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José Manoel Balthazar, Brazil
Rasajit K. Bera, India
Jonathan N. Blakely, USA
Stefano Boccaletti, Spain
Daniela Boso, Italy
M. Boutayeb, France
Michael J. Brennan, UK
John Burns, USA
Salvatore Caddemi, Italy
Piermarco Cannarsa, Italy
Jose E. Capilla, Spain
Carlo Cattani, Italy
Marcelo M. Cavalcanti, Brazil
Diego J. Celentano, Chile
Mohammed Chadli, France
Arindam Chakraborty, USA
Yong-Kui Chang, China
Michael J. Chappell, UK
Kui Fu Chen, China
Xinkai Chen, Japan
Kue-Hong Chen, Taiwan
Jyh Horng Chou, Taiwan
Slim Choura, Tunisia
Cesar Cruz-Hernandez, Mexico
Swagatam Das, India
Filippo de Monte, Italy
Maria de Pinho, Portugal
Antonio Desimone, Italy
Yannis Dimakopoulos, Greece
Baocang Ding, China
Joao B. R. Do Val, Brazil
Daoyi Dong, Australia
Balram Dubey, India
Horst Ecker, Austria
M. Onder Efe, Turkey
Elmetwally Elabbasy, Egypt

Alex Elias-Zuniga, Mexico
Anders Eriksson, Sweden
Vedat S. Erturk, Turkey
Qi Fan, USA Moez Feki, Tunisia
Ricardo Femat, Mexico
Rolf Findeisen, Germany
R. A. Fontes Valente, Portugal
C. R. Fuerte-Esquivel, Mexico
Zoran Gajic, USA
Ugo Galvanetto, Italy
Xin-Lin Gao, USA
Furong Gao, Hong Kong
Behrouz Gatmiri, Iran
Oleg V. Gendelman, Israel
Didier Georges, France
P. Batista Gonçalves, Brazil
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This special issue includes six original research papers dis-
cussing new approaches and laboratory validations as well
as practical field applications of structural health monitoring
(SHM) techniques for aerospace, mechanical, and civil struc-
tures. A variety of methodologies including guided waves,
finite element model updating, and vibration-based methods
are presented. A brief description of each contribution is
provided below.

A team of researchers from the University of Bologna
(Italy) presented a nonlinear signal processing approach
based on a warped frequency transform (WFT) to compen-
sate for the dispersive behavior of ultrasonic guided waves,
followed by a Wigner-Ville time-frequency analysis and a
Hough transform to further improve the defect detectability
and localization accuracy of Lamb wave inspection systems.
As a result, an automatic detection procedure to locate defect-
induced reflections was demonstrated and successfully tested
by analyzing numerically simulated Lamb waves propagating
in an aluminum plate.

A different group of researchers from the University of
Bologna (Italy) discussed the structural health monitoring of
an ancient railwaymasonry arch bridge located inBologna. In
particular, they developed a three-dimensional finite element
model of the entire bridge and updated leveraging data
from an in situ experimental campaign involving static and
dynamic load tests performed on the structure. The study
included also material testing performed on samples of the
masonry structure extracted from the bridge. The structural
performances of the bridge both in its actual state and in the
case of a retrofitting action were assessed.

A research group consisting of researchers from Shan-
dong Agricultural University (China), Hohai University
(China), the Polish Academy of Sciences (Poland), and The
Hong Kong Polytechnic University (Hong Kong) proposed a
fractal dimension-based analysis of mode shapes for damage
identification of beam structures. In particular, theywere able
to obviate false peaks of high magnitude in fractal dimension
due to the natural inflexions of higher-order mode shapes
by using specially designed affine transformations, thus over-
coming limitations of classical fractal-based methods. The
new method was numerically demonstrated on a multiple
cracked cantilever beam and was experimentally validated
using a scanning laser vibrometer to acquire higher-order
mode shapes.

A team from the Northwestern Polytechnical University
(China) and The Hong Kong Polytechnic University (Hong
Kong) presented a paper on the estimation of the probability
density function of measured data extracted from Lamb
wave-based damage detection procedures in the presence
of strong measurement noise. In particular, they proposed
and validated a nonparametric method based on the kernel
density estimation in order to enhance the estimation of
the probability density function. The results showed that
the nonparametric methods outperformed the empirical
methods in terms of accuracy.

A group from the University of California, San Diego
(USA), presented a work on the generation of higher har-
monics in waveguides of complex cross-section. The paper
extended classical semianalytical finite element formulations
to the nonlinear regime analysis for predicting second-
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harmonic generations. Nonlinear guided waves represent
an attractive phenomenon for structural health monitoring
since they exhibit large sensitivity to structural damage
compared to traditional approaches based on linear wave
features. Results were presented for a railroad track and
a viscoelastic plate. For the investigated cases, optimum
combinations of primary wave modes and resonant double-
harmonic nonlinear wave modes have been identified.

Finally, a group from the Shanghai Jiao Tong Univer-
sity (China) reported a three-dimensional spectral element
method (SEM) for the analysis of Lamb wave propagation in
composite laminates containing delamination. SEM is more
efficient than conventional finite element method (FEM)
in simulating wave propagation in structures because of its
unique diagonal form of the mass matrix. The effectiveness
of the method was validated by comparing the simulation
results with analytical solutions based on the transfer matrix
method. By a parametric analysis it was demonstrated that
symmetric Lamb waves can be insensitive to delamination
at certain interfaces of laminates while the antisymmetric
waves are more suited for identification of delamination in
composite structures.

Alessandro Marzani
Zhongqing Su
Ivan Bartoli
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A new beam structure with periodically attached multioscillators is proposed based on the idea of locally resonant (LR) phononic
crystals (PCs) to reduce flexural vibrations in the frequency-multiplication ranges. Wave band structures of the new beam are
derived by using the transfer matrix method. The multiple band gaps in the beam are then verified by the frequency response
function (FRF), which is calculated through the finite element method. In addition, simplified models are proposed, which
contribute to the calculation of the edge frequencies of the band gaps and enhance the understanding of the LR mechanism of
PCs. The accuracy of the simplified models is proven by comparing them with the results derived from the analytical model under
different beam structure parameters. The results suggest that lower frequencies and ranges of frequency multiplications can be
achieved in the band gaps which are obtained from the new beam structure with multioscillators in a unit cell. Therefore, the ideas
presented in this paper have the potential to be used in developing new devices with frequency-multiplication characteristics for
vibration isolation or noise control in aerospace and civil structures.

1. Introduction

Methods to control the propagation of elastic waves, such as
vibration reduction and noise isolation, are often the focus of
engineering studies. Much research has been conducted over
many years to suppress unwanted vibration or noise. A variety
of vibration control technologies, including visco-elastic
materials, springs, soft materials, hydraulic dampers, and
pneumatic isolators, among others, were gradually developed
and arewidely used in engineering practice [1]. As technology
progresses, scientific equipment and structures are developed
further to be more complex and precise. The control of
the higher-order vibration or coupled vibration in these
complicated structures, as well as the higher precision and
flexibility of the vibration isolation in precise instruments,
is increasingly important. Currently, the traditional vibra-
tion/noise control technologies are facing new challenges.

In the last decade, the emergence and development of
phononic crystals (PCs) have inspired new ideas for wave
control [2–4]. PCs are artificial composite materials that are
formed by periodic variations of properties and structures
of the material. One notable aspect of these PCs is the

wave filtering property of the so-called “band gaps,” which
are selected frequency ranges in which elastic waves cannot
propagate through the periodic system. This property means
that the vibration can be well mitigated when its frequency is
located in the specified band gaps of the PCs. In addition, the
frequency-space distributions of the band gaps for a PC can
be regulated by the properties, geometries, and arrangements
of the elements composing the so-called “artificial crystal.”
Such a unique property promises an enormous potential for
the development of vibration isolation structures [5], wave
filters [6], sonic shields [7], and other applications; these
developments may provide new ways to achieve the aims
that are difficult to realise with the traditional vibration/noise
control technologies.

There has been a great deal of research on themechanisms
and properties of band gaps. The earlier investigations of
PCs are commonly based on the Bragg scattering mechanism
[3]. Such band gaps are called Bragg-type gaps, whose
centre frequencies are governed by the Bragg condition 𝑎 =
𝑛(𝜆/2) (𝑛 = 1, 2, 3, . . .), where 𝑎 is the lattice constant of
the periodic system and 𝜆 is the wavelength in the host
material. The Bragg condition indicates that Bragg-type gaps
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are not practical for filtering waves in the low frequency
range because the lattice constant must be of the same
order as the relevant wavelength. In contrast, the locally
resonant (LR) mechanism proposed by Liu et al. [8] makes it
possible to obtain resonance-type gaps with lattice constants
that are two orders of magnitude smaller than the relevant
wavelength by proposing a type of LR PC, which has attracted
considerable attention in this field [9–16].The LRmechanism
is mainly based on the idea of mounting periodic arrays of
local resonators to a host medium. Thus, the frequency can
be tuned to the desired values by varying the parameters
and structures of the local resonators. In analogy with LR
PCs, the idea of resonance-type band gaps has recently been
attempted, both theoretically and experimentally, for rods
[17–19], beams [5, 20–24], pipes [25], and plates [26–28] in
vibration-control engineering.

Beams are typical structural elements of many engi-
neering constructions and equipments. The control of wave
propagation in beams is of great importance in aerospace
and civil structures because the unwanted transmission of
waves can lead to safety issues or environmental conse-
quences. Based on the concept of LR PCs, some research
focuses on the existence of low-frequency resonance gaps
in infinite systems and the validation of gap characteristics
by calculating/measuring the frequency response functions
(FRFs) of finite samples [5, 20, 21]. Yu et al. investigated the
flexural vibration band gaps in beams with locally resonant
structures that have a single degree of freedom [5] and two
degrees of freedom [20]. Liu et al. discussed the frequency
range and attenuation coefficient of the locally resonant gap
with different local resonators [21]. However, these studies
all focused on a single band gap, which is not suitable for
the reduction of vibrations in the multiple frequency ranges
in engineering because the high-order modes of beams may
also be involved in the vibrations. The same is true in a rotor
system, in which the flexural vibration is also increased at
two and four times the fundamental frequency due to angular
misalignment of the coupling [29].

Recently, the coexistence of resonance-type and Bragg-
type band gaps was found in LR beams [22, 23]. Liu and
Hussein observed the transition state between resonance-
type and Bragg-type band gaps as well as an interesting wave
behaviour caused by the interplay of these two mechanisms
in LR beams [22]. Xiao et al. achieved broader band gaps
in a locally resonant beam with multiple arrays of damped
resonators at frequencies both below and around the Bragg
condition [23]. These researchers’ works can derive multiple
band gaps under certain circumstances, whereas the wave
attenuation in a Bragg-type band gap is too small to meet the
higher isolation demand. In addition, complicated structure
constructions are needed to achieve a significant amount
of wave attenuation in the Bragg-type band gap. Similar
research can be found in the study by Wen et al., which
attempted to addmultiple oscillators to a unit cell of an Euler-
Bernoulli beam to obtain multiple resonance-type band gaps
[24]. However, the first gap these researchers derived was too
narrow to mitigate vibration in the low-frequency range, and
the band gaps in the frequency-multiplication ranges were
not provided. Thus, their research cannot well deal with the

problem of vibration reduction within multiple frequency
ranges, especially in the frequency-multiplication ranges.

Themain purpose of this paper is to achievemore flexible
resonance-type multiband gaps by proposing a new beam
with periodically attached multioscillators. The lower initial
frequency and band gaps in the frequency-multiplication
ranges are expected to be obtained in the new beam, which
can meet the demand of wave attenuation in multiple fre-
quency ranges in engineering. In addition, simplified models
for the corresponding edge frequencies of the band gaps are
studied, which can contribute to further understanding of
the LR mechanism of PCs and the realisation of composite
structures with multiple band gaps. The paper is organised
as follows. The exact dispersion relations for the propagation
of flexural vibrations in infinite Timoshenko beams that are
periodically connected with multioscillators are derived in
Section 2. The analytical results for the band gaps derived
from the new beam are illustrated in Section 3, and the
transmission FRFs obtained using the finite element (FE)
method are provided to verify the accuracy of the band gap
distributions. In Section 4, simplified models are proposed
to calculate the initial and terminal frequencies. In addition,
the band gaps in the new beam are compared with the beam
studied in [24] under different structure parameters. Finally,
conclusions are presented in Section 5.

2. Analytical Models

In this section, the transfer matrix method is used to derive
the exact dispersion relations for the Timoshenko beams
with periodically attached multioscillators, which allows for
continuity conditions at the two surface boundaries of each
unit cell through the use of matrices [29, 30]. The analytical
models of the beams are illustrated in Figure 1. The straight
beams extend infinitely along the 𝑥 axis and have an annular
cross section. There are two oscillators assembled on the
beam at uniformly spaced intervals, and each oscillator
comprises a spring 𝐾 and a mass 𝑚. The length 𝑎 of the
interval is called the lattice constant of the PCs. Only flexural
vibrations are assumed to occur in the beam. The transverse
displacement 𝑦(𝑥, 𝑡) of the Timoshenko beam satisfies the
following equation of motion [5, 31]:

𝐸𝐼

𝜌𝑆

𝜕
4
𝑦 (𝑥, 𝑡)

𝜕𝑥
4

−

1

𝑆

(1 +

𝐸

𝜅𝑆

)

𝜕
4
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𝜕𝑥
2
𝜕𝑡
2

+

𝜕
2
𝑦 (𝑥, 𝑡)

𝜕𝑡
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+

𝜌𝐼

𝜅𝐺𝑆

𝜕
4
𝑦 (𝑥, 𝑡)

𝜕𝑡
4

= 0,

(1)

where 𝐸 and 𝐺 are the Young’s modulus and shear modulus
of the beam’s material, respectively; 𝜌 is the density; 𝑆 is the
cross-sectional area; 𝜅 is the Timoshenko shear coefficient;
and 𝐼 is the area moment of inertia with respect to the axis
perpendicular to the beam axis. By separating out the time
variable, 𝑦(𝑥, 𝑡) can be written as 𝑦(𝑥, 𝑡) = 𝑌(𝑥)𝑒𝑖𝜔𝑡, where 𝜔
is the circular frequency. As discussed in [5], for the 𝑛th cell,
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Figure 1:The analytical models of a Timoshenko beamwith periodically attachedmultioscillators. (a) Model A: the oscillators are connected
to each other on the same side. (b) Model B: the oscillators are distributed on different sides, a configuration which was put forward and
discussed in [24].

where 𝑥 = 𝑥 − 𝑛𝑎, and 𝑛𝑎 ≤ 𝑥 ≤ (𝑛 + 1)𝑎, the amplitude can
be obtained by
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where 𝛼 = −𝜌𝜔2/𝐸−𝜌𝜔2/𝜅𝐺; 𝛽 = −𝜌𝜔2/𝐸𝐼−𝜌2𝜔4/𝐸𝜅𝐺, and
[𝑗/2] is the largest integer that is less than 𝑗/2.

For Model A, which is shown in Figure 1(a), the dynamic
equations of the two oscillators connected between the 𝑛th
and (𝑛 + 1)th cell can be derived as
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The interactive force between the first oscillator and the
beam, 𝐹
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𝐹
𝑛+1
= 𝐾
1
[𝑌
𝑛+1
(0) − 𝑉

(𝑛+1)𝐴
]

=

𝐾
1
𝑌
𝑛+1
(0) [𝑚

1
𝜔
2
+ 𝐾
2
𝑚
2
𝜔
2
/ (𝐾
2
− 𝑚
2
𝜔
2
)]

[𝑚
1
𝜔
2
+ 𝐾
2
𝑚
2
𝜔
2
/ (𝐾
2
− 𝑚
2
𝜔
2
) − 𝐾
1
]

.

(6)

For the case of Model B studied in [24], the dynamic
equation for the two unconnected oscillators at the interface
shown in Figure 1(b) can be derived as [24]

𝑚
𝑖
̈
𝑍
(𝑛+1)𝑖

+ 𝐾
𝑖
(𝑍
(𝑛+1)𝑖

− 𝑦
𝑛+1
(0, 𝑡)) = 0, 𝑖 = 1, 2. (7)

The solution is

𝑉
(𝑛+1)𝑖

=

𝐾
𝑖

𝐾
𝑖
− 𝑚
𝑖
𝜔
2
𝑌
𝑛+1
(0) , 𝑖 = 1, 2. (8)

From (8), the interactive force between the oscillators and
the beam, 𝐹

𝑛+1
, at 𝑥 = (𝑛 + 1)𝑎 is

𝐹
𝑛+1
= ∑𝐾

𝑖
[𝑌
𝑛+1
(0) − 𝑉

(𝑛+1)𝑖
]

= ∑𝐾
𝑖
(1 −

𝐾
𝑖

𝐾
𝑖
− 𝑚
𝑖
𝜔
2
)𝑌
𝑛+1
(0) , 𝑖 = 1, 2.

(9)

According to the continuity of the displacement, slope,
bendingmoment, and shear force at the interface between the
𝑛th and (𝑛 + 1)th unit cell, 𝑥 = 𝑛𝑎,

𝑌
𝑛
(𝑎) = 𝑌

𝑛+1
(0) ,

𝑌


𝑛
(𝑎) = 𝑌



𝑛+1
(0) ,

𝐸𝐼𝑌


𝑛
(𝑎) = 𝐸𝐼𝑌



𝑛+1
(0) ,

𝐸𝐼𝑌


𝑛
(𝑎) = 𝐸𝐼𝑌



𝑛+1
(0) − 𝐹

𝑛+1
.

(10)
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Figure 2: The sketch of a Timoshenko beam with periodically attached multioscillators. (a) Model A, (b) Model B.

By extracting the arbitrary coefficients from (10), Φ
𝑛
=

[𝐴
𝑛
𝐵
𝑛
𝐶
𝑛
𝐷
𝑛
]
𝑇, these equations can be written in

matrix form as follows

M
𝑛
Φ
𝑛
= N
𝑛+1
Φ
𝑛+1
, (11)

where
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=
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,

N
𝑛+1

=

[

[

[

[

[

[

[

[

[

[

[
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1
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.

(12)

Due to the periodicity of the structure, the Bloch theorem
states that

Φ
𝑛+1
= 𝑒
𝑖𝑞𝑎
Φ
𝑛
, (13)

where 𝑞 is wave vector in the 𝑥 direction.The problem can be
transformed into an eigenvalue matrix equation:






Τ − 𝑒
𝑖𝑞𝑎
Ι





= 0, (14)

where Τ = N−1
𝑛+1

M
𝑛
and I is a 4 × 4 unit matrix.

The dispersion relation between the wave vector 𝑞 and the
frequency𝜔 can therefore be obtained. For any 𝜔, if 𝑞 is a real
number, 𝜔 is in the pass band. If 𝑞 has an imaginary part,
the corresponding wave is damped in that region, and the
imaginary part of 𝑞 can be used to describe the attenuation
properties in the band gaps.

Table 1: Material parameters.

Material Density
(kg/m3)

Young’s
Modulus 𝐸

(Pa)

Shear
Modulus 𝐺

(Pa)

Poisson ratio
𝜎

Rubber 1300 7.7 × 105 2.6 × 105 0.48
Al 2600 7.0 × 1010 2.7 × 1010 0.3
Cu 8950 1.646 × 1011 7.53 × 1010 0.093
Steel 7780 2.106 × 1011 8.1 × 1010 0.3

3. Numerical Simulation and Comparison

Figure 2 shows two simulation structures of the beam with
oscillators based onModel A andModel B, respectively. Both
beams are constructed using an aluminium tube, and the
oscillators are composed of soft rubber rings andmetal rings.
As shown in Figure 2(a), the multioscillators in Model A are
structures composed of four connected rings in each unit cell,
whereas the periodically attachedmultioscillators inModel B
presented in Figure 2(b) are two adjacent structures that are
each composed of a rubber ring and a metal ring. The inner
and outer radii of the tube are 𝑟

1
= 0.007m and 𝑟

2
= 0.01m,

respectively. The lattice constant is 𝑎 = 0.075m, and the
length of all the rings is 𝑙 = 0.01m.Theouter radius of the first
rubber ring, which is in contact with the tube, is 𝑟

3
= 0.015m.

The outer radius of the first metal ring, which is in contact
with the first rubber ring, is 𝑟

4
= 0.0195m. The radii of the

second rubber ring and the metal ring in Figure 2(a) (𝑟
5
and

𝑟
6
) will be determined in the following
All of thematerial parameters used in the calculations are

listed in the Table 1. As discussed in [32], the shear coefficient
of the Timoshenko beam can be determined by

𝜅 =

6 + 12𝜎 + 6𝜎
2

7 + 12𝜎 + 4𝜎
2
, (15)

where 𝜎 denotes the Poisson ratio.
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Figure 3: The band structure of the infinite Timoshenko beam with periodically attached multioscillators. (a) Real wave vector of Model A.
(b) Real wave vector of Model B.

The radial stiffness of the rubber ring can be calculated
using [33]

𝐾 =

𝜋 (5 + 3.29𝐻
2
)𝐺𝑙

ln (𝑟
2
/𝑟
1
)

, (16)

where𝐻 = 1/(𝑟
1
+ 𝑟
2
) ln(𝑟
1
/𝑟
2
) is the shape coefficient.

For comparison, the structure parameters forModel B are
taken from [24].The stiffness andmass of the LR structures in
Model A and Model B are the same, namely,𝑚

1
= 0.0437 kg,

𝑚
2
= 0.0379 kg, and 𝐾

1
= 𝐾
2
= 1.65 × 10

5N/m. The
radii of the second rings are set to 𝑟

5
= 0.02688m and

𝑟
6
= 0.02963m.
Theband structures of bothmodels are shown in Figure 3.

The complete band gaps are shaded. In both models, two
complete band gaps are found between 0 and 800Hz. The
band gap characteristics of Model B based on the Timo-
shenko beam theory are verified with the results derived
in [24]. Compared with the beam with only one oscillator
in a unit cell in [5], although the initial frequencies of the
first band gaps are both 309Hz, the total width of the first
two band gaps in the Model B is increased from 170.3Hz to
297.1Hz. However, the positions of the first two band gaps are
too close and are not suitable for vibration reduction within
multiple frequency ranges, especially if the frequency ranges
in which vibration must be reduced have large intervals.

Figure 3(a), obtained using Model A, shows two widely
separated band gaps that are not obtained in Model B.
The initial frequency of the first gap in Model A is
decreased to 201.4Hz. Note that the centre frequency of
the second band gap (511.8–560.9Hz) is approximated two
times the centre frequency of the first gap (201.4–348.4Hz);
that is, a frequency-multiplication relationship between the
two resonance-type gap can be achieved. The “frequency-
multiplication relationship”mentioned here can be explained
as follows: the central frequency of the band gaps is close to
the frequency 𝑓

𝑁
= 𝑁 × 𝑓

1
(𝑁 could be 1, 2, 3, . . .), where

the fundamental frequency 𝑓
1
is the central frequency of

the first band gap. Thus, the flexural vibrations at one and
two times the fundamental frequency can be well reduced, a
phenomenon that can be employed to address a case such as
the above-mentioned angular misalignment of the coupling
in a rotor system. In addition, the first band gap in Model
A is wider than the second band gap, which helps to flexibly
reduce vibrations of the beam at low frequencies.

The existence of the band gaps calculated from the infinite
system can be verified by the transmission property derived
from a corresponding finite system because PCs with a
sufficient number of unit cells can provide a large wave
attenuation in the corresponding band gap range [11]. The
FRF, which represents the relationship between the wave
response and the corresponding frequencies, has been used
to describe vibration gaps effectively. Therefore, the finite
system of Model A is created in Abaqus to calculate the
FRF. The mesh model for the FE method is illustrated in
Figure 4(a), which has the same geometry in the unit cell
as the model in Figure 2(a). Based the analysis of different
numbers of unit cells in the structure [11], eight unit cells
used in an FE simulation can achieve a sufficient accuracy
for approximating the results of the infinite system.Therefore,
the length of the beam is 0.6m in Figure 4(a). To guarantee
the free vibration of the beam, there are no boundary
constraints at the ends of the beam. The acceleration is
induced at the left end of the beam in the 𝑦 direction, and
the corresponding acceleration is extracted at the opposite
end. The frequency responses are illustrated as solid lines in
Figure 4(b).

Note the two sharp drops below the 0 dB line (dashed
line) in the Figure 4(b), which indicate the ranges of the
band gaps. Compared with the response outside the band
gaps, the average response attenuation of the two band gaps
is approximately 40 dB. The ranges of the first two gaps
calculated using the FE method are similar to those of the
gaps shown in Figure 3(a), which are obtained from the
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Figure 4: (a) The calculation model for the FE method. (b) The corresponding calculated FRF.

infinite structure. It can be concluded that the previous
analysis is accurate, and using LR structures with equivalent
parameters, Model A has better band gaps for vibration
reduction in the frequency-multiplication ranges than does
Model B. Considering the advantages of each model, an
LR PC beam with the desired band gap properties can be
obtained by choosing the most appropriate plan.

4. Simplified Models for the Edge Frequencies
of Band Gaps

In this section, the corresponding simplified models for the
initial and terminal frequencies of the band gaps for Model
A are studied. The simplified models for Model B have been
discussed previously in [24].

4.1. Initial Frequency Model. The initial frequency of the first
band gap in a typical LR PC is determined by the resonance
frequency of the oscillator in the same direction. In this
resonance mode, the oscillators vibrate in specific directions,
and the phases of the oscillator vibrations in adjacent unit
cells are reversed to keep the dynamic balance [4, 24]. Thus,
the simplified model for the initial frequencies of the two
oscillators can be formed as shown in Figure 5.

The equations of motion for the model are as follows:

𝑚
1
�̈�
1
+ 𝐾
1
𝑢
1
+ 𝐾
2
(𝑢
1
− 𝑢
2
) = 0,

𝑚
2
�̈�
2
+ 𝐾
2
(𝑢
2
− 𝑢
1
) = 0,

(17)

where 𝑢
1
and 𝑢
2
represent the displacements of the respective

oscillator.
The natural angular frequency 𝜔

𝑖𝑛
satisfies the equation

det [k − 𝜔2
𝑖𝑛
m] = 0, (18)

where k = [ 𝐾1+𝐾2 −𝐾2
−𝐾
2
𝐾
2

],m = [
𝑚
1

𝑚
2
].

𝑚1 𝑚2

𝐾1 𝐾2

Figure 5: The simplified model for the initial frequencies of band
gaps.
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𝐾11𝐾12

Figure 6: The simplified model for the terminal frequencies of the
band gaps.

Thus,

𝜔
2

𝑖1,2
=

𝐾
1
𝑚
2
+ 𝐾
2
𝑚
1
+ 𝐾
2
𝑚
2

2𝑚
1
𝑚
2

∓

√(𝐾
1
𝑚
2
+ 𝐾
2
𝑚
1
+ 𝐾
2
𝑚
2
)
2

− 4𝐾
1
𝐾
2
𝑚
1
𝑚
2

2𝑚
1
𝑚
2

(19)

can be obtained, and the initial frequencies of the first two
band gaps are 𝑓

𝑖1,2
= √𝜔𝑖1,2

/2𝜋.

4.2. Terminal Frequency Model. All of the oscillation phases
of the unit cells are in the same direction at the terminal
frequency of the band gap. The dynamic balance is given by
the antiphases between the LR structures and the matrix [4,
24].Thematrix mentioned in [4, 24] is the beam in this paper
by analogy. As illustrated in Figure 6, the simplifiedmodel for
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Figure 7: Variation of the band gaps as a function of the oscillators’ mass ratio and verification of the simplified models. (a) Model A, (b)
Model B. (𝑚

1
= 0.0437 kg,𝑀 = 0.0312 kg, and 𝐾

1
= 𝐾
2
= 1.65 × 10

5N/m).

the terminal frequencies comprises the beammass𝑀 and the
oscillators in the unit cell. There is a static point between the
beam and the connected oscillators that divides the model
into two parts that have the same natural frequencies. At
the static point, the spring 𝐾

1
can be considered a series

connection of two springs 𝐾
11
and 𝐾

12
, which are related by

the following equation:

1

𝐾
1

=

1

𝐾
11

+

1

𝐾
12

. (20)

The components to the right of the static point (dashed
box) can be observed as a single unit. The natural angular
frequency𝜔

𝑡𝑛
is described by (17) to (19), where𝐾

1
is replaced

by 𝐾
11
.

Because the resonances of the matrix and the connected
oscillators are at the same frequency,

𝐾
12

𝑀

= 𝜔
𝑡𝑛
. (21)

Thus, the relation between 𝐾
11

and 𝜔
𝑡𝑛
can be extracted

and combined with the previous discussion in Section 4.1.
Therefore,
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,

(22)

and the terminal frequencies of the first two band gaps are
𝑓
𝑡1,2
= √𝜔𝑡1,2

/2𝜋.
Figures 7, 8, and 9 illustrate the dependence of the band

gaps on the oscillators’ mass ratio, the oscillators’ stiffness
ratio, and the beam’smass, respectively. In addition, forModel
A, the calculations of the initial and terminal frequencies
of the first two band gaps using both the analytical and
simplified models are presented to verify the accuracy of the
deduced formulae. The shadow regions indicate the band

gaps, and the details of the data are illustrated in the top right
corner of each figure.

Figures 7(a), 8(a), and 9(a) show that the frequencies of
the band gaps obtained using the simplified models and the
analytical model are in good agreement. These results prove
the accuracy and validity of the methods proposed in this
paper. The beams with periodically attached multioscillators
have similar resonance modes to those of typical LR PCs at
the boundary frequencies of the band gaps.This result reveals
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Figure 8: Variation of the band gaps as a function of the oscillators’ stiffness ratio and verification of the simplified models. (a) Model A, (b)
Model B. (𝑚
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= 0.0437 kg,𝑚
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Figure 9: Variation of the band gaps as a function of the beam’s mass and verification of the simplified models. (a) Model A, (b) Model B.
(𝑚
1
= 0.0437 kg,𝑚

2
= 0.0379 kg,𝑀 = 0.0312 kg, and 𝐾
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the characteristics of the LR mechanism, which is helpful in
the construction of new devices with LR band gaps.

By comparing the (a) subfigure with the (b) subfigure in
Figures 7–9, it can be seen that the variation tendencies of
Model A are similar to those of Model B. With the increase
of the oscillators’ mass as well as the beam’s mass or with
the reduction of the oscillators’ stiffness, the frequencies of

the band gaps are decreased. However, there is usually a
distance between the first two band gaps in Model A, and
the band gaps that are widely separated can be obtained
without large differences in the parameters of the oscillators.
Thus, Model A has better regulation and control abilities in
practical engineering. In addition, with the same material
parameters, Model A clearly always has a lower initial
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frequency and a wider first band gap than Model B and is
able to provide a larger range of vibration reduction at low
frequencies. To achieve lower frequencies, Model B should
use a larger mass or a smaller stiffness, which is uneconomic
in most engineering. In addition, although the total width
of the gaps is larger, a narrow first band gap is almost
inevitable in Model B. Furthermore, the band gaps with a
frequency-multiplication relationship cannot be well derived
in Model B; thus, this model is not appropriate for vibration
damping or noise reduction in the frequency-multiplication
ranges. In general, Model A has specific abilities and can be
more reasonably and feasibly applied to practical structures
because of the advantages of lower frequencies, frequency-
multiplication relationships, and material costs.

5. Conclusions

In this paper, a new Timoshenko beam structure with peri-
odically attached multioscillators is proposed to obtain band
gaps in the frequency-multiplication ranges based on the LR
mechanism of PCs. Explicit matrix formulations are derived
for the calculation of wave band structures of the new beam
by using the transfer matrix method. The gap characteristics
of the beam are confirmed by calculating the FRF of the
corresponding finite structure. The numerical calculations of
the band structures and the analysis of the model parame-
ters demonstrate that the beams with periodically attached
multioscillators have more abundant gap characteristics than
those with only one oscillator in a unit cell. By using common
materials and an uncomplicated beam structure, multiple
resonance-type band gaps with large wave-attenuation and
frequency-multiplication ranges, together with the wider and
lower first band gap, are derived in the new beam; this result
was not illustrated in any of the previous studies on LR PC
beams. In addition, simplifiedmodels are proposed to deduce
accurate estimation formulae for the initial and terminal
frequencies of the band gaps in the new beam.The simplified
models will also contribute to enhanced understanding of the
LRmechanismof PCs andwill facilitate the analysis of similar
structures.

The research findings presented in this paper provide
suggestions for future studies of small-size PCs with low fre-
quencies and multiple resonance-type band gaps. Moreover,
the results can be employed to create new devices that reduce
vibration and mitigate noise in the frequency-multiplication
ranges for aerospace and civil structures.
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To improve the defect detectability of Lamb wave inspection systems, the application of nonlinear
signal processing was investigated. The approach is based on a Warped Frequency Transform
(WFT) to compensate the dispersive behavior of ultrasonic guided waves, followed by a
Wigner-Ville time-frequency analysis and the Hough Transform to further improve localization
accuracy. As a result, an automatic detection procedure to locate defect-induced reflections
was demonstrated and successfully tested by analyzing numerically simulated Lamb waves
propagating in an aluminum plate. The proposed method is suitable for defect detection and can
be easily implemented for real-world structural health monitoring applications.

1. Introduction

In recent years, ultrasonic guided waves (GWs) have received a great deal of attention
among nondestructive tests community due mainly to the ability to travel long distances
without substantial attenuation and to employ multimode/-frequency examination for defect
classification and sizing. Among the various techniques based on GWs, the detection of
defects in plates-like structures by means of Lamb waves has been, and is still, widely
investigated [1–6] due to the variety of potential applications. Since the propagation
characteristics are directly related to both the inherent structure and mechanical properties
of the medium, the dispersiveness of GWs can reveal important information for structural
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Figure 1: Group velocity dispersion curves for the Lamb waves propagating in a 2.54 mm thick aluminum
plate (Young modulus E = 69 GPa, Poisson’s coefficient ν = 0.33, and density ρ = 2700 kg/m3).

health monitoring purposes. Unfortunately, several different modes appear simultaneously
in the signal. These modes overlap in both time and frequency domains, and simple Fourier
analysis techniques are not able to separate them.

Thus, identification of Lamb modes is a challenging step in the process of damage
detection. However, recent works in the area of time-frequency representations (TFRs)
[7, 8] show great potential for applications in nondestructive evaluation and material
characterization. Specifically, TFRs can provide an effective tool for the interpretation of
GWs, whose multimodal and dispersive nature make them an extremely complicated class
of ultrasonic signals.

This work proposes a time-frequency (TF) energy density function approach that
makes use of known dispersion characteristics for a propagating wave mode in order to
compensate for the effect of dispersion and locate defects in plate-like structures. Our
approach will be illustrated through a relevant case study, in which defects are to be located
on an aluminum plate where Lamb waves are excited.

2. Numerical Simulation of Lamb Wave Propagation

Let us consider an aluminum plate of thickness is h = 2.54 mm, Young’s modulus E = 69 GPa,
and Poisson’s ratio ν = 0.33. The proposed processing requires the computation of the
group velocity dispersion curves for the plate. For such task, today several formulations
and tools are available. For instance, in uniform waveguides the group velocity cg(f)
can be estimated by means of analytical-based formulations [9], semianalytical finite
element (SAFE) simulations [10], and by using standard finite element codes [11]. Recent
developments allow the computation of the dispersion curves also in the case of irregular
waveguides [12]. The results shown in Figure 1 were obtained by a using free-SAFE-based
tool that can be downloaded at http://www.guiguw.com/ [10].
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Figure 2: Schematic representation of the damaged aluminum plate used in the time-transient FEM
simulations (plate dimensions are in mm). The spatial distribution and time-amplitude shape of the
actuation pulse is also shown.

As a second step, time waveforms related to Lamb waves propagating in the
aluminum plate were obtained numerically by means of dedicated Finite Element (FEM)
simulations using Abaqus explicit [13]. Thanks to the Lamb problem symmetry, a x-y plane
strain condition was assumed, as shown in Figure 2. A notch of width b = 0.25 mm and
depth a was considered, such that a/h = 0.3. The assumed notch location was on the top side
at the center of the plate (x = 500 mm). Lamb waves were excited by applying an impulsive
force p(t) to the left edge of the plate towards the positive x-direction: this mainly stimulates
the symmetric S0 mode. The force was shaped in time as a triangular window with a total
duration of 2μs (see the top left of Figure 2) in order to excite consistent Lamb waves up to
500 kHz.

For instance, a similar excitation was obtained in [14] by focusing, through
conventional optics, a laser beam to a straight line acting along the plate edge. It is shown
in such work that the S0 mode can be excited by means of such experimental setup.

To ensure accuracy to the time-transient finite element simulations [15], the plate
domain was discretized with elements of maximum side length Lmax = 0.125 mm, and the
time integration step was kept Δt < 1e − 8 sec.

Time-dependent out-of-plane displacements v(t) were recorded at three points on the
top side of the plate (y = h/2), namely, A, B, and C, respectively, located at xA = 100 mm,
xB = 200 mm, and xC = 300 mm. The recorded waveforms are shown in Figure 3. The
leftmost peak in each signal corresponds to the passage of the excited S0 mode through the
recording position (path 1, in Figure 4), while oscillations in the central part of the waveforms
are due to defect-induced reflections (path 2, in Figure 4), which also excite the slower A0

mode. Spreading of these oscillations clearly reveals the effect of dispersion. Finally, further
reflections from the plate edges (path 3, in Figure 4) are responsible for the complicated
behaviour observed in the rightmost part of the signals.
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(a) xA = 100 mm, (b) xB = 200 mm, and (c) xC = 300 mm.
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Figure 4: Schematic representation of the multiple paths traveled by the waves detected in a given
acquisition point.

3. Mathematical Tools

The defect location procedure can be divided in three steps: (i) Warped Frequency Transform
to remove the dispersive behaviour of the S0 mode; (ii) equalization procedure to enhance
weak reflections; (iii) Wigner-Hough Transform to distinguish S0 reflections from other
interfering waves. Such steps are detailed in the following subsections.



Mathematical Problems in Engineering 5

s(t) w(f) sw(t)S(f)
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Figure 5: Computational flow of the frequency warping operator Ww. F and F−1 are the direct and
inverse Fourier Transform operators, respectively, while w(f) and ẇ(f) are the warping map and its first
derivative.

3.1. The Warped Frequency Transform (WFT)

The WFT is a unitary time-frequency transformation that produces a flexible sampling of the
time-frequency domain [16].

Given a generic signal s(t) whose Fourier Transform (FT) is S(f), the frequency
warping operator Ww transforms the original waveform into a warped version sw(t) by
reshaping the frequency domain through a properly designed warping map w(f). The
procedure is depicted in Figure 5.

The WFT can be used to compensate dispersion in GWs [17] by defining the warping
map through the following relationship:

K
dw−1(f)

df
=

1
cg
(
f
) . (3.1)

Equation (3.1) relates the functional inverse w−1(f) of the map to the inverse of the group
velocity curve, that is, 1/cg(f), of the wave that we want to consider. K is a normalization
parameter selected so that w−1(0.5) = w(0.5) = 0.5. As shown in Figure 1, for acoustic
emission below 500 kHz, only the two fundamental waves A0 and S0 can propagate through
the plate. It is assumed that mostly S0 is actuated, therefore the group velocity curve of S0

has been used to build w(f).
If s(t) is an undamped guided wave at a traveled distance D from the actuator, its FT

is given by S(f) = S0(f) · e−j2π
∫f

0 τ(α)dα where S0(f) is the FT of the actuated wave (incipient
pulse) and τ(f) = D/cg(f) represents the frequency-dependent group delay of S0 in this
case. Using (3.1), S(f) can be rewritten as

S
(
f
)
= S0

(
f
) · e−j2πD ∫f

0 (1/cg(α))dα

= S0
(
f
) · e−j2πw−1(f)KD.

(3.2)

By applying warping and exploiting the invertibility property of the map, that is,
w−1[w(f)] = f , yields to a signal sw(t) whose spectrum is

FWw{s(t)} =
[√

ẇ
(
f
)
S0

(
w
(
f
))] · e−j2πfKD. (3.3)

The linear dependence on the warped frequency in this equation shows that the dispersive
effect is converted in a simple warped time-delay (KD) proportional to the distance.
Dispersion is therefore compensated, and the resulting signal sw can be equivalently plotted



6 Mathematical Problems in Engineering

as a function of the distance from the source, thus allowing to locate defects of the excited
waveguide by detecting the corresponding reflected waves.

It is worth noticing that, despite the different formalism, the processing described
above is substantially analogous to the ones presented in [18, 19]. However, in many practical
applications such dispersion compensation is not sufficient to ensure a reliable estimation of
wave traveled distance, due to the weakness of reflections and to the interfering presence of
different modes. For these reasons, necessary further processing steps are introduced in this
work, as will be shown in the following sections.

3.2. Wave Equalization

By means of the warping procedure described in the previous section, a realignment of the
time-frequency content of S0 waves in vertical lines is produced. However, in general the
energy of the waves scattered by defects is much lower than the energy of the incident
wave, especially for small defects. To overcome this problem, the energy of incident and
reflected waves in the acquired signal can be conveniently equalized. Such task can be
accomplished with a simple but effective procedure based on a local averaging of the acquired
signal. Indicating with LA(|sw(x)|) the local average of |sw(x)| in the neighborhood of x, the
equalized signal swe(x) is obtained as

swe(x) =
sw(x)

max{LA(|sw(x)|), T} , (3.4)

where T is a given threshold, set as the 5% of the maximum value of |sw(x)|, which is
used to avoid the undesired amplification of numerical noise when the signal is absent. In
experimental data, the value of T must be set according to the SNR of the acquisition setup.

The warped and equalized versions of the signal in Figure 3(a) are plotted in Figures
6(a) and 6(c), respectively. The equalization factor max{LA(|sw(x)|), T} is depicted in
Figure 6(b).

3.3. The Wigner-Hough Transform (WHT)

After equalization, defect detection can be performed automatically with a further processing
of the signal swe(x). It is worth noticing that the energy of spurious contribution (caused by
multimodal propagation or mode conversion) is quite high in the equalized signal compared
to the energy of compensated S0 waves. In the example of Figure 6(c), the peak related to
the S0 wave reflected by the defect (indicated as S0 path 2) is just about twice as high
as the peak in the following mode-converted wave (A0). Therefore it is quite difficult to
implement simple thresholding procedures capable of distinguishing different wave modes
in this representation.

However, defect-induced reflections of the analyzed mode (S0 in this example) appear
in the compensated waveform as well-localized spikes, thus producing vertical maxima
lines in a TF representation, whose (warped) time location can be directly converted to the
defect position. On the contrary, spurious contributions related to different modes (A0 in this
example) show a peculiar frequency modulation due to a different group velocity curve from
the one of S0. This can be clearly observed in a simple TFR of swe(t), provided by the short-
time Fourier transform (STFT), shown in Figure 7.
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Figure 6: (a) Warped version vAw of the signal vA represented in Figure 3(a). (b) Equalization factor for
the same signal. (c) Equalized warped signal vAwe as a result of the equalization procedure.

Other energy distributions, such as the Wigner-Ville distribution (WVD), defined as

Wswe

(
t, f

)
=
∫+∞

−∞
swe

(
t +

τ

2

)
s∗w

(
t − τ

2

)
· e−j2πfτdτ (3.5)

can be used to further improve the effectiveness of the representation. In fact, WVD provides
optimal energy localization of linear chirp signals in the time-frequency plane [20]. It follows
that applying vertical line detection algorithms to the WVD of the compensated signals
provides an asymptotically optimal detector of wave propagating distances.

In particular, automatical detection of the desired lines of energy maxima can be
performed by applying the Hough Transform (HT) [21] to the WVD, resulting in the so-called
Wigner-Hough Transform (WHT) [22]. Generally speaking, the HT is an image processing
tool that performs an integration on all the possible lines of a given image I and maps
the value of each integral to a (ρ, θ) plane corresponding to the polar parametrization of
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the lines. High-intensity pixels concentrated on straight lines on I will therefore produce
peaks in the (ρ, θ) domain. In the Wigner-Hough Transform, the input image corresponds to
the WVD of the considered signal and, in our approach, emphasis is placed in finding vertical
lines, located at θ = {π/2, 3π/2}. Therefore, in the WHT, the portion which corresponds
to these angles is isolated, and the ρ value corresponding to detected peaks represents the
distance traveled by the wave. One of the major limitations of the WVD is the presence of
interference terms between different spectral components of the analyzed waveform induced
by the WVD. However, it is worth noticing that this inconvenience is largely compensated
through the integration performed by the Hough operator, as these undesired components
appear as alternating positive peaks and negative valleys in the TF plane.
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4. Procedure of the Method

The mathematical tools detailed in the previous section can be efficiently implemented by the
following processing steps.

(i) The discrete WFT can be computed with the approach described in [23]. In essence,
the warped signal is obtained by performing a nonuniform Fourier Transform [24]
followed by an inverse Fourier Transform. Fast-Fourier algorithms can be exploited
to compute both the direct nonuniform and the inverse transforms.

(ii) In the second step, warped signals are equalized in amplitude, according to (3.4).
The local averaging window applied in the right hand term of the same equation is
about 9 cm in length (it is worth recalling that, in the warped domain, time intervals
are related to distances).
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Figure 11: (a) Warped version vBw of the signal vB presented in Figure 3(b). (b) Equalization factor for the
same signal. (c) Equalized warped signal vBwe as a result of the equalization procedure.

(iii) The software (Time-Frequency Toolbox—TFTB) which computes the Wigner-
Ville distribution adopted in this study is available for academic use at
http://tftb.nongnu.org/. In the same tool, also the code for Hough Transform
computation is provided. However, for wave propagating distance estimation,
the calculation of the Hough Transform coefficients in the whole (ρ, θ) plane
is redundant, as described in Section 3.3. For this reason, in our approach such
calculation is simplified with a simple integration of WVD coefficients across
frequencies.

5. Numerical Results

The WVD of the equalized warped signal in Figure 6 is depicted in Figure 8. As it can be seen,
two vertical lines appears in correspondence to the actual traveled distances of the incident
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Figure 12: (a) Warped version vCw of the signal vC presented in Figure 3(c). (b) Equalization factor for the
same signal. (c) Equalized warped signal vCwe as a result of the equalization procedure.

and scattered wave (at 0.1 and 0.9 m, resp.) together with spurious contribution due to
different modes of propagation and interference terms.

The computation of the WHT, that is, the Hough Transform on the WVD, produces
the image depicted in Figure 9, where three peaks can be associated with θ = π/2 and 3π/2.
The peaks ordinates represent the difference between the effective distance of propagation of
a given wave and a reference distance of propagation of 0.7 m, which corresponds to the half
of the maximum considered propagation distance in the analyses of 1.4 m.

By extracting the values related to θ = π/2 and 3π/2 in the WHT and reordering
them according to the distance from the origin, a novel signal swe−WHT is obtained. In such
signal, depicted in Figure 10, the peaks related to the actual traveled distances of S0 waves
clearly emerge with respect to the spurious contribution due to mode-converted waves, thus
greatly simplifying the definition of automated distance estimation procedures. In particular,
the amplitude of the peak related to the reflected S0 (path 2) is about 10 times higher than
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the maximum values of spurious contribution, that is, five times more with respect to the
dispersion compensated wave of Figure 6. Similar results have been obtained by processing
the signals vB and vC represented in Figures 3(b) and 3(c).

Also for these signals, in fact, it can be seen that the path followed by the compensated
mode S0 can be tracked by observing local peaks in the warped signals, as illustrated in
Figures 11(a) and 12(a), and the location of the defect can be inferred by the position of
reflected peaks. However, the amplitude of the reflected S0 peak, at 0.8 m in Figure 11(a)
and 0.7 m in Figure 12(a), is much smaller compared to that on the incident S0 mode and
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Figure 16: vCwe−WHT extracted for the values θ = π/2 and 3π/2 from the WHT of vCwe represented in
Figure 14.

comparable to that of the reflected spurious A0 wave. It follows that the location of defects
by exploiting only warped signals could be difficult in real noisy applications. As for the first
case discussed, the proposed robust and automated approach involves first an equalization
of the warped signal to emphasize the amplitude of reflection-induced peaks and next
the detection of vertical maxima lines in a space-frequency representation (WHT) of the
equalized warped signals.

The Wigner-Hough Transform, in fact, appears as a suitable tool to isolate S0

components and locate defect-induced reflections, as it can be seen form Figures 13 and 14,
where the WHT of the equalized warped signals vBwe and vCwe, respectively, are displayed.

Local maxima at θ = π/2 and θ = 3π/2 can be easily detected, and the corresponding
ρ coordinates provide the distance traveled by the incident and reflected S0 waveform
components, respectively.

From the extraction of peak coordinates in the waveforms swe−WHT depicted in Figures
10, 15, and 16, the defect responsible for reflections is located at x = 503 mm, x = 502 mm, and
x = 502 mm, respectively. Errors with respect to the actual defect position (x = 500 mm) are
thus below 3 mm, which roughly corresponds to the minimum wavelength associated with
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the excited Lamb waves. Similar good results were found by considering different defect
depths and positions, not shown here for the sake of brevity.

6. Conclusions

The work described the application of a Warped Wigner-Ville analysis to improve defect
detectability of conventional Lamb wave inspection systems. The proposed equalization
approach effectively enhances the amplitude of relevant peaks in warped signals, where
dispersion for a GW mode of interest has been removed. This procedure may encounter
limitations in the presence of especially noisy signals, as spurious components might
be erroneously amplified. However, several alternatives are possible, including more
sophisticated preprocessing algorithms under investigation and the averaging of multiple
acquisitions.

The Wigner-Ville distribution of the equalized signal is then computed. The presence
of interference terms is largely compensated through the integration of the time-frequency
decomposition performed by the Hough operator.

In the resulting Winger-Hough Transform representation, vertical lines associated with
relevant acoustic events can be detected. This allows for the separation of overlapping Lamb
waves. In particular, it was shown with numerical examples that the contribution of S0 can
be highlighted and the one due to interfering terms (such as A0 wave) deeply attenuated.

Finally, with simple thresholding procedures, the information about the distance
traveled by the incident and reflected components of a monitored wave can be easily
recognized. Thanks to its very high precision the developed tool could pave the way for a
new class of procedures to locate defects in waveguides.
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This paper presents the structural health assessment of a railway ancient masonry arch bridge
located in Bologna, Italy. A three-dimensional finite element model of the entire bridge, tuned on
in situ experimental tests, has been used for the assessment. In particular, the finite element model
has been employed to evaluate the structural health of the bridge both in its actual state and in the
hypothesis of a structural strengthening intervention.

1. Introduction

The train loads and the train traffic amount increased tremendously in this last century.
Nevertheless, many railway masonry arch bridges built in the nineteenth and twentieth
centuries are still in service. For this reason and due to the continuous exposure to environ-
mental aggressive conditions, a good number of these bridges suffer important mechanical
deteriorations. The definition of an effective process of assessment of the actual structural
health of these fundamental infrastructures is thus becoming more and more important (see,
e.g., [1–5] and the references therein).

In the present paper, the procedure applied for the structural health assessment of
the railway masonry arch bridge crossing the Reno river in Bologna (Italy), see Figure 1, is
presented, together with the obtained results. Some preliminary results have been presented
in [6]. The procedure is based on the combined use of three-dimensional finite element
modelling [7–10] and in situ experimental testing. A number of experimental tests have been
carried out in order to find out both the material properties of the masonry constituting
the arches and the piers and the structural behavior of the bridge or of portions of it. In
particular, accurate static and dynamic load tests have been performed on some arches
whereas simplified dynamic tests have been repeated on all the spans of the bridge in order



2 Mathematical Problems in Engineering

(a) (b)

Figure 1: (a) Longitudinal view of the multi-span masonry arch bridge as appears today and (b) view of a
construction phase, presumably dated around 1852.

to verify the homogeneity of their structural behavior. The experimental findings have been
used to tune a three-dimensional finite element model of the whole bridge, able to describe
the static and dynamic behavior of the structure under service conditions (train traffic). In
particular, a part of the experimental outcomes have been used to calibrate the finite element
model and a part to validate it. A very good agreement between experimental and numerical
results has been obtained, so confirming the accuracy of the assumptions made in setting
up the finite element model. Then, the tuned finite element model has been used for the
evaluation of the structural health of the bridge both in its actual state and in the hypothesis
of a structural strengthening intervention.

The paper is organized as follows. The three-dimensional finite element model is
presented in Section 2. Section 3 is devoted to the description of the in situ experimental tests.
The tuning of the finite element model is presented in Section 4 and its use for the structural
health assessment of the bridge in Section 5. Some concluding remarks end the paper
(Section 6).

2. The Three-Dimensional Finite Element Model

The bridge, built in 1852, has 15 arch spans and an overall length of 360 m. Arches have a
20 m free span, and piers are 2 m thick and 10 m high (Figure 2). The bridge was originally
designed for two railway tracks, with a barrel width of 9 m (older part/bridge in the
following). Later, the bridge was enlarged building a second, 6 m width, barrel (newer
part/bridge in the following) in order to increase the number of tracks (Figure 2). Visual
inspection of the intrados reveals that the barrels seem to be separated (percolation from
the rail deck is visible along all the arches), so slips between the two parts are possible. The
evaluation of the degree of collaboration of the two parts is one of the key aspects of the
investigation.

A three-dimensional finite element model of the whole bridge, able to describe its
static and dynamic behaviors, has been set up (Figure 3). The model, developed using
the commercial code Abaqus [11], has been defined starting from the existing historical
drawings and encompasses details discovered during the on-site inspection. Fine description
of all the geometry’s components is given (Figure 4) along with the subdivision of material
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Figure 2: (a) Longitudinal and (b) transverse cross sections of the typical bridge span with indication of
different materials.

Figure 3: Full view of the 3D finite element model.

layers: masonry, filling material, and so on (Figure 5). Hexahedral 8-node linear elements
(Abaqus C3D8) [11] have been employed together with the reduction to 6-node linear
triangular prism elements (Abaqus C3D6) and the 4-node linear tetrahedral element (Abaqus
C3D4). These elements are general purpose linear brick elements, fully integrated (2 × 2 × 2
integration points) and sensitive to extreme mesh distortions [12], which tend to give stiffer
dynamic response for coarse meshes. Being the model intended to assess the structural health
under service conditions, all materials have been assumed to work in the linear range thus



4 Mathematical Problems in Engineering
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Figure 4: Partial views and sections of the 3D finite element model: representation of material properties
subdivision.
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Figure 5: (a) View of a portion of the 3D finite element model of the structure with the representation of
material properties subdivision and (b) section view using a cutting plane on the principal pillar.

producing a linear elastic model. Moreover, the materials have been assumed isotropic except
for the material used to model the interface connecting the old bridge and the new bridge.
This part has been modeled using an orthotropic material: in-plane directions are weak
directions (sliding with friction), and the orthogonal direction to this plane possesses full
stiffness as the masonry material (contact). Perfectly clamped boundary conditions at the
base of the piles and at the abutments have been assumed.
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3. In Situ Dynamic and Static Tests

In this section, the dynamic and static tests carried out to investigate the structural behavior
of the railway bridge under service loading are described. Loads generated by trains have
been used in both cases.

3.1. Dynamic Tests

The purpose of dynamic tests is to identify the main natural frequencies and the mode shapes
of the bridge. After verifying that all the spans of the bridge have a similar dynamic behavior
(by means of simplified dynamic tests not reported here), a comprehensive dynamic test has
been carried on a single span only (the 4th span, hereinafter called C4). The structure has
been dynamically excited by means of the regular transit of trains.

3.1.1. Instrumentation

To measure the acceleration produced by the riding of the train on the bridge, twelve piezo-
electric accelerometers have been used. They have a sensitivity of 10 V/g and they have been
placed at the arch intrados at midspan and at quarters of the arch freespan; six accelerometers
measure the accelerations of the older part of the arch span while the other six measure
the accelerations of the newer part (Figure 6(a)). All instruments have been mechanically
clamped to the bridge in a direction orthogonal to the arch intrados (Figure 6(b)). Data have
been acquired by using a 16-bit DAQ board and stored in a PC for further processing.

3.1.2. Measurements and Dynamic Identification

During the transit of trains on the bridge a number of acceleration time histories have been
recorded. Figure 7(a) shows an example of time history recorded by accelerometer A7 (see
Figure 6(a)) during a high velocity train transit. From the acceleration, power spectral density
has been evaluated for each position and time history; an example of PSD corresponding to
the acceleration of Figure 7(a) is reported in Figure 7(b).

Since the dynamic excitation applied to the bridge by the train during the riding is
unknown, in order to identify the natural frequencies and mode shapes of the arch bridge an
output-only identification technique has to be used. In particular, the Enhanced Frequency
Domain Decomposition (EFDD) technique is applied at the present case [13]. It considers the
dynamic force generated by the train like a white noise, and the PSD matrix of the problem is
decomposed in order to obtain, starting from an n-DoF dynamic system, an n-SDoF systems.
The PSD of the obtained systems is identified by classical SDoF techniques (peak picking)
see [14] for further details. The first four natural frequencies identified are f1 = 9.12 Hz,
f2 = 9.62 Hz, f3 = 11.21 Hz, and f4 = 14.10 Hz. The corresponding mode shapes are reported
in Figure 8. The first two modes are both mainly flexural modes, but in the first case the
older arch is more deflected than the newer one, confirming possible slips between arches.
The opposite happens for the second mode shape. The third mode (Figure 8(c)) describes the
deflection of the two arches with opposite signs, and also an appreciable torsional behavior
can be found. Finally, the fourth mode (Figure 8(d)) is similar to a beam second flexural mode
with almost null deflection at midspan for both arches.
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Figure 6: (a) Plan and (b) lateral view of the 4th span (C4) of the arch bridge with positions of accelerom-
eters.
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sponding power spectral density.
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Figure 8: (a) Modal shapes of one arch span identified from dynamic tests.

3.2. Static Test

The same bridge span (C4) as before has been also tested under static loads. In particular,
three locomotives have been used to apply the desired load combinations. In this way, a
better investigation of the possible slips between the two arches (older and newer) has been
performed.

3.2.1. Instrumentation

Vertical displacements of the arches intrados during the test have been measured by using
nine LVDT displacement transducers (L1–L7 and F1-F2 of Figure 9(a)). They have been
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Figure 9: (a) Plan of the 4th span (C4) of the arch bridge with positions of displacement transducers and
(b–d) phases 2 to 4 of static loadings.

positioned at midspan and at quarter-span of the arches. The vertical displacement of the
piers is considered very small, and, consequently, they have been neglected.

3.2.2. Load Combinations and Measurement

The three available locomotives have been positioned in a number of different load
combinations on the considered bridge span. In this way, it has been possible to investigate
not only the overall flexural behavior but also the torsional effects and the degree of
mechanical coupling between the two adjacent arches built in following periods. Locomotives
positioned along tracks 1 and 2 weighted 106 t while the third locomotive, moving on track
3, weighted 120 t.

For the sake of brevity, only a part of the load combinations realized are shown in
the paper. In particular, the torsional behavior has been investigated by placing one to three
locomotives at midspan along tracks one to three (Figures 9(b), 9(c), and 9(d)). Figure 10(a)
shows the corresponding results in terms of vertical displacements: an appreciable slip
between the two arches can be observed even though their cross-sections remain substantially
plane. In phase 4 the torsional rotation is smaller because of the position of track 3, crossing
the two arches. The flexural deflection of arches has been studied by positioning the three
locomotives along tracks 1 to 3 progressively closer to midspan (see phases 6, 7, and 4
described resp. in Figures 11(a), 11(b), and 9(c)). The corresponding vertical displacements
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Figure 10: (a) Vertical displacement of midspan cross-section during loading phases 2–4; (b) vertical
displacements along the longitudinal axis of the newer part of the instrumented arch-span during loading
phases 6, 7, and 4.

along the longitudinal axis of the newer arch (Figure 10(b)), as expected, show a deflected
shape moving from the left pier (phase 6) toward midspan (phase 4). Finally, another loading
condition (phase 12) has been applied to the bridge span, where the three locomotives were
placed along the tracks shifted one with respect to the other ones (Figure 12). In this way the
torsional effect has been applied not only at midspan but also along the whole span. Obtained
results are shown later compared to numerical results.

3.3. Material Characterization

Together with the structural identification, the mechanical properties of masonry constituting
the arch bridge have been also investigated [15]. Portions of masonry have been taken from
five bridge spans (Figure 13(a)) in order to obtain several brick and mortar specimens. After
proper geometrical regularization, brick specimens have been subjected to compression test
while mortar specimens to double punching shear test (Figure 13(b)). Following procedure
suggested in Eurocode 6 [16], from the results of single materials the masonry characteristic
compressive strength fmk = 8.2 MPa has been obtained.

4. Tuning of the Finite Element Model

Usually, when experimental measurements are performed to validate numerical models, they
do not coincide with the expected numerical results. These discrepancies originate from
the uncertainties in simplifying assumptions of structural geometry, materials, as well as
inaccurate boundary conditions. In the present case, most of the numerical simplification
lies into the assumption of linear behavior for the materials. The problem of how to modify
the numerical model taking into account the experimental results, essential for the reliability
of the model, is known as model updating; see, for instance [17, 18].

Model updating procedure aims at minimizing the differences between the analytical
and experimental results by changing uncertainty parameters such as material properties and
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Figure 11: Phases (a) 6 and (b) 7 of static loadings.

boundary conditions. The model updating process typically consists of tuning some variables
by using optimization algorithms and then automatic model updating using specialized
software. Alternatively, manual tuning involves manual changes of the model geometry
and modeling parameters by trial and error, guided by engineering judgment. Only manual
tuning has been considered here since the model is linear elastic, and only few parameters
have been tuned.

In order to apply this procedure, the structure has been subdivided into two substruc-
tures: one acting as main structure and the other acting as secondary structure useful only to
distribute and transmit external loads to the main structure. Arches, stacks, abutments, and
infilling of the piers (made of good-quality concrete) have been considered as structural parts
(see Figure 5 for the different parts of the geometric model considered).

4.1. The Masonry

Mechanical properties of structural masonry have been evaluated by means of experimental
tests (see Section 3.3). Therefore, during the model tuning, the values obtained in the above
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Table 1: Material properties.

Material Young’s modulus (MPa) Poisson’s ratio Density (kg/m3)
Structural parts

Concrete 30000 0.20 2400
Masonry 8200 0.20 1800
Pillar infilling 20000 0.20 2400
Abutment 8200 0.20 2200

Nonstructural parts
Infilling 100 0.20 1800
Ballast 100 0.20 2000
Masonry 820 0.20 1800

E1 = 8200 — —
E2 = 820 — —

Interface E3 = 820 — —
G12 = 50 — —
G13 = 50 — —
G23 = 50 — —

tests have been used. In particular, a Young’s modulus E = 1000fmk = 8.2 GPa has been
assumed, as suggested by Italian standards [19] starting from the experimental value of its
compressive strength [15]. Other properties such as Poisson ratio and density have been
introduced in the model by using conventional values taken from the literature, as well as
for other materials not tested during the in situ survey (Table 1).

4.2. Model Calibration

The model calibration has been then performed according to results obtained during the static
load tests and, in particular, using the load phase 4 (see Figure 9). Material properties of
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(a) (b)

(c) (d) (e)

Figure 13: Sampling of a masonry portion from (a) the bridge arch barrel and from (b) the pillar; testing
of (c) brick and (d)-(e) mortar specimens.

concrete and pillar infilling of the structural parts have been selected according to classical
values from the literature (Table 1). Nonstructural parts have had the elasticity modulus
selected according to their secondary role so that they cannot effectively contribute to the
equilibrium of stresses produced by vertical loads. For this reason, the elasticity modulus
has been chosen low enough to engender the quasielimination of tensile stresses in these
parts; see Table 1. Moreover, as anticipated in Section 2, much attention has been posed in
the modelling of the interface between the newer and older parts of the bridge. In particular,
the interface has been modelled using an orthotropic material whose mechanical properties
are collected in Table 1 where “1” denotes the direction orthogonal to the contact surface
between the two parts of the bridge and “2” the vertical direction. The results provided by
the updated model are reported in Figure 14(a), where the comparison of the computed and
measured vertical deflections is shown at the instruments locations.

4.3. Model Validation

Results provided by the other static load phases have been used to verify the reliability of the
numerical model once updated. For the sake of brevity, only two load phases are reported
here: results corresponding to load phases 3 and 12 are reported in Figures 14(b) and 14(c),
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Figure 14: Comparison of the computed and measured vertical deflections at the LVDT locations.

respectively. Comparison shows a very good agreement between the numerical results and
the experimental findings.

Moreover, as for the dynamic behavior of the structure, a modal analysis has been
performed on the three-dimensional finite element model previously used for the static
analysis. Characterization of the structural masses has been done by means of the data
provided by the in situ survey and using data from the literature. Block Lanczos mode
extraction method has been used to solve the eigenvalue problem [11]. Seventy mode shapes
have been extracted and considered for the comparison. The first and fourth computed mode
shapes are reported in Figures 15(a) and 15(b), respectively, along with the corresponding
mode shapes identified by the in situ dynamic tests. Figures refer to the same span (the 4th
span, C4) where experimental tests have been carried out.
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Figure 15: (a) First mode shape: freq = 9.35 Hz (numerical model), freq = 9.12 Hz (dynamic test); (b) Fourth
mode shape: freq = 13.70 Hz (numerical model), freq = 14.1 Hz (dynamic test).

Colormap refers to the vertical displacement, as measured in situ. The numerical
results are in very good agreement with the experimental ones although no model updating
has been done on the structural masses.

The very good agreement between numerical and experimental results, obtained both
in static and dynamic analyses, shows that the finite element model is reliable and could be
employed to assess the structural health of the bridge.
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Figure 16: Load cases according to SW/2, qvk = 15 t/m.

Table 2: Material properties of the lightweight concrete.

Young’s modulus (MPa) Poisson’s ratio Density (kN/m3)
23600 0.2 18

5. Bridge Structural Health Assessment

The finite element model described in the previous sections has been used to assess the
structural health of the bridge both in its actual state and in the hypothesis of an intervention
of structural strengthening. In particular, the strengthening intervention consists in the
substitution of the actual fill material of the newer bridge (noncohesive) with lightweight
concrete. The material properties for the lightweight concrete have been selected according
to destructive experimental tests done on specimens; see Table 2. Indeed, the strengthening
intervention is aimed at anchoring some tie rods to avoid the overturning of the spandrel
wall. However, it can be interesting to evaluate its effect on the health of the whole structure.

The two railtracks on the newer part of the bridge (the part interested by the
strengthening intervention, rails 3 and 4 in Figure 2) are loaded according to the load
condition SW/2 (see par-5.2.2.3.1.2 of [19]). This load condition schematically represents the
static effects due to heavy trains. In particular, four load cases are considered, corresponding
to various phases of the passage of the trains on the 4th span; see Figure 16. Maximum values
of the stress for the different load cases and for both the bridge in the actual state and in the
hypothesis of the structural strengthening are collected in Table 3. Moreover, with reference to
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Figure 17: Resulting Tresca stress due to the load case SW/2-4 applied considering the actual state of the
bridge.
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Figure 18: Resulting Tresca stress due to the load case SW/2-4 applied considering the structural strength-
ening of the bridge.

the load case SW/2-4, Figures 17 and 18 show the maps of the Tresca stress on the 4th span for
the bridge in its actual state and in the hypothesis of the structural strengthening, respectively.
Stress maps are obtained by means of standard shape functions, but values in Table 3 have
been collected using the quilt visualization (one average value per element) in order to avoid
the nonrealistic stress peaks that, in a displacement-based finite element model, characterize
the stress distribution obtained via the elastokinematic relationship. A better evaluation of
the stress distribution could be obtained by employing advanced postprocessing techniques
[20, 21]. As it can be noted, in the actual state the stress level is quite low and far from the
maximum strength of the masonry. Accordingly, the hypothesis of linear material behaviour
done in setting up the finite element model can be considered reliable. Moreover, the low
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Table 3: Maximum values of the stresses in the actual state and after the structural strengthening (MPa).

Load case
Actual state After strengthening

Tresca Principal Tresca PrincipalMin Max Min Max
SW/2-1 1.81 −2.02 0.45 1.65 −1.85 0.50
SW/2-2 2.62 −2.93 0.54 2.00 −2.24 0.65
SW/2-3 2.95 −3.31 0.61 2.32 −2.60 0.80
SW/2-4 3.00 −3.35 0.54 2.39 −2.69 0.79

stress level indicates the absence of specific structural health alerts concerning the actual
state of the bridge. Comparing the results of the actual state and after the strengthening
intervention it is possible to observe that, as could be expected, the consolidation intervention
engenders a lowering of the stress level. In particular, an average lowering of about 20% is
obtained. In the presence of cyclic actions, like those due to the passages of the trains, this
lowering of the stresses could have beneficial effects on the long-term structural health of the
bridge [22].

6. Conclusions

The structural health assessment of the fifteen-span railway masonry arch bridge spanning
over the Reno river in the city of Bologna Italy by finite element modelling and experimental
testing has been presented. In particular, the finite element model has been tuned using
the results of an experimental campaign involving static and dynamic load tests performed
on the structure accompanied by some material testing performed on portions of masonry
taken from the bridge. A part of the outcomes of the experimental campaign have been
used to calibrate the finite element model and a part to validate it. A very good agreement
between numerical and experimental results has been obtained, so confirming the underlying
assumptions made in setting up the finite element model. Then, the finite element mode
has been used to evaluate the structural health of the bridge both in its actual state and
in the hypothesis of a structural consolidation intervention. In all, the paper shows that
the combination of experimental and numerical results is essential to reach a good level
of knowledge when dealing with this kind of structures. Further developments regard the
introduction of material nonlinearities in the finite element model, in order to evaluate the
structural behavior also when ultimate limit state conditions occur. In this case, also seismic
vulnerability analysis could be performed and a complete safety assessment developed.
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Fractal dimension analysis is an emerging method for vibration-based structural damage
identification. An unresolved problem in this method is its incapability of identifying damage
by higher-order mode shapes. The natural inflexions of higher-order mode shapes may cause
false peaks of high-magnitude estimates of fractal dimension, largely masking any signature of
damage. In the situation of a scanning laser vibrometer (SLV) providing a chance to reliably acquire
higher-order (around tenth-order) mode shapes, an improved fractal dimension method that is
capable of treating higher-order mode shapes for damage detection is of important significance.
This study proposes a sophisticated fractal dimension method with the aid of a specially designed
affine transformation that is able to obviate natural inflexions of a higher-order mode shape while
preserving its substantial damage information. The affine transformed mode shape facilitates the
fractal dimension analysis to yield an effective damage feature: fractal dimension trajectory, in
which an abruptly risking peak clearly characterizes the location and severity of the damage. This
new fractal dimension method is demonstrated on multiple cracks identification in numerically
simulated damage scenarios. The effectiveness of the method is experimentally validated by using
a SLV to acquire higher-order mode shapes of a cracked cantilever beam.

1. Introduction

Structure health monitoring and damage detection using vibrational characteristics have
been a research topic in the aerospace, mechanical, and civil fields for last decades [1, 2].
In this area of research, various damage detection methods have been developed from modal
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Figure 1: Numerical model of a cantilever beam with a single-edge crack described by a = 0.2 and β = 0.4
(Damage Scenario I).

parameters [3] such as natural frequency, mode shape [4], and mode damping. Among these
parameters, it is commonly acknowledged that natural frequency has low sensitivity to small
damage, mode damping is fairly difficult to acquire, and mode shape has the best potential
to characterize damage [5]. Based on mode shape and its derivatives, a series of damage
methods have been developed, most typically modal assurance criterion (MAC) [2], modal
curvature and strain energy mode shape [6]. Nevertheless, some limitations in methods
based on mode shapes have gradually been recognized; the most noteworthy of which is
the lack of appropriate means to extract quantitative damage features from mode shapes [7].
In recent years, several new mathematical theories, for example, wavelet transform [8] and
fractal dimension (FD) analysis [9] have been used to cope with mode shapes for identifying
features of damage. In particular, FD analysis has attracted much attention in the field of
structural damage detection.

FD analysis has become a burgeoning tool to provide insight into mode shapes for
detecting damage [10–13]. The underlying principle of treating damage can be described
as [10] follows: damage induces changes to the dynamic properties of a structure, conse-
quentially causing irregularity of local mode shape; moreover, this irregularity can be char-
acterized by an abrupt peak composed of high-magnitude estimates of FD, with the position
and magnitude of the peak indicating the location and severity of the damage in a quantita-
tive fashion. The efficacy of FD damage detection has been proved in many investigations.
Hadjileontiadis et al. [10] utilized a moving window to successively cover the fundamental
mode shape of a cantilever beam and calculate FD from the sampling points covered by the
window, leading to a pointwise FD trajectory along the mode shape. In the trajectory, an
abnormal peak composed of high-magnitude FD estimates reflects an irregularity of the local
mode shape, indicating the location and severity of the damage. Li et al. [11] applied the
FD to the first mode shape of simply supported steel beams with saw-cut cracks at different
locations, and the results show the cracks were rightly identified. Shi et al. [12] implemented
the FD analysis on the static deformation profile of one-crack and two-crack cantilever beam-
type specimens and got satisfactory results of crack identification. The patulous application
of the method to the fundamental two-dimensional (2D) mode shape of a simply supported
cracked rectangular plate was investigated for damage identification by [5], where a 2D FD
surface rather than a FD trajectory was available, and the peak in the surface predicted the
location and quantification of the crack in the plate [14].

Most existing studies of FD damage detection are related to the fundamental mode
shapes of beam-type structures due to their slight fluctuation in configuration and ease of
measurement, but the application of the method to higher-order mode shapes is an interesting
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Figure 2: Seventh-order mode shape (a) and associated KFD trajectory (b) for Damage Scenario I (where
x∗ denotes the normalized x-coordinate).

Table 1: Damage scenarios used in simulation.

Damage Scenario I II III IV
Order of mode 7th 9th 11th 13th
Crack severity a = 0.2 a = 0.2 a = 0.2 a = 0.2
Crack location β = 0.4 β = 0.75 β1 = 0.3, β2 = 0.7 β1 = 0.2, β2 = 0.6, β3 = 0.8

issue that is still unresolved well [15]. Several studies have addressed the limitations of FD in
treating higher-order mode shapes to reveal damage [16, 17]. The crucial point is that natural
inflexions in a higher-order mode shape, as identified by the zero values of slope at those
points, can create prominent false peaks in the FD trajectory [15], easily distorting the results
of damage identification. Some studies have attempted to circumvent this problem that has
been frustrating the use of FD in structural damage detection. Typically, Wang and Qiao
[16] proposed a generalized fractal dimension method (GFD) with a flexible parameter to
exaggerate the values of the x-coordinate of beam length, capable of detecting damage from
the first three mode shapes of a cantilever beam. Qiao and Cao [17] proposed an approximate
waveform capacity dimension (AWCD) and developed a regime of topological isomorphism
to enable AWCD to reveal damage relying on the first three mode shapes of cantilever beams.
Unfortunately, these methods have some imperfections in coping with higher-order mode
shapes largely beyond the first three mode shapes. These higher-order mode shapes are
hereinafter refered to as “around tenth-order” mode shapes. When encountering such a mode
shape, these methods are usually inadequate to eliminate inflexion-induced false peaks in FD
trajectory, and these false peaks are likely to mask any signature of damage.

Nowadays, it has become important to improve FD for damage detection on the
basis of higher-order mode shapes. There are three reasons: (1) fractal theory has enormous
potential to quantitatively characterize local irregularities or abnormities of a mode shape;
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Figure 3: Ninth-order mode shape (a) and associated KFD trajectory (b) for Damage Scenario II (where x∗

denotes the normalized x-coordinate).
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Figure 4: Eleventh-order mode shape (a) and associated KFD trajectory (b) for Damage Scenario III (where
x∗ denotes the normalized x-coordinate).

(2) acquisition of around tenth-order mode shapes can be accurately achieved by modern
experimental equipments, for example, scanning laser vibrometer (SLV); (3) higher-order
mode shapes potentially convey richer damage information than lower-order ones. Given
these conditions, this study aims to explore a sophisticated FD method that is capable of
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Figure 5: Thirteenth-order mode shape (a) and associated KFD trajectory (b) for Damage Scenario IV
(where x∗ denotes the normalized x-coordinate).

tackling higher-order mode shapes for damage identification by overcoming the drawbacks
of existing methods.

The organization of this paper is as follows. After this introduction, Section 2 examines
the major deficiencies in existing FD methods for dealing with higher-order mode shapes to
reveal damage. Section 3 presents a specially elaborated affine transformation that can con-
vert a higher-order mode shape to a renascent one by preserving the substantial topological
properties while eliminating the inflexions of the original mode shape. Section 4 provides a
new FD method based on affine transform that is capable of characterizing damage using
higher-order mode shapes. The proof-of-concept validation of the proposed method is given
in Section 5, following which its effectiveness in damage identification in actual structures is
experimentally investigated by using SLV to acquire the higher-order mode shapes.

2. Fundamentals

2.1. Fractal Dimension

The fractal dimension can be seen as a measure of the complexity of signals [18]. As a
particular fractal dimension, the waveform fractal dimension is appropriate for characteriz-
ing the complexity of two-dimensional waveform signals [9]. Among the various waveform
fractal dimensions available [18–22], the Katz’s fractal dimension (KFD) [9] is probably the
most commonly used due to its simplicity of concept and facilitation in computer implemen-
tations. Without loss of generality, the KFD is adopted in this study, and the method
developed is applicable to other waveform fractal dimensions, for example, AWCD in [17].
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Figure 6: Effect of affine transformation on crack identification illustrated on the seventh-order mode shape
for Damage Scenario I. (a) Affine transformed mode shape W

′
and its original counterpart W∗; (b) KFD

trajectory showing a singular peak attributed to the crack.

The KFD of a two-dimensional waveform signal is defined by [9]

KFD =
log10(n)

log10(n) + log10(d/L)
, (2.1)

where n denotes the number of increments between adjacent sampling points of the signal
under investigation, d = max dist(1, i), the maximum distance between the beginning point,
and the ith point of the sampling sequence under investigation and L is the sum of distances
between successive points.

Although the KFD has been successfully applied to lower-order mode shapes for
damage identification, its application to higher-order mode shapes is still somewhat prob-
lematic. To facilitate description of the problems, a numerical model of a cantilever beam with
various crack scenarios is given in the following.

2.2. A Cracked Beam Model

A beam, 1 m long (L), 0.02 m wide (B), and 0.02 m thick (H), is considered. The material data
used are Young’s modulus E = 70 GPa and density ρ = 2700 kg/m3. The numerical beam
samples are built using 4-node 2D structural solid elements (PLANE42) in the commercial
software ANSYS. The real constants are set by KEYOPT (3) = 3 to specify the width of the ele-
ments. The numerical model of beams consists of two-thousand finite elements. The crack is
described by two parameters: relative depth ratio (RDR), a = hc/H, and relative location
ratio (RLR), β = Lc/L, with hc and Lc being the crack depth and crack location away from



Mathematical Problems in Engineering 7

0 0.2 0.4 0.6 0.8 1
x′

−1

−0.5

0

0.5

1

N
or

m
al

iz
ed

 a
m

pl
it

ud
e

β

W ′

W∗

(a)

0 0.2 0.4 0.6 0.8 1
x′

0   

1

2

3

βlo
g1

0
(K

FD
)
×1

0−
6 )

(

(b)

Figure 7: Crack identification on the ninth-order mode shape for Damage Scenario II. (a) Affine
transformed mode shape W

′
and its original counterpart W∗; (b) KFD trajectory showing a singular peak

attributed to the crack.

the clamped end, respectively. Each crack is modeled by reducing the thickness of the cross-
section of a tiny segment of the beam, and various crack scenarios elaborated by adjusting
parameters RDR and/or RLR are listed in Table 1. Figure 1 illustrates the finite element mesh
of the cracked beam for Damage Scenario I described by a = 0.2 and β = 0.4, for which the
manipulation of modal analysis can be adopted to generate higher-order mode shapes.

2.3. Damage Feature: FD Trajectory

A mode shape of a beam can be viewed as a particular two-dimensional waveform signal. The
general procedure for applying the FD to a mode shape for damage detection is summarized
as follows. A window with a fixed size, commonly containing a few sampling points, is
utilized to cover the mode shape, and from the sampling points covered, an estimate of FD is
evaluated and assigned at the midpoint of the window. This estimate quantitatively indicates
the complexity of the window-covered segment of the mode shape. As the window slides
point by point from the left to the right-hand end of a mode shape, an FD trajectory made up
of a sequential of estimates appears. This FD trajectory represents a profile of the pointwise
complexities of the mode shape. Damage causes increased irregularity or complexity of a
local mode shape, manifested by high-magnitude estimates of FD, so a peak arising abruptly
in the FD trajectory can predict the location and quantification of the damage. Thus, the FD
trajectory can serve as a damage feature indicating the location and severity of the damage.

In this study, according to combined effects of sampling density and noise intensity, the
sliding window is set to satisfy the following condition: covering 12 sampling points for a
numerical mode shape and containing 10 sampling points for an experimental mode shape.
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Figure 8: Crack identification on the eleventh-order mode shape for Damage Scenario III. (a) Affine
transformed mode shape W

′
and its original counterpart W∗; (b) KFD trajectory showing two singular

peaks attributed to the cracks.

2.4. Deficiencies of FD with Higher-Order Mode Shapes

As aforementioned, most successful applications of FD, for example, KFD, GFD, and AWCD,
in damage detection are related to lower-order mode shapes [10–12], but the use of FD with
higher-order (around tenth-order) mode shapes poses a challenge for existing FD methods.
The crucial problem is that the inflexions, as illustrated in Figure 2(a), of higher-order
mode shapes can cause false peaks of high-magnitude FD estimates, regardless of damage,
which masks the genuine peak attributed to damage. For instance, regarding the seventh-
order mode shape of the cracked beam model for Damage Scenario I, the negative effect of
inflexion-induced false peaks in the KFD trajectory on damage characterization is illustrated
in Figure 2, where the logarithm of KFD to base 10 is used in the y-coordinate for clarity in
presentation. Clearly, the false peaks inflexions almost overwhelm the real peak attributed to
the damage. This example illustrates the common problem of applying FD to higher-order
mode shapes for damage detection. To further address this point, similar results concerning
ninth-, eleventh-, and thirteenth-order mode shapes associated to Damage Scenarios II, III,
and IV are shown in Figures 3, 4, and 5, respectively. This inapplicability of FD to higher-
order mode shapes for depicting damage limits the effectiveness of FD analysis in the field of
structural damage detection.

3. Affine Transformation of Higher-Order Mode Shapes

3.1. Affine Transformation

An affine transformation [23] is mathematically defined as a transformation that preserves
substantial topological properties such as collinearity (i.e., points on a line prior to the
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Figure 9: Crack identification on the thirteenth-order mode shape for Damage Scenario IV. (a) Affine
transformed mode shape W

′
and its original counterpart W∗; (b) KFD trajectory showing three singular

peaks attributed to the cracks.

transformation will lie on the line after the transformation), ratios of distances (i.e.,
proportions in lines are conserved by the transformation), and intersections of lines (i.e., an
intersection of several lines will remain an intersection after the transformation despite
probably changed angles between any pair of lines). Translation, reflection, expansion, shear,
geometric contraction, dilation, rotation, similarity transformations, and spiral similarities are
all affine transformations, as are their combinations [24].

For a two-dimensional point (x, y) of an arbitrary waveform, its affine transformation
can be carried out by means of premultiplying its homogeneous coordinates (x, y, 1) by an
affine transformation matrix A, expressed as

⎧
⎨

⎩

x′

y′

1

⎫
⎬

⎭
= A

⎧
⎨

⎩

x
y
1

⎫
⎬

⎭
, A =

⎡

⎣
c11 c12 c13

c21 c22 c23

0 0 1

⎤

⎦. (3.1)

In matrix A, c11 and c22 are the scaling coefficients, c12 and c21 the shear coefficients, and c13

and c23 the translation coefficients. The affine transformation of a higher-order mode shape as
a particular waveform gives rise to a renascent mode shape that preserves collinearity, ratios
of distances and intersections but might alter the configuration of the original mode shape.
Such properties of preservation and alteration of affine transformation are useful to retain
damage content while obviating the inflexions of the original mode shape.
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(a) Experimental setup (b) Zoomed-in section showing excitation using an
electromechanical shaker

Figure 10: Experimental measurement of mode shapes of cracked cantilever beam using SLV.

3.2. Normalization of Higher-Order Mode Shapes

In general, a higher-order mode shape is in the form of a sampling sequence, W = {xi, yi}ni=1,
where xi is the ith sampling abscissa along the beam length, yi the amplitude of the mode
shape at xi, and n the number of samplings. In physics, mode shape is a dimensionless quan-
tity such that Wc = {xi, cyi}, with c being an arbitrary nonzero constant, has the same physical
implication as W; in contrast, in geometry Wc is a distinctive waveform from W such that it
has different FD estimate from the latter, and hence there are probably nonunique FD charac-
teristics for the same damage. It is necessary, therefore, to normalize a mode shape to reach a
sole waveform, resulting in a unique FD characteristic to reflect damage. The method of
normalization is expressed as

x∗
i =

xi

max
({xi}ni=1

) , y∗
i =

yi

max
({∣
∣yi

∣
∣
}n
i=1

) , (3.2)

where x∗
i is the ith sampling abscissa of the normalized mode shape and y∗

i is the amplitude
at x∗

i . After normalization, the original mode shape W yields a normalized mode shape W∗ =
{x∗

i , y
∗
i }ni=1.

3.3. Affine Transformation for Higher-Order Mode Shapes

To obviate the inflexions of W∗ = {x∗
i , y

∗
i }ni=1, a specific affine transformation matrix, A′,

should be activated. The matrix A′ is built by using the elements c11 = 1, c21 = sin θ,
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Figure 11: Experimental crack identification from SLV-measured seventh-order mode shape of cracked
cantilever beam. (a) Normalized seventh-order mode shape; (b) affine transformed mode shape; (c) KFD
trajectory showing a singular peak attributed to the crack.

c22 = (cos θ)/k, c12 = c13 = c23 = 0 to specialize the ordinary affine transformation matrix,
A, in (3.1), giving:

⎧
⎨

⎩

x′
i

y′
i

1

⎫
⎬

⎭
= A′

⎧
⎨

⎩

x∗
i

y∗
i

1

⎫
⎬

⎭
, A′ =

⎡

⎣
1 0 0

sin θ (cos θ)/k 0
0 0 1

⎤

⎦. (3.3)

In matrix A′, (cos θ)/k is the scaling coefficient for y∗
i , and sin θ is the shear coefficient parallel

to y∗
i . k and θ are adjustment parameters for the scaling and shear coefficients, respectively.

There are wide definition domains for k and θ to satisfy the condition of obviating the
inflexions of higher-order mode shapes. The flexibility in setting k and θ is a distinctive
feature of this affine transformation that makes it superior to other types of transformation. In
this study, k = 100 and θ = 60◦ are arbitrarily assigned to frame a specific affine trans-
formation adopted for all higher-order mode shapes arising from both numerical and experi-
mental damage cases. Based on this affine transformation, the normalized mode shape W∗
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Figure 12: Experimental crack identification from SLV-measured ninth-order mode shape of cracked
cantilever beam. (a) Normalized ninth-order mode shape; (b) affine transformed mode shape; (c) KFD
trajectory showing a singular peak attributed to the crack.

creates a renascent mode shape W′ = {x′
i, y

′
i}ni=1 that preserves the damage information but

eliminates its inflexions in W∗.
By way of illustration, the proposed affine transformation is applied to the seventh-

order mode shape shown in Figure 2(a), and the result is presented in Figure 6(a). In the
figure, the normalized mode shape, W∗, indicated by a dotted line, gives rise to an affine
transformed mode shape, W′, designated by a solid line. It can be clearly observed that the six
inflexions in W∗ from I1 to I6 are unavailable in W′, and thus W′ can potentially serve as a
reasonable alternative to W∗ for use in damage identification. After the KFD analysis is
carried out onW′, the resulting KFD trajectory shown in Figure 6(b) is produced. In the
trajectory, a prominent peak, without interference from false peaks arising from inflexions,
clearly indicates the location and severity of the crack. When the KFD trajectory in Figure 6(a)
is compared to that from the original mode shape (Figure 2(b)), it can be concluded that the
affine transformation significantly improves the performance of the FD methods for
analyzing mode shapes for damage identification.
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Figure 13: Experimental crack identification from SLV-measured eleventh-order mode shape of cracked
cantilever beam. (a) Normalized eleventh-order mode shape; (b) affine transformed mode shape; (c) KFD
trajectory showing a singular peak attributed to the crack.

4. Concept-of-Proof Validation

The previous analysis implies that the affine transformation-based FD analysis is a
sophisticated method for detecting damage in beam-type structures. This method consists of
three basic components: normalization, affine transformation, and FD analysis. The normal-
ization described in (3.2) first runs on a higher-order mode shape acquired numerically or
experimentally, giving rise to a normalized mode shape. Then the affine transformation
given in (3.3) is employed to convert the normalized mode shape into a renascent mode
shape, and finally the FD analysis is carried out on the renascent mode shape to yield an
FD trajectory acting as a damage feature. The method is highlighted by the function of affine
transformation to produce a new mode shape free of inflexions, offering a decent platform for
the FD analysis to effectively reveal damage.

As a concept-of-proof validation, the proposed method is applied to Damage Scenarios
II, III, and IV in Table 1, and the results are presented in Figures 7, 8, and 9, respectively.
In Figures 7(a)–9(a), the normalized mode shapes and affine transformed mode shapes are
marked by dotted and solid lines, respectively. In each figure, it is evident that the affine
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transformation obviates the inflexions of higher-order mode shapes dramatically. After the
KFD analysis on the affine transformed mode shapes, the KFD trajectories are obtained, as
shown in Figures 7(b)–9(b), respectively. In each figure, the predominant peaks, free of inter-
ference, clearly indicate the location and quantification of the cracks. When Figures 2–5 are
compared to Figures 6–9 for all Damage Scenarios listed in Table 1. It is concluded that the
proposed method has strong capability to identify damage using higher-order mode shapes.

5. Experimental Investigations

The affine transformation-based FD analysis method for damage identification is experimen-
tally investigated using a scanning laser vibrometer (SLV) to acquire higher-order mode
shapes. A cantilever beam (aluminum 6061) of length (L) 543 mm, width (B) 30 mm, and
height (H) 8 mm is considered, as shown in Figure 10. A through-width crack, 1.2 mm long
(along beam span) and 2 mm deep (a = 25%), located 293 mm (β = 54%) away from the
clamped end, is introduced into the beam. An out-of-plane monofrequency excitation at
certain higher-order modal frequency, along z-direction at a point 525 mm from the clamped
end, is applied by an electromechanical shaker (B&K 4809). The selection of excitation
frequency is based on a preliminary frequency response function (FRF) analysis. In the beam,
out-of-plane velocities at all measurement points along the central line of the beam (evenly
distributed with a spacing interval of 2.3 mm) are captured from the intact surface of the
beam, opposite to the surface where the damage is located, using an SLV (Polytec PSV-400).
The experimental setup is photographed in Figure 10. The captured velocities are integrated
to achieve the displacement responses of the beam using a FAST-SCAN function of the SLV.

To present a comprehensive insight into the capability of actual damage detection for
the proposed method, the original experimental data free of any preprocessing, for example,
denoising, are considered. The seventh-, ninth-, and eleventh- order mode shapes acquired by
the SLV, after normalization, are presented in Figures 11(a), 12(a), and 13(a), respectively, and
the associated affine transformed mode shapes are shown in Figures 11(b), 12(b), and 13(b),
respectively. From the affine transformed mode shapes, the KFD trajectories are presented in
Figures 11(c), 12(c), and 13(c) respectively. It can be observed from each KFD trajectory that
the prominent peak of high-magnitude KFD values accurately indicates the location and
quantification of the crack in the beam.

6. Conclusions

Fractal dimension (FD) analysis of mode shapes for damage identification is a new and
potential research area. Despite the many advantages addressed in existing studies, the
limitation of its inability to extract damage features from higher-order mode shapes is
fairly noticeable. This fundamental study introduces an affine transformation to improve the
existing FD method for damage identification, leading to a more sophisticated method. This
method features the dramatic action of affine transformation in eliminating the inflexions of
higher-order mode shapes, underpinning the FD analysis to competently reveal damage. The
concept of proof of the method is demonstrated by numerical simulations; its effectiveness is
further validated in experimental cases of cracked beams using a scanning laser vibrometer
(SLV) to acquire higher-order mode shapes. The robustness against noise of the proposed
method, the optimal selection of systematic parameters, and expansion to plate-type
structures will be further investigated in future studies.
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The present work concerns the estimation of the probability density function (p.d.f.) of measured
data in the Lamb wave-based damage detection. Although there was a number of research work
which focused on the consensus algorithm of combining all the results of individual sensors, the
p.d.f. of measured data, which was the fundamental part of the probability-based method, was
still given by experience in existing work. Based on the analysis about the noise-induced errors in
measured data, it was learned that the type of distribution was related with the level of noise. In
the case of weak noise, the p.d.f. of measured data could be considered as the normal distribution.
The empirical methods could give satisfied estimating results. However, in the case of strong
noise, the p.d.f. was complex and did not belong to any type of common distribution function.
Nonparametric methods, therefore, were needed. As the most popular nonparametric method,
kernel density estimation was introduced. In order to demonstrate the performance of the kernel
density estimation methods, a numerical model was built to generate the signals of Lamb waves.
Three levels of white Gaussian noise were intentionally added into the simulated signals. The
estimation results showed that the nonparametric methods outperformed the empirical methods
in terms of accuracy.

1. Introduction

Structural health monitoring (SHM) is an emerging technology that merges with a variety
of techniques related to diagnostics and prognostics. Monitoring the status of structural
health can improve the safety and maintainability of critical structures in many fields,
such as civil engineering, aerospace, and military industry. An ideal SHM system includes
several subsystems in which the damage detection methodology is the key part. Therefore,
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numerous damage-detection methods have been researched in years [1]. The method based
on Lamb waves has the apparent advantages of high sensitivity to structural damage
compared with methods based on the mode shapes [2] or structure dynamic responses
[3]. It has been verified that the Lamb wave-based damage detection methods can detect
crack, delamination, surface corrosion, penetrate holes, weld defect, and many other kinds
of damage in plate and shell structure [4–6]. Consequently, the Lamb wave is widely
acknowledged as one of the most encouraging tools for SHM. The relevant research has been
conducted intensively since the 1980s [7].

The portion of the SHM process that has received the least attention in the technical
literature is the development of statistical models for discrimination between features
from the undamaged and damaged structures. The algorithms, which analyze statistical
distributions of the measured or derived features to enhance the damage identification
process, have been developed [8, 9]. The probability-based diagnostic methods have also
been introduced in Lamb wave-based damage detection area in recent years [10, 11].
However, the statistical modes using in the existing Lamb wave-based methods are relatively
simple. Despite a number of literatures had been published, which focused on the consensus
algorithm of combining all the results of individual sensors, the p.d.f. of the measured data
was empirically determined. As a key part of statistical model, it is obvious that the accuracy
of the p.d.f. has a significant effect on the precision of damage-detecting result. Compared
with the estimating results by empirical formula, the results of statistical methods will be
more accurate and reliable. Hence, the study of using statistical methods to estimate the p.d.f.
is necessary in Lamb wave-based damage detection.

Elementary parametric estimation method has been adopted under the assumption
that the p.d.f. of the measured data is normal distribution [12]. However, the assumption in
parametric method limits the application of this method. If the extra assumption is correct,
the results produced by parametric method can be more accurate than the results given by
empirical formula. While if the assumption is incorrect, parametric methods can be very
misleading.

Since the type of p.d.f. of measured data from field experiments is varied and
can hardly be predicted, more robust approach methods should be considered. The
nonparametric statistic methods can give the parameters of distribution and do not rely
on assumptions that the data are drawn from a given probability distribution. Therefore,
introducing the nonparametric statistic methods is crucial in Lamb wave-based damage
detection.

The aim of this paper is to demonstrate the necessity and feasibility of application of
kernel density estimation, which is the most popular nonparametric estimation method in
Lamb wave-based damage detection. Two kinds of kernel density estimation methods, the
one based on the Gaussian approximation and the one based on the smoothing properties of
linear diffusion processes, were briefly introduced in this paper. The signals of Lamb waves
with different levels of white Gaussian noise were acquired by using numerical simulation.
The framework of applying nonparametric estimation method in Lamb wave-based damage
detection was demonstrated by using the simulated signals. The characteristics of noise-
induced error in the arriving time of damage-scattered Lamb waves, which is the index used
to locate damage, was analyzed. Based on this analysis, the outcomes of two kinds of kernel
density estimationmethod as well as the parametric estimationmethods were compared. The
results show that the nonparametric methods outperform the parametric method in terms of
accuracy and reliability.
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2. Lamb Wave-Based Damage Detection

2.1. Background

Lamb waves are a kind of elastic waves propagates in thin plate and shell structure. With a
high susceptibility to interference on a propagation path, for example, damage or a boundary,
Lamb waves can travel over a long distance even in materials with a high attenuation ratio,
and thus a broad area can be quickly examined [13].

Lamb waves are made up of a superposition of longitudinal and shear modes, and
its propagation characteristics vary with entry angle, excitation, and structural geometry. A
Lamb mode can be either symmetric or antisymmetric, formulated by

tan
(
qh
)

tan
(
ph
) = − 4k2qp

(
k2 − q2

)2 for symmetric modes, (2.1)

tan
(
qh
)

tan
(
ph
) = −

(
k2 − q2

)2

4k2qp
for antisymmetric modes, (2.2)

where p2 = w2/c2L − k2, q2 = w2/c2T − k2, k = w/cp, and h, k, cL, cT , cp, ω are the plate
thickness, wavenumber, velocities of longitudinal and transverse modes, phase velocity, and
wave circular frequency, respectively. Equations (2.1) and (2.2), correlating the propagation
velocity with its frequency, imply that Lamb waves, regardless of its mode, are dispersive
(velocity is dependent on frequency).

Lamb waves can be actively excited by a variety of means, such as ultrasonic probe,
laser, interdigital transducer, and piezoelectric element. The piezoelectric element can also
be used as sensor to collect signals of Lamb waves perfectly. The piezoelectric element is
particularly suitable for integration into a host structure as an in situ generator/sensor,
for their neglectable mass/volume, easy integration, excellent mechanical strength, wide-
frequency responses, low power consumption and acoustic impedance, as well as low cost.
Applications of piezoelectric element in Lamb wave-based damage detection are numerous.

Lamb mode selection is an important part for damage detection. The basic symmetric
mode, S0, and the antisymmetric mode, A0, are normally used in practice. Although S0 is
preferred in many of studies [14], utilization of A0 is increasing because that A0 is the highly
effective for detecting delamination and transverse ply cracks [15]. To implement the Lamb
mode selection, a multielement transducer setup was proposed [16] to dominantly generate
S0 or A0.

The algorithms for Lamb wave-based damage identification can be roughly divided
into two categories. The first category is the algorithms that identify and locate damage by
observing the damage-reflected Lamb waves, such as Time-of-Flight (ToF) method [17–19],
embedded ultrasonic structural radar [20], and time of difference method [21]. The second
category is the algorithms that analyze the changes in the characteristics of Lamb waves
caused by the damage in its propagation path, such as tomography method [22] and virtual-
sensing paths method [23].

For the algorithms that focus on the damage-reflected waves, the arriving time of
the Lamb waves is the key index used to locate damage. Since the signal of Lamb waves
is wave packet in the form, several methods have been developed to measure the arriving
time of Lamb waves, such as threshold method, correlation method, wavelet method [24],
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and a novel cross-correlation analysis method based on a wavelet transform [25, 26]. Among
those methods, the threshold method, which was adopted in this paper, has the advantage of
simplicity. In threshold method, a threshold value Vt was firstly set up on basis of experience.
Once the amplitude of one or several peaks exceed Vt, then the corresponding peaks were
recorded. Depending on the magnitude of Vt, one or more peaks could be recorded for a
wave packet. If only one peak was recorded, the arriving time was the time corresponding
to that peak. If more than one peak were recorded, then the arriving time will be the average
of all recorded time. Usually, the threshold value is selected to let several peaks belong to
one wave packet can be recorded. The benefit of recording several peaks instead of only the
strongest peak is that the averaging process itself can reduce noise to some extent.

2.2. Time of Flight Method

ToF, defined as the time lag from the moment when a sensor catches the damage reflected
signal to the moment when the same sensor catches the incident signal, was widely used to
locate damage [17–19].

Consider a sensor network consisting of N piezoelectric wafers denoted by si (i =
1, 2, . . . ,N). For convenience of discussion, sm − sn hereinafter stands for the sensing path
in which sm serves as the actuator and sn as the sensor. The center of the damage, if any, is
presumed to be (x, y) in coordinate system. Then, the ToF can be defined in (2.1) as Ti−j :

LA−D
VS0

+
LD−S

VSH0−damage

− LA−S
VS0

= Ti−j , (2.3)

In which LA−D, LD−S, and LA−S represent the distance from the actuator si to the damage, from
the damage to the sensor sj , and from actuator si to the sensor sj , respectively. VSH0−damage and
VS0 are velocities of the damage-converted SH0 mode and the incipient S0 mode, respectively.

Because there are two unknown damage parameters, (x, y), in (2.3), the solution of
(2.3)will be a root locus, which implies the possible locations of the damage for a certain ToF
value. In traditional approaches, the damage location is given by seeking the intersections of
two or more loci. As shown in Figure 1(a), in the case of using three sensor pairs, there will be
three loci, each exhibiting a time delay due to the existence of damage. The point with which
all three loci intersect was considered as the location of damage, while the points with which
only two loci intersect were considered as pseudodamage location.

There is a prerequisite in the traditional approach. That is all of the measured ToF
values Tm were accurate. However, errors are always inevitable in any experimental result
due to the reasons such as noises. Therefore, as shown in Figure 1(b), there is no point with
which all three loci intersect if the loci were drawn based on noise contained Tm instead of the
theoretical value T . It is suggested that the damage location can be given as the area where
the density of intersections of two loci is relatively large. That leads to the research about the
probability-based approach method, to give the precise damaged area based on the density
of intersections.
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Figure 1: Damage localization using ToF method in a plate. (a) Locus based on accurate ToF value, (b)
Locus based on ToF with error.

2.3. Probability-Based ToF Method

The concept of probability-based approach was introduced by Zhao et al. [27] to improve the
performance of Lamb wave-based method, and then it was adopted by Su et al. [28] in ToF
method. In traditional ToF method, only the points on loci are considered as possible damage
location. Other points, regardless of its distance to the loci, will all be excluded outside the
possible damage location. In fact, due to the existence of errors in Tm, the real damage may
not be on the loci which were drawn based on Tm. Therefore, in probability-based approach
method, the points absent in the loci are also considered as possible damage location. The
possibility of damage occurrence in those points will be determined by its distance to
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the loci. The mesh nodes right located on an above-established locus have the highest degree
of probability of damage presence; for the others, the greater the distance to the locus, the
lower the probability damage exists there. To quantify the probabilities at all nodes with
regard to all loci, a function called as p.d.f. of damage occurrence was introduced. For each
loci, a probability distribution map can be given for the detection target plant structure based
on p.d.f. of damage occurrence. Combination of all the probability distribution maps can give
the final damage detection result.

The main frame of data fusion-based method can be divided into two steps.

(1) The inspection area of the structure was evenlymeshed. For a certainmeasured ToF,
each mesh node will be evaluated about its possibility for the presence of damage
by using a probability density function.

(2) All evaluated results for each measured ToF were combined to give the detection
result in a matrix form. Each element of the matrix represents the probability of the
presence of damage for one mesh node.

The detection result in matrix form can be illustrated in an image shown in Figure 2, where
the lighter the greyscale, the greater the possibility of damage existing at that pixel (each pixel
exclusively corresponds to a spatial point of the structure under inspection).

It is obvious that the p.d.f. of damage occurrence is the key part of probability based
method. Su et al. [10] suggest the p.d.f. can be quantified in relation to the loci:

f
(
zij
)
=

(
1
σij

√
2π

)

exp

[

−
z2ij

2σ2
ij

]

, (2.4)

where f(zij) is the Gaussian distribution function, representing the p.d.f. of damage
occurrence at node Li (i = 1, . . . , K × K for the structure that is comprised of K × K mesh
nodes), perceived by a sensor, sj (j = 1, . . . ,N for the sensor network consisting ofN sensors).
σij is the standard deviation and

zij =
∥
∥χi − μij

∥
∥, (2.5)

where χi is the location vector of node Li and μij is the location vector of the point on the
locus provided by sensor sj that has the shortest distance to node Li.

Satisfied results have been obtained by using this kind of p.d.f. But it should be noticed
that the standard variance σij was selected depending on experience.

The concept of probability-based approach was also adopted in some other Lamb
wave-based damage detection methods rather than ToF method. Wang et al. [23] combine
the concept of probability-based approach with virtual-sensing paths method. The p.d.f. in
their work is an empirical formula and the parameters were given by experience.

There are mainly two disadvantages in the existing work. First, empirical formula
usually are simpler to write down and faster to compute, but it depends heavily on the
experimental environment. Any change which is inevitable in experiment may cause a big
error in the estimated results. That is, the simplicity of empirical formula makes up for its
nonrobustness. Since the data measurement work in the Lamb wave-based damage detection
is not time consuming, it is reasonable that the density function should be estimated by
using robust statistic method. Second, the p.d.f. used in existing work is the distribution
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Figure 2: Damage localization result of probability-based method.

function about the location of damage in the plane fD(T)(s), where s = |D(T) −D(Tm)|, D(T)
and D(Tm) are the damage location corresponding to T (the actual ToF data) and Tm (the
experimental ToF data), respectively. It should be noticed that the damage location cannot
be directly measured in experiment. Thus, estimating fD(T)(s) directly will be difficult. Based
on the estimation of the function fTm(t) about the distribution of experiment data Tm in time
domain, estimating fD(T)(s) by using the mapping relationship defined in (2.3) should be a
better method.

Therefore, probability density estimation methods will be introduced in Section 3. The
advantages and feasibility of applying probability density estimation methods in ToFmethod
will be demonstrated.

3. Probability Density Estimation

In statistic, density estimation is the method that estimates the parameters of a distribution
based on the observed samples. Depending on whether a priori knowledge about the type
of the distribution is required, the density estimation methods can be divided into two
categories: parametric estimation and nonparametric estimation.

3.1. Parametric Estimation

Parametric estimation mainly includes point estimation and interval estimation. In statistics,
point estimation is the use of sample data to calculate a single number of possible values of an
unknown population parameter, in contrast to interval estimation, which is an interval. Most
commonly used point estimation methods are method of moment estimation, maximum
likelihood estimation, and Bayesian estimation. For instance, if it is known that the sample
data come from a normal distribution, then the two parameters of normal distribution,
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expectation and variance, can be calculated by using (3.1) and (3.2), which is derived by
using maximum-likelihood estimation method:

μ̂ =
1
N

N∑

i=1

xi, (3.1)

σ̂2 =
1
N

N∑

i=1

(
xi − μ̂

)2
, (3.2)

where N is the number of samples.

3.2. Nonparametric Estimation

Nonparametric estimation is a method that estimates the parameters of an unknown distri-
bution while does not rely on assumptions about the type of this distribution. Commonly,
nonparametric estimation methods include histogram, nonparametric regression, and kernel
density estimation, which is the most popular one.

3.2.1. Kernel Density Estimation Based on the Gaussian Approximation

Kernel density estimation is a nonparametric method to estimate the probability density
function of a random variable. Kernel density estimation is a fundamental data smoothing
problem where inferences about the population are made, based on a finite-data sample.
In some fields such as signal processing and econometrics, kernel density estimation was
also termed as the Parzen-Rosenblatt window method, after Emanuel Parzen and Murray
Rosenblatt, who are usually credited with independently creating this method in its current
form [29, 30].

Let (x1, x2, . . . , xn) be an independent and identically distributed sample drawn from
some distribution with an unknown density f . Estimating the shape of this function f is
interested. Its kernel density estimator is

f̂h(x) =
1
n

n∑

i=1

Kh(x − xi) =
1
nh

n∑

i=1

Kh

(
x − xi

h

)

, (3.3)

where K(•) is the kernel, a symmetric but not necessary positive function that integrates
to one; and h is positive and a smoothing parameter called the bandwidth. A kernel with
subscript h is called as the scaled kernel and defined as Kh(x) = (1/h)K(x/h). A range of
kernel functions are commonly used: uniform, triangular, biweight, triweight, Epanechnikov,
normal, and others. As with the kernel regression, the choice of kernel function is not crucial,
but the choice of bandwidth is important.

The bandwidth of the kernel is a free parameter which exhibits a strong influence
on the resulting estimate [31, 32]. The most common optimality criterion used to select this
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parameter is the expected L2 risk function, also termed as the Mean Integrated Squared Error
(MISE);

MISE(h) = E

∫ (
f̂h(x) − f(x)

)2
dx. (3.4)

Under weak assumptions on f andK [29, 30], MISE(h) = AMISE(h) + o(1/(nh) + h4), where
o is the little o notation of the family of Bachmann-Landau notations. o(1/(nh) + h4) denotes
the function family in which every function grows much slower that (1/(nh) + h4) [33]. The
AMISE is the asymptotic MISE which consists of the two leading terms

AMISE(h) =
R(K)
nh

+
1
4
m2(K)2h4R

(
f ′′), (3.5)

whereR(g) =
∫
g(x)2dx for a function g,m2(K) =

∫
x2K(x)dx, and f ′′ is the second derivative

of f . The minimum of this AMISE is the solution to this differential equation:

∂

∂h
AMISE(h) = −R(K)

nh2
+m2(K)2h3R

(
f ′′) = 0 (3.6)

or

hAMISE =
R(K)1/5

m2(K)2/5R
(
f ′′)1/5n1/5

. (3.7)

Neither the AMISE nor the hAMISE can be used directly since they involve the unknown
density function f or its second derivative f ′′. Therefore, a variety of automatic, data-based
methods have been developed for selecting the bandwidth.

If the kernel function is normal and it is assumed that the distribution being estimated
is Gaussian, then it can be derived from (3.7) that optimal choice for h is

h =

(
4σ̂5

3n

)1/5

≈ 1.06σ̂n−1/5, (3.8)

where σ̂ is the standard deviation of the samples. This approximation is termed as the normal
distribution approximation, Gaussian approximation, or Silverman’s rule of thumb [32].

3.2.2. Kernel Density Estimation via Diffusion

Kernel density estimation is an ongoing research topic in statistics. Botev et al. [34] proposed
an adaptive kernel density estimation method based on the smoothing properties of linear
diffusion processes. This novel approach method includes two parts: first, a simple and
intuitive kernel estimator with substantially reduced asymptotic bias and mean square error,
and better boundary bias performance; second, an improved plug-in bandwidth selection
method that completely avoids the Gaussian approximation. The new plug-in method is
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thus genuinely “nonparametric,” since it does not require a preliminary normal model for
the data.

(I) The Diffusion Estimator

Given N independent realizations χN ≡ {X1, . . . , XN} from an unknown continuous p.d.f. f
on X, the Gaussian kernel density estimator is defined as

f̂(x;h) =
1
N

N∑

i=1

φ(x,Xi;h), (3.9)

where

φ(x,Xi;h) =
1√
2πh

e−(x−Xi)
2/(2h) (3.10)

is a Gaussian p.d.f. (kernel) with location Xi and scale
√
h. The scale is the bandwidth in

kernel density estimation.
Chaudhuri andMarron [35] had found that there is a link between the Gaussian kernel

density estimator and the well-known Fourier heat equation which is a diffusion partial
differential equation (PDE). The link is the Gaussian kernel density estimator defined in (3.9)
in fact is the unique solution to the Fourier heat equation:

∂

∂t
f̂(x;h) =

1
2

∂2

∂x2
f̂(x;h), x ∈ χ, h > 0, (3.11)

with χ ≡ R and initial condition f̂(x; 0) = Δ(x), where Δ(x) =
∑N

i=1 δ(x −Xi) is the empirical
density of the data χN and δ(x − Xi) is the Dirac measure at Xi. In the heat equation
interpretation, the Gaussian kernel in (3.9) is the so-called Green’s function [36] for the
diffusion PDE in (3.11). Thus, the Gaussian kernel density estimator f̂(x;h) can be obtained
by evolving the solution of (3.11) up to h.

Because any bounded domain can be mapped onto [0, 1] by a linear transformation,
there is no loss of generality in assuming that the domain of the data is known as χ ≡ [0, 1].
Then, the analytical solution of PDE (3.11) with initial condition Δ(x) and the Neumann
boundary condition in this case is

f̂(x;h) =
1
N

N∑

i=1

κ(x,Xi;h), x ∈ [0, 1], (3.12)

where the kernel k is given by

κ(x,Xi;h) =
∞∑

k=−∞
φ(x, 2k +Xi;h) + φ(x, 2k −Xi;h). (3.13)
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The Neumann boundary condition is

∂

∂x
f̂(x;h)

∣
∣
∣
∣
x=1

=
∂

∂x
f̂(x;h)

∣
∣
∣
∣
x=0

= 0, (3.14)

and the target of this boundary condition is to ensure that (3.12) satisfies the requirements
of p.d.f., such as f̂ should be a nonnegative Lebesgue-integrable function and integrates to
unity.

It has been proved that the estimator given in (3.12) arises as the solution of the
diffusion PDE is better in boundary bias properties compared with the traditional estimator
given in (3.9).

Therefore, motivated by the idea of acquiring the estimator from the solution of
diffusion PDE, Botev proposed that themost general linear time-homogeneous diffusion PDE
can be a starting point for the construction of a better kernel density estimator. The simple
diffusion model described in (3.11) can be extended on the basis of the smoothing properties
of the linear diffusion PDE:

∂

∂h
g(x;h) = Lg(x;H), x ∈ χ, t > 0, (3.15)

where the linear differential operator L is of the form (1/2)(d/dx)(a(x)(d/dx)(·/p(x))), and
a and p can be any arbitrary positive function on χwith bounded second derivatives, and the
initial condition is g(x; 0) = Δ(x).

The solution of (3.15) can be the diffusion kernel estimator and written as

g(x;h) =
1
N

N∑

i=1

κ(x,Xi;h). (3.16)

There is no analytical expression for the diffusion kernel satisfying (3.16), κ can be written in
terms of a generalized Fourier series in the case that χ is bounded:

κ(x,Xi;h) = p(x)
∞∑

k=0

eλκhϕk(x)ϕk

(
y
)
, (3.17)

where {ϕk} and {λk} are the eigenfunctions and eigenvalues of the Sturm-Liouville problem
on [0, 1]:

L∗ϕk = λkϕk, k = 0, 1, 2, . . . ,

ϕ′
k(0) = ϕ′

k(1) = 0, k = 0, 1, 2, . . . ,
(3.18)

where L∗ is of the form (1/2p(y))(∂/∂y)(a(y)(∂/∂y)(·)); that is, L∗ is the adjoint operator of
L.
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(II) Improved Plug-In Bandwidth Selection Method

The novel plug-in bandwidth selection method for the diffusion estimator defined in (3.16)
proposed by Botev is based on the improved plug-in bandwidth selection method for the
Gaussian kernel density estimator defined in (3.9).

Assuming that f ′′ is a continuous square-integrable function, the asymptotically
optimal value of h for Gaussian kernel density estimator is the minimize of the first-order
asymptotic approximation of MISE [37]

∗h =

(
1

2N
√
π
∥
∥f ′′∥∥2

)2/5

. (3.19)

It is clear from (3.19) that to compute the optimal ∗h, one needs to estimate the functional
‖f ′′‖2. Consider the problem of estimating ‖f (j)‖2 for any arbitrary integer j ≥ 1. The identity
‖f (j)‖2 = (−1)jEf(f (2j)(X)) suggests two plug-in estimators:

the first one is (−1)jEf

(
f (2j)(X)

)
=

(−1)j
N2

N∑

k=1

N∑

m=1

φ(2j)(Xk,Xm;hj

)
,

the second one is
∥
∥
∥f̂ (j)

∥
∥
∥
2
:=
∥
∥
∥f̂ (j)(·, h)

∥
∥
∥
2
=

(−1)j
N2

N∑

k=1

N∑

m=1

φ(2j)(Xk,Xm; 2hj

)
.

(3.20)

For a given bandwidth, both estimators (−1)jEf(f (2j)(X)) and ‖f̂ (j)‖2 aim to estimate the

same quantity ‖f (j)‖2. Therefore, ∗hj can be selected to make both estimators asymptotically
equivalent in the mean square error sense:

∗hj =

(
1 + 1/2j+1/2

3
1 × 3 × 5 × · · · × (2j − 1

)

N
√
π/2

∥
∥f (j+1)

∥
∥2

)2/(3+2j)

. (3.21)

Computation of ∗hj by using (3.21) involves ‖f (j+1)‖2 which is unknown. Thus, each ∗hj is
estimated by

∗ĥj =

⎛

⎜
⎝

1 + 1/2j+1/2

3
1 × 3 × 5 × · · · × (2j − 1

)

N
√
π/2

∥
∥
∥̂f (j+1)

∥
∥
∥
2

⎞

⎟
⎠

2/(3+2j)

. (3.22)

Computation of ‖ ̂f (j+1)‖
2
requires the estimation of ∗ĥj+1, which in turn requires the

estimation of ∗ĥj+2, and so on, as seen from (3.20) and (3.22). There is the problem of
estimating the infinite sequence {∗ĥj+k, k ≥ 1}. However, for some l > 0, if ∗ĥl+1 can be given,
then all {∗ĥj , 1 ≤ j ≤ l} can be estimated recursively. Based on this idea, the l-stage direct
plug-in bandwidth selector [37] has been proposed.
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Denote the functional dependence of ∗ĥj and ∗ĥl+1 as

∗ĥj = γj
(

∗ĥj+1

)
. (3.23)

It is then obvious that ∗ĥj = γj(γj+1(∗ĥj+2)) = γj(γj+1(γj+2(∗ĥj+3))) = · · · . For simplicity of
notation, the composition can be defined as

γ [k](h) = γ1
(· · · γk−1

(
γk(h)

))
, k ≥ 1. (3.24)

The estimate of ∗h satisfies

∗ĥ = ξ∗ĥ1γ = ξγ [1]
(

∗ĥ2

)
= ξγ [2]

(

∗ĥ3

)
= · · · = ξγ [l]

(

∗ĥl+1

)
. (3.25)

Then, for a given integer l > 0, the l-stage direct plug-in bandwidth selector consists of
computing

∗ĥ = ξγ [l](∗hl+1), (3.26)

where ∗hl+1 is estimated by assuming that f in ‖f (l+2)‖2 is a normal density with mean and
variance estimated from the data.

It is noticed that the assumption in the l-stage direct plug-in bandwidth selector
method can lead to arbitrarily bad estimates of ∗h, when, for example, the true f is far from
being Gaussian. Therefore, Botev proposed to find a solution to the nonlinear equation:

h = ξγ [l](h), (3.27)

for some l, using either fixed point iteration or Newton’s method with initial guess h = 0.
The fixed-point iteration version is formalized in the following Improved Sheather-Jones
algorithm:

(1) Given l > 2, initialize with z0 = ε, where ε is machine precision, and n = 0;

(2) Set zn+1 = ξγ [l](zn);

(3) if |zn+1 − zn| < ε, stop and set ∗ĥ = zn+1; otherwise, set n := n + 1 and repeat from
step (2);

(4) Deliver the Gaussian kernel density estimator in (3.9) evaluated at ∗ĥ as the final
estimator of f , and ∗ĥ2 = γ [l−1](zn+1) as the bandwidth for the optimal estimation of
‖f ′′‖2.

It has been proved that the recommending setting for l is 5.
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The above section explains how to estimate the bandwidth
√

∗h of the Gaussian kernel
density estimator. Now, the algorithm that estimates the bandwidth

√
h∗ of the diffusion

estimator will be introduced.
Assuming that f is as many times continuously differentiable as needed, then it has

been proved that the square of the asymptotically optimal bandwidth is

h∗ =

(
Ef

[
σ−1(x)

]

2N
√
π
∥
∥Lf

∥
∥2

)2/5

. (3.28)

Computation of h∗ in (3.28) requires an estimate of ‖Lf‖2 and Ef[σ−1(x)]. The latter one can
be estimated via the unbiased estimator (1/N)

∑N
i=1 σ

−1(Xi). The identity ‖Lf‖2 = EfL
∗Lf(x)

suggests two possible estimators. The first one is

̂EfL∗Lf(x) :=
1
N

N∑

i=1

N∑

j=1

L∗Lκ (x,Xi;h2)|x=Xj
. (3.29)

The second one is

∥
∥
∥L̂f

∥
∥
∥
2
:=

1
N

N∑

i=1

N∑

j=1

L∗Lκ (x,Xi; 2h2)|x=Xj
. (3.30)

Just like the way that ∗h2 is derived for the Gaussian kernel density estimator, h∗
2 is selected

to make both estimators ̂EfL∗Lf(x) and ‖L̂f‖2 have the same asymptotic mean square error:

h∗
2 =

(
8 +

√
2

24
−3√2Ef

[
σ−1(X)

]

8
√
πNEf

[
L∗L2f(X)

]

)2/7

. (3.31)

Note that h∗
2 has the same rate of convergence to 0 as ∗h2. In fact, since the Gaussian kernel

density estimator is a special case of the diffusion estimator when p(x) = a(x) = 1, the plug-
in estimator equation (3.30) for the estimation of ‖Lf‖2 reduces to the plug-in estimator for
the estimation of (1/4)‖f ′′‖2. In addition, the h∗

2 in (3.31) and ∗h2 are identical when p(x) =
a(x) = 1. Thus, the bandwidth for the diffusion estimator given in (3.16) can be selected by
using the following algorithm:

(1) Given the data X1,. . .,XN , run the Improved Sheather-Jones algorithm to obtain the
Gaussian kernel density estimator defined in (3.9) evaluated at ∗ĥ and the optimal

bandwidth
√

∗ĥ2 for the estimation of ‖f ′′‖2. This is the pilot estimation step.

(2) Let p(x) be the Gaussian kernel estimator from above step, and let a(x) = pα(x) for
some α ∈ [0, 1].

(3) Estimate ‖Lf‖2 via the plug-in estimator given in (3.30) using ĥ∗
2 = ∗ĥ2
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Yes

No

Set l = 5, z0 = ε, n = 0,

where ε is machine precision

zn+1 = ξγ [l](zn)

n = n + 1

|zn+1 − zn| < ε

∗ꉱh = zn+1

h =∗ꉱh, set = γ [l−1](zn+1)

Estimate 㐙Lf㐙2 via (3.30)

using ꉱh∗
2 = ∗ꉱh2

∗ꉱh2

Calculate ꉱh∗ using (3.28)

Calculate final density estimation

p(x) = ꉱf , a(x) = pα(x) for

some α∈[0,1]

Calculate ꉱf using (3.9) with

result using ) with h = ꉱh∗(3.16

Figure 3: Flow chart of kernel density estimation via diffusion.

(4) Substitute the estimate of ‖Lf‖2 into (3.28) to obtain an estimate for h∗.

(5) Deliver the diffusion estimator in (3.16) evaluated at ĥ∗ as the final density estimate.

The flow chart of the entire bandwidth selection algorithm was shown in Figure 3.
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Figure 4: Schematic of numerical simulation mode.

4. Numerical Simulation

Feasibility of using the kernel density estimation method to estimate the p.d.f. of experiment
results was demonstrated in a thin plate structure via finite-element (FE) simulation. Eight
PZT wafers were surface installed at an aluminium plate. The aluminium plate was 600mm
× 600mm × 1.5mm in size, supported with all its four edges. The elastic modulus, poission’s
ration, and density of the aluminium are 71e9GPa, 0.35, and 2711Kg/m3, respectively.
The thin plate was three dimensionally modeled using eight-node brick solid elements. To
ensure simulation precision, the largest dimension of FE elements was less than 1mm and
the plate was divided into multilayer in thickness, guaranteeing that at least ten elements
were allocated per wavelength of the incident diagnostic wave, which has been demonstrated
sufficiently to portray the characteristics of elastic waves in the thin plate [19]. A through-
thickness hole of 16mm in diameter was assumed in the plate, 200mm and 200mm away
from the left and low edges of the plate, respectively (Figure 4). The S0 mode of Lamb waves
was used to detect damage. Five-cycle Hanning window-modulated sinusoid tone bursts at a
central frequency of 300 kHzwere activated as the incident diagnostic wave signal. The speed
of S0 mode is 5159.5m/s in this simulation.

Gaussian noise is statistical noise that has its probability density function equal to that
of the normal distribution, which is also known as the Gaussian distribution. A special case is
white Gaussian noise, in which the values at any pairs of times are statistically independent
(and uncorrelated). It is well known that noise comes frommany natural sources is Gaussian
noise. Therefore, in order to simulate the environment noise, three signal-to-noise ration
(SNR) levels (20 dB, 30 dB, and 40dB) of white Gaussian noise were intentionally added into
the numerical simulated Lamb waves signals.

In numerical model, four sensor pairs are used to locate the damage. The sensor pairs
are s2-6 formed by sensor 2 and sensor 6; s4-8 by sensor 4 and 8; s3-7 by sensor 3 and 7; s3-
5 by sensor 3 and 5. The process of adding three levels white Gaussian noise in the signals



Mathematical Problems in Engineering 17

captured by the four sensor pairs repeated 30 times. That is, there are 30 ToF results for each
sensor pair under each level of noise.

5. Results and Discussion

5.1. The Characteristics of Noise-Induced Error in ToF

It can be expected in theory that the nonparametric estimation methods should have a better
performance than parametric estimation method when deal with the distribution without
a priori knowledge about its type. The advantage of kernel density estimation method will
be demonstrated in this paper by estimating fTm(t) of s4-8. In statistic, the performance of
density estimationmethods is usually verified through comparing the estimation results with
the bona fide p.d.f of some well-known datasets. That is, in order to show the accuracy of
estimation results, one needs to know the real p.d.f. of the distribution to be estimated. It is
difficult to give the analytical expression of fTm(t) about ToF measured by threshold method.
However, partial understanding about the characteristics of noise-induced error in ToF still
can be obtained by analyzing the process of threshold method. That will be helpful to prove
the advantage of nonparametric estimation methods in ToF method.

ToF is given by comparing the arriving time of incident waves and damage-scattered
waves. Since the incident waves is strong, the errors in arriving time of incident waves can be
neglected. Without loss of generality, the errors in ToF was considered to be caused entirely
by the errors in the arriving time of damage-scattered waves.

As mentioned in Section 2.1, the existence of wave packet is determined by whether
the amplitude of signal is bigger than the threshold value. Once a wave packet is detected,
the arriving time of entire wave packet is given by the time of recorded peaks. The process of
threshold method suggests there are two kinds of noise-induced errors in ToF:

Tm = T + ε1 + ε2, (5.1)

where ε1 denotes the variance in the arriving time of single peak, ε2 denotes the error caused
by misidentification of peaks. While ε1 is easy to understand, ε2 is relatively complex. The
signal received by s4-8 which shown in Figure 5 is taken as example to explain the existence
of ε2. Noise not only can change the time of peaks, but also can change the relative magnitude
relationship of peaks. That means the sequence of peaks on its magnitude may be changed by
noise. If there were no noise and the arriving time was measured by recording the strongest
peak, then the second peak of the damage-scattered waves shown in Figure 5 should be
recorded. However, the strongest peak may change to other peaks, such as the third or
the fourth peak, in noise-contaminated signals. The same problem exists in the method of
recording several peaks. For example, if there is no noise and the arriving time is measured
as the average of four peaks. Then, the first four peaks (the second, the third, the fourth,
and the fifth in this case) should be recorded. However, the first peak in noise-contaminated
signals is likely to become stronger than the fifth peak. That leads to the error ε2 in ToF.

It is obvious that ε2 is larger than ε1, but it appears only in strong noise environment.
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Figure 5: The signals of Lamb waves received by sensor 8.

5.2. Density Estimation Results

Parametric estimation method, the kernel density estimation based on the Gaussian
approximation, and the adaptive kernel density estimation via diffusion were used to
estimate fTm(t). The sample data is ToF measured by s4-8 with three levels noise.

The estimation results for the signal with 40 dB SNR noise was shown in Figure 6.
The symbol “+” in Figure 6 and the following Figures 7, 8, and 9 were used to give an
intuitive understanding about the distribution of samples. Each “+” represented a sample.
It could be seen that samples were distributed around the two values. Most of the samples
(26 samples of total 30 samples)were distributed in the range from 1.1e−5 second to 1.15e−5
second. 4 samples were distributed in the range from 0.82e−5 second to 0.87e−5 second. The
p.d.f. given by the kernel density estimation based on the Gaussian approximation and the
adaptive kernel density estimation via diffusion was the functions with two peaks. The p.d.f.
given by parametric estimation method was undeniably a normal density function. Based on
the conclusion drawn in the above section about the characteristics of noise-induced errors
in ToF, the distribution of samples could be easily understood. Because the noise was weak
in this case, most of the samples, which were only affected by ε1, were distributed around
the analytic value of ToF (1.117e − 5 second). The other 4 samples which were relatively far
from the analytic value were affected by both ε1 and ε2. Therefore, it could be learnt that two
kinds of kernel density estimation make correct estimating about the p.d.f. of Tm. Because
the assumption about the type of distribution to be estimated was incorrect, parametric
estimation method was very misleading in this case.

The fact that only 4 samples were affected by both ε1 and ε2 in this case could be
utilized to learn the characteristic of ε1. Since these samples could be easily distinguished
from the samples which were only affected by ε1, these samples could be excluded from the
data set. Then, the density function was estimated with the refined dataset. The results were
shown in Figure 7. It could be seen that the results of two kinds kernel density estimation
methods were similar to normal distribution.

Lilliefors test was adopted to check whether the refined samples came from a normal
distribution. In statistics, the Lilliefors test, named after Hubert Lilliefors, was an adaptation
of the Kolmogorov-Smirnov test [38]. It was used to test the null hypothesis that data
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Figure 6: p.d.f. estimated results for samples from s4-8 with 40 dB noise.
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Figure 7: p.d.f. estimated results for refined samples from s4-8 with 40 dB noise.

came from a normally distributed population, when the null hypothesis did not specify
which normal distribution; that is, it did not specify the expected value and variance of the
distribution.

The calculated value from the Lilliefors test was 0.1373, which was less than the critical
value 0.1699 corresponding to 5% significance level. The null hypothesis that the refined data
came from a normally distributed population was accepted. It explained why the empirical
formula given in the previous work was a normal distribution type and why the damage
detection results based on the empirical formula was satisfied. Since the noise in previous
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Figure 8: p.d.f. estimated results for samples from s4-8 with 30 dB noise.
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Figure 9: p.d.f. estimated results for samples from s4-8 with 20 dB noise.

work [12] was weak and the Tm data was only affected by ε1, its distribution was actually
normal distribution.

The estimation results for the signals with 30 dB SNR noise were shown in Figure 8. It
could be seen that as in the case of 20 dB SNR noise, parametric estimation method failed to
give correct estimation.

The estimation results for the signals with 20 dB SNR noise were shown in Figure 9.
It could be seen that, with the increase of noise level, the kernel density estimation based on
the Gaussian approximation, which was traditional kernel density estimation, failed to give
correct estimation. Only the novel and completely data-driven method, the kernel density
estimation via diffusion-, could give correct estimation.
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Figure 10: Damage localization result based on parametric estimate method (partial view).

5.3. Damage Detection Results

The damage localization under 20 dB noise environment was selected as the example to show
that an accurate estimation was important for the localization result. The p.d.f. estimation
results given by three kinds of density estimation methods introduced in Section 2 were used
to calculate the location of damage. The results were shown in Figures 10, 11, and 12. It could
be seen that the locating process which employed the kernel density estimation via diffusion
has the most accurate localization result. This indicated that the an accurate estimation could
ensure an better localization result.

6. Conclusion

The characteristics of noise-induced error in ToF data measured by using threshold method
were analyzed.

The empirical formula method and the parametric estimation method presented
in existing work had the same assumption that the experimental data came from a
normal distribution. This assumption had been verified by real experiments and numerical
simulation. The results in this paper revealed that the type of distribution of ToF data was
related to the noise level. The empirical formula method and the parametric estimation
method were developed in laboratory environment where the noise was weak. It had also
been proved in this paper that the ToF data measured from high SNR signal (SNR > 40 dB)
were distributed normally. Therefore, the density estimation method with the normality
assumption presented in existing work can work well in laboratory environment.

However, the signals of field experiment usually contained much more strong noise.
The results in this paper showed that even for the signal with 40 dB SNR, the distribution
of measured ToF data were not normal distribution. In this case, nonparametric estimation
method must be emplyed to estimate the p.d.f. correctly. Further, investigating about the
signals with 30 dB and 20dB noise showed that, with the increasing noise, only the kernel
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Figure 11: Damage localization result based on kernel density estimation with Gaussian approximation
(partial view).
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Figure 12: Damage localization result based on kernel density estimation via diffusion (partial view).

density estimation via diffusion, which is purely data driven, can give a satisfied estimating
result.

The damage localization under 20 dB noise environment had been carried out.
Parametric estimation method with the normality assumption, the kernel density estimation
based on the Gaussian approximation and the kernel density estimation via diffusion were
adopted to estimate the p.d.f. of measured data. Three different p.d.f. were obtained by
employing the above-motioned three kinds of density estimation methods. By using each
p.d.f, a damage location result can be calculated. Through comparing the three results of
damage location, it can be seen that an accurate estimation of p.d.f. has a direct effect on
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the accuracy of the results. Applying kernel density estimation in Lamb wave-based damage
detection was necessary.

The noise studied in this paper was the white Gaussian noise. The noise in the real field
experiment wasmuchmore complex. Further studywas needed to reveal the characteristic of
errors in ToF data caused by noise in field experiment. However, the complex nature of noise
in field experiment could not be a trouble for the application of kernel density estimation
method, instead, it could be a reason to apply this method. It had been proved that when deal
with simple noise, the kernel density estimation method introduced in this paper performed
better, in comparisonwith empirical methods. Since the kernel density estimationmethod did
not rely on any assumption about the distribution to be estimated, it could be expected that
the kernel density estimation method could demonstrate a greater advantage in a complex
noise environment.
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Propagation of nonlinear guided waves is a very attracting phenomenon for structural health
monitoring applications that has received a lot of attention in the last decades. They exhibit very
large sensitivity to structural conditions when compared to traditional approaches based on linear
wave features. On the other hand, the applicability of this technology is still limited because of
the lack of a solid understanding of the complex phenomena involved when dealing with real
structures. In fact the mathematical framework governing the nonlinear guided wave propagation
becomes extremely challenging in the case of waveguides that are complex in either materials
(damping, anisotropy, heterogeneous, etc.) or geometry (multilayers, geometric periodicity, etc.).
The present work focuses on the analysis of nonlinear second-harmonic generation in complex
waveguides by extending the classical Semianalytical Finite Element formulation to the nonlinear
regime, and implementing it into a powerful commercial Finite Element package. Results are
presented for the following cases: a railroad track and a viscoelastic plate. For these case-
studies optimum combinations of primary wave modes and resonant double-harmonic nonlinear
wave modes are identified. Knowledge of such combinations is critical to the implementation of
structural monitoring systems for these structures based on higher-harmonic wave generation.

1. Introduction

Traditional techniques in nondestructive evaluation and structural health monitoring
applications rely on measuring “linear” parameters of the waves (amplitude, speed, and
phase shifts) to infer salient features of the inspected structure. Several studies, however, have
shown that “nonlinear” parameters are, in general, more sensitive to structural condition
than linear parameters [1]. Furthermore, the use of nonlinear guided waves is extremely
attractive because guided waves combine the mentioned high sensitivity typical of nonlinear
parameters with large inspection ranges [2–9].
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From a mathematical standpoint, the framework behind nonlinear guided waves
propagation is relatively challenging since the Navier elastodynamic equations are further
complicated by stress-free conditions at the waveguide’s cross-sectional boundaries. For
this reason, most of the previous works on elastic waves in waveguide solids considered
the propagation to be in the linear elastic regime with the assumption of infinitesimal
deformations (coincidence between deformed and initial configurations). However, as the
amplitude of the wave increases or the structure starts experiencing finite deformations (i.e.,
nonlinear elasticity) or another cause of nonlinear effects is present, the nonlinearity in the
structural response becomes relevant and must be introduced in the analysis. Hence cubic
(and eventually higher-order) terms in the particle displacements gradients must be included
in the elastic strain energy density expression [10, 11].

Among the manifestations of the nonlinear behavior, higher-harmonic generation is
considered in detail in the present work. In this scenario, supposing to excite an ultrasonic
wave into the waveguide structure at a fixed frequency, ω (Fundamental Frequency), the
nonlinearity manifests itself in the generation of multiple harmonics of ω, for example, 2ω
(second harmonic), 3ω (third harmonic), and so on. For a practical use, this nonlinearity can
be quantified via an ultrasonic nonlinear parameter, β, well documented in literature [2].

In the last thirty years, several successful applications of nonlinear guided waves have
been discussed, spanning from assessing the fatigue damage of metals [12–14] and concrete
[15], to the efficient location of internal cracks and dislocations [16–20]. The authors of the
present paper recently exploited the features of nonlinear guided wave propagation in seven-
wire steel strands and proposed a methodology to measure the stress level acting on these
structural elements based on the theory of contact acoustic nonlinearity [21].

While several investigations pertaining to nonlinear effect in solids and second
harmonic generation were reported in the past [22, 23], most of them were limited in their
applicability to structures with simple geometries (plates, rods, and shells) where analytical
solutions for the primary (linear) wave field are available in literature. Very few studies
tried to analyze the nonlinear wave propagation phenomena in geometrically complex
waveguides using specialized SAFE codes [24].

In the present work, the propagation of waves in nonlinear solid waveguides with
complex geometrical and material properties is investigated theoretically and numerically.
For the solution of the nonlinear boundary value problem, perturbation theory and modal
expansion are used [22]. The main novelty consists in the development of a powerful
numerical algorithm, able to efficiently predict and explore the nonlinear wave propagation
phenomena in several types of structural waveguides. It is based on the implementation of
a nonlinear semianalytical finite element formulation into a commercial multipurpose finite
element package. Compared to the classical finite element formulation, the proposed solution
is computationally more efficient since it simply requires the finite element discretization
of the cross-section of the waveguide and assumes harmonic motion along the wave
propagation direction. Furthermore, compared to traditional spectral or waveguide element
method approaches, no new elements need to be developed, the full power of ready-to-
use high-order shape functions (crucial for the development of the present theory) can be
easily exploited though friendly GUI, and immediate and extensive postprocessing for all
the required quantities can be developed.

The applicability of the proposed analysis is quite wide, since it can efficiently handle
general prismatic structures, viscoelastic waveguides with damping effects, multilayered
composite laminate panels, and heterogeneous systems, all cases where theoretical wave
solutions are either nonexistent or extremely difficult to determine. In addition, the proposed
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approach requires simple modifications to the original commercial FEM code so that the
nonlinear semianalytical formulation can be taken into account and translated to match the
required formalism. After a brief discussion on the background of the present work and
the proposed algorithm, two case studies have been analyzed in detail: a railroad track
and a viscoelastic plate. They were considered to show the potential of the algorithm in
handling complex geometry as well as viscoelastic material properties. The proposed code
was successful in identifying optimal combinations of resonant primary and secondary
modes. The knowledge of these nonlinear resonance conditions is of paramount importance
for the actual implementation of conditions assessment systems for these structures that are
based on the measurement of nonlinear ultrasonic guided waves.

2. Nonlinear Guided Waves Propagation

In the present section, a brief overview of the generalized nonlinear theory of elasticity for
wave propagation involving finite deformations is presented [25]. Following [22], assuming
that the body is homogeneous, isotropic, and hyperelastic, it possesses a strain energy density
ε which is an analytic function of the Green-Lagrange strain tensor Eij via its invariants; in
this scenario, the Second Piola-Kirchoff stress tensor Sij can be expressed as:

Sij = ρ0
∂ε

∂Eij
, (2.1)

where ρ0 is the initial density of the body.
According to finite strain theory, in (2.1) we have assumed the following:

Eij =
1
2
(
ui,j + uj,i + uk,iuk,j

)
, ui,j =

∂ui

∂xj
. (2.2)

The strain energy density expression becomes

ε =
1
2
λI2

1 + μI2 +
1
3
CI3

1 + BI1I2 +
1
3
AI3 +O

(
E4
ij

)
, (2.3)

where I1, I2, and I3 are the first three invariants of the Green-Lagrange strain tensor defined
as I1 = Eii, I2 = EijEji, and I3 = EijEjkEki; λ and μ are the Lamé elastic constants and A, B, and
C are the Landau-Lifshitz third-order elastic constants [26].

In (2.3), first-order material nonlinearity was introduced through A,B,C, and
geometric nonlinearity through Eij . By substituting (2.3) into (2.1), and keeping up to second-
order terms in Eij , the nonlinear hyperelastic constitutive equation reads

Sij = λEkkδij + 2μEij + δij(CEkkEll + BEklElk) + 2BEkkEij +AEjkEki. (2.4)
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Using (2.4) in the general momentum equation, the nonlinear boundary value
problem governing the propagation of nonlinear elastic waves in isotropic, homogeneous
and hyperelastic waveguides can be formulated as [10]:

ρ0üi − μui,kk −
(
λ + μ

)
ul,li =

(

μ +
A

4

)

(ul,kkul,i + ul,kkui,l + 2ui,lkul,k)

+
(

λ + μ +
A

4
+ B

)

(ul,ikul,k + uk,lkui,l) + (λ + B)ui,kkul,l

+
(
A

4
+ B

)

(uk,lkul,i + ul,ikuk,l) + (B + 2C)uk,ikul,l.

(2.5)

Characterizing the system of (2.5) to the “guided” wave propagation case (stress-free
boundary condition), the governing equations can be recast in vector notation as:

(
λ + 2μ

)∇(∇ · u) − μ∇ × (∇ × u) + f = ρ0
∂2u

∂t2
,

SL(u) · nr = −S(u) · nr on Γ,

(2.6)

where u is the particle displacement vector, ρ0, λ and μ are defined above, f is the nonlinear
term acting as a body force, nr is the unit vector normal to the surface of the waveguide Γ,
and SL and S are the linear and nonlinear parts of the second Piola-Kirchoff stress tensor,
respectively. The nonlinear waveguide system is illustrated in Figure 1.

Considering higher harmonics up to the second order, the nonlinear boundary value
problem presented in (2.6) is solved using perturbation theory. The solution of the primary
wave field can be obtained analytically for simple geometries (plates, rods, shells, etc.)
and numerically using the classical SAFE formulation for waveguides with generic cross-
section [27]. Following [22, 28], if ω is the primary frequency that is excited into the system,
the first-order nonlinear solution is calculated through modal expansion using the existing
propagating guided modes 2ω as:

v
(
x, y, z, t

)
=

1
2

∞∑

m=1

Am(z)vm

(
x, y
)
e−i2ωt + c.c., (2.7)

where (x, y) are the cross-sectional coordinates of the waveguide, z is the lengthwise
coordinate of the waveguide, c.c. denotes complex conjugates, vm is the particle velocity
vector referred to the mth mode at 2ω, and Am is the higher-order modal amplitude given
by:

Am(z) = Am(z)ei(2kz) −Am(0)eik
∗
nz, (2.8)

where k represents the wavenumber. The amplitude Am(z) quantifies how strong is the
excitation of the mth secondary mode in the modal expansion.
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Figure 1: Generic nonlinear waveguide (finite element mesh just on the cross section) with second
harmonic generation highlighted.

In (2.8), the amplitude of the secondary modes is expressed in two different forms
depending on the existence or not of the phase-matching condition (synchronism). The latter
occurs between two modes having the same phase velocity. The expressions are

Am(z) = i

(
fvol
n + f surf

n

)

4Pmn(k∗
n − 2k)

if k∗
n /= 2k (ASYNCHRONISM), (2.9)

Am(z) =

(
fvol
n + f surf

n

)

4Pmn
z if k∗

n = 2k (SYNCHRONISM), (2.10)

where Pmn is the complex power flow along the direction of wave propagation and fvol
n and

f surf
n are identified as the complex external power due to surface sources and volume force,

respectively.
It is possible to notice how the nonlinearity of the waveguide transforms a

monochromatic (single frequency) wave input into a distorted output where primary wave
and second harmonic coexist (Figure 1). Furthermore the modal amplitude of the generic mth
secondary mode oscillates in value if the solution is asynchronous, while it increases with
propagation distance z if the solution is synchronous. The latter is the known cumulative
behavior occurring for nonlinear resonant modes. Further details concerning the terms
appearing in (2.9)-(2.10) can be found in [22]. The internal resonance mechanism relies on
the simultaneous occurrence of two conditions, namely:

(1) Phase matching: k∗
n = 2k.

(2) Nonzero power transfer from primary to secondary wave field: f surf
n + fvol

n /= 0.
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Recent investigations performed by Deng et al. have analyzed the influence of an
additional requirement for the occurrence of internal resonance, namely, the group velocity
matching [29]. In this study, the authors showed analytically and experimentally that, as
long as the two aforementioned conditions (phase-matching and nonzero power transfer)
are satisfied, the cumulative effect of the secondary resonant mode takes place even when
the group velocity matching condition is not satisfied. They concluded that group velocity
matching does not represent a necessary requirement for cumulative second-harmonic
generation. For this reason in the present work, phase-matching and power transfer only
are considered in detail.

In nonlinear structural monitoring, the key consists of the identification of an optimal
combination of synchronous primary and secondary modes. The rest of this paper presents
a numerical tool that enables to identify these resonant conditions for various complex
waveguides, that would be extremely difficult to study by other means, and that include
cases of periodic structures, damped structures, multilayered geometries and heterogeneous
structures.

3. Nonlinear Semianalytical Finite Element Algorithm

Linear SAFE formulation has shown in the past its great potential in calculating the
dispersion characteristics of complex waveguides (where the analytical solution is not
available) in a very efficient way [27, 30]. The knowledge of these curves is the starting point
for the development of any application based on the use of guided waves. The present work
focuses on the extension of this approach to the nonlinear regime and its implementation,
into a highly flexible COMSOL commercial code, of a nonlinear SAFE formulation to solve
complex waveguides (CO.NO.SAFE Algorithm).

The implementation combines the full power of existing libraries and routines of the
commercial code with its ease of use and extremely capable postprocessing functions; hence
internal resonance conditions of structural waveguides with different level of complexity can
be conveniently analyzed via user-friendly interfaces. Furthermore, since all the nonlinear
parameters involve gradients of the displacement field up to the third order, high-order finite
elements (at least cubic) need to be used in order to obtain meaningful results; this task is not
trivial to implement in general SAFE algorithms.

Starting from the nonlinear boundary value problem stated in (2.6), the displacement
field is approximated in the cross-section of the waveguide (x, y) and is enforced to be
harmonic in time and along the direction of wave propagation (z) in accordance with the
classical SAFE formulation. For the generic eth element, this condition reads

ue(x, y, z, t
)
= Ne(x, y

)
Ueei(kz−ωt), (3.1)

where Ne(x, y) is the matrix of shape functions, t is time, k is the wavenumber, and Ue

is the nodal displacement vector for the eth element. The enforcement of this particular
displacement field in (2.6) constitutes the main modification that needs to be applied in
the original cross-sectional FEM formulation. Hence, after the original quadratic eigenvalue
problem in wavenumbers has been reformulated in a linear fashion by doubling the space
dimension [27], the nonlinear boundary value problem can be implemented in COMSOL
using the general PDE solver engine [31]. COMSOL formalism for the boundary value
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Table 1: Material properties assumed for the railroad track analysis.

ρ (kg/m3) λ (GPa) μ (GPa) A (GPa) B (GPa) C (GPa)
7932 116.25 82.754 −340 −646.667 −16.667

problem with Neumann boundary conditions (which correspond to the guided wave
propagation) is

∇ · (c∇U + αU − γ
) − β · ∇U − aU + λdaU = 0, (3.2)

n · (c∇U + αU) + qU = 0, (3.3)

where n is the outward unit normal vector on the surface of the waveguide, c is the diffusion
coefficient, α is the conservative flux convection coefficient, da is a damping coefficient, β is
the convection coefficient, a is the absorption coefficient, γ is the conservative flux source
term, f is the source term, q is the boundary absorption term, λ is the eigenvalue and U
represents the set of dependent variables to be determined. All these coefficients generally
admit complex values (appropriate for viscoelastic materials) [32]. The formalism introduced
in (3.2)-(3.3) is very general and can be used for a broad range of physical problems governed
by a system of PDEs, once every coefficient has been conveniently characterized to the
particular physics governing the considered problem.

Once all the parameters have been defined, dispersion curves for the selected
waveguide can be promptly calculated. Next, after a particular frequency has been selected
as primary excitation, second harmonic generation and internal resonance occurrence can be
analyzed.

In the next section, the proposed algorithm is benchmarked with two case studies of
interest in structural engineering.

4. Applications

4.1. Railroad Track

A136RE railroad track was considered first for this study. Due to the complex geometry
of the cross section, solutions for the dispersion curves and, consequently, for the higher
harmonic generation analysis cannot be calculated analytically. After a preliminary study
involving the selection and the analysis of internal resonance conditions for several primary-
secondary wave field combinations, two exemplary cases were selected as representative. In
the first case, phase matching between primary and secondary modes is verified. However,
due to the characteristic energy distribution over the rail cross-section, no power transfer
is present between the modes and, consequently, internal resonance does not occur; hence,
the secondary modal amplitude is bound in value and oscillates with distance along the
direction of wave propagation (3.1). In the second case, instead, both required conditions
are verified and internal resonance takes place, leading to a resonant secondary wave field
growing linearly with wave propagation distance.

The material properties considered are given in Table 1. The Landau-Lifshitz third-
order elastic constants are detailed in [33].
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Figure 2: (a) Geometry and finite element mesh adopted for the railroad track nonlinear analysis. (b)
Phase-velocity dispersion curve in the (0 ÷ 200) kHz frequency range with selected combinations of
primary and secondary modes pinpointed.

The geometry of the railroad track cross-section, with the FE mesh used for
the analysis, is shown in Figure 2(a). To correctly explore the displacement field and
all the derived quantities (essential for the calculation of all the terms during the
nonlinear postprocessing), 618 cubic Lagrangian triangular isoparametric finite elements
were employed [34]. In Figure 2(b), the resultant phase-velocity dispersion curve in the (0
÷ 200) kHz frequency range is represented. As detailed in the following, the same figure also
pinpoints the two selected combinations of primary and secondary modes as exemplary cases
for the internal resonance analysis.

The complexity of the guided wave propagation for this particular waveguide is
evident considering the abundance of propagative modes present and their dispersion
characteristics (especially at higher frequencies). Selecting a primary excitation frequency
of 80 kHz, the eigenvalue problem has been solved, and 500 propagative modes (real
eigenvalues) have been extracted at ω (80 kHz) and at 2ω (160 kHz). Next, Figure 3 shows
some propagative modes found in this specific frequency range. It can be noted how
differently the energy is concentrated within the waveguide.

4.1.1. Nonresonant Combination

A flexural horizontal primary mode was selected as primary excitation (input for the
CO.NO.SAFE algorithm). The nonlinear analysis revealed the presence of a synchronous
secondary mode at 2ω (similar flexural horizontal displacement distribution). However,
the second required condition concerning the power transfer is not met for this particular
combination, leading to an oscillating secondary modal amplitude value and absence of
internal resonance. At the same time, a conspicuous power transfer is present between the
selected primary mode and some asynchronous secondary modes; here again, because of
the lack of one of the two essential requirements (phase matching) internal resonance does
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head
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Figure 3: Propagative modes in the (80 ÷ 160) kHz frequency range. (a) Flexural vertical mode (energy
mainly concentrated in the rail’s head). (b) Flexural horizontal mode (energy exclusively, confined in
the rail’s web). (c) Axial mode. (d) Complex mode involving a mixture of axial, torsional, and flexural
displacements (color online).

not take place. This fact translates into the very small value associated of modal amplitude
associated with the only synchronous mode and the relatively higher values associated to the
asynchronous secondary modes.

The following Figures 4(a) and 4(b) illustrate the selected primary and secondary
modes, respectively. Figure 4(c) plots the modal amplitude results as calculated from (3.2)
for the propagative secondary modes present at 160 kHz.

4.1.2. Resonant Combination

In this case a flexural vertical mode was selected as primary excitation. The results of the
nonlinear SAFE analysis disclosed the presence of some synchronous secondary modes with
one in particular (slightly different flexural vertical type) able to verify both requirements
producing internal resonance and a nonlinear double harmonic growing linearly with
distance. As in the previous case, Figures 5(a)-5(b) display the selected modes, while
Figure 5(c) spotlights the very high value of modal amplitude related to the secondary
resonant mode; small amplitude values associated to the other synchronous modes, for which
power transfer is absent, are also shown in the same figure.

The previous results point up an optimal combination of primary and secondary
wave fields able to maximize the nonlinear response of the waveguide. Furthermore, it
is worthwhile to notice how the selected primary mode is not only able to produce a
resonant condition, but also very attractive in terms of practical excitability by a piezoelectric
transducer.
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Figure 4: (a) Selected primary mode at 80 kHz. (b) Phase-matched (synchronous) but nonresonant
secondary mode at 160 kHz. (c) Modal amplitude plot for propagative secondary modes.

Table 2: HPPE plate material properties.

ρ (kg/m3) h (mm) cL (m/s) cT (m/s) kL (Np/wavelength) kT (Np/wavelength)
953 12.7 2344 953 0.055 0.286

4.2. Viscoelastic Isotropic Plate

A viscoelastic isotropic high-performance polyethylene (HPPE) plate was investigated next
to extend the applicability to dissipative waveguides. This system is of primary importance
in aerospace and mechanical engineering and has been studied quite extensively in the past
assuming linear elastic regime to obtain dispersion curves and associated waveguide modes
[27, 35, 36]. In the present work, these results are confirmed and extended to the nonlinear
regime; an efficient combination of resonant primary and secondary modes is identified and
discussed in detail.

Material and geometrical properties for the plate are illustrated in Table 2 [35, 36],
where ρ is the density, h is the thickness, cL is the longitudinal bulk wave velocity, cT is the
shear bulk wave velocity, kL is the longitudinal bulk wave attenuation, and kT is the shear
bulk wave attenuation.
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Figure 5: (a) Selected primary mode at 80 kHz. (b) Resonant secondary mode at 160 kHz. (c) Modal
amplitude plot for secondary propagative modes.

The dissipative behavior of the plate was modeled via the Hysteretic formulation [27].
Hence, the resultant stiffness matrix is frequency-independent and was calculated just once at
the beginning of the analysis once the complex Lame’s constants were evaluated. The results
for the present case are

λ̃ =
ρc̃2

T

((
3c̃2

L − 4c̃2
T

)
/
(
c̃2
L − c̃2

T

))
ν̃

(1 + ν̃)(1 − 2ν̃)
= 3.51 + 0.06i, GPa,

μ̃ =
ρc̃2

T

((
3c̃2

L − 4c̃2
T

)
/
(
c̃2
L − c̃2

T

))

2(1 + ν̃)
= 0.86 − 0.08i, GPa.

(4.1)

In (4.1) the complex bulk wave velocities (longitudinal and transverse) are calculated as
follows:

c̃L,T = c̃L,T

(

1 + i
kL,T
2π

)−1

. (4.2)
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The resultant viscoelastic stiffness matrix, with terms expressed in GPa, is given by:

C̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ̃ + 2μ̃ λ̃ λ̃ 0 0 0
λ̃ λ̃ + 2μ̃ λ̃ 0 0 0
λ̃ λ̃ λ̃ + 2μ̃ 0 0 0
0 0 0 μ̃ 0 0
0 0 0 0 μ̃ 0
0 0 0 0 0 μ̃

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.23 − 0.09i 3.51 + 0.06i 3.51 + 0.06i 0 0 0
3.51 + 0.06i 5.23 − 0.09i 3.51 + 0.06i 0 0 0
3.51 + 0.06i 3.51 + 0.06i 5.23 − 0.09i 0 0 0

0 0 0 0.86 − 0.08i 0 0
0 0 0 0 0.86 − 0.08i 0
0 0 0 0 0 0.86 − 0.08i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.3)

First, the plate system was solved in the linear regime in order to calculate the
dispersion curves and obtain the propagative modes, necessary for the nonlinear analysis.
For this purpose, an extension of the linear SAFE algorithm [32] was employed. It allows
the study of the guided wave propagation along structures exhibiting material/geometrical
periodicity along their width (which is normal to the direction of propagation and to the
thickness and considered infinite) by applying the so-called periodic boundary conditions
(PBCs). With this powerful tool, a generally complex periodic structure (grooved panel,
reinforced concrete elements, just to mention a couple) can be modeled simply by considering
a very small cell and applying PBCs on its sides. Mathematically, they represent a particular
case of Neumann boundary conditions: the variables and their derivatives up to the element
order are forced to take identical values on the pair of boundaries of the structure where the
PBCs are applied. This tool is very attractive since it opens new possibilities to study the
guided wave propagation (linear and nonlinear) for a general class of periodic structures by
developing the analysis just on a small portion (periodic cell).

According to this approach, the present plate system was modeled using a mesh of
just 60 quadrilateral cubic Lagrangian elements mapped and deployed in a (3.17 × 12.7)mm
periodic cell (Figure 6(a)). The resulting Lamb wave solutions are displayed in Figures 6(b)-
6(c) in the (0 ÷ 500) kHz frequency range. They are found to be in perfect agreement with
well-known results previously published in literature. Primary and secondary modes for the
nonlinear analysis are highlighted with white circles in the same figures.

Due to the lack of studies in literature concerning specifically the HPPE material, the
third-order Landau-Lifshitz elastic constants of a very similar plastic polymer (Polystyrene)
were adopted for the nonlinear analysis [37]. The assumed values are A = −10.8 GPa, B =
−7.85 GPa, and C = −9.81 GPa.

The nonlinear analysis was developed between 250 kHz (primary mode) and 500 kHz
(secondary mode). The waveguide being dissipative, all the eigenvalues and eigenvectors are
complex. Propagative modes were separated from evanescent and nonpropagative solutions
by using a threshold of 10% between imaginary and real parts of each eigenvalue. After a
preliminary analysis on different potential combinations among the propagative modes, one
particular mode was selected as input (primary mode) for the nonlinear postprocessing. It is
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Figure 6: (a) Geometry with associated mesh for the 2D periodic cell representative of the 12.7 mm thick
HPPE plate (dimensions in mm). (b) Phase-velocity dispersion curve in the (0 ÷ 500) kHz frequency range
with primary and secondary modes for nonlinear analysis highlighted (white circles). (c) Attenuation
curve (expressed in dB/m) in the (0 ÷ 500) kHz frequency range with primary and secondary modes for
nonlinear analysis highlighted (white circles).

associated with a complex eigenvalue k = 669.62 + 87.56i and a corresponding phase velocity
cph = 2345.80 m/s at 250 kHz.

The application of the CO.NO.SAFE algorithm in this case is simplified because of the
assumption of 2D strain regime (the plate is considered infinite in the width direction). For
this reason all the terms used in the nonlinear postprocessing discussed before are evaluated
on a line segment running through the thickness. This approach is sometimes referred as 1D
SAFE [32], and was first introduced almost four decades ago [38, 39].

The results of the analysis pinpointed the presence of a resonant secondary mode. As
mentioned before, while the contribution of all other modes is oscillatory and bounded (2.9),
this secondary mode shows a cumulative behavior and represents the dominant term in the
expansion equation (2.7) with a contribution that linearly increases with distance. In fact,
after all the secondary modal amplitudes were calculated from (2.10) for the synchronous
case, the identified resonant secondary mode exhibits a value which is orders of magnitude
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Figure 7: Modal amplitude plot for secondary propagative modes along with contour plots and 3D views
of the selected primary and secondary modes for the viscoelastic HPPE plate (color online).

larger than those associated to the asynchronous modes (Figure 7). The same figure also
illustrates primary and secondary modes as contour plots (height and color gradients are
proportional to the out-of-plane displacement component along the propagation direction)
and 3D rendered views (global modeshape) considering a length of 1 cm. The amplitudes of
the displacement fields are not normalized and, consequently, they supply exact information
about the mode shapes. At the same time, the values are therefore not comparable from one
mode to another.

Figure 7 shows that the selected primary mode is a complex axial symmetric mode.
The mode at the double harmonic shows also features typical of axial modes. This resonant
secondary mode at 500 kHz looks very promising in a possible structural monitoring system
because it keeps the majority of the energy in the central area of the cross-section and
minimizes wave leakage into the surrounding medium. Furthermore, Figure 6(c) shows
that both primary and secondary modes have very small attenuation values (especially the
secondary mode at 500 kHz); this fact makes the studied combination even more attractive
because of the large inspection range that can potentially be achieved.

5. Conclusions

Nondestructive evaluation and structural health monitoring communities are showing an
increasing interest in nonlinear guided waves because of their significant potential in
several applications. However, proper application of nonlinear features requires a complete
understanding of the higher-harmonic generation phenomenon that can be expected for
the test waveguide. This paper discussed the extension of the classical SAFE algorithm
to the nonlinear regime and its implementation in a powerful multipurpose commercial
FEM code (COMSOL). The result is an innovative tool that opens new possibilities for
the analysis of dispersion characteristics and, most importantly here, nonlinear internal
resonance conditions, for a variety of complex structural waveguides that do not lend
themselves to alternative analyses such as purely analytical solutions. The specific cases that
were examined in this paper include complex geometry (railroad track) and viscoelastic
waveguides with damping effects (HPPE plate). In all these cases, the proposed algorithm



Mathematical Problems in Engineering 15

successfully identified optimal combinations of resonant primary and secondary wave modes
that exhibit the desired conditions of synchronicity and large cross-energy transfer. These
properties can be exploited in an actual system aimed at monitoring the structural condition
of the waveguide by nonlinear waves (detect defects, measure quasi-static loads or instability
conditions, etc.).
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A three-dimensional spectral element method (SEM) was developed for analysis of Lamb wave
propagation in composite laminates containing a delamination. SEM is more efficient in simulating
wave propagation in structures than conventional finite element method (FEM) because of its
unique diagonal form of the mass matrix. Three types of composite laminates, namely, unidirec-
tional-ply laminates, cross-ply laminates, and angle-ply laminates are modeled using three-dimen-
sional spectral finite elements. Wave propagation characteristics in intact composite laminates are
investigated, and the effectiveness of the method is validated by comparison of the simulation
results with analytical solutions based on transfer matrix method. Different Lamb wave mode
interactions with delamination are evaluated, and it is demonstrated that symmetric Lamb wave
mode may be insensitive to delamination at certain interfaces of laminates while the antisymmetric
mode is more suited for identification of delamination in composite structures.

1. Introduction

Owing to its superior mechanical properties and light weight, composite materials are finding
more and more applications especially in aerospace industries [1]. However, composite
structures still run a high risk of suffering from damage due to abrupt impact or growth
of fatigue defects, which can result in catastrophic failure during their service life. It is, there-
fore, essential to develop techniques to inspect integrity and improve safety, reliability, and
operational life of structures [2–7].

Traditionally, nondestructive evaluation (NDE) techniques, such as C-scan and radio-
graphic inspection, are used to evaluate the integrity and degradation of structures on a
periodic basis. Now online structural health monitoring (SHM) techniques, for example,
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vibration-based and Lamb-wave-based techniques, are being developed to provide early
warning and assure the performance of structures. Among them, Lamb-wave-based tech-
niques for damage detection have received a considerable attention in the past decades due
to its ability of long-distance propagation and sensitivity to a variety of defects.

For Lamb waves-based damage detection techniques, understanding wave propa-
gation characteristics in structures is essential for their successful application. Therefore, a
number of numerical methods have been applied to analyze propagation of elastic waves,
such as finite difference method (FDM) [8, 9], finite element method (FEM) [10–12], bound-
ary element method (BEM) [13, 14], finite strip elements (FSE) [15, 16], mass-spring lattice
model (MSLM) [17–21], and local interaction simulation approach (LISA) [22, 23].

In the literature, two kinds of spectral element method (SEM) were applied to wave
propagation modeling, namely, fast-Fourier-transform- (FFT-) based SEM and the orthogonal
polynomials-based SEM [24–26]. In the FFT-based SEM [24], a single element is sufficient
to model wave propagation in large uniform structures, which is suited for simple 1D and
2D problems [27]. On the other hand, the orthogonal-polynomials- (e.g., Legendre and
Cheybysev polynomials) based SEM [25] is much more suitable for analyzing wave pro-
pagation in structures with complex geometry. The formulation of the spectral finite element
(SFE) is similar to FE when assembly of element matrices and solution of equations are
considered. Hence, the SEM can be used to handle the wave propagation in structures with
complex geometry, and various types of defects can be modeled. The difference between the
SEM and FEM comes in that orthogonal polynomials are used as approximation functions in
SEM and, therefore, calculation can be more efficient because of the diagonal mass matrix.
This method has been successfully applied to many fields, such as fluids, seismology and
acoustics [28, 29]. More recently, the SEM was used to simulate wave propagation in struc-
tures for damage detection, for example, wave propagation in 1D structures, such as rod and
beam [30, 31]. Numerical simulation results of the elastic wave propagation in a composite
plate were presented by Kudela et al. [32]. A 2D spectral membrane finite element-based
model, developed by Zak et al. [33], was used to analyze wave propagation in a cracked iso-
tropic panel. Wave propagation in 2D plate structures using a 3D SEM for damage detection
was also discussed by Peng et al. [34].

A wave propagation analysis in composite structures using 3D SEM for the purpose
of damage detection has not been widely reported in the literature so far. Although cha-
racteristics of Lamb wave propagation in composite laminates and the damage evaluation
using numerical simulation have been rigorously explored for a couple of years, in most of
the related work, structures were simplified by either one- or two-dimensional models, result-
ing in approximate results especially for laminates of complicated layup or with damage. The
SEM combines accuracy with flexibility in describing problems with complex geometries,
which is highly desirable for modeling of elastic wave propagation. In this paper, multilayer-
ed composite laminates are modeled using the Legendre polynomials-based spectral finite
element, elastic wave propagation characteristics are analyzed, and wave interaction with
delamination is discussed.

2. Wave Propagation in Composite Plate

Composite laminates are commonly fabricated by stacking unidirectional lamina with a
certain layup configuration. After a composite is properly cured, a multilayered structure
is formed with all the layers bonded together. For analysis of wave propagation, each lamina
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Figure 1: Sketch of a multilayered structure and the coordinate system.

can be regarded as a quasihomogeneous orthotropic or transversely isotropic material with
the main principal axis parallel to the fibres. Therefore, in numerical calculations, a composite
laminate is modeled as a multilayered medium with different elastic and anisotropic material
properties [35].

In order to form a numerical model of composite structure, a Cartesian coordinate sys-
tem is firstly defined by the z-axis normal to the central plane of a composite laminate span-
ned by the x-axis and the y-axis for modeling of the wave propagation, as shown in Figure 1.

For each layer of the composite laminate, the stress-strain relations for arbitrary
direction have the following form [36]:

σ = Dε, (2.1)

where σ is stress vector, ε is strain vector, and D is the flexibility matrix. In order to study
wave propagation, the elastic constants of all the layers must be expressed in the global
coordinate system. For those layers, the principal material coordinate system does not coin-
cide with the global coordinate system; this can be achieved by using a transformation matrix
method.

In a homogeneous media, the elastic wave propagation is described by the governing
equation [37]:

ρ∂2
tu = ∇ · σ + f, (2.2)

where u is the displacement vector. ρ is mass density and f is external force vector.

3. Formulation of 3D Spectral Element Method

For the Legendre polynomials-based 3D spectral finite element, it requires that the domain Ω
in three dimensions is decomposed into a number of nonoverlapping hexahedrons, Ωe, as in
the conventional FE method. In SEM, the equations of wave propagation is [37]

∫

Ω
ρw · ∂2

tudΩ +
∫

Ω
∇w : C : ∇udΩ =

∫

Ω
w · fdΩ, (3.1)

where the Ω denotes the physical region of interest and w is an arbitrary test vector.
In SEM, the nodes are defined into two steps: (1) each element in its physical domain

is mapped to a reference domain Λ = [−1, 1]3 using an invertible local mapping f ; a set of
basis functions consisting of Legendre polynomials of degree N are introduced; (2) a set of
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Figure 2: A 108-node spectra element in the local coordinate.

nodes are defined as ξi ∈ [−1, 1], i ∈ 1, . . . ,N+1. These Gauss-Lobatto-Legendre (GLL) points
are the (N + 1) roots of [29]

(
1 − ξ2

)
P ′
N(ξ) = 0, (3.2)

where P ′
N(ξ) is the derivative of the Legendre polynomial of degree N. The ξi are different

from the classical FE method in which the nodes are uniformly spaced. As an example, a
108-node spectral element in the local coordinate is shown in Figure 2.

The Lagrange interpolation function, ue
N , supported by the GLL points can be

expressed as

ue
N

(
ξ,η, γ

)
=

n1∑

m=1

n2∑

n=1

n3∑

r=1

ue
N

(
ξm,ηn, γr

)
hm(ξ)hn

(
η
)
hr

(
γ
)

=
n1∑

m=1

n2∑

n=1

n3∑

r=1

ue
N

(
ξm,ηn, γr

)
Ψmnr,

(3.3)

where Ψmnr is defined as the orthogonal shape functions in 3-D hm(ξ) denotes the mth 1D
Lagrange interpolation at the (N + 1) GLL points defined above. The property of hm(ξ) is

hm(ξn) = δmn, (3.4)

where δmn denotes the Kronecker delta and ni, i = 1, 2, 3, are the numbers of GLL points in
each direction in the local coordinate.
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Therefore, the element matrices, Me (mass matrix), Ke (stiffness matrix), and Fe (force
vectors), are calculated numerically on the reference coordinate:

Me = ρ

∫

Ωe

(
Ψe(x, y, z)

)T(Ψe(x, y, z
))
dΩe

= ρ

∫+1

−1

∫+1

−1

∫+1

−1

(
Ψe(ξ,η, γ)

)T(Ψe(ξ,η, γ
))

det[Je]dξ dη dγ

= ρ
n1∑

i=1

ωi

n2∑

j=1

ωj

n3∑

k=1

ωk

[
Ψe(ξi,ηj , γk

)]T[Ψe(ξi,ηj , γk
)]

det[Je],

Ke =
∫

Ωe

(
Be(x, y, z)

)TDe(Be(x, y, z
))
dΩe

=
∫+1

−1

∫+1

−1

∫+1

−1

(
Be(ξ,η, γ

))TDe(Be(ξ,η, γ
))

det[Je]dξ dη dγ

=
n1∑

i=1

ωi

n2∑

j=1

ωj

n3∑

k=1

ωk

[
Be(ξi,ηj , γk

)]TDe[Be(ξi,ηj , γk
)]

det[Je],

Fe =
∫

Ωe

(
Ψe(x, y, z

))TPdΩe

=
∫+1

−1

∫+1

−1

∫+1

−1

(
Ψe(ξ,η, γ

))
P
(
ξ,η, γ

)
det[Je]dξ dη dγ

=
n1∑

i=1

ωi

n2∑

j=1

ωj

n3∑

k=1

ωk

[
Ψe(ξi,ηj , γk

)]TP
(
ξi,ηj , γk

)
det[Je],

(3.5)

where ρ is the mass density, De is termed material stiffness matrix, and P is a distributed
load. Ψe are the shape functions based on the Legendre polynomials. The matrix Be is the
strain-displacement matrix calculated by

Be = LΨe(x, y, z
)
, (3.6)

where L denotes a differential operator matrix:

L =

⎡

⎢
⎢
⎣

∂x 0 0 ∂y 0 ∂z

0 ∂y 0 ∂x ∂z 0

0 0 ∂z 0 ∂y ∂x

⎤

⎥
⎥
⎦

T

. (3.7)
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Je is the Jacobian matrix associated with the mapping f from the physical domain Ωe to the
reference domain Λ:

Je =

⎡

⎢
⎢
⎣

∂ξx ∂ξy ∂ξz

∂ηx ∂ηy ∂ηz

∂γx ∂γy ∂γz

⎤

⎥
⎥
⎦. (3.8)

The weights ωi are defined by

ωi =
2

n(n − 1)[Pn−1(ξi)]
2
, i ∈ 1, . . . , n, n = N + 1. (3.9)

Therefore, wave equation (3.1) can be rewritten into matrix form and wave propagation
modeling is transformed to an ordinary differential equation in time. Let U denotes the global
vector of unknown displacement in the medium. Then the ordinary differential equation can
be written as

MÜ +KU = F, (3.10)

where M denotes the global mass matrix, K is the global stiffness matrix, and F is the vector
of time-dependent excitation force.

In this study, the differential equation (3.10) is solved using a central difference time
integration scheme. Initial conditions of displacement and velocity are U = 0 and U̇ = 0 at the
time t = 0, and the central difference time integration scheme is implemented as

1
Δt2

MUt+Δt = Ft −
(

K − 2
Δt2

M
)

Ut − 1
Δt2

MUt−Δt, (3.11)

where the symbol t denotes time and Δt denotes the time step of integration. In the central
difference time integration scheme, the stable condition is Δt ≤ Δtcr = L/c, where L is the
minimum distance between two adjacent nodes and c is the wave speed in elastic medium.

In comparison with FE, less computation effort is required for SFE because of the
choice of Lagrange interpolation supported on the GLL points in conjunction with the GLL
integration rule. The efficiency of SEM was demonstrated using two 3D models based on
SFEs and FEs with the same degrees of freedom, and a reduction of about 65% in CPU time
for calculation is used in comparison with the FEM.

4. Numerical Calculation

Lamb wave propagation in 8-ply T300/F593 composite laminates is analyzed in this study.
The material properties of unidirectional lamina are listed in Table 1. Three types of composite
laminates, namely, unidirectional [08], symmetric cross-ply [02/902]s, and quasi-isotropic
[+45/45/0/90]s laminates are investigated. All the laminates have the same geometric
configurations of 500 mm × 500 mm × 1.72 mm, as shown in Figure 3. The composite plate
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Figure 3: Scheme of composite laminate containing a delamination.

Table 1: Material properties of composite lamina.

E1 (GPa) E2 (GPa) E3 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) υ12 υ13 υ23 ρ (103 kg/m3)

128.1 8.2 8.2 4.7 4.7 3.44 0.27 0.27 0.2 1.57

was meshed using the three-dimensional spectral finite elements with 108-node (shown in
Figure 2).

In the literature, piezoelectric (PZT) wafer is one of the frequently applied transducers
to excite and capture Lamb waves propagating in structures for damage detection. The PZT
transducers can be modeled by adding force to the incident points or using electromechanical
coupling for elastic wave modeling in structures [38, 39]. In the present study, in order to
obtain relatively simple Lamb wave mode, two forces perpendicular to the plane of the
plate are applied at point A in Figure 3 on the upper and the lower surfaces of the plate,
respectively. When the two forces are in phase, antisymmetric modes are activated, and when
the two forces are out of phase, symmetric modes are excited. The excitation force is a 5-cycle
sinusoidal signal modulated by Hanning window with a center frequency of 100 kHz and
absolute maximum magnitude is 1N, as shown in Figure 4. The displacement responses at
point B and C on the upper surface of the composite laminate are used to investigate wave
propagation characteristics.

4.1. Wave Propagation in a Multilayered Composite Plate

As aforementioned, three types of the composite laminates are analyzed in this study. Firstly,
Lamb wave propagation in the unidirectional composite laminate [0]8 is investigated. The
plate is meshed to 50 × 50 × 1 spectral elements. Under the two excitation of in-phase forces,
the fundamental antisymmetric mode A0 is excited. According to the simulation results, the
displacement component in the z-direction is dominant. Therefore, only the displacement
component in the z-direction is analyzed here. Responses of the laminate at 0.097 ms are
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Figure 4: Waveform of the excitation force in the time domain.

plotted in Figure 5(a). It can be observed that the wave front of the A0 mode has ellipse-
like shape, and the group velocity in the fibre direction is greater than that in the direction
perpendicular to the fibre, indicating that group velocity of this type of wave mode in the
composite depends on the orientation of wave propagation. Generally, group velocity in
composite laminate is a function of the direction of wave propagation and direction of the
fibres. The group velocity in composite laminates can be calculated analytically using the
transfer matrix method (In the appendix). For such an 8-ply unidirectional laminate, the
analytical group velocity is plotted in a polar coordinate, as shown in Figure 5(b). It presents
similar feature as Figure 5(a). Group velocities in the direction along the fibers (x-axis) and
perpendicular to the fibres (y-axis) are further calculated from displacement responses of
SEM simulations at the point B and C, as shown in Figure 6. Based on the peak of the received
responses, time of flight (ToF) from point A to B can be defined. The calculated group velocity
cg of the A0 mode of Lamb waves propagating in the x direction is 1794 m/s, which is 2.6%
smaller than the analytical value. In a similar way, the group velocity of the A0 mode in the
y-direction is 1319 m/s and the one calculated analytically is 1245 m/s, which gives a relative
error of 5.9%. It can be concluded that the simulation results of SEM model, the proposed
model, are in good agreement with the analytical results thus validating the effectiveness of
the model.

Under the two excitations of out-of-phase forces, the fundamental symmetric wave
modes, the S0 mode and the SH0 mode, are excited. According to the simulation results, the
displacement components in the x-direction and in the y-direction are dominated. Hence,
only those two displacement components are plotted, as shown in Figures 7(a) and 7(b). It
can be seen that S0 mode and the SH0 mode are excited simultaneously, which is because the
S0 mode and the SH0 mode are coupled in multilayered composite laminate. Analytical group
velocities of the S0 mode and the SH0 mode are also calculated, as shown in Figure 7(c), and
the simulation results of SEM modeling are in good agreement of the analytical results.

In case of cross-ply laminates [02/902]s, the laminate was meshed to 50 × 50 × 4
spectral finite elements. The symmetric mode and antisymmetric modes are excited using
the above-mentioned method. In case of antisymmetricmode, the displacement component
in the z-direction is shown in Figure 8. On the other hand, in case of symmetric mode the
displacement in the x-direction and the y-direction are plotted in Figure 9. The complexity
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Figure 5: Displacement component in the z-direction at 0.097 ms under (a) the A0 mode and (b) theoretical
group velocity.

0 0.1 0.2
−2

−1

0

1

2

Time (ms)

A
m

pl
it

ud
e
(1

0−
8

m
)

(a)

0 0.1 0.2
−2

−1

0

1

2

Time (ms)

A
m

pl
it

ud
e
(1

0−
8

m
)

(b)

Figure 6: Displacement response in the z-direction at point B (a) and at point C (b).

of Lamb wave propagation in composite is also demonstrated, and the effectiveness of the
proposed model is validated by comparison of simulation results and the analytical results.

In case of angle-ply laminates [−45/45/0/90]s, the composite laminate is meshed by
using 50 × 50 × 8 spectral finite elements. The displacement components in the z-direction at
0.086 ms are plotted in Figure 10(a), while displacement components in the x-direction and
in the y-direction at 0.069 ms are plotted in Figures 11(a) and 11(b). The group velocities
of analytical solutions for those Lamb modes are also plotted in a polar coordinate for
comparison, as shown in Figures 10(b) and 11(c). A good agreement found in both symmetric
and antisymmetricmodes. It can be observed that the angular dependence of Lamb nodes in
the laminates [−45/45/0/90]s becomes weaker because of its quasi-isotropic layup. Under
the S0 and the SH0 modes, the group velocities are approximately independent of direction of
wave propagation, but it still can be discerned that the A0 mode has the maximum in the 45◦
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Figure 7: Displacement components in (a) the x-direction and (b) the y-direction at 0.039 ms under the S0
and the SH0 modes and (c) theoretical group velocity.
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Figure 8: Displacement component in the z-direction at 0.097 ms under (a) the A0 mode and (b) analytical
group velocities.
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Figure 9: Displacement components in (a) the x-direction and in (b) the y-direction at 0.097 ms under the
S0 and the SH0 modes and (c) theoretical group velocity.
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Figure 10: Displacement component in (a) the z-direction at 0.086 ms under the A0 mode and (b) analytical
group velocities.
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(or 225◦) directions because outer lamina are orientated in these directions, which dominates
the bending properties related to A0 mode.

In case of angle-ply laminate, the wavelength of the A0 mode is shorter than that of
the S0 and the SH0 modes in composite laminate from the simulation results and analytical
results. It can be expected that the A0 mode is possibly more sensitive to small damage than
the S0 mode and the SH0 mode because of its short wavelength.

It is demonstrated that characteristics of the wave propagation in multilayered com-
posite is complex due to the nature of anisotropic of the material constants and the multi-
layered configurations, which leads to the group velocity of Lamb waves depending on the
laminate layup and the direction of wave propagation. Good agreement between the simu-
lation results based on SEM and the analytical results demonstrates that the proposed model
provides an effective tool to investigate the wave propagation in composite structures.

4.2. Wave Propagation in a Composite Plate Containing Delamination

The typical damage forms in composite laminate are transverse microcracking, fiber-break-
age, and delamination. Typically, the transverse microcracking through the thickness of the
ply occurs as the first-ply failure, and then delamination damage follows. The fiber break-
age usually happens at the last stage of the failure. However, a catastrophic failure can occur
only with the microcracking and delamination damage without the fiber breakage. Delamina-
tion is known to happen because of excessive interlamina normal and shear stress at the ply
boundaries, which not only causes reduction in stiffness, but also affects the strength and
integrity of the structure, leading to failure.

The wave propagation in composite laminates containing a delamination is investi-
gated in this study. The delamination in the laminates is modeled using nodes separation
method. Laminate without delamination is initially meshed. At the interface between the
adjacent elements where the delamination occurs, nodes that are affected by the delamination
are separated, as shown in Figure 12.

Lamb wave modes interaction with delamination is analyzed in quasi-isotropic
laminates [45/−45/0/90]s using the proposed 3D SEM model. The size of the delamination
is 30 mm × 30 mm in a square shape, as shown in Figure 3. The wave interaction of the
symmetric mode and antisymmetricmode with delamination is investigated.

The effects of the delamination at different interfaces in the composite laminate are
addressed. Under the symmetric mode, the displacement responses at the point B in the x-
and the y-directions are plotted in Figure 13. Responses of the intact composite laminate are
also provided for comparison. It is evident that the scattered waves from the delamination
are not so obvious in comparison with the intact laminate, on the captured responses at
the point B, when the delamination is located in different interfaces. The displacement
responses at 0.069 ms in the x- and the y-directions of the composite laminates are plotted in
Figure 14, when there is a delamination at the interfaces between 3-4 layers. However, when
the delamination is at the interface between 4-5 layers, responses of the point B are same as
those from intact composite laminate, indicating that the symmetric mode is insensitive to the
delamination in the symmetric plane of the plate, attributed to the reason that the layup of the
composite laminate is symmetric about the central plane between 4-5 layers. Therefore, the
symmetric wave mode related to extensional wave mode can travel through the delamination
without any scattering from it.

Under the antisymmetricmode, the displacements at the point B in the z-direction
are plotted in Figure 15. It can be seen that the antisymmetricmode is more sensitive to
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Figure 11: Displacement components in (a) the x-direction and in (b) the y-direction at 0.069 ms under the
S0 and the SH0 modes and (c) theoretical group velocity.
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Figure 12: Modeling of delamination in a laminate (a) mesh without delamination and (b) mesh with a
delamination.
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Figure 13: Displacement components in (a) the x-direction and (b) the y-direction at the point B as the
delamination is located in different interfaces.

(a) (b)

Figure 14: Displacement components in (a) the x-direction and (b) the y-direction of composite laminate
at 0.069 ms with a delamination.

delamination located at all interfaces of the composite laminate. The displacement responses
of the laminate in the z-direction at 0.173 ms are plotted in Figure 16.

Under the same excitation frequency, the scattered waves from delamination become
clearer in the captured response at the point B under the antisymmetricmode than that under
symmetric mode. Hence, the antisymmetricmode can be used to detect smaller delamination
than the symmetric mode, since the wavelength of the antisymmetricmode is less than that
of the symmetric mode. In addition, according to the simulation results, the symmetric mode
may be less sensitive to delamination located at certain interfaces. It can be expected that the
antisymmetricmode is more suitable for identification of the delamination.
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different interfaces.

Figure 16: Displacement component in the z-direction of composite laminate at 0.173 ms with a delamina-
tion.

The scattered waves are very weak compared with the incident wave, resulting in that
the reflected wave packet is difficult to identify delamination in such composite materials
with a high attenuation ratio. Fortunately, the transmitted wave has been affected a lot, as
shown in Figure 16.
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5. Conclusions

A three-dimensional spectral element method is developed to investigate the wave propaga-
tion characteristics in composite laminates in the present study. Three types of laminates,
namely, unidirectional [0]8, cross-ply [02/902]s, and quasi-isotropic [−45/45/0/90]s lami-
nates are modeled using 3D spectral elements, and the laminates are excited using two forces
in-phase and out-of-phase to generate the symmetric mode and antisymmetricmode respect-
ively. It is demonstrated that the proposed 3D spectral element method can be efficiently
and effectively used to simulate wave propagation in composite laminates. Complexity of
wave propagation characteristic is also demonstrated even for a single Lamb wave mode in
composite laminates. Finally, interactions between the Lamb wave mode and a delamination
are analyzed. It is concluded that symmetric mode of Lamb wave may be insensitive to
delamination in certain interfaces in the laminate. And, therefore, it is essential to understand
wave propagation characteristics in composite laminate when Lamb-wave-based structural
health monitoring strategy is carried out.

Appendix

The analytical wave front can be calculated as follows.
Consider wave propagation solutions in the following form:

{u, v,w} = (1, V,W)Ue[iξ(x1+αx3)−ωt], (A.1)

where ξ is the wave number, ω is the circular frequency, α is still an unknown parameter, and
V and W are ratios of the displacement amplitudes of v and w, respectively. The choice of
the solution leads to the three coupled equations that can be written as

⎡

⎢
⎢
⎣

K11 K12 K13

K21 K22 K23

K31 K32 K33

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

U1

U2

U3

⎤

⎥
⎥
⎦ = 0, (A.2)

where the elements of the matrix K are

K11 = C11 + C55 − ρc2,

K12 = C16 + C45α
2,

K13 = (C13 + C55)α,

K22 = C66 − ρc2 + C44α
2,

K23 = (C36 + C45)α,

K33 = C55 − ρc2 + C33α
2.

(A.3)
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The existence of nontrivial solutions for U1, U2, and U3 demands the vanishing of the
determinant of the matrix K and yields the sixth-degree polynomial equation:

α6 +A1α
4 +A2α

2 +A3 = 0. (A.4)

There are six roots of this equation, which correspond to the three sets of mode pairs. For each
αq, q = 1, 2, . . . , 6, the displacement ratios V q = U2q/U1q and Wq = U3q/U1q can be expressed
as

Vq =
K11
(
αq

)
K23
(
αq

) −K13
(
αq

)
K12
(
αq

)

K13
(
αq

)
K22
(
αq

) −K12
(
αq

)
K23
(
αq

) ,

Wq =
K11
(
αq

)
K23
(
αq

) −K12
(
αq

)
K13
(
αq

)

K12
(
αq

)
K33
(
αq

) −K23
(
αq

)
K13
(
αq

) .

(A.5)

The formal solutions for the displacements and stresses in the expanded matrix form

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

u2

u3

σ33

σ13

σ23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1

V1 V1 V3 V3 V5 V5

W1 −W1 W3 −W3 W5 −W5

D11 D11 D13 D13 D15 D15

D21 −D21 D23 −D23 D25 D25

D31 −D31 D33 −D33 D35 −D35

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U11E1

U12E2

U13E3

U14E4

U15E5

U16E6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A.6)

where

Eq = eiξαqx3 ,

D1q = iξ
(
C13 + C36Vq + C33αqWq

)
,

D2q = iξ
[
C55
(
αq +Wq

)
+ C45αqVq

)
,

D3q = iξ
[
C45
(
αq +Wq

)
+ C44αqVq

)
,

q = 1, 2, . . . , 6.

(A.7)
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