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High throughput technologies such as microarray have
produced huge amount of genomic and proteomic data
in public domain. Many survey and clinical outcome data
such as SEER data are also available. A long list of links to
large health-related data sets can be found at the website
http://www.ehdp.com/. All of these databases have different
temporal and spatial assumptions for example, different
frequencies of collection, different spatial resolution (by
state, by county, by zip-code, and by square kilometer),
and so forth. How to mine these data together and extract
useful information is really a challenging task. This special
issue brings together researchers from different disciplines
and encourages collaborative research on cancer related
computational data mining. The objectives of this spe-
cial issue are intended to address two challenging issues.
One is how to identify and evaluate biomarkers (features,
risk/protector) factors. The other is to develop new or
adapt existing algorithms to analyze data from different
sources.

This special issue published 11 articles, which may
be classified into three groups: (1) those concerned with
problems with gene selection and predictions, (2) those
developed methods for network construction and sys-
tem biology with multi source genomic data, and (3)
those related to medical informatics and methodology
research.

The first group covers methods in gene selection and
prediction, a fundamental problem in biomedical research.
These studies open new avenues for identifying complex
disease genes and biomarkers for disease diagnosis and

for assessing drug efficacy and toxicity. For examples, the
I, penalized methods can be efficiently implemented with
different classifiers for gene identification and model predic-
tion. In one article, Huang and Wu propose a novel method
for cancer diagnosis using gene expression data by casting
the classification problem as finding sparse representations
of test samples with respect to training samples. The sparse
representation is computed by the /;-regularized least square
method. The proposed method is more efficient than SVMs
as it has no need of model selection. Receiver Operating
Characteristic (ROC) analysis is a common tool for assessing
the performance of biomarkers and prediction models.
It gained much popularity in biomedicine. Liu et al, in
another article, propose a novel method through regularized
F-measure maximization. The proposed method assigns
different costs to positive and negative samples and does
simultaneous feature selection and prediction with [; penalty.
This method is useful especially when data set is highly
unbalanced or the labels for negative (positive) samples are
missing, which is very common in biomedical research.

Also in the first group, an article by Jrad develops
a multiclass cancer diagnosis with class-selective rejection
scheme for gene selection. It gives a general formulation
of the problem and proposes a possible solution based
on 7-1-SVM coupled with its regularization path. The
proposed classifier minimizes any asymmetric loss function
and consists of rejecting some patients from one, some,
or all classes in order to ensure a higher reliability while
reducing time and expense costs. Another article on human
cancer prediction by Martin-Merino et al. incorporates in



the v-SVM algorithm a linear combination of non-Euclidean
dissimilarities. The weights of the combination are learnt
in a Hyper Reproducing Kernel Hilbert Space (HRKHS)
using a Semidefinite Programming algorithm. This approach
allows us to incorporate a smoothing term that penalizes the
complexity of the family of distances and avoids overfitting.
This method is more robust than the traditional support
vector machines (SVMs). Another methodology article by
Hua et al. proposes a Bayesian cut fitting to describe features
in response to the skeletal age. Their method cannot only
capture the entire pattern of feature variation but also carry
the local properties regarding the skeletal age.

The second group includes genomic networks and system
biology with multi source genomic data. In a biological
system, genes perform different molecular functions and
regulate various biological processes via interactions with
other genes thus forming a variety of complex networks.
Article by Han et al. proposes an integrative method
based on the bootstrapping K-S test to evaluate a large
number of microarray datasets generated from 21 different
types of cancer in order to identify gene pairs that have
different relationships in normal versus cancer tissues. The
significant alteration of gene relations can greatly extend
our understanding of the molecular mechanisms of human
cancer. In another article, Spencer et al. utilize data mining
methods based on machine learning to build a predictive
model of lung injury by retrospective analysis of treatment
planning archives. In addition, biomarkers for this model
are extracted from a prospective clinical trial that collects
blood serum samples at multiple time points. They utilize
a 3-way proteomics methodology to screen for differentially
expressed proteins that are related to RP. They present their
proteomic methodology to investigate predictive biomarkers
of RP that could eliminate informational gaps in the retro-
spective physical model. Article by Wang et al. constructs a
single gene network based on linear programming and an
integrated analysis of the significant function cluster using
Kappa statistics and fuzzy heuristic clustering. Finally, in
their article, Loganantharaj and Chung introduce an inte-
grating protein-to-protein interaction information, pathway
information with array expression data set to identify a
set of “important” genes and potential signal transduction
networks that help to target and reverse the oncogenic
phenotype induced by tumor antigen such as integrin
a6b4.

The third group comprises two articles, which cover
advances in medical informatics and spatial and temporal
data analyses. In their article, Chen et al. develop a prognostic
system of cancer patients with ensemble clustering and
SEER database. This system can be used to predict an
outcome or a survival rate of cancer patients with more
accuracy. The article by Song et al. proposes a method
of classifying temporal gene expression curves in which
individual expression trajectory is modeled as longitudinal
data with a changeable variance and covariance structure.
The method, mainly based on generalized mixed model,
is illustrated by a dense temporal gene expression data in
bacteria. The power and time points of measurements are
also characterized via the longitudinal mixed model. Even if

Journal of Biomedicine and Biotechnology

the method is developed for temporal gene expression data,
it may be generally applicable to other spatial and temporal
data analyses.
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Personalized drug design requires the classification of cancer patients as accurate as possible. With advances in genome sequencing
and microarray technology, a large amount of gene expression data has been and will continuously be produced from various
cancerous patients. Such cancer-alerted gene expression data allows us to classify tumors at the genomewide level. However,
cancer-alerted gene expression datasets typically have much more number of genes (features) than that of samples (patients),
which imposes a challenge for classification of tumors. In this paper, a new method is proposed for cancer diagnosis using gene
expression data by casting the classification problem as finding sparse representations of test samples with respect to training
samples. The sparse representation is computed by the [;-regularized least square method. To investigate its performance, the
proposed method is applied to six tumor gene expression datasets and compared with various support vector machine (SVM)
methods. The experimental results have shown that the performance of the proposed method is comparable with or better than
those of SVMs. In addition, the proposed method is more efficient than SVMs as it has no need of model selection.

Copyright © 2009 X. Hang and E-X. Wu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

The treatment of cancer greatly depends on the accurate
classification of tumors. In spite of its effectiveness in
classifying tumors by microscopic tissue examination, tra-
ditional histopathological approach fails to classify many
cancer cases. The number of unclassified cancer cases can
reach up to 40000 per year just in the United States [1].
DNA microarray technology, on the other hand, has the
potential to provide a more accurate and objective cancer
diagnosis due to its high throughput capability of measuring
expression levels of tens of thousands genes simultaneously.
Since Golub et al. [2] successfully classified between acute
myeloid leukemia (AML) and acute lymphocytic leukemia
(ALL), many other types of cancer have been classified using
gene expression data including breast cancer [3], lymphoma
[4], lung cancer [5], bladder cancer [6], colon cancer [7],
ovarian cancer (8], prostate cancer [9], melanoma [10], and
brain tumors [11].

The successful application of microarray technology in
cancer diagnosis greatly depends on the careful design of two
important components of a gene data classification system:
gene selection and sample classification, shown in Figure 1.
Gene selection mainly serves two purposes: (i) to reduce
dramatically the number of genes used in classification to
manage the “curse of dimensionality” and (ii) selected genes
might be biologically relevant, allowing further biological
exploration which may lead to better understanding of
underlying molecular mechanism associated with tumorige-
nesis and progression. Gene selection can be made by test
statistics [12]. An excellent review on gene selection methods
can be found in [13].

The second component, sample classification, is a chal-
lenging issue for a problem with a small number of learning
samples and yet a large number of features (genes). The
number of samples available for analysis ranges from tens to
hundreds. Many established methods have been proposed to
address the challenge. According to Lee et al. [14], they can
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FIGURE 1: The pipeline of cancer diagnosis using gene expression data.

be classified into four categories: (i) classical methods such
as Fisher’s linear discriminant analysis, logistic regression,
K-nearest neighbor, and generalized partial least square,
(ii) classification trees and aggregation methods such as
CART, random forest, bagging, and boosting, (iii) machine
learning methods such as neural network and support vector
machines (SVMs), and (iv) generalized methods such as
flexible discriminant analysis, mixture discriminant analysis,
and shrunken centroid method.

In this paper, we propose a novel approach for classifi-
cation, called sparse representation, inspired by the recent
progress in [;-norm minimization-based methods such as
basis pursuit denoising [15], compressive sensing for sparse
signal reconstruction [16-18], and Lasso algorithm for
feature selection [19]. Ideally, a testing sample can be
represented just in terms of the training samples of the same
category. Hence, when the testing sample is expressed as
linear combination of all the training samples, the coefficient
vector is sparse, that is, the vector has relatively few nonzero
coefficients. Testing samples of same category will have
similar sparse representation, while different categories will
result in different sparse representations. In order to recover
the sparse coefficient vector, /;-regularized least square [20]
is used.

Unlike general supervised learning methods, where a
training procedure is used to create a classification model for
testing, the sparse representation approach does not contain
separate training and testing stages. Instead, classification
is achieved directly out of the testing sample’s sparse
representation in terms of training samples. Another unique
feature of the new method is no model selection needed. It is
well known that the performance of a classifier, such as SVM,
relies upon careful choice of the model parameters via model
selection procedure.

2. Materials and Methods

2.1. Sparse Representation. Consider a training dataset {(x;,
I);i = 1,...,n5,x; € R4, I € {1,2,...,N}, where x;
represents the ith sample, a d-dimensional column vector
containing gene expression values with d as the number of
genes, and [; is the label of the ith sample with N as the
number of categories. For a testing sample y € R, the
problem of sparse representation is to find a column vector
c=[c1,05.. .,c,,]T such that

Y =X+ 60Xyt uXn, (1)

and ||c|ly is minimized, where ||c|ly is lp-norm, and it is
equivalent to the number of nonzero components in the
vector c.

Defining a matrix by putting x; as the ith column A =
[X1,X2,...,Xy,], the problem of sparse representation can be
converted into

c= Cr,r‘1£1}%||c ||, subject toy = Ac. (2)

Finding the solution to sparse representation problem is
NP-hard due to its nature of combinational optimization.
Approximation solution can be obtained by replacing the
lp-norm in (2) by the [,-norm

—_ 1 / 1 .
c= cnéanHc ||, subject toy = Ac, (3)

where the [,-norm of a vector v defined as [lvll, =

ilvil? )I/P . A generalized version of (3), which allows for
certain degree of noise, is to find a vector ¢ such that the
following objective function is minimized:

J(c,A) = min{l|Ac —yll, + Mlcllp}, (4)

where the positive parameter A is a scalar regularization
that balances the tradeoff between reconstruction error and
sparsity.

Since [} -norm minimization can efficiently recover sparse
signal [20] and are robust against outliers, this study takes
p = 1in (4). Therefore, the problem is reduced to solve (3)
an [;-regularized least square problem:

J(6,A) = minflAc —yll, +Allclly. (5)

A truncated Newton interior-point method (TNIPM) pro-
posed in [20] can be used to solve the above optimization
problem in (5). For the convergence of the algorithm,
the regularization parameter must satisfy the following
condition:

A< |2ATyll.. (6)

Please refer to [20] for more information about I[-
regularized least square and the specialized interior-point
method.

Another approach to determine the sparse solution to
(2) is to use the framework of compressive sensing, which
requires the system to be underdetermined. Including the
construction errors e in (1) yields

y =Ac+e. (7)

In compressive sensing approach, we need to rewrite (7) as

y=1[a 1] [Z] - Bd, (8)
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Input: {(x;,y;); i=1,...,n},andy
1. Normalize x;, i = 1,2,...,n,andy
2. Create matrix A
3. Solve the optimization problem defined in (5)
4. Compute g(y), k =1,2,...,N
Output: arg min, g (y)

ArcoriTHM 1: Classification by sparse representation.

where B = [A I] € R>*(d) and d = [T eT]T € R™4. With
these notations, the sparse representation can be obtained by
the following constrained /;-norm minimization problem:

nhin [dll; subject to Bd =y. 9)
The above linear programming problem can be solved by a
specialized interior-point method called /;-magic [21]. The
approach in (9) is used in [22] for face recognition by sparse
representation.

Both approaches do generate nearly the same classifica-
tion performance in our experiments. Our approach, based
on [;-regularized least square, however, is much faster. First,
the optimization problem scale in our approach is much
smaller. For example, when the training dataset contains 300
samples and the gene number is 10 000, the matrix in our
approach is A € R10000x300 yhile B € R10000x10300 Gecondly,
TNIPM is O(n'?) while [;-magic is O(n'?) [20]. In addition,
it is noticed that basis pursuit, compressive sensing, and
Lasso algorithm can also be converted into [;-regularized
least square problems [20].

Let € denote the sparse representation obtained by [;-
regularized least square. Ideally, the nonzero entries in € are
associated with the columns in A corresponding to those
training samples of the same category as the testing sample
y. However, noises may cause the nonzero entries to be
linked with multiple categories [22]. Simple heuristics, such
as assigning y to the category with the largest entry in ¢, are
not dependable. Instead, we define N discriminate functions

g(y) = lly — Acll,, k=1,2,...,N, (10)
where ¢, is obtained by keeping only those entries in €
associated with category k and assigning zeros to other
entries. Thus g represents the approximation error when y
is assigned to category k, and we can assign y to the category
with the smallest approximation error. The classification
algorithm is summarized (see Algorithm 1).

2.2. Numerical Experiments. Numerical experiments are
designed to quantitatively verify the performance of sparse
representation method for cancer classification using gene
expression data. The performance metric used in this study
is accurate, obtained by stratified 10-fold cross-validation.
We compare our approach with a few variants of multi-
category SVMs. SVMs, as state-of-the-art machine learning
algorithms, have been successfully applied in gene profile
classification [23, 24]. The comprehensive study in [25]

also shows that SVMs outperform K-nearest neighbors and
neural network in gene expression cancer diagnosis.

All experiments are done on a PC with duo Intel 2.33G
CPU and 4 G memory under Windows XP (SP2). MATLAB
R14 is used to implement sparse representation method.
The optimization is done by 11_1s MATLAB package, which
is available online (http://www.stanford.edu/~boyd/11 1s/).
The results of SVMs are obtained by gene expression model
selector (GEMS), a software with graphic user interface
for classification of gene expression data, which is freely
available at http://www.gems-system.org/ and used in [25]
for the comprehensive study of the performance of multiple
classifiers on gene expression cancer diagnosis. Besides
standard binary SVM, GEMS has implemented the following
multiclass SVMs: one-versus-rest (OVR) [26], one-versus-
one (OVO) [26], directed acyclic graph (DAG) [27], all-at-
once method by Weston and Watkins (WW) [28], and all-
at-once method by Crammer and Singer (CS) [29], which
are used in comparison with sparse representation approach.
Polynomial and RBF kernels are used for SVMs.

For fair comparison, the partition file of cross-validation
generated by GEMS 1is used in sparse representation
approach. As for model selection, 9-fold cross validation is
used for SVMs.

The comparison is done with and without gene selection.
Two popular gene selection methods are used in this study:
Kruskal-Wallis nonparametric one-way ANOVA (KW) [30]
and the ratio of between-groups to within-groups sum of
squares (BW) [31].

2.3. Datasets. In the experiment, we use six datasets, which
are among 11 datasets used in the comprehensive study [25].
For easy comparison, we adopt the name used in [25]. The
information about the six datasets is summarized below.

(i) 9_-Tumors [32]: the dataset comes from a study of
9 human tumor types: NSCLC, colon, breast, ovary,
leukemia, renal, melanoma, prostate, and CNS. There
are 60 samples, each of which contains 5726 genes.

(ii) 11_Tumors [23]: the dataset includes 174 samples
of gene expression data of 11 various human
tumor types: ovary, bladder/ureter, breast, colorectal,
gastro-esophagus, kidney, liver, prostate, pancreas,
adeno lung, and squamous lung. The number of
genes is 12 533.

(iii) 14_Tumors [24]: the dataset contains 308 sam-
ples of 14 various human tumor types including
leukemia, prostate, lung, colorectal, lymphoma, blad-
der, melanoma, uterus, breast, renal, pancreas, ovary,
mesothelioma, and CNS, and 12 normal tissues
including breast, prostate, lung, colon, germinal
center, bladder, uterus, peripheral blood, kidney,
pancreas, ovary, and brain. Each sample has 15009
genes.

(iv) Brain_Tumorl [11]: the dataset comes from a study
of 5 human brain tumor types: medulloblastoma,
malignant glioma, AT/RT, normal cerebellum, and
PNET, including 90 samples. Each sample has 5920
genes.
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TABLE 1: Results without gene selection.
Methods Prostate_Tumor 9_Tumors 11_Tumors 14_Tumors Brain_Tumorl Brain_Tumor2
OVR 93.27% 67.06% 94.99% 75.29% 90% 75.5%
OvVO 93.27% 54.63% 90.22% 46.39% 90% 73.83%
SVM DAG 93.27% 54.63% 90.22% 45.10% 90% 73.83%
WW 93.27% 68.17% 94.31% 65.84% 90% 77.17%
CS 93.27% 68.17% 94.31% 75.38% 90% 75.5%
SR 92.27% 68.79% 95.02% 74.04% 90% 80.83%
TaBLE 2: Results with gene selection.
Method Prostate_Tumor 9_Tumors 11_Tumors 14_Tumors Brain_Tumorl Brain_Tumor2
94.36% 72.89% 96.66% 75.38% 90% 82.83%
SVM OVR CS OVR CS WW OVR
BW50 BW3000 KW1000 NG* NG* KW500
SR 94.18% 72.40% 96.10% 76.69% 90% 80.83%
BW800 BW3000 KW2000 BW5000 NG* NG*

“NG: no gene selection.

(v) Brain_Tumor2 [33]: there are 4 types of malig-
nant glioma in this dataset: classic glioblastomas,
classic anaplastic oligodendrogliomas, nonclassic
glioblastomas, and nonclassic anaplastic oligoden-
drogliomas. The dataset has 50 samples, and the
number of genes is 10 367.

(vi) Prostate_Tumor [9]: the binary dataset contains gene
expression data of prostate tumor and normal tissues.
There are 10509 genes in each sample and 102
samples.

According to [25], 9_Tumors, 14_tumors, and Brain_Tumor2
are the most difficult datasets which make all the classifiers,
including SVMs, generate low classification performance.

All the gene expression data are normalized by being
rescaled between 0 and 1. It is also for the purpose of
speeding up the training of SVMs.

3. Results and Discussion

Table 1 shows the classification results of the experiment
without gene selection for both sparse representation (SR)
and SVMs. The results of SVMs are slightly differently
from [25]. A possible explanation is that the distribution
file of cross validation is different in our study from
[25]. From Table 1, the proposed SR approach performs
better than all SVM variants on 9_Tumors, 11_Tumors, and
Brian_Tumor2, and most SVM variants on 14_Tumors, while
the SR approach performs comparably with SVM variants
on Prostate_Tumor and Brain_Tumorl. In addition, similar
to SVMs, the SR approach also finds it difficult to classify
three multicategory datasets: 9_Tumors, 14_Tumors, and
Brain_Tumor2. However, the SR approach performs better
than all SVM variants on these datasets except CS and OVR
on 14_Tumors. The difficulty may mainly be caused by the
small number of total samples and even the smaller number
of samples for each category. For example, the 9_Tumors

dataset only has 60 samples, and category 7 (prostate tumor)
just has two samples.

Table 2 shows the results of sparse representation when
KW and BW methods are used for gene selection, along with
the best results achieved by SVMs with the corresponding
gene selection methods. From Table 2, the performance of
the proposed SR is comparable with the best SVM variant
on all six datasets. In addition, since gene selection generate
limited improvement for both methods, sparse representa-
tion approach, similar to SVMs, seems less sensitive to curse
of dimensionality than non-SVM methods such as neural
network and k-nearest neighbors.

It is worth mentioning that the results of SVMs for
both with and without gene selection are obtained by
careful model selection using 9-fold cross validation. Spare
representation approach, on the other hand, has no need of
adjusting model parameters for different datasets.

As for the computing efficiency, sparse representation
approach is very fast when sample number is less than
100. For example, without gene selection, it needs less than
10 seconds for Brain_Tumor2 dataset, which has only 50
samples. The efficiency, however, is dramatically reduced
for relatively large sample cases. The dataset 14_Tumors,
which has 308 samples, needs more than 3000 seconds! The
main reason lies in the fact that the current implementation
needs solving one optimization problem defined in (5)
for classification of each testing sample. As a result, the
number of optimization problems to be solved equals to
the number of samples in the dataset. When compared with
SVMs, however, the proposed SR is still faster, at least, than
GEMS implementations when model selection is counted for
SVMs.

4, Conclusion

In this paper, we have described a new approach for cancer
diagnosis using gene expression data. The new method
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expresses each testing sample as a linear combination of
all the training samples. The coefficient vector is obtained
by I;-regularized least square. Classification is achieved by
defining discriminating functions from the coefficient vector
for each category. Since /;-norm minimization leads to sparse
solution, we call the new approach sparse representation.
Numerical experiments show that sparse representation
approach can match the best performance achieved by SVMs.
Furthermore, the new approach has no need of model
selection. One direction of our future work is to investigate
how to classify multiple testing samples by solving only one
optimization problem to improve the efficiency.
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1. Introduction

Receiver Operating Characteristic (ROC) analysis has
received increasing attention in the recent statistics and
machine learning literatures (Pepe [1, 2]; Pepe and Janes [3];
Provost and Fawcett [4]; Lasko et al. [5]; Kun et al. [6]). ROC
analysis originates in signal detection theory and is widely
used in medical statistics for visualization and comparison
of performance of binary classifiers. Traditionally, evaluation
of a classifier is done by minimizing an estimation of a
generalization error or some other related measures (Vapnik
[7]). However the accuracy (the rate of correct classification)
of a model does not always work. In fact when the data are
highly unbalanced, accuracy may be misleading, since the
all-positive or all-negative classifiers may achieve very good
classification rate. In real life applications, the situations for
which the data sets are unbalanced arise frequently. Utility
functions such as F-measure or AUC provide a better way
for classifier evaluation, since they can assign different error
costs for positive and negative samples.

When the goal is to achieve the best performance
under a ROC-based utility functions, it may be better

to build classifiers through directly optimizing the utility
functions. In fact, optimizing the log-likelihood function or
the mean-square error does not necessarily imply good ROC
curve performance. Hence, several algorithms have been
recently developed for optimizing the area under ROC curve
(AUC) function (Freund et al. [8]; Cortes and Mohri [9];
Rakotomamonjy [10]), and they have been proven to work
well with different degrees of success. However, there are
not many methods proposed for F-measure maximization.
Most approaches to date that we know of maximize F-
measure using SVMs and do so by varying parameters in
standard SVM in an attempt to maximize F-measure as much
as possible (Musicant et al. [11]). While this may result
in a “best possible” F-measure for a standard SVM, there
is no evidence that this technique should produce an F-
measure comparable with one from the classifier designed
to specifically optimize F-measure. Jansche [12] proposed
an approximation algorithm for F-measure maximization
in the logistic regression framework. His method, however,
gives extremely large values for the estimated parameters
and creates too many steep gradients. It, therefore, either
converges very slow or fails to converge for large datasets.
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TasLE 1: Classification outcomes.
Predicted Total
1 -1
True 1 TP FN N,
-1 FP TN N,
M, M,

Our aim in this paper is to propose a novel algorithm
that directly optimizes an approximation of the regularized
F-measure. The regularization term can be an L,, L; or
a combination of L; and L, penalty based on different
prior assumptions (Tibshirani [13, 14]; Wang et al. [15]).
Due to the nature of L; penalty, our algorithm provides
simultaneous feature selection and classification with L;
penalty. The proposed algorithm can be easily applied to
high dimensional microarray data. One advantage with this
method is that it is very efficient when data is highly
unbalanced, since it assigns different costs to the positive and
negative samples.

The paper is organized as follows. In Section?2 we
introduce the related concept of ROC and F-measure. The
algorithm and the brief proof of its generalization bounds
are proposed in Section 3. The computational experiments
and performance evaluation are given in Section 4. Finally
the conclusions and remarks are discussed in Section 5.

2. ROC Curves and F-Measure

In binary classification, a classifier attempts to map the
instances into two classes: positive (p) and negative (n).
There are four possible outcomes with the given classifier:
true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). Table 1 summarizes these outcomes
with their associated terminology. The number of positive
instances is N, = TP + FN. Similarly N, = TN + FP is the
number of negative instances.
From these counts the following statistics are derived:

tor = 1P nr = N

Pr= 1p EN° ~IN+FP’ "
]

for — _FP fop = N

PI= 5N TP+ FN’

where true positive rate (also called recall or sensitivity) is
denoted by tpr and true negative rate (specificity) by tnr.
False positive rate and false negative rate are denoted by fpr
and fnr, respectively. Note that tnr = 1 — fpr, and for =
1 — tpr. We also define the precision Pr = TP/(TP + FP).
ROC curves plot the true positive rate versus false positive
rate by varying the threshold which is usually the probability
of the membership to a class, distance to a decision surface,
or a score produced by a decision function. In the ROC space,
the upper left corner represents a perfect classification, while
a diagonal line represents random classification. A point in
ROC curve that lies upper left of another point represents a
better model.
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F-measure combines the true positive rate (recall) and
precision Pr into a single utility function which is defined as
y-weighted harmonic mean:

P 1
7T y(Utpr) + (1 - )(1/Pr)’

where0 <y <1. (2)

F, can be expressed with TP, FP, and EN as follows:

TP
FV_TP+yFN+(1—y)FP (3)
or equivalently
TP
Fp=——————, 4
TN+ (1 )My W

where N, is the number of positive samples, and M, =
TP + FP. Clearly 0 < F, < 1 and F, = 1 only when
all the data are classified correctly. Maximizing F-measure
is equivalent to maximizing the weighted sensitivity and
specificity. Therefore, maximizing F, will indirectly lead to
maximize the area under ROC curve (AUC).

To optimize F,, we have to define TP, FN, and FP
mathematically. We first introduce an indicator function

1, ifyedC,
I(yeC) = _ (5)
0, ify¢dC,

where C is a set. Let y = f(w,x) be a classifier with coeffi-
cients (weights) w and input variable x, and let ¥ be the pre-
dicted value. Given n samples, D = {(X1, y1),...> (Xn> ¥n)}>
where x; is a multidimensional input vector with dimension
m and class label y; € {—1,1}; TP, EFN, and FP are given,
respectively:

TP = Zz(yi = DI(y; = 1),

zzl (6)
EN = Y I(5; = =DI(y; = 1),

i=1
FP = >'I(5; = DI(yi = —1). (7)

i=1

It is clear that F-measure is a utility function that applies for
the whole data set.

3. The Algorithm

Usually given a classifier with known parameters w, F-
measure can be calculated with the test data to evaluate
the performance of the model. The aim of this paper is,
however, to learn a classifier and estimate the corresponding
parameters w with a given training data D and regularized F-
measure maximization. Since F, € [0, 1], we have —logF, €
[0, ). Statistically F, is a probability that measures the
proportion of samples correctly classified. Based on these
observations, we can maximize the logF, in the maximum
log likelihood framework. Different assumptions for the
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prior distribution of w will lead to different penalty terms.
Given the coefficient vector w with dimension m, we have
L, = (1/2)2;”:1 [w; |2 for the assumption of Gaussian
distribution and L; = 2?1:1 [w;| with that of Laplacian prior.
In general, L; penalty encourages sparse solutions, while the
classifiers with L, are more robust. We make TP, EN, and FP
depend on w explicitly and maximize the following penalized
F-measure functions:

= log F),(TP(w), FN(w), FP(w)) — /\Z Iw;l,

Ei(w)
j=1
E;(w) = log F,(TP(w), FN(w), FP(w)) — — i\w]
(8)
‘We have

= argmax{logF (TP(w), FN(w), FP(w)) —AZIWJ }
j=1

= argmax{logF (TP(w), FN(w), FP(w)) — EAZ ijz}

j=1
)

Note that TP(w), FN(w), and FP(w) are all integers, and
the index function I in (7) is not differentiable. We first
define an S-type function to approximate the index function
I: Let z = wlx be a linear score function,

(0, z< -1,
%(lﬁ-z)z, -1<2z=<0,
h(z) = A ] (10)
E(2—(1—z)2), 0<z<1,
L1, z>1.

The decision role such that y(w,x) = 1ifz = w'x > 0 can
be represented as

I(y=1)=1(z>0) = I(h(w'x) >0.5) ~ h(w'x). (11)

Figure 1 gives some insight about the h(z). Figure 1l
shows that h(z) is a better approximation of I(z > 0) than
the sigmoid function g(z) = 1/(1 + e7%). The first derivative
of h(z) is continuous and given in (12):

0, z< —1,
;v dh(z) |l+z, -1=<z<0,
H&="0 11—z o<z=1, (12
0, z>1.

Based on (10) and (11), the approximated version of TP(w)

and M,(w) = TP(w) + FP(w) can be written as follows:
TP(w) = i h(w'x;),
;11 (13)
Myw) = ShiwTx,)

i=1
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Figure 1: The plot for h(z), indicator function I(z > 0), and
Sigmoid g(z) = 1/(1 +e7%).

We can find the first-order derivatives of E; and E,,
respectively, as follows:

0E|(w)  OF,(w)/dw; o '
ow, = F)(w) Asign (w;),

0E;(w) oF, (w)/ow; o
ow;  Ey(w) Awj,

(14)

where,

oF,(w) 9TP(w)
=B
E)wj 8wj

M, (W)
aWj ’

— B2TP(w)(1 - y)
1
T YN, + (1 - p)Mp(w)’

JTP(w)
aWj

= Zh’(wa)x,-j, (15)
i=1

aW]‘

Knowing E; and E, and their derivatives VE, = [0E;/0w;]
and VE, = [0E,/0w;], we can maximize the penalized
function E, and E, with gradient descent-related algo-
rithm such as Broyden-Fletcher-Goldfarb-Shanno- (BFGS-)
related quasi-Newton method (Broyden [16]). The algo-
rithm for E; maximization is straight forward as shown in
Algorithm 1. The step-size y in the algorithm can be found
with line search.

The regularized F-measure maximization with L, penalty
(E1) is of especial interest because it favors sparse solutions
and can select features automatically. However, maximizing
E, is a little bit complex since L; and E; are not differ-
entiable at 0. For simplicity, let LF = logF,(w), we have



1. Given ¥, A, a small number ¢, Initialize w' = w’, and set
t=0.
2. While [w!*! —w!| > ¢
w!tl = w! + u(VE,), where y is the step-size
3.t=t+1

ALGORITHM 1: L, regularized F-measure maximization.

1. Given ¥, A, small numbers ¢ and 6, w' = w’, and set
t=0and ¥ = {j:w;#0}.
2. While |wt! —w!| > ¢
witl = wt+‘u(<aLfF> —)Lsign(wi)\,,>,whereyis
aWj W
the step-size
‘I’=‘YU{j$‘{’: ‘BL*F >)L}
wij
Y=VY\{jeV¥:|wl<d}
3.t=t+1

ALGORITHM 2: L, regularized F-measure maximization.

E, = LF - )LZ'J»”:lijI. The Karush-Kuhn-Tucker (KKT)
conditions for optimality are given as follows:

‘SLTF' <A=w; =0,
! (16)
wi#0 = aL—F‘=)L
] aW]‘

The KKT conditions tell us that we have a set ¥ of
nonzero coefficients which corresponds to the variables
whose absolute value of first-order derivative is maximal and
equal to A, and that all variables with smaller derivatives
have zero coefficients at the optimal penalized solution. Since
L, is differentiable everywhere except at 0, we can design
an algorithm to deal with the nonzero coefficients only.
Algorithm 2 proposes an algorithm that can be applied to
the subspace of nonzero coefficient set denoted by ¥. The
algorithm has a procedure to add or remove variables from
WV, when the first-order derivative becomes large and when a
coefficient hits 0, respectively.

3.1. Computational Considerations. Both y and A are free
parameters that need to be chosen. We will choose the best
parameter for y and A with the area under ROC curve (AUC).
Area under the ROC curve (AUC) is another scalar measure
for classifier comparison. Its value is between (0,1). Larger
AUC values indicate better classifier performance across the
tull range of possible thresholds. For datasets with skewed
class or cost distribution is unknown as in our applications,
AUC is a better measure than prediction accuracy.

Given a binary classification problem with N, positive
class samples and N, negative class samples, let f(x) be the
score function to rank a sample x. AUC is the probability
that a classifier will rank a randomly chosen positive
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TaBLE 2: Overview of the datasets.

Datasets No. of samples NQ. of Nq. of
(train/test) variables experiments
Breast cancer 200/77 9 100
Diabetis 468/300 8 100
Heart 170/100 13 100
German 700/300 20 100
Thyroid 140/75 5 100
Titanic 150/2051 3 100

instance higher than a randomly chosen negative instance.
Mathematically

S SNI(fx) > fy))

AUC =
uC TATA

(17)

where I(-) is an index function and I(-) = Lif f(x;) > f(y;),
otherwise I(-) = 0. AUC is also called Wilcoxon-Mann-
Whitney statistic (Rakotomamonjy [10]).

Note that log F,(w) is generally a nonconcave function
with respect to w; only local maximum is guaranteed. One
way to deal with this difficulty is to employ the multiple-
points initialization. Multiple random points are generated,
and our proposed algorithms are used to find the maximum
for each point. The result with the lowest test error is chosen
as our best solution.

4. Computational Results

4.1. Benchmark Data. To evaluate the performance of
the proposed method, experiments were performed
on six benchmark datasets which can be downloaded
from  http://ida.first.fraunhofer.de/projects/bench/bench-
marks.htm. These benchmark datasets have been widely
used in model comparison studies in machine learning.
They are all binary classification problems, and the datasets
were randomly divided into train and test data 100 times
to prevent bias and overfitting. The data are normalized
with zero mean and standard deviation. The overview of the
datasets is given in Table 2. The computational results with
our algorithms, logistic regression, and linear support vector
machines are given in Figures 2-3.

Figures 2-3 show that L, F-measure maximization
performs better or equivalent compared with logistic
regression and linear support vector machines (SVM)
in limited experiments. In fact, the test errors for all
datasets except for Thyroid are competitive with that of
the nonlinear classification methods reported by Ratsch
(http://ida.first.fraunhofer.de/projects/bench/benchmarks
.htm). The inferior performance of L, F-measure with
Thyroid data indicates the strong nonlinear factors in that
data.

4.2. Real Methylation Data. This methylation data are
from 7 CpG regions and 87 lung cancer cell lines (Vir-
mani et al. [17], Siegmund et al. [18]). 41 lines are
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from small cell lung cancer and 46 lines from nons-
mall cell lung cancer. The proportion of positive values
for the different regions ranges from 39% to 100% for
the small cell lung cancer and from 65% to 98% for
the nonsmall cell lung cancer. The data are available at

http://www-rcf.usc.edu/kims/Supplementarylnfo.html. We
utilize the twofold cross validation scheme to choose the best
A and test our algorithms. Other cross-validation schemes
such as 10-fold cross validation will lead to similar results
but are more computational intensive. We randomly split
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TaBLE 3: Performance with different y’s and L, F-measure maximization.
y Variables selected (1/0) Sensitivity Specificity Test error AUC
0.1 1101111 0.476 0.957 27.3 0.801
0.2 1111111 0.714 0.957 15.9 0.820
0.3 0101111 0.810 0.740 22.7 0.849
0.4 1111001 0.826 0.762 20.4 0.861
0.5 1111101 0.857 0.609 27.3 0.832
0.6 1100101 0.762 0.739 25 0.832
0.7 1110110 0.904 0.348 38 0.847
0.8 1011100 100 0.217 40.9 0.826
0.9 1100011 100 0 52.3 0.754

the data into two roughly equal-sized subsets and build
the classifier with one subset and test it with the other.
To avoid the bias arising from a particular partition, the
procedure is repeated 100 times, each time splitting the data
randomly into two folds and doing the cross validation.
The average computational results with different ys and
A = 0.05 are given in Table 3. Table 3 shows the selected
variables (1: selected; 0: not selected), sensitivity, specificity,
test errors, and AUC values with different y’s. We can see
clearly the sensitivity increases while the specificity decreases
as y increases. When y = 0.9, every example is classified
as positive examples. The best y will be 0.4 according to
AUC but it will be 0.2 based on test error. Therefore, again
there is some inconsistence between two measures. Figure 4
gives some sight about how to choose A and the number of
features. Given y = 0.4, the optimal A = 0.04, and those 5
out of 7 CpG regions selected by L; F-measure maximization
have been proved to be predictive of lung cancer subtype
(Siegmund et al. [18]). The performance of the model is
improved roughly 6% in AUC and 3% in test error with only
5 instead of 7 CpG regions.

4.3. High Dimensional Microarray Data. The colon microar-
ray data set (Alon et al. [19]) has 2000 features (genes) per
sample and 62 samples which consisted 22 normal and 40
cancer tissues. The task is to distinguish tumor from normal
tissues. The data set was first normalized for each gene to
have zero mean and unit variance. The transformed data
was then used for all the experiments. We employed a same
twofold cross validation scheme to evaluate the model. This
computational experiments are repeated 100 times. The AUC
was calculated after each cross validation. The computational
results for performance comparison are reported in Table 4.

Table 4 gives us some insight that how the model
performance changes with different y’s. Generally we can see
that the false negative (FN) decreases and the false positive
(FP) increases as y increases. The only exception is when
y = 0.1, both FN and FP have the worst performance. The
best performance is achieved when y € [0.7,0.8] according
to both AUC and the number of misclassified samples.

The 10 genes selected are given in Table 5. The selected
genes allow the separation of cancer from normal samples
in the gene expression map. Some genes were selected
because their activities resulted in the difference in the

TABLE 4: Performance with different y’s and L, F-measure maxi-
mization (A = 3).

y  No.of variables FN  FP  No. of misclassified ~ AUC
0.1 10 11 33 44 0.588
0.2 10 3 3 6 0.989
0.3 10 3 3 6 0.989
0.4 10 3 3 6 0.989
0.5 10 3 3 6 0.989
0.6 10 3 3 6 0.989
0.7 10 2 3 5 0.993
0.8 10 2 3 5 0.993
0.9 10 2 5 7 0.988
1 10 2 8 10 0.971

TABLE 5: 10 differentially expressed genes.

Gene ID Description

myosin light chain alkali, smooth-muscle isoform
h20709

(human)
t71025 84103 human (human)
m76378 human cysteine-rich protein (crp) gene, exons 5 and 6
m63391  human desmin gene, complete cds
250753 h.sapiens mrna for gcap-ii/uroguanylin precursor
r87126  myosin heavy chain, nonmuscle (gallus gallus)
human gene for heterogeneous nuclear
x12671 ribonucleoprotein (hnrnp) core protein al
tropomyosin, fibroblast and epithelial muscle-type
192451 (human)
myosin regulatory light chain 2, smooth muscle
j02854  isoform (human); contains element tarl repetitive
element
36634 human vasoactive intestinal peptide (vip) mrna,

complete cds

tissue composition between normal and cancer tissue. Other
genes were selected because they played a role in cancer
formation or cell proliferation. It was not surprise that
some genes implicated in other types of cancer such as
breast and prostate cancers were identified in the context
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of colon cancer because these tissue types shared similarity.
Our method is supported by the meaningful biological
interpretation of selected genes. For instance, three muscle-
related genes (H20709, T92451, and J02854) were selected
from the colon cancer data, reflecting the fact that normal
colon tissue had higher muscle content, whereas colon cancer
tissue had lower muscle content (biased toward epithelial
cells), and the selection of x12671 ribosomal protein agreed
with an observation that ribosomal protein genes had lower
expression in normal than in cancer colon tissue.

5. Conclusions and Remarks

We have presented a novel regularized F-measure maximiza-
tion for feature selection and classification. This technique
directly maximizes the tradeoff between specificity and
sensitivity. Regularization with L, and L; allows the algo-
rithm to converge quickly and to do simultaneous feature
selection and classification. We found that it has better or
equivalent performances when compared with the other
popular classifiers in limited experiments.

The proposed method has the ability to incorporate
nonstandard tradeoffs between sensitivity and specificity
with different y. It is well suited for dealing with unbalanced
data or data with missing negative (positive) samples. For
instance, in the problem of gene function prediction, the
available information is only about positive samples. In other
words, we know which genes have the function of interested,
while it is generally unclear which genes do not have the
function. Most standard classification methods will fail but
our method can train the model with only positive labels by
setting y = 1.

One difficulty with the regularized F-measure maximiza-
tion is the nonconcavity of the error function. We utilized
the random multiple points initialization to find the optimal
solutions. More efficient algorithms for nonconcave opti-
mization will be considered to speed up the computations.
The applications of the proposed method in gene function
predictions and others will be explored in the future.
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1. Introduction

Cancer diagnosis, based on gene expression profiling, have
improved over the past 40 years. Many microarray technolo-
gies studies were developed to analyze the gene expression.
These genes are later used to categorize cancer classes. Two
different classification approaches can be used: class discov-
ery and class prediction. The first is an unsupervised learning
approach that allows to separate samples into clusters based
on similarities in gene expression, without prior knowledge
of sample identity. The second is a supervised approach
which predicts the category of an already defined sample
using its gene expression profiles. Since these classification
problems are described by a large number of genes and
a small number of samples, it is crucial to perform genes
selection before the classification step. One way to identify
informative genes pointed in [1] is the test statistics.

Researches show that the performance of supervised
decisions based on selected gene expression can be com-
parable to the clinical decisions. However, no classification
strategy is absolutely accurate. First, many factors may
effectively decrease the predictive power of a multiclass
problem. For example, findings of [2] imply that information
useful for multiclass tumor classification is encoded in a
complex gene expression and cannot be given by a simple
one. Second, it is not possible to find an optimal classifi-
cation method for all kinds of multiclass problems. Thus,
supervised diagnosis are always considered as an impor-
tant adjunct of traditional diagnostics and never like its
substitute.

Unfortunately, supervised diagnosis can be misleading.
They may hinder patient care (wrong decision on a sick
patient), add expense (wrong decision on a healthy patient)
or confound the results of cancer categories. To overcome



these limitations, a multi-SVM [3] classifier with class-
selective rejection [4-7] is proposed. Class-selective rejection
consists of rejecting some patients from one, some, or all
classes in order to ensure a higher reliability while reducing
time and expense costs. Moreover, any of the existing
multiclass [8—10] algorithms have taken into consideration
asymmetric penalties on wrong decisions. For example, in a
binary cancer problem, a wrong decision on a sick patient
must cost more than a wrong decision on a healthy patient.
The proposed classifier handles this kind of problems. It
minimizes a general loss function that takes into account
asymmetric penalties dependant on each class and on each
wrong or partially correct decision.

The proposed method divides the multiple class problem
into several unary classification problems and train one v-
1-SVM [11-13] coupled with its regularization path [14,
15] for each class. The winning class or subset of classes
is determined using a prediction function that takes into
consideration the costs asymmetry. The parameters of all
the v-1-SVMs are optimized jointly in order to minimize a
loss function. Taking advantage of the regularization path
method, the entire parameters searching space is considered.
Since the searching space is widely extended, the selected
decision rule is more likely to be the optimal one. The state-
of-art multiclass algorithms [8—10] can be considered as a
particular case of the proposed algorithm where the number
of decisions is given by the existing classes and the loss
function is defined by the Bayesian risk.

Two experiments are reported in order to assess the per-
formance of the proposed approach. The first one considers
the proposed algorithm in the Bayesian framework and uses
the selected microarray genes to make results comparable
with existing ones. Performances are compared with those
assessed using Naive Bayes, Nearest Neighbor, Linear Percep-
tron, Multilayer Perceptron, and Support Vector Machines
classifiers, invoked in [1]. The second one shows the ability of
the proposed algorithm solving multiclass cancer diagnosis
in the class-selective rejection scheme. It minimizes an
asymmetric loss function. Experimental results show that,
a cascade of class-selective classifiers with class-selective
rejections can be considered as an improved supervised
diagnosis rule.

This paper is outlined as follows. Section 2 presents
a description of the model as a gene selection task. It
introduces the multiclass cancer diagnosis problem in the
class-selective rejection scheme. It also proposes a supervised
training algorithm based on v-1-SVM coupled with its
regularization path. The two experiments are carried out
in Section 3, results are reported, compared and discussed.
Finally, a conclusion is presented in Section 4.

2. Models and Methods

This section describes the multiclass cancer diagnosis based
on microarray data. Feature selection is evoked as a first
process in a gene-based cancer diagnosis. Test statistics are
used as a possible way for informative genes identification
[1]. Once genes selection is processed, a classification
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problem should be solved. The multiclass cancer diagnosis
problem, formulated in the general framework of class-
selective rejection, is introduced. A solution based on »-1-
SVM [11-13] is proposed. First a brief description of »-1-
SVM and the derivation of its regularization path [14, 15] is
presented. Second, the proposed algorithm [3] is explained.
It allows to determine a multiclass cancer diagnosis that
minimizes an asymmetric loss function in the class-selective
rejection scheme.

2.1. Genes Selection Using Test Statistics. Gene profiles are
successfully applied to supervised cancer diagnosis. Since
cancer diagnosis problems are usually described by a small
set of samples with a large number of genes, feature or
gene selection is an important issue in analyzing multiclass
microarray data. Given a microarray data with N tumor
classes, n tumor samples and g genes per sample, one
should identify a small subset of informative genes that
contribute most to the prediction task. Various feature
selection methods exist in literature. One way pointed in [1]
is to use test statistics for the equality of the class means.
Authors of [1] formulate first the expression levels of a given
gene by a one-way analysis of variance model. Second, the
power of genes in discriminating between tumor types is
determined by a test statistic. The discrimination power is the
value of the test evaluated at the expression level of the gene.
The higher the discrimination power is, the more powerful
the gene is in discriminating between tumor types. Thus,
genes with higher power of discrimination are considered as
informative genes.

Let Y, be the expression level from the pth sample of the
jth class, the following general model is considered:

N
Yip=pj+e€j, forj=1,...,N; p=1,...,n; wichnj:n.

j=1
(1)

In the model y; represents the mean expression level of the
gene in class wj, €;, are independent random variables and
E(ejp) =0, V(gjp) = (IJ2 <ocforj=1,...,N;p=1,..,n;

For the case of homogeneity of variances, the ANOVA F
or F test [16] is the optimal one testing the means equality
hypothesis. With heterogeneity of variances, the task is
challenging. However, it is known that, with a large number
of genes present, usually in thousands, no practical test is
available to locate the best set of genes. Thus, the authors of
[1] studied six different statistics.

(i) ANOVA F test statistic, the definition of this test is

_ (n—N)Zm(YT.—T)Z
(N - I)Z(nj - 1)55

where Y;. = ZZLlePZ/nj and Y.. = Z?]:lanT-./n,
s? = Z;’:l(Yjp —Y;.)"/(nj — 1). For simplicity, >,
is used to indicate the sum taken over the index
j. Under means equality hypothesis and assuming

variance homogeneity, this test has a distribution of
Fn-1-n [16].

(2)
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(ii) Brown-Forsythe test statistic [17], given by
Sn(Y - Y V)
> (1 - nj/n)sj .

Under means equality hypothesis, B is distributed
approximately as Fy_; , where

[Z(l - nj/n)s?]z
T = 5 . (4)
> (1 - nj/n> s}*/(nj — 1)

(iii) Welch test statistic [18], defined as

3)

v S o (Y - ShY;)
(N-D+2(N-2)(N+ 1) z(nj—l)fl(l—hj)zy
(5)
with w; = nj/s; and hj = w;/Y w;. Under

means equality hypothesis, W has an approximate
distribution of Fy_; ;, where

N2-1
3z(nj—1)_1(1—hj)2'

(iv) Adjusted Welch test statistic [19]. It is similar to
Welch statistic and defined to be

(6)

Ty =

e Saj (V- ShY)
(N=D+2N=2(N+D 'S (m=1) " (1=h7)"
(7)
where @} = n;/(®;s}) with ®; chosen such that 1 <

< (nj = 1)/(nj - 3) and h} = w}/ 3> w]. Under
means equality hypothesis, W* has an approximate
distribution of Fy_1,;+ where

e N2 -1
Coa(m-n) (1omp)

(v) Cochran test statistic [20]. This test statistic is simply
the quantity appearing in the numerator of the Welch
test statistic W, that is,

C=> (Y - > hY; ) (9)
Under means equality hypothesis, C has an approxi-

mate distribution of y3,_;.

(vi) Kruskal-Wallis test statistic. This is the well-known
nonparametric test given by

(8)

H:n(n+1)z——3n+1) (10)
where R; is the rank sum for the jth class. The ranks
assigned to Y, are those obtained from ranking the
entire set of Yj,. Assuming each n; > 5, then under
means equality hypothesis, H has an approximate
distribution of y%_, [21].

These tests performances are evaluated and compared
over different supervised learning methods applied to pub-
licly available microarray datasets. Experimental results show
that the model for gene expression values without assuming
equal variances is more appropriate than that assuming equal
variances. Besides, under heterogeneity of variances, Brown-
Forsythe test statistic, Welch test statistic, adjusted Welch test
statistic, and Cochran test statistic, perform much better than
ANOVA F test statistic and Kruskal-Wallis test statistic.

2.2. Multitumor Classes with Selective Rejection. Once gene
selection is processed, the classification problem should be
solved. Let us define this diagnosis problem in the class-
selective rejection scheme. Assuming that the multiclass
cancer problem deals with N tumor classes noted wy ... wy
and that any patient or sample x belongs to one tumor class
and has d informative genes, a decision rule consists in a
partition Z of R¢ in I sets Z; corresponding to the different
decision options. In the simple classification scheme, the
options are defined by the N tumor classes. In the class-
selective rejection scheme, the options are defined by the N
tumor classes and the subsets of tumor classes (i.e. assigning
patient x to the subset of tumor classes {w;, w3} means that
x is assigned to cancer categories w; and w3 with ambiguity).

The problem consists in finding the decision rule Z* that
minimizes a given loss function ¢(Z) defined by

I N

C(Z) = ZzC’]P]P<D’/WJ)’ (11)

i=1j=1

where c;; is the cost of assigning a patient x to the ith decision
option when it belongs to the tumor class w;. The values
of ¢;j being relative since the aim is to minimize c(Z), the
values can be defined in the interval [0; 1] without loss of
generality. P; is the a priori probability of tumor class w; and
P(D;/wj) is the probability that patients of the tumor class w;
are assigned to the ith option.

2.3. u-1-SVM. To solve the multiclass diagnosis problem, an
approach based on v-1-SVM is proposed. Considering a set
of m samples of a given tumor classes X = {x1,X2,...,Xm}
drawn from an input space X, »-1-SVM computes a decision
function f)?(-) and a real number b* in order to determine
the region R* in X such that f}(x) — b* = 0 if the sample
x € R} and f)?(x) — b} < 0 otherwise. The decision function
f)’}(-) is parameterized by A = vm (with 0 < v < 1) to
control the number of outliers. It is designed by minimizing
the volume of R under the constraint that all the samples
of X, except the fraction v of outliers, must lie in R*. In
order to determine R, the space of possible functions f3(-)
is reduced to a Reproducing Kernel Hilbert Space (RKHS)
with kernel function K(+, -).Let @ : XX — # be the mapping
defined over the input space X. Let (-, -) 5 be a dot product
defined in #¢. The kernel K (-, -) over X X X is defined by:

V (xprxg) € XXX K(xp0x) = (@), (),
(12)



Without loss of generality, K(-,-) is supposed normalized
such that for any x € X, K(x,x) = 1. Thus, all the mapped
vectors @(x,), p = 1,...,m are in a subset of a hypersphere
with radius one and center O. Provided K(-,-) is always
positive and ®(X) is a subset of the positive orthant of the
hypersphere. A common choice of K(-,-) is the Gaussian
RBF kernel K(x,,x4) = exp[—1/202||xp - qulic] with o the
parameter of the Gaussian RBF kernel. v-1-SVM consists of
separating the mapped samples in ¢ from the center O with
a hyperplane ‘W*. Finding the hyperplane ‘W* is equivalent
to find the decision function f)’}(-) such that f)é(x) - =
(wh, D(x)) 4 — b* = 0 for the (1 —v)m mapped samples while
WA is the hyperplane with maximum margin b/ ||l wh|| 5 with
w* the normal vector of W,

This yields f(-) as the solution of the following convex
quadratic optimization problem:

e A 2
W%ﬂp;% b+ EHWAH%
subjectto<w",(1>(xp)>ﬂzb’l—fp, &= Vp=1,...,m
(13)

where &, are the slack variables. This optimization problem
is solved by introducing lagrange multipliers «,. As a
consequence to Kuhn-Tiicker conditions, w* is given by

1 m
p=1
which results in
1 m
f;?(-)—bA=XZaPK(xp,-)—b*. (15)
=1

P

The dual formulation of (13) is obtained by introducing
Lagrange multipliers as

(16)

p=1

A geometrical interpretation of the solution in the RKHS
is given by Figure 1. fi(-) and b* define a hyperplane
‘WA orthogonal to fi(-). The hyperplane W separates the
®(x,)s from the sphere center, while having b | wh || 5
maximum which is equivalent to minimize the portion 4§
of the hypersphere bounded by ‘W’ that contains the set
{DO(x) s.t. x € R

Tuning v or equivalently A is a crucial point since it
enables to control the margin error. It is obvious that chang-
ing A leads to solve the optimization problem formulated in
(16) in order to find the new region R*. To obtain great
computational savings and extend the search space of A,
we proposed to use v-1-SVM regularization path [14, 15].
Regularization path was first introduced by Hastie et al.
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[14] for a binary SVM. Later, Rakotomamojy and Davy [15]
developed the entire regularization path for a v-1-SVM. The
basic idea of the »-1-SVM regularization path is that the
parameter vector of a v-1-SVM is a piecewise linear function
of A. Thus the principle of the method is to start with large A,
(i.e., A = m — €) and decrease it towards zero, keeping track
of breaks that occur as A varies.

As A decreases, |[w"|| 5 increases and hence the distance
between the sphere center and 'W* decreases. Samples move
from being outside (non-margin SVs with ocj}, = 1 in
Figure 1) to inside the portion 4* (non-SVs with (x‘)}, = 0).
By continuity, patients must linger on the hyperplane 'W*

(margin SVs with 0 < (xé < 1) while their oc}s decrease

from 1 to 0. a’},s are piecewise-linear in A. Break points occur
when a point moves from a position to another one. Since
oc;‘, is piecewise-linear in A, f4(-) and b* are also piecewise-
linear in A. Thus, after initializing the regularization path
(computing oc?, by solving (16) for A = m — €), almost all the
(x?,s are computed by solving linear systems. Only for some
few integer values of A smaller than m, oc?,s are computed by
solving (16) according to [15].

Using simple linear interpolation, this algorithm enables
to determine very rapidly the v-1-SVM corresponding to any
value of A.

2.4. Multiclass SVM Based on u-1-SVM. Given N classes
and N trained v-1-SVMs, one should design a supervised
decision rule Z, moving from unary to multiclass classifier
by assigning samples to a decision option. To determine
the decision rule, first a prediction function should decide
the winning option. A distance measure between x and the
training class set wj, using the v-1-SVM parameterized by A ;,
is defined as follows:

. cos wmx) HWAJH -
(17)

where 6% is the angle delimited by w/ and the support vector
as shown in Figure 1. cos(6") is a normalizing factor which
is used to make all the d}(x) comparable.

Using [|®(x)|l = 11in (17) leads to the following;

<WAJ', CD(x)>J€ I/AszLla;jK(xp,x)
b N b ’

dbi(x) = (18)

Since the oc?,’ are obtained by the regularization path for
any value of A;, computing dV is considered as an easy-
fast task. The distance measure d" (x) is inspired from [22].
When data are distributed in a unimodal form, the d% (x) is
a decreasing function with respect to the distance between
a sample x and the data mean. The probability density
function is also a decreasing function with respect to the
distance from the mean. Thus, d% (x) preserves distribution
order relations. In such case, and under optimality of the
y-1-SVM classifier, the use of d% (x) should reach the same
performances as the one obtained using the distribution.
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FIGURE 1: Training data mapped into the feature space on a portion
4% of a hypersphere.

In the simplest case of multiclass problems where the loss
function is defined as the error probability, a patient x is
assigned to the tumor class maximizing d% (x).

To extend the multiclass prediction process to the class-
selective scheme, a weighted form of the distance measure
is proposed. The weight f; is associated to dVi. f; reflects
an adjusted value of the distance d% according to the
penalty associated with the tumor class w;. Thus, introducing
weights leads to treat differently each tumor class and helps
solving problems with different costs c;; on the classification
decisions.

Finally, in the general case where the loss function
is considered in the class-selective rejection scheme, the
prediction process can be defined as follows: a blinded
sample x is assigned to the ith option if and only if

N N
Zcijpjﬂjdlj (x) < zcljpjﬁjdlf (x), Vi=1...1, I #i.
=1 =1

(19)

Thus, in contrast to previous multiclass SVMs, which
construct the maximum margin between classes and locate
the decision hyperplane in the middle of the margin, the
proposed approach resembles more to the robust Bayesian
classifier. The distribution of each tumor class is considered
and the optimal decision is slightly deviated toward the class
with the smaller variance.

The proposed decision rule depends on ¢, ¥ and f vectors
of oj, v; and B; for j = 1,...,N. Tuning v; is the most
time expensive task since changing v; leads to solve the
optimization problem formulated in (16). Moreover, tuning
v; is a crucial point, it enables to control the margin error. In
fact, it was shown in [11] that this regularization parameter
is an upper bound on the fraction of outliers and a lower
bound on the fraction of the SVs. In [9, 23] a smooth grid
search was supplied in order to choose the optimal values
of ». The N values v;s were chosen equal to reduce the
computational costs. However, this assumption reduces the
search space of parameters too. To avoid this restriction, the
proposed approach optimizes all the v; with j = 1,...,N
corresponding to the Nv-1-SVMs using regularization path
and consequently explores the entire parameters space. Thus

the tuned »; are most likely to be the optimal ones. The
parameter ¢ are set equals 0y = 0, = - - -

The optimal vector of 6j, A; and f;, j = 1,...,N, is the
one which minimizes an estimator of ¢(Z) using a validation
set. Since the problem is described by a sample set, an
estimator ¢(Z) of ¢(Z) given by (11) is used:

= ON.

I N )
E(Z) . ZZC[jﬁjﬁ(vat‘), (20)
J

i=1j=1

where 13], and IS(Di/ w;) are the empirical estimators of P; and
P(Di/w;), respectively.

The optimal rule is obtained by tuning A;, §; and o; so
that the estimated loss ¢(Z) computed on a validation set
is minimum. This is accomplished by employing a global
search for A; and ; and an iterative search over the kernel
parameter. For each given value ¢ of the parameter kernels,
y-1-SVMs are trained using the regularization path method
on a training set. Then the minimization of ¢(Z) over a
validation set is sought by solving an alternate optimization
problem over A; and B; which is easy since all »-1-SVM
solutions are easily interpolated from the regularization path.
o is chosen from a previously defined set of real numbers
[00,...,05] with s € K. Algorithm 1 elucidates the proposed
approach.

3. Experimental Results

In this section, two experiments are reported in order to
assess the performance of the proposed approach. First, the
cancer diagnosis problem is considered in the traditional
Bayesian framework. Five gene expression datasets and five
supervised algorithms are considered. Each gene dataset was
selected using the six test statistics of [1]. The decisions
are given by the possible set of tumor classes and the loss
function is defined as the probability of error to make results
comparable with those of [1]. Second, in order to show the
advantages of considering the multiclass cancer diagnosis
in class-selective rejection scheme, one gene dataset is
considered and studied with an asymmetric loss function. A
cascade of classifiers with rejection options is used to ensure
a reliable diagnosis. For both experiments, the loss function
was minimized by determining the optimal parameters f3;
and A; for j = 1,..., N for a given kernel parameter ¢ and by
testing different values of ¢ in the set [273,272,271,20,21 22].
Finally, the decision rule which minimizes the loss function
is selected.

3.1. Bayesian Framework. Five multiclass gene expression
datasets leukemia72 [24], ovarian [25], NCI [26, 27], lung
cancer [28] and lymphoma [29] were considered. Table 1
describes the five genes datasets. For each dataset, the six
test statistics F, B, W, W*, C, and H were used to select
informative genes.

The cancer diagnosis problem was considered in the
traditional Bayesian framework. Decisions were given by the
set of possible classes and loss function was defined by the
error risk. This means that in (20) ¢;; are defined according
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10:=90
2C:=0
3 for o < oy to o; do
4 /*Using the Training Set*/
5 for j — 1to N do
6 Train v-1-SVM on w;, namely solving the QP (16)
7 Derive the regularization path for w;, namely compute the a*/s
8 end
9 /*Using the Validation Set*/
10 A= /10
11 B:=p,
12 repeat
B A= le "oy K (xp, x)/bY
14 IA’j = |Wj|/Z§»\]:1|Wj| /*| | = cardinality*/
15 Assign x to a decision y; according to (19)
16 ﬁ(D,-/Wj) := |{x of w; assigned to y;}|/|{x/x € w;}|
17 &Z) = 31, 3 ciiPP(Di/w;)
18 A := Apew/* construct the new vector according to the
direction of greatest decrease */
19 =P,
20  until &(Z)is minimum
21 6:=0uU{0g,A,pB}
22 C:=Cu{c2)}
23 end
24 index := min{C}
25 Boptimal = oindex
ArGorITHM 1: Multiclass SVM minimizing an asymmetric loss function.
TaBLE 1: Multiclass gene expression datasets. To compute the generalization accuracy of the proposed
classifier, Leave One Out (LOO) resampling method is used
Dataset Leukemia72 Ovarian NCI %08 Lymphoma to divide a gene dataset of n patients into two sets, a set
cancer of n — 1 patients and a test set of 1 blinded patient. This
No. of gene 6817 7129 9703 918 4026 method involves n separate runs. For each run, the first set
No. of sample 72 3% 60 73 96 of n — 1 samples is divided using 5 Cross-validation (5-
No. of class 3 3 9 7 9 CV) into a training set and a validation set. Nv-1-SVMs

TaBLE 2: Loss function cost matrix in the Bayesian framework.

Patient class

Prediction

to the Table 2. The performance of the proposed method
was measured by evaluating its accuracy rate and it was
compared to results obtained by the five predictors evoked
in [1]: Naive Bayes, Nearest Neighbor, Linear Perceptron,
Multilayer Perceptron Neural Network with five nodes in
the middle layer, and Support Vector Machines with second-
order polynomial kernel.

are trained using the training set for all values of v;. The
decision is obtained by tuning the parameters f3;, A; and
oj for j = 1,...,N so that the loss function computed
on the validation set is minimum. Optimal parameters are
then used to build the decision rule using the whole n — 1
samples. The blinded test set is classified according to this
rule. The overall prediction error is the sum of the patients
misclassified on all # runs.

Table 3 reports errors of the proposed algorithm, the
average value and the median value of the 5 classifiers
prediction errors reported in [1] when 50 informative genes
are used. Table 4 reports values when 100 informative genes
are used. F, B, W, W*, C, and H represent the six test
statistics.

Experimental results show that, for ovarian, NCI, lung
cancer and lymphoma multiclass genes problems, the pro-
posed approach achieves competitive performances com-
pared to the 5 classifiers reported in [1]. For these datasets,
prediction errors of the proposed approach are less than the
mean and median values of the 5 classifiers prediction errors
reported in [1]. However, for leukemia72, the proposed
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TaBLE 3: Prediction errors of the proposed classifier, mean and median values of the 5 classifiers prediction errors according to [1] with 50

informative selected genes.

B w W C H
Proposed algorithm 4 3 5 5 3 2

Leukemia Mean 3.4 2.4 2.8 2.8 3.2 3.0
Median 3 2 3 3 3 3

Proposed algorithm

Ovarian Mean 0.2 0.0 0.0 0.0 0.0 0.0
Median 0 0 0 0 0 0

Proposed algorithm 31 26 27 27 27 33

NCI Mean 36.0 32.0 27.4 26.0 27.0 35.4
Median 35 29 27 27 27 35

Proposed algorithm 14 16 16 16 16 15

Lung cancer Mean 17.6 17.0 17.6 17.6 18.0 18.0
Median 17 17 18 18 18 18

Proposed algorithm 18 16 9 10 9 15

Lymphoma Mean 23.8 19.8 14.0 14.0 12.8 22.0
Median 23 19 12 12 13 20

TaBLE 4: Prediction errors of the proposed classifier, mean and median values of the 5 classifiers prediction errors according to [1] with 100

informative selected genes.

F w |
Proposed algorithm 5 2 3 3 4 6
Leukemia Mean 3.4 3.0 3.0 3.0 3.2 3.0
Median 3 3 4 3 3 3
Proposed algorithm 0
Ovarian Mean 0.2 0.0 0.0 0.0 0.0 0.0
Median 0 0 0 0 0 0
Proposed algorithm 33 21 26 25 26 36
NCI Mean 33.0 22.6 23.8 25.2 25.2 31.6
Median 33 22 25 26 26 31
Proposed algorithm 11 10 11 11 11 13
Lung cancer Mean 12.2 12.2 11.4 12.2 12.2 15.8
Median 12 12 11 11 11 14
Proposed algorithm 16 16 11 10 11 17
Lymphoma Mean 21.8 19.2 13.0 13.8 14.4 18.2
Median 17 16 12 12 12 18

TaBLE 5: Confusion matrix of 50 W* lung cancer dataset. Total of
misclassified is equal to 16.

TaBLE 6: Confusion Matrix of 50 H lung cancer dataset. Total of
misclassified is equal to 15.

Patient class
Normal SCLC LCLC SCC AC2 AC3 ACl1

Patient class
Normal SCLC LCLC SCC AC2 AC3 ACl1

Normal
SCLC
LCLC

6

0

0
Predicted scC 0 16

0

0

0

decision AC2

AC3
AC1

S = O O O B O
_—_ 0 O W O O
N = O O O O
— ok O W ke = O

o O O = O O

Normal
SCLC
LCLC

5

0

0
Predicted gcC 0 14

0

0

1

decision AC2

AC3
AC1

—_ o O O O B O
(=1 S - e = =]
S O N o o © o
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TABLE 7: Asymmetric cost matrix of the loss function.
Patient class
Normal SCLC LCLC SCC AC2 AC3 ACl1
Normal 0 1 1 1 1 1 1
SCLC 1 0 1 1 1 1 1
LCLC 1 1 0 0.9 0.9 1 1
SCC 1 1 0.9 0 0.9 1 0.9
AC2 1 1 0.9 0.9 0 0.9 0.9
bredicted AC3 1 1 09 09 09 0 09
AC1 1 1 0.9 0.9 0.9 0.9 0
{LCLC, SCC, AC3} 1 1 0.6 0.6 0.9 0.2 0.9
All tumors 1 0.2 0.6 0.6 0.2 0.2 0.5
All classes 0.6 0.2 0.6 0.6 0.2 0.6 0.6

TaBLE 8: Confusion matrix of the 50 W* lung cancer problem with class-selective rejection using cost matrix defined in Table 7. Total of
misclassified is equal to 10, total of partially and totally rejected samples is equal to 8.

Patient class

Normal SCLC LCLC SCC AC2 AC3 AC1
Normal 6 0 0 0 0 0
SCLC 0 3 0 0 0 0
LCLC 0 0 3 0 4 0
SCC 0 0 0 16 0 2 0
gzilggd AC2 0 0 0 0 4 0 0
AC3 0 0 0 0 1 3 0
AC1 0 0 1 0 1 1 20
{LCLC, SCC, AC3} 0 0 1 0 0 2 0
All tumors 0 2 0 0 1 1 1
All classes 0 0 0 0 0 0 0

algorithm performances are almost in the same range of
those provided by the 5 classifiers reported in [1]. The
proposed approach prediction error is equal, or in the worst
case, slightly higher than the mean and median errors.

Moreover, we can note that focussing on the test statistics
comparison, experimental results confirm those of [1]. B, W
and W* can be the most performing tests under variances
heterogeneity assumptions.

3.2. Class-Selective Rejection Framework. In the following,
we present the study of lung cancer problem in the class-
selective rejection scheme. Lung cancer diagnosis problem is
determined by the gene expression profiles of 67 lung tumors
and 6 normal lung specimens from patients whose clinical
course was followed for up to 5 years. The tumors comprised
41 Adenocarcinomas (ACs), 16 squamous cell carcinomas
(SCCs); 5 cell lung cancers (LCLCs) and 5 small cell lung
cancers (SCLCs). ACs are subdivided into three subgroups
21 AC of group 1 tumors, 7 AC of group 2 tumors and 13
AC of group 3 tumors. Thus, the multiclass diagnosis cancer
consists of 7 classes.

Authors in [28] observed that AC of group 3 tumors
shared strong expression of genes with LCLC and SCC
tumors. Thus, poorly differentiated AC is difficult to dis-
tinguish from LCLC or SCC. Confusion matrices (Tables 5
and 6) computed in the Bayesian framework, with 50 W*
and 50 H prove well these claims. It can be noticed that
8 of the 16 misclassified 50 W* patients and 8 of the 15
misclassified 50 H patients correspond to confusion between
these three subcategories. Therefore, one may define a new
decision option as a subset of these three classes to reduce
error.

Moreover, same researches affirm that distinction
between patients with nonsmall cell lung tumors (SCC, AC
and LCLC) and those with small cell tumors or SCLC is
extremely important, since they are treated very differently.
Thus, a confusion or wrong decision among patients of
nonsmall cell lung tumors should cost less than a confusion
between nonsmall and small lung cells tumors. Besides, one
may provide an extra decision option that includes all the
subcategories of tumors to avoid this kind of confusion.
Finally, another natural decision option can be the set of all
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TaBLE 9: Confusion matrix of the cascade classifier (50 W* with rejection and 50 H classifier). Total of misclassified is equal to 13.
Patient class
Normal SCLC LCLC SCC AC2 AC3 ACl1
Normal 6 0 0 0 0 0
SCLC 0 4 0 0 0 0
LCLC 0 0 3 0 4 1
Predicted sce 0 0 0 16 0 2 0
decision AC2 0 0 0 5 0 0
AC3 0 1 1 1 6 0
AC1 0 0 1 1 1 20

classes, which means that the classifier has totally withhold
taking a solution.

Given all these information, the loss function can be
empirically defined according to the asymmetric cost matrix
given in Table 7. Solving 50 W* lung cancer problem in
this scheme leads to the confusion matrix presented in
Table 8. As a comparison with Table 5, one may mainly note
that the number of misclassified patients decreases from 16
to 10 and 8 withhold decisions or rejected patients. This
partial rejection contributes to avoid confusion between
nonsmall and small lung cells tumors and reduces errors
due to indistinctness among LCLC, SCC and AC3. Besides,
according to the example under study, no patient is totally
rejected. It is an expected result since initially (Table 5) there
was no confusion between normal and tumor samples.

To take a decision concerning the rejected patients,
we may refer to clinical analysis. It is worth to note that
for partially rejected patients, clinical analysis will be less
expensive in terms of time and money than those on
completely blinded patients. Moreover, a supervised solution
can be also proposed. It aims to use genes selected from
another test statistic in order to assign rejected patients to
one of the possible classes. According to Tables 3 and 4,
prediction errors computed on same patients using genes
selected by different test statistics may decrease since errors of
two different test statistics do not occur on the same patients.
Thus, we chose 50 H lung cancer dataset to reclassify the
8 rejected patients of Table 8. Five of them were correctly
classified while three remained misclassified. Results are
reported in Table 9. The number of misclassified patients
decreases to 13 which is less than all the prediction errors
obtained with 50 informative genes (lung cancer problem
prediction errors of Table 3). In fact, many factors play an
important role in the cascade classifiers system such as the
asymmetric costs matrix which has been chosen empirically,
the choice of test statistics, the number of classifiers in a
cascade system,.... Such concerns are under study.

4. Conclusion

Cancer diagnosis using genes involve a gene selection task
and a supervised classification procedure. This paper tackles
the classification step. It considers the problem of gene-based
multiclass cancer diagnosis in the general framework of

class-selective rejection. It gives a general formulation of the
problem and proposes a possible solution based on v-1-SVM
coupled with its regularization path. The proposed classifier
minimizes any asymmetric loss function. Experimental
results show that, in the particular case where decisions
are given by the possible classes and the loss function
is set equal to the error rate, the proposed algorithm,
compared with the state of art multiclass algorithms, can
be considered as a competitive one. In the class-selective
rejection, the proposed classifier ensures higher reliability
and reduces time and expense costs by introducing partial
and total rejection. Furthermore, results prove that a cascade
of classifiers with class-selective rejections can be considered
as a good way to get improved supervised diagnosis. To get
the most reliable diagnosis, the confusion matrix defining
the loss function should be carefully chosen. Finding the
optimal loss function according to performance constraints
is an promising approach [30] which is actually under
investigation.
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1. Introduction

DNA Microarray technology provides us a way to monitor
the expression levels of thousands of genes simultaneously
across a collection of related samples. This technology has
been applied particularly to the prediction of different types
of human cancer with encouraging results [1].

Support Vector Machines (SVM) [2] are powerful
machine learning techniques that have been applied to
the classification of cancer samples [3]. However, the
categorization of different cancer types remains a difficult
problem for classical SVM algorithms. In particular, the
SVM is based on Euclidean distances that fail to reflect
accurately the proximities among the sample profiles [4].
Non-Euclidean dissimilarities misclassify frequently different
subsets of patterns because each one reflects complementary
features of the data. Therefore, they should be integrated in
order to reduce the fraction of patterns misclassified by the
base dissimilarities.

In this paper, we introduce a framework to learn a
linear combination of non-Euclidean dissimilarities that

reflect better the proximities among the sample profiles.
Each dissimilarity is embedded in a feature space using
the Empirical Kernel Map [5, 6]. After that, learning the
dissimilarity is equivalent to optimize the weights of the
linear combination of kernels. Several approaches have been
proposed to this aim. In [7, 8] the kernel is learnt optimizing
an error function that maximizes the alignment between the
input kernel and an idealized kernel. However, this error
function is not related to the misclassification error and is
prone to overfitting. To avoid this problem, [9] learns the
kernel by optimizing an error function derived from the
Statistical Learning Theory. This approach includes a term to
penalize the complexity of the family of kernels considered.
This algorithm is not able to incorporate infinite families of
kernels and does not overcome the overfitting of the data.

In this paper, the combination of distances is learnt
in a (Hyper Reproducing Kernel Hilbert Space) HRKHS
following the approach of hyperkernels proposed in [10].
This formalism exhibits a strong theoretical foundation and
is less sensitive to overfitting. Moreover, it allow us to work
with infinite families of distances. The algorithm has been



applied to the prediction of different kinds of human cancer.
The experimental results suggest that the combination of
dissimilarities in a Hyper Reproducing Kernel Hilbert Space
improves the accuracy of classifiers based on a single
distance, particularly for nonlinear problems. Besides, our
approach outperforms the Lanckriet formalism specially for
multicategory problems and is more robust to overfitting.

This paper is organized as follows. Section 2 introduces
the algorithm proposed, the material and the methods
employed. Section 3 illustrates the performance of the
algorithm in the challenging problem of gene expression
data analysis. Finally, Section 4 gets conclusions and outlines
future research trends.

2. Material and Methods

2.1. Distances for Gene Expression Data Analysis. An impor-
tant step in the design of a classifier is the choice of a
proper dissimilarity that reflects the proximities among the
objects. However, the choice of a good dissimilarity is not
an easy task. Each measure reflects different features of
the data and the classifiers induced by the dissimilarities
misclassify frequently a different set of patterns. In this
section, we comment shortly the main differences among
several dissimilarities proposed to evaluate the proximity
between biological samples considering their gene expression
profiles. For a deeper description and definitions see [11].

Let x = [x1,...,x4] be the vectorial representation of
a sample where x; is the expression level of gene i. The
Euclidean distance evaluates if the gene expression levels
differ significantly across different samples:

deuclid (X, Y) = (1)

d
> =y
i-1

An interesting alternative is the cosine dissimilarity. This
measure will become small when the ratio between the gene
expression levels is similar for the two samples considered.
It differs significantly from the Euclidean distance when the
data is not normalized by the L, norm:

xTy

dcosme (X)Y) 1 ”XHHYH (2)
The correlation measure evaluates if the expression level of
genes change similarly in both samples. Correlation-based
measures tend to group together samples whose expression
levels are linearly related. The correlation differs significantly
from the cosine if the means of the sample profiles are not
zero. This measure is more sensitive to outliers:

S -%) (i - 7)
VI -2 E (- )

dcor (X’Y) =1- (3)

where X and ¥ are the means of the gene expression profiles.
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The Spearman rank dissimilarity is less sensitive to
outliers because it computes a correlation between the ranks
of the gene expression levels:

S = xX) i =)

SR ST
(4)

dspeam (x’))”) =1

where x1 = rank(x;) and y} = rank(y;).

An alternative measure that helps to overcome the
problem of outliers is the Kendall-7 index which is related to
the Mutual Information probabilistic measure [11]:

Z?ZlZ?ZICXij - C}’[j
dld-1) ’

diendall (X, y) =1 — (5)

where Cy,; = sign(x; — x;) and C),, = sign(y; — y;).

Finally, the dissimilarities have been transformed using
the inverse multiquadratic kernel because this transforma-
tion helps to discover certain properties of the underlying
structure of the data [12, 13]. The inverse multiquadratic

transformation is based on the inverse multiquadratic kernel
defined as follows:

N S
Jx=ylP+e’

where ¢ is a smoothing parameter. Considering that [|x — yl|
is the Euclidean distance, (6) can be rewritten in terms of a
dissimilarity as follows:

k(X’ Y) = (6)

1

The above nonlinear transformation gives more weight to
small dissimilarities, particularly when ¢ becomes small.

k(xy) = (7)

2.2. y-Support Vector Machines. Support Vector Machines
[2] are powerful classifiers that are able to deal with high
dimensional and noisy data keeping a high generalization
ability. They have been widely applied in cancer classification
using gene expression profiles [1, 14]. In this paper, we will
focus on the v-Support Vector Machines (SVM). The v-
SVM is a reparametrization of the classical C-SVM [2] that
allows to interpret the regularization parameter in terms of
the number of support vectors and margin errors. This pro-
perty helps to control the complexity of the approximating
functions in an intuitive way. This feature is desirable for
the application we are dealing with because the sample size
is frequently small and the resulting classifiers are prone to
overfitting.

Let {(x;, yi)}i=, be the training set codified in RY. We
assume that each x; belongs to one of the two classes labeled
by yi € {—1,1}. The SVM algorithm looks for the linear
hyperplane f(x;w) = w!x + b that maximizes the margin
y =2/ lwl|?. y determines the generalization ability of the
SVM. The slack variables &; allow to consider classification
errors and are defined as & = max{0,1 — y; f(x;)}.
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For the v-SVM, the hyperplane that minimizes the pre-
diction error is obtained solving the following optimization
problem [2]:

o1 1
min EIIWII2 —vp+ E;&

W;{Ez})p

(8)

styi(lw, xi)+b)=p—§&, i=1,...,m,

&=>0, p=0 i=1,...,m,

where v is an upper bound on the fraction of margin errors
and a lower bound on the number of support vectors.
Therefore, this parameter controls the complexity of the
approximating functions.

The optimization problem can be solved efficiently in the
dual space and the discriminant function can be expressed
exclusively in terms of scalar products:

fx) = > aiyi(x,x) +b, 9)

;>0

where «; are the Lagrange multipliers in the dual optimiza-
tion problem. The »-SVM algorithm can be easily extended
to the nonlinear case substituting the scalar products by
a Mercer kernel [2]. Besides, non-Euclidean dissimilarities
can be incorporated into the v-SVM via the kernel of
dissimilarities [5].

Finally, several approaches have been proposed in the
literature to extend the SVM to deal with multiple classes.
In this paper, we have followed the one-against-one (OVO)
strategy. Let k be the number of classes, in this approach
k(k — 1)/2 binary classifiers are trained and the appropriate
class is found by a voting scheme. This strategy compares
favorably with more sophisticated methods and it is more
efficient computationally than the one-against-rest (OVR)
approach [15].

2.3. Empirical Kernel Map. The Empirical Kernel Map allows
us to incorporate non-Euclidean dissimilarities into the SVM
algorithm using the kernel trick [5, 13].

Let d : X XX — R be a dissimilarity and R =
{p1,...,pn} a subset of representatives drawn from the
training set. Define the mapping ¢ : ¥ — R" as

¢(Z) = D(Z,R) = [d(Z’P1)>d(Z’P2),---:d(Z>Pn)]- (10)

This mapping defines a dissimilarity space where feature i is
given by d(-, p;).

The set of representatives R determines the dimensio-
nality of the feature space. The choice of R is equivalent to
select a subset of features in the dissimilarity space. Due to
the small number of samples in our application, we have
considered the whole training set as representatives. Notice
that it has been suggested in literature [13] that for small
samples reducing the set of representatives does not help to
improve the classifier performance.

2.4. Learning a Linear Combination of Dissimilarities in
an HRKHS. In order to learn a linear combination of
non-Euclidean dissimilarities, we follow the approach of

Hyperkernels developed by [10]. To this aim, each distance
is embedded in an RKHS via the Empirical Kernel Map
presented in Section 2.3. Next, a regularized quality func-
tional is introduced that incorporates an l,-penalty over
the complexity of the family of distances considered. The
solution to this regularized quality functional is searched in
a Hyper Reproducing Kernel Hilbert Space. This allows to
minimize the quality functional using an SDP approach.

Let Xirain = {x1,%2,..>Xm} and Yieain = {y1, 2.+, ¥}
be a finite sample of training patterns where y; € {—1,+1}.
Let X be a family of semidefinite positive kernels. Our goal is
to learn a kernel of dissimilarities k € K that represents the
combination of dissimilarities and minimizes the following
empirical quality functional:

m

1 A
Qemp(f)Xtraina Ytrain) = %Zl(xiayi:f(xi)) + E”f”?;(:
i=1
(11)

where [ is a loss function, || || % is the L, norm defined in a
reproducing kernel Hilbert space, and A is a regularization
parameter that controls the balance between training error
and the generalization ability.

By virtue of the representer theorem [2], we know that
(11) can be written as a kernel expansion:

1 1
Qemp = r21](n|:mzl(xi,}’ia [Kal;) + zocTKoc}. (12)

i=1

However, if the family of kernels X is complex enough it is
possible to find a kernel that achieves zero error overfitting
the data. To avoid this problem, we introduce a term that
penalizes the kernel complexity in an HRKHS. A rigorous
definition of the HRKHS is provided in the appendix:

A
Queg(k: X, ¥) = Qemp (ko X, Y) + T2 UKl (13)

where || ||  is the L, norm defined in the Hyper Reproducing
Kernel Hilbert space generated by the hyperkernel k. A¢ is a
regularization parameter that controls the complexity of the
resulting kernel.

The following theorem allows us to write the solution to
the minimization of this regularized quality functional as a
linear combination of hyperkernels in an HRKHS.

Theorem 1 (Representer theorem for Hyper-RKHS [10]).

Let X, Y be the combined training and test set, then each
minimizer k € JH of the regularized quality functional
Qreg(k, X, Y) admits a representation of the form

k(x,x') = fﬁijk((xi,xj),(x,x')), (14)

ij=1
forall x, x' € X, where ij € R, foreach1 <i,j < m.

However, we are only interested in solutions that give rise
to positive semidefinite kernels. The following condition over
the hyperkernels [10] allows us to guarantee that the solution
is a positive semidefinite kernel.



Property 1. Given a hyperkernel k with elements such that for
any fixed x € X, the function k(xp,x4) = k(x, (xp,%4)), with
XpsXq € X, is a positive semidefinite kernel, and B;; = 0 for all
i,j =1,...,m, then the kernel

k(xp,xq) = iﬂijk(xi,xj,xp,xq) (15)

ij=1
is positive semidefinite.

Now, we address the problem of combining a finite
set of dissimilarities. As we mentioned in Section 2.3, each
dissimilarity can be represented by a kernel using the
Empirical Kernel Map. Next, the hyperkernel is defined as

k(x,x') = iciki(&)ki(x;), (16)

i=1

where each k; is a positive semidefinite kernel of dissimilari-
ties and ¢; is a constant >0.

Now, we show that k is a valid hyperkernel. First, k
is a kernel because it can be written as a dot product
(D(x), D(x')) where

O(x) = (Ver ki(x),\/e2 ka(%),...5/en kn(x)).  (17)

Next, the resulting kernel (15) is positive semidefinite
because for all x, k(x, (xp, x4)) is a positive semidefinite kernel
and ﬁ,-j can be constrained to be >0. Besides, the linear
combination of kernels is a kernel and therefore is positive
semidefinite. Notice that k(x, (x,, x4)) is positive semidefinite
if ¢; = 0 and k; are pointwise positive for training data. Both
RBF and multiquadratic kernels verify this condition.

Finally, we show that the resulting kernel is a linear
combination of the original k;. Substituting the expression
of the hyperkernel (16) in (15), the kernel is written as

k(xp,xq) = ﬁﬁij S clk1<xi,xj)kz(xp,xq). (18)
ij=1 I=1

Now the kernel can be written as a linear combination of base
kernels:

M=

k(xp,xq> =

|:cl i/}ijkl(xi,xj)]h(xp,xq). (19)
ij=1

I

1

Therefore, the above kernel introduces into the v-SVM a
linear combination of base dissimilarities represented by k;
with coefficients y; = czzzf}:lﬁijkl(x,v,xj).

The previous approach can be extended to an infinite
family of distances. In this case, the space that generates
the kernel is infinite dimensional. Therefore, in order to
work in this space, it is necessary to define a hyperkernel
and to optimize it using an HRKHS. Let k be a kernel of
dissimilarities. The hyperkernel is defined as follows [10]:

k(x,x) = D alk(@k()), (20)
i=0
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where ¢; = 0and i = 0,...,00. In this case, the nonlinear
transformation to feature space is infinite dimensional.
Particularly, we are considering all powers of the original
kernels which is equivalent to transform nonlinearly the
original dissimilarities:

m)=(@k@, @K@, @k @), @

where # is the dimensionality of the space which is infinite
in this case. As we mentioned in Section 2.1, nonlinear
transformations of a given dissimilarity provide additional
information that may help to improve the classifier perfor-
mance.

As for the finite family, it can be easily shown that k
is a valid hyperkernel provided that the kernels considered
are pointwise positive. The Inverse Multiquadratic kernel
satisfies this condition. Next, we derive the hyperkernel
expression for the multiquadratic kernel.

Proposition 1 (see [Harmonic Hyperkernel]). Suppose k is a
kernel with range [0, 1] and ¢; = (1 —/\h))tz, ieN,0O<Ay<1.
Then, computing the infinite sum in (20), one has the following
expression for the harmonic hyperkernel:

1-A
1= Ank(x)k(x')’
(22)

k(x,x') = (1= A) Y- (ik()k(x)' =

i=0

A is a regularization term that controls the complexity of the
resulting kernel. Particularly, larger values for A, give more
weight to strongly nonlinear kernels while smaller values give
coverage for wider kernels.

In this paper one has considered the inverse multiquadratic
kernel defined in (6). Substituting in (22), one gets the inverse
multiquadratic hyperkernel:

1-Ap

1 —Ah((”x —x'|? +CZ) (”x,, — e |)? +Cz))_1/2,
(23)

k(x,x7) =

e

where x = (x,x") and x’ = (x", x

2.5. »-SVM in an HRKHS. In this section, we detail how
to learn the kernel for a v-Support Vector Machine in an
HRKHS. First, we will introduce the optimization problem
and next, we will explain shortly how to solve it using an SDP
approach.

We start some notation that is used in the »-SVM
algorithm. For p,q,r € R", n € Nletr = p o g be defined
as element by element multiplication, r; = p; X ¢g;. The
pseudoinverse of a matrix K is denoted by K. Define the
hyperkernel Gram matrix K by K;j,, = k((xi, %), (xp5%4)),
the kernel matrix K = reshape (KB) (reshaping an m? by 1
vector, K3, to an m X m matrix), Y = diag(y) (a matrix with
y on the diagonal and zero otherwise), G(f) = YKY (the
dependence on f3 is made explicit), and 1 is a vector of ones.

The »-SVM considered in this paper uses an [; soft mar-
gin, where I(x;, yi, f(xi)) = max(0,1 — y;f(x;)). This error
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is less sensitive to outliers which are convenient features for
microarray datasets. Let &; be the slack variables that allow for
errors in the training set. Substituting in (13) Qemp by the one
optimized by »-SVM (8) the regularized quality functional in
an HRKHS can be written as

. . 1 n 1 2 /1Q 2
minmin — » &+ = ||lwll% —vo+ =1k
min min mizzlfz 2|| I3 — vp 5 (1417

(24)

st. yif(xi)=zp—=&, i=1,...,m,

where v is the regularization parameter that achieves a
balance between training error and the complexity of the
approximating functions and Aq is a parameter that penalizes
the complexity of the family of kernels considered. The
minimization of the previous equation leads to the following
SDP optimization problem [10].

1 1. Ao
—t — —& 1+ —=t 25
s h Tt B (25)
st. x=0,7=0,8£=0, =0, (26)
[K"2B|| < 2, 178 =1, (27)

G(B) =z
[ f ]%o, 8

z f

wherez = py+yl+n—¢

The value of a which optimizes the corresponding
Lagrange function is G(8) "z, and the classification function,
f = sign(K(a o y) — boftset), is given by

f=sign(KGB) (yo2) - y), (29)

K is the hyperkernel defined in Section 2.4 which represents
the combination of dissimilarities considered. Finally, the
algorithm proposed can be easily extended to deal with
multiple classes via a one-against-one approach (OVO).
This strategy is simple, more efficient computationally
than the OVR, and compares well with more sophisticated
multicategory SVM methods [15].

2.6. Implementation. The optimization problem (25) were
solved using SeDuMi 1.1R3 [16] and YALMIP [17] SDP
optimization packages running under MATLAB.

As in the SDP problem there are m? coefficients Biis
the computational complexity is high. However, it can be
significantly reduced if the Hyperkernel {k((x;,x;),-) | 1 <
i,j < m*} is approximated by a small fraction of terms, p <
m? for a given error. In particular, we have chosen an m x
p truncated lower triangular matrix G which approximate
the hyperkernel matrix to an error § = 107° using the
incomplete Cholesky factorization method [18].

2.7. Datasets and Preprocessing. The gene expression datasets
considered in this paper correspond to several human

TaBLE 1: Features of the different cancer datasets

Clases Samples Genes Var/Samp. Priors %

Lymphoma DLBCL 2 77 6817 88 75.3
Lymphoma

I\}['LBPCL DLBCL 210 44928 213 84
Breast cancer LN 2 49 7129 145 51
Medulloblastoma 2 60 7129 119 65
Breast cancer B 3 49 1213 24.7 52
DLBCL survival C 4 58 3795 65.4 27
DLBCL survival D 4 129 3795 29.4 38

cancer problems and exhibit different features as shown
in Table 1. We have considered both, binary and multi-
category problems with a broad range of signal to noise
ratio (Var/Samp.), different number of samples, and vary-
ing priors for the larger category. All the datasets are
available from the Broad Institute of MIT and Harvard
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi/. Next
we detail the features and preprocessing applied to each
dataset.

The first dataset was obtained from 77 patients with
(diffuse large B-cell lymphoma) DLBCL (58 samples) or FL
(follicular lymphoma) (19 samples) and they were subjected
to transcriptional profiling using oligonucleotide Affymetrix
gene chip hu68000 containing probes for 6817 genes [19].
The second dataset consists of frozen tumors specimens
from newly diagnosed, previously untreated MLBCL patients
(34 samples) and DLBCL patients (176 samples). They
were hybridized to Affymetrix hgu133b gene chip containing
probes for 44000 genes [20]. In both cases the raw intensities
have been normalized using the rma algorithm [21] available
from Bioconductor package [11]. The third problem we
address concerns the clinically important issue of metastatic
spread of the tumor. The determination of the extent of
lymph node involvement in primary breast cancer is the
single most important risk factor in disease outcome and
here the analysis compares primary cancers that have not
spread beyond the breast to ones that have metastasized to
axillary lymph nodes at the time of diagnosis. We identified
tumors as “reported negative” (24) when no positive lymph
nodes were discovered and “reported positive” (25) for
tumors with at least three identifiably positive nodes [22].
All assays used the human HuGeneFL Genechip microarray
containing probes for 7129 genes. The fourth dataset [23]
address the clinical challenge concerning medulloblastoma
due to the variable response of patients to therapy. Whereas
some patients are cured by chemotherapy and radiation,
others have progressive disease. The dataset consists of 60
samples containing 39 medulloblastoma survivors and 21
treatment failures. Samples were hybridized to Affymetrix
HuGeneFL arrays containing 5920 known genes and 897
expressed sequence tags.

All the datasets have been standarized subtracting the
median and dividing by the Inter-quantile range. The
rescaling were performed based only on the training set to
avoid bias.



Regarding the identification of multiple classes of cancer
we have considered three different datasets. The first one
consists of 49 samples of Breast Cancer generated using 1-
channel oligonucleotide Affymetrix HuGeneFl [1]. The sec-
ond and third datasets consist of 58 and a129 samples from
Diffuse large B-cell lymphoma with survival data. Fourth
different subclasses can be identified. Data preparatory steps
have been performed by the authors of the primary study [1].
The 10% oligonucleotides with smaller Interquantile Range
were filtered to remove genes with expression level constant
across samples.

2.8. Performance Evaluation. In order to assure an honest
evaluation of all the classifiers we have performed a double
loop of crossvalidation [15]. The outer loop is based on
stratified tenfold cross-validation that iteratively splits the
data in ten sets, one for testing and the others for training.
The inner loop perform stratified ninefold cross-validation
over the training set and is used to estimate the optimal
parameters avoiding overfitting. The stratified variant of
cross-validation keeps the same proportion of patterns for
each class in training and test sets. This is necessary in our
problem because the class proportions are not equal. Finally,
the error measure considered to evaluate the classifiers has
been accuracy. This metric computes the proportion of
samples misclassified. The accuracy is easy to interpret and
allows us to compare with the results obtained by previously
published studies.

2.9. Parameters for the Classification Algorithm. The para-
meters for the »-SVM and for the classifiers based on a
linear combination of dissimilarities have been set up by a
nested stratified tenfold crossvalidation procedure [15]. This
method avoids the overfitting as is described in Section 2.8
and takes into account the asymmetric distribution of class
priors.

For the »-SVM we have considered both, linear and
inverse multiquadratic kernels. The optimal parameters have
been obtained by a grid search strategy over the following set
of values: v = {0.1,0.2,0.3,0.4,0.5} and ¢ = {d/2,d,2d},
where d denotes the dimensionality of the input space.

Additionally, for the finite family of distances ¢; = 1/M
where M is the number of dissimilarities considered, and
Aq = 1 because the misclassification errors are hardly sen-
sitive to the regularization parameter that controls the kernel
complexity. Finally, for the infinite family of dissimilarities,
the regularization parameter Aj, in the Harmonic hyperkernel
(22) has been set up to 0.6 which gives an adequate coverage
of various kernel widths. Smaller values emphasizes only
wide kernels. All the base kernel of dissimilarities have been
normalized so that all ones have the same scale.

Regarding the Lanckriet [9] formalism that allows to
combine a finite set of dissimilarities, several values for
the regularization parameter C have been tried, C =
{0.1, 1, 10, 100, 1000} . A grid search strategy has been applied
to determine the best values for both, the kernel parameters
and the regularization parameter. The kernel matrices have
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TABLE 2: Accuracy for the »-SVM using a linear combination of
non-Euclidean dissimilarities in an HRKHS. The »-SVM based on
the best distance and coordinates and the Lanckriet formalism have
been taken as a reference.

Limphoma Breast

Technique Limphoma el B LN Brain
-SVM (coordinates) 6.66% 7.14% 8.16% 16.6%
»-SVM (best distance)  6.66% 5.71% 8.16% 13.3%
»-SVM (nonlinear 6.25% 5.71% 8.16% 11.6%
kernel)

Lan;krlet (finite 50 7 62% 8.16% 11.67%
family)

F}mte family of 50 7 14% 10% 10%
distances

Infinite family of 5% 571% 8%  8.33%
distances

been normalized by the trace as recommended in the original
paper.

2.10. Gene Selection. Gene selection can improve signifi-
cantly the classifier performance [24]. Therefore, we have
evaluated the classifiers for the following subsets of genes
1280, 146,101,56,34}. The »-SVM is robust against noise
and is able to deal with high dimensional data. However,
the empirical evidence suggests that considering a larger
subset of genes or even the whole set of genes increases the
misclassification errors.

The genes are ranked according to the ratio of between-
group to within-group sums of squares defined in [25]:

_ Sl (yi=k) (= - f-j)z

BW(j) ,
33l (i = k) (xi - qu))z

(30)

where Eflj) and x.; denote “respectively” the average expres-
sion level of gene j for class k and the overall average
expression level of gene j across all samples, y; denotes the
class of sample i, and I(-) is the indicator function. Next, the
top ranked genes are chosen. This feature selection method is
simple but compares well with more sophisticated methods
[24]. Finally, the ranking of genes has been carried out
considering only the training set to avoid bias. Therefore,
feature selection is repeated in each iteration of cross-
validation.

3. Results and Analysis

The algorithms proposed have been applied to the identifica-
tion of several cancer human samples using microarray gene
expression data.

First, we address several binary categorization problems.

Table 2 reports the accuracy for the two combination
approaches proposed in this paper. The first one considers
the finite set of dissimilarities introduced in Section 2.1.
The second one considers an infinite family of distances
obtained by transforming nonlinearly the base dissimilarities
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TABLE 3: Accuracy for the »-SVM using a linear combination of
non-Euclidean dissimilarities in an HRKHS. The »-SVM based on
the best distance, the classical »-SVM, and the Lanckriet formalism
have been taken as a reference.

Technique BreastB°  DLBCLC DLBCLD
v-SVM (Coordinates) 10.20% 6.89% 12.96%
»-SVM (Best Distance) 8.6% 6.89% 14.81%
»-SVM (Nonlinear kernel) 8.16% 6.89% 12.96%
Lanckriet (finite family) 8% 10.3% 25.2%
fl‘i‘sfi:::ef:mﬂy of 6% 5.33% 16%

to feature space. We have compared with the »-SVM based
on the best distance (linear and nonlinear kernel) and
the classical »-SVM. The performance for the Lanckriet
formalism [9] that allow us to incorporate a finite linear
combination of dissimilarities is also reported.

Before computing the kernel of dissimilarities, all the
distances have been transformed using the multiquadratic
kernel introduced in Section 2.1. This nonlinear transforma-
tion helps to improve the accuracy for all the techniques
evaluated. From the analysis of Table2, the following
conclusions can be drawn.

(i) The v-SVM based on a finite set of distances improves
the »-SVM based on the best dissimilarity for brain
prognosis and Lymphoma datasets. The error is not
reduced for Lymphoma cell B and Breast LN. This
may be explained because the ratio (var/samp.) in
Table 1 suggests that both datasets are quite noisy
and nonlinear. The combination of a finite set of
dissimilarities is not able to improve the separation
between classes and increases slightly the overfitting
of the data. Similarly, our algorithm helps to improve
the SVM based on coordinates, particularly for the
previous problems. We also report that working
directly from a dissimilarity matrix may help to
reduce the misclassification errors.

(ii) The infinite family of distances outperforms the v-
SVM based on the best distance disregarding the ker-
nel considered for all the datasets. The improvement
is more relevant in brain cancer prognosis. Brain
cancer prognosis is a complex problem according
to the original study [23] and the nonlinear trans-
formations of the dissimilarities help to reduce the
misclassification errors. Besides, the infinite family
improves the accuracy of the finite family of distances
particularly for lymphoma cell B and Breast LN. This
suggests that both datasets are nonlinear.

(iii) The Lanckriet formalism and the finite family of
dissimilarities perform similarly. However, the infi-
nite family of distances outperforms the Lanckriet
formalism particularly for brain and Lymphoma cell
B which are more complex problems.

(iv) The best distance depends on the dataset considered.

Next we move to the categorization of multiple cancer
types.

Table 3 compares the proposed algorithms with v-SVM
based on the best distance (linear and nonlinear kernel)
and the classical v-SVM. The accuracy for the Lanckriet
formalism has also been reported. Our approach considers
an infinite family of distances obtained by transforming
nonlinearly the base dissimilarities to feature space.

Before computing the kernel of dissimilarities, all the
distances have been transformed using the multiquadratic
kernel introduced in Section2.1. From the analysis of
Table 3, the following conclusions can be drawn.

(i) The combination of non-Euclidean dissimilarities
helps to improve the SVM based on the best dissi-
milarity disregarding the kernel considered for the
two first datasets. The error is slightly larger for the
third dataset which may suggest that the problem is
linear.

(ii) Our algorithm improves the SVM based on coor-
dinates. The experimental results suggest that the
nonlinear transformations of the dissimilarities help
to increase the separation among classes.

(iii) The Hyperkernel classifier outperforms the Lanckriet
formalism for multicategory problems. As the num-
ber of classes growths the number of samples per class
comes down and the Lanckriet formalism seems to be
less robust to overfitting.

Finally, notice that our algorithm allow us to work with
applications in with only a dissimilarity is defined. Moreover,
we avoid the complex task of choosing a dissimilarity that
reflects properly the proximities among the sample profiles.

4. Conclusions

In this paper, we propose two methods to incorporate
in the v»-SVM algorithm a linear combination of non-
Euclidean dissimilarities. The family of distances is learnt
in a (Hyper Reproducing Kernel Hilbert Space) HRKHS
using a Semidefinite Programming approach. A penalty
term has been added to avoid the overfitting of the data.
The algorithm has been applied to the classification of
complex cancer human samples. The experimental results
suggest that the combination of dissimilarities in a Hyper
Reproducing Kernel Hilbert Space improves the accuracy
of classifiers based on a single distance particularly for
nonlinear problems. Besides, this approach outperforms the
Lanckriet formalism specially for multi-category problems
and is more robust to overfitting. Future research trends will
focus on learning the combination of dissimilarities for other
classifiers such as k-NN.

Appendix

In this section we define rigorously the Hyper-Reproducing
Kernel Hilbert Spaces. First, we define a Reproducing Kernel
Hilbert Space.



Definition 1 (see [Reproducing Kernel Hilbert Space]). Let
X be a nonempty set and F€ be a Hilbert space of functions
f:X — R.Let(-,-) beadot product in # which induces
\J{f> f). H is called an RKHS if there is a

function k : X x X with the following properties:

anormas || f|l =

(i) k has the reproducing property (f,k(x,-)) = f(x)
forall f € #,x € X;

(i1) &spans H, thatis, # = span{k(x,-) | x € X}, where
X is the completion of the set X;

(iii) k is symmetric, that is, k(x, y) = k(y, x).

Next, we introduce the Hyper Reproducing Kernel
Hilbert Space.

Definition 2 (see [Hyper-Reproducing Kernel Hilbert
Space]). Let X be a nonempty set and X = X X X
be the Cartesian product. Let # be the Hilbert space of
functions k : XX — R with a dot product (-, -) and a norm
Ikl = v/({k,k)). # is a Hyper Reproducing Kernel Hilbert
Space if there is a hyperkernel k : X x X — R with the
following properties:

(1) k has the reproducing property (k, k(x, -)) = k(x) for
allk € J¢;

(ii) k spans H = span{k(x,-) | x € X};

(iii) k(x, y,s,t) = k(y,x,s,¢t) forall x, y,s,t € X.
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1. Introduction

Hand X-ray shown in Figure 1 is commonly used for skeletal
age assessment in pediatric radiology. A discrepancy between
skeletal maturity and the chronical age may indicate the
presence of some abnormality in skeletal growth. This abnor-
mality has been found to be related to various diseases such
as endocrine disorders [1], metabolic/growth abnormalities
[2], malformations and bone dysplasias [3], and gonadal
dysgenesis [4]. Therefore, the assessment of skeletal maturity
has become more and more important clinically. Clearly the
accuracy in assessment is of the first concern.

Features encoded in ossification centers form the basis
for assessment. If we know the exact characteristics of the
features with regard to different stages of ages, we can do the
best job on assessment. In reality, one needs a mechanism
to capture such characteristics of features. Given data of a
feature with respect to skeletal ages, a simple and common
approach is to fit a line or a curve, which in turn is used for
future prediction of new patients or assisting radiologists to
understand the variation rules of the feature.

For instance, Figure 2(a) shows the variation of a ratio
feature [5, 6] in vertical axis with regard to the increasing
skeletal age along the horizontal axis from newborn to 19
year old boys. (More details on this ratio are provided in
Section 3.2.) Here in the figure, a single line is used for fitting
the values of the feature. Obviously, a line is not enough
to capture the characteristic of the values of the feature. A
quadratic curve, shown in Figure 2(c), does not do a good
job either. Fitting a more complex curve does not seem to
be a feasible approach. This is because sometimes there are
available only a small amount of data which could restrict
the learning of complex curves, and local properties (with
respect to the time) of the feature are often lost when fitting
a global complex curve, and thus leading to inaccurate future
prediction.

In this paper, we propose to fit the variation of features of
the skeleton age via a multistage fitting approach. With our
approach, we divide the skeletal age axis into several stages
or phases, and within each stage, a relative simple model
(line or curve) is employed for the purpose of fitting. Usually,
the variation of a feature does not follow a simple rule



FiGuUrE 1: Hand X-ray used in skeletal age assessment.

when skeletal age increases. Instead, it often shows different
variation patterns among different stages of age. As shown in
Figures 2(b) and 2(d), multistage fitting not only can capture
the entire pattern of feature variation but also carry the local
properties regarding the skeletal age. A critical question is
then, how does one determine the appropriate positions to
separate the stages? The proposed Bayesian cut in this paper
provides an answer via a Bayesian approach.

The rest of the paper is organized as follows. In Section 2,
we describe our models for fitting, where the Bayesian cut is
introduced. In Section 3, we present our experimental results
on multi-stage fitting for artificial and real data. We conclude
our paper in Section 4.

2. The Proposed Method

In this section, we first describe our proposed method for a
simple case and then extend it to a general scenario.

Given a sequence of values fi, f>,..., fu, which denotes
the skeletal age f in an ascending order, consider the linear
relationship between f and one feature y found in the hand
X-ray (e.g., length of digit). Usually, such a linear relationship
varies as the skeletal age increases. That is, one linear form
established for one interval of the skeletal age may not hold
for the next interval, where a different linear form should
be used. The time where two linear forms differ is called
a change point. Our model that takes into account linear
relationships and change points is stated as follows:

yi=Pu+Pufiten, i=1,...,t(tHh=0),

yi=PutPufiten i=ti+1l,...,h,

(1)

YVi=Pr+Pafitek, i=ta+1.. ., t(t=n),

where t,..., -1 (correspondingly fi,..., fx—1) indicate the
sequential change points, t; —t; -1 = 3 (j = 1,...,k), and
€j; (for all i) are independent N (O, 0"]-2) and €j; (for all 4, j)
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are independent of each other. In the model, the parameters
Bit> Bj2s Gf, tj are all unknown, which will be estimated in
light of the given data. The interval [¢; — ¢; 1] represents
the jth stage or phase, denoted by ph;. The main task here
is to estimate the times ¢;. Given the estimates of ¢;, the
linear forms and the associated parameters can be obtained
through the traditional regression technique. We note that
the requirement ¢; — t; ; = 3(j = 1,...,k) is needed for
estimation of the regression lines. When k = 2, the model
will be reduced to the two-phase regression with a single
change point in [7].

The above model that uses only one dependent variable f
can be generalized to include multiple independent variables.
This generalization leads to the following model:

yl—ﬁlfi+611) izl,...,tl(tozo)’
=T .
)’z—ﬁzfl'i'Ez,, i=t+1,...,6,
(2)
=T ‘
vi=PBifiten, i=ta+1.. 4kt =n)

where f; is a p-dimensional vector of variables, ; (j =
1,...,k) is a p-dimensional vector of parameters, t; — t; | >
p + 1, and €j; are as the same as before. We refer p as
the cardinality of the input vector f;, denoted by C(f;),
and the number of sample points in ph; as the cardinality
of [tj — tj_1], denoted by C(ph;). We note that though
linear regression is used for each phase in model (2), this
model certainly encompasses other nonlinear cases such as
polynomial forms.

We now describe a Bayesian approach to estimate the
change points. Denote (ft].,lﬂ,...,ftj)T by Fj, (FlT,...,FkT)T
by F, (ytHH,...,ytj)T by ;s (y1T,...,YkT)T by vy, and
(t1,...,tk—1) by t. For simplicity, we assume the nonin-
formative or uniform prior for /)’j (j = 1,...,k), In(g;?)
and t. Noninformative priors are used when information
about parameters is completely unknown or when proper
priors such as conjugate priors do not apply. (For a vigorous
discussion on the choice of priors, see [8].) We can show
the following main result (see the Appendix). Given the

data y and the uniform prior for /3]. (G =1,...,k), ln(ajz)
and t, where the number k is predetermined, the posterior
probability that change points occur at t is

p(t | Y) _ ]z(n—kp)/Zn ‘FjTFj‘
j

ar(immp)s

—1/2

(3)
f(tj—tj,l—p)/z

2 J

where ] = (th("*kp)/znj|FjTFj|*1/2rA((tj ~ tj1 = p)/2) X
~(tj~ti-1—p)/2 = = .
S] j—ti-1=p ) 1’ and S] _ (YJ _ FJﬁJ)T(YJ — F]ﬂ]) with
E i = (FjTF j)lejTyj denoting the least-squares estimator of

B .. Using this result, we estimate t by t* at which p(t | y)
j g y p Yy
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FiGure 2: Examples of fitting the variation of the ratio feature. The horizontal axis represents the skeletal age and the vertical axis corresponds

to the values of the feature.

TaBLE 1: Models for testing the performance of the Bayesian cut.

TABLE 2: Experimental setting.

yi=Bj+Bpfi+ €

m
t=(tiy... b 1)
m, yi= B+ Bufi+ Bif + €y
t=(t1,...,t_1)
s yi=Bi+Biafi+ Biaf +Biaf + €in
t= (...t 1)
s Ji =B+ Pfit Biaf + B+ Bisfi' + €5i
t= (... ti1)
s Ji = Bit+ Biafi+ Biaf +Biaf + Bis it + Bio i + €

t=(t,...,t1)

has its maximum, that is, t* = argmax, p(t | y). We call ¢*
the Bayesian cut, and the value 2(”"‘P>/2]_[j IFjTFj |=V2T((¢ —

tion— 1))/2)S;(tj4]"171))/2 the proportional posterior (pp).

3. Experiments

In this section, we perform the Bayesian cut on two data
sets: one is synthesized and the other is real. We use
the synthesized data for performance evaluation in terms
of recovery of changing points. The real data are used
to discover the Bayesian cut and describe the feature in
a multistage way which has more accurate prediction of
the skeletal age compared with fitting by a single line or
curve. Both linear and nonlinear regression are used for
comparison. For convenience, we call the fitting with a single
line or curve the single fitting and the fitting with the Bayesian
cut the Bayesian cut fitting.

Bii (~5.0,5.0)

€ji ~ N(O, 0]2), O'jz S (0, Sc(fi)il)
k 2,3, 4

Cph;) (C(E)+ 1), (CE) +1) +5
scale 1,...,10

to 0

t ti1+C(phj-1)

fi 1,..., b

Ficure 3: Illustration Of L,, L, and Ls.

3.1. Synthesized Data. We consider five cases or models
describing the relationship between the dependent and
independent variables. These are shown in Table 1 where
the input vector f; for models m,;, m,, ms, my, and ms
is (L) (4 fi O (L fo SR S5 (L fi S5 25 f) and
(L, fis f2 f25 f5 f2)T, respectively. The data are generated
according to the setting given in Table 2. Specifically, f;; is
randomly chosen from (-5.0, 5.0). €j; is generated from a

normal distribution with mean 0 and variance af randomly

selected from (0,5¢%)~1), The number of sample points of
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TaBLE 3: AD scores for models in Table 1.

k s m m, ms my ms
1 0.280 0.340 0.320 0.080 0.180
2 0.300 0.460 0.360 0.200 0.100
3 0.260 0.400 0.320 0.100 0.100
4 0.640 0.380 0.260 0.180 0.180

) 5 0.480 0.680 0.480 0.100 0.060
6 0.380 0.300 0.560 0.220 0.100
7 0.540 0.520 0.340 0.280 0.100
8 0.900 0.520 0.440 0.120 0.020
9 0.740 0.340 0.080 0.040 0.020
10 0.740 0.720 0.160 0.200 0.020
1 0.230 0.360 0.210 0.240 0.090
2 0.440 0.390 0.190 0.080 0.060
3 0.590 0.340 0.210 0.220 0.060
4 0.820 0.590 0.260 0.060 0.010

3 5 0.970 0.690 0.530 0.020 0.090
6 0.670 0.580 0.120 0.060 0.070
7 1.220 0.750 0.160 0.080 0.190
8 1.260 0.680 0.650 0.040 0.030
9 1.210 0.860 0.370 0.380 0.010
10 1.340 0.360 0.680 0.020 0.020
1 0.333 0.300 0.133 0.040 0.053
2 0.440 0.433 0.227 0.060 0.033
3 0.867 0.480 0.113 0.080 0.033
4 0.780 0.513 0.093 0.080 0.133

4 5 1.020 0.887 0.453 0.133 0.173
6 1.360 0.760 0.193 0.093 0.180
7 1.007 0.593 0.353 0.047 0.040
8 0.727 0.587 0.453 0.093 0.113
9 1.080 1.240 0.867 0.360 0.087
10 1.213 0.873 0.333 0.120 0.140

the jth phase C(ph;) is randomly selected from the set
{(C(fi) + 1),...,(C(f;) + 1) + s}, where s is predetermined.
fi takes the value of i for i = 1,2,...,#. Note that we
use a variable bound for (7]2 for taking into account the
influence of the highest degree of the polynomial. Also, we
use the variable number of sample points for each phase by
introducing unbalance and scalability factors such that the
performance evaluation will be more objective.To present a
quantity on the performance of the Bayesian cut, we use the
metric absolute deviation (AD), defined as

il -t

AD = ,
k-1

j=1,...,k-1, (4)

where ¢ represents the jth element of t* (the Bayesian cut).
Intuitively, the smaller AD is, the closer is the Bayesian cut t*
to the true change points t.

Table 3 shows the AD values. They are obtained by
ranging k from 2 to 4 and s from 1 to 10. For given k, s, and a
given model, 50 trials are performed to generate data, leading
to 50 datasets {(F, y)}. We find the Bayesian cut t* for each
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TABLE 4: Some features of the skeletal age.

Age (yr) L/L, Ly/Ls n(L,/L,) n(Ly/Ls)
0 0.6795 0.7016 41.8212 51.1987
3 0.6307 0.5853 6.4071 —17.6281
3.5 0.6220 0.6298 0.1020 8.6933
4.0 0.6060 0.5993 —11.4491 —9.3140
4.5 0.6111 0.5708 -7.7721 —26.1616
5.0 0.6172 0.5070 —3.3303 —63.8970
6.0 0.5675 0.5924 —39.3612 —13.4245
7.0 0.5947 0.6626 —19.6939 28.0937
8.0 0.5820 0.6097 —28.9032 —3.1878
9.0 0.5939 0.5968 —20.2149 —10.7828
10.0 0.5680 0.6643 —39.0383 29.1323
11.0 0.5776 0.6696 —32.0541 32.2560
11.5 0.5845 0.6550 —27.0602 23.6424
12.5 0.5979 0.6266 —17.3472 6.8003
13.0 0.6292 0.5670 5.3295 —28.4227
13.5 0.6000 0.6219 —15.8024 4.0436
14.0 0.6436 0.6065 15.7982 —5.0842
15.0 0.6703 0.6319 35.1558 9.9431
15.5 0.6843 0.5937 45.2891 —12.6564
16.0 0.6746 0.5843 38.2966 —18.2156
17.0 0.6632 0.6153 30.0081 0.1412
18.0 0.6589 0.6236 26.8770 5.0546
19.0 0.6452 0.6316 16.9420 9.7754

(F, y) and a given model. The final AD score is obtained by
averaging the 50 runs.

Our findings can be summarized as follows. Regardless
of linear or nonlinear regression, the Bayesian cut performs
well with low AD scores. Introducing the unbalance and
scalability factors does not deteriorate the performance of the
Bayesian cut significantly. The Bayesian cut scales well when
the number of change points increases.

3.2. Real Data. In this part, we apply the Bayesian cut fitting
to some real data from our database shown in Table 4. This
table describes feature values with regard to the increasing
skeletal age that ranges from newborn to 19-year-old boys
(shown in column 1) labeled by radiology experts. In order
to obtain features independent of the size and the length
of digits, two ratio features are used according to the paper
[5]. One is Li/L,, the ratio of the length of distal phalanx
L, to that of middle phalanx L, of the middle digit, and the
other is L,/Ls, the ratio of the length of middle phalanx L,
to that of proximal phalanx Ls. See Figure 3 for illustration
of Ly, L,, and Ls. These two features correspond to columns
2 and 3 which are generated in the light of the algorithm in
[6]. Columns 4 and 5 represent normalized values of L;/L,
and L,/Ls, respectively. This normalization is done according
to (x — u)/o, where u is the expectation of x and o is the
variance. In our experiments, only normalized values are
used. Figure 4 shows some of the Bayesian cut fitting, where
features n(L,/L,) and n(L,/Ls) are used, models describing
the relationship between the feature and the skeletal age are
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FiGUREk 4: Illustration of the Bayesian cut fitting applied to the real data on features of the skeletal age.

m; and m, from Table 1, and k takes values of 2, 3, and
4. In Figure 4, the horizontal axis represents the age and
the horizontal axis indicates the feature. For model m;, the
blue straight line across the entire age range is from the
single (line) fitting. For model 1, the blue curve across the
entire age range is from the single (quadratic) fitting. All red
(broken) lines are from the Bayesian cut fitting.

4, Conlcusion

In this paper, we propose the Bayesian cut fitting to describe
features in response to the skeletal age. In the semantic
space derived by our approach, the axis of skeletal age is
divided into meaningful stages, within each of which the
variation pattern of a feature is consistent so that a traditional



regression technique can apply to model the relationship
between the skeletal age and the feature. Our approach
is inspired by the observation that the variation pattern
of a feature can differ in different periods of the skeletal
age. A critical issue is to determine the times or change
points when the variation pattern of a feature changes.
This is handled by the Bayesian cut proposed in this paper.
Simulations have been used to demonstrate the efficiency
of the Bayesian cut fitting in terms of recovery of change
points. The experiments on real data show that given a
type of relationship (e.g., linear or quadratic) between the
skeletal age and a feature, the Bayesian cut fitting surpasses
the traditional single fitting when the consistency of the
variation pattern (over the entire skeletal age range) of the
feature is suspected. One major issue which is not addressed
in this paper is the determination of k, the number of stages.
Selection of k depends on the given data and the practical
need. We leave this as our future research work.

Appendix

A. Derivation of (3)

Proof. According to the Pythagorean theorem, we have the
following likelihood

1

W

1 =T :
X expy =5 (yt,-,lﬂ - ﬁjftj,1+l>
J

I(Bof y) o

(A1)

where §; = (y;—F; [3 )T (y;—F; ﬁ )andﬁ FTF) FTyJ
Since €j; are 1ndependent of each other, the likelihood

function of B,..., B4 0f,...,0¢ tis then

(Froor Buohronaiutly)

1

<orf-gglo+ (7,-5) e 7,5 ]}
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Due to the assumption of the uniform prior for E i ln(af)
and t, we have
p(ﬁl,...,ﬁk,o‘lz,...,(f,?,t>OC%. (A3)
0’1 - o'k

Using (A.2) and (A.3), we have

p(tly)

1

j

><exp{—201j2 [Sj+<ﬁj—?3’j)T
<75 (B, - )|}

xdf,---dpdo? - - do?.

(A4)

Note that
J 1
- (ti—t;1)/2+1
) 2\ i~
g (0,-)

Xexp{—zaljz[Sj+ (Ej—gj)TFfFj<Ej_§j>}}dﬁj

_ exp( S/Za)(2 )P/Z( j)p ’FTF]’

(U] )(t, to0)/2+1

-1/2

(A.5)

This equation exploits the fact

Jexp{(x— ﬁ)TZ’l(x— ﬁ)}dx = Q)P 1Z12, (A.6)

from the normal density for the p-dimensional random
vector X

fe) = exp{(x = 1) =7 (x = F) Jdx, (A7)

1
(271)‘0/2|2|1/2

where i is the expected value of X and ¥ is the variance-
covariance matrix of X.
Substituting (A.5) into (A.4), we have

‘FTF‘ 1/2J' exp( S/Za)
j

2
=t 1- p/2+1d (A.8)
7 (‘71)

p(tly) o

In addition, we have

feol-

i)xfm/Zfldx — 2m/2r<m)a7m/2, (A9)
2x 2
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from the probability density function of X = aU

flx)=2"m2 [F(%)]_lam/zx’m/z’l exp(—ix), (A.10)

where the constanta > 0and U™! ~ y2.
By applying (A.9) to (A.8), we get

—-1/2
p(t1y) o 2 k02T | FTF; |
! (A.11)

ti—=ti-1 = P\ o~(tj=tj1—p)2
J J i—tj-1=p
Xr(fﬁf ’

where ] = (32 k02T|FTFj|"V2T((t; — tj-1 — p)/2) X
Si(tj*tjqu)/Z

i )~'. This completes the proof. O

Acknowledgments

Dechang Chen was partially supported by the National
Science Foundation grant CCF-0729080.

References

[1] D. B. Darling, Radiography of Infants and Children, chapter 6,
Charles C. Thomas, Springfield, Ill, USA, 1st edition, 1979.

[2] A. K. Poznanski, S. M. Garn, J. M. Nagy, and J. C. Gall Jr.,
“Metacarpophalangeal pattern profiles in the evaluation of
skeletal malformations,” Radiology, vol. 104, no. 1, pp. 1-11,
1972.

[3] D.R. Kirks, Practical Pediatric Imaging: Diagnostic Radiology of
Infants and Children, chapter 6, Little, Brown, Boston, Mass,
USA, Ist edition, 1984.

[4] J. Kosowicz, “The roentgen appearance of the hand and wrist
in gonadal dysgenesis,” The American Journal of Roentgenology,
Radium Therapy and Nuclear Medicine, vol. 93, pp. 354-361,
1965.

[5] E. Pietka, M. F. McNitt-Gray, M. L. Kuo, and H. K. Huang,
“Computer-assisted phalangeal analysis in skeletal age assess-
ment,” IEEE Transactions on Medical Imaging, vol. 10, no. 4, pp.
616-620, 1991.

[6] E. Pietka, A. Gertych, S. Pospiech, F. Cao, H. K. Huang, and
V. Gilsanz, “Computer-assisted bone age assessment: image
preprocessing and epiphyseal/metaphyseal ROI extraction,”
IEEE Transactions on Medical Imaging, vol. 20, no. 8, pp. 715—
729, 2001.

[7] D. Chen, M. Fries, and J. M. Lyon, “A statistical method of
detecting bioremediation,” Journal of Data Science, vol. 1, no.
1, pp. 27-41, 2003.

[8] G. E. P. Box and G. C. Tiao, Bayesian Inference in Statistical
Analysis, John Wiley & Sons, New York, NY, USA, 1992.



Hindawi Publishing Corporation

Journal of Biomedicine and Biotechnology
Volume 2009, Article ID 707580, 11 pages
doi:10.1155/2009/707580

Research Article

Integrating Multiple Microarray Data for Cancer Pathway
Analysis Using Bootstrapping K-S Test

Bing Han,! Xue-Wen Chen,' Xinkun Wang,? and Elias K. Michaelis>

I Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence,

KS 66045, USA

2 Higuchi Biosciences Center, University of Kansas, 2099 Constant Avenue, Lawrence, KS 66047, USA

Correspondence should be addressed to Xue-Wen Chen, xwchen@ku.edu

Received 14 January 2009; Accepted 4 March 2009

Recommended by Dechang Chen

Previous applications of microarray technology for cancer research have mostly focused on identifying genes that are differentially
expressed between a particular cancer and normal cells. In a biological system, genes perform different molecular functions and
regulate various biological processes via interactions with other genes thus forming a variety of complex networks. Therefore, it is
critical to understand the relationship (e.g., interactions) between genes across different types of cancer in order to gain insights
into the molecular mechanisms of cancer. Here we propose an integrative method based on the bootstrapping Kolmogorov-
Smirnov test and a large set of microarray data produced with various types of cancer to discover common molecular changes
in cells from normal state to cancerous state. We evaluate our method using three key pathways related to cancer and demonstrate
that it is capable of finding meaningful alterations in gene relations.

Copyright © 2009 Bing Han et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Microarray technology, monitoring mRNA abundance of
tens of thousands of genes simultaneously, provides an
efficient tool to characterize a cell at the molecular level. It
has been applied to a variety of research areas, ranging from
biomarker detection [1, 2] to gene regulatory networks [3—
5] and cancer classification [6-8]. When applied to cancer
research, microarray technology typically measures gene
expressions of cancer and normal tissues or different types
of cancer. One important area in microarray-based cancer
research is to identify genes that are differentially expressed
between cancerous and normal cells and to discover diagnos-
tic and prognostic signatures in order to predict therapeutic
responses. Over the years, many statistical methods for the
identification of differentially expressed genes have been
developed, and most of them focused on the expression
analysis of individual genes [9-15]. However, the simple list
of individual differentially expressed genes can only tell us
which genes are altered by biological differences between
different cell types and/or states. It cannot explain the reasons
for the significant alterations in gene expression levels and

the effects of such changes on other genes’ activities. It is well
known that in a biological system genes interact with each
other forming various biological pathways in order to carry
out a multitude of biological processes. To better understand
the roles of these differentially expressed genes and their
interactions in a complex biological system, a comprehensive
pathway analysis is needed. Since the identification of biolog-
ical pathways is significantly influenced by those differentially
expressed genes from different datasets or different statistical
methods [16, 17], we reason here that an integration of
multiple cancer microarray datasets and identification of the
most common pathways from these data would reveal key
relationships between crucial genes in carcinogenesis. Our
focus on the interactions and pathways of cancer-related
genes is important since changes in gene relations and key
pathways are more relevant to carcinogenesis than individual
genes alone.

Several statistical methods have been proposed for
the analysis of differential gene coexpression patterns. Li
[18] observed differences of gene coexpression patterns in
different cellular states and attributed these changes in gene
coexpression patterns to some third set of influential genes.



Lai et al. [19] proposed a similar method to identify differ-
ential gene-gene coexpression patterns in cells from normal
state to cancerous state. However, these methods often
perform the analyses on one single microarray dataset and
typically generate unreliable results; the results from different
microarray datasets and various statistical methods could
hardly overlap using these methods [20, 21]. Therefore, the
confidence level for discoveries based on these methods is
low. Furthermore, these methods fail to grasp the common
molecular changes in cells transitioning from a normal
state to the cancerous state. Choi et al. [22] introduced a
model to find differential gene coexpression patterns related
to cancer by combining independent datasets for different
cancers. They used a model similar to the ¢-test, which only
considered the mean and variance of two groups of samples.
It is well known that traditional ¢-test has two disadvantages
for microarray data analysis: first, it assumes that the datasets
under analysis have a normal distribution, which is usually
violated in microarray datasets; second, if the number of
genes is large and the number of samples is small, some of
the standard deviations will be extremely small, and therefore
the test statistics will be very high, which may lead to a
significant bias. Nonparametric statistical test methods, such
as the K-S test, require fewer assumptions for the data and
may be preferred, especially, when the number of samples is
small.

In this paper, we propose a novel method to detect the
differentially changed gene relations in cancer versus normal
tissues. We collect 36 datasets across different microarray
platforms and from various types of cancer. These 36 datasets
contain both normal and tumor samples, which can subse-
quently yield two Pearson correlation coefficient vectors for
every gene pair, one for normal samples and the other for
tumor samples. We then perform a bootstrapping K-S test
to identify some differentially changed gene relations. Finally
we verify our results with three key pathways related to cancer
and demonstrate that our method can find some meaningful
alterations of gene relations.

2. Materials and Methods

2.1. Microarray Datasets. We collected 36 microarray
datasets from NCBI (Gene Expression Omnibus GEO) [23].
As shown in Table 1, these microarray datasets contain both
normal and tumor samples across 21 different types of
cancer, and their platforms come from one of the three
platforms: GPL570 (Affymetrix GeneChip Human Genome
U133 Plus 2.0 Array), GPL96 (Affymetrix GeneChip
Human Genome U133 Array Set HG-U133A), and GPL91
(Affymetrix GeneChip Human Genome U95 Version Set
HG-U95A). We divided every dataset into two expression
data matrices: one matrix includes all normal samples, and
the other includes all tumor samples. To integrate multiple
microarray datasets across different platforms, we mapped
each probe in different platforms to a unique Entrez Gene 1D
or a unique UniGene symbol. For genes with more than one
probe in one platform, we chose the probe with the highest
mean expression value.
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2.2. Cancer-Associated Pathways and Extended Gene Net-
works. We applied our method to analyze three cancer-
associated pathways. These pathways are related to three
common traits in most and perhaps all types of human
cancer: self-sufficiency in growth signals, insensitivity to
antigrowth signals, and evading programmed cell death
(apoptosis) [24]. In fact, Hanahan and Weinberg have
already identified some signaling pathways to demonstrate
the capabilities cancer cells acquire during tumor develop-
ment in [24]. We extended these signaling pathways to three
relatively complete and larger cancer-associated pathways
(antigrowth signaling, apoptosis, and growth signaling path-
ways) from the cell cycle pathway, the apoptosis pathway
and the MAPK pathway in KEGG [25]. We used these three
pathways (i.e., cell cycle, apoptosis, and MAPK pathways) as
our seeds and the genes in these pathways as our seed genes.
Next we constructed three gene networks corresponding to
the three cancer-associated pathways from HPRD (Human
Proteins Reference Database, http://www.hprd.org/) and
TRANSFAC [26] based on seed genes and their interacting
partners. We downloaded the protein-protein interaction
(PPI) data released by HPRD on September 1, 2007. This
PPI dataset contains 37107 human binary protein-protein
interactions whose supporting experiments are indicated as
in vivo, in vitro, or yeast two-hybrid. We also collected 1042
transcription factor-target gene relations on human species
from TRANSFAC. So our gene networks included seed genes,
protein interaction partners, and transcription factors (TFs)
of seed genes or target genes for which seed genes served as
their TFs.

2.3. Detecting Differential Relations by Bootstrapping K-S
Test. We used the Kolmogorov-Smirnov test (K-S test) to
determine whether the distributions of values in two datasets
differed significantly. The two-sample K-S test is the most
useful for comparing two samples because it is nonparamet-
ric and distribution-free [27]. The null hypothesis for this
test is that two datasets are drawn from the same distribution.
The alternative hypothesis is that they are drawn from
different distributions.

For n ii.d samples Xj,..., X, with some unknown dis-
tribution, we can define an empirical distribution function
by

0, ifx<Xqu,
Sy (x) = %, if Xy < x < Xy fork=12,...,n-1,

1, ifx= X,
(1)

where Xj,...,X, are ordered from the smallest to the
largest value. The Kolmogorov-Smirnov statistic for a given
function S(x) is

Dy = max|$, (x) = S(x)!. (2)

D,, will converge to 0 if the sample comes from distribution
S(x) [27]. Moreover, the cumulative distribution function of



Journal of Biomedicine and Biotechnology 3
TaBLE 1: List of 36 microarray datasets.
Series ID in GEO Cancer type (I)\?rl:)li);r:l I(:Ifu ::ES: Numbers Plgtform
samples samples of genes ID in GEO

GSE3744 Breast cancer 7 40 54681 GPL570
GSE5764 Breast cancer 20 10 54681 GPL570
GSE7904 Breast cancer 19 43 54681 GPL570
GSE3678 Thyroid cancer 7 7 54681 GPL570
GSE3467 Thyroid cancer 9 9 54681 GPL570
GSE8977 Breast cancer 15 7 54681 GPL570
GSE8671 Colorectal cancer 32 32 54681 GPL570
GSE4290 Glioma 23 157 54681 GPL570
GSE4183 Colorectal cancer 8 30 54681 GPL570
GSE4107 Colorectal cancer 10 12 54681 GPL570
GSE8514 Aldosterone-producing adenoma 5 10 54681 GPL570
GSE6791 Cervical cancer 8 20 54681 GPL570
GSE6791 Head and neck cancer 18 38 54681 GPL570
GSE6338 Lymphoma 20 40 54681 GPL570
GSE5563 Vulvar intraepithelial neoplasia 9 54681 GPL570
GSE6004 Thyroid Cancer 4 14 54681 GPL570
GSE2549 Malignant pleural mesothelioma 10 44 22283 GPL96
GSE781 Kidney cancer 9 8 22283 GPLY6
GSE7670 Lung cancer 27 27 22283 GPL96
GSE6344 Kidney cancer 10 10 22283 GPL96
GSE1542 Pancreatic ductal carcinoma 25 24 22283 GPL96
GSE6883 Breast cancer 6 6 22283 GPL96
GSE2724 Uterine fibroid 11 7 22283 GPL96
GSE2503 Skin cancer 6 5 22283 GPLY6
GSE3268 Lung cancer 5 5 22283 GPL96
GSE9476 Acute myeloid leukemia 38 26 22283 GPLY6
GSE6008 Ovarian tumor 4 99 22283 GPL96
GSE6477 Multiple myeloma 12 150 22283 GPLY6
GSE4115 Lung Cancer 90 97 22283 GPL96
GSE3167 Bladder cancer 14 46 22283 GPLY6
GSE2514 Pulmonary adenocarcinoma 19 20 12651 GPLI1
GSE6631 Head and neck cancer 22 22 12651 GPLI1
GSE6604 Prostate tumor 18 25 12651 GPLI1
GSE6605

GSE6606 Prostate tumor 63 65 12651 GPLI1
GSE6608

GSE2379 Head and neck cancer 34 12651 GPLI1
GSE1987 Lung Cancer 9 28 12651 GPLI1

Kolmogorov distribution is

K(x)=1- Zi(—l)’;leﬂizxz - @ie—am)z /(8 )
X

i=1 i=1

(3)

It is easy to prove that \/nD, = /nmax|S,(x) — S(x)| will
converge to the Kolmogorov distribution [27]. Therefore if

VnD, > Ky = Pr(K =< K,) = 1 — a, the null hypothesis for
the Kolmogorov-Smirnov test will be rejected at level a.

For the case of determining whether the distributions
of two data vectors differ significantly, the Kolmogorov-
Smirnov statistic is

Dn,m = Hlan |Sn (x) - Sm (x)| > (4)



and the null hypothesis will be rejected at level « if

nm
+|——Dum > K. (5)
n+m

The P-value from the K-S test can measure the confidence
of the comparison results against the null hypothesis.
Obviously, the smaller the P-value, the more confident we
are of rejecting the null hypothesis.

Assume that we have n microarray datasets and a list of
m genes, we denote the expression data matrix for normal
samples as

X5 X5 - X5
Xk xk ... xk

Nk | TP T2 P ok=1,...,n, (6
X5y Xho oo XK,

and the expression data matrix for tumor samples as

Yh v, - Y,
vi vL ... Y]

=] =1, (7)
Ylgnl lenz et Yilrtq

where p(k) is the number of normal samples in the kth
dataset, and g(I) is the number of tumor samples in the Ith
dataset.

For these two types of expression data matrices, each row
represents one gene, and each column represents one sample.
The correlation coefficient for gene i and gene j from the kth
normal sample can be calculated by

et () (s ¥

S xS (- x)

where Yf is the average value of expression levels for gene
i. The correlation coefficient for every gene pair from tumor
samples can be calculated similarly.

We use the bootstrapping K-S test to detect some gene
relations with different PC (Pearson coefficient) distribu-
tions. The bootstrapping method generates N bootstrapping
samples NPC and TPC by repeatedly sampling with replace-
ment from the original NPC;; and TPC;; (e.g., Step 4),
respectively. It can give us an empirical distribution of P-
value 6, with which, we can estimate the probability that
the distribution of two PC vectors are different. In our
computational experiment, for a gene pair, if its value of
Pr(6 < 0.05) was larger than 0.8, we considered it as a pair
of genes with the correlation relation significantly different
between normal and cancer cells.

Our method can be described as follows.

> (8)

Step 1. Compute n correlation coefficient Matrices
NPC'-NPC" from the normal samples in n datasets
for every gene pairs. For example, NPC' is an m x m
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Matrix from normal samples in the first dataset, and NPC}J-
represents the correlation coefficient between gene i, and
gene j.

Step 2. Compute n correlation coefficient Matrices
TPC'-TPC" from the tumor samples in the n datasets
for every gene pair.
Step 3. For every gene pair (gene i and gene j), let
1 2 3
NPC;; = [NPC}; NPC}; NPC}; --- NPC}], o
9
1 2 3 n
TPC;; = [TPC}; TPC}; TPC --- TPCH],
Step 4. Perform the following (N is the number of samples
we will generate using bootstrapping).
fork=1to N
Do generate bootstrap samples NPC and TPC from
NPC;; and TPC;;, respectively.
O = P-value of K-S test on NPC and TPC.
End-for
Output Pr(6 < 0.05) = # (0 < 0.05)/N.

3. Experimental Results

In this section, we applied the bootstrapping K-S test method
to analyze three cancer related pathways.

3.1. Antigrowth Signaling Pathway. Antigrowth signals can
control proliferation in normal samples. Cancer cells have
the ability to evade these antiproliferation signals. In the
antigrowth signaling pathway, transforming growth factor
beta (TGFp) initiates this pathway by binding to two TGEf
receptors, Tgtbrl and Tgtbr2. These two activated Tgff
receptors can phosphorylate Smad2, Smad3, and Smad4
[28]. The SMAD family proteins then transduce antigrowth
signals to the cell cycle inhibitors p21, pl6, p27, and
p15, which can inhibit the action of cyclin-CDK complex.
The cyclin-CDK complex can phosphorylate RB and make
RB dissociate from the E2F/RB complex to liberate E2F
to activate the cell cycle procession from Gl to S phase
(Figure 1(a)).

There are 19 genes in the antigrowth signaling pathway
(Figure 1(a)). We found 689 unique genes related to these 19
genes from TRANSFAC and HPRD. Among these 708 genes,
there were 4215 paired gene interactions, among which
the correlation relations of 47 gene pairs were identified
as significantly changed between normal and cancer cells.
Among these 47 relations, we detected a cluster around
SMAD family proteins which contained 15 relations with
different distributions between normal samples and tumor
samples (Figure 1(b)). Most of them came from large-
scale protein-protein interaction experiments without the
associated molecular function. For example, (Smad1-Arl4d),
(RHOD-Smad2), and (WEE1-Smad3) in [29], (PAPOLA—
Smad2), (SNRP70-Smad5), (GPNMB-Smad4), (PSMD11-
Smad3), and (Smad9-MBD1) in [30], and (EWSR1-Smad4)
in [31], all of them were detected based on large-scale
protein-protein interaction experiments without annotation
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FIGURE 1: Antigrowth signaling pathway and cluster around SMAD proteins. (a) Antigrowth signaling pathway. Nodes and edges represent
human proteins and protein-protein interactions, respectively. Edges with direction represent a regulatory relation. — means an activating
relation and, 4 means an inhibitory relation. (b) Cluster around smads. Red edges represent differentially changed relations. Blue edges
represent unchanged relations. Red nodes represent tumor suppressor genes, and green nodes represent oncogenes.

of molecular function. Our results indicate that although can significantly suppress Smad3-induced transcrip-
their associated functions and internal mechanisms are still tional activity [32]. We validated this from the
unclear, these gene pairs are related to the TGFS-SMAD boxplot for MAGI2 (ARIP1)-Smad3 (Figure 2(a)). In
signaling pathway, and the relation between the two genes normal samples, MAGI2 (ARIP1) and Smad3 showed
in each pair is significantly different in cancer and normal a high positive correlation, while they had a high
cells. Additionally, we identified some differentially changed negative correlation in tumor samples.

relations with known molecular functions as follows: (2) EWSRI-Smad4. Although the experiment type of

the interaction between EWSR1 and Smad4 is yeast
(1) MAGI2 (a.k.a. ARIP1)-Smad3. MAGI2 (ARIP1) can two-hybrid [31], mutations in EWSR1 are known
interact with Smad3, and overexpression of ARIP1 to cause Ewing sarcoma and other members of the
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FIGURE 2: (a) Boxplot for MAGI2 (ARIP1)-Smad3. Pr(6 < 0.05) = 0.986. (b) Boxplot for EWSR1-Smad4. Pr(6 < 0.05) = 0.954. (c) Boxplot

for TRAP1-TgfbetaR2. Pr(6 < 0.05) = 0.944.

Ewing family of tumors [33]. From the boxplot for
EWSR1-Smad4, we found that the third quartile
is the densest part of the whole distribution for
both normal and tumor samples. The third quartile
for normal samples showed a positive correlation
whereas that for tumor samples showed a negative
correlation (Figure 2(b)). Therefore, we suspect that
EWSRI can suppress the activity of Smad4 in tumor
samples.

(3) TRAP1-Tgtbr2. TRAPI has been shown to bind to
TGEp receptors and play a role in TGEf signaling
pathway. TRAP1 can interact with Smad4 and affect
the SMAD-mediated signal transduction pathway.
Mutant TRAP1 can prevent the formation of the
Smad2-Smad4 complex to inhibit the TGFf Signal-
ing pathway [34]. In the boxplot for TRAP1-Tgtbr2
(Figure 2(c)), the densest quartile for tumor samples
showed a high negative correlation.

3.2. Apoptosis Pathway. Cancer cells have the ability to
evade programmed cell death or apoptosis. TNFa, FASL,
TRAIL, and other genes can initiate apoptosis by bind-
ing to their receptors such as TNFR1, FAS, and TRAIL-
R. Many apoptosis signals induce mitochondrial changes.

Mitochondria can help transduce the apoptosis signals by
releasing cytochrome C (Cytc), a potent catalyst of apoptosis.
There are two different Bcl-2 family members: proapoptotic
members (Bid, BAD) and antiapoptotic members (Bcl-2,
Bcl-x1), which activate and inhibit, respectively, the release of
Cytc. Finally, two key caspases (Casp8 and Casp9) activate
other downstream caspases that perform the cascading
events of cell death (Figure 3(a)).

In our results, we detected 33 relations with different
distributions in the apoptosis pathway, and some are sup-
ported by existing experimental evidence. Examples include
(Figure 3(b)) the following:

(1) PUMA-Bcl-XL (BCL2L1). PUMA can interact with
Bcl-XL and meanwhile PUMA can also neutralize
and antagonize all the Bcl-2-like proteins [35].
From the boxplot for PUMA-Bcl-XL, we can find
that Bcl-XL, and PUMA showed a higher negative
correlation in normal samples than in tumor samples
(Figure 4(a)).

(2) AKT1-BAD. Active forms of Akt can phosphorylate
BAD in vivo and in vitro to prevent it from promot-
ing cell death [36]. In the boxplot for AKT1-BAD, the
first quartile, the densest quartile for normal samples,
showed a higher positive correlation than the second
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quartile, the densest for tumor samples (Figure 4(b)).
So we speculated that Akt can suppress BAD’s activity
in tumor samples.

(3) KRT18-TRADD. TRADD is a KRT18-interacting

protein. KRT18 may inactivate TRADD to prevent
interactions between TRADD and the activated
TNFR1 and thus affect TNFa-induced apoptosis
[37]. In the boxplot for KRT18-TRADD, nor-
mal samples showed a higher positive correlation
(Figure 4(c)).

(4) TNFRI-RIPK1 (RIP). The interaction between the

death domain of TNFa receptor-1 (TNFR1) and
TRADD can trigger distinct signaling pathways lead-
ing to apoptosis. TRADD also interacts strongly with
another death domain protein; RIP and RIP plays
an important role in the TNF signaling cascades

FIGURE 3: (a) Apoptosis pathway. (b) Differentially changed gene relations in apoptosis pathway. Red edges represent differentially changed
relations. Blue edges represent unchanged relations. Red nodes represent tumor suppressor genes, and green nodes represent oncogenes.

leading to apoptosis [38]. In the boxplot for TNFR1-
RIPK1, TNFRI and RIPK1 exhibited high positive
correlation in normal samples (Figure 4(d)).

(5) TNFR1-RASSF1. RASSFIA is a tumor suppressor

gene. Apoptosis initiation by TNFa or TRAIL recruits
RASSF1A and MAP-1 to form complexes. RASSF1A
and MAP-1 are the key links between death receptors
and the apoptotic machinery [39]. This was verified
by the Boxplot for TNFR1-RASSFI. In most normal
samples, these genes showed a high positive correla-
tion. In most tumor samples, they showed a zero or
negative correlation (Figure 4(e)).

(6) TAP—CASP9. Inhibitor of apoptosis (IAP) suppresses

the activities of caspases and inhibits different apop-
totic pathways [40]. IAP and CASP9 showed a high
negative correlation in tumor samples (Figure 4(f)).
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Among the eight differential gene relations in Figure 3(b),
three of them were in the seed pathway: TRAIL-R — FADD,
IAP — CASP9, and AKT — BAD, which demonstrates the
effectiveness of the proposed method.

3.3. Growth Signaling Pathway. Cancer cells have the ability
to produce their own growth promoting signals. EGE, TGFaq,
and PDGF are activated and then bind to their receptors
to transduce the growth signals. The activated growth

factor receptors can in turn activate the SOS-Ras_Raf_Mapk
cascade. In the growth signal pathway (Figure 5), Ras, JUN,
and Fos are oncogenes.

We could find 68 relations with different distributions in
the growth signal pathway, and we discuss three relations as
follows:

(1) RASSF2-KRAS. Although different forms of Ras are
frequently thought of as oncogenes, they also have
the ability to produce antigrowth effects such as cell
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cycle arrest, differentiation, and apoptosis. RASSF2
can bind directly to K-Ras. Moreover, RASSF2 can
inhibit the growth of tumor cells, and the activated K-
Ras can enhance this ability [41]. This might be why
RASSF2 and RAS showed a high positive correlation
in normal samples in the boxplot (Figure 6(a)).

(2) MAZ-MYC. The MAZ family can increase the onco-
gene MYC’s transcriptional activity [42]. As expected,
MAZ and MYC demonstrated a higher positive
correlation in tumor samples (Figure 6(b)).

(3) PLSCR1-EGEFR. Activated epidermal growth factor
receptors (EGFRs) can both physically and func-
tionally interact with PLSCRI1. In turn, PLSCR1 can
interact with Shc and thus accelerate the activation
of Src kinase through the EGF receptor, while Src
can initiate some activating pathway for the oncogene
JUN [43]. In the boxplot for PLSCR1-EGFR, the
densest quartile for normal samples showed a low
negative correlation, whereas the densest quartile for
tumor samples showed a low positive correlation
(Figure 6(c)).

4. Conclusion and Discussion

After several decades of cancer research, some details of the
underlying mechanisms of cancer at the gene level are still
unclear. In this paper, we propose an integrative method
based on the bootstrapping K-S test to evaluate a large
number of microarray datasets generated from 21 different
types of cancer in order to identify gene pairs that have
different relationships in normal versus cancer tissues. The
significant alteration of gene relations can greatly extend
our understanding of the molecular mechanisms of human
cancer. In our method, we obviate the disadvantage of
the traditional t-test, which only considers the mean and
variance of samples and fails in the analysis of microarray
data with small numbers of samples. Instead of the ¢-test,
we propose the use of the bootstrapping K-S test method
to detect gene pairs with different distributions of Pearson
correlation coefficient values in normal and tumor samples.
The experimental results demonstrated that our method
could find meaningful alterations in gene relations and
opened a potential door for further cancer research.
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1. Introduction

Lung cancer is one of the most lethal diseases among men
and women worldwide. Patients suffering from lung cancer
display a 5-year survival rate of only 15%, a value that
has held constant over the past 30 years. According to the
American Cancer Society (ACS) statistics, 215.020 new lung
cancer cases and 161.840 deaths due to lung cancer are
expected in the year 2008 alone [1]. This accounts for 29% of
all cancer deaths with 87% of these cases classified clinically
as nonsmall cell lung cancer (NSCLC). A large percentage of
lung cancer patients receive radiation therapy (radiotherapy)
as part of their standard of care and it is the main treatment
for inoperable patients at advanced stages of the disease.
Radiotherapy is a directed and localized treatment, but its
dose is limited by toxicities to surrounding normal tissues.
Thus, patients are at risk of experiencing tumor recurrence
if insufficient dose was prescribed or conversely they are
susceptible to toxicities if exposed to excessive doses.

The last two decades have witnessed many techno-
logical advances in the development of three-dimensional
treatment planning systems and image-guided methods
to improve tumor localization while sparing surrounding
normal tissues [2, 3]. In parallel, there has been a tremen-
dous evolution in biotechnology providing high-throughput
genomics and proteomics information applicable within
cancer radiation biology. This has led to the birth of a
new field in radiation oncology denoted as “radiogenomics”
or “radioproteomics” [4, 5]. These advances, if directed
properly, could pave the way for increasingly individualized
and patient-specific treatment planning decisions that con-
tinue to draw from estimates of tumor local control prob-
ability (TCP) or surrounding normal tissues complication
probability (NTCP) as illustrated in Figure 1.

Traditionally, tissue radioresponse has been modeled
using simplistic expressions of cell kill based on the linear-
quadratic (LQ) model developed in the 1940s [6]. The LQ
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FIGURE 1: An S-shaped response curves representing tumor control
probability (TCP) and normal tissue complication probability
(NTCP) postradiotherapy as a function of treatment factors. The
probabilities could be constructed as a function of heterogeneous
variables (dose-volume metrics, biomarkers, and clinical factors).
The radiotherapy treatment objective is to maximize the therapeutic
index for each patient case.

FiGure 2: Radiotherapy treatment involves complex interaction of
physical, biological, and clinical factors. The successful datamining
approach should be able to resolve this interaction “puzzle” in the
observed treatment outcome (e.g., radiation-induced lung injury)
for each individual patient.

formalism describes repairable and nonrepairable radiation
damage of different tissue types with a few estimated
radiation sensitivity parameters from cell culture assays [7].
Despite the historical value of LQ-based models, several
authors have recently cautioned against its limitations [8, 9].
It is understood that radiotherapy outcomes are determined
by complex interactions between physical treatment factors,
anatomical structures, and patient-related genetic variables
as depicted in Figure 2.

A different approach based on datamining of patient
information (clinical, physical, and biological records) has
been proposed to ameliorate these challenges and bridge

Journal of Biomedicine and Biotechnology

the gap between traditional radiobiological predictions from
in vitro assays and observed treatment outcomes in clin-
ical practice by understanding the underlying molecular
mechanisms [10-12]. The main idea of data-driven models
is to utilize datamining approaches and statistical model
building methods to integrate disparate predictive factors.
Such models may improve predictive power, but they must be
simultaneously guarded for overfitting pitfalls using resam-
pling techniques, for instance. This approach is motivated by
the extraordinary increase in patient-specific biological and
clinical information from progress in genetics and imaging
technology. The main goal is to resolve the complicated
interactions by proper mixing of heterogeneous variables
(Figure 2). As a result, the treatment planning system could
be optimized to yield the best possible care for the patient as
illustrated in Figure 3.

Most data-driven models in the radiation oncology
literature could be categorized into two types of models:
(1) physical dose-volume models or (2) single-biomarkers
models. Dose-volume models are driven by the presence of
large treatment planning archives and the current clinical
practice of radiotherapy treatment. Current radiotherapy
protocols allow for the extraction of parameters that relate
irradiation dose to the treated volume fractions (tumors
or surrounding normal organs at risk) in dose-volume his-
tograms [13]. Conversely, screening for different blood/tissue
biomarkers to predict radiation response (TCP or NTCP)
is an emerging field in radiation oncology with many
promising opportunities as well as new technical challenges
regarding data collection quality, the advancement of lab
techniques, and the development of statistical methodology
[14].

To illustrate and investigate the changing landscape of
radiation response modeling, our study addresses radiation
pneumonitis (RP), the major dose limiting toxicity in
thoracic irradiation. Clinically, RP is lung inflammation that
usually occurs within six months after therapy for a subset
of patients and can manifest as cough, dyspnea, fever, and/or
malaise which may require significant supportive measures
including steroids and oxygen supplementation [15]. In its
worst form, RP can continue to progress and result in death.
According to the NCI Common Terminology Criteria for
Adverse Events (CTCAEs) v3.0, a clinical scoring system for
RP, the severity of pneumonitis is graded from 0 (minimal
symptoms) to 4 (most severe/life-threatening) or even 5
(death). A CTCAE-v3.0 grade >3 indicates clinical onset of
severe RP. Biologically, the ionizing radiation from treatment
can cause damage to the normal alveolar epithelium cells
(airways) of the lung resulting in release of a wetting agent
surfactant into the alveolar space and detachment of the
pneumocytes from their basement membrane. It is thought
that this process triggers a cascade of humoral cellular
and immune response events among alveolar epithelium,
fibroblasts, lymphocytes, and macrophages leading to RP as
shown in Figure 4 [16].

We conjecture that a good predictive model for radiation
hypersensitivity should be able to properly describe the inter-
actions between physical and biological processes resulting
from radiation exposure and adequately span the variable
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to improve patient’s outcomes.

space shown in Figure 2. Working towards this standard,
we will present our utilization of supervised and unsuper-
vised machine learning approaches to interrogate radiation
oncology data and develop methodology for building better
predictive models of radiation therapy response. We start by
examining existing treatment planning archives and conduct
retrospective analysis of physical dose-volume models to
predict the onset of RP. We then describe our attempt to
fillin the prediction gap in such physical models through
a prospective study that considers preexisting biological
variables, which may influence treatment response. Note
that the retrospective study has the advantage of large
sample size and hence higher power while the prospective
approach is focused towards improving current prediction
by incorporating missing information in past archives into
more comprehensive databases and performing evaluation
on new unseen data. In particular, we will present our
proteomic methodology to investigate predictive biomarkers
of RP that could eliminate informational gaps in our
retrospective physical model.

The paper is organized as follows. In Section 2, we
describe our retrospective analysis of dose-volume RP
predictors and our current prospective proteomic analysis.
In Section 3, we contrast our results using model-building
approaches based on logistic regression, support vector
machine, and a 3-way design for biomarker discovery in
proteomic analysis of RP. Methods for variable selections are
analyzed. Lastly, in Section 4 we discuss our current findings
and offer some concluding remarks in Section 5.

2. Materials and Methods

2.1. Dataset Description. To demonstrate our methodol-
ogy, separate datasets were compiled using data from
two groups of patients all diagnosed with nonsmall cell
lung cancer (NSCLC) and treated with three-dimensional
conformal radiation therapy (3D-CRT) at our institution.
The first dataset was collected retrospectively from the
clinical archives with median doses around 70 Gy (the doses
were corrected to account for lung heterogeneity using the
tissue-air ratio method). In this set, 52 out of 219 patients
were diagnosed with postradiation late pneumonitis (RTOG
grade >3). The dataset included clinical and dosimetric
(dose-volume) variables. The clinical variables included
age, gender, ethnicity, date of treatment start, treatment
technique, treatment aim, chemotherapy, disease stage,
treatment duration, histological features, and so forth. The
dosimetric variables compiled for this retrospective dataset
were measured and calculated in reference to the extensive
dose-volume documentation in the radiation oncology liter-
ature. Typically, these metrics are extracted from the dose-
volume histogram (DVH) and include V, (the percentage
volume that got x Gy), D, (the minimum dose to the
hottest x% volume), mean dose, maximum and minimum
doses, generalized equivalent uniform, and so forth. In-
house software tools for data dearchiving, the analysis
software a Computational Environment for Radiotherapy
Research (CERR) [17], and the dose response explorer
system (DREES) [18] were used to extract the different
metrics and analyze their association with RP.
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selectins, inflammatory cytokines, and fibrotic cytokines are involved (from Chen et al., Seminars in Surgical Oncology, 2003).

The second dataset was collected from September 2007 to
September 2008 for a prospective analysis. Nineteen patients
were involved in the study and underwent conventional
radiotherapy with mean doses close to 70Gy. Out of
nineteen patients, four were diagnosed with postradiation
late pneumonitis (RTOG grade =3). The data collected
for each patient included the same clinical and dosimetric
variables as the prospective study. In addition to this data,
five blood samples were drawn from each patient over
the course of treatment. These sample collections were
scheduled before radiotherapy (pretreatment), midtreat-
ment, immediately after radiotherapy (posttreatment), and
also at a three month and at six-month follow-up appoint-
ments.

This second dataset is gathered from an institutionally
approved prospective study for extracting biomarkers to
predict radiotherapy response in inoperable stage III NSCLC
patients who receive radiotherapy as part of their treatment.
For our preliminary proteomic screening, we selected two
lung cancer patients who were treated using fractionated
radiotherapy according to our institute clinical standards.
One case was designated as control and the other case
was for a patient who developed RP and designated as
disease. The control patient, despite radiation treatment
for advanced lung cancer, developed no adverse health
conditions throughout a follow-up period of 14 months. RP
typically occurs within the first year posttreatment with a
mode of 6 months. The disease case selected for the study
died due to a severe RP episode one month after the end of
treatment. For both the control and disease cases, a serum
sample drawn before treatment as well as a sample drawn at

the last available follow-up was submitted for liquid chro-
matography mass spectrometry (LC-MS) analysis. A Seppro
15 X 13mm chromatography column (LC20) (GenWay
Biotech Inc., San Diego, Calif, USA) was used to deplete the
thawed samples of the 14 most abundant proteins in human
blood serum. The samples then underwent digestion by the
serine protease trypsin with a 10 yg Bovine Serum Albumin
(BSA) external standard. Subsequent LC-MS allowed for the
separation and mass analysis of tryptic peptides in each of the
four samples. The most abundant peptides of each MS mass
scan were automatically sent to a second mass spectrometer
for fragmentation and sequence determination according to
a tandem MS (MS/MS) design.

2.2. Model Building Approach. In the context of data-driven
outcomes modeling, the observed treatment outcome (e.g.,
normal tissue complication probability (NTCP) or tumor
control probability (TCP)) is considered as the result of
functional mapping of multiple dosimetric, clinical, or
biological input variables [19]. Mathematically, this could be
expressed as f(x;w*) : X — Y, where x; € R? are the input
explanatory variables (dose-volume metrics, patient disease
specific prognostic factors, or biological markers) of length
d, yi € Yare the corresponding observed treatment outcome
(TCP or NTCP), and w* includes the optimal parameters
of outcome model f(-) obtained by optimizing a certain
objective criteria. In our previous work [10, 19], a logit
transformation was used as follows:

e8(xi)
1+ es&x)’

f(x) = i=1,...,n (1)
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where 7 is the number of cases (patients), x; is a vector of the
input variable values used to predict f(x;) for outcome y; of
the ith patient. The “x-axis” summation g(x;) is given by

d
g(xi):[So+Z[3jxij, i:1,...,1’l,j:1,...,d, (2)
j=1

where d is the number of model variables and the f’s are
the set of model coefficients determined by maximizing
the probability that the data gave rise to the observations.
A major weakness in using this formulation, however, is
that the model capacity to learn is limited. In addition, (2)
requires the user feedback to determine whether interaction
terms or higher order terms should be added, making it a
trial and error process. A solution to ameliorate this problem
is offered by applying machine learning methods as discussed
in the next section.

2.3. Kernel-Based Methods. Kernel-based methods and their
most prominent member, support vector machines (SVMs),
are universal constructive learning procedures based on the
statistical learning theory [20]. These methods have been
applied successfully in many diverse areas [21-25].

Statistical Learning. Learning is defined in this context as
estimating dependencies from data [26]. There are two
common types of learning: supervised and unsupervised.
Supervised learning is used to estimate an unknown (input,
output) mapping from known (input, output) samples
(e.g., classification or regression). In unsupervised learning,
only input samples are given to the learning system (e.g.,
clustering or dimensionality reduction). In this study, we
focus mainly on supervised learning, wherein the endpoints
of the treatments such as tumor control or toxicity grade
are provided by experienced oncologists following RTOG or
NCI criteria. Nevertheless, we will use unsupervised methods
such as principle component analysis and multidimensional
scaling to aid visualization of multivariate data and guide the
selection of proper schemes for data analysis.

The main objective of supervised learning is to estimate
a parametric function f(x;w*) : X — Y by assistance
from a representative training set {(x;, y;)}i~ . The two main
supervised learning tasks are classification and regression.
The difference between classification and regression is that
the output y in case of classification belongs to a discrete, or
categorical, set y € {1,2,..., M} (e.g., in binary classification
M = 2), whereas in regression y is a continuous variable.
In the example of classification (i.e., discrimination between
patients who are at low risk versus patients who are at
high risk of radiation pneumonitis), the main function
of the kernel-based technique would be to separate these
two classes with “hyperplanes” that maximize the margin
(separation) between the classes in the nonlinear feature
space defined by implicit kernel mapping. The objective
here is to minimize the bounds on the generalization error
of a model on unseen data before rather than minimizing
the mean-square error over the training dataset itself (data

fitting). Consequently, the optimization problem could be
formulated as minimizing the following cost function:

Liw, &) = %wTw +CSE, (3)

i=1

subject to the constraint:

yi<wT(D(xi)+b) >1-(¢, i=1,2,...,n,

, (4)
(i >0 Vi

where wis a weighting vector and @(-) is a nonlinear
mapping function. The {; represents the tolerance error
allowed for each sample to be on the wrong side of the
margin (called hinge loss). Note that minimization of the
first term in (3) increases the separation (margin) between
the two classes, whereas minimization of the second term
improves fitting accuracy. The tradeoff between complexity
(or margin separation) and fitting error is controlled by the
regularization parameter C.

It stands to reason that such a nonlinear formulation
would suffer from the curse of dimensionality (i.e., the
dimensions of the problem become too large to solve)
[26, 27]. However, computational efficiency is achieved
from solving the dual optimization problem instead of (3).
The dual optimization problem is convex but positive-
semidefinite (global but not necessarily unique solution).
However, the complexity in this case is dependent only
on the number of samples and not on the dimensionality
of the feature space. Moreover, because of its rigorous
mathematical foundations, it overcomes the “black box”
stigma of other learning methods such as neural networks.
The prediction function in this case is characterized by only
a subset of the training data known as support vectors s;:

£ = S ayiK(sx) + a0, 5)

i=1

where n; is the number of support vectors, «; are the
dual coefficients determined by quadratic programming, and
K(-, -) is the kernel function. Typical kernels include

Polynomials: K(x,x) = (x'x' + o)
Radial basis function (RBF): K(x, x") = exp (—2—;2| |x —x'| |2> ,
(6)

where c is a constant, ¢ is the order of the polynomial, and o
is the width of the radial basis functions. Note that the kernel
in these cases acts as a similarity function between sample
points in the feature space. Moreover, kernels enjoy closure
properties, that is, one can create admissible composite
kernels by weighted addition and multiplication of ele-
mentary kernels. This flexibility allows for the construction
of a neural network by using a combination of sigmoidal
kernels. Alternatively, one could choose a logistic regression
equivalent kernel by replacing the hinge loss with the
binomial deviance.



2.4. Model Variable Selection. Multivariate analysis often
involves a large number of variables or features [28]. The
main features that characterize the observations are usually
unknown. To address this, dimensionality reduction or
subset selection aims to find the “significant” set of features.
Although an ideal method would marginalize redundant
variables, such variables usually complicate data exploration
without significance. As a result, identifying the best subset
of features is a challenge, especially in the case of nonlinear
models. The objective remains to reduce the model com-
plexity, decrease the computational burden, and improve the
generalizability on unseen data.

In any given pattern recognition problem, there is a
large number, K, of possible modeling features that could
be extracted from the patients’ data, making it necessary
to select a finite set of features d that has the most
discriminating power for the problem. An optimal subset
would be determined by an exhaustive search, which would
yield (5) Fortunately, there are other and more efficient
alternatives [29]. The straightforward method is to make
an educated guess based on experience and domain knowl-
edge, then apply a feature transformation (e.g., principle
component analysis (PCA)) [29, 30]. It is also common
to apply sensitivity analysis by using an organized search
such as sequential forward selection, sequential backward
selection, or a combination of both [29]. Different methods
for sensitivity analysis have been proposed in literature; one
such proposal is to monitor the increment in the training
error when a feature is replaced by its mean. The feature
is considered relevant if the increment is high. A recursive
elimination technique that is based on machine learning has
been also suggested [31]. In this case, the dataset is initialized
to contain the whole set, the predictor (e.g., SVM classifier)
is trained on the data, the features are ranked according
to a certain criteria (e.g.[lwll), and iteration continues
by eliminating the lowest ranked feature. In our previous
work [10], we used model-order determination based on
information theory and resampling techniques to select the
significant variables.

2.5. Evaluation and Validation Methods. To evaluate the
performance of our classifiers, we used Matthew’s correlation
coefficient (MCC) [32] as a performance evaluation metric
for classification. An MCC value of 1 would indicate perfect
classification, a value of —1 would indicate anticlassification,
and a value close to zero would indicate no correlation. The
value of this metric, however, is proportional to the area
under the receiver-operating characteristics (ROCs) curve.
For ranking evaluation, we used Spearman’s correlation,
which provides a robust estimator of trend. This is a desirable
property, particularly when ranking the quality of treatment
plans for different patients.

We used resampling methods (leave-one-out cross-
validation (LOO) and bootstrap) for model selection and
performance comparison purposes. These methods provide
statistically sound results when the available data set is
limited [33]. Application of these methods for radiotherapy
outcome modeling is reviewed in our previous work [10].

Journal of Biomedicine and Biotechnology

2.6. Visualization of Higher Dimensional Data. Prior to
applying a kernel-based method, it is informative to run
a screening test by visualizing the data distribution. This
requires projecting the data into a lower dimensional space.
Techniques such as principal component analysis (PCA)
and multidimensional scaling (MDS) allow visualization
of complex data in plots with reduced dimensions, often
two- or three-dimensional spaces [34]. In PCA analysis, the
principal components (PCs) of a data matrix X (with zero
mean) are given by

PC=UTX=3VT, (7)

where UZVT is the singular value decomposition of X. This
is equivalent to transformation into a new coordinate system
such that the greatest variance by any projection of the
data would lie on the first coordinate (first PC), the second
greatest variance on the second coordinate (second PC), and
SO on.

MDS provides a nonlinear mapping that approximates
local geometric relationships between points in high-
dimensional space on a low-dimensional space that can be
visualized. The objective function referred to here as the
stress could be written as

L(yisya oo yn) = 2 (dij = 5)°, (8)

i<j

where §;; represents the target lower-dimensional distances
and d;; represents higher dimensional distances of the points
with K features each. The optimization problem in (8)
is solved as a nonlinear least squares problem using the
standard Levenberg-Marquardt algorithm.

2.7. 3-Way Experimental Design for Predicting RP from
Proteomic Data. The design of our prospective study uti-
lized tools offered within Rosetta software extensively. Four
different treatment groups were identified to the program:
(1) control pretreatment (control-pre); (2) control post-
treatment (control-post); (3) disease pretreatment (disease-
pre); (4) disease posttreatment (disease-post). For these four
sets of MS data (generated from four serum samples), we
used the default parameters of Rosetta Elucidator (Rosetta
Inpharmatics LLC, Seattle, Wash, USA) to convert raw
data into aligned, combined, and ratio data as described
briefly below. Annotations from peptides with Ion Scores
>40 were applied to all corresponding features. Func-
tional analysis of the identified proteins was carried using
the MetaCore software (GeneGo Inc., St Joseph, Mich,
USA).

OverView of Mass Spectroscopy Analysis. The Rosetta Elu-
cidator uses raw mass spectroscopy (MS) data as an input
and applies multiple normalizations and transformations
in order to align, quantify, and compare features between
samples. The steps of this process calculate three different
types of data from the raw spectral input: aligned data,
combined data, and ratio data. Aligned data have been
converted into peak regions, or features, with corresponding
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input from a mass spectrometer (from Rosetta Inpharmatics LLC, Seattle, Wash, USA).
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FIGURE 6: A 2D depiction of the raw MS data from the control-

pre sample. The graph plots m/z versus elution time and displays
intensity at a given point with color.

intensity values that can be compared across samples.
Combined data are composed of features with intensity
values scaled by global mean intensities and transformed
to stabilize error variance across samples. Ratio data are
calculated through scaled intensity comparison between any
two given sets of aligned data. The process is summarized in
Figure 5 and described in the following.
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FIGURE 7: A representation of aligned data features generated by
Rosetta Elucidator from the control-pre mass spectrum. The m/z
measurement from the mass spectrometer is plotted against the
liquid chromatography elution time, with a scale of color depicting
the intensity (total ion current or TIC) measured at each point. The
Elucidator system defines features by mathematically identifying
local intensity peak regions against background noise.

Data Alignment. In its first stages, the Elucidator program
transforms raw data into aligned data. Since peaks are not
initially defined in the data, alignment starts at the level
of the spectrum. The raw data for each sample include
extremely precise mass to charge ratios (m/z ratios), times
of elution from the liquid chromatogram, and detected
intensity values for all ionized protein fragments. These
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FIGURE 8: Visualization of the 58 variables related to RP by PCA. (a) Variation explanation versus principle component (PC) index. This
represents the variance of the data model about the mean prognostic input factor values. (b) Data projection into the first two components
space. Note the high overlap in projection space, which suggests nonlinear kernel modeling to achieve better predictive power.

values are converted into a pixelated image with an m/z
axis, an elution time axis, and corresponding intensity
values visualized with pixel color (Figure 6). From these raw
MS images, a master image is chosen and all remaining
raw images are aligned to that common spectrum. The
main purpose of initial spectral alignment is to correct for
variations in elution time that occur between MS runs.
Shifting a spectrum in time to match a master image allows
for meaningful comparison between corresponding peaks
in different samples. Once this time-alignment has been
executed, the noise and background of each image are
removed to generate aligned data that can be viewed in the
system.

Feature Extraction. To extract meaningful peak regions, or
features, from aligned data, a merged image is created from
all the aligned images of the samples. To accomplish this,
intensity values are averaged within treatment groups at
each m/z and charge point. The resulting averaged treatment
images are then averaged again across all treatments to
generate a global merged image. Features can then be
defined by overlaying ellipses or other two-dimensional
shapes, called masks, to capture appropriate peak regions.
The result across an experiment is a set of unique features
with intensities measured by total ion current (TIC). Each
individual feature represents a single isotopic mass peak from
one of the charge states of a single peptide in a sample.
Following feature extraction, the features can be grouped by
isotope and the resulting isotope groups can be grouped by
charge in order to capture all the features corresponding to
a single peptide. An example of aligned data with extracted
features is shown in Figure 7.

Combined Data. Despite this extensive process, aligned
data generated by the Rosetta Elucidator system is still
not the most appropriate for the comparative questions
we are addressing. Aligned data generated from multiple
samples does not correct for certain experimental errors and
variations that occur between runs. In order to generate
the most meaningful data for comparison across samples,
Rosetta Elucidator converts aligned data into combined data.
The first step in this transformation is a form of intensity
scaling that uses the mean intensity (or brightness) of a
sample, possibly the mean average brightness of samples in
a treatment group, and the mean average brightness across
an entire experiment. The mean brightness of a sample
is calculated by excluding any missing values and then
averaging the lowest 90% of feature intensity values. Each
intensity value is normalized by the mean intensity of its
treatment condition and the global mean intensity across the
experiment. This ensures that samples and treatments share
a common mean intensity, further facilitating comparisons
at the level of features, isotope groups, or charge groups.
Following intensity scaling, the FElucidator system applies
an error model-based transformation to stabilize the noise
variance over the range of intensities in use. The transform
function, shown below, converts the noise variance across all
samples to a constant value:

ln(b2+2a2-x+2 c2+b2-x+a2-x2)

a

X =

+d, (9)

where the a and b terms are related to the type of MS
technology used. The a term is related to the fraction

error of the instrument and the b term is related to the
Poisson error of the instrument. In our experiment, we
used a Linear Trap Quadrupole Orbitrab (LTQ-ORBI) mass
spectrometer, which has a fraction error of 0.05 and a
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FIGURE 9: RP with a premodeling variable selection using (a), (b) the recursive feature elimination (RFE) method. Variables were chosen
from a pool of 58 dosimetric, positional, and clinical variables. The top 23 variables selected by SVM-RFE are shown after applying a pruning
step to correct for multicollinearity (RS = 0.75)(RS = 0.75). The top 6 variables (by applying a cutoff of 5% weighting score) were used
for modeling pneumonitis. (b) An SVM-RBF classifier was tested on LOO data. (c), (d) Multimetric logistic regression approach. (c) The
frequency of selected models order of 3 using our two-step resampling methods. The best-selected model consisted of three parameters
(D35, COM-SI, and maximum dose). (d) The results of applying the SVM methodology with RBF kernels using these selected variables on
LOO testing data. Note the improved performance in this case compared to RFE variable selection.

Poisson error of 15000. The ¢ term depends upon each
feature’s background value, which is an error model output
for aligned data that calculates the background intensity
surrounding the feature (ideally zero). An average of the
background value is calculated over all features i and all
treatments j in the experiment. The term d is related through
alogarithm transform to a, b, and c. Following this forward
transform, the transformed intensity values are averaged
across all samples in the experiment to generate a separate
combined intensity value. This combined intensity value is
set apart from the individual sample intensity values and
is calculated for later comparative and testing purposes.
To generate the final combined data set, all intensities
(including the combined intensity) must undergo an inverse
transformation.

Ratio Data. A final type of data, called ratio data, is
calculated from two input sets of aligned data, one marked as
a numerator and the other marked as a denominator. Ratio
data is especially informative for our experiment because
it provides a way to analyze relative intensity changes that
occur across the same feature in different treatment groups
as discussed below.

Feature Annotation. With aligned data, combined data, and
ratio data calculated automatically as part of our exper-
imental design within Rosetta, we proceeded to annotate
the sample features with the initial MS/MS peptide and
protein identifications. All peptides with an Ion Score greater
than 40, as calculated in Mascot search engine for peptide
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FiGuUre 10: Categorization of upregulated and downregulated features for the ratio data as a function of average intensity for (a) control-post
to control-pre, (b) Disease-post to disease-pre, and (c) control-pre to disease-pre.

identification (Matrix Science Ltd., Boston, Mass, USA)
were associated with their corresponding feature in Rosetta
Elucidator.

3. Experimental Results

3.1. Dose-Volume RP Model

Data Exploration. In Figure 8, we present PCA analysis of RP,
with a pool of 58 variables. This pool included clinical vari-
ables (age, gender, race, chemo, stage, histology, treatment,
etc.), dosimetric variables, such as V, (volume getting at least
x Gy), Dy (minimum dose to the hottest x% volume), and
the relative location of the tumor within the lung. Notice
that more than 93% of the variations in the input data
were explained by the first two components (Figure 8(a)).
Additionally, the overlap between patients with and without
radiation pneumonitis is very high (Figure 8(b)), suggesting
that there is no linear classifier that can adequately separate
these two classes.

Kernel-Based Modeling. We first explored the effect of vari-
able selection over the entire variable pool on the prediction
of pneumonitis in the lung using support vector machine
with a radial basis function kernel (SVM-RBF) as a classifier.
In Figure 9(a), we show the top 30 selected variables using a
recursive-feature-elimination SVM method, which was pre-
viously shown to be an excellent method for gene selection in
microarray studies [31]. We used variable pruning to account
for multicolinearity of correlated variables in this case. In
Figure 9(b), we show the resulting SVM-RBF classifier using
the top six variables (using a cutoff of 5% weighting score).
The best MCC obtained was 0.22. In Figure 9(c), we show the
results of variable selection using our previous multimetric
approach based on model order selection and resampling
with logistic regression [10, 19]. The model order was
determined to be 3 with variables of D35, max dose, and

COM-SI (center-of-mass of tumor location in the superior
inferior direction) [35]. Figure 9(d) shows the evaluation
results of applying the SVM methodology with RBF kernels
using these selected variables. The resulting correlation
(MCC = 0.34) on LOO testing data significantly improved
our previously achieved multimetric logistic regression by
46%. The basic interpretation of this improvement is that the
SVM automatically identified and accounted for interactions
between the model variables. Despite the improvement, the
model still does not achieve correlations levels that could
be applied with high confidence in clinical practice. This is
possibly because the model is unable to account for biological
effects adequately, which we might need to incorporate as
analyzed next.

3.2. Proteomic Identification of RP. Using the 3-way method-
ology described in Section 2.7, we identified a group of
features associated with RP by overlaying multiple subgroups
of ratio data as follows. First, we organized subgroups of ratio
data that displayed significant intensity changes between
any two samples of interest. Significance was determined
based on the P-value of each feature in a given set of ratio
data. A P-value less than .05 was used as a cutoff. In this
step, 11979 unique features were identified after spectral
alignment across the four samples. Of these 458 features
directly matched, a peptide with an Ion Score >40 and 1289
features were annotated when direct peptide matches (with
Ion Scores >40) were applied to all features in the same
isotope group. Significant features could be further divided
into upregulated and downregulated categories based on the
sign of the fold change as shown in Figure 10.

Secondly, features that significantly changed intensity
between control-pre and control-post were overlaid with
significant features that changed between disease-pre and
disease-post. Shared features between these two datasets
indicated candidate peptides that changed expression due to
radiation. Alternatively, features unique to the disease-post
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FIGURE 11: Diagram depicting the shared features between different
sets of ratio data. The features in an individual set are those that
displayed a significant change in intensity between the two members
of the ratio. (a) All four samples, (b) the three ratios used to extract
the RP candidates from the overlaid: control-pre to control-post,
disease-pre to disease-post, and control-pre to disease-pre. Eleven
features uniquely associated to a hypersensitive reaction as well as
differential between patients before treatment.

versus disease-pre significant dataset were considered associ-
ated with a deleterious, hypersensitive reaction to radiation
therapy, RP in our case. Using this hypersensitive dataset, we
then overlaid the significant features from control-pre versus
disease-pre. The features shared between these datasets are
not only associated with RP, but also can be detected (due
to differential concentrations) before treatment initiates. The
results of these comparisons are summarized in the Venn
diagrams of Figure 11.

As noted from Figure 11(b), 41 features significantly
changed after treatment in both patients. This can be
attributed to regular radiation response. In addition, there
were 489 significant features that were uniquely associated
with the control case and 38 that were uniquely associated
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FiGure 12: Visualization of the candidate 11 features for RP (a)
PCA and (b) MDS. Note the separation between control-pre and
disease-pre and disease-post and disease-pre as anticipated from the
experimental design strategy we followed to extract these features.

with the disease case. Eleven features were uniquely asso-
ciated with a hypersensitive reaction as well as differential
expression between patients before treatment, which rep-
resent our RP candidates. The relationship between these
features and the original samples is represented in the
PCA and MDS analyses of Figure 12. It is noticed that the
separation between control-pre and disease-pre and disease-
post and disease-pre is as anticipated from the experimental
design strategy we followed to extract these features.

These 11 features were annotated as described in
Section 2.7 and four proteins were identified as potential
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biomarkers for RP. All the identified proteins were downreg-
ulated postradiotherapy treatment and were known to play
roles in inflammation responses. Two of these protein fam-
ilies were related to tissue remodeling, cognitive disorders,
and fibrosis; one protein was part of the angiotensin-renin
system, and the last protein seems to play a role in cytokine
expression (interleukins and tumor necrosis factor).

4. Discussion

Modeling of radiotherapy outcomes constitutes a challenging
problem due to the complex interaction between physical
and biological factors. Better understanding of these rela-
tionships and the ability to develop predictive models of
patients’ treatment outcomes would lead to personalized
treatment regimens. The tremendous increase in patient-
specific clinical and biological information in conjunction
with developing proper datamining methods and bioinfor-
matics tools could potentially revolutionize the century old
concepts of radiobiology and potentially improve the quality
of care for radiation oncology patients.

In this work, we presented our methodology for making
use of currently existing treatment planning archives to
develop dose-volume models. We have demonstrated that
supervised machine learning methods based on nonlinear
kernels could be used to improve prediction of RP by a
factor of 46% compared to traditional logistic regression
methods. Potential benefits of these methods could be
assessed based on PCA analysis of this data, where nonlinear
kernels could be applied to resolve overlapping classes by
mapping to higher-dimensional space [36]. We have applied
resampling methods based on LOO to assess generalizabilty
to unseen data and avoid overfitting pitfalls. Despite the gain
in performance we attained from kernel methods, our results
show that the best predictive model of RP has an MCC of 0.34
on LOO suggesting that our current variable space of clinical
and physical dosimetric variables may not be adequate to
describe the observed outcomes. This is despite the inclusion
of high-order interaction terms using the SVM machinery.
Therefore, we are currently exploring the inclusion of bio-
logical variables from peripheral blood draws to improve the
prediction power of our RP model. Toward this goal, we have
proposed a prospective study that builds upon our earlier
retrospective analysis to delineate dose-volume effects in the
onset of RP and include “missing” biological variables from
minimally invasive clinical procedures inoperable NSCLC
patients.

We have conducted a proteomic analysis of blood serum
samples. Specifically, we have proposed a 3-way design
strategy in order to distinguish between patient’s variations,
confounding radiation effects, and hypersensitivity predic-
tors using intensity ratio changes. To test the validity of our
design, PCA and MDS plots were used to measure separation
between the samples in the estimated feature space. Our
proteomic analysis was based on data from only two samples,
but the results still provided promising candidates to validate
with biochemical assays in a larger cohort. The entire study
size of nineteen patients is an arguably small sample size
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as well, but according to our current protocol the number
of patients in this study will increase every year, as new
patients are recruited, with a final goal of 100-120 patients
participating. Ongoing generation and validation of candi-
date proteins through additional mass spectrometry runs
and extensive biochemical assays should provide increasingly
interesting and accurate candidate proteins. Our feature
selection strategy for candidate proteins is simplistic at this
point, but we plan to make effective use of new emerging
methodologies in statistical analysis of such data [37-40].
However, further investigation of datamining approaches to
extract proper features and identify corresponding proteins
with higher confidence from limited datasets is still required.

In our future work, we plan to further validate the
derived proteins by examining their functional role by
querying protein databases and measure their expression
using Enzyme-Linked ImmunoSorbent Assay (ELISA). If
successful, this data would be mixed with the developed
dose-volume model using SVM-RBF and we will test the
overall prediction on prospective data. Thus, we would be
able to benefit from both retrospective and prospective data
in our model building strategy.

5. Conclusions

We have demonstrated machine-learning application and a
proteomics design strategy for building a predictive model
of RP. The machine learning methods efficiently and effec-
tively handle high-dimensional space of potentially critical
features. We have applied this model successfully to inter-
rogate dose-volume metrics. Our proteomics strategy seems
to identify relevant biomarkers to inflammation response.
Furthermore, we are currently investigating incorporation of
these biomarkers into our existing dose-volume model of RP
to improve its prediction power and potentially demonstrate
its feasibility for individualization of radiotherapy of NSCLC
patients.
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1. Introduction

In the postgenomic era, with microarray technologies pro-
ducing great deal of gene expression data, mining these
data to get insight into biological processes at system-wide
level has become a challenge for bioinformatics. On one
hand, due to the complex and distribute nature of biological
research, there is a great deal of methods for inferring
gene regulatory networks. But all these methods focused on
constructing the complicated entire network calculated from
the given microarray data. The tremendous amounts of genes
in those networks distribute analysts’ attention, so it is hard
to get any clear perception of valuable knowledge from such
complicated networks, let alone further study of each single
gene. On the other hand, the wide spread of knowledge
over independent databases aggravates the hardness of
integrating comprehensive annotation information for genes
and lowers the study effectiveness. Thus, a novel method
integrating both single molecular network construction and
highly centralized gene-functional-annotation analysis is in
demand for gene network and functional analysis.

This paper proposed an integrated method based on
linear programming and a decomposition procedure with
integrated analysis of the significant function cluster using

Kappa statistics and fuzzy heuristic clustering. Our method
concentrates on and constructs the distinguished single gene
network integrated with function prediction analysis by
DAVID. For the distinguished single molecular network, we
did (1) control and experiment comparison, (2) identifica-
tion of activation and inhibition networks, (3) construction
of upstream and downstream feedback networks, and (4)
functional module construction. We tested this method to
identify ATF2 regulation network module using data of 45
samples from one and the same GEO dataset. The results
demonstrate the effectiveness of such integrated way in terms
of developing novel prognostic markers and therapeutic
targets.

2. Methods

2.1. Distinguished Single Molecular Network Construction.
The entire network was constructed using GRNInfer [1]
and GVedit tools. GRNInfer is a novel mathematic method
called gene network reconstruction (GNR) tool based on
linear programming and a decomposition procedure that is
used for inferring gene networks. The method theoretically
ensures the derivation of the most consistent network



structure with respect to all of the datasets, thereby not
only significantly alleviating the problem of data scarcity
but also remarkably improving the reconstruction reliability.
The general solution for a single dataset is the following (1),
which represents all of the possible networks:

J=X —AUA'VI+YVT =]+YVT, (1)

where ] = (Jij)uxn = 0f(x)/0x is an n X n Jacobian
matrix or connectivity matrix, X = (x(t1),...,x(tn)), A =
(a(t1),...,a(ty)), and X" = (x'(t1),...,x (t;y)) are all n x
m matrices with x;(t;) = [xi(tj11) — xi(¢))]/[tjs1 — t;] for
i=1L..,mj=1..,mX® = (). %) €R,
a= (al,...,an)T € R", x;(t) is the expression level (mRNA
concentrations) of gene i at time instance t. y = (y;;) is an
n X n matrix, where y;; is zero if e; # 0 and is otherwise an
arbitrary scalar coefficient. A™! = diag(1/e;) and 1/e is set
to be zero if ¢, = 0. U is a unitary m X n matrix of left
eigenvectors, A = diag(ej,...,e,) is a diagonal n X n matrix
containing the n eigenvalues, and V7 is the transpose of a
unitary n X n matrix of right eigenvectors.

But the entire network is too complex to get any clear
perception of such complicated relationships among those
genes, let alone further study of each single gene. We
constructed the distinguished single molecular network by
selecting the centered gene and its directly related genes
based on the entire network for further study. We take
into account the effectiveness of biology study in order
to concentrate on single molecular network rather than
the intricate entire network. It is helpful to get intensive
and deep insight of the whole network. For the distin-
guished single molecular network, we did (1) control and
experiment comparison, (2) identification of activation and
inhibition networks, (3) construction of upstream and
downstream feedback networks, and (4) functional module
construction.

2.2. Functional Annotation Clustering. For the function of
genes that is neither determined by their sequence nor by
the protein families they belong to [2], the function of
those genes included in the same single molecular network
should not be interpreted separately, but should be analyzed
together according to the whole single molecular network.
This method takes into account the network nature of
biological annotation contents in order to concentrate on
the larger biological picture rather than an individual gene.
We used DAVID to do functional annotation clustering. It
changes functional annotation analysis from term- or gene-
centric to biological module-centric [2] in accordance with
our network analysis aim.

The DAVID gene functional clustering tool provides
typical batch annotation and gene-GO term enrichment
analysis for highly throughput genes by classifying them into
gene groups based on their annotation term co-occurrence
[3]. DAVID uses a novel algorithm to measure relationships
among the annotation terms based on the degrees of their
coassociation genes to group similar annotation contents
from the same or different resources into annotation groups.
The grouping algorithm is based on the hypothesis that
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similar annotations should have similar gene members.
The functional annotation clustering integrates the same
techniques of Kappa statistics to measure the degree of the
common genes between two annotations, and fuzzy heuristic
clustering to classify the groups of similar annotations
according kappa values [4, 5]. The tool also allows observa-
tion of the internal relationships of the clustered terms by
comparing it to the typical linear, redundant term report,
over which similar annotation terms may be distributed
among many other terms.

3. Results and Discussion

We tested this method using microarrays containing 22215
genes in 40 MPM tumors and 5 normal pleural tissues from
one and the same GEO datasets. We identified potential
tumor molecular markers and chose the top 51 significant
positive genes with normalization of log2, the minimum fold
change = 3.5, delta = 1.59, and a false-discovery rate of 0%
using SAM [6]. We selected activating transcription factor
(ATF)-2 because it is one of the most distinguished genes
in MPM. It is a member of the ATF/cyclic AMP-responsive
element binding protein family of transcription factors.

3.1. Normal Tissues and Tumor Comparisons of Distin-
guished Single Molecular Network. We, respectively, con-
structed the interaction network of the above 51 genes in
healthy tissues and that in tumor using GRNInfer [1] and
GVedit tools and selected the ATF2-centered downstream
subnetworks. With comparison of these ATF2-centered
subnetworks, we can get a more clear perception of the
notable differences between normal tissues and tumor, as
shown in Figure 1. It appeared that ATF2 inhibits C11orf9,
C180rf10, C200rf31, CALD1, CAMK2G, DDX3X, FALZ,
GLS, GOLGA2, ID2, NME2, NMU, NONO, PAWR, PLOD2,
PSMF1, RBMSI1, RIC8A, RNF10, TEAD4, TIAIL, TNPOI,
unknown2, unknown3, WBSCR20C, and ZF in normal
tissues, as shown in Figure 1(a). It appeared that ATF2
inhibits Cl1lorf9, Cl150rf5, C180rf10, C200rf31, CAMK2G,
CDR2, DDX3X, FALZ, FLJ10707, GLS, GOLGA2, ID2,
KRT18, LRRC1, NME2, NMU, NONO, NSUN5, OBSL1_2,
PLOD2, PLXNAI, PTOV1, RBMSI, RIC8A, RNASEHI,
RNF10, TEAD4, TIAl, UCK2, USPI11, and ZF, while it
activates CALD1 and TFAP2C in tumor, as shown in
Figure 1(b).

With comparison between the two results, notable differ-
ences can be shown clearly in order to get further perception
of pathological changes in MPM. For example, ATF2 target
genes appeared in ATF2 activation to CALDI1, TFAP2C in
MPM, as only shown in Figure 2(b). Caldesmon (CALD1) is
a potential actomyosin regulatory protein found in smooth
muscle and nonmuscle cells [7]. Transcription factor AP2-
gamma (TFAP2C) is alternatively titled AP2. Families of
related transcription factors are often expressed in the same
cell lineages but at different times or sites in the developing
embryo. The AP2 family appears to regulate the expression
of genes required for development of tissues of ectodermal
origin such as neural crest and skin [8]. AP2 may also be
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involved in the overexpression of c-erbB-2 in human breast
cancer cells [9].

3.2. Identification of Activation and Inhibition Networks for the
Distinguished Single Molecule. We also identified the activa-
tion and inhibition networks, respectively, in order to sim-
plify and intensify the analysis process. For example, in ATF2
upstream network of MPM, as shown in Figure 2, it appeared
that C1lorf9, CDR2, FALZ, FLJ10534, FLJ10707, FLJ21816,

GLS, LRRC1, NMU, OBSL1, PAWR, PLXNAIl, PTOV1,
RNASEH]1, TEAD4, TNPO1, TNRC5, USP11, and ZF inhibit
ATF2, as shown in Figure 2(a), whereas C180rf10, DDX3X,
GOLGA2, ID2, KRT18, KRT19, NONO, NSUN5, OBSL1_2,
PLOD2, PSMF1, RBMS1, REC8L1, RIC8A, RNF10, TFE3,
TIA1, unknownl, unknown3, WBSCR20B, and WBSCR20C
activate ATF2, as shown in Figure 2(b).

ATF2 upstream genes TFE3, REC8L1 showed activation
to ATF2. TFE3 is a member of the helix-loop-helix family
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of transcription factors and binds to the mu-E3 motif of the
immunoglobulin heavy-chain enhancer and is expressed in
many cell types [10]. Nakagawa et al. [11] identified TFE3 as
a transactivator of metabolic genes that are regulated through
an E box in their promoters which led to metabolic conse-
quences such as activation of glycogen and protein synthesis,
but not lipogenesis, in liver [11]. REC8LI is the human
homolog of yeast Rec8, a meiosis-specific phosphoprotein
involved in recombination events [12]. Brar et al. (2006)
showed that phosphorylation of the cohesin subunit REC8
contributes to stepwise cohesin removal [13].

3.3. Constructing Feedback Network of the Distinguished Single
Upstream and Downstream Gene. We took into account the
feedback relationship and setup ATF2 feedback network,
as shown in Figure 3. ATF2 target genes appeared in ATF2
inhibition to CDR2, GLS, and USPI11, consistently, its
upstream genes also appeared in CDR2, GLS, and USP11
inhibition to ATF2. CDR2 is also called CDR62, where CDR
means cerebellar degeneration-related. On Western blot
analysis of Purkinje cells and tumor tissue, the anti-Yo sera
react with at least 2 antigens, a major species of 62 kD called
CDR62 and a minor species of 34 kD called CDR34 [14].
Sahai (1983) demonstrated phosphate-activated glutaminase
(GLS) in human platelets [15]. It is the major enzyme
yielding glutamate from glutamine. Significance of the
enzyme derives from its possible implication in behavior
disturbances in which glutamate acts as a neurotransmitter
[16]. USP11 is also called UHXI1. Swanson et al. (1996)
cited evidence indicating that ubiquitin hydrolases play a
role in oncogenesis (oncogenes and tumor suppressor gene
products are degraded in ubiquitin-dependent pathways)
[17]. The relationship of ATF2 with CDR2, GLS, and USP11
represents a negative feedback loop.
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FIGURE 4: One ATF2 upstream gene metabolic network including
RBMS1, RNASEHI, PTOVI, NONO, Cllorf9, PSMF1, TIAI,
TEAD4, GLS, ID2, USP11, TNPO1, PAWR, PLOD2, and TFE3.

3.4. Functional Module Construction of the Distinguished
Single Gene. According to ATF2 upstream network, we did
DAVID analysis of function cluster, respectively. The DAVID
functional annotation clustering results appeared that one
ATF2 regulation network was identified as consisting of
the ATF2 upstream genes including RBMS1, RNASEH]I,
PTOV1, NONO, Cl1orf9, PSMF1, TIA1, TEAD4, GLS, ID2,
USP11, TNPO1, PAWR, PLOD2, and TFE3, as shown in
Figure 4.

According to Figure 2, it appeared that RBMS1, NONO,
PSMF1, TIA1, ID2, PLOD2, TFE3 activate ATF2; whereas
RNASEH]I, PTOV1, Cllorf9, TEAD4, GLS, USP11, TNPOI,
and PAWR inhibit ATF2.

RBMSI1, NONO, TIA1, ID2, and TFE3 enhance nucle-
oside, nucleotide, and nucleic acid metabolism because
RBMS1, NONO, TIA1, ID2, and TFE3 are involved in these
metabolism; PSMF1 activation to ATF2 means the increase
of Acyl-CoA metabolism and porphyrin metabolism; PLOD2
activation to ATF2 indicates the progress of cholesterol
metabolism and other protein metabolism, as shown in
Figure 5.

RNASEH1, PTOV1, and TEAD4 inhibition to ATF2 dec-
reases nucleoside, nucleotide, and nucleic acid metabolism
mediated by the three genes; Cllorf9 inhibition to ATF2
means the decline of polysaccharide metabolism, whereas
GLS represents the weakness of amino acid and cyclic
nucleotides metabolism; USP11 inhibition to ATF2 indicates
the fall-off in protein metabolism and modification, whereas
PAWR in glycogen metabolism, as shown in Figure 5.
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RBMS1 rna binding motif, single stranded interacting protein 1 Related genes Homo sapiens
PANTHER_MF_ALL MF00039: Other transcription factor, MF00042: Nucleic acid binding, MF00053: Other RNA-binding protein,MF00057: DNA topoisomoerase, MF00068: mRNA splicing factor, MF0007:
Chromatin/chromatin-binding protein, MF00076: Other nucleic acid binding, MF00085: Cation transporter, MF00101: Guanyl-nucleotide exchange factor, MF00131: Transferase, MF00175:Major
histocompatibility complex antigen, MF00202: Other miscellaneous function protein, MF00208: Molecular function unclassified, MF00213: Non-receptor serine/threonine protein kinase, MF00224:
KRAB box transcription factor, MF00232: Interleukin, MF00250: Serine protease inhibitor, MF00259: Cadherin,

RNASEH1 ribonuclease h1 Related genes Homo sapiens
PANTHER_MF_ALL MF00042: Nucleic acid binding, MF00053: Other RNA-binding protein, MF00072: Translation initiation factor, MF00212: Other G-protein modulator,

PTOV1 prostate tumor overexpressed gene 1 Related genes Homo sapiens

PANTHER_MF_ALL MF00031: Voltage-gated ion channel, MF00033: Voltage-gated calcuim channel, MF00036: Transcription factor, MF00075: Ribosomal protein, MF00086: Other transporter, MFO0101:
Guanyl-nucleotide exchange factor, MF00146: Deacetylase, ME00175: Major histocompatibility complex antigen, MF00202: Other miscellaneous function protein, MF00212: Other G-protein
modulator, MF00222: Zinc finger transcription factor, MF00224: KRAB box transcription factor, MF00283: Ubiquitin-protein ligase,

non-pou domain containing, octamer-binding Related genes Homo sapiens

PANTHER_MF_ALL MF00042: Nucleic acid binding, MF00065: mRNA processing factor, MF00068: mRNA splicing factor, MF00084: ATP-binding cassette (ABC) transporter, MF00208: Molecular function unclassified,

Cllorfo chromosome 11 open reading frame 9 Related genes Homo sapiens
PANTHER_MF_ALL MF00072: Translation initiation factor, MF00086: Other transporter, MF00101: Guanyl-nucleotide exchange factor, MF00135: Transaldolase, MF00150: Glycosidase, MF00154 : Metalloprotease,
MF00174: Complement component, MF00189: Other select calcium binding proteins, MF00208: MF00208: Molescular function unclassified, MF00213: Non-receptor serine/threonine protein kinase,
MF00224: KRAB box transcription factor, MF00250: Serine protease inhibitor, MF00279: Tumor necrosis factor receptor,
PSMF1 proteasome (prosome, macropain) inhibitor subunit 1 (pi31) Related genes Homo sapiens
PANTHER_MF_ALL MF00002: G-protein coupled receptor, MF00006: Interleukin receptor, MF00068: mRNA splicing factor, MF00072: Translation initiation factor, MF00086: Other transporter, MF002101: Protease
inhibitor, MF00175 : Major histocompatibility complex antigen, MF00208: Molecular function unclassified, MF00227: Basic helix-loop-helix transcription factor, MF00230 :Actin binding motor
protein, MF00240: Immunoglobulin, MF00243: DNA helicase, MF00291: Other enzyme activator,
tial cvtotoxic granule-associated rna binding protein Related genes Homo sapiens

PANTHER_MF_ALL Mf00042: Nucleic acid binding, MF00053: Other RNA-binding protein, MF00055: Single-stranded DNA-binding protein, MF00212: Other G-protein modulator, MF00231: Microtubule binding
motor protein, MF00243: DNA helicase,

tea domain family member 4 Related genes Homo sapiens
PANTHER_ME_ALL MF00036: Transcription factor, MF00039: Other transcription factor, MF00067: mRNA polyadenylation factor, MF00068: mRAN polyadenylation factor, MF00068: mRNA splicing factor, MF00088:
Apolipoprotein ,MF00224: KRAB box transcription factor, MF00242: RNA helicase, MF00243: DNA helicase,
glutaminase Related genes Homo sapiens
PANTHER_MF_ALL MF00002: G-protein coupled receptor, MF00023: Other signaling molecule, MF00034: Voltage- gated potasslum channel, MF00083: Cauon transporter, MF00100: G-protein modulator, MF00101:
Guanyl-nucleotide exchange factor, MF0013 8: Transaminase, MF00141: Hydrolase, MF00148: Pt MF00173: Defense/i y protein, MF00180: Extracellular matrix glycoprotein,

MF00231: Microtubule binding motor protein, MF00262: Non-motor actin binding protein,

inhibitor of dna binding 2, dominant negative helix-loop-helix protein Related genes Homo sapiens

PANTHER_MEF_ALL MF00021: Neuropeptide, MF00036: Transcription factor, MF00039 : Other transcription factor, MF00068: mRNA splicing factor, MF00074: Translation release factor, MF00258: CAM family
adhesion molecule,

USP11 ubiguitin specific peptidase 11 Related genes Homo sapiens
PANTHER_MF_ALL MF00034: Voltage-gated potassium channel, MF00101: Guanyl-nucleotide exchange factor, MF00153: Protease, MF00215: Cysteine protease, MF00225: Other zinc finger transcription factor,
MF00242: RNA helicase,
TNPOI1 transportin 1 Related genes Homo sapiens
PANTHER_MF_ALL MF00087: Transfer/carrier protein, MF00230: Actin binding motor protein, MF00231: Microtubule binding motor protein, MF00261: Actin binding cytoskeletal protein, MF00264: Microtubule
family cytoskeletal protein,

PAWR ¢, apoptosis, wtl, regulator Related genes Homo sapiens
PANTHER_MF_ALL MF00042: Nucleic acid binding, MF00096: Phospl dul MF00138: Tt i MF00208: Molecular function unclassified, MF00277: Other cell junction protein ,
transcription factor binding to ighm enhancer 3 Related genes Homo sapiens
PANTHER_MF_ALL MF00036: Transcription factor, MF00042: Nucleic acid binding, MF00227: Basic helix-loop-helix transcription factor,
PLOD2 procollagen-lvsine, 2-oxoglutarate 5-dioxyvgenase 2 Related genes Homo sapiens
PANTHER_MF_ALL MF00117: Other phospk MF00123: Oxidoreductase, MF00124: Oxyg MF00130: Other oxidored MF00143: P} holi MF00202: Other miscellaneous function protein,
MF00208: Molecular function unclassified, MF00212: Other G-protein modulator, MF00213: Non-receptor serine/threonine protein kinase, MF00265: Tubulin,

RBMS1 rna binding motif, single stranded interacting protein 1 R e S

PANTHER_BP_ALL BP00031: Nucleoside, nucleotide and nucleic acid metabolism, BP00040: mRNA transcription, BP00044: mRNA transcription regulation, BP00047: Pre-mRNA processing, BP00048:mRNA splicing,
BP00071: Proteolysis, BP00077: Oxidative phosphorylation BP00142: Ton transport, BP00143: Cation transport, BP00149: T-cell mediated immunity, BP00150: MHCI-mediated immunity,
BP00151: MHCII-mediated immunity, BP00193: Developmental processes, BP00216: Biological process unclassified, BP00273: Chromatin packaging and remodeling, BP00287: Cell motility,

RNASEH1 ribonuclease h1 Related genes Homo sapiens
PANTHER_BP_ALL BP00031: Nucleoside, nucleotide and nucleic acid metabolism, BP00143: Cation transport, BP00197: Spermatogenesisand motility, BP00256: RNA catabolism,
PTOV1 prostate tumor overexpressed gene 1 Related genes Homo sapiens

PANTHER_BP_ALL BP00014: Amino acid biosynthesis, BP00031: Nucleoside, nucleotide and nucleic acid metabolism, BP00044: mRNA transcription regulation, BP00061: Protein biosynthesis, BP00071: Proteolysis,
BP00077: Oxisative phosphorylation, BP00104: G-protein mediated signaling, BP00142: Ion transport, BP00143: Cation transport, BPO0149: T-cell mediated immunity, BP00150: MHCI-mediated
immunity, BP00289: Other metabolism,

NONO non-pou domain containing, octamer-binding Related genes Homo sapiens

PANTHER_BP_ALL BP00031: Nucleoside, nucleotide and nucleic acid metabolism, BP00047: Pre-mRNA processing, BP00048: mRNA splicing, BP00216: Biological process unclassified,
Cllorfo chromosome 11 open reading frame 9 Related genes Homo sapiens
PANTHER_BP_ALL BP00009: Other polysaccharide metabolism, BP00036: DNA repair, BP00044: mRNA transcription regulation, BP00071, Proleolysls, BP00077 Oxidative phosphorylatlon BP00104: G-protein
mediated signaling, BP00111: Intracellular signaling cascade, BP00112: Calcium mediated signaling, BP00153: Compl ity, BP00216: Biological process unclassified,
BP00273: Chromatin packaging and remodeling, BP00286: Cell structure,
PSMF1 proteasome (prosome, macropain) inhibitor subunit 1 (pi31) Related genes Homo sapiens
PANTHER_BP_ALL BP00024: Acyl- CoA metabolism, BP00040: mRNA transcription, BP00044: mRNA transcription regulation, BP00071: Proteolysis, BPO0087: Porphyrin metabolism, BP00103: Cell surface receptor
mediated signal transduction, BP00104: G-protein mediated signaling, BP00119: Other intracellular signaling cascade, BP00122 Ligand-mediated slgnalmg, BP00149: T-cell mediated immunity,
BP00150: MHCI-mediated immunity, BP00151: MHCII-mediated immunity, BP00152: B-cell and antibody di ity, BP00216: Biological process unclassified, BP00274: Cell
communication,

tial cytotoxic granule-associated rna binding protein Related genes Homo sapiens

PANTHER_BP_ALL BP00031: Nucleoside, nucleotide and nucleic acid metabolism, BP00047: Pre-mRNA processig, BP00048: mRNA splicing,
TEAD4 tea domain family member 4 Related genes Homo sapiens
PANTHER_BP_ALL BP00031: Nucleoside, nucleotide and nucleic acid metabolism, BP00040: mRNA transcription, BP00044: mRNA transcription, BP00044: mRNA transcription regulation,
glutaminase Related genes Homo sapiens
PANTHER_BP_ALL BP00013 mino acid metabolism, BP00014: Amino acid biosynthesis, BP00036: DNA repair, BP00042: mRNA transcription initiation, BP00047: Pre-mRNA processing, BP00049: mRNA
\ lation, BP00056: Metabolism of cyclic nucleotides, BP00071: P 1 BP : Nitrogen bolism, BP00102: Signal transduction, BP00142: Ion transport, BP00143: Cation transport,

BP00289 Other metabolism,

inhibitor of dna binding 2, dominant negative helix-loop-helix protein Related genes Homo sapiens
PANTHER_BP_ALL BP00031: Nucleoside, nucleotide and nucleic acid metabolism, BP00040: mRNA transcription, BP00044: mRNA transcription regulation, BP00048: mRNA splicing, BP00071: Proteolysis, BP00104:
G-protein mediated signaling, BP00128: Constitutive exocytosis, BP00148: Immunity and defense, BP00273: Chromatin packaging and remodeling,

USP11 ubiguitin specific peptidase 11 Related genes Homo sapiens
PANTHER_BP_ALL BP00060: Protein metabolism and modification, BP00071: Proteolysis, BP00104: G-protein mediated signaling, BP00143: Cation transport, BP00179: Apoptosis, BP00250: Muscle development,
transportin 1 Related genes Homo sapiens
PANTHER_BP_ALL BP00063: Protein modification, BPO0064: Protein phosphorylation, BP00125: Intracellular protein traffic, BP00194: Gametogenesis, BP00196: Oogensis,

ke, apoptosis, wtl regulator Related genes Homo sapiens
P EOR 8 8 P
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transcription factor binding to ighm enhancer 3 Related genes Homo sapiens
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radical removal,

FIGURE 5: Molecular function and biological process from DAVID.



4. Conclusions

Our method concentrates on and constructs the dis-
tinguished single gene network integrated with function
prediction analysis by DAVID. For the distinguished sin-
gle molecular network, we did (1) control and exper-
iment comparison, (2) identification of activation and
inhibition networks, (3) construction of upstream and
downstream feedback networks, and (4) functional module
construction. We tested this method to identify ATF2
regulation network module using data of 45 samples from
one and the same GEO dataset. The results demonstrate the
effectiveness of such integrated way in terms of developing
novel prognostic markers and therapeutic targets.
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Microarray technology provides an opportunity to view transcriptions at genomic level under different conditions controlled
by an experiment. From an array experiment using a human cancer cell line that is engineered to differ in expression of tumor
antigen, integrin a6f34, few hundreds of differentially expressed genes are selected and are clustered using one of several standard
algorithms. The set of genes in a cluster is expected to have similar expression patterns and are most likely to be coregulated and
thereby expected to have similar function. The highly expressed set of upregulated genes become candidates for further evaluation
as potential biomarkers. Besides these benefits, microarray experiment by itself does not help us to understand or discover potential
pathways or to identify important set of genes for potential drug targets. In this paper we discuss about integrating protein-
to-protein interaction information, pathway information with array expression data set to identify a set of “important” genes,
and potential signal transduction networks that help to target and reverse the oncogenic phenotype induced by tumor antigen
such as integrin a634. We will illustrate the proposed method with our recent microarray experiment conducted for identifying
transcriptional targets of integrin w634 for cancer progression.
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1. Introduction

A micro-array experiment is conducted to study expression
profiles of genes in a specimen under different experimental
conditions, or over several different time periods. It serves
many purposes that include (1) developing a predictive com-
putational model which can be used to predict biomarkers
and targets for cancer therapy, (2) gaining some insight on
gene regulation when a microarray experiment is conducted
in different time points, (3) gaining insight on the genes that
may be involved in a situation or disease under investigation,
(4) understanding or refining protein-in-protein interaction
networks, and (5) annotating uncharacterized genes. In
a recent review article on the applications of microarray,
Troyanskaya [1] provides some details on the items 2, 4, and
5. Statistical tests are conducted to filter valid signals first and
then a subset of genes called differentially expressed genes
is selected based on their relative strength or weakness of

expression levels with respect to their reference expression
values. The differentially expressed probes, which roughly
correspond to genes, are reduced to few hundreds while the
total number of probes of an experiment is in the order of 20
to 50 thousands.

The set of highly expressed genes are considered to
be candidates for biomarkers in a microarray experiment.
It is quite difficult to single out the best biomarkers
by viewing expression level alone partially due to noise
or some association by “guilt” By integrating microarray
expression data with other information pertaining to the
protein behavior we can improve the quality of decision
on biomarkers as has been proposed by Camargo and
Azuaje in [2]. Similarly we vcan gain better insight into
gene regulation by associating gene expression with protein
interaction network with known cancer related pathways.

A significant volume of works has been done that relates
or combines microarray data sets and protein-to-protein



TaBLE 1: The high ranking 14 up regulated genes based on the fold
changes. For each gene in the list the connectivity in the protein
interaction network G is given. None of the ranked upregulated
genes are hub nodes.

Genes Fold changes Connectivity in G
IL8 5.63 11
S100A3 4.86 4
SOX4 4.54 2
SLCO4A1 4.12 2
MAGEH1 3.77 9
AKRIC1 3.72 2
MADI1L1 3.45 21
1L24 3.35 1
HSPA6 3.25 13
NRCAM 3.18 10
COLo6A1 3.07 5
ASPH 3.03 2
TUSC3 2.98 1
PEGI10 2.87 1

interaction networks. Based on the expected outcome, these
works may be characterized into (1) annotating unchar-
acterized genes, (2) refining protein-to-protein interaction
network, (3) predicting protein to protein interaction, and
(4) refining potential biomarkers from array expression.
Integrating protein interaction network information with
expression data sets along with other information pertaining
to a gene has been used [3-7] for annotating uncharacterized
protein. In the recent work of Nariai et al. [6], probabilistic
approach has been used to integrate protein to protein
interaction, array expression, protein motif, gene knockout
phenotype data, and protein localization data for predicting
the function of an uncharacterized genes.

Microarray expressions data has also been used for
refining protein to protein interaction networks. Zhu et al.
[8] have used coexpressed genes from microarray data set
to filter the neighbors of protein in an interaction network
to enhance the degree of functional consensus among the
neighbors.

Array expression data sets are used for predicting protein
to protein interaction [9, 10]. Recently Soong et al. [10]
have used microarray expression to predict protein to protein
interaction. A pair of proteins is represented by a feature
vector consisting of a concatenation of expression modes or
profiles of those proteins along with the Pearson correlation
of the expression profiles of these two proteins. They have
demonstrated the predictability of using support vector
machine with protein to protein interaction of yeast data sets
from DIP [11] and 349 yeast microarray expression data sets
from GEO [12].

Camargo et al. [12] have integrated array expression data
set with expression data for refining potential biomarkers.
Their work has some overlapping with our current approach
in selecting hub nodes from interaction network and com-
bining with array expression data sets. Their focus, however,
was only on refining the biomarkers derived from array

Journal of Biomedicine and Biotechnology

expression as opposed to providing insight into potential
signal transduction pathways or any other intermediate
activities that are not revealed in an array expression.

We take a different approach that compliments the
strength of interaction data sets and array expression data
sets. The array data sets capture the expression levels at
different experimental conditions (or time points) while the
information on interaction networks represents experimen-
tally determined and as well as predicted interaction between
pairs of proteins in a two-dimensional space without paying
attention to the context, the temporal relations, or the
process. By bringing two different types of modalities of
information together, we believe we can discover some
important genes that may have played important roles in the
final observation of the array expression.

Suppose we consider a binary case of studying the
expression pattern of a cell line of healthy and sick subjects.
Examining the differentially expressed genes provides infor-
mation on which genes are up-or downregulated, and their
expression levels. This information alone does not provide
insight into deciding interesting set of genes that are either
taking part of the progression or the cause of the disease
under consideration. We will show how to integrate gene
expression with expression patterns with protein to protein
interaction, and known genes in disease pathways to gain
insight onto a small subset of interesting genes relevant to
the disease under investigation.

To illustrate and to apply the idea of integrating microar-
ray data with protein to protein interaction network, and
disease related pathways, we use our recent microarray
study for identifying transcriptional targets of integrin a634
for cancer progression. Jun Chung and his associates have
used the affymetrix HG-U133A_2 to identify transcriptional
targets of integrin a6f4. The goal of the study is to
identify a64 transcriptional targets important for breast
cancer progression. The a6f34 integrin, an epithelial-specific
integrin, functions as a receptor for the members of the
laminin family of extra cellular matrix proteins [13, 14].
While the primary known function of a6f34 is to contribute
to tissue integrity through its ability to mediate the formation
of hemidesmosomes (HDs), there is growing evidence
suggesting that this integrin also plays a pivotal role in
functions associated with cancer progression [13, 14]. For
example, high expression of this integrin in women with
breast cancer has been shown to correlate significantly with
mortality and disease states [13, 14]. However, therapeutic
targets of breast cancer that overexpress a6f4 are not yet
well characterized. For this reason, it is essential to elucidate
the mechanism by which @64 contributes to breast cancer
progression.

We describe the data set, methods, and approaches in
Section 2. It is followed by results in Section 3. In Section 4,
we summarize and discuss the results.

2. Materials and Methods

2.1. Data. We are focusing on genes of Homo sapiens and
their expressions for this experiment. From Affymetrix site
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TaBLE 2: The high ranking 14 downregulated genes. For each gene
in the list, the connectivity in the protein interaction network G is
given. The 5 hub nodes among the ranked down regulated genes are
underlined.

Genes Fold change (inverse) Connectivity in G
HBE1 9.10 1
H1FO 7.70 7
AZGP1 7.64 3
SNCA 5.24 44
GLUL 5.13 31
TPM1 4.62 17
IGFBP7 4.54 10
MYLK 4.25 28
KCNS3 4.23 1
NGFRAP1 4.12 15
DGKI 3.97 1
ILIRAP 3.92 14
THBS1 3.70 36
MAP1B 3.65 1

at http://www.affymetrix.com/, we have downloaded the
annotations (HG-U133A _2.na22.annot) for the genes that
are tested in a microarray experiment.

The gene expression data is from our recent microarray
experiment using the affymetrix HG-U133A_2 to identify
transcriptional targets of integrin a6f4. Our study here
describes the gene expression profile obtained from MDA-
MB-435 mock transfectants (w634 negative human cancer
cell line) and MDA-MB-435 34 integrin transfectants (a634
positive human cancer cell lines). Out of oligonucleotide
probe sets representing approximately 22 277 genes, expres-
sion of 4 integrin in MDA-MB-435 cells up regulated 149
genes by twofold or higher. 193 genes are down regulated
by over two fold change. We anticipate that microarray data
will lead to not only the identification of a6f34 target genes
that are important for breast cancer cell growth, survival, and
invasion, but also the discovery of signaling pathways leading
to the expression of these genes.

The protein to protein interaction databases include
MIPS [15], DIP [11], BIND [16, 17], GRID and 12D [18].
Noise is often a factor in many protein to protein interaction
dataset. To minimize the noise and its impacts on the final
outcome, we apply ensemble-based method for selecting
the interaction. That is, by applying majority voting on
interacting pairs from different the database, we can improve
the accuracy and minimize the errors in their interaction
information. 12D provides experimentally determined and
predicted protein to protein interaction with easy to use
interface, and thus we have downloaded 12D [18] for homo
sapiens genome.

2.2. Data Preprocessing. Suppose we are gathering protein
to protein interaction from different sources each with their
own accuracy. By combining the results of independent
test or source that has prediction accuracy over 50%, we
can obtain prediction accuracy better than any one method

alone. Suppose we have n independent sources each with
some predefined fixed prediction accuracy, say p. Without
loss of generality, let us assume # is an odd number. By
accepting the decision of majority predictors among #, the
combined accuracy is given by the following formula:

n .

prediction_accuracy = » ( ,)pi(l -p)" (1)
i=k \ !

where k = [(n/2).

Suppose nine independent predictors each with pre-
diction accuracy 0.65 are combined by majority votes, the
combined prediction accuracy becomes 0.83.

12D [18] collects and maintains protein to protein
interaction from various sources and we have downloaded
the interaction information pertaining to Homo Sapiens.
By applying the majority votes, we have minimized some
plausible noise in the data set.

The microarray experiment was repeated three times
and in each repetition the expressions of genes under the
following two conditions are measured: (1) integrin negative
cell line (control), and (2) integrin positive cell line. Out of
the 22277 genes we have selected only 8512 genes that have
valid signal in all measurements. The average of the log ratio
between the integrin positive and the control expression in
all the repetitions is taken as the expression of a gene. From
the expressions, we could create different expression patterns
based on the values such as up regulated fold changes over
2 to 3, 3 to 4, and over 4. Among the down regulated
genes, we may have the similar groups. For simplicity, we
have taken only two patterns, namely, up regulated and
down regulated genes. The up regulated genes are those that
have fold changes (log of the ratio 2) over 1 and the down
regulated are those that have the fold changes (log of the ratio
0.5) less than —1.

2.3. Methods. We have downloaded human protein to pro-
tein interaction networks from 12D, which have 13 560 genes
that have connectivity from 1 to 694. The connectivity or
degree of a node is defined as the number of edges connected
to the network and we consider each edge as bidirectional
connection. As expected, the interaction follows the scale free
distribution. For the purpose of integrating the interaction
network with the microarray expression data set, we have
extracted a subnetworks from the whole networks that
interact with the differentially expressed genes from the
experiment. The selected sub networks, which we refer to as
G, have 2186 genes including the 190 differentially expressed
genes, and 3130 edges. A view of Graph G is shown in
Figure 1 as created by Navigator [19]. The up and down
regulated genes are shown in red and green, respectively, and
the size of each node corresponds to the degree of interaction
of that node in the graph.

In a typical microarray analysis, the differentially
expressed genes are ranked based on their fold changes and
the first few of them as taken as important. We feel that using
expression fold change alone to determine the importance
of a gene is quite weak. We take a different approach in this
paper for discovering a set of important genes under a given
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FIGURE 1: A view of protein to protein interaction associated with the differentially expressed genes. We refer to this graph as G.

experimental condition. We create the subgraphs, say G, of
protein to protein interaction networks that is associated
with the differentially expressed genes from the microarray
experiment. It is generally believed that the connectivity of
nodes in G roughly reflects the importance of the gene in
the interaction [20]. We found that even the network G has
the property of a typical scale free network indicating only a
small fraction of the node has large connectivity.

2.3.1. Selecting a Set of Important Genes Based on Topological
Structure. In the recent work, Jeong et al. [20] and Twe
et al. [21] have suggested that essential proteins are over
represented among those proteins having high degree of
connectivity, which can be attributed to the central role
in mediating interactions among numerous, less connected
proteins. Hub nodes in an interaction network are defined
as a set of nodes with very high degree of interaction with
neighbors and the corresponding threshold for connectivity
is defined quite arbitrarily. Vallabhajosyula et al. [22] have
studied the issue on selecting hub nodes and the impacts
on their functional significance, but unfortunately they were
unable to provide and prescriptive definition or method on
selecting hub nodes. They, however, stated that the nodes
with relatively high degree of interaction are likely to have
very high functional significance. In the literature, we found
that people have applied varying criteria in selecting the
threshold for hub nodes; for example, Batada et al. [23] have
defined hub nodes as those connect to over 90% or 95% of
the nodes in the network. Biasing from the finding in [22]
that the top few percentage of nodes with high degree of

interaction has better functional significance, we selected the
hub nodes; those that are in the top 3% of the nodes ranked
based on the decreasing order of connectivity.

We also believe that important genes must also play a
role in the stability of the network, that is, removal of such
node will break the network into disconnected subnetworks.
An articulation node in a graph plays the role of connecting
or keeping the graph together and the removal of such node
separates the graph into subgraphs. Thus the hub genes that
play articulation role in an interaction network seem to have
more functional significance.

A minimum spanning tree is acyclic graph that connects
all the nodes in a network such that the summation of cost in
all the edges is minimal and thus eliminates redundant paths
among the nodes. A node with high degree of connectivity
in minimum spanning tree will indeed play an important
role. In a protein interaction network the edge cost is taken
to be 1 and we construct a minimal spanning tree using
Kruskal’s algorithm [24]. We selected the hub nodes from
the minimum spanning tree and consider them as important
genes too.

As described above, three set of potentially important
nodes can be selected from the following different methods:
(1) hub nodes from the interaction networks, (2) hub nodes
from the set of articulation nodes, and (3) hub nodes from
the minimum spanning tree. The nodes satisfying condition
2 are indeed a subset of those satisfying condition 1 and
hence we have only two distinct conditions, namely, 2 and
3. We define a set of important genes; those that satisfy either
conditions 2 or 3.
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FIGURE 2: The minimum spanning tree of the network associated with cancer pathway genes. The backbone of the tree is shown. Up-and

down regulated genes are shown in red and green color.

2.3.2. Important Genes Based on Pathways and Interaction.
Pandey Lab at the Johns Hopkins University and the
Institute of Bioinformatics [25] maintains experimentally
determined ten cancer signaling pathways for Homo Sapiens,
namely, EGFR1, TGE beta Receptor, TNF, alpha/NF-kB,
a6P4 Integrin, ID, Hedgehog, Notch, Wnt, AR, and Kit
Receptor. We have obtained the genes in each of the ten
cancer pathways and extracted sub network, say G, from
the interaction network that interacts with any genes in the
cancer pathway. The important nodes of G, include the ones
from the three following methods or sources.

(1) Hub nodes of Gp.
(2) Hub nodes of the articulation nodes of Gy,.

(3) Hub nodes of the minimum spanning tree created
from G,.

The nodes satisfying condition 2 are indeed a subset
of those satisfying condition 1 and hence we have only
two distinct conditions, namely, 2 and 3. The important
nodes related to cancer pathway are those that satisfy either
condition 2 or 3.

Besides examining the important nodes in each graph, we
can examine the cliques or near cliques for similar functional
association of genes. Han et al. [26] along with many other
researchers have used cliques or near cliques in an interaction
network to find functional group of genes. A clique is a fully
connected subgraph of a graph and find cliques in a network
is computationally intractable. For many practical purposes,
near cliques are computed.

3. Results

From the microarray experiment, we have two different
expression patterns, namely, up-and downregulated genes.
The up regulated genes are those that have valid signal across
three trials and have expression level over 2 times that of the
reference gene. Similarly the down regulated genes are those
that have valid signal across three trials and have inverse
expression level over 2 with respect to the reference gene.
We list the first 14 up and down regulated genes of our
experiment in Table 1. We combined the gene expression
with gene interaction by selecting subset of the interaction
graph that associates with all the differentially expressed
genes. The selected subgraphs, which we refer to as G, have
2186 genes including the 190 differentially expressed genes,
and 3130 edges. Note that there is no single hub node among
the 14 high ranking up regulated nodes of G. On the other
hand, there are 5 hub nodes among the high ranking down
regulated nodes. There seems to be no correlation among the
hub nodes of an interacting graph with highly up or down
regulated genes.

From the graph G, we select the set of important genes
based on topological structure, which involves selecting the
hub nodes and following the procedures described in the
previous section. The cutoff connectivity for the hub nodes
in G is 16 and there are 60 hub genes out of 2186 genes. Out
of the 60 hub nodes, 49 are from the differentially expressed
genes (12 of them are up regulated and the rest are down
regulated). The graph G has 200 articulation genes and out of
which 60 satisfy the hub condition (degree 16 or above). The
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BCL2L1

F1GURE 3: The cliques or near cliques from the cancer pathway related network G;,. The up-and downregulated genes are shown in red and

green, respectively.

minimum spanning tree of G was constructed assuming the
edge cost is 1. The nodes with connectivity 9 or better in the
minimum spanning tree satisfy the hub node property. The
minimum spanning tree has 77 hub genes and out of which
17 of them are up regulated and 46 are down regulated. In
agreement with conditions 2 and 3 in Section 2, 57 genes are
selected as important ones out of which 12 are up regulated
and 35 are down regulated. These genes are listed in Table 3.

To discover the important genes related to cancer, we
have extracted a sub network, which we call G, from
G such that each node in G, is directly associating with
any one of the genes in cancer pathways that include
EGFRI1, TGE beta Receptor, TNF, alpha/NF-kB, Alpha6
Beta4, Integrin, ID, Hedgehog, Notch, Wnt, AR, and Kit
Receptor pathways. The genes in these curated pathways
for human are downloaded from their web portal [25]. We
found 24 nodes in the network with connectivity 12 or
better satisfy the hub node property. The pathway related
network G, has 132 articulation genes out of which 23 are
hub genes. The minimum spanning tree of G, is constructed
and the backbone of the minimum spanning tree is shown
in Figure 2. The minimum spanning tree has 200 genes and
17 out of these genes have connectivity 4 or better satisfy the
hub node property. By combining all these three set of hub
genes using ensemble method, we have created the important
genes related to pathways and are presented in Table 4.

Besides examining the important genes in Gy, the cancer
pathway related network, we searched for cliques or near
cliques in the network to examine functionally related genes.
The cliques from the network Gy, is shown in Figure 3.

Let us examine the interaction among important genes
based on topological structure (from Table 3) and between
the highly expressed genes from Table 1. The interaction is
shown in Figure 4.

The direct interaction among the genes identified as
important nodes due to the known cancer pathways is shown
in Figure 5.

4. Summary and Discussion

In this paper we have presented a general method for inte-
grating microarray expression with other complementary
information related to gene function so that we can under-
stand and infer information about the set of genes that we
are interested. Particularly we focused on integrating protein
interaction information and pathway related information
with microarray expression. We have applied the proposed
general methodology to our recent microarray experiment
to discover potential drug target that may lead to novel
anticancer therapeutics.

Quite a large body of research works is done in
integrating expression data with interaction network and
other data sets. Many of the works fall into one or some
combination of the following categories: (1) annotating
uncharacterized genes, (2) refining protein to protein inter-
action network, (3) predicting protein to protein interaction,
and (4) refining potential biomarkers from array expression.
The presented work here has some overlaps with the recent
work of Camargo et al. [2], which involved in integrating
expression data set with expression data set for refining
potential biomarkers of array expression and to annotate
uncharacterized genes. They have used hub genes of the
interaction network to refine biomarkers of the expression
data sets.

The interaction network of Homo sapiens is scale free,
that is there are few nodes having very high degree of
interaction and facilitate other nodes in mediating their
functions. Even the subnetwork of the interaction network
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FIGURE 4: The interaction between the top 14 up regulated genes from Table 1 with the set of important genes based on network topology
(Table 3). The red one represents the gene from Table 1. The green colored ones are down regulated and the red and purple ones are up

regulated.
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FIGURE 5: The interaction between the top 14 up regulated genes from Table 1 with the set of important genes based on pathway (Table 4).
The red one represents the gene from Table 1. The green colored ones are down regulated and the red and purple ones are up regulated.

that has direct interaction with differentially expressed genes
is found to be having the properties of scale free network.
Hub nodes in an interaction network are defined as a set of
nodes with very high degree of interaction with neighbors
and the corresponding threshold for connectivity is defined
quite arbitrarily. Biasing from the finding in [22] that the
top few percentage of nodes with high degree of interaction
has better functional significance, we selected the hub nodes;
those that are in the top 3% of the nodes ranked based on the
decreasing order of connectivity.

From the Homo sapiens interaction network, we have
extracted a sub network called G that is associated with the
differential expressed genes of our microarray experiment.
Hub nodes in an interaction network are important and we
selected the first set of hub nodes from G. A set of articulation
nodes, which plays the role of stability of the network, is also
important. We selected a set of articulation nodes from G. We
have constructed a minimum spanning tree from G and we
have selected a set of hub nodes from the minimum spanning
tree. We created important set of genes based on topological



TasLE 3: The important set of genes based on topological structure
of interaction network. Selecting the nodes that satisfy condition 2
(the articulation nodes among the hub nodes of the network) and
condition 3 (the hub nodes of the minimum spanning tree). The
inverse of fold changes for down regulated genes is shown. Thus the
table includes the genes that are not considered in the experiment
or neither up-or downregulated.

Gene Regulation Fold change
CPNE1 Up 2.63
CTSB Up 2.78
CTSD Up 2.00
MADILI Up 3.45
MEF2C Up 2.21
PCM1 Up 2.01
PRKAR2B Up 2.80
PSMD7 Up 2.01
PTPN1 Up 2.06
RBL2 Up 2.62
RGS20 Up 2.20
SOD2 Up 2.10
ADSL Down 2.23
ATM Down 2.09
BID Down 2.09
CASP1 Down 3.07
CBLB Down 2.32
CCNB2 Down 2.32
CDC7 Down 2.17
CHEK1 Down 2.06
CTTN Down 2.63
DDX17 Down 2.13
DGCR14 Down 2.04
ETS1 Down 2.50
FOS Down 2.94
GLUL Down 5.13
GNAQ Down 2.39
ID2 Down 2.86
MACF1 Down 2.05
MREI1A Down 2.61
MYLK Down 4.25
NEDD4 Down 2.01
PAFAHI1B2 Down 2.57
PPFIA1 Down 2.41
PRKAB2 Down 2.56
PRSS23 Down 2.47
RAB27A Down 2.74
RAB8B Down 2.27
RPL31 Down 2.08
RRM2 Down 2.32
SMARCBI1 Down 2.14
SNCA Down 5.24
TGFB2 Down 2.06
THBS1 Down 3.70
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TasLE 3: Continued.

Gene

Regulation

Fold change

TNFRSF1A
TPM1
XRCC6
DDX19B
*GRINL1B
*HIST2H3PS2
*NA

*RET
*RPL35A
**SMC2
**SMC4
**TPI1
**TUBA4A

Down
Down
Down

Down

2.13
4.62
2.08
2.09

*These genes are neither up-or downregulated, nor considered in the

experiment.

**These genes are from interaction network that satisfy conditions 2 and 3.

TaBLE 4: The important genes of network associated with genes
in cancer pathways. These genes are obtained by combining three
sets of hub genes from interaction network, articulation nodes,
and from the minimum spanning tree of G,. We show the specific
pathway a gene is involved with.

Genes Regulation Pathway
CTSB Up

CTSD Up Tgf beta,ar
PSMD7 Up

PTPNI1 Up

RBL2 Up Tgf beta
SOD2 Up Tnf_alpha
ATM Down

BID Down Tnf_alpha
CASP1 Down Tnf_beta
CBLB Down

CCNB2 Down Tgf beta
CHEK1 Down

ETS1 Down Tgf beta,tnf_alpha
FOS Down Whnt,ar,kit
GRB10 Down ar

D2 Down Tgf beta,ar
MREI11A Down

NEDD4 Down Tgf beta
RRM2 Down Egfrl

SNCA Down

TGFB2 Down Egfrl,tgf_beta,tnf _alpha,ar
THBS1 Down Tgf_beta, tnf_alpha, id,wnt
TNFRSF1A Down Tgf_beta,notch,kit
XRCC6 Down
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structure of the interaction network. The hub nodes alone in
isolation do not reveal any useful information. Similarly the
highly ranked up or down regulated genes by themselves do
not provide any clue into any potential signaling pathways
either.

On the other hand, when we combine the set of
important genes based on the interaction topology from
Table 3 and the set of highly expressed genes from Table 1, we
started to get some insight into potential signal transduction
pattern as shown in Figure 4. The highly expressed gene from
the experiment NRCAM, neuronal cell adhesion molecule,
is directly interacting with another gene NA (neurocantho-
cytosis) which is recognized as an important gene from the
topology and mediating the down regulation of the following
set of tumor suppression genes, CHEK1 [27], XRCC6 [28],
SMARCB [29], and ATM [30]. The gene NA acts as a
hub gene among the set of important genes and it directly
interacts with SMARCB and XRCC4, which directly interacts
with CHEK1 which in turn directly interacting with ATM. It
is notable that down regulation of these tumor suppressor
genes by integrin a6f4 has a significant implication in
cancer biology. Poor prognosis has been associated with
over expression of integrin a64 and our analysis revealed
that loss of these tumor suppressor genes could attribute to
malignant phenotype of cancer cells.

Impact of this study lies in the identification and
targeting molecular aberrations specific to cancer cells. Many
recent studies with targeting a single agent turned out to be
a disappointment. This could partly be due to the inability
to identify signaling network or loop which is positively or
negatively regulated around the single target. To meet this
important challenge, a number recent studies are analyzing
cancer cell lines and tissue samples to measure alterations
at the gene, RNA, and protein level to identify markers and
targets for the therapy. While these studies will produce a
large amount of data whose analysis is critical in order to
understand cancer at the molecular level. For example, a
similar microarray analysis of MDA-MB-435 cells that are
engineered to differ in integrin a6f4 expression by Chen
et al. leads to the identification of couple of invasion and
metastasis related genes such as ENPP2 [31] and S100A4
[32]. What makes our study unique from these works is
that we are in a position to identify genes and proteins
that are functionally connected to drive malignant properties
rather than focusing a single gene because targeting these
sub networks will inhibit cancer cell functions important
for progression. For example, we found the potentially
important a6f34 target genes associated with cancer pathway
as summarized in Table 4. Those genes are associated with
TGEF- [33], TNF-« [34], and EGFR1 pathways [35], whose
roles in cancer progression have been well established.

In summary, the integration of interaction network with
expression of a6f4 integrin in MDA-MB-435 cancer cells
reveals the importance of NRCAM, which we would not have
discovered with the expression information alone. Further,
the interaction network in Figure4 helps us to under-
stand how the tumor suppression genes CHEK1, XRCC6,
SMARCB, ATM, CHEKI1 were down regulated by integrin
a6B4. Finally, we envision the discovery of interaction

network triggered from tumor antigen such as integrin a634
will lead to the development of novel anticancer therapeutics
by targeting signaling molecules associated with interaction
network.
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Accurate prediction of survival rates of cancer patients is often key to stratify patients for prognosis and treatment. Survival
prediction is often accomplished by the TNM system that involves only three factors: tumor extent, lymph node involvement, and
metastasis. This prediction from the TNM has been limited, because other potential prognostic factors are not used in the system.
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procedures and statistical methods. In this paper, we present an ensemble clustering-based approach to develop prognostic systems
of cancer patients. Our method starts with grouping combinations that are formed using levels of factors recorded in the data. The
dissimilarity measure between combinations is obtained through a sequence of data partitions produced by multiple use of PAM
algorithm. This dissimilarity measure is then used with a hierarchical clustering method in order to find clusters of combinations.
Prediction of survival is made simply by using the survival function derived from each cluster. Our approach admits multiple
factors and provides a practical and useful tool in outcome prediction of cancer patients. A demonstration of use of the proposed
method is given for lung cancer patients.
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1. Introduction

Accurate prediction of outcomes or survival rates of cancer
patients is often key to stratify patients for prognosis and
treatment. Outcomes of patients are usually generated using
standard survival functions and various factors recorded
in the database (such as SEER [1] or NCDB [2]) that
have prognostic potential. All prognostic factors become
integrated through determination of the outcome according
to the survival rate. This integration leads to a prognostic
system that can be used to predict outcomes of any new
patients. Clearly, a crucial question is how can one form
a powerful prognostic system for cancer patients? The
traditional answer to this question is to use the TNM system
[3] that involves only three factors: tumor extent, lymph
node involvement, and metastasis. However, the outcome

prediction from the TNM has been limited, mainly because
any other potential prognostic factors are not used in the
system.

In this paper, we propose a computer-based prognostic
system for cancer patients that admit multiple prognostic
factors. Here is idea of our approach: (i) we partition
patients from a cancer dataset into “natural” groups such that
patients in the same group are more similar in survival than
patients from different groups; (ii) once “natural” groups are
obtained, a survival function for each group can be estimated
by a standard method. Our prognostic system then consists
of groups of patients and survival functions associated with
the groups.

The first step (i) is the key to the entire process.
Mathematically, this step is equivalent to performing a cluster
analysis on a cancer dataset. However, this type of cluster



analysis is different from traditional clustering approaches,
which may be elaborated below. Suppose, after some simple
management, a typical record for a patient contained in a
cancer dataset is of the form: X, Xj,...,X,,, where X is the
recorded patient’s survival time, which can be a censored
time, and Xj,...,X,, are measurements made on m risk
factors or variables such as tumor size, gender, and age.
Cluster analysis rising in (i) means that clusters of patients
are sought such that patients in the same cluster are more
similar in their lifetime T than patients from different
groups. Here the connection between T and the observed
time X is described as follows: T' = X if X is an actual time
to death due to the cancer under study; T > X otherwise
(in this case X is a censored time). Therefore, cluster analysis
from (i) is not equivalent to partitioning the set of vectors
{(X,X1,...,Xk)} or the set {(Xi,...,Xx)} which could be
suggested by traditional clustering methods.

The above discussed difference between the cluster
analysis in (i) and the traditional clustering indicates that
clustering required in (i) may not be a trivial task. Other
potential challenges in accomplishing (i) include presence of
a high percentage of censored observations, different types
of risk factors or variables, and a large dataset size [4—6]. For
example, an SEER dataset of lung cancer patients diagnosed
from 1973 through 2002 has more than 500000 patients,
comprises more than 30% records with censored survival
times, and involves more than 80 variables that are either on
the continuous, or ordinal, or nominal scale.

To overcome the above mentioned possible difficulties,
we consider subsets of a cancer data, based on combinations
of levels of some known key factors. This reduces the
complexity in establishing prognostic systems. We then
group these subsets by a hierarchical clustering algorithm,
where the distance measure between two subsets is learnt
through multiple clustering based on Partitioning Around
Medoids (PAM) of Kaufman and Rousseeuw [7].

The rest of the paper is organized as follows. In Section 2,
we briefly review some necessary elements of clustering and
survival analysis. In Section 3, we present our algorithm of
clustering of cancer data. An application of our algorithm to
establishing a prognostic system for lung cancer patients is
provided in Section 4. And finally our conclusion is given in
Section 5.

2. Some Elements of Clustering and
Survival Analysis

Clustering may be viewed as a process of finding natural
groupings of objects. Commonly used clustering procedures
fall into two categories: partitioning approaches and hierar-
chical approaches. A partitioning approach assigns objects
into a group or cluster through optimizing some criterion.
A hierarchical approach produces a hierarchy of groups
or clusters. In this paper, we will use the PAM algorithm
(a partitioning algorithm) and linkage methods (special
cases of Hierarchical clustering techniques). They will be
briefly reviewed in this section. Also reviewed in this section
are some notations of censoring and survival functions.
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Censored survival times often occur in a cancer dataset and
represent on type of incomplete data. A survival function
provides a probability of survival to certain times for a cancer
patient.

2.1. PAM. Partitioning is one of the major clustering
approaches. PAM is a partitioning method operating on
a dissimilarity matrix, a matrix of pairwise dissimilarities
or distances between objects. It starts from selecting initial
K (a predetermined number) representative objects, or
medoids, assigning each data object to the nearest medoid,
and then iteratively replaces one of the medoids by one
of the nonmedoids which leads to a reduction in the sum
of the distances of the objects to their closest medoids.
The similarity measure here includes, as a special case,
the Euclidean distance, which is used with the K-means
algorithm. PAM is more robust than the K-means approach,
because it employs as cluster centers the medoids not the
means, and minimizes a sum of dissimilarities instead of a
sum of squared Euclidean distances.

2.2. Linkage Methods. Hierarchical clustering procedures are
the most commonly used clustering methods in practice.
Commonly used linkage methods include single linkage
(SL), complete linkage (CL), and average linkage (AL). They
are special cases of agglomerative clustering techniques,
operate on a given dissimilarity matrix, and follow the same
procedure beginning with the individual objects, at each
intermediate step two least dissimilar clusters are merged
into a single cluster, producing one less cluster at the
next higher level [8]. The difference among the linkage
methods lies in the dissimilarity measures between two
clusters, which are used to merge clusters. SL, CL, and AL
define, respectively, the dissimilarity between two clusters
to be the minimum distance between objects from these
two clusters, the maximum distance between objects from
these two clusters, and the average distance between objects
in the two clusters. The output of a linkage method is
often summarized into a plot where the nested clusters are
graphically represented as a tree, called a dendrogram. The
branches in the tree represent clusters. Two clusters merge
at a height along a dissimilarity axis that is equal to the
dissimilarity between the two clusters.

2.3. Censoring. Cancer data are often time-to-event data
that present themselves in different ways, imposing great
challenges in analysis. One special feature of a large cancer
data set is censoring [9]. Censored observations come from
the mechanism of monitoring the progress of patients
from some point in time, such as the time a surgical
procedure is performed or a treatment regimen is initiated,
until the occurrence of some predefined event such as
death. Censoring comes in many different forms and right
censoring is widely used in clinical studies. Right censoring is
used to record the amount of time elapsing between the point
at which the patient entered the study and the point at which
he or she experienced one of the following three events: the
event of interest (e.g., death for most of the cancer studies);



Journal of Biomedicine and Biotechnology

loss to follow-up for some reason such as death caused by
a health problem other than the one being considered or
having moved to another locality; alive at the time the study
is terminated. The time elapsing between enrollment in the
study and experiencing one of these three events is called
the patient’s survival time. A survival time is censored if it
is not the actual time between enrollment and experiencing
the event of interest. Given a censored survival time for a
patient, all we know about the lifetime of the patient is that it
is greater than some value. Censored survival times provide
only a portion of information on the actual lifetimes.

2.4. Survival Function. A patient’s lifetime T is a random
variable having a probability distribution. In addition to
the commonly used probability density function, the dis-
tribution of T can also be characterized by the survival
function, defined to be S(t) = P(T > t). The function S(t)
provides the probability of surviving beyond ¢. The survival
function is usually estimated by a nonparametric method
referred to as the Kaplan-Meier estimator [10]. An estimated
survival function may be portrayed visually in a survival
curve graph. A direct comparison of several survival curves
can be conducted by examining the curves appearing in a
single graph. A theoretical comparison of several survival
functions can be made by conducting a commonly used test
such as the log-rank test, Gehan’s test [11], Breslow’s test
[12], and test of Tarone and Ware [13].

3. Algorithm of Clustering of Cancer Data

A key issue related to clustering is how one measures the
dissimilarity between objects. Most clustering algorithms
presume a measure of dissimilarity. For example, the K-
means clustering uses Euclidean distance as a dissimilarity
measure. Since cancer data involve censored survival times, a
direct use of existing clustering algorithms is not applicable.
With cancer data, it is important to find a way to define
objects and dissimilarity between objects prior to execution
of any clustering algorithm.

Suppose, for a cancer data set, a certain number of factors
have been selected for consideration. Various combinations
can then be formed by using levels of factors. Specifically, a
combination is a subset of the data that correspond to one
level of each factor. Suppose there are available a total of N
combinations X, Xz, ..., X,. A combination plays a role of an
object in the cluster analysis. When developing a prognostic
system, we need to find groups of patients such that patients
within each group are more similar in survival than patients
from different groups. Assuming that all patients coming
from the same combination have a similar survival rate, then
this is equivalent to finding natural groups of combinations.

After objects become available, we can start to define a
dissimilarity measure between objects. A dissimilarity mea-
sure dis(x;,X;) is a nonnegative function that is symmetric
with respect to x; and x;. For cancer data, a direct method
is to define the dissimilarity between two combinations
in light of the difference between the two corresponding
survival functions, and the details follow below. Given two

combinations x; and x;, testing if there is a difference
between the corresponding two survival functions can be
done by conducting a commonly used test such as the log-
rank test. It is known that a smaller value of a test statistic
shows a stronger evidence of no difference. Thus we can
define dissimilarity or “distance” between x; and x; to be

dis (Xi,Xj> = the value of a test statistic. (1)

Clearly, diso(xj,x;) > 0. This dissimilarity measure in (1)
is not the one we actually use when developing cancer
predictive systems. In fact, we will use the dissimilarity (1) for
the PAM algorithm only and generate a learnt dissimilarity
measure for the cancer data through combining assignments
from multiple clusterings based on the PAM algorithm. A
learnt measure should be more realistic than that in (1).
This learnt dissimilarity will then be used with a hierarchical
clustering algorithm to produce prognostic systems.

Below we first discuss learning dissimilarity from the
use of PAM. And then we present an ensemble clustering
algorithm using the learnt dissimilarity and linkage methods
to develop prognostic systems for cancer patients.

3.1. Learning Dissimilarity from Data. Different choices of
dissimilarity functions can lead to quite different clustering
results. Prior knowledge is often helpful in selecting an
appropriate dissimilarity measure for a given problem.
However, it is possible to learn a dissimilarity function from
the data. We describe such a procedure as follows.

Partitioning methods are usually not stable in the sense
that the final results often depend on initial assignments.
However, if two objects are assigned to the same cluster by
a high percentage of the times of use of the same partitioning
method, it is then very likely that these two objects come
from a common “hidden” group. This heuristic implies that
the “actual” dissimilarity between two objects may be derived
by combining the various clustering results from repeated
use of the same partitioning technique. Here we formalize
this combining process using the PAM partitioning method.

For the data {xj,X,...,X,}, we can select K initial
medoids and then run PAM with the dissimilarity measure
(1) to partition the data into K clusters. It is known
that the final assignment usually depends on the initial
reallocation. Now we run PAM N times. Each time a number
K is randomly picked from a given interval [K;,K;]. By
doing this, we may end up with N possibly different final
assignments. Given two objects x; and x;, let p;; denote the
probability that they are not placed into the same cluster
by the final assignment of a run of PAM. This probability
pij can be estimated by using the results of repeated PAM
clustering. Define &(i,j) = 1 if the Ith use of the PAM
algorithm does not assign x; and x; into the same cluster; and
81(i, j) = 0 otherwise. Then 8,(3, j), 82(3, j),...,0n (i, j) are
i.i.d Bernoulli (p;;). It is well known that the best unbiased
estimator of p;; is 2;1161(1', 7)/N. This estimate will be used
as the dissimilarity measure between x; and x;, that is,

Zfiﬂsl(i’]')

dis(x,-,xj) === (2)
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(1) Given N, K3, and K, run the PAM clustering method N times with each K randomly chosen from [K;, K;].
(2) Construct the pairwise dissimilarity measure dis(x;,X;) by using the (2).
(3) Cluster the # objects by applying a linkage method and the dissimilarity measure dis(x;, x;) from Step 2.

ArLcoriTHM 1: Ensemble algorithm of clustering of cancer data.

TaBLE 1: Lung cancer data of 90,214 patients. Survival time is
measured in months. Here, adeno, squamous, large, and small
represent adenocarcinoma, squamous cell carcinoma, large cell
carcinoma, and small cell carcinoma, respectively.

TasLE 2: A list of 128 combinations based on factor levels. Here,
adeno, squamous, large, and small represent adenocarcinoma,
squamous cell carcinoma, large cell carcinoma, and small cell
carcinoma, respectively.

Patient Survival Stage  Grade Histology Gender Group Stage Grade Histology = Gender S.ample
time (X)  (Xi) (X2) (X5) (Xy) name (X1) (X2) (X5) (Xy) size
1 64 1 2 squamous 1 Comb1l I 1 adeno 1 1008
2 24 1 3 large 1 Comb2 I 1 adeno 2 1426
3 24 2 3 squamous 1 Comb 3 I 1 squamous 1 430
4 8 1 2 squamous 1 Comb 4 I 1 squamous 2 187
5 16 3 3 squamous 2 Comb5 I 1 large 1 8
6 143 3 2 adeno 2 Comb6 I 1 large 2 4
7 6 3 3 small 2 Comb7 I 1 small 1 2
8 1 4 4 small 1 Comb8 I 1 small 2 2
9 9 1 3 adeno 2 Comb9 I 2 adeno 1 2389
— — — — — — Comb 10 I 2 adeno 2 2662
90211 1 3 squamous 1 — — — — — —
90212 2 1 2 adeno 1 Comb 123 IV 4 squamous 1 163
90213 62 2 3 adeno 1 Comb 124 IV 4 squamous 2 70
90214 4 4 4 squamous 2 Comb 125 IV 4 large 1 1503
Comb 126 IV 4 large 2 911
A smaller value of dis(x;,x;) is expected to imply a bigger EZZE EZ 1:; i :Zzﬁ ; :iéz

chance that x; and x; come from the same “hidden” group.

3.2. Clustering of Cancer Data. With the learnt dissimilarity
(2) between the combinations, we can choose a clustering
method to form “natural” groups of the combinations. For
flexibility and easy interpretation in practice, we choose a
hierarchical clustering approach. The final ensemble algo-
rithm of clustering of cancer data (EACCD) is shown in
Algorithm 1. Here the word ensemble refers to the sequence
of the PAM procedures involved in the method.

Early issues on ensemble clustering were discussed in [14]
from the perspective of evidence accumulation. The work in
[15] combined the K-means algorithm and linkage methods
to form an ensemble method of discovering sample classes
using gene expression profiles.

4. Results on Lung Cancer

4.1. Dataset. In this study, we used the SEER data [1]
containing records of lung cancer patients diagnosed from
the year 1988 through 1998 and examined the following
factors: AJCC stage, grade, histological type, and gender. We
considered four factors, X;, X5, X3, and X, that were set to be
stage, grade, histological type, and gender, respectively. For

simplicity, we only investigated the following four important
levels of X3: adenocarcinoma, squamous cell carcinoma,
large cell carcinoma, and small cell carcinoma. The levels
of other three variables were those commonly used in the
lung cancer study. Factor X; had four levels: I, II, III, and
IV; factor X, had four levels: 1, 2, 3, and 4; and factor X4
had two levels: 1 (male) and 2 (female). The final data we
actually used involve 90,214 patients. A portion of the data,
in terms of X (survival time), X;, X;, X3, and Xy, is provided
in |Table 1.

Before running our algorithm EACCD, we used the levels
of four factors X;, X5, X3, and X4 to partition the dataset
into 128(= 4 X 4 X 4 X 2) combinations, shown in Table 2.
Due to the approximation of the chi-square distribution to
the log-rank test statistic, a combination containing less than
100 patients was dropped from our study. In this case, no
further analysis was done for these combinations, and our
attention was paid to all the other combinations that have a
size equal to or larger than 100. For example, Comb 5, Comb
6, Comb 7, Comb 8, Comb 124, as shown in Table 2, were
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TaBLE 3: Seven groups produced by cutting the dendrogram in TasLE 3: Continued.
Figure 1 at the height 0.93. . -
Group Combinations Sample size
Group Combinations Sample size Stage IV, Grade 2, squamous, female
Stage I, Grade 1, adeno Stage IV, Grade 3, adeno, male
Stage I, Grade 2, adeno 11303 Group 7 Stage IV, Grade 3, squamous, male 12237

Stage IV, Grade 3, large cells
Stage IV, Grade 4, squamous, male
Stage IV, Grade 4, large cells

Group I gpaoe I, Grade 2, squamous, female

Stage I, Grade 3, adeno, female

Stage I, Grade 4, adeno, female

Stage I, Grade 1, squamous 0 02 04 0.6 0.8 1

Stage I, Grade 2, squamous, male

Stage I, Grade 3, adeno, male

Stage I, Grade 3, squamous

Group 2 Stage I, Grade 3, large cells, female 13431

Stage I, Grade 4, adeno, male

Stage I, Grade 4, large cells

Stage I1, Grade 1, adeno, female

Stage I1, Grade 2, adeno, female

Stage II, Grade 2, squamous, female

Stage I, Grade 1, squamous, male
Stage I, Grade 3, large cells, male

Stage I, Grade 4, squamous, male

Stage II, Grade 1, adeno, male 4522

Group 3 Stage II, Grade 2, adeno, male

Stage II, Grade 2, squamous, male

Stage II, Grade 3, adeno

Stage II, Grade 3, squamous
Stage II, Grade 4, large cells

Stage I, Grade 4, small cells

Stage 11, Grade 4, small cells 4291
Stage II1, Grade 1, adeno

Stage II1, Grade 2, adeno

Stage ITI, Grade 1, squamous

Group 4

Stage I1I, Grade 2, squamous
Stage II1, Grade 3 24951
Stage III, Grade 4, adeno

Stage III, Grade 4, squamous, male

Group 5

Stage III, Grade 4, large cells FIGURE 1: Dendrogram from clustering of lung cancer data.
Stage III, Grade 4, small cells

Stage IV, Grade 1, adeno, male

Stage IV, Grade 1, squamous, male dropped from our study. Under this restriction we only kept
Stage IV, Grade 2, adeno 80 combinations, leaving out a total of 1,264 patients.

Stage IV, Grade 2, squamous, male 18215 ) ) )
4.2. Setting of the Algorithm. To run our algorithm EACCD,

we chose parameters as follows. The choice of N depends on
Stage IV, Grade 3, squamous, female the rate at which dis in (2) converges to p;;. A large number
Stage IV, Grade 3, small cells should be chosen for N, and for this purpose we set N =
Stage IV, Grade 4, adeno 10000. Any theoretically possible choices of K was used in
running PAM, and thus we set K; = 2 and K, = 79, due to
availability of 80 objects. In addition, the log-rank test was

Group 6 Stage IV, Grade 3, adeno, female

Stage IV, Grade 4, small cells
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used to obtain the measure (1) for the PAM algorithm. And
the average linkage was employed as a hierarchical clustering
method.

4.3. Results from Cluster Analysis. The output of cluster anal-
ysis for these 80 combinations is shown in Figure 1, where for
simplicity Comb has been removed from each combination
or label. It is straightforward to use the dendrogram shown in
Figure 1. Cutting off the dendrogram at a specified height of
the dissimilarity axis partitions data into disjoint clusters or
groups. Cutting at different heights usually leads to different
numbers of groups. As an example, if we cut the dendrogram
in Figure 1 at a height slightly above 0.90, then we obtain 7
groups shown in Table 3. The log-rank test shows that any
two groups differ significantly (using a significance level of
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0.01) in their survival functions. Figure 2 shows the Kaplan-
Meier estimates of the survival curves for the 7 groups. These
7 groups and their survival curves constitute a prognostic
system for lung cancer patients, as discussed in step (ii) of the
Section of Introduction. Prediction using this system is then
carried out in the usual way. In comparison, those 4 survival
curves from the TNM system, based on all the patients from
the 80 combinations, are provided in Figure 3.

Some observations come immediately from Table 3.
Group 1, 5, 6, and 7 only contain some cases from Stage
I, III, IV, and 1V, respectively. Both groups 2 and 3 contain
Stage I cancer cases, indicating that additional relevant
parameters are associated with increased relative biologic
aggressive tumor behavior. Group 4 consists of some cases
from Stage [, II, and I1II, suggesting that localized biologically
aggressive cancers may have the same survival as more
indolent advanced staged cancers.

5. Conclusion

In this paper we have introduced an ensemble clustering
based approach to establish prognostic systems that can be
used to predict an outcome or a survival rate of cancer
patients. An application of the approach to lung cancer
patients has been given.

Generalizing or refining the work presented in this paper
can be done in many ways. Our algorithm EACCD actually is
a two-step clustering method. In the first step, a dissimilarity
measure is learnt by using PAM, and in the second step,
the learnt dissimilarity is used with a hierarchical clustering
algorithm to obtain clusters of patients. These clusters of
patients form a basis of a prognostic system. Improvement
of dissimilarity measures (1) and (2), as well as the effect
of different algorithms used in each step will be investigated
in our future work. Refined algorithms, based on EACCD,
will be sought and resulting prognostic systems with clinical
applications will be reported. This constitutes our main
research work in the future.
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Temporal gene expression data are of particular interest to researchers as they contain rich information in characterization of gene
function and have been widely used in biomedical studies. However, extracting information and identifying efficient treatment
effects without loss of temporal information are still in problem. In this paper, we propose a method of classifying temporal gene
expression curves in which individual expression trajectory is modeled as longitudinal data with changeable variance and covari-
ance structure. The method, mainly based on generalized mixed model, is illustrated by a dense temporal gene expression data in
bacteria. We aimed at evaluating gene effects and treatments. The power and time points of measurements are also characterized
via the longitudinal mixed model. The results indicated that the proposed methodology is promising for the analysis of temporal
gene expression data, and that it could be generally applicable to other high-throughput temporal gene expression analyses.
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1. Introduction

The high-throughput gene expression techniques, such as
oligonucleotide and DNA microarray, serial analysis gene
expression (SAGE) make it possible now to quickly generate
huge amount of time series data on gene expression under
various conditions [1-5], and have been widely applied in
biomedical studies. The current temporal gene expressions
usually have several main features: containing large scale
of data set, having many genes, involving many procedure
noises, and absenting statistical confidence, but few mea-
suring time series levels. Using the difference at two or
very few time points to understand changes has also some
fundamental limitations. It tells us nothing about each gene’s
trajectory, and does not consider “overall” difference, nor
does it allow studying evolution difference. For these such
data with observations at very few time points, the current
widely used analysis methods are various clustering methods,
fold expression changes, ANOVA [6-9], and recently the
hidden Markov chain models (Yuan and Kendziorski 2006).
It is simple to interpret the results, and all the available data
are analyzed when these methods are applied. However, there

are problems associated with these methods which include
merely qualifying characteristics of the gene behaviors and
clearly absenting quantitative description, and it may take a
risk of having false positive and false negative when looking
strictly at fold change [9, 10]. Some genetic information
may be lost using fold change analysis, and difficulties arise
when genes having a bigger folds change in one expression
experiment have different performance in multiple arrays
or different experiments. It is even more problematic when
multiple testing was carried out. For the widely used ANOVA
or univariate method, it only analyzes difference between
observed means and treats changes of individual gene profile
as noise. The main limitation is that the data must be
balanced, that is, all measurements occur at same times
for all genes, no distinction between unequally spaced time
points and equally spaced time points. The ANOVA does
not produce a parameter that evaluates the rate of change
over time for different treatment groups. Besides, it provides
an oversimplification representation for the mean of a data
set. The generalized linear models are also used in analyzing
gene expression data, but they are based on analyzing the
data at each time point separately. They do not take into



account the fact that the gene expression measurements are
not independent and do not address the difference in how
the mean changes over time. Both the “classical” univariate
and multivariate procedures assume that covariance matrix
of each data is the same for all measurements at different
times, regardless of group or compound symmetry. This
assumption implies a very pattern of correlation among
observations taken on the same unit at different times which
is quite unrealistic for longitudinal data [11]. The other
characteristic shared both by the classical univariate and
multivariate methods is that time itself does not appear
explicitly in the model.

By characterizing the entire pattern of gene expression,
and distinguishing the individual gene profile changes
subgroup and population-average profile changes, precise
estimates with good capability and excellent combination of
gene and condition effects were achieved with observations
at much more time points. A prospective cohort study
where repeated measures are taken over time for each gene
is usually designed to answer the following two questions.
First, how many observation points are needed over time?
Second, how are the variables of interest including genes and
conditions associated with each other over time? Therefore,
the longitudinal observations with enough time points are
most appropriate for the investigation of individual gene
changes over time and for the study of effects of other factors
such as experimental conditions. In this paper, we illustrate
the strategy with an example of a 15-gene set in Pseudomonas
aeruginosa expressed in three conditions and measured
at 48 time points. These 15 genes are either quorum-
sensing (QS) genes or quorum sensing regulated genes.
Quorum sensing system is a bacterial gene regulatory system
that employs small secreted molecules called autoinducers
as signaling molecules to coordinate gene expression in
a population manner. The autoinducers synthesized and
diffused into the growth medium by individual cells increase
in amount when the cell number increases, and when the
concentration of autoinducers reaches a threshold they bind
to cognate transcription regulator to modulate transcriptions
of the bacterial genes. So the cell behaves as a whole. The
quorum sensing systems in P. aeruginosa play a central role
in regulating virulence factor expression and in biofilms
formation. It has been reported that the expression of one
of the genes in QS systems, rhll is regulated by the iron
conditions of the growth medium. However, the extent that
this gene is regulated by iron availability is rather small. It
is hard to assess the importance of this effect of iron on the
QS system in P. aeruginosa. Employing the strategy described
in this paper, we are able to determine the definite effect of
iron availability using a relative large dataset which includes
15 genes over 48 time points in three different conditions
totaling 2160 data points.

To analyze such data of temporal gene expressions, the
longitudinal mixed model is used. The linear mixed models
are extensions of linear regression models used to analyze
longitudinal (correlated) data. They accommodate both
fixed effects and random effects where the random effects
are used to model between-gene variation and the correlation
induced by this variation. Linear mixed models are extremely
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TasLE 1: Culture media.

Condition treatments Description

CITI3 TSBDC

C2T13 TSBDC + 400 ug/mL EDDA
C3T13 TSBDC + 50 ug/mL FeCls

flexible analysis tools, which are especially suitable for
unbalanced data with unequally spaced time points and of
emphasis on both individual gene level and population-
level components. The longitudinal mixed model analysis
we present provides a strategy to analyze more complex
time series gene expression datasets. The gene expression
longitudinal data is characterized by repeated observations
over time on the same set of genes, and the repeated obser-
vations on the same gene tend to be correlated, therefore,
any appropriate statistical analysis must take this correlation
into account. The longitudinal mixed model analysis is useful
to identify general trends within genes over time, to detect
nonlinear changes over time, and also to provide information
about the amount of interindividual gene variability. This
analysis incorporates different subgroups on the same graph
to explain interindividual gene variability.

2. Materials and Methods

2.1. Gene Expression Data in P. Aeruginosa. The promoter
regions of selected P. aeruginosa virulence factors were ampli-
fied by PCR using oligonucleotide primers synthesized [12]
according to the PAO1 genome data and PAO1 chromosomal
DNA as the template. The PCR amplified promoter regions
were then cloned into the Xhol-BamHI sites of pMS402 and
transformed into PAO1 by electroporation. PCR and DNA
manipulation and transformation were performed following
general procedures. The promoterless luxCDABE operon in
pMS402 enables the activity of the promoter fused upstream
of the operon to be measured as counts per second (CPS) of
light production in a Victor? multilabelcounter [12].

TSBDC minimal medium supplemented with EDTA
(400 ug/mL) and 50 ug/mL FeCl; was used in gene expres-
sion assays (Table 1). Overnight cultures of the reporter
strains were diluted 1 : 200 in a 96-well microtiter plate
and the promoteractivity of the virulence factors in different
conditions was measured every 30 minutes for 24 hours.
Bacterial growth was monitored at the same time by
measuring the optical density at 620nm (ODgy) in the
Victor? multilabel counter.

2.2. Statistical Methods. To analyze these longitudinal data of
temporal gene expressions, the mixed model

Yi=Xiﬁ+Z,‘b,‘+£,‘ (1)

will be used, where Y; is an (n; X 1) vector of expression
for the ith gene, i = 1,...,m. X; is an (n; X p) design
matrix that characterizes the systematic part of the gene
expression, for example, depending on covariates and time.
Bisa (p x 1) vector of parameters usually referred to as fixed
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effects, that complete the characterization of the systematic
part of the gene expression. Z; is an (#;xk) design matrix that
characterizes random variation in the response attributable
to among genes. b; is a (k x 1) vector of the random
effects variables that completes the characterization of the
among-gene variation. ¢; is an (n; X 1) vector of within-gene
errors characterizing variation due to the way in which the
expression levels are measured on the ith gene.

The data vector Y; has a multivariate normal distribution
with E(Y;) = Xiﬁ, var(Y;) = Z,‘DZZ-, +R; = Xj,and Y; ~
N(XiB,%;). Here, the usual assumptions are b; ~ N(0, D), D
isa (k x k) covariance matrix that characterizes variation due
to among-gene source, and the dimension of D corresponds
to the number of among-gene random effects in model.
& ~N(0,R;), R; is an (n; X n;) covariance matrix that chara-
cterizes variance and correlation due to within-gene sources.
The form of %; implied by the model has two distinct
components, the first having to do with variation solely
from among-gene sources and the second having to do
with variation solely from within-gene sources. We used
maximum likelihood (ML), restricted maximum likelihood
(REML), and minimum variance quadratic unbiased estima-
tion (MIVQUEQO) to estimate the covariance parameters of
the G and R, respectively.

In order to check the influence of temporal measure-
ments for longitudinal mixed analysis, we further con-
structed a dataset of the same dimension and with the
same covariates and factor values for which power is to be
calculated. With F-test statistics, we calculated noncentrality
parameter (¢) and degrees of freedom v, and v, then power
is calculated as P(F,,,,0 > Fc), Fc is a critical value. All
analyses were implemented by SAS package.

3. Results and Analysis

3.1. The Trajectories of the Longitudinal Gene Expression Data.
To validate the models for our data set, we plotted the
expression profiles for all genes under different conditions.
The trajectories of the 15-gene set are shown in Figure 1.
From the figure, we can see that there is high degree of
variations between genes. There are also correlation genes at
different time points, and the correlation structure cannot be
ignored in analysis. The expression trajectories of the genes
change over time for all of the genes, and at a certain time
point, the change rate for each gene is different from other
time point and from that of other genes. From Figure 2,
we can see that the trajectories of experimental treats are
also changing over time, and the change rate varies from
conditions.

3.2. Choice of and Assessing the Goodness-of-Fit Covariance
Structure. In the longitudinal data, there are three sources
of error in the residual, including serial correlation, mea-
surement error, and random component. In order to use
longitudinal mixed-model methodology, it is assumed that
the data has a linear mean and a reasonable covariance struc-
ture. The reasonable covariance structure is a parsimonious
covariance just enough to be estimated with available current
data and yet rich to capture probable covariance between

1.2
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FiGure 1: The trajectories of the 15 gene-set in C1T13: TSBDC
condition.

TaBLE 2: Covariance structures using ML.

Model Description AIC  BIC lik_e fi}ll(:)%) d
1 General linear model (GLM) 1811.8 1856.2 1798.8
2 Compound symmetry (CS) 1811.5 1856.0  1796.7
3 Variance components (VC)  1665.0 1651.3 1645.0
4  Heterogeneous CS (CSH) 1636.8 1618.0  1610.8
5  Spatial power (SP) 1689.2 1685.6  1600.2

AIC: Akaike’s information criteria; BIC: Bayesian information criteria for
each model selected.

gene expression observations. The fitting information shown
in Table2 provides some statistics about the estimated
mixed model. The log likelihood supplies the estimation
information of covariance G and R in the mixed models.
Akaike’s information criteria (AIC) can be used to compare
models with the same fixed effects but different variance
structures. Models having the smallest AIC are deemed the
best. The Schwarz Bayesian criteria (BIC) are also computed,
and models with smaller BIC are also preferred. The six
models with different covariance structure were fitted, and
preference was selected based on the AIC and BIC values.
Inspection of AIC and BIC values for each of the six models
revealed that the values of both the AIC and BIC in the
assumed same covariance structure are larger than those of
the assumed different ones. Both criteria are the smallest
for the chosen separate spatial power (SP) structures for
each treatment. The values of both AIC and BIC in SP
are the minimum among the models. The log likelihood
of the model is also the best for separate SP structures.
As both criteria agree, it would be sensible to choose the
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FIGURE 2: The trajectories of one gene in 3 conditions. Control:
TSBDC, Condition A: TSBDC + 50 ug/mL FeCl; Condition B:
TSBDC + 400 ug/mL EDDA.

model to represent the covariance structure that has different
variance and covariance in different treatments. Interestingly,
we found there were the almost same values AIC, BIC,
and likelihood value between GLM and CS model, which
indicated that univariate GLM calculations are identifical to
MIXED estimates when using CS for the balanced data sets.
The multivariate GLM cannot determine best fit when the
data set is a longitudinal data.

3.3. Power and Sample Size Determination for Longitudinal
Mixed Model. In statistical analysis, one typically expresses
the belief that some effects exist in a population by specifying
an alternative hypothesis to H;, a null hypothesis Hy as the
assertion that effect does not exist and attempt to gather
evidence to reject Hy in favor of H,. If Hy is rejected but
there is really no effect, this is called a Type I error, which
is usually designated «; if there really is an effect in the
population but Hy is not rejected, then a Type II error has
been made, which is usually designated . The probability
1 — B of avoiding a Type II error, that is, correctly rejecting
H, and achieving statistical significance, is called the power.
We simulated our data structure and calculated the power
of estimating condition effects via the longitudinal mixed
model. As shown in Figure 3, we found the model can get
maximum power while more than 7 or 8 measurements were
taken. So the 48 temporal measurements of each gene in our
research could have enough power to obtain the estimation
of treatments and gene effects.

3.4. Estimation of the Effect of Iron Condition on QS Genes
by the Mixed Model. We adopted the longitudinal mixed
model with heterogeneous compound symmetry variance to
estimate the effects of iron condition on QS genes expression.
From Figure 2, the effects of the culture media TDBDC and
TSBDC + 400 ug/mL EDDA are almost equal and higher
than that of TDBDC + FeCls. Comparing with the TSBDC,
the addition of TSBDC + 50 ug/mL FeCl; positively regu-
lates the expression of these genes as shown in Figure 4. To
check the detailed differences of the genes, the longitudinal
mixed model was used to estimate the gene effects, as shown

Journal of Biomedicine and Biotechnology

1.2

0.8

0.6

Power

0.4

0.2

1 23456 7 8 91011121314151617 18 19

Times

FIGURE 3: Power analysis under the longitudinal mixed model with
heterogeneous compound symmetry variance structure.
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FiGUrRe 4: The estimation of condition effects. Condition
A: TSBDC+50ug/mL FeCl;,Condition B: TSBDC + 400 ug/mL
EDDA.

in Figure 5. We found that most of genes, including FliC,
LasR, PKD202, PKD203, and PhIR, demonstrate positive
expression effects in condition of addition of 400 ug/mL
EDDA, whereas PhlA shows opposite expression effect.

4. Discussion

The identification of genes that show changes in expression
between varying biological conditions is a frequent goal in
microarray experiments. Under different biological condi-
tions, the patterns of gene expressions may be various. To
obtain efficient information for temporal gene expression,
the number of longitudinal observations should be enough
for individual gene changes over time and the study of effects
with biological conditions.

In longitudinal studies, time effect is the changes over
time for each gene, and cohort effect is the 22 differences
among genes in their baseline values. Longitudinal studies
can distinguish these time and cohort effects while cross-
sectional studies cannot. In this paper, we have considered
mixed model with longitudinal covariates, the analysis of
longitudinal data should take into account firstly, the within-
subject correlation, secondly the measurements taken at
unequal time intervals and finally the missing observations.
Repeated measures analysis of variance can be used to
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FiGure 5: The estimation of gene effects under condition
TSBDC + 50 ug/mL FeCls.

analyze longitudinal or repeated measures data for balanced
study design, that is, when all genes are measured at equal
time points and there are no missing data. In large scale of
gene expression analysis, if having unbalanced datasets in
longitudinal studies, it is necessary to use some alternative
techniques which can handle unbalanced data. In this
research, we confirmed that univariate GLM calculations are
identifical to MIXED estimates when using CS for balanced
data sets. The multivariate GLM cannot determine best fit
when the data set is a longitudinal data. Therefore, the
procedures of best fit mixed model include: (1) the choice
of the model, (2) the choice of the variance-covariance
structure (specifying the working correlation structure for
each gene, e.g., independence, exchangeable, stationary, and
autoregressive), (3) assessing the goodness-of-fit of the
model, and (4) assessing the goodness-of-fit of the variance
covariance structure.

Although the paper only analyzed the effects of three
treatments and 15-gene effects, it proved that the longitu-
dinal mixed model is a feasible method in dense temporal
gene expression analysis. We found that the addition of
TSBDC + 50 ug/mL FeCl; positively regulates the expression
of these genes in our analysis. It has been reported that iron
availability in the growth condition affects the expression of
genes. However, the changes of expression are rather small. It
is thus difficult to assess whether there is a pronounced effect
of iron on the QS genes. Accordingly the current analysis
method, using the mixed model described aforementioned
a definite effect could be determined. A comprehensive
understanding of biological processes requires the acquisi-
tion of expression data at different developmental stages,
in different tissues and different treatment conditions with
different organisms. The addition of time as a variable allows
observation of the modulation of gene expression whether
due to the regulation of development or the changing
impact of a treatment condition. The expectation is that
high-throughput gene expression analysis conducted in the
higher dimensions of genes, conditions, tissues, and time as
variables will help elucidate what the genes do, when, where,
and how they are expressed as elements of an orchestrated
system under the effects of perturbations and developmental
processes, and we will explore the possibility of generalized
mixed model in higher dimensions expression data [13-16].
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