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Backdoor attacks have been recognized as a major AI security threat in deep neural networks (DNNs) recently.Te attackers inject
backdoors into DNNs during the model training such as federated learning. Te infected model behaves normally on the clean
samples in AI applications while the backdoors are only activated by the predefned triggers and resulted in the specifed results.
Most of the existing defensing approaches assume that the trigger settings on diferent poisoned samples are visible and identical
just like a white square in the corner of the image. Besides, the sample-specifc triggers are always invisible and difcult to detect in
DNNs, which also becomes a great challenge against the existing defensing protocols. In this paper, to address the above problems,
we propose a backdoor detecting andmitigating protocol based on a wider separate-then-reunion network (WISERNet) equipped
with a cryptographic deep steganalyzer for color images, which detects the backdoors hiding behind the poisoned samples even if
the embedding algorithm is unknown and further feeds the poisoned samples into the infected model for backdoor unlearning
and mitigation. Te experimental results show that our work performs better in the backdoor defensing efect compared to state-
of-the-art backdoor defensing methods such as fne-pruning and ABL against three typical backdoor attacks. Our protocol
reduces the attack success rate close to 0% on the test data and slightly decreases the classifcation accuracy on the clean samples
within 3%.

1. Introduction

Deep neural networks (DNNs) have a wide range of the
current applications in the artifcial intelligence applications
such as image recognition, speech recognition, and natural
language processing [1–3], in which security and privacy
protection are considerable issues [4]. Te massive amount
of data and growing computing power have facilitated the
development of DNNs, but the DNN models are still very
expensive in training. Users often choose to train DNN
models on the third-party platforms (e.g., Amazon EC2) or
even use third-party trained models directly to reduce
training costs. However, it is vulnerable to backdoor attacks,
which can misclassify any input using attacker predefned
triggers (pattern patches) and replace the corresponding
label with a predefned target label. Tose models with

backdoors behave normally just like the clean peer-to-peer
models for clean samples without triggers, which are
equivalent to highly stealthy viruses that disguise themselves
as normal and perform great damage [5].

Te backdoor attack greatly threatens DNNs in practical
applications for reducing the trustworthiness of the DNN
models and even leading to safety-critical areas. Te sepa-
ration of data and model training in deep learning allows
attackers to often gain and modify the training samples to
mislead DNNs by adding some invisible perturbations to
a small proportion of datasets, such as the local patches or
the steganographic data in the lower right corner of an
image, and even setting weights that afect the model during
training [6–10]. Te ability of infected DNN models to
correctly classify clean samples makes it difcult for users to
detect the presence of backdoors. In addition, the hidden
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nature of triggers makes it difcult for users to identify them.
Tus, the invisibility and stealthiness of triggers make
detecting backdoor attacks a considerable challenge [11–13].

Most of the existing backdoor defensing methods are
divided into two types: model-based defense and data-based
defense.Te former detects whether the model is infected by
a backdoor, and the latter considers whether the data contain
a trigger. Recently, Li et al. [14] reveal that existing backdoor
attacks were easily mitigated by current defenses [15–17]
mostly because their backdoor triggers are sample-agnostic,
i.e., diferent poisoned samples contain the same trigger no
matter what trigger pattern is adopted. Tus, they propose
an attack method, called as sample-specifc backdoor attack
(SSBA), which makes it more difcult to detect and remove
the backdoors since most of the current defensing protocols
reconstruct and detect backdoor triggers according to the
same behavior on diferent poisoned samples [15–17]. SSBA
is an invisible backdoor attack that generates invisible
sample-specifc triggers by the pretrained encoder-decoder
network. Te reason why current mainstream defensing
methods have difculty in detecting sample-specifc triggers
is that their success based on the assumption that the triggers
are sample-agnostic based types. For example, pruning-
based defenses assume that the neurons associated with
the backdoor are diferent from those activated by the clean
samples. Te defender can remove the hidden backdoor by
pruning out the potential neurons. However, the non-
overlap between the two neurons is that the sample-agnostic
trigger pattern is simple, and the DNNs only need a few
independent neurons to encode this trigger.Tis assumption
might be easily broken when the trigger is sample-specifc.

Inspired by image steganalysis technique [18], we fnd
that the intensity values of the images at the same position of
diferent color channels have a strong correlation for the
poisoned images regardless of whether the triggers are
sample-specifc or invisible; that is, the triggers in the
poisoned images belong an additional perturbation with
a weak correlation among those color channels. In addition,
since the poisoned samples of the backdoor attack are
bounded to the target label, the correlation between the
trigger pattern and the target label can be efectively broken
by randomizing the class target.

We propose a new backdoor detecting and removing
protocol, which can detect backdoors regardless of whether the
triggers are specifc to poisoned samples or not. Specifcally, it
detects whether a color image contains a trigger by the feature
that the additional perturbation can be retained in the wider
separate-then-reunion network (WISERNet). To address the
weakness that poisoned samples in backdoor attacks are always
bounded to the target label, our protocol breaks the correlation
between the trigger pattern and the target label by backdoor
unlearning and leads to model purifcation. In summary, our
contributions are as follows:

(i) A backdoor defensing method based on secure
image steganalysis is proposed. Te poisoned image
contains a trigger that can be considered as an
additional perturbation, and the intensity value at
the same location has a strong correlation between

diferent color channels, while the trigger has a weak
correlation between its channels. Te protocol is
proved valid whether the trigger is visible or
invisible.

(ii) A secure backdoor detecting and removing protocol is
designed.We design a novel protocol to achieve the goal
by detecting the poisoned images in the training dataset
based on the wider separate-then-reunion network
regardless of whether the trigger is specifc to the poi-
soned samples andby retraining themodel for backdoor
unlearning with the detected poisoned images.

(iii) Extensive experiments are conducted in the pro-
posed protocol. We empirically show that our
protocol is robust against three state-of-the-art
backdoor attacks. Compared with the state-of-
the-art backdoor defensing protocols, fne-pruning
[15] and ABL [19], our protocol reduces the success
rate of backdoor attacks to nearly 0% on both target
classifcation and face recognition tasks and retains
the accuracy after removing the backdoors.

2. Related Work

2.1. Backdoor Attacks. A common method for implementing
backdoor attacks is data poisoning.When themodel is training,
the poisoned samples are injected into the training dataset.
After that, the model is infuenced by the poisoned samples,
deviates from the desired training efect of the original training
data, and changes “slightly” in the desired direction according
to the feature of the poisoned samples, which allows the at-
tacker to modify the model and implant a backdoor [20].
According to the visibility of trigger, backdoor attacks based on
data poisoning can be classifed into two categories: visible
backdoor attack and invisible backdoor attack.

2.1.1. Visible Backdoor Attack. Gu et al. [21] frst proposed
the backdoor attack BadNets to inject backdoors by mod-
ifying part of the training data, whose triggers can be of
arbitrary shapes, such as squares. Chen et al. [22] frst
demonstrated that data poisoning attacks can create phys-
ically implemented backdoors. Liu et al. [23] proposed
a Trojan attack to design triggers based on the values of
internal neurons in DNNs, which strengthens the connec-
tion between the trigger and the internal neurons, enabling
the efect of implant backdoors with fewer poisoned samples.
Chen et al. [24] improve the steganography of the trigger by
combining generative adversarial network techniques to
implant the trigger as a watermark into clean samples and
reducing the variability between the trigger features and the
clean sample features. Tere are many other works [25, 26]
implemented in optimizing triggers, and although all of
these attack methods have high success rates, the triggers are
visible and can be easily detected by people.

2.1.2. Invisible Backdoor Attack. Zeng et al. [27] proposed
that poisoned samples can be identifed by frequency in-
formation and constructed frequency invisible poisoned
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samples, thus achieving the invisibility of triggers. Li et al.
[14] proposed to generate sample-specifc triggers by the
pretrained encoder-decoder network. Considering the
steganography perspective, Li et al. [28] proposed an opti-
mized framework to constrain the generation of triggers by
regularization and embed the triggers in the bit space using
image steganography to make the triggers invisible.

2.2. BackdoorDefenses. Due to the great potential damage of
backdoor attacks to artifcial intelligence applications, an
increasing number of backdoor defensing protocols are
proposed to mitigate such security threats. Te existing
defensing approaches include model-based defense and
data-based defense.

2.2.1. Model-Based Defenses. Model-based defense is to
detect whether a model is infected with backdoors. Liu et al.
[15] found that neurons associated with backdoors are
usually dormant during inference of benign samples and
therefore proposed to prune the associated backdoor neu-
rons to eliminate backdoors in the model. Zhao et al. [29]
proposed to repair infected models using quantitative clean
samples by pattern connectivity techniques [30]. Liu et al.
[31] proposed a neural network-based artifcial intelligence
scanning technique inspired by EBS [32] to determine
whether a model has a backdoor; however, it is efective for
single-trigger attacks and inefective for multitrigger attacks.
Wang et al. [17] proposed a defense method called neural
cleanse (NC) by synthesizing each class’s triggers and
comparing the triggers’ size. If the smaller trigger is sig-
nifcantly smaller than the other triggers, the model is
considered to be infected with a backdoor. Recently, Li et al.
[19] proposed the concept of antibackdoor and designed
a generic antibackdoor learning protocol ABL, which can
automatically prevent backdoor attacks during model
training.

2.2.2. Data-Based Defenses. Data-based defense is to detect
whether a sample contains a trigger. Gao et al. [16] proposed
amethod, known as the STRIP, to flter malicious samples by
overlaying various images onto the images of training
samples and observing the randomness of their classifcation
results. Bao et al. [33] proposed an image preprocessing
method to identify the trigger region using GardCAM [34]
technique, remove it, and replace it with a neutral-colored
box because the region where the triggers in the poisoned
samples are located has a high impact on themodel inference
stage. Udeshi et al. [35] proposed to make a trigger in-
terceptor using the dominant color of the image for locating
and removing backdoor triggers in poisoned samples. Han
et al. [36] proposed an evaluation framework to preprocess
the input samples using data enhancement techniques to
disrupt the connection between the backdoor and the trigger
in the poisoned sample, making the triggers invalid during
inference, and fne-tuning the infection model using another
data enhancement technique to eliminate the efect of
backdoors.

Liu et al. [15] proposed the approach, named as fne-
pruning (short for FP), which has a degraded defense per-
formance for diferent models and datasets. Li et al. [19]
proposed a more complex implementation of antibackdoor
learning, which divides the model training stages into two
stages: backdoor isolation and backdoor unlearning, and the
choice of a turn-period from its backdoor isolation process
to backdoor unlearning progress is more critical. For dif-
ferent attack methods and data sets, the choice of the turn-
period also has diferent efects on the performance of the
model. Our protocol performs well for diferent datasets,
models, and attack methods.

3. Overview

In this section, we defne our attack model, give the as-
sumptions and goals of defensing protocols, and, fnally,
provide an intuitive overview of our approach for identifying
and mitigating backdoor attacks.

3.1. Attack Models and Defense Assumption. In our attack
model, the user trains a DNN model on the training dataset,
denoted as Dtrain, that can be obtained from a third party, or
even the training process of the DNN can be outsourced to
an untrustworthy third party. An attacker may poison part
of the training data, set the size and position of the triggers at
will, and adjust the training stage of the model, but not
access the validation dataset and manipulate the inference
stage of the model. Te attacker’s goal is to return to the user
a trained infected backdoor model that behaves like the
uninfected model in terms of the output on the clean
samples but classifes into the target label specifed by the
attacker when the samples contain the triggers.

Te attacker assumed in our work is more powerful. Te
attacker proposed by Li et al. [14] can only access the training
dataset and cannot manipulate the training stage of the
model. Te attacker proposed by Liu et al. [23] cannot access
the training data and can only modify the trained model.Te
attacker defended in our work not only has access to the
training dataset but also can manipulate the training stage of
the model. It is reasonable for the attacker to consider an
attacker with limited capabilities. However, the attacker
should be assumed to be more powerful since advances in
technology and defense methods.

We also assumed that the defender has access to the
trained DNNmodel and can use a clean set of samples to test
the performance of the model.

3.2. Design Goals. Our defensing protocol includes two
specifc goals:

(i) Backdoor detecting: After the training stage of the
DNN model, a backdoor detector constructed by
WISERNet can successfully detect whether a sample
image contains a trigger, i.e., whether it is
a poisoned image.

(ii) Backdoor mitigating: Since there is a strong corre-
lation between triggers and target labels in backdoor
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attacks, this weakness is exploited to reinput the
poisoned samples into the infected model and re-
train the model to achieve backdoor unlearning.

3.3. Design Intuition. We describe our high-level intuition
for detecting triggers in poisoned samples and overview our
defense.

3.3.1. Key Intuition. Te invisibility of the trigger and the
low poisoning rate make it difcult for the defender to detect
whether the sample is poisoned or not. We derive the in-
tuition behind our technique from the basic properties of
a backdoor trigger, namely that whether the trigger is in-
visible or not, it can be regarded as additional noise, and this
noise can be a special pattern or a string representing the
target label. For a poisoned image, the intensity values of the
three bands at the same position exhibit a strong correlation,
and their expectations are similar from the perspective of
statistics. On the contrary, the additional noise added in the
poisoned sample has a weaker correlation between the bands
and may not even correlate.

To verify the above statement, we analyzed 10,000
poisoned images generated in BadNets [21], Blend Attack
[22], and SSBA [14]. Given X � 0, 1, . . . , 255{ }(C×W×H),
a poisoned image of the size of W × H, it comprises three
bands, namely the red, the green, and the blue band. Te
correlation between the diferent bands of the poisoned
image is defned as follows:

Corrj,k �
􏽐

K
i�1 Mi − M( 􏼁 Ni − N( 􏼁

�������������

􏽐
K
i�1 Mi − M( 􏼁

2
􏽱 �������������

􏽐
K
i�1 Ni − N( 􏼁

2
􏽱 , (1)

where j, k ∈ R, G, B{ }, K � W∗H, M and N indicate band
map matrix vector of poisoned image, and M and N are the
mean of the elements in the vector. In the experiment,
Table 1 reveals the correlation between the intensity values
and the corresponding color bands, and they all show strong
correlation. Te triggers generated in the three backdoor
attacks have no efect on the correlation of the intensity
values among bands. On the other hand, for BadNets, the
added triggers show almost zero correlation between bands.
Even for Blend Attack and SSBA, they exhibit weak
correlation.

We note that it is difcult to detect whether an image is
a poisoned one based on the weak correlation of the trigger
among diferent bands. In the pipeline of our defensing
method as shown in Figure 1, the backdoor target label is
a frog, and the trigger is the invisible additive noises, which
are embedded into the clean picture by pretrained encoder.
In the training stage, we adopt the poisoned samples and
clean samples to train DNNs and then get the backdoored
DNN which classifes poisoned samples to the target label,
while performing perfect on clean samples. Te pretrained
detector detects the training set and adds the sample to the
detection set if it is predicted to be poisoned. Ten, the
detection set was re-entered into the backdoored DNNs for
backdoor unlearning, which gets clean DNNs. In the in-
ference stage, the clean DNNs will behave normally on the

test samples, and the poisoned samples will not be classifed
into the target label.

4. Our Protocol Design

We will describe the details of the approach to detecting
triggers and backdoor unlearning in this section, as outlined
in Algorithm 1. Table 2 describes the symbols used in
Algorithm 1.

4.1. Backdoor Detection Design. Let Dtrain � xi, yi􏼈 􏼉
n

i�1 in-
dicates the training set containing n samples, where xi ∈ X

and yi ∈ Y � 1, 2, . . . , K{ }. Te DNN model learns a func-
tion fw: xi⟶ yi with parameters w, and yi denotes the
label. Dpoison indicates the poisoned training set, and Dclean
represents the clean training set. Specifcally, Dtrain consists
of Dpoison and Dclean, i.e.,

Dtrain � Dpoison ∪Dclean, (2)

where Dpoison ⊂ Dtrain, c � |Dpoison|/|Dtrain| indicates the
poisoning rate, Dclean � (xi, yi)((xi, yi) ⊂ Dtrain/Dpoison􏽮 􏽯.
Specifcally, Ddetect indicates the set consisting of poisoned
samples detected by the detector, where Ddetect ⊂ Dpoison.
Since it is difcult to detect all the poisoned samples in the
training set, some of the clean samples are also included in
Ddetect. Te more clean samples are included in Ddetect, the
lower the classifcation accuracy of the model on the clean
samples will be after it performs backdoor unlearning.
Defne the detection rate � |Dtrain|/|Dtrain|, and ρ plays a key
role in the fnal model performance.

4.1.1. Observation. Te trigger generation in most backdoor
attack methods is similar to the steganography algorithm
applied to images, in which additional noise is embedded in
the image. For example, for the attack proposed in [22],
G(x) � α · t + (1 − α) · x,∀x ∈ X, where G(x) generates
poisoned sample, and t indicates the backdoor triggers. Te
trigger generation in SSBA is also motivated by the DNN-
based image steganography [37].

Based on the observation and the key intuition, we can
detect whether the image is poisoned based on steganalysis.
Convolutional neural network structure is widely used in
gray-scale image steganalysis. For color image, the sum-
mation normal convolution reserves strongly correlated
patterns but compromises uncorrelated noise or weak
correlated noise. In the process of training the detector, it is
necessary to preserve the characteristics of the trigger as
much as possible. Te wider separate-then-reunion network
(WISERNet) [18] chooses a channel-wise convolution in the
bottom convolution layer, which can well preserve the
features of extra added noise in the image. In addition,
WISERNet initializes the convolution kernel using the high-
pass flter of the null domain richmodel [38] to better extract
noise (trigger) features.

4.1.2. How to Build the Detector. We use theWISERNet [18]
as a core for the backdoor detector. Since the image
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convolution operation afects the additional noise [18], the
sum in the convolution layer retains the strong correlation
pattern but damages the irrelevant noise. Terefore,
WISENet uses the normal convolution summation opera-
tion in the upper convolution layer rather than using the
sum operation in the bottom convolution layer. WISERNet
can be divided into three parts in turn: separation, reunion,
and prediction. Te separated part is composed of channel
convolution layer. Te main purpose of convolution in the
bottom convolution layer is to suppress the relevant image
content. WISERNet gives up the sum in the bottom con-
volution layer and selects the channel volume to reduce the
weakening of the network to the irrelevant noise. Te re-
union part is composed of three wide and relatively shallow
normal convolution layers that retain summation. Te
number of kernels in each convolution layer will gradually
increase to augment the capacity of WISERNet. Te typical

practical method of deep learning network is to design it
deeper. However, the deeper the network is, the more output
is involved in the summation, and as a result, the more
severely the weakly correlated signal is damaged. Terefore,
WISERNet designs the upper convolution layer wider to
improve its detection performance. Te prediction part is
composed of four layers of fully connected neural networks
to make the fnal prediction.

As shown in Figure 2, the image is input during the
detection process dividing it into red, green, and blue bands,
and then, convolution at the channel level is applied sep-
arately. Te initialization of the convolution kernel weights
in each channel is then performed using 30 high-pass flters
in the null domain rich model, and as a result, 30 channel
feature maps are generated. Finally, the three independent
channels are joined together to form a 90 channel output,
which is used as the input to the second convolution layer.

Backdoor
Confguration

Target Label:"Frog"

Trigger:

Clean
Samples:

Poisoned
Samples:

Clean
Sample:

Poisoned
Sample:

Frog

Frog

Spider

Training Stage

Backdoored DNN

Samples contain
trigger?

Detector Backdoored DNN

Backdoor
unlearning

Inference Stage

· · ·

· · ·

Correct
Label

Correct
Label

Clean DNN

Yes

Figure 1: Te pipeline of our defensing method.

Table 1: Te correlation between the intensity of diferent color bands and those of corresponding triggers.

Attack Types Red vs. green Red vs. blue Blue vs. green

BadNets [21] Intensity 0.9512 0.8950 0.9737
Trigger 0.1781 0.1970 0.2710

Blend Attack [22] Intensity 0.9596 0.9121 0.9744
Trigger 0.6672 0.5545 0.8046

SSBA [14] Intensity 0.9542 0.9005 0.9695
Trigger 0.6424 0.5960 0.6798

Table 2: List of symbols.

Symbol Description
Xc � Xi􏼈 􏼉

n

i�1 Te clean samples set
A Te backdoored DNN model
B Te clean DNN model
D Te detector
∅ Te empty set
G(x) Te function to generate poisoned sample
θ Te model parameters
∇ Gradient operator
y Sample label. Te sample is clean if y� 1 (poisoned if y� 0)
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From the second convolutional layer forwards, a standard
convolutional approach is used, with the structure of the
convolutional operation layer, the batch normalization layer,
the activation function layer, and the average pooling layer
in order. Since the complexity of the convolutional layers
afects the feature extraction and processing, the number of
convolutional kernels in each convolutional layer is corre-
spondingly quadrupled to maintain the complexity of the
convolutional layers for better noise feature extraction and
processing. After the normal convolutional layer, the output
feature maps are then combined as variables in 32 steps and
input to the fully connected layer. Te fully connected layers

contain 800, 400, 200, and 2 neurons, respectively, and the
three hidden layers use the ReLU activation function. Te
last fully connected layer performs the fnal classifcation
prediction result, and if the prediction result is a poisoned
sample, the backdoor is buried in the model.

4.2. Backdoor Mitigation Design. Despite the detection of
poisoned samples in the training set by the detector, the
backdoor in the model still exists. Let
(X, Y) � (x1, y1), (x2, y2), . . . , (xn, yn)􏼈 􏼉 be the training
samples, and the training of the model in the backdoor

Input: A clean sample Xc � Xi􏼈 􏼉
n
i�1, a training set Dtrian, a backdoored DNN model A.

Output: A clean DNN model B.
(1) Initialize Ddetect � ∅, ρ � 0, and detector D.
(2) //step 1: generate poisoned-clean pair samples.
(3) set Xp � G(x),∀x ∈ Xc, where G(x) generate poisoned sample;
(4) set χ � Xc + Xp; y � 1; x ∈ Xc; y � 0; x ∈ Xp;
(5) //step 2: Train detector D.
(6) set δ⟵ 0, learning rate η � 0.01;
(7) for epoch � 1, 2, . . . , m do
(8) for minibatchB ⊂ χ do
(9) Update θ of detector D with stochastic gradient descent;
(10) gθ � E(x,y)⊂B[∇θL(x + δ, y, θ)];
(11) θ � θ − ηgθ;
(12) //step 3: detect poisoned samples in training set.
(13) set Ddetect � ∅, ρ � 0;
(14) for i � 0; i + +; i≤ |Dtrain| do
(15) //D(·) indicates the inference result of detector D
(16) while ρ≤ 0.04 do
(17) if D(xi) � 0 then
(18) Ddetect � Ddetect.append(xi), where xi ∈ Dtrain;
(19) ρ � |Ddetect|/|Dtrain|;
(20) break;
(21) //step 4: Backdoor unlearning.
(22) input Ddetect into A and update model by using equation (5);
(23) return the clean model B.

ALGORITHM 1: Backdoor detection and removal.
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Figure 2: Te architecture of wider separate-then-reunion networks [18].
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attack can be achieved by minimizing the following em-
pirical error:

minL �
1
n

􏽘

n

1
Dclean l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃 +

1
m

􏽘

m

1
Dpoison l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃, (3)

where n and m are the number of clean samples and poi-
soned samples in the training set, respectively. l indicates
the loss function such as the cross-entropy loss commonly
used in DNN training.

Equation (3) shows that the backdoor injection process
can be considered an instance of multitask learning. Te
main task is the training on the clean samples, whereas the

other task is the training on the poisoned samples, that is, the
backdoor task. To prevent the model from learning the
backdoor task and thus achieving the goal of backdoor
unlearning, it can be achieved by minimizing the following
empirical error:

minL �
1
n

􏽘

n

1
Dclean l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃 −

1
m

􏽘

m

1
Dpoison l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃. (4)

Equation (4) maximizes the backdoor task compared
to (3).

Since it is difcult to detect all the Dpoison in the training
set, and the training set of detected poisoned samples is also
containing some clean samples, it makes the classifcation

accuracy of the model on clean samples drop signifcantly.
Terefore, we use the detection dataset Ddetect instead and
achieve the efect of backdoor unlearning by minimizing the
following empirical error:

minL �
1
n

􏽘

n

1
Dclean l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃 −

1

m
′ 􏽘

m′

1

Ddetect l fθ xi( 􏼁, yi( 􏼁􏼂 􏼃. (5)

5. Experiments

In this section, we implement our protocol based on the
datasets of CIFAR10 [39] and VGGFACE2 [40]. We ex-
perimentally test the trigger performance and analyze the
efects of trigger location, trigger size, and the string rep-
resenting the target label by the attack SSBA on the per-
formance of the detector. In addition, we experimentally
analyze the efect of the size of the detection rate ρ on the
performance of the model and arrive at the value of ρ for
which the defensing protocol achieves better results when
targeting a variety of backdoor attacks. Finally, the efec-
tiveness of this protocol is compared with existing typical
backdoor defensing protocols to analyze the efectiveness of
our protocol.

5.1. Experiment Setup. Te implementation of the detector
is based on the Cafe toolbox [41]. Te network is trained
using small batch stochastic gradient descent with an
initial learning rate of 0.001, a learning rate adjustment
strategy set to inv, and a fxed momentum of 0.9. Te
maximum number of training iterations is set to 20,000,
and the batch size is 16 during training. All training and
testing procedures are performed on a server with the

hardware of NVIDIA GeForce RTX 2080 GPU and 10 GB
of RAM. Te software used for the server is Linux (3.2.x)
operating system and Python 3.6.3. To evaluate the de-
fensing approach, we consider two classical image clas-
sifcation tasks: object classifcation and face recognition.
Te detailed information about each task and the asso-
ciated dataset are described in Table 3.

Object Classifcation (CIFAR10 [39]): Tis task is
commonly used to evaluate attacks against DNNs and
was chosen to train the model PreActResNet [42] using
the CIFAR10 dataset. Te original dataset contains 10
classes, which contains 50,000 training datasets and
10,000 test datasets.

Face Recognition (VGGFace2 [40]): Tis task recog-
nizes the faces of 200 people by training the model
ResNet [43]. Te original dataset contains 3.31 million
images. We randomly select 200 categories which
contain 400 images for training and another 50 images
for testing.

According to the backdoor attacks, we use three already
infected object classifcation models and face recognition
models by BadNets [21], Blend Attack [22], and SSBA [14].
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Te poisoning rate c � 10% and the target label are set to 0.
Figure 3 shows the poisoned samples generated by the three
attacks. Te backdoor trigger is set to a white square located
in the lower right corner of the image, which only accounts
for 1% area of the image for BadNets and Blend Attack, and
the blending rate (trigger transparency) is set to 0.2 for the
Blend Attack. For SSBA, the trigger is generated by the
encoder that is a U-Net [44] style DNN trained on the clean
samples, which achieves the invisibility and sample-specifc
of the trigger.

We adopt three efective performance metrics: attack
success rate (ASR), which is the classifcation accuracy on
the poisoned test set, clean accuracy (CA), which is the
classifcation accuracy on the clean test set, and detection
success rate (DSR), which is the success rate of detecting
poisoned samples on the training set. Table 4 shows ASR and
CA of the three backdoor attacks on the two
classifcation tasks.

5.2. Te Efect of Backdoor Detection. Te success rate of
detecting poisoned samples by the detector is the key factor
to judge the efectiveness of our protocol. For the above three
attacks, the data are poisoned accordingly and then detected
by the detector. In each experiment, frst 10,000 images in
the training set are randomly selected to add triggers, and the
way of adding triggers is kept the same as in the experimental
setup. Ten, 6000 pairs of clean-poisoned images are ran-
domly selected and input into the WISERNet for training,
while the remaining 4000 pairs are used for testing. Table 5
shows the detection success rates for the three attacks under
the two tasks, respectively. 99% of the poisoned images can
be detected for both the BadNets and Blend Attack on given
datasets. For SSBA, above 94 % of the poisoned images can
be detected on the CIFAR10 dataset and 99% on the
VGGFACE2 dataset.

Considering the efects of changing the shape and po-
sition of the trigger and the diferent strings representing the
target labels in SSBA on the detection success rate, we
discuss the efects on the detection success rate by modifying
the shape and position of the trigger and the strings and then
feed them into the already trained WISERNet.

Figure 4 shows the efect of diferent trigger shapes and
positions in BadNets on the detection success rate and the
efect of diferent representative strings in SSBA on the
detection success rate, both experiments on the VGGFACE2
dataset. Te model (model1) is the detector trained with the
poisoned samples generated by the BadNets, and the triggers
are 9 × 9 white squares in the lower right corner of the
image.Te other model (model2) is the detector trained with
the poisoned samples generated by SSBA method, and the
string embedded in the image is 0. In Figure 4(a), the trigger
shapes are set to white blocks with circles, ovals, and tri-
angles and then input into model1 to get the detection
results. In Figure 4(b), the position of the trigger is set at the
four corners of the image, respectively, and then input into
model1 for detection. In Figure 4(c), the strings embedded
into the images are set to 0, 1, 2, and 3, respectively, and then
input into model2 to get its classifcation results. Figure 4

shows that the content of the representative string in SSBA
does not afect the efciency of the detector, and it can
achieve more than 96 % detection success rate for poisoned
images. When the size of the trigger does not cover the entire
picture, it changes its position and shape that can afect the
efciency of the detector.

Te position and shape of the triggers afect the detection
success rate, but the content of the representative string in
SSBA does not afect the detection success rate. Since the way
of adding the trigger in SSBA makes the trigger and the
features of clean samples fused, its feature position also
overlaps with the position of the main features of those clean
samples. Tus, the trigger position and shape are not critical
factors in the training process of WISERNet. Furthermore,
the trigger features in BadNets difer from the main features,
and the position and shape have some infuence on the
results.

5.3. Te Efect of Backdoor Mitigation. Te performance of
the model after backdoor unlearning can be optimal in
equation (4) if all poisoned samples in the training set are
detected and no clean samples are mistakenly detected as
poisoned samples. However, it is hard to arrive that the
detection method does not detect 100 % of the poisoned
samples. In addition, it may be afected by the dataset, such
as the trigger set in BadNets attack is the white square in the
bottom right corner of the image, yet some of the images in
the CIFAR10 dataset are also white in the bottom right
corner, which will lead to the wrong detection. Terefore,
there will be a small number of clean samples included in
Ddetect. Usually, the larger the value of |Ddetect|, the lower the
success rate of the attack after the backdoor unlearning.
However, if a number of the clean samples are included in
Ddetect, w will make the classifcation accuracy on the clean
samples drop signifcantly. Terefore, we experimentally
investigate the correlation between the value of ρ and the
performance of our protocol.

In the CIFAR10 dataset, the poisoning rate is set to 10%,
and thus, there are 5,000 poisoned images in the training set.
Set ρ values at 0.02, 0.04, 0.06, 0.08, and 0.1. Te optimal
range of ρ values is experimentally derived, which maintains
the classifcation accuracy on benign samples while reducing
ASR. Figure 5 shows the implementation on the CIFAR10
dataset with diferent ρ values for diferent backdoor attacks.
It can be found that our protocol is efective against all three
attacks at diferent ρ. Te backdoor attack rate can drop to
very close to 0% while the classifcation accuracy of the
model on clean samples maintains at a high level. We also
fnd that the best performance of our protocol is achieved
when ρ≤ 0.04.

5.4. Comparison with the Existing Defensing Protocols. To
further evaluate the efectiveness of our protocol, we con-
sider three state-of-the-art backdoor attacks and compare
with two typical backdoor defensing techniques. Table 6
demonstrates our proposed method on the CIFAR-10
dataset and the VGFACE2 subset dataset. FP [15] and ABL
[19] are following the confgurations specifed in their
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original papers. In addition, the last convolutional layer of
the neural network in FP is pruned, and ASR of the model
signifcantly decreases when 60 % of the neurons are pruned.

Let epoch T � 107 and turn-period Tte � 25 be set in the
training of the CIFAR10 dataset, and epoch T � 46 and turn-
period Tte � 25 in the training of the VGGFACE2 subset
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Figure 3: Poisoning samples generated by diferent backdoor attacks: BadNets, Blend Attack, and SSBA. (a) CIFAR 10. (b) VGG face2.

Table 3: Details of datasets and model architectures.

Task Dataset # of
labels Input size # of

training images Model architecture

Object classifcation CIFAR10 10 32× 32× 3 50000 PreActResNet
Face recognition VGGFace2 200 64× 64× 3 80000 ResNet

Table 4: Attack success rate (ASR) and clean accuracy (CA) of various backdoor attacks on classifcation tasks.

Task
Backdoored model (ASR %/CA %)

Clean model (CA %)
BadNets Blend Attack SSBA

CIFAR10 99.64/93.02 100/93.67 99.91/93.08 92.40
VGGFace2 99.40/87.80 99.98/87.84 99.67/88.59 91.31
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Figure 4: Detection success rate related to various trigger shapes, positions, and representative strings: (a) Efect of trigger shape on
detection success rate, (b) efect of trigger location on detection success rate, and (c) efect of diferent string on detection success rate.
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dataset in the defensing protocol ABL. In both datasets, our
protocol is set to ρ � 0.04. None Attack in Table 6 means that
the training data are completely clean.

In the CIFAR10 dataset, ABL can achieve better results in
the classifcation accuracy of clean samples compared to our
protocol, but our protocol can achieve the best decrease in the
reduction of the attack success rate. In the subset of
VGGFACE2 dataset, FP can reduce the attack success rate of
the three attackmethods to less than 15%, but at the same time,
the classifcation accuracy of the clean samples also decreases to
less than 75%. ABL reduces the attack success rate of the three
attack methods to 0, but the performance of the clean samples
of the model is poor; thus, we can assume that ABL has no
defensive efect. Our protocol has better performance in both
attack success rate and classifcation accuracy on the clean
samples. In Table 6, it can be seen that Blend Attack, both ABL
and our protocol, decreases in attack success rate and

classifcation accuracy compared to other attack methods,
which is because the dataset images are blurred, and the trigger
pattern mixed with poisoned images produces the efect of
natural artifacts, which makes it difcult to detect poisoned
images.Maintaining the classifcation accuracy of themodel on
clean samples is as important as reducing the success rate of the
attack. Table 6 shows that our protocol is better to maintain the
classifcation accuracy of the model on clean samples while
reducing the success rate of the attack compared with FP
and ABL.

6. Conclusion

In this work, we propose a backdoor detecting and removing
protocol for deep neural networks based on image steg-
analysis. Our protocol detects the poisoned training samples
using a deep steganalyzer constructed by WISERNet and
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Figure 5: Te efect performance on diferent detection rate ρ.

Table 5: Detection success rate against three typical attacks.

Datasets
Backdoored model (DSR %)

BadNets Blend Attack SSBA
CIFAR10 99.85 100.00 94.92
VGGFace2 99.78 100.00 99.68

Table 6: Efectiveness performance comparison of defensing protocols under diferent backdoor attacks.

Dataset Attack type
FP [15] ABL [19] Ours

ASR % CA % ASR % CA % ASR % CA %

CIFAR10

None Attack 0.00 91.88 0.00 92.75 0.00  3.7 
BadNets 99.81 90.37 0.42  3.14 0.21 90.54

Blend Attack 100.00  3.43 0.48 76.56 0.15 60.43
SSBA 99.90 93.09 0.50  3.17 0.43 90.81

VGGFACE2 subset

None Attack 0.00 72.62 0.00 82.96 0.00 86.73
BadNets 11.79 77.26 0.00 14.90 0.32 83.36

Blend Attack 14.89 71.46 0.00 9.72 0.46 78.67
SSBA 11.47 72.23 0.00 7.97 0.17 84.27

For diferent attacks, bold values represents the best defense efect among the three defense schemes.
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retrains the model for backdoor unlearning by the detected
poisoned samples. Compared with the SOTA backdoor
defensing protocols, our protocol achieves to reduce the
backdoor attack success rate while maintaining a high
classifcation accuracy on the clean samples. In the future
work, we will further study the backdoor detection and
unlearning methods to obtain higher clean sample classi-
fcation accuracy and lower backdoor attack success rate for
diferent attack methods and design universal and efcient
backdoor defensing protocols.
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With the rapid development of cloud computing andmachine learning, using outsourced stored data andmachine learningmodel
for training and online-aided disease diagnosis has a great application prospect. However, training and diagnosis in an outsourced
environment will cause serious challenges to the privacy of data. At present, many scholars have proposed privacy preserving
machine learning schemes and made a lot of progress, but there are still great challenges in security and low client load. In this
paper, we propose a complete privacy preserving outsourced multiclass SVM training and aided disease diagnosis scheme. We
design some efficient basic operation algorithms for encrypted data. (en, we design an efficient and privacy preserving SVM
model training protocol using the basic operation algorithms. We propose a secure maximum finding algorithm and secure
comparison algorithm. (en, we design an efficient online-aided disease diagnosis scheme based on the BFV cryptosystem and
blinding technique. Detailed security analysis proves that our scheme can protect the privacy of each participant.(e experimental
results illustrate that our proposed scheme significantly reduces the computation overhead compared with the previous similar
works. Our proposed scheme completes most of the operations of aided disease diagnosis by the cloud servers and the client only
needs to complete a small amount of encryption and decryption operations. (e overall computation overhead is 0.175 s, and the
efficiency of online aided disease diagnosis is improved by 85.4%. At the same time, our proposed scheme provides multiclass
diagnosis results, which can better assist doctors in their treatment.

1. Introduction

Machine learning (ML) uses the computer system to build
mathematical models on sample data with statistical
methods and makes predictions or decisions without being
explicitly programmed. Now, ML has shown significant
advantages in the field of disease diagnosis and brings more
and more convenience to the prevention and treatment of
diseases.

With the rapid development of cloud computing tech-
nology, cloud service providers (CSP) have high-quality
computation and huge storage space, which can provide data
processing, model training, diagnosis services and

deployment, and other intelligent solutions based on ma-
chine learning. In this context, the local clients will out-
source their medical data and machine learning models to
CSP without having to build their own large-scale infra-
structure and computing resources. (e cloud can train a
machine learning model and provide aided disease diagnosis
service by using the outsourced medical data and machine
learning models, which can help improve doctors’ diagnosis,
treatment decisions and provide patients an online disease
diagnosis service. A typical cloud platformmachine learning
system architecture is shown in Figure 1.

However, the security and privacy of outsourced data
will be threatened by various threats, making people afraid to
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use the service of CSP. (e security and privacy threats are
mainly reflected in the leakage of the data, the machine
learning model of the model owners, the users’ request, and
diagnosis results. As we all know, the leakage of medical
information may cause irreversible losses or become a major
event. (erefore, the security and privacy preserving of
model training and diagnosis based on cloud computing
have become a major challenge.

To address the abovementioned challenges, many
scholars have proposed various schemes, such as a secure
outsourced classification based on logistic regression model
[1], an electronic medical disease risk prediction scheme
based on naive Bayes model [2], and other secure disease
prediction schemes based on machine learning technology
[3–5]. As a machine learning algorithm with high compu-
tational efficiency and nice predictive accuracy, the support
vector machine (SVM) has achieved high classification ac-
curacy and efficiency in the medical field [6, 7]. However, the
existing privacy preserving SVM schemes mainly implement
secure prediction [8–11], and there are few privacy pre-
serving SVM schemes for secure training. Most of the
existing privacy preserving SVM schemes are designed for
binary classification, which can only determine whether the
patient has the disease [12], but cannot deal with the
multiclass of the disease. In addition, multiclass SVM re-
quires more computation, which will reduce the efficiency
[13].

To solve the abovementioned problems, we propose an
efficient and privacy preserving online disease diagnosis
scheme based on the SVM algorithm. In our scheme, we can
achieve multi-class SVM training on the encrypted out-
sourced data from multiple data owners and provide users
with privacy preserving disease diagnosis. In summary, our
contributions are as follows:

(1) Efficient and secure basic operation algorithms:
Based on the Paillier cryptosystem, we design several
basic operation algorithms to realize the secure
outsourced data storage and computation, including
secure aggregation algorithm, secure multiplication
algorithm, and so on. (ese secure computation

algorithms are the building blocks for our proposed
training protocol.

(2) Completing machine learning process under privacy
preserving: Aiming at the general machine learning
process and the goal of privacy preserving, we
propose a privacy preserving outsourced multiclass
SVM model training and online-aided disease di-
agnosis scheme. Different from the existing privacy
preserving schemes that only support training or
diagnosis, our proposed scheme extends the function
of privacy preserving machine learning system.

(3) Efficient and secure online aided disease diagnosis:
Based on the BFV cryptosystem, we design a secure
maximum finding algorithm and secure comparison
algorithm. We provide an efficient and privacy
preserving aided disease diagnosis scheme. Experi-
mental results illustrate that our proposed scheme
significantly reduces the computation cost than the
existing similar schemes, which is suitable for
practical application scenarios where a large number
of users request diagnosis at the same time.

(4) Low overhead for local client: For a local client, the
client only needs to perform encryption and de-
cryption operations in our proposed scheme, which
reduces the storage and computation overhead of the
local client to the greatest extent and makes full use
of the computation power of the cloud servers.

(e remainder of this paper is organized as follows. In
Section 2, we review some related works. In Section 3, we
review the Paillier cryptosystem, BFV cryptosystem, and
SVM algorithm as preliminaries. In Section 4, we make a
system overview. (en, we propose our scheme in Section 5.
In Section 6, we analyze the security of our proposed scheme.
In Section 7, we make a performance evaluation. Finally, we
conclude this paper in Section 8.

2. Related Work

In this section, we summarize the privacy preserving ma-
chine learning schemes in recent years.

With the development of big data era, machine learning
has been widely used in many fields. Among them, the
application of machine learning in the field of intelligent
disease diagnosis has developed rapidly. Disease diagnosis
schemes based on various machine learning classification
algorithms have been proposed [14–17]. However, at the
same time, the problem of privacy disclosure in the machine
learning process is becoming more and more serious. So,
many scholars have carried out the research studies on
privacy preserving machine learning.

Triastcyn and Faltings [18] proposed the Bayesian dif-
ferential privacy, considered the distribution of data and
provided a more practical privacy guarantee. Laur et al. [19]
proposed a privacy preserving scheme of support vector
machine based on secure multiparty computation. For each
training or testing phase, their scheme involves multiple
parties holding encrypted data and secret sharing obtained
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during training. Based on additive homomorphic encryp-
tion, Mandal and Gong [20] designed a privacy preserving
scheme that performs gradient descent on data owners and
cloud server. (ey achieved secure linear and logistic re-
gression model training. Shen et al. [21] used blockchain
technology to establish a secure and reliable data sharing
platform among multiple data providers and constructed a
privacy preserving support vector machine training scheme
based on the Paillier cryptosystem. However, in their
scheme, the data provider needs to interact with the cloud
server to complete the computation. (e computation cost
of the data provider is large. Liu et al. [22] proposed a privacy
preserving clinical decision support system using the naive
Bayes (NB) classifier. (e BGV homomorphic encryption
system significantly improved the performance. In work
[23], a framework for securely and efficiently outsourcing
decision tree inference was proposed. Tan et al. [24] pro-
posed a system for privacy-preserving machine learning that
implements all operations on the GPU, which makes full use
of the computing power of GPU. Zheng et al. [25] combined
random permutation and arithmetic secret sharing by the
compute-after-permutation technique and built a privacy-
preserving machine learning framework. Li et al. [26]
proposed a verifiable privacy-preserving machine learning
prediction scheme for the edge-enhanced HCPSs, which
outputs the verifiable prediction results for users without
privacy leakage. Ma et al. [27] designed a lightweight pri-
vacy-preserving medical diagnosis mechanism on edge
called LPME.

Among them, the SVM algorithm is a research hotspot
and has been widely used in different data mining and
machine learning schemes. Most of the existing privacy
preserving SVM schemes are based on three main privacy
preserving technologies: differential privacy (DP), secure
multi-party computation (SMC), and homomorphic en-
cryption (HE). DP can significantly improve the calculation
and communication efficiency, but the cost is to sacrifice the
accuracy of the model by adding random noise [28, 29].
Zhang et al. [30] proposed a general differential privacymodel
fitting method based on the genetic algorithm, but it reduces
the decision accuracy of the model. SMC alleviates the lim-
itation of computing but requires more interaction between
participants. (is leads to expensive communication over-
head [31, 32]. Yu et al. [33] first proposed a privacy preserving
SVM classification method based on vertically segmented
data.(ey use SMC technology to obtain the global model, so
as to protect the local privacy data and hide the classification
model. However, this method requires at least three parties to
participate in the calculation, which is complex and ineffi-
cient. HE can directly calculate the encrypted data, but it also
requires a lot of computing costs [34, 35]. Bajard et al. [36]
usesHE technology to protect the decisionmodel andmedical
data, but it needs high computational load. (erefore, it is
necessary to design an efficient and secure SVM scheme for
cloud online disease diagnosis service. Wang et al. [37]
proposed an efficient privacy preserving outsourced SVM
scheme for Internet of medical things deployment, which
protected training data privacy and guaranteed the security of
the trained SVM model.

In this paper, we propose a new privacy preserving
scheme for training and disease diagnosis of the multiclass
SVM algorithm. We make a comparison analysis with the
schemes in [38–40]. (e experimental results demonstrate
that our scheme has more practical application values.

3. Preliminaries

In this section, we describe some techniques as the basis of
our scheme, including the Paillier cryptosystem, BFV
cryptosystem, and SVM algorithm.

3.1. Paillier Cryptosystem. In the training phase, the data are
encrypted by the Paillier cryptosystem [41]. (e Paillier
cryptosystem is a public key cryptosystem with additive
homomorphic operation. We will introduce the Paillier
cryptosystem as follows.

(i) Key generation: Set the security parameter k.
Choose two big primes p, q, |p| � |q| � k, n � p·

q, λ � l cm(p − 1, q − 1), λ is the Carmichael
function of n. Choose a random number g ∈ Z∗

n2 ,
and gcd(L(gλmod n2), n) � 1, L(x) � (x − 1)/n.
(e public key is pk � (n, g). (e private key is
sk � λ.

(ii) Encryption: Given m ∈ Zn. (e message m will be
encrypted with pk. (e ciphertext is expressed as
c � Epk(m) � gmrn mod n2, where r ∈ Z∗n is a ran-
dom number.

(iii) Decryption: According to the key generation stage
and Carmichael’s theorem, gλ ≡ 1mod n. So
gλ � kn + 1. (en, m � Dsk(c) � (L(cλ mod n2)

/L(gλ mod n2))mod n.
(iv) Homomorphic computation: Given two ciphertexts

Epk(m1), Epk(m2) under the same public key pk.
(e homomorphic computations are defined as
Epk(m1 + m2) � Epk(m1) · Epk(m2), Epk(m1 ·

m2) � Epk(m1)
m2 .

3.2. BFVCryptosystem. In the prediction phase, the data are
encrypted by the BFV cryptosystem [34]. BFV cryptosystem
is a leveled-FHE public key cryptosystem based on RLWE,
which can support unlimited times additive homomorphic
operation and limited times multiplicative homomorphic
operation.

(i) Key generation: Generate a polynomial
s � Z[x]/(xd + 1). (e private key is defined as
sk � s. (en, generate a polynomial from ciphertext
polynomial space (polynomial s), a � Zq[x]/
(xd + 1). (e polynomial a is used to generate
public key. Define a noise polynomial e←χ. (e
notation χ expresses the Gaussian distribution. (e
public key is pk � ([− (a · s + e)]q, a).

(ii) Encryption: (e message m ∈ Rt. Define
p0 � pk[0], p1 � pk[1], u←χ, e1←χ, e2←χ. (e
ciphertext c is computed as c � (p0 · u + t · e2
+m, p1 · u + t · e1).
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(iii) Decryption: To decrypt the ciphertext c, define
c0 � p0 · u + t · e2 + m, c1 � p1 · u + t · e1. (e mes-
sage m is computed as m � (c0 + c1 · s)mod t.

(iv) Homomorphic computation: BFV cryptosystem
supports ciphertext batch processing. Define two
z-dimensional vectors encrypted under public key
pk, Epk(x1, x2, . . . , xz), Epk(y1, y2, . . . , yz). (e
homomorphic computations are defined as follows:

Epk x1 + y1, x2 + y2, . . . , xz + yz( 􏼁 � Epk x1, x2, . . . , xz( 􏼁

+ Epk y1, y2, . . . , yz( 􏼁, Epk x1 + ·y1, x2 · y2, . . . , xz · yz( 􏼁

� Epk x1, x2, . . . , xz( 􏼁 · Epk y1, y2, . . . , yz( 􏼁.

(1)

3.3. SVM Algorithm. SVM is a classical supervised learning
algorithm to solve two kinds of classification problems. (e
SVM algorithm will find the best hyperplane.(e classifier is
a decision function f(X) � 〈W · X〉 + b, f(X)≥ 0 expresses
positive class and f(X)< 0 expresses negative class.

(ere are two training methods for the SVM model: one
is based on the SMO algorithm and the other is based on the
gradient descent algorithm. Because the operation steps of
the SMO algorithm are more complex, which makes a lot
computation costs when using encrypted data.(erefore, we
choose gradient descent to realize the privacy preserving
SVM model training. In the SVM model training process
based on the gradient descent method, the objective function
L(X) � (1/2)|W|2 + C 􏽐

n
i�1 max(0, 1 − yi(〈W · X〉 + b)) �

(1/2)|W|2 + C 􏽐
n
i�1 loss needs to be minimized. When

yi(〈W · X〉 + b)≥ 1, it means that the classification is cor-
rect. (e loss � 0 and the parameters do not need to be
updated. When yi(〈W · X〉 + b)< 1, it means that the
classification is incorrect. (e loss � 1 − yi(〈W · X〉 + b)

and the parameters need to be updated.

4. System Overview

In this section, we will introduce our system model, security
goals, and threat model.

4.1. System Model. Our system model should achieve the
privacy preserving training and online disease diagnosis
process. (erefore, our system model is designed as shown
in Figure 2.

(ere are six participants in our systemmodel, which are
trusted authority (TA), medical centers (MCs), cloud storage
server (CSS), cloud computation server (CCS), diagnosis
service provider (DSP), and users.

(i) Trusted authority (TA): TA is the fully trusted party
of the whole system, which is used to generate and
distribute keys for other participants in the system.
After initialization, TA will stay offline.

(ii) Medical centers (MCs): Each MC has its own local
medical data. To reduce the local storage cost, MCs
will outsource the medical data to CSS for storage.

(iii) Cloud storage server (CSS): CSS has the ability to
store andmanage outsourced data. CSS can perform
privacy preserving computation with its powerful
computation power.

(iv) Cloud computation server (CCS): CCS assists CSS
to complete privacy preserving computation.

(v) Diagnosis service provider (DSP): DSP wants to
train a machine learning model on the outsourced
data from MCs and provides online aided disease
diagnosis for users. Due to the limited computation
and communication ability, DSP will outsource the
training and diagnosis to CSS.

(vi) Users: Users are patients or doctors who have
unlabeled samples and want to get the diagnosis
results. (e users will send encrypted diagnosis
requests to CSS and obtain the encrypted results.
(e users can decrypt the results with own private
key.

4.2. Security Goals. In order to meet the security require-
ments of outsourced training and diagnosis, our scheme will
achieve the following security goals.

(i) Medical data privacy: (e outsourced data of MCs
will not be leaked to other participants in the whole
machine learning process.

(ii) Model privacy: Other participants cannot learn any
useful information about the model of DSP.

(iii) Users privacy: (e diagnosis requests and results of
users will not be acquired by other participants.

(iv) Intermediate results privacy: In the execution of
protocols, any participant will not infer other
participants’ sensitive information through the in-
termediate results.

In our scheme, the training and diagnosis processes are
completed by CSS and CCS. All participants are semi-honest
(or honest-but-curious). Specifically, they will honestly
implement the secure computation protocols, but they will
try to analyze the sensitive data and intermediate results to
infer the useful information of other participants. Like the
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previous works, we assume that CSS and CCS will not
collude. Because CSS and CCS belong to different com-
mercial companies, they will not collude with each other for
their own reputation.

4.3.5reatModel. In this paper, we will define three attacks
in our system model.

(i) Eavesdropping attack: (is attack means that an
adversary can eavesdrop and analyze data during
the data transmission. (e data transmission in-
cludes outsourcing process and the interaction
between participants in protocol implementation.

(ii) Honest-but-curious attack: All participants will
implement the protocol honestly, but they will infer
the useful information during the execution of
protocols.

(iii) Client-collusion attack: In the training and diag-
nosis process, some clients may collude to analyze
the useful information of other participants.

5. Proposed Scheme

In this section, we describe the proposed scheme in detail.
Our scheme mainly includes system initialization, privacy
preserving machine learning training, and online disease
diagnosis.

In order to accurately describe our proposed scheme, we
give the description of used notations in Table 1.

5.1. System Initialization. In the system initialization phase,
TA generates system parameters and distributes the pa-
rameters for MCs, CSS, CCS, and DSP, respectively. TA
sends the parameters through the secure communication
channel. (en, TA will stay offline. We assume that there are
m MCs in our system. Because the Paillier cryptosystem and
BFV cryptosystem can only encrypt integers, the floating
point numbers and negative numbers should be converted
into integers. (erefore, all participants should make data
conversion before encrypting their sensitive information.

5.1.1. Generate System Parameters

(1) Generate a public-private key pair
(PKP � (NP, g), SKP) of the Paillier cryptosystem
and a public-private key pair (PKB, SKB) of the BFV
cryptosystem. (e BFV plaintext space is NB. (e
public keys are public and the private keys are sent to
the CCS.

(2) Generate a public-private key pair (PKC
P, SKC

P) of the
Paillier cryptosystem and a public-private key pair
(PKC

B, SKC
B) of the BFV cryptosystem for CSS. (e

BFV plaintext space is NC
B . (e public keys are public

and the private keys are sent to CSS.
(3) Generate a public-private key pair (PKD

P , SKD
P ) of

the Paillier cryptosystem for DSP. (e public key is
public and the private key is sent to DSP.

(4) Generate a random integer ω ∈ NP. TA randomly
splits ω to m integers, satisfying ω1 + ω2 + · · · + ωm �

ω and sends ωi to MCi. (en, generate two lists H

and H′. Each list has m random integers,
H � (n1, n2, . . . , nm), ni ∈ NP, H′ � (n1′, n2′, . . . ,

nm
′), ni
′ ∈ NP. Each element in H and H′ represents

the ID of each MC. When MCi sends authentication
idi to CSS, MCi will hide gai and ωi with ni and ni

′,
respectively. (e (ni, ni

′) is sent to MCi. H and H′ are
sent to CSS.

5.1.2. Data Conversion. In the machine learning application
scenario, data and model parameters contain floating point
numbers and negative numbers.

For a floating point number x, we enlarge x to x · 2E (E is
the precision of floating point numbers). For example, given
a floating point number x � 3.61 and the precision E � 20,
we can convert x into an integer x′ � 3785359. For a
negative number y, we divide the plaintext space N (N is
expressed the plaintext space of the Paillier or BFV cryp-
tosystem) into two parts because all variables and inter-
mediate results in the process of training and prediction are
much smaller than N/2. An integer in [0, N/2) represents a
positive integer and (N/2, N − 1] represents a negative
integer. When encrypting the negative integer y, it is
converted to encrypt N − y. If y is both a floating point
number and a negative number, y is first converted into a
negative integer.

5.2. Privacy Preserving Machine Learning Training. (e
privacy preserving machine learning training process is
completed by CSS and CCS. We assume that the amount of
outsourced data is n.

5.2.1. Local Data Outsourcing. To protect the privacy of
MCs’ local data, MCs will encrypt the data before out-
sourcing.(e outsourcing process of MCi(i � 1, . . . , m) is as
follows.

(1) MCi generates a random integer ai ∈ ZNP
. Com-

puting pki � gai modN2
P as public key and the

private key is ski � ai.

Table 1: Notation and definition.

Notation Definition
l(x) (e key length of x

(PKP, SKP) Paillier public-private key pair of CCS
(PKB, SKB) BFV public-private key pair of CCS
(PKC

P, SKC
P) Paillier public-private key pair of CSS

(PKC
B, SKC

B) BFV public-private key pair of CSS
(PKD

P , SKD
P ) Paillier public-private key pair of DSP

idi (e authentication of MCi

E (e precision of floating point numbers
ai (e private key of MCi

[x]PK (e ciphertext of x under PK

L Classification numbers
d (e degree of polynomial
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(2) Computing hi � gai+ω modN2
P.

(3) For each plaintext data, such as x, MCi will make a
data conversion as mentioned in Section 5.1. (en,
compute [x]MCi

� gxrNP + hi to encrypt and out-
source the encrypted data to CSS for storage.

5.2.2. Secure Basic Building Blocks for Training. To complete
the privacy preserving outsourced training, we construct
some algorithms as basic building blocks based on the
Paillier cryptosystem: secure data aggregation (Block_1),
secure multiplication algorithm (Block_2), secure inner
product algorithm (Block_3), secure scalar multiplication of
vector algorithm (Block_4), and secure symbol judgment
algorithm (Block_5). (e algorithms will be executed with
CSS and CCS.

(1) Secure data aggregation algorithm (Block_1). CSS needs
to aggregate MCs’ outsourced data before starting machine
learning training. (e algorithm works as follows and is
described in Algorithm 1.

(1) CSS sends a training request to MCi, i � 1, 2, . . . , m.
(2) After receiving the training request, MCi computes

idi � (pki + ni,ωi + ni
′) as authentication ((e idi

indicates that CSS is allowed to use the outsourced
data of MCi for training) and sends to CSS.

(3) CSS obtains the pki,ωi of MCi through the idi and
computes ω � ω1 + ω2 + · · · + ωm. It should be
noted that ω can be obtained only after all MCs
have sent their authentication. (en, CSS com-
putes hi � gai+ω modN2

P and completes the
aggregation.

(2) Secure multiplication algorithm (Block_2). Given two
encrypted integers [x]PKP

and [y]PKP
, the algorithm needs to

compute [x · y]PKP
. (e algorithm works as follows and is

described in Algorithm 2.

(1) CSS generates two random integers R1, R2 and
R1, R2 ∈ ZNP

. (en, it computes by applying the
additive homomorphism, obtaining the following
results.

x + R1􏼂 􏼃PKP
� [x]PKP

· g
R1 ·,

y + R2􏼂 􏼃PKP
� [y]PKP

· g
R2 ·,

(2)

(en, sending them to CCS.
(2) CCS generates a random integer T, T ∈ ZNP

. It de-
crypts [y + R2]PKP

by using SKP. (en, it encrypts
(y + R2 + T) mod NC

P with PKC
P to get

[y + R2 + T]PKC
P
. Computing [xT + R1T]PKP

�

[x + R1]
T
PKP

and encrypting T with PKP. Sending
[y + R2 + T]PKC

P
, [xT + R1T]PKP

and [T]PKP
to CSS.

(3) CSS decrypts [y + R2 + T]PKC
P

with SKC
P and

computes y + T. (en, computing by applying the
additive homomorphism, obtaining the following
results.

[xy + xT]PKP
� [x]

y+T
PKP

,

xy − R1T􏼂 􏼃PKP
� [xy + xT]PKP

· xT + R1T􏼂 􏼃
− 1
PKP

,

R1T􏼂 􏼃PKP
� [T]

R1
PKP

.

(3)

Computing the result,

[xy]PKP
� xy − R1T􏼂 􏼃PKP

· R1T􏼂 􏼃PKP
. (4)

(3) Secure inner product algorithm (Block_3). Given two
encrypted vectors [X]PKP

, [Y]PKP
. (e algorithm will com-

pute [X · Y]PKP
and is described in Algorithm 3.

(4) Secure scalar multiplication of vector algorithm (Block_4).
Given a encrypted vector [X]PKP

and a encrypted integer
[y]PKP

, the algorithm will compute [y · X]PKP
and is de-

scribed in Algorithm 4.

(5) Secure symbol judgment algorithm (Block_5). Given an
encrypted integer [x]PKP

, the algorithm will compute the
sign of [x]PKP

. Let judge � 1 if x≥ 0 else judge � 0. (e
algorithm works as follows and is described in Algorithm 5.

(1) CSS chooses a random integer r, l(r)< l(NP)/2.
(en, it computes [x · r]PKP

� [x]r
PKP

by applying
the additive homomorphism and sends [x · r]PKP

to
CCS.

(2) CCS decrypts [x · r]PKP
. Let judge � 1 if x · r≥ 0 else

judge � 0. (en, it sends [judge]PKC
P
to CSS.

(3) CSS decrypts and obtains the symbol judge.

5.2.3. Privacy Preserving Outsourced Training withMulticlass
SVM. In this section, we construct a privacy preserving
outsourced training protocol to train a multiclass SVM
model using the proposed building blocks. DSP outsources
the training task to CSS and CSS completes the aggregation
of outsourced data. (en, CSS and CCS complete the model
training. After finishing the training, CSS transforms
([W1]PKP

, . . . [WL]PKP
) into ([W1]PKD

P
, . . . [WL]PKD

P
). To

achieve the transformation, we use the algorithm proposed
in reference [38].

For multiclass SVM training, there are two methods: one
to rest (ovr) and one to one (ovo). In order to improve the
efficiency and reduce the number of iterations, we choose the
ovr method for training.We need to construct L binary SVM
classifiers, each of which corresponds to one classification.
(e process is described in Algorithm 6.

5.3. Privacy Preserving Online-Aided Disease Diagnosis. In
this section, our proposed scheme consists of four steps:
diagnosis outsourcing, secret diagnosis request generation,
diagnosis values computation, and diagnosis result gener-
ation. (e privacy preserving online-aided disease diagnosis
is completed by CSS and CCS.

5.3.1. Diagnosis Outsourcing. To reduce the computation
and communication overhead, DSP outsources the SVM
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model parameters to CSS and authorizes CSS to provide
diagnosis service for users.

(e SVM parameters of DSP are expressed as
(W1, W2, . . . , WL) ((ere are L classifiers),

W
i

� w
i
1, w

i
2, . . . , w

i
t+1􏼐 􏼑,

(i � 1, 2, . . . , L).
(5)

Input: [x]PKP
, [y]PKP

Output: [xy]PKP

CSS:
(1) R1, R2 ∈ ZNP

(2) [x + R1]PKP
� [x]PK1

· gR1

[y + R2]PKP
� [y]PKP

· gR2

(3) Send [x + R1]PKP
, [y + R2]PKP

to CCS.
CCS:

(4) T ∈ ZNP

(5) Decrypt [y + R2]PKP

(6) [xT + R1T]PKP
� [x + R1]

T
PKP

(7) Encrypt (y + R2 + T)modNC
P with PKC

P

(8) Encrypt T with PKP

(9) Send [xT + R1T]PKP
, [y + R2 + T]PKC

P
and [T]PKP

to CSS.
CSS:

(10) Decrypt [y + R2 + T]PKC
P
with SKC

P and Compute y + T

(11) [xy + xT]PKP
� [x]

y+T
PKP

(12) [xy − R1T]PKP
� [xy + xT]PKP

· [xT + R1T]− 1
PKP

(13) [R1T]PKP
� [T]

R1
PKP

(14) [xy]PKP
� [xy − R1T]PKP

· [R1T]PKP

ALGORITHM 2: Secure multiplication (Block_2).

Input: [X]PKP
, [Y]PKP

Output: [X · Y]PKP

CSS:
(1) Define [X · Y]PKP

� [1]PKP
.

(2) for i � 1⟶ X.length:
[X · Y]PKP

· � Block 1([xi]PKP
, [yi]PKP

)

end for

ALGORITHM 3: Secure inner product (Block_3).

Input: the authentication and outsourced data of MCi.
Output: the training data.
CSS:

(1) Send a training request to MCi, i � 1, 2, . . . , m.
MCs:

(2) for i � 1⟶ m:
MCi sends idi � (pki + ni,ωi + ni

′) to CSS
end for CCS:

(3) CSS obtains (pki,ωi), i � 1, 2, . . . , m

(4) Compute ω � ω1 + ω2 + · · · + ωm

(5) for i � 1⟶ m:
Compute hi � gai+ω modN2

P

For each outsourced data of MCi, such as [x]MCi
,

Compute [x]PKP
� [x]MCi

− hi to complete aggregate
end for

ALGORITHM 1: Secure data aggregation (Block_1).
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For Wi and the corresponding class result classi, DSP
generates a t + 1-dimensional random integer vector
Ri � (Ri

1, Ri
2, . . . , Ri

t+1) and a random integer ri,
l(Ri

j) � l(ri)< l(NC
B)/2, l(Ri

j)< l(NB)/2. (en, DSP com-
putesWi + Ri and classi + ri to hide the parameters class results.

According to the combination of subtraction of L ran-
dom integer vectors, DSP constructs a combination table.
(e combination table has C2

L values, as shown in Table 2.
(e values in combination table are used to eliminate the
blinding factors in subsequent computation.

Input: [X]PKP
, [y]PKP

Output: [y · X]PKP

CSS:
(1) Define [y · X]PKP

� [1, 1, . . . , 1]PKP
.

(2) for i � 1⟶ X.length:
[yxi]PKP

� Block 1([y]PKP
, [xi]PKP

)

end for

ALGORITHM 4: Secure scalar multiplication of vector (Block_4).

Input: [x]PKP

Output: judge
CSS:

(1) Choose a random integer r, l(r)< l(NP)/2
(2) [x · r]PKP

� [x]r
PKP

(3) Send [x · r]PKP
to CCS

CCS:
(4) Decrypt [x · r]PKP

(5) if x · r≥ 0: judge � 1, else: judge � 0
(6) Encrypt judge with PKC

P

(7) Send [judge]PKC
P
to CSS

ALGORITHM 5: Secure symbol judgment (Block_5).

Input: outsourced data of MCs
([X1]PKP

, [y1]PKP
), . . . , ([Xn]PKP

, [yn]PKP
),

iterations T, learning rate learnrate,
regularization parameter z

Output: L encrypted binary SVM classifiers parameters
([W1]PKP

, . . . [WL]PKP
)

(1) for k � 1⟶ L:
for it � 1⟶ T:

[grad]PKP
� [Wk]PKP

for i � 1⟶ n:
(2) [Wk · Xi]PKP

� Block 3([Wk]PKP
, [Xi]PKP

)

(3) tmp � Block 2([yi]PKP
, [Wk · Xi]PKP

) · [1]− 1
PKP

(4) if Block 5(tmp) �� 0:
[yi · Xi]PKP

� Block 4(yi, Xi)

[grad]PKP
· � [Wj] · [yi · Xi]

z·(NP − 1)
PKP

end for
(5) [W]PKP

· � [grad]
learnrate·(NP − 1)
PKP

end for
end for

(6) return ([W1]PKP
, . . . , [WL]PKP

)

ALGORITHM 6: Secure multiclass SVM training.
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DSP encrypts Wi + Ri with PKB, class
i + ri with PKC

B , ri

with PKP and all values of combination table with PKC
B .

(en, DSP sends them as the outsourced parameters to CSS.
After receiving the outsourced parameters, CSS decrypts
[classi + ri]PKC

B
and the combination table with SKC

B . CSS
computes as follows:

classi
􏽨 􏽩

PKP

� classi
+ r

i
PKP

􏽨 􏽩 · r
i

􏽨 􏽩
− 1
PKP

,

i � 1, 2, . . . , L.
(6)

5.3.2. Secret Diagnosis Request Generation. For useri, the
symptom is expressed as Xi � (xi

1, xi
2, . . . , xi

t, 1) ((e last 1 is
added to facilitate the computation of vector inner product).
(e useri generates a t + 1-dimensional random integer
vector Ti � (Ti

1, Ti
2, . . . , Ti

j, . . . , Ti
t+1) and l(Ti

j)< l(NC
B)/2,

l(Ti
j)< l(NB)/2. (en, useri hides plaintext symptoms

Xi + Ti.
(e useri encrypts symptom Xi + Ti with PKB and en-

crypts Ti with PKC
B . Let S as the secret prediction request of

useri.

S � X
i
+ T

i
􏽨 􏽩

PKB

, T
i

􏽨 􏽩
PKC

B

􏼒 􏼓. (7)

(en, the useri sends S to CSS.

5.3.3. Diagnosis Value Computation. In our proposed di-
agnosis scheme, it is a multiclassification problem, so it is
necessary to compute the diagnosis value of each classifi-
cation. After receiving the secret prediction request S, CSS
decrypts [Ti]PKC

B
with SKC

B . (en, it computes [Xi + Ti]PKB
−

Ti by the homomorphic operation of the BFV cryptosystem.
According to the decision function f(X) � W · X + b of

the SVM algorithm, a diagnosis value needs to be computed
by one multiplication homomorphic operation and one
addition homomorphic operation. Because the BFV en-
cryption algorithm supports ciphertext packaging, batch
operation can be realized and the computation efficiency is
significantly improved. (e process is described in
Algorithm 7.

5.3.4. Diagnosis Result Generation. After computing the
diagnosis values, CSS obtains L encrypted diagnosis values
and each value corresponds to a class result.(en, CSS needs
to select the classification corresponding to the maximum
value from the L encrypted values as the diagnosis result.

(erefore, we design a secure maximum find protocol
and a secure comparison algorithm. In this process, CSS and
CCS jointly execute the protocol.

(1) Secure maximum finding. CSS sets an initial maximum
position pos � 1. (en, CSS executes L cycles and each cycle

executes a secure comparison algorithm to continuously
update the pos value.

After L cycles, CSS obtains the final diagnosis result
[classpos]PKP

and converts [classpos]PKP
into [classpos]PKuseriunder the public key PKuseri

of useri. To achieve the
transformation, we use the algorithm proposed in literature
[38]. (en, CSS sends [classpos]PKuseri

to useri. (e useri

decrypts the encrypted result with SKuseri
. (e process is

described in Algorithm 8.

(2) Secure comparison (SC). For the i-th cycle, CSS computes
[Δpos− i] � [(Wpos + Rpos)Xi]PKB

− [(Wj + Rj)Xi]PKB
. (en,

according to pos and j, computing index � pos · L + j. (e
index corresponds to the value (Rpos − Rj)index in the
combination table and computing as follows:

X
i

R
pos

− R
j

􏼐 􏼑index􏽨 􏽩
PKB

� X
i

􏽨 􏽩
PKB

· R
pos

− R
j

􏼐 􏼑index,

Δpos− j
′􏽨 􏽩

PKB

� Δpos− j􏽨 􏽩
PKB

− X
i

R
pos

− R
j

􏼐 􏼑index􏽨 􏽩
PKB

.
(8)

At this time, [Δpos− j
′]PKB

has eliminated (Rpos − Rj) · Xi

in [Δpos− j]PKB
.

CSS chooses t + 1 equal random integers
r′, R′ � (r′, . . . , r′) and l(r′)< l(NB)/2. Computing
[Δpos− j
′]PKB

� [Δpos− j
′]PKB

· R′. (en, CSS chooses t + 1 dif-
ferent random integers, R″ � (r1″, . . . , rt+1″), l(r1″) � · · · �

l(rt+1″)< l(NB)/2 and computing [Δpos− j
′]PKB

� [Δpos− j
′]PKB

+ R″. Summing all elements in R″ to get Rcss

and encrypting it with PKP. CSS sends [Δpos− j
′]PKB

, [Rcss]PKP

to CCS.
CCS decrypts [Δpos− j

′]PKB
with SKB and [Rcss]PKP

with
SKP, ((w

pos
1 xi

1 − w
j
1x

i
1)r′ + r1″, . . . , (w

pos
t+1 xi

t+1 − w
j
t+1x

i
t+1)r′

+rt+1″). (en, summing each dimension, s � sum((w
pos
1 xi

1 −

w
j
1x

i
1)r′ + r1″, . . . , (w

pos
t+1x

i
t+1 − w

j
t+1x

i
t+1)r′ + rt+1″).

CCS removes Rcss from s by computing
(s − Rcss)modNB. Let judge � 1 if s>NB/2, else judge � 0.

CCS encrypts judge with PKC
B and sends it to CSS. CSS

decrypts it and if judge � 1, updates the value of pos.
(e process is described in Algorithm 9.

6. Security Analysis

In this section, we analyze the security of the proposed
scheme. (e focus is on the outsourced data of MCs, the
SVM model parameters of DSP, the symptoms, and diag-
nosis results of users.

6.1. Security Analysis of Training. In the training phase, the
outsourced data of MCs and the SVM model parameters of
DSP need privacy preserving. (e training protocol is
composed of building blocks designed in Section 5.2.2,
which are completed by CSS and CCS. According to the

Table 2: Combination table.

(1, 2): index � 1 · L + 2 . . . (L − 1, L): index � (L − 1) · L + L

R1 − R2 . . . RL− 1 − RL
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Input: [Xi]PKB
, [Wj + Rj]PKB

, j � 1, 2, . . . , L

Output: L encrypted diagnosis values
[(W1 + R1)Xi]PKB

, . . . , [(WL + RL)Xi]PKB

CSS:
(1) for j � 1⟶ L:

[(Wj + Rj)Xi]PKB
� [Wj + Rj]PKB

· [Xi]PKB

end for

ALGORITHM 7: Diagnosis value computation.

Input: L diagnosis values and corresponding class results
[(Wj + Rj)Xi]PKB

, classj, j � 1, 2, . . . , L;
initial pos � 1

Output: [classpos]PKuseriCSS:
for j � 2⟶ L:

(1) judge � SC([(Wpos + Rpos)Xi]PKB
, [(Wj + Rj)Xi]PKB

)

(2) if judge � 1:
pos � i

end for
(3) Transform [classpos]PKP

into [classpos]PKuseri
with CCS

(4) Send [classpos]PKuseri
to useri.

useri:
(5) useri decrypts [classpos]PKuseri

with SKuseri
.

ALGORITHM 8: Secure maximum finding.

Input: [(Wpos + Rpos)Xi]PKB
, [(Wj + Rj)Xi]PKB

Output: judge
CSS:

(1) [Δpos− j]PKB
�

[(Wpos + Rpos)Xi]PKB
− [(Wj + Rj)Xi]PKB

(2) index � pos · L + j

(3) [Xi(Rpos − Rj)index]PKB
� [Xi]PKB

· (Rpos − Rj)index
(4) [Δpos− j

′]PKB
� [Δpos− j]PKB

− [Xi(Rpos − Rj)index]PKB

(5) Generate R′.
(6) [Δpos− j

′]PKB
� [Δpos− j

′]PKB
· R′

(7) Generate R″ � (r1″, r2″, . . . , rt+1″).
(8) [Δpos− j

′]PKB
� [Δpos− j

′]PKB
+ R″

(9) Rcss � r1′ + r2′ + · · · + rt+1′
(10) Send [Δpos− i

′]PKB
, [Rcss]PKP

to CCS.
CCS:

(11) Decrypt [Δpos− i
′]PKB

, [Rcss]PKP
.

(12) s � sum((w
pos
1 xi

1 − w
j
1x

i
1)r′ + r1″, . . .,

(w
pos
t+1x

i
t+1 − w

j
t+1x

i
t+1)r′ + rt+1″)

(13) s � (s − Rcss)modNB

(14) ifs>NB/2: judge � 1
else: judge � 0

(15) Encrypt judge. Send it to CSS
CSS:

(16) Decrypt [judge]PKC
B

ALGORITHM 9: Secure comparison (SC).
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threat models proposed in Section 4.3, we analyze the se-
curity of the training protocol.

6.1.1. Eavesdropping Attack. (e data transmission process
in the training phase includes that MCs outsources the
encrypted data to CSS and the interactions of training
protocol between CSS and CCS.

In the outsourcing process, the data of MCi have been
encrypted. MCi combines the system public key PKP, pa-
rameter ω, and its own public key gai to ensure that the data
are hidden while encrypting. Suppose an adversary obtains
the private key SKP and eavesdrops when MCs outsource
their data to CSS. Because the data of MCi have been
encrypted, such as [x]MCi

� gxrNP + hi, the adversary cannot
obtain any useful information. Similarly, the authentications
are also hidden by random numbers. In the training protocol
execution process, CSS and CCS will interact and the
transformed data have been encrypted and hidden the real
values with random numbers. (e adversary also cannot
obtain any useful information.

6.1.2. Honest-But-Curious Attack. During the training
phase, CSS and CCS will get some intermediate results from
the proposed building blocks in Section 5.2.2.

In the Block_2, CSS hides x, y with R1, R2 by homo-
morphic operation before sending them to CCS. (en, CCS
sends [xT + R1T]PKP

, [y + R2 + T]PKC
P
and [T]PKP

to CSS
after computing. (erefore, both CSS and CCS cannot learn
any useful information about x, y. Because the Block_3 and
Block_4 are designed based on the Block_2, we will not
analyze them. In the Block_5, CSS hides x with r and
sending [x · r]PKP

to CCS. CCS can only know the symbol of
x, but cannot obtains the real value of x. CCS only returns
the result judge (0 or 1) to CSS. (rough the above-
mentioned analysis, CSS and CCS cannot learn any useful
information in the training process.

6.1.3. Client-Collusion Attack. For MCs, each MCi only
know its own ωi. (erefore, if (m − 1) MCs collude with
each other to steal the privacy of another MC, they cannot
learn any useful information.

6.2. Security Analysis of Disease Diagnosis. In the diagnosis
phase, the SVM parameters of DSP, the symptom Xi and the
diagnosis result classpos of useri need privacy preserving.(e
diagnosis process consists of diagnosis outsourcing, secret
diagnosis request generation, diagnosis value computation,
and diagnosis result generation. (erefore, we conduct se-
curity analysis on the main steps by the threat model.

6.2.1. Eavesdropping Attack. (e data transmission process
includes that DSP outsources [Wi + Ri]PKB

, [classi + ri]PKC
B
,

[ri]PKP
, i � 1, 2, . . . , L and [R1 − R2]PKC

B
, . . . ,

[RL− 1 − RL]PKC
B
to CSS, useri sends request S to CSS and the

interaction of diagnosis process between CSS and CCS.

(rough the encrypted data of outsourcing process, it can
be seen that the adversary(CCS) can only decrypt [Wi + Ri]PKB

and [ri]PKP
with SKB and SKP. However, the adversary cannot

learn Wi because of the Ri and the ri do not contain any useful
information. When useri sends S to CSS, the symptom Xi may
be eavesdropped and decrypted by the adversary, but Xi is
hidden by randomnumbers. In the interaction of SC algorithm
between CSS and CCS, all transmitted data are hidden by
random numbers and ciphertext state, so the adversary cannot
learn any useful information.

6.2.2. Honest-But-Curious Attack. In the diagnosis value
computation process, CSS can only obtain the L encrypted
diagnosis values under PKB and does not know the cor-
responding classification meaning. (e whole process is
executed in the ciphertext state, so CSS cannot learn any
useful information. (e process of diagnosis result gener-
ation consists of secure maximum finding protocol and
secure comparison algorithm. When CSS and CCS execute
the secure comparison algorithm, CSS computes the dif-
ference between the two encrypted vectors to be compared.
(e obtained difference vector can confuse the positive and
negative of the two numbers on each dimension of the
original two vectors. At the same time, random integers are
used to hide the difference vector. After decrypting the
difference vector, CCS can eliminate the random number
only after summing. During this process, CSS and CCS
cannot obtain any useful information.

After CSS and CCS execute secure maximum finding
protocol, CSS obtains the diagnosis result [classpos]PKP

. When
performing key conversion on [classpos]PKP

, CSP hides classpos
with a random integer R. (en, sending [classpos + R]PKP

to
CCS. CCS can decrypt it. However, because there is a random
integer hidden, CCS cannot obtain classpos.

6.2.3. Client-Collusion Attack. For all users, they can only
get the diagnosis results and cannot get any other infor-
mation. (erefore, our proposed scheme can resist the
client-collusion attack.

7. Performance Evaluation

In this section, we implemented our scheme and evaluated
the performance of training and diagnosis.

Our experimental environment is shown in Table 3.
In our experiments, we evaluated our proposed scheme

with a real dataset from UCI machine learning library called
dermatology. (e dermatology dataset is a multi-
classification dataset with 6 categories and 34 symptoms.

7.1. Privacy PreservingMachine LearningTraining Evaluation

7.1.1. Effect of Key Length on Computation Overhead.
(e key length in cryptosystem has a great impact on effi-
ciency and security. (erefore, we tested the data encryption
time and main building blocks time (Block_1 and Block_3),
which have high computation overhead. (e test results are
shown in Table 4.
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From Table 4, it can be seen that the increase of key
length has a great impact on the computation overhead.
Based on the experimental results and security consider-
ations, the key length of the Paillier cryptosystem is set to
1024 bit in the training phase.

7.1.2. Privacy Preserving Multiclass SVM Training Analysis.
In order to meet the requirements of data encryption, we
convert all floating-point numbers to integers. (e con-
version accuracy E of floating-point numbers has a great
impact on the accuracy of the SVM model. We tested the
accuracy of the SVM model under different E values; the
results are shown in Figure 3.

(rough the abovementioned experimental analysis, it
can be seen that the larger the E, the higher the accuracy of
the model. With the increase of E, the accuracy of the model
tends to be stable. When E � 20, the accuracy of the model is
the highest. At the same time, we also used the gradient
descent method to train the SVM model in the plaintext
state. We compared the accuracy with the model trained in
ciphertext state and the results are shown in Table 5.

(rough the abovementioned experimental analysis, it
can be seen that the accuracy of our proposed scheme is the
same as the plaintext state (98.61%). (erefore, it is verified
that our proposed scheme is correct and available.

7.2. Privacy Preserving Online-Aided Disease Diagnosis
Evaluation. We implemented our proposed scheme by
using SEAL library in the diagnosis phase.

7.2.1. Noise Effect of BFV Cryptosystem. When using the
BFV cryptosystem for homomorphic operation, the influ-
ence of noise needs to be considered. (e noise of ciphertext
will be increased when the multiplication homomorphic
operation is carried out. If the noise is too large after
computation, the correct result cannot be obtained after
decryption.

(erefore, the BFV cryptosystem in SEAL will set the
noise budget during initialization. If the noise budget is
greater than 0 after the computation, it can be decrypted
correctly.(e value of noise budget is related to the setting of
parameters. We evaluated the influence of poly module

degree (d) on the encryption time, the change of noise
budget after homomorphic operation, the computation time
and whether the decryption result is correct. (e results are
shown in Table 6. It can be seen that the noise consumption
of the BFV cryptosystem is relatively large when performing
multiplication homomorphism, so the BFV cryptosystem
can only perform multiplication homomorphism for a
limited number of times. When computing the diagnosis
values, only one inner product operation and one addition
operation are required. (erefore, it is completely feasible to
use the BFV cryptosystem.

We comprehensively consider the encryption time and
computation time and ensure that the computation results
can be decrypted correctly. (e parameter we set is
poly module degree(d) � 8192.

7.2.2. Influence of Different Classification Numbers on
Computation Overhead. When using the BFV cryptosystem
to encrypt data, multiple plaintext data can be packaged and
encrypted into a ciphertext. (e number of classifications is
L.

Table 3: Experimental environment.

Operating system Windows 10
CPU Intel (R) Core(TM)i7-10510U, 1.80GHz, 2.30GHz
Memory 8G
Program language C++

Table 4: Computation overhead under different key length.

Key length (bit) Data encryption (s) Block_1 (s) Block_3 (s)
l � 256 4.15e 10 − 4 2.08 e10 − 5 0.094
l � 512 2.52e 10 − 3 5.0e 10 − 5 0.417
l � 1024 0.0153 2.1e 10 − 4 2.52
l � 2048 0.103 9.9e 10 − 4 17.2

Floating point conversion precision

5
0

20

40

60

80

100

10 15 20 25

m
od

el
 ac

cu
ra

cy

97.22%98.61%95.83%87.5%

30.56%

Figure 3: (e influence of precision.
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We tested the impact of di�erent L on useri andDSP.
e
results are shown in Figure 4(a). With the increase of L, the
encryption time of DSP is gradually increasing, and the
encryption time of useri can be considered as unchanged.

We also tested the impact of di�erent L on the diagnosis
values computation of CSS. 
e results are shown in
Figure 4(b). With the continuous increase of L, the com-
putation time for CSS is also increasing. 
e process of

Table 5: Comparison analysis of model accuracy.

Dataset Plaintext state Our proposed scheme
Dermatology 98.61% 98.61%

Table 6: 
e in�uence of poly modulus degree (d) on noise budget.

d Encryption time (s) Initial noise budget (bit) Noise budget (bit) after operation Computation time (s) Decryption result
(correct or wrong)

2048 0.013 2 0 0.012 ✕
4096 0.023 9 0 0.031 ✕
8192 0.69 110 64 0.123 ✓
32768 1.178 761 713 2.268 ✓
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generating diagnosis result is jointly completed by CSS and
CCS. We tested the effect of different L on the diagnosis
result generation. (e results are shown in Figure 4(c). With
the continuous increase of L, the time for CSS and CCS is
also increasing.

7.2.3. Comparison Analysis of Secret Diagnosis Request
Generation and Diagnosis Values Computation. In our
proposed scheme, secret diagnosis request generation can be
regarded as data encryption of useri and diagnosis value
computation can be regarded as homomorphic operation.
We compared with the other three privacy preserving
schemes. (e results are shown in Table 7.

(rough the comparison analysis, it can be seen that the
time of data encryption in our proposed scheme is signif-
icantly reduced compared with [38, 39]. In the computation
of decision function, our scheme has significantly reduced
the computational cost compared with the scheme in
[39, 40]. At the same time, it can be seen from the total time
that our proposed scheme is significantly lower than the
other three schemes.

Next, we make further analysis. (e names of partici-
pants may be slightly different in different schemes. In order
to facilitate analysis, we divided participants into cloud
server and client. We compared the computation overhead

of cloud server and client, respectively.(e results are shown
in Tables 8 and 9.

In our proposed scheme, the client only needs to encrypt
the data and can be offline after uploading the data to the
cloud server. (e cloud server only needs to compute the
decision function. (is model reduces the computation
overhead of the client to the greatest extent and performs
privacy preserving computation through the powerful
computing power of the cloud server. In scheme [38], the
cloud server does not participate in the whole process, so it
brings heavy computation overhead to the client. In scheme
[39], the computation of the diagnosis values needs to be
completed by the cloud server and the client. (erefore, it
not only brings heavy computation overhead to the client
but also requires the client to always stay online in this
process.

7.2.4. Comparison Analysis of Diagnosis Result Generation.
In our proposed scheme, after CSS completes the diagnosis
values computation, it will jointly execute the secure pro-
tocol with CCS to generate the diagnosis result. We con-
tinued to make comparison analysis with schemes in
[38–40]. (e results are shown in Table 10.

(rough the comparison analysis in Table 10, it can be
seen that the computation time of our proposed scheme is

Table 7: Comparison analysis.

Schemes Data encryption (s) Diagnosis values computation (s) Total time (s)
Reference [38], l � 512 0.658 0.005 0.663
Reference [39], l � 512 0.57 0.552 1.122
Reference [40], l � 512 0.004 1.092 1.096
Ours 0.008 0.096 0.104

Table 8: Comparison analysis of the cloud server.

Schemes Data encryption (s) Diagnosis value computation (s) Total time (s)
Reference [38], l � 512 0 0 0
Reference [39], l � 512 0.57 0.001 0.571
Reference [40], l � 512 0 1.092 1.092
Ours 0 0.096 0.096

Table 9: Comparison analysis of the client.

Schemes Data encryption (s) Diagnosis value computation (s) Total time (s)
Reference [38], l � 512 0.658 0.005 0.663
Reference [39], l � 512 0 0.551 0.551
Reference [40], l � 512 0.004 0 0.004
Ours 0.008 0 0.008

Table 10: Comparison analysis of diagnosis result generation.

Schemes Cloud server computation (s) Client computation (s) Diagnosis result generation (s)
Reference [38], l � 512 1.584 0.097 1.681
Reference [39], l � 512 0.007 0.041 0.048
Reference [40], l � 512 0.101 0 0.101
Ours 0.071 0 0.071
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significantly lower than the scheme in references [38, 40]. In
our proposed scheme, the client does not need to participate
in the process of diagnosis result generation. (e schemes in
references [38, 39] require the participation of the client,
which brings heavy computation overhead to the client.

7.2.5. Comprehensive Comparison Analysis. We made a
comparison analysis of the whole privacy preserving online
disease diagnosis process. It is divided into the secret di-
agnosis request generation (data encryption), diagnosis
value computation, and diagnosis result generation. (e
results are shown in Table 11.

(rough the comparison analysis in Table 11, the total
time of our proposed scheme is significantly lower than
the schemes in references [38–40]. Considering that in the
actual application scenario, a large number of users will
constantly initiate secret diagnosis requests. It is very
important to be able to quickly respond to the diagnosis
results for users. (erefore, our scheme has more practical
application value. (en, we made a summary as shown in
Table 12.

8. Conclusion

In this paper, we propose an efficient and privacy pre-
serving outsourced multiclass SVM training and online-
aided disease diagnosis scheme. We design some secure
basic operation algorithms for machine learning training
over the outsourced data from multiple data owners. We
achieve a privacy preserving multiclass SVM training
based on the basic operation algorithms. In the diagnosis
phase, we achieve a privacy preserving multiclass diag-
nosis through our proposed the secure maximum find
algorithm and secure comparison algorithm. Security
analysis proves that our proposed scheme ensures that
outsourced data, model parameters, users’ symptoms, and
diagnosis results will not be leaked. Experimental evalu-
ation illustrates that our proposed scheme significantly
reduces the computation overhead. In the future, we will
study more efficient and privacy preserving machine
learning schemes.
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With the rapid development and application of artificial intelligence technology, medical data play an increasingly important role
in the medical field. However, there are privacy protection and data ownership issues in the process of data sharing, which brings
difficulties to machine learning and data mining. On the one hand, for fear that they may risk being held accountable by users or
even breaking the law due to these issues, healthcare providers are reluctant to share medical data. On the other hand, users are
also reluctant to share medical data due to the possibility of privacy disclosure in the data sharing process. To improve the security
and privacy of shared medical data, we propose a user-centered medical data sharing scheme for privacy-preserving machine
learning. Our solution combines blockchain and a trusted execution environment to ensure that adversaries cannot steal the
ownership and control of user data during sharing. A blockchain-based noninteractive key sharing scheme is proposed that allows
only the users and the TEE to decrypt the shared data. At the same time, we design an auditing mechanism to facilitate users to
audit the sharing process. &e security analysis shows that the scheme ensures the privacy and security of user data during storage
and sharing. We have completed simulation experiments to demonstrate the effectiveness and efficiency of our scheme.

1. Introduction

In the era of the digital economy, data have become a new
factor of production and an important basic strategic re-
source. Data support the future development and drive the
progress in business or scientific fields. In particular, with
the development of IoT technology in health care, the
healthcare ecosystem generates many medical data, such as
electronic medical records, monitoring data, imaging data,
and smart wearable device data. &ese data contain a huge
amount of information [1], which can assist physicians in
clinical decision-making and play an important role in drug
development, intelligent diagnosis, medical image recog-
nition, and precision medicine [2]. &erefore, how to handle
and utilize the growing amount of healthcare data has be-
come an unavoidable problem.

With the rapid development and application of artificial
intelligence (AI) technology, scholars have established
several medical artificial intelligence models for intelligent

analysis and decision-making using of medical data, espe-
cially for specialized medical record data. &ey have
achieved fruitful research results [1]. &e AI-based medical
analysis requires medical data from multiple medical in-
stitutions, pharmaceutical companies, or individuals for
extensive sample annotation and training [3].

For hospitals, due to the characteristics of medical data,
such as privacy and sensitivity, there may be data security
and privacy leakage risks in the sharing process. Once the
patient’s private data are leaked, the hospital will face
medical disputes and even legal liability. On the other hand,
the issue of ownership and access control of medical data are
also controversial. If the hospital shares or uses the patient’s
medical data without authorization, it may be held ac-
countable by the patient. &erefore, hospitals are always
reluctant to share these data.

For patients, sharing data also exposes them to the risk of
privacy breaches. Moreover, most patients’ medical data are
recorded in hospitals or healthcare facilities. Even if these
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data belong to the patients [4], it is difficult for patients to
access their medical data. In addition, because of the re-
producible nature of data, patients risk losing ownership of
their data once they share them. So, there is also a reluctance
to share their medical data with patients.

With the development of blockchain technology, its broad
application prospects and technical features have attracted the
attention of scholars related to various industries. Its distrib-
uted storage, peer-to-peer transmission, consensusmechanism,
and confidentiality algorithm provide numerous novel solu-
tions for data storage and sharing. Some researchers have used
blockchain to implement on-chain data storage and smart
contract-based access control to data [5]. Access rights are
controlled by techniques such as identity-based [6] and at-
tribute-based access controls [7] to ensure the privacy and
security of shared data. However, under existing strategies, the
efficiency in performing data sharing is lower due to the
blockchain’s storage space and computational performance.
Moreover, once data are acquired by data demanders, they can
access or use the data without any control. &erefore, this
approach cannot prevent individuals or organizations from
sharing data illegally, and it is even more difficult to ensure
illegal analysis and misuse of data.

Some schemes combine blockchain with proxy re-en-
cryption [8] to ensure the security and privacy of medical
data during the sharing process. However, proxy re-en-
cryption requires many computational resources, and the
system is relatively inefficient. Moreover, these schemes do
not consider the issue of control and ownership of data [9].

To address the above issues, we propose a user-centric
medical data sharing scheme oriented to privacy-preserving
machine learning to achieve efficient medical data sharing
that protects data privacy.&emodel framework is shown in
Figure 1. To ensure control and ownership of user data
during storage and sharing, we design a new sharing model
by combining blockchain with a trusted execution envi-
ronment (TEE), although the combination of TEE and
blockchain will encounter difficulties in data exchange and
trust. But we propose a way of combining on-chain and off-
chain to solve the problem of data exchange. In addition, we
solve the trust problem between the two through signature

authentication. We also design a new key sharing scheme for
authorization management. In summary, this paper con-
tributes the following:

(i) We propose a blockchain-based system for data
sharing and privacy protection. A TEE obtains and
deploys machine learning models from the block-
chain, where data are decrypted for model training.
&en, the training results are verified on the chain
and shared with the data demander.

(ii) We have designed a new key sharing scheme to
share and manage keys through smart contracts,
which allows users to authorize their data off-chain.

(iii) We build a user audit mechanism.&e record of the
sharing process of users’ medical data is stored on
the blockchain, in which users can query at any time
for auditing the sharing process.

(iv) We implement a prototype of our model and val-
idate its effectiveness. &e experiment shows that
our scheme can protect the privacy and security of
user medical data and ownership without incurring
significant additional time overhead compared to
existing solutions.

&e remaining part of the paper is organized as follows.
We begin by introducing some related works in Section 2.
Section 3 is concerned with some preliminaries used in this
paper. In Section 4, we describe the systemmodel and design
goals. In Section 5, the proposed system operational details
are presented. In Section 6, we did a security and functional
analysis. Program design and evaluation are presented in
Section 7. Finally, this paper is concluded in Section 8.

2. Related Work

In this section, we review some research solutions for secure
data sharing. To solve the problems of inefficiency and poor
scalability of traditional medical data sharing systems, some
schemes [10–12] are proposed using blockchain combined
with cloud storage to solve the data security problem of data
sharing. &e data are stored encrypted in the cloud, and
then, the storage index and data hash are uploaded to the
blockchain for secure data storage and sharing. However,
this data sharing method has no access control mechanism,
and data security is difficult to guarantee. Meanwhile, when
the data are shared, the data owner loses control and
ownership of the data, which also poses a threat to the
privacy and security of the data owner.

To protect the privacy and security of user data, some
solutions propose controlled access [13] to manage
healthcare data sharing. &e literature [14] uses attribute-
based sharing techniques, but when the access policy is
modified, attribute revocation and encryption of the data are
required again, which increases the computational overhead.
Moreover, the tamper-proof nature of blockchain also
complicates the modification of access control policies. Gu
et al. proposed an efficient and simple attribute-based
sharing scheme [15] that reduces computational costs and
enables privacy protection. However, this scheme consumes
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Figure 1: Medical data sharing framework.
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many computing resources when modifying the access
policy. Wang and Song [16] proposed an electronic health
record system built using attribute-based controlled access
and blockchain technology. However, the whole system is
too large, expensive to run, and inefficient to execute. Guo
et al. [17] proposed an attribute-based signature scheme
combined with blockchain technology that can protect user
data privacy. However, the computational performance of
the blockchain leads to an inefficient system. Moreover,
when a malicious user obtains data through access control,
there is a threat to user data privacy.

To ensure secure data sharing, several research proposals
have proposed the use of cryptography [18] for data privacy
security protection. Renpeng Zou et al. proposed SPChain
[19] to enable medical data sharing for users in a privacy-
preserving manner by using a proxy re-encryption scheme.
However, this solution is difficult to implement, consumes
too many resources, and has slow processing speed and poor
portability. Chen et al. [20] proposed an anonymous medical
data sharing scheme based on a cloud server and proxy re-
encryption algorithm to improve the security of private
medical data sharing. However, the original data in this
scheme will still be accessed, and data privacy may be
compromised.

Some scholars have used cryptography-based schemes to
address these issues to protect the privacy and security of
medical data during data analysis and after requesters access
the data. Kosba et al. proposed a blockchain-based platform
for contract development [21]. &e platform uses a zero-
knowledge proof-based cryptographic protocol to handle
private data, rather than storing private transaction data
directly on the blockchain, effectively guaranteeing private
data security. However, this scheme requires many com-
puting resources and is not scalable. &e literature [22]
proposes a blockchain privacy protection scheme based on
homomorphic encryption, but it requires many computa-
tional resources, and its practicality and applicability are
greatly limited.

To ensure that data in shared data do not leave the
authorization system and thus do not disclose sensitive
information, the literature in [23] proposes a combined
blockchain and federation learning scheme for sharing
privacy-preserving IoT data among distributed multiple
parties. Another framework for sharing vehicle data based
on blockchain and federated learning for edge computing is
proposed in the literature [24] for the internet of vehicles
(IoV). However, this scheme suffers from data poisoning
that affects the global model and backdoor attacks. Zhou
et al. proposed a health insurance storage system [25], which
utilizes secret sharing techniques and secure multiparty
computing that allows for the sharing of patient data be-
tween hospitals and insurance companies. However, this
scheme does not guarantee that all servers are fully trusted,
and data requesters have to receive responses from multiple
nodes before accessing the data. Shamir’s secret sharing and
secure multiparty computation (MPC) were applied in
Shrier et al. [26] to achieve data sharing while satisfying user
privacy. Yue et al. [27] proposed a medical data gateway
(HDG) to analyze medical data using secure multiparty

computing while ensuring user control privileges. &e lit-
erature [28, 29] combines multiparty secure computation
and differential privacy to guarantee the accuracy of the
output results without losing data privacy at the user’s end.
However, in complex computational tasks, the results can
significantly differ from the noise-free results, making the
results unusable.

3. Preliminaries

3.1. Trusted Execution Environment. &e trusted execution
environment (TEE) is a secure zone in the computing
platform, using a combination of trusted computing and
virtualization isolation techniques. &e TEE provides a
trusted execution environment for “security-sensitive ap-
plications” while protecting the confidentiality and integrity
of associated data. ARM’s TrustZone technology implements
hardware isolation mechanisms, mainly for embedded
mobile terminal processors, to create separation between the
secure and nonsecure worlds. In addition to TrustZone,
based on the ARM architecture, Intel has also released a
trusted execution environment based on its processor ar-
chitecture: Intel SGX. SGX is a set of instructions that en-
hance the security of application code and data, providing
them with more robust protection against disclosure or
modification. Calling a program in the trusted zone requires
defining the eCall interface and declaring the structure and
size of the data to be passed. Intel SGX provides good in-
tegrity and confidentiality protection for its applications due
to its hardware-level implementation. Since its release, it has
been sought after by academia and industry and is used in
scenarios such as outsourced cloud computing and sensitive
data aggregation. Microsoft has proposed a database ar-
chitecture EnclaveDB [30], based on SGX that runs within a
secure zone. &e data within the trusted database are
implemented so that even when hackers compromise the
server operating system; the data are still not accessible to the
hackers. In addition to database applications, Kunkel et al.
[31] ported machine learning [32] to the SGX secure zone,
allowing the machine learning training and prediction
process to take place within the secure zone, thereby pro-
tecting the privacy of the raw data. &e SGX processing is
shown in Figure 2.

3.2. Smart Contracts. Ethereum is a common public
blockchain open-source platform whose main and most
characteristic feature is integrating smart contract function.
Ethereum provides a decentralized Ethereum virtual
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Return results

Figure 2: SGX schematic.
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machine to users who join the Ether Place through its
cryptocurrency, Ether (ETH), which provides peer-to-peer
smart contract computing to all users. Ethereum is a typical
representative of Blockchain 2.0, which increases the scal-
ability and flexibility of the protocol based on Blockchain
1.0. By providing users with various modules, users can
flexibly build smart contracts that suit their needs and de-
ploy them into the Ethereum network by consuming Ether.
Since the Ethereum virtual machine is Turing-complete, the
business provided by Ethereum smart contracts is almost
endless. In theory, any computer business can be deployed
into Ethereum in the form of smart contracts to realize
decentralized business operation and ensure the proper
operation of the business as much as possible. Each com-
mand executed by the smart contract requires a certain
amount of consumption, which uses gas as the unit. Also,
different commands require different gases. Each transaction
must first set a value called gasLimit, the maximum con-
sumption value and miners have the right to choose which
transaction to pack first. Generally, the larger the value of
gasLimit, the more attractive miners are to pack. Ethereum is
a highly integrated blockchain system in practical use, and
users/developers mainly use smart contracts to publish some
transactions and functional modules in Ethereum.

4. System Model

4.1. High-Level Overview. &e flow of users sharing personal
medical data in this solution is shown in Figure 3. &e user
encrypts and uploads the data to the cloud server for storage.
&en, the user uploads the data cryptographic hash and data
storage index to the blockchain. &e data demander uploads
the model and data request to the blockchain and then
deploys the model into a TEE via a smart contract.&e smart

contract sends the data request to the user, who performs the
key authorization.

&e TEE downloads the data cipher hash and storage
index on the blockchain and uses the storage index to
download the data cipher from the cloud server. &en, TEE
gets the key authorization from the smart contract and
decrypts the data cipher to get the original data.&emodel is
then trained using the user’s medical data. Finally, the model
training results are encrypted using the public key of the data
demander and uploaded to the blockchain. &e data de-
mander then retrieves the training result ciphertext from the
blockchain, makes its private key to decrypt it, and obtains
the model training result.

4.2. System Architecture. &e architecture of the proposed
system is shown in Figure 3. It consists of six entities: user,
medical research institute, TEE, blockchain, smart contract,
and storage server. More details of the system are shown
below.

User. &e user stores medical data encrypted in the
storage container and stores information such as the
returned storage index and ciphertext hash in the block-
chain. At the same time, users also authorize access requests
to medical research institutions and encrypt the encryption
key using TEE’s public key, which is then stored on the
blockchain. After the shared data are finished, the user can
also call the chain code to query the data generated during
the sharing process, thus playing a supervisory role.

Data Demander. Medical research institutions make the
required models and submit them to the model review smart
contract for review, then upload the machine learning
models to the blockchain, and finally get the trained models
from the blockchain.
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TEE. A trusted, isolated, and independent execution
environment exists independently of an untrusted operating
system, providing a secure and confidential space for private
data and sensitive computations in an untrusted environ-
ment, whose security is typically guaranteed through
hardware-related mechanisms. In this scheme, we perform
operations such as decrypting the user’s data cipher, veri-
fying data integrity, training model, and uploading training
model parameters to the blockchain.

Storage Device. It is used in this solution to store user-
encrypted medical data.

Smart Contracts. &ey are used to deploy machine
learning algorithms, invoke medical data for sharing, and
data transfer. &ey rely on smart contracts to achieve data
scheduling and processing of data generated by the process
of sharing data to achieve a regulatory mechanism.

Blockchain. &e Ethernet public chain is used here. In
this scheme, the blockchain is used to store data hashes,
model, data integrity verification results, and model learning
results.

4.3.4reatModel. To better describe the working process of
the system model, we rely on the following assumptions:

(1) Smart contract records are reliable and readily
available. &is is because it is difficult for an attacker
to tamper with the records posted on the blockchain,
which is essentially a distributed ledger that runs all
the time.

(2) &is solution uses an off-chain storage system,
mainly responsible for storing user medical data
ciphertext. When the data are stored, a storage index
is generated and used to store it in the blockchain.

(3) In this scheme, the computing process in the TEE
cannot be accessed by the outside world in any way.

4.4. Design Goals. In this solution, we aim to achieve secure
sharing of user medical data, for which we propose the
following design objectives:

(1) Secure Storage and Sharing. Users’ medical data
should be securely stored, and no entity should be
able to tamper with this information. In addition, it is
guaranteed that no entity may view and tamper with
the user’s medical information during the sharing
process.

(2) Shared Data Can Be Supervised. Users want to su-
pervise the operations that their personal medical
data undergo during the sharing process to prevent
illegal use and analysis of personal medical data.

(3) Efficiency. A large amount of user medical data need
to be stored and shared on time, so it should have
high storage and sharing efficiency.

(4) Data Dedicated Exclusive Use. &e user’s medical
data will only be used and analyzed for legitimate
dedicated use, and any illegal manipulation of the
user’s data is not feasible.

(5) User’s Data Ownership. &is is done first to prevent
malicious accounts from changing the user’s account
and tampering with the user’s data ownership.
Second, it ensures that after data sharing, the
ownership of the data remains with the user.

(6) Security of Computing Environment. It ensures the
privacy and security of users’ medical data pro-
cessing and does not disclose any private informa-
tion when computing and analyzing data.

(7) Ability to Resist Other Attacks. To enhance security
further, the protocol should provide resilience to
other common attacks, such as replay attacks.

5. Our Proposed Protocol

&e controlled medical data sharing for machine learning
proposed in this solution can be specifically divided into the
following phases: system initialization, medical data storage,
machine learning model deployment, training model, and
data demander to obtain training results. In Table 1, we
illustrate some of the notations in the scheme.

5.1. SystemInitialization. Before the system starts to execute,
we complete the initialization work. &e specific steps are as
follows:

(1) Basic Initialization. A cyclic additive group G with
generating element g and prime order Q is chosen on
an elliptic curve E(Fp) over a finite field Fp and a
one-way hash function H1: 0, 1{ }∗ − >Zq. &en, the
symmetric key encryption function Encrypt and de-
cryption function Decrypt, Encrypt ECC asymmetric
key encryption algorithm and decryption algorithm
Decrypt ECC, and RSA signature function Sig RSA

and verification function Verify RSA are selected.
(2) Blockchain Initialization. We create the file gene-

sis.json containing the configuration parameters to
build the Ethereum blockchain. Each node generates
a public-private key pair PK, SK{ }. One set of pre-
designated nodes is responsible for mining. &e rest
of the network collectively trusts these nodes to
validate transactions and create new blocks. In our
case, the trusted institutions consisted of medical
research institutions, insurance companies, and
regulatory agencies. Trusted institutions perform
various functions, including adding data to decen-
tralized file systems, uploading corresponding
transactions to the blockchain, and validating vari-
ous transactions received from external users, such
as permission requests and permission grants.

(3) Smart Contract Deployment. In this scheme, there
are four types of contract components: registration
contract, data contract, authorization contract,
model contract, and audit contract:

(a) Registration Contract. All nodes are registered
anonymously on the registration contract to
prevent users from providing false data or data
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demanders from providing illegal models. &e
registration information includes the public key
and the role of the node.

(b) Data Contract. &e data contract stores a list of
data records that indicate the mapping relation-
ship between the data and the user. Each data in
the list consist of the user’s public key, the data
cipher hash, the off-chain original data storage
index, and the user’s signature. &e ability to add,
modify, and delete data is also provided in this
contract. In addition, the TEE and users can re-
trieve and download data through this contract.

(c) Authorized Contract. &e authorization contract
assists the user in encrypting the data encryption
key and authorizing the key to the data demander.

(d) Model Contract. &e model contract stores a list
of models and a list of model training results.
Data demanders can upload models and
download model training results through this
contract. TEE can also store model training
results through model contracts.

(e) Audit Contract. &e audit list is set up, and the
list data include information about the data
owner, the data demander, the data integrity
verification results, and the models trained on
the data. Users can audit the process of sharing
personal medical data through an audit contract.

5.2. Medical Data Storage. Due to the limitation of SGX
memory, the user’s medical data need to be preprocessed
before uploading. We sort and label data by system re-
quirements prior to data storage before storing it. In order to
store the user medical data information, the structure
PKi,UDT,DAi,USi,HDSi, DTi, CMi􏼈 􏼉 of the data storage
transaction TDi is designed. In this, TDi is a public
transaction and any node can access the data in TDi. TDi

contains the user’s public key PKi, timestamp DTi, hash of
data ciphertext H DSi, user signature USi, data storage index
DAi, medical data typology U DT, and encryption key ci-
phertext CMi. &e following description illustrates the
process of storing user medical data.

5.2.1. Data Preprocessing

(a) &e user cuts and divides the data according to the
system requirements, and then labels the divided
data.

5.2.2. Data Upload

(a) Encrypt the Raw Data. User i calls Encrypt function
to generate a new symmetric key KEYi using private
key SKi and random number ni. &en, we encrypt
the medical data UDATAi with key KEYi to generate
ciphertext DSi.

DSi � Encrypt KEYi, UDATAi( 􏼁. (1)

(b) Store ciphertext to Cloud Server. User i stores medical
data ciphertext to the cloud server and then gets the
storage index DAi.

5.2.3. Data on the Chain

(a) Generate Hash Index. User i uses hash function to
generate hash value H DSi for data ciphertext DSi.

HDSi � H1 DSi( 􏼁. (2)

(b) User Signature. User i uses the signature function
Sig RSA to sign the data ciphertext hash to get the
signature USi.

USi � SigRSA SKi, H DSi( 􏼁. (3)

(c) Encrypting the Symmetric Key. User i invokes the
authorized contract to obtain the public key PKT of
the TEE, the public key PKCof the contract. &en,
the user generates random numbers rU and rC,
encrypts the symmetric key, and generates the ci-
phertext CMi.

CMi � KEYi + rCPKC + rUPKT. (4)

(d) Publish Stored Data Transactions. User i invokes the
data contract to store TDi into the blockchain.

TDi � PKi, UDT , DAi, USi, HDSi, DTi, CMi􏼈 􏼉. (5)

(e) User Authorization. &e user invokes the authori-
zation contract to upload the rUg and rCPKC.

Algorithm 1 shows the process of storing medical data
from user i to the cloud server and blockchain.

5.3. Machine Learning Model Deployment

5.3.1. Model Storage. In order to store the machine learning
model on the blockchain, the data structure
MIDj, PKj, MTj,modelj, Hmodelj, SMj, RMj􏽮 􏽯 of the
model storage transaction IMj is designed. It contains the
data demander node identifier MIDj, public key PKj,
timestamp MTj, model modelj, hash of model Hmodelj,
signature SMj of the medical institution, and data demand
RMj. &e storage process of the user medical data is de-
scribed as follows:

Table 1: Table notations.

Notation Description
SK Private key
PK Public key
KE Symmetric key
UDATAi Raw data of user
Modelj Model of demander
UDT Data type
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(1) We upload models to the blockchain.

(a) Generating Models. &e data demander j pro-
duces and generates machine learning models
and data requirements.

(b) Obtaining the Model Hash. &e data demander j

uses the hash function to calculate the hash value
of the model.

Hmodelj � H1 modelj􏼐 􏼑. (6)

(c) Data Demander Signature. Data demander j uses
the signature function Sig RSA to sign the data
ciphertext hash to get the signature SMj.

SMj � Sig RSA SKj, Hmodelj􏼐 􏼑. (7)

(d) Posting Stored Data Transactions. Data de-
mander j invokes a data contract to store IMj

into the blockchain.

IMj � MIDj,PKj,MTj,modelj,Hmodelj,SMj,RMj􏽮 􏽯.

(8)

Algorithm 2 shows the process of storing the machine
learning model and data requirements to the blockchain by
the data demander j.

5.3.2. Model Deployment. &e TEE retrieves the blockchain
to get the model after it is stored on the blockchain. To
ensure the authenticity of the model, the model needs to be
validated. For this purpose, the data structure
STj,HRTj, VTj􏽮 􏽯 for model validation is designed, where

STj is the signature of TEE, HRTj is the model integrity
verification result, and VTj is the signature verification
result. &e process of model deployment is illustrated as
described in the following:

(1) Model deployment

(a) Download the Model. After the model is stored to
the blockchain, TEE retrieves the blockchain
through the model contract and gets IMj.

(b) Verify Integrity. TEE first retrieves the model
hash Hmodelj from IMj, takes the model hash,
and gets the hash Hmodelj′. TEE compares
whether Hmodelj and Hmodelj′ are equal and
gets the result HRTj. &en, it verifies the sig-
nature and gets the verification result VTj.

Hmodelj′ � H1 modelj􏼐 􏼑,

HRTj � if Hmodelj �� Hmodelj′􏼐 􏼑,

VTj � Verify RSA PKj, SMj􏼐 􏼑.

(9)

(c) Upload Integrity Result. TEE uses the private key
SKT to sign {HRTj, VTj} to get the signature STj.
&en, it invokes the authorization contract to
upload the integrity verification result and store
STj,HRTj, VTj􏽮 􏽯 into the blockchain.

STj � Sig RSA SKT, HRTj, VTj􏽮 􏽯􏼐 􏼑. (10)

(d) Deploy Model. &e TEE deploys the model after
verifying its integrity.

Algorithm 3 shows the process of model deployment to
TEE.

5.4. Model Training

5.4.1. Data Verification. After the successful deployment of
the model, TEE uses the authorization contract to retrieve
the blockchain and obtain the user data
PKi,UDT, DAi, USi,HDSi, DTi, CMi􏼈 􏼉 that match the data
requirements. &en, we download the data ciphertext DSi
from the cloud server according to the label type of the data
required by the model. To ensure the authenticity and

Input: Raw Data UDATAi; Public Key PKi; Data Type UDT; Random Number ni; Private Key SKi;
Output: Storage Index DAi; Blockchain Transaction TDi;
Stage 1: Upload data to the cloud server:

(1) Generate symmetric key KEYi by PKi

(2) Encrypted raw data DSi � Encrypt(KEYi, UDATAi)

(3) Send DSi to the cloud server and get DAi

Stage 2: Upload TDi to Blockchain
(4) Generate timestamp DTi

(5) Generate ciphertext hash HDSi � H1(DSi)

(6) User Signature USi � Sig RSA(SKi,HDSi)

(7) Call the authorization contract to get rC, PKC, PKT􏼈 􏼉

(8) Generate random number rU

(9) Encryption symmetric key KEYi: CMi � KEYi + rCPKC + rUPKT

(10) TDi � PKi,UDT, DAi, USi,HDSi, DTi, CMi􏼈 􏼉

(11) Call the data contract to upload data TDi to the blockchain
(12) Call the Authorized contract to upload data TDi, rUg and rCPKC

(13) return (DAi, TDi);

ALGORITHM 1: Medical data storage.
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integrity of the data, the data need to be verified. For this
purpose, the data structure STi,HRTi, VTi􏼈 􏼉 for data vali-
dation is designed, where STi is the signature of TEE, HRTi

is the model integrity verification result, and VTi is the
signature verification result. As described below, the process
of model deployment is illustrated:

(a) DownloadTDi. TEE invokes the data contract to
retrieve the blockchain and download the TDi that
matches the data requirements.

(b) Download Data CipherDSi. We retrieve the cloud
server to download the corresponding data cipherDSi

according to the data type required by the model.
(c) TEE first retrieves the data cipher hash HDSi from

TDi and then hashes the model to get the hash
HDSi
′.TEE compares whether HDSi

′ is equal to HDSi

and gets the result HRTi. &en, it verifies the sig-
nature and gets the verification result VTi.

HDSi
′ � H1 DSi( 􏼁,

HRTi � if HDSi �� HDSi
′( 􏼁,

VTi � Verify RSA PKi, USi( 􏼁.

(11)

(d) Upload Integrity Result. TEE uses private key SKT to
sign HRTi, VTi􏼈 􏼉 to get signature STi, and then invoke
authorization contract to upload integrity verification
result and store STi,HRTi, VTi􏼈 􏼉 into blockchain.

STi � Sig RSA SKT, HRTi, VTi􏼈 􏼉( 􏼁. (12)

Algorithm 4 shows the process of data downloading.

5.4.2. Data Acquisition and Model Training. After obtaining
the user data cipher and verifying the data integrity, TEE in-
vokes the authorization contract to request a key. TEE uploads
the data integrity verification result and model integrity veri-
fication result to the authorization contract. &e authorization
contract will receive the rUg and rCPKC and send to TEE. TEE
receives the rUg and rCPKC to calculate the decryption key.
&e process is illustrated as described in the following:

(1) Key authorization

(a) Contract Authorization. &e authorization con-
tract sends rCPKC to TEE along with rUg.

(2) Key acquisition

(a) Retrieve Key. TEE retrieves the key cipher CMi

from TDi.
(b) Decrypt Key. TEE uses rCPKC and rUg to decrypt

the encryption key.

KEYi � CMi − rCPKC − rUPKT

� CMi − rCPKC − rUSKTg

� CMi − rCPKC − rUgSKT.

(13)

(3) Data decryption

(a) Decrypt the Data Cipher. TEE calls the decrypt
function Decrypt, decrypts the data cipher DSi
using KEYi, and gets the data UDATAi.

UDATAi � Decrypt KEYi, DSi( 􏼁. (14)

(4) Model training

Input: Private Key SKT;
Output: Verify the result of the hash value HRTj; &e result of verifying the signature VTj; Signature STj;

(1) Call the model contract to download model MIDj, PKj, MTj,modelj, Hmodelj, SMj, RMj􏽮 􏽯

(2) Generate model hash Hmodelj′ � H1(modelj)
(3) HRTj � if(Hmodelj �� Hmodelj′)
(4) Verify signature VTj � Verify RSA(PKj, SMj)

(5) Sign off on the validation results STj � Sig RSA(SKT, HRTj, VTj􏽮 􏽯)

(6) Deploy model
(7) Call the model contract to upload STj,HRTj, VTj􏽮 􏽯 to the blockchain
(8) return STj,HRTj, VTj􏽮 􏽯

ALGORITHM 3: Model deployment.

Input: model: Data demander node identification MIDj; Public Key PKj; Private Key SKj;
Output: Blockchain Transaction IMj;

(1) Generate models and data requirements
(2) Generate timestamp MTj

(3) Generate model hash Hmodelj � H1(modelj)
(4) Signature SMj � Sig RSA(SKj, Hmodelj)
(5) IMj � MIDj, PKj, MTj,modelj, Hmodelj, SMj, RMj􏽮 􏽯

(6) Call the model contract to upload data IMj to the blockchain

ALGORITHM 2: Model storage.
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(a) TEE uses data from multiple users to train the
model on the demander of the data and obtains
the training result MRTj after the model is
trained.

Algorithm 5 shows the process of decrypting the data
and training the model.

5.5. Training Result Acquisition. After the model training is
completed, the training results need to be encrypted and
stored in the blockchain in order to protect the privacy and
security of the model training results. &e data demander
gets the model ciphertext from the chain and then decrypts it
to get the model training results. &e process is illustrated as
described in the following.

5.5.1. Training Result Storage

(a) Encrypt Training Results. TEE uses the public key of
the data demander to encrypt the training results and
get the ciphertext.

CMRTj � Encrypt ECC PKj,MRTj􏼐 􏼑. (15)

(b) Hash. TEE takes a hash of the training result
ciphertext.

HCMRTj � H1 CMRTj􏼐 􏼑. (16)

(c) Generate Signature. To ensure the authenticity of the
training results, TEE signs the cryptographic hash of
the training results.

SMRTj � Sig RSA SKT,HCMRTj􏼐 􏼑. (17)

(d) Upload to Blockchain. TEE invokes the model
contract to upload
CMRTj,HCMRTj, SMRTj􏽮 􏽯to the blockchain.

Algorithm 6 demonstrates this process.

5.5.2. User Audit Information Storage. To ensure that users
audit the sharing process of personal medical data at any
time and avoid the unauthorized use of data, we design the
user audit structure MIDj, RMj,HRTj,HRTi, PKT,􏽮

PKj,modelj}to store the audit information and then invoke

Input: Private Key SKT;
Output: Verify the result of the hash value HRTi; &e result of verifying the signature VTi; Signature STi;

(1) Call the data contract to download data PKi, U DT , DAi, USi, H DSi, DTi, CMi􏼈 􏼉

(2) Download data ciphertext from cloud storage server DSi

(3) Generate model hash HDSi′ � H1(DSi)

(4) HRTi � if(HDSi �� HDSi′)
(5) Verify signature VTi � Verify RSA(PKi, USi)

(6) Sign off on the validation results STi � Sig RSA(SKT, HRTi, VTi􏼈 􏼉)

(7) Call the data contract to upload STi,HRTi, VTi􏼈 􏼉 to the blockchain
(8) return STi,HRTi, VTi􏼈 􏼉

ALGORITHM 4: Data verification.

Input: Private Key SKT; Ciphertext of the key CMi; Ciphertext of the data DSi;
Output: Encrypted keys KEYi; raw data UDATAi; Training results of the model MRTj;

(1) Call the Authorization contract to download rCPKC, rUg􏼈 􏼉

(2) Decrypted keys: KEYi � CMi − rCPKC − rUPKT

� CMi − rCPKC − rUSKTg

� CMi − rCPKC − rUgSKT

(3) Decrypt data: UDATAi � Decrypt(KEYi, DSi)

(4) Training model with data
(5) return KEYi, UDATAi,MRTj􏽮 􏽯

ALGORITHM 5: Data acquisition and model training.

Pkj

IDj

RMj

HRTj

HRTi

PKT

Modelj

Figure 4: Structure of audit information.

Security and Communication Networks 9



the audit contract to store it into the blockchain for user
audit. Here, MIDj is the ID of the data demander, RMj is the
data demand, HRTi is the model integrity verification result,
HRTi is the data verification result, PKT is the public key of
TEE, PKj is the public key of the data demander, andmodelj
is the model of the data demander. &e audit information
structure is shown in Figure 4.

5.5.3. Training Rezsult Acquisition

(a) Download the Training Result Ciphertext. &e data
demander invokes the model contract to obtain
CMRTj,􏽮 HCMRT j, SMRTj}.

(b) Verify Ciphertext. We calculate the hash of the
training result ciphertext, compare it with the hash
downloaded from the chain, and then verify the
signature. If the verification passes, the decryption
process is carried out, and if the verification does not
pass, the feedback is sent to the blockchain.

HCMRTj’ � H1 CMRTj􏼐 􏼑,

Result � If HCMRTj �� HCMRTj’􏼐 􏼑,

· Verify RSA PKT, SMRTj􏼐 􏼑.

(18)

(c) Decrypt Ciphertext. &e data demander decrypts the
data using the private key after successful
verification.

MRTj � Decrypt ECC SKj,CMRTj􏼐 􏼑. (19)

Algorithm 7 demonstrates this process.

5.6. Interaction Process Description. &e interaction process
of the solution consists of ten steps as follows. First, steps 1–4
describe the process of deploying the machine learning
model. &e logical flowchart is shown in Figure 5. &en,
steps 5–8 describe the process of user data storage, sharing,
and key authorization. &e logic flowchart is shown in
Figure 6. &e final steps 9-10 describe the process of using
user data to train the machine learning model and the
process of transmitting the model learning results to the data
demander. &e logical flowchart is shown in Figure 7:

Step 1: the data demander uploads the machine
learningmodel and data demand to the block company.
Step 2: the data demander invokes the contract to
transfer the machine learning model to the TEE.
Step 3: the TEE verifies the integrity of the machine
learning model.
Step 4: the TEE deploymodel.
Step 5: the user encrypts the medical data and stores it
in the cloud server. &en, the information such as data
cryptographic hash, ciphertext of the key, and storage
index are uploaded to the blockchain. &en, the user
invokes the authorization contract to upload the key.

Input: Public Key PKj; Training result of the model MRTj; Private Key SKT;
Output: Ciphertext of training result CMRTj; Hash HCMRTj; Signature SMRTj;

(1) Encrypt training result CMRTj � Encrypt ECC(PKj,MRTj)

(2) Generate hash value HCMRTj � H1(CMRTj)

(3) Generate signature SMRTj � Sig RSA(SKT,HCMRTj)

(4) Call the model contract to upload CMRTj,HCMRTj, SMRTj􏽮 􏽯 to the blockchain
(5) return CMRTj,HCMRTj, SMRTj􏽮 􏽯

ALGORITHM 6: Training result storage.

Input: Hash HCMRTj; Signature SMRTj; ciphertext CMRTj; Private Key SKj;
Output: Training result of the model MRTj;

(1) Call the Authorization contract to download CMRTj,HCMRTj, SMRTj􏽮 􏽯

(2) Generate hash value HCMRTj’ � H1(CMRTj)

(3) Result � If(HCMRTj �� HCMRTj’)
(4) Verify RSA(PKT, SMRTj)

(5) Decrypt result ciphertext MRTj � Decrypt ECC(SKj,CMRTj)

(6) return MRTj

ALGORITHM 7: Decrypt result ciphertext.

Model
Download model

Verify model

Deployment model

Upload verify result

Data demender Blockchain TEE

Figure 5: &e logical flow of machine learning model deployment.
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Step 6: the TEE downloads the user medical data and
verifies the integrity of the data.
Step 7: the TEE calls the authorization contract to
obtain the key.
Step 8: the TEE decrypts the key ciphertext and then
encrypts the data ciphertext to obtain the user data.
Step 9: the TEE uses the user’s data to train the model
and then encrypts the training results.
Step 10: the TEE calls the contract to upload the
encrypted training results to the blockchain.
Step 11: the data demander downloads the training
result ciphertext, decrypts it, and obtains the training
result.

6. Security and Functional Analysis

In this section, security analysis and functional analysis of
the proposed scheme are performed in order to verify that
the previously mentioned design objectives are met.

6.1. Security Analysis

6.1.1. Secure Storage and Sharing. In most cases, the storage
server is trusted, but sometimes the storage server gets
curious about the data and looks at the user’s personal data.
&erefore, in this scheme, the user data are stored in the
storage server in an encrypted state, and the user data cannot
be viewed without the key. At the same time, the hash value
of data ciphertext is stored in the blockchain to verify the
integrity of data, and this mechanism effectively ensures data
storage security. During the sharing process, user data are in

an encrypted state. Only TEE can use the private key de-
cryption to obtain the encryption key. TEE ensures that the
internal computation is hidden, and the internal data cannot
be accessed from outside. &erefore, this solution can also
ensure the security of data sharing.

6.1.2. Shared Data Can Be Regulated. In this solution, first,
users can view their personal medical data at any time.
Second, information such as the results of data integrity
verification, the identity of the medical research institution,
and the models to be trained generated during the sharing
process are uploaded to the blockchain. All these infor-
mation can be viewed by users at any time as a way to
regulate personal data and thus prevent the illegal use of
personal medical data.

6.1.3. Efficiency. First, in this scenario, we use DES sym-
metric key to encrypt the user’s medical data and upload the
data ciphertext to the storage device. &e hash of the data
ciphertext is then uploaded to the blockchain for storage.
&is reduces the storage burden of the blockchain and
improves the storage efficiency of the system. Second, to
achieve efficient machine learning model training on the
blockchain, we introduce a combination of on-chain and off-
chain approaches. On-chain contracts perform low-com-
plexity operations such as data provisioning and integrity
verification, while off-chain TEE performs high-complexity
calculations such as data encryption and decryption hash
calculation, signing, signature verification, and model
training. In this way, the computational burden of the
blockchain is significantly reduced, and the efficiency of the
whole system is improved.

6.1.4. Dedicated to Medical Data. In this solution, medical
data are only used to train machine learning models of
medical research institutions. No entity can access the user’s
medical data and let alone perform other operations on the
user’s medical data, to ensure the exclusive use and non-
misuse of the user’s medical data.

6.1.5. User Data Ownership. First, the user’s medical data are
not really shared but used for training models, and the
medical research organization does not really have access to

Upload encrypted data

Hash of medical data
Upload ciphertext of key Transmission hash of 

medical data

Download encrypted data
Authorization application

Download ciphertext of key

Decrypt data

Decrypt
encryption key 

User Cloud server provider Blockchiain TEE

Figure 6: &e logical flow of user medical data sharing and key transfer.

Public key of data demender

Verify

Encryption 
parameters

Upload parameter ciphertext Download parameter
ciphertext

Upload verification results

TEE Blockchain Data demender

Figure 7: &e logical flow of model training and return of the
training results.
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the user’s data. Second, the user’s data are trained in the TEE,
and no entity can be aware of the computational process
inside, and much less access the data in the TEE. In this way,
the ownership of user data can be protected.

6.1.6. Computing Environment Security. &is scheme uses
Intel SGX for data decryption and model training. SGX aims
to safeguard the confidentiality and integrity of users’ critical
code and data from malware by making hardware security
mandatory and not to rely on firmware and software’s se-
curity status. SGX’s trusted computing base (TCB) contains
only hardware, avoiding the pitfalls of software-based TCBs
that have their own software security vulnerabilities and
threats. In addition, SGX guarantees a TEE at runtime so
that malicious code cannot access and tamper with the
protected content of other programs at runtime, further
enhancing the system’s security. SGX’s robust, trusted,
flexible security features and hardware scalable performance
guarantees provide a secure computing environment for this
solution.

6.1.7. Resilience against Other Attacks

(1) Replay Attack. &e scheme is effective against replay
attacks because all transactions in the system contain
timestamps and digital signatures. Moreover, since all
transactions in the blockchain are transparent, any user can
extract the time when the transaction was generated. &is
way, if a malicious user tries to duplicate a transaction re-
quest using a transaction written on the blockchain, then
during the validation phase of the transaction, the relevant
validation node will detect the time discrepancy and discard
the transaction.

(2) Impersonation Attack. In this scenario, TEE provides
proof for the issued data, for example, the integrity verifi-
cation result of the data, the integrity verification result of
the model, the public key of the TEE, and the completed
model of the training. &is is to prevent the illegal elements
from impersonating TEE to cheat the user’s data encryption
key. On the other hand, the user’s data will also contain the
user’s signature to ensure the authenticity of the user’s data.
&is prevents illegals from using malicious data to influence
the model’s training.

(3) Tampering Attacks. In the process of medical data
sharing, there may be cases where users tamper with
blockchain information or transaction information, such

as changing the owner of published medical data to their
own account, thus tampering with the ownership of
medical data. &e solution is based on Ethernet de-
ployment, and the authenticated nodes generate the
blocks. Here, the authenticated nodes need to complete a
mandatory authentication process to get the right to
generate new blocks. &erefore, blocks are packed by
trusted certified nodes, and malicious nodes cannot learn
the private keys of trusted certified nodes, so they cannot
forge the identity of certified nodes to pack blocks and
thus cannot modify block information to forge signa-
tures. Since it is difficult for malicious nodes to tamper
with the data on the blockchain, and we store the
cryptographic hash of medical data and share records on
the chain, this ensures the accuracy and authenticity of
the records.

6.2. Function Analysis. In Table 2, we compare our scheme
with existing schemes. As can be seen from the table, all these
schemes are based on blockchain for data sharing. Among
them, Zou et al. [19], Miao et al. [33], and Chen et al. [20]
designed privacy protection for the medical data sharing
process. However, our solution meets the practical needs of
dedicated data dedication, secure data handling, data reg-
ulation, and data ownership.

7. Program Design and Evaluation

In this section, we analyze the effectiveness of the pro-
posed scheme through experiments. We have conducted a
simulation experiment, which is divided into four parts.
First of all, we build the Ethernet blockchain on the
Ubuntu 20.0 virtual machine and write an intelligent
contract using solidity. &en, we build Intel SGX in Intel
(R) Core (TM) i7-9750H CPU @ 2.60 GHz, 16gb RAM,
Microsoft Windows 10 operating system, implement
trusted execution environment (TEE), and redesign en-
cryption and decryption algorithm, hash algorithm, and
signature algorithm in SGX. We realize the functions of
data decryption, machine learning, hash generation,
signature, and learning result encryption in the security
zone. In order to compare the impact of SGX on the
efficiency of the whole shared system, we also implement
the above functions in a non-SGX environment and
compare the computing time overhead in the two envi-
ronments. Finally, by adjusting different difficulties, we
test the appropriate block time and test the throughput of
the system.

Table 2: &e comparison of functionality and security with current solutions.

Security properties Zou et al. [19] Miao et al. [33] Chen et al. [20] &is article
Safe storage and sharing √ √ √ √
Blockchain based √ √ √ √
User auditing × √ × √
Environment security × × × √
Protecting user ownership × × × √
Minimized data usage × × × √
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7.1. Ethereum Blockchain Building. &e blockchain built in
this system is based on the Geth client, version 1.9.25-stable-
e7872729, which is based on Ether and uses POW as the
consensus algorithm. &ere are 4 mining nodes built in the
federated chain network, and the 4 nodes take turns to start
mining. We modify the difficulty value in the genesis file to
test the block generation time overhead at different difficulty
levels. As shown in Figure 8, the vertical coordinate rep-
resents the difficulty and the horizontal coordinate repre-
sents the number of blocks generated per minute, and we set
the scheme out of blocks to 60 blocks per minute.

7.2. Building a Trusted Execution Environment. Based on the
excellent performance of Intel SGX, we use SGX as the
trusted execution environment. &e design of the Enclave of
the security zone needs to consider both function and
implementation. &e analysis of the scheme shows that
Enclave needs to have the following functions: (1) generating
asymmetric key pairs inside Enclave; (2) exporting public
keys outside Enclave; (3) decrypting key ciphertexts and
data; (4) training models using data; (5) encrypting training
results; and (6) signing, verifying signatures, and computing
hash values.

Since SGX’s internal functions are not convenient, we
rebuilt the algorithm in Enclave for the above functions. We
rebuilt ECC asymmetric encryption and symmetric en-
cryption and decryption for higher security and smaller key
size. We use the RSA signature for signature and verification
signature. For the use of the hash function, we choose the
SHA-256 algorithm.

7.3. SGX Performance Evaluation. To test the impact on the
overall sharing system efficiency after using SGX, we
designed SGX-based data sharing and non-SGX data sharing
for comparison. &is is shown in Figure 9. We use 3 kB data
to compare the ECC key pair generation time comparison,
data hash generation time comparison, signature time
comparison, and the total time comparison of the whole
sharing system between the SGX environment and the non-
SGX environment. Figure 9(a) shows the key pair generation
time comparison, which takes a little more time in the SGX
environment than in the normal environment. However,
this time overhead is not significant, and on average, the
SGX environment takes 757.307 us more time overhead. We
also tested the time overhead of generating data hashes,
signing, and verifying signatures in both environments. &e
additional time overhead for generating hashes, signatures,
and verifying signatures in the SGX environment is

16.566 us, 12.464 us, and 6.916 us, respectively. &ere is a
small additional time overhead for the above calculations
when using SGX, but it is still a microsecond overhead. It
does not have a significant impact on the overall system.
Figure 9(d) shows the time overhead of the whole system in
the SGX environment compared to the non-SGX environ-
ment. Overall, the SGX environment still sacrifices some
efficiency, but in terms of average time, the SGX environ-
ment has an additional 19.9443ms overhead.

To further test the impact of SGX on the system, we
performed test simulations using 1 to 6 kB of data, as shown
in Table 3. Since the excess time loss of SGX is due to the data
going in and out of Enclave, the time increase with SGX is
lower than the time increase without SGX as the data size
increases, as shown in Figure 10.

7.4. Blockchain 4roughput. In this section, we separately
calculate the throughput of various transactions. Since we
are using the Ethernet blockchain, the block gasLimit of
Ethernet determines the number of transactions that can be
packed in a block.&e current block gasLimit of the Ethernet
blockchain we built is 12,000,000 gas. After testing, we get
the gasLimit for user-submitted personal medical data
transactions to be 62,060 gas. Since we set the block-out
speed to 60 minutes, the data processing per second (TPS)
for personal user data is 193. Similarly, testing the gasLimit
for data demander-submitted transactions is to be 82,355
and the TPS for deployment model transactions is to be 145.
&e gasLimit of integrity verification transaction is 38444

Table 3: System time overhead for different file sizes.

Data size (kB) 1 2 3 4 5 6
Minimum of NOSGX (us) 58216 170421 276373 460588 544606 705014
Average of NOSGX (us) 67868 179441 307853 524873 600304 725899
Maximum of NOSGX (us) 78341 194061 357842 625825 672885 795646
Minimum of SGX (us) 230948 416418 474531 858997 1028615 1238720
Average of SGX (us) 278031 441992 507291 887812 1181386 1366159
Maximum of SGX (us) 315733 478269 548383 932949 1235315 1456512
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Figure 10: Time comparison for different data sizes.
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gas, and the TPS is 312. &e gasLimit of SGX uploading
machine learning model training result ciphertext and its
hash value transaction is 79,928 gas, and the TPS is 150.

8. Conclusions

&is paper proposes a user-centric medical data sharing
scheme for privacy-preserving machine learning, which
implements data encryption storage, blockchain-based data
resource distribution, data authorization, and machine
learning model training. We also design an auditing
mechanism to assist users in auditing the data sharing
process. Compared with existing schemes, our proposed
scheme ensures the privacy and security of users’ data and
safeguards the ownership of users’ data and achieves the
dedicated use and nonmisuse of data. Finally, the func-
tionality of this solution is implemented through simulation
experiments, and the experimental results prove the feasi-
bility and effectiveness of the solution. Analyzing the impact
of the TEE on the overall system performance demonstrates
that the privacy and security of data and the user’s data
ownership are guaranteed without significant performance
degradation. In future work, we intend to reduce the
communication overhead of users and increase the
throughput of the system.
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Oblivious Random Access Machine (ORAM) is a cryptographic tool used to obfuscate the access pattern. In this paper, we focus
on perfect security of ORAM. A perfectly secure ORAM is an ORAM that can resist against an adversary with unlimited
computing power, and the failure probability of ORAM is zero rather than negligible. Since all existing perfectly secure single-
server ORAM solutions require at least sublinear worst-case bandwidth overhead, we pose a natural and open question: can we
construct a perfectly secure single-server ORAMwith logarithmic worst-case bandwidth overhead? In this paper, we propose the first
tree-based perfectly secure ORAM scheme, named LPS-ORAM. To meet the requirements of perfectly secure ORAM, two
techniques are presented. One technique is dynamic remapping associated with a mutable scope, and the other is dynamically
balanced eviction. )eir combined effect allows the root bucket to never fill up while maintaining its statistical security in tree-
based ORAM. In the worst case, our solution achieves logarithmic bandwidth overhead.)erefore, our solution answers the open
question in the affirmative. In terms of overhead for temporary storage on the client side, compared with the latest perfectly secure
ORAM solution, our solution is reduced from sublinear to logarithmic, and even if the server storage overhead scales lightly, it is
still at the same level of quantity as the state of the art. Finally, the evaluation results show that our LPS-ORAM has a significant
advantage in terms of bandwidth overhead and overhead for temporary storage on the client side.

1. Introduction

)anks to the interconnectivity of a large number of mobile
smart devices in the Internet of )ings, huge amounts of
data are being generated. To save money on data storage,
consumers choose to store their private data on the cloud
server. In order to guarantee confidentiality of the private
data, consumers need to encrypt the data before uploading
them to the server. But using encryption alone, the data
access pattern might still be broken, and the opponent can
deduce some sensitive information from this [1–3]. Obliv-
ious Random Access Machine (ORAM) [4–6] was presented
decades ago to mitigate this security issue. Nevertheless,
these early ORAM solutions are not viewed favorably by

most researchers due to the poor efficiency. Since then, a
large number of ORAM solutions [7–26] have been put
forward to make the efficiency better. Among them, Path
ORAM [13] algorithm is very simple and very efficient in
logarithmic bandwidth overhead, so it is excellent.

Goldreich and Ostrovsky [6] proposed the first lower
bound of O (log N) bandwidth overhead, where N is the
number of real blocks outsourced to the cloud server. )e
lower bound holds if the client storage size isO (1)-block and
the ORAM is in a balls-and-bins model with a uniform block
size of O (log N)-bit. Boyle and Naor [27] further stated that
this lower bound only holds for statistically secure ORAM
that is in a “balls-and-bins” manner. Larsen and Nielsen [28]
then stated that the lower bound of O (log N) bandwidth
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overhead for computationally secure ORAM still holds even
it is not in a “balls-and-bins” manner. However, for perfectly
secure ORAM, it is not clear whether the lower bound holds.

)e theme of a lot of works [13, 27–35] associated with
ORAM is to find a lower bound of bandwidth overhead in
different settings. Typically, there are two ways to measure
the bandwidth overhead. One approach is worst-case
overhead, which is the maximum overhead of completing a
single request in a long list of requests. )e other is am-
ortized-case overhead, which is the average overhead of each
request in a long list of requests. )e most famous lower
bound in the worst case was proposed by Stefanov et al. [13],
who presented a tree-based statistically secure ORAM with
O (logN) bandwidth overhead when the block size is set toO
(log2N)-bit. )us, this only partly matches the lower bound
of Goldreich and Ostrovsky [6] because the lower bound
only holds when the block size is O (log N)-bit. )e most
famous lower bound in the amortized case was proposed by
Asharov et al. [31], who presented a computationally secure
ORAM with O (log N) bandwidth overhead, which com-
pletely matches the lower bound of Larsen and Nielsen [28].

)e first perfectly secure ORAM was designed by
Damgard et al. [36], which has the amortized-case bandwidth
overhead of O (log3N)-block and the server storage overhead
of O (N ∗ log N)-block. )is was further improved by Chan
et al. [37], who presented a perfectly secure ORAM with a
lower server storage overhead of O (N)-block and the same
amortized-case bandwidth overhead. Recently, another per-
fectly secure ORAM, Lookahead ORAM, was proposed by
Raskin and Simkin [38], which has the worst-case bandwidth
overhead ofO (

��
N

√
)-block and the server storage overhead of

O (N)-block. )is is the first perfectly secure single-server
ORAM with sublinear worst-case bandwidth overhead. Since
all existing perfectly secure single-server ORAM solutions
require at least sublinear worst-case bandwidth overhead, we
pose a natural and open question.

Can we construct a perfectly secure single-server ORAM
with logarithmic worst-case bandwidth overhead?

)is is an important academic question because it fa-
cilitates the process of reaching the lower bound for perfectly
secure single-server ORAM.Whether this open question can
be resolved is a necessary step in the development of ORAM
research. )e importance of perfectly secure ORAM was
elaborated by Chan et al. [37]. In addition to the three points
listed, we have added another point. To the best of our
knowledge, in the standard model without server comput-
ing, the lower bounds of both computationally secure
ORAM and statistically secure ORAM are logarithmic,
which are Goldreich–Ostrovsky lower bound [6] and Larsen
and Nielsen lower bound [28], respectively. However, so far,
the lower bound of perfectly secure ORAM has not yet
emerged. )erefore, it is significant to keep approaching the
lower bound by constructing a perfectly secure ORAM
solution with better bandwidth overhead.

1.1. Our Contribution. In this paper, we propose a new
perfectly secure ORAM solution, called LPS-ORAM, which
is designed to resolve the above open question. )e main
contributions of our paper are summarized as follows:

(i) Design of LPS-ORAM construction. We propose
the detailed design of the first tree-based perfectly
secure ORAM construction. )e proposed tech-
niques can be applied to implement other perfectly
secure tree-based ORAM solutions.

(ii) Simplicity and logarithmic worst-case bandwidth
overhead. Our scheme has an extremely simple
algorithm that makes it practical to implement, and
it gains logarithmic bandwidth overhead in the
worst case.

(iii) Small overhead for temporary storage on the client
side. Our solution achieves logarithmic overhead for
temporary storage on the client side, instead of the
previous sublinear. )us, our solution can be ap-
plied to small smart devices with limited client
storage in the Internet of )ings.

1.2. An Overview of Our Techniques. To the best of our
knowledge, if only the requested block is remapped after
each access in tree-based ORAM, the root bucket in the
ORAM tree will be full sooner or later because if the path
corresponding to the remapped leaf label and the eviction
path are exactly at two branches of the binary tree, the
requested block will have to be evicted into the root bucket.
)e detailed reason is as follows. It is assumed that the new
remapped leaf label of the requested block and the eviction
path at that time are exactly at two branches of the binary
tree. )is is the worst case. Even if the greedy strategy is
applied to the eviction process, the requested blocks are
continuously allocated to the root bucket, causing the root
bucket to accumulate until it is full. To ensure perfect se-
curity of ORAM, we need to achieve the goal of allowing the
root bucket to never fill up while maintaining its statistical
security in tree-based ORAM. As a result, it is not feasible
that only requested block is remapped after each access in
tree-based ORAM. )us, dynamic remapping associated
with a mutable scope is proposed.

1.2.1. Dynamic Remapping Associated with a Mutable Scope.
In tree-based ORAM, to ensure the obliviousness property
of ORAM, the new remapped leaf label of the requested
block is random and uniform after each access. However,
each remaining real block retrieved from the path is
remapped to a new leaf label that belongs to the scope from
the corresponding leaf label of the eviction path to the
original leaf label of the block. )is is a dynamic remapping
associated with a mutable scope. )e scope is mutable be-
cause depending on the leaf label of the real block, the real
block may be written back into the bucket closer to the leaf
bucket, but which bucket in the path the real block is located
in is a secret for the honest-but-curious server. For example,
assuming that the eviction path at that time is labeled by 3,
the original leaf label of a remaining real block is 5, and then
the scope at that time is [3, 5]. In our ORAM solution, if the
block cannot be directly located to a bucket lower than the
original bucket according to the original leaf label, then the
new remapped leaf label needs to ensure that it places the
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bucket in which the block is located closer to the leaf bucket
than the original leaf label.

1.2.2. Dynamically Balanced Eviction. In our solution, the
goal is allowing the root bucket to never fill up while
maintaining its statistical security in tree-based ORAM.
)us, what kind of eviction should be combined with the
above dynamic remapping to implement the goal? )e
dynamically balanced eviction is proposed at this time.
During the eviction, the requested block is first arranged to
the deepest bucket of the path according to the new
remapped leaf label, which is closest to the leaf bucket.
Because the new remapped leaf label of the requested block is
random and uniform after each access, according to dy-
namic remapping with a mutable scope, if one path is
accessed multiple times, almost all of the real blocks in the
path will be squeezed to the buckets near the leaf bucket.)is
information is harmful because it is inferred easily by the
honest-but-curious server. )us, the dynamically balanced
eviction is utilized to avoid the above harmful information.
Whether a real block in the path needs to be located in a
bucket lower than the original bucket depends on whether
the root bucket is empty. If the root bucket is not empty, the
above dynamic remapping needs to be executed. Otherwise,
it cannot be executed. )us, the proposed eviction is dy-
namically balanced.

1.3. Other Related Work. A great deal of work has con-
tributed to implementing perfectly secure ORAM. In the rest
of this section, we provide only a high-level overview of
solutions that are directly relevant to our work.

In order to reach the lower bound of O (log N), a large
number of solutions have been proposed in the client-
server environment. Mayberry et al. [39] proposed a
solution with server-side computations, called Path-PIR,
in order to obtain a actually very small, but still poly-
logarithmic bandwidth overhead. Apon et al. [40] for-
mally defined the primitive for verifiable oblivious storage
by allowing server-side computations to be generated
from the ORAM primitive and by providing a solution
with constant bandwidth overhead, but it is based on fully
homomorphic encryption (FHE), so it shows that O (log
N) lower bound has been broken in their setting with FHE.
Another solution, called Onion ORAM [41], is proposed
that also breaks the O (log N) lower bound, but it relies on
additively homomorphic encryption (AHE). However, in
this work, we will focus on the client-server setting
without server-side computations.

Demertzis et al. [42] proposed a computationally secure
ORAM solution with worst-case bandwidth overhead of
O(N1/3) and perfect correctness. Perfect correctness means
that the ORAM solution fails with the probability of 0.
Subsequently, several works cite this and claim that their
solution is perfectly secure. However, according to their
definition of perfectly secure ORAM, Raskin and Simkin
[38] stated that this is not correct and this claim is not made
by the authors of that paper either.

1.4. Organization. )e rest of this paper is organized as
follows. Section 2 introduces the background knowledge
including the definition of perfectly secure ORAM and an
overview of Path ORAM. Section 3 provides the details of
our LPS-ORAM solution. Section 4 gives the performance
analysis in terms of bandwidth overhead, storage overhead,
and further optimization. A detailed evaluation is intro-
duced in Section 5. Finally, the conclusion is provided in
Section 6.

2. Preliminaries

2.1. Security Model. In the security model of ORAM, it is
assumed that there is an honest-but-curious server and a
trusted client. It requires that for any two requests sequences
with the same length, the corresponding access pattern
should be indistinguishable. Note that all blocks are
encrypted by the client before they are uploaded to the
server. )e following security definition of perfectly secure
ORAM is taken from Raskin and Simkin [38].

Definition 1. (security definition of perfectly secure
ORAM). Let U

→
� (Y1, Y2, Y3, . . .) indicate a request sequence

of ORAM. In U
→
, Yi is an access of Read (IDi) or Write (IDi,

Datai∗), where IDi means the unique block identifier and
Datai∗ refer to the new content of block IDi to be written. It is
noted that each real block has a unique identifier. Let DAP
(U
→
) represent the data access pattern when U

→
is the input of

the ORAM algorithm. In reality, the data access pattern is
viewed as a distribution. )e ORAM solution is statistically/
computationally secure for the honest-but-curious server, if
and only if DAP (U

→
) and DAP (V

→
) are statistically/com-

putationally indistinguishable for any two ORAM request
sequences U

→
and V

→
with the same length. )e ORAM

solution is perfectly correct if and only if it returns on input
U
→

that is consistent with U
→

with probability 1. We call an
ORAM perfectly secure if and only if the ORAM solution
can resist against an adversary with unlimited computing
power and is perfectly correct at the same time.

According to the above definition, the ORAM is per-
fectly secure if an ORAM is statistically secure and has a
failure probability of 0 at the same time.

2.2. An Overview of Path ORAM. We provide a simple
overview of Path ORAM (see [13] for more details). As
described in Figure 1, the Path ORAM solution consists of
two parts, one is the server storage, and the other is the client
storage. )e server storage is a complete binary tree with
about log N-level. )e red line is a target path that the
requested block is stored, which is from the remapped leaf
label of the position map (PosMap) on the client.

In the complete binary tree, each node is a bucket that
can accommodate at most Z-block where Z is a constant. Z-
block contains some real blocks, and the rest of the space is
populated with virtual blocks. )e difference between a real
block and a virtual block is that the content of the virtual
block is a random string, while the content of the real block
consists of real data. Each path in the complete binary tree is
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a set of buckets from the root bucket to a leaf bucket. After
each access, every requested block is remapped to a random
and uniform leaf label, which means that the requested block
either resides somewhere on the path numbered by the leaf
label or in stash on the client side. In Path ORAM, to execute
an ORAM request, the PosMap is queried first by the client,
which is a list table on the client side that tracks the path to
which each real block is currently remapped, and then about
(Z ∗ log N) blocks on that path are retrieved to the local
stash. Subsequently, the requested block is remapped to a
new random and uniform leaf label and the PosMap is
updated accordingly. Finally, the eviction procedure is ex-
ecuted, the same path is populated with some real blocks,
and the rest of the space is populated with virtual blocks.)e
various symbols and their meanings are listed in Table 1.

)e bandwidth overhead of Path ORAM is about
2Z ∗ log N because a path is fetched and then it is written
back into the complete binary tree for each ORAM request.
To make Path ORAM fail with a negligible probability in N,
the value of Z must be at least 4 in reality or 5 in theory.

3. LPS-ORAM Solution

In this section, we present an extremely simple tree-based
perfectly secure ORAM protocol. As far as we know, Path
ORAM has an extremely simple algorithm and efficient
efficiency of O (log N)-block bandwidth overhead when the

block size is set to O (log2N)-bit. In our design, our perfectly
secure tree-based ORAM, called LPS-ORAM, will inherit the
benefits of Path ORAM. In addition, our works focus on
perfect security of ORAM, that is, we are committed to
achieving the goal of allowing the root bucket to never fill up
while maintaining its statistical security in tree-based
ORAM. )e various symbols used in this solution and their
meanings are also listed in Table 1.

3.1. Storage Structure. In our LPS-ORAM, there are N real
blocks, which are outsourced to the server storage. Each
block’s modality is (identifier, p; data). It represents that the
block numbered as identifier is either on the path numbered
by leaf label p or in the local stash. For each real block, it has a
unique identifier, identifier, and the content of the block
labeled as identifier contains data. For each virtual block,
both p and data are populated with random strings. In order
to obfuscate all the blocks with each other, they are set to a
constant size no matter whether the block is a real block or a
virtual block. To differentiate decrypted blocks retrieved
from the server storage, all virtual blocks have same block
identifiers. In addition, the purpose of adding virtual blocks
to the server storage is to confuse all blocks so that the server
cannot differentiate between any encrypted block being a
real block or a virtual block. Note that all blocks are
encrypted by the client before they are uploaded to the
server. )at is, all blocks in the server storage are in the state
of encryption. )erefore, adding virtual blocks to the server
storage is part of the security effort to hide the data access
pattern.

3.1.1. Server Storage. On the server side, there is a complete
binary tree. In it, there are L+ 1 levels in total. )ey are
marked as 0, 1, 2, . . ., and L, respectively. )eoretically, the
height of the complete binary tree is set to L� ⌈log N⌉+ 1.
For the sake of description, we let L� logN, resulting in a full
binary tree with N leaves and N− 1 non-leaves. In the
complete binary tree, the root node is at layer 0 and all the
leaf nodes are at layer L.

Each node of the complete binary tree is one bucket in
our LPS-ORAM solution. Z blocks at most in each bucket.
As a result, each bucket is Z-block in size. In our scheme, Z is
set to a constant. Each bucket can accommodate some real
blocks, and dummy blocks populate the rest of the space.

)e complete binary tree has about 2N nodes, so there
are about 2Z ∗ N blocks on the server side.)at is, the server
storage size is O (N) blocks.

Table 1: Symbols and meanings.

Symbol Meaning
N )e number of real blocks in total
L )e height of the full binary tree
Z )e bucket size in blocks
B )e block size in bits

p Path p refers to the set from the root
bucket to leaf bucket labeled p

P (j, i) )e bucket at level i along the path labeled j

Server

4 blocks per bucket

ab
ou

t (
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g 
N

) l
ev

els

0
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2

1

0
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path label:

level:

Client
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Figure 1: )e structure of Path ORAM solution [13].
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3.1.2. Client Storage. )ere are two structures on the client
side, PosMap and stash.

In our scheme, there are N real blocks, and each real
block is remapped to a leaf label, so there areN leaf labels. All
of the above N leaf labels are stored in the PosMap. )e
complete binary tree has N leaves, and each leaf is numbered
by a leaf label, which results in each leaf label having a size of
logN bits.)us, the size of the PosMap is (N ∗ logN) bits. In
the client-server environment, the client can entirely store
the PosMap, rather than the server storing the PosMap
recursively because storing the PosMap on the client is
virtually negligible when the block size is not set to very
small size of O (log N) bits. Moreover, if the server stores the
PosMap recursively, both the average time latency and the
number of interaction rounds increase significantly.

)e client has a stash to store temporary blocks retrieved
from the server storage. Why is it temporary storage? Be-
cause all blocks on the target path are retrieved to the local
stash, and then all the blocks are written back into the path of
the complete binary tree. In the previous tree-based ORAM
solutions, there might have been some stranded real blocks

on the stash because the root bucket might have been full. In
our perfectly secure tree-based ORAM solution, the stash
size is exactly the size of retrieved path because there are no
stranded real blocks on the stash.

3.2. Detailed Execution. In this section, the detailed exe-
cution procedures are described as follows. )ere are two
algorithms to implement our LPS-ORAM protocol, which
are retrieval algorithm and eviction algorithm, respectively.
A detailed description of the whole LPS-ORAM algorithm is
shown in Figure 2.

3.2.1. Retrieval. )e retrieval algorithm is to fetch all blocks
on the target path corresponding to the leaf label of the
requested block. All the fetched blocks are stored in the stash
locally. After the retrieval, all the fetched blocks are
decrypted and then the dummy blocks are discarded.)at is,
only the real blocks are stored in the stash on the client.
Subsequently, the requested block is assigned to a new leaf
label from random and uniform remapping. In order to

Figure 2: )e algorithm of our LPS-ORAM solution.
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implement a failure probability of 0, that is, to allow the root
bucket to never fill up while maintaining its statistical se-
curity in tree-based ORAM, all remaining fetched real blocks
need to be remapped if necessary. However, instead of
applying a random and uniform remapping to them, a new
remapping is applied to them. Since the distribution of real
blocks on the path in which buckets is dynamic and the
server cannot know the distribution, we can take the step of
infiltrating the real block down the position of a bucket to
free up space of the upper bucket. )us, the root bucket will
not be full even if the remapping of the requested block is in
the worst case, where both the path corresponding to the leaf
label of the requested block and the eviction path at that time
are two branches of the binary tree. )e question is what
kind of remapping would allow fetched real blocks to move
down one bucket? At this point, the dynamic remapping
associated with a mutable scope is proposed.

Now we illustrate our proposed dynamic remapping
with a mutable scope, as shown in Figure 3.)e target path is
marked by read line and taken from the PosMap on the
client, and all real blocks in the target path are (a, 3), (b, 2),
(e, 1), (f, 2), (h, 3). It is noted that data of each real block is
ignored to descript simply. For example, block (a, 3, data) is
written as (a, 3). Among the fetched real blocks, block (a, 3)
is the requested block at that time. Since the root bucket is
not empty and block (f, 2) cannot be located in a bucket
lower than the original bucket, block (f, 2) has to be
remapped from a mutable scope [2, 3], which is the set from
the original leaf label to the leaf label corresponding to the
eviction path. In Figure 3, it is marked in yellow. Also, the
rest of the fetched real blocks (b, 2), (e, 1), (h, 3) need not be
remapped because they can be directly written back into a
lower bucket than the original bucket. )e requested block
(a, 3) is remapped to a new random and uniform leaf label
because of the obliviousness property of ORAM.

As shown in Figure 2, step 1 is the lookup procedure to
get the leaf label of the target path, which is the leaf label of
the requested block. From step 2 to step 4 is the retrieval
procedure to get all buckets of the target path in the binary
tree.)en, from step 5 to step 8 is the operation procedure of
the requested block during each access. If the operation is
“read,” data of the requested block are directly returned to
the client, as described in step 23. If the operation is “write,”
data are updated by data∗ . From step 9 to step 18 is the
remapping procedure to get a new leaf label for each fetched
real block. )e procedure is divided into two cases. One case
is for the requested block, and the other case is for all other
fetched real blocks from the target path. Due to the obliv-
iousness property of ORAM, after each access, the requested
block needs to be remapped to a new random and uniform
leaf label. Nevertheless, all other fetched real blocks can
avoid the random and uniform remapping because they are
dynamically distributed on each path and this distribution is
secret for the server. )us, it is secure to adjust the distri-
bution of them to achieve some certain goal. If the root
bucket is not empty, each real block in the path will be
written back into a lower bucket than the original bucket
through adjusting the corresponding leaf label. Note that a
lower bucket is closer to the corresponding leaf bucket in the

binary tree. If some real block of them can be directly written
back into a lower bucket than the original bucket, the block
need not be remapped. Else, the block is remapped to a new
leaf label from the above scope, until the real block can be
written back into a lower bucket than the original bucket,
this process takes almost no time.

3.2.2. Eviction. In this section, the dynamically balanced
eviction algorithm is proposed. )e proposed eviction al-
gorithm not only follows the greed strategy but also further
makes use of the space of the eviction path in the binary tree.
)e greed strategy in the eviction algorithm is that as many
fetched blocks as possible are written back from the stash
locally to the eviction path in the binary tree. )e above
dynamic remapping associated with a mutable scope can
make each real block locate into a lower bucket. )us, our
dynamically balanced eviction algorithm can be combined
with the above dynamic remapping associated with a mu-
table scope to make better use of the space of the eviction
path in the binary tree than a single greed strategy.

During the eviction algorithm, the requested block is
first arranged to the deepest bucket of the path according to
the new remapped leaf label, which is closest to the leaf
bucket. Because the new remapped leaf label of the requested
block is random and uniform after each access, according to
dynamic remapping with a mutable scope, if one path is
accessed multiple times, almost all of the real blocks in the
path will be squeezed to the buckets near the leaf bucket.)is
information is harmful because it is inferred easily by the
honest-but-curious server. )us, the dynamically balanced
eviction is utilized to remove the above harmful information.
Whether a real block in the path needs to be located into a
bucket lower than the original bucket, it depends on whether
the root bucket is empty. If the root bucket is not empty, the
above dynamic remapping needs to be executed. Otherwise,
it cannot be executed. )us, the proposed eviction is dy-
namically balanced. In our eviction algorithm, for each
access, the goal is that the requested block can be written
back into the path in the binary tree, rather than being
stranded in the stash locally. )is goal is the focus of our
scheme in the setting of tree-based ORAM. In tree-based
ORAM, the root bucket may be full because only the
requested block needs to be remapped to a random and
uniform leaf label, while other fetched real blocks do not
need to be remapped. If the requested block for each access is
in the worst case, with a small but non-negligible probability,
the root bucket will accumulate until it is full as the number
of different requested blocks increases. However, our evic-
tion algorithm can avoid this case.

As shown in Figure 2, from step 19 to step 22 is the
procedure of the eviction algorithm to write back all fetched
real blocks containing the requested block into the eviction
path in the binary tree. During this procedure, the path is
scheduled from the corresponding leaf bucket to the root
bucket. )en, each fetched real block is written back into
some lower bucket than the original bucket if the root bucket
is not empty. Finally, the eviction path is written back into
the binary tree on the server storage.
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3.3. Security Analysis. In this section, we will analyze the
perfect correctness and perfect security of our LPS-ORAM.
)e perfect correctness of ORAM means that the ORAM
scheme fails with the probability of 0, rather than a negligible
probability. )e perfect security of ORAM means that the
ORAM scheme can resist against an adversary with un-
limited computing power, and simultaneously the ORAM
scheme has perfect correctness.

3.3.1. Perfect Correctness

Claim 1. Our LPS-ORAM scheme has perfect correctness.

Proof. If the block can be directly written back into a lower
bucket than the original bucket, the fetched real block need not
be remapped. Else, each fetched real block is remapped to a new
leaf label from a mutable scope, until the real block can be
written back into a lower bucket than the original bucket. In a
word, each fetched real block from the target path needs to be
located in a lower bucket than the original bucket. However,
the requested block needs to follow the random and uniform
remapping because of the oblivious property of ORAM.When
the requested block is in the worst case, namely, both the path
corresponding to the new leaf label of the requested block and
the eviction path are two branches of the binary tree, the
requested block will have to be written back into the root
bucket. However, since each of all other real blocks can be
written back into a lower bucket than the original bucket, the
root bucket is filled with atmost one real block at any epoch. As
a result, as long as the size of the root bucket is larger than one
block, the root bucket cannot be full. )at is, our LPS-ORAM
scheme can fail with the probability of 0 as long as the bucket
size is longer than 1. )erefore, our LPS-ORAM scheme has
perfect correctness. □

3.3.2. Perfect Security

Claim 2. Our LPS-ORAM scheme is statistically secure for
the honest-but-curious server.

Proof. In our LPS-ORAM, each path fetched is random and
uniform for the honest-but-curious server. )at is, all blocks
of each bucket fetched from the binary tree are random and
uniform. As a result, for any two kinds of access, the two
paths retrieved are statistically indistinguishable for the
server. )erefore, our LPS-ORAM scheme is statistically
secure for the honest-but-curious server. □

Theorem 1. Our LPS-ORAM scheme is perfectly secure for
the honest-but-curious server.

Proof. According to Claim 2, our LPS-ORAM is statistically
secure for the honest-but-curious server. As a result, our
scheme can resist against an adversary with unlimited
computing power. In addition, according to Claim 1, our
LPS-ORAM scheme has perfect correctness. )erefore,
according to the security definition from Definition 1, our

LPS-ORAM scheme is perfectly secure for the honest-but-
curious server. □

4. Performance Analysis

In this section, we will analyze the asymptotic performance,
which is mainly in bandwidth overhead and storage over-
head. We proposed the measures of further optimization.
Our LPS-ORAM solution will be compared with all the
previous perfectly secure single-server ORAM solutions,
which are listed in Table 2.

4.1. Bandwidth Overhead. In our solution, for each access,
only one path is fetched and then is written back into the
binary tree. )us, to fetch a requested block, the number of
blocks transferred between the client and the server is O (log
N) blocks. As a result, the bandwidth overhead of our so-
lution is O (log N)-block.

4.2. Storage Overhead. In our solution, the bucket size Z is a
constant and the binary tree on the server storage has O (N)
buckets. As a result, the binary tree has O (N) blocks.)at is,
the server storage overhead of our solution is O (N)-block.
)e client storage consists of PosMap and stash. PosMap is
practically negligible in the setting of client-server, as
mentioned in S3ORAM [26]. )us, the stash size is the client
storage overhead, which is one path size. )erefore, the
client storage overhead of our solution is O (log N)-block.

4.3. Further Optimization. In our LPS-ORAM solution, if
the bucket size Z is set to 1, the asymptotic performance of
our solution can be further optimized. In this case, the
bandwidth overhead is (L+ 1)-block, the server storage
overhead is (2L+1 − 1)-block, and the client storage overhead
is one path size of (L+ 1)-block. So, these overheads are
determined by the value of L. In theory, the value of L is set to
⌈log N⌉+ 1. So, the number of buckets is about 4N. )ere is
enough space to percolate down for the real blocks to release
the root bucket. However, to release the root bucket more
likely, a larger number of buckets or a larger Z is needed.
)us, the value of L and Z is in a dynamic equilibrium to
achieve a trade-off.

5. Evaluation

To give the actual performance of our LPS-ORAM solution,
we implemented a prototype with a client-side position map
and evaluated it based on bandwidth overhead, temporary
storage overhead, and server storage overhead. Our solution
will be compared with all the previous perfectly secure
single-server ORAM solutions. So far, there are three such
solutions. )ey are proposed by Damgard et al. [36], Chan
et al. [37], and Raskin and Simkin [38], respectively. In
addition, Path ORAM solution [13] is also compared with
ours because it is a tree-based ORAMwith efficient efficiency
of logarithmic bandwidth overhead.

In comparison, for different values of N, we measure the
bandwidth overhead, namely, the total amount of data
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transferred per access between the client and the server. In
addition, both the temporary storage size on the client and
the total storage size on the server are measured in our
experiments. In the respective works, the values in all the
compared ORAM schemes with our LPS-ORAM are cal-
culated based on the concrete formulas and constants that
are reported.

We make the following assumptions, as mentioned in
the evaluation of Lookahead ORAM solution [38]. )ere is
an additional encryption/MAC overhead of about 40 bytes
in each encrypted block because the random encryption is
applied to all blocks of all ORAM schemes. Within each
stash slot, there is an additional state header of about 20
bytes that contains location information and the state. Also,
4-byte words are used to indicate the ORAM request types.
During initialization procedure, the storage is populated
with random strings and they are directly uploaded to the
server. In all solutions, the block size is fixed to 1024 bytes.

We first analyze the concrete value of bandwidth
overhead, temporary storage overhead, and server storage
overhead in our LPS-ORAM solution. In it, L� ⌈logN⌉+ 1 in
theory and Z� 1. )us, when N real blocks of each size B-bit
are encrypted, the total server storage overhead of the
server is Z× (2L+1 − 1)× (B+ 40)-bit� (4N− 1)× (B+ 40)-
bit. )e corresponding position map is (N× log N)-bit. )e
stash size is (B+ 40)× (2 + logN)-bit, which is the temporary
storage overhead. For each access, (B+ 40)× (2 + log N) bits
need to be downloaded and then (B+ 40)× (2 + log N) bits
need to be uploaded, and thus the bandwidth overhead is
2× (B+ 40)× (2 + log N) bits.

Finally, for the sake of description in the following
figures, the solutions proposed by Damgard et al. [36] and
Chan et al. [37] are called ORAM1, ORAM2, and the solution
proposed by Raskin and Simkin [38] is called Lookahead
ORAM.

5.1. BandwidthOverhead. )e bandwidth overhead refers to
the number of blocks transferred between the client and the
server to obtain a requested block.)e bandwidth overheads
of the above compared solutions are listed in the following.

)e ORAM1 and ORAM2 solutions are based on a
hierarchical structure, which have no position map on the
client. )eir concrete bandwidth overheads are
(log2N) ∗ (1 + log N)/2 blocks, which are self-reported. As
a result, the value is (B + 40) × (log2N) × (1 + log N)/2 bits.
)e Lookahead ORAM is based on a matrix structure,
which also has a position map on the client. )e position
map is also O (N × log N)-bit. However, the recursion
technique is not considered to be applied to the position

map. )us, its concrete bandwidth overhead is
{40 + (B + 40) × (

��
N

√
+ 1)} + {80 + (B + 40) × (

��
N

√
+ 1)} �

120 + 2 × (B + 40) × (
��
N

√
+ 1) bits, which is self-reported.

In addition, the bandwidth overhead of Path ORAM is
also shown in Figure 4. In Path ORAM, the bandwidth
overhead � (B + 40) × 2 Z × log N � 10 × (B + 40) × log
N bits, as shown in the evaluation of Lookahead ORAM.

Finally, the results are shown in Figure 4. As expected,
our LPS-ORAM has the smallest bandwidth overhead of all
the compared solutions.

5.2. Temporary Storage Overhead. )e temporary storage
overhead on the client side refers to the number of blocks
stored on the client, which is temporary because after each
access, all fetched blocks stored in the stash locally are written
back into the server storage. )e temporary storage overheads
of the above compared solutions are listed in the following.

)e ORAM1 and ORAM2 solutions are based on a
hierarchical structure. )e temporary storage overheads
contain one block, which is self-reported. As a result, the
value is (B + 40) bits. )e Lookahead ORAM is based on a
matrix structure, which also has a position map on the
client. Its concrete temporary storage overhead on the
client is 80 + (B + 40) × (

��
N

√
+ 1) bits, which is self-re-

ported. Additionally, in Path ORAM, the temporary
storage overhead on the client is about 10N × (B + 40) bits,
which is self-reported.

We observed that the temporary storage overhead is
about half of the bandwidth overhead in Lookahead ORAM,
Path ORAM, and our solution, while the temporary storage
overheads in the ORAM1 and ORAM2 solutions are only
considered to be a small constant. )us, the figure of results
for Lookahead ORAM, Path ORAM, and our solution is
similar to that of Figure 4. As expected, our LPS-ORAM has
the smallest temporary storage overhead among the above
three solutions.

5.3. Server Storage Overhead. )e storage overhead on the
server side refers to the number of blocks stored on the
server, which not only contains real blocks but also dummy
blocks. )e storage overheads of the above compared so-
lutions are listed in the following.

)eORAM1 solution is based on a hierarchical structure.
Its concrete storage overhead of the server is (2N− 1)× logN
blocks, which is self-reported. As a result, the value is
(B+ 40)× (N− 1)× log N bits. )e ORAM2 solution is based
on the ORAM1 solution. Its concrete storage overhead of the
server is reduced to 2N blocks, which is self-reported. As a
result, the value is (B+ 40)× 2N bits. )e Lookahead ORAM

Table 2: Asymptotic performance comparison of all the perfectly secure single-server ORAM schemes.

Perfectly secure ORAM scheme Structure Amortized-case bandwidth Worst-case bandwidth Client storage Server storage
Damgard et al. [36] Layer O (log3N) O (N∗ log N) O (1) O (N∗ log N)
Chan et al. [37] Layer O (log3N) O (N∗ log N) O (1) O (N)
Raskin et al. [38] Matrix O (

��
N

√
) O (

��
N

√
) O (

��
N

√
) O (N)

Ours Tree O (log N) O (log N) O (log N) O (N)
Note. All asymptotic overheads are represented in blocks.
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is based on a matrix structure, which also has a position map
on the client. )e position map is also O (N ∗ log N)-bit.
However, the recursion technique is also not considered to

be applied to the position map. )us, its concrete storage
overhead of the server is N× (B+ 40) bits, which is self-
reported. In addition, the serve storage overhead of Path
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ORAM is also shown in Figure 5. In Path ORAM, the server
storage overhead is about 20N× (B+ 40) bits, as shown in
the evaluation of Lookahead ORAM.

Finally, the results are shown in Figure 5. As expected,
our LPS-ORAM is slightly larger than Lookahead ORAM in
terms of server storage overhead.

6. Conclusion

In this paper, we focus on perfect security of ORAM. Since
all existing perfectly secure single-server ORAM solutions
require at least sublinear worst-case bandwidth overhead, a
natural and open question is posed: can we construct a
perfectly secure single-server ORAM with logarithmic worst-
case bandwidth overhead? To affirmatively answer the
question, we propose the first tree-based perfectly secure
ORAM scheme with logarithmic worst-case bandwidth
overhead, called LPS-ORAM. To meet the requirements of
perfectly secure ORAM, two techniques are used. One
technique is dynamic remapping associated with a mutable
scope, and the other is dynamically balanced eviction. )eir
combined effect allows the root bucket to never fill up while
maintaining its statistical security in tree-based ORAM. In
terms of overhead for temporary storage on the client side,
compared with the latest perfectly secure ORAM solution,
our solution is reduced from sublinear to logarithmic, even if
the server storage overhead scales lightly, it is still at the same
level of quantity as the state of the art. Finally, the evaluation
results show that our LPS-ORAMhas a significant advantage
in terms of bandwidth overhead and overhead for temporary
storage on the client side.
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In this paper, we study the privacy-preserving data publishing problem in a distributed environment. (e data contain sensitive
information; hence, directly pooling and publishing the local data will lead to privacy leaks. To solve this problem, we propose a
multiparty horizontally partitioned data publishing method under differential privacy (HPDP-DP). First, in order to make the
noise level of the published data in the distributed scenario the same as in the centralized scenario, we use the infinite divisibility of
the Laplace distribution to design a distributed noise addition scheme to perturb the locally shared data and use Paillier encryption
to transmit the locally shared data to the semitrusted curator.(en, the semitrusted curator obtains the estimator of the covariance
matrix of the aggregated data with Laplace noise and then obtains the principal components of the aggregated data and returns
them to each data owner. Finally, the data owner utilizes the generative model of probabilistic principal component analysis to
generate a synthetic data set for publication. We conducted experiments on different real data sets; the experimental results
demonstrate that the synthetic data set released by the HPDP-DP method can maintain high utility.

1. Introduction

(e ability of people to collect and analyze data is gradually
improving with the development of the artificial intelligence.
Sometimes the data are stored by different sites(data
owners), and each site holds a smaller number of samples.
For example, in Figure 1, there are three hospitals, the
patients in each hospital are different from each other, but
the data features of each patient are the same. In order to
better mine the useful information behind the data, a large
number of samples are needed. Pooling data in one central
location enables efficient data analysis and mining, but data
contain sensitive privacy; directly sharing or pooling the data
will lead to privacy leakage [1, 2], which prevents people
from sharing data. (at is to say, data are facing serious
privacy leakage risks in the process of data sharing, network
transmission, and storage [3]. It is important to protect the
privacy of shared data and weigh the security and availability
of data [4, 5]. (erefore, it is desirable to propose an efficient
distributed algorithm, which can provide the utility close to

the centralized case and protect the privacy of data. In recent
years, there have been some researches on privacy-pre-
serving data publishing and sharing, for example, the
kanonymity [6] technology, the encryption techniques, such
as lattice-based cryptography [7] and quantum cryptography
[8, 9]. (e differential privacy [10] has been widely used for
privacy-preserving data publishing; privacy-preserving data
publishing based on differential privacy has become a re-
search hot spot [11–15].

However, there are still some challenges when using the
differential privacy technique to protect the privacy of the
published data. One is that the data are stored by different
data owners; directly pooling and publishing the data will
lead to privacy leakage. When data are stored by multiple
data owners, as the number of data owners increases, if
differential privacy is used independently to add noise to the
locally shared data, the utility of the published data will be
reduced. In view of this, we propose a horizontally parti-
tioned data publication approach with differential privacy.
We make the following contributions:
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(1) We propose a method for horizontally partitioned
data publication with differential privacy (HPDP-
DP). In a distributed environment, data are owned
by multiple parties. We use the weighted average of
the noised covariance matrices of the local data to
estimate the covariance matrix of the pooled data.
(e data owners and a semitrusted curator collab-
orate to get the principal components of the pooled
data and generate a synthetic data set for publishing.

(2) In the distributed scenario, in order to make the
noise level of the aggregated data the same as in the
centralized scenario, the HPDP-DP method utilizes
the infinite divisibility of the Laplace distribution and
Paillier homomorphic encryption to alleviate the
effects of noise and can achieve the same noise level
as the centralized scenario.

(3) We evaluate the performance of HPDP-DP method
through experiments on real data sets, and the ex-
perimental results show that HPDP-DP method can
generate synthetic data with high efficiency.

2. Related Work

In this section, we introduce the research status of privacy-
preserving data release based on differential privacy in the
centralized and distributed scenarios, respectively.

2.1. Privacy-Preserving Data Publishing in Centralized
Environment. In recent years, there are many researches on
privacy-preserving data publishing based on differential
privacy. Jiang et al. [16] proposed a method that adding

Laplace noise to the covariance matrix and the projection
matrix and then using the noisy projection matrix to restore
and generate the synthetic data set for publishing. Zhang
et al. proposed the PrivBayes method in [17]; they used the
relationship between the features to build a Bayesian net-
work. (ey added Laplace noise to the low-dimensional
marginal distribution to make the Bayesian network satisfy
differential privacy, and then they used the Bayesian network
to generated a synthetic data set for publishing. Chen et al.
proposed the Jtree method in [18]. First, they proposed a
sampling-based testing framework that is used to explore
pairwise dependencies while satisfying differential privacy.
(en, they applied the connection tree algorithm to con-
struct an inference mechanism to infer the joint data dis-
tribution. Finally, they efficiently generated a synthetic data
set by using the noise margin table and inference model. Xu
et al. [19] proposed DPPro scheme; they released high-di-
mensional data by using randomly projected.(ey projected
the original high-dimensional data into a randomly selected
low-dimensional subspace and added noise to the low-di-
mensional projected data. (ey theoretically demonstrated
that the data published by the DPPro method have similar
squared Euclidean distances to the original data. In order to
solve the problem of dimensional disaster in high-dimen-
sional data publishing, Zhang et al. [20] presented the
PrivHD method with the junction tree. First, they used
exponential mechanism to construct a Markov network; in
order to reduce the candidate space, high-pass filtering
technique is used in sampling. (en, they used the maxi-
mum spanning tree method to build a better joint tree. At
last, a high-dimensional synthetic data set is generated for
publication. Zhang et al. [21] presented the PrivMNmethod.

Figure 1: Aggregate data from different hospitals.
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(ey first constructed a Markov model to express the re-
lationship of features. (en, they used the Laplace mecha-
nism to add noise to the marginal distribution to generate
the noisy marginal distribution table. Finally, they used the
noisy marginal distribution to generate a synthetic data set
for publishing. Gu et al. [22] proposed the PPCA-DP
method; they first used the principal component analysis to
reduce the dimensionality of high-dimensional data and
then added Laplace noise to the low-dimensional projection
data; finally, they used the generative model of probabilistic
principal component analysis to generate a synthetic data set
for publishing. (e above are all studies on privacy-pre-
serving data publishing in centralized scenarios.

2.2. Privacy-Preserving Data Publishing in Distributed
Environment. At present, most of the existing privacy-
preserving data publishing works focus on the centralized
scenario; there are fewer studies on privacy-preserving data
publishing in distributed scenario. (e multiparty data re-
lease scenario studied in this paper is that each data owner
owns a data set and uses the differential privacy technology
to protect the privacy of the local data set rather than the
scenario that multiple individuals keep their data locally.(e
latter typically utilize the local differential privacy [23]
techniques to protect the privacy of individual data [24, 25].
In the following, we will introduce the research status of
privacy-preserving data release in multiparty data release,
where each data owner owns a data set.

Alhadidi et al. [26] proposed the first noninteractive two-
party horizontally partitioned data publication method that
satisfies differential privacy and secure multiparty compu-
tation. (e data set published by this method is suitable for
classification tasks. Hong et al. [27] constructed the
framework (CELS protocol) that enables distributed parties
to securely generate outputs while satisfying differential
privacy. (e security and differential privacy guarantees of
the protocol are proved. Ge et al. [28] presented the DPS-
PCA algorithm. Data owners collaborated to compute the
principal components while protecting the privacy of data.
(e DPS-PCA algorithm can trade off the relationship be-
tween the accuracy of estimating principal components and
the degree of privacy protection, but this method only
outputs a low-dimensional subspace of high-dimensional
sparse data. An efficient and scalable distributed PCA
protocol is proposed byWang et al. [29] for the computation
of principal components of split horizon data in a distrib-
uted environment. First, the shared data are encrypted and
sent to a semitrusted third party. Second, the shared data are
aggregated by a semitrusted third party, and the aggregated
result is sent to the data consumer. Finally, the data con-
sumer performed a principal component analysis and ob-
tained the principal components of the pooled data. Cheng
et al. [30] presented the DP-SUBN3 approach; the data
owners built a Bayesian network with the assistance of a
semitrusted curator, and then the Bayesian network is used
to generate a synthetic data set. In DP-SUBN3 approach, the
four stages of correlation quantification, structure initiali-
zation, structure update, and parameter learning all need to

access the local data set, and each stage satisfies differential
privacy, which in turn makes the DP-SUBN3 approach
satisfy differential privacy. For the privacy protection of data
publishing in arbitrary partitions between two parties, Wang
et al. [31] presented the first distributed algorithm, which
generates anonymous data from two parties. In order to
prevent both parties from leaking private information, the
anonymization process satisfies both differential privacy and
secure two-party computation. Gu et al. [32] presented the
PPCA-DP-MH approach. (e data owners collaborate with
a semitrusted curator to reduce the dimensionality of the
data, and then the data owners used the probabilistic gen-
erative model of principal component analysis to generate a
published data set. In the PPCA-DP-MH method, since
multiple data owners add noise to the data locally and in-
dependently, the utility of publishing data gradually de-
creases as the number of data owners increases. In response
to this challenge, we propose the HPDP-DP method in this
paper. We design the generation and addition scheme of
correlated noise, so that the utility of publishing data will not
decrease with the increase of data owners, and even the
utility of publishing data will gradually increase with the
increase of data owners.

3. Preliminaries

3.1. Probabilistic Principal Component Analysis (PPCA).
Principal component analysis is one of the commonly used
dimensionality reduction methods. Principal component
analysis is a statistical analysis method that converts multiple
variables into a few hidden variables through dimensionality
reduction techniques. (ese fewer low-dimensional and not
correlated hidden variables are also called principal com-
ponents. (e principal components can reflect most of the
information of the original variables. Next, the main process
of finding principal components is introduced. First,
computing the covariance matrix Σ of the data. (en per-
form eigenvalue decomposition on the covariance matrix Σ,
Σ � UΛUT, where Λ is a diagonal matrix and the elements
on the diagonal are the eigenvalues of the matrix Σ,
Λ � diag(λ1, λ2, . . . , λp), λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. (e corre-
sponding eigenvectors are as follows: u1, u2, . . . , up which
are called the principal components. U is an orthogonal
matrix consisting of the eigenvectors. Usually, the top k

principal components retained are determined by the cu-
mulative contribution rate c � 􏽐

k
i�1 λi/􏽐

p
i�1 λi.

However, Michael et al. [33] proposed that the principal
component analysis (PCA) is a nongenerative model, they
presented that the principal component analysis (PCA) also
has a generative model called probabilistic principal com-
ponent analysis (PPCA). (e most common model to as-
sociate low-dimensional latent variables with high-
dimensional observable variables is the factor analysis
model, i.e. x � Ws + μ + ξ, where x is p -dimensional ob-
servation vector consisting of the p original variables, s is a k

-dimensional vector consisting of k latent variables,
ξ ∼ N(0,Ψ), the matrix W associates the vector x with the
vector s. (e vector μ allows the model to have a nonzero
mean vector.
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Theorem 1 [33]. From Figure 2 and the latent variable
model x �Ws + μ + ξ, when ξ ∼ N(0, σ2I), s ∼ N(0, Ik),
then x|s ∼ N(Ws + μ, σ2Ip), σ > 0,W ∈ Rp×k, where the
maximum likelihood estimation of μ, σ2 , and W are

μ̂ � μ̃,

σ̂2 �
1

p − k
∑
p

i�k+1
λi,

Ŵ � Uk Λk − σ̂2I( )
1
2
,

(1)

where μ̃ is the mean vector, the column vectors in Uk is the
eigenvectors corresponding to the top k eigenvalues of the
covariance matrix.

3.2. Di�erential Privacy. Di�erential privacy is a strong
privacy protection model independent of background
knowledge. If the output of a privacy-preserving algorithm is
insensitive to small changes in the input, the algorithm
satis�es di�erential privacy. �e essence of di�erential
privacy is to randomly perturb the query results, so that
people cannot infer the original input information based on
the query results.

De�nition 1 (Di�erential Privacy) [10]. A random algorithm
M satis�es ϵ di�erential privacy, if for any two neighboring
data sets D, D̂ (only one record di�ers between the two data
sets) and for any S(S ∈ Rang(M)) there is

ln
Pr M(D) ∈ S{ }
Pr M(D̂) ∈ S{ }

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
≤ ε, (2)

ε is a small positive real number, which is also called privacy
budget.

In the De�nition 1, ε is used for controlling the prob-
ability ratio of the random algorithm M to obtain the same
output on the two neighboring data sets D and D̂; it re�ects
the level of privacy protection that the algorithm M can
provide.

De�nition 2 (Sensitivity). [10]. Let f be a function that maps
a data set into a �xed size vector of real numbers,
f: D⟶ Rd, for any neighboring data sets D and D̂, the
sensitivity of f is de�ned as follows:

Δf � max
D,D̂

‖f(D) − f(D̂)‖1, (3)

where ‖ · ‖1 denotes the L1 norm.

De�nition 3 (Laplace mechanism). [34]. For any function
f: D⟶ Rd, if the random algorithm M satis�es the
equation:

M(D) � f(D) + Lap1
Δf
ε

( ), . . . , Lapd
Δf
ε

( )( ), (4)

then the algorithm M satis�es ε di�erential privacy,
Lap1(Δf/ε), . . . , Lapd(Δf/ε) are independent Laplace ran-
dom variables.

Theorem 2 [35]. Let Y ∼ Laplace (λ), then, the distribution
of Y is in�nitely divisible. Furthermore, for every integer
M≥ 1, Y � ∑Mm�1(Y1m − Y2m), where Y1m and Y2m are
i.i.d. with the Gamma density f(x) � ((1/λ)(1/n)/
Γ(1/n))x(1/n)− 1e− (x/λ), x≥ 0.

Theorem 3 (Sequential Composition). [34]. Let M1,
M2, . . . ,Mn be a series of privacy algorithms, and their
privacy budgets are ε1, ε2, . . . , εn , for the same data setD, the
combined algorithm M(M1(D),M2(D), . . . ,Mn(D)) pro-
vides ∑ni�1 εi di�erential privacy.

Theorem 4 (Parallel Composition). [34]. Let M1,
M2, . . . ,Mn be a series of privacy algorithms, which privacy
budgets are ε1, ε2, . . . , εn, D1, D2, . . . , Dn are disjoint data
sets, the combined algorithm M(M1(D1),M2(D2), . . . ,
Mn(Dn)) provides max1≤i≤nεi di�erential privacy.

3.3. Paillier Encryption andDecryption. In this paper, we use
Paillier encryption scheme [36] to encrypt the local shared
data before being aggregated.�e Paillier encryption scheme
is described as follows:

(1) Key generation: n � pq, where p and q are large
primes, λ � lcm(p − 1, q − 1). Euler functionΦ(n) �
(p − 1)(q − 1), g ∈ Z∗n2 , the (n, g) is public key and
λ is private key.

(2) Encryption: plaintext m< n, randomly select r< n,
ciphertext c � gm · rn mod n2 .

(3) Decryption: ciphertext c< n2, plaintext m �
(L(cλ mod n2)/L(gλ mod n2)) mod n, where L(u) �
(u − 1)/n.

Paillier encryption is additively homomorphic. We use
[[m]] to represent the encrypted ciphertext of m. �en,
∀m1, m2 ∈ Zn, k ∈ N, [[m1]] · [[m2]] � [[m1 +m2]] and
[[m]]k � [[k ·m]].

4. The HPDP-DP Method

4.1. Problem Statement. �ere existM(M≥ 2) data owners,
the m-th data owner Pm holds a local data set denoted as
Xm � xm1 , xm2 , . . . , xmNm

{ }, Nm is the number of individuals
owned by data owner Pm,m � 1, . . . ,M, N � ∑Mm�1Nm.
Each individual is a p-dimensional vector. �e data sets
X1, X2, . . . , XM can be viewed as horizontally split the in-
tegrated data set X � ∪Mm�1Xm byM data owners. �at is all
the local data sets have the same attributes and do not in-
tersect with each other. Our goal is to design an algorithm
that can publish these horizontally partitioned data sets
privately; speci�cally, it is that with the assistance of a

s x

Figure 2: Graphical model for principal component analysis.
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semitrusted curator, the M data owners and the curator
collaborate to publish a synthetic data set 􏽥X � ∪M

m�1
􏽥Xm,

which has the same scale and statistical properties as the data
set X � ∪M

m�1Xm. Typically, we assume that the data owners
and the curator are honest-but-curious, that is, they will
follow the protocol but try to find out as much secret in-
formation as possible.

In view of the above scenario, we propose a horizontally
partitioned data publishing method with differential privacy
(HPDP-DP). (e Algorithm 1 depicts the HPDP-DP algo-
rithm. First, the data owner perturbs the local scatter matrix
with random noise that obeys the Gamma distribution and
sends it to the semitrusted curator. (en the semitrusted
curator aggregates all the local scatter matrices to get the noisy
estimator of the covariance matrix of the pooled data. (e
semitrusted curator performs eigenvalue decomposition on
the covariance matrix to get the principal components and
then the top k principal components are sent to each data
owner. At last, each data owner uses the top k principal
components and the generative model of probabilistic
principal component analysis to generate a synthetic data set.

In order to reduce the impact of noise on the availability
of published data, the HPDP-DP algorithm employs a

distributed Laplace mechanism to add noise to the local
scatter matrix. According to (eorem 2, the infinite addi-
tivity of Laplace distribution, we perturb the local scatter
matrix with the noise follows a Gamma distribution, which
makes the estimator of the covariance matrix of the pooled
data contain the same level of noise as the centralized scene.
Inspired by [37], since the step of perturbing the local scatter
matrix with gamma-distributed noise does not satisfy dif-
ferential privacy, we will use the Paillier encryption scheme
to encrypt the perturbed scatter matrix to protect the privacy
of local data.(eHPDP-DP algorithmmainly consists of the
following stages.

Initialization phase: in the initialization phase, the
Paillier cryptographic system generates the public key
(n, g) and the private key λ. (e system also generates M +

1 factors θ0, θ1, . . . , θM, where θm ∈ Zn2, m � 0, 1, 2, . . . , M

and θ0 · θ1 · · · · · θM � 1. (e factor θ0 and the private
key λ are secretly sent to the curator. (e public key (n, g)

and θm are secretly sent to the data owner Pm,
m � 1, 2, . . . , M.

Perturbation and encryption phase: each data owner
randomly perturbs the local scatter matrix. (e scatter
matrix of the data owner Pm is given by

Input: Data sets Xm , m � 1, 2, . . . , M. Private key λ, public key (n, g). θm(m � 0, 1, 2, . . . , M), where θ0 · θ1 · · · · · θM � 1. Privacy
budget ε and cumulative contribution rate c

Output: Synthetic data set 􏽥X � ∪M
m�1

􏽥Xm

(1) form � 1 to Mdo
(2) Data owner generates p × p noise matricesBm1 � (bm1

ij )p×p and Bm2 � (bm2
ij )p×p, letBm1 and Bm2 be the symmetric matrix with the

upper triangle (including the diagonal) entries are sampled from Gamma (1/M, p + p2/Mε), and set bm1
ji � bm1

ij , bm2
ji � bm2

ij ,∀i< j.
(3) Compute: Lm � (lmij )p×p � 􏽐

Nm

k�1(x
m
k − μm)(xm

k − μm)T

(4) Compute: 􏽥Lm � (􏽥l
m

ij )p×p � (lmij + bm1
ij − bm2

ij )p×p

(5) fori � 1 to pdo
(6) forj � 1 to pdo
(7) Compute: θm · [[􏽥l

m

ij ]]←θm · g
lm
ij

+bm1
ij − bm2

ij · rn mod n2

(8) end for
(9) end for
(10) end for
(11) returnCm � (θm · [[􏽥l

m

ij ]])p×p, m � 1, 2, . . . , M

(12) Compute the Hadamard product: C←(θ0)p×p°C1°C2°· · ·°CM
(13) Decrypt C: 􏽥L � (􏽐

M
m�1(lmij + bm1

ij − bm2
ij ))p×p←C

(14) Compute: Σ � (1/N)􏽥L

(15) Eigenvalue decomposition of matrix Σ, return eigenvalues in descending order λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 , and corresponding
eigenvectors u1,u2, . . . , up

(16) fork � 1 to pdo
(17) if􏽐k

i�1 λi/􏽐
p

i�1 λi ≥ cthen
(18) Λk � (λ1, λ2, . . . , λk)

(19) Uk � (u1,u2, . . . , uk)

(20) end if
(21) end for
(22) returnΛk, Uk

(23) form � 1 to Mdo
(24) Compute Sm � Xm × Uk

(25) Use the model defined in (eorem 1 to generate a synthetic data set 􏽥Xm

(26) end for
(27) return 􏽥X � ∪M

m�1
􏽥Xm

ALGORITHM 1: HPDP-DP algorithm.
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Lm � l
m
ij􏼐 􏼑

p×p
� 􏽘

Nm

k�1
xm

k − μm
( 􏼁 xm

k − μm
( 􏼁

T

� 􏽘

Nm

k�1
xm

k xm
k( 􏼁

T
− Nmμ

m μm
( 􏼁

T
.

(5)

where μm � (1/Nm) 􏽐
Nm

k�1 x
m
k .

(e data owner Pm generates two p × p symmetric
random matrices Bm1 � (bm1

ij )p×p and Bm2 � (bm2
ij )p×p; bm1

ij

and bm2
ij are sampled from Gamma((1/M), (p + p2 )/Mε),

1≤ i≤ j≤p . (en, the local noisy scatter matrix is 􏽥Lm �

(􏽥l
m

ij )p×p � (lmij + bm1
ij − bm2

ij )p×p. Using the public key (n, g)

and θm to encrypt each element of 􏽥Lm to get the encrypted
matrix Cm � (θm[[􏽥l

m

ij ]])p×p � (θm · g
lm
ij

+bm1
ij − bm2

ij · rn·

modn2)p×p which will be sent to the curator,
m � 1, 2, . . . , M.

Aggregation and decryption phase: After receiving these
encrypted matrices C1, C2, . . . , CM, the curator performs the
Hadamard product on these encrypted matrices. We use the
symbol ° as the Hadamard product of matrices.

θ0( 􏼁p×p°C1°C2°· · ·°CM � θ0 􏽙

M

m�1
θm · g

lm
ij

+bm1
ij − bm2

ij · r
n

· modn
2⎛⎝ ⎞⎠

p×p

� 􏽙
M

m�1
·g

lm
ij

+bm1
ij − bm2

ij · r
n

· modn
2⎛⎝ ⎞⎠

p×p

� g
􏽘
m�1Ml

m
ij + 􏽘

M

m�1 b
m1
ij − b

m2
ij􏼐 􏼑 · r

Mn
· modn

2⎛⎝ ⎞⎠

p×p

� g
􏽘
m�1Ml

m
ij + Lap p + p

2/ε􏼐 􏼑 · r
Mn

· modn
2⎛⎝ ⎞⎠

p×p

� 􏽘
M

m�1
l
m
ij + Lap

p + p2

ε
􏼠 􏼡⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎛⎝ ⎞⎠

p×p

,

(6)

where 􏽐
M
m�1(bm1

ij − bm2
ij ) ∼ Lap((p + p2)/ε) holds due to

(eorem 2. (e curator decrypts the above results to get the
sum of local scatter matrices with Laplace noise
􏽥L � 􏽐

M
m�1

􏽥Lm � 􏽐
M
m�1 Lm +(Lap((p + p2)/ε))p×p, which is

used as an estimation of the scatter matrix of the pooled data,
and then the estimation of the covariance matrix of the
pooled data is Σ � (1/N)􏽥L.

In this stage, our idea is to use the weighted average of
the local covariance matrices to estimate the covariance
matrix of the pooled data. Assuming that the covariance
matrix of data owner Pm is 􏽥Σm, the relationship with the
scatter matrix is 􏽥Σm � (􏽥Lm/Nm), and then the estimation of
the covariance matrix of the pooled data is
Σ � 􏽐

M
m�1(Nm/N)􏽥Σm � (1/N) 􏽐

M
m�1

􏽥Lm � (1/N)􏽥L.
Principal component analysis phase: the curator performs

eigenvalue decomposition on matrix Σ . (e curator gets the
eigenvectors (the top k principal components) u1,u2, . . . , uk

and then sends them to each data owner.
Generate synthetic data set phase: Each data owner uses

the returned top k principal components and the generative
model of probabilistic principal component analysis in
(eorem 1 to generate a synthetic data set.

4.2. Analysis

4.2.1. Security Analysis

Theorem 5. "e data set owned by Pm is Xm and its cor-
responding scatter matrix is Lm � (lmij )p×p, m � 1, 2, . . . , M.
Defining the query function,

f X1, X2, . . . , XM( 􏼁 � 􏽘

M

m�1
Lm, (7)

the output result intended to be protected. Bm1 � (bm1
ij )p×p

and Bm2 � (bm2
ij )p×p are symmetric random matrices will be

added to Lm, bm1
ij and bm2

ij are sampled from
Gamma((1/M), (p + p2/Mε)), 1≤ i≤ j≤p. If the random
algorithm M holds

M X1, X2, . . . , XM( 􏼁 � f X1, X2, . . . , XM( 􏼁

+ 􏽘
M

m�1
Bm1 − Bm2( 􏼁,

(8)

then the algorithm M satisfies ε differential privacy.

6 Security and Communication Networks



Proof. According to (eorem 2, it can be known each el-
ement of 􏽐

M
t�1(Bm1 − Bm2) obeys Lap(p(1 + p)/ε). So, next

we will prove if algorithm M holds

M X1, X2, . . . , XM( 􏼁 � f X1, X2, . . . , XM( 􏼁 + B, (9)

B � (bij)p×p is a symmetric random matrix and bij is
sampled from Lap(p(1 + p)/ε) , 1≤ i≤ j≤p, then the al-
gorithm M satisfies ε differential privacy.

We denote the two neighboring data sets as
X � ∪M

m�1Xm and 􏽢X � ∪M
m�1

􏽢Xm; there is only one
individual is different, without losing general assumption,
suppose the different individuals are in XM and 􏽢XM.
We denote the only two different individuals as xM

NM
∈ XM

and 􏽢xM
NM
∈ 􏽢XM. Assume that all individual data have

been normalized to the [0,1] interval. (e estimation of the
scatter matrices of X and 􏽢X are as follows:

L � 􏽘
M

m�1
Lm � 􏽘

M

m�1
l
m
ij􏼐 􏼑

p×p
, (10)

and

􏽢L � 􏽘
M− 1

m�1
Lm + 􏽢LM � 􏽘

M− 1

m�1
l
m
ij􏼐 􏼑

p×p
+ 􏽢l

M

ij􏼒 􏼓
p×p

. (11)

Let B � (bij)p×p and 􏽢B � (􏽢bij)p×p be two independent
symmetric random matrices, where bij and 􏽢bij are sampled
from Lap(p(1 + p)/ε), 1≤ i≤ j≤p.

Let S � L + B and 􏽢S � 􏽢L + 􏽢B , then the log ratio of the
probabilities of S and 􏽢S at a point H is given by

ln
P H|X{ }

P H| 􏽢X􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� ln

P H − L|X{ }

P H − 􏽢L| 􏽢X􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (12)

According to the definition of differential privacy (Defi-
nition 1), we need to prove that the following inequalities holds:

ln
P H|X{ }

P H| 􏽢X􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� ln

P H − L|X{ }

P H − 􏽢L| 􏽢X􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε. (13)

(e mean vectors of XM and 􏽢XM are as follows:

μM
�

1
NM

􏽘

NM

k�1
xM

k , (14)

and

􏽢μM
�

1
NM

􏽘

NM− 1

k�1
xM

k + 􏽢xM
NM

⎛⎝ ⎞⎠, (15)

so 􏽢μM � μM + (1/NM)(􏽢xM
NM

− xM
NM

). Hence, we have the
following:

l
M
ij − 􏽢l

M

ij

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 � 􏽘

NM

k�1
x

M
ik x

M
jk − NMμM

i μM
j − 􏽘

NM− 1

k�1
x

M
ik x

M
jk + 􏽢x

M
iNM

􏽢x
M
jNM

− NM􏽢μM
i 􏽢μM

j
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� x
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iNM

x
M
jNM

− 􏽢x
M
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􏽢x
M
jNM

+ NM 􏽢μM
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j􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� x
M
iNM

x
M
jNM

− 􏽢x
M
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􏽢x
M
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+ μM
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M
jNM

− x
M
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􏼐 􏼑 + μM
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M
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M
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1

NM
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− x
M
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M
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M
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M
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M
jNM
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(16)

(erefore, the following formula holds:

ln
P H|X{ }

P H| 􏽢X􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� ln

P H − L|X{ }

P H − 􏽢L| 􏽢X􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
ε

p(1 + p)
􏽘

1≤i≤j≤p
hij − 􏽢l

M

ij

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 − hij − l
M
ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤
ε

p(1 + p)
􏽘

1≤i≤j≤p
l
M
ij − 􏽢l

M

ij

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

≤
ε

p(1 + p)
p(1 + p) � ε.

(17)

So the conclusion of (eorem 5 holds.
Security against external attacks: external attacker will

eavesdrop on data sent by local data owners to the curator.
According to the semantic security of Paillier encryption
against plaintext attacks, external attacker unable to decrypt
data (θm · g

lm
ij

+bm1
ij − bm2

ij · rn · modn2)p×p without knowing
private key λ and θm, 1≤m≤M. External attacker may also
eavesdrop on the aggregated value of the data owners
(g􏽐

M

m�1 lm
ij

+bm1
ij − bm2

ij · rMn · mod n2)p×p, external attacker unable
to decrypt data without knowing private key λ. Even though
the external attacker get the sum of scatter matrices with
noise (􏽐

M
m�1 lmij + bm1

ij − bm2
ij )p×p, because it contains Laplace

noise, so the local data are still safe according to (eorem 5.
Security against internal attacks: internal adversaries are data
owners and the curator. (e data owner Pm holds θm
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secretly, the rest of the data owners and the curator cannot
decrypt (θm · g

lm
ij

+bm1
ij − bm2

ij · rn · modn2)p×p without private
key λ and θm unless the curator colluded with the M − 1
data owners. (e curator can use private key λ and θ0 to
decrypt the aggregated value (􏽑

M
m�1 (θm · g

lm
ij

+bm1
ij − bm2

ij · rn·

modn2)p×p, but the curator can only get the aggregated value
with Laplace noise, so the local data are safe according to
(eorem 5. □

4.2.2. Complexity Analysis. Computation time cost analysis:
the total time complexity of Algorithm 1 is O(Mp2 + Mn),
where M is the number of data owners, p is the number of
attributes, n � n1 + n2 + · · · + nM, nm is the number of
samples owned by data owner Pm, m � 1, 2, ·, M . It is due to
the following facts. In Algorithm 1, the major computational
cost of Algorithm 1 is reflected in lines 1–11, lines 16–21, and
lines 23–26. (e lines 1 − 11 are to perturb and encrypt the
scatter matrix of the local data of the M data owners, and the
time complexity is O(Mp2). (e lines 16 − 21 are to perform
principal component analysis on the aggregated scatter
matrix, and its time complexity is O(K), where K is the
number of retained principal components, which is pro-
portional to p, so the complexity is O(p). (e lines 23 − 26
are that each data owner uses (eorem 1 to generate a
published data set, and the time complexity is
O(Mn1 + Mn2 + · + MnM) � O(Mn). In summary, the time
complexity of Algorithm 1 is O(Mp2 + p + Mn), which is
O(Mp2 + Mn) .

Communication cost analysis. (ere exist three stages that
incur communication costs. (e first stage is the M data
owners send the local scatter matrix to the curator, the size of
the message sent by each data owner is p2, the total size of
the message sent in this stage is Mp2. (e second stage is the
curator sends the top K eigenvalues and their corresponding
eigenvectors to each data owner; the total size of the message
sent in this stage is MpK2.(e third stage is each data owner
sends the synthetic data set to the curator; the size of the
message sent by data owner Pm is nmp, m � 1, 2, . . . , M; the
total size of the message sent during this stage is
np � (n1 + n2 + · · · + nM)p.

5. Experiment

In this section, we experimentally evaluate the performance
of HPDP-DP algorithm by comparing with the DP-SUBN3

algorithm [30]. We conduct experiments on different real
data sets that are NLTCS [38] and Adult [39] data sets.
NLTCS data set contains 21574 individuals, each individual
has 16 attributes. Adult data set contains 45222 individuals,
each individual has 15 attributes. We use the method in [30]
to preprocess the Adult data set. After processing, the
number of attributes in the Adult data set is 52. We use SVM
classification accuracy to evaluate the performance of
HPDP-DP algorithm. We train multiple classifiers on
published synthetic data sets. For NLTCS data set, predicting
whether a person is unable to go outside and whether a
person is unable to manage money. For Adult data set,

predicting whether a person holds a postsecondary degree
and whether a person earns more than 50K. In each clas-
sification task, we use 20% of the individuals as the test set
and 80% of the individuals as the training set. Each ex-
periment is run five times, and the average results are re-
ported. (e number of retained principal components is
determined by the cumulative contribution rate c. (e cu-
mulative contribution rate c is set to 0.8 for NLTCS data set
and 0.95 for Adult data set. In order to measure the per-
formance of the HPDP-DP algorithmmore clearly, the same
SVM classifier are trained on the original data set; we label
the SVM classification accuracy on the original data set with
“No Privacy.”

5.1. "e Impact of the Number of Principal Components
Retained on the SVM Classification Accuracy. In this
section, we train multiple classifiers to study the influence of
the number of principal components retained on the SVM
classification accuracy. In this set of experiments, the
number of data owners is set to 3; the privacy budget ε is set
to 0.5.

For the Adult data set, Figures 3(a) and 3(c) show the
cumulative contribution rate and individual contribution
rate of the principal components. Because there are more
attributes after preprocessing the Adult data set, so we only
marked the corresponding SVM classification accuracy
when the number of retained principal components k are
5, 10, 15, 20, 25, 30, 35, and 40 in Figures 3(b) and 3(d). For
the NLTCS data set, it can be seen from Figures 3(e) and 3(g)
that the contribution rate of only the first principal com-
ponent has reached more than 30%. (e cumulative con-
tribution rate of the top seven principal components can
reach 80%, and it can be seen from Figures 3(f) and 3(h) that
the corresponding SVM classification accuracy can reach
more than 80%.

(e common conclusion is that when the cumulative
contribution rate increases (the number of principal com-
ponents retained increases), the SVM classification accuracy
increases accordingly. (is phenomenon is consistent with
the principle of principal component analysis. (e principal
components are not correlated with each other and contain
the information of the original data. (e more principal
components retained, the more information of the original
data contained in the published data, and the better the
performance of the published data set.

5.2. Performance Comparison of HPDP-DP and DP-SUBN3

with Different Privacy Budgets. In this part of the experi-
ments, we fixed the number of data owners to three while
making the privacy budget ε take different values. Figure 4
shows the impact of privacy budgets on HPDP-DP and
DP-SUBN3 algorithms. Figures 4(a) and 4(b) show the
SVM classification accuracy of the HPDP-DP and DP-
SUBN3 algorithms on Adult data set. Figures 4(c) and
4(d) show the SVM classification accuracy of the HPDP-
DP and DP-SUBN3 algorithms on NLTCS data set. From
Figure 4, except for the salary classifier of the Adult data
set, the performance of HPDP-DP algorithm is
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Figure 3: Continued.
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Figure 3: �e impact of the number of principal components retained on the SVM classi�cation accuracy. (a) Adult, Y� salary. (b) Adult,
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Figure 4: Performance comparison of HPDP-DP and DP-SUBN 3 with di�erent privacy budgets. (a) Adult, Y� salary. (b) Adult,
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10 Security and Communication Networks



signi�cantly better than DP-SUBN3 algorithm. Even for
the salary classi�er of the Adult data set, the SVM
classi�cation accuracy of HPDP-DP algorithm is still
not lower than DP-SUBN3 algorithm. From Figure 4,
the experimental results show that the SVM classi�cation
accuracy of both synthetic data sets released by
HPDP-DP and DP-SUBN3 algorithms increases with
the increase of the privacy budget. �is is because,
according to the de�nition of di�erential privacy, when
the privacy budget ε increases, the degree of privacy
protection decreases and the availability of the released
data increases.

5.3. �e Impact of the Number of Data Owners on the SVM
Classi�cation Accuracy. In order to study the e�ect of the
number of data owners on the performance of the HPDP-
DP algorithm, in this section, we set the number of data
owners to 2, 4, 6, 8, and 10. We �x the privacy budget ε to
0.2. �e results in Figure 5 show that the performance of
HPDP-DP algorithm is better than that of DP-SUBN3

algorithm. We can observe that when the number of data
owners increases, the SVM classi�cation accuracy of the
synthetic data sets released by HPDP-DP and DP-SUBN3

algorithms increases accordingly. For DP-SUBN3 algo-
rithm, the reason is that when the number of data owners
increases, the number of update iterations in DP-SUBN3

algorithm increases, which helps to get better Bayesian
network. For HPDP-DP algorithm, we use the weighted
average of the local covariance matrices as an estimate of
the covariance matrix of the pooled data, and the esti-
mation e�ect will get better as the number of data owners
increases. At the same time, we use the distributed Laplace
mechanism to add noise to the shared data, so even when
the number of data owners increases, the aggregated result
still contain only one share of random noise (the same level
as the centralized scene). �e scale of random noise is
determined only by the privacy budget and the sensitivity.
�erefore, the SVM classi�cation accuracy of the synthetic
data set released by HPDP-DP algorithm increases as the
number of data owners increases.

6. Conclusion

In this paper, in order to privately publish the horizontally
partitioned data owned by multiple parties, we present a
multiparty horizontally partitioned data publishing method
with di�erential privacy. We use the weighted average of the
covariance matrices of the local data to estimate the co-
variance matrix of the pooled data and then obtain the
principal components of the pooled data. In order to protect
the privacy of the local data and improve the utility of the
published data, we exploit the in�nite divisibility of the
Laplace distribution to add noise to the locally shared data to
improve the utility of the published data. �e experimental
results show that the synthetic data set released by the
HPDP-DP algorithm can maintain high utility. However,
this paper also has limitations. (1) �e principal component
analysis is only suitable for linear dimensionality reduction
and not for nonlinear dimensionality reduction. (2) �e
HPDP-DP algorithm is only suitable for horizontally par-
titioned data publishing, not for vertically partitioned data
publishing. We will conduct research on these aspects in the
future.
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Logistic regression is a data statistical technique, which is used to predict the probability that an event occurs. For some scenarios
where the storage capabilities and computing resources of the data owner are limited, the data owner wants to train the logistic
regression model on the cloud service provider, while the high sensitivity of training data requires effective privacy protection
methods that enable efficient model training without exposing information about the training data to untrusted cloud service
providers. Recently, several works have used cryptographic techniques to implement privacy-preserving logistic regression in such
application scenarios. However, on large-scale training datasets, the existing works still have the problems of long model training
time and poor model performance. To solve these problems, based on the homomorphic encryption (HE), we propose an efficient
privacy-preserving outsourced logistic regression (P2OLR) on encrypted training data, which enables data owners to utilize the
powerful storage and computing resources of cloud service providers for logistic regression analysis without exposing data
privacy. Furthermore, the proposed scheme can pack multiple messages into one ciphertext and perform the same arithmetic
evaluations on multiple plaintext slots by using the batching technique and single instruction multiple data (SIMD)mechanism in
HE. On three public training datasets, the experimental results show that, compared with the existing schemes, the proposed
scheme has better performance in terms of the encryption and decryption time of the data owner, the storage of encrypted training
data, and the training time and accuracy of the model.

1. Introduction

Logistic regression (LR) [1] is a popular classificationmethod,
which has been used in numerous practical applications
including cancer diagnosis [2], credit scoring [3], genome-
wide association study [4], and more. LR can not only be
applied to the problem of predicting the probability of oc-
currence of various events, but also is competitive with other
classification algorithms in terms of prediction accuracy. In
some practical application setting, the data owners have the
limited computing and storage resources, and thus wants to
outsource some of the heavy computation in logistic re-
gression model training, the outsourced data analysis [5] has
received considerable attention recently, which enables data
owners to train a LR model using the powerful storage ca-
pacity and computing resources of cloud service providers [6].

However, the high sensitivity of training data requires to
perform an effective privacy protection [7–10] that enable
efficient and secure logistic regression analysis without
leaking information about the training data to untrusted
cloud service provider. Recently, to meet such application
requirements, based on the cryptographic techniques like
secure multiparty computation (MPC) [11] and homo-
morphic encryption (HE) [12], there have been several re-
searches on the privacy-preserving logistic regression
(PPLR) [13–22], which enables data owners to employ the
service providers’ powerful data storage and computing
resources for logistic regression model training without
exposing its own data privacy. Specifically, the data owner
encrypts its training data, and sends encrypted training data
to the service provider. *e service provider can train a
logistic regression model on encrypted training data, and
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returns the encrypted training result to the data owner. *e
data owner can decrypt the encrypted training result to
obtain final training result.

Unfortunately, on large-scale training dataset, the
existing PPLR schemes [13–22] still have the bottlenecks of
high model training time and low model precision. To solve
these problems, based on the HE cryptographic technique
[23] that has the property that the operation results on
ciphertexts are consistent with those on plaintexts, we design
an efficient privacy-preserving outsourced logistic regres-
sion (P2OLR). *e main contributions are as follows:

(1) Firstly, we propose amethod for achieving P2OLR on
encrypted data from HE. To speed up the model
training, the proposed P2OLR scheme employs the
batching technique to pack multiple elements into
multiple plaintext slots, encrypts them into one ci-
phertext, and performs the same arithmetic opera-
tions to multiple plaintext slots in the SIMD
mechanism.

(2) Secondly, we evaluate the proposed P2OLR on three
public datasets [18]. Under the same experimental
environment, compared with the related P2OLR
[17, 18, 22], the model training time of the proposed
P2OLR is reduced by more than 71.7%, and the
proposed P2OLR has a better model performance.

*e rest of this paper is arranged as follows. We present
the related works in Section 2. We review the preliminaries
related to our P2OLR in Section 3. In Section 4, ourP2OLR is
described. *e performance evaluation for our P2OLR is
presented in Section 5. *e security analysis of our P2OLR is
shown in Section 6. Finally, we conclude in Section 7.

2. Related Works

*ere have been a lot of works on achieving PPLR using
cryptographic techniques. In this paper, we mainly focus on
the PPLR based on HE. To outsource the LR model training
to a cloud service provider in a privacy-preserving manner,
based on the HE scheme (FV) [24], Charlotte et al. [13]
proposed an algorithm to train a LR model on an homo-
morphically encrypted dataset, which is implemented based
on the FV-NFLlib library [25]. However, the accuracy of
model is poor due to the use of a quadratic polynomial to
approximate the sigmoid function. Furthermore, the
training time grows linearly in the number of training
samples. Using the HE scheme (FV) [24] and 1 bit gradient
descent (GD)method, Chen et al. [14] presented amethod to
train LR over encrypted data, which is implemented through
the SEAL library [26], and allows an arbitrary number of
iterations by using bootstrapping [27] in FV, but boot-
strapping introduces a significant decrease in performance.
Focusing on the prediction process of LR, based on the HE
scheme (BGV) [28], Li and Sun [15] proposed a secure
protocol to solve the data leakage problem during the LR
prediction process, and implement their scheme by the
HElib library [29]. Based on the Chimera framework [30]
that allows switching between HE schemes TFHE [31] and
CKKS [23], Carpov et al. [16] proposed a solution to achieve

semi-parallel LR on encrypted genomic data, which per-
forms the bootstrapping [27] without re-encrypting the
genomic data for an arbitrary number of iterations, and is
implemented by using TFHE library [32] and HEAAN li-
brary [33].

Adapting the packing and parallelization techniques of
approximate HE scheme (CKKS) [23], Kim et al. [17]
proposed a PPLR, which is implemented through using the
HEAAN library [33], and uses least squares approximation
to improve the accuracy and efficiency of LR model training.
However, as the number of iterations increases, the pa-
rameters of the CKKS scheme also need to become larger,
which makes the training time increase dramatically. Kim
et al. [18] applied the HE scheme (CKKS) [23] to achieve
PPLR. *eir scheme is implemented via using the HEAAN
library [33]. Moreover, they devised an encoding method to
decrease the storage of encrypted training data and adapted
Nesterov’s accelerated GD method to reduce the number of
iterations as well as the computational cost. However, their
scheme requires the assumption that both the number of
training samples and features are power-of-two, which
makes the scheme unsuitable for practical applications. To
reduce the number of iterations, Cheon et al. [19] proposed
an ensemble GD method based on the HE scheme (CKKS)
[23], and applied it to the PPLR, in which they approximate
the sigmoid function using a polynomial of 5-degree ob-
tained by least squares approximation. *eir scheme is
implemented based on the HEAAN library [34]. To run a
genome-wide association study on encrypted data, using the
SIMD capabilities of HE scheme (CKKS) and Nesterov’s
accelerated GD, Bergamaschi et al. [20] introduced a method
for homomorphic training of LR model, which is imple-
mented based on the HElib library [29]. To protect the
private information of both parties, based on the HE scheme
(CKKS) [23] and gradient sharing technology, Wei et al. [21]
proposed a protocol to train an LR model on vertically
distributed data between two parties, which does not require
trusted third-party nodes and is implemented by the HElib
library [29]. Based on the HE scheme (CKKS) [23], Fan et al.
[22] offered a PPLR algorithm, where they approximate the
sigmoid function in LR by Taylor’s theorem, and use row
encoding to encrypt training samples, but as the number of
samples increased, this will lead to longer model training
time.

3. Preliminaries

3.1. System Model. As can be seen in Figure 1, the system
model of the proposed P2OLR considers two entities, namely
a data owner (DO) and a service provider (SP). For read-
ability, the definitions of the notations in this paper are
shown in Table 1. DO: It has limited computational re-
sources, and wants to use SP’s data analysis service on
encrypted data to train a LRmodel without revealing its own
training data privacy. SP: It is a semi-trusted entity with
powerful data storage and computing capabilities, and can
provide data analysis and statistical services on encrypted
data for DO. Specifically, DO chooses poly_modulus_degree
N, coeff_modulus Q, and runs key_generation algorithm to
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generate the secret_key sk, public_key pk, relinear-
ization_key rk, galois_key gk. Next, DO encrypts the
training data D ∈ Rm×n into ciphertexts D, encrypts the
initial weight w

(0)
0 , w

(0)
1 , · · · , w

(0)
n− 1􏽮 􏽯 into ciphertexts W(0),

encrypts the learning rate α into one ciphertext α/m, and
sends N, Q, Δ, pk, rk, gk, t, D, W(0), α/m to SP. SP performs
the P2OLR algorithm and returns the ciphertext result W(t)

of the t -th iteration to DO. DO decrypts the ciphertext result
W(t) to obtain final result w

(t)
0 , w

(t)
1 , · · · , w

(t)
n− 1􏽮 􏽯.

3.2. Homomorphic Encryption. Homomorphic encryption
(HE) is a cryptographic technique, which allows operations
on ciphertexts without decryption, and guarantees that the
computation results on ciphertexts are consistent with the
computation results on plaintexts. We adopt the HE scheme
(CKKS) [23] based on the Ring Learning with Errors
(RLWE) problem, which can encrypt multiple elements in
one ciphertext and supports the single instruction multiple
data (SIMD) operations. Suppose ΦM(X) � XN + 1 denotes
the M -th cyclotomic polynomial, where N is power of 2.
R � Z[X]/(XN + 1) denotes the cyclotomic ring of poly-
nomials. Rq � R/qR � Zq[X]/(XN + 1) denotes the resi-
due ring of R modulo q. H denotes a subring of complex
vector CN that is isomorphic to CN/2. σ: R⟶ σ(R)⊆H
denotes a canonical embedding that transforms a plaintext
polynomial R into a complex vector H. π: H⟶ CN/2

denotes a natural projection that transforms a complex
vector CN to CN/2. HE scheme (CKKS) [23] supports the
operations as follows, which can be found in the Appendix.
For ease of description, we define the Algorithms 1–9.

3.3. Sigmoid Approximation. Since the existing HE scheme
can only effectively support polynomial arithmetic com-
putations, the computation of sigmoid function
σ(x) � 1/(1 + e− x) using HE is a barrier to the realization of
P2OLR. To find a approximate polynomial of σ(x), adapting
the least squares method, we consider the 7° polynomial
g(x) � a0 + a1x + a3x

3 + a5x
5 + a7x

7 over the domain
[− 8, 8], where a0 � 1/2, a1 � 1.73496/8, a3 � 4.19407/83,
a5 � 5.43402/85, a7 � 2.50739/87. σ(x) and g(x) can be seen
in Figure 2, the maximum errors between σ(x) and g(x) are
about 0.032. g(x) over encrypted data x from HE can be
achieved by the Algorithm 10.

3.4. Logistic Regression. Logistic regression (LR) is a statis-
tical analysis method for predicting the probability of an
event. We consider the case where the predicted value is a
binary dependent variable. Assuming that a dataset consists
of m samples of the form yi, xi􏼈 􏼉 with yi ∈ 0, 1{ } and
xi � xi,1, xi,2, · · · , xi,N/2− 1􏽮 􏽯 ∈ Rn− 1, the goal of LR is to find
the optimal parameters w � w0, w1, · · · , wn− 1􏼈 􏼉 that mini-
mizes the negative log-likelihood function (loss function)
J(w) � 1/m · 􏽐

m− 1
i�0 (yi · log(σ(di · wT)) + (1 − yi) · (1−

log(σ(di · wT)))), where di � 1, xi􏼈 􏼉. A common method for
minimizing loss function J(w) is a gradient descent (GD)
algorithm, which finds the local extremum of a loss function
by following the direction of the gradient. *e gradient of

J(w) with respect to w is calculated by
∇J(w) � 1/m · 􏽐

m− 1
i�0 ((σ(− di · wT) − yi) · di). Let wk be the

regression parameters and αk is a learning rate in the k-th
iteration of the GD algorithm, the GD algorithm can update
wk+1 by wk+1←wk − αk/m · 􏽐

m− 1
i�0 ((σ(di · wT) − yi) · di).

4. Privacy-Preserving Outsourced
Logistic Regression

Based on the HE scheme, we propose a P2OLR, where we
employ the batching method to pack multiple elements
into multiple plaintext slots, and encrypt them into one
ciphertext, and then perform the same arithmetic eval-
uations to multiple plaintext slots through the SIMD
mechanism. To reduce the parameters of HE scheme
(CKKS) as well as improve the performance of P2OLR,
the proposed P2OLR allows the interaction between DO
and SP during iterative training. Specifically, SP returns
the ciphertext training result to DO after certain number
of iterations t. DO decrypts the ciphertext training result,
and determines whether the performance of the model
has met the requirements. If so, stops training. Other-
wise, sends encrypted weights to SP to continue training.
Let

D �

y0

y1

⋮

ym− 1

x0,1

x1,1

⋮

xm− 1,1

x0,2

x1,2

⋮

xm− 1,2

· · ·

· · ·

⋱

· · ·

x0,n− 1

x1,n− 1

⋮

xm− 1,n− 1
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

denote the training data sets held by DO, where D consists of
m samples of the form yi, xi,1, xi,2, · · · , xi,N/2− 1􏽮 􏽯 with
yi ∈ 0, 1{ } and xi,1, xi,2, · · · , xi,N/2− 1􏽮 􏽯 ∈ Rn− 1. *e first col-
umn of D denotes the label, other columns D denote the
features. Since DO has limited computational resources, DO
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N, Q, ∆, pk, rk, gk, t, [[D]],[[W(0)]],[[α/m]]

[[W(t)]]

SPDO

Figure 1: System model.

Table 1: *e definitions of the notations.

Notations Definitions
x A message vector [x0, x1, · · · , xN/2− 1]

〈x〉 *e plaintext of message vector x
x *e ciphertext of message vector x
X A list x0, x1, . . . , xn− 1􏼈 􏼉

Xi *e i ciphertext of ciphertext list Xi

x∗ y *e multiplication of x and y, namely [x0 · y0, x1 · y1, · · · , xN/2− 1 · yN/2− 1]

x · y *e product of x and y, namely [x0 · y0, x1 · y1, · · · , xN/2− 1 · yN/2− 1]

x + y *e addition of x and y, namely [x0 + y0, x1 + y1, · · · , xN/2− 1 + yN/2− 1]

x − y *e subtraction of x and y, namely [x0 + y0, x1 + y1, · · · , xN/2− 1 + yN/2− 1]

Input: x

Output: x

(1) encode_double (x, Δ, x)
(2) encrypt (〈x〉, x)
(3) return: x

ALGORITHM 1: x � Enc(x).

Input: X

Output: x0, x1, · · · , xn− 1􏼈 􏼉

(1) for (i � 0 to n − 1) do
(2) decrypt (Xi, 〈xi〉)
(3) decode_double (〈xi〉, xi)
(4) xi � xi.get(0)

(5) end for
(6) return: x0, x1, . . . , xn− 1􏼈 􏼉

ALGORITHM 2: x0, x1, · · · , xn− 1􏼈 􏼉 � Dec(X).

Input: x, y

Output: x∗ y
(1) mod_switch_to_inplace (y, x.parms_id())
(2) multiply (x, y, x∗y)
(3) relinearize_inplace (x∗y, rk)
(4) rescale_to_next_inplace (x∗y)
(5) x∗y.set_scale (Δ)
(6) return: x∗y

ALGORITHM 3: x∗y � Mul(x, y).

Input: x, y

Output: x∗y

(1) encode_double (y, Δ, 〈y〉)
(2) mod_switch_to_inplace (〈y〉, x.parms_id())
(3) multiply_plain (x, 〈y〉, x∗y)
(4) rescale_to_next_inplace (x∗y)
(5) x∗y.set_scale (Δ)
(6) return: x∗y

ALGORITHM 4: x∗y � Mul_Plain(x, y).

Input: x, y

Output: x + y

(1) mod_switch_to_inplace (y, x.parms_id())
(2) add (x, y, x + y)
(3) return: x + y

ALGORITHM 5: x + y � Add(x, y).

Input: x, y

Output: x + y

(1) encode_double (y, Δ, 〈y〉)
(2) mod_switch_to_inplace (〈y〉, x.parms_id())
(3) add_plain (x, 〈y〉, x + y)
(4) return: x + y

ALGORITHM 6: x + y � Add_Plain(x, y).
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wants to outsource to SP to train a LR model without
disclosing its own training data privacy. *e specific de-
scription of the proposed P2OLR is as follows.

(1) DO generates sk, pk, rk, gk􏼈 􏼉, computes l � 2m/N,
calls the Algorithm 1 to encrypt the training data D

into l × n ciphertexts

Input: x, y

Output: x − y

(1) mod_switch_to_inplace (y, x.parms_id())
(2) sub (x, y, x − y)
(3) return: x − y

ALGORITHM 7: x − y � Sub(x, y).

Input: x, y

Output: x

(1) mod_switch_to_inplace (x, y.parms_id())
(2) add inplace (x, y)
(3) return: x

ALGORITHM 8: x � Add_Inplace(x, y).

Input: x � [x0, x1, · · · , xN/2− 1]

Output: y � [􏽐
N/2− 1
i�0 xi, 􏽐

N/2− 1
i�0 xi, · · · , 􏽐

N/2− 1
i�0 xi]

(1) y � x

(2) for (k � N/2; k≥ 1; k � k/2) do
(3) rotate_vector (y, k, gk, z)
(4) add_inplace (y, z)
(5) end for
(6) return: y

ALGORITHM 9: y � Rotate_Sum(x).

1.0

0.5y

0.0

–8 –7 –6 –5 –4

σ (x)
g (x)

–3 –2 –1 0 1
x

2 3 4 5 6 7 8

Figure 2: Sigmoid approximation.
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⟦yT
0 ⟧ � Enc y0, y1, · · · , yN/2− 1􏼂 􏼃( 􏼁,

⟦yT
1 ⟧ � Enc yN/2, yN/2+1, · · · , yN− 1( 􏼁􏼂 􏼃,

⟦yT
l− 1⟧ � Enc ym− (l− 1)·N/2, ym− (l− 1)·N/2+1, · · · , ym− 1􏽨 􏽩􏼐 􏼑,

⟦xT
0,1⟧ � Enc x0,1, x1,1, · · · , yN/2− 1,1􏽨 􏽩􏼐 􏼑,

⟦xT
0,n− 1⟧ � Enc x0,n− 1, x1,n− 1, · · · , yN/2− 1,n− 1􏽨 􏽩􏼐 􏼑,

⟦xT
0,2⟧ � Enc x0,2, x1,2, · · · , yN/2− 1,2􏽨 􏽩􏼐 􏼑,

⟦xT
1,1⟧ � Enc xN/2,1, xN/2+1,1, · · · , yN− 1,1􏽨 􏽩􏼐 􏼑,

⟦xT
1,2⟧ � Enc xN/2,2, xN/2+1,2, · · · , yN− 1,2􏽨 􏽩􏼐 􏼑,

⟦xT
1,n− 1⟧ � Enc xN/2,n− 1, xN/2+1+1,n− 1, · · · , yN− 1,n− 1􏽨 􏽩􏼐 􏼑,

⟦xT
l− 1,1⟧ � Enc xm− (l− 1)·N/2,1, xm− (l− 1)·N/2+1,1, · · · , ym− 1,1􏽨 􏽩􏼐 􏼑,

⟦xT
l− 1,2⟧ � Enc xm− (l− 1)·N/2,2, xm− (l− 1)·N/2+1,2, · · · , ym− 1,2􏽨 􏽩􏼐 􏼑

⟦xT
l− 1,n− 1⟧ � Enc xm− (l− 1)·N/2,n− 1, xm− (l− 1)·N/2+1,n− 1, · · · , ym− 1,n− 1􏽨 􏽩􏼐 􏼑.

(2)

calls the Algorithm 1 to encrypt the initial weight
w

(0)
0 , w

(0)
1 , · · · , w

(0)
n− 1􏽮 􏽯 into n ciphertexts

⟦w(0)
0 ⟧ � Enc w

(0)
0 , w

(0)
0 , · · · , w

(0)
0􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

⟦w(0)
1 ⟧ � Enc w

(0)
1 , w

(0)
1 , · · · , w

(0)
1􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

⟦w(0)
N− 1⟧ � Enc w

(0)
1 , w

(0)
1 , · · · , w

(0)
1􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

(3)

calls the Algorithm 1 to encrypt the learning rate α
into one ciphertext

⟦
α
m
⟧ � Enc α/m, 0, 0, · · · , 0􏽼√√√√√√􏽻􏽺√√√√√√􏽽

N/2

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠. (4)

and sends yT
0 , yT

1 , · · ·, yT
l− 1, x

T
0,1, xT

0,2, · · ·, xT
0,n− 1, xT

1,1,
xT
1,2, · · ·, xT

1,n− 1, x
T
l− 1,1, x

T
l− 1,2, · · ·, xT

l− 1,n− 1, w
(0)
0 , w(0)

1 , · · ·,
w(0)

n− 1, α/m, N, Q, sk, pk, rk, gk, t to SP.
(2) SP computes ciphertexts

⟦xT
i,0⟧ � Enc 1, 1, · · · , 1􏽼√√√√􏽻􏽺√√√√􏽽

N/2

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠, (i � 1, 2, · · · , l − 2),

⟦xT
l− 1,0⟧ � Enc 1, 1, · · · , 1􏽼√√√√􏽻􏽺√√√√􏽽

m− (l− 1)·N/2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎛⎝ ⎞⎠,

(5)

and sets the lists

Input: x

Output: g(x)

(1) x∗x � Mul(x, x)

(2) x∗x∗ x∗x � Mul(x∗ x, x∗ x)

(3) x∗x∗ x∗x∗ x∗x � Mul(x∗ x∗x∗ x, x∗ x)

(4) a7 ∗x � Mul_Plain(x, a7)

(5) a7 ∗x∗x∗x∗x∗x∗x∗x � Mul(x∗x∗x∗x∗x∗x, a7 ∗x)

(6) a5 ∗x � Mul_Plain(x, a5)

(7) a5 ∗x∗x∗x∗x∗x � Mul(x∗x∗x∗x, a5 ∗x)

(8) a3 ∗x � Mul_Plain(x, a3)

(9) a3 ∗x∗x∗x � Mul(x∗x, a3 ∗x)

(10) a1 ∗x � Mul_Plain(x, a1)

(11) a0 + a1 ∗x � Add_Plain(a1 ∗x, a0)

(12) a0 + a1 ∗x − a3 ∗ x∗x∗ x � Sub(a3 ∗x∗ x∗x, a0 + a1 ∗x)

(13) a0 + a1 ∗x − a3 ∗ x∗x∗ x + a5 ∗x∗x∗x∗x∗x � Add(a5 ∗x∗x∗x∗x∗x, a0 + a1 ∗ x − a3 ∗x∗x∗x)

(14) a0 + a1 ∗x − a3 ∗ x∗x∗ x + a5 ∗x∗x∗x∗x∗x − a7 ∗x∗x∗x∗x∗x∗x∗x � Sub(a7 ∗x∗x∗x∗x∗x∗x∗x, a0 +

a1 ∗x − a3 ∗x∗x∗x + a5 ∗x∗ x∗x∗ x∗x)

(15) return: g(x) � a0 + a1 ∗ x − a3 ∗x∗x∗x + a5 ∗x∗x∗x∗x∗x − a7 ∗x∗x∗x∗x∗x∗x∗x.

ALGORITHM 10: g(x) � Sigmoid_Approximation(x).
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Y � ⟦yT
0 ⟧, ⟦y

T
1 ⟧, · · · , ⟦yT

l− 1⟧􏽮 􏽯,

⟦X0⟧ � ⟦xT
0,0⟧, ⟦x

T
0,1⟧, ⟦x

T
0,2⟧, · · · , ⟦xT

0,n− 1⟧􏽮 􏽯,

⟦X1⟧ � ⟦xT
1,0⟧, ⟦x

T
1,1⟧, ⟦x

T
1,2⟧, · · · , ⟦xT

1,n− 1⟧􏽮 􏽯,

⟦Xl− 1⟧ � ⟦xT
l− 1,0⟧, ⟦x

T
l− 1,1⟧, ⟦x

T
l− 1,2⟧, · · · , ⟦xT

l− 1,n− 1⟧􏽮 􏽯,

⟦W(0)⟧ � ⟦w(0)
0 ⟧, ⟦w

(0)
1 ⟧, · · · , ⟦w(0)

n− 1⟧􏽮 􏽯.

(6)

Next, SP calls the Algorithm 11, and returns the
ciphertext result W(t) to DO.

(3) DO calls the Algorithm 2 to decrypt the ciphertext
result W(t) into the result
w

(t)
0 , w

(t)
1 , · · · , w

(t)
n− 1􏽮 􏽯 � Dec(W(t)). Next, DO judges

whether w
(t)
0 , w

(t)
1 , · · · , w

(t)
n− 1􏽮 􏽯 has met the require-

ments. If so, terminates the training. Otherwise, DO
calls the Algorithm 1 to encrypt w

(t)
0 , w

(t)
1 , · · · , w

(t)
n− 1􏽮 􏽯

into n ciphertexts

⟦w(0)
0 ⟧ � Enc w

(t)
0 , w

(t)
0 , · · · , w

(t)
0􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

⟦w(0)
1 ⟧ � Enc w

(t)
1 , w

(t)
1 , · · · , w

(t)
1􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠,

⟦w(0)
n− 1⟧ � Enc w

(t)
n− 1, w

(t)
n− 1, · · · , w

(t)
n− 1􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

N/2

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎝ ⎞⎠.

(7)

and sends w
(0)
0 , w(0)

1 , · · ·, w(0)
n− 1 to SP to continue

training.

5. Performance Evaluation

We implement all experiments on a 32-core Intel Xeon CPU
with 256GB RAM. We compare the performance of the
proposed P2OLR with the related P2OLR [17, 18, 22]. We
employ 5-fold cross-validation method to obtain the validity
of the experimental results. For [17, 18], the implementa-
tions are publicly available at [35, 36], respectively, which
use the HEAAN library [33] to provide HE cryptographic
operations. For [22] and the proposed P2OLR, we employ
the Microsoft SEAL library [26] for the HE cryptographic
operations. For all experiments, we set the learning rate
α � 0.01, random initial weight vector w

(0)
0 , w

(0)
1 , · · · , w

(0)
n− 1􏽮 􏽯

maximum number of iterations λ � 20, and scaling factor
Δ � 240. To guarantee κ � 128 bit security, the scheme [17]
takes the polynomial-modulus-degree N � 217, coefficient-
modulusQ around 2204 to 2406 bits; the scheme [18] sets the
N � 216,Q � 1176 bits; the scheme [22] chooses theN � 215,
Q � 320 bits; For the proposed P2OLR, we select N � 215,
Q � 512 bits. Using the three datasets [18]: D1—Umaru
Impact Study, D2—Myocardial Infarction Study from
Edinburgh, D3—Nhanes III, we compare the proposed
P2OLR with the related P2OLR [17, 18, 22] in terms of the
encryption time (E. time) and decryption time (D. time) of
DO, storage of encrypted training data, and training time
(T. time), accuracy, precision, recall, F1-score and AUC of
model. All comparison results are shown as an average of 10

experiments. *e performance comparisons of the proposed
P2OLR and the related P2OLR [17, 18, 22] are shown in
Table 2.

From Table 2, we can see that, compared with the related
P2OLR [17, 18, 22], the proposed P2OLR has a better per-
formance. Specifically, as shown in Figure 3, under the
training dataset D1, the encryption time of DO in the
proposed P2OLR is 2.01 s, which is reduced by nearly 71.4%,
7.8%, and 93.3% respectively compared with the encryption
time of DO in [17, 18, 22]; under the training dataset D2, the
encryption time of DO in the proposed P2OLR is 2.16 s,
which is reduced by nearly 73.6%, 2.3%, and 96.8% re-
spectively compared with the encryption time of DO in
[17, 18, 22]; under the training dataset D3, the encryption
time of DO in the proposed P2OLR is 3.49 s, which is re-
duced by nearly 75.9%, 81.6%, and 75.0% respectively
compared with the encryption time of DO in [17, 18, 22].

As can be seen in Figure 4, under the training dataset D1,
the decryption time of DO in the proposed P2OLR is 0.23 s,
which is reduced by almost 95.3% and 41.0% respectively in
comparison to the decryption time of DO in [17, 18]; under
the training dataset D2, the decryption time of DO in the
proposed P2OLR is 0.26 s, which is reduced by almost 95.0%
and 36.6% respectively in comparison to the decryption time
of DO in [17, 18]; under the training dataset D3, the de-
cryption time of DO in the proposed P2OLR is 0.45 s, which
is reduced by almost 96.1% and 6.1% respectively in com-
parison to the decryption time of DO in [17, 18]. *e de-
cryption time of DO in [22] is smaller in comparison to that
of the proposed P2OLR.

As described in Figure 5, under the training dataset D1,
the storage of encrypted training data in the proposed
P2OLR is 72.00MB, compared with the storage of encrypted
training data in [17, 22], which is reduced by nearly 88.9%
and 95.0%; under the training dataset D2, the storage of
encrypted training data in the proposed P2OLR is 80.00MB,
compared with the storage of encrypted training data in
[17, 22], which is reduced by nearly 89.0% and 97.4%; under
the training dataset D3, the storage of encrypted training
data in the proposed P2OLR is 128.00MB, compared with
the storage of encrypted training data in [17, 18, 22], which is
reduced by nearly 89.4%, 13.0% and 99.7% respectively.
Although the storage of encrypted training data for dataset
D1 and D2 in [18] is smaller than that of the proposed
P2OLR, as the number of samples m and features n increases,
for dataset D3, the storage of encrypted training data in the
proposed P2OLR is smaller than that of [22].

As displayed in Figure 6, under the training dataset D1,
the training time of model in the proposed P2OLR is
2.64min, which is reduced by almost 96.6%, 73.8%, and
90.1% respectively than the training time of model in
[17, 18, 22]; under the training dataset D2, the training time
of model in the proposed P2OLR is 2.91min, which is re-
duced by almost 96.5%, 71.7%, and 95.0% respectively than
the training time of model in [17, 18, 22]; under the training
dataset D3, the training time of model in the proposed
P2OLR is 4.21min, which is reduced by almost 96.5%, 79.8%,
and 99.4% respectively than the training time of model in
[17, 18, 22].
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As illustrated in Figure 7, under the training dataset D1,
the average accuracy of model in the proposed P2OLR is
80.6%, which has nearly 5.8%, 6.2%, and 6.2% improvement
respectively compared with the average accuracy of model in
[17, 18, 22]; under the training dataset D2, the average
accuracy of model in the proposed P2OLR is 90.6%, which
has nearly 9.0%, 7.6%, and 7.9% improvement respectively
compared with the average accuracy of model in [17, 18, 22];
under the training dataset D3, the average accuracy of model
in the proposed P2OLR is 83.7%, which has nearly 4.6%,

4.5%, and 5.8% improvement respectively compared with
the average accuracy of model in [17, 18, 22].

As illustrated in Figure 8, under the training dataset D1,
the average precision of model in the proposed P2OLR is
95.6%, which has nearly 3.3%, 4.7%, and 4.7% improvement
respectively compared with the average precision of model
in [17, 18, 22]; under the training dataset D2, the average
precision of model in the proposed P2OLR is 95.1%, which
has nearly 5.4%, 4.7%, and 4.7% improvement respectively
compared with the average precision of model in [17, 18, 22];

Input: Y, X0, X1, · · ·, Xl− 1, w(0), α/m, N, Q,., sk, pk, rk, gk, t

Output: W(t)

(1) for (k � 0 to t − 1) do
(2) for (i � 0 to l − 1) do
(3) for (j � 0 to n − 1) do
(4) Cij � Mul(W(k)

j, Xij)

(5) end for
(6) Oi � 0
(7) for (j � 0 to n − 1) do
(8) Oi � Add Inplace(Oi,Cij)

(9) end for
(10) Gi � Sigmoid Approximation(Oi)

(11) G′i � Sub(Gi,Yi)

(12) for (j � 0 to n − 1) do
(13) Ci

′
j � Mul(G′i,Xij)

(14) end for
(15) end for
(16) for (j � 0 to n − 1) do
(17) Zi � 0
(18) for (i � 0 to l − 1) do
(19) Zj � Add Inplace(Zj, Ci

′
j)

(20) end for
(21) Z′j � Rotate Sum(Zj)

(22) Z′j � Mul(Z′j, α/m)

(23) W(k+1)
j � Sub(W(k)

j,Z″j)
(24) W’(k+1)

j � Mul Plain(W(k+1)
j, 1)

(25) W″(k+1)

j � Rotate Sum(W′(k+1)

j)

(26) end for
(27) end for
(28) return: W(t)

ALGORITHM 11: P2OLR.

Table 2: Performance comparisons.

Dataset m n λ Scheme E. time
(s)

D. time
(s)

Storage
(MB)

T. time
(min)

Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%) AUC

D1 575 8 20

[17] 7.04 4.93 648.56 77.35 74.8 92.3 71.4 80.5 0.68
[18] 2.18 0.39 36.75 10.09 74.4 90.9 71.4 80.0 0.65
[22] 30.28 0.06 1438.75 26.67 74.4 90.9 71.4 80.0 0.66

P2OLR 2.01 0.23 72.00 2.64 80.6 95.6 77.4 85.5 0.73

D2 1253 9 20

[17] 8.17 5.19 726.86 83.57 81.6 89.7 82.4 85.9 0.82
[18] 2.21 0.41 36.75 10.28 83.0 90.4 83.5 86.8 0.86
[22] 68.35 0.06 3133.75 57.35 82.7 90.4 82.9 86.5 0.86

P2OLR 2.16 0.26 80.00 2.91 90.6 95.1 90.6 92.8 0.88

D3 15649 15 20

[17] 14.48 11.65 1203.00 121.95 79.1 50.0 61.2 55.0 0.83
[18] 13.96 0.48 147.00 20.86 79.2 50.2 61.3 55.2 0.71
[22] 823.56 0.06 39123.75 718.25 77.9 52.4 62.2 56.9 0.71

P2OLR 3.49 0.45 128.00 4.21 83.7 60.3 64.2 62.2 0.85
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Figure 3: *e encryption time of DO.
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under the training datasetD3, the average precision of model
in the proposed P2OLR is 60.3%, which has nearly 10.3%,
10.1%, and 7.9% improvement respectively compared with
the average precision of model in [17, 18, 22].

As illustrated in Figure 9, under the training dataset D1,
the average recall of model in the proposed P2OLR is 77.4%,
which has nearly 6.0%, 6.0%, and 6.0% improvement re-
spectively compared with the average recall of model in
[17, 18, 22]; under the training dataset D2, the average recall
of model in the proposed P2OLR is 90.6%, which has nearly
8.2%, 7.1%, and 7.7% improvement respectively compared
with the average recall of model in [17, 18, 22]; under the
training dataset D3, the average recall of model in the
proposed P2OLR is 64.2%, which has nearly 3.0%, 2.9%, and
2.0% improvement respectively compared with the average
recall of model in [17, 18, 22].

As illustrated in Figure 10, under the training dataset D1,
the average F1-score of model in the proposed P2OLR is
85.5%, which has nearly 5.0%, 5.5%, and 5.5% improvement
respectively compared with the average F1-score of model in
[17, 18, 22]; under the training dataset D2, the average F1-
score of model in the proposed P2OLR is 92.8%, which has
nearly 6.9%, 4.0%, and 4.3% improvement respectively
compared with the average F1-score of model in [17, 18, 22];
under the training dataset D3, the average F1-score of model
in the proposed P2OLR is 62.2%, which has nearly 7.2%,
7.0%, and 5.3% improvement respectively compared with
the average F1-score of model in [17, 18, 22].

As demonstrated in Figure 11, under the training dataset
D1, the AUC of model in the proposed P2OLR is 0.73,
compared with the AUC of model in [17, 18, 22], which has
nearly 0.05, 0.08, and 0.07 improvement respectively; under

the training dataset D2, the AUC of model in the proposed
P2OLR is 0.88, compared with the AUC of model in
[17, 18, 22], which has nearly 0.06, 0.02, and 0.02 im-
provement respectively; under the training dataset D3, the
AUC of model in the proposed P2OLR is 0.85, compared
with the AUC of model in [17, 18, 22], which has nearly 0.02,
0.14, and 0.14 improvement respectively.

6. Security Analysis

In a semi-honest adversary model, we assume that DO and
SP hold the public key pk, relinearization key rk, galois key
gk, and only DO holds the secret key sk. For our P2OLR that
evaluates deterministic functionf, following the simulation-
based paradigm [37], we consider the security model for
security analysis, namely, DO encrypts its private data x and
sends x to SP. SP performs the homomorphic operations on
x to obtain y, homomorphically evaluates f(x) on x to
obtain f(x), and sends f(x) to DO. DO decrypts f(x) and
obtains f(x).

Theorem 1. We assume that SP is a semi-honest entity and
assume that DO and SP do not collude with each other. Let x
be a private data of DO. If the HE scheme [23] provides
semantic security, after performing the homomorphic oper-
ations on x and the evaluation of f(x) on x, DO learns f(x)

but nothing else, SP learns nothing.
Security Proof. 8e security proof of the proposed P2OLR

follows the simulation-based paradigm [37]. Let the view of
DO and SP during the evaluation be VDO and VSP, re-
spectively. 8e view VSP of SP consists of
pk, rk, gk, x, y, f(x)􏼈 􏼉. We construct a simulator SSP as
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follows. SSP randomly chooses input data x′, y′, f(x′). 8en,
SSP simulatesVSP byVSP

′ � pk, rk, gk, x′, y′, f(x′)􏼈 􏼉. Since
the HE scheme [23] provides semantic security by assumption,
VSP and VSP

′ are indistinguishable. 8erefore, the proposed
P2OLR is secure against a semi-honest SP.

7. Conclusion

In this paper, we present a method for achieving a P2OLR on
encrypted training data, which enables data owners to utilize
the powerful storage and computing resources of cloud
service providers for logistic regression analysis without
exposing the privacy of training data. We take advantage of
the batching technique and SIMD mechanism in HE to
speed up the training progress. On the three public datasets,
compared with the related P2OLR schemes [17, 18, 22], the
model training time of the proposed P2OLR is reduced by
more than 71.7%, and the proposed P2OLR has over 4.5%,
3.3%, 2.0%, 4.0%, and 0.02 performance in terms of the
accuracy, precision, recall, F1-score, and AUC of model.
*ere are still some limitations in applying our scheme to

arbitrary datasets and performing arbitrary number of it-
erations on encrypted training data. In the future, we will
extend our scheme to efficiently support P2OLR with ar-
bitrary number of iterations.

Appendix

(1) key_generation(params) ⟶ {sk, pk, rk, gk }:
Given the poly_modulus_degree N and coef-
f_modulus Q, it returns the secret_key sk, pub-
lic_key pk, relinearization_key rk, galois_key gk.

(2) encode_double(x, Δ, x): Given the message vector
x ∈ CN/2 and scaling factor Δ, it expands x to H by
π− 1(x), scales π− 1(x) byΔ · π− 1(x), and outputs the
plaintext x � σ − 1(Δ · π− 1(x)) ∈R.

(3) decode_double(x, x): Given the plaintext x, it
computes
σ · x � σ · σ − 1(Δ · π− 1(x)) � Δ · π− 1(x) ∈ H,
Δ− 1 · [Δπ− 1(x) ≈ π− 1(x)], and outputs the message
vector x � π · π− 1(x) ∈ CN/2.
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(4) encrypt (x, x): Given the plaintext x, it encrypts x
into a ciphertext x, and outputs the ciphertext x.

(5) decrypt (x, x): Given a ciphertext x, it decrypts x
into a plaintext x, and outputs the plaintext x.

(6) add (x, y, x + y): Given two ciphertexts x and y, it
computes x + y and saves the result as a new ci-
phertext x + y.

(7) add_inplace(x, y): Given two ciphertexts x and y, it
computes x + y and saves the result in ciphertext x.

(8) add_plain(x, y, x + y): Given a ciphertext x and a
plaintext y, it computes x + y and saves the result as
a new ciphertext x + y.

(9) sub(x, y, x − y): Given two ciphertexts x and y, it
computes x − y and saves the result as a new ci-
phertext x − y.

(10) multiply(x, y, x ∗ y): Given two ciphertexts x and y,
it computes x ∗ y and saves the result as a new
ciphertext x ∗ y.

(11) multiply_plain(x, y, x ∗ y): Given a ciphertext x and
a plaintext y, it computes x ∗ y and saves the result
as a new ciphertext x∗ y.

(12) mod_switch_to_inplace(x\ x, y.parms_id()): Given
a ciphertext/plaintext x\ x and a levels y.parms_id()
of ciphertext y, it switches the levels of x\ x to
y.parms_id().

(13) relinearize_inplace(x, rk): Given a ciphertext x and
a relinearization_key rk, it relinearizes x and saves
the result in ciphertext x.

(14) rescale_to_next_inplace(x): Given a ciphertext x, it
switches the modulo of x to the next levels, reduces
the length of the plaintext accordingly, and saves the
result in ciphertext x.

(15) set_scale(Δ): Given a scaling factor Δ, it scales the
ciphertext x by computing x.set_scale(Δ), and
outputs the ciphertext x.

(16) rotate_vector(x, k, gk, y): Given a ciphertext
x � [x0, x1, · · · , xN/2− 1], a rotation value k, and
galois_key gk, it rotates x left by k, and saves the
result as a new ciphertext
y � [xk, xk+1, · · · , xN/2− 1, x0, x1, · · · , xk− 1].
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Identity-based encryption is an important cryptographic system that is employed to ensure confidentiality of a message in
communication. &is article presents a provably secure identity based encryption based on post quantum security as-
sumption. &e security of the proposed encryption is based on the hard problem, namely Learning with Errors on integer
lattices. &is construction is anonymous and produces pseudo random ciphers. Both public-key size and ciphertext-size have
been reduced in the proposed encryption as compared to those for other relevant schemes without compromising the
security. Next, we incorporate the constructed identity based encryption (IBE) for Internet of &ings (IoT) applications,
where the IoT smart devices send securely the sensing data to their nearby gateway nodes(s) with the help of IBE and the
gateway node(s) secure aggregate the data from the smart devices by decrypting the messages using the proposed IBE
decryption. Later, the gateway nodes will securely send the aggregated data to the cloud server(s) and the Big data analytics is
performed on the authenticated data using the Artificial Intelligence (AI)/Machine Learning (ML) algorithms for accurate
and better predictions.

1. Introduction

According to [1], it is projected by 2027 the market of
Internet of &ings (IoT) industry will grow by $2 trillion
annually, which has already a market of $520 billion in
2022. In the connected world, the IoT makes an envi-
ronment where various smart devices are interconnected
with each other. &e advancement of information and
communications technology (ICT) makes the IoT tech-
nologies and their solutions rich that have great impact to
the society for improving the human life advanced and

easy. &ere are enormous applications of IoT, such as
Industrial IoT (IIoT), smart cities, healthcare monitor-
ing, smart home, and so on. In an IIoT, various IoT smart
devices are connected in an industry to collect
manufacturing data in order to predict the failure rates to
increase productivity and efficiency [2]. In healthcare
application, various smart devices like smartwatches and
medical sensors are connected in the body of a patient to
collect vital information and provide appropriate health
condition of that person. Furthermore, in recent days,
smart home application is in limelight where the smart
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devices like smart locks and home appliances are con-
nected with each other via the internet and they can
be also controlled via the mobile devices. &ough IoT
has transformed the human life easier, there are
various serious threats associated with IoT applicat-
ions. For instance, it was found by HP that 70% of the
devices connected IoT devices are vulnerable to various
attacks [3].

In IoT applications, the smart devices exchange the
sensitive data among each other and also with various other
entities. In such a scenario, an unauthorized user or an
attacker may take the advantage to compromise the data by
eavesdropping, modifying, updating and deleting the in-
formation during the communication [4]. According to
broadcom [5] in the year 2017, it was found that there was an
approximately 600% hike in attacks against IoT devices in
various applications. &erefore, there is a great need to
design a secure IoT system to protect the data from the
attackers [6].

Once the sensing information from the deployed smart
devices in an IoT environment is aggregated by the nearby
gateway node or access point, the gathered data needs to be
also stored in semi-trusted cloud servers. Now, the stored
data at the cloud is huge in volume and it needs data an-
alytics. As a result, it is preferable to used some Big data
analytics using traditional Artificial Intelligence (AI)/Ma-
chine Learning (ML) algorithms for accurate and better
predictions [7, 8].

Ahanger et al. [9] provided various Machine Learning
(ML) and Deep Learning (DL) based mechanisms for IoT
paradigm. &ey also provided a taxonomy based on several
IoT vulnerabilities, respective attackers and effects, as well
as various threats. Iwendi et al. [10] pointed out the im-
portant of deep learning (DL) for detecting attacks in IoT
paradigm. &ey suggested DL based mechanism to detect
cyber-attacks on IoT using a long short term networks
classifier.

Omolara et al. [11] gave an IoT concept and then pro-
vided the deep insights into possible solutions to the IoT
security challenges due to the heterogeneous nature of IoT,
and the respective emerging issues, opportunities, gaps as
well as recommendations. Mukhopadhyay et al. [12] pointed
out that IoT sensors need to be reliable, safety as well as
privacy-aware for the users interacting with them.&us, they
discussed that IoT sensors having advanced AI capabilities
will have the potential for identifying, detecting, and
avoiding performance degradation as well as discovering
new patterns.

Public-key cryptosystem works under a pair of keys
(public key and private key), whereas the public key is
made public that is accessible by everyone during com-
munication, and the private key is kept secret and only
known to the owner (sender/signer). &e notion of the
“Identity-Based Encryption (IBE)” due to Shamir [13],
solves the certificate management problem. &e existing
Shor’s algorithm [14] is a big threat to the existing
number-theoretic identity-based encryptions. &e main
difference of IBE from certificate based public-key en-
cryption schemes lies in the way how the public and secret

keys pair generated for a user. A private key generator, say
PKG handles the process of secret key generation, but it
executes user authentication process to confirm the
validity of a legitimate user. In IBE process, a public key
may be an information such as the user’s email address or
mobile number. &e corresponding secret key is gener-
ated by embedding the user’s identity with the PKG’s
master secret. &is process removes the need of certificate
that is required for verification of a legitimate recipient’s
public key. &e IBE process also solves the problems
related to key generations and distributions in a multi-
user settings. In case of limited resources, it can also offer
the potential solution to make the process resource
efficient.

In the literature, we have three important classes of
identity-based encryptions (IBE) (see in Figure 1): 1) IBE
based on bilinear pairings [15–18], 2) IBE based on quadratic
residue [19, 20], and 3) IBE based on lattices [21]. To the best
of our knowledge, most of the constructions proposed in the
standard model relies on bilinear pairings.

Chamola et al. [22] reviewed that the disruption which
the quantum computers have caused in the cryptographic
field. &ey pointed out that the existing public key en-
cryption schemes can be broken by the quantum computers,
and as a result, there is a requirement for hunting the new
cryptographic mechanisms that need to be secure in the
post-quantum era. Hassija et al. [23] provided a review on
several quantum computing applications that can be applied
in different computer science areas, including “cryptogra-
phy”, “machine learning”, “deep learning” as well as
“quantum simulations”. &ey also provided several real-life
case studies on “risk analysis”, “logistics”, and “satellite
communication”. Hassija et al. [24] also discussed that with
the help of online cloud services, the first generation of
quantum computers can be programmed and accessed using
the available software development kits. Moreover, they
presented a growing trend in both the investments as well as
patents in the quantum computing field. In recent years, the
lattice-based cryptography has played a very important role
in the post-quantum era for various real-life applications,
such as “Vehicular Ad Hoc Network (VANET)” [25], “
medical Cyber-Physical Systems (CPS)” [26] and “mobile
communications” [27].

1.1. Research Contributions. &ere are two reasons to move
towards post quantum secure lattice based cryptography: a)
simple algebraic operations that are based on matrix mul-
tiplication and b) secure against existing quantum assisted
algorithms. &e main contributions of the work are listed
below:

• &is article presents a new identity-based encryption
based on lattices without using the random oracles.
&e proposed encryption is anonymous in nature [28],
which means that the cipher does not reveal the re-
cipient’s identity.

• Our proposed encryption is selective-ID secure [29], and
can be converted to an adaptive-ID secure [15, 16, 30] by
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taking the bit-wise decomposition of the corresponding
identities.

• &e proposed encryption is inspired from the Water’s
[18] encryption and signature that use only non-zero
positions of bits in the decomposition of the corre-
sponding identity. &e encryption is secure under
“learning with errors” assumption without the random
oracles.

• If κ is an appropriate security parameter and O(κ2) is
the size of a public key, we can relate the computation
time in terms of security parameter complexity as
O(κ2), and it can be compared with the size of classic
public key (such as RSA [31] and ElGamal [32]
cryptosystems) as O(κ) and computation time in
terms of security parameter as O(κ3), respectively [33].

• We then incorporate the constructed identity based
encryption (IBE) for IoTapplications, where the smart
devices send securely the sensing data to their nearby
gateway nodes(s) with the help of IBE and the gateway
node(s) secure aggregate the data from the smart
devices by decrypting the messages using the proposed
IBE decryption. Later, the authenticated data stored at
the cloud server(s) will be used for accurate and better
predictions with the help of AI/ML algorithms.

1.2. Paper Outline. In Section 2, the security of an Identity-
Based Encryption (IBE) is discussed. Section 3 provides a
discussion of basic preliminaries that are needed to analyze
the proposed scheme in Section 4. In Section 5, we incor-
porating our proposed IBE scheme for IoT-enabled AI
applications. Next, the security analysis of the proposed
scheme under standard models is discussed in Section 6. A
comparative study among the proposed scheme and other
relevant schemes is given in Section 7. Some concluding
remarks are then provided in Section 8.

2. Security of an Identity-Based Encryption

An identity-based encryption (IBE) [15] comprises of four
phases (algorithms): a) Set-up, b) Extraction, c) Encrypts,
and d) Decrypts. &e Set-up algorithm is run under the
public parameters and a secret master key. &e Extraction
algorithm makes use of the master key to create a secret key
respective to the given identity. &e Encrypts algorithm

encrypts a message using the identity. Finally, the Decrypts
algorithm decrypts a ciphertext with the help of the cor-
responding private key.

2.1. Both Selective and Adaptive Encryption. &e security
model of an IBE [15] defines the “indistinguishable adaptive
chosen cipher and chosen identity (IND-ID-CCA2)” se-
curity. It allows a probabilistic polynomial time-adversary,
say A to pick an identity on which it wants to target. A
weaker version of an IBE security [34] restricts the adversary
A to announce the target or identity at advance, that is
known as the “indistinguishable adaptive chosen cipher and
selective identity (IND-sID-CCA2)” security. We have
described this system as a selective identity and chosen
cipher secure identity-based encryption. In this version of
encryption, we will not allow the adversary A to process
decryption queries on the target identity, which implies a
weaker notion of the “indistinguishable against adaptive
chosen cipher and chosen identity (IND-ID-CCA2) and
indistinguishable adaptive chosen cipher and selective
identity (IND-sID-CCA2)”, respectively. Another impor-
tant notion is the “indistinguishable cipher against chosen
plaintext attack (IND-CPA)”, which is also called semantic
security.

2.2. SecurityModel. We now define an IBE semantic security
under the IND-sID-CCA2 with the help of a game that is
played between a challenger, sayC and an adversaryA. &e
description of the game is given below.

1. Target-phase: A declares the target identity ID∗ in
advance.

2. Set-up-phase:C executes the Set-up-phase, generates
the public parameters forA, and keeps the master key
as secret.

Phase-1. A submits queries q1, q2, . . ., qm corresponding to
the identities ID1, ID2, . . ., IDm, respectively, where
IDi ≠ ID∗ for 1≤ i≤m. Now, C runs an algorithm, called
Extraction(Mk, IDi) with the master key Mk and identity
IDi to obtain the private keyDi corresponding to the identity
IDi, IDi, which is the public key. &en, it sends Di to A,
where all the queries are processed adaptively meaning that

Alice
idBob=’bob@gmail’

Bob
M= (Decrypt (mpk, skid

bob@gmail, C)

Private Key Generator
(mpk, msk)

Authentication
skidBob@gmail

C=Encrypt (mpk, bob@gmail, M)

Figure 1: A communication model for IBE.
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A can make queries with the knowledge of the previous
queries.

3. Challenge-phase: After completion of Phase-1, A
submits two messages m0 and m1 from the message
space on which it executes the challenge. &e chal-
lenger C then picks b ∈ 0, 1{ } randomly, and outputs
c �Encrypts(paramts, ID∗, mb) and sends it to A,
where paramts, paramts are the parameters relevant
to encryption.

Phase-2. A submits the adaptive extraction queries qm+1,
qm+2, . . ., qn corresponding to IDm+1, IDm+2, . . ., IDn, where
IDi ≠ ID∗, respectively. Next, C replies as in Phase-1.

4. Guess-phase: Finally, A requires to guess a bit
b′ ∈ 0, 1{ }. &e game is won byA if b′ � b; otherwise,
A looses the game.

We call such an adversary A as an IND-sID-CPA-ad-
versary, and define the advantage of A attacking the
identity-based encryption, say P as

A DVA(P) � Pr b � b′􏼂 􏼃 −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (1)

We can also describe an adaptive phase to the above
notion by excluding the target phase, and permitting A to
wait for the challenge phase to declare ID∗ as challenge
identity.A can submit the arbitrary key extraction queries as
in Phase-1, and then select an identity ID∗, ID∗ as a target.
But, the only condition imposed here is that A cannot
submit extraction query on ID∗, ID∗ in Phase-1, and the
resulting notion is called as IND-ID-CPA security. In Ci-
pher-Anonymity along with semantic security, we have
another important notion of cipher anonymity under
chosen plaintext attack.

3. Preliminaries

Let R be a set of real numbers and x ∈ R be a real number.
We denote ⌊x⌋ as the largest integer, but not greater than x,
whereas ⌞x⌝ � ⌞x + 1/2⌝ denotes the integer closest to x,
with ties broken upward. We apply a bold big letter A to
denote a matrix and a bold small letter x to denote a column
vector of thematrixA, where [A|x] denotes concatenation of
the matrix A with a vector x. Let Z denote the set of all
integers and Zq � Z/qZ be a quotient ring under integers
modulo a prime q, that is, a collection of the (left or right)
cosets a + qZ with addition and multiplication operations in
the quotient ringZq. It is worth noticing that y � z(modq) if
and only if y + qZ � z + qZ, which is an obvious fact about
the equality of cosets.

3.1. Lattice. A lattice Δ is defined with the following two
properties: 1) it is an additive subgroup which implies 0 ∈ Δ,
and −x, x + y ∈ Δ for all x, y ∈ Δ, and 2) it is discrete that
implies every x ∈ Δ possesses a neighborhood inRn in which
x is the only lattice point in the neighborhood. More spe-
cifically, the ith successive minima λi(Δ) is the smallest

Euclidean norm ℓ such that Δ possesses i number of linearly
independent vectors of norm less than or equal to ℓ. Due to
properties of a discrete group, one can observe that the
quotient group Rn/Δ of cosets c + Δ � c + v{ : v ∈ Δ}, c ∈ Rn,
under the usual addition: (c1 + Δ) + (c2 + Δ) � (c1 + c2) + Δ
in the quotient group. A fundamental domain of Δ is a set
F ⊂ Rn that contains exactly one representative
􏽢c ∈ (c + Δ)∩ F of each coset c + Δ.

3.2. Bases andFundamental Parallelepiped. A lattice (see Fig.
2) is generated by a basis B � b1􏼈 , b2, . . ., bm} and the integer
linear combination of the linearly independent vectors b1, b2,
. . ., bm in the basis as Δ � Δ(B) � 􏽐

m
i�1 zi bi: zi ∈ Z􏼈 􏼉. &e

positive integer m is the rank of the basis and n represents
the dimension of the space under consideration. We can
consider m � n to represent a full rank lattice. A lattice
possesses infinitely many bases, because if B is a basis then
BU is also a basis for a unimodular matrix. If B is a basis of
the lattice Δ, the fundamental domain is the parallelepiped
P(B) � B[−1/2, 1/2) centered at the origin. Note that par-
allelepiped is formed by “six parallelogram sides to result in a
three-dimensional figure” or a “Prism”, which contains a
parallelogram base.

Definition 1. Let b1, b2, . . ., bm ∈ Rn be linearly independent
tuples, a lattice Δ generated by a basis B � b1􏼈 , b2, . . ., bm} is
denoted Δ(b1, b2, . . ., bm) � Σizi bi􏼈 :zi ∈ Z}. "e integers m

and n denote the rank of the concerned matrix and the di-
mension of given lattice, respectively.

Definition 2. Let b1, b2, . . ., bm ∈ Rn be linearly independent
tuples that generate a lattice Δ(b1, b2, . . .,
bm) � Σizi bi􏼈 : zi ∈ Z}, its dual lattice be
Δ∗ � z ∈ Z|∀y ∈ Δ, 〈z, y〉 ∈ Z􏼈 􏼉, where Δ can be repre-
sented as

2α1+α2

α1+α2

α1

α2

Figure 2: A two-dimensional lattice with bad basis.
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Δ � A · z �

| | . |

b1 b2 . . . bm

| | . |

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·

z1

z2

⋮

zm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

3.3. q-ary Lattice. &e q-ary lattice satisfyingZm
q ⊆Δ⊆Z

n
q, for

some integer q, is called q-ary lattice because q times vectors
of lattice also belongs to it. Given a matrix modulo q �

poly(n) (depends only dimension of lattice), denoted
A ∈ Zn×m

q , there are n-dimensional q-ary lattice
Δ⊥q � z ∈ Zn{ : Az � 0(modq)} and a coset of the lattice as
Δu

q � z ∈ Zn{ : u � Az(modq)|z ∈ Zm}, where m, n and q are
integers and m> n. Here, A · z � 0 implies that:

| | . |

b1 b2 . . . bm

| | . |

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·

z1

z2

⋮

zm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0

0

⋮

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

and A · z � u implies that:

| | . |

b1 b2 . . . bm

| | . |

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·

z1

z2

⋮

zm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

u1

u2

⋮

um

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

&ese q-ary lattices are applied in the construction of
cryptographic techniques. Now, if the matrix A is chosen
randomly, solving the short vector problem on Δ⊥(A) is
equivalent to solve a hard problem in random lattice.

3.4.GaussianMeasures. Let x, c ∈ Rn and σ > 0 be arbitrary.
&en, ρσ,c(x) � e− π‖(x− c)‖2/σ2 defines a Gaussian distribution
function (see Fig. 3) with center c and scaling σ, where the
total measure corresponding to ρσ,c is given by

􏽚
x∈Rn

ρσ,c(x)dx � σn. We can define the discrete Gaussian

distribution as DΔ,σ,c(z) � ρσ,c(z)/ρσ,c(Δ), where z ∈ Δ is an

arbitrary lattice point. Note that
DΔ,σ,c(z) � Dσ,c(z)/Dσ,c(Δ) � ρσ,c(z)/ρσ,c(Δ).

We now introduce an advanced lattice parameter (called
the smoothing parameter [35]) related to the Gaussian
measures on random lattices as follows.

Definition 3. Let Δ be a lattice of dimension n and ε> 0 be an
arbitrary small real number. "e smoothing parameter is
defined by ξε(Δ) to be the smallest σ > 0 such that
􏽐z≠0∈Δ∗ρ1/σ,0(z)≤ ε holds.

3.5. Hard Assumptions Based on Learning with Errors.
&e “learning with errors” was introduced by Regev [36],
which is secure against quantum computing. In the fol-
lowing, we state the assumption with respect to the Gaussian
error distribution [35] and its parameterizations.

Definition 4 (see [36]). Let n ∈ N, q � q(n)> 2, and s ∈ Zn
q

be a secret. "en, LWEs,ξ is a distribution of 〈b, bts + z〉 over
Zn

q × Zq with b ∈ Zn
q is an arbitrary random and z ∈ Zq is

chosen from ξ, where ξ is the Gaussian distribution.

Definition 5 (see [37]). "e “Learning with Errors” decision
problem is to distinguish betweenLWEs,ξwhich is the distri-
bution of〈b, bts + z〉overZn

q × Zqwith randoms ∈ Zn
qand the

uniform random distribution overZn
q × Zq, given access to the

random samples from the given distribution.

Regev [37] proved that the decision problem (learning
with errors) under a suitable prime modulus q and Gaussian
distribution ξ is as hard as solving the worst-case lattice
problem, known as “short independent vector problem” and
“decision short vector problem” in Euclidean norm, using
quantum algorithms. Suppose R/Z � [0, 1) is a group with
respect to modulo one operation. Let Φα be the Gaussian
distribution on R/Z with mean 0 and standard deviation
α/2π, under modulo one, where α> 0 is a real number.

Theorem 1 (see [37]). Let α � α(n) ∈ (0, 1)be a real
number, and q � q(n)> 0 be a prime such that αq> 2n holds.
If there exists a quantum algorithm that can solve LWEq,Φα,
there also exists a quantum algorithm to solve “short inde-
pendent vectors problem” and approximate “decision short
vector problem”, in Euclidean norm, under the worst-case
with in O(n/α) factors.

3.6. Regev’s Dual Cryptosystem. If Δ is a lattice, its dual is the
set Δ∗ consisting of tuples z ∈ L(Δ), that is, a linear span of Δ
such that inner product 〈z, y〉 is an integer for all y ∈ Δ.
Following the definition, one can easily observe that the dual
of Zn is Zn. &e inner product between two n-tuples x and y

is defined as 〈x, y〉 � xty � 􏽐
n
i�1 xiyi, where x � (x1, x2, . . .,

xn) and y � (y1, y2, . . ., yn) are tuples with the real entries.
&e dual space Δ∗ has the same dimension as its primal

space Δ, and both are essentially isomorphic to each other.
&erefore, a dual space Δ∗ lies in the same space as the
primal Δ, and not necessarily be a sub-lattice of Δ. &e lattice
Δ∗ contains non-integers even Δ contains only integers
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Bivariate Normal Distribution

Figure 3: Gaussian distribution in multi dimensions.
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entries. &e dual space is necessarily defined as follows in
abstract vector space. If V⊆Rn is a vector space, a functionΨ:
V⟶ R is called a linear function if it satisfies the following
conditions: 1) Ψ(ϑ1 + ϑ2)� Ψ(ϑ1)+Ψ(ϑ2), and 2)
Ψ(aϑ1) � aΨ(ϑ1), where a, b ∈ R and ϑ1, ϑ2 ∈ V. &e dual
space of an abstract vector space V is then the set of all linear
functions, where a functionΨ is represented as a tuple ϑ ∈ V

such that Ψ(x) � 〈ϑ, x〉, whereas the dual lattice is con-
sidered on the set of integersZ instead set of reals oneR.&e
dual of lattice Δ is the collection of linear functions of the
forms: Ψ: V⟶ Z represented as tuples in span (Δ). Each
vector ϑ ∈ Δ∗ generates a linear function Ψϑ(x) � 〈ϑ, x〉

satisfying Ψϑ(Δ)⊆Z and partitions Δ into the layers as
Δ � ∪ i∈Z ϱ ∈ Z􏼈 : Ψϑ(ϱ) � i}, where each layer
Ψ−1

ϑ (i) � ϱ ∈ Δ􏼈 : Ψϑ(ϱ) � i} is necessarily a shifted copy of
Δ∩ ϑ⊥ � ϱ ∈ Δ􏼈 : 〈ϑ, ϱ〉 � 0}, that is, a lower dimensional
sub-lattice orthogonal to ϑ with distance between layers
1/‖ϑ‖ implies that the sparser lattice has denser dual and
vice-versa.&erefore, the dual of cΔ is 1/cΔ, where c> 0 is an
arbitrary real.

Under the hard assumption “learning with errors”, one
can construct a public key cryptosystem under indistin-
guishable property of pseudo-random tuple 〈b, bts + z〉

from a random sample. &e pseudo-random bts + z ∈ Zq is
used to mask a bit of the message in Regev’s cryptosystem
[37]. Furthermore, the dual Regev’s cryptosystem consists of
three phases: a) D-key-Gen, b) D-Encrypt, and c) D-De-
crypt, which are discussed below.

1. D − key − Gen: Let A ∈ Zn×m
q be a random matrix,

where m≥ 2n log(q), fA : Zm⟶ Zn: e↦Ae(mod
q). Choose an error e←DZm,σ . It then computes its
syndrome as u � fA(e), where the secret vector
e ∈ Zm

q and the public key is u ∈ Zn
q.

2. D − Encrypt: Let b ∈ 0, 1{ } be a bit to be encrypted.
Choose a random s ∈ Zn

q with an error scalar x ∈ ξ
and an error vector y ∈ ξm. It then outputs
c � 〈c0, c1〉, where c0 � uts + x + b · 􏼄q/2􏼅 and
c1 � Ats + y.

3. D − De crypt: To perform the decryption on
c � 〈c0, c1〉 using the secret e under the matrix A, this
phase computes b � c0 − etc1 ∈ Zq and outputs 1 if b

is closer to 􏼄q/2􏼅; else, it is 0.

3.7. Pre-image Samplable Family of Functions. Gentry et al.
[21] defined a family of pre-image samplable functions that
plays a very important role in the construction of the
proposed encryption described in Section 4.

Definition 6. A family of pre-image samplable functions [21]
consists of three phases: a) Trap-Gen , b) Sample-Dom , and
c) Sample-Pre , which are given below.

• Trap-Gen(1κ): Trap-Gen takes input as the parame-
terκ, and outputs a pair〈A, T〉, whereAis utilized in the
functionfA:Dκ⟶ Rκwith recognizable
domainDκand rangeRκ, andTis a trapdoor for the
functionfA.

• Sample-Dom(A): Under function description A, it will
sample x← ξ over the domain Dκ in such a way the
distribution of fA(x) is uniform over Rκ, and outputs x

accordingly.
• Sample-Pre(T, y): Under a trapdoor T and a value

y ∈ Rκ, it will sample an element x ∈ Dκ from the
distribution ξ under the criteria that fA(x) � y, and it
then outputs x.

3.7.1. Correctness. It is worth noticing that Sample-Dom
samples x←ξ over the domain Dκ such that fA(x) follows a
uniform distribution over the range Rκ, and Sample-Pre
samples x ∈ Dκ←ξ as in Sample-Dom under condition
fA(x) � y.

3.7.2. Security. &e security of the pre-image samplable
functions [21] is discussed below. &e samplable functions
[21] must satisfy the following properties:

1. One-way without trapdoor: If A is a probabilistic
polynomial time adversary, the advantage
A(1κ, A, y)←f−1

A (y) ⊂ Dκ is negligible, where the
advantage is considered over all the possible choices of
A, the value y←Rκ is random, and A tosses the coin
randomly.

2. Pre-image minimum entropy: If y←Rκ, the condi-
tioned minimum entropy of x←Sample − Dom(A) is
least under the condition fA(x) � y.

3. Collision-free without trapdoor: If A is a probabi-
listic polynomial time adversary, the advantage
A(1κ, A) results in the distinct x, x′←Dκ with
fA(x) � fA(x′) is negligible.

Theorem 2 (see [37]). If q � poly(n) is an arbitrary large
prime and m≥ 5n log(q), there exists a probabilistic poly-
nomial time algorithm [38] that takes input as 1n, and
outputs a matrix A ∈ Zn×m

q and a full rank set S ⊂ Δ⊥(A),
where the distribution corresponding to A is statistically close
to a uniform distribution over Zn×m

q under the length
‖S‖≤m2.5.

Another algorithm is known as the sampling Gaussian,
denoted by Sample-Gauss, discussed by Gentry et al. [21],
plays a very important role in cryptographic construction.
&e Sample-Gauss (B, σ, c) uses a random basis B in sam-
pling from the Gaussian distribution centered at c with the
standard deviation σ over the lattice Δ(B).

Theorem 3 (see [37]). "e probabilistic polynomial time
algorithm provided in [21] with inputs as a basisB, a lattice
Δ(B), an appropriate parameterσ ≥ ‖B∗‖ · ω(

������
log(m)

􏽰
)and

arbitraryc ∈ Rm, results in a sample distribution that is
statistically close to DΔ,σ,c.

&e function defined in [21] is a sample pre-image
consisting of three phases: a) Trap-Gen, b) Sample-Dom
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and c) Sample-Pre. Let κ be a security parameter, n � Θ(κ),
q � poly(n) be a large prime, m≥ 5n log(q), L � m2.5 and
Gaussian parameter σ ≥ Lω(

������
log(m)

􏽰
), respectively. &en,

• Trap-Gen(1κ, σ): Under the algorithm in &eorem 3,
choose a matrix A ∈ Zn×m

q and a trapdoor T ∈ Δ⊥(A).
Consider Dκ � e ∈ AZm

q􏽮 : ‖e‖≤ σ
��
m

√
} and Rκ � Zn

q

and fA: Dκ⟶ Rκ such that fA(e) � Ae(modq). &is
phase then results 〈A, T〉.

• Sample-Dom(A, σ): Assuming B′ as a standard basis
forZm, use Sample-Gauss(B′, σ, 0) to get sample from
DZm,σ .

• Sample-Pre(T, σ, y): Let k ∈ Zm be an arbitrary
number under condition Ak � y(modq). &en, use
Sample-Gauss(T, σ − k) [21] to sample v from
DΔ⊥(A),σ,−k.

Theorem 4 (see [37]). Assume that the columns of A ∈ Zn×m
q

span Zn
q,ε ∈ (0, 1/2), and σ ≥ ηε(Δ⊥(A)). "en, the syn-

drome’s distribution u � Ae(modq) differs by a statistically
distance equal to at most 2ε from the uniform distribution
over Zn

q.

To prove the correctness of the distribution ξ � DZm,σ ,
for a given u←Zn

q and k←Zm is a solution to Ak � u(modq),
the conditional probability distribution of e←DZm,σ under
Ae � u(modq) matches perfectly with k + DΔ⊥(A),σ,−k. &e
correctness of the distribution is as follows. It can be ob-
served that fA(e) � Ae(modq) is indistinguishable from the
uniform distribution over Rκ � Zn

q, assuming the columns
ofA ∈ Zn×m

q spansZn
q [21] with the probability 1 − q− n. Since

σ ≥Lω(
������
log(m)

􏽰
), and ‖T‖≤ L, the result in [21] implies

σ ≥ ηε(Δ⊥(A)). &us, as a result, Sample-Pre(v + k) is
distributed under DZm,σ under the condition
A(v + k) � y(modq).

In the proof of security, we use the functions described in
[21], which are one-way and collision resistant functions. A
brief discussion of these two properties are given below.

• One-way without trapdoor: &e process of inversion
of fA under a uniform random u←Rn is equivalent to
solving “in-homogeneous short integer solution”
problem, say ISISq,m,σ

��
m

√ [21].
• Pre-image minimum entropy: Since all the pre-im-
ages follow the discrete Gaussian, it has minimum
entropy [21].

• Collision-free without trapdoor: Let z, z′←Dκ. &en,
a collision implies A(z − z′) � 0(modq), which ac-
tually solves the “short integer solution” problem, say
SISq,m,2σ

��
m

√ .

4. Proposed Identity-Based Encryption (IBE)
Scheme in Standard Model

In this section, we propose a new provably secure identity-
based encryption scheme. Note that such a scheme has a
compact public key and also achieves adaptive security in the
standard model [39].

Our proposed identity-based encryption scheme consists
of four phases: a) Set-up, b) Extraction, c) Encrypts and d)
Decrypts. We take an identity ID as an arbitrary k-bits string
0, 1{ }k, where k � Θ(κ) for a given security parameter κ. In
the following, we now discuss the details of these four
phases.

4.1. Set-up Phase. It includes the function Set-up(1κ). First,
choose a suitable large prime q, a smoothing parameter σ
depending on the security parameter κ and an arbitrary
random matrix A ∈ Zn×m

q , under a short basis for Δ⊥(A),
that is, TA with the help of Ajtai’s construction [38]. Let fA:
Zm

q ⟶ Zn
q be a function defined as fA(e) � Ae(modq).

Next, pick a tuple u0 ∈ Zn
q and a random matrix Hi,b ∈ Zn×ℓ

q ,
where ℓ � m and 􏽢H � 〈i, b, Hi,b〉􏽮 : 1≤ i≤ 2, 0≤ b≤ 1} is the
ordered set. &e public parameters are A, u0,

􏽢H􏽮 􏽯, whereas
TA is considered as the master secret.

4.2. Extraction Phase. &is phase is accomplished by the
function Extraction(A, u0,

􏽢H, ID, TA). A decryption key is
extracted related to the identity ID ∈ 0, 1{ }k under themaster
secret TA as the trapdoor. &e following steps need to be
executed:

• Let S � H(ID) and U be the set of non-zero positions
in the string S. After that, assemble an n × ℓ matrix
HID � [Hi1mod2,bi1mod2|Hi2mod2,bi2mod2| · · · |Hiℓmod2,biℓ

mod2] ∈ Zn×ℓ
q , where Hi1mod2,bi1mod2|Hi2mod2,bi2mod2|

· · · |Hiℓmod2,biℓmod2 ∈ 􏽢H as Hi1 ,b1 or Hi1 ,b0 is according to
either i1(mod2) � 0 or i1(mod2) � 1, respectively.

• Now, sample ri←Zℓ
q under Sample − Dom

(Hi,bimod2, σ), where 1≤ i≤ k, and consider r←Zℓ
q such

that rt � [rt
1|r

t
2| · · · | − rt

ℓ].
• Let u � u0 + HIDr ∈ Zn

q. It can be observed as
u � u0 + 􏽐

ℓ′
i�1 Himod2,bi(mod2)

ri, where i is the non-zero
position in the string S.

• Next, apply the Sample-Pre(TA, σ, u) under the
trapdoor TA to find the pre-image e of u satisfying
u � Ae(modq), and outputs the private key 〈e, r〉.

4.3. Encrypts Phase. In this phase, we involve the function
Encrypts(A, u0,

􏽢H, ID, b). In order to process the encryption
on a bit b ∈ 0, 1{ } under the identity ID ∈ 0, 1{ }k using the
master key TA, the following steps are necessary:

• Let HID � [Hi1mod2,bi1mod2|Hi2mod2,bi2mod2| · · · |Hiℓmod2,biℓ

mod2] ∈ Zn×ℓ
q , where Hi1mod2,bi1mod2|Hi2mod2,bi2mod2|

· · · |Hiℓmod2,biℓmod2 ∈ 􏽢H because Hi1mod2,b1 or Hi1mod2,b0
is based on either i1(mod2) � 0 or i1(mod2) � 1.

• Choose an arbitrary s ∈ Zn
q.

• Pick x ∈ Zq, y � 〈y1, y2, . . ., ym〉 ∈ Zm
q and z � 〈z1,

z2, . . ., zℓ〉 ∈ Zℓ
q which are sampled from the distri-

butions ξ, ξm, and ξℓ, respectively, based on the Regev’s
cryptosystem.
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• Now, calculate c0 � ut
0s + x + b􏼄q/2􏼅 ∈ Zq, c1 � Ats +

y ∈ Zm
q and c2 � Ht

IDs + z ∈ Zℓ
q.

• Finally, the initiator sends the output as the cipher c �

〈c0, c1, c2〉 to the responder.

4.4. Decrypts Phase. &is phase is implemented by the
function Decrypts(A,u0, 􏽢H,ID,k,c). After receiving the ci-
pher c � 〈c0, c1, c2〉, with the private key 〈e, r〉 ∈ Zm+ℓ

q , the
responder executes the following steps:

• Compute v � c0 − etc1 + rtc2 ∈ Zq, and then compare
v with 􏼄q/2􏼅 in Z.

• If |v − q/2|≤ q/4, it results bit b � 1; else, it outputs the
bit b � 0.

5. Incorporating Proposed IBE Scheme for IoT-
Enabled AI Applications

In this section, we first discuss the network model for IoT-
enabled AI applications, which is used for incorporating our
proposed IBE scheme described in Section 4. Next, we
describe the various phases where the proposed IBE scheme
has been applied for IoT.

5.1.NetworkModel. &e network model considered for IoT-
enabled AI applications using our proposed IBE scheme is
presented in Figure 4. &e model expresses various appli-
cations of IoT, such as traffic monitoring, smart home, and
IIoT. In this model, different types of smart sensors, say
SSi|i � 1, 2, 3, . . . , nss􏼈 􏼉 are connected with each other via the
nearby gateway node(s) GWNj|j � 1, 2, 3, . . . , ngwn􏽮 􏽯, where
nss and ngwn denote the number of smart sensors and
gateway nodes to be deployed for each IoT application,
respectively. Note that there might be multiple nodes that

are connected with a particular application and the gateways
GWNj are further connected with the cloud server(s), say
CLSk|k � 1, 2, 3, . . . , ncls􏼈 􏼉, where ncls is the number of cloud
servers. Before initiating any secure communications be-
tween GWNj and CLSk, they need to complete their reg-
istration process which is performed by a fully-trusted
registration authority (RA). Similarly, the RA also performs
the registration of each smart sensor node to be deployed in
various IoT applications. Next, a gateway node needs to
perform the secure data aggregation where the data is
collected through secure communication among the smart
sensors and the gateway node. In this case, we apply the
proposed IBE scheme for encryption/decryption of the data.
After that the gateway nodes send the data securely to the
cloud server(s) for secure data storage purpose. Finally, the
cloud servers CLSk can perform the Big data analytics using
AI/ML techniques with the data stored at CLSk.

5.2. Description of Various Phases. We have the following
phases:

• In the pre-deployment of IoT devices phase, the trusted
RA will perform the registration of each IoT smart
device prior to their deployment in respective appli-
cation. After deployment of the IoTdevices, they need
to communicate with their nearby gateway node(s).
For avoiding various attacks by an adversary, we use
the proposed IBE scheme for secure data transfer
among the sensor nodes and their gateway node(s).

• In the registration of gateway nodes and cloud servers
phase, the RA, RA also performs the registration of the
deployed gateway nodes and cloud servers. For secure
communication, we again use the proposed IBE
scheme for secure data transfer among the gateway
nodes and the cloud servers.

Cloud Servers
AI-based big data analytics

Gateway
node

Gateway
node

Gateway
node

IoT Application 3
(Industrial IoT)

IoT Application 2
(Smart Home)

IoT Application 1
(Traffic Monitoring)

Figure 4: Network model for IoT-enabled AI applications.
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• &e secure data aggregation at gateway phase allows a
gateway node to collect the data from its associated IoT
smart devices securely using the proposed IBE scheme.

• &e secure data storage at cloud servers phase permits
storage of data at the cloud servers securely from the
gateway nodes with the help of the proposed IBE
scheme.

• Finally, the Big data analytics using AI phase is needed
because the cloud servers store a huge volume of data
from various IoT applications. Since the Big data
analytics provides numerous advantages, such as
better decision making and preventing fraudulent
activities, it is preferable to do the Big data analytics on
the data stored at the cloud servers.

A high-level description of various phases related to IoT-
enabled AI applications is given in Figure 5.

5.2.1. Pre-deployment of IoT Devices. Before deploying the
IoT smart devices (smart sensors) SSi in their respective
application, the trusted RA, RA executes the Set-up phase
described in Section 4.1 in order to select the system pa-
rameters. &e steps are as follows:

• Step 1. &e selected public parameters are A, u0,
􏽢H􏽮 􏽯,

whereas TA is as the master secret.
• Step 2. For each SSi, the RA, RA assigns a unique
identity IDSSi

.
• Step 3. Next, for each SSi, the RA, RA executes the
Extraction phase described in Section 4.2 to extract a
decryption key related to IDSSi

under the trapdoor
master secret TA. &e private key for SSi is considered
as (eSSi

, rSSi
).

5.2.2. Registration of Gateway Nodes and Cloud Servers.
&e registration process for the deployed gateway nodes
GWNj and cloud servers CLSk is also based on the execution
of the Set-up phase, where the public parameters are

A, u0,
􏽢H􏽮 􏽯, and TA is the trapdoor master secret. &is phase

involves the following steps:

• Step 1. For each GWNj, the RA, RA assigns a unique
identity IDGWNj

. In a similar way, for each CLSk, the
RA, RA also assigns a unique identity IDCLSk

.
• Step 2. For each GWNj and CLSk, the RA, RA executes
the Extraction phase. After executing this process, the
private keys for GWNj and CLSk are selected as
(eGWNj

, rGWNj
) and (eCLSk

, rCLSk
), respectively.

5.2.3. Secure Data Aggregation at Gateway. In this phase, the
following steps are involved:

• Step 1. Suppose the IoTsmart sensors SSi are deployed
in their respective IoT applications as shown in Fig-
ure 4. &e gateway nodes GWNj and cloud servers
CLSk are also placed accordingly in the network. Let a
smart sensor SSi sense the information (data), say
DataSSi

from its deployment area and want to com-
municate it securely with its gateway node GWNj,
GWNj. For this purpose, the SSi, SSi generates a
current timestamp, say TSSSi

, prepares a message of the
type MsgSSi

� IDSSi
,TSSSi

,DataSSi
􏽮 􏽯 and encrypts

MsgSSi
bit wise using the public parameters, identity of

GWNj, GWNj and trapdoor master key TA to create
the ciphertext CSSi

� C0, C1, C2􏼈 􏼉 as done in the En-
crypts phase described in Section 4.3, where C0, C1 and
C2 are the encrypted bit strings corresponding to the
bit strings of the MsgSSi

. Next, SSi sends the encrypted
message {CSSi

, TSSSi
} to its destination GWNj, GWNj

via a public channel.

5.2.4. Secure Data Storage at Cloud Servers. In this phase, a
cloud server CLSk, CLSk receives the encrypted data from
the respective gateway nodes GWNj residing in an IoT
application, and stores the encrypted data in its database for
further processing. In order to do this, the following steps are
executed by the CLSk, CLSk:

Trusted
RA

Step 1:
Pre-deployment

Step 2: GWN
Registration

Step 3: CLS
Registration

Step 4: Secure
Data Aggregation

Step 5: Secure
Data Storage
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Figure 5: High-level overview of various phases.
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• Step 1. Once the message CGWNj
,TSGWNj

􏼚 􏼛, is re-
ceived at time TS∗GWNj

, for checking replaying attacks,
CLSk, CLSk checks the validity of the received time-
stamp by the condition: |TSGWNj

− TS∗GWNj
|<ΔT. If

the condition fails, the process is immediately
terminated.

• If the timestamp validation is satisfied, the encrypted
data CGWNj

is then stored in the database of CLSk,
CLSk.

5.2.5. Big Data Analytics using AI. It is worth noticing that a
cloud server CLSk, CLSk receives the encrypted data gen-
erated by the IoT smart sensors residing in various appli-
cations via the aggregator nodes (gateway nodes). CLSk,
CLSk can then decrypt the stored data bit wise using its own
private key (eCLSk

, rCLSk
) and performs the Big Data analytics

steps using AI/ML techniques, such as “data acquisition and
filtering”, “data extraction”, “data aggregation and repre-
sentation”, “data analysis” as well as “data visualization”.&e
results of this phase will provide some useful conclusions
and predictions on the stored data.

&e overall mechanism of the proposed IBE scheme for
IoT-based AI applications is also illustrated in Figure 6. &e
pre-deployment and registration phases are performed through
the steps 1, 2 and 3. Step 4 explains about the data aggregation
phase. While the steps 5 and 6 are about secure data storage,
Step 7 explains the Big data analytics using the AI techniques.

• Step 2. After receiving the message from SSi, GWNj,
GWNj first checks the validity of the received time-
stamp by the condition: |TSSSi

− TS∗SSi
|<ΔT, where

TS∗SSi
and ΔT represent the time when the message was

received and the maximum transmission delay, re-
spectively. If the condition is satisfied, GWNj, GWNj

proceeds to decrypt CSSi
bit wise using its private

(secret) key (eGWNj
, rGWNj

) with the help of the De-
crypts phase described in Section 4.4 to obtain
IDSSi

, TSSSi
′,DataSSi

􏽮 􏽯. After that if the checking con-
dition: TSSSi

′ � TSSSi
is valid, GWNj, GWNj considers

the data is fresh. &us, no replay attack has been there

during this process with the timestampingmechanism.
Of course, for this purpose, it is reasonable to assume
that the network entities are synchronized with their
clocks [8].

• Step 3. Now, GWNj, GWNj generates a current
timestamp TSGWNj

, encrypts the prepared message

MsgGWNj
� MsgSSi

, IDGWNj
,TSGWNj

􏼚 􏼛� (IDSSi
,TSSSi

,􏽮

DataSSi
) , ID GWNj,TSGWNj

} bit wise using the public
key of its corresponding cloud server CLSk to obtain
the ciphertext CGWNj

� C0′, C1′, C2′􏼈 􏼉 as done in the
Encrypts phase, and sends the encrypted message
{CGWNj

, TSGWNj
} to its respective CLSk, CLSk via a

public channel, where C0′, C1′ and C2′ are the encrypted
bit strings corresponding to the bit strings of the
MsgGWNj

.

6. Security Analysis

In this section, we analyze the security of the proposed en-
cryption scheme by using a sequence of games played between
an adversary, say A and a challenger, say B, namely the
gamesGl, for l � 0, 1, 2, 3, 4.&e initial gameG0 is considered
as the real attack, whereas the final game G4 is the game that
cannot be cracked by the adversaryA. Each transition from a
game Gi to another game Gi+1 is indistinguishable with a
negligible advantage under some hard assumption. If there
are polynomial time games, each of the transitions is also
indistinguishable with the negligible advantage meaning that
the advantage ofA in real attack is negligible. We now define
the games in order to ensure the indistinguishable transitions.

6.1. Games Descriptions. &e following games are discussed
below.

• Game(G0): &is game is played between the adver-
sary A and the challenger B with both honest and
indistinguishable properties under the IND-sID-
CPA property. We have defined as earlier that, under
“selective identity chosen plaintext attack
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Figure 6: Overall mechanism of the proposed IBE scheme for IoT-based AI applications.
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IND-sID-CPA” property, A needs to submit target
identity at advance to theB, beforeB runs the Set-up
algorithm.

• Game(G1):&is game is same asG0 except in the Set-
up phase, B computes the matrices Hi,b, for 1≤ i≤ k

and b ∈ 0, 1{ } not directly, but as an arbitrary public
key of random GPV trapdoors [21] corresponding to
the trapdoor Ti,b.

• Game(G2):&is game is same asG1, exceptB neither
uses the master secret TA nor the Extraction phase to
answer the queries to private keys, but it uses another
Trapdoor-Extraction phase and trapdoors Ti,b for
1≤ i≤ k and b ∈ 0, 1{ }. &e trapdoors are represented
as 􏽢T � 〈{ i, b, Ti,b〉: 1≤ i≤ k, 0≤ b≤ 1}.

Trapdoor-Extraction〈A, u0,
􏽢H, ID, i∗, Ti∗,b∗〉: A key that

corresponds to decryption is extracted for the identity ID,
with the help of the trapdoor:

1. Let bi �biti(mod2)(ID) be the position of non zero bit
for 1≤ i≤ k and b ∈ 0, 1{ }. Assemble an n × ℓ matrix
HID � [Hi1 ,bi1mod2|Hi2 ,bi2mod2| · · ·, |Hiℓ ,biℓmod2] ∈ Zn×ℓ

q ,
where Hi1 ,bi1mod2|Hi2 ,bi2mod2| · · ·, |Hiℓ ,biℓmod2 ∈ 􏽢H be-
cause Hi1 ,b1 or Hi1 ,b0 is according to either i1(mod2) �

0 or i1(mod2) � 1.
2. Sample ri←Zℓ

q under Sample-Dom(Hi,bimod2, σ),
where i ∈ 1{ , 2, . . ., k( } − i∗{ }, that is, from the set Zℓ

q.
3. Let 􏽢u � u0 + HID􏽢r ∈ Zn

q. It can be then observed as
􏽢u � u0 + 􏽐

ℓ′
i ∈ 1,2,...,k{ }− i∗{ } Hi,bi(mod2)

ri, where i is the non
zero position in the string S � H(ID), and 􏽢r is the
concatenation of all ri s, except 0, which follows the
distribution ri∗ .

4. Using the distribution DZm,σ , sample e←Zm
q under the

Sample-Dom(A, σ) algorithm.
5. Compute u � Ae ∈ Zn

q and u
→

� u − 􏽢u, and then use
the Sample-Pre(Ti∗,b∗ ,σ,􏽢u) to sample ri∗←Zℓ

q such
that 􏽢u � Hi∗,b∗ri∗ .

6. Let rt �[rt
1|r

t
2| · · · |rt

ℓ] including ri∗ such that
u � u0 + HIDr. Output a private key K � 〈e, r〉.

• Game(G3): &is game is same as G2, except B

computes 􏽥H with the trapdoors 􏽥T. It knows only the
trapdoor of ith index, but not corresponding to ith,
ith-bit of the target ID∗.

1. Let biti(mod2)(ID∗) for i ∈ 1{ , 2, . . ., k( }, be the modulo
of non-zero ith, ith position declared byA toB in the
Set-up phase.

2. B generates 􏽥H by taking b ∈ 0, 1{ }, i ∈ 1{ , 2, . . ., k( }

such that b≠ biti(mod2)(ID∗), and executes GPV
trapdoors [21] as in the G2 to obtain Hi,b corre-
sponding to Ti,b. Furthermore, it takes b ∈ 0, 1{ },
b ∈ 0, 1{ } such that b � biti(mod2)(ID∗) for a random
i ∈ 1{ , i ∈ 1{ , 2, . . ., k( }, k( }, and takesHi,b ∈ Zn×ℓ

q with
Ti,b � ⊥.

3. To extract the private key for ID≠ ID∗, B repeats the
game G2, except i∗ is picked such that
biti(mod2)(ID)≠ biti(mod2)(ID∗) and i∗ corresponding
to a legal query. If b∗ � biti∗(mod2)(ID) and Ti∗,b∗ ≠⊥,

B executes Trapdoor-Extraction〈A, u0, 􏽢H, ID, i∗,
Ti∗,b∗〉 to generate the private key.

&e challenge cipher then is generated by Encrypts (A,
H0, H

→
, ID∗, b∗) for an arbitrary b∗ ∈ 0, 1{ }, and outputs

c � 〈c0, c1, c2〉 as the challenge.

• Game(G4): &is game is also same as G3, except B
gives a challenge to A that is not computed honestly,
but it is a random cipher, that is, c � 〈c0, c1, c2〉 is
chosen randomly from Z1+m+ℓ

q distribution.

6.2. Games Transitions. In the following, we now show that
each of the transitions between the successive games
(Game(G0), Game(G1), Game(G2), Game(G3),
Game(G4)) is indistinguishable as follows.

• Transition: Game(G0), (G0)⟶ Game(G1), (G1):
Both games are identical with respect to A, and B

possesses the information regarding trapdoor Ti,b

corresponding to Hi,b which is not known to A.
• Transition: Game(G1), (G1)⟶ Game(G2), (G2):
Both games are identical with respect to A, and B

possesses a different algorithm for key extraction and it
is invisible to A.

• Transition: Game(G2), (G2)⟶ Game(G3), (G3):
Both games are identical with respect to A, and B

knows only half of all the hash-trapdoors and answers
if the extraction queries are known, and these are
invisible to A.

• Transition: Game(G3), (G3)⟶ Game(G4), (G4):
&e views are not identical with respect to A, but are
indistinguishable under “learning with errors”
assumption.

1. In the beginning, B receives 1 + m + ℓ samples of
“learning with errors” assumption 〈aj, bj〉 ∈ Zn+1

q ,
for 1≤ j≤ 1 + m + ℓ, with random aj ∈ Zn

q, and
either bj for 1≤ j≤ 1 + m + ℓ are random or bj �

at
js + xj for 1≤ j≤ 1 + m + ℓ with a random s ∈ Zn

q

and Gaussian xj←ξ.
2. In the beginning,B also receives ID∗ fromA to be

challenged. By applying the Set-up phase, B

computes H
→
. B picks b ∈ 0, 1{ } such that

b≠ biti(mod2)(ID∗) for 1≤ i≤ k, and executes GPV
trapdoors [21] as in G2 to obtain random Hi,b and
its trapdoor Ti,b as in another G3 and G4, respec-
tively. Now, B picks b ∈ 0, 1{ } such that
b � biti(mod2)(ID∗) for 1≤ i≤ k, random Hi,b and its
jth-column “learning with errors” instance aj, and
then sets Ti,b � ⊥.

3. B answers the private key queries as in the games
G3 and G4 using the corresponding trapdoors. B
picks random b ∈ 0, 1{ } and computes a challenge
cipher c∗0 � b1 + b􏼄q/2􏼅, c∗1 � 〈b1+i: 1≤ i≤m〉 ∈ Zm

q ,
c∗2 � 〈b1+m+i: 1≤ i≤ ℓ〉 ∈ Zℓ

q.
4. Finally, A guesses a bit b∗ ∈ 0, 1{ }, and B returns

the correct b∗ � b; else, returns a random bit as an
answer to the “learning with errors” instances.
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It is thus worth noticing that B is indistinguishable in
both the games G3 and G4 with respect to view of A, ex-
cluding the challenge cipher. &e “learning with errors”
instance is random for the challenge cipher and components
of c∗ has same distribution as in the game G3, and so they
will be the components in G4.

6.3. Anonymous Cipher and Indistinguishablity. In this
section, we discuss the notion of semantic security that is
discussed in Section 3. It is observed that the proposed
identity-based encryption scheme provides indistinguish-
able property of the ciphers from random strings of equal
lengths, although an adversary can presume the identity of
the receiver. &e challenge cipher is then pseudo-random
under the “learning with errors” assumption, which implies
indistinguishability.

7. Performance Comparison

&is section provides computation costs and recommended
bit-size of the proposed identity-based encryption scheme
and compares themwith the other relevant approaches, such
as discrete logarithm-based schemes, RSA public key
cryptosystem [31] and ElGamal cryptosystem [32].

7.1. Comparison on Recommended Bit-size. Let κ be an ap-
propriate security parameter and O(κ2) be the size of public
key. We can then relate the computation time in terms of
security parameter complexity O(κ2), O(κ2). It can be
compared with the size of classic public key cryptosystems
(RSA and ElGamal) which is O(κ) and computation time in
terms of security parameter as O(κ3) [33, 36].

We take q �O(κ2), m � O(κ log(q)) and
n �O(κ log(q)) as the parameters, where κ is the security
parameter. Furthermore, we consider q �κ2, m �κ log(q)

and n �κ log(q) as the parameters to simplify the compu-
tation. &e storage cost is mn log(q) �16κ2log3(q) and the
communication cost is 8κ log2(κ) in the proposed scheme.
&e cipher is computed as c0 �ut

0s + x + b􏼄q/2􏼅∈∈Zq,
c1 �At s + y ∈ Zm

q and c3 � Ht
IDs + z ∈ Zℓ

q, that is, in the
form of triplet c � 〈c0, c1, c2〉. &e size of public keys in-
volves the security parameters A ∈ Zm×n

q , 􏽢H, u0 ∈ Zn
q, which

is roughly 16κ2log3(κ), that is, O(m2log(q)) � O(κ2log(κ)).
In Table 1, a comparative study on recommended bit-size

with respect to Lattice and classical discrete logarithm due to
the “discrete logarithm problem (DLP)” intractability.

7.2. Comparison on Computation Costs. In Table 2, the re-
lationship between the length of keys in bits and the key
generation time in milliseconds has been shown. Based on
the results reported in [40], in RSA-based public crypto-
system, the key lengths of 512, 1024 and 2048 bits take 360,
1280 and 4195 milliseconds, respectively. On the other hand,
in the proposed lattice-based scheme, the key lengths of
1170, 1841 and 4024 bits require the generation time having
4, 7.5 and 17.5 milliseconds, respectively [40]. &is clearly
shows that the lattice-based IBE scheme requires less
computational time for key generation part as compared to
other public key cryptosystems, such as RSA.

Table 3 shows a comparative analysis on the key length in
bits with the encryption and decryption speed in terms of
blocks per second based on the results reported in [40]. It is
noticed that when the key size is smaller, the encryption and
decryption processing time for the blocks per second are less.
However, the lattice-based cryptosystem performs better
than RSA-based public key cryptosystem even if the key size
is large.

7.3.ComparisononSecurity. A comparative study on the key
length size and the security aspect between the RSA-based
public key cryptosystem and lattice-based cryptosystem has
been presented in Table 4 based on the results reported in
[40]. Million instructions per second (MIPS) is taken as an
“approximate measure of a computer’s raw processing
power”, which is considered in the comparative study. It is
observed that in both the cases when the key size is large, the

Table 1: A comparative study on recommended bit-size: Lattice
versus classical discrete logarithm.

Protocol Primitive Recommended bit-
size

DLP storage g ∈ Z∗p k′ � log p

Lattice storage A ∈ Zm×n
q , 􏽢H, u0 ∈ Zn

q 16κ2log3 κ
DLP
communication gr, Pgrx ∈ Z∗p k′ � log p

Lattice
communication ut

0s + x + b􏼄q/2􏼅 ∈ Zq, 8κ log2 κ

Ats + y ∈ Zm
q ,

Ht
IDs + z ∈ Zℓ

q

Table 2: Key length and key generation time comparative study:
RSA versus Lattice based cryptosystem.

Approach Key-length Key generation time
(in bits) (in milliseconds)
512 360

RSA 1024 1280
2048 4195
1169 4

Lattice-based 1841 7.5
4024 17.5

Table 3: Encryption and decryption costs comparative study: RSA
versus Lattice based cryptosystem.

Approach Key-length
(in bits)

Message
encryption Message decryption

(blocks per
second) (blocks per second)

512 2440 120
RSA 1024 930 20

2048 310 3
1169 5940 2820

Lattice-based 1841 3680 1620
4024 1470 610
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security of the system increases. Moreover, even for a smaller
key size the lattice based cryptosystem provides significantly
better security as compared to that for an RSA-based
cryptosystem.

In summary, the lattice-based cryptosystem has several
advantages, such as: (a) “cryptographic resistance compared
to RSA”, (b) “faster key generation”, and (c) “faster en-
cryption and decryption of the messages”. In addition, the
prime advantage of the lattice-based cryptosystem is its
resistance to quantum computer attacks.

8. Concluding Remarks

In this work, we attempted to design an advanced identity-
based encryption that is a very important cryptographic tool
to ensure confidentiality in the current quantum era. &e
proposed encryption is a provably post-quantum secure
without random oracles. Since lattices depends on algebraic
operations that are typically matrix addition and multipli-
cation, theymake the encryptionmuch efficient as compared
to other public key cryptosystems, such as RSA. In addition,
the proposed scheme is also anonymous and it produces the
pseudo-random ciphers. Finally, we incorporated the con-
structed identity based encryption (IBE) scheme for IoT
applications and described how the Big data analytics using
the AI/ML techniques will be helpful in such applications.
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