), we have

(
r(t)
(−z′(t))α)′ ≥ q(t)xα(σ(t)) ≥ (ml)αq(t). (3.64)

Integrating the above inequality from t2 to t, we get

r(t)
(−z′(t))α − r(t2)(−z′(t2))α ≥ (ml)α

∫ t
t2

q(s)ds, (3.65)

which implies

z′(t) ≤ −ml
[

1
r(t)

∫ t
t2

q(s)ds

]1/α

. (3.66)

Integrating the above inequality from t2 to t, we have

z(t) ≤ z(t2) −ml
∫ t
t2

[
1

r(s)

∫ s
t2

q(u)du

]1/α

ds, (3.67)

which yields z(t) → −∞; this is a contradiction. Hence, limt→∞z(t) = 0. Note that 0 < x(t) ≤
z(t). Then, limt→∞x(t) = 0. The proof is complete.
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4. Examples

In this section, we will give two examples to illustrate the main results.

Example 4.1. Consider the following linear neutral equation:

(x(t) + 2x(t + (2n − 1)π))′′ + x(t + (2m − 1)π) = 0, for t ≥ t0, (4.1)

where n and m are positive integers.
Let

r(t) = 1, p(t) = 2, τ(t) = t + (2n − 1)π, q(t) = 1, σ(t) = t + (2m − 1)π. (4.2)

Hence, Q(t) = 1. Obviously, all the conditions of Corollary 3.5 hold. Thus by Corollary 3.5,
every solution of (4.1) is oscillatory. It is easy to verify that x(t) = sin t is a solution of (4.1).

Example 4.2. Consider the following linear neutral equation:

(
e2t
(
x(t) +

1
2
x(t + 3)

)′)′
+
(

e2t+1 +
1
2

e2t−2
)
x(t + 1) = 0, for t ≥ t0, (4.3)

where n and m are positive integers.
Let

r(t) = e2t, p(t) =
1
2
, q(t) = e2t+1 + e2t−2/2, α = 1. (4.4)

Clearly, all the conditions of Theorem 3.8 hold. Thus by Theorem 3.8, every solution of (4.3)
is either oscillatory or limt→∞x(t) = 0. It is easy to verify that x(t) = e−t is a solution of (4.3).

Remark 4.3. Recent results cannot be applied to (4.1) and (4.3) since τ(t) ≥ t and σ(t) ≥ t.

Remark 4.4. Using the method given in this paper, we can get other oscillation criteria for
(1.1); the details are left to the reader.

Remark 4.5. It would be interesting to find another method to study (1.1) when τ ◦ σ /≡σ ◦ τ .
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[4] J. Diblı́k, Z. Svoboda, and Z. Šmarda, “Explicit criteria for the existence of positive solutions for a
scalar differential equation with variable delay in the critical case,” Computers & Mathematics with
Applications. An International Journal, vol. 56, no. 2, pp. 556–564, 2008.

[5] R. P. Agarwal, S.-L. Shieh, and C.-C. Yeh, “Oscillation criteria for second-order retarded differential
equations,” Mathematical and Computer Modelling, vol. 26, no. 4, pp. 1–11, 1997.

[6] J.-L. Chern, W.-C. Lian, and C.-C. Yeh, “Oscillation criteria for second order half-linear differential
equations with functional arguments,” Publicationes Mathematicae Debrecen, vol. 48, no. 3-4, pp. 209–
216, 1996.
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Studies of the University of Žilina. Mathematical Series, vol. 20, no. 1, pp. 11–18, 2006.

[21] J. Jiang and X. Li, “Oscillation of second order nonlinear neutral differential equations,” Applied
Mathematics and Computation, vol. 135, no. 2-3, pp. 531–540, 2003.

[22] Q. Wang, “Oscillation theorems for first-order nonlinear neutral functional differential equations,”
Computers & Mathematics with Applications, vol. 39, no. 5-6, pp. 19–28, 2000.

[23] M. Hasanbulli and Y. V. Rogovchenko, “Oscillation criteria for second order nonlinear neutral
differential equations,” Applied Mathematics and Computation, vol. 215, no. 12, pp. 4392–4399, 2010.

[24] S. H. Saker and D. O’Regan, “New oscillation criteria for second-order neutral functional dynamic
equations via the generalized Riccati substitution,” Communications in Nonlinear Science and Numerical
Simulation, vol. 16, no. 1, pp. 423–434, 2011.
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We study the following second-order neutral functional differential equation with mixed
nonlinearities (r(t)|(u(t) + p(t)u(t − σ))′|α−1(u(t) + p(t)u(t − σ))′)′ + q0(t)|u(τ0(t))|α−1u(τ0(t)) +
q1(t)|u(τ1(t))|β−1u(τ1(t)) + q2(t)|u(τ2(t))|γ−1u(τ2(t)) = 0, where γ > α > β > 0,

∫∞
t0
(1/r1/α(t))dt < ∞.

Oscillation results for the equation are established which improve the results obtained by Sun and
Meng (2006), Xu and Meng (2006), Sun and Meng (2009), and Han et al. (2010).

1. Introduction

This paper is concerned with the oscillatory behavior of the second-order neutral functional
differential equation with mixed nonlinearities

(
r(t)

∣∣∣(u(t) + p(t)u(t − σ))′
∣∣∣α−1(

u(t) + p(t)u(t − σ))′
)′

+ q0(t)|u(τ0(t))|α−1u(τ0(t))

+q1(t)|u(τ1(t))|β−1u(τ1(t)) + q2(t)|u(τ2(t))|γ−1u(τ2(t)) = 0, t ≥ t0,
(1.1)

where γ > α > β > 0 are constants, r ∈ C1([t0,∞), (0,∞)), p ∈ C([t0,∞), [0, 1)), qi ∈
C([t0,∞),�), i = 0, 1, 2, are nonnegative, σ ≥ 0 is a constant. Here, we assume that there
exists τ ∈ C1([t0,∞),�) such that τ(t) ≤ τi(t), τ(t) ≤ t, limt→∞τ(t) = ∞, and τ ′(t) > 0 for
t ≥ t0.
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One of our motivations for studying (1.1) is the application of this type of equations in
real word life problems. For instance, neutral delay equations appear in modeling of networks
containing lossless transmission lines, in the study of vibrating masses attached to an elastic
bar; see the Euler equation in some variational problems, in the theory of automatic control
and in neuromechanical systems in which inertia plays an important role. We refer the reader
to Hale [1] and Driver [2], and references cited therein.

Recently, there has been much research activity concerning the oscillation of second-
order differential equations [3–8] and neutral delay differential equations [9–20]. For the
particular case when p(t) = 0, (1.1) reduces to the following equation:

(
r(t)|u(t)|α−1u(t)

)′
+ q0(t)|u(τ0(t))|α−1u(τ0(t))

+ q1(t)|u(τ1(t))|β−1u(τ1(t)) + q2(t)|u(τ2(t))|γ−1u(τ2(t)) = 0, t ≥ t0.
(1.2)

Sun and Meng [6] established some oscillation criteria for (1.2), under the condition

∫∞
t0

1
r1/α(t)

dt <∞, (1.3)

they only obtained the sufficient condition [6, Theorem 5], which guarantees that every
solution u of (1.2) oscillates or tends to zero.

Sun and Meng [7] considered the oscillation of second-order nonlinear delay
differential equation

(
r(t)

∣∣u′(t)∣∣α−1
u′(t)

)′
+ q0(t)|u(τ0(t))|α−1u(τ0(t)) = 0, t ≥ t0 (1.4)

and obtained some results for oscillation of (1.4), for example, under the case (1.3), they
obtained some results which guarantee that every solution u of (1.4) oscillates or tends to
zero, see [7, Theorem 2.2].

Xu and Meng [10] discussed the oscillation of the second-order neutral delay
differential equation

(
r(t)

∣∣∣(u(t) + p(t)u(t − τ))′∣∣∣α−1(
u(t) + p(t)u(t − τ))′

)′
+ q(t)f(u(σ(t))) = 0, t ≥ t0 (1.5)

and established the sufficient condition [10, Theorem 2.3], which guarantees that every
solution u of (1.5) oscillates or tends to zero.

Han et al. [11] examined the oscillation of second-order neutral delay differential
equation

(
r(t)ψ(u(t))

∣∣∣(u(t) + p(t)u(t − τ))′
∣∣∣α−1(

u(t) + p(t)u(t − τ))′
)′

+ q(t)f(u(σ(t))) = 0, t ≥ t0
(1.6)
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and established some sufficient conditions for oscillation of (1.6) under the conditions (1.3)
and

σ(t) ≤ t − τ. (1.7)

The condition (1.7) can be restrictive condition, since the results cannot be applied on the
equation

(
e2t

(
u(t) +

1
2
u(t − 2)

)′)′
+ λ

(
e2t +

1
2
e2t+2

)
u(t − 1) = 0, t ≥ t0. (1.8)

The aim of this paper is to derive some sufficient conditions for the oscillation
of solutions of (1.1). The paper is organized as follows. In Section 2, we establish some
oscillation criteria for (1.1) under the assumption (1.3). In Section 3, we will give three
examples to illustrate the main results. In Section 4, we give some conclusions for this paper.

2. Main Results

In this section, we give some new oscillation criteria for (1.1).
Below, for the sake of convenience, we denote

z(t) := u(t) + p(t)u(t − σ), R(t) :=
∫ t

t0

1
r1/α(s)

ds,

ξ(t) := r1/α(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds,

Q0(t) :=
(
1 − p(τ0(t))

)α
q0(t), Q1(t) :=

(
1 − p(τ1(t))

)β
q1(t),

Q2(t) :=
(
1 − p(τ2(t))

)γ
q2(t),

ζ0(t) := q0(t)

(
1

1 + p
(
ρ(t)

)
)α

, ζ1(t) := q1(t)

(
1

1 + p
(
ρ(t)

)
)β

,

ζ2(t) := q2(t)

(
1

1 + p
(
ρ(t)

)
)γ

,

h0(t) := q0(t)
(

1
1 + p(t)

)α

, h1(t) := q1(t)
(

1
1 + p(t)

)β

,

h2(t) := q2(t)
(

1
1 + p(t)

)γ

,
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δ(t) :=
∫∞
ρ(t)

1
r1/α(s)

ds, π(t) :=
∫∞
t

1
r1/α(s)

ds, k1 :=
γ − β
γ − α, k2 :=

γ − β
α − β ,

ϕ(t) := q0(t)

(
δ(t)

1 + p
(
ρ(t)

)
)α

+ q1(t)

(
δ(t)

1 + p
(
ρ(t)

)
)β

+ q2(t)

(
δ(t)

1 + p
(
ρ(t)

)
)γ

.

(2.1)

Theorem 2.1. Assume that (1.3) holds, p′(t) ≥ 0, and there exists ρ ∈ C1([t0,∞),�), such that
ρ(t) ≥ t, ρ′(t) > 0, τi(t) ≤ ρ(t) − σ,i = 0, 1, 2. If for all sufficiently large t1,

∫∞{
Rα(τ(t))

[
Q0(t) + [k1Q1(t)]1/k1[k2Q2(t)]1/k2

]
− ατ

′(t)Rα−1(τ(t))r1−1/α(τ(t))
ξα(t)

}
dt =∞,

(2.2)

∫∞{[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα(t) −

( α

α + 1

)α+1 ρ′(t)
δ(t)r1/α

(
ρ(t)

)
}

dt =∞,

(2.3)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that u is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that u(t) > 0 for all large t. The case of u(t) < 0 can be considered
by the same method. From (1.1) and (1.3), we can easily obtain that there exists a t1 ≥ t0 such
that

z(t) > 0, z′(t) > 0,
[
r(t)

∣∣z′(t)∣∣α−1
z′(t)

]′ ≤ 0, (2.4)

or

z(t) > 0, z′(t) < 0,
[
r(t)

∣∣z′(t)∣∣α−1
z′(t)

]′
≤ 0. (2.5)

If (2.4) holds, we have

r(t)
(
z′(t)

)α ≤ r(τ(t))(z′(τ(t)))α, t ≥ t1. (2.6)

From the definition of z, we obtain

u(t) = z(t) − p(t)u(t − σ) ≥ z(t) − p(t)z(t − σ) ≥ (
1 − p(t))z(t). (2.7)

Define

ω(t) = Rα(τ(t))
r(t)(z′(t))α

(z(τ(t)))α
, t ≥ t1. (2.8)
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Then, ω(t) > 0 for t ≥ t1. Noting that z′(t) > 0, we get z(τi(t)) ≥ z(τ(t)) for i = 0, 1, 2. Thus,
from (1.1), (2.7), and (2.8), it follows that

ω′(t) ≤ ατ
′(t)Rα−1(τ(t))
r1/α(τ(t))

r(t)(z′(t))α

(z(τ(t)))α
− Rα(τ(t))(1 − p(τ0(t))

)α
q0(t)

− Rα(τ(t))
[(

1 − p(τ1(t))
)β
q1(t)zβ−α(τ(t)) +

(
1 − p(τ2(t))

)γ
q2(t)zγ−α(τ(t))

]

− αRα(τ(t)) r(t)(z
′(t))α

(z(τ(t)))α+1
z′(τ(t))τ ′(t).

(2.9)

By (2.4), (2.9), and τ ′(t) > 0, we get

ω′(t) ≤ ατ
′(t)Rα−1(τ(t))
r1/α(τ(t))

r(t)(z′(t))α

(z(τ(t)))α
− Rα(τ(t))(1 − p(τ0(t))

)α
q0(t)

− Rα(τ(t))
[(

1 − p(τ1(t))
)β
q1(t)zβ−α(τ(t)) +

(
1 − p(τ2(t))

)γ
q2(t)zγ−α(τ(t))

]
.

(2.10)

In view of (2.4), (2.6), and (2.10), we have

ω′(t) ≤ ατ ′(t)Rα−1(τ(t))
r1/α(τ(t))

r(τ(t))(z′(τ(t)))α

(z(τ(t)))α
− Rα(τ(t))(1 − p(τ0(t))

)α
q0(t)

− Rα(τ(t))
[(

1 − p(τ1(t))
)β
q1(t)zβ−α(τ(t)) +

(
1 − p(τ2(t))

)γ
q2(t)zγ−α(τ(t))

]
.

(2.11)

By (2.4), we obtain

z(τ(t)) = z(τ(t1)) +
∫ t

t1

z′(τ(s))τ ′(s)ds

= z(τ(t1)) +
∫ t

t1

(
1

r(τ(s))

)1/α[
r(τ(s))

(
z′(τ(s))

)α]1/α
τ ′(s)ds

≥ r1/α(τ(t))z′(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds,

(2.12)

that is,

z(τ(t)) ≥ ξ(t)z′(τ(t)). (2.13)

Set

a :=
[
k1Q1(t)zβ−α(τ(t))

]1/k1
, b :=

[
k2Q2(t)zγ−α(τ(t))

]1/k2 , p := k1, q := k2. (2.14)
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Using Young’s inequality

|ab| ≤ 1
p
|a|p + 1

q
|b|q, a, b ∈ �, p > 1, q > 1,

1
p
+

1
q
= 1, (2.15)

we have

Q1(t)zβ−α(τ(t)) +Q2(t)zγ−α(τ(t)) ≥ [k1Q1(t)]1/k1[k2Q2(t)]1/k2 . (2.16)

Hence, by (2.11), (2.13), and (2.16), we obtain

ω′(t) ≤ ατ
′(t)Rα−1(τ(t))r1−1/α(τ(t))

ξα(t)
− Rα(τ(t))

[
Q0(t) + [k1Q1(t)]1/k1[k2Q2(t)]1/k2

]
. (2.17)

Integrating (2.17) from t1 to t, we get

0 < ω(t) ≤ ω(t1), (2.18)

−
∫ t

t1

{
Rα(τ(s))

[
Q0(s) + [k1Q1(s)]1/k1[k2Q2(s)]1/k2

]
− ατ

′(s)Rα−1(τ(s))r1−1/α(τ(s))
ξα(s)

}
ds.

(2.19)

Letting t → ∞ in (2.19), we get a contradiction to (2.2). If (2.5) holds, we define the function
υ by

υ(t) =
r(t)(−z′(t))α−1z′(t)

zα
(
ρ(t)

) , t ≥ t1. (2.20)

Then, υ(t) < 0 for t ≥ t1. It follows from [r(t)|z′(t)|α−1z′(t)]
′ ≤ 0 that r(t)|z′(t)|α−1z′(t) is

nonincreasing. Thus, we have

r1/α(s)z′(s) ≤ r1/α(t)z′(t), s ≥ t. (2.21)

Dividing (2.21) by r1/α(s) and integrating it from ρ(t) to l, we obtain

z(l) ≤ z(ρ(t)) + r1/α(t)z′(t)
∫ l

ρ(t)

ds
r1/α(s)

, l ≥ ρ(t). (2.22)

Letting l → ∞ in the above inequality, we obtain

0 ≤ z(ρ(t)) + r1/α(t)z′(t)δ(t), t ≥ t1, (2.23)
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that is,

r1/α(t)δ(t)
z′(t)

z
(
ρ(t)

) ≥ −1, t ≥ t1. (2.24)

Hence, by (2.20), we have

−1 ≤ υ(t)δα(t) ≤ 0, t ≥ t1. (2.25)

Differentiating (2.20), we get

υ′(t) =

(
r(t)(−z′(t))α−1z′(t)

)′
zα
(
ρ(t)

) − αr(t)(−z′(t))α−1z′(t)zα−1(ρ(t))z′(ρ(t))ρ′(t)
z2α

(
ρ(t)

) , (2.26)

by the above equality and (1.1), we obtain

υ′(t) = −q0(t)
uα(τ0(t))
zα
(
ρ(t)

) − q1(t)
uβ(τ1(t))
zα
(
ρ(t)

) − q2(t)
uγ (τ2(t))
zα

(
ρ(t)

)

−αr(t)(−z
′(t))α−1z′(t)zα−1(ρ(t))z′(ρ(t))ρ′(t)

z2α
(
ρ(t)

) .

(2.27)

Noticing that p′(t) ≥ 0, from [10, Theorem 2.3], we see that u′(t) ≤ 0 for t ≥ t1, so by τi(t) ≤
ρ(t) − σ, i = 0, 1, 2, we have

uα(τ0(t))
zα
(
ρ(t)

) =

(
u(τ0(t))

u
(
ρ(t)

)
+ p

(
ρ(t)

)
u
(
ρ(t) − σ)

)α

=

(
1(

u
(
ρ(t)

)
/u(τ0(t))

)
+ p

(
ρ(t)

)(
u(ρ(t) − σ)/u(τ0(t))

)
)α

≥
(

1
1 + p

(
ρ(t)

)
)α

,

uβ(τ1(t))
zα
(
ρ(t)

) =

(
u(τ1(t))

u
(
ρ(t)

)
+ p

(
ρ(t)

)
u
(
ρ(t) − σ)

)β

zβ−α
(
ρ(t)

)

=

(
1(

u
(
ρ(t)

)
/u(τ1(t))

)
+ p

(
ρ(t)

)(
u
(
ρ(t) − σ)/u(τ1(t))

)
)β

zβ−α
(
ρ(t)

)

≥
(

1
1 + p

(
ρ(t)

)
)β

zβ−α
(
ρ(t)

)
,
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(
uγ(τ2(t))/zα

(
ρ(t)

))
=

(
u(τ2(t))

u
(
ρ(t)

)
+ p

(
ρ(t)

)
u
(
ρ(t) − σ)

)γ

zγ−α
(
ρ(t)

)

=

(
1(

u
(
ρ(t)

)
/u(τ2(t))

)
+ p

(
ρ(t)

)(
u
(
ρ(t) − σ)/u(τ2(t))

)
)γ

zγ−α
(
ρ(t)

)

≥
(

1
1 + p

(
ρ(t)

)
)γ

zγ−α
(
ρ(t)

)
.

(2.28)

On the other hand, from (r(t)(−z′(t))α−1z′(t))
′ ≤ 0, ρ(t) ≥ t, we obtain

z′
(
ρ(t)

) ≤ r1/α(t)
r1/α

(
ρ(t)

)z′(t). (2.29)

Thus, by (2.20) and (2.27), we get

υ′(t) ≤ −
[
ζ0(t) + ζ1(t)zβ−α

(
ρ(t)

)
+ ζ2(t)zγ−α

(
ρ(t)

)] − αρ′(t)
r1/α

(
ρ(t)

)(−υ(t))(α+1)/α. (2.30)

Set

a :=
[
k1ζ1(t)zβ−α

(
ρ(t)

)]1/k1
, b :=

[
k2ζ2(t)zγ−α

(
ρ(t)

)]1/k2 , p := k1, q := k2. (2.31)

Using Young’s inequality (2.15), we obtain

ζ1(t)zβ−α
(
ρ(t)

)
+ ζ2(t)zγ−α

(
ρ(t)

) ≥ [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2 . (2.32)

Hence, from (2.30), we have

υ′(t) ≤ −
[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
− αρ′(t)
r1/α

(
ρ(t)

)(−υ(t))(α+1)/α, (2.33)

that is,

υ′(t) +
[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
+

αρ′(t)
r1/α

(
ρ(t)

) (−υ(t))(α+1)/α ≤ 0, t ≥ t1. (2.34)
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Multiplying (2.34) by δα(t) and integrating it from t1 to t implies that

δα(t)υ(t) − δα(t1)υ(t1) + α
∫ t

t1

r−1/α(ρ(s))ρ′(s)δα−1(s)υ(s)ds

+
∫ t

t1

[
ζ0(s) + [k1ζ1(s)]1/k1[k2ζ2(s)]1/k2

]
δα(s)ds

+ α
∫ t

t1

δα(s)ρ′(s)
r1/α

(
ρ(s)

) (−υ(s))(α+1)/αds ≤ 0.

(2.35)

Set p := (α + 1)/α, q := α + 1, and

a := (α + 1)α/(α+1)δα
2/(α+1)(t)υ(t), b :=

α

(α + 1)α/(α+1)
δ−1/(α+1)(t). (2.36)

Using Young’s inequality (2.15), we get

−αδα−1(t)υ(t) ≤ αδα(t)(−υ(t))(α+1)/α +
( α

α + 1

)α+1 1
δ(t)

. (2.37)

Thus,

−αρ
′(t)δα−1(t)υ(t)
r1/α

(
ρ(t)

) ≤ αρ′(t)δ
α(t)(−υ(t))(α+1)/α

r1/α
(
ρ(t)

) + ρ′(t)
( α

α + 1

)α+1 1
δ(t)r1/α

(
ρ(t)

) . (2.38)

Therefore, (2.35) yields

δα(t)υ(t) ≤ δα(t1)υ(t1),

−
∫ t

t1

{[
ζ0(s) + [k1ζ1(s)]1/k1[k2ζ2(s)]1/k2

]
δα(s) −

( α

α + 1

)α+1 ρ′(s)
δ(s)r1/α

(
ρ(s)

)
}

ds.

(2.39)

Letting t → ∞ in the above inequality, by (2.3), we get a contradiction with (2.25). This
completes the proof of Theorem 2.1.

From Theorem 2.1, when ρ(t) = t, we have the following result.

Corollary 2.2. Assume that (1.3) holds, p′(t) ≥ 0, and τi(t) ≤ t − σ, i = 0, 1, 2. If for all sufficiently
large t1 such that (2.2) holds and

∫∞{[
h0(t) + [k1h1(t)]1/k1[k2h2(t)]1/k2

]
πα(t) −

( α

α + 1

)α+1 1
π(t)r1/α(t)

}
dt =∞, (2.40)

then (1.1) is oscillatory.
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Theorem 2.3. Assume that (1.3) holds, p′(t) ≥ 0, and there exists ρ ∈ C1([t0,∞),�), such that
ρ(t) ≥ t, ρ′(t) > 0, τi(t) ≤ ρ(t) − σ, i = 0, 1, 2. If for all sufficiently large t1 such that (2.2) holds and

∫∞[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα+1(t)dt =∞, (2.41)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that u is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that u(t) > 0 for all large t. The case of u(t) < 0 can be considered
by the same method. From (1.1) and (1.3), we can easily obtain that there exists a t1 ≥ t0 such
that (2.4) or (2.5) holds.

If (2.4) holds, proceeding as in the proof of Theorem 2.1, we obtain a contradiction
with (2.2).

If (2.5) holds, we proceed as in the proof of Theorem 2.1, then we get (2.25) and (2.34).
Multiplying (2.34) by δα+1(t) and integrating it from t1 to t implies that

δα+1(t)υ(t) − δα+1(t1)υ(t1) + (α + 1)
∫ t

t1

r−1/α(ρ(s))ρ′(s)δα(s)υ(s)ds

+
∫ t

t1

[
ζ0(s) + [k1ζ1(s)]1/k1[k2ζ2(s)]1/k2

]
δα+1(s)ds

+ α
∫ t

t1

δα+1(s)ρ′(s)
r1/α

(
ρ(s)

) (−υ(s))(α+1)/αds ≤ 0.

(2.42)

In view of (2.25), we have −υ(t)δα+1(t) ≤ δ(t) <∞, t → ∞. From (1.3), we get

∫ t

t1

−r−1/α(ρ(s))ρ′(s)δα(s)υ(s)ds ≤
∫ t

t1

r−1/α(ρ(s))ρ′(s)ds =
∫ρ(t)

ρ(t1)
r−1/α(u)du < ∞, t −→ ∞,

∫ t

t1

δα+1(s)ρ′(s)
r1/α

(
ρ(s)

) (−υ(s))(α+1)/αds ≤
∫ρ(t)

ρ(t1)
r−1/α(u)du <∞, t −→ ∞.

(2.43)

Letting t → ∞ in (2.42) and using the last inequalities, we obtain

∫∞[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα+1(t)dt <∞, (2.44)

which contradicts (2.41). This completes the proof of Theorem 2.3.

From Theorem 2.3, when ρ(t) = t, we have the following result.
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Corollary 2.4. Assume that (1.3) holds, p′(t) ≥ 0, τi(t) ≤ t − σ, i = 0, 1, 2. If for all sufficiently large
t1 such that (2.2) holds and

∫∞[
h0(t) + [k1h1(t)]1/k1[k2h2(t)]1/k2

]
πα+1(t)dt = ∞, (2.45)

then (1.1) is oscillatory.

Theorem 2.5. Assume that (1.3) holds, p′(t) ≥ 0, and there exists ρ ∈ C1([t0,∞),�), such that
ρ(t) ≥ t, ρ′(t) > 0, τi(t) ≤ ρ(t) − σ, i = 0, 1, 2. If for all sufficiently large t1 such that (2.2) holds and

∫∞
t1

r−1/α(v)

[∫v

t1

ϕ(u)du

]1/α

dv = ∞, (2.46)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that u is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume that u(t) > 0 for all large t. The case of u(t) < 0 can be considered
by the same method. From (1.1) and (1.3), we can easily obtain that there exists a t1 ≥ t0 such
that (2.4) or (2.5) holds.

If (2.4) holds, proceeding as in the proof of Theorem 2.1, we obtain a contradiction
with (2.2).

If (2.5) holds, we proceed as in the proof of Theorem 2.1, and we get (2.21). Dividing
(2.21) by r1/α(s) and integrating it from ρ(t) to l, letting l → ∞, yields

z
(
ρ(t)

) ≥ −r1/α(t)z′(t)
∫∞
ρ(t)

r−1/α(s)ds = −r1/α(t)z′(t)δ(t) ≥ −r1/α(t1)z′(t1)δ(t) := aδ(t).

(2.47)

By (1.1), we have

(
r(t)

(−z′(t))α)′ = q0(t)uα(τ0(t)) + q1(t)uβ(τ1(t)) + q2(t)uγ(τ2(t)). (2.48)

Noticing that p′(t) ≥ 0, from [10, Theorem 2.3], we see that u′(t) ≤ 0 for t ≥ t1, so by τi(t) ≤
ρ(t) − σ, i = 0, 1, 2, we get

u(τi(t))
z
(
ρ(t)

) =
u(τi(t))

u
(
ρ(t)

)
+ p

(
ρ(t)

)
u
(
ρ(t) − σ)

=
1(

u
(
ρ(t)

)
/u(τi(t))

)
+ p

(
ρ(t)

)(
u
(
ρ(t) − σ)/u(τi(t))) ≥

1
1 + p

(
ρ(t)

) .
(2.49)

Hence, we obtain

(
r(t)

(−z′(t))α)′ ≥ bϕ(t), (2.50)
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where b = min{aα, aβ, aγ}. Integrating the above inequality from t1 to t, we have

r(t)
(−z′(t))α ≥ r(t1)(−z′(t1))α + b

∫ t

t1

ϕ(u)du ≥ b
∫ t

t1

ϕ(u)du. (2.51)

Integrating the above inequality from t1 to t, we obtain

z(t1) − z(t) ≥ b1/α
∫ t

t1

r−1/α(v)

[∫v

t1

ϕ(u)du

]1/α

dv, (2.52)

which contradicts (2.46). This completes the proof of Theorem 2.5.

3. Examples

In this section, three examples are worked out to illustrate the main results.

Example 3.1. Consider the second-order neutral delay differential equation (1.8), where λ > 0
is a constant.

Let r(t) = e2t, p(t) = 1/2, σ = 2, q0(t) = λ(2e2t + e2t+2)/2, α = 1, τ0(t) = t − 1, q1(t) =
q2(t) = 0, and τ(t) = τ0(t), then

R(t) =
∫ t

t0

1
r1/α(s)

ds =

(
e−2t0 − e−2t)

2
,

ξ(t) = r1/α(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds =

(
e2(t−t1) − 1

)
2

,

Q0(t) =
q0(t)

2
=
λ
(
2e2t + e2t+2)

4
, ζ0(t) =

2q0(t)
3

=
λ
(
2e2t + e2t+2)

3
.

(3.1)

Setting ρ(t) = t + 1, we have τ0(t) = t − 1 ≤ ρ(t) − σ, δ(t) = e−2t−2/2. Therefore, for all
sufficiently large t1,

∫∞{
Rα(τ(t))

[
Q0(t) + [k1Q1(t)]1/k1[k2Q2(t)]1/k2

]
− ατ

′(t)Rα−1(τ(t))r1−1/α(τ(t))
ξα(t)

}
dt =∞,

∫∞{[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα(t) −

( α

α + 1

)α+1 ρ′(t)
δ(t)r1/α

(
ρ(t)

)
}

dt

=
∫∞ λ

(
2e−2 + 1

) − 3
6

dt = ∞
(3.2)

if λ > 3/(2e−2 + 1). Hence, by Theorem 2.1, (1.8) is oscillatory when λ > 3/(2e−2 + 1).
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Note that [11, Theorem 2.1] and [11, Theorem 2.2] cannot be applied in (1.8), since
τ0(t) > t − 2. On the other hand, applying [11, Theorem 3.2] to that (1.8), we obtain that (1.8)
is oscillatory if λ > 3/(e−2 + 2e−4). So our results improve the results in [11].

Example 3.2. Consider the second-order neutral delay differential equation

(
et
(
u(t) +

1
2
u
(
t − π

4

))′)′
+ 12
√

65etu

(
t − 1

8
arcsin

√
65

65

)
= 0, t ≥ t0. (3.3)

Let r(t) = et, p(t) = 1/2, σ = π/4, q0(t) = 12
√

65et, q1(t) = q2(t) = 0, α = 1, τ0(t) =
t − (arcsin

√
65/65)/8, ρ(t) = t + π/4, and τ(t) = t − π/4, then

R(t) =
∫ t

t0

1
r1/α(s)

ds = e−t0 − e−t, ξ(t) = r1/α(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds = et−t1 − 1,

Q0(t) =
q0(t)

2
= 6
√

65et, ζ0(t) =
2q0(t)

3
= 8
√

65et, δ(t) = e−t−π/4.

(3.4)

Therefore, for all sufficiently large t1,

∫∞{
Rα(τ(t))

[
Q0(t) + [k1Q1(t)]1/k1[k2Q2(t)]1/k2

]
− ατ

′(t)Rα−1(τ(t))r1−1/α(τ(t))
ξα(t)

}
dt =∞,

∫∞{[
ζ0(t) + [k1ζ1(t)]1/k1[k2ζ2(t)]1/k2

]
δα(t) −

( α

α + 1

)α+1 ρ′(t)
δ(t)r1/α

(
ρ(t)

)
}

dt

=
∫∞(

8
√

65e−π/4 − 1
4

)
dt = ∞.

(3.5)

Hence, by Theorem 2.1, (3.3) oscillates. For example, u(t) = sin 8t is a solution of (3.3).

Example 3.3. Consider the second-order neutral differential equation

(
etz′(t)

)′ + e2λ∗tu(λ0t) + q1(t)u1/3(λ1t) + q2(t)u5/3(λ2t) = 0, t ≥ t0, (3.6)

where z(t) = u(t) + u(t − 1)/2, λi > 0 for i = 0, 1, 2, are constants, q1(t) > 0, q2(t) > 0 for t ≥ t0.
Let r(t) = et, σ = 1, q0(t) = e2λ∗t, λ∗ = max{λ0, λ1, λ2}, τi(t) = λit, τ(t) = λt, 0 < λ <

min{λ0, λ1, λ2, 1}, ρ(t) = λ∗t + 1, α = 1, β = 1/3, and γ = 5/3, then k1 = k2 = 2,

R(t) =
∫ t

t0

1
r1/α(s)

ds = e−t0 − e−t,

ξ(t) = r1/α(τ(t))
∫ t

t1

(
1

r(τ(s))

)1/α

τ ′(s)ds = eλ(t−t1) − 1, δ(t) = e−λ∗t−1.

(3.7)
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It is easy to see that (2.2) and (2.41) hold for all sufficiently large t1. Hence, by Theorem 2.3,
(3.6) is oscillatory.

4. Conclusions

In this paper, we consider the oscillatory behavior of second-order neutral functional
differential equation (1.1). Our results can be applied to the case when τi(t) > t, i = 0, 1, 2;
these results improve the results given in [6, 7, 10, 11].
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Oscillation criteria obtained by Kusano and Onose (1973) and by Belohorec (1969) are
extended to second-order sublinear impulsive differential equations of Emden-Fowler type:
x′′(t) + p(t)|x(τ(t))|α−1x(τ(t)) = 0, t /= θk ; Δx′(t)|t=θk + qk |x(τ(θk))|α−1x(τ(θk)) = 0; Δx(t)|t=θk = 0,
(0 < α < 1) by considering the cases τ(t) ≤ t and τ(t) = t, respectively. Examples are inserted to
show how impulsive perturbations greatly affect the oscillation behavior of the solutions.

1. Introduction

We deal with second-order sublinear impulsive differential equations of the form

x′′(t) + p(t)|x(τ(t))|α−1x(τ(t)) = 0, t /= θk,

Δx′(t)
∣∣
t=θk

+ qk|x(τ(θk))|α−1x(τ(θk)) = 0,

Δx(t)|t=θk = 0,

(1.1)

where 0 < α < 1, t ≥ t0, and k ≥ k0 for some t0 ∈ �+ and k0 ∈ �, {θk} is a strictly increasing
unbounded sequence of positive real numbers,

Δz(t)|t=θ := z(θ+) − z(θ−), z
(
θ∓

)
:= lim

t→ θ∓
z(t). (1.2)

Let PLC(J, R) denote the set of all real-valued functions u defined on J such that u is
continuous for all t ∈ J except possibly at t = θk where u(θ±k ) exists and u(θk) := u(θ−k ).
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We assume in the sequel that

(a) p ∈ PLC([t0,∞),�),

(b) {qk} is a sequence of real numbers,

(c) τ ∈ C([t0,∞),�+), τ(t) ≤ t, limt→∞τ(t) =∞.

By a solution of (1.1) on an interval J ⊂ [t0,∞), we mean a function x(t) which is
defined on J such that x, x′, x′′ ∈ PLC(J) and which satisfies (1.1). Because of the requirement
Δx(t)|t=θk = 0 every solution of (1.1) is necessarily continuous.

As usual we assume that (1.1) has solutions which are nontrivial for all large t. Such a
solution of (1.1) is called oscillatory if it has no last zero and nonoscillatory otherwise.

In case there is no impulse, (1.1) reduces to Emden-Fowler equation with delay

x′′(t) + p(t)|x(τ(t))|α−1x(τ(t)) = 0, 0 < α < 1, (1.3)

and without delay

x′′ + p(t)|x|α−1x = 0, 0 < α < 1. (1.4)

The problem of oscillation of solutions of (1.3) and (1.4) has been considered by many
authors. Kusano and Onose [1] see also [2, 3] proved the following necessary and sufficient
condition for oscillation of (1.3).

Theorem 1.1. If p(t) ≥ 0, then a necessary and sufficient condition for every solution of (1.3) to be
oscillatory is that

∫∞
[τ(t)]αp(t)dt = ∞. (1.5)

The condition p(t) ≥ 0 is required only for the sufficiency part, and no similar criteria is
available for p(t) changing sign, except in the case τ(t) = t. Without imposing a sign condition
on p(t), Belohorec [4] obtained the following sufficient condition for oscillation of (1.4).

Theorem 1.2. If

∫∞
tβp(t)dt =∞ (1.6)

for some β ∈ [0, α], then every solution of (1.4) is oscillatory.

Compared to the large body of papers on oscillation of differential equations, there
is only little known about the oscillation of impulsive differential equations; see [5–7] for
equations with delay and [8–13] for equations without delay. For some applications of such
equations, we may refer to [14–18]. The books [19, 20] are good sources for a general theory
of impulsive differential equations.

The object of this paper is to extend Theorems 1.1 and 1.2 to impulsive differential
equations of the form (1.1). The results show that the impulsive perturbations may greatly
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change the oscillatory behavior of the solutions. A nonoscillatory solution of (1.3) or (1.4)
may become oscillatory under impulsive perturbations.

The following two lemmas are crucial in the proof of our main theorems. The first
lemma is contained in [21] and the second one is extracted from [22].

Lemma 1.3. If each Ai is continuous on [a, b], then

∫b

a

∑
s≤θi<b

Ai(s)ds =
∑

a≤θi<b

∫θi

a

Ai(s)ds. (1.7)

Lemma 1.4. Fix J = [a, b], let u, λ ∈ C(J,�+), h ∈ C(�+ ,�+), and c ∈ �+ , and let {λk} a sequence
of positive real numbers. If u(J) ⊂ I ⊂ �+ and

u(t) ≤ c +
∫ t

a

λ(s)h(u(s))ds +
∑

a<θk<t

λkh(u(θk)), t ∈ J, (1.8)

then

u(t) ≤ G−1

{
G(c) +

∫ t

a

λ(s)ds +
∑

a<θk<t

λk

}
, t ∈ [

a, β
)
, (1.9)

where

G(u) =
∫u

u0

dx

h(x)
, u, u0 ∈ I,

β = sup

{
ν ∈ J : G(c) +

∫ t

a

λ(s)ds +
∑

a<θk<t

λk ∈ G(I), a ≤ t ≤ ν
}
.

(1.10)

2. The Main Results

We first establish a necessary and sufficient condition for oscillation of solutions of (1.1) when
τ(t) ≤ t.

Theorem 2.1. If

∫∞
[τ(t)]α

∣∣p(t)∣∣dt + ∞∑
[τ(θk)]α

∣∣qk∣∣ <∞, (2.1)

then (1.1) has a solution x(t) satisfying

lim
t→∞

x(t)
t

= a/= 0. (2.2)
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Proof. Choose t1 ≥ max{1, t0}. In view of Lemma 1.3 by integrating (1.1) twice from t0 to t,
we obtain

x(t) = x(t1) − x′(t1)(t − t1) −
∑

t1≤θk<t
qk|x(τ(θk))|α−1x((τ(θk)))(t − θk)

−
∫ t

t1

(t − s)p(s)|x(τ(s))|α−1x((τ(s)))ds, t ≥ t1.
(2.3)

Set

u(t) = c +
∑

t1≤θk<t

∣∣qk∣∣|x(τ(θk))|α +
∫ t

t1

∣∣p(s)∣∣|x(τ(s))|α ds, t ≥ t1, (2.4)

where c = |x(t1)| + |x′(t1)|. Then

|x(t)| ≤ tu(t), t ≥ t1. (2.5)

Let t2 ≥ t1 be such that τ(t) ≥ t1 for all t ≥ t2. Replacing t by τ(t) in (2.5) and using the increas-
ing character of u(t), we see that

|x(τ(t))| ≤ τ(t)u(t), t ≥ t2. (2.6)

From (2.4), we also see that

u′(t) =
∣∣p(t)∣∣|x(τ(t))|α, t /= θk, (2.7)

Δu(t)|t=θk =
∣∣qk∣∣|x(τ(θk))|α (2.8)

for t ≥ t2 and θk ≥ t2. Now, in view of (2.6) and (2.8), an integration of (2.7) from t2 to t leads
to

u(t) ≤ c +
∫ t

t2

∣∣p(s)∣∣[τ(s)]α[u(s)]αds + ∑
t2≤θk<t

∣∣qk∣∣[τ(θk)]α[u(θk)]α. (2.9)

Applying Lemma 1.4 with

h(x) = xα, λ(s) =
∣∣p(s)∣∣[τ(s)]α, λk =

∣∣qk∣∣[τ(θk)]α, (2.10)

we easily see that

u(t) ≤ G−1

{
G(c) +

∫ t

t2

∣∣p(s)∣∣[τ(s)]αds + ∑
t2≤θk<t

∣∣qk∣∣[τ(θk)]α
}
. (2.11)
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Since

G(u) =
u1−α

1 − α −
u1−α

0

1 − α, G−1(u) =
[
(1 − α)u + u1−α

0

]1/(1−α)
, (2.12)

the inequality (2.11) becomes

u(t) ≤
[
c1−α + (1 − α)

∫ t

t1

∣∣p(s)∣∣[τ(s)]αds + (1 − α)
∑

t1≤θk<t

∣∣qk∣∣[τ(θk)]α
]1/(1−α)

, (2.13)

from which, on using (2.1), we have

u(t) ≤ c1, t ≥ t2, (2.14)

where

c1 =

[
c1−α + (1 − α)

∫∞
t1

∣∣p(s)∣∣[τ(s)]αds + (1 − α)
∑

t1≤θk<∞

∣∣qk∣∣[τ(θk)]α
]1/(1−α)

. (2.15)

In view of (2.5), (2.6), and (2.14) we see that

|x(t)| ≤ c1t, |x(τ(t))| ≤ c1τ(t), t ≥ t2. (2.16)

To complete the proof it suffices to show that x′(t) approaches a nonzero limit as t
tends to∞. To see this we integrate (1.1) from t2 to t to get

x′(t) = x′(t1) −
∫ t

t2

p(s)|x(τ(s))|α−1x(τ(s))ds −
∑

t2≤θk<t
qk|x(τ(θk))|α−1x(τ(θk)). (2.17)

Employing (2.16) we have

∫∞
t2

∣∣p(s)x(τ(s))∣∣αds ≤ cα1
∫∞
t2

∣∣p(s)∣∣[τ(s)]αds < ∞,
∑

t2≤θk<∞

∣∣qkx(τ(θk))∣∣α ≤ cα1
∑

t2≤θk<∞

∣∣qk∣∣[τ(θk)]α < ∞.
(2.18)

Therefore, limt→∞x′(t) = L exists. Clearly, we can make L/= 0 by requiring that

x′(t2) > cα1

[∫∞
t2

∣∣p(s)∣∣[τ(s)]αds + ∑
t2≤θk<∞

∣∣qk∣∣[τ(θk)]α
]
, (2.19)

which is always possible by arranging t2.
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Theorem 2.2. Suppose that p and {qk} are nonnegative. Then every solution of (1.1) is oscillatory if
and only if

∫∞
[τ(t)]αp(t)dt +

∞∑
[τ(θk)]αqk = ∞. (2.20)

Proof. Let (2.20) fail to hold. Then, by Theorem 2.1 we see that there is a solution x(t) which
satisfies (2.2). Clearly, such a solution is nonoscillatory. This proves the necessity.

To show the sufficiency, suppose that (2.20) is valid but there is a nonoscillatory
solution x(t) of (1.1). We may assume that x(t) is eventually positive; the case x(t) being
eventually negative is similar. Clearly, there exists t1 ≥ t0 such that x(τ(t)) > 0 for all t ≥ t1.
From (1.1), we have that

x′′(t) ≤ 0 for t ≥ t1, t /= θk. (2.21)

Thus, x′(t) is decreasing on every interval not containing t = θk. From the impulse conditions
in (1.1), we also have Δx′(θk) ≤ 0. Therefore, we deduce that x′(t) is nondecreasing on [t1,∞).

We may claim that x′(t) is eventually positive. Because if x′(t) < 0 eventually, then x(t)
becomes negative for large values of t. This is a contradiction.

It is now easy to show that

x(t) ≥ (t − t1)x′(t), t ≥ t1. (2.22)

Therefore,

x(t) ≥ t

2
x′(t), t ≥ t2 = 2t1. (2.23)

Let t3 ≥ t2 be such that τ(t) ≥ t2 for t ≥ t3. Using (2.23) and the nonincreasing character of
x′(t), we have

x(τ(t)) ≥ τ(t)
2
x′(t), t ≥ t3, (2.24)

and so, by (1.1),

x′′(t) + 2−αp(t)[τ(t)]α
[
x′(t)

]α ≤ 0, t /= θk. (2.25)

Dividing (2.25) by [x′(t)]α and integrating from t3 to t, we obtain

∑
t3≤θk<t

{[
x′(θk)

]1−α − [x′(θk) − qk[x(τ(θk))]α]1−α}

+
[
x′(t)

]1−α − [x′(t3)]1−α + (1 − α)2−α
∫ t

t3

[τ(t)]αp(s)ds ≤ 0

(2.26)
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which clearly implies that

∑
t3≤θk<t

ak + (1 − α)2−α
∫ t

t3

[τ(t)]αp(s)ds ≤ [
x′(t3)

]1−α
, (2.27)

where

ak =
[
x′(θk)

]1−α
[

1 −
(

1 − qk[x(τ(θk))]
α

x′(θk)

)]1−α
. (2.28)

Since 1 − (1 − u)1−α ≥ (1 − α)u for u ∈ (0,∞) and 0 < α < 1, by taking

u =
qk[x(τ(θk))]α

x′(θk)
, (2.29)

we see from (2.28) that

ak ≥ (1 − α)qk[x(τ(θk))]
α

[x′(θk)]α
. (2.30)

But, (2.24) gives

x(τ(θk)) ≥ τ(θk)
2

x′(τ(θk)) ≥ τ(θk)2
x′(θk), (2.31)

and hence

ak ≥ (1 − α)2−α[τ(θk)]αqk. (2.32)

Finally, (2.27) and (2.32) result in

∫∞
t3

[τ(t)]αp(t)dt +
∑

t3<θk<∞
[τ(θk)]αqk <∞, (2.33)

which contradicts (2.20). The proof is complete.

Example 2.3. Consider the impulsive delay differential equation

x′′(t) + (t − 1)−2|x(t − 1)|−1/2x(t − 1) = 0, t /=k,

Δx′(t)
∣∣
t=k + (k − 1)−1|x(k − 1)|−1/2x(k − 1) = 0,

Δx(t)|t=k = 0,

(2.34)

where t ≥ 2 and i ≥ 2.
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We see that τ(t) = t − 1, α = 1/2, p(t) = (t − 1)−2, and qk = (k − 1)−1, θk = k. Since

∫∞
(t − 1)−3/2dt +

∞∑
(k − 1)−1/2 =∞, (2.35)

applying Theorem 2.2 we conclude that every solution of (2.34) is oscillatory.
We note that if the equation is not subject to any impulse condition, then, since

∫∞
(t − 1)−5/2dt < ∞, (2.36)

the equation

x′′(t) + (t − 1)−2|x(t − 1)|−1/2x(t − 1) = 0 (2.37)

has a nonoscillatory solution by Theorem 1.1.

Let us now consider (1.1) when τ(t) = t. That is,

x′′ + p(t)|x|α−1x = 0, t /= θk,

Δx′
∣∣
t=θk

+ qk|x|α−1x = 0,

Δx|t=θk = 0,

(2.38)

where 0 < α < 1 and p qk are given by (a) and (b).
The following theorem is an extension of Theorem 1.2. Note that no sign condition is

imposed on p(t) and {qk}.

Theorem 2.4. If

∫∞
tβp(t)dt +

∞∑
θ
β

k
qk =∞ (2.39)

for some β ∈ [0, α], then every solution of (2.38) is oscillatory.

Proof. Assume on the contrary that (2.38) has a nonoscillatory solution x(t) such that x(t) > 0
for all t ≥ t0 for some t0 ≥ 0. The proof is similar when x(t) is eventually negative. We set

w(t) =
(
t−1x(t)

)1−α
, t ≥ t0. (2.40)

It is not difficult to see that

w′(t) = (α − 1)tα−2[x(t)]1−α + (1 − α)tα−1[x(t)]−αx′(t), t /= θk, (2.41)
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and hence

Δw′
∣∣
t=θk

= (1 − α)qkθα−1
k . (2.42)

From (2.41), we have

tβ−1−α
(
t2w′(t)

)′
= (1 − α)tβx′′(t)x−α(t)

− α(1 − α)tβ−2x−α−1(t)
[
tx′(t) − x(t)]2

,

(2.43)

and so

tβ−1−α
(
t2w′(t)

)′
≤ (1 − α)tβp(t), t /= θk. (2.44)

In view of (2.42), by a straightforward integration of (2.44), we have

∫ t

t0

sβ−1−α
(
s2w′(s)

)′
ds = sβ−1−αs2w′(s)

∣∣∣t
t0
−

∑
t0≤θk<t

Δ
(
tβ−α+1w′(t)

)∣∣∣
t=θk

−
∫ t

t0

(
β − 1 − α)sβ−αw′(s)ds

= tβ−α+1w′(t) − tβ−α+1
0 w′(t0) −

∑
t0≤θk<t

(1 − α)qkθβk

−(β − α − 1
)[
sβ−αw(s)

]∣∣∣t
t0

+
(
β − α)(β − α − 1

) ∫ t

t0

sβ−1−αw(s)ds,

(2.45)

which combined with (2.44) leads to

tβ−α+1w′(t) ≤ tβ−α+1
0 w′(t0) −

(
β − α + 1

)
t
β−α
0 w(t0)

+ (1 − α)
[ ∑
t0≤θk<t

θ
β

k
qk +

∫ t

t0

sβp(s)ds

]
.

(2.46)

Finally, by using (2.39) in the last inequality, we see that there is a t1 > t0 such that

w′(t) ≤ −tα−β−1, t ≥ t1, (2.47)

which, however, implies that w(t) → −∞ as t → ∞, a contradiction with x(t) > 0. The proof
is complete.



10 Abstract and Applied Analysis

Example 2.5. Consider the impulsive differential equation

x′′ + t−7/3|x|−1/2x = 0, t /=k,

Δx′
∣∣
t=k + k

−1/6|x|−1/2x = 0,

Δx|t=k = 0,

(2.48)

where t ≥ 1 and i ≥ 1.
We have that p(t) = t7/3, α = 1/2, and qk = k−1/6, θk = k. Taking β = 1/3 we see from

(2.38) that

∫∞
t−2dt +

∞∑
k−1/3 = ∞. (2.49)

Since the conditions of Theorem 2.4 are satisfied, every solution of (2.48) is oscillatory.
Note that if the impulses are absent, then, since

∫∞
t−2dt <∞, (2.50)

the equation

x′′ + t−7/3|x|−1/2x = 0 (2.51)

is oscillatory by Theorem 1.2.
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[13] A. Özbekler and A. Zafer, “Picone’s formula for linear non-selfadjoint impulsive differential
equations,” Journal of Mathematical Analysis and Applications, vol. 319, no. 2, pp. 410–423, 2006.

[14] G. Ballinger and X. Liu, “Permanence of population growth models with impulsive effects,”
Mathematical and Computer Modelling, vol. 26, no. 12, pp. 59–72, 1997.

[15] Z. Lu, X. Chi, and L. Chen, “Impulsive control strategies in biological control of pesticide,” Theoretical
Population Biology, vol. 64, no. 1, pp. 39–47, 2003.

[16] J. Sun, F. Qiao, and Q. Wu, “Impulsive control of a financial model,” Physics Letters A, vol. 335, no. 4,
pp. 282–288, 2005.

[17] S. Tang and L. Chen, “Global attractivity in a “food-limited” population model with impulsive
effects,” Journal of Mathematical Analysis and Applications, vol. 292, no. 1, pp. 211–221, 2004.

[18] S. Tang, Y. Xiao, and D. Clancy, “New modelling approach concerning integrated disease control and
cost-effectivity,” Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 3, pp. 439–471, 2005.

[19] V. Lakshmikantham, D. D. Baı̆nov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6
of Series in Modern Applied Mathematics, World Scientific, Teaneck, NJ, USA, 1989.

[20] A. M. Samoı̆lenko and N. A. Perestyuk, Impulsive Differential Equations, vol. 14 of World Scientific Series
on Nonlinear Science. Series A: Monographs and Treatises, World Scientific, River Edge, NJ, USA, 1995.

[21] M. Akhmetov and R. Sejilova, “The control of the boundary value problem for linear impulsive
integro-differential systems,” Journal of Mathematical Analysis and Applications, vol. 236, no. 2, pp. 312–
326, 1999.

[22] D. Bainov and V. Covachev, Impulsive Differential Equations with a Small Parameter, vol. 24 of Series on
Advances in Mathematics for Applied Sciences, World Scientific, River Edge, NJ, USA, 1994.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 635926, 12 pages
doi:10.1155/2011/635926

Research Article
Oscillatory Periodic Solutions for
Two Differential-Difference Equations
Arising in Applications

Rong Cheng

College of Mathematics and Physics, Nanjing University of Information Science and Technology,
Nanjing 210044, China

Correspondence should be addressed to Rong Cheng, mathchr@163.com

Received 28 November 2010; Revised 31 January 2011; Accepted 2 March 2011

Academic Editor: Elena Braverman

Copyright q 2011 Rong Cheng. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study the existence of oscillatory periodic solutions for two nonautonomous differential-
difference equations which arise in a variety of applications with the following forms: ẋ(t) =
−f(t, x(t − r)) and ẋ(t) = −f(t, x(t − s)) − f(t, x(t − 2s)), where f ∈ C(� ×�,�) is odd with respect
to x, and r, s > 0 are two given constants. By using a symplectic transformation constructed by
Cheng (2010) and a result in Hamiltonian systems, the existence of oscillatory periodic solutions
of the above-mentioned equations is established.

1. Introduction and Statement of Main Results

Furumochi [1] studied the following equation:

ẋ(t) = a − sin(x(t − r)), (1.1)

with t ≥ 0, a ≥ 0, r > 0, which models phase-locked loop control of high-frequency generators
and is widely applied in communication systems. Obviously, (1.1) is a special case of the
following differential-difference equations:

ẋ(t) = −αf(x(t − r)), (1.2)

where α is a real parameter. In fact, a lot of differential-difference equations occurring widely
in applications and describing many interesting types of phenomena can also be written in
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the form of (1.2) by making an appropriate change of variables. For example, the following
differential-difference equation:

ẋ(t) = −αx(t − 1)(1 + x(t)) (1.3)

arises in several applications and has been studied by many researchers. Equation (1.3) was
first considered by Cunningham [2] as a nonlinear growth model denoting a mathematical
description of a fluctuating population. Subsequently, (1.3) was proposed by Wright [3] as
occurring in the application of probability methods to the theory of asymptotic prime number
density. Jones [4] states that (1.3) may also describe the operation of a control system working
with potentially explosive chemical reactions, and quite similar equations arise in economic
studies of business cycles. Moreover, (1.3) and its similar ones were studied in [5] on ecology.

For (1.3), we make the following change of variables:

y = ln(1 + x). (1.4)

Then, (1.3) can be changed to the form of (1.2)

ẏ(t) = −f(y(t − 1)
)
, (1.5)

where f(y) = α(ey − 1).
Although (1.2) looks very simple on surface, Saupe’s results [6] of a careful numerical

study show that (1.2) displays very complex dynamical behaviour. Moreover, little of them
has been proved to the best of the author’s knowledge.

Due to a variety of applications, (1.2) attracts many authors to study it. In 1970s and
1980s of the last century, there has been a great deal of research on problems of the existence of
periodic solutions [1, 4, 7–10], slowly oscillating solutions [11], stability of solutions [12–14],
homoclinic solutions [15], and bifurcations of solutions [6, 16, 17] to (1.2).

Since, generally, the main tool used to conclude the existence of periodic solutions
is various fixed-point theorems, here we want to mention Kaplan and Yorke’s work on the
existence of oscillatory periodic solutions of (1.5) in [7]. In [7], they considered the following
equations:

ẋ(t) = −f(x(t − 1)),

ẋ(t) = −f(x(t − 1)) − f(x(t − 2)),
(1.6)

where f is continuous, xf(x) > 0 for x /= 0, and f satisfies some asymptotically linear
conditions at 0 and∞. The authors introduced a new technique for establishing the existence
of oscillatory periodic solutions of (1.6). They reduced the search for periodic solutions of
(1.6) to the problem of finding periodic solutions for a related systems of ordinary differential
equations. We will give more details about the reduction method in Section 2.

In 1990s of the last century and at the beginning of this century, some authors [18–
21] applied Kaplan and Yorke’s original ideas in [7] to study the existence and multiplicity
of periodic solutions of (1.2) with more than two delays. See also [22, 23] for some other
methods.
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The previous work mainly focuses on the autonomous differential-difference equation
(1.2). However, some papers [13, 24] contain some interesting nonautonomous differential
difference equations arising in economics and population biology where the delay r of (1.2)
depends on time t instead of a positive constant. Motivated by the lack of more results on
periodic solutions for nonautonomous differential-difference equations, in the present paper,
we study the following equations:

ẋ(t) = −f(t, x(t − r)), (1.7)

ẋ(t) = −f(t, x(t − s)) − f(t, x(t − 2s)), (1.8)

where f(t, x) ∈ C(� × �,�) is odd with respect to x and r = π/2, s = π/3. Here, we borrow
the terminology “oscillatory periodic solution” for (1.7) and (1.8) since f(t, x) is odd with
respect to x.

Now, we state our main results as follows.

Theorem 1.1. Suppose that f(t, x) ∈ C(�×�,�) is odd with respect to x and r-periodic with respect
to t. Suppose that

lim
x→ 0

f(t, x)
x

= ω0(t), lim
x→∞

f(t, x)
x

= ω∞(t) (1.9)

exist. Write α0 = (1/r)
∫ r

0 ω0(t)dt and α∞ = (1/r)
∫ r

0 ω∞(t)dt. Assume that

(H1) α0 /= ± k, α∞ /= ± k, for all k ∈ �+,

(H2) there exists at least an integer k0 with k0 ∈ �+ such that

min{α0, α∞} < ±k0 < max{α0, α∞}, (1.10)

then (1.7) has at least one nontrivial oscillatory periodic solution x satisfying x(t) = −x(t − π).

Theorem 1.2. Suppose that f(t, x) ∈ C(�×�,�) is odd with respect to x and s-periodic with respect
to t. Let ω0(t) and ω∞(t) be the two functions defined in Theorem 1.1. Write β0 = (1/s)

∫s
0 ω0(t)dt

and β∞ = (1/s)
∫s

0 ω∞(t)dt. Assume that

(H3) β0, 3β0 /= ± k, β∞, 3β∞ /= ± k, for all k ∈ �+,

(H4) there exists at least an integer k0 with k0 ∈ �+ such that

min
{
β0, β∞

}
< ±k0 < max

{
β0, β∞

}
(1.11)

or

min
{
β0, β∞

}
< ±k0

3
< max

{
β0, β∞

}
, (1.12)

then (1.8) has at least one nontrivial oscillatory periodic solution x satisfying x(t) = −x(t − π).
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Remark 1.3. Theorems 1.1 and 1.2 are concerned with the existence of periodic solutions
for nonautonomous differential-difference equations (1.7) and (1.8). Therefore, our results
generalize some results obtained in the references. We will use a symplectic transformation
constructed in [25] and a theorem of [26] to prove our main results.

2. Proof of the Main Results

Consider the following nonautonomous Hamiltonian system:

ż(t) = J∇zH(t, z), (2.1)

where J =
(

0 −IN
IN 0

)
is the standard symplectic matrix, IN is the identity matrix in �

N ,

∇zH(t, z) denotes the gradient of H(t, z) with respect to z, and H ∈ C1(� × �2N ,�) is the
Hamiltonian function. Suppose that there exist two constant symmetric matrices h0 and h∞
such that

∇zH(t, z) − h0z = o(|z|), as |z| −→ 0,

∇zH(t, z) − h∞z = o(|z|), as |z| −→ ∞.
(2.2)

We call the Hamiltonian system (2.1) asymptotically linear both at 0 and ∞ with constant
coefficients h0 and h∞ because of (2.2).

Now, we show that the reduction method in [7] can be used to study oscillatory
periodic solutions of (1.7) and (1.8). More precisely, let x(t) be any solution of (1.7) satisfying
x(t) = −x(t − 2r). Let x1(t) = x(t),x2(t) = x(t − r), then X(t) = (x1(t), x2(t))� satisfies

d

dt
X(t) = A2Φ1(t, X(t)), where A2 =

(
0 −1

1 0

)
, (2.3)

and Φ1(t, X) = (f(t, x1), f(t, x2))
�. What is more, if X(t) is a solution of (2.3) with the follow-

ing symmetric structure

x1(t) = −x2(t − r), x2(t) = x1(t − r), (2.4)

then x(t) = x1(t) gives a solution to (1.7) with the property x(t) = −x(t − 2r). Thus, solving
(1.7) within the class of the solutions with the symmetry x(t) = −x(t − 2r) is equivalent to
finding solutions of (2.3) with the symmetric structure (2.4).

Since A2 is indeed the standard symplectic matrix in the plane �2 , the system (2.3) can
be written as the following Hamiltonian system:

ẏ(t) = A2∇yH
∗(t, y), (2.5)

where H∗(t, y) =
∫y1

0 f(t, x)dx +
∫y2

0 f(t, x)dx for each y = (y1, y2)
� ∈ �2 .
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From the assumptions of Theorem 1.1, we have

f(t, x) = ω0(t)x + o(|x|) as |x| −→ 0,

f(t, x) = ω∞(t)x + o(|x|) as |x| −→ ∞.
(2.6)

Hence, the gradient of the Hamiltonian function H∗(t, y) satisfies

∇yH
∗(t, y) = ω0(t)y + o

(∣∣y∣∣) as
∣∣y∣∣ −→ 0,

∇yH
∗(t, y) = ω∞(t)y + o

(∣∣y∣∣) as
∣∣y∣∣ −→ ∞. (2.7)

By (2.7), according to [25], there is a symplectic transformation y = Ψ1(t, z) under
which the Hamiltonian system (2.5) can be transformed to the following Hamiltonian system:

ż(t) = A2∇zH̃(t, z), (2.8)

satisfying

∇zH̃(t, z) = α0I2z + o(|z|) as |z| −→ 0,

∇zH̃(t, z) = α∞I2z + o(|z|) as |z| −→ ∞,
(2.9)

where α0 and α∞ are two constants defined in Theorem 1.1.
By (2.9), we have the following.

Lemma 2.1. The Hamiltonian system (2.8) is asymptotically linear both at 0 and ∞ with constant
coefficients α0I2 and α∞I2.

Let x(t) be any solution of (1.8) satisfying x(t) = −x(t − 3s). Let x1(t) = x(t), x2(t) =
x(t − s), and x3(t) = x(t − 2s), then Y(t) = (x1(t), x2(t), x3(t))� satisfies

d

dt
Y(t) = A3Φ2(t, Y(t)), where A3 =

⎛
⎜⎜⎝

0 −1 −1

1 0 −1

1 1 0

⎞
⎟⎟⎠, (2.10)

and Φ2(t, Y) = (f(t, x1), f(t, x2), f(t, x3))�.
Following the ideas in [18], (2.10) can be reduced to a two-dimensional Hamiltonian

system

ẏ(t) = A2∇yH
∗∗(t, y), (2.11)

where H∗∗(t, y) =
∫y1

0 f(t, x)dx +
∫y2

0 f(t, x)dx +
∫y2−y1

0 f(t, x)dx for each y = (y1, y2)
� ∈ �2 .
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From the assumptions of Theorem 1.1, (2.6), the gradient of the Hamiltonian function
H∗∗(t, y) satisfies

∇yH
∗∗(t, y) = ω0(t)My + o

(∣∣y∣∣) as
∣∣y∣∣ −→ 0,

∇yH
∗∗(t, y) = ω∞(t)My + o

(∣∣y∣∣) as
∣∣y∣∣ −→ ∞, (2.12)

where M =
( 2 −1
−1 2

)
is a symmetric positive definite matrix.

It follows from (2.12) and [25] that there exists a symplectic transformation y = Ψ2(t, z)
under which the Hamiltonian system (2.11) can be changed to the following Hamiltonian
system:

ż(t) = A2∇zĤ(t, z), (2.13)

satisfying

∇zĤ(t, z) = β0Mz + o(|z|) as |z| −→ 0,

∇zĤ(t, z) = β∞Mz + o(|z|) as |z| −→ ∞,
(2.14)

where β0 and β∞ are two constants defined in Theorem 1.2.
Then, (2.14) yields the following.

Lemma 2.2. The Hamiltonian system (2.13) is asymptotically linear both at 0 and∞ with constant
coefficients β0M and β∞M.

Remark 2.3. In order to find periodic solutions of (1.7) and (1.8), we only need to seek periodic
solutions of the Hamiltonian systems (2.8) and (2.13) with the symmetric structure (2.4),
respectively.

In the rest of this paper, we will work in the Hilbert space E = W1/2,2(S1,�2), which
consists of all z(t) in L2(S1,�2) whose Fourier series

z(t) = a0 +
+∞∑
k=1

(ak cos kt + bk sinkt) (2.15)

satisfies

|a0|2 + 1
2

+∞∑
k=1

k
(
|ak|2 + |bk|2

)
< +∞. (2.16)

The inner product on E is defined by

〈z1, z2〉 =
(
a
(1)
0 , a

(2)
0

)
+

1
2

∞∑
k=1

k
[(
a
(1)
k
, a

(2)
k

)
+
(
b
(1)
k
, b

(2)
k

)]
, (2.17)
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where zi = a
(i)
0 +
∑+∞

k=1(a
(i)
k

cos kt+b(i)
k

sin kt) (i = 1, 2), the norm ‖z‖2 = 〈z, z〉, and (·, ·) denotes
the inner product in �2 .

In order to obtain solutions of (2.8) with the symmetric structure (2.4), we define a
matrix T2 with the following form:

T2 =

(
0 −1

1 0

)
. (2.18)

Then, by T2, for any z(t) ∈ E, define an action δ1 on z by

δ1z(t) = T2z(t − r). (2.19)

Then by a direct computation, we have that δ2
1z(t) = −z(t − 2r) = −z(t −π), δ4

1z(t) = z(t), and
G = {δ1, δ

2
1, δ

3
1, δ

4
1} is a compact group action over E. If δ1z(t) = z(t) holds, then through a

straightforward check, we have that z(t) has the symmetric structure (2.4).

Lemma 2.4. Write SE = {z ∈ E : δ1z(t) = z(t)}, then SE is a subspace of E with the following form:

SE =

{
z(t) =

∞∑
k=1

(a2k−1 cos(2k − 1)t + b2k−1 sin(2k − 1)t) :

a2k−1,1 = (−1)k+1b2k−1,2, b2k−1,1 = (−1)ka2k−1,2

}
,

(2.20)

where a2k−1 = (a2k−1,1, a2k−1,2)� and b2k−1 = (b2k−1,1, b2k−1,2)�.

Proof. Write z(t) = (z1(t), z2(t))�, where z1(t) = a0,1 +
∑+∞

k=1(ak,1 cos kt + bk,1 sin kt), z2(t) =
a0,2 +

∑+∞
k=1(ak,2 cos kt + bk,2 sinkt). By δ1z = z and the definition of the action δ1, we have

(z1(t), z2(t))� =
(
−z2

(
t − π

2

)
, z1

(
t − π

2

))�
, (2.21)

which yields

a0,1 +
+∞∑
k=1

(ak,1 cos kt + bk,1 sin kt)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−a0,2 −
+∞∑
n=1

(−1)n[a2n,2 cos 2nt + b2n,2 sin 2nt], for k = 2n is even,

−a0,2 −
+∞∑
n=1

(−1)n−1[a2n−1,2 sin(2n − 1)t − b2n−1,2 cos(2n − 1)t], for k = 2n − 1 is odd.

(2.22)
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Then, we have

a0,1 = −a0,2, a2n,1 = (−1)n+1a2n,2, b2n,1 = (−1)n+1b2n,2,

a2n−1,1 = (−1)n+1b2n−1,2, b2n−1,1 = (−1)na2n−1,2.
(2.23)

Similarly, by z2(t) = z1(t − (π/2)), one has

a0,2 = a0,1, a2n,2 = (−1)na2n,1, b2n,2 = (−1)nb2n,1,

a2n−1,2 = (−1)nb2n−1,1, b2n−1,2 = (−1)n−1a2n−1,1.
(2.24)

Therefore, a0,2 = a0,1 = 0, a2n,1 = (−1)n+1a2n,2 = (−1)n+1(−1)na2n,1, that is, a2n,1 = 0. Similarly,
a2n,2 = b2n,1 = b2n,2 = 0. Thus, for z(t) ∈ SE,

z(t) =
∞∑
k=1

[a2k−1 cos(2k − 1)t + b2k−1 sin(2k − 1)t], (2.25)

where a2k−1,1 = (−1)k+1b2k−1,2, b2k−1,1 = (−1)ka2k−1,2.
Moreover, for any z1(t), z2(t) ∈ SE,

δ1(z1 + z2) = T2(z1(t − r) + z2(t − r))
= T2(z1(t − r)) + T2(z2(t − r))
= δ1z1 + δ1z2.

(2.26)

And for any c ∈ �, δ1(cz(t)) = T2cz(t − r) = cT2z(t − r) = cδ1z(t). Thus, SE is a subspace of E.
This completes the proof of Lemma 2.4.

For the Hamiltonian system (2.13), we define another action matrix T∗2 with the
following form:

T∗2 =

(
1 −1

1 0

)
. (2.27)

Then, by T∗2 , for any z(t) ∈ E, define an action δ2 on z by

δ2z(t) = T∗2z(t − s). (2.28)

Then, by a direct computation, we have that δ3
2z(t) = −z(t − 3s) = −z(t − π), δ6

2z(t) = z(t)
and G = {δ2, δ

2
2, δ

3
2, δ

4
2, δ

5
2, δ

6
2} is a compact group action over E. If δ2z(t) = z(t) holds, then

through a direct check, we have that z(t) has the symmetric structure (2.4).



Abstract and Applied Analysis 9

Remark 2.5. By δ3
2z(t) = −z(t−3s) = −z(t−π) and the definition of δ2, the set {z ∈ E : δ2z(t) =

z(t)} has the same structure (2.20), where the relation between the Fourier coefficients of the
first component z1 and the second component z2 is slightly different with the elements in
{z ∈ E : δ1z(t) = z(t)}. We denote it also by SE which is a subspace of E.

Denote by M−(h), M+(h), and M0(h) the number of the negative, the positive, and
the zero eigenvalues of a symmetric matrix h, respectively. For a constant symmetric matrix
h, we define our index as

i−(h) =
∞∑
k=1

(
M−(Tk(h) − 2)

)
,

i0(h) =
∞∑
k=1

M0(Tk(h)),

(2.29)

where

Tk(h) =

(−h −kJ
kJ −h

)
. (2.30)

Observe that for k large enough, M−(Tk(h)) = 2 and M0(Tk(h)) = 0. In fact, write

Tk(h) =

(−h −kJ
kJ −h

)
= k

(
0 J�

J 0

)
−
(
h 0

0 h

)
. (2.31)

Notice that −J = J�. If k > 0 is sufficiently large, then M− = M+ = 2, which are
the indices of the first matrix in (2.31). Furthermore, if k decreases, these indices can change
only at those values of k, for which the matrix Tk(h) is singular, that is, M0(Tk(h))/= 0. This
happens exactly for those values of k ∈ � for which ik is a pure imaginary eigenvalue of Jh.
Indeed assume (ξ1, ξ2) ∈ �2 ×�2 is an eigenvector of Tk(h) with eigenvalue 0, then by J� = −J ,
one has hξ1 + kJξ2 = 0 and hξ2 − kJξ1 = 0. Thus, h(ξ1 + iξ2) = kJ(iξ1 − ξ2) = ikJ(ξ1 + iξ2);
therefore, Jh(ξ1 + iξ2) = −ik(ξ1 + iξ2). Therefore, ±ik ∈ σ(Jh), as claimed. Hence, i−(h) and
i0(h) are well defined.

The following theorem of [26] on the existence of periodic solutions for the
Hamiltonian system (2.1) will be used in our discussion.

Theorem A. Let H ∈ C1(� × �2N ,�) be 2π-periodic in t and satisfy (2.2). If i0(h0) = i0(h∞) = 0
and i−(h0)/= i−(h∞), then the Hamiltonian system (2.1) has at least one nontrivial periodic solution.

Now, we claim the following.

Lemma 2.6. If z is a solution of the Hamiltonian system (2.8) ((2.13)) in SE, then y = Ψ1(t, z) (y =
Ψ2(t, z)) is the solution of the Hamiltonian system (2.5) ((2.11)) with the symmetric structure (2.4),
respectively.
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Proof. By Lemma 2.4, any z ∈ SE has the structure (2.4). We only need to show δ1y = y
or δ2y = y, that is, T2Ψ1(t, z) = Ψ1(t, T2z) or T∗2Ψ2(t, z) = Ψ2(t, T∗2z), which can be
verified directly by the constructions of the symplectic transformations Ψ1(t, z) and Ψ2(t, z),
respectively. Please see [25] for details.

We denote the matrix αI2 by α for convenience. We prove the following lemma.

Lemma 2.7. (1) Suppose that (H1) and (H3) hold, then i0(α0) = i0(α∞) = i0(β0M) = i0(β∞M) = 0.
(2) Suppose that (H1) and (H2) hold, then i−(α0)/= i−(α∞).
(3) Suppose that (H3) and (H4) hold, then i−(β0M)/= i−(β∞M).

Proof. For any α, β ∈ �, let σ(Tk(α)) and σ(Tk(βM)) denote the spectra of Tk(α) and Tk(βM),
respectively. Denote by λ and γ the elements of σ(Tk(α)) and σ(Tk(βM)), respectively, then

det(λI4 − Tk(α)) = det
(
(λ + α)2I2 − k2I2

)

= det((λ + α)I2 − kI2)det((λ + α)I2 + kI2),

det
(
γI4 − Tk

(
βM
))

= det
((
γI2 + βM

)2 − k2I2

)

= det
((
γI2 + βM

) − kI2
)

det
((
γI2 + βM

)
+ kI2

)

= det
((
γ + 2β − k)2 − β2

)
det
((
γ + 2β + k

)2 − β2
)
.

(2.32)

The above computation of determinant shows that

σ(Tk(α)) = {λ = ±k − α : k ∈ �+}, (2.33)

σ
(
Tk
(
βM
))

=
{
γ = ±k − β,±k − 3β : k ∈ �+}. (2.34)

Case 1. From (2.33), if α0 /= ± k, for all k ∈ �+, then λ/= 0, where λ is the eigenvalue of Tk(α0).
That means M0(Tk(α0)) = 0 for k ≥ 1. Thus, i0(α0) =

∑∞
k=1 M

0(Tk(α0)) = 0. Similarly, we have
i0(α∞) = i0(β0M) = i0(β∞M) = 0.

Case 2. Without loss of generality, we suppose that α0 < α∞. By the conditions (H1) and (H2),

α0 < k0 < α∞. (2.35)

Since α0 < k0, by (2.33), M−(Tk0(α0)) ≤ 2. By −k0 < k0 < α∞ and (2.33), M−(Tk0(α∞)) = 4, that
is,

M−(Tk0(α0)) + 2 ≤M−(Tk0(α∞)). (2.36)

For each k /=k0 and from (2.33), one can check easily that M−(Tk(α0)) ≤M−(Tk(α∞)). Hence,
one has

∑∞
k=1(M

−(Tk(α0)) − 2) <
∑∞

k=1(M
−(Tk(α∞)) − 2), since M−(Tk(α)) = 2 for k large

enough. This yields that i−(α0) < i−(α∞). Then, property (2) holds.
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Case 3. By the conditions (H3) and (H4), without loss of generality, we suppose that β0 < β∞
and

β0 < k0 < β∞. (2.37)

Since β0 < k0, by (2.34), M−(Tk0(β0M)) ≤ 3. By −k0 < k0 < β∞ < 3β∞ and (2.34), one
has M−(Tk0(β∞M)) = 4, that is,

M−(Tk0

(
β0M

))
+ 1 ≤M−(Tk0

(
β∞M

))
. (2.38)

For each k /=k0 and from (2.34), it is easy to see that k − β∞ < k − β0 and k − 3β∞ < k − 3β0.
Then, by the definition of M−(Tk(βM)), we have M−(Tk(β0M)) ≤M−(Tk(β∞M)). Therefore,
we have

∞∑
k=1

(
M−(Tk(β0M

)) − 2
)
<
∞∑
k=1

(
M−(Tk(β∞M)) − 2

)
, (2.39)

since M−(Tk(βM)) = 2 for k large enough. This implies that i−(β0M) < i−(β∞M). Then,
property (3) holds.

Now, we are ready to prove the main results. We first give the proof of Theorem 1.1.

Proof of Theorem 1.1. Solutions of (2.8) in SE are indeed nonconstant classic 2π-periodic
solutions with the symmetric structure (2.4), and hence they give solutions of (1.7) with the
property x(t − π) = −x(t). Therefore, we will seek solutions of (2.8) in SE.

Now, Theorem 1.1 follows from Lemmas 2.1, 2.6, and 2.7 and Theorem A.

Proof of Theorem 1.2. Obviously, Theorem 1.2 follows from Lemmas 2.2, 2.6, and 2.7 and
Theorem A.
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The necessary and sufficient conditions for solvability of the family of difference equations
with periodic boundary condition were obtained using the notion of relative spectrum of linear
bounded operator in the Banach space and the ergodic theorem. It is shown that when the
condition of existence is satisfied, then such periodic solutions are built using the formula for the
generalized inverse operator to the linear limited one.

1. The Problem and The Main Statement

The problem of existence of periodic solutions for classes of equations is well known. Though
it is hard to mention all the contributors in a single paper, we would like to mark out well-
developed Floke theory [1], which is used in analysis of linear differential equation systems
by the means of monodromy matrix. Operator analogy of such theory in noncritical case
(when there is single solution) for differential equations in Banach space was developed by
Daletskyi and Krein [2].

This paper is dedicated to obtaining analogous conditions for a family of difference
equations in Banach space and to building representations of corresponding solutions. The
proposed approach allows obtaining solutions for both critical and noncritical cases. Note
that this problem can be approached using well-developed pseudoinverse techniques in
theory of boundary value problems [3]. In this paper we firstly build a new representation
of the pseudoinverse operator based on results of ergodic theory, and then we provide
the necessary and sufficient conditions that guarantee the existence of the corresponding
solutions.
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Let B-complex Banach space with norm ‖ · ‖ and zero-element 0; L(B)-Banach space
of bounded linear operators from B to B. In this paper we consider existence of periodic
solutions of the equation

xn+1 = λAn+1xn + hn+1, n � 0, (1.1)

with periodicity condition

x0 = xm, (1.2)

where An ∈ L(B), An+m = An, for all n � 0, λ is a complex parameter, and {hn}∞n=0 is a
sequence in B. The solution of the corresponding homogeneous equation to (1.1) has the
following form [4]:

xm(λ) = Φ(m,n, λ)xn(λ), m � n, (1.3)

where

Φ(m,n, λ) = λm−nAm+1Am · · ·An+1, m > n (1.4)

is evolution operator for problem (1.1); Φ(m,m, λ) = E, where E is identity operator. Let us
remark that U(m,λ) = Φ(m, 0, λ), U(0, λ) = E and U(k + n, λ) = U(k, λ)U(n, λ). Operator
U(m,λ) is traditionally called monodromy operator.

We can represent [4] the solution (1.1) with arbitrary initial condition x(0, λ) = x0, x0 ∈
B in the form

xk(λ) = Φ(k, 0, λ)x0 + g(k, λ), (1.5)

where

g(k, λ) =
k∑
i=0

Φ(k, i, λ)hi. (1.6)

If we substitute this representation in boundary condition (1.2), we obtain operator equation

x0(λ) − xm(λ) = x0 −Φ(m, 0, λ)x0 − g(m,λ) = 0. (1.7)

According to notations, we get operator equation

(E −U(m,λ))x0 = g(m,λ). (1.8)

Boundary value problem (1.1), (1.2) has periodic solution if and only if operator
equation (1.8) is solvable.
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Following the paper [5], point λ is called right stable point if monodromy operator
satisfies inequality {‖Un(m,λ)‖ � c, n � 0}.

Denote ρNS(E − U(m,λ)) = {λ ∈ C : R(E − U(m,λ)) = R(E −U(m,λ))} (this set
coincides with the set of all λ ∈ C such that operator E − U(m,λ) is normally solvable). It
follows easily that resolvent set ρ(E − U(m,λ)) of the operator E − U(m,λ) lies in ρNS(E −
U(m,λ)).

In the sequel we assume that B is reflexive for simplicity [6].
The main result of this paper is contained in Theorem 1.1.

Theorem 1.1. Let λ ∈ ρNS(E −U(m,λ)) be right stability point for (1.1). Then

(a) boundary value problem (1.1), (1.2) has solutions if and only if sequence {hn}n∈Z+
, hn ∈ B

satisfies condition

lim
n→∞

∑n
k=1
∑m

i=0 U
k(m,λ)Φ(m, i, λ)hi
n

= 0, (1.9)

(b) under condition (1.9), solutions of boundary value problem (1.1), (1.2) have the following
form:

xn = U(n, λ) lim
k→∞

∑k
m=1 U

m(k, λ)
k

c +U(n, λ)G(n, λ)[hn], (1.10)

where c is an arbitrary element of Banach space B, G(n, λ)-generalized Green operator of
boundary value (1.1), (1.2), which is defined by equality

G(n, λ)[hn] =
∞∑
k=0

(
1 − μ)k

{ ∞∑
l=0

μ−l−1(U(m,λ) −U0(λ))
l

}k+1 m∑
i=0

Φ(m, i, λ)hi

−U0(λ)
m∑
i=0

Φ(m, i, λ)hi +
n∑
i=0

Φ(n, i, λ)hi.

(1.11)

2. Auxiliary Result

Let us formulate and prove a number of auxiliary lemmas, which entail the theorem.

Lemma 2.1. If λ ∈ ρNS(E − U(m,λ)), then boundary value problem (1.1), (1.2) is solvable if and
only if sequence hn satisfies the condition

lim
n→∞

∑n
k=1
∑m

i=0 U
k(m,λ)Φ(m, i, λ)hi
n

= 0. (2.1)
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Proof. From the assumption above it follows that the conditions of statistical ergodic theorem
hold [6]. Then

R(E −U(m,λ)) =

{
x ∈ B : lim

n→∞
Un(m,λ)x = 0, Un(m,λ) =

∑n
k=1 U

k(m,λ)
n

}
. (2.2)

It follows from the equation above that element g(m,λ) lies in value set of the operator E −
U(m,λ) if and only if

lim
n→∞

∑n
k=1 U

k(m,λ)
n

m∑
i=0

Φ(m, i, λ)hi = 0, (2.3)

which proves the lemma.

Consider the following consequences of the assumptions above for further reasoning.
Suppose that λ ∈ ρNS(E − U(m,λ)) and λ is right stable point of the monodromy operator,
such that λ define eigenspace N(E−U(m,λ)), which coincides with the values set of operator
U0(λ)x = limn→∞Un(m,λ)x. This operator satisfies the following conditions [6]:

(i) U0(λ) = U2
0(λ), (ii) U0(λ) = U(m,λ)U0(λ), (iii) U0(λ) = U0(λ)U(m,λ).

(2.4)

Lemma 2.2. Operator E −U(m,λ) +U0(λ) : B → B has bounded inverse of the form

(E −U(m,λ) +U0(λ))
−1 =

∞∑
k=0

(
μ − 1

)k{ ∞∑
l=0

μ−l−1(U(m,λ) −U0(λ))
l

}k+1

, (2.5)

for all μ > 1 : |1 − μ| < 1/‖Rμ‖.

Proof. Let us show that Ker(I −U(m,λ) +U0(λ)) = 0. Indeed, if x ∈ Ker(I −U(m,λ) +U0(λ)),
then

(I −U(m,λ) +U0(λ))x = 0. (2.6)

Since (I −U(m,λ))x ∈ Im(I −U(m,λ)) and U0(λ)x ∈ Ker(I −U(m,λ)) [6], subspaces Im(I −
U(m,λ)) and Ker(I −U(m,λ)) intersect only at zero point, and condition (2.6) is satisfied if
and only if (I−U(m,λ))x = 0 andU0(λ)x = 0. This is possible if and only if x = 0. Let us show
that Im(I−U(m,λ)+U0(λ)) = B. Note [6] B = Ker(I−U(m,λ))⊕Im(I−U(m,λ)) = Im(U0(λ))⊕
Im(I −U(m,λ)). It follows from the last decomposition that any element x ∈ B has the form
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(I − U(m,λ))y + U0(λ)z, where y, z ∈ B, which proves that Im(I − U(m,λ) + U0(λ)) = B.
Hence according to the Banach theorem [6] original operator has inverse since it bijectively
maps B to itself. Therefore point μ = 1 is regular [6] for the operator μI − U(m,λ) + U0(λ).
Since powers of the operator U(m,λ) are uniformly bounded and spectral radius rU(m,λ) � 1
( n
√
‖U(m,λ)n‖ � n

√
c, then rU(m,λ) = limn→∞ n

√
‖U(m,λ)n‖ � limn→∞ n

√
c = 1). It is well known

[6] that resolvent set of a bounded operator is open. Number μ = 1 ∈ ρ(U(m,λ) − U0(λ));
thus there exist a neighborhood of μ such that each point from the neighborhood belongs to
resolvent set. For any point μ > r(U(m,λ)−U0(λ)) that belongs to the neighborhood there exists a
resolvent [6], which has the form of converging in the norm series

Rμ := Rμ(U(m,λ) −U0(λ)) =
∞∑
l=0

μ−l−1(U(m,λ) −U0(λ))
l. (2.7)

Using the analyticity of the resolvent and well-known identity for points μ > 1 such
that |1 − μ| < 1/(‖Rμ(U(m,λ) −U0(λ))‖), we obtain

R1 =
∞∑
k=0

(
μ − 1

)k
Rk+1
μ . (2.8)

Finally, by substituting the series in the equation above, we get (2.5), which proves the lemma.

Let us introduce some notation first before proving next statement.

Definition 2.3. Operator L− ∈ L(B) is called generalized inverse for operator L ∈ L(B) [3] if the
following conditions hold:

(1) LL−L = L, (2) L−LL− = L−. (2.9)

Lemma 2.4. Operator E −U(m,λ) is generalized inverse and

(E −U(m,λ))− = (E −U(m,λ) +U0(λ))
−1 −U0(λ), (2.10)

or in the form of converging operator series

(E −U(m,λ))− =
∞∑
k=0

(
μ − 1

)k{ ∞∑
l=0

μ−l−1(U(m,λ) −U0(λ))
l
}k+1

−U0(λ), (2.11)

for all μ > 1 : |1 − μ| < 1/‖Rμ‖.



6 Abstract and Applied Analysis

Proof. It suffices to check conditions (1) and (2) of the Definition 2.3. We use both representa-
tions (2.10), (2.11) and the expression (2.4) for operator U0(λ). Consider the following
product:

(I −U(m,λ))
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)
(I −U(λ))

= ((I −U(m,λ) +U0(λ)) −U0(λ)) ×
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)
(I −U(m,λ))

=
(
I −U0(λ)(I −U(m,λ) +U0(λ))

−1 − (I −U(m,λ) +U0(λ))U0(λ) +U0(λ)
2
)

× (I −U(m,λ))

=
(
I −U0(λ)(I −U(m,λ) +U0(λ))

−1
)
× (I −U(m,λ))

=
(
I −U0(λ)(I −U(m,λ) +U0(λ))

−1
)
((I −U(m,λ) +U0(λ)) −U0(λ))

= I −U(m,λ) +U0(λ) −U0(λ) −U0(λ) +U0(λ)(I −U(m,λ) +U0(λ))
−1U0(λ)

= I −U(m,λ) −U0(λ) +U0(λ)(I −U(m,λ) +U0(λ))
−1U0(λ).

(2.12)

Note that U0(λ)(U(m,λ) −U0(λ))
l = 0 for any l ∈ N (this directly follows from (2.4) using

formula of binominal coefficient). Now, prove that

U0(λ)(I −U(m,λ) +U0(λ))
−1U0(λ) = U0(λ)(I −U(m,λ) +U0(λ))

−1

= (I −U(m,λ) +U0(λ))
−1U0(λ)

= U0(λ).

(2.13)

Indeed

U0(λ)(I−U(m,λ)+U0(λ))
−1U0(λ)=

∞∑
k=0

(
μ−1
)k
U0(λ)

{ ∞∑
l=0

μ−l−1(U(m,λ)−U0(λ))
l

}k+1

U0(λ)

=
∞∑
k=0

⎛
⎝(μ−1

)k+1(
μ − 1

)k
U0(λ) +

(
μ − 1

)k
U0(λ)

×
{ ∞∑

l=1

μ−l−1(U(m,λ) −U0(λ))
l

}k+1
⎞
⎠U0(λ)

=
+∞∑
k=0

μ−k−1(μ − 1
)k
U0(λ)

=
1
μ

+∞∑
k=0

(
μ − 1
μ

)k
U0(λ)

=
1
μ

1
1 − (μ − 1

)
/μ

U0(λ)

= U0(λ).
(2.14)
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Thus

I −U(m,λ) −U0(λ) +U0(λ)(I −U(m,λ) +U0(λ))
−1U0(λ) = I −U(m,λ). (2.15)

We have that the operator I −U(m,λ) satisfies condition (1) of the Definition 2.3. Let us check
condition (2)

(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)
(I −U(m,λ))

(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)

=
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)
((I −U(m,λ) +U0(λ)) −U0(λ))

×
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)

=
(
I −U0(λ)(I −U(m,λ) +U0(λ)) − (I −U(m,λ) +U0(λ))

−1U0(λ) +U0(λ)
2
)

×
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)

=
(
I − (I −U(m,λ) +U0(λ))

−1U0(λ)
)(

(I −U(m,λ) +U0(λ))
−1 −U0(λ)

)

= (I −U(m,λ) +U0(λ))
−1 − (I −U(m,λ) +U0(λ))

−1U0(λ)(I −U(m,λ) +U0(λ))
−1

−U0(λ) + (I −U(m,λ) +U0(λ))
−1U0(λ)

= (I −U(m,λ) +U0(λ))
−1 −U0(λ) −U0(λ) +U0(λ)

= (I −U(m,λ) +U0(λ))
−1 −U0(λ).

(2.16)

3. Proof of Theorem 1.1

According to general theory of linear equations solvability [3], we obtain that the problem
(1.1), (1.2) is solvable for sets {hn}n ∈ Z+ that satisfy the condition

U0(λ)g(m,λ) = 0. (3.1)

This condition along with Lemma 2.1 is equivalent to represantion (a) of the Theorem 1.1.
Under such a condition, all solutions of the problem (1.1), (1.2) have the form

xn = U(n, λ)U0(λ)c +U(n, λ)(I −U(m,λ))−g(m,λ) + g(n, λ)

= U(n, λ)U0(λ)c +U(n, λ)
∞∑
k=0

(
μ − 1

)k{ ∞∑
l=0

μ−l−1(U(m,λ) −U0(λ))
l

}k+1

g(m,λ)

−U(n, λ)U0(λ)g(m,λ) + g(n, λ),

(3.2)

which along with notations introduced is equivalent to representation (b) of the theorem.
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4. Comments and Examples

Remark 4.1. Suppose B is Hilbert space, in such case we can show that formulas (2.10), (2.11)
give us the representation for the Moore-Penrose pseudoinverse [7, 8] for E − U(m,λ) with
U0(λ) being self-adjoint operator (orthogonal projector) [6].

Remark 4.2. Supposing A−1
k
∈ L(B) ∈ L(B) exist for all k = 0, m − 1, then the following

equation holds: Φ(k, i, λ) = U(k, λ)U−1(i, λ), k > i. This allows representing the solutions
of (1.1), (1.2) using only the family of operators U(n, λ) and their inverse.

Let us illustrate the statements proved above on example of two-dimensional systems.
(1) Consider equation

−→xn+1 = λAn+1
−→xn +

−→
hn+1, n � 0 (4.1)

with periodicity condition

−→x3 = −→x0, (4.2)

where −→xn = (x1
n, x

2
n)
T
, x1

n, x
2
n ∈ R,

−→
hn = ((3

√
3r)/4π, 0)

T
,

An =

⎛
⎜⎜⎝
−1

2
−
√

3
2√

3
2

−1
2

⎞
⎟⎟⎠, ∀n � 0. (4.3)

It is easy to see that

−→x3 = λ3−→x0 + g(3, λ), (4.4)

where

g(3, λ) =

(
−3
√

3rλ − 3
√

3rλ2 + 6
√

3r
8π

,
9rλ − 9rλ2

8π

)T

. (4.5)

Then the following hold for all k � 0

U(3k + 1, λ) = λ3k+1A2, U(3k + 2, λ) = λ3k+2

⎛
⎜⎜⎝
−1

2

√
3

2√
3

2
−1

2

⎞
⎟⎟⎠, U(3k + 3, λ) = λ3k+3E.

(4.6)

By substituting periodicity condition (4.2) into (4.4) we obtain an equation depending on −→x0 :

(
1 − λ3

)−→x0 = g(3, λ). (4.7)
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Consider the case when λ = 1. In such case (4.7) turns into 0−→x0 = (0, 0)T which holds for
arbitrary initial vector −→x0 ∈ R

2. Obviously Un(1, 1) = U(n, 1) and U0(1) = E. According to
Theorem 1.1, all periodic solutions of (4.1) have the form

(
x1
n(c1, c2)

x2
n(c1, c2)

)
=

⎛
⎜⎝ cos

2π
3
n sin

2π
3
n

− sin
2π
3
n cos

2π
3
n

⎞
⎟⎠
(
c1

c2

)
+

⎛
⎝ 3r

2π
sin

2π
3
n

0

⎞
⎠, (4.8)

for all −→c = (c1, c2)
T ∈ R

2.
(2) We can search for periodic solutions of any period w in previous problem. They

have common view

−→xn(c1, c2, w, r) =

⎛
⎜⎝ cos

2π
w
n sin

2π
w
n

− sin
2π
w
n cos

2π
w
n

⎞
⎟⎠
(
c1

c2

)
+

⎛
⎝rw

2π
sin

2π
w
n

0

⎞
⎠, (4.9)

where c1, c2, w, r are parameters.
To illustrate complexity of the set we did the following.

Recall that the length of vector −→xn is �−→xn =
√
(−→x1

n)
2
+ (−→x2

n)
2
. System (4.9) was

implemented using the Wolfram Mathematica 7 framework. x-axis corresponds to time,
while y-axis corresponds to the length of the vector. The length of the vector was calculated
in the integer moments of time n. The points obtained in such way were connected in a
piecewise linear way. The results obtained for particular values of the parameters are depicted
on the following figures.

We can see how the trajectory of vector length densely fills rectangle or turns into a
line (Figures 3 and 4). Figures 1, 2, 5, and 6 demonstrate that the trajectory can fill structured
sets. The structure depicted on Figure 1 resembles fractal.

This allows us to conclude that behavior of the system is rather complex; it can
undergo unpredictable changes with the slightest variations of a single parameter. We must
admit that effects described need further theoretical investigation.
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We study the existence of positive solutions for the boundary value problem of nonlinear fractional
differential equations Dα

0+u(t) + λf(u(t)) = 0, 0 < t < 1, u(0) = u(1) = u′(0) = 0, where
2 < α ≤ 3 is a real number, Dα

0+ is the Riemann-Liouville fractional derivative, λ is a positive
parameter, and f : (0,+∞) → (0,+∞) is continuous. By the properties of the Green function
and Guo-Krasnosel’skii fixed point theorem on cones, the eigenvalue intervals of the nonlinear
fractional differential equation boundary value problem are considered, some sufficient conditions
for the nonexistence and existence of at least one or two positive solutions for the boundary value
problem are established. As an application, some examples are presented to illustrate the main
results.

1. Introduction

Fractional differential equations have been of great interest recently. It is caused both by the
intensive development of the theory of fractional calculus itself and by the applications;
see [1–4]. It should be noted that most of papers and books on fractional calculus are
devoted to the solvability of linear initial fractional differential equations on terms of special
functions.

Recently, there are some papers dealing with the existence of solutions (or positive
solutions) of nonlinear initial fractional differential equations by the use of techniques of
nonlinear analysis (fixed-point theorems, Leray-Schauder theory, Adomian decomposition
method, etc.); see [5–11]. In fact, there has the same requirements for boundary conditions.
However, there exist some papers considered the boundary value problems of fractional
differential equations; see [12–19].
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Yu and Jiang [19] examined the existence of positive solutions for the following
problem:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u(1) = u′(0) = 0,
(1.1)

where 2 < α ≤ 3 is a real number, f ∈ C([0, 1] × [0,+∞), (0,+∞)), and Dα
0+ is the

Riemann-Liouville fractional differentiation. By using the properties of the Green function,
they obtained some existence criteria for one or two positive solutions for singular and
nonsingular boundary value problems by means of the Krasnosel’skii fixed point theorem
and a mixed monotone method.

To the best of our knowledge, there is very little known about the existence of positive
solutions for the following problem:

Dα
0+u(t) + λf(u(t)) = 0, 0 < t < 1,

u(0) = u(1) = u′(0) = 0,
(1.2)

where 2 < α ≤ 3 is a real number, Dα
0+ is the Riemann-Liouville fractional derivative, λ is a

positive parameter and f : (0,+∞) → (0,+∞) is continuous.
On one hand, the boundary value problem in [19] is the particular case of problem

(1.2) as the case of λ = 1. On the other hand, as Yu and Jiang discussed in [19], we also
give some existence results by the fixed point theorem on a cone in this paper. Moreover, the
purpose of this paper is to derive a λ-interval such that, for any λ lying in this interval, the
problem (1.2) has existence and multiplicity on positive solutions.

In this paper, by analogy with boundary value problems for differential equations of
integer order, we firstly give the corresponding Green function named by fractional Green’s
function and some properties of the Green function. Consequently, the problem (1.2) is
reduced to an equivalent Fredholm integral equation. Finally, by the properties of the Green
function and Guo-Krasnosel’skii fixed point theorem on cones, the eigenvalue intervals
of the nonlinear fractional differential equation boundary value problem are considered,
some sufficient conditions for the nonexistence and existence of at least one or two positive
solutions for the boundary value problem are established. As an application, some examples
are presented to illustrate the main results.

2. Preliminaries

For the convenience of the reader, we give some background materials from fractional
calculus theory to facilitate analysis of problem (1.2). These materials can be found in the
recent literature; see [19–21].

Definition 2.1 (see [20]). The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function f : (0,+∞) → R is given by

Dα
0+f(t) =

1
Γ(n − α)

(
d

dt

)(n) ∫ t
0

f(s)

(t − s)α−n+1
ds, (2.1)
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where n = [α] + 1, [α] denotes the integer part of number α, provided that the right side is
pointwise defined on (0,+∞).

Definition 2.2 (see [20]). The Riemann-Liouville fractional integral of order α > 0 of a function
f : (0,+∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t
0
(t − s)α−1f(s)ds, (2.2)

provided that the right side is pointwise defined on (0,+∞).

From the definition of the Riemann-Liouville derivative, we can obtain the following
statement.

Lemma 2.3 (see [20]). Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional differential
equation

Dα
0+u(t) = 0 (2.3)

has u(t) = c1t
α−1 + c2t

α−2 + · · · + cNtα−N , ci ∈ R, i = 1, 2, . . . ,N, as unique solutions, whereN is the
smallest integer greater than or equal to α.

Lemma 2.4 (see [20]). Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · · + cNtα−N, (2.4)

for some ci ∈ R, i = 1, 2, . . . ,N, whereN is the smallest integer greater than or equal to α.

In the following, we present the Green function of fractional differential equation
boundary value problem.

Lemma 2.5 (see [19]). Let h ∈ C[0, 1] and 2 < α ≤ 3. The unique solution of problem

Dα
0+u(t) + h(t) = 0, 0 < t < 1,

u(0) = u(1) = u′(0) = 0
(2.5)

is

u(t) =
∫1

0
G(t, s)h(s)ds, (2.6)
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where

G(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tα−1(1 − s)α−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.7)

Here G(t, s) is called the Green function of boundary value problem (2.5).

The following properties of the Green function play important roles in this paper.

Lemma 2.6 (see [19]). The function G(t, s) defined by (2.7) satisfies the following conditions:

(1) G(t, s) = G(1 − s, 1 − t), for t, s ∈ (0, 1);

(2) tα−1(1 − t)s(1 − s)α−1 ≤ Γ(α)G(t, s) ≤ (α − 1)s(1 − s)α−1, for t, s ∈ (0, 1);

(3) G(t, s) > 0, for t, s ∈ (0, 1);

(4) tα−1(1 − t)s(1 − s)α−1 ≤ Γ(α)G(t, s) ≤ (α − 1)(1 − t)tα−1, for t, s ∈ (0, 1).

The following lemma is fundamental in the proofs of our main results.

Lemma 2.7 (see [21]). Let X be a Banach space, and let P ⊂ X be a cone in X. Assume Ω1, Ω2 are
open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P be a completely continuous operator
such that, either

(A1) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2 or

(A2) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (Ω2 \Ω1).

For convenience, we set q(t) = tα−1(1 − t), k(s) = s(1 − s)α−1; then

q(t)k(s) ≤ Γ(α)G(t, s) ≤ (α − 1)k(s). (2.8)

3. Main Results

In this section, we establish the existence of positive solutions for boundary value problem
(1.2).

Let Banach space E = C[0, 1] be endowed with the norm ‖u‖ = max0≤t≤1|u(t)|. Define
the cone P ⊂ E by

P =
{
u ∈ E : u(t) ≥ q(t)

α − 1
‖u‖, t ∈ [0, 1]

}
. (3.1)

Suppose that u is a solution of boundary value problem (1.2). Then

u(t) = λ
∫1

0
G(t, s)f(u(s))ds, t ∈ [0, 1]. (3.2)
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We define an operator Aλ : P → E as follows:

(Aλu)(t) = λ
∫1

0
G(t, s)f(u(s))ds, t ∈ [0, 1]. (3.3)

By Lemma 2.6, we have

‖Aλu‖ ≤ λ

Γ(α)

∫1

0
(α − 1)k(s)f(u(s))ds,

(Aλu)(t) ≥ λ

Γ(α)

∫1

0
q(t)k(s)f(u(s))ds

≥ q(t)
α − 1

‖Aλu‖.

(3.4)

Thus, Aλ(P) ⊂ P .
Then we have the following lemma.

Lemma 3.1. Aλ : P → P is completely continuous.

Proof. The operator Aλ : P → P is continuous in view of continuity of G(t, s) and f(u(t)). By
means of the Arzela-Ascoli theorem, Aλ : P → P is completely continuous.

For convenience, we denote

F0 = lim
u→ 0+

sup
f(u)
u

, F∞ = lim
u→+∞

sup
f(u)
u

,

f0 = lim
u→ 0+

inf
f(u)
u

, f∞ = lim
u→+∞

inf
f(u)
u

,

C1 =
1

Γ(α)

∫1

0
(α − 1)k(s)ds,

C2 =
1

Γ(α)

∫1

0

1
(α − 1)

q(s)k(s)ds,

C3 =
1

Γ(α)

∫1

0

1
(α − 1)

k(s)ds.

(3.5)

Theorem 3.2. If there exists l ∈ (0, 1) such that q(l)f∞C2 > F0C1 holds, then for each

λ ∈
((
q(l)f∞C2

)−1
, (F0C1)−1

)
, (3.6)

the boundary value problem (1.2) has at least one positive solution. Here we impose (q(l)f∞C2)
−1 = 0

if f∞ = +∞ and (F0C1)
−1 = +∞ if F0 = 0.
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Proof. Let λ satisfy (3.6) and ε > 0 be such that

(
q(l)
(
f∞ − ε

)
C2
)−1 ≤ λ ≤ ((F0 + ε)C1)−1. (3.7)

By the definition of F0, we see that there exists r1 > 0 such that

f(u) ≤ (F0 + ε)u, for 0 < u ≤ r1. (3.8)

So if u ∈ P with ‖u‖ = r1, then by (3.7) and (3.8), we have

‖Aλu‖ ≤ λ

Γ(α)

∫1

0
(α − 1)k(s)f(u(s))ds

≤ λ

Γ(α)

∫1

0
(α − 1)k(s)(F0 + ε)r1ds

= λ(F0 + ε)r1C1

≤ r1 = ‖u‖.

(3.9)

Hence, if we choose Ω1 = {u ∈ E : ‖u‖ < r1}, then

‖Aλu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (3.10)

Let r3 > 0 be such that

f(u) ≥ (f∞ − ε)u, for u ≥ r3. (3.11)

If u ∈ P with ‖u‖ = r2 = max{2r1, r3}, then by (3.7) and (3.11), we have

‖Aλu‖ ≥ Aλu(l)

= λ
∫1

0
G(l, s)f(u(s))ds

≥ λ

Γ(α)

∫1

0
q(l)k(s)f(u(s))ds

≥ λ

Γ(α)

∫1

0
q(l)k(s)

(
f∞ − ε

)
u(s)ds

≥ λ

Γ(α)

∫1

0

q(l)
α − 1

q(s)k(s)
(
f∞ − ε

)‖u‖ds
= λq(l)C2

(
f∞ − ε

)‖u‖ ≥ ‖u‖.

(3.12)
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Thus, if we set Ω2 = {u ∈ E : ‖u‖ < r2}, then

‖Aλu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.13)

Now, from (3.10), (3.13), and Lemma 2.7, we guarantee thatAλ has a fixed-point u ∈ P ∩ (Ω2\
Ω1) with r1 ≤ ‖u‖ ≤ r2, and clearly u is a positive solution of (1.2). The proof is complete.

Theorem 3.3. If there exists l ∈ (0, 1) such that q(l)C2f0 > F∞C1 holds, then for each

λ ∈
((
q(l)f0C2

)−1
, (F∞C1)−1

)
, (3.14)

the boundary value problem (1.2) has at least one positive solution. Here we impose (q(l)f0C2)
−1 = 0

if f0 = +∞ and (F∞C1)
−1 = +∞ if F∞ = 0.

Proof. Let λ satisfy (3.14) and ε > 0 be such that

(
q(l)
(
f0 − ε

)
C2
)−1 ≤ λ ≤ ((F∞ + ε)C1)−1. (3.15)

From the definition of f0, we see that there exists r1 > 0 such that

f(u) ≥ (f0 − ε
)
u, for 0 < u ≤ r1. (3.16)

Further, if u ∈ P with ‖u‖ = r1, then similar to the second part of Theorem 3.2, we can obtain
that ‖Aλu‖ ≥ ‖u‖. Thus, if we choose Ω1 = {u ∈ E : ‖u‖ < r1}, then

‖Aλu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.17)

Next, we may choose R1 > 0 such that

f(u) ≤ (F∞ + ε)u, for u ≥ R1. (3.18)

We consider two cases.

Case 1. Suppose f is bounded. Then there exists some M > 0, such that

f(u) ≤M, for u ∈ (0,+∞). (3.19)
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We define r3 = max{2r1, λMC1}, and u ∈ P with ‖u‖ = r3, then

‖Aλu‖ ≤ λ

Γ(α)

∫1

0
(α − 1)k(s)f(u(s))ds

≤ λM

Γ(α)

∫1

0
(α − 1)k(s)ds

≤ λMC1

≤ r3 ≤ ‖u‖.

(3.20)

Hence,

‖Aλu‖ ≤ ‖u‖, for u ∈ Pr3 = {u ∈ P : ‖u‖ ≤ r3}. (3.21)

Case 2. Suppose f is unbounded. Then there exists some r4 > max{2r1, R1}, such that

f(u) ≤ f(r4), for 0 < u ≤ r4. (3.22)

Let u ∈ P with ‖u‖ = r4. Then by (3.15) and (3.18), we have

‖Aλu‖ ≤ λ

Γ(α)

∫1

0
(α − 1)k(s)f(u(s))ds

≤ λ

Γ(α)

∫1

0
(α − 1)k(s)(F∞ + ε)‖u‖ds

≤ λC1(F∞ + ε)‖u‖
≤ ‖u‖.

(3.23)

Thus, (3.21) is also true.

In both Cases 1 and 2, if we set Ω2 = {u ∈ E : ‖u‖ < r2 = max{r3, r4}}, then

‖Aλu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.24)

Now that we obtain (3.17) and (3.24), it follows from Lemma 2.7 that Aλ has a fixed-point
u ∈ P ∩ (Ω2 \ Ω1) with r1 ≤ ‖u‖ ≤ r2. It is clear u is a positive solution of (1.2). The proof is
complete.

Theorem 3.4. Suppose there exist l ∈ (0, 1), r2 > r1 > 0 such that q(l) > (α − 1)r1/r2, and f satisfy

min
(q(l)/(α−1))r1≤u≤r1

f(u) ≥ r1

λ(α − 1)q(l)C3
, max

0≤u≤r2

f(u) ≤ r2

λC1
. (3.25)

Then the boundary value problem (1.2) has a positive solution u ∈ P with r1 ≤ ‖u‖ ≤ r2.
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Proof. Choose Ω1 = {u ∈ E : ‖u‖ < r1}; then for u ∈ P ∩ ∂Ω1, we have

‖Aλu‖ ≥ Aλu(l)

= λ
∫1

0
G(l, s)f(u(s))ds

≥ λ

Γ(α)

∫1

0
q(l)k(s)f(u(s))ds

≥ λ

Γ(α)

∫1

0
q(l)k(s) min

(q(l)/(α−1))r1≤u≤r1

f(u(s))ds

≥ λ(α − 1)q(l)C3
r1

λ(α − 1)q(l)C3

= r1 = ‖u‖.

(3.26)

On the other hand, choose Ω2 = {u ∈ E : ‖u‖ < r2}, then for u ∈ P ∩ ∂Ω2, we have

‖Aλu‖ ≤ λ

Γ(α)

∫1

0
(α − 1)k(s)f(u(s))ds

≤ λ

Γ(α)

∫1

0
(α − 1)k(s)max

0≤u≤r2

f(u(s))ds

≤ λC1
r2

λC1

= r2 = ‖u‖.

(3.27)

Thus, by Lemma 2.7, the boundary value problem (1.2) has a positive solution u ∈ P with
r1 ≤ ‖u‖ ≤ r2. The proof is complete.

For the reminder of the paper, we will need the following condition.

(H) (minu∈[(q(l)/(α−1))r, r]f(u))/r > 0, where l ∈ (0, 1).

Denote

λ1 = sup
r>0

r

C1max0≤u≤rf(u)
, (3.28)

λ2 = inf
r>0

r

C3min(q(l)/(α−1))r≤u≤rf(u)
. (3.29)

In view of the continuity of f(u) and (H), we have 0 < λ1 ≤ +∞ and 0 ≤ λ2 < +∞.

Theorem 3.5. Assume (H) holds. If f0 = +∞ and f∞ = +∞, then the boundary value problem (1.2)
has at least two positive solutions for each λ ∈ (0, λ1).
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Proof. Define

a(r) =
r

C1max0≤u≤rf(u)
. (3.30)

By the continuity of f(u), f0 = +∞ and f∞ = +∞, we have that a(r) : (0,+∞) → (0,+∞) is
continuous and

lim
r→ 0

a(r) = lim
r→+∞

a(r) = 0. (3.31)

By (3.28), there exists r0 ∈ (0,+∞), such that

a(r0) = sup
r>0

a(r) = λ1; (3.32)

then for λ ∈ (0, λ1), there exist constants c1, c2 (0 < c1 < r0 < c2 < +∞) with

a(c1) = a(c2) = λ. (3.33)

Thus,

f(u) ≤ c1

λC1
, for u ∈ [0, c1], (3.34)

f(u) ≤ c2

λC1
, for u ∈ [0, c2]. (3.35)

On the other hand, applying the conditions f0 = +∞ and f∞ = +∞, there exist
constants d1, d2 (0 < d1 < c1 < r0 < c2 < d2 < +∞) with

f(u)
u
≥ 1
q2(l)λC3

, for u ∈ (0, d1) ∪
(
q(l)
α − 1

d2,+∞
)
. (3.36)

Then

min
(q(l)/(α−1))d1≤u≤d1

f(u) ≥ d1

λ(α − 1)q(l)C3
, (3.37)

min
(q(l)/(α−1))d2≤u≤d2

f(u) ≥ d2

λ(α − 1)q(l)C3
. (3.38)

By (3.34) and (3.37), (3.35) and (3.38), combining with Theorem 3.4 and Lemma 2.7, we can
complete the proof.

Corollary 3.6. Assume (H) holds. If f0 = +∞ or f∞ = +∞, then the boundary value problem (1.2)
has at least one positive solution for each λ ∈ (0, λ1).
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Theorem 3.7. Assume (H) holds. If f0 = 0 and f∞ = 0, then for each λ ∈ (λ2,+∞), the boundary
value problem (1.2) has at least two positive solutions.

Proof. Define

b(r) =
r

C3min(q(l)/(α−1))r≤u≤rf(u)
. (3.39)

By the continuity of f(u), f0 = 0 and f∞ = 0, we easily see that b(r) : (0,+∞) → (0,+∞) is
continuous and

lim
r→ 0

b(r) = lim
r→+∞

b(r) = +∞. (3.40)

By (3.29), there exists r0 ∈ (0,+∞), such that

b(r0) = inf
r>0

b(r) = λ2. (3.41)

For λ ∈ (λ2,+∞), there exist constants d1, d2 (0 < d1 < r0 < d2 < +∞) with

b(d1) = b(d2) = λ. (3.42)

Therefore,

f(u) ≥ d1

λ(α − 1)q(l)C3
, for u ∈

[
q(l)
α − 1

d1, d1

]
,

f(u) ≥ d2

λ(α − 1)q(l)C3
, for u ∈

[
q(l)
α − 1

d2, d2

]
.

(3.43)

On the other hand, using f0 = 0, we know that there exists a constant c1 (0 < c1 < d1)
with

f(u)
u
≤ 1
λC1

, for u ∈ (0, c1), (3.44)

max
0≤u≤c1

f(u) ≤ c1

λC1
. (3.45)

In view of f∞ = 0, there exists a constant c2 ∈ (d2,+∞) such that

f(u)
u
≤ 1
λC1

, for u ∈ (c2,+∞). (3.46)

Let

M = max
0≤u≤c2

f(u), c2 ≥ λC1M. (3.47)
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It is easily seen that

max
0≤u≤c2

f(u) ≤ c2

λC1
. (3.48)

By (3.45) and (3.48), combining with Theorem 3.4 and Lemma 2.7, the proof is complete.

Corollary 3.8. Assume (H) holds. If f0 = 0 or f∞ = 0, then for each λ ∈ (λ2,+∞), the boundary
value problem (1.2) has at least one positive solution.

By the above theorems, we can obtain the following results.

Corollary 3.9. Assume (H) holds. If f0 = +∞, f∞ = d, or f∞ = +∞, f0 = d, then for any λ ∈
(0, (dC1)

−1), the boundary value problem (1.2) has at least one positive solution.

Corollary 3.10. Assume (H) holds. If f0 = 0,f∞ = d, or if f∞ = 0, f0 = d, then for any λ ∈
((q(l)dC2)

−1,+∞), the boundary value problem (1.2) has at least one positive solution.

Remark 3.11. For the integer derivative case α = 3, Theorems 3.2–3.7 also hold; we can find
the corresponding existence results in [22].

4. Nonexistence

In this section, we give some sufficient conditions for the nonexistence of positive solution to
the problem (1.2).

Theorem 4.1. Assume (H) holds. If F0 < +∞ and F∞ < ∞, then there exists a λ0 > 0 such that for
all 0 < λ < λ0, the boundary value problem (1.2) has no positive solution.

Proof. Since F0 < +∞ and F∞ < +∞, there exist positive numbers m1, m2, r1, and r2, such
that r1 < r2 and

f(u) ≤ m1u, for u ∈ [0, r1],

f(u) ≤ m2u, for u ∈ [r2,+∞).
(4.1)

Let m = max{m1, m2,maxr1≤u≤r2{f(u)/u}}. Then we have

f(u) ≤ mu, for u ∈ [0,+∞). (4.2)

Assume v(t) is a positive solution of (1.2). We will show that this leads to a contradiction for
0 < λ < λ0 := (mC1)

−1. Since Aλv(t) = v(t) for t ∈ [0, 1],

‖v‖ = ‖Aλv‖ ≤ λ

Γ(α)

∫1

0
(α − 1)k(s)f(v(s))ds ≤ mλ

Γ(α)
‖v‖
∫1

0
(α − 1)k(s)ds < ‖v‖, (4.3)

which is a contradiction. Therefore, (1.2) has no positive solution. The proof is complete.
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Theorem 4.2. Assume (H) holds. If f0 > 0 and f∞ > 0, then there exists a λ0 > 0 such that for all
λ > λ0, the boundary value problem (1.2) has no positive solution.

Proof. By f0 > 0 and f∞ > 0, we know that there exist positive numbers n1, n2, r1, and r2,
such that r1 < r2 and

f(u) ≥ n1u, for u ∈ [0, r1],

f(u) ≥ n2u, for u ∈ [r2,+∞).
(4.4)

Let n = min{n1, n2,minr1≤u≤r2{f(u)/u}} > 0. Then we get

f(u) ≥ nu, for u ∈ [0,+∞). (4.5)

Assume v(t) is a positive solution of (1.2). We will show that this leads to a contradiction for
λ > λ0 := (q(l)nC2)

−1. Since Aλv(t) = v(t) for t ∈ [0, 1],

‖v‖ = ‖Aλv‖ ≥ λ

Γ(α)

∫1

0
q(l)k(s)f(v(s))ds > ‖v‖, (4.6)

which is a contradiction. Thus, (1.2) has no positive solution. The proof is complete.

5. Examples

In this section, we will present some examples to illustrate the main results.

Example 5.1. Consider the boundary value problem

D5/2
0+ u(t) + λua = 0, 0 < t < 1, a > 1,

u(0) = u(1) = u′(0) = 0.
(5.1)

Since α = 5/2, we have

C1 =
1

Γ(α)

∫1

0
(α − 1)k(s)ds =

1
Γ(5/2)

∫1

0

3
2
s(1 − s)3/2ds = 0.1290,

C2 =
1

Γ(α)

∫1

0

1
(α − 1)

q(s)k(s)ds =
1

Γ(5/2)

∫1

0

2
3
s5/2(1 − s)5/2ds = 0.0077.

(5.2)

Let f(u) = ua, a > 1. Then we have F0 = 0, f∞ = +∞. Choose l = 1/2. Then q(1/2) =
√

2/8 =
0.1768. So q(l)C2f∞ > F0C1 holds. Thus, by Theorem 3.2, the boundary value problem (5.1)
has a positive solution for each λ ∈ (0,+∞).



14 Abstract and Applied Analysis

Example 5.2. Discuss the boundary value problem

D5/2
0+ u(t) + λub = 0, 0 < t < 1, 0 < b < 1,

u(0) = u(1) = u′(0) = 0.
(5.3)

Since α = 5/2, we have C1 = 0.1290 and C2 = 0.0077. Let f(u) = ub, 0 < b < 1. Then
we have F∞ = 0, f0 = +∞. Choose l = 1/2. Then q(1/2) =

√
2/8 = 0.1768. So q(l)C2f0 > F∞C1

holds. Thus, by Theorem 3.3, the boundary value problem (5.3) has a positive solution for
each λ ∈ (0,+∞).

Example 5.3. Consider the boundary value problem

D5/2
0+ u(t) + λ

(
200u2 + u

)
(2 + sinu)

u + 1
= 0, 0 < t < 1, a > 1,

u(0) = u(1) = u′(0) = 0.

(5.4)

Since α = 5/2, we have C1 = 0.129 and C2 = 0.0077. Let f(u) = (200u2 + u)(2 +
sinu)/(u + 1). Then we have F0 = f0 = 2, F∞ = 600, f∞ = 200, and 2u < f(u) < 600u.

(i) Choose l = 1/2. Then q(1/2) =
√

2/8 = 0.1768. So q(l)C2f∞ > F0C1 holds. Thus,
by Theorem 3.2, the boundary value problem (5.4) has a positive solution for each
λ ∈ (3.6937, 3.8759).

(ii) By Theorem 4.1, the boundary value problem (5.4) has no positive solution for all
λ ∈ (0, 0.0129).

(iii) By Theorem 4.2, the boundary value problem (5.4) has no positive solution for all
λ ∈ (369.369,+∞).

Example 5.4. Consider the boundary value problem

D5/2
0+ u(t) + λ

(
u2 + u

)
(2 + sinu)

150u + 1
= 0, 0 < t < 1, a > 1,

u(0) = u(1) = u′(0) = 0.

(5.5)

Since α = 5/2, we have C1 = 0.129 and C2 = 0.0077. Let f(u) = (u2 + u)(2 +
sinu)/(150u + 1). Then we have F0 = f0 = 2, F∞ = 1/50, f∞ = 1/150, and u/150 < f(u) < 2u.

(i) Choose l = 1/2. Then q(1/2) =
√

2/8 = 0.1768. So q(l)C2f0 > F∞C1 holds. Thus,
by Theorem 3.3, the boundary value problem (5.5) has a positive solution for each
λ ∈ (369.369, 387.5968).

(ii) By Theorem 4.1, the boundary value problem (5.5) has no positive solution for all
λ ∈ (0, 3.8759).

(iii) By Theorem 4.2, the boundary value problem (5.5) has no positive solution for all
λ ∈ (110810.6911,+∞).
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The aim of this paper is to offer sufficient conditions for property (B) and/or the oscillation of
the third-order nonlinear functional differential equation with mixed arguments [a(t)[x′′(t)]γ ]′ =
q(t)f(x[τ(t)])+p(t)h(x[σ(t)]). Both cases

∫∞
a−1/γ (s)ds =∞ and

∫∞
a−1/γ (s)ds <∞ are considered.

We deduce properties of the studied equations via new comparison theorems. The results obtained
essentially improve and complement earlier ones.

1. Introduction

We are concerned with the oscillatory and certain asymptotic behavior of all solutions of the
third-order functional differential equations

[
a(t)
[
x′′(t)

]γ]′ = q(t)f(x[τ(t)]) + p(t)h(x[σ(t)]). (E)

Throughout the paper, it is assumed that a, q, p ∈ C([t0,∞)), τ, σ ∈ C1([t0,∞)), f, h ∈
C((−∞,∞)), and

(H1) γ is the ratio of two positive odd integers,

(H2) a(t), q(t), p(t) are positive,

(H3) τ(t) ≤ t, σ(t) ≥ t, τ ′(t) > 0, σ ′(t) > 0, limt→∞τ(t) =∞,

(H4) f1/γ(x)/x ≥ 1, xh(x) > 0, f ′(x) ≥ 0, and h′(x) ≥ 0 for x /= 0,

(H5) −f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0 and −h(−xy) ≥ h(xy) ≥ h(x)h(y) for
xy > 0.
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By a solution of (E), we mean a function x(t) ∈ C2([Tx,∞)), Tx ≥ t0, which has
the property a(t)(x′′(t))γ ∈ C1([Tx,∞)) and satisfies (E) on [Tx,∞). We consider only those
solutions x(t) of (E) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We assume that (E)
possesses such a solution. A solution of (E) is called oscillatory if it has arbitrarily large zeros
on [Tx,∞), and, otherwise, it is nonoscillatory. Equation (E) is said to be oscillatory if all its
solutions are oscillatory.

Recently, (E) and its particular cases (see [1–17]) have been intensively studied. The
effort has been oriented to provide sufficient conditions for every (E) to satisfy

lim
t→∞
|x(t)| =∞ (1.1)

or to eliminate all nonoscillatory solutions. Following [6, 8, 13, 15], we say that (E) has
property (B) if each of its nonoscillatory solutions satisfies (1.1).

We will discuss both cases

∫∞
t0

a−1/γ(s)ds <∞, (1.2)

∫∞
t0

a−1/γ(s)ds =∞. (1.3)

We will establish suitable comparison theorems that enable us to study properties of
(E) regardless of the fact that (1.3) or (1.2) holds. We will compare (E) with the first-order
advanced/delay equations, in the sense that the oscillation of these first-order equations
yields property (B) or the oscillation of (E).

In the paper, we are motivated by an interesting result of Grace et al. [10], where the
oscillation criteria for (E) are discussed. This result has been complemented by Baculı́ková
et al. [5]. When studying properties of (E), the authors usually reduce (E) onto the
corresponding differential inequalities

[
a(t)
[
x′′(t)

]γ]′ ≥ q(t)f(x[τ(t)]),
[
a(t)
[
x′′(t)

]γ]′ ≥ p(t)h(x[σ(t)]),
(Eσ)

and further study only properties of these inequalities. Therefore, the criteria obtained
withhold information either from delay argument τ(t) and the corresponding functions q(t)
and f(u) or from advanced argument σ(t) and the corresponding functions p(t) and h(u). In
the paper, we offer a technique for obtaining new criteria for property (B) and the oscillation
of (E) that involve both arguments τ(t) and σ(t). Consequently, our results are new even for
the linear case of (E) and properly complement and extend earlier ones presented in [1–17].

Remark 1.1. All functional inequalities considered in this paper are assumed to hold eventu-
ally; that is, they are satisfied for all t large enough.

2. Main Results

The following results are elementary but useful in what comes next.
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Lemma 2.1. Assume that A ≥ 0, B ≥ 0, α ≥ 1. Then,

(A + B)α ≥ Aα + Bα. (2.1)

Proof. If A = 0 or B = 0, then (2.1) holds. For A/= 0, setting x = B/A, condition (2.1) takes the
form (1 + x)α ≥ 1 + xα, which is for x > 0 evidently true.

Lemma 2.2. Assume that A ≥ 0, B ≥ 0, 0 < α ≤ 1. Then,

(A + B)α ≥ A
α + Bα

21−α . (2.2)

Proof. We may assume that 0 < A < B. Consider a function g(u) = uα. Since g ′′(u) < 0 for
u > 0, function g(u) is concave down; that is,

g

(
A + B

2

)
≥ g(A) + g(B)

2
(2.3)

which implies (2.2).

The following result presents a useful relationship between an existence of positive
solutions of the advanced differential inequality and the corresponding advanced differential
equation.

Lemma 2.3. Suppose that p(t), σ(t), and h(u) satisfy (H2), (H3), and (H4), respectively. If the first-
order advanced differential inequality

z′(t) − p(t)h(z(σ(t))) ≥ 0 (2.4)

has an eventually positive solution, so does the advanced differential equation

z′(t) − p(t)h(z(σ(t))) = 0. (2.5)

Proof. Let z(t) be a positive solution of (2.4) on [t1,∞). Then, z(t) satisfies the inequality

z(t) ≥ z(t1) +
∫ t
t1

p(s)h(z(σ(s)))ds. (2.6)

Let

y1(t) = z(t),

yn(t) = z(t1) +
∫ t
t1

p(s)h
(
yn−1(σ(s))

)
ds, n = 2, 3 . . . .

(2.7)
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It follows from the definition of yn(t) and (H4) that the sequence {yn} has the property

z(t) = y1(t) ≥ y2(t) ≥ · · · ≥ z(t1), t ≥ t1. (2.8)

Hence, {yn} converges pointwise to a function y(t), where z(t) ≥ y(t) ≥ z(t1). Let hn(t) =
p(t)h(yn(σ(t))), n = 1, 2, . . ., then h1(t) ≥ h2(t) ≥ · · · ≥ 0. Since h1(t) is integrable on [t1, t] and
limn→∞hn(t) = p(t)h(y(σ(t))), it follows by Lebesgue’s dominated convergence theorem that

y(t) = z(t1) +
∫ t
t1

p(s)h
(
y(σ(s))

)
ds. (2.9)

Thus, y(t) satisfies (2.5).

We start our main results with the classification of the possible nonoscillatory solutions
of (E).

Lemma 2.4. Let x(t) be a nonoscillatory solution of (E). Then, x(t) satisfies, eventually, one of the
following conditions

(I)

x(t)x′(t) > 0, x(t)x′′(t) > 0, x(t)
[
a(t)
[
x′′(t)

]γ]′
> 0, (2.10)

(II)

x(t)x′(t) > 0, x(t)x′′(t) < 0, x(t)
[
a(t)
[
x′′(t)

]γ]′
> 0, (2.11)

and if (1.2) holds, then also

(III)

x(t)x′(t) < 0, x(t)x′′(t) > 0, x(t)
[
a(t)
[
x′′(t)

]γ]′
> 0. (2.12)

Proof. Let x(t) be a nonoscillatory solution of (E), say x(t) > 0 for t ≥ t0. It follows from (E)
that [a(t)[x′′(t)]γ] > 0, eventually. Thus, x′′(t) and x′(t) are of fixed sign for t ≥ t1, t1 large
enough. At first, we assume that x′′(t) < 0. Then, either x′(t) > 0 or x′(t) < 0, eventually. But
x′′(t) < 0 together with x′(t) < 0 imply that x(t) < 0. A contradiction, that is, Case (II) holds.

Now, we suppose that x′′(t) > 0, then either Case (I) or Case (III) holds. On the other
hand, if (1.3) holds, then Case (III) implies that a(t)[x′′(t)]γ ≥ c > 0, t ≥ t1. Integrating from t1
to t, we have

x′(t) − x′(t1) ≥ c1/γ
∫ t
t1

a−1/γ(s)ds, (2.13)

which implies that x′(t) → ∞ as t → ∞, and we deduce that Case (III) may occur only if
(1.2) is satisfied. The proof is complete.
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Remark 2.5. It follows from Lemma 2.4 that if (1.3) holds, then only Cases (I) and (II) may
occur.

In the following results, we provide criteria for the elimination of Cases (I)–(III) of
Lemma 2.4 to obtain property (B)/oscillation of (E).

Let us denote for our further references that

P(t) =
∫∞
t

a−1/γ(u)
(∫∞

u

p(s)ds
)1/γ

du, (2.14)

Q(t) =
∫∞
t

a−1/γ(u)

(∫∞
u

q
(
τ−1(s)

)
τ ′
(
τ−1(s)

)ds

)1/γ

du. (2.15)

Theorem 2.6. Let 0 < γ ≤ 1. Assume that x(t) is a nonoscillatory solution of (E). If the first-order
advanced differential equation

z′(t) − P(t)e−
∫ t
t1
Q(s)ds

h1/γ
(
e
∫σ(t)
t1

Q(s)ds
)
h1/γ(z[σ(t)]) = 0 (E1)

is oscillatory, then Case (II) cannot hold.

Proof. Let x(t) be a nonoscillatory solution of (E), satisfying Case (II) of Lemma 2.4. We may
assume that x(t) > 0 for t ≥ t0. Integrating (E) from t to∞, one gets

−a(t)[x′′(t)]γ ≥
∫∞
t

q(s)f(x[τ(s)])ds +
∫∞
t

p(s)h(x[σ(s)])ds. (2.16)

On the other hand, the substitution τ(s) = u gives

∫∞
t

q(s)f(x[τ(s)])ds =
∫∞
τ(t)

q
(
τ−1(u)

)
τ ′
(
τ−1(u)

)f(x(u))du

≥
∫∞
t

q
(
τ−1(s)

)
τ ′
(
τ−1(s)

)f(x(s))ds.
(2.17)

Using (2.17) in (2.16), we find

−x′′(t) ≥ a−1/γ(t)

(∫∞
t

q
(
τ−1(s)

)
τ ′
(
τ−1(s)

)f(x(s))ds +
∫∞
t

p(s)h(x[σ(s)])ds

)1/γ

. (2.18)
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Taking into account the monotonicity of x(t), it follows from Lemma 2.1 that

− x′′(t) ≥ f
1/γ(x(t))
a1/γ(t)

(∫∞
t

q
(
τ−1(s)

)
τ ′
(
τ−1(s)

)ds

)1/γ

+
h1/γ(x[σ(t)])

a1/γ(t)

(∫∞
t

p(s)ds
)1/γ

,

(2.19)

where we have used (H3) and (H4). An integration from t to∞ yields

x′(t) ≥
∫∞
t

f1/γ(x(u))
a1/γ(u)

(∫∞
u

q
(
τ−1(s)

)
τ ′
(
τ−1(s)

)ds

)1/γ

du

+
∫∞
t

h1/γ(x[σ(u)])
a1/γ(u)

(∫∞
u

p(s)ds
)1/γ

du

≥ f1/γ(x(t))Q(t) + h1/γ(x[σ(t)])P(t).

(2.20)

Regarding (H4), it follows that x(t) is a positive solution of the differential inequality

x′(t) −Q(t)x(t) ≥ P(t)h1/γ(x[σ(t)]). (2.21)

Applying the transformation

x(t) = w(t)e
∫ t
t1
Q(s)ds

, (2.22)

we can easily verify that w(t) is a positive solution of the advanced differential inequality

w′(t) − P(t)e−
∫ t
t1
Q(s)ds

h1/γ
(
e
∫σ(t)
t1

Q(s)ds
)
h1/γ(w[σ(t)]) ≥ 0. (2.23)

By Lemma 2.3, we conclude that the corresponding differential equation (E1) has also a
positive solution. A contradiction. Therefore, x(t) cannot satisfy Case (II).
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Remark 2.7. It follows from the proof of Theorem 2.8 that if at least one of the following
conditions is satisfied:

∫∞
t0

p(s)ds =∞,

∫∞
t0

q
(
τ−1(s)

)
τ ′
(
τ−1(s)

)ds =∞,

∫∞
t0

a−1/γ(u)
(∫∞

u

p(s)ds
)1/γ

du =∞,

∫∞
t0

a−1/γ(u)

(∫∞
u

q
(
τ−1(s)

)
τ ′
(
τ−1(s)

)ds

)1/γ

du =∞,

(2.24)

then any nonoscillatory solution x(t) of (E) cannot satisfy Case (II). Therefore, we may
assume that the corresponding integrals in (2.14)-(2.15) are convergent.

Now, we are prepared to provide new criteria for property (B) of (E) and also the rate
of divergence of all nonoscillatory solutions.

Theorem 2.8. Let (1.3) hold and 0 < γ ≤ 1. Assume that (E1) is oscillatory. Then, (E) has property
(B) and, what is more, the following rate of divergence for each of its nonoscillatory solutions holds:

|x(t)| ≥ c
∫ t
t1

a−1/γ(s)(t − s)ds, c > 0. (2.25)

Proof. Let x(t) be a positive solution of (E). It follows from Lemma 2.4 and Remark 2.5 that
x(t) satisfies either Case (I) or (II). But Theorem 2.6 implies that the Case (II) cannot hold.
Therefore, x(t) satisfies Case (I), which implies (1.1); that is, (E) has property (B). On the
other hand, there is a constant c > 0 such that

a(t)
(
x′′(t)

)γ ≥ cγ . (2.26)

Integrating twice from t1 to t, we have

x(t) ≥ c
∫ t
t1

(∫u
t1

a−1/γ(s)ds

)
du = c

∫ t
t1

a−1/γ(s)(t − s)ds, (2.27)

which is the desired estimate.

Employing an additional condition on the function h(x), we get easily verifiable
criterion for property (B) of (E).
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Corollary 2.9. Let 0 < γ ≤ 1 and (1.3) hold. Assume that

h1/γ(x)/x ≥ 1, |x| ≥ 1, (2.28)

lim inf
t→∞

∫σ(t)
t

P(u)e
∫σ(u)
u Q(s)dsdu >

1
e
. (2.29)

Then, (E) has property (B).

Proof. First note that (2.29) implies

∫∞
t0

P(u)e
∫σ(u)
u Q(s)dsdu =∞. (2.30)

By Theorem 2.8, it is sufficient to show that (E1) is oscillatory. Assume the converse, let (E1)
have an eventually positive solution z(t). Then, z′(t) > 0 and so z(σ(t)) > c > 0. Integrating
(E1) from t1 to t, we have in view of (2.28)

z(t) ≥
∫ t
t1

P(u)e−
∫u
t1
Q(s)ds

h1/γ
(
e
∫σ(u)
t1

Q(s)ds
)
h1/γ(z[σ(u)])du

≥ h1/γ(c)
∫ t
t1

P(u)e
∫σ(u)
u Q(s)dsdu.

(2.31)

Using (2.30) in the previous inequalities, we get z(t) → ∞ as t → ∞. Therefore, z(t) ≥ 1,
eventually. Now, using (2.28) in (E1), one can verify that z(t) is a positive solution of the
differential inequality

z′(t) − P(t)e
∫σ(t)
t Q(s)dsz(σ(t)) ≥ 0. (2.32)

But, by [14, Theorem 2.4.1], condition (2.29) ensures that (2.32) has no positive solutions.
This is a contradiction, and we conclude that (E) has property (B).

Example 2.10. Consider the third-order nonlinear differential equation with mixed arguments

(
t1/3(x′′(t))1/3

)′
=

a

t4/3
x1/3(λt) +

b

t4/3
xβ(ωt), (Ex1)

where a, b > 0, 0 < λ < 1, ω > 1, and β ≥ 1/3 is a ratio of two positive odd integers. Since

P(t) =
27b3

t
, Q(t) =

27a3λ

t
, (2.33)

Corollary 2.9 implies that (Ex1) has property (B) provided that

b3ω27a3λ lnω >
1

27e
. (2.34)
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Moreover, by Theorem 2.8, the rate of divergence of every nonoscillatory solution of (Ex1) is

|x(t)| ≥ ct ln t, c > 0. (2.35)

For β = 1/3 and δ > 1 satisfying δ1/3(δ − 1)4/3 = 3aλδ/3 + 3bωδ/3, one such solution is tδ.

Now, we turn our attention to the case when γ ≥ 1.

Theorem 2.11. Let γ ≥ 1. Assume that x(t) is a nonoscillatory solution of (E). If the first-order
advanced differential equation

z′(t) − 2(1−γ)/γP(t)e[−2(1−γ)/γ
∫ t
t1
Q(s)ds]

h1/γ
(
e2(1−γ)/γ

∫σ(t)
t1

Q(s)ds
)
h1/γ(z[σ(t)]) = 0 (E2)

is oscillatory, then Case (II) cannot hold.

Proof. Let x(t) be an eventually positive solution of (E), satisfying Case (II) of Lemma 2.4.
Then, (2.18) holds. Lemma 2.2, in view of the monotonicity of x(t), (H3), and (H4), implies

−x′′(t) ≥ f1/γ(x(t))
2(γ−1)/γa1/γ(t)

(∫∞
t

q
(
τ−1(s)

)
τ ′
(
τ−1(s)

)ds

)1/γ

+
h1/γ(x[σ(t)])
2(γ−1)/γa1/γ(t)

(∫∞
t

p(s)ds
)1/γ

.

(2.36)

An integration from t to∞ yields

x′(t) ≥
∫∞
t

f1/γ(x(u))
2(γ−1)/γa1/γ(u)

(∫∞
u

q
(
τ−1(s)

)
τ ′
(
τ−1(s)

)ds

)1/γ

du

+
∫∞
t

h1/γ(x[σ(u)])
2(γ−1)/γa1/γ(u)

(∫∞
u

p(s)ds
)1/γ

du

≥ f1/γ(x(t))2(1−γ)/γQ(t) + h1/γ(x[σ(t)])2(1−γ)/γP(t).

(2.37)

Noting (H4), we see that x(t) is a positive solution of the differential inequality

x′(t) ≥ 2(1−γ)/γQ(t)x(t) + 2(1−γ)/γP(t)h1/γ(x[σ(t)]). (2.38)

Setting

x(t) = w(t)e[2
(1−γ)/γ ∫ t

t1
Q(s)ds]

, (2.39)
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one can see that w(t) is a positive solution of the advanced differential inequality

w′(t) − 2(1−γ)/γP(t)e[−2(1−γ)/γ
∫ t
t1
Q(s)ds]

h1/γ
(
e

2(1−γ)/γ
∫σ(t)
t1

Q(s)ds
)
h1/γ(w[σ(t)]) ≥ 0. (2.40)

By Lemma 2.3, we deduce that the corresponding differential equation (E2) has also a positive
solution. A contradiction. Therefore, x(t) cannot satisfy Case (II).

The following result is obvious.

Theorem 2.12. Let (1.3) hold and γ ≥ 1. Assume that (E2) is oscillatory. Then, (E) has property (B)
and, what is more, each of its nonoscillatory solutions satisfies (2.25).

Now, we present easily verifiable criterion for property (B) of (E).

Corollary 2.13. Let (1.3) and (2.28) hold and γ ≥ 1. If

lim inf
t→∞

∫σ(t)
t

P(u)e[2
(1−γ)/γ ∫σ(u)

u Q(s)ds]du >
2(γ−1)/γ

e
, (2.41)

then (E) has property (B).

Proof. The proof is similar to the proof of Corollary 2.9 and so it can be omitted.

Remark 2.14. Theorems 2.6, 2.8, 2.11, and 2.12 and Corollaries 2.9 and 2.13 provide criteria
for property (B) that include both delay and advanced arguments and all coefficients and
functions of (E). Our results are new even for the linear case of (E).

Remark 2.15. It is useful to notice that if we apply the traditional approach to (E), that is, if
we replace (E) by the corresponding differential inequality (Eσ), then conditions (2.29) of
Corollary 2.9 and (2.41) of Corollary 2.13 would take the forms

lim inf
t→∞

∫σ(t)
t

P(u)du >
1
e
, lim inf

t→∞

∫σ(t)
t

P(u)du >
2(γ−1)/γ

e
, (2.42)

respectively, which are evidently second to (2.29) and (2.41).

Example 2.16. Consider the third-order nonlinear differential equation with mixed arguments

(
t(x′′(t))3

)′
=
a

t6
x3(λt) +

b

t6
xβ(ωt), (Ex2)

where a, b > 0, 0 < λ < 1, β ≥ 3 is a ratio of two positive odd integers and ω > 1. It is easy to
see that conditions (2.14) and (2.15) for (Ex2) reduce to

P(t) =
b1/3

51/3t
, Q(t) =

λ5/3a1/3

51/3t
, (2.43)
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respectively. It follows from Corollary 2.13 that (Ex2) has property (B) provided that

b1/3
[
ωλ5/3a1/3/22/351/3

]
lnω ≥ 22/351/3

e
. (2.44)

Moreover, (2.25) provides the following rate of divergence for every nonoscillatory solution
of (Ex2):

|x(t)| ≥ ct5/3, c > 0. (2.45)

Now, we eliminate Case (I) of Lemma 2.4, to get the oscillation of (E).

Theorem 2.17. Let x(t) be a nonoscillatory solution of (E). Assume that there exists a function
ξ(t) ∈ C1([t0,∞)) such that

ξ′(t) ≥ 0, ξ(t) < t, η(t) = σ(ξ(ξ(t))) > t. (2.46)

If the first-order advanced differential equation

z′(t) −
⎧⎨
⎩
∫ t
ξ(t)

a−1/γ(u)

(∫u
ξ(u)

p(s)ds

)1/γ

du

⎫⎬
⎭h1/γ(z[η(t)]) = 0 (E3)

is oscillatory, then Case (I) cannot hold.

Proof. Let x(t) be an eventually positive solution of (E), satisfying Case (I). It follows from
(E) that

[
a(t)[x′′(t)]γ

]′ ≥ p(t)h(x[σ(t)]). (2.47)

Integrating from ξ(t) to t, we have

a(t)[x′′(t)]γ − a(ξ(t))[x′′(ξ(t))] γ ≥
∫ t
ξ(t)

p(s)h(x[σ(s)])ds

≥ h(x[σ(ξ(t))])
∫ t
ξ(t)

p(s)ds.

(2.48)

Therefore,

x′′(t) ≥ h1/γ(x[σ(ξ(t))])a−1/γ(t)

(∫ t
ξ(t)

p(s)ds

)1/γ

. (2.49)
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An integration from ξ(t) to t yields

x′(t) ≥
∫ t
ξ(t)

h1/γ(x[σ(ξ(u))])a−1/γ(u)

(∫u
ξ(u)

p(s)ds

)1/γ

du

≥ h1/γ(x[η(t)])
∫ t
ξ(t)

a−1/γ(u)

(∫u
ξ(u)

p(s)ds

)1/γ

du.

(2.50)

Consequently, x(t) is a positive solution of the advanced differential inequality

x′(t) −
⎧⎨
⎩
∫ t
ξ(t)

a−1/γ(u)

(∫u
ξ(u)

p(s)ds

)1/γ

du

⎫⎬
⎭h1/γ(x[η(t)]) ≥ 0. (2.51)

Hence, by Lemma 2.3, we conclude that the corresponding differential equation (E3) also has
a positive solution, which contradicts the oscillation of (E3). Therefore, x(t) cannot satisfy
Case (I).

Combining Theorem 2.17 with Theorems 2.6 and 2.11, we get two criteria for the
oscillation of (E).

Theorem 2.18. Let (1.3) hold and 0 < γ ≤ 1. Assume that both of the first-order advanced equations
(E1) and (E3) are oscillatory, then (E) is oscillatory.

Proof. Assume that (E) has a nonoscillatory solution. It follows from Remark 2.5 that x(t)
satisfies either Case (I) or (II). But both cases are excluded by the oscillation of (E1) and
(E3).

Corollary 2.19. Let 0 < γ ≤ 1. Assume that (1.3), (2.28), (2.29), and (2.46) hold. If

lim inf
t→∞

∫η(t)
t

⎧⎨
⎩
∫v
ξ(v)

a−1/γ(u)

(∫u
ξ(u)

p(s)ds

)1/γ

du

⎫⎬
⎭dv >

1
e
, (2.52)

then (E) is oscillatory.

Proof. Conditions (2.29) and (2.52) guarantee the oscillation of (E1) and (E3), respectively.
The assertion now follows from Theorem 2.18.

Example 2.20. We consider once more the third-order differential equation (Ex1) with the same
restrictions as in Example 2.10. We set ξ(t) = α0t, where α0 = (1 +

√
ω)/2

√
ω. Then condition

(2.52) takes the form

b3
(1 − α0)

(
1 − α1/3

0

)3

α2
0

ln
(
ωα2

0

)
>

1
27e

, (2.53)

which by Corollary 2.19, implies the oscillation of (Ex1).
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The following results are obvious.

Theorem 2.21. Let (1.3) hold and γ ≥ 1. Assume that both of the first-order advanced equations (E2)
and (E3) are oscillatory, then (E) is oscillatory.

Corollary 2.22. Let γ ≥ 1. Assume that (1.3), (2.28), (2.41), (2.46), and (2.52) hold. Then (E) is
oscillatory.

Example 2.23. We recall again the differential equation (Ex2) with the same assumptions as in
Example 2.16. We set ξ(t) = α0t with α0 = (1 +

√
ω)/2

√
ω. Then condition (2.52) reduces to

b1/3 (1 − α0)
(
1 − α5

0

)1/3

α8/3
0

ln
(
ωα2

0

)
>

51/3

e
, (2.54)

which, by Corollary 2.22, guarantees the oscillation of (Ex2).

The following result is intended to exclude Case (III) of Lemma 2.4.

Theorem 2.24. Let x(t) be a nonoscillatory solution of (E). Assume that (1.2) holds. If the first-order
delay differential equation

z′(t) +

(∫ t
t1

q(s)ds

)1/γ(∫∞
t

a−1/γ(s)ds
)
f1/γ(z[τ(t)]) = 0. (E4)

is oscillatory, then Case (III) cannot hold.

Proof. Let x(t) be a positive solution of (E), satisfying Case (III) of Lemma 2.4. Using that
a(t)[x′′(t)]γ is increasing, we find that

−x′(t) ≥
∫∞
t

x′′(s)ds =
∫∞
t

(
a1/γ(s)x′′(s)

)
a−1/γ(s)ds

≥ a(t)1/γx′′(t)
∫∞
t

a−1/γ(s)ds.

(2.55)

Integrating the inequality [a(t)[x′′(t)]γ]′ ≥ q(t)f(x[τ(t)]) from t1 to t, we have

a(t)
[
x′′(t)

]γ ≥
∫ t
t1

q(s)f(x[τ(s)]ds) ≥ f(x[τ(t)])
∫ t
t1

q(s)ds. (2.56)

Thus,

a1/γ(t)x′′(t) ≥ f1/γ(x[τ(t)])

(∫ t
t1

q(s)ds

)1/γ

. (2.57)
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Combining (2.57) with (2.55), we find

0 ≥ x′(t) +
(∫ t

t1

q(s)ds

)1/γ(∫∞
t

a−1/γ(s)ds
)
f1/γ(x[τ(t)]). (2.58)

It follows from [16, Theorem 1] that the corresponding differential equation (E4) also has a
positive solution. A contradiction. For that reason, x(t) cannot satisfy Case (III).

The following results are immediate.

Theorem 2.25. Let (1.2) hold and 0 < γ ≤ 1. Assume that both of the first-order advanced equations
(E1) and (E4) are oscillatory, then (E) has property (B).

Theorem 2.26. Let (1.2) hold and 0 < γ ≤ 1. Assume that all of the three first-order advanced
equations (E1), (E3), and (E4) are oscillatory, then (E) is oscillatory.

Theorem 2.27. Let (1.2) hold and γ ≥ 1. Assume that both of the first-order advanced equations (E2)
and (E4) are oscillatory, then (E) has property (B).

Theorem 2.28. Let (1.2) hold and γ ≥ 1. Assume that all of the three first-order advanced equations
(E2), (E3), and (E4) are oscillatory, then (E) is oscillatory.

3. Summary

In this paper, we have presented new comparison theorems for deducing the property
(B)/oscillation of (E) from the oscillation of a set of the suitable first-order delay/advanced
differential equation. We were able to present such criteria for studied properties that employ
all coefficients and functions included in studied equations. Our method essentially simplifies
the examination of the third-order equations, and, what is more, it supports backward the
research on the first-order delay/advanced differential equations. Our results here extend
and complement latest ones of Grace et al. [10], Agarwal et al. [1–3], Cecchi et al. [6], Parhi
and Pardi [15], and the present authors [4, 8]. The suitable illustrative examples are also
provided.
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[8] J. Džurina, “Comparison theorems for functional-differential equations with advanced argument,”
Unione Matematica Italiana. Bollettino, vol. 7, no. 3, pp. 461–470, 1993.

[9] L. H. Erbe, Q. Kong, and B. G. Zhang, Oscillation Theory for Functional-Differential Equations, vol. 190 of
Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1994.

[10] S. R. Grace, R. P. Agarwal, R. Pavani, and E. Thandapani, “On the oscillation of certain third order
nonlinear functional differential equations,” Applied Mathematics and Computation, vol. 202, no. 1, pp.
102–112, 2008.
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A Lie group acting on finite-dimensional space is generated by its infinitesimal transformations
and conversely, any Lie algebra of vector fields in finite dimension generates a Lie group (the
first fundamental theorem). This classical result is adjusted for the infinite-dimensional case. We
prove that the (local, C∞ smooth) action of a Lie group on infinite-dimensional space (a manifold
modelled on �

∞) may be regarded as a limit of finite-dimensional approximations and the
corresponding Lie algebra of vector fields may be characterized by certain finiteness requirements.
The result is applied to the theory of generalized (or higher-order) infinitesimal symmetries of
differential equations.

1. Preface

In the symmetry theory of differential equations, the generalized (or: higher-order, Lie-Bäcklund)
infinitesimal symmetries

Z =
∑

zi
∂

∂xi
+
∑

z
j

I

∂

∂w
j

I

(
i = 1, . . . , n; j = 1, . . . , m; I = i1 · · · in; i1, . . . , in = 1, . . . , n

)
, (1.1)

where the coefficients

zi = zi
(
. . . , xi′ , w

j ′

I ′ , . . .
)
, z

j

I = z
j

I

(
. . . , xi′ , w

j ′

I ′ , . . .
)

(1.2)

are functions of independent variables xi, dependent variables wj and a finite number of jet
variables wj

I = ∂nwj/∂xi1 · · ·∂xin belong to well-established concepts. However, in spite of
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m(λ)∗hi :
m(1)

Diagonal

m(2)

· · ·

(a)

m(λ)∗Fi :
m(1) = · · · = K(I)

K(I + 1) = · · ·

· · ·

Square blocks

(b)

Figure 1

this matter of fact, they cause an unpleasant feeling. Indeed, such vector fields as a rule do
not generate any one-parameter group of transformations

xi = Gi

(
λ; . . . , xi′ , w

j ′

I ′ , . . .
)
, w

j

I = G
j

I

(
λ; . . . , xi′ , w

j ′

I ′ , . . .
)

(1.3)

in the underlying infinite-order jet space since the relevant Lie system

∂Gi

∂λ
= zi
(
. . . , Gi′ , G

j ′

I ′ , . . .
)
,

∂G
j

I

∂λ
= zjI

(
. . . , Gi′ , G

j ′

I ′ , . . .
) (

Gi|λ=0 = xi, G
j

I

∣∣∣
λ=0

= wj

I

)
(1.4)

need not have any reasonable (locally unique) solution. Then Z is a mere formal concept
[1–7] not related to any true transformations and the term “infinitesimal symmetry Z” is
misleading, no Z-symmetries of differential equations in reality appear.

In order to clarify the situation, we consider one-parameter groups of local
transformations in �∞ . We will see that they admit “finite-dimensional approximations”
and as a byproduct, the relevant infinitesimal transformations may be exactly characterized
by certain “finiteness requirements” of purely algebraical nature. With a little effort, the
multidimensional groups can be easily involved, too. This result was briefly discussed in
[8, page 243] and systematically mentioned at several places in monograph [9], but our aim
is to make some details more explicit in order to prepare the necessary tools for systematic
investigation of groups of generalized symmetries. We intend to continue our previous articles
[10–13] where the algorithm for determination of all individual generalized symmetries was
already proposed.

For the convenience of reader, let us transparently describe the crucial approximation
result. We consider transformations (2.1) of a local one-parameter group in the space �∞

with coordinates h1, h2, . . .. Equations (2.1) of transformations m(λ) can be schematically
represented by Figure 1(a).

We prove that in appropriate new coordinate system F1, F2, . . . on �∞ , the same trans-
formations m(λ) become block triangular as in Figure 1(b). It follows that a certain hierarchy
of finite-dimensional subspaces of �∞ is preserved which provides the “approximation”
of m(λ). The infinitesimal transformation Z = dm(λ)/dλ|λ=0 clearly preserves the same
hierarchy which provides certain algebraical “finiteness” of Z.
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0 1 2 · · ·

(a)

0 1 2 · · ·

(b)

0 1 2 · · ·

(c)

Figure 2

If the primary space �∞ is moreover equipped with an appropriate structure, for
example, the contact forms, it turns into the jet space and the results concerning the
transformation groups on �

∞ become the theory of higher-order symmetries of differential
equations. Unlike the common point symmetries which occupy a number of voluminous
monographs (see, e.g., [14, 15] and extensive references therein) this higher-order theory
was not systematically investigated yet. We can mention only the isolated article [16]
which involves a direct proof of the “finiteness requirements” for one-parameter groups
(namely, the result (ι) of Lemma 5.4 below) with two particular examples and monograph
[7] involving a theory of generalized infinitesimal symmetries in the formal sense.

Let us finally mention the intentions of this paper. In the classical theory of point or Lie’s
contact-symmetries of differential equations, the order of derivatives is preserved (Figure 2(a)).
Then the common Lie’s and Cartan’s methods acting in finite dimensional spaces given
ahead of calculations can be applied. On the other extremity, the generalized symmetries need
not preserve the order (Figure 2(c)) and even any finite-dimensional space and then the
common classical methods fail. For the favourable intermediate case of groups of generalized
symmetries, the invariant finite-dimensional subspaces exist, however, they are not known in
advance (Figure 2(b)). We believe that the classical methods can be appropriately adapted for
the latter case, and this paper should be regarded as a modest preparation for this task.

2. Fundamental Approximation Results

Our reasonings will be carried out in the space �
∞ with coordinates h1, h2, . . . [9] and we

introduce the structural family F of all real-valued, locally defined and C∞-smooth functions
f = f(h1, . . . , hm(f)) depending on a finite number of coordinates. In future, such functions
will contain certain C∞-smooth real parameters, too.

We are interested in (local) groups of transformations m(λ) in �∞ defined by formulae

m(λ)∗hi = Hi
(
λ;h1, . . . , hm(i)

)
, −εi < λ < εi, εi > 0 (i = 1, 2, . . .), (2.1)

where Hi ∈ F if the parameter λ is kept fixed. We suppose

m(0) = id., m
(
λ + μ

)
= m(λ)m

(
μ
)

(2.2)
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whenever it makes a sense. An open and common definition domain for all functions Hi is
tacitly supposed. (In more generality, a common definition domain for every finite number of
functions Hi is quite enough and the germ and sheaf terminology would be more adequate
for our reasonings, alas, it looks rather clumsy.)

Definition 2.1. For every I = 1, 2, . . . and 0 < ε < min{ε1, . . . , εI}, let F(I, ε) ⊂ F be the subset
of all composed functions

F = F
(
. . . ,m

(
λj
)∗
hi, . . .

)
= F
(
. . . ,Hi

(
λj ;h1, . . . , hm(i)

)
, . . .
)
, (2.3)

where i = 1, . . . , I; −ε < λj < ε; j = 1, . . . , J = J(I) = max{m(1), . . . , m(I)} and F is
arbitrary C∞-smooth function (of IJ variables). In functions F ∈ F(I, ε), variables λ1, . . . , λJ
are regarded as mere parameters.

Functions (2.3) will be considered on open subsets of �∞ where the rank of the Jacobi
(IJ × J)-matrix

(
∂

∂hj
′H

i
(
λj ;h1, . . . , hm(i)

)) (
i = 1, . . . , I; j, j ′ = 1, . . . , J

)
(2.4)

of functions Hi(λj ;h1, . . . , hm(i)) locally attains the maximum (for appropriate choice of
parameters). This rank and therefore the subset F(I, ε) ⊂ F does not depend on ε as soon
as ε = ε(I) is close enough to zero. This is supposed from now on and we may abbreviate
F(I) = F(I, ε).

We deal with highly nonlinear topics. Then the definition domains cannot be kept
fixed in advance. Our results will be true locally, near generic points, on certain open everywhere
dense subsets of the underlying space �∞ . With a little effort, the subsets can be exactly
characterized, for example, by locally constant rank of matrices, functional independence,
existence of implicit function, and so like. We follow the common practice and as a rule omit
such routine details from now on.

Lemma 2.2 (approximation lemma). The following inclusion is true:

m(λ)∗F(I) ⊂ F(I). (2.5)

Proof. Clearly

m(λ)∗Hi(λj ; . . .) = m(λ)∗m
(
λj
)∗
hi = m

(
λ + λj

)∗
hi = Hi(λ + λj ; . . .

)
(2.6)

and therefore

m(λ)∗F = F
(
. . . ,Hi

(
λ + λj ;h1, . . . , hm(i)

)
, . . .
)
∈ F(I). (2.7)
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Denoting by K(I) the rank of matrix (2.4), there exist basical functions

Fk = Fk
(
. . . ,Hi

(
λj ;h1, . . . , hm(i)

)
, . . .
)
∈ F(I) (k = 1, . . . , K(I)) (2.8)

such that rank(∂Fk/∂hj
′
) = K(I). Then a function f ∈ F lies in F(I) if and only if f =

f(F1, . . . , FK(I)) is a composed function. In more detail

F = F
(
λ1, . . . , λJ ;F1, . . . , FK(I)

)
∈ F(I) (2.9)

is such a composed function if we choose f = F given by (2.3). Parameters λ1, . . . , λJ occurring
in (2.3) are taken into account here. It follows that

∂F

∂λj
=
∂F

∂λj

(
λ1, . . . , λJ ;F1, . . . , FK(I)

)
∈ F(I) (

j = 1, . . . , J
)

(2.10)

and analogously for the higher derivatives.
In particular, we also have

Hi
(
λ;h1, . . . , hm(i)

)
= H

i(
λ;F1, . . . , FK(I)

)
∈ F(I) (i = 1, . . . , I) (2.11)

for the choice F = Hi(λ; . . .) in (2.9) whence

∂rHi

∂λr
=
∂rH

i

∂λr

(
λ;F1, . . . , FK(I)

)
∈ F(I) (i = 1, . . . , I; r = 0, 1, . . .). (2.12)

The basical functions can be taken from the family of functions Hi(λ; . . .) (i = 1, . . . , I) for
appropriate choice of various values of λ. Functions (2.12) are enough as well even for a fixed
value λ, for example, for λ = 0, see Theorem 3.2 below.

Lemma 2.3. For any basical function, one has

m(λ)∗Fk = F
k(
λ;F1, . . . , FK(I)

)
(k = 1, . . . , K(I)). (2.13)

Proof. Fk ∈ F(I) implies m(λ)∗Fk ∈ F(I) and (2.9) may be applied with the choice F =
m(λ)∗Fk and λ1 = · · · = λJ = λ.

Summary 1. Coordinates hi = Hi(0; . . .) (i = 1, . . . , I) were included into the subfamily F(I) ⊂
F which is transformed into itself by virtue of (2.13). So we have a one-parameter group
acting on F(I). One can even choose F1 = h1, . . . , FI = hI here and then, if I is large enough,
formulae (2.13) provide a “finite-dimensional approximation” of the primary mapping m(λ).
The block-triangular structure of the infinite matrix of transformations m(λ) mentioned in
Section 1 appears if I → ∞ and the system of functions F1, F2, . . . is succesively completed.



6 Abstract and Applied Analysis

3. The Infinitesimal Approach

We introduce the vector field

Z =
∑

zi
∂

∂hi
=

dm(λ)
dλ

∣∣∣∣
λ=0

(
zi =

∂Hi

∂λ

(
0;h1, . . . , hm(i)

)
; i = 1, 2, . . .

)
, (3.1)

the infinitesimal transformation (IT) of group m(λ). Let us recall the celebrated Lie system

∂

∂λ
m(λ)∗hi =

∂Hi

∂λ
(λ; . . .) =

∂Hi

∂μ

(
λ + μ; . . .

)∣∣∣∣∣
μ=0

=
∂

∂μ
m
(
λ + μ

)∗
hi
∣∣∣∣
μ=0

= m(λ)∗
∂

∂μ
m
(
μ
)∗
h
i
∣∣∣∣∣
μ=0

= m(λ)∗Zhi = m(λ)∗zi.

(3.2)

In more explicit (and classical) transcription

∂Hi

∂λ

(
λ;h1, . . . , hm(i)

)
= zi
(
H1
(
λ;h1, . . . , hm(1)

)
, . . . ,Hm(i)

(
λ;h1, . . . , hm(m(i))

))
. (3.3)

One can also check the general identity

∂r

∂λr
m(λ)∗f = m(λ)∗Zrf

(
f ∈ F; r = 0, 1, . . .

)
(3.4)

by a mere routine induction on r.

Lemma 3.1 (finiteness lemma). For all r ∈ �, ZrF(I) ⊂ F(I).

Proof. Clearly

ZF = m(λ)∗ZF|λ=0 =
∂

∂λ
m(λ)∗F

∣∣∣∣
λ=0
∈ F(I) (3.5)

for any function (2.3) by virtue of (2.10): induction on r.

Theorem 3.2 (finiteness theorem). Every function F ∈ F(I) admits (locally, near generic points)
the representation

F = F̃

(
. . . ,

∂rHi

∂λr

(
0;h1, . . . , hm(i)

)
, . . .

)
(3.6)

in terms of a composed function where i = 1, . . . , I and F̃ is a �∞ -smooth function of a finite number
of variables.
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Proof. Let us temporarily denote

Hi
r =

∂rHi

∂λr
(λ; . . .) =

∂r

∂λr
m(λ)∗hi, hir = H

i
r(0; . . .) = Zrhi, (3.7)

where the second equality follows from (3.4) with f = hi, λ = 0. Then

Hi
r = m(λ)∗hir = m(λ)∗Zrhi (3.8)

by virtue of (3.4) with general λ.
If j = j(i) is large enough, there does exist an identity hij+1 = Gi(hi0, . . . , h

i
j). Therefore

∂j+1Hi

∂λj+1
= Hi

j+1 = Gi
(
Hi

0, . . . ,H
i
j

)
= Gi

(
Hi, . . . ,

∂jHi

∂λj

)
(3.9)

by applying m(λ)∗. This may be regarded as ordinary differential equation with initial values

Hi
∣∣∣
λ=0

= hi0, . . . ,
∂jHi

∂λj

∣∣∣∣∣
λ=0

= hij . (3.10)

The solution Hi = H̃i(λ;hi0, . . . , h
i
j) expressed in terms of initial values reads

Hi
(
λ;h1, . . . , hm(i)

)
= H̃i

(
λ;Hi

(
0;h1, . . . , hm(i)

)
, . . . ,

∂jHi

∂λj

(
0;h1, . . . , hm(i)

))
(3.11)

in full detail. If λ is kept fixed, this is exactly the identity (3.6) for the particular case F =
Hi(λ;h1, . . . , hm(i)). The general case follows by a routine.

Definition 3.3. Let � be the set of (local) vector fields

Z =
∑

zi
∂

∂hi

(
zi ∈ F, infinite sum

)
(3.12)

such that every family of functions {Zrhi}r∈� (i fixed but arbitrary) can be expressed in terms
of a finite number of coordinates.

Remark 3.4. Neither � + � ⊂ � nor [� , � ] ⊂ � as follows from simple examples. However, �
is a conical set (over F): if Z ∈ � then fZ ∈ � for any f ∈ F. Easy direct proof may be omitted
here.

Summary 2. If Z is IT of a group then all functions Zrhi (i = 1, . . . , I; r = 0, 1, . . .) are
included into family F(I) hence Z ∈ � . The converse is clearly also true: every vector
field Z ∈ � generates a local Lie group since the Lie system (3.3) admits finite-dimensional
approximations in spaces F(I).
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Let us finally reformulate the last sentence in terms of basical functions.

Theorem 3.5 (approximation theorem). Let Z ∈ � be a vector field locally defined on �∞ and
F1, . . . , FK(I) ∈ F be a maximal functionally independent subset of the family of all functions

Zrhi (i = 1, . . . , I; r = 0, 1, . . .). (3.13)

Denoting ZFk = F
k
(F1, . . . , FK(I)), then the system

∂

∂λ
m(λ)∗Fk = m(λ)∗ZFk = F

k(
m(λ)∗F1, . . . ,m(λ)∗FK(I)

)
(k = 1, . . . , K(I)) (3.14)

may be regarded as a “finite-dimensional approximation” to the Lie system (3.3) of the one-parameter
local groupm(λ) generated by Z.

In particular, assuming F1 = h1, . . . , FI = hI , then the the initial portion

d
dλ

m(λ)∗Fi =
d

dλ
m(λ)∗hi =

d
dλ

Hi = zi
(
H1, . . . ,Hm(i)

)
(i = 1, . . . , I) (3.15)

of the above system transparently demonstrates the approximation property.

4. On the Multiparameter Case

The following result does not bring much novelty and we omit the proof.

Theorem 4.1. Let Z1, . . . , Zd be commuting local vector fields in the space �∞ . ThenZ1, . . . , Zd ∈ �
if and only if the vector fields Z = a1Z1 + · · · + adZd (a1, . . . , ad ∈ �) locally generate an abelian Lie
group.

In full non-Abelian generality, let us consider a (local) multiparameter group formally
given by the same equations (2.1) as above where λ = (λ1, . . . , λd) ∈ �d are parameters close
to the zero point 0 = (0, . . . , 0) ∈ �d . The rule (2.2) is generalized as

m(0) = id., m
(
ϕ
(
λ, μ
))

= m(λ)m
(
μ
)
, (4.1)

where λ = (λ1, . . . , λd), μ = (μ1, . . . , μd) and ϕ = (ϕ1, . . . , ϕd) determine the composition
of parameters. Appropriately adapting the space F(I) and the concept of basical functions
F1, . . . , FK(I), Lemma 2.2 holds true without any change.

Passing to the infinitesimal approach, we introduce vector fields Z1, . . . , Zd which are
IT of the group. We recall (without proof) the Lie equations [17]

∂

∂λj
m(λ)∗f =

∑
a
j

i (λ)m(λ)∗Zjf
(
f ∈ F; j = 1, . . . , d

)
(4.2)

with the initial condition m(0) = id. Assuming Z1, . . . , Zd linearly independent over �,
coefficients a

j

i (λ) may be arbitrarily chosen and the solution m(λ) always is a group
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transformation (the first fundamental theorem). If basical functions F1, . . . , FK(I) are inserted
for f , we have a finite-dimensional approximation which is self-contained in the sense that

ZjF
k = F̃kj

(
F1, . . . , FK(I)

) (
j = 1, . . . , d; k = 1, . . . , K(I)

)
(4.3)

are composed functions in accordance with the definition of the basical functions.
Let us conversely consider a Lie algebra of local vector fieldsZ = a1Z1+· · ·+adZd (ai ∈

�) on the space �∞ . Let moreoverZ1, . . . , Zd ∈ � uniformly in the sense that there is a universal
space F(I) with LZiF(I) ⊂ F(I) for all i = 1, . . . , d. Then the Lie equations may be applied and
we obtain reasonable finite-dimensional approximations.

Summary 3. Theorem 4.1 holds true even in the non-Abelian and multidimensional case if the
inclusions Z1, . . . , Zd ∈ � are uniformly satisfied.

As yet we have closely simulated the primary one-parameter approach, however, the
results are a little misleading: the uniformity requirement in Summary 3 may be completely
omitted. This follows from the following result [9, page 30] needless here and therefore stated
without proof.

Theorem 4.2. LetK be a finite-dimensional submodule of the module of vector fields on �∞ such that
[K,K] ⊂ K. ThenK ⊂ � if and only if there exist generators (overF) of submoduleK that are lying
in � .

5. Symmetries of the Infinite-Order Jet Space

The previous results can be applied to the groups of generalized symmetries of partial
differential equations. Alas, some additional technical tools cannot be easily explained at this
place, see the concluding Section 11 below. So we restrict ourselves to the trivial differential
equations, that is, to the groups of generalized symmetries in the total infinite-order jet space
which do not require any additional preparations.

Let M(m,n) be the jet space of n-dimensional submanifolds in �m+n [9–13]. We recall
the familiar (local) jet coordinates

xi,w
j

I

(
I = i1 . . . ir ; i, i1, . . . , ir = 1, . . . , n; r = 0, 1, . . . ; j = 1, . . . , m

)
. (5.1)

Functions f = f(. . . , xi, w
j

I , . . .) on M(m,n) are C∞-smooth and depend on a finite number of
coordinates. The jet coordinates serve as a mere technical tool. The true jet structure is given
just by the moduleΩ(m,n) of contact forms

ω =
∑

a
j

Iω
j

I

(
finite sum, ω

j

I = dwj

I −
∑

w
j

Iidxi
)

(5.2)

or, equivalently, by the “orthogonal” moduleH(m,n) = Ω⊥(m,n) of formal derivatives

D =
∑

aiDi

⎛
⎝Di =

∂

∂xi
+
∑

w
j

Ii

∂

∂w
j

I

; i = 1, . . . , n;D	ωj

I = ω
j

I(D) = 0

⎞
⎠. (5.3)
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Let us state useful formulae

df =
∑

Dif dxi +
∑ ∂f

∂w
j

I

ω
j

I , Di	dωj

I = ω
j

Ii, LDiω
j

I = ω
j

Ii, (5.4)

where LDi = Di	d + dDi	 denotes the Lie derivative.
We are interested in (local) one-parameter groups of transformations m(λ) given by

certain formulae

m(λ)∗xi = Gi

(
λ; . . . , xi′ , w

j ′

I ′ , . . .
)
, m(λ)∗wj

I = G
j

I

(
λ; . . . , xi′ , w

j ′

I ′ , . . .
)

(5.5)

and in vector fields

Z =
∑

zi
(
. . . , xi′ , w

j ′

I ′ , . . .
) ∂

∂xi
+
∑

z
j

I

(
. . . , xi′ , w

j ′

I ′ , . . .
) ∂

∂w
j

I

(5.6)

locally defined on the jet space M(m,n); see also (1.1) and (1.2).

Definition 5.1. We speak of a group of morphisms (5.5)of the jet structure if the inclusion
m(λ)∗Ω(m,n) ⊂ Ω(m,n) holds true. We speak of a (universal) variation (5.6) of the jet
structure ifLZΩ(m,n) ⊂ Ω(m,n). If a variation (5.6) moreover generates a group, speaks
of a (generalized or higher-order) infinitesimal symmetry of the jet structure.

So we intentionally distinguish between true infinitesimal transformations generating
a group and the formal concepts; this point of view and the terminology are not commonly
used in the current literature.

Remark 5.2. A few notes concerning this unorthodox terminology are useful here. In actual
literature, the vector fields (5.6) are as a rule decomposed into the “trivial summand D” and
the so-called “evolutionary form V ” of the vector field Z, explicitly

Z = D + V

⎛
⎝D =

∑
ziDi ∈ H(m,n), V =

∑
Q
j

I

∂

∂w
j

I

, Q
j

I = z
j

I −
∑

w
j

Iizi

⎞
⎠. (5.7)

The summand D is usually neglected in a certain sense [3–7] and the “essential” summand
V is identified with the evolutional system

∂w
j

I

∂λ
= Qj

I

(
. . . , xi′ , w

j ′

I ′ , . . .
) (

w
j

I =
∂nwj

∂xi1 · · ·∂xin
(λ, x1, . . . , xn)

)
(5.8)

of partial differential equations (the finite subsystem with I = φ empty is enough here since
the remaining part is a mere prolongation). This evolutional system is regarded as a “virtual
flow” on the “space of solutions” wj = wj(x1, . . . , xn), see [7, especially page 11]. In more
generality, some differential constraints may be adjoint. However, in accordance with the
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ancient classical tradition, functions δwj = ∂wj/∂λ are just the variations. (There is only
one novelty: in classical theory, δwj are introduced only along a given solution while the
vector fields Z are “universally” defined on the space.) In this “evolutionary approach”,
the properties of the primary vector field Z are utterly destroyed. It seems that the true
sense of this approach lies in the applications to the topical soliton theory. However, then
the evolutional system is always completed with boundary conditions and embedded into
some normed functional spaces in order to ensure the existence of global “true flows”. This
is already quite a different story and we return to our topic.

In more explicit terms, morphisms (5.5) are characterized by the (implicit) recurrence

∑
G
j

IiDi′Gi = Di′G
j

I

(
i′ = 1, . . . , n

)
, (5.9)

where det(Di′Gi)/= 0 is supposed and vector field (5.6) is a variation if and only if

z
j

Ii = Diz
j

I −
∑

w
j

Ii′Dizi′ . (5.10)

Recurrence (5.9) easily follows from the inclusion m(λ)∗ωj

I ∈ Ω(m,n) and we omit the proof.
Recurrence (5.10) follows from the identity

LZωj

I = LZ
(

dwj

I −
∑

w
j

Iidxi
)
= dzjI −

∑
z
j

Iidxi −
∑

w
j

Iidzi

∼=
(∑

Di′z
j

I −
∑

z
j

Ii′ −
∑

w
j

IiDi′zi
)

dxi′ (mod Ω(m,n))
(5.11)

and the inclusion LZωj

I ∈ Ω(m,n). The obvious formula

LZωj

I =
∑⎛⎝ ∂z

j

I

∂w
j ′

I ′

−
∑

w
j

Ii

∂zi

∂w
j ′

I ′

⎞
⎠ω

j ′

I ′ (5.12)

appearing on this occasion also is of a certain sense, see Theorem 5.5 and Section 10 below. It
follows that the initial functions Gi, Gj , zi, zj (empty I = φ) may be in principle arbitrarily
prescribed in advance. This is the familiar prolongation procedure in the jet theory.

Remark 5.3. Recurrence (5.10) for the variation Z can be succintly expressed by ω
j

Ii(Z) =
Diω

j

I(Z). This remarkable formula admits far going generalizations, see concluding
Examples 11.3 and 11.4 below.

Let us recall that a vector field (5.6) generates a group (5.5) if and only if Z ∈ � hence
if and only if every family

{Zrxi}r∈�,
{
Zrw

j

I

}
r∈�

(5.13)
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can be expressed in terms of a finite number of jet coordinates. We conclude with simple but
practicable remark: due to jet structure, the infinite number of conditions (5.13) can be replaced
by a finite number of requirements if Z is a variation.

Lemma 5.4. Let (5.6) be a variation of the jet structure. Then the inclusion Z ∈ � is equivalent to
any of the requirements

(ι) every family of functions

{Zrxi}r∈�,
{
Zrwj

}
r∈�

(
i = 1, . . . , n; j = 1, . . . , m

)
(5.14)

can be expressed in terms of a finite number of jet coordinates,

(ιι) every family of differential forms

{LrZdxi
}
r∈�,

{
LrZdwj

}
r∈�

(
i = 1, . . . , n; j = 1, . . . , m

)
(5.15)

involves only a finite number of linearly independent terms,

(ιιι) every family of differential forms

{LrZdxi
}
r∈�,

{
LrZdwj

I

}
r∈�

(
i = 1, . . . , n; j = 1, . . . , m; arbitrary I

)
(5.16)

involves only a finite number of linearly independent terms.

Proof. Inclusion Z ∈ � is defined by using the families (5.13) and this trivially implies (ι)
where only the empty multi-indice I = φ is involved. Then (ι) implies (ιι) by using the rule
LZdf = dZf . Assuming (ιι), we may employ the commutative rule

[Di, Z] = DiZ − ZDi =
∑

ai
′
i Di′

(
ai
′
i = Dizi′

)
(5.17)

in order to verify identities of the kind

LZdwj

i = LZdDiw
j = LZLDidw

i = LDiLZdwi −
∑

ai
′
iLDi′w

j (5.18)

and in full generality identities of the kind

LkZdwj

I =
∑

aI
′
I,kLDI′ Lk

′
Zdwj (

sum with k′ ≤ k, ∣∣I ′∣∣ ≤ |I|) (5.19)

with unimportant coefficients, therefore (ιιι) follows. Finally (ιιι) obviously implies the
primary requirement on the families (5.13).

This is not a whole story. The requirements can be expressed only in terms of the
structural contact forms. With this final result, the algorithms [10–13] for determination of
all individual morphisms can be closely simulated in order to obtain the algorithm for the
determination of all groupsm(λ) of morphisms, see Section 10 below.
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Theorem 5.5 (technical theorem). Let (5.6) be a variation of the jet space. Then Z ∈ � if and only
if every family

{
LrZωj

}
r∈�

(
j = 1, . . . , m

)
(5.20)

involves only a finite number of linearly independent terms.

Some nontrivial preparation is needful for the proof. Let Θ be a finite-dimensional
module of 1-forms (on the space M(m,n) but the underlying space is irrelevant here). Let us
consider vector fields X such that LfXΘ ⊂ Θ for all functions f . Let moreover Adj Θ be the
module of all forms ϕ satisfying ϕ(X) = 0 for all such X. Then Adj Θ has a basis consisting of
total differentials of certain functions f1, . . . , fK (the Frobenius theorem), and there is a basis
of module Θ which can be expressed in terms of functions f1, . . . , fK. Alternatively saying,
(an appropriate basis of) the Pfaffian system ϑ = 0 (ϑ ∈ Θ) can be expressed only in terms of
functions f1, . . . , fK. This result frequently appears in Cartan’s work, but we may refer only
to [9, 18, 19] and to the appendix below for the proof.

Module Adj Θ is intrinsically related to Θ: if a mapping m preserves Θ then m
preserves Adj Θ. In particular, assuming

m(λ)∗Θ ⊂ Θ, then m(λ)∗Adj Θ ⊂ Adj Θ (5.21)

is true for a group m(λ). In terms of IT of the group m(λ), we have equivalent assertion

LZΘ ⊂ Θ implies LZAdj Θ ⊂ Adj Θ (5.22)

and thereforeLrZAdj Θ ⊂ Adj Θ for all r. The preparation is done.

Proof. Let Θ be the module generated by all differential formsLrZωj (j = 1, . . . , m; r = 0, 1, . . .).
Assuming finite dimension of module Θ, we have module Adj Θ and clearly LZΘ ⊂ Θ
whence LrZAdj Θ ⊂ Adj Θ (r = 0, 1, . . .). However Adj Θ involves both the differentials
dx1, . . . ,dxn (see below) and the forms ω1, . . . , ωm. Point (ιι) of previous Lemma 5.4 implies
Z ∈ � . The converse is trivial.

In order to finish the proof, let us on the contrary assume that Adj Θ does not contain
all differentials dx1, . . . ,dxn. Alternatively saying, the Pfaffian system ϑ = 0 (ϑ ∈ Θ) can be
expressed in terms of certain functions f1, . . . , fK such that df1 = · · · = dfK = 0 does not
imply dx1 = · · · = dxn = 0. On the other hand, it follows clearly that maximal solutions of the
Pfaffian system can be expressed only in terms of functions f1, . . . , fK and therefore we do not
need all independent variables x1, . . . , xn. This is however a contradiction: the Pfaffian system
consists of contact forms and involves the equations ω1 = · · · = ωn = 0. All independent
variables are needful if we deal with the common classical solutions wj = wj(x1, . . . , xn).

The result can be rephrased as follows.

Theorem 5.6. LetΩ0 ⊂ Ω(m,n) be the submodule of all zeroth-order contact forms ω =
∑
ajωj and

Z be a variation of the jet structure. Then Z ∈ � if and only if dim⊕LrZΩ0 <∞.
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6. On the Multiparameter Case

Let us temporarily denote by � the family of all infinitesimal variations (5.6) of the jet
structure. Then � + � ⊂ �, c� ⊂ � (c ∈ �), [�,�] ⊂ �, and it follows that � is an infinite-
dimensional Lie algebra (coefficients in �). On the other hand, if Z ∈ � and fZ ∈ � for
certain f ∈ F then f ∈ � is a constant. (Briefly saying: the conical variations of the total jet space
do not exist. We omit easy direct proof.) It follows that only the common Lie algebras over �
are engaged if we deal with morphisms of the jet spaces M(m,n).

Theorem 6.1. Let G ⊂ � be a finite-dimensional Lie subalgebra. Then G ⊂ � if and only if there
exists a basis of G that is lying in � .

The proof is elementary and may be omitted. Briefly saying, Theorem 4.2 (coefficients
in F) turns into quite other and much easier Theorem 6.1 (coefficients in �).

7. The Order-Preserving Groups in Jet Space

Passing to particular examples from now on, we will briefly comment some well-known
classical results for the sake of completeness.

Let Ωl ⊂ Ω(m,n) be the submodule of all contact forms ω =
∑
a
j

Iω
j

I (sum with |I| ≤ l)
of the order l at most. A morphism (5.5) and the infinitesimal variation (5.6) are called order
preserving if

m(λ)∗Ωl ⊂ Ωl, LZΩl ⊂ Ωl, (7.1)

respectively, for a certain l = 0, 1, . . . (equivalently: for all l ∈ �, see Lemmas 9.1 and 9.2
below). Due to the fundamental Lie-Bäcklund theorem [1, 3, 6, 10–13], this is possible only
in the pointwise case or in the Lie’s contact transformation case. In quite explicit terms: assuming
(7.1) then either functions Gi, Gj , zi, zj (empty I = φ) in formulae (5.5) and (5.6) are functions
only of the zeroth-order jet variables xi′ , wj ′ or, in the second case, we have m = 1 and all
functions Gi, G1, G1

i , zi, z
1, z1

i contain only the zeroth- and first-order variables xi′ , w1, w1
i′ .

A somewhat paradoxically, short proofs of this fundamental result are not easily
available in current literature. We recall a tricky approach here already applied in [10–13],
to the case of the order-preserving morphisms. The approach is a little formally improved
and appropriately adapted to the infinitesimal case.

Theorem 7.1 (infinitesimal Lie-Bäcklund). Let a variation Z preserve a submodule Ωl ⊂ Ω(m,n)
of contact forms of the order l at most for a certain l ∈ �. Then Z ∈ � and either Z is an infinitesimal
point transformation orm = 1 and Z is the infinitesimal Lie’s contact transformation.

Proof. We suppose LZΩl ⊂ Ωl. Then LrZΩ0 ⊂ LrZΩl ⊂ Ωl therefore Z ∈ � by virtue of
Theorem 5.5. Moreover LZΩl−1 ⊂ Ωl−1, . . . ,LZΩ0 ⊂ Ω0 by virtue of Lemma 9.2 below. So
we have

LZωj =
∑

ajj
′
ωj ′ (j, j ′ = 1, . . . , m

)
. (7.2)
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Assuming m = 1, then (7.2) turns into the classical definition of Lie’s infinitesimal contact
transformation. Assume m ≥ 2. In order to finish the proof we refer to the following result
which implies that Z is indeed an infinitesimal point transformation.

Lemma 7.2. Let Z be a vector field on the jet spaceM(m,n) satisfying (7.2) andm ≥ 2. Then

Zxi = zi
(
. . . , xi′ , w

j ′ , . . .
)
, Zwj = zj

(
. . . , xi′ , w

j ′ , . . .
) (

i = 1, . . . , n; j = 1, . . . , m
)

(7.3)

are functions only of the point variables.

Proof. Let us introduce module Θ of (m + 2n)-forms generated by all forms of the kind

ω1 ∧ · · · ∧ωm ∧
(

dωj1
)n1 ∧

(
dωjk

)nk

= dw1 ∧ · · ·dwm ∧ dx1 ∧ · · ·dxn ∧
∑
± dw

j ′1
i1
∧ · · · ∧ dwj ′n

in
,

(7.4)

where
∑
nk = n. Clearly Θ = (Ω0)m ∧ (dΩ0)n. The inclusions

LZΩ0 ⊂ Ω0, LZdΩ0 = dLZΩ0 + Ω0 ⊂ dΩ0 + Ω0 (7.5)

are true by virtue of (7.2) and imply LZΘ ⊂ Θ.
Module Θ vanishes when restricted to certain hyperplanes, namely, just to the

hyperplanes of the kind

ϑ =
∑

aidxi +
∑

ajdwj = 0 (7.6)

(use m ≥ 2 here). This is expressed by Θ ∧ ϑ = 0 and it follows that

0 = LZ(Θ ∧ ϑ) = LZΘ ∧ ϑ + Θ ∧ LZϑ = Θ ∧ LZϑ. (7.7)

Therefore LZϑ again is such a hyperplane: LZϑ ∼= 0 (mod all dxi and dwj). On the other
hand,

LZϑ ∼=
∑

aidzi +
∑

ajdzj
(

mod all dxi and dwj
)

(7.8)

and it follows that dzi, dzj ∼= 0.

There is a vast literature devoted to the pointwise transformations and symmetries so
that any additional comments are needless. On the other hand, the contact transformations
are more involved and less popular. They explicitly appear on rather peculiar and dissimilar
occasions in actual literature [20, 21]. However, in reality the groups of Lie contact
transformations are latently involved in the classical calculus of variations and provide the
core of the Hilbert-Weierstrass extremality theory of variational integrals.
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8. Digression to the Calculus of Variations

We establish the following principle.

Theorem 8.1 (metatheorem). The geometries of nondegenerate local one-parameter groups of Lie
contact transformations (CT) and of nondegenerate first-order one-dimensional variational integrals
(VI) are identical. In particular, the orbits of a given CT group are extremals of appropriate VI and
conversely.

Proof. The CT groups act in the jet space M(1, n) equipped with the contact module Ω(1, n).
Then the abbreviations

wI = w1
I , ωI = ω1

I = dwI −
∑

wIidxi Z =
∑

zi
∂

∂xi
+
∑

z1
I

∂

∂wI
(8.1)

are possible. Let us recall the classical approach [22, 23]. The Lie contact transformations
defined by certain formulae

m∗xi = Gi(·), m∗w = G1(·), m∗wi = G1
i (·) ((·) = (x1, . . . , xn,w,w1, . . . , wn)) (8.2)

preserve the Pfaffian equation ω = dw −∑widxi = 0 or (equivalently) the submodule Ω0 ⊂
Ω(1, n) of zeroth-order contact forms. Explicit formulae are available in literature. We are
interested in one-parameter local CT groups of transformations m(λ)(−ε < λ < ε) which are
“nondegenerate” in a sense stated below and then the explicit formulae are not available yet.
On the other hand, our VI with smooth Lagrangian Ł

∫
Ł
(
t, y1, . . . , yn, y

′
1, . . . , y

′
n

)
dt

(
yi = yi(t), ′ =

d

dt
, det

(
∂2Ł

∂y′i∂y
′
j

)
/= 0

)
(8.3)

to appear later, involves variables from quite other jet space M(n, 1) with coordinates
denoted t (the independent variable), y1, . . . , yn (the dependent variables) and higher-order
jet variables like y′i, y

′′
i and so on.

We are passing to the topic proper. Let us start in the space M(1, n) with CT groups.
One can check that vector field (5.6) is infinitesimal CT if and only if

Z = −
∑

Qwi

∂

∂xi
+
(
Q −

∑
wiQwi

) ∂

∂w
+
∑

(Qxi +wiQw)
∂

∂wi
+ · · · , (8.4)

where the function Q = Q(x1, . . . , xn,w,w1, . . . , wn) may be arbitrarily chosen.
“Hint: we have, by definition

LZω = Z	dω + dω(Z) =
∑

(ziωi −ωi(Z)dxi) + dQ ∈ Ω0, (8.5)

where Q = Q(x1, . . . , xn,w,w1, . . . , wn, . . .) = ω(Z) = z1 −∑wizi,

dQ =
∑

DiQdxi +
∂Q

∂w
ω +

∑ ∂Q

∂wi
ωi (8.6)
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whence immediately zi = −∂Q/∂wi, z1 = Q +
∑
wizi = Q −∑wi · ∂Q/∂wi, ∂Q/∂wI = 0 if

|I| ≥ 1 and formula (8.4) follows.”
Alas, the corresponding Lie system (not written here) is not much inspirational.

Let us however consider a function w = w(x1, . . . , xn) implicitly defined by an equation
V (x1, . . . , xn,w) = 0. We may suppose that the transformed function m(λ)∗w satisfies the
equation

V
(
x1, . . . , xn,m(λ)∗w

)
= λ (8.7)

without any loss of generality. In infinitesimal terms

1 =
∂(V − λ)

∂λ
= Z(V − λ) = −

∑
QwiVxi +

(
Q −

∑
wiQwi

)
Vw. (8.8)

However wi = ∂w/∂xi = −Vxi/Vw may be inserted here, and we have the crucial Jacobi
equation

1 = Q
(
x1, . . . , xn,w,−

Vx1

Vw
, . . . ,−Vxn

Vw

)
Vw (8.9)

(not involving V ) which can be uniquely rewritten as the Hamilton-Jacobi (HJ) equation

Vw +H(x1, . . . , xn,w, p1, . . . , pn
) (

pi = Vxi
)

(8.10)

in the “nondegenerate” case
∑
QwiVxi /= 1. Let us recall the characteristic curves [22, 23] of the

HJ equation given by the system

dw
1

=
dxi
Hpi

= − dpi
Hxi

=
dV

−H +
∑
piHpi

. (8.11)

The curves may be interpreted as the orbits of the group m(λ). (Hint: look at the well-
known classical construction of the solution V of the Cauchy problem [22, 23] in terms of
the characteristics. The initial Cauchy data are transferred just along the characteristics, i.e.,
along the group orbits.) Assume moreover the additional condition det(∂2H/∂pi∂pj)/= 0. We
may introduce variational integral (8.3) with the Lagrange function Ł given by the familiar
identities

Ł +H =
∑

piy
′
i (8.12)

with interrelations

t = w, yi = xi, y′i =Hpi , pi = Ły′i (i = 1, . . . , n) (8.13)

between variables t, yi, y′i of the space M(n, 1) and variables xi, w, wi of the space
M(1, n). Since (8.11) may be regarded as a Hamiltonian system for the extremals of VI, the
metatheorem is clarified.
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W = μ
W = λ

xi,w fixed
λ-waves

(a)

Orbit
DiW = 0

W = λ

Infinitesimally close points
focus and orbits of foci

(b)

m(λ)

The group: m(λ + μ)

m(μ)

(c)

Figure 3

Remark 8.2. Let us recall the Mayer fields of extremals for the VI since they provide the true
sense of the above construction. The familiar Poincaré-Cartan form

ϕ̆ = Łdt +
∑

Ły′i
(
dyi − y′idt

)
= −Hdt +

∑
pidyi (8.14)

is restricted to appropriate subspace y′i = gi(t, y1, . . . , yn) (i = 1, . . . , n; the slope field) in order
to become a total differential

ϕ̆
∣∣
y′i=gi

= dV
(
t, y1, . . . , yn

)
= Vtdt +

∑
Vyidyi (8.15)

of the action V . We obtain the requirements Vt = −H, Vyi = pi identical with (8.10). In
geometrical terms: transformations of a hypersurface V = 0 by means of CT group may be identified
with the level sets V = λ (λ ∈ �) of the action of a Mayer fields of extremals.

The last statement is in accordance with (8.11) where

dV =
(
−H +

∑
piHpi

)
dw =

(
−H +

∑
piy

′
i

)
dt = Łdt, (8.16)

use the identifications (8.13) of coordinates. This is the classical definition of the action V in
a Mayer field. We have moreover clarified the additive nature of the level sets V = λ: roughly
saying, the composition with V = μ provides V = λ+μ (see Figure 3(c)) and this is caused by
the additivity of the integral

∫
Ł dt calculated along the orbits.

On this occasion, the wave enveloping approach to CT groups is also worth
mentioning.

Lemma 8.3 (see [10–13]). Let W(x1, . . . , xn,w, x1, . . . , xn,w) be a function of 2n + 2 variables.
Assume that the systemW = D1W = · · · = DnW = 0 admits a unique solution

xi = Fi
(
. . . , xi

′, w,wi
′, . . .
)
, w = F1(. . . , xi′, w,wi

′, . . .
)

(8.17)
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by applying the implicit function theorem and analogously the systemW = D1W = · · · = DnW = 0
(where Di = ∂/∂xi +

∑
wi∂/∂w) admits a certain solution

xi = Fi(. . . , xi′ , w,wi′ , . . .), w = F
1
(. . . , xi′ , w,wi′ , . . .). (8.18)

Then m∗xi = Fi, m∗w = F1 provides a Lie CT and (m−1)∗xi = Fi, (m−1)∗w = F
1
is the inverse.

In more generality, if function W in Lemma 8.3 moreover depends on a parameter λ,
we obtain a mapping m(λ) which is a certain CT involving a parameter λ and the inverse
m(λ)−1. In favourable case (see below) thism(λ) may be even a CT group. The geometrical sense
is as follows. Equation W = 0 with xi, w kept fixed represents a wave in the space xi, w
(Figure 3(a)).

The total system W = D1W = · · · = DnW = 0 provides the intersection (envelope) of
infinitely close waves (Figure 3(b)) with the resulting transform, the focus point m (or m(λ)
if the parameter λ is present). The reverse waves with the role of variables interchanged gives
the inversion. Then the group property holds true if the waves can be composed (Figure 3(c))
within the parameters λ, μ, but this need not be in general the case.

Let us eventually deal with the condition ensuring the group composition property.
Without loss of generality, we may consider the λ-depending wave

W(x1, . . . , xn,w, x1, . . . , xn,w) − λ = 0. (8.19)

If xi, w are kept fixed, the previous results may be applied. We obtain a group if and only if
theHJ equation (8.10) holds true, therefore

Ww +H(x1, . . . , xn,w,Wx1 , . . . ,Wxn) = 0. (8.20)

The existence of such function H means that functions Ww,Wx1 , . . . ,Wxn of dashed variables
are functionally dependent whence

det

(
Www Wwxi′

Wxiw Wxixi′

)
= 0, det

(
Wxixi′

)
/= 0. (8.21)

The symmetry xi,w ↔ xi,w is not surprising here since the change λ ↔ −λ provides the
inverse mapping: equations

W(. . . , xi, w, . . . , xi, w) = λ, W(. . . , xi, w, . . . , xi, w) = −λ (8.22)

are equivalent. In particular, it follows that

W(. . . , xi, w, . . . , xi, w) = −W(. . . , xi, w, . . . , xi, w), W(. . . , xi, w, . . . , xi, w) = 0 (8.23)

and the wave W − λ = 0 corresponds to the Mayer central field of extremals.
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Ω0 Ω1 · · ·
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Ω0 Ω1 · · ·
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⊕LrZΩl

(c)

Figure 4

Summary 4. Conditions (8.21) ensure the existence ofHJ equation (8.20) for the λ-wave
(8.19) and therefore the group composition property of waves (8.19) in the nondegenerate
case det (∂2H/∂pi∂pj)/= 0.

Remark 8.4. A reasonable theory of Mayer fields of extremals and Hamilton-Jacobi equations
can be developed also for the constrained variational integrals (the Lagrange problem) within
the framework of jet spaces, that is, without the additional Lagrange multipliers [9, Chapter
3]. It follows that there do exist certain groups of generalized Lie’s contact transformations
with differential constraints.

9. On the Order-Destroying Groups in Jet Space

We recall that in the order-preserving case, the filtration

Ω(m,n)∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω(m,n) = ∪Ωl (9.1)

of module Ω(m,n) is preserved (Figure 4(a)). It follows that certain invariant submodules
Ωl ⊂ Ω(m,n) are a priori prescribed which essentially restricts the store of the symmetries (the
Lie-Bäcklund theorem). The order-destroying groups also preserve certain submodules of
Ω(m,n) due to approximation results, however, they are not known in advance (Figure 4(b))
and appear after certain saturation (Figure 4(c)) described in technical theorem 5.1.

The saturation is in general a toilsome procedure. It may be simplified by applying
two simple principles.

Lemma 9.1 (going-up lemma). Let a group of morphisms m(λ) preserve a submodule Θ ⊂
Ω(m,n). Then also the submodule

Θ +
∑
LDiΘ ⊂ Ω(m,n) (9.2)

is preserved.

Proof. We suppose LZΘ ⊂ Θ. Then

LZ
(
Θ +

∑
LDiΘ

)
= LZΘ +

(
LDiLZΘ −

∑
Dizi′LDi′Θ

)
⊂ Θ +

∑
LDiΘ (9.3)

by using the commutative rule (5.17).
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Lemma 9.2 (going-down lemma). Let the group of morphisms m(λ) preserve a submodule Θ ⊂
Ω(m,n). Let Θ′ ⊂ Θ be the submodule of all ω ∈ Θ satisfying LDiω ∈ Θ (i = 1, . . . , n). Then Θ′ is
preserved, too.

Proof. Assume ω ∈ Θ′ hence LDiω ∈ Θ. Then LDiLZω = LZLDiω + L∑Dizi′ ·Di′ω ∈ Θ hence
LZω ∈ Θ′ and Θ′ is preserved.

We are passing to illustrative examples.

Example 9.3. Let us consider the vector field (the variation of jet structure)

Z =
∑

z
j

I

∂

∂w
j

I

(
z
j

I = DIz
j , DI = Di1 · · ·Din

)
, (9.4)

see (5.6) and (5.10) for the particular case zi = 0. Then Zrxi = 0 (i = 1, . . . , n) and the sufficient
requirement Z2wj = 0 (j = 1, . . . , m) ensures Z ∈ � , see (ι) of Lemma 5.4. We will deal with
the linear case where

zj =
∑

a
jj ′

i′w
j ′

i′

(
a
jj ′

i′ ∈ �
)

(9.5)

is supposed. Then

Z2wj = Zzj =
∑

a
jj ′

i′ z
j ′

i′ =
∑

a
jj ′

i′ a
j ′j ′′

i′′ w
j ′′

i′i′′ = 0 (9.6)

identically if and only if

∑
j ′

(
a
jj ′

i′ a
j ′j ′′

i′′ + ajj
′

i′′a
j ′j ′′

i′

)
= 0

(
i′, i′′ = 1, . . . , n; j, j ′, j ′′ = 1, . . . , m

)
. (9.7)

This may be expressed in terms of matrix equations

AiAi′ = 0
(
i, i′ = 1, . . . , n; Ai =

(
a
jj ′

i

))
(9.8)

or, in either of more geometrical transcriptions

A2 = 0, ImA ⊂ KerA
(
A =

∑
λiAi, λi ∈ �

)
, (9.9)

where A is regarded as (a matrix of an) operator acting in m-dimensional linear space and
depending on parameters λ1, . . . , λn. We do not know explicit solutions A in full generality,
however, solutions A such that Ker A does not depend on the parameters λ1, . . . , λn can be
easily found (and need not be stated here). The same approach can be applied to the more
general sufficient requirement Zrwj = 0 (j = 1, . . . , m; fixed r) ensuring Z ∈ � . If r ≥ n, the
requirement is equivalent to the inclusion Z ∈ � .
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Example 9.4. Let us consider vector field (5.6) where z1 = · · · = zm = 0. In more detail, we take

Z =
∑

zi
∂

∂xi
+
∑

z
j

i

∂

∂w
j

i

+ · · ·
(
z
j

i = −
∑

w
j

i′Dizi′
)
. (9.10)

Then Zrwj = 0 and we have to deal with functions Zrxi in order to ensure the inclusion
Z ∈ � . This is a difficult task. Let us therefore suppose

z1 = z
(
. . . , xi′ , w

j ′ , w
j ′

1 , . . .
)
, zk = ck ∈ � (k = 2, . . . , n). (9.11)

Then Zxk = 0 (k = 2, . . . , n) and

Z2x1 = Zz =
∑ ∂z

∂xi
zi +

∑ ∂z

∂w
j

1

z
j

1, (9.12)

where

z
j

1 = −wj

1D1z = −wj

1

⎛
⎝ ∂z

∂x1
+
∑ ∂z

∂wj ′
w
j ′

1 +
∑ ∂z

∂w
j ′

1

w
j ′

11

⎞
⎠. (9.13)

The second-order summand

Z2x1 = · · · +
∑ ∂z

∂w
j

1

z
j

1 = · · · −
∑ ∂z

∂w
j

1

w
j

1
∂z

∂w
j ′

1

w
j ′

11 (9.14)

identically vanishes for the choice

z = f
(
. . . , xi′ , w

j ′ , ul, . . .
) (

ul =
wl

1

w1
1

; l = 2, . . . , m

)
(9.15)

as follows by direct verification. Quite analogously

Zul = Z
wl

1

w1
1

= zl1
1
w1

1

− z1
1

wl
1(

w1
1

)2 =

⎛
⎝−wl

1
1
w1

1

+w1
1

wl
1(

w1
1

)2

⎞
⎠D1z = 0. (9.16)

It follows that all functions Zrxi, Zrwj can be expressed in terms of the finite family of
functions xi (i = 1, . . . , n), wj (j = 1, . . . , m), ul (l = 2, . . . , m) and therefore Z ∈ � .

Remark 9.5. On this occasion, let us briefly mention the groups generated by vector fields Z
of the above examples. The Lie system of the vector field (9.4) and (9.5) reads

dGi

dλ
= 0,

dGj

dλ
=
∑

a
jj ′

i′G
j ′

i′
(
i = 1, . . . , n; j = 1, . . . , m

)
, (9.17)
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where we omit the prolongations. It is resolved by

Gi = xi, Gj = wj + λ
∑

a
jj ′

i′w
j ′

i′
(
i = 1, . . . , n; j = 1, . . . , m

)
(9.18)

as follows either by direct verification or, alternatively, from the property Z2xi = Zzi = 0 (i =
1, . . . , n) which implies

d
∑
a
jj ′

i′G
j ′

i′

dλ
= 0,

∑
a
jj ′

i′ G
j ′

i′ =
∑

a
jj ′

i′G
j ′

i′

∣∣∣
λ=0

=
∑

a
jj ′

i′w
j ′

i′ .
(9.19)

Quite analogously, the Lie system of the vector field (9.10), (9.11), (9.15) reads

dG1

dλ
= f

(
. . . , Gi′ , G

j ′ ,
Gl′

1

G1
1

, . . .

)
,

dGk

dλ
= ck,

dGj

dλ
= 0

(
k = 2, . . . , n; j = 1, . . . , m

)
(9.20)

and may be completed with the equations

d
(
Gl

1/G
1
1

)
dλ

= 0 (l = 2, . . . , m) (9.21)

following from (9.16). This provides a classical self-contained system of ordinary differential
equations where the common existence theorems can be applied.

The above Lie systems admit many nontrivial first integrals F ∈ F, that is, functions
F that are constant on the orbits of the group. Conditions F = 0 may be interpreted as
differential equations in the total jet space, and the above transformation groups turn into
the external generalized symmetries of such differential equations, see Section 11 below.

10. Towards the Main Algorithm

We briefly recall the algorithm [10–13] for determination of all individual automorphisms m
of the jet space M(m,n) in order to compare it with the subsequent calculation of vector field
Z ∈ � .

Morphisms m of the jet structure were defined by the property m∗Ω(m,n) ⊂ Ω(m,n).
The inverse m−1 exists if and only if

Ω0 ⊂ m∗Ω(m,n), equivalently Ω0 ⊂ m∗Ωl (l = l(m)) (10.1)

for appropriate term Ωl(m) of filtration (9.1). However

m∗Ωl+1 = m∗Ωl +
∑
LDim

∗Ωl (10.2)
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and it follows that criterion (10.1) can be verified by repeated use of operators LDi . In more
detail, we start with equations

m∗ωj =
∑

a
jj ′

I ′ω
j ′

I ′

(
= dm∗wj −

∑
m∗wj

idm
∗xi
)

(10.3)

with uncertain coefficients. Formulae (10.3) determine the module m∗Ω0. Then we search for
lower-order contact forms, especially forms from Ω0, lying in m∗Ωl with the use of (10.2).
Such forms are ensured if certain linear relations among coefficients exist. The calculation is
finished on a certain level l = l(m) and this is the algebraic part of the algorithm. With
this favourable choice of coefficients ajj

′

I ′ , functions m∗xi, m∗wj (and therefore the invertible
morphism m) can be determined by inspection of the bracket in (10.3). This is the analytic part
of algorithm.

Let us turn to the infinitesimal theory. Then the main technical tool is the rule (5.17) in
the following transcription:

LZLDi = LDiLZ −
∑

Dizi′LDi′ (10.4)

or, when applied to basical forms

LZωj

Ii = LDiLZωj

I −
∑

Dizi′ω
j

Ii′ . (10.5)

We are interested in vector fields Z ∈ � . They satisfy the recurrence (5.10) together with
requirements

dim⊕LrZΩ0 < ∞, equivalently LrZΩ0 ⊂ Ωl(Z) (r = 0, 1, . . .) (10.6)

for appropriate l(Z) ∈ �. Due to the recurrence (10.5) these requirements can be effectively
investigated. In more detail, we start with equations

LZωj =
∑

a
jj ′

I ′ω
j ′

I ′

(
= dzj −

∑
z
j
idxi −

∑
w
j
idzi
)
. (10.7)

Formulae (10.7) determine module LZΩ0. Then, choosing l(Z) ∈ �, operator LZ is to
be repeatedly applied and requirements (10.6) provide certain polynomial relations for the
coefficients by using (10.5). This is the algebraical part of the algorithm. With such coefficients
a
jj ′

I ′ available, functions zi = LZxi, zj = LZwj (and therefore the vector field Z ∈ � ) can be
determined by inspection of the bracket in (10.7) or, alternatively, with the use of formulae
(5.12) for the particular case I = φ empty

LZωj =
∑⎛⎝ ∂zj

∂w
j ′

I ′

−
∑

w
j

i

∂zi

∂w
j ′

I ′

⎞
⎠ω

j ′

I ′ . (10.8)

This is the analytic part of the algorithm.
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Altogether taken, the algorithm is not easy and the conviction [7, page 121] that the
“exhaustive description of integrable C-fields (fields Z ∈ � in our notation) is given in [16]”
is disputable. We can state only one optimistic result at this place.

Theorem 10.1. The jet spaces M(1, n) do not admit any true generalized infinitesimal symmetries
Z ∈ � .

Proof. We suppose m = 1 and then (10.7) reads

LZω1 =
∑

a11
I ′ω

1
I ′ = · · · + a11

I ′′ω
1
I ′′

(
a11
I ′′ /= 0

)
, (10.9)

where we state a summand of maximal order. Assuming I ′′ = φ, the Lie-Bäcklund theorem
can be applied and we do not have the true generalized symmetry Z. Assuming I ′′ /=φ, then

LrZω1 = · · · + a11
I ′′ω

1
I ′′ ···I ′′

(
r terms I ′′

)
(10.10)

by using rule (10.5) where the last summand may be omitted. It follows that (10.6) is not
satisfied hence Z /∈ � .

Example 10.2. We discuss the simplest possible but still a nontrivial particular example.
Assume m = 2, n = 1 and l(Z) = 1. Let us abbreviate

x = x1, D = D1, Z = z
∂

∂x
+
∑

z
j

I

∂

∂w
j

I

(
j = 1, 2; I = 1 · · ·1). (10.11)

Then, due to l(Z) = 1, requirement (10.6) reads

LrZΩ0 ⊂ Ω1 (r = 0, 1, . . .). (10.12)

In particular (if r = 1) we have (10.7) written here in the simplified notation

LZωj = aj1ω1 + aj2ω2 + bj1ω1
1 + b

j2ω2
1

(
j = 1, 2

)
. (10.13)

The next requirement (r = 2) implies the (only seemingly) stronger inclusion

L2
ZΩ0 ⊂ LZΩ0 + Ω0 (10.14)

which already ensures (10.12) for all r and therefore Z ∈ � (easy). We suppose (10.14) from
now on.

“Hint for proof of (10.14): assuming (10.12) and moreover the equality

L2
ZΩ0 +LZΩ0 + Ω0 = Ω1, (10.15)
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it follows that

LZΩ1 ⊂ L3
ZΩ0 +L2

ZΩ0 +LZΩ0 ⊂ Ω1 (10.16)

and Lie-Bäcklund theorem can be applied whence LZΩ0 ⊂ Ω0, l(Z) = 0 which we exclude. It
follows that necessarily

dim
(
L2
ZΩ0 +LZΩ0 + Ω0

)
< dimΩ1 = 4. (10.17)

On the other hand dim(LZΩ0 + Ω0) ≥ 3 and the inclusion (10.14) follows.”
After this preparation, we are passing to the proper algebra. Clearly

L2
Zω

j = · · · + bj1LZω1
1 + b

j2LZω2
1 = · · · + bj1

(
b11ω1

11 + b
12ω2

11

)
+ bj2

(
b21ω1

11 + b
22ω2

11

)
(10.18)

by using the commutative rule (10.5). Due to “weaker” inclusion (10.12) with r = 2, we obtain
identities

bj1b11 + bj2b21 = 0, bj1b12 + bj2b22 = 0
(
j = 1, 2

)
. (10.19)

Omitting the trivial solution, they are satisfied if either

b11 + b22 = 0, b12 = cb11, b11 + cb21 = 0 (10.20)

for appropriate factor c (where b11 /= 0 and either b12 /= 0 or b21 /= 0 is supposed) or

b11 = b22 = 0, either b12 = 0 or b21 = 0. (10.21)

We deal only with the (more interesting) identities (10.20) here. Then

LZω1 = a11ω1 + a12ω2 − cb
(
ω1

1 + cω
2
1

)
,

LZω2 = a21ω1 + a22ω2 + b
(
ω1

1 + cω
2
1

) (10.22)

(abbreviation b = b21) by inserting (10.20) into (10.13). It follows that

LZ
(
ω1 + cω2

)
= a1ω1 + a2ω2

(
a1 = a11 + ca21, a2 = a12 + ca22 + Zc

)
. (10.23)

It may be seen by direct calculation ofL2
Zω

2 that the “stronger” inclusion (10.14) is equivalent
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to the identity ca1 = a2, that is,

LZ
(
ω1 + cω2

)
= a
(
ω1 + cω2

)
(10.24)

(abbreviation a = a1). Alternatively, (10.24) can be proved by using Lemma 9.2.
“Hint: denoting Θ = LZΩ0+Ω0, (10.14) impliesLZΘ ⊂ Θ. MoreoverLD(ω1+cω2) ∈ Θ

by using (10.22). Lemma 9.2 can be applied: ω1 + cω2 ∈ Θ′ and Θ′ involves just all multiples
of form ω1 + cω2. ThereforeLZ(ω1 + cω2) ∈ Θ′ is a multiple of ω1 + cω2.”

The algebraical part is concluded. We have congruences

LZω1 ∼= −cb
(
ω1

1 + cω
2
1

)
, LZω2 ∼= b

(
ω1

1 + cω
2
1

)
(mod Ω0) (10.25)

and equality

LZω1 + cLZω2 + Zcω2 = a
(
ω1 + cω2

)
. (10.26)

If Z is a variation then these three conditions together ensure the “stronger inclusion” (10.14)
hence Z ∈ � .

We turn to analysis. Abbreviating

Z
jj ′

I ′ =
∂zj

∂w
j ′

I ′

−wj

1
∂z

∂w
j ′

I ′

(
j, j ′ = 1, 2; I ′ = 1 · · ·1) (10.27)

and employing (10.8), the above conditions (10.25) and (10.26) read

∑
Z

1j ′

I ′ω
j ′

I ′ = −cb
(
ω1

1 + cω
2
1

)
,
∑

Z
2j ′

I ′ω
j ′

I ′ = b
(
ω1

1 + cω
2
1

) (∣∣I ′∣∣ ≥ 1
)
,

∑(
Z

1j ′

I ′ + cZ
2j ′

I ′

)
ω
j ′

I ′ + Zcω
2 = a

(
ω1 + cω2

)
.

(10.28)

We compare coefficients of forms ωj

I on the level s = |I ′|

s = 0: Z11 + cZ21 = a, Z12 + cZ22 + Zc = ac, (10.29)

s = 1: Z11
1 = −cb, Z12

1 = −(c)2b, Z21
1 = b, Z22

1 = bc, Z
1j
1 + cZ2j

1 = 0, (10.30)

s ≥ 2: Zjj ′

I ′ = 0, Z
1j ′

I ′ + cZ
2j ′

I ′ = 0. (10.31)

We will successively delete the coefficients a, b, c in order to obtain interrelations only for
variables Zjj ′

I ′ . Clearly

s = 0: Z12 + cZ22 + Zc =
(
Z11 + cZ21

)
c,

s = 1: Z11
1 + Z22

1 = 0, Z11
1 Z

22
1 = Z12

1 Z
21
1 ,

(10.32)
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and we moreover have three compatible equations

c = −Z
11
1

Z21
1

= −Z
12
1

Z22
1

, (c)2 = −Z
12
1

Z21
1

(10.33)

for the coefficient c. To cope with levels s ≥ 2, we introduce functions

Qj = ωj(Z) = zj −wj

1z
(
j = 1, 2

)
. (10.34)

Then substitution into (10.27) with the help of (10.31) gives

∂Qj

∂w
j ′

I ′

= 0
(
j, j ′ = 1, 2;

∣∣I ′∣∣ ≥ 2
)
. (10.35)

It follows moreover easily that

Z
jj ′

1 =
∂Qj

∂w
j ′

1

(
j /= j ′

)
, Z

jj

1 = z +
∂Qj

∂w
j

1

, Zjj ′ =
∂Qj

∂wj ′ (10.36)

and we have the final differential equations

s = 0:
∂Q1

∂w2 + c
∂Q2

∂w2 +Zc =

(
∂Q1

∂w1
+ c

∂Q2

∂w1

)
c, (10.37)

s = 1: 2z +
∂Q1

∂w1
1

+
∂Q2

∂w2
1

= 0,

(
z +

∂Q1

∂w1
1

)(
z +

∂Q2

∂w2
1

)
=
∂Q1

∂w2
1

∂Q2

∂w1
1

(10.38)

for the unknown functions

z = z
(
x,w1, w2, w1

1, w
2
1

)
, Qj = Qj

(
x,w1, w2, w1

1, w
2
1

)
. (10.39)

The coefficient c is determined by (10.33) and (10.36) in terms of functions Qj . This concludes the
analytic part of the algorithm since trivially zj = wj

1z +Q
j and the vector field Z is determined.

The system is compatible: particular solutions with functions Qj quadratic in jet
variables and c = const. can be found as follows. Assume

Qj = Aj
(
w1

1

)2
+ 2Bjw1

1w
2
1 + C

j
(
w2

1

)2 (
j = 1, 2

)
(10.40)

with constant coefficients Aj, Bj , Cj ∈ �. We also suppose c ∈ � and then (10.37) is trivially
satisfied.



Abstract and Applied Analysis 29

On the other hand, (10.33) provide the requirements

z +
∂Q1

∂w1
1

+ c
∂Q2

∂w1
1

=
∂Q1

∂w2
1

+ c

(
z +

∂Q2

∂w2
1

)
=
∂Q1

∂w2
1

+ (c)2 ∂Q
2

∂w1
1

= 0 (10.41)

by using (10.36). If we put

z = −∂Q
1

∂w1
1

− ∂Q
2

∂w2
1

= −
(
A1 + B1

)
w1

1 −
(
B1 + C2

)
w2

1, (10.42)

then (10.38) is satisfied (a clumsy direct verification).
The above requirements turn to a system of six homogeneous linear equations (not

written here) for the six constants Aj , Bj , Cj (j = 1, 2) with determinant Δ = c2(c2 − 8) if the
values z, Q1, Q2 are inserted and the coefficients of w1

1 and w2
1 are compared. The roots c = 0

and c = ±2
√

2 of the equation Δ = 0 provide rather nontrivial infinitesimal transformation Z,
however, we can state only the simplest result for the trivial root c = 0 for obvious reason. It
reads

Q1 = A1
(
w1

1

)2
, Q2 = A2

(
w1

1

)2
, z = −A1w1

1, z1 = 0, z2 = w1
1

(
A2w1

1 +A
1w2

1

)
, (10.43)

where A1, A2 are arbitrary constants.

Remark 10.3. It follows that investigation of vector fields Z ∈ � cannot be regarded for easy
task and some new powerful methods are necessary, for example, better use of differential
forms (involutive systems) with pseudogroup symmetries of the problem (moving frames).

11. A Few Notes on the Symmetries of Differential Equations

The external theory deals with (systems of) differential equations (DE) that are firmly localized
in the jet spaces. This is the common approach and it runs as follows. A given finite system of
DE is infinitely prolonged in order to ensure the compatibility. In general, this prolongation
is a toilsome and delicate task, in particular the “singular solutions” are tacitly passed over.
The prolongation procedure is expressed in terms of jet variables and as a result a fixed
subspace of the (infinite-order) jet space appears which represents theDE under consideration.
Then the external symmetries [2, 3, 6, 7] are such symmetries of the ambient jet space which
preserve the subspace. In this sense we may speak of classical symmetries (point and contact
transformations) and higher-order symmetries (which destroy the order of derivatives).

The internal theory ofDE is irrelevant to the jet localization, in particular to the choice of
the hierarchy of independent and dependent variables. This point of view is due to E. Cartan
and actually the congenial term “diffiety” was introduced in [6, 7]. Alas, these diffieties were
defined as objects locally identical with appropriate external DE restricted to the corresponding
subspace of the ambient total jet space. This can hardly be regarded as a coordinate-free (or jet
theory-free) approach since the model objects (external DE) and the intertwining mappings
(higher-order symmetries) essentially need the use of the above hard jet theory mechanisms
and concepts.
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In reality, the final result of prolongation, the infinitely prolonged DE, can be
alternatively characterized by three simple axioms as follows [8, 9, 24–27].

Let M be a space modelled on �∞ (local coordinates h1, h2, . . . as in Sections 1 and
2 above). Denote by F(M) the structural module of all smooth functions f on M (locally
depending on a finite numberm(f) of coordinates). Let Φ(M),T(M) be theF(M)-modules of
all differential 1-forms and vector fields on M, respectively. For every submodule Ω ⊂ Φ(M),
we have the “orthogonal” submodule Ω⊥ =H ⊂ T(M) of all X ∈ H such that Ω(X) = 0.

Then an F(M)-submodule Ω ⊂ Φ(M) is called a diffiety if the following three
requirements are locally satisfied.

(A) Ω is of codimension n <∞, equivalentH is of dimension n < ∞.
Here n is the number of independent variables. The independent variables provide the
complementary module to Ω in Φ(M) which is not prescribed in advance.

(B) dΩ ∼= 0 (mod Ω), equivalent LHΩ ⊂ Ω, equivalently: [H,H] ⊂ H.
This Frobenius condition ensures the classical passivity requirement: we deal with the
compatible infinite prolongation of differential equations.

(C) There exists filtration Ω∗ : Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ω = ∪Ωl by finite-dimensional
submodules Ωl ⊂ Ω such that

LHΩl ⊂ Ωl+1 (all l), Ωl+1 = Ωl +LHΩl

(
l large enough

)
. (11.1)

This condition may be expressed in terms of a �H-polynomial algebra on the
graded module ⊕ Ωl/Ωl−1 (the Noetherian property) and ensures the finite number
of dependent variables. Filtration Ω∗ may be capriciously modified. In particular,
various localizations of Ω in jet spaces Ω(m,n) can be easily obtained.

The internal symmetries naturally appear. For instance, a vector field Z ∈ T(M) is called
a (universal) variation of diffiety Ω if LZΩ ⊂ Ω and infinitesimal symmetry if moreover Z
generates a local group, that is, if and only if Z ∈ � .

Theorem 11.1 (technical theorem). Let Z be a variation of diffiety Ω. Then Z ∈ � if and only if
there is a finite-dimensional F(M)-submodule Θ ⊂ Ω such that

⊕LrHΘ = Ω, dim⊕LrZΘ < ∞. (11.2)

This is exactly counterpart to Theorem 5.6: submodule Θ ⊂ Ω stands here for the
previous submodule Ω0 ⊂ Ω(m,n). We postpone the proof of Theorem 11.1 together with
applications to some convenient occasion.

Remark 11.2. There may exist conical symmetries Z of a diffiety Ω, however, they are all lying
inH and generate just the Cauchy characteristics of the diffiety [9, page 155].

We conclude with two examples of internal theory of underdetermined ordinary
differential equations. The reasonings to follow can be carried over quite general diffieties
without any change.
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Example 11.3. Let us deal with the Monge equation

dx

dt
= f
(
t, x, y,

dy

dt

)
. (11.3)

The prolongation can be represented as the Pfaffian system

dx − f(t, x, y, y′)dt = 0, dy − y′dt = 0, dy′ − y′′dt = 0, . . . . (11.4)

Within the framework of diffieties, we introduce space M with coordinates

t, x0, y0, y1, y2, . . . (11.5)

and submodule Ω ⊂ Φ(M) with generators

dx0 − fdt, (ωr =)dyr − yr+1dt
(
r = 0, 1, . . . ; f = f

(
t, x0, y0, y1

))
. (11.6)

ClearlyH = Ω⊥ ⊂ T(M) is one-dimensional subspace including the vector field

D =
∂

∂t
+ f

∂

∂x0
+
∑

yr+1
∂

∂yr
. (11.7)

One can easily find that we have a diffiety. (A and B are trivially satisfied. The common order
preserving filtrations where Ωl involves dx0 − fdt and ωr with r ≤ l is enough for C.)

We introduce a new (standard [9]) filtration Ω∗ where the submodule Ωl ⊂ Ω is
generated by the forms

ϑ0 = dx0 − fdt − ∂f

∂y1
ω0, ωr (r ≤ l − 1). (11.8)

This is indeed a filtration since

LDϑ0 = df −Dfdt −D ∂f

∂y1
·ω0 −

∂f

∂y1
ω1 =

∂f

∂x0

(
dx0 − fdt

)
+
(
∂f

∂y0
−D ∂f

∂y1

)
ω0

=
∂f

∂x0
ϑ0 +Aω0

(
A =

∂f

∂y0
+
∂f

∂x0

∂f

∂y1
−D ∂f

∂y1

) (11.9)

and (trivially) LDωr = ωr+1. Assuming A/= 0 from now on (this is satisfied if fy1y1 /= 0) every
module Ωl is generated by the forms ϑr = LrDϑ0 (r ≤ l).

The forms ϑr satisfy the recurrenceLDϑr = ϑr+1. Then the formula

ϑr+1 = LDϑr = D	dϑr + dϑr(D) = D	dϑr (11.10)
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implies the congruence dϑr ∼= dt ∧ ϑr+1 (mod Ω ∧Ω). Let

Z = z
∂

∂t
+ z0 ∂

∂x0
+
∑

zr
∂

∂yr
(11.11)

be a variation of Ω in the common sense LZΩ ⊂ Ω. This inclusion is equivalent to the
congruence

LZϑr = Z	dϑr + dϑr(Z) ∼= −ϑr+1(Z)dt +Dϑr(Z)dt = 0 (mod Ω) (11.12)

whence to the recurrence

ϑr+1(Z) = Dϑr(Z) (11.13)

quite analogous to the recurrence (5.10), see Remark 5.3. It follows that the functions

z = Zt = dt(Z), g = ϑ0(Z) (11.14)

can be quite arbitrarily chosen. Then functions ϑr(Z) = Drg are determined and we obtain
quite explicit formulae for the variation Z. In more detail

g = ϑ0(Z) =
(

dx0 − fdt − ∂f

∂y1
ω0

)
(Z) = z0 − fz − ∂f

∂y1

(
z0 − y1z

)
,

Dg = ϑ1(Z)
(
∂f

∂x0
ϑ0 +Aω0

)
(Z) =

∂f

∂x0
g +A

(
z0 − y1z

) (11.15)

and these equations determine coefficients z0 and z0 in terms of functions z and g.
Coefficients zr (r ≥ 1) follow by prolongation (not stated here). If moreover

dim {LrZϑ0}r∈� < ∞ (11.16)

we have infinitesimal symmetry Z ∈ � , see Theorem 11.1.

Example 11.4. Let us deal with the Hilbert-Cartan equation [3]

dy

dt
=

(
d2x

dt2

)2

. (11.17)

Passing to the diffiety, we introduce space M with coordinates

t, x0, x1, y0, y1, y2, . . . (11.18)
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and submodule Ω ⊂ Φ(M) generated by forms

dx0 − x1dt, dx1 −
√
y1dt, (ωr =)dyr − yr+1dt (r = 0, 1, . . .). (11.19)

The submoduleH = Ω⊥ ⊂ T(M) is generated by the vector field

D =
∂

∂t
+ x1

∂

∂x0
+
√
y1

∂

∂x1
+
∑

yr+1
∂

∂yr
. (11.20)

We introduce the form

ϑ0 = dx0 − x1dt + B

{
dx1 −

√
y1dt − 1

2√y1
ω0

} (
B =

1/√y1

D
(
1/√y1

)
)

(11.21)

and moreover the forms

ϑ1 = LDϑ0 = (1 +DB){· · · },

ϑ2 = LDϑ1 = D2B{· · · } −Cω0

(
C = (1 +DB)D

1
2√y1

)
,

ϑ3 = · · · + Cω1,

ϑ4 = · · · + Cω2,

...

(11.22)

Assuming C/= 0, we have a standard filtration Ω∗ where the submodules Ωl ⊂ Ω are generated
by forms ϑr (r ≤ l). Explicit formulae for variations

Z = z
∂

∂t
+ z0 ∂

∂x0
+ z1 ∂

∂x1
+
∑

zr
∂

∂yr
(11.23)

can be obtained analogously as in Example 11.3 (and are omitted here). Functions z and g =
ϑ0(Z) can be arbitrarily chosen. Condition (11.16) ensures Z ∈ � .

Appendix

For the convenience of reader, we survey some results [9, 18, 19] on the modules Adj. Our
reasonings are carried out in the space �n and will be true locally near generic points.

Let Θ be a given module of 1-forms and A(Θ) the module of all vector fields X such
that LfXΘ ⊂ Θ for all functions f , see [9]. Clearly

L[X,Z]Θ = (LXLZ − LZLX)Θ ⊂ Θ (X,Z ∈ A(Θ)) (A.1)
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and it follows that identity

f[X, Y] = [X,Z] +Xf · Y (
X, Y ∈ A(Θ); Z = fY

)
(A.2)

implies Lf[X,Y]Θ ⊂ Θ whence [A(Θ), A(Θ)] ⊂ A(Θ).
Let Θ be of a finite dimension I. The Frobenius theorem can be applied, and it follows

that module Adj Θ = A(Θ)⊥ (of all forms ϕ satisfying ϕ(A(Θ)) = 0) has a certain basis
df1, . . . ,dfK (K ≥ I).

On the other hand, identity

LfXϑ = fX
⌋
dϑ + d

(
fϑ(X)

)
= fLXϑ + ϑ(X)ϑ (A.3)

implies that X ∈ A(Θ) if and only if

ϑ(X) = 0, X	dϑ ∈ Θ (ϑ ∈ Θ) (A.4)

which is the classical definition, see [2]. In particular Θ ⊂ Adj Θ so we may suppose the
generators

ϑi = dfi + giI+1dfI+1 + · · · + giKdfK ∈ Θ (i = 1, . . . , I) (A.5)

of module Θ. Recall that Xfk = 0 (k = 1, . . . , K; X ∈ A(Θ)) whence

LXϑi = XgiI+1dfI+1 + · · · +XgiKdfK ∈ Θ (A.6)

and this implies XgiI+1 = · · · = XgiK = 0. It follows that

dgiI+1, . . . ,dg
i
K ∈ AdjΘ (i = 1, . . . , I) (A.7)

and therefore all coefficients gi
k

depend only on variables f1, . . . , fK.
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Using the Kato theorem for abstract differential equations, the local well-posedness of the solution
for a nonlinear dissipative Camassa-Holm equation is established in space C([0, T),Hs(R)) ∩
C1([0, T),Hs−1(R)) with s > 3/2. In addition, a sufficient condition for the existence of weak
solutions of the equation in lower order Sobolev space Hs(R) with 1 ≤ s ≤ 3/2 is developed.

1. Introduction

Camassa and Holm [1] used the Hamiltonian method to derive a completely integrable wave
equation

ut − uxxt + 2kux + 3uux = 2uxuxx + uuxxx, (1.1)

by retaining two terms that are usually neglected in the small amplitude, shallow water
limit. Its alternative derivation as a model for water waves can be found in Constantin and
Lannes [2] and Johnson [3]. Equation (1.1) also models wave current interaction [4], while
Dai [5] derived it as a model in elasticity (see Constantin and Strauss [6]). Moreover, it was
pointed out in Lakshmanan [7] that the Camassa-Holm equation (1.1) could be relevant to
the modeling of tsunami waves (see Constantin and Johnson [8]).

In fact, a huge amount of work has been carried out to investigate the dynamic
properties of (1.1). For k = 0, (1.1) has traveling wave solutions of the form c e−|x−ct|, called
peakons, which capture the main feature of the exact traveling wave solutions of greatest
height of the governing equations (see [9–11]). For k > 0, its solitary waves are stable
solitons [6, 11]. It was shown in [12–14] that the inverse spectral or scattering approach was
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a powerful tool to handle Camassa-Holm equation. Equation (1.1) is a completely integrable
infinite-dimensional Hamiltonian system (in the sense that for a large class of initial data,
the flow is equivalent to a linear flow at constant speed [15]). It should be emphasized that
(1.1) gives rise to geodesic flow of a certain invariant metric on the Bott-Virasoro group (see
[16, 17]), and this geometric illustration leads to a proof that the Least Action Principle holds.
It is worthwhile to mention that Xin and Zhang [18] proved that the global existence of the
weak solution in the energy space H1(R) without any sign conditions on the initial value,
and the uniqueness of this weak solution is obtained under some conditions on the solution
[19]. Coclite et al. [20] extended the analysis presented in [18, 19] and obtained many useful
dynamic properties to other equations (also see [21–24]). Li and Olver [25] established the
local well-posedness in the Sobolev spaceHs(R) with s > 3/2 for (1.1) and gave conditions on
the initial data that lead to finite time blowup of certain solutions. It was shown in Constantin
and Escher [26] that the blowup occurs in the form of breaking waves, namely, the solution
remains bounded but its slope becomes unbounded in finite time. After wave breaking, the
solution can be continued uniquely either as a global conservative weak solution [21] or a
global dissipative solution [22]. For peakons, these possibilities are explicitly illustrated in the
paper [27]. For other methods to handle the problems relating to various dynamic properties
of the Camassa-Holm equation and other shallow water models, the reader is referred to
[10, 28–32] and the references therein.

In this paper, motivated by the work in [25, 33], we study the following generalized
Camassa-Holm equation

ut − utxx + 2kux + aumux = 2uxuxx + uuxxx + β∂x
[
(ux)N

]
, (1.2)

where m ≥ 1 and N ≥ 1 are natural numbers, and a, k, and β are arbitrary constants.
Obviously, (1.2) reduces to (1.1) if we set a = 3, m = 1, and β = 0. Actually, Wu and Yin
[34] consider a nonlinearly dissipative Camassa-Holm equation which includes a nonlinearly
dissipative term L(u), where L is a differential operator or a quasidifferential operator.
Therefore, we can regard the term β∂x[(ux)

N] as a nonlinearly dissipative term for the
dissipative Camassa-Holm equation (1.2).

Due to the term β∂x[(ux)
N] in (1.2), the conservation laws in previous works [10, 25]

for (1.1) lose their powers to obtain some bounded estimates of the solution for (1.2). A new
conservation law different from those presented in [10, 25] will be established to prove the
local existence and uniqueness of the solution to (2.3) subject to initial value u0(x) ∈ Hs(R)
with s > 3/2. We should address that all the generalized versions of the Camassa-Holm
equation in previous works (see [17, 25, 34]) do not involve the nonlinear term ∂x[(ux)

N].
Lai and Wu [33] only studied a generalized Camassa-Holm equation in the case where β ≥ 0
and N is an odd number. Namely, (1.2) with β < 0 and arbitrary positive integer N was not
investigated in [33].

The main tasks of this paper are two-fold. Firstly, by using the Kato theorem for
abstract differential equations, we establish the local existence and uniqueness of solutions
for (1.2) with any β and arbitrary positive integer N in space C([0, T),Hs(R))

⋂
C1([0, T),

Hs−1(R)) with s > 3/2. Secondly, it is shown that the existence of weak solutions in lower
order Sobolev space Hs(R) with 1 ≤ s ≤ 3/2. The ideas of proving the second result come
from those presented in Li and Olver [25].



Abstract and Applied Analysis 3

2. Main Results

Firstly, we give some notation.
The space of all infinitely differentiable functions φ(t, x) with compact support in

[0,+∞)×R is denoted byC∞0 . Lp = Lp(R) (1 ≤ p < +∞) is the space of all measurable functions
h such that ‖h‖pLp =

∫
R |h(t, x)|pdx < ∞. We define L∞ = L∞(R) with the standard norm

‖h‖L∞ = infm(e)=0supx∈R\e|h(t, x)|. For any real number s, Hs = Hs(R) denotes the Sobolev
space with the norm defined by

‖h‖Hs =
(∫

R

(
1 + |ξ|2

)s∣∣∣ĥ(t, ξ)
∣∣∣2dξ

)1/2

<∞, (2.1)

where ĥ(t, ξ) =
∫
R e
−ixξh(t, x)dx.

For T > 0 and nonnegative number s, C([0, T);Hs(R)) denotes the Frechet space of all
continuous Hs-valued functions on [0, T). We set Λ = (1 − ∂2

x)
1/2.

In order to study the existence of solutions for (1.2), we consider its Cauchy problem
in the form

ut − utxx = −2kux − a

m + 1

(
um+1

)
x
+ 2uxuxx + uuxxx + β∂x

[
(ux)N

]

= −kux − a

m + 1

(
um+1

)
x
+

1
2
∂3
xu

2 − 1
2
∂x
(
u2
x

)
+ β∂x

[
(ux)N

]
,

u(0, x) = u0(x),

(2.2)

which is equivalent to

ut + uux = Λ−2
[
−ku − a

m + 1

(
um+1

)]
x

+ Λ−2(uux) − 1
2
Λ−2∂x

(
u2
x

)
+ βΛ−2∂x

[
(ux)N

]
,

u(0, x) = u0(x).

(2.3)

Now, we state our main results.

Theorem 2.1. Let u0(x) ∈ Hs(R) with s > 3/2. Then problem (2.2) or problem (2.3) has a unique
solution u(t, x) ∈ C([0, T);Hs(R))

⋂
C1([0, T);Hs−1(R)) where T > 0 depends on ‖u0‖Hs(R).

Theorem 2.2. Suppose that u0(x) ∈ Hs with 1 ≤ s ≤ 3/2 and ‖u0x‖L∞ < ∞. Then there exists a
T > 0 such that (1.2) subject to initial value u0(x) has a weak solution u(t, x) ∈ L2([0, T],Hs) in the
sense of distribution and ux ∈ L∞([0, T] × R).

3. Local Well-Posedness

We consider the abstract quasilinear evolution equation

dv

dt
+A(v)v = f(v), t ≥ 0, v(0) = v0. (3.1)
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Let X and Y be Hilbert spaces such that Y is continuously and densely embedded in X,
and let Q : Y → X be a topological isomorphism. Let L(Y,X) be the space of all bounded
linear operators from Y to X. If X = Y , we denote this space by L(X). We state the following
conditions in which ρ1, ρ2, ρ3, and ρ4 are constants depending on max{‖y‖Y , ‖z‖Y}.

(i) A(y) ∈ L(Y,X) for y ∈ X with

∥∥(A(y) −A(z))w
∥∥
X ≤ ρ1

∥∥y − z∥∥X‖w‖Y , y, z,w ∈ Y, (3.2)

and A(y) ∈ G(X, 1, β) (i.e., A(y) is quasi-m-accretive), uniformly on bounded sets
in Y .

(ii) QA(y)Q−1 = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly on bounded
sets in Y . Moreover,

∥∥(B(y) − B(z))w∥∥X ≤ ρ2
∥∥y − z∥∥Y‖w‖X, y, z ∈ Y, w ∈ X. (3.3)

(iii) f : Y → Y extends to a map from X into X is bounded on bounded sets in Y , and
satisfies

∥∥f(y) − f(z)∥∥Y ≤ ρ3
∥∥y − z∥∥Y , y, z ∈ Y,

∥∥f(y) − f(z)∥∥X ≤ ρ4
∥∥y − z∥∥X, y, z ∈ Y.

(3.4)

Kato Theorem (see [35])

Assume that (i), (ii), and (iii) hold. If v0 ∈ Y , there is a maximal T > 0 depending only on
‖v0‖Y , and a unique solution v to problem (3.1) such that

v = v(·, v0) ∈ C([0, T);Y )
⋂
C1([0, T);X). (3.5)

Moreover, the map v0 → v(·, v0) is a continuous map from Y to the space

C([0, T);Y )
⋂
C1([0, T);X). (3.6)

For problem (2.3), we set A(u) = u∂x, Y = Hs(R), X = Hs−1(R), Λ = (1 − ∂2
x)

1/2,

f(u) = Λ−2
[
−ku − a

m + 1

(
um+1

)]
x

+ Λ−2(uux) − 1
2
Λ−2∂x

(
u2
x

)
+ βΛ−2∂x

[
(ux)N

]
, (3.7)

and Q = Λ. In order to prove Theorem 2.1, we only need to check that A(u) and f(u) satisfy
assumptions (i)–(iii).

Lemma 3.1. The operator A(u) = u∂x with u ∈ Hs(R), s > 3/2 belongs to G(Hs−1, 1, β).
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Lemma 3.2. Let A(u) = u∂x with u ∈ Hs and s > 3/2. Then A(u) ∈ L(Hs,Hs−1) for all u ∈ Hs.
Moreover,

‖(A(u) −A(z))w‖Hs−1 ≤ ρ1‖u − z‖Hs−1‖w‖Hs, u, z,w ∈ Hs(R). (3.8)

Lemma 3.3. For s > 3/2, u, z ∈ Hs and w ∈ Hs−1, it holds that B(u) = [Λ, u∂x]Λ−1 ∈ L(Hs−1)
for u ∈ Hs and

‖(B(u) − B(z))w‖Hs−1 ≤ ρ2‖u − z‖Hs‖w‖Hs−1 . (3.9)

Proofs of the above Lemmas 3.1–3.3 can be found in [29] or [31].

Lemma 3.4 (see [35]). Let r and q be real numbers such that −r < q ≤ r. Then

‖uv‖Hq ≤ c‖u‖Hr‖v‖Hq , if r >
1
2
,

‖uv‖Hr+q−1/2 ≤ c‖u‖Hr‖v‖Hq , if r <
1
2
.

(3.10)

Lemma 3.5. Let u, z ∈ Hs with s > 3/2, then f(u) is bounded on bounded sets inHs and satisfies

∥∥f(u) − f(z)∥∥Hs ≤ ρ3‖u − z‖Hs, (3.11)

∥∥f(u) − f(z)∥∥Hs−1 ≤ ρ4‖u − z‖Hs−1 . (3.12)

Proof. Using the algebra property of the space Hs0 with s0 > 1/2, we have

∥∥f(u) − f(z)∥∥Hs

≤ c
[∥∥∥∥Λ−2

([
−ku − a

m + 1

(
um+1

)]
x

−
[
−kz − a

m + 1

(
zm+1

)]
x

)∥∥∥∥
Hs

+
∥∥∥Λ−2(uux − zzx)

∥∥∥
Hs

+
∥∥∥Λ−2∂x

(
u2
x − z2

x

)∥∥∥
Hs

+
∥∥∥Λ−2∂x

[
(ux)N

]
−Λ−2∂x

[
(zx)N

] ∥∥∥
Hs

]

≤ c
[
‖u − z‖Hs−1 +

∥∥∥um+1 − zm+1
∥∥∥
Hs−1

+ ‖uux − zzx‖Hs−1 +
∥∥∥u2

x − z2
x

∥∥∥
Hs−1

+
∥∥∥(ux)N − (zx)N

∥∥∥
Hs−1

]

≤ c‖u − z‖Hs

⎡
⎣1 +

m∑
j=0
‖u‖m−jHs ‖z‖jHs + ‖u‖Hs + ‖z‖Hs +

N−1∑
j=0
‖ux‖N−jHs−1‖zx‖jHs−1

⎤
⎦

≤ ρ3‖u − z‖Hs,

(3.13)

from which we obtain (3.11).
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Applying Lemma 3.4, uux = (1/2)(u2)x, s > 3/2, ‖u‖L∞ ≤ c‖u‖Hs−1 and ‖ux‖L∞ ≤
c‖u‖Hs , we get

∥∥f(u) − f(z)∥∥Hs−1

≤ c
⎡
⎣‖u − z‖

Hs−2

+
∥∥∥um+1 − zm+1

∥∥∥
Hs−2

+
∥∥∥u2 − z2

∥∥∥
Hs−2

+ ‖(ux − zx)(ux + zx)‖Hs−2 +

∥∥∥∥∥∥(ux − zx)
N−1∑
j=0

u
N−1−j
x z

j
x

∥∥∥∥∥∥
Hs−2

⎤
⎦

≤ c‖u − z‖Hs−1

⎡
⎣1 +

m∑
j=0
‖u‖m−j

Hs−1‖z‖jHs−1 + ‖u‖Hs−1 + ‖z‖Hs−1

+ ‖u‖Hs + ‖z‖Hs +
N−1∑
j=0
‖ux‖N−jHs−1‖zx‖jHs−1

⎤
⎦

≤ ρ4‖u − z‖Hs−1 ,

(3.14)

which completes the proof of (3.12).

Proof of Theorem 2.1. Using the Kato Theorem, Lemmas 3.1–3.3, and 3.5, we know that system
(2.2) or problem (2.3) has a unique solution

u(t, x) ∈ C([0, T);Hs(R))
⋂
C1
(
[0, T);Hs−1(R)

)
. (3.15)

4. Existence of Weak Solutions

For s ≥ 2, using the first equation of system (2.2) derives

d

dt

∫
R

(
u2 + u2

x + 2β
∫ t

0
uN+1
x dτ

)
dx = 0, (4.1)

from which we have the conservation law

∫
R

(
u2 + u2

x + 2β
∫ t

0
uN+1
x dτ

)
dx =

∫
R

(
u2

0 + u
2
0x

)
dx. (4.2)

Lemma 4.1 (Kato and Ponce [36]). If r > 0, thenHr
⋂
L∞ is an algebra. Moreover,

‖uv‖r ≤ c(‖u‖L∞‖v‖r + ‖u‖r‖v‖L∞), (4.3)

where c is a constant depending only on r.
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Lemma 4.2 (Kato and Ponce [36]). Let r > 0. If u ∈ Hr
⋂
W1,∞ and v ∈ Hr−1⋂L∞, then

‖[Λr , u]v‖L2 ≤ c
(
‖∂xu‖L∞

∥∥∥Λr−1v
∥∥∥
L2

+ ‖Λru‖L2‖v‖L∞
)
. (4.4)

Lemma 4.3. Let s ≥ 2 and the function u(t, x) is a solution of problem (2.2) and the initial data
u0(x) ∈ Hs(R). Then the following inequality holds

‖u‖L∞ ≤ ‖u‖H1 ≤ ‖u0‖H1e|β|
∫ t

0 ‖ux‖N−1
L∞ dτ . (4.5)

For q ∈ (0, s − 1], there is a constant c, which only depends onm,N, k, a, and β, such that

∫
R

(
Λq+1u

)2
dx ≤

∫
R

(
Λq+1u0

)2
dx + c

∫ t
0
‖ux‖L∞‖u‖2

Hq+1

(
1 + ‖u‖m−1

L∞

)
dτ

+ c
∫ t

0
‖u‖2

Hq+1‖ux‖N−1
L∞ dτ.

(4.6)

For q ∈ [0, s − 1], there is a constant c, which only depends onm,N, k, a, and β, such that

‖ut‖Hq ≤ c‖u‖Hq+1

(
1 +

(
1 + ‖u‖m−1

L∞

)
‖u‖H1 + ‖ux‖N−1

L∞

)
. (4.7)

Proof. Using ‖u‖2
H1 =

∫
R(u

2 + u2
x)dx and (4.2) derives (4.5).

Using ∂2
x = −Λ2 + 1 and the Parseval equality gives rise to

∫
R

ΛquΛq∂3
x

(
u2
)
dx = −2

∫
R

(
Λq+1u

)
Λq+1(uux)dx + 2

∫
R

(Λqu)Λq(uux)dx. (4.8)

For q ∈ (0, s − 1], applying (Λqu)Λq to both sides of the first equation of system (2.3)
and integrating with respect to x by parts, we have the identity

1
2
d

dt

∫
R

(
(Λqu)2 + (Λqux)

2
)
dx = −a

∫
R

(Λqu)Λq(umux)dx

−
∫
R

(
Λq+1u

)
Λq+1(uux)dx +

1
2

∫
R

(Λqux)Λq
(
u2
x

)
dx

+
∫
R

(Λqu)Λq(uux)dx − β
∫
R

ΛquxΛq
[
(ux)N

]
dx.

(4.9)
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We will estimate the terms on the right-hand side of (4.9) separately. For the first term, by
using the Cauchy-Schwartz inequality and Lemmas 4.1 and 4.2, we have

∫
R

(Λqu)Λq(umux)dx =
∫
R

(Λqu)[Λq(umux) − umΛqux]dx +
∫
R

(Λqu)umΛquxdx

≤ c‖u‖Hq

(
m‖u‖m−1

L∞ ‖ux‖L∞‖u‖Hq + ‖ux‖L∞‖u‖m−1
L∞ ‖u‖Hq

)

+
1
2
‖u‖m−1

L∞ ‖ux‖L∞‖Λqu‖2
L2

≤ c‖u‖2
Hq‖u‖m−1

L∞ ‖ux‖L∞ .

(4.10)

Using the above estimate to the second term yields

∫
R

(
Λq+1u

)
Λq+1(uux)dx ≤ c‖u‖2

Hq+1‖ux‖L∞ . (4.11)

For the third term, using the Cauchy-Schwartz inequality and Lemma 4.1, we obtain

∫
R

(Λqux)Λq
(
u2
x

)
dx ≤ ‖Λqux‖L2

∥∥∥Λq
(
u2
x

)∥∥∥
L2

≤ c‖u‖Hq+1(‖ux‖L∞‖ux‖Hq + ‖ux‖L∞‖ux‖Hq)

≤ c‖u‖2
Hq+1‖ux‖L∞ .

(4.12)

For the last term in (4.9), using Lemma 4.1 repeatedly results in

∣∣∣∣
∫
R

(Λqux)Λq(ux)Ndx
∣∣∣∣ ≤ ‖ux‖Hq

∥∥∥uNx
∥∥∥
Hq

≤ c‖u‖2
Hq+1‖ux‖N−1

L∞ .

(4.13)

It follows from (4.9) to (4.13) that there exists a constant c depending only on m,N and the
coefficients of (1.2) such that

1
2
d

dt

∫
R

[
(Λqu)2 + (Λqux)

2
]
dx ≤ c‖ux‖L∞‖u‖2

Hq+1

(
1 + ‖u‖m−1

L∞

)
+ c‖u‖2

Hq+1‖ux‖N−1
L∞ . (4.14)

Integrating both sides of the above inequality with respect to t results in inequality (4.6).
To estimate the norm of ut, we apply the operator (1 − ∂2

x)
−1 to both sides of the first

equation of system (2.3) to obtain the equation

ut =
(

1 − ∂2
x

)−1
[
−2kux + ∂x

(
− a

m + 1
um+1 +

1
2
∂2
x

(
u2
)
− 1

2
u2
x

)
+ β∂x

[
(ux)N

]]
. (4.15)
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Applying (Λqut)Λq to both sides of (4.15) for q ∈ (0, s − 1] gives rise to

∫
R

(Λqut)
2dx =

∫
R

(Λqut)Λq−2
[
∂x

(
−2ku − a

m + 1
um+1 +

1
2
∂2
x

(
u2
)
− 1

2
u2
x

)
+ β∂x

[
(ux)N

]]
dτ.

(4.16)

For the right-hand side of (4.16), we have

∫
R

(Λqut)Λq−2(−2kux)dx ≤ c‖ut‖Hq‖u‖Hq ,

∫
R

(Λqut)
(

1 − ∂2
x

)−1
Λq∂x

(
− a

m + 1
um+1 − 1

2
u2
x

)
dx

≤ c‖ut‖Hq

(∫
R

(
1 + ξ2

)q−1 ×
[∫

R

[
− a

m + 1
ûm
(
ξ − η)û(η) − 1

2
ûx
(
ξ − η)ûx(η)

]
dη

]2
)1/2

≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1

(
1 + ‖u‖m−1

L∞

)
.

(4.17)

Since

∫
(Λqut)

(
1 − ∂2

x

)−1
Λq∂2

x(uux)dx = −
∫
(Λqut)Λq(uux)dx +

∫
(Λqut)

(
1 − ∂2

x

)−1
Λq(uux)dx,

(4.18)

using Lemma 4.1, ‖uux‖Hq ≤ c‖(u2)x‖Hq ≤ c‖u‖L∞‖u‖Hq+1 and ‖u‖L∞ ≤ ‖u‖H1 , we have

∫
(Λqut)Λq(uux)dx ≤ c‖ut‖Hq‖uux‖Hq

≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1 ,

∫
(Λqut)

(
1 − ∂2

x

)−1
Λq(uux)dx ≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1 .

(4.19)

Using the Cauchy-Schwartz inequality and Lemma 4.1 yields

∣∣∣∣
∫
R

(Λqut)
(

1 − ∂2
x

)−1
Λq∂x

(
uNx

)
dx

∣∣∣∣ ≤ c‖ut‖Hq‖ux‖N−1
L∞ ‖u‖Hq+1 . (4.20)

Applying (4.17)–(4.20) into (4.16) yields the inequality

‖ut‖Hq ≤ c‖u‖Hq+1

(
1 +

(
1 + ‖u‖m−1

L∞

)
‖u‖H1 + ‖ux‖N−1

L∞

)
. (4.21)

This completes the proof of Lemma 4.3.
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Defining

φ(x) =

⎧⎨
⎩
e1/(x2−1), |x| < 1,

0, |x| ≥ 1,
(4.22)

and setting φε(x) = ε−1/4φ(ε−1/4x) with 0 < ε < 1/4 and uε0 = φε 
 u0, we know that uε0 ∈ C∞
for any u0 ∈ Hs(R) and s > 0.

It follows from Theorem 2.1 that for each ε the Cauchy problem

ut − utxx = ∂x
(
−2ku − a

m + 1
um+1

)
+

1
2
∂3
x

(
u2
)
− 1

2
∂x
(
u2
x

)
+ β∂x

[
(ux)N

]
,

u(0, x) = uε0(x), x ∈ R,
(4.23)

has a unique solution uε(t, x) ∈ C∞([0, T);H∞).

Lemma 4.4. Under the assumptions of problem (4.23), the following estimates hold for any ε with
0 < ε < 1/4 and s > 0

‖uε0x‖L∞ ≤ c1‖u0x‖L∞ ,
‖uε0‖Hq ≤ c1, if q ≤ s,

‖uε0‖Hq ≤ c1ε
(s−q)/4, if q > s,

‖uε0 − u0‖Hq ≤ c1ε
(s−q)/4, if q ≤ s,

‖uε0 − u0‖Hs = o(1),

(4.24)

where c1 is a constant independent of ε.

The proof of this Lemma can be found in Lai and Wu [33].

Lemma 4.5. If u0(x) ∈ Hs(R) with s ∈ [1, 3/2] such that ‖u0x‖L∞ < ∞. Let uε0 be defined as in
system (4.23). Then there exist two positive constants T and c, which are independent of ε, such that
the solution uε of problem (4.23) satisfies ‖uεx‖L∞ ≤ c for any t ∈ [0, T).

Proof. Using notation u = uε and differentiating both sides of the first equation of problem
(4.23) or (4.15) with respect to x give rise to

utx +
1
2
∂2
xu

2 − 1
2
u2
x = 2ku +

a

m + 1
um+1 − 1

2
u2 − βuNx

−Λ−2
[

2ku +
a

m + 1
um+1 − 1

2
u2 +

1
2
u2
x − βuNx

]
.

(4.25)
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Letting p > 0 be an integer and multiplying the above equation by (ux)
2p+1 and then integrat-

ing the resulting equation with respect to x yield the equality

1
2p + 2

d

dt

∫
R

(ux)2p+2dx +
p

2p + 2

∫
R

(ux)2p+3dx

=
∫
R

(ux)2p+1
(

2ku +
a

m + 1
um+1 − 1

2
u2 − βuNx

)
dx

−
∫
R

(ux)2p+1Λ−2

[
2ku +

a

m + 1
um+1 − u

2

2
+

1
2
u2
x − βuNx

]
dx.

(4.26)

Applying the Hölder’s inequality yields

1
2p + 2

d

dt

∫
R

(ux)2p+2dx ≤
{
|2k|

(∫
R

|u|2p+2dx

)1/(2p+2)

+
a

m + 1

(∫
R

∣∣∣um+1
∣∣∣2p+2

dx

)1/(2p+2)

+
1
2

(∫
R

∣∣∣u2
∣∣∣2p+2

dx

)1/(2p+2)

+ β
(∫

R

∣∣∣uNx
∣∣∣2p+2

dx

)1/(2p+2)

+
(∫

R

|G|2p+2dx

)1/(2p+2)
}(∫

R

|ux|2p+2dx

)(2p+1)/(2p+2)

+
p

2p + 2
‖ux‖L∞

∫
R

|ux|2p+2dx,

(4.27)

or

d

dt

(∫
R

(ux)2p+2dx

)1/(2p+2)

≤ |2k|
(∫

R

|u|2p+2dx

)1/(2p+2)

+
a

m + 1

(∫
R

∣∣∣um+1
∣∣∣2p+2

dx

)1/(2p+2)

+
1
2

(∫
R

∣∣∣u2
∣∣∣2p+2

dx

)1/(2p+2)

+ β
(∫

R

∣∣∣uNx
∣∣∣2p+2

dx

)1/(2p+2)

+
(∫

R

|G|2p+2dx

)1/(2p+2)

+
p

2p + 2
‖ux‖L∞

(∫
R

|ux|2p+2dx

)1/(2p+2)

,

(4.28)

where

G = Λ−2

[
2ku +

a

m + 1
um+1 − u

2

2
+

1
2
u2
x − βuNx

]
. (4.29)
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Since ‖f‖Lp → ‖f‖L∞ as p → ∞ for any f ∈ L∞⋂L2, integrating both sides of the inequality
(4.28) with respect to t and taking the limit as p → ∞ result in the estimate

‖ux‖L∞ ≤ ‖u0x‖L∞ +
∫ t

0
c

[(
‖u‖L∞ +

∥∥∥u2
∥∥∥
L∞

+
∥∥∥um+1

∥∥∥
L∞

+ β‖ux‖NL∞ + ‖G‖L∞
)
+

1
2
‖ux‖2

L∞

]
dτ.

(4.30)

Using the algebra property of Hs0(R) with s0 > 1/2 yields (‖uε‖H(1/2)+ means that there exists
a sufficiently small δ > 0 such that ‖uε‖(1/2)+ = ‖uε‖H1/2+δ)

‖G‖L∞ ≤ c‖G‖H(1/2)+

≤ c
∥∥∥∥∥Λ−2

[
2ku +

a

m + 1
um+1 − u

2

2
+

1
2
u2
x − βuNx

]∥∥∥∥∥
H(1/2)+

≤ c
(
‖u‖H1 + ‖u‖2

H1 + ‖u‖m+1
H1 +

∥∥∥Λ−2(u2
x)
∥∥∥
H(1/2)+

+
∥∥∥Λ−2(uNx )

∥∥∥
H(1/2)+

)

≤ c
(
‖u‖H1 + ‖u‖2

H1 + ‖u‖m+1
H1 +

∥∥∥u2
x

∥∥∥
H0

+
∥∥∥uNx

∥∥∥
H0

)

≤ c
(
‖u‖H1 + ‖u‖2

H1 + ‖u‖m+1
H1 + ‖ux‖L∞‖u‖H1 + ‖ux‖N−1

L∞ ‖u‖H1

)

≤ cec
∫ t

0 ‖ux‖N−1
L∞ dτ

(
1 + ‖ux‖L∞ + ‖ux‖N−1

L∞

)
,

(4.31)

in which Lemma 4.3 is used. Therefore, we get

∫ t
0
‖G‖L∞dτ ≤ c

∫ t
0
ec
∫τ

0 ‖ux‖N−1
L∞ dξ

(
1 + ‖ux‖L∞ + ‖ux‖N−1

L∞

)
dτ. (4.32)

From (4.30) and (4.32), one has

‖ux‖L∞ ≤ ‖u0x‖L∞ + c
∫ t

0

[
‖ux‖2

L∞ + ‖ux‖NL∞ + ec
∫ t

0 ‖ux‖N−1
L∞ dτ

+ec
∫τ

0 ‖ux‖N−1
L∞ dξ

(
1 + ‖ux‖L∞ + ‖ux‖N−1

L∞

)]
dτ.

(4.33)

From Lemma 4.4, it follows from the contraction mapping principle that there is a
T > 0 such that the equation

‖W‖L∞ = ‖u0x‖L∞ + c
∫ t

0

[
‖W‖2

L∞ + ‖W‖NL∞ + ec
∫ t

0 ‖W‖N−1
L∞ dτ

+ec
∫τ

0 ‖W‖N−1
L∞ dξ

(
1 + ‖W‖L∞ + ‖W‖N−1

L∞

)]
dτ

(4.34)

has a unique solution W ∈ C[0, T]. Using the Theorem presented at page 51 in [25] or
Theorem 2 in Section 1.1 presented in [37] yields that there are constants T > 0 and c > 0
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independent of ε such that ‖ux‖L∞ ≤ W(t) for arbitrary t ∈ [0, T], which leads to the
conclusion of Lemma 4.5.

Using Lemmas 4.3 and 4.5, notation uε = u and Gronwall’s inequality results in the
inequalities

‖uε‖Hq ≤ CTe
CT ,

‖uεt‖Hr ≤ CTe
CT ,

(4.35)

where q ∈ (0, s], r ∈ (0, s − 1] and CT depends on T . It follows from Aubin’s compactness
theorem that there is a subsequence of {uε}, denoted by {uεn}, such that {uεn} and their
temporal derivatives {uεnt} are weakly convergent to a function u(t, x) and its derivative ut in
L2([0, T],Hs) and L2([0, T],Hs−1), respectively. Moreover, for any real number R1 > 0, {uεn}
is convergent to the function u strongly in the space L2([0, T],Hq(−R1, R1)) for q ∈ [0, s) and
{uεnt} converges to ut strongly in the space L2([0, T], Hr(−R1, R1)) for r ∈ [0, s− 1]. Thus, we
can prove the existence of a weak solution to (2.2).

Proof of Theorem 2.2. From Lemma 4.5, we know that {uεnx} (εn → 0) is bounded in the
space L∞. Thus, the sequences {uεn} and {uεnx} are weakly convergent to u and ux in
L2[0, T],Hr(−R,R) for any r ∈ [0, s − 1), respectively. Therefore, u satisfies the equation

−
∫T

0

∫
R

u
(
gt − gxxt

)
dx dt =

∫T
0

∫
R

[(
2ku +

a

m + 1
um+1 +

1
2

(
u2
x

))
gx

−1
2
u2gxxx − β(ux)Ngx

]
dx dt,

(4.36)

with u(0, x) = u0(x) and g ∈ C∞0 . Since X = L1([0, T] × R) is a separable Banach space
and {uεnx} is a bounded sequence in the dual space X∗ = L∞([0, T] × R) of X, there exists
a subsequence of {uεnx}, still denoted by {uεnx}, weakly star convergent to a function v in
L∞([0, T]×R). It derives from the {uεnx}weakly convergent to ux in L2([0, T]×R) that ux = v
almost everywhere. Thus, we obtain ux ∈ L∞([0, T] × R).
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We present a new perspective concerning the study of the asymptotic behavior of variational
equations by employing function spaces techniques. We give a complete description of the
dichotomous behaviors of the most general case of skew-product flows, without any assumption
concerning the flow, the cocycle or the splitting of the state space, our study being based only on the
solvability of some associated control systems between certain function spaces. The main results
do not only point out new necessary and sufficient conditions for the existence of uniform and
exponential dichotomy of skew-product flows, but also provide a clear chart of the connections
between the classes of translation invariant function spaces that play the role of the input or
output classes with respect to certain control systems. Finally, we emphasize the significance of
each underlying hypothesis by illustrative examples and present several interesting applications.

1. Introduction

Starting from a collection of open questions related to the modeling of the equations
of mathematical physics in the unified setting of dynamical systems, the study of their
qualitative properties became a domain of large interest and with a wide applicability
area. In this context, the interaction between the modern methods of pure mathematics and
questions arising naturally from mathematical physics created a very active field of research
(see [1–18] and the references therein). In recent years, some interesting unsolved problems
concerning the long-time behavior of dynamical systems were identified, whose potential
results would be of major importance in the process of understanding, clarifying, and solving
some of the essential problems belonging to a wide range of scientific domains, among, we
mention: fluid mechanics, aeronautics, magnetism, ecology, population dynamics, and so
forth. Generally, the asymptotic behavior of the solutions of nonlinear evolution equations
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arising in mathematical physics can be described in terms of attractors, which are often
studied by constructing the skew-product flows of the dynamical processes.

It was natural then to independently consider and analyze the asymptotic behavior of
variational systems modeled by skew-product flows (see [3–5, 14–19]). In this framework,
two of the most important asymptotic properties are described by uniform dichotomy and
exponential dichotomy. Both properties focus on the decomposition of the state space into
a direct sum of two closed invariant subspaces such that the solution on these subspaces
(uniformly or exponentially) decays backward and forward in time, and the splitting holds
at every point of the flow’s domain. Precisely, these phenomena naturally lead to the study of
the existence of stable and unstable invariant manifolds. It is worth mentioning that starting
with the remarkable works of Coppel [20], Daleckii and Krein [21], and Massera and Schäffer
[22] the study of the dichotomy had a notable impact on the development of the qualitative
theory of dynamical systems (see [1–9, 13, 14, 17, 18, 23]).

A very important step in the infinite-dimensional asymptotic theory of dynamical
systems was made by Van Minh et al. in [7] where the authors proposed a unified treatment
of the stability, instability, and dichotomy of evolution families on the half-line via input-
output techniques. Their paper carried out a beautiful connection between the classical
techniques originating in the pioneering works of Perron [11] and Maı̆zel [24] and the
natural requests imposed by the development of the infinite-dimensional systems theory.
They extended the applicability area of the so-called admissibility techniques developed
by Massera and Schäffer in [22], from differential equations in infinite-dimensional spaces
to general evolutionary processes described by propagators. The authors pointed out that
instead of characterizing the behavior of a homogeneous equation in terms of the solvability
of the associated inhomogeneous equation (see [20–22]) one may detect the asymptotic
properties by analyzing the existence of the solutions of the associated integral system given
by the variation of constants formula. These new methods technically moved the central
investigation of the qualitative properties into a different sphere, where the study strongly
relied on control-type arguments. It is important to mention that the control-type techniques
have been also successfully used by Palmer (see [9]) and by Rodrigues and Ruas-Filho
(see [13]) in order to formulate characterizations for exponential dichotomy in terms of the
Fredholm Alternative. Starting with these papers, the interaction between control theory and
the asymptotic theory of dynamical systems became more profound, and the obtained results
covered a large variety of open problems (see, e.g., [1, 2, 12, 14–17, 23] and the references
therein).

Despite the density of papers devoted to the study of the dichotomy in the past few
years and in contrast with the apparent impression that the phenomenon is well understood,
a large number of unsolved problems still raise in this topic, most of them concerning the
variational case. In the present paper, we will provide a complete answer to such an open
question. We start from a natural problem of finding suitable conditions for the existence
of uniform dichotomy as well as of exponential dichotomy using control-type methods,
emphasizing on the identification of the essential structures involved in such a construction,
as the input-output system, the eligible spaces, the interplay between their main properties,
the specific lines that make the differences between a necessary and a sufficient condition,
and the proper motivation of each underlying condition.

In this paper, we propose an inedit link between the theory of function spaces
and the dichotomous behavior of the solutions of infinite dimensional variational systems,
which offers a deeper understanding of the subtle mechanisms that govern the control-type
approaches in the study of the existence of the invariant stable and unstable manifolds.
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We consider the general setting of variational equations described by skew-product flows,
and we associate a control system on the real line. Beside obtaining new conditions for the
existence of uniform or exponential dichotomy of skew-product flows, the main aim is to
clarify the chart of the connections between the classes of translation invariant function spaces
that play the role of the input class or of the output class with respect to the associated control
system, proposing a merger between the functional methods proceeding from interpolation
theory and the qualitative techniques from the asymptotic theory of dynamical systems in
infinite dimensional spaces.

We consider the most general case of skew-product flows, without any assumption
concerning the flow or the cocycle, without any invertibility property, and we work without
assuming any initial splitting of the state space and without imposing any invariance
property. Our central aim is to establish the existence of the dichotomous behaviors with
all their properties (see Definitions 3.5 and 4.1) based only on the minimal solvability of an
associated control system described at every point of the base space by an integral equation
on the real line. First, we deduce conditions for the existence of uniform dichotomy of skew-
product flows and we discuss the technical consequences implied by the solvability of the
associated control system between two appropriate translation invariant spaces. We point
out, for the first time, that an adequate solvability on the real line of the associated integral
control system (see Definition 3.6) implies both the existence of the uniform dichotomy
projections as well as their uniform boundedness. Next, the attention focuses on the
exponential behavior on the stable and unstable manifold, preserving the solvability concept
from the previous section and modifying the properties of the input and the output spaces.
Thus, we deduce a clear overview on the representative classes of function spaces which
should be considered in the detection of the exponential dichotomy of skew-product flows in
terms of the solvability of associated control systems on the real line. The obtained results
provide not only new necessary and sufficient conditions for exponential dichotomy, but
also a complete diagram of the specific delimitations between the classes of function spaces
which may be considered in the study of the exponential dichotomy compared with those
from the uniform dichotomy case. Moreover, we point out which are the specific properties
of the underlying spaces which make a difference between the sufficient hypotheses and
the necessary conditions for the existence of exponential dichotomy of skew-product flows.
Finally, we motivate our techniques by illustrative examples and present several interesting
applications of the main theorems which generalize the input-output type results of previous
research in this topic, among, we mention the well-known theorems due to Perron [11],
Daleckii and Krein [21], Massera and Schäffer [22], Van Minh et al. [7], and so forth.

2. Banach Function Spaces: Basic Notations and Preliminaries

In this section, for the sake of clarity, we recall several definitions and properties of Banach
function spaces, and, also, we establish the notations that will be used throughout the paper.

Let� denote the set of real numbers, let�+ = {t ∈ � : t ≥ 0}, and let�− = {t ∈ � : t ≤ 0}.
For everyA ⊂ �, χA denotes the characteristic function of the set A. LetM(�,�) be the linear
space of all Lebesgue measurable functions u : � → � identifying the functions which are
equal almost everywhere.

Definition 2.1. A linear subspace B ⊂ M(�,�) is called normed function space if there is a
mapping | · |B : B → �+ such that the following properties hold:
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(i) |u|B = 0 if and only if u = 0 a.e.;

(ii) |αu|B = |α||u|B, for all (α, u) ∈ � × B;

(iii) |u + v|B ≤ |u|B + |v|B , for all u, v ∈ B;

(iv) if |u(t)| ≤ |v(t)| a.e. t ∈ � and v ∈ B, then u ∈ B and |u|B ≤ |v|B .

If (B, | · |B) is complete, then B is called a Banach function space.

Remark 2.2. If (B, | · |B) is a Banach function space and u ∈ B, then also |u(·)| ∈ B.

Definition 2.3. A Banach function space (B, | · |B) is said to be invariant under translations if for
every (u, t) ∈ B × � the function ut : � → �, ut(s) = u(s − t) belongs to B and |ut|B = |u|B.

Let Cc(�,�) be the linear space of all continuous functions v : � → � with compact
support. We denote by T(�) the class of all Banach function spaces B which are invariant
under translations, Cc(�,�) ⊂ B and

(i) for every t > 0 there is c(t) > 0 such that
∫ t

0 |u(τ)|dτ ≤ c(t)|u|B, for all u ∈ B;

(ii) if B \ L1(�,�)/= ∅, then there is a continuous function γ ∈ B \ L1(�,�).

Remark 2.4. Let B ∈ T(�). Then, the following properties hold:
(i) if J ⊂ � is a bounded interval, then χJ ∈ B.
(ii) if un → u in B, then there is a subsequence (ukn) ⊂ (un) which converges to u a.e.

(see, e.g., [25]).

Remark 2.5. Let B ∈ T(�). If ν > 0 and eν : � → � is defined by

eν(t) =

⎧⎨
⎩
e−νt, t ≥ 0,

0, t < 0,
(2.1)

then it is easy to see that

eν(t) =
∞∑
n=0

e−νtχ[n,n+1)(t) ≤
∞∑
n=0

e−νnχ[n,n+1)(t), ∀t ∈ �. (2.2)

It follows that eν ∈ B and |eν|B ≤ |χ[0,1)|B/(1 − e−ν).

Example 2.6. (i) If p ∈ [1,∞), then Lp(�,�) = {u ∈ M(�,�) :
∫
�
|u(t)|pdt < ∞}, with respect

to the norm ‖u‖p = (
∫
�
|u(t)|pdt)1/p, is a Banach function space which belongs to T(�).

(ii) The linear space L∞(�,�) of all measurable essentially bounded functions u : � →
� with respect to the norm ‖u‖∞ = ess supt∈�|u(t)| is a Banach function space which belongs
to T(�).

Example 2.7 (Orlicz spaces). Let ϕ : �+ → �+ be a nondecreasing left continuous function
which is not identically 0 or∞ on (0,∞), and let Yϕ(t) :=

∫ t
0 ϕ(s)ds. If u ∈ M(�,�) let

Mϕ(u) :=
∫
�

Yϕ(|u(s)|)ds. (2.3)
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The linear space Oϕ(�,�) := {u ∈ M(�,�) : ∃k > 0 such that Mϕ(ku) < ∞}, with respect to
the norm

|u|ϕ := inf
{
k > 0 : Mϕ

(
u

k

)
≤ 1
}
, (2.4)

is a Banach function space called the Orlicz space associated to ϕ. It is easy to see that Oϕ(�,�)
is invariant under translations.

Remark 2.8. A remarkable example of Orlicz space is represented by Lp(�,�), for every p ∈
[1,∞]. This can be obtained for ϕ(t) = ptp−1, if p ∈ [1,∞) and for

ϕ(t) =

⎧⎨
⎩

0, t ∈ [0, 1],

∞, t > 1,
if p = ∞. (2.5)

Lemma 2.9. If ϕ(1) <∞, then Oϕ(�,�) ∈ T(�).

Proof. Let v ∈ Cc(�,�). Then, there are a, b ∈ �, a < b such that v(t) = 0, for all t ∈ � \ (a, b).
Since v is continuous on [a, b], there is M > 0 such that |v(t)| ≤M, for all t ∈ [a, b]. Then, we
have that

|v(t)| ≤Mχ[a,b](t), ∀t ∈ �. (2.6)

We observe that

Mϕ

(
χ[a,b]

)
=
∫
�

Yϕ
(
χ[a,b](τ)

)
dτ = (b − a)Yϕ(1) ≤ (b − a)ϕ(1) <∞. (2.7)

This implies that χ[a,b] ∈ Oϕ(�,�). Using (2.6), we deduce that v ∈ Oϕ(�,�). So,
Cc(�,�) ⊂ Oϕ(�,�).

Since Yϕ is nondecreasing with limt→∞Yϕ(t) = ∞, there is q > 0 such that Yϕ(t) > 1, for
all t ≥ q.

Let t ≥ 1 and let u ∈ Oϕ(�,�) \ {0}. Taking into account that Yϕ is a convex function
and using Jensen’s inequality (see, e.g., [26]), we deduce that

Yϕ

(
1
t

∫ t
0

|u(τ)|
|u|ϕ

dτ

)
≤ 1
t

∫ t
0
Yϕ

(
|u(τ)|
|u|ϕ

)
dτ ≤Mϕ

(
u

|u|ϕ

)
≤ 1. (2.8)

This implies that

1
t

∫ t
0

|u(τ)|
|u|ϕ

dτ ≤ q, ∀t ≥ 1. (2.9)
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In addition, using (2.9), we have that

∫ t
0
|u(τ)|dτ ≤

∫1

0
|u(τ)|dτ ≤ q|u|ϕ, ∀t ∈ [0, 1). (2.10)

Taking c : (0,∞) → (0,∞), c(t) = max{qt, q}, from relations (2.9) and (2.10), it follows that

∫ t
0
|u(τ)|dτ ≤ c(t)|u|ϕ, ∀t ≥ 0. (2.11)

Since the function c does not depend on u, we obtain that Oϕ(�,�) ∈ T(�).

Example 2.10. If ϕ : �+ → �+ defined by ϕ(0) = 0, ϕ(t) = 1, for t ∈ (0, 1] and ϕ(t) = et−1, for
t > 1, then according to Lemma 2.9 we have that the Orlicz space Oϕ(�,�) ∈ T(�). Moreover,
it is easy to see that Oϕ(�,�) is a proper subspace of L1(�,�).

Example 2.11. Let p ∈ [1,∞) and let Mp(�,�) be the linear space of all u ∈ M(�,�) with
supt∈�

∫ t+1
t |u(s)|pds < ∞. With respect to the norm

‖u‖Mp := sup
t∈�

(∫ t+1

t

|u(s)|pds
)1/p

, (2.12)

this is a Banach function space which belongs to T(�).

Remark 2.12. If B ∈ T(�), then B ⊂M1(�,�).
Indeed, let c(1) > 0 be such that

∫1
0 |u(τ)|dτ ≤ c(1)|u|B, for all u ∈ B. If u ∈ B we observe

that

∫ t+1

t

|u(τ)|dτ =
∫1

0
|ut(ξ)|dξ ≤ c(1)|ut|B = c(1)|u|B, ∀t ∈ �, (2.13)

so u ∈M1(�,�).

In what follows, we will introduce three remarkable subclasses of T(�), which will
have an essential role in the study of the existence of dichotomy from the next sections. To do
this, we first need the following.

Definition 2.13. Let B ∈ T(�). The mapping FB : (0,∞) → �+ , FB(t) = |χ[0,t)|B is called the
fundamental function of the space B.

Remark 2.14. If B ∈ T(�), then the fundamental function FB is nondecreasing.

Notation 1. We denote by Q(�) the class of all Banach function spaces B ∈ T(�) with the
property that supt>0FB(t) = ∞.
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Lemma 2.15. If ϕ(t) ∈ (0,∞), for all t > 0, then Oϕ(�,�) ∈ Q(�).

Proof. It is easy to see that Yϕ is strictly increasing, continuous with Yϕ(0) = 0 and Yϕ(t) ≥
(t − 1)ϕ(1), for all t > 1, so limt→∞Yϕ(t) = ∞. Hence, Yϕ is bijective.

Let t > 0. Since

Mϕ

(
1
k
χ[0,t)

)
= tYϕ

(
1
k

)
, ∀k > 0, (2.14)

it follows that Mϕ((1/k)χ[0,t)) ≤ 1 if and only if 1/Y−1
ϕ (1/t) ≤ k. This implies that

FOϕ(�,�)(t) =
1

Y−1
ϕ (1/t)

, ∀t > 0. (2.15)

Since Y−1
ϕ (0) = 0, from (2.15), we obtain that Oϕ(�,�) ∈ Q(�).

Another distinctive subclass of T(�) is introduced in the following.

Notation 2. Let L(�) denote the class of all Banach function spaces B ∈ T(�) with the
property that B \ L1(�,�)/= ∅.

Remark 2.16. According to Remark 2.2, we have that if B ∈ L(�), then there is a continuous
function γ : � → �+ such that γ ∈ B \ L1(�,�).

We will also see, in this paper, that the necessary conditions for the existence of
exponential dichotomy should be expressed using another remarkable subclass ofT(�)—the
rearrangement invariant spaces, see the definitions below.

Definition 2.17. Let u, v ∈ M(�,�). We say that u and v are equimeasurable if for every t > 0
the sets {s ∈ � : |u(s)| > t} and {s ∈ � : |v(s)| > t} have the same measure.

Definition 2.18. A Banach function space (B, | · |B) is rearrangement invariant if for every
equimeasurable functions u, v with u ∈ B, we have that v ∈ B and |u|B = |v|B .

Notation 3. We denote by R(�) the class of all Banach function spaces B ∈ T(�) which are
rearrangement invariant.

Remark 2.19. If B ∈ R(�), then B is an interpolation space between L1(�,�) and L∞(�,�) (see
[27, Theorem 2.2, page 106]).

Remark 2.20. The Orlicz spaces are rearrangement invariant (see [27]). Using Lemma 2.9, we
deduce that if ϕ(1) <∞, then Oϕ(�,�) ∈ R(�).

Lemma 2.21. Let B ∈ R(�) and let ν > 0. Then for every u ∈ B, the functions ϕu, ψu : � → �

defined by

ϕu(t) =
∫ t
−∞

e−ν(t−τ)u(τ)dτ, ψu(t) =
∫∞
t

e−ν(τ−t)u(τ)dτ (2.16)
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belong to B. Moreover, there is γB,ν > 0 which depends only on B and ν such that

∣∣ϕu∣∣B ≤ γB,ν|u|B,
∣∣ψu∣∣B ≤ γB,ν|u|B, ∀u ∈ B. (2.17)

Proof. We consider the operators

Z : L∞(�,�) −→ L∞(�,�) , (Z(u))(t) =
∫ t
−∞

e−ν(t−τ)u(τ)dτ,

W : L∞(�,�) −→ L∞(�,�), (W(u))(t) =
∫∞
t

e−ν(τ−t)u(τ)dτ.

(2.18)

We have that Z and W are correctly defined bounded linear operators. Moreover, the
restrictions Z| : L1(�,�) → L1(�,�) and W| : L1(�,�) → L1(�,�) are correctly defined
and bounded linear operators. Since B ∈ R(�), then, from Remark 2.19, we have that B
is an interpolation space between L1(�,�) and L∞(�,�). This implies that the restrictions
Z|B : B → B and W|B : B → B are correctly defined and bounded linear operators. Setting
γB,ν = max {‖Z|B‖, ‖W|B‖}, the proof is complete.

Notations

If X is a Banach space, for every Banach function space B ∈ T(�), we denote by B(�, X) the
space of all Bochner measurable functions v : � → X with the property that the mapping
Nv : � → �+ , Nv(t) = ‖v(t)‖ belongs to B. With respect to the norm

‖v‖B(�,X) := |Nv|B, (2.19)

B(�, X) is a Banach space. We also denote by C0,c(�, X) the linear space of all continuous
functions v : � → X with compact support contained in (0,∞). It is easy to see that
C0,c(�, X) ⊂ B(�, X), for all B ∈ T(�).

3. Uniform Dichotomy for Skew-Product Flows

In this section, we start our investigation by studying the existence of by the upper and lower
uniform boundedness of the solution in a uniform way on certain complemented subspaces.
We will employ a control-type technique and we will show that the use of the function
spaces, from the class T(�) introduced in the previous section, provides several interesting
conclusions concerning the qualitative behavior of the solutions of variational equations.

Let X be a real or complex Banach space and let Id denote the identity operator on X.
The norm on X and on B(X)—the Banach algebra of all bounded linear operators on X, will
be denoted by ‖ · ‖. Let (Θ, d) be a metric space.

Definition 3.1. A continuous mapping σ : Θ × � → Θ is called a flow on Θ if σ(θ, 0) = θ and
σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ × �2 .

Definition 3.2. A pair π = (Φ, σ) is called a skew-product flow on X ×Θ if σ is a flow on Θ and
the mapping Φ : Θ × �+ → B(X) called cocycle, satisfies the following conditions:
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(i) Φ(θ, 0) = Id and Φ(θ, t + s) = Φ(σ(θ, s), t)Φ(θ, s), for all (θ, t, s) ∈ Θ × �2
+ ;

(ii) there are M ≥ 1 and ω > 0 such that ‖Φ(θ, t)‖ ≤Meωt, for all (θ, t) ∈ Θ × �+ ;

(iii) for every (x, θ) ∈ X ×Θ, the mapping t �→ Φ(θ, t)x is continuous on �+ .

Example 3.3 (Particular cases). The class described by skew-product flows generalizes the
autonomous systems as well as the nonautonomous systems, as the following examples
show:

(i) If Θ = �, then let σ̃(θ, t) = θ + t and let {U(t, s)}t≥s be an evolution family on the
Banach space X. Setting ΦU(θ, t) := U(θ + t, θ), we observe that πU = (ΦU, σ̃) is a
skew-product flow.

(ii) Let {T(t)}t≥0 be a C0-semigroup on the Banach space X and let Θ be a metric space.

(ii)1 If σ is an arbitrary flow on Θ and ΦT (θ, t) := T(t), then πT = (ΦT , σ) is a skew-
product flow.

(ii)2 Let σ̂ : Θ × � → Θ, σ̂(θ, t) = θ be the projection flow on Θ and let
{P(θ)}θ∈Θ ⊂ B(X) be a uniformly bounded family of projections such that
P(θ)T(t) = T(t)P(θ), for all (θ, t) ∈ Θ × �+ . If ΦP(θ, t) := P(θ)T(t), then
πP = (ΦP , σ̂) is a skew-product flow.

Starting with the remarkable work of Foias et al. (see [19]), the qualitative theory
of dynamical systems acquired a new perspective concerning the connections between
bifurcation theory and the mathematical modeling of nonlinear equations. In [19], the authors
proved that classical equations like Navier-Stokes, Taylor-Couette, and Bubnov-Galerkin can
be modeled and studied in the unified setting of skew-product flows. In this context, it was
pointed out that the skew-product flows often proceed from the linearization of nonlinear
equations. Thus, classical examples of skew-product flows arise as operator solutions for
variational equations.

Example 3.4 (The variational equation). Let Θ be a locally compact metric space and let σ be
a flow on Θ. Let X be a Banach space and let {A(θ) : D(A(θ)) ⊆ X → X : θ ∈ Θ} be a family
of densely defined closed operators. We consider the variational equation

ẋ(t) = A(σ(θ, t))x(t), (θ, t) ∈ Θ × �+ . (A)

A cocycle Φ : Θ × �+ → B(X) is said to be a solution of (A) if for every θ ∈ Θ, there is
a dense subset Dθ ⊂ D(A(θ)) such that for every initial condition xθ ∈ Dθ the mapping
t �→ x(t) := Φ(θ, t)xθ is differentiable on �+ , for every t ∈ �+x(t) ∈ D(A(σ(θ, t))) and the
mapping t �→ x(t) satisfies (A).

An important asymptotic behavior of skew-product flows is described by the uniform
dichotomy, which relies on the splitting of the Banach space X at every point θ ∈ Θ into a
direct sum of two invariant subspaces such that on the first subspace the trajectory solution
is uniformly stable, on the second subspace the restriction of the cocycle is reversible and
also the trajectory solution is uniformly unstable on the second subspace. This is given by the
following.
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Definition 3.5. A skew-product flow π = (Φ, σ) is said to be uniformly dichotomic if there exist
a family of projections {P(θ)}θ∈Θ ⊂ B(X) and a constant K ≥ 1 such that the following
properties hold:

(i) Φ(θ, t)P(θ) = P(σ(θ, t))Φ(θ, t), for all (θ, t) ∈ Θ × �+ ;

(ii) ‖Φ(θ, t)x‖ ≤ K‖x‖, for all t ≥ 0, all x ∈ RangeP(θ) and all θ ∈ Θ;

(iii) the restriction Φ(θ, t)| : KerP(θ) → KerP(σ(θ, t)) is an isomorphism, for all (θ, t) ∈
Θ × �+ ;

(iv) ‖Φ(θ, t)y‖ ≥ (1/K)‖y‖, for all t ≥ 0, all y ∈ KerP(θ) and all θ ∈ Θ;

(v) supθ∈Θ‖P(θ)‖ <∞.

In what follows, our main attention will focus on finding suitable conditions for the
existence of uniform dichotomy for skew-product flows. To do this, we will introduce an
integral control system associated with a skew-product flow such that the input and the
output spaces of the system belong to the general classT(�). We will emphasize that the class
T(�) has an essential role in the study of the dichotomous behavior of variational equations.

Let I, O be two Banach function spaces with I, O ∈ T(�). Let π = (Φ, σ) be a skew-
product flow on X × Θ. We associate with π the input-output control system Eπ = (Eθ)θ∈Θ,
where for every θ ∈ Θ

f(t) = Φ(σ(θ, s), t − s)f(s) +
∫ t
s

Φ(σ(θ, τ), t − τ)v(τ)dτ, ∀t ≥ s, (Eθ)

such that the input function v ∈ C0,c(�, X) and the output function f ∈ O(�, X).

Definition 3.6. The pair (O(�, X), I(�, X)) is said to be uniformly admissible for the system (Eπ )
if there is L > 0 such that for every θ ∈ Θ, the following properties hold:

(i) for every v ∈ C0,c(�, X) there exists f ∈ O(�, X) such that the pair (f, v) satisfies
(Eθ);

(ii) if v ∈ C0,c(�, X) and f ∈ O(�, X) are such that the pair (f, v) satisfies (Eθ), then
‖f‖O(�,X) ≤ L‖v‖I(�,X).

Remark 3.7. (i) According to this admissibility concept, it is sufficient to choose all the input
functions from the spaceC0,c(�, X), and, thus, we point out that C0,c(�, X) is in fact the smaller
possible input space that can be used in the input-output study of the dichotomy.

(ii) It is also interesting to see that the norm estimation from (ii) reflects the presence
(and implicitly the structure) of the space I(�, X). Actually, condition (ii) shows that the
norm of each output function in the space O(�, X) is bounded by the norm of the input
function in the space I(�, X) uniformly with respect to θ ∈ Θ.

(iii) In the admissibility concept, there is no need to require the uniqueness of the
output function in the property (i), because this follows from condition (ii). Indeed, if the
pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ), then from (ii) we deduce
that for every θ ∈ Θ and every v ∈ C0,c(�, X) there exists a unique f ∈ O(�, X) such that the
pair (f, v) satisfies (Eθ).

In what follows we will analyze the implications of the uniform admissibility of the
pair (O(�, X), I(�, X)) with I, O ∈ T(�) concerning the asymptotic behavior of skew-product
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flows. With this purpose we introduce two category of subspaces (stable and unstable) and
we will point out their role in the detection of the uniform dichotomy.

For every (x, θ) ∈ X ×Θ, we consider the function

λx,θ : � −→ X, λx,θ(t) =

⎧⎨
⎩
Φ(θ, t)x, t ≥ 0,

0, t < 0,
(3.1)

called the trajectory determined by the vector x and the point θ ∈ Θ.
For every θ ∈ Θ, we denote by F(θ) the linear space of all functions ϕ : � → X with

the property that

ϕ(t) = Φ(σ(θ, s), t − s)ϕ(s), ∀s ≤ t ≤ 0. (3.2)

For every θ ∈ Θ, we consider the stable subset

S(θ) = {x ∈ X : λx,θ ∈ O(�, X)} (3.3)

and, respectively, the unstable subset

U(θ) = {x ∈ X : ∃ϕ ∈ O(�, X) ∩ F(θ) with ϕ(0) = x
}
. (3.4)

Remark 3.8. It is easy to see that for every θ ∈ Θ, S(θ), and U(θ) are linear subspaces.
Therefore, in all what follows, we will refer S(θ) as the stable subspace and, respectively,
U(θ) as the unstable subspace, for each θ ∈ Θ.

Proposition 3.9. For every (θ, t) ∈ Θ × �+ , the following assertions hold:

(i) Φ(θ, t)S(θ) ⊆ S(σ(θ, t));
(ii) Φ(θ, t)U(θ) = U(σ(θ, t)).

Proof. The property (i) is immediate. To prove the assertion (ii) let M,ω > 0 be given by
Definition 3.2(ii). Let (θ, t) ∈ Θ × (0,∞). Let x ∈ U(θ). Then, there is ϕ ∈ O(�, X) ∩ F(θ) with
ϕ(0) = x. We set y = Φ(θ, t)x, and we consider

ψ : � −→ X, ψ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, s > t,

Φ(θ, s)x, s ∈ [0, t],
ϕ(s), s < 0.

(3.5)

We observe that ‖ψ(s)‖ ≤ ‖ϕ(s)‖ +Meωtχ[0,t](s)‖x‖, for all s ∈ �, and since ϕ ∈ O(�, X), we
deduce that ψ ∈ O(�, X). Using the fact that ϕ ∈ F(θ), we obtain that

ψ(s) = Φ(σ(θ, τ), s − τ)ψ(τ), ∀τ ≤ s ≤ t. (3.6)
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Then, we define the function δ : � → X, δ(s) = ψ(s+ t) and since O(�, X) is invariant under
translations, we deduce that δ ∈ O(�, X). Moreover, from (3.6), it follows that

δ(r) = Φ(σ(θ, ξ + t), r − ξ)δ(ξ) = Φ(σ(σ(θ, t), ξ), r − ξ)δ(ξ), ∀ξ ≤ r ≤ 0. (3.7)

The relation (3.7) implies that δ ∈ F(σ(θ, t)), so y = δ(0) ∈ U(σ(θ, t)).
Conversely, let z ∈ U(σ(θ, t)). Then, there is h ∈ F(σ(θ, t)) ∩ O(�, X) with h(0) = z.

Taking q : � → X, q(s) = h(s − t), we have that q ∈ O(�, X) and

q(s) = Φ(σ(θ, τ), s − τ)q(τ), ∀τ ≤ s ≤ t. (3.8)

In particular, for τ ≤ s ≤ 0, from (3.8), we deduce that q ∈ F(θ). This implies that q(0) ∈ U(θ).
Then, z = h(0) = q(t) = Φ(θ, t)q(0) ∈ Φ(θ, t)U(θ) and the proof is complete.

Remark 3.10. From Proposition 3.9(ii), we have that for every (θ, t) ∈ Θ × �+ the restriction
Φ(θ, t)| : U(θ) → U(σ(θ, t)) is surjective. We also note that according to Proposition 3.9
one may deduce that, the stable subspace and the unstable subspace are candidates for the
possible splitting of the main space X required by any dichotomous behavior.

In what follows, we will study the behavior of the cocycle on the stable subspace and
also on the unstable subspace and we will deduce several interesting properties of these
subspaces in the hypothesis that a pair (O(�, X), I(�, X)) of spaces from the class T(�) is
admissible for the control system associated with the skew-product flow.

Theorem 3.11 (The behavior on the stable subspace). If the pair (O(�, X), I(�, X)) is uniformly
admissible for the system (Eπ ), then the following assertions hold:

(i) there is K > 0 such that ‖Φ(θ, t)x‖ ≤ K‖x‖, for all t ≥ 0, all x ∈ S(θ) and all θ ∈ Θ;

(ii) S(θ) is a closed linear subspace, for all θ ∈ Θ.

Proof. Let L > 0 be given by Definition 3.6 and let M,ω > 0 be given by Definition 3.2. Let
α : � → [0, 2] be a continuous function with suppα ⊂ (0, 1) and

∫1
0 α(τ)dτ = 1.

(i) Let θ ∈ Θ and let x ∈ S(θ). We consider the functions

v : � −→ X, v(t) = α(t)Φ(θ, t)x,

f : � −→ X, f(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ(θ, t)x, t ≥ 1,∫ t
0
α(τ)dτ Φ(θ, t)x, t ∈ [0, 1),

0, t < 0.

(3.9)

Then, v ∈ C0c(�, X) and

‖f(t)‖ ≤ ‖λx,θ(t)‖, ∀t ∈ �. (3.10)
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Since x ∈ S(θ), we have that λx,θ ∈ O(�, X). Then, from (3.10), we obtain that f ∈ O(�, X).
An easy computation shows that the pair (f, v) satisfies (Eθ). Then,

∥∥f∥∥O(�,X) ≤ L‖v‖I(�,X). (3.11)

From ‖v(t)‖ ≤ α(t)Meω‖x‖, for all t ∈ �, we obtain that ‖v‖I(�,X) ≤Meω|α|I‖x‖.
Let t ≥ 2. From

‖Φ(θ, t)x‖ ≤Meω‖Φ(θ, s)x‖, ∀s ∈ [t − 1, t), (3.12)

it follows that

‖Φ(θ, t)x‖χ[t−1,t)(s) ≤Meω‖f(s)‖, ∀s ∈ �. (3.13)

Since O is invariant under translations, we deduce that

‖Φ(θ, t)x‖FO(1) ≤Meω‖f‖O(�,X). (3.14)

Using relations (3.11) and (3.14), we have that

‖Φ(θ, t)x‖ ≤M2e2ω L|α|I
FO(1)

‖x‖, ∀t ≥ 2. (3.15)

Since ‖Φ(θ, t)x‖ ≤ Me2ω‖x‖, for all t ∈ [0, 2), setting K := max{(M2e2ωL|α|I)/FO(1),Me2ω}
we deduce that ‖Φ(θ, t)x‖ ≤ K‖x‖, for all t ≥ 0. Taking into account that K does not depend
on θ or x, it follows that

‖Φ(θ, t)x‖ ≤ K‖x‖, ∀t ≥ 0, ∀x ∈ S(θ), ∀θ ∈ Θ. (3.16)

(ii) Let θ ∈ Θ and let (xn) ⊂ S(θ) with xn →
n→∞

x. For every n ∈ �, we consider the
sequence

vn : � −→ X, vn(t) = α(t)Φ(θ, t)xn,

fn : � −→ X, fn(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ(θ, t)xn, t ≥ 1,∫ t
0
α(τ)dτ Φ(θ, t)xn, t ∈ [0, 1),

0, t < 0.

(3.17)

We have that vn ∈ C0c(�, X), for all n ∈ � and using similar arguments with those used
in relation (3.10), we obtain that fn ∈ O(�, X), for all n ∈ �. An easy computation shows
that the pair (fn, vn) satisfies (Eθ). Let v : � → X, v(t) = α(t)Φ(θ, t)x. Then, v ∈ C0c(�, X).
According to our hypothesis there is, f ∈ O(�, X) such that the pair (f, v) satisfies (Eθ).
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Taking un = vn −v and gn = fn −f we observe that un ∈ C0c(�, X), gn ∈ O(�, X), and the pair
(gn, un) satisfies (Eθ). This implies that

∥∥fn − f∥∥O(�,X) ≤ L‖vn − v‖I(�,X), ∀n ∈ �. (3.18)

From ‖vn(t) − v(t)‖ ≤ α(t)Meω‖xn − x‖, for all t ∈ � and all n ∈ �, we deduce that

‖vn − v‖I(�,X) ≤Meω|α|I‖xn − x‖, ∀n ∈ �. (3.19)

From (3.18) and (3.19), it follows that fn →
n→∞

f in O(�, X). From Remark 2.4(ii), we have

that there is a subsequence (fkn) and a negligible set A ⊂ � such that fkn(t) →n→∞ f(t), for all

t ∈ � \A. In particular, it follows that there is r > 1 such that

f(r) = lim
n→∞

fkn(r) = lim
n→∞

Φ(θ, r)xkn = Φ(θ, r)x. (3.20)

Because the pair (f, v) satisfies (Eθ), we obtain that

f(t) = Φ(σ(θ, r), t − r)f(r) = Φ(θ, t)x, ∀t ≥ r. (3.21)

This shows that f(t) = λx,θ(t), for all t ≥ r. Then, from

‖λx,θ(t)‖ ≤ ‖f(t)‖ +Meωr‖x‖χ[0,r)(t), ∀t ∈ �, (3.22)

using the fact that f ∈ O(�, X) and Remark 2.4(i), we obtain that λx,θ ∈ O(�, X), so x ∈ S(θ).
In conclusion, S(θ) is a closed linear subspace, for all θ ∈ Θ.

Theorem 3.12 (The behavior on the unstable subspace). If the pair (O(�, X), I(�, X)) is
uniformly admissible for the system (Eπ), then the following assertions hold:

(i) there isK > 0 such that ‖Φ(θ, t)y‖ ≥ (1/K)‖y‖, for all t ≥ 0, all y ∈ U(θ) and all θ ∈ Θ;

(ii) U(θ) is a closed linear subspace, for all θ ∈ Θ.

Proof. Let L > 0 be given by Definition 3.6 and let M,ω > 0 be given by Definition 3.2. Let
α : � → [0, 2] be a continuous function with suppα ⊂ (0, 1) and

∫1
0 α(τ)dτ = 1.

(i) Let θ ∈ Θ and let y ∈ U(θ). Then, there is ϕ ∈ F(θ) ∩ O(�, X) with ϕ(0) = y. Let
t > 0. We consider the functions

v : � −→ X, v(s) = −α(s − t)Φ(θ, s)y,

f : � −→ X, f(s) =

⎧⎪⎨
⎪⎩

∫∞
s

α(τ − t)dτ Φ(θ, s)y, s ≥ 0,

ϕ(s), s < 0.

(3.23)
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We have that v ∈ C0c(�, X) and f is continuous. Let m = sups∈[0,t+1]‖f(s)‖. Then, we have
that

‖f(s)‖ ≤ ‖ϕ(s)‖ +mχ[0,t+1](s), ∀s ∈ �. (3.24)

From (3.24) and Remark 2.4(i), we deduce that f ∈ O(�, X). An easy computation shows that
the pair (f, v) satisfies (Eθ). Then, according to our hypothesis, we have that

∥∥f∥∥O(�,X) ≤ L‖v‖I(�,X). (3.25)

From ‖v(s)‖ ≤ α(s − t)Meω‖Φ(θ, t)y‖, for all s ∈ �, we obtain that

‖v‖I(�,X) ≤ |α|IMeω‖Φ(θ, t)y‖. (3.26)

Since y = ϕ(0) = Φ(σ(θ, s),−s)ϕ(s), for all s ∈ [−1, 0), we have that

‖y‖χ[−1,0)(s) ≤Meω‖ϕ(s)‖χ[−1,0)(s) ≤Meω‖f(s)‖, ∀s ∈ �. (3.27)

Using the invariance under translations of the space O from relation (3.27), we obtain that

‖y‖FO(1) ≤Meω
∥∥f∥∥O(�,X). (3.28)

Taking K = (M2e2ωL|α|I)/FO(1) from relations (3.25), (3.26), and (3.28), it follows that
‖Φ(θ, t)y‖ ≥ (1/K)‖y‖. Taking into account that K does not depend on t, y or θ, we conclude
that

‖Φ(θ, t)y‖ ≥ 1
K
‖y‖, ∀t ≥ 0, ∀y ∈ U(θ), ∀θ ∈ Θ. (3.29)

(ii) Let θ ∈ Θ and let (yn) ⊂ U(θ) with yn → y. Then, for every n ∈ �, there is
ϕn ∈ O(�, X) ∩ F(θ) with ϕn(0) = yn. For every n ∈ �, we consider the functions

vn : � −→ X, vn(t) = −α(t)Φ(θ, t)yn,

fn : � −→ X, fn(t) =

⎧⎪⎨
⎪⎩

∫∞
t

α(τ)dτ Φ(θ, t)yn, t ≥ 0,

ϕn(t), t < 0.

(3.30)

We have that vn ∈ C0c(�, X), and, using similar arguments with those used in relation (3.24),
we deduce that fn ∈ O(�, X), for all n ∈ �. An easy computation shows that the pair (fn, vn)
satisfies (Eθ). Let

v : � −→ X, v(t) = −α(t)Φ(θ, t)y. (3.31)
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According to our hypothesis, there is f ∈ O(�, X) such that the pair (f, v) satisfies (Eθ). In
particular, this implies that f ∈ F(θ). Moreover, for every n ∈ �, the pair (fn − f, vn − v)
satisfies (Eθ). According to our hypothesis, it follows that

∥∥fn − f∥∥O(�,X) ≤ L‖vn − v‖I(�,X), ∀n ∈ �. (3.32)

We have that ‖vn(t) − v(t)‖ ≤ α(t)Meω‖yn − y‖, for all t ∈ � and all n ∈ �, so

‖vn − v‖I(�,X) ≤Meω|α|I‖yn − y‖, ∀n ∈ �. (3.33)

From (3.32) and (3.33) it follows that fn →
n→∞

f in O(�, X). Then, from Remark 2.4(ii), there

is a subsequence (fkn) ⊂ (fn) and a negligible set A ⊂ � such that fkn(t) →
n→∞

f(t), for all

t ∈ � \ A. In particular, there is h < 0 such that fkn(h) →
n→∞

f(h). Since f, fkn ∈ F(θ), we

successively deduce that

y = lim
n→∞

ykn = lim
n→∞

fkn(0) = lim
n→∞

Φ(σ(θ, h),−h)fkn(h) = Φ(σ(θ, h),−h)f(h) = f(0). (3.34)

This implies that y ∈ U(θ), so U(θ) is a closed linear subspace.

Taking into account the above results it makes sense to study whether the uniform
admissibility of a pair of function spaces from the class T(�) is a sufficient condition for the
existence of the uniform dichotomy. Thus, the main result of this section is as follows.

Theorem 3.13 (Sufficient condition for uniform dichotomy). Let O, I ∈ T(�) and let π =
(Φ, σ) be a skew-product flow on X × Θ. If the pair (O(�, X), I(�, X)) is uniformly admissible for
the system (Eπ), then π is uniformly dichotomic.

Proof. Let L > 0 be given by Definition 3.6. Let M,ω > 0 be given by Definition 3.2. Let
α : � → [0, 2] be a continuous function with suppα ⊂ (0, 1) and

∫1
0 α(τ)dτ = 1.

Step 1. We prove that S(θ) ∩ U(θ) = {0}, for all θ ∈ Θ.
Let θ ∈ Θ and let x ∈ S(θ) ∩U(θ). Then, there is ϕ ∈ O(�, X) ∩F(θ) with ϕ(0) = x. We

consider the function

f : � → X, f(t) =

⎧⎨
⎩
Φ(θ, t)x, t ≥ 0,

ϕ(t), t < 0.
(3.35)

Then, ‖f(t)‖ ≤ ‖ϕ(t)‖ + ‖λx,θ(t)‖, for all t ∈ �. This implies that f ∈ O(�, X). An easy
computation shows that the pair (f, 0) satisfies (Eθ). Then, according to our hypothesis, it
follows that ‖f‖O(�,X) = 0, so f(t) = 0 a.e. t ∈ �. Observing that f is continuous, we obtain
that f(t) = 0, for all t ∈ �. In particular, we have that x = f(0) = 0.

Step 2. We prove that S(θ) +U(θ) = X, for all θ ∈ Θ.
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Let θ ∈ Θ and let x ∈ X. Let v : � → X, v(t) = α(t)Φ(θ, t)x. Then, v ∈ C0c(�, X),
so there is f ∈ O(�, X) such that the pair (f, v) satisfies (Eθ). In particular, this implies that
f ∈ F(θ), so f(0) ∈ U(θ). In addition, we observe that

f(t) = Φ(θ, t)f(0) +

(∫ t
0
α(τ)dτ

)
Φ(θ, t)x = Φ(θ, t)

(
f(0) + x

)
, ∀t ≥ 1. (3.36)

Setting zx = f(0) + x from (3.36), we have that λzx,θ(t) = f(t), for all t ≥ 1. It follows that

‖λzx,θ(t)‖ ≤ ‖f(t)‖ +Meω‖zx‖χ[0,1)(t), ∀t ∈ �. (3.37)

From relation (3.37) and Remark 2.4(i) we obtain that λzx,θ ∈ O(�, X), so zx ∈ S(θ). This
shows that x = zx − f(0) ∈ S(θ) +U(θ), so S(θ) +U(θ) = X.

According to Steps 1 and 2, Theorem 3.11(ii), and Theorem 3.12(ii), we deduce that

S(θ) ⊕ U(θ) = X, ∀θ ∈ Θ. (3.38)

For every θ ∈ Θ we denote by P(θ) the projection with the property that

RangeP(θ) = S(θ), KerP(θ) = U(θ). (3.39)

Using Proposition 3.9 we obtain that

Φ(θ, t)P(θ) = P(σ(θ, t))Φ(θ, t), ∀(θ, t) ∈ Θ × �+ . (3.40)

Let (θ, t) ∈ Θ×�+ . From Proposition 3.9(ii), it follows that the restriction Φ(θ, t)| : KerP(θ) →
KerP(σ(θ, t)) is correctly defined and surjective. According to Theorem 3.12(ii) we have that
Φ(θ, t)| is also injective, so this is an isomorphism, for all (θ, t) ∈ Θ × �+ .

Step 3. We prove that supθ∈Θ‖P(θ)‖ <∞.
Let θ ∈ Θ and let x ∈ X. Let xθs = P(θ)x and let xθu = (I − P(θ))x. Since xθu ∈ KerP(θ) =

U(θ), there is ψ ∈ F(θ) ∩O(�, X) with ψ(0) = xθu. We consider the functions

v : � −→ X, v(t) = α(t)Φ(θ, t)x,

f : � → X, f(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φ(θ, t)xθs , t ≥ 1,

−Φ(θ, t)xθu +

(∫ t
0
α(τ)dτ

)
Φ(θ, t)x, t ∈ [0, 1),

−ψ(t), t < 0.

(3.41)
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We have that v ∈ C0c(�, X) and f is continuous. From xθs ∈ RangeP(θ) = S(θ), we have that
the function λxθs ,θ belongs to O(�, X). Setting m = supt∈[0,1]‖f(t)‖ and observing that

‖f(t)‖ ≤ ‖ψ(t)‖ +mχ[0,1](t) + ‖λxθs ,θ(t)‖, ∀t ∈ �, (3.42)

from (3.42), we deduce that f ∈ O(�, X). An easy computation shows that the pair (f, v)
satisfies (Eθ). This implies that

∥∥f∥∥
O(�,X) ≤ L‖v‖I(�,X). (3.43)

Since ψ ∈ F(θ), we have that xθu = ψ(0) = Φ(σ(θ, s),−s)ψ(s), for all s ∈ [−1, 0). This implies
that

‖xθu‖ ≤Meω‖ψ(s)‖ =Meω‖f(s)‖, ∀s ∈ [−1, 0), (3.44)

and we obtain that

‖xθu‖χ[−1,0)(s) ≤Meω‖f(s)‖, ∀s ∈ �. (3.45)

Using the invariance under translations of the space O, from relation (3.45) we deduce that

‖xθu‖FO(1) ≤Meω
∥∥f∥∥

O(�,X). (3.46)

In addition, from

‖v(t)‖ ≤ α(t)Meω‖x‖, ∀t ∈ �, (3.47)

we obtain that

‖v‖I(�,X) ≤ |α|IMeω‖x‖. (3.48)

Setting γ := [L|α|IM2e2ω/FO(1)] from relations (3.43), (3.46), and (3.48), we have that

‖(I − P(θ))x‖ = ‖xθu‖ ≤ γ‖x‖. (3.49)

This implies that

‖P(θ)x‖ ≤ (1 + γ
)‖x‖. (3.50)

Taking into account that γ does not depend on θ or x, it follows that relation (3.50) holds, for
all θ ∈ Θ and all x ∈ X, so ‖P(θ)‖ ≤ 1 + γ , for all θ ∈ Θ.
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Finally, from Theorem 3.11(i) and Theorem 3.12(i), we conclude that π is uniformly
dichotomic.

Remark 3.14. Relation (3.39) shows that the stable subspace and the instable subspace play a
central role in the detection of the dichotomous behavior of a skew-product flow and gives a
comprehensible motivation for their usual appellation.

4. Exponential Dichotomy of Skew-Product Flows

In the previous section, we have obtained sufficient conditions for the uniform dichotomy of
a skew-product flow π = (Φ, σ) on X × Θ in terms of the uniform admissibility of the pair
(O(�, X), I(�, X)) for the associated control system (Eπ), where O, I ∈ T(�). The natural
question arises: which are the additional (preferably minimal) hypotheses under which this
admissibility may provide the existence of the exponential dichotomy? In this context, the
main purpose of this section is to establish which are the most general classes of Banach
function spaces where O or I may belong to, such that the uniform admissibility of the pair
(O(�, X), I(�, X)) for the control system (Eπ ) is a sufficient (and also a necessary) condition
for the existence of exponential dichotomy.

LetX be a real or complex Banach space and let (Θ, d) be a metric space. Let π = (Φ, σ)
be a skew-product flow on X ×Θ.

Definition 4.1. A skew-product flow π = (Φ, σ) is said to be exponentially dichotomic if there
exist a family of projections {P(θ)}θ∈Θ ⊂ B(X) and two constants K ≥ 1 and ν > 0 such that
the following properties hold:

(i) Φ(θ, t)P(θ) = P(σ(θ, t))Φ(θ, t), for all (θ, t) ∈ Θ × �+ ;

(ii) ‖Φ(θ, t)x‖ ≤ Ke−νt‖x‖, for all t ≥ 0, all x ∈ Range P(θ) and all θ ∈ Θ;

(iii) the restriction Φ(θ, t)| : KerP(θ) → KerP(σ(θ, t)) is an isomorphism, for all (θ, t) ∈
Θ × �+ ;

(iv) ‖Φ(θ, t)y‖ ≥ (1/K)eνt‖y‖, for all t ≥ 0, all y ∈ KerP(θ) and all θ ∈ Θ.

Before proceeding to the next steps, we need a technical lemma.

Lemma 4.2. If a skew-product flow π is exponentially dichotomic with respect to a family of
projections {P(θ)}θ∈Θ, then supθ∈Θ‖P(θ)‖ <∞.

Proof. Let K, ν > 0 be given by Definition 4.1 and let M,ω > 0 be given by Definition 3.2. For
every (x, θ) ∈ X ×Θ and every t ≥ 0, we have that

1
K
eνt‖(I − P(θ))x‖ ≤ ‖Φ(θ, t)(I − P(θ))x‖ ≤Meωt‖x‖ +Ke−νt‖P(θ)x‖

≤ (Meωt +K
)‖x‖ +Ke−νt‖(I − P(θ))x‖,

(4.1)

which implies that

(
e2νt −K2

)e−νt
K
‖(I − P(θ))x‖ ≤ (Meωt +K

)‖x‖, ∀t ≥ 0, ∀(x, θ) ∈ X ×Θ. (4.2)
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Let h > 0 be such that e2νh − K2 > 0. Setting α := (e2νh −K2)e−νh/K and δ := (Meωh +K), it
follows that ‖(I−P(θ))x‖ ≤ (δ/α)‖x‖, for all (x, θ) ∈ X×Θ. This implies that ‖I−P(θ)‖ ≤ δ/α,
for all θ ∈ Θ, so ‖P(θ)‖ ≤ 1 + (δ/α), for all θ ∈ Θ, and the proof is complete.

Remark 4.3. (i) Using Lemma 4.2, we deduce that if a skew-product flow π is exponentially
dichotomic with respect to a family of projections {P(θ)}θ∈Θ, then π is uniformly dichotomic
with respect to the same family of projections.

(ii) If a skew-product flow π is exponentially dichotomic with respect to a family of
projections {P(θ)}θ∈Θ, then this family is uniquely determined (see, e.g., [18], Remark 2.5).

Remark 4.4. In the description of any dichotomous behavior, the properties (i) and (iii) are
inherent, because beside the splitting of the space ensured by the presence of the dichotomy
projections, these properties reflect both the invariance with respect to the decomposition
induced by each projection as well as the reversibility of the cocycle restricted to the kernel
of each projection.

In this context, it is extremely important to note that if in the detection of the dichotomy
one assumes from the very beginning that there exist a projection family such that the
invariance property (i) and the reversibility condition (iii) hold, then the dichotomy concept
is resumed to a stability property (ii) and to an instability condition (iv), which via (iii) will
consist only of a double stability. Thus, if in the study of the dichotomy one considers (i) and
(iii) as working hypotheses, then the entire investigation is reduced to a quasitrivial case of
(double) stability.

In conclusion, in the study of the existence of (uniform or) exponential dichotomy, it is
essential to determine conditions which imply the existence of the projection family and also the
fulfillment of all the conditions from Definition 4.1.

Now let O, I be two Banach function spaces such that O, I ∈ T(�). According to
the main result in the previous section (see Theorem 3.13), if the pair (O(�, X), I(�, X)) is
uniformly admissible for the system (Eπ), then π is uniformly dichotomic with respect to a
family of projections {P(θ)}θ∈Θ with the property that

RangeP(θ) = S(θ), KerP(θ) = U(θ), ∀θ ∈ Θ. (4.3)

In what follows, we will see that by imposing some conditions either on the output space O
or on the input space I, the admissibility becomes a sufficient condition for the exponential
dichotomy.

Theorem 4.5 (The behavior on the stable subspace). Let O, I be two Banach function spaces
such that eitherO ∈ Q(�) or I ∈ L(�). If the pair (O(�, X),I(�, X)) is uniformly admissible for the
system (Eπ), then there areK, ν > 0 such that

‖Φ(θ, t)x‖ ≤ Ke−νt‖x‖, ∀t ≥ 0, ∀x ∈ RangeP(θ), ∀θ ∈ Θ. (4.4)

Proof. Let δ > 0 be such that

‖Φ(θ, t)x‖ ≤ δ‖x‖, ∀t ≥ 0, ∀x ∈ RangeP(θ), ∀θ ∈ Θ. (4.5)
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We prove that there is h > 0 such that

‖Φ(θ, h)x‖ ≤ 1
e
‖x‖, ∀x ∈ Range P(θ), ∀θ ∈ Θ. (4.6)

Let L > 0 be given by Definition 3.6 and let M,ω > 0 be given by Definition 3.2.

Case 1. Suppose that O ∈ Q(�). Let α : � → [0, 2] be a continuous function with suppα ⊂
(0, 1) such that

∫1
0 α(τ)dτ = 1. Since supt>0FO(t) = ∞, there is r > 0 such that

FO(r) ≥ eδ2L|α|I . (4.7)

Let θ ∈ Θ and let x ∈ RangeP(θ). If Φ(θ, 1)x/= 0, then we consider the functions

v : � −→ X, v(t) = α(t)
Φ(θ, t)x
‖Φ(θ, t)x‖ ,

f : � −→ X, f(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aΦ(θ, t)x, t ≥ 1,∫ t
0

α(τ)
‖Φ(θ, τ)x‖dτ Φ(θ, t)x, t ∈ [0, 1],

0, t < 0,

(4.8)

where

a :=
∫1

0

α(τ)
‖Φ(θ, τ)x‖dτ. (4.9)

We observe that f is continuous and

‖f(t)‖ ≤ a‖λx,θ(t)‖, ∀t ∈ �. (4.10)

Since x ∈ RangeP(θ) = S(θ), we have that λx,θ ∈ O(�, X). Then using Remark 2.4(i), we
deduce that f ∈ O(�, X). In addition, we have that v ∈ C0c(�, X) and an easy computation
shows that the pair (f, v) satisfies (Eθ). Then, according to our hypothesis, it follows that

∥∥f∥∥O(�,X) ≤ L‖v‖I(�,X). (4.11)

Because ‖v(t)‖ = α(t), for all t ∈ �, the relation (4.11) becomes

∥∥f∥∥O(�,X) ≤ L|α|I . (4.12)

Using relation (4.5), we deduce that

‖Φ(θ, r + 1)x‖ ≤ δ‖Φ(θ, t)x‖ = δ

a
‖f(t)‖, ∀t ∈ [1, r + 1), (4.13)
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so

‖Φ(θ, r + 1)x‖χ[1,r+1)(t) ≤ δ

a
‖f(t)‖, ∀t ∈ �. (4.14)

Using the invariance under translations of the space O from relation (4.14), we obtain that

‖Φ(θ, r + 1)x‖FO(r) ≤ δ

a

∥∥f∥∥O(�,X). (4.15)

Setting h := r + 1 from relations (4.12) and (4.15), it follows that

‖Φ(θ, h)x‖FO(r) ≤
δL|α|I
a

. (4.16)

Moreover, from relation (4.5), we have that ‖Φ(θ, τ)x‖ ≤ δ‖x‖, for all τ ∈ [0, 1), so

a =
∫1

0

α(τ)
‖Φ(θ, τ)x‖dτ ≥

1
δ‖x‖ . (4.17)

From relations (4.7), (4.16), and (4.17), it follows that

‖Φ(θ, h)x‖ ≤ 1
e
‖x‖. (4.18)

If Φ(θ, 1)x = 0, then Φ(θ, h)x = 0, so the above relation holds. Taking into account that h does
not depend on θ or x, we obtain that in this case, there is h > 0 such that relation (4.6) holds.

Case 2. Suppose that I ∈ L(�). In this situation, from Remark 2.16, we have that there is a
continuous function γ : � → �+ such that γ ∈ I \ L1(�,�). Since the space I is invariant
under translations, we may assume that there is r > 1 such that

∫ r
1
γ(τ)dτ ≥ eLδ2

∣∣γ∣∣I
FO(1)

. (4.19)

Let β : � → [0, 1] be a continuous function with supp β ⊂ (0, r + 1) and β(t) = 1, for all
t ∈ [1, r].

Let θ ∈ Θ and let x ∈ RangeP(θ). We consider the functions

v : � −→ X, v(t) = β(t)γ(t)Φ(θ, t)x,

f : � −→ X, f(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qΦ(θ, t)x, t ≥ r + 1,∫ t
0
β(τ)γ(τ)dτ Φ(θ, t)x, t ∈ [0, r + 1),

0, t < 0,

(4.20)
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where

q =
∫ r+1

0
β(τ)γ(τ)dτ. (4.21)

We have that v ∈ C0c(�, X), f is continuous, and ‖f(t)‖ ≤ q‖λx,θ(t)‖, for all t ∈ �. Using
similar arguments with those used in relation (4.10), we deduce that f ∈ O(�, X). An easy
computation shows that the pair (f, v) satisfies (Eθ). Then, we have that

∥∥f∥∥O(�,X) ≤ L‖v‖I(�,X). (4.22)

Using relation (4.5), we obtain that

‖v(t)‖ ≤ δγ(t)‖x‖, ∀t ∈ �, (4.23)

which implies that

‖v‖I(�,X) ≤ δ
∣∣γ∣∣

I
‖x‖. (4.24)

In addition, from ‖Φ(θ, r + 2)x‖ ≤ δ‖Φ(θ, t)x‖, for all t ∈ [r + 1, r + 2), we deduce that

‖Φ(θ, r + 2)x‖χ[r+1,r+2)(t) ≤ δ
q
‖f(t)‖, ∀t ∈ �. (4.25)

Using the invariance under translations of the spaceO from relations (4.25), (4.22), and (4.24)
we have that

q‖Φ(θ, r + 2)x‖FO(1) ≤ δ
∥∥f∥∥

O(�,X) ≤ Lδ2∣∣γ∣∣
I
‖x‖. (4.26)

Since q ≥ ∫r1 γ(τ)dτ , from relations (4.19), (4.21), and (4.26), it follows that

‖Φ(θ, r + 2)x‖ ≤ 1
e
‖x‖. (4.27)

Setting h = r + 2 and taking into account that h does not depend on θ or x, we obtain that
relation (4.6) holds.

In conclusion, in both situations, there is h > 0 such that

‖Φ(θ, h)x‖ ≤ 1
e
‖x‖, ∀x ∈ Range P(θ), ∀θ ∈ Θ. (4.28)
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Let ν := 1/h and let K = δe. Let θ ∈ Θ and let x ∈ RangeP(θ). Let t > 0. Then, there
are k ∈ � and τ ∈ [0, h) such that t = kh + τ . Using relations (4.5) and (4.6), we successively
deduce that

‖Φ(θ, t)x‖ ≤ δ‖Φ(θ, kh)x‖ ≤ δe−k‖x‖ ≤ Ke−νt‖x‖. (4.29)

Theorem 4.6 (The behavior on the unstable subspace). Let O, I be two Banach function spaces
such that either O ∈ Q(�) or I ∈ L(�). If the pair (O(�, X), I(�, X)) is uniformly admissible for
the system (Eπ), then, there areK, ν > 0 such that

‖Φ(θ, t)y‖ ≥ 1
K
eνt‖y‖, ∀t ≥ 0, ∀y ∈ KerP(θ), ∀θ ∈ Θ. (4.30)

Proof. Let δ > 0 be such that

‖Φ(θ, t)y‖ ≥ 1
δ
‖y‖, ∀t ≥ 0, ∀y ∈ KerP(θ), ∀θ ∈ Θ. (4.31)

Let L > 0 be given by Definition 3.6 and let M,ω > 0 be given by Definition 3.2. We prove
that there is h > 0 such that

‖Φ(θ, h)y‖ ≥ e‖y‖, ∀y ∈ KerP(θ), ∀θ ∈ Θ. (4.32)

Case 1. Suppose that O ∈ Q(�). Let α : � → [0, 2] be a continuous function with suppα ⊂
(0, 1) and

∫1
0 α(τ)dτ = 1. In this case, there is r > 0 such that

FO(r) ≥ eδ2L|α|I . (4.33)

Let θ ∈ Θ and let y ∈ KerP(θ)\{0}. Then, Φ(θ, t)y /= 0, for all t ≥ 0. Since y ∈ KerP(θ) =
U(θ), there is ϕ ∈ F(θ) ∩O(�, X) with ϕ(0) = y. We consider the functions

v : � −→ X, v(t) = −α(t − r) Φ(θ, t)y
‖Φ(θ, t)y‖

f : � −→ X, f(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫∞
t

α(τ − r)
‖Φ(θ, τ)y‖dτ Φ(θ, t)y, t ≥ r,

aΦ(θ, t)y, t ∈ [0, r),

aϕ(t), t < 0,

(4.34)

where

a :=
∫ r+1

r

α(τ − r)
‖Φ(θ, τ)y‖dτ. (4.35)
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We have that v ∈ C0c(�, X) and f is continuous. Moreover, from

‖f(t)‖ ≤ a‖ϕ(t)‖ + aMeω(r+1)‖y‖χ[0,r+1)(t), ∀t ∈ �, (4.36)

we obtain that f ∈ O(�, X). An easy computation shows that the pair (f, v) satisfies (Eθ), so

∥∥f∥∥O(�,X) ≤ L‖v‖I(�,X). (4.37)

Observing that ‖v(t)‖ = α(t − r), for all t ∈ �, the relation (4.37) becomes

∥∥f∥∥O(�,X) ≤ L|α|I . (4.38)

From relation (4.31), we have that

‖Φ(θ, r + 1)y‖ ≥ 1
δ
‖Φ(θ, τ)y‖, ∀τ ∈ [r, r + 1]. (4.39)

This implies that

a ≥ 1
δ‖Φ(θ, r + 1)y‖ . (4.40)

In addition, from relation (4.31), we have that

‖Φ(θ, t)y‖ ≥ 1
δ
‖y‖, ∀t ∈ [0, r) (4.41)

which implies that

‖y‖χ[0,r)(t) ≤ δ‖Φ(θ, t)y‖χ[0,r)(t) ≤ δ

a
‖f(t)‖, ∀t ∈ �. (4.42)

From relation (4.42), it follows that

‖y‖FO(r) ≤ δ

a

∥∥f∥∥O(�,X). (4.43)

From relations (4.38), (4.40), and (4.43), we deduce that

‖y‖FO(r) ≤
δL|α|I
a

≤ δ2L|α|I‖Φ(θ, r + 1)y‖. (4.44)

From relations (4.44) and (4.33), we have that

‖Φ(θ, r + 1)y‖ ≥ e‖y‖. (4.45)
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Setting h := r + 1 and taking into account that h does not depend on y or θ we obtain that
relation (4.32) holds.

Case 2. Suppose that I ∈ L(�). In this situation, using Remark 2.16 and the translation
invariance of the space I, we have that there is a continuous function γ : � → �+ with
γ ∈ I \ L1(�,�) and r > 1 such that

∫ r
1
γ(τ)dτ ≥ eω+1LMδ

∣∣γ∣∣I
FO(1)

. (4.46)

Let β : � → [0, 1] be a continuous function with supp β ⊂ (0, r + 1) and β(t) = 1, for all
t ∈ [1, r].

Let θ ∈ Θ and let y ∈ KerP(θ). Since KerP(θ) = U(θ) there is ϕ ∈ F(θ) ∩O(�, X) with
ϕ(0) = y. We consider the functions

v : � −→ X, v(t) = −β(t)γ(t)Φ(θ, t)y,

f : � −→ X, f(t) =

⎧⎪⎨
⎪⎩

∫∞
t

β(τ)γ(τ)dτΦ(θ, t)y, t ≥ 0,

qϕ(t), t < 0,

(4.47)

where q :=
∫ r+1

0 β(τ)γ(τ)dτ . We have that v ∈ C0c(�, X), and, using similar arguments with
those from Case 1, we obtain that f ∈ O(�, X). An easy computation shows that the pair
(f, v) satisfies (Eθ), so

∥∥f∥∥O(�,X) ≤ L‖v‖I(�,X). (4.48)

From (4.31), we have that ‖Φ(θ, r + 1)y‖ ≥ (1/δ)‖Φ(θ, t)y‖, for all t ∈ [0, r + 1]. This implies
that

‖v(t)‖ ≤ γ(t)δ‖Φ(θ, r + 1)y‖, ∀t ∈ �, (4.49)

so

‖v‖I(�,X) ≤
∣∣γ∣∣

I
δ‖Φ(θ, r + 1)y‖. (4.50)

Since ϕ ∈ F(θ), we have that

‖y‖ = ‖ϕ(0)‖ = ‖Φ(σ(θ, t),−t)ϕ(t)‖ ≤Meω‖ϕ(t)‖, ∀t ∈ [−1, 0). (4.51)

From relation (4.51), it follows that

‖y‖χ[−1,0)(t) ≤Meω‖ϕ(t)‖χ[−1,0)(t) ≤ Meω

q
‖f(t)‖, ∀t ∈ �. (4.52)
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Using the translation invariance of the space O from (4.52), we obtain that

q‖y‖FO(1) ≤Meω
∥∥f∥∥O(�,X). (4.53)

Since q ≥ ∫r1 γ(τ)dτ , from relations (4.46), (4.48), (4.50) we deduce that

‖Φ(θ, r + 1)y‖ ≥ e‖y‖. (4.54)

Setting h := r+1 and since h does not depend on y or θ, we have that the relation (4.32) holds.
In conclusion, in both situations there is h > 0 such that

‖Φ(θ, h)y‖ ≥ e‖y‖, ∀y ∈ KerP(θ), ∀θ ∈ Θ. (4.55)

Let ν = 1/h and let K = δe. Let θ ∈ Θ and let y ∈ KerP(θ). Let t > 0. Then, there are j ∈ �
and s ∈ [0, h) such that t = jh + s. Using relations (4.31) and (4.32), we obtain that

‖Φ(θ, t)y‖ ≥ 1
δ
‖Φ(θ, jh)y‖ ≥ 1

δ
ej‖y‖ ≥ 1

K
eνt‖y‖. (4.56)

According to the previous results we may formulate now a sufficient condition for the
existence of the exponential dichotomy. Moreover, for the converse implication we will show
that it sufficient to chose one of the spaces in the admissible pair from the class R(�). Thus,
the main result of this section is as follows.

Theorem 4.7 (Necessary and sufficient condition for exponential dichotomy). Let π = (Φ, σ)
be a skew-product flow on E = X × Θ and let O, I be two Banach function spaces with O, I ∈ T(�)
such that either O ∈ Q(�) or I ∈ L(�). The following assertions hold:

(i) if the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ ), then π is
exponentially dichotomic.

(ii) if I ⊂ O and one of the spaces I or O belongs to the class R(�), then π is exponentially
dichotomic if and only if the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ ).

Proof. (i) This follows from Theorem 3.13, Theorem 4.5, and Theorem 4.6.
(ii) Since I ⊂ O, it follows that there is α > 0 such that

|u|O ≤ α|u|I , ∀u ∈ I. (4.57)

Necessity. Suppose that π is exponentially dichotomic with respect to the family of
projections {P(θ)}θ∈Θ and let K, ν > 0 be two constants given by Definition 4.1. According
to Lemma 4.2, we have that q := supθ∈Θ‖P(θ)‖ < ∞. For every (θ, t) ∈ Θ × �+ we denote by
Φ(θ, t)−1

| the inverse of the operator Φ(θ, t)| : KerP(θ) → KerP(σ(θ, t)).



28 Abstract and Applied Analysis

Let θ ∈ Θ and let v ∈ C0c(�, X). We consider the function fv : � → X given by

fv(t) =
∫ t
−∞

Φ(σ(θ, τ), t − τ)P(σ(θ, τ))v(τ)dτ

−
∫∞
t

Φ(σ(θ, t), τ − t)−1
| (I − P(σ(θ, τ))) v(τ)dτ.

(4.58)

We have that fv is continuous, and a direct computation shows that the pair (fv, v) satisfies
(Eθ). In addition, we have that

‖fv(t)‖ ≤ qK
∫ t
−∞

e−ν(t−τ)‖v(τ)‖dτ

+
(
1 + q

)
K

∫∞
t

e−ν(τ−t)‖v(τ)‖dτ, ∀t ∈ �.
(4.59)

If I ∈ R(�), let γI,ν > 0 be the constant given by Lemma 2.21. Then, from (4.59) and
Lemma 2.21, it follows that fv ∈ I(�, X) and

∥∥fv∥∥I(�,X) ≤
(
1 + 2q

)
KγI,ν‖v‖I(�,X). (4.60)

Then, from (4.57) and (4.60), we deduce that fv ∈ O(�, X) and

∥∥fv∥∥O(�,X) ≤ α
(
1 + 2q

)
KγI,ν‖v‖I(�,X). (4.61)

If O ∈ R(�), let γO,ν > 0 be the constant given by Lemma 2.21. Then, from (4.59), (4.57) and
using Lemma 2.21, we successively obtain that fv ∈ O(�, X) and

∥∥fv∥∥O(�,X) ≤
(
1 + 2q

)
KγO,ν‖v‖O(�,X) ≤ α

(
1 + 2q

)
KγO,ν‖v‖I(�,X). (4.62)

Let

γ :=

⎧⎨
⎩
γI,ν, if I ∈ R(�),
γO,ν, if I /∈ R(�), O ∈ R(�).

(4.63)

Then setting L := α(1 + 2q)Kγ from relations (4.61) and (4.62), we have that

∥∥fv∥∥O(�,X) ≤ L‖v‖I(�,X). (4.64)

Now let v ∈ C0c(�, X) and f ∈ O(�, X) be such that the pair (f, v) satisfies (Eθ). We set
ϕ := f − fv, and we have that ϕ ∈ O(�, X) and

ϕ(t) = Φ(σ(θ, s), t − s)ϕ(s), ∀t ≥ s. (4.65)
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Let ϕ1(t) = P(σ(θ, t))ϕ(t), for all t ∈ � and let ϕ2(t) = (I − P(σ(θ, t)))ϕ(t), for all t ∈ �. Then
from (4.65), we obtain that

ϕk(t) = Φ(σ(θ, s), t − s)ϕk(s), ∀t ≥ s, ∀k ∈ {1, 2}. (4.66)

Let t0 ∈ �. From (4.66), it follows that

‖ϕ1(t0)‖ ≤ Ke−ν(t0−s)‖ϕ1(s)‖ ≤ qKe−ν(t0−s)‖ϕ(s)‖, ∀s ≤ t0. (4.67)

Since ϕ ∈ O(�, X), from Remark 2.12 it follows that ϕ ∈ M1(�, X). Then, from (4.67), we
have that

‖ϕ1(t0)‖ ≤ qK
∫ s
s−1

e−ν(t0−τ)‖ϕ(τ)‖dτ ≤ qKe−ν(t0−s)
∫ s
s−1
‖ϕ(τ)‖dτ

≤ qKe−ν(t0−s)‖ϕ‖M1(�,X), ∀s ≤ t0.
(4.68)

For s → −∞ in (4.68), it follows that ϕ1(t0) = 0. In addition, from (4.66) we have that

1
K
eν(t−t0)‖ϕ2(t0)‖ ≤ ‖ϕ2(t)‖ ≤

(
1 + q

)‖ϕ(t)‖, ∀t ≥ t0. (4.69)

This implies that

1
K
eν(t−t0)‖ϕ2(t0)‖ ≤

(
1 + q

) ∫ t+1

t

‖ϕ(τ)‖dτ ≤ (1 + q
)∥∥ϕ∥∥M1(�,X), ∀t ≥ t0. (4.70)

The relation (4.70) shows that

‖ϕ2(t0)‖ ≤ K
(
1 + q

)
e−ν(t−t0)

∥∥ϕ∥∥M1(�,X), ∀t ≥ t0. (4.71)

For t → ∞ in (4.71), it follows that ϕ2(t0) = 0. This shows that ϕ(t0) = ϕ1(t0) + ϕ2(t0) = 0.
Since t0 ∈ � was arbitrary, we deduce that ϕ = 0, so f = fv. Then, from (4.64), we have that

∥∥f∥∥O(�,X) ≤ L‖v‖I(�,X). (4.72)

Taking into account that L does not depend on θ ∈ Θ or on v ∈ C0c(�, X), we finally conclude
that the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ ).

Sufficiency follows from (i).

Corollary 4.8. Let π = (Φ, σ) be a skew-product flow on E = X ×Θ and let V be a Banach function
space with V ∈ T(�). Then, the following assertions hold:

(i) if the pair (V (�, X), V (�, X)) is uniformly admissible for the system (Eπ), then, π is
exponentially dichotomic;
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(ii) if V ∈ R(�), then, π is exponentially dichotomic if and only if the pair (V (�, X),V (�, X))
is uniformly admissible for the system (Eπ).

Proof. We prove that either V ∈ Q(�) or V ∈ L(�). Indeed, suppose by contrary that V /∈
Q(�) and V /∈ L(�). Then, M := supt>0FV (t) < ∞ and V ⊂ L1(�,�). From V ⊂ L1(�,�), it
follows that there is γ > 0 such that

‖v‖1 ≤ γ |v|V , ∀v ∈ V. (4.73)

In particular, from v = χ[0,t) in relation (4.73), we deduce that

t ≤ γ∣∣χ[0,t)
∣∣
V
= γFV (t) ≤ γM, ∀t > 0, (4.74)

which is absurd. This shows that the assumption is false, which shows that either V ∈ Q(�)
or V ∈ L(�). By applying Theorem 4.7, we obtain the conclusion.

5. Applications and Conclusions

We have seen in the previous section that in the study of the exponential dichotomy of
variational equations the classes Q(�) and, respectively, L(�) have a crucial role in the
identification of the appropriate function spaces in the admissible pair. Moreover, it was also
important to point out that it is sufficient to impose conditions either on the input space
or on the output space. In this context, the natural question arises if these conditions are
indeed necessary and whether our hypotheses may be dropped. The aim of this section is to
answer this question. With this purpose, we will present an illustrative example of uniform
admissibility, and we will discuss the concrete implications concerning the existence of the
exponential dichotomy.

Let X be a Banach space. We denote by C0(�, X) the space of all continuous functions
u : � → X with limt→∞u(t) = limt→−∞u(t) = 0, which is a Banach space with respect to the
norm

‖|u|‖ := sup
t∈�
‖u(t)‖. (5.1)

We start with a technical lemma.

Lemma 5.1. If O is a Banach function space with O ∈ T(�) \ Q(�), then, C0(�,�) ⊂ O.

Proof. Let c := supt>0FO(t). Let u ∈ C0(�,�). Then, there is an unbounded increasing sequence
(tn) ⊂ (0,∞) such that |u(t)| ≤ 1/(n + 1), for all |t| ≥ tn and all n ∈ �. Setting un = uχ[−tn,tn) we
have that

∣∣un+p − un∣∣O ≤
∣∣∣χ[−tn+p,−tn)

∣∣∣
O

n + 1
+

∣∣∣χ[tn,tn+p)

∣∣∣
O

n + 1
≤ 2c
n + 1

, ∀n ∈ �, ∀p ∈ �∗ . (5.2)

From relation (5.2), it follows that the sequence (un) is fundamental in O, so this is
convergent, that is, there exists v ∈ O such that un → v in O. According to Remark 2.4(ii),
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there exists a subsequence (ukn) such that ukn(t) → v(t) for a.e. t ∈ �. This implies that
v(t) = u(t) for a.e. t ∈ �, so v = u in O. In conclusion, u ∈ O, and the proof is complete.

In what follows, we present a concrete situation which illustrates the relevance of the
hypotheses on the underlying function spaces considered in the admissible pair, for the study
of the dichotomous behavior of skew-product flows.

Example 5.2. Let X = � × � which is a Banach space with respect to the norm ‖(x1, x2)‖ =
|x1| + |x2|. Let Θ = � and let σ : Θ × � → Θ, σ(θ, t) = θ + t. We have that σ is a flow on Θ. Let

ϕ : � −→ (0,∞), ϕ(t) =

⎧⎨
⎩

2
t + 1

, t ≥ 0,

1 + e−t, t < 0.
(5.3)

For every (θ, t) ∈ Θ × �+ , we consider the operator

Φ(θ, t) : X −→ X, Φ(θ, t)(x1, x2) =
(
ϕ(θ + t)
ϕ(θ)

x1, e
tx2

)
. (5.4)

It is easy to see that π = (Φ, σ) is a skew-product flow.
Now, letO, I be two Banach function spaces withO, I ∈ T(�) such thatO /∈ Q(�) and

I /∈ L(�). It follows that I ⊂ L1(�,�), and, using Lemma 5.1, we obtain that C0(�,�) ⊂ O.
Then, there are α, β > 0 such that

‖u‖1 ≤ α|u|I , ∀u ∈ I,
‖u‖O ≤ β‖|u|‖, ∀u ∈ C0(�,�).

(5.5)

Step 1. We prove that the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ).
Let θ ∈ Θ and let v = (v1, v2) ∈ C0c(�, X) and let h > 0 be such that supp v ⊂ (0, h). We

consider the function f : � → X where f = (f1, f2) and

f1(t) =
∫ t
−∞

ϕ(θ + t)
ϕ(θ + τ)

v1(τ)dτ, f2(t) = −
∫∞
t

e−(τ−t)v2(τ)dτ, ∀t ∈ �. (5.6)

We have that f is continuous and an easy computation shows that the pair (f, v) satisfies
(Eθ). Since suppv ⊂ (0, h), we obtain that f1(t) = 0, for all t ≤ 0 and f2(t) = 0, for all t ≥ h.
From

f1(t) = ϕ(θ + t)
∫h

0

v1(τ)
ϕ(θ + τ)

dτ, ∀t ≥ h, (5.7)

we have that limt→∞f1(t) = 0. In addition, from

f2(t) = −et
∫h

0
e−τv2(τ)dτ, ∀t ≤ 0, (5.8)
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we deduce that limt→−∞f2(t) = 0. Thus, we obtain that f ∈ C0(�, X) so f ∈ O(�, X).
Moreover, from

∣∣f1(t)
∣∣ ≤
∫ t
−∞
|v1(τ)|dτ ≤ ‖v1‖L1(�,�), ∀t ∈ �,

∣∣f2(t)
∣∣ ≤
∫∞
t

|v2(τ)|dτ ≤ ‖v2‖L1(�,�), ∀t ∈ �,
(5.9)

it follows that

∥∥∣∣f∣∣∥∥ ≤ ‖v‖L1(�,X). (5.10)

From relations (5.5) and (5.10), we obtain that

∥∥f∥∥O(�,X) ≤ αβ‖v‖I(�,X). (5.11)

Let f̃ ∈ O(�, X) be such that the pair (f̃ , v) satisfies (Eθ) and let g = f̃ − f . Then,
g ∈ O(�, X) and g(t) = Φ(σ(θ, s), t − s)g(s), for all t ≥ s. More exactly, if g = (g1, g2), then we
have that

g1(t) =
ϕ(θ + t)
ϕ(θ + s)

g1(s), ∀t ≥ s, (5.12)

g2(t) = et−sg2(s), ∀t ≥ s. (5.13)

Since g ∈ O(�, X) from Remark 2.12, it follows that g ∈M1(�, X), so g1, g2 ∈M1(�,�).
Let t0 ∈ �. For every s ≤ t0 from relation (5.12), we have that

∣∣g1(t0)
∣∣

ϕ(θ + t0)
=
∫ s
s−1

∣∣g1(τ)
∣∣

ϕ(θ + τ)
dτ ≤ 1

ϕ(θ + s)

∫ s
s−1

∣∣g1(τ)
∣∣dτ ≤

∥∥g1
∥∥
M1(�,�)

ϕ(θ + s)
. (5.14)

Since ϕ(r) → ∞ as r → −∞, for s → −∞ in (5.14), we obtain that g1(t0) = 0. In addition, for
every t ≥ t0 from relation (5.13) we have that

e−t0
∣∣g2(t0)

∣∣ =
∫ t+1

t

e−τ
∣∣g2(τ)

∣∣dτ ≤ e−t
∫ t+1

t

∣∣g2(τ)
∣∣dτ ≤ e−t∥∥g2

∥∥
M1(�,�). (5.15)

For t → ∞ in (5.15) we deduce that g2(t0) = 0. So, we obtain that g(t0) = 0. Taking into
account that t0 ∈ � was arbitrary it follows that g = 0. This implies that f̃ = f . Then, from
relation (5.11) we have that

∥∥∥f̃
∥∥∥
O(�,X)

≤ αβ‖v‖I(�,X). (5.16)
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We set L = αβ, and, taking into account that L does not depend on θ or v, we conclude that
the pair (O(�, X), I(�, X)) is uniformly admissible for the system (Eπ).

Step 2. We prove that π is not exponentially dichotomic. Suppose by contrary that π is
exponentially dichotomic with respect to the family of projections {P(θ)}θ∈Θ and let K, ν > 0
be two constants given by Definition 4.1. In this case, according to Proposition 2.1 from [18]
we have that

ImP(θ) = {x ∈ X : Φ(θ, t)x −→ 0 as t −→ ∞}, ∀θ ∈ Θ. (5.17)

This characterization implies that ImP(θ) = � × {0}, for all θ ∈ Θ. Then, from

‖Φ(θ, t)x‖ ≤ Ke−νt‖x‖, ∀t ≥ 0, ∀x ∈ ImP(θ), ∀θ ∈ Θ, (5.18)

we obtain that

ϕ(θ + t)
ϕ(θ)

|x1| ≤ Ke−νt|x1|, ∀x1 ∈ �, ∀t ≥ 0, ∀θ ∈ Θ, (5.19)

which shows that

ϕ(θ + t)
ϕ(θ)

≤ Ke−νt, ∀t ≥ 0, ∀θ ∈ Θ. (5.20)

In particular, for θ = 0, from (5.20), we have that

1
t + 1

≤ Ke−νt, ∀t ≥ 0, (5.21)

which is absurd. This shows that the assumption is false, so π is not exponentially dichotomic.

Remark 5.3. The above example shows that if I, O are two Banach function spaces from
the class T(�) such that O /∈ Q(�) and I /∈ L(�), then the uniform admissibility of the
pair (O(�, X), I(�, X)) for the system (Eπ) does not imply the existence of the exponential
dichotomy of π . This shows that the hypotheses of the main result from the previous section
are indeed necessary and emphasizes the fact that in the study of the exponential dichotomy
in terms of the uniform admissibility at least one of the output space or the input space should
belong to, respectively, Q(�) or L(�).

Finally, we complete our study with several consequences of the main result, which
will point out some interesting conclusions for some usual classes of spaces often used in
control-type problems arising in qualitative theory of dynamical systems. We will also show
that, in our approach, the input space can be successively minimized, and we will discuss
several optimization directions concerning the admissibility-type techniques.

Remark 5.4. The input-output characterizations for the asymptotic properties of systems have
a wider applicability area if the input space is as small as possible and the output space is
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very general. In our main result, given by Theorem 4.7, the input functions belong to the
space C0c(�, X) while the output space is a general Banach function space. By analyzing
condition (ii) from Definition 3.6, we observe that the input-output characterization given by
Theorem 4.7 becomes more flexible and provides a more competitive applicability spectrum
when the norm on the input space is larger.

Another interesting aspect that must be noted is that the class T(�) is closed to finite
intersections. Indeed, if I1, . . . , In ∈ T(�), then we may define I := I1 ∩ I2 ∩ · · · In with respect
to the norm

|u|I := max
{|u|I1

, |u|I2
, . . . , |u|In

}
, (5.22)

which is a Banach function space which belongs to T(�). So, taking as input space a Banach
function space which is obtained as an intersection of Banach function spaces from the class
T(�) we will have a “larger” norm in our admissibility condition, and, thus the estimation
will be more permissive and more general.

As a consequence of the aspects presented in the above remark we deduce the
following corollaries.

Corollary 5.5. Let π = (Φ, σ) be a skew-product flow on X × Θ. Let Oϕ be an Orlicz space with
0 < ϕ(t) < ∞, for all t > 0. Let n ∈ �∗ , let Oϕ1 , . . . , Oϕn be Orlicz spaces such that ϕk(1) < ∞, for
all k ∈ {1, . . . , n} and let I := Oϕ1(�,�) ∩ · · · ∩ Oϕn(�,�) ∩ Oϕ(�,�). Then, π is exponentially
dichotomic if and only if the pair (Oϕ(�, X), I(�, X)) is uniformly admissible for the system (Eπ ).

Proof. From Lemma 2.15 and Remark 2.20, it follows that Oϕ ∈ Q(�) ∩ R(�). By applying
Theorem 4.7, the proof is complete.

Corollary 5.6. Let π = (Φ, σ) be a skew-product flow on X × Θ and let p ∈ [1,∞). Let n ∈
�
∗ , q1, . . . , qn ∈ [1,∞] and I = Lq1(�,�) ∩ · · · ∩ Lqn(�,�) ∩ Lp(�,�). Then, π is exponentially

dichotomic if and only if the pair (Lp(�, X), I(�, X)) is admissible for the system (Eπ).

Proof. This follows from Corollary 5.5.

Corollary 5.7. Let π = (Φ, σ) be a skew-product flow on X × Θ and let p ∈ (1,∞]. Let n ∈
�
∗ , q1, . . . , qn ∈ (1,∞] and I = Lq1(�,�) ∩ · · · ∩ Lqn(�,�) ∩ Lp(�,�). Then π is exponentially

dichotomic if and only if the pair (Lp(�, X), I(�, X)) is uniformly admissible for the system (Eπ ).

Proof. This follows from Theorem 4.7 by observing that I ∈ L(�).

Remark 5.8. According to Remark 2.12, the largest space from the class T(�) is M1(�,�).
Thus, considering the output space M1(�,�), in order to obtain optimal input-output
characterizations for exponential dichotomy in terms of admissibility, it is sufficient to work
with smaller and smaller input spaces.

Corollary 5.9. Let π = (Φ, σ) be a skew-product flow on X × Θ. Let n ∈ �∗ , q1, . . . , qn ∈ (1,∞]
and I = Lq1(�,�) ∩ · · · ∩ Lqn(�,�). Then, π is exponentially dichotomic if and only if the pair
(M1(�, X), I(�, X)) is uniformly admissible for the system (Eπ).
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Proof. We observe that I ∈ L(�), and, from Remark 2.12, we have that I ⊂ M1(�,�). By
applying Theorem 4.7, we obtain the conclusion.
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We study perturbations of the nonoscillatory half-linear differential equation (r(t)Φ(x′))′ +
c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1. We find explicit formulas for the functions r̂, ĉ such that
the equation [(r(t) + λr̂(t))Φ(x′)]′ + [c(t) + μĉ(t)]Φ(x) = 0 is conditionally oscillatory, that is, there
exists a constant γ such that the previous equation is oscillatory if μ − λ > γ and nonoscillatory if
μ−λ < γ . The obtained results extend the previous results concerning two-parametric perturbations
of the half-linear Euler differential equation.

1. Introduction

Conditionally oscillatory equations play an important role in the oscillation theory of the
Sturm-Liouville second-order differential equation

(
r(t)x′

)′ + c(t)x = 0, (1.1)

with positive continuous functions r, c. Equation (1.1) with λc instead of c is said to be
conditionally oscillatory if there exists λ0 > 0, the so-called oscillation constant of (1.1), such
that this equation is oscillatory for λ > λ0 and nonoscillatory for λ < λ0. A typical example of
a conditionally oscillatory equation is the Euler differential equation

x′′ +
λ

t2
x = 0, (1.2)
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which has the oscillation constant λ0 = 1/4 as can be verified by a direct computation
when looking for solutions of (1.2) in the form x(t) = tα. This leads to the classical
Kneser (non)oscillation criterion which states that (1.1) with r(t) ≡ 1 is oscillatory
provided

lim inf
t→∞

t2c(t) >
1
4
, (1.3)

and nonoscillatory if

lim sup
t→∞

t2c(t) <
1
4
. (1.4)

This shows that the potential c(t) = t−2 is the border line between oscillation and
nonoscillation. Note that the concept of conditional oscillation of (1.1) was introduced in
[1].

The linear oscillation theory extends almost verbatim to the half-linear differential
equation

(
r(t)Φ

(
x′
))′ + c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1, (1.5)

including the definition of conditional oscillation. The half-linear version of Euler equation
(1.2) is the equation

(
Φ
(
x′
))′ + λ

tp
Φ(x) = 0, (1.6)

which has the oscillation constant λ0 = γp := ((p − 1)/p)p, and (non)oscillation criteria
(1.3), (1.4) extend in a natural way to (1.5) with r(t) ≡ 1. A complementary concept to the
conditional oscillation is the concept of strong (non)oscillation. Equation (1.5) with λc instead
of c is said to be strongly (non)oscillatory if it is (non)oscillatory for every λ > 0. Sometimes,
strongly oscillatory equations are regarded as conditionally oscillatory with the oscillation
constant λ0 = 0 and strongly nonoscillatory as conditionally oscillatory with the oscillation
constant λ0 =∞. We refer to [2] for results along this line.

In our paper, we are motivated by a statement presented in [3, 4], where the two-
parametric perturbation of the Euler differential equation with the critical coefficient

(
Φ
(
x′
))′ + γp

tp
Φ(x) = 0 (1.7)

is investigated. It is shown there that the equation

[(
1 +

λ

log2t

)
Φ
(
x′
)]′

+

[
γp

tp
+

μ

tplog2t

]
Φ(x) = 0 (1.8)
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is oscillatory if μ − γpλ > μp := (1/2)((p − 1)/p)p−1 and nonoscillatory in the opposite case.
Note that an important role in proving the results of [4] is played by the fact that we know
explicitly the solution h(t) = t(p−1)/p of (1.7).

Here, we treat the problem of conditional oscillation in the following general setting.
We suppose that (1.5) is nonoscillatory and that h is its eventually positive solution. We find
explicit formulas for the functions r̂, ĉ such that the equation

[
(r(t) + λr̂(t))Φ

(
x′
)]′ + [c(t) + μĉ(t)]Φ(x) = 0 (1.9)

is conditionally oscillatory, that is, there exists a constant γ such that (1.9) is oscillatory if
μ − λ > γ and nonoscillatory if μ − λ < γ .

The setup of the paper is as follows. In the next section, we present some statements
of the half-linear oscillation theory. Section 3 is devoted to the so-called modified Riccati
equation associated with (1.5) and (1.9). The main result of the paper, the construction of
the functions r̂, ĉ such that (1.9) is two-parametric conditionally oscillatory, is presented in
Section 4.

2. Auxiliary Results

As we have already mentioned in the previous section, the linear oscillation theory extends
almost verbatim to half-linear equation (1.5). The word “almost” reflects the fact that not
all linear methods can be extended to (1.5), some results for (1.5) are the same as those for
(1.1), but to prove them, one has to use different methods than in the linear case. A typical
method of this kind is the following transformation formula. If f(t)/= 0 is a sufficiently smooth
function and functions x, y are related by the formula x = f(t)y, then we have the identity

f(t)
[(
r(t)x′

)′ + c(t)x] = (R(t)y′)′ + C(t)y, (2.1)

where

R(t) = r(t)f2(t), C(t) = f(t)
[(
r(t)f ′(t)

)′ + c(t)f(t)]. (2.2)

In particular, x is a solution of (1.1) if and only if y is a solution of the equation (Ry′)′+Cy = 0.
The transformation identity (2.1) does not extend to (1.5).

To illustrate the meaning of this fact in the conditional oscillation of (1.1) and (1.5),
suppose that (1.1) is nonoscillatory and let h be its so-called principal solution (see [5, Chapter
XI]), that is, a solution such that

∫∞
r−1(t)h−2(t)dt =∞. We would like to find a function ĉ such

that the equation

(
r(t)x′

)′ + (c(t) + μĉ(t))x = 0 (2.3)

is conditionally oscillatory and to find its oscillation constant. The transformation x = h(t)y
transforms (1.1) into the one term equation (r(t)h2(t)y′)′ = 0 and the transformation of
independent variable s =

∫ t
r−1(τ)h−2(τ)dτ further to the equation d2y/ds2 = 0. Now,
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from (1.2), we know that the “right” perturbation term in the last equation is 1/s2 with
the oscillation constant 1/4. Substituting back for s, we get the conditionally oscillatory
equation

(
R(t)y′

)′ + μ

R(t)
(∫ t

R−1(s)ds
)2y = 0, R(t) = r(t)h2(t), (2.4)

and the back transformation y = h−1(t)x results in the conditionally oscillatory equation

(
r(t)x′

)′ +
⎡
⎢⎣c(t) + μ

h2(t)R(t)
(∫ t

R−1(s)ds
)2

⎤
⎥⎦x = 0, (2.5)

with the oscillation constant μ0 = 1/4. The previous result is one of the main statements of
[6], but it was proved there by a different method.

In the next section, we will show how to modify this method to be applicable to half-
linear equations. At this moment, we present the result of [7] with the classical (i.e., one
parametric) conditional oscillation of (1.5). Let h be a positive solution of (1.5) such that
h′(t)/= 0 for large t. We denote

R(t) := r(t)h2(t)|h′(t)|p−2, G(t) := r(t)h(t)Φ(h′(t)), (2.6)

ĉ(t) =
1

|h(t)|pR(t)
(∫ t

R−1(s)ds
)2 . (2.7)

Theorem 2.1. Suppose that (1.5) possesses a nonoscillatory solution h such that h′(t)/= 0 for large t,
and R, G are given by (2.6). If

∫∞ dt
R(t)

=∞, lim inf
t→∞

|G(t)| > 0, (2.8)

then the equation

(
r(t)Φ

(
x′
))′ + [c(t) + μĉ(t)]Φ(x) = 0 (2.9)

is conditionally oscillatory, and its oscillation constant is μ0 = 1/2q, where q is the conjugate exponent
to p, that is, 1/p + 1/q = 1.

Note that in the linear case p = 2, the function f(t) = h(t)
√∫ t

r−1(τ)h−2(τ)dτ is a
solution of (2.9) with μ = μ0 = 1/4. In the general half-linear case, an explicit solution of (2.9)
is no longer known, but we are able to “estimate” this solution. The next statement, which is
also taken from [7], presents a result along this line.
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Theorem 2.2. Suppose that (2.8) holds and let f(t) = h(t)(
∫ t
R−1(s)ds)

1/p
, then a solution of (2.9)

with μ = 1/2q is of the form

x(t) = f(t)

⎛
⎝1 +O

⎛
⎝
(∫ t

R−1(s)ds

)−1
⎞
⎠
⎞
⎠, (2.10)

and (suppressing the argument t)

f

⎡
⎢⎣(rΦ(f ′))′ +

⎛
⎜⎝c +

1

2qhpR
(∫ t

R−1
)2

⎞
⎟⎠Φ
(
f
)
⎤
⎥⎦

= −
(
p − 1

)(
p − 2

)
G′

G2
(∫ t

R−1
) −

(
p − 1

)(
p − 2

)
3p3G3

(∫ t
R−1
)2

[(
p − 3

)
G′ + 2pr

∣∣h′∣∣p]

+O

⎛
⎝G−3

(∫ t
R−1

)−3
⎞
⎠
⎡
⎢⎣ G′

pG2 −
(
p3 − 4p2 + 11p − 6

)
h′

2p3h
− 1

qR
(∫ t

R−1
)
⎤
⎥⎦,

(2.11)

as t → ∞.

The last statement presented in this section is the so-called reciprocity principle. Let x be
a solution of (1.5) and let u := rΦ(x′) be its quasiderivative, then u is a solution of the reciprocal
equation

(
c1−q(t)Φ−1(u′))′ + r1−q(t)Φ−1(u) = 0, (2.12)

where Φ−1(u) = |u|q−2u is the inverse function of Φ.

3. Modified Riccati Equation

Suppose that λ and r̂ in (1.9) are such that r(t) + λr̂(t) > 0. Let x(t)/= 0 in an interval I be
a solution of (1.9), and let w = (r + λr̂)Φ(x′/x). Then, w solves in I the “standard” Riccati
equation

w′ + c(t) + μĉ(t) +
(
p − 1

)
[r(t) + λr̂(t)]1−q|w|q = 0. (3.1)

More precisely, the following statement holds.

Lemma 3.1 ([8, Theorem 2.2.1]). The following statements are equivalent:

(i) equation (1.9) is nonoscillatory;

(ii) equation (3.1) has a solution on an interval [T,∞);
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(iii) there exists a continuously differentiable functionw such that

w′ + c(t) + μĉ(t) +
(
p − 1

)
[r(t) + λr̂(t)]1−q(t)|w|q ≤ 0 (3.2)

on an interval [T,∞).

In the linear case, if x is a solution of (1.1), x = f(t)y, and v = rf2y′/y is the Riccati
variable corresponding to the equation on the right-hand side in (2.1), then v = f2(w − wf)
where w = rx′/x, wf = rf ′/f . This suggests to investigate the function v = fp(w −wf) in the
half-linear case, and this leads to the modified Riccati equation introduced in the next statement
which is taken from [4] with a modification from [3].

Lemma 3.2. Suppose that f is a positive differentiable function, wf = (r + λr̂)Φ(f ′/f), and w is a
continuously differentiable function, and put v = fp(w −wf), then the following identity holds:

fp(t)
[
w′ + c(t) + μĉ(t) +

(
p − 1

)
(r(t) + λr̂(t))1−q|w|q

]

= v′ + f(t)
[
�
(
f(t)
)
+ �̂
(
f(t)
)]

+
(
p − 1

)
(r(t) + λr̂(t))1−qf−q(t)G(t, v),

(3.3)

where

�
(
f
)
=
(
r(t)Φ

(
f ′
))′ + c(t)Φ(f), �̂

(
f
)
= λ
(
r̂(t)Φ

(
f ′
))′ + μĉ(t)Φ(f), (3.4)

G(t, v) = |v + Ω(t)|q − qΦ−1(Ω(t))v − |Ω(t)|q, Ω := (r + λr̂)fΦ
(
f ′
)
. (3.5)

In particular, if w is a solution of (3.1), then v is a solution of the modified Riccati equation

v′ + f(t)
[
�
(
f(t)
)
+ �̂
(
f(t)
)]

+
(
p − 1

)
(r(t) + λr̂(t))1−qf−q(t)G(t, v) = 0. (3.6)

Conversely, if v is a solution of (3.6), thenw = wf + f−pv is a solution of (3.1).

Observe that in case f ≡ 1, the modified Riccati equation (3.6) reduces to the standard
Riccati equation (3.1).

Next, we will investigate the function G in (3.5). First, we present a result from [4,
Lemmas 5 and 6].

Lemma 3.3. The function G defined in (3.5) has the following properties.

(i) G(t, v) ≥ 0 with the equality if and only if v = 0.

(ii) If q ≥ 2, one has the inequality

G(t, v) ≥ q

2
|Ω(t)|q−2v2. (3.7)

Now, we concentrate on an estimate of the function G in case q < 2.
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Lemma 3.4. Suppose that q < 2 and limt→∞|Ω(t)| = ∞, then there is a constant β > 0 such that for
v ∈ (−∞,−v0], v0 > 0, and large t

G(t, v) ≥ β|Ω(t)|q−2|v|q. (3.8)

Proof. Consider the function

H(t, v) =

⎧⎪⎨
⎪⎩
G(t, v)
|v|q , for v /= 0,

0, for v = 0.
(3.9)

First of all,

lim
v→±∞

H(t, v) = 1, lim
v→ 0
H(t, v) = 0. (3.10)

Now, we compute local extrema ofH with respect to v. We have (suppressing the argument
t)

Hv =
1

|v|2q
{[
qΦ−1(v + Ω) − qΦ−1(Ω)

]
|v|q − qΦ−1(v)

[
|v + Ω|q − qΦ−1(Ω)v − |Ω|q

]}

=
q

v2Φ−1(v)

{
vΦ−1(v + Ω) − vΦ−1(Ω) − |v + Ω|q + qΦ−1(Ω)v + |Ω|q

}

=
q

v2Φ−1(v)

{
−ΩΦ−1(v + Ω) +

(
q − 1

)
Φ−1(Ω)v + |Ω|q

}
.

(3.11)

Denote N(v) the function in braces on the last line of the previous computation. We have
N(0) = 0,

N′(v) = −(q − 1
)
Ω|v + Ω|q−2 +

(
q − 1

)
Φ−1(Ω)

=
(
q − 1

)
Ω
[
−|v + Ω|q−2 + |Ω|q−2

]

= 0

(3.12)

if and only if v = 0 and v = −2Ω, and

N′′(v) = −(q − 1
)(
q − 2

)
Ω|v + Ω|q−3 sgn(v + Ω). (3.13)

This means that v = 0 is the local minimum and v = −2Ω is the local maximum of the function
N. Using this result, an examination of the graph of the functionH shows that this function
has the local minimum at v = 0 and a local maximum in the interval (−∞,−2Ω) if Ω > 0,
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and this maximum is in (−2Ω,∞) if Ω < 0. Next, denote v∗ the value for whichH(t, v∗) = 1.
Consequently, for any v0 > 0, it follows from (3.10) that

inf
v∈(−∞,−v0]

H(t, v) =H(t,−v) = 1
|v|q
[
|Ω − v|q + qvΦ−1(Ω) − |Ω|q

]
, (3.14)

where

v =

⎧⎨
⎩
−v∗ if − v0 < v∗ < 0,

v0 otherwise.
(3.15)

Next, we want to investigate the dependence of this infimum on Ω when |Ω| → ∞. To this
end, we investigate the function F(x) = |x − a|q + qaΦ−1(x) − |x|q for x → ±∞, a ∈ � being a
parameter. We have (using the expansion formula for (1 + x)α)

F(x) = Φ−1(x)
{ |x − a|q − |x|q

Φ−1(x)
+ qa
}

= Φ−1(x)
{
x

[(
1 − a

x

)q
− 1
]
+ qa
}

= Φ−1(x)

((
q

2

)
a2

x
+ o
(
x−1
))

= a2

(
q

2

)
|x|q−2(1 + o(1)),

(3.16)

as |x| → ∞. Consequently, if limt→∞|Ω(t)| = ∞, there exists a constant β > 0 such that (3.8)
holds.

Now, we are ready to formulate a complement of [9, Theorem 2] which is presented
in that paper under the assumption that the function Ω is bounded.

Theorem 3.5. Let f be a positive continuously differentiable function such that f ′(t)/= 0 for large t.
Suppose that

∫∞R−1(t)dt = ∞, whereR = (r+λr̂)f2|f ′|p−2,C(t) ≥ 0 for large t, and limt→∞|Ω(t)| =
∞, then all possible proper solutions (i.e., solutions which exist on some interval of the form [T,∞))
of the equation

v′ + C(t) +
(
p − 1

)
(r(t) + λr̂(t))1−qf−q(t)G(t, v) = 0 (3.17)

are nonnegative.

Proof. First consider the case q < 2. Let v0 > 0 be arbitrary. By Lemma 3.4, there exists T0 ∈ �
and β > 0 such that for t ≥ T0 and v ∈ (−∞,−v0],

(
p − 1

)
(r + λr̂)1−qf−qG(t, v) ≥ β(p − 1

)
(r + λr̂)1−qf−q|Ω|q−2|v|q = (p − 1

)
β
|v|q
R . (3.18)

Suppose that v is the solution of (3.17) such that v(t0) = −v0 for some t0 ≥ T0, then

v′ + C(t) +
(
p − 1

)
β
|v|q
R(t) ≤ 0, (3.19)



Abstract and Applied Analysis 9

for t ≥ t0 for which the solution v exists. Now, we use the same argument as in the proof of
Theorem 2 in [9]. Consider the equation

z′ + C(t) +
(
p − 1

)
β
|z|q
R(t) = 0. (3.20)

This is the standard Riccati equation corresponding to the half-linear equation

(
Rp−1(t)Φ(x′)

)′
+ βp−1C(t)Φ(x) = 0. (3.21)

Assumptions of theorem imply, by [8, Corollary 4.2.1], that all proper solutions of (3.20) are
nonnegative. It means that any solution of (3.20) which starts with a negative initial condition
blows down to −∞ in a finite time. Inequality (3.19) implies that if z is the solution of (3.20)
satisfying z(t0) = v(t0) = −v0, that is, z starts with the same initial value as the solution v of
(3.17), then v decreases faster than z. In particular, if z blows down to −∞ at a finite time,
then v does as well. This means that all proper solutions of (3.17), if any, are nonnegative.

In case q ≥ 2, we proceed in a similar way. We use (3.7) and we compare (3.17) with
the equation

z′ +C(t) +
p

2
z2

R(t) = 0, (3.22)

which is the standard Riccati equation corresponding to the linear equation

(R(t)x′)′ + p

2
C(t)x = 0.

(3.23)

Then, reasoning in the same way as in case q < 2, we obtain the conclusion that all proper
solutions of (3.17) are nonnegative also in this case.

4. Two-Parametric Conditional Oscillation

Recall that h is a positive solution of (1.5) such that h′(t)/= 0 for large t, g = rΦ(h′) is
its quasiderivative, R, G are given by (2.6), and ĉ is given by (2.7). Recall also that the
quasiderivative g is a solution of the reciprocal equation (2.12), denote by

G̃ := c1−qgΦ−1(g ′) = −rhΦ(h′), R̃ := c1−qg2∣∣g ′∣∣q−2 =
r2|h′|2p−2

chp−2
(4.1)

the “reciprocal” analogues of G and R, and define

r̂(t) =
1

|h′(t)|pR̃(t)
(∫ t

R̃−1(s)ds
)2 . (4.2)
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Our main result reads as follows.

Theorem 4.1. Suppose that conditions (2.8) hold. Further, suppose that

lim
t→∞

r̂(t)
r(t)

= 0, (4.3)

and that there exist limits

lim
t→∞

r(t)|h′(t)|p
c(t)hp(t)

, lim
t→∞

(
r̂(t)Φ

(
f ′(t)

))′
ĉ(t)Φ

(
f(t)
) , (4.4)

the second one being finite, where f(t) = h(t)(
∫ t
R−1(s)ds)

1/p
. If μ − λ < 1/2q, then (1.9) is

nonoscillatory; if μ − λ > 1/2q, then it is oscillatory.

Proof. First consider the case μ = 0 in (1.9), that is, we consider the equation

[
(r(t) + λr̂(t))Φ

(
x′
)]′ + c(t)Φ(x) = 0. (4.5)

The quantities G̃ and R̃ defined in (4.1) satisfy

G̃ = −rhΦ(h′) = −G ,

R̃ =
r2|h′|2p−2

chp−2 = −h(rΦ(h′))2

(rΦ(h′))′
,

(4.6)

hence, integrating by parts,

∫ t
R̃−1(s)ds = −

∫ t 1
h(s)

[r(s)Φ(h′(s))]′

[r(s)Φ(h′(s))]2
ds

=
1

h(t)r(t)Φ(h′(t))
+
∫ t h′(s)

h2(s)
1

r(s)Φ(h′(s))
ds

=
1

G(t)
+
∫ t
R−1(s)ds.

(4.7)

Consequently, conditions (2.8) imply that corresponding conditions for G̃ and R̃ also hold.
This means, in view of Theorem 2.1 (applied to the reciprocal equation (2.12)), that the
equation

(
c1−q(t)Φ−1(u′))′ +

⎡
⎢⎣r1−q(t) +

λ∣∣g(t)∣∣qR̃(t)(∫ t R̃−1(s)ds
)2

⎤
⎥⎦Φ−1(u) = 0 (4.8)

is oscillatory for λ > 1/2p and nonoscillatory in the opposite case.
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The reciprocal equation to (4.5) is the equation

(
c1−q(t)Φ−1(u′))′ + (r(t) + λr̂(t))1−qΦ−1(u) = 0. (4.9)

Since (4.3) holds, we have

(r + λr̂)1−q = r1−q
(

1 +
λr̂

r

)1−q
= r1−q

(
1 +

(
1 − q)λr̂

r
+ o
(
r̂

r

))
, (4.10)

as t → ∞. Hence, we can rewrite (4.9) in the following form:

(
c1−q(t)Φ−1(u′))′ + r1−q(t)

(
1 +

(
1 − q)λr̂(t)

r(t)
+ o
(
r̂(t)
r(t)

))
Φ−1(u) = 0. (4.11)

Let λ > −1/2q what is equivalent to λ(1 − q) < 1/2p, then, in view of (4.3), there exists λ̃ such
that λ(1 − q) < λ̃ < 1/2p, hence, for large t,

r1−q
(

1 +
λ
(
1 − q)r̂
r

+ o
(
r̂

r

))
< r1−q

(
1 +

λ̃r̂

r

)
= r1−q +

λ̃∣∣g∣∣qR̃(∫ t R̃−1(s)ds
)2 . (4.12)

This means that the equation

(
c1−q(t)Φ−1(u′))′ +

⎡
⎢⎣r1−q(t) +

λ̃∣∣g(t)∣∣qR̃(t)(∫ t R̃−1(s)ds
)2

⎤
⎥⎦Φ−1(u) = 0 (4.13)

is a majorant of (4.9) and this majorant is nonoscillatory by Theorem 2.1 applied to (4.8).
So (4.9) is also nonoscillatory, and hence (4.5) is nonoscillatory as well. The same argument
implies oscillation of (4.5) if λ < −1/2q.

Now, we turn our attention to the general case μ/= 0. Let f := h(
∫ t
R−1(s)ds)1/p, and

consider the term

f
[
�
(
f
)
+ �̂
(
f
)]

(4.14)

appearing in the modified Riccati equation (3.6), where the operators �, �̂ are defined by (3.4).
In order to use the asymptotic formula from Theorem 2.2, we write f[�(f) + �̂(f)] = A + B,
where

A = f
[(
rΦ
(
f ′
))′ +

(
c +

1
2q
ĉ

)
Φ
(
f
)]
,

B = f
[
λ
(
r̂Φ
(
f ′
))′ +

(
μ − 1

2q

)
ĉΦ
(
f
)]
.

(4.15)
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Let L ∈ � be the second limit in (4.4), that is,

(
r̂Φ
(
f ′
))′ = LĉΦ(f)(1 + o(1)) as t −→ ∞. (4.16)

The leading term in the expression A is const G′G−2(
∫ t
R−1(s)ds)−1 by Theorem 2.2, while,

concerning the asymptotics of B,

B = fĉΦ
(
f
)[
Lλ + μ − 1

2q
+ o(1)

]
=

1

R
(∫ t

R−1(s)ds
)
[
Lλ + μ − 1

2q
+ o(1)

]
, (4.17)

as t → ∞. The existence of the first limit in (4.4) implies that there exists the limit

lim
t→∞

G′(t)G−2(t)
R−1(t)

= lim
t→∞

r(t)h2(t)|h′(t)|p−2(r(t)|h′(t)|p − c(t)hp(t))
(r(t)h(t)Φ(h′(t)))2

= 1 − lim
t→∞

c(t)hp(t)
r(t)|h′(t)|p .

(4.18)

The limit in (4.18) must be 0, which follows from the l’Hospital rule and the fact that
the integral of R−1 is divergent, while the integral of G′G−2 is convergent by the second
assumption in (2.8). This means that the term B dominates A; hence, A(t) + B(t) > 0 for
large t if Lλ + μ − 1/2q > 0 and A(t) + B(t) < 0 for large t if Lλ + μ − 1/2q < 0.

Now, it remains to prove that these inequalities imply (non)oscillation of (1.9) and that
L = −1.

To prove the nonoscillation, let Lλ+μ− 1/2q < 0, that is, A(t) +B(t) < 0 for large t, and
let G be defined by (3.5). By Lemma 3.3(i) v = 0 is a solution of the inequality

v′ +A(t) + B(t) +
(
p − 1

)
(r(t) + λr̂(t))1−qf−q(t)G(t, v) ≤ 0, (4.19)

for large t, and by identity (3.3) in Lemma 3.2 we obtain that w = (r + λr̂)Φ(f ′/f) satisfies
the Riccati inequality (3.2), that is, (1.9) is nonoscillatory by Lemma 3.1(iii).

To prove the oscillation, let Lλ+μ−1/2q > 0, that is, A(t)+B(t) > 0 for large t. Observe
that for t → ∞

∫ t
fp(s)ĉ(s)ds =

∫ t 1

R(s)
(∫ t

R−1(τ)dτ
)ds = log

(∫ t
R−1(s)ds

)
−→ ∞, (4.20)

and hence
∫∞

B(t)dt = ∞, which consequently means that
∫∞(A(t) + B(t))dt = ∞. Here, we

have used the fact that the integral of the leading term in A and also integrals of other terms
in the asymptotic formula of Theorem 2.2 are convergent, see [7, page 161]. Suppose, on the
contrary, that (1.9) is nonoscillatory. Then by Lemma 3.1, there exists a solution w of the
associated Riccati equation (3.1) for large t and, by Lemma 3.2, the function v = fp(w −wf),
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where wf = (r + λr̂)Φ(f ′/f), is a solution of the modified Riccati equation (3.6) for large t.
Integrating (3.6), we get

v(T) − v(t) =
∫ t
T

(A(s) + B(s))ds

+
(
p − 1

)∫ t
T

(r(s) + λr̂(s))1−qf−q(s)G(s, v(s))ds.
(4.21)

Now, we use Theorem 3.5. In view of (2.8) and (4.3), we have for t → ∞,

|Ω(t)| = (r(t) + λr̂(t))f(t)
∣∣Φ(f ′(t))∣∣

= r(t)(1 + o(1))h(t)

(∫ t
R−1(s)ds

)1/p∣∣Φ(h′(t))∣∣
(∫ t

R−1(s)ds

)(p−1)/p

×

⎛
⎜⎝1 +

1

pG(t)
(∫ t

R−1(s)ds
)
⎞
⎟⎠

p−1

= |G(t)|
(∫ t

R−1(s)ds

)
(1 + o(1)) −→ ∞,

R(t) = (r(t) + λr̂(t))f2(t)
∣∣f ′(t)∣∣p−2

= r(t)(1 + o(1))h2(t)

(∫ t
R−1(s)ds

)2/p∣∣h′(t)∣∣p−2

(∫ t
R−1(s)ds

)(p−2)/p

×

⎛
⎜⎝1 +

1

pG(t)
(∫ t

R−1(s)ds
)
⎞
⎟⎠

p−2

= R(t)

(∫ t
R−1(s)ds

)
(1 + o(1)),

(4.22)

and hence

∫ t ds
R(s) −→ ∞ as t −→ ∞. (4.23)

Consequently, v(t) ≥ 0 by Theorem 3.5. This means that the left-hand side in (4.21) is
bounded above as t → ∞, while the right-hand side tends to ∞ which yields the required
contradiction proving that (1.9) is oscillatory if Lλ + μ > 1/2q.

Finally, consider again the case μ = 0. In that case, we proved in the first part of the
proof that (1.9) is oscillatory or nonoscillatory depending on whether λ < −1/2q or λ > −1/2q.
This shows that the second limit in (4.4) must be −1.
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Remark 4.2. (i) From the proof of Theorem 4.1, it follows that if the first limit in (4.4) exists,
then conditions (2.8) imply that this limit is 1, and the assumptions of the theorem imply that
if the second limit in (4.4) exists and is finite, then it is −1.

(ii) Theorem 4.1 can be applied to the Euler equation (1.7), and one can obtain the
same result for (1.8) as in [4, Corollary 3]. Indeed, in this case, we have h(t) = t(p−1)/p, r = 1,
c(t) = γpt−p, where γp = ((p − 1)/p)p and by a direct computation

G(t) =
(
p − 1
p

)p−1

, R(t) = R̃(t) =
(
p − 1
p

)p−2

t, (4.24)

hence,

ĉ(t) =

⎡
⎣(t(p−1)/p

)p(p − 1
p

)p−2

t

[(
p

p − 1

)p−2

log t

]2
⎤
⎦
−1

=
(

p

p − 1

)2−p
t−plog−2t,

r̂(t) =

⎡
⎣
(
p − 1
p

t−1/p
)p(p − 1

p

)p−2

t

[(
p

p − 1

)p−2

log t

]2
⎤
⎦
−1

=
(

p

p − 1

)2

log−2t,

(4.25)

which mean that conditions (2.8) and (4.3) are satisfied. Concerning the limits in (4.4), we
have

r
∣∣h′(t)∣∣p =

(
p − 1
p

)p
t−1 = c(t)hp(t), (4.26)

that is, the first limit in (4.4) is 1. Next,

f(t) =
(

p

p − 1

)(p−2)/p

t(p−1)/plog1/pt, (4.27)

and consequently,

ĉ(t)Φ
(
f(t)
)
=
(

p

p − 1

)2−p
t−plog−2t

[(
p

p − 1

)(p−2)/p

t(p−1)/plog1/pt

]p−1

=
(

p

p − 1

)−1+2/p

t−2+1/plog−1−1/pt,

f ′(t) =
(

p

p − 1

)(p−2)/p[p − 1
p

t−1/plog1/pt +
1
p
t−1/plog1/p−1t

]

=
(
p − 1
p

)2/p

t−1/plog1/pt

[
1 +

1
p − 1

log−1t

]
.

(4.28)
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Using this formula,

r̂(t)Φ
(
f ′(t)

)
=
(

p

p − 1

)2/p

t−1+1/plog−1−1/pt

[
1 + log−1t +

p − 2
2

log−2t +O
(

log−2t
)]
, (4.29)

and hence,

(
r̂(t)Φ

(
f ′(t)

))′ =
(

p

p − 1

)2/p[
−p − 1

p
t−2+1/plog−1−1/pt

(
1 +O

(
log−1t

))

− p + 1
p

t−2+1/plog−2−1/pt
(

1 +O
(

log−1t
))

+t−2+1/plog−1−1/ptO
(

log−2t
)]

= −
(

p

p − 1

)2/p−1

t−2+1/plog−1−1/pt
(

1 +O
(

log−1t
))
,

(4.30)

as t → ∞. This means that the second limit in (4.4) is −1. According to Theorem 4.1, we
obtain that the equation

[(
1 + λ

(
p

p − 1

)2 1

log2t

)
Φ
(
x′
)]′

+

[
γp

tp
+ μ
(

p

p − 1

)2−p 1

tplog2t

]
Φ(x) = 0 (4.31)

is nonoscillatory if μ− λ < 1/2q and oscillatory if μ− λ > 1/2q. If we denote λ̃ = λ(p/(p − 1))2

and μ̃ = μ(p/(p − 1))2−p, we see that (1.8) (with λ̃, μ̃ instead of λ, μ, resp.) is nonoscillatory if
μ̃ − γpλ̃ < (1/2)((p − 1)/p)p−1, and it is oscillatory if μ̃ − γpλ̃ > (1/2)((p − 1)/p)p−1, that is, we
have the statement from [4].

(iii) In [3], it is proved that (1.8) is nonoscillatory also in the limiting case μ − γpλ =
μp. We conjecture that we have also the same situation in the general case, that is, (1.9) is
nonoscillatory also in the case μ − λ = 1/2q.
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The purpose of this paper is to investigate the existence and uniqueness of positive solutions for
the following fourth-order boundary value problem: y(4)(t) = f(t, y(t)), t ∈ [0, 1], y(0) = y(1) =
y′(0) = y′(1) = 0. Moreover, under certain assumptions, we will prove that the above boundary
value problem has a unique symmetric positive solution. Finally, we present some examples and
we compare our results with the ones obtained in recent papers. Our analysis relies on a fixed point
theorem in partially ordered metric spaces.

1. Introduction

The purpose of this paper is to consider the existence and uniqueness of positive solutions
for the following fourth-order two-point boundary value problem:

y(4)(t) = f
(
t, y(t)

)
, t ∈ [0, 1],

y(0) = y(1) = y′(0) = y′(1) = 0,
(1.1)

which describes the bending of an elastic beam clamped at both endpoints.
There have been extensive studies on fourth-order boundary value problems with

diverse boundary conditions. Some of the main tools of nonlinear analysis devoted to the
study of this type of problems are, among others, lower and upper solutions [1–4], monotone
iterative technique [5–7], Krasnoselskii fixed point theorem [8], fixed point index [9–11],
Leray-Schauder degree [12, 13], and bifurcation theory [14–16].
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2. Background

In this section, we present some basic facts which are necessary for our results.
In our study, we will use a fixed point theorem in partially ordered metric spaces which

appears in [17].
LetM denote the class of those functions β : [0,∞) → [0, 1) satisfying the condition

β(tn) −→ 1 implies tn → 0. (2.1)

Now, we recall the above mentioned fixed point theorem.

Theorem 2.1 (see 1, Theorem 2.1). Let (X,≤) be a partially ordered set and suppose that there
exists a metric d in X such that (X, d) is a complete metric space. Let T : X → X be a nondecreasing
mapping such that there exists an element x0 ∈ X with x0 ≤ Tx0. Suppose that there exists β ∈ M
such that

d
(
Tx, Ty

) ≤ β(d(x, y)) · d(x, y), for any x, y ∈ X with x ≥ y. (2.2)

Assume that either T is continuous or X is such that

if (xn) is a nondecreasing sequence in X such that xn −→ x, then xn ≤ x for all n ∈ �. (2.3)

Besides, suppose that

for each x, y ∈ X, there exists z ∈ X which is comparable to x and y. (2.4)

Then T has a unique fixed point.

In our considerations, we will work with a subset of the classical Banach space C[0, 1].
This space will be considered with the standard metric

d
(
x, y
)
= sup

0≤t≤1

∣∣x(t) − y(t)∣∣. (2.5)

This space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t), for t ∈ [0, 1]. (2.6)

In [18], it is proved that (C[0, 1],≤) with the above mentioned metric satisfies condition (2.3)
of Theorem 2.1. Moreover, for x, y ∈ C[0, 1], as the function max(x, y) ∈ C[0, 1], (C[0, 1],≤)
satisfies condition (2.4).

On the other hand, the boundary value problem (1.1) can be rewritten as the integral
equation (see, e.g., [19])

y(t) =
∫1

0
G(t, s)f(s, u(s))ds, for t ∈ [0, 1], (2.7)
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where G(t, s) is the Green’s function given by

G(t, s) =
1
6

⎧⎨
⎩
t2(1 − s)2[(s − t) + 2(1 − t)s], 0 ≤ t ≤ s ≤ 1,

s2(1 − t)2[(t − s) + 2(1 − s)t], 0 ≤ s ≤ t ≤ 1.
(2.8)

Note that G(t, s) satisfies the following properties:

(i) G(t, s) is a continuous function on [0, 1] × [0, 1],
(ii) G(0, s) = G(1, s) = 0, for s ∈ [0, 1],
(iii) G(t, s) ≥ 0, for t, s ∈ [0, 1].

3. Main Results

Our starting point in this section is to present the class of functions A which we use later. By
A we denote the class of functions φ : [0,∞) → [0,∞) satisfying the following conditions:

(i) φ is nondecreasing,

(ii) for any x > 0, φ(x) < x,

(iii) β(x) = φ(x)/x ∈ M.

Examples of functions inA areφ(x) = μxwith 0 ≤ μ < 1, φ(x) = x/(1+x) and φ(x) = ln(1+x).
In the sequel, we formulate our main result.

Theorem 3.1. Consider problem (1.1) assuming the following hypotheses:

(a) f : [0, 1] × [0,∞) → [0,∞) is continuous,

(b) f(t, y) is nondecreasing with respect to the second variable, for each t ∈ [0, 1],

(c) suppose that there exists 0 < α ≤ 384, such that, for x, y ∈ [0,∞) with y ≥ x,

f
(
t, y
) − f(t, x) ≤ αφ(y − x), with φ ∈ A. (3.1)

Then, problem (1.1) has a unique nonnegative solution.

Proof. Consider the cone

P = {x ∈ C[0, 1] : x ≥ 0}. (3.2)

Obviously, (P, d) with d(x, y) = sup{|x(t) − y(t)| : t ∈ [0, 1]} is a complete metric space
satisfying condition (2.3) and condition (2.4) of Theorem 2.1.
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Consider the operator defined by

(Tx)(t) =
∫1

0
G(t, s)f(s, x(s))ds, for x ∈ P, (3.3)

where G(t, s) is the Green’s function defined in Section 2.
It is clear that T applies the cone P into itself since f(t, x) and G(t, s) are nonnegative

continuous functions.
Now, we check that assumptions in Theorems 2.1 are satisfied.
Firstly, the operator T is nondecreasing.
Indeed, since f is nondecreasing with respect to the second variable, for u, v ∈ P , u ≥ v

and t ∈ [0, 1], we have

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds

≥
∫1

0
G(t, s)f(s, v(s))ds

= (Tv)(t).

(3.4)

On the other hand, a straightforward calculation gives us

∫1

0
G(t, s)ds =

∫ t
0
G(t, s)ds +

∫1

t

G(t, s)ds =
t2

24
− t3

12
+
t4

24
,

max
0≤t≤1

∫1

0
G(t, s)ds = max

0≤t≤1

(
t2

24
− t3

12
+
t4

24

)
=

1
384

.

(3.5)

Taking into account this fact and our hypotheses, for u, v ∈ P and u > v, we can obtain the
following estimate:

d(Tu, Tv) = sup
0≤t≤1

∣∣∣∣∣(Tu)(t) − (Tv)(t)
∣∣∣∣∣

= sup
0≤t≤1

((Tu)(t) − (Tv)(t))

= sup
0≤t≤1

∫1

0
G(t, s)

(
f(s, u(s)) − f(s, v(s)))ds

≤ sup
0≤t≤1

∫1

0
G(t, s)αφ(u(s) − v(s))ds

≤ sup
0≤t≤1

∫1

0
G(t, s)αφ(d(u, v))ds
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= αφ(d(u, v)) sup
0≤t≤1

∫1

0
G(t, s)ds

= αφ(d(u, v)) · 1
384

≤ φ(d(u, v))

=
φ(d(u, v))
d(u, v)

· d(u, v).

(3.6)

This gives us, for u, v ∈ P and u > v,

d(Tu, Tv) ≤ β(d(u, v)) · d(u, v), (3.7)

where β(x) = φ(x)/x ∈ M.
Obviously, the last inequality is satisfied for u = v.
Therefore, the contractive condition appearing in Theorem 2.1 is satisfied for u ≥ v.

Besides, as f and G are nonnegative functions,

T0 =
∫1

0
G(t, s)f(s, 0)ds ≥ 0. (3.8)

Finally, Theorem 2.1 tells us that T has a unique fixed point in P , and this means that problem
(1.1) has a unique nonnegative solution.

This finishes the proof.

Now, we present a sufficient condition for the existence and uniqueness of positive
solutions for our problem (1.1) (positive solution means x(t) > 0, for t ∈ (0, 1)). The proof
of the following theorem is similar to the proof of Theorem 3.6 of [8]. We present a proof for
completeness.

Theorem 3.2. Under assumptions of Theorem 3.1 and suppose that f(t0, 0)/= 0 for certain t0 ∈ [0, 1],
problem (1.1) has a unique positive solution.
Proof. Consider the nonnegative solution x(t) given by Theorem 3.1 of problem (1.1).

Notice that this solution satisfies

x(t) =
∫1

0
G(t, s)f(s, x(s))ds. (3.9)

Now, we will prove that x is a positive solution.
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In contrary case, suppose that there exists 0 < t∗ < 1 such that x(t∗) = 0 and,
consequently,

x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds = 0. (3.10)

Since x ≥ 0, f is nondecreasing with respect to the second variable and G(t, s) ≥ 0, we have

0 = x(t∗) =
∫1

0
G(t∗, s)f(s, x(s))ds ≥

∫1

0
G(t∗, s)f(s, 0)ds ≥ 0, (3.11)

and this gives us

∫1

0
G(t∗, s)f(s, 0)ds = 0. (3.12)

This fact and the nonnegative character of G(t, s) and f(t, x) imply

G(t∗, s) · f(s, 0) = 0 a · e (s). (3.13)

As G(t∗, s)/= 0a·e (s), because G(t∗, s) is given by a polynomial, we obtain

f(s, 0) = 0 a · e (s). (3.14)

On the other hand, as f(t0, 0)/= 0 for certain t0 ∈ [0, 1] and f(t0, x) ≥ 0, we have that f(t0, 0) >
0.

The continuity of f gives us the existence of a set A ⊂ [0, 1] with t0 ∈ A and μ(A) > 0,
where μ is the Lebesgue measure, satisfying that f(t, 0) > 0 for any t ∈ A. This contradicts
(3.14).

Therefore, x(t) > 0 for t ∈ (0, 1).
This finishes the proof.

Now, we present an example which illustrates our results.

Example 3.3. Consider the nonlinear fourth-order two-point boundary value problem

y(4)(t) = c + λ arctan
(
y(t)
)
, t ∈ (0, 1), c, λ > 0,

y(0) = y(1) = y′(0) = y′(1) = 0.
(3.15)

In this case, f(t, y) = c + λ arctany. It is easily seen that f(t, y) satisfies (a) and (b) of
Theorem 3.1.
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In order to prove that f(t, y) satisfies (c) of Theorem 3.1, previously, we will prove that
the function φ : [0,∞) → [0,∞), defined by φ(x) = arctanx, satisfies

φ(u) − φ(v) ≤ φ(u − v) for u ≥ v. (3.16)

In fact, put φ(u) = arctanu = α and φ(v) = arctan v = β (notice that, as u ≥ v and φ is
nondecreasing, α ≥ β). Then, from

tan
(
α − β) = tanα − tan β

1 + tanα · tan β
, (3.17)

as α, β ∈ [0, π/2), then tanα, tan β ∈ [0,∞), we obtain

tan
(
α − β) ≤ tanα − tan β. (3.18)

Applying φ to this inequality and taking into account the nondecreasing character of φ, we
have

α − β ≤ arctan
(
tanα − tan β

)
(3.19)

or, equivalently,

φ(u) − φ(v) = arctanu − arctanv ≤ arctan(u − v) = φ(u − v). (3.20)

This proves our claim.
In the sequel, we prove that f(t, y) satisfies assumption (c) of Theorem 3.1.
In fact, for y ≥ x and t ∈ [0, 1], we can obtain

f
(
t, y
) − f(t, x) = λ(arctany − arctanx

)
≤ λ arctan

(
y − x). (3.21)

Now, we will prove that φ(x) = arctanx belongs to A. In fact, obviously φ takes [0,∞) into
itself and, asφ′(x) = 1/(1+x2),φ is nondecreasing. Besides, as the derivative of ψ(x) = x−φ(x)
is ψ ′(x) = 1 − 1/(1 + x2) > 0 for x > 0, ψ is strictly increasing, and, consequently, φ(x) < x for
x > 0 (notice that ψ(0) = 0). Notice that if β(x) = φ(x)/x = arctanx/x and β(tn) → 1, then
(tn) is a bounded sequence because, in contrary case, tn → ∞ and, thus, β(tn) → 0. Suppose
that tn � 0. Then, we can find ε > 0 such that, for each n ∈ �, there exists pn ≥ n with tpn ≥ ε.
The bounded character of (tn) gives us the existence of a subsequence (tkn) of (tpn) with (tkn)
convergent. Suppose that tkn → a. From β(tn) → 1, we obtain arctan tkn/tkn → arctana/a =
1 and, as the unique solution of arctanx = x is x0 = 0, we obtain a = 0. Thus, tkn → 0, and
this contradicts the fact that tkn ≥ ε for any n ∈ �. Therefore, tn → 0. This proves that f(t, y)
satisfies assumption (c) of Theorem 3.1. Finally, as f(t, 0) = c > 0, Problem (3.15) has a unique
positive solution for 0 < λ ≤ 384 by Theorems 3.1 and 3.2.
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Remark 3.4. In Theorem 3.2, the condition f(t0, 0)/= 0 for certain t0 ∈ [0, 1] seems to be a strong
condition in order to obtain a positive solution for Problem (1.1), but when the solution is
unique, we will see that this condition is very adjusted one. More precisely, under assumption
that Problem (1.1) has a unique nonnegative solution x(t), then

f(t, 0) = 0 for t ∈ [0, 1] iff x(t) ≡ 0. (3.22)

In fact, if f(t, 0) = 0 for t ∈ [0, 1], then it is easily seen that the zero function satisfies
Problem (1.1) and the uniqueness of solution gives us x(t) ≡ 0.

The other implication is obvious since if the zero function is solution of Problem (1.1),
then 0 = f(t, 0) for any t ∈ [0, 1].

Remark 3.5. Notice that assumptions in Theorem 3.1 are invariant by continuous perturba-
tions. More precisely, if f(t, 0) = 0 for any t ∈ [0, 1] and f satisfies (a), (b), and (c) of
Theorem 3.1, then g(t, x) = a(t) + f(t, x), with a : [0, 1] → [0,∞) continuous and a/= 0,
satisfies assumptions of Theorem 3.2, and this means that the following boundary value
problem

y(4)(t) = g
(
t, y(t)

)
, t ∈ [0, 1],

y(0) = y(1) = y′(0) = y′(1) = 0,
(3.23)

has a unique positive solution.

4. Some Remarks

In this section, we compare our results with the ones obtained in recent papers. Recently, in
[19], the authors present as main result the following theorem.

Theorem 4.1 (Theorem 3.1 of [19]). Suppose that

(H1) f : [0, 1] × [0,∞) → [0,∞) is continuous,

(H2) f(t, y) is nondecreasing in y, for each t ∈ [0, 1],

(H3) f(t, y) = f(1 − t, y) for each (t, y) ∈ [0, 1] × [0,∞).

Moreover, suppose that there exist positive numbers a > b such that

max
0≤t≤1

f (t, a) ≤ a ·A, min
1/4≤t≤3/4

f

(
t,
b

16

)
≥ b · B, (4.1)

where

A =

(
max
0≤t≤1

∫1

0
G(t, s)ds

)−1

, B =

(
max
0≤t≤1

∫3/4

1/4
G(t, s)ds

)−1

, (4.2)
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with G(t, s) being the Green’s function defined in Section 2.Then, Problem (1.1) has at least one
symmetric positive solution y∗ ∈ C[0, 1] such that b ≤ ‖y∗‖ ≤ a and, moreover, y∗ = limk→∞Tky0

in the uniform norm, where T is the operator defined by

(Tx)(t) =
∫1

0
G(t, s)f(s, x(s))ds, for x ∈ C[0, 1] (4.3)

and y0 is the function given by y0(t) = b · q(t), for t ∈ [0, 1], with q(t) = min(t2, (1 − t)2), for
t ∈ [0, 1] (symmetric solution means a solution y(t) satisfying y(t) = y(1 − t), for t ∈ [0, 1]).

In what follows, we present a parallel result to Theorem 3.2 where we obtain
uniqueness of a symmetric positive solution of Problem (1.1).

Theorem 4.2. Adding assumption (H3) of Theorem 4.1 to the hypotheses of Theorem 3.2, one obtains
a unique symmetric positive solution of Problem (1.1).

Proof. As in the proof of Theorem 3.1, instead of P , we consider the following set K

K =
{
x ∈ C[0, 1] : x ≥ 0 and x is symmetric

}
. (4.4)

It is easily seen that K is a closed subset of C[0, 1]. Thus, (K, d), where d is the induced metric
given by

d
(
x, y
)
= sup

0≤t≤1

∣∣x(t) − y(t)∣∣, for x, y ∈ K, (4.5)

is a complete metric space.
Moreover, K with the induced order by (C[0, 1],≤) satisfies condition (2.3) of

Theorem 2.1, and it is easily proved that the function max(x, y) ∈ K, for x, y ∈ K and,
consequently, (K,≤), satisfies condition (2.4) of Theorem 2.1.

Now, as in Theorem 2.1, we consider the operator defined by

(Tx)(t) =
∫1

0
G(t, s)f(s, x(s))ds, for x ∈ K. (4.6)

In the sequel, we prove that, under our assumptions, T applies K into itself.
In fact, suppose that x is symmetric, then for t ∈ [0, 1], we have

(Tx)(1 − t) =
∫1

0
G(1 − t, s)f(s, x(s))ds. (4.7)
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Making the change of variables s = 1 − u, we obtain

(Tx)(1 − t) = −
∫0

1
G(1 − t, 1 − u)f(1 − u, x(1 − u))du

=
∫1

0
G(1 − t, 1 − u)f(1 − u, x(1 − u))du.

(4.8)

Now, it is easily seen that G(t, s) = G(1 − t, 1 − s) for t, s ∈ [0, 1] and taking into account
assumption (H3) of Theorem 4.1 and the symmetric character of x, we have

(Tx)(1 − t) =
∫1

0
G(t, u)f(u, x(1 − u))du

=
∫1

0
G(t, u)f(u, x(u))du

= (Tx)(t).

(4.9)

The rest of the proof follows the lines of Theorems 3.1 and 3.2.
This finishes the proof.

Now, we present an example which illustrates Theorem 4.2.

Example 4.3. Consider the following problem

y(4)(t) = c + λ sin(πt)arctan
(
y(t)
)
, t ∈ (0, 1), c, λ > 0,

y(0) = y(1) = y′(0) = y′(1) = 0.
(4.10)

In this case, f(t, y) = c + λ sin(πt) arctany. It is easily checked that f(t, y) satisfies (a)
and (b) of Theorem 3.1 and f(t, y) = f(1 − t, y), for (t, y) ∈ [0, 1] × [0,∞).

On the other hand, taking into account Example 3.3, we can obtain, for y ≥ x and
t ∈ [0, 1],

f
(
t, y
) − f(t, x) = λ sinπt

[
arctany − arctanx

]
≤ λ sinπt

[
arctan

(
y − x)]

≤ λ arctan
(
y − x).

(4.11)

Finally, as it is proved in Example 3.3, φ(x) = arctanx belongs to A. Therefore,
Theorem 4.2 tells us that Problem (4.10) has a unique symmetric positive solution for 0 <
λ ≤ 384. In what follows, we prove that Problem (4.10) can be treated using Theorem 4.1. In
fact, in this case, f(t, y) = c+λ sin(πt) arctany. Moreover,A = 384 (see proof of Theorem 3.1);
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it can be proved that B = 531.61. As we have seen in Example 4.3, f(t, y) satisfies assumptions
(H1), (H2), and (H3) of Theorem 4.1. Moreover,

max
0≤t≤1

f(t, a) = f
(

1
2
, a

)
= c + λ arctan a,

min
1/4≤t≤3/4

f

(
t,
b

16

)
= f
(

1
4
,
b

16

)
= c + λ sin

π

4
arctan

(
b

16

)
= c + λ

√
2

2
arctan

(
b

16

)
.

(4.12)

Consider the function ϕ(a) = 384 · a − (c + λ arctana), with 0 < λ ≤ 384 and a ∈ [0,∞).
Obviously, ϕ(0) = −c < 0 and, as lima→∞ϕ(a) = ∞, we can find a0 > 0 such that ϕ(a0) > 0.
This means that

c + λ arctan a0 ≤ 384a0. (4.13)

On the other hand, we consider the function ψ(b) = c+ λ(
√

2/2) arctan(b/16)−531.61 ·b, with
0 < λ ≤ 384 and b ∈ [0,∞).

Then, as ψ(0) = c > 0 and ψ is a continuous function, we can find b0 such that

min
1/4≤t≤3/4

f

(
t,
b0

16

)
= c + λ

√
2

2
arctan

(
b0

16

)
≥ b0 · 531.61. (4.14)

Therefore, Problem (4.10) can be treated using Theorem 4.1, and we obtain the existence of a
symmetric positive solution.

Our main contribution is the uniqueness of the solution.
In what follows, we present the following example which can be treated by

Theorem 4.2 and Theorem 4.1 cannot be used.

Example 4.4. Consider the following problem which is a variant of Example 4.3:

y(4)(t) = c(t) + λ sin(πt)arctan
(
y(t)
)
, t ∈ (0, 1), λ > 0

y(0) = y(1) = y′(0) = y′(1) = 0,
(4.15)

where c(t) is a symmetric positive function satisfying c(1/4) = 0, for example,

c(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − 4t, 0 ≤ t ≤ 1
4
,

0,
1
4
≤ t ≤ 3

4

4t − 3,
3
4
≤ t ≤ 1.

(4.16)

In this case, f(t, y) = c(t) + λ sin(πt) arctan(y(t)). Taking into account Example 4.3, it
is easily proved that f(t, y) satisfies assumptions of Theorem 4.2, and, consequently, Problem
(4.15) has a unique symmetric positive solution for 0 < λ ≤ 384.
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Now, we prove that f(t, y) does not satisfy assumptions of Theorem 4.1 and,
consequently, Problem (4.15) cannot be treated using this theorem. In fact, in this case (notice
that c(1/4) = 0),

min
1/4≤t≤3/4

f

(
t,
b

16

)
= f
(

1
4
,
b

16

)
= λ sin

π

4
arctan

(
b

16

)
= λ
√

2
2

arctan
(
b

16

)
, (4.17)

and we cannot find a positive number b0 such that

λ

√
2

2
arctan

(
b0

16

)
≥ b0 · 531.61, for 0 < λ ≤ 384. (4.18)

This proves that Problem (4.15) cannot be treated by Theorem 4.1.
Now, we compare our results with the ones obtained in [14]. In [14], the author studies

positive solutions of the problem

u(iv)(x) = λf(u(x)), x ∈ (0, 1),
u(0) = u(1) = u′(0) = u′(1) = 0,

(4.19)

using theory of bifurcation.
His main result works with functions f(u) satisfying

(i) f(u) > 0, for u ≤ 0,

(ii) limu→∞f(u)/u =∞,

(iii) f ′(0) ≥ 0,

(iv) f ′′(u) > 0, for u > 0,

and the author proves that there exists a critical λ0 such that Problem (4.19) has exactly two,
exactly one, or no symmetric positive solution depending on whether 0 < λ < λ0, λ = λ0 or
λ > λ0.

Our Example 3.3 cannot be treated by the results of [14], because, in this case, f(u) =
c + λ arctanu and f does not satisfy assumptions (ii) and (iv) above mentioned.
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A linear Volterra difference equation of the form x(n + 1) = a(n) + b(n)x(n) +
∑n

i=0 K(n, i)x(i),
where x : �0 → �, a : �0 → �, K : �0 × �0 → � and b : �0 → � \ {0} is ω-periodic, is
considered. Sufficient conditions for the existence of weighted asymptotically periodic solutions of
this equation are obtained. Unlike previous investigations, no restriction on

∏ω−1
j=0 b(j) is assumed.

The results generalize some of the recent results.

1. Introduction

In the paper, we study a linear Volterra difference equation

x(n + 1) = a(n) + b(n)x(n) +
n∑
i=0

K(n, i)x(i), (1.1)

where n ∈ �0 := {0, 1, 2, . . .}, a : �0 → �, K : �0 ×�0 → �, and b : �0 → �\{0} isω-periodic,
ω ∈ � := {1, 2, . . .}. We will also adopt the customary notations

k∑
i=k+s

O(i) = 0,
k∏

i=k+s

O(i) = 1, (1.2)
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where k is an integer, s is a positive integer, and “O′′ denotes the function considered
independently of whether it is defined for the arguments indicated or not.

In [1], the authors considered (1.1) under the assumption

ω−1∏
j=0

b
(
j
)
= 1, (1.3)

and gave sufficient conditions for the existence of asymptoticallyω-periodic solutions of (1.1)
where the notion for an asymptotically ω-periodic function has been given by the following
definition.

Definition 1.1. Let ω be a positive integer. The sequence y : �0 → � is called ω-periodic if
y(n + ω) = y(n) for all n ∈ �0 . The sequence y is called asymptotically ω-periodic if there
exist two sequences u, v : �0 → � such that u is ω-periodic, limn→∞v(n) = 0, and

y(n) = u(n) + v(n) (1.4)

for all n ∈ �0 .

In this paper, in general, we do not assume that (1.3) holds. Then, we are able to derive
sufficient conditions for the existence of a weighted asymptotically ω-periodic solution of
(1.1). We give a definition of a weighted asymptotically ω-periodic function.

Definition 1.2. Let ω be a positive integer. The sequence y : �0 → � is called weighted
asymptoticallyω-periodic if there exist two sequences u, v : �0 → � such that u isω-periodic
and limn→∞v(n) = 0, and, moreover, if there exists a sequence w : �0 → � \ {0} such that

y(n)
w(n)

= u(n) + v(n), (1.5)

for all n ∈ �0 .

Apart from this, when we assume

ω−1∏
k=0

b(k) = −1, (1.6)

then, as a consequence of our main result (Theorem 2.2), the existence of an asymptotically
2ω-periodic solution of (1.1) is obtained.

For the reader’s convenience, we note that the background for discrete Volterra
equations can be found, for example, in the well-known monograph by Agarwal [2], as well
as by Elaydi [3] or Kocić and Ladas [4]. Volterra difference equations were studied by many
others, for example, by Appleby et al. [5], by Elaydi and Murakami [6], by Győri and Horváth
[7], by Győri and Reynolds [8], and by Song and Baker [9]. For some results on periodic
solutions of difference equations, see, for example, [2–4, 10–13] and the related references
therein.
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2. Weighted Asymptotically Periodic Solutions

In this section, sufficient conditions for the existence of weighted asymptotically ω-periodic
solutions of (1.1) will be derived. The following version of Schauder’s fixed point theorem
given in [14] will serve as a tool used in the proof.

Lemma 2.1. Let Ω be a Banach space and S its nonempty, closed, and convex subset and let T be a
continuous mapping such that T(S) is contained in S and the closure T(S) is compact. Then, T has a
fixed point in S.

We set

β(n) :=
n−1∏
j=0

b
(
j
)
, n ∈ �0 , (2.1)

B := β(ω). (2.2)

Moreover, we define

n∗ := n − 1 −ω
⌊
n − 1
ω

⌋
, (2.3)

where �·� is the floor function (the greatest-integer function) and n∗ is the “remainder” of
dividing n − 1 by ω. Obviously, {β(n∗)}, n ∈ � is an ω-periodic sequence.

Now, we derive sufficient conditions for the existence of a weighted asymptotically
ω-periodic solution of (1.1).

Theorem 2.2 (Main result). Let ω be a positive integer, b : �0 → � \ {0} be ω-periodic, a : �0 →
�, andK : �0 × �0 → �. Assume that

∞∑
i=0

∣∣∣∣ a(i)
β(i + 1)

∣∣∣∣ <∞,

∞∑
j=0

j∑
i=0

∣∣∣∣∣
K
(
j, i
)
β(i)

β
(
j + 1

)
∣∣∣∣∣ < 1,

(2.4)

and that at least one of the real numbers in the left-hand sides of inequalities (2.4) is positive.
Then, for any nonzero constant c, there exists a weighted asymptotically ω-periodic solution

x : �0 → � of (1.1) with u, v : �0 → � andw : �0 → � \ {0} in representation (1.5) such that

w(n) = B�(n−1)/ω�, u(n) := cβ(n∗ + 1), lim
n→∞

v(n) = 0, (2.5)

that is,

x(n)
B�(n−1)/ω� = cβ(n

∗ + 1) + v(n), n ∈ �0 . (2.6)
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Proof. We will use a notation

M :=
∞∑
j=0

j∑
i=0

∣∣∣∣∣
K
(
j, i
)
β(i)

β
(
j + 1

)
∣∣∣∣∣, (2.7)

whenever this is useful.

Case 1. First assume c > 0. We will define an auxiliary sequence of positive numbers {α(n)},
n ∈ �0 . We set

α(0) :=

∑∞
i=0

∣∣a(i)/(β(i + 1)
)∣∣ + c∑∞j=0

∑j

i=0

∣∣(K(j, i)β(i))/(β(j + 1
))∣∣

1 −∑∞j=0
∑j

i=0

∣∣(K(j, i)β(i))/(β(j + 1
))∣∣ , (2.8)

where the expression on the right-hand side is well defined due to (2.4). Moreover, we define

α(n) :=
∞∑
i=n

∣∣∣∣ a(i)
β(i + 1)

∣∣∣∣ + (c + α(0))
∞∑
j=n

j∑
i=0

∣∣∣∣∣
K
(
j, i
)
β(i)

β
(
j + 1

)
∣∣∣∣∣, (2.9)

for n ≥ 1. It is easy to see that

lim
n→∞

α(n) = 0. (2.10)

We show, moreover, that

α(n) ≤ α(0), (2.11)

for any n ∈ �. Let us first remark that

α(0) =
∞∑
i=0

∣∣∣∣ a(i)
β(i + 1)

∣∣∣∣ + (c + α(0))
∞∑
j=0

j∑
i=0

∣∣∣∣∣
K
(
j, i
)
β(i)

β
(
j + 1

)
∣∣∣∣∣. (2.12)

Then, due to the convergence of both series (see (2.4)), the inequality

α(0) =
∞∑
i=0

∣∣∣∣ a(i)
β(i + 1)

∣∣∣∣ + (c + α(0))
∞∑
j=0

j∑
i=0

∣∣∣∣∣
K
(
j, i
)
β(i)

β
(
j + 1

)
∣∣∣∣∣

≥
∞∑
i=n

∣∣∣∣ a(i)
β(i + 1)

∣∣∣∣ + (c + α(0))
∞∑
j=n

j∑
i=0

∣∣∣∣∣
K
(
j, i
)
β(i)

β
(
j + 1

)
∣∣∣∣∣ = α(n)

(2.13)

obviously holds for every n ∈ � and (2.11) is proved.
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Let B be the Banach space of all real bounded sequences z : �0 → � equipped with
the usual supremum norm ‖z‖ = supn∈�0

|z(n)| for z ∈ B. We define a subset S ⊂ B as

S := {z ∈ B : c − α(0) ≤ z(n) ≤ c + α(0), n ∈ �0}. (2.14)

It is not difficult to prove that S is a nonempty, bounded, convex, and closed subset of B.
Let us define a mapping T : S → B as follows:

(Tz)(n) = c −
∞∑
i=n

a(i)
β(i + 1)

−
∞∑
j=n

j∑
i=0

K
(
j, i
)
β(i)

β
(
j + 1

) z(i), (2.15)

for any n ∈ �0 .
We will prove that the mapping T has a fixed point in S.
We first show that T(S) ⊂ S. Indeed, if z ∈ S, then |z(n) − c| ≤ α(0) for n ∈ �0 and, by

(2.11) and (2.15), we have

|(Tz)(n) − c| ≤
∞∑
i=n

∣∣∣∣ a(i)
β(i + 1)

∣∣∣∣ + (c + α(0))
∞∑
j=n

j∑
i=0

∣∣∣∣∣
K
(
j, i
)
β(i)

β
(
j + 1

)
∣∣∣∣∣ = α(n) ≤ α(0). (2.16)

Next, we prove that T is continuous. Let z(p) be a sequence in S such that z(p) → z as p → ∞.
Because S is closed, z ∈ S. Now, utilizing (2.15), we get

∣∣∣(Tz(p))(n) − (Tz)(n)
∣∣∣ =

∣∣∣∣∣∣
∞∑
j=n

j∑
i=0

K
(
j, i
)
β(i)

β
(
j + 1

) (
z(p)(i) − z(i)

)∣∣∣∣∣∣

≤M sup
i≥0

∣∣∣z(p)(i) − z(i)∣∣∣ = M∥∥∥z(p) − z∥∥∥, n ∈ �0 .

(2.17)

Therefore,

∥∥∥Tz(p) − Tz∥∥∥ ≤M∥∥∥z(p) − z∥∥∥,

lim
p→∞

∥∥∥Tz(p) − Tz
∥∥∥ = 0.

(2.18)

This means that T is continuous.
Now, we show that T(S) is compact. As is generally known, it is enough to verify that

every ε-open covering of T(S) contains a finite ε-subcover of T(S), that is, finitely many of
these open sets already cover T(S) ([15], page 756 (12)). Thus, to prove that T(S) is compact,
we take an arbitrary ε > 0 and assume that an open ε-cover Cε of T(S) is given. Then, from
(2.10), we conclude that there exists an nε ∈ � such that α(n) < ε/4 for n ≥ nε.
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Suppose that x1
T ∈ T(S) is one of the elements generating the ε-cover Cε of T(S). Then

(as follows from (2.16)), for an arbitrary xT ∈ T(S),
∣∣∣x1

T (n) − xT (n)
∣∣∣ < ε (2.19)

if n ≥ nε. In other words, the ε-neighborhood of x1
T − c∗:

∥∥∥x1
T − c∗

∥∥∥< ε, (2.20)

where c∗ = {c, c, . . .} ∈ S covers the set T(S) on an infinite interval n ≥ nε. It remains to
cover the rest of T(S) on a finite interval for n ∈ {0, 1 . . . , nε − 1} by a finite number of
ε-neighborhoods of elements generating ε-cover Cε. Supposing that x1

T itself is not able to
generate such cover, we fix n ∈ {0, 1, . . . , nε − 1} and split the interval

[c − α(n), c + α(n)] (2.21)

into a finite number h(ε, n) of closed subintervals

I1(n), I2(n), . . . , Ih(ε,n)(n) (2.22)

each with a length not greater then ε/2 such that

h(ε,n)⋃
i=1

Ii(n) = [c − α(n), c + α(n)],

int Ii(n) ∩ int Ij(n) = ∅, i, j = 1, 2, . . . , h(ε, n), i /= j.

(2.23)

Finally, the set

nε−1⋃
n=0

[c − α(n), c + α(n)] (2.24)

equals

nε−1⋃
n=0

h(ε,n)⋃
i=1

Ii(n) (2.25)

and can be divided into a finite number

Mε :=
nε−1∑
n=0

h(ε, n) (2.26)
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of different subintervals (2.22). This means that, at most, Mε of elements generating the cover
Cε are sufficient to generate a finite ε-subcover of T(S) for n ∈ {0, 1, . . . , nε − 1}. We remark
that each of such elements simultaneously plays the same role as x1

T (n) for n ≥ nε. Since ε > 0
can be chosen as arbitrarily small, T(S) is compact.

By Schauder’s fixed point theorem, there exists a z ∈ S such that z(n) = (Tz)(n) for
n ∈ �0 . Thus,

z(n) = c −
∞∑
i=n

a(i)
β(i + 1)

−
∞∑
j=n

j∑
i=0

β(i)
β
(
j + 1

)K(j, i)z(i), (2.27)

for any n ∈ �0 .
Due to (2.10) and (2.16), for fixed point z ∈ S of T , we have

lim
n→∞

|z(n) − c| = lim
n→∞

|(Tz)(n) − c| ≤ lim
n→∞

α(n) = 0, (2.28)

or, equivalently,

lim
n→∞

z(n) = c. (2.29)

Finally, we will show that there exists a connection between the fixed point z ∈ S and the
existence of a solution of (1.1) which divided by B�(n−1)/ω� provides an asymptotically ω-
periodic sequence. Considering (2.27) for z(n + 1) and z(n), we get

Δz(n) =
a(n)

β(n + 1)
+

n∑
i=0

β(i)
β(n + 1)

K(n, i)z(i), (2.30)

where n ∈ �0 . Hence, we have

z(n + 1) − z(n) = a(n)
β(n + 1)

+
1

β(n + 1)

n∑
i=0

β(i)K(n, i)z(i), n ∈ �0 . (2.31)

Putting

z(n) =
x(n)
β(n)

, n ∈ �0 (2.32)

in (2.31), we get (1.1) since

x(n + 1)
β(n + 1)

− x(n)
β(n)

=
a(n)

β(n + 1)
+

1
β(n + 1)

n∑
i=0

K(n, i)x(i), n ∈ �0 (2.33)
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yields

x(n + 1) = a(n) + b(n)x(n) +
n∑
i=0

K(n, i)x(i), n ∈ �0 . (2.34)

Consequently, x defined by (2.32) is a solution of (1.1). From (2.29) and (2.32), we obtain

x(n)
β(n)

= z(n) = c + o(1), (2.35)

for n → ∞ (where o(1) is the Landau order symbol). Hence,

x(n) = β(n)(c + o(1)), n −→ ∞. (2.36)

It is easy to show that the function β defined by (2.1) can be expressed in the form

β(n) =
n−1∏
j=0

b
(
j
)
= B�(n−1)/ω� · β(n∗ + 1), (2.37)

for n ∈ �0 . Then, as follows from (2.36),

x(n) = B�(n−1)/ω� · β(n∗ + 1)(c + o(1)), n −→ ∞, (2.38)

or

x(n)
B�(n−1)/ω� = cβ(n

∗ + 1) + β(n∗ + 1)o(1), n −→ ∞. (2.39)

The proof is completed since the sequence {β(n∗ + 1)} is ω-periodic, hence bounded
and, due to the properties of Landau order symbols, we have

β(n∗ + 1)o(1) = o(1), n −→ ∞, (2.40)

and it is easy to see that the choice

u(n) := cβ(n∗ + 1), w(n) := B�(n−1)/ω�, n ∈ �0 , (2.41)

and an appropriate function v : �0 → � such that

lim
n→∞

v(n) = 0 (2.42)

finishes this part of the proof. Although for n = 0, there is no correspondence between
formula (2.36) and the definitions of functions u and w, we assume that function v makes
up for this.
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Case 2. If c < 0, we can proceed as follows. It is easy to see that arbitrary solution y = y(n) of
the equation

y(n + 1) = −a(n) + b(n)y(n) +
n∑
i=0

K(n, i)y(i) (2.43)

defines a solution x = x(n) of (1.1) since a substitution y(n) = −x(n) in (2.43) turns (2.43) into
(1.1). If the assumptions of Theorem 2.2 hold for (1.1), then, obviously, Theorem 2.2 holds for
(2.43) as well. So, for an arbitrary c > 0, (2.43) has a solution that can be represented by
formula (2.6), that is,

y(n)
B�(n−1)/ω� = cβ(n

∗ + 1) + v(n), n ∈ �0 . (2.44)

Or, in other words, (1.1) has a solution that can be represented by formula (2.44) as

x(n)
B�(n−1)/ω� = c0β(n∗ + 1) + v∗(n), n ∈ �0 , (2.45)

with c0 = −c and v∗(n) = −v(n). In (2.45), c0 < 0 and the function v∗(n) has the same
properties as the function v(n). Therefore, formula (2.6) is valid for an arbitrary negative c
as well.

Now, we give an example which illustrates the case where there exists a solution
to equation of the type (1.1) which is weighted asymptotically periodic, but is not
asymptotically periodic.

Example 2.3. We consider (1.1) with

a(n) = (−1)n+1
(

1 − 1
3n+1

)
,

b(n) = 3(−1)n,

K(n, i) = (−1)n+(i(i−1))/2 1
32i

,

(2.46)

that is, the equation

x(n + 1) = (−1)n+1
(

1 − 1
3n+1

)
+ 3(−1)nx(n) +

n∑
i=0

(−1)n+(i(i−1))/2 1
32i
x(i). (2.47)
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The sequence b(n) is 2-periodic and

β(n) =
n−1∏
j=0

b
(
j
)
= (−1)n(n−1)/23n ,

B = β(ω) = β(2) = −9,

β(n∗ + 1) = −3 + 6(−1)n+1,

a(n)
β(n + 1)

= (−1)(−n
2+n+2)/2

(
1

3n+1
− 1

32(n+1)

)
,

∞∑
i=0

∣∣∣∣ a(i)
β(i + 1)

∣∣∣∣ <∞,

∞∑
j=0

j∑
i=0

∣∣∣∣∣
K
(
j, i
)
β(i)

β
(
j + 1

)
∣∣∣∣∣ <

∞∑
j=0

∞∑
i=0

∣∣∣∣∣
K
(
j, i
)
β(i)

β
(
j + 1

)
∣∣∣∣∣ =

∞∑
j=0

∞∑
i=0

1
3i+j+1

=
1
3

⎛
⎝ ∞∑

j=0

1
3j

⎞
⎠
( ∞∑

i=0

1
3i

)
=

1
3
· 1

1 − 1/3
· 1

1 − 1/3

=
1
3
· 3

2
· 3

2
=

3
4
< 1.

(2.48)

By virtue of Theorem 2.2, for any nonzero constant c, there exists a solution x : �0 → � of
(1.1) which is weighed asymptotically 2-periodic. Let, for example, c = 2/3. Then,

w(n) = (−9)�(n−1)/2�,

u(n) = cβ(n∗ + 1) =
2
3

(
−3 + 6(−1)n+1

)
= −2 + 4(−1)n+1,

(2.49)

and the sequence x(n) given by

x(n)

(−9)�(n−1)/2� = −2 + 4(−1)n+1 + v(n), n ∈ �0 , (2.50)

or, equivalently,

x(n) = (−9)�(n−1)/2�
(
−2 + 4(−1)n+1

)
+ v(n), n ∈ �0 (2.51)

is such a solution. We remark that such solution is not asymptotically 2-periodic in the
meaning of Definition 1.1.
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It is easy to verify that the sequence x∗(n) obtained from (2.51) if v(n) = 0, n ∈ �0 , that
is,

x∗(n) = (−9)�(n−1)/2�
(
−2 + 4(−1)n+1

)
=

2
3
· (−1)n(n−1)/2 · 3n, n ∈ �0 (2.52)

is a true solution of (2.47).

3. Concluding Remarks and Open Problems

It is easy to prove the following corollary.

Corollary 3.1. Let Theorem 2.2 be valid. If, moreover, |B| < 1, then every solution x = x(n) of (1.1)
described by formula (2.6) satisfies

lim
n→∞

x(n) = 0. (3.1)

If |B| > 1, then, for every solution x = x(n) of (1.1) described by formula (2.6), one has

lim inf
n→∞

x(n) = −∞ (3.2)

or/and

lim sup
n→∞

x(n) = ∞. (3.3)

Finally, if B > 1, then, for every solution x = x(n) of (1.1) described by formula (2.6), one has

lim
n→∞

x(n) =∞, (3.4)

and if B < −1, then, for every solution x = x(n) of (1.1) described by formula (2.6), one has

lim
n→∞

x(n) = −∞. (3.5)

Now, let us discuss the case when (1.6) holds, that is, when

B =
ω−1∏
j=0

b
(
j
)
= −1. (3.6)

Corollary 3.2. Let Theorem 2.2 be valid. Assume that B = −1. Then, for any nonzero constant c,
there exists an asymptotically 2ω-periodic solution x = x(n), n ∈ �0 of (1.1) such that

x(n) = (−1)�(n−1)/ω�u(n) + z(n), n ∈ �0 , (3.7)
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with

u(n) := cβ(n∗ + 1), lim
n→∞

z(n) = 0. (3.8)

Proof. Putting B = −1 in Theorem 2.2, we get

x(n) = (−1)�(n−1)/ω�u(n) + (−1)�(n−1)/ω�v(n), (3.9)

with

u(n) := cβ(n∗ + 1), lim
n→∞

v(n) = 0. (3.10)

Due to the definition of n∗, we see that the sequence

{
β(n∗ + 1)

}
=
{
β(ω), β(1), β(2), . . . , β(ω), β(1), β(2), . . . , β(ω), . . .

}
, (3.11)

is an ω-periodic sequence. Since

{⌊
n − 1
ω

⌋}
=

⎧⎨
⎩−1, 0, . . . , 0︸ ︷︷ ︸

ω

, 1, . . . , 1︸ ︷︷ ︸
ω

, 2, . . .

⎫⎬
⎭, (3.12)

for n ∈ �0 , we have

{
(−1)�(n−1)/ω�

}
=

⎧⎨
⎩−1, 1, . . . , 1︸ ︷︷ ︸

ω

,−1, . . . ,−1︸ ︷︷ ︸
ω

, 1, . . .

⎫⎬
⎭. (3.13)

Therefore, the sequence

{
(−1)�(n−1)/ω�u(n)

}
= c

{−β(ω), β(1), β(2), . . . , β(ω),−β(1),−β(2), . . . ,−β(ω), . . .} (3.14)

is a 2ω-periodic sequence. Set

z(n) = (−1)�(n−1)/ω�v(n). (3.15)

Then,

lim
n→∞

z(n) = 0. (3.16)

The proof is completed.
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Remark 3.3. From the proof, we see that Theorem 2.2 remains valid even in the case of c = 0.
Then, there exists an “asymptotically weighted ω-periodic solution” x = x(n) of (1.1) as
well. The formula (2.6) reduces to

x(n) = B�(n−1)/ω�v(n) = o(1), n ∈ �0 , (3.17)

since u(n) = 0. In the light of Definition 1.2, we can treat this case as follows. We set (as a
singular case) u ≡ 0 with an arbitrary (possibly other than “ω′′) period and with v = o(1),
n → ∞.

Remark 3.4. The assumptions of Theorem 2.2 [1] are substantially different from those of the
present Theorem 2.2. However, it is easy to see that Theorem 2.2 [1] is a particular case of the
present Theorem 2.2 if (1.3) holds, that is, if B = 1. Therefore, our results can be viewed as a
generalization of some results in [1].

In connection with the above investigations, some open problems arise.

Open Problem 1. The results of [1] are extended to systems of linear Volterra discrete equations
in [16, 17]. It is an open question if the results presented can be extended to systems of linear
Volterra discrete equations.

Open Problem 2. Unlike the result of Theorem 2.2 [1] where a parameter c can be arbitrary,
the assumptions of the results in [16, 17] are more restrictive since the related parameters
should satisfy certain inequalities as well. Different results on the existence of asymptotically
periodic solutions were recently proved in [8]. Using an example, it is shown that the results
in [8] can be less restrictive. Therefore, an additional open problem arises if the results in
[16, 17] can be improved in such a way that the related parameters can be arbitrary and if the
expected extension of the results suggested in Open Problem 1 can be given in such a way
that the related parameters can be arbitrary as well.
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We develop the Weyl-Titchmarsh theory for time scale symplectic systems. We introduce the
M(λ)-function, study its properties, construct the corresponding Weyl disk and Weyl circle, and
establish their geometric structure including the formulas for their center and matrix radii. Similar
properties are then derived for the limiting Weyl disk. We discuss the notions of the system being
in the limit point or limit circle case and prove several characterizations of the system in the
limit point case and one condition for the limit circle case. We also define the Green function
for the associated nonhomogeneous system and use its properties for deriving further results
for the original system in the limit point or limit circle case. Our work directly generalizes the
corresponding discrete time theory obtained recently by S. Clark and P. Zemánek (2010). It also
unifies the results in many other papers on the Weyl-Titchmarsh theory for linear Hamiltonian
differential, difference, and dynamic systems when the spectral parameter appears in the second
equation. Some of our results are new even in the case of the second-order Sturm-Liouville
equations on time scales.

1. Introduction

In this paper we develop systematically the Weyl-Titchmarsh theory for time scale symplectic
systems. Such systems unify and extend the classical linear Hamiltonian differential systems
and discrete symplectic and Hamiltonian systems, including the Sturm-Liouville differential
and difference equations of arbitrary even order. As the research in the Weyl-Titchmarsh
theory has been very active in the last years, we contribute to this development by presenting
a theory which directly generalizes and unifies the results in several recent papers, such as
[1–4] and partly in [5–14].
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Historically, the theory nowadays called by Weyl and Titchmarsh started in [15] by the
investigation of the second-order linear differential equation

(
r(t)z′(t)

)
+ q(t)z(t) = λz(t), t ∈ [0,∞), (1.1)

where r, q : [0,∞) → � are continuous, r(t) > 0, and λ ∈ � , is a spectral parameter. By using
a geometrical approach it was showed that (1.1) can be divided into two classes called the
limit circle and limit point meaning that either all solutions of (1.1) are square integrable for
all λ ∈ � \ � or there is a unique (up to a multiplicative constant) square-integrable solution
of (1.1) on [0,∞). Analytic methods for the investigation of (1.1) have been introduced in
a series of papers starting with [16]; see also [17]. We refer to [18–20] for an overview of
the original contributions to the Weyl-Titchmarsh theory for (1.1); see also [21]. Extensions
of the Weyl-Titchmarsh theory to more general equations, namely, to the linear Hamiltonian
differential systems

z′(t) = [λA(t) + B(t)]z(t), t ∈ [0,∞), (1.2)

was initiated in [22] and developed further in [6, 8, 10, 11, 23–38].
According to [19], the first paper dealing with the parallel discrete time Weyl theory

for second-order difference equations appears to be the work mentioned in [39]. Since then a
long time elapsed until the theory of difference equations attracted more attention. The Weyl-
Titchmarsh theory for the second-order Sturm-Liouville difference equations was developed
in [22, 40, 41]; see also the references in [19]. For higher-order Sturm-Liouville difference
equations and linear Hamiltonian difference systems, such as

Δxk = Akxk+1 +
(
Bk + λW

[2]
k

)
uk, Δuk =

(
Ck − λW [1]

k

)
xk+1 −A∗kuk, k ∈ [0,∞)

�
, (1.3)

where Ak, Bk, Ck, W [1]
k , W [2]

k are complex n × n matrices such that Bk and Ck are Hermitian

and W
[1]
k

and W
[2]
k

are Hermitian and nonnegative definite, the Weyl-Titchmarsh theory was
studied in [9, 14, 42]. Recently, the results for linear Hamiltonian difference systems were
generalized in [1, 2] to discrete symplectic systems

xk+1 = Akxk + Bkuk, uk+1 = Ckxk +Dkuk + λWkxk+1, k ∈ [0,∞)
�
, (1.4)

where Ak, Bk, Ck, Dk, Wk are complex n × n matrices such that Wk is Hermitian and
nonnegative definite and the 2n × 2n transition matrix in (1.4) is symplectic, that is,

Sk :=

(Ak Bk
Ck Dk

)
, S∗kJSk = J, J :=

(
0 I

−I 0

)
. (1.5)

In the unifying theory for differential and difference equations—the theory of time
scales—the classification of second-order Sturm-Liouville dynamic equations

yΔΔ(t) + q(t)yσ(t) = λyσ(t), t ∈ [a,∞)�, (1.6)
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to be of the limit point or limit circle type is given in [4, 43]. These two papers seem to
be the only ones on time scales which are devoted to the Weyl-Titchmarsh theory for the
second order dynamic equations. Another way of generalizing the Weyl-Titchmarsh theory
for continuous and discrete Hamiltonian systems was presented in [3, 5]. In these references
the authors consider the linear Hamiltonian system

xΔ(t) = A(t)xσ(t) + [B(t) + λW2(t)]u(t),

uΔ(t) = [C(t) − λW1(t)]xσ(t) −A∗(t)u(t), t ∈ [a,∞)
�
,

(1.7)

on the so-called Sturmian or general time scales, respectively. Here fΔ(t) is the time scale
Δ-derivative and fσ(t) := f(σ(t)), where σ(t) is the forward jump at t; see the time scale
notation in Section 2.

In the present paper we develop the Weyl-Titchmarsh theory for more general linear
dynamic systems, namely, the time scale symplectic systems

xΔ(t) = A(t)x(t) + B(t)u(t),

uΔ(t) = C(t)x(t) +D(t)u(t) − λW(t)xσ(t), t ∈ [a,∞)
�
,

(Sλ)

where A, B, C, D, W are complex n × n matrix functions on [a,∞)
�

, W(t) is Hermitian and
nonnegative definite, λ ∈ � , and the 2n × 2n coefficient matrix in system (Sλ) satisfies

S(t) :=

(A(t) B(t)
C(t) D(t)

)
, S∗(t)J +JS(t) + μ(t)S∗(t)JS(t) = 0, t ∈ [a,∞)

�
, (1.8)

where μ(t) := σ(t)− t is the graininess of the time scale. The spectral parameter λ is only in the
second equation of system (Sλ). This system was introduced in [44], and it naturally unifies
the previously mentioned continuous, discrete, and time scale linear Hamiltonian systems
(having the spectral parameter in the second equation only) and discrete symplectic systems
into one framework. Our main results are the properties of the M(λ) function, the geometric
description of the Weyl disks, and characterizations of the limit point and limit circle cases for
the time scale symplectic system (Sλ). In addition, we give a formula for the L2

W solutions of
a nonhomogeneous time scale symplectic system in terms of its Green function. These results
generalize and unify in particular all the results in [1–4] and some results from [5–14]. The
theory of time scale symplectic systems or Hamiltonian systems is a topic with active research
in recent years; see, for example, [44–51]. This paper can be regarded not only as a completion
of these papers by establishing the Weyl-Titchmarsh theory for time scale symplectic systems
but also as a comparison of the corresponding continuous and discrete time results. The
references to particular statements in the literature are displayed throughout the text. Many
results of this paper are new even for (1.6), being a special case of system (Sλ). An overview
of these new results for (1.6) will be presented in our subsequent work.

This paper is organized as follows. In the next section we recall some basic notions
from the theory of time scales and linear algebra. In Section 3 we present fundamental
properties of time scale symplectic systems with complex coefficients, including the
important Lagrange identity (Theorem 3.5) and other formulas involving their solutions.



4 Abstract and Applied Analysis

In Section 4 we define the time scale M(λ)-function for system (Sλ) and establish its basic
properties in the case of the regular spectral problem. In Section 5 we introduce the Weyl
disks and circles for system (Sλ) and describe their geometric structure in terms of contractive
matrices in � n×n . The properties of the limiting Weyl disk and Weyl circle are then studied in
Section 6, where we also prove that system (Sλ) has at least n linearly independent solutions
in the space L2

W (see Theorem 6.7). In Section 7 we define the system (Sλ) to be in the limit
point and limit circle case and prove several characterizations of these properties. In the final
section we consider the system (Sλ) with a nonhomogeneous term. We construct its Green
function, discuss its properties, and characterize the L2

W solutions of this nonhomogeneous
system in terms of the Green function (Theorem 8.5). A certain uniqueness result is also
proven for the limit point case.

2. Time Scales

Following [52, 53], a time scale � is any nonempty and closed subset of � . A bounded time
scale can be therefore identified as [a, b]

�
:= [a, b] ∩ � which we call the time scale interval,

where a := min� and b := max�. Similarly, a time scale which is unbounded above has
the form [a,∞)� := [a,∞) ∩ �. The forward and backward jump operators on a time scale
are denoted by σ(t) and ρ(t) and the graininess function by μ(t) := σ(t) − t. If not otherwise
stated, all functions in this paper are considered to be complex valued. A function f on [a, b]

�

is called piecewise rd-continuous; we write f ∈ Cprd on [a, b]
�

if the right-hand limit f(t+) exists
finite at all right-dense points t ∈ [a, b)

�
, and the left-hand limit f(t−) exists finite at all left-

dense points t ∈ (a, b]� and f is continuous in the topology of the given time scale at all
but possibly finitely many right-dense points t ∈ [a, b)

�
. A function f on [a,∞)

�
is piecewise

rd-continuous; we write f ∈ Cprd on [a,∞)
�

if f ∈ Cprd on [a, b]
�

for every b ∈ (a,∞)
�

. An
n × n matrix-valued function f is called regressive on a given time scale interval if I + μ(t)f(t)
is invertible for all t in this interval.

The time scale Δ-derivative of a function f at a point t is denoted by fΔ(t); see [52,
Definition 1.10]. Whenever fΔ(t) exists, the formula fσ(t) = f(t) + μ(t)fΔ(t) holds true. The
product rule for the Δ-differentiation of the product of two functions has the form

(
fg
)Δ(t) = fΔ(t)g(t) + fσ(t)gΔ(t) = fΔ(t)gσ(t) + f(t)gΔ(t). (2.1)

A function f on [a, b]
�

is called piecewise rd-continuously Δ-differentiable; we write f ∈ C1
prd

on [a, b]
�

; if it is continuous on [a, b]
�

, then fΔ(t) exists at all except for possibly finitely
many points t ∈ [a, ρ(b)]

�
, and fΔ ∈ Cprd on [a, ρ(b)]

�
. As a consequence we have that the

finitely many points ti at which fΔ(ti) does not exist belong to (a, b)� and these points ti are
necessarily right-dense and left-dense at the same time. Also, since at those points we know
that fΔ(t+i ) and fΔ(t−i ) exist finite, we replace the quantity fΔ(ti) by fΔ(t±i ) in any formula
involving fΔ(t) for all t ∈ [a, ρ(b)]

�
. Similarly as above we define f ∈ C1

prd on [a,∞)
�

. The

time scale integral of a piecewise rd-continuous function f over [a, b]
�

is denoted by
∫b
a
f(t)Δt

and over [a,∞)
�

by
∫∞
a f(t)Δt provided this integral is convergent in the usual sense; see [52,

Definitions 1.71 and 1.82].
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Remark 2.1. As it is known in [52, Theorem 5.8] and discussed in [54, Remark 3.8], for a fixed
t0 ∈ [a, b]

�
and a piecewise rd-continuous n × n matrix function A(·) on [a, b]

�
which is

regressive on [a, t0)�, the initial value problem yΔ(t) = A(t)y(t) for t ∈ [a, ρ(b)]
�

with y(t0) =
y0 has a unique solution y(·) ∈ C1

prd on [a, b]� for any y0 ∈ � n . Similarly, this result holds on
[a,∞)

�
.

Let us recall some matrix notations from linear algebra used in this paper. Given
a complex square matrix M, by M∗, M > 0, M ≥ 0, M < 0, M ≤ 0, rankM, KerM,
defM, we denote, respectively, the conjugate transpose, positive definiteness, positive
semidefiniteness, negative definiteness, negative semidefiniteness, rank, kernel, and the
defect (i.e., the dimension of the kernel) of the matrix M. Moreover, we will use the notation
Im(M) := (M −M∗)/(2i) and Re(M) := (M + M∗)/2 for the Hermitian components of
the matrix M; see [55, pages 268-269] or [56, Fact 3.5.24]. This notation will be also used
with λ ∈ � , and in this case Im(λ) and Re(λ) represent the imaginary and real parts of
λ.

Remark 2.2. If the matrix Im(M) is positive or negative definite, then the matrix M is
necessarily invertible. The proof of this fact can be found, for example, in [2, Remark 2.6].

In order to simplify the notation we abbreviate [fσ(t)]∗ and [f∗(t)]σ by fσ∗(t).
Similarly, instead of [fΔ(t)]∗ and [f∗(t)]Δ we will use fΔ∗(t).

3. Time Scale Symplectic Systems

LetA(·), B(·), C(·),D(·),W(·) be n×n piecewise rd-continuous functions on [a,∞)
�

such that
W(t) ≥ 0 for all t ∈ [a,∞)

�
; that is, W(t) is Hermitian and nonnegative definite, satisfying

identity (1.8). In this paper we consider the linear system (Sλ) introduced in the previous
section. This system can be written as

zΔ(t, λ) = S(t)z(t, λ) + λJW̃(t)zσ(t, λ), t ∈ [a,∞)
�
, (Sλ)

where the 2n × 2n matrix W̃(t) is defined and has the property

W̃(t) :=

(W(t) 0

0 0

)
, JW̃(t) =

(
0 0

−W(t) 0

)
. (3.1)

The system (Sλ) can be written in the equivalent form

zΔ(t, λ) = S(t, λ)z(t, λ), t ∈ [a,∞)�, (3.2)
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where the matrix S(t, λ) is defined through the matrices S(t) and W̃(t) from (1.8) and (3.1)
by

S(t, λ) := S(t) + λJW̃(t)
[
I + μ(t)S(t)]

=

( A(t) B(t)
C(t) − λW(t)

[
I + μ(t)A(t)

] D(t) − λμ(t)W(t)B(t)

)
.

(3.3)

By using the identity in (1.8), a direct calculation shows that the matrix function S(·, ·)
satisfies

S∗(t, λ)J +JS
(
t, λ
)
+ μ(t)S∗(t, λ)JS

(
t, λ
)
= 0, t ∈ [a,∞)

�
, λ ∈ � . (3.4)

Here S∗(t, λ) = [S(t, λ)]∗, and λ is the usual conjugate number to λ.

Remark 3.1. The name time scale symplectic system or Hamiltonian system has been reserved in
the literature for the system of the form

zΔ(t) = �(t)z(t), t ∈ [a,∞)�, (3.5)

in which the matrix function �(·) satisfies the identity in (1.8); see [44–47, 57], and compare
also, for example, with [58–61]. Since for a fixed λ, ν ∈ � the matrix S(t, λ) from (3.3) satisfies

S∗(t, λ)J + JS(t, ν) + μ(t)S∗(t, λ)JS(t, ν) =
(
λ − ν

)[
I + μ(t)S∗(t)]W̃(t)

[
I + μ(t)S(t)],

(3.6)

it follows that the system (Sλ) is a true time scale symplectic system according to the above
terminology only for λ ∈ � , while strictly speaking (Sλ) is not a time scale symplectic system
for λ ∈ � \ � . However, since (Sλ) is a perturbation of the time scale symplectic system (S0)
and since the important properties of time scale symplectic systems needed in the presented
Weyl-Titchmarsh theory, such as (3.4) or (3.8), are satisfied in an appropriate modification,
we accept with the above understanding the same terminology for the system (Sλ) for any
λ ∈ � .

Equation (3.4) represents a fundamental identity for the theory of time scale
symplectic systems (Sλ). Some important properties of the matrixS(t, λ) are displayed below.
Note that formula (3.7) is a generalization of [46, equation (10.4)] to complex values of λ.

Lemma 3.2. Identity (3.4) is equivalent to the identity

S
(
t, λ
)
J + JS∗(t, λ) + μ(t)S

(
t, λ
)
JS∗(t, λ) = 0, t ∈ [a,∞)

�
, λ ∈ � . (3.7)
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In this case for any λ ∈ � we have

[
I + μ(t)S∗(t, λ)]J[I + μ(t)S(t, λ)] = J, t ∈ [a,∞)

�
, (3.8)

[
I + μ(t)S

(
t, λ
)]
J[I + μ(t)S∗(t, λ)] = J, t ∈ [a,∞)

�
, (3.9)

and the matrices I + μ(t)S(t, λ) and I + μ(t)S(t, λ) are invertible with

[
I + μ(t)S(t, λ)]−1 = −J

[
I + μ(t)S∗

(
t, λ
)]
J, t ∈ [a,∞)

�
. (3.10)

Proof. Let t ∈ [a,∞)
�

and λ ∈ � be fixed. If t is right-dense, that is, μ(t) = 0, then identity
(3.4) reduces to S∗(t, λ)J + JS(t, λ) = 0. Upon multiplying this equation by J from the left
and right side, we get identity (3.7) with μ(t) = 0. If t is right scattered, that is, μ(t) > 0,
then (3.4) is equivalent to (3.8). It follows that the determinants of I + μ(t)S(t, λ) and I +
μ(t)S(t, λ) are nonzero proving that these matrices are invertible with the inverse given by
(3.10). Upon multiplying (3.8) by the invertible matrices [I + μ(t)S(t, λ)]J from the left and

−[I + μ(t)S(t, λ)]−1J from the right and by using J2 = −I, we get formula (3.9), which is
equivalent to (3.7) due to μ(t) > 0.

Remark 3.3. Equation (3.10) allows writing the system (Sλ) in the equivalent adjoint form

zΔ(t, λ) = JS∗
(
t, λ
)
Jzσ(t, λ), t ∈ [a,∞)

�
. (3.11)

System (3.11) can be found, for example, in [47, Remark 3.1(iii)] or [50, equation (3.2)] in the
connection with optimality conditions for variational problems over time scales.

In the following result we show that (3.4) guarantees, among other properties, the
existence and uniqueness of solutions of the initial value problems associated with (Sλ).

Theorem 3.4 (existence and uniqueness theorem). Let λ ∈ � , t0 ∈ [a,∞)�, and z0 ∈ � 2n be
given. Then the initial value problem (Sλ) with z(t0) = z0 has a unique solution z(·, λ) ∈ C1

prd on the
interval [a,∞)

�
.

Proof. The coefficient matrix of system (Sλ), or equivalently of system (3.2), is piecewise rd-
continuous on [a,∞)

�
. By Lemma 3.2, the matrix I+μ(t)S(t, λ) is invertible for all t ∈ [a,∞)

�
,

which proves that the function S(·, λ) is regressive on [a,∞)
�

. Hence, the result follows from
Remark 2.1.

If not specified otherwise, we use a common agreement that 2n-vector solutions of
system (Sλ) and 2n × n-matrix solutions of system (Sλ) are denoted by small letters and
capital letters, respectively, typically by z(·, λ) or z̃(·, λ) and Z(·, λ) or Z̃(·, λ).

Next we establish several identities involving solutions of system (Sλ) or solutions of
two such systems with different spectral parameters. The first result is the Lagrange identity
known in the special cases of continuous time linear Hamiltonian systems in [11, Theo-
rem 4.1] or [8, equation (2.23)], discrete linear Hamiltonian systems in [9, equation (2.55)]
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or [14, Lemma 2.2], discrete symplectic systems in [1, Lemma 2.6] or [2, Lemma 2.3], and
time scale linear Hamiltonian systems in [3, Lemma 3.5] and [5, Theorem 2.2].

Theorem 3.5 (Lagrange identity). Let λ, ν ∈ � andm ∈ � be given. If z(·, λ) and z(·, ν) are 2n×m
solutions of systems (Sλ) and (Sν), respectively, then

[z∗(t, λ)Jz(t, ν)]Δ =
(
λ − ν

)
zσ∗(t, λ)W̃(t)zσ(t, ν), t ∈ [a,∞)�. (3.12)

Proof. Formula (3.12) follows from the time scales product rule (2.1) by using the relation
zσ(t, λ) = [I + μ(t)S(t, λ)]z(t, λ) and identity (3.6).

As consequences of Theorem 3.5, we obtain the following.

Corollary 3.6. Let λ, ν ∈ � andm ∈ � be given. If z(·, λ) and z(·, ν) are 2n×m solutions of systems
(Sλ) and (Sν), respectively, then for all t ∈ [a,∞)

�
we have

z∗(t, λ)Jz(t, ν) = z∗(a, λ)Jz(a, ν) +
(
λ − ν

)∫ t
a

zσ∗(s, λ)W̃(s)zσ(s, ν)Δs. (3.13)

One can easily see that if z(·, λ) is a solution of system (Sλ), then z(·, λ) is a solution of
system (Sλ). Therefore, Theorem 3.5 with ν = λ yields a Wronskian-type property of solutions
of system (Sλ).

Corollary 3.7. Let λ ∈ � andm ∈ � be given. For any 2n ×m solution z(·, λ) of systems (Sλ)

z∗(t, λ)Jz
(
t, λ
)
≡ z∗(a, λ)Jz

(
a, λ
)
, is constant on [a,∞)

�
. (3.14)

The following result gives another interesting property of solutions of system (Sλ) and
(Sλ).

Lemma 3.8. Let λ ∈ � and m ∈ � be given. For any 2n ×m solutions z(·, λ) and z̃(·, λ) of system
(Sλ), the 2n × 2n matrix function K(·, λ) defined by

K(t, λ) := z(t, λ)z̃∗
(
t, λ
)
− z̃(t, λ)z∗

(
t, λ
)
, t ∈ [a,∞)

�
, (3.15)

satisfies the dynamic equation

KΔ(t, λ) = S(t, λ)K(t, λ) +
[
I + μ(t)S(t, λ)]K(t, λ)S∗

(
t, λ
)
, t ∈ [a,∞)

�
, (3.16)

and the identities K∗(t, λ) = −K(t, λ) and

Kσ(t, λ) =
[
I + μ(t)S(t, λ)]K(t, λ)

[
I + μ(t)S∗

(
t, λ
)]
, t ∈ [a,∞)

�
. (3.17)
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Proof. Having that z(·, λ) and z̃(·, λ) are solutions of system (Sλ), it follows that z(·, λ) and
z̃(·, λ) are solutions of system (Sλ). The results then follow by direct calculations.

Remark 3.9. The content of Lemma 3.8 appears to be new both in the continuous and discrete
time cases. Moreover, when the matrix function K(·, λ) ≡ K(λ) is constant, identity (3.17)
yields for any right-scattered t ∈ [a,∞)

�
that

S(t, λ)K(λ) +K(λ)S∗
(
t, λ
)
+ μ(t)S(t, λ)K(λ)S∗

(
t, λ
)
= 0. (3.18)

It is interesting to note that this formula is very much like (3.7). More precisely, identity (3.7)
is a consequence of (3.18) for the case of K(λ) ≡ J.

Next we present properties of certain fundamental matrices Ψ(·, λ) of system (Sλ),
which are generalizations of the corresponding results in [46, Section 10.2] to complex λ.
Some of these results can be proven under the weaker condition that the initial value of
Ψ(a, λ) does depend on λ and satisfies Ψ∗(a, λ)JΨ(a, λ) = J. However, these more general
results will not be needed in this paper.

Lemma 3.10. Let λ ∈ � be fixed. If Ψ(·, λ) is a fundamental matrix of system (Sλ) such thatΨ(a, λ)
is symplectic and independent of λ, then for any t ∈ [a,∞)

�
we have

Ψ∗(t, λ)JΨ
(
t, λ
)
= J, Ψ−1(t, λ) = −JΨ∗

(
t, λ
)
J, Ψ(t, λ)JΨ∗

(
t, λ
)
= J. (3.19)

Proof. Identity (3.19)(i) is a consequence of Corollary 3.7, in which we use the fact that Ψ(a, λ)
is symplectic and independent of λ. The second identity in (3.19) follows from the first one,
while the third identity is obtained from the equation Ψ(t, λ)Ψ−1(t, λ) = I.

Remark 3.11. If the fundamental matrix Ψ(·, λ) = (Z(·, λ) Z̃(·, λ)) in Lemma 3.10 is partitioned
into two 2n × n blocks, then (3.19)(i) and (3.19)(iii) have, respectively, the form

Z∗(t, λ)JZ
(
t, λ
)
= 0, Z∗(t, λ)JZ̃

(
t, λ
)
= I, Z̃∗(t, λ)JZ̃

(
t, λ
)
= 0, (3.20)

Z(t, λ)Z̃∗
(
t, λ
)
− Z̃(t, λ)Z∗

(
t, λ
)
= J. (3.21)

Observe that the matrix on the left-hand side of (3.21) represents a constant matrix K(t, λ)
from Lemma 3.8 and Remark 3.9.

Corollary 3.12. Under the conditions of Lemma 3.10, for any t ∈ [a,∞)
�
, we have

Ψσ(t, λ)JΨ∗
(
t, λ
)
=
[
I + μ(t)S(t, λ)]J, (3.22)

which in the notation of Remark 3.11 has the form

Zσ(t, λ)Z̃∗
(
t, λ
)
− Z̃σ(t, λ)Z∗

(
t, λ
)
=
[
I + μ(t)S(t, λ)]J. (3.23)



10 Abstract and Applied Analysis

Proof. Identity (3.22) follows from the equation Ψσ(t, λ) = [I +μ(t)S(t, λ)]Ψ(t, λ) by applying
formula (3.19)(ii).

4. M(λ)-Function for Regular Spectral Problem

In this section we consider the regular spectral problem on the time scale interval [a, b]�with
some fixed b ∈ (a,∞)

�
. We will specify the corresponding boundary conditions in terms of

complex n × 2n matrices from the set

Γ :=
{
α ∈ � n×2n , αα∗ = I, αJα∗ = 0

}
. (4.1)

The two defining conditions for α ∈ � n×2n in (4.1) imply that the 2n × 2n matrix (α∗ − Jα∗)
is unitary and symplectic. This yields the identity

(
α∗ −Jα∗)

(
α

αJ

)
= I ∈ � 2n×2n , that is, α∗α − Jα∗αJ = I. (4.2)

The last equation also implies, compare with [60, Remark 2.1.2], that

Kerα = ImJα∗. (4.3)

Let α, β ∈ Γ be fixed and consider the boundary value problem

(Sλ), αz(a, λ) = 0, βz(b, λ) = 0. (4.4)

Our first result shows that the boundary conditions in (4.4) are equivalent with the boundary
conditions phrased in terms of the images of the 2n × 2n matrices

Ra :=
(Jα∗ 0

)
, Rb :=

(
0 −Jβ∗), (4.5)

which satisfy R∗aJRa = 0, R∗bJRb = 0, and rank(R∗a R∗b) = 2n.

Lemma 4.1. Let α, β ∈ Γ and λ ∈ � be fixed. A solution z(·, λ) of system (Sλ) satisfies the boundary
conditions in (4.4) if and only if there exists a unique vector ξ ∈ � 2n such that

z(a, λ) = Raξ, z(b, λ) = Rbξ. (4.6)

Proof. Assume that (4.4) holds. Identity (4.3) implies the existence of vectors ξa, ξb ∈ � n such
that z(a, λ) = −Jα∗ξa and z(b, λ) = −Jβ∗ξb. It follows that z(·, λ) satisfies (4.6) with ξ :=
(−ξ∗a ξ∗

b
)∗. It remains to prove that ξ is unique such a vector. If z(·, λ) satisfies (4.6) and also

z(a, λ) = Raζ and z(b, λ) = Rbζ for some ξ, ζ ∈ � 2n , then Ra(ξ−ζ) = 0 and Rb(ξ−ζ) = 0. Hence,
Jα∗(I 0)(ξ−ζ) = 0 and −Jβ∗(0 I)(ξ−ζ) = 0. If we multiply the latter two equalities by αJ and
βJ, respectively, and use αα∗ = I = ββ∗, then we obtain (I 0)(ξ − ζ) = 0 and (0 I)(ξ − ζ) = 0.
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This yields ξ − ζ = 0, which shows that the vector ξ in (4.6) is unique. The opposite direction,
that is, that (4.6) implies (4.4), is trivial.

Following the standard terminology, see, for example, [62, 63], a number λ ∈ � is
an eigenvalue of (4.4) if this boundary value problem has a solution z(·, λ)/≡ 0. In this case
the function z(·, λ) is called the eigenfunction corresponding to the eigenvalue λ, and the
dimension of the space of all eigenfunctions corresponding to λ (together with the zero
function) is called the geometric multiplicity of λ.

Given α ∈ Γ, we will utilize from now on the fundamental matrix Ψ(·, λ, α) of system
(Sλ) satisfying the initial condition from (4.4), that is,

ΨΔ(t, λ, α) = S(t, λ)Ψ(t, λ, α), t ∈ [a, ρ(b)]
�
, Ψ(a, λ, α) =

(
α∗ −Jα∗). (4.7)

Then Ψ(a, λ, α) does not depend on λ, and it is symplectic and unitary with the inverse
Ψ−1(a, λ, α) = Ψ∗(a, λ, α). Hence, the properties of fundamental matrices derived earlier in
Lemma 3.10, Remark 3.11, and Corollary 3.12 apply for the matrix function Ψ(·, λ, α).

The following assumption will be imposed in this section when studying the regular
spectral problem.

Hypothesis 4.2. For every λ ∈ � , we have

∫b
a

Ψσ∗(t, λ, α)W̃(t)Ψσ(t, λ, α)Δt > 0. (4.8)

Condition (4.8) can be written in the equivalent form as

∫b
a

zσ∗(t, λ)W̃(t)zσ(t, λ)Δt > 0, (4.9)

for every nontrivial solution z(·, λ) of system (Sλ). Assumptions (4.8) and (4.9) are equivalent
by a simple argument using the uniqueness of solutions of system (Sλ). The latter form
(4.9) has been widely used in the literature, such as in the continuous time case in [8,
Hypothesis 2.2], [30, equation (1.3)], [26, equation (2.3)], in the discrete time case in [9,
Condition (2.16)], [14, equation (1.7)], [1, Assumption 2.2], [2, Hypothesis 2.4], and in the
time scale Hamiltonian case in [3, Assumption 3] and [5, Condition (3.9)].

Following Remark 3.11, we partition the fundamental matrix Ψ(·, λ, α) as

Ψ(·, λ, α) =
(
Z(·, λ, α) Z̃(·, λ, α)

)
, (4.10)

where Z(·, λ, α) and Z̃(·, λ, α) are the 2n× n solutions of system (Sλ) satisfying Z(a, λ, α) = α∗

and Z̃(a, λ, α) = −Jα∗. With the notation

Λ
(
λ, α, β

)
:= Ψ(b, λ, α)Ψ∗(a, λ, α)Ra − Rb =

(
−Z̃(b, λ, α) Jβ∗

)
, (4.11)
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we have the classical characterization of the eigenvalues of (4.4); see, for example, the
continuous time in [64, Chapter 4], the discrete time in [14, Theorem 2.3, Lemma 2.4], [2,
Lemma 2.9, Theorem 2.11], and the time scale case in [62, Lemma 3], [63, Corollary 1].

Proposition 4.3. For α, β ∈ Γ and λ ∈ � , we have with notation (4.11) the following.

(i) The number λ is an eigenvalue of (4.4) if and only if detΛ(λ, α, β) = 0.

(ii) The algebraic multiplicity of the eigenvalue λ, that is, the number defΛ(λ, α, β), is equal to
the geometric multiplicity of λ.

(iii) Under Hypothesis 4.2, the eigenvalues of (4.4) are real, and the eigenfunctions
corresponding to different eigenvalues are orthogonal with respect to the semi-inner product

〈z(·, λ), z(·, ν)〉W,b :=
∫b
a

zσ∗(t, λ)W̃(t)zσ(t, ν)Δt. (4.12)

Proof. The arguments are here standard, and we refer to [44, Section 5], [63, Corollary 1],
[3, Theorem 3.6].

The next algebraic characterization of the eigenvalues of (4.4) is more appropriate for
the development of the Weyl-Titchmarsh theory for (4.4), since it uses the matrix βZ̃(b, λ, α)
which has dimension n instead of using the matrix Λ(λ, α, β) which has dimension 2n. Results
of this type can be found in special cases of system (Sλ) in [8, Lemma 2.5], [11, Theorem 4.1],
[9, Lemma 2.8], [14, Lemma 3.1], [1, Lemma 2.5], [3, Theorem 3.4], and [2, Lemma 3.1].

Lemma 4.4. Let α, β ∈ Γ and λ ∈ � be fixed. Then λ is an eigenvalue of (4.4) if and only
if detβZ̃(b, λ, α) = 0. In this case the algebraic and geometric multiplicities of λ are equal to
def βZ̃(b, λ, α).

Proof. One can follow the same arguments as in the proof of the corresponding discrete
symplectic case in [2, Lemma 3.1]. However, having the result of Proposition 4.3, we can
proceed directly by the methods of linear algebra. In this proof we abbreviate Λ := Λ(λ, α, β)
and Z̃ := Z̃(b, λ, α). Assume that Λ is singular, that is, −Z̃c + Jβ∗d = 0 for some vectors
c, d ∈ � n , not both zero. Then Z̃c = Jβ∗d, which yields that βZ̃c = 0. If c = 0, then Jβ∗d = 0,
which implies upon the multiplication by βJ from the left that d = 0. Since not both c and d

can be zero, it follows that c /= 0 and the matrix βZ̃ is singular. Conversely, if βZ̃c = 0 for some
nonzero vector c ∈ � n , then −Z̃c+Jβ∗d = 0; that is, Λ is singular, with the vector d := −βJZ̃c.
Indeed, by using identity (4.2) we have Jβ∗d = −Jβ∗βJZ̃c = (I − β∗β)Z̃c = Z̃c. From the
above we can also see that the number of linearly independent vectors in Ker βZ̃ is the same
as the number of linearly independent vectors in KerΛ. Therefore, by Proposition 4.3(ii), the
algebraic and geometric multiplicities of λ as an eigenvalue of (4.4) are equal to def βZ̃.

Since the eigenvalues of (4.4) are real, it follows that the matrix βZ̃(b, λ, α) is invertible
for every λ ∈ � except for at most n real numbers. This motivates the definition of the M(λ)-
function for the regular spectral problem.
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Definition 4.5 (M(λ)-function). Let α, β ∈ Γ. Whenever the matrix βZ̃(b, λ, α) is invertible for
some value λ ∈ � , we define the Weyl-TitchmarshM(λ)-function as the n × n matrix

M(λ) =M(λ, b) = M
(
λ, b, α, β

)
:= −
[
βZ̃(b, λ, α)

]−1
βZ(b, λ, α). (4.13)

The above definition of the M(λ)-function is a generalization of the corresponding
definitions for the continuous and discrete linear Hamiltonian and symplectic systems in
[8, Definition 2.6], [9, Definition 2.9], [14, equation (3.10)], [1, page 2859], [2, Definition 3.2]
and time scale linear Hamiltonian systems in [3, equation (4.1)]. The dependence of the
M(λ)-function on b, α, and β will be suppressed in the notation, and M(λ, b) or M(λ, b, α, β)
will be used only in few situations when we emphasize the dependence on b (such as at
the end of Section 5) or on α and β (as in Lemma 4.14). By [65, Corollary 4.5], see also [44,
Remark 2.2], the M(·)-function is an entire function in λ. Another important property of the
M(λ)-function is established in the following.

Lemma 4.6. Let α, β ∈ Γ and λ ∈ � \ � . Then

M∗(λ) =M
(
λ
)
. (4.14)

Proof. We abbreviateZ(λ) := Z(b, λ, α) and Z̃(λ) := Z̃(b, λ, α). By using the definition of M(λ)
in (4.13) and identity (3.21), we have

M∗(λ) −M
(
λ
)
=
[
βZ̃
(
λ
)]−1

β
[
Z
(
λ
)
Z̃∗(λ) − Z̃

(
λ
)
Z∗(λ)

]
β∗
[
βZ̃(λ)

]∗−1

(3.21)
=
[
βZ̃
(
λ
)]−1

βJβ∗
[
βZ̃(λ)

]∗−1
= 0,

(4.15)

because β ∈ Γ. Hence, equality (4.14) holds true.

The following solution plays an important role in particular in the results concerning
the square integrable solutions of system (Sλ).

Definition 4.7 (Weyl solution). For any matrix M ∈ � n×n , we define the so-called Weyl solution
of system (Sλ) by

X(·, λ, α,M) := Ψ(·, λ, α)(I M∗)∗ = Z(·, λ, α) + Z̃(·, λ, α)M, (4.16)

where Z(·, λ, α) and Z̃(·, λ, α) are defined in (4.10).

The functionX(·, λ, α,M), being a linear combination of two solutions of system (Sλ),
is also a solution of this system. Moreover, αX(a, λ, α,M) = I, and, if βZ̃(b, λ, α) is invertible,
then βX̃(b, λ, α,M) = βZ̃(b, λ, α)[M − M(λ)]. Consequently, if we take M := M(λ) in
Definition 4.7, then βX(b, λ, α,M(λ)) = 0; that is, the Weyl solution X(·, λ, α,M(λ)) satisfies
the right endpoint boundary condition in (4.4).
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Following the corresponding notions in [8, equation (2.18)], [9, equation (2.51)], [14,
page 471], [1, page 2859], [2, equation (3.13)], [3, equation (4.2)], we define the Hermitian
n × n matrix function E(M) for system (Sλ).

Definition 4.8. For a fixed α ∈ Γ and λ ∈ � \ � , we define the matrix function

E : � n×n −→ �
n×n , E(M) = E(M,b) := iδ(λ)X∗(b, λ, α,M)JX(b, λ, α,M), (4.17)

where δ(λ) := sgn Im(λ).

For brevity we suppress the dependence of the function E(·) on b and λ. In few cases we
will need E(M) depending on b (as in Theorem 5.1 and Definition 6.2) and in such situations
we will use the notation E(M,b). Since (iJ)∗ = iJ, it follows that E(M) is a Hermitian matrix
for any M ∈ � n×n . Moreover, from Corollary 3.6, we obtain the identity

E(M) = −2δ(λ) Im(M) + 2|Im(λ)|
∫b
a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt, (4.18)

where we used the fact that

X∗(a, λ, α,M)JX(a, λ, α,M)
(4.7)
= M −M∗ = 2i Im(M). (4.19)

Next we define the Weyl disk and Weyl circle for the regular spectral problem. The
geometric characterizations of the Weyl disk and Weyl circle in terms of the contractive
or unitary matrices which justify the terminology “disk” or “circle” will be presented in
Section 5.

Definition 4.9 (Weyl disk and Weyl circle). For a fixed α ∈ Γ and λ ∈ � \ � , the set

D(λ) = D(λ, b) :=
{
M ∈ � n×n , E(M) ≤ 0

}
, (4.20)

is called the Weyl disk, and the set

C(λ) = C(λ, b) := ∂D(λ) =
{
M ∈ � n×n , E(M) = 0

}
, (4.21)

is called the Weyl circle.

The dependence of the Weyl disk and Weyl circle on b will be again suppressed. In
the following result we show that the Weyl circle consists of precisely those matrices M(λ)
with β ∈ Γ. This result generalizes the corresponding statements in [8, Lemma 2.8], [9,
Lemma 2.13], [14, Lemma 3.3], [1, Theorem 3.1], [2, Theorem 3.6], and [3, Theorem 4.2].

Theorem 4.10. Let α ∈ Γ, λ ∈ � \� , andM ∈ � n×n . The matrixM belongs to the Weyl circle C(λ)
if and only if there exists β ∈ Γ such that βX(b, λ, α,M) = 0. In this case and under Hypothesis 4.2,
we have with such a matrix β thatM = M(λ) as defined in (4.13).
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Proof. Assume that M ∈ C(λ), that is, E(M) = 0. Then, with the vector

β := X∗(b)J =
(
I M∗)Ψ∗(b, λ, α)J ∈ � n×2n , (4.22)

whereX(b) denotesX(b, λ, α,M), we have

βX(b) = X∗(b)JX(b) =
[

1
(iδ(λ))

]
E(M) = 0. (4.23)

Moreover, rankβ = n, because the matrices Ψ(b, λ, α) and J are invertible and rank(I M∗) =
n. In addition, the identity J∗ = J−1 yields

βJβ∗ = X∗(b)JX(b)
(4.23)
= 0. (4.24)

Now, if the condition ββ∗ = I is not satisfied, then we replace β by β̃ := (ββ∗)−1/2β (note that
ββ∗ > 0, so that (ββ∗)−1/2 is well defined), and in this case

β̃X(b) =
(
ββ∗
)−1/2

βX(b)
(4.23)
= 0,

β̃Jβ̃∗ = (ββ∗)−1/2
βJβ∗(ββ∗)−1/2 (4.24)

= 0,

β̃β̃∗ =
(
ββ∗
)−1/2

ββ∗
(
ββ∗
)−1/2 = I.

(4.25)

Conversely, suppose that for a given M ∈ � n×n there exists β ∈ Γ such that βX(b) = 0. Then
from (4.3) it follows thatX(b) = Jβ∗P for the matrix P := −βJX(b) ∈ � n×n . Hence,

E(M) = iδ(λ)P ∗βJ∗JJβ∗P = iδ(λ)P ∗βJβ∗P = 0, (4.26)

that is, M ∈ C(λ). Finally, since λ ∈ � \ � , then by Proposition 4.3(iii) the number λ is not an
eigenvalue of (4.4), which by Lemma 4.4 shows that the matrix βZ̃(b, λ, α) is invertible. The
definition of the Weyl solution in (4.16) then yields

βZ(b, λ, α) + βZ̃(b, λ, α)M = βX(b, λ, α,M) = 0, (4.27)

which implies that M = −[βZ̃(b, λ, α)]−1
βZ(b, λ, α) = M(λ).

Remark 4.11. The matrix P := −βJX(b, λ, α,M) ∈ � n×n from the proof of Theorem 4.10 is
invertible. This fact was not needed in that proof. However, we show that P is invertible
because this argument will be used in the proof of Lemma 4.14. First we prove that
KerP = KerX(b, λ, α,M). For if Pd = 0 for some d ∈ �

n , then from identity (4.2)
we get X(b, λ, α,M)d = (I − β∗β)X(b, λ, α,M)d = Jβ∗Pd = 0. Therefore, KerP ⊆
KerX(b, λ, α,M). The opposite inclusion follows by the definition of P . And since, by (4.16),
rankX(b, λ, α,M) = rank(I M∗)∗ = n, it follows that KerX(b, λ, α,M) = {0}. Hence,
KerP = {0} as well; that is, the matrix P is invertible.
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The next result contains a characterization of the matricesM ∈ � n×n which lie “inside”
the Weyl diskD(λ). In the previous result (Theorem 4.10) we have characterized the elements
of the boundary of the Weyl disk D(λ), that is, the elements of the Weyl circle C(λ), in terms
of the matrices β ∈ Γ. For such β we have βJβ∗ = 0, which yields iδ(λ)βJβ∗ = 0. Comparing
with that statement we now utilize the matrices β ∈ � n×2n which satisfy iδ(λ)βJβ∗ > 0. In the
special cases of the continuous and discrete time, this result can be found in [8, Lemma 2.13],
[9, Lemma 2.18], and [2, Theorem 3.13].

Theorem 4.12. Let α ∈ Γ, λ ∈ � \ � , andM ∈ � n×n . The matrixM satisfies E(M) < 0 if and only
if there exists β ∈ � n×2n such that iδ(λ)βJβ∗ > 0 and βX(b, λ, α,M) = 0. In this case and under
Hypothesis 4.2, we have with such a matrix β that M = M(λ) as defined in (4.13) and β may be
chosen so that ββ∗ = I.

Proof. For M ∈ � n×n consider on [a, b]
�

the Weyl solution

X(·) := X(·, λ, α,M) =

(X1(·)
X2(·)

)
, with n × n blocks X1(·) and X2(·). (4.28)

Suppose first that E(M) < 0. Then the matrices Xj(b), j ∈ {1, 2}, are invertible. Indeed, if
one of them is singular, then there exists a nonzero vector v ∈ � n such that X1(b)v = 0 or
X2(b)v = 0. Then

v∗E(M)v = iδ(λ)v∗X∗(b)JX(b)v = iδ(λ)v∗
[X∗1(b)X2(b) − X∗2(b)X1(b)

]
v = 0, (4.29)

which contradicts E(M) < 0. Now we set β1 := I, β2 := −X1(b)X−1
2 (b), and β := (β1 β2). Then

for this 2n × n matrix β we have βX(b) = 0 and, by a similar calculation as in (4.29),

E(M) = iδ(λ)X∗(b)JX(b) = iδ(λ)X∗2(b)
(
β2β

∗
1 − β1β

∗
2

)X2(b)

= 2δ(λ)X∗2(b) Im
(
β1β

∗
2
)X2(b) = −iδ(λ)X∗2(b)βJβ∗X2(b),

(4.30)

where we used the equality βJβ∗ = 2i Im(β1β
∗
2). Since E(M) < 0 and X2(b) is invertible, it

follows that iδ(λ)βJβ∗ > 0. Conversely, assume that for a given matrix M ∈ � n×n there is
β = (β1 β2) ∈ �

n×2n satisfying iδ(λ)βJβ∗ > 0 and βX(b) = 0. Condition iδ(λ)βJβ∗ > 0 is
equivalent to Im(β1β

∗
2) < 0 when Im(λ) > 0 and to Im(β1β

∗
2) > 0 when Im(λ) < 0. The positive

or negative definiteness of Im(β1β
∗
2) implies the invertibility of β1 and β2; see Remark 2.2.

Therefore, from the equality β1X1(b) + β2X2(b) = βX(b) = 0, we obtainX1(b) = −β−1
1 β2X2(b),

and so

E(M) = iδ(λ)
[X∗1(b)X2(b) − X∗2(b)X1(b)

]

= iδ(λ)X∗2(b)β−1
1

(
β2β

∗
1 − β1β

∗
2

)
β∗−1

1 X2(b)

= −iδ(λ)X∗2(b)β−1
1 βJβ∗β∗−1

1 X2(b).

(4.31)
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The matrix X2(b) is invertible, because if X2(b)d = 0 for some nonzero vector d ∈ � n ,
then X1(b)d = −β−1

1 β2X2(b)d = 0, showing that rankX(b) < n. This however contradicts
rankX(b) = n which we have from the definition of the Weyl solution X(·) in (4.16).
Consequently, (4.31) yields through iδ(λ)βJβ∗ > 0 that E(M) < 0.

If the matrix β does not satisfy ββ∗ = I, then we modify it according to the
procedure described in the proof of Theorem 4.10. Finally, since λ ∈ � \ � , we get from
Proposition 4.3(iii) and Lemma 4.4 that the matrix βZ̃(b, λ, α) is invertible which in turn

implies through the calculation in (4.27) that M = −[βZ̃(b, λ, α)]−1
βZ(b, λ, α) = M(λ).

In the following lemma we derive some additional properties of the Weyl disk and
the M(λ)-function. Special cases of this statement can be found in [8, Lemma 2.9], [33,
Theorem 3.1], [9, Lemma 2.14], [14, Lemma 3.2(ii)], [1, Theorem 3.7], [2, Lemma 3.7], and
[3, Theorem 4.13].

Theorem 4.13. Let α ∈ Γ and λ ∈ � \ � . For any matrixM ∈ D(λ) we have

δ(λ) Im(M) ≥ |Im(λ)|
∫b
a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt ≥ 0. (4.32)

In addition, under Hypothesis 4.2, we have δ(λ) Im(M) > 0.

Proof. By identity (4.18), for any matrix M ∈ D(λ), we have

2δ(λ) Im(M) = −E(M) + 2|Im(λ)|
∫b
a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt

≥ 2|Im(λ)|
∫b
a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt,

(4.33)

which yields together with W̃(t) ≥ 0 on [a, ρ(b)]
�

the inequalities in (4.32). The last assertion
in Theorem 4.13 is a simple consequence of Hypothesis 4.2.

In the last part of this section we wish to study the effect of changing α, which is one
of the parameters of the M(λ)-function and the Weyl solution X(·, λ, α,M), when α varies
within the set Γ. For this purpose we will use the M(λ)-function with all its arguments in the
following two statements.

Lemma 4.14. Let α, β, γ ∈ Γ and λ ∈ � \ � . Then

M
(
λ, b, α, β

)
=
[
αJγ ∗ + αγ ∗M(λ, b, γ, β)][αγ ∗ − αJγ ∗M(λ, b, γ, β)]−1

. (4.34)

Proof. Let M(b, λ, α, β) and M(b, λ, γ, β) be given via (4.13), and consider the Weyl solutions
Xα(·) := X(·, λ, α,M(b, λ, α, β)) and Xγ(·) := X(·, λ, γ,M(b, λ, γ, β)) defined by (4.16) with
M = M(b, λ, α, β) and M = M(b, λ, γ, β), respectively. First we prove that the two Weyl
solutionsXα(·) andXγ(·) differ by a constant nonsingular multiple. By definition, βXα(b) = 0
and βXγ (b) = 0, which implies through (4.3) that Xα(b) = Jβ∗Pα and Xγ(b) = Jβ∗Pγ
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for some matrices Pα, Pγ ∈ � n×n , which are invertible by Remark 4.11. This implies that
Xα(b)P−1

α = Jβ∗ = Xγ(b)P−1
γ . Consequently, Xα(b) = Xγ(b)P , where P := P−1

γ Pα. By the
uniqueness of solutions of system (Sλ), see Theorem 3.4, we obtain that Xα(·) = Xγ (·)P on
[a, b]

�
. Upon the evaluation at t = a we get

Ψ(a, λ, α)

(
I

M
(
λ, b, α, β

)
)

= Ψ
(
a, λ, γ

)( I

M
(
λ, b, γ, β

)
)
P. (4.35)

Since the matrices Ψ(a, λ, α) = (α∗ − Jα∗) and Ψ(a, λ, γ) = (γ ∗ − Jγ ∗) are unitary, it follows
from (4.35) that

(
I

M
(
λ, b, α, β

)
)

=

(
α

αJ

)(
γ ∗ −Jγ ∗)

(
I

M
(
λ, b, γ, β

)
)
P

=

(
αγ ∗ − αJγ ∗M(λ, b, γ, β)
αJγ ∗ + αγ ∗M(λ, b, γ, β)

)
P.

(4.36)

The first row above yields that P = [αγ ∗ − αJγ ∗M(λ, b, γ, β)]−1, while the second row is then
written as identity (4.34).

Corollary 4.15. Let α, β, γ ∈ Γ and λ ∈ � \ � . With notation (4.16) and (4.13) we have

X(·, λ, α,M(λ, b, α, β)) = X(·, λ, γ,M(λ, b, γ, β))[αγ ∗ − αJγ ∗M(λ, b, γ, β)]−1
. (4.37)

Proof. The above identity follows from (4.35) and the formula for the matrix P from the end
of the proof of Lemma 4.14.

5. Geometric Properties of Weyl Disks

In this section we study the geometric properties of the Weyl disks as the point b

moves through the interval [a,∞)
�

. Our first result shows that the Weyl disks D(λ, b) are
nested. This statement generalizes the results in [11, Theorem 4.5], [66, Section 3.2.1], [9,
equation (2.70)], [14, Theorem 3.1], [3, Theorem 4.4], and [5, Theorem 3.3(i)].

Theorem 5.1 (nesting property of Weyl disks). Let α ∈ Γ and λ ∈ � \ � . Then

D(λ, b2) ⊆ D(λ, b1), for every b1, b2 ∈ [a,∞)
�
, b1 < b2. (5.1)



Abstract and Applied Analysis 19

Proof. Let b1, b2 ∈ [a,∞)
�

with b1 < b2, and take M ∈ D(λ, b2), that is, E(M,b2) ≤ 0. From
identity (4.18) with b = b1 and later with b = b2 and by using W̃(·) ≥ 0, we have

E(M,b1)
(4.18)
= −2δ(λ) Im(M) + 2|Im(λ)|

∫b1

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt

≤ −2δ(λ) Im(M) + 2|Im(λ)|
∫b2

a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt

(4.18)
= E(M,b2) ≤ 0.

(5.2)

Therefore, by Definition 4.9, the matrix M belongs to D(λ, b1), which shows the result.

Similarly for the regular case (Hypothesis 4.2) we now introduce the following
assumption.

Hypothesis 5.2. There exists b0 ∈ (a,∞)
�

such that Hypothesis 4.2 is satisfied with b = b0; that
is, inequality (4.8) holds with b = b0 for every λ ∈ � .

From Hypothesis 5.2 it follows by W̃(·) ≥ 0 that inequality (4.8) holds for every b ∈
[b0,∞)

�
.

For the study of the geometric properties of Weyl disks we will use the following
representation:

E(M,b) = iδ(λ)X∗(b, λ, α,M)JX(b, λ, α,M) =
(
I M∗)

(F(b, λ, α) G∗(b, λ, α)
G(b, λ, α) H(b, λ, α)

)(
I

M

)
,

(5.3)

of the matrix E(M,b), where we define on [a,∞)
�

the n × n matrices

F(·, λ, α) := iδ(λ)Z∗(·, λ, α)JZ(·, λ, α),

G(·, λ, α) := iδ(λ)Z̃∗(·, λ, α)JZ(·, λ, α),

H(·, λ, α) := iδ(λ)Z̃∗(·, λ, α)JZ̃(·, λ, α).

(5.4)

Since E(M,b) is Hermitian, it follows that F(·, λ, α) and H(·, λ, α) are also Hermitian.
Moreover, by (4.7), we have H(a, λ, α) = 0. In addition, if b ∈ [b0,∞)

�
, then Corollary 3.7

and Hypothesis 5.2 yield for any λ ∈ � \ �

H(b, λ, α) = 2|Im(λ)|
∫b
a

Z̃σ∗(t, λ, α)W̃(t)Z̃σ(t, λ, α)Δt > 0. (5.5)

Therefore, H(b, λ, α) is invertible (positive definite) for all b ∈ [b0,∞)
�

and monotone
nondecreasing as b → ∞, with a consequence thatH−1(b, λ, α) is monotone nonincreasing as
b → ∞. The following factorization of E(M,b) holds true; see also [2, equation (4.11)].
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Lemma 5.3. Let α ∈ Γ and λ ∈ � \ � . With the notation (5.4), for anyM ∈ � n×n and b ∈ [a,∞)
�

we have

E(M,b) = F(b, λ, α) − G∗(b, λ, α)H−1(b, λ, α)G(b, λ, α)

+
[
G∗(b, λ, α)H−1(b, λ, α) +M∗

]
H(b, λ, α)

[
H−1(b, λ, α)G(b, λ, α) +M

]
,

(5.6)

whenever the matrixH(b, λ, α) is invertible.

Proof. The result is shown by a direct calculation.

The following identity is a generalization of its corresponding versions in [11,
Lemma 4.3], [1, Lemma 3.3], [14, Proposition 3.2], [2, Lemma 4.2], [3, Lemma 4.6], and
[5, Theorem 5.6].

Lemma 5.4. Let α ∈ Γ and λ ∈ � \ � . With the notation (5.4), for any b ∈ [a,∞)
�
, we have

G∗(b, λ, α)H−1(b, λ, α)G(b, λ, α) − F(b, λ, α) =H−1
(
b, λ, α

)
, (5.7)

whenever the matricesH(b, λ, α) andH(b, λ, α) are invertible.

Proof. In order to simplify and abbreviate the notation we introduce the matrices

F := F(b, λ, α), G := G(b, λ, α), H :=H(b, λ, α),

F̃ := F
(
b, λ, α

)
, G̃ := G

(
b, λ, α

)
, H̃ :=H

(
b, λ, α

)
,

(5.8)

and use the notation Z(λ) and Z̃(λ) for Z(b, λ, α) and Z̃(b, λ, α), respectively. Then, since
F∗ = F and δ(λ)δ(λ) = −1, we get the identities

G∗F̃ − F∗G̃ = Z∗(λ)J
[
Z̃(λ)Z∗

(
λ
)
− Z(λ)Z̃∗

(
λ
)]
JZ
(
λ
) (3.21)

= Z∗(λ)JZ
(
λ
) (3.20)

= 0, (5.9)

HG̃∗ − GH∗ = Z̃∗(λ)J
[
Z̃(λ)Z∗

(
λ
)
− Z(λ)Z̃∗

(
λ
)]
JZ̃
(
λ
) (3.21)

= Z̃∗(λ)JZ̃
(
λ
) (3.20)

= 0, (5.10)

GG̃ −HF̃ = Z̃∗(λ)J
[
Z(λ)Z̃∗

(
λ
)
− Z̃(λ)Z∗

(
λ
)]
JZ
(
λ
) (3.21)

= −Z̃∗(λ)JZ
(
λ
) (3.20)

= I, (5.11)

G∗G̃∗ − FH̃ = Z∗(λ)J
[
Z̃(λ)Z∗

(
λ
)
− Z(λ)Z̃∗

(
λ
)]
JZ̃
(
λ
) (3.21)

= Z∗(λ)JZ̃
(
λ
) (3.20)

= I. (5.12)

Hence, by using that H̃ is Hermitian, we see that

H̃−1 (5.12)
= G∗G̃∗H̃−1 − F = G∗G̃∗H̃∗−1 − F (5.10)

= G∗H−1G − F. (5.13)

Identity (5.7) is now proven.
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Corollary 5.5. Let α ∈ Γ and λ ∈ � \ � . Under Hypothesis 5.2, the matrixH(b, λ, α) is invertible
for every b ∈ [b0,∞)

�
, and for these values of b we have

G∗(b, λ, α)H−1(b, λ, α)G(b, λ, α) − F(b, λ, α) > 0. (5.14)

Proof. Since b ∈ [b0,∞)
�

, then identity (5.5) yields that H(b, λ, α) > 0 and H(b, λ, α) > 0.
Consequently, inequality (5.14) follows from (5.7) of Lemma 5.4.

In the next result we justify the terminology for the sets D(λ, b) and C(λ, b) in
Definition 4.9 to be called a “disk” and a “circle.” It is a generalization of [14, Theorem 3.1],
[2, Theorem 5.4], [5, Theorem 3.3(iii)]; see also [66, Theorem 3.5], [26, pages 70-71], [8,
page 3485], [14, Proposition 3.3], [1, Theorem 3.3], [3, Theorem 4.8]. Consider the sets V and
U of contractive and unitary matrices in � n×n , respectively, that is,

V :=
{
V ∈ � n×n , V ∗V ≤ I}, U := ∂V =

{
U ∈ � n×n , U∗U = I

}
. (5.15)

The set V is known to be closed (in fact compact, since V is bounded) and convex.

Theorem 5.6. Let α ∈ Γ and λ ∈ � \� . Under Hypothesis 5.2, for every b ∈ [b0,∞)�, the Weyl disk
and Weyl circle have the representations

D(λ, b) =
{
P(λ, b) + R(λ, b)VR

(
λ, b
)
, V ∈ V

}
, (5.16)

C(λ, b) =
{
P(λ, b) + R(λ, b)UR

(
λ, b
)
, U ∈ U

}
, (5.17)

where, with the notation (5.4),

P(λ, b) := −H−1(λ, b, α)G(λ, b, α), R(λ, b) :=H−1/2(λ, b, α). (5.18)

Consequently, for every b ∈ [b0,∞)
�
, the sets D(λ, b) are closed and convex.

The representations of D(λ, b) and C(λ, b) in (5.16) and (5.17) can be written as
D(λ, b) = P(λ, b) +R(λ, b)VR(λ, b) and C(λ, b) = P(λ, b) +R(λ, b)UR(λ, b). The importance of
the matrices P(λ, b) and R(λ, b) is justified in the following.

Definition 5.7. For α ∈ Γ, λ ∈ � \ � , and b ∈ [a,∞)� such that H(λ, b, α) and H(λ, b, α) are
positive definite, the matrix P(λ, b) is called the center of the Weyl disk or the Weyl circle. The
matrices R(λ, b) and R(λ, b) are called the matrix radii of the Weyl disk or the Weyl circle.

Proof of Theorem 5.6. By (5.5) and for any b ∈ [b0,∞)
�

, the matrices H := H(λ, b, α) and
H̃ := H(λ, b, α) are positive definite, so that the matrices P := P(λ, b), R(λ) := R(λ, b), and
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R(λ) := R(λ, b) are well defined. By Definition 4.9, for M ∈ D(λ, b), we have E(M,b) ≤ 0,
which in turn with notation (5.8) implies by Lemmas 5.3 and 5.4 that

− R2
(
λ
)
+ (M∗ − P ∗)R−2(λ)(M − P)

(5.7)
= F − G∗H−1G +

(
H−1G +M

)∗
H
(
H−1G +M

)
= E(M,b) ≤ 0.

(5.19)

Therefore, the matrix

V := R−1(λ)(M − P)R−1
(
λ
)
, (5.20)

satisfies V ∗V ≤ I. This relation between the matrices M ∈ D(λ, b) and V ∈ V is bijective
(more precisely, it is a homeomorphism), and the inverse to (5.20) is given by M = P +
R(λ)VR(λ). The latter formula proves that the Weyl disk D(λ, b) has the representation in
(5.16). Moreover, since by the definition M ∈ C(λ, b) means that E(M,b) = 0, it follows that
the elements of the Weyl circle C(λ, b) are in one-to-one correspondence with the matrices V
defined in (5.20) which, similarly as in (5.19), now satisfy V ∗V = I. Hence, the representation
ofC(λ, b) in (5.17) follows. The fact that for b ∈ [b0,∞)

�
the setsD(λ, b) are closed and convex

follows from the same properties of the set V, being homeomorphic to D(λ, b).

6. Limiting Weyl Disk and Weyl Circle

In this section we study the limiting properties of the Weyl disk and Weyl circle and their
center and matrix radii. Since under Hypothesis 5.2 the matrix functionH(·, λ, α) is monotone
nondecreasing as b → ∞, it follows from the definition of R(λ, b) andR(λ, b) in (5.18) that the
two matrix functionsR(λ, ·) andR(λ, ·) are monotone nonincreasing for b → ∞. Furthermore,
since R(λ, b) and R(λ, b) are Hermitian and positive definite for b ∈ [b0,∞)

�
, the limits

R+(λ) := lim
b→∞

R(λ, b), R+

(
λ
)

:= lim
b→∞

R
(
λ, b
)
, (6.1)

exist and satisfy R+(λ) ≥ 0 and R+(λ) ≥ 0. The index “+” in the above notation as
well as in Definition 6.2 refers to the limiting disk at +∞. In the following result we will
see that the center P(λ, b) also converges to a limiting matrix when b → ∞. This is a
generalization of [11, Theorem 4.7], [1, Theorem 3.5], [14, Proposition 3.5], [2, Theorem 4.5],
and [3, Theorem 4.10].

Theorem 6.1. Let α ∈ Γ and λ ∈ � \ � . Under Hypothesis 5.2, the center P(λ, b) converges as
b → ∞ to a limiting matrix P+(λ) ∈ � n×n , that is,

P+(λ) := lim
b→∞

P(λ, b). (6.2)

Proof. We prove that the matrix function P(λ, ·) satisfies the Cauchy convergence criterion.
Let b1, b2 ∈ [b0,∞)� be given with b1 < b2. By Theorem 5.1, we have that D(λ, b2) ⊆ D(λ, b1).



Abstract and Applied Analysis 23

Therefore, by (5.16) of Theorem 5.6, for a matrix M ∈ D(λ, b2), there are (unique) matrices
V1, V2 ∈ V such that

M = P
(
λ, bj
)
+ R
(
λ, bj
)
VjR
(
λ, bj
)
, j ∈ {1, 2}. (6.3)

Upon subtracting the two equations in (6.3), we get

P(λ, b2) − P(λ, b1) + R(λ, b2)V2R
(
λ, b2

)
= R(λ, b1)V1R

(
λ, b1

)
. (6.4)

This equation, when solved for V1 in terms of V2, has the form

V1 = R−1(λ, b1)
[
P(λ, b2) − P(λ, b1) + R(λ, b2)V2R

(
λ, b2

)]
R−1
(
λ, b1

)
=: T(V2), (6.5)

which defines a continuous mapping T : V → V, T(V2) = V1. Since V is compact, it follows
that the mapping T has a fixed point in V, that is, T(V ) = V for some matrix V ∈ V. Equation
T(V ) = V implies that

P(λ, b2) − P(λ, b1) = R(λ, b1)VR
(
λ, b1

)
− R(λ, b2)VR

(
λ, b2

)

= [R(λ, b1) − R(λ, b2)]VR
(
λ, b1

)
− R(λ, b2)V

[
R
(
λ, b1

)
− R
(
λ, b2

)]
.

(6.6)

Hence, by ‖V ‖ ≤ 1, we have

‖P(λ, b2) − P(λ, b1)‖ ≤ ‖R(λ, b1) − R(λ, b2)‖
∥∥∥R(λ, b1

)∥∥∥ + ‖R(λ, b2)‖
∥∥∥R(λ, b1

)
− R
(
λ, b2

)∥∥∥.
(6.7)

Since the functions R(λ, ·) and R(λ, ·) are monotone nonincreasing, they are bounded; that is,
for some K > 0, we have ‖R(λ, b)‖ ≤ K and ‖R(λ, b)‖ ≤ K for all b ∈ [b0,∞)

�
.

Let ε > 0 be arbitrary. The convergence of R(λ, b) and R(λ, b) as b → ∞ yields the
existence of b3 ∈ [b0,∞)� such that for every b1, b2 ∈ [b3,∞)�with b1 < b2 we have

‖R(ν, b1) − R(ν, b2)‖ ≤ ε

(2K)
, ν ∈

{
λ, λ
}
. (6.8)

Using estimate (6.8) in inequality (6.7) we obtain for b2 > b1 ≥ b3

‖P(λ, b2) − P(λ, b1)‖ < ε

(2K)
·K +

ε

(2K)
·K = ε. (6.9)

This means that the limit P+(λ) ∈ � n×n in (6.2) exists, which completes the proof.
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By Theorems 5.1 and 5.6 we know that the Weyl disks D(λ, b) are closed, convex, and
nested as b → ∞. Thereore the limit of D(λ, b) as b → ∞ is a closed, convex, and nonempty
set. This motivates the following definition, which can be found in the special cases of system
(Sλ) in [26, Theorem 3.3], [1, Theorem 3.6], [2, Definition 4.7], and [3, Theorem 4.12].

Definition 6.2 (limiting Weyl disk). Let α ∈ Γ and λ ∈ � \ � . Then the set

D+(λ) :=
⋂

b∈[a,∞)
�

D(λ, b), (6.10)

is called the limiting Weyl disk. The matrix P+(λ) from Theorem 6.1 is called the center of D+(λ)
and the matrices R+(λ) and R+(λ) from (6.1) its matrix radii.

As a consequence of Theorem 5.6, we obtain the following characterization of the
limiting Weyl disk.

Corollary 6.3. Let α ∈ Γ and λ ∈ � \ � . Under Hypothesis 5.2, we have

D+(λ) = P+(λ) + R+(λ)VR+

(
λ
)
, (6.11)

where V is the set of all contractive matrices defined in (5.15).

From now on we assume that Hypothesis 5.2 holds, so that the limiting center P+(λ)
and the limiting matrix radii R+(λ) and R+(λ) of D+(λ) are well defined.

Remark 6.4. By means of the nesting property of the disks (Theorem 5.1) and Theorems 4.10
and 4.12, it follows that the elements of the limiting Weyl disk D+(λ) are of the form

M+(λ) ∈ D+(λ), M+(λ) = lim
b→∞

M
(
λ, b, α, β(b)

)
, (6.12)

where β(b) ∈ � n×2n satisfies β(b)β∗(b) = I and iδ(λ)β(b)Jβ∗(b) ≥ 0 for all b ∈ [a,∞).
Moreover, from Lemma 4.6, we conclude that

M∗
+(λ) =M+

(
λ
)
. (6.13)

A matrix M+(λ) from (6.12) is called a half-line Weyl-Titchmarsh M(λ)-function. Also, as
noted in [2, Section 4], see also [8, Theorem 2.18], the function M+(λ) is a Herglotz function
with rank n and has a certain integral representation (which will not be needed in this
paper).

Our next result shows another characterization of the elements of D+(λ) in terms of
the Weyl solution X(·, α, λ,M) defined in (4.16). This is a generalization of [11, page 671],
[26, equation (3.2)], [1, Theorem 3.8(i)], [2, Theorem 4.8], and [3, Theorem 4.15].
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Theorem 6.5. Let α ∈ Γ, λ ∈ � \ � , and M ∈ � n×n . The matrix M belongs to the limiting Weyl
disk D+(λ) if and only if

∫∞
a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt ≤ Im(M)
Im(λ)

. (6.14)

Proof. By Definition 6.2, we have M ∈ D+(λ) if and only if M ∈ D(λ, b), that is, E(M,b) ≤ 0,
for all b ∈ [a,∞)

�
. Therefore, by formula (4.18), we get

∫b
a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt =
E(M,b)
2|Im(λ)| +

δ(λ) Im(M)
|Im(λ)| ≤ Im(M)

Im(λ)
, (6.15)

for every b ∈ [a,∞)
�

, which is equivalent to inequality (6.14).

Remark 6.6. In [1, Definition 3.4], the notion of a boundary of the limiting Weyl disk D+(λ)
is discussed. This would be a “limiting Weyl circle” according to Definitions 4.9 and 6.2. The
description of matrices M ∈ � n×n laying on this boundary follows from Theorems 6.5 and
4.10, giving for such matrices M the equality

∫∞
a

Xσ∗(t, λ, α,M)W̃(t)Xσ(t, λ, α,M)Δt =
Im(M)
Im(λ)

. (6.16)

Condition (6.16) is also equivalent to

lim
t→∞
X∗(t, λ, α,M)JX(t, λ, α,M) = 0. (6.17)

This is because, by (4.19) and the Lagrange identity (Corollary 3.6),

X∗(t, λ, α,M)JX(t, λ, α,M)

= 2i Im(λ)

[
Im(M)
Im(λ)

−
∫ t
a

Xσ∗(s, λ, α,M)W̃(s)Xσ(s, λ, α,M)Δs

]
,

(6.18)

for every t ∈ [a,∞)
�

. From this we can see that the integral on the right-hand side
above converges for t → ∞ and (6.16) holds if and only if condition (6.17) is satisfied.
Characterizations (6.16) and (6.17) of the matrices M on the boundary of the limiting Weyl
disk D+(λ) generalize the corresponding results in [1, Theorems 3.8(ii) and 3.9]; see also
[14, Theorem 6.3].

Consider the linear space of square integrable C1
prd functions

L2
W = L2

W[a,∞)
�

:=
{
z : [a,∞)

�
−→ �

2n , z ∈ C1
prd, ‖z(·)‖W <∞

}
, (6.19)
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where we define

‖z(·)‖W :=
√
〈z(·), z(·)〉W, 〈z(·), z̃(·)〉W :=

∫∞
a

zσ∗(t)W̃(t)z̃σ(t)Δt. (6.20)

In the following result we prove that the space L2
W contains the columns of the Weyl solution

X(·, λ, α,M) when M belongs to the limiting Weyl disk D+(λ). This implies that there are at
least n linearly independent solutions of system (Sλ) in L2

W. This is a generalization of [11,
Theorem 5.1], [14, Theorem 4.1], [2, Theorem 4.10], and [5, page 716].

Theorem 6.7. Let α ∈ Γ, λ ∈ � \ � , andM ∈ D+(λ). The columns ofX(·, λ, α,M) form a linearly
independent system of solutions of system (Sλ), each of which belongs to L2

W.

Proof. Let zj(·) := X(·, λ, α,M)ej for j ∈ {1, . . . , n} be the columns of the Weyl solution
X(·, λ, α,M), where ej is the jth unit vector. We prove that the functions z1(·), . . . , zn(·) are
linearly independent. Assume that

∑n
j=1 cjzj(·) = 0 on [a,∞)

�
for some c1, . . . , cn ∈ � . Then

X(·, λ, α,M)c = 0, where c := (c∗1, . . . , c
∗
n)
∗ ∈ � n . It follows by (4.19) that

2ic∗ Im(M)c = c∗X∗(a, λ, α,M)JX(a, λ, α,M)c = 0, (6.21)

which implies the equality c∗δ(λ) Im(M)c = 0. Using that M ∈ D+(λ) ⊆ D(λ, b) for some
b ∈ [b0,∞)

�
, we obtain from Theorem 4.13 that the matrix δ(λ) Im(M) is positive definite.

Hence, c = 0 so that the functions z1(·), . . . , zn(·) are linearly independent. Finally, for every
j ∈ {1, . . . , n} we get from Theorem 6.5 the inequality

∥∥zj(·)∥∥2
W =
∫∞
a

zσ∗j (t)W̃(t)zσj (t)Δt
(6.14)
≤ e∗j

Im(M)
Im(λ)

ej ≤ ‖δ(λ) Im(M)‖
|Im(λ)| <∞. (6.22)

Thus, zj(·) ∈ L2
W for every j ∈ {1, . . . , n}, and the proof is complete.

Denote byN(λ) the linear space of all square integrable solutions of system (Sλ), that
is,

N(λ) :=
{
z(·) ∈ L2

W, z(·) solves (Sλ)
}
. (6.23)

Then as a consequence of Theorem 6.7 we obtain the estimate

dimN(λ) ≥ n, for each λ ∈ � \ � . (6.24)

Next we discuss the situation when dimN(λ) = n for some λ ∈ � \ � .

Lemma 6.8. Let α ∈ Γ, λ ∈ � \ � , and dimN(λ) = n. Then the matrix radii of the limiting Weyl
disk D+(λ) satisfy R+(λ) = 0 = R+(λ). Consequently, the set D+(λ) consists of the single matrix
M = P+(λ), that is, the center ofD+(λ), which is given by formula (6.2) of Theorem 6.1.
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Proof. With the matrix radii R+(λ) and R+(λ) of D+(λ) defined in (6.1) and with the
Weyl solution X(·, λ, α,M) given by a matrix M ∈ D+(λ), we observe that the columns
of X(·, λ, α,M) form a basis of the space N(λ). Since the columns of the fundamental
matrix Ψ(·, λ, α) = (Z(·, λ, α) Z̃(·, λ, α)) span all solutions of system (Sλ), the definition of
X(·, λ, α,M) = Z(·, λ, α) + Z̃(·, λ, α)M yields that the columns of Z̃(·, λ, α) together with the
columns ofX(·, λ, α,M) form a basis of all solutions of system (Sλ). Hence, from dimN(λ) =
n and Theorem 6.7, we get that the columns of Z̃(·, λ, α) do not belong to L2

W. Consequently,

by formula (5.5), the Hermitian matrix functionsH(·, λ, α) andH(·, λ, α) defined in (5.4) are
monotone nondecreasing on [a,∞)

�
without any upper bound; that is, their eigenvalues—

being real—tend to ∞. Therefore, the functions R(λ, ·) and R(λ, ·) as defined in (5.18) have
limits at∞ equal to zero; that is,R+(λ) = 0 andR+(λ) = 0. The fact that the setD+(λ) = {P+(λ)}
then follows from the characterization of D+(λ) in Corollary 6.3.

In the final result of this section, we establish another characterization of the matrices
M from the limiting Weyl disk D+(λ). In comparison with Theorem 6.5, we now use a similar
condition to the one in Theorem 4.12 for the regular spectral problem. However, a stronger
assumption than Hypothesis 5.2 is now required for this result to hold; compare with [9,
Lemma 2.21] and [2, Theorem 4.16].

Hypothesis 6.9. For every a0, b0 ∈ (a,∞)
�

with a0 < b0 and for every λ ∈ � , we have

∫b0

a0

Ψσ∗(t, λ, α)W̃(t)Ψσ(t, λ, α)Δt > 0. (6.25)

Under Hypothesis 6.9, the Weyl disks D(λ, b) converge to the limiting disk “monoton-
ically” as b → ∞; that is, the limiting Weyl disk D+(λ) is “open” in the sense that all of its
elements lie inside D+(λ). This can be interpreted in view of Theorem 4.12 as E(M, t) < 0 for
all t ∈ [a,∞)

�.

Theorem 6.10. Let α ∈ Γ, λ ∈ � \� , andM ∈ � n×n . Under Hypothesis 6.9, the matrixM ∈ D+(λ)
if and only if

E(M, t) < 0, ∀t ∈ [a,∞)
�
. (6.26)

Proof. If condition (6.26) holds, then M ∈ D+(λ) follows from the definition of D+(λ).
Conversely, suppose that M ∈ D+(λ), and let t ∈ [a,∞)

�
be given. Then for any b ∈ (t,∞)

�

we have by formula (4.18) that

E(M, t) = −2δ(λ) Im(M) + 2|Im(λ)|
∫ t
a

Xσ∗(s, λ, α,M)W̃(s)Xσ(s, λ, α,M)Δs

= E(M,b) − 2|Im(λ)|
∫b
t

Xσ∗(s, λ, α,M)W̃(s)Xσ(s, λ, α,M)Δs,

(6.27)
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where we used the property
∫ t
a
f(s)Δs =

∫b
a
f(s)Δs − ∫b

t
f(s)Δs. Since M ∈ D+(λ) is assumed,

we have M ∈ D(λ, b), that is, E(M,b) ≤ 0, while Hypothesis 6.9 implies the positivity of the
integral over [t, b]

� in (6.27). Consequently, (6.27) yields that E(M, t) < 0.

Remark 6.11. If we partition the Weyl solution X(·, λ) := X(·, λ, α,M) into two n × n blocks
X1(·, λ) andX2(·, λ) as in (4.28), then condition (6.26) can be written as

δ(λ) Im
(X∗1(t, λ)X2(t, λ)

)
> 0, ∀t ∈ [a,∞)

�
. (6.28)

Therefore, by Remark 2.2, the matricesX1(t, λ) andX2(t, λ) are invertible for all t ∈ [a,∞)
�

. A
standard argument then yields that the quotient Q(·, λ) := X2(·, λ)X−1

1 (·, λ) satisfies the Riccati
matrix equation (suppressing the argument t in the coefficients)

QΔ − (C +DQ) +Qσ(A + BQ) + λW[I + μ(A + BQ)
]
= 0, t ∈ [a,∞)

�
, (6.29)

see [57, Theorem 3], [48, Section 6], and [49].

7. Limit Point and Limit Circle Criteria

Throughout this section we assume that Hypothesis 5.2 is satisfied. The results from
Theorem 6.7 and Lemma 6.8 motivate the following terminology; compare with [4, page 75],
[43, Definition 1.2] in the time scales scalar case n = 1, with [8, page 3486], [36, page 1668],
[30, page 274], [38, Definition 3.1], [37, Definition 1], [67, page 2826] in the continuous case,
and with [14, Definition 5.1], [2, Definition 4.12] in the discrete case.

Definition 7.1 (limit point and limit circle case for system (Sλ)). The system (Sλ) is said to be
in the limit point case at∞ (or of the limit point type) if

dimN(λ) = n, ∀λ ∈ � \ � . (7.1)

The system (Sλ) is said to be in the limit circle case at∞ (or of the limit circle type) if

dimN(λ) = 2n, ∀λ ∈ � \ � . (7.2)

Remark 7.2. According to Remark 6.4 (in which β(b) ≡ β), the center P+(λ) of the limiting
Weyl disk D+(λ) can be expressed in the limit point case as

P+(λ) =M+(λ) = lim
b→∞

M
(
λ, b, α, β

)
, (7.3)

where β ∈ Γ is arbitrary but fixed.

Next we establish the first main result of this section. Its continuous time version
can be found in [30, Theorem 2.1], [11, Theorem 8.5] and the discrete time version in [9,
Lemma 3.2], [2, Theorem 4.13].
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Theorem 7.3. Let the system (Sλ) be in the limit point or limit circle case, fix α ∈ Γ, and let λ, ν ∈
� \ � . Then

lim
t→∞
X∗+(t, λ, α,M+(λ))JX+(t, ν, α,M+(ν)) = 0, (7.4)

whereX+(·, λ, α,M+(λ)) andX+(·, ν, α,M+(ν)) are theWeyl solutions of (Sλ) and (Sν), respectively,
defined by (4.16) through thematricesM+(λ) andM+(ν), which are determined by the limit in (6.12).

Proof. For every t ∈ [a,∞)
�

and matrices β(t) ∈ � n×2n such that β(t)β∗(t) = I and
iδ(λ)β(t)Jβ∗(t) ≥ 0 and for κ ∈ {λ, ν}, we define the matrix (compare with Definition 4.5)

M
(
κ, t, α, β(t)

)
:= −
[
β(t)Z̃(t, κ, α)

]−1
β(t)Z(t, κ, α). (7.5)

Then, by Theorems 4.10 and 4.12, we have M(κ, t, α, β(t)) ∈ D(κ, t). Following the notation
in (4.16), we consider the Weyl solutions X(·, κ) := X(·, κ, α,M(κ, t, α, β(·))). Similarly, let
X+(·, κ) := X(·, κ, α,M+(κ)) be the Weyl solutions corresponding to the matrices M+(κ) ∈
D+(κ) from the statement of this theorem.

First assume that the system (Sλ) is of the limit point type. In this case, by Remark 7.2,
we may take β(t) ∈ Γ for all t ∈ [a,∞)

�
. Hence, from Theorem 4.10, we get that β(·)X(·, κ) = 0

on [a,∞)
�

. By (4.3), for each t ∈ [a,∞)
�

and κ ∈ {λ, ν}, there is a matrix Qκ(t) ∈ � n×n such
thatX(·, κ) = Jβ∗(·)Qκ(·) on [a,∞)

�
. Hence, we have on [a,∞)

�

X∗+(t, λ)JX+(t, ν) + F
(
t, λ, ν, β(t)

)
+G
(
t, λ, ν, β(t)

)

= X∗(t, λ)JX(t, ν) = Q∗λ(t)β(t)Jβ∗(t)Qν(t) = 0,
(7.6)

where we define

F
(
t, λ, ν, β(t)

)
:= X∗+(t, λ)JZ̃(t, ν, α)

[
M
(
ν, t, α, β(t)

) −M+(ν)
]
,

G
(
t, λ, ν, β(t)

)
:=
[
M∗(λ, t, α, β(t)) −M∗

+(λ)
]
Z̃∗(t, λ, α)JX(t, ν).

(7.7)

If we show that

lim
t→∞

F
(
t, λ, ν, β(t)

)
= 0, lim

t→∞
G
(
t, λ, ν, β(t)

)
= 0, (7.8)

then (7.6) implies the result claimed in (7.4). First we prove the second limit in (7.8). Pick any
t ∈ [b0,∞)

�
. By Theorem 5.6, Corollary 6.3, and D+(λ) ⊆ D(λ, t), we have

M
(
λ, t, α, β(t)

)
= P(λ, t) + R(λ, t)U(t)R

(
λ, t
)
, M+(λ) = P(λ, t) + R(λ, t)V (t)R

(
λ, t
)
,

(7.9)
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where U(t) ∈ U and V (t) ∈ V. Therefore,

M
(
λ, t, α, β(t)

) −M+(λ) = R(λ, t)[U(t) − V (t)]R
(
λ, t
)
. (7.10)

Since Z̃(·, λ, α) and X(·, ν) are, respectively, solutions of systems (Sλ) and (Sν) which satisfy
Z̃∗(a, λ, α)JX(a, ν) = −I, it follows from Corollary 3.6 that

Z̃∗(t, λ, α)JX(t, ν) = −I +
(
λ − ν

)∫ t
a

Z̃σ∗(s, λ, α)W̃(s)Xσ(s, ν)Δs. (7.11)

Hence, we can write

G
(
t, λ, ν, β(t)

)
= R
(
λ, t
)
[U∗(t) − V ∗(t)]R(λ, t)

[(
λ − ν

)∫ t
a

Z̃σ∗(s, λ, α)W̃(s)Xσ(s, ν)Δs − I
]
,

(7.12)

where we used the Hermitian property of R(λ, t) and R(λ, t). Since we now assume that
system (Sλ) is in the limit point case, we know from Lemma 6.8 that limt→∞R(λ, t) = 0 and
limt→∞R(λ, t) = 0. Therefore, in order to establish (7.8)(ii), it is sufficient to show that

R(λ, t)
∫ t
a

Z̃σ∗(s, λ, α)W̃(s)Xσ(s, ν)Δs, (7.13)

is bounded for t ∈ [b0,∞)
�

. Let η ∈ � n be a unit vector, and denote byXj(·, ν) := X(·, ν)ej the
jth column ofX(·, ν) for j ∈ {1, . . . , n}. With the definition of R(λ, ·) in (5.18) we have

∣∣∣∣∣
∫ t
a

η∗R(λ, s)Z̃σ∗(s, λ, α)W̃(s)Xσ
j (s, ν)Δs

∣∣∣∣∣

≤
∫ t
a

∣∣∣W̃1/2(s)Z̃σ∗(s, λ, α)R(λ, s)η
∣∣∣∣∣∣W̃1/2(s)Xσ

j (s, ν)
∣∣∣Δs

C-S≤
(∫ t

a

η∗R(λ, s)Z̃σ∗(s, λ, α)W̃(s)Z̃σ(s, λ, α)R(λ, s)ηΔs

)1/2

×
(∫ t

a

Xσ∗
j (s, ν)W̃(s)Xσ

j (s, ν)Δs

)1/2

,

(7.14)

where the last step follows from the Cauchy-Schwarz inequality (C-S) on time scales. From
(5.5) we obtain

H−1/2(t, λ, α)
∫ t
a

Z̃σ∗(s, λ, α)W̃(s)Z̃σ(s, λ, α)ΔsH−1/2(t, λ, α) =
1

2|Im(λ)| I, (7.15)
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so that the first term in the product in (7.14) is bounded by 1/
√

2| Im(λ)|. Moreover, from
formula (4.18) we get that the second term in the product in (7.14) is bounded by the number
[e∗j Im(M(ν, t, α, β(t)))ej]/ Im(ν). Hence, upon recalling the limit in (6.12), we conclude that
the product in (7.14) is bounded by

1
2|Im(λ)| ·

e∗j Im(M+(ν))ej

Im(ν)
, (7.16)

which is independent of t. Consequently, the second limit in (7.8) is established. The first limit
in (7.8) is then proven in a similar manner. The proof for the limit point case is finished.

If the system (Sλ) is in the limit circle case, then for κ ∈ {λ, ν} the columns of Z̃(·, κ, α)
and X+(·, κ) belong to L2

W; hence, they are bounded in the L2
W norm. In this case the limits in

(7.8) easily follow from the limit (6.12) for M+(κ), κ ∈ {λ, ν}.

In the next result we provide a characterization of the system (Sλ) being of the limit
point type. Special cases of this statement can be found, for example, in [14, Theorem 6.12]
and [2, Theorem 4.14].

Theorem 7.4. Let α ∈ Γ. The system (Sλ) is in the limit point case if and only if, for every λ ∈ � \ �
and every square integrable solutions z1(·, λ) and z2(·, λ) of (Sλ) and (Sλ), respectively, we have

z∗1(t, λ)Jz2

(
t, λ
)
= 0, ∀t ∈ [b0,∞)

�
. (7.17)

Proof. Let (Sλ) be in the limit point case. Fix any λ ∈ � \ � , and suppose that z1(·, λ) and
z2(·, λ) are solutions of (Sλ) and (Sλ), respectively. Then, by Theorem 6.7 and Remark 6.4,
there are vectors ξ1, ξ2 ∈ � n such that z1(·, λ) = X+(·, λ)ξ1 and z2(·, λ) = X+(·, λ)ξ2 on [a,∞)

�
,

where X+(·, κ) := X+(·, κ, α,M+(κ)) are the Weyl solutions corresponding to some matrices
M+(κ) ∈ D+(κ) for κ ∈ {λ, λ}. In fact, by Lemma 6.8, the matrix M+(κ) is equal to the center
of the disk D+(κ). It follows that for any t ∈ [b0,∞)

�
equality

X∗+(t, λ)JX+

(
t, λ
)

(4.16)
=
(
I M∗

+(λ)
)
Ψ∗(t, λ, α)JΨ

(
t, λ, α

)(
I M∗

+(λ)
)∗ (3.19)(i)

= M∗
+

(
λ
)
−M∗

+(λ)
(6.13)
= 0,

(7.18)

holds, so that (7.17) is established. Conversely, let ν ∈ � \ � be arbitrary but fixed, set
λ := ν, and suppose that, for every square integrable solutions z1(·, λ) and z2(·, ν) of (Sλ)
and (Sν), condition (7.17) is satisfied. From Theorem 6.7 we know that for M+(κ) ∈ D+(κ)
the columns X[j]

+ (·, κ), j ∈ {1, . . . , n}, of the Weyl solution X+(·, κ) are linearly independent
square integrable solutions of (Sκ), κ ∈ {λ, ν}. Therefore, dimN(λ) ≥ n, and dimN(ν) ≥ n.
Moreover, by identity (3.19)(i), we have

X∗+(t, λ)JX[j]
+ (t, ν) = 0, ∀t ∈ [b0,∞)

�
, j ∈ {1, . . . , n}. (7.19)
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Let z(·, ν) be any square integrable solution of system (Sν). Then, by our assumption (7.17),

X∗+(t, λ)Jz(t, ν) = 0, ∀t ∈ [b0,∞)
�
. (7.20)

From (7.19) and (7.20) it follows that the vectors X[j]
+ (a, ν), j ∈ {1, . . . , n}, and z(a, ν) are

solutions of the linear homogeneous system

X∗+(a, λ)Jη = 0. (7.21)

Since, by Theorem 6.7, the vectorsX[j]
+ (a, ν) for j ∈ {1, . . . , n} represent a basis of the solution

space of system (7.21), there exists a vector ξ ∈ �
n such that z(a, ν) = X+(a, ν)ξ. By the

uniqueness of solutions of system (Sν) we then get z(·, ν) = X+(·, ν)ξ on [a,∞)
�

. Hence, the
solution z(·, ν) is square integrable and dimN(ν) = n. Since ν ∈ � \� was arbitrary, it follows
that the system (Sλ) is in the limit point case.

As a consequence of the above result, we obtain a characterization of the limit point
case in terms of a condition similar to (7.17), but using a limit. This statement is a general-
ization of [30, Corollary 2.3], [9, Corollary 3.3], [14, Theorem 6.14], [2, Corollary 4.15], [1,
Theorem 3.9], [3, Theorem 4.16].

Corollary 7.5. Let α ∈ Γ. The system (Sλ) is in the limit point case if and only if, for every λ, ν ∈ � \�
and every square integrable solutions z1(·, λ) and z2(·, ν) of (Sλ) and (Sν), respectively, we have

lim
t→∞

z∗1(t, λ)Jz2(t, ν) = 0. (7.22)

Proof. The necessity follows directly from Theorem 7.3. Conversely, assume that condition
(7.22) holds for every λ, ν ∈ � \� and every square integrable solutions z1(·, λ) and z2(·, ν) of
(Sλ) and (Sν). Fix λ ∈ � \ � , and set ν := λ. By Corollary 3.7 we know that z∗1(·, λ)Jz2(·, ν) is
constant on [a,∞)

�
. Therefore, by using condition (7.22), we can see that identity (7.17) must

be satisfied, which yields by Theorem 7.4 that the system (Sλ) is of the limit point type.

8. Nonhomogeneous Time Scale Symplectic Systems

In this section we consider the nonhomogeneous time scale symplectic system

zΔ(t, λ) = S(t, λ)z(t, λ) − JW̃(t)fσ(t), t ∈ [a,∞)�, (8.1)

where the matrix function S(·, λ) and W̃(·) are defined in (3.3) and (3.1), f ∈ L2
W, and where

the associated homogeneous system (Sλ) is either of the limit point or limit circle type at∞.
Together with system (8.1) we consider a second system of the same form but with a different
spectral parameter and a different nonhomogeneous term

yΔ(t, ν) = S(t, ν)y(t, ν) − JW̃(t)gσ(t), t ∈ [a,∞)
�
, (8.2)

with g ∈ L2
W. The following is a generalization of Theorem 3.5 to nonhomogeneous systems.
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Theorem 8.1 (Lagrange identity). Let λ, ν ∈ � and m ∈ � be given. If z(·, λ) and y(·, ν) are
2n ×m solutions of systems (8.1) and (8.2), respectively, then

[
z∗(t, λ)Jy(t, ν)]Δ

=
(
λ − ν

)
zσ∗(t, λ)W̃(t)yσ(t, ν) − fσ∗(t)W̃(t)yσ(t, ν) + zσ∗(t, λ)W̃(t)gσ(t), t ∈ [a,∞)

�
.

(8.3)

Proof. Formula (8.3) follows by the product rule (2.1) with the aid of the relation

zσ(t, λ) =
[
I + μ(t)S(t, λ)]z(t, λ) + μ(t)W̃(t)fσ(t), (8.4)

and identity (3.6).

For α ∈ Γ, λ ∈ � \ � , and t, s ∈ [a,∞)
�

, we define the function

G(t, s, λ, α) :=

⎧⎨
⎩
Z̃(t, λ, α)X∗+

(
s, λ, α

)
, for t ∈ [a, s)

�
,

X+(t, λ, α)Z̃∗
(
s, λ, α

)
, for t ∈ [s,∞)

�
,

(8.5)

where Z̃(·, λ, α) is the solution of system (Sλ) given in (4.10), that is, Z̃(a, λ, α) = −Jα∗, and
X+(·, λ, α) := X(·, λ, α,M+(λ)) is the Weyl solution of (Sλ) as in (4.16) determined by a matrix
M+(λ) ∈ D+(λ). This matrix M+(λ) ∈ D+(λ) is arbitrary but fixed throughout this section. By
interchanging the order of the arguments t and s, we have

G(t, s, λ, α) =

⎧⎨
⎩
X+(t, λ, α)Z̃∗

(
s, λ, α

)
, for s ∈ [a, t]

�
,

Z̃(t, λ, α)X∗+
(
s, λ, α

)
, for s ∈ (t,∞)

�
.

(8.6)

In the literature the function G(·, ·, λ, α) is called a resolvent kernel, compare with [30,
page 283], [32, page 15], [2, equation (5.4)], and in this section it will play a role of the Green
function.

Lemma 8.2. Let α ∈ Γ and λ ∈ � \ � . Then

X+(t, λ, α)Z̃∗
(
t, λ, α

)
− Z̃(t, λ, α)X∗+

(
t, λ, α

)
= J, ∀t ∈ [a,∞)

�
. (8.7)

Proof. Identity (8.7) follows by a direct calculation from the definition of X+(·, λ, α) via (4.16)
with a matrix M+(λ) ∈ D+(λ) by using formulas (3.21) and (6.13).

In the next lemma we summarize the properties of the function G(·, ·, λ, α), which
together with Proposition 8.4 and Theorem 8.5 justifies the terminology “Green function” of
the system (8.1); compare with [68, Section 4]. A discrete version of the following result can
be found in [2, Lemma 5.1].
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Lemma 8.3. Let α ∈ Γ and λ ∈ � \ � . The function G(·, ·, λ, α) has the following properties:

(i) G∗(t, s, λ, α) = G(s, t, λ, α) for every t, s ∈ [a,∞)
�
, t /= s,

(ii) G∗(t, t, λ, α) = G(t, t, λ, α) − J for every t ∈ [a,∞)
�
,

(iii) G(σ(t), σ(t), λ, α) = [I + μ(t)S(t, λ)]G(t, σ(t), λ, α) + J for every right-scattered point
t ∈ [a,∞)

�
,

(iv) for every t, s ∈ [a,∞)
�
such that t /∈ T(s), the function G(·, s, λ, α) solves the homogene-

ous system (Sλ) on the set T(s), where

T(s) :=
{
τ ∈ [a,∞)

�
, τ /= ρ(s) if s is left-scattered

}
, (8.8)

(v) the columns of G(·, s, λ, α) belong to L2
W for every s ∈ [a,∞)

�
, and the columns of

G(t, ·, λ, α) belong to L2
W for every t ∈ [a,∞)

�
.

Proof. Condition (i) follows from the definition of G(·, s, λ, α) in (8.5). Condition (ii) is a
consequence of Lemma 8.2. Condition (iii) is proven from the definition of G(σ(t), σ(t), λ, α)
in (8.5) by using Lemma 8.2 and Z̃(t, λ, α) = Z̃σ(t, λ, α) − μ(t)S(t, λ)Z̃(t, λ, α). Concerning
condition (iv), the function G(·, s, λ, α) solves the system (Sλ) on [s,∞)

�
because X+(·, λ, α)

solves this system on [s,∞)
�

. If s ∈ (a,∞)
�

is left-dense, then G(·, s, λ, α) solves (Sλ) on
[a, s)

�
, since Z̃(·, λ, α) solves this system on [a, s)

�
. For the same reason G(·, s, λ, α) solves

(Sλ) on [a, ρ(s))
�

if s ∈ (a,∞)
�

is left-scattered. Condition (v) follows from the definition
of G(·, s, λ, α) in (8.5) used with t ≥ s and from the fact that the columns of X+(·, λ, α)
belong to L2

W, by Theorem 6.7. The columns of G(t, ·, λ, α) then belong to L2
W by part (i) of

this lemma.

Since by Lemma 8.3(v) the columns of G(t, ·, λ, α) belong to L2
W, the function

ẑ(t, λ, α) := −
∫∞
a

G(t, σ(s), λ, α)W̃(s)fσ(s)Δs, t ∈ [a,∞)�, (8.9)

is well defined whenever f ∈ L2
W. Moreover, by using (8.6), we can write ẑ(t, λ, α) as

ẑ(t, λ, α) = −X+(t, λ, α)
∫ t
a

Z̃σ∗
(
s, λ, α

)
W̃(s)fσ(s)Δs

− Z̃(t, λ, α)
∫∞
t

Xσ∗
+

(
s, λ, α

)
W̃(s)fσ(s)Δs, t ∈ [a,∞)

�
.

(8.10)

Proposition 8.4. For α ∈ Γ, λ ∈ � \ � , and f ∈ L2
W, the function ẑ(·, λ, α) defined in (8.9) solves

the nonhomogeneous system (8.1) with the initial condition αẑ(a, λ, α) = 0.
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Proof. By the time scales product rule (2.1) when we Δ-differentiate expression (8.10), we
have for every t ∈ [a,∞)

�
(suppressing the dependence on α in the the following calculation)

ẑΔ(t, λ) = −XΔ
+ (t, λ)

∫ t
a

Z̃σ∗
(
s, λ
)
W̃(s)fσ(s)Δs − Xσ

+(t, λ)Z̃
σ∗
(
t, λ
)
W̃(t)fσ(t)

− Z̃Δ(t, λ)
∫∞
t

Xσ∗
+

(
s, λ
)
W̃(s)fσ(s)Δs + Z̃σ(t, λ)Xσ∗

+

(
t, λ
)
W̃(t)fσ(t)

= S(t, λ)ẑ(t, λ) −
[
Xσ

+(t, λ)Z̃
σ∗
(
t, λ
)
− Z̃σ(t, λ)Xσ∗

+

(
t, λ
)]
W̃(t)fσ(t)

(8.7)
= S(t, λ)ẑ(t, λ) − JW̃(t)fσ(t).

(8.11)

This shows that ẑ(·, λ, α) is a solution of system (8.1). From (8.10) with t = a, we get

αẑ(a, λ, α) = −αZ̃(a, λ, α)
∫∞
a

Xσ∗
+

(
s, λ, α

)
W̃(s)fσ(s)Δs = 0, (8.12)

where we used the initial condition Z̃(a, λ, α) = −Jα∗ and αJα∗ = 0 coming from α ∈ Γ.

The following theorem provides further properties of the solution ẑ(·, λ, α) of system
(8.1). It is a generalization of [10, Lemma 4.2], [11, Theorem 7.5], [2, Theorem 5.2] to time
scales.

Theorem 8.5. Let α ∈ Γ, λ ∈ � \ � , and f ∈ L2
W. Suppose that system (Sλ) is in the limit point or

limit circle case. Then the solution ẑ(·, λ, α) of system (8.1) defined in (8.9) belongs to L2
W and satisfies

‖ẑ(·, λ, α)‖W ≤
1

|Im(λ)|
∥∥f∥∥W , (8.13)

lim
t→∞
X∗+(t, ν, α)Jẑ(t, λ, α) = 0, for every ν ∈ � \ � . (8.14)

Proof. To shorten the notation we suppress the dependence on α in all quantities appearing
in this proof. Assume first that system (Sλ) is in the limit point case. For every r ∈ [a,∞)

�
we

define the function fr(·) := f(·) on [a, r]
�

and fr(·) := 0 on (r,∞)
�

and the function

ẑr(t, λ) := −
∫∞
a

G(t, σ(s), λ)W̃(s)fσr (s)Δs = −
∫ r
a

G(t, σ(s), λ)W̃(s)fσ(s)Δs. (8.15)

For every t ∈ [r,∞)
�

we have as in (8.10) that

ẑr(t, λ) = −X+(t, λ)g(r, λ), g(r, λ) :=
∫ r
a

Z̃σ∗
(
s, λ
)
W̃(s)fσ(s)Δs. (8.16)
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Since by Theorem 6.7 the solution X+(·, λ) ∈ L2
W, (8.16) shows that ẑr(·, λ), being a multiple

ofX+(·, λ), also belongs to L2
W. Moreover, by Theorem 7.3,

lim
t→∞

ẑ∗r(t, λ)Jẑr(t, λ)
(8.16)
= g∗(r, λ) lim

t→∞
X∗+(t, λ)JX+(t, λ)g(r, λ)

(7.4)
= 0. (8.17)

On the other hand, ẑ∗r(a, λ)Jẑr(a, λ) = 0, and for any t ∈ [a,∞)
�

identity (8.3) implies

ẑ∗r(t, λ)Jẑr(t, λ)

= −2i Im(λ)
∫ t
a

ẑσ∗r (s, λ)W̃(s)ẑσr (s, λ)Δs + 2i Im

(∫ t
a

ẑσ∗r (s, λ)W̃(s)fσr (s)Δs

)
.

(8.18)

Combining (8.18), where t → ∞, formula (8.17), and the definition on fr(·) yields

‖ẑr(·, λ)‖2
W =
∫∞
a

ẑσ∗r (s, λ)W̃(s)ẑσr (s, λ)Δs =
1

Im(λ)
Im
(∫ r

a

ẑσ∗r (s, λ)W̃(s)fσ(s)Δs
)
. (8.19)

By using the Cauchy-Schwarz inequality (C-S) on time scales and W̃(·) ≥ 0, we then have

‖ẑr(·, λ)‖2
W =

1
2i Im(λ)

[∫ r
a

ẑσ∗r (s, λ)W̃(s)fσ(s)Δs −
∫ r
a

fσ∗(s)W̃(s)ẑσr (s, λ)Δs
]

≤ 1
|Im(λ)|

∣∣∣∣
∫ r
a

ẑσ∗r (s, λ)W̃(s)fσ(s)Δs
∣∣∣∣

C-S≤ 1
|Im(λ)|

(∫ r
a

ẑσ∗r (s, λ)W̃(s)ẑσr (s, λ)Δs
)1/2(∫ r

a

fσ∗(s)W̃(s)fσ(s)Δs
)1/2

≤ 1
|Im(λ)| ‖ẑr(·, λ)‖W

∥∥f∥∥W.

(8.20)

Since ‖ẑr(·, λ)‖W is finite by ẑr(·, λ) ∈ L2
W, we get from the above calculation that

‖ẑr(·, λ)‖W ≤
1

|Im(λ)|
∥∥f∥∥W. (8.21)

We will prove that (8.21) implies estimate (8.13) by the convergence argument. For any t, r ∈
[a,∞)

�we observe that

ẑ(t, λ) − ẑr(t, λ) = −
∫∞
r

G(t, σ(s), λ)W̃(s)fσ(s)Δs. (8.22)

Now we fix q ∈ [a, r)
�

. By the definition of G(·, ·, λ) in (8.5) we have for every t ∈ [a, q]
�

ẑ(t, λ) − ẑr(t, λ) = −Z̃(t, λ)
∫∞
r

X∗+
(
σ(s), λ

)
W̃(s)fσ(s)Δs. (8.23)
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Since the functionsX+(·, λ) and f(·) belong to L2
W, it follows that the right-hand side of (8.23)

converges to zero as r → ∞ for every t ∈ [a, q]
�

. Hence, ẑr(·, λ) converges to the function
ẑ(·, λ) uniformly on [a, q]

�
. Since ẑ(·, λ) = ẑr(·, λ) on [a, q]

�
, we have by W̃(·) ≥ 0 and (8.21)

that

∫q
a

ẑσ∗(s, λ)W̃(s)ẑσ(s, λ)Δs ≤ ‖ẑr(·, λ)‖2
W

(8.21)
≤ 1

|Im(λ)|2
∥∥f∥∥2

W. (8.24)

Since q ∈ [a,∞)
�

was arbitrary, inequality (8.24) implies the result in (8.13). In the limit circle
case inequality (8.13) follows by the same argument by using the fact that all solutions of
system (Sλ) belong to L2

W.
Now we prove the existence of the limit (8.14). Assume that the system (Sλ) is in the

limit point case, and let ν ∈ � \ � be arbitrary. Following the argument in the proof of [30,
Lemma 4.1] and [2, Theorem 5.2], we have from identity (8.3) that for any r, t ∈ [a,∞)

�

X∗+(t, ν)Jẑr(t, λ) = X∗+(a, ν)Jẑr(a, λ) + (ν − λ)
∫ t
a

Xσ∗
+ (s, ν)W̃(s)ẑσr (s, λ)Δs

+
∫ t
a

Xσ∗
+ (s, ν)W̃(s)fσr (s)Δs.

(8.25)

Since for t ∈ [r,∞)
�

equality (8.16) holds, it follows that

lim
t→∞
X∗+(t, ν)Jẑr(t, λ) = − lim

t→∞
X∗+(t, ν)JX+(t, λ)g(r, λ)

(7.4)
= 0. (8.26)

Hence, by (8.25),

X∗+(a, ν)Jẑr(a, λ) = (λ − ν)
∫∞
a

Xσ∗
+ (s, ν)W̃(s)ẑσr (s, λ)Δs −

∫ r
a

Xσ∗
+ (s, ν)W̃(s)fσ(s)Δs. (8.27)

By the uniform convergence of ẑr(·, λ) to ẑ(·, λ) on compact intervals, we get from (8.27) with
r → ∞ the equality

X∗+(a, ν)Jẑ(a, λ) = (λ − ν)
∫∞
a

Xσ∗
+ (s, ν)W̃(s)ẑσ(s, λ)Δs −

∫∞
a

Xσ∗
+ (s, ν)W̃(s)fσ(s)Δs. (8.28)

On the other hand, by (8.3), we obtain for every t ∈ [a,∞)
�

X∗+(t, ν)Jẑ(t, λ) = X∗+(a, ν)Jẑ(a, λ) + (ν − λ)
∫ t
a

Xσ∗
+ (s, ν)W̃(s)ẑσ(s, λ)Δs

+
∫ t
a

Xσ∗
+ (s, ν)W̃(s)fσ(s)Δs.

(8.29)
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Upon taking the limit in (8.29) as t → ∞ and using equality (8.28), we conclude that the limit
in (8.14) holds true.

In the limit circle case, the limit in (8.14) can be proved similarly as above, because all
the solutions of system (Sλ) now belong to L2

W. However, in this case, we can apply a direct
argument to show that (8.14) holds. By formula (8.10) we get for every t ∈ [a,∞)

�

X∗+(t, ν)Jẑ(t, λ) = −X∗+(t, ν)JX+(t, λ)
∫ t
a

Z̃σ∗
(
s, λ
)
W̃(s)fσ(s)Δs

− X∗+(t, ν)JZ̃(t, λ)
∫∞
t

Xσ∗
+

(
s, λ
)
W̃(s)fσ(s)Δs.

(8.30)

The limit of the first term in (8.30) is zero becauseX∗+(t, ν)JX+(t, λ) tends to zero for t → ∞
by (7.4), and it is multiplied by a convergent integral as t → ∞. Since the columns of Z̃(·, λ)
belong to L2

W, the function X∗+(·, ν)JZ̃(·, λ) is bounded on [a,∞)
�

, and it is multiplied by an
integral converging to zero as t → ∞. Therefore, formula (8.14) follows.

In the last result of this paper we construct another solution of the nonhomogeneous
system (8.1) satisfying condition (8.14) and such that it starts with a possibly nonzero initial
condition at t = a. It can be considered as an extension of Theorem 8.5.

Corollary 8.6. Let α ∈ Γ and λ ∈ � \ � . Assume that (Sλ) is in the limit point or limit circle case.
For f ∈ L2

W and v ∈ � n we define

z̃(t, λ, α) := X+(t, λ, α)v + ẑ(t, λ, α), ∀t ∈ [a,∞)�, (8.31)

where ẑ(·, λ, α) is given in (8.9). Then z̃(·, λ, α) solves the system (8.1) with αz̃(a, λ, α) = v,

‖z̃(·, λ, α)‖W ≤
1

|Im(λ)|
∥∥f∥∥W + ‖X+(·, λ, α)v‖W, (8.32)

lim
t→∞
X∗+(t, ν, α)Jz̃(t, λ, α) = 0, for every ν ∈ � \ � . (8.33)

In addition, if the system (Sλ) is in the limit point case, then z̃(·, λ, α) is the only L2
W solution of (8.1)

satisfying αz̃(a, λ, α) = v.

Proof. As in the previous proof we suppress the dependence on α. Since the functionX+(·, λ)v
solves (Sλ), it follows from Proposition 8.4 that z̃(·, λ, α) solves the system (8.1) and αz̃(a, λ) =
αX+(a, λ)v = v. Next, z̃(·, λ) ∈ L2

W as a sum of two L2
W functions. The limit in (8.33) follows

from the limit (8.14) of Theorem 8.5 and from identity (7.4), because

lim
t→∞
X∗+(t, ν)Jz̃(t, λ) = lim

t→∞
{X∗+(t, ν)JX+(t, λ)v +X∗+(t, ν)Jẑ(t, λ)} = 0. (8.34)

Inequality (8.32) is obtained from estimate (8.13) by the triangle inequality.
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Now we prove the uniqueness of z̃(·, λ) in the case of (Sλ) being of the limit point
type. If z1(·, λ) and z2(·, λ) are two L2

W solutions of (8.1) satisfying αz1(a, λ) = v = αz2(a, λ),
then their difference z(·, λ) := z1(·, λ)−z2(·, λ) also belongs to L2

W and solves system (Sλ) with
αz(·, λ) = 0. Since z(·, λ) = Ψ(·, λ)c for some c ∈ � 2n , the initial condition αz(·, λ) = 0 implies
through (4.7) that z(·, λ) = Z̃(·, λ)d for some d ∈ � n . If d /= 0, then z(·, λ) /∈ L2

W, because

in the limit point case the columns of Z̃(·, λ) do not belong to L2
W, which is a contradiction.

Therefore, d = 0 and the uniqueness of z̃(·, λ) is established.
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