Software Test Automation

Guest Editors: Philip Laplante, Fevzi Belli, Jerry Gao, Greg Kapfhammer,
Keith Miller, W. Eric Wong, and Dianxiang Xu

i

Software Test Automation

Software Test Automation

Guest Editors: Philip Laplante, Fevzi Belli, Jerry Gao,
Greg Kapfhammer, Keith Miller, W. Eric Wong,
and Dianxiang Xu

Copyright © 2010 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in volume 2010 of “Advances in Software Engineering.” All articles are open access articles distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Editorial Board

Reda A. Ammar, USA

Jan A Bergstra, The Netherlands
Gerardo Canfora, Italy
Christine W. Chan, Canada
Andrea De Lucia, Italy

Mourad Debbabi, Canada
Letha Hughes Etzkorn, USA
Wilhelm Hasselbring, Germany

Thomas B. Hilburn, USA
Michael N. Huhns, USA
Suresh Jagannathan, USA
Filippo Lanubile, Italy
Phillip Laplante, USA

Emilia Mendes, New Zealand
Mauro Pezze, Italy

Hoang Pham, USA

Atul Prakash, USA

Per Runeson, Sweden
Hossein Saiedian, USA
Giancarlo Succi, Italy

J. Barrie Thompson, UK
Wei-Tek Tsai, USA

W. Eric Wong, USA

Contents

Software Test Automation, Philip Laplante, Fevzi Belli, Jerry Gao, Greg Kapthammer, Keith Miller,
W. Eric Wong, and Dianxiang Xu
Volume 2010, Article ID 163746, 2 pages

A Tester-Assisted Methodology for Test Redundancy Detection, Negar Koochakzadeh and Vahid Garousi
Volume 2010, Article ID 932686, 13 pages

A Strategy for Automatic Quality Signing and Verification Processes for Hardware and Software
Testing, Mohammed I. Younis and Kamal Z. Zamli
Volume 2010, Article ID 323429, 7 pages

Automated Test Case Prioritization with Reactive GRASP, Camila Loiola Brito Maia,

Rafael Augusto Ferreira do Carmo, Fabricio Gomes de Freitas, Gustavo Augusto Lima de Campos,
and Jerffeson Teixeira de Souza

Volume 2010, Article ID 428521, 18 pages

A Proposal for Automatic Testing of GUIs Based on Annotated Use Cases, Pedro Luis Mateo Navarro,
Diego Sevilla Ruiz, and Gregorio Martinez Pérez
Volume 2010, Article ID 671284, 8 pages

AnnaBot: A Static Verifier for Java Annotation Usage, [an Darwin
Volume 2010, Article ID 540547, 7 pages

Software Test Automation in Practice: Empirical Observations, Jussi Kasurinen, Ossi Taipale,
and Kari Smolander
Volume 2010, Article ID 620836, 18 pages

Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 163746, 2 pages
doi:10.1155/2010/163746

Editorial
Software Test Automation

Phillip Laplante,' Fevzi Belli,? Jerry Gao,*> Greg Kapfhammer,* Keith Miller,’

W. Eric Wong,® and Dianxiang Xu’

! Engineering Division, Great Valley School of Graduate Professional Studies, Penn State,

30 East Swedesford Road, Malvern, PA 19355, USA

2 Department of Electrical Engineering and Information Technology, University of Paderborn, 33095 Paderborn, Germany

3 Computer Engineering Department, San Jose State University, One Washington Square, San Jose, CA 95192-0180, USA

* Department of Computer Science, Allegheny College, Meadville, Pennsylvania, USA

3 Department of Computer Science, University of Illinois at Springfield, One University Plaza, UHB 3100, Springfield, IL 62703, USA
6 Department of Computer Science, The University of Texas at Dallas, 800 West Campbell, Richardson, TX 75080, USA

7 National Center for the Protection of the Financial Infrastructure, Dakota State University, Madison, SD 57042, USA

Correspondence should be addressed to Phillip Laplante, plaplante@psu.edu

Received 31 December 2009; Accepted 31 December 2009

Copyright © 2010 Phillip Laplante et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Software testing is an essential, yet time-consuming, and
expensive activity. Therefore, automation of any aspect of
software test engineering can reduce testing time and, in the
long-run, reduce costs for the testing activity. While there are
many research directions in testing automation, from theory
through application, the main focus of this special issue is on
partially or fully validated tools, techniques, and experiences.

In response to the call for papers a broad range of
submissions were received. Consistent with the standards of
a highly regarded journal, all submissions received several
rounds of review and revision and only outstanding papers
were selected, yielding an acceptance rate of 60%. The
resultant collection provides a number of important and
useful results.

For example, in “A tester-assisted methodology for test
redundancy detection” Koochakzadeh and Garousi propose
a semiautomated methodology based on coverage metrics to
reduce a given test suite while keeping the fault detection
effectiveness unchanged. They then validate their approach
on Allelogram, an open source Java program used by
biological scientists for processing genomes. The results of
the experiments confirm that the semiautomated process
leads to a reduced test suite with the same fault detection
ability as the original test suite.

In “A strategy for automatic quality signing and verifica-
tion processes for hardware and software testing,” Younis and

Zamli give a technique for optimizing the test suite required
for testing both hardware and software in a production line.
Their strategy is based a “Quality Signing Process” and a
“Quality Verification Process.” The Quality Signing Process
involves parameter interaction while the Quality Verification
Process is based on mutation testing and fault injection. The
novelty of the proposed strategy is that the optimization and
reduction of test suite is performed by selecting only mutant
killing test cases from cumulating t-way test cases. The
results demonstrate that the proposed strategy outperforms
traditional block partitioning with the same number of test
cases.

There are considerable costs involved in regression
testing, which often cause practitioners to short-circuit
the activity. In “Automated test case prioritization with
reactive GRASP” Mai et al. propose the use of the Reactive
GRASP (Greedy Randomized Adaptive Search Procedures)
metaheuristic for the regression test case prioritization prob-
lem. They compare this metaheuristics with five other
search-based algorithms previously described in the litera-
ture. Five programs were used in the experiments and the
results demonstrate good coverage performance with respect
to many of the compared techniques and a high stability of
the results generated by the proposed approach. Their work
also confirms some of the previous results reported in the
literature concerning the other prioritization algorithms.

Automated GUI test case generation is a highly resource
intensive process. In “A proposal for automatic testing of
GUIs based on annotated use cases,” Mateo Navarro et al.
describe a new approach that reduces the effort by auto-
matically generating GUI test cases. The test case generation
process is guided by use cases describing behavior recorded
as a set of interactions with the GUI elements. These use
cases are then annotated by the tester to indicate interesting
variations in widget values and validation rules with expected
results. Once the use cases are annotated, this approach uses
the new values and validation rules to automatically generate
test cases and validation points, expanding the test coverage.

The next paper by Darwin, “AnnaBot: a static verifier
for Java annotation usage,” describes one of the first tools
permitting verification of correct use of annotation-based
metadata in Java. This verification becomes especially impor-
tant both as annotations become more widely adopted and
as multiple implementations of certain standards become
available. The author describes the domain-specific language
and parser for AnnaBot, which are available for free from the
author’s website

Finally a study of the software test automation practices
in industry was conducted and also the results given in “Soft-
ware test automation in practice: empirical observations” by
Kasurinen et al.. Both qualitative interviews and quantitative
surveys of 55 industry specialists from 31 organizational
units across 12 software development organizations were
conducted. The study revealed that only 26% of the orga-
nizations used automated testing tools, primarily in quality
control and quality assurance. The results also indicated
that adopting test automation in software organization is a
demanding effort

We hope you enjoy this eclectic set of works relating
to software testing automation. The editors also wish to
thank the authors for their excellent contributions and the
reviewers for their outstanding efforts in helping to select and
improve all of the papers in this special issue.

Phillip Laplante
Fevzi Belli

Jerry Gao

Greg Kapfhammer
Keith Miller

Eric Wong
Dianxiang Xu

Advances in Software Engineering

Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 932686, 13 pages
doi:10.1155/2010/932686

Research Article
A Tester-Assisted Methodology for Test Redundancy Detection

Negar Koochakzadeh and Vahid Garousi

Software Quality Engineering Research Group (SoftQual), Department of Electrical and Computer Engineering,
Schulich School of Engineering, University of Calgary, Calgary, AB, Canada T2N 1N4

Correspondence should be addressed to Negar Koochakzadeh, nkoochak@ucalgary.ca
Received 15 June 2009; Revised 16 September 2009; Accepted 13 October 2009
Academic Editor: Phillip Laplante

Copyright © 2010 N. Koochakzadeh and V. Garousi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Test redundancy detection reduces test maintenance costs and also ensures the integrity of test suites. One of the most widely used
approaches for this purpose is based on coverage information. In a recent work, we have shown that although this information can
be useful in detecting redundant tests, it may suffer from large number of false-positive errors, that is, a test case being identified
as redundant while it is really not. In this paper, we propose a semiautomated methodology to derive a reduced test suite from a
given test suite, while keeping the fault detection effectiveness unchanged. To evaluate the methodology, we apply the mutation
analysis technique to measure the fault detection effectiveness of the reduced test suite of a real Java project. The results confirm
that the proposed manual interactive inspection process leads to a reduced test suite with the same fault detection ability as the

original test suite.

1. Introduction

In today’s large-scale software systems, test (suite) mainte-
nance is an inseparable part of software maintenance. As a
software system evolves, its test suites need to be updated
(maintained) to verify new or modified functionality of the
software. That may cause test code to erode [1, 2]; it may
become complex and unmanageable [3] and increase the cost
of test maintenance. Decayed parts of test suite that cause test
maintenance problems are referred to as test smells [4].
Redundancy (among test cases) is a discussed but a
seldom-studied test smell. A redundant test case is one,
which if removed, will not affect the fault detection effective-
ness of the test suite. Another type of test redundancy dis-
cussed in the literature (e.g., [5, 6]) is test code duplication.
This type of redundancy is similar to conventional source
code duplication and is of syntactic nature. We refer to the
above two types of redundancy as semantic and syntactic test
redundancy smells, respectively. In this work, we focus on
the semantic redundancy smell which is known to be more
challenging to detect in general than the syntactic one [5].
Redundant test cases can have serious consequences
on test maintenance. By modifying a software unit in the

maintenance phase, testers need to investigate the test suite to
find all relevant test cases which test that feature and update
them correctly with the unit. Finding all of the related test
cases increases the cost of maintenance. From the other hand,
if test maintenance (updating) is not conducted carefully,
the integrity of the entire test suite will be under question.
For example, we can end up in a situation in which two
test cases test the same features of a unit, if one of them is
updated correctly with the unit and not the other one, one
test may fail while the other may pass, making the test results
ambiguous and conflicting.

The motivation for test redundancy detection is straight-
forward. By detecting and dealing with redundant test case
(e.g., carefully removing them), we reduce test maintenance
cost and the risk of loosing integrity in our test suite, while
fault detection capability of our test suite remains constant.

One of the most widely used approaches in the literature
(e.g., [6-11]) for test redundancy detection, also referred to
as test minimization, is based on coverage information. The
rationale followed is that, if several test cases in a test suite
execute the same program elements, the test suite can then
be reduced to a smaller suite that guarantees equivalent test
coverage ratio [6].

However, test redundancy detection based on coverage
information does not guarantee to keep fault detection
capability of a given test suite. Evaluation results from
our previous work [12] showed that although coverage
information can be very useful in test redundancy detection,
detecting redundancy only based on this information may
lead to a test suite which is weaker in detecting faults than
the original one.

Considering fault detection capability of a test case for
the purpose of redundancy detection is thus very important.
To achieve this purpose, we propose a collaborative process
between testers and a proposed redundancy detection engine
to guide the tester to use valuable coverage information in a
proper and useful way.

The output of the process is a reduced test suite. We claim
that if testers play their role carefully in this process, fault
detection effectiveness of this reduced test set would be equal
to the original set.

High amount of human effort should be spent on
inspecting a test suite manually. However, the proposed
process in this paper tries to use the coverage information in
a constructive fashion to reduce the required tester efforts.
More automation can be added to this process later to
save more cost and thus the proposed process should be
considered as the first step to reduce required human effort
for test redundancy detection.

To evaluate our methodology, we apply the mutation
technique in a case study in which common types of faults
are injected. Then original and reduced test set are then
executed to detect faulty versions of the systems. The results
show similar capability of fault detection for those two test
sets.

The remainder of this paper is structured as follows. We
review the related works in Section 2. Our recent previous
work [12] which evaluated the precision of test redundancy
detection based on coverage information is summarized in
Section 3. The need for knowledge collaboration between
human testers and the proposed redundancy detection
engine is discussed in Section4. To leverage and share
knowledge between the automated engine and human tester,
we propose a collaborative process for redundancy detection
in Section 5. In Section 6, we show the results of our case
study and evaluate the results using the mutation technique.
Efficiency, precision, and a summary of the proposed process
are discussed in Section 7. Finally, we conclude the paper in
Section 8 and discuss the future works.

2. Related Works

We first review the related works on test minimization
and test redundancy detection. We then provide a brief
overview of the literature on semiautomated processes that
collaborate with software engineers to complete tasks in
software engineering and specifically in software testing.
There are numerous techniques that address test suite
minimization by considering different types of test coverage
criteria (e.g., [6-11]). In all of those works, to achieve
the maximum possible test reduction, the smallest test set

Advances in Software Engineering

which covers the same part of the system was created
[7]. The problem of finding the smallest test set has been
shown to be NP-complete [13]. Therefore, in order to
find an approximation to the minimum cardinality test set,
heuristics are usually used in the literature (e.g., [7, 9]).

A few works have applied data flow coverage criteria (e.g.,
[7, 10]) while a few others have applied control flow criteria
(e.g., [6,9, 11]).

In [7], in addition to the experiment which was
performed for all-definition-use coverage criterion on a
relatively simple program (LOC is unknown), the authors
mentioned that all the possible coverage criteria should be
considered in order to detect redundant test cases more
precisely. The authors were able to reduce 40% of the size
of the test suite under study based on coverage information.

Coverage criteria used in [10] were predicate-use,
computation-use, definition-use, and all-uses. The authors
applied their approach on 10 Unix programs (with average
LOC of 354) and 91% of the original test suites were reduced
in total.

The control flow coverage criteria used in [6, 9, 11]
are Branch [6], statement [9], and MC/DC [11]. In [9],
mutation analysis was used to assess and evaluate the fault
detection effectiveness of the reduced test suites. The ratios
of reduction reported in these works were 50%, 34%, and
10%, respectively. The Systems Under Tests (SUTs) used in
[6, 9] were small scale (avg. LOC of 29 and 231, resp.), while
[11] used a medium size space program as its SUT with 9,564
LOC.

The need to evaluate test redundancy detection by
assessing fault detection effectiveness was mentioned in [6,
11]. In those works, faults were manually injected into the
SUTs to generate mutants. Then the mutation scores of
original and reduced test sets were compared. Reference
[6] concludes that test minimization based on coverage
information can reduce the ability of fault detection, while
[11] showed opposite conclusions.

In [6], faults were seeded to the SUTs manually by
modifying mostly a single line of code (first order mutation),
while in a few other cases, the authors modified between two
and five lines of code (k-order mutation). As mentioned in
[6], ten people (mostly without knowledge of each other’s
work) had tried to introduce faults that were as realistic as
possible, based on their experience with real programs.

In [11], the manually injected faults (18 of them) were
obtained from the error-log maintained during its testing
and integration phase. Eight faults were in the “logic omitted
or incorrect” category, seven faults belong to the type of
“computational problems,” and the remaining three faults
had “data handling problems” [11].

In our previous work [12], an experiment was performed
with 4 real Java programs to evaluate coverage-based test
redundancy detection. The objects of study were JMeter,
FitNesse, Lurgee and Allelogram with LOC of 69,424, 22,673,
7,050, and 3,296, respectively. Valuable lessons learned from
our previous experiment revealed that coverage information
cannot be the only source of knowledge to precisely detect
test redundancy. Lessons are summarized in Section 3 of this

paper.

Advances in Software Engineering

To the best of the authors’ knowledge, there has been no
existing work to improve the shortcomings (imprecision) of
coverage-based redundancy detection. In this paper, we are
proposing a semiautomated process for this purpose.

Semiautomated decision supports systems leverage
human-computer interaction which put together the knowl-
edge of human users and intelligent systems to support
decision-making tasks. Hybrid knowledge is very effective
in such situations where the computational intelligence
provides a set of qualified and diversified solutions and
human experts are involved interactively in the decision-
making process for final decision [14].

A logical theory of human-computer interaction has
been suggested by Milner [15]. Besides, the ways in which
open systems’ behavior can be expressed by the composition
of collaborative components is explained by Arbab [16].
There are various semiautomated systems designed for
software engineering such as user-centered software design
[17].

There have also been semiautomated systems used specif-
ically in software testing. For instance, test case generation
tools require tester’s assistance in providing test oracles [18].
Another example of collaborative tool for testing is manual
testing frameworks [19]. In these tools, testers perform test
cases manually while system records them for later uses.
The process proposed in this paper is a semiautomated
framework with the purpose of finding test redundancy in
software maintenance phase.

3. Coverage-Based Redundancy Detection
Can Be Imprecise

In our previous work [12], we performed an experiment to
evaluate test redundancy detection based only on coverage
information. We formulated two experimental metrics for
coverage-based measurement of test redundancy in the
context of JUnit test suites. We then evaluated the approach
by measuring the redundancy of four real Java projects
(FitNesse, Lurgee, Allelogram, and JMeter). The automated
test redundancy measures were compared with manual
redundancy decisions derived from inspection performed by
a human software tester.

In this paper, we use the term test artifact for different
granularity levels supported in JUnit (Figure 1). Three levels
of package, class, and methods are grouping mechanism for
test cases that have been introduced in JUnit.

The results from that study [12] showed that measuring
test redundancy based only on coverage information is
vulnerable to imprecision given the current implementation
of JUnit unit test framework and also coverage tools. The
following discussion explains the root causes.

In the SUTs we analyzed in [12], about 50% of
test artifacts, manually recognized as nonredundant, had
been detected as redundant tests by our coverage-based
redundancy metrics. In a Venn diagram notation, Figure 2
compares a hypothetical original test set with two reduced
sets showing high number of false-positive errors. Three
main reasons discovered in [12] to justify the errors are
discussed next.

[Test class)—<>(Test package)—<>(Test suitej

(<<abstract>> test artifact]
AN

Test method

Test case

F1GURE 1: Test granularity in JUnit.

Reduced set based
on coverage

Original
test set

Reduced set after inspection
. F + error

FIGURE 2: False-Positive Error in Test Redundancy Detection based
on Coverage Information.

(1) Test redundancy detection based on coverage infor-
mation in all previous works have been done by only
considering limited number of coverage criteria. This fact
that two test cases may cover the same part of SUT
according to one coverage criterion but not the other one
causes impreciseness in test redundancy detection only by
considering one coverage criterion.

(2) In JUnit, each test case contains four phases: setup,
exercise, verify, and teardown [4]. In the setup phase the
required state of the SUT for the purpose of a particular
test case is setup. In the exercise phase, the SUT is exercised.
In the teardown phase the SUT state is rolled back into the
state before running the test. In these three phases SUT is
covered while in the verification phase only a comparison
between expected and actual outputs is performed and SUT
is not covered. Therefore, there might be some test cases
with the same covered part of SUT with various verifications.
In this case, coverage information may lead to detecting a
nonredundant test as redundant.

(3) Coverage information is calculated only based on
the SUT instrumented for coverage measurement. External
resources (e.g., libraries) are not usually instrumented. There
are cases in which two test methods cover different libraries.
In such cases, the coverage information of the SUT alone is
not enough to measure redundancies.

Another reason of impreciseness in redundancy detec-
tion based on coverage information mentioned in [12]

Advances in Software Engineering

}
public void testOffset (){

g.offsetBy (0.5);

g.clearOffset();

public void testAlleleOrderDoesntMatter () {
Genotype gl = new Genotype(newdouble[] {0,1});
Genotype g2 = new Genotype (new double [] [13]);
assertTrue (g1.getAdjustedAlleleValues (2).
equals(g2.getAdjustedAlleleValues (2)));

Genotype g = new Genotype(new double[[{0,1});

List<Double> adjusted =
g.getAdjustedAlleleValues (2);
assertEquals (2, adjusted.size ());
assertEquals (0.5, adjusted.get (0));
assertEquals (1.5, adjusted.get (1));

adjusted = g.getAdjustedAlleleValues (2);
assertEquals (0.0, adjusted.get (0));
assertEquals (1.0, adjusted.get (1));

ALGORITHM 1: Source code of two test methods in the Allelogram test suite.

was some limitations in coverage tools implementation.
For example, the coverage tool that we used in [12] was
CodeCover [20]. The early version of this tool (version
1.0.0.0) was unable to instrument return and throw
statements due to a technical limitation. Hence, the earlier
version of the tool excluded covering of such statements from
coverage information. This type of missing values can lead
to detecting a nonredundant test as redundant. However,
this limitation has now been resolved in the newest version
of CodeCover (version 1.0.0.1 released on April 2009) and
we have updated our redundancy detection framework by
using the latest version of this tool. Since in [12] this
problem was a root cause of false positive error, here we
just report this as a possible reason of impreciseness in
redundancy detection, while in this paper we do not have this
issue.

Algorithm 1 shows the source code of two test methods
from Allelogram test suite as an example of incorrect redun-
dancy detection by only applying coverage information.
In this example, test method testAlleleOrderDoesntMatter
covers a subset of covered items by the test method
testOffset both in setup and exercise phases. The setup phase
includes calling Genotype(new double) constructor. The
exercise phase contains calling getAdjestedAlleleValues(int)
method by passing the created Genotype object, which both
are called in the second test method as well. However,
the assertion goal in the first test is completely different
from the assertion goal in the second one. In the first
test method, the goal is comparing the output value of
getAdjestedAlleleValues method for two Genotype objects,
while in second one, one of the goals is checking the
size of output list from the getAdjestedAlleleValues method.
Therefore, although according to coverage information the
first test method is redundant, in reality it is nonredun-
dant.

4. The Need for Knowledge Collaboration
with Testers

Reduced test set based on coverage information contains
those test artifacts that cover at least one coverable item
not covered by any other test artifact. Therefore these
test artifacts contribute to achieving more coverage and
according to the concept of test coverage, they may increase
the fault detection capability of the test suites.

Based on the above discussion, it is worthwhile to use
coverage information for test redundancy detection to reduce
the number of test artifacts that might be redundant.

On the other side, high ratio of false-positive errors
shows that the coverage-based results alone are not reliable
and we may inaccurately detect many nonredundant test
artifacts as redundant ones.

The above advantages and disadvantages of coverage-
based redundancy detection have motivated us to improve
the test redundancy detection process by leveraging knowl-
edge from human testers. The three main root causes of
imprecision discussed in Section 3 should be considered in
such a tester-assisted approach.

First, the more coverage criteria are applied, the more
precise test redundancy will be detected. However, all of
the existing test coverage tools support a limited number
of coverage criteria. White-box criteria are more usually
supported, while there are only a few tools supporting
black-box criteria (e.g., JFeature [21]). In addition, usually
there are no precise formal specifications for some units
in some systems. Thus, automated measurement of black-
box coverage is impossible in those cases. Also, there is a
lack of coverage tools which automatically measure both
white-box and black-box coverage criteria at the same time.
Combing the coverage results from various coverage tools
might be a solution. However, lack of formal specification

Advances in Software Engineering

for many real projects makes it very challenging for us testers
to consider automated measurement of black-box coverage
for the purpose of redundancy detection in this work []. For
projects with full formal specifications, if test minimization
is performed precisely with respect to all available coverage
criteria, loss of fault detection ability can be minimized or
eliminated altogether. However, since formal specifications
are not available for many real projects, we propose to involve
human testers in the process of test redundancy detection.

For this purpose, testers can use their knowledge to write
formal specification for the SUT and use them in black-box
coverage tools, or apply black-box coverage manually. For
instance, if test #; covers a subset of covered items by #,, and
the main goal of #; is to check whether there is an exception
thrown by the SUT while #, has a different goal, f; is not
redundant. In other words, the inputs of two above tests are
from different equivalence classes (i.e., a black-box coverage
criterion should be applied).

Second, the verification phase of JUnit test methods
should be analyzed separately. As explained in Section 3,
this phase is independent of coverage information, and is
thus a precision threat to redundancy detection. Assertion
statements in JUnit tests should be compared to find if
they cause redundancy or not. In some cases, the actual
and expected values in assert statements have complicated
data flow. In such cases, comparing assertions in verification
phase would require sophisticated source code analysis (e.g.,
data flow analysis). For example, the actual outcomes of the
two assertEquals statements (located in two test methods)
in Figure3 are the same: adjusted.get(). However,
determining whether their expected outcomes (a and 1.5)
have the same value or not would require data flow analysis
in this example. Automating such an analysis is possible, but
is challenging while in this step we use human tester for this
purpose by leaving its automation as a future work.

Third, in addition to the SUT, all the external libraries
used should be considered. However, as the source code of
those libraries is not probably available, we need to instru-
ment the class files in Java systems or to monitor coverage
through the JVM. As per our investigations, automating this
instrumentation and calculating coverage information for
the external libraries and combining them with coverage
information of the source code of the SUT is challenging and
is thus considered as a future work. At this step, we propose
the human tester to analyze the test code to find out how
an external library affects test results and consider that in
comparing test artifacts.

As explained previously, although it is possible to increase
the degree of automation to cover the shortcoming of
redundancy detection only based on limited number of
coverage criteria, there is one main reason that does not
allow full automation for this process, which is the lack of
precise and formal specification for real world project. In
other words, in the process of test redundancy detection
the existence of human testers is necessary to confirm the
real redundancy of those test artifacts detected as redundant
by the system. The human tester has to conduct a manual
inspection with guidelines proposed in this work and has to
consider the three root causes to prevent false positive errors.

double a = getDefaultAdjusted(0);

assertEquals (a, adjusted.get(0));

assertEquals (1.5, adjusted.get(0));

F1GURE 3: The challenge of comparing assertions: excerpts from the
test suite of Allelogram.

Using the three above guidelines helps testers to collab-
orate more effectively in the proposed redundancy detection
process by analyzing test codes. Testers who have developed
test artifacts are the best source of knowledge to decide about
test redundancy by considering the above three lessons.
However, other test experts can also use our methodology
to find the redundancy of a test suite through manual
inspection. For instance, in the experiment of this work,
the input test suite was created by the developers of an
open source project while the first author has performed the
process of test redundancy detection.

5. A Collaborative Process for
Redundancy Detection

To systematically achieve test redundancy detection with
lower false-positive error, we propose a collaborative process
between an automated redundancy detection system and
human testers. The system will help the tester to inspect
test artifacts with the least required amount of effort to
find the actually redundant tests by using the benefits from
coverage information while the fault detection capability of
the reduced test suite is not reduced.

Figure 4 illustrates the activity diagram of the proposed
interactive redundancy detection process. The input of this
process is the original test suite of a SUT. Since human
knowledge is involved, the precision of the inspection
conducted by the human tester is paramount. If the tester
follows the process and the three above guidelines carefully,
the output would be a reduced test with the same fault
detection effectiveness as the original one.

As the first step in this process, redundancy detection
system uses a coverage tool to calculate coverage informa-
tion, which is used later to calculate two redundancy metrics
(discussed next).

Two redundancy metrics were proposed in [12]: Pair
Redundancy and Suite Redundancy. The Pair Redundancy is
defined between two test artifacts and is the ratio of covered
items in SUT by the first test artifact with respect to the
second one. In Suite Redundancy, this ratio is considered
for one test artifact with respect to all other tests in the test
suite.

Equations (1) and (2) define the Pair and Suite Redun-
dancy metrics, respectively. In both of these equations,
CoveredItems;(t;) is the set of code items (e.g., statement
and branch) covered by test artifact ¢;, according to a given

6 Advances in Software Engineering
Semiautomatic test redundancy detection)
List of test
/" 1: System "\ if -
Original test calculates _ artifacts Final reduced
suite coverage and in no particular test suite
redundancy order / 2: Tester analyze redundancy \
_ measures /
Tester sorts
5: System List of test and selects
recalculates || artifacts sorted [| test artifacts [Tester decides on
redundancy by the tester enough investigation]
\ measures / Tester
inspects
Reduced test test source code
suite
4: System
removes
redundant A redur?dant test H& Tester identifies a redundant test artifact J
. artifact
test artifact

FIGURE 4: Proposed collaborative process for test redundancy detection.

coverage criterion i (e.g., statement coverage). CoverageCri-
teria in these two equations is the set of available coverage
criteria used during the redundancy detection process.

Based on the design rationale of the above metrics, their
values are always a real number in the range of [0 - - - 1]. This
enables us to measure redundancy in a quantitative domain
(i.e., partial redundancy is supported too).

However, the results from [12] show that this type of
partial redundancy is not precise and may mislead the tester
in detecting the redundancy of the test. For instance, suppose
that two JUnit test methods have similar setups with different
exercises. If for example 90% of the test coverage is in the
common setup the pair redundancy metrics would indicate
that they are 90% redundant with respect to each other.
However different exercises in these tests separate their goals
and thus they should not be considered as redundant with
respect to each other while 90% redundancy can mislead the
tester about their redundancy.

Equation (1) shows Redundancy of test artifact (t;) with
respect to another one (t):

PR(t) 1)

2

= ' CoveredItems; (tj)
i€CoverageCriteria

(1)

NCoveredItems;(ty) ‘) /

CoveredItems; (t]-) ‘))

(ieCovemgeCriteriu

equation (2) shows Redundancy of one test artifact (¢;) with
respect to all others:

SR(t;)

2

= ‘ CoveredItems; (tj)
i€CoverageCriteria

(2)
NCoveredltems; (TS - tj) ‘)/

(Z ‘Coveredltemsi<tj)))
i€CoverageCriteria

However, partial redundancy concept can be useful in
some cases to warn testers to refactor test code. To find these
cases, in [12], we have offered to separate phases in a test case.
As this approach is considered as a future work;, in this work
we do not consider partial redundancy concept. A test artifact
can be redundant or nonredundant. The suite redundancy
metric is used as a binary measure to separate test artifacts
into these two groups: redundant, and nonredundant. If SR
value of a test artifact = 1, that test is considered as redundant
otherwise it is nonredundant.

In some cases, a test artifact does not cover any type
of items (according to the considered coverage criteria). In
[12], we have found that these cases may occur for various
reasons, for example, (1) a test case may only cover items
outside the SUT (e.g., an external library), (2) a test case
may verify (assert) a condition without exercising anything
from the SUT, or (3) a test method may be completely empty
(developed by mistake). In these cases, the nominator and
the denominator of both above metrics (PR and SR) will be
zero (thus causing the 0-divide-by-0 problem). We assign the
value of NaN (Not a Number) to the SR metric for these

Advances in Software Engineering

cases leaving them to be manually inspected to determine the
reason.

After calculating coverage and redundancy metrics, the
system prepares a list of test artifacts in no particular order.
All the information about coverage ratios, number of covered
items and redundancy metrics (both SR for each test and PR
for each test pair) is available for exploration by the tester.

Step 2 in the process is the tester’s turn. He/she should
inspect the tests which are identified as a redundant test
by the SR value (=1) to find out whether they are really
redundant or not. This manual redundancy analysis should
be performed for each test artifact separately. Therefore tester
needs to choose a test from a set of candidate redundant tests.

The sequence in which test artifacts are inspected may
affect the final precision of the process. Test sequencing often
becomes important for an application that has internal state.
Dependency between test artifacts may cause the erratic test
smell in which one or more tests behave erratically (the test
result depends on the result of other tests) [4]. However,
in this work we do not consider this smell (our case study
does not have this problem and thus we did not have any
constraints for sequencing the test artifacts).

Our experience with manual redundancy detection in
our case study (discussed in next section) helps us to find
that the locality principle of test artifacts is an important
factor that should be considered in test sequencing. In other
words, for instance, test methods inside one test class have
more likelihood of redundancy with respect to each other
and should be inspected simultaneously.

There can be different strategies for ordering test artifacts
and picking one to inspect at a time. One strategy can
be defined according to number of covered items by each
test artifact. As discussed next ascending and descending
orders of number of coverage items each may have their own
benefits.

A test expert may prefer to first choose a test artifact with
higher redundancy probability. In this case, we hypothesize
that the ascending order based on number of covered items
is more suitable. The rationale behind this hypothesis is that
the likelihood of covering fewer code items (e.g., statement,
branch) by more than one test artifact is more than covering
more items by the same test artifacts. Relationship between
numbers of covered items by a test artifact with probability
of redundancy of that test needs to be analyzed in an
experiment. However, this is not the main goal of this paper
and we leave it as a future work.

Descending order can have its own benefits. A test expert
may believe that having test cases with more covered items
would lead to the eager test smell (i.e., a test with too many
assertions [22]). In this case, he/she would prefer to first
analyze a test that covers more items in the SUT.

Finding a customized order of two above extreme cases
by considering their benefits and costs is not discussed in
this paper. Also other factors more than redundancy and
coverage information may be useful in finding a proper test
order.

Another strategy for sorting the existing test cases would
be according to their execution time. If one of the objectives
of reducing test suite is reducing the execution time, by this

strategy test cases which need more time to be executed have
more priority of redundancy candidates. However, we believe
that in unit testing level execution time of test cases is not as
important as other smells like being eager.

After picking appropriate test artifact, tester can use
PR values of that test with respect to other tests. This
information guides tester to inspect source code of that
test case and compare it with source code of those tests
with higher PR values. Without this information, manual
inspection would take much more time from testers since
he/she may not have any idea how to find another test to
compare the source code together.

As discussed in Section 4, the main reason of need for
human knowledge is to cover shortcomings of coverage-
based redundancy detection. Therefore testers should be
thoroughly familiar with these shortcomings and attempt at
covering them.

After redundancy analysis, the test is identified as
redundant or not. If it was detected as redundant by tester
(Step 3), system removes it from original test set (Step 4).
In this step, the whole collaborative process between system
and tester should be repeated. Removing one test from
test suite changes the value of CoveredItems;(TS — t;) in
(2). Therefore system should recalculate Suite Redundancy
metric for all of the available tests (Step 5). In Section 6
we show how removing a redundant test detected by tester
and recalculating the redundancy information can help the
tester not to be misled by initial redundancy information and
reduce the required effort of the tester.

Stopping condition of this process depends on tester’s
discretion. To find this stopping point, tester needs to
compare the cost of process with savings in test maintenance
costs resulting from test redundancy detection. Process cost
at any point of the process can be measured by the time and
effort that testers have spent in the process.

Test maintenance tasks have two types of costs which
should be estimated: (1) costs incurred by updating (syn-
chronizing) test code and SUT code, and (2) costs due to
fixing integrity problems in test suite (e.g., one of two test
cases testing the same SUT feature fails, while the other
passes). Having redundant tests can lead testers to updating
more than a test for each modification. Secondly, as a result
of having redundant tests, the test suites would suffer from
integrity issues, since the tester might have missed to update
all the relevant tests.

To estimate the above two cost factors, one might per-
form change impact analysis on the SUT, and subsequently
effort-prediction analysis (using techniques such as [23]) on
SUT versus test code changes.

To decide about stopping point of the process, a tester
would need to measure the process costs spent so far and
to also estimate the maintenance costs containing both the
above-discussed cost factors. By comparing them, he/she
may decide to either stop or to continue the proposed
process.

In the outset of this work, we have not systematically
analyzed the above cost factors. As discussed before, we
suggest testers to inspect all the tests with the value SR = 1
as many as possible. However, according to high number

8 Advances in Software Engineering
TasLE 1: The size measures of Allelogram code. TasLE 3: Coverage information (%).
SLOC Number of Number of Number of Coverage (%)
packages classes methods Statement Branch Condition Loop
3,296 7 57 323 Entire Allelogram 23.3 34.7 35.9 222
Without GUI components 68.0 72.9 71.4 43.0
TABLE 2: The size measures of Allelogram test suite.
Test suite Number of test Number of test Number of test TasLE 4: The percentage of fully redundant test methods.
SLOC packages classes methods —
Coverage criteria Percentage of fully redundant test methods
2,358 6 21 82
Statement 77%
Branch 84%
of false-positive errors, other tests in this category (with Condition 83%
SR = 1) which were not inspected, should be considered as ~ Loop 87%
nonredundant. If the SR metric of a test artifact is less than All 69%

1, it means that there are some items in the SUT which are
covered only by this test artifact. Thus, they should also be
considered as nonredundant.

To automate the proposed process for test redundancy
detection, we have modified the CodeCover coverage tool
[20] to be able to measure our redundancy metrics. We
refer to our extended tool as TeReDetect (Test Redundancy
Detection tool). The tool shows a list of test artifacts
containing coverage and redundancy information of each
of them, it lets the tester to sort test artifacts according
to his/her strategy (as explained before) and to introduce
a real detected redundant test to the system for further
metrics recalculation. After detecting a redundant test
method, system automatically recalculates the redundancy
metrics and updates the tester with new redundancy
information for the next inspection iteration. A snapshot
of the TeReDetect tool, during the process being applied
to Allelogram, is shown in Figure 5. TeReDetect is an open
source project (it has been extended to the SVN repository
of CodeCover http://codecover.svn.sourceforge.net/svnroot/
codecover). TeReDetect is not a standalone plug-in, rather
it has been embedded inside the CodeCover plug-in.
For instance, ManualRedundancyView.java is one of the
extend-ed classes for our tool which is available from http://
codecover.svn.sourceforge. net/svnroot/codecover/trunk/
code/eclipse/src/org/codecover/eclipse/views/.

6. Case Study

6.1. Performing the Proposed Process. We used Allelogram
[24], an open-source SUT developed in Java, as the object
of our case study. Allelogram is a program for processing
genomes and is used by biological scientists [24]. Table 1
shows the size measures of this system.

The unit test suite of Allelogram is also available through
its project website [24] and is developed in JUnit. Table 2 lists
the size metrics of its test suite. As the lowest implemented
test level in JUnit is test method, we applied our redundancy
detection process on the test method level in this SUT.

As the first step of proposed redundancy detection
process, coverage metrics are measured. For this purpose, we
used the CodeCover tool [20] in our experiment. This tool
is an open-source coverage tool written in Java supporting

the following four coverage criteria: statement, branch,
condition (MC/DC), and loop. The loop coverage criterion,
as supported by CodeCover, requires that each loop is
executed 0 times, once, and more than once.

Table 3 shows the coverage metrics for our SUT. The
first row in this table is the coverage ratios of the whole
Allelogram system which are relatively low. We also looked
at the code coverage of different packages in this system.
Our analysis showed that the Graphical User Interface (GUI)
package of this SUT is not tested (covered) at all by its test
suite. This is most probably since JUnit is supposed to be
used for unit testing and not GUI or functional testing. By
excluding the GUI package from coverage measurement, we
recalculated the coverage values shown in the second row of
Table 3. These values show that the non-GUI parts of the
system were tested quite thoroughly.

The next step in the process is the calculation of
suite-level redundancy for each test method and pairwise
redundancy for each pair of test methods in the test suite of
our SUT.

To automate the measurement of redundancy of each test
method using the two metrics defined in Section 5 ((1) and
(2)), we have modified CodeCover to calculate the metrics
and export them into a text file, once it executes a test suite.

Table 4 reports the percentage of fully redundant test
methods (those with SR = 1) according to each coverage
criterion and also by considering all of the criteria together.

As we expected, according to Table 4, ratio of full
redundancy detected by considering each coverage criteria
separately is higher than the case when all of them are con-
sidered. This confirms the fact that the more coverage criteria
used in redundancy detection, the less false positive error can
be achieved. In other words, All coverage criterion detects
those tests as nonredundant that improve the coverage ratio
values of at least one of the coverage criteria. As All criterion
is more precise than the others, in the rest of our case study
we consider the suite redundancy based on All criterion.

According to the suite redundancy result by considering
all four coverage criteria (Table 4), 31% (100—69) of the tests
in test suites of Allelogram are nonredundant. To confirm
the nonredundancy of those methods, we randomly sampled

Advances in Software Engineering

Declaration (= Test Sessions ! Manual Redundancy &3

= Coverage Graph m Redundancy Graph

Sortable lists
lame Statement Branch Condition Loop CoveredSt CoveredBr Covered Cond Covered Loop
L R G R R g Eo e o TS T TO T o r 3

[[] = model.tests.ClassifierTest:testEquals .62 0.0 0.29 1.0 13 S 7 3
[[] = model.tests.Classifier Test:testStringConstructor | .0 1.0 1.0 0.8 23 S 9 S
[[] '&s model.tests.Classifier Test:testStringMustBewellF | |.0 1.0 1.0 1.0 13 2 3 2
[[] == model.tests.ClassificationTest:testEquals 0.0 0.0 0.0 NaM | |S 3 3 0
[[] ‘= model.tests.GenotypeClassificationPredicateTest | §.0 1.0 1.0 1.0 25 -] 13 6
[[] ‘== model.tests.GenotypeClassificationPredicateTest | §.0 0.0 0.67 1.0 9 1 3 2
[[] ‘== model.tests.GenotypeClassificationPredicateTest | p.81 1.0 0.86 0.86 | |27 4 14 7
[[] = model.tests.GenotypeComparatorTest:testSort | p.8 0.5 0.8 0.67 | |25 4 10 6
[] & model.tests.GenotypeTest:testCreate .0 1.0 1.0 1.0 9 2 4 1
[] & model.tests.GenotypeTest:testHomozygous .76 1.0 1.0 0.67 | |17 2 4 3
[] /= model.tests.GenotypeTest:testRequireAtLeast Tw| [.0 0.33 0.33 MNaM | |4 3 3 0
[7] ‘== model.tests.GenotypeTest:testCreatewithFields | j.0 1.0 1.0 1.0 12 2 6 2
2 V4 / |}

Checked in Test Redundancy Number of

the case of methods ratio covered items

redundant test

F1GURE 5: Snapshot of the TeReDetect tool.

a set of test methods in this group and inspected them. We
found few cases that seem as redundant tests which are in fact
true-negative errors as reported in [12]. However, according
to our inspection and code analysis, such test methods cover
at least one coverable item not covered by any other test
method. For instance, a test method named testOneBin in
Allelogram covers a loop only once while some other test
methods cover that loop more than one time. Therefore, loop
redundancy of this method is slightly less than 1 (0.91) and
thus detected as nonredundant by our redundancy metrics.
For the same test method, the other types of redundancy
considering only statement, branch, and condition coverage
are 1. In fact, the above test cases contribute to loop coverage
and we thus mark it as nonredundant since it covers a loop
in a way (only once) not covered by other test methods.

Having a candidate set of redundant test methods
(redundant tests based on All criterion: 69%), tester needs
to decide about their order to inspect their source code. In
this study, the first author (a graduate student of software
testing) manually inspected the test methods. Recall the
heuristics discussed in Section 5 about the sorting strategy
of test method in the proposed process: test methods with
fewer numbers of covered items have higher likelihood of
being redundant. We thus decided to order the tests in
the ascending order of the number of covered items (e.g.,
statement). In this case, we hoped to find redundant test
methods sooner which may lead to a reduction in the search
space (discussed next).

As the next step, manual inspection of a test was
performed by comparing the source code of the test with
other tests having high pair redundancy with the current one.
The main focus of this step should be detecting redundancy
by covering the shortcomings of coverage-based redundancy
detection discussed in Section 5.

Redundancy of one test affects the redundancy of others.
For instance, if test method A is redundant because it covers

the same functionality covered by test method B (while there
are no other tests to cover this functionality), test method B
cannot be redundant at the same time. Therefore, while both
of them are candidates for being redundant tests according
to coverage information, but only one of them should be
considered redundant finally. We refer to such effects as inter-
test-method-redundancy effects

By only using redundancy information from the begin-
ning step of the process, tester would need to keep track
of all the tests previously detected as redundant during
the process and apply the inter-test-method-redundancy
effects by him/her self. However, recalculating the coverage
information, after each redundancy detection, can reduce
the search space (as explained next). Therefore, detecting
redundant tests one by one and subsequently recalculating
redundancy metrics increase precision and efficiency of the
tester.

In this case study, we manually inspected the whole test
suite of Allelogram. Figure 6 illustrates the whole process
results by showing the size of five different test sets manip-
ulated during the process. Those five test sets are discussed
next.

We divide test methods into two categories: redundancy
known and redundancy unknown. The test artifacts in
the redundancy-unknown set are pending inspection to
determine whether they are redundant or not (Set 1).
Redundancy-known set contains redundant (Set 2) and
nonredundant test sets whose decisions have been final-
ized. Furthermore, the set of nonredundant tests inside
redundancy-known category contains three different sets:
those identified through inspection (Set 3), those identified
without inspection (Set 4), and the ones that were identified
by system as nonredundant after nonredundancy has been
detected through inspection (Set 5).

At the beginning of the process, by calculating redun-
dancy metrics based on coverage information, test methods

10

80
70
60
50
40
30
20
10

Set sizes

1 5 9 13 17 21 25 29 33 37 41 45 49

Number of test methods inspected (in order)

O Set 4-|nonredundant tests identified without inspection|
B Set 5-|nonredundant tests identified
with unnecessary inspection|
O Set 3-|nonredundant tests identified with inspection|
W Set 2-|redundant tests|
O Set 1-|remaining tests pending inspection|

FIGURE 6: Labeling the test cases through the redundancy detection
process.

are divided into two sets of Nonredundant Tests without
Inspection and Remaining Tests Pending Inspection sets. As
the figure shows, 28 test methods were recognized as
nonredundant, while 54 (82 — 28) test methods needed to
be inspected.

After each test method inspection, redundancy of that
test is identified. This test method then leaves the Remaining
Tests Pending Inspection set and Nonredundant test joins
Nonredundant Tests with Inspection set while each redundant
test joins Redundant Tests set. In the second case, redundancy
metrics are recalculated.

In this case study, as shown in Figure 5, 11 test methods
are recognized as redundant (test methods numbered in
the x-axis as 7, 12, 19, 21, 24, 27, 36, 38, 40, 41, and
44). In these cases, new iterations of the process were
performed by recalculating the redundancy metrics. In 5
cases (test methods numbered 12, 21, 24, 27, and 44), the
recalculating led to search space reduction (5 test methods
left the Remaining Tests Pending Inspection set and joined
the Nonredundant Tests without Inspection set). In 2 of them
(test methods 21 and 44), recalculating caused 2 test methods
to leave Nonredundant Tests with Inspection set and join
Nonredundant Tests with Unnecessary Inspection set.

At the beginning of the process, the size of the Remaining
Tests Pending Inspection set was 54 (our initial search space).
However, through the process, recalculating reduced the
number of test methods that needed to be inspected to 49.
In this case study, we ordered test methods in the ascending
order of number of their covered items.

The final result of the process is a reduced test set
containing 71 test methods instead of 82 (the original
test suite of Allelogram). Stopping point of this process is
considered by inspecting all the redundant candidate test
methods (with SR = 1) and no cost estimation is applied
for this purpose.

6.2. Evaluating the Proposed Process. To evaluate the pre-
ciseness of the proposed process, we considered the main
purpose of test redundancy detection as discussed by many

Advances in Software Engineering

researchers. Test minimization should be performed in a
way that the fault detection effectiveness of the test suite is
preserved. Therefore, the process is successful if it does not
reduce the fault detection capability.

One way to evaluate the above success factor of our test
minimization approach is to inject probable faults in the
SUT. Mutation is a technique that is widely used for this
purpose ([25, 26]). The researches in [27, 28] show that
the use of mutation operators is yielding trustworthy results
and generated mutants can be used to predict the detection
effectiveness of real faults.

In this work, we used the mutation analysis technique
for the evaluation of the fault detection effectiveness of the
reduced test suites generated by our technique. However,
after completing this research project, we found out that, as
another approach, we could also use the mutation analysis
technique to detect test redundancy in a different alternative
approach as follows. If the mutation scores of a given test
suite with and without a particular test case are the same,
then that test case is considered redundant. In other words,
that test case does not kill (distinguish) any additional
mutant. We plan to compare the above test redundancy
detection approach with the one we conducted in this paper
in a future work.

To inject simple faults into our case study, we used the
MuClipse [29] tool which is a reincarnation of the MuJava
[30] tool in the form of an Eclipse plug-in. Two main types
of mutation operators are supported by MuClipse: method
level (traditional) and class level (object oriented) [30].

To inject faults according to the traditional mutation
operators, MuClipse replaces, inserts or deletes the primitive
operators in the program. 15 different types of traditional
mutation operators are available in MuClipse [29]. One
example of this operators is the Arithmetic Operator
Replacement (AOR) [31].

The strategy in object-oriented mutation operators is to
handle all the possible syntactic changes for OO features by
deleting, inserting, or changing the target syntactic element.
28 different types of OO mutation operators are available
in MuClipse [29]. One example is Hiding variable deletion
(IHD) which deletes a variable in a subclass that has the same
name and type as a variable in the parent class [32].

All the available above mutation operators were used in
this experiment. During this step, we found that MuClipse
generates some mutants which failed to compile. These types
of mutants are referred to as stillborn mutants which are
syntactically incorrect and are killed by the compiler [29].
The total number of mutants for Allelogram that were not
stillborn was 229.

To evaluate the fault detection effectiveness of the
reduced test set by our proposed process compared to
original test set, we calculated their mutation scores. We used
MuClipse to execute all the created mutants with the two
test sets (original and reduced). Table 5 shows the mutation
score of three test sets: original test set, reduced test set only
based on coverage information, and reduced test set through
collaboration process with a tester.

The result shows that every mutant that is killed by
original test set is killed by the reduced set (derived by

Advances in Software Engineering

TABLE 5: Mutation score of three test suites for Allelogram.

11

TABLE 6: Cost/benefit comparison.

Test set Cardinality ~ Mutation score Cost Benefit
Original 82 51% Full automation Low Imprecise reduced set
Reduced (coverage based) 28 20% Full manual High Precise reduced set
Reduced (collaborative process) 71 51% Semiautomated Mid Precise reduced set

the collaborative process) as well. In other words, the
effectiveness of these two test sets is equal while the reduced
set (solely based on coverage information) has 11 (82 — 71)
less tests than the first one. That test suite thus has lower fault
detection effectiveness.

Mutation score decreasing from 51% in original test
set to 20% in the reduced set only based on coverage
information confirms our discussion in Section 3 about
impreciseness of test redundancy detection based only on
coverage information.

7. Discussion

7.1. Effectiveness and Precision. Let us recall the main
purpose of reducing the number of test cases in a test suite
(Section 1): decreasing the cost of software maintenance.
Thus, if the proposed methodology turns to be very time
consuming, then it will not be worthwhile to be applied.

Although the best way to increase the efficiency of the
process is to automate all required tasks, at this step we
suppose that it is not practical to automate all of them. Thus,
as we discuss next, human knowledge is currently needed in
this process.

To perform manual inspection on test suite with the
purpose of finding redundancy, testers need to spend time
and effort on each test source code and compare them
together. To decrease the amount of required effort, we
have devised the proposed approach in a way to reduce
the number of tests needed to be inspected (by using the
suite redundancy metric). Our process also suggests useful
information such as pair redundancy metric to help testers
find other proper tests to compare with the test under
inspection.

We believe that by using the above information, the
efficiency of test redundancy detection has been improved.
This improvement was seen on our case study while we
first spent on average more than 15 minutes for each test
method of Allelogram test suite before having our process.
But inspecting them using the proposed process took on
average less than 5 minutes per test method (the reason of
time reduction is that in the later we knew other proper
test methods to compare them with the current test). Since
only one human subject (tester) performed the above two
approaches, different parts of the Allelogram test suite were
analyzed in each approach to avoid bias (due to learning and
gaining familiarity) on time measurement.

However the above results are based on our preliminary
experiment and it is thus inadequate to provide a general
picture about the efficiency of the process. For a more
systematic analysis in that direction, both time and effort
should be measured more precisely with more than one

subject on more than one object. Such an experiment is
considered as a future work.

In addition to the efficiency of the process, precision of
redundancy detection was also evaluated in our work. As
explained in Section 6.2, this evaluation has been done in
our case study by applying mutation technique. The result
of analysis on one SUT confirmed the high precision of the
process.

However, human’s error is inevitable in collaborative
processes which can affect the precision of the whole process.
To decrease this type of error, the tester needs to be familiar
with the written tests. Therefore, we suggest having the
original test suite developers involved in the redundancy
detection process if possible or that they be at least available
for the possible questions during the process. In other words,
a precise teamwork communication is required to detect
correct test redundancy.

7.2. Cost/Benefit Analysis. According to above discussions,
our redundancy detection technique has the following
benefits.

(i) Reducing the size of test suite by keeping the fault
detection effectiveness of that.

(ii) Preventing possible future integrity issues in the test
suite.

(iii) Reducing test maintenance costs.

Different types of required costs in this process are
summarized as follows.

(i) TeReDetect installation costs.

(ii) System execution time during the process (steps 1, 4,
and 5 in Figure 4).

(iii) Redundancy analysis by human testers (steps 2 and 3
in Figure 4).

The first and second cost items are not considerable
while the main part of the cost is about the third one which
contains human efforts.

Table 6 shows an informal comparison of above costs and
benefits in three approaches of full automation, full manual,
and semiautomated process proposed in this paper. In the
second and third approaches that human has a role, it is
inevitable that the preciseness of human affects the benefits
of the results.

7.3. Scalability. In large-scale systems with many LOC and
test cases, it is not usually feasible to look at and analyze
the test cases for the entire system. However, as mentioned
before, in TeReDetect it is possible to select a subset of

12

test suite and also a subset of SUT. This functionality
of TeReDetect increases the scalability of this tool to a
great extent by making it possible to divide the process of
redundancy detection into separate parts and assign each
part to a tester. However a precise teamwork communication
is required to make the whole process successful.

Flexible stopping point of the proposed process is
another reason for its scalability. According to the tester’s
discretion, the process of redundancy detection may stop
after analyzing the subset of test cases or continue for all
existing tests. For instance, in huge systems, by considering
the cost of redundancy detection, project manager may
decide to analyze only the critical part of the system.

7.4. Threats to Validity

7.4.1. External Validity. Two issues limit the generalization
of our results. The first one is the subject representativeness
of our case study. In this paper the process has been done
by the first author (a graduate student). More than one
subject should be experimented in this process to be able to
compare their results to each other. Also, this subject knew
the exact objective of the study which is a threat to the result.
The second issue is the object program representativeness.
We have performed the process and evaluate the result on
one SUT (Allelogram). More objects should be used in
experiments to improve the result. Also our SUT is a random
project chosen from the open source community. Other
industrial programs with different characteristics may have
different test redundancy behavior.

7.4.2. Internal Validity. The result about efficiency and
precision of the proposed process might be from some other
factors which we had no control or had not measured. For
instance, the bias and knowledge of the tester while trying to
find redundancy can be such a factor.

8. Conclusion and Future Works

Measuring and removing test redundancy can prevent the
integrity issues of test suites and decrease the cost of
test maintenance. Previous works on test set minimization
believed that coverage information is useful resource to
detect redundancy.

To evaluate the above idea we performed an experiment
in [12]. The result shows that coverage information is not
enough knowledge for detecting redundancy according to
fault detection effectiveness. However, this information is a
very useful starting point for further manual inspection by
human testers.

Root-cause analysis of above observation in [12] has
helped us to improve the precision of redundancy detection
by covering the shortcomings in the process proposed in this
paper.

We proposed a collaborative process between human
testers and redundancy system based on coverage informa-
tion. We also performed an experiment with that process
on a real java project. This in turn led us to find out that

Advances in Software Engineering

the sharing the knowledge between the human user and the
system can be useful for the purpose of test redundancy
detection. We conclude that test redundancy detection can be
performed more effectively when it is done in an interactive
process.

The result of the case study performed in this paper
shows that fault detection effectiveness of the reduced set
is the same as the original test set while the cost of test
maintenance for reduced one is less than the other (since the
size of the first set is less than the second one).

The efficiency of this process in terms of time and effort
is improved comparing to the case of manual inspection for
finding test redundancy without this proposed process.

In this paper, the efficiency factor was discussed qualita-
tively. Therefore measuring precise time and efforts spent in
this process is considered as a future experiment.

Finding the stopping point of the process needs main-
tenance and effort cost estimation which is not studied
thoroughly in this work and is also considered as a future
work.

As explained in Section 5, the order of the tests inspected
in the proposed process can play an important role in the test
reduction result. In this work we suggested a few strategies
with their benefits to order the test while this needs to be
studied more precisely. Also, test sequential constraints such
as the case of dependent test cases are not discussed in this
work.

Visualization of coverage and redundancy information
can also improve the efficiency of this process extensively.
We are now in the process of developing such a visualization
technique to further help human testers in test redundancy
detect processes.

In addition to above, some tasks which are now done
manually in this proposed process could be automated in
future works. One example is the automated detection of
redundancy in the verification phase of JUnit test methods
which will most probably require the development of
sophisticated code analysis tools to compare the verification
phase of two test methods.

Acknowledgments

The authors were supported by the Discovery Grant no.
341511-07 from the Natural Sciences and Engineering
Research Council of Canada (NSERC). V. Garousi was
further supported by the Alberta Ingenuity New Faculty
Award no. 200600673.

References

[1] S. G. Fick, T. L. Graves, A. F Karr, U. S. Marron, and
A. Mockus, “Does code decay? Assessing the evidence from
change management data,” IEEE Transactions on Software
Engineering, vol. 27, no. 1, pp. 1-12, 2001.

[2] D. L. Parnas, “Software aging,” in Proceedings of the Interna-
tional Conference on Software Engineering (ICSE *94), pp. 279—
287, Sorrento, Italy, May 1994.

[3] B. V. Rompaey, B. D. Bois, and S. Demeyer, “Improving test
code reviews with metrics: a pilot study,” Tech. Rep., Lab

Advances in Software Engineering

on Reverse Engineering, University of Antwerp, Antwerp,
Belgium, 2006.

[4] G. Meszaros, xUnit Test Patterns, Refactoring Test Code,
Addison-Wesley, Reading, Mass, USA, 2007.

[5] A. Deursen, L. Moonen, A. Bergh, and G. Kok, “Refactoring
test code,” in Proceedings of the 2nd International Conference
on Extreme Programming and Flexible Processes in Software
Engineering (XP ’01), Sardinia, Italy, May 2001.

[6] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An
empirical study of the effects of minimization on the fault
detection capabilities of test suites,” in Proceedings of the
Conference on Software Maintenance (ICSM ’98), pp. 34-43,
Bethesda, Md, USA, November 1998.

[7] M. J. Harrold, R. Gupta, and M. L. Soffa, “Methodology
for controlling the size of a test suite,” ACM Transactions on
Software Engineering and Methodology, vol. 2, no. 3, pp. 270—
285, 1993.

[8] J. A. Jones and M. J. Harrold, “Test-suite reduction and
prioritization for modified condition/decision coverage,” IEEE
Transactions on Software Engineering, vol. 29, no. 3, pp. 195—
209, 2003.

[9] A.]J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing
the size of coverage-based test sets,” in Proceedings of the 11th
International Conference on Testing Computer Software (ICTCS
’95), pp. 111-123, Washington, DC, USA, June 1995.

[10] W.E.Wong,J. R. Morgan, S. London, and A. P. Mathur, “Effect
of test set minimization on fault detection effectiveness,”
Software—Practice & Experience, vol. 28, no. 4, pp. 347-369,
1998.

[11] W. E. Wong, J. R. Horgan, A. P. Mathur, and Pasquini,
“Test set size minimization and fault detection effectiveness:
a case study in a space application,” in Proceedings of the
IEEE Computer Society’s International Computer Software
and Applications Conference (COMPSAC ’97), pp. 522-528,
Washington, DC, USA, August 1997.

[12] N. Koochakzadeh, V. Garousi, and F. Maurer, “Test redun-
dancy measurement based on coverage information: eval-
uations and lessons learned,” in Proceedings of the 2nd
International Conference on Software Testing, Verification, and
Validation (ICST ’09), pp. 220-229, Denver, Colo, USA, April
2009.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability;
A Guide to the Theory of NP-Completeness, W. H. Freeman, San
Francisco, Calif, USA, 1990.

[14] A. Ngo-The and G. Ruhe, “A systematic approach for solving
the wicked problem of software release planning,” Soft Com-
puting, vol. 12, no. 1, pp. 95-108, 2008.

[15] R. Milner, “Turing, computing, and communication,” in
Interactive Computation: The New Paradigm, pp. 1-8, Springer,
Berlin, Germany, 2006.

[16] E Arbab, “Computing and Interaction,” in Interactive Com-
putation: The New Paradigm, pp. 9-24, Springer, Berlin,
Germany, 2006.

[17] M. Takaai, H. Takeda, and T. Nishida, “A designer support

environment for cooperative design,” Systems and Computers

in Japan, vol. 30, no. 8, pp. 32-39, 1999.

Parasoft Corporation, “Parasoft Jtest,” October 2009, http://

www.parasoft.com/jsp/products/home.jsp?product=]Jtest.

[19] IBM Rational Corporation, “Rational manual tester,”
January 2009, http://www-01.ibm.com/software/awdtools/
tester/manual/.

[20] T. Scheller, “CodeCover,” 2007, http://codecover.org/.

[21] nitinpatil, “JFeature,” June 2009, https://jfeature.dev.java.net/.

(18

13

[22] B. V. Rompaey, B. D. Bois, S. Demeyer, and M. Rieger, “On
the detection of test smells: a metrics-based approach for
general fixture and eager test,” IEEE Transactions on Software
Engineering, vol. 33, no. 12, pp. 800-816, 2007.

[23] L. C. Briand and J. Wiist, “Modeling development effort
in object-oriented systems using design properties,” IEEE
Transactions on Software Engineering, vol. 27, no. 11, pp. 963—
986, 2001.

[24] C. Manaster, “Allelogram,”
.google.com/p/allelogram/.

[25] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on
test data selection: help for the practicing programmer,” IEEE
Computer, vol. 11, no. 4, pp. 34—41, 1978.

[26] R. G. Hamlet, “Testing programs with the aid of a compiler,”
IEEE Transactions on Software Engineering, vol. 3, no. 4, pp.
279-290, 1977.

[27] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin,
“Using mutation analysis for assessing and comparing testing
coverage criteria,” IEEE Transactions on Software Engineering,
vol. 32, no. 8, pp. 608—624, 2006.

[28] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in Proceedings of the
27th International Conference on Software Engineering (ICSE
°05), pp. 402-411, 2005.

[29] B. Smith and L. Williams, “MuClipse,” December 2008,
http://muclipse.sourceforge.net/.

[30] J. Offutt, Y. S. Ma, and Y. R. Kwon, “MuJava,” December 2008,
http://cs.gmu.edu/~offutt/mujava/.

[31] Y. S. Ma and J. Offutt, “Description of method-level mutation
operators for java,” December 2005, http://cs.gmu.edu/~
offutt/mujava/mutopsMethod.pdf.

[32] Y.S.Maand]J. Offutt, “Description of class mutation mutation
operators for java,” December 2005, http://cs.gmu.edu/~
offutt/mujava/mutopsClass.pdf.

August 2008, http://code

Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 323429, 7 pages
doi:10.1155/2010/323429

Research Article

A Strategy for Automatic Quality Signing and Verification
Processes for Hardware and Software Testing

Mohammed I. Younis and Kamal Z. Zamli

School of Electrical and Electronics, Universiti Sains Malaysia, 14300 Nibong Tebal, Malaysia
Correspondence should be addressed to Mohammed I. Younis, younismi@gmail.com
Received 14 June 2009; Revised 4 August 2009; Accepted 20 November 2009

Academic Editor: Phillip Laplante

Copyright © 2010 M. I. Younis and K. Z. Zamli. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We propose a novel strategy to optimize the test suite required for testing both hardware and software in a production line. Here,
the strategy is based on two processes: Quality Signing Process and Quality Verification Process, respectively. Unlike earlier work,
the proposed strategy is based on integration of black box and white box techniques in order to derive an optimum test suite
during the Quality Signing Process. In this case, the generated optimal test suite significantly improves the Quality Verification
Process. Considering both processes, the novelty of the proposed strategy is the fact that the optimization and reduction of test
suite is performed by selecting only mutant killing test cases from cumulating t-way test cases. As such, the proposed strategy can
potentially enhance the quality of product with minimal cost in terms of overall resource usage and time execution. As a case study,
this paper describes the step-by-step application of the strategy for testing a 4-bit Magnitude Comparator Integrated Circuits in a
production line. Comparatively, our result demonstrates that the proposed strategy outperforms the traditional block partitioning

strategy with the mutant score of 100% to 90%, respectively, with the same number of test cases.

1. Introduction

In order to ensure acceptable quality and reliability of any
embedded engineering products, many inputs parameters as
well as software/hardware configurations need to be tested
against for conformance. If the input combinations are large,
exhaustive testing is next to impossible due to combinatorial
explosion problem.

As illustration, consider the following small-scale prod-
uct, a 4-bit Magnitude Comparator IC. Here, the Magnitude
Comparator IC consists of 8 bits for inputs and 3 bits for
outputs. It is clear that each IC requires 256 test cases for
exhaustive testing. Assuming that each test case takes one
second to run and be observed, the testing time for each IC
is 256 seconds. If there is a need to test one million chips, the
testing process will take more than 8 years using a single line
of test.

Now, let us assume that we received an order of delivery
for one million qualified (i.e., tested) chips within two weeks.
As an option, we can do parallel testing. However, parallel
testing can be expensive due to the need for 212 testing lines.
Now, what if there are simultaneous multiple orders? Here, as

the product demand grows in numbers, parallel testing can
also become impossible. Systematic random testing could
also be another option. In random testing, test cases are
chosen randomly from some input distribution (such as a
uniform distribution) without exploiting information from
the specification or previously chosen test cases. More recent
results have favored partition testing over random testing in
many practical cases. In all cases, random testing is found
to be less effective than the investigated partition testing
methods [1].

A systematic solution to this problem is based on
Combinatorial Interaction Testing (CIT) strategy. The CIT
approach can systematically reduce the number of test cases
by selecting a subset from exhaustive testing combination
based on the strength of parameter interaction coverage ()
[2]. To illustrate the CIT approach, consider the web-based
system example (see Table 1) [3].

Considering full strength interaction ¢ = 4 (i.e., interac-
tion of all parameters) for testing yields exhaustive combina-
tions of 31 = 81 possibilities. Relaxing the interaction strength
to t =3 yields 27 test cases, a saving of nearly 67 percent. Here,
all the 3-way interaction elements are all covered by at least

TABLE 1: Web-based system example.

Parameter 1 Parameter 2 Parameter 3 Parameter 4

Netscape Windows XP LAN Sis
IE Windows VISTA PPP Intel
Firefox Windows 2008 ISDN VIA

one test. If the interaction is relaxed further to t = 2, then the
number of combination possibilities is reduced even further
to merely 9 test cases, a saving of over 90 percent.

In the last decade, CIT strategies were focused on 2-
way (pairwise) testing. More recently, several strategies (e.g.,
Jenny [4], TVG [5], IPOG [6], IPOD [7], IPOF [8], DDA
[9], and GMIPOG [10]) that can generate test suite for high
degree interaction (2 < t < 6).

Being predominantly black box, CIT strategy is often
criticized for not being efficiently effective for highly inter-
acting parameter coverage. Here, the selected test cases
sometimes give poor coverage due to the wrong selection of
parameter strength. In order to address this issue, we propose
to integrate the CIT strategy with that of fault injection
strategy. With such integration, we hope to effectively
measure the effectiveness of the test suite with the selection
of any particular parameter strength. Here, the optimal test
case can be selected as the candidate of the test suite only
if it can help detect the occurrence of the injected fault. In
this manner, the desired test suite is the most optimum for
evaluating the System Under Test (SUT).

The rest of this paper is organized as follows. Section 2
presents related work on the state of the art of the appli-
cations of t-way testing and fault injection tools. Section 3
presents the proposed minimization strategy. Section 4 gives
a step-by-step example as prove of concept involving the
4-bit Magnitude Comparator. Section 5 demonstrates the
comparison with our proposed strategy and the traditional
block partitioning strategy. Finally, Section 6 describes our
conclusion and suggestion for future work.

2. Related Work

Mandl was the first researcher who used pairwise coverage in
the software industry. In his work, Mandl adopts orthogonal
Latin square for testing an Ada compiler [11]. Berling
and Runeson use interaction testing to identify real and
false targets in target identification system [12]. Lazic and
Velasevic employed interaction testing on modeling and
simulation for automated target-tracking radar system [13].
White has also applied the technique to test graphical user
interfaces (GUIs) [14]. Other applications of interaction
testing include regression testing through the graphical user
interface [15] and fault localization [16, 17]. While earlier
work has indicated that pairwise testing (i.e., based on 2-way
interaction of variables) can be effective to detect most faults
in a typical software system, a counter argument suggests
such conclusion infeasible to generalize to all software system
faults. For example, a test set that covers all possible pairs of
variable values can typically detect 50% to 75% of the faults
in a program [18-20]. In other works it is found that 100% of

Advances in Software Engineering

faults are detectable by a relatively low degree of interaction,
typically 4-way combinations [21-23].

More recently, a study by The National Institute of
Standards and Technology (NIST) for error-detection rates in
four application domains included medical devices, a Web
browser, an HTTP server, and a NASA-distributed database
reported that 95% of the actual faults on the test software
involve 4-way interaction [24, 25]. In fact, according to the
recommendation from NIST, almost all of the faults detected
with 6-way interaction. Thus, as this example illustrates,
system faults caused by variable interactions may also span
more than two parameters, up to 6-way interaction for
moderate systems.

All the aforementioned related work in CIT applications
highlighted the potential of adopting the CIT strategies for
both software/hardware testing. While the CIT strategies can
significantly partition the exhaustive test space into man-
ageable manner, additional reduction can still be possible
particularly by systematically examining the effectiveness of
each test case in the test suite, that is, by exploiting fault
injection techniques.

The use of fault injection techniques for software and
hardware testing is not new. Tang and Chen [26], Boroday
[27], and Chandra et al. [28] study circuit testing in
hardware environment, proposing test coverage that includes
each 2! of the input settings for each subset of ¢ inputs.
Seroussi and Bshouty [29] give a comprehensive treatment
for circuit testing. Dumer [30] examines the related question
of isolating memory faults and uses binary covering arrays.
Finally, Ghosh and Kelly give a survey to include a number
of studies and tools that have been reported in the area of
failure mode identification [31]. These studies help in the
long-term improvement of the software development process
as the recurrence of the same failures can be prevented.
Failure modes can be specific to a system or be applicable
to systems in general. They can be used in testing for fault
tolerance, as realistic faults are needed to perform effective
fault injection testing. Additionally, Ghosh and Kelly also
describe a technique that injects faults in Java software by
manipulating the bytecode level for third party software
components used by the developers.

3. Proposed Strategy

The proposed strategy consists for two processes, namely,
Test Quality Signing (TQS) process and Test Verification
process (TV). Briefly, the TQS process deals with optimizing
the selection of test suite for fault injection as well as
performs the actual injection whilst the TV process analyzes
for conformance (see Figure 1).

As implied earlier, the TQS process aims to derive an
effective and optimum test suite and works as follows.

(1) Start with an empty Optimized Test Suite (OTS), and
empty Signing Vector (SV).

(2) Select the desired software class (for software testing).
Alternatively, build an equivalent software class for
the Circuit Under Test (CUT) (for hardware testing).

(3) Store these faults in fault list (FL).

Advances in Software Engineering

System

oTs specification

| Y%

(a) Quality signing process

Test
passed

OTS [SUT — vv [Test
failed %

MY

(b) Quality verification process

FIGURE 1: The quality signing and verification processes.

(4) Inject the class with all possible faults.

(5) Let N be maximum number of parameters.

(6) Initialize CIT strategy with strength of coverage (t)
equal one (i.e., r = 1).

(7) Let CIT strategy partition the exhaustive test space.
The portioning involves generating one test case at a
time for ¢ coverage. If ¢t coverage criteria are satisfied,
thent =t + 1.

(8) CIT strategy generates one Test Case (TC).
(9) Execute TC.

(10) If TC detects any fault in FL, remove the detected
fault(s) from FL, and add TC and its specification
output(s) to OTS and SV, respectively.

(11) If FLis not empty or t <= N, go to 7.

(12) The desired optimized test suite and its correspond-
ing output(s) are stored in OTS and SV, respectively.

The TV process involves the verification of fault free for each
unit. TV process for a single unit works as follows.

(1) for i = 1..Size(OTS) each TC in OTS do:

(a) Subject the SUT to TC[i], store the output in
Verification Vector VV[i].

(b) If VV[i] = SV [i], continue. Else, go to 3.

(2) Report that the cut has been passing in the test. Go to
4.

(3) Report that the cut has failed the test.

(4) The verification process ends.

As noted in the second step of the TQS process, the rationale
for taking equivalent software class for the CUT is to
ensure that the cost and control of the fault injection be
more practical and manageable as opposed to performing
it directly to a real hardware circuit. Furthermore, the
derivation of OTS is faster in software than in hardware.
Despite using equivalent class for the CUT, this verification

process should work for both software and hardware systems.
In fact, it should be noted that the proposed strategy could
also be applicable in the context of N-version programming
(e.g., the assessment of student programs for the same
assignment) and not just hardware production lines. The
concept of N-version programming was introduced by
Chen and Avizienis with the central conjecture that the
“independence of programming efforts will greatly reduce
the probability of identical software faults occurring in two
or more versions of the program” [32, 33].

4. Case Study

As proof of concept, we have adopted GMIPOG [10] as
our CIT strategy implementation, and MuJava version 3
(described in [34, 35]) as our fault injection strategy
implementation.

Briefly, GMIPOG is a combinatorial test generator based
on specified inputs and parameter interaction. Running on
a Grid environment, GMIPOG adopts both the horizontal
and vertical extension mechanism (i.e., similar to that of
IPOG [6]) in order to derive the required test suite for
a given interaction strength. While there are many useful
combinatorial test generators in the literature (e.g., Jenny
[3], TConfig [4], TVG [5], IPOG [6], IPOD [7], IPOF
[8], DDA [9]), the rationale for choosing GMIPOG is the
fact that it supports high degree of interaction and can be
run in cumulative mode (i.e., support one-test-at-a-time
approach with the capability to vary ¢ automatically until the
exhaustive testing is reached).

Complementary to GMIPOG, MuJava is a fault injection
tool that permits mutated Java code (i.e., based on some
defined operators) to be injected into the running Java
program. Here, the reason for choosing MuJava stemmed
from the fact that it is a public domain Java tool freely
accessible for download in the internet [35].

Using both tools (i.e., GMIPOG and MuJava), a case
study problem involving a 4-bit Magnitude Comparator IC
will be discussed here in order to evaluate the proposed
strategy. A 4-bit Magnitude Comparator consists of 8 inputs
(two four bits inputs, namely, a0...a3, and b0...b3. where
a0 and b0 are the most significant bits), 4 xnor gates (or
equivalent to 4xor with 4 not gates), five not gates, five
and gates, three or gates, and three outputs. The actual
circuit realization of the Magnitude Comparator is given
in Figure 2. Here, it should be noted that this version of
the circuit is a variant realization (implementation) of the
Magnitude Comparator found in [36]. The equivalent class
of the Magnitude Comparator is given in Figure 3 (using the
Java-programming language).

Here, it is important to ensure that the software imple-
mentation obeys the hardware implementation strictly. By
doing so, we can undertake the fault injection and produce
the OTS in the software domain without affecting the logical
of relation and parameter interactions of the hardware
implementation.

Now, we apply the TQS process; as illustrated in
Section 3. Here, there are 80 faults injected in the system. To
assist our work, we use GMIPOG [10] to produce the TC

4 Advances in Software Engineering
TaBLE 2: Derivation of OTS for the 4-bit Magnitude Comparator.

t= Cumulative Test Size Live Mutant Killed Mutant % Mutant Score Effective test size
1 2 15 65 81.25 2

2 9 5 75 93.75 6

3 24 78 97.50 8

4 36 80 100.00 9

TaBLE 3: OTS and SV for the 4-bit Magnitude Comparator.

#TC OTS TC (a0...a3, b0...b3) SV Outputs (A >B,A=B,A<B) Accumulative faults detected/80
1 FFFFFFFF FTF 53

2 TTTTTTTT FTF 65

3 FITTTTTT FFT 68

4 TTFTFTFT TFF 71

5 TTFFTFTT TFF 72

6 TTTFTTFF TFF 75

7 TTFTTTTF FFT 77

8 FFTTTTTF FFT 78

9 TFTTTFTF TFF 80

TaBLE 4: Cumulative faults detected when x = 7. bg AN gl (A>B)

#TC TC (a0...a3,b0...b3) Cumulative faults detected /80 ’ %D

1 FFFFFFFF 53 bl

2 FFFFFTTT 54

3 FFFFTTTT 54 b2

4 FTTTFFEF 59 @

5 FTTTFTTT 67

6 FITTTTTT 70 Z%

7 TTTTFFFF 71

8 TTTTFTTT 71

9 TTTTTTTT 72 FIGURE 2: Schematic diagram for the 4-bit magnitude comparator.

TaBLE 5: Cumulative faults detected when x is randomly selective.

#TC TC (a0...a3, b0...b3) Cumulative faults detected /80

1 FFFFFFFF 53
2 FFFFFTTF 55
3 FFFFTTTT 55
4 TFTTFFFF 59
5 TFFTFTTT 61
6 TFTFTTTT 61
7 TTTTFFFF 61
8 TTTTTFFF 64
9 TTTTTTTT 72

in a cumulative mode. Following the steps in TQS process,
Table 2 demonstrates the derivation of OTS. Here, it should
be noted that the first 36 test cases can remove all the faults.
Furthermore, only the first 12 test cases when t = 4 are
needed to catch that last two live mutants. The efficiency of
integration GMIPOG with MuJava can be observed (by taken
only the effective TC) in the last column in Table 2.

Table 3 gives the desired OTS and SV, where T and
F represent true and false, respectively. In this case, TQS
process reduces the test size to nine test cases only, which
significantly improves the TV process.

To illustrate how the verification process is done (see
Figure 2), assume that the second output (i.e., A = B)
is out-of-order (i.e., malfunction). Suppose that A = B
output is always on (i.e., short circuit to “VCC”). This fault
cannot be detected as either TC1 or TC2 (according to
Table 2). Nevertheless, when TC3, the output vector (“VV”)
of faulty IC, is FT'T, and the SV is FFT, the TV process can
straightforwardly detects that the IC is malfunctioning (i.e.,
cut fails).

To consider the effectiveness of the proposed strategy in
the production line, we return to our illustrative example
given in Section 1. Here, the reduction of exhaustive test
from 256 test cases to merely nine test cases is significantly
important. In this case, the TV process requires only 9
seconds instead of 256 seconds for considering all tests. Now,
using one testing line and adopting our strategy for two

Advances in Software Engineering

public class Comparator {

//The function returns an output string that s
//the code symbols (!, A, |, and &)
public static String compare
boolean g1,g2,3;

boolean ml,m2,m3,m4;
String s = null;

ml =!(a0 A b0);
m2 =!(al A bl);
m3 =!(a2 A b2);
m4 =!(a3 A b3);

g2 = (ml&m2 &m3&m4);

83 =(g11g2);
= gl 4" +g2 4"
return s;

//Comparator takes two four bits numbers (A&B), where A = a0ala2a3
//B=b0b1b2b3. Here, a0 and b0 are the most significant bits.

//g1, g2, and g3 represent the logical outputs of A > B, A = B, and A < B respectively.
//represent the logical operator for Not, Xor, Or, and And respectively.

(boolean a0, boolean al, boolean a2, boolean a3,
boolean b0, boolean b1, boolean b2, boolean b3) {

g1 = (a0 &!b0)| (m1&al &!bl) |(m1&m2&a2 &!b2)| (m1&m2 &m3&a3 &!b3);

+g3; /1 just to return output strings for Mujava compatibility

FIGURE 3: Equivalent class Java program for the 4-bit magnitude comparator.

weeks can test (14X24X60X60/9 = 134400) chips. Hence,
to deliver one millions tested ICs’ during these two weeks,
our strategy requires eight parallel testing lines instead of
212 testing lines (if the test depends on exhaustive testing
strategy). Now, if we consider the saving efforts factor as
the size of exhaustive test suite minus optimized test suite to
the size of exhaustive test suite, we would obtain the saving
efforts factor of 256 — 9/256 = 96.48%.

5. Comparison

In this section, we demonstrate the possible test reduction
using block partitioning approach [1, 37] for comparison
purposes. Here, the partitions could be two 4-bit numbers,
with block values =0, 0 < x < 15, =15 and 9 test cases would
give all combination coverage. In this case, we have chosen
x = 7 as a representative value. Additionally, we have also
run a series of 9 tests where x is chosen at random between
0 and 15. The results of the generated test cases and their
corresponding cumulative faults detected are tabulated in
Tables 4 and 5, respectively.

Referring to Tables 4 and 5, we observe that block
partitioning techniques have achieved the mutant score of
90%. For comparative purposes, it should be noted that our
proposed strategy achieved a mutant score of 100% with the
same number of test cases.

6. Conclusion

In this paper, we present a novel strategy for automatic
quality signing and verification technique for both hardware
and software testing. Our case study in hardware production
line demonstrated that the proposed strategy could improve

the saving efforts factor significantly. In fact, we also
demonstrate that our proposed strategy outperforms the
traditional block partitioning strategy in terms of achieving
better mutant score with the same number of test cases. As
such, we can also potentially predict benefits in terms of
the time and cost saving if the strategy is applied as part of
software testing endeavor.

Despite giving a good result (i.e., as demonstrated in
earlier sections), we foresee a number of difficulties as far as
adopting mutation testing is concerned. In general, mutation
testing does not scale well. Applying mutation testing in
large programs can result in very large numbers of mutations
making it difficult to find a good test suite to kill all the
mutants. We are addressing this issue as part of our future
work by dealing with variable strength interaction testing.

Finally, we also plan to investigate the application of our
proposed strategy for computer-aided software application
and hardware design tool.

Acknowledgments

The authors acknowledge the help of Jeff Offutt, Jeff Lei,
Raghu Kacker, Rick Kuhn, Myra B. Cohen, and Sudipto
Ghosh for providing them with useful comments and the
background materials. This research is partially funded
by the USM: Post Graduate Research Grant—T-Way Test
Data Generation Strategy Utilizing Multicore System, USM
GRID—The Development and Integration of Grid Services
& Applications, and the fundamental research grants—
“Investigating Heuristic Algorithm to Address Combina-
torial Explosion Problem” from the Ministry of Higher
Education (MOHE). The first author, Mohammed I. Younis,
is the USM fellowship recipient.

References

[1] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing
strategies: a survey,” Tech. Rep. ISETR-04-05, GMU, July 2004.

[2] M. L Younis, K. Z. Zamli, and N. A. M. Isa, “Algebraic strategy
to generate pairwise test set for prime number parameters
and variables,” in Proceedings of the International Symposium
on Information Technology (ITSim ’08), vol. 4, pp. 1662—1666,
IEEE Press, Kuala Lumpur, Malaysia, August 2008.

[3] M. 1. Younis, K. Z. Zamli, and N. A. M. Isa, “IRPS: an

efficient test data generation strategy for pairwise testing,” in

Proceedings of the 12th International Conference on Knowledge-

Based and Intelligent Information ¢ Engineering Systems (KES

’08), vol. 5177 of Lecture Notes in Computer Science, pp. 493—

500, 2008.

Jenny tool, June 2009, http://www.burtleburtle.net/bob/math/.

TVG tool, June 2009, http://sourceforge.net/projects/tvg/.

Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,

“IPOG: a general strategy for T-way software testing,” in

Proceedings of the International Symposium and Workshop on

Engineering of Computer Based Systems, pp. 549556, Tucson,

Ariz, USA, March 2007.

[7] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
“IPOG-IPOG-D: efficient test generation for multi-way com-
binatorial testing,” Software Testing Verification and Reliability,
vol. 18, no. 3, pp. 125-148, 2008.

[8] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn,
“Refining the in-parameter-order strategy for constructing
covering arrays,” Journal of Research of the National Institute of
Standards and Technology, vol. 113, no. 5, pp. 287-297, 2008.

[9] R. C. Bryce and C. J. Colbourn, “A density-based greedy
algorithm for higher strength covering arrays,” Software
Testing Verification and Reliability, vol. 19, no. 1, pp. 37-53,
2009.

[10] M. L. Younis, K. Z. Zamli, and N. A. M. Isa, “A strategy for
grid based T-Way test data generation,” in Proceedings the 1st
IEEE International Conference on Distributed Frameworks and
Application (DFmA’08), pp. 73-78, Penang, Malaysia, October
2008.

[11] R. Mandl, “Orthogonal latin squares: an application of
experiment design to compiler testing,” Communications of the
ACM, vol. 28, no. 10, pp. 1054-1058, 1985.

[12] T. Berling and P. Runeson, “Efficient evaluation of multifactor
dependent system performance using fractional factorial
design,” IEEE Transactions on Software Engineering, vol. 29, no.
9, pp. 769-781, 2003.

[13] L. Lazic and D. Velasevic, “Applying simulation and design
of experiments to the embedded software testing process,”
Software Testing Verification and Reliability, vol. 14, no. 4, pp.
257-282, 2004.

[14] L. White and H. Almezen, “Generating test cases for GUI
responsibilities using complete interaction sequences,” in Pro-
ceedings of the International Symposium on Software Reliability
Engineering (ISSRE °00), pp. 110-121, IEEE Computer Society,
San Jose, Calif, USA, 2000.

[15] A. M. Memon and M. L. Soffa, “Regression testing of GUIs,”
in Proceedings of the 9th Joint European Software Engineering
Conference (ESEC) and the 11th SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-11), pp. 118-127,
ACM, September 2003.

[16] C. Yilmaz, M. B. Cohen, and A. A. Porter, “Covering arrays
for efficient fault characterization in complex configuration
spaces,” IEEE Transactions on Software Engineering, vol. 32, no.
1, pp. 20-34, 2006.

S

N

Advances in Software Engineering

[17] M. S. Reorda, Z. Peng, and M. Violanate, Eds., System-Level
Test and Validation of Hardware/Software Systems, Advanced
Microelectronics Series, Springer, London, UK, 2005.

[18] R. Brownlie, J. Prowse, and M. S. Phadke, “Robust testing of
AT&T PMX/StarMail using OATS,” AT&T Technical Journal,
vol. 71, no. 3, pp. 41-47, 1992.

[19] S. R. Dalal, A. Jain, N. Karunanithi, et al., “Model-based test-
ing in practice,” in Proceedings of the International Conference
on Software Engineering, pp. 285-294, 1999.

[20] K.-C. Tai and Y. Lei, “A test generation strategy for pairwise
testing,” IEEE Transactions on Software Engineering, vol. 28, no.
1, pp. 109111, 2002.

[21] D. R. Wallace and D. R. Kuhn, “Failure modes in medical
device software: an analysis of 15 years of recall data,” Inter-
national Journal of Reliability, Quality, and Safety Engineering,
vol. 8, no. 4, pp. 351-371, 2001.

[22] D. R. Kuhn and M. J. Reilly, “An investigation of the
applicability of design of experiments to software testing,”
in Proceedings of the 27th NASA/IEEE Software Engineering
Workshop, pp. 91-95, IEEE Computer Society, December
2002.

[23] D. R. Kuhn, D. R. Wallace, and A. M. Gallo Jr., “Software
fault interactions and implications for software testing,” IEEE
Transactions on Software Engineering, vol. 30, no. 6, pp. 418—
421, 2004.

[24] D. R. Kuhn and V. Okun, “Pseudo-exhaustive testing for
software,” in Proceedings of the 30th Annual IEEE/NASA
Software Engineering Workshop (SEW °06), pp. 153—158, April
2006.

[25] R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial
testing: beyond pairwise,” IT Professional, vol. 10, no. 3, pp.
19-23, 2008.

[26] D. T. Tang and C. L. Chen, “Iterative exhaustive pattern
generation for logic testing,” IBM Journal of Research and
Development, vol. 28, no. 2, pp. 212-219, 1984.

[27] S. Y. Boroday, “Determining essential arguments of Boolean
functions,” in Proceedings of the International Conference on
Industrial Mathematics (ICIM 98), pp. 59-61, Taganrog,
Russia, 1998.

[28] A.K. Chandra, L. T. Kou, G. Markowsky, and S. Zaks, “On sets
of Boolean n-vectors with all k-projections surjective,” Acta
Informatica, vol. 20, no. 1, pp. 103-111, 1983.

[29] G. Seroussi and N. H. Bshouty, “Vector sets for exhaustive
testing of logic circuits,” IEEE Transactions on Information
Theory, vol. 34, no. 3, pp. 513-522, 1988.

[30] I.I. Dumer, “Asymptotically optimal codes correcting memory
defects of fixed multiplicity,” Problemy Peredachi Informatskii,
vol. 25, pp. 3-20, 1989.

[31] S. Ghosh and J. L. Kelly, “Bytecode fault injection for Java
software,” Journal of Systems and Software, vol. 81, no. 11, pp.
2034-2043, 2008.

[32] A. A. Avizienis, The Methodology of N-Version Programming,
Software Fault Tolerance, John Wiley & Sons, New York, NY,
USA, 1995.

[33] L. Chen and A. Avizienis, “N-version programming: a fault-
tolerance approach to reliability of software operation,” in
Proceedings of the 18th IEEE International Symposium on Fault-
Tolerant Computing, pp. 39, 1995.

[34] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated
class mutation system,” Software Testing Verification and
Reliability, vol. 15, no. 2, pp. 97-133, 2005.

[35] MuJava Version 3, June 2009, http://cs.gmu.edu/~offutt/
mujava/.

Advances in Software Engineering

[36] M. M. Mano, Digital Design, Prentice Hall, Upper Saddle
River, NJ, USA, 3rd edition, 2002.

[37] L. Copeland, A Practitioner’s Guide to Software Test Design,
STQE Publishing, Norwood, Mass, USA, 2004.

Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 428521, 18 pages
doi:10.1155/2010/428521

Research Article

Automated Test Case Prioritization with Reactive GRASP

Camila Loiola Brito Maia, Rafael Augusto Ferreira do Carmo, Fabricio Gomes de Freitas,
Gustavo Augusto Lima de Campos, and Jerffeson Teixeira de Souza

Optimization in Software Engineering Group (GOES.UECE), Natural and Intelligent Computing Lab (LACONI),
State University of Ceard (UECE), Avenue Paranjana 1700, Fortaleza, 60740-903 Ceard, Brazil

Correspondence should be addressed to Camila Loiola Brito Maia, camila.maia@gmail.com
Received 15 June 2009; Revised 17 September 2009; Accepted 14 October 2009
Academic Editor: Phillip Laplante

Copyright © 2010 Camila Loiola Brito Maia et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Modifications in software can affect some functionality that had been working until that point. In order to detect such a problem,
the ideal solution would be testing the whole system once again, but there may be insufficient time or resources for this approach.
An alternative solution is to order the test cases so that the most beneficial tests are executed first, in such a way only a subset of the
test cases can be executed with little lost of effectiveness. Such a technique is known as regression test case prioritization. In this
paper, we propose the use of the Reactive GRASP metaheuristic to prioritize test cases. We also compare this metaheuristic with
other search-based algorithms previously described in literature. Five programs were used in the experiments. The experimental
results demonstrated good coverage performance with some time overhead for the proposed technique. It also demonstrated a

high stability of the results generated by the proposed approach.

1. Introduction

More than often, when a system is modified, the modifica-
tions may affect some functionality that had been working
until that point in time. Due to the unpredictability of the
effects that such modifications may cause to the system’s
functionalities, it is recommended to test the system, as a
whole or partially, once again every time a modification takes
place. This is commonly known as regression testing. Its
purpose is to guarantee that the software modifications have
not affected the functions that were working previously.

A test case is a set of tests performed in a sequence and
related to a test objective [1], and a test suite is a set of
test cases that will execute sequentially. There are basically
two ways to perform regression tests. The first one is by
reexecuting all test cases in order to test the entire system
once again. Unfortunately, and usually, there may not be
sufficient resources to allow the reexecution of all test cases
every time a modification is introduced. Another way to
perform regression test is to order the test cases in respect to
their beneficial factor to some attribute, such as coverage, and
reexecute the test cases according to that ordering. In doing
this, the most beneficial test cases would be executed first,

in such a way only a subset of the test cases can be executed
with little lost of effectiveness. Such a technique is known as
regression test case prioritization. When the time required
to reexecute an entire test suite is sufficiently long, test case
prioritization may be beneficial because meeting testing goals
earlier can yield meaningful benefits [2].

According to Myers [3], since exhaustive testing is out of
question, the objective should be to maximize the yield on
the testing investment by maximizing the number of errors
found by a finite number of test cases. As Fewster stated
in [1], software testing needs to be effective at finding any
defects which are there, but it should also be efficient by
performing the tests as quickly and cheaply as possible.

The regression test case prioritization problem is closely
related to the regression test case selection problem. The
Regression Test Case Selection problem can be directly
modeled as a set covering problem, which is a well-known
NP-Hard problem [4]. This fact points to the complexity of
the Test Case Prioritization problem.

To order the test cases, it is necessary to consider a
base comparison measure. A straightforward measure to
evaluate a test case would be based on APFD (Average of
the Percentage of Faults Detected). Higher APFD numbers

mean faster fault detection rates [5]. However, it is not
possible to know the faults exposed by a test case in advance,
so this value cannot be estimated before testing has taken
place. Therefore, the research on test case prioritization
concentrates on coverage measures. The following coverage
criteria have been commonly used, APBC (Average Percent-
age Block Coverage), which measures the rate at which a
prioritized test suite covers the blocks of the code, APDC
(Average Percentage Decision Coverage), which measures
the rate at which a prioritized test suite covers the decision
statements in the code, and APSC (Average Percentage
Statement Coverage), which measures the rate at which a
prioritized test suite covers the statements. In this work, these
three coverage measures will be considered.

As an example, consider a test suite T containing n test
cases that covers a set B of m blocks. Let TB; be the first test
case in the order T" of T that covers block i. The APBC for
ordering T" is given by the following equation (equivalent
for the APDC and APSC metrics) [6]:

TB,+ TB, + ---+TBer 1
nm 2n’

APBC =1 — (1)

Greedy algorithms have been employed in many
researches regarding test case prioritization, in order to find
an optimal ordering [2]. Such Greedy algorithms perform by
iteratively adding a single test case to a partially constructed
test suite if this test case covers, as much as possible, some
piece of code not covered yet. Despite the wide use, as
pointed out by Rothermel [2] and Li et al. [6], Greedy
algorithms may not choose the optimal test case ordering.
This fact justifies the application of global approaches, that
is, approaches which consider the evaluation of the ordering
as a whole, not individually to each test case. In that context,
metaheuristics have become the focus in this field. In this
work, we have tested Reactive GRASP, not yet used for test
case prioritization.

Metaheuristic search techniques are algorithms that may
find optimal or near optimal solutions to optimization
problems [7]. In the context of software engineering, a
new research field has emerged by the application of
search techniques, especially metaheuristics, to well-known
complex software engineering problems. This new field has
been named SBSE (Search-Based Software Engineering). In
this field, the software engineering problems are modeled as
optimization problems, with the definitions of an objective
function—or a set of functions—and a set of constraints.
The solutions to the problems are found by the application
of search techniques.

The application of genetic algorithms, an evolutionary
metaheuristic, has been shown to be effective for regression
test case prioritization [8, 9]. We examine in this paper the
application of another well-known metaheuristic, GRASP,
not applied yet neither to the regression test case selection
problem nor to any other search-based software engineering
problem. The GRASP metaheuristic was considered due to
its good performance reported by several studies in solving
complex optimization problems.

The remaining of this paper is organized as follows:
Section 2 describes works related to the regression test

Advances in Software Engineering

case prioritization problem and introduces some algorithms
which have been applied to this problem. These algorithms
will be employed in the evaluation of our approach later
on the paper. Section 3 describes the GRASP metaheuristic
and the proposed algorithm using Reactive GRASP. Section 4
presents the details of the experiments, and Section 5 reports
the conclusions of this research and states future works.

2. Related Work

This section reports the use of search-based prioritization
approaches and metaheuristics. Some algorithms imple-
mented in [6] by Li et al. which will have their performance
compared to that of the approach proposed later on this
paper will also be described.

2.1. Search-Based Prioritization Approaches. The works bel-
ow employed search-based prioritization approaches, such as
greedy- and metaheuristic-based solutions.

Elbaum et al. [10] analyze several prioritization tech-
niques and provide responses to which technique is more
suitable for specific test scenarios and their conditions.
The metric APFD is calculated through a greedy heuristic.
Rothermel et al. [2] describe a technique that incorporates
a Greedy algorithm called Optimal Prioritization, which
considers the known faults of the program, and the test cases
are ordered using the fault detection rates. Walcott et al. [8]
propose a test case prioritization technique with a genetic
algorithm which reorders test suites based on testing time
constraints and code coverage. This technique significantly
outperformed other prioritization techniques described in
the paper, improving in, on average, 120% the APFD over
the others.

Yoo and Harman [9] describe a Pareto approach to
prioritize test case suites based on multiple objectives, such
as code coverage, execution cost, and fault-detection history.
The objective is to find an array of decision variables
(test case ordering) that maximize an array of objective
functions. Three algorithms were compared: a reformulation
of a Greedy algorithm (Additional Greedy algorithm), Non-
Dominating Sorting Genetic Algorithm (NSGA-II) [11], and
avariant of NSGA-II, vNSGA-II. For two objective functions,
a genetic algorithm outperformed the Additional Greedy
algorithm, but for some programs the Additional Greedy
algorithm produced the best results. For three objective
functions, Additional Greedy algorithm had reasonable
performance.

Li et al. [6] compare five algorithms: Greedy algorithm,
which adds test cases that achieve the maximum value for the
coverage criteria, Additional Greedy algorithm, which adds
test cases that achieve the maximum coverage not already
consumed by a partial solution, 2-Optimal algorithm, which
selects two test cases that consume the maximum coverage
together, Hill Climbing, which performs local search in
a defined neighborhood, and genetic algorithm, which
generates new test cases based on previous ones. The authors
separated test suites in 1,000 small suites of size 8-155 and
1,000 large suites of size 228-4,350. Six C programs were used

Advances in Software Engineering

in the experience, ranging from 374 to 11,148 LoC (lines of
code). The coverage metrics studied in that work were APBC,
APDC, and APSC, as described earlier. For each program, the
block, decision, and statement coverage data were found by
tailor-made version of a commercial tool, Cantata++. The
coverage data were obtained over 500 executions for each
search algorithm, using a different suite for each execution.
For small programs, the performance was almost identical
for all algorithms and coverage criteria, considering both
small and large test suites. The Greedy algorithm performed
the worst and the genetic algorithm and Additional Greedy
algorithm produced the best results.

2.2. Algorithms. This section describes some algorithms
which have been used frequently in literature to deal with the
test case prioritization problem. The performance of them
will be compared to that of the approach proposed later on
this paper.

2.2.1. Greedy Algorithm. The Greedy Algorithm performs in
the following way: all candidate test cases are ordered by their
coverage. Then, the test case with the highest percentage of
coverage is then added to an initially empty solution. Next,
the test case with the second highest percentage is added, and
so on, until all test cases have been added.

For example, let APBC be the coverage criterion, and
let a partial solution contain two test cases that cover 100
blocks of code. Suppose there are two other test cases that
can be added to the solution. The first one covers 80 blocks,
but 50 of these were already covered by the current solution.
Then, this solution covers 80% of the blocks, but the actual
added coverage of this test case is of 30% of coverage (30
blocks). The second test case covers 40 blocks of code, but
none of these blocks was covered by the current solution.
This means that this solution covers 40% of the blocks. The
Greedy algorithm would select the first test case, because it
has greater percentage of block coverage overall.

2.2.2. Additional Greedy Algorithm. The Additional Greedy
algorithm adds a locally optimal test case to a partial test
suite. Starting from an empty solution, the algorithm follows
these steps: for each iteration, the algorithm adds the test case
which gives the major coverage gain to the partial solution.

Let us use the same example from Section 2.2.1. Let a
partial solution contain two test cases that cover 100 blocks of
code. There are two remaining test cases: the first one covers
80 blocks, but 50 of these were already covered; the second
one covers 40 blocks of code, none of these already covered.
The first solution represents an actual 30% of coverage and
the second one represents 40% of coverage. The Additional
Greedy algorithm would select the second test case, because
that solution has greater coverage factor related to the current
partial solution.

2.2.3. Genetic Algorithm. Genetic algorithm is a type of Evo-
lutionary Algorithm which has been employed extensively
to solve optimization problems [12]. In this algorithm, an
initial population of solutions—in our case a set of test

suites—is randomly generated. The procedure then works,
until a stopping criterion is reached, as new populations are
generated based on the previous one [13]. The evolution
from one population to the next one is performed via
“genetic operators”, including operations of selection, that
is, the biased choice of which individuals of the current
population will reproduce to generate individuals for the new
population. This selection prioritizes individuals with high
fitness value, which represents how good this solution is.
The other two genetic operators are crossover, that is, the
combination of individuals to produce the offspring, and
mutation, which randomly changes a particular individual.

In the genetic algorithm proposed by Li et al. [6],
the initial population is produced by selecting test cases
randomly from the test case pool. The fitness function is
based on the test case position in the current test suite. The
fitness value was calculated as follows:

(pos—1)

T @

fitness(pos) = 2 -
where pos is the test case’s position in the current test suite
and n is the population size.

The crossover algorithm follows the ordering chromo-
some crossover style adopted by Antoniol [14] and used in
[6] by Li et al. for the genetic algorithm in the experiments.
It works as follows. Let p; and p, be the parents, and let
01 and o, be the offspring. A random position k is selected,
and the first k elements of p; become the first k elements of
01, and the last n — k elements of 0; are the n — k elements
of p, which remain when the k elements selected from p,
are removed from p,. In the same way, the first k elements
of p, become the first k elements of 0,, and the last n — k
elements of 0, are the n—k elements of p; which remain when
the k elements selected from p, are removed from p;. The
mutation is performed by randomly exchanging the position
of two test cases.

2.2.4. Simulated Annealing. Simulated annealing is a gener-
alization of a Monte Carlo method. Its name comes from
annealing in metallurgy, where a melt, initially disordered
at high temperature, is slowly cooled, with the purpose
of obtaining a more organized system (a local optimum
solution). The system approaches a frozen ground state
with T = 0. Each step of simulated annealing algorithm
replaces the current solution by a random solution in its
neighborhood, based on a probability that depends on the
energies of the two solutions.

3. Reactive GRASP for Test Case Prioritization

This section is intended to present a novel approach
for test case prioritization based on the Reactive GRASP
metaheuristic.

3.1. The Reactive GRASP Metaheuristic. Metaheuristics are
general search algorithms that find a good solution, some-
times optimal, to optimization problems. In this section we
present, in a general fashion, the metaheuristic which will be

Construction phase <

<

Advances in Software Engineering

6 o

-~

Local search phase

Best solution

~~

FIGURE 1: GRASP’s phases.

employed to prioritize test cases by the approach proposed
later on this paper.

GRASP (Greedy Randomized Adaptative Search Proce-
dures) is a metaheuristic with two phases: construction and
local search [15]. This metaheuristic is defined as a multistart
algorithm, since the procedure is executed multiple times in
order to get the best solution found overall; see Figure 1.

In the construction phase, a feasible solution is built by
applying some Greedy algorithm. The greedy strategy used in
GRASP is to add to an initially empty solution one element
at a time. This algorithm tends to find a local optimum.
Therefore, in order to avoid this local best, GRASP uses
a randomization greedy strategy as follows. The Restrict
Candidate List (RCL) stores the possible elements which
can be added at each step in this construction phase. The
element to be added is picked randomly from this list. RCL
is associated with a parameter named «, which limits the
length of the RCL. If « = 0, only the best element—with
highest coverage—will be present in the RCL, making the
construction process a pure Greedy algorithm. Otherwise, if
a = 1, the construction phase will be completely random,
because all possible elements will be in RCL. The parameter
a should be set to calibrate how random and greedy the
construction process will be. The found solution is then used
in the local search phase.

In the local search phase, the aim is to find the best
solution in the current solution neighborhood. Indeed, a
local search is executed in order to replace the current
solution by the local optimum in its neighborhood. After
this process, this local optimum is compared with the best
local optimum solution found in earlier iterations. If the local
optimum just found is better, then this is set to be the best
solution already found. Otherwise, there is no replacement.

As can be easily seen, the performance of the GRASP
algorithm will strongly depend on the choice of the
parameter a. In order to decrease this influence, a GRASP

variation named Reactive GRASP [15, 16] has been pro-
posed. This approach performs GRASP while varying the
values of a according to their previous performance. In
practice, Reactive GRASP will initially determine a set of
possible values for a. Each value will have a probability of
being selected in each iteration.

Initially, all « probabilities are assigned to 1/n, where n
is the quantity of a. For each one of the i values of «, the
probabilities p; are reevaluated for each iteration, according
to the following equation:

1 (3)

b= Z;'l:l qj’

with g; = $*/A;, where S* is the incumbent solution and A; is
the average value of all solutions found with &« = a;. This way,
when a particular « generates a good solution, its probability,
given by p;, of being selected in the future is increased. On
the other hand, if a bad solution is created, the « value used
in the process will have its selection probability decreased.

3.2. The Reactive GRASP Algorithm. The pseudocode below,
in Algorithm 1, describes the Reactive GRASP algorithm.

The first step initializes the probabilities associated with
the choice of each « (line 1).

Initially, all probabilities are assigned to 1/n, where # is
the length of « Set, the set of a values. Next, the GRASP
algorithm runs the construction and local search phases, as
described next, until the stopping criterion is reached. For
each iteration, the best solution is updated when the new
solution is better.

For each iteration, « is selected as follows; see
Algorithm 2. Let §* be the incumbent solution, and let A; be
the coverage average value of all solutions found with & = «;,
where i = 1,...,m, and m is the number of test cases. As

Advances in Software Engineering

(1) initialize probabilities associated
with « (all equal to %)

(2) for k = 1 to max_iterations do

(3) a < select_a (aSet);

(4) solution — run_construction_phase(«a);

(5) solution — run_local_search_phase(solution);
(6) update_solution(solution, best solution);

(7) end;

(8) return best_solution;

AvrLcoriTHM 1: Reactive GRASP for Test Case Prioritization.

procedure select_a(aSet)
qi
Z;n:l qj

(1) & — a with probability p; =

(2) return «

ALGORITHM 2: Selection of a.

described in Section 3.1, the probabilities p; are reevaluated
at each iteration by taking

qi
i = <m (4)
4 2.i-14]

The pseudocode in Algorithm 3 details the construction
phase. For each iteration, one test case which increases the
coverage of the current solution (set of test cases) is selected
by a greedy evaluation function. This element is randomly
selected from the RCL (Restricted Candidate List), which has
the best elements, that is, the best coverage values. After the
element is incorporated to the partial solution, the RCL is
updated. The increment of coverage is then reevaluated.

The «a Set is updated after the solution is found, in order
to change the selection probabilities of the a Set elements.
This update is detailed in Algorithm 4.

After the construction phase, a local search phase is
executed in order to improve the generated solution. This
phase is important to avoid the problems mentioned by
Rothermel [2] and Li et al. [6], where Greedy algorithms may
fail to choose the optimal test case ordering. The pseudocode
for the local search is described in Algorithm 5.

Let s be the test suite generated by the construction phase.
The local search is performed as follows: the first test case on
the test suite is exchanged with the other test cases, one at a
time, that is, n — 1 new test suites are generated, exchanging
the first test case with the ith one, where 7 varies from 2 to #,
and n is the length of the original test suite. The original test
suite is then compared with all generated test suites. If one
of those test suites is better—in terms of coverage—than the
original one, it replaces the original solution. This strategy
was chosen because, even with very little computational
effort, any exchange with the first test case can generate a
very significant difference in coverage. In addition, it would
be prohibitive to test all possible exchanges, since it would
generate n® new test suites, instead of n — 1, in which most of

(1) solution— &
(2) initialize the candidate set C with random

test cases from the pool of test cases;
(3) evaluate the coverage ¢’ (e) foralle € C;
(4) while C# @ do
(5) ¢ = min{c'(e) | e € C};
(6) ¢ = max{c’(e) | e € C};
(7) RCL={ee C|c(e) < cmn

+ a(cmax _ Cmin)};

(8) s — test case from the RCL at random;
9) solution —solution U{s};
(10) update C;
(11) reevaluate ¢'(e) for all e € C;
(12) end;
(13) update_aSet(solution);
(14) return solution;

ALGORITHM 3: Reactive GRASP for Test Case Prioritization, Con-
struction Phase.

procedure update_aSet (solution)
(1) update probabilities of all @ in aSet, using
4
b Z;'”:I qj

ArcoriTaM 4: Update of .

(1) while s not locally optimal do

(2) Finds" e Neighbour (s) with f(s") < f(s);
(3) s—5s;

(4) end;

(5) returns;

ALGORrITHM 5: Reactive GRASP for Test Case Prioritization, Local
Search Phase.

them would exchange the last elements, with no significant
difference in coverage.

4. Empirical Evaluation

In order to evaluate the performance of the proposed
approach, a series of empirical tests was executed. More
specifically, the experiments were designed to answer the
following question.

(1) How does the Reactive GRASP approach compare—
in terms of coverage and time performances—
to other search-based algorithms, including Greedy
algorithm, Additional Greedy algorithm, genetic
algorithm, and Simulated Annealing?

In addition to this result, the experiments can confirm
results previously described in literature, including the
performance of the Greedy algorithm.

6
TABLE 1: Programs used in the Evaluation.

Program LoC Blocks ~ Decisions Test Pool Size
Print_tokens 726 126 123 4,130
Print_tokens2 570 103 154 4,115
Schedule 412 46 56 2,650
Schedule2 374 53 74 2,710
Space 9,564 869 1,068 13,585

4.1. Experimental Design. Four small programs (print_
tokens, print_tokens2, schedule, and schedule2) and a larger
program (space) were used in the tests. These programs were
assembled by researchers at Siemens Corporate Research [17]
and are the same Siemens’ programs used in Li et al. [6]
for the experiments regarding test case prioritization. Table 1
describes the five programs’ characteristics.

Besides Reactive GRASP, other search algorithms have
also been implemented, in order to compare their effec-
tiveness. They are Greedy algorithm, Additional Greedy
algorithm, genetic algorithm, and simulated annealing.
These algorithms were implemented exactly as described
in Section 3 of this paper. For the genetic algorithm, as
presented by Li et al. [6], the population size was set
at 50 individuals and the algorithm was terminated after
100 generations. Stochastic universal sampling was used
in selection and mutation, the crossover probability (per
individual) was set to 0.8, and the mutation probability
was set to 0.1. For the Reactive GRASP approach, the
maximum number of iterations was set, by preliminary
experimentation, to 300.

For the simulated annealing approach, the initial temper-
ature was set to a random number between 20 and 99. For
each iteration, the new temperature is given by the following
steps:

(1) dividend = actualTemperature + initial Temperature,
(2) divisor = 1+ log,,1,
dividend
(3) new temperature = ————.
divisor

In the experiments, we considered the three coverage
criteria described earlier (APBC, APDC, and APSBC). In
addition, we considered different percentages of the pool of
test cases. For example, if the percentage is 5%, 5% of test
cases are randomly chosen from the pool to compare the
performance of the algorithms. We tested with 1%, 2%, 3%,
5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and
100% for the four small programs and 1%, 5%, 10%, 20%,
30%, 40%, and 50% for space. Each algorithm was executed
10 times for the four small programs and 1 time for the space
program, for each coverage criterion and each percentage.

The pools of test cases used in the experiments were col-
lected from SEBASE [18]. The test cases used are composed
of “0”s and “17s, where “0” represents “code not covered”
and “1” represents “code covered”. The length of a test case is
the quantity of portions of code of the program. For example,
when we are analyzing the decision coverage, the length of
the test cases is the quantity of decisions on the program. In

Advances in Software Engineering

the APDC, a “0” for the first decision means that the first
decision is not covered by the test suite and a “1” for the
second decision means that the second decision is covered
by the test suite, and so on.

All experiments were performed on Ubuntu Linux
workstations with kernel 2.6.22-14, a Core Duo processor,
and 1GB of main memory. The programs used in the
experiment were implemented using the Java programing
language.

4.2. Results. The results are presented in Tables 2, 3, 4,
5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, and 18 and
Figures 2 to 17, separating the four small programs from
the space program. Tables 2, 3, 4, and 5 detail the average
of 10 executions of the coverage percentage achieved for
each coverage criterion and each algorithm for printtokens,
printtokens2, schedule, and schedule2, respectively. Table 12
has this information regarding the space program. The TSSp
column is the percentage of test cases selected from the test
case pool. The mean differences on time execution in seconds
are also presented in Tables 6 and 16, for small programs and
space, respectively.

Tables 7 and 14 show the weighted average for the metrics
(APBC, APDC, and APSC) for each algorithm. Figures 2 to
17 demonstrate a comparison among the algorithms for the
metrics APBC, APDC, and APSC, for the small programs and
space program.

4.3. Analysis. Analyzing the results obtained from the exper-
iments, which are detailed in Tables 2, 3, 4, 5, and 9 and
summarized in Tables 6 and 13, several relevant results
can be pointed out. First, the Additional Greedy algorithm
had the best performance in effectiveness of all tests. It
performed significantly better than the Greedy algorithm,
the genetic algorithm, and simulated annealing, both for the
four small programs and for the space program. The good
performance of the Additional Greedy algorithm had already
been demonstrated in several works, including Li et al. [6]
and Yoo and Harman [9].

4.3.1. Analysis for the Four Small Programs. The Reactive
GRASP algorithm had the second best performance. This
approach also significantly outperformed the Greedy algo-
rithm, the genetic algorithm, and simulated annealing, con-
sidering the coverage results. When compared to the Addi-
tional Greedy algorithm, there were no significant differences
in terms of coverage. Comparing the metaheuristic-based
approaches, the better performance obtained by the Reactive
GRASP algorithm over genetic algorithm and simulated
annealing was clear.

In 168 experiments, the genetic algorithm generated a
better coverage only once (block criterion, the schedule
program, and 100% of tests being considered). The two
algorithms tied also once. For all other tests, the Reactive
GRASP outperformed the genetic algorithm. The genetic
algorithm approach performed the fourth best in our
evaluation. In Li et al. [6], the genetic algorithm was also
worse than the Additional Greedy algorithm. The results

Advances in Software Engineering 7
TaBLE 2: Results of Coverage Criteria (Average of 10 Executions), Program Print-tokens.
Block Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.6591 98.235 96.6893 96.1242 97.808
2% 98.3209 99.2101 98.3954 98.3113 99.0552
3% 98.6763 99.5519 98.5483 98.5553 99.3612
5% 98.5054 99.6909 98.8988 98.9896 99.5046
10% 98.2116 99.8527 99.2378 99.3898 99.7659
20% 98.266 99.9317 99.2378 99.6414 99.8793
30% 98.3855 99.9568 99.6603 99.6879 99.9204
40% 98.3948 99.9675 99.7829 99.736 99.9457
50% 98.4064 99.9747 99.8321 99.8213 99.9627
60% 98.4097 99.979 99.8666 99.8473 99.9622
70% 98.4133 99.9818 99.8538 99.8698 99.9724
80% 98.4145 99.9841 99.8803 99.8657 99.9768
90% 98.4169 99.9859 99.9013 99.8958 99.9783
100% 98.418 99.9873 99.9001 99.8895 99.9775
Decision Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.7692 98.3836 96.9125 95.9213 98.1204
2% 98.0184 99.1429 97.9792 98.2299 98.8529
3% 98.5569 99.4499 98.3785 98.0762 99.2886
5% 98.4898 99.6971 98.7105 98.7513 99.4631
10% 98.1375 99.8462 98.8659 99.1759 99.697
20% 98.2486 99.928 99.3886 99.5111 99.8668
30% 98.3131 99.952 99.587 99.6955 99.9061
40% 98.3388 98.3388 99.7137 99.7505 99.9237
50% 98.3437 99.9712 99.7305 99.78 99.9386
60% 98.358 99.9766 99.817 99.8235 99.959
70% 98.3633 99.9799 99.8109 99.7979 99.9543
80% 98.3651 99.9821 99.8631 99.8447 99.9663
90% 98.4169 99.9859 99.9013 99.8541 99.9783
100% 98.418 99.9873 99.9001 99.869 99.9775
Statement Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.2989 98.3561 97.0141 97.251 98.0439
2% 97.7834 99.2557 98.0175 98.576 98.9675
3% 98.0255 99.4632 98.5163 98.5633 99.2356
5% 97.8912 99.6826 98.5167 99.0268 99.4431
10% 97.8137 99.8534 99.1497 99.3131 99.681
20% 98.0009 99.9264 99.5024 99.5551 99.8554
30% 98.0551 99.954 99.6815 99.7151 99.9079
40% 98.0661 99.9656 99.7342 99.7677 99.9296
50% 98.0705 99.9724 99.8123 99.8108 99.9464
60% 98.0756 99.9773 99.8348 99.8456 99.9598
70% 98.0887 99.9805 99.8641 99.8633 99.9704
80% 98.088 99.9831 99.89 99.8649 99.9682
90% 98.0924 99.985 99.9026 99.8819 99.9709
100% 98.0943 99.9865 99.8998 99.8897 99.977

8 Advances in Software Engineering

TaBLE 3: Results of Coverage Criteria (Average of 10 Executions), Program Print-tokens2.

Block Coverage%

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.233 98.3518 97.6629 98.042 98.1576
2% 98.3869 99.2665 98.6723 98.8302 99.208
3% 97.9525 99.5122 98.8576 99.1817 99.3274
5% 98.1407 99.711 99.2379 99.3382 99.5932
10% 98.131 99.8564 99.5558 99.6731 99.7994
20% 98.01 99.9293 99.7894 99.8015 99.8689
30% 98.0309 99.9535 99.8269 99.839 99.9239
40% 98.0462 99.9656 99.8602 99.8957 99.9495
50% 98.0569 99.9727 99.9166 99.9106 99.9653
60% 98.0589 99.977 99.9165 99.9269 99.9689
70% 98.0611 99.9805 99.9264 99.9236 99.9756
80% 98.0632 99.9828 99.9383 99.9261 99.9778
90% 98.0663 99.9849 99.9543 99.9385 99.9796
100% 98.0671 99.9864 99.9562 99.9434 99.9811
Decision Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.05 98.3055 97.2108 97.6375 98.0859
2% 98.6637 99.2489 98.4368 98.5244 99.0987
3% 98.5798 99.5496 98.8814 99.0411 99.4344
5% 98.5903 99.7371 99.3676 99.2289 99.6772
10% 98.5673 99.8628 99.5183 99.6528 99.8118
20% 98.6351 99.9353 99.7939 99.8084 99.913
30% 98.6747 99.9593 99.8615 99.8405 99.9482
40% 98.6837 99.9692 99.8836 99.8802 99.9556
50% 96.1134 99.9552 99.8269 99.8992 99.9318
60% 98.6948 99.9795 99.9181 99.9109 99.9751
70% 98.6964 99.9826 99.9358 99.9302 99.9768
80% 98.6985 99.9848 99.9478 99.931 99.9788
90% 98.0663 99.9849 99.9543 99.9409 99.9796
100% 98.0671 99.9864 99.9562 99.9424 99.9811
Statement Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.4458 98.3742 97.8234 97.453 98.2804
2% 98.7611 99.2552 98.755 98.5444 99.0653
3% 98.3634 99.4745 98.9385 98.9165 99.3279
5% 97.8694 99.6856 99.1507 99.3858 99.5327
10% 98.0271 99.8494 99.5268 99.6258 99.7906
20% 98.1264 99.927 99.7455 99.7283 99.9086
30% 97.9467 99.9518 99.8533 99.8297 99.9328
40% 97.9653 99.9645 99.8833 99.864 99.9564
50% 97.9762 99.9717 99.9126 99.8891 99.9584
60% 97.9792 99.9768 99.9162 99.905 99.9644
70% 97.9851 99.9803 99.9265 99.9156 99.9708
80% 97.9854 99.9827 99.9399 99.9187 99.9759
90% 97.9877 99.9847 99.9399 99.9288 99.9789

100% 97.9894 99.9863 99.9477 99.9262 99.9791

Advances in Software Engineering 9
TaBLE 4: Results of Coverage Criteria (Average of 10 Executions), Program Schedule.
Block Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.6505 98.2286 98.2286 97.9387 98.2286
2% 96.5053 99.0237 98.9499 98.8596 99.0073
3% 96.451 99.3315 99.2336 99.1955 99.2445
5% 95.6489 99.5652 99.2481 99.4066 99.3233
10% 95.2551 99.767 99.5586 99.6455 99.7013
20% 95.9548 99.8884 99.7604 99.7497 99.8589
30% 95.8225 99.9224 99.8219 99.8442 99.8918
40% 96.0783 99.9429 99.8995 99.8982 99.9163
50% 96.3159 99.9553 99.9051 99.899 99.9396
60% 96.9283 99.9644 99.918 99.9156 99.9546
70% 97.0744 99.9695 99.9235 99.9322 99.9643
80% 97.0955 99.9733 99.9464 99.9411 99.9649
90% 97.1171 99.9763 99.9474 99.946 99.9704
100% 97.0495 99.9786 99.9573 99.9454 99.7013
Decision Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.3492 98.2671 98.0952 98.0092 98.2407
2% 95.9838 99.0566 98.7129 98.7364 98.9218
3% 95.933 99.3303 98.9107 98.9575 99.2589
5% 95.1047 99.5327 98.6224 99.0856 99.2427
10% 94.8611 99.7668 99.2237 99.3422 99.6159
20% 94.75 99.8739 99.4858 99.6266 99.7749
30% 95.3616 99.9241 99.7047 99.7181 99.8757
40% 95.3396 99.9413 99.7944 99.7871 99.9144
50% 96.1134 99.9552 99.8269 99.8515 99.9318
60% 96.3241 99.9627 99.852 99.8541 99.9416
70% 96.5465 99.968 99.8673 99.8927 99.9586
80% 96.9312 99.9722 99.88 99.8868 99.9553
90% 97.1171 99.9763 99.9474 99.9077 99.9704
100% 97.0495 99.9786 99.9573 99.9118 99.9701
Statement Coverage %
TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 96.747 98.1768 98.0792 98.1911 98.1596
2% 97.0323 99.039 98.8108 98.8664 99.0273
3% 96.937 99.3284 99.1366 99.1927 99.2257
5% 96.3181 99.5751 99.2731 99.4252 99.4398
10% 96.1091 99.782 99.452 99.6635 99.6428
20% 96.9909 99.8945 99.7965 99.8168 99.8693
30% 97.2931 99.9307 99.8703 99.8683 99.9112
40% 97.0724 99.9471 99.9003 99.8983 99.9358
50% 97.4288 99.9584 99.9214 99.9146 99.9445
60% 97.4015 99.9653 99.932 99.9281 99.9594
70% 97.6458 99.9707 99.9374 99.931 99.9653
80% 97.8832 99.9748 99.9399 99.9273 99.9722
90% 97.8907 99.9777 99.9496 99.9471 99.9653
100% 97.8901 99.9799 99.9627 99.9494 99.978

10 Advances in Software Engineering

TaBLE 5: Results of Coverage Criteria (Average of 10 Executions), Program Schedule2.

Block Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.2708 98.1199 98.066 98.167 98.1064
2% 98.2538 99.0566 98.9605 99.0325 99.036
3% 98.6447 99.3764 99.3304 99.3464 99.3534
5% 99.4678 99.6184 99.5851 99.5879 99.6184
10% 98.2116 99.8527 99.2378 99.7869 99.7659
20% 99.9056 99.907 99.8952 99.893 99.907
30% 99.9385 99.9385 99.9348 99.9267 99.9385
40% 99.9538 99.9538 99.9476 99.9418 99.9538
50% 99.963 99.963 99.9586 99.9535 99.963
60% 99.9692 99.9692 99.9676 99.9612 99.9692
70% 99.9736 99.9736 99.9702 99.9584 99.9736
80% 99.9769 99.9769 99.972 99.9641 99.9769
90% 99.9794 99.9794 99.9779 99.9735 99.9794
100% 99.9815 99.9815 99.9796 99.9701 99.9815
Decision Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 95.6563 98.3687 97.9922 98.1129 98.3301
2% 96.1375 98.9533 98.2113 98.5404 98.8501
3% 95.5965 99.3111 98.4344 98.9122 99.0936
5% 97.6887 99.6164 99.058 99.2189 99.4773
10% 97.1277 99.7985 99.4385 99.4873 99.7057
20% 97.2249 99.9027 99.7033 99.7575 99.8713
30% 97.2647 99.9352 99.8177 99.8224 99.9126
40% 97.2726 99.9513 99.8145 99.8673 99.9144
50% 97.2823 99.9712 99.8745 99.8907 99.9411
60% 97.2869 99.9676 99.8827 99.9143 99.9584
70% 97.2981 99.9722 99.915 99.9013 99.9595
80% 97.3005 99.9756 99.9311 99.915 99.9695
90% 99.9794 99.9794 99.9779 99.9304 99.9794
100% 99.9815 99.9815 99.9796 99.9297 99.9815
Statement Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
1% 97.7116 98.2883 98.1984 98.0316 98.2777
2% 97.4612 99.1097 98.9346 98.6235 99.0208
3% 97.1499 99.336 98.9259 99.0397 99.1481
5% 97.7227 99.6029 99.3066 99.428 99.5114
10% 98.3422 99.8072 99.6104 99.6295 99.734
20% 98.4317 99.9014 99.7765 99.7866 99.8815
30% 98.474 99.9363 99.8543 99.8455 99.9074
40% 98.4861 99.9525 99.8892 99.8833 99.9441
50% 98.4988 99.962 99.9159 99.9055 99.9568
60% 98.5041 99.9683 99.9251 99.9123 99.9626
70% 98.5109 99.9728 99.9345 99.9278 99.9663
80% 98.512 99.9762 99.9429 99.9291 99.9725
90% 98.5166 99.9788 99.9549 99.9463 99.9757

100% 98.521 99.981 99.9583 99.9453 99.9783

Advances in Software Engineering

TasLE 6: Coverage Significance and Time Mean Difference, Small Programs.

11

Mean Coverage Difference (%)

Coverage Difference

Time Mean Difference

Algorithm (x) Algorithm (y)
§ § y (x — y) Significance (¢-test) (s) (x — y)
Additional Greedy Algorithm —1.9041 0.0000 —1.4908
Greedy Algorithm G'enetlc Algorlthrr} —1.8223 0.0000 —8.4361
Simulated Annealing —1.8250 0.0000 —-0.0634
Reactive GRASP —1.8938 0.0000 —100.0312
Additional Greedy Greedy Algorithm 1.9041 0.0000 1.4908
Algorithm Genetic Algorithm 0.0818 0.0000 —6.9452
Simulated Annealing 0.0790 0.0000 1.4274
Reactive GRASP 0.0103 0.1876 —98.5403
Greedy Algorithm 1.8223 0.0000 8.4361
Genetic Algorithm A.ddltlonal Greed}f Algorithm —-0.0818 0.0000 6.9452
Simulated Annealing —-0.0026 0.4918 8.3727
Reactive GRASP —0.0715 0.0000 —91.5951
Greedy Algorithm 1.8250 0.0000 0.0634
Simulated Annealing Addltl.onal Grf.eedy Algorithm —-0.0790 0.0000 —1.4274
Genetic Algorithm 0.0026 0.4918 —-8.3727
Reactive GRASP —0.0688 0.0000 —99.9679
Greedy Algorithm 1.8938 0.0000 100.0312
Reactive GRASP Additional Greedy Algorithm —-0.0103 0.1876 98.5403
Genetic Algorithm 0.0715 0.0000 91.5951
Simulated Annealing 0.0688 0.0000 99.9679
TABLE 7: Weighted Average for the Metrics, Small Programs.
Coverage Criterion Greedy Algorithm Additional Greedy Algorithm Genetic Algorithm Simulated Annealing Reactive GRASP
Block Coverage 98.2858 99.9578 99.8825 99.8863 99.9335
Decision Coverage 97.8119 99.9276 99.8406 99.8417 99.9368
Statement Coverage 98.0328 99.9573 99.8743 99.8706 99.9417
TaBLE 8: Difference in Performance between the Best and Worst Criteria, Small Programs.
Greedy Algorithm Addltlona.I Greedy Genetic Algorithm Simulated Annealing Reactive GRASP
Algorithm
Difference in performance . 0.4739 0.0302 0.0419 0.0446 0.0082
between the best and worst criteria
TABLE 9: Average for Each Algorithm (All Metrics), Small Programs.
Greedy Algorithm Additional Greedy Algorithm Genetic Algorithm Simulated Annealing ~ Reactive GRASP
Final Average 98.0435 99.9476 99.8658 99.8662 99.9373
TasLE 10: Standard Deviation of the Effectiveness for the Four Algorithms, Small Programs.
Greedy Algorithm Additional Greedy Algorithm Genetic Algorithm Simulated Annealing Reactive GRASP
Standard Deviation 0.002371 0.000172 0.000222 0.000226 0.000041

TaBLE 11: Summary of Results, Small Programs.

Algorithm Coverage Performance Execution Time Observations

Greedy Algorithm The worst performance Fast

Additional Greedy Algorithm Best performance of all Fast

Genetic Algorithm Fourth best performance Medium It generated a better coverage only once.

Simulated Annealing Third best performance Fast No significant difference to genetic algorithm.

Reactive GRASP Second best performance Slow No significant difference to Additional Greedy Algorithm.

12 Advances in Software Engineering
TABLE 12: Results of Coverage Criteria (1 Execution), Program Space.

Block Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP

1% 87.4115 96.4804 92.6728 91.4603 95.6961

5% 85.8751 98.5599 94.8614 94.9912 98.0514

10% 85.5473 99.1579 95.9604 96.7242 98.6774

20% 86.5724 99.6063 98.0118 97.991 99.4235

30% 86.9639 99.7423 98.5998 98.6937 99.6431

40% 87.3629 99.811 98.9844 98.9004 99.7339

50% 87.8269 99.842 99.1271 99.216 99.7755

Decision Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP

1% 88.753 96.9865 91.6811 92.0529 96.4502

5% 85.5131 98.553 93.6639 94.9256 97.8443

10% 86.9345 99.1999 95.9172 96.6152 98.358

20% 87.9909 99.6074 98.0217 97.7348 99.2446

30% 88.4008 99.7464 98.4662 98.5373 99.3256

40% 88.6799 99.8074 98.9283 98.8599 99.7149

50% 88.6635 99.8476 99.0786 98.84 99.7469

Statement Coverage %

TSSp Greedy Additional Greedy Genetic Algorithm Simulated Annealing Reactive GRASP

1% 92.8619 97.7642 94.3287 93.5957 97.0516

5% 90.9306 99.1171 95.7946 96.4218 98.4031

10% 91.3637 99.5086 97.5863 97.7154 99.3172

20% 91.7803 99.7598 98.6129 98.6336 99.6214

30% 92.1344 99.8473 99.0048 99.2151 99.6555

40% 92.1866 99.8859 99.3106 99.2963 99.8365

50% 92.2787 99.9117 99.4053 99.4852 99.8517

in the present paper demonstrate that this algorithm is
also worse than the proposed Reactive GRASP approach.
The simulated annealing algorithm had the third best
performance, outperforming only the Greedy algorithm.

Figures 2, 3, and 4 demonstrate a comparison among
the five algorithms used in the experiments. It is easy to
see that the best performance was that of the Additional
Greedy algorithm, followed by that of the Reactive GRASP
algorithm. Reactive GRASP surpassed the genetic algorithm
and simulated annealing in all coverage criteria, and it had
the best performance at APDC criterion. The Additional
Greedy algorithm was better at APBC and APSC criteria and
Greedy algorithm was the worst of all.

For better visualization, consider Figures 5 and 6 that
show these comparisons among the used algorithms. To
make the result clearer, Figures 7 and 8 have this information
regarding the 3 more efficient algorithms in this experiment.
Figure 9 shows the final coverage average for each algorithm.

To investigate the statistical significance, we used t-test,
which can be seen in Table 6. For each pair of algorithms,
the mean coverage difference is given, and the significance
level. If the significance is smaller than 0.05, the difference
between the algorithms is statistically significant [6]. As can
be seen, there is no significant difference between Reactive

GRASP and Additional Greedy, in terms of coverage. In
addition, one can see that there is no significant difference
between simulated annealing and genetic algorithm, also in
accordance with Table 6.

We can also notice in Table 6 the time mean difference
for execution, for each pair of algorithms. It is important to
mention that the time required to execute Reactive GRASP
was about 61.53 larger than the time required to execution
for Additional Greedy algorithm.

Another conclusion that can be drawn from the graphs
is that the performance of the Reactive GRASP algorithm
has remained similar for all metrics used, while Additional
Greedy algorithm was a slightly different behavior for each
metric.

Table 7 shows the weighted average of the algorithms, for
each coverage criterion. The best results are highlighted in
the table (bold). Table 8 shows the difference in performance
between the best and the worst metric regarding the coverage
percentage. In this experiment, Reactive GRASP had the
minor difference in performance between the best and the
worst coverage criterion, which demonstrates an interesting
characteristic of this algorithm: its stability.

Table 9 contains the effectiveness average for all coverage
criteria for each algorithm (APBC, APDC, and APSC).

Advances in Software Engineering 13
TABLE 13: Coverage Significance and Time Mean Difference, Program Space.
Algorithm (x) Algorithm (y) Mean Coverage Coverage Difference Time Mean
Difference (%) Significance Difference (s)
(x—y) (t-test) (x—y)
Additional Greedy Algorithm —-10.5391 0.0000 —16.643
Greedy Algorithm Genetic Algorithm —-9.4036 0.0000 —495.608
Simulated Annealing —9.4459 0.0000 —-5.339
Reactive GRASP —-10.3639 0.0000 —36,939.589
Greedy Algorithm 10.5391 0.0000 16.643
Additional Greedy Algorithm Genetic Algorithm 1.1354 0.0000 —478.965
Simulated Annealing 1.0931 0.0000 11.303
Reactive GRASP 0.1752 0.0613 —36,922.945
Greedy Algorithm 9.4036 0.0000 495.608
Genetic Algorithm Additional Greedy Algorithm —-1.1354 0.0000 478.965
Simulated Annealing —0.0423 0.4418 490.268
Reactive GRASP —0.9602 0.0000 —36,443.980
Greedy Algorithm 9.4459 0.0000 5.339
Simulated Annealing Additional Greedy Algorithm —-1.0931 0.0000 —-11.303
Genetic Algorithm 0.0423 0.4418 —490.268
Reactive GRASP -0.9180 0.0000 —3,6934.249
Greedy Algorithm 10.3639 0.0000 36,939.589
Reactive GRASP Additional Greedy Algorithm -0.1752 0.0613 36,922.945
Simulated Annealing 0.9180 0.0000 3,6934.249
Genetic Algorithm 0.9602 0.0000 36,443.980

TaBLE 14: Weighted Average for the Metrics, Program Space.

Coverage Criterion

Greedy Algorithm Additional Greedy Algorithm Genetic Algorithm Simulated Annealing Reactive GRASP

Block Coverage 87.1697 99.6781
Decision Coverage 88.3197 99.6856
Statement Coverage 92.0653 99.8081

98.4650 98.53273 99.5424
98.3631 98.33361 99.4221
98.9375 99.02625 99.6819

Together with Figure 9, Table 9 reinforces that the best
performance was obtained by Additional Greedy algorithm,
followed by that of the Reactive GRASP algorithm. Notice
that Reactive GRASP algorithm has little difference in the
performance compared with that of Additional Greedy
algorithm.

The standard deviation shown in Table 10 refers to the 3
metrics (APBC, APDC, and APSC). It was calculated using
the weighted average percentage of each algorithm. Accord-
ing to data in Table 10, the influence of the effectiveness
performance regarding the coverage criterion is the lowest in
the proposed Reactive GRASP algorithm, since its standard
deviation value is the minimum among the algorithms.
These data mean that the proposed technique is the one that
less varies its performance related to the coverage criteria,
which, again, demonstrates its higher stability.

4.3.2. Analysis for the Space Program. The results for space
program were similar to results for the four small programs.
The Reactive GRASP algorithm had the second best per-
formance. Additional Greedy algorithm, genetic algorithm,

simulated annealing, and Reactive GRASP algorithms signifi-
cantly outperformed the Greedy algorithm. Comparing both
metaheuristic-based approaches, the better performance
obtained by the Reactive GRASP algorithm over the genetic
algorithm and simulated annealing is clear.

The Reactive GRASP algorithm was followed by genetic
algorithm approach, which performed the fourth best in
our evaluation. The third best evaluation was obtained by
simulated annealing.

Figures 10, 11, and 12 demonstrate a comparison
between the five algorithms used in the experiments, for
the space program. Based on these figures, it is possible
to conclude that the best performance was that of the
Additional Greedy algorithm, followed by the Reactive
GRASP algorithm. Reactive GRASP surpassed the genetic
algorithm, simulated annealing, and Greedy algorithm. One
difference between the results for space program and the
small programs is that Additional Greedy algorithm was
better for all criteria, while, for small programs, Reactive
GRASP had the best results for the APDC criteria. Another
difference is the required execution time. As the size of the

14

Advances in Software Engineering

TasLE 15: Difference in Performance between the Best and the Worst Criteria, Program Space.

Greedy Algorithm Additional Greedy Genetic Algorithm ~ Simulated Annealing Reactive GRASP

Algorithm
Difference in performance 4.8956 0.1300 0.5744 0.6926 0.2598
between the best and worst criteria
TABLE 16: Average for Each Algorithm (All Metrics), Program Space.
Greedy Algorithm ~ Additional Greedy Algorithm Genetic Algorithm Simulated Annealing ~ Reactive GRASP
Final Average 89.1849 99.7240 98.5885 98.6308 99.5488
100 100
99.5 + 99.5
o 99f 99
< 985 < 985
L L9
& o8 f & 9
z 2
Q 975 a 975
))
97 97
96.5 96.5
96 e 96 —
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

TSSp

—4— Greedy algorithm —®- Simulated annealing
—¥— Additional Greedy algorithm —— Reactive GRASP
—®— Genetic algorithm

F1GURrE 2: APBC (Average Percentage Block Coverage), Comparison

among Algorithms for Small Programs.

100
99.5 +
99t
98.5 1
98
97.5 §
97 t
96.5
96

Coverage (%)

0 10 20 30 40 50 60 70 80 90 100
TSSp

—#4— Greedy algorithm —#— Simulated annealing
—¥— Additional Greedy algorithm —— Reactive GRASP
—®— Genetic algorithm

FiGgure 3: APDC (Average Percentage Decision Coverage), Compar-
ison among Algorithms for Small Programs.

program increases, the Reactive GRASP algorithm has its
time relatively less slow compared with the others.

For better visualization, consider Figures 13 and 14
that show these comparisons among the used algorithms.
To make the result clearer, Figures 15 and 16 have this
information regarding the 3 more efficient algorithms in this

TSSp

—#4— Greedy algorithm —#— Simulated annealing
—¥— Additional Greedy algorithm —— Reactive GRASP
—®— Genetic algorithm

FIGURE 4: APSC (Average Percentage Statement Coverage), Com-
parison among Algorithms for Small Programs.

100
3 995
i
%0 99
i)
z 98.5
o
L
<= 98 —
20
L
= 975 A
97 —
Block Decision Statement
coverage coverage coverage

B Greedy algorithm
H Genetic algorithm
M Reactive GRASP

i Additional Greedy algorithm
Simulated annealing

FIGURE 5: Weighted Average for the Metrics (Comparison among
the Metrics), Small Programs.

experiment. Figure 17 shows the coverage average for each
algorithm.

The t-test was used to investigate the statistical signifi-
cance for space program, which can be seen in Table 13. As in
the analysis for the small programs, the level of significance
of the result was set to 0.05. In the same way to the small

Advances in Software Engineering 15
TaBLE 17: Standard Deviation of the Effectiveness for the Four Algorithms, Program Space.
Greedy Algorithm Additional Greedy Algorithm Genetic Algorithm Simulated Annealing Reactive GRASP

Standard Deviation 0.025599 0.000730 0.003065 0.003566 0.001300
TABLE 18: Summary of Results, Program Space.
Algorithm Coverage Performance Execution Time Observations
Greedy Algorithm The worst performance. Fast
Additional Greedy Algorithm Best performance of all. Fast
Genetic Algorithm Fourth best performance. Medium
Simulated Annealing Third best performance. Fast No significant difference to genetic algorithm.
Reactive GRASP Second best performance Slow No significant difference to Additional Greedy Algorithm.
100 100
< 995
e < 998 7
% 9 S
5 %
Z 985 £ 996 7
2 g
s % B 99.4 -
e 2
= 975 _%D
= 99.2 o
97
Greedy Additional Genetic Simulated Reactive 99
algorithm ~ Greedy algorithm annealing ~GRASP .
loorithm Block Decision Statement
algort coverage coverage coverage

Block coverage

B Statement coverage
i Decision coverage

FIGURE 6: Weighted Average for the Metrics (Comparison among
the Algorithms), Small Programs.

programs, there is no significant difference between Reactive
GRASP and Additional Greedy, in terms of coverage, for
space program, neither for simulated annealing nor for
genetic algorithm.

4.3.3. Final Analysis. These results qualify the Reactive
GRASP algorithm as a good global coverage solution for the
prioritization test case problem.

It is also important to mention that the results were
consistently similar across coverage criteria. This fact had
already been reported by Li et al. [6]. It suggests that there
is no need to consider more than one criterion in order
to generate good prioritizations of test cases. In addition,
we could not find any significant difference in the coverage
performance of all algorithms when varying the percentage
of test cases being considered.

Note that we have tried from 1% to 100% of test cases for
each program and criterion for the four small programs, and
the performances of all algorithms remained unaltered. This
demonstrated that the ability of the five algorithms discussed
here is not deeply related to the number of test cases required
to order.

B Additional Greedy algorithm
M Simulated annealing
H Reactive GRASP

FIGURE 7: Weighted Average for the 3 More Efficient Algorithms
(Comparison among the Metrics), Small Programs.

In terms of time, as expected, the use of global app-
roaches, such as both metaheuristic-based algorithms eval-
uated here, adds an overhead to the process. Considering
time efficiency, one can see from Tables 6 and 13 that
the Greedy algorithm performed more efficiently than all
other algorithms. This algorithm was, on average, 1.491
seconds faster than Additional Greedy algorithm, 8.436 faster
than the genetic algorithm, 0.057 faster than the simulated
annealing, and almost 50 seconds faster than the Reactive
GRASP approach, for the small programs. In terms of
relative values, Reactive GRASP was 61.53 times slower than
Additional Greedy, 11.68 slower than genetic algorithm,
513.87 slower than simulated annealing, and 730.92 slower
than Greedy algorithm. This result demonstrates, once again,
the great performance obtained by the Additional Greedy
algorithm compared to that of the Greedy algorithm, since
it was significantly better, performance-wise, and achieved
these results with a very similar execution time. On the
other spectrum, we had the Reactive GRASP algorithm,
which performed on average 48,456 seconds slower than
the Additional Greedy algorithm and 41,511 seconds slower
than the genetic algorithm. In favor of both metaheuristic-
based approaches is the fact that one may calibrate the time

16

100
—~ 99.8
S
%
2 99.6
L
z
T 99.4
=
2P
L
= 992
99 —
Additional Simulated Reactive
Greedy annealing GRASP
algorithm

B Block coverage
M Decision coverage
H Statement coverage

FIGURE 8: Weighted Average for the 3 More Efficient Algorithms
(Comparison among the Algorithms), Small Programs.

100

99.5
929
98.5
98 1
97 4 T T T T

Greedy Additional
algorithm ~ Greedy
algorithm

Final average (%)

Genetic ~ Simulated ~ Reactive
algorithm annealing GRASP

FIGURE 9: Average for Each Algorithm (All Metrics), Small Pro-
grams.

required for prioritization depending on time constraints
and characteristics of programs and test cases. This flexibility
is not present in the Greedy algorithms.

Tables 11 and 18 summarize the results described above.

5. Conclusions and Future Works

Regression testing is an important component of any
software development process. Test Case Prioritization is
intended to avoid the execution of all test cases every time
a change is made to the system. Modeled as an optimization
problem, this prioritization problem can be solved with well-
known search-based approaches, including metaheuristics.
This paper proposed the use of the Reactive GRASP
metaheuristic for the regression test case prioritization
problem and compared its performance with other solutions
previously reported in literature. Since the Reactive GRASP
algorithm performed significantly better—in terms of cov-
erage performance—than the genetic algorithm, Simulated
Annealing, and similarly to the Greedy algorithm and it
avoids the problems mentioned by Rothermel [2] and Li et al.
(6], where Greedy algorithms may fail to choose the optimal
test case ordering, the use of the Reactive GRASP algorithm is

Advances in Software Engineering

100 T P

Coverage (%)

5 10 15 20 25 30 35 40 45 50
TSSp

—4— Greedy algorithm —a— Simulated annealing
—v— Additional Greedy algorithm —e— Reactive GRASP
—e— Genetic algorithm

FiGure 10: APBC (Average Percentage Block Coverage), Compari-
son among Algorithms for Program Space.

100
97.5

L 95

&

& 925

&

S 9
87.5
85

0 5 10 15 20 25 30 35 40 45 50
TSSp

—4— Greedy algorithm —=— Simulated annealing
—v— Additional Greedy algorithm —— Reactive GRASP
—e— Genetic algorithm

Ficure 11: APDC (Average Percentage Decision Coverage), Com-
parison among Algorithms for Program Space.

100

97.5

95

92.5

Coverage (%)

90

87.5

85

0 5 10 15 20 25 30 35 40 45 50
TSSp

—4— Greedy algorithm —=— Simulated annealing
—¥— Additional Greedy algorithm —e— Reactive GRASP
—e— Genetic algorithm

FIGURE 12: APSC (Average Percentage Statement Coverage), Com-
parison among Algorithms for Program Space.

Advances in Software Engineering

100

97.5

95

92.5

90 —

Weighted average (%)

87.5

85

Block
coverage

Statement
coverage

Decision
coverage

& Greedy algorithm
& Genetic algorithm
M Reactive GRASP

FIGURE 13: Weighted Average for the Metrics (Comparison among
the Metrics), Program Space.

@ Additional Greedy algorithm
® Simulated annealing

100

97.5

Weighted average (%)

Greedy
algorithm

Additional
Greedy

algorithm

Genetic ~ Simulated Reactive
algorithm annealing GRASP

M Block coverage
M Statement coverage
i Decision coverage

FIGURE 14: Weighted Average for the Metrics (Comparison among
the Algorithms), Program Space.

100

99.5

99 —
98.5 —
98 —

Weighted average (%)

97.5

Block
coverage

Statement
coverage

Decision
coverage

M Additional Greedy algorithm

i Simulated annealing

M Reactive GRASP
FIGURE 15: Weighted Average for the 3 More Efficient Algorithms
(Comparison among the Metrics), Program Space.

indicated to the problem of test case prioritization, especially
when time constraints are not too critical, since the Reactive
GRASP added a considerable overhead.

Our experimental results confirmed also the previous
results reported in literature regarding the good performance
of the Additional Greedy algorithm. However, some results

17
100
£ 995
]
= 99
[
z
B 98.5
=)
5 98
=
97.5
Additional Simulated Reactive
Greedy annealing GRASP
algorithm

B Block coverage
kd Decision coverage
B Statement coverage

F1GURE 16: Weighted Average for the 3 More Efficient Algorithms
(Comparison among the Algorithms, Program Space.

100

92.5
90
87.5 -:i
85 - T T T T

Ne)
~
w

Nel
v

Final average (%)

Greedy ~ Additional ~ Genetic ~ Simulated Reactive
algorithm ~ Greedy algorithm annealing ~ GRASP
algorithm

FIGURE 17: Final Average for Each Algorithm, Program Space.

point out to some interesting characteristics of the Reactive
GRASP solution. First, the coverage performance was not
significantly worse when compared to that of the Additional
Greedy algorithm. In addition, the proposed solution had a
more stable behavior when compared to all other solutions.
Next, GRASP can be set to work with as many or as little time
as available.

As future work, we will evaluate the Reactive GRASP with
different number of iterations. This will elucidate whether its
good performance was due to its intelligent search heuristics
or its computational effort. Finally, other metaheuristics
will be considered, including Tabu Search and VNS, among
others.

References

[1] M. Fewster and D. Graham, Software Test Automation,
Addison-Wesley, Reading, Mass, USA, 1st edition, 1994.

[2] G. Rothermel, R. H. Untcn, C. Chu, and M. J. Harrold, “Pri-
oritizing test cases for regression testing,” IEEE Transactions on
Software Engineering, vol. 27, no. 10, pp. 929-948, 2001.

[3] G.J. Myers, The Art of Software Testing, John Wiley & Sons,
New York, NY, USA, 2nd edition, 2004.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, MIT Press, Cambridge, Mass, USA;
McGraw-Hill, New York, NY, USA, 2nd edition, 2001.

18

(5]

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test
case prioritization: an empirical study,” in Proceedings of the
International Conference on Software Maintenance (ICSM °99),
pp- 179-188, Oxford, UK, September 1999.

Z. Li, M. Harman, and R. M. Hierons, “Search algorithms
for regression test case prioritization,” IEEE Transactions on
Software Engineering, vol. 33, no. 4, pp. 225-237, 2007.

E Glover and G. Kochenberger, Handbook of Metaheuristics,
Springer, Berlin, Germany, 1st edition, 2003.

K. R. Walcott, M. L. Soffa, G. M. Kapthammer, and R. S.
Roos, “Time-aware test suite prioritization,” in Proceedings of
the International Symposium on Software Testing and Analysis
(ISSTA °06), pp. 1-12, Portland, Me, USA, July 2006.

S. Yoo and M. Harman, “Pareto efficient multi-objective test
case selection,” in Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA °07), pp. 140-150,
London, UK, July 2007.

S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky,
“Selecting a cost-effective test case prioritization technique,”
Software Quality Journal, vol. 12, no. 3, pp. 185-210, 2004.

K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A fast
elitist non-dominated sorting genetic algorithm for multi-
objective optimization: NSGA-II,” in Proceedings of the 6th
Parallel Problem Solving from Nature Conference (PPSN "00),
pp- 849-858, Paris, France, September 2000.

J. H. Holland, Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Control,
and Artificial Intelligence, University of Michigan, Ann Arbor,
Mich, USA, 1975.

M. Harman, “The current state and future of search based
software engineering,” in Proceedings of the International
Conference on Software Engineering—Future of Software Engi-
neering (FoSE °07), pp. 342-357, Minneapolis, Minn, USA,
May 2007.

G. Antoniol, M. D. Penta, and M. Harman, “Search-based
techniques applied to optimization of project planning for
a massive maintenance project,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM ’05),
pp- 240-252, Budapest, Hungary, September 2005.

M. Resende and C. Ribeiro, “Greedy randomized adaptative
search procedures,” in Handbook of Metaheuristics, F. Glover
and G. Kochenberger, Eds., pp. 219-249, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2001.

M. Paris and C. C. Ribeiro, “Reactive GRASP: an application
to a matrix decomposition problem in TDMA traffic assign-
ment,” INFORMS Journal on Computing, vol. 12, no. 3, pp.
164-176, 2000.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Exper-
iments on the effectiveness of dataflow- and control-flow-
based test adequacy criteria,” in Proceedings of the 16th
International Conference on Software Engineering (ICSE °99),
pp. 191-200, Los Angeles, Calif, USA, 1999.

SEBASE, Software Engineering By Automated Search, Septem-
ber 2009, http://www.sebase.org/applications.

Advances in Software Engineering

Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 671284, 8 pages
doi:10.1155/2010/671284

Research Article

A Proposal for Automatic Testing of GUIs

Based on Annotated Use Cases

Pedro Luis Mateo Navarro,"2 Diego Sevilla Ruiz,""? and Gregorio Martinez Pérez"?2

! Departamento de Ingenieria de la Informacién y las Comunicaciones, University of Murcia, 30071 Murcia, Spain
2 Departamento de Ingenieria y Tecnologia de Computadores, University of Murcia, 30071 Murcia, Spain

Correspondence should be addressed to Pedro Luis Mateo Navarro, pedromateo@um.es

Received 16 June 2009; Accepted 14 August 2009

Academic Editor: Phillip Laplante

Copyright © 2010 Pedro Luis Mateo Navarro et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper presents a new approach to automatically generate GUI test cases and validation points from a set of annotated use
cases. This technique helps to reduce the effort required in GUI modeling and test coverage analysis during the software testing
process. The test case generation process described in this paper is initially guided by use cases describing the GUI behavior,
recorded as a set of interactions with the GUI elements (e.g., widgets being clicked, data input, etc.). These use cases (modeled
as a set of initial test cases) are annotated by the tester to indicate interesting variations in widget values (ranges, valid or invalid
values) and validation rules with expected results. Once the use cases are annotated, this approach uses the new defined values
and validation rules to automatically generate new test cases and validation points, easily expanding the test coverage. Also, the
process allows narrowing the GUI model testing to precisely identify the set of GUI elements, interactions, and values the tester is

interested in.

1. Introduction

It is well known that testing the correctness of a Graphical
User Interfaces (GUI) is difficult for several reasons [1]. One
of those reasons is that the space of possible interactions with
a GUI is enormous, which leads to a large number of GUI
states that have to be properly tested (a related problem is
to determine the coverage of a set of test cases); the large
number of possible GUI states results in a large number of
input permutations that have to be considered. Another one
is that validating the GUI state is not straightforward, since
it is difficult to define which objects (and what properties of
these objects) have to be verified.

This paper describes a new approach between Model-less
and Model-Based Testing approaches. This new approach
describes a GUI test case autogeneration process based on a
set of use cases (which are used to describe the GUI behavior)
and the annotation (definition of values, validation rules,
etc.) of the relevant GUI elements. The process generates
automatically all the possible test cases depending on the val-
ues defined during the annotation process and incorporates

new validation points, where the validation rules have been
defined. Then, in a later execution and validation process, the
test cases are automatically executed and all the validation
rules are verified in order to check if they are met or not.

The rest of the paper is structured as follows. Related
work is presented in Section 2. In Section 3 we describe
the new testing approach. Annotation, autogeneration, and
execution/validation processes are described in Sections 4,
5 and 6, respectively. Finally, Section 8 provides conclusions
and lines of future work.

This paper is an extended version of the submitted con-
tribution to the “Informatik 2009: Workshop MoTes09” [2].

2. Related Work

Model-Based GUI Testing approaches can be classified
depending on the amount of GUI details that are included
in the model. By GUI details we mean the elements which
are chosen by the Coverage Criteria to faithfully represent the
tested GUI (e.g., window properties, widget information and
properties, GUI metadata, etc.).

Many approaches usually choose all window and widget
properties in order to build a highly descriptive model of
the GUI. For example, in [1] (Xie and Memon) and in
[3, 4] (Memon et al.) it is described a process based on GUI
Ripping, a method which traverses all the windows of the
GUI and analyses all the events and elements that may appear
to automatically build a model. That model is composed of
a set of graphs which represent all the GUI elements (a tree
called GUI Forest) all the GUI events and their interaction
(Event-Flow Graphs (EFG), and Event Interaction Graphs
(EIG)). At the end of the model building process, it has to be
verified, fixed, and completed manually by the developers.

Once the model is built, the process explores automati-
cally all the possible test cases. Of those, the developers select
the set of test cases identified as meaningful, and the Oracle
Generator creates the expected output(a Test Oracle [5] is a
mechanism which generates outputs that a product should
have for determining, after a comparison process, whether
the product has passed or failed a test (e.g., a previous stored
state that has to be met in future test executions). Test Oracles
also may be based on a set of rules (related to the product)
that have to be validated during test execution). Finally, test
cases are automatically executed and their output compared
with the Oracle expected results.

As said in [6], the primary problem with these
approaches is that as the number of GUI elements increases,
the number of event sequences grows exponentially. Another
problem is that the model has to be verified, fixed, and
completed manually by the testers, with this being a tedious
and error-prone process itself. These problems lead to other
problems, such a scalability and modifications tolerance. In
these techniques, adding a new GUI element (e.g., a new
widget or event) has two worrying side effects. First, it may
cause the set of generated test cases to grow exponentially
(all paths are explored); second, it forces a GUI Model
update (and a manual verification and completion) and the
regeneration of all affected test cases.

Other approaches use a more restrictive coverage criteria
in order to focus the test case autogeneration efforts on only
a section of the GUI which usually includes all the relevant
elements to be tested. In [7] Vieira et al. describe a method
in which enriched UML Diagrams (UML Use Cases and
Activity Diagrams) are used to describe which functionalities
should be tested and how to test them. The diagrams are
enriched in two ways. First, the UML Activity Diagrams are
refined to improve the accuracy; second, these diagrams are
annotated by using custom UML Stereotypes representing
additional test requirements. Once the model is built, an
automated process generates test cases from these enriched
UML diagrams. In [8] Paiva et al. also describe a UML
Diagrams-based model. In this case, however, the model is
translated to a formal specification.

The scalability of this approach is better than the
previously mentioned because it focuses its efforts only on
a section of the model. The diagram refinement also helps
to reduce the number of generated test cases. On the other
hand, some important limitations make this approach not
so suitable for certain scenarios. The building, refining, and
annotation processes require a considerable effort since they

Advances in Software Engineering

have to be performed manually, which does not suit some
methodologies such as, for instance, Extreme Programming;
these techniques also have a low tolerance to modifications;
finally, testers need to have a knowledge of the design of the
tested application (or have the UML model), which makes
impossible to test binary applications or applications with an
unknown design.

3. Overview of the Annotated Use Case
Guided Approach

In this paper we introduced a new GUI Testing approach
between Mode-less and Model-Based testing. The new
approach is based on a Test Case Autogeneration process
that does not build a complete model of the GUI Instead,
it models two main elements that are the basis of the test case
autogeneration process.

(i) A Set of Use Cases. These use cases are used to
describe the behavior of the GUI to be tested. The use
cases are used as the base of the future test cases that
are going to be generated automatically.

(ii) A Set of Annotated Elements. This set includes the
GUI elements whose values may vary and those
with interesting properties to validate. The values
define new variaton points for the base use cases; the
validation rules define new validation points for the
widget properties.

With these elements, the approach addresses the needs
of GUI verification, since, as stated in [7], the testing
of a scenario can usually be accomplished in three steps:
launching the GUI, performing several use cases in sequence,
and exiting. The approach combines the benefits from both
“Smoke Testing” [4, 9] and “Sanity Testing” [10], as it is able
to assure that the system under test will not catastrophically
fail and test the main functionality (in the first steps of the
development process) and fine-tune checking and properties
validation (in the final steps of the development process) by
an automated script-based process.

The test case generation process described in this paper
takes as its starting point the set of use cases (a use case is a
sequence of events performed on the GUI; in other words,
a use case is a test case) that describe the GUI behavior.
From this set, it creates a new set of autogenerated test
cases, taking into account the variation points (according to
possible different values of widgets) and the validation rules
included in the annotations. The resulting set includes all the
new autogenerated test cases.

The test case autogeneration process can be seen, in a
test case level, as the construction of a tree (which initially
represents a test case composed of a sequence of test items)
to which a new branch is added for each new value defined in
the annotations. The validation rules are incorporated later
as validation points.

Therefore, in our approach, modeling the GUI and the
application behavior does not involve building a model
including all the GUI elements and generating a potentially
large amount of test cases exploring all the possible event

Advances in Software Engineering

If the annotation
is cancelled

GUI Widget
ready interacted

Assert State
Oracle Oracle

(

Set
Set Val}le validation englepied
constraints rules

Perform
widget

action

Store
annotations

FIGURE 1: Schematic representation of the Widget Annotation Process.

sequences. In the contrary, it works by defining a set of
test cases and annotating the most important GUT elements
to include both interesting values (range of valid values,
out-of-range values) and a set of validation rules (expected
results and validation functions) in order to guide the fest
case generation process. It is also not necessary to manually
verify, fix, or complete any model in this approach, which
removes this tedious and error-prone process from the
GUI Testing process and eases the work of the testers.
These characteristics help to improve the scalability and the
modifications tolerance of the approach.

Once the new set of test cases is generated, and the
validation rules are incorporated, the process ends with
the test case execution process (that includes the validation
process). The result of the execution is a report including
any relevant information to the tester (e.g., number of test
performed, errors during the execution, values that caused
these errors, etc). In the future, the generated test case set
can be re-executed in order to perform a regression testing
process that checks if the functionality that was previously
working correctly is still working.

4. Annotation Process

The annotation process is the process by which the tester
indicates what GUI elements are important in terms of the
following: First, which values can a GUI element hold (i.e.,
a new set of values or a range), and thus should be tested;
second, what constraints should be met by a GUI element
at a given time (i.e., validation rules), and thus should be
validated. The result of this process is a set of annotated
GUI elements which will be helpful during the test case
autogeneration process in order to identify the elements that
represent a variation point, and the constraints that have to
be met for a particular element or set of elements. From now
on, this set will be called Annotation Test Case.

This process could be implemented, for example,
using a capture and replay (C&R) tool(a Capture and

Replay Tool captures events from the tested application
and use them to generate test cases that replay the
actions performed by the user. Authors of this paper
have worked on the design and implementation of such
tool as part of a previous research work, accessible on-
line at http://sourceforge.net/projects/openhmitester/ and at
http://www.um.es/catedraSAES/) . These tools provide the
developers with access to the widgets information (and
also with the ability to store it), so they could use this
information along with the new values and the validation
rules (provided by the tester in the annotation process) to
build the Annotation Test Case.

As we can see in Figure 1, the annotation process, which
starts with the tested application launched and its GUI ready
for use, can be performed as follows:

(1) For each widget the tester interacts with (e.g., to
perform a click action on a widget or enter some data
by using the keyboard), he or she can choose between
two options: annotate the widget (go to the next step)
or continue as usual (go to step 3).

(2) A widget can be annotated in two ways, depending on
the chosen Test Oracle method. It might be an “Assert
Oracle” (checks a set of validation rules related to the
widget state), or a “State Oracle” (checks if the state
of the widget during the execution process matches the
state stored during the annotation process).

(3) The annotations (if the tester has decided to annotate
the widget) are recorded by the C&R tool as part
of the Annotation Test Case. The GUI performs the
actions triggered by the user interaction as usual.

(4) The GUI is now ready to continue. The tester can
continue interacting with the widgets to annotate
them or just finish the process.

The annotated widgets should be chosen carefully as
too many annotated widgets in a test case may result in an
explosion of test cases. Choosing an accurate value set also

helps to get a reasonable test suite size, since during the
test case autogeneration process, all the possible combinations
of annotated widgets and defined values are explored in
order to generate a complete test suite which explores all the
paths that can be tested. So, these are two important aspects
to consider, since the scalability of the generated test suite
depends directly on the amount of annotated widgets and
the values set defined for them.

Regarding to the definition of the validation rules that are
going to be considered in a future validation process, the tester
has to select the type of the test oracle depending on his or
her needs.

For the annotation process of this approach we consider
two different test oracles.

(1) Assert Oracles. These oracles are useful in two ways.
First, if the tester defines a new set of values or a
range, new test cases will be generated to test these
values in the test case autogeneration process; second,
if the tester also defines a set of validation rules,
these rules will be validated during the execution and
validation process.

(ii) State Oracles. These oracles are useful when the tester
has to check if a certain widget property or value
remains constant during the execution and validation
process (e.g., a widget that can not be disabled).

In order to define the new values set and the validation
rules, it is necessary to incorporate to the process a specifi-
cation language which allows the tester to indicate which are
going to be the new values to be tested and what constraints
have to be met. This specification language might be a
constraint language as, for instance, the Object Constraint
Language (OCL) [11], or a script language as, for instance,
Ruby [12]. This kind of languages can be used to allow the
tester to identify the annotated object and specify new values
and validation rules for it. It is also necessary to establish a
mapping between widgets and constructs of the specification
language; both languages have mechanisms to implement
this feature.

Validation rules also can be set to specify if the tester
wants the rules to be validated before (precondition) or after
(postcondition) an action is performed on the annotated
widget. For example, if the tester is annotating a button
(during the annotation process), it might be interesting to
check some values before the button is pressed, as that button
operates with those values; it also might be interesting to
check, after that button is pressed, if the obtained result met
some constraints. The possibility to decide if the validation
rules are going to be checked before of after an action
is performed (these are the well-known preconditions and
postconditions) allows the tester to perform a more powerful
validation process. This process could be completed with the
definition of an invariant, for example, together with the
state oracles, since the invariant is composed of a set of
constraints that have to be met through the process (an
invariant in this domain would be a condition that is always
met in the context of the current dialog.).

Advances in Software Engineering

Generate a test case .
Test suite
(for each use case) =

~

Generate an
annotation
test case

)
2
g
& £
gq.a
E o
P
vy
-
23
=
>

Annotated

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! test suite

a critical modification

If new use cases
have to be added or
the GUI undergoes

s i3
g 3
3 5
5 2
< o
3 =
N T
= =

Auto-generated Test
est case
@ annota.ted auto-generation
test suite

FIGURE 2: Schematic representation of the Test-Case Auto Genera-
tion Process.

5. Test Case AutoGeneration Process

The test case autogeneration process is the process that
automatically generates a new set of test cases from two
elements:

(i) a test suite composed of an initial set of test cases
(those corresponding to the use cases that represent
the behavior of the GUI);

(ii) an special test case called Annotation Test Case which
contains all the annotations corresponding to the
widgets of a GUL.

As can be seen in Figure 2, the process follows these steps:

(1) As said above, the process is based on an initial test
suite and an Annotation Test Case. Both together
make up the initial Annotated Test Suite.

(2) The test case autogeneration process explores all the
base use cases. For each use case, it generates all
the possible variations depending on the values
previously defined in the annotations. It also adds
validators for ensuring that the defined rules are met.
(This process is properly explained at the end of this
section).

(3) The result is a new Annotated Test Suite which
includes all the auto-generated test cases (one for
each possible combination of values) and the Anno-
tation Test Case used to generate them.

The set of auto-generated test cases can be updated, for
example, if the tester has to add or remove new use cases
due to a critical modification in the GUI, or if new values
or validation rules have to be added or removed. The tester
will then update the initial test case set, the Annotation Test
Case, or both, and will rerun the generation process.

Advances in Software Engineering

The algorithm corresponding to the test case autogenera-
tion process is shown in Algorithm 1.

The process will take as its starting point the Annotation
Test Case and the initial set of test cases, from which it will
generate new test cases taking into account the variation
points (the new values) and the validation rules included in
the annotations.

For each test case in the initial set, the process inspects
every test item (a test case is composed of a set of steps called
test items) in order to detect if the widget referred by this
test item is included in the annotated widget list. If so, the
process generates all the possible variations of the test case
(one for each different value, if exist), adding also a validation
point if some validation rules have been defined. Once the
process has generated all the variations of a test case, it adds
them to the result set. Finally, the process returns a set of
test cases which includes all the variations of the initial test
cases.

Figure 3 is a graphical representation of how the algo-
rithm works. The figure shows an initial test case which
includes two annotated test items (an Annotated Test Item
is a test item that includes a reference to an annotated
widget). The annotation for the first widget specifies only two
different values (15 and 25); the annotation for the second
one specifies two new values (1 and 2) and introduces two
validation rules (one related to the colour property of the
widget and another related to the text property). The result of
the test case autogeneration process will be four new test cases,
one for each possible path (15-1, 15-2, 25-1, and 25-2), and
a validation point in the second annotated test item which
will check if the validation rules mentioned before are met
or not.

6. Execution and Validation Process

The execution and validation process is the process by which
the test cases (auto-generated in the last step) are executed
over the target GUI and the validation rules are asserted to
check whether the constraints are met. The test case execution
process executes all the test cases in order. It is very important
that for each test case is going to be executed, the GUI
must be reset to its initial state in order to ensure that all
the test cases are launched and executed under the same
conditions.

This feature allows the tester to implement different test
configurations, ranging from a set of a few test cases (e.g.,
to test a component, a single panel, a use case, etc.), to an
extensive battery of tests (e.g., for a nightly or regression
testing process [4]).

As for the validation process, in this paper we describe a
Test Oracle based validation process, which uses test oracles
[1, 5] to perform widget-level validations (since the valida-
tion rules refer to the widget properties) (A Test Oracle is a
mechanism that generates the expected output that a product
should have for determining, after a comparison process,
whether the product has passed or failed a test) . The features
of the validation process vary depending on the oracle method
selected during the annotation process as we can read below.

(i) Assert Oracles. These oracles check if a set of val-
idation rules related to a widget are met or not.
Therefore, the tester needs to somehow define a set of
validation rules. As said in Section 4 corresponding
to the annotation process, defining these rules is
not straightforward. Expressive and flexible (e.g.,
constraint or script) languages are needed to allow
the tester to define assert rules for the properties
of the annotated widget, and, possibly, to other
widgets. Another important pitfall is that if the GUI
encounters an error, it may reach an unexpected or
inconsistent state. Further executing the test case is
useless; therefore it is necessary to some mechanism
to detect these “bad states” and stop the test case
execution (e.g., a special statement which indicates
that the execution and validation process have to finish
if an error is detected).

(ii) State Oracles. These oracles check if the state of the
widget during the execution process matches the state
stored during the annotation process. To implement
this functionality, the system needs to know how
to extract the state from the widgets, represent it
somehow, and be able to check it for validity. In
our approach, it could be implemented using widget
adapters which, for example, could represent the state
of a widget as a string; so, the validation would be as
simple as a string comparison.

The validation process may be additionally completed
with Crash Oracles, which perform an application-level
validation (as opposed to widget-level) as they can detect
crashes during test case execution. These oracles are used to
signal and identify serious problems in the software; they are
very useful in the first steps of the development process.

Finally, it is important to remember that there are two
important limitations when using test oracles in GUI testing
[5]. First, GUI events have to be deterministic in order to be
able to predict their outcome (e.g., it would not make sense
if the process is validating a property which depends on a
random value); second, since the software back-end is not
modeled (e.g., data in a data base), the GUI may return a
nonexpected state which would be detected as an error (e.g.,
if the process is validating the output in a database query
application, and the content of this database changes during
the process).

7. Example

In order to show this process working on a real example, we
have chosen a fixed-term deposit calculator application. This
example application has a GUI (see Figure 4) composed of a
set of widgets: a menu bar, three number boxes (two integer
and one double), two buttons (one to validate the values and
another to operate with them), and a label to output the
obtained result. Obviously, there are other widgets in that
GUI (i.e., a background panel, text labels, a main window,
etc.), but these elements are not of interest for the example.

Original test case

Advances in Software Engineering

Equivalent set of test cases

Values: Rules:
{15,25} no validation rules

N2

Values: Rules:

{1,2} assert(widget.color == red)
AW if (value == 2)

assert(widget.text == “27)

l AW: Annotated widget

apBnm
00
e

Validation point

FIGURE 3: Test case branching.

for all TestCase tc¢ € initial_test_set do

for all Testltem ti € tc do

end if
end for

end for
return auto_gen_test_set

initial_test_set — ... // initial test case set
auto_gen_test_set — {} // auto-generated test case set (empty)
annotated_elements — ... // user-provided annotations

new_test_cases — add_test_case (new_test_cases, tc)

if tiwidget € annotated_elements then
annotations — annotations_for_widget(ti.widget)
new_test_cases — create_new_test_cases (new_test_cases, annotations.values)
new_test_cases <— add_validation_rules (new_test_cases, annotations.rules)

auto_gen_test_set — auto_gen_test_set U new_test_cases

ArcoriTHM 1: Test case autogeneration algorithm.

=] Fixed-term deposit Calculator)| P

File

Interest rate (2% <= Ir <= 3%): ms
Deposit amount (1000 <= Da <=10000): [0 |2

Duration (months) (3 <= Du <= 12):
Calc Interest

Total interest: 0

F1GURE 4: Example dialog.

A common use case for this application is the following:

(1) start the application (the GUI is ready),
(2) insert the values in the three number boxes,

(3) if so, click the “Calc Interest” button and see the
result,

(4) exit by clicking the “Exit” option in the “File” menu.

The valid values for the number boxes are the following.

(i) Interest Rate. Assume that the interest rate imposed
by the bank is between 2 and 3 percent (both
included).

(ii) Deposit Amount. Assume that the initial deposit
amount has to be greater or equal to 1000, and no
more than 10 000.

(iii) Duration. Assume that the duration in months has to
be greater or equal to 3, and less than or equal to 12
months.

The behavior of the buttons is the following. If a number
box is out of range, the “Calc Interest” button changes its
background colour to red (otherwise, it has to stay white);
once it is pressed, it calculates the result using the values, and
writes it in the corresponding label. If the values are out of
range, the label must read “Data error.” In other case, the
actual interest amount must be shown.

Advances in Software Engineering

Set interest

reo - PR R -
e - PR - -
ez S PR FEH B

Setamount Set duration Validate Operate Exit

reor [- PRI - -
reos [S M HE- B

Validation points

FIGURE 5: Auto-generated test case representation for the example
dialog.

Therefore, the annotations for widgets are as follows.

(1) “Interest rate” spinbox: a set of values from 2 to 3 with
a 0.1 increase.

(ii) “Deposit amount” spinbox: a set of values composed
of the three values 500, 1000, and 8000. (Note that
the value of 500 will introduce a validation error in
the test cases.)

(iii) “Duration” spinbox: a set of three values, 6, 12, and
24. Again, the last value will not validate.

(iv) “Calc Interest” button: depending on the values of the
three mentioned text boxes, check the following.

(1) If the values are within the appropriate ranges, the
background color of this button must be white,
and as a postcondition, the value of the label must
hold the calculated interest value (a formula may be
supplied to actually verify the value).

(2) Else, if the values are out of range, the background
color of the button must be red, and as a post-
condition, the value of the label must be “Data error.”

Once the initial use case is recorded and the widgets
are properly annotated (as said, both processes might be
performed with a capture/replay tool), they are used to
compose the initial Annotated Test Suite, which will be the
basis for the fest case autogeneration process.

We can see the test case autogeneration process result in
Figure 5. The new Annotated Test Suite generated by the
process is composed of 99 test cases (11 values for the
“Interest rate,” 3 different “Deposit amounts,” and 3 different
“Durations”) and a validation point located at the “Calc
Interest” button clicking (to check if the values are valid and
the background colour accordingly).

The process automatically generates one test case for each
possible path by taking into account all the values defined in
the annotation process; it also adds validation points where
the validation rules have been defined. The new set of auto-
generated test cases allows the tester to test all the possible
variations of the application use cases.

Finally, the execution and validation process will execute
all the test cases included in the generated Annotated Test
Suite and will return a report including all the information
related to the execution and validation process, showing the
number of test cases executed, the time spent, and the values
not equal to those expected.

8. Conclusions and Future Work

Automated GUI test case generation is an extremely resource
intensive process as it is usually guided by a complex and
fairly difficult to build GUI model. In this context, this
paper presents a new approach for automatically generating
GUI test cases based on both GUI use cases (required
functionality), and annotations of possible and interesting
variations of graphical elements (which generate families of
test cases), as well as validation rules for their possible values.
This reduces the effort required in test coverage and GUI
modeling processes. Thus, this method would help reducing
the time needed to develop a software product since the
testing and validation processes spend less efforts.

As a statement of direction, we are currently working
on an architecture and the details of an open-source
implementation which allow us to implement these ideas and
future challenges as, for example, to extend the GUI testing
process towards the application logic, or to execute a battery
of tests in parallel in a distributed environment.

Acknowledgments

This paper has been partially funded by the “Catedra SAES
of the University of Murcia” initiative, a joint effort between
Sociedad Anoénima de Electrénica Submarina (SAES),
http://www.electronica-submarina.com/ and the University
of Murcia to work on open-source software, and real-time
and critical information systems.

References

[1] Q. Xie and A. M. Memon, “Model-based testing of
community-driven open-source GUI applications,” in Pro-
ceedings of the 22nd IEEE International Conference on Software
Maintenance (ICSM °06), pp. 203-212, Los Alamitos, Calif,
USA, 2006.

[2] P. Mateo, D. Sevilla, and G. Martinez, “Automated GUI testing
validation guided by annotated use cases,” in Proceedings
of the 4th Workshop on Model-Based Testing (MoTes *09) in
Conjunction with the Annual National Conference of Ger-
man Association for Informatics (GI 09), Liibeck, Germany,
September 2009.

[3] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping:
reverse engineering of graphical user interfaces for testing,” in
Proceedings of the 10th IEEE Working Conference on Reverse
Engineering (WCRE ’03), pp. 260-269, Victoria, Canada,
November 2003.

[4] A. Memon, I. Banerjee, N. Hashmi, and A. Nagarajan, “Dart:
a framework for regression testing “nightly/daily builds” of
GUI applications,” in Proceedings of the IEEE Internacional
Conference on Software Maintenance (ICSM °03), pp. 410-419,
2003.

8 Advances in Software Engineering

[5] Q. Xie and A. M. Memon, “Designing and comparing
automated test oracles for GUI based software applications,”
ACM Transactions on Software Engineering and Methodology,
vol. 16, no. 1, p. 4, 2007.

[6] X. Yuan and A. M. Memon, “Using GUI run-time state as
feedback to generate test cases,” in Proceedings of the 29th
International Conference on Software Engineering (ICSE °07),
Minneapolis, Minn, USA, May 2007.

[7] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, and J.
Kazmeier, “Automation of GUI testing using a model-driven
approach,” in Proceedings of the International Workshop on
Automation of Software Test, pp. 9-14, Shanghai, China, 2006.

[8] A. Paiva, J. Faria, and R. Vidal, “Towards the integration of
visual and formal models for GUI testing,” Electronic Notes in
Theoretical Computer Science, vol. 190, pp. 99-111, 2007.

[9] A. Memon and Q. Xie, “Studying the fault-detection effective-
ness of GUI test cases for rapidly envolving software,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 884—
896, 2005.

[10] R. S. Zybin, V. V. Kuliamin, A. V. Ponomarenko, V. V.
Rubanov, and E. S. Chernov, “Automation of broad sanity test
generation,” Programming and Computer Software, vol. 34, no.
6, pp. 351-363, 2008.

[11] Object Management Group, “Object constraint language
(OCL),” version 2.0, OMG document formal/2006-05-01,
2006, http://www.omg.org/spec/OCL/2.0/.

[12] Y. Matsumoto, “Ruby Scripting Language,” 2009, http://www
.ruby-lang.org/en/.

Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 540547, 7 pages
doi:10.1155/2010/540547

Research Article

AnnaBot: A Static Verifier for Java Annotation Usage

Ian Darwin

8748 10 Sideroad Adjala, RR 1, Palgrave, ON, Canada LON 1P0
Correspondence should be addressed to Ian Darwin, ian@darwinsys.com
Received 16 June 2009; Accepted 9 November 2009

Academic Editor: Phillip Laplante

Copyright © 2010 Ian Darwin. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper describes AnnaBot, one of the first tools to verify correct use of Annotation-based metadata in the Java programming
language. These Annotations are a standard Java 5 mechanism used to attach metadata to types, methods, or fields without using
an external configuration file. A binary representation of the Annotation becomes part of the compiled “.class” file, for inspection
by another component or library at runtime. Java Annotations were introduced into the Java language in 2004 and have become
widely used in recent years due to their introduction in the Java Enterprise Edition 5, the Hibernate object-relational mapping
API, the Spring Framework, and elsewhere. Despite that, mainstream development tools have not yet produced a widely-used
verification tool to confirm correct configuration and placement of annotations external to the particular runtime component.
While most of the examples in this paper use the Java Persistence API, AnnaBot is capable of verifying anyannotation-based API
for which “claims”—description of annotation usage—are available. These claims can be written in Java or using a proposed

Domain-Specific Language, which has been designed and a parser (but not the code generator) have been written.

1. Introduction

1.1. Java Annotations. Java Annotations were introduced
into the language in 2004 [1] and have become widely used
in recent years, especially since their introduction in the Java
Enterprise Edition. Many open source projects including the
Spring [2] and Seam [1] Frameworks, and the Hibernate
and Toplink ORMs use annotations. So do many new Sun
Java standards, including the Java Standard Edition, the Java
Persistence API (an Object Relational Mapping API), the EJB
container, and the Java API for XML Web Services (JAX-
WS). Until now there has not been a general-purpose tool
for independently verifying correct use of these annotations.

The syntax of Java Annotations is slightly unusual—
while they are given class-style names (names begin with a
capital letter by convention) and are stored in binary .class
files, they may not be instantiated using the new operator.
Instead, they are placed by themselves in the source code,
preceding the element that is to be annotated (see Figure 1).
Annotations may be compile-time or run-time; the latter’s
binary representation becomes part of the compiled “class”
file, for inspection by another component at run time.
Annotations are used by preceding their name with the “at”

sign (@). For example, here is a class with both a compiletime
annotation and a runtime annotation

The @WebService annotation from the Java JAX-WS API
is a runtime annotation, used to tell a web container that
this class should be exposed on the network as a SOAP-based
web service. The @Override from Java SE is a compile-time
annotation used to tell the compiler or IDE to ensure that the
method is in fact overriding a method in the parent class.

1.2. Assertions. An assertion is a claim about the state of
a computer program. Assertions have been used for many
years in software verification. Goldschlager [4] devotes a
section in his chapter on Algorithms to this topic. Voas
et al. [5] describes a syntax for adding assertions to existing
programs. A simple runtime assertion syntax was introduced
using a new language keyword in version 1.4 of the Java
programming language [6]. Assertion Languages have been
used in verifying hardware designs [7].

1.3. Overview. This research describes a new tool for making
assertions about how annotations are to be used, the
Annotation Assertion-Based Object Testing tool or AnnaBot.

@WebService
public class Fred extends Caveman {
@0verride
public void callHome() {
// call Wilma here
}

FIGURE 1: Java SE and EE Annotations applied to a SOAP Web Ser-
vice class.

@Entity public class Person {
@Id int id;
@Column(name="given name")
public String getFirstName() {...}

F1GURE 2: Portion of a flawed JPA Entity Class.

Section 2 describes the origins of the research in an
otherwise-undetected failure and describes how the resulting
tool operates in general terms, giving some examples of
the classes of errors that it can detect. Section 3 discusses
the internal operation of the verification tool and the two
methods of writing “claims”: Java code and the planned DSL.

Section 4 describes the experiences in using this verifica-
tion tool on a couple of sample code bases, one derived from
the author’s consulting practice and one from the examples
provided with a popular web development framework.
Section 5 details some additional research and development
that should be undertaken in the future, along lines primarily
suggested by Section 4.

Section 6 discusses Related Research, primarily in the
area of annotation verification. Section 7 provides details on
obtaining the verification tool for anyone who would like to
replicate the results, apply it in different domains, or provide
improvements to the software.

2. AnnaBot: The Annotation Assertion
Verification Tool

Like most good tools, AnnaBot has its origin in a real-
life problem. Sun’s Java Enterprise Edition features the Java
Persistence Architecture or JPA [8]. The JPA API is designed
to facilitate mapping Java objects into relational database
tables. JPA is heavily biased towards use of Java5 annotations
to attach metadata describing how classes are mapped to and
from the relational database. The @Entity annotation on a
class marks the class as persistent data. Each persistent entity
class must have an @Id annotation marking the field(s) that
constitutes the primary key in the database. Other properties
may be annotated (on the field or on the get method)
with other annotations such as @Column if the database
column name must differ from the Java property name—
for example, a Java field called firstName might map to the
SQL column GIVEN_NAME. A brieflook at the documentation
might lead one to write Figure 2.

Advances in Software Engineering

The code in Figure 2 may fail mysteriously, because
the specification states that one can only annotate fields
or getters. The code as shown will compile correctly, but
when deployed and run, the misleading error message you
get—if any—depends on whether you are using Hibernate,
EclipseLink, or some other Provider behind JPA. Having
wasted half a day trying to track down this error, the author
concluded that others might make the same mistake (or
similar errors, such as annotating the setter method instead
of the getter, which are generally silently ignored).

Yet it is not just my one error that makes a tool
such as Annabot useful. Consider the scenario of a JPA-
or Hibernate-based enterprise software project undergoing
development and maintenance over several years. While the
odds of an experienced developer annotating a field instead
of a method in JPA (or similar error in the other APIs)
are small, it could happen due to carelessness. Add in a
couple of junior programmers and some tight deadlines,
and the odds increase. The consequences of such a mistake
range from almost none—since JPA does tend to provide
sensible defaults—to considerable time wasted debugging,
what appears to be a correct annotation, the ability to verify
externally that the annotations have been used correctly,
especially considering the almost zero cost of doing so, makes
it very much worthwhile.

And, above all, AnnaBot is not limited to JPA. It
can—with provision of suitable metadata files—be used to
verify correct annotation use in any API that uses Java 5
annotations for runtime discovery of metadata.

The tool works by first reading one or more “claim”
files (the term claim was chosen because assert is already
a keyword in Java), which claim or assert certain valid
conditions about the API(s) being used. It is anticipated that
the tool will gradually acquire a library of “standard” claim
files for the more common APIs (both client- and server-
side) which are using Annotations. For example, Figure 3 is
an example of a partial Assertion file for verifying correct
use of annotations in the Java Persistence API. The JPA
specification [8, Section 2.1.1] states that annotations may
be placed before fields (in which case “field access” via
Reflection is used to load/store the properties from/to the
object) or before the get methods (in which case these meth-
ods and the corresponding set methods are used). It notes
that “the behavior is unspecified if mapping annotations are
applied to both persistent fields and properties or if the XML
descriptor specifies use of different access types within a class
hierarchy.”

As can be seen in Figure 3, the syntax of a claim file
is reminiscent of Java; this is intentional. The import
statement, for example, has the same syntax and semantics
as the like-named statement in Java; it makes annotations
available by their unqualified name. The first if statement
says that any class decorated with the @Entity annotation
must have a method or field annotated with the @Id
annotation—"“data to be persisted must have a primary
key,” in database terms. The methods field.annotated() and
method.annotated() can be called either with a single class
name or, as is done here, with a package wildcard with similar
syntax and semantics as on Java’s import statement (but

Advances in Software Engineering

import javax.persistence.Entity;
import javax.persistence.Id;

claim JPA {

atMostOne

I
noneof

b
}

if (class.annotated(javax.persistence.Entity)) {
require method.annotated(javax.persistence.Id)
|| field.annotated(javax.persistence.Id);
method.annotated(javax.persistence.ANY)
| field.annotated(javax.persistence.ANY)
error "The JPA Spec only allows JPA annotations on methods OR fields";

if (class.annotated(javax.persistence.Embeddable)) {
method.annotated(javax.persistence.Id) |
field.annotated(javax.persistence.Id);

FiGure 3: JPA Claim in AnnaBot DSL.

claim EJB3Type {
atMostOne
class.annotated(javax.ejb.Stateless),

class.annotated(javax.ejb.Stateful)

error "Class has conflicting top-level EJB
annotations"

}

>

F1GURE 4: EJB Claim file in AnnaBot DSL.

public interface PrePostVerify {
void preVerify();
void postVerify();

FIGURE 5: PrePostVerify interface.

with ANY instead due to an apparent issue with the parser
generator). The example also claims that you must not
annotate both methods and fields with JPA annotations.

The second if statement says that Embeddable data
items (items which share the primary key and the row storage
of a “main” Entity) must not have an @Id—FEmbeddable
objects are not allowed to have a different primary key from
the row they are contained in.

As a second example, here is a rudimentary claim file
for one aspect of the Enterprise JavaBean (EJB Version 3.0)
specification [8].

The example in Figure 4 shows use of atMostOne at
class level to confirm that no class is annotated with more
than one of the mutually-exclusive Annotation types listed
(Stateless or Stateful—these are “Session Beans”).
Beside these and Entity, there are other types of EJB that are
less common—the example is not intended to be complete
or comprehensive.

2.1. Cross-Class Tests. There are some tests that cannot be
performed merely by examining a single class. To draw
another example from the Java Persistence API, the choice

between field annotation and accessor annotation must be
consistent not only within a class (as the JPA Claim above
tests) but also across all the classes loaded into a given
“persistence unit”—usually meaning all the JPA entity classes
in an application. The Claim Files shown above cannot
handle this. Annabot has recently been modified to support
Java-based Claim classes having an optional implements
PrePostVerify clause. The PrePostVerify interface
shown in Figure 5 could be used, for example, to allow the
claim to set booleans during the claim testing phase and
examine them in the postVerify method, called as its
name suggests after all that the claim verification has been
completed.

3. Implementation

The basic operation of Annabot’s use of the reflection
API is shown in class AnnaBot0O.java in Figure 6. This
demonstration has no configuration input; it simply hard-
codes a single claim about the Java Persistence Architecture
API, that only methods or only fields be JPA-annotated. This
version was a small, simple proof-of-concept and did one
thing well.

The Java class under investigation is accessed using Java’s
built-in Reflection API [9]. There are other reflection-like
packages for Java such as Javassist [10] and the Apache
Software Foundation’s Byte Code Engineering Language
[11]. Use of the standard API avoids dependencies on
external APIs and avoids both the original author and
potential contributors having to learn an additional APIL.
Figure 6 is a portion of the code from the original AnnaBot0
which determines whether the class under test contains any
fields with JPA annotations.

To make the program generally useful, it was necessary to
introduce some flexibility into the processing. It was decided
to design and implement a Domain-Specific Language [12,
13] to allow declarative rather than procedural specification
of additional checking. One will still be able to extend the
functionality of AnnaBot using Java, but some will find it
more convenient to use the DSL.

The first version of the language uses the Java compiler
to convert claim files into a runnable form. Thus, it is slightly

Field[] fields = c.getDeclaredFields();
boolean fieldHasJpaAnno = false
for (Field field : fields) {
Annotation[] ann =
field.getDeclaredAnnotations();
for (Annotation a : ann) {
Package pkg =
a.annotationType() .
getPackage() ;
if (pkg != null &&
pkg.getName () .
startsWith(
"javax.persistence"))

fieldHasJpaAnno =
true;
break;

}

/I Similar code for checking if any
// JPA annotations are found on methods

// Then the test
if (fieldHasJpaAnno &&

methodHasJpaAnno) {

error ("JPA Annotations should be on methods or
fields, not both");

}

FIGURE 6: Portion of AnnaBot0.java.

package jpa;

import annabot.Claim;
import tree.x*;

public class JPAEntityMethodFieldClaim extends Claim
{
public String getDescription() {
return "JPA Entities may have field
OR method annotations, not both";

public Operator[] getClassFilter() {
return new Operator[] {
new ClassAnnotated(
"javax.persistence.Entity"),

¥

public Operator[] getOperators() {
return new Operator[] {
new AtMostOne (
new FieldAnnotated(
"javax.persistence.*"),
new MethodAnnotated(
"javax.persistence.*",))

F1GURE 7: JPA Claim written in Java.

more verbose than the Annabot Language. Figure 7 is the JPA
claim from AnnaBotO rewritten as a Java-based Claim.

While it is more verbose than the DSL version, it is still
almost entirely declarative. Further, as can be seen, there is a
fairly simple translation between the Java declarative form
and the DSL. The AnnaBotC compiler tool will translate
claim files from the DSL into Java class files.

Advances in Software Engineering

program: import_stmtx*
CLAIM IDENTIFIER °{’

stmt+
’}J
import_stmt: IMPORT NAMEINPACKAGE ’;’

>

// Statement, with or without an

//if ... { stmt } around.

stmt : IF ’(’ checks ’)’ ’{’ phrase+ ’}’ ’;’
| phrase

H
phrase: verb checks error? ’;’

>

verb: REQUIRE | ATMOSTONE | NONEOF;
checks: check
| NOT check
| ¢ check OR check)
| (check AND check)
| ¢ check ’,’ check)

B

check: classAnnotated
| methodAnnotated

| fieldAnnotated;

classAnnotated: CLASS_ANNOTATED ’(°
NAMEINPACKAGE °)’;

methodAnnotated: METHOD_ANNOTATED ° (’
NAMEINPACKAGE °)’;

fieldAnnotated: FIELD_ANNOTATED °’ (’
NAMEINPACKAGE
(’,’” MEMBERNAME)? ’)°

>

error: ERROR QSTRING;

Ficure 8: EBNF for DSL.

The structure of the DSL suggested that an LL or an
LR parser would be adequate. While any type of parser
may in theory be written by hand, software developers have
used parser generator tools for three decades, starting with
the widely-known UNIX tool YACC [14]. There are many
“parser generator” tools available for the Java developer; a
collection of them is maintained on the web [15]. After some
evaluation of the various parser generators, a decision was
made to use Antlr [16]. This was based in part on Parr’s
enthusiasm for his compiler tool, and his comments in [16]
about LR versus LL parsing (YACC is LR, Antlr is LL). “In
contrast, LL recognizers are goal-oriented. They start with
a rule in mind and then try to match the alternatives. For
this reason, LL is easier for humans to understand because it
mirrors our own innate language recognition mechanism. ..”

A basic EBNF description of the AnnaBot input language
is in Figure 8; the lexical tokens (names in upper case) have
been omitted as they are obvious. Figures 3 and 4 provide
examples of the DSL.

This provides sufficient structure for the current design
of the DSL to be matched. The parser has been fully
implemented in Antlr, but the code generation is not yet
implemented. For the present, claims files are written in Java
(as in Figure 7).

Advances in Software Engineering

TaBLE 1: Usage results.

Codebase Kloc En?iltils/ilf(ftal Errors Time (Seconds)
seambay 2.27 7,22 0 0.6
TCP 26.8 94/156 0 ~3 (see Section 4.1)

4. Experiences and Evaluation

The current version has been used to verify a medium-scale
web site that is currently being redeveloped using the Seam
framework; Seam uses JPA and, optionally, EJB components.
The site, which consists of approximately one hundred JPA
“entity” classes and a growing number of controller classes,
is being developed at the Toronto Centre for Phenogenomics,
or TCP [17]. Although AnnaBot has not yet found any
actual claim violations in the TCP software—many of the
Entity classes were generated automatically by the Hibernate
tooling provided for this purpose—AnnaBot provides an
ongoing verification that no incorrect annotation uses are
being added during development. With a small starter set
of four JPA and EJB claims in service, the process takes a
few seconds to verify about a hundred and fifty class files.
It thus has a very low cost for the potential gain of finding a
column that might not get mapped correctly or a constraint
that might be violated at runtime in the database.

As a second example, the program was tested against the
seambay package from the Seam Framework [3] examples
folder. As the name implies, seambay is an auction site, a
small-scale imitation of the well-known eBay.com site. Seam
version 2.2.0.GA provides a version of seambay that has
only 20-30 Java classes depending on version, perhaps to
show how powerful Seam itself is as a framework. AnnaBot
scanned these in 0.6 seconds with four JPA claims, and again
unsurprisingly found no errors (Table 1).

The result of these tests indicate that AnnaBot is a very
low-overhead and functioning method of verifying correct
use of annotations.

4.1. A Note on Performance. The one risk as the program’s
use grows is the O(m n) running time for the testing phase—
for m tests against n target classes, the program must
obviously perform m x n individual tests. To measure this,
I created four additional copies of the JPA Entity claim, to
double the value of m, and re-ran AnnaBot on the TCP
corpus of ~150 classes. Running time for the initialization
phase (discovering and loading classes) actually went down
slightly; running time for the testing phase went from 2.3 sec-
onds with 4 claim files to 3.2 seconds with 8. All times were
measured using Java’s System. currentTimeMillis() on
a basically otherwise idle laptop (An AMD Athlon-64, 3500+,
1800 MHz single core, 2 GB of RAM, running OpenBSD 4.4
with the X Window System and KDE; AnnaBot running in
Eclipse 3.2 using Java JDK 1.6.0), and averaged over 3 or
more runs. These results would indicate that AnnaBot’s per-
formance scales reasonably when running tests. Therefore,
adding a useful library of claim files should not create a
significant obstacle to running the tests periodically.

5. Future Development

As stated above, experience has shown this to be a low-cost
verification method for software. The following enhance-
ments are under consideration for the tool, subject to time
and availability.

5.1. Finish Implementation of the Compiler. The parser is
written and tested, and the DSL-based claims in this paper
have been parsed using the version current as of November,
2009. The parser needs actions added to generate the class; it
is planned to use the Javassist API [10] to generate the .class
file corresponding to the claim file being read.

5.2. Convert from Java Reflection to Javassist. Given the use
of Javassist in the compiler, it may be wise to convert
the inspection code in AnnaBot to use Javassist in the
verification as well. Java’s built-in reflection works well
enough, but it requires that all annotation classes be available
on the CLASSPATH. This can become an irritation in using
AnnaBot; using Javassist to do the code inspection should
eliminate this.

5.3. More Fine-Grained Verification. At present only the
presence or absence of a given annotation can be verified.
For more complete verification, it ought to be possible to
interrogate the attributes within an Annotation, for example,

@Entity @Table(name=“this is not a
valid table name”)

This would, like most of the examples in this paper, be
considered acceptable at compile time (the name element
merely requires a Java String as its value), but would fail at
run time, since “this is not a valid table name” is indeed not
a valid table name in the SQL language of most relational
databases.

Some consideration has been given to a syntax for
this, probably using regular expressions similar to what is
done for method names, but nothing concrete has been
established.

5.4. Run as Plug-in. The Eclipse IDE [18] and the FindBugs
static testing tool [19] are both widely used tools, and both
provide extensibility via plug-ins. However, FindBugs uses
its own mechanism for parsing the binary class files (for an
example, see Listing 4 of Goetz [20]). It may or may not be
feasible to reconcile these differing methods of reading class
files to make AnnaBot usable as a FindBugs plug-in. Failing
this, it would definitely be worth while to make AnnaBot
usable as an Eclipse plug-in, given the wide adoption of
Eclipse in the Java developer community.

6. Related Research

Relatively little attention has been paid to developing tools
that assist in verifying correct use of annotations. Eichberg
et al. [21] produced an Eclipse plug-in which uses a
different, and I think rather clever, approach: they preprocess

the Java class into an XML representation of the byte-code,
then use XPath to query for correct use of annotations.
This allows them to verify some nonannotation-related
attributes of the software’s specification conformance. For
example, they can check that EJB classes have a no-
argument constructor (which Annabot can easily do at
present). They can also verify that such a class does not
create new threads. Annabot cannot do this at present
since that analysis requires inspection of the bytecode to
check for “monitor locking” machine instructions. How-
ever, this is outside my research’s scope of verifying the
correct use of annotations. It could be implemented by
using one of the non-Sun “reflection” APIs mentioned in
Section 3.

The downside of Eichberg’s approach is that all classes
in the target system must be preprocessed, whereas AnnaBot
simply examines target classes by reflection, making it faster
and simpler to use.

Noguera and Pawlak [22] explore an alternate approach.
They produce a rather powerful annotation verifier called
AVal. However, as they point out, “AVal follows the idea that
annotations should describe the way in which they should
be validated, and that self validation is expressed by meta-
annotations (@Validators).” Since my research goal was to
explore validation of existing annotation-based APIs pro-
vided by Sun, SpringSource, Hibernate project, and others,
I did not pursue investigation of procedures that would have
required attempting to convince each API provider to modify
their annotations.

JavaCOP by Andreae [23] provides a very comprehensive
type checking system for Java programs; it provides several
forms of type checking, but goes beyond the use of annota-
tions to provide a complete constraint system.

The work of JSR-305 [24] has been suggested as relevant.
JSR-305 is more concerned with specifying new annotations
for making assertions about standard Java than with ensuring
correct use of annotations in code written to more specialized
APIs. As the project describes itself, “This JSR will work
to develop standard annotations (such as @NonNull) that
can be applied to Java programs to assist tools that detect
software defects.”

Similarly, the work of JSR-308 [25], an offshoot of JSR-
305, has been suggested as relevant, but it is concerned with
altering the syntax of Java itself to extend the number of
places where annotations are allowed. For example, it would
be convenient if annotations could be applied to Java 5+ Type
Parameters. This is not allowed by the compilers at present
but will be when JSR-308 becomes part of the language,
possibly as early as Java 7.

Neither JSR-305 nor JSR-308 provides any support for
finding misplaced annotations.

7. Where to Obtain the Software

The home page on the web for the project is http://www
.darwinsys.com/annabot/.

The source code can be obtained by Anonymous CVS
from the author’s server, using these command-line tools or
their equivalent in an IDE or other tool:

Advances in Software Engineering

export CVSROOT=:pserver:)\
anoncvs@cvs.darwinsys.com:/cvspublic
cvs checkout annabot

Contributions of patches or new Claim files will be most
gratefully received.

Acknowledgments

Research performed in partial fulfillment of the M.Sc degree
at Staffordshire University. The web site development which
led to the idea for AnnaBot was done while under contract
to The Toronto Centre for Phenogenomics [17]; however,
the software was developed and tested on the author’s own
time. Ben Rady suggested the use of Javassist in the Compiler.
Several anonymous reviewers contributed significantly to the
readability and accuracy of this paper.

References

[1] Java 5 Annotations, November 2009, http://java.sun.com/
j2se/1.5.0/docs/guide/language/annotations.html.

[2] Spring Framework Home Page, October 2009, http://www
.springsource.org/.

[3] G. King, “Seam Web/JavaEE Framework,” October 2009,
http://www.seamframework.org/.

[4] L. Goldschlager, Computer Science: A Modern Introduction,
Prentice-Hall, Upper Saddle River, NJ, USA, 1992.

[5] J. Voas, et al, “A Testability-based Assertion Placement
Tool for Object-Oriented Software,” October 1997, http://
hissa.nist.gov/latex/htmlver.html.

[6] “Java Programming with Assertions,” November 2009,
http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html.

[7] J. A. Darringer, “The application of program verification
techniques to hardware verification,” in Proceedings of the
Annual ACM IEEE Design Automation Conference, pp. 373—
379, ACM, 1988.

[8] “EJB3 and JPA Specifications,” November 2009, http://jcp.org/
aboutJava/communityprocess/final/jsr220/index.html.

[9] L Darwin, “The reflection API,” in Java Cookbook, chapter 25,
O’Reilly, Sebastopol, Calif, USA, 2004.

[10] Javassist bytecode manipulation library, November 2009,
http://www.csg.is.titech.ac.jp/~chiba/javassist/.

[11] Apache BCEL—Byte Code Engineering Library, November
2009, http://jakarta.apache.org/bcel/.

[12] J. Bentley, “Programming pearls: little languages,” Communi-
cations of the ACM, vol. 29, no. 8, pp. 711-721, 1986.

[13] I. Darwin, “PageUnit: A “Little Language” for Testing
Web Applications,” Staffordshire University report, 2006,
http://www.pageunit.org/.

[14] S. Johnson, “YACC: yet another compiler-compiler,” Tech.
Rep. CSTR-32, Bell Laboratories, Madison, Wis, USA, 1978.

[15] “Open Source Parser Generators in Java,” April 2009, http://
java-source.net/open-source/parser-generators.

[16] T. Parr, The Definitive ANTLR Reference: Building Domain-
Specific Languages, Pragmatic Bookshelf, Raleigh, NC, USA,
2007.

[17] Toronto Centre for Phenogenomics, April 2009, http://www
.phenogenomics.ca/.

[18] Eclipse Foundation, Eclipse IDE project, November 2009,
http://www.eclipse.org/.

Advances in Software Engineering

(19]

(20]

(21]

[22]

(23]

(24]
(25]

D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM
SIGPLAN Notices, vol. 39, no. 12, pp. 92-106, 2004.

B. Goetz, “Java theory and practice: testing with leverage—
part 1, April 2009, http://www.ibm.com/developerworks/
library/j-jtp06206.html.

M. Eichberg, T. Schifer, and M. Mezini, “Using annotations
to check structural properties of classes,” in Proceedings of the
8th International Conference on Fundamental Approaches to
Software Engineering (FASE °05), pp. 237-252, Edinburgh, UK,
April 2005.

C. Noguera and R. Pawlak, “AVal: an extensible attribute-
oriented programming validator for Java,” in Proceedings of
the 6th IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM *06), pp. 175-183, Philadelphia, Pa,
USA, September 2006.

C. Andreae, “JavaCOP—User-defined Constraints on Java
Programs,” November 2009, http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.96.3014&rep=rep 1 &type=pdf.
JSR-305, November 2009, http://jcp.org/en/jsr/detail?id=305.
JSR-308, November 2009, http://jcp.org/en/jsr/detail?id=308.

Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 620836, 18 pages
doi:10.1155/2010/620836

Research Article
Software Test Automation in Practice: Empirical Observations

Jussi Kasurinen, Ossi Taipale, and Kari Smolander

Department of Information Technology, Laboratory of Software Engineering, Lappeenranta University of Technology,
P.O. Box 20, 53851 Lappeenranta, Finland

Correspondence should be addressed to Jussi Kasurinen, jussi.kasurinen@lut.fi
Received 10 June 2009; Revised 28 August 2009; Accepted 5 November 2009
Academic Editor: Phillip Laplante

Copyright © 2010 Jussi Kasurinen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The objective of this industry study is to shed light on the current situation and improvement needs in software test automation. To
this end, 55 industry specialists from 31 organizational units were interviewed. In parallel with the survey, a qualitative study was
conducted in 12 selected software development organizations. The results indicated that the software testing processes usually
follow systematic methods to a large degree, and have only little immediate or critical requirements for resources. Based on
the results, the testing processes have approximately three fourths of the resources they need, and have access to a limited, but
usually sufficient, group of testing tools. As for the test automation, the situation is not as straightforward: based on our study, the
applicability of test automation is still limited and its adaptation to testing contains practical difficulties in usability. In this study,

we analyze and discuss these limitations and difficulties.

1. Introduction

Testing is perhaps the most expensive task of a software
project. In one estimate, the testing phase took over 50%
of the project resources [1]. Besides causing immediate
costs, testing is also importantly related to costs related to
poor quality, as malfunctioning programs and errors cause
large additional expenses to software producers [1, 2]. In
one estimate [2], software producers in United States lose
annually 21.2 billion dollars because of inadequate testing
and errors found by their customers. By adding the expenses
caused by errors to software users, the estimate rises to
59.5 billion dollars, of which 22.2 billion could be saved by
making investments on testing infrastructure [2]. Therefore
improving the quality of software and effectiveness of the
testing process can be seen as an effective way to reduce
software costs in the long run, both for software developers
and users.

One solution for improving the effectiveness of software
testing has been applying automation to parts of the testing
work. In this approach, testers can focus on critical software
features or more complex cases, leaving repetitive tasks to
the test automation system. This way it may be possible to

use human resources more efficiently, which consequently
may contribute to more comprehensive testing or savings in
the testing process and overall development budget [3]. As
personnel costs and time limitations are significant restraints
of the testing processes [4, 5], it also seems like a sound
investment to develop test automation to get larger coverage
with same or even smaller number of testing personnel.
Based on market estimates, software companies worldwide
invested 931 million dollars in automated software testing
tools in 1999, with an estimate of at least 2.6 billion dollars
in 2004 [6]. Based on these figures, it seems that the
application of test automation is perceived as an important
factor of the test process development by the software
industry.

The testing work can be divided into manual testing
and automated testing. Automation is usually applied to
running repetitive tasks such as unit testing or regression
testing, where test cases are executed every time changes are
made [7]. Typical tasks of test automation systems include
development and execution of test scripts and verification of
test results. In contrast to manual testing, automated testing
is not suitable for tasks in which there is little repetition [8],
such as explorative testing or late development verification

tests. For these activities manual testing is more suitable, as
building automation is an extensive task and feasible only
if the case is repeated several times [7, 8]. However, the
division between automated and manual testing is not as
straightforward in practice as it seems; a large concern is also
the testability of the software [9], because every piece of code
can be made poorly enough to be impossible to test it reliably,
therefore making it ineligible for automation.

Software engineering research has two key objectives: the
reduction of costs and the improvement of the quality of
products [10]. As software testing represents a significant
part of quality costs, the successful introduction of test
automation infrastructure has a possibility to combine these
two objectives, and to overall improve the software testing
processes. In a similar prospect, the improvements of the
software testing processes are also at the focus point of the
new software testing standard ISO 29119 [11]. The objective
of the standard is to offer a company-level model for the
test processes, offering control, enhancement and follow-up
methods for testing organizations to develop and streamline
the overall process.

In our prior research project [4, 5, 12-14], experts
from industry and research institutes prioritized issues of
software testing using the Delphi method [15]. The experts
concluded that process improvement, test automation with
testing tools, and the standardization of testing are the
most prominent issues in concurrent cost reduction and
quality improvement. Furthermore, the focused study on
test automation [4] revealed several test automation enablers
and disablers which are further elaborated in this study.
Our objective is to observe software test automation in
practice, and further discuss the applicability, usability and
maintainability issues found in our prior research. The
general software testing concepts are also observed from the
viewpoint of the ISO 29119 model, analysing the test process
factors that create the testing strategy in organizations. The
approach to achieve these objectives is twofold. First, we wish
to explore the software testing practices the organizations are
applying and clarify the current status of test automation
in the software industry. Secondly, our objective is to
identify improvement needs and suggest improvements for
the development of software testing and test automation
in practice. By understanding these needs, we wish to
give both researchers and industry practitioners an insight
into tackling the most hindering issues while providing
solutions and proposals for software testing and automation
improvements.

The study is purely empirical and based on observa-
tions from practitioner interviews. The interviewees of this
study were selected from companies producing software
products and applications at an advanced technical level.
The study included three rounds of interviews and a
questionnaire, which was filled during the second interview
round. We personally visited 31 companies and carried out
55 structured or semistructured interviews which were tape-
recorded for further analysis. The sample selection aimed to
represent different polar points of the software industry; the
selection criteria were based on concepts such as operating
environments, product and application characteristics (e.g.,

Advances in Software Engineering

criticality of the products and applications, real time opera-
tion), operating domain and customer base.

The paper is structured as follows. First, in Section 2
we introduce comparable surveys and related research.
Secondly, the research process and the qualitative and
quantitative research methods are described in Section 3.
Then the survey results are presented in Section 4 and
the interview results are presented in Section 5. Finally,
the results and observations and their validity are dis-
cussed in Section 6 and closing conclusions are discussed in
Section 7.

2. Related Research

Besides our prior industry-wide research in testing [4, 5, 12—
14], software testing practices and test process improvement
have also been studied by others, like Ng et al. [16]
in Australia. Their study applied the survey method to
establish knowledge on such topics as testing methodologies,
tools, metrics, standards, training and education. The study
indicated that the most common barrier to developing
testing was the lack of expertise in adopting new testing
methods and the costs associated with testing tools. In
their study, only 11 organizations reported that they met
testing budget estimates, while 27 organizations spent 1.5
times the estimated cost in testing, and 10 organizations
even reported a ratio of 2 or above. In a similar vein,
Torkar and Mankefors [17] surveyed different types of
communities and organizations. They found that 60% of
the developers claimed that verification and validation were
the first to be neglected in cases of resource shortages
during a project, meaning that even if the testing is
important part of the project, it usually is also the first
part of the project where cutbacks and downscaling are
applied.

As for the industry studies, a similar study approach
has previously been used in other areas of software engi-
neering. For example, Ferreira and Cohen [18] completed
a technically similar study in South Africa, although their
study focused on the application of agile development and
stakeholder satisfaction. Similarly, Li et al. [19] conducted
research on the COTS-based software development process
in Norway, and Chen et al. [20] studied the application
of open source components in software development in
China. Overall, case studies covering entire industry sectors
are not particularly uncommon [21, 22]. In the context of
test automation, there are several studies and reports in
test automation practices (such as [23-26]). However, there
seems to be a lack of studies that investigate and compare the
practice of software testing automation in different kinds of
software development organizations.

In the process of testing software for errors, testing
work can be roughly divided into manual and automated
testing, which both have individual strengths and weak-
nesses. For example, Ramler and Wolfmaier [3] summarize
the difference between manual and automated testing by
suggesting that automation should be used to prevent further
errors in working modules, while manual testing is better
suited for finding new and unexpected errors. However, how

Advances in Software Engineering

and where the test automation should be used is not so
straightforward issue, as the application of test automation
seems to be a strongly diversified area of interest. The
application of test automation has been studied for example
in test case generation [27, 28], GUI testing [29, 30] and
workflow simulators [31, 32] to name a few areas. Also
according to Bertolino [33], test automation is a significant
area of interest in current testing research, with a focus
on improving the degree of automation by developing
advanced techniques for generating the test inputs, or by
finding support procedures such as error report generation
to ease the supplemental workload. According to the same
study, one of the dreams involving software testing is 100%
automated testing. However, for example Bach’s [23] study
observes that this cannot be achieved, as all automation
ultimately requires human intervention, if for nothing else,
then at least to diagnose results and maintain automation
cases.

The pressure to create resource savings are in many
case the main argument for test automation. A simple and
straightforward solution for building automation is to apply
test automation just on the test cases and tasks that were
previously done manually [8]. However, this approach is
usually unfeasible. As Persson and Yilmaztiirk [26] note,
the establishment of automated testing is a costly, high risk
project with several real possibilities for failure, commonly
called as “pitfalls” One of the most common reasons why
creating test automation fails, is that the software is not
designed and implemented for testability and reusability,
which leads to architecture and tools with low reusability
and high maintenance costs. In reality, test automation sets
several requisites on a project and has clear enablers and
disablers for its suitability [4, 24]. In some reported cases
[27, 34, 35], it was observed that the application of test
automation with an ill-suited process model may be even
harmful to the overall process in terms of productivity or
cost-effectiveness.

Models for estimating testing automation costs, for
example by Ramler and Wolfmaier [3], support decision-
making in the tradeoff between automated and manual
testing. Berner et al. [8] also estimate that most of the test
cases in one project are run at least five times, and one
fourth over 20 times. Therefore the test cases, which are done
constantly like smoke tests, component tests and integration
tests, seem like ideal place to build test automation. In any
case, there seems to be a consensus that test automation
is a plausible tool for enhancing quality, and consequently,
reducing the software development costs in the long run if
used correctly.

Our earlier research on the software test automation [4]
has established that test automation is not as straightforward
to implement as it may seem. There are several characteristics
which enable or disable the applicability of test automation.
In this study, our decision was to study a larger group of
industry organizations and widen the perspective for further
analysis. The objective is to observe, how the companies have
implemented test automation and how they have responded
to the issues and obstacles that affect its suitability in practice.
Another objective is to analyze whether we can identify new

kind of hindrances to the application of test automation
and based on these findings, offer guidelines on what
aspects should be taken into account when implementing test
automation in practice.

3. Research Process

3.1. Research Population and Selection of the Sample. The
population of the study consisted of organization units
(OUs). The standard ISO/IEC 15504-1 [36] specifies an
organizational unit (OU) as a part of an organization that is
the subject of an assessment. An organizational unit deploys
one or more processes that have a coherent process context
and operates within a coherent set of business goals. An
organizational unit is typically part of a larger organization,
although in a small organization, the organizational unit may
be the whole organization.

The reason to use an OU as the unit for observation
was that we wanted to normalize the effect of the company
size to get comparable data. The initial population and
population criteria were decided based on the prior research
on the subject. The sample for the first interview round
consisted of 12 OUs, which were technically high level units,
professionally producing software as their main process. This
sample also formed the focus group of our study. Other
selection criteria for the sample were based on the polar type
selection [37] to cover different types of organizations, for
example different businesses, different sizes of the company,
and different kinds of operation. Our objective of using this
approach was to gain a deep understanding of the cases and
to identify, as broadly as possible, the factors and features that
have an effect on software testing automation in practice.

For the second round and the survey, the sample was
expanded by adding OUs to the study. Selecting the sample
was demanding because comparability is not determined
by the company or the organization but by comparable
processes in the OUs. With the help of national and local
authorities (the network of the Finnish Funding Agency for
Technology and Innovation) we collected a population of 85
companies. Only one OU from each company was accepted
to avoid the bias of over-weighting large companies. Each
OU surveyed was selected from a company according to
the population criteria. For this round, the sample size was
expanded to 31 OUs, which also included the OUs from
the first round. The selection for expansion was based on
probability sampling; the additional OUs were randomly
entered into our database, and every other one was selected
for the survey. In the third round, the same sample as
in the first round was interviewed. Table 1 introduces the
business domains, company sizes and operating areas of our
focus OUs. The company size classification is taken from
[38].

3.2. Interview Rounds. The data collection consisted of
three interview rounds. During the first interview round,
the designers responsible for the overall software structure
and/or module interfaces were interviewed. If the OU did
not have separate designers, then the interviewed person
was selected from the programmers based on their role in

4 Advances in Software Engineering
TABLE 1: Description of the interviewed focus OUs (see also the appendix).

ou Business Company size!/Operation

Case A MES! producer and electronics manufacturer Small/National

Case B Internet service developer and consultant Small/National

Case C Logistics software developer Large/National

Case D ICT consultant Small/National

Case E Safety and logistics system developer Medium/National

Case F Naval software system developer Medium/International

Case G Financial software developer Large/National

Case H MES! producer and logistics service systems provider Medium/International

Case I SME? business and agriculture ICT service provider Small/National

Case] Modeling software developer Large/International

Case K ICT developer and consultant Large/International

Case L Financial software developer Large/International

' Manufacturing Execution System; 2Small and Medium-sized Enterprise, definition [38].

the process to match as closely as possible to the desired
responsibilities. The interviewees were also selected so that
they came from the same project, or from positions where
the interviewees were working on the same product. The
interviewees were not specifically told not to discuss the
interview questions together, but this behavior was not
encouraged either. In a case where an interviewee asked for
the questions or interview themes beforehand, the person
was allowed access to them in order to prepare for the
meeting. The interviews in all three rounds lasted about an
hour and had approximately 20 questions related to the test
processes or test organizations. In two interviews, there was
also more than one person present.

The decision to interview designers in the first round was
based on the decision to gain a better understanding on the
test automation practice and to see whether our hypothesis
based on our prior studies [4, 5, 12—-14] and supplementing
literature review were still valid. During the first interview
round, we interviewed 12 focus OUs, which were selected to
represent different polar types in the software industry. The
interviews contained semi-structured questions and were
tape-recorded for qualitative analysis. The initial analysis
of the first round also provided ingredients for the further
elaboration of important concepts for the latter rounds. The
interview rounds and the roles of the interviewees in the case
OUs are described in Table 2.

The purpose of the second combined interview and
survey round was to collect multiple choice survey data and
answers to open questions which were based on the first
round interviews. These interviews were also tape-recorded
for the qualitative analysis of the focus OUs, although the
main data collection method for this round was a structured
survey. In this round, project or testing managers from
310Us, including the focus OUs, were interviewed. The
objective was to collect quantitative data on the software
testing process, and further collect material on different
testing topics, such as software testing and development. The
collected survey data could also be later used to investigate
observations made from the interviews and vice versa, as
suggested in [38]. Managers were selected for this round,

as they tend to have more experience on software projects,
and have a better understanding of organizational and
corporation level concepts and the overall software process
beyond project-level activities.

The interviewees of the third round were testers or, if the
OU did not have separate testers, programmers who were
responsible for the higher-level testing tasks. The interviews
in these rounds were also semi-structured and concerned the
work of the interviewees, problems in testing (e.g., increasing
complexity of the systems), the use of software components,
the influence of the business orientation, testing resources,
tools, test automation, outsourcing, and customer influence
for the test processes.

The themes in the interview rounds remained similar, but
the questions evolved from general concepts to more detailed
ones. Before proceeding to the next interview round, all
interviews with the focus OUs were transcribed and analyzed
because new understanding and ideas emerged during the
data analysis. This new understanding was reflected in the
next interview rounds. The themes and questions for each
of the interview rounds can be found on the project website
http://www2.it.lut.fi/project/ MASTO/.

3.3. Grounded Analysis Method. The grounded analysis
was used to provide further insight into the software
organizations, their software process and testing policies.
By interviewing people of different positions from the
production organization, the analysis could gain additional
information on testing- and test automation-related con-
cepts like different testing phases, test strategies, testing tools
and case selection methods. Later this information could
be compared between organizations, allowing hypotheses
on test automation applicability and the test processes
themselves.

The grounded theory method contains three data analy-
sis steps: open coding, axial coding and selective coding. The
objective for open coding is to extract the categories from the
data, whereas axial coding identifies the connections between
the categories. In the third phase, selective coding, the core
category is identified and described [39]. In practice, these

Advances in Software Engineering

TaBLE 2: Interviewee roles and interview rounds.

Round type Number of interviews

Interviewee role

Description

(1) Semistructured 12 focus OUs

31 OUs quantitative,
including 12 focus
OUs qualitative

(2) Structured/
Semistructured

(3) Semistructured 12 focus OUs

Designer or
Programmer

Project or testing
manager

The interviewee is responsible for software design
or has influence on how software is implemented
The interviewee is responsible for software
development projects or test processes of software
products

The interviewee is a dedicated software tester or is
responsible for testing the software product

Tester

steps overlap and merge because the theory development
process proceeds iteratively. Additionally, Strauss and Corbin
[40] state that sometimes the core category is one of the
existing categories, and at other times no single category is
broad enough to cover the central phenomenon.

The objective of open coding is to classify the data into
categories and identify leads in the data, as shown in Table 3.
The interview data is classified to categories based on the
main issue, with observation or phenomenon related to it
being the codified part. In general, the process of grouping
concepts that seem to pertain to the same phenomena is
called categorizing, and it is done to reduce the number
of units to work with [40]. In our study, this was done
using ATLAS.ti software [41]. The open coding process
started with “seed categories” [42] that were formed from
the research question and objectives, based on the literature
study on software testing and our prior observations [4, 5,
12-14] on software and testing processes. Some seed cate-
gories, like “knowledge management”, “service-orientation”
or “approach for software development” were derived from
our earlier studies, while categories like “strategy for testing”,
“outsourcing’, “customer impact” or “software testing tools”
were taken from known issues or literature review observa-
tions.

The study followed the approach introduced by Seaman
[43], which notes that the initial set of codes (seed categories)
comes from the goals of the study, the research questions, and
predefined variables of interest. In the open coding, we added
new categories and merged existing categories to others if
they seemed unfeasible or if we found a better generalization.
Especially at the beginning of the analysis, the number
of categories and codes quickly accumulated and the total
number of codes after open coding amounted to 164 codes
in 12 different categories. Besides the test process, software
development in general and test automation, these categories
also contained codified observations on such aspects as the
business orientation, outsourcing, and product quality.

After collecting the individual observations to categories
and codes, the categorized codes were linked together based
on the relationships observed in the interviews. For example,
the codes “Software process: Acquiring 3rd party modules”,
“Testing strategy: Testing 3rd party modules”, and “Problem:
Knowledge management with 3rd party modules” were
clearly related and therefore we connected them together
in axial coding. The objective of axial coding is to further
develop categories, their properties and dimensions, and find

causal, or any kinds of, connections between the categories
and codes.

For some categories, the axial coding also makes it pos-
sible to define dimension for the phenomenon, for example
“Personification-Codification” for “Knowledge management
strategy”, where every property could be defined as a point
along the continuum defined by the two polar opposites.
For the categories that are given dimension, the dimension
represented the locations of the property or the attribute
of a category [40]. Obviously for some categories, which
were used to summarize different observations like enhance-
ment proposals or process problems, defining dimensions
was unfeasible. We considered using dimensions for some
categories like “criticality of test automation in testing
process” or “tool sophistication level for automation tools”
in this study, but discarded them later as they yielded only
little value to the study. This decision was based on the
observation that values of both dimensions were outcomes
of the applied test automation strategy, having no effect on
the actual suitability or applicability of test automation to the
organization’s test process.

Our approach for analysis of the categories included
Within-Case Analysis and Cross-Case-Analysis, as speci-
fied by Eisenhardt [37]. We used the tactic of selecting
dimensions and properties with within-group similarities
coupled with inter-group differences [37]. In this strategy,
our team isolated one phenomenon that clearly divided
the organizations to different groups, and searched for
explaining differences and similarities from within these
groups. Some of the applied features were, for example, the
application of agile development methods, the application
of test automation, the size [38] difference of originating
companies and service orientation. As for one central
result, the appropriateness of OU as a comparison unit was
confirmed based on our size difference-related observations
on the data; the within-group- and inter-group comparisons
did yield results in which the company size or company
policies did not have strong influence, whereas the local,
within-unit policies did. In addition, the internal activities
observed in OUs were similar regardless of the originating
company size, meaning that in our study the OU comparison
was indeed feasible approach.

We established and confirmed each chain of evidence in
this interpretation method by discovering sufficient citations
or finding conceptually similar OU activities from the case
transcriptions. Finally, in the last phase of the analysis,

Advances in Software Engineering

TABLE 3: Open coding of the interview data.

Interview transcript

Codes, Category: Code

“Well, I would hope for stricter control or management for implementing our testing strategy, as
am not sure if our testing covers everything and is it sophisticated enough. On the other hand, we
do have strictly limited resources, so it can be enhanced only to some degree, we cannot test
everything. And perhaps, recently we have had, in the newest versions, some regression testing,
going through all features, seeing if nothing is broken, but in several occasions this has been left
unfinished because time has run out. So there, on that issue we should focus.”

Enhancement proposal:
Developing testing strategy

Strategy for testing: Ensuring
case coverage

Problem: Lack of resources

Problem: Lack of time

in selective coding, our objective was to identify the core
category [40]—a central phenomenon—and systematically
relate it to other categories and generate the hypothesis and
the theory. In this study, we consider test automation in prac-
tice as the core category, to which all other categories were
related as explaining features of applicability or feasibility.

The general rule in grounded theory is to sample until
theoretical saturation is reached. This means (1) no new
or relevant data seem to emerge regarding a category, (2)
the category development is dense, insofar as all of the
paradigm elements are accounted for, along with variation
and process, and (3) the relationships between categories
are well established and validated [40]. In our study, the
saturation was reached during the third round, where no
new categories were created, merged, or removed from
the coding. Similarly, the attribute values were also stable,
that is, the already discovered phenomena began to repeat
themselves in the collected data. As an additional way
to ensure the validity of our study and avoid validity
threats [44], four researchers took part in the data analysis.
The bias caused by researchers was reduced by combining
the different views of the researchers (observer triangu-
lation) and a comparison with the phenomena observed
in the quantitative data (methodological triangulation)
(44, 45].

3.4. The Survey Instrument Development and Data Collection.
The survey method described by Fink and Kosecoff [46]
was used as the research method in the second round.
An objective for a survey is to collect information from
people about their feelings and beliefs. Surveys are most
appropriate when information should come directly from
the people [46]. Kitchenham et al. [47] divide comparable
survey studies into exploratory studies from which only weak
conclusions can be drawn, and confirmatory studies from
which strong conclusions can be drawn. We consider this
study as an exploratory, observational, and cross-sectional
study that explores the phenomenon of software testing
automation in practice and provides more understanding to
both researchers and practitioners.

To obtain reliable measurements in the survey, a vali-
dated instrument was needed, but such an instrument was
not available in the literature. However, Dyba [48] has
developed an instrument for measuring the key factors of
success in software process improvement. Our study was
constructed based on the key factors of this instrument, and
supplemented with components introduced in the standards
ISO/IEC 29119 [11] and 25010 [49]. We had the possibility

to use the current versions of the new standards because one
of the authors is a member of the JTC1/SC7/WG26, which
is developing the new software testing standard. Based on
these experiences a measurement instrument derived from
the ISO/IEC 29119 and 25010 standards was used.

The survey consisted of a questionnaire (available at
http://www2.it.lut.fi/project/ MASTO/) and a face-to-face
interview. Selected open-ended questions were located at the
end of the questionnaire to cover some aspects related to our
qualitative study. The classification of the qualitative answers
was planned in advance.

The questionnaire was planned to be answered during
the interview to avoid missing answers because they make
the data analysis complicated. All the interviews were tape-
recorded, and for the focus organizations, further quali-
tatively analyzed with regard to the additional comments
made during the interviews. Baruch [50] also states that
the average response rate for self-assisted questionnaires is
55.6%, and when the survey involves top management or
organizational representatives the response rate is 36.1%. In
this case, a self-assisted, mailed questionnaire would have
led to a small sample. For these reasons, it was rejected, and
personal interviews were selected instead. The questionnaire
was piloted with three OUs and four private persons.

If an OU had more than one respondent in the inter-
view, they all filled the same questionnaire. Arranging the
interviews, traveling and interviewing took two months of
calendar time. Overall, we were able to accomplish 0.7 survey
interviews per working day on an average. One researcher
conducted 80% of the interviews, but because of the
overlapping schedules also two other researchers participated
in the interviews. Out of the contacted 42 OUs, 11 were
rejected because they did not fit the population criteria in
spite of the source information, or it was impossible to fit the
interview into the interviewee’s schedule. In a few individual
cases, the reason for rejection was that the organization
refused to give an interview. All in all, the response rate was,
therefore, 74%.

4. Testing and Test Automation in
Surveyed Organizations

4.1. General Information of the Organizational Units. The
interviewed OUs were parts of large companies (55%)
and small and medium-sized enterprises (45%). The OUs
belonged to companies developing information systems
(11 OUs), IT services (50Us), telecommunication (4 OUs),

Advances in Software Engineering

IT development 11
IT services 5
Finances 4
Telecommunications 4
Ind. automation 3
Metal industry 2
Logistics 1

Public sector 1

FiGure 1: Application domains of the companies.

TaBLE 4: Interviewed OUs.

Max. Min. Median

Number of employees in 350000 4 315
the company.
Number of SW developers

600 0! 30
and testers in the OU.
.I’ercegtage of automation 90 0 10
in testing.
Percentage of agile
(reactlv.e, iterative) versus 100 0 30
plan driven methods in
projects.
Percentage of existing
testers versus resources 100 10 75

need.

How many percent of the

development effort is spent 70 02 25
on testing?

'0 means that all of the OUs developers and testers are acquired from 3rd
parties.
20 means that no project time is allocated especially for testing.

finance (4OUs), automation systems (3 OUs), the metal
industry (20Us), the public sector (1 OU), and logistics
(10U). The application domains of the companies are
presented in Figure 1. Software products represented 63% of
the turnover, and services (e.g., consulting, subcontracting,
and integration) 37%.

The maximum number of personnel in the companies
to which the OUs belonged was 350 000, the minimum was
four, and the median was 315. The median of the software
developers and testers in the OUs was 30 persons. OUs
applied automated testing less than expected, the median of
the automation in testing being 10%. Also, the interviewed
OUs utilized agile methods less than expected: the median
of the percentage of agile (reactive, iterative) versus plan
driven methods in projects was 30%. The situation with
human resources was better than what was expected, as
the interviewees estimated that the amount of human
resources in testing was 75%. When asking what percent
of the development effort was spent on testing, the median
of the answers was 25%. The cross-sectional situation of
development and testing in the interviewed OUs is illustrated
in Table 4.

7
Survey average |— 70
— R I
Case L 0Ly
Case K =5 -
Case] - - 7
Case I = S— 70
'E 10
Case H | 30 | 60
Case G | —_—— %
Case F 75
Case E
Case D
Case C | — 28
Case B . 60
Case A 10
T 0 T
0 20 40 60 80 100

O Percentage of project effort allocated
solely to testing

B Percentage of tests resources from optimal
amount (has 2 needs 3 equals 66%)

O Percentage of test automation from all test
cases

F1GURE 2: Amount of test resources and test automation in the focus
organizations of the study and the survey average.

The amount of testing resources was measured by
three figures; first the interviewee was asked to evaluate
the percentage from total project effort allocated solely to
testing. The survey average was 27%, the maximum being
70% and the minimum 0%, meaning that the organization
relied solely on testing efforts carried out in parallel with
development. The second figure was the amount of test
resources compared to the organizational optimum. In this
figure, if the company had two testers and required three,
it would have translated as 66% of resources. Here the
average was 70%; six organizations (19%) reported 100%
resource availability. The third figure was the number of
automated test cases compared to all of the test cases in all of
the test phases the software goes through before its release.
The average was 26%, varying between different types of
organizations and project types. The results are presented
in Figure 2, in which the qualitative study case OUs are also
presented for comparison. The detailed descriptions for each
case organization are available in the appendix.

4.2. General Testing Items. The survey interviewed 31 orga-
nization managers from different types of software industry.
The contributions of the interviewees were measured using
a five-point Likert scale where 1 denoted “I fully disagree”
and 5 denoted “I fully agree”. The interviewees emphasized
that quality is built in development (4.3) rather than in
testing (2.9). Then the interviewees were asked to estimate
their organizational testing practices according to the new
testing standard ISO/IEC 29119 [11], which identifies four
main levels for testing processes: the test policy, test strategy,
test management and testing. The test policy is the company
level guideline which defines the management, framework

Quality is built in development
Quality is built in testing

The OUs test policy is excellent

The OUs test strategy
is excellent
The OUs test management
is excellent

The OUs test execution
is excellent

1 15 2 25 3 35 4 45 5

FIGURE 3: Levels of testing according to the ISO/IEC 29119
standard.

Conformance testing is

I I I I
excellent ‘ ‘ ‘ ‘ 13.3
System testing is excellent] 3.6
Functional testing is | ‘ ‘ ‘ ‘ ‘
excellent ‘ ‘ ‘ ‘ 138
Usability testing is excellent 1 3.1
[[]

Integration testing is | 13
excellent

Unit testing is excellent 28

1 15 2 25 3 35 4 45 5

FIGURE 4: Testing phases in the software process.

and general guidelines, the test strategy is an adaptive model
for the preferred test process, test management is the control
level for testing in a software project, and finally, testing
is the process of conducting test cases. The results did not
make a real difference between the lower levels of testing (test
management level and test levels) and higher levels of testing
(organizational test policy and organizational test strategy).
All in all, the interviewees were rather satisfied with the
current organization of testing. The resulted average levels
from quantitative survey are presented in Figure 3.

Besides the organization, the test processes and test
phases were also surveyed. The five-point Likert scale with
the same one to five—one being fully disagree and five
tully agree—grading method was used to determine the
correctness of different testing phases. Overall, the latter
test phases—system, functional testing—were considered
excellent or very good, whereas the low level test phases
such as unit testing and integration received several low-
end scores. The organizations were satisfied or indifferent
towards all test phases, meaning that there were no strong
focus areas for test organization development. However,
based on these results it seems plausible that one effective
way to enhance testing would be to support low-level testing
in unit and integration test phases. The results are depicted
in Figure 4.

Finally, the organizations surveyed were asked to rate
their testing outcomes and objectives (Figure 5). The first
three items discussed the test processes of a typical software
project. There seems to be a strong variance in testing
schedules and time allocation in the organizations. The
outcomes 3.2 for schedule and 3.0 for time allocation do
not give any information by themselves, and overall, the
direction of answers varied greatly between “Fully disagree”
and “Fully agree”. However, the situation with test processes

Advances in Software Engineering

Testing stays in schedule

Testing phases are kept

Testing has enough time

We have identified the most
important quality attributes

We have prioritized the most

important quality attributes

F1GURE 5: Testing process outcomes.

was somewhat better; the result 3.5 may also not be a
strong indicator by itself, but the answers had only little
variance, 20 OUs answering “somewhat agree” or “neutral”.
This indicates that even if the time is limited and the project
schedule restricts testing, the testing generally goes through
the normal, defined, procedures.

The fourth and fifth items were related to quality aspects,
and gave insights into the clarity of testing objectives. The
results of 3.7 for the identification of quality attributes
indicate that organizations tend to have objectives for the
test processes and apply quality criteria in development.
However, the prioritization of their quality attributes is not
as strong (3.3) as identification.

4.3. Testing Environment. The quality aspects were also
reflected in the employment of systematic methods for the
testing work. The majority (61%) of the OUs followed
a systematic method or process in the software testing,
13% followed one partially, and 26% of the OUs did not
apply any systematic method or process in testing. Process
practices were derived from, for example, TPI (Test Process
Improvement) [51] or the Rational Unified Process (RUP)
[52]. Few Agile development process methods such as
Scrum [53] or XP (eXtreme Programming) [54] were also
mentioned.

A systematic method is used to steer the software project,
but from the viewpoint of testing, the process also needs
an infrastructure on which to operate. Therefore, the OUs
were asked to report which kind of testing tools they apply to
their typical software processes. The test management tools,
tools which are used to control and manage test cases and
allocate testing resources to cases, turned out to be the most
popular category of tools; 15 OUs out of 31 reported the use
of this type of tool. The second in popularity were manual
unit testing tools (12 OUs), which were used to execute test
cases and collect test results. Following them were tools to
implement test automation, which were in use in 9 OUs,
performance testing tools used in 8 OUs, bug reporting tools
in 7 OUs and test design tools in 7 OUs. Test design tools were
used to create and design new test cases. The group of other
tools consisted of, for example, electronic measurement
devices, test report generators, code analyzers, and project

Advances in Software Engineering

Test case management
Unit testing

Test automation
Performance testing
Bug reporting

Test design software
Quality control tools

Other

FIGURE 6: Popularity of the testing tools according to the survey.

management tools. The popularity of the testing tools in
different survey organizations is illustrated in Figure 6.

The respondents were also asked to name and explain
the three most efficient application areas of test automation
tools. Both the format of the open-ended questions and the
classification of the answers were based on the like best (LB)
technique adopted from Fink and Kosecoff [46]. According
to the LB technique, respondents were asked to list points
they considered the most efficient. The primary selection
was the area in which the test automation would be the
most beneficial to the test organization, the secondary one
is the second best area of application, and the third one is
the third best area. The interviewees were also allowed to
name only one or two areas if they were unable to decide
on three application areas. The results revealed the relative
importance of software testing tools and methods.

The results are presented in Figure 7. The answers were
distributed rather evenly between different categories of tools
or methods. The most popular category was unit testing tools
or methods (10 interviewees). Next in line were regression
testing (9), tools to support testability (9), test environ-
ment tools and methods (8), and functional testing (7).
The group “others” (11) consisted of conformance testing
tools, TTCN-3 (Testing and Test Control Notation version
3) tools, general test management tools such as document
generators and methods of unit and integration testing. The
most popular category, unit testing tools or methods, also
received the most primary application area nominations. The
most common secondary area of application was regression
testing. Several categories ranked third, but concepts such
as regression testing, and test environment-related aspects
such as document generators were mentioned more than
once. Also testability-related concepts—module interface,
conformance testing—or functional testing—verification,
validation tests—were considered feasible implementation
areas for test automation.

4.4. Summary of the Survey Findings. The survey suggests
that interviewees were rather satisfied with their test policy,
test strategy, test management, and testing, and did not
have any immediate requirements for revising certain test
phases, although low-level testing was slightly favoured in the
development needs. All in all, 61% of the software companies
followed some form of a systematic process or method
in testing, with an additional 13% using some established
procedures or measurements to follow the process efficiency.

Unit testing

Regression testing 1
Testability-related
Test environment-related

Functional testing 1
Performance testing
Other

O Primary
@ Secondary
O Tertiary

FiGure 7: The three most efficient application areas of test
automation tools according to the interviewees.

The systematic process was also reflected in the general
approach to testing; even if the time was limited, the test
process followed a certain path, applying the test phases
regardless of the project limitations.

The main source of the software quality was considered
to be in the development process. In the survey, the test
organizations used test automation on an average on 26%
of their test cases, which was considerably less than could be
expected based on the literature. However, test automation
tools were the third most common category of test-related
tools, commonly intended to implement unit and regression
testing. As for the test automation itself, the interviewees
ranked unit testing tools as the most efficient tools of
test automation, regression testing being the most common
secondary area of application.

5. Test Automation Interviews and
Qualitative Study

Besides the survey, the test automation concepts and appli-
cations were analyzed based on the interviews with the focus
organizations. The grounded theory approach was applied to
establish an understanding of the test automation concepts
and areas of application for test automation in industrial
software engineering. The qualitative approach was applied
in three rounds, in which a developer, test manager and tester
from 12 different case OUs were interviewed. Descriptions of
the case OUs can be found in the appendix.

In theory-creating inductive research [55], the central
idea is that researchers constantly compare theory and
data iterating with a theory which closely fits the data.
Based on the grounded theory codification, the categories
identified were selected in the analysis based on their ability
to differentiate the case organizations and their potential
to explain the differences regarding the application of test
automation in different contexts. We selected the categories
so as to explore the types of automation applications and
the compatibility of test automation services with the OUs
testing organization. We conceptualized the most common
test automation concepts based on the coding and further
elaborated them to categories to either cater the essential
features such as their role in the overall software process or

10

their relation to test automation. We also concentrated on
the OU differences in essential concepts such as automation
tools, implementation issues or development strategies. This
conceptualization resulted to the categories listed in Table 5.

The category “Automation application” describes the
areas of software development, where test automation was
applied successfully. This category describes the testing activ-
ities or phases which apply test automation processes. In the
case where the test organization did not apply automation, or
had so far only tested it for future applications, this category
was left empty. The application areas were generally geared
towards regression and stress testing, with few applications
of functionality and smoke tests in use.

The category “Role in software process” is related to the
objective for which test automation was applied in software
development. The role in the software process describes the
objective for the existence of the test automation infras-
tructure; it could, for example, be in quality control, where
automation is used to secure module interfaces, or in quality
assurance, where the operation of product functionalities is
verified. The usual role for the test automation tools was
in quality control and assurance, the level of application
varying from third party-produced modules to primary
quality assurance operations. On two occasions, the role
of test automation was considered harmful to the overall
testing outcomes, and on one occasion, the test automation
was considered trivial, with no real return on investments
compared to traditional manual testing.

The category “Test automation strategy” is the approach
to how automated testing is applied in the typical software
processes, that is, the way the automation was used as a
part of the testing work, and how the test cases and overall
test automation strategy were applied in the organization.
The level of commitment to applying automation was the
main dimension of this category, the lowest level being
individual users with sporadic application in the software
projects, and the highest being the application of automation
to the normal, everyday testing infrastructure, where test
automation was used seamlessly with other testing methods
and had specifically assigned test cases and organizational
support.

The category of “Automation development” is the general
category for OU test automation development. This category
summarizes the ongoing or recent efforts and resource
allocations to the automation infrastructure. The type of new
development, introduction strategies and current develop-
ment towards test automation are summarized in this cate-
gory. The most frequently chosen code was “general increase
of application”, where the organization had committed itself
to test automation, but had no clear idea of how to develop
the automation infrastructure. However, one OU had a
development plan for creating a GUI testing environment,
while two organizations had just recently scaled down the
amount of automation as a result of a pilot project. Two
organizations had only recently introduced test automation
to their testing infrastructure.

The category of “Automation tools” describes the types
of test automation tools that are in everyday use in the
OU. These tools are divided based on their technological

Advances in Software Engineering

finesse, varying from self-created drivers and stubs to
individual proof-of-concept tools with one specified task
to test suites where several integrated components are used
together for an effective test automation environment. If
the organization had created the tools by themselves, or
customized the acquired tools to the point of having new
features and functionalities, the category was supplemented
with a notification regarding in-house-development.

Finally, the category of “Automation issues” includes
the main hindrances which are faced in test automation
within the organization. Usually, the given issue was related
to either the costs of test automation or the complexity
of introducing automation to the software projects which
have been initially developed without regards to support
for automation. Some organizations also considered the
efficiency of test automation to be the main issue, mostly
contributing to the fact that two of them had just recently
scaled down their automation infrastructure. A complete list
of test automation categories and case organizations is given
in Table 6.

We elaborated further these properties we observed
from the case organizations to create hypotheses for the
test automation applicability and availability. These result-
ing hypotheses were shaped according to advice given by
Eisenhardt [37] for qualitative case studies. For example,
we perceived the quality aspect as really important for
the role of automation in software process. Similarly, the
resource needs, especially costs, were much emphasized
in the automation issues category. The purpose of the
hypotheses below is to summarize and explain the features
of test automation that resulted from the comparison of
differences and similarities between the organizations.

Hypothesis 1 (Test automation should be considered more
as a quality control tool rather than a frontline testing
method). The most common area of application observed
was functionality verification, that is, regression testing and
GUI event testing. As automation is time-consuming and
expensive to create, these were the obvious ways to create
test cases which had the minimal number of changes per
development cycle. By applying this strategy, organizations
could set test automation to confirm functional properties
with suitable test cases, and acquire such benefits as support
for change management and avoid unforeseen compatibility
issues with module interfaces.

“Yes, regression testing, especially automated. It
is not manually “hammered in” every time, but
used so that the test sets are run, and if there
is anything abnormal, it is then investigated.”—
Manager, Case G

“... had we not used it [automation tests], it
would have been suicidal.”—Designer, Case D

“It’s [automated stress tests] good for showing bad
code, how efficient it is and how well designed . ..
stress it enough and we can see if it slows down or
even breaks completely.”—Tester, Case E

Advances in Software Engineering

11

TasBLE 5: Test automation categories.

Category

Definition

Automation application

Role in software process

Areas of application for test automation in the software process

The observed roles of test automation in the company software process and
the effect of this role

The observed method for selecting the test cases where automation is

Test automation strategy

applied and the level of commitment to the application of test automation

in the organizations

Automation development

Automation tools

Automation issues

The areas of active development in which the OU is introducing test
automation

The general types of test automation tools applied

The items that hinder test automation development in the OU

However, there seemed to be some contradicting con-
siderations regarding the applicability of test automation.
Cases F], and K had recently either scaled down their test
automation architecture or considered it too expensive or
inefficient when compared to manual testing. In some cases,
automation was also considered too bothersome to configure
for a short-term project, as the system would have required
constant upkeep, which was an unnecessary addition to the
project workload.

“We really have not been able to identify
any major advancements from it [test automa-
tion].”—Tester, Case J

“It [test automation] just kept interfering”—
Designer, Case K

Both these viewpoints indicated that test automation
should not be considered a “frontline” test environment for
finding errors, but rather a quality control tool to maintain
functionalities. For unique cases or small projects, test
automation is too expensive to develop and maintain, and
it generally does not support single test cases or explorative
testing. However, it seems to be practical in larger projects,
where verifying module compatibility or offering legacy
support is a major issue.

Hypothesis 2 (Maintenance and development costs are com-
mon test automation hindrances that universally affect all
test organizations regardless of their business domain or
company size). Even though the case organizations were
selected to represent different types of organizations, the
common theme was that the main obstacles in automation
adoption were development expenses and upkeep costs. It
seemed to make no difference whether the organization unit
belonged to a small or large company, as in the OU levels they
shared common obstacles. Even despite the maintenance
and development hindrances, automation was considered a
feasible tool in many organizations. For example, Cases I and
L pursued the development of some kind of automation to
enhance the testing process. Similarly, Cases E and H, which
already had a significant number of test automation cases,
were actively pursuing a larger role for automated testing.

“Well, it [automation] creates a sense of security
and controllability, and one thing that is easily

underestimated is its effect on performance and
optimization. It requires regression tests to confirm
that if something is changed, the whole thing does
not break down afterwards.”—Designer, Case H

In many cases, the major obstacle for adopting test
automation was, in fact, the high requirements for process
development resources.

“Shortage of time, resources ... we have the
technical ability to use test automation, but we
don’t” —Tester, Case]

“Creating and adopting it, all that it takes to make
usable automation ... I believe that we don’t put
any effort into it because it will end up being really
expensive.” —Designer, Case]

In Case J particularly, the OU saw no incentive in
developing test automation as it was considered to offer only
little value over manual testing, even if they otherwise had no
immediate obstacles other than implementation costs. Also
cases F and K reported similar opinions, as they both had
scaled down the amount of automation after the initial pilot
projects.

“It was a huge effort to manually confirm why the
results were different, so we took it [automation]
down”—Tester, Case F

“Well, we had gotten automation tools from our
partner, but they were so slow we decided to go on
with manual testing”—Tester, Case K

Hypothesis 3 (Test automation is applicable to most of the
software processes, but requires considerable effort from the
organization unit). The case organizations were selected to
represent the polar types of software production operating
in different business domains. Out of the focus OUs, there
were four software development OUs, five IT service OUs,
two OUs from the finance sector and one logistics OU. Of
these OUs, only two did not have any test automation, and
two others had decided to strategically abandon their test
automation infrastructure. Still, the business domains for the
remaining organizations which applied test automation were

12 Advances in Software Engineering
TABLE 6: Test automation categories affecting the software process in case OUs.

ouU Category
Automation Role in software Test automation Automation Automation Automation
application process strategy development tools issues

. Individual tools Complexity of
GUI testing, . . Part of the General . ’ prexity
. Functionality . test suite, adapting
Case A regression L normal test increase of . .
. verification . L in-house automation to
testing infrastructure application
development test processes
. Part of the . Individual tools Costs of
Performance, Quality control GUI testing, . ’ .
Case B . normal test . . in-house automation
smoke testing tool . unit testing . .
infrastructure development implementation
Functionality,
regression . Part of the General Test suite, Cost of
. Quality control . . .

Case C testing, tool normal test increase of in-house automation
documentation infrastructure application development maintenance
automation

. . Quality control . Costs of
Functionalit Project-related Upkeep for .. .
Case D . ¥ for secondary) preep Individual tools automation
testing cases existing parts . .
modules implementation
. Part of the General Costs of
System stress Quality
Case E . normal test increase of Test suite implementing
testing assurance tool . - :
infrastructure application new automation
Unit and .
. Manual testing
module testin C, overall . Recently scaled ..

Case F ng QC, Individual users Y Individual tools seen more

documentation effect harmful down .
. efficient
automation
Regression . Part of the General Cost of
. Quality . . .
Case G testing for use normal test increase of Test suite automation
assurance tool . L .
cases infrastructure application maintenance
Regression . . Underestimation
g. Quality control Part of the General Test suite,
testing for . . of the effect of

Case H for secondary normal test increase of in-house .
module . . automated testing
. modules infrastructure application development .
interfaces on quality

. . . . Application Proof-of- Costs of
Functionality Quality control Project-related PPA .
Casel . pilot in concept automation
testing tool cases . .
development tools implementation
. Application Proof-of-
Automation not QA, no effect . p P . No development

Case] . Individual users pilot in concept . .

in use observed incentive
development tools
Self-created Manual testin
Small scale QC, overall . Recently scaled . &
Case K . Individual users tools; drivers seen more
system testing effect harmful down .
and stubs efficient
Adaptin .. Complexity of
. . P g Individual tools, p Y

Case L System stress Verifies module Project-related automation to in-house adapting
testing compatibility cases the testing automation to

development

strategy

test processes

heterogeneously divided, meaning that the business domain
is not a strong indicator of whether or not test automation
should be applied.

It seems that test automation is applicable as a test tool in
any software process, but the amount of resources required
for useful automation compared to the overall development
resources is what determines whether or not automation
should be used. As automation is oriented towards quality
control aspects, it may be unfeasible to implement in small
development projects where quality control is manageable
with manual confirmation. This is plausible, as the amount

of required resources does not seem to vary based on
aspects beyond the OU characteristics, such as available
company resources or testing policies applied. The feasibility
of test automation seems to be rather connected to the
actual software process objectives, and fundamentally to the
decision whether the quality control aspects gained from test
automation supersede the manual effort required for similar

results.

“... before anything is automated, we should
calculate the maintenance effort and estimate

Advances in Software Engineering

whether we will really save time, instead of just
automating for automation’s sake.”—Tester, Case
G

“It always takes a huge amount of resources to
implement.”—Designer, Case A

“Yes, developing that kind of test automation
system is almost as huge an effort as building the
actual project.” —Designer, Case |

Hypothesis 4 (The available repertoire of testing automation
tools is limited, forcing OUs to develop the tools them-
selves, which subsequently contributes to the application
and maintenance costs). There were only a few case OUs
that mentioned any commercial or publicly available test
automation programs or suites. The most common approach
to test automation tools was to first acquire some sort
of tool for proof-of-concept piloting, then develop similar
tools as in-house-production or extend the functionalities
beyond the original tool with the OU’s own resources. These
resources for in-house-development and upkeep for self-
made products are one of the components that contribute
to the costs of applying and maintaining test automation.

“Yes, yes. That sort of [automation] tools have
been used, and then there’s a lot of work that we do
ourselves. For example, this stress test tool ...”—
Designer, Case E

“We have this 3rd party library for the automa-
tion. Well, actually, we have created our own
architecture on top of it ...”—Designer, Case H

“Well, in [company name], we’ve-, we developed
our own framework to, to try and get around some
of these, picking which tests, which group of tests
should be automated.”—Designer, Case C

However, it should be noted that even if the automation
tools were well-suited for the automation tasks, the main-
tenance still required significant resources if the software
product to which it was connected was developing rapidly.

“Well, there is the problem [with automation tool]
that sometimes the upkeep takes an incredibly
large amount of time.” —Tester, Case G

“Our system keeps constantly evolving, so you'd
have to be constantly recording [maintaining
tools]...” —Tester, Case K

6. Discussion

An exploratory survey combined with interviews was used
as the research method. The objective of this study was to
shed light on the status of test automation and to identify
improvement needs in and the practice of test automation.
The survey revealed that the total effort spent on testing
(median 25%) was less than expected. The median percent-
age (25%) of testing is smaller than the 50%-60% that is

13

often mentioned in the literature [38, 39]. The comparable
low percentage may indicate that that the resources needed
for software testing are still underestimated even though
testing efficiency has grown. The survey also indicated that
companies used fewer resources on test automation than
expected: on an average 26% of all of the test cases apply
automation. However, there seems to be ambiguity as to
which activities organizations consider test automation, and
how automation should be applied in the test organizations.
In the survey, several organizations reported that they have
an extensive test automation infrastructure, but this did
not reflect on the practical level, as in the interviews with
testers particularly, the figures were considerably different.
This indicates that the test automation does not have
strong strategy in the organization, and has yet to reach
maturity in several test organizations. Such concepts as
quality assurance testing and stress testing seem to be
particularly unambiguous application areas, as Cases E and L
demonstrated. In Case E, the management did not consider
stress testing an automation application, whereas testers did.
Moreover, in Case L the large automation infrastructure
did not reflect on the individual project level, meaning
that the automation strategy may strongly vary between
different projects and products even within one organization
unit.

The qualitative study which was based on interviews
indicated that some organizations, in fact, actively avoid
using test automation, as it is considered to be expensive
and to offer only little value for the investment. However,
test automation seems to be generally applicable to the
software process, but for small projects the investment is
obviously oversized. One additional aspect that increases
the investment are tools, which unlike in other areas of
software testing, tend to be developed in-house or are
heavily modified to suit specific automation needs. This
development went beyond the localization process which
every new software tool requires, extending even to the
development of new features and operating frameworks. In
this context it also seems plausible that test automation
can be created for several different test activities. Regression
testing, GUI testing or unit testing, activities which in some
form exist in most development projects, all make it possible
to create successful automation by creating suitable tools for
the task, as in each phase can be found elements that have
sufficient stability or unchangeability. Therefore it seems that
the decision on applying automation is not only connected to
the enablers and disablers of test automation [4], but rather
on tradeoff of required effort and acquired benefits; In small
projects or with low amount of reuse the effort becomes
too much for such investment as applying automation to be
feasible.

The investment size and requirements of the effort
can also be observed on two other occasions. First, test
automation should not be considered as an active testing tool
for finding errors, but as a tool to guarantee the functionality
of already existing systems. This observation is in line with
those of Ramler and Wolfmaier [3], who discuss the necessity
of a large number of repetitive tasks for the automation
to supersede manual testing in cost-effectiveness, and of

14

Berner et al. [8], who notify that the automation requires
a sound application plan and well-documented, simulatable
and testable objects. For both of these requirements, quality
control at module interfaces and quality assurance on system
operability are ideal, and as it seems, they are the most
commonly used application areas for test automation. In
fact, Kaner [56] states that 60%—-80% of the errors found with
test automation are found in the development phase for the
test cases, further supporting the quality control aspect over
error discovery.

Other phenomena that increase the investment are the
limited availability and applicability of automation tools.
On several occasions, the development of the automation
tools was an additional task for the automation-building
organization that required the organization to allocate their
limited resources to the test automation tool implemen-
tation. From this viewpoint it is easy to understand why
some case organizations thought that manual testing is
sufficient and even more efficient when measured in resource
allocation per test case. Another approach which could
explain the observed resistance to applying or using test
automation was also discussed in detail by Berner et al. [8],
who stated that organizations tend to have inappropriate
strategies and overly ambitious objectives for test automation
development, leading to results that do not live up to their
expectations, causing the introduction of automation to
fail. Based on the observations regarding the development
plans beyond piloting, it can also be argued that the lack of
objectives and strategy also affect the successful introduction
processes. Similar observations of “automation pitfalls” were
also discussed by Persson and Yilmaztiirk [26] and Mosley
and Posey [57].

Opverall, it seems that the main disadvantages of testing
automation are the costs, which include implementation
costs, maintenance costs, and training costs. Implementation
costs included direct investment costs, time, and human
resources. The correlation between these test automation
costs and the effectiveness of the infrastructure are discussed
by Fewster [24]. If the maintenance of testing automation
is ignored, updating an entire automated test suite can cost
as much, or even more than the cost of performing all
the tests manually, making automation a bad investment
for the organization. We observed this phenomenon in
two case organizations. There is also a connection between
implementation costs and maintenance costs [24]. If the
testing automation system is designed with the minimization
of maintenance costs in mind, the implementation costs
increase, and vice versa. We noticed the phenomenon of
costs preventing test automation development in six cases.
The implementation of test automation seems to be possible
to accomplish with two different approaches: by promoting
either maintainability or easy implementation. If the selected
focus is on maintainability, test automation is expensive, but
if the approach promotes easy implementation, the process
of adopting testing automation has a larger possibility for
failure. This may well be due to the higher expectations and
assumption that the automation could yield results faster
when promoting implementation over maintainability, often
leading to one of the automation pitfalls [26] or at least a low

Advances in Software Engineering

percentage of reusable automation components with high
maintenance costs.

7. Conclusions

The objective of this study was to observe and identify
factors that affect the state of testing, with automation as the
central aspect, in different types of organizations. Our study
included a survey in 31 organizations and a qualitative study
in 12 focus organizations. We interviewed employees from
different organizational positions in each of the cases.

This study included follow-up research on prior obser-
vations [4, 5, 12-14] on testing process difficulties and
enhancement proposals, and on our observations on indus-
trial test automation [4]. In this study we further elaborated
on the test automation phenomena with a larger sample of
polar type OUs, and more focused approach on acquiring
knowledge on test process-related subjects. The survey
revealed that test organizations use test automation only in
26% of their test cases, which was considerably less than
could be expected based on the literature. However, test
automation tools were the third most common category of
test-related tools, commonly intended to implement unit
and regression testing. The results indicate that adopting test
automation in software organization is a demanding effort.
The lack of existing software repertoire, unclear objectives
for overall development and demands for resource allocation
both for design and upkeep create a large threshold to
overcome.

Test automation was most commonly used for quality
control and quality assurance. In fact, test automation was
observed to be best suited to such tasks, where the purpose
was to secure working features, such as check module
interfaces for backwards compatibility. However, the high
implementation and maintenance requirements were con-
sidered the most important issues hindering test automation
development, limiting the application of test automation
in most OUs. Furthermore, the limited availability of test
automation tools and the level of commitment required to
develop a suitable automation infrastructure caused addi-
tional expenses. Due to the high maintenance requirements
and low return on investments in small-scale application,
some organizations had actually discarded their automation
systems or decided not to implement test automation. The
lack of a common strategy for applying automation was also
evident in many interviewed OUs. Automation applications
varied even within the organization, as was observable
in the differences when comparing results from different
stakeholders. In addition, the development strategies were
vague and lacked actual objectives. These observations can
also indicate communication gaps [58] between stakeholders
of the overall testing strategy, especially between developers
and testers.

The data also suggested that the OUs that had successfully
implemented test automation infrastructure to cover the
entire organization seemed to have difficulties in creating
a continuance plan for their test automation development.
After the adoption phases were over, there was an ambiguity
about how to continue, even if the organization had decided

Advances in Software Engineering

to further develop their test automation infrastructure.
The overall objectives were usually clear and obvious—cost
savings and better test coverage—but in practise there were
only few actual development ideas and novel concepts. In
the case organizations this was observed in the vagueness
of the development plans: only one of the five OUs which
used automation as a part of their normal test processes had
development plans beyond the general will to increase the
application.

The survey established that 61% of the software compa-
nies followed some form of a systematic process or method
in testing, with an additional 13% using some established
procedures or measurements to follow the process efficiency.
The main source of software quality was considered to
reside in the development process, with testing having much
smaller impact in the product outcome. In retrospect of the
test levels introduced in the ISO/IEC29119 standard, there
seems to be no one particular level of the testing which
should be the research and development interest for best
result enhancements. However, the results from the self-
assessment of the test phases indicate that low-level testing
could have more potential for testing process development.

Based on these notions, the research and develop-
ment should focus on uniform test process enhancements,
such as applying a new testing approach and creating an
organization-wide strategy for test automation. Another
focus area should be the development of better tools to
support test organizations and test processes in the low-
level test phases such as unit or integration testing. As for
automation, one tool project could be the development
of a customizable test environment with a common core
and with an objective to introduce less resource-intensive,
transferable and customizable test cases for regression and
module testing.

Appendix

Case Descriptions

Case A (Manufacturing execution system (MES) producer
and electronics manufacturer). Case A produces software
as a service (SaaS) for their product. The company is a
small-sized, nationally operating company that has mainly
industrial customers. Their software process is a plan-
driven cyclic process, where the testing is embedded to the
development itself, having only little amount of dedicated
resources. This organization unit applied test automation
as a user interface and regression testing tool, using it for
product quality control. Test automation was seen as a part
of the normal test strategy, universally used in all software
projects. The development plan for automation was to
generally increase the application, although the complexity
of the software- and module architecture was considered
major obstacle on the automation process.

Case B (Internet service developer and consultant). Case B
organization offers two types of services; development of
Internet service portals for the customers like communities
and public sector, and consultation in the Internet service

15

business domain. The origination company is small and
operates on a national level. Their main resource on the test
automation is in the performance testing as a quality control
tool, although addition of GUI test automation has also been
proposed. The automated tests are part of the normal test
process, and the overall development plan was to increase the
automation levels especially to the GUI test cases. However,
this development has been hindered by the cost of designing
and developing test automation architecture.

Case C (Logistics software developer). Case C organization
focuses on creating software and services for their origin
company and its customers. This organization unit is a
part of a large-sized, nationally operating company with
large, highly distributed network and several clients. The
test automation is widely used in several testing phases like
functionality testing, regression testing and document gen-
eration automation. These investments are used for quality
control to ensure the software usability and correctness.
Although the OU is still aiming for larger test automation
infrastructure, the large amount of related systems and
constant changes within the inter-module communications
is causing difficulties in development and maintenance of the
new automation cases.

Case D (ICT consultant). Case D organization is a small,
regional software consultant company, whose customers
mainly compose of small business companies and the public
sector. Their organization does some software development
projects, in which the company develops services and ICT
products for their customers. The test automation comes
mainly trough this channel, as the test automation is mainly
used as a conformation test tool for the third party modules.
This also restricts the amount of test automation to the
projects, in which these modules are used. The company
currently does not have development plans for the test
automation as it is considered unfeasible investment for the
OU this size, but they do invest on the upkeep of the existing
tools as they have usage as a quality control tool for the
acquired outsider modules.

Case E (Safety and logistics system developer). Case E
organization is a software system developer for safety and
logistics systems. Their products have high amount of safety
critical features and have several interfaces on which to
communicate with. The test automation is used as a major
quality assurance component, as the service stress tests are
automated to a large degree. Therefore the test automation is
also a central part of the testing strategy, and each project
has defined set of automation cases. The organization is
aiming to increase the amount of test automation and
simultaneously develop new test cases and automation
applications for the testing process. The main obstacle for
this development has so far been the costs of creating new
automation tools and extending the existing automation
application areas.

Case F (Naval software system developer). The Case F
organization unit is responsible for developing and testing

16

naval service software systems. Their product is based on
a common core, and has considerable requirements for
compatibility with the legacy systems. This OU has tried
test automation on several cases with application areas
such as unit- and module testing, but has recently scaled
down test automation for only support aspects such as
the documentation automation. This decision was based
on the resource requirements for developing and especially
maintaining the automation system, and because the manual
testing was in this context considered much more efficient as
there were too much ambiguity in the automation-based test
results.

Case G (Financial software developer). Case G is a part
of a large financial organization, which operates nationally
but has several internationally connected services due to
their business domain. Their software projects are always
aimed as a service portal for their own products, and have
to pass considerable verification and validation tests before
being introduced to the public. Because of this, the case
organization has sizable test department when compared to
other case companies in this study, and follows rigorous test
process plan in all of their projects. The test automation is
used in the regression tests as a quality assurance tool for
user interfaces and interface events, and therefore embedded
to the testing strategy as a normal testing environment.
The development plans for the test automation is aimed
to generally increase the amount of test cases, but even
the existing test automation infrastructure is considered
expensive to upkeep and maintain.

Case H (Manufacturing execution system (MES) producer
and logistics service system provider). Case H organization
is a medium-sized company, whose software development is
a component for the company product. Case organization
products are used in logistics service systems, usually work-
ing as a part of automated processes. The case organization
applies automated testing as a module interface testing tool,
applying it as a quality control tool in the test strategy.
The test automation infrastructure relies on the in-house-
developed testing suite, which enables organization to use
the test automation to run daily tests to validate module
conformance. Their approach on the test automation has
been seen as a positive enabler, and the general trend is
towards increasing automation cases. The main test automa-
tion disability is considered to be that the quality control
aspect is not visible when working correctly and therefore the
effect of test automation may be underestimated in the wider
organization.

Case I (Small and medium-sized enterprise (SME) business
and agriculture ICT-service provider). The case I organi-
zation is a small, nationally operating software company
which operates on multiple business domain. Their customer
base is heterogeneous, varying from finances to the agri-
culture and government services. The company is currently
not utilizing test automation in their test process, but
they have development plans for designing quality control
automation. For this development they have had some

Advances in Software Engineering

individual proof-of-concept tools, but currently the overall
testing resources limit the application process.

Case J (Modeling software developer). Case] organization
develops software products for civil engineering and archi-
tectural design. Their software process is largely plan-driven
with rigorous verification and validation processes in the
latter parts of an individual project. Even though the case
organization itself has not implemented test automation, on
the corporate level there are some pilot projects where regres-
sion tests have been automated. These proof-of-concept-
tools have been introduced to the case OU and there are
intentions to apply them in the future, but there has so
far been no incentive for adoption of the automation tools,
delaying the application process.

Case K (ICT developer and consultant). Case K organization
is a large, international software company which offers
software products for several business domains and gov-
ernment services. Case organization has previously piloted
test automation, but decided against adopting the system as
it was considered too expensive and resource-intensive to
maintain when compared to the manual testing. However,
some of these tools still exist, used by individual developers
along with test drivers and interface studs in unit- and
regression testing.

Case L (Financial software developer). Case L organization is
a large software provider for their corporate customer which
operates on the finance sector. Their current approach on
software process is plan-driven, although some automation
features has been tested on a few secondary processes. The
case organization does not apply test automation as is,
although some module stress test cases have been automated
as pilot tests. The development plan for test automation is to
generally implement test automation as a part of their testing
strategy, although amount of variability and interaction in
the module interfaces is considered difficult to implement in
test automation cases.

Acknowledgment

This study is a part of the ESPA project (http://www.soberit
.hut.fi/espa/), funded by the Finnish Funding Agency for
Technology and Innovation (project number 40125/08) and
by the participating companies listed on the project web site.

References

[1] E.Kit, Software Testing in the Real World: Improving the Process,

Addison-Wesley, Reading, Mass, USA, 1995.

G. Tassey, “The economic impacts of inadequate infrastruc-

ture for software testing,” RTI Project 7007.011, U.S. National

Institute of Standards and Technology, Gaithersburg, Md,

USA, 2002.

[3] R. Ramler and K. Wolfmaier, “Observations and lessons
learned from automated testing,” in Proceedings of the Interna-
tional Workshop on Automation of Software Testing (AST ’06),
pp- 85-91, Shanghai, China, May 2006.

[2

Advances in Software Engineering

(4]

(6]
(7]

(8]

—
—_

K. Karhu, T. Repo, O. Taipale, and K. Smolander, “Empirical
observations on software testing automation,” in Proceedings
of the 2nd International Conference on Software Testing,
Verification, and Validation (ICST °09), pp. 201-209, Denver,
Colo, USA, April 2009.

O. Taipale and K. Smolander, “Improving software testing
by observing causes, effects, and associations from practice,”
in Proceedings of the International Symposium on Empirical
Software Engineering (ISESE ’06), Rio de Janeiro, Brazil,
September 2006.

B. Shea, “Sofware testing gets new respect,” InformationWeek,
July 2000.

E. Dustin, J. Rashka, and J. Paul, Automated Software Testing:
Introduction, Management, and Performance, Addison-Wesley,
Boston, Mass, USA, 1999.

S. Berner, R. Weber, and R. K. Keller, “Observations and
lessons learned from automated testing,” in Proceedings of the
27th International Conference on Software Engineering (ICSE
’05), pp. 571-579, St. Louis, Mo, USA, May 2005.

J. A. Whittaker, “What is software testing? And why is it so
hard?” IEEE Software, vol. 17, no. 1, pp. 70-79, 2000.

L. J. Osterweil, “Software processes are software too, revisited:
an invited talk on the most influential paper of ICSE 9,
in Proceedings of the 19th IEEE International Conference on
Software Engineering, pp. 540-548, Boston, Mass, USA, May
1997.

ISO/IEC and ISO/IEC 29119-2, “Software Testing Standard—
Activity Descriptions for Test Process Diagram,” 2008.

O. Taipale, K. Smolander, and H. Kilvidinen, “Cost reduction
and quality improvement in software testing,” in Proceedings
of the 14th International Software Quality Management Confer-
ence (SQM ’06), Southampton, UK, April 2006.

O. Taipale, K. Smolander, and H. Kilvidinen, “Factors affect-
ing software testing time schedule,” in Proceedings of the
Australian Software Engineering Conference (ASWEC *06), pp.
283-291, Sydney, Australia, April 2006.

O. Taipale, K. Smolander, and H. Kilvidinen, “A survey on
software testing,” in Proceedings of the 6th International SPICE
Conference on Software Process Improvement and Capability
dEtermination (SPICE *06), Luxembourg, May 2006.

N. C. Dalkey, The Delphi Method: An Experimental Study of
Group Opinion, RAND, Santa Monica, Calif, USA, 1969.

S. P. Ng, T. Murnane, K. Reed, D. Grant, and T. Y. Chen, “A
preliminary survey on software testing practices in Australia,”
in Proceedings of the Australian Software Engineering Confer-
ence (ASWEC ’04), pp. 116-125, Melbourne, Australia, April
2004.

R. Torkar and S. Mankefors, “A survey on testing and reuse,”
in Proceedings of IEEE International Conference on Software—
Science, Technology and Engineering (SWSTE °03), Herzlia,
Israel, November 2003.

C. Ferreira and J. Cohen, “Agile systems development and
stakeholder satisfaction: a South African empirical study,”
in Proceedings of the Annual Research Conference of the
South African Institute of Computer Scientists and Information
Technologists (SAICSIT ’08), pp. 48-55, Wilderness, South
Africa, October 2008.

J. Li, E O. Bjernson, R. Conradi, and V. B. Kampenes, “An
empirical study of variations in COTS-based software devel-
opment processes in the Norwegian IT industry,” Empirical
Software Engineering, vol. 11, no. 3, pp. 433—461, 2006.

W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, and C. Liu, “An
empirical study on software development with open source
components in the Chinese software industry,” Software

17

Process Improvement and Practice, vol. 13, no. 1, pp. 89-100,
2008.

[21] R. Dossani and N. Denny, “The Internet’s role in offshored
services: a case study of India,” ACM Transactions on Internet
Technology, vol. 7, no. 3, 2007.

[22] K.Y. Wong, “An exploratory study on knowledge management
adoption in the Malaysian industry,” International Journal of
Business Information Systems, vol. 3, no. 3, pp. 272-283, 2008.

[23] J. Bach, “Test automation snake oil,” in Proceedings of the 14th
International Conference and Exposition on Testing Computer
Software (TCS °99), Washington, DC, USA, June 1999.

[24] M. Fewster, Common Mistakes in Test Automation, Grove
Consultants, 2001.

[25] A. Hartman, M. Katara, and A. Paradkar, “Domain specific
approaches to software test automation,” in Proceedings of
the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE °07), pp. 621-622,
Dubrovnik, Croatia, September 2007.

[26] C. Persson and N. Yilmaztiirk, “Establishment of automated

regression testing at ABB: industrial experience report on

‘avoiding the pitfalls}” in Proceedings of the 19th International

Conference on Automated Software Engineering (ASE *04), pp.

112-121, Linz, Austria, September 2004.

M. Auguston, J. B. Michael, and M.-T. Shing, “Test automation

and safety assessment in rapid systems prototyping,” in

Proceedings of the 16th IEEE International Workshop on Rapid

System Prototyping (RSP ’05), pp. 188—194, Montreal, Canada,

June 2005.

[28] A. Cavarra, J. Davies, T. Jeron, L. Mournier, A. Hartman, and
S. Olvovsky, “Using UML for automatic test generation,” in
Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA 02), Roma, Italy, July 2002.

[29] M. Vieira, J. Leduc, R. Subramanyan, and J. Kazmeier,
“Automation of GUI testing using a model-driven approach,”
in Proceedings of the International Workshop on Automation of
Software Testing, pp. 9-14, Shanghai, China, May 2006.

[30] Z.Xiaochun, Z. Bo, L. Juefeng, and G. Qiu, “A test automation
solution on gui functional test,” in Proceedings of the 6th IEEE
International Conference on Industrial Informatics (INDIN
’08), pp. 1413-1418, Daejeon, Korea, July 2008.

[31] D. Kreuer, “Applying test automation to type acceptance
testing of telecom networks: a case study with customer
participation,” in Proceedings of the 14th IEEE International
Conference on Automated Software Engineering, pp. 216-223,
Cocoa Beach, Fla, USA, October 1999.

[32] W. D. Yu and G. Patil, “A workflow-based test automation
framework for web based systems,” in Proceedings of the 12th
IEEE Symposium on Computers and Communications (ISCC
’07), pp- 333339, Aveiro, Portugal, July 2007.

[33] A. Bertolino, “Software testing research: achievements, chal-
lenges, dreams,” in Proceedings of the Future of Software
Engineering (FoSE °07), pp. 85-103, Minneapolis, Minn, USA,
May 2007.

[34] M. Blackburn, R. Busser, and A. Nauman, “Why model-based

test automation is different and what you should know to

get started,” in Proceedings of the International Conference on

Practical Software Quality, Braunschweig, Germany, Septem-

ber 2004.

P. Santos-Neto, R. Resende, and C. Piddua, “Requirements for

information systems model-based testing,” in Proceedings of

the ACM Symposium on Applied Computing, pp. 1409-1415,

Seoul, Korea, March 2007.

[27

(35

18

(36]

(37]

(38]

(39]

ISO/IEC and ISO/IEC 15504-1, “Information Technology—
Process Assessment—Part 1: Concepts and Vocabulary,” 2002.
K. M. Eisenhardt, “Building theories from case study
research,” The Academy of Management Review, vol. 14, no. 4,
pp. 532-550, 1989.

EU and European Commission, “The new SME definition:
user guide and model declaration,” 2003.

G. Paré and J. J. Elam, “Using case study research to build
theories of IT implementation,” in Proceedings of the IFIP
TC8 WG 8.2 International Conference on Information Systems
and Qualitative Research, pp. 542-568, Chapman & Hall,
Philadelphia, Pa, USA, May-June 1997.

A. Strauss and J. Corbin, Basics of Qualitative Research:
Grounded Theory Procedures and Techniques, SAGE, Newbury
Park, Calif, USA, 1990.

ATLAS.ti, The Knowledge Workbench, Scientific Software
Development, 2005.

M. B. Miles and A. M. Huberman, Qualitative Data Analysis,
SAGE, Thousand Oaks, Calif, USA, 1994.

C. B. Seaman, “Qualitative methods in empirical studies of
software engineering,” IEEE Transactions on Software Engineer-
ing, vol. 25, no. 4, pp. 557-572, 1999.

C. Robson, Real World Research, Blackwell, Oxford, UK, 2nd
edition, 2002.

N. K. Denzin, The Research Act: A Theoretical Introduction to
Sociological Methods, McGraw-Hill, New York, NY, USA, 1978.
A. Fink and J. Kosecoff, How to Conduct Surveys: A Step-by-
Step Guide, SAGE, Beverly Hills, Calif, USA, 1985.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, et al,
“Preliminary guidelines for empirical research in software
engineering,” IEEE Transactions on Software Engineering, vol.
28, no. 8, pp. 721-734, 2002.

T. Dybd, “An instrument for measuring the key factors of
success in software process improvement,” Empirical Software
Engineering, vol. 5, no. 4, pp. 357-390, 2000.

ISO/IEC and ISO/IEC 25010-2, “Software Engineering—
Software product Quality Requirements and Evaluation
(SQuaRE) Quality Model,” 2008.

Y. Baruch, “Response rate in academic studies—a comparative
analysis,” Human Relations, vol. 52, no. 4, pp. 421-438, 1999.
T. Koomen and M. Pol, Test Process Improvement: A Practical
Step-by-Step Guide to Structured Testing, Addison-Wesley,
Reading, Mass, USA, 1999.

P. Kruchten, The Rational Unified Process: An Introduction,
Addison-Wesley, Reading, Mass, USA, 2nd edition, 1998.

K. Schwaber and M. Beedle, Agile Software Development with
Scrum, Prentice-Hall, Upper Saddle River, NJ, USA, 2001.

K. Beck, Extreme Programming Explained: Embrace Change,
Addison-Wesley, Reading, Mass, USA, 2000.

B. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research, Aldine, Chicago, Ill, USA,
1967.

C. Kaner, “Improving the maintainability of automated test
suites,” Software QA, vol. 4, no. 4, 1997.

D. J. Mosley and B. A. Posey, Just Enough Software Test
Automation, Prentice-Hall, Upper Saddle River, NJ, USA,
2002.

D. Foray, Economics of Knowledge, MIT Press, Cambridge,
Mass, USA, 2004.

Advances in Software Engineering

