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The coronavirus disease 2019 (COVID-19) is a substantial threat to people’s lives and health due to its high infectivity and rapid
spread. Computed tomography (CT) scan is one of the important auxiliary methods for the clinical diagnosis of COVID-19.
However, CT image lesion edge is normally affected by pixels with uneven grayscale and isolated noise, which makes weak
edge detection of the COVID-19 lesion more complicated. In order to solve this problem, an edge detection method is
proposed, which combines the histogram equalization and the improved Canny algorithm. Specifically, the histogram
equalization is applied to enhance image contrast. In the improved Canny algorithm, the median filter, instead of the Gaussian
filter, is used to remove the isolated noise points. The K-means algorithm is applied to separate the image background and
edge. And the Canny algorithm is improved continuously by combining the mathematical morphology and the maximum
between class variance method (OTSU). On selecting four types of lesion images from COVID-CT date set, MSE, MAE, SNR,
and the running time are applied to evaluate the performance of the proposed method. The average values of these evaluation
indicators are 1.7322, 7.9010, 57.1241, and 5.4887, respectively. Compared with other three methods, these values indicate that
the proposed method achieves better result. The experimental results prove that the proposed algorithm can effectively detect
the weak edge of the lesion, which is helpful for the diagnosis of COVID-19.

1. Introduction when test kits are insufficient, especially during the outbreak
phase, CT scan is a more effective diagnostic method. CT can

COVID-19 has caused a health crisis worldwide, impacting show detailed symptoms of clinical diagnosis in COVID-19,

all sectors of human life [1]. On 11 March 2020, COVID-
19 was declared as an extremely high-risk disease by the
World Health Organization (WHO) [2]. Up to April 16,
2021, more than 139.64 million people worldwide were
infected, and more than 3 million people had died [3]. CT
images contain a lot of important information, which can
be used to evaluate disease quantitatively. In COVID-19
diagnosis, the reverse transcription-polymerase chain reac-
tion (RT-PCR) detection is the most common way. However,

especially for patients with moderate to severe [4]. Many hos-
pitals use this technique to scan the lungs of patients and
diagnose the illness. The severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is determined as the cause of
COVID-19 [5]. There are several CT image features of
COVID-19, such as single ground-glass shadow, diffuse
ground-glass shadow of both lungs, large area consolidation
of both lungs, multiple patchy consolidations, and paving
stone-like[6]. Edge detection algorithms are used to detect
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the lesion of CT images, which is helpful for doctors to diag-
nose the condition. However, the lesion will be missed or
incorrectly detected due to poor contrast of the edge, thus
affecting patient treatment. Therefore, weak edge detection
is an urgent problem to be solved.

In recent years, weak edge detection has been researched
by plenty of scholars. In 2012, Ji et al. [7] effectively extracted
weak edge information in the skull using a combination of
histogram equalization and mean-shift filter (called HMS
from now on), but the edge continuity was flawed. In the
same year, Xue et al. [8] developed the Laplace operator-
based Hessian matrix to accurately detect blood vessels on
uneven gray scale blood vessel images, which was only suit-
able for two-dimensional images. In 2015, Lin et al. [9]
proposed a weak edge detection method based on the cumu-
lative change rate, but this method required manual adjust-
ment of the unified threshold. In 2016, Li et al. [10]
segmented the prostate with the level set method from ultra-
sound images with weak edges. In 2017, Kathrin et al. [11]
addressed the fuzzy edge detection of biomedical CT images
by dynamic programming technology. In the same year,
Khadidos et al. [12] proved that the weighted level set evolu-
tion method is an effective method in weak edge detection. In
2020, Wang and Xu [13] used fit methods to calculate new
local terms of the variation segmentation model. The sensi-
tivity of the method to the initial contour is reduced, and
the accuracy of weak edge segmentation is improved. How-
ever, the segmentation process relies too much on manual
experience. In the same year, Chetna et al. [14] designed an
automatic segmentation technology based on energy curves,
which used an automatic threshold to reduce step size, and
then the breast cancer cells can be accurately identified.

From the experimental results, the above algorithms can
extract weak edge, but there are still some defects, for exam-
ple, the result is not so accurate of the COVID-19 CT image
detection. In other words, the detection error needs to be
turther reduced. In this paper, based on histogram equaliza-
tion and improved Canny algorithm, we propose an weak
edge detection algorithm. Specifically, enhancing image edge
is derived from capturing the details by using histogram
equalization. Then, to obtain lesion edge, we embed median
filter, K-means, mathematical morphology, OTSU algorithm
into the Canny algorithm, and namely, the improved Canny
algorithm. The proposed algorithm can efficiently eliminate
noise of COVID-19 image and extract lesion’s detail and
edge.

The main contributions of this paper on weak edge
detection of CT images are as follows:

(1) The histogram equalization is combined with the
improved Canny algorithm to establish an edge
detection model. The model benefits from balancing
the noise and the edge. In other words, the model
can not only reduce the noise influence in COVID-
19 CT images but also improve the accuracy of weak
edge detection

(2) The median filter is employed to optimize the Canny
algorithm. Specifically, the median filter takes the
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place of the Gaussian filter so that the isolated noise
point can be eliminated

(3) In order to automatically obtain threshold, the nov-
elty of this paper is using the OTSU algorithm

This paper is organized as follows. Section 2 describes
the data set applied by the proposed algorithm. Section 3
depicts the related theories of the proposed algorithm,
including histogram equalization, Canny algorithm, and
the proposed algorithm. Experimental evaluation and com-
parison with other methods are discussed in Section 4.
Concluding remarks are given in Section 5.

2. Dataset

In this section, we introduce the dataset used in this paper.
From the perspective of data authenticity, COVID-CT is
used to verify the effectiveness of the algorithm [15], the
dataset contains COVID and non-COVID, and
Figure 1(a) and Figure 1(b) are representative image of
COVID and non-COVID. From Table 1, COVID contains
349 CT images of clinical manifestation, which are from
216 patients, and the ratio of male to female is 86:51.
And 463 CT images of healthy people are involved in
non-COVID.

3. Methodology

In this section, we introduce the related methods, including
histogram equalization, traditional Canny algorithm, the
improved Canny algorithm, and the proposed method.
Histogram equalization is detailed description firstly. Then,
we improve the traditional Canny algorithm, namely, the
improved Canny algorithm. Finally, we introduce the pro-
posed method.

3.1. Histogram Equalization. Histogram equalization has
been extensively used in image enhancement algorithms.
The basic idea is that the original nonuniform probability
distribution gray map of the CT image is nonlinearly
stretched by the histogram and transformed into a uniform
probability distribution map [16]. In other words, the image
clarity is enhanced by adjusting the size of the gray value
[17]. The theoretical formula of histogram equalization is
as follows.

Calculate the normalized gray value of the original image
and the normalized gray value of the mapped image, which
are r and s, respectively. The relationship between s and r
is as follows.

s=T(r)= JrP,(r)dr, (1)

where P,(r) represents the probability density function
of the image, and the range of r, s, and T(r) values is
all in [0,1]; also, T(r) increases monotonically in the
interval.
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(a) COVID image

(b) Non-COVID image

F1Gure 1: Example of CT images for COVID and non-COVID.

TaBLE 1: Comparison of COVID and non-COVID.

Images Patients Male/female
COVID 349 216 86/51
Non-COVID 463 55

Assume thatP (s)is the probability density function after
gray scale transformation, an the relationship betweenP, (r)
andP(s)is as follows.

a@=am§_wd @)

B is expressed as gray level, the image distribution prob-
ability is P(rg), the number of pixels is ng, the pixel is N, the
total gray level is L, and the relationship is as follows.

P,(B)= 2, (3)

where B € {0, L-1}. When Y { P(ry) = 1, the image is a uni-
form probability density function.

Based on the histogram equalization algorithm, the sin-
gle ground-glass shadow CT image features are enhanced,
and the result is shown in Figure 2. Figure 2(a) is the original
medical CT image of the single ground-glass shadow, and
Figure 2(c) is the original image histogram. Figure 2(b)
and Figure 2(d) are the enhanced original image and the
enhanced histogram, respectively. We can observe that the
weak pixels are enhanced, and the image details tend to be
evenly distributed.

3.2. Traditional Canny Algorithm and Existing Problems.
The edge detection is helpful towards analyzing CT images.
At present, the mainstream edge detection algorithms
include morphological processing [18], ant colony algorithm
[19], watershed [20], Canny [21], and machine learning [22],
in which Canny is one of the most widely used edge detec-
tion algorithms. This algorithm has the characteristics of
high locating accuracy and effectively suppresses noise. The
steps of the traditional Canny edge detection algorithm are
as follows.

(1) Gaussian filter. It can remove nonhigh frequency
noise and smooth graph

Ge ' e (X (4)
_\/27102 P \207)

where 0 means the standard deviation of Gaussian filter, and
G represents the intensity of the pixel after smoothing.

(2) The gradient magnitude and direction. Traditional
edge difference operator, such as Sobel, is used to
calculate the gradient magnitude and direction, so
as to get thick and bright image edge

G =[f(x+Ly-1)+2f(x+Ly)+f(x+1,y+1)]
“fr=Ly-D+2f(x-Ly)+f(x-Ly+1)],

G =[fx-Ly-1)+2f(x,y-1)+f(x+1y-1)]
-[f(x=-Ly+1)+2f(x,y+ 1)+ f(x+ 1,y +1)],
(5)

where G, and G, represent the gradient components in the
horizontal and vertical direction, and f(x, y) represents the
pixel value of the image.

Let M is the gradient magnitude, and the calculation
formula of G is as follows.

M=,/G+G). (6)

Assume that ] represents the gradient direction, the
calculation formula of J is as follows.

J = arctan <%> (7)

X

onmaximum suppression. er calculating the

3) N i ppressi Aft Iculating th
gradient magnitude and direction, the sharpest posi-
tion is retained to ensure a clearer boundary in the
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(a) Original medical CT image

0.035
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0.025 —
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(b) Enhanced image

0 100 200

(¢) Original image histogram
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0.015
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T
100 200

(d) Enhanced image histogram

F1GURE 2: Comparison of the effect of histogram equalization algorithm.

else

Algorithm pseudo code
ifP>P,andP<P,
Pisanedge

P should be suppressed

PseEupOCODE 1

Mathematical morphology

Median filter denoising

processing

2

Non-maximal suppression

v

K-means clustering

v

Gradient computation
magnitude and direction

|

2

Otsu calculate threshold

FIGURE 3: Improved Canny algorithm.

gradient intensity change. Comparison of gradient
intensity between current and other directions, the
image boundary point is known as the current is
greater than the other directions of gradient inten-
sity. Otherwise, the gradient intensity threshold is
set to 0, which can eliminate this point. Suppose P
is the gradient intensity of the current pixel, P, and
P, are the gradient intensity in positive and negative
directions, respectively. The pseudocode for non-
maximum suppression is as follows

(4) Dual-threshold and hysteresis boundary track. Dual-

threshold means setting high and low thresholds.
The high threshold is greater than the pixel gradient
value, and it is a strong edge and namely image edge.
The low threshold is less than the pixel gradient
value, and it is considered not to be the edge of the
image and discarded. Weak edge points are defined
as the pixel value varies between high and low
thresholds. Finally, hysteresis boundary tracking is
applied to determine whether the weak edge is an
image edge
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Py

e .

(a) Median filter denoising

(b) K-means clustering

_-__J

d) OTSU algorithm

(c) Mathematical morphology processing

FIGURE 4: Experimental result images.

TAaBLE 2: the original pixel template.

Column 1 Column 2 Column 3
Row 1 9In 912 913
Row 2 I 92 923
Row 3 931 I3 933

TaBLE 3: Pixel template after processing.

Column 1 Column 2 Column 3
Row 1 Max, Med,, Min
Row 2 Max,, Med,, Min,;
Row 3 Max;; Med;, Min,;,

The traditional Canny algorithm may causes some prob-
lems while detecting the edge of the image.

First of all, the variance of Gaussian filtering determines
the image smoothing effect and noise removal effect. Gener-
ally speaking, the size of the variance is fixed. If the variance
is too large, Gaussian filtering will help to remove noise, but
it will cause serious loss of image detail, resulting in blurred
image edge; if the variance is too small, the denoising effect
of Gaussian filtering will be poor.

Secondly, the Sobel operator is used to calculate the
gradient amplitude and direction, and the obtained edge
is relatively thick.

Finally, the dual-threshold detection method will gener-
ate more false edge, which will break the target edge and lose
the edge information.

3.3. Improved Canny Algorithm. We use the median filter,
K-means algorithm, mathematical morphology, and OTSU
algorithm to improve the classical Canny algorithm.

Figure 3 is a flowchart of the improved Canny algorithm.
Firstly, the Gaussian filter in the Canny algorithm is modi-
fied to the median filter. Next, based on the K-means, the
Sobel operator is utilized to calculate the gradient magnitude
and direction. Then, mathematical morphology is applied to
thin out the edge. Finally, after nonmaximum suppression
processing, the OTSU algorithm is used to determine the
threshold automatically. The steps of improvement are as
follows.

The experimental results obtained after median filter,
K-means clustering, mathematical morphology, and OTSU
algorithm are shown in Figures 4(a)-4(d). We can observe
that after processing by several methods, the edge of the
acquired lesion is very clear.

3.3.1. Median Filter. COVID-19 CT image is complicated to
understand; so, we need to remove undesirable portions,
including noise [23]. The isolated noise points are elimi-
nated by the median filter [24]. The median filter arranges
the pixel values in the neighborhood of a point from large
to small and takes the median value as the new pixel value
to output, thereby eliminating isolated noise points. The
algorithm is as follows.
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FIGURE 6: Partial sample data.

(1) Sort all elements in the array p=[p,}, P15 P13> P>
P22 P23 P31> P3p» P33] from large to small

p= med{Pup» Pap P3¢}, (8)

where ¢ =1[1,2,3]. The commonly used sorting tem-
plates are 3x 3 and 5x 5. In this paper, 3 x 3 template is
cited for processing. The original pixel template is shown
in Table 2.

(2) Take the value of each row for comparison and
obtain the value of each row maximum, intermedi-

ate, and minimum, which are Maxmp, Medw, and

Min,,,, respectively. At this time, the pixel template
is shown in Table 3

(3) Compare the data in each column and get the max-
imum value, respectively, which is Max,, Max,, and
Max,. Finally, by comparing the Max,, Max,, and
Max;, the middle value is result

3.3.2. K-Means Algorithm. K-means algorithm is one of the
most commonly applied clustering algorithms. By randomly
selecting K points as the starting center point, then finding
the same characteristic data and letting it be grouped into
the same cluster [25]. Cluster ensures that between similar
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(a) The Canny algorithm

(c) The ETAR algorithm

Figure 7: Comparison of the detection of diffuse ground-glass shadow in both lungs.

TaBLE 4: Comparison of detection indexes of diffuse ground-glass
shadow in both lungs.

The Canny The HMS  The ETAR  The proposed

algorithm algorithm  algorithm algorithm
MSE 1.1230 8.2723 1.3313 1.0513
SNR 0.0457 0.0475 1.4373 6.6078
MAE  155.2991 157.5637 196.9864 65.0062

sample points are compact, and between different types of
samples is scattered so that the clustering effect is optimal.
The main flow of the algorithm is as follows.

(1) Given the sample data w, the set of objects is A =
{w,wy -+ -+ ,w,}, and the initialization center B =
{C,Cy - ,C.}

According to the principle of the minimum norm of grey
value, the sample data point (w, v) is assigned to the cluster
closest to it. The calculation formula is as follows.

U, = min |f(w,v) - . (9)

where U, is the minimum value of the distance between
the sample point f(w, v) and the various centroids C,.

(2) Calculate the cluster center point again and use it

as the new cluster center point T, i=1,2--- - k.
Formula is as follows

7
(d) The proposed algorithm
T, = Zi-nlq{ci:]}.xi. (10)
Xh{Ci=i}

(3) Repeat steps 2 and 3 until it reaches the maximum
number of iterations

3.3.3. Mathematical Morphology. The basic idea of mathe-
matical morphology is using structural elements to obtain
graphical shapes [26]. The main processing processes
include expansion, erosion, reconstruction, opening opera-
tion, filling, closing operation, and edge extraction. The most
basic operations are expansion and corrosion. The most typ-
ical operations combining the two are opening and closing
operations.

Let T represents an image, 7(w, ) is the gray value at
the point (a, ), g(o,¢€) is the structural element of the
image, the domains of 7(a, 8) and g(o,¢)are D, and D,,
and (a-0,3-¢) €D,, (a+0,B+¢) €D, and (0,¢) € D,,.

Expansion is used to fill the voids in the graphics and
expand the boundaries of the graphics outwards. The calcu-
lation formula is as follows.

(r@g)(a f) = max {z(a-0, f-¢) + g(d,€)}, (11)

where @ indicates the expansion operation. The expan-
sion operation is the maximum value of 7 ® g in the domain
determined by the structural elements.



(c) The ETAR algorithm

TaBLe 5: Comparison of single ground-glass shadow lesion
detection indicators.

The Canny The HMS  The ETAR  The proposed

algorithm  algorithm  algorithm algorithm
MSE 5.8147 5.6171 8.3632 2.8982
SNR 2.0091 4.3257 2.3107 7.0879
MAE 157.2183 176.4992 158.5642 55.1343

Corrosion is used to eliminate small, useless edges, and
shrink the image boundary inward. The calculation formula
is as follows.

(10g)(a, y) =min {T(a+ 6, B+¢) - g(5,¢)}, (12)

where O represents the corrosion operation, which is the

minimum value of 7®g in the domain determined by the
structural elements.

The step of the open operation is to corrode first and
then expand. It can smooth the contour and filter out iso-
lated parts that noncontain structural elements. The calcula-
tion formula is as follows.

Tog=(r9g)Og. (13)

The step of the closed operation is to expand first and
then corrode. It can fill in small holes and connect the image
boundaries to make them smooth. The calculation formula
is as follows.

T-g=(10g)® g, (14)

Computational and Mathematical Methods in Medicine

Ficurg 8: Comparison of single ground-glass shadow detection.

where o represents the open operation, and - represents
the closed operation.

Due to the shrinkage of the open operation and the
expanding ability of the closed operation, the results will
be biased. In this paper, using equation (15), it is an average
method to eliminate the influence of offset.

T=-(tog+7-g). (15)

NS

3.3.4. OTSU Algorithm. The maximum between-class vari-
ance algorithm, also known as the OTSU algorithm, is an
algorithm used to automatically determine the image binari-
zation threshold. Because of its simple calculation and not
affected by image contrast and brightness, it is widely used
in global threshold determination [27]. The basic idea is:
according to the gray-scale characteristics of the image,
and the image is divided into two parts: the foreground
and the background. The difference of value is greater
between the foreground and the background, and the effect
is better. Based on the input image, the OTSU algorithm
automatically calculates the threshold value [28]. In this
paper, we firstly set the threshold as 1, then, using the max-
imum interclass variance to calculate the optimal threshold.

Let y represent the pixel gray value of a certain point in
the image, [0, R] is the pixel gray level, and n,is the number
of pixels; thus, the value of the total number of pixels N is as
follows.

N=)Yn, (16)
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(c) The ETAR algorithm

FIGUrg 9: Comparison diagram of paving road shape detection.

TaBLE 6: Comparison table of paving road detection indicators.

The Canny The HMS  The ETAR  The proposed
algorithm  algorithm  algorithm algorithm
MSE 9.2358 9.3340 9.3341 1.8103
SNR 0.0460 3.8837 2.7741 7.4247
MAE 173.6431 172.6516 174.6519 67.1646
The probability of each pixel at gray level y:
n
— Y
p, = N (17)

The threshold is used to divide the image pixels into
two parts: Q; and Q,; then, the probabilities of Q; and Q,
at [0,L - 1] and [L-1,R] are D, and D,, and D, + D, =1.

R
D,=)P, D,= ;PV' (18)

The mean values of Q, and Q, are m, and m,, respec-
tively, and my, is the global mean value of the image.

mg =D, Xm, + D, x m, (19)

The between-class variance expression is as shown in
formula (20).

0% =Dy x (m;-my)* + D, x (my-my)*. (20)

3.4. The Proposed Method. In this paper, the proposed weak
edge detection method of CT image is mainly divided into
three steps. Firstly, enhancing the image detail feature by
histogram equalization, secondly, obtaining the weak edge
of the lesion on CT image by using median filter, K-means,
Sobel operator, and mathematical morphology, and thirdly,
combining nonmaximum suppression and OTSU algorithm
to connect the edge. The flow of the proposed algorithm is
shown in Figure 5.
Specific steps are as follows:

(1) Histogram equalization. Performing histogram
equalization on the grayscale image to enhance
image detail

(2) Edge acquisition. Firstly, using the median filter to
preserve the grayscale characteristic of the image
and reduce the noise of the image. Then, the K
-means algorithm is used to classify the edge of
the image for obtaining edge points and nonedge
points. After calculating the gradient magnitude
and direction, a thick and bright edge is obtained,
which further enhances the brightness of the weak
edge. Finally, the edge is refined using mathemati-
cal morphology to obtain more accurate edge

(3) Edge connection. After nonmaximum value process-
ing, the OTSU algorithm is applied to automatically
obtain the best threshold and connect weak edge

3.5. Measure. In order to objectively evaluate the perfor-
mance of the Canny algorithm, the HMS algorithm, the
ETAR algorithm (Benhamza and Seridi [29] proposed
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(c) The ETAR algorithm

(d) The proposed algorithm

FiGgurg 10: Comparison of the detection of patchy lungs with field consolidation.

TaBLE 7: Comparison table of detection indexes for patchy lungs
with field consolidation.

The Canny The HMS  The ETAR  The proposed

algorithm algorithm algorithm algorithm
MSE 1.3192 5.617 1.3313 1.1690
SNR 0.0397 3.2443 2.8746 10.4839
MAE 195.9766 174.4995 196.9860 41.1912

algorithm, called ETAR from now on), and the proposed
algorithm, we select mean square error (MSE), signal-noise
ratio (SNR), mean absolute error (MAE), and the running
time. MSE is used to evaluate the deviation between the
observed value and the true value. The value of MSE is
larger, and the detection error is greater. SNR refers to the
false detection probability of nonedge points. If the value
of SNRis larger, indicating that the false detection rate is
lower, the detection effect is better. MAE represents the aver-
age of the error between the predicted value and the true
value. The value of MAE is smaller, which means the error
is smaller and the fusion effect is better. The calculation for-
mulas of MSE, SNR, and MAE are as follows.

MSE(Ty5 Ty) = 2o () = T (1))

2 X Uu(b )
Z?sz‘l\il(IH(i’j) - Iw(i’j))z

MAE(Iy, Iy,) = ﬁ(h(i,j) — Iy (i.))),

SNR =log , (21)

where I}; and I, represent the fused image and the ideal
image, respectively, and Ij; and I, are the pixel gray values
of the fused image and the ideal image in the ith row and jth
column, respectively.

4. Results and Discussion

In this section, firstly, we introduce selected four types of
CT lesion images. Then, by MSE, SNR, MAE, and the
running time, we verify performance of the proposed algo-
rithm in these images. And the results are shown in the
table and figure below. Specifically, we intend to compare
the performance of the proposed algorithm with the fol-
lowing algorithms, including the Canny algorithm, the
HMS algorithm, and the ETAR algorithm. In the experi-
ment, we use the COVID-CT for verifying the effect of
the proposed algorithm on the denoising ability and weak
edge detection. Four types of typical sample images selected
from the dataset are shown in Figure 6. Figure 6(a) is diffuse
ground-glass shadow in both lungs, and the lesion tissue is
relatively unclear. Figure 6(b) is single ground-glass shadow,
Figure 6(c) is paving stone, and their lesion’s edge is relatively
weak. Figure 6(d) is patchy lungs with field consolidation,
and the lesion’s tissue is clear, but it is tightly connected with
the lung tissue.

4.1. Verification of the Detection Effect of Diffuse Ground-
Glass Shadow in Both Lungs. Compared the edge detection
effect of diffuse ground-glass shadow in both lungs, the
results are shown in Figure 7. The boundary of the lesion
detected by the Canny algorithm is not continuous. The
HMS algorithm detection result image contains a lot of
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noise, and the lesion’s detail cannot be detected. The ETAR
algorithm can detect the lesion, but the detected lesion fea-
ture is different from the actual lesion feature. The proposed
algorithm not only effectively removes noise but also clearly
shows the characteristics of the lesion.

The MSE, SNR, and MAE of diffuse ground-glass
shadows in both lungs are shown in Table 4. The MSE is
1.0513 of the proposed algorithm, and the MSE of other
algorithms exceeds 1.1000, which means that the detection
error of the proposed algorithm is the smallest. From the
SNR values of the four algorithms in Table 4, it can be seen
that the SNR of the proposed algorithm is the smallest, indi-
cating detection error is the smallest. The MAE is 65.0062,
but the MAE values of all other algorithms exceed
150.0000, suggesting that the average error of the proposed
algorithm between the predicted value and the true value is
the smallest, and the detection effect is the best.

4.2. Verification of the Detection Effect on Single Ground-
Glass Shadow. Figure 8 shows the experimental results of
four algorithms for detecting the edge of single ground-
glass shadow. We found that the denoising effect and the
accuracy of the detected lesion features of the proposed algo-
rithm are better than other three algorithms.

In the experiment, we use three data evaluation indica-
tors to verify the detection effect of the proposed algo-
rithm. We can see from Table 5 that the detection effect
of the proposed algorithm is significantly better than the
other algorithms. From a data point of view, the MSE,
SNR, and MAE of the proposed algorithm are 2.8982,
7.0879, and 55.1343, respectively, while the MSE and
MAE of the other algorithms are greater than 5.000 and
150.0000, and the SNR is less than 7.0000, respectively.

4.3. Verification of Detection Effect on Paving Road Shape.
For paving road CT image, we compare the edge detection
effect of the proposed algorithm with the other three algo-
rithms. The detection effect images are shown in Figure 9.
We can see that the lesion feature detected by the proposed
algorithm is more clear.

The experimental results are shown in Table 6. After
analysis, we can conclude that the experimental results of
the proposed algorithm are significantly better than the
other three algorithms, which proves that the detection error
of the algorithm is the smallest and the detection effect is the
best.

4.4. Verification of Detection Effect on Patchy Lungs with
Field Consolidation. To verify the effect of edge detection,
the Canny algorithm, the HMS algorithm, the ETAR algo-
rithm, and the proposed algorithm are used to carry out
experiments on patchy lungs with field consolidation. The
result is shown in Figure 10, compared with the other three
algorithms, the proposed algorithm has better noise robust-
ness, and the detected lesion feature is more accurate.

In order to evaluate the performance of the proposed
algorithm, a comparative analysis is carried out from
quantitative perspective. Table 7 shows the data of the
four algorithms under the three evaluation indicators.
The experimental results show that the proposed algo-
rithm using histogram equalization and improved Canny
algorithm has the best denoising effect and the highest
accuracy of lesion detection.

4.5. The Running Time. In order to further intuitively evalu-
ate the edge detection effect of the Canny algorithm, the
HMS algorithm, the ETAR algorithm, and the proposed
algorithm, the edge detection time is calculated of the above
cases. Figure 11 gives the result; in terms of the running time
of all images, we can observe that the proposed algorithm is
shorter as compared to other three algorithms. Therefore,
the proposed algorithm is considered to be one of the best
edge detection algorithms.

5. Conclusion

In this paper, aiming at the weak edge problem in the edge
detection of lesion from COVID-19 CT image, a fusion
algorithm is proposed which includes three improvements:
(1) usage of histogram equalization, we can obtain the
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maximum entropy of the image, thereby improving the clar-
ity of weak edge. (2) The median filter, K-means algorithm,
and mathematical morphology are added to the Canny algo-
rithm, which can make the edge of the inspected more accu-
rate. (3) The OTSU algorithm is used to automatically obtain
the best threshold. Compared with the Canny algorithm, the
HMS algorithm, and the ETAR algorithm, these improve-
ments enable our method to have improved performance.
The average values of MSE, MAE, SNR, and the running time
of four types of lesion images are 1.7322,7.9010, 57.1241, and
5.4887, respectively, indicating that our method has better
results. Experiments show that the proposed algorithm can
effectively extract the weak edge of the lesion.

In the future, we can do further research from the fol-
lowing two aspects: (1) The average running time is
5.1887 seconds, and we needs to further reduce the average
running time for the purpose of improving the performance
of the proposed method. (2) In order to improve the credi-
bility of the experiment, we will carry on experiment on
more data set.
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Trigeminal neuralgia is a neurological disease. It is often treated by puncturing the trigeminal nerve through the skin and the oval
foramen of the skull to selectively destroy the pain nerve. The process of puncture operation is difficult because the morphology of
the foramen ovale in the skull base is varied and the surrounding anatomical structure is complex. Computer-aided puncture
guidance technology is extremely valuable for the treatment of trigeminal neuralgia. Computer-aided guidance can help
doctors determine the puncture target by accurately locating the foramen ovale in the skull base. Foramen ovale segmentation
is a prerequisite for locating but is a tedious and error-prone task if done manually. In this paper, we present an image
segmentation solution based on the multiatlas method that automatically segments the foramen ovale. We developed a data set
of 30 CT scans containing 20 foramen ovale atlas and 10 CT scans for testing. Our approach can perform foramen ovale
segmentation in puncture operation scenarios based solely on limited data. We propose to utilize this method as an enabler in

clinical work.

1. Introduction

Trigeminal neuralgia is a neurological disease that occurs
mostly in one or more branches of the facial unilateral tri-
geminal nerve. The pain is similar to electric strike or
tingling-like and is asymptomatic in intermittent periods.
It is mainly primary trigeminal neuralgia. In a few cases, tri-
geminal neuralgia can be secondary to brain tumors or vas-
cular abnormalities [1]. An epidemiological survey study in
the United States showed that the incidence of trigeminal
neuralgia in men is 2.5 per 100,000, and the incidence in
women is 5.7 per 100,000 [2]. The peak prevalence is
between 50 and 60 years old, and the prevalence rate
increases with age. Among people over 80, the incidence rate
is 25.9/100,000 per year [3]. Under normal circumstances,
speaking, chewing, brushing teeth, shaving, or even a cool
breeze may cause short-term attacks in some patients. The
disease causes great trouble to the patients’ daily life and eas-
ily causes anxiety and depression emotions, even suicide [4].

Clinically, the treatment of trigeminal neuralgia is
mainly based on doctors’ experience knowledge for puncture
and computer-assisted puncture based on radiological infor-
mation. During the puncture process, the puncture needle
needs to pass through the skin and enter the semilunar gan-
glia from the foramen ovale of the skull. However, the nar-
row foramen ovale of the skull base in different patients
and their different shapes pose great challenges to the surgi-
cal process. The key to this operation is to accurately locate
the foramen ovale position during the operation [5, 6]. The
position of the foramen ovale in the skull base is shown in
the red area in Figure 1. Puncture based on empirical knowl-
edge has a high failure rate and a high demand on doctors.
Computer-assisted puncture needs to determine the specific
location of the foramen ovale before surgery [7]. It takes a
long time to manually mark the location and relies on the
doctor’s personal experience, which is highly subjective.
Therefore, precise and rapid segmentation of the foramen
ovale at the skull base can effectively improve the success
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F1GURE 1: Bottom view of the skull base.

rate of puncture, reduce the length of operation, and relieve
the pain of patients.

Medical image segmentation methods widely used
domestically and internationally are mainly divided into tra-
ditional methods and methods based on deep learning. In
traditional methods, the threshold method, region growth
method, and map segmentation method are mostly used.
The threshold method and the region growing method are
simple to implement, but the threshold method is very sen-
sitive to noise and uneven grayscale. The region growing
method needs to manually provide a seed point. This
method is also very sensitive to noise and may produce dis-
continuous regions. The two methods are to segment the
whole, while our target area is a part of the whole skull.
The most popular segmentation method is to use deep learn-
ing for segmentation, but deep learning requires a lot of data
sets [8], which can explain poorly. In recent years, the atlas
segmentation method has gradually become one of the effec-
tive methods in the field of medical image segmentation [9].
The work of many scholars has shown that prior knowledge
of anatomy can help segment brain images with complex
structures, low target area boundary contrast, and large
intersubject and intrasubject variance. The atlas-based seg-
mentation method utilizes the most anatomical prior knowl-
edge. In the process of registration, the method minimizes or
eliminates the influence of various kinds of noise on the seg-
mentation results and has good robustness. Asim et al. [10]
use a multiatlas method to divide the brain according to dif-
ferent atlases and then combine the features extracted from
these anatomical units to comprehensively and accurately
detect Alzheimer’s disease. Bao et al. [11] proposed a multi-
mode and multiatlas feature representation method and
used a two-step feature selection method to select the most
characteristic features for the classification of schizophrenia.
Tor-Diez et al. [12] used a multiatlas segmentation method
for the analysis of children’s brain structure. The cortex is
the region of interest for this problem. They proposed a
block-based nonlocal model and iterative optimization
scheme, which can provide reliable cortical segmentation.
As a result, it is of great significance in predicting children’s
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developmental health information. Su et al. [13] proposed a
multiatlas segmentation method optimized for the thalamus,
which can accurately quantify the thalamus and volume and
can track the development of some neurological diseases in
time. Boucher et al. [14] realized the automatic segmentation
of the lateral ventricle by using a deformable multiatlas seg-
mentation algorithm for ultrasound and MRI fusion using
local linear correlation metrics, which can be used to evalu-
ate the brain development of newborns. van der Heyden
et al. [15] used a multiatlas method to automatically segment
the healthy tissue around the tumor during radiotherapy,
which improved the current situation of clinical doctors
manually describing the healthy tissue. Tang et al. [16] intro-
duced the multiatlas segmentation method to the segmenta-
tion of brain tumor images and adopted a new low-rank
method that uses spatial constraints to obtain restored
images containing normal brain regions.

This article comprehensively determines the effective-
ness of the multiatlas segmentation technology for the seg-
mentation of the skull base foramen ovale and proposes a
segmentation method for skull base foramen ovale based
on multiatlas. Through a large number of investigations
and studies, we find that we apply the multiatlas segmenta-
tion method to the segmentation of the foramen ovale in
the skull base for the first time and created the foramen ovale
atlas data set of the skull base for the first time. This method
selects the 10 atlas images that are most similar to the image
to be segmented from the atlas set according to the normal-
ized cross-correlation similarity measure, and then, the
method based on multiresolution affine transformation and
multiresolution B-spline transformation is used to perform
coarse registration and fine registration on the image to be
segmented and the image selected from the atlas. Finally,
the STAPLE [17] algorithm is used to fuse the label images
to obtain the final predicted segmentation results. We also
compared the segmentation effects of the MV [18] algorithm
and the SIMPLE [19] algorithm. The results show that the
segmentation method based on atlas can be applied to the
segmentation of the foramen ovale at the base of the skull.
We have completed the segmentation of the foramen ovale
at the base of the skull under low data conditions, with high
accuracy to meet the needs of clinical surgery.

2. Materials and Methods

The multiatlas segmentation method has gradually become
one of the commonly used methods in the field of medical
image segmentation. This method has three steps: image
similarity selection, multiatlas registration, and label fusion.

2.1. Atlas Segmentation Method. The atlas consists of two
parts: a grey image and its corresponding manually seg-
mented label image. The segmentation method based on
the atlas is equivalent to transforming the segmentation
problem into a registration problem. In the image registra-
tion, the floating image is matched with the fixed image
through deformation. The image to be segmented here is
used as the fixed image, and the image selected from the
atlas for registration with the fixed image is used as the
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FIGURE 2: Schematic diagram of multiatlas segmentation method.

floating image. According to the number of atlases required
for registration, atlas segmentation is divided into single
atlas segmentation and multiple atlas segmentation. The
steps of multiatlas segmentation are mainly divided into
three steps. Firstly, we find several moving images that are
most similar to the fixed image from the atlas. Secondly, it
is indispensable to register the selected moving image with
the fixed image to obtain the corresponding transformation
matrix T and then apply the transformation matrix T to
the marked image corresponding to the moving image.
Finally, label fusion is performed on all the transformed atlas
label images to obtain the final segmentation result. The seg-
mentation process is illustrated Figure 2.

Human brain images are more complex, and the use of
multiple atlases for registration and fusion largely compen-
sates for the insufficient registration effect that may be
caused by the inappropriate selection of a single atlas. How-
ever, Aljabar et al. [20] found that the segmentation accuracy
does not completely increase with the increase of the num-
ber of atlases, and the more the number of atlases, the time
for segmentation calculation will also increase linearly.
Awate et al.’s research [21] shows that the most appropriate
number of atlases is about 10. Therefore, this article will
select 10 moving images from the atlas for registration with
the fixed image.

2.2. Registration Technology. Registration is a crucial part of
the multiatlas segmentation process. The quality of the reg-
istration algorithm has a direct impact on the final segmen-
tation result. The registration process in this article is
divided into two steps. The first step is to use a registration
method based on multiresolution affine transformation to
act on the reference image and the floating image for coarse
registration, and the second step uses the registration
method based on multiresolution B-spline transformation
to perform the fine registration on the fixed image and the
moving image.

Multiresolution is a strategy often used in medical image
registration. It refers to sampling the image to increase or

decrease the resolution of the image, so that it is convenient
for further processing of the image. Firstly, the medical
image is smoothly processed by a low-pass filter to prevent
the image from being interfered by noise during the acquisi-
tion and transmission process, improves the quality of the
medical image, and obtains an image with a constant scale.
Then, downsample the fixed image and the moving image.
The image can generate several images with different resolu-
tions to form an image pyramid. Hierarchical registration is
essentially a coarse-to-fine registration strategy. At the
beginning, the optimal parameters are searched for in the
low-resolution layer. Although the image information of this
layer is not complete and the registration accuracy is not
high, the registration parameters obtained are close to the
optimal solution, and the amount of image data of this layer
is small, which reduces the time required for registration.
After multilevel registration, accurate image registration
results can be obtained in the last layer, and at the same
time, local convergence problems that occur during single-
level registration can be avoided. The multiresolution regis-
tration flow chart is shown in Figure 3.

The B-spline transformation function achieves the effect
of nonrigid registration by moving the control points, which
can control local deformation. The specific displacement of
the control point is calculated by the optimization algorithm,
so as to achieve the effect of simulating any nonlinear trans-
formation. First, the fixed image is gridded, and the points
on the image become control points after gridding. We
assume that the position of a control point in the two-
dimensional image is ¢, and the grid spacing is &, x 8,5
based on the consideration of accuracy and efficiency, the
uniform third-order B-spline basis function is usually
selected for image registration, then the B-spline transfor-
mation of any point (x,y) on the moving image can be
expressed as

T(x’y) = Z Z Bm(u)Bn(v)goier)jJrn' (1>
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FIGURE 3: Schematic diagram of multiresolution registration.

In the formula, represents the coordinate posi-

(Pi+m,j+n
tions of the nearest 4 x4 control points; the i and the j,
respectively, represent the position index of the adjacent
control points, i=|x/8,] —1,j=[y/8,] = 1; || represents
the round-down function; m and n are the order of B-
spline basis functions; u and v are the relative unit control
grid positions of (x,y), u=(x/5,) = [x/8,],v=(y/5,) - |y/

8,5 B,,(u) represents the m-th B-spline basis function; and

the expressions are as

(1-u)’
By(u) = c
3ud - 6u’ + 4
B, (u) = 5
3 2 @)
=3u’ +3u”+3u+1
BZ(“) = 6 4
3
u
By (u) = I

Among them, 0 < u < 1, these functions act as weighting
functions, and they weight the influence of each control
point on T(x, y) according to the distance from the control
point to (x, y).

2.3. Label Fusion. This paper uses the STAPLE algorithm to
complete the label fusion step. The STAPLE algorithm uses
the maximum expectation algorithm iteration to estimate
the performance parameters and probability distribution.
In the fusion process, it is equivalent to treating each atlas
as a weak classifier, using the maximum expectation estima-
tion to set the weight of each classifier and then fusing to
obtain the final segmentation result. At the same time, we
used the majority voting algorithm (MV) for tag fusion
and the SIMPLE method to complete the fusion as a com-
parison experiment. The MV algorithm is a method to
determine the final fusion label value according to the crite-
rion that the minority obeys the majority. The SIMPLE
method combines atlas selection and evaluation strategies
and gradually reduces the number of maps through selective
iteration to achieve a good fusion effect.

3. Results and Discussion

3.1. Construction of Data. In this paper, on the human skull
CT, the foramen ovale on the left and right sides of the skull
base are segmented separately. The experimental data comes
from the Second Hospital of Jilin University, and the inclu-

sion criteria are (1) a complete whole skull and (2) people
who are 20 years old and above. A total of 30 CT data are
obtained by screening according to the above criteria. Then,
under the guidance of professional physicians, 20 data are
selected to make the atlas, and the remaining 10 data are
used for experimental testing. (Note: all data were obtained
with the patient’s knowledge and consent.) The preparation
steps of the atlas are as follows: firstly, the threshold method
and the region growing method are applied to process the
CT data. Secondly, the foramen ovale area at the base of
the skull was manually segmented. Finally, a slight Gaussian
smoothing on the data is performed. A set of atlases contains
atlas images and their corresponding label images. One of
the sets of the atlas made is shown in Figure 4.

3.2. Experiment and Parameter Setting. In the entire experi-
mental process, firstly, the 10 images with the highest
similarity to the fixed image are selected in the atlas using
the normalized cross-correlation similarity measurement
method for registration. The normalized cross-correlation
formula is defined as follows:

Y1y (Th) = T0) x X1 (F(r(x,) - FI(7))
ﬁ,l Ti(e) ~T1) % 2, (Fi(e(x) - FI))

NCC(z, TL FI) =

>

where TI(x;)/n represents the gray value of pixel x; in the
fixed image, FI(x;)/n represents the gray value of pixel x;
in the moving image, and n represents the number of
image pixels; considering that CT data may come from
different imaging equipment, there are nonstandard inten-
sities between images, so it is selected as the atlas selection
criterion.

In the registration process, we use the Elastix [22] toolkit
to perform registration based on affine transformation and
B-spline transformation. In the above two registration pro-
cesses, a multiresolution strategy is used. The image is first
smoothed by Gaussian kernel filtering, and then, downsam-
pling by a factor of 2 is used for each resolution layer. Con-
sidering the generation effect and speed, the interpolation
method adopts the linear interpolation method, and the
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(a) Atlas image

(b) Label image

FIGURE 4: A set of the atlas manually segmented.

interpolation method used to generate the final segmenta-
tion result adopts the third-order B-spline interpolation
method. During each iteration, a random sampling method
is used to randomly select 2000 voxels to calculate the nor-
malized mutual information value between the images,
which improves the speed of the registration optimization
parameters, and uses the gradient descent optimization algo-
rithm to optimize the normalized mutual information value.
For affine transformation registration, each layer is set to
1000 iterations, which is set to 4 layers. For B-spline registra-
tion, each layer is set to 3000 iterations, and a grid spacing of
5mm is used, which is set to 5 layers.

In the label fusion process, the STAPLE algorithm is
used to fuse a single prediction result to obtain the final
segmentation result. Here, we also use the MV algorithm
and the SIMPLE algorithm for comparison experiments.

3.3. Evaluation Index. After obtaining the segmentation
results, it is necessary to adopt appropriate evaluation indi-
cators to evaluate the segmentation results of different
methods. This paper uses Dice coefficient, 95% Hausdorff
distance, and average surface distance (ASD) to verify the
accuracy of the segmentation results. The Dice coefficient
is used to measure the relative volume overlap between the
algorithm segmentation results and the manual segmenta-
tion results, and the latter two evaluation standards are used
to measure the consistency between the segmentation
boundaries. The higher the Dice coeflicient, the better the
segmentation result. The smaller the Hausdorft distance
and the average surface distance, the better the segmentation
result. Its definition is as Equations (6), 7, 8, 9, and 10:

2V(ANB)

DiCC(A, B) = W‘/(B) 5

where V(A) and V(B) represent the predicted segmentation
result and the volume of the doctor’s manual segmentation
result, respectively. V(A N B) represents the volume of the
above overlapping part.

1
ASD= — — min lla - bll+ min, 1b-all ],
[S(A)[ + [S(B)] (Z() e besz@) =
(7)

where S(A) represents the set of surface voxels of the pre-
dicted segmentation result, S(B) represents the set of surface
voxels of the doctor’s manual segmentation result. a and b,
respectively, represent a voxel subset of the two voxel sets.

H(A, B) = max (h(A, B), h(B, A)), (8)
B(A, B) = max,q {minyczla - bl}, )
h(B, A) = max,,z {min,,Ib - al}, (10)

where |[|-|| represents the Euclidean distance between the two
points a and b.

Testing on 10 data, we use the MV, STAPLE, and SIM-
PLE methods to perform experiments on the left and right
foramen ovale at the base of the skull and then display the
average of average Dice, 95% Hausdorft and average sur-
face distance obtained by different methods on the three-
line graph obtained by different methods on an average
three-line graph. In order to visually show the difference
of the segmentation effect obtained by different methods,
we also draw box plots of the three methods on each eval-
uation index.
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FIGURE 5: Manual segmentation and the results of segmentation of the foramen ovale structure of the skull base by various algorithms. (a)
Segmentation result on the left. (b) Segmentation result on the right. Number 1 is manually segmented images, number 2 is MV algorithm
segmentation image, number 3 is STAPLE algorithm segmentation image, and number 4 is SIMPLE algorithm segmentation image.

(a)-1

(a)-3

(b)-3

F1GURE 6: Comparison of the results of each method and manual segmentation. (a) Comparison between segmentation method and manual
segmentation on the left. (b) Comparison between segmentation method and manual segmentation on the right. Number 1 is a comparison
between MV algorithm and manual segmentation, number 2 is a comparison between STAPLE algorithm and manual segmentation, and
number 3 is a comparison between SIMPLE algorithm and manual segmentation.

3.4. Experimental Results. Segmentation results of the fora-
men ovale at the skull base and manual segmentation results
are shown in Figure 5. The experimental results show that
the three methods can be used to segment the foramen ovale.

The comparison chart of each method and manual seg-
mentation is shown in Figure 6. Red is the result of manual
segmentation, and green is the segmentation result of differ-
ent methods. We can see that the segmentation effect of the

MV algorithm is not good, the segmented oval foramen has
a discontinuity problem, and the segmentation result is
incomplete, which is quite different from the manual
segmentation result. STAPLE and SIMPLE segmentation
results are better.

3.5. Data Analysis and Discussion. The average value of Dice
which is obtained from 10 groups of data tested by three
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methods, MV, STAPLE, and SIMPLE, is shown in Table 1. It
can be seen from Table 1 that the average Dice of the fora-
men ovale on the left of the MV algorithm is 0.790, and
the average Dice of the foramen ovale on the right is 0.803.
The average Dice of the foramen ovale on the left of the
STAPLE algorithm is 0.858, and the right is 0.870. The aver-
age Dice of the foramen ovale on the left of the SIMPLE
algorithm is 0.853, and the right is 0.871.

The average value of the 95% Hausdorft distance which
obtained from 10 groups of data tested by the above three
methods is shown in Table 2. From Table 2, it can be indi-
cated that the average 95% Hausdorft distance of the left
oval foramen of the MV algorithm is 5.054, and the right
is 3.639. The average 95% Hausdorff distance of the left
oval foramen of the STAPLE algorithm is 4.274, and the
right is 3.452. The average 95% Hausdorff distance of the
foramen ovale on the left of the SIMPLE method is 4.644,
and right is 3.227.

The average value of ASD which obtained from 10
groups of data tested by the above three methods is shown
in Table 3. From Table 3, it can be demonstrable that the
average ASD value of the foramen ovale on the left side of
the MV algorithm is 1.258, and the average ASD value of
the foramen ovale on the right side of the MV algorithm is
0.933. The average ASD value of the foramen ovale on the
left side of the STAPLE algorithm is 0.998, and the right is
0.739. The average ASD value of the foramen ovale on the
left side of the SIMPLE algorithm is 1.067, and the right side
is 0.728. From the data in Tables 1-3, it can be seen that the
Dice of MV algorithm segmentation is lower, and the 95%
Hausdorft distance and the ASD are higher, indicating that
the MV algorithm segmentation effect is poor. The Dice of
the STAPLE and SIMPLE algorithms is higher, and the
95% Hausdorff distance and the ASD are lower, indicating
that the STAPLE and SIMPLE algorithms have better seg-
mentation effects.

Figures 7-9 sequentially show the left and right fora-
men ovale Dice box plots, 95% Hausdorff distance box
plots, and ASD box plots drawn by the three methods of
MV, STAPLE, and SIMPLE for 10 sets of test data. The
maximum value, upper quartile, median, lower quartile,
and minimum value are displayed on the box plots, which
can reflect the overall characteristics of multiple sets of
data. The horizontal line in the box plot represents the
median number. From the box plots, we can see that the
effect of the MV algorithm is relatively poor. The Dice
value of the STAPLE algorithm and the SIMPLE method
is above the chart, indicating that a better segmentation
effect can be achieved for the test image. The median of
95% Hausdorft distance and ASD of STAPLE and SIMPLE
methods is below the chart, which also shows that these
two methods can achieve better segmentation results for
the test image.

4. Data Analysis and Discussion

From the above chart data, it can be seen that the segmen-
tation results of the STAPLE method and the SIMPLE
method are relatively close, and both are significantly bet-

TaBLE 1: Dice average of segmentation results of different methods.

Dice Left foramen ovale Right foramen ovale
MV 0.790 0.803
STAPLE 0.858 0.870
SIMPLE 0.853 0.871

TaBLE 2: The average value of 95%Hausdorff distance of the
segmentation results of different methods.

95%Hausdorff distance Left foramen ovale Right foramen ovale

MV 5.054 3.639
STAPLE 4.274 3.452
SIMPLE 4.644 3.227

TABLE 3: Average surface distance average of segmentation results
of different methods.

ASD Left foramen ovale Right foramen ovale
MV 1.258 0.933
STAPLE 0.998 0.739
SIMPLE 1.067 0.728

ter than MV. This is because the MV method compares
and selects the pixel values at the same position of each
floating image and chooses the pixel value with the most
occurrences as the actual pixels of the position; although
the prior information of each floating image is fully consid-
ered, all image information is treated equally without con-
sidering the difference between each floating image and the
fixed image. The SIMPLE method and the STAPLE
method consider the difference information between the
fixed image and each floating image. The STAPLE method
uses the expectation maximization algorithm to calculate
the weight coefficient of the floating image, and finally,
the weighted average is performed to obtain the final seg-
mentation result. The SIMPLE method assigns weights
based on the floating images and the performance level of
the fusion result obtained after each iteration are, and in
the process of estimating the performance level, floating
images with poor performance levels are discarded. Theo-
retically speaking, the SIMPLE algorithm is better than
the STAPLE algorithm [19], because the SIMPLE algorithm
discards floating images that do not perform well, but in
fact, these floating images may also contain useful informa-
tion. From the overall experimental results, the segmenta-
tion effect of the right foramen ovale is better than that
of the left foramen ovale. We think that it may be related
to the difference in the structure of the foramen ovale on
the left and right sides. But we have consulted relevant aca-
demic data, and according to the data, the conclusion is
that there is no statistical difference in the length, width,
and area of the foramen ovale on both sides [23, 24]. There
is currently no exact theory to explain this experimental
result.
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F1GURE 7: Dice box plots of the foramen ovale on the left and right sides of each method: (a) foramen ovale box plot on the left; (b) foramen
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ovale box plot on the left; (b) foramen ovale box plot on the right.

5. Conclusions

Trigeminal neuralgia seriously affects the normal life of
patients. In clinical practice, surgical needles are often used
to puncture the inside of the foramen ovale at the skull base
for radiofrequency ablation. When puncturing the target
point, it relies too much on the doctor’s personal experience,

and the operation is difficult. Computer-assisted puncture
based on radiological information can improve the success
rate of puncture operations. With the aid of a computer,
the doctor performs a puncture based on the information
of the foramen ovale region segmented out before the oper-
ation and then can accurately reach the target point. During
the puncture process, the imaging equipment displays the
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position of the puncture needle in real time for the doctor to
make judgments. Computer-assisted trigeminal neuralgia
puncture surgery reduces the pain suffered by patients and
the probability of postoperative complications, lowers the
threshold of puncture surgery, and improves the success rate
of puncture surgery. The current problem is that the preop-
erative segmentation takes a long time; the average time is
about 30 minutes, but it does not affect the real-time punc-
ture work of the assistant intraoperative doctors. The future
work is mainly in two aspects. On the one hand, we optimize
our segmentation algorithm to reduce the time required dur-
ing the registration and fusion process, and on the other
hand, we improve the segmentation accuracy.

From what has been discussed above, in this paper, a
segmentation method for the foramen ovale based on multi-
atlas is proposed, which provides an idea for foramen ovale
segmentation, and can provide great convenience for
computer-assisted puncture surgery. This article also creates
the skull base foramen ovale atlas data set for the first time,
which provides data support for future research on the skull
base foramen ovale. The experimental results show that the
segmentation of the foramen ovale by the multiatlas method
has high accuracy and good effect, and it is expected to be
applied in clinical puncture surgery.
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For the analysis of medical images, one of the most basic methods is to diagnose diseases by examining blood smears through a
microscope to check the morphology, number, and ratio of red blood cells and white blood cells. Therefore, accurate
segmentation of blood cell images is essential for cell counting and identification. The aim of this paper is to perform blood
smear image segmentation by combining neural ordinary differential equations (NODEs) with U-Net networks to improve the
accuracy of image segmentation. In order to study the effect of ODE-solve on the speed and accuracy of the network, the ODE-
block module was added to the nine convolutional layers in the U-Net network. Firstly, blood cell images are preprocessed to
enhance the contrast between the regions to be segmented; secondly, the same dataset was used for the training set and testing
set to test segmentation results. According to the experimental results, we select the location where the ordinary differential
equation block (ODE-block) module is added, select the appropriate error tolerance, and balance the calculation time and the
segmentation accuracy, in order to exert the best performance; finally, the error tolerance of the ODE-block is adjusted to
increase the network depth, and the training NODEs-UNet network model is used for cell image segmentation. Using our
proposed network model to segment blood cell images in the testing set, it can achieve 95.3% pixel accuracy and 90.61% mean
intersection over union. By comparing the U-Net and ResNet networks, the pixel accuracy of our network model is increased by
0.88% and 0.46%, respectively, and the mean intersection over union is increased by 2.18% and 1.13%, respectively. Our
proposed network model improves the accuracy of blood cell image segmentation and reduces the computational cost of the
network.

1. Introduction

One of the most basic methods to diagnose diseases is by
examining the blood smear through a microscope to check
the shape, number, and proportion of red blood cells and
white blood cells. However, manual examination of a blood
microscope image is a time-consuming and laborious task.
In recent years, with the development of computer vision
and medical image processing technology, the recognition
of medical microscopic cell images has also made consid-
erable progress in the field of medical image processing.
The research on medical image processing methods has

become an important research direction in image process-
ing and analysis.

Image segmentation is an important stage in the process
of image analysis and processing. Traditional medical image
segmentation methods mainly include activity contour,
intensity thresholding, mathematical morphology, region
growing, and watershed algorithm [1-5]. Since the fully con-
volutional neural network (FCN) [6] was first proposed by
Long et al,, it has achieved semantic segmentation of natural
images from end to end, and it has also indicated the most
progressive capacity in image segmentation. And they regard
FCN as a foundation and have innovated tremendous
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numbers of excellent semantic segmentation networks [7]
from different perspectives under the stimulation from all
kinds of semantic segmentation challenging competitions.
Ronneberger et al. [8] focused on the large size and small
quantity of medical images, providing a U-Net network
model which adopted a coding-decoding structure. After 4
times of pooling during downsampling, dimensional splicing
and fusion are performed with the corresponding scale in
upsampling for adding feature information. To construct
the pixel weight matrix, the closer it is to the cell’s boundary,
the larger the pixel weights will be, so it would be trained spe-
cifically. Kowal et al. [9] combined a convolutional neural
network (CNN) and a seeded watershed algorithm [4] to seg-
ment the nucleus in breast cancer cell images, utilizing the
accurate nucleus mask produced by CNN to replace the
nucleus mask which was defined by normal thresholding.
This process generates watershed topographic maps and
nucleus seeds, and then, a watershed algorithm was used to
separate the overlapping nucleus. Song et al. [10] proposed
a multiscale convolutional network (MSCN) and a method
based on image partition segmentation of the cervical cyto-
plasm and nucleus. They extracted features by MSCN and
then divided the central region of each pixel. This method
can segment all the nuclei in the cell images, but it could
not distinguish normal cells and abnormal cells. Aratjo
et al. [11] used CNN to segment abnormal cells and blocky
abnormal cells with high image overlap from digital images
of conventional pap smears, filtering input images and elim-
inating cells that only include background or bad informa-
tion. They adopted postprocessing to improve segmentation
of abnormal cells and sorted the images according to proba-
bility of containing abnormal cells in the image. Oztiirk et al.
[12] proposed a new DCNN structure based on the residual
network (ResNet) [13] and the deconvolutional network
[14] structure. Semantic segmentation would be launched
according to histopathological cell type, and all nuclei would
be identified. They were classified as cancerous or normal
according to each cell type. Shibuya and Hotta [15] proposed
the feedback U-Net [8] network based on convolution long-
short-term memory (LSTM). The output of U-Net reports
back to the input, and then, it is fed into the second round.
They extracted second-round features based on the first-
round features by utilizing convolution LSTM [16]. Convolu-
tion LSTM that is used to process ordered data is a convolu-
tional version of LSTM [17]. Chen et al. [18] proposed a new
neural network that is referred to as neural ordinary differen-
tial equations (NODEs). This paper refers to the idea of Chen
et al. [18]. We used the latest NODEs to improve the classic
medical image segmentation method based on the U-Net
network.

We put an ODE-block into a U-Net network model for
blood cell image segmentation (named NODEs-UNet). The
proposed NODEs-UNet network model can effectively
reduce the use of parameters and improve the segmentation
effect. NODEs can adapt to the receptive fields (RFs). There
is no need to optimize the RFs for various segmentation
tasks, and we only need to adjust the error tolerance of
ODE-block. The generalization ability of the NODEs-UNet
model architecture is strong.
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2. Image Preprocessing

The experiment dataset in this paper was provided by the
Center for Medical Image and Signal Processing (MISP)
and the Department of Pathology, Isfahan University of
Medical Sciences [19]. MISP.rar contains 148 clear blood cell
smear images with a size of 775 x 519 pixels. Since the blood
cell image is quite large, we picked up appropriate areas for
convenient network training. We cropped 100 blood cell
images with a size of 256 x 256 pixels by selecting a suitable
area. To ensure the accuracy of the training model, we
retained 20 images as the testing set and we used the remain-
ing 80 images to increase the dataset to 800 by data augmen-
tation. Besides, we used a ratio of 3:1 as the training set and
the validation set. The image label was obtained by manual
labeling by using the labeling tool LabelMe. There are three
cell types that need labeling: background, white cells, and
red cells. They are given the labels of 0, 1, and 2, respectively.
Figure 1 shows the original blood cell image and its postvi-
sualization of labels.

This paper employed blood smear images, which contain
a small number of white blood cells and a large number of red
blood cells. The original blood cell images are in color, and
we use the color image for segmentation. We conducted pre-
processing to the cell image and enhanced the contrast
among cell images for segmenting the targets better. The
blood cell images were converted from the RGB color space
to the YUV space. The pseudocode is as follows:

Img =Read(Path)

Y,U,V = BGR2YUV (Img)

Y’ =clahe_equalized(Y)

Img=YUV2BGR(Y',U,V)

where “Y” means brightness. “U” stands for the differ-
ence between the blue channel and brightness. “V” means
the difference between the red channel and brightness.
Figure 2 shows the original cell image and the preprocessed
image.

3. Methodology

We present a novel segmentation method based on neural
ordinary differential equations (NODEs) and U-Net for
blood cell image segmentation. Firstly, the NODEs are intro-
duced. Then, based on the classic U-Net network, we
imported an ODE-block into the U-Net network architecture
and determined the ODE-block location in the network.
Finally, the proposed NODEs-UNet network architecture is
built. The segmented image is constructed based on the
NODEs-UNet network framework.

3.1. Neural Ordinary Differential Equation. Neural ordinary
differential equation means a differential equation with a sin-
gle independent variable. We are supposed to find the general
solution of the unknown f(x) for an ordinary differential
equation normally. For instance, the general solution of
equation f'(x) = 2x is f(x) = x* + C, where C means an arbi-
trary constant. But the more common method to solve this
problem in practice is by using an ODE-solver. That is, given
an initial value f(x,), this does not have to find the general
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(a)

(b)

F1GurE 1: Display of an example image and its labels: (a) a blood cell image; (b) corresponding label shown in color.

(a)

(b)

F1GURE 2: Blood cell image preprocessing: (a) original blood cell image; (b) preprocessed cell image.

solution of f(x) when seeking the unknown value f(x;)
except approaching its value gradually. In terms of the neural
network, they are similar to an extreme complicated compos-
ite function whether they are a fully connected network,
recurrent network, or convolutional network. The number
of compositions is equal to the depth of the layers. For
instance, a two-level fully connected network could be

ht+1 :f(ht’ et)’
ht+2 Zf(ht+1’ 6t+1)’ (1)
ht+2 :f(f(ht’ et)’ 9t+1)’

where A, is the input value of the hidden unit of the ¢-th layer
and f parameterizes the neural network by 0,. Therefore,
every neural network layer is similar to a universal function
approximator.

A residual network (ResNet) [13] is a special type of con-
volutional network. It solved the gradient reversion problem

with residual connection, which means that the gradient can
still be effectively transmitted back to the input end when the
neural network layer is very deep. Figure 3 is the structure of
a ResNet-block. The output of the ResNet-block combines
the input information and the output information of the
internal convolution operation. This residual connection
ensures that the accuracy of the deep model is at least not
lower than the accuracy of the shallow network.

We can illustrate the ResNet-block above formally as an
equation below: h,,, =h, + f(f(h,,0,),0,,;), which stands
for the whole ResNet-block above. If we rewrite it in the form
of a residual network, that is,

hyy=h+f(f(h6,),0,00)- (2)

We can find that the traditional neural network f is
directly parameterized as hidden layers and the residual neu-
ral network f parameterizes the residual among hidden
layers. But the neural ordinary differential equation in this
paper takes another way to use for parameterizing the
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derivative in hidden states by the neural network. By assum-
ing the discrete layers as continuous layers and parameters,
this continuous transformation form can be expressed as a
neural ordinary differential equation (NODE):

ant) _
N (ORAON (3)

where f is defined as a neural network as before, but now this
and its parameter 0 are a unit, and ¢ is also fed into the neural
network as an independent parameter. From the perspective
of derivative definition, when the change of ¢ tends to become
infinitely small, the change of the hidden state dh(t) can be
modeled by the neural network. When ¢ changes slowly from
the initial to the end, the change of h(t) ultimately represents
the result of forward propagation. In this way, using the neu-
ral network to parameterize the derivative of the hidden
layer, the neural network layer is indeed continuous.

If the numerical solution of the ordinary differential
equation can be obtained, then it is equivalent to forward
propagation. Now, we convert equation (3) to

Jtzdh(t) - J " (h() 1, 0)dt, (4)

) ty

t

h(ts) = h(to) + | (h(e) 1 B)dr. (5)

ty

From equation (5), we can see that the numerical solution
of ODE h(t,) requires the integral of the neural network f
from t, to t,. It is a problem about the initial value of ODE.
We can obtain the result with an ODE-solver directly. Such
an ODE-solver can also control the numerical error so that
we can make a contrast between computing ability and
model accuracy. Figure 4 is the structure of the ODE-block.

3.2. The Location of ODE-Block. The network architecture of
this paper is based on the classic U-Net fully convolutional
neural network model in medical image segmentation. Con-
sidering the reduction of the computational cost, we decrease
the number of convolutional cores in the convolution layers
to a half in the original U-Net network. In order to study
the influence of a single ODE-block on the network at differ-
ent positions, we imported an ODE-block in the U-Net net-
work architecture which is shown in Figure 5. The training
set, validation set, and testing set of the whole networks are
consistent, and the error tolerance of the ODE-block solver
is 1le~3. When we train the network, we input the training
set and the validation set, and the training times (epochs)
are 50 times. We use a callback function to save the network
model with the minimum val_loss of the validation set.
Nine ODE-blocks obtained in the above experiment were
tested on the testing set. The cell image segmentation results
were evaluated by pixel accuracy (PA), class pixel accuracy
(CPA), mean intersection over union (MIoU), and computa-
tion time, and the comparison results are shown in Table 1.
From Table 1, we can see that compared with the U-Net
network and the nine ODE-block-based networks, it can be
seen that after the ODE-block is added, the PA and MIoU

5
TaBLE 1: Comparison results of different ODE-block positions.
Algorithm (I:%’*) Bk EPAR(ZS) Whie MIoU  Time
srounc el cells (%) )
U-Net 94.59 92.55 96.54 94.10 88.58  0.15
811\)]1;_1 95.05 94.25 9597 93.92 89.80 7.35
[OJII\)IE'(_Z 95.08 94.23 95.69  95.98 89.68 3.73
811\)15{3 9511 9514 9570 91.65 89.61 194
811\)]1:{ , 9519 9408 9651 9342 9017 103
811311;_5 95.05 95.62 94.62  94.53 89.62 0.61
811\315’[_6 95.14 93.78 96.34 9539  90.09 1.06
8312{7 95.17 93.80 96.59 9419 90.02 1.95
81]\3112'[_8 95.16 94.33 96.30 92.98 89.91 3.72
811\3]5(-9 95.14 94.33 96.23  93.15 90.03 7.35

have been significantly improved. The computation time is
obviously surging, which is the time it takes for the network
to segment twenty blood cell images. Compared with the
nine ODE-block-based networks, the location where the
ODE-block is added has no obvious impact on PA and
MIoU, but it has a greater impact on the computation time,
so we could conclude that the location where the ODE-
block is added goes down as the U-Net “U”-shaped structure
goes down. And the time is much shorter when the “U”-
shaped structure keeps going down. The more the “U”-
shaped structure goes up, the longer the time is.

3.3. NODEs-UNet Neural Network. In this paper, we present
a novel blood cell image segmentation method based on
NODEs and U-Net (named NODEs-UNet) neural network
framework. It is based on the U-Net network model, and
downsampling is performed through the maximum pooling
layer. For the coding part, each time it passes through a pool-
ing layer, a new scale is constructed, and there are five scales
including the original image. Finally, the convolution results
in five scales are fused. The convolutional layer extracts fea-
tures, and the “same” convolution is used to keep the image
size unchanged before and after convolution. Upsampling is
performed through bilinear interpolation, and the scale cor-
responding to the feature extraction part is fused with each
upsampling.

From Section 3.2, it can be concluded that the ODE-block
location that is added goes down with the U-Net “U”-shaped
structure, and the time is shorter. Therefore, we add one
ODE-block with error tolerance le™® and two ODE-blocks
with error tolerance le™ at the bottom of the “U” shape, as
shown in Figure 6.
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FiGure 6: NODEs-UNet neural network framework.

The final prediction result of this network uses the activa-
tion function softmax, that is,

e

(6)

a = Softmax(z;) =

c:leZ[ ,
where z; is the output value of the i-th node and C is the
number of output nodes which is the number of classification
categories. The output of the multiclass is converted into a
probability distribution in the range of [0, 1] through the soft-
max function, which means the probability that node i
belongs to the background, white cells, or red cells. We use
categorical cross entropy as the loss function of the network,
which is often suitable for multiclass problems and can avoid
the problem of reduced learning rate of the mean square
error loss function. The equation is as follows:

loss=—%(ylna+(1 -y)In (1-a)), (7)

where y is the probability distribution of the expected output
and a is the probability distribution of the actual output of
the network. When the value of the cross entropy is smaller,
the two probability distributions are closer.

4. Experimental Results and Discussion

The proposed NODEs-UNet network framework was
applied to the problem of multiclass blood cell image seg-
mentation, and it is used to evaluate the role of exploiting
the ODE-block in segmentation. The real image dataset was
chosen from the publicly available dataset on MISP and the
Department of Pathology, Isfahan University of Medical Sci-
ences, that contains blood smear microscopic images with
red cells and white cells, namely, the MISPO1 dataset [19].
The results of this experiment were compared with those of
the U-Net network [8] and the ResNet network [13]. The rea-
son we choose these two networks is that the U-Net network
is good at semantic segmentation and it is the basis of our
proposed NODEs-UNet network. The ResNet network is
also based on the reduced version of the U-Net network in
this paper, and the residual module is added to the U-Net
network. The added ResNet-block location was referred to
the D-LinkNet [20] architecture; then, we built the ResNet
network model. In the following sections, we give the exper-
imental settings. Then, we compare our method with those
two methods and give the statistical results.

4.1. Experimental Settings. In this study, all the experiments
are implemented in a Ubuntu 16.04 LTS 64-bit operating
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FIGURE 7: Blood cell image segmentation results: (a) original blood cell images; (b) preprocessed blood cell images; (c) corresponding labels;
(d) segmentation results by our algorithm based on the NODEs-UNet network.

system with Intel Xeon E5 64 core CPU and NVIDIA
GeForce GTX 1080 Ti 11 G * 4 GPU, based on the Keras
deep learning framework equipped with the NODEs-UNet
network model. The ODE-block uses TensorFlow. We com-
plete the training and testing for blood cell image segmenta-
tion in CUDA 8.0 GPU calculating the platform and cuDNN
7.5 deep learning GPU acceleration library.

In order to increase the training speed, we call the func-
tion multi_gpu_model() to copy the model on four GPUs.
Each GPU calls its own model, running on its own dataset,
and then connects all the running results together. In order
to avoid memory overflow, the model is built on the CPU.
We input the training set and validation set to train the net-
work, saving the model with the smallest loss (val_loss) in the
validation set in a single model and saving the network
framework in a HDF5 file.

4.2. Validation on Blood Cell Image Segmentation. For the
MISPO1 dataset, four randomly selected blood cell images
were used for blood cell image segmentation based on the
NODEs-UNet framework, and Figure 7 shows the results.
Figure 7(a) is the original blood cell images. Figure 7(b) is
the preprocessed blood cell images using an adaptive histo-
gram equalization method (see Section 2). Figure 7(c) is the
corresponding labels of blood cell images. Figure 7(d) is the

segmentation result using our proposed algorithm. From
Figure 7, we can see that our method can accurately segment
background, red cells, and white cells. It has clear boundary
and complete details, and the segmentation results are very
close to the ground truth.

In order to further verify our proposed segmentation
method based on the NODEs-UNet network in this paper,
we compared and analyzed the quality of the segmentation
results from our method with the related works developed
on the basis of the U-Net network [8] and the ResNet net-
work [13], and the comparison on the segmentation
results are shown in Figure 8. Figure 8 shows four ran-
domly selected blood cell image segmentation results using
three networks. As shown in Figure 8(a), the original
blood cell images are randomly selected from the MISPO1
dataset [19] with blurring and noise. Figure 8(b) is the
enhanced cell images using an adaptive histogram equali-
zation method (Section 2). Figure 8(c) is their correspond-
ing ground truth. Figure 8(d) shows the segmentation
results after applying U-Net to the images. Figure 8(e) is
for the segmentation result after applying ResNet to the
images. As shown in Figure 8(f) for the result of our pro-
posed segmentation method based on the NODEs-UNet
network, we can see that our work can provide more accu-
rate segmentation and more details.
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(d) (e) )

Fiure 8: The original images and the comparison results based on three networks on the MISP01 dataset: (a) original image; (b)
preprocessed blood cell image; (c) ground truth; (d) segmented method based on the U-Net network; (e) segmented images based on the
ResNet network; (f) results from our proposed method based on the NODEs-UNet network.

To quantitatively measure and compare the accuracy of
our proposed method with other methods, we applied each
of the methods on the segmented dataset and compared it
with the ground truth. Then, we counted the truly and falsely
detected segmentation results. Effectiveness measures based
on PA, CPA, and MIoU are calculated. Table 2 shows the
evaluation results of each method on the blood cell image
segmentations for the testing set, where parameter M refers
to the memory space occupied by the parameter weight of
the network model. Figures 9 and 10 show the specific PA
and MIoU indicators of the segmentation results of each net-
work in 20 blood cell images.

Observing Table 2, by comparing the objective evaluation
data (PA, CPA, and MIoU) of the U-Net network with those
of the ResNet and NODEs-UNet networks, we concluded that
on the basis of the U-Net network architecture, whether by add-
ing the ResNet-block or the ODE-block, both segmentation
results are significantly improved. For the ResNet network,
the PA and MIoU have increased by 0.42% and 1.05%, respec-
tively, and the PA and MIoU of the NODEs-UNet network
increased by 0.88% and 2.18%, respectively. This is mainly
because the output of the ResNet-block and the ODE-block
combines the input information with the output information
of the internal module operation, and this connection method
ensures that in the network model after being added, the accu-
racy of the module is at least not lower than the accuracy of the
initial network model. And due to the limitation of the compu-
tational power of the experimental equipment, the number of
convolution cores in the convolutional layer in the U-Net net-
work in this paper is twice as small as that in the traditional
U-Net network, and the complexity is lower. After adding the
ODE-block, the depth of the network is increased, so the accu-
racy of the network is significantly improved.

TasLE 2: Comparison results for three networks.

PA CPA (%)
Algorithm Red White  MIoU

(%) Background

cells cells

U-Net 9442 9255 9654 9410 8843
ResNet 94.84 94.55 95.60 92.89 89.48
NODEs-
UNet 95.30 94.58 95.94 95.37 90.61

Then, by comparing the indicator data (PA and MIoU) of
the NODEs-UNet network and the ResNet network, it can be
seen that the ODE-block has more advantages in perfor-
mance than the ResNet-block, and the PA and MIoU in the
NODEs-UNet network has increased by 0.46% and 1.13%,
respectively, as compared to those in the ResNet network.
This is because the residual network is a special case of ordi-
nary differential equations, which is the discretization of
Euler’s method. Euler’s method is very intuitive for solving
ordinary differential equations, that is, h(t + At) = h(t) + At
x f(h(t),t). Whenever the hidden layer takes a small step
At along f, the new hidden layer state h(t + At) should take
a small step in the existing direction. If we walk from ¢, to
t, in such a small step, then the numerical solution of ODE
is obtained. If At is equal to 1 every time, then the Euler
method of discretization is equal to the expression of the
residual module h(t+1)="h(¢t)+f(h(t),t). But Euler’s
method is a basic method adopted to solve ordinary differen-
tial equations. Each step will make a little error, and the error
will be accumulated.

The ODE-solver in the NODEs-UNet network does not
move a fixed step length like Euler’s method. It will select
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FIGURE 9: Experimental results for the PA index.
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FIGURE 10: Experimental results for the MIoU index.

an appropriate step length to approximate the real solution
according to the given error tolerance. Reducing the error
tolerance will increase the number of evaluations of the func-
tion, similar to increasing the depth of the model. Therefore,
we can change the behavior of the neural network by chang-
ing the error tolerance. During training, the error can be
reduced, the accuracy rate can be improved, and a better neu-
ral network can be learned. During testing, the error can be
increased according to the actual computing environment,
the number of function evaluations can be reduced, and we
can obtain the segmentation result faster. By comparing the
memory space occupied by the NODEs-UNet network with
the ResNet network parameters, the memory space occupied
by the NODEs-UNet network is only 46% of the ResNet net-
work. This is due to the derivative of the parameterized hid-
den state of the ODE-block, which similarly constructs

continuity layers and parameters. There are no intermediate
results stored in the forward propagation process, so it only
needs approximately constant memory cost.

5. Conclusion

This paper combines the neural ordinary differential equa-
tion with the U-Net network to segment blood smear images.
Compared with the more common semantic segmentation
using fully convolutional networks, this paper does not
improve on feature extraction and multiscale fusion, but it
is directly based on the U-Net network model. The ODE-
block is added to improve the network and improve the net-
work accuracy for cell image segmentation. Utilizing the
characteristics of the ODE-block, we use the ODE-solver in
the ODE-block to parameterize the derivative of the hidden
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state, instead of directly parameterizing the hidden state as
usual. This connection method can achieve the same effect
as the residual network and can effectively avoid the problem
of network degradation in the deep network. Of course, the
network layer of this paper is not very deep, and the advan-
tages of this paper have not been fully utilized. The ODE-
block can select an appropriate step length to approximate
the real solution according to the given error tolerance. Based
on these characteristics, reducing the error tolerance will
increase the number of evaluations of the function, which is
similar to increasing the depth of the model without increas-
ing the parameters of the model. We reduce the error toler-
ance of the ODE-block in the condition of limited
computing resources, and a deep network model can also
be built.

The next research plan is to perform convolution with
a 1x1 convolution kernel for each scale sampled on the
NODEs-UNet network. We will perform multiscale fusion
of all outputs, connect them to the fully connected layer,
and do linear regression. So we can directly output the
number of white blood cells and red blood cells in the
blood image.
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The source code supporting the study will be available from
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1. Introduction

Copyright © 2021 Yan Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the continuous improvement of human living standards, dietary habits are constantly changing, which brings various bowel
problems. Among them, the morbidity and mortality rates of colorectal cancer have maintained a significant upward trend. In
recent years, the application of deep learning in the medical field has become increasingly spread aboard and deep. In a
colonoscopy, Artificial Intelligence based on deep learning is mainly used to assist in the detection of colorectal polyps and the
classification of colorectal lesions. But when it comes to classification, it can lead to confusion between polyps and other
diseases. In order to accurately diagnose various diseases in the intestines and improve the classification accuracy of polyps, this
work proposes a multiclassification method for medical colonoscopy images based on deep learning, which mainly classifies the
four conditions of polyps, inflammation, tumor, and normal. In view of the relatively small number of data sets, the network
firstly trained by transfer learning on ImageNet was used as the pretraining model, and the prior knowledge learned from the
source domain learning task was applied to the classification task about intestinal illnesses. Then, we fine-tune the model to
make it more suitable for the task of intestinal classification by our data sets. Finally, the model is applied to the
multiclassification of medical colonoscopy images. Experimental results show that the method in this work can significantly
improve the recognition rate of polyps while ensuring the classification accuracy of other categories, so as to assist the doctor in
the diagnosis of surgical resection.

of medical images generated every day is uncountable, and
a tomographic slice of the lungs of a patient can generate

Image classification is a task that classifies images into a cer-
tain category according to different features in the image. It is
the core of computer vision to distinguish different categories
of images. Image classification is the basis of other high-level
visual tasks in computer vision, such as target detection,
image segmentation, and face recognition. Image classifica-
tion is widely used in many fields, such as payment method
for face recognition, toll system for license plate recognition,
autonomous driving for traffic safety, and computer-aided
system for diagnosis [1]. In the medical world, the number

dozens of CT images [2]. Therefore, classifying massive med-
ical images is an important step of computer-aided diagnosis
(3, 4].

Medical image classification refers to taking one or more
examination images as input, predicting them through the
trained model, and outputting a diagnostic result indicating
whether a certain disease is suffering or whether the severity
is graded. At present, it has been widely used in epidemic pre-
vention and diagnosis of benign tumors and cancer and to
distinguish between different categories of the same disease
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and other important clinical events [5]. The object of medical
image classification is the image obtained by patients through
various kinds of examination equipment, mainly including
Computed Tomography (CT), X-ray, Magnetic Resonance
Imaging (MRI), and ultrasound image (UI) [6]. In addition,
there are other pathological images as well as endoscopic
images. When a doctor examines disease in the intestine,
the patient generally needs an endoscope to obtain the sur-
face features of the intestine tract to make a diagnosis. The
main manifestations of various lesions in the intestine are
polyps, inflammation, and cancer. Polyps are spherical or oval
pedicled masses protruding from the mucosal surface of the
large intestine. It is a common benign tumor. Inflammation
is manifested as colonic mucosa with extensive hyperemia,
edema, and erosion under a colonoscopy, and it is easy to
bleed when touched, with pus and blood and exudate on the
surface. Cancer is a common malignant tumor in the gastroin-
testinal tract. Cancer protrudes into the intestinal lumen and
has hemorrhage and necrosis on the surface. The classification
of medical colonoscopy images is mainly divided into four cat-
egories: polyps, inflammations, cancer, and normal [7].

The research of image classification technology has
always attracted attention. In recent years, lots of advanced
intelligent classification methods have emerged, and classifi-
cation accuracy has been continuously improved. However,
there are still many problems to be further studied, such as
the difficulty of classification and recognition caused by
image quality and the inapplicability of feature extraction
methods to different images. Traditional medical image clas-
sification methods are mainly based on the neural network,
Bayesian network, decision tree, and other single modes.
With the development of Artificial Intelligence (AI) and the
demand for application in the medical field, deep learning
has become the mainstream image classification framework.
Deep learning simulates the human brain for analytical
learning and uses human brain mechanisms to interpret data.
Convolutional neural networks (CNN) are the most com-
monly used network model for deep learning. It sends images
into the network for training and classifies image data
according to image features. Deep learning requires a large
number of data sets to achieve better classification results
when training network structures, so as to prevent model
overfitting. Due to the complexity and inconvenience of
endoscopy, the requirements for doctors and patients in the
process of examination are extremely high, which leads to
difficulty in the collection of colonoscopy data sets. Aiming
at the problem of model overfitting caused by the small
amount of colonoscopy images trained by deep learning, this
work proposes the use of transfer learning to solve the prob-
lem of deep network training requiring a large number of
data sets. The contributions of this paper are as follows:

(1) Four-classification tasks of the intestinal image are
proposed. In order to accurately distinguish all kinds
of pathologically similar lesions in the intestinal tract,
while improving the classification accuracy of polyps,
the colonoscopy images are divided into four catego-
ries: normal, polyp, inflammation, and cancer, which
increased the diversity of disease types in the classifi-
cation task
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(2) Transfer learning is proposed to optimize classical
deep learning, and a multiclassification model of
endoscopic colonoscopy images based on deep trans-
fer learning was obtained. The pretrained network
model on the natural image is used to fine-tune its
network with the intestinal image to solve the prob-
lem that deep learning training requires a large num-
ber of data sets

3
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Finally, the feasibility of the proposed method was
verified by experiments. Inputting the intestinal
image into the model proposed in this paper, four
classification results were obtained, which signifi-
cantly improved the polyp recognition rate while
ensuring the classification accuracy of other
categories

The following is the structure of this paper. In Section 2,
deep transfer learning and intestinal image classification
tasks are discussed. Section 3 introduces the intestinal data
set and its classification methods used in this work. In Section
4, the classification methods mentioned are experimented
and compared. Section 5 summarizes the work of this paper
and looks forward to future work.

2. Related Work

2.1. Medical Image Classification. Medical image classifica-
tion is the first major contribution made by deep learning
in the field of medical image processing. Medical image pro-
cessing initially focused on unsupervised pretraining and
network structures, such as Stacked Autoencoder (SAES)
and Deep Belief Networks (RBMS). As early as 2013, Suk
et al. [8] proposed a feature representation and stacked auto-
encoder based on deep learning, which combined potential
information with original low-level features and improved
the classification accuracy of Alzheimer’s disease (AD)/Mild
Cognitive Impairment (MCI). With the rise of large-scale
visual recognition challenges such as ImageNet, several excel-
lent deep neural networks have emerged, which promote the
development of deep learning. At present, CNN has always
been the current standard technology in medical image clas-
sification. The pretraining of CNN on natural images has
shown amazing results, challenging the authority of human
experts in certain classification tasks. Many researchers use
classic deep learning networks to improve classification accu-
racy. For example, Gao et al. [9], in order to grade and eval-
uate the severity of nuclear cataract, first clustered the images
to obtain local filters, then sent the learned filters to the con-
volutional neural network and recursive neural network for
further feature extraction, and finally used Support Vector
Machine (SVM) for classification. The results verify that the
model is superior to the latest progress in clinical cataract
classification. Jiao et al. [10] proposed a breast mass classifi-
cation framework based on deep features to solve the prob-
lem of poor performance of the underlying features. The
framework mainly includes a convolutional neural network
and a decision mechanism, which combines enhanced infor-
mation and deep features to simulate the process of doctor
diagnosis to improve classification accuracy. Lin et al. [11]
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proposed a recurrent neural network with an attention model
for sequence labeling; in this test, a hierarchical structure to
incorporate character-level and word-level information is
proposed by applying an attention mechanism to both levels,
and the experiment proves its effectiveness. Since generative
adversarial networks (GAN) were proposed by Goodfellow
and others in 2014, it has occupied a large part of the deep
learning network framework and is one of the most promis-
ing methods for unsupervised learning on complex distribu-
tions in recent years. GAN is composed of two models,
generator and discriminator, and the two models play with
each other to produce relatively good output [12]. The appli-
cation of GAN in the field of medical image processing not
only is limited to medical image classification but also has a
great contribution to segmentation, detection, and enhance-
ment of medical images. In the field of classification, Madani
et al. [13] used the semisupervised learning characteristics of
the generative adversarial networks. First, the authors solved
the problems of medical labeling data scarcity and data over-
fitting and then used the deep generative adversarial network
to learn the vision of the chest X-ray structure to classify
abnormal and normal samples. Frid-Adar et al. [14] pro-
posed a network for the classification of liver diseases. First,
classical data enhancement is used to enlarge the data sets,
and then, GAN technology is used to further expand the size
and diversity of the data. Finally, 182 CT images of liver
lesions are used for verification, and the sensitivity and spec-
ificity of the network are improved after adding synthetic
data enhancement. Ma et al. [15] proposed a blood cell image
classification framework based on Deep Convolutional
Generative Adversarial Network (DC-GAN) and Residual
Network (ResNet).

2.2. Deep Learning. As one of the most cutting-edge scientific
and technological fields, deep learning has always been lead-
ing the progress of science and technology. It simulates the
mechanism of the human brain to interpret data and estab-
lish a neural network for analytical learning. With the advent
of the era of Al, deep learning has begun to shine in the field
of machine learning research and application. The most
notable applications are the fields of computer vision and
natural language processing [16, 17], implemented by
CNN, GAN, and RNN, respectively. Lecun et al. invented
CNN as early as the 1990s. With the success of the ImageNet
competition, more and more researchers have turned their
attention to CNN [18]. Krizhevsky et al. [19], the champion
of the ImageNet competition in 2012, first used the ReLU
activation function, local response normalization, Dropout,
and other tricks; improve the generalization ability of the net-
work; and avoid overfitting of the model. Subsequently,
Simonyan and Zisserman [20] proposed VGG, which is
improved on the basis of AlexNet. The entire network uses
the same size of 3 x 3 convolution kernel, which simplifies
the structure of the neural network. In addition, VGG
increases the number of layers of convolution since increas-
ing network depth can improve network performance. Goo-
gLeNet continues this feature. In order to prevent problems
such as gradient disappearance and overfitting caused by
deepening the number of network layers, the authors intro-

duced the Inception structure. Inception improves the train-
ing results from another perspective and can extract more
features with the same amount of calculation, thereby improv-
ing the training results [21]. In order to solve the problem of
the inability to train when the level is deepened, He et al.
[22] proposed ResNet. The authors use the residual block to
learn the representation of the residual between input and out-
put, and the internal residual block uses shortcut connections,
which alleviate the problem of gradient disappearance caused
by increasing depth in the deep neural network. Huang et al.
[23] proposed Densenet in 2017. Inspired by ResNet and
Highway Networks, the authors transmit information through
a direct connection with a later layer. Its core idea is to estab-
lish the connection relationship between different layers, make
full use of the characteristics of the image, and further alleviate
the problem of gradient disappearance. The recurrent neural
network (RNN) is one of the most common deep learning
algorithms; it has taken the whole world by storm. Almost
all state-of-the-art performance in natural language processing
or understanding is attributed to variants of RNN [24].

2.3. Transfer Learning. Most tasks in medical image process-
ing require doctors to annotate the original image, namely,
GroundTruth. Labeling data is a tedious and expensive task.
Since medical data is related to the privacy of patients, it is
more difficult to build medical data sets. As one of the most
effective methodologies in the current deep learning field,
transfer learning alleviates the above problems. Transfer
learning utilizes the similarity between data, tasks, and
models to apply models trained on natural image classifica-
tion tasks to medical image classification [25].

Long et al. [26] proposed a new adaptive method for the
deep network domain, which can jointly learn adaptive clas-
sifiers and transferable features from labeled data in the
source domain and unlabeled data in the target domain. By
inserting several layers in the deep network to learn the resid-
ual function of the reference target classifier, classifier adap-
tation was realized. Chang et al. [27] proposed a multiscale
convolutional sparse coding (MSCSC) method with unsuper-
vised transfer learning ability. By strengthening scale speci-
ficity and combining automatic learning filter banks at
different scales, the basic knowledge of transferability can
be learned, and finally, the target task can be fine-tuned.
Aiming at the problem of poor application of deep learning
in the diagnosis and treatment of multiple retinal lesions,
Choi et al. [28] adopted the random forest migration learning
method based on the VGG19 structure. The authors found
that transfer learning combined with ensemble classifiers
can improve classification performance to detect multiclassi-
fication retinal diseases. Kaur and Gandhi [29] discussed the
ability of the pretrained model DCNN VGG16 with transfer
learning ability to classify pathological brain images and
replaced the last few layers of the VGG16 model to adapt to
new images in current applications. The verification on the
test set showed good results in sensitivity, specificity, and
accuracy. Hosny et al. [30] proposed a high-performance
automatic skin lesion classification system using transfer
learning and pretrained deep neural network, AlexNet. The
transfer learning is achieved by fine-tuning the weight of



the architecture and replacing the classification layer with the
softmax layer. Talo etal. [31] proposed deep transfer learning
based on ResNet34 to automatically classify normal and
abnormal brain MRI images. The authors use data augmen-
tation, optimal-learning rate finder, and fine-tuning to train
the model. The model obtained 100% of 5 times classification
accuracy on 613 MR images, helping radiologists to perform
daily MR imaging examinations.

3. Materials and Methods

3.1. Materials. Compared with other medical data sets, colonos-
copy images are more difficult to collect, mainly due to the com-
plexity and inconvenience of the inspection method. Endoscopy
is shown in the form of video, and colonoscopy data sets must
be viewed from beginning to end to capture frames with key
information. The popular medical images of enteroscopy mainly
include the Kvasir-SEG intestinal polyp data set (https://www
.simula.no/publications/kvasir-seg-segmented-polyp-dataset)
[32], CRCHisto Phenotypes datasets (https://warwick.ac.uk/fac/
cross_fac/tia/data/crchistolabelednucleihe) [33], and CVC-
Clinic data sets (http://www.cvc.uab.es/CVC-Colon/index.php/
databases/) [34]. Most of these data sets are used for image seg-
mentation, including intestinal diseases mainly polyps and
tumors, and the data types are relatively single.

The experimental data in this paper are from real cases of
patients in the anorectal department of a hospital. The colonos-
copy images of patients were obtained by endoscopy. First,
screening took place to eliminate the unusable data caused by
insufficient bowel preparation and the examination process,
then data cleaning; finally, a small data set is constructed. The
data sets collected 430 intestinal images of patients suffering
from various diseases, which are mainly divided into four cate-
gories: normal, inflammation, polyps, and cancer. Among them,
there are 120 colonoscopy images for normal, 110 colonoscopy
images for inflammation, 108 colonoscopy images for polyps,
and 92 colonoscopy images for tumors. The category label of
each image was obtained by the joint diagnosis of the doctors
in the anorectal department, and the subdivided category and
characteristics were discussed to obtain the final data sets with
the label. Figure 1 is an example diagram of these data sets.

In addition, we have enhanced the data set to increase the
diversity of samples, which also made the trained deep learn-
ing framework have high generalization ability and strong
robustness. Through the four data enhancement methods
of brightness enhancement, contrast enhancement, image
flip, and angle rotation, 480 images of normal category, 440
images of inflammation category, 432 images of polyp cate-
gory, and 368 images of tumor category were obtained,
respectively. Figure 2 is the result of data enhancement after
randomly selecting one of the images. We randomly select
80% of the pictures from the data set as the training set for
training and 20% of the pictures as the test set for testing.
The distribution structure is shown in Table 1.

3.2. Methods

3.2.1. Multiclassification Task Based on Transfer Learning.
Transfer learning refers to the process of knowledge transfer
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in two different domains. The knowledge learned in the
source domain S is used to help the learning task in the target
domain T, and the number of training samples in the source
domain is generally far greater than that in the target domain.
Generally speaking, according to different ways of transfer,
transfer learning is divided into inductive transfer learning
and transduction transfer learning. This paper uses inductive
transfer learning [35]. The specific implementation ideas are
summarized as follows: Firstly, a pretraining model with
good generalization performance is obtained by training the
deep learning model on the large-scale image classification
data set, ImageNet 1000. Then, inductive transfer learning
was used to transfer these pretraining models to the intestinal
multiclassification model to reduce the training burden of
insufficient colonoscopy images in our task. Finally, the
model was adjusted and updated by using the established
colonoscopy four-classification images to improve the classi-
fication accuracy.

(1) Pretraining Model Processing. The classic classification
deep learning model is used as the classification backbone
network to generate the corresponding pretraining model.
The essence of generating the pretraining model is to train
the data set of the source domain from the beginning using
the classification network model. For different layers of
CNN, the image features learned by each layer are different.
The features learned in the shallower layer are more general,
and the features learned in the deeper layer are more relevant
to specific tasks. In Figure 3, the shallowest common feature
“lines” are the same for the classification task of faces, cars,
elephants, and chairs [36]. ImageNet 1000 classification is a
subset of ImageNet, with a training set of about 1.2 million
pieces, a verification set of 50,000 pieces, and a test set of
100,000 pieces. It belongs to 1,000 different categories, and
each image is strictly manually screened and labeled. Multi-
classification of a variety of images is implemented on the
ImageNet data set, which is more suitable for the target task
of this paper. Therefore, we chose to use the model trained on
ImageNet 1000 classification to save it as a pretraining
model.

(2) Transfer the Pretraining Model. The pretraining model
used in this paper is a deep neural network, in which the
mobility of each layer is not the same. In general, the lower
layers of the network learn some general low-level features,
the middle or higher layers learn abstract high-level semantic
features, and the last layers generally learn task-specific fea-
tures. Therefore, according to the feature of the target task
and its relevance to the source domain, different layers of
the pretraining model can be selected to transfer to the target
task. In network training, the initial weight and bias of the
convolutional layer are randomly assigned, and the quality
of this value directly affects the final performance of the
model to a large extent. Therefore, we give the convolutional
layer an initial weight and bias and then continuously adjust
to the task itself based on the feedback of the network. In this
paper, the convolutional layer of other pretrained models is
transferred to the colonoscopy image classification task, and
the fully connected layer is retrained.
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FIGURE 1: Sample images of four types of colonoscopy in the data set.

Brightness Contrast enhancement Image flip Original image
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FiGure 2: The effect of data enhancement.

TaBLE 1: Distribution of test and training data.

Angle rotation

Data category Normal Inflammation Polyp Cancer Total quantity

Number of test sets 120 110 110 435

Number of training sets 480 440 430 1715
2150

Total quantity 600 550 540
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FIGURE 3: Features learned from different object classes.

(3) Fine-Tuning. Fine-tuning is essential for a successful deep
transfer learning model. The parameters of the pretraining
model were adjusted by the similarity of the data between
the pretrained data set and the colonoscopy image data set.
During this process, we made several attempts. As shown in
Figure 4, the ImageNet 1000 classification model is on the left
and the colonoscopy classification model is on the right. In
this paper, the weight and bias of the initial convolutional
layer of the pretraining model remain unchanged, and only
the fully connected layer related to the final output classifica-
tion result is modified. The training model was adjusted by
using the four-classification data of colonoscopy to find an
optimal parameter of the full connective layer. Finally,
according to the classification results, the best match between
the convolutional layer and the fully connected layer is
found, and the best parameters of the fully connected layer
are saved to obtain an optimal complete model.

3.2.2. Deep Learning Model Based on Transfer Learning. The
mainstream deep learning model in medical image classifica-
tion tasks is mainly CNN. Since the development of CNN,
there have been many types of excellent network frame-
works. Among them, several classic models have milestone
significance in the development of CNN, such as LeNet,
AlexNet, VGG, and GoogLeNet. For the data sets and tasks
used in this paper, we choose AlexNet, VGG, and ResNet as
the backbone network from the depth of the network. This
section discusses the deep convolutional network we use
based on transfer learning.

The AlexNet network itself uses many modern deep con-
volutional network technical methods, and its network struc-
ture is shown in Figure 5. It uses Dropout to alleviate the
occurrence of overfitting problems and make the model more
generalized. The GPU is used for parallel training, so that the
model can be trained quickly. In addition, AlexNet amplifies
the data set by making small changes to the original image

and uses data enhancement to improve the accuracy of the
model. Therefore, AlexNet embodies unique advantages in
solving large-scale data classification problems [19]. We used
AlexNet for the transfer learning of ImageNet 1000 classifica-
tion, and the AlexNet parameters trained by ImageNet were
transferred to the intestinal image training task. When ini-
tializing the convolutional layers of the first five layers, the
existing parameters are used, while random initialization is
used in the full connection layer of the last three layers, and
then, adjustments are made according to the intestinal data
set.

According to the size of the established data set, AlexNet
is beneficial to improve classification accuracy. In addition,
AlexNet uses ReLU as the activation function to solve the sit-
uation where the gradient disappears when the Sigmoid func-
tion is backpropagated, which is conducive to the training of
the model. The formula is as follows:

f(x) = max (0, x). (1)

When VGG is used for large-scale image classification, it
can be extended to various tasks and data sets. According to
the characteristics of our task, VGG, which is suitable for
arbitrary classification, is applied to the four classifications
of intestinal image. VGG emphasizes the depth in the design
of convolutional neural networks, and the accuracy of Ima-
geNet 1000 classification is also different for different net-
work depths. VGG uses a smaller convolution kernel to
replace a large-size convolution, which saves computing
resources, thereby setting aside resources for deepening the
network. There are 5 convolutions in VGG; each convolu-
tional layer is followed by a pooling layer. The network struc-
ture is shown below. The expansion performance of its
network is more prominent; there are mainly two commonly
used layers, VGG16 and VGGI19. We use VGG16 and
VGG19 to set an initial value for the convolution layer in
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TaBLE 2: Classification results on the traditional deep learning model.
Model Normal (T/total) Inflammation (T/total) Polyp (T/total) Cancer (T/total) Accuracy (%)
AlexNet 3/12 5/11 8/11 2/9 41.86
VGGI16 10/12 4/11 10/11 8/9 74.42
VGGI9 11/12 9/11 7/11 1/9 65.12
ResNet50 11/12 10/11 10/11 5/9 83.72
ResNet101 9/12 9/11 6/11 8/9 74.42

the two models by training on ImageNet 1000 classification
and do not deal with other layers. The concise structure of
VGG16 and VGG19 makes its migration performance good,
and the process of migrating to other data sets is simple [20].

Considering that the gradient disappears more obviously
with the increase in the number of layers of the neural net-
work during the training of intestinal image, we considered
using ResNet with a residual structure to obtain better results
[22]. ResNet was trained by using ImageNet, the pretraining
data set we selected. Since its network is no longer a simple
stacked structure, it solves the problem of less and less obvi-
ous gradients caused by the increase in the number of net-
work layers. The formula is defined as follows:

y=F(x{w}) +x (2)

where x and y are the input and output vectors of this layer.
The F(x, {w;}) function represents the remaining mappings
to be learned. The obtained ResNet pretraining model solves
the problems of information loss and loss to some extent. By
directly passing the input information to the output, the
integrity of the information is protected and the learning
objectives and difficulty are simplified.

4. Experimental Results and Analysis

In this section, we discuss the results obtained when the pro-
posed multiclassification method based on deep transfer
learning is applied to the proposed colonoscopy image data
set. In order to prove that our proposed method is feasible,
we selected multiple commonly used deep learning networks
to compare the performance of each network. The parameter
setting of the experiment is introduced in detail below, and
results of the experiment are analyzed at last.

4.1. Setting of Experimental Parameters. This experiment is
based on Tensorflow and runs under the Ubuntu 16.04.5
LTS system. The hardware includes AMD Ryzen 5 1600
Six-Core Processor, NVIDIA GeForce GTX 1080 GPU.

(1) Size Selection. The size of the data set is not uniform.
The average width, maximum width, and minimum
width are 780, 886, and 750, respectively. The average
height, maximum height, and minimum height are
655, 729, and 599, respectively. The original shape
of the intestinal wall will be destroyed after cutting
from the colonoscopy image. However, without cut-
ting, the size of the colonoscopy image cannot be uni-
fied, and it is difficult to use deep learning for

classification learning. Considering that the back-
ground of colonoscopy images is a mostly round-
like intestinal wall, the original image size is changed
to a size of 224 x 224 through the resize operation.
The bit depth of the image is uniformly modified to
24. In order to maintain the integrity of the intestinal
wall in the image while making the data meet the
input requirements of the model in this paper, we
unified the data size to 224 x 224 x 3.

(2) Function Selection. As a classic loss function in classi-
fication tasks, cross-entropy can avoid gradient dis-
persion when performing gradient descent
calculations, resulting in a decrease in the learning
rate. It makes the learned model distribution closer
to the real data distribution, thereby improving the
accuracy of multiclassification. ReLU is selected as
the activation function. Compared with Sigmoid
and Tanh, the actual convergence speed is faster
and there is no complex exponential operation,
which makes the network training faster. After com-
paring several optimization functions: ADAM,
RMSProp, and SGD, we finally choose SGD as our
optimization function.

(3) Migration Layer Selection. Considering that all the
layer features in the original task do not promote
the target task, only partial layer migration is carried
out. We choose to use all the convolutional layer
parameters obtained on the pretrained model to train
the fully connected layer in the target domain after
migration.

(4) The Other. During model training, the batch size was
64, the epoch was equal to 10000, and the learning
rate was set to 0.0001.

4.2. Analysis of Experimental Results. To demonstrate the
effectiveness of our proposed model, we evaluated the perfor-
mance of the target model through repeated validation. We
divide the experiment into four groups, do not add transfer
learning and data enhancement, add data enhancement with-
out transfer learning, only add transfer learning without data
enhancement, add transfer learning and data enhancement,
and compare and analyze the impact of each strategy on
accuracy. The classic deep learning models used in the
experiment include AlexNet, VGG16, VGG19, ResNet50,
and ResNet101.

In this experiment, we compared the classification accu-
racy of the traditional deep learning model and the proposed
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TasLE 3: Classification results on the deep transfer learning model.

Model Normal (T/total) Inflammation (T/total) Polyp (T'/total) Cancer (T/total) Accuracy (%)

AlexNet-tl 6/12 6/11 8/11 4/9 55.81

VGG16-tl 10/12 7/11 10/11 719 79.07

VGG19-tl 9/12 8/11 8/11 5/9 69.77

ResNet50-tl 11/12 10/11 10/11 8/9 90.70

ResNet101-tl 10/12 9/11 8/11 8/9 81.40
TaBLE 4: Classification results of traditional deep learning model based on data enhancement.

Model Normal (T/total) Inflammation (T/total) Polyp (T/total) Cancer (T/total) Accuracy (%)
AlexNet 81/120 47/110 69/110 23/95 50.57
VGG16 112/120 67/110 79/110 76/95 76.78
VGGI19 101/120 47/110 83/110 61/95 67.13
ResNet50 109/120 97/110 96/110 79195 87.59

ResNet101 106/120 88/110 90/110 63/95 79.77
TaBLE 5: Classification results of deep transfer learning model based on data enhancement.

Model Normal (T/total) Inflammation (T/total) Polyp (T'/total) Cancer (T/total) Accuracy (%)
AlexNet-tl 89/120 56/110 79/110 31/95 58.62
VGG16-t 119/120 72/110 87/110 82/95 82.76
VGG19-tl 106/120 52/110 91/110 67195 72.64

ResNet50-tl 115/120 106/110 102/110 88/95 94.48
ResNet101-tl 111/120 95/110 98/110 72/95 86.44

TaBLE 6: Comparison of classification models on traditional deep learning models and deep transfer-based learning.

Model AlexNet VGG16 VGG19 ResNet50 ResNet101

ode Traditional Our Traditional Our Traditional Our Traditional Our Traditional Our
Acc (%) 41.86 55.81 74.42 79.07 65.12 69.77 83.72 90.70 74.42 81.40
Acc-DA (%) 50.57 58.62 76.78 82.76 67.13 72.64 87.59 94.48 79.77 86.44

TaBLE 7: Comparison of transfer learning and standard machine
learning.

Probability

Learning t A
earning type distribution

Sample space

Standard machine
learning

ps(%:¥) =pr(x:y)

Xs =X Ys =V

Transfer learning Xg # X1 O Yg # Y OF (%, ¥) # pr(%. )

solution. The experimental results obtained are as follows.
The models proposed in this paper have better performance
than traditional deep learning models.

First of all, we trained each classical deep learning model
from beginning to end to apply the four classifications of
colonoscopy images without any data enhancement and
transfer learning in the textual colonoscopy data set. Sec-
ondly, in order to compare the effect of transfer learning,
we used the model of transfer learning training to get another
set of results. Due to the small amount of data, if the data set

is divided into 8 training sets and 2 test sets, the experimental
results show that the model is easy to overfit. Therefore, 90%
of the 430 data sets were randomly selected in this paper as
the training set and 10% as the test set, and the results are
obtained as shown in Tables 2 and 3, respectively. Tables 2
and 3 describe the number and accuracy of the correct classi-
fication of the four categories on each model, where T repre-
sents that the actual category is identical to the predicted
category.

On the basis of data enhancement of the data set, we use
the multiclassification model based on deep transfer learning
proposed in this paper for training. By comparing the data
enhancement strategy training model and the transfer learn-
ing combined with the data enhancement strategy training
model, the effectiveness of transfer learning is verified. Since
the amount of data has increased after data enhancement,
this paper divides the data set according to 8 : 2 of the training
set to the test set. The results shown in Tables 4 and 5 were
obtained, respectively.

The experimental results under the two models are com-
pared, as shown in Table 6. Due to the small number of data
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sets and the difference in the number of classifications from
the widely used diconomies in the conventional models, the
classification effect of the traditional deep learning model is
poor. In the same data set, it can be seen that accuracy of
the model using transfer learning is greatly improved com-
pared with the traditional deep learning model.

Deep learning requires a large number of data sets for
training to prevent overfitting of the model, and such a large
amount of data is more beneficial to transfer learning. Sup-
pose the sample space of a machine learning task T is x x y,
where x is the input space and y is the output space, and its
probability density function is p(x, y). Learn from the statis-
tical point of view; a machine learning task T is defined as a
modeling problem of conditional probability p(y | x) in a
domain D. Table 7 shows a comparison between transfer
learning and standard machine learning. Therefore, the

results of transfer learning are better than traditional deep
learning models.

We output the confusion matrix of the four classification
results of each model in the intestine, as shown in Figure 6.
Among them, 0 represents cancer, 1 represents inflamma-
tion, 2 represents normal, and 3 represents polyps. Among
the five transfer learning models, ResNet50-tl has the best
performance compared with the other models, with a perfor-
mance of 94.48%. ResNet50 improves the accuracy of the
network by using residuals to deepen the network structure.
VGG only increases the depth of the network by simply
superimposing the convolutional layer, which leads to the
disappearance of the model gradient; thus, the classification
accuracy is not high. Compared with the scale of the data
set used in this paper, ResNet101 has too many layers in
the network, which easily leads to overfitting of the model.
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Among the four types of colonoscopy images, polyps were
correctly diagnosed more often than the other two types of
diseases except for normal types. The characteristics of polyp
lesions are outstanding, and feature extraction is used. Under
the condition of ensuring the classification accuracy of other
categories, the model can improve the number of polyp diag-
nosis and assist doctors in making judgments. Therefore, it is
confirmed through experiments that the ResNet four-
classification of intestines based on transfer learning allevi-
ates the problem of small data sets in medical image process-
ing. Transfer learning makes the model more robust and
generalizable, which is of great clinical value.

5. Conclusion and Prospect

At present, with the continuous improvement of medical
technology, computer-aided diagnosis has occupied an
important position in the medical industry. In particular,
the combination of deep learning and medical image pro-
cessing has been deeply explored by many researchers. In this
interdisciplinary field of integrated medical imaging, mathe-
matical modeling, digital image processing, and so on, there
are still many complex and diverse problems that need to
be solved urgently.

In medical image analysis, the cost of data acquisition
and annotation is high, and it is very difficult to construct a
large-scale standard data set, which hinders the development
of medical image diagnosis. The common solution is to use
data enhancement techniques common in deep learning,
such as geometric transformation and color transformation.
This paper proposes a deep learning framework based on
transfer learning for multidisease colonoscopy image classifi-
cation. The network model with better training results on
natural images is transferred to the specified classification
task, and the existing data sets are used to fine-tune the tasks.
Finally, the feasibility of the proposed method is verified by
experiments. Using this method can help us save training
time and improve learning accuracy. Generally, pretrained
models are trained on a large data set, which invisibly
expands our training data sets and makes the model more
robust and capable of generalization.

With the development of deep learning, deep transfer
learning will be widely used to solve many challenging prob-
lems. However, transfer learning also has its shortcomings.
For example, categories that exist only in the source domain
but not in the target domain will have a negative transfer
impact on the transfer result. Therefore, we need to go one
step further and develop different strategies of transfer learn-
ing for the deep network.
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Semantic segmentation plays a crucial role in cardiac magnetic resonance (MR) image analysis. Although supervised deep learning
methods have made significant performance improvements, they highly rely on a large amount of pixel-wise annotated data, which
are often unavailable in clinical practices. Besides, top-performing methods usually have a vast number of parameters, which result
in high computation complexity for model training and testing. This study addresses cardiac image segmentation in scenarios
where few labeled data are available with a lightweight cross-consistency network named LCC-Net. Specifically, to reduce the
risk of overfitting on small labeled datasets, we substitute computationally intensive standard convolutions with a lightweight
module. To leverage plenty of unlabeled data, we introduce extreme consistency learning, which enforces equivariant constraints
on the predictions of different perturbed versions of the input image. Cutting and mixing different training images, as an
extreme perturbation on both the labeled and unlabeled data, are utilized to enhance the robust representation learning.
Extensive comparisons demonstrate that the proposed model shows promising performance with high annotation- and
computation-efficiency. With only two annotated subjects for model training, the LCC-Net obtains a performance gain of 14.4%

in the mean Dice over the baseline U-Net trained from scratch.

1. Introduction

Medical image analysis plays an increasingly important role
in routine clinical work. Magnetic resonance imaging
(MRI) is a noninvasive technique for investigating cardiac
structures, thus widely used in clinical diagnosis and treat-
ment. Segmentation of the left ventricle (LV), right ventricle
(RV), and the myocardium (MYO) from cardiac MR images
can provide crucial diagnostic parameters about the cardiac.
Recently, convolutional neural networks (CNNs), mostly
tully convolutional networks (FCNs) [1, 2], have made sub-
stantial progress for cardiac image segmentation [3]. How-
ever, the current supervised-learning models rely heavily on
a large amount of manually labeled data for model training
to achieve competitive performance. Unfortunately, manu-
ally labeling cardiac MR images is time-consuming and
labor-intensive and requires strong domain knowledge from
experts. Moreover, most of the top-performing methods are
deep and wide convolutional neural networks involving a

massive number of training parameters, which not only
increases the chance of overfitting but also hinders their
applications in clinical routines. To address the above prob-
lems, we introduce a lightweight deep network for semisu-
pervised segmentation of cardiac images. Our model is
trained only on a few labeled subjects and a more consider-
able number of unlabeled subjects.

There are generally two paradigms to make use of unla-
beled data. The first one is unsupervised or self-supervised
pretraining, followed by fine-tuning on a small set of labeled
data. The second paradigm is to jointly use the labeled data
and unlabeled data through pseudo labeling [4] or consis-
tency regularization [5-8]. Since there is an obvious gap
between the objectives of the unsupervised pretraining and
the downstream segmentation, the effect of unsupervised
pretraining is not always significant. In this study, we follow
the second paradigm and make use of the unlabeled data by
enforcing consistency regularization on the supervised
model, aiming to improve the generalization ability of the
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supervised trained model and reduce the risk of overfitting.
Consistency regularization encourages the segmentation pre-
diction to be consistent on the unlabeled examples under dif-
ferent data perturbations or among different models. We
follow the studies in [6, 9, 10] and enforce consistency among
different models’ predictions. Both strong and weak pertur-
bations are applied.

In this study, we propose a lightweight network, LCC-
Net, for semisupervised segmentation of cardiac MR images
based on consistency training cross models. To be specific,
our model, as shown in Figure 1, consists of one shared
encoder and three separate decoders: one decoder for super-
vised learning and the other two decoders for unsupervised
consistency learning. Following a similar strategy as in [6],
different perturbations are injected on the two unsupervised
decoders. We enforce consistency between the predictions of
the supervised decoder and unsupervised decoders to make
the learned model less sensitive to the extra perturbation.
To further improve model robustness and reduce the risk
of overfitting, we augment the input data, both the labeled
and unlabeled data, with extreme perturbations realizing sig-
nificant gains. While the previous semisupervised models
suffer from a massive scale of parameters and high computa-
tional complexity, we lighten our model with the lightweight
Ghost module introduced in [11]. Moreover, we validate the
proposed method on the ACDC [12] dataset.

The rest of the paper is organized as follows. In Section 2,
we briefly review the related work. Section 3 presents the pro-
posed method, which is evaluated on challenging cardiac seg-
mentation tasks in Section 4. Section 5 concludes this study.

2. Related Work

2.1. Cardiac MR Image Segmentation Methods. For cardiac
MR image segmentation, Painchaud et al. [13] presented a
postprocessing VAE [14], which converts anatomically inva-
lid cardiac shapes into close but correct shapes for introduc-
ing strong anatomical guarantees into the network. Khened
et al. [15] proposed Densely Connected Fully Convolutional
Network (DFCN), which is based on DenseNets [16]. Yang
et al. [17] proposed a general and fully automatic solution
to concurrently segment three important ventricular struc-
tures, starting from 3D Fully Convolutional Network (3D
FCN). Simantiris and Tziritas [18] proposed a different
Dilated CNN structure that incorporating domain-specific
constraints. Isensee et al. [19] combined 2D U-Net and 3D
U-Net, obtaining the best performance on the ACDC dataset.
However, due to the combination of two different models,
the numbers of model params is enormous. All these
methods base on supervised learning proposed a series of
efficient methods from different perspectives. When it comes
to semisupervised cardiac MR image segmentation methods,
there are still limitations for obtaining remarkable perfor-
mance because cardiac MR image segmentation is a particu-
lar issue, including unique data distribution and difficult
segmentation tasks.

2.2. Semisupervised Learning Methods. As for general semisu-
pervised learning, many methods are proposed to reduce the
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burden of pixel-wise manual annotations for images, such as
pseudo labeling [1], graph-based methods [20, 21], and
entropy minimization [5]. Besides, mean-teacher [9] is
another notable paradigm for semisupervised learning, which
could be used in medical image segmentation. The mean-
teacher model has two subnetworks: the teacher network
and the student network, and learn cross-consistency from
unlabeled data by exerting different perturbances on the two
subnetworks. Yu et al. [22] proposed the uncertainty-aware
mean teacher (UA-MT) framework, learning from the mean-
ingful and reliable targets by exploiting the uncertainty infor-
mation. Adversarial learning [23] methods are aimed at
matching labeled and unlabeled images and improving testing
time performance. Hung et al. [24] proposed a novel method
in semisupervised semantic segmentation by introducing
adversarial learning. Nie et al. [25] proposed attention-based
semisupervised deep networks (ASDNet), where they inte-
grated adversarial learning by a confidence network. Virtual
Adversarial Training (VAT) [26] utilizes adversarial learning
from a novel perspective and alters the model’s predictions
the most by approximating the perturbations. Laine and Aila
[10] introduced consistency regularization into semisuper-
vised learning, including 7-model [10] and temporal ensem-
bling method [10]. Bortsova et al. [27] proposed a novel
semisupervised method that learns to predict segmentations
consistent under a given class of transformations on both
labeled and unlabeled images. The above methods enforce
the consistency between predictions and provide critical data
information to the supervised trained model. Besides, a
series of strong data augmentation methods are proposed
for overcoming the limitation of labeled training data, such
as MixUp [28], CutMix [29], and Mosaic [30]. CowMix
[31] starts from MixUp and enforces the consistency
between the mixed outputs and the prediction over the
mixed inputs. All the above data augmentation methods
have made efforts to semisupervised learning by increasing
training data diversity.

2.3. Lightweight Deep Networks. Current existing lightweight
methods for networks can be divided into model compres-
sion and lightweight architecture design. We mainly review
methods designing lightweight architectures, which are more
related to our study. The increasing need to deploy deep
models on computationally limited platforms and process
large-scale data encourages lightweight architecture design.
A series of lightweight convolutional modules have been pro-
posed to balance the model performance and computational
complexity. In particular, depth-wise convolution [32] and
group convolution [33, 34] have gained much attention and
have been building blocks for many lightweight architectures.
MobileNet [35] used depth-wise separable convolution [32],
a combination of depth-wise convolution and point-wise
convolution, to build a lightweight model. ShuffleNet [36]
is presented with point-wise group convolution and channel
shuffle, which improves the information flow exchange
between channel groups. Recently, Han et al. [11] proposed
GhostNet with a novel Ghost module, which utilizes group
convolution to further explore correlation and redundancy
between feature maps. The GhostNet has shown higher
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FIGURE 1: Overview of our LCC-Net for semisupervised segmentation. The network contains one supervised decoder and two unsupervised
decoders. While the supervised decoder is trained with the labeled data, the two auxiliary decoders are trained with both labeled data and
unlabeled data using unsupervised consistency losses. We inject dropout perturbation and noise perturbation in the feature space and

inject cutting and mixing perturbation in the input image space.

recognition performance in natural images but has not been
applied in medical image segmentation tasks.

3. Methods

3.1. Problem Formulation. We aim to develop a deep network
model for semantic segmentation of cardiac MR images with
only a few annotated subjects and a larger set of unlabeled
subjects. We segment cardiac MR sequences in a slice-by-
slice manner. Assume 9, = {X', Y’} denote the labeled data,
in which X'={x,x},---,x.} contains n image slices, and
Yi={, 9, -yl } is ground truth. @, ={x% .-, x"}
denotes m unlabeled examples. Usually, the number of unla-
beled slices is much larger than labeled ones (m > n). Making
better use of unlabeled data is a critical part of training a
semisupervised segmentation network with better generali-
zation ability on unseen data.

An overview of the proposed LCC-Net is demonstrated
in Figure 1. We leverage the unlabeled data during supervised
segmentation model learning and encourage segmentation
consistency on all data under different perturbations with
two unsupervised consistency losses. Our segmentation net-
work is in encoder-decoder architecture. Specifically, the
LCC-Net contains a shared encoder E and three independent
decoders: the supervised decoder D, the dropout decoder Dp,,
and the noise decoder Dy,. The encoder E and the decoder Dy
constitute the segmentation network f¢= Dgo E. While the
supervised decoder Dy is trained with the labeled data, the
two auxiliary decoders are trained with both labeled data
and unlabeled data.

We inject perturbations in both the feature space, i.e., the
output of the feature encoder E and the input image space.

(i) For perturbations in the feature space, we use two
perturbations: dropout perturbation P, and noise
perturbation Py. The dropout decoder Dj, and noise
decoder Dy, are used to decode the two perturbed
versions of features, respectively. We enforce the
consistency of predictions between the supervised
decoder Dy and the auxiliary decoders D, and Dy,
with unsupervised consistency losses. These two aux-
iliary decoders together with the encoder and feature
perturbations constitute the two auxiliary networks
fp=DpePpeEand fy =Dy e Py E. In the experi-
ments, we use Gaussian noises for the noise perturba-
tion Py and 10%-40% spatial random dropout for the
dropout perturbation P,

~—

(ii) For perturbations in the image space, we use a stron-
ger perturbation P to achieve better model robust-
ness. Specifically, we exploit an adapted version of
the Cutmix [29], as illustrated in Figure 2. Given
two input images, we first split the images into four
blocks of equal size. Then, we randomly exchange
one or two blocks on the corresponding positions
between the two images. When the two input images
are labeled, the corresponding operations are also
applied to their label images

We apply the cutting and mixing perturbation on both
the labeled data and unlabeled data as a data augmentation
to the original data. In addition to the (augmented) unlabeled
data, we also feed the perturbed labeled data to the auxiliary
networks and enforce cross-model consistency.

3.2. Supervised Training on Few Labeled Data. The segmenta-
tion network f¢=DgeE is trained with the (augmented)
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FiGurek 2: lllustration of the input space perturbation P used in our study. (a) The cardiac MR images. From left to right: original image A,
original image B, the perturbed image A', and the perturbed image B’. (b) Their corresponding label images. We evenly split an image into
four blocks and then randomly exchange one or two blocks on the corresponding positions. The same operations are applied on their ground

truth label images, as in (b). Best view in color.

labeled data using a cross-entropy- (CE-) based supervised
loss. We also denote the augmented labeled data as &, U 9,
where 9 is generated by perturbing the images in J; using
cutting and mixing P.

1
L= —— leg (%5 9)s 1
S ‘glugl/ Z CE(lyl) ( )

(%7, €2UZ)

where I denotes the cross-entropy loss. The input image x!
can be the original image and its perturbed version.

3.3. Unsupervised Cross-Consistency Training. As mentioned
above, we enforce cross-model consistency between the pre-
dictions of the supervised decoder Dg and the auxiliary
decoders Dy, and Dy with an unsupervised consistency loss.
We denote the augmented unlabeled data as &, U 9., where
D, is generated by perturbing the images in 9, using cutting
and mixing P.. The two auxiliary networks f, and f take
both the (augmented) unlabeled data 9,U 2. and the
perturbed labeled data ;. The two auxiliary networks are
trained with the following loss.

1

MRENEATE

X49,)€D,U, 0P (2)

[A(fs(x) Fo(xi) +d(fs(x) fy (%))

where the distance measure d is used to measure the consis-
tency of the predictions by different models. In the experi-
ments, we use mean squared error (MSE) as the distance
measure.

3.4. The Overall Loss. By integrating the supervised loss and
unsupervised loss, the loss of our LCC-Net reads

L =S+ ALy, (3)

in which A is the trade-off parameter. In the experiments, we
choose an exp-schedule function as follows:

Mepoch) = min (A Ay X XFHIRD) (4

max’ “*max

in which epoch as current training epoch, stop is the max
number of epochs to stop increasing A, and A, is an
upbound of A.

X

3.5. The Backbone of the LCC-Net. To avoid overfitting on the
small labeled data, we introduce a lightweight segmentation
U-Net (L-Unet) as our backbone network, which is demon-
strated in Figure 3. The network is an encoder-decoder with
skip-connections between the corresponding layers of the
encoder and decoder. To lighten the U-Net, we upgrade the
U-Net with lightweight convolutional modules. More pre-
cisely, we replace the standard convolutions in U-Net with
the Ghost module [11], which involves much fewer parame-
ters and computation costs. The Ghost module is shown in
Figure 4. For a feature map F € R*“, in which a is the
channel number, and h x w is the spatial size, we first com-
press F into F' € R by using a standard 3 x 3 convo-
lution, where b is the channel number of the final output, and
s is the ratio. Then, we apply s(=4) linear transformations,
including one identity transform, on each channel of F’ sep-
arately to generate s groups of new features, each of which
contains b/s feature maps. The linear transformations are
achieved with 3 x 3 convolutions. At last, we concatenate all
the generate feature maps and obtain the final output F €
R”®_ Note that the computation costs of the linear trans-
formations are much lower than standard convolutions.
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FIGURE 3: The backbone network of our proposed model, L-Unet. Instead of standard 2D convolutions, the L-Unet uses the Ghost module

[11] as the basic building block.

Conv

FiGURE 4: The architecture of Ghost module [11], which uses a
series of cheap transformation operations to generate ghost feature
maps, which results in significantly reduced computational
complexity.

The model size of the L-Unet is only 8.7 M, which is four
times less than that of the U-Net (35.5 M).

4. Experiments and Results

In this section, we conduct a series of experiments to evaluate
the proposed LCC-Net’s performance for semisupervised
cardiac segmentation.

4.1. Dataset and Evaluation Measure. ACDC Dataset. We
first utilize ACDC (Automated Cardiac Diagnosis Challenge)
[12] dataset in our experiments, which belongs to a cardiac
MR images segmentation challenge in MICCAI 2017. The
ACDC dataset includes the short-axis cine-MRI of 150 sub-
jects acquired from the University Hospital of Dijon using
two MR scanners of different magnetic strengths. Left ventri-
cle (LV), right ventricle (RV), and myocardium (MYO) were
manually annotated by clinical experts on end-diastolic (ED)

and end-systolic (ES) phase instants. The organizer of the
ACDC splits the whole dataset into two subsets: (1) 100 sub-
jects with available ground truth and (2) 50 subjects without
ground truth for online testing.

We use the 100 labeled subjects (including 1902 image
slices) for model evaluation. We randomly selected 20 sub-
jects (containing 380 slices) as the testing set. The remaining
80 subjects are used as the union of the labeled data and unla-
beled data. Specifically, we randomly select K subjects (2, 4, 6,
and 10) for model training and the remaining 80- K subjects
as the unlabeled data.

Evaluation Criteria. Our experiments utilize the Dice
Coeflicient (DICE) and Hausdorff distance (HD) as the eval-
uation criteria. Given the ground truth X and the prediction
Y, DICE, which evaluates the region overlap of different
segmentations, is defined as

2XNY]

DICE= ————.
|[XuY|

(5)

The HD is defined as

HD(X,Y) = max {rzlea)l(xE(a, Y), r?g,XE(b’ X)}, (6)

where E(a, X) is the Euclid distance between a and X.

4.2. Implementation Details. We implemented our experi-
ments on the framework of PyTorch [37] on one GTX 1080
GPU with 8 G memory. We used the adaptive moment esti-
mation (Adam) optimizer with the learning rate of 5x 10~
initially, decreasing by 0.5 in epochs 200, 1000, 1500, 1800,
and 2100. Moreover, the batch size was set as 4 because of
the limitation of the GPU. The maximum epochs of itera-
tions were set as 3000, and A, was set as 0.4. Data
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TaBLE 1: Comparative study of the proposed LCC-Net on the ACDC dataset. We randomly selected 2 subjects as the labeled data and the
remaining 78 subjects as the unlabeled data. The models are tested on 20 unseen subjects. P denotes the perturbations in the feature
space, Py, denotes the noise perturbation in the feature space, and P}, denotes the dropout perturbation in the feature space.

DICE (%) Hausdorft (mm)
Method Labeled data LV RV MYO Mean LV RV MYO Mean
U-Net (upbound) 80 subjects 93.2 85.8 88.9 89.3 22 4.8 2.8 3.3
U-Net (baseline) 76.1 24.7 69.1 56.6 9.2 17.0 11.4 12.5
L-Unet 69.9 36.7 60.2 55.6 10.7 19.2 12.7 14.2
LCC-Net w/o P 78.2 52.0 69.6 66.6 7.8 16.6 9.8 114
2 subjects
LCC-Net w/o Py 78.0 54.8 70.7 67.8 5.8 11.3 7.8 8.3
LCC-Net w/o P, 80.6 53.6 73.0 69.0 5.6 119 6.9 8.1
LCC-Net 82.0 58.1 73.0 71.0 4.3 13.9 6.3 8.2
(a) Ground truth (b) LCC-Net w/o Py (c) LCC-Net w/o P, (d) LCC-Net
FIGURE 5: Visualization of the performance of the ablated versions of our LCC-Net.
TaBLE 2: The impact of the number of the labeled subjects. The results are tested on the ACDC dataset.
Labeled data Method LV (%) RV (%) MYO (%) Mean (%)
. U-Net (baseline) 76.1 24.7 69.1 56.6
2 subjects
LCC-Net 82.0 58.1 73.0 71.0
) U-Net (baseline) 79.6 51.7 71.1 67.5
4 subjects
LCC-Net 85.0 69.3 76.9 77.1
) U-Net (baseline) 83.4 62.3 74.0 73.2
6 subjects
LCC-Net 85.0 74.5 79.3 79.6
. U-Net (baseline) 82.1 70.1 76.6 76.3
10 subjects
LCC-Net 87.4 77.0 82.8 824
Fully supervised (80 subjects) U-Net (baseline) 93.2 85.8 88.9 89.3

augmentation, including affine transform, random rotation,
and random intensity shift, was used. All the images were
resized to 160 x 160, and the intensity range of each image
was rescaled to [0, 1].

4.3. Segmentation Performance

4.3.1. Comparative Results of the LCC-Net. We first conduct a
comparative study to identify the effectiveness of the critical
components in the proposed model, including the backbone
network L-Unet, the dropout decoder Dj,, the noise decoder
Dy, and the input space perturbation P.. Specifically, we ran-
domly select K = 2 subjects (40 slices) as the labeled data and
the remaining 78 subjects as the unlabeled data, which are
used for model training.

Table 1 summarizes the results of the comparative stud-
ies. The results of 7 network and data settings are reported:

(1) the upbound, i.e., the U-Net trained with all the 80 labeled
data; (2) the U-Net as the baseline, which is trained from
scratch using the labeled data with standard data augmenta-
tions; (3) the L-Unet, which is also trained from scratch using
the labeled data with standard data augmentations; (4) the
LCC-Net w/o P, which is trained on both the labeled and
unlabeled data without the input space perturbation P; (5)
the LCC-Net w/o Py, which is trained on both the labeled
and unlabeled data without the noise decoder Dy; (6) the
LCC-Net w/o Pp,, which the LCC-Net without the dropout
decoder Dpy; (7) the full LCC-Net.

As shown in Table 1, when training with only two labeled
subjects, the U-Net has a mean performance drop of 32.7% in
DICE and 9.2 mm in Hausdorff than the U-Net trained with
80 subjects. Rather than using more labeled data, we exploit
the unlabeled data, which is much easier to collect. As illus-
trated in Table 1, by exploiting unlabeled data, the LCC-
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FIGURE 6: The impact of the number of the labeled subjects.

TaBLE 3: The impact of the selection of the labeled subjects. The results are tested on ACDC dataset. Five samples are randomly selected,
where each sample contains two labeled subjects as the labeled data for model training.

DICE (%) Hausdorff (mm)
(1) (2) (3) (4) (5) Mean Std (1) (2) (3) (4) (5) Mean Std
LV 82.0 83.6 78.8 80.8 82.1 81.5 1.6 4.3 4.5 6.8 5.6 5.3 53 0.9
RV 58.1 64.0 51.0 52.9 54.6 56.1 4.6 139 9.1 124 11.9 10.1 11.5 1.7
MYO 73.0 74.1 73.6 73.9 75.5 74.0 0.8 6.3 5.8 6.7 6.4 5.6 6.2 0.4
Mean 71.0 73.9 67.8 69.2 70.7 70.5 2.0 8.2 6.5 8.6 8.0 7.0 7.7 0.8

TABLE 4: A comparison of the model complexity of the LCC-Net with different building blocks. The total inference time denotes the inference

time on the whole testing set (402 images of 160 x 160).

. Model size FLOPs Total
LCC-Net with Training Testing Training Testing Inference time
Standard convolution 81.5M 355M 329.8G 102.8G 20.8s
Ghost module (s =4) 252 M 8.7M 91.0G 262G 17.3s

Net outperforms the U-Net (baseline) by a large margin, i.e.,
14.4% in the mean DICE and 4.3 mm in the mean Hausdorff
over the three regions. LCC-Net without using the noise per-
turbation Py and noise decoder Dy obtains a performance
gain of 12.2% in DICE and 5.9mm in Hausdorft over the
L-Unet; LCC-Net without using the dropout perturbation
P}, and dropout decoder Dy, obtains a performance gain of
13.4% in DICE and 6.1 mm in Hausdorft over the L-Unet.
Compared to the full LCC-Net, the LCC-Net without using
the input space perturbation P, shows a mean performance
drop of 4.4% in DICE and 3.2 mm in Hausdorff, which indi-
cates the effectiveness of the input space perturbation P.
However, with only two labeled subjects for model training,
the semisupervised model’s performance is still significantly
lower than the fully supervised U-Net. Figure 5 provides a
visual comparison of the LCC-Net without Py, LCC-Net
without Pp, and our LCC-Net. Visually, the LCC-Net shows
significantly better results than the other two methods.

4.3.2. The Impact of the Number of the Labeled Subjects. Since
our method is a semisupervised method, it is crucial to iden-
tify the impact of the size of the labeled training dataset. To
this end, we trained our model with different choices of K,
ie, 2, 4, 6, and 10 subjects. Table 2 summarizes the experi-
mental results. The results with U-Net under different set-
tings, including the fully supervised setting (80 labeled
subjects), are also reported. As can be expected, with increas-
ingly more labeled data for model training, the performance
becomes much higher. With the different choices of K, our
semisupervised model consistently outperforms the U-Net.
Remarkably, using only four labeled subjects, our model out-
performs the U-Net trained on ten labeled subjects. Using ten
labeled subjects for training, the LCC-Net achieves a mean
performance of 82.4%, which is 6.1% higher in mean DICE
than the U-Net. Figure 6 demonstrates a further comparison
of the proposed model and the U-Net, which shows the effec-
tiveness of our model.



4.3.3. The Impact of the Selection of the Labeled Subjects. To
identify the robustness of the proposed model over the differ-
ent selections of the label data. To this end, we randomly
selected five samples and calculated the mean performance
and the standard variance. Here, each sample contains two
subjects as the labeled data. The results are reported in
Table 3. Although each sample size is very small (2 subjects),
our model shows relatively stable performance.

4.4. Model Complexity. Model complexity is typically mea-
sured by the number of trainable network parameters (i.e.,
model size) and the floating-point operations (FLOPs). The
model complexity of our model is summarized in Table 4.
Our model obtained significantly reduced model size and
FLOPs at both the training stage and testing stage by replacing
standard convolutions with the lightweight module. There-
fore, our model requires less computation cost for each train-
ing step and inference step, resulting in higher computational
efficiency. The inference time at the testing stage is a critical
measure in practical usage. As shown in Table 4, with reduced
FLOPs, the proposed LCC-Net involves a shorter inference
time than the LCC-Net using standard convolutions.

5. Conclusion

In this paper, we presented a lightweight cross-consistent
network for semisupervised cardiac MR image segmentation.
We leveraged the unlabeled data during supervised segmen-
tation model learning and encourage segmentation consis-
tency on all data under different perturbations with two
unsupervised consistency losses. To achieve a lightweight
model, we replaced the standard convolutions with a light-
weight module. Extensive comparison experiments with a
public dataset demonstrated that our architecture achieved
promising performance with only two labeled subjects.

Despite the improved results, there are still more applica-
ble perturbations in semisupervised segmentation. Thus,
exploring more efficient perturbations is a significant work
in the future.
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