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In this paper, we introduce the concept of complex neutrosophic soft matrices. We define some basic operations including
complement, union, and intersection on these matrices. We extend the concept of complex neutrosophic soft sets to complex
neutrosophic soft matrices and prove related properties. Moreover, we develop an algorithm using complex neutrosophic soft
matrices and apply it in signal processing.

1. Introduction

)e models of real-life problems in almost every field of
science like mathematics, physics, operations research,
medical sciences, engineering, computer science, artificial
intelligence, and management sciences are mostly full of
complexities. Many theories have been developed to over-
come these uncertainties; one among those theories is fuzzy
set theory. Zadeh was the first who gave the concept of a
fuzzy set in 1965 [1]. Fuzzy sets are the generalizations or
extensions of crisps sets.

In order to add the concept of nonmembership term to
the definition of fuzzy set, the concept of an intuitionistic
fuzzy set was introduced by Atanassov in 1986 [2], where he
added the concept of nonmembership term to the definition
of fuzzy set. )e intuitionistic fuzzy set is characterized by a
membership function μ and a nonmembership function υ
with ranges [0, 1]. )e intuitionistic fuzzy set is the gen-
eralization of a fuzzy set. An intuitionistic fuzzy set can be
applied in several fields including modeling, medical diag-
nosis, and decision-making. [3] Molodtsov introduced the
concept of a soft set in 1999 and developed the fundamental
results related to this theory. Basic operations including
complement, union, and intersection are also defined on this
set. Molodtsov used soft sets for applications in games,

probability, and operational theories [3–6]. In 2018,
Smarandache generalized the soft set to the hypersoft set by
transforming the classical uniargument function F into a
multiargument function [7]. Maji et al. [8] introduced the
concept of fuzzy soft sets by combining soft sets and fuzzy
sets and applied them in decision-making problems [9]. In
[10], Cagman and Enginolu used soft matrix theory for
applications in decision-making problems.

)e concept of neutrosophy was introduced by Smar-
andache [11] in 1998. A neutrosophic set is characterized by
a truth membership function T, an indeterminacy function
I, and a falsity membership function F. A neutrosophic set is
a mathematical framework which generalizes the concept of
a classical set, fuzzy set, intuitionistic fuzzy set, and interval
valued fuzzy set [12]. In [13], Nabeeh introduced a method
that can promote a personal selection process by integrating
the neutrosophic analytical hierarchy process to show the
proper solution among distinct options with order prefer-
ence technique similar to an ideal solution (TOPSIS). In [14],
Baset introduced a concept of a neutrosophy technique
called type 2 neutrosophic numbers. By combining type 2
neutrosophic numbers and TOPSIS, they suggested a novel
method T2NN-TOPSIS which has a lot of applications in
group decision-making. )ey worked on a multicriteria
group decision-making technique of the analytical network
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process method and Visekriterijusmska Optmzacija I
Kommpromisno Resenje method under neutrosophic en-
vironment that deals high-order imprecision and incom-
plete information [15].

)e largest number set is a complex set which is in-
troduced by Gauss in 1795 and is the extension of a real
number set. According to same fashion, a complex fuzzy set
is extension to a fuzzy set as here the range set is extended
from interval [0, 1] to a closed disc of radius one in complex
plane. )e degree of membership a complex fuzzy set is not
restricted to a value in [0, 1]; it is extended to a complex
value lies in a disc of radius one in the complex plane.

Complex fuzzy sets are not simply a linear extension of
conventional fuzzy sets; complex fuzzy sets allow a natural
extension of fuzzy set theory to problems that are either very
difficult or impossible to address with one-dimensional
grades of membership. It is an obvious fact that uncertainty,
indeterminacy, inconsistency, and incompleteness in data
are periodic in nature. In order to address this difficulty, in
2002, Daniel Ramot was the first who gave the concept of a
complex fuzzy set. )e concept of a complex neutrosophic
set was introduced in [16].

)e complex fuzzy set C is described as membership
function, with range in closed unit disc in the complex plane.
)e complex-valued membership function ϕs(x) is defined
as ϕs(x) � ts(x)ei.ηs(x) that assigns a complex value of
membership to any x in U (universal set) such that ts(x) and
ηs(x) both are real-valued with ts(x) is fuzzy set and
i �

���
−1

√
, where ts(x) is called amplitude term and ηs(x) is

called phase term.
Physically the complex fuzzy set is used for representing

the complex fuzzy solar activity (solar maximum and solar
minimum) through the measurement of sunspot number
and is also used in signal processing. )e complex neu-
trosophic set is the generalization of a complex fuzzy set and
a neutrosophic set. )e complex neutrosophic set is char-
acterized by complex-valued truth membership function,
complex-valued indeterminate function, and complex-val-
ued falsehood function. In short, a complex neutrosophic set
is more generalized because it is not only the generalization
of all the current frameworks but also describes the infor-
mation in a complete and comprehensive way.

A fuzzy set with its generalizations, like intuitionistic
fuzzy sets, interval valued fuzzy sets, and cubic sets, rep-
resents uncertainties in models of the one-dimensional
phenomenon while a complex fuzzy set is the only
generalization of a fuzzy set which deals with the models of
real-life problems with the two-dimensional and periodic
phenomenon. A complex fuzzy set is more applicable
because of its nature and can be used more widely in all
branches of sciences. Since it is similar to that of a Fourier
transform, more explicitly it is a particular sort of Fourier
transform with the only restriction on the range which is a
complex unit disc. A Fourier transform is used in signals and
systems; that is, a Fourier transform is the mathematical tool
for representing both continuous and discrete signals.
Taking advantage of a complex fuzzy set, being a specific
form of Fourier transform, it can be used to represent signals
in a particular region of consideration. A neutrosophic set is

the generalization of a fuzzy set which deals with the
problems containing uncertainties of truthfulness, false-
hood, and neutrality. )e complex neutrosophic set has
three major parts, that is, truth, intermediate, and falsehood
membership functions. )e truth membership function is
totally the same as that of a complex fuzzy set while in-
termediate and falsehood membership functions are the new
additions to it. )us, a complex neutrosophic set can be
applied more widely compared with other fuzzy sets.

In the vast area of science and technology, matrices play
an important role. Classical matrix theory cannot solve all
models of the daily life problems. In order to overcome these
difficulties, Yang and Ji in [17] initiated a matrix repre-
sentation of a fuzzy soft set and successfully applied the
proposed notion of a fuzzy soft matrix in certain decision-
making problems.

)is work is basically the extension of the work of Ramot
et al. [18], Alkouri and Saleh [19], Cai [20, 21], and Zhang
et al. [22] to neutrosophic sets. Here, in this paper, we extend
the concept by defining the complex neutrosophic fuzzy soft
set and then the complex neutrosophic fuzzy soft matrix
(CNFSM). Further, we discuss some basic operations on
CNFSM and finally we develop an algorithm using these
matrices and apply it in signal processing.

Soft matrices are widely used in signals and systems,
decision-making problems, and medical diagnosis. )is
article has two aims. In the first part, we present theoretical
foundations of the complex neutrosophic fuzzy soft ma-
trices. )ese theoretical foundations provide basic notions
and operations on complex neutrosophic soft matrices such
as complex neutrosophic fuzzy soft zero matrix, complex
neutrosophic fuzzy soft universal matrix, complex neu-
trosophic fuzzy soft submatrices, union of complex neu-
trosophic fuzzy soft matrices, intersection of complex
neutrosophic fuzzy soft matrices, and complement of
complex neutrosophic fuzzy soft matrices. )en, we intro-
duce some fundamental results and discuss main strategies
for applications of this concept in signals and systems, as
well as a coherent discussion of the theory of complex
neutrosophic fuzzy soft matrices. )e aim of these new
concepts is to provide a modern method with mathematical
procedure to identify a reference signal out of large number
of signals received by a digital receiver. )e complex neu-
trosophic fuzzy soft matrix is the generalization of the fuzzy
soft matrix, complex fuzzy soft matrix, and Pythagorean
fuzzy soft matrix. )e degree of membership function,
nonmembership function, and phase terms are all applied to
each entry of the matrix which give more fruitful results for a
better choice in signals and systems along with other fields
such as decision-making problems, medical diagnosis, and
pattern recognition. )ese applied contexts provide solid
evidence of the wide applications of the complex neu-
trosophic fuzzy soft matrices approach to signals and sys-
tems and decision-making problems.

2. Preliminaries

Here, we begin with a numerical example of a complex
neutrosophic set which is already defined above.
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Example 1. Let X � x1, x2, x3􏼈 􏼉 be a universe of discourse.
)en, the complex neutrosophic set S in X is given as

S �
0.6e

j0.3
, e

jπ/2
, 0.3e

j0.6
􏼐 􏼑

x1
+

0.4e
j0

, 0.9e
jπ/4

, 0.4e
jπ/4

􏼐 􏼑

x2
+

0.5e
j2π/3

, 0.2e
j0.2

, 0.7e
jπ/3

􏼐 􏼑

x3
. (1)

Definition 1 (fuzzy set (FS) [1]). Fuzzy set is defined by an
arbitrarymapping from a nonempty set X to the unit interval
[0, 1], i.e., f: X⟶ [0, 1]. )e set of all fuzzy subsets of X

is denoted by F(X), i.e., F(X) � f: f􏼈

is a function fromXinto [0, 1]}.
Soft set theory is a generalization of fuzzy set theory,

which was proposed by Molodtsov in 1999.

Definition 2 (soft set (SS) [3]). Let U be the universal set, E

be the set of parameters, and A⊆E and P(U) be the power
set of U, then a soft set FA is defined by a mapping.

fA: E⟶ P(U) such that fA(x) � ϕ if x ∉ A.
In other words, we can say that soft set FA over U is the

parameterized family of subsets of U, that is,
FA � (x, fA(x)): x ∈ E, fA(x) ∈ P(U)􏼈 􏼉.

Definition 3 (fuzzy soft set (FSS) [8]). Let U be the universe
of discourse, E be the set of parameters, and A⊆E, then a
fuzzy soft set GA is defined by a mapping: gA: E⟶ P′(U)

where P′(U) is the collection of all fuzzy subsets of U, such
that gA(x) � ϕ if x ∉ A.

In other words, we can say that fuzzy soft set GA over U is
the parameterized family of fuzzy subsets of U, that is,
GA � (x, gA(x)): x ∈ E, gA(x) ∈ P′(U)􏼈 􏼉.

Definition 4 (intuitionistic fuzzy set (IFS) [2]). An intui-
tionistic fuzzy set I on a nonempty set U (universal set) is
defined by the set of triplets given by

I � x, μI(x), cI(x)( 􏼁: x ∈ U􏼈 􏼉. (2)

Here, μI(x) and cI(x) both are functions from U to
[0, 1] as μI(x): U⟶ [0, 1] and cI(x): U⟶ [0, 1]. Here,
μI(x) represents the degree of membership and cI(x)

represents the degree of nonmembership of each element
x ∈ U to the set I, respectively, also 0≤ μI(x) + cI(x)≤ 2, for
all x ∈ U.

Definition 5 (complex fuzzy set (CFS) [18]). )e complex
fuzzy set S on universe of discourse X is described as
complex-valued membership function μS(x) that assigns
value of membership of the form rs(x)ejws(x) to any element
x ∈ X, where j �

���
−1

√
, μS(x) involves two real-valued rs(x)

and ws(x), with rs(x) ∈ [0, 1].

Mathematically, S � (x, μs(x)): x ∈ X􏼈 􏼉.

Definition 6 (complex intuitionistic fuzzy set (CIFS) [19]).
)e complex intuitionistic fuzzy set CI on a nonempty set U

(universal set) is defined by the set of triplets given by
CI � (x, μCI(x), cCI(x)): x ∈ U􏼈 􏼉. Here, μCI(x) �

rCI(x)ejwCI(x) and cCI(x) � lCI(x)ejmCI(x) both are functions
from U to closed unit disc in the complex plane and also
μCI(x) represents the degree of membership and cCI(x)

represents the degree of nonmembership of each element
x ∈ U to the set CI, respectively, and also
0≤ rCI(x) + lCI(x)≤ 2, for all x ∈ U.

Definition 7 (complex neutrosophic fuzzy set (CNFS) [16]).
)e complex neutrosophicfuzzy set N on a nonempty set U

(universal set) is defined by the set as N � (x,{

TN(x), IN(x), FN(x): x ∈ U)}. Here, TN(x) � rN(x)

ejwN(x), IN(x) � lN(x)ejmN(x), and FN(x) � pN(x)ejqN(x)

are the complex-valued functions from U to the closed unit
disc in the complex plane where TN(x) describes complex-
valued truth membership function, IN(x) describes com-
plex-valued indeterminate membership function, and
FN(x) describes complex-valued falsehood membership
function of each element x ∈ U to the set N, respectively,
and also 0≤ rN(x) + lN(x) + pN(x)≤ 3, for all x ∈ U.

3. Complex Neutrosophic Fuzzy Soft
Matrix Theory

In this section, we introduced a new concept of complex
neutrosophic fuzzy soft matrices. We defined the operations
of union, intersection, compliment, and submatrices. We
defined zero and universal matrices. Moreover, we proved
some related results.

Definition 8 (complex neutrosophic fuzzy soft matrix
(CNFSM)). Consider a universal set U � u1, u2, u3, . . . , um􏼈 􏼉

and set of parameters E � e1, e2, e3, . . . , en􏼈 􏼉 such that A⊆E

and (cA, A) be a complex neutrosophic fuzzy soft set over
(U, E). )en, the CNFSS (cA, A) in matrix form is repre-
sented by Am×n � [aij]m×n or A. � [aij] where
i � 1, 2, 3, . . . , m and j � 1, 2, 3, . . . , n.

Here, aij �
μj ui( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � μT
j ui( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, μ
I
j ui( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, μ
F
j ui( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, if ej ∈ A,

(0, 0, 0) if ej ∉ A.

⎧⎪⎨

⎪⎩
(3)

Journal of Mathematics 3



Now, (μT
j (ui), μI

j(ui), μF
j (ui)) represents degrees of

membership of truth, intermediate, and falsehood on ui.
)roughout this paper, we will use the abbreviation
CNFSMm×n for complex neutrosophic fuzzy soft matrix
over U. Following is the example of a complex neutrosophic
fuzzy soft matrix.

Example 2. Let U � u1, u2, u3􏼈 􏼉 be a universal set repre-
senting the three firms, E � e1(costly), e2􏼈 (beautiful), e3
(luxurious)} be the parameters set, and A � e1, e2􏼈 􏼉⊆E.
)en, CNFSS (cA, A) over the universal set U is given by

cA, A( 􏼁 � cA e1( 􏼁 � u1, 0.3e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.6e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓􏼚 􏼛􏼚 , u2, 0.7e
jπ/4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.8e
jπ/4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.5e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓, u3, 0.9e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.1e
jπ/6

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.2e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓, cA e2( 􏼁

� u1, 0.1e
jπ/3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.2e
jπ/6

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.1e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓, u2, 0.3e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.9e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.9e
jπ/4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓, u3, 0.5e
jπ/3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.5e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 0.6e
jπ/3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼒 􏼓􏼚 􏼛􏼛.

(4)

Here,

0.3e
jπ

� 0.3(cos π + j sin π) � 0.3(−1 + 0) � −0.3

0.3e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |− 0.3| � 0.3 0.6

6e
jπ/2

� 0.6 cos
π
2

􏼒 􏼓 + j sin
π
2

􏼒 􏼓􏼒 􏼓 � 0.6(0 + j) � 0.6j

0.6e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.6j| �
����
0.36

√
� 0.6

e
jπ

� cos π + j sin π � −1 + 0 � −1

e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |− 1| � 1, 0.7e
jπ/4

� 0.7 cos
π
4

􏼒 􏼓 + j sin
π
4

􏼒 􏼓􏼒 􏼓 � 0.7
1
�
2

√ + j
1
�
2

√􏼠 􏼡

� 0.7(0.707 + j0.707) � 0.494 + j0.494

0.7e
jπ/4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.494 + j0.494| �
�����������
0.244 + 0.244

√
� 0.69,

0.8e
jπ/4

� 0.8 cos
π
4

􏼒 􏼓 + j sin
π
4

􏼒 􏼓􏼒 􏼓 � 0.8
1
�
2

√ + j
1
�
2

√􏼠 􏼡

� 0.8(0.707 + j0.707) � 0.5656 + j0.5656,

|0.8e
jπ/4

| � |0.5656 + j0.5656| �
�����������
0.319 + 0.319

√
� 0.790.5

0.5e
jπ/2

� 0.5 cos
π
2

􏼒 􏼓 + j sin
π
2

􏼒 􏼓􏼒 􏼓 � 0.5j

0.5e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.5j| �
����
0.25

√
� 0.5,

0.9e
jπ

� 0.9(cos π + j sin π) � 0.9(−1) � −0.9

0.9e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |− 0.9| � 0.9

0.1e
jπ/6

� 0.1 cos
π
6

􏼒 􏼓 + j sin
π
6

􏼒 􏼓􏼒 􏼓 � 0.1(0.866 + j0.5) � 0.0866 + j0.05

0.1e
jπ/6

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.0866 + j0.05| �
�������������
0.0074 + 0.0025

√
� 0.099,
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0.2e
jπ/2

� 0.2 cos
π
2

􏼒 􏼓 + j sin
π
2

􏼒 􏼓􏼒 􏼓 � 0.2(0 + j) � 0.2j

0.2e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.2j| �
����
0.04

√
� 0.2,

0.1e
jπ/3

� 0.1 cos
π
3

􏼒 􏼓 + j sin
π
3

􏼒 􏼓􏼒 􏼓 � 0.1(0.5 + j0.866) � 0.05 + j0.0866

0.1e
jπ/3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.05 + j0.0866| �
�������������
0.0025 + 0.0074

√
� 0.090.2e

jπ/6

� 0.2 cos
π
6

􏼒 􏼓 + j sin
π
6

􏼒 􏼓􏼒 􏼓 � 0.2(0.866 + j0.5) � 0.1732 + j0.1

0.2e
jπ/6

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.1732 + j0.1| �
����������
0.029 + 0.01

√
� 0.19,

0.1e
jπ

� 0.1(cos π + j sin π) � 0.1(−1 + 0) � −0.1

0.1e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |− 0.1| � 0.1,

0.3e
jπ/2

� 0.3 cos
π
2

􏼒 􏼓 + j sin
π
2

􏼒 􏼓􏼒 􏼓 � 0.3j

0.3e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.3j| �
����
0.09

√
� 0.3

0.9e
jπ/2

� 0.9 cos π/2 + j sin
π
2

􏼒 􏼓􏼒 􏼓 � 0.9j

0.9e
jπ/2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.9j| �
����
0.81

√
� 0.9,

0.9e
jπ/4

� 0.9 cos
π
4

􏼒 􏼓 + j sin
π
4

􏼒 􏼓􏼒 􏼓 � 0.9
1
�
2

√ + j
1
�
2

√􏼠 􏼡

� 0.9(0.707 + j0.707) � 0.636 + j0.636

0.9e
jπ/4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.636 + j0.636| �
�����������
0.404 + 0.404

√
� 0.898,

0.5e
jπ/3

� 0.5 cos
π
3

􏼒 􏼓 + j sin
π
3

􏼒 􏼓􏼒 􏼓 � 0.5(0.5 + j0.866) � 0.25 + j0.433

0.5e
jπ/3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.25 + j0.433| �
������������
0.0625 + 0.187

√
� 0.499

0.5e
jπ

� 0.5(cos π + j sin π) � 0.5(−1) � −0.5

0.5e
jπ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |− 0.5| � 0.5,

0.6e
jπ/3

� 0.6 cos
π
3

􏼒 􏼓 + j sin
π
3

􏼒 􏼓􏼒 􏼓 � 0.6(0.5 + j0.866) � 0.3 + j0.519

0.6e
jπ/3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � |0.3 + j0.519| �
����������
0.09 + 0.269

√
� 0.599.

(5)

Now, the abovementioned CNFSS (cA, A) in matrix
form is given by

A �

(0.3, 0.6, 1) (0.09, 0.19, 0.1) (0, 0, 0)

(0.69, 0.79, 0.5) (0.3, 0.9, 0.898) (0, 0, 0)

(0.9, 0.099, 0.2) (0.499, 0.5, 0.599) (0, 0, 0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

Definition 9 (complex neutrosophic fuzzy soft zero natrix).
Let [aij] ∈ CNFSMm×n, then [aij] is called complex neu-
trosophic fuzzy soft zero matrix if (aij, rij, lij) � (0, 0, 0), for
all i and j, and is denoted by [0].

Example 3

[0] �

(0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Definition 10 (complex neutrosophic fuzzy soft universal
matrix). Let [aij] ∈ CNFSMm×n, then [aij] is called complex
neutrosophic fuzzy soft universal matrix if
(aij, rij, lij) � (1, 1, 1), for all i and j, and is represented by
[1].
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[1] �

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

Definition 11 (complex neutrosophic fuzzy soft
submatrices). Let Am×n and Bm×n be two CNFSMs, then

(i) Am×n is a CNFS submatrix of Bm×n and is denoted by
Am×n ⊑Bm×n if aij � (aij, aij

′ , aij
″ )≼ bij � (bij,

bij
′ , bij
″ ), that is, (aij ≼ bij, aij

″ ≼ bij
′ , aij
″ ≼ bij
″), for all

aij ∈ Am×n, bij ∈ Bm×n

(ii) Am×n is a proper CNFS submatrix of Bm×n and is
denoted by Am×n ⊏Bm×n if aij � (aij, aij

′ , aij
″ )≺bij �

(bij, bij
′ , bij
″), that is, (aij≺bij, aij

′ ≺ bij
′ , aij
″≺bij
″), for all

aij ∈ Am×n, bij ∈ Bm×n and for at least one entry
aij≺bij, that is, (aij≺bij, aij

′ ≺ bij
′ , aij
″ ≺ bij
″ )

(iii) Two CNFSMs Am×n and Bm×mn are equal and are
denoted by Am×n � Bm×n, if aij � (aij, aij

′ , aij
″ ) �

bij � (bij, bij
′ , bij
″ ), that is. (aij � bij, aij

′ �

bij
′ , aij
″ � bij
″ ), for all aij ∈ Am×n, bij ∈ Bm×n

Example 4. Let

A2×2 �
(0.2, 0.4, 0.1) (0.1, 0.5, 0.2)

(0.3, 0.7, 0.3) (0.5, 0.4, 0.4)
􏼢 􏼣,

B2×2 �
(0.2, 0.4, 0.1) (0.3, 0.7, 0.9)

(0.3, 0.7, 0.3) (0.7, 0.5, 0.7)
􏼢 􏼣.

(9)

So, we can write that A2×2 ⊏B2×2. Moreover, A⊏B.

Definition 12. (union/intersection and compliment of
complex neutrosophic fuzzy soft matrices).

Let Am×n and Bm×n be two CNFSM, then the
CNFSMCm×n is called

(i) Union of Am×n and Bm×n and is denoted by
Am×n ⊔Bm×n if Cm×n � max Am×n, Bm×n􏼈 􏼉, for all i

and j, that is, cij � (max(aij, bij), min(aij
′ , bij
′ ),

min(aij
″, bij
″)) where cij � (cij, cij

′, cij
″)

(ii) Intersection of Am×n and Bm×n is denoted by
Am×n ⊓Bm×n if Cm×n � min Am×n, Bm×n􏼈 􏼉, for all i

and j, that is, cij � (min(aij, bij), max (aij
′ , bij
′ ),

max(aij
″, bij
″)), where cij � (cij, cij

′ , cij
″ )

(iii) Complement of Am×n is denoted by Am×n
′ if

Cm×n � 1 − Am×n, for all i and j, that is,
cij � (1 − aij, 1 − aij

′ , 1 − aij
″ ), where cij � (cij,

cij
′, cij
″)

Example 5. Assume that

A2×2 �
(0.3, 0.6, 1) (0.65, 0, 0.6)

(0.3, 0.9, 0) (0.8, 0.7, 0.9)
􏼢 􏼣,

B2×2 �
(0.49, 0.5, 0.4) (0.2, 0, 0.3)

(0.1, 0.9, 0.3) (0, 0, 0)
􏼢 􏼣,

then,

A2×2⊔B2×2 �
(0.49, 0.5, 0.4) (0.65, 0, 0.3)

(0.3, 0.9, 0) (0.8, 0, 0)
􏼢 􏼣,

A2×2⊓B2×2 �
(0.3, 0.6, 1) (0.2, 0, 0.6)

(0.1, 0.9, 0.3) (0, 0.7, 0.9)
􏼢 􏼣,

A2×2′ �
(0.7, 0.4, 0) (0.35, 1, 0.4)

(0.7, 0.1, 1) (0.2, 0.3, 0.1)
􏼢 􏼣.

(10)

Proposition 1. Let Am×n be a CNFSM, then

(i) Am×n( 􏼁′( 􏼁′ � Am×n,

(ii) [0]′ � [1].
(11)

Proof. It follows from definition. □

Proposition 2. Let Am×n, Bm×n, and Cm×n be three CNFSMs,
then

(i) Am×n � Bm×n andBm×n � Cm×n⟹Am×n � Cm×n,

(ii) Am×n ⊑Bm×n andBm×n ⊑Am×n⟹Am×n � Bm×n.

(12)

Proof. It follows from definition. □

Proposition 3. Let Am×n and Bm×n be two CNFSMs, then

Am×n ⊑Bm×n andBm×n ⊑Cm×n⟹Am×n ⊑Cm×n. (13)

Proof. It follows from definition. □

Proposition 4. Let Am×n and Bm×n be two CNFSMs, then

(i) Am×n⊔Bm×n � Bm×n⊔Am×n,

(ii) Am×n⊓Bm×n � Bm×n⊓Am×n,

(iii) Am×n⊔Bm×n( 􏼁⊔Cm×n � Am×n⊔ Bm×n⊔Cm×n( 􏼁,

(iv) Am×n⊓Bm×n( 􏼁⊓Cm×n � Am×n⊓ Bm×n⊓Cm×n( 􏼁,

(v) Am×n⊔ Bm×n⊓Cm×n( 􏼁 � Am×n⊔Bm×n( 􏼁⊓ Am×n⊔Cm×n( 􏼁,

(vi) A⊓ Bm×n⊔Cm×n( 􏼁 � Am×n⊓Bm×n( 􏼁⊔ Am×n⊓Cm×n( 􏼁.

(14)
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Proof

(i) Am×n ⊔Bm×n � max Am×n, Bm×n( 􏼁

� max Bm×n, Am×n( 􏼁

� Bm×n⊔Am×n,

(ii) Am×n⊓Bm×n � min Am×n, Bm×n( 􏼁

� min Bm×n, Am×n( 􏼁

� Bm×n⊓Am×n,

(iii) Am×n⊔Bm×n( 􏼁⊔Cm×n � max Am×n⊔Bm×n( 􏼁, Cm×n( 􏼁

� max max Am×n, Bm×n( 􏼁, Cm×n( 􏼁

� max Am×n, max Bm×n, Cm×n( 􏼁( 􏼁

� max Am×n, Bm×n⊔Cm×n( 􏼁( 􏼁

� Am×n⊔ Bm×n⊔Cm×n( 􏼁,

(iv) Am×n⊓Bm×n( 􏼁⊓Cm×n � min Am×n⊓Bm×n( 􏼁, Cm×n( 􏼁

� min min Am×n, Bm×n( 􏼁, Cm×n( 􏼁

� min Am×n, min Bm×n, Cm×n( 􏼁( 􏼁

� min Am×n, Bm×n⊓Cm×n( 􏼁( 􏼁

� Am×n⊓ Bm×n⊓Cm×n( 􏼁.

(v) Am×n⊔ Bm×n⊓Cm×n( 􏼁 � max Am×n, Bm×n⊓Cm×n( 􏼁( 􏼁

� max Am×n, min Bm×n, Cm×n( 􏼁( 􏼁

� min max Am×n, Bm×n( 􏼁, max Am×n, Cm×n( 􏼁( 􏼁

� min Am×n⊔Bm×n( 􏼁, Am×n⊔Cm×n( 􏼁( 􏼁

� Am×n⊔Bm×n( 􏼁⊓ Am×n⊔Cm×n( 􏼁,

(vi) Am×n⊓ Bm×n ⊔Cm×n( 􏼁 � min Am×n, Bm×n⊔Cm×n( 􏼁( 􏼁

� min Am×n, max Bm×n, Cm×n( 􏼁( 􏼁

� max min Am×n, Bm×n( 􏼁, min Am×n, Cm×n( 􏼁( 􏼁

� max Am×n⊓Bm×n( 􏼁, Am×n⊓Cm×n( 􏼁( 􏼁

� Am×n⊓Bm×n( 􏼁⊔ Am×n ⊓Cm×n( 􏼁.

(15)

□

Proposition 5. Let Am×n and Bm×n be two CNFSMs, then the
De-Morgan laws are valid:

(i) Am×n⊔Bm×n( 􏼁′ � Am×n( 􏼁′⊓ Bm×n( 􏼁′

(ii) Am×n⊓Bm×n( 􏼁′ � Am×n( 􏼁′⊔ Bm×n( 􏼁′.
(16)

Proof.

(i) Am×n⊔Bm×n( 􏼁′ � max Am×n, Bm×n( 􏼁􏼂 􏼃′

� 1 − max Am×n, Bm×n( 􏼁􏼂 􏼃

� min 1 − Am×n, 1 − Bm×n( 􏼁􏼂 􏼃

� Am×n􏼂 􏼃′⊓ Bm×n􏼂 􏼃′,

Am×n⊓Bm×n( 􏼁′ � min Am×n, Bm×n( 􏼁􏼂 􏼃′

� 1 − min Am×n, Bm×n( 􏼁􏼂 􏼃

� max 1 − Am×n, 1 − Bm×n( 􏼁􏼂 􏼃

� Am×n􏼂 􏼃′⊔ Bm×n􏼂 􏼃′.

(17)

□

4. Complex Neutrosophic Fuzzy Soft Decision-
Making Method

Now, we are going to discuss real-life applications of newly
defined CNFSMm×n. We will show how our theoretical
concepts and results can be applied to the real-life phe-
nomenon. Specifically, we will show that CNFSMm×n ex-
plains how to get a better and clear signal for identification
with a given reference signal. Before moving towards the
algorithm, we will define the fuzzy soft (FS) max-min de-
cision-making method (FSMmDM) by using FS max-min
decision function and also define here the optimum FS on
universal set U.

Definition 13 (fuzzy soft (FS) max-min decision-making
function [10]). Let [cip] ∈ SMm×n2 , Ik � p: thereexisti,􏼈

cip ≠ 0, (k − 1)n<p≤ kn}, for all k ∈ I � 1, 2, 3, . . . , n{ }.
)en, soft max-min decision function, denoted Mm, is
defined as follows:

Mm: SMm×n2⟶ SMmm×1, Mm cip􏽨 􏽩 � maxk∈I tk􏼈 􏼉􏼂 􏼃,

(18)

where

tk �
min
p∈Ik

cip􏽮 􏽯, if Ik ≠ { },

0, if Ik � { }.

⎛⎝ ⎞⎠ (19)

)e one column soft matrix Mm[cip] is called max-min
soft decision-making matrix.

Definition 14 (see [10]). Let U � u1, u2, . . . , um􏼈 􏼉 be a uni-
versal set and Mm[cip] � [di1]. )en, a subset of U can be
obtained by using [di1] as in the following way
opt[di1](U) � ui: ui ∈ U, di1 � 1􏼈 􏼉, which is called an opti-
mum set on U.

4.1. Decision-Making Algorithm

step 1. Suppose that M different signals S1(t′),
S2(t′), . . . , SM(t′) are detected and sampled by a receiver
and let U � S1(t′), S2(t′), . . . , SM(t′)􏼈 􏼉. Each of these signals
is sampled N times. Let Sm(r′) denote the r/th sample
(1≤ r′ ≤N) of the mth signal (1≤m≤M). Now, we know
that each signal has its Fourier transform. So, each received
signal can be expressed as summation of its Fourier com-
ponents as

Sm r′( 􏼁 �
1
N

􏼒 􏼓 􏽘

N

n�1
Cm,ne

i2π(n− 1) r′− 1( )/N, then

Sm r′( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1
N

􏼒 􏼓 􏽘

N

n�1
Cm,n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · e

i2π(n− 1) r′− 1( )/N
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(20)

where Cm,n(1≤ n≤N) represents complex Fourier coeffi-
cients of Sm. )e above expression can also be rewritten as
follows:
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|Sm(r′)| � (1/N) 􏽐
N
n�1 |Bm,n| · |ei(2π(n− 1)(r′− 1)+Nβm,n)/N|,

where Cm,n � Bm,neiβm,n , with Bm,n, βm,n real-valued and
Bm,n ≥ 0, for all n, where 1≤ n≤N.

step 2. )e above given signals are expressed as in matrix
form as A � [|Sm(r′)|]N×M, that is, express N samples of
each signal (total M signals) in columns:

A �

S
T
1 (1), S

I
1(1), S

F
1(1)􏼐 􏼑 S

T
2 (1), S

I
2(1), S

F
2(1)􏼐 􏼑 . . . S

T
M(1), S

I
M(1), S

F
M(1)􏼐 􏼑

S
T
1 (2), S

I
1(2), S

F
1(2)􏼐 􏼑 S

T
2 (2), S

I
2(2), S

F
2(2)􏼐 􏼑 . . . S

T
M(2), S

I
M(2), S

F
M(2)􏼐 􏼑

. . . . . .

S
T
1 (N), S

I
1(N) · S

F
1(N)􏼐 􏼑 S

T
2 (N), S

I
2(N), S

F
2(N)􏼐 􏼑 . . . S

T
M(N), S

I
M(N), S

F
M(N)􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

step 3. Similarly, we will construct another matrix by the
signals S∗m(r).

B �

S
∗T
1 (1), S

∗ I
1 (1), S

∗F
1 (1)􏼐 􏼑 S

∗T
2 (1), S

∗ I
2 (1), S

∗F
2 (1)􏼐 􏼑 . . . S

∗T
M (1), S

∗ I
M (1), S

∗F
M (1)􏼐 􏼑

S
∗T
1 (2), S

∗ I
1 (2), S

∗F
1 (2)􏼐 􏼑 S

∗T
2 (2), S

∗ I
2 (2), S

∗F
2 (2)􏼐 􏼑 . . . S

∗T
M (2), S

∗ I
M (2), S

∗F
M (2)􏼐 􏼑

. . . . . .

S
∗T
1 (N), S

∗ I
1 (N), S

∗F
1 (N)􏼐 􏼑 S

∗T
2 (N), S

∗ I
2 (N), S

∗F
2 (N)􏼐 􏼑 . . . S

∗T
M (N), S

∗ I
M (N), S

∗F
M (N)􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

step 4. Multiply matrices A and B using usual multiplication
of matrices. In this multiplication, the truth value of the
entry of the first matrix will be multiplied by the truth value
of the entry of the second matrix. )e intermediate and false
values of the entries are multiplied similarly.

step 5. )e complex neutrosophic fuzzy soft max-min de-
cision-making matrix (CNFSMmDM) is found by taking
minimum of truth, intermediate memberships, and maxi-
mum of falsehood membership values of each column, and
we will get a column matrix [di1], where 1≤ i≤M.

step 6. An optimum set optMm[AB](U) on U is found, that is,

max |S
T
j (i)|􏽮 , max S

I
j ui( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛, min S
F
j ui( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, for 1≤ j≤M and 1≤ i≤N􏼚 􏼛. (23)

5. Applications

Step 1. Assume that u1, u2, and u3 be any three signals
received by a digital receiver from any source. Each signal is
a triplet of numbers. )e first number of triplet represents
the truth value, second represents the intermediate value,
and the third represents the false value corresponding to
each signal. Now, each of these signals is sampled three
times. Let R be the given known reference signal. Each signal
is compared with the reference signal in order to get the high
degree of resemblance with the reference signal R. Now, we
obtain the matrix A by setting the signals along column and
their three times sampling along row. Similarly, we will
obtain the matrix B.

step 2. Matrices A and B are given by

A �

(0.7, 0.4, 0.5) (0.6, 0.7, 1) (0.8, 1, 0.7)

(0.8, 0.5, 0.3) (0.2, 0, 0.9) (0.5, 0.8, 0.4)

(0.4, 0, 0.8) (0.8, 0.4, 0.6) (0, 0.3, 0.9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (24)

step 3

B �

(0.4, 0.4, 0) (0.6, 0.7, 0.4) (0.1, 0.3, 0)

(0.3, 0.7, 0.7) (0.4, 0.9, 0.4) (0.1, 0.6, 0.4)

(0.2, 0.4, 0.5) (0.4, 0.5, 0.3) (0.8, 0.5, 0.8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (25)

step 4. Now, we will calculate the product of above defined
matrices by usual multiplication of matrices. In this mul-
tiplication, the truth value of the entry of the first matrix will
be multiplied by the truth value of the entry of the second
matrix. Similarly, the intermediate and false values of the
entries are multiplied.

AB �

(0.62, 0.69, 0.42) (0.98, 0.96, 0.45) (0.77, 0.59, 0.6)

(0.48, 0.52, 0.83) (0.76, 0.75, 0.6) (0.5, 0.55, 0.68)

(0.4, 0.4, 0.87) (0.56, 0.51, 0.83) (0.12, 0.39, 0.96)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(26)

step 5. We calculate CNFSMmDM[AB] � [di1], for all
i � 1, 2, 3, where di1 is defined as di1 � min tk1􏼈 􏼉 � min t11,􏼈

t21, t31} for all k � 1, 2, 3.
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d11 � min tk1􏼈 􏼉 � min t11, t21, t31􏼈 􏼉

� min (0.62, 0.69, 0.42), (0.48, 0.52, 0.83), (0.4, 0.4, 0.87){ } � (0.4, 0.4, 0.42),

d21 � min tk2􏼈 􏼉 � min t12, t22, t32􏼈 􏼉

� min (0.98, 0.96, 0.45), (0.76, 0.75, 0.6), (0.56, 0.51, 0.83){ } � (0.56, 0.51, 0.45),

d31 � min tk3􏼈 􏼉 � min t13, t23, t33􏼈 􏼉

� min (0.77, 0.59, 0.6), (0.5, 0.55, 0.68), (0.12, 0.39, 0.96){ } � (0.12, 0.39, 0.6).

(27)

We obtain CNFSMmDM as follows:

CNFSMmDM[AB] � di1􏼂 􏼃 �

(0.4, 0.4, 0.42)

(0.56, 0.51, 0.45)

(0.12, 0.39, 0.6)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (28)

Step 6. Finally, we find out an optimum set on U as follows:
optMm[AB](U) � u2. So, the signal which is identified as a
reference signal is the signal u2.

6. Conclusion

)is paper consists of CNFSM and different types of
complex neutrosophic soft matrices with examples. We
introduced some new operations on complex neutrosophic
fuzzy soft matrices and explore related properties. Further,
we constructed a complex neutrosophic soft decision-
making algorithm with the help of these matrices and used it
in signal processing. We hope that our finding will help in
enhancing the study on complex neutrosophic soft theory
and will open a new direction for applications especially in
decision sciences. In future, we will define some new op-
erations on complex neutrosophic fuzzy soft sets and will
introduce some new algorithms for signals and other related
decision-making in social sciences. Specifically, we will use
complex fuzzy sets and complex neutrosophic fuzzy sets in
signal processing for modeling of continuous signals.
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*e aim of this paper is to propose the generalized version of the multipolar neutrosophic soft set with operations and basic
properties. Here, we define the AND, OR, Truth-Favorite, and False-Favorite operators along with their properties. Also, we define
the necessity and possibility of operations for them. Later on, to extend it to solve the decision-making problems, we define some
information measures such as distance, similarity, and correlation coefficient for the generalized multipolar neutrosophic soft set.
Several desirable properties and their relationship between them are derived. Finally, based on these information measures, a
decision-making algorithm is stated under the neutrosophic environment to tackle the uncertain and vague information. *e
applicability of the proposed algorithm is demonstrated through a case study of the medical-diagnosis and the decision-making
problems. A comparative analysis with several existing studies reveals the effectiveness of the approach.

1. Introduction

Uncertainty plays a dynamic part in numerous fields of life
such as modeling, medical, and engineering fields. However,
a general question of how we can express and use the un-
certainty concept in mathematical modeling is raised. A lot
of researchers in the world proposed and recommended
different approaches to use uncertainty theory. First of all,
Zadeh developed the notion of fuzzy sets [1] to solve those
problems which contain uncertainty and vagueness. It is
observed that in some cases circumstances cannot be han-
dled by fuzzy sets; to overcome such types of situations,
Turksen [2] gave the idea of the interval-valued fuzzy set
(IVFS). In some cases, we must deliberate membership
unbiassed as the nonmembership values for the suitable

representation of an object in uncertain and indeterminate
conditions that could not be handled by fuzzy sets or by
IVFS. To overcome these difficulties, Atanassov presented
the notion of intuitionistic fuzzy sets (IFSs) in [3].*e theory
that was presented by Atanassov only deals with the in-
sufficient data considering both membership and non-
membership values; however, the IFSs theory cannot handle
the overall incompatible as well as imprecise information. To
address such incompatible as well as imprecise records, the
idea of the neutrosophic set (NS) was developed by Smar-
andache [4]. A general mathematical tool was proposed by
Molodtsov [5] to deal with indeterminate, fuzzy, and not
clearly defined substances known as a soft set (SS). Maji et al.
[6] extended the work on SS and defined some operations
and their properties. Maji et al. [7] utilized the SS theory for
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decision-making. Ali et al. [8] revised the Maji approach to
SS and developed some new operations with their properties.
De Morgan’s Law on SS theory was proved in [9] by using
different operators.

Maji [10] offered the idea of a neutrosophic soft set (NSS)
with necessary operations and properties. *e idea of the
possibility NSS was developed by Karaaslan [11] and in-
troduced a possibility of neutrosophic soft decision-making
method to solve those problems which contain uncertainty
based on And-product. Broumi [12] developed the gener-
alized NSS with some operations and properties and used the
proposed concept for decision-making. To solve MCDM
problems with single-valued neutrosophic numbers
(SVNNs) presented by Deli and Subas in [13], they con-
structed the concept of cut sets of SVNNs. On the basis of the
correlation of IFS, the term correlation coefficient (CC) of
SVNSs [14] was introduced. Ye [15] presented the simplified
NSs introduced with some operational laws and aggregation
operators such as weighted arithmetic and weighted geo-
metric average operators. *erein, a multicriteria decision-
making (MCDM) method was constructed based on pro-
posed aggregation operators. Masooma et al. [16] progressed
a new concept by combining the multipolar fuzzy set and
neutrosophic set, which is known as the multipolar neu-
trosophic set. *ey also established various characterizations
and operations with examples. Dey et al. [17] developed the
grey relational projection method based on NSS to solve
MADM complications. Pramanik et al. [18] extended the
VIKOR technique to solve MAGDM problems under a
bipolar neutrosophic set environment. Pramanik et al. [19]
established the TOPSIS technique to solve MADM problems
utilizing single-valued neutrosophic soft expert sets. Pra-
manik et al. [20] developed three different hybrid projection
measures projection, bidirectional projection, and hybrid
projection measures between bipolar neutrosophic sets.

Peng et al. [21] established the probability multivalued
neutrosophic set by combining the multivalued neu-
trosophic set and probability distribution and used it for
decision-making problems. Kamal et al. [22] proposed the
idea of mPNSS with some important operations and
properties; they also used the developed technique for de-
cision-making. Garg [23] developed the MCDM method
based on weighted cosine similarity measures under an
intuitionistic fuzzy environment and used the proposed
technique for pattern recognition and medical diagnoses. To
measure the relative strength of IFS, Garg and Kumar [24]
presented some new similarity measures. *ey also for-
mulated a connection number for set pair analysis (SPA) and
developed some new similarity measures and weighted
similarity measures based on defined SPA. Garg and Rani
[25] extended the IFS technique to complex intuitionistic
fuzzy sets (CIFS) and developed the correlation and
weighted correlation coefficient under the CIFS environ-
ment. To measure the relation between two Pythagorean
fuzzy sets (PFS), Garg [26] proposed a novel CC and WCC
and presented the numerical examples of pattern recogni-
tion and medical diagnoses to verify the validity of the
proposed measures. Zulqarnain et al. [27] developed the
aggregation operators for Pythagorean fuzzy soft sets and

proposed a decision-making methodology using their de-
veloped aggregation operators. *ey also utilized their
established decision-making technique for the selection of
suppliers in green supply chain management. Zulqarnain
et al. [28] extended the TOPSIS technique under Pythag-
orean fuzzy soft environment. Nguyen et al. [29] defined
some similarity measures for PFS by using the exponential
function for the membership and nonmembership degrees
with its several properties and relations. Peng and Garg [30]
presented some diverse types of similarity measures for PFS
with multiple parameters. Wang and Li [31] introduced
Pythagorean fuzzy interaction power Bonferroni mean
(PBM) operators for solving MADM issues. Wang et al. [32]
proposed the Pythagorean fuzzy interactive Hamacher
power aggregation operators for assessment of express
service quality with entropy weight. Saeed et al. [33]
established the concept of mPNSS with its properties and
operators; they also developed the distance-based similarity
measures and used the proposed similarity measures for
decision-making and medical diagnoses.

Gerstenkorn and Mafiko [34] proposed the functional
measuring of the interrelation of IFSs, which is known
nowadays as correlation, and developed its coefficient with
properties. To measure the interrelation of fuzzy numbers,
Yu [35] established the CC of fuzzy numbers. Evaluating the
CC for fuzzy data had been developed by Chiang and Lin
[36]. Hung and Wu [37] proposed the centroid method to
calculate the CC of IFSs and extended the proposed method
to interval-valued intuitionistic fuzzy sets (IVIFSs). Hong
[38] and Mitchell [39] also established the CC for IFSs and
IVIFSs, respectively. Ye [40] extended the work on IFSs and
developed the CC of a single-valued neutrosophic set and
developed a decision-makingmethod for similarity measure.
Xue et al. [41] developed the CC on a single-valued neu-
trosophic set and proposed a decision-making method for
pattern recognition. Zulqarnain et al. [42] utilized the
neutrosophic TOPSIS in the production industry for sup-
plier selection. Garg and Arora [43] introduced the corre-
lation measures on intuitionistic fuzzy soft sets and
constructed the TOPSIS technique on developed correlation
measures. In Iryna et al.’s work [44], an algorithm has been
proposed to handle uncertainty in fault diagnoses by using
single-valued neutrosophic sets. Faruk [45] established CC
between possibility NSS and proved some properties. He
also developed CC for a single-valued neutrosophic refined
soft set, and it was used for clustering analysis [46]. A
correlation measure of neutrosophic refined sets has been
developed, which is the extension of the correlation measure
of neutrosophic sets and intuitionistic fuzzy multisets [47].

In this era, professionals consider that the real life is
moving in the direction of multipolarity. *us, it projects as
no surprise that multipolarity in information performs a
significant part in flourishing numerous fields of science as
well as technology. In neurobiology, multipolar neurons in
the brain gather a good deal of information from other
neurons. In information technology, multipolar technology
could be used to control extensive structures.*emotivation
of the present research is extended and hybrid work is given
step by step in the complete article. We demonstrate that
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different hybrid structures containing fuzzy sets are con-
verted into the special privilege of mPNSS under whatsoever
appropriate circumstances. *e concept of a neutrosophic
environment to a multipolar neutrosophic soft set is novel.
We tend to discuss the effectiveness, flexibility, quality, and
favorable position of our planned work and algorithms. *e
present research will be the most generalized form and is
used to assemble data in considerable and appropriate
medical, engineering, artificial intelligence, agriculture, and
other everyday life complications. In the future, the present
work might be gone competently for other approaches and
different types of hybrid structures.

*e remainder of the paper is organized as follows: in
Section 2, we recollected some basic definitions which are
used in the following sequel such as NS, SS, NSS, and
multipolar neutrosophic set. In Section 3, we proposed the
generalized version of mPNSS with its properties and op-
erations, and we also developed the Truth-Favorite, False-
Favorite, AND, and OR operators in this section. In Section
4, distance-based similarity measures have been developed
by using Hamming distance and Euclidean distance between
two generalized multipolar neutrosophic soft sets
(GmPNSS). In Section 5, the idea of CC andWCCwith their
properties has been established. Finally, we use the devel-
oped distance-based similarity measures and CC for medical
diagnoses and decision-making in Section 6.We also present
the comparative study of our proposed similarity measures
and CC with some already existing techniques in Section 7.

2. Preliminaries

In this section, we recollect some basic concepts such as
neutrosophic set, soft set, neutrosophic soft set, and m-polar
neutrosophic soft set, which are used in the following sequel.

Definition 1 (see [4]).
Let U be a universe and let A be an NS on U defined as

A� u, (uA(u), vA(u), wA(u)): u ∈ U􏼈 􏼉, where u, v, w: U
⟶ 0− , 1+ and 0− ≤ uA(u) + vA(u)+wA(u)≤ 3+.

Definition 2 (see [5]).
Let U be the universal set and let E be the set of at-

tributes concerningU. LetP(U) be the power set ofU and
A⊆E. A pair (F,A) is called a soft set over U and its
mapping is given as

F: A⟶ P(U). (1)

It is also defined as

(F,A) � F(e) ∈ P(U): e ∈ E, F(e) � ∅ if e ∉ A{ }.

(2)

Definition 3 (see [10]).
Let U be the universal set and let E be the set of at-

tributes concerningU. LetP(U) be the set of neutrosophic
values ofU andA⊆E. A pair (F,A) is called a neutrosophic
soft set over U and its mapping is given as

F: A⟶ P(U). (3)

Definition 4 (see [16]).
Let U be the universal set and let E be the set of at-

tributes concerning U; then FE is said to be a multipolar
neutrosophic set if FE � u, (si • ue􏼈 (u), si • ve(u), si

• we(u)): u ∈ U, e ∈ E, i � 1, 2, 3, . . . , m}, where
si • uE, si • vE, si • wE: U ⟶ [0, 1], and 0 ≤ si • uE(u) +

si • vE(u) + si • wE(u) ≤ 3; i � 1, 2, 3, . . . , m. ue, ve, and we

represent the truth, indeterminacy, and falsity of the con-
sidered alternative.

3. GeneralizedMultipolarNeutrosophicSoftSet
(GmPNSS) with Operators and Properties

In this section, we develop the concept of GmPNSS and
introduce aggregate operators on GmPNSS with their
properties.

Definition 5. LetU and E be universal and set of attributes,
respectively, andA⊆ E, if there exists a mappingΦ such that

Φ :A⟶ GmPNSSU, (4)

then (Φ, A) is called GmPNSS over U defined as follows:

Yk � (Φ,A) � e, u, ΦA(e)(u)􏼐 􏼑􏼐 􏼑: e ∈ E, u ∈ U􏽮 􏽯, (5)

where ΦA(e) � u, (si• uA(e)(u), si •􏽮 vA(e)(u), si • wA(e)

(u)): u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m}, and 0 ≤ si • uA(e)

(u) + si • vA(e)(u) + si • wA(e)(u) ≤ 3 for all i ∈ 1, 2, 3, . . .,m;
e ∈ E and u ∈ U.

Definition 6. Let ΥA and ΥB be two GmPNSS over U; then
ΥA is called a multipolar neutrosophic soft subset of ΥB, if

si • uA(e)(u)≤ si • uB(e)(u),

si •vA(e)(u)≤ si •vB(e)(u),

si • wA(e)(u)≥ si •wB(e)(u),

(6)

for all i ∈ 1, 2, 3, . . ., m; e ∈E and u ∈ U.

Definition 7. Let ΥA and ΥB be two GmPNSS over U, then
ΥA �ΥB, if

si • uA(e)(u)≤ si • uB(e)(u),

si • uB(e)(u)≤ si • uA(e)(u),

si • vA(e)(u)≥ si • vB(e)(u),

si • vB(e)(u)≥ si • vA(e)(u),

si • wA(e)(u)≥ si • wB(e)(u),

si • wB(e)(u)≥ si •wA(e)(u),

(7)

for all i ∈ 1, 2, 3, . . ., m; e ∈ E and u ∈ U.

Definition 8. Let FA be a GmPNSS over U, then empty
GmPNSS can be represented as F�0 and defined as follows:
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F�0 � e, (u, (0, 1, 1), (0, 1, 1), . . . , (0, 1, 1)) : e ∈ E, u ∈ U{ }. (8)

Definition 9. Let FA be a GmPNSS over U, then universal
GmPNSS can be represented as F�E and defined as follows:

F�E � e, (u, (1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)): e ∈ E, u ∈ U{ }. (9)

Definition 10. Let FA be a GmPNSS over U, then the
complement of GmPNSS is defined as follows:

F
c
A(e) � e, u, si • wA(e)(u), 1 − si • vA(e)(u), si • uA(e)(u)􏼐 􏼑􏼐 􏼑: u ∈ U􏽮 􏽯, (10)

for all i ∈ 1, 2, 3, . . ., m; e ∈E and u ∈ U.

Proposition 1. If FA is a GmPNSS, then

(1) (Fc
A)c �FA

(2) (F�0)
c �F�E

(3) (F�E)c �F�0

Proof. Let

FA(e) � e, u, si•uA(e)(u), si•vA(e)(u), si•wAe(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯. (11)

*en, by using Definition 10, we get

F
c
A(e) � e, u, si•wA(e)(u), 1 − si•vA(e)(u), si•uA(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯. (12)

Again, by using Definition 10,

F
c
A(e)( 􏼁

c
� e, u, si•uA(e)(u), 1 − 1 − si•vA(e)(u)􏼐 􏼑, si•wA(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯,

F
c
A(e)( 􏼁

c
� e, u, si•uA(e)(u), si•vA(e)(u), si•wA(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯,

F
c
A(e)( 􏼁

c
� FA(e).

(13)

□
Proof. Let F�0 be an empty GmPNSS over U.

F�0 � e, (u, (0, 1, 1), (0, 1, 1), . . . , (0, 1, 1)) : e ∈ E, u ∈ U{ }. (14)
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Utilizing Definition 10,

F�0( 􏼁
c

� e, (u, (1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)) : e ∈ E, u ∈ U{ }, (15)

F�0( 􏼁
c

� F�E. (16)

Similarly, we can prove 3. □ Definition 11. LetFA(e) andGB(e) be two GmPNSS overU.
*en,

FA(e) ∪GB(e) � e, u,

max si•uA(e)(u), si•uB(e)(u)􏽮 􏽯

min si•vA(e)(u), si•vB(e)(u)􏽮 􏽯

min si•wA(e)(u), si•wB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (17)

Proposition 2. Let F�A, G�B, and H�C be GmPNSS over U.
"en,

(1) F�A ∪ F�A �F�A

(2) F�A ∪ F�0 �F�A

(3) F�A ∪ G�B �G�B ∪ F�A

(4) (F�A ∪ G�B) ∪ H�C �F�A ∪ (G�B ∪ H�C)

Proof. Let

F�A(e) � e, u, si•u�A(e)(u), si•v�A(e)(u), si•w�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (18)

be a GmPNSS. *en,

F�A(e)∪F�A(e) � e, u,

max si•u�A(e)(u), si•u�A(e)(u)􏽮 􏽯

min si•v�A(e)(u), si•v�A(e)(u)􏽮 􏽯

min si•w�A(e)(u), si•w�A(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (19)

F�A(e)∪F�A(e) � e, u, si•u�A(e)(u), si•v�A(e)(u), si•w�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯,

F�A ∪F�A � F�A.
(20)

By using Definition 11, we can easily prove the
remaining properties. □

Definition 12. Let FA(e) and GB(e) be GmPNSS over U.
*en,

FA(e) ∩GB(e) � e, u,

min si•uA(e)(u), si•uB(e)(u)􏽮 􏽯

max si•vA(e)(u), si•vB(e)(u)􏽮 􏽯

max si•wA(e)(u), si•wB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (21)

Proposition 3. Let F�A, G�B, and H�C be GmPNSS over U.
"en,

(1) F�A ∩ F�A �F�A

(2) F�A ∩ F�0 �F�A

(3) F�A ∩ F�E �F�E

(4) F�A ∩ G�B �G�B ∩ F�A
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(5) (F�A ∩ G�B) ∩ H�C �F�A ∩ (G�B ∩ H�C)

Proof. By using Definition 12, the proof is easy. □

Proposition 4. Let F�A and G�B be GmPNSS over U. "en,

(1) (F�A(e) ∪G�B(e))
C �FC

�A(e)
∩GC

�B(e)

(2) (F�A(e) ∩GB(e))
C �FC

�A(e)
∪GC

�B(e)

Proof. We know that

F�A(e) � e, u, si•u�A(e)(u), si•v�A(e)(u), si•w�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (22)

G�B(e) � e, u, si•u�B(e)(u), si•v�B(e)(u), si•w�B(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (23)

are two GmPNSS. By using Definition 11,

F�A(e)∪G�B(e) � e, u,

max si•u�A(e)(u), si•uB(e)(u)􏽮 􏽯

min si•v�A(e)(u), si•vB(e)(u)􏽮 􏽯

min si•w�A(e)(u), si•wB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (24)

Now, by using Definition 10,

F�A(e)∪G�B(e)􏼐 􏼑
c

� e, u,

min si•w�A(e)(u), si•wB(e)(u)􏽮 􏽯

1 − min si•v�A(e)(u), si•vB(e)(u)􏽮 􏽯

max si • u�A(e)(u), si •uB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (25)

Now,

F�A(e)
C

� e, u, si•w�A(e)(u), 1 − si•v�A(e)(u), si•u�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (26)

G
C
�B(e) � e, u, si•wB(e)(u), 1 − si• vB(e)(u), si•uB(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯. (27)

By using Definition 12,

F�A(e)
C ∩GC

�B(e) � e, u,

min si • w�A(e)(u), si • wB(e)(u)􏽮 􏽯

max 1 − si•v�A(e)(u), 1 − si•vB(e)(u)􏽮 􏽯

max si •u�A(e)(u), si •uB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (28)

F�A(e)
C ∩GC

�B(e) � e, u,

min si • w�A(e)(u), si • wB(e)(u)􏽮 􏽯

1 − min si•v�A(e)(u), si•vB(e)(u)􏽮 􏽯

max si •u�A(e)(u), si •uB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (29)

Hence,
F�A(e)∪G�B(e)

C
� F�A(e)

C ∩GC
�B(e). (30)

□
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Proof. We know that

F�A(e) � e, u, si•u�A(e)(u), si•v�A(e)(u), si•w�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (31)

G�B(e) � e, u, si•u�B(e)(u), si•v�B(e)(u), si•w�B(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (32)

are two GmPNSS. Utilizing Definition 12,

F�A(e) ∩GB(e) � e, u,

min si•u�A(e)(u), si•uB(e)(u)􏽮 􏽯

max si•v�A(e)(u), si•vB(e)(u)􏽮 􏽯

max si•w�A(e)(u), si•wB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (33)

By Definition 10,

F�A(e) ∩GB(e)􏼐 􏼑
C

� e, u,

max si•w�A(e)(u), si•wB(e)(u)􏽮 􏽯

1 − max si•v�A(e)(u), si•vB(e)(u)􏽮 􏽯

min si•u�A(e)(u), si•uB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (34)

Now,

F�A(e)
C

� e, u, si•w�A(e)(u), 1 − si•v�A(e)(u), si•u�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (35)

G
C
�B(e) � e, u, si•wB(e)(u), 1 − si• vB(e)(u), si•uB(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯. (36)

By using Definition 11,

F�A(e)
C ∪GC

�B(e) � e, u,

max si • w�A(e)(u), si • wB(e)(u)􏽮 􏽯

min 1 − si•v�A(e)(u), 1 − si•vB(e)(u)􏽮 􏽯

min si •u�A(e)(u), si •uB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (37)

F�A(e)
C ∪GC

�B(e) � e, u,

max si • w�A(e)(u), si • wB(e)(u)􏽮 􏽯

1 − max si•v�A(e)(u), si•vB(e)(u)􏽮 􏽯

min si •u�A(e)(u), si •uB(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (38)

Hence,

F�A(e) ∩GB(e)􏼐 􏼑
C

� F
C
�A(e) ∪G

C
�B(e). (39)

□
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Proposition 5. LetF �A(e),G �B(e), andH �C(e) be GmPNSS over
U. "en,

(1) F �A(e) ∪ (G �B(e) ∩ H �C(e)) � (F �A(e) ∪ G �B(e)) ∩
(F �A(e) ∪ H �C(e))

(2) F �A(e) ∩ (G �B(e) ∪ H �C(e))� (F �A(e) ∩ G �B(e))
∪ (F �A(e) ∩ H �C(e))

(3) F �A(e) ∪ (F �A(e) ∩ G �B(e))�F �A(e)

(4) F �A(e) ∩ (F �A(e) ∪ G �B(e))�F �A(e)

Proof. We know that

G �B(e) ∩H �C(e) � e, u,

min si•u �B(e)(u), si•u �C(e)(u)􏽮 􏽯

max si•v �B(e)(u), si•v �C(e)(u)􏽮 􏽯

max si•w �B(e)(u), si•w �C(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(40)

F �A(e) ∪ G �B(e) ∩H �C(e)􏼐 􏼑 � e, u,

max si•u �A(e)(u), min si•u �B(e)(u), si•u �C(e)(u)􏽮 􏽯􏽮 􏽯

min si•v �A(e)(u), max si•v �B(e)(u), si•v �C(e)(u)􏽮 􏽯􏽮 􏽯

min si•w �A(e)(u), max si•w �B(e)(u), si•w �C(e)(u)􏽮 􏽯􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E ;

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

i ∈ 1, 2, 3, . . . , m
⎫⎬

⎭,

(41)

F �A(e) ∩G �B(e) � e, u,

min si•u �A(e)(u), si•u �B(e)(u)􏽮 􏽯

max si•v �A(e)(u), si•v �B(e)(u)􏽮 􏽯

max si•w �A(e)(u), si•w �B(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

(42)

F �A(e) ∩H �C(e) � e, u,

min si•u �A(e)(u), si•u �C(e)(u)􏽮 􏽯

max si•v �A(e)(u), si•v �C(e)(u)􏽮 􏽯

max si•w �A(e)(u), si•w �C(e)(u)􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U, e ∈ E ; i ∈ 1, 2, 3, . . . , m

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(43)

F �A(e) ∩G �B(e)􏼐 􏼑∪ F �A(e) ∩H �C(e)􏼐 􏼑 � e, u,

max min si•u 􏽦
A(e)

(u), si•u 􏽦
B(e)

(u)􏼚 􏼛, min si•u 􏽦
B(e)

(u), si•u 􏽦
C(e)

(u)􏼚 􏼛􏼚 􏼛

min max si•v 􏽦
A(e)

(u), si•v 􏽦
B(e)

(u)􏼚 􏼛, max si•v 􏽦
B(e)

(u), si•v 􏽦
C(e)

(u)􏼚 􏼛􏼚 􏼛

min max si•w 􏽦
A(e)

(u), si•w 􏽦
B(e)

(u)􏼚 􏼛, max si•w 􏽦
B(e)

(u), si•w 􏽦
C(e)

(u)􏼚 􏼛􏼚 􏼛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
u ∈ U,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e ∈ E; i ∈ 1, 2, 3, . . . , m
⎫⎬

⎭,

(44)

F �A(e) ∩G �B(e)􏼐 􏼑∪ F �A(e) ∩H �C(e)􏼐 􏼑 � e, u,

max si•u �A(e)(u), min si•u �B(e)(u), si•u �C(e)(u)􏽮 􏽯􏽮 􏽯

min si•v �A(e)(u), max si•v �B(e)(u), si•v �C(e)(u)􏽮 􏽯􏽮 􏽯

min si•w �A(e)(u), max si•w �B(e)(u), si•w �C(e)(u)􏽮 􏽯􏽮 􏽯

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: u ∈ U,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e ∈ E; i ∈ 1, 2, 3, . . . , m
⎫⎬

⎭.

(45)
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Hence,

F �A(e) ∪ G �B(e) ∩H �C(e)􏼐 􏼑 � F �A(e) ∪G �B(e)􏼐 􏼑∩ F �A(e) ∪H �C(e)􏼐 􏼑. (46)

Similarly, we can prove other results. □ Definition 13. Let F�A and G�B be GmPNSS, then their
extended union is defined as

u F�A ∪ εG�B( 􏼁 �

si•uA(e)(u), if e ∈ A − B,

si• uB(e)(u), if e ∈ B − A,

max si•uA(e)(u), si•uB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(47)

v F�A ∪ εG�B( 􏼁 �

si•vA(e)(u), if e ∈ A − B,

si• vB(e)(u), if e ∈ B − A,

min si• vA(e)(u), si•vB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩
(48)

w F�A ∪ εG�B( 􏼁 �

si•wA(e)(u), if e ∈ A − B,

si•wB(e)(u), if e ∈ B − A,

min si• wA(e)(u), si•wB(e)(u)􏽮 􏽯, if e ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩
(49)

Example 1. Assume that U� {u1, u2} is a universe of dis-
course and let E � {x1, x2, x3, x4} be a set of attributes and
A � {x1, x2} and B � {x2, x3}⊆E. Consider F�A(e) and G�B(e)

∈G3-PNSS over U can be represented as follows:

F�A �

x1, u1, (.5, .2, .1), (.3, .1, .2), (.6, .7, .8)􏼈( 􏼁

u2, (.2, .3, .1), (.2, .1, .1), (.8, .6, .6)( 􏼁

x2, u1, (.3, .1, .3), (0, .1, .3), (.5, .3, .5)􏼈( 􏼁

u2, (.2, .2, .5), (.3, .1, .5), (.6, .5, .6)( 􏼁

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(50)

G�B �

x2, u1, (.4, .3, .2), (.2, .3, .4), (.7, .4, .5)􏼈( 􏼁

u2, (.1, .5, .1), (.3, .2, .2), (.5, .7, .4)( 􏼁

x3, u1, (.2, .3, .2), (.1, .2, .2), (.4, .4, .5)􏼈( 􏼁

u2, (.1, .1, .4), (.3, .3, 1), (.5, .3, .1)( 􏼁

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(51)

*en,

F�A ∪ εG�B �

x1, u1, (.5, .2, .1), (.3, .1, .2), (.6, .7, .8)􏼈( 􏼁

u2, (.2, .3, .1), (.2, .1, .1), (.8, .6, .6)( 􏼁

x2, u1, (.4, .1, .2), (.2, .1, .3), (.7, .3, .5)􏼈( 􏼁

u2, (.2, .2, .1), (.3, .1, .2), (.6, .5, .4)( 􏼁

x3, u1, (.2, .3, .2), (.1, .2, .2), (.4, .4, .5)􏼈( 􏼁

u2, (.1, .1, .4), (.3, .3, 1), (.5, .3, .1)( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(52)

Definition 14. Let F�A and G�B be GmPNSS; then their
extended union is defined as

u F�A ∩ εG�B( 􏼁 �

si•uA(e)(u), if e ∈ A − B,

si• uB(e)(u), if e ∈ B − A,

min si• uA(e)(u), si•uB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(53)

v F�A ∩ εG�B( 􏼁 �

si• vA(e)(u), if e ∈ A − B,

si• vB(e)(u), if e ∈ B − A,

max si• vA(e)(u), si•vB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩
(54)
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w F�A ∩ εG�B( 􏼁 �

si• wA(e)(u), if e ∈ A − B,

si• wB(e)(u), if e ∈ B − A,

max si• wA(e)(u), si•wB(e)(u)􏽮 􏽯, if e ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩
(55)

Definition 15. Let F�A and G�B be GmPNSS, then their
difference is defined as follows:

F�A\G�B � e, u, min si•uA(e)(u), si•uB(e)(u)􏽮 􏽯, max si•vA(e)(u), 1 − si•vB(e)(u)􏽮 􏽯, max si• wA(e)(u), si• wB(e)(u)􏽮 􏽯􏼐 􏼑􏼐 􏼑:􏽮

u ∈ U; i ∈ 1, 2, 3, . . . , m}.

(56)

Definition 16. Let F�A and G�B be GmPNSS, then their
addition is defined as follows:

F�A + G�B � e, u, min si•uA(e)(u) + si•uB(e)(u), 1􏽮 􏽯, min si•vA(e)(u) + si•vB(e)(u), 1􏼈 􏼉, min si• wA(u) + si• wB(u), 1􏼈 􏼉􏼐 􏼑:􏼐􏽮

u ∈ U; i ∈ 1, 2, 3, . . . , m)􏼛.

(57)

Definition 17. Let F�A be a GmPNSS, then its scalar mul-
tiplication is represented asF�A(e). �a, where �a ∈ [0, 1] and it
is defined as follows:

F�A · �a � e, u, min si•uA(e)(u).�a, 1􏼈 􏼉, min si•vA(e)(u).�a, 1􏼈 􏼉, min si•wA(e)(u).�a, 1􏼈 􏼉: u ∈ U( 􏼁􏼈 􏼉. (58)

Definition 18. LetF�A be a GmPNSS, then its scalar division
is represented as F�A/�a, where �a ∈ [0, 1] and it is defined as
follows:

F�A/�a � e, u, min si•
uA(e)(u)

�a
, 1􏼨 􏼩, min si•

vA(e)(u)

�a
, 1􏼨 􏼩, min si•

wA(e)(u)

�a
, 1􏼨 􏼩: u ∈ U􏼠 􏼡􏼨 􏼩. (59)

Definition 19. Let F�A be a GmPNSS over U, then Truth-
Favorite operator on F�A can be represented by 􏽥ΔF�A and it
is defined as follows:

􏽥ΔF�A � e, u, min si•uA(e)(u) + si•vA(e)(u), 1􏽮 􏽯, 0, si•wA(e)(u)􏽮 􏽯: u ∈ U; i ∈ 1, 2, 3, . . . , m􏼐 􏼑. (60)
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Proposition 6. Let F�A and G�B be GmPNSS over U. "en,

(1) 􏽥Δ􏽥ΔF�A � 􏽥ΔF�A

(2) 􏽥Δ(F�A ∪G�B)⊆ 􏽥ΔF�A ∪ 􏽥ΔG�B

(3) 􏽥Δ(F�A ∩G�B)⊆ 􏽥ΔF�A ∩ 􏽥ΔG�B

(4) 􏽥Δ(F�A + G�B) � 􏽥ΔF�A + 􏽥ΔG�B

"e proof of the above proposition is easily obtained by
using Definitions 11, 12, 16, and 19.

Definition 20. Let F�A be a GmPNSS over U, then False-
Favorite operator onF�A can be represented by 􏽥∇F�A and it
is defined as follows:

􏽥∇F�A � e, u, si•uA(e)(u), 0, min si•wA(e)(u) + si•vA(e)(u), 1􏽮 􏽯: u ∈ U; i ∈ 1, 2, 3, . . . , m􏼐 􏼑􏽮 􏽯. (61)

Proposition 7. Let F�A and G�B be GmPNSS over U. "en,

(1) 􏽥∇ 􏽥∇F�A � 􏽥∇F�A

(2) 􏽥∇ (F�A ∪G�B)⊆ 􏽥∇F�A ∪ 􏽥∇G�B

(3) 􏽥∇ (F�A ∩G�B)⊆ 􏽥∇F�A ∩ 􏽥∇G�B

(4) 􏽥∇ (F�A + G�B) � 􏽥∇F�A + 􏽥∇G�B

"e proof of the above proposition is easily obtained by
using Definitions 11, 12, 16, and 20.

Definition 21. LetF�A and G�B be GmPNSS; then their AND
operator is represented by F�A ∧ G�B and it is defined as

follows: F�A ∧ G�B � ΊA×B, where ΊA×B(x, y) �F �A(e)(x) ∩
G �B(e)(y) for all (x, y) ∈ A × B.

Definition 22. Let F�A and G�B be GmPNSS; then their OR
operator is represented by F�A ∨ G�B and it is defined as
follows: F�A ∨ G�B � ΊA×B, where ΊA×B(x, y) �F �A(e)(x) ∪
G �B(e)(y) for all (x, y) ∈ A × B.

Example 2. Reconsider Example 1.

F�A(x) �
x1, u1, (.5, .2, .1), (.3, .1, .2), (.6, .7, .8)􏼈( 􏼁 u2, (.2, .3, .1), (.2, .1, .1), (.8, .6, .6)( 􏼁

x2, u1, (.3, .1, .3), (0, .1, .3), (.5, .3, .5)􏼈( 􏼁 u2, (.2, .2, .5), (.3, .1, .5), (.6, .5, .6)( 􏼁
􏼨 􏼩, (62)

G�B(x) �
x2, u1, (.4, .3, .2), (.2, .3, .4), (.7, .4, .5)􏼈( 􏼁 u2, (.1, .5, .1), (.3, .2, .2), (.5, .7, .4)( 􏼁

x3, u1, (.2, .3, .2), (.1, .2, .2), (.4, .4, .5)􏼈( 􏼁 u2, (.1, .1, .4), (.3, .3, 1), (.5, .3, .1)( 􏼁
􏼨 􏼩, (63)

F�A∧G�B �

x1, x2( 􏼁, (u1, (.4, .3, .2), (.2, .3, .4), (.6, .7, .8)), (u2, (.1, .5, .1), (.2, .2, .2), (.5, .7, .6)),

x1, x3( 􏼁, (u1, (.2, .3, .2), (.1, .2, .1), (.4, .7, .8)), (u2, (.1, .3, .4), (.2, .3, .1), (.5, .6, .6)),

x2, x2( 􏼁, (u1, (.3, .1, .3), (.0, .1, .3), (.5, .3, .5)), (u2, (.2, .2, .5), (.3, .1, .5), (.6, .5, .6)),

x2, x3( 􏼁, (u1, (.2, .1, .3), (.0, .2, .3), (.4, .4, .5)), (u2, (.1, .2, .5), (.3, .3, .5), (.5, .5, .6))

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (64)

Proposition 8. Let F�A, G�B, and H�C be GmPNSS. "en,

(1) F�A∨G�B �G�B∨F�A

(2) F�A∧G�B � G�B∧F�A

(3) F�A∨(G�B∨H�C) � (F�A∨G�B )∨H�C

(4) F�A∧(G�B∧H�C) � (F�A∧G�B )∧H�C

(5) (F�A∨G�B)c � Fc(�A)∧Gc(�B)

(6) (F�A∧G�B)c � Fc(�A)∨Gc(�B)

Proof. We can prove this easily by using Definitions 10, 21,
and 22. □

Definition 23. Let F�A be a GmPNSS; then necessity oper-
ation on GmPNSS is represented by ⊕ F�A and defined as
follows:

⊕F�A � e, u, si • u�A(e)(u), si • v�A(e)(u), 1 − si • u�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯. (65)
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Definition 24. Let F�A be a GmPNSS; then possibility op-
eration on GmPNSS is represented by ⊗F�A and defined as
follows:

⊗F�A � e, u, 1 − si• w�A(u), si • v�A(e)(u), si• w�A(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯. (66)

Proposition 9. Let F�A and G�B be two GmPNSS. "en,

(1) ⊕(F�A ∪ ε G�B) �⊕G�B ∪ ε ⊕F�A

(2) ⊕(F�A ∩ ε G�B) �⊕G�B ∩ ε ⊕F�A

Proof. We know that

F�A � e, u, si•u�A(e)(u), si•v�A(e)(u), si•w�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (67)

G�B � e, u, si • u�B(e)(u), si • v�B(e)(u), si • w�B(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (68)

are two GmPNSS.
Let F�A ∪ εG�B �H�C.

u H�C( 􏼁 �

si•uA(e)(u), if e ∈ A − B,

si• uB(e)(u), if e ∈ B − A,

max si•uA(e)(u), si•uB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(69)

v H�C( 􏼁 �

si•vA(e)(u), if e ∈ A − B,

si• vB(e)(u), if e ∈ B − A,

min si• vA(e)(u), si•vB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩

(70)

w H�C( 􏼁 �

si•wA(e)(u), if e ∈ A − B,

si• wB(e)(u), if e ∈ B − A,

min si• wA(e)(u), si•wB(e)(u)􏽮 􏽯, if e ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩

(71)

By using Definition 23,

⊕u H�C( 􏼁 �

si•uA(e)(u), if e ∈ A − B,

si• uB(e)(u), if e ∈ B − A,

max si• uA(e)(u), si•uB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(72)

⊕v H�C( 􏼁 �

si•vA(e)(u), if e ∈ A − B,

si• vB(e)(u), if e ∈ B − A,

min si• vA(e)(u), si•vB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩

(73)

⊕w H�C( 􏼁 �

si•wA(e)(u), if e ∈ A − B,

si• wB(e)(u), if e ∈ B − A,

min si• wA(e)(u), si•wB(e)(u)􏽮 􏽯, if e ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩

(74)

Assume that ⊕G�B ∪ ε⊕F�A �ℵ, where ⊕F�A and ⊕G�B are
given as follows by using the definition of necessity
operation:

⊕F�A � e, u, si•u�A(e)(u), si•v�A(e)(u), 1 − si • u�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (75)

⊕G�B � e, u, si•u�B(e)(u), si•v�B(e)(u), 1 − si • u�B(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯. (76)
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*en, by using Definition 13,

u(ℵ) �

si•uA(e)(u), if e ∈ A − B,

si• uB(e)(u), if e ∈ B − A,

max si• uA(e)(u), si•uB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(77)

v(ℵ) �

si•vA(e)(u), if e ∈ A − B,

si• vB(e)(u), if e ∈ B − A,

min si• vA(e)(u), si•vB(e)(u)􏽮 􏽯, if e ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩

(78)

w(ℵ) �

si•uA(e)(u), if e ∈ A − B,

si• uB(e)(u), if e ∈ B − A,

1 − min si• uA(e)(u), si•uB(e)(u)􏽮 􏽯, if e ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩

(79)

Consequently, ⊕(H�C) and ℵ are the same, so

⊕ F�A ∪ ε G�B( 􏼁 � ⊕G�B ∪ ε⊕F�A. (80)

Similarly, we can prove 2. □

Proposition 10. Let F�A and G�B be two GmPNSS. "en,

(1) ⊗ , (F�A ∪ ε G�B) � ⊗ , G�B ∪ ε ⊗ , F�A

(2) ⊗ , (F�A ∩ ε G�B) � ⊗ , G�B ∩ ε ⊗ , F�A

Proof. *e proof is similar to that of Proposition 9. □

Proposition 11. Let F�A and G�B be GmPNSS, then we have
the following:

(1) ⊕(F�A∧G�B) �⊕F�A ∧⊕G�B

(2) ⊕(F�A∨G�B) �⊕F�A ∨⊕G�B

(3) ⊗(F�A∧G�B) �⊗F�A ∧ ⊗G�B

(4) ⊗(F�A∨G�B) �⊗F�A ∨ ⊗G�B

Proof. We know that F�A and G�B are GmPNSS:

F�A � e, u, si • u�A(e)(u), si • v�A(e)(u), si • w�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (81)

G�B � e, u, si • u�B(e)(u), si • v�B(e)(u), si • w�B(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯. (82)

Let (F�A∧G�B) �H�C, where �C � �A × �B.

H�C � ei, ej􏼐 􏼑, u, min
si•u�A(e)(u)

si•u�B(e)(u)

⎧⎨

⎩

⎫⎬

⎭, max
si•v�A(e)(u)

si•v�B(e)(u)

⎧⎨

⎩

⎫⎬

⎭, max
si•w�A(e)(u)

si•w�B(e)(u)

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭. (83)

By using Definition 23,

⊕H�C � ei, ej􏼐 􏼑, u, min
si•u�A(e)(u)

si•u�B(e)(u)

⎧⎨

⎩

⎫⎬

⎭, max
si•v�A(e)(u)

si•v�B(e)(u)

⎧⎨

⎩

⎫⎬

⎭, 1 − min
si•u�A(e)(u)

si•u�B(e)(u)

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭. (84)

We have

⊕F�A � e, u, si•u�A(e)(u), si•v�A(e)(u), 1 − si•u�A(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (85)

⊕G�B � e, u, si•u�B(e)(u), si•v�B(e)(u), 1 − si•u�B(e)(u)􏼐 􏼑􏼐 􏼑􏼐 􏼑: u ∈ U, e ∈ E; i ∈ 1, 2, 3, . . . , m􏽮 􏽯. (86)
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By using Definition 21, we get

⊕F�A∧⊕G�B � ei, ej􏼐 􏼑, u, min si•u�A(e)(u), si•u�B(e)(u)􏽮 􏽯, max si•v�A(e)(u), si•v�B(e)(u)􏽮 􏽯,􏽨􏽮

max 1 − si • u�A(e)(u)􏼐 􏼑, 1 − si • u�B(e)(u)􏼐 􏼑􏽮 􏽯 ]},
(87)

⊕F�A∧⊕G�B � ei, ej􏼐 􏼑, u, min si•u�A(e)(u), si•u�B(e)(u)􏽮 􏽯, max si•v�A(e)(u), si•v�B(e)(u)􏽮 􏽯, 1 − min si•u�A(e)(u), si•u�B(e)(u)􏽮 􏽯􏽨 􏽩􏽮 􏽯.

(88)

So ⊕(F�A ∧G�B) �⊕F�A ∧⊕G�B.
Similar to Assertion 1, we can prove 2, 3, and 4. □

4. Distance and Similarity Measure of
Generalized Multipolar Neutrosophic
Soft Set

In this section, we introduce the Hamming distance and
Euclidean distance between two GmPNSS and develop the
similarity measure by using these distances.

Definition 25. U and E are a universal set and a set of at-
tributes, respectively; assume that GmPNSS(U) represents
the collection of all GmPNSS. Consider (ΦF, E) as well as
(φG, E) ∈GmPNSS and there exists a mapping ΦF, φG: E

⟶ GmPNSS(U); after that, we tend to establish the
distances between (ΦF, E) and (φG, E) as follows.

4.1. Hamming Distance

d
H
GmPNSS ΦF(e), φG(e)( 􏼁 �

1
2m

􏽘

m

i�1
􏽘

p

j�1
si• uΦF uj􏼐 􏼑 − si• uφG

uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + si• vΦF uj􏼐 􏼑 − si• vφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

⎧⎪⎨

⎪⎩

+ si• wΦF uj􏼐 􏼑 − si• wφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
⎫⎬

⎭.

(89)

4.2. Normalized Hamming Distance

d
NH
GmPNSS ΦF(e), φG(e)( 􏼁 �

1
2mp

􏽘

m

i�1
􏽘

p

j�1
si• uΦF uj􏼐 􏼑 − si• uφG uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + si• vΦF uj􏼐 􏼑 − si• vφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

⎧⎪⎨

⎪⎩

+ si• wΦF uj􏼐 􏼑 − si• wφG uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼛.

(90)

4.3. Euclidean Distance

d
E
GmPNSS ΦF(e), φG(e)( 􏼁 �

1
2m

􏽘

m

i�1
􏽘

p

j�1
si• uΦF uj􏼐 􏼑 − si• uφG

uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

+ si• vΦF uj􏼐 􏼑 − si• vφG uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2⎧⎪⎨

⎪⎩
⎛⎜⎝

+ si• wΦF uj􏼐 􏼑 − si• wφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2
􏼩􏼡

1/2

.

(91)
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4.4. Normalized Euclidean Distance

d
NE
GmPNSS ΦF(e), φG(e)( 􏼁 �

1
2mp

􏽘

m

i�1
􏽘

p

j�1
si• uΦF uj􏼐 􏼑 − si• uφG uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

+ si• vΦF uj􏼐 􏼑 − si• vφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2⎧⎪⎨

⎪⎩
⎛⎜⎝

+ si• wΦF uj􏼐 􏼑 − si• wφG uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2
􏼩􏼡

1/2

.

(92)

4.5. Weighted Distance

d
w
GmPNSS ΦF(e), φG(e)( 􏼁 �

1
2m

􏽘

m

i�1
􏽘

p

j�1
wi si• uΦF uj􏼐 􏼑 − si• uφG

uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
r

+ si• vΦF uj􏼐 􏼑 − si• vφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
r

􏼚

⎧⎪⎨

⎪⎩
⎛⎜⎝

+ si• wΦF uj􏼐 􏼑 − si• wφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
r

􏼛􏼛􏼓
1/r

.

(93)

where r > 0 and w � (w1, w2, w3, . . . , wn)T is a weight
vector of ei (i �1, 2, 3, . . ., n). If r � 1 and r � 2, then equation
(5) becomes the weighted hamming and weighted Euclidean
distances, respectively.

Definition 26. U and E are a universal set and a set of at-
tributes, respectively, and (ΦF, E) and (φG, E) are two
GmPNSS(U). *en similarity measure based on Definition
25 between (ΦF, E) and (φG, E) is defined as follows:

SGmPNSS ΦF,φG( 􏼁 �
1

1 + d ΦF,φG( 􏼁
. (94)

Another similarity measure between (ΦF, E) and (φG, E)
is defined as

SGmPNSS ΦF,φG( 􏼁 � e
− β d ΦF,φG( ), (95)

where β is a steepness measure and a positive real number.

Definition 27. U and E are a universal set and a set of at-
tributes, respectively, and (ΦF, E) and (φG, E) are two
GmPNSS(U). *en, the distances between (ΦF, E) and (φG,
E) are defined as follows:

dGmPNSS ΦF(e), φG(e)( 􏼁 �
1
2m

􏽘

m

i�1
􏽘

p

j�1
si• uΦF uj􏼐 􏼑 − si• uφG

uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
r

+ si• vΦF uj􏼐 􏼑 − si• vφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
r⎧⎪⎨

⎪⎩
⎛⎜⎝

+ si• wΦF uj􏼐 􏼑 − si• wφG uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
r

􏼛􏼓
1/r

,

(96)

dGmPNSS ΦF(e), φG(e)( 􏼁 �
1

2mp
􏽘

m

i�1
􏽘

p

j�1
si• uΦF uj􏼐 􏼑 − si• uφG

uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
r

+ si• vΦF uj􏼐 􏼑 − si• vφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
r⎧⎪⎨

⎪⎩
⎛⎜⎝

+ si• wΦF uj􏼐 􏼑 − si• wφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
r

􏼛􏼓
1/r

.

(97)

where r > 0, and equations (8) and (9) are reduced to
equations (1) and (2), respectively, if r� 1. Similarly, if r� 2,

then equations (8) and (9) are reduced to equations (3) and
(4), respectively.
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Definition 28. Similarity measure between two GmPNSS
(ΦF, E) and (φG, E) based on the weighted distance of (ΦF,
E) and (φG, E) is defined as follows:

SGmPNSS ΦF,φG( 􏼁 �
1

1 + d
w
GmPNSS ΦF,φG( 􏼁

. (98)

Definition 29. Let ΦF and φG be GmPNSS over the uni-
versal set; thenΦF and φG are said to be α-similar if and only
if SGmPNSS(ΦF, φG) ≥ α for α ∈ (0, 1). If SGmPNSS(ΦF, φG) >
1/2, then we can say thatΦF and φG are significantly similar.

5. Correlation Coefficient of Generalized
Multipolar Neutrosophic Soft Set

In this section, we propose the concept of correlation co-
efficient and weighted correlation coefficient of GmPNSS
with some properties.

Definition 30. Let

F�A � uk, si•u�A uk( 􏼁, si•v�A uk( 􏼁, si•w�A uk( 􏼁( 􏼁: uk ∈ U; i ∈ 1, 2, 3, . . . , m􏼈 􏼉, (99)

G
B
⌣ � uk, si•u

B
⌣ uk( 􏼁, si•v

B
⌣ uk( 􏼁, si•w

B
⌣ uk( 􏼁􏼐 􏼑: uk ∈ U; i ∈ 1, 2, 3, . . . , m􏽮 􏽯, (100)

be two GmPNSS over a set of parameters
E � x1, x2, x3, . . . , xn􏼈 􏼉.

*en, informational neutrosophic energies of two
GmPNSS can be expressed as follows:

εGmPNSS F
A
⌣􏼐 􏼑 � 􏽘

z

j�1
􏽘

t

k�1
si•u

A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si•v
A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si•w
A
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡, (101)

εGmPNSS G
B
⌣􏼐 􏼑 � 􏽘

z

j�1
􏽘

t

k�1
si•u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si•v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si•w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡. (102)

Definition 31. *e correlation of two GmPNSS can be
presented as follows:

ζGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑 � 􏽘

z

j�1
􏽘

t

k�1
si•u

A
⌣

j

uk( 􏼁si•u
B
⌣

j

uk( 􏼁 + si•v
A
⌣

j

uk( 􏼁si•v
B
⌣

j

uk( 􏼁 + si•w
A
⌣

j

uk( 􏼁si•w
B
⌣

j

uk( 􏼁􏼒 􏼓: i ∈ 1, 2, 3, . . . , m􏼚 􏼛.

(103)

Definition 32. Let F
A
⌣ and G

B
⌣ be two GmPNSS; then the CC

between them can be defined as follows:

RGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑 �

ζGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑

�����������������������������
εGmPNSS F

A
⌣ , F

A
⌣􏼐 􏼑 · εGmPNSS G

B
⌣, G

B
⌣􏼐 􏼑

􏽱 , (104)

RGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑 �

􏽐
z
j�1 􏽐

t
k�1 si•u

A
⌣

j

uk( 􏼁si•u
B
⌣

j

uk( 􏼁 + si•v
A
⌣

j

uk( 􏼁si•v
B
⌣

j

uk( 􏼁 + si•w
A
⌣

j

uk( 􏼁si•w
B
⌣

j

uk( 􏼁􏼒 􏼓
�������������������������������������������������

􏽐
z
j�1 􏽐

t
k�1 si•u

A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si•v
A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si•w
A
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡

􏽳 ������������������������������������������������

􏽐
z
j�1 􏽐

t
k�1 si•u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si•v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si•w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡

􏽳 .

(105)
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Proposition 12. Let F
A
⌣ and G

B
⌣ be two GmPNSS; then the

CC RGmPNSS(F
A
⌣ , G

B
⌣) between them satisfies the following

properties:

(1) 0≤RGmPNSS(F
A
⌣ , G

B
⌣)≤ 1

(2) RGmPNSS(F
A
⌣ , G

B
⌣) � RGmPNSS(G

B
⌣, F

A
⌣ )

(3) If F
A
⌣ � G

B
⌣, that is, si•u

A
⌣

j

(uk) � si•u
B
⌣

j

(uk), si•v
A
⌣

j
(uk) � si•v

B
⌣

j

(uk), and si•w
A
⌣

j

(uk) � si•w
B
⌣

j

(uk) for

all j, k, where i ∈ 1, 2, 3, . . . , m, then RGmPNSS
(F

A
⌣ , G

B
⌣) � 1

Proof. RGmPNSS(F
A
⌣ , G

B
⌣)≥ 0 is trivial, so we just need to

prove that RGmPNSS(F
A
⌣ , G

B
⌣)≤ 1.

We know that

ζGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑 � 􏽘

z

j�1
􏽘

t

k�1
si · u

A
⌣

j

uk( 􏼁si · u
B
⌣

j

uk( 􏼁 + si · v
A
⌣

j

uk( 􏼁si · v
B
⌣

j

uk( 􏼁 + si · w
A
⌣

j

uk( 􏼁si · w
B
⌣

j

uk( 􏼁􏼒 􏼓

� 􏽘
z

j�1
si · u

A
⌣

j

u1( 􏼁si · u
B
⌣

j

u1( 􏼁 + si · v
A
⌣

j

u1( 􏼁si · v
B
⌣

j

u1( 􏼁 + si · w
A
⌣

j

u1( 􏼁si · w
B
⌣

j

u1( 􏼁􏼒 􏼓

+ 􏽘
z

j�1
si · u

A
⌣

j

u2( 􏼁si · u
B
⌣

j

u2( 􏼁 + si · v
A
⌣

j

u2( 􏼁si · v
B
⌣

j

u2( 􏼁 + si · w
A
⌣

j

u2( 􏼁si · w
B
⌣

j

u2( 􏼁􏼒 􏼓+

⋮

+ 􏽘

z

j�1
si · u

A
⌣

j

ut( 􏼁si · u
B
⌣

j

ut( 􏼁 + si · v
A
⌣

j

ut( 􏼁si · v
B
⌣

j

ut( 􏼁 + si · w
A
⌣

j

ut( 􏼁si · w
B
⌣

j

ut( 􏼁􏼒 􏼓

�

si · u
A
⌣

1
u1( 􏼁si · u

B
⌣

1
u1( 􏼁 + si · v

A
⌣

1
u1( 􏼁si · v

B
⌣

1
u1( 􏼁 + si · w

A
⌣

1
u1( 􏼁si · w

B
⌣

1
u1( 􏼁􏼒 􏼓+

si · u
A
⌣

2
u1( 􏼁si · u

B
⌣

2
u1( 􏼁 + si · v

A
⌣

2
u1( 􏼁si · v

B
⌣

2
u1( 􏼁 + si · w

A
⌣

2
u1( 􏼁si · w

B
⌣

2
u1( 􏼁􏼒 􏼓 + · · · +

si · u
A
⌣

z

u1( 􏼁si · u
B
⌣

z

u1( 􏼁 + si · v
A
⌣

z

u1( 􏼁si · v
B
⌣

z

u1( 􏼁 + si · w
A
⌣

z

u1( 􏼁si · w
B
⌣

z

u1( 􏼁􏼒 􏼓+

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+

si · u
A
⌣

1
u2( 􏼁si · u

B
⌣

1
u2( 􏼁 + si · v

A
⌣

1
u2( 􏼁si · v

B
⌣

1
u2( 􏼁 + si · w

A
⌣

1
u2( 􏼁si · w

B
⌣

1
u2( 􏼁􏼒 􏼓+

si · u
A
⌣

2
u2( 􏼁si · u

B
⌣

2
u2( 􏼁 + si · v

A
⌣

2
u2( 􏼁si · v

B
⌣

2
u2( 􏼁 + si · w

A
⌣

2
u2( 􏼁si · w

B
⌣

2
u2( 􏼁􏼒 􏼓 + · · · +

si · u
A
⌣

z

u2( 􏼁si · u
B
⌣

z

u2( 􏼁 + si · v
A
⌣

z

u2( 􏼁si · v
B
⌣

z

u2( 􏼁 + si · w
A
⌣

z

u2( 􏼁si · w
B
⌣

z

u2( 􏼁􏼒 􏼓+

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+ · · · +

si · u
A
⌣

1
uk( 􏼁si · u

B
⌣

1
uk( 􏼁 + si · v

A
⌣

1
uk( 􏼁si · v

B
⌣

1
uk( 􏼁 + si · w

A
⌣

1
uk( 􏼁si · w

B
⌣

1
uk( 􏼁􏼒 􏼓+

si · u
A
⌣

2
uk( 􏼁si · u

B
⌣

2
uk( 􏼁 + si · v

A
⌣

2
uk( 􏼁si · v

B
⌣

2
uk( 􏼁 + si · w

A
⌣

2
uk( 􏼁si · w

B
⌣

2
uk( 􏼁􏼒 􏼓 + · · · +

si · u
A
⌣

z

uk( 􏼁si · u
B
⌣

z

uk( 􏼁 + si · v
A
⌣

z

uk( 􏼁si · v
B
⌣

z

uk( 􏼁 + si · w
A
⌣

z

uk( 􏼁si · w
B
⌣

z

uk( 􏼁􏼒 􏼓+

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

� 􏽘
z

j�1
si · u

A
⌣

j

u1( 􏼁si · u
B
⌣

j

u1( 􏼁 + si · u
A
⌣

j

u2( 􏼁si · u
B
⌣

j

u2( 􏼁 + · · · + si · u
A
⌣

j

ut( 􏼁si · u
B
⌣

j

ut( 􏼁􏼒 􏼓

+ 􏽘
z

j�1
si · v

A
⌣

j

u1( 􏼁si · v
B
⌣

j

u1( 􏼁 + si · v
A
⌣

j

u2( 􏼁si · v
B
⌣

j

u2( 􏼁 + · · · + si · v
A
⌣

j

ut( 􏼁si · v
B
⌣

j

ut( 􏼁􏼒 􏼓

+ 􏽘
z

j�1
si · w

A
⌣

j

u1( 􏼁si · w
B
⌣

j

u1( 􏼁 + si · w
A
⌣

j

u2( 􏼁si · w
B
⌣

j

u2( 􏼁 + · · · + si · w
A
⌣

j

ut( 􏼁si · w
B
⌣

j

ut( 􏼁􏼒 􏼓.

(106)
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By using Cauchy-Schwarz inequality, we get

ζGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑􏼐 􏼑

2
≤

􏽘

z

j�1
si · u

A
⌣

j

u1( 􏼁􏼒 􏼓
2

+ si · u
A
⌣

j

u2( 􏼁􏼒 􏼓
2

+ · · · + si · u
A
⌣

j

ut( 􏼁􏼒 􏼓
2

􏼠 􏼡+

􏽘

z

j�1
si · v

A
⌣

j

u1( 􏼁􏼒 􏼓
2

+ si · v
A
⌣

j

u2( 􏼁􏼒 􏼓
2

+ · · · + si · v
A
⌣

j

ut( 􏼁􏼒 􏼓
2

􏼠 􏼡 + · · · +

􏽘

z

j�1
si · w

A
⌣

j

u1( 􏼁􏼒 􏼓
2

+ si · w
A
⌣

j

u2( 􏼁􏼒 􏼓
2

+ · · · + si · w
A
⌣

j

ut( 􏼁􏼒 􏼓
2

􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

×

􏽘
z

j�1
si · u

B
⌣

j

u1( 􏼁􏼒 􏼓
2

+ si · u
B
⌣

j

u2( 􏼁􏼒 􏼓
2

+ · · · + si · u
B
⌣

j

ut( 􏼁􏼒 􏼓
2

􏼠 􏼡+

􏽘

z

j�1
si · v

B
⌣

j

u1( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

u2( 􏼁􏼒 􏼓
2

+ · · · + si · v
B
⌣

j

ut( 􏼁􏼒 􏼓
2

􏼠 􏼡 + · · · +

􏽘

z

j�1
si · w

B
⌣

j

u1( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

u2( 􏼁􏼒 􏼓
2

+ · · · + si · w
B
⌣

j

ut( 􏼁􏼒 􏼓
2

􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

􏽘
z

j�1
􏽘

t

k�1
si · u

A
⌣

j

ut( 􏼁􏼒 􏼓
2

+ si · v
A
⌣

j

ut( 􏼁􏼒 􏼓
2

+ si · w
A
⌣

j

ut( 􏼁􏼒 􏼓
2

􏼠 􏼡

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

× 􏽘
z

j�1
􏽘

t

k�1
si · u

B
⌣

j

ut( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

ut( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

ut( 􏼁􏼒 􏼓
2

􏼠 􏼡

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� εGmPNSS F
A
⌣􏼐 􏼑•εGmPNSS G

B
⌣􏼐 􏼑.

(107)

*erefore,
(ζGmPNSS(F

A
⌣ , G

B
⌣))2 ≤ εGmPNSS(F

A
⌣ ) · εGmPNSS(G

B
⌣). Hence, by

using Definition 32, we get RGmPNSS(F
A
⌣ , G

B
⌣)≤ 1, so

0≤RGmPNSS(F
A
⌣ , G

B
⌣)≤ 1. □

Proof. *e proof is obvious. □

Proof. We know that

RGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑 �

􏽐
z
j�1 􏽐

t
k�1 si · u

B
⌣

j

uk( 􏼁si · u
B
⌣

j

uk( 􏼁 + si · v
B
⌣

j

uk( 􏼁si · v
B
⌣

j

uk( 􏼁 + si · w
B
⌣

j

uk( 􏼁si · w
B
⌣

j

uk( 􏼁􏼒 􏼓
��������������������������������������������������

􏽐
z
j�1 􏽐

t
k�1 si · u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡

􏽳 ��������������������������������������������������

􏽐
z
j�1 􏽐

t
k�1 si · u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡

􏽳 .

(108)

As we know that si · u
A
⌣

j

(uk) � si · u
B
⌣

j

(uk),
si · v

A
⌣

j

(uk) � si · v
B
⌣

j

(uk), and si · w
A
⌣

j

(uk) � si · w
B
⌣

j

(uk), for
all j, k, by using Definition 32, we have
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RGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑 �

􏽐
z
j�1 􏽐

t
k�1 si · u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡

��������������������������������������������������

􏽐
z
j�1 􏽐

t
k�1 si · u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡

􏽳 ��������������������������������������������������

􏽐
z
j�1 􏽐

t
k�1 si · u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡

􏽳 .

(109)

Hence, RGmPNSS(F
A
⌣ , G

B
⌣) � 1. □ Definition 33. Let F

A
⌣ and G

B
⌣ be two GmPNSS; then the CC

between them also can be defined as follows:

R
1
GmPNSS F

A
⌣ , G

B
⌣􏼐 􏼑 �

ζGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑

max εGmPNSS F
A
⌣ , F

A
⌣􏼐 􏼑, εGmPNSS G

B
⌣, G

B
⌣􏼐 􏼑􏽮 􏽯

, (110)

R
1
GmPNSS F

A
⌣ , G

B
⌣􏼐 􏼑 �

􏽐
z
j�1 􏽐

t
k�1 si · u

A
⌣

j

uk( 􏼁si · u
B
⌣

j

uk( 􏼁 + si · v
A
⌣

j

uk( 􏼁si · v
B
⌣

j

uk( 􏼁 + si · w
A
⌣

j

uk( 􏼁si · w
B
⌣

j

uk( 􏼁

max
􏽐

z
j�1 􏽐

t
k�1 si · u

A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
A
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡,

􏽐
s
j�1 􏽐

t
k�1 si · u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(111)

Proposition 13. Let F
A
⌣ and G

B
⌣ are two GmPNSS; then the

CC R1
GmPNSS(F

A
⌣ , G

B
⌣) between them satisfies the following

properties:

(1) 0≤R1
GmPNSS(F

A
⌣ , G

B
⌣)≤ 1

(2) R1
GmPNSS(F

A
⌣ , G

B
⌣) � R1

GmPNSS(G
B
⌣, F

A
⌣ )

(3) If F
A
⌣ � G

B
⌣, that is, si · u

A
⌣

j

(uk) � si · u
B
⌣

j

(uk), si · v
A
⌣

j
(uk) � si · v

B
⌣

j

(uk), and si · w
A
⌣

j

(uk) � si · w
B
⌣

j

(uk), for
all i, j, where i ∈ 1, 2, 3, . . . , m, then R1

GmPNSS
(F

A
⌣ , G

B
⌣) � 1

Proof. *e proof is easy according to Definition 33.
Nowadays, considering that the weight of GmPNSS is

very necessary for practical applications, the result of

decisions may vary, whenever decision-makers adjust the
different weight to every element in the universe of dis-
course. Consequently, it is particularly significant to plan
the weight before decision-making. Let ώ � ώ1,ώ2,􏼈

ώ3, . . . ,ώt} be a weight vector for experts such asώk > 0 and
􏽐

t
k�1ώk � 1, and let δ � δ1, δ2, δ3, . . . , δn􏼈 􏼉 be a weight

vector for parameters such as δj > 0 and 􏽐
z
j�1 δj � 1. In the

following, we develop the WCC between GmPNSS by
extending Definitions 32 and 33. □

Definition 34. For two GmPNSS F
A
⌣ and G

B
⌣ , the WCC

between them can be defined as follows:

RGWmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑 �

ζGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑

���������������������������
εGmPNSS F

A
⌣ , F

A
⌣􏼐 􏼑εGmPNSS G

B
⌣, G

B
⌣􏼐 􏼑

􏽱 , (112)

RGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑 �

􏽐
z
j�1 δj 􏽐

t
k�1ώk si · u

A
⌣

j

uk( 􏼁si · u
B
⌣

j

uk( 􏼁 + si · v
A
⌣

j

uk( 􏼁si · v
B
⌣

j

uk( 􏼁 + si · w
A
⌣

j

uk( 􏼁si · w
B
⌣

j

uk( 􏼁􏼒 􏼓􏼒 􏼓
���������������������������������������������������������

􏽐
z
j�1 δj 􏽐

t
k�1ώk si · u

A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
A
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡􏼠 􏼡

􏽳

���������������������������������������������������������

􏽐
z
j�1 δj 􏽐

t
k�1ώk si · u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡􏼠 􏼡

􏽳

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Definition 35. Let F
A
⌣ and G

B
⌣ be two GmPNSS, then the

WCC between them can be defined as follows:
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R
1
GWmPNSS F

A
⌣ , G

B
⌣􏼐 􏼑 �

ζGmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑

max εGmPNSS F
A
⌣ , F

A
⌣􏼐 􏼑, εGmPNSS G

B
⌣, G

B
⌣􏼐 􏼑􏽮 􏽯

, (114)

R
1
GmPNSS F

A
⌣ , G

B
⌣􏼐 􏼑 �

􏽐
z
j�1 δj 􏽐

t
k�1ώk si · u

A
⌣

j

uk( 􏼁si · u
B
⌣

j

uk( 􏼁 + si · v
A
⌣

j

uk( 􏼁si · v
B
⌣

j

uk( 􏼁 + si · w
A
⌣

j

uk( 􏼁si · w
B
⌣

j

uk( 􏼁􏼒 􏼓􏼒 􏼓

max
􏽐

z
j�1 δj 􏽐

t
k�1ώk si · u

A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
A
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
A
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡,􏼠 􏼡

􏽐
z
j�1 δj 􏽐

t
k�1ώk si · u

B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · v
B
⌣

j

uk( 􏼁􏼒 􏼓
2

+ si · w
B
⌣

j

uk( 􏼁􏼒 􏼓
2

􏼠 􏼡􏼠 􏼡

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.
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If we consider ώ � 1/t, t1/tn, q . . . h,1/t}􏽮 and δ � 1/{

z, t1/zn, q . . . h,1/z}, then RGWmPNSS (F
A
⌣ , G

B
⌣) and

R1
GWmPNSS(F

A
⌣ , G

B
⌣) are reduced to RGWmPNSS(F

A
⌣ , G

B
⌣) and

R1
GWmPNSS(F

A
⌣ , G

B
⌣), respectively, defined in Definitions 32

and 33.

Proposition 14. Let F
A
⌣ and G

B
⌣ be two GmPNSS; then the

CC RGWmPNSS(F
A
⌣ , G

B
⌣) between them satisfies the following

properties:

(1) 0≤RGWmPNSS(F
A
⌣ , G

B
⌣)≤ 1

(2) RGWmPNSS(F
A
⌣ , G

B
⌣) � RGWmPNSS(G

B
⌣, F

A
⌣ )

(3) If F
A
⌣ � G

B
⌣, that is, si · u

A
⌣

j

(uk) � si · u
B
⌣

j

(uk),
si · v

A
⌣

j

(uk) � si · v
B
⌣

j

(uk), and
si · w

A
⌣

j

(uk) � si · w
B
⌣

j

(uk), for all j, k, where
i ∈ 1, 2, 3, . . . , m, then RGWmPNSS(F

A
⌣ , G

B
⌣) � 1

Proof. RGWmPNSS(F
A
⌣ , G

B
⌣)≥ 0 is trivial, so we just need to

prove that RGWmPNSS(F
A
⌣ , G

B
⌣)≤ 1.

We know that

ζGWmPNSS F
A
⌣ , G

B
⌣􏼐 􏼑 � 􏽘

z

j�1
δj 􏽘

t

k�1
ώk si · u

A
⌣

j

uk( 􏼁si · u
B
⌣

j

uk( 􏼁 + si · v
A
⌣

j

uk( 􏼁si · v
B
⌣

j

uk( 􏼁 + si · w
A
⌣

j

uk( 􏼁si · w
B
⌣

j

uk( 􏼁􏼒 􏼓⎛⎝ ⎞⎠

� 􏽘
z

j�1
δj ώ1 si · u

A
⌣

j

u1( 􏼁si · u
B
⌣

j

u1( 􏼁 + si · v
A
⌣

j

u1( 􏼁si · v
B
⌣

j

u1( 􏼁 + si · w
A
⌣

j

u1( 􏼁si · w
B
⌣

j

u1( 􏼁􏼒 􏼓􏼒 􏼓

+ 􏽘
z

j�1
δj ώ1 si · u

A
⌣

j

u2( 􏼁si · u
B
⌣

j

u2( 􏼁 + si · v
A
⌣

j

u2( 􏼁si · v
B
⌣

j

u2( 􏼁 + si · w
A
⌣

j

u2( 􏼁si · w
B
⌣

j

u2( 􏼁􏼒 􏼓􏼒 􏼓

+

⋮

+

􏽘

z

j�1
δj ώt si · u

A
⌣

j

ut( 􏼁si · u
B
⌣

j

ut( 􏼁 + si · v
A
⌣

j

ut( 􏼁si · v
B
⌣

j

ut( 􏼁 + si · w
A
⌣

j

ut( 􏼁si · w
B
⌣

j

ut( 􏼁􏼒 􏼓􏼒 􏼓

�

δ1 ώ1 si · u
A
⌣

1
u1( 􏼁si · u

B
⌣

1
u1( 􏼁 + si · v

A
⌣

1
u1( 􏼁si · v

B
⌣

1
u1( 􏼁 + si · w

A
⌣

1
u1( 􏼁si · w

B
⌣

1
u1( 􏼁􏼒 􏼓􏼒 􏼓+

δ2 ώ1 si · u
A
⌣

2
u1( 􏼁si · u

B
⌣

2
u1( 􏼁 + si · v

A
⌣

2
u1( 􏼁si · v

B
⌣

2
u1( 􏼁 + si · w

A
⌣

2
u1( 􏼁si · w

B
⌣

2
u1( 􏼁􏼒 􏼓􏼒 􏼓+

⋮

+

δz ώ1 si · u
A
⌣

z

u1( 􏼁si · u
B
⌣

z

u1( 􏼁 + si · v
A
⌣

z

u1( 􏼁si · v
B
⌣

z

u1( 􏼁 + si · w
A
⌣

z

u1( 􏼁si · w
B
⌣

z

u1( 􏼁􏼒 􏼓􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

δ1 ώ2 si · u
A
⌣

1
u2( 􏼁si · u

B
⌣

1
u2( 􏼁 + si · v

A
⌣

1
u2( 􏼁si · v

B
⌣

1
u2( 􏼁 + si · w

A
⌣

1
u2( 􏼁si · w

B
⌣

1
u2( 􏼁􏼒 􏼓􏼒 􏼓+

δ2 ώ2 si · u
A
⌣

2
u2( 􏼁si · u

B
⌣

2
u2( 􏼁 + si · v

A
⌣

2
u2( 􏼁si · v

B
⌣

2
u2( 􏼁 + si · w

A
⌣

2
u2( 􏼁si · w

B
⌣

2
u2( 􏼁􏼒 􏼓􏼒 􏼓+

⋮

+

δz ώ2 si · u
A
⌣

z

u2( 􏼁si · u
B
⌣

z

u2( 􏼁 + si · v
A
⌣

z

u2( 􏼁si · v
B
⌣

z

u2( 􏼁 + si · w
A
⌣

z

u2( 􏼁si · w
B
⌣

z

u2( 􏼁􏼒 􏼓􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
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⋮
+

δ1 ώt si · u
A
⌣

1
ut( 􏼁si · u

B
⌣

1
ut( 􏼁 + si · v

A
⌣

1
ut( 􏼁si · v

B
⌣

1
ut( 􏼁 + si · w

A
⌣

1
ut( 􏼁si · w

B
⌣

1
ut( 􏼁􏼒 􏼓􏼒 􏼓+

δ2 ώt si · u
A
⌣

2
ut( 􏼁si · u

B
⌣

2
ut( 􏼁 + si · v

A
⌣

2
ut( 􏼁si · v

B
⌣

2
ut( 􏼁 + si · w

A
⌣

2
ut( 􏼁si · w

B
⌣

2
ut( 􏼁􏼒 􏼓􏼒 􏼓+

⋮
+

δz ώt si · u
A
⌣

z

ut( 􏼁si · u
B
⌣

z

ut( 􏼁 + si · v
A
⌣

z

ut( 􏼁si · v
B
⌣

z

ut( 􏼁 + si · w
A
⌣

z

ut( 􏼁si · w
B
⌣

z

ut( 􏼁􏼒 􏼓􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

δ1
���

ώ1

􏽱

si · u
A
⌣

1
u1( 􏼁􏼒 􏼓∗

���

ώ1

􏽱

si · u
B
⌣

1
u1( 􏼁􏼒 􏼓 +

���

ώ1

􏽱

si · v
A
⌣

1
u1( 􏼁􏼒 􏼓∗

���

ώ1

􏽱

si · v
B
⌣

1
u1( 􏼁􏼒 􏼓 +

���

ώ1

􏽱

si · w
A
⌣

1
u1( 􏼁􏼒 􏼓∗

���

ώ1

􏽱

si · w
B
⌣

1
u1( 􏼁􏼒 􏼓􏼒 􏼓+

δ2
���

ώ1

􏽱

si · u
A
⌣

2
u1( 􏼁􏼒 􏼓∗

���

ώ1

􏽱

si · u
B
⌣

2
u1( 􏼁􏼒 􏼓 +

���

ώ1

􏽱

si · v
A
⌣

2
u1( 􏼁􏼒 􏼓∗

���

ώ1

􏽱

si · v
B
⌣

2
u1( 􏼁􏼒 􏼓 +

���

ώ1

􏽱

si · w
A
⌣

2
u1( 􏼁􏼒 􏼓∗

���

ώ1

􏽱

si · w
B
⌣

2
u1( 􏼁􏼒 􏼓􏼒 􏼓+

⋮
+

δz

���

ώ1

􏽱

si · u
A
⌣

z

u1( 􏼁􏼒 􏼓∗
���

ώ1

􏽱

si · u
B
⌣

z

u1( 􏼁􏼒 􏼓 +

���

ώ1

􏽱

si · v
A
⌣

z

u1( 􏼁􏼒 􏼓∗
���

ώ1

􏽱

si · v
B
⌣

z

u1( 􏼁􏼒 􏼓 +

���

ώ1

􏽱

si · w
A
⌣

z

u1( 􏼁􏼒 􏼓∗
���

ώ1

􏽱

si · w
B
⌣

z

u1( 􏼁􏼒 􏼓􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
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δ1
���

ώ2

􏽱

si · u
A
⌣

1
u2( 􏼁􏼒 􏼓∗

���

ώ2

􏽱

si · u
B
⌣

1
u2( 􏼁􏼒 􏼓 +

���

ώ2

􏽱

si · v
A
⌣

1
u2( 􏼁􏼒 􏼓∗

���

ώ2

􏽱

si · v
B
⌣

1
u2( 􏼁􏼒 􏼓 +

���

ώ2

􏽱

si · w
A
⌣

1
u2( 􏼁􏼒 􏼓∗

���

ώ2

􏽱

si · w
B
⌣

1
u2( 􏼁􏼒 􏼓􏼒 􏼓+

δ2
���

ώ2

􏽱

si · u
A
⌣

2
u2( 􏼁􏼒 􏼓∗

���

ώ2

􏽱

si · u
B
⌣

2
u2( 􏼁􏼒 􏼓 +

���

ώ2

􏽱

si · v
A
⌣

2
u2( 􏼁􏼒 􏼓∗

���

ώ2

􏽱

si · v
B
⌣

2
u2( 􏼁􏼒 􏼓 +

���

ώ2

􏽱

si · w
A
⌣

2
u2( 􏼁􏼒 􏼓∗

���

ώ2

􏽱

si · w
B
⌣

2
u2( 􏼁􏼒 􏼓􏼒 􏼓+

⋮
+

δz

���

ώ2

􏽱

si · u
A
⌣

z

u2( 􏼁􏼒 􏼓∗
���

ώ2

􏽱

si · u
B
⌣

z

u2( 􏼁􏼒 􏼓 +

���

ώ2

􏽱

si · v
A
⌣

z

u2( 􏼁􏼒 􏼓∗
���

ώ2

􏽱

si · v
B
⌣

z

u2( 􏼁􏼒 􏼓 +

���

ώ2

􏽱

si · w
A
⌣

z

u2( 􏼁􏼒 􏼓∗
���

ώ2

􏽱

si · w
B
⌣

z

u2( 􏼁􏼒 􏼓􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⋮
+

δ1
���

ώt

􏽱

si · u
A
⌣

1
ut( 􏼁􏼒 􏼓∗

���

ώt

􏽱

si · u
B
⌣

1
ut( 􏼁􏼒 􏼓 +

���

ώt

􏽱

si · v
A
⌣

1
ut( 􏼁􏼒 􏼓∗

���

ώt

􏽱

si · v
B
⌣

1
ut( 􏼁􏼒 􏼓 +

���

ώt

􏽱

si · w
A
⌣

1
ut( 􏼁􏼒 􏼓∗

���

ώt

􏽱

si · w
B
⌣

1
ut( 􏼁􏼒 􏼓􏼒 􏼓+

δ2
���
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By using Cauchy–Schwarz inequality, we get
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(119)

*erefore, (ζGWmPNSS (F�A, G�B))2 ≤ EGWmPNSS (F�A)·

EGWmPNSS(G�B). Hence, by using Definition 34, we get
RGWmPNSS (F�A, G�B) ≤ 1, so 0 ≤ RGWmPNSS (F�A, G�B) ≤
1. □

Proof. *e proof is obvious. □
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As we know that si•u�Aj
(uk) � si•u�Bj

(uk),
si•v�Aj

(uk) � si•v�Bj
(uk), and si•w�Aj
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(uk), for all

j, k, by using Definition 34, we have
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Hence, RGWmPNSS (F�A, G�B)� 1. □

6. Applications of Similarity Measures and
Correlation Coefficient of GmPNSS in
Medical Diagnoses and Decision-Making

In this section, we proposed the algorithm for GmPNSS by
using developed similarity measures and CC. We also used
the proposed methods for medical diagnoses and decision-
making in real-life problems.

6.1. Application of Similarity Measure in Medical Diagnoses.
We develop the algorithm of GmPNSS for similarity mea-
sure and use the developed similarity measure for medical

diagnoses by using the proposed algorithm, shown in
Figure 1.

6.1.1. Algorithm for Similarity Measure of GmPNSS

Step 1. Pick out the set containing parameters.
Step 2. Construct the GmPNSS according to experts.
Step 3. Construct GmPNSS φt

G for the evaluation of
different decision-makers, where t � 1, 2, . . ., m.
Step 4. Find the distance between two GmPNSS by
using the distance formula:

d
H
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1
2m

􏽘

m

i�1
􏽘

p

j�1
si• uΦF uj􏼐 􏼑 − si• uφG

uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + si• vΦF uj􏼐 􏼑 − si• vφG
uj􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

⎧⎪⎨

⎪⎩

+ si• wΦF uj􏼐 􏼑 − si• wφG uj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
⎫⎬

⎭.

(122)

Step 5. Compute the similarity measure between two
GmPNSS by utilizing the following formula:

SGmPNSS ΦF,φG( 􏼁 �
1

1 + d ΦF,φG( 􏼁
. (123)

Step 6. Analyze the result.

*e flow chart of the presented algorithm can be seen in
Figure 1.

6.2. Problem Formulation and Application of Similarity
Measure and CC of GmPNSS for Disease Diagnoses. *e
general proposed algorithm can be used in diagnosis
complications. In the light of scientific discipline, a nu-
merical example is presented to deal the diagnostic diffi-
culties. *is planned algorithm may be obtained from
immoderate medical disease diagnosis complications. We
consider typhoid disease as a diagnosis problem, so re-
gardless of whether a well-advised patient has typhoid or
not, as many containing the overall signs and symptoms of
typhoid are going to be compatible as well as other diseases
such as malaria. For a verbal description of the disease, we
tend to dispensed similarity measures along the GmPNSS
structure to attain an insured person as well as high-fidelity
consequences. *e general m-polar anatomical structure
offers us a record of medical experts rating for the ex-
traordinary disease.

6.2.1. Application of Similarity Measure. Now, we consider
the universal set as follows: U� {u1 � typhoid,
u2 � nontyphoid} and E is a set of parameters consisting of
symptoms of typhoid disease such as E � {x1 � flu, x2 � body

pain, x3 � headache}. Consider F and G ⊆ E; then we
construct the G3-PNSS of F and G such as ΦF(x) and
φG(x) according to experts as given in Tables 1 and 2.

Compute distances between ΦF(x) and φG(x) by using
Definition 25 given as follows:

dH
G3−PNSS(ΦF(e), φG(e)) � 0.6183

dNH
G3−PNSS(ΦF(e), φG(e)) � 0.3092

dE
G3−PNSS(ΦF(e), φG(e)) � 0.7749

dNE
G3−PNSS(ΦF(e), φG(e)) � 0.5481

By using Hamming distance, we will find the similarity
measure between ΦF(e) and φG(e) given as follows:

SG3−PNSS (ΦF, φG)� 0.6179 > 0.5.

According to the above calculation, SG3−PNSS (ΦF,
φG) ≥ 0.5, so G3-PNSS of ΦF and φG are significantly
similar, which shows that the patient suffers from typhoid.

6.3. Applications of Correlation Coefficient in Medical
Diagnoses. We develop the algorithm of GmPNSS for CC
and use the developed CC for medical diagnoses by de-
veloping an algorithm.

6.3.1. Algorithm for Correlation Coefficient of GmPNSS
Step 1. Pick out the set containing parameters.
Step 2. Construct the GmPNSS according to experts.
Step 3. Find the informational neutrosophic energies of
any two GmPNSS.
Step 4. Calculate the correlation between two GmPNSS
by using the following formula:
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Step 5. Calculate the CC between any two GmPNSS by
using the following formula:

RGmPNSS F�A,G�B( 􏼁 �
ζGmPNSS F�A,G�B( 􏼁

��������������������������������
EGmPNSS F�A,F�A( 􏼁 . EGmPNSS G�B,G�B( 􏼁

􏽱 . (125)

Step 6. Analyze the results.

*e flow chart of the presented algorithm can be seen in
Figure 2.

6.3.2. Application of Correlation Coefficient. We use the
proposed algorithm for medical diagnoses. For this, we

consider thatF�A andG�B are G3-PNSS which are described in
Section 6.2.1 in Tables 1 and 2, respectively. By using equation
(12), we can findCC against the values of the universal set given
as follows: RG3−PNSS(u1) (F�A, G�B)� 0.9967 and RG3−PNSS(u2)

(F�A, G�B)� 0.9925. By the above calculation, we analyze the
results and get RG3−PNSS(u1) (F�A, G�B) > RG3−PNSS(u2) (F�A,
G�B), which shows that patient suffers from typhoid.

Step 1
(i) Input GmPNSS according to requirement

Step 2
(ii) Construct the evaluation report for each
 alternative in the form of GmPNSS

Step 3
(iii) Compute the distance between GmPNSS

Step 4
(iv) Compute the similarity measures

Step 5
(v) Choose the alternative with highest similarity

Step 6
(vi) Analyze the ranking

Figure 1: Flow chart of presented algorithm for GmPNSS based on the similarity measure.

Table 1: G3-PNSS of F�A according to experts.

ΦF(x) x1 x2 x3

u1 (.69, .52, .61), (.37, .44, .23), (.46, .37, .29) (.54, .63, .55), (.48, .44, .26), (.63, .47, .59) (.34, .47, .27), (.46, .48, .37), (.75, .58, .69)
u2 (.43, .66, .62), (.48, .45, .53), (.47, .52, .36) (.17, .23, .29), (.37, .41, .47), (.53, .59, .61) (.58, .53, .55), (.37, .35, .32), (.65, .63, .59)

Table 2: G3-PNSS of G�B according to experts.

φG(x) x1 x2 x3

u1 (.63, .57, .54), (.47, .46, .32), (.62, .75, .67) (.45, .71, .50), (.50, .43, .26), (.61, .50, .47) (.27, .38, .24), (.58, .37, .47), (.65, .69, .70)
u2 (.47, .59, .69), (.53, .50, .60), (.43, .58, .32) (.15, .25, .25), (.32, .40, .43), (.53, .60, .60) (.47, .46, .64), (.44, .40, .30), (.61, .60, .68)
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6.4. Problem Formulation and Application of GmPNSS for
Decision-Making. Department of the scientific discipline of
some university U will have one scholarship for a post-
doctoral position. Several applicants apply for scholarship
but only four S � {S1, S2, S3, S4} applicants received the
interview call for evaluation based on their CGPA (cumu-
lative grade points average). *e president of the university
hires a committee of four experts X � {X1, X2, X3, X4} for
the selection of the postdoctoral scholars. First of all, the
committee decides the set of parameters such as E � {x1, x2,
x3}, where x1, x2, and x3 represent the research papers,
research quality, and communication skills for the selection
of postdoctoral scholars. *e experts evaluate the scholars
under defined parameters and forward the performance
evaluation to the president of the university. Finally, the
president of the university scrutinizes the one best scholar
based on the expert’s evaluation for the postdoctoral
scholarship.

6.4.1. Application of GmPNSS for Decision-Making.
Assume that S � {S1, S2, S3, S4} is a set of scholars who are
shortlisted for interview and E � {x1 � research paper,
x2 � research quality, x3 � interview} is a set of parameters
for the selection of scholarship. Let F and G ⊆ E; then we
construct the G3-PNSSΦF(x) according to the requirement
of the scientific discipline department.

Now we will construct the G3-PNSS φt
G according to

four experts, where t� 1, 2, 3, 4.
By using equation (3), we calculate the Euclidean dis-

tance between ΦF and φt
G as follows:

dE
G3−PNSS(ΦF, φ1

G) � 1.32
dE
G3−PNSS(ΦF, φ2

G) � 1.3185
dE
G3−PNSS(ΦF, φ3

G) � 0.4598
dE
G3−PNSS(ΦF, φ4

G) � 1.1132

Similarity measures of ΦF and φt
G can be calculated as

follows:

SG3−PNSS(ΦF, φ1
G) � 0.4310

SG3−PNSS(ΦF, φ2
G) � 0.4313

SG3−PNSS(ΦF, φ3
G) � 0.6850

SG3−PNSS(ΦF, φ4
G) � 0.4732

According to the proposed similarity measure, ranking
of the alternatives is S3 > S4 > S2 > S1, and it is clear that
SG3−PNSS(ΦF, φ3

G) � 0.6850 > 0.5, which shows thatΦF and
φ3
G are significantly similar to G3-PNSS. So S3 is the best

scholar for the postdoctoral position. Graphical represen-
tation of alternatives ranking can be seen in Figure 3.

6.4.2. Solution by Using Algorithm 2. Now, by using
Tables 3–7, we can find the correlation coefficient for each
alternative by using equation (12) given as RGmPNSS
(ΦF, φ1

G)� .8374, RGmPNSS (ΦF, φ2
G)� .7821, RGmPNSS

(ΦF, φ3
G)� .9462, and RGmPNSS (ΦF, φ4

G)� .9422. *is
shows that RGmPNSS (ΦF, φ3

G) > RGmPNSS (ΦF, φ4
G) >

RGmPNSS (ΦF, φ1
G) > RGmPNSS (ΦF, φ2

G). Hence, S3 is the
best scholar for a postdoctoral position. In Figure 3, we can
see the graphical representation of alternatives ranking.

7. Result Discussion and Comparative Analysis

In the following section, we will discuss the effectiveness,
naivety, flexibility, and advantages of the proposed methods
and algorithms. We also conducted a brief comparative
analysis of the following: suggested methods and existing
methods.

7.1. Advantages and Flexibility of the Proposed Approach.
*e recommended technique is effective and applicable to all
forms of input data. Here, we introduce two novel algo-
rithms based on GmPNSS: one is CC, and the other is
similarity measures. Both algorithms are effective and can
provide the best results in MCDM problems. *e recom-
mended algorithm is simple and easy to understand, can
deepen understanding, and is suitable for many types of
choices and indicators. Developed algorithms are flexible
and easy to change to suit different situations, inputs, and
outputs. *ere are subtle differences between the rankings of
the suggested methods because different techniques have
different ranking methods, so they can be afforded according
to their considerations.

7.1.1. Superiority of the Proposed Method. *rough this
research and comparative analysis, we have concluded that
the results obtained by the proposed method are more
general than the prevailing methods. However, in the de-
cision-making process, compared with the existing decision-
making methods, it contains more information to deal with
the uncertainty in the data. Moreover, the mixed structure of
many FS has become a special case of GmPNSS, by adding
some suitable conditions. Among them, the information
related to the object can be expressed more accurately and
empirically, so it is a convenient tool for combining inac-
curate and uncertain information in the decision-making
process. *erefore, our proposed method is effective, flex-
ible, simple, and superior to other hybrid structures of fuzzy
sets.

Step 1
(i) Input GmPNSS according to requirement

Step 2 (ii) Construct the evaluation report for each alternative in the form of GmPNSS

Step 3 (iii) Compute the neutrosophic informational energies

Step 4 (iv) Compute the correlation between GmPNSS

Step 5 (v) Calculate the correlation coefficient

Step 6 (vi) Choose the alternative with maximum score value

Step 7 (vii) Ranking alternatives

Figure 2: Flow chart of the presented algorithm based on the
correlation coefficient.
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Table 6: G3-PNSS evaluation report according to experts of S3.

φ3
G x1 x2 x3

X1 (.77, .49, .61), (.71, .43, .21), (.47, .40, .69) (.47, .59, .76), (.67, .62, .56), (.57, .43, .29) (.70, .54, .61), (.79, .44, .63), (.61, .41, .51)
X2 (.60, .32, .32), (.77, .49, .83), (.76, .32, .59) (.76, .62, .61), (.56, .49, .79), (.53, .59, .81) (.69, .62, .67), (.57, .74, .43), (.86, .47, .79)
X3 (.60, .22, .21), (.67, .43, .53), (.49, .57, .49) (.29, .72, .41), (.30, .66, .29), (.56, .32, .39) (.74, .52, .66), (.67, .41, .93), (.85, .47, .59)
X4 (.74, .26, .37), (.49, .41, .63), (.44, .35, .32) (.41, .66, .51), (.39, .27, .36), (.41, .51, .21) (.60, .16, .47), (.31, .17, .24), (.54, .35, .24)

S1
S2
S3

0.431
0.4313

0.6819

0.9422

0.4491

0
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0.8374 0.431

Correlation coefficient Similarity measure

Figure 3: Alternative final score value with the proposed algorithms.

Table 3: Construction of G3-PNSS of all scholars according to department requirement.

ΦF(x) x1 x2 x3

X1 (.82, .55, .63), (.55, .46, .28), (.43, .38, .60) (.43, .68, .86), (.47, .67, .56), (.42, .51, .33) (.73, .48, .53), (.87, .43, .77), (.76, .53, .62)
X2 (.50, .62, .52), (.93, .57, .80), (.66, .48, .52) (.77, .54, .81), (.75, .54, .72), (.53, .54, .69) (.64, .48, .59), (.32, .58, .22), (.94, .64, .62)
X3 (.29, .25, .41), (.73, .34, .32), (.64, .44, .56) (.36, .45, .27), (.47, .65, .21), (.61, .37, .39) (.57, .25, .41), (.72, .55, .29), (.64, .31, .34)
X4 (.91, .50, .16), (.30, .24, .63), (.16, .55, .20) (.69, .52, .61), (.37, .44, .23), (.46, .37, .29) (.39, .35, .67), (.47, .24, .32), (.40, .71, .56)

Table 4: G3-PNSS evaluation report according to experts of S1.

φ1
G x1 x2 x3

X1 (.13, .15, .22), (.89, .78, .83), (.77, .82, .91) (.91, .50, .16), (.30, .24, .63), (.16, .55, .20) (.69, .52, .61), (.37, .44, .23), (.46, .37, .29)
X2 (.79, .84, .93), (.36, .18, .26), (.21, .24, .16) (.39, .35, .67), (.47, .24, .32), (.40, .71, .56) (.76, .62, .41), (.36, .49, .79), (.53, .59, .91)
X3 (.07, .23, .32), (.12, .18, .20), (.74, .79, .88) (.70, .22, .11), (.67, .43, .53), (.41, .57, .49) (.87, .58, .66), (.77, .22, .56), (.57, .33, .29)
X4 (.23, .12, .17), (.25, .16, .22), (.14, .16, .18) (.74, .62, .66), (.67, .41, .93), (.85, .67, .99) (.27, .29, .61), (.71, .43, .21), (.47, .70, .89)

Table 5: G3-PNSS evaluation report according to experts of S2.

φ2
G x1 x2 x3

X1 (.16, .20, .27), (.83, .87, .89), (70, .75, .86) (.91, .50, .16), (.30, .24, .63), (.16, .55, .20) (.69, .52, .61), (.37, .44, .23), (.46, .37, .29)
X2 (.13, .21, .24), (.18, .20, .20), (.70, .84, .90) (.39, .35, .67), (.47, .24, .32), (.40, .71, .56) (.76, .62, .41), (.36, .49, .79), (.53, .59, .91)
X3 (.20, .16, .27), (.29, .17, .26), (.14, .15, .12) (.70, .22, .11), (.67, .43, .53), (.41, .57, .49) (.87, .58, .66), (.77, .22, .56), (.57, .33, .29)
X4 (.88, .81, .90), (.40, .20, .26), (.22, .27, .17) (.74, .62, .66), (.67, .41, .93), (.85, .67, .99) (.27, .29, .61), (.71, .43, .21), (.47, .70, .89)

Table 7: G3-PNSS evaluation report according to experts of S4.

φ4
G x1 x2 x3

X1 (.23, .13, .22), (.31, .25, .43), (.19, .22, .27) (.43, .68, .86), (.47, .67, .56), (.42, .51, .33) (.82, .55, .63), (.55, .46, .28), (.43, .38, .60)
X2 (.10, .13, .11), (.91, .84, .69), (.31, .30, .28) (.27, .29, .61), (.71, .43, .21), (.47, .70, .89) (.50, .62, .52), (.93, .57, .80), (.66, .48, .52)
X3 (.70, .22, .11), (.67, .43, .53), (.41, .57, .49) (.70, .22, .11), (.67, .43, .53), (.41, .57, .49) (.36, .45, .27), (.47, .65, .21), (.61, .37, .39)
X4 (.45, .16, .27), (.91, .67, .23), (.64, .88, .10) (.67, .81, .17), (.21, .54, .71), (.41, .54, .21) (.20, .76, .47), (.39, .17, .46), (.41, .53, .22)
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It turns out that this is a contemporary issue. Why do we
have to express novel algorithms based on the current novel
structure? Many indications are compared with other
existing methods, and the recommended methods are surely
competent. We remember the following fact: the mixed
structures have some limitations in IFS, picture fuzzy sets,
FS, hesitation fuzzy sets, NS, and other fuzzy sets, so
complete information about the situation cannot be pro-
vided. But our m-polar model GmPNSS can be the most
suitable for MCDM because it can deal with truth, inde-
terminacy, and falsity. Due to the exaggerated multipolar
neutrosophy, these three degrees are independent of each
other and provide a lot of information about alternative
norms. Other similarity measures of available hybrid
structures are converted into special cases of GmPNSS. A
comparative analysis of some existing techniques is listed in
Table 8. *erefore, compared with intuitionistic, neu-
trosophy, hesitant, image, and ambiguity substitution, this
model is more versatile and can easily resolve complications.
*e similarity measures established for GmPNSS become
better than the existing similarity measures for MCDM.

7.1.2. Discussion. By using the technique of Chen et al. [48],
we deal with the multipolar information of fuzzy sets, but,
with this method, we cannot deal with the indeterminacy
and falsity objects of alternatives. By using the methodol-
ogies of Xu et al. [49] and Zhang et al. [50], we cannot deal
with the multipolar information and uncertainty part of the
alternative. But, on the other hand, the methodology we
established involves the truthiness, indeterminacy, and
falsity of alternatives with multiple data. *erefore, the
technique we developed is more efficient and can provide
better results for decision-makers through various infor-
mation. Ali et al.’s method [51] dealt with the truthiness,
indeterminacy, and falsity levels of alternatives, but these
techniques cannot manage multiple data. Instead, the
method we developed is an advanced technique that can
handle alternatives withmultiple types of information. It can
be seen in Table 8.

7.1.3. Comparative Analysis. In this article, we propose two
types of algorithms. First, an algorithm is proposed based on
the correlation coefficient, and the other is based on simi-
larity measures for GmPNSS. Next, both algorithms are
utilized to solve practical problems in real life, that is, for the
selection of a postdoctoral position. *e graphical repre-
sentation of results obtained by both algorithms is shown in
Figure 3. *e results show that the proposed technique is
effective and practical. Finally, the ranking of all alternatives
using the existing methodologies gives the same final de-
cision; that is, the “postdoctoral” position is selected as S3.
All rankings are also calculated by applying existingmethods
with the same case study. *e proposed method is also
compared with other existing methods: Saeed et al. [33],
Masooma et al. [16], Riaz et al. [52], and Kamal et al. [22].
*e comparison results are listed in Table 9, which shows the
final ranking of the top 4 alternatives. It can be observed that
the best selections made by the proposed methods are
compared with the already established methods which are
expressive in themselves and approve the reliability and
validity of the proposed method.

8. Conclusion

In this paper, we study themPNSS and propose a generalized
version of mPNSS with some basic operations and prop-
erties. We also develop the AND operator, OR operator,
Truth-Favorite operator, and False-Favorite operator with
properties and examples. *e concepts of necessity and
possibility operations with their properties are developed in
this research. *e distance-based similarity measures on
GmPNSS are established by using the Hamming and Eu-
clidean distances with their properties, and a decision-
making approach is presented to solve multicriteria deci-
sion-making problems. We also established the correlation
coefficient and the weighted correlation coefficient of
GmPNSS with the decision-making technique. Further-
more, a numerical illustration has been described to solve
theMCDMproblem by using the proposed decision-making
approaches for medical diagnoses and decision-making. A
comparative analysis is presented to verify the validity and
demonstration of the proposed method. Finally, the sug-
gested techniques showed higher stability and practicality
for decision-makers in the decision-making process. Based
on the results obtained, it is concluded that the proposed
method is most suitable for solving the MCDM problem in
today’s life. *e presented technique is unable to handle the
scenario when the information of truth, falsity, and inde-
terminacy is given in intervals. In the future, the concept of
mPNSS will be extended to interval-valued mPNSS and the

Table 8: Comparative analysis between some existing techniques and the proposed approach.

Set Truthiness Indeterminacy Falsity Multipolarity Loss of information
Chen et al. [48] mPFS ✓ × × ✓ ×

Xu et al. [49] IFS ✓ × ✓ × ×

Zhang et al. [50] IFS ✓ × ✓ × ✓
Ali et al. [51] BPNSS ✓ ✓ ✓ × ×

Proposed approach GmPNSS ✓ ✓ ✓ ✓ ×

Table 9: Comparison between GmPNSS and some existing studies.

Method Alternative final ranking Optimal choice
Masooma et al. [16] S3 > S2 > S1 > S4 S3
Saeed et al. [33] S3 > S4 > S2 > S1 S3
Riaz et al. [52] S3 > S2 > S1 > S4 S3
Kamal et al. [22] S3 > S4 > S2 > S1 S3
Proposed algorithm 1 S3 > S4 > S2 > S1 S3
Proposed algorithm 2 S3 > S4 > S1 > S2 S3
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developed techniques to other fields, such as mathematical
programming, cluster analysis, and big data analysis.

Data Availability

No data were used in this manuscript.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*e author Rifaqat Ali would like to express his gratitude to
the Deanship of Scientific Research at King Khalid Uni-
versity, Saudi Arabia, for providing funding research groups
(Grant no. R. G. P. 2/71/41).

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[2] I. B. Turksen, “Interval valued fuzzy sets based on normal
forms,” Fuzzy Sets and Systems, vol. 20, no. 2, pp. 191–210,
1986.

[3] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87–96, 1986.

[4] F. Smarandache, “Neutrosophic set-a generalization of
intuitionistic fuzzy sets,” International Journal of Pure and
Applied Mathematics, vol. 24, no. 3, pp. 287–297, 2005.

[5] D. Molodtsov, “Soft set theory-First results,” Computers &
Mathematics with Applications, vol. 37, no. 4-5, pp. 19–31,
1999.

[6] P. K. Maji, R. Biswas, and A. R. Roy, “Soft set theory,”
Computers & Mathematics with Applications, vol. 45, no. 4-5,
pp. 555–562, 2003.

[7] P. K. Maji, A. R. Roy, and R. Biswas, “An application of soft
sets in A decision making problem,” Computers & Mathe-
matics with Applications, vol. 44, no. 8-9, pp. 1077–1083, 2002.

[8] M. I. Ali, F. Feng, X. Liu, W. K. Min, andM. Shabir, “On some
new operations in soft set theory,” Computers & Mathematics
with Applications, vol. 57, no. 9, pp. 1547–1553, 2009.

[9] A. Sezgin and A. O. Atagün, “On operations of soft sets,”
Computers & Mathematics with Applications, vol. 61, no. 5,
pp. 1457–1467, 2011.

[10] P. K. Maji, “Neutrosophic soft set,” Annals of Fuzzy Math-
ematics and Informatics, vol. 5, no. 1, pp. 157–168, 2013.

[11] F. Karaaslan, “Possibility neutrosophic soft sets and PNS-
decision making method,” Applied Soft Computing Journal,
vol. 54, pp. 403–414, 2016.

[12] S. Broumi, “Generalized neutrosophic soft set,” International
Journal of Computer Science, Engineering and Information
Technology, vol. 3, no. 2, pp. 17–30, 2013.
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Strategy is the main source of long-term growth for organizations, and if it is not successfully implemented, even if appropriate
ones are adopted, the process is futile. ,e balanced scorecard which focuses on four aspects such as growth and learning, internal
processes, customer, and financial is considered as a comprehensive framework for assessing performance and the progress of the
strategy. Moreover, the data envelopment analysis is one of the best mathematical methods to compute the efficiency of or-
ganizations. ,e combination of these two techniques is a significant quantitative measurement with respect to the organization’s
performance. However, in the real world, determinate and indeterminate information exists. Henceforth, the indeterminate issues
are inescapable and must be considered in the performance evaluation. Neutrosophic number is a helpful tool for dealing with
information that is indeterminate and incomplete. In this paper, we propose a new model of data envelopment analysis in the
neutrosophic number environment. Furthermore, we attempt to combine the new model with the balanced scorecard to rank
different decision-making units. Finally, the proposed method is illustrated by an empirical study involving 20 banking branches.
,e results show the effectiveness of the proposedmethod and indicate that themodel has practical outcomes for decision-makers.

1. Introduction

All organizations whether governmental or private require
an effective performance assessment for development,
growth, and sustainability in the competitive world of today.
In other words, senior executive managers have always been
seeking a solution to ensure that their strategies are executed
and, hence, have selected performance assessment methods
as tools to implement their strategies.

,e balanced scorecard (BSC) has been introduced as a
comprehensive framework for performance assessment and
advancement of strategy, which balances the short- and
long-term goals, financial and nonfinancial measures, in-
ternal and external performance, internal and external
stakeholders, and the occurring progressive and nonpro-
gressive performance indexes. BSC is a proven framework
that describes and operates the organization’s strategy [1].

Data envelopment analysis (DEA) is a mathematical
programming for measuring the relative efficiencies of
homogeneous decision-making units (DMUs) without

knowing production functions, just by utilizing input and
output information [2, 3]. ,e first models in DEA are the
CCR and BCC models in which the efficiency of each DMU
obtained as the maximum of a ratio of weighted outputs to
weighted inputs subject to that of the similar ratio for all
DMUs is less than or equal to one [2, 3]. DEA technique has
just been effectively connected in various cases such as
broadcasting companies [4], banking institutions [5–8],
R&D organizations [9, 10], health care services [11],
manufacturing [12, 13], telecommunication [14], and supply
chain management [15].

One of the disadvantages of the BSC is the lack of a
quantitative measurement of the organization’s performance
using the mathematical method. ,erefore, the integrated
BSC-DEA approach can be used to provide a mathematical
model of performance measurement for macrogoals, which
is complete than the separate models [16]. In the hybrid
BSC-DEA technique, BSC is utilized as a tool for designing
the assessment indexes for performance, whereas the DEA is
used as a tool for performance evaluation.,is approach has
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drawn the attention of several researchers within a very short
period of time.

Eilat et al. [17–19] used the BSC-DEA method for the
first time in R&D projects. Min et al. [20] applied the BSC
model and the DEA technique for the efficiency of Korean
hotels. Chen et al. [21, 22], based on the four perspectives of
the BSC, with the help of the quantitative DEA tools, carried
out the efficiency evaluation of semiconductor industries
and cooperative credit banks in Taiwan. Macedo et al. [23]
applied a hybrid BSC-DEA model to performance mea-
surement of the bank branches in Brazil with 6 indexes.
Garćıa-Valderrama et al. [24] proposed a framework for the
analysis of the relationships between the four perspectives of
the BSC, and utilizing DEA developed several different
models of efficiency. Chiang et al. [25] attempted to develop
an integrated framework to encompass the BSC andDEA for
measuring management performance and selected auto and
commercial bank industries as the targets for empirical
investigation. Amado et al. [26] presented the development
of a conceptual framework which aims to assess DMUs from
multiple perspectives. ,e proposed conceptual framework
combines the BSC method with DEA by using various
interconnected models which try to encapsulate four per-
spectives of BSC. Wu and Liao [27] proposed an integrated
DEA-BSC model to evaluate the operational efficiency of
airlines. To adapt this model, 38 major airlines in the world
were selected to assess their relative performance. In [28],
the information technology (IT) project has been evaluated
by using a hybrid DEA-BSC model. ,is approach uses BSC
as a comprehensive framework for defining IT project
evaluation criteria and uses DEA as a nonparametric
technique for ranking IT projects. For illustrations of the
other researches which have been executed in relative to
assessing the efficiency of organizations by utilizing the DEA
and the BSC, refer to [29–32].

However, data in real world are imprecise and vague, and
one of the main tools for description of this kind of data is
fuzzy number. Since Zadeh [33] presented fuzzy sets (FS),
fuzzy theory has been applied effectively in an extensive
variety of subject fields [34–37]. Some researchers also
considered the BSC-DEA models under fuzzy environment
[38–42]. Since the fuzzy set considers only the degree of
membership and has not the degree of nonmembership,
Atanassov [43] made an enhancement to overcome this
weakness and presented the intuitionist fuzzy set (IFS)
consisting of the degree of membership and the degree of
nonmembership.,ere are various models of DEAwith IFSs
(see [44–46]). However, the IFS did not consider the degree
of indeterminacy. We know that the incomplete, indeter-
minate, and inconsistent information in real life often exists.
Because of an absence of data, estimation mistakes, or the
limited attention and knowledge of decision-makers, in
numerous circumstances, the obtained information might
be partial determinacy and/or partial indeterminacy. Fuzzy
and intuitionist fuzzy sets cannot therefore represent data
with both determined and indefinite data.

To express this kind of information, Smarandache
[47–49] originally established the neutrosophic logic, which
generalizes the concept of the classic set, fuzzy set, interval-

valued fuzzy set, and intuitionistic fuzzy set. ,is logic di-
vided into two categories of the neutrosophic sets (NSs) and
the neutrosophic numbers (NNs).

,e neutrosophic sets (NSs) are represented by a
truth-membership degree, an indeterminacy-membership
degree, and a falsity-membership degree and have some
subclasses such as single valued neutrosophic sets [50–60],
interval neutrosophic sets [61–65], and simplified
neutrosophic sets [64, 66–68]. A neutrosophic set A in X is
characterized by a truth-membership function TA(x), an
indeterminacy-membership function IA(x), and a falsity-
membership function FA(x). ,e functions TA(x), IA(x), and
FA(x) are real standard or nonstandard subsets of ]0− , 1+[;

that is, TA(x): X⟶ ]0− , 1+[, IA(x): X⟶ ]0− , 1+[,and
FA(x): X⟶ ]0− , 1+[. ,ere is no restriction on the sum of
TA(x), IA(x), and FA(x), so

0− ≤ supTA(x) + supIA(x) + supFA(x)≤ 3+
. (1)

,e neutrosophic number (NN) introduces a concept of
indeterminacy, denoted by A � m + nI(m, n ∈ R), and
consists of its determinate part m and its indeterminate part
nI. In the worst scenario, A can be unknown, i.e., A � nI.
However, when there is no indeterminacy related to A, in the
best scenario, there is only its determinate part, i.e., A � m.

Smarandache also refined the NNs by decomposition of the
indeterminacy I into different types of indeterminacies such
as I1, I2, . . . , In, and extended the neutrosophic number to
the refined neutrosophic number [69, 70].

It is worth mentioning that the neutrosophic sets (NSs)
cannot deal with decision-making problems with neu-
trosophic numbers, as NSs and NNs are two different
branches in neutrosophic theory and indicate different
forms and concepts of information.

It is clear that the NNs are very practical for conveying
information about indeterminate evaluations in complex
decision-making problems. For example, Ye [71] provided a
neutrosophic number tool for a multiple attribute group
decision-making (MAGDM) problem with NNs. He pre-
sented a de-neutrosophication method and a possibility
degree ranking method for NNs as a methodological support
for group decision-making problems. Additionally, Ye [72]
developed a bidirectional projection measure of NNs for
MAGDM problems. Under a NN environment, Chen and
Ye [73] presented a projection model of NNs and its de-
cision-making method for the selecting problems of clay-
bricks. Kong et al. [74] presented a distance measure and
cosine similarity measure between NNs and applied it to the
misfire fault diagnosis of gasoline engines. Furthermore,
Smarandache [75] introduced the concept of a neutrosophic
linguistic number (NLN) in symbolic neutrosophic theory.
Based on this concept, Ye [76] proposed basic operational
laws of NLNs. Zhang et al. [77] proposed an extend TODIM
method to handle multiple attribute group decision-making
problems in which the evaluation information is expressed
by NNs. Zheng et al. [78] presented some aggregation op-
erators based on NNs, which are used to handle MAGDM
problems. Furthermore, under this environment, Liu and
Liu [79] proposed some generalized weighted power
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aggregation operators that are used to deal with MAGDM
problems more effectively. Jiang and Ye [80] defined a new
concept of neutrosophic number functions for the objective
functions and constraints in engineering optimization de-
sign problems with determinate and indeterminate infor-
mation and obtained a general NN optimization model of
truss structure design. To overcome the complex calculation
and difficult solution problems in methods of [80], Ye [81]
proposed an improved NN optimization method and ap-
plied it to a three-bar planar truss structural design with
indeterminate information. Furthermore, Ye et al. [82] using
the neutrosophic number functions investigated the an-
isotropy and scale effect of indeterminate joint roughness
coefficient (JRC), which is a quite crucial parameter for
determining the shear strength in rock mechanics. Recently,
some scholars also under NN environment proposed some
models for various optimization problems such as linear
programming [83], multiobjective programming [84],
nonlinear programming [85], and bilevel linear program-
ming problem [86].

,e first model of DEA with NS was established by
Edalatpanah [87], and additional investigations have been
accessible in [88–95]. However, these models are formulated
solely for NSs. In real-life situations, some inputs/outputs in
DEA may also be indeterminate and inconsistent, and
considering neutrosophic number for each input/output of
DMUs helps decision-makers to obtain a better interpre-
tation of information. In addition, by using the NNs in DEA,
analysts can obtain a better representation of reality through
considering all aspects of the decision-making process.
Unfortunately, in the current literature, there is no study of
data envelopment analysis (DEA) models and also
BSC-DEA methodology in the NN environment. It is clear
that the conventional fuzzy sets cannot express neutrosophic
DEA with both determinate and indeterminate information.
,erefore, it is necessary to propose a new method based on
the neutrosophic numbers to BSC-DEA methodology. ,e
main purposes of this paper are as follows: (1) to develop a
new model for DEA within the NN environment and (2) to
combine the newmodel with BSC to rank different decision-
making units. ,ere are usually many qualitative ways to
evaluate an organization’s performance. One of these tools is
the balanced scorecard approach that separates the orga-
nization from the operational point of view. By examining
the organization using this segmentation, one can usually
gain an understanding of organizational performance, but in
quantitative terms, approaches are always needed to evaluate
activities separately and to provide accurate benchmarks for
different decisions. Data envelopment analysis approach is
one of the tools that can be helpful and provides a little
understanding of the various points of the scorecard. Un-
derstanding the need and the precise relationship between
these two concepts illustrates the importance of the subject
and led us to present this hybrid model for ranking the
decision-making units in the organization.

,is hybrid model is presented in an innovative way and
demonstrates the significant relationship between the
qualitative concepts in the BSC and the quantitative con-
cepts in data envelopment analysis for the purpose of

decision-making strategy and ultimately enhancing orga-
nizational performance.

,e rest of the paper is organized as follows: Section 2
presents some essential concepts regarding neutrosophic
numbers and BSC and DEA models. Section 3 proposes a
new model of DEA in neutrosophic number environment.
Section 4 explains a hybrid BSC-DEA model with NNs. An
empirical study involving 20 banking branches and con-
clusions are given in Sections 5 and 6, respectively.

2. Preliminary Concepts

In this section, we present several basic discussion con-
cerning neutrosophic numbers, balance scorecard, and data
envelopment analysis.

2.1. Neutrosophic Number Concept. A neutrosophic number
(NN) is represented by A � m + nI (m, n ∈ R), where m and
nI are determinate and indeterminate parts, respectively; for
example, consider a NN as A � 3 + 4I. ,en, it indicates that
its determinate value is 3, and its indeterminate value is 4I.
Assume that the indeterminacy I is considered as such a
possible interval [0, 2], and then, it is equivalent to
A � [3, 11], where A is within the interval [3, 11]. For the
best case, we have nI � 0 and A can be expressed as the
determinate part A � m, whereas in the worst case m � 0
and A expressed as the indeterminate part, A � nI. For
convenience, let ℵ be the set of all NNs, and then, a NN is
denoted by A � m + nI � [m + n(inf(I)), m + n(sup(I))]

for I⊆[inf(I), sup(I)] and A ∈ ℵ.

Definition 1 (see [80, 83]).
Let A1 � m1 + n1I and A2 � m2 + n2I for mi, ni ∈ R,

Ai ∈ ℵ, and I ∈ [IL, IU] be two NNs, then they contain the
following arithmetic laws:

(i) A1 + A2 � m1 + m2( 􏼁 + n1 + n2( 􏼁I,

(ii) A1 − A2 � m1 − m2( 􏼁 + n1 − n2( 􏼁I,

(iii) A1 × A2 � m1m2 + m1n2 + m2n1( 􏼁I + n1n2I
2
.

(2)

Definition 2 (see [81]). A NN function with n variables and
ℵ domain is defined as f(x, I): ℵn⟶ℵ, where,
x � [x1, . . . , xn]T ∈ ℵn and I ∈ [IL, IU]. Moreover, I is in-
determinacy and f(x, I) can be an NN linear/ nonlinear
function; for example, f(x, I): (5 + 4I)x1 + (1 + 2I)x2 + 3I

for x � [x1, x2]
T ∈ ℵ2 is an NN linear function.

2.2. Balance Scorecard (BSC). Kaplan and Norton proposed
the BSC model as a method to evaluate the performance of
an organization. ,e traditional performance assessment
systems are more prominently based on financial indexes,
whereas successful companies rely not only on financial
indicators to evaluate their performance but they also
considered their performance from three other BSC per-
spectives; i.e., customer, internal processes, learning, and
growth [96, 97]. ,e BSC method is a performance mea-
surement framework that provides a complete overview of
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an organization’s performance with a set of financial and
nonfinancial scales. ,e BSC model has been utilized ef-
fectively in manufacturing, service, nonprofitable, and
government organizations. Many applications for a balanced
scorecard have defined from a business perspective [98, 99].
In Figure 1, the four aspects of the balanced scorecard have
been depicted.

According to Figure 2, we must create value for our
customers (the customer perspective) in order to achieve
financial (the financial perspective). ,is would not be
feasible unless we excel in our operational processes and
adapt them to the needs of our customers (the internal
processes perspective). It is not possible to gain excellence in
operation and process of value unless we create the right
work environment for employees and strengthen the in-
novation and creativity in learning and growth (the learning
and growth perspective).

2.3. Data Envelopment Analysis (DEA). Data envelopment
analysis (DEA) is a linear programming method for
assessing the efficiency and productivity of decision-making
units (DMUs). In the traditional DEA literature, various
well-known DEA approaches can be found such as CCR and
BCC models [2, 3]. ,e efficiency of a DMU is established as
the ratio of sum weighted output to sum weighted input,
subjected to happen between one and zero. ,e outputs and
inputs are known, and the weighted value of the inputs and
outputs is selected in such a manner that the efficiency of
that DMU is maximized.

Let us assume that n DMU’s are present as {DMUj: j� 1,
..., n}, which utilizem inputs xij (i � 1, 2, . . . , m) to produce
s outputs xij (i � 1, 2, . . . , m). Here, ur(r � 1, 2, . . . , s) and
vi(i � 1, 2, . . . , m) are the weights of the ith input and rth
output. ,en, the CCR model is as follows:

θ∗p � max􏽘
s

r�1
uryrp,

s.t :

􏽘

m

i�1
vixip � 1,

􏽘

s

r�1
uryrj − 􏽘

m

i�1
vixij ≤ 0, ∀j,

ur, vi ≥ 0, ∀r, i.

(3)

We solve model (3) n-times to work out the efficiency of
n DMUs. If θ∗p � 1, we say that the DMUp is efficient;
otherwise, it is inefficient.

3. New Model of DEA in NN Environment

In this section, we propose a new model of DEA in the
neutrosophic number environment. Let us consider the CCR
model (3) under the environment of the neutrosophic
number. ,en, we have

θ∗p � max􏽘
s

r�1
ur 􏽥yrp,

s.t :

􏽘

m

i�1
vi􏽥xip � 1,

􏽘

s

r�1
ur􏽥yrj − 􏽘

m

i�1
vi􏽥xij ≤ 0, ∀j,

ur, vi ≥ 0, ∀r, i,

(4)

where 􏽥xij � xij + ηijI(i � 1, 2, . . . , m) and 􏽥yrj � yrj + crjI

(r � 1, 2, . . . , s)are neutrosophic numbers of the input and
output for the jth DMU and also I⊆[inf(I), sup(I)]. We
propose a new model to solve (4).

,eorem 1 shows the feasibility and boundedness of
model (4).

Theorem 1. Model (4) is always feasible and bounded.
Furthermore, its optimal objective function is 1.

Proof. With the solution ut � (0, . . . , 0) and vt � (0, . . . , (1
/􏽥xip), . . . , 0), it is easy to see that model (11) is always
feasible. ,us, regardless of the values of inputs and outputs,
there is always at least one feasible solution for model (11).
On the other hand, by this solution, we have

􏽘

m

i�1
vi􏽥xip � 1,

􏽘

s

r�1
ur􏽥yrj ≤ 1.

(5)

Because the above solution is feasible along with the
objective function of model (4) is maximization, the best
value regarding the objective function is certainly equal to
1. □

4. A Hybrid BSC-DEA Model with
Neutrosophic Numbers

In this section, we attempt to combine the new neutrosophic
DEA model proposed in Section 3 with the BSC to rank
different DMUs. Since the BSC model evaluates the per-
formance of an organization in the grounds of macrogoals
and model of DEA with neutrosophic numbers is also a
method to measure efficiency or performance with inde-
terminate information, therefore, by combining the
two-abovementioned measuring methods, the performance
is measured and aligned with strategic goals. In the hybrid of
DEA and BSC models, the BSC is utilized as a tool for the
assessment of performance indexes and the neutrosophic
DEA model is used as a tool to evaluate the efficiency in this
model. ,e entire structure of the hybrid DEA-BSCmodel is
shown in Figure 3.

Figure 4 also denotes the four aspects of the performance
of the BSC with specific organizational strategies, and in
each of the domains, the relative indexes have been defined.
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Financial
To gain access to financial successes

what endeavors must be made for the
shareholders

Customer
In order to gain access to the vision

in what manner should we appear in
the views of the customers

Growth and learning
How can we manitain our ability to

change and develop our vision?

Internal processes

On which of its processes must the
company focus more, so as to secure the
views of the shareholder and customers

Vision and strategy

Figure 1: Transforming the vision and strategy into the four BSC aspects.

Learning and 
growth perspective

Internal process 
perspective

Customer
perspective Financial measures

Figure 2: Causal correlation in BSC.

DEA with
neutrosophic numbers

Output variable

Financial perspective

Customer perspective

Internal processes perspective

Growth and learning perspective

Input variable

Financial perspective

Customer perspective

Internal processes perspective

Growth and learning perspective

A

B
Y

X

D
E

F

C

Efficient frontier

Figure 3: Hybrid BSC-DEA model with neutrosophic numbers.
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A number of these indexes could be inputs and or outputs.
Following Figure 4, we have defined two areas of “Enablers”
and “Results.”

,e enabler’s field, which consists of the two parts of
“learning and growth” and “internal process,” is an area in
which every organization should invest in order to build
strong and motivated personnel alongside a secure process.
,e results’ field which includes “customer” and “financial”
is the indicator that provides the benefit of customers to
realize the financial goals. ,ere is no doubt that the profit
and loss of the organization are determined in the field of
results, but creating a margin of profit is surely the yield of
efforts and investment in the field of enablers.

,e steps of indexing and performance evaluation using
the two techniques BSC and DEA can be expressed as follows:

(i) Organization identification: at this stage, the goals
and strategies of the organization are identified, and
using the BSC technique, indicators are created in a
balanced manner with different perspectives.

(ii) Performance evaluation: the indicators evaluated by
the BSC are classified in two areas of enablers and
results, and each area is classified into both input and
output groups and used by the neutrosophic DEA in
horizontal assessment (overtime periods) or vertical
evaluation (in comparison with similar DMUs).

(iii) ,e correction and improvement of path design: by
the neutrosophic DEA, the path to correction and
improvement for each indicator is determined.

(iv) Determination of target goals for the next period.

,e goals of the indicators that set by the neutrosophic
DEA are set as the goals of the indicators for the next period of
BSC implementation. In this method, each time the BSC is
executed, i.e., at each period when the organization’s data are
entered into the BSC system, and the results are presented, the
neutrosophic DEA model assesses the organization, and the
objectives of the indices are determined in the next period. If
the goals are met, the organization will achieve the desired and
expected efficiency. In the next period of performance eval-
uation, the organization’s condition is compared with the
expected conditions from the previous period and the new
efficiency is determined. ,is method is executed periodically,
and after each implementation, the manager is expected to lead
the organization into the desired optimal efficiency.

5. Numerical Experiment

In Section 4, phases that must be considered in the designing
of a hybrid BSC and DEA system were explained. In this
section, a case study of this combined system, which has
been executed on 20 branches of one of the Iranian banks,

X1j
X2j
…
Xnj

Y1j
Y2j
…
Ynj

X1j
X2j
…
Xnj

Y1j
Y2j
…
Ynj

Storage

Learning and 
growth domain

Internal process 
domain

Customer 
domain

Financial 
domain

...

Enabler Results

DEA
with
NN

DEA
with
NN

......

1 index
2 index
3 index

1 index
2 index
3 index

1 index
2 index
3 index

1 index
2 index
3 index

...

Figure 4: A hybrid BSC-DEA strategy with neutrosophic numbers.
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will be described. It is worth emphasizing that, due to the
privacy policies, the names of these branches are not shared.
Furthermore, for each branch of the bank, we gather the
related data from the records unit of the bank, the statistical
center of Iran, the reliable library, online resources, and the
judgments of some experts. After collecting data, we found
that the information is sometimes inconsistent, indetermi-
nate, and incomplete. ,e investigation revealed that several
reforms of the mentioned bank and other issues have led to
considerable uncertainty and indeterminacy about the data.
As a result, we identified them as NNs. According to the
presented model, information has been gathered in the two
domains of the enablers and the results. Tables 1 and 2 show
the indicators and their information in these two domains.
As can be seen, the percentage of banking services and the
growth rate of services have grown dramatically.

According to Algorithm 1, we can obtain the relative
efficiency of DMUs. In this paper, we consider λ � 0, 0.5, 1
and I� [0,1.2]. For example, in the enablers’ stage, the
relative efficiency of DMU1 can be used as follows:
θ∗1 � max z1 � (47 + 3I)u1 + (3.5 + 2I)u2 + (83.5 + I)u3,

s.t :

(12 + 2I)v1 + 12.2v2 +(50 + I)v3 � 1,

(47 + 3I)u1 +(3.5 + 2I)u2 +(83.5 + I)u3−

(12 + 2I)v1 − 12.2v2 − (50 + I)v3 ≤ 0,

(45 + I)u1 +(3.4 + 4I)u2 +(80.4 + 3I)u3−

(63 + 3I)v1 − (10.6 + I)v2 − 16.2v3 ≤ 0,

(43.8 + 3I)u1 + 6.2u2 +(80.7 + I)u3−

(14 + I)v1 − 10.7v2 − (65.5 + 5I)v3 ≤ 0,

(65 + 2I)u1 +(8.5 + I)u2 + 93u3−

(15.3 + 6I)v1 − (11.6 + I)v2 − 32.5v3 ≤ 0,

(40.4 + I)u1 +(5.2 + 2I)u2 + 84.6u3−

(17.8 + I)v1 − (11.3 + I)v2 − (38 + 3I)v3 ≤ 0,

(65.8 + I)u1 +(3.7 + 2I)u2 +(88.2 + I)u3−

(14.8 + I)v1 − 10.6v2 − (38 + 3I)v3 ≤ 0,

(47.3 + 3I)u1 +(8.5 + 2I)u2 +(91.1 + 4I)u3−

18.4v1 − (13.2 + I)v2 − 67v3 ≤ 0,

(55.4 + 4I)u1 +(8.2 + 2I)u2 +(83.6 + I)u3−

16.9v1 − 12.5v2 − (65.8 + 2I)v3 ≤ 0,

(58 + I)u1 + 3.7u2 +(76 + 4I)u3−

(21.5 + I)v1 − 11.9v2 − 73.5v3 ≤ 0,

(54.7 + I)u1 +(8.4 + 4I)u2 +(79.8 + 5I)u3−

12.2v1 − (10.5 + 2I)v2 − (65 + I)v3 ≤ 0,

(69.2 + 6I)u1 +(4.6 + I)u2 +(96.3 + 3I)u3−

(19.7 + 4I)v1 − (10.7 + 3I)v2 − (60 + I)v3 ≤ 0,

(64 + I)u1 +(4.3 + I)u2 +(94 + I)u3−

(15.3 + 2I)v1 − 12.2v2 − 87v3 ≤ 0,

(58.3 + 2I)u1 +(5.9 + 3I)u2 +(96.2 + 2I)u3−

(18.7 + I)v1 − 14v2 − (71.2 + I)v3 ≤ 0,

(55.7 + 2I)u1 +(5.5 + 5I)u2 +(81 + I)u3−

(25 + 4I)v1 − (14 + 3I)v2 − (78.6 + 2I)v3 ≤ 0,

47u1 +(9.4 + 3I)u2 +(84.1 + 5I)u3−

(19.3 + 3I)v1 − 10.8v2 − (65.6 + 2I)v3 ≤ 0,

(67.1 + I)u1 +(5.3 + 4I)u2 +(85.7 + I)u3−

(18 + I)v1 − (12 + 5I)v2 − 72.8v3 ≤ 0,

(59.5 + 2I)u1 +(6.9 + 6I)u2 +(90 + 4I)u3−

(17.8 + 4I)v1 − (11 + 4I)v2 − 64v3 ≤ 0,

(65.3 + I)u1 +(7 + I)u2 +(86.4 + I)u3−

(20 + 2I)v1 − (11 + I)v2 − (62 + I)v3 ≤ 0,

(49 + I)u1 +(4.1 + I)u2 +(91.4 + 2I)u3−

(22 + 2I)v1 − (12.5 + 3I)v2 − (74.5 + I)v3 ≤ 0,

(65 + I)u1 +(6.4 + 2I)u2 +(95 + I)u3−

(15.4 + I)v1 − (18 + 4I)v2 − (70 + I)v3 ≤ 0,

I − 1.2λ � 0,

u1, u2, u3, , v1, v2, v3 ≥ 0.

(6)

Now, by solving above problem, we can see that, for all
values of λ, the relative efficiency of DMU1 is one. Fur-
thermore, the relative efficiency of all DMUs for λ � 0, 0.5, 1
and I� [0,1.2] was calculated, and the results are obtained in
Tables 3 and 4 .

For better understanding, in Figure 5, we show the
relative efficiency of DMUs for I� [0,1.2] and different λ.

Form Tables 3–4 and Figure 5, it can be seen that
obtaining the optimal results depends on the investment and
effort in the enablers sector; that is, until the “learning and
growth” and “internal processes” sections do not work well,
gaining success is undoubtedly impossible. However, for the
success of an organization, planning should be done in the
two areas of enablers and results, but it can be clearly stated
that the “results” sector requires appropriate measures in the
field of enablers. In other words, efficiency in the field of
results depends on the efficiency of enablers. Looking at
Figure 5, we can infer the following:

(i) ,e DMUs 1,4,10, and 15, which were efficient in
enablers sector, were also able to be efficient in the
results section, using the capabilities they gained. It
can be said that the efficiency condition in the field
of results is efficiency in enablers sector.

(ii) Other DMUs that were not efficient in enablers
sector could not be efficient in the results.

(iii) ,e DMUs 3, 5, 12, 16, 17, 18, and 20, despite the
great efforts and obtaining privileges close to the
efficient DMUs in the field of results, could not be
efficient due to weaknesses in the enablers sector. It
can be predicted that these DMUs will be efficient in
the results sector if they are efficient in the field of
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enablers. Meanwhile, the behaviour of the DMU18
is interesting.

(iv) Before calculations, it was anticipated that in-
efficiencies in enablers sector would have the
most ineffective outcomes in the results sector.
,ese contents are seen in DMUs 8, 9, 13, 14, 17,
and 18 with the efficiency level in the field of
results, lower than the efficiency in the enablers
sector.

To validate the proposed efficiencies, the proposed ef-
ficiencies are compared with the efficiencies of crisp CCR
(model (3), or in our model when I(λ) � 0) that are given in
Figure 5. In this figure, the efficiencies of DMUs are found to
be smaller by our model compared to crisp CCR. It is in-
teresting that DMU11 and DMU18 are efficient in crisp
DEA, but they are inefficient using a new model. ,erefore,
the new neutrosophic DEA is more realistic rather than crisp
CCR. Also, crisp CCR and the new neutrosophic DEA may

Table 1: Input and output of enablers.

DMUs
Inputs Outputs

Motivational
costs (%)

Increasing expertise of
employees (%)

Employee
satisfaction (%)

Banking
services (%)

Improvement of
computer software (%)

Increasing speed of
service (%)

1 12 + 2I 12.2 50 + I 47 + 3I 3.5 + 2I 83.5 + I
2 16.2 10.6 + I 63 + 3I 45 + I 3.4 + 4I 80.4 + 3I
3 14 + I 10.7 65.5 + 5I 43.8+3I 6.2 80.7 + I
4 15.3 + 6I 11.6 + I 32.5 65 + 2I 8.5 + I 93
5 17.8 + I 11.3 + I 38 + 3I 40.4 + I 5.2 + 2I 84.6
6 14.8 + I 10.6 78 + I 65.8 + I 3.7 + 2I 88.2 + I
7 18.4 13.2 + I 67 47.3 + 3I 8.5 + 2I 91.1 + 4I
8 16.9 12.5 65.8 + 2I 55.4 + 4I 8.2 + 2I 83.6 + I
9 21.5 + I 11.9 73.5 58 + I 3.7 76 + 4I
10 12.2 10.5 + 2I 65 + I 54.7 + I 8.4 + 4I 79.8 + 5I
11 19.7 + 4I 10.7 + 3I 60 + I 69.2 + 6I 4.6 + I 96.3 + 3I
12 15.3 + 2I 12.2 87 64 + I 4.3 + I 94 + I
13 18.7 + I 14 71.2 + I 58.3 + 2I 5.9 + 3I 96.2 + 2I
14 25 + 4I 14 + 3I 78.6 + 2I 55.7 + 2I 5.5 + 5I 81 + I
15 19.3 + 3I 10.8 65.6 + 2I 47 9.4 + 3I 84.1 + 5I
16 18 + I 12 + 5I 72.8 67.1 + I 5.3 + 4I 85.7 + I
17 17.8 + 4I 11 + 4I 64 59.5 + 2I 6.9 + 6I 90 + 4I
18 20 + 2I 11 + I 62 + I 65.3 + I 7 + I 86.4 + I
19 22 + 2I 12.5 + 3I 74.5 + I 49 + I 4.1 + I 91.4 + 2I
20 15.4 + I 18 + 4I 70 + I 65 + I 6.4 + 2I 95 + I

Table 2: Input and output of results part.

DMUs
Inputs Outputs

Improvement of operational
processes (%)

Customer acquisition
rate (%)

Customer satisfaction
(%)

Profit margin
(%)

Returns to investment
(%)

1 4.2 + I 20 + 2I 41 + I 6.5 + 6I 6.9 + 4I
2 5.5 + I 23.1 + 2I 31.4 + I 5.8 + 4I 5.6 + 3I
3 7.6 + 3I 21.4 + I 47.1 4.9 + 6I 7.5 + 3I
4 3.3 22.6 + 2I 46.4 + I 6.4 + 7I 7.9 + 3I
5 5.4 + 2I 17.9 + 3I 29 + I 4.8 + 4I 4 + 2I
6 4.5 28.1 + 2I 43.2 7.5 + 6I 8.9 + 2I
7 7.2 20.9 36.8 + I 4.4 + 3I 6.1 + 2I
8 5.4 + I 18.7 + 2I 39.4 + 2I 5.7 + 2I 3.8 + 3I
9 6.5 + I 28.4 + 2I 54.3 + I 5.4 + 3I 5.7 + 2I
10 5.8 + I 17.6 + 2I 42 + 2I 6.1 + 8I 7.5 + 3I
11 6.2 + I 23 + 4I 36.6 + 6I 5.9 + 3I 8.1 + 2I
12 4.6 19.4 + I 51.3 + 2I 5.8 + 3I 6.2 + I
13 5.9 + I 24 + 2I 49.2 6.2 + 3I 5.1 + 4I
14 7.1 46.2 + 2I 57.5 4.5 + I 3.5 + I
15 6 27.2 + I 22.6 8 + I 6.8 + 3I
16 3.5 + 3I 22.4 + 2I 47.5 + I 5.8 + 2I 7.4 + 3I
17 5.1 + I 17.3 + I 45.3 + I 5.6 + I 4.6 + 2I
18 4.4 + 3I 21.7 + I 34.6 + 2I 6.6 + I 7.1 + 2I
19 46 + I 28.4 + I 48.9 + 4I 6.9 + 4I 7 + I
20 4 + 2I 18 + 2I 52.2 + 2I 5.5 + I 6.3 + 3I
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Step 1. Consider the DEA model that the inputs and outputs of each DMU are neutrosophic numbers.
Step 2. Using NN function, transform model (2) into the following model:

θ∗p � maxfp(u, I),

s.t :
gp(v, I) � 1,

fj(u, I) − gj(v, I)≤ 0, j � 1, . . . , n,

u � [u1, . . . , us]
T
,

v � [v1, . . . , um]
T ≥ 0,

where fj(u, I) � 􏽐
s
r�1 ur(yrj + crjI)and gj(v, I) � 􏽐

m
i�1 vi(xij + ηijI).

Step 3. Consider I⊆[inf(I), sup(I)] and using de-neutrosophication model of [77]; for λ ∈ [0, 1], set I(λ) � (1 − λ)inf(I) + λsup(I);
then, for I(λ) ∈ [0, 1], transform model (3) into the following model:

θ∗p � maxfp(u, I(λ))

s.t :
gp(v, I(λ)) � 1,

fj(u, I(λ)) − gj(v, I(λ))≤ 0, j � 1, . . . , n,

u � [u1, . . . , us]
T
,

v � [v1, . . . , um]
T ≥ 0.

Step 4. Obtain the corresponding optimal solutions of uand v for I(λ) � 0, 0.5, 1 that are considered as the minimum, the moderate,
and the maximum indeterminacy, respectively, in the DEA problem (3).

ALGORITHM 1

Table 3: ,e relative efficiency of DMUs for enablers’ stage.

DMUs
λ

λ � 0 λ � 0.5 λ � 1
DMU1 1.0000 1.0000 1.0000
DMU2 0.8936 0.9140 0.9370
DMU3 0.9400 0.9534 0.9522
DMU4 1.0000 1.0000 1.0000
DMU5 0.9115 0.9196 0.9445
DMU6 1.0000 1.0000 1.0000
DMU7 0.8624 0.8987 0.9356
DMU8 0.8496 0.9072 0.9614
DMU9 0.7560 0.8137 0.8345
DMU10 1.0000 1.0000 1.0000
DMU11 1.0000 1.0000 0.9476
DMU12 0.9773 0.9622 0.9487
DMU13 0.8480 0.8984 0.9344
DMU14 0.6766 0.6831 0.6852
DMU15 1.0000 1.0000 1.0000
DMU16 0.9156 0.8867 0.9050
DMU17 0.9788 0.9090 0.9716
DMU18 1.0000 0.9983 0.9556
DMU19 0.8238 0.8060 0.7681
DMU20 0.9569 0.9622 0.9659
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Table 4: ,e relative efficiency of DMUs for results’ stage.

DMUs
λ

λ � 0 λ � 0.5 λ � 1
DMU1 1.0000 1.0000 1.0000
DMU2 0.8103 0.8477 0.8657
DMU3 0.8571 0.8898 0.9065
DMU4 1.0000 1.0000 1.0000
DMU5 0.8361 0.8403 0.8569
DMU6 1.0000 1.0000 1.0000
DMU7 0.7932 0.8100 0.7930
DMU8 0.9102 0.6600 0.6595
DMU9 0.5880 0.5434 0.5151
DMU10 1.0000 1.0000 1.0000
DMU11 1.0000 0.9078 0.7900
DMU12 0.9062 0.7606 0.7104
DMU13 0.7856 0.6722 0.7220
DMU14 0.3990 0.3264 0.2853
DMU15 1.0000 1.0000 1.0000
DMU16 0.9337 0.8832 0.8368
DMU17 0.9512 0.6678 0.6853
DMU18 1.0000 0.9133 0.8574
DMU19 0.7699 0.7066 0.6278
DMU20 0.9569 0.9080 0.8919
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Figure 5: ,e relative efficiency of DMUs for enablers and results stages.
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give the same efficiencies for certain data. However, crisp
CCR model does not deal with the uncertain, indeterminate,
and incongruous information. ,erefore, the new model is
more efficient rather than crisp CCR.

6. Conclusions

Specifying the various performance evaluation models and
the appropriate utilization of these models in organizations
is a crucial issue. In this paper, we proposed a new model of
DEA in neutrosophic number environment and combined
this model with BSC to rank different decision-making units.
Finally, the proposed method is illustrated by an empirical
study involving 20 banking branches. ,e results provide a
more realistic framework and consider various aspects of
indeterminate information. Moreover, although the new
model and results presented here demonstrate the effec-
tiveness of our approach, it could also be considered in other
types of DEA models such as network DEA and their ap-
plications to banks, supplier selection, police stations,
hospitals, tax offices, prisons, schools, and universities.
However, developing data envelopment analysis models
based on the plithogenic set, which is a generalization of
neutrosophic set, and other perspectives of neutrosophic set
is another area for further studies. As future researches, we
intend to study these problems.
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&e theory of complex dual type-2 hesitant fuzzy sets (CDT-2HFSs) is a blend of two different modifications of fuzzy sets (FSs),
called complex fuzzy sets (CFSs) and dual type-2 hesitant fuzzy sets (DT-2HFSs). CDT-2HFS is a proficient technique to cope with
unpredictable and awkward information in realistic decision problems. CDT-2HFS is composed of the grade of truth and the
grade of falsity, and the grade of truth (also for grade of falsity) contains the grade of primary and secondary parts in the form of
polar coordinates with the condition that the sum of the maximum of the real part (also for the imaginary part) of the primary
grade (also for the secondary grade) cannot exceed the unit interval [0, 1]. &e aims of this manuscript are to discover the novel
approach of CDT-2HFS and its operational laws. &ese operational laws are also justified with the help of an example. Ad-
ditionally, based on a novel CDT-2HFS, we explored the correlation coefficient (CC) and entropy measures (EMs), and their
special cases are also discussed. TOPSIS method based on CDT-2HFS is also explored. &en, we applied our explored measures
based on CDT-2HFSs in the environment of the TOPSIS method, medical diagnosis, pattern recognition, and clustering al-
gorithm to cope with the awkward and complicated information in realistic decision issues. Finally, some numerical examples are
given to examine the proficiency and validity of the explored measures. Comparative analysis, advantages, and graphical in-
terpretation of the explored measures with some other existing measures are also discussed.

1. Introduction

&e present decision-making is one of the genuinely basic
movements in individuals’ everyday life, the reason for
existing of which is to rank the limited arrangement of
options regarding that they are so solid to the choice
maker(s). Multiattribute decision-making (MADM) is a part
of decision-making and is viewed as an intellectual-based
human movement. People unavoidably are confronted with
different decision-making issues, which include numerous

fields [1–3].&e idea of the fuzzy set (FS) proposed by Zadeh
[4] modified the method of measuring the vulnerability/
fuzziness. Before the development of the FS hypothesis
by Zadeh [4], the likelihood hypothesis was the customary
instrument to quantify the vulnerability. Be that as it may,
to gauge the vulnerability utilizing likelihood, it ought to
have been communicated as exact numbers which are its
primary constraints. &e obscure terms, for instance,
“without doubt” and “marginally,” could not be measured
utilizing the likelihood hypothesis. To gauge the
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vulnerability/fuzziness related to such unclear terms, the FS
hypothesis has ended up being a successful apparatus. In the
FS hypothesis, every component relating to a specific uni-
verse of talk has been appointed an enrollment degree lying
somewhere in the range of 0 and 1, which indicates its level
of belongingness to the set being referred to called FS. By the
goodness of its reasonableness in genuine issues, FSs in-
creased a lot of prevalence with analysts around the world.
Endeavors were made to additionally sum up the idea by
numerous creators to make it progressively versatile for
viable issues.

Notwithstanding, in certain issues including etymolog-
ical factors, for example, exceptionally low, low, medium,
high, and extremely high, the assurance of the participation
capacity may not be simple; that is, in an issue, dubious
participation capacity might be experienced. To survive such
circumstances, the idea of type-2 FSs (T-2FSs) was presented
by Zadeh [5], as a distinction from common FSs. Many
researchers have utilized T-2FSs in different areas [6–8]. &e
tale structures, which are speculations and expansions of the
FSs, have been proposed by numerous analysts since Zadeh
presented the FSs.&e fundamental motivation behind these
structures is to take out vulnerabilities and to guarantee that
specialists settle on choices in a way that is without blunder
or with not many mistakes. One of these structures is the
idea of hesitant FS (HFS) characterized by Torra [9]. Feng
et al. [10] presented the type-2 hesitant fuzzy set (T-2HFS).
&e idea of dual HFS (DHFS) was first characterized as
a speculation of the HFSs characterized by Zhu et al. [11]. A
DHFS is distinguished as two distinct capacities called en-
rollment and nonmembership capacity. &is structure
permits the leader to make more adaptable, precise, and
reasonable remarks about the components under the re-
luctant zone. In this manner, it limits the blunder edge by
giving more solid outcomes than the current structures, as
HFSs and interval-valued HFSs. Alcantud et al. [12] char-
acterized the idea of the double broadened HFSs and applied
it to a decision-making issue under dual extended hesitant
fuzzy data.

As for the above existing examinations, it has been
dissected that they have researched the decision-making
issues under the FS, IFS, or its speculations, which are just
ready to manage the vulnerability and dubiousness existing
in the information. &ese models cannot speak to the
fractional obliviousness of the information and its changes at
a given period of time. Be that as it may, in complex in-
formational collections, vulnerability and ambiguity in the
information happen simultaneously with changes to the
stage (periodicity) of the information. Instances of complex
informational indexes incorporate a lot of information that
is created from clinical research, just as government data-
bases for biometric and facial acknowledgments, sound, and
pictures, all of which may contain a lot of deficient, dubious,
and ambiguous data. To deal with these kinds of issues, the
theory of complex FS (CFS) was discovered by Ramot et al.
[13]. CFS contains the grade of membership in the form of
a complex number belonging to a unit disc in a complex
plane. Various scholars utilized CFS in different fields
[14–16].

Correlation examination shows a direct connection
between two sets and it has a very significant spot for dy-
namics. In this way, numerous researchers in various fields
have considered the relationship coefficients. Additionally,
the FS and its speculations have a significant job in dy-
namics, so CCs have drawn in the consideration of scientists
examining the FS and its speculations. For instance, Chiang
and Lin [17] and Chaudhuri and Bhattacharya [18] exam-
ined the correlation between two FSs. Gerstenkorn and
Mańko [19] worked the relationship and CC of the intui-
tionistic FSs (IFSs). &e entropy of FSs is a proportion of
fuzziness between FSs. De Luca and Termini [20] first
presented the aphorism development for the entropy of FSs
concerning Shannon’s likelihood entropy. Yager [21]
characterized fuzziness proportions of FSs as far as a need of
differentiation between the FS and its nullification based on
Lp standard. Kosko [22] gave a proportion of fuzziness
between FSs utilizing a proportion of separation between the
FS and its closest set to the separation between the FS and its
farthest set. Xuecheng [23] gave some aphorism definitions
of entropy and furthermore characterized a σ-entropy. Pal
and Pal [24] proposed exponential entropy. Meanwhile Fan
and Ma [25] gave some new fuzzy entropy equations. &e
technique for establishing order preference by similarity to
the ideal solution (TOPSIS) technique as a strategy for
building up request inclination by likeness to the perfect
arrangement, started by Hwang and Yoon [26], is one of the
best and beneficial methods for decision-making. &e basic
idea of TOPSIS strategy is to pick the elective that has the
briefest good way from the positive perfect arrangement
(PIS) and the greatest good way from the negative perfect
arrangement (NIS). &ere exists a tremendous writing in-
cluding study and utilization of TOPSIS hypothesis in a wide
scope of MCDM just as multicriteria group decision-making
(MCGDM) issues [27–29].

Dual type-2 hesitant fuzzy set contains the grade of truth
and the grade of falsity in the form of the subset of the unit
interval with the condition that the sum of themaximum of the
truth grade and the maximum of the falsity grade cannot
exceed the unit interval.&e complex dual type-2 hesitant fuzzy
set is a generalization of the dual type-2 hesitant fuzzy set, in
which the amplitude term provides the extent of belonging of
an object, while the phase term describes the periodicity. &ese
phase terms distinguish the complex dual type-2 hesitant fuzzy
set from the traditional dual type-2 hesitant fuzzy set theories.
In dual type-2 hesitant fuzzy set theory, the data are managed
with the compensation of only the degree of belonging, while
the part of periodicity is completely ignored. Hence, this may
result in the loss of information during the decision-making
processes in some certain cases. To further illustrate the concept
of phase terms, we take an example. Suppose that a person
wants to purchase a car under crucial factors such as its model
and its production date. Since themodel of each carmoveswith
the evolution of the production dates, to make a selection or
decision regarding choosing the optimal car is a decision-
making process taking these two factors into account simul-
taneously. Moreover, it is quite obvious that such types of
problems cannot be modeled accurately with traditional the-
ories. However, complex dual type-2 hesitant fuzzy set theory is
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well suited for such classes of problems, where the amplitude
terms may be used to provide a decision about the model of
a car, while the phase term concerns its production dates.
Henceforth, a complex dual type-2 hesitant fuzzy set is a more
generalized continuation of the existing theories, such as type-2
hesitant fuzzy sets and dual type-2 hesitant fuzzy sets.

When a decision-maker gives (0.4ei2π(0.3), 0.3ei2π(0.2))

and (0.41ei2π(0.31), 0.31ei2π(0.21)) for the grade of complex-
valued supporting and the grade of complex-valued sup-
porting against in the form of primary and secondary
information with the condition that the sum of the maxi-
mum of the real part (also for the imaginary part) of the
complex-valued supporting (also for supporting against)
grade for primary (also for secondary) information cannot
exceed the unit interval, &ere exist notions like FSs, T-2FSs,
HFSs, DHFSs, CFSs, and DT-2HFSs. Handling such kind of
issues is very difficult, but when a decision-maker provides
such kind of information in the form of the finite subset of
unit interval, then it is very complicated for a decision-
maker to handle it. For coping with such kind of issues, in
this manuscript, the novel approach of CDT-2HFS, which is
a mixture of two different modifications of FS, that is, CFS
and DT-2HFS, is explored. CDT-2HFS is a proficient
technique to cope with unpredictable and awkward in-
formation in realistic decision problems. CDT-2HFS com-
poses the grade of truth and the grade of falsity, and the
grade truth (also for falsity grade) contains the grade of
primary and secondary parts in the form of polar co-
ordinates with the condition that the sum of the maximum
of the real part (also for the imaginary part) of the primary
grade (also for the secondary grade) cannot exceed the unit
interval. &e aims of this manuscript are to discover the
novel approach of CDT-2HFS and its operational laws.
&ese operational laws are also justified with the help of an
example. Additionally, based on a novel CDT-2HFS, we
explored the correlation coefficient (CC) and entropy
measures (EMs), and their special cases are discussed.
TOPSIS method based on CDT-2HFS is also explored.&en,
we applied our explored measures based on CDT-2HFSs in
the environment of the TOPSIS method, medical diagnosis,
pattern recognition, and clustering algorithm to cope with
awkward and complicated information in realistic decision
issues. Finally, four numerical examples are resolved to
examine the proficiency and validity of the explored mea-
sures. Comparative analysis, advantages, and graphical in-
terpretation of the explored measures with some other
existing measures are also discussed.

&e aims of this manuscript are summarized as follows:
in Section 2, we review some basic notions like FSs, T-2FSs,
HFSs, DHFSs, CFSs, and their basic laws. In Section 3, the
theory of CDT-2HFS, which is a mixture of two different
modifications of FS, that is, CFS and DT-2HFS, is presented.
CDT-2HFS is a proficient technique to cope with un-
predictable and awkward information in realistic decision
problems. CDT-2HFS is composed of the grade of truth and
the grade of falsity, and the grade truth (also for falsity grade)
contains the grade of primary and secondary parts in the
form of polar coordinates with the condition that the sum of
the maximum of the real part (also for the imaginary part) of

the primary grade (also for secondary grade) cannot exceed
the unit interval. &e aims of this manuscript were to dis-
cover the novel approach of CDT-2HFS and its operational
laws.&ese operational laws are also justified with the help of
examples. In Sections 4 and 5, based on a novel CDT-2HFS,
we explored the correlation coefficient (CC) and entropy
measures (EMs), and their special cases are discussed. In
Section 6, TOPSIS method based on CDT-2HFS is also
explored. &en, we applied our explored measures based on
CDT-2HFSs in the environment of TOPSIS method,
medical diagnosis, pattern recognition, and clustering al-
gorithm to cope with awkward and complicated information
in realistic decision issues. Finally, four numerical examples
are resolved to examine the proficiency and validity of the
explored measures. Comparative analysis, advantages, and
graphical interpretation of the explored measures with some
other existing measures are also discussed.&e conclusion of
this paper is discussed in Section 7.

2. Preliminaries

Basic notions of FSs, T-2FSs, HFSs, DHFSs, CFSs, and their
operational laws are briefly reviewed in this study. &roughout
this manuscript, the symbol XUNI denotes the fixed set.

Definition 1 (see [4]). A FS is an object of the form

QFS � 􏽥x, MQFS
(􏽥x)􏼐 􏼑: 􏽥x ∈ XUNI􏽮 􏽯, (1)

where MQFS
represents the grade of supporting with the

condition that 0≤MQFS
≤ 1.

Definition 2 (see [5]). A T-2FS is an object of the form

QT−2FS � 􏽥x, 􏽥x′( 􏼁, MQt−2FS
􏽥x, 􏽥x′( 􏼁􏼐 􏼑: ∀􏽥x ∈ XUNI, 􏽥x′ ∈ J􏽥x⊆[0, 1]􏽮 􏽯,

(2)

where MQt−2FS
(􏽥x, 􏽥x′) represents the grade of type-2 sup-

porting with the condition that 0≤MQt−2FS
(􏽥x, 􏽥x′)≤ 1.

Definition 3 (see [9]). A HFS is an object of the form

QHFS � 􏽥x, MQHFS
(􏽥x)􏼐 􏼑: 􏽥x ∈ XUNI􏽮 􏽯, (3)

where MQHFS
represents the grade of supporting in the form

of the subset of the unit interval, with the condition that
0≤Max(MQHFS

)≤ 1, whenever MQHFS
⊆[0, 1].

Definition 4 (see [11]). A DHFS is an object of the form

QDHFS � 􏽥x, MQDHFS
(􏽥x), NQDHFS

(􏽥x)􏼐 􏼑: 􏽥x ∈ XUNI􏽮 􏽯, (4)

where MQDHFS
and NQDHFS

represent the grade of supporting
and the grade of supporting against with the condition that
0≤max(MQDHFS

) + max(NQDHFS
)≤ 1, whenever

MQDHFS
, NQDHFS
⊆[0, 1].

Additionally, we defined some operational laws based on
DHFSs. For any two DHFSs QDHFS−1 � (M

6(1)
QDHFS−1

(􏽥x), N
6(1)
QDHFS−1

(􏽥x)) andQDHFS−1 � (M
6(1)
QDHFS−2

(􏽥x), N
6(1)
QDHFS−2

(􏽥x)),
we have
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QDHFS−1 ∪QDHFS−2 � max M
6(1)
QDHFS−1

(􏽥x), M
6(1)
QDHFS−2

(􏽥x)􏼐 􏼑,min N
6(1)
QDHFS−1

(􏽥x), N
6(1)
QDHFS−2

(􏽥x)􏼐 􏼑􏼐 􏼑,

QDHFS−1 ∩QDHFS−2 � min M
6(1)
QDHFS−1

(􏽥x), M
6(1)
QDHFS−2

(􏽥x)􏼐 􏼑,max N
6(1)
QDHFS−1

(􏽥x), N
6(1)
QDHFS−2

(􏽥x)􏼐 􏼑􏼐 􏼑.
(5)

Definition 5 (see [13]). A CFS is an object of the form

QCFS � 􏽥x, MQCFS
(􏽥x)􏼐 􏼑: 􏽥x ∈ XUNI􏽮 􏽯, (6)

where MQCFS
� MQCFRP

(􏽥x)ei2π(MQCEIP
(􏽥x)) represents the grade

of complex-valued supporting with the condition that
0≤MQCFRP

, MQCFIP
≤ 1.

3. Complex Dual Type-2 Hesitant Fuzzy Sets

Based on the existing drawbacks [30], in this study, we
discovered the new theory of CDT-2HFSs and their oper-
ational laws.&e presented operational laws are also justified
with the help of some examples.

Definition 6. A CDT-2HFS is an object of the form

QCDTH � 􏽥x, MQCDTH
(􏽥x), NQCDTH

(􏽥x)􏼐 􏼑􏼐 􏼑: 􏽥x ∈ XUNI􏽮 􏽯.

(7)

where MQCDTH
(􏽥x) � (M6

QCDTHRP−P
􏽮 (j)(􏽥x) · e

i2π(M
6(j)

QCDTHRP−P
(􏽥x))

,

M
6(j)

QCDTHRP−S
(􏽥x) · e

i2π(M
6(j)

QCDTHRP−S
(􏽥x))

): j � 1, 2, 3, . . . , n} and

NQCDTH
(􏽥x) � (N

6(k)
QCDTHRP−P

(􏽥x) · e
i2π(M

6(k)

QCDTHRP−P
(􏽥x))

,􏼚 N
6(k)
QCDTHRP−S

(􏽥x) · e
i2π(M

6(k)

QCDTHRP−S
(􏽥x))

): k � 1, 2, 3, . . . , m} represent the
grade of complex-valued supporting and the grade of
complex-valued supporting against in the form of complex
type-2 hesitant fuzzy elements (CT-2HFEs) with the fol-
lowing conditions: 0≤max(M

b(j)

QCDTHRP−P
) + maxN

b(k)
QCDTHRP−P

≤

1, 0 ≤max(M
b(j)

QCDTHRP−P
)+ max(N

b(k)
QCDTHRP−P

)≤ 1, 0≤max

(M
b(j)

QCDTHRP−S
) + max(N

b(k)
QCDTHRP−S

)≤ 1 and 0≤max(M
b(j)

QCDTHIP−S
)

+max(N
b(k)
QCDTHIP−S

)≤ 1. &e complex dual type-2 hesitant
fuzzy set is expressed by

QCDTH �

M
b(j)

QCDTHRP−P
(􏽥x) · e

i2π M
b(j)

QCDTHIP−P
(􏽥x)􏼐 􏼑

, M
b(j)

QCDTHRP−S
(􏽥x) · e

i2π M
b(j)

QCDTHIP−S
(􏽥x)􏼐 􏼑

􏼠 􏼡,

N
b(k)
QCDTHRP−P

(􏽥x) · e
i2π N

b(k)

QCDTHIP−P
(􏽥x)􏼐 􏼑

, N
b(k)
QCDTHRP−S

(􏽥x)e
i2π N

b(k)

QCDTHIP−S
(􏽥x)􏼐 􏼑

􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, j, k � 1, 2, 3, . . . , n, m

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (8)

Additionally, we defined some operational laws based on
CDT-2HFEs. For any two CDT-2HFEs QCDTH−1 �

(M
b(1)
QCDTHRP−P−1

􏼐 (􏽥x) · e
i2π

(M
b(1)
QCDTHIP−P−1

(􏽥x)), M
b(1)
QCDTHRP−S−1

(􏽥x) ·

e
i2π

(M
b(1)
QCDTHIP−S−1

(􏽥x))), (N
b(1)
QCDTHRP−P−1

(􏽥x) · e
i2π(N

b(1)

QCDTHIP−P−1
(􏽥x))

,

N
b(1)
QCDTHRP−S−1

(􏽥x) · e
i2π(M

b(1)

QCDTHIP−S−1
(􏽥x))

)) and QCDTH−2 �

(M
b(1)
QCDTHRP−P−2

􏼐 (􏽥x) · e
i2π(M

b(1)

QCDTHIP−P−1
(􏽥x))

, M
b(1)
QCDTHRP−S−1

(􏽥x) · e
i2π

(M
b(1)
QCDTHIP−S−1

(􏽥x))), (N
b(1)
QCDTHRP−P−2

(􏽥x) · e
i2π

(N
b(1)
QCDTHIP−P−2

(􏽥x)),

N
b(1)
QCDTHRP−S−2

(􏽥x) · e
i2π(M

b(1)

QCDTHIP− S− 2(􏽥x))
)), we have

QCDTH−1 ∪QCDTH−2 �

max M
b(1)
QCDTHRP−P−1

(􏽥x), M
b(1)
QCDTHRP−P−2

(􏽥x)􏼒 􏼓e
i2π max M

b(1)

QCDTHIP−P−1
(􏽥x),M

b(1)

QCDTHIP−P−2
(􏽥x)􏼐 􏼑􏼐 􏼑

,

max M
b(1)
QCDTHRP−S−1

(􏽥x), M
b(1)
QCDTHRP−S−2

(􏽥x)􏼒 􏼓e
i2π max M

b(1)

QCDTHIP−S−2
(􏽥x),M

b(1)

QCDTHIP−S−2
(􏽥x)􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

min N
b(1)
QCDTHRP−P−1

(􏽥x), N
b(1)
QCDTHRP−S−2

(􏽥x)􏼒 􏼓e
i2π min N

b(1)

QCDTHIP−P−1
(􏽥x),N

b(1)

QCDHIP−S−2
(􏽥x)􏼐 􏼑􏼐 􏼑

,

min N
b(1)
QCDTHRP−S−1

(􏽥x), N
b(1)
QCDTHRP−S−2

(􏽥x)􏼒 􏼓e
i2π min N

b(1)

QCDTHRP−S−2
(􏽥x),N

b(1)

QCDTHIP−S−2
(􏽥x)􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (9)
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QCDTH−1 ∩QCDTH−2 �

min M
b(1)
QCDTHRP−P−1

(􏽥x), M
b(1)
QCDTHRP−P−2

(􏽥x)􏼐 􏼑e
i2π min M

b(1)

QCDTHIP−P−1
(􏽥x),M

b(1)

QCDTHIP−P−2
(􏽥x)􏼐 􏼑􏼐 􏼑

,

min M
b(1)
QCDTHRP−S−1

(􏽥x), M
b(1)
QCDTHRP−S−2

(􏽥x)􏼐 􏼑e
i2π min M

b(1)

QCDTHIP−S−1
(􏽥x),M

b(1)

QCDTHIP−S−2
(􏽥x)􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

max N
b(1)
QCDTHRP−P−1

(􏽥x), N
b(1)
QCDTHRP−P−2

(􏽥x)􏼐 􏼑e
i2π max N

b(1)

QCDTHIP−P−1
(􏽥x),N

b(1)

QCDTHIP−P−2
(􏽥x)􏼐 􏼑􏼐 􏼑

,

max N
b1
QCDTHRP−S−1

(􏽥x), N
b1
QCDTHRP−S−2

(􏽥x)􏼐 􏼑e
i2π max Nb1

QCDTHIP−S−1
(􏽥x),N

b(1)

QCDTHIP−S−2
(􏽥x)􏼐 􏼑􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (10)

Example 1. For any two CDT-2HFSs, all their entries in the
form of complex numbers are stated as follows:

QCDTH−1 �
0.1e

i2π(0.2)
, 0.2e

i2π(0.3)
􏼐 􏼑, 0.2e

i2π(0.3)
, 0.3e

i2π(0.4)
􏼐 􏼑, 0.3e

i2π(0.4)
, 0.4e

i2π(0.5)
􏼐 􏼑􏽮 􏽯,

0.01e
i2π(0.02)

, 0.02e
i2π(0.03)

􏼐 􏼑, 0.03e
i2π(0.04)

, 0.05e
i2π(0.06)

􏼐 􏼑􏽮 􏽯

⎛⎜⎝ ⎞⎟⎠,

QCDTH−1 �
0.7e

i2π(0.6)
, 0.6e

i2π(0.5)
􏼐 􏼑, 0.6e

i2π(0.5)
, 0.5e

i2π(0.4)
􏼐 􏼑, 0.5e

i2π(0.4)
, 0.4e

i2π(0.3)
􏼐 􏼑􏽮 􏽯,

0.07e
i2π(0.08)

, 0.09e
i2π(0.01)

􏼐 􏼑, 0.01e
i2π(0.03)

, 0.22e
i2π(0.03)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(11)

&en, by using equations (9) and (10), we get

QCDTH−1 ∪QCDTH−2 �
0.7e

i2π(0.6)
, 0.6e

i2π(0.5)
􏼐 􏼑, 0.6e

i2π(0.5)
, 0.5e

i2π(0.4)
􏼐 􏼑, 0.5e

i2π(0.4)
, 0.4e

i2π(0.5)
􏼐 􏼑􏽮 􏽯,

0.01e
i2π(0.02)

, 0.02e
i2π(0.01)

􏼐 􏼑, 0.01e
i2π(0.03)

, 0.05e
i2π(0.03)

􏼐 􏼑􏽮 􏽯

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

QCDTH−1 ∩QCDTH−2 �
0.1e

i2π(0.2)
, 0.2e

i2π(0.3)
􏼐 􏼑, 0.2e

i2π(0.3)
, 0.3e

i2π(0.4)
􏼐 􏼑, 0.3e

i2π(0.4)
, 0.4e

i2π(0.3)
􏼐 􏼑􏽮 􏽯,

0.07e
i2π(0.08)

, 0.09e
i2π(0.03)

􏼐 􏼑, 0.03e
i2π(0.04)

, 0.22e
i2π(0.06)

􏼐 􏼑􏽮 􏽯

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(12)

&e explored notions, which are stated in the form of
equations (7), (9), and (10), are more proficient and more
modified than the existing drawbacks; for instance, if we
choose the imaginary part of equations (7), (9), and (10) to
be zero, then equations (7), (9), and (10) convert it for DT-
2HFS [30].

4. Correlation Coefficient for Complex Dual
Type-2 Hesitant Fuzzy Sets

&e aim of this study is to present the novel correlation,
correlation coefficient (CC), maximum-based CC (MCC),
weighted CC (WCC), and maximum-basedWCC (MWCC).
&e special cases of the explored measures are also explored.

Definition 7. For any two CDT-2HFSs, QCDTH−1 �

(M
b(j)

QCDTHRP−P−1
􏼒􏼚 ( 􏽥xi) · e

i2π(M
b(j)

QCDTHIP−P−1
(􏽥xi)), M

b(j)

QCDTHRP−S−1
( 􏽥xi)·

e
i2π

(M
b(j)

QCDTHIP−S−1
( 􏽥xi))), (N

b(k)
QCDTHRP−P−1

( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−P−1

(
􏽥
􏽥xi)), M

b(k)
QCDTHRP−P−1

( 􏽥xi) · e
i2π(M

b(k)

QCDTHIP−S−1
(􏽥xi)))), j, k� 1, 2, 3,

. . . , n, m} and QCDTH−2 � (M
b(j)

QCDTHRP−P−2
( 􏽥xi)·􏼒􏼚

e
i2π(M

b(j)

QCDTHIP−P−2
(􏽥xi)), M

b
QCDTHIP−P−2

(j)( 􏽥xi) · e
i2π(M

b(j)

QCDTHIP−S−2

( 􏽥xi))), (N
b(k)
QCDTHRP−P−2

( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−P−2 ( 􏽥xi)), N
b
QCDTHRP−S−2

(k)( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−S−2
(􏽥xi)))), j, k � 1, 2, 3, . . . , 􏽥l

􏽥xi

, ︷l
􏽥xi

},
the correlation is of the form
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RE
TR
AC
TE
DÇCDTHF−c QCDTH−1,QCDTH−2( 􏼁 �

1
4n

􏽘
n

i�1

1
􏽥l
􏽥xi

􏽘

􏽥l
􏽥xi

j�1
M

b(j)

QCDTHRP−P−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHRP−P−2
􏽥xi􏼒 􏼓 + M

b(j)

QCDTHRP−S−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHRP−S−2
􏽥xi􏼒 􏼓􏼒 􏼓+

1
􏽥l
􏽥xi

􏽘

􏽥l
􏽥xi

j�1
M

b(j)

QCDTHRP−P−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHIP−P−2
􏽥xi􏼒 􏼓 + M

b(j)

QCDTHIP−S−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHIP−S−2
􏽥xi􏼒 􏼓􏼒 􏼓+

1
􏽥l
􏽥xi

􏽘

􏽥l
􏽥xi

k�1
N

b(k)
QCDTHRP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHRP−P−2

􏽥xi􏼒 􏼓 + N
b(k)
QCDTHRP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHRP−P−2

􏽥xi􏼒 􏼓􏼒 􏼓+

1
􏽥l
􏽥xi

􏽘

􏽥l
􏽥xi

k�1
N

b(k)
QCDTHRP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHRP−P−2

􏽥xi􏼒 􏼓 + N
b(k)
QCDTHRP−S−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHRP−S−2

􏽥xi􏼒 􏼓􏼒 􏼓
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Definition 8. For any two CDT-2HFSs, QCDTH−1 �

(M
b(j)

QCDTHRP−P−1
( 􏽥xi) · e

i2π􏼒􏼚 (M
b(j)

QCDTHIP−P−1
( 􏽥xi)), M

b(j)

QCDTHRP−S−1

( 􏽥xi) · e
i2π(M

b(j)

QCDTHIP−S−1
(􏽥xi))), (N

b(k)
QCDTHRP−P−1

( 􏽥xi)·

e
i2π(M

b(k)

QCDTHIP−P−1
(􏽥xi)), N

b(k)
QCDTHRP−S−1

( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−S−1
(􏽥xi)))),

j, k � 1, 2, 3, . . . , n, m} and QCDTH−2 (M
b(j)

QCDTHRP−P−2
􏼒􏼚 ( 􏽥xi) ·

e
i2π(M

b(j)

QCDTHIP−P−2
(􏽥xi)), M

b(j)

QCDTHRP−S−2
( 􏽥xi) · e

i2π
(M

b(j)

QCDTHIP−S−2
( 􏽥xi)))

(N
b(k)
QCDTHRP−P−2

( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−P−2
(􏽥xi)), N

b(k)
QCDTHRP−S−2

( 􏽥xi)·

e
i2π(N

b(k)

QCDTHIP−S−2
(􏽥xi)))), j, k � 1, 2, 3, . . . ,􏽥l

􏽥xi

,︷l
􏽥xi

}, the corre-
lation coefficient is of the form

ÇCDTHF−cc QCDTH−1,QCDTH−2( 􏼁 �
ÇCDTHF−c QCDTH−1,QCDTH−2( 􏼁

ÇCDTHF−c QCDTH−1,QCDTH−1( 􏼁
(1/2)

− ÇCDTHF−c QCDTH−1,QCDTH−2( 􏼁
(1/2)

�

􏽐
n
i�1

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHRP−P−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHRP−P−2
􏽥xi􏼒 􏼓 + M

b(j)

QCDTHRP−S−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHRP−S−2
􏽥xi􏼒 􏼓􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHIP−P−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHIP−P−2
􏽥xi􏼒 􏼓 + M

b(j)

QCDTHIP−S−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHIP−S−2
􏽥xi􏼒 􏼓􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHRP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHRP−P−2

􏽥xi􏼒 􏼓 + N
b(k)
QCDTHRP−P−1

􏽥xi􏼒 􏼓N
b(j)

QCDTHRP−P−2
􏽥xi􏼒 􏼓􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHIP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHIP−P−2

􏽥xi􏼒 􏼓 + N
b(k)
QCDTHIP−P−1

􏽥xi􏼒 􏼓N
b(j)

QCDTHIP−P−2
􏽥xi􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽐
n
i�1

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHRP−P−1
􏽥xi􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHRP−S−1
􏽥xi􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHIP−P−1
􏽥xi􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHIP−S−1
􏽥xi􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 N
b(k)
QCDTHRP−P−1

􏽥xi􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHRP−S−1

􏽥xi􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 N
b(k)
QCDTHIP−P−1

􏽥xi􏼐 􏼑􏼐 􏼑
2

+ N
b(j)
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Proposition 1. For any two CDT-2HFSs, QCDTH-1 and
QCDTH-2, the CC among CDT-2HFSs satisfies the following
axioms:

(1) 0≤ ÇCDTHF-cc(QCDTH−1, QCDTH−2)≤ 1
(2) ÇCDTHF−cc(QCDTH−1, QCDTH−2) � 1⇔QCDTH−1 �

QCDTH−2

(3) ÇCDTHF−cc(QCDTH−1,QCDTH−2) �

ÇCDTHF−cc(QCDTH−2,QCDTH−1)

Proof. We prove the three above conditions by using
equation (14). By using the inequality, it is clear that
0≤ ÇCDTHF-cc(QCDTH−1,QCDTH−2); then we only prove that
ÇCDTHF-cc(QCDTH−1,QCDTH−2)≤ 1. For this, we choose that
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.

(15)

By using the Cauchy–Schwarz inequality, (x1 y1 + x2y2
+ · · · + xnyn)2 (x2

1 + x2
2 + · · · + x2

n)(y2
1 + y2

2 + · · · + y2
n), we

have
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� ÇCDTHF−c QCDTH−1,QCDTH−1( 􏼁.ÇCDTHF−c QCDTH−2,QCDTH−2( 􏼁.
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ÇCDTHF−c (QCDTH−1,QCDTH−2)≤ (ÇCDTHF− c(QCDTH− 1,

QCDTH− 1))
(1/2)(ÇCDTHF− c(QCDTH− 2,QCDTH− 2))

(1/2); thus
0≤ ÇCDTHF−cc(QCDTH−1,QCDTH−2)≤ 1. Further, we prove the
second part by using (13)fd14. By hypothesis, it is given that
QCDTH−1 � QCDTH−2, and then M

b
QCDTHRP−P−1

(j)( 􏽥xi) �

M
b(j)

QCDTHRP−P−2
( 􏽥xi), M

b
QCDTHIP−P−1

(j)( 􏽥xi) � M
b(j)

QCDTHIP−P−2
( 􏽥xi),

M
b(j)

QCDTHRP−S−1
( 􏽥xi) � M

b(j)

QCDTHRP−S−2
( 􏽥xi), M

b(j)

QCDTHIP−S−1
( 􏽥xi) �

M
b(j)

QC DT HRP−S−2
( 􏽥xi), M

b(j)

QC DT HIP−S−1
( 􏽥xi) � M

b(j)

QCDTHIP−S−2
( 􏽥xi),

N
b(k)
QCDTHRP−P−1

� N
b(k)
QCDTHRP−P−2

, NQCDTHRP−P−1
b(k)(

􏽥
􏽥xi) � N

b(k)
QCDTHIP−P−2

(
􏽥
􏽥xi), and N

b(k)
QCDTHRP−S−1

� Nb
QCDTHRP−S−2

(k), N
b(k)
QCDTHIP−S−1

(
􏽥
􏽥xi) �

N
b(k)
QCDTHIP−S−2

(
􏽥
􏽥xi); then, by using (13)fd14, we get

ÇCDTHF−cc(QCDTH−1,QCDTH−2) � 1. Additionally, we prove
the third condition such that

ÇCDTHF−cc QCDTH−1,QCDTH−2( 􏼁 �

􏽐
n
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1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHRP−P−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHRP−P−2
􏽥xi􏼒 􏼓 + M

b(j)

QCDTHRP−S−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHRP−S−2
􏽥xi􏼒 􏼓􏼒 􏼓+
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􏽥xi
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􏽥l
􏽥xi
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b(j)
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QCDTHIP−S−1
􏽥xi􏼒 􏼓M

b(j)
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􏽥xi􏼒 􏼓􏼒 􏼓+
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􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi
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QCDTHRP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHRP−P−2

􏽥xi􏼒 􏼓 + N
b(k)
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􏽥xi􏼒 􏼓N
b(k)
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􏽥xi
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􏽥xi
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􏽥xi􏼒 􏼓N
b(k)
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b(k)
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􏽥xi􏼒 􏼓􏼒 􏼓
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􏽥xi􏼐 􏼑􏼐 􏼑

2
+ M
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QCDTHRP−S−1
􏽥xi􏼐 􏼑􏼐 􏼑
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􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi
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b(j)

QCDTHIP−S−1
􏽥xi􏼐 􏼑􏼐 􏼑
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􏼒 􏼓+
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􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi
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QCDTHRP−P−1

􏽥xi􏼐 􏼑
2

􏼒 􏼓 + N
b(k)
QCDTHRP−S−1

􏽥xi􏼐 􏼑􏼐 􏼑
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􏼒 􏼓􏽐

􏽥l
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QCDTHIP−P−1

􏽥xi􏼐 􏼑􏼐 􏼑
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􏽥xi􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓
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×

􏽐
n
i�1

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHRP−P−2
􏽥xi􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHRP−S−2
􏽥xi􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHIP−P−2
􏽥xi􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHIP−S−2
􏽥xi􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHRP−P−2

􏽥xi􏼐 􏼑
2

􏼒 􏼓 + N
b(k)
QCDTHRP−S−2

􏽥xi􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHIP−P−2

􏽥xi􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHIP−S−2

􏽥xi􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓
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n
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􏼒 􏼓􏽐
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Definition 9. For any two CDT-2HFSs, QCDTH−1 �

(M
b(j)

QCDTHRP−P−1
( 􏽥xi) · e

i2π(M
b(j)

QCDTHIP−P−1
(􏽥xi)),M

b(j)

QCDTHRP−S−1
( 􏽥xi) · e

i2π(M
b(j)

QCDTHIP−S−1
(􏽥xi))),
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(􏽥xi)),N

b(k)
QCDTHRP−S−1

( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−S−1
(􏽥xi)))

⎛⎝ ⎞⎠,
⎧⎨

⎩

j, k � 1,2,3, . . . ,n,m
⎫⎬

⎭ and QCDTH−2 �

(M
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( 􏽥xi) · e

i2π(M
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⎛⎝ ⎞⎠,
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􏽥xi

, l
︷

􏽥xi

⎫⎬

⎭, the maximum-based correlation

coefficient (MCC) is of the form

ÇCDTHF−mcc QCDTH−1,QCDTH−2( 􏼁 �
ÇCDTHF−c QCDTH−1,QC DT H−2( 􏼁

max ÇCDTHF−c QCDTH−1,QCDTH−1( 􏼁
(1/2)

, ÇCDTHF−c QCDTH−1,QCDTH−2( 􏼁
(1/2)
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2
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.

(18)

Proposition 2. For any two CDT-2HFSs, QCDTH-1 and
QCDTH-2, the MCC among CDT-2HFSs satisfies the fol-
lowing axioms:

(1) 0≤ ÇCDTH−mcc(QCDTH−1,QCDTH−2)≤ 1
(2) ÇCDTHF−mcc(QCDTH−1,QCDTH−2) � 1⇔QCDTH−1 �

QCDTH−2

(3) ÇCDTHF−mcc(QCDTH−1,QCDTH−2) � ÇCDTHF−mcc
(QCDTH−2,QCDTH−1)

Proof. We prove the three above conditions by using
equation (18). By using the inequality, it is clear that
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0≤ ÇCDTH−mcc(QCDTH−1,QCDTH−2); then, we only prove that
ÇCDTH−mcc(QCDTH−1,QCDTH−2)≤ 1. For this, we choose that

ÇCDTHF−c QCDTH−1,QCDTH−2( 􏼁 �
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QCDTHRP−P−2

􏽥x1􏼒 􏼓􏼒 􏼓+

· · · +
1

􏽥l
􏽥xn

􏽘

􏽥l
􏽥xi

k�1
N

b(k)2
QCDTHRP−P−2

􏽥xn􏼒 􏼓 + N
b(k)2
QCDTHRP−P−2

􏽥xn􏼒 􏼓􏼒 􏼓

1
􏽥l
􏽥x1

􏽘

􏽥l
􏽥xi

k�1
N

b(k)2
QCDTHIP−P−2

􏽥x1􏼒 􏼓 + N
b(k)2
QCDTHIP−P−2

􏽥x1􏼒 􏼓􏼒 􏼓+

· · · +
1

􏽥l
􏽥xn

􏽘

􏽥l
􏽥xi

k�1
N

b(k)2
QCDTHIP−P−2

􏽥xn􏼒 􏼓 + N
b(k)2
QCDTHIP−P−2

􏽥xn􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� ÇCDTHF−c QCDTH−1,QCDTH−1( 􏼁.ÇCDTHF−c QCDTH−2,QCDTH−2( 􏼁.
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ÇCDTHF−c (QCDTH−1, QCDTH−2) ≤ (ÇCDTHF− c(QCDTH− 1,

QCDTH− 1))
(1/2) (ÇCDTHF− c(QCDTH− 2, QCDTH− 2))

(1/2); thus
0≤ ÇCDTHF−mcc(QCDTH−1, QCDTH−2)≤ 1. Furthermore, we
prove the second part by using equation (18). By hypothesis,
it is given that QCDTH−1 � QCDTH−2; then M

b(j)

QCDTHRP−P−1
( 􏽥xi) �

M
b(j)

QCDTHRP−P−2
( 􏽥xi), M

b(j)

QCDTHIP−P−1
( 􏽥xi) � M

b(j)

QCDTHIP−P−2
( 􏽥xi),

M
b(j)

QCDTHRP−S−1
( 􏽥xi) � M

b(j)

QCDTHRP−S−2
( 􏽥xi), M

b(j)

QCDTHIP−S−1
( 􏽥xi) �

M
b(j)

QCDTHIP−S−2
( 􏽥xi), N

b(k)
QCDTHRP−P−1

� N
b(k)
QCDTHRP−P−2

, N
b(k)
QCDTHIP−P−2

(
􏽥
􏽥xi) �

N
b(k)
QCDTHIP−P−2

(
􏽥
􏽥xi), and N

b(k)
QCDTHRP−S−1

� N
b(k)
QCDTHRP−S−2

,

N
b(k)
QCDTHIP−S−1

(
􏽥
􏽥xi) � N

b(k)
QCDTHIP−S−2

(
􏽥
􏽥xi); then, by using equation

(18), we get ÇCDTHF−mcc(QCDTH−1,QCDTH−2) � 1. Addition-
ally, we prove the third condition such that

ÇCDTHF−mcc QCDTH−1,QCDTH−2( 􏼁 �

􏽐
n
i�1

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHRP−P−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHRP−P−2
􏽥xi􏼒 􏼓 + M

b(j)

QCDTHRP−S−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHRP−S−2
􏽥xi􏼒 􏼓􏼒 􏼓

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHIP−P−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHIP−P−2
􏽥xi􏼒 􏼓 + M

b(j)

QCDTHIP−S−1
􏽥xi􏼒 􏼓M

b(j)

QCDTHIP−S−2
􏽥xi􏼒 􏼓􏼒 􏼓

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHRP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHRP−P−2

􏽥xi􏼒 􏼓 + N
b(k)
QCDTHRP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHRP−P−2

􏽥xi􏼒 􏼓􏼒 􏼓

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHIP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHIP−P−2

􏽥xi􏼒 􏼓 + N
b(k)
QCDTHIP−P−1

􏽥xi􏼒 􏼓N
b(k)
QCDTHIP−P−2

􏽥xi􏼒 􏼓􏼒 􏼓
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max

􏽐
n
i�1

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHRP−P−1
􏽥xi􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHRP−S−1
􏽥xi􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHIP−P−1
􏽥xi􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHIP−S−1
􏽥xi􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHRP−P−1

􏽥xi􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHRP−S−1

􏽥xi􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓+

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHIP−P−1

􏽥xi􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHIP−S−1

􏽥xi􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓
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(1/2)

􏽐
n
i�1

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHRP−P−2
􏽥xi􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHRP−S−2
􏽥xi􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

j�1 M
b(j)

QCDTHIP−P−2
􏽥xi􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHIP−S−2
􏽥xi􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHRP−P−2

􏽥xi􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHRP−S−2

􏽥xi􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓

1/􏽥l
􏽥xi

􏼒 􏼓􏽐

􏽥l
􏽥xi

k�1 N
b(k)
QCDTHIP−P−2

􏽥xi􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHIP−S−2

􏽥xi􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓
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Definition 10. For any two CDT-2HFSs, QCDTH−1 �

(M
b(j)

QCDTHRP−P−1
( 􏽥xi) · e

i2π(M
b(j)

QCDTHIP−P−1
(􏽥xi)), M

b(j)

QCDTHRP−S−1
( 􏽥xi).e

i2π(M
b(j)

QCDTHIP−S−1
(􏽥xi))),

(N
b(k)
QCDTHRP−P−1

( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−P−1
(
􏽥
􏽥xi)), N

b(k)
QCDTHRP−S−1

( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−S−1
(􏽥xi)))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

j, k � 1, 2, 3, . . . , n, m

⎫⎪⎪⎬

⎪⎪⎭
and QCDTH−2 �

(M
b(j)

QCDTHRP−P−2
( 􏽥xi) · e

i2π(M
b(j)

QCDTHIP−P−2
(􏽥xi)), M

b(j)

QCDTHRP−S−2
( 􏽥xi) · e

i2π(M
b(j)

QCDTHIP−S−2
(􏽥xi))),

(N
b(k)
QCDTHRP−P−2

( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−P−2
(􏽥xi)), N

b(k)
QCDTHRP−S−2

( 􏽥xi) · e
i2π(N

b(k)

QCDTHIP−S−2
(􏽥xi)))

⎛⎝ ⎞⎠,
⎧⎨

⎩

j, k � 1, 2, 3, . . . ,􏽥l
􏽥xi

,︷l
􏽥xi

⎫⎬

⎭, the weighted correlation co-

efficient is of the form

ÇCDTHF−wcc QCDTH−1,QCDTH−2( 􏼁 �
ÇCDTHF−wc QCDTH−1 − QCDTH−2( 􏼁

ÇCDTHF−wc QCDTH−1,QCDTH−1( 􏼁
(1/2)

× ÇCDTHF−wc QCDTH−1,QCDTH−2( 􏼁
(1/2)
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(22)

where Ω � (Ω1,Ω2, . . . ,Ωn)T represents weight vector with
the condition that 􏽐

n
i�1Ωi � 1, Ωi ∈ [0, 1].

Proposition 3. For any two CDT-2HFSs, QCDTH-1 and
QCDTH-2, the CC among CDT-2HFSs satisfies the following
axioms:

(1) 0≤ ÇCDTHF−wcc(QCDTH−1,QCDTH−2)≤ 1
(2) ÇCDTHF−wcc(QCDTH−1,QCDTH−2) � 1⇔QCDTH−1 �

QCDTH−2

(3) ÇCDTHF−wcc(QCDTH−1,QCDTH−2) �

ÇCDTHF−wcc(QCDTH−2,QCDTH−1)

Proof. &e proof is straightforward.

Definition 11. For any two CDT-2HFSs, QCDTH−1 �

(M
b(j)

QCDTHRP−P−1
( 􏽥xι) · e

i2π(M
b(j)

QCDTHIP−P−1
(􏽥xι)), M

b(j)

QCDTHRP−S−1
( 􏽥xι) · e

i2π(M
b(j)

QCDTHIP−S−1
(􏽥xι))),

(N
b(k)
QCDTHRP−P−1

(
􏽥
􏽥xι) · e

i2π(M
b(k)

QCDTHIP−P−1
(􏽥xι)), N

b(k)
QCDTHRP−S−1

( 􏽥xι) · e
i2π(M

b(k)

QCDTHIP−S−1
(􏽥xι)))

⎛⎝ ⎞⎠,
⎧⎨

⎩

j, k � 1, 2, 3, . . . , n, m
⎫⎬

⎭ and QCDTH−2 �

(M
b(j)

QCDTHRP−P−2
( 􏽥xι) · e

i2π(M
b(j)

QCDTHIP−P−2
(􏽥xι)), M

b(j)

QCDTHRP−S−2
( 􏽥xι) · e

i2π(M
b(j)

QCDTHIP−S−2
(􏽥xι))),

(N
b(j)

QCDTHRP−P−2
( 􏽥xι) · e

i2π(M
b(j)

QCDTHIP−P−2
(􏽥xι)), N

b(j)

QCDTHRP−S−2
( 􏽥xι) · e

i2π(M
b(j)

QCDTHIP−S−2
(􏽥xι)))

⎛⎝ ⎞⎠,
⎧⎨

⎩

j, k � 1, 2, 3, . . . ,􏽥ι􏽥xi
,􏽥ι􏽥xi

⎫⎬

⎭, the maximum-based weighted

correlation coefficient (MCC) is of the form

ÇCDTHF−mwcc QCDTH−1,QCDTH−2( 􏼁 �
ÇCDTHF−wc QCDTH−1 − QCDTH−2( 􏼁

max ÇCDTHF−wc QCDTH−1,QCDTH−1( 􏼁
(1/2)

× ÇCDTHF−wc QCDTH−1,QCDTH−2( 􏼁
(1/2)

􏼐 􏼑

Journal of Mathematics 15



RE
TR
AC
TE
D�

􏽐
n
i�1Ωi

1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHRP−P−1
􏽥xι􏼒 􏼓M

b(j)

QCDTHRP−P−2
􏽥xι􏼒 􏼓 + M

b(j)

QCDTHRP−S−1
􏽥xι􏼒 􏼓M

b(j)

QCDTHRP−S−2
􏽥xι􏼒 􏼓+

1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHIP−P−1
􏽥xι􏼒 􏼓M

b(j)

QCDTHIP−P−2
􏽥xι􏼒 􏼓 + M

b(j)

QCDTHIP−S−1
􏽥xι􏼒 􏼓M

b(j)

QCDTHIP−S−2
􏽥xι􏼒 􏼓+

1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 N
b(k)
QCDTHRP−P−1

􏽥xι􏼒 􏼓N
b(k)
QCDTHRP−P−2

􏽥xι􏼒 􏼓 + N
b(k)
QCDTHRP−S−1

􏽥xι􏼒 􏼓N
b(k)
QCDTHRP−S−2

􏽥xι􏼒 􏼓+

1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 N
b(k)
QCDTHIP−P−1

􏽥xι􏼒 􏼓N
b(k)
QCDTHIP−P−2

􏽥xι􏼒 􏼓 + N
b(k)
QCDTHIP−S−1

􏽥xι􏼒 􏼓N
b(k)
QCDTHIP−S−2

􏽥xι􏼒 􏼓
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max

􏽐
n
i�1

Ωi/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHRP−P−1
􏽥xι􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHRP−S−1
􏽥xι􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

Ωi/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHIP−P−1
􏽥xι􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHIP−S−1
􏽥xι􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

Ωi/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHRP−P−1

􏽥xι􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHRP−S−1

􏽥xι􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓+

Ωi/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHIP−P−1

􏽥xι􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHIP−S−1

􏽥xι􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓+
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×

􏽐
n
i�1

Ωi/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHRP−P−2
􏽥xι􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHRP−S−2
􏽥xι􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

Ωi/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHIP−P−2
􏽥xι􏼐 􏼑􏼐 􏼑

2
+ M

b(j)

QCDTHIP−S−2
􏽥xι􏼐 􏼑􏼐 􏼑

2
􏼒 􏼓+

Ωi/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHRP−P−2

􏽥xι􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHRP−S−1

􏽥xι􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓+

Ωi/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHIP−P−2

􏽥xι􏼐 􏼑􏼐 􏼑
2

+ N
b(k)
QCDTHIP−S−1

􏽥xι􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓+
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.

(23)

where Ω � (Ω1,Ω2, . . . ,Ωn)T represents weight vector with
the condition that 􏽐

n
i�1Ωi � 1,Ωi ∈ [0, 1].

Proposition 4. For any two CDT-2HFSs, QCDTH-1 and
QCDTH-2, the MCC among CDT-2HFSs satisfies the fol-
lowing axioms:

(1) 0≤ ÇCDTHF−mwcc(QCDTH−1,QCDTH−2)≤ 1
(2) ÇCDTHF−mwcc(QCDTH−1,QCDTH−2) � 1⇔QCDTH−1 �

QCDTH−2

(3) ÇCDTHF−mwcc(QCDTH−1,QCDTH−2) �

ÇCDTHF−mwcc(QCDTH−2,QCDTH−1)

Proof. &e proof is straightforward.
&e explored notions, which are stated in the form of

equations (13)–(23), are more proficient and more modified
than the existing drawbacks; for instance, if we choose the

imaginary part of equations (13)–(23) to be zero, then
equations (13)–(23) convert it for DT-2HFS.

5. Entropy Measures for Complex Dual Type-2
Hesitant Fuzzy Sets

&e aim of this study is to present the novel of two types of
entropy measures (EMs). &e special cases of the explored
measures are also explored.

Definition 12. For any two CDT-2HFSs QCDTH−1 �

(M
b(j)

QCDTHRP−P−1
( 􏽥xι) · e

i2π(M
b(j)

QCDTHIP−P−1
(􏽥xι)), M

b(j)

QCDTHRP−S−1
( 􏽥xι) · e

i2π(M
b(j)

QCDTHIP−S−1
(􏽥xι))),

(N
b(k)
QCDTHRP−P−1

( 􏽥xι) · e
i2π(M

b(k)

QCDTHIP−P−1
(
􏽥
􏽥xι)), N

b(k)
QCDTHRP−S−1

( 􏽥xι) · e
i2π(M

b(k)

QCDTHIP−S−1
(􏽥xι)))

⎛⎝ ⎞⎠,
⎧⎨

⎩

j, k � 1, 2, 3, . . . , n, m
⎫⎬

⎭, the two EMs are defined by
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􏽥xι􏼒 􏼓􏼒 􏼓−

1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHIP−P−1
􏽥xι􏼒 􏼓 + M

b(j)

QCDTHIP−S−1
􏽥xι􏼒 􏼓􏼒 􏼓+

1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHIP−P−1

􏽥xι􏼒 􏼓 + N
b(k)
QCDTHIP−S−1

􏽥xι􏼒 􏼓􏼒 􏼓
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cos

π ×

2 + 1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHRP−P−1
􏽥xι􏼒 􏼓 + M

b(j)

QCDTHRP−S−1
􏽥xι􏼒 􏼓􏼒 􏼓+

1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHRP−P−1

􏽥xι􏼒 􏼓 + N
b(k)
QCDTHRP−S−1

􏽥xι􏼒 􏼓􏼒 􏼓−

1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHIP−P−1
􏽥xι􏼒 􏼓 + M

b(j)

QCDTHIP−S−1
􏽥xι􏼒 􏼓􏼒 􏼓+

1/􏽥ι􏽥xi
􏼒 􏼓 􏽐

􏽥ι􏽥xi

k�1 N
b(jk)

QCDTHIP−P−1
􏽥xι􏼒 􏼓 + N

b(k)
QCDTHIP−S−1

􏽥xι􏼒 􏼓􏼒 􏼓
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− 1
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. (25)
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&e two EMs based on CDT-2HFSs has the following
properties:

(1) If M
b(j)

QCDTHRP−P−1
� M

b(j)

QCDTHRP−S−1
� 1, N

b(k)
QCDTHRP−P−1

�

N
b(k)
QCDTHRP−S−1

� 0, M
b(j)

QCDTHIP−P−1
� M

b(j)

QCDTHIP−S−1
� 1,

N
b(k)
QCDTHIP−P−1

� N
b(k)
QCDTHIP−S−1

� 0 or M
b(j)

QCDTHRP−P−2
�

M
b(j)

QCDTHRP−S−2
� 1, N

b(k)
QCDTHRP−P−2

� Nb
QCDTHRP−S−2

(k) � 0,

M
b(j)

QCDTHIP−P−2
� M

b(j)

QCDTHIP−S−2
� 1, N

b(j)

QCDTHIP−P−2
�

N
b(j)

QCDTHIP−S−2
� 0

(2) If M
b(j)

QCDTHRP−P−1
, M

b(j)

QCDTHRP−S−1
≤M

b(j)

QCDTHRP−P−2
,

M
b(j)

QCDTHRP−S−2
, N

b(k)
QCDTHRP−P−1

, N
b(k)
QCDTHRP−S−1

≥ N
b(k)
QCDTHRP−P−2

,

N
b(k)
QCDTHRP−S−2

, M
b(j)

QCDTHIP−P−1
, M

b(j)

QCDTHIP−S−1
≤ M

b(j)

QCDTHIP−P−1
,

M
b(j)

QCDTHIP−S−1
, N

b(k)
QCDTHIP−P−1

, N
b(k)
QCDTHIP−S−1

≥N
b(k)
QCDTHIP−P−2

,

N
b(k)
QCDTHIP−S−2

then, J1(QCDTH−1)≤J1(QCDTH−2), and
if we change ≤ into ≥, then
J1(QCDTH−1)≥J1(QCDTH−2)

(3) J1(QCDTH−1) � J1(Q
c
CDTH−1) and J2(QC DT H−1) �

J2(Q
c
C DT H−1).

&e explored notions, which are stated in the form of
(23) and (24)fd25, are more proficient and more modified
than the existing drawbacks; for instance, if we choose the
imaginary part of (23) and (24)fd25 to be zero, then (23) and
(24)fd25 convert it for DT-2HFS.

6. TOPSIS Method Based on CDT-2HFSs

Basically, a novel TOPSIS method using CC and EM is
provided to handle the MADM problems based on Cq-
ROFS. Previously, TOPSIS method was proposed based on
sample SMs, but in our proposed work we considered the
CC and EM. &e DM cannot accurately examine the
proximity of each alternative to ideal solution in some
particular cases. So, we replace the TOPSIS method with the

CC instead of DM to check the efficacy and effectiveness of
the proposed work.

6.1. Problem Description. Consider an MADM problem,
whose m alternatives and n attributes are denoted by C �

c1, c2, c3, . . . , cm􏼈 􏼉 and U � (u1, u2, u3 . . . , un), respectively,
with respect to weight vectors represented by
Ω � (Ω1,Ω2, . . . ,Ωn)T with the conditions that Ω∈ 0, 1
and 􏽐

n
i�1Ωi � 1. Each attribute of each alternative is sim-

plified using CDT-2HFSs QCDTH−z �

(M
b(k)
QCDTHRP−P−z

( 􏽥xι) · e
i2π(M

b(k)

QCDTHIP−P−z
(􏽥xι)),M

b(k)
QCDTHRP−S−z

( 􏽥xι) · e
i2π(M

b(k)

QCDTHIP−S−z
(􏽥xι))),

(N
b(k)
QCDTHRP−P−z

( 􏽥xι) · e
i2π(N

b(k)

QCDTHIP−P−z
(􏽥xι)),N

b(k)
QCDTHRP−S−z

( 􏽥xι) · e
i2π(N

b(k)

QCDTHIP−S−z
(􏽥xι)))

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

⎧⎨

⎩

j, k � 1, 2, 3, . . . , n, m1, 2, 3, . . . , n, m}, z � 1, 2, 3, . . . , n,
satisfying the following conditions: 0≤max(M

b(j)

QCDTHRP−P
)+

max(N
b(k)
QCDTHRP−P

)≤1,0≤max(M
b(j)

QCDTHIP−P
) + max(N

b(k)
QCDTHIP−P

)≤

1, 0 ≤ max(M
b(j)

QCDTHRP−S
)+ max(N

b(k)
QCDTHRP−S

) ≤ 1 and 0 ≤

max(M
b(j)

QCDTHIP−S
)+ max(NQCDTHIP−P

b(k)) ≤ 1. All the attributes
values of the alternatives are in the form of CDT-2HF de-
cision matrix (CDT-2HFDM); that is, [QCDTH−yz]m×n �

(M
b(k)
QCDTHRP−P−yz

( 􏽥xι) · e
i2π(M

b(k)

QCDTHIP−P−yz
(􏽥xι))

, M
b(k)
QCDTHRP−S−yz

( 􏽥xι) · e
i2π(M

b(k)

QCDTHIP−S−yz
(􏽥xι))

),

(N
b(k)
QCDTHRP−P−yz

( 􏽥xι) · e
i2π(N

b(k)

QCDTHIP−P−yz
(􏽥xι))

, N
b(k)
QCDTHRP−S−yz

( 􏽥xι) · e
i2π(N

b(k)

QCDTHIP−S−yz
(􏽥xι))

)

⎛⎝ ⎞⎠,
⎧⎨

⎩

j, k � 1, 2, 3, . . . , n, m1, 2, 3, . . . , n, m􏼉, y, z �

1, 2, 3, . . . , m, n.
Due to tension, time limitations of the decision-makers

(DMs), and complication of problems, it is awkward to give
the weight information of attribute in advance. To handle
such type of issue, we compute the weights of attributes and
consider the proposed EM examining the weight of each
attribute as

Ωj �
1 − Hj

n − 􏽐
n
i�1Hj

, (26)

where Hj ∈ [0, 1], j � 1, 2, 3, . . . , n, is defined as
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Hj �
1
n

􏽘

n

i�1

sin

π ×

2 + 1/􏽥ι􏽥xi
􏼒 􏼓􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHRP−P−i
􏽥xι􏼒 􏼓 + M

b(j)

QCDTHRP−S−i
􏽥xι􏼒 􏼓􏼒 􏼓−

1/􏽥ι􏽥xi
􏼒 􏼓􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHRP−P−i

􏽥xι􏼒 􏼓 + N
b(k)
QCDTHRP−S−i

􏽥xι􏼒 􏼓􏼒 􏼓+

1/􏽥ι􏽥xi
􏼒 􏼓􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHIP−P−i
􏽥xι􏼒 􏼓 + M

b(j)

QCDTHIP−S−i
􏽥xι􏼒 􏼓􏼒 􏼓−

1/􏽥ι􏽥xi
􏼒 􏼓􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHIP−P−i

􏽥xι􏼒 􏼓 + N
b(k)
QCDTHIP−S−i

􏽥xι􏼒 􏼓􏼒 􏼓
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+

sin

π ×

2 − 1/􏽥ι􏽥xi
􏼒 􏼓􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHRP−P−i
􏽥xι􏼒 􏼓 + M

b(j)

QCDTHRP−S−i
􏽥xι􏼒 􏼓􏼒 􏼓+

1/􏽥ι􏽥xi
􏼒 􏼓􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHRP−P−i

􏽥xι􏼒 􏼓 + N
b(k)
QCDTHRP−S−i

􏽥xι􏼒 􏼓􏼒 􏼓−

1/􏽥ι􏽥xi
􏼒 􏼓􏽐

􏽥ι􏽥xi

j�1 M
b(j)

QCDTHIP−P−i
􏽥xι􏼒 􏼓 + M

b(j)

QCDTHIP−S−i
􏽥xι􏼒 􏼓􏼒 􏼓+

1/􏽥ι􏽥xi
􏼒 􏼓􏽐

􏽥ι􏽥xi

k�1 N
b(k)
QCDTHIP−P−i

􏽥xι􏼒 􏼓 + N
b(k)
QCDTHIP−S−i

􏽥xι􏼒 􏼓􏼒 􏼓
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(28)

When we consider that the imaginary part of (26) and
(27) will be zero, (26) and (27) will be converted for DT-
2HFS.

Procedure for MADM problem based on the above
analysis by considering the proposed CDT-2HF TOPSIS
method using CC and EM is explained below.
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6.2.Application. &e steps of the CDT-2HF TOPSIS method
using WCC are as follows:

(i) Step 1: some decision-making problems also contain
benefits and cost types of informations, so for this, we

normalized the decision matrix by considering the
following formula. We have

ryz �

M
b(j)

QCDTHRP−P−yz
􏽥xι􏼒 􏼓 · e

i2π M
b(j)

QCDTHIP−P−yz
􏽥xι􏼐 􏼑􏼒 􏼓

,M
b(j)

QCDTHRP−S−yz
􏽥xι􏼒 􏼓 · e

i2π M
b(j)

QCDTHIP−S−yz
􏽥xι􏼐 􏼑􏼒 􏼓

⎛⎜⎜⎝ ⎞⎟⎟⎠,

N
b(k)
QCDTHRP−P−yz

􏽥xι􏼒 􏼓 · e
i2π N

b(k)

QCDTHIP−P−yz
􏽥xι􏼐 􏼑􏼒 􏼓

,N
b(k)
QCDTHRP−S−yz

􏽥xι􏼒 􏼓 · e
i2π N

b(k)

QCDTHIP−S−yz
􏽥xι􏼐 􏼑􏼒 􏼓

⎛⎜⎜⎝ ⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

·

M
b(j)

QCDTHRP−P−yz
􏽥xι􏼒 􏼓 · e

i2π M
b(j)

QCDTHIP−P−yz
􏽥xι􏼐 􏼑􏼒 􏼓

,M
b(j)

QCDTHRP−S−yz
􏽥xι􏼒 􏼓 · e

i2π M
b(j)

QCDTHIP−S−yz
􏽥xι􏼐 􏼑􏼒 􏼓

⎛⎜⎜⎝ ⎞⎟⎟⎠,

N
b(k)
QCDTHRP−P−yz

􏽥xι􏼒 􏼓 · e
i2π N

b(k)

QCDTHIP−P−yz
􏽥xι􏼐 􏼑􏼒 􏼓

,N
b(k)
QCDTHRP−S−yz

􏽥xι􏼒 􏼓 · e
i2π N

b(k)

QCDTHIP−S−yz
􏽥xι􏼐 􏼑􏼒 􏼓

⎛⎜⎜⎝ ⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

forbenefit typesof attributes,

N
b(k)
QCDTHRP−P−yz

􏽥xι􏼒 􏼓 · e
i2π N

b(k)

QCDTHIP−P−yz
􏽥xι􏼐 􏼑􏼒 􏼓

,N
b(k)
QCDTHRP−S−yz

􏽥xι􏼒 􏼓 · e
i2π N

b(k)

QCDTHIP−S−yz
􏽥xι􏼐 􏼑􏼒 􏼓

⎛⎜⎜⎝ ⎞⎟⎟⎠,

M
b(j)

QCDTHRP−P−yz
􏽥xι􏼒 􏼓 · e

i2π M
b(j)

QCDTHIP−P−yz
􏽥xι􏼐 􏼑􏼒 􏼓

,M
b(j)

QCDTHRP−S−yz
􏽥xι􏼒 􏼓 · e

i2π M
b(j)

QCDTHIP−S−yz
􏽥xι􏼐 􏼑􏼒 􏼓

⎛⎜⎜⎝ ⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

forcost typesof attributes.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Step 2: by using (25), we examine the weight vector of
the attributes.
Step 3: by using (30) and (31), we examine the PIS and
NIS among the alternatives.
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Step 4: by using (21), we examine the CDT-2HF PIS,
and we have
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+

􏼐 􏼑. (32)

We also examine complex CDT-2HF NIS by using (21),
and we have
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􏼐 􏼑. (33)

Step 5: by using (34), we examine the closeness of each
of the alternatives, and we have
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Step 6: we rank all alternatives and examine the best
optimal one.
Step 7: the end.

Example 2. &e company of intranet is usually attacked by
malicious intrusions. To enhance the security of the intranet,
the company plans to purchase the firewall production and
put it between the intranet and extranet for blocking illegal
access. Basically, there are four types of firewall productions
given to be considered, which are detailed as follows:
C � c1, c2, c3, c4􏼈 􏼉. When choosing the firewall production,
the company pays attention to the factors detailed as follows:

u1⟶ the promotion, u2⟶ configuration simplicity,
u3⟶ Security level, and u4⟶ maintenance sever level,
the weight vector of which is denoted and defined by
Ωj ∈ [0, 1], 􏽐

n
j�1Ωj � 1, and Ω � (Ω1,Ω2,Ω3,Ω4)

T. To ex-
amine the firewall production with respect to their factors,
we consider the following matrix, and the decision matrix is
given in the form of Table 1.

&e steps of the proposed complex dual type-2 hesitant
fuzzy TOPSIS method are as follows:

(i) Step 1: some decision-making problems also contain
benefits and cost types of informations, so for this,
we normalized the decision matrix by considering
(29), but the considered information cannot be
normalized. So, we have used the information
available in Table 1 and go to step 2.

(ii) Step 2: by using (26), we examine the weight vector
of the attributes.

Ω � 0.342, 0.155, 0.067, 0.2, 0.236{ }
T
. (35)

(iii) Step 3: by using (30) and (31), we examine the PIS
and NIS among the alternatives.
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

0.15e
i2π(0.15)

,

0.01e
i2π(0.01)

⎛⎝ ⎞⎠,
0.31e

i2π(0.31)
,

0.13e
i2π(0.13)

⎛⎝ ⎞⎠,
0.04e

i2π(0.04)
,

0.14e
i2π(0.14)

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

0.32e
i2π(0.32)

0.31i2π(0.31)

⎛⎝ ⎞⎠, 0.04e
i2π(0.04)

, 0.4e
i2π(0.4)

􏼐 􏼑
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

0.12e
i2π(0.12)

,

0.31e
i2π(0.31)

⎛⎝ ⎞⎠,
0.13e

i2π(0.13)
,

0.14e
i2π(0.14)

⎛⎝ ⎞⎠,
0.14e

i2π(0.4),

0.25e
i2π(0.25)

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

0.31e
i2π(0.31)

,

0.32e
i2π(0.32)

⎛⎝ ⎞⎠, 0.32e
i2π(0.2)

, 0.33e
i2π(0.33)

􏼐 􏼑
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

0.1e
i2π(0.1)

,

0.2e
i2π(0.2)

⎛⎝ ⎞⎠,
0.2e

i2π(0.2)
,

0.3e
i2π(0.3)

⎛⎝ ⎞⎠,
0.3e

i2π(0.3)
,

0.4e
i2π(0.4)

⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

0.41e
i2π(0.41)

,

0.33e
i2π(0.33)

⎛⎝ ⎞⎠, 0.32e
i2π(0.32)

, 0.31e
i2π(0.31)

􏼐 􏼑
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(36)
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(iv) Step 4: by using (22), we examine the complex dual
type-2 hesitant fuzzy PIS, and we have

K1 r1j, R
+

􏼐 􏼑 � 0.7782,

K2 r2j, R
+

􏼐 􏼑 � 0.6645,

K3 r3j, R
+

􏼐 􏼑 � 0.6612,

K4 r4j, R
+

􏼐 􏼑 � 0.5534.

(37)

We also examine complex dual type-2 hesitant NIS
by using equation (34), and we have

K1 r1j, R
−

􏼐 􏼑 � 0.7146,

K2 r2j, R
−

􏼐 􏼑 � 0.5627,

K3 r3j, R
−

􏼐 􏼑 � 0.5537,

K4 r4j, R
−

􏼐 􏼑 � 0.5718.

(38)

(v) Step 5: by using (32), we examine the closeness of
each of the alternatives, and we have

Table 1: Original decision matrix, all items of which are in the form of complex numbers.

Symbols u1 u2

c1
0.6e

i2π(0.6)

0.1e
i2π(0.1)􏼠 􏼡,

0.2e
i2π(0.2)

,

0.4e
i2π(0.4)􏼠 􏼡,

0.1e
i2π(0.1)

0.5e
i2π(0.5)􏼠 􏼡􏼨 􏼩,

0.3e
i2π(0.3)

0.3e
i2π(0.3)􏼠 􏼡, (0.1e

i2π(0.1)
, 0.3e

i2π(0.3)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.5e
i2π(0.5)

0.01e
i2π(0.01)􏼠 􏼡,

0.1e
i2π(0.1)

0.3e
i2π(0.3)􏼠 􏼡,

0.01e
i2π(0.01)

0.4e
i2π(0.4)􏼠 􏼡􏼨 􏼩,

0.2e
i2π(0.2)

0.1e
i2π(0.1)􏼠 􏼡, (0.01e

i2π(0.01)
, 0.03e

i2π(0.03)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

c2 0.61e
i2π(0.61)

0.11e
i2π(0.11)􏼠 􏼡,

0.12e
i2π(0.12)

0.14e
i2π(0.14)􏼠 􏼡,

0.11e
i2π(0.11)

,

0.15e
i2π(0.51)􏼠 􏼡􏼨 􏼩,

0.13e
i2π(0.13)

0.31e
i2π(0.13)􏼠 􏼡, (0.11e

i2π(0.11)
, 0.13e

i2π(0.13)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.15e
i2π(0.15)

0.02e
i2π(0.02)􏼠 􏼡,

0.11e
i2π(0.11)

0.13e
i2π(0.13)􏼠 􏼡,

0.02e
i2π(0.02)

,

0.14e
i2π(0.14)􏼠 􏼡􏼨 􏼩,

0.12e
i2π(0.12)

0.11e
i2π(0.11)􏼠 􏼡, (0.02e

i2π(0.02)
, 0.01e

i2π(0.01)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

c3 0.62e
i2π(0.62)

,

0.12e
i2π(0.12)􏼠 􏼡,

0.22e
i2π(0.22)

0.24e
i2π(0.24)􏼠 􏼡,

0.21e
i2π(0.21)

,

0.25e
i2π(0.25)􏼠 􏼡􏼨 􏼩,

0.23e
i2π(0.23)

0.23e
i2π(0.23)􏼠 􏼡, (0.21e

i2π(0.21)
, 0.23e

i2π(0.23)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.25e
i2π(0.25)

0.03e
i2π(0.03)􏼠 􏼡,

0.21e
i2π(0.21)

0.23e
i2π(0.23)􏼠 􏼡,

0.03e
i2π(0.3)

,

0.24e
i2π(0.24)􏼠 􏼡􏼨 􏼩,

0.22e
i2π(0.22)

0.21e
i2π(0.21)􏼠 􏼡, (0.02e

i2π(0.2)
, 0.02e

i2π(0.02)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

c4 0.36e
i2π(0.36)

,

0.31e
i2π(0.13)􏼠 􏼡,

0.32e
i2π(0.32)

,

0.34e
i2π(0.34)􏼠 􏼡,

0.31e
i2π(0.31)

,

0.35e
i2π(0.35)􏼠 􏼡􏼨 􏼩,

0.33e
i2π(0.33)

,

0.33e
i2π(0.33)􏼠 􏼡, (0.31e

i2π(0.31)
, 0.33e

i2π(0.33)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.35e
i2π(0.35)

,

0.04e
i2π(0.04)􏼠 􏼡,

0.31e
i2π(0.31)

,

0.33e
i2π(0.33)􏼠 􏼡,

0.04e
i2π(0.04)

,

0.43e
i2π(0.34)􏼠 􏼡􏼨 􏼩;

0.32e
i2π(0.32)

,

0.31e
i2π(0.31)􏼠 􏼡, (0.04e

i2π(0.04)
, 0.04e

i2π(0.04)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
u3 u4

c1
0.2e

i2π(0.2)
,

0.3e
i2π(0.3)􏼠 􏼡,

0.3e
i2π(0.3)

,

0.4e
i2π(0.4)􏼠 􏼡,

0.4e
i2π(0.4)

,

0.5e
i2π(0.5)􏼠 􏼡􏼨 􏼩,

0.01e
i2π(0.1)

,

0.2e
i2π(0.2)􏼠 􏼡, (0.2e

i2π(0.2)
, 0.3e

i2π(0.3)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.1e
i2π(0.1)

,

0.2e
i2π(0.6)􏼠 􏼡,

0.2e
i2π(0.6)

,

0.3e
i2π(0.3)􏼠 􏼡,

0.3e
i2π(0.3)

,

0.4e
i2π(0.4)􏼠 􏼡􏼨 􏼩,

0.4e
i2π(0.4)

,

0.3e
i2π(0.3)􏼠 􏼡, (0.2e

i2π(0.2)
, 0.1e

i2π(0.1)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

c2 0.12e
i2π(0.12)

,

0.31e
i2π(0.31)􏼠 􏼡,

0.13e
i2π(0.13)

,

0.14e
i2π(0.14)􏼠 􏼡,

0.14e
i2π(0.41)

,

0.51e
i2π(0.51)􏼠 􏼡􏼨 􏼩,

0.11e
i2π(0.11)

,

0.12e
i2π(0.12)􏼠 􏼡, (0.21e

i2π(0.12)
, 0.31e

i2π(0.31)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.11e
i2π(0.11)

,

0.21e
i2π(0.21)􏼠 􏼡,

0.21e
i2π(0.21)

0.31e
i2π(0.31)􏼠 􏼡,

0.31e
i2π(0.31)

,

0.41e
i2π(0.41)􏼠 􏼡􏼨 􏼩,

0.41e
i2π(0.41)

,

0.31e
i2π(0.31)􏼠 􏼡, (0.21e

i2π(0.21)
, 0.11e

i2π(0.11)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

c3 0.22e
i2π(0.22)

,

0.32e
i2π(0.23)􏼠 􏼡,

0.23e
i2π(0.23)

0.24e
i2π(0.24)􏼠 􏼡,

0.24e
i2π(0.42)

,

0.25e
i2π(0.25)􏼠 􏼡􏼨 􏼩,

0.21e
i2π(0.21)

,

0.22e
i2π(02.2)􏼠 􏼡, (0.22e

i2π(0.22)
, 0.23e

i2π(0.23)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.21e
i2π(0.21)

,

0.22e
i2π(0.22)􏼠 􏼡,

0.22e
i2π(0.22)

,

0.23e
i2π(0.23)􏼠 􏼡,

0.23e
i2π(0.23)

,

0.24e
i2π(0.24)􏼠 􏼡􏼨 􏼩,

0.24e
i2π(0.24)

,

0.23e
i2π(0.23)􏼠 􏼡, (0.22e

i2π(0.22)
, 0.12e

i2π(0.21)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

c4 0.32e
i2π(0.32)

,

0.33e
i2π(0.33)􏼠 􏼡,

0.33e
i2π(0.33)

,

0.43e
i2π(0.34)􏼠 􏼡,

0.34e
i2π(0.43)

,

0.35e
i2π(0.35)􏼠 􏼡􏼨 􏼩,

0.31e
i2π(0.31)

,

0.32e
i2π(0.32)􏼠 􏼡, (0.32e

i2π(0.32)
, 0.33e

i2π(0.33)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.31e
i2π(0.31)

,

0.32e
i2π(0.32)􏼠 􏼡,

0.32e
i2π(0.32)

,

0.33e
i2π(0.33)􏼠 􏼡,

0.33e
i2π(0.33)

,

0.34e
i2π(0.34)􏼠 􏼡􏼨 􏼩,

0.34e
i2π(0.34)

,

0.33e
i2π(0.33)􏼠 􏼡, (0.32e

i2π(0.32)
, 0.31e

i2π(0.31)
)􏼨 􏼩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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P1 � 0.5213,

P2 � 0.5415,

P3 � 0.5442,

P4 � 0.4918.

(39)

(v) Step 6: we rank all alternatives and examine the best
optimal one.

P3 ≥P2 ≥P1 ≥P4. (40)

(vii) Step 7: the end. &e comparative analysis of the
explored measure with existing measures [30] is
discussed in the form of Table 2.

6.3.MedicalDiagnosis. In this study, we explored the idea of
the algorithmwhich is taken from [31] which is very effective
and meaningful for explored works. &e new algorithm
utilizes the complex dual type-2 hesitant fuzzy similarity and
entropy measures which obtain excellent results in
application.

Problem statement: suppose that five patients, namely,
Lil, Jones, Deby, Ramot, and Inas, visit a given laboratory for
medical diagnosis. &ey are observed to have the following
symptoms: heart pain, temperature, cough, liver pain, and
kidney pain.&at is, the set of patients QCDTH is as follows:

QCDTH � viz, Lil, Jones,Deby,Ramot, Inas􏼈 􏼉, (41)

and the set of symptoms X is as follows:

X � x1(heart pain), x2(temperature), x3(cough), x4(liver pain), x5(kidney pain)􏼈 􏼉. (42)

&en we will find which patient has which kind of
disease. &e information related to this problem is given in
Example 3, which is discussed below.

Example 3. Suppose a set of diagnoses QCDTH �

QCDTH−1(Heart problem),QC DT H−2(Fever),QCDTH−3(Flu),

QCDTH−4(Liver problem),QC DT H−5(Kidney problem)
􏼨 􏼩

and a set of symptoms X �

x1(heart problem), x2(temperature),
x3(cough), x4(liver pain), x5(kidney pain)

􏼨 􏼩. Suppose

a sick person according to all symptoms is represented by the
CDT-2HFSs given as follows:

QC DT H �
0.91e

i2π(0.91)
, 0.92e

i2π(0.91)
􏼐 􏼑, 0.93e

i2π(0.93)
, 0.94e

i2π(0.94)
􏼐 􏼑, 0.95e

i2π(0.95)
􏼐 􏼑, 0.86e

i2π(0.85)

0.002e
i2π(0.003)

, 0.004e
i2π(0.003)

􏼐 􏼑, 0.003e
i2π(0.003)

, 0.001e
i2π(0.001)

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (43)

All diagnoses QCDTH−i(i � 1, 2, 3, 4, 5) that can be rep-
resented as CDT-2HFSs according to all symptoms are given
below:

QCDTH−1(heart problem) �
0.81e

i2π(0.71)
, 0.76e

i2π(0.57)
􏼐 􏼑, 0.82e

i2π(0.72)
, 0.77e

i2π(0.57)
􏼐 􏼑, 0.85e

i2π(0.75)
, 0.8e

i2π(0.61)
􏼐 􏼑􏽮 􏽯,

0.07e
i2π(0.06)

, 0.06e
i2π(0.07)

􏼐 􏼑, 0.02e
i2π(0.02)

, 0.07e
i2π(0.08)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

QCDTH−1(fever) �
0.82e

i2π(0.72)
, 0.77e

i2π(0.58)
􏼐 􏼑, 0.83e

i2π(0.73)
, 0.78e

i2π(0.59)
􏼐 􏼑, 0.86e

i2π(0.76)
, 0.81e

i2π(0.62)
􏼐 􏼑􏽮 􏽯,

0.08e
i2π(0.07)

, 0.07e
i2π(0.08)

􏼐 􏼑, 0.03e
i2π(0.03)

, 0.08e
i2π(0.05)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

QC DT H−4(flu) �
0.83e

i2π(0.73),
, 0.78e

i2π(0.59)
􏼐 􏼑, 0.837e

i2π(0.74)
, 0.79e

i2π(0.6)
􏼐 􏼑, 0.87e

i2π(0.77)
, 0.82e

i2π(0.63)
􏼐 􏼑􏽮 􏽯,

0.01e
i2π(0.01),

, 0.03e
i2π(0.06)

􏼐 􏼑, 0.04e
i2π(0.01),

, 0.00e
i2π(0.00)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

QC DT H−4(liver problem) �
0.83e

i2π(0.73),
, 0.78e

i2π(0.59)
􏼐 􏼑, 0.84e

i2π(0.74)
, 0.79e

i2π(0.6)
􏼐 􏼑, 0.87e

i2π(0.77)
, 0.82e

i2π(0.63)
􏼐 􏼑􏽮 􏽯,

0.03e
i2π(0.04),

, 0.05e
i2π(0.06)

􏼐 􏼑, 0.06e
i2π(0.03),

, 0.02e
i2π(0.08)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

QC DT H−4(kidney problem) �
0.84e

i2π(0.74),
, 0.77e

i2π(0.6)
􏼐 􏼑, 0.84e

i2π(0.75)
, 0.8e

i2π(0.61)
􏼐 􏼑, 0.88e

i2π(0.78)
, 0.83e

i2π(0.64)
􏼐 􏼑􏽮 􏽯,

0.04e
i2π(0.03),

, 0.05e
i2π(0.05)

􏼐 􏼑, 0.06e
i2π(0.02),

, 0.03e
i2π(0.07)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(44)
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&e aim of this work is to examine the best alternative
from the family of alternatives by using the measures. &e
information of the resultant values of the explored measure
and some existing measures is stated in Table 3. &e,
ÇCDTH−mcc-i(QCDTH−1, QCDTH−2) � Pi, i � 1, 2, 3, 4, 5, are
follow as.

6.4. Pattern Recognition. &e instruments of likeness mea-
sures have applications in design classification. In such
a marvel, the class of an obscure example or item is dis-
covered utilizing some likeness estimating devices and a few
inclinations of leaders. In this segment, the likeness esti-
mates that grew so far in Section 3 are applied to an example
acknowledgment (building design acknowledgment) issue,
where the class of an obscure structure material should have
been assessed. &e outcomes got utilizing the similitude
proportions of CHFSs are then examined for portrayal of the
benefits of proposed work and the constraints of existing
work. To clarify the marvel, an illustrative model adjusted
from [31] is discussed.

To evaluate the proficiency of the explored measures, we
adopt the pattern recognition model form [31]. &e purpose
of this application is to find the reliability and skill of the
presented measures; we solve a numerical example that
contains the CDT-2HFNs and utilized it in the environment
of pattern recognition.

Example 4. We consider five knowns with their class labels
being represented as follows: PCQ−1, PCQ−2,

PCQ−3, PCQ−4, andPCQ−5 and QCDTH−1, QCDTH−2, QCDTH−3,

QCDTH−4, andQCDTH−5. &e information of the above pat-
terns is in the form of CDT-2HFNs for universal set
XUNI � x1, x2, x3, x4, x5􏼈 􏼉, which is stated as follows:

QCDTH−1 �
0.8e

i2π(0.7)
, 0.75e

i2π(0.56)
􏼐 􏼑, 0.81e

i2π(0.71)
, 0.76e

i2π(0.57)
􏼐 􏼑, 0.84e

i2π(0.74)
, 0.79e

i2π(0.60)
􏼐 􏼑􏽮 􏽯,

0.08e
i2π(0.07)

, 0.07e
i2π(0.08)

􏼐 􏼑, 0.03e
i2π(0.03)

, 0.08e
i2π(0.09)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

QCDTH−2 �
0.81e

i2π(0.71)
, 0.76e

i2π(0.57)
􏼐 􏼑, 0.82e

i2π(0.72)
, 0.77e

i2π(0.58)
􏼐 􏼑, 0.85e

i2π(0.75)
, 0.8e

i2π(0.61)
􏼐 􏼑􏽮 􏽯,

0.09e
i2π(0.08)

, 0.08e
i2π(0.09)

􏼐 􏼑, 0.04e
i2π(0.04)

, 0.09e
i2π(0.06)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

QCDTH−3 �
0.82e

i2π(0.72)
, 0.77e

i2π(0.58)
􏼐 􏼑, 0.83e

i2π(0.73)
, 0.78e

i2π(0.59)
􏼐 􏼑, 0.86e

i2π(0.76)
, 0.81e

i2π(0.62)
􏼐 􏼑􏽮 􏽯,

0.02e
i2π(0.03)

, 0.04e
i2π(0.05)

􏼐 􏼑, 0.05e
i2π(0.02)

, 0.01e
i2π(0.07)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

QCDTH−4 �
0.83e

i2π(0.73)
, 0.78e

i2π(0.59)
􏼐 􏼑, 0.84e

i2π(0.74)
, 0.79e

i2π(0.6)
􏼐 􏼑, 0.87e

i2π(0.77)
, 0.82e

i2π(0.63)
􏼐 􏼑􏽮 􏽯,

0.03e
i2π(0.03)

, 0.05e
i2π(0.06)

􏼐 􏼑, 0.06e
i2π(0.03)

, 0.02e
i2π(0.08)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

QCDTH−5 �
0.84e

i2π(0.74)
, 0.77i2π(0.6)

􏼐 􏼑, 0.84e
i2π(0.75)

, 0.8i2π(0.61)
􏼐 􏼑, 0.88e

i2π(0.78)
, 0.83i2π(0.64)

􏼐 􏼑􏽮 􏽯,

0.04e
i2π(0.03)

, 0.05i2π(0.05)
􏼐 􏼑, 0.06e

i2π(0.02)
, 0.03i2π(0.07)

􏼐 􏼑􏽮 􏽯

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(45)

Table 2: Comparison of the explored work with existing work.

Method Score values Ranking
Karaaslan et al. [30] P1 � 0.5249,P2 � 0.5417,P3 � 0.5439,P4 � 0.4923 P1 ≥P2 ≥P1 ≥P4
Explored approach P1 � 0.5213,P2 � 0.5415,P3 � 0.5442,P4 � 0.4918 P3 ≥P2 ≥P1 ≥P4

&e geometrical representation of the explored measures, which are discussed in Table 2, is described with the help of Figure 1.
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Figure 1: Graphical representation for the information of Table 2.
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&eir unknown pattern is stated as follows:

QCDTH �
0.9e

i2π(0.9)
, 0.91e

i2π(0.91)
􏼐 􏼑, 0.92e

i2π(0.92)
, 0.93e

i2π(0.93)
􏼐 􏼑 0.94e

i2π(0.94)
, 0.85e

i2π(0.85)
􏼐 􏼑

0.02e
i2π(0.03)

, 0.04e
i2π(0.03)

􏼐 􏼑, 0.03e
i2π(0.03)

, 0.01e
i2π(0.01)

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (46)

&e aim of this work is to examine the best alternative
from the family of alternatives by using the measures. &e
information of the resultant values of the explored measure
and some existing measures is stated in Table 4. &e,
ÇCDTHF−mcc-i(QCCDTH−1, QCDTH−2) � Pi, i � 1, 2, 3, 4, 5, are
follow as.

&e geometrical representation of the explored mea-
sures, which is discussed in Table 4, is described with the
help of Figure 3.

6.5. Clustering Algorithm Based on CDT-2HFSs. &e aim of
this study is to present the clustering algorithm based on the
novel approach of CDT-2HFSs to examine the reliability and
proficiency of the explored approach. For this, we choose the
set of alternatives and their attributes with weight vectors,
whose expressions are in the form of AAL � AAL−1,􏼈

AAL−2, . . . , AAL−m}, CAT � CAT−1, CAT−2, . . . , CAT−n􏼈 􏼉, and
Ω � (Ω1,Ω2, . . . ,Ωn)T and Ωj ∈ [0, 1], 􏽐

n
j�1Ωj � 1. &e

technique of the clustering algorithm is summarized as
follows:

Step 1: construct the decision matrix, all entities of
which are in the form of CDT-2HFSs.
Step 2: construct the correlation matrix by using (12).
&e correlation matrix is expressed by
ÇCDTHF−cc � ÇCDTHF−cc−yz(QCDTH−y, QCDTH−z) where
(ÇCDTHF−cc)m×m � C.
Step 3: we checked whether the correlation matrix C
satisfies C2⊆C, where C � C ∘C �

(ÇCDTHF−cc−yz)m×m, ÇCDTHF−cc−yz � maxz min{

ÇCDTHF−cc−yx, ÇCDTHF−cc−xz􏽮 􏽯}. If C does not satisfy
condition C2⊆C, then the equivalent correlation matrix
C2k will be formed: C⟶ C2⟶ C4⟶ · · ·⟶
C2k⟶ · · · untilC2k+1 .
Step 4: furthermore, we examine the λ-cutting matrix
by using

Table 3: Comparison of the explored work with existing work.

Method Measures Ranking
Karaaslan et al. [30] P1 � 0.803,P2 � 0.853,P3 � 0.889,P4 � 0.902,P5 � 0.943 P5 ≥P4 ≥P3 ≥P2 ≥P1
Explored approach, equation (18) P1 � 0.834,P2 � 0.851,P3 � 0.888,P4 � 0.916,P5 � 0.951 P5 ≥P4 ≥P3 ≥P2 ≥P1

&e geometrical representation of the explored measures, which is discussed in Table 3, is described with the help of Figure 2.
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Figure 2: Graphical representation for the information of Table 3.
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Cλ � λÇCDTHF−cc−yz􏼐 􏼑
m×m

�
0, ÇCDTHF−cc−yz < λ,

1, ÇCDTHF−cc−yz ≥ λ,

⎧⎨

⎩

(47)

where λ ∈ [0, 1] denotes the confidence level.
Step 5: we build up all possible classifications based on
λ-cutting matrix. If all elements of the yth line (column)
in Cλ are the same as the corresponding elements of the
zth line (column) in Cλ, then the CDT-2HFS Dy and
Dz are of the same type. For simplicity, we draw the

graphical shape of the explored clustering algorithm,
which is stated with the help of Table 5.

Example 5. (see [30]). Consider a speculation organization
that needs to put a total cash in the most ideal choice and
along these lines organization officials decide five choices by
considering different standards to recognize the best choice
to put away the cash: (a) AAL−5 is a structure organization;
(b) AAL−2 is an airplane organization; (c) AAL−3 is a food
organization; (d)AAL−4 is an electronic things organization;
(e) AAL−5 is a cowhide organization; (f ) AAL−6 is a vehicle
organization; (g) AAL−7 is a correspondence organization;
(h) AAL−8 is a product organization; (I) AAL−9 is a paper
creation organization; (j) AAL−10 is a plastic creation or-
ganization. &e speculation organization must make
a choice as indicated by the five rules: (a) x1 is the trans-
portation; (b) x2 is the work; (c) x3 is an ecological effect; (d)
x4 is the vicinity to crude material; (e) x5 is the experience.
&e loads of standards x1, x2, x3, x4 andx5 are given by
Ω1 � 0.2,Ω2 � 0.25,Ω3 � 0.1,Ω4 � 0.3,Ω5 � 0.15, in-
dividually. &e 10 choices are assessed under the standards
by etymological evaluations yielded in Table 6 and given by
decision-makers. &e technique of the clustering algorithm
is summarized as follows:

Step 1: we construct the decision matrix, all entities of
which are in the form of CDT-2HFSs; see Table 5.
Step 2: we construct the correlation matrix by using
equation (22). &e correlation matrix is expressed by
ÇCDTHF−cc � ÇCDTHF−cc-yz(QCDTH−y, QCDTH−z), where
(ÇCDTHF−cc)m×m � C, such that

ÇCDTHF−cc
2

�

1 0.79 0.85 0.81 0.8 0.72 0.75 0.66 0.67 0.7

0.79 1 0.83 0.81 0.75 0.72 0.65 0.65 0.64 0.69

0.85 0.83 1 0.89 0.89 0.88 0.82 0.75 0.74 0.78

0.81 0.81 0.89 1 0.87 0.8 0.76 0.72 0.69 0.79

0.8 0.75 0.89 0.87 1 0.85 0.83 0.73 0.75 0.8

0.72 0.72 0.88 0.8 0.85 1 0.87 0.79 0.83 0.82

0.75 0.65 0.82 0.76 0.83 0.87 1 0.84 0.83 0.85

0.66 0.65 0.75 0.75 0.73 0.79 0.84 1 0.92 0.89

0.67 0.64 0.74 0.69 0.75 0.83 0.83 0.92 1 0.86

0.7 0.69 0.78 0.79 0.8 0.82 0.85 0.89 0.86 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (48)

Table 4: Comparison of the explored work with existing work.

Method Measures Ranking
Karaaslan and Ozlu [30] P1 � 0.814,P2 � 0.862,P3 � 0.892,P4 � 0.911,P5 � 0951 P5 ≥P4 ≥P3 ≥P2 ≥P1
Explored approach equation (18) P1 � 0.845,P2 � 0.866,P3 � 0.897,P4 � 0.913,P5 � 0.947 P5 ≥P4 ≥P3 ≥P2 ≥P1
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Figure 3: Graphical representation for the information of Table 4.
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Step 3: we checked whether the correlation matrix C
satisfies C2⊆C, where C2 � C ∘C � (ÇCDTHF−cc−yz)m×m,

ÇCDTHF−cc−yz � maxz min Ç􏼈􏼈 CDTHF−cc−yx,

ÇCDTHF−cc−xz}}.

ÇCDTHF−cc
2

�

1 0.83 0.85 0.85 0.85 0.85 0.82 0.75 0.75 0.8

0.83 1 0.83 0.83 0.83 0.83 0.82 0.75 0.75 0.79

0.85 0.83 1 0.89 0.89 0.88 0.87 0.82 0.83 0.82

0.85 0.83 0.89 1 0.89 0.88 0.83 0.79 0.8 0.8

0.85 0.83 0.89 0.89 1 0.88 0.85 0.83 0.83 0.83

0.85 0.83 0.88 0.88 0.88 1 0.87 0.84 0.83 0.85

0.82 0.82 0.87 0.83 0.85 0.87 1 0.85 0.85 0.85

0.75 0.75 0.82 0.79 0.83 0.84 0.85 1 0.92 0.89

0.75 0.75 0.83 0.8 0.83 0.83 0.85 0.92 1 0.89

0.8 0.79 0.82 0.8 0.83 0.85 0.85 0.89 0.89 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (49)

where C does not satisfy the condition C2⊆C; then the
equivalent correlation matrix C2k will be formed:
C⟶ C2⟶ C4⟶ · · ·⟶ C2k⟶ · · · until
C2k

� C2k+1 . &en

ÇCDTHF−cc
4

�

1 0.83 0.85 0.85 0.85 0.85 0.85 0.84 0.83 0.85

0.83 1 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

0.85 0.83 1 0.89 0.89 0.88 0.87 0.85 0.85 0.85

0.85 0.83 0.89 1 0.89 0.88 0.87 0.84 0.83 0.85

0.85 0.83 0.89 0.89 1 0.88 0.87 0.85 0.85 0.85

0.85 0.83 0.88 0.88 0.88 1 0.87 0.85 0.85 0.85

0.85 0.83 0.87 0.87 0.87 0.87 1 0.85 0.85 0.85

0.84 0.83 0.85 0.84 0.85 0.85 0.85 1 0.92 0.89

0.83 0.83 0.85 0.83 0.85 0.85 0.85 0.92 1 0.89

0.8 0.79 0.82 0.8 0.83 0.85 0.85 0.89 0.89 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ÇCDTHF−cc
8

�

1 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

0.83 1 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83

0.85 0.83 1 0.89 0.89 0.88 0.87 0.85 0.85 0.85

0.85 0.83 0.89 1 0.89 0.88 0.87 0.84 0.83 0.85

0.85 0.83 0.89 0.89 1 0.88 0.87 0.85 0.85 0.85

0.85 0.83 0.88 0.88 0.88 1 0.87 0.85 0.85 0.85

0.85 0.83 0.87 0.87 0.87 0.87 1 0.85 0.85 0.85

0.85 0.83 0.85 0.85 0.85 0.85 0.85 1 0.92 0.89

0.85 0.83 0.85 0.85 0.85 0.85 0.85 0.92 1 0.89

0.85 0.83 0.85 0.85 0.85 0.85 0.85 0.89 0.89 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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CDTHF−cc �

1 0.83 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
0.83 1 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
0.85 0.83 1 0.89 0.89 0.88 0.87 0.85 0.85 0.85
0.85 0.83 0.89 1 0.89 0.88 0.87 0.85 0.85 0.85
0.85 0.83 0.89 0.89 1 0.88 0.87 0.85 0.85 0.85
0.85 0.83 0.88 0.88 0.88 1 0.87 0.85 0.85 0.85
0.85 0.83 0.87 0.87 0.87 0.87 1 0.85 0.85 0.85
0.85 0.83 0.85 0.85 0.85 0.85 0.85 1 0.92 0.89
0.85 0.83 0.85 0.85 0.85 0.85 0.85 0.92 1 0.89
0.85 0.83 0.85 0.85 0.85 0.85 0.85 0.89 0.89 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ÇCDTHF−cc
8
. (50)

&erefore, we get Ç16
CDTHF−cc � ÇCDTHF−cc

8.
Step 4: furthermore, we examine the λ-cutting matrix
by using

Cλ � λÇCDTHF−cc−yz􏼐 􏼑
m×m

�
0, ÇC DT HF−cc−yz < λ,

1, ÇC DT HF−cc−yz ≥ λ,

⎧⎨

⎩

(51)

where λ ∈ 0, 1 denotes the confidence level, such that

C0<λ≤0.83 �

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,C0.83<λ≤0.85 �

1 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C0.85<λ≤0.87 �

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,C0.87<λ≤0.88 �

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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C0.88<λ≤0.89 �

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C0.89<λ≤0.92 �

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C0.92<λ≤1 �

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (52)

Step 5: we build up all possible classifications based on
λ-cutting matrix. If all elements of the yth line (column)
in Cλ are the same as the corresponding elements of the
zth line (column) in Cλ, then the CDT-2HFS Dy and
Dz are of the same type. For simplicity, we draw the
graphical shape of the explored clustering algorithm,
which is stated with the help of Table 5.

&erefore, from the above analysis, we get the result that
the explored notions and their measures are more powerful

and more proficient than exiting measures. CDT-2HFS is
a proficient technique to cope with unpredictable and awk-
ward information in realistic decision problems. CDT-2HFS
is composed of the grade of truth and the grade of falsity, and
the grade of truth (also for falsity grade) contains the grade of
primary and secondary parts in the form of polar coordinates
with the condition that the sum of the maximum of the real
part (also for imaginary part) of the primary grade (also for
secondary grade) cannot exceed the unit interval.

Table 5: All possible classifications based on λ-cutting matrices.

Classifications Representations Limitations
AAL−i of the same
characteristic

AAL−1,AAL−2,AAL−3,AAL−4,AAL−5,

AAL−6,AAL−7,AAL−8,AAL−9,AAL−10
􏼨 􏼩 0< λ≤ 0.83

AAL−i of the two
characteristics

AAL−1,AAL−2,AAL−3,AAL−4,AAL−5,

AAL−6,AAL−7,AAL−8,AAL−9,AAL−10
􏼨 􏼩 , AAL−2􏼈 􏼉 0.83< λ≤ 0.85

AAL−i of the three
characteristics AAL−1􏼈 􏼉,

AAL−3,AAL−4,AAL−5,

AAL−6,AAL−7
􏼨 􏼩, AAL−2􏼈 􏼉 , AAL−8,AAL−9,AAL−10􏼈 􏼉 0.85< λ≤ 0.87

AAL−i of the five
characteristics AAL−1􏼈 􏼉,

AAL−3,AAL−4,AAL−5,

AAL−6
􏼨 􏼩, AAL−2􏼈 􏼉 , AAL−7􏼈 􏼉 AAL−8,AAL−9,AAL−10􏼈 􏼉 0.87< λ≤ 0.88

AAL−i of the six
characteristics AAL−1􏼈 􏼉, AAL−3,AAL−4,AAL−5,􏼈 􏼉, AAL−2􏼈 􏼉 , AAL−6􏼈 􏼉, AAL−7􏼈 􏼉 AAL−8,AAL−9,AAL−10􏼈 􏼉 0.88< λ≤ 0.89

AAL−i of the nine
characteristics AAL−1􏼈 􏼉, AAL−3􏼈 􏼉 AAL−4􏼈 􏼉, AAL−5􏼈 􏼉 AAL−2􏼈 􏼉 , AAL−6􏼈 􏼉, AAL−7􏼈 􏼉 AAL−8,AAL−9,AAL−10􏼈 􏼉 0.89< λ≤ 0.92

AAL−i of the ten
characteristics AAL−1􏼈 􏼉, AAL−2􏼈 􏼉, AAL−3􏼈 􏼉, AAL−4􏼈 􏼉, AAL−5􏼈 􏼉 , AAL−6􏼈 􏼉, AAL−7􏼈 􏼉, AAL−8􏼈 􏼉, AAL−9􏼈 􏼉, AAL−10􏼈 􏼉 0.92< λ≤ 1
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7. Conclusion

&e theory of CDT-2HFS is a mixture of two different
modifications of FS, called CFS and DT-2HFS. CDT-2HFS is
a proficient technique to cope with unpredictable and
awkward information in realistic decision problems. &e
intention of this manuscript is to determine the novel
methodology of CDT-2HFSs and to discuss their operational
laws. &ese operational laws are also defensible with the

assistance of examples. Furthermore, based on novel CDT-
2HFS, we reconnoitered the CC and EMs, and their special
cases are also discussed. TOPSIS method based on CDT-
2HFS is also explored. &en, we applied our explored
measures based on CDT-2HFSs in the environment of
TOPSIS method, medical diagnosis, pattern recognition,
and clustering algorithm to cope with awkward and com-
plicated information in realistic decision issues. Finally,
some numerical examples are given and discussed to

Table 6: Common evaluations of alternatives performed by decision-makers.

x1 x2 x3

AAL−1
(0.6, 0.1), (0.2, 0.8), (0.1, 0.5){ },

(0.3, 0.6), (0.1, 0.3){ }
􏼨 􏼩

(0.59, 0.1), (0.4, 0.72), (0.3, 0.2){ },

(0.4, 0.5), (0.3, 0.1){ }
􏼨 􏼩

(0.7, 0.2), (0.6, 0.1), (0.2, 0.4){ },

(0.3, 0.3), (0.2, 0.0){ }
􏼨 􏼩

AAL−2 (0.35, 0.4), (0.2, 0.9), (0.1, 0.1){ },

(0.3, 0.5), (0.2, 0.8){ }
􏼨 􏼩

(0.4, 0.5), (0.1, 0.9), (0.1, 0.62){ },

(0.5, 0.3), (0.4, 0.3){ }
􏼨 􏼩

(0.7, 0.2), (0.6, 0.1), (0.2, 0.4){ },

(0.3, 0.3), (0.2, 0.0){ }
􏼨 􏼩

AAL−3 (0.65, 0.12), (0.21, 0.7), (0.2, 0.3){ },

(0.35, 0.1), (0.34, 0.065){ }
􏼨 􏼩

(0.7, 0.), (0.35, 0.71), (0.3, 0.2){ },

(0.3, 0.1), (0.2, 0.5){ }
􏼨 􏼩

(0.7, 0.6), (0.6, 0.1), (0.2, 0.4){ },

(0.3, 0.3), (0.15, 0.0){ }
􏼨 􏼩

AAL−4 (0.85, 0.12), (0.21, 0.7), (0.2, 0.3){ },

(0.15, 0.1), (0.14, 0.65){ }
􏼨 􏼩

(0.3, 0.2), (0.15, 0.71), (0.15, 0.1){ },

(0.3, 0.1), (0.2, 0.5){ }
􏼨 􏼩

(0.5, 0.5), (0.2, 0.4), (0.2, 0.1){ },

(0.3, 0.3), (0.15, 0.0){ }
􏼨 􏼩

AAL−5 (0.25, 0.12), (0.21, 0.7), (0.1, 0.3){ },

(0.75, 0.1), (0.14, 0.65){ }
􏼨 􏼩

(0.6, 0.2), (0.45, 0.71), (0.35, 0.1){ },

(0.3, 0.1), (0.2, 0.5){ }
􏼨 􏼩

(0.5, 0.8), (0.3, 0.1), (0.14, 0.4){ },

(0.45, 0.0), (0.3, 0.3){ }
􏼨 􏼩

AAL−6 (0.35, 0.12), (0.11, 0.9), (0.1, 0.8){ },

(0.55, 0.1), (0.14, 0.65){ }
􏼨 􏼩

(0.6, 0.3), (0.35, 0.71), (0.25, 0.1){ },

(0.4, 0.1), (0.1, 0.9){ }
􏼨 􏼩

(0.5, 0.8), (0.3, 0.1), (0.14, 0.4){ },

(0.35, 0.1), (0.3, 0.3){ }
􏼨 􏼩

AAL−7 (0.45, 0.12), (0.11, 0.75), (0.1, 0.15){ },

(0.45, 0.1), (0.14, 0.65){ }
􏼨 􏼩

(0.9, 0.3), (0.25, 0.71), (0.25, 0.1){ },

(0.1, 0.1), (0.0, 0.9){ }
􏼨 􏼩

(0.5, 0.8), (0.3, 0.9), (0.3, 0.3){ },

(0.35, 0.1), (0.2, 0.9){ }
􏼨 􏼩

AAL−8 (0.95, 0.82), (0.11, 0.75), (0.1, 0.55){ },

(0.05, 0.10), (0.14, 0.65){ }
􏼨 􏼩

(0.9, 0.3), (0.65, 0.1), (0.25, 0.71){ },

(0.1, 0.7), (0.0, 0.9){ }
􏼨 􏼩

(0.4, 0.8), (0.3, 0.6), (0.2, 0.3){ },

(0.35, 0.1), (0.2, 0.9){ }
􏼨 􏼩

AAL−9 (0.55, 0.22), (0.21, 0.75), (0.0, 0.95){ },

(0.45, 0.1), (0.24, 0.15){ }
􏼨 􏼩

(0.67, 0.1), (0.5, 0.3), (0.25, 0.71){ },

(0.3, 0.9), (0.23, 0.70){ }
􏼨 􏼩

(0.4, 0.8), (0.3, 0.6), (0.2, 0.3){ },

(0.35, 0.1), (0.2, 0.9){ }
􏼨 􏼩

AAL−10 (0.83, 0.82), (0.21, 0.75), (0.1, 0.65){ },

(0.17, 0.1), (0.04, 0.55){ }
􏼨 􏼩

(0.9, 0.2), (0.25, 0.71), (0.25, 0.1){ },

(0.1, 0.7), (0.0, 0.9){ }
􏼨 􏼩

(0.7, 0.8), (0.35, 0.65), (0.22, 0.23){ },

(0.25, 0.1), (0.2, 0.9){ }
􏼨 􏼩

x4 x5

AAL−1
(0.3, 0.1), (0.25, 0.65), (0.2, 0.2){ },

(0.7, 0.3), (0.66, 0.60){ }
􏼨 􏼩

(0.8, 0.1), (0.27, 0.89), (0.14, 0.5){ },

(0.2, 0.6), (0.1, 0.34){ }
􏼨 􏼩

AAL−2
(0.35, 0.45), (0.3, 0.1), (0.1, 0.3){ },

(0.55, 0.1), (0.3, 0.2){ }
􏼨 􏼩

(0.45, 0.45), (0.2, 0.1), (0.1, 0.4){ },

(0.55, 0.1), (0.5, 0.2){ }
􏼨 􏼩

AAL−3
(0.4, 0.1), (0.25, 0.75), (0.2, 0.2){ },

(0.6, 0.3), (0.5, 0.6){ }
􏼨 􏼩

(0.35, 0.1), (0.35, 0.1), (0.25, 0.15){ },

(0.6, 0.3), (0.3, 0.6){ }
􏼨 􏼩

AAL−4
(0.4, 0.1), (0.25, 0.75), (0.2, 0.2){ },

(0.5, 0.6), (0.45, 0.3){ }
􏼨 􏼩

(0.5, 0.4), (0.48, 0.1), (0.15, 0.75){ },

(0.5, 0.6), (0.35, 0.3){ }
􏼨 􏼩

AAL−5
(0.57, 0.1), (0.25, 0.75), (0.23, 0.2){ },

(0.45, 0.6), (0.35, 0.3){ }
􏼨 􏼩

(0.37, 0.1), (0.25, 0.15), (0.23, 0.25){ },

(0.35, 0.9), (0.33, 0.6){ }
􏼨 􏼩

AAL−6
(0.57, 0.1), (0.25, 0.75), (0.23, 0.2){ },

(0.35, 0.3), (0.13, 0.9){ }
􏼨 􏼩

(0.15, 0.65), (0.15, 0.2), (0.15, 0.1){ },

(0.85, 0.3), (0.13, 0.9){ }
􏼨 􏼩

AAL−7
(0.85, 0.1), (0.35, 0.75), (0.25, 0.1){ },

(0.15, 0.3), (0.13, 0.9){ }
􏼨 􏼩

(0.75, 0.1), (0.25, 0.75), (0.25, 0.1){ },

(0.25, 0.3), (0.23, 0.9){ }
􏼨 􏼩

AAL−8
(0.55, 0.1), (0.45, 0.2), (0.05, 0.75){ },

(0.15, 0.3), (0.13, 0.9){ }
􏼨 􏼩

(0.65, 0.2), (0.55, 0.1), (0.4, 0.45){ },

(0.25, 0.3), (0.03, 0.9){ }
􏼨 􏼩

AAL−9
(0.55, 0.1), (0.45, 0.2), (0.05, 0.75){ },

(0.15, 0.3), (0.13, 0.9){ }
􏼨 􏼩

(0.65, 0.55), (0.35, 0.2), (0.35, 0.1){ },

(0.25, 0.3), (0.23, 0.9){ }
􏼨 􏼩

AAL−10
(0.65, 0.25), (0.45, 0.2), (0.45, 0.1){ },

(0.15, 0.35), (0.13, 0.5){ }
􏼨 􏼩

(0.45, 0.25), (0.35, 0.1), (0.25, 0.2){ },

(0.43, 0.7), (0.11, 0.35){ }
􏼨 􏼩
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examine the proficiency and validity of the explored mea-
sures. Comparative analysis, advantages, and graphical in-
terpretation of the explored measures with some other
existing measures are also discussed.

In the future, the concept of complex dual type-2 hes-
itant fuzzy sets can be applied to group MADM problems.
Moreover, the problems discussed in this manuscript can be
discussed in the environment of complex q-rung orthopair
fuzzy sets [32–39], T-spherical fuzzy sets [40, 41], and some
others [42–45].
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Picture fuzzy sets (PFSs) are one of the fundamental concepts for addressing uncertainties in decision problems, and they can
address more uncertainties compared to the existing structures of fuzzy sets; thus, their implementation was more substantial.'e
well-known sine trigonometric function maintains the periodicity and symmetry of the origin in nature and thus satisfies the
expectations of the decision-maker over the multiple parameters. Taking this feature and the significances of the PFSs into
consideration, the main objective of the article is to describe some reliable sine trigonometric laws (STLs) for PFSs. Associated
with these laws, we develop new average and geometric aggregation operators to aggregate the picture fuzzy numbers. Also, we
characterized the desirable properties of the proposed operators. 'en, we presented a group decision-making strategy to address
the multiple attribute group decision-making (MAGDM) problem using the developed aggregation operators and demonstrated
this with a practical example. To show the superiority and the validity of the proposed aggregation operations, we compared them
with the existing methods and concluded from the comparison and sensitivity analysis that our proposed technique is more
effective and reliable.

1. Introduction

Multiple attribute group decision-making (MAGDM)
method is one of the most relevant and evolving topics
explaining how to choose the finest alternative with com-
munity of decision-makers (DMs) with some attributes.
'ere are two relevant tasks in this system. 'e first is to
define the context in which the values of the various pa-
rameters are effectively calculated, while the second is to
summarize the information described. Traditionally, the
information describing the objects is taken mostly to be
deterministic or crisp in nature. With the increasing com-
plexity of a system on a daily basis, however, it is difficult to
aggregate the data, from the logbook, resources, and experts,
in the crisp form. 'erefore, [1] developed the core concept

of fuzzy set (FS) and also [2] worked on it and further
developed a new idea of intuitionistic fuzzy set (IFS), [3]
developed the Pythagorean fuzzy sets (PyFSs), and [4] de-
fined the idea of hesitant fuzzy sets, which are used by
scholars to communicate the information clearly. In IFS, it is
observed that each object has two membership grades,
positive (E

⌣
) and negative (Z

⌣
), which satisfy the condition

0≤E
⌣

+ Z
⌣
≤ 1, and, for all E

⌣
, Z

⌣
is lying in the closed interval 0

and 1. However, in the Pythagorean fuzzy sets, this con-
straint is relaxed from E

⌣
+ Z

⌣
≤ 1 to E

⌣2
+ Z

⌣2
≤ 1 for

E
⌣

, Z
⌣
∈ [0, 1]. Using this concept, many researchers have

successfully addressed the above two critical tasks and
discretion of the techniques under the different aspects.
Verma and Sharma [5] proposed a new measure of inac-
curacy with its application to multicriteria decision-making
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under intuitionistic fuzzy environment. Some of the basic
results of IFSs and Pythagorean fuzzy sets are the operational
laws [6, 7], some exponential operational laws [8], some
distance or similarity measures [9, 10], and some infor-
mation entropy [11]. Many researchers [12–17], under IFS,
defined some basic aggregation operators (AOs), such as
average and geometric, interactive, and Hamacher AOs.
Meanwhile, for Pythagorean fuzzy sets, some basic operators
are proposed by Peng and Yang [18]. To solve the MAGDM
problems, Garg [19, 20] presented some basic concept of
Einstein aggregation operators. Some extended aggregation
operators are dependent on intuitionistic and Pythagorean
fuzzy information, including the TOPSIS technique based
on IF [21] and Pythagorean fuzzy set [22], partitioned
Bonferroni mean [23], and Maclaurin symmetric mean
[24, 25]. Apart from this, Yager et al. [26] intuitively de-
veloped the idea of q-rung orthopair fuzzy sets (q-ROFSs).
Gao et al. [27] developed the basic idea of the continuities
and differential of q-ROFSs. Peng et al. [28] presented the
exponential and logarithm operational laws for q-ROFNs.
Liu and Wang [29] developed weighted average and geo-
metric aggregation operators for q-ROFNs.

Meanwhile, the ideas of IFSs and Pythagorean FSs are
widely studied and implemented in various fields. But
their ability to express the information is still limited.
'us, it was still difficult for the decision-makers (DMs)
and their corresponding information to convey the in-
formation in such sets. To overcome this information, the
notion of the picture fuzzy sets (PFSs) was defined by
Cuong and Kreinovich [30]. 'us, it was clearly noticed
that the PFS is the extended form of the IFS to accom-
modate some more ambiguities. In picture fuzzy sets, each
object was observed by defining three grades of the
member named membership E

⌣
, neutral R

⌣
, and non-

membership Z
⌣
with the constraint that E

⌣
+ R

⌣
+ Z

⌣
≤ 1, for

E
⌣

, R
⌣

, Z
⌣
∈ [0, 1]. 'e definition of the PFS will convey the

opinions of experts like “yes,” “abstain,” “no,” and “re-
fusal” while avoiding missing evaluation details and en-
couraging the reliability of the acquired data with the
actual environment for decision-making. Although the
concept of PFSs is widely studied and applied in different
fields and their extension focuses on the basic operational
laws, which is the important aspect of the PFS as well as
aggregation operators (AOs), which are an effective tool
by the help of these AOs, we obtain raking of the alter-
natives by providing the comprehensive values to the
alternatives. Wei [31] developed some operations of the
PFS. Son [32] developed measuring analogousness in
PFSs. Apart from these, several other kinds of the AOs of
the PFSs have been developed such as logarithmic PF
aggregation operators, which were presented by Khan
et al. [33], Wang et al. [34] presented PF normalized
projection based VIKOR method, and Wang et al. [35]
developed PF Muirhead mean operators. Wei et al. [36]
defined the idea of some q-ROF Maclaurin symmetric
mean operators. Wang et al. [37] introduced a similarity
measure of q-ROFSs. Wei et al. [38] developed bidirec-
tional projection method for PFSs. Ashraf et al. [39–41]
developed the idea of different approaches to MAGDM

problems, picture fuzzy linguistic sets and exponential
Jensen PF divergence measure, respectively. Khan et al.
[42] presented PF aggregation based on Einstein opera-
tion. Qiyas et al. [43] presented linguistic PF Dombi
aggregation operators.

Among the above aspects, it is very clear that operational
laws are a main role model for any aggregation process. In
that direction, recently, Khan et al. [33] defined the new
concept about logarithmic operation laws for PFSs. Besides
these mathematical logarithmic functions, another impor-
tant feature is the sine trigonometry feature, which plays a
main role during the fusion of the information. In this way,
taking into consideration the advantages and usefulness of
the sine trigonometric function, some new sine trigono-
metric operational laws need to be developed for PFSs and
their behavior needs to be studied. Consequently, the paper’s
purpose is to develop some new operation laws for PFSs and
also introduce the MAGDM algorithm for managing the
information for PFSs evaluation, as well as describing several
more sophisticated operational laws for PFSs in addition to a
novel entropy to remove the weight of the attributes to
prevent subjective and objective aspects. Some more gen-
eralized functional aggregation operators are presented with
the help of the defined sine trigonometric operational laws
(STOLs) for PFNs, and many basic relations between the
developed AOs are discussed; also, a novel MAGDM
technique depending on the developed operators to solve the
group decision-making problems is presented. Finally, the
proposed approach is compared with the existing methods.
So, the goals and the motivations of this paper are as follows:

(1) 'e paper presents some more advanced operational
laws for PFSs by combining the features of the ST
and PFNs.

(2) A novel entropy is presented to extract the attributes’
weight for avoiding the influence of subjective and
objective aspects.

(3) Some more generalized functional AOs are pre-
sented with the help of the defined STOLs for PFNs.
Also, the several fundamental relations between the
proposed AOs are derived to show their significance.

(4) A novel MAGDM method based on the proposed
operators to solve the group decision-making
problems is presented. 'e consistency of the pro-
posed method is confirmed through these examples,
and their evaluations are carried out in detail.

In Section 2 of the article, we can define some ideas
related to PFSs. In Section 3, we define the new PFS op-
erational laws based on sine trigonometric functions and
their properties. In Section 4, we present a series of AOs
along with their required properties, based on sine trigo-
nometric operational laws. Section 5 provides the basic
connection between the developed AOs. In Section 6, using
the new aggregation operators, we introduce a new
MAGDM approach and give detailed steps. Examples are
given in Section 7 to validate the new method and com-
parative analysis is carried out by the current method. Fi-
nally, the work is concluded in Section 8.
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2. Preliminaries

Some fundamental ideas about picture fuzzy set (PFS) on the
universal set U

⌣
are discussed in this portion.

S(I
⌣

1)> S(I
⌣

2), then I
⌣

1 > I
⌣

2, and if the score function,
that is,
S(I

⌣

1) � S(I
⌣

2), and H(I
⌣

1)>H(I
⌣

2), then I
⌣

1 > I
⌣

2;
if H(I

⌣

1) � H(I
⌣

2), then I
⌣

1 � I
⌣

2.

Definition 1 (see [31]). Let U
⌣

be the nonempty fixed sets.
'en, the set

I
⌣

� u
⌣

, E
⌣

I
⌣(u

⌣
), R

⌣

I
⌣(u

⌣
),

Z
⌣

I
⌣(u

⌣
)

u
⌣ ∈ U

⌣
⎛⎝ ⎞⎠. (1)

is said to be a picture fuzzy set (PFS), where
E
⌣

I
⌣(u

⌣
), R

⌣

I
⌣(u

⌣
), I

⌣

I
⌣(u

⌣
) ∈ [0, 1] are called the grade of mem-

bership, positive, neutral, and negative, of the elements
u
⌣ ∈ U

⌣
to the set I

⌣
, respectively, where the following con-

straint has been fulfilled by E
⌣

(u
⌣

), R
⌣

(u
⌣

), I
⌣

(u
⌣

) for all u
⌣ ∈ U

⌣
:

0≤E
⌣

(u
⌣

) + R
⌣

(u
⌣

) + Z
⌣

(u
⌣

)≤ 1. (2)

Definition 2 (see [31]). Let three PFNs be I
⌣

� (E
⌣

I
⌣(u

⌣
),

R
⌣

I
⌣(u

⌣
), Z

⌣

I
⌣(u

⌣
))I

⌣

1 � (E
⌣

I
⌣

1
(u

⌣
), R

⌣

I
⌣

1
(u

⌣
), Z

⌣

I
⌣

1
(u

⌣
)), and I

⌣

2 � (E
⌣

I
⌣

2

(u
⌣

), R
⌣

I
⌣

2
(u

⌣
), Z

⌣

I
⌣

2
(u

⌣
)). Also €ϖ> 0 is any scalar. 'en,

I
⌣c

� Z
⌣

I
⌣(u

⌣
), R

⌣

I
⌣(u

⌣
), E

⌣

I
⌣(u

⌣
)􏼔 􏼕,

I
⌣

1∧I
⌣

2 � min E
⌣

I
⌣

1
(u

⌣
), E

⌣

I
⌣

2
(u

⌣
)􏼒 􏼓, max R

⌣

I
⌣

1
(u

⌣
), R

⌣

I
⌣

2
(u

⌣
)􏼒 􏼓, max Z

⌣

I
⌣

1
(u

⌣
), Z

⌣

I
⌣

2
(u

⌣
)􏼒 􏼓􏼔 􏼕,

I
⌣

1∨I
⌣

2 � max E
⌣

I
⌣

1
(u

⌣
), E

⌣

I
⌣

2
(u

⌣
)􏼒 􏼓, min R

⌣

I
⌣

1
(u

⌣
), R

⌣

I
⌣

2
(u

⌣
)􏼒 􏼓, min Z

⌣

I
⌣

1
(u

⌣
), Z

⌣

I
⌣

2
(u

⌣
)􏼒 􏼓􏼔 􏼕,

I
⌣

1⊕I
⌣

2 � E
⌣

I
⌣

1
(u

⌣
) + E

⌣

I
⌣

2
(u

⌣
) − E

⌣

I
⌣

1
(u

⌣
).E

⌣

I
⌣

2
(u

⌣
), R

⌣

I
⌣

1
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⌣
).R

⌣

I
⌣

2
(u

⌣
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⌣

I
⌣

1
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⌣
) · Z

⌣

I
⌣

2
(u

⌣
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I
⌣

1 ⊗ I
⌣

2 � E
⌣

I
⌣

1
(u

⌣
) · E

⌣

I
⌣

2
(u

⌣
), R

⌣

I
⌣

1
(u

⌣
) + R

⌣

I
⌣

2
(u

⌣
) − R

⌣

I
⌣

1
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⌣
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⌣

I
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2
(u

⌣
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⌣

I
⌣

1
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⌣
) + Z

⌣

I
⌣

2
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⌣
) − Z
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I
⌣

1
(u

⌣
) · Z

⌣

I
⌣

2
(u

⌣
)􏼔 􏼕,

€ϖ · I
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� 1 − 1 − E
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I
⌣(u
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€ϖ
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⌣

I
⌣(u

⌣
)􏼒 􏼓

€ϖ
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⌣

I
⌣(u
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€ϖ
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(I
⌣

)
€ϖ

� E
⌣

I
⌣(u

⌣
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€ϖ
, 1 − 1 − R

⌣

I
⌣(u

⌣
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⌣

I
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)􏼒 􏼓

€ϖ
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(3)

Definition 3 (see [44]). Let all the PFNs I
⌣

� (E
⌣

I
⌣(u

⌣
),

R
⌣

I
⌣(u

⌣
), Z

⌣

I
⌣(u

⌣
)). 'e score and accuracy functions are then

described as follows:

S(I
⌣

) � E
⌣

I
⌣(u

⌣
) − R

⌣

I
⌣(u

⌣
) − Z

⌣

I
⌣(u

⌣
), S(I

⌣
) ∈ [− 1, 1],

H(I
⌣

) � E
⌣

I
⌣(u

⌣
) + R

⌣

I
⌣(u

⌣
) + Z

⌣

I
⌣(u

⌣
), H(I

⌣
) ∈ [0, 1].

(4)

Definition 4. (see [44]). Let two PFNs be I
⌣

1 � (E
⌣

I
⌣

1
(u

⌣
),

R
⌣

I
⌣

1
(u

⌣
), Z

⌣

I
⌣

1
(u

⌣
)) and I

⌣

2 � (E
⌣

I
⌣

2
(u

⌣
), R

⌣

I
⌣

2
(u

⌣
), Z

⌣

I
⌣

2
(u

⌣
)).'en, the

rules for comparison can be defined as follows: if the score
function, that is,

3. New Sine Trigonometric Operational Laws
(STOLs) for PFSs

We will define some operational laws for PFNs in this
portion. First, the sine trigonometric PFSs are defined.

Definition 5. Let the PFS be I
⌣

� (E
⌣

(u
⌣

), R
⌣

(u
⌣

), Z
⌣

(u
⌣

)). 'en,
we define STOLs of a picture fuzzy set as

sin I
⌣

�〈sin
π
2

E
⌣

I
⌣􏼒 􏼓􏼒 􏼓, 2 sin2

π
4

R
⌣

I
⌣􏼒 􏼓, 2 sin2

π
4

Z
⌣

I
⌣􏼒 􏼓〉, 0<E

⌣

I
⌣ ≤ 1.

(5)

From the above definition, it is clear that sin I
⌣
is also a

PFS and also satisfied the following conditions of the PFS as
the membership, neutral, and nonmembership degrees of
PFS are defined, respectively:

sin
π
2

E
⌣

I
⌣􏼒 􏼓􏼒 􏼓: U

⌣
_⟶ [0, 1], such that 0≤ sin

π
2

E
⌣

I
⌣􏼒 􏼓􏼒 􏼓≤ 1,

2sin2
π
4

R
⌣

I
⌣􏼒 􏼓: U

⌣
_⟶ [0, 1], such that 0≤ 2sin2

π
4

R
⌣

I
⌣􏼒 􏼓≤ 1,

2sin2
π
4

Z
⌣

I
⌣􏼒 􏼓: U

⌣
_⟶ [0, 1], such that 0≤ 2sin2

π
4

Z
⌣

I
⌣􏼒 􏼓≤ 1.

(6)

'erefore,
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sin I
⌣

� sin
π
2

E
⌣

I
⌣􏼒 􏼓􏼒 􏼓, 2 sin2

π
4

R
⌣

I
⌣􏼒 􏼓, 2 sin2

π
4

Z
⌣

I
⌣􏼒 􏼓􏼜 􏼝 (7)

is a PFS.

Definition 6. Let I
⌣

� (E
⌣

I
⌣, R

⌣

I
⌣, Z

⌣

I
⌣) be a PFN, if

sin I
⌣

� sin
π
2

E
⌣

I
⌣􏼒 􏼓􏼒 􏼓, 2 sin2

π
4

R
⌣

I
⌣􏼒 􏼓, 2 sin2

π
4

Z
⌣

I
⌣􏼒 􏼓􏼜 􏼝, 0<E

⌣

I
⌣ ≤ 1,

(8)

is known as sine trigonometric (ST) operator and its
value is known as sine trigonometric PFN.

Definition 7. Let the collection of PFNs be I
⌣

� (E
⌣

, R
⌣

, Z
⌣

),
I
⌣

1 � (E
⌣

1, R
⌣

1, Z
⌣

1), and I
⌣

2 � (E
⌣

2, R
⌣

2, Z
⌣

2). 'en, we define the
following operational laws where €ϖ> 0 is any scalar:

sin I
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1⊕ sin I
⌣

2 � 1 − 1 − sin
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⌣
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R
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4

Z
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π
4

Z
⌣
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(9)

3.1. Some Basic Properties of STOLs of PFNs. Some funda-
mental properties of sine trigonometric PFNs are discussed
in this portion, using the sine trigonometric operational laws
(STOLs).

Theorem 1. Let a collection of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
),

where 􏽢J � 1, 2, 3. (en,

sin I
⌣

1⊕ sin I
⌣

2 � sin I
⌣

2⊕ sin I
⌣

1,

sin I
⌣

1 ⊗ sin I
⌣

2 � sin I
⌣

2 ⊗ sin I
⌣

1,

sin I
⌣

1⊕ sin I
⌣

2􏼒 􏼓⊕ sin I
⌣

3 � sin I
⌣

1⊕ sin I
⌣

2⊕ sin I
⌣

3􏼒 􏼓,

sin I
⌣

1 ⊗ sin I
⌣

2􏼒 􏼓⊗ sin I
⌣

3 � sin I
⌣

1 ⊗ sin I
⌣

2 ⊗ sin I
⌣

3􏼒 􏼓.

(10)

Proof. Here, we solve the first two parts using the STOLs
(sine trigonometric operation laws) defined in Definition 7,
and the proof of the other two parts is similar to the first
parts, so we omit it here; we get

sin I
⌣

1⊕ sin I
⌣

2 � sin
π
2

E
⌣

1􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼔 􏼕⊕ sin
π
2

E
⌣

2􏼒 􏼓, 2 sin2
π
4

R
⌣

2􏼒 􏼓, 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼔 􏼕,

� 1 − 1 − sin
π
2

E
⌣

1􏼒 􏼓􏼒 􏼓. 1 − sin
π
2

E
⌣

2􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓􏼒 􏼓. 2 sin2
π
4

R
⌣

2􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼒 􏼓. 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓􏼔 􏼕,

� 1 − 1 − sin
π
2

E
⌣

2􏼒 􏼓􏼒 􏼓. 1 − sin
π
2

E
⌣

1􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

R
⌣

2􏼒 􏼓􏼒 􏼓. 2 sin2
π
4

R
⌣

1􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓. 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼒 􏼓􏼔 􏼕,

� sin
π
2

E
⌣

2􏼒 􏼓, 2 sin2
π
4

R
⌣

2􏼒 􏼓, 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼔 􏼕⊕ sin
π
2

E
⌣

1􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼔 􏼕,

� sin I
⌣

2⊕ sin I
⌣

1.

(11)
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'erefore, from the above,

sin I
⌣

1⊕ sin I
⌣

2 � sin I
⌣

2⊕ sin I
⌣

1,

sin I
⌣

1 ⊗ sin I
⌣

2 � sin
π
2

E
⌣

1􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼔 􏼕⊗ sin
π
2

E
⌣

2􏼒 􏼓, 2 sin2
π
4

R
⌣

2􏼒 􏼓, 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼔 􏼕,

� sin
π
2

E
⌣

1􏼒 􏼓 · sin
π
2

E
⌣

2􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓 · 2 sin2
π
4

R
⌣

2􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓 · 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼔 􏼕,

� sin
π
2

E
⌣

2􏼒 􏼓 · sin
π
2

E
⌣

1􏼒 􏼓, 2 sin2
π
4

R
⌣

2􏼒 􏼓 · 2 sin2
π
4

R
⌣

1􏼒 􏼓, 2 sin2
π
4

Z
⌣

2􏼒 􏼓 · 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼔 􏼕,

� sin
π
2

E
⌣

2􏼒 􏼓, 2 sin2
π
4

R
⌣

2􏼒 􏼓, 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼔 􏼕⊗ sin
π
2

E
⌣

1􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼔 􏼕,

� sin I
⌣

1 ⊗ sin I
⌣

2.

(12)

'erefore, from the above solution,

sin I
⌣

1 ⊗ sin I
⌣

2 � sin I
⌣

2 ⊗ sin I
⌣

1. (13)
□

Theorem 2. Let a collection of PFNs be I
⌣

� (E
⌣

, R
⌣

, Z
⌣

) and
I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
), where 􏽢J � 1, 2. Also let 􏽥N, 􏽥N1,

􏽥N2 > 0 be the
real number; then

􏽥N · sin I
⌣

1⊕ sin I
⌣

2􏼒 􏼓 � 􏽥N · sin I
⌣

1⊕ 􏽥N · sin I
⌣

2,

sin I
⌣

1 ⊗ sin I
⌣

2􏼒 􏼓
􏽥N

� sin I
⌣

1􏼒 􏼓
􏽥N
⊗ sin I

⌣

2􏼒 􏼓
􏽥N

,

􏽥N1 · sin I
⌣
⊕ 􏽥N2 · sin I

⌣
� 􏽥N1⊕ 􏽥N2( 􏼁 · sin I

⌣
,

(sin I
⌣

)
􏽥N1 ⊗ (sin I

⌣
)
􏽥N2 � (sin I

⌣
)
􏽥N1⊕􏽥N2 ,

(sin I
⌣

)
􏽥N1􏼒 􏼓

􏽥N2

� (sin I
⌣

)
􏽥N1 ·􏽥N2 .

(14)

Proof. Here, we will prove the first part of the above theorem
only by using the STOLs defined in Definition 7, while the
rest can be proven similarly. But,

sin I
⌣

1 � sin
π
2

E
⌣

1􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼒 􏼓,

sin I
⌣

2 � sin
π
2

E
⌣

2􏼒 􏼓, 2 sin2
π
4

R
⌣

2􏼒 􏼓, 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓,

(15)

and, by using the STOLs, we have

sin I
⌣

1⊕ sin I
⌣

2 � 1 − 1 − sin
π
2

E
⌣

1􏼒 􏼓􏼒 􏼓􏼔

. 1 − sin
π
2

E
⌣

2􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓􏼒 􏼓

. 2 sin2
π
4

R
⌣

2􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼒 􏼓. 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓􏼕,

(16)

but it is given in statement of the theorem that R
⌣
> 0; again,

by using Definition 6, we have

􏽥N · sin I
⌣

1⊕ sin I
⌣

2􏼒 􏼓 � 1 − 1 − sin
π
2

E
⌣

1􏼒 􏼓􏼒 􏼓
􏽥N

⎡⎣

. 1 − sin
π
2

E
⌣

2􏼒 􏼓􏼒 􏼓
􏽥N

, 2 sin2
π
4

R
⌣

1􏼒 􏼓􏼒 􏼓
􏽥N

. 2 sin2
π
4

R
⌣

2􏼒 􏼓􏼒 􏼓
􏽥N

, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼒 􏼓
􏽥N

. 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓
􏽥N

⎤⎦,

� 1 − 1 − sin
π
2

E
⌣

1􏼒 􏼓􏼒 􏼓
􏽥N

,⎡⎣

2 sin2
π
4

R
⌣

1􏼒 􏼓􏼒 􏼓
􏽥N

, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼒 􏼓
􏽥N

⎤⎦

⊕ 1 − 1 − sin
π
2

E
⌣

2􏼒 􏼓􏼒 􏼓
􏽥N

,⎡⎣

2 sin2
π
4

R
⌣

2􏼒 􏼓􏼒 􏼓
􏽥N

, 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓
􏽥N

⎤⎦

� 􏽥N · sin I
⌣

1⊕ 􏽥N · sin I
⌣

2.

(17)
□
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Corollary 1. Let a collection of two PFNs be
I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
), where 􏽢J � 1, 2, such that E

⌣

1 ≥E
⌣

2, R
⌣

1 ≤R
⌣

2,

and Z
⌣

1 ≤Z
⌣

2. (en show that sin I
⌣

1 ≥ sin I
⌣

2.

Proof. Let I
⌣

1 � (E
⌣

1, R
⌣

1, Z
⌣

1) and I
⌣

2 � (E
⌣

2, R
⌣

2, Z
⌣

2) be the
PFNs with condition E

⌣

1 ≥E
⌣

2, since in the closed interval
[0, π/2] sine is an increasing function; thus, we have
sin((π/2)E

⌣

1)≥ sin((π/2)E
⌣

1). But also, given that R
⌣

1 ≤R
⌣

2

which implies that (1 − R
⌣

1)≥ (1 − R
⌣

2), since in closed in-
terval [0, π/2] sine is an increasing function, we have
sin((π/2)(1 − R

⌣

1))≥ sin((π/2)(1 − R
⌣

2)), which implies that
2 sin2((π/4)R

⌣

1)≤ 2 sin2((π/4)R
⌣

2). Similarly, Z
⌣

1 ≤Z
⌣

1, which
implies that (1 − Z

⌣

1)≥ (1 − Z
⌣

1), since in closed interval
[0, π/2] sine is an increasing function; thus, we have
2 sin2((π/4)Z

⌣

1)≤ 2 sin2((π/4)Z
⌣

1); hence, we get

sin
π
2

E
⌣

1􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼒 􏼓

≥ sin
π
2

E
⌣

2􏼒 􏼓, 2 sin2
π
4

R
⌣

2􏼒 􏼓, 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓,

(18)

and, therefore, we get the required result by using Definition
7:

sin I
⌣

1 ≥ sin I
⌣

2. (19)
□

4. Sine Trigonometric Aggregation Operators

We have described a number of aggregation operators in this
portion of the article on the basis of sine trigonometric
operational laws (STOLs).

Definition 8. Let a collection of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
),

where 􏽢J � 1, . . . , n. 'en, the mapping ST − PFWA:

Ψn⟶Ψ is known as the sine trigonometric picture fuzzy
weighted average (ST − PFWA) operator, if

ST − PFWA I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � €ϖ1 · sin I
⌣

1⊕ · · ·⊕€ϖn · sin I
⌣

n,

(20)

where €ϖ􏽢J are the weighted vectors of sin I
⌣

􏽢J
(􏽢J � 1, . . . , n)

which fulfilled the criteria of €ϖ􏽢J > 0 and 􏽐
n

􏽢J�1
€ϖ􏽢J � 1.

Theorem 3. Let a collection of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
),

where 􏽢J � 1, . . . , n. (en, the aggregated value is also a PFN
by utilizing the ST − PFWA operator and is given by

ST − PFWA I
⌣

1, . . . , I
⌣

n􏼒 􏼓

� 1 − 􏽙

n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(21)

Proof. By using the process of mathematical induction, we
prove the said theorem. Because I

⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
) is a PFN

for each 􏽢J, which implies that E
⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
∈ [0, 1] and also

E
⌣

􏽢J
+ R

⌣

􏽢J
+ Z

⌣

􏽢J
≤ 1, the followingmathematical induction steps

were then performed.

Step 1. Now, for n � 2, we get ST − PFWA(I
⌣

1,

I
⌣

2) � €ϖ1 · sin I
⌣

1⊕€ϖ2 · sin I
⌣

2,
where

€ϖ1 · sin I
⌣

1 � 1 − 1 − sin
π
2

E
⌣

1􏼒 􏼓􏼒 􏼓
€ϖ1

, 2 sin2
π
4

R
⌣

1􏼒 􏼓􏼒 􏼓
€ϖ1

, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼒 􏼓
€ϖ1

􏼠 􏼡,

€ϖ2 · sin I
⌣

2 � 1 − 1 − sin
π
2

E
⌣

2􏼒 􏼓􏼒 􏼓
€ϖ2

, 2 sin2
π
4

R
⌣

2􏼒 􏼓􏼒 􏼓
€ϖ2

, 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓
€ϖ2

􏼠 􏼡,

(22)

and hence, by using the definition [7], we get

€ϖ1 · sin I
⌣

1⊕ €ϖ2 · sin I
⌣

2 � 1 − 􏽙
2

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

2

􏽢J�1

2 sin2
π
4

�R􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

2

􏽢J�1

2 sin2
π
4

�Z􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (23)
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Step 2. Now say it is true for n � k.

ST − PFWA I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � 1 − 􏽙
k

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

k

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

k

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (24)

Step 3. Now, we prove that this is true for n � k + 1:

ST − PFWA I
⌣

1, . . . , I
⌣

k+1􏼒 􏼓 � €ϖ1 · sin I
⌣

1⊕ · · ·⊕€ϖn · sin I
⌣

n⊕€ϖk+1 · sin I
⌣

k+1

� 1 − 􏽙
k

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

k

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

k

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⊕ 1 − 1 − sin
π
2

E
⌣

k+1􏼒 􏼓􏼒 􏼓
€ϖk+1

, 2 sin2
π
4

R
⌣

k+1􏼒 􏼓􏼒 􏼓
€ϖk+1

, 2 sin2
π
4

Z
⌣

k+1􏼒 􏼓􏼒 􏼓
€ϖk+1

􏼢 􏼣,

(25)

and, again, by using Definition 7, we obtain

ST − PFWA I
⌣

1, . . . ., I
⌣

k+1􏼒 􏼓 � 1 − 􏽙
k+1

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

k+1

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

k+1

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (26)

Hence, n � k + 1 holds. 'en, the statement is valid for
all n through the principal of mathematical induction. □

Property 1. If all collection of PFNs I
⌣

􏽢J
� I

⌣
, where I

⌣
is an-

other PFN (􏽢J � 1, . . . , n), then

ST − PFWA I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � sin I
⌣

. (27)

Proof. Let I
⌣

� (E
⌣

, R
⌣

, Z
⌣

) be a PFN, such that I
⌣

􏽢J
� I

⌣
. 'en,

by using 'eorem 4, we get

ST − PFWA I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � 1 − 􏽙
n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦,

� 1 − 􏽙
n

􏽢J�1

1 − sin
π
2

E
⌣

􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏼒 􏼓􏼒 􏼓
€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦,

� 1 − 1 − sin
π
2

E
⌣

􏼒 􏼓􏼒 􏼓
􏽘

􏽢J�1
n€ϖ􏽢J, 2 sin2

π
4

R
⌣

􏼒 􏼓􏼒 􏼓
􏽘

􏽢J�1
n€ϖ􏽢J, 2 sin2

π
4

Z
⌣

􏼒 􏼓􏼒 􏼓
􏽘

􏽢J�1
n€ϖ􏽢J

⎡⎢⎢⎣ ⎤⎥⎥⎦,

� 1 − 1 − sin
π
2

E
⌣

􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

R
⌣

􏼒 􏼓􏼒 􏼓 2 sin2
π
4

Z
⌣

􏼒 􏼓􏼒 􏼓􏼔 􏼕,

� sin I
⌣

.

(28)

□
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Property 2. If I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
), where we let 􏽢J � 1, . . . , n,

I
⌣−

� (min􏽢J
E
⌣

􏽢J􏼚 􏼛,max􏽢J R
⌣

􏽢J􏼚 􏼛,max􏽢J Z
⌣

􏽢J􏼚 􏼛), and I
⌣+

� (max􏽢J

E
⌣

􏽢J􏼚 􏼛,min􏽢J
R
⌣

􏽢J􏼚 􏼛,min􏽢J
min

􏽢J
Z
⌣

􏽢J􏼚 􏼛) be PFNs, then

sin I
⌣−

≤ ST − PFWA I
⌣

1, I
⌣

2, . . . , I
⌣

n􏼒 􏼓≤ sin I
⌣+

. (29)

Proof. Since, for any 􏽢J, min􏽢J
E
⌣

􏽢J􏼚 􏼛≤E
⌣

􏽢J
≤max􏽢J E

⌣

􏽢J􏼚 􏼛, min􏽢J

R
⌣

􏽢J􏼚 􏼛≤R
⌣

􏽢J
≤max􏽢J R

⌣

􏽢J􏼚 􏼛, and min􏽢J
Z
⌣

􏽢J􏼚 􏼛≤Z
⌣

􏽢J
≤max􏽢J Z

⌣

􏽢J􏼚 􏼛,

this implies that I
⌣−

≤ I
⌣

􏽢J
≤ I

⌣+

. Assume that ST − PFWA(I
⌣

1,

I
⌣

2, . . . , I
⌣

n) � sin I
⌣

� (E
⌣

I
⌣, R

⌣

I
⌣, Z

⌣

I
⌣), sin I

⌣+

� (E
⌣

I
⌣+ , R

⌣

I
⌣− , Z

⌣

I
⌣− ),

and sin I
⌣−

� (E
⌣

I
⌣− , R

⌣

I
⌣+ , Z

⌣

I
⌣+ ). 'en, by the monotonicity of

the sine trigonometric function, we have

E
⌣

I
⌣ � 1 − 􏽙

n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≥ 1 − 􏽙

n

􏽢J�1

1 − sin
π
2
min

􏽢J
E
⌣

􏽢J􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠

€ϖ􏽢J

� 1 − 1 − sin
π
2
min E

⌣

􏽢J􏼚 􏼛􏼒 􏼓􏼒 􏼓
􏽘

n

􏽢J�1
€ϖ􏽢J

� sin
π
2
min E

⌣

􏽢J􏼚 􏼛􏼒 􏼓

� E
⌣

I
⌣− ,

R
⌣

I
⌣ � 􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≥􏽙

n

􏽢J�1

2 sin2
π
4

min
􏽢J

R
⌣

􏽢J􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

€ϖ􏽢J

� 2 sin2
π
4

min �R􏽢J􏼚 􏼛􏼒 􏼓􏼒 􏼓􏼒 􏼓
􏽘

n

􏽢J�1
€ϖ􏽢J

� 2 sin2
π
4

min
􏽢J

R
⌣

􏽢J􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� R
⌣

I
⌣− ,

Z
⌣

I
⌣ � 􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≥􏽙

n

􏽢J�1

2 sin2
π
4

min
􏽢J

Z
⌣

􏽢J􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

€ϖ􏽢J

� 2 sin2
π
4

min Z
⌣

􏽢J􏼚 􏼛􏼒 􏼓􏼒 􏼓􏼒 􏼓
􏽘

n

􏽢J�1
€ϖ􏽢J

� 2 sin2
π
4

min
􏽢J

Z
⌣

􏽢J􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� Z
⌣

I
⌣− ,

(30)
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and also

E
⌣

I
⌣ � 1 − 􏽙

n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≤ 1 − 􏽙

n

􏽢J�1

1 − sin
π
2
max

􏽢J
E
⌣

􏽢J􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠

€ϖ􏽢J

� 1 − 1 − sin
π
2
max E

⌣

􏽢J􏼚 􏼛􏼒 􏼓􏼒 􏼓
􏽘

n

􏽢J�1
€ϖ􏽢J

� sin
π
2
max􏽢J E

⌣

􏽢J
􏼚 􏼛􏼒 􏼓

� E
⌣

I
⌣+ ,

R
⌣

I
⌣ � 􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≤􏽙

n

􏽢J�1

2 sin2
π
4

max
􏽢J

R
⌣

􏽢J􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

€ϖ􏽢J

� 2 sin2
π
4

max �R􏽢J
􏼚 􏼛􏼒 􏼓􏼒 􏼓􏼒 􏼓

􏽘
n

􏽢J�1
€ϖ􏽢J

� 2 sin2
π
4

max
􏽢J

R
⌣

􏽢J􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � R
⌣

I
⌣+ ,

Z
⌣

I
⌣ � 􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≥􏽙

n

􏽢J�1

2 sin2
π
4

max
􏽢J

Z
⌣

􏽢J􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

€ϖ􏽢J

� 2 sin2
π
4

max Z
⌣

􏽢J
􏼚 􏼛􏼒 􏼓􏼒 􏼓􏼒 􏼓

􏽘
n

􏽢J�1
€ϖ􏽢J � 2 sin2

π
4

max
􏽢J

Z
⌣

􏽢J
􏼚 􏼛⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � Z

⌣

I
⌣+ .

(31)

Based on score function in Definition 3, we get

S(sin I
⌣

) � E
⌣

I
⌣ − R

⌣

I
⌣ − Z

⌣

I
⌣ ≤E

⌣

I
⌣+ − R

⌣

I
⌣− − Z

⌣

I
⌣− � S sin I

⌣+

􏼒 􏼓,

S(sin I
⌣

) � E
⌣

I
⌣ − R

⌣

I
⌣ − Z

⌣

I
⌣ ≥E

⌣

I
⌣− − R

⌣

I
⌣+ − Z

⌣

I
⌣+ � S sin I

⌣−

􏼒 􏼓.

(32)

Hence, S(sin I
⌣−

)≤ S(sin I
⌣

)≤ S(sin I
⌣+

). Now, we explain
three cases:

If S(sin I
⌣−

)≤ S(sin I
⌣

)≤ S(sin I
⌣+

), then the result holds.
If S(sin I

⌣+

) � S(sin I
⌣

), then E
⌣

I
⌣ − R

⌣

I
⌣ − Z

⌣

I
⌣ � E

⌣

I
⌣+ −

R
⌣

I
⌣+ − Z

⌣

I
⌣+ , which implies that E

⌣

I
⌣ � E

⌣

I
⌣+ , R

⌣

I
⌣ � R

⌣

I
⌣+ , and

Z
⌣

I
⌣ � Z

⌣

I
⌣+ and H(sin I

⌣+

) � H(sin I
⌣

).
If S(sin I

⌣−

) � S(sin I
⌣

), then E
⌣

I
⌣ − R

⌣

I
⌣ − Z

⌣

I
⌣ � E

⌣

I
⌣− −

R
⌣

I
⌣− − Z

⌣

I
⌣− , which implies that E

⌣

I
⌣ � E

⌣

I
⌣− , R

⌣

I
⌣ � R

⌣

I
⌣− , and

Z
⌣

I
⌣ � Z

⌣

I
⌣− and H(sin I

⌣−

) � H(sin I
⌣

); therefore, by
combining all these cases, we get

sin I
⌣−

≤ ST − PFWA I
⌣

1, I
⌣

2, . . . , I
⌣

n􏼒 􏼓≤ sin I
⌣+

. (33)
□

Property 3. Let the collection of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
)

and I
⌣∗
􏽢J � (E

⌣∗
􏽢J , R

⌣∗
􏽢J , Z

⌣∗
􏽢J ), where 􏽢J � 1, . . . , n. If E

⌣

􏽢J
≤E

⌣∗
􏽢J , R

⌣

􏽢J
≥

R
⌣∗

􏽢J , and Z
⌣

􏽢J
≥Z

⌣∗
􏽢J , then

ST − PFWA I
⌣

1, I
⌣

2, . . . , I
⌣

n􏼒 􏼓≤ ST − PFWA I
⌣∗
1 , I

⌣∗
2 , . . . , I

⌣∗
n􏼒 􏼓.

(34)

Proof. It follows from the above, so we omit it here. □

Definition 9. A sine trigonometric PF ordered weighted av-
erage (ST − PFOWA) operator is a mapping ST − PFOWA:

Ψn⟶Ψ such that weighted vector €ϖ � (€ϖ1, €ϖ2, . . . , €ϖn)T,
which fulfilled the criteria of €ϖ􏽢J > 0 and 􏽐

n

􏽢J�1
€ϖ􏽢J � 1.
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ST − PFOWA � €ϖ1 · sin I
⌣

O(1)
⊕€ϖ2

· sin I
⌣

O(2)
⊕ · · ·⊕€ϖn sin I

⌣

O(n)
,

(35)

where (1, . . . , n) is the permutation of O, such that
I
⌣

O(􏽢J− 1)
≥ I

⌣

O(􏽢J)
for any 􏽢J.

Theorem 4. Let a collection of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
),

where 􏽢J � 1, . . . , n. (en, by utilizing the operator, that is,
ST − PFOWA, the aggregated value is also a PFN and is given
by

ST − PFHA I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � 1 − 􏽙

n

􏽢J�1

1 − sin
π
2

E
⌣

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (36)

Proof. 'e proof is the same as that of 'eorem 4, so it is
omitted here. □

Definition 10. A sine trigonometric PF hybrid average (ST −

PFHA) operator is a mapping ST − PFHA: Ψn⟶Ψ such
that the associated vectors ξ � (ξ1, ξ2, . . . , ξn)T which ful-
filled the criteria of ξ􏽢J > 0 and 􏽐

n

􏽢J�1
ξ􏽢J � 1.

ST − PFHA � ξ1 · sin €I
O(1) ⊕ξ2 sin €I

O(2) ⊕ · · ·⊕ξn sin €I
O(n)

,

(37)

where (1, . . . , n) is the permutation of O, as I
⌣

O(􏽢J− 1)
≥ I

⌣

O(􏽢J)

for any 􏽢J and €I􏽢J
� n€ϖ􏽢J I

⌣

􏽢J
.

Theorem 5. Let a collection of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
),

where 􏽢J � 1, . . . , n. (en, the aggregated value is also a PFN
by utilizing the operator ST − PFHA and is given by

ST − PFHA I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � 1 − 􏽙
n

􏽢J�1

1 − sin
π
2
�E

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 􏽙
n

􏽢J�1

2 sin2
π
4
�R

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 􏽙
n

􏽢J�1

2 sin2
π
4
�Z

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (38)

Proof. 'e proof is the same as that of 'eorem 4, so it is
omitted here. □

Definition 11. Let a collection of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
),

where 􏽢J � 1, . . . , n. 'en the mapping ST − PFWG: Ψn

⟶Ψ is known as the sine trigonometric picture fuzzy
weighted geometric (ST − PFWG) operator, if

ST − PFHA I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � sin I
⌣

1􏼒 􏼓
ϖ1
⊗ · · · ⊗ sin I

⌣

n􏼒 􏼓
ϖn

,

(39)

where the weight vectors are €ϖ � (€ϖ1, €ϖ2, . . . , €ϖn)T of
sin I

⌣

􏽢J
(􏽢J � 1, . . . , n), which fulfilled the criteria of €ϖ􏽢J > 0 and

􏽐
n

􏽢J�1
€ϖ􏽢J � 1.

Theorem 6. Let a collection of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
),

where 􏽢J � 1, . . . , n. (en, the aggregated value is also a PFN
by using the ST − PFWG operator and is given by

ST − PFWG I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � 􏽙
n

􏽢J�1

sin
π
2

E
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 1 − 􏽙
n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 1 − 􏽙
n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (40)

Proof. 'e proof is similar to that of 'eorem 4, so it is
omitted here. □

Definition 12. A ST − PFOWG is a mapping from Ψn to Ψ
such that the weighted vectors €ϖ � (€ϖ1, €ϖ2, . . . , €ϖn)T which
fulfilled the criteria of €ϖ􏽢J > 0 and 􏽐

n

􏽢J�1
€ϖ􏽢J � 1.

ST − PFOWG � sin I
⌣

O(1)􏼒 􏼓
€ϖ1
⊕ sin I

⌣

O(2)􏼒 􏼓
€ϖ2

⊕ · · ·⊕ sin I
⌣

O(n)􏼒 􏼓
€ϖn

,

(41)

where O is the permutation of (1, . . . , n) as I
⌣

O(􏽢J− 1)
≥ I

⌣

O(􏽢J)
for any 􏽢J.
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Theorem 7. Let a family of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
), where

􏽢J � 1, . . . , n. (en, the aggregated value is also a PFN by using
the ST − PFOWG operator and is given by

ST − PFOWG I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � 􏽙
n

􏽢J�1

sin
π
2

E
⌣

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 1 − 􏽙
n

􏽢J�1

2 sin2
π
4

R
⌣

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 1 − 􏽙
n

􏽢J�1

2 sin2
π
4

Z
⌣

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (42)

Proof. 'e proof is similar to that of 'eorem 4. □

Definition 13. A sine trigonometric picture fuzzy hybrid
geometric (ST − PFHG) operator is a mapping ST − PFHG:

Ψn⟶Ψ, such that the associated vectors are ξ � (ξ1,
ξ2, . . . , ξn)T, which fulfilled the conditions of ξ􏽢J > 0 and
􏽐

n

􏽢J�1
ξ􏽢J � 1.

ST − PFHG � sin €I
O(1)􏼐 􏼑

ξ1 ⊗ sin €I
O(2)􏼐 􏼑

ξ2

⊗ · · · ⊗ sin €I
O(n)􏼐 􏼑

ξn
,

(43)

where O is the permutation of (1, . . . , n) as I
⌣

O(􏽢J− 1)
≥ I

⌣

O(􏽢J)

for any 􏽢J and €I􏽢J
� n€ϖ􏽢J I

⌣

􏽢J
.

Theorem 8. Let a family of PFNs be I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
), where

􏽢J � 1, . . . , n. (en, by utilizing the operator, that is,
ST − PFHG, the aggregated value is also a PFN and is given by

ST − PFHG I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � 􏽙
n

􏽢J�1

sin
π
2
�E

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 1 − 􏽙
n

􏽢J�1

2 sin2
π
4
�R

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 1 − 􏽙
n

􏽢J�1

2 sin2
π
4
�Z

O(􏽢J)
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (44)

Proof. 'e proof is the same as that of 'eorem 4, so it is
omitted here. □

Similar to ST − PFWA operator, ST − PFOWA, ST−

PFHA, ST − PFWG, ST − PFOWG, and ST − PFHG operators
satisfy some properties such as blondeness and monotonicity.

5. Fundamental Properties of the Proposed
Aggregation Operators

In this section of the paper, we discuss many relations
between the proposed aggregation operators and also discuss
their fundamental properties.

Theorem 9. For any two PFNs, that is, I
⌣

1 and I
⌣

2, we have
sin I

⌣

1⊕ sin I
⌣

2 ≥ sin I
⌣

1 ⊗ sin I
⌣

2.

Proof. Let two PFNs be I
⌣

1 � (E
⌣

1, R
⌣

1, Z
⌣

1) and I
⌣

2 � (E
⌣

2,

R
⌣

2, Z
⌣

2). 'en, by using Definitions 6 and 7, we get

sin I
⌣

1⊕ sin I
⌣

2 � 1 − 1 − sin
π
2

E
⌣

1􏼒 􏼓􏼒 􏼓. 1 − sin
π
2

E
⌣

2􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

R
⌣

1􏼒 􏼓􏼒 􏼓􏼔

. 2 sin2
π
4

R
⌣

2􏼒 􏼓􏼒 􏼓, 2 sin2
π
4

Z
⌣

1􏼒 􏼓􏼒 􏼓. 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓􏼕

� 1 − 􏽙
2

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓, 􏽙
2

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓, 􏽙
2

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(45)
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and also

sin I
⌣

1 ⊗ sin I
⌣

2 � sin
π
2

E
⌣

1􏼒 􏼓􏼒 􏼓􏼒 􏼓. sin
π
2

E
⌣

2􏼒 􏼓􏼒 􏼓, 1 − 2 sin2
π
4

R
⌣

1􏼒 􏼓􏼒 􏼓􏼒 􏼓􏼔

. 2 sin2
π
4

R
⌣

2􏼒 􏼓􏼒 􏼓, 1 − 2 sin2
π
2

Z
⌣

1􏼒 􏼓􏼒 􏼓. 2 sin2
π
4

Z
⌣

2􏼒 􏼓􏼒 􏼓􏼕

� 􏽙
2

􏽢J�1

sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓, 1 − 􏽙
2

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓, 1 − 􏽙
2

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(46)

Since, for any two nonnegative real numbers a and b,
their arithmetic mean is greater than or equal to their
geometric mean, ((a + b)/2)≥ ab, and it follows that a + b−

ab≥ ab. 'us, by taking a � sin((π/2)E
⌣

1) and b � sin((π/
2)E

⌣

2), we have 1 − (1 − sin((π/2) E
⌣

1)) · 1 − sin((π/2)E
⌣

2)≥
sin((π/2)E

⌣

1) ·(sin((π/2)E
⌣

2)), which further gives that 1−

􏽑
2
􏽢J�1

(1 − sin((π/2)E
⌣

􏽢J
))≥ 􏽑

2
􏽢J�1

(sin((π/2)E
⌣

􏽢J
)). Similarly, we

have obtained the other two as 􏽑
2
􏽢J�1

(2 sin2((π/4)R
⌣

􏽢J
))≤ 1 −

􏽑
2
􏽢J�1

(2 sin2((π/4)R
⌣

􏽢J
)) and 􏽑

2
􏽢J�1

(2 sin2((π/4)Z
⌣

􏽢J
))≤ 1 − 􏽑

2
􏽢J�1

(2 sin2((π/4)Z
⌣

􏽢J
)). Hence, by using Definition 7, we get

sin I
⌣

1⊕ sin I
⌣

2 ≥ sin I
⌣

1 ⊗ sin I
⌣

2. (47)
□

Theorem 10. For any PFN, that is, I
⌣
, and positive real

number _τ > 0, _τ · sin I
⌣
≥ (sin I

⌣
)

_τ if and only if _τ ≥ 1 and
_τ · sin I

⌣
≤ (sin I

⌣
)

_τif and only if 0< _τ ≤ 1.

Proof. 'e proof is the same as that of 'eorem 9. □

Lemma 1. For a􏽢J
≥ 0 and b􏽢J

≥ 0, we have 􏽑
n

􏽢J�1
a

b􏽢J
􏽢J
≤ 􏽐

n

􏽢J�1
b􏽢J

·

a􏽢J
and the equality holds if .a1 � a2 � · · · � an..

Lemma 2. Let 0≤ a, b≤ 1, and 0≤ x≤ 1; then 0≤ ax+

b(1 − x)≤ 1.

Lemma 3. Let 0≤ a, b≤ 1, and 1 − (1 − a)(1 − b)≥ ab.

Theorem 11. For PFNs I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
), the operators ST −

PFWA and ST − PFWG satisfy the inequality

ST − PFWA I
⌣

1, . . . , I
⌣

n􏼒 􏼓≥ ST − PFWG I
⌣

1, . . . , I
⌣

n􏼒 􏼓,

(48)

where the equality holds if I
⌣

1 � I
⌣

2 � · · · � I
⌣

n.

Proof. For n, PFNs I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
) and normalized weight

vector €ϖ􏽢J > 0; we have

ST − PFWA I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � 1 − 􏽙
n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , 􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦,

ST − PFWG I
⌣

1, . . . , I
⌣

n􏼒 􏼓 � 􏽙
n

􏽢J�1

sin
π
2

E
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 1 − 􏽙
n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 1 − 􏽙
n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(49)

For €ϖ􏽢J > 0, sin((π/2)(E
⌣

􏽢J
)) ∈ [0, 1], and, by Lemma 3, we

get

1 − 􏽙
n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J ≥ 1 − 􏽘
n

􏽢J�1

€ϖ􏽢J · 1 − sin
π
2

E
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

≥ 1 − 1 + 􏽘
n

􏽢J�1

€ϖ􏽢J sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓≥􏽙
n

􏽢J�1

sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ,

(50)
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which implies that

1 − 􏽙
n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≥􏽙

n

􏽢J�1

sin
π
2

E
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J . (51)

For neutral and negative membership components, we
have

􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≤ 􏽘

n

􏽢J�1

€ϖ􏽢J. 2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓

≤ 1 − 􏽘

n

􏽢J�1

€ϖ􏽢J. 2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓

≤ 1 − 􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J ,

(52)

which implies that

􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≤ 1 − 􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J , (53)

and, similarly, the negative grade is

􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≤ 􏽘

n

􏽢J�1

€ϖ􏽢J. 2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓

≤ 1 − 􏽘
n

􏽢J�1

€ϖ􏽢J · 2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓

≤ 1 − 􏽙
n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ,

(54)

which implies that

􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≤ 1 − 􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J . (55)

Hence, from all the above equations, we get

ST − PFWA I
⌣

1, . . . , I
⌣

n􏼒 􏼓≥ ST − PFWG I
⌣

1, . . . , I
⌣

n􏼒 􏼓.

(56)□

Theorem 12. Let I
⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
)(􏽢J � 1, . . . , n) and

I
⌣

� (E
⌣

, R
⌣

, Z
⌣

) be PFNs; then

ST − PFWA I
⌣

1⊕ · · ·⊕I
⌣

n⊕I
⌣

􏼒 􏼓≥ ST − PFWA I
⌣

1 ⊗ · · ·⊕I
⌣

n ⊗ I
⌣

􏼒 􏼓,

ST − PFWG I
⌣

1⊕ · · ·⊕I
⌣

n⊕I
⌣

􏼒 􏼓≥ ST − PFWG I
⌣

1 ⊗ · · ·⊕I
⌣

n ⊗ I
⌣

􏼒 􏼓,

ST − PFWA I
⌣

1, . . . , I
⌣

n􏼒 􏼓⊕ sin I
⌣
≥ ST − PFWA I

⌣

1, . . . , I
⌣

n􏼒 􏼓⊕ sin I
⌣

,

ST − PFWG I
⌣

1, . . . , I
⌣

n􏼒 􏼓⊗ sin I
⌣
≥ ST − PFWG I

⌣

1, . . . , I
⌣

n􏼒 􏼓⊗ sin I
⌣

.

(57)

Proof. Here, we prove only the first part, while the other
parts can be deduced similarly; for this, let I

⌣

􏽢J
� (E

⌣

􏽢J
, R

⌣

􏽢J
, Z

⌣

􏽢J
)

and I
⌣

� (E
⌣

, R
⌣

, Z
⌣

), since both I
⌣

􏽢J
and I

⌣
are PFNs.

ST − PFWA I
⌣

1⊕I
⌣

2⊕ · · ·⊕I
⌣

n⊕I
⌣

􏼒 􏼓 � 1 − 􏽙
n

􏽢J�1

1 − sin
π
2

1 − 1 − E
⌣

􏽢J
􏼒 􏼓(1 − E

⌣
)􏼒 􏼓􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 􏽙
n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J , 􏽙
n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

ST − PFWA I
⌣

1 ⊗ · · · ⊗ I
⌣

n ⊗ I
⌣

􏼒 􏼓 � 1 − 􏽙
n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J
􏼒 􏼓 · E

⌣
􏼒 􏼓

€ϖ􏽢J , 􏽙
n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J
􏼒 􏼓 · R

⌣
􏼒 􏼓

€ϖ􏽢J , 􏽙
n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J
􏼒 􏼓 · Z

⌣

􏼒 􏼓
€ϖ􏽢J .

(58)

For E
⌣

􏽢J
, E

⌣
∈ [0, 1] and from Lemma 3, we have

1 − (1 − E
⌣

􏽢J
)(1 − E

⌣
)≥E

⌣

􏽢J
.E
⌣
. Since “sine” is an increasing

function, we get sin((π/2)(1 − (1 − E
⌣

􏽢J
)(1 − E

⌣
)))≥ sin(π/

2)(E
⌣

􏽢J
· E

⌣
), which gives that
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sin
π
2

1 − 1 − E
⌣

􏽢J
􏼒 􏼓(1 − E

⌣
)􏼒 􏼓􏼒 􏼓≥ sin

π
2

E
⌣

􏽢J
􏼒 􏼓 · E

⌣

⇒1 − sin
π
2

1 − 1 − E
⌣

􏽢J􏼒 􏼓(1 − E
⌣

)􏼒 􏼓􏼒 􏼓≤ 1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓 · E
⌣

⇒􏽙
n

􏽢J�1

1 − sin
π
2

1 − 1 − E
⌣

􏽢J􏼒 􏼓(1 − E
⌣

)􏼒 􏼓􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≤􏽙

n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J
· E

⌣
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J

⇒1 − 􏽙
n

􏽢J�1

1 − sin
π
2

1 − 1 − E
⌣

􏽢J􏼒 􏼓(1 − E
⌣

)􏼒 􏼓􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≥ 1 − 􏽙

n

􏽢J�1

1 − sin
π
2

E
⌣

􏽢J􏼒 􏼓 · E
⌣

􏼒 􏼓
€ϖ􏽢J .

(59)

Similarly, for the neutral and negative grades, we get

􏽙

n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J
􏼒 􏼓􏼒 􏼓

€ϖ􏽢J ≤􏽙
n

􏽢J�1

2 sin2
π
4

R
⌣

􏽢J
􏼒 􏼓 · (R

⌣
)􏼒 􏼓

€ϖ􏽢J ,

􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓􏼒 􏼓
€ϖ􏽢J ≤􏽙

n

􏽢J�1

2 sin2
π
4

Z
⌣

􏽢J􏼒 􏼓 · (Z
⌣

)􏼒 􏼓
€ϖ􏽢J .

(60)

'erefore, from the above equation, we get

ST − PFWA I
⌣

1⊕ · · ·⊕I
⌣

n⊕I
⌣

􏼒 􏼓

≥ ST − PFWA I
⌣

1 ⊗ · · ·⊕I
⌣

n ⊗ I
⌣

􏼒 􏼓.

(61)

□

6. Decision-Making Approach

'is section provides a strategy, preceded by an illustrative
example, to solve the decision-making problem. For this
reason, assume m alternative (􏽢c1, 􏽢c2, . . . , 􏽢cm) that is evaluated
by a group of DMs under the n different criteria
(G

⌣

1, G
⌣

2, . . . , G
⌣

n). 'at decision-maker tests 􏽢ci and G
⌣

j and
gives their preferences in terms of PFNsα(κ)

ij �

(E
⌣(κ)

ij , R
⌣(κ)

ij , Z
⌣(κ)

ij ), where i � 1(1)m; j � 1(1)n; κ � 1(1) 􏽢D.
'en, the rating of each alternative 􏽢ci under G

⌣

j is expressed as

􏽢ci � G
⌣

1, αi1􏼒 􏼓, G
⌣

2, αi2􏼒 􏼓, . . . , G
⌣

n, αin􏼒 􏼓􏼔 􏼕, (62)

and let €ϖj > 0 be the normalized weight vector of criteria G
⌣

j.
'e following steps are taken to calculate the best choice:

Step 1: in terms of decision matrix, summarize the
values of each alternative 􏽢D

(κ)
� α(κ)

ij with PFS
information.
Step 2: aggregate the different preferences α(κ)

ij ,
κ � 1, . . . , d, into αij � (E

⌣

ij, R
⌣

ij, Z
⌣

ij) by either operator.
Step 3: construct the normalized decision matrix R �

(rij) from 􏽢D � (αij), where rij is computed as

rij �

E
⌣

ij, R
⌣

ij, Z
⌣

ij􏼒 􏼓, if benefit type attributes,

Z
⌣

ij, R
⌣

ij, E
⌣

ij􏼒 􏼓, if cost type attributes.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(63)

Step 4: if the weights of the attributes are known as
before, then use them. Otherwise, we measure these by
using the entropy principle. For this, the information
entropy of criteria G

⌣

j is computed as

Ej �
1

(
�
2

√
− 1)m

􏽘

m

j�1
sin

π
4

1 + E
⌣

ij − R
⌣

ij − Z
⌣

ij􏼒 􏼓􏼒 􏼓􏼔

+ sin
π
4

1 − E
⌣

ij + R
⌣

ij + Z
⌣

ij􏼒 􏼓􏼒 􏼓 − 1􏼕,

(64)

where 1/(
�
2

√
− 1)m is a constant for assuring

0≤Ej ≤ 1.
Based on it, the weights of the attributes are computed
as ω � (ω1,ω2, . . . ,ωn), where

ωj �
1 − Ej

n − 􏽐
n
j�1 Ej

. (65)

Step 5: with weight vector ω and the proposed aver-
aging or geometric PF aggregation operators, the
collective values are obtained as ri � (E

⌣

i, R
⌣

i, Z
⌣

i) for
each alternative 􏽢ci.
Step 6: find the score values of ri � (E

⌣

i, R
⌣

i, Z
⌣

i)(i �

1, . . . , m).
Step 7: grade all the possible alternatives 􏽢ci(i �

1, . . . , m) and select the most desirable alternative(s).

7. Illustrative Example

In this portion, we discuss with an example the result of the
defined MAGDM approach and compare its results with the
existing approaches [38].

7.1. Application of the Proposed MAGDM Method.
Assume that the five companies 􏽢c1, 􏽢c2, 􏽢c3, 􏽢c4, and 􏽢c5 were
assessed by three decision-makers DM(1),DM(2), and DM(3)

for funding focused on four criteria, which are given as
follows:

(1) G
⌣

1 denotes the enterprise level of the management
(2) G

⌣

2 denotes the growth ability of the business
(3) G

⌣

3 denotes the economic benefit
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(4) G
⌣

4 denotes the corporate reputation

Assume that €ϖ � (0.37, 0.41, 0.22) represents the experts
weight information and assessment of the decision matrices
using PFNs in the following Tables 1–3. 'e aim of this issue
is to choose the best company to invest.

Step 1: the evaluations of all decision-makers are
summarized in Tables 1–3.
Step 2: by taking the weight of the experts, that is,
€ϖ � (0.37, 0.41, 0.22), and then utilizing the ST−

PFWA operator to achieve the collective data on each
alternative, the results are shown in Table 4.
Step 3: almost all of the four attributes are just to be the
benefit types; then normalization is not needed.
Step 4: we used the idea of the entropy in this step to
obtain the values:

E1 � 0.728313575,

E2 � 0.697921077,

E3 � 0.653517061,

E4 � 0.664506725.

(66)

By the help of this, we find the attributes ω �

(0.216355366, 0.240558194,

0.275918987, 0.267167453).
Step 5: based on ω � (0.216355366, 0.240558194,

0.275918987, 0.267167453) and utilizing the ST−

PFWA operator, the collective values of each alterna-
tive are gained as

c1 � (0.905540446, 1.26702E − 07, 3.5098E − 08),

c2 � (0.976969493, 3.90763E − 08, 1.68931E − 10),

c3 � (0.904107853, 6.55832E − 08, 1.24568E − 07),

c4 � (0.935101452, 4.68173E − 08, 4.68173E − 08),

c5 � (0.790485389, 6.43519E − 08, 7.16207E − 06).

(67)

Step 6: we can get the scores of each by using the
definition

S c1( 􏼁 � 0.905540284,

S c2( 􏼁 � 0.976969454,

S c3( 􏼁 � 0.904107663,

S c4( 􏼁 � 0.935101326,

S c5( 􏼁 � 0.790478163.

(68)

Step 7: according to S(c2)> S(c4)> S(c1)> S(c3)>
S(c5), the ranking order is 􏽢c2 > 􏽢c4 > 􏽢c1 > 􏽢c3 > 􏽢c5. Hence,
􏽢c2 is the best alternative.

During Step 5 of the established method, the complete
analysis of changing aggregation operators is analyzed, and
their results are shown in Table 5.

We can therefore conclude from all the abovementioned
computational process that the alternative 􏽢c2 is really the
best option among the other options and therefore it is
strongly recommended to choose the appropriate option. In
Figure 1, we draw the graphical representation of all the
alternatives ranked based on the score values and show that
the alternative 􏽢c2 is the best one.

8. Comparative Analysis

In this section, we give some brief discussion on the com-
parison of the proposed method with some well-known
related methods [33, 38, 45, 46].

8.1. Comparison with [38]. In the existing method, the bi-
directional project methods for MAGDM problems with
PFNs are discussed, but, in the proposed method, we defined
the sine trigonometric entropy aggregation operators for
MAGDM problem. 'e results of the MAGDM approach
are listed in Table 6. It is concluded that the best alternative
remains the same.'erefore, the suggested approach is more
rational than the current one [38].

Table 1: DM(1).

G
⌣

1 G
⌣

2 G
⌣

3 G
⌣

4

􏽢c1 (0.64, 0.17, 0.19) (0.49, 0.41, 0.10) (0.60, 0.31, 0.09) (0.25, 0.18, 0.57)

􏽢c2 (0.56, 0.11, 0.33) (0.59, 0.29, 0.12) (0.55, 0.34, 0.11) (0.62, 0.25, 0.13)

􏽢c3 (0.46, 0.29, 0.25) (0.62, 0.15, 0.23) (0.51, 0.22, 0.27) (0.62, 0.14, 0.24)

􏽢c4 (0.50, 0.36, 0.14) (0.71, 0.18, 0.11) (0.46, 0.17, 0.37) (0.59, 0.21, 0.20)

􏽢c5 (0.12, 0.13, 0.75) (0.43, 0.26, 0.31) (0.41, 0.13, 0.46) (0.30, 0.27, 0.43)

Table 2: DM(2).

G
⌣

1 G
⌣

2 G
⌣

3 G
⌣

4

􏽢c1 (0.22, 0.10, 0.68) (0.36, 0.27, 0.37) (0.74, 0.16, 0.10) (0.57, 0.30, 0.13)

􏽢c2 (0.78, 0.12, 0.10) (0.67, 0.14, 0.19) (0.81, 0.10, 0.09) (0.58, 0.33, 0.09)

􏽢c3 (0.39, 0.27, 0.34) (0.34, 0.32, 0.34) (0.46, 0.41, 0.13) (0.68, 0.21, 0.11)

􏽢c4 (0.47, 0.19, 0.34) (0.49, 0.18, 0.33) (0.34, 0.26, 0.40) (0.64, 0.27, 0.09)

􏽢c5 (0.56, 0.26, 0.18) (0.50, 0.35, 0.15) (0.52, 0.35, 0.13) (0.19, 0.11, 0.70)
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Table 3: DM(3).

G
⌣

1 G
⌣

2 G
⌣

3 G
⌣

4

􏽢c1 (0.53, 0.21, 0.26) (0.51, 0.11, 0.38) (0.55, 0.23, 0.22) (0.34, 0.25, 0.41)

􏽢c2 (0.61, 0.38, 0.01) (0.54, 0.17, 0.29) (0.65, 0.20, 0.15) (0.77, 0.10, 0.13)

􏽢c3 (0.58, 0.15, 0.27) (0.19, 0.13, 0.68) (0.61, 0.11, 0.28) (0.25, 0.18, 0.57)

􏽢c4 (0.42, 0.31, 0.27) (0.58, 0.20, 0.22) (0.81, 0.10, 0.09) (0.52, 0.15, 0.33)

􏽢c5 (0.26, 0.24, 0.50) (0.27, 0.29, 0.44) (0.34, 0.39, 0.27) (0.52, 0.14, 0.34)

Table 4: Aggregated values of experts by using the ST-PFWA operator.

G
⌣

1 G
⌣

2 G
⌣

3 G
⌣

4

􏽢c1 (0.684, 0.025, 0.138) (0.615, 0.081, 0.063) (0.857, 0.059, 0.016) (0.656, 0.069, 0.099)

􏽢c2 (0.875, 0.027, 0.011) (0.823, 0.044, 0.037) (0.892, 0.041, 0.014) (0.849, 0.064, 0.015)

􏽢c3 (0.665, 0.072, 0.101) (0.638, 0.047, 0.139) (0.724, 0.072, 0.049) (0.801, 0.037, 0.054)

􏽢c4 (0.674, 0.087, 0.065) (0.813, 0.042, 0.049) (0.748, 0.039, 0.094) (0.807, 0.056, 0.032)

􏽢c5 (0.546, 0.047, 0.170) (0.635, 0.101, 0.075) (0.643, 0.074, 0.071) (0.180, 0.032, 0.289)

Table 5: Score value and ranking of the different operators.

Operators
Score values

Ranking
􏽢c1 􏽢c2 􏽢c3 􏽢c4 􏽢c5

ST-PFWA 0.9055 0.9769 0.9041 0.9351 0.7905 􏽢c2 > 􏽢c4 > 􏽢c1 > 􏽢c3 > 􏽢c5
ST-PFOWA 0.8948 0.9760 0.8972 0.9314 0.7846 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
ST-PFHA 0.9829 0.9991 0.9849 0.9943 0.9368 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
ST-PFWG 0.8607 0.9719 0.8791 0.9186 0.7327 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
ST-PFOWG 0.8525 0.9710 0.8715 0.9138 0.7260 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
ST-PFHG 0.9705 0.9988 0.9763 0.9887 0.9245 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
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Figure 1: Graphical representation of the obtained results using different proposed operators.
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Furthermore, we compare our proposed aggregation
operators with some other existing approaches, which are
proposed by [33, 45, 46], to deal with picture fuzzy quan-
tities. 'en, the calculating results are the same in ranking
alternatives and the best alternative is also the same. 'us,
these four methods with PFNs are conducted to further
illustrate the advantages of the new approach.

We can therefore conclude from all the abovementioned
comparative studies that the alternative 􏽢c2 is the best among
the other options. In Figure 2, we draw the graphical rep-
resentation of all the alternatives ranked based on the score
values by using the proposed operators and existing oper-
ators and show that the alternative 􏽢c2 is the best one.

9. Conclusion

A research related to aggregation operators was investigated
in this study by establishing some new sine trigonometric
operation laws for PFSs. During decision-making problems,

the well-defined operational laws play a major role. On the
other hand, the sine trigonometric function has the features
of periodicity as well as being symmetric about the origin
and hence is more likely to satisfy the decision-maker’s
preference over the multiple time periods. We therefore
describe some sine trigonometric operational laws for PFNs
and study their properties in order to take these advantages
and make a smoother and more important decision. We
have defined various averaging and geometric aggregation
operators on the basis of these operators to club decision
maker’s preference. 'e different elementary relations be-
tween the aggregation operators are studied and explained in
detail. We developed a new MAGDM algorithm for group
decision-making problems, in which goals are classified in
terms of PFNs to enforce the proposed laws on decision-
making problems. Further, we compute the weight of the
attribute by combining the subjective and objective data in
terms of the measure. 'e functionality of the proposed
method is applied to an example, and superiority and

Table 6: Score values and ranking of the proposed operators and existing operators.

Proposed operators
Score values

Ranking
􏽢c1 􏽢c2 􏽢c3 􏽢c4 􏽢c5

ST-PFWA 0.9055 0.9769 0.9041 0.9351 0.7905 􏽢c2 > 􏽢c4 > 􏽢c1 > 􏽢c3 > 􏽢c5
ST-PFOWA 0.8948 0.9760 0.8972 0.9314 0.7846 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
ST-PFHA 0.9829 0.9991 0.9849 0.9943 0.9368 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
ST-PFWG 0.8607 0.9719 0.8791 0.9186 0.7327 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
ST-PFOWG 0.8525 0.9710 0.8715 0.9138 0.7260 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
ST-PFHG 0.9705 0.9988 0.9763 0.9887 0.9245 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
Existing method [38] 0.8681 0.8837 0.8690 0.8754 0.8600 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
Existing method [33] 0.7570 0.7726 0.7580 0.7350 0.7500 􏽢c2 > 􏽢c3 > 􏽢c1 > 􏽢c4 > 􏽢c5
Existing method [45] 0.6480 0.8037 0.6790 0.7600 0.6300 􏽢c2 > 􏽢c4 > 􏽢c3 > 􏽢c1 > 􏽢c5
Existing method [46] 0.7382 0.9217 0.9060 0.8761 0.7702 􏽢c2 > 􏽢c3 > 􏽢c4 > 􏽢c5 > 􏽢c1
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Figure 2: Graphical representation of the obtained result utilizing proposed operators and other existing methods.
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feasibility of the approach are investigated in detail. A
comparative study is often carried out with current works to
verify its performance.

In the future, we will use the framework built on new
multiattribute assessment models to tackle fuzziness and
ambiguity in a variety of decision-making parameters, for
example, advanced study of the similarity measures of
intuitionistic fuzzy sets based on the set pair analysis theory,
generalized intuitionistic fuzzy entropy-based approach for
solving MADM problems with unknown attribute weights;
intuitionistic fuzzy Hamacher aggregation operators with
entropy weight and their applications to MCDM problems,
and linguistic picture fuzzy Dombi aggregation operators
and their application in a MAGDM problem.
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*e problem of energy crisis and environmental pollution has been mitigated by the generation and use of wind power; however,
the choice of locations for wind power plants is a difficult task because the decision-making process includes political, so-
cioeconomic, and environmental aspects. *us, several adverse consequences have been created by the choice of suboptimal
locations. *e objective of this paper is to address the integrated qualitative and quantitative multicriteria decision-making
framework for the selection of wind power plant locations. Spherical fuzzy sets are the latest extension of the ordinary fuzzy sets.
*e main characteristic of the spherical fuzzy sets is satisfying the condition that the squared sum of the positive, neutral, and
negative grades must be at least zero and at most one. In this research, we establish novel operational laws based on the Yager t-
norm and t-conorm under spherical fuzzy environments (SFE). Furthermore, based on these Yager operational laws, we develop
list of novel aggregation operators under SFE. In addition, we design an algorithm to tackle the uncertainty to investigating the
best wind power plant selection in four potential locations in Pakistan. A numerical example of wind power plant location
problem is considered to show the supremacy and effectiveness of the proposed study. Also, a detailed comparison is constructed
to evaluate the performance and validity of the established technique.

1. Introduction

One of the common and daily activity in humans’ life is
decision-making, aiming to choose the optimal alternative
with respect to a list of attributes. Due to high capacity of
decision-making to model the uncertainty of information, it
has been widely studied and successfully applied to eco-
nomics, management, and the other fields in recent years.
Due to the uncertainty of decision information, utilizing fuzzy
set theory to settle decision-making problem has become a
hotspot in recent years. *e concept of fuzzy set (FS) theory
was firstly proposed by Zadeh [1], and, since then, the FSs

have been widely used in many decision-making (DM)
problems. FSs theory is a useful and appropriate approach to
handle inaccurate and uncertain information in vague situ-
ations. Since the introduction of the FSs by Zadeh, they have
been accepted and widespread in nearly all branches of
science. Many extensions of ordinary FSs have been intro-
duced by many researchers [2–7].*ese extensions have been
used frequently in the progress of DM problems in an un-
certain environment. Some commonly used extensions of
ordinary FSs will be explained in the following.

Intuitionistic FS is firstly established by Atanassov by
adding the negative membership grades. Intuitionistic FS is
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the important generation of FS theory to tackle the un-
certainty in complex real-life DM problems with more ef-
fective and efficient way. Many researchers contribute to
intuitionistic FS theory; for example, Xu and Yager [8]
introduced the geometric means-based aggregation opera-
tors (AOs) under intuitionistic FSs. Xu [9] established list of
novel AOs to tackle the complex uncertainty under intui-
tionistic fuzzy settings. Wang and Liu [10] proposed the
Einstein norm-based AOs using intuitionistic FSs. Yu and
Xu [11] utilized prioritized concept to establish new AOs for
intuitionistic FSs. Munezza et al. [12] presented the multi-
criteria DM system using cubic intuitionistic FS to tackle the
uncertainty in location selection DM problem of small
hydropower plant. Khan et al. [13] presented the novel DM
approach under generalized intuitionistic fuzzy soft sets to
tackle the incomplete information in daily life decision
problems.

Although intuitionistic FS can deal with incomplete and
uncertainty information, it cannot handle inconsistent in-
formation better in real situations. For example, in the work
of Son [14], in the election of village director, the voting
results can be divided into three categories: “vote for,”
“neutral voting,” and “vote against.” “Neutral voting” means
that the voting paper is a white paper rejecting both agree
and disagree for the candidate, but it still takes the vote. *is
example happened in reality, but intuitionistic FS could not
handle it. In order to solve these problems, Cuong et al.
[15, 16] proposed picture FS, which contains three aspects of
information: yes, neutral, and no. It can deal with incon-
sistent information. Up to now, many outstanding contri-
butions have been made in the research of picture FSs; for
example,Wei [17] introduced some novel AOs for picture FS
and discussed their applications in DM problems. Ashraf
et al. [18] highlighted the deficiency in the existing opera-
tional laws and established novel improved AOs to tackle the
uncertainty in complex real-life DM problems under picture
fuzzy environment. Khan et al. [19] established the novel
extension, generalized picture fuzzy soft sets, and discussed
their DM applications. Khan et al. [20] established the novel
AOs using logarithmic function and algebraic norm under
picture fuzzy environment. Qiyas et al. [21] presented the
linguistic information and algebraic norm-based novel AOs
using picture FSs. Ashraf et al. [22] presented the cleaner
production evaluation technique based on the cubic picture
fuzzy AOs using distance information measures. Qiyas et al.
[23] utilized linguistic variables to develop the list of AOs
based on Dombi operational laws to tackle the DM problems
of real word. Ashraf and Abdullah [24] introduced algebraic
norm-based AOs under cubic picture FS and discussed their
applications in decision problem.

Picture FS is an important generalization of FS theory,
but, with the constant complexity of human knowledge
modeling and theory development, picture FS will be invalid
in some DM problems. Ashraf et al. [25, 26] introduced a
new and more general concept spherical fuzzy set (spherical
FS), which is an extension of FS by further slackening the
condition that 0≤ μ2(υ) + ℘2(υ) + z2(υ)≤ 1. We must also
note that the acceptable spherical space provides more
freedom for observers to express their belief in supporting

membership. *erefore, spherical FSs express more exten-
sive fuzzy information, while spherical FSs are more ma-
neuverable and more appropriate for dealing with
uncertainties information. However, spherical FSs have been
successfully applied in some fields, especially in decision-
making fields.

As aggregation operators have a strong role in DM
problems, several researchers have made quite valuable
contributions to introduce aggregation operators for
spherical FS. Spherical aggregation operators based on al-
gebraic norms [26] deal with uncertainty and inaccurate
information in DM problems. Spherical FS representations
of spherical fuzzy norms [27] are introduced under SF in-
formation. SF Dombi aggregation operators based on
Dombi norm are introduced in [28]. SF logarithmic ag-
gregation operators based on entropy are proposed in [29].
Linguistic SF aggregation operators are presented in [30] for
SF information to tackle the uncertainty in DMP. GRA
methodology based on spherical linguistic fuzzy Choquet
integral is proposed [31] for SF information. Cosine simi-
larity measures are presented in [32] to discuss the appli-
cation in DMP. Application of SF distance measures is
discussed in [33] to determine the child development in-
fluence environmental factors using SF information. In [34],
the TOPSIS approach based on SF rough set was proposed
and its application in DMP was discussed. Gü ndoğdu and
Kahraman [35] established the TOPSIS methodology under
spherical FSs and also proposed its applications. Ashraf and
Abdullah [36] presented the emergency decision-making
technique of coronavirus using the spherical FSs. Ashraf
et al. [37] introduced the symmetric sum-based AOs under
spherical FSs to tackle the uncertainty in daily life DM
problems. Gundogdu and Kahraman [38] established the
generalized methodology based on WASPAS under spher-
ical FSs. Shishavan et al. [39] established the list of similarity
measures to tackle the uncertainty in the form of spherical
fuzzy environment. Gündoğdu and Kahraman [40] pre-
sented the new AHP technique to tackle the uncertainty in
renewable energy and in [41] discussed the spherical fuzzy
QFD technique to tackle the uncertainty in robot technology
development problems.

It is evident that the abovementioned AOs are focused
on the algebraic, Einstein, Dombi, and Hamacher norms
under spherical FSs for the implementation of the combi-
nation process. Algebraic, Einstein, Dombi, and Hamacher
product and sum are not only fundamental spherical FS
operations that describe the union and the intersection of
any two spherical FSs. A general union and intersection
under SF information can be developed from a generalized
norm; that is, instances of deferent-norms families may be
used to execute the respective intersections and unions
under spherical fuzzy environment. *e Yager product and
sum are good replacement of the algebraic, Einstein, Dombi,
and Hamacher product for an intersection and union and
are capable of delivering smooth estimates of the algebraic
product and sum. However, there seems to be little work in
the literature on aggregation approaches that use the Yager
operations on FS theory to aggregate the fuzzy numbers.
Akram and Shahzadi [42] introduced the q-rung orthopair
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FS-based Yager AOs to tackle the DM problems. Akram
et al. [43] presented the Yager norm-based AOs under
complex Pythagorean FSs and discussed their application in
DM problems. Shahzadi et al. [44] presented the DM ap-
proach based on Yager operational laws under Pythagorean
information. Garg et al. [45] presented the DM problem of
COVID-19 testing facility using Fermatean FS and Yager
norm information.

From the above analysis, we note that, in many practical
applications, various aggregation operators have been put
forward and implemented. Although in practical problems
many existing AOs are not able to address such specific cases,
in some circumstances, many of these may result in unrea-
sonable or counterintuitive results. Certain new regulations
built without a simple function may have a complicated de-
scription. But generalized aggregation operators for SFSs
continue to be an open subject that attracts the attention of
many researchers. *erefore, in this article, our aim is to
present some novel spherical fuzzy Yager operational laws
based AOs to tackle the uncertainty in real-world DM
problems with more effective and efficient way. *e contri-
bution and originality of this study are summarized as follows:

(i) Novel ranking methodology and Yager norm-based
novel operational laws for spherical fuzzy sets are
proposed

(ii) *e new spherical fuzzy Yager averaging/geometric
aggregation operators are proposed to aggregate the
uncertainties in the form of spherical fuzzy
environment

(iii) Decision-making algorithm is proposed to tackle
the real-world DM problems

(iv) A real-life numerical application about wind power
plant location selection problem in Pakistan is
discussed to show the applicability of the proposed
technique

*e rest of this article shall be organized as set out below.
Section 2 provides basic information concerning spherical
FSs. Section 3 describes the Yager operations of spherical
FSs. Section 4 proposes a new way to rank the spherical fuzzy
number with more consistency. Section 5, presented as the
cornerstone of this work, proposes novel spherical fuzzy
Yager AOs based on the Yager norm, together with the
associated proof of its properties. Section 6 introduces the
novel methodology for interacting with the ambiguity in DM
problems in order to pick the best alternative according to
the list of attributes. Section 7 provides a numerical appli-
cation about wind power plant location selection problem
used to illustrate the designed MAGDM method and a
comparative analysis with some existing frameworks of
MAGDM is discussed in Section 8. *e article is concluded
in Section 9.

2. Preliminaries

Let us briefly recall in this segment the rudiments of FSs and
spherical FSs. For the following review, these definitions will
be included here.

Definition 1 (see [1]). A fuzzy set (FS) F in a universe set U is
an object having the form

F � 〈υ, μ(υ)〉|υ ∈ U􏼈 􏼉, (1)

where μ(υ) ∈ [0, 1] is represented by the positive mem-
bership grade.

Definition 2 (see [46]). An intuitionistic FS Fs in a universe
set U is an object having the form

Fs � 〈υ, μ(υ), z(υ)〉|υ ∈ U􏼈 􏼉, (2)

where μ(υ) ∈ [0, 1] and z(υ) ∈ [0, 1] are positive and neg-
ative membership grades, respectively. In addition,
0≤ μ(υ) + z(υ)≤ 1, ∀ υ ∈ U.

Definition 3 (see [47]). A Pythagorean FS Fs in a universe set
U is an object having the form

Fs � 〈υ, μ(υ), z(υ)〉|υ ∈ U􏼈 􏼉, (3)

where μ(υ) ∈ [0, 1] and z(υ) ∈ [0, 1] are positive and neg-
ative membership grades, respectively. In addition,
0≤ μ2(υ) + z2(υ)≤ 1, ∀ υ ∈ U.

Definition 4 (see [15]). A picture FS Fs in a universe set U is
an object having the form

Fs � 〈υ, μ(υ),℘(υ), z(υ)〉|υ ∈ U􏼈 􏼉, (4)

where μ(υ) ∈ [0, 1], ℘(υ) ∈ [0, 1], and z(υ) ∈ [0, 1] are
positive, neutral, and negative membership grades, respec-
tively. In addition, 0≤ μ(υ) + ℘(υ) + z(υ)≤ 1, ∀υ ∈ U.

Definition 5 (see [25, 26]). A spherical FS Fs in a universe set
U is an object having the form

Fs � 〈υ, μ(υ),℘(υ), z(υ)〉|υ ∈ U􏼈 􏼉, (5)

where μ(υ) ∈ [0, 1], ℘(υ) ∈ [0, 1], and z(υ) ∈ [0, 1] are
positive, neutral, and negative membership grades, respec-
tively. In addition, 0≤ μ2(υ) + ℘2(υ) + z2(υ)≤ 1, ∀ υ ∈ U.

In what follows, we signify by SFS (U) the family of all
spherical FSs. We shall signify the spherical fuzzy number
(SFN) with the triplet Fts � (μ(υ),℘(υ), z(υ)) for simplicity.

Definition 6 (see [25]). Suppose that, for any
Fts(1)

, Fts(2)
∈ SFS (U).

(1) Fts(1)
⊆Fts(2)

if and only if μ1 ≤ μ2,℘1 ≤℘2 and z1 ≥ z2.
Clearly, Fts(1)

� Fts(2)
if Fts(1)
⊆Fts(2)

and Fts(2)
⊆Fts(1)

.
(2) Fts(1)

∩Fts(2)
� min(μ1,μ2),min(℘1,℘2),max(z1,z2)􏼈 􏼉.

(3) Fts(1)
∪Fts(2)

� max(μ1, μ2), min(℘1, ℘2),􏼈

min(z1, z2)}.
(4) Fc

ts(1)
� z1, ℘1, μ1􏼈 􏼉.

Definition 7 (see [25]). Let Fts(1)
, Fts(2)
∈ SFS (U) with ϱ > 0.

*e operating laws are as follows:

(1) Fts(1)
⊗Fts(2)

� μ1μ2,℘1℘2,
������������

z21 + z22 − z21z
2
2

􏽱

􏼚 􏼛
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(2) Fts(1)
⊕Fts(2)

�

������������

μ21 + μ22 − μ21μ22
􏽱

,℘1℘2, z1z2􏼚 􏼛

(3) F
ϱ
ts(1)

� μϱ1,℘
ϱ
1,

�����������

1 − (1 − z21)
ϱ

􏽱

􏼚 􏼛

(4) ϱ · Fts(1)
�

�����������

1 − (1 − μ21)
ϱ

􏽱

,℘ϱ1, z
ϱ
1􏼚 􏼛

Definition 8 (see [25, 48]). Let Fts(1)
� (μ1,℘1, z1) and

Fts(2)
� (μ2,℘2, z2) ∈ SFS (U). 􏽢Sc(Fts(1)

) � μ21 − z21 and
􏽢Sc(Fts(2)

) � μ22 − z22 are the score values of SFNs. Also
􏽢Ac(Fts(1)

) � μ21 + ℘21 + z21 and 􏽢Ac(Fts(2)
) � μ22 + ℘22 + z22 are

the accuracy values of SFNs. We have the following:

(a) 􏽢Sc(Fts(1)
)< 􏽢Sc(Fts(2)

)⟹Fts(1)
<Fts(2)

(b) 􏽢Sc(Fts(1)
) � 􏽢Sc(Fts(2)

), 􏽢Ac(Fts(1)
)< 􏽢Ac(Fts(2)

)⟹
Fts(1)
< Fts(2)

(c) 􏽢Sc(Fts(1)
) � 􏽢Sc(Fts(2)

), 􏽢Ac(Fts(1)
) � 􏽢Ac(Fts(2)

)⟹
Fts(1)

� Fts(2)

Definition 9 (see [26]). Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈
SFN (U) (g � 1, 2, 3, . . . , n). *en, the weighted averaging
AOs for SFN (U) are described as

SFWA F1, F2, . . . , Fn( 􏼁 � ℓ1F1 ⊕ ℓ2F2 ⊕ · · · ⊕ ℓnFn

� 􏽘
n

g�1
ℓgFg

�

��������������

1 − 􏽙
n

g�1
1 − μ2g􏼐 􏼑

ℓg

􏽶
􏽴

, 􏽙
n

g�1
℘g􏼐 􏼑

ℓg
, 􏽙

n

g�1
zg􏼐 􏼑

ℓg

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

(6)

where the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have ℓg ≥ 0 and
􏽐

n
g�1 ℓg � 1.

Definition 10 (see [26]). Let Fg � (μg(υ),℘g(υ),

zg(υ)) ∈ SFN (U) (g � 1, 2, 3, . . . , n). *en, the weighted
geometric AOs for SFN (U) are described as

SFWG F1, F2, . . . , Fn( 􏼁 � F
ℓ1
1 ⊗F

ℓ2
2 ⊗ · · · ⊗F

ℓn

n

� 􏽙
n

g�1
Fg􏼐 􏼑

ℓg

� 􏽙
n

g�1
μg􏼐 􏼑

ℓg
, 􏽙

n

g�1
℘g􏼐 􏼑

ℓg
,

��������������

1 − 􏽙
n

g�1
1 − z

2
g􏼐 􏼑

ℓg

􏽶
􏽴⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

(7)

where the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have ℓg ≥ 0 and
􏽐

n
g�1 ℓg � 1.

3. New Operating Laws for Spherical FS

Aggregation operators (AOs) play an essential part in
combining data into one form and in tackling MCGDM
problems. Aggregation facilitates the establishment of a
number of choices in a system or a collection of objects that
have come together or have been brought together. In recent
years, AOs based on FSs and their different hybrid com-
positions have provided a great deal of attention and have
become interesting because they can quickly execute func-
tional areas of various regions. In this section, we propose
the Yager norms-based novel operational laws for spherical
FNs.

Definition 11 (see [49]). Suppose that, for any real numbers l

and m, Yager’s norms have the forms

(1) �T(l, m) � 1 − min(1, ((1 − l)δ + (1 − m)δ)1/δ);
(2) 􏽢S(l, m) � min(1, (lδ − mδ)1/δ), δ ∈ (0,∞).

Definition 12. Let Fts(1)
, Fts(2)
∈ SFS (U) with ϱ, δ > 0. *e

Yager operating laws (YOLs) are Fts � (μ(υ),℘(υ), z(υ))

and are described as follows:

(1) Fts(1)
⊗Fts(2)

�

������������������������������

1 − min(1, ((1 − μ21)
δ + (1 − μ22)

δ)1/δ)

􏽱

,􏼚

�������������������������������

1 − min(1, ((1 − ℘21)
δ + (1 − ℘22)

δ)1/δ)

􏽱

,
������������������

min(1, (z2δ1 + z2δ2 )1/δ)

􏽱

􏼛

(2) Fts(1)
⊕Fts(2)

�

������������������

min(1, (μ2δ1 + μ2δ2 )1/δ)

􏽱

,􏼚
�������������������������������

1 − min(1, ((1 − ℘21)
δ + (1 − ℘22)

δ)1/δ)

􏽱

,
������������������������������

1 − min(1, ((1 − z21)
δ + (1 − z22)

δ)1/δ)

􏽱

􏼛
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(3) F
ϱ
ts(1)

�

����������������������

1 − min(1, (ϱ(1 − μ21)
δ)1/δ)

􏽱

,􏼚
�����������������������

1 − min(1, (ϱ(1 − ℘21)
δ)1/δ)

􏽱

,

��������������

min(1, (ϱz2δ1 )1/δ)

􏽱

􏼛

(4) ϱ · Fts(1)
�

��������������

min(1, (ϱμ2δ1 )1/δ)

􏽱

,􏼚
�����������������������

1 − min(1, (ϱ(1 − ℘21)
δ)1/δ)

􏽱

,
����������������������

1 − min(1, (ϱ(1 − z21)
δ)1/δ)

􏽱

􏼛

Theorem 1. Let Fts(1)
, Fts(2)
∈ SFS (U) with ϱ1, ϱ2 > 0. $en,

(1) Fts(1)
⊕Fts(2)

� Fts(2)
⊕Fts(1)

(2) Fts(1)
⊗Fts(2)

� Fts(2)
⊗Fts(1)

(3) ϱ(Fts(1)
⊕Fts(2)

) � ϱFts(1)
⊕ϱFts(2)

(4) (ϱ1 + ϱ2)Fts(1)
� ϱ1Fts(1)

⊕ϱ2Fts(1)

(5) (Fts(1)
⊗Fts(2)

)ϱ � F
ϱ
ts(1)
⊗F
ϱ
ts(2)

(6) F
ϱ1
ts(1)
⊗F
ϱ2
ts(1)

� F
(ϱ1+ϱ2)
ts(1)

Proof. For any Fts(1)
, Fts(2)
∈ SFS (U) with ϱ1, ϱ2 > 0, we have

Fts(1)
⊕Fts(2)

�

������������������

min 1, μ2δ1 + μ2δ2􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

��������������������������������

1 − min 1, 1 − ℘21􏼐 􏼑
δ

+ 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

��������������������������������

1 − min 1, 1 − z
2
1􏼐 􏼑

δ
+ 1 − z

2
2􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

�

������������������

min 1, μ2δ2 + μ2δ1􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

��������������������������������

1 − min 1, 1 − ℘22􏼐 􏼑
δ

+ 1 − ℘21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

��������������������������������

1 − min 1, 1 − z
2
2􏼐 􏼑

δ
+ 1 − z

2
1􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

� Fts(2)
⊕Fts(1)

,

Fts(1)
⊗Fts(2)

�

��������������������������������

1 − min 1, 1 − μ21􏼐 􏼑
δ

+ 1 − μ22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

��������������������������������

1 − min 1, 1 − ℘21􏼐 􏼑
δ

+ 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

������������������

min 1, z
2δ
1 + z

2δ
2􏼐 􏼑

1/δ
􏼒 􏼓

􏽲
⎧⎨

⎩

⎫⎬

⎭

�

��������������������������������

1 − min 1, 1 − μ22􏼐 􏼑
δ

+ 1 − μ21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

��������������������������������

1 − min 1, 1 − ℘22􏼐 􏼑
δ

+ 1 − ℘21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

������������������

min 1, z
2δ
2 + z

2δ
1􏼐 􏼑

1/δ
􏼒 􏼓

􏽲
⎧⎨

⎩

⎫⎬

⎭

� Fts(2)
⊗Fts(1)

,

ϱ Fts(1)
⊕Fts(2)

􏼒 􏼓 � ϱ ·

������������������

min 1, μ2δ1 + μ2δ2􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

��������������������������������

1 − min 1, 1 − ℘21􏼐 􏼑
δ

+ 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

��������������������������������

1 − min 1, 1 − z
2
1􏼐 􏼑

δ
+ 1 − z

2
2􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

�

��������������������

min 1, ϱμ2δ1 + ϱμ2δ2􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

�����������������������������������

1 − min 1, ϱ 1 − ℘21􏼐 􏼑
δ

+ ϱ 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

����������������������������������

1 − min 1, ϱ 1 − z
2
1􏼐 􏼑

δ
+ ϱ 1 − z

2
2􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

ϱFts(1)
⊕ϱFts(2)

�

���������������

min 1, ϱμ2δ1􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

������������������������

1 − min 1, ϱ 1 − ℘21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

������������������������

1 − min 1, ϱ 1 − z
2
1􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

⊕
���������������

min 1, ϱμ2δ2􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

������������������������

1 − min 1, ϱ 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

������������������������

1 − min 1, ϱ 1 − z
2
2􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

�

��������������������

min 1, ϱμ2δ1 + ϱμ2δ2􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

�����������������������������������

1 − min 1, ϱ 1 − ℘21􏼐 􏼑
δ

+ ϱ 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

����������������������������������

1 − min 1, ϱ 1 − z
2
1􏼐 􏼑

δ
+ ϱ 1 − z

2
2􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭,

⇒ϱ Fts(1)
⊕Fts(2)

􏼒 􏼓 � ϱFts(1)
⊕ϱFts(2)

.

ϱ1Fts(1)
⊕ϱ2Fts(1)

�

����������������

min 1, ϱ1μ
2δ
1􏼐 􏼑

1/δ
􏼒 􏼓

􏽲

,

�������������������������

1 − min 1, ϱ1 1 − ℘21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

�������������������������

1 − min 1, ϱ1 1 − z
2
1􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

⊕
����������������

min 1, ϱ2μ
2δ
2􏼐 􏼑

1/δ
􏼒 􏼓

􏽲

,

�������������������������

1 − min 1, ϱ2 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

�������������������������

1 − min 1, ϱ2 1 − z
2
2􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

�

���������������������

min 1, ϱ1 + ϱ2( 􏼁μ2δ1􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

������������������������������

1 − min 1, ϱ1 + ϱ2( 􏼁 1 − ℘21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

������������������������������

1 − min 1, ϱ1 + ϱ2( 􏼁 1 − z
2
1􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

� ϱ1 + ϱ2( 􏼁Fts(1)
.

ϱ1Fts(1)
⊕ϱ2Fts(1)

�

����������������

min 1, ϱ1μ
2δ
1􏼐 􏼑

1/δ
􏼒 􏼓

􏽲

,

�������������������������

1 − min 1, ϱ1 1 − ℘21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

�������������������������

1 − min 1, ϱ1 1 − z
2
1􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

⊕
����������������

min 1, ϱ2μ
2δ
2􏼐 􏼑

1/δ
􏼒 􏼓

􏽲

,

�������������������������

1 − min 1, ϱ2 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

�������������������������

1 − min 1, ϱ2 1 − z
2
2􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

�

���������������������

min 1, ϱ1 + ϱ2( 􏼁μ2δ1􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

������������������������������

1 − min 1, ϱ1 + ϱ2( 􏼁 1 − ℘21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

������������������������������

1 − min 1, ϱ1 + ϱ2( 􏼁 1 − z
2
1􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

� ϱ1 + ϱ2( 􏼁Fts(1)
.

(8)
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Proofs of (5) and (6) are similar as above. □

4. A New Way to Rank SFNs

Here, we will construct a new procedure for the ranking of
SFNs in the present section. *is new framework is being
used to rank SFNs and to choose the best alternative. From
Definition 8, we know that Mahmood et al. [48] have given
us a ranking method of SFNs. *erefore, this framework is
sensitive to a slight change in the SFNs, as shown by the
example below.

Example 1. Suppose the following: Fts(α1)
� (0.7, 0.5, 0.66),

Fts(α2)
� (0.7, 0.5, 0.6599), Fts(β1)

� (0.8, 0.3, 0.77), and
Fts(β2)

� (0.8, 0.3, 0.7699) ∈ SFS (U). *en, by Definition 8,
we have

􏽢Sc Fts(α1)
􏼒 􏼓 � 0.055504, 􏽢Sc Fts(α2)

􏼒 􏼓 � 0.055634,

􏽢Sc Fts(β1)
􏼒 􏼓 � 0.055467, 􏽢Sc Fts(β2)

􏼒 􏼓 � 0.055644.

(9)

Since 􏽢Sc(Fts(α1)
)> 􏽢Sc(Fts(β1)

) and 􏽢Sc(Fts(α2)
)< 􏽢Sc(Fts(β2)

),
Fts(α1)
>Fts(β1)

and Fts(α2)
<Fts(β2)

.

*e findings in the above example demonstrate that the
SFNs ranking, which is assessed on the basis of Definition 8,
would absolutely change, even if the SFNs slightly change. A
new ranking way is proposed in this article in order to
overcome the shortcomings of the ranking framework based
on Definition 8.*e novel ranking framework is proposed in
the following definition.

Definition 13. Let Fts(1)
� (μ1,℘1, z1) ∈ SFS (U). *en, the

score value 􏽢Sc is described as

􏽢Sc Fts(1)
􏼒 􏼓 �

1 − z1( 􏼁
2

+1 − z
2
1􏼐 􏼑

1/2

1 − μ1( 􏼁
2

+1 − μ21􏼐 􏼑
1/2

+ 1 − z1( 􏼁
2

+1 − z
2
1􏼐 􏼑

1/2,

(10)

where 􏽢Sc(Fts(1)
) ∈ [0, 1].

Theorem 2. Let Fts(1)
� (μ1,℘1, z1) ∈ SFS (U). If μ1 � z1,

then 􏽢Sc(Fts(1)
) � 1/2; if μ1 > z1, then 􏽢Sc(Fts(1)

)> 1/2, and if
μ1 < z1, then 􏽢Sc(Fts(1)

)< 1/2.

Proof. Let Fts(1)
� (μ1,℘1, z1) ∈ SFS (U). If μ1 � z1, then

􏽢Sc Fts(1)
􏼒 􏼓 �

1 − z1( 􏼁
2

+ 1 − z
2
1􏼐 􏼑

1/2

1 − μ1( 􏼁
2

+ 1 − μ21􏼐 􏼑
1/2

+ 1 − z1( 􏼁
2

+ 1 − z
2
1􏼐 􏼑

1/2 �
1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2

1 − z1( 􏼁
2

+ 1 − z
2
1􏼐 􏼑

1/2
+ 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2 �
1
2
.

(11)

If μ1 > z1, then

􏽢Sc Fts(1)
􏼒 􏼓 �

1 − z1( 􏼁
2

+ 1 − z
2
1􏼐 􏼑

1/2

1 − μ1( 􏼁
2

+ 1 − μ21􏼐 􏼑
1/2

+ 1 − z1( 􏼁
2

+ 1 − z
2
1􏼐 􏼑

1/2 >
1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2

1 − z1( 􏼁
2

+ 1 − z
2
1􏼐 􏼑

1/2
+ 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2 �
1
2
.

(12)

If μ1 < z1, then

􏽢Sc Fts(1)
􏼒 􏼓 �

1 − z1( 􏼁
2

+ 1 − z
2
1􏼐 􏼑

1/2

1 − μ1( 􏼁
2

+ 1 − μ21􏼐 􏼑
1/2

+ 1 − z1( 􏼁
2

+ 1 − z
2
1􏼐 􏼑

1/2 <
1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2

1 − z1( 􏼁
2

+ 1 − z
2
1􏼐 􏼑

1/2
+ 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2 �
1
2
.

(13)

*e proof is completed. □

Theorem 3. Let Fts(1)
� (μ1,℘1, z1) and Fts(2)

� (μ2,
℘2, z2) ∈ SFS (U). If μ1 � μ2 and z1 < z2, then

􏽢Sc(Fts(1)
)> 􏽢Sc(Fts(2)

). Otherwise, if z1 � z2 and μ1 > μ2, then
􏽢Sc(Fts(1)

)> 􏽢Sc(Fts(2)
).

Proof. Let J � 􏽢Sc(Fts(1)
)/􏽢Sc(Fts(2)

). According to Definition
13, we have

6 Journal of Mathematics



J �
1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
/ 1 − μ1( 􏼁

2
+ 1 − μ21􏼐 􏼑

1/2
+ 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
􏼒 􏼓

1 − z2( 􏼁
2

+ 1 − z
2
2􏼐 􏼑

1/2
/ 1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
+ 1 − z2( 􏼁

2
+ 1 − z

2
2􏼐 􏼑

1/2
􏼒 􏼓

�
1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
+ 1 − z2( 􏼁

2
+ 1 − z

2
2􏼐 􏼑

1/2
􏼔 􏼕

1 − z2( 􏼁
2

+ 1 − z
2
2􏼐 􏼑

1/2
1 − μ1( 􏼁

2
+ 1 − μ21􏼐 􏼑

1/2
+ 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
􏼔 􏼕

�
1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
· 1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
􏼔 􏼕 + 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
. 1 − z2( 􏼁

2
+ 1 − z

2
2􏼐 􏼑

1/2
􏼔 􏼕

1 − z2( 􏼁
2

+ 1 − z
2
2􏼐 􏼑

1/2
· 1 − μ1( 􏼁

2
+ 1 − μ21􏼐 􏼑

1/2
􏼔 􏼕 + 1 − z2( 􏼁

2
+ 1 − z

2
2􏼐 􏼑

1/2
· 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
􏼔 􏼕

.

(14)

Let P � [((1 − z1)
2 + 1 − z21)

1/2.((1 − z2)
2 + 1 − z22)

1/2];
then we have

J �
P + 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
· 1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
􏼔 􏼕

P + 1 − z2( 􏼁
2

+ 1 − z
2
2􏼐 􏼑

1/2
· 1 − μ1( 􏼁

2
+ 1 − μ21􏼐 􏼑

1/2
􏼔 􏼕

.

(15)

If μ1 � μ2 and z1 < z2, then we have

J �
P + 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
· 1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
􏼔 􏼕

P + 1 − z2( 􏼁
2

+ 1 − z
2
2􏼐 􏼑

1/2
· 1 − μ1( 􏼁

2
+ 1 − μ21􏼐 􏼑

1/2
􏼔 􏼕

>
P + 1 − z2( 􏼁

2
+ 1 − z

2
2􏼐 􏼑

1/2
· 1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
􏼔 􏼕

P + 1 − z2( 􏼁
2

+ 1 − z
2
2􏼐 􏼑

1/2
· 1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
􏼔 􏼕

� 1.

(16)

*us, J � (􏽢Sc(Fts(1)
)/􏽢Sc(Fts(2)

))>1⇒􏽢Sc(Fts(1)
)>􏽢Sc(Fts(2)

).
If z1 � z2 and μ1 > μ2, then we have

J �
P + 1 − z1( 􏼁

2
+ 1 − z

2
1􏼐 􏼑

1/2
· 1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
􏼔 􏼕

P + 1 − z2( 􏼁
2

+ 1 − z
2
2􏼐 􏼑

1/2
· 1 − μ1( 􏼁

2
+ 1 − μ21􏼐 􏼑

1/2
􏼔 􏼕

>
P + 1 − z2( 􏼁

2
+ 1 − z

2
2􏼐 􏼑

1/2
· 1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
􏼔 􏼕

P + 1 − z2( 􏼁
2

+ 1 − z
2
2􏼐 􏼑

1/2
· 1 − μ2( 􏼁

2
+ 1 − μ22􏼐 􏼑

1/2
􏼔 􏼕

� 1.

(17)

*us, J � (􏽢Sc(Fts(1)
)/􏽢Sc(Fts(2)

))>1⇒􏽢Sc(Fts(1)
)>􏽢Sc(Fts(2)

).
*e proof is completed.

However, it is also observed that, in certain situations,
the score function that we have described cannot distinguish
SFNs. For example, consider the following: Fts(1)

�

(0.6, 0.5, 0.6) and Fts(2)
� (0.7, 0.5, 0.7) ∈ SFS (U). It is not

difficult to get that 􏽢Sc(Fts(1)
) � 􏽢Sc(Fts(2)

) � 0.5 according to
Definition 13. To equate SFNs in these situations, the ac-
curacy function is established and a novel framework for
ordering SFNs is proposed. □

Definition 14. Let Fts(1)
� (μ1,℘1,z1) and Fts(2)

� (μ2,℘2,z2) ∈
SFS(U). 􏽢Sc(Fts(1)

) and 􏽢Sc(Fts(2)
) are the score values of Fts(1)

and Fts(2)
, and 􏽢Ac(Fts(1)

) and 􏽢Ac(Fts(2)
) are the accuracy

values of Fts(1)
and Fts(2)

, respectively.

(1) If 􏽢Sc(Fts(1)
)< 􏽢Sc(Fts(2)

), then Fts(1)
<Fts(2)

(2) If 􏽢Sc(Fts(1)
) � 􏽢Sc(Fts(2)

), then

(a) if 􏽢Ac(Fts(1)
)< 􏽢Ac(Fts(2)

), then Fts(1)
<Fts(2)

(b) 􏽢Ac(Fts(1)
) � 􏽢Ac(Fts(2)

), then Fts(1)
� Fts(2)

.

Example 2. Consider the following: Fts(α1)
� (0.7,0.5,0.66),

Fts(α2)
� (0.7,0.5,0.6599), Fts(β1)

� (0.8,0.3,0.77), and Fts(β2)
�

(0.8,0.3,0.7699) ∈ SFS(U) (from Example 1). *en, by
Definition 13, we have

􏽢Sc Fts(α1)
􏼒 􏼓 � 0.055504, 􏽢Sc Fts(α2)

􏼒 􏼓 � 0.055634,

􏽢Sc Fts(β1)
􏼒 􏼓 � 0.055467, 􏽢Sc Fts(β2)

􏼒 􏼓 � 0.055644.

(18)

Since 􏽢Sc(Fts(α1)
)< 􏽢Sc(Fts(β1)

) and 􏽢Sc(Fts(α2)
)< 􏽢Sc(Fts(β2)

),
Fts(β1)
>Fts(α1)

and Fts(β2)
>Fts(α2)

.
Incorporating Examples 1 and 2, we can conclude that

the new ranking framework is more reliable and less sen-
sitive than in the previous process.

5. Aggregation Operators Based on
Yager’s Norms

*is section presents some spherical fuzzy AOs using Yager
OLs of SFNs.
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5.1. Yager Weighted Averaging AOs

Definition 15. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n). *en, Yager weighted averaging AOs for
SFN (U) are described as

SFYWA F1,F2, . . . ,Fn( 􏼁 � ℓ1F1⊕ℓ2F2⊕ · · ·⊕ℓnFn � 􏽘
n

g�1
ℓgFg,

(19)

where the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have ℓg ≥ 0 and
􏽐

n
g�1 ℓg � 1.

Theorem 4. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) and the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have
ℓg ≥ 0 and 􏽐

n
g�1 ℓg � 1. $e SFYWA AOs are a mapping

Gn⟶ G such that

SFYWA F1, F2, . . . , Fn( 􏼁 � 􏽘
n

g�1
ℓgFg

�

���������������������

min 1, 􏽘
n

g�1
ℓgμ

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�����������������������������

1 − min 1, 􏽘

n

g�1
ℓg 1 − z

2
g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(20)

Proof. We prove *eorem 4 by applying mathematical in-
duction on n. For each g, Fg � (μg(υ),℘g(υ),

zg(υ)) ∈ SFN (U), which implies that μg,℘g, zg ∈ [0, 1] and
μ2g + ℘2g + z2g ≤ 1.

Step 1: for n � 2, we get

SFYWA F1, F2( 􏼁 � ℓ1F1⊕ℓ2F2. (21)

By Definition 12, we have

SFYWA F1, F2( 􏼁 � ℓ1F1⊕ℓ2F2

�

����������������

min 1, ℓ1μ
2δ
1􏼐 􏼑

1/δ
􏼒 􏼓

􏽲

,

�������������������������

1 − min 1, ℓ1 1 − ℘21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

�������������������������

1 − min 1, ℓ1 1 − z
2
1􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

⊕
����������������

min 1, ℓ2μ
2δ
2􏼐 􏼑

1/δ
􏼒 􏼓

􏽲

,

�������������������������

1 − min 1, ℓ2 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

�������������������������

1 − min 1, ℓ2 1 − z
2
2􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳
⎧⎨

⎩

⎫⎬

⎭

�

���������������������

min 1, 􏽘
2

g�1
ℓgμ

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
2

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�����������������������������

1 − min 1, 􏽘
2

g�1
ℓg 1 − z

2
g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(22)
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Step 2: suppose that equation (22) holds for n � κ; we
have

SFYWA F1, F2, . . . , Fκ( 􏼁 �

���������������������

min 1, 􏽘
κ

g�1
ℓgμ

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
κ

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�����������������������������

1 − min 1, 􏽘
κ

g�1
ℓg 1 − z

2
g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(23)

Step 3: now, we have to prove that equation (22) holds
for n � κ + 1.

SFYWA F1, F2, . . . Fκ+1( 􏼁 � 􏽘
κ

g�1
ℓgFg ⊕ ℓκ+1Fκ+1

�

���������������������

min 1, 􏽘
κ

g�1
ℓgμ

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
κ

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�����������������������������

1 − min 1, 􏽘
κ

g�1
ℓg 1 − z

2
g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕
������������������

min 1, ℓκ+1μ
2δ
κ+1􏼐 􏼑

1/δ
􏼒 􏼓

􏽲

,

����������������������������

1 − min 1, ℓκ+1 1 − ℘2κ+1􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

���������������������������

1 − min 1, ℓκ+1 1 − z
2
κ+1􏼐 􏼑

δ
􏼒 􏼓

1/δ
􏼠 􏼡

􏽳

⎛⎝ ⎞⎠

�

������������������������������������������������������������������������������������

min 1, 􏽘
κ+1

g�1
ℓgμ

2δ
g )

1/δ⎛⎝ ⎞⎠ ,

�������������������������������������������������������������

1 − min 1, 􏽘
κ+1

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ
)
1/δ⎛⎝ ⎞⎠ ,

������������������������������

1 − min 1, 􏽘
κ+1

g�1
ℓg 1 − z

2
g􏼐 􏼑

δ
)
1/δ⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎝

􏽶
􏽵
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

􏽶
􏽵
􏽵
􏽴⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(24)

*at is, when n � z + 1, equation (22) also holds.

Hence, equation (22) holds for any n. *e proof is
completed. □

Next, we give some properties of the proposed SFYWA
aggregation operator.

Theorem 5. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) such that Fg � F. $en,

SFYWA F1, F2, . . . , Fn( 􏼁 � F. (25)

Proof. Since Fg � F (g � 1, 2, 3, . . . , n), by *eorem 4, we
get

SFYWA F1, F2, . . . , Fn( 􏼁 �

���������������������

min 1, 􏽘
n

g�1
ℓgμ

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − z

2
g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

���������������������

min 1, 􏽘
n

g�1
ℓgμ

2δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − ℘2􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − z

2
􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

��������������

min 1, μ2δ􏼐 􏼑
1/δ

􏼒 􏼓

􏽲

,

�����������������������

1 − min 1, 1 − ℘2􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

�����������������������

1 − min 1, 1 − z
2

􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

⎛⎝ ⎞⎠

� (μ(υ),℘(υ), z(υ))

� F.

(26)

*e proof is completed. □
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Theorem 6. Let Fg � (μg(υ),℘g(υ),zg(υ)),F−
g � min{

(μg(υ)), min(℘g(υ)), max(zg(υ))}, and F+
g � max(μg(υ)),􏽮

min(℘g(υ)),min(zg(υ))}∈SFN(U)(g �1,2,3, . . . ,n). $en,

F
−
g ≤ SFYWA F1, F2, . . . , Fn( 􏼁≤F

+
g. (27)

Proof. *e procedure is similar to the above theorem, so it is
eliminated here. □

Theorem 7. Let Fg � (μg(υ),℘g(υ), zg(υ)), F∗g � (μ∗g(υ),

℘∗g(υ), z∗g(υ)) ∈ SFN (U) (g � 1, 2, 3, . . . , n). If μg ≤ μ∗g,℘g ≤
℘∗g and zg ≤ z∗g, then

SFYWA F1, F2, . . . , Fn( 􏼁≤ SFYWA F
∗
1 , F
∗
2 , . . . , F

∗
n( 􏼁.

(28)

Proof. *e procedure is similar to the above theorem, so it is
eliminated here. □

Definition 16. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n). *en, Yager ordered weighted averaging
AOs for SFN (U) are described as

SFYOWA F1, F2, . . . , Fn( 􏼁 � ℓ1Fυ(1)⊕ℓ2Fυ(2)⊕ · · ·⊕ℓnFυ(n)

� 􏽘
n

g�1
ℓgFυ(g),

(29)

where υ(g) represented the ordered and (υ(1), υ(2),

υ(3), . . . , υ(n)) is a permutation of (1, 2, 3, . . . , n), subject to
ευ(g− 1) ≥ ευ(g) for all g. Also the weights (ℓ1, ℓ2, . . . , ℓg) of Fg

have ℓg ≥ 0 and 􏽐
n
g�1 ℓg � 1.

Theorem 8. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) and the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have
ℓg ≥ 0 and 􏽐

n
g�1 ℓg � 1. $e SFYOWA AOs are a mapping

Gn⟶ G such that

SFYOWA F1, F2, . . . , Fn( 􏼁 � 􏽘
n

g�1
ℓgFυ(g)

�

����������������������

min 1, 􏽘

n

g�1
ℓgμ

2δ
υ(g)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�������������������������������

1 − min 1, 􏽘

n

g�1
ℓg 1 − ℘2υ(g)􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�������������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − z

2
υ(g)􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(30)

Proof. It follows from *eorem 4 similarly. □

Theorem 9. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) such that Fg � F. $en,

SFYOWA F1, F2, . . . , Fn( 􏼁 � F. (31)

Theorem 10. Let Fg � (μg(υ),℘g(υ),zg(υ)),F−
g � min(μg􏽮

(υ)), min(℘g(υ)), max(zg(υ))}, and F+
g � max(μg(υ)),􏽮

min(℘g(υ)), min(zg(υ))} ∈ SFN (U)(g � 1,2,3, . . . ,n).
$en,

F
−
g ≤ SFYOWA F1, F2, . . . , Fn( 􏼁≤F

+
g. (32)

Theorem 11. Let Fg � (μg(υ),℘g(υ), zg(υ)), F∗g � (μ∗g
(υ),℘∗g(υ), z∗g(υ)) ∈ SFN (U) (g � 1, 2, 3, . . . , n). If
μg ≤ μ∗g,℘g ≤℘∗g and zg ≤ z∗g, then

SFYOWA F1, F2, . . . , Fn( 􏼁≤ SFYOWA F
∗
1 , F
∗
2 , . . . , F

∗
n( 􏼁. (33)

*e proof of these theorems is similarly followed by
*eorems 5–7.

Definition 17. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n). *en, Yager hybrid weighted averaging
AOs for SFN (U) are described as

SFYHWA F1, F2, . . . , Fn( 􏼁 � σgFυ(1)
′ ⊕σgFυ(2)

′ ⊕ · · ·⊕σgFυ(n)
′

� 􏽘
n

g�1
σgFυ(g)
′ ,

(34)

where weights (ℓ1, ℓ2, . . . , ℓg) of Fg have ℓg ≥ 0 and
􏽐

n
g�1 ℓg � 1 and gth biggest weighted value is Fυ(g)

′(Fυ(g)
′ �

nℓgFυ(g)|g � 1, 2, . . . , n) consequently by total order
(υ(1), υ(2), υ(3), . . . , υ(n)). Also, associated weights
(σ1,σ2, . . . , σg) of Fg have σg ≥ 0 and 􏽐

n
g�1 σg � 1.

Theorem 12. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) and the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have
ℓg ≥ 0 and 􏽐

n
g�1 ℓg � 1. $e SFYHWA AOs are a mapping

Gn⟶ G with associated weights (σ1, σ2, . . . , σg) of Fg

having σg ≥ 0 and 􏽐
n
g�1 σg � 1; we have
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SFYHWA F1, F2, . . . , Fn( 􏼁 � 􏽘
n

g�1
σgFυ(g)
′

�

����������������������

min 1, 􏽘
n

g�1
ℓgμ
′2δ
υ(g)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�������������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − ℘′2υ(g)􏼒 􏼓

δ
⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�������������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − z

′2
υ(g)􏼒 􏼓

δ
⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(35)

Proof. It follows from *eorem 4 similarly. □

Theorem 13. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) such that Fg � F. $en,

SFYHWA F1, F2, . . . , Fn( 􏼁 � F. (36)

Theorem 14. Let Fg � (μg(υ),℘g(υ), zg(υ)),

F−
g � min(μg(υ)), min(℘g(υ)), max(zg(υ))􏽮 􏽯, and F+

g �

max(μg(υ)), min(℘g(υ)), min(zg(υ))􏽮 􏽯 ∈ SFN (U) (g �

1, 2, 3, . . . , n). $en,

F
−
g ≤ SFYHWA F1, F2, . . . , Fn( 􏼁≤F

+
g. (37)

Theorem 15. Let Fg � (μg(υ),℘g(υ), zg(υ)), F∗g �

(μ∗g(υ),℘∗g(υ), z∗g(υ)) ∈ SFN (U) (g � 1, 2, 3, . . . , n). If
μg ≤ μ∗g,℘g ≤℘∗g and zg ≤ z∗g, then

SFYHWA F1, F2, . . . , Fn( 􏼁≤ SFYHWA F
∗
1 , F
∗
2 , . . . , F

∗
n( 􏼁.

(38)

*e proof of these theorems is similarly followed by
*eorems 5–7.

5.2. Yager Weighted Geometric AOs

Definition 18. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n). *en, Yager weighted geometric AOs for
SFN (U) are described as

SFYWG F1, F2, . . . , Fn( 􏼁 � F
ℓ1
1 ⊗F

ℓ2
2 ⊗ · · · ⊗F

ℓn

n

� 􏽙

n

g�1
Fg􏼐 􏼑

ℓg
,

(39)

where the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have ℓg ≥ 0 and
􏽐

n
g�1 ℓg � 1.

Theorem 16. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) and the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have
ℓg ≥ 0 and 􏽐

n
g�1 ℓg � 1. $e SFYWG AOs are a mapping

Gn⟶ G such that

SFYWG F1, F2, . . . , Fn( 􏼁 � 􏽙
n

g�1
Fg􏼐 􏼑

ℓg

�

�����������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − μ2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

���������������������

min 1, 􏽘
n

g�1
ℓgz

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(40)

Proof. We prove *eorem 16 by applying mathematical
induction on n. For each g, Fg � (μg(υ),℘g(υ),

zg(υ)) ∈ SFN (U), which implies that μg,℘g, zg ∈ [0, 1] and
μ2g + ℘2g + z2g ≤ 1.

Step 1: for n � 2, we get

SFYWG F1, F2( 􏼁 � F
ℓ1
1 ⊗F

ℓ2
2 . (41)
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By Definition 12, we have

SFYWG F1, F2( 􏼁 � F
ℓ1
1 ⊗F

ℓ2
2

�

������������������������

1 − min 1, ℓ1 1 − μ21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

�������������������������

1 − min 1, ℓ1 1 − ℘21􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

���������������

min 1, ℓ1z
2δ
1􏼐 􏼑

1/δ
􏼒 􏼓

􏽲
⎧⎨

⎩

⎫⎬

⎭

⊕

������������������������

1 − min 1, ℓ2 1 − μ22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

�������������������������

1 − min 1, ℓ2 1 − ℘22􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

���������������

min 1, ℓ2z
2δ
2􏼐 􏼑

1/δ
􏼒 􏼓

􏽲
⎧⎨

⎩

⎫⎬

⎭

�

�����������������������������

1 − min 1, 􏽘
2

g�1
ℓg 1 − μ2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
2

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

���������������������

min 1, 􏽘
2

g�1
ℓgz

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(42)

Step 2: suppose that equation (42) holds for n � κ; we
have

SFYWG F1, F2, . . . , Fκ( 􏼁 �

�����������������������������

1 − min 1, 􏽘

κ

g�1
ℓg 1 − μ2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘

κ

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

���������������������

min 1, 􏽘
κ

g�1
ℓgz

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(43)

Step 3: now, we have to prove that equation (42) holds
for n � κ + 1.

SFYWG F1, F2, . . . Fκ+1( 􏼁 � 􏽙
κ

g�1
Fg􏼐 􏼑

ℓg ⊗ Fκ+1( 􏼁
ℓκ+1

�

�����������������������������

1 − min 1, 􏽘
κ

g�1
ℓg 1 − μ2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
κ

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

���������������������

min 1, 􏽘
κ

g�1
ℓgz

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

���������������������������

1 − min 1, ℓκ+1 1 − μ2κ+1􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

����������������������������

1 − min 1, ℓκ+1 1 − ℘2κ+1􏼐 􏼑
δ

􏼒 􏼓
1/δ

􏼠 􏼡

􏽳

,

������������������

min 1, ℓκ+1z
2δ
κ+1􏼐 􏼑

1/δ
􏼒 􏼓

􏽲
⎧⎨

⎩

⎫⎬

⎭

�

�����������������������������

1 − min 1, 􏽘

κ+1

g�1
ℓg 1 − μ2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘
κ+1

g�1
ℓg 1 − ℘2g􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

���������������������

min 1, 􏽘
κ+1

g�1
ℓgz

2δ
g

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(44)

*at is, when n � z + 1, equation (42) also holds.

Hence, equation (42) holds for any n. *e proof is
completed. □

Theorem 17. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) such that Fg � F. $en,
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SFYWG F1, F2, . . . , Fn( 􏼁 � F. (45) Proof. Since Fg � F (g � 1, 2, 3, . . . , n), by *eorem 16, we
get

SFYWG F1, F2, . . . , Fn( 􏼁 �

�����������������������������

1 − min 1, 􏽘

n

g�1
ℓg 1 − μ2􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘

n

g�1
ℓg 1 − ℘2􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

���������������������

min 1, 􏽘
n

g�1
ℓgz

2δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

�����������������

1 − min 1, 1 − μ2􏼐 􏼑􏼐 􏼑

􏽱

,

�����������������

1 − min 1, 1 − ℘2􏼐 􏼑􏼐 􏼑

􏽱

,

�����������

min 1, z
2

􏼐 􏼑􏼐 􏼑

􏽱

􏼒 􏼓

� (μ(υ),℘(υ), z(υ))

� F.

(46)

*e proof is completed. □

Theorem 18. Let Fg � (μg(υ),℘g(υ), zg(υ)), F−
g �

min(μg(υ)), min(℘g(υ)), max(zg(υ))􏽮 􏽯, and F+
g �

max(μg(υ)), min(℘g(υ)), min(zg(υ))􏽮 􏽯 ∈ SFN (U) (g �

1, 2, 3, . . . , n). $en,

F
−
g ≤ SFYWG F1, F2, . . . , Fn( 􏼁≤F

+
g. (47)

Theorem 19. Let Fg � (μg(υ),℘g(υ), zg(υ)), F∗g �

(μ∗g(υ),℘∗g(υ), z∗g(υ)) ∈ SFN (U) (g � 1, 2, 3, . . . , n). If
μg ≤ μ∗g,℘g ≤℘∗g and zg ≤ z∗g, then

SFYWG F1,F2, . . . ,Fn( 􏼁≤SFYWG F
∗
1 ,F
∗
2 , . . . ,F

∗
n( 􏼁. (48)

Definition 19. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n). *en, Yager ordered weighted geometric
AOs for SFN (U) are described as

SFYOWG F1, F2, . . . , Fn( 􏼁 � Fυ(1)􏼐 􏼑
ℓ1 ⊗ Fυ(2)􏼐 􏼑

ℓ2 ⊗ · · · ⊗ Fυ(n)􏼐 􏼑
ℓn

� 􏽙
n

g�1
Fυ(g)􏼐 􏼑

ℓg
, (49)

where υ(g) represented the ordered and
(υ(1), υ(2), υ(3), . . . , υ(n)) is a permutation of
(1, 2, 3, . . . , n), subject to ευ(g− 1) ≥ ευ(g) for all g. Also the
weights (ℓ1, ℓ2, . . . , ℓg) of Fg have ℓg ≥ 0 and 􏽐

n
g�1 ℓg � 1.

Theorem 20. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) and the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have
ℓg ≥ 0 and 􏽐

n
g�1 ℓg � 1. $e SFYOWG AOs are a mapping

Gn⟶ G such that

SFYOWG F1,F2, . . . ,Fn( 􏼁 � 􏽙
n

g�1
Fυ(g)􏼐 􏼑

ℓg
�

������������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − μ2υ(g)􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

������������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − ℘2υ(g)􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

����������������������

min 1, 􏽘
n

g�1
ℓgz

2δ
υ(g)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(50)

Proof. It follows from *eorem 16 similarly. □

Theorem 21. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) such that Fg � F. $en,

SFYOWG F1, F2, . . . , Fn( 􏼁 � F. (51)

Theorem 22. Let Fg � (μg(υ),℘g(υ),zg(υ)),F−
g �

min(μg(υ)), min(℘g(υ)), max(zg(υ))􏽮 􏽯, and F+
g �

max(μg(υ)), min(℘g(υ)), min(zg(υ))􏽮 􏽯 ∈ SFN (U) (g �

1,2,3, . . . ,n). $en,

F
−
g ≤ SFYOWG F1, F2, . . . , Fn( 􏼁≤F

+
g. (52)
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Theorem 23. Let Fg � (μg(υ),℘g(υ), zg(υ)), F∗g � (μ∗g(υ),

℘∗g(υ), z∗g(υ)) ∈ SFN (U) (g � 1, 2, 3, . . . , n). If μg ≤ μ∗g,℘g ≤
℘∗g and zg ≤ z∗g, then

SFYOWG F1, F2, . . . , Fn( 􏼁≤ SFYOWG F
∗
1 , F
∗
2 , . . . , F

∗
n( 􏼁.

(53)

*e proof of these theorems is similarly followed by
*eorems 17–19.

Definition 20. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n). *en, Yager hybrid weighted geometric
AOs for SFN (U) are described as

SFYHWG F1, F2, . . . , Fn( 􏼁 � Fυ(1)
′􏼐 􏼑

σg ⊗ Fυ(2)
′􏼐 􏼑

σg ⊗ · · · ⊗ Fυ(n)
′􏼐 􏼑

σg
� 􏽙

n

g�1
Fυ(g)
′􏼐 􏼑

σg
, (54)

where weights (ℓ1, ℓ2, . . . , ℓg) of Fg have ℓg ≥ 0 and
􏽐

n
g�1 ℓg � 1 and gth biggest weighted value is Fυ(g)

′(Fυ(g)
′ �

nℓgFυ(g)|g � 1, 2, . . . , n) consequently by total order
(υ(1), υ(2), υ(3), . . . , υ(n)). Also, associated weights
(σ1, σ2, . . . , σg) of Fg have σg ≥ 0 and 􏽐

n
g�1 σg � 1.

Theorem 24. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) and the weights (ℓ1, ℓ2, . . . , ℓg) of Fg have
ℓg ≥ 0 and 􏽐

n
g�1 ℓg � 1. $e SFYHWG AOs are a mapping

Gn⟶ G with associated weights (σ1, σ2, . . . , σg) of Fg

having σg ≥ 0 and 􏽐
n
g�1 σg � 1; we have

SFYHWG F1, F2, . . . , Fn( 􏼁 � 􏽙
n

g�1
Fυ(g)
′􏼐 􏼑

σg
�

�������������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − μ′2υ(g)􏼒 􏼓

δ
⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�������������������������������

1 − min 1, 􏽘
n

g�1
ℓg 1 − ℘′2υ(g)􏼒 􏼓

δ
⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

����������������������

min 1, 􏽘
n

g�1
ℓgz
′2δ
υ(g)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(55)

Proof. It follows from *eorem 16 similarly. □

Theorem 25. Let Fg � (μg(υ),℘g(υ), zg(υ)) ∈ SFN (U)

(g � 1, 2, 3, . . . , n) such that Fg � F. $en,

SFYHWG F1, F2, . . . , Fn( 􏼁 � F. (56)

Theorem 26. Let Fg � (μg(υ),℘g(υ),zg(υ)),F−
g � min{

(μg(υ)), min(℘g(υ)), max(zg(υ))}, and F+
g � max(μg(υ)),􏽮

min(℘g(υ)),min(zg(υ))}∈SFN(U)(g �1,2,3, . . . ,n). $en,

F
−
g ≤ SFYHWG F1, F2, . . . , Fn( 􏼁≤F

+
g. (57)

Theorem 27. Let Fg � (μg(υ),℘g(υ), zg(υ)), F∗g � (μ∗g
(υ),℘∗g(υ), z∗g(υ)) ∈ SFN (U) (g � 1, 2, 3, . . . , n). If μg ≤ μ∗g,

℘g ≤℘∗g and zg ≤ z∗g, then

SFYHWG F1,F2, . . . ,Fn( 􏼁≤SFYHWG F
∗
1 ,F
∗
2 , . . . ,F

∗
n( 􏼁. (58)

*e proof of these theorems is similarly followed by
*eorems 17–19.

6. Algorithm for Decision-Making
Problems (DMPs)

In this section, we propose a framework for solving mul-
tiattribute DMPs under SF information. Consider a
MAGDM with a set of m alternatives ℷ1, ℷ2, . . . , ℷg􏽮 􏽯 and let
ℸ1,ℸ2, . . . ,ℸh􏼈 􏼉 be a set of attributes with weight vector
ℓ � (ℓ1, ℓ2, . . . , ℓh), where ℓt ∈ [0, 1] and 􏽐

h
t�1 ℓt � 1. To

assess the performance of kth alternative ℷk under the t-th
attributeℸt, let �D1,

�D2, . . . , �D1􏽮 􏽯 be a set of decision-makers
and let 􏽢w � (􏽢w1, 􏽢w2, . . . , 􏽢w􏽢j

) be the weighted vector of de-

cision-makers with 􏽢ws ∈ [0, 1] and 􏽐
􏽢j
s�1 􏽢ws � 1. *e SF

decision matrix can be written as
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μ11(υ),℘11(υ), z11(υ)( 􏼁 μ12(υ),℘12(υ), z12(υ)( 􏼁 · · · μ1h(υ),℘1h(υ), z1h(υ)( 􏼁

μ21(υ),℘21(υ), z21(υ)( 􏼁 μ22(υ),℘22(υ), z22(υ)( 􏼁 · · · μ2h(υ),℘2h(υ), z2h(υ)( 􏼁

μ31(υ),℘31(υ), z31(υ)( 􏼁 μ32(υ),℘32(υ), z32(υ)( 􏼁 · · · μ3h(υ),℘3h(υ), z3h(υ)( 􏼁

⋮ ⋮ ⋱ ⋮

μg1(υ),℘g1(υ), zg1(υ)􏼐 􏼑 μg2(υ),℘g2(υ), zg2(υ)􏼐 􏼑 · · · μgh(υ),℘gh(υ), zgh(υ)􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (59)

where μ(υ) ∈ [0, 1], ℘(υ) ∈ [0, 1], and z(υ) ∈ [0, 1] are
positive, neutral, and negative membership grades, respec-
tively. In addition, 0≤ μ2(υ) + ℘2(υ) + z2(υ)≤ 1, ∀υ ∈ U.
Key steps of the developed multiattribute group decision-
making (MAGDM) problem are described as follows:

Step 1: construct the SF decision matrix based on the
experts evaluations.

μj􏽢
11(υ),℘j􏽢11(υ), z

j􏽢
11(υ)􏼒 􏼓 μj􏽢

12(υ),℘j􏽢12(υ), z
j􏽢
12(υ)􏼒 􏼓 · · · μj􏽢

1h(υ),℘j􏽢1h(υ), z
j􏽢
1h(υ)􏼒 􏼓

μj􏽢
21(υ),℘j􏽢21(υ), z

j􏽢
21(υ)􏼒 􏼓 μj􏽢

22(υ),℘j􏽢22(υ), z
j􏽢
22(υ)􏼒 􏼓 · · · μj􏽢

2h(υ),℘j􏽢2h(υ), z
j􏽢
2h(υ)􏼒 􏼓

μj􏽢
31(υ),℘j􏽢31(υ), z

j􏽢
31(υ)􏼒 􏼓 μj􏽢

32(υ),℘j􏽢32(υ), z
j􏽢
32(υ)􏼒 􏼓 · · · μj􏽢

3h(υ),℘j􏽢3h(υ), z
j􏽢
3h(υ)􏼒 􏼓

⋮ ⋮ ⋱ ⋮

μj􏽢
g1(υ),℘j􏽢g1(υ), z

j􏽢
g1(υ)􏼒 􏼓 μj􏽢

g2(υ),℘j􏽢g2(υ), z
j􏽢
g2(υ)􏼒 􏼓 · · · μj􏽢

gh(υ),℘j􏽢gh(υ), z
j􏽢
gh(υ)􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (60)

where 􏽢j represents the number of experts.
Step 2: aggregate the individual decision matrices based
on the aggregation operators to construct the

aggregated matrix. Hence, the aggregated decision
matrix is constructed as

μ11(υ),℘11(υ), z11(υ)( 􏼁 μ12(υ),℘12(υ), z12(υ)( 􏼁 · · · μ1h(υ),℘1h(υ), z1h(υ)( 􏼁

μ21(υ),℘21(υ), z21(υ)( 􏼁 μ22(υ),℘22(υ), z22(υ)( 􏼁 · · · μ2h(υ),℘2h(υ), z2h(υ)( 􏼁

μ31(υ),℘31(υ), z31(υ)( 􏼁 μ32(υ),℘32(υ), z32(υ)( 􏼁 · · · μ3h(υ),℘3h(υ), z3h(υ)( 􏼁

⋮ ⋮ ⋱ ⋮

μg1(υ),℘g1(υ), zg1(υ)􏼐 􏼑 μg2(υ),℘g2(υ), zg2(υ)􏼐 􏼑 · · · μgh(υ),℘gh(υ), zgh(υ)􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (61)

Step 3: if the weights of the attribute are known as a
prior, then use them. Otherwise, we will calculate them

using the concept of spherical entropy measure.
Spherical entropy measure is as follows:

ℓj �
1 +(1/h) 􏽐

h
i�1 μijlog μij􏼐 􏼑 + ℘ijlog ℘ij􏼐 􏼑 + zijlog zij􏼐 􏼑􏼐 􏼑

􏽐
g
j�1 1 +(1/h) 􏽐

h
i�1 μijlog μij􏼐 􏼑 + ℘ijlog ℘ij􏼐 􏼑 + zijlog zij􏼐 􏼑􏼐 􏼑􏼐 􏼑

. (62)

Step 3: exploit the established aggregation operators to
achieve the SFN Ft (t � 1, 2, . . . , g) for the alternatives
ℷk, that is, the established operators to obtain the
collective overall preference values of

Ft (t � 1, 2, . . . , g) for the alternatives ℷk, where ℓ �

(ℓ1, ℓ2, . . . , ℓh) is the weight vector of the attributes.
Step 4: after that, we compute the scores of all the
overall values Ft (t � 1, 2, . . . , g) for the alternatives ℷk.
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Step 5: according to Definition 13, rank the alternatives
ℷk (k � 1, 2, . . . , g) and select the best one having the
greater value.

7. Application of Proposed Decision-
Making Technique

In this section, a numerical application about wind power
plant location selection problem is firstly used to illustrate
the designedMAGDMmethod.*en a comparison between
the presented Yager aggregation operators and the existing
aggregation operators of spherical fuzzy numbers is carried
out to show the characteristics and advantage of the pre-
sented AOs.

7.1. Practical Case Study. In this segment, a case study is
provided to illustrate the effectiveness and reliability of the
established decision-making approach.

*e case study area was Jhimpir, a village in *atta
district of Sindh province in Pakistan, 120 kilometres
northeast of Karachi. Jhimpir’s geographical coordinates are
25° 1′ 0″ North, 68° 1′ 0″ East. Location of Jhimpir is shown
in Figure 1.

*e digital elevation model of Jhimpir is given in
Figure 2.*e required data were collected from numerous
resources including governmental agencies, open sources,
and related literature such as National Authority for Remote
Sensing & Space Sciences, Pakistan Meteorological Au-
thority, New and Renewable Energy Authority, Pakistan
General Survey Authority, NASA’s Prediction of Worldwide
Energy Resources (POWER), United States Geological
Survey, and Pakistan Environmental Affairs Agency.

Electricity plays an essential part in any nation’s so-
cioeconomic progress and social prosperity. Electricity en-
ergy should be regarded as the fundamental need for human
development. In Pakistan, limited power generation is a
major issue that directly restricts the country’s growth. In a
landmark achievement, the 50-megawatt Jhimpir wind
power project has begun commercial operations as Pakistan
gradually moves to ramp up renewable energy generation in
line with the global trend and to bridge the domestic
shortfall. *e total cost of project is $136 million. Completed
in 2002, it has a total capacity of 50MW.*is wind corridor
has a 50000-megawatt potential with average wind speeds
over 7meters per second. *e government has announced
upfront tariff and ROI of 17 percent, which is highest in the
world. *ere are 14 projects in the pipeline, out of which
50MWFFCEL project has achieved COD by mid-December
2012.

Pakistan’s National Renewable Energy Laboratories
(NREL) wind resource map has provided a major boost to
the development of wind power in the wind corridor re-
gions. *ese regions are the Karachi-Hyderabad region
especially on hilltops, ridges in the northern Indus valley,
wind corridor areas in western Pakistan, high mountainous
regions, and hills and ridges in southwestern Pakistan. *is
potential area has now become the focal point of wind power
’s near future development.*e coastal belt of Pakistan has a

wind corridor that is 60 km wide and 180 km long, as per the
collected data. *is corridor has an electricity generation
potential of up to 50 000MW of exploitable wind power.
Here, we enlist the wind power energy projects and discuss
their production in Table 1.

For our research, we used a dataset comprising topo-
graphic, geological, and climatic factors. Based on several
literatures and case studies concerning wind farm site se-
lection and local conditions, different criteria were reviewed
by three experts and five locations ℷ1, ℷ2, ℷ3, ℷ4, ℷ5􏼈 􏼉 under
four criteria were selected to evaluate the suitable sites for
wind farms. *e detailed description of the criteria is as
follows:

(1) Natural Factors (ℸ1): in order to be effective, the
position of the wind turbines is measured by the
prevailing wind direction. In generating electricity
from wind turbines, wind speed is a vital factor.
Wind speed above certain rates is essential for
producing wind energy [50, 51].

(2) Political Aspect (ℸ2): select the location that offers
maximum output, minimizing project costs, giving
the political point score to the government for in-
stallations of wind energy projects.

(3) Socioeconomic Factors (ℸ3): in order to minimize
the cost of building wind farms and to reduce
the cost of transporting electricity, wind farms
should be located close to the existing transmission
grids [52].

(4) Environmental Factors (ℸ4): wind farms in areas
where they negligibly interfere with existing land use
outside protected areas, artificial surfaces, wetlands,
aquatic areas, and forestry areas should be installed
[52]. It is necessary to keep all the mechanical parts
of wind turbines away from the water. Wind turbine
fins are lowered and disconnected to prevent harm to
the components of the turbine.

*e three experts were asked in this assessment to use
spherical fuzzy information and their weights are
(0.314, 0.355, 0.331)T.

Step 1: three experts listed their evaluation information
using the spherical fuzzy numbers in Tables 2–4

Step 2: aggregated SF information is evaluated using
spherical fuzzy weighted averaging operators. *e re-
sults are shown in Table 5.

Step 4: now, we find out the attribute weight vector
using spherical fuzzy entropy measure as follows.

ℓ � ℓ1 � 0.256, ℓ2 � 0.248, ℓ3 � 0.245, ℓ4 � 0.251􏼈 􏼉.

(63)

Step 5: evaluate the overall perfumes of the alternatives;
we utilized the proposed Yager aggregation operators
as follows in Tables 6 and 7.

Step 6: compute the score value of each collective SF
information of each alternative as follows in Table 8.
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Figure 2: Digital elevation model.

Table 1: Wind power projects and their production.

Station Location Capacity (MW) In service date
FFC Energy Wind Project Jhimpir, Sindh 49.5 2013
Zorlu Enerji Pakistan Jhimpir, Sindh 56.4 2013
*ree Gorges Pvt. Ltd. Jhimpir, Sindh 150 2014
Sapphire Wind Power Pvt. Ltd. Jhimpir, Sindh 52.8 2015
Yunus Energy Ltd. Jhimpir, Sindh 50 2016
Metro Wind Power Co. Ltd. Jhimpir, Sindh 50 2016
Gul Ahmed Wind Power Ltd. Jhimpir, Sindh 50 2016
Master Wind Energy Ltd. Jhimpir, Sindh 52.8 2016
ACT Wind Pvt. Ltd. Jhimpir, Sindh 30 2016
Sachal Energy Wind Farm Jhimpir, Sindh 50 2017
United Energy Pakistan Wind Ltd. Jhimpir, Sindh 100 2017
Hawa Energy Ltd. Jhimpir, Sindh 50 2018
Burj Capital Jhimpir Wind Power Limited Jhimpir, Sindh 50 2018
Artistic Energy Pvt. Ltd. Jhimpir, Sindh 49.3 2018
Tricon Boston Corporation Jhimpir, Sindh 150 2018

Figure 1: Location of Jhimpir.

Table 2: D1.

ℸ1 ℸ2 ℸ3 ℸ4
ℷ1 (0.84, 0.34, 0.40) (0.78, 0.39, 0.43) (0.67, 0.50, 0.30) (0.71, 0.21, 0.31)

ℷ2 (0.60, 0.11, 0.53) (0.59, 0.35, 0.23) (0.72, 0.31, 0.41) (0.82, 0.25, 0.11)

ℷ3 (0.79, 0.19, 0.39) (0.91, 0.21, 0.11) (0.71, 0.41, 0.13) (0.51, 0.25, 0.34)

ℷ4 (0.63, 0.51, 0.13) (0.42, 0.33, 0.49) (0.61, 0.43, 0.45) (0.59, 0.37, 0.49)

ℷ5 (0.57, 0.36, 0.29) (0.60, 0.15, 0.50) (0.70, 0.32, 0.40) (0.65, 0.44, 0.33)
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Table 3: D2.

ℸ1 ℸ2 ℸ3 ℸ4
ℷ1 (0.61, 0.15, 0.53) (0.62, 0.35, 0.16) (0.61, 0.35, 0.47) (0.74, 0.17, 0.55)

ℷ2 (0.66, 0.11, 0.51) (0.77, 0.23, 0.43) (0.93, 0.08, 0.09) (0.99, 0.06, 0.02)

ℷ3 (0.88, 0.09, 0.07) (0.89, 0.06, 0.05) (0.56, 0.17, 0.44) (0.61, 0.13, 0.43)

ℷ4 (0.59, 0.32, 0.34) (0.51, 0.48, 0.24) (0.68, 0.53, 0.39) (0.61, 0.21, 0.34)

ℷ5 (0.71, 0.31, 0.24) (0.69, 0.41, 0.35) (0.73, 0.44, 0.21) (0.74, 0.49, 0.22)

Table 8: Score values.

�s�c(ℷ1)c �s�c(ℷ2) �s�c(ℷ3) �s�c(ℷ4) �s�c(ℷ5)

SFYWA 0.631061 0.669998 0.656079 0.559098 0.596208
SFYOWA 0.631075 0.670331 0.656609 0.559115 0.596561
SFYHWA 0.634867 0.677689 0.665076 0.557001 0.598448
SFYWG 0.627303 0.651881 0.639113 0.553654 0.593435
SFYOWG 0.627262 0.651912 0.639385 0.553665 0.593733
SFYHWG 0.632199 0.666162 0.653417 0.552859 0.596481

Table 4: D3.

ℸ1 ℸ2 ℸ3 ℸ4
ℷ1 (0.85, 0.25.0.15) (0.88, 0.23, 0.14) (0.78, 0.38, 0.18) (0.83, 0.39, 0.29)

ℷ2 (0.94, 0.04, 0.07) (0.61, 0.19, 0.39) (0.63, 0.18, 0.35) (0.56, 0.49, 0.48)

ℷ3 (0.73, 0.13, 0.46) (0.88, 0.39, 0.19) (0.87, 0.35, 0.18) (0.81, 0.13, 0.41)

ℷ4 (0.82, 0.12, 0.43) (0.63, 0.21, 0.55) (0.53, 0.33, 0.47) (0.51, 0.23, 0.46)

ℷ5 (0.61, 0.33, 0.29) (0.63, 0.41, 0.28) (0.74, 0.34, 0.14) (0.65, 0.32, 0.37)

Table 5: Aggregated SF set information.

ℸ1 ℸ2 ℸ3 ℸ4
ℷ1 (0.788, 0.229, 0.319) (0.785, 0.315, 0.208) (0.696, 0.402, 0.297) (0.767, 0.239, 0.371)

ℷ2 (0.807, 0.078, 0.279) (0.674, 0.246, 0.342) (0.818, 0.160, 0.227) (0.919, 0.188, 0.097)

ℷ3 (0.814, 0.128, 0.223) (0.893, 0.165, 0.099) (0.748, 0.284, 0.223) (0.677, 0.159, 0.393)

ℷ4 (0.702, 0.267, 0.271) (0.533, 0.324, 0.395) (0.615, 0.424, 0.433) (0.573, 0.258, 0.421)

ℷ5 (0.639, 0.331, 0.271) (0.644, 0.298, 0.363) (0.724, 0.365, 0.224) (0.685, 0.411, 0.296)

Table 6: Yager weighted averaging.

SFYWA SFYOWA SFYHWA
ℷ1 (0.7620, 0.3015, 0.3038) (0.7616, 0.3031, 0.3025) (0.7732, 0.2710, 0.3144)

ℷ2 (0.8183, 0.1775, 0.2512) (0.8187, 0.1785, 0.2505) (0.8278, 0.1582, 0.2388)

ℷ3 (0.7950, 0.1916, 0.2541) (0.7958, 0.1918, 0.2534) (0.8039, 0.1957, 0.2268)

ℷ4 (0.6163, 0.3223, 0.3830) (0.6163, 0.3230, 0.3830) (0.6183, 0.3392, 0.3966)

ℷ5 (0.6752, 0.3529, 0.2920) (0.6761, 0.3530, 0.2918) (0.6771, 0.3680, 0.2828)

Table 7: Yager weighted geometric.

SFYWG SFYOWG SFYHWG
ℷ1 (0.7580, 0.3015, 0.3144) (0.7575, 0.3031, 0.3133) (0.7710, 0.2710, 0.3236)

ℷ2 (0.7928, 0.1775, 0.2737) (0.7928, 0.1785, 0.2735) (0.8130, 0.1582, 0.2555)

ℷ3 (0.7741, 0.1916, 0.2918) (0.7746, 0.1918, 0.2916) (0.7900, 0.1957, 0.2535)

ℷ4 (0.6056, 0.3223, 0.3932) (0.6056, 0.3230, 0.3932) (0.6110, 0.3392, 0.4053)

ℷ5 (0.6720, 0.3529, 0.3012) (0.6728, 0.3530, 0.3011) (0.6743, 0.3680, 0.2885)

Table 9: Ranking of alternatives.

Score ranking Best alternative
SFYWA �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYOWA �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYHWA �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYWG �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYOWG �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYHWG �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
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Step 7: select the optimal alternative according to the
maximum score value as follows in Table 9.

We can conclude from this above computational process
that location ℷ2 is the best for the installation of the wind
power plant among others, and therefore it is highly
recommended.

8. Comparison Analysis

We provide some appropriate examples below to test the
potential and efficacy of the established decision-making
approach and to compare it with the recent findings.

*e use of existing methods and different aggregation
operators for computed aggregate information is shown in
Tables 10 and 11.

Now, according to their aggregated data, we evaluate the
ranking of the alternatives in Tables 12 and 13.

9. Discussion

From the outcomes of the proposed operators and the other
existing methods, we conclude that ranking lists obtained
from both the proposed method and the compared methods
are the same. *e Yager operators with the spherical fuzzy
set environment represent a generalized and novel approach
to tackle uncertainty in DM problems. *e Yager operators
with the spherical fuzzy environment are more flexible and
effective to evaluate best alternative in real-word problems.

10. Conclusion

Spherical FS, which is a general extension of intuitionistic
FS, picture FS, is more capable of dealing with incomplete
and inconsistent information. *erefore, it is widely used in
various fields. Spherical FS tackles the vagueness and un-
certain information in real-world complex problems with

Table 13: Overall ranking of the alternatives.

Proposed operators Ranking Best alternative
SFYWA �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYOWA �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYHWA �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYWG �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYOWG �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFYHWG �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2

Table 10: Existing aggregation operators.

SFSWA [37] SFSOWA [37] SFSHWA [37] L − SFWA [29]
ℷ1 (0.76, 0.30, 0.30) (0.75, 0.30, 0.30) (0.77, 0.27, 0.31) (0.91, 0.06, 0.06)

ℷ2 (0.80, 0.17, 0.25) (0.81, 0.17, 0.25) (0.82, 0.15, 0.24) (0.95, 0.01, 0.03)

ℷ3 (0.78, 0.19, 0.25) (0.78, 0.19, 0.25) (0.79, 0.19, 0.22) (0.94, 0.02, 0.03)

ℷ4 (0.60, 0.32, 0.38) (0.61, 0.32, 0.38) (0.79, 0.19, 0.22) (0.70, 0.07, 0.10)

ℷ5 (0.67, 0.35, 0.29) (0.67, 0.35, 0.29) (0.66, 0.33, 0.29) (0.82, 0.09, 0.06)

Table 11: Existing aggregation operators.

L − SFOWA [29] L − SFHWA [29] L − SFWG [29] L − SFOWG [29]
ℷ1 (0.91, 0.06, 0.06) (0.99, 0.002, 0.004) (0.91, 0.07, 0.07) (0.91, 0.07, 0.07)

ℷ2 (0.96, 0.01, 0.03) (0.99, 0.0001, 0.0003) (0.92, 0.02, 0.05) (0.92, 0.02, 0.05)

ℷ3 (0.94, 0.02, 0.03) (0.99, 0.0003, 0.001) (0.91, 0.03, 0.06) (0.91, 0.03, 0.06)

ℷ4 (0.70, 0.07, 0.10) (0.81, 0.003, 0.01) (0.62, 0.08, 0.12) (0.62, 0.08, 0.12)

ℷ5 (0.82, 0.09, 0.06) (0.96, 0.007, 0.002) (0.81, 0.10, 0.06) (0.81, 0.10, 0.06)

Table 12: Overall ranking of the alternatives.

Existing operators Ranking Best alternative
SFSWA [37] �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFSOWA [37] �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
SFSHWA [37] �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
L − SFWA [29] �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
L − SFOWA [29] �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
L − SFHWA [29] �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
L − SFWG [29] �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
L − SFOWG [29] �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
L − SFHWG [29] �s�c(ℷ2)>�s�c(ℷ3)>�s�c(ℷ1)>�s�c(ℷ5)>�s�c(ℷ4) ℷ2
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more flexible and effective way. In addition, the Yager norms
have a more generalized framework that works effectively to
incorporate complex information. We are motivated by the
deficiencies of the existing methods and the beneficial fea-
tures of the Yager AOs to work towards improving a suc-
cessful merger with SFNs.

In this study, under the spherical fuzzy model, we
modified the multiskilled Yager AOs to integrate the benefits
and flexibility of both theories. Later, we explore operational
laws of SFN to construct spherical fuzzy AOs that comply
with the principles of Yager operations. We have established
the SFYWA, SFYOWA, SFYHWA, SFYWG, SFYOWG, and
SFYHWG operators to aggregate the SFNs. Some of the
main characteristics of the proposed operators have been
studied, including idempotency, boundedness, and
monotonicity.

*emain objective of this study is to present a strategy to
address MAGDM that includes spherical fuzzy evaluations
based on the proposed operators. *e theoretical basis of
AOs needs to be carefully considered in preparation for their
use in MAGDM. A practical example is provided to dem-
onstrate the implementation of the established strategy for
the selection of a suitable location for wind power stations.
*e comparison analysis of our proposed theory was con-
ducted with the existing operators. *e superiority of our
proposed operators over the existing DM method has been
highlighted. We examined the effect of different parameter
values on the results of MAGDM issues. In short, this article
creates a tool that has the rich properties of Yager AOs and
the SF model’s flexibility. We will expand our models to
spherical hesitant fuzzy set environments in future research.
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Energy, vol. 163, pp. 222–243, 2016.

[51] D. Latinopoulos and K. Kechagia, “A GIS-based multi-criteria
evaluation for wind farm site selection. A regional scale ap-
plication in Greece,” Renewable Energy, vol. 78, pp. 550–560,
2015.
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(e neutrosophic cubic sets (NCSs) attained attraction of many researchers in the current time, so the need to discuss and study
their stability was felt. (us, in this article, we discuss the three types of stability of NCSs such as truth-stability, indeterminacy-
stability, and falsity-stability. We define the left (resp., right) truth-left evaluative set, left (resp., right) indeterminacy-evaluative
set, and left (resp., right) falsity-evaluative set. A new notion of stable NCSs, partially stable NCSs, and unstable NCSs is defined.
We observe that every NCS needs not to be a stable NCS but each stable NCS must be an NCS, i.e., every internal NCS is a stable
NCS but an external NCS may or may not be a stable NCS. We also discuss some conditions under which the left and right
evaluative points of an external NCS becomes a neutrosophic bipolar fuzz set. We have provided the condition under which an
external NCS becomes stable. Moreover, we discuss the truth-stable degree, indeterminacy-stable degree, and falsity-stable degree
of NCSs.We have also defined an almost truth-stable set, almost indeterminacy-stable set, almost falsity-stable set, almost partially
stable set, and almost stable set with examples. Application of stable NCSs is given with a numerical example at the end.

1. Introduction

(e crisp set lost the stability as it covers the extremes only,
which is not the ideal situation in every problem. To cover
this gap, Zadeh [1] presented the idea of the fuzzy set (FS) in
1965 which is stable as compared to the crisp set. But, when
there is a case to handle the negative characteristics, the
fuzzy set (FS) too lost its stability. To cover this gap, Ata-
nassov [2], in 1986, gave the idea of intutionistic fuzzy sets
(IFSs) which are more stable than the fuzzy set. But, the
problem with Atanassov’s idea is that indeterminacy is lost
and no proper attraction is given to it. (en, Smarandache
[3] covered this gap by giving a new idea of a neutrosophic
set which is a stable version other than the fuzzy set and
intutionistic fuzzy sets. (e neutrosophic set (NS) is the
extension of the FS, IVFS, and IFS. In the NS, we deal with its
three components, that is, truthfulness, indeterminate, and
untruthfulness, and these three functions are independent
completely. Neutrosophy gives us a support for a whole

family of new mathematical theories with the abstraction of
both classical and fuzzy counterparts. In real life and in
scientific problems to apply the neutrosophic set, Wang et al.
[4] introduced the new idea of a single-valued neutrosophic
set (SVNS) and interval neutrosophic set (INS). (ese are
subclasses of the NS, in which truthfulness, indeterminate,
and untruthfulness were taken in a closed interval [0, 1], see
also [5]. On the other side, Zadeh [6] made another ex-
tension which is known as the interval-valued fuzzy set
(IVFS), in which he described interval membership function.
(ere are many real-life applications of the IVFS, i.e.,
Sambuc [7] in medical diagnosis in thyroidian, Gorzalczany
in approximate reasoning, and Turksen [8, 9] in interval-
valued logic. In 2012, the theme of the cubic set (CS) was
used by Jun et al. [10]. CS is the combination of the IVFS and
FS in the form of an ordered pair. (ese all are mathematical
tools to determine the complications in our daily life. Jun
et al. [11] gave the idea of the NCS. For application of NCSs,
we refer to [12–17]. In 2017, the concept of stable cubic sets

Hindawi
Journal of Mathematics
Volume 2020, Article ID 8835019, 16 pages
https://doi.org/10.1155/2020/8835019

mailto:maalshmrani1@kau.edu.sa
https://orcid.org/0000-0003-2760-8086
https://orcid.org/0000-0002-6438-1047
https://orcid.org/0000-0001-8261-7204
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8835019


RE
TR
AC
TE
D

was introduced by Muhiuddin et al. [18]. In 2019 and 2020,
Smarandache [19–21] generalized the classical algebraic
structures to neutroalgebraic structures (or neutroalgebras)
(whose operations and axioms are partially true, partially
indeterminate, and partially false) as extensions of partial
algebra and to antialgebraic structures (or antialgebras)
(whose operations and axioms are totally false). Also, in
general, he extended any classical structure, in no matter
what field of knowledge, to a neutrostructure and an anti-
structure. Similarly, as alternatives to a classical theorem
(that is true for all sets’ elements) are the neutrotheorem
(partially true, partially indeterminate, and partially false)
and antitheorem (false for all sets’ elements), respectively.

In this paper, we define different types of the stable
neutrosophic cubic set with examples and some basic results.
We also define the concept of almost stable neutrosophic
cubic sets. At the end, we have provided an application of the
presented theory.

2. Preliminaries

(is section mainly recalls some basic concepts related to
fuzzy sets [1], cubic sets [10], neutrosophic sets [3, 4],
neutrosophic cubic sets [11], and evaluative structure of
cubic sets [18]. For more detail of these sets, we refer the
reader to [1, 3, 4, 10, 11, 18].

Definition 1 (see [1]). A mapping p: U⟶ [0, 1] is called an
FS, and 􏽥p (ů) is a membership function and denoted by p.

Definition 2 (see [10]). A structure C � (�u; 􏽥p(�u), p (�u)|�u􏼈

∈ U)} is a cubic set inU in which 􏽥p(ů) is IVF inU, and p (ů) is
an FS in U. (is is simply denoted by C � (􏽥p, p). C�u denotes
the collection of cubic sets in U.

Definition 3 (see [3, 4]). A neutrosophic set is a structure

N � �u; TN(�u), IN(�u), FN(�u)|�u ∈ U( 􏼁􏼈 􏼉, (1)

in U. Here, (TN(�u), IN(�u), FN(�u) ∈ [0, 1]) are three func-
tions, known as truthfulness, indeterminate, and untruth-
fulness, respectively, simply denoted by N � (TN, IN, FN).

Definition 4 (see [11]). A structure

NC � �u; 􏽥TNC
(�u), 􏽥INC

(�u), 􏽥FNC
(�u), TNC

(�u), INC
(�u), FNC

(�u)|�u ∈ U􏼐 􏼑􏽮 􏽯,

(2)

is an NCS in X. Here,

􏽥TNC
� T

L
NC

, T
U
NC

􏽨 􏽩, 􏽥INC
� I

L
NC

, I
U
NC

􏽨 􏽩, 􏽥FNC
F

L
NC

, F
U
NC

􏽨 􏽩􏼐 􏼑,

(3)

is an interval NS and (TNC
, INC

, FNC
) is an NS in X simply

denoted by

NC � 􏽥TNC
, 􏽥INC

, 􏽥FNC
, TNC

, INC
, FNC

􏼐 􏼑,

[0, 0]≤ 􏽥TNC
+ 􏽥INC

+ 􏽥FNC
≤ [3, 3],

0≤TNC
+ INC

+ FNC
≤ 1.

(4)

Definition 5 (see [18]). A structure C � (�u; 􏽥p (�u), p (�u)|�u􏼈

∈ U)} is a CS in U in which C (ů) is the evaluative structure
defined as follows:

EC � �u; EC(�u)|�u ∈ U( 􏼁􏼈 􏼉, (5)

where EC(�u) � 〈l(EC(�u)), r(EC(�u))〉 with left evaluative
point l(EC(�u)) � p(�u) − 􏽥p(�u) and right evaluative point
r(EC(�u)) � p(�u)+ − p(�u) at�u ∈ U. We say that EC(�u) is the
evaluative point of C � (􏽥p, p) at �u ∈ U.

3. Neutrostable Neutrosophic Cubic Sets

In this section, we provide the concepts of the truth-evaluative
set, indeterminacy-evaluative set, falsity-evaluative set, stable
truth-element, stable indeterminacy-element, stable falsity-
element, and unstable element of the NCS. We also discuss
some interesting results.

Definition 6. Let p � 〈Tp , Ip , F p , tp , ip , fp 〉 be an NCS in
U. (en,

(1) (e truth-evaluative set of p � 〈Tp , I p , Fp , tp , ip ,

fp 〉 is represented as

ETp � �u, ETp (�u)􏼐 􏼑|�u ∈ U􏽮 􏽯

� (left truth − evaluative point, right truth − evaluative point)

� l ETp (�u)􏼐 􏼑, r ETp (�u)􏼐 􏼑􏼐 􏼑

� t(�u) − T
−

(�u), T
+
(�u) − t(�u)( 􏼁.

(6)
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(2) (e indeterminacy-evaluative set of p � 〈Tp , Ip ,

Fp , tp , ip , f p 〉 is represented as

EIp � �u, EIp (�u)􏼐 􏼑|�u ∈ U􏽮 􏽯

� (left indeterminacy − evaluative point, right indeterminacy − evaluative point)
�〈l EIp (�u)􏼐 􏼑, r EIp (�u)􏼐 􏼑〉
� i(�u) − I

−
(�u), I

+
(�u) − i(�u)( 􏼁.

(7)

(3) (e falsity-evaluative set of p � 〈Tp , Ip , Fp , tp , ip ,

fp 〉 is represented as

EFp � �u, EFp (�u)􏼐 􏼑|�u ∈ U􏽮 􏽯

� (left falsity − evaluative point, right falsity − evaluative point)
�〈l EFp (�u)􏼐 􏼑, r EFp (�u)􏼐 􏼑〉
� f(�u) − F

−
(�u), F

+
(�u) − f(�u)( 􏼁.

(8)

(e collection

ELp (�u) � l ETp (�u)􏼐 􏼑, l EIp (�u)􏼐 􏼑, l EF p (�u)􏼐 􏼑􏼐 􏼑, (9)

is called the left evaluative point and the collection

ERp (�u) � r ETp (�u)􏼐 􏼑, r EIp (�u)􏼐 􏼑, r EF p (�u)􏼐 􏼑􏼐 􏼑, (10)

is called the right evaluative point. We say that Eβ(�u) �

(ELβ(�u), ERβ(�u)) is the evaluative point.

Example 1. Let β � 〈�u, T(�u), I(�u), F(�u), t(�u),{

i(�u), f(�u)〉|�u ∈ I} be an NCS in U. If

〈T(�u), I(�u), F(�u), t(�u), i(�u), f(�u)〉

� 〈[0.2, 0.4], [0.4, 0.6], [0.5, 0.7], (0.3, 0.2, 0.8)〉,

for all�u ∈ U,

(11)

then ETβ � 0.1, 0.1{ }, EIβ � − 0.2, 0.4{ }, EF β � 0.3, − 0.1{ }.
(us,

Eβ(�u) � ELβ(�u), ERβ(�u)􏼐 􏼑

� (�u, 〈0.1, − 0.2, 0.3, 0.1, 0.4, − 0.1〉)|�u ∈ U{ }.
(12)

Remark 1. In Example 1, we observe that the left or right
evaluative point of the NCS is not necessarily an NS. (is
motivates us to define the following terminologies.

Definition 7. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an NCS in U

with the evaluative set

Eβ � �u; ELβ(�u), ERβ(�u)􏼐 􏼑􏼐 􏼑|�u ∈ U􏽮 􏽯. (13)

An element ů∈U is called

(1) Truth stable element of U if

ETβ � �u; t l STβ(�u)􏼐 􏼑, r STβ(�u)􏼐 􏼑􏼐 􏼑􏽮 􏽯

� �u; t(left truth stable − element, right truth stable − element)􏼈 􏼉

� �u; t t(�u) − T
−

(�uT
+
(�u) − t(�u)( 􏼁n≥ q0􏼈 􏼉.

(14)

(2) Indeterminacy stable element of U if

EIβ � �u; t l SIβ(�u)􏼐 􏼑, r SIβ(�u)􏼐 􏼑􏼐 􏼑􏽮 􏽯

� �u; t(left indeterminacy stable − element, right indeterminacy stable − element)􏼈 􏼉,

� �u; t i(�u) − I
−

(�u), I
+
(�u) − i(�u)( 􏼁n≥ q0􏼈 􏼉

(15)
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(3) Falsity stable element of U if

EFβ � l SFβ(�u)􏼐 􏼑, r SFβ(�u)􏼐 􏼑􏼐 􏼑

� �u; t(left stable falsity − element, right stable falsity − element)􏼈 􏼉

� f(�u) − F
−

(�u), F
+
(�u) − f(�u)( 􏼁≥ 0.

(16)

An element ů∈U is called stable if it satisfies conditions
(1–3).(e set of all stable elements of U is called stable cut of
β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 in U and is denoted by Sβ. We say
that β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 is a stable neutrosophic set if
Sβ � U.

An element ů∈U is called partially stable if it partially
satisfies conditions (1–3). (e set of all partially stable ele-
ments of U is called partially stable cut of β � 〈Tβ,

Iβ, Fβ, tβ, iβ, fβ〉 in U and is denoted by Pβ. We say that β �

〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 is a partially stable neutrosophic set if
Pβ ⊂ U.

An element ů∈U is called antistable (unstable) if it does
not satisfy conditions (1–3). (e set of all unstable stable
elements of U is called unstable stable cut of β � 〈Tβ,

Iβ, Fβ, tβ, iβ, fβ〉 in U and is denoted by Uβ. We say that β �

〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 is a unstable stable neutrosophic set if
U\ss⊆U.

(us, U � Sβ ∪Pβ ∪Uβ.

Example 2. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an NCS in U �

0, a, b, c{ } given by Table1.
Clearly, 0, a{ } are stable elements of U and b, c{ } are

unstable elements of U. (us,

U � a, b, c, d{ }

� Sβ � 0, a{ }∪Pβ � Φ∪Uβ � b, c{ }.
(17)

Example 3. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an NCS in U �

a, b{ } given by Table 2.
Clearly, a and b are stable elements of U. (us,

U � a, b{ }

� Sβ � a, b{ }∪Pβ � Φ∪Uβ � Φ.
(18)

Remark 2. Every internal NCS is a stable NCS, as shown in
example 3. If an NCS is neither internal nor external, then we
may have some stable elements with respect to the internal
portion and some unstable elements with respect to the
external portion as given in the Example 2. (us, an external
NCS may or may not be a stable NCS, as shown in Examples
4 and 5.

Example 4. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an external NCS
in U � a, b{ } given by Table 3.

(en, clearly, a, b are unstable elements of U. (us,

U � a, b{ }

� Sβ � Φ∪Pβ � a, b{ }∪Uβ � Φ.
(19)

Example 5. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an external NCS
in U � a, b{ } given by Table 4.

(en, clearly, a, b are stable elements of U. (us,

U � a, b{ }

� Sβ � a, b{ }Φ∪Pβ � Φ∪Uβ � Φ.
(20)

Example 6. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an external NCS
in U � a{ } given by Table 5.

Clearly, a is an unstable element of U. (us,
Uβ � a{ } � U. Hence, U � Sβ � Φ∪Pβ � Φ∪Uβ � a{ }.

Example 7. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an external NCS
in UU � a{ } given by Table 6.

Clearly, a is an unstable element of U. (us,
Uβ � a{ } � U. Hence, U � Sβ � Φ∪Pβ � Φ∪Uβ � a{ }.

Example 8. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an NCS in U �

a, b, c{ } given by Table 7.
Clearly, a and b are partially stable elements of U, so

Pβ � a, b{ } ⊂ U and c is the only stable element of U, so
Sβ � c{ }. Also, there is no element which is unstable, so
Uβ � Φ. Hence, U � Sβ ∪Pβ ∪Uβ.

Remark 3

(1) If we have an external NCS which is unstable like in
Example 6 such that

t(�u)> T
−

(�u), T
+
(�u)􏼂 􏼃, i(�u)

> I
−

(�u), I
+
(�u)􏼂 􏼃, f(�u)> F

−
(�u), F

+
(�u)􏼂 􏼃,

(21)

then its right evaluative point becomes a neu-
trosophic bipolar fuzzy set.

(2) If we have an external NCS which is unstable like in
example 7 such that

t(�u)< T
−

(�u), T
+
(�u)􏼂 􏼃, i(�u)

< I
−

(�u), I
+
(�u)􏼂 􏼃, f(�u)< F

−
(�u), F

+
(�u)􏼂 􏼃,

(22)

then its left evaluative point becomes a neutrosophic
bipolar fuzzy set.
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(3) Every NCS needs not to be a stable NCS, but each
stable NCS must be an NCS.

(4) Observing Example 5, we reached at (eorem 1.

Theorem 1. If an external NCS β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 in
U satisfies the condition

(∀�u ∈ U)

T
−
β(�u) � tβ(�u), T

+
β(�u) � t(�u)􏼐 􏼑,

I
−

(�u) � i(�u), I
+
(�u) � i(�u)( 􏼁,

F
−

(�u) � f(�u), F
+
(�u) � f(�u)( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (23)

then β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 is a stable NCS.

Table 1: Neutrosophic cubic set β of U.

U Tβ(�u) Iβ(�u) Fβ(�u) tβ(�u) iβ(�u) fβ(�u)

0 [0.3, 0.5] [0.2, 0.4] [0.2, 0.5] 0.4 0.3 0.4
a [0.3, 0.5] [0.3, 0.5] [0.3, 0.6] 0.4 0.4 0.5
b [0.6, 0.8] [0.5, 0.6] [0.4, 0.5] 0.5 0.4 0.3
c [0.4, 0.8] [0.5, 0.6] [0.6, 0.7] 0.9 0.7 0.8

Table 2: Neutrosophic cubic set β of U.

U Tβ(�u) Iβ(�u) Fβ(�u) tβ(�u) iβ(�u) fβ(�u)

a [0.1, 0.7] [0.1, 0.6] [0.2, 0.8] 0.6 0.5 0.7
b [0.6, 0.8] [0.6, 0.9] [0.5, 0.7] 0.7 0.8 0.6

Table 3: Neutrosophic cubic set β of U.

U Tβ(�u) Iβ(�u) Fβ(�u) tβ(�u) iβ(�u) fβ(�u)

a [0.1, 0.3] [0.1, 0.4] [0.3, 0.6] 0.4 0.5 0.7
b [0.5, 0.8] [0.6, 0.8] [0.4, 0.6] 0.4 0.5 0.3

Table 4: External neutrosophic cubic set β of U.

U Tβ(�u) Iβ(�u) Fβ(�u) tβ(�u) iβ(�u) fβ(�u)

a [0.2, 0.4] [0.3, 0.5] [0.3, 0.6] 0.2 0.3 0.3
b [0.4, 0.8] [0.6, 0.7] [0.4, 0.5] 0.8 0.7 0.5

Table 5: External neutrosophic cubic set β of U.

U Tβ(�u) Iβ(�u) Fβ(�u) tβ(�u) iβ(�u) fβ(�u)

a [0.3, 0.5] [0.1, 0.4] [0.4, 0.6] 0.8 0.5 0.7

Table 6: External neutrosophic cubic set β of U.

U Tβ(�u) Iβ(�u) Fβ(�u) tβ(�u) iβ(�u) fβ(�u)

a [0.5, 0.6] [0.3, 0.5] [0.7, 0.9] 0.4 0.2 0.6

Table 7: Neutrosophic cubic set β of U.

U Tβ(�u) Iβ(�u) Fβ(�u) tβ(�u) iβ(�u) fβ(�u)

a [0.7, 0.8] [0.3, 0.5] [0.6, 0.9] 0.7 0.8 0.2
b [0.1, 0.5] [0.6, 0.9] [0.3, 0.8] 0.2 0.7 0.1
c [0.1, 0.4] [0.2, 0.5] [0.3, 0.7] 0.3 0.4 0.5
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Proof. Straightforward.

Remark 4. We observe that if β is both an internal and
external NCS, then β is a stable NCS.

Theorem 2. 5e complement of a stable NCS is also a stable
NCS.

Proof. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be a stable NCS in U.
(en,

U � Sβ � �u∈�u|l Eβ(�u)􏼐 􏼑≥ 0, r Eβ(�u)􏼐 􏼑≥ 0􏽮 􏽯. (24)

Hence,

t(�u) − T
−

(�u)≥ 0,

T
+
(�u) − t(�u)≥ 0

􏼠 􏼡,
i(�u) − I

−
(�u)≥ 0,

I
+
(�u) − i(�u)≥ 0

􏼠 􏼡,
f(�u) − F

−
(�u)≥ 0,

F
+
(�u) − f(�u)≥ 0

􏼠 􏼡, ∀�u ∈ U. (25)

It follows that

l EβC (�u)􏼐 􏼑 � (1 − t(�u)) − 1 − T
+
(�u)( 􏼁 � T

+
(�u) − t(�u)≥ 0,

l EβC (�u)􏼐 􏼑 � (1 − i(�u)) − 1 − I
+
(�u)( 􏼁 � I

+
(�u) − i(�u)≥ 0,

l EβC (�u)􏼐 􏼑 � (1 − f(�u)) − 1 − F
+
(�u)( 􏼁 � F

+
(�u) − f(�u)≥ 0,

r EβC (�u)􏼐 􏼑 � 1 − T
−

(�u)( ) − (1 − t(�u)) � t(�u) − T
−

(�u)≥ 0,

r EβC (�u)􏼐 􏼑 � 1 − I
−

(�u)( ) − (1 − i(�u)) � i(�u) − I
−

(�u)≥ 0,

r EβC (�u)􏼐 􏼑 � 1 − F
−

(�u)( ) − (1 − f(�u)) � f(�u) − F
−

(�u)≥ 0.

(26)

(erefore, βC � 〈Tc
β, Ic

β, Fc
β, tc

β, icβ, fc
β〉 is a stable NCS.

Theorem 3. 5e complement of an unstable NCS is also an
unstable NCS.

Proof. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an unstable NCS in
U. (en,

U � Uβ � �u∈�u|l Eβ(�u)􏼐 􏼑< 0􏽮 􏽯∪ �u∈�u|r Eβ(�u)􏼐 􏼑< 0􏽮 􏽯≠Φ,

(27)

and so, there exist �u ∈ U such that

t(�u) − T
−

(�u)< 0( ), i(�u) − I
−

(�u)< 0( ),

f(�u) − F
−

(�u)< 0( 􏼁, ∀�u ∈ U,
(28)

or

T
+
(�u) − t(�u)< 0( 􏼁, I

+
(�u) − i(�u)< 0( 􏼁,

F
+
(�u) − f(�u)< 0( 􏼁, ∀�u ∈ U.

(29)

It follows that

l EβC (�u)􏼐 􏼑 � (1 − t(�u)) − 1 − T
+
(�u)( 􏼁 � T

+
(�u) − t(�u)< 0,

l EβC (�u)􏼐 􏼑 � (1 − i(�u)) − 1 − I
+
(�u)( 􏼁 � I

+
(�u) − i(�u)< 0,

l EβC (�u)􏼐 􏼑 � (1 − f(�u)) − 1 − F
+
(�u)( 􏼁 � F

+
(�u) − f(�u)< 0,

(30)

or

r EβC (�u)􏼐 􏼑 � 1 − T
−

(�u)( ) − (1 − t(�u)) � t(�u) − T
−

(�u)< 0,

r EβC (�u)􏼐 􏼑 � 1 − I
−

(�u)( ) − (1 − i(�u)) � i(�u) − I
−

(�u)< 0,

r EβC (�u)􏼐 􏼑 � 1 − F
−

(�u)( ) − (1 − f(�u)) � f(�u) − F
−

(�u)< 0.

(31)

Hence, UβC ≠Φ, and therefore, βC � 〈Tc
β, Ic

β, Fc
β,

tc
β, icβ, fc

β〉 is an unstable NCS.
Example 9 illustrates (eorem 3.

Example 9. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an NCS in U �

a, b{ } given by Table 8.
Clearly, a and b are unstable elements of U and their

complements are represented by Table 9.
(en, βc � 〈Tc

β, Ic
β, Fc

β, tc
β, icβ, fc

β〉 is unstable since
a ∈ Uβc .

Theorem 4. 5e P-union and P-intersection of two stable
NCSs in U are stable cubic sets in U.

Proof. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 and β2 � 〈Tβ2, Iβ2, F β2,

tβ2, iβ2, fβ2〉 be two NCSs in U. (en,

Sβ � �u∈ U|l ββ(�u)􏼐 􏼑≥ 0, r β5β(�u)􏼐 􏼑≥ 0􏽮 􏽯 � U,

Sβ2 � �u∈ U|l β5β2(�u)􏼐 􏼑≥ 0, r β5β2(�u)􏼐 􏼑≥ 0􏽮 􏽯 � U.
(32)

It follows that
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tβ(�u) − T
−
β(�u)≥ 0,

T
+
β(�u) − tβ(�u)≥ 0

⎛⎝ ⎞⎠,
iβ(�u) − I

−
β(�u)≥ 0,

I
+
β(�u) − iβ(�u)≥ 0

⎛⎝ ⎞⎠,
fβ(�u) − F

−
β(�u)≥ 0,

F
+
β(�u) − fβ(�u)≥ 0

⎛⎝ ⎞⎠, ∀�u ∈ U,

tβ2(�u) − T
−
β2

(�u)≥ 0,

T
+
β2

(�u) − tβ2(�u)≥ 0
⎛⎝ ⎞⎠,

iβ2(�u) − I
−
β2

(�u)≥ 0,

I
+
β2

(�u) − iβ2(�u)≥ 0
⎛⎝ ⎞⎠,

fβ2(�u) − F
−
β2

(�u)≥ 0,

F
+
β2

(�u) − fβ2(�u)≥ 0
⎛⎝ ⎞⎠, ∀�u ∈ U.

(33)

Assume that tβ1(�u)≥ tβ2(�u), iβ1(�u)≥ iβ2(�u), fβ1(�u)≥
fβ2(�u) and consider the following cases:

(i)
(T

−
β1

(�u)≥T
−
β2

(�u), T
+
β1

(�u)≥T
+
β2

(�u))

(I
−
β1

(�u)≥ I
−
β2

(�u), I
+
β1

(�u)≥ I
+
β2

(�u))

(F
−
β1

(�u)≥F
−
β2

(�u), F
+
β1

(�u)≥F
+
β2

(�u))

(ii)
(T

−
β1

(�u)≤T
−
β2

(�u), T
+
β1

(�u)≥T
+
β2

(�u))

(I
−
β1

(�u)≥ I
−
β2

(�u), I
+
β1

(�u)≥ I
+
β2

(�u))

(F
−
β1

(�u)≥F
−
β2

(�u), F
+
β1

(�u)≥F
+
β2

(�u))

(iii)
(T

−
β1

(�u)≤T
−
β2

(�u), T
+
β1

(�u)≤T
+
β2

(�u))

(I
−
β1

(�u)≥ I
−
β2

(�u), I
+
β1

(�u)≥ I
+
β2

(�u))

(F
−
β1

(�u)≥F
−
β2

(�u), F
+
β1

(�u)≥F
+
β2

(�u))

(iv)
(T

−
β1

(�u)≤T
−
β2

(�u), T
+
β1

(�u)≤T
+
β2

(�u))

(I
−
β1

(�u)≤ I
−
β2

(�u), I
+
β1

(�u)≥ I
+
β2

(�u))

(F
−
β1

(�u)≥F
−
β2

(�u), F
+
β1

(�u)≥F
+
β2

(�u))

(v)
(T

−
β1

(�u)≤T
−
β2

(�u), T
+
β1

(�u)≤T
+
β2

(�u))

(I
−
β1

(�u)≤ I
−
β2

(�u), I
+
β1

(�u)≤ I
+
β2

(�u))

(F
−
β1

(�u)≥F
−
β2

(�u), F
+
β1

(�u)≥F
+
β2

(�u))

(vi)
(T

−
β1

(�u)≤T
−
β2

(�u), T
+
β1

(�u)≤T
+
β2

(�u))

(I
−
β1

(�u)≤ I
−
β2

(�u), I
+
β1

(�u)≤ I
+
β2

(�u))

(F
−
β1

(�u)≤F
−
β2

(�u), F
+
β1

(�u)≥F
+
β2

(�u))

(vii)
(T

−
β1

(�u)≤T
−
β2

(�u), T
+
β1

(�u)≤T
+
β2

(�u))

(I
−
β1

(�u)≤ I
−
β2

(�u), I
+
β1

(�u)≤ I
+
β2

(�u))

(F
−
β1

(�u)≤F
−
β2

(�u), F
+
β1

(�u)≤F
+
β2

(�u))

(viii)
(T

−
β1

(�u)≥T
−
β2

(�u), T
+
β1

(�u)≤T
+
β2

(�u))

(I
−
β1

(�u)≤ I
−
β2

(�u), I
+
β1

(�u)≤ I
+
β2

(�u))

(F
−
β1

(�u)≤F
−
β2

(�u), F
+
β1

(�u)≤F
+
β2

(�u))

(ix)
(T

−
β1

(�u)≥T
−
β2

(�u), T
+
β1

(�u)≥T
+
β2

(�u))

(I
−
β1

(�u)≤ I
−
β2

(�u), I
+
β1

(�u)≤ I
+
β2

(�u))

(F
−
β1

(�u)≤F
−
β2

(�u), F
+
β1

(�u)≤F
+
β2

(�u))

(x)
(T

−
β1

(�u)≥T
−
β2

(�u), T
+
β1

(�u)≥T
+
β2

(�u))

(I
−
β1

(�u)≥ I
−
β2

(�u), I
+
β1

(�u)≤ I
+
β2

(�u))

(F
−
β1

(�u)≤F
−
β2

(�u), F
+
β1

(�u)≤F
+
β2

(�u))

(xi)
(T

−
β1

(�u)≥T
−
β2

(�u), T
+
β1

(�u)≥T
+
β2

(�u))

(I
−
β1

(�u)≥ I
−
β2

(�u), I
+
β1

(�u)≥ I
+
β2

(�u))

(F
−
β1

(�u)≤F
−
β2

(�u), F
+
β1

(�u)≤F
+
β2

(�u))

(xii)
(T

−
β1

(�u)≥T
−
β2

(�u), T
+
β1

(�u)≥T
+
β2

(�u))

(I
−
β1

(�u)≥ I
−
β2

(�u), I
+
β1

(�u)≥ I
+
β2

(�u))

(F
−
β1

(�u)≥F
−
β2

(�u), F
+
β1

(�u)≤F
+
β2

(�u))

(e first case implies that

max tβ1(�u), iβ1(�u), fβ1(�u)􏼐 􏼑, tβ2(�u), iβ2(�u), fβ2(�u)􏼐 􏼑􏽮 􏽯

� tβ1(�u)≥T
−
β1

(�u), iβ1(�u)≥ I
−
β1

(�u), iβ1(�u)≥ I
−
β1

(�u)􏼐 􏼑

� max T
−
β1

(�u), I
−
β1

(�u), F
−
β1

(�u), T
−
β2

(�u), I
−
β2

(�u), F
−
β2

(�u)􏽮 􏽯,

max tβ1(�u), iβ1(�u), fβ1(�u)􏼐 􏼑, tβ2(�u, iβ2(�u), fβ2(�u)􏼐 􏼑􏽮 􏽯

� tβ1(�u)≥T
+
β1

(�u), iβ1(�u)≥ I
+
β1

(�u), iβ1(�u)≥ I
+
β1

(�u)􏼐 􏼑

� max T
+
β1

(�u), I
+
β1

(�u), F
+
β1

(�u), T
+−
β2

(�u), I
+
β2

(�u), F
+
β2

(�u)􏽮 􏽯.

(34)

It follows that

tβ1(�u) − T
−
β1

(�u), iβ1(�u) − I
−
β1

(�u), fβ1(�u) − F
−
β1

(�u)􏼐 􏼑≥ 0,

Tβ1(�u)
+

− tβ1(�u), Iβ1(�u)
+

− iβ1(�u), Fβ1(�u)
+

− fβ1(�u)􏼐 􏼑≥ 0.

(35)

(e result of the remaining cases can be obtained in the
same way.(erefore, β1 ∪ Pβ2 is a stable CS in U. By the same
way, we also know that β1 ∪ Pβ2 is a stable CS in U.

Example 10 shows that the Ṙ-union and the
Ṙ-intersection of two stable NCSs in U may not be a stable
NCS in U.

Table 8: Neutrosophic cubic set β of U.

U Tβ(�u) Iβ(�u) Fβ(�u) tβ(�u) iβ(�u) fβ(�u)

a [0.1, 0.5] [0.3, 0.6] [0.2, 0.4] 0.4 0.5 0.3
b [0.6, 0.9] [0.1, 0.9] [0.1, 0.6] 0.7 0.6 0.5

Table 9: Complement of neutrosophic cubic set β of U provided in Table 8.

U Tc
β(�u) Ic

β(�u) Fc
β(�u) tc

β(�u) icβ(�u) fc
β(�u)

a [0.5, 0.9] [0.4, 0.7] [0.6, 0.8] 0.6 0.5 0.7
b [0.1, 0.4] [0.1, 0.9] [0.4, 0.9] 0.3 0.4 0.5
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Example 10. Let β1 � 〈Tβ1, Iβ1, Fβ1, tβ1, iβ1, fβ1〉 and β2 �

〈Tβ2, Iβ2, Fβ2, tβ2, iβ2, fβ2〉 be two NCSs in U � a, b{ } defined
by Tables 10 and 11, respectively.

(en,

β1 ∪ Rβ2 �
〈a, [0.4, 0.5], [0.3, 0.9], [0.7, 0.9], 0.15, 0.35, 0.6〉,

〈b, [0.6, 0.9], [0.8, 0.9], [0.5, 0.6], 0.6, 0.8, 0.25〉
􏼨 􏼩,

β1 ∩ Rβ2 �
〈a, [0.1, 0.3], [0.1, 0.4], [0.3, 0.7], 0.4, 0.8, 0.80〉,

〈b, [0.6, 0.9], [0.1, 0.9], [0.2, 0.4], 0.7, 0.8, 0.56〉
􏼨 􏼩.

(36)

Hence, we know that

Eβ1 ∪ Rβ2(a) � 〈(− 0.25, 0.35), (0.05, 0.55), (− 0.1, 0.3)〉,

Eβ1 ∪ β2(b) � 〈(0, 0.3), (0, 0.1), (− 0.25, 0.35)〉,

Eβ1 ∩ β2(a) � 〈(0.3, − 0.1), (0.7, − 0.4), (0.5, − 0.1)〉,

Eβ1 ∩ β2(b) � 〈(0.1, 0.2), (0.7, 0.1), (0.36, − 0.16)〉.

(37)

Theorem 5. Let β1 � 〈Tβ1, Iβ1, Fβ1, tβ1, iβ1, fβ1〉 and
β2 � 〈Tβ2, Iβ2, Fβ2, tβ2, iβ2, fβ2〉 be two internal NCSs in U such
that

(∀�u ∈ U) max
Tβ1(�u)

−
, Iβ1(�u)

−
, Fβ1(�u)

−
􏼐 􏼑,

Tβ2(�u)
−

, Iβ2(�u)
−

, Fβ2(�u)
−

􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
≤ tβ1, iβ1, fβ1􏼐 􏼑∧ tβ2, iβ2, fβ2􏼐 􏼑􏼐 􏼑(�u)⎛⎜⎝ ⎞⎟⎠. (38)

Then, the Ṙ-union of β1 and β2 is a stable NCS in U.

Proof. Let β1 � 〈Tβ1, Iβ1, Fβ1, tβ1, iβ1, fβ1〉 and β2 � 〈Tβ2, Iβ2,

Fβ2, tβ2, iβ2, fβ2〉 be two internal NCSs in U. (en, (Tβ1

(�u)− ≤ tβ1(�u)≤Tβ1(�u)+), (Iβ1(�u)− ≤ iβ1(�u)≤ Iβ1(�u)+), and
(Fβ1(�u)− ≤fβ1(�u)≤Fβ1(�u)+) and (Tβ2(�u)− ≤ tβ2(�u)≤
Tβ1(�u)+), (Iβ2(�u)− ≤ iβ2(�u)≤ Iβ2(�u)+), and (Fβ2(�u)− ≤fβ2
(�u)≤Fβ2(�u)+), ∀�u∈ U. We know that

max Tβ1(�u)
−

, I
−
β1

(�u)≤Fβ1(�u)
−

􏼐 􏼑, Tβ1(�u)
−

, Iβ1(�u)
− ≤Fβ1(�u)

−
􏼐 􏼑􏽮 􏽯

≤ tβ1, iβ1, fβ1􏼐 􏼑∧ tβ2, iβ2, fβ2􏼐 􏼑􏼐 􏼑(�u)

≤max Tβ1(�u)
+
, Iβ1(�u)

+ ≤Fβ1(�u)
+

􏼐 􏼑, Tβ1(�u)
+
, Iβ1(�u)

+ ≤Fβ1(�u)
+

􏼐 􏼑􏽮 􏽯,

(39)

for all�u ∈ U. Hence, the Ṙ-union of β1 and β2 is an internal
NCS, and so it is stable by the fact that every internal NCS is
stable.

Theorem 6. Let β1 � 〈Tβ1, Iβ1, Fβ1, tβ1, iβ1, fβ1〉 and
β2 � 〈Tβ2, Iβ2, Fβ2, tβ2, iβ2, fβ2〉 be two internal NCSs in U such
that

(∀�u ∈ U) max
Tβ1(�u)

+
, Iβ1(�u)

+
, Fβ1(�u)

+
􏼐 􏼑,

Tβ2(�u)
+
, Iβ2(�u)

+
, Fβ2(�u)

+
􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
≤ tβ1, iβ1, fβ1􏼐 􏼑∨ tβ2, iβ2, fβ2􏼐 􏼑􏼐 􏼑(�u)⎛⎜⎝ ⎞⎟⎠. (40)

Then, the Ṙ-intersection of β1 and β2 is a stable NCS in
U.

Proof. Straightforward.

4. Neutro-Almost-Stable Neutrosophic
Cubic Set

In this section, we introduce a new class of the stable
neutrosophic cubic set, namely, the neutro-almost-stable
neutrosophic cubic set.

Definition 8. Let β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 be an NCS with
the evaluative set Eβ � (�u, Eβ(�u))|�u ∈ U􏽮 􏽯 in U. (en,

(1) (e truth-stable degree of β in U is denoted by
Tru(SDβ) and is defined as

Tru SDβ􏼐 􏼑 � 􏽘
�u∈U

l ETβ(�u)􏼐 􏼑, r ETβ(�u)􏼐 􏼑⎛⎝ ⎞⎠. (41)

(2) (e indeterminacy-stable degree of β in U is denoted
by Ind(SDβ) and is defined as

Ind SDβ􏼐 􏼑 � 􏽘
�u∈U

l EIβ(�u)􏼐 􏼑, r EIβ(�u)􏼐 􏼑⎛⎝ ⎞⎠. (42)

(3) (e falsity-stable degree of β in U is denoted by
Fal(SDβ) and is defined as
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Fal SDβ􏼐 􏼑 � 􏽘
�u∈U

l EFβ(�u)􏼐 􏼑, r EFβ(�u)􏼐 􏼑⎛⎝ ⎞⎠. (43)

(4) (e stable degree of β in U is denoted by SDβ and is
defined as SDβ � (Tru(SDβ), Ind(SDβ), Fal(SDβ)).

Definition 9. An NCS with the evaluative set Eβ �

(�u, Eβ(�u))|�u ∈ U􏽮 􏽯 in U is said to be

(1) Almost truth-stable if Tru(SDβ)≥ 0
(2) Almost indeterminacy-stable if Ind(SDβ)≥ 0
(3) Almost falsity-stable if Fal(SDβ)≥ 0
(4) Almost stable if it is almost truth-stable, almost

indeterminacy-stable, and almost falsity-stable, i.e.,
Tru(SDβ)≥ 0, Ind(SDβ)≥ 0, Fal(SDβ)≥ 0.

(5) Almost partially stable if it is almost partially truth-
stable, almost partially indeterminacy-stable, and
almost partially falsity-stable.

(6) Almost unstable if it is almost truth-unstable, almost
indeterminacy-unstable, and almost falsity-unstable,
i.e., Tru(SDβ)< 0, Ind(SDβ)< 0, Fal(SDβ)< 0.

Example 11. Let β1 � 〈Tβ1, Iβ1, Fβ1, tβ1, iβ1, fβ1〉 and β2 �

〈Tβ2, Iβ2, Fβ2, tβ2, iβ2, fβ2〉 be two NCSs in U � a, b{ } defined
by Tables 12 and 13, respectively,with the evaluative set

Eβ1 � 〈(a; 〈0, 0.1〉, 〈0.05, 0.05〉, 〈0.3, 0.1〉),

(b; 〈0.3, 0.1〉, 〈0, 0.1〉, 〈0.06, 0.04〉)〉.
(44)

(en, Tru(SDβ1) � (0.3, 0.2)≥ 0, Ind(SDβ1) � (0.05,

0.15)≥ 0, Fal(SDβ2) � (0.36, 0.14)≥ 0. (us,

SDβ1 � (0.3, 0.2, 0.05, 0.15, 0.36, 0.14)≥ 0, (45)

alsowith the evaluative set

Eβ2 � 〈(a〈0.05, 0.15〉, 〈0.7, 0.1〉, 〈0.1, 0.1〉),

(b〈0.1, 0.2〉, 〈0.7, 0.1〉, 〈0.05, 0.15〉)〉.
(46)

(en, Tru(SDβ2) � (0.15, 0.25)≥ 0, Ind(SDβ2) �

(0.14, 0.2)≥ 0, Fal(SD)β2 � (0.15, 0.25)≥ 0. (us,

SDβ2 � (0.15, 0.35, 0.14, 0.2, 0.15, 0.25)≥ 0. (47)

So, β1 and β2 both are almost stable NCSs.

Example 12. Let β3 � 〈Tβ3, Iβ3, Fβ3, tβ3, iβ3, fβ3〉 be an NCS in
U � a, b{ } defined by Table 14.

(e evaluative set is

Eβ3 � 〈(a〈− 0.1, 0.2〉, 〈0.3, − 0.1〉, 〈− 0.1, 0.3〉),

(b〈− 0.1, 0.5〉, 〈− 0.2, 0.3〉, 〈0.2, − 0.1〉)〉.
(48)

(en, Tru(SDβ3) � (− 0.2, 0.7)< 0. (us, the NCS β3 �

〈Tβ3, Iβ3, Fβ3, tβ3, iβ3, fβ3〉 in U is not almost truth-stable as
Tru(SDβ3)< 0. Also, Ind(SDβ3) � (0.1, 0.2)≥ 0. (us, the
NCS β3 � 〈Tβ3, Iβ3, Fβ3, tβ3, iβ3, fβ3〉 in U is almost indeter-
minacy-stable as Ind(SDβ3)≥ 0. Similarly β3 � 〈Tβ3,

Iβ3, Fβ3, tβ3, iβ3, fβ3〉 in U is almost falsity-stable as
Fal(SDβ3)≥ 0. So, finally, we can say that β3 is an almost
partially stable NCS.

Example 13. Let β4 � 〈Tβ4, Iβ4, Fβ4, tβ4, iβ4, fβ4〉 be an NCS in
U � a, b{ } defined by Table 15

(e evaluative set is

Eβ4 � 〈(a; 〈0.2, − 0.1〉, 〈0.3, − 0.1〉, 〈− 0.1, 0.3〉),

(b; 〈− 0.1, 0.5〉, 〈− 0.2, 0.3〉, 〈0.2, − 0.1〉)〉.
(49)

(en, Tru(SDβ4) � (0.1, 0.4)≥ 0, Ind(SDβ4) � (0.1,

0.2)≥ 0, Fal(SDβ4) � (0.1, 0.2)≥ 0. So, β4 is an almost-stable
NCS, but it is not a stable NCS, as from Definition 7;
Sβ � Φ, Pβ � Φ, Uβ � a, b{ }.

Remark 5. From Examples 11, 12, and 13, we have the
following results.

Theorem 7

(1) Every stable NCS β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 in U is an
almost-stable NCS, but the converse is not true

(2) Every internal NCS is almost stable
(3) Every external NCS may or may not be stable
(4) 5e P-union and P-intersection of two stable NCSs are

almost stable
(5) 5e complement of an almost-stable NC is also an

almost-stable NCS

Proof. Straightforward.

Table 10: Neutrosophic cubic set β1 of U.

U Tβ1(�u) Iβ1(�u) Fβ1(�u) tβ1(�u) iβ1(�u) fβ1(�u)

a [0.4, 0.5] [0.3, 0.4] [0.3, 0.7] 0.4 0.35 0.60
b [0.3, 0.7] [0.8, 0.9] [0.5, 0.6] 0.60 0.8 0.56

Table 11: Neutrosophic cubic set β2 of U.

U Tβ2(�u) Iβ2(�u) Fβ2(�u) tβ2(�u) iβ2(�u) fβ2(�u)

a [0.1, 0.3] [0.1, 0.9] [0.7, 0.9] 0.15 0.8 0.8
b [0.6, 0.9] [0.1, 0.9] [0.2, 0.4] 0.7 0.8 0.25
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5. Application in Decision Making

In this section, we shall define a new approach to multiple
attribute group decision making wıth the help of stable
neutrosophic cubic sets. We also provide a numerical ex-
ample. Suppose H � H1, H2, . . . , Hm􏼈 􏼉. Each alternative Hi

respects n criteria Gj � G1, G2, . . . , Gn􏼈 􏼉 which are expressed
by a stable NCS qij

� ((􏽥qTru ij, 􏽥qInd ij, 􏽥qFal ij)(qTru ij,

qInd ij, qFal ij)), (j � 1, 2, . . . n, i � 1, 2, . . . , m). (e criteria
G1, . . . , Gk are benefit and criteria Gk+1, . . . , Gn are non-
benefit criteria, and ω � (ω1,ω2, . . . ,ωn) is the weighted
vector of the criteria, where, ωiε[0, 1] and 􏽐ωi � 1. So, the
decision matrix is obtained as D � (qij)m×n. (e steps of the
decision making based on stable NCSs are given as follows:

Step 1: we standardize the decision matrix.
Step 2: we construct the normalized decision matrix.
Normalize score or data are as follows:

rij
�

�uij

􏽐�u
2
ij

􏼒 􏼓

, for i � 1, . . . , m; j � 1, . . . , n. (50)

Step 3: we construct the weighted normalized decision
matrix:

vij
� wj · rij

. (51)

Step 4: we determine the ideal and negative ideal so-
lutions. Ideal solution A∗ � v1, . . . , vn􏼈 􏼉, where

v
∗
j � max vij

􏼒 􏼓, if j ∈ J; min vij
􏼒 􏼓, if j ∈ J′􏼚 􏼛. (52)

Negative ideal solution is

A′ � v1′, . . . , vn
′􏼈 􏼉, (53)

where

vj
′ max vij

􏼒 􏼓, if j ∈ J; min vij
􏼒 􏼓, if j ∈ J′􏼚 􏼛. (54)

Step 5: we calculate the separation measures for each
alternative. Separation from the ideal alternatives is

S
∗
i �

��������������

􏽘 v
∗
j − vij

􏼒 􏼓
2

􏼢 􏼣

􏽳

, i � 1, . . . , m. (55)

Similarly, separation from negative ideal alternatives is

Si
′ �

��������������

􏽘 vj
′ − vij

􏼒 􏼓
2

􏼢 􏼣

􏽳

, i � 1, . . . , m. (56)

Step 6: we calculate the relative closeness to the ideal
solution C∗i where

C
∗
i �

Si
′

S
∗
i + Si
′( 􏼁

, 0≤C
∗
i ≤ 1. (57)

We select the option with C∗i closest to 1.

5.1. Numerical Application. At the end of December 2019
[22], in Wuhan, the China Health Commission reported a
cluster of pneumonia cases of unknown etiology. (e
pathogen was identified as novel coronavirus 2019. Later, the
World Health Organization named it Coronavirus Disease

Table 12: Neutrosophic cubic set β1 of U.

U Tβ1(�u) Iβ1(�u) Fβ1(�u) tβ1(�u) iβ1(�u) fβ1(�u)

a [0.4, 0.5] [0.3, 0.4] [0.3, 0.7] 0.4 0.35 0.60
b [0.3, 0.7] [0.8, 0.9] [0.5, 0.6] 0.60 0.8 0.56

Table 13: Neutrosophic cubic set β2 of U.

U Tβ2(�u) Iβ2(�u) Fβ2(�u) tβ2(�u) iβ2(�u) fβ2(�u)

a [0.1, 0.3] [0.1, 0.9] [0.7, 0.9] 0.15 0.8 0.8
b [0.6, 0.9] [0.1, 0.9] [0.2, 0.4] 0.7 0.8 0.25

Table 14: Neutrosophic cubic set β3 of U.

U Tβ3(�u) Iβ3(�u) Fβ3(�u) tβ3(�u) iβ3(�u) fβ3(�u)

a [0.2, 0.3] [0.3, 0.5] [0.4, 0.6] 0.1 0.6 0.3
b [0.3, 0.7] [0.8, 0.9] [0.5, 0.6] 0.2 0.6 0.7

Table 15: Neutrosophic cubic set β4 of U.

U Tβ4(�u) Iβ4(�u) Fβ4(�u) tβ4(�u) iβ4(�u) fβ4(�u)

a [0.2, 0.3] [0.3, 0.5] [0.4, 0.6] 0.4 0.6 0.3
b [0.3, 0.7] [0.8, 0.9] [0.5, 0.6] 0.2 0.6 0.7
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2019 (COVID-19). After the discovery of COVID-19, it
spread in more than 200 countries. COVID-19 has zoonotic
basis, which was then spread through the human interaction
to human population [23]. Common signs of COVID-19
infection are similar to those of common cold and include
respiratory symptoms such as dry cough, fever, shortness of
breath, and breathing difficulties. Initially its etiology was
unknown. Later on, it was studied thoroughly and found
that it has an incubation period of 14 days, during which
some individuals show all the symptoms while others show
mild symptoms. It is sensitive to know that someone have
the disease due to the dual nature (same as common flu) of
COVID-19 symptoms [24]. In this section, we use the
TOPSIS method to rank the COVID-19 in four provinces of
Pakistan. A numerical example which is solved using the
TOPSIS method is presented to demonstrate the applica-
bility and effectiveness of the proposed method.

5.2. Example. Let us consider the decision making problem.
Suppose that there is a panel and they selected four possible
alternatives (H1, H2, H3, H4) to find out the spreading of
COVID-19 in provinces of Pakistan: H1is KPK, H2is Sindh,

H3is Punjab, and H4is Balochistan. A group of doctors
intends to choose one province be the most affected area
from four provinces, to be further evaluated according to the
four attributes, which are shown as G1 effected people, G2
recovered people, G3 admitted people, and G4 number of
deaths. By this method, we can find out which province is
more affected. (en, we must take some action to stop the
cases in that province. (e experts give them advice for
quarantine. Also, they suggest them treatment and say that
the treatment will be continued until the transmission of
virus stops. By using the stable neutrosophic cubic infor-
mation, the alternatives are evaluated by the decision maker
and the results are presented in the decision matrix.

(e decided steps of the TOPSIS method are presented
as follows:

Step 1

(a) (e decision makers take their analysis of each
alternatives based on each criterion and the per-
formance of each alternative Hi with respect to
each criterion Gj (Tex translation failed).

D �

G1 G2 G3 G4

H1

[0.1, 0.4],

[0.2, 0.6],

[0.1, 0.4],

(0.2, 0.5, 0.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.3],

[0.1, 0.3],

[0.1, 0.3],

(0.2, 0.2, 0.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.4],

[0.1, 0.4],

[0.1, 0.4],

(0.2, 0.2, 0.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.4],

[0.1, 0.3],

[0.1, 0.4],

(0.2, 0.2, 0.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

H2

[0.1, 0.3],

[0.1, 0.4],

[0.2, 0.5],

(0.2, 0.2, 0.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.4],

[0.1, 0.6],

[0.1, 0.4],

(0.3, 0.4, 0.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.4],

[0.1, 0.4],

[0.1, 0.4],

(0.2, 0.2, 0.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.3],

[0.2, 0.6],

[0.1, 0.4],

(0.2, 0.4, 0.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

H3

[0.2, 0.5],

[0.2, 0.5],

[0.1, 0.4],

(0.3, 0.3, 0.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.4],

[0.1, 0.3],

[0.2, 0.6],

(0.3, 0.2, 0.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.3, 0.6],

[0.3, 0.6],

[0.1, 0.5],

(0.4, 0.4, 0.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.4],

[0.1, 0.4],

[0.2, 0.6],

(0.2, 0.3, 0.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

H4

[0.1, 0.4],

[0.1, 0.4],

[0.1, 0.4],

(0.2, 0.2, 0.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.4],

[0.3, 0.6],

[0.1, 0.5],

(0.3, 0.4, 0.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.3],

[0.1, 0.5],

[0.1, 0.3],

(0.2, 0.3, 0.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

[0.1, 0.4],

[0.2, 0.4],

[0.3, 0.6],

(0.3, 0.3, 0.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(58)
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(b) (en, the decision makers present their analysis in
the form of a stable neutrosophic cubic set,
according to Definitions 6 and 7 and Example 3:

D �

G1 G2 G3 G4

H1

(0.1, 0.2),

(0.3, 0.1),

(0.1, 0.2)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.1, 0.1),

(0.1, 0.1),

(0.1, 0.1)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.1, 0.2),

(0.1, 0.2),

(0.1, 0.2)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.1, 0.2),

(0.1, 0.1),

(0.1, 0.2)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

H2

(0.1, 0.1),

(0.1, 0.2),

(0.1, 0.3)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.2, 0.1),

(0.3, 0.2),

(0.1, 0.2)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.1, 0.2),

(0.1, 0.2),

(0.2, 0.1)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.1, 0.1),

(0.2, 0.2),

(0.2, 0.1)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

H3

(0.1, 0.2),

(0.1, 0.2),

(0.2, 0.1)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.1, 0.2),

(0.1, 0.1),

(0.2, 0.2)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.1, 0.2),

(0.1, 0.2),

(0.2, 0.2)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.1, 0.2),

(0.2, 0.1),

(0.2, 0.2)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

H4

(0.1, 0.2),

(0.1, 0.2),

(0.1, 0.2)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.2, 0.1),

(0.1, 0.2),

(0.3, 0.1)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.1, 0.1),

(0.2, 0.2),

(0.1, 0.1)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.2, 0.1),

(0.1, 0.1),

(0.1, 0.2)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (59)

Step 2. (e normalized decision matrix is

G1 G2 G3 G4

H1

(0.25, 0.29),

(0.5, 0.143),

(0.2, 0.25)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.17, 0.1),

(0.17, 0.17),

(0.143, 0.17)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.25, 0.29),

(0.2, 0.25),

(0.17, 0.33)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.20, 0.33),

(0.17, 0.20),

(0.17, 0.29)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

H2

(0.25, 0.143),

(0.17, 0.29),

(0.2, 0.38)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.33, 0.1),

(0.5, 0.33),

(0.143, 0.33)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.25, 0.29),

(0.2, 0.25),

(0.33, 0.17)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.20, 0.17),

(0.33, 0.4),

(0.33, 0.143)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

H3

(0.25, 0.29),

(0.17, 0.29),

(0.5, 0.125)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.17, 0.2),

(0.17, 0.17),

(0.29, 0.33)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.25, 0.29),

(0.2, 0.25),

(0.33, 0.33)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.20, 0.33),

(0.33, 0.20),

(0.33, 0.29)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

H4

(0.25, 0.29),

(0.17, 0.29),

(0.2, 0.25)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.33, 0.1),

(0.17, 0.33),

(0.43, 0.17)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.25, 0.143),

(0.4, 0.25),

(0.17, 0.17)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(0.40, 0.17),

(0.17, 0.20),

(0.17, 0.29)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (60)
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Step 3. (e weighted normalized decision matrix where
w � (0.3, 0.1, 0.2, 0.4) is

G1 G2 G3 G4

H1

(0.075, 0.087),

(0.15, 0.043),

(0.06, 0.075)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.017, 0.01),

(0.017, 0.017),

(0.0143, 0.017)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.05, 0.06),

(0.04, 0.05),

(0.034, 0.066)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.08, 0.132),

(0.07, 0.08),

(0.07, 0.12)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

H2

(0.075, 0.043),

(0.051, 0.087),

(0.06, 0.114)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.033, 0.01),

(0.05, 0.033),

(0.0143, 0.033)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.05, 0.06),

(0.04, 0.05),

(0.066, 0.034)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.08, 0.07),

(0.132, 0.16),

(0.132, 0.06)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

H3

(0.075, 0.087),

(0.051, 0.087),

(0.15, 0.038)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.017, 0.02),

(0.017, 0.017),

(0.029, 0.033)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.05, 0.06),

(0.04, 0.05),

(0.066, 0.066)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.08, 0.132),

(0.132, 0.08),

(0.132, 0.12)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

H4

(0.075, 0.087),

(0.051, 0.087),

(0.06, 0.075)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.033, 0.01),

(0.017, 0.033),

(0.043, 0.017)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.05, 0.143),

(0.08, 0.05),

(0.034, 0.034)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.40, 0.07),

(0.07, 0.08),

(0.07, 0.12)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

. (61)

Step 4. Positive and negative ideal solution: the
positive ideal solution A∗ � (a1, a2, a3, a4) contains
the greatest numbers of the first, second, and third
column and smallest numbers of the fourth column.
(e negative ideal solution A′ � (a1′, a2′, a3′, a4′)

contains the smallest numbers of the first, second,
and third column and greatest numbers of the
fourth column.

A
∗

(0.075, 0.087),

(0.15, 0.087),

(0.15, 0.114)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.033, 0.02),

(0.05, 0.033),

(0.029, 0.033)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.05, 0.143),

(0.08, 0.05),

(0.066, 0.066)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.08, 0.07),

(0.07, 0.07),

(0.07, 0.06)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

A′

(0.075, 0.043),

(0.051, 0.043),

(0.06, 0.038)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.017, 0.01),

(0.017, 0.017),

(0.0143, 0.017)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.06, 0.05),

(0.04, 0.05),

(0.034, 0.034)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

(0.40, 0.132),

(0.132, 0.16),

(0.132, 0.12)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(62)

Step 5. Separation measures for the positive and neg-
ative ideal solution are

a
∗
1 � 0.3694,

a
∗
2 � 0.2133,

a
∗
3 � 0.0409,

a
∗
4 � 0.1292,

a1′ � 0.1308,

a2′ � 0.1206,

a3′ � 0.1236,

a4′ � 0.0349.

(63)

Step 6. Ranking order of the alternatives is shown by
(Figures 1–4). Ranking of COVID-19 is obtained by
completing the TOPSIS calculation.

H1 � 0.2615,

H2 � 0.3612,

H3 � 0.7514,

H4 � 0.2127,

H3 >H2 >H1 >H4.

(64)

(us, we concluded that H3is the most effected province
of Pakistan till April 12, 2020. Here, we used stable neu-
trosophic cubic sets, but we may use other versions of stable
neutrosophic cubic sets.
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Figure 1: Total COVID-19 confirmed cases in Punjab till 12 Apr 2020.
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Figure 2: Total COVID-19 confirmed cases in Sindh till 12 Apr 2020.
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Figure 3: Total COVID-19 confirmed cases in KPK till 12 Apr 2020.
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6. Conclusions

In this article, we work out with the idea of stable NCSs and
internal and external stable NCSs. Also, we define their
union, intersection, and complement with examples. After
that, we demonstrate the application of the TOPSIS method
to find out the ranking of COVID-19. For this purpose, we
used a numerical example to find out the most affected area.
We reached at the following key points:

Every stable NCS β � 〈Tβ, Iβ, Fβ, tβ, iβ, fβ〉 in U is an
almost-stable NCS, which is, of course, an NCS which
turns into a cubic set with three different parts as truth,
indeterminacy, and falsity, but the converse of this
chain is not true always.
If we have an external NCS which is unstable such that

t(�u)> T
−

(�u), T
+
(�u)􏼂 􏼃, i(�u)

> I
−

(�u), I
+
(�u)􏼂 􏼃, f(�u)> F

−
(�u), F

+
(�u)􏼂 􏼃,

(65)

then its right evaluative point becomes a neutrosophic
bipolar fuzzy set.
If we have an external NCS which is unstable such that

t(�u)< T
−

(�u), T
+
(�u)􏼂 􏼃, i(�u)< I

−
(�u), I

+
(�u)􏼂 􏼃, f(�u)

< F
−

(�u), F
+
(�u)􏼂 􏼃,

(66)

then its left evaluative point becomes a neutrosophic
bipolar fuzzy set.
We used the idea of stable neutrosophic cubic sets in
the application section, so results are within the range;
otherwise, we may have results which lie outside the
domain of neutrosophic cubic sets. (is is the main
advantage of stable neutrosophic cubic sets.
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As a generalization of the intuitionistic fuzzy number (IFN), the linguistic interval-valued intuitionistic fuzzy number (LIVIFN) is
a flexible and superior tool to describe complex fuzzy uncertainty information. Heronian mean (HM) operator has the char-
acteristic of considering the relationship between attributes. Extended copulas (ECs) and extended cocopulas (ECCs) are the
promotion form of Archimedean t-norm and t-conorm (ATT). ECs and ECCs can generate versatile operational rules and can
provide more choice for decision makers (DMs). -erefore, it is very necessary to take advantages of them. In this paper, ECs and
ECCs, some specifics of ECs and ECCs, and score and accuracy functions of IVILFNs are gained first. -en, we propose the
linguistic interval-valued intuitionistic fuzzy weighted copula Heronianmean (LIVIFWCHM) operator; also, some properties and
five specific expressions of the LIVIFWCHM operator are discussed. Moreover, we also propose a new MAGDM approach based
on the proposed LIVIFWCHM operator. Finally, a set of examples are used to demonstrate the effectiveness, generality, and
flexibility of the proposed method.

1. Introduction

Decision-making problems (DMPs) exist in all aspects of
people’s life, ranging from the development of national
politics, economy, and culture to the decision-making at the
enterprise level. -e multiattribute decision-making
(MADM) problem is based on the analysis of multiple
influencing factors or indicators in the decision-making. It is
necessary to judge or evaluate the limited scheme set from
multiple attributes, give the corresponding evaluation in-
formation or preference information, and then rank the
limited alternatives. With the rapid development of society
and the increasingly complex social environment, it is dif-
ficult for a decision maker to consider all aspects of the
problem, so multiattribute group decision-making
(MAGDM) came into being. MAGDM combines the
characteristics of MADM and group decision-making. It
mainly refers to that many members of the group evaluate
several fixed attributes of several alternatives, give the order
of alternatives, and obtain the best scheme.

In the classic MADM problems, decision makers (DMs)
usually use accurate values to evaluate the attributes of al-
ternatives. However, in the practical application process, due
to the complexity and fuzziness of the problem, the eval-
uation values given by DMs are usually not accurate values
but in the form of linguistic values, such as “good,” “gen-
eral,” or “poor.” -erefore, linguistic-based multiattribute
decision-making has become the hot research content of
MAGDM [1].

Since Zadeh put forward the concept of the linguistic
variable in 1975 [2], the combination of the linguistic
variable and other theories has been put forward constantly
[3–5], such as linguistic hesitant fuzzy set (LHFS) [6, 7],
linguistic neutrosophic set [8, 9], linguistic intuitionistic
fuzzy set (LIFS) [10], and linguistic Pythagorean fuzzy set
[11]. As an important extended linguistic fuzzy set, LIFS has
drawnmuchmore attention. Chen et al. [10] first introduced
the concept of the LIFS by combining the linguistic term set
(LTS) and the IFS in which the membership degree (MD)
and nonmembership degree (NMD) are expressed by the
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LTS. A LIFS A on a finite universe of discourse Z and CLTS
S � sα|s0 ≤ sα ≤ st, α ∈ [0, t]􏼈 􏼉 can be denoted as A � (sα(z),􏼈

sβ(z))|z ∈ Z}, where sα(z), sβ(z) ∈ S with the condition
α + β≤ t.

In order to better express fuzziness, Garg and Kumar
[12] introduced the linguistic interval-valued IFS (LIVIFS).
LIVIFS is a more general form of the LIFS. For example,
selecting a suitable house from a certain number of alter-
natives is a typical decision problem. In this problem, factors
affecting the house selection such as the direction of the
house, unit price of area, area size, community environment,
and credibility of the developer may be described by lin-
guistic variables (LVs) such as “poor,” “medium,” and
“good.” Under this condition, IFS and IVIFS are no longer
suitable. Furthermore, in the LIVIFS, the MD and NMD are
expressed by the interval LVs (ILVs). When the upper and
lower bounds of ILVs are equal, the LIVIFS degenerates to
the LIFS. Based on the LIVIFS, scholars have proposed some
aggregation operators (AOs), such as a prioritised weighted
averaging operator by Kumar and Garg [13], a weighted
Maclaurin symmetric mean operator (LIVIFWMSM) by Liu
and Qin [14], and a weighted aggregation operator (LIVI-
FAWPMM) by Qin [15].

-ere are two limitations among these AOs. Firstly, the
aforementioned AOs are only obtained by special t-norms
(TNs) and t-conorms (TCs), i.e., algebraic TN and algebraic
TC. Secondly, it is assumed that there is no relationship
between attributes. In order to address some of the afore-
mentioned limitations, some improved linguistic interval-
valued intuitionistic fuzzy AOs are developed to solve some
DMPs. For example, Xu et al. proposed the interval-valued
intuitionistic fuzzy (IVIF) weighted power Muirhead mean
(IVIFWPMM) operator [16]; a LIVIF-based Archimedean
power Muirhead mean operator by Qin [15], which can
tackle DMPsmore generally and flexibly; entropic combined
weighted averaging operator by Xian et al. [17]; LIVIFS-
based Maclaurin symmetric mean (MSM) operator by Liu
and Qin [14]; interval-valued intuitionistic 2-tuple linguistic
setting and Bonferroni mean by Du and Yuan [18]; Py-
thagorean fuzzy linguistic (dual) Muirhead mean (PFLMM)
operators and their weighted form by Liu [19]; Dombi
Heronian mean operators byWu et al. [20]; and Hamymean
operators by Wu et al. [21]. Besides, some DMP approaches
have been built [22–32].

For the AOs above, although they can do well in their
specific circumstances, only a small part of them can provide
desirable generality and flexibility while taking into account
the correlation between attributes. In [33], Liu and Chen
proposed generalized AOs for the intuitionistic 2-tuple
linguistic information with three kinds of additive generator.
In [34], Tan and Chen proposed generalized AOs for the
Archimedean intuitionistic fuzzy information with five
kinds of additive generator.

Among various kinds of TNs and TCs, copulas and
cocopulas are classical examples of TNs and TCs. Copula
[35] can not only reflect the dependence among variables but
also prevent information losing in the aggregation process.
Copula is a method to deal with the correlation of random
variables in statistics. -e basic idea of the copula function is

to simplify the problem by transforming the marginal
variable into a uniformly distributed variable without
looking at many different marginal distributions and then
define the correlation as a joint distribution on the uniform
distribution. As a tool for describing the dependence
mechanism between variables, the copula function contains
almost all the dependence information of random variables,
especially when it is impossible to determine whether the
traditional linear correlation coefficient can correctly mea-
sure the correlation between variables.

-ere are two distinguishing features of copulas: (1)
copulas and cocopulas are flexible because DMs can select
different types of copulas to define the operations under the
fuzzy environment, and the results obtained from these
operations are close; (2) copula function is flexible to capture
the correlations among attributes in DMPs. Based on the two
obvious characteristics, copulas have been applied to some
DMPs. For example, Nelsen [35] applied copulas in the
aggregation function. Tao et al. [36] extended copulas to the
IFS and applied it to DMPs. Basically, there are two types of
copula: Archimedean copula and Gaussian copula. In this
paper, we only discuss Archimedean copula. In the light of
Archimedean copula, Tao et al. [37] studied a new com-
putational model for unbalanced LVs. Chen et al. [38] de-
fined new AOs in the linguistic neutrosophic set based on
the copula and applied them to solve DMPs. Xu et al. [39]
also proposed fuzzy copula power AOs to solve MAGDM
problems based on linguistic interval-valued intuitionistic
information; however, the authors did not consider the
correlation between attributes.

In order to solve the relationship between attributes,
Bonferroni [40] proposed the Bonferroni mean (BM) op-
erator firstly, and then Yager [41] further expanded the BM
operator and enhanced its modeling capabilities. By
replacing simple average operators (ordered weighted av-
erage operators and Choquet operators) with other forms of
average operators, Yager proposed some more efficient AOs.
However, the BM operator ignores the relationship between
each attribute and itself and with the nature of computation
redundancy. Heronian mean (HM) operator was first pro-
posed by Beliakov [42]. Heronian mean (HM) operator and
BM operator have similar structures, and both consider the
correlation between attribute values. However, the HM
operator has obvious advantages over the BM operator and
can make up for the two shortcomings of the BM operator.
On this basis, a series of extension models have been pro-
posed, such as the intuitionistic fuzzy geometric HM
(IFGHM) operator [43], IVIF Heronian mean (IVIFHM)
operator [44], uncertain linguistic HM operators [45],
partitioned HM operators [46], unbalanced linguistic gen-
eralized HM operator [32], normal intuitionistic fuzzy HM
operator [47], and picture fuzzy Dombi HM operator [48].
However, the HM is not applied to aggregate the linguistic
interval-valued intuitionistic fuzzy information (LIVIFI).

Although the existing AOs can provide the most com-
monly used way to aggregate the LIVIFS, they lack a unique
way in practical applications. What is it the form of AOs on
the basis of the copula function and LIVIFI? What are the
differences between copula-based AOs and existing AOs?

2 Journal of Mathematics



Considering the HM operator has the ability to interrelate
among the attributes, what is the form of the weighted HM
operator based on the LIVIFS and copula function? So, the
goal and motivation of the present work are to synthesize
ECs (ECCs), HM operator, and LIVIFS and to develop a
MAGDM approach with LIVIFI.

Accordingly, the main intentions and contributions of
this work are summarized as follows:

(1) We propose a new version of copulas and cocopulas
by extending the domain and the range of copulas
and cocopulas from [0, 1] to [0, t](t> 0), which is
called extended copulas (ECs) and extended coco-
pulas (ECCs)

(2) We introduce several universal operational laws of
LIVIFNs and discuss some special instances

(3) We develop the LIVIFWCHM operator, explore
several characteristics, and give some particular cases

(4) In addition, we propose a novel decision approach
forMAGDMwith LIVIFI and investigate the efficacy
and superiorities of the propounded approach

In order to achieve the above goals, the organizational
structure of this paper is as follows. In Section 2, some basic
concepts of the LIVIFS, copulas, and cocopulas and some
properties of the LIVIFS based on ECs and ECCs are in-
troduced. Furthermore, we redefine several novel operations
for LIVIFNs and discuss some special cases. In Section 3,
based on these operation rules, we derive the LIVIFWCHM
operator as well as explore several properties and particular
examples. In Section 4, a new method for MAGDM is
proposed based on the LIVIFWCHM operator under
LIVIFI. In Section 5, a set of examples are provided to
investigate the efficacy and superiority of the propounded
approach. -e conclusion is obtained in Section 6.

2. Preliminaries

In this section, firstly, some basic concepts related to the
LIVIFS, HM operator, and copulas and cocopulas are
reviewed, which are the basis of the present work.

Definition 1 (see [12]). Let X be a finite universal set and
S[0,t] be a continuous LTS. A LIVIFS A in X is defined as

A � x, sμA(x), s]A(x)􏼐 􏼑, |x ∈ X, (1)

where sμA(x) � [sμL
A

(x), sμU
A

(x)] and s]A(x) � [s]L
A

(x), s]U
A

(x)] are
all subsets of [s0, st] and represent linguistic MD and NMD
of x to A, respectively. For any x ∈ X, sμU

A
(x) + s]U

A
(x) ≤ st. -e

pair ([sμL
A
, sμU

A
], [s]L

A
, s]U

A
]) is called the LIVIFN.

For convenience, we denote the LIVAIFN as α �

([sa, sb], [sc, sd]), where sa, sb, sc, sd ∈ S[0,t], and also,
[sa, sb] ∈ [s0, st], [sc, sd] ∈ [s0, st], b + d≤ t.

Definition 2 (see [12]). Let α � ([sa, sb], [sc, sd]) be a
LIVAIFN; a score function and accuracy function of α are
defined as

S(α) � s(2t+a− c+b− d)/4, (2)

H(α) � s(a+b+c+d)/2. (3)
-en, for any two different LIVAIFNs α1 and α2, we have

the following:

(1) If S(α1)< S(α2), then α1 < α2
(2) If S(α1) � S(α2) and H(α1) � H(α2), then α1 < α2

Definition 3 (see [33]). An extended t-normT is a mapping
from [0, t]2 to [0, t] if T fulfills the following: for all
c, d, e ∈ [0, t],

(i) T(c, t) � c.
(ii) T(c, d) � T(d, c).
(iii) T(c,T(d, e)) � T(T(c, d), e).

If T just satisfies (T1), then T is called a semicopula.
With the help of extended TNs and extended TCs, we first
introduce the concept of extended copulas (ECs) and
extended cocopulas (ECCs) in order to handle some
DMPs with LIFI.

Definition 4 (see [35]). A binary function C: [0, t]2⟶
[0, t] is called an EC if C fulfills the following conditions: for
all c, d, c′, d′ ∈ [0, t],

(i) C(c, d) + C(c′, d′)≥C(c, d′) + C(c′, d).
(ii) C(c, 0) � C(0, c) � 0.
(iii) C(c, t) � C(t, c) � c.

Definition 5 (see [35]). Let 〉: [0, t]⟶ [0, +∞) and
ψ: [0, +∞)⟶ [0, t]. If ϱ,ψ satisfy the following condi-
tions, for all (c, d) ∈ [0, t]2,

(1) ϱ is continuous.
(2) ϱ is strictly decreasing.
(3) ϱ(t) � 0.
(4)

ψ(c) �
ϱ− 1

(c), c ∈ [0, ϱ(0)],

0, c ∈ [ϱ(0), +∞),

⎧⎨

⎩

C(c, d) � ψ(ϱ(c) + ϱ(d)),

(4)

the copula C is called ECs.
-e generator ϱ of an EC is if a mapping from [0, t] to R+

and ϱ− 1 is the mapping from R+ to [0, t] with ϱ(0) � +∞
and ϱ(t) � 0. According to Genest and Mackay [49], C can
be rewritten as

C(c, d) � ϱ− 1
(ϱ(c) + ϱ(d)). (5)

Definition 6. Let C be an EC, for all (c, d) ∈ [0, t]2; then,
ECCs are expressed as

C
∗
(c, d) � t − C(t − c, t − d). (6)
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Theorem 1. For all c1, c2, d1, d2 ∈ [0, t], if ci + di ≤
t(i � 1, 2), then 0≤C(c1, c2) + C∗(d1, d2)≤ t.

Proof. It follows easily from the definitions of EC and ECC
that 0≤C(c1, c2) + C∗(d1, d2). So, we just need to prove
C(c1, c2) + C∗(d1, d2)≤ t.

It follows from the definitions of EC and ECC that

C c1, c2( 􏼁 +C
∗

d1, d2( 􏼁 � C c1, c2( 􏼁 + t − C t − d1, t − d2( 􏼁( 􏼁

� ϱ− 1 ϱ c1( 􏼁 + ϱ c2( 􏼁( 􏼁􏼐 􏼑

+ t − ϱ− 1 ϱ t − d1( 􏼁 + ϱ 1 − d2( 􏼁( 􏼁􏼐 􏼑.

(7)

As ϱ is strictly decreasing and ci + di ≤ t(i � 1, 2), it
follows that

ϱ c1( 􏼁 + ϱ c2( 􏼁≥ ϱ t − d1( 􏼁 + ϱ t − d1( 􏼁. (8)

-erefore,

ϱ− 1 ϱ c1( 􏼁 + ϱ c2( 􏼁( 􏼁≤ ϱ− 1 ϱ t − d1( 􏼁 + ϱ t − d1( 􏼁( 􏼁. (9)

So, we have

C c1, c2( 􏼁 + C
∗

d1, d2( 􏼁 � ϱ− 1 ϱ c1( 􏼁 + ϱ c2( 􏼁( 􏼁􏼐 􏼑

+ t − ϱ− 1 ϱ t − d1( 􏼁 + ϱ t − d2( 􏼁( 􏼁

≤ ϱ− 1 ϱ c1( 􏼁 + ϱ c2( 􏼁( 􏼁􏼐 􏼑

+ t − ϱ− 1 ϱ c1( 􏼁 + ϱ c2( 􏼁( 􏼁􏼐 􏼑 � t.

(10)

According to -eorem 1, we know that the operation of
ECs and ECCs is close. Table 1 shows five common
Archimedean copulas, which can be considered for further
consideration. In the following, we will give a new version of
operational rules based on ECs and ECCs. □

Definition 7. Let α1 � ([sa1
, sb1

],[sc1
, sd1

]) and α2 � ([sa2
, sb2

],

[sc2
, sd2

]) be two LIVIFNs; the novel operational rules of
LIVIFNs are given as follows:

(L1)α1⊕Cα2 � st− ϱ− 1 ϱ t− a1( )+ϱ t− a2( )( )( ), st− ϱ− 1 ϱ t− b1( )+ϱ t− b2( )( )( )􏼔 􏼕, sϱ− 1 ϱ c1( )+ϱ c2( )( ), sϱ− 1 ϱ d1( )+ϱ d2( )( )􏼔 􏼕􏼒 􏼓,

(L2)α1 ⊗ Cα2 � sϱ− 1 ϱ a1( )+ϱ a2( )( ), sϱ− 1 ϱ b1( )+ϱ b2( )( )􏼔 􏼕, st− ϱ− 1 ϱ t− c1( )+ϱ t− c2( )( )( ), st− ϱ− 1 ϱ t− d1( )+ϱ t− d2( )( )( )􏼔 􏼕􏼒 􏼓.

(11)

It is easy to verify that ⊕C and ⊗ C satisfy the associative
law, that is, for all three LVIIFNs A, B, andC,

(1) A⊕CB( 􏼁⊕ CC � A⊕ C B⊕CC( 􏼁,

(2) A⊗ CB( 􏼁⊗ CC � A⊗ C B⊗ CC( 􏼁.
(12)

Theorem 2. Let α � ([sa, sb], [sc, sd]) be a LIVIFN; for
n ∈ N∗, we have nα is still a LIVAIFN, and

nα � st− ϱ− 1(nϱ(t− a))( ), st− ϱ− 1(nϱ(t− b))( )􏼔 􏼕,􏼒

sϱ− 1(nϱ(c)), sϱ− 1(nϱ(d))􏽨 􏽩􏼑,

(13)

where nα � α⊕Cα⊕C · · ·⊕Cα
􏽺√√√√√√􏽽􏽼√√√√√√􏽻n

.

Proof. It is easy to obtain from -eorem 1 that nα is a
LIVAIFN. Now, we only prove that equation (13) holds for
n ∈ N∗. When n � 1,

1α � st− ϱ− 1(ϱ(t− a))( ), st− ϱ− 1(ϱ(t− b))( )􏼔 􏼕, sϱ− 1(ϱ(c)), sϱ− 1(ϱ(d))􏽨 􏽩􏼒 􏼓

� sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁 � α.

(14)
Presume equation (13) holds for n � k, i. e.,

kα � st− ϱ− 1(kϱ(t− a))( ), st− ϱ− 1(kϱ(t− b))( )􏼔 􏼕, sϱ− 1(kϱ(c)), sϱ− 1(kϱ(d))􏽨 􏽩􏼒 􏼓.

(15)

When n � k + 1, we have

(k + 1)α � kα⊕Cα

� st− ϱ− 1(kϱ(t− a))( ), st− ϱ− 1(kϱ(t− b))( )􏼔 􏼕, sϱ− 1(kϱ(c)), sϱ− 1(kϱ(d))􏽨 􏽩􏼒 􏼓⊕C sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁

� st− ϱ− 1 ϱ t− t− ϱ− 1(kϱ(t− a))( )( )( )( )+ϱ(t− a)( ), st− ϱ− 1 ϱ t− t− ϱ− 1(kϱ(t− b))( )( )( )( )+ϱ(t− b)( )􏼔 􏼕, sϱ− 1(kϱ(c)+ϱ(c)), sϱ− 1(kϱ(d)+ϱ(d))􏽨 􏽩􏼒 􏼓

� st− ϱ− 1((kϱ(t− a))+ϱ(t− a))( ), st− ϱ− 1((kϱ(t− b))+ϱ(t− b))( )􏼔 􏼕, sϱ− 1(kϱ(c)+ϱ(c)), sϱ− 1(kϱ(d)+ϱ(d))􏽨 􏽩􏼒 􏼓

� st− ϱ− 1((k+1)ϱ(t− a))( ), st− ϱ− 1((k+1)ϱ(t− b))( )􏼔 􏼕, sϱ− 1((k+1)ϱ(c)), sϱ− 1((k+1)ϱ(d))􏽨 􏽩􏼒 􏼓.

(16)
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So, equation (13) holds for all n ∈ N∗.
Similarly, the following theorem can be obtained

easily. □

Theorem 3. Let α � ([sa, sb], [sc, sd]) be a LIVIFN; for all
n ∈ N∗, we have αn is still a LIVIFN, and

(L3)λα � st− ϱ− 1(λϱ(t− a))( ), st− ϱ− 1(λϱ(t− b))( )􏼔 􏼕, sϱ− 1(λϱ(c)), sϱ− 1(λϱ(d))􏽨 􏽩􏼒 􏼓,

(L4)αλ � sϱ− 1(λϱ(a)), sϱ− 1(λϱ(b))􏽨 􏽩, st− ϱ− 1(λϱ(t− c))( ), st− ϱ− 1(λϱ(t− d))( )􏼔 􏼕􏼒 􏼓.

(17)

It is easy to verify that the operational laws hold, for all
three LIVIFNs α, α1, α2 and λ, λ1, λ2 > 0:

(3) λ1α⊕Cλ2α � λ1 + λ2( 􏼁α,

(4) αλ1 ⊗ Cα
λ
2 � α1 ⊗ Cα2( 􏼁

λ
,

(5) αλ1 ⊗ Cα
λ
2 � αλ1+λ2 .

(18)

Definition 8 (see [43]). Let I � [0, t], p, q≥ 0, Hp,q: In⟶ I

if Hp,q satisfies

H
p,q

x1, . . . , xn( 􏼁 �
2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
x

p
i x

q
j

⎛⎝ ⎞⎠

(1/p+q)

. (19)

3. LIVIFHeronianMeanOperatorBased onECs
and ECCs

Under this part, we proposed the LIVIFWCHM operator
through the novel operational laws. -e particular cases of
the propounded operator are explored, and several desired
properties are proved in detail.

Definition 9. Let αi � ([sai
, sbi

], [sci
, sdi

]) be a collection of
LIVIFNs and p, q> 0; then, the linguistic interval-valued
intuitionistic fuzzy weight copula Heronian mean
(LIVIFWCHM) operator is expressed as

LIVIFWCHMp,q α1, . . . , αn( 􏼁 �
2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
ωiαi( 􏼁

p ⊗ ωjαj􏼐 􏼑
q⎛⎝ ⎞⎠

(1/p+q)

, (20)

where ωi is the weight vector (WV) of αi, ωi ≥ 0, and
􏽐

n
k�1 ωi � 1.

Theorem 4. Let αi � ([sai
, sbi

], [sci
, sdi

]) be a collection of
LIVIFNs and p, q> 0; then, the aggregated result form is still
LIVIFNs and has

Table 1: -e influence of parameter θ on the rank of alternatives.

Type Generator ϱ(c) EC and ECC Condition

Gumbel ϱ(c) � (− ln(c/t))θ C(c, d) � te− ((− ln(c/t))θ+(− ln(d/t))θ)(1/θ)

θ≥ 1
C∗(c, d) � t − te− ((− ln(t− c/t))θ+(− ln(t− d/t))θ)(1/θ)

Clayton ϱ(c) � (c/t)− θ − 1 C(c, d) � t((c/t)− θ + (d/t)− θ − 1)− (1/θ)

θ≠ 0
C∗(c, d) � t − t((t − c/t)− θ + (t − d/t)− θ − 1)− (1/θ)

Frank ϱ(c) � ln(e− (θc/t) − 1/e− θ − 1)
C(c, d) � (− (t/θ))ln[((e− (θc/t) − 1)(e− (θd/t) − 1)/e− θ − 1) + 1] θ≠ 0

C∗(c, d) � t + (t/θ)ln[((e− (θ(t− c)/t) − 1)(e− (θ(t− d)/t) − 1)/e− θ − 1) + 1]

Ali-Mikhail-Haq ϱ(c) � ln(t − θ(t − c)/c)
C(c, d) � (tcd/t2 − θ(t − c)(t − d)) θ ∈ [− 1, 1)

C∗(c, d) � t − (t(t − c)(t − d)/t2 − θc d)

Joe ϱ(c) � − ln(1 − (1 − (c/t))θ) C(c, d) � t − ((tθ((t − c)θ + (t − d)θ) − (t − c)θ(t − d)θ)(1/θ)/t) θ≥ 1
C∗(c, d) � t(cθ + dθ − (cd/t)θ)(1/θ)
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LIVIFWCHMp,q α1, . . . ,αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁,

a � ϱ− 1
1

(p + q)
ϱ t − ϱ− 1

2
n(n +1)

􏽘

n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1

pϱ t − ϱ− 1 ωiϱ t − ai( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑 + qϱ t − ϱ− 1 ωjϱ t − aj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

b � ϱ− 1
1

(p + q)
ϱ t − ϱ− 1

2
n(n +1)

􏽘

n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1

pϱ t − ϱ− 1 ωiϱ t − bi( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑 + qϱ t − ϱ− 1 ωjϱ t − bj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

c � t − ϱ− 1
1

(p + q)
ϱ t − ϱ− 1

2
n(n +1)

􏽘

n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ ci( 􏼁( 􏼁􏼐 􏼑 + qϱ t − ϱ− 1 ωjϱ cj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

d � t − ϱ− 1
1

(p + q)
ϱ t − ϱ− 1

2
n(n +1)

􏽘
n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ di( 􏼁( 􏼁􏼐 􏼑 + qϱ t − ϱ− 1 ωjϱ dj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(21)

Proof. Since

ωiαi � st− ϱ− 1 ωiϱ(t− a)( )( ), st− ϱ− 1 ωiϱ(t− b)( )( )􏼔 􏼕, sϱ− 1 ωiϱ(c)( ), sϱ− 1 ωiϱ(d)( )􏼔 􏼕􏼒 􏼓, (22)

ωiαi( 􏼁
p

� sϱ− 1 pϱ t− ϱ− 1 ωiϱ t− ai( )( )( )( )( ), sϱ− 1 pϱ t− ϱ− 1 ωiϱ t− ai( )( )( )( )( )􏼔 􏼕, st− ϱ− 1 pϱ t− ϱ− 1 ωiϱ ci( )( )( )( ), st− ϱ− 1 pϱ t− ϱ− 1 ωiϱ di( )( )( )( )􏼔 􏼕􏼒 􏼓, (23)

and similarly, we have

ωjαj􏼐 􏼑
q

� sϱ− 1 qϱ t− ϱ− 1 nϖjϱ t− aj( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁
, sϱ− 1 qϱ t− ϱ− 1 ωjϱ t− aj( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼔 􏼕, s

t− ϱ− 1 qϱ t− ϱ− 1 ωjϱ cj( 􏼁( 􏼁( 􏼁( 􏼁
, s

t− ϱ− 1 qϱ t− ϱ− 1 ωjϱ dj( 􏼁( 􏼁( 􏼁( 􏼁􏼔 􏼕􏼒 􏼓.

(24)

-en,

ωiαi( 􏼁
p ⊗ ωjαj􏼐 􏼑

q

� ⎛⎝
sϱ− 1 pϱ t− ϱ− 1 ωiϱ t− ai( )( )( )( )+qϱ t− ϱ− 1 ωjϱ t− aj( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁

, sϱ− 1 pϱ t− ϱ− 1 ωiϱ t− bi( )( )( )( )+qϱ t− ϱ− 1 ωjϱ t− bj( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼔 􏼕,

s
t− ϱ− 1 pϱ t− ϱ− 1 ωiϱ ci( )( )( )+qϱ t− ϱ− 1 ωjϱ cj( 􏼁( 􏼁( 􏼁( 􏼁

, s
t− ϱ− 1 pϱ t− ϱ− 1 ωiϱ di( )( )( )+qϱ t− ϱ− 1 ωjϱ dj( 􏼁( 􏼁( 􏼁( 􏼁􏼔 􏼕

⎞⎠,
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􏽘

n

i�1
􏽘

i

j�1
ωiαi( 􏼁

p ⊗ ωjαj􏼐 􏼑
q

�

s
t− ϱ− 1 Σn

i�1Σ
i
j�1ϱ t− ϱ− 1 pϱ t− ϱ− 1 ωiϱ t− ai( )( )( )( )+qϱ t− ϱ− 1 ωjϱ t− aj( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑

,􏼢

s
t− ϱ− 1 Σn

i�1Σ
i
j�1ϱ t− ϱ− 1 pϱ t− ϱ− 1 ωiϱ t− bi( )( )( )( )+qϱ t− ϱ− 1 ωjϱ t− bj( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑

􏼣,

s
ϱ− 1 Σn

i�1Σ
i
j�1ϱ t− ϱ− 1 pϱ t− ϱ− 1 ωiϱ ci( )( )( )+qϱ t− ϱ− 1 ωjϱ cj( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑

,􏼢

s
ϱ− 1 Σn

i�1Σ
i
j�1ϱ t− ϱ− 1 pϱ t− ϱ− 1 ωiϱ di( )( )( )+qϱ t− ϱ− 1 ωjϱ dj( 􏼁( 􏼁( 􏼁( 􏼁( 􏼁􏼐 􏼑

􏼣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2
n(n + 1)

􏽘

n

i�1
􏽘

i

j�1
ωiαi( 􏼁

p ⊗ ωjαj􏼐 􏼑
q

�

s

t− ϱ− 1
2

n(n + 1)
Σni�1Σ

i
j�1ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ t − ai( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑 + qϱ t − ϱ− 1 ωjϱ t − aj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐􏼐 􏼑􏼐 􏼑􏼠 􏼡

,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s

t− ϱ− 1
2

n(n + 1)
Σni�1Σ

i
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s
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1

(p + q)
ϱ t − ϱ− 1

2
n(n + 1)

Σni�1Σ
i
j�1ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ di( 􏼁( 􏼁􏼐 􏼑 + qϱ t − ϱ− 1 ωjϱ dj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼠 􏼡􏼠 􏼡􏼠 􏼡􏼠 􏼡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)
□

Journal of Mathematics 7



Theorem 5 (monotonicity). Let αi � ([sai
, sbi

], [sci
, sdi

]) and
βi � ([sτi

, sθi
], [sηi

, s]i
]) be a collection of LIVIFNs; if

ai ≤ τi, bi ≤ θi, ci ≥ ηi, di ≥ ]i for all i, then

LIVIFWCHMp,q α1, . . . ,αn( 􏼁≤LIVIFWCHMp,q β1, . . . ,βn( 􏼁.

(26)

Proof. On the one hand, since ai ≤ τi, bi ≤ θi, ci ≥ ηi, di ≥ ]i

for all i, we have t − ai ≥ t − τi and t − bi ≥ t − θi. As ϱ and ϱ− 1

are monotonicity decreasing, ϱ(t − ai)≤ ϱ(t − τi) and
ϱ(t − bi)≤ ϱ(t − θi); furthermore,

ϱ− 1
wiϱ t − ai( 􏼁( 􏼁􏼐 􏼑≥ ϱ− 1

wiϱ t − τi( 􏼁( 􏼁􏼐 􏼑, (27)

and so,

t − ϱ− 1 wiϱ t − ai( 􏼁( 􏼁􏼐 􏼑≤t − ϱ− 1 wiϱ t − τi( 􏼁( 􏼁􏼐 􏼑

pϱ t − ϱ− 1 wiϱ t − ai( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑≥pϱ t − ϱ− 1 wiϱ t − τi( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑,

ϱ− 1 pϱ t − ϱ− 1 wiϱ t − ai( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐

+qϱ t − ϱ− 1 wiϱ t − ai( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠≤
ϱ− 1 pϱ t − ϱ− 1 wiϱ t − τi( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐

+qϱ t − ϱ− 1 wiϱ t − τi( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼑
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+qϱ t − ϱ− 1 ωjϱ t − τj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑
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􏽘

n
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(p + q)
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ϱ− 1

1
(p + q)
ϱ t − ϱ− 1

2
n(n +1)

􏽘
n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ t − τi( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐􏼐⎛⎝⎛⎝⎛⎝
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(28)

Similarly, we have

ϱ− 1 1
(p + q)
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1

pϱ t − ϱ− 1 ωiϱ t − bi( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐􏼐⎛⎝⎛⎝⎛⎝

+qϱ t − ϱ− 1 ωjϱ t − bj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤
ϱ− 1 1

(p + q)
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1

pϱ t − ϱ− 1 ωiϱ t − θi( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐􏼐⎛⎝⎛⎝⎛⎝

+qϱ t − ϱ− 1 ωjϱ t − θj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(29)
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On the other hand, as ci ≥ ηi anddi ≥ ]i, we have
ϱ(ci)≤ ϱ(ηi), ϱ− 1(wiϱ(ci))≥ ϱ− 1(wiϱ(ηi)), and pϱ(t − ϱ− 1

(ωiϱ(ci))≥pϱ(t − ϱ− 1(ωiϱ(ηi)).

ϱ− 1 pϱ t − ϱ− 1 ωiϱ ci( 􏼁( 􏼁􏼐 􏼑􏼐

+qϱ t − ϱ− 1 ωjϱ cj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠≤
ϱ− 1 pϱ t − ϱ− 1 ωiϱ ηi( 􏼁( 􏼁􏼐 􏼑􏼐

+qϱ t − ϱ− 1 ωjϱ ηj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

􏽘

n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ ci( 􏼁( 􏼁􏼐 􏼑􏼐􏼐

+qϱ t − ϱ− 1 ωjϱ cj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤

􏽘

n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ ηi( 􏼁( 􏼁􏼐 􏼑􏼐􏼐

+qϱ t − ϱ− 1 ωjϱ ηj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ϱ t − ϱ− 1
2

n(n +1)
􏽘
n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ ci( 􏼁( 􏼁􏼐 􏼑􏼐􏼐⎛⎝⎛⎝

+qϱ t − ϱ− 1 ωjϱ cj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥
ϱ t − ϱ− 1

2
n(n +1)

􏽘
n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ ηi( 􏼁( 􏼁􏼐 􏼑􏼐􏼐⎛⎝⎛⎝

+qϱ t − ϱ− 1 ωjϱ ηj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

t − ϱ− 1
1

(p + q)
ϱ t − ϱ− 1

2
n(n +1)

􏽘
n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ ci( 􏼁( 􏼁􏼐 􏼑􏼐􏼐⎛⎝⎛⎝⎛⎝⎛⎝

+qϱ t − ϱ− 1 ωjϱ cj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑􏼑􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥

t − ϱ− 1
1

(p + q)
ϱ t − ϱ− 1

2
n(n +1)

􏽘
n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1 pϱ t − ϱ− 1 ωiϱ ηi( 􏼁( 􏼁􏼐 􏼑􏼐􏼐⎛⎝⎛⎝⎛⎝⎛⎝

+qϱ t − ϱ− 1 ωjϱ ηj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑􏼑􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(30)

Similarly, we have

t − ϱ− 1 1
(p + q)
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1

pϱ t − ϱ− 1 ωiϱ di( 􏼁( 􏼁􏼐 􏼑􏼐􏼐⎛⎝⎛⎝⎛⎝⎛⎝

+qϱ t − ϱ− 1 ωjϱ dj􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑􏼑􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥
t − ϱ− 1 1

(p + q)
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
ϱ t − ϱ− 1

pϱ t − ϱ− 1 ωiϱ ]i( 􏼁( 􏼁􏼐 􏼑􏼐􏼐⎛⎝⎛⎝⎛⎝⎛⎝

+qϱ t − ϱ− 1 ωjϱ ]j􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼑􏼑􏼑􏼑􏼑􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(31)

-erefore, LIVIFWCHMp,q(α1,...,αn)≤LIVIFWCHMp,q

(β1,...,βn). □
Theorem 6 (boundness). Let αi � ([sai

, sbi
], [sci

, sdi
]) be a

collection of LIVIFNs; if α+, ([max(sai
), max(sbi

)],

[min(sci
), min(sdi

)]) and α− , ([min(sai
), min(sbi

)],

[max(sci
), max(sdi

)]) for all i, then

LIVIFWCHMp,q α−
, . . . , α−

( )≤ LIVIFWCHMp,q β1, . . . , βn( 􏼁≤ LIVIFWCHMp,q α+
, . . . , α+

( 􏼁. (32)

Proof. According to -eorem 5, the conclusion is obvious,
so we omitted it here.

According to formula (20) and -eorem 4, it is easy to
know that operators do not satisfy idempotency.

Now, we can discuss some special cases of the
LIVIFWCHMp,q operator with respect to the parameters p

and q.

(1) When q⟶ 0, the formula reduces to
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LIVIFWCHMp,q α1, . . . , αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁,

a � ϱ− 1 1
p
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
ϱ− 1

(n + 1 − i)ϱ t − ϱ− 1
pϱ t − ϱ− 1 ωiϱ t − ai( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

a � ϱ− 1 1
p
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
ϱ− 1

(n + 1 − i)ϱ t − ϱ− 1
pϱ t − ϱ− 1 ωiϱ t − bi( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

c � t − ϱ− 1 1
p
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
ϱ− 1

(n + 1 − i)ϱ t − ϱ− 1
pϱ t − ϱ− 1 ωiϱ ci( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

c � t − ϱ− 1 1
p
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
ϱ− 1

(n + 1 − i)ϱ t − ϱ− 1
pϱ t − ϱ− 1 ωiϱ di( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(33)

(2) When p⟶ 0, the formula reduces to

LIVIFWCHMp,q α1, . . . , αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁,

a � ϱ− 1 1
q
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
ϱ− 1

iϱ t − ϱ− 1
qϱ t − ϱ− 1 ωiϱ t − ai( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

a � ϱ− 1 1
q
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
ϱ− 1

iϱ t − ϱ− 1
qϱ t − ϱ− 1 ωiϱ t − bi( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

c � t − ϱ− 1 1
q
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
ϱ− 1

iϱ t − ϱ− 1
qϱ t − ϱ− 1 ωiϱ ci( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

c � t − ϱ− 1 1
q
ϱ t − ϱ− 1 2

n(n + 1)
􏽘

n

i�1
ϱ− 1

iϱ t − ϱ− 1
qϱ t − ϱ− 1 ωiϱ di( 􏼁( 􏼁􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(34)

(3) When p � q � (1/2), the formula reduces to an in-
terval-valued intuitionistic fuzzy basic Heronian
operator.

(4) When p � q � 1, the formula reduces to an interval-
valued intuitionistic fuzzy basic line Heronian mean
operator.

Some different types of LIVIFWCHMp,q are as follows:

Case 1: Gumbel type: when ϱ(c) � (− ln(c/t))θ,
ϱ− 1(c) � te− c(1/θ), and θ≥ 1, we have

G − LIVIFWCHMp,q α1, . . . , αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁,

(35)
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where

a � te
−

1
p + q

− ln 1 − e
− a

(1/θ)
4􏼒 􏼓􏼒 􏼓

θ
􏼠 􏼡

(1/θ)

,

b � te
−

1
p + q

− ln 1 − e
− b

(1/θ)
4􏼒 􏼓􏼒 􏼓

θ
􏼠 􏼡

(1/θ)

,

c � t − te
−

1
p + q

− ln 1 − e
− c

(1/θ)
4􏼒 􏼓􏼒 􏼓

θ
􏼠 􏼡

(1/θ)

,

c � t − te
−

1
p + q

− ln 1 − e
− d

(1/θ)
4􏼒 􏼓􏼒 􏼓

θ
􏼠 􏼡

(1/θ)

a4 �
2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
− ln 1 − e

− a4′
(1/θ)

􏼒 􏼓􏼒 􏼓
θ
,

b4 �
2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
− ln 1 − e

− b4′
(1/θ)

􏼒 􏼓􏼒 􏼓
θ
,

c4 �
2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
− ln 1 − e

− c4′
(1/θ)

􏼒 􏼓􏼒 􏼓
θ
,

d4 �
2

n(n + 1)
􏽘

n

i�1
􏽘

i

j�1
− ln 1 − e

− d4′
(1/θ)

􏼒 􏼓􏼒 􏼓
θ
,

a4′ � p − ln 1 − e
− wi − ln t− ai/t( )( )

θ( 􏼁
(1/θ)

􏼠 􏼡􏼠 􏼡

θ

+ q − ln 1 − e
− wj − ln t− aj/t( 􏼁( 􏼁

θ
􏼐 􏼑

(1/θ)

􏼠 􏼡􏼠 􏼡

θ

,

b4′ � p − ln 1 − e
− wi − ln t− bi/t( )( )

θ( 􏼁
(1/θ)

􏼠 􏼡􏼠 􏼡

θ

+ q − ln 1 − e
− wj − ln t− bj/t( 􏼁( 􏼁

θ
􏼐 􏼑

(1/θ)

􏼠 􏼡􏼠 􏼡

θ

,

c4′ � p − ln 1 − e
− wi − ln ci/t( )( )

θ( 􏼁
(1/θ)

􏼠 􏼡􏼠 􏼡

θ

+ q − ln 1 − e
− wj − ln cj/t( 􏼁( 􏼁

θ
􏼐 􏼑

(1/θ)

􏼠 􏼡􏼠 􏼡

θ

,

d4′ � p − ln 1 − e
− wi − ln di/t( )( )

θ( 􏼁
(1/θ)

􏼠 􏼡􏼠 􏼡

θ

+ q − ln 1 − e
− wj − ln dj/t( 􏼁( 􏼁

θ
􏼐 􏼑

(1/θ)

􏼠 􏼡􏼠 􏼡

θ

.

(36)

Case 2: Clayton type: when ϱ(c) � (c/t)− θ − 1, where
ϱ− 1(c) � t(c + 1)− (1/θ), θ ≥ − 1, and θ ≠ 0, we have

C − LIVIFWCHMp,q α1,α2, . . . ,αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁,

(37)
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where

a � t
1

p + q

t − t a4 + 1( 􏼁
− (1/θ)

t
⎛⎝ ⎞⎠

− θ

− 1⎛⎜⎝ ⎞⎟⎠ + 1⎛⎜⎝ ⎞⎟⎠

− (1/θ)

,

b � t
1

p + q

t − t b4 + 1( 􏼁
− (1/θ)

t
⎛⎝ ⎞⎠

− θ

− 1⎛⎜⎝ ⎞⎟⎠ + 1⎛⎜⎝ ⎞⎟⎠

− (1/θ)

,

c � t − t
1

p + q

t − t c4 + 1( 􏼁
− (1/θ)

t
⎛⎝ ⎞⎠

− θ

− 1⎛⎜⎝ ⎞⎟⎠ + 1⎛⎜⎝ ⎞⎟⎠

− (1/θ)

,

d � t − t
1

p + q

t − t d4 + 1( 􏼁
− (1/θ)

t
⎛⎝ ⎞⎠

− θ

− 1⎛⎜⎝ ⎞⎟⎠ + 1⎛⎜⎝ ⎞⎟⎠

− (1/θ)

,
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􏽘

n
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􏽘
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􏽘

n
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􏽘

i

j�1
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⎛⎝ ⎞⎠
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− 1,
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2
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􏽘

n
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􏽘

i

j�1
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t
⎛⎜⎜⎝ ⎞⎟⎟⎠

− θ

+ q
t − t wj t − bj/t􏼐 􏼑

− θ
− 1􏼒 􏼓 + 1􏼒 􏼓

− (1/θ)

t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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t
⎛⎜⎜⎝ ⎞⎟⎟⎠
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t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− θ

− 2.

(38)

12 Journal of Mathematics



Case 3: Frank type: when ϱ(c) � ln(e− (θc/t) − 1/
e− θ − 1), ϱ− 1(c) � (− (t/θ))ln(ec(e− θ − 1) + 1), and
θ≠ 0, we have

F − LIVIFWCHMp,q α1,α2, . . . ,αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁,

(39)

where
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a4 � t +
t

θ
ln 􏽙

n

i�1
􏽙

i

j�1

e− θa4ij
′ /t( 􏼁 − 1

e− θ − 1
⎛⎝ ⎞⎠⎛⎝ ⎞⎠
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(40)
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Case 4: Ali-Mikhail-Haq type: when ϱ(c)� ln(t − θ(t − c)/
c), ϱ− 1(c)�(t(1 − θ)/ec − θ), and θ∈[− 1,1), we have

A − LIVIFWCHMp,q α1, α2, . . . , αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁,

(41)

where

a �
t(1 − θ)

t − θa4/t − a4( 􏼁
(1/p+q)

− θ
, b
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Case 5: Joe type: when ϱ(c) � − ln(1 − (1 − (c/t))θ) and
ϱ− 1(c) � t − t(1 − e− c)(1/θ), where θ≥ 1, we have

J − LIVIFWCHMp,q α1, α2, . . . , αn( 􏼁 � sa, sb􏼂 􏼃, sc, sd􏼂 􏼃( 􏼁,

(43)

where

a � t − t 1 − 1 − 1 − 1 − a4( 􏼁
(1/θ)

􏼐 􏼑
θ

􏼒 􏼓
(1/p+q)

􏼠 􏼡

(1/θ)

,

b � t − t 1 − 1 − 1 − 1 − b4( 􏼁
(1/θ)

􏼐 􏼑
θ

􏼒 􏼓
(1/p+q)

􏼠 􏼡

(1/θ)

,

c � t 1 − 1 − 1 − 1 − c4( 􏼁
(1/θ)

􏼐 􏼑
θ

􏼒 􏼓
(1/p+q)

􏼠 􏼡

(1/θ)

,

d � t 1 − 1 − 1 − 1 − d4( 􏼁
(1/θ)

􏼐 􏼑
θ

􏼒 􏼓
(1/p+q)

􏼠 􏼡

(1/θ)

,

a4 � 􏽙
n

i�1
􏽙

i

j�1
1 − 1 − 1 − a4′( 􏼁

(1/θ)
􏼒 􏼓

θ
􏼠 􏼡⎛⎝ ⎞⎠

(2/n(n+1))

,

b4 � 􏽙
n

i�1
􏽙

i

j�1
1 − 1 − 1 − b4′( 􏼁

(1/θ)
􏼒 􏼓

θ
􏼠 􏼡⎛⎝ ⎞⎠

(2/n(n+1))

,

c4 � 􏽙
n

i�1
􏽙

i

j�1
1 − 1 − 1 − c4′( 􏼁

(1/θ)
􏼒 􏼓

θ
􏼠 􏼡⎛⎝ ⎞⎠

(2/n(n+1))

,

d4 � 􏽙

n

i�1
􏽙

i

j�1
1 − 1 − 1 − d4′( 􏼁

(1/θ)
􏼒 􏼓

θ
􏼠 􏼡⎛⎝ ⎞⎠

(2/n(n+1))

,

a4′ � 1 − 1 − 1 − 1 − ai/t( 􏼁
θ

􏼐 􏼑
wi

􏼒 􏼓
(1/θ)

􏼠 􏼡

θ
⎛⎝ ⎞⎠

p

1 − 1 − 1 − 1 − aj/t􏼐 􏼑
θ

􏼒 􏼓
wj

􏼒 􏼓
(1/θ)

􏼠 􏼡

θ
⎛⎝ ⎞⎠

q

,

b4′ � 1 − 1 − 1 − 1 − bi/t( 􏼁
θ

􏼐 􏼑
wi

􏼒 􏼓
(1/θ)

􏼠 􏼡

θ
⎛⎝ ⎞⎠

p

1 − 1 − 1 − 1 − bj/t􏼐 􏼑
θ

􏼒 􏼓
wj

􏼒 􏼓
(1/θ)

􏼠 􏼡

θ
⎛⎝ ⎞⎠

q

,

c4′ � 1 − 1 − 1 − 1 − 1 − ci/t( 􏼁( 􏼁
θ

􏼐 􏼑
wi

􏼒 􏼓
(1/θ)

􏼠 􏼡

θ
⎛⎝ ⎞⎠

p

1 − 1 − 1 − 1 − 1 − ci/t( 􏼁( 􏼁
θ

􏼐 􏼑
wj

􏼒 􏼓
(1/θ)

􏼠 􏼡

θ
⎛⎝ ⎞⎠

q

,

d4′ � 1 − 1 − 1 − 1 − 1 − di/t( 􏼁( 􏼁
θ

􏼐 􏼑
wi

􏼒 􏼓
(1/θ)

􏼠 􏼡

θ
⎛⎝ ⎞⎠

p

1 − 1 − 1 − 1 − 1 − di/t( 􏼁( 􏼁
θ

􏼐 􏼑
wj

􏼒 􏼓
(1/θ)

􏼠 􏼡

θ
⎛⎝ ⎞⎠

q

.

(44)

□
4. LIMADM Approach

In this part, we will give an approach for MAGDM. In
general, a MAGDM problem consists of the following parts:
(1) alternative set: Ξ � Ψ1, . . . ,Ψm􏼈 􏼉; (2) attribute (criteria)
set: A � a1, . . . , an􏼈 􏼉; (3)WV of attribute W � (w1, . . . , wn)T

satisfies wi ∈ [0, 1] and 􏽐
n
i�1 wi � 1; and (4)

D � D1, D2, . . . , Dp􏽮 􏽯 is the set of DMs.
DMs evaluate the attribute value of alternative Ψi under

the attribute aj which can be expressed by LIVIFNs:
ck

ij � ([sak
ij
, sbk

ij
], [sck

ij
, sdk

ij
]). -en, an algorithm and process

of MAGDM will be designed and given as follows:

Step 1: a revised decision matrix 􏽢R
k

� (􏽢ck
ij)m×n is ob-

tained by normalizing the original decision matrix R in
terms of the following equation:

􏽢c
k
ij �

s sak
ij
, sbk

ij􏽨 􏽩, sck
ij
, sdk

ij􏽨 􏽩􏼐 􏼑
, for benefit type

s sck
ij
, sdk

ij􏽨 􏽩, sak
ij
, sbk

ij􏽨 􏽩􏼐 􏼑
, for cost type.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

Step 2: all attribute values 􏽢ck
ij(i � 1, . . . , m;

j � 1, . . . , n; k � 1, . . . , p; ) are aggregated to a
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comprehensive value Zk
i by the G − LIVIFWCHMp,q

operator.
Step 3: the supports are calculated:

Sup Z
k
i , Z

t
i􏼐 􏼑 � 1 − KF Z

k
i􏼐 􏼑 − KF Z

t
i􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (46)

KF Z
k
i􏼐 􏼑 �

������������������������������

􏽐
d
m�a m

k
i􏼐 􏼑

2
+ a

k
i + c

k
i􏼐 􏼑

2
+ b

k
i + d

k
i􏼐 􏼑

2
􏽱

4
.

(47)

Step 4: T(Zk
i ) and weights wk

i are calculated:

T Z
k
i􏼐 􏼑 � 􏽘

p

t�1,k≠t
Sup Z

k
i , Z

t
i􏼐 􏼑, (48)

w
k
i �

λk 1 + T Z
k
i􏼐 􏼑􏼐 􏼑

􏽐
p

k�1 λk 1 + T Z
k
i􏼐 􏼑􏼐 􏼑

, (49)

where wk
i ≥ 0, and 􏽐

p

k�1 wk
i � 1.

Step 5: the G − LIVIFWCHMp,q operator is used to
obtain the collective preference values Zi.
Step 6: the alternatives are ranked, and the desirable one
is selected by equation (2).

-e flowchart is shown in Figure 1.

5. Case Analysis

-is example is from [12]. In the selection of companies for
investment in the rural areas, there are four companiesΨ1,Ψ2,
Ψ3, andΨ4 as candidates. -e following four attributes
(c1, . . . , c4) should be considered: c1: project cost; c2: technical
capability; c3: financial status; and c4: company background.

-e experts use LVs S� s0�extremelypoor,􏼈 s1�verypoor,
s2�poor, s3�slightlypoor, s4�fair, s5�slightlygood, s6�good,

s7�verygood, s8�extremelygood} to evaluate the companies in
terms of LIVIFNs.-e decision matrix can be found in Table 2.

5.1. Determining the Optimal Company

Example 1. In this section, we use G − LIVIFWCHMp,q op-
erators to solve this MAGDM problem, where q � 1 and θ � 1.

Let λ � (0.243, 0.514, 0.243) be the WV of the three
experts and w � (0.4, 0.25, 0.2, 0.15) be the WV of the
attributes.

Step 1: since all attributes are of the same type, the
normalization procedure is omitted.
Step 2: the proposed G − LIVIFWCHMp,q operator is
employed to aggregate the evaluation values of each
attribute into the integrated matrices Zk

i , as shown in
Table 3.
Step 3: the supports Skt

i � Sup(Zk
i , Zt

i) are obtained
according to equation (46): S121 � S211 � 0.9715,
S131 � S311 � 0.9663,S231 � S321 � 0.9948,S122 � S212 � 0.9602,

S132 � S312 � 0.9537, S232 � S322 � 0.9936,S123 � S213 � 0.9625,

S133 � S313 � 0.9774,S233 � S323 � 0.9851, S124 � S214 � 0.9657,

S134 � S314 � 0.9640, andS234 � S324 � 0.9982.
Step 4: the supports Tk

i � T(Zk
i ) and the weights wk

i are
obtained according to equations (47) and (48):

T
1
1 � 􏽘

3

t�1,t≠1
Sup Z

1
1, Z

t
1􏼐 􏼑 � Sup Z

1
1, Z

2
1􏼐 􏼑 + Sup Z

1
1, Z

3
1􏼐 􏼑

� 1.9378,

T
2
1 � 1.9663,

T
3
1 � 1.9610,

T
1
2 � 1.9139,

T
2
2 � 1.9537

T
3
2 � 1.9473,

T
1
3 � 1.9399,

T
2
3 � 1.9477,

T
3
3 � 1.9625,

T
1
4 � 1.9297,

T
2
4 � 1.9640,

T
3
4 � 1.9622

ω1
1 �

λ1 1 + T
1
1􏼐 􏼑

􏽐
3
k�1 λk 1 + T

k
1􏼐 􏼑

(50)

Similarly, we have

ω2
1 � 0.5154,

ω3
1 � 0.2432,

ω1
2 � 0.2406,

ω2
2 � 0.5160,

ω3
2 � 0.2434,

ω1
3 � 0.2422,

ω2
3 � 0.5137,

ω2
3 � 0.2441,

ω1
4 � 0.2409,

ω2
4 � 0.5155,

ω2
3 � 0.2436.

(51)
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Step 5: the collective preference values Zi are obtained
according to the G − LIVIFWCHMp,q operator:

Z1 � s3.3828, s5.5831􏼂 􏼃, s6.7725, s7.1948􏼂 􏼃( 􏼁,

Z2 � s2.2704, s4.4453􏼂 􏼃, s6.9295, s7.3946􏼂 􏼃( 􏼁,

Z3 � s3.3408, s5.5389􏼂 􏼃, s6.8444, s7.2586􏼂 􏼃( 􏼁,

Z4 � s3.3786, s4.4738􏼂 􏼃, s7.0047, s7.2643􏼂 􏼃( 􏼁.

(52)

Step 6: computing the score values of every alternative
on the basis of Definition 2, we have

S Ψ1( 􏼁 � 0.7497,

S Ψ2( 􏼁 � 0.5979,

S Ψ3( 􏼁 � 0.6942

S Ψ4( 􏼁 � 0.6458.

(53)

Start

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Provide attributes Select attributes Assign experts

Establish the decision matrix in
terms of LIVIFNs

Yes NoWhether cost
attribute exists?

Convert the cost attribute into
a benefit attribute

LIVIFWCHM
operator

Select a copula through
individual preference

Acquire integrated
attribute value

Calculate supports
and weights

LIVIFWCHM
operator

Calculate and rank the scores of each alternative

NoExpert satisfied?

Yes

End

Figure 1: Flowchart of MAGDM.
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-e rank of alternatives is Ψ1≻Ψ3≻Ψ4≻Ψ2, and so, Ψ1 is
the best alternative.

-e ordering results of alternatives use other ECs pro-
posed in the present work which are listed in Table 4.

5.2. SensitivityAnalysis. -e following two aspects reflect the
flexibility of this method: firstly, DMs can select different
types of ECs and ECCs with parameter θ; secondly, the HM
operator contains two important parameters, which can
reflect the correlation between attributes. -erefore, dif-
ferent ranking results may be obtained according to different
parameters.

In the following, the influence of parameters p, q, and θ
on the results will be analyzed.Without loss of generality, the
following analysis adopts the G − LIVIFWCHMp,q operator.
Firstly, we assign different values to θ with fixed p and q, and
the results are listed in Table 5. In addition, we explore the
effect of parameters p and q on the ultimate ranking results
which can be found in Table 6 and Figures 2–9.

From Table 5, we can find out that when p and q are
fixed, θ has little influence on the sorting result. From
Figures 2–9 and Table 6, it is easy to derive the following
conclusions: (1) the scores and ranking order will be dif-
ferent with respect to different parameters p and q. (2) -e
optimal candidate will change when θ is small, and the
absolute value of p minus q is large. (3) -e best and worst
alternatives are always the same when θ≥ 2, and q � 1, or
q � 1.

In application, the larger the value of p or q, the more
prominent the interaction between attributes, and if one of
the parameters is zero, the relationship between attributes is
not considered. For the actual applications, we can choose a
simple integral number for p and q to simplify the process.

5.3. Comparative Analysis. In the following, the proposed
approach will be analyzed and compared with other existing
methods.

Example 2. -is example is to select a new management
information system. -ere are four alternatives
Ai(i � 1, 2, 3, 4) to be considered. Following this, there are
four attributes C1, C2, C3, andC4 to be evaluated by three
DMs using LIVIFI, where C1: the costs; C2: the reliability of
software development from outsourcing enterprise; C3: the
contribution to the enterprise performance; and C4: the
effort to transition to a new system from the old systems.

For the decision matrices, see Tables III–V in [50]. -e
score values and rankings of alternatives are separately
displayed in Table 7. From it, we can draw a conclusion that
the orders are almost the same, and the optimal selections
are all A4, so we can see the proposed approach is workable
and efficient.

Example 3. -is is a MADM problem which is from [14]. In
the example, a company wants to establish a new subsidiary
on four potential sites Ψ � Ψ1,Ψ2,Ψ3,Ψ4􏼈 􏼉, and there are
five attributes C � c1, c2, c3, c4, c5􏼈 􏼉 that affect decision-
making, and the weight of attributes is
ω � 0.2, 0.25, 0.15, 0.18, 0.22{ }. -e evaluation value is
expressed by the IVLIFN which is shown in Table 8. -e
proposed method used the LIVIFWCHM operator (see
equation (21)), and also, the same score function proposed
by Garg and Kumar [12] (equation (2)) was used for easy
comparison. -e comparison results with the recent existing
work are listed in Table 9.

In the comparison, the WA operator in [12] and PWA
operator in [13] were chosen which ignored the interaction

Table 2: Decision matrix Rk(k � 1, 2, 3).

c1 c2 c3 c4

R1

Ψ1 ([s5, s6], [s1, s2]) ([s4, s6], [s1, s1]) ([s4, s5], [s2, s3]) ([s6, s7], [s1, s1])

Ψ2 ([s3, s5], [s2, s3]) ([s5, s6], [s1, s2]) ([s2, s4], [s3, s4]) ([s3, s4], [s2, s3])

Ψ3 ([s5, s6], [s1, s2]) ([s5, s6], [s1, s2]) ([s3, s5], [s2, s3]) ([s3, s5], [s1, s3])

Ψ4 ([s4, s5], [s2, s3]) ([s1, s3], [s3, s4]) ([s3, s5], [s1, s3]) ([s6, s7], [s1, s1])

R2

Ψ1 ([s2, s4], [s1, s3]) ([s4, s5], [s1, s2]) ([s4, s5], [s1, s3]) ([s3, s6], [s1, s2])

Ψ2 ([s3, s5], [s1, s3]) ([s1, s2], [s1, s4]) ([s2, s3], [s3, s4]) ([s3, s5], [s1, s3])

Ψ3 ([s3, s4], [s1, s2]) ([s3, s6], [s1, s2]) ([s2, s5], [s2, s3]) ([s3, s4], [s2, s3])

Ψ4 ([s4, s5], [s1, s2]) ([s3, s3], [s3, s5]) ([s3, s3], [s2, s3]) ([s4, s6], [s1, s1])

R3

Ψ1 ([s2, s4], [s1, s2]) ([s2, s3], [s1, s4]) ([s3, s5], [s2, s3]) ([s5, s7], [s1, s1])

Ψ2 ([s1, s4], [s2, s3]) ([s4, s5], [s1, s2]) ([s2, s4], [s1, s3]) ([s3, s4], [s2, s4])

Ψ3 ([s2, s3], [s1, s5]) ([s3, s5], [s1, s2]) ([s3, s5], [s1, s3]) ([s3, s5], [s2, s3])

Ψ4 ([s3, s4], [s2, s3]) ([s1, s2], [s3, s4]) ([s3, s5], [s1, s2]) ([s5, s6], [s1, s1])

Table 3: Integrated decision matrix Zk
i .

Z1 Z2 Z3

Z1 ([s1.6304, s2.3639], [s4.9640, s5.4021]) ([s0.9388, s1.6541], [s4.7882, s6.0148]) ([s0.8144, s1.6166], [s4.9640, s5.8864])

Z2 ([s1.0577, s1.7387], [s5.5472, s6.1952]) ([s0.6849, s1.3032], [s5.0710, s6.4657]) ([s0.6894, s1.3951], [s5.2463, s6.1729])

Z3 ([s1.4590, s2.1252], [s4.9640, s5.8748]) ([s0.8296, s1.6500], [s5.1007, s5.8748]) ([s0.7574, s1.4120], [s4.9224, s6.4236])

Z3 ([s1.1480, s1.7950], [s5.4708, s6.1195]) ([s1.1087, s1.4725], [s5.3195, s5.9689]) ([s0.8829, s1.3765], [s5.4708, s5.9967])
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between attributes. However, the YWMSM operator in [14]
and WPMM operator in [15] considered the interaction
between attributes. As can be seen from Table 9, the ranking
order of the proposed method is exactly the same with Liu
and Qin [14] and Qin [15]. -erefore, it can be concluded
that the method proposed in this paper is feasible and
effective for dealing with MAGDM problems based on
LIVIFNs. In addition, the ranking results of the WA

operator and PWA operator are different from those of
other methods. -e reason is that the former methods
assume that all attributes are independent. Furthermore,
compared with the YWMSM operator in [14] and WPMM
operator in [15], the proposed method is based on ECs and
ECCs, which have 5 different generator functions, so it can
provide DMs more options. -erefore, this method is more
flexible.

Table 4: -e ordering results of alternatives using other different copulas.

Type of copulas Parameters Score index of Ψi(i � 1, 2, 3, 4) Ranking order

Clayton θ � 1 1.3856, 0.9479, 1.1720, 1.0664 Ψ1≻Ψ3≻Ψ4≻Ψ2
Frank θ � 1 0.9278, 0.7177, 0.8458, 0.7839 Ψ1≻Ψ3≻Ψ4≻Ψ2
Ali-Mikhail-Haq θ � − 1 1.6916, 1.6132, 1.6703, 1.6391 Ψ1≻Ψ3≻Ψ4≻Ψ2
Joe θ � 1 0.7704, 0.6149, 0.7154, 0.6653 Ψ1≻Ψ3≻Ψ4≻Ψ2

Table 5: -e influence of parameter θ on the rank of alternatives (p � q � 1).

θ Score index of Ψi(i � 1, 2, 3, 4) Ranking order

θ � 2 2.3003, 1.8367, 2.0952, 2.0216 Ψ1≻Ψ3≻Ψ4≻Ψ2
θ � 3 3.2580, 2.6363, 2.9632, 2.9331 Ψ1≻Ψ3≻Ψ4≻Ψ2
θ � 5 4.2744, 3.5199, 3.8836, 3.9829 Ψ1≻Ψ3≻Ψ4≻Ψ2
θ � 10 5.3432, 4.4847, 4.8243, 5.1902 Ψ1≻Ψ3≻Ψ4≻Ψ2

Table 6: -e influence of parameter q on the rank of alternatives (θ � 1).

p q Score index of Ψi(i � 1, 2, 3, 4) Ranking order

p� 0
q� 1 0.8477, 0.6880, 0.8302, 0.6917 Ψ1≻Ψ3≻Ψ4≻Ψ2
q� 2 0.9082, 0.7696, 0.9108, 0.7984 Ψ1≻Ψ3≻Ψ4≻Ψ2
q� 5 1.0758, 0.9895, 1.1331, 1.0987 Ψ3≻Ψ4≻Ψ1≻Ψ2

p� 1

q� 0 0.6644, 0.5043, 0.5727, 0.5897 Ψ1≻Ψ4≻Ψ3≻Ψ2
q� 1 0.7497, 0.5979, 0.6942, 0.6458 Ψ1≻Ψ3≻Ψ4≻Ψ2
q� 2 0.8285, 0.6897, 0.7972, 0.7386 Ψ3≻Ψ1≻Ψ4≻Ψ2
q� 5 1.0126, 0.9099, 1.0362, 1.0089 Ψ3≻Ψ1≻Ψ4≻Ψ2

p� 2

q� 0 0.7219, 0.5713, 0.6485, 0.6551 Ψ1≻Ψ4≻Ψ3≻Ψ2
q� 1 0.7755, 0.6379, 0.7321, 0.6983 Ψ1≻Ψ3≻Ψ4≻Ψ2
q� 2 0.8367, 0.7129, 0.8155, 0.7740 Ψ1≻Ψ3≻Ψ4≻Ψ2
q� 5 0.9978, 0.9034, 1.0237, 1.0031 Ψ3≻Ψ4≻Ψ1≻Ψ2
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Figure 2: Scores of A1 when p, q ∈ [0, 10](θ � 5).
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In the following, the proposed approach will be analyzed
and compared with other existing method approaches:

(1) Chen et al.’s LIFWA operator [10], Zhang’s LIFWA
operator [52], and Liu and Wang’s ILIFWA operator
[53] are all based on the LIFS. In our proposed
method, when t � 1, θ � 1, p � 1, and q � 0 and
only s(a+b)/2 and s(c+d)/2 are considered,
LIVIFWCHMp,q reduces to LIFWCHMp,q. In those
methods mentioned above, the operational rules are
based on algebraic TN and algebraic TC, which are

special forms of EC and ECC. So, our method can also
be applied to intuitionistic fuzzy DMPs. -erefore,
our proposed method is effective and feasible. Fur-
thermore, the proposed approach will provide more
choice for the decision maker in real DMPs.

(2) Compared with Tao et al.’s method [36], if t � 1, p �

1, and q � 0 and only s(a+b)/2 and s(c+d)/2 are con-
sidered, LIFWCHMp,q reduces to IFCAAω. -ere-
fore, compared with IFCAAω [36], the proposed
method is the generalization of Tao et al.
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Figure 9: Scores of Ai(i � 1, 2, 3, 4) when q � 1 andp ∈ [0, 10](θ � 2).

Table 7: Comparison with existing approaches for Example 2.

Methods Parameters Score index of Ai(i � 1, 2, 3, 4) Ranking order

He et al. [51] λ � 2 0.0167, 0.0931, 0.0808, 0.2676 A4≻A3≻A2≻A1
Yu and Wu [44] p � 2, q � 2 0.0740, 0.1078, 0.2868, 0.3025 A4≻A3≻A2≻A1
Liu [50] p � 2, q � 2 0.0719, 0.1090, 0.2846, 0.3022 A4≻A3≻A2≻A1
Gumbel type θ � 1, p � q � 1 0.0565, 0.0598, 0.0721, 0.0777 A4≻A3≻A2≻A1
Clayton type θ � 1, p � q � 1 0.0712, 0.0837, 0.0811, 0.1026 A4≻A2≻A3≻A1
Frank type θ � 1, p � q � 1 0.0656, 0.0705, 0.0850, 0.0912 A4≻A3≻A2≻A1
Ali-Mikhail-Haq type θ � − 1, p � q � 1 0.1884, 0.1904, 0.1969, 0.1981 A4≻A3≻A2≻A1
Joe type θ � 1, p � q � 1 0.0590, 0.0622, 0.0770, 0.0821 A4≻A3≻A2≻A1

Table 8: Decision matrix R.

c1 c2 c3 c4 c5

Ψ1 ([s6, s7], [s1, s1]) ([s5, s6], [s1, s2]) ([s4, s5], [s1, s3]) (s6, [s7]), [s1, s1] ([s5, s6], [s1, s2])

Ψ2 ([s4, s5], [s1, s2]) ([s5, s7], [s1, s1]) ([s5, s6], [s1, s2]) ([s5, s6], [s1, s2]) ([s6, s7], [s1, s1])

Ψ3 ([s5, s6], [s1, s2]) ([s4, s5], [s2, s3]) ([s6, s7], [s1, s1]) ([s5, s6], [s1, s2]) ([s3, s4], [s3, s4])

Ψ4 ([s4, s5], [s2, s3]) ([s6, s7], [s1, s1]) ([s4, s5], [s2, s3]) ([s4, s6], [s1, s2]) ([s3, s4], [s3, s4])

Table 9: Comparison with existing approaches for Example 3.

Methods Used AOs Parameters Score index of Ψ(i � 1, 2, 3, 4) Ranking order
Garg and Kumar [12] WA None 6.2621 6.2709 5.6111 5.5823 Ψ2≻Ψ1≻Ψ3≻Ψ4
Garg and Kumar [13] PWA None 6.1407 6.1620 5.3326 5.2541 Ψ2≻Ψ1≻Ψ3≻Ψ4
Liu and Qin [14] YWMSM k� 3 6.1034 6.0611 5.5196 5.1819 Ψ1≻Ψ2≻Ψ3≻Ψ4
Qin [15] WPMM Q�(1, 2, 3, 0, 0) 6.1584 6.1157 5.5637 5.3056 Ψ1≻Ψ2≻Ψ3≻Ψ4
-e proposed method WCHM θ � 1 andp � q � 2 6.1101 6.0791 5.3637 5.2688 Ψ1≻Ψ2≻Ψ3≻Ψ4
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(3) Compared to the method of Garg and Kumar and
Liu and Qin [12, 14], the proposed method is more
universal and flexible. Five aggregation functions can
be regarded through assigning diverse copulas to
them; also, parameters θ, p, and q can be selected
according to decision maker’s attitude.

(4) In [15] Qin combined the MM operator and the PA
operator under the ATToperations. Compared with
our method, Qin considered the interconnection of
diverse attributes, but the designed method is based
on ATT which is the special form of ECs and ECCs.

A detailed comparative analysis for the aforementioned
approaches is displayed in Table 10.

6. Conclusions

In this paper, we propose a LIVIFWCHMoperator to deal with
MAGDMproblems under LIVIFI.We establish a new version of
copulas and cocopulas and several universal operational laws of
LIVIFNs and study some special instances of them based on
dissimilar copulas.-en,we give the generalized expression of the
LIVIFWCHM operator and explore several characteristics and
five specific expressions of the LIVIFWCHM operator. On this
basis, we bring forward an approach to solveMAGDMproblems
based on the LIVIFN. -en, a detailed numerical example has
been given to show how it works, and a set of experiments have
been carried out to verify the efficacy and superiority of the
propounded approach. -e results also show that the proposed
method is more general and flexible and can consider the cor-
relation between attributes. In future, we shall focus, especially, on
the correlation between attributes and incomplete attribute in-
formation, as well as the large-scale decision-making algorithm
based on linguistic assessment theory and methodology.
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Molodtsov’s theory of soft sets is free from the parameterizations insufficiency of fuzzy set theory. Type-2 soft set as an extension of
a soft set has an essential mathematical structure to deal with parametrizations and their primary relationship. Fuzzy type-2 soft
models play a key role to study the partial membership and uncertainty of objects along with underlying and primary set of
parameters. In this research article, we introduce the concept of fuzzy type-2 soft set by integrating fuzzy set theory and type-2 soft
set theory. We also introduce the notions of fuzzy type-2 soft graphs, regular fuzzy type-2 soft graphs, irregular fuzzy type-2 soft
graphs, fuzzy type-2 soft trees, and fuzzy type-2 soft cycles. We construct some operations such as union, intersection, AND, and
OR on fuzzy type-2 soft graphs and discuss these concepts with numerical examples. )e fuzzy type-2 soft graph is an efficient
model for dealing with uncertainty occurring in vertex-neighbors structure and is applicable in computational analysis, applied
intelligence, and decision-making problems. We study the importance of fuzzy type-2 soft graphs in chemical digestion and
national engineering services.

1. Introduction

Fuzzy set theory has its remarkable origin to the work of
Zadeh [1] in 1965 to interact with vagueness and imprecision
between absolute true and absolute false. )e range of the
values in a fuzzy set lies in [0, 1]. )is remarkable discovery
of fuzzy set theory paved a different way for dealing with
uncertainties in various domains of science and technology.

Graph theory is moving quickly into the mainstream of
mathematics, primarily due to its applications in engi-
neering, communication networks, computer science, and
artificial intelligence. In 1973, Kauffmann [2] introduced the
notion of fuzzy graph, which is based on Zadeh’s fuzzy
relation [3]. Another elaborated definition of fuzzy graph
was introduced by Rosenfeld [4]. Bhattacharya [5] subse-
quently gave some helpful results on fuzzy graphs and some
operations on fuzzy graph theory were explored by Mor-
deson and Nair [6]. Many researchers studied fuzzy graphs
in recent decades [7–9].

However, the theory of fuzzy sets has inadequacy to deal
with parametrization tool. Soft set theory proposed by
Molodtsov [10] has the ability to cope with this difficulty and
is defined as a pair (ξ, M), where ξ is a mapping given by
ξ: M⟶ P(E). Soft sets have been generalized to numerous
directions beginning withMaji et al. [11, 12] who introduced
fuzzy soft sets and Ahmad and Kharal [13] discussed some
properties of fuzzy soft sets. In algebraic structures, soft sets
and their hybrid models based on fuzzy soft sets, generalized
fuzzy soft sets, rough soft sets, and soft rough sets have been
implemented effectively [14–19]. Sarwar [20] elaborated the
notion of rough graph and discussed decision-making ap-
proaches based on rough numbers and rough graphs. Akram
and Nawaz [21] introduced the concepts of fuzzy soft graphs
(named as fuzzy type-1 soft graph), vertex-induced soft
graphs, and edge-induced soft graphs and also discussed
some operations on soft graphs. Akram and Zafar [22]
introduced various hybrid models based on fuzzy sets, soft
sets, and rough sets. Further, Akram in cooperation with
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other researchers [23–26] discussed various applications and
extensions of graph theory to study different types of un-
certainties in real-world problems. Nowadays, researchers
are actively working on interval type-2 fuzzy arc lengths [27],
trapezoidal interval type-2 fuzzy soft sets [28], total uni-
formity of graph under fuzzy soft information [29], fuzzy
soft cycles [30], and fuzzy soft β−coverings.

All these existing models have the same restriction that
one cannot freely select the parameters. )at is, if a corre-
spondence or association occurs between parameters, then
none of these models can solve the problems completely.
Chatterjee et al. [31] proposed the concept of type-2 soft sets
to deal with the correspondence between parameters, which is
a generalization of Molodtsov’s soft sets (called type-1 soft
sets). Type-2 soft sets reparameterize the already parame-
terized crisp sets and thus have more freedom and effec-
tiveness in dealing with imprecision as compared to type-1
soft sets. Hayat et al. [32–34] introduced vertex-neighbors-
based type-2 soft sets, type-2 soft graphs, and irregular type-2
soft graphs and presented certain types of type-2 soft graphs.

)e motives of this study are as follows:

(1) Soft sets and their hybrid models are used to deal
with uncertainty based on parametrization tool. )e
correspondence, association, or relation occurring
among parameters cannot be discussed with existing
approaches. Type-2 soft models tackle this difficulty
and present a mathematical approach to repar-
ameterize the existing soft models. To deal with
partial membership of objects, the main focus of this
study is to introduce a hybrid model by combining
fuzzy set theory with type-2 soft sets.

(2) Graph theory is an essential approach to study re-
lations among objects using a figure consisting of
vertices and lines joining these vertices. But there is
an information loss in graphical models whether the
objects are fully related or partially related, that is,
uncertain and parameterized relations among ob-
jects. To handle this information loss, there is a need
to represent the graphical models under fuzzy type-2
soft environment.

)e main contribution of this study is as follows:

(1) )e present study introduces the mathematical ap-
proaches of vertex-neighbors-based type-2 soft set
and vertex-neighbors-based type-2 soft graphs under
fuzzy environment. )e notions of fuzzy type-2 soft
graphs, regular fuzzy type-2 soft graphs, irregular
fuzzy type-2 soft graphs, fuzzy type-2 soft trees, and
fuzzy type-2 soft cycles are discussed with certain
operations and numerical examples.

(2) )e importance of presented concepts is studied with
an application in chemical digestion and national
engineering services.

2. Preliminaries

)e term crisp graph on a nonvoid universe (named as set of
vertices) J is defined as a pair G � (J, K), where K⊆ J × J is

named as set of edges. Crisp graph (J, K) is a special case of
the fuzzy graph with each vertex and edge of (J, K) having
degree of membership 1. A soft graph corresponding to a
crisp graph G is a parameterized family of subgraphs of G. A
soft graph on a nonempty set J is a 3−tuple (J, K, A) such
that, for each e ∈ A, (J(e), K(e)) is a graph, where J(e)⊆ J

and K(e)⊆ J(e) × J(e).

Definition 1 (see [31]). Let (E, M) be a soft universe and let
η(E) be the set of all T1SSs over (E, M). )en a mapping
W: B⟶ η(E), B⊆M is called a type-2 soft set (T2SS) over
(E, M) and it is denoted by [W∗, B]. For all δ ∈ B, W∗(δ) is a
T1SS (W(δ), F(δ)) such that W∗(δ) � (W(δ), F(δ)), where
W(δ): F(δ)⟶ P(E) and F(δ) ⊂M. We refer to the pa-
rameter set B as the “primary set of parameters” although the
collection of parameters denoted by ∪F(δ) is called “un-
derlying set of parameters.”

Definition 2 (see [32]). Suppose that G � (J, K) is a simple
graph. Suppose that B ⊂ J and Γ(J) is the set of all T1SSs over
J. Suppose that [ξ∗, B] is a T2SS over J. )en a mapping
ξ∗: B⟶Γ(J) is said to be a T2SS over J and is denoted as
[ξ∗, B]. For every vertex x ∈ B, [ξ∗, B] is a T1SS, where
ξ∗(x) � (ξ(x),NBx) and ξ(x): NBx⟶ P(J) can be
explained as ξx(u) � v ∈ J|uRv{ }∀u ∈NBx ⊆ J, )is T2SS
is said to be a vertex-neighbors type-2 soft set (VN-T2SS)
over J.

Definition 3 (see [32]). Suppose that G � (J, K) is a simple
graph. Suppose that B ⊂ J and Γ(K) is the set of all T1SSs
over K. Suppose that [ξ∗, B] is a VN-T2SS over J. )en a
mapping ψ∗: B⟶Γ(K) is said to be a T2SS over K and is
denoted as [ψ∗, B]. For every vertex x ∈ B, [ψ∗, B] is a T1SS,
where ψ∗(x) � (ψ(x),NBx) and ψ(x): NBx⟶ P(K) can
be explained as ψx(u) � vw ∈ K|v, w⊆ ξx(u)􏼈 􏼉 ∀x ∈
NBx ⊆ J. )is T2SS is said to be a VN-T2SS over K.

We present the notations that are used in this research
article in Table 1.

3. Fuzzy Type-2 Soft Graphs

We refer to Maji’s [11] fuzzy soft set as fuzzy type-1 soft set
(FT1SS). Consider B as a set of parameters that have a
random nature (characterization of object, some functions,
numeric values, etc.). Consider E as a universal set and the
class of all FT1SSs over E will be indicated by P(E). Recently,
researchers have shown attraction to the application of fuzzy
soft sets in science, advance technology, and decision
problems. Fuzzy type-2 soft sets are considered as a gen-
eralized form of fuzzy soft set. Consider E as a universal set
and M as the set of parameters. Fuzzy type-2 soft set is
defined as follows.

Definition 4. Let (E, M) be a fuzzy soft universe and let
P(E) be the collection of all FT1SSs over (E, M). )en a
mapping S∗: B⟶ P(E), B ⊂M, is called a fuzzy type-2
soft set (FT2SS) over (E, M) and it is denoted by [S∗, B]. In
this case, corresponding to each parameter e ∈ B, S∗(e) is

2 Journal of Mathematics



FT1SS.)us, for each e ∈ B, there exists a FT1SS (Se, Le) such
that S∗(e) � (Se, Le), where Se: Le⟶ P(E) and Le ⊂M. In
this case, we refer to the parameter set B as the “primary set
of parameters,” while the set of parameters ∪ Le is known as
the “underlying set of parameters.”

Definition 5. Let G � (J,K) be a fuzzy graph. )e set of
neighbors of an element (j, μ(j)) is denoted by NBj and
defined by NBj � ((i, μ(i)| ij ∈K)). )en
NBB � ∪ j∈BNBj.

Definition 6. Let G � (J,K) be a fuzzy graph. Suppose
that B ⊂ J and Γ(J) is the set of all FT1SSs overJ. Suppose
that [ξ, B] is a FT2SS overJ.)en amapping ξ: B⟶Γ(J)

is said to be a FT2SS over J and is denoted as [ξ, B]. For
every vertex j ∈ B, ξ(j) � (ξ(j),NBj) is a FT1SS and
ξ(j): NBj⟶ P(J) can be explained as
ξj(u) � v ∈ J|uRv{ }∀u ∈NBj ⊆J. )is FT2SS is said to
be a vertex-neighbors fuzzy type-2 soft set (VN-FT2SS) over
J.

Definition 7. Let G � (J,K) be a fuzzy graph. Suppose
that B ⊂ J and Γ(K) is the set of all T1SSs overK. Suppose

that [ψ, B] is a FT2SS over K. )en a mapping
ψ: B⟶Γ(K) is said to be a FT2SS over K and is denoted
as [ψ, B]. For every vertex j ∈ B, ψ(j) � (ψ(j),NBj) is a
FT1SS and ψ(j): NBj⟶ P(K) can be explained as
ψj(u) � uv ∈K| u, v{ }⊆ ξj(u)􏽮 􏽯∀u ∈NBj ⊆J. )is
FT2SS is said to be a VN-FT2SS over K.

ξ(j) � (ξ(j),NBj) and ψ(j) � (ψ(j),NBj)∀j ∈ B are
FT1SS over J and K, respectively. If
(ξj(u),ψj(u)) ∀u ∈NBj represent a fuzzy graph in fuzzy
type-2 soft graph G, then (ξ(j),ψ(j))∀j ∈ B is called
FT1SG.

Definition 8. A 5-tuple G � (G, ξ,ψ, B,NBb) is called a
fuzzy type-2 soft graph (FT2SG) if it satisfies the following
conditions:

(a) G � (J,K⊆J × J) is a fuzzy graph.
(b) B is a nonempty set of parameters.
(c) [ξ, B] is a VN-FT2SS over J.
(d) [ψ, B] is a VN-FT2SS over K.
(e) FT1SS corresponding to (ξ(j),ψ(j))∀j ∈ B repre-

sents a VN-fuzzy type-1 soft graph (FT1SG).

A FT2SG can also be defined by
G � <ξ,ψ, B> � Z(j)|j ∈ B􏼈 􏼉, where Z(j) � (Zj,NBj)

such that Zj(u) � (ξj(u),ψj(u)) for all u ∈NBj.

Example 1. Let G � (J,K) be a fuzzy graph as shown in
Figure 1. Let B � (e3, 0.5)􏼈 􏼉,NBe3

� (e1, 0.8), (e4, 0.4)􏼈 􏼉.
Suppose that [ξ, B] and [ψ, B] are two FT2SSs overJ andK,
respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B.
(1)

Define ξe3
(u) � v ∈ J|uRv⟺ S∞(P) � 0.3{ } and

ψe3
(u) � vw ∈K| v, w{ }⊆ ξe3

(u)􏽮 􏽯∀u ∈NBe3
⊆J. )en

FT2SSs [ξ, B] and [ψ, B] are defined as follows:

ξe3
� e1, 0.8( 􏼁, e4, 0.4( 􏼁􏼈 􏼉􏼈 􏼉, e4, 0.4( 􏼁, e1, 0.8( 􏼁, e2, 0.7( 􏼁, e3, 0.5( 􏼁, e5, 0.9( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψe3
� e1, 0.8( 􏼁,∅􏼈 􏼉, e4, 0.4( 􏼁, e1e3, 0.4( 􏼁, e1e2, 0.6( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉.

(2)

Fuzzy type-2 soft graph G � (Z(e3)) is shown in
Figure 2.

Definition 9. Let G � (G, ξ,ψ, B,NBB) be a fuzzy type-2
soft graph; the complement of G is denoted by Gc and
defined by Gc � (Zc(z1),Z

c(z2), . . . ,Zc(zn)) for all
z1,z2, . . . ,zn ∈B, where Zc(zi) � (ξc

(zi),ψc(zi)) is the
complement of FT1SG corresponding to
Z(zi) � (ξ(zi),ψ(zi)) for all zi ∈B, i � 1,2, . . . ,n.

Example 2. Let G � (J,K) be a fuzzy graph as shown in
Figure 3.

Let B � (e1, 0.7),􏼈 (e5, 0.5)}, NBe1
� (e2, 0.8), (e3, 0.5),􏼈

(e6, 0.6)}, and NBe5
� (e4, 0.8), (e6, 0.6)􏼈 􏼉.

Let [ξ, B] and [ψ, B] be two FT2SSs over J and K,
respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B.
(3)

Table 1: List of abbreviations.

Abbreviation Description
T1SS Type-1 soft set
T2SS Type-2 soft set
VN-T2SS Vertex-neighbors type-2 soft set
FT1SS Fuzzy type-1 soft set
FT2SS Fuzzy type-2 soft set
VN-FT2SS Vertex-neighbors fuzzy type-2 soft set
FT1SG Fuzzy type-1 soft graph
FT2SG Fuzzy type-2 soft graph
FT1ST Fuzzy type-1 soft tree
FT2ST Fuzzy type-2 soft tree
FT2SST Fuzzy type-1 soft subtree
FT2SST Fuzzy type-2 soft subtree
FT1SC Fuzzy type-1 soft cycle
FT2SC Fuzzy type-2 soft cycle
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Define

ξe1
(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.2{ },

ψe1
(u) � vw ∈K| v, w{ }⊆ ξe1

(u)􏽮 􏽯, for all u ∈NBe1
⊆J,

ξe5
(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.2{ },

ψe5
(u) � vw ∈K| v, w{ }⊆ ξe5

(u)􏽮 􏽯, for all u ∈NBe5
⊆J.

(4)

)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:

ξe1
�

e2, 0.8( 􏼁, e1, 0.7( 􏼁, e3, 0.5( 􏼁, e4, 0.8( 􏼁, e5, 0.5( 􏼁􏼈 􏼉􏼈 􏼉,

e3, 0.5( 􏼁, e1, 0.7( 􏼁, e2, 0.8( 􏼁, e6, 0.6( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉,

e6, 0.6( 􏼁, e3, 0.5( 􏼁, e5, 0.5( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

ψe1
�

e2, 0.8( 􏼁, e1e3, 0.1( 􏼁, e4e5, 0.1( 􏼁􏼈 􏼉􏼈 􏼉,

e3, 0.5( 􏼁, e1e2, 0.2( 􏼁, e1e6, 0.5( 􏼁, e6e7, 0.1( 􏼁􏼈 􏼉􏼈 􏼉,

e6, 0.6( 􏼁, e3e7, 0.1( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

ξe5
� e4, 0.8( 􏼁, e2, 0.8( 􏼁, e5, 0.5( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉, e6, 0.6( 􏼁,􏼈􏼈

e7, 0.3( 􏼁, e3, 0.5( 􏼁, e5, 0.5( 􏼁􏼈 􏼉􏼉􏼉,

ψe5
� e6, 0.6( 􏼁, e3e7, 0.1( 􏼁􏼈 􏼉􏼈 􏼉, e4, 0.8( 􏼁,∅􏼈 􏼉􏼈 􏼉.

(5)

)en [ξc
, B] and [ψc, B] are defined as follows:

ξc
e1

�

e2, 0.8( 􏼁, e4, 0.8( 􏼁, e3, 0.5( 􏼁, e1, 0.7( 􏼁, e5, 0.5( 􏼁􏼈 􏼉􏼈 􏼉,

e3, 0.5( 􏼁, e1, 0.7( 􏼁, e2, 0.8( 􏼁, e6, 0.6( 􏼁 e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉,

e6, 0.6( 􏼁, e5, 0.5( 􏼁, e3, 0.5( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

ψc
e1

�

e2, 0.8( 􏼁, e1e4, 0.7( 􏼁, e1e3, 0.4( 􏼁, e1e5, 0.5( 􏼁 e4e3, 0.5( 􏼁, e3e5, 0.5( 􏼁, e4e5, 0.4( 􏼁􏼈 􏼉􏼈 􏼉,

e3, 0.5( 􏼁, e1e2, 0.5( 􏼁, e1e7, 0.3( 􏼁, e1e6, 0.1( 􏼁, e2e6, 0.6( 􏼁, e2e7, 0.3( 􏼁, e6e7, 0.2( 􏼁􏼈 􏼉􏼈 􏼉,

e6, 0.6( 􏼁, e5e7, 0.3( 􏼁, e5e3, 0.5( 􏼁, e7e3, 0.2( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

ξc
e5

� e4, 0.8( 􏼁, e2, 0.8( 􏼁, e5, 0.5( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉, e6, 0.6( 􏼁, e7, 0.3( 􏼁, e3, 0.5( 􏼁, e5, 0.5( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψc
e5

� e4, 0.8( 􏼁, e2e7, 0.3( 􏼁, e5e7, 0.3( 􏼁, e2e5, 0.5( 􏼁􏼈 􏼉􏼈 􏼉, e6, 0.6( 􏼁, e7e3, 0.2( 􏼁, e5e3, 0.5( 􏼁, e5e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉.

(6)

(e1, 0.8)

(e2, 0.7)

(e3, 0.5)

(e4, 0.4)

(e6, 0.6)

(e5, 0.9)

(e7, 0.3) (e8, 0.8)

(e9, 0.2)

(e10, 0.2)

(e11, 0.3)
(0.4)

(0.2)

(0.6)

(0.3)

(0.3)

(0.3) (0.2)

(0.1)
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(0.2)

(0.1)

(0.3)

0.1

Figure 1: Fuzzy graph G � (J,K).
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Figure 2: Fuzzy type-2 soft graph G � (Z(e3)).
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Figure 3: Fuzzy graph G � (J,K).
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)e complement of G � (Ze1
, Ze5

) is a FT2SG
Gc � (Zc

e1
, Zc

e5
) such that Zc

e1
� (ξc

e1
,ψc

e1
) is the complement

of FT1SG corresponding to Z(e1) � (ξe1
,ψe1

) and
Zc

e5
� (ξc

e5
,ψc

e5
) is the complement of FT1SG corresponding

to Z(e5) � (ξe5
,ψe5

) as shown in Figure 4.

Definition 10. Let G be a FT2SG; G is said to be a regular
FT2SG if FT1SG corresponding to Z(χ) is a regular FT1SG
for all χ ∈ B.

Proposition 1. If G is a regular FT2SG, then Gc is a regular
FT2SG.

Proof. Let G be a regular FT2SG. Suppose that (Zσ , NBσ)

is a FT1SG corresponding to Z(σ) for all σ ∈ B; then
Zσ(j) for all j ∈NBσ must be a regular fuzzy graph. As we
know that complement of a regular graph is regular,
Zc
σ(j)∀j ∈NBσ is also a regular fuzzy graph. It provides

FT1SG corresponding to a Zc(σ) for all σ ∈ B being regular
FT1SG. )us, Gc is a regular FT2SG of G. □

Definition 11. Let G be a FT2SG; G is said to be an irregular
FT2SG if FT1SG corresponding to Z(χ) is an irregular
FT1SG for all χ ∈ B.

Example 3. Let G � (J,K) be a fuzzy graph as shown in
Figure 5. Let B � (e4, 0.4), (e5, 0.5)􏼈 􏼉,NBe4

� (e1, 0.1), (e3,􏼈

0.3), (e5, 0.5)}, and NBe5
� (e4, 0.4), (e6, 0.9)􏼈 􏼉.

Let [ξ, B] and [ψ, B] be two FT2SSs over J and K,
respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B.
(7)

Define

ξe4
(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.2{ },

ψe4
(u) � vw ∈K|v, w⊆ ξe4

(u)􏽮 􏽯, for all u ∈NBe4
⊆J,

ξe5
(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.2{ },

ψe5
(u) � vw ∈K|v, w⊆ ξe5

(u)􏽮 􏽯, for all u ∈NBe5
⊆J.

(8)

)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:

ξe4
�

e1, 0.1( 􏼁, e2, 0.2( 􏼁, e3, 0.3( 􏼁, e4, 0.4( 􏼁, e5, 0.5( 􏼁􏼈 􏼉􏼈 􏼉,

e3, 0.3( 􏼁, e1, 0.1( 􏼁, e2, 0.2( 􏼁, e4, 0.4( 􏼁􏼈 􏼉􏼈 􏼉,

e5, 0.5( 􏼁, e1, 0.1( 􏼁, e4, 0.4( 􏼁, e6, 0.9( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

ψe4
�

e1, 0.1( 􏼁, e2e3, 0.1( 􏼁, e3e4, 0.2( 􏼁, e4e5, 0.1( 􏼁􏼈 􏼉􏼈 􏼉, e3, 0.3( 􏼁, e1e4, 0.1( 􏼁, e1e2, 0.1( 􏼁􏼈 􏼉􏼈 􏼉,

e5, 0.5( 􏼁, e1e4, 0.1( 􏼁􏼈 􏼉􏼈 􏼉
􏼨 􏼩,

ξe5
� e4, 0.4( 􏼁, e1, 0.1( 􏼁, e2, 0.2( 􏼁, e3, 0.3( 􏼁, e5, 0.5( 􏼁, e6, 0.9( 􏼁􏼈 􏼉, e6, 0.9( 􏼁, e4, 0.4( 􏼁, e5, 0.5( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψe5
� e4, 0.4( 􏼁, e1e2, 0.1( 􏼁, e2e3, 0.1( 􏼁, e5e6, 0.1( 􏼁, e6e3, 0.3( 􏼁􏼈 􏼉􏼈 􏼉, e6, 0.9( 􏼁, e4e5, 0.1( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉.

(9)

)enG � (Z(e4), Z(e5)) is an irregular FT2SG as shown
in Figure 6.

Proposition 2. If G is a regular fuzzy graph, then every
FT2SG of G is not necessarily a regular FT2SG.

Definition 12. Let G be a FT2SG; G is called a neighborly
irregular FT2SG if FT1SGs corresponding to Z(χ) are
neighborly irregular FT1SG for all χ ∈ B.

Example 4. Let G � (J,K) be a fuzzy graph as shown in
Figure 7. Let B � (e3, 0.9),􏼈 (e5, 0.4)},NBe3

� (e1, 0.2),􏼈

(e2, 0.4), (e4, 0.6)}, and NBe5
� (e4,0.6),(e6,0.1),(e7,0.3)􏼈 􏼉.

Let [ξ, B] and [ψ, B] be two FT2SSs over J and K,
respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B.
(10)

Define

ξe3
(u) � (v ∈ J|uRv⟺ d(u, v)≤ 0.3),

ψe3
(u) � vw ∈K | v, w{ }⊆ ξe3

(u)􏽮 􏽯, for all u ∈NBe3
⊆J,

ξe5
(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.4{ },

ψe5
(u) � vw ∈K | v, w{ }⊆ ξe5

(u)􏽮 􏽯, for all u ∈NBe5
⊆J.

(11)

)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:
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ξe3
�

e1, 0.2( 􏼁, e2, 0.4( 􏼁, e3, 0.9( 􏼁, e4, 0.6( 􏼁􏼈 􏼉􏼈 􏼉, e2, 0.4( 􏼁, e1, 0.2( 􏼁, e3, 0.9( 􏼁, e4, 0.6( 􏼁􏼈 􏼉􏼈 􏼉,

e4, 0.6( 􏼁, e1, 0.2( 􏼁, e2, 0.4( 􏼁, e3, 0.9( 􏼁, e5, 0.4( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎨

⎩

⎫⎬

⎭,

ψe3
�

e1, 0.2( 􏼁, e2e3, 0.3( 􏼁, e3e4, 0.4( 􏼁􏼈 􏼉􏼈 􏼉,

e2, 0.4( 􏼁, e1e3, 0.2( 􏼁, e3e4, 0.4( 􏼁, e1e4, 0.1( 􏼁􏼈 􏼉,

e4, 0.6( 􏼁, e1e2, 0.1( 􏼁, e3e2, 0.3( 􏼁, e1e3, 0.2( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

ξe5
�

e4, 0.6( 􏼁, e1, 0.2( 􏼁, e2, 0.4( 􏼁, e3, 0.9( 􏼁, e5, 0.4( 􏼁􏼈 􏼉,

e6, 0.1( 􏼁, e5, 0.4􏼈 􏼉, e8, 0.9( 􏼁, e7, 0.3( 􏼁( 􏼁􏼈 􏼉,

e7, 0.3( 􏼁, e6, 0.1( 􏼁, e8, 0.9( 􏼁, e5, 0.4( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

ψe5
�

e4, 0.6( 􏼁, e1e2, 0.1( 􏼁, e2e3, 0.3( 􏼁, e1e3, 0.2( 􏼁􏼈 􏼉􏼈 􏼉,

e6, 0.1( 􏼁, e5e7, 0.2( 􏼁, e7e8, 0.1( 􏼁􏼈 􏼉􏼈 􏼉,

e7, 0.3( 􏼁, e6e5, 0.2( 􏼁, e6e8, 0.1( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(12)

)en G � (Z(e3), Z(e5)) is a neighborly irregular
FT2SG as shown in Figure 8.

Definition 13. LetG be a FT2SG and Z(χ) � (Zχ ,NBχ) is a
FT1SG for all χ ∈ B. An edge uv in G is said to be a FT2S
bridge if its removal disconnects Zχ(u) for all u ∈NBχ .

Definition 14. Let G be a FT2SG and Z(χ) � (Zχ ,NBχ) is
a FT1SG for all χ ∈ B. A vertex z in G is said to be a FT2S

cut-vertex if its removal disconnects Zχ(u) for all
u ∈NBχ .

Definition 15. Let G � (G, ξ,ψ, B,NBB) be a FT2SG; G is
called a fuzzy type-2 soft tree (FT2ST) if FT1SGs corre-
sponding to Z(χ) are FT1STs for all χ ∈ B.

Example 5. Let G � (J,K) be a fuzzy graph as shown in
Figure 9. Let B � (c, 0.6), (f, 0.2)􏼈 􏼉,NBc � (b, 0.2),{

(d, 0.4)}, and NBf � (e, 0.5), (g, 0.8)􏼈 􏼉.

Zc
e1 (e2)

(e3, 0.5)

(e5, 0.5)(e4, 0.8)

(e1, 0.7)
0.4

0.5

0.
5

0.5
0.4

0.50.
7

(e5, 0.5) (e7, 0.3)
0.3

0.
5

0.2

(e3, 0.5)
Zce1 (e6)

(e6, 0.6) (e7, 0.3)

Zce1 (e3)

0.
1

0.6

0.2

0.3

0.
3

(e1, 0.7) (e2, 0.8)

Zc (e1)

(e5, 0.5)

(e3, 0.5) (e7, 0.3)

0.3

0.
5

0.2

0.
3

0.3

0.5

(e2, 0.8)

(e5, 0.5)

(e7, 0.3)

Zce5 (e4)Zce5 (e6)

Zc (e5)

Figure 4: Gc � (Zc(e1), Zc(e5)).
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Let [ξ, B] and [ψ, B] be two FT2SSs over J and K,
respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B.
(13)

Define

ξc(u) � v ∈ J|uRv⟺ d(u, v) � rad(G){ },

ψc(u) � vw ∈K|v, w⊆ ξc(u)􏼈 􏼉, for all u ∈NBc ⊆J,

ξf(u) � v ∈ J|uRv⟺ d(u, v) � rad(G){ },

ψf(u) � vw ∈K|v, w⊆ ξf(u)􏽮 􏽯, for all u ∈NBf ⊆J.

(14)

)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:

(e2, 0.2)
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0.1

0.3

0.1
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0.1

0.1
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Figure 6: G � (Z(e4), Z(e5)).
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Figure 7: Fuzzy graph G � (J,K).
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Figure 5: Fuzzy graph G � (J,K).
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ξc � (b, 0.2), (g, 0.8), (f, 0.2)􏼈 􏼉􏼈 􏼉, (d, 0.4), (a, 0.3), (g, 0.8)􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψc � (b, 0.2), (gf, 0.2)􏼈 􏼉􏼈 􏼉, (d, 0.4), (ag, 0.2)􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ξf � (e, 0.5),∅{ }, (g, 0.8), (b, 0.2), (d, 0.4){ }􏼈 􏼉􏼈 􏼉,

ψf � (e, 0.5),∅{ }, (g, 0.8), (bd, 0.2){ }􏼈 􏼉􏼈 􏼉.

(15)

)en G � (Z(c), Z(f)) is a FT2ST as shown in Fig-
ure 10. It can also be defined as VN-type-2 soft tree.

Theorem 1. Let G be a FT2SG and Z(χ) � (Zχ ,NBχ) is a
FT1SG for all χ ∈ B. If Zχ(j)∀j ∈NBχ is a FT1SG with n≥ 3
vertices, then G will not be a complete FT2SG.

Proof. Let G be a FT2SG and Z(χ) � (Zχ ,NBχ) is a FT1SG
for all χ ∈ B. On the contrary, assume that G is a complete
FT2SG; then each Zχ(j)∀j ∈NBχ will also be complete.
Let v, w be arbitrary nodes of Zχ(j) joined by a line vw. Since
Zχ(j) having n≥ 3 vertices ofG is a FT1SG, then a minimum

one vertex η which is connected to v by an edge vη and to w

by an edge wη as Zχ(j) be a complete fuzzy graph. )en
there is a cycle vwηv. )erefore, Zχ(j)∀j ∈NBχ cannot be
a FT1ST, which is opposite to the fact that Zχ(j) is a
connected FT1SG of FT2SG. So, G is not a complete
FT2SG. □

Definition 16. Let G be a FT2SG and Z(χ) � (Zχ ,NBχ) is
a FT1SG for all χ ∈ B. )en G is called a fuzzy type-2 soft
forest if Zχ(j) consists of several disjoined fuzzy trees
∀j ∈NBχ .

Definition 17. Let G be a FT2SG; G is said to be a FT2SC if
FT1SG corresponding to Z(χ) is a fuzzy type-1 soft cycle, for
all χ ∈ B.

Example 6. Let G � (J,K) be a fuzzy graph as shown in
Figure 11, where
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Figure 8: G � (Z(e3), Z(e5)).
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Figure 9: Fuzzy graph G � (J,K).
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J � e1, 0.3( 􏼁, e2, 0.2( 􏼁, e3, 0.2( 􏼁, e4, 0.4( 􏼁, e5, 0.6( 􏼁, e6, 0.2( 􏼁, e7, 0.3( 􏼁, e8, 0.3( 􏼁, e9, 0.1( 􏼁, e10, 0.1( 􏼁􏼈 􏼉,

K �
e1e2, 0.1( 􏼁, e2e3, 0.1( 􏼁, e3e1, 0.1( 􏼁, e3e4, 0.1( 􏼁, e5e3, 0.1( 􏼁,

e5e6, 0.1( 􏼁, e6e4, 0.1( 􏼁, e7e6, 0.3( 􏼁, e7e9, 0.1( 􏼁, e7e8, 0.3( 􏼁, e9e10, 0.1( 􏼁, e8e10, 0.1( 􏼁
􏼨 􏼩.

(16)

Let B � (e8, 0.3), (e9, 0.1)􏼈 􏼉,NBe9
� (e7, 0.3), (e10,􏼈

0.1)}, and NBe8
� (e7, 0.3), (e10, 0.1)􏼈 􏼉.

Let [ξ, B] and [ψ, B] be two FT2SSs over J and K,
respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B.
(17)

Define

ξe9
(u) � v ∈ J|uRv⟺ 0.5≤ d(u, v)≤ 0.7{ },

ψe9
(u) � vw ∈K| v, w{ }⊆ ξe9

(u)􏽮 􏽯, for all u ∈NBe9
⊆J,

ξe8
(u) � v ∈ J|uRv⟺ 0.5≤ d(u, v)≤ 0.7{ },

ψe8
(u) � vw ∈K| v, w{ }⊆ ξe8

(u)􏽮 􏽯, for all u ∈NBe8
⊆J.

(18)

)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:

ξe9
� e7, 0.3( 􏼁, e1, 0.3( 􏼁, e2, 0.2( 􏼁, e3, 0.2( 􏼁􏼈 􏼉􏼈 􏼉, e10, 0.1( 􏼁, e3, 0.2( 􏼁, e4, 0.4( 􏼁, e5, 0.6( 􏼁, e6, 0.2( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψe9
�

e7, 0.3( 􏼁, e3e2, 0.1( 􏼁, e1e3, 0.1( 􏼁, e1e2, 0.1( 􏼁􏼈 􏼉􏼈 􏼉,

e10, 0.1( 􏼁, e4e3, 0.1( 􏼁, e3e5, 0.1( 􏼁, e6e5, 0.1( 􏼁, e6e4, 0.1( 􏼁􏼈 􏼉􏼈 􏼉
􏼨 􏼩,

ξe8
� e7, 0.3( 􏼁, e1, 0.3( 􏼁, e2, 0.2( 􏼁, e3, 0.2( 􏼁􏼈 􏼉􏼈 􏼉, e10, 0.1( 􏼁, e3, 0.2( 􏼁, e4, 0.4( 􏼁, e5, 0.6( 􏼁, e6, 0.2( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψe8
�

e7, 0.3( 􏼁, e3e2, 0.1( 􏼁, e1e3, 0.1( 􏼁, e1e2, 0.1( 􏼁􏼈 􏼉􏼈 􏼉,

e10, 0.1( 􏼁, e4e3, 0.1( 􏼁, e3e5, 0.1( 􏼁, e6e5, 0.1( 􏼁, e6e4, 0.1( 􏼁􏼈 􏼉􏼈 􏼉
􏼨 􏼩.

(19)

We can check that G � (Z(e9), Z(e8)) is a FT2SC as
shown in Figure 12. It is also defined as a fuzzy VN-type-2
soft cycle.

Example 7. Let G � (J,K) be a fuzzy graph as shown in
Figure 13. Let B � (a, 0.4), (b, 0.2){ } ⊂ J, NBa �

(b, 0.2), (c, 0.3), (d, 0.3){ }, and NBb � (a, 0.4), (c, 0.3),{

(d, 0.3)}. Let [ξ, B] and [ψ, B] be two FT2SSs overJ andK,
respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B.
(20)
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(e1, 0.3) (e2, 0.2)

(e3, 0.2)

(e4, 0.4)

(e6, 0.2)

(e7, 0.3)

(e8, 0.3)

(e10, 0.1)

(e9, 0.1)

(e5, 0.6)

Figure 11: Fuzzy graph G � (J,K).
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Define ξa(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.2{ }, ψa(u) �

vw ∈K|v,{ w⊆ ξa(u)} ∀u ∈NBa ⊆J, ξb(u) � v ∈{ J|u

Rv ⟺ d(u, v)≤ 0.2},ψb(u) � vw ∈K|v, w⊆ ξb(u)􏼈 􏼉∀u ∈
NBb ⊆J.

)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:

ξa �
(b, 0.2), (a, 0.4), (c, 0.3), (d, 0.3){ }{ }, (c, 0.3), (a, 0.4), (b, 0.2), (d, 0.3), (e, 0.4){ }{ },

(d, 0.3), (a, 0.4), (b, 0.2), (c, 0.3), (e, 0.4){ }{ }
􏼨 􏼩,

ψa �
(b, 0.2), (ad, 0.1), (ac, 0.2){ }{ }, (c, 0.3), (ab, 0.2), (ad, 0.1), (bd, 0.1), (de , 0.2){ }{ },

(d, 0.3), (ab, 0.2), (ac, 0.2), (bc, 0.1), (ce, 0.2){ }{ }
􏼨 􏼩,

ξb �
(a, 0.4), (c, 0.3), (b, 0.2), (d, 0.3){ }{ }, (c, 0.3), (a, 0.4), (b, 0.2), (e, 0.4), (d, 0.3){ }{ },

(d, 0.3), (a, 0.4), (b, 0.2), (c, 0.3), (e, 0.4){ }{ }
􏼨 􏼩,

ψb �
(a, 0.4), (bc, 0.1), (bd, 0.1){ }{ }, (c, 0.3), (ad, 0.1), (ed, 0.2), (ab, 0.2), (bd, 0.1){ }{ },

(d, 0.3), (ec, 0.2), (ab, 0.2), (ac, 0.2), (bc, 0.1){ }{ }
􏼨 􏼩.

(21)

Z(a) � (ξ(a),ψ(a)) and Z(b) � (ξ(b),ψ(b)) are
FT1SGs as shown in Figure 14. We can see that Za(b) �

(ξa(b),ψa(b)), Za(c) � (ξa(c),ψa(c)), Za(d) � (ξa(d), ψa

(d)), Zb(c) � (ξb(c),ψb(c)) and Zb(d) � (ξb(d),ψb(d)) are
all not trees. HenceG � (Z(a), Z(b)) is not a FT2STandG is
also not a FT2SC.

Proposition 3. Every fuzzy type-2 soft cycle is a regular fuzzy
type-2 soft cycle.

Proof. Let G be a FT2SC. Let (Zχ ,NBχ) be a T1FSC
corresponding to Z(χ) for every χ ∈ B. )en, Zχ(j) is a cycle
∀j ∈NBχ . We know that cycle is a path that is closed and
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Figure 12: G � (Z(e9), Z(e8)).
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Figure 13: Fuzzy graph G � (J,K).
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every vertex of cycle is of degree 2; this signifies that Zχ(j) is
a regular fuzzy graph for all j ∈NBχ . )erefore,
(Zχ , NBχ) is a regular FT1SG, for all χ ∈ B. Hence G is a
regular FT2SG. □

Definition 18. Let G1 � <ξ1,ψ1, B1> and G2 � <ξ2,ψ2,B2>
be two FT2STs. G2 is a fuzzy type-2 soft subtree (FT2SST) of
G1 if

(i) B2 ⊆B1

(ii) For each j ∈ B2, FT1ST corresponding to
Z2(j) � (ξ2(j),ψ2(j)) is a fuzzy type-1 soft subtree
(FT1SST) of FT1ST corresponding to
Z1(j) � (ξ1(j),ψ1(j))

Example 8. Let G � (J,K) be a fuzzy graph as shown in
Figure 15, where

J � e1, 0.3( 􏼁, e2, 0.2( 􏼁, e3, 0.2( 􏼁, e4, 0.4( 􏼁, e5, 0.6( 􏼁, e6, 0.2( 􏼁, e7, 0.3( 􏼁􏼈 􏼉,

K � e1e2, 0.1( 􏼁, e2e3, 0.1( 􏼁, e3e4, 0.2( 􏼁, e5e4, 0.1( 􏼁, e5e6, 0.1( 􏼁, e7e6, 0.2( 􏼁, e7e1, 0.1( 􏼁􏼈 􏼉.
(22)

Let B � (e2, 0.2), (e4, 0.4)􏼈 􏼉, B∗ � (e2,􏼈 0.2), (e4, 0.4)},

NBe2
� (e1, 0.3), (e3, 0.2)􏼈 􏼉, NBe4

� (e3, 0.2), (e5, 0.6)􏼈 􏼉.
Let [ξ, B] and [ψ, B] be two FT2SSs over J and K, re-
spectively. We have

ξ(j) � ξj,NBj􏼐 􏼑ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B.

(23)

Define ξe2
(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.2{ }, ψe2

(u) �

vw ∈K|v, w⊆ ξe2
(u)􏽮 􏽯 ∀u ∈NBe2

⊆J and ξe4
(u) � v ∈{

J|uRv⟺ d(u, v) � 0.2},ψe4
(u) � vw ∈K|v, w⊆ ξe4

(u)􏽮 􏽯

∀u ∈NBe4
⊆J.

)en FT2SSs [ξ, B] and [ψ, B] are defined as follows:

ξe2
� e1, 0.3( 􏼁, e2, 0.2( 􏼁, e3, 0.2( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉, e3, 0.2( 􏼁, e1, 0.3( 􏼁, e2, 0.2( 􏼁, e4, 0.4( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψe2
� e1, 0.3( 􏼁, e2e3, 0.1( 􏼁􏼈 􏼉􏼈 􏼉, e3, 0.2( 􏼁, e1e2, 0.1( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ξe4
� e3, 0.2( 􏼁, e1, 0.3( 􏼁, e4, 0.4( 􏼁􏼈 􏼉􏼈 􏼉, e5, 0.6( 􏼁,∅􏼈 􏼉􏼈 􏼉,

ψe4
� e3, 0.2( 􏼁,∅􏼈 􏼉, e5, 0.6( 􏼁,∅􏼈 􏼉􏼈 􏼉.

(24)
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Figure 14: G � (Z(b), Z(a)).
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G � (Z(e2), Z(e4)) is a FT2ST as shown in Figure 16.

Let [ξ′, N] and [ψ′, N] be two FT2SSs over J and K,
respectively. We have

ξ′(j) � ξj,NBj􏼐 􏼑,

ψ′(j) � ψj,NBj􏼐 􏼑, for all j ∈ N.
(25)

Define ξe2
′(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.3{ },ψe2

′(u) �

vw ∈K|v, w⊆ ξe2
′(u)􏽮 􏽯∀u ∈NBe2

⊆J and ξe4
′(u) � v ∈{

J|uRv⟺ d(u, v)≤ 0.3},ψe4
′(u) � vw ∈K|v, w⊆ ξe4

′(u)􏽮 􏽯

∀u ∈NBe4
⊆J.

FT2SSs [ξ′, N] and [ψ′, N] are defined as follows:

ξe2
′ � e1, 0.3( 􏼁, e2, 0.2( 􏼁, e3, 0.2( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉, e3, 0.2( 􏼁, e1, 0.3( 􏼁, e2, 0.2( 􏼁, e4, 0.4( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψe2
′ � e1, 0.3( 􏼁, e2e3, 0.1( 􏼁􏼈 􏼉􏼈 􏼉, e3, 0.2( 􏼁, e1e7, 0.1( 􏼁, e1e2, 0.1( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ξe4
′ � e3, 0.2( 􏼁, e1, 0.3( 􏼁, e2, 0.2( 􏼁, e4, 0.4( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉, e5, 0.6( 􏼁, e4, 0.4( 􏼁, e6, 0.2( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψe4
′ � e3, 0.2( 􏼁, e2e1, 0.1( 􏼁 e1e7, 0.1( 􏼁􏼈 􏼉􏼈 􏼉, e5, 0.6( 􏼁,∅􏼈 􏼉􏼈 􏼉.

(26)

G′ � (Z′(e2), Z′(e4)) is a FT2SST of G as shown in
Figure 17. We can see that B ⊂ B∗ and
Z(e2)⊆Z′(e2), Z(e4)⊆Z′(e4). Hence, G is a FT2SST of G′.

Theorem 2. Let G1 � <ξ1, ψ1, B1> and G2 � <ξ2, ψ2, B2>
be two FT2STs. @en G2 is said to be a FT2SST of G1 if and
only if ξ2⊆ξ1 and ψ2⊆ψ1.

Proof. Let G2 be a FT2SST of G1. )en, by using the defi-
nition of FT2SST,

(i) B2 ⊆B1

(ii) For all j ∈ B2, FT1ST corresponding to
Z2(j) � (ξ2(j), ψ2(j)) is a FT1SST of FT1ST cor-
responding to Z1(j) � (ξ1(j), ψ1(j))

Since FT1ST corresponding to Z2(j) is a FT1SST of
FT1ST corresponding to Z1(j) for all j ∈ B2, we have ξ2 ⊆ ξ1
and ψ2 ⊆ψ1 ∀j ∈ B2. Conversely, we have ξ2(j)⊆ ξ1(j) and
ψ2(j)⊆ψ1(j)∀j ∈ B2. AsG1 is a fuzzy type-2 soft tree, fuzzy
type-1 soft set corresponding to Z1(j) forms a FT1ST of G2
for all j ∈ B1. Also, G2 is a fuzzy type-2 soft tree, and fuzzy
type-1 soft set corresponding to Z2(j) forms a FT1ST of G1
for all j ∈ B2. )is implies that FT1ST corresponding to
Z2(j) is a FT1SST of FT1ST corresponding to Z1(j) for all
j ∈ B2. Hence, G2 is a FT2SST of G1. □

Definition 19. LetG1 � <ξ1,ψ1, B1> andG2 � <ξ2,ψ2, B2>
be two FT2STs. )e union of G1 and G2 is denoted by
G1 ∪G2 � G � <ξ,ψ, P> , where P � B1 ∪B2, such that

ξ(v) �

ξ1(v), if v ∈ B1 − B2,

ξ2(v), if v ∈ B2 − B1,

ξ1(v)∪ ξ2(v), if v ∈ B1 ∩B2,

⎧⎪⎪⎨

⎪⎪⎩

ψ(v) �

ψ1(v), if v ∈ B1 − B2,

ψ2(v), if v ∈ B2 − B1,

ψ1(v)∪ψ2(v), if v ∈ B2 ∩B1,

⎧⎪⎪⎨

⎪⎪⎩

(27)

where (ξ1(v)∪ ξ2(v),ψ1(v)∪ψ2(v)) for all v ∈ B1 ∩B2 re-
lates to the fuzzy type-1 soft union between the relevant
FT1STs corresponding to (ξ1(v),ψ1(v)) and (ξ2(v),ψ2(v)),
respectively. It can be written as
G1 ∪G2 � Z(v) � (ξ(v),ψ(v))| v ∈ P􏼈 􏼉.

Theorem 3. Let G1 � <ξ1,ψ1, B1> and G2 � <ξ2,ψ2, B2>
be two FT2STs with B1 ∩B2 � ∅. @en G1 ∪G2 is a FT2ST.

Proof. Let G1 � <ξ1,ψ1, B1> and G2 � <ξ2,ψ2, B2> be two
FT2STs. )e union of G1 and G2 is denoted by
G1 ∪G2 � G � <ξ,ψ, P> , where P � B1 ∪B2 is defined
∀v ∈ P:

ξ(v) �

ξ1(v), if v ∈ B1 − B2,

ξ2(v), if v ∈ B2 − B1,

ξ1(v)∪ψ2(v), if v ∈ B1 ∩B2,

⎧⎪⎪⎨

⎪⎪⎩

ψ(v) �

ψ1(v), if v ∈ B1 − B2,

ψ2(v), if v ∈ B2 − B1,

ψ1(v)∪ψ2(v), if v ∈ B2 ∩B1,

⎧⎪⎪⎨

⎪⎪⎩

(28)

(e1, 0.3) (e2, 0.2)

(e7, 0.3)

(e6, 0.2) (e5, 0.6)

(e4, 0.4)

(e3, 0.2)

(0.3)

(0.1)

(0
.3)

(0
.2

)

(0.1)

(0.1)

(0.1)

Figure 15: G � (J, K) is a fuzzy graph.
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where ψ1(v)∪ψ2(v) for all v ∈ B2 ∩B1 relates to the fuzzy
type-1 soft extended union among the relevant FT1STs cor-
responding to ψ1(v) and ψ2(v), respectively, and ξ1(v)∪ ξ2(v)

for all v ∈ B1 ∩B2 relates to the fuzzy type-1 soft union between
the relevant FT1STs corresponding to ξ1(v) and ξ2(v), re-
spectively. Since G1 is a FT2ST, FT1ST corresponding to
(ξ1(j) andψ1(j)) is a FT2ST for all j ∈ B1 − B2.

Since G2 is a FT2ST, FT1ST corresponding to
(ξ2(j) andψ2(j)) is a FT2ST for all j ∈ B2 − B1. It is given
that B1 ∩B2 � ∅. )us, G1 ∪G2 � G � <ξ,ψ, B1 ∩B2> is a
FT2ST. □

Definition 20. Let G1 � <ξ1,ψ1, B1> and G2 � <ξ2,ψ2, B2>
be two FT2STs. )e intersection of G1 and G2 is denoted by
G1 ∩G2 � G � <ξ,ψ, P> , where P � B1 ∪B2 such that

ξ(v) �

ξ1(v), if v ∈ B1 − B2,

ξ2(v), if v ∈ B2 − B1,

ξ1(v)∩ ξ2(v), if v ∈ B1 ∩B2,

⎧⎪⎨

⎪⎩

ψ(v) �

ψ1(v), if v ∈ B1 − B2,

ψ2(v), if v ∈ B2 − B1,

ψ1(v)∩ψ2(v), if v ∈ B2 ∩B1,

⎧⎪⎨

⎪⎩

(29)

where (ξ1(v)∩ ξ2(v),ψ1(v)∩ψ2(v)) for all v ∈ B1 ∩B2 re-
lates to the fuzzy type-1 soft intersection between the rel-
evant FT1STs corresponding to (ξ1(v),ψ1(v)) and
(ξ2(v),ψ2(v)), respectively.

It can be written as G1 ∩G2 � Z(v) �{ (ξ(v),ψ
(v)) |v ∈ P}.

Example 9. LetG be a fuzzy graph as shown in Figure 18. Let
B � (a, 0.9), (b, 0.1){ }, B∗ � (a, 0.9), (e, 0.2){ }. It can be
written as NBa � (v, 0.7), (b, 0.1){ }, NBb � (a,{

0.9), (c, 0.1)}, NBe � (d, 0.3), (f, 0.5)􏼈 􏼉. Let [ξ, B] and
[ψ, B] be two FT2SSs over J and K, respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B.
(30)

Define ξa(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.3{ },ψa (u) �

vw ∈K| v, w{ }⊆ ξa(u)􏼈 􏼉∀u ∈NBa and ξb(u) � v ∈J|{

uRv⟺d(u,v)≤0.3}, ψb(u) � vw ∈K| v,w{ }⊆ξb(u)􏼈 􏼉 ∀z ∈
NBb.

)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:

ξa � (b, 0.1), (a, 0.9), (c, 0.1), (d, 0.3){ }{ }, (v, 0.7), (d, 0.3), (g, 0.1), (f, 0.5), (h, 0.2)􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψa � (b, 0.1), (cd, 0.1){ }{ }, (v, 0.7), (gh, 0.1), (gf, 0.1)􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ξb � (c, 0.1), (a, 0.9), (b, 0.1), (d, 0.3), (e, 0.2){ }{ }, (a, 0.9), (b, 0.1), (c, 0.1), (d, 0.3){ }{ }{ },

ψb � (c, 0.1), (ab, 0.1), (ed, 0.2){ }{ }, (a, 0.9), (bc, 0.1), (cd, 0.1){ }{ }{ }.

(31)

(e2, 0.2)

(e3, 0.2)

(e7, 0.3)
(e2, 0.2)

(e4, 0.4)

(e7, 0.3)

(e4, 0.4)

(e2, 0.2)(e1, 0.3)(e7, 0.3)(e1, 0.3)
(e4, 0.4)

Z′e2
 (e1) Z′e2

 (e3)
Z′e4

 (e3) Z′e4
 (e5)

Z′(e2) Z′(e4)

(e6, 0.2)

0.1
0.1

0.1

0.1

0.1

Figure 17: G′ � (Ze4
′, Ze2
′).
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(e2, 0.2)
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(e4, 0.4)

(e1, 0.3)

Ze2
 (e1) Ze2

 (e3) Ze2
 (e3) Ze2

 (e5)

Z (e4)Z (e2)

0.
1

0.1

Figure 16: G � (Z(e2), Z(e4)).
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Let [ξ′, B∗] and [ψ′, B∗] be two FT2SSs over J and K,
respectively. We have

ξ′(j) � ξj,NBj􏼐 􏼑,

ψ′(j) � ψj,NBj􏼐 􏼑, for all j ∈ B
∗
,

define ξa
′(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.2{ },

ψa
′(u) � vw ∈K| v, w{ }⊆ ξa

′(u)􏼈 􏼉, ∀u ∈NBa ⊆J,

ξe
′(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.3{ },

ψe
′(u) � vw ∈K| v, w{ }⊆ ξe

′(u)􏼈 􏼉, ∀u ∈NBe ⊆J.

(32)

)e FT2SSs [ξ′, B∗] and [ψ′, B∗] are defined as follows:

ξa
′ � (b, 0.1), (a, 0.9), (c, 0.1), (d, 0.3){ }{ }, (v, 0.7), (g, 0.1), (h, 0.2)􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψa
′ � (b, 0.1), (c d, 0.1){ }{ }, (v, 0.7), (gh, 0.1)􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ξe
′ �

(d, 0.3), (a, 0.9), (b, 0.1), (c, 0.1), (e, 0.2), (v, 0.7){ }{ },

(f, 0.5), (e, 0.2), (g, 0.1), (h, 0.2), (v, 0.7)􏼈 􏼉􏼈 􏼉
􏼨 􏼩,

ψe
′ � (d, 0.3), (bc, 0.1), (av, 0.5), (ba, 0.1){ }{ }, (f, 0.5), (vh, 0.1), (hg, 0.1)􏼈 􏼉􏼈 􏼉􏼈 􏼉.

(33)

)en G � (Z(a), Z(b)) and G′ � (Z′(e), Z′(a)) are
FT2STs as shown in Figure 19. By the definition of inter-
section of FT2STs, ξ(a) � ξ(a)∩ ξ′(a) and
ψ(a) � ψ(a)∩ψ′(a)where a ∈ B∗ ∩B.

)erefore, G1 ∩G2 � G � <ξ,ψ, B∪B∗> is a FT2ST as
shown in Figure 20.

Definition 21. Let G1 � <ξ1,ψ1, M1> and
G2 � <ξ2,ψ2, B2> be two FT2STs.)e AND operation ofG1
and G2 is denoted by G1 ∧G2 � G � <ξ,ψ, B1 × B2> such
that ξ(χ, η) � ξ1(χ)∧ ξ2(η), ψ(χ, η) � ψ1(χ)∧ψ2(η) for
all (χ, η) ∈ B1 × B2. (ξ(χ, η),ψ(χ, η)) for all (χ, η) ∈ B1 × B2
is the fuzzy type-1 soft AND operation between the relevant
FT1SGs corresponding to (ξ1(χ),ψ1(χ)) and (ξ2(η),ψ2(η)),
respectively.

Example 10. LetG � (J,K) be the fuzzy graph as shown in
Figure 21, where

J � e1, 0.3( 􏼁, e2, 0.1( 􏼁, e3, 0.2( 􏼁, e4, 0.4( 􏼁, e5, 0.6( 􏼁,􏼈

e6, 0.2( 􏼁, e7, 0.3( 􏼁, e8, 0.3( 􏼁},

K � e1e2, 0.1( 􏼁, e2e3, 0.1( 􏼁, e3e4, 0.2( 􏼁, e5e4, 0.3( 􏼁,􏼈

e5e6, 0.1( 􏼁, e7e6, 0.2( 􏼁, e7e8, 0.2( 􏼁, e8e1, 0.1( 􏼁}.

(34)

Let B � (e3, 0.2), (e4, 0.4)􏼈 􏼉, B∗ � (e7, 0.3)􏼈 􏼉, NBe3
�

(e2, 0.1), (e4, 0.4)􏼈 􏼉,NBe4
� (e3, 0.2), (e5,􏼈 0.6)}, NBe7

�

(e6, 0.2), (e8, 0.3)􏼈 􏼉.
Let [ξ, B] and [ψ, B] be two FT2SSs over J and K,

respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all J ∈ B,

define ξe3
(u) � v∈ J|uRv⟺ d(u, v)≤ 0.3{ },

ψe3
(u) � vw ∈K| v, w{ }⊆ ξe3

(u)􏽮 􏽯, ∀u ∈NBe3
,

ξe4
(u) � v∈ J|uRv⟺ d(u, v)≤ 0.4{ },

ψe4
(u) � vw ∈K| v, w{ }⊆ ξe4

(u)􏽮 􏽯, ∀z ∈NBe3
.

(35)

)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:

ξe3
� e4, 0.4( 􏼁, e2, 0.1( 􏼁, e3, 0.2( 􏼁, e5, 0.6( 􏼁􏼈 􏼉􏼈 􏼉, e2, 0.1( 􏼁, e1, 0.3( 􏼁, e3, 0.2( 􏼁, e4, 0.4( 􏼁, e8, 0.3( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψe3
� e4, 0.4( 􏼁, e2e3, 0.1( 􏼁􏼈 􏼉􏼈 􏼉, e2, 0.1( 􏼁, e3e4, 0.2( 􏼁, e1e8, 0.1( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ξe4
� e5, 0.6( 􏼁, e4, 0.4( 􏼁, e6, 0.2( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉, e3, 0.2( 􏼁, e1, 0.3( 􏼁, e2, 0.1( 􏼁, e4, 0.4( 􏼁, e8, 0.3( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉,

ψe4
� e3, 0.2( 􏼁, e8e1, 0.1( 􏼁, e1e2, 0.1( 􏼁􏼈 􏼉􏼈 􏼉, e5, 0.6( 􏼁, e6e7, 0.2( 􏼁􏼈 􏼉􏼈 􏼉􏼈 􏼉.

(36)

(a, 0.9) (0.5) (v, 0.7) (0.1) (h, 0.2)

(0.1)

(g, 0.1)

(0.1)
(f, 0.5)

(0.2)

(e, 0.2)

(0.2)(0.1)

(c, 0.1)

(0.1)
(b, 0.1)

(d, 0.3)

(0.3)
(0.1)

Figure 18: Fuzzy graph G � (J,K).
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(a, 0.9)

(d, 0.3)

(c, 0.1) (d, 0.3)

(h, 0.2)

(g, 0.1) (b, 0.1) (d, 0.3)

(a, 0.9)

(d, 0.3)

(b, 0.1)(c, 0.1)
(f, 0.5)
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1
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0.1 0.5
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Figure 19: G � (Z(a), Z(b)) and G′ � (Z′(e), Z′(a)).
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Figure 20: Intersection of G and G′ is G∩G′.
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Figure 21: Fuzzy graph G � (J,K).
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)en G � (Z(e3), Z(e4)) is a FT2ST. Let [ξ′, B∗] and
[ψ′, B∗] be two FT2SSs overJ andK, respectively. We have

ξ′(j) � ξj,NBj􏼐 􏼑,

ψ′(j) � ψj,NBj􏼐 􏼑, for all j ∈ B
∗
.

(37)

Define ξe7
′(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.4{ },

ψe7
′(u) � vw ∈K| v, w{ }⊆ ξe7

′(u)􏽮 􏽯∀u ∈NBe7
⊆J,

ξe7
′ �

e8, 0.3( 􏼁, e1, 0.3( 􏼁, e2, 0.1( 􏼁, e3, 0.2( 􏼁, e6, 0.2( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉,

e6, 0.2( 􏼁, e4, 0.4( 􏼁, e5, 0.6( 􏼁, e7, 0.3( 􏼁, e8, 0.3( 􏼁􏼈 􏼉􏼈 􏼉
􏼨 􏼩,

ψe7
′ �

e8, 0.3( 􏼁, e1e2, 0.1( 􏼁, e2e3, 0.1( 􏼁, e7e6, 0.2( 􏼁􏼈 􏼉􏼈 􏼉,

e6, 0.2( 􏼁, e4e5, 0.3( 􏼁, e7e8, 0.2( 􏼁􏼈 􏼉􏼈 􏼉
􏼨 􏼩.

(38)

G′ � Z′(e7) is a FT2ST.)e AND operation of G and G′
is defined as follows:

ξ e3, e7( 􏼁 � ξe3
∧ ξe7
′

e4, 0.4( 􏼁, e8, 0.3( 􏼁( 􏼁, e3, 0.2( 􏼁, e2, 0.1( 􏼁􏼈 􏼉􏼈 􏼉,

e4, 0.4( 􏼁, e6, 0.2( 􏼁( 􏼁, e5, 0.6( 􏼁􏼈 􏼉􏼈 􏼉,

e2, 0.1( 􏼁, e6, 0.2( 􏼁, e4, 0.4( 􏼁, e8, 0.3( 􏼁􏼈 􏼉􏼈 􏼉,

e8, 0.3( 􏼁, e2, 0.1( 􏼁, e1, 0.3( 􏼁, e3, 0.2( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

ψ e3, e7( 􏼁 � ψe3
∧ψe7
′

e4, 0.4( 􏼁, e8, 0.3( 􏼁( 􏼁, e2e3, 0.1( 􏼁􏼈 􏼉􏼈 􏼉, e4, 0.4( 􏼁, e6, 0.2( 􏼁( 􏼁,∅􏼈 􏼉,

e2, 0.1( 􏼁, e8, 0.3( 􏼁( 􏼁,∅􏼈 􏼉, e2, 0.1( 􏼁, e6, 0.2( 􏼁( 􏼁,∅􏼈 􏼉
􏼨 􏼩,

ξ e4, e7( 􏼁 � ξe4
∧ ξe7
′

e5, 0.6( 􏼁, e8, 0.3( 􏼁( 􏼁, e6, 0.2( 􏼁, e7, 0.3( 􏼁􏼈 􏼉􏼈 􏼉,

e5, 0.6( 􏼁, e6, 0.2( 􏼁( 􏼁, e7, 0.3( 􏼁, e4, 0.4( 􏼁􏼈 􏼉􏼈 􏼉,

e3, 0.2( 􏼁, e8, 0.3( 􏼁( 􏼁, e1, 0.3( 􏼁, e2, 0.1( 􏼁􏼈 􏼉􏼈 􏼉,

e3, 0.2( 􏼁, e6, 0.2( 􏼁( 􏼁, e8, 0.3( 􏼁, e4, 0.4( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

ψ e4, e7( 􏼁 � ψe4
∧ψe7
′

e5, 0.6( 􏼁, e8, 0.3( 􏼁( 􏼁, e6e7, 0.2( 􏼁􏼈 􏼉􏼈 􏼉, e5, 0.6( 􏼁, e6, 0.2( 􏼁( 􏼁,∅􏼈 􏼉,

e3, 0.2( 􏼁, e8, 0.3( 􏼁( 􏼁, e2e1, 0.1( 􏼁􏼈 􏼉􏼈 􏼉, e3, 0.2( 􏼁, e6, 0.2( 􏼁,∅􏼈 􏼉􏼈 􏼉
􏼨 􏼩.

(39)

)e AND operation of G and G′ is shown in Figure 22.

Definition 22. Let G1 � <ξ1,ψ1, M1> and G2 � <ξ2,ψ2,

B2> be two FT2STs. )e OR operation of G1 and G2 is
denoted by G1 ∨G2 � G � <ξ, ψ, B1 × B2> such that
ξ(χ, η) � ξ1(χ)∨ ξ2(η), ψ(χ, η) � ψ1(χ)∨ψ2(η) for all (χ,

η) ∈ B1 × B2. (ξ(χ, η),ψ(χ, η)) for all (χ, η) ∈ B1 × B2 is the
fuzzy type-1 soft OR operation between the relevant FT1SGs
corresponding to (ξ1(χ),ψ1(χ)) and (ξ2(η),ψ2(η)),
respectively.

4. Applications of Fuzzy Type-2 Soft Graphs

In this section, we apply the concept of fuzzy type-2 soft
graphs to decision-making problems in chemical diges-
tion and national engineering services. )e selection of a

suitable object problem can be considered as a decision-
making problem, in which final identification of object is
decided on a given set of information. A detailed de-
scription of the algorithm for the selection of most
suitable object based on available set of parameters is
given in Algorithm 1 and the flow chart shown in Fig-
ure 23; purposed algorithm can be used to find out the best
correspondence relationship between the neighboring
objects in the decision-making problem. )is method can
be applied in various domains for multicriteria selection
of objects.

4.1. Determination of Dominant Food Components in
Chemical Digestion. We present an application of FT2SG in
chemical digestion and discuss how to apply FT2SG in
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chemical digestion of spinach. Spinach is generally com-
posed of carbohydrates, protein, lipids, minerals, vitamins,
and nucleic acids. We mainly focused on the digestion of
carbohydrates, proteins, lipids, and nucleic acids, which is
carried out by a variety of salivary enzymes and the enzymes
present in other parts of digestive system; that is, amylase,
pepsin, and trypsin are released as a result of involuntary
signal generated by our body to digest the food.When 25 g of
spinach is taken, it contains carbohydrates (0.9g), protein
(0.7g), lipids (0.1g), nucleic acids (0.3g), involuntary signal
(0.3), pepsin (0.2), amylase (0.2), and trypsin (0.1), repre-
sented as vertices donated by e1, e2, e3, e4, e5, e6, e7, e8􏼈 􏼉, re-
spectively. “Chemical digestion” is the enzyme-mediated,
hydrolysis method that converts large macronutrients into
smaller molecules.

(i) Carbohydrate mostly comprises amylose and gly-
cogen. Long carbohydrates chains are broken down
into disaccharides which are decomposed by am-
ylase enzyme.

(ii) Proteins are usually broken down into amino acids
by peptidase enzyme as well as trypsin and
chymotrypsin.

(iii) Lipids are hydrolyzed by pancreatic lipase enzyme.
(iv) Nucleic acids, that is, DNA and RNA, are hydro-

lyzed by pancreatic nuclease.
(v) Involuntary signal is generated by the brain in order

to carry out chemical digestion in the digestive
system.

Protein digestion occurs in stomach and duodenum by
the action of three primary enzymes.

(i) Pepsin, disguised by abdomen
(ii) Trypsin, disguised through pancreas
(iii) Amylase, disguised through saliva and pancreas

Note that the values of pepsin, trypsin, amylase, and
involuntary signal are supposed as we cannot calculate the
amounts of these products released as a result of con-

(1) Input the fuzzy graph G � (J,K).
(2) Input the choice parameter set B � e1, e2, . . . , en􏼈 􏼉 for suitable selection of the object.
(3) Input the VN-FT2SS [ξ, B] over J and VN-FT2SS [ψ, B] over K.
(4) Construct a FT2SG G � <ξ,ψ, B> � Z(j)|j ∈ B􏼈 􏼉, where Z(j) � (Z(j),NBj) such that Zj(u) � (ξj(u),ψj(u)), ∀u ∈NBj.
(5) Construct the resultant VN-fuzzy graph by taking the intersection of vertex-neighbors fuzzy graphs

Z∗(j) � ∩ uZj(u), ∀u ∈NBj.
(6) Tabular representation of resultant VN-fuzzy graph Z∗(j)∀j ∈ B with the choice values C

j
i .

(7) )e decision is Si if Si � ∨n

i (∧jC
j
i ).

(8) If i has more than one value, then any one of Si may be chosen.

ALGORITHM 1: Algorithm for the selection of most suitable objects.

Z(e3, e7)(e4, e8)

0.1

(e2, 0.1)
(e1, 0.3)

(e3, 0.2)
0.

1
(e3, 0.2)

(e5, 0.6)
(e8, 0.3)

(e4, 0.4)

(e7, 0.3)
0.2

(e6, 0.2) (e7, 0.3) (e4, 0.4)
(e1, 0.3) (e2, 0.1) (e8, 0.3)

(e4, 0.4)

Z(e3, e7)(e2, e8) Z(e3, e7)(e2, e6) Z(e3, e7)(e4, e6)

Z(e3, e7)

Z(e4, e7)(e5, e8) Z(e4, e7)(e5, e6) Z(e4, e7)(e3, e8) Z(e4, e7)(e3, e6)

Z(e4, e7)

Figure 22: AND operation of G and G′ is G∧G′ � (Z(e3, e7), Z(e4, e7)).
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sumption of little amount of food through previous litera-
ture findings.

Consider

J � e1, 0.9( 􏼁, e2, 0.7( 􏼁, e3, 0.1( 􏼁, e4, 0.3( 􏼁, e5, 0.3( 􏼁, e6, 0.2( 􏼁, e7, 0.2( 􏼁, e8, 0.1( 􏼁􏼈 􏼉,

K �
e1e2, 0.3( 􏼁, e1e4, 0.3( 􏼁, e3e2, 0.1( 􏼁, e3e4, 0.1( 􏼁, e5e4, 0.2( 􏼁,

e5e6, 0.2( 􏼁, e5e8, 0.1( 􏼁, e8e7, 0.1( 􏼁, e6e7, 0.1( 􏼁
􏼨 􏼩.

(40)

In fuzzy graph (J,K) as shown in Figure 24, edges
represent the amount of energy utilized by the body in order
to carry out the digestion process. Let
B � (e1, 0.9), (e2, 0.7)􏼈 􏼉 represent the amounts of carbohy-
drates and protein released when 25 g of spinach is con-
sumed. We have NBe1

� (e2, 0.7), (e4, 0.3)􏼈 􏼉, NBe2
�

(e3, 0.1), (e1, 0.9)􏼈 􏼉.
Let [ξ, B] and [ψ, B] be two FT2SSs over J and K,

respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B,

define ξe1
(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.5{ },

ψe1
(u) � vw ∈K|v, w⊆ ξe1

(u)􏽮 􏽯,

ξe2
(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.5{ },

ψe2
(u) � vw ∈K|v, w⊆ ξe2

(u)􏽮 􏽯.

(41)

Construct fuzzy graph
G = (J, K)

Select the parameter set
B = {e1, e2, ..., en}

VN-FT2SS [ξ, B] over J

VN-FT2SS [ψ, B] over K.

Construct a FT2SG
G = <ξ, ψ, B> = {Z(j)|j ∈ B}

Construct the resultant VN-fuzzy graph
Z∗(j) = ∩ Zj(u)

u

Tabular representation of resultant VN-fuzzy graph
Z∗(j) ∀ j ∈ B with the choice values Cj

i.

Select Si if Si = ∨(∧Cj
i)

n

i j

Select any one of Si if i has more than one value

Figure 23: Flow chart for suitable selection of objects.
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)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:

ξe1
�

e2, 0.7( 􏼁, e1, 0.9( 􏼁, e3, 0.1( 􏼁, e4, 0.3( 􏼁, e5, 0.3( 􏼁􏼈 􏼉􏼈 􏼉,

e4, 0.3( 􏼁, e1, 0.9( 􏼁, e2, 0.7( 􏼁, e3, 0.1( 􏼁, e5, 0.3( 􏼁, e6, 0.2( 􏼁, e7, 0.2( 􏼁, e8, 0.1( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎨

⎩

⎫⎬

⎭,

ψe1
�

e2, 0.7( 􏼁, e3e4, 0.1( 􏼁, e1e4, 0.3( 􏼁, e5e4, 0.2( 􏼁􏼈 􏼉􏼈 􏼉,

e4, 0.5( 􏼁, e1e2, 0.3( 􏼁, e3e2, 0.1( 􏼁, e5e6, 0.2( 􏼁, e5e8, 0.1( 􏼁, e6e7, 0.1( 􏼁, e7e8, 0.1( 􏼁􏼈 􏼉

⎧⎨

⎩

⎫⎬

⎭,

ξe2
�

e1, 0.9( 􏼁, e2, 0.7( 􏼁, e3, 0.1( 􏼁, e4, 0.3( 􏼁, e5, 0.3( 􏼁􏼈 􏼉􏼈 􏼉,

e3, 0.1( 􏼁, e1, 0.9( 􏼁, e2, 0.7( 􏼁, e4, 0.3( 􏼁, e5, 0.3( 􏼁, e6, 0.2( 􏼁, e8, 0.1( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎨

⎩

⎫⎬

⎭,

ψe2
�

e1, 0.9( 􏼁, e5e4, 0.2( 􏼁, e3e4, 0.2( 􏼁, e2e3, 0.1( 􏼁􏼈 􏼉􏼈 􏼉,

e3, 0.4( 􏼁, e1e2, 0.3( 􏼁, e1e4, 0.3( 􏼁, e4e5, 0.2( 􏼁, e5e6, 0.2( 􏼁, e5e8, 0.1( 􏼁􏼈 􏼉􏼈 􏼉

⎧⎨

⎩

⎫⎬

⎭.

(42)

)e fuzzy type-2 soft graph G is shown in Figure 25.
)e tabular representations of resultant vertex-neigh-

bors fuzzy graphs Z∗(ej) shown in Figure 26 corresponding
to the parameter ej, j � 1, 2 with the choice values C

j
i �

􏽐kSik for all i, k are given in Tables 2 and 3.
)e decision value is Si � ∨ 7i (∧ jC

j
i ) � ∨ 7i�1 0.6∧ 0.6,{

0.4∧ 0.4, 0.2∧ 0.2, 0.6∧ 0.5, 0.3∧ 0.2, 0.2∧ 0, 0.3∧ 0.2} � 0.6
from the choice value C

j
i of fuzzy type-2 soft graphs for

j � 1, 2. )e prominent food components are e1 as carbo-
hydrates and e2 as lipids as carbohydrates are consumed as
sugar and lipids are consumed as fats. Clearly, the dominant
food components are e1 or e4.

4.2. Water Supply for National Engineering Services. We
present the application of fuzzy type-2 soft graph in the
National Engineering Services Pakistan (NESPAK). )e
National Engineering Services Pakistan is a Pakistani
multinational state-owned corporation that provides con-
struction, management, and consulting services globally.
Every government project has something to do with NES-
PAK at some time of its planning or implementation. In
fuzzy graph G � (J,K) as shown in Figure 27, vertices
represent some important projects.

J �
(a � Water Supply, 0.9), (b � Sewerage, 0.7), (c � Drainage, 0.6),

(d � SolidWasteManagement, 0.4), (e � Plumbing, 0.3), (f � IndustrialWastes, 0.2)
􏼨 􏼩. (43)

NESPAK provides engineering services for these proj-
ects, the membership value of a vertex showing the working
capability of the relevant project and values of edges rep-
resents the strength of the relationship between different
projects to complete the tasks.

Now, we take two important projects Plumbing and
Solid Waste Management named as (e, 0.3), (d, 0.4), re-
spectively, and B � (e, 0.3), (d, 0.4){ } ⊂ J. )e vertex-
neighbors of these selected projects are
NBe � (b, 0.7), (c, 0.6), (d, 0.4), (f, 0.2)􏼈 􏼉 and NBd �

(a, 0.9), (c, 0.6), (e, 0.3), (f, 0.2)􏼈 􏼉. Let [ξ, B] and [ψ, B] be
two FT2SSs over J and K, respectively. We have

ξ(j) � ξj,NBj􏼐 􏼑,

ψ(j) � ψj,NBj􏼐 􏼑, for all j ∈ B,

define ξe(u) � v ∈ J|uRv⟺ d(u, v)≤ 0.2{ },

ψe(u) � vw ∈K|v, w⊆ ξe(u)􏼈 􏼉, ∀u ∈NBe ⊆J,

ξd(u) � v ∈ J|uRv⟺ 0.1≤ d(u, v)≤ 0.2{ },

ψd(u) � vw ∈K|v, w⊆ ξd(u)􏼈 􏼉, ∀u ∈NBd ⊆J.

(44)

)e FT2SSs [ξ, B] and [ψ, B] are defined as follows:

(e1, 0.9)

(e4, 0.3)

(e8, 0.1)

(e7, 0.2)

(e6, 0.2)

(e5, 0.3)

(e3, 0.1)

(e2, 0.7)

(0.3)

(0.1) (0.1)

(0.3)

(0.2)
(0.1) (0.1)

(0.1)(0.2)

Figure 24: G � (J,K).
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(e8, 0.1)(e5, 0.3)(e2, 0.7)(e1, 0.9)(e4, 0.3)(e1, 0.9)

(e5, 0.3) (e3, 0.1) (e3, 0.1) (e6, 0.2) (e7, 0.2)

(e6, 0.2)

(e8, 0.1)(e5, 0.3)(e2, 0.7)(e5, 0.3)(e4, 0.3)

(e3, 0.1) (e2, 0.7) (e1, 0.9) (e4, 0.3)

Ze1
 (e2) Ze1

 (e4)
Z(e1)

Z(e2)
Ze2

 (e1) Ze2
 (e3)

0.3

0.2 0.
1

0.3

0.
1

0.
2

0.1

0.1

0.
1

0.
1

0.1

0.2

0.
3

0.3

0.
2 0.2

0.1

Figure 25: Fuzzy type-2 soft graph G � (Z(e1), Z(e2)).

Table 2: )e tabular representation of Z∗(e1) with choice values.

e1 e2 e3 e4 e5 e6 e7 e8 C1
i

e1 0 0.3 0 0.3 0 0 0 0 0.6
e2 0.3 0 0.1 0 0 0 0 0 0.4
e3 0 0.1 0 0.1 0 0 0 0 0.2
e4 0.3 0 0.1 0 0.2 0 0 0 0.6
e5 0 0 0 0.2 0 0.2 0 0.1 0.5
e6 0 0 0 0 0.2 0 0.1 0 0.3
e7 0 0 0 0 0 0.1 0 0.1 0.2
e8 0 0 0 0 0.1 0 0.1 0 0.2

(e1, 0.9)

(e4, 0.3) (e1, 0.9)

(e3, 0.1)(e2, 0.7)

(e7, 0.2)

(e8, 0.1)

(e6, 0.2)

0.3

0.3

0.2

0.1

0.1

0.1

0.1

0.1

(e5, 0.3)

(e6, 0.2)

(e8, 0.1)

(e3, 0.1)

(e2, 0.7)

(e4, 0.3)

(e5, 0.3)

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.1

Z∗(e1)

Z∗(e2)

Figure 26: Resultant VN-fuzzy graphs Z∗(e1) and Z∗(e2).
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ξe �
(f, 0.2), (a, 0.9), (b, 0.7), (d, 0.4), (e, 0.3){ }􏼈 􏼉, (d, 0.4), (f, 0.2)􏼈 􏼉􏼈 􏼉, (c, 0.6), (e, 0.3){ }{ },

(b, 0.7), (e, 0.3), (f, 0.2)􏼈 􏼉􏼈 􏼉
􏼨 􏼩,

ψe �
(f, 0.2), (ad, 0.3), (ab, 0.4), (de, 0.3), (eb, 0.2){ }􏼈 􏼉,

(d, 0.4),∅{ }, (c, 0.6),∅{ }, (b, 0.7), (fe, 0.1)􏼈 􏼉􏼈 􏼉
􏼨 􏼩,

ξd �
(e, 0.3), (b, 0.7), (c, 0.6), (f, 0.2)􏼈 􏼉􏼈 􏼉, (a, 0.9), (f, 0.2)􏼈 􏼉􏼈 􏼉,

(f, 0.2), (a, 0.9), (b, 0.7), (d, 0.4), (e, 0.3){ }􏼈 􏼉, (c, 0.6), (e, 0.3){ }{ }
􏼨 􏼩,

ψd �
(e, 0.3), (bc, 0.4), (fb, 0.1)􏼈 􏼉􏼈 􏼉, (a, 0.9),∅{ },

(c, 0.6),∅{ }, (f, 0.2), (a d, 0.3), (ab, 0.4), (de , 0.3), (eb, 0.2){ }􏼈 􏼉
􏼨 􏼩.

(45)

FT1SGs corresponding to Z(e) � (ξ(e),ψ(e)) and
Z(d) � (ξ(d),ψ(d)), respectively, are shown in fuzzy type-2
soft graph 28. (Figure 28)

)e tabular representations of resultant vertex-neighbors
fuzzy graphs Z∗(e) and Z∗(d) shown in Figure 29 with the
choice values C

j
i � 􏽐kSik for all i, k are given in Tables 4 and 5.

)e decision value is Si � ∨ 6i (∧ jC
j
i ) � ∨ 6i�1 0.7∧ 0.7,{

0.6∧ 1.1, 0∧ 0.4, 0.6∧ 0.6, 0.6∧ 0.5, 0.1∧ 0.1} � 0.7, from the
choice value C

j
i of fuzzy type-2 soft graphs for j � 1, 2. )e

optimal project is “a � water supply.” So, NESPAK provides
the best engineering services to the project of “water supply.”

Advantages of the Proposed Method.
)e advantages of the proposed method based on

FT2SGs are as follows:

(1) )e method can be effectively used to handle un-
certainty and vagueness with correspondence, as-
sertion, and relations among parameters.

(2) )e proposed method incorporates parametrization
tool with fuzzy information to effectively handle
more uncertain conditions and errors in given data.

(3) )e presented method considers vertex-neighbors co-
ordination tool along with reparametrization to study
the interrelationship and ambiguity among objects.

5. Comparison Analysis

In this section, we discuss the comparison of fuzzy type-2
soft graphs with fuzzy soft graphs and type-2 soft graphs.

5.1. Comparison with Fuzzy Soft Graphs. Fuzzy soft graph
[21] is a parameterized family of fuzzy graphs, and it is an
extension of a soft graph. )e fuzzy type-2 soft graph is a
parameterized family of VN-fuzzy soft graphs and an ex-
tension of type-2 soft graph. Fuzzy type-2 soft graphs show

(b, 0.7)

0.1

0.
2

0.4

0.4 (c,
 0.

6)

(d, 0.4)

0.5

0.3

0.1

0.2

0.10.3
0.4

0.2
(e, 0.3)

(a, 0.9) (f, 0.2)

Figure 27: Fuzzy graph G � (J,K).

Table 3: )e tabular representation of Z∗(e2) with choice values C2
i .

e1 e2 e3 e4 e5 e6 e7 C2
i

e1 0 0.3 0 0.3 0 0 0 0.6
e2 0.3 0 0.1 0 0 0 0 0.4
e3 0 0.1 0 0.1 0 0 0 0.2
e4 0.3 0 0.1 0 0.2 0 0 0.6
e5 0 0 0 0.2 0 0.2 0.1 0.5
e6 0 0 0 0 0.2 0 0 0.2
e8 0 0 0 0 0.1 0 0 0.1
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vertex-neighbors coordination relation among objects in a
parameterized VN-fuzzy graph. )e proposed models take
the set of parameters from a given fuzzy vertex set and,
corresponding to each selected parameter, there exists a VN-
fuzzy soft graph. As fuzzy soft graph is a parameterized
family of fuzzy graphs and, corresponding to each param-
eter, there exists a fuzzy graph. For handling vagueness and
ambiguity in decision-making problems, different fuzzy
models were introduced. Fuzzy type-2 soft graph shows
vertex-neighbors correspondence among objects as well as
relations of parameters, while fuzzy soft graphs cannot study
these correspondences and thus cannot give accurate and
effective results. )e decision-making problem discussed in
Section 4.1 can be discussed using fuzzy soft graphs.

We consider a fuzzy soft graph G � (Φ,Ψ, M), where
(Φ, M) is a fuzzy soft set over V � e1, e2, e3, e4, e5, e6, e7, e8􏼈 􏼉

which describes the membership of the objects based upon
the given parameters e1 and e2; (Ψ, M) is a fuzzy soft set over
E � e1e2,􏼈 e1e4, e2e3, e3e4, e4e5, e5e6, e5e6, e5e8, e6e7, e8e7}⊆
V × V describing the membership between two objects
corresponding to the given parameters e1 and e2. A fuzzy soft
graph G � H(e1), H(e2)􏼈 􏼉 is given in Tables 6 and 7.

)e fuzzy graphs H(e1) and H(e2) of fuzzy soft graph
G � H(e1), H(e2)􏼈 􏼉 corresponding to the parameters “car-
bohydrates” and “protein” are shown in Figure 30.

)e fuzzy graphs H(e1) and H(e2) and the choice values
Ck

i � 􏽐jSij for all i, j, k � 1, 2 are given in Tables 8 and 9,
respectively.

)e decision value is Si � ∨ 8i (∧ kCk
i ) � ∨ 8i�1 0.5∧ 0.6,{

0.6∧ 0.4, 0.4∧ 0.3, 0.4∧ 0.5, 0.4∧ 0.3, 0.4∧ 0.1, 0.1∧ 0.2,

0.3∧ 0.2} � 0.5 from the choice value Ck
i of fuzzy graph

H(ek) for k � 1, 2. Clearly, the dominant object is e1 or e4.)e

(a, 0.9)

(d, 0.4)

(e, 0.3)

(b, 0.7)

(c, 0.6)

(f, 0.2)

(a, 0.9) (b, 0.7)

(e, 0.3)

(f, 0.2)

(d, 0.4)

0.3

0.3 0.2
0.1

0.4
0.4

0.4

0.3 0.2

0.1

0.3

Z∗(d)

Z∗(e)

Figure 29: Resultant VN-fuzzy graphs Z∗(e) and Z∗(d).
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(f, 0.2)

(c, 0.6)(e, 0.3)(d, 0.4)
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Z(d)

Figure 28: Fuzzy type-2 soft graph for national engineering services.
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suitable object determined by fuzzy soft graph as above and
fuzzy type-2 soft graph in Section 4.1 is dependent on infor-
mation determined by selected set of parameters and fuzzy
values in VN-fuzzy graphs, respectively. As the coordination
among objects varies, the solution changes accordingly. So, in

this case, when the objects show close vertex-neighbors co-
ordination according to observed data, fuzzy type-2 soft graph
model can be used and in the case when fuzzy relations are
given along with different parameters, fuzzy soft graph model
can be used.

Table 5: )e tabular representation of Z∗(d) with choice values.

a b c d e f C2
i

a 0 0.4 0 0.3 0 0 0.7
b 0.4 0 0.4 0 0.2 0.1 1.1
c 0 0.4 0 0 0 0 0.4
d 0.3 0 0 0 0.3 0 0.6
e 0 0.2 0 0.3 0 0 0.5
f 0 0.1 0 0 0 0 0.1

Table 6: Tabular representation of a fuzzy soft vertex set.

Φ e1 e2 e3 e4 e5 e6 e7 e8

e1 0.8 0.7 0.2 0.4 0.3 0.3 0.2 0.2
e2 0.8 0.5 0.5 0.4 0.4 0.5 0.6 0.5
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Figure 30: Fuzzy soft graph G � H(e1), H(e2)􏼈 􏼉.

Table 7: Tabular representation of a fuzzy soft edge set.

Ψ e1e2 e1e6 e1e4 e1e7 e2e3 e2e4 e2e8 e3e4 e3e7 e4e5 e5e6 e5e8 e7e8

e1 0.3 0.2 0.0 0.0 0.2 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.1
e2 0.3 0.0 0.2 0.1 0.0 0.0 0.1 0.2 0.1 0.2 0.1 0.1 0.0

Table 4: )e tabular representation of Z∗(e) with choice values.

a b d e f C1
i

a 0 0.4 0.3 0 0 0.7
b 0.4 0 0 0.2 0 0.6
d 0.3 0 0 0.3 0 0.6
e 0 0.2 0.3 0 0.1 0.6
f 0 0 0 0.1 0 0.1
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5.2. Comparison with Type-2 Soft Graphs. In structure of a
graph, the vertex-neighbors correspondence has an important
role.)e type-2 soft graph [32] is based on the correspondence
of initial parameters (vertex soft set) and underlying param-
eters. )e type-2 soft graph is an efficient model for dealing
with uncertainty occurring in vertex-neighbors’ structure and
is applicable in computational analysis, applied intelligence,
and decision-making problems. )e theory of fuzzy sets has
played an important role to form useful models for handling
partial membership of objects. To overcome the parameterized
limitations of fuzzy set, the theory of fuzzy type-2 soft set was
introduced. Fuzzy type-2 soft graph model is a more efficient
model as compared to type-2 soft graphmodel to represent the
parametric uncertainty in graphical networks. It is observed
that, for the selection of dominant food components in
chemical digestion using given type-2 soft information, we are
not able to identify any object (dominating component). In this
case, the simple type-2 soft information provides no solution.
To determine the solution of the problem, it is necessary to have
fuzzy information or define a fuzzy relation in order to attain a
suitable approximation approach for selecting at least one
object. So, fuzzy type-2 soft graph is more reliable in such
decision-making problems.

6. Conclusions and Future Directions

Molodtsov’s soft set theory is an effective and rational approach
to understand uncertainties in terms of parameters. Type-2 soft
sets have been introduced by adding the primary relations
among parameters in soft sets.We have introduced the notions
of fuzzy type-2 soft sets and fuzzy type-2 soft graphs to study
the partial membership and uncertainty of objects along with
underlying and primary set of parameters. We have discussed
certain properties of fuzzy type-2 soft graphs, regular fuzzy

type-2 soft graphs, irregular fuzzy type-2 soft graphs, fuzzy
type-2 soft trees, and fuzzy type-2 soft cycles. We have dis-
cussed different methods of construction of fuzzy type-2 soft
graphs with certain operations and elaborated these concepts
with numerical examples. We have studied the importance of
fuzzy type-2 soft graphs in chemical digestion and national
engineering services. )e present study can be extended to
various directions including (1) Pythagorean fuzzy type-2 soft
graphs, (2) spherical fuzzy type-2 soft graphs, and (3) picture
fuzzy type-2 soft trees.
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Concrete, one of the sources of energy consumption and carbon emissions, is widely used in the construction industry. ,e
selection of concrete materials raises the question of energy sustainability and turns it into a complex multicriteria decision-
making (MCDM) issue. To address this, we present an MCDM framework based on the intuitionistic linguistic hybrid weighted
logarithmic averaging distance (ILHWLAD). To begin with, the intuitionistic linguistic numbers are used to deal with the
uncertainty and fuzziness of the decision-making process. In addition, in view of the significance and the ordered position of the
input arguments, an intuitionistic linguistic hybrid weighted logarithmic averaging distance (ILHWLAD) operator is defined.We,
then, initiate the criteria system and present the MCDM framework based on the ILHWLAD to select the finest concrete. A case
study involving four alternative materials, namely, autoclaved aerated concrete (AAC), hollow concrete blocks (HCB), expanded
polystyrene (EPS), and lime hemp concrete (LHC), is presented to verify the scientificity of the framework.

1. Introduction

,e rapid advance of urbanization has meant that land
available for construction is becoming increasingly scarce.
However, the number of individuals who crowd into the city
to improve their living standards is growing day by day [1].
,is has led to an explosion in demand for housing because
the existing stock does not meet citizens’ needs. Building
materials have become an issue of crucial consideration, and
because high-rise buildings accommodate more individuals,
safety is critical [2]. Concrete, a mixture of paste and ag-
gregate or rocks, is one of the most widely used building
materials. Different kinds are used for building external filled
walls, frame structured filled walls, non-load-bearing walls,
load-bearing walls, roofs, floors, insulation systems, and so
on [3–5]. However, as a result, energy consumption is in-
creasing drastically and so is environmental pollution [6].
,e United Nations Environment Program (UNEP) reports
that the finest concrete materials account for more than 36%
of global energy consumption and up to 40% of energy-

related carbon dioxide emissions [7]. ,erefore, the choice
of suitable concrete for construction is of great significance
for energy conservation and emissions reduction,
manufacturing, composition, innovation, and so on.

Concrete gives buildings strength and durability. ,e
concrete itself must have great compressive strength.
Concrete also affects the thermal performance of buildings.
Climatic conditions can change enormously [8]; concrete
materials consume heat during the summer season, and this
is stored and released in the night in winter, which reduces
the effect of external temperature variations. In addition, the
residential comfort of the building is not adversely affected
because concrete is able to balance variations in outdoor
humidity and to avoid excessive variations in humidity
within the building. Because concrete is widely used in the
construction industry, economy and accessibility are espe-
cially important in the selection process of the finest types.

It is difficult to use specific data in the analysis of the
performance and functionality of specific concrete materials.
For example, the energy of concrete material varies
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according to levels of technology, production conditions,
and so on [9]. ,e intuitionistic linguistic number (ILN) is
an effective way to resolve these issues, and it has been
frequently used in different fields [10], e.g., energy perfor-
mance contracting [11], strategy decisions [12], the selection
of offshore wind farms [13], and assessment of green
building insulation materials [14].

Compared to the value of language evaluation, ILN
increases the degree of membership and nonmembership,
which reflects the nonmembership degree of the language
evaluation value and the magnitude of hesitation of
decision makers [15]. We can utilize ILN to characterize
the grades of each criterion for concrete materials be-
cause the information is hard to measure with specific
values.

,e ultimate goal of this paper is to select the finest
concrete material. Its contribution to the field can be
summarized as follows:

(1) ,e intuitionistic linguistic weighted logarithmic
average distance (ILWLAD) operator and the
intuitionistic linguistic ordered weighted logarithmic
average distance (ILOWLAD) operator are projected
by combining the weighted logarithmic and the
ordered weighted logarithmic average methods.
Furthermore, to address the defects of ILWLAD and
ILOWLAD, we introduce a new intuitionistic lin-
guistic hybrid weighted logarithmic average distance
(ILHWLAD) operator for better handling of the
data.

(2) As mentioned previously, the selection of concrete
materials is a comprehensive decision-making
problem. To improve the scientificity of the decision-
making process, a multidimensional examination of
concrete materials is required. ,us, a six-criterion
evaluation system for concrete material selection has
been developed, and four concrete materials have
been graded using ILNs.

(3) ,e HWLAD-MCDM framework of concrete ma-
terial selection is presented [16,17], and the
ILHWLAD operator is used to select the most
suitable material by using the fuzzy concept. To il-
lustrate the rationality of the ILHWLAD operator,
we compare the results obtained by using the
ILHWLAD operator with those obtained using the
ILOWLAD operator, ILOWAD operator, and
ILWLAD operator.

,e remainder of this paper is arranged as follows:
Section 2 introduces the evaluation criteria of concrete
materials and briefly reviews the related concepts. Section 3
presents the new ILHWLAD operator and introduces the
HWLAD-MCDM framework used to select the most suit-
able and finest concrete material. In Section 4, we apply the
framework to the four alternative concrete materials and
display the results. In addition, some comparisons are made
and discussed to explain the rationale behind the ILHWALD
operator. ,e conclusions, limitations, and recommenda-
tions for further applications are presented in Section 5.

2. Materials and Methods

2.1. Criteria for Concrete Materials Selection. Constructing
the evaluation criteria system is a key step in the concrete
materials selection process. In accordance with the available
literature, four main aspects and six criteria were selected
(see Table 1) [18, 23].

(1) Embodied energy (A1): the embodied energy of the
concrete materials refers to the exact total energy
consumed in the entire process of concrete material
production. It includes production, processing,
transportation, and construction, that is, is the sum
of direct and indirect energy consumption. ,e
lower the energy content, the lower the energy
consumption of the concrete material and the more
the energy that is saved.

(2) Embodied carbon (A2): the concrete material in
production, processing, and other processes expel
carbon dioxide into the atmosphere. Carbon dioxide
contributes to air pollution and provokes the global
greenhouse effect, which is the cause of global cli-
mate change. Hence, the less the carbon contained in
the concrete material, the lower the carbon dioxide
expelled.

(3) Purchase cost (A3): the finest concrete materials are
frequently used in the construction business. ,e
purchase cost of concrete changes greatly, and a
reduction contributes to economies in construction
costs. ,erefore, the purchase cost can be regard as
an economic criterion for measurement.

(4) ,ermal performance (A4): the outdoor temperature
of buildings is generally high in the summer. Good
thermal performance enables indoor temperatures to
reach a lower level than the day’s peak temperature,
thus improving the comfort of indoor living. In
contrast, outdoor temperatures are generally lower
in winter and reach their lowest point at the night.
,erefore, the indoor temperature is capable of
reaching a higher level at the lowest external night-
time temperature as a result of the concrete’s out-
standing thermal performance. In this paper, the
highest indoor temperature of the building in
summer and the lowest indoor temperature in winter
at night-time are combined to measure the thermal
performance of the concrete materials.

(5) Ability to balance outdoor humidity fluctuations
(A5): a criterion that measures the ability of certain
concrete materials to balance outdoor humidity
fluctuations is the variation range of indoor humidity
within a day. ,e smaller the range, the better the
ability to balance outdoor humidity fluctuations. We
combine the indoor humidity variation of the
building in the summer and in the winter to measure
the ability of the concrete materials to balance
fluctuations in outdoor humidity.

(6) Compressive strength (A6): the compressive
strength of concrete refers to the strength limit
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applied by external forces, which is obtained by a test
of a cube specimen with a side length of 150mm
under the strength of C60. As has been noted, it is
one of the factors that influence the stability of a
building. ,e greater the compressive strength, the
greater the maximum pressure the material can
withstand.

In terms of energy sustainability, embodied energy and
embodied carbon are the two main criteria that reflect the
energy consumed and carbon dioxide emitted [19,20]. When
taking the comfort of the building’s interior into account, the
thermal performance of the concrete materials and the
ability to balance outdoor humidity fluctuations are espe-
cially significant [34]. For the economy of the concrete
materials, the purchase cost is the critical criterion by which
to estimate economic possibilities, given concrete’s wide-
spread use in the construction industry. Finally, the criterion
of its compressive strength has to be considered because this
is what makes buildings strong [30].

2.2. WeightingMethod of Criteria. In this section, we briefly
review some concepts related to the linguistic approach and
the intuitionistic linguistic set (ILS) and present a pro-
gramming model for calculating the weights of the criteria.

Definition 1. ,e linguistic approach is an approximate
technique that expresses qualitative aspects as linguistic
values through the use of linguistic terms [35]. For ease of
calculation, let K� {ka|a� 1, 2, . . ., t} be an ordered linguistic
term set, where t is the positive odd value and ka represents a
possible value for a linguistic variable.

For instance, taking t� 7, a set K could be expressed as
follows: K � k1, k2, k3, k4, k5, k6, k7􏼈 􏼉 � {extremely bad, quite
bad, bad, medium, good, quite good, extremely good}.

Any label kα should satisfy the following operational
laws:

(1) Neg(ki) � kt−i

(2) ki ≥ kj⟺ i≥ j

(3) max(ki, kj) � ki, if ≥ i≥ j

(4) min(ki, kj) � ki, if ≥ i≤ j

Considering two linguistic terms kα, kβ ∈K, and μ> 0, the
operations are defined as follows:

(1) kα⊕kβ � kα+β

(2) μkα � kμα

Definition 2. Let X be a nonempty set. An ILS A inX is, then,
expressed as

A � 〈x kθ(x), μA(x), vA(x)( 􏼁􏽨 􏽩〉|x ∈ X􏼨 􏼩, (1)

where kθ ∈ K and the μA(x) and vA(x) indicate the
membership degree and nonmembership degree of the el-
ement x ∈ X to the set A, respectively. Hence, we have
μA(x), vA(x) ∈ [0, 1] and 0≤ μA(x) + vA(x)≤ 1, for all
x ∈ X. For convenience, the ILN is generally denoted as
〈kθ(x), (μA(x), vA(x))〉.

More specifically, for each ILS A in X, we have

πA(x) � 1 − μA(x) − vA(x), (2)

where πA(a) is called the hesitation degree of x to linguistic
variable kθ(x).

After the notion of the ILN has been presented, we then
calculate the weights of criteria. ,e weight calculation
methods commonly used to determine the weights when the
information is completely unknown include the analytic
hierarchy process (AHP) [36, 37] and entropy method [38,
39]. Here, the criterion information is partially known, so
the programmingmodel is preferred to calculate the weights.
,e steps are as follows:

Step 1: establish a matrix with ILNs (u× v), which
includes u different experts and v different criteria
Step 2: calculate the positive ideal solution (PIS) and
negative ideal solution (NIS) for each criterion by using
the following equations:

A
+
j � maxj∈benefit H Aj􏼐 􏼑􏼐 􏼑orminj∈cost H Aj􏼐 􏼑􏼐 􏼑, (3)

A
−
j � maxj∈cost H Aj􏼐 􏼑􏼐 􏼑orminj∈benefit H Aj􏼐 􏼑􏼐 􏼑, (4)

where H(Ai) � (θ/t − 1) × (μ + v), A+
j represents the

value of PIS for the j-th criterion, and A−
j represents the

value of NIS for the j-th criterion
Step 3: determine an objective function by using the PIS
and NIS values:

minT � 􏽘
n

j�1
wj 􏽘

m

i�1
d Aij, A

+
j􏼐 􏼑 − d Aij, A

−
j􏼐 􏼑􏼐 􏼑, (5)

Table 1: Criteria for concrete material selection.

Aspects Criteria Abbreviation Reference
Energy Embodied energy A1 [8, 18, 19]
Sustainability Embodied carbon A2 [8, 20–22]

Economy Purchase cost
,ermal performance

A3 [23, 24]
A4 [25–27]

Comfort Ability to balance outdoor humidity fluctuations A5 [28, 29]
Safety Compressive strength A6 [30–33]
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where 0≤wj ≤ 1 and 􏽐jwj � 1 · d(·) represents the distance
between two ILNs

For example, for the two ILNs A1 and A2, we have

d A1, A2( 􏼁 �
1

2(t − 1)
× 1 + μ A1( 􏼁 − v A1( 􏼁( 􏼁θ A1( 􏼁

􏼌􏼌􏼌􏼌􏼐

− 1 + μ A2( 􏼁 − v A2( 􏼁( 􏼁θ A1( 􏼁
􏼌􏼌􏼌􏼌􏼑.

(6)

2.3. 3e ILOWAD and the ILWALD Operators. In this
section, some related operators are briefly reviewed, in-
cluding the OWAD [40], the WLAD [41], the OWLAD [42],
and the ILOWAD [43] measures.

Definition 3. Let A and B be two intuitionistic linguistic sets;
the normalized hamming distance between A and B is given
by the mathematical form:

d(A, B) �
1
n

􏽘

n

i�1
dILN 􏽥ai,

􏽥bi􏼐 􏼑 � 􏽘
n

i�1

1
2n(t − 1)

× 1 + μ ai( 􏼁 − v ai( 􏼁( 􏼁θ ai( 􏼁 − 1 + μ bi( 􏼁 − v bi( 􏼁( 􏼁θ bi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑, (7)

where 􏽥ai � 〈kθ(ai), (μ(ai), v(ai))〉 and 􏽥bi � 〈kθ(bi),

(μ(bi), v(bi))〉 are the i-th ILN of A and B, respectively, and
θ(·) represents the i-th linguistic value of A or B.

Definition 4. Let A � a1, a2, . . . , an􏼈 􏼉 and B � b1, b2, . . . , bn􏼈 􏼉

be two crisp sets and di � |ai − bi| the distance between ai
and bi. ,e OWAD measure is, then, defined as

OWAD(A, B) � OWAD d1, d2, . . . , dn( 􏼁 � 􏽘
n

j�1
wjdσ(j),

(8)

where dσ(j)(j � 1, 2, . . . , n) is the j-th largest value of dj(j �

1, 2, . . . , n). w � wj| 􏽐
n
j�1 wj � 1, 0≤wj ≤ 1􏽮 􏽯 is the associ-

ated weighting vector of OWAD.

Definition 5. ,e WLAD operator of dimension n is a
mapping WLAD: Rn × Rn⟶ R has a relative weighting
vector W � w1, w2, . . . , wn􏼈 􏼉, with 􏽐

n
i�1 wi � 1 and

wi ∈ [0, 1].

WLAD x1, y1, x2, y2, . . . , xn, yn( 􏼁 � exp 􏽘
n

i�1
wiln di( 􏼁

⎧⎨

⎩

⎫⎬

⎭,

(9)

where di � |xi − yi| represents the individual distance be-
tween xi and yi.

Definition 6. Let X � x1, x2, . . . , xn􏼈 􏼉 and
Y � y1, y2, . . . , yn􏼈 􏼉 be two crisp sets and di � |xi − yi| be
the distance between xi and yi. ,e OWLAD operator of
dimension n is a mappingOWLA D: Rn × Rn⟶ R that has
a relative weighting vector W � ω1, ω2, . . . ,ωn􏼈 􏼉, with
􏽐

n
i�1 wi � 1 and wj ∈ [0, 1], satisfying

OWLAD x1, y1, x2, y2, . . . , xn, yn( 􏼁 � exp 􏽘

n

j�1
wj ln dσ(j)􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(10)

where dσ(j) has the same meaning and value range as
Definition 4.

Definition 7. ,e ILOWAD operator of dimension n is a
mapping ILOWAD: Ωn ×Ωn⟶Ω that is defined by an
associated weighting vector W. Hence, the sum of weights is
equal to 1 and wj ∈ [0, 1]. ,en, we have

ILOWAD 􏽥a1,
􏽥b1􏼐 􏼑, . . . , 􏽥an, 􏽥bn􏼐 􏼑􏼐 􏼑 � 􏽘

n

j�1
wjdσ(j), (11)

where dσ(j) is the j-th largest value among the intuitionistic
linguistic distance dILN( 􏽥ai,

􏽥bi) and 􏽥ai � 〈kθ(ai), (μ(ai), v(ai))〉

and 􏽥bi � 〈kθ(bi), (μ(bi), v(bi))〉 are the i-th ILN of A and B,
respectively.

3. Proposed Method

3.1. Intuitionistic Linguistic Weighted Logarithmic Distance
Measures. In this section, we present the intuitionistic
linguistic weighted logarithmic average distance (ILWLAD)
operator, the ILOWLAD operator, and the ILHWLAD
operator.

Definition 8. ,e ILWLAD operator of dimension n is a
mapping ILWAL D: Rn × Rn⟶ R. ,is operator can be
formulated as:

ILWLA D 􏽥a1,
􏽥b1􏼐 􏼑, . . . , 􏽥an, 􏽥bn􏼐 􏼑􏼐 􏼑 � exp 􏽘

n

i�1
wiIn di( 􏼁

⎧⎨

⎩

⎫⎬

⎭,

(12)

where W � ω1, ω2, . . . ,ωn􏼈 􏼉 is the relative weighting vector
of ILWLAD, 􏽐

n
i�1 wi � 1, wi ∈ [0, 1].

4 Journal of Mathematics



Definition 9. ,e ILOWLAD operator maps the parameter
vector of dimension n to a real number, which has a relative
weighting vector W � ω1, ω2, . . . ,ωn􏼈 􏼉, with 􏽐

n
i�1 wi � 1

and wi ∈ [0, 1]. Hence, we define this operator as follows:

ILOWLAD 􏽥a1,
􏽥b1􏼐 􏼑, . . . , 􏽥an, 􏽥bn􏼐 􏼑􏼐 􏼑 � exp 􏽘

n

j�1
wj ln dσ(j)􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(13)

where dσ(j) represents the j-th largest value of all intui-
tionistic linguistic distances dILN( 􏽥a1,

􏽥b1).
In the aggregation process, the ILWLAD measure ex-

amines the importance of criteria and the ILOWLAD
measure examines the importance of the ordered deviation.
However, the ILWLAD is unable to perform the aggregation
function in order, while the ILOWLAD fails to integrate the
criteria in a way that the ILWLAD can. To compensate for
this disadvantage, we present the ILHWLAD measure.

Definition 10. Let 􏽥ai � 〈kθ(ai), (μ(ai), v(ai))〉(i �

1, 2, . . . , n) and 􏽥bi � 〈kθ(bi), (μ(bi), v(bi))〉 (i � 1, 2, . . . , n)

two sets of ILN. An ILHWLAD operator of dimension n is a
mapping ILHWLAD: Rn × Rn⟶ R.,e ILHWLADmeasure
is given as follows:

ILHWLAD 􏽥a1,
􏽥b1􏼐 􏼑, · · · , 􏽥an, 􏽥bn􏼐 􏼑􏼐 􏼑 � exp 􏽘

n

j�1
wj ln Dσ(j)􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(14)

where Dσ(j) represents the j-th largest value among Dj,
which is defined as Dj � (nwjDj), (j � 1, 2, . . . , n.) wj �

(w1, w2, . . . , wn) is the weight vector corresponding to
Dσ(j), and wj is the associated weight of the unordered
value Dj, satisfying 􏽐

n
i�1 wi � 1 and wi ∈ [0, 1]. N is used as

a balancing factor to compensate for the double
weighting. Moreover, we can explore a wide range of
special cases of the ILHWLAD operator utilizing the
similar methods proven in [16, 44].

3.2.3eMCDMFrameworkBasedonthe ILHWLADMeasure.
,e selection of concrete materials is a multicriteria deci-
sion-making problem. Based on the ILHWLAD operator,
this section uses a weight programming model to calculate
weight, and an MCDM framework is used to select the finest
concrete material. ,e specific steps are shown in Figure 1.

An MCDM problem includes j different alternatives,
denoted as C1, C2, . . . , Cj, and a total of t experts are invited
to evaluate the alternatives under k finite criteria
E1, E2, . . . , Ek. ,e process can be summarized into the
following steps; Table 2:

Step 1: each expert eq(q � 1, 2, . . . , t) (the corre-
sponding weight is τq, which meets τq ≥ 0 and
􏽐

t
q�1 τq � 1) measures his or her performance using

criteria from the ILNs. Afterwards, the individual de-
cision matrix Rq � (r

(q)
ij )m↔n is obtained, where rij(q) is

the evaluation of the alternative Ci by q-th experts with
regard to criterion Ej.

Step 2: calculate the collective decision matrix Rq �

(r
q

ij)m×n to aggregate individual evaluations, where

rij � 􏽐
t
q�1 τqr

(q)
ij .

Step 3: establish the ideal alternative by setting the ideal
performances for each criterion (see Table 2).
Step 4: use the programming model presented to obtain
the weights of criteria according to equation (5). ,en,
the weights of operators can be determined by experts.
Step 5: the distances between the alternative Ci(I �

1, 2, . . . , j) and the ideal alternative I are computed by
utilizing the ILHWLAD measure:

ILHWLAD 􏽥a1,
􏽥b1􏼐 􏼑, · · · , 􏽥an, 􏽥bn􏼐 􏼑􏼐 􏼑

� exp 􏽘
n

j�1
wj ln Dσ(j)􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(15)

Step 6: based on the value of the distances obtained in
the previous steps, we can order the alternatives and
select the finest one.

4. Case Study

4.1. Description of Concretes. ,e concrete materials used in
the construction industry are mainly autoclaved aerated
concrete (AAC) [10, 45], hollow concrete blocks (HCB) [46,
47], expanded polystyrene (EPS) [48, 49], and lime hemp
concrete (LHC) [50].

LHC (C1) is a new composite material of lime and hemp,
which maintains an excellent thermal and moisture pro-
cessing performance. Because of its lower embodied energy
(EE) and embodied carbon (EC), the energy consumption
and emission of carbon dioxide are compact during its
manufacture. Its low mechanical property means that it is
widely used in roofs, walls, slabs, and insulation.

AAC (C2) forms numerous small air holes in the interior
during the production process, so it possesses good heat and
sound insulation functions. Moreover, it is relatively light,
and the density is about 1/3 of clay brick. It is generally used
in the outside filled walls of buildings and non-load-bearing
internal partitions.

HCB (C3) is of low density and possesses a good thermal
performance, which are advantageous for masonry. It is
commonly used in industrial and civil buildings, particularly
in bearing walls and frame structure fill walls of multistorey
buildings. It is also frequently adopted to construct fences,
flower beds, bridges, and so on.

EPS (C4) is a lightweight polymer with good thermal
insulation. It is commonly used in the heat insulation system
of external walls, roofs, and floors of buildings.

4.2. Decision Procedure. In this section, we use the frame-
work to deal with selection problems under IL environ-
ments. Four possible concretes Ci(I � 1, 2, 3, 4) are
evaluated from the following criteria: embodied energy (E1);
embodied carbon (E2); purchase cost (E3); thermal per-
formance (E4); ability to balance outdoor humidity
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fluctuation (E5); and compressive strength (E6). Four ex-
perts (expert’s weight τ � (0.25, 0.3, 0.2, 0.25)) utilize IL
information to evaluate four candidate concretes under six
criteria, where the linguistic term set is assumed to be
K � (k1, k2, k3, k4, k5, k6, k7); Tables 3–9 and Table 10.

Step 1: let each expert express evaluation of four
concrete materials under given criteria through ILNs.

,e intuitionistic linguistic individual decision ma-
trixes are shown in Tables 3–6.
Step 2: on the basis of the individual decision matrices
and weights of the experts, we can obtain the collective
decision matrix; see Table 7.
Step 3: having acquired the relevant information on the
four concrete materials, the experts construct the ideal

Begin

Collect evaluation information from
each expert in terms of ILN

Integrate four experts’ evaluation
information and obtain collective

information matrix

Determine the ideal scheme that has a
good performance for each index

Use a new programming model to
calculate weights of index

Experts determine the weights
subjectively

Calculate distance between each
alternative and the ideal scheme

Reorder alternatives and
make a decision

End

step1

step2

step3

step4

step5

step6

1

Figure 1: ,e procedure of the MCDM framework based on ILHWLAD for concrete materials.

Table 2: Ideal alternative.

E1 E2 ... Ek
I I1 I2 ... Ik
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Table 3: Intuitionistic linguistic matrix-expert 1.

E1 E2 E3 E4 E5 E6
C1 〈k6, (0.5, 0.4)〉 〈k6, (0.3, 0.4)〉 〈k3, (0.6, 0.3)〉 〈k6, (0.2, 0.6)〉 〈k6, (0.4, 0.4)〉 〈k6, (0.7, 0.4)〉

C2 〈k4, (0.3, 0.6)〉 〈k5, (0.5, 0.4)〉 〈k6, (0.7, 0.2)〉 〈k6, (0.5, 0.5)〉 〈k5, (0.5, 0.5)〉 〈k4, (0.2, 0.8)〉

C3 〈k5, (0.2, 0.7)〉 〈k4, (0.6, 0.2)〉 〈k4, (0.6, 0.3)〉 〈k4, (0.9, 0.1)〉 〈k4, (0.4, 0.4)〉 〈k7, (0.1, 0.9)〉

C4 〈k3, (0.7, 0.2)〉 〈k3, (0.2, 0.8)〉 〈k5, (0.1, 0.9)〉 〈k3, (0.3, 0.6)〉 〈k2, (0.4, 0.4)〉 〈k2, (0.3, 0.6)〉

Table 4: Intuitionistic linguistic matrix-expert 2.

E1 E2 E3 E4 E5 E6
C1 〈k7, (0.7, 0.2)〉 〈k7, (0.8, 0)〉 〈k3, (0.6, 0.3)〉 〈k6, (0.5, 0.5)〉 〈k7, (0.3, 0.6)〉 〈k2, (0.4, 0.5)〉

C2 〈k5, (0.2, 0.7)〉 〈k5, (0.4, 0.6)〉 〈k6, (0.7, 0.2)〉 〈k6, (0.6, 0.4)〉 〈k5, (0.6, 0.3)〉 〈k3, (0.9, 0)〉

C3 〈k5, (0.4, 0.5)〉 〈k4, (0.7, 0.3)〉 〈k5, (0.5, 0.3)〉 〈k4, (0.2, 0.7)〉 〈k5, (0.3, 0.6)〉 〈k7, (0.4, 0.5)〉

C4 〈k3, (0.2, 0.8)〉 〈k4, (0.7, 0.2)〉 〈k5, (0.4, 0.5)〉 〈k3, (0.5, 0.4)〉 〈k2, (0.1, 0.8)〉 〈k2, (0.8, 0.1)〉

Table 5: Intuitionistic linguistic matrix-expert 3.

E1 E2 E3 E4 E5 E6
C1 〈k7, (0.3, 0.6)〉 〈k6, (0.4, 0.5)〉 〈k3, (0.3, 0.6)〉 〈k7, (0.8, 0.1)〉 〈k6, (0.8, 0.2)〉 〈k3, (0.7, 0.2)〉

C2 〈k4, (0.3, 0.7)〉 〈k5, (0.5, 0.4)〉 〈k7, (0.8, 0.1)〉 〈k7, (0.3, 0.6)〉 〈k5, (0.4, 0.5)〉 〈k4, (0.4, 0.6)〉

C3 〈k6, (0.8, 0.2)〉 〈k5, (0.4, 0.6)〉 〈k5, (0.5, 0.4)〉 〈k5, (0.2, 0.7)〉 〈k4, (0.8, 0.2)〉 〈k7, (0.7, 0.2)〉

C4 〈k3, (0.4, 0.5)〉 〈k3, (0.7, 0.2)〉 〈k6, (0.5, 0.4)〉 〈k3, (0.6, 0.3)〉 〈k3, (0.6, 0.4)〉 〈k3, (0.6, 0.2)〉

Table 6: Intuitionistic linguistic matrix-expert 4.

E1 E2 E3 E4 E5 E6
C1 〈k7, (0.4, 0.5)〉 〈k6, (0.6, 0.3)〉 〈k3, (0.7, 0.2)〉 〈k6, (0.7, 0.2)〉 〈k6, (0.2, 0.7)〉 〈k3, (0.4, 0.4)〉

C2 〈k4, (0.3, 0.4)〉 〈k4, (0.5, 0.4)〉 〈k6, (0.6, 0.2)〉 〈k6, (0.5, 0.5)〉 〈k4, (0.2, 0.8)〉 〈k4, (0.8, 0.1)〉

C3 〈k6, (0.6, 0.3)〉 〈k4, (0.7, 0.2)〉 〈k4, (0.6, 0.3)〉 〈k5, (0.3, 0.6)〉 〈k4, (0.1, 0.9)〉 〈k7, (0.4, 0.4)〉

C4 〈k4, (0.6, 0.2)〉 〈k3, (0.5, 0.5)〉 〈k6, (0.1, 0.9)〉 〈k4, (0.4, 0.5)〉 〈k2, (0.6, 0.3)〉 〈k3, (0.3, 0.5)〉

Table 7: Collective IL decision matrix.

E1 E2 E3 E4 E5 E6
C1 〈k6.46, (0.52, 0.37)〉 〈k6.35, (0.60, 0)〉 〈k5.27, (0.58, 0.31)〉 〈k6.32, (0.59, 0.30)〉 〈k6.35, (0.46, 0.45)〉 〈k5.11, (0.56, 0.37)〉

C2 〈k5.77, (0.27, 0.59)〉 〈k5.91, (0.47, 0.45)〉 〈k6.32, (0.70, 0.17)〉 〈k6.32, (0.50, 0.49)〉 〈k5.91, (0.46, 0.48)〉 〈k5.54, (0.71, 0)〉

C3 〈k6.11, (0.53, 0.40)〉 〈k5.72, (0.63, 0.28)〉 〈k5.83, (0.55, 0.32)〉 〈k5.89, (0.54, 0.41)〉 〈k5.77, (0.44, 0.48)〉 〈k6.52, (0.42, 0.46)〉

C4 〈k5.37, (0.50, 0.36)〉 〈k5.39, (0.56, 0.36)〉 〈k6.11, (0.32, 0.64)〉 〈k5.37, (0.46, 0.44)〉 〈k4.86, (0.44, 0.46)〉 〈k4.98, (0.57, 0.33)〉

Table 8: Ideal concrete.

E1 E2 E3 E4 E5 E6
I1 〈k7, (0.9, 0.1)〉 〈k7, (0.9, 0)〉 〈k7, (0.8, 0.2)〉 〈k6, (0.9, 0.1)〉 〈k7, (0.8, 0.1)〉 〈k7, (0.9, 0.1)〉

Table 9: Positive ideal solution (PIS) and negative ideal solution (NIS) for each criterion.

E1 E2 E3 E4 E5 E6
Aj

+ 〈k6.46, (0.52, 0.37)〉 〈k5.91, (0.47, 0.45)〉 〈k6.11, (0.32, 0.64)〉 〈k6.32, (0.50, 0.49)〉 〈k6.35, (0.46, 0.45)〉 〈k6.52, (0.42, 0.46)〉

Aj
− 〈k5.37, (0.50, 0.36)〉 〈k6.35, (0.60, 0)〉 〈k5.27, (0.58, 0.31)〉 〈k5.37, (0.46, 0.44)〉 〈k4.86, (0.44, 0.46)〉 〈k5.54, (0.71, 0)〉
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concrete with good performance in each criterion; see
Table 8.
Step 4: according to Table 7 and equations (2)−(4), the
PIS and NIS of each criterion are determined; see
Table 9.
,e distance matrix is calculated in accordance with
equation (6); see Table 10.

In many real-world situations, the information about
criteria weights is incomplete, so we should first de-
termine the criteria weights in Step 4 if the known
weight information on the criteria is set as in the
following set: H � ω2 + ω4 + ω5 + ω6 ≤ 0.6, ω1 ≤ 0.15,􏼈

ω3 ≤ 0.25, ω2 ≤ 0.2, ω6 ≤ 0.15, ω4 + ω6 ≤ 0.3}. ,e ob-
jective function and the constraints are determined by
using equation (5). ,e objective function is given by

Z � 0.080ω1 − 0.320ω2 + 0.426ω3 − 0.161ω4

− 0.024ω5 − 0.533ω.
(16)

Finally, the weighting vector of the criteria is obtained
as ω� (0.15, 0.2, 0.25, 0.15, 0.1, 0.15)T using the Python
programming language. In the meantime, the
weighting vectors of the ILHWLAD are set to be
w � (0.2, 0.15, 0.25, 0.1, 0.15, 0.15)T.
Step 5: in accordance with equation (15) and the
available information, the distances between the al-
ternatives and the ideal concrete are computed by using
the ILHWLAD as follows:

(1) ILHWLAD (C1, I)� 0.3651
(2) ILHWLAD (C2, I)� 0.3717
(3) ILHWLAD (C3, I)� 0.4319
(4) ILHWLAD (C4, I)� 0.5338

Step 6: the smaller the value of the ILHWLAD (Ci, I),
the closer the Ci to the ideal concrete.,erefore, we can
rearrange the order of Ci :C1≻C2≻C3≻C4

Hence, the best alternative is C1.

4.3. Comparisons and Discussion. In this section, to verify
the superiority and rationality of the ILHWLAD method,
and the results of the ILOWLAD, the ILOWAD, and the
ILWLAD measures are compared with those of the
ILHWLAD measures in the selection of the concrete ma-
terials. According to equation (13), the distances between the
alternatives and the ideal concrete are calculated by using the
ILOWLAD operator as follows:

(1) ILOWLAD (C1, I)� 0.3786
(2) ILOWLAD (C2, I)� 0.3991
(3) ILOWLAD (C3, I)� 0.4445
(4) ILOWLAD (C4, I)� 0.5476

By the ILOWAD measure, we have

(1) ILOWAD (C1, I)� 0.3963
(2) ILOWAD (C2, I)� 0.4579
(3) ILOWAD (C3, I)� 0.4516
(4) ILOWAD (C4, I)� 0.5499

,e results obtained by the ILWLAD measure are

(1) ILWLAD (C1, I)� 0.3563

(2) ILWLAD (C2, I)� 0.3387
(3) ILWLAD (C3, I)� 0.4237

(4) ILWLAD (C4, I)� 0.5455

,us, the final ranking of the four alternatives according
to the ILOWLAD, the ILOWAD, and the ILWLAD measures
areC1≻C2≻C3≻C4,C1≻C3≻C2≻C4, andC2≻C1≻C3≻C4,
respectively. ,e final results are shown in Table 11.

,e ranking results obtained by the abovementioned four
methods are contrasting. As Table 11 shows, LHC is the finest
concrete material measured by the ILHWLAD, ILOWLAD,
and ILOWAD measures. LHC performs very well in terms of
thermal performance, embodied energy, and embodied carbon;
it is a high-quality environmentally friendly insulatingmaterial.
A building constructed with LHC not only reduces carbon
dioxide emissions but also cuts down energy consumption.
However, according to the measurement results of the

Table 10: ,e total distance of each criterion.

E1 E2 E3 E4 E5 E6
􏽐

m
i�1(d(Aij, A+

j ) − d(Aij, A−
j )) 0.080 -0.320 0.426 -0.161 -0.024 -0.533

Table 11: ,e ranking orders of different measures.

Measures Ranking orders
ILHWLAD C1≻C2≻C3≻C4
ILOWLAD C1≻C2≻C3≻C4
ILOWAD C1≻C3≻C2≻C4
ILWLAD C2≻C1≻C3≻C4
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ILWLAD operator, AAC is the finest concrete material. EPS
performs poorly under all four measures, mainly because,
according to the evaluation criteria system designed for this
paper, its compressive strength is low, it consumes more en-
ergy, and produces more carbon dioxide in the manufacturing
process than the other three materials.

,e reasons for the inconsistent results can be sum-
marized as follows:

First, ILOWLAD and ILOWAD take the ordering
mechanism of the parameters into account and pay more
attention to the importance of ordered deviation. But,
ILWLAD considers the importance of the criteria. Under
this measure, AAC is superior to the other three concrete
materials in the economic aspect. Hence, the distance be-
tween AAC and the ideal solution is lowest in terms of the
purchase cost criterion. However, during the aggregation
process of the ILOWLAD and the ILOWAD operators, the
higher weights are coordinated by those larger intuitionistic
linguistic distance values, in which LHC performs best.
Hence, the distance between it and the ideal solution is the
smallest.

Second, unlike the ILOWAD operator, the ILOWLAD
operator performs logarithmic transformation of distance. If
the evaluation of an alternative is closer to the ideal solution
under a certain criterion, the advantage of logarithmic
transformation will be clearer. In this case, AAC is the closest
to the ideal solution under the purchase cost criterion, which
increases the gap between AAC and HCB, so that the second
and third place results obtained by the two measures are
different.

As has been noted, ILWLAD prioritizes the criteria,
whereas the ILOWLAD measure only accounts for the
importance of the ordered deviation. ,erefore, ILWLAD
and ILOWLAD take into account different stages in the
assembly process. ILHWLAD makes up for this deficiency
by taking input arguments and the ordered position into
account simultaneously. Hence, it is the modest among the
four operators.

5. Conclusions

Concrete plays a vital role in the construction industry; it
helps to determine the strength, thermal performance,
and relative humidity of buildings. At the same time, it is
one of the major sources of energy consumption and
carbon emissions, though certain types of concrete con-
tribute to energy sustainability more than others. In this
paper, we proposed an HWLAD-MCDM framework for
the selection of the finest concrete materials under an
intuitionistic linguistic fuzzy environment. ,e four al-
ternative concrete materials LHC, AAC, HCB, and EPS
were evaluated using six criteria (embodied energy, em-
bodied carbon, purchase cost, thermal performance,
ability to balance outdoor humidity fluctuations, and
compressive strength), which encompass energy sus-
tainability, economic performance, comfort, and safety.
,e OWLAD, WLAD, ILOWLAD, and ILWLAD opera-
tors were used in combination with an ILS. We, then,

presented the new ILHWLAD operator, which addresses
the limitations of the latter two. In addition, instead of
using the traditional AHP and entropy method, we used a
programming model to calculate the weight under in-
complete information. ,e MCDM method based on the
ILHWLAD operator was proposed for the selection of the
finest concrete material, and the results are compared with
those obtained by ILOWLAD, ILOWAD, and ILWLAD.

,e MCDM framework based on the ILHWLAD op-
erator allows a new way of making decisions, and its field of
application is not limited to the selection of concrete
materials. In further research, both methodological de-
velopments and new areas of application should be con-
sidered. With regard to the former, the expert weighting
scheme could be employed in a more objective manner. In
addition, we should try to expand further the new operator
and implement it in more complex areas.
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&e purpose of this article is to develop some general aggregation operators (AOs) based on Einstein’s norm operations, to
cumulate the Fermatean fuzzy data in decision-making environments. A Fermatean fuzzy set (FFS), possessing the more flexible
structure than the intuitionistic fuzzy set (IFS) and Pythagorean fuzzy set (PFS), is a competent tool to handle vague information
in the decision-making process by the means of membership degree (MD) and nonmembership degree (NMD). Our target is to
empower the AOs using the theoretical basis of Einstein norms for the FFS to establish some advantageous operators, namely,
Fermatean fuzzy Einstein weighted averaging (FFEWA), Fermatean fuzzy Einstein ordered weighted averaging (FFEOWA),
generalized Fermatean fuzzy Einstein weighted averaging (GFFEWA), and generalized Fermatean fuzzy Einstein ordered
weighted averaging (GFFEOWA) operators. Some properties and important results of the proposed operators are highlighted. As
an addition to the MADM strategies, an approach, based on the proposed operators, is presented to deal with Fermatean fuzzy
data in MADM problems. Moreover, multiattribute decision-making (MADM) problem for the selection of an effective sanitizer
to reduce coronavirus is presented to show the capability and proficiency of this new idea. &e results are compared with the
Fermatean fuzzy TOPSIS method to exhibit the potency of the proposed model.

1. Introduction

In decision sciences, it is an important aspect to find the
ranking order of the alternatives corresponding to different
attributes according to the preferences of the decision-
making experts. &erefore, selection of various attributes of
the alternatives is a very complex task. &ese decisions
cannot be interpreted by the exact data so the need of a
powerful model was raised to handle the ambiguous data.
For that issue, Zadeh [1] initiated the innovative idea of
fuzzy set (FS) which served as the backbone of the FS theory.
FS permits the experts to describe their satisfaction level
(membership degree) regarding performance of a member
within the unit interval. Although, the FSs provide the
grounds to the uncertain assessments but they were not
adequate enough to describe the NMD. To overcome the
limitations of FS, Atanassov [2] introduced a more

dominant model, namely, IFS which has both MD μ and
NMD ]with condition μ + ]≤ 1.&e theory of IFS was felt to
be inept and insufficient to represent the inexact data as
there are a lot of problems where the sum of MD and NMD
is exceeded by 1. To reduce such type of complications,
Yager [3] delivered the idea of PFS with condition
μ2 + ]2 ≤ 1. However, PFS has also some limitations if MD of
an element is 0.8 and NMD is 0.7, then sum of square of
these values is greater than 1. &en, Yager [4] developed the
theory of q-rung orthopair fuzzy set (q-ROFS) with con-
dition μq + ]q ≤ 1. Recently, Senapati and Yager [5] gave the
concept of FFS as a generalization of IFS and PFS.

&eworthwhile theory of AOs is widely applied to decision-
making scenarios for the sake of data aggregation and to identify
the best alternative from the possible choices. Xu [6] gave the
idea of intuitionistic fuzzy (IF) AOs.&e concept of generalized
AOs for IFS was developed by Zhao et al. [7]. Rahman et al. [8]
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introduced Pythagorean fuzzy (PF) AOs. Zhao and Wei [9]
studied the Einstein hybrid AOs under IF environment. &e
idea of IF aggregation using Einstein operations was discussed
by Wang and Liu [10]. &e induced interval-valued IF Einstein
AOs were developed by Cai andHan [11]. Garg [12] studied the
generalized PFEinsteinweighted arithmetic AOs.Garg [13] also
proposed the generalized PF Einstein weighted geometric AOs.
&e Pythagorean Dombi fuzzy AOs with applications were
discussed by Akram et al. [14]. Shahzadi et al. [15] proposed the
decision-making approach using PF Yager AOs. Liu andWang
[16] expressed q-rung orthopair fuzzy (q-ROF) weighted AOs.
Wei et al. [17] studied weighted Heronian mean AOs under
q-ROF information. q-ROF power Maclaurin AOs were de-
veloped by Liu et al. [18]. Jana et al. [19] studiedDombi AOs for
q-ROFS. Liu and Liu [20] proposed q-ROF Bonferroni mean
operators. Joshi and Gegov [21] studied the confidence levels
q-ROF aggregation operators. Akram and Shahzadi [22] de-
veloped the hybrid decision-makingmodel under q-ROF Yager
AOs. Liu et al. [23] extended the concept of prioritized weighted
AOs for complex q-ROFS. Senapati and Yager [24] studied
subtraction, division, and Fermatean arithmetic mean opera-
tions over FFS. &e idea of Fermatean fuzzy (FF) weighted
averaging/geometric operators was also given by Senapati and
Yager [25]. For more information and applications, the readers
can refer to [26–59].

&e motivations of this article are described as follows:

(1) &e judgement of a perfect alternative in an FF
environment is a laborious MADM problem. &e
prevalent model, possessing the more space than the
IF model and PF model, vigorously elaborates the
imprecise decisions for the selection of best
alternative.

(2) As Einstein AOs are the simplest and quite creative
approach for dealing with DM affairs, basically, this
article directs Einstein AOs in FF surroundings to
face complex issues.

(3) &e outcomes based on conclusion are quite accurate
under Einstein AOs when it is put on to the reality-
based MADM problems in FF data.

(4) &e proposed operators are keen to provide the
optimal solution not only for FF environment but
also to work efficiently for IF and PF environment.

&e contributions of this article are described as follows:

(1) &e feasibility of FFNs is merged with the aggre-
gation skills of Einstein norms to establish more
powerful, multiskilled, and practical AOs which can
be deployed to aggregate FF data and to get more
accuracy in decision-making scenarios

(2) &e dominant properties as well as the notable re-
sults of the proposed operators are highlighted

(3) An algorithm is studied to handle complex realistic
problems with FF data

(4) A MADM problem for the selection of an effective
sanitizer to reduce coronavirus is discussed by using
proposed operators

(5) A validity test is discussed for the approval and
authenticity of proposed theory

(6) At the end, the benefits and characteristics of the
proposed work are discussed by comparison analysis

&e remaining paper is as follows. In Section 2, we recall
the concept of FFS and related score functions. Section 3
provides Einstein operational laws for FFNs. In Sections 4
and 5, we study the FFEWA and FFEOWA operators, re-
spectively, and related properties to them. In Sections 6 and
7, we present the idea of GFFEWA and GFFEOWA oper-
ators, respectively. In Section 8, we propose an algorithm for
our new model and discuss a MADM problem for the se-
lection of a good sanitizer to reduce the coronavirus. Section
9 provides the validity criteria to prove the consistency of the
proposed work. Section 10 gives the comparison analysis of
proposed theory with the FF TOPSIS method. In Section 11,
we have concluded the results related to the proposed model.

&e list of acronyms in research paper is given in Table 1.

2. Preliminaries

In this section, we recall some basic definitions including
IFS, PFS, FFS, and score functions related to FFS.

Definition 1. (see [2]). An IFS I on nonempty setV is given
by

I � x, μI(x), ]I(x)􏼊 􏼋􏼈 􏼉, (1)

where μI: V⟶ [0, 1] and ]I: V⟶ [0, 1] specify MD
and NMD of an element x ∈ V, respectively. ϖI(x) � 1 −

μI(x) − ]I(x) is indeterminacy degree (InD) of an element
x ∈ V.

Definition 2. (see [3]). A PFS P on nonempty setV is given
by

P � x, μP(x), ]P(x)􏼊 􏼋􏼈 􏼉, (2)

where μP: V⟶ [0, 1] and ]P: V⟶ [0, 1] specify MD
and NMD of an element, respectively. ϖP(x) ���������������������

1 − (μP(x))2 − (]P(x))2
􏽱

is InD.

Definition 3. (see [5]). An FFS R on nonempty set V is
given by

R � x, μR(x), ]R(x)􏼊 􏼋􏼈 􏼉, (3)

where μR: V⟶ [0, 1], ]R: V⟶ [0, 1], and ϖR(x) ����������������������

1 − (μR(x))3 − (]R(x))3
3

􏽱

specify MD, NMD, and InD,
respectively. FFNs are components of the FFS.

Definition 4. (see [5]). &e score function and accuracy
function for FFN R � (μR, ]R) are represented by

S(R) � μ3R − ]3R, where S(R) ∈ [− 1, 1],

A(R) � μ3R + ]3R, whereA(R) ∈ [0, 1].
(4)
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Definition 5. (see [5]). Consider two FFNsR1 � μR1
, ]R1

􏽄 􏽅

and R2 � μR2
, ]R2

􏽄 􏽅. &en,

(1) If S(R1)< S(R2), then R1≺R2.
(2) If S(R1)> S(R2), then R1≻R2.
(3) If S(R1) � S(R2), then

(a) If A(R1)<A(R2), then R1≺R2.
(b) If A(R1)>A(R2), then R1≻R2.
(c) If A(R1) � A(R2), then R1 ∼ R2.

3. Einstein Operational Law of FFNs

In this section, we present concepts of the Einstein t-norm
and t-conorm operations for FFNs and some of their
properties. &e Einstein operations on FFNs are defined as
follows.

Definition 6. Let R � μ, ]􏼊 􏼋, R1 � μ1, ]1􏼊 􏼋, and R2 �

μ2, ]2􏼊 􏼋 be FFNs and λ> 0; then,

(i) R � ]R, μR􏼊 􏼋

(ii) R1∧εR2 � min μ1, μ2􏼈 􏼉, max ]1, ]2􏼈 􏼉􏼊 􏼋

(iii) R1∨εR2 � max μ1, μ2􏼈 􏼉, min ]1, ]2􏼈 􏼉􏼊 􏼋

(iv) R1⊕εR2 �
�������������������
(μ31 + μ32)/(1 + μ31 · εμ32)

3
􏽱

, (]1 · ε]2/􏼜
������������������

1 + (1 − ]31) · ε(1 − ]32)
3

􏽱

)〉

(v) R1⊕εR2 � (μ1 · εμ2/
�������������������

1 + (1 − μ31) · ε(1 − μ32)
3

􏽱

),􏼜
������������������
(]31 + ]32)/(1 + ]31 · ε]32)

3
􏽱

〉

(vi) λ·εR�

���������������������������������

((1+μ3)λ− (1− μ3)λ)/((1+μ3)λ+(1− μ3)λ)3
􏽱

,􏼜

(
�
23

√
]λ/

������������

(2− ]3)λ+(]3)λ3
􏽱

)〉

(vii) Rλ � (
�
23

√
μλ/

��������������

(2 − μ3)λ + (μ3)λ3
􏽱

),􏼜
��������������������������������������

((1 + ]3)λ − (1 − ]3)λ)/((1 + ]3)λ + (1 − ]3)λ)3
􏽱

〉

Theorem 1. Let R � μR, ]R􏼊 􏼋, R1 � μ1, ]1􏼊 􏼋, and R2 �

μ2, ]2􏼊 􏼋 be three FFNs; then,R3 � R1⊕εR2 andR4 � λ · εR

are also FFNs.

Proof. Since λ> 0 andR is an FFN, therefore, 0≤ μR(x)≤ 1,
0≤ ]R(x)≤ 1, and 0≤ (μR(x))3 + (]R(x))3 ≤ 1; then,
1 − (μR(x))3 ≥ (]R(x))3 ≥ 0, 1 − (]R(x))3 ≥ (μR(x))3 ≥ 0,
and (1 − (μR(x))3)λ ≥ (]R(x))3; then,

�����������������������������

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

− 1 − μR(x)( 􏼁
3

􏼐 􏼑
λ

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

+ 1 − μR(x)( 􏼁
3

􏼐 􏼑
λ

3

􏽶
􏽴

≤

��������������������������

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

− ]R(x)( 􏼁
3

􏼐 􏼑
λ

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

+ ]R(x)( 􏼁
3

􏼐 􏼑
λ

3

􏽶
􏽴

,

�
23

√
]R(x)( 􏼁

λ
������������������������

2 − ]R(x)( 􏼁
3

􏼐 􏼑
λ

+ ]R(x)
3

􏼐 􏼑
λ3

􏽲

≤
�
23

√
]R(x)( 􏼁

λ
��������������������������

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

+ ]R(x)( 􏼁
3

􏼐 􏼑
λ3

􏽲 .

(5)

&us,
�����������������������������

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

− 1 − μR(x)( 􏼁
3

􏼐 􏼑
λ

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

+ 1 − μR(x)( 􏼁
3

􏼐 􏼑
λ

3

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

3

+

�
23

√
]R(x)( 􏼁

λ
��������������������������

2 − ]R(x)( 􏼁
3

􏼐 􏼑
λ

+ ]R(x)( 􏼁
3

􏼐 􏼑
λ3

􏽲
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3

≤ 1.

(6)

Furthermore,
�����������������������������

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

− 1 − μR(x)( 􏼁
3

􏼐 􏼑
λ

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

+ 1 − μR(x)( 􏼁
3

􏼐 􏼑
λ

3

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

3

+

�
23

√
]R(x)( 􏼁

λ
������������������������

2 − ]R(x)( 􏼁
3

􏼐 􏼑
λ

+ ]R(x)3􏼐 􏼑
λ3

􏽲
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3

� 0,

(7)

iff μR(x) � ]R(x) � 0 and
�����������������������������

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

− 1 − μR(x)( 􏼁
3

􏼐 􏼑
λ

1 + μR(x)( 􏼁
3

􏼐 􏼑
λ

+ 1 − μR(x)( 􏼁
3

􏼐 􏼑
λ

3

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

3

+

�
23

√
]R(x)( 􏼁

λ
������������������������

2 − ]R(x)( 􏼁
3

􏼐 􏼑
λ

+ ]R(x)3􏼐 􏼑
λ3

􏽲
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3

� 1,

(8)

iff (μR(x))3 + (]R(x))3 � 1.
&us, R4 � λ · εR is an FFN for λ> 0. □

Theorem 2. Let λ, λ1, λ2 ≥ 0; then,

(i) R1⊕εR2 � R2⊕εR1

(ii) R1 ⊗ εR2 � R1 ⊗ εR2

(iii) λ · ε(R1⊕εR2) � λ.εR1⊕ελ · εR2

Table 1: List of acronyms.

Acronyms Description
FS Fuzzy set
IFS Intuitionistic fuzzy set
PFS Pythagorean fuzzy set
q-ROFS q-rung orthopair fuzzy set
FFS Fermatean fuzzy set
FFN Fermatean fuzzy number
AOs Aggregation operators
MADM Multiattribute decision-making
FF TOPSIS Fermatean fuzzy TOPSIS
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(iv) (R1 ⊗ εR2)
λ � Rλ

1 ⊗ εR
λ
2

(v) λ1 · εR⊕ελ2 · εR � (λ1 + λ2) · εR

(vi) Rλ1 ⊗ εR
λ2 � R(λ1+λ2)

Proof
(i)

R1⊕εR2 �

���������

μ31 + μ32
1 + μ31 · εμ

3
2

3

􏽶
􏽴

,
]1 · ε]2������������������

1 + 1 − ]31􏼐 􏼑 · ε 1 − ]32􏼐 􏼑
3

􏽱􏼪 􏼫

�

���������

μ32 + μ31
1 + μ32 · εμ

3
1

3

􏽶
􏽴

,
]2 · ε]1������������������

1 + 1 − ]32􏼐 􏼑 · ε 1 − ]31􏼐 􏼑
3

􏽱􏼪 􏼫

� R2⊕εR1.

(9)

(ii)

R1⊕εR2 �

���������

μ31 + μ32
1 + μ31 · εμ

3
2

3

􏽶
􏽴

,
]1 · ε]2������������������

1 + 1 − ]31􏼐 􏼑 · ε 1 − ]32􏼐 􏼑
3

􏽱􏼪 􏼫

(10)

is equivalent to

R1⊕εR2 �

���������������������������������

1 + μ31􏼐 􏼑 · ε 1 + μ32􏼐 􏼑 − 1 − μ31􏼐 􏼑 · ε 1 − μ32􏼐 􏼑

1 + μ31􏼐 􏼑 · ε 1 + μ32􏼐 􏼑 + 1 − μ31􏼐 􏼑 · ε 1 − μ32􏼐 􏼑

3

􏽶
􏽴

,􏼪

�
23

√
]1 · ε]2�����������������������

2 − ]31􏼐 􏼑 · ε 2 − ]32􏼐 􏼑 + ]31 · ε]
3
2

3
􏽱 􏼫.

(11)

Take a � (1 + μ31) · ε(1 + μ32), b � (1 − μ31) · ε(1 − μ32),
c � ]31 · ε]32, and d � (2 − ]31) · ε(2 − ]32); then,

R1⊕εR2 �

�����

a − b

a + b

3
􏽳

,

��
2c3

√

����
d + c

3
√􏼪 􏼫. (12)

By the Einstein FF law,

λ · ε R1⊕εR2( 􏼁 � λ · ε

�����

a − b

a + b

3
􏽳

,

��
2c3

√

����
d + c

3
√􏼪 􏼫

�

����������������������������������������

(1 +((a − b)/(a + b)))
λ

− (1 − ((a − b)/(a + b)))
λ

(1 +((a − b)/(a + b)))
λ

+(1 − ((a − b)/(a + b)))
λ

3

􏽶
􏽴

,

�
23

√
·

��
2c

3
√

/
����
d + c

3
√

􏼐 􏼑
λ

����������������������������

(2 − (2c/(d + c)))
λ

+(2c/(d + c))
λ3

􏽱􏼪 􏼫

�

������

a
λ

− b
λ

a
λ

+ b
λ

3

􏽳

,

���
2c

λ3
􏽰

������
d
λ

+ c
λ3

􏽰􏼪 􏼫

�

������������������������������������

1 + μ31􏼐 􏼑
λ

· ε 1 + μ32􏼐 􏼑
λ

− 1 − μ31􏼐 􏼑
λ

· ε 1 − μ32􏼐 􏼑
λ

1 + μ31􏼐 􏼑
λ

· ε 1 + μ32􏼐 􏼑
λ

+ 1 − μ31􏼐 􏼑
λ

· ε 1 − μ32􏼐 􏼑
λ

3

􏽶
􏽴

,

�
23

√
]λ1 · ε]

λ
2������������������������������

2 − ]31􏼐 􏼑
λ

· ε 2 − ]32􏼐 􏼑
λ

+ ]31􏼐 􏼑
λ

· ε ]32􏼐 􏼑
λ3

􏽱􏼪 􏼫.

(13)

On the other hand,

λ · εR1 �

�����������������

1 + μ31􏼐 􏼑
λ

− 1 − μ31􏼐 􏼑
λ

1 + μ31􏼐 􏼑
λ

+ 1 − μ31􏼐 􏼑
λ

3

􏽶
􏽴

,

�
23

√
]λ1��������������

2 − ]31􏼐 􏼑
λ

+ ]31􏼐 􏼑
λ3

􏽱􏼪 􏼫 �

������
a1 − b1

a1 + b1

3
􏽳

,

���
2c1

3
􏽰

������
d1 + c1

3
􏽰􏼪 􏼫,

λ · εR2 �

�����������������

1 + μ32􏼐 􏼑
λ

− 1 − μ32􏼐 􏼑
λ

1 + μ32􏼐 􏼑
λ

+ 1 − μ32􏼐 􏼑
λ

3

􏽶
􏽴

,

�
23

√
]λ2��������������

2 − ]32􏼐 􏼑
λ

+ ]32􏼐 􏼑
λ3

􏽱􏼪 􏼫 �

������
a2 − b2

a2 + b2

3
􏽳

,

���
2c2

3
􏽰

������
d2 + c2

3
􏽰􏼪 􏼫,

(14)
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where a1 � (1 + μ31)
λ, b1 � (1 − μ31)

λ, c1 � (]31)
λ,

d1 � (2 − ]31)
λ, a2 � (1 + μ32)

λ, b2 � (1 − μ32)
λ, c2 � (]32)

λ,
and d2 � (2 − ]32)

λ; therefore,

λ · εR1( 􏼁⊕ε λ · εR2( 􏼁 �

������
a1 − b1

a1 + b1

3
􏽳

,

���
2c1

3
􏽰

������
d1 + c1

3
􏽰􏼪 􏼫⊕ε

������
a2 − b2

a2 + b2

3
􏽳

,

���
2c2

3
􏽰

������
d2 + c2

3
􏽰􏼪 􏼫

�

���������������������������������������
a1 − b1( 􏼁/ a1 + b1( 􏼁( 􏼁 + a2 − b2( 􏼁/ a2 + b2( 􏼁( 􏼁

1 + a1 − b1( 􏼁/ a1 + b1( 􏼁( 􏼁 · ε a2 − b2( 􏼁/ a2 + b2( 􏼁( 􏼁

3
􏽳

,
22/3

�����������������������

c1 · εc2/ d1 + c1( 􏼁 · ε d2 + c2( 􏼁
3

􏽱

��������������������������������������
1 + 1 − 2c1/ d1 + c1( 􏼁( 􏼁( 􏼁.ε 1 − 2c2/ d2 + c2( 􏼁( 􏼁( 􏼁

3
􏽱􏼪 􏼫

�

��������������
a1 · εa2 − b1 · εb2
a1 · εa2 + b1 · εb2

3
􏽳

,

�������
2c1 · εc2

3
􏽰

�������������
d1 · εd2 + c1 · εc2

3
􏽰􏼪 􏼫

�

������������������������������������

1 + μ31􏼐 􏼑
λ

· ε 1 + μ32􏼐 􏼑
λ

− 1 − μ31􏼐 􏼑
λ

· ε 1 − μ32􏼐 􏼑
λ

1 + μ31􏼐 􏼑
λ

· ε 1 + μ32􏼐 􏼑
λ

+ 1 − μ31􏼐 􏼑
λ

· ε 1 − μ32􏼐 􏼑
λ

3

􏽶
􏽴

,

�
23

√
]λ1 · ε]

λ
2������������������������������

2 − ]31􏼐 􏼑
λ

· ε 2 − ]32􏼐 􏼑
λ

+ ]31􏼐 􏼑
λ

· ε ]32􏼐 􏼑
λ3

􏽱􏼪 􏼫.

(15)

Hence, λ · ε(R1⊕εR2) � λ · εR1⊕ελ · εR2. (v) For λ1, λ2 > 0,

λ1 · εR �

������������������

1 + μ3􏼐 􏼑
λ1

− 1 − μ3􏼐 􏼑
λ1

1 + μ3􏼐 􏼑
λ1

+ 1 − μ3􏼐 􏼑
λ1

3

􏽶
􏽴

,

�
23

√
]λ1

���������������

2 − ]3􏼐 􏼑
λ1

+ ]3􏼐 􏼑
λ13

􏽱􏼪 􏼫 �

������
a1 − b1

a1 + b1

3
􏽳

,

���
2c1

3
􏽰

������
d1 + c1

3
􏽰􏼪 􏼫,

λ2 · εR �

������������������

1 + μ3􏼐 􏼑
λ2

− 1 − μ3􏼐 􏼑
λ2

1 + μ3􏼐 􏼑
λ2

+ 1 − μ3􏼐 􏼑
λ2

3

􏽶
􏽴

,

�
23

√
]λ2

���������������

2 − ]3􏼐 􏼑
λ2

+ ]3􏼐 􏼑
λ23

􏽱􏼪 􏼫 �

������
a2 − b2

a2 + b2

3
􏽳

,

���
2c2

3
􏽰

������
d2 + c2

3
􏽰􏼪 􏼫,

(16)

where aj � (1 + μ3)λj , bj � (1 − μ3)λj , cj � (]3)λj , and
dj � (2 − ]3)λj , for j � 1, 2.

λ1 · εR( 􏼁⊕ε λ2 · εR( 􏼁 �

������
a1 − b1

a1 + b1

3
􏽳

,

���
2c1

3
􏽰

������
d1 + c1

3
􏽰􏼪 􏼫⊕ε

������
a2 − b2

a2 + b2

3
􏽳

,

���
2c2

3
􏽰

������
d2 + c2

3
􏽰􏼪 􏼫

�

���������������������������������������
a1 − b1( 􏼁/ a1 + b1( 􏼁( 􏼁 + a2 − b2( 􏼁/ a2 + b2( 􏼁( 􏼁

1 + a1 − b1( 􏼁/ a1 + b1( 􏼁( 􏼁 · ε a2 − b2( 􏼁/ a2 + b2( 􏼁( 􏼁

3
􏽳

,
22/3

�����������������������

c1 · εc2/ d1 + c1( 􏼁 · ε d2 + c2( 􏼁
3

􏽱

���������������������������������������
1 + 1 − 2c1/ d1 + c1( 􏼁( 􏼁( 􏼁 · ε 1 − 2c2/ d2 + c2( 􏼁( 􏼁( 􏼁

3
􏽱􏼪 􏼫

�

��������������
a1 · εa2 − b1 · εb2
a1 · εa2 + b1 · εb2

3
􏽳

,

�������
2c1 · εc2

3
􏽰

�������������
d1 · εd2 + c1 · εc2

3
􏽰􏼪 􏼫

�

�����������������������

1 + μ3􏼐 􏼑
λ1+λ2

− 1 − μ3􏼐 􏼑
λ1+λ2

1 + μ3􏼐 􏼑
λ1+λ2

+ 1 − μ3􏼐 􏼑
λ1+λ2

3

􏽶
􏽴

,

�
23

√
]λ1+λ2

�������������������

2 − ]3􏼐 􏼑
λ1+λ2

+ ]31􏼐 􏼑
λ1+λ23

􏽱􏼪 􏼫

� λ1 + λ2( 􏼁 · εR.

(17)
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Hence, λ1 · εR⊕ελ2 · εR � (λ1 + λ2) · εR.
Similarly, others can be verified. □

Theorem 3. Let R1 � μ1, ]1􏼊 􏼋 and R2 � μ2, ]2􏼊 􏼋 be FFNs;
then,

(i) Rc
1∧εR

c
2 � (R1∨εR2)

c

(ii) Rc
1∨εR

c
2 � (R1∧εR2)

c

(iii) Rc
1⊕εR

c
2 � (R1 ⊗ εR2)

c

(iv) Rc
1 ⊗ εR

c
2 � (R1⊕εR2)

c

(v) (R1∨εR2)⊕ε(R1∧εR2) � R1⊕εR2

(vi) (R1∨εR2)⊕ε(R1∧εR2) � R1⊕εR2

Proof. It is obvious. □

Theorem 4. Let R1 � μ1, ]1􏼊 􏼋, R2 � μ2, ]2􏼊 􏼋, and R3 �

μ3, ]3􏼊 􏼋 be three FFNs; then,

(i) (R1∨εR2)∧εR3 � (R1∧εR3)∨ε(R2∧εR3)

(ii) (R1∧εR2)∨εR3 � (R1∨εR3)∧ε(R2∨εR3)

(iii) (R1∨εR2)⊕εR3 � (R1⊕εR3)∨ε(R2⊕εR3)

(iv) (R1∧εR2)⊕εR3 � (R1⊕εR3)∧ε(R2⊕εR3)

(v) (R1∨εR2)⊗ εR3 � (R1 ⊗ εR3)∨ε(R2 ⊗ εR3)

(vi) (R1∧εR2)⊗ εR3 � (R1 ⊗ εR3)∧ε(R2 ⊗ εR3)

Proof. &e proof is trivial, so we omit it. □

4. Fermatean Fuzzy Einstein Weighted
Averaging Operators

&e Einstein weighted averaging operators under FF envi-
ronment are defined here.

Definition 7. Let Rj � μj, ]j􏽄 􏽅(j � 1, 2, . . . , s) be a col-
lection of FFNs and wj be the weight vector (WV) of Rj

with wj > 0 and 􏽐
s
j�1 wj � 1; then, FFEWA operator is a

mapping Qs⟶ Q such that

FFEWA R1,R2, . . . ,Rs( 􏼁 � w1 · εR1⊕εw2 · εR2⊕ε · · ·⊕εws · εRs.

(18)

If wj � (1/s), ∀j, then FFEWA operator becomes
FFWA operator:

FFA R1,R2, . . . ,Rs( 􏼁 �
1
s

R1⊕εR2⊕ε · · ·⊕εRs( 􏼁. (19)

Theorem 5. Let Rj � (μj, ]j) be FFNs; then, the aggre-
gated value by using equation (18) is

FFEWA R1,R2, . . . ,Rs( 􏼁 �

������������������������������

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

s
j�1 1 + μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 + μ3j􏼐 􏼑

wj

3

􏽶
􏽴

,

�
23

√
􏽑

s
j�1 ]

wj

j
���������������������������

􏽑
s
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3j􏼐 􏼑

wj3
􏽱􏼪 􏼫. (20)

Proof. Use the mathematical induction to prove equation
(20).

When s � 2,

FFEWA R1,R2( 􏼁 � w1 · εR1⊕εw2 · εR2. (21)

By&eorem 1, both w1 · εR1 and w2 · εR2 are FFNs and
value of w1 · εR1⊕εw2 · εR2 is an FFN. By using (vi) in
Definition 6,

w1 · εR1 �

�������������������

1 + μ31􏼐 􏼑
w1

− 1 − μ31􏼐 􏼑
w1

1 + μ31􏼐 􏼑
w1

+ 1 − μ31􏼐 􏼑
w1

3

􏽶
􏽴

,

����

2]w1
1

3
􏽱

����������������

2 − ]31􏼐 􏼑
w1

+ ]31􏼐 􏼑
w13

􏽱􏼪 􏼫,

w2 · εR2 �

�������������������

1 + μ32􏼐 􏼑
w2

− 1 − μ32􏼐 􏼑
w2

1 + μ32􏼐 􏼑
w2

+ 1 − μ32􏼐 􏼑
w2

3

􏽶
􏽴

,

�
23

√
]w2
2����������������

2 − ]32􏼐 􏼑
w2

+ ]32􏼐 􏼑
w23

􏽱􏼪 􏼫.

(22)
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&en,

FFEWA R1,R2( 􏼁 � w1 · εR1⊕εw2 · εR2

�

�������������������������������������������������������������������������������������������

1 + μ31􏼐 􏼑
w1

− 1 − μ31􏼐 􏼑
w1

􏼐 􏼑/ 1 + μ31􏼐 􏼑
w1

+ 1 − μ31􏼐 􏼑
w1

􏼐 􏼑􏼐 􏼑 + 1 + μ32􏼐 􏼑
w2

− 1 − μ32􏼐 􏼑
w2

􏼐 􏼑/ 1 + μ32􏼐 􏼑
w2

+ 1 − μ32􏼐 􏼑
w2

􏼐 􏼑􏼐 􏼑

1 + 1 + μ31􏼐 􏼑
w1

− 1 − μ31􏼐 􏼑
w1

􏼐 􏼑/ 1 + μ31􏼐 􏼑
w1

+ 1 − μ31􏼐 􏼑
w1

􏼐 􏼑􏼐 􏼑 · ε 1 + μ32􏼐 􏼑
w2

− 1 − μ32􏼐 􏼑
w2

􏼐 􏼑/ 1 + μ32􏼐 􏼑
w2

+ 1 − μ32􏼐 􏼑
w2

􏼐 􏼑􏼐 􏼑

3

􏽶
􏽴

,􏼪

�
23

√
]w1
1 /

����������������

2 − ]31􏼐 􏼑
w1

+ ]31􏼐 􏼑
w13

􏽱

􏼒 􏼓 · ε
�
23

√
]w2
1 /

����������������

2 − ]32􏼐 􏼑
w2

+ ]32􏼐 􏼑
w23

􏽱

􏼒 􏼓
��������������������������������������������������������������

1 + 1 − 2]3w1
1 / 2 − ]31􏼐 􏼑

w1
+ ]31􏼐 􏼑

w1
􏼐 􏼑􏼐 􏼑􏼐 􏼑 · ε 1 − 2]3w2

2 / 2 − ]32􏼐 􏼑
w2

+ ]32􏼐 􏼑
w2

􏼐 􏼑􏼐 􏼑􏼐 􏼑
3

􏽱 􏼫

�

��������������������������������������

1 + μ31􏼐 􏼑
w1

·ε 1 + μ32􏼐 􏼑
w2

− 1 − μ31􏼐 􏼑
w1

·ε 1 − μ32􏼐 􏼑
w2

1 + μ31􏼐 􏼑
w1

·ε 1 + μ32􏼐 􏼑
w2

+ 1 − μ31􏼐 􏼑
w1

·ε 1 − μ32􏼐 􏼑
w2

3

􏽶
􏽴

,

�
23

√
]w1
1 · ε]

w2
2����������������������������������

2 − ]31􏼐 􏼑
w1

· ε 2 − ]32􏼐 􏼑
w2

+ ]31􏼐 􏼑
w1

· ε ]32􏼐 􏼑
w23

􏽱􏼪 􏼫.

(23)

&us, equation (20) is true when s � 2. Suppose result is true for s � k:

FFEWA R1,R2, . . . ,Rk( 􏼁 �

������������������������������

􏽑
k
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

k
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
k
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

k
j�1 1 − μ3j􏼐 􏼑

wj

3

􏽶
􏽴

,

�
23

√
􏽑

k
j�1 ]

wj

j
���������������������������

􏽑
k
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

k
j�1 ]3j􏼐 􏼑

wj3
􏽱􏼪 􏼫. (24)

Now, for s � k + 1,

FFEWA R1,R2, . . . ,Rk+1( 􏼁 �

������������������������������

􏽑
k
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

k
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
k
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

k
j�1 1 − μ3j􏼐 􏼑

wj

3

􏽶
􏽴

,

�
23

√
􏽑

k
j�1 ]

wj

j
���������������������������

􏽑
k
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

k
j�1 ]3j􏼐 􏼑

wj3
􏽱􏼪 􏼫

⊕ε

������������������������

1 + μ3k+1􏼐 􏼑
wk+1

− 1 − μ3k+1􏼐 􏼑
wk+1

1 + μ3k+1􏼐 􏼑
wk+1

+ 1 − μ3k+1􏼐 􏼑
wk+1

3

􏽶
􏽴

,

�
23

√
]wk+1

k+1���������������������

2 − ]3k+1􏼐 􏼑
wk+1

+ ]3k+1􏼐 􏼑
wk+13

􏽱􏼪 􏼫

�

�����������������������������

􏽑
k+1
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

k+1
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
k+1
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

k+1
j�1 1 − μ3j􏼐 􏼑

wj

3

􏽶
􏽴

,

�
23

√
􏽑

k+1
j�1]

wj

j
��������������������������

􏽑
k+1
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

k+1
j�1 ]3j􏼐 􏼑

wj3
􏽱􏼪 􏼫.

(25)

&us, the result is true for s � k + 1. Hence, equation
(20) holds, ∀s. □

Lemma 1. Let Rj � μj, ]j􏽄 􏽅, wj > 0, and 􏽐
s
j�1 wj � 1;

then,

􏽙

s

j�1
R

wj

j ≤ 􏽘
s

j�1
wjRj, (26)

where equality holds iff R1 � R2 � · · · � Rs.

Theorem 6. If Rj � μj, ]j􏽄 􏽅 are FFNs, then FFEWA
(R1,R2, . . . ,Rs) is also an FFN.

Proof. Since Rj � μj, ]j􏽄 􏽅 are FFNs, so 0≤ μj, ]j ≤ 1 and
0≤ μ3j + ]3j ≤ 1. &erefore,
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􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj
� 1

−
2􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

≤ 1 − 􏽙
s

j�1
1 − μ3j􏼐 􏼑

wj ≤ 1.

(27)

Also, (1 + μ3j)≥ (1 − μ3j)⇒􏽑
s
j�1 (1 + μ3j) − 􏽑

s
j�1

(1 − μ3j)≥ 0. &erefore,

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj
≥ 0. (28)

&us, 0≤ μFFEWA ≤ 1.
Moreover,

2􏽑
s
j�1 ]3j􏼐 􏼑

wj

􏽑
s
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3j􏼐 􏼑

wj

≤
2􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

≤􏽙
s

j�1
1 − μ3j􏼐 􏼑

wj ≤ 1.

(29)

Also,

􏽙

s

j�1
]3j􏼐 􏼑

wj ≥ 0⟺
2􏽑

s
j�1 ]3j􏼐 􏼑

wj

􏽑
s
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3j􏼐 􏼑

wj
≥ 0.

(30)

&us, 0≤ ]FFEWA ≤ 1. Moreover,

μ3FFEWA + ]3FFEWA �
􏽑

s
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj
+

2􏽑
s
j�1 ]3j􏼐 􏼑

wj

􏽑
s
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3j􏼐 􏼑

wj

≤ 1 −
2􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj
+

2􏽑
s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

� 1.

(31)

Hence, FFEWA ∈ [0, 1]. &erefore, FFEWA
(R1,R2, . . . ,Rs) ∈ FFN. □

Corollary 1. <e FFEWA and FFWA operators have the
relationship:

FFEWA R1,R2, . . . ,Rs( 􏼁≤ FFWA R1,R2, . . . ,Rs( 􏼁.

(32)

Proof. Let FFEWA (R1,R2, . . . ,Rs) � (μβR, ]βR) � Rβ

and FFWA (R1,R2, . . . ,Rs) � (μR, ]R) � R. Since
􏽑

s
j�1 (1 + μ3j)wj + 􏽑

s
j�1 (1 − μ3j)wj ≤ 􏽐

s
j�1 (1 + μ3j)wj+

􏽐
s
j�1 (1 − μ3j)wj � 2, then from equation (27), we obtain

������������������������������

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

3

􏽶
􏽴

≤

���������������������������

1 − 􏽙
s

j�1
1 − μ3j􏼐 􏼑

wj⟺ μβR ≤ μR,
3

􏽶
􏽴

(33)

equality holds iff μ1 � μ2 � · · · � μs.
Also,

2􏽑
s
j�1 ]3j􏼐 􏼑

wj

􏽑
s
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3j􏼐 􏼑

wj
≥

2􏽑
s
j�1 ]3j􏼐 􏼑

wj

􏽐
s
j�1 wj 2 − ]3j􏼐 􏼑 + 􏽐

s
j�1 wj]

3
j

≥􏽙
s

j�1
]3j􏼐 􏼑

wj⇒

���������������������������

2􏽑
s
j�1 ]3j􏼐 􏼑

wj

􏽑
s
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3j􏼐 􏼑

wj

3

􏽶
􏽴

≥􏽙
s

j�1
]wj

j ⇒]
β
R ≤ ]R,

(34)
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equality holds iff ]1 � ]2 � · · · � ]s.
&us,

S R
β

􏼐 􏼑 � μβR􏼐 􏼑
3

− ]βR􏼐 􏼑
3
≤ μR( 􏼁

3
− ]R( 􏼁

3
� S(R). (35)

If S(Rβ)<S(R), then

FFEWA R1,R2, . . . ,Rs( 􏼁< FFWA R1,R2, . . . ,Rs( 􏼁.

(36)

If S(Rβ) � S(R), that is, (μβR)3 − (]βR)3 �

(μR)3 − (]R)3, then by condition μβR ≤ μR and ]βR ≥ ]R;
thus, the accuracy function A(Rβ) � (μβR)3 − (]βR)3 �

(μR)3 − (]R)3 � A(R). &us,

FFEWA R1,R2, . . . ,Rs( 􏼁 � FFWA R1,R2, . . . ,Rs( 􏼁.

(37)

Hence,

FFEWA R1,R2, . . . ,Rs( 􏼁≤ FFWA R1,R2, . . . ,Rs( 􏼁,

(38)

equality holds iff R1 � R2 � · · · � Rs. □

Example 1. Let R1 � (0.8, 0.5), R2 � (0.9, 0.4),
R3 � (0.6, 0.7), and R4 � (0.8, 0.7) be four FFNs and
w � (0.4, 0.2, 0.2, 0.2)T; then,

FFEWA R1,R2,R3,R4( 􏼁 �

������������������������������

􏽑
4
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

4
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
4
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

4
j�1 1 − μ3j􏼐 􏼑

wj

3

􏽶
􏽴

,

�
23

√
􏽑

4
j�1 ]

wj

j
���������������������������

􏽑
4
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

4
j�1 ]3j􏼐 􏼑

wj3
􏽱􏼪 􏼫

�

���������
1.49 − 0.48
1.49 + 0.48

3
􏽲

,

�
23

√
× 0.55

���������
1.80 + 0.163

√􏼪 􏼫 � 0.80, 0.55〈 〉.

(39)

Now,

FFWA R1,R2,R3,R4( 􏼁

�

������������������������������������������������������������������������������������

1 − 􏽙
4

j�1
1 − μ3j􏼐 􏼑

wj
, 􏽙

4

j�1
]j􏼐 􏼑

wj
〉 � 0.80, 0.55〈 〉,⇒FFEWA R1,R2,R3,R4( 􏼁≤ FFWA R1,R2,R3,R4( 􏼁.

3

􏽶
􏽴

􏼪
(40)

Proposition 1. Let Rj � μj, ]j􏽄 􏽅 be FFNs and wj be the
WV of Rj, such that wj ∈ [0, 1] and 􏽐

s
j�1 wj � 1.

(i) Idempotency: if Rj � Ro � μo, ]o􏼊 􏼋 for all j, then

FFEWA R1,R2, . . . ,Rs( 􏼁 � Ro. (41)

(ii) Boundedness: let R− � (minj(μj),maxj(]j)) and
R+ � (maxj(μj),minj(]j)); then,

R
− ≤ FFEWA R1,R2, . . . ,Rs( 􏼁≤R+

. (42)

(iii) Monotonicity: when Rj ≤Pj, ∀j, then

FFEWA R1,R2, . . . ,Rs( 􏼁≤ FFEWA P1,P2, . . . ,Ps( 􏼁.

(43)

Proof. (i) As Rj � μo, ]o􏼊 􏼋 are FFNs, ∀j, then

FFEWA R1,R2, . . . ,Rs( 􏼁 �

�����������������������������

􏽑
s
j�1 1 + μ3o􏼐 􏼑

wj
− 􏽑

s
j�1 1 − μ3o􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3o􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3o􏼐 􏼑

wj

3

􏽶
􏽴

,

�
23

√
􏽑

s
j�1 ]

wj

o
��������������������������

􏽑
s
j�1 2 − ]3o􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3o􏼐 􏼑

wj3
􏽱􏼪 􏼫

�

������������������������������

1 + μ3o􏼐 􏼑
􏽐

s
j�1 wj − 1 − μ3o􏼐 􏼑

􏽐
s
j�1 wj

1 + μ3o􏼐 􏼑
􏽐

s
j�1 wj + 1 − μ3o􏼐 􏼑

􏽐
s
j�1 wj

3

􏽶
􏽵
􏽴

,

�
23

√
]
􏽐

s
j�1 wj

o
���������������������������

2 − ]3o􏼐 􏼑
􏽐

s
j�1 wj + ]3o􏼐 􏼑

􏽐
s
j�1 wj

3
􏽲􏼪 􏼫 � μo, ]o􏼊 􏼋.

(44)
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(ii) Consider f(x) � ((1 − x)/(1 + x)), x ∈ [0, 1], then
f′(x) � − (2/(1 + x)2)< 0, so f(x) is a decreasing function
(DF). As μ3j,min ≤ μ3j ≤ μ3j,max, ∀j � 1, 2, . . . , s, then
f(μ3j,max)≤f(μ3j)≤f(μ3j,min), ∀j, that is, ((1 − μ3j,max)/

(1 + μ3j,max))≤ ((1 − μ3j)/ (1 + μ3j))≤ ((1 − μ3j,min)/(1+

μ3j,min)), for all j. Let wj ∈ [0, 1] and 􏽐
s
j�1 wj � 1, and we

have

1 − μ3j,max

1 + μ3j,max
􏼠 􏼡

wj

≤
1 − μ3j
1 + μ3j

􏼠 􏼡

wj

≤
1 − μ3j,min

1 + μ3j,min
􏼠 􏼡

wj

,

􏽙

s

j�1

1 − μ3j,max

1 + μ3j,max
􏼠 􏼡

wj

≤􏽙
s

j�1

1 − μ3j
1 + μ3j

􏼠 􏼡

wj

≤􏽙
s

j�1

1 − μ3j,min

1 + μ3j,min
􏼠 􏼡

wj

⟺
1 − μ3j,max

1 + μ3j,max
􏼠 􏼡

􏽘
s

j�1
wj

≤􏽙
s

j�1

1 − μ3j
1 + μ3j

􏼠 􏼡

wj

≤
1 − μ3j,min

1 + μ3j,min
􏼠 􏼡

􏽘
s

j�1
wj

⟺
1 − μ3j,max

1 + μ3j,max

⎛⎝ ⎞⎠≤􏽙
s

j�1

1 − μ3j
1 + μ3j

􏼠 􏼡

wj

≤
1 − μ3j,min

1 + μ3j,min

⎛⎝ ⎞⎠

⟺
2

1 + μ3j,max

⎛⎝ ⎞⎠≤ 1 + 􏽙
s

j�1

1 − μ3j
1 + μ3j

􏼠 􏼡

wj

≤
2

1 + μ3j,min

⎛⎝ ⎞⎠

⟺
1 + μ3j,min

2
⎛⎝ ⎞⎠≤

1
1 + 􏽑

s
j�1 1 − μ3j􏼐 􏼑/ 1 + μ3j􏼐 􏼑􏼐 􏼑

wj
≤

1 + μ3j,max

2
⎛⎝ ⎞⎠

⟺ 1 + μ3j,min􏼐 􏼑≤
2

1 + 􏽑
s
j�1 1 − μ3j􏼐 􏼑/ 1 + μ3j􏼐 􏼑􏼐 􏼑

wj
≤ 1 + μ3j,max􏼐 􏼑

⟺ μ3j,min ≤
2

1 + 􏽑
s
j�1 1 − μ3j􏼐 􏼑/ 1 + μ3j􏼐 􏼑􏼐 􏼑

wj
− 1≤ μ3j,max

⟺ μ3j,min ≤
􏽑

s
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj
≤ μ3j,max.

(45)

&us,

μj,min ≤

������������������������������

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
− 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3j􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3j􏼐 􏼑

wj

3

􏽶
􏽴

≤ μj,max. (46)

Consider g(y) � ((2 − y)/y), y ∈ (0, 1], then g′(y) � −

(2/y2), i.e., g(y) is a DF on (0, 1]. Since ]3

j,min ≤ ]
3

j ≤ ]
3

j,max,

∀j, then g(]3

j,max)≤g(]3

j)≤ g(]3

j,min), ∀j, that is, ((2 −

]3

j,max)/]
3

j,max)≤ ((2− ]3

j)/]3

j)≤ ((2 − ]3

j,min)/]3

j,min). &en,

10 Journal of Mathematics



2 − ]3j,max

]3j,max
􏼠 􏼡

wj

≤
2 − ]3j
]3j

􏼠 􏼡

wj

≤
2 − ]3j,min

]3j,min
􏼠 􏼡

wj

,

􏽙

s

j�1

2 − ]3j,max

]3j,max
􏼠 􏼡

wj

≤􏽙
s

j�1

2 − ]3j
]3j

􏼠 􏼡

wj

≤􏽙
s

j�1

2 − ]3j,min

]3j,min
􏼠 􏼡

wj

⇒
2 − ]3j,max

]3j,max
􏼠 􏼡

􏽘

s

j�1
wj

≤􏽙
s

j�1

2 − ]3j
]3j

􏼠 􏼡

wj

≤
2 − ]3j,min

]3j,min
􏼠 􏼡

􏽘

s

j�1
wj

⇒
2 − ]3j,max

]3j,max

⎛⎝ ⎞⎠≤􏽙
s

j�1

2 − ]3j
]3j

􏼠 􏼡

wj

≤
2 − ]3j,min

]3j,min

⎛⎝ ⎞⎠

⇒
2

]3j,max

⎛⎝ ⎞⎠≤ 1 + 􏽙
s

j�1

2 − ]3j
]3j

􏼠 􏼡

wj

≤
2

]3j,min

⎛⎝ ⎞⎠

⇒
]3j,min

2
⎛⎝ ⎞⎠≤

1
1 + 􏽑

s
j�1 2 − ]3j􏼐 􏼑/]3j􏼐 􏼑

wj
≤

]3j,max

2
⎛⎝ ⎞⎠

⇒ ]3j,min􏼐 􏼑≤
2

1 + 􏽑
s
j�1 2 − ]3j􏼐 􏼑/]3j􏼐 􏼑

wj
≤ ]3j,max􏼐 􏼑

⇒]3j,min ≤
2

1 + 􏽑
s
j�1 2 − ]3j􏼐 􏼑/]3j􏼐 􏼑

wj
≤ ]3j,max

⇒]3j,min ≤
2􏽑

s
j�1 ]3j􏼐 􏼑

wj

􏽑
s
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3j􏼐 􏼑

wj
≤ ]3j,max

⇒]j,min ≤

�
23

√
􏽑

s
j�1 ]

wj

j
���������������������������

􏽑
s
j�1 2 − ]3j􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3j􏼐 􏼑

wj3
􏽱 ≤ ]j,max.

(47)

Let FFEWA (R1,R2, . . . ,Rs) � R � μR, ]R􏼊 􏼋; then,
from equations (46) and (47),

μmin ≤ μR ≤ μmax,

]min ≤ ]R ≤ ]max,
(48)

where μmin � minj μj􏽮 􏽯, μmax � maxj μj􏽮 􏽯, ]min � minj
]j􏽮 􏽯, and ]max � maxj ]j􏽮 􏽯. So, S(R) � μ3R − ]3R ≤ μ3max −

]3min � S(R+) and S(R) � μ3R − ]3R ≥ μ3min−

]3max � S(R− ). As S(R)< S(R+) and S(R)> S(R− ), so

R
− ≤ FFEWA R1,R2, . . . ,Rs( 􏼁≤R+

. (49)

(iii) It is similar to (ii), so we omit it. □

5. Fermatean Fuzzy Einstein Ordered Weighted
Averaging Operators

Definition 8. LetRj � μj, ]j􏽄 􏽅 be a family of FFNs andwj

be the WV of Rj with wj > 0 and 􏽐
s
j�1 wj � 1; then,

FFEOWA operator is a mapping Qs⟶ Q such that

FFEOWA R1,R2, . . . ,Rs( 􏼁

� w1 · εRϱ(1)⊕εw2 · εRϱ(2)⊕ε · · ·⊕εws · εRϱ(s),
(50)

where (ϱ(1), ϱ(2), . . . , ϱ(s)) is the permutation of
(j � 1, 2, . . . , s) such that Rϱ(j− 1) ≥Rϱ(j), ∀j �

1, 2, . . . , s.

Theorem 7. Let Rj � (μj, ]j) be FFNs; then, the aggre-
gated value by using FFEOWA is an FFN and

FFEOWA R1,R2, . . . ,Rs( 􏼁

�

����������������������������������

􏽑
s
j�1 1 + μ3ϱ(j)􏼐 􏼑

wj
− 􏽑

s
j�1 1 − μ3ϱ(j)􏼐 􏼑

wj

􏽑
s
j�1 1 + μ3ϱ(j)􏼐 􏼑

wj
+ 􏽑

s
j�1 1 − μ3ϱ(j)􏼐 􏼑

wj

3

􏽶
􏽴

,􏼪

�
23

√
􏽑

s
j�1 ]

wj

ϱ(j)
�������������������������������

􏽑
s
j�1 2 − ]3ϱ(j)􏼐 􏼑

wj
+ 􏽑

s
j�1 ]3ϱ(j)􏼐 􏼑

wj3
􏽱 􏼫.

(51)
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Proof. It is similar to &eorem 4.
We give some properties without their proofs. □

Corollary 2. <e FFEOWA and FFOWA operators have the
relation:

FFEOWA R1,R2, . . . ,Rs( 􏼁≤ FFOWA R1,R2, . . . ,Rs( 􏼁.

(52)

Example 2. Let R1 � (0.6, 0.7), R2 � (0.8, 0.7),
R3 � (0.6, 0.9), and R4 � (0.9, 0.4) be four FFNs and w �

(0.3, 0.3, 0.2, 0.2)T as

S R1( 􏼁 � (0.6)
3

− (0.7)
3

� − 0.13,

S R2( 􏼁 � (0.8)
3

− (0.7)
3

� 0.17,

S R3( 􏼁 � (0.6)
3

− (0.9)
3

� − 0.51,

S R4( 􏼁 � (0.9)
3

− (0.4)
3

� 0.67.

(53)

Since S(R4)>S(R2)>S(R1)>S(R3), therefore

Rϱ(1) � R4 � (0.9, 0.4),

Rϱ(2) � R2 � (0.8, 0.7),

Rϱ(3) � R1 � (0.6, 0.7),

Rϱ(4) � R3 � (0.6, 0.9).

(54)

&us, by applying the FFEOWA operator, we obtain

FFEOWA R1,R2,R3,R4( 􏼁 �

����������������������������������

􏽑
4
j�1 1 + μ3ϱ(j)􏼐 􏼑

wj
− 􏽑

4
j�1 1 − μ3ϱ(j)􏼐 􏼑

wj

􏽑
4
j�1 1 + μ3ϱ(j)􏼐 􏼑

wj
+ 􏽑

4
j�1 1 − μ3ϱ(j)􏼐 􏼑

wj

3

􏽶
􏽴

,

�
23

√
􏽑

4
j�1 ]

wj

ϱ(j)
�������������������������������

􏽑
4
j�1 2 − ]3ϱ(j)􏼐 􏼑

wj
+ 􏽑

4
j�1 ]3ϱ(j)􏼐 􏼑

wj3
􏽱􏼪 􏼫

�

���������
1.44 − 0.49
1.44 + 0.49

3
􏽲

,

�
23

√
× 0.66

���������
1.62 + 0.663

√􏼪 􏼫 � 0.79, 0.55〈 〉.

(55)

Now,

FFOWA R1,R2,R3,R4( 􏼁

�

�����������������

1 − 􏽙
4

j�1
1 − μ3ϱ(j)􏼐 􏼑

wj
3

􏽶
􏽴

, 􏽙
4

j�1
]ϱ(j)􏼐 􏼑

wj
􏼪 􏼫 � 0.80, 0.66〈 〉,

⇒FFEOWA R1,R2,R3,R4( 􏼁< FFOWA R1,R2,R3,R4( 􏼁.

(56)

Proposition 1. Let Rj � μj, ]j􏽄 􏽅 be FFNs and wj be the
WV of Rj, such that wj ∈ [0, 1] and 􏽐

s
j�1 wj � 1.

(i) Idempotency: if Rj � Ro � μo, ]o􏼊 􏼋, ∀j, then

FFEOWA R1,R2, . . . ,Rs( 􏼁 � Ro. (57)

(ii) Boundedness: let R− � (minj(μj),maxj(]j)) and
R+ � (maxj(μj),minj(]j)); then,

R
− ≤ FFEOWA R1,R2, . . . ,Rs( 􏼁≤R+

. (58)

(iii) Monotonicity: when Rj ≤Pj, ∀j, then

FFEOWA R1,R2, . . . ,Rs( 􏼁≤ FFEOWA P1,P2, . . . ,Ps( 􏼁.

(59)

6. Generalized Fermatean Fuzzy Einstein
Weighted Averaging Operators

Definition 9. LetRj � μj, ]j􏽄 􏽅 be a collection of FFNs and
wj be the WV of Rj with wj > 0 and 􏽐

s
j�1 wj � 1; then,

GFFEWA operator is a mapping Qs⟶ Q such that

GFFEWA R1,R2, . . . ,Rs( 􏼁 � ⊕sj�1 wj · εR
λ
j􏼐 􏼑􏼐 􏼑

1/λ
,

(60)

where λ> 0.
Particularly,

(i) If λ � 1, then GFFEWA becomes FFEWA
(ii) If w � ((1/s), (1/s), . . . , (1/s))T, then GFFEWA

(R1,R2, . . . ,Rs) � ((1/s) · ε⊕sj�1R
λ
j)1/λ

Theorem 8. LetRj � μj, ]j􏽄 􏽅 be FFNs and wj be the WV
of Rj with wj > 0 and 􏽐

s
j�1 wj � 1; then, the aggregated

value by applying the GFFEWA operator is an FFN and
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GFFEWA R1,R2, . . . ,Rs( 􏼁

�

�
23

√
􏽑

s
j�1 2 − μ3j􏼐 􏼑

λ
+ 3 μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

− 􏽑
s
j�1 2 − μ3j􏼐 􏼑

λ
+ μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

􏼚 􏼛
1/3λ

�����������������������������������������������������������������������������������������������������������������

􏽑
s
j�1 2 − μ3j􏼐 􏼑

λ
+ 3 μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

+ 3􏽑
s
j�1 2 − μ3j􏼐 􏼑

λ
− μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

􏼒 􏼓
1/λ

+ 􏽑
s
j�1 2 − μ3j􏼐 􏼑

λ
+ 3 μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

− 􏽑
s
j�1 2 − μ3j􏼐 􏼑

λ
− μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

􏼒 􏼓
1/λ3

􏽳 ,􏼪

·

���������������������������������������������������������������������������������������������������������������������������

􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
+ 3 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj

+ 3􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
− 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj

􏼒 􏼓
1/λ

− 􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
+ 3 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj

− 􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
− 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj

􏼒 􏼓
1/λ

􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
+ 3 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj

+ 3􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
− 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj

􏼒 􏼓
1/λ

+ 􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
+ 3 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj

− 􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
− 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj

􏼒 􏼓
1/λ

3

􏽶
􏽵
􏽵
􏽴

􏼫.

(61)

Proof. Since

R
λ
j �

�
23

√
μλj

���������������

2 − μ3j􏼐 􏼑
λ

+ μ3j􏼐 􏼑
λ3

􏽱 ,

������������������

1 + ]3j􏼐 􏼑
λ

− 1 − ]3j􏼐 􏼑
λ

1 + ]3j􏼐 􏼑
λ

+ 1 − ]3j􏼐 􏼑
λ

3

􏽶
􏽴

􏼪 􏼫,

⇒⊕sj�1wj · εR
λ
j �

������������������������������������������������������������������������

􏽑
s
j�1 1 + 2μ3λj / 2 − μ3j􏼐 􏼑

λ
+ μ3j􏼐 􏼑

λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓

wj

− 􏽑
s
j�1 1 − 2μ3λj / 2 − μ3j􏼐 􏼑

λ
+ μ3j􏼐 􏼑

λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓

wj

􏽑
s
j�1 1 + 2μ3λj / 2 − μ3j􏼐 􏼑

λ
+ μ3j􏼐 􏼑

λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓

wj

+ 􏽑
s
j�1 1 − 2μ3λj / 2 − μ3j􏼐 􏼑

λ
+ μ3j􏼐 􏼑

λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓

wj

3

􏽶
􏽵
􏽴

,􏼪

�
23

√
􏽑

s
j�1

����������������������������������������

1 + ]3j􏼐 􏼑
λ

− 1 − ]3j􏼐 􏼑
λ

􏼒 􏼓/ 1 + ]3j􏼐 􏼑
λ

+ 1 − ]3j􏼐 􏼑
λ

􏼒 􏼓
3

􏽲

􏼠 􏼡

wj

���������������������������������������������������������������������������������������������������������

􏽑
s
j�1 2 − 1 + ]3j􏼐 􏼑

λ
− 1 − ]3j􏼐 􏼑

λ
􏼒 􏼓/ 1 + ]3j􏼐 􏼑

λ
+ 1 − ]3j􏼐 􏼑

λ
􏼒 􏼓􏼒 􏼓􏼒 􏼓

wj

+ 􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
− 1 − ]3j􏼐 􏼑

λ
􏼒 􏼓/ 1 + ]3j􏼐 􏼑

λ
+ 1 − ]3j􏼐 􏼑

λ
􏼒 􏼓􏼒 􏼓

wj3

􏽲 􏼫

�

���������������������������������������������������

􏽑
s
j�1 2 − μ3j􏼐 􏼑

λ
+ 3 μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

− 􏽑
s
j�1 2 − μ3j􏼐 􏼑

λ
− μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

􏽑
s
j�1 2 − μ3j􏼐 􏼑

λ
+ 3 μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

+ 􏽑
s
j�1 2 − μ3j􏼐 􏼑

λ
− μ3j􏼐 􏼑

λ
􏼚 􏼛

wj

3

􏽶
􏽵
􏽴

,􏼪

�
23

√
􏽑

s
j�1

�����������������

1 + ]3j􏼐 􏼑
λ

− 1 − ]3j􏼐 􏼑
λ3

􏽲

􏼠 􏼡

wj

���������������������������������������������������������

􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
+ 3 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj

+ 􏽑
s
j�1 1 + ]3j􏼐 􏼑

λ
− 1 − ]3j􏼐 􏼑

λ
􏼚 􏼛

wj3

􏽲 􏼫.

(62)

&erefore,

⊕sj�1wj · εR
λ
j􏼐 􏼑

1/λ
�

�������������������������������������������������������������������������������������������������������������

2 􏽑
s
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When λ � 1, then
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□
7. Generalized Fermatean Fuzzy Einstein
Ordered Weighted Averaging Operators

Definition 10. Let Rj � μj, ]j􏽄 􏽅 be a collection of FFNs
and wj be the WV of Rj with wj > 0 and 􏽐

s
j�1 wj � 1;

then, the GFFEOWA operator is a mapping Qs⟶ Q such
that

GFFEOWA R1,R2, . . . ,Rs( 􏼁 � ⊕sj�1 wj · εR
λ
ϱ(j)􏼐 􏼑􏼐 􏼑

1/λ
,

(65)

where λ> 0.

Theorem 9. LetRj � μj, ]j􏽄 􏽅 be FFNs and wj be the WV
of Rj with wj > 0 and 􏽐

s
j�1 wj � 1; then, the aggregated

value by applying the GFFEOWA operator is an FFN and

GFFEOWA R1,R2, . . . ,Rs( 􏼁 �

�
23

√
􏽑

s
j�1 2 − μ3ϱ(j)􏼒 􏼓

λ
+ 3 μ3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

− 􏽑
s
j�1 2 − μ3ϱ(j)􏼒 􏼓

λ
− μ3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

􏼨 􏼩

1/3λ

��������������������������������������������������������������������������������������������������������������������������������������

􏽑
s
j�1 2 − μ3ϱ(j)􏼒 􏼓

λ
+ 3 μ3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

+ 3􏽑
s
j�1 2 − μ3ϱ(j)􏼒 􏼓

λ
− μ3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

􏼠 􏼡

1/λ

+ 􏽑
s
j�1 2 − μ3ϱ(j)􏼒 􏼓

λ
+ 3 μ3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

− 􏽑
s
j�1 2 − μ3ϱ(j)􏼒 􏼓

λ
− μ3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

􏼠 􏼡

1/λ
3

􏽶
􏽴 ,􏼪

��������������������������������������������������������������������������������������������������������������������������������������������������

􏽑
s
j�1 1 + ]3ϱ(j)􏼒 􏼓

λ
+ 3 1 − ]3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

+ 3􏽑
s
j�1 1 + ]3ϱ(j)􏼒 􏼓

λ
− 1 − ]3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

􏼠 􏼡

1/λ

− 􏽑
s
j�1 1 + ]3ϱ(j)􏼒 􏼓

λ
+ 3 1 − ]3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

− 􏽑
s
j�1 1 + ]3ϱ(j)􏼒 􏼓

λ
− 1 − ]3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

􏼠 􏼡

1/λ

􏽑
s
j�1 1 + ]3ϱ(j)􏼒 􏼓

λ
+ 3 1 − ]3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

+ 3􏽑
s
j�1 1 + ]3ϱ(j)􏼒 􏼓

λ
− 1 − ]3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

􏼠 􏼡

1/λ

+ 􏽑
s
j�1 1 + ]3ϱ(j)􏼒 􏼓

λ
+ 3 1 − ]3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

− 􏽑
s
j�1 1 + ]3ϱ(j)􏼒 􏼓

λ
− 1 − ]3ϱ(j)􏼒 􏼓

λ
􏼨 􏼩

wj

􏼠 􏼡

1/λ

3

􏽶
􏽵
􏽵
􏽵
􏽵
􏽴 􏼫.

(66)

Proof. It is similar to &eorem 6, and we can prove it. □ When λ � 1, then
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8. MADM Problem Using FF Information

To handle an MADM problem under FF environment, let
K � K1,K2, . . . ,Km􏼈 􏼉 be a set of possible alternatives and
J � J1,J2, . . . ,Js􏼈 􏼉 be a set of possible attributes chosen
by the decision maker. Let w � (w1, w2, . . . , ws)T be theWV

with wj > 0 and 􏽐
s
j�1 wj � 1. Suppose that

􏽥E � (μlj, ]lj)m×s is the FF decision matrix (FFDM), where
μlj and ]lj are the MD and NMD of the alternative Kl for
the attribute Jj, respectively, where 0≤ μ3lj + ]3lj ≤ 1.

&e following Algorithm 1 is used to solve the MADM
problem with FFN based on using the GFFEWA operator.
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Bl � GFFEWA Kl1,Kl2, . . . ,Kls( 􏼁
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for overall preference values Bl(l � 1, 2, . . . , m) of
the alternatives Kl.

(3) Use the score function S(Bl)(l � 1, 2, . . . , m) for
the ranking of alternatives. If score values are equal,
then compute the accuracy functions A(Bl) and
rank according to these values.
Output: the alternative containing maximum score
value will be the decision.

8.1. Selection of an Effective Sanitizer to Reduce Coronavirus.
Hand sanitizer is a liquid or gel mostly used to reduce in-
fectious agents on the hands. Alcohol-based hand sanitizers are
preferred for hand washing in most healthcare settings. &e
Centers for Disease Control and Prevention (CDC) advise the
people to wash hands with soap and water to restrain the
spread of infections and decrease the endanger of getting sick.
In shortage of soap and water, CDC suggests people to use an
alcohol-based (at least 60 percent) hand sanitizer. According to
the World Health Organization (WHO), in this pandemic
situation of coronavirus, good hygiene and physical distancing
are the best ways to protect ourself and everyone around us
from coronavirus. &is virus spreads by a person who has the
disease and also spread by touching a sick person. We cannot
isolate ourselves entirely to prudent from coronavirus. So, good
hand hygiene can be the final barrier between us and the
disease. WHO recommends alcohol-based hand sanitizers to
remove the novel coronavirus. Alcohol-based hand sanitizer
works to prevent the proteins of microbes—including bacteria
and some viruses—from functioning normally. Hand sanitizers
must contain ethanol, isopropanol, n-propanol, or a combi-
nation of these alcohols. All are effective against viruses such as
the novel coronavirus.

Demand of a hand sanitizer is increased in such critical
situation of COVID-19. Due to increasing demand, it is
difficult to get good and effective hand sanitizers in local

markets. Increasing demand has also led to low quality hand
sanitizers entering the market. &e main motive of this
application is to select an effective sanitizer to mitigate
transmission of coronavirus by applying the GFFYWA
operator. Let K � K1,K2, K3,K4􏼈 􏼉 be a set of sanitizers.
Let J � J1,J2,J3􏼈 􏼉 be a set of three attributes for the
evaluation of an effective sanitizer, where

J1: represents quantity of ethanol,

J2: represents quantity of glycerol,

J3: represents quantity of hydrogenperoxide.

(69)

(1) &e FFDM is shown in Table 2.
(2) &e weights assigned by the decision maker are

w1 � 0.60,

w2 � 0.25,

w3 � 0.15,

􏽘

3

j�1
wj � 1.

(70)

We use the GFFEWA operator for the selection of an
effective sanitizer.

Step 1. For performance values Bl of sanitizers, use the
GFFEWA operator for λ � 1:

B1 � (0.64, 0.48),

B2 � (0.46, 0.28),

B3 � (0.72, 0.31),

B4 � (0.77, 0.34).

(71)

Step 2. Calculate the scoresS(Bl) of FFNsBl and rank the
sanitizers:

(1) Input: selection of suitable alternatives and attributes.
(2) Use the FFDM and GFFEWA operator:

ALGORITHM 1
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S B1( 􏼁 � 0.15,

S B2( 􏼁 � 0.08,

S B3( 􏼁 � 0.34,

S B4( 􏼁 � 0.42.

(72)

&e ranking of sanitizers is

K4 >K3 >K1 >K2. (73)

Step 3. &erefore, K4 is the best sanitizer.

9. Validity Test

For the validity and authenticity of MADM methods, Wang
and Triantaphyllou [53] developed testing criteria, given as
follows:

(i) Criterion 1: a MADM technique is valid if the most
desirable alternative remains same on changes a
nonoptimal alternative with some other poor or
weak alternative, without changing the respective
decision criteria

(ii) Criterion 2: the transitive property should be fol-
lowed by a valid MADM technique

(iii) Criterion 3: the ranking result of alternatives should
not change on splitting the problem into the smaller
subproblems and by applying the same MADM
technique on subproblems

Now, we discuss the validity of our proposed MADM
technique by testing the above criteria.

(1) Validity test by criterion 1: if we replace the decision
values of a nonoptimal alternative K2 by 􏽥K2, then
the new DM is given in Table 3.
By applying the GFFEWA operator for λ � 1 and
score function, the score values of alternatives are

S B1( 􏼁 � 0.15,

S 􏽥B2) � − 0.03,S B3( 􏼁 � 0.34,S B4( 􏼁 � 0.42.􏼐
(74)

&e ranking of sanitizers is K4 >K3 >K1 > 􏽥K2,
which is the same as the original ranking order, and
the best sanitizer isK4. &us, our presented MADM
model fulfills the test criterion 1.

(2) Validity test by criteria 2 and 3: for the validity of
proposed algorithm, using criteria 2 and 3, we split
the problem into the smaller subproblems
K1,K2,K4􏼈 􏼉, K1,K3,K4􏼈 􏼉, and K2,K3,K4􏼈 􏼉.

By utilizing the proposed technique, the ranking
orders of alternatives in these subproblems are
K4 >K1 >K2,K4 >K3 >K1, and K4 >K3 >K2,
respectively. &e combined ranking of alternatives is
K4 >K3 >K1 >K2, which is the same as that of the
original ranking. Hence, the proposed MADM
technique is authentic and proficient under criteria 2
and 3.

10. Comparison Analysis

Here, we discuss the comparison of proposed theory with the
FF TOPSIS method [5]. &e steps to find out the best al-
ternative by the FF TOPSIS method are

(1) Table 2 represents the FF decision matrix in which
each entry corresponds to an FFN.

(2) &e FF positive ideal solution (FFPIS) S+ and FF
negative ideal solution (FFNIS) S− are

S
+

� (0.8, 0.3), (0.8, 0.1), (0.9, 0.6){ },

S
−

� (0.6, 0.7), (0.5, 0.3), (0.3, 0.6){ }.
(75)

(3) &e distance between the alternative Kl and FFPIS
S+ together with the FFNIS S− are given in Table 4.

(4) &e revised closeness degree of each alternative is
given as

ξ K1( 􏼁 � − 3.05,

ξ K2( 􏼁 � − 4.11,

ξ K3( 􏼁 � − 1.28,

ξ K4( 􏼁 � 0.10.

(76)

(5) We get the following ranking list by arranging the
alternatives in the decreasing order with respect to
ξ(Kl):

K4 >K3 >K1 >K2. (77)

(6) K4 is the best alternative.

Table 2: FFDM.

􏽥E J1 J2 J3

K1 (0.6, 0.7) (0.6, 0.2) (0.8, 0.4)
K2 (0.4, 0.2) (0.6, 0.4) (0.3, 0.6)
K3 (0.8, 0.3) (0.5, 0.3) (0.6, 0.4)
K4 (0.7, 0.5) (0.8, 0.1) (0.9, 0.6)

Table 3: Reconstructed FFDM.

􏽥E J1 J2 J3

K1 (0.6, 0.7) (0.6, 0.2) (0.8, 0.4)
􏽥K2 (0.3, 0.4) (0.5, 0.4) (0.2, 0.8)
K3 (0.8, 0.3) (0.5, 0.3) (0.6, 0.4)
K4 (0.7, 0.5) (0.8, 0.1) (0.9, 0.6)

Table 4: Distance of alternatives from FFPIS and FFNIS.

D(Kl,S
+) D(Kl,S

− )

0.30 0.08
0.46 0.29
0.18 0.21
0.09 0.32
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From the outcomes of proposed operators and FF
TOPSIS method, as shown in Figure 1, we conclude that
ranking lists obtained from both compared methods are the
same and the best alternative from both approaches is K4.
&e FF TOPSIS method is a good approach to solve DM
problems but there are many hindrances which can be
solved by using our proposed theory. &e FF Einstein AOs
are more flexible and easy approach. A best alternative can
be obtained by a short process. &e results from proposed
theory are more accurate and closest to original results.

&e steps to solve any MADM problem by FF Einstein
AOs and FF TOPSIS method are shown in Figure 2.

10.1. Advantages and Limitations of Proposed Model. &e
proposed model is superior than the IF and PF models
because it contains the space of IF and PF models. &e cubic
sum of membership and nonmembership degrees is
bounded by 1 in the proposed model. &e MADM

approaches discussed in [10, 12, 13, 15] failed to handle the
proposed application because 0.9 + 0.6> 1 and
0.92 + 0.62 > 1 but proposed approach covers all such situ-
ations.&e results are more precise and accurate by using the
proposed model. However, there are some limitations of this
model. It cannot be applied in the situations where we take
the parameters for the evaluation of anything. It means this
theory lacks parametrization property.

11. Conclusions

An FFS is an extension of IFS and PFS which has more
flexible structure to solve decision-making problems owing
to the condition μ3 + ]3 ≤ 1. Moreover, Einstein’s t-norm
and t-conorm have more generalized structure that operates
efficiently to integrate the intricate information. &e limi-
tations of existing operators and beneficial characteristics of
Einstein AOs motivated us to endeavor for the development
of a fruitful combination of Einstein AOs with FFNs.

Amajor contribution of the study is the development new
tremendous AOs, called, FFEWA, FFEOWA, GFFEWA, and
GFFEOWA operators. Some captivating properties of these
operators have been discussed. Another achievement of this
study is the establishment of a MADM technique on the basis
of the proposed operators to manifest the application of the
proposed operators. AMADMproblem for the selection of an
effective sanitizer to reduce the coronavirus has been pre-
sented to demonstrate the potency of the proposed strategy.

&e validity test has been discussed to unfold the
consistency of proposed work. A comparison analysis of
our proposed theory with the FF TOPSIS method has been
presented to exhibit the dominance of our proposed op-
erators over the FF TOPSIS method. In short, this article
builds up a tool that has the rich properties of Einstein AOs
and flexibility of the FF model. In future, our aim is to
develop some worthwhile AOs using the theoretical
foundations of Einstein norms for the Fermatean fuzzy soft
set.
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'e notion of bipolar soft sets has already been defined, but in this article, the notion of bipolar soft sets has been redefined, called
T-bipolar soft sets. It is shown that the new approach is more close to the concept of bipolarity as compared to the previous ones,
and further it is discussed that so far in the study of soft sets and their generalizations, the concept introduced in this manuscript
has never been discussed earlier. We have also discussed the operational laws of T-bipolar soft sets and their basic properties. In
the end, we have deliberated the algebraic structures associated with T-bipolar soft sets and the applications of T-bipolar soft sets
in decision-making problems.

1. Introduction

To handle the uncertainty has always been a problem for the
researchers and decisionmakers as it appears in almost every
field of real life and all sciences including basic sciences,
management sciences, social sciences, and information
sciences. Many efforts have been made to cope with this
concern. 'e first compact attempt in this direction was
made by Zadeh [1] when he familiarized the notion of fuzzy
sets in 1965. In 1982, Pawlak [2] familiarized the notion of
rough sets. Although these theories have their own ad-
vantages and these theories proved their effectiveness, the
theory of soft sets by Molodtsov [3] in 1999 did shovel work
as it generalizes both the theories. Maji et al. [4] furnished
some operations to soft sets. Later on, Ali et al. [5] piercing
out some inadequacies in the operations defined in [4]
bequeathed some new operations to soft sets like extended
union, restricted union, restricted intersection, and the re-
stricted difference of two soft sets. In [6], Ali et al. deliberated
some algebraic structures associated with the new defined
operations on soft sets. Aktaş and Çağman [7] evidenced
that soft sets generalize both fuzzy sets and rough sets and
they are pragmatic soft sets in group theory. After the re-
markable start of the era of soft sets, many researchers put

their share in the progress of the theory of soft sets, for
example, Acar et al. [8] presented the notion of soft rings,
Sezer and Atagün [9] originated soft vector spaces, Ali et al.
[10] represented graphs based on neighbourhoods and soft
sets, Shabir and Naz [11] opened the notion of soft topo-
logical spaces, Sezer et al. [12] worked on soft intersection
semigroups, Ali et al. [13] initiated the notion of lattice
ordered soft sets, and Cagman [14] initiated a new approach
in soft set theory.

'e applications of soft sets in decision making were
initiated by Maji et al. [15] in 2002. Since then many other
authors contributed in this direction, for example, Cagman
and Enginoglu [16, 17] and Kong et al. [18] did copious work
in the applications of soft sets in decision making. For more
studies and applications of soft sets, one may study [19–23].

'e notion of fuzzy soft sets was introduced byMaji et al.
[24]. Deng and Wang [25] espoused object parameter
methodology for predicting unknown data in incomplete
fuzzy soft sets. Naz and Shabir [26] instigated the study of
algebraic structures associated with fuzzy soft sets. Roy and
Maji [27] toiled on fuzzy soft set theoretic approach to
decision-making problems. For more applications of fuzzy
soft sets in decision making and other fields, one may study
[28–34].
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'e notion of bipolar-valued fuzzy sets was instigated by
Lee [35] in 2000. Abdullah et al. [36] commenced the
perception of bipolar fuzzy soft sets and applied this per-
ception in a decision-making problem. In 2013, Shabir and
Naz [37] instigated the idea of bipolar soft sets, and then
keeping this concept in view, Naz and Shabir [38] famil-
iarized the idea of fuzzy bipolar soft sets and studied their
algebraic structures and their applications. In 2014, Kar-
aaslan and Karatas [39] espoused a different methodology to
introduce bipolar soft sets, and later on, Karaaslan et al. [40]
toiled on bipolar soft groups. For additional work and ap-
plications of the impression of bipolarity in soft sets and
allied topics, one may study [41–45].

If we sum up all the above debate, then we noticed that
keeping in view the association between fuzzy sets and soft
sets and keeping in view the significance of bipolar-valued
fuzzy sets, two attempts have been made to define bipolar
soft sets: one by Shabir and Naz and the other by Karaaslan
and Karatas. But if we notice, then we come to know that in
both approaches, the conception of bipolar soft sets has
some shortcomings, which we will discuss in our upcoming
sections of the article (see Remark 1). So keeping this
downside of the defined bipolar soft sets, in this article, we
have embraced a new approach to define bipolar soft set and
we named it T-bipolar soft set. Rest of the article is organized
as follows:

(1) In Section 2 of the article, we have given some basic
definitions to make the article self-contained and to
justify redefining the notion of bipolar soft set.

(2) In Section 3 of the article, the notion of T-bipolar soft
sets is familiarized, its basic operational laws are
given, and related results are conferred.

(3) In Section 4, some algebraic structures are discussed
associated with new defined T-BSSs.

(4) In Section 5, some applications of T-BSSs towards
decision making are discussed.

(5) In Section 6, conclusion of the work presented is
drawn and some future directions are discussed.

2. Preliminaries

In this section of the article, we will provide and deliberate
some basic definitions of fuzzy sets, intuitionistic fuzzy sets,
bipolar-valued fuzzy sets, soft sets, double framed soft sets,
and bipolar-valued soft sets to make the article self-con-
tained and also to justify the need to define T-bipolar soft
sets. We will also debate the motivation to define T-bipolar
soft sets.

Definition 1 (see [1]). Let A be a nonempty set.'en, a fuzzy
set in A is characterized by a membership function
f: A⟶ [0, 1].

Definition 2 (see [3]). Let A be a nonempty set of parameters
and U be an initial universe. 'en, a soft set (F, A) over U is
characterized by a set valued function F: A⟶ P(U).

Definition 3 (see [46]). Let A be a nonempty set. 'en, an
intuitionistic fuzzy set in A is characterized by two functions
f: A⟶ [0, 1] and g: A⟶ [0, 1], where f is called a
membership function and g is called nonmembership
function.'e condition that the sum of the values of f and g

must belong to [0, 1] is the part of the definition of intui-
tionistic fuzzy set.

Definition 4 (see [47]). Let A be a nonempty set of pa-
rameters and U be an initial universe. 'en, a double framed
soft set over U is characterized by two set valued functions
F: A⟶ P(U) and G: A⟶ P(U).

Definition 5 (see [35]). Let A be a nonempty set. 'en, a
bipolar-valued fuzzy set in A is characterized by two
functions f: A⟶ [0, 1] and g: A⟶ [− 1, 0], where for
some x ∈ A, f(x) denotes the satisfaction degree of the
element x to the property corresponding to the bipolar-
valued fuzzy set, which we denote by 〈f, g, A〉, and further
g(x) denotes the satisfaction degree of x to some implicit
counterproperty of the bipolar-valued fuzzy set 〈f, g, A〉.

Definition 6 (see [37]). Let A be a nonempty set of pa-
rameters, A � x: x ∈ A{ } denotes the NOTset ofA, and let U

be an initial universe. 'en, a bipolar soft set, denoted by
(F, G, A), over U is characterized by two set valued functions
F: A⟶ P(U) and G: A⟶ P(U) such that for all
x ∈ A, F(x)∩G(x) � ∅ (empty set).

Definition 7 (see [39]). Let A be a parameter set and A1 and
A2 be two nonempty subsets of A such that (A1 ∪A2 � A)

and A1 ∩A2 � ∅. 'en, the triplet (F, G, A) is thought to be
a bipolar soft set over U, where F and G are set valued
mappings given by F: A1⟶ P(U) and G: A2⟶ P(U)

such that F(x)∩G(f(x)) � ∅, where f: A1⟶ A2 is a
bijective function.

Remark 1. From above definitions, we note that

(1) 'e definitions of fuzzy sets and that of soft sets have
same characteristics in the sense that

(i) Both are characterized by a single function
(ii) Both have a single set as domain set
(iii) Both have a single set, which is a lattice in either

case, as codomain set

(2) 'e definitions of intuitionistic fuzzy sets and that of
double framed soft sets have same characteristics in
the sense that

(i) Both are characterized by two functions
(ii) Both have a single set as domain set for both the

functions
(iii) Both have a single set, which is a lattice in either

case, as codomain set for both the functions

(3) But this is not the case for bipolar-valued fuzzy sets
as compared to the definitions of bipolar soft sets
defined in [37, 39]
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All this dialogue demonstrates that the space to define
bipolar soft set has not yet been filled. As every definition in
mathematics has its own importance and it does not mean
that the already existing definitions of bipolar soft sets are of
no use and the proposed definition of bipolar soft set will
nullify the existing definitions, but the purpose to redefine
the notion of bipolar soft set is, one to elaborate the notion of
bipolarity in soft sets more affectively and the other is, as
there is, up to the best of our knowledge, no such type of
situation is discussed in soft sets earlier.

Now, we deliberate some basic definitions connected to
soft sets. In this section, from now onwards, E will denote a
set of parameters,A, B, C . . . ⊆E, and U will denote an initial
universe. Further, the set of all soft sets over U will be
denoted by (SS)(U).

Definition 8 (see [14]). Let (F1, A) and (F2, B) ∈ (SS)(U).

'en, (F1, A) is called a soft subset of (F2, B) if

(i) A⊆B

(ii) For all a ∈ A, F1(a)⊆ F2(a)

'en, we write (F1, A)⊆ (F2, B). (F1, A) and (F2, B) are
said to be soft equal if and only if (F1, A)⊆ (F2, B) and
(F2, B)⊆ (F1, A). 'en, we write (F1, A) � (F2, B).

Definition 9 (see [14]). Let (F, A) ∈ (SS)(U). 'en,

(i) Complement of (F, A) is designated and specified
by (F, A)c � (Fc, A) where Fc(a) � U − F(a), for all
a ∈ A

(ii) (F, A) is said to be null if and only if for all
a ∈ A, F(a) � ∅

(iii) (F, A) is said to be absolute if and only if for all
a ∈ A, F(a) � U

Definition 10 (see [4]). Let (F1, A) and (F2, B) ∈ (SS)(U).
'en,

(i) “AND” product of (F1, A) and (F2, B) is designated
and demarcated by (F1, A)∧ (F2, B) � (F3, A × B)

where F3(a, b) � F1(a)∩F2(b) for all (a, b) ∈ A × B

(ii) “OR” product of (F1, A) and (F2, B) is designated
and demarcated by (F1, A)∨ (F2, B) � (F3, A × B)

where F3(a, b) � F1(a)∪F2(b) for all
(a, b) ∈ A × B

Definition 11 (see [4]). Let (F1, A) and (F2, B) ∈ (SS)(U).
'en, “union” (which we may also call extended union) of
(F1, A) and (F2, B) is designated and demarcated by
(F1, A)∪ E(F2, B) � (H, A∪B), where

H(e) �

F1(e), if e ∈ A − B,

F2(e), if e ∈ B − A,

F1(e)∪F2(e), if e ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩
(1)

Definition 12 (see [5]). Let (F1, A) and ((F2, B) ∈ (SS)(U)).
'en, “extended intersection” of (F1, A) and (F2, B) is
designated and demarcated by
(F1, A)∩ E(F2, B) � (H, A∪B), where

H(e) �

F1(e), if e ∈ A − B,

F2(e), if e ∈ B − A,

F1(e)∩F2(e), if e ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩
(2)

Definition 13 (see [5]). Let (F1, A) and (F2, B) ∈ (SS)(U)

such that (A∩B) is nonempty. 'en,

(i) “Restricted union” of (F1, A) and (F2, B) is desig-
nated and demarcated by (F1, A)∪ R(F2, B) �

(H, A∩B), where H(e) � F1(e)∪F2(e)

(ii) “Restricted intersection” of (F1, A) and (F2, B) is
designated and demarcated by (F1, A)∩ R(F2, B) �

(H, A∩B), where H(e) � F1(e)∩F2(e)

3. T-Bipolar Soft Set

In this section, we will familiarize the perception of T-bi-
polar soft set (T-BSS), we will delineate binary operations for
T-BSSs, and we will also deliberate some basic properties and
some results concomitant with these concepts. First, we
contemplate the succeeding example.

Example 1. Let us consider the case, where a researcher Dr.
Shabir wants to submit his four research articles a1 (on
homological algebra), a2 (on fuzzy sets), a3 (on soft sets), and
a4 (on rough sets) in some research journals. For the
purpose, he has to propose some potential referees and also
he has the option to oppose some referees. Keeping in view
all the aspects, he prepared a set X � x1, x2, x3, x4, x5, x6􏼈 􏼉 of
some proposed referees as well as a set
Y � y1, y2, y3, y4, y5􏼈 􏼉 of some referees to oppose. Hence, in
this case, he has under consideration the set
U � x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5􏼈 􏼉 of all referees.
For each of his article, he selects some referees from X to
propose and selects some referees from Y to oppose. Keeping
in view all the aspects for the article

(i) a1 (on homological algebra), he decided to propose
x2, x3, x4 and he opposed y1, y2

(ii) a2 (on fuzzy sets), he decided to propose x1, x3, x6
and he opposed y2, y4

(iii) a3 (on soft sets), he decided to propose x4, x5 and he
opposed y3

(iv) a4 (on rough sets), he decided to propose x1, x5, x6
and he opposed y1, y4, y5

Note that all this information can be modeled mathe-
matically as follows: let A � a1, a2, a3, a4􏼈 􏼉,
X � x1, x2, x3, x4, x5, x6􏼈 􏼉, and Y � y1, y2, y3, y4, y5􏼈 􏼉. De-
fine (F: A⟶ P(X)) as F(a1) � x2, x3, x4􏼈 􏼉, F(a2)

� x1, x3, x6􏼈 􏼉, F(a3) � x4, x5􏼈 􏼉, F(a4) � x1, x5, x6􏼈 􏼉, and
(G: A⟶ P(Y)) as G(a1) � y1, y2􏼈 􏼉, G(a2) �

y2, y4􏼈 􏼉, G(a3) � y3􏼈 􏼉, G(a4) � y1, y4, y5􏼈 􏼉.
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Here, it can be perceived that both the functions F and G

have common domain A, and codomains of F and G have
nothing in common except the empty set ϕ. Further we
notice that same is the case in bipolar-valued fuzzy sets.
Hence, we have the following definition.

Definition 14. Let E be a set of parameters, A ⊆ E, and U be
an initial universe, X ⊂ U and Y � U − X. 'en, a triplet
F, G, A is said to be a T-BSS over U, where F and G are set
valued mappings given by F: A⟶ P(X) and
G: A⟶ P(Y). In this case, we write (F, G, A) �

〈a, F(a), G(a): F(a) ∈ P(X) andG(a) ∈ P(Y)〉{ } or simply
(F, G, A) � 〈a, F(a), G(a)〉{ }. 'e collection of all T-BSSs
over U is denoted by (T − BSS)(U).

Remark 2. Let A � a1, a2, a3, . . . , al􏼈 􏼉 ⊆ E, X � x1, x2,􏼈

x3, . . . , xm}, Y � y1, y2, y3, . . . , yn􏼈 􏼉, and (F, G, A) be
corresponding T-BSS. 'en, we can represent (F, G, A) as
follows (Table 1).

ζ ijk � μj, ]k􏼐 􏼑 �

(0, 0) if xj ∉ F ai( 􏼁 andyk ∉ F ai( 􏼁,

(1, 0) if xj ∈ F ai( 􏼁 andyk ∉ F ai( 􏼁,

(0, 1) if xj ∉ F ai( 􏼁 andyk ∈ F ai( 􏼁,

(1, 1) if xj ∈ F ai( 􏼁 andyk ∈ F ai( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ζ ∗ijk � μj,

ζ°ijk � ]k.

(3)

Example 2. A university wants to appoint a permanent
faculty member from the set A � a1, a2, a3, a4, a5􏼈 􏼉 of vis-
iting faculty members. For the purpose, the university au-
thorities constitute two panels X � x1, x2, x3, x4􏼈 􏼉 and
Y � y1, y2, y3􏼈 􏼉 of experts, where panel X consists of
members from outside the university and panel Y consists of
members from inside the university. Further each member
of the panel X will decide about each candidate by con-
sidering his/her experience, number of research publica-
tions, number of conferences attended, etc., while each
member of the panel Y will decide about each candidate by
considering his/her regularity and punctuality, attitude to-
wards other faculty members, and behavior with students
during class. Now the university authorities decided the
selection criteria that towards each candidate each member
of the panel X will have to select a candidate by keeping in
view his/her positive points while each member of the panel
Y has to reject a candidate by keeping in view his/her
negative points. According to the decisions taken by the
members of the panels X, the experts x1 and x3 are in favor
to select the candidate a1 while x2 and x4 decided to remain
neutral for the candidate a1. Similarly the decisions taken by
the members of the panels Y, the member y3 is not in favor
to select the candidate a1 while y1 and y2 decided to remain
neutral for the candidate a1. Hence, for the candidate a1, the

situation can be modeled as 〈a1, x1, x3􏼈 􏼉, y3􏼈 􏼉〉. Now
keeping under consideration the decisions taken by all the
members from the panels X andY, the result can bemodeled
mathematically as given in the following T-BSS:((F, G, A) �

〈a1, x1, x3􏼈 􏼉,􏼈 y3􏼈 􏼉〉, 〈a2, x1, x3, x4􏼈 􏼉, y1􏼈 􏼉〉, 〈a3, x1, x4􏼈 􏼉,

y1, y3􏼈 􏼉〉, 〈a4, x2, x3, x4􏼈 􏼉, y2, y3􏼈 􏼉〉, 〈a5, x2, x4􏼈 􏼉, y2􏼈 􏼉〉}).
Tabular form of the (F, G, A) is given as follows

(Table 2).

Definition 15. Let (F1, G1, A) ∈ (T − BSS)(U). 'en,
(F1, G1, A) is said to be T-bipolar soft subset of (F2, G2, B) if

(i) A⊆B

(ii) For all a ∈ A, F1(a)⊆ F2(a) and G2(a)⊆G1(a).

'en, we write (F1, G1, A)⊆ (F2, G2, B). (F1, G1, A) and
(F2, G2, B) are said to be equal if and only if
(F1, G1, A)⊆ (F2, G2, B) and (F2, G2, B)⊆ (F1, G1, A). 'en,
we write (F1, G1, A) � (F2, G2, B).

Definition 16. Let (F, G, A) ∈ (T − BSS)(U). 'en,

(i) Complement of (F, G, A) is denoted and given by
(F,G,A)c � (Fc,Gc,A) � 〈a,Fc(a) � X − F(a),{ Gc

(a) � Y − G(a)〉}.
(ii) (F, G, A) is said to be null if and only if for all

a ∈ A, F(a) � ∅ and G(a) � Y. In our study, it will
further be designated by ϕ, that is, ϕ � 〈a,∅, Y〉{ }.

(iii) (F, G, A) is said to be absolute if and only if for all
a ∈ A, F(a) � X and G(a) � ∅. In our study, it will
further be designated byA that is,A � 〈a, X,∅〉{ }.

Definition 17. Let (F1, G1, A), (F2, G2, B) ∈ (T − BSS)(U).
'en,

(i) “AND” product of (F1, G1, A) and (F2, G2, B) is
designated and demarcated by

F1, G1, A( 􏼁∧ F2, G2, B( 􏼁 � <(a, b), F1(a)∩F2(b), G1(a)􏼈

∪G2(b)> : (a, b) ∈ A × B􏼉.

(4)

(ii) “OR” product of (F1, G1, A) and (F2, G2, B) is
designated and demarcated by

F1, G1, A( 􏼁∨ F2, G2, B( 􏼁 � <(a, b), F1(a)∪F2(b), G1(a)􏼈

∩G2(b)> : (a, b) ∈ A × B􏼉.

(5)

Proposition 1. Let (F1, G1, A), (F2, G2, B) (F2, G2, B) ∈
(T − BSS)(U). 1en,

(i) [(F1, G1, A) ∧ (F2, G2, B)]c � [(F1, G1, A)]c ∨ [(F2,

G2, B)]c
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(ii) [(F1, G1, A)∨ (F2, G2, B)]c � [(F1, G1, A)]c ∧
[(F2, G2, B)]c

Proof

(i) [(F1,G1,A)∧(F2,G2,B)]c � 〈(a,b),F1(a)∩􏼈 F2 (b),

G1(a)∪G2(b)〉}c � 〈(a,b),X − (F1(a)∩F2(b)),􏼈 Y−

(G1(a)∪G2(b))〉} � 〈(a,b),(X − F1(a))∪􏼈 (X − F2
(b)),(Y − G1(a))∩(Y − G2(b))〉} � 〈<(a,b),{ Fc

1
(a)∪ Fc

2(b),Gc
1(a)∩Gc

2(b)〉} � [(F1, G1,A)]c∨ [(F2,

G2,B)]c.

(ii) Similar to part (i). □

Definition 18. Let (F1, G1, A), (F2, G2, B) ∈ (T − BSS)(U).
'en, “extended union” of (F1, G1, A) and (F2, G2, B) is
designated and demarcated by
((F1, G1, A)∪ E(F2, G2, B) � (H, K, A∪B)), where

H(e) �

F1(e), if e ∈ A − B,

F2(e), if e ∈ B − A,

F1(e)∪F2(e), if e ∈ A∩B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

K(e) �

G1(e), if e ∈ A − B,

G2(e), if e ∈ B − A,

G1(e)∩G2(e), if e ∈ A∩B.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Definition 19. Let (F1, G1, A), (F2, G2, B) ∈ (T − BSS)(U)

'en, “extended intersection” of (F1, G1, A) and (F2, G2, B)

is designated and demarcated by

F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁 � (H, K, A∪B), (7)

where

H(e) �

F1(e), if e ∈ A − B,

F2(e), if e ∈ B − A,

F1(e)∩F2(e), if e ∈ A∩B,

⎧⎪⎪⎨

⎪⎪⎩

K(e) �

G1(e), if e ∈ A − B,

G2(e), if e ∈ B − A,

G1(e)∪G2(e), if e ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩

(8)

Proposition 2. For any T-BSSs (F1, G1, A), (F2, G2, B), and
(F3, G3, C),

(i) (F1,G1,A)∩Eϕ� ϕ,(F1,G1,A)∪Eϕ� (F1,G1, A),

(F1,G1,A)∩EA� (F1,G1,A),(F1,G1,A)∪EA�A

(ii) (F1, G1, A)∩ E(F1, G1, A) � (F1, G1, A), (F1, G1, A)

∪ E(F1, G1, A) � (F1, G1, A)

(iii) (F1, G1, A)∩ E(F2, G2, B) � (F2, G2, B)∩ E(F1, G1,

A), (F1, G1, A) ∪ E(F2, G2, B) � (F2, G2, B)∪ E (F1,

G1, A)

(iv) (F1, G1, A)∪ E[(F2, G2, B)∪ E(F3, G3, C)] � [(F1,

G1, A)∪ E(F2, G2, B)]∪ E(F3, G3, C)

(v) (F1,G1,A)∩E[(F2,G2,B)∪E(F1,G1,A)] � (F1,G1,

A),(F1,G1,A)∪E [(F2,G2,B)∩E(F1,G1,A)] � (F1,

G1, A)

(vi) [(F1,G1,A)c]c � (F1,G1,A), (F1,G1,A)∩E[(F1,G1,

A)]c � ϕ, (F1,G1,A)∪E[(F1,G1,A)]c �A

(vii) [(F1,G1,A)∩E (F2,G2,B)]c � [(F1,G1,A)]c∪E[(F2,

G2,B)]c, [(F1,G1,A)∪E(F2,G2,B)]c � [(F1,G1,A)]c

∩E[(F2,G2,B)]c

Proof. We prove (iv) and (vii); rest are straightforward.

(iv) When x ∈ A, x ∉ B , and x ∈ C, then

Table 1: Tabular form of a T-bipolar soft set.

(F, G, A) (x1, y1) (x1, y2) . . . (x1, yn) (x2, y1) (x2, y2) . . . (x2, yn) . . . (xm, y1) (xm, y2) . . . (xm, yn)

a1 ζ111 ζ112 . . . ζ11n ζ121 ζ122 . . . ζ12n . . . ζ1m1 ζ1m2 . . . ζ1mn

a2 ζ211 ζ212 . . . ζ21n ζ221 ζ222 . . . ζ22n . . . ζ2m1 ζ2m2 . . . ζ2mn

a3 ζ311 ζ312 . . . ζ31n ζ321 ζ322 . . . ζ32n . . . ζ3m1 ζ3m2 . . . ζ3mn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

al ζl11 ζ l12 . . . ζ l1n ζ l21 ζl22 . . . ζ l2n . . . ζ lm1 ζ lm2 . . . ζlmn

Table 2: Tabular form of the T-bipolar soft set (F, G, A).

(F, G, A) (x1, y1) (x1, y2) (x1, y3) (x2, y1) (x2, y2) (x2, y3) (x3, y1) (x3, y2) (x3, y3) (x4, y1) (x4, y2) (x4, y3)

a1 (1, 0) (1, 0) (1, 1) (0, 0) (0, 0) (0, 1) (1, 0) (1, 0) (1, 1) (0, 0) (0, 0) (0, 1)
a2 (1, 1) (1, 0) (1, 0) (0, 1) (0, 0) (0, 0) (1, 1) (1, 0) (1, 0) (1, 1) (1, 0) (1, 0)
a3 (1, 1) (1, 0) (1, 1) (0, 1) (0, 0) (0, 1) (0, 1) (0, 0) (0, 1) (1, 1) (1, 0) (1, 1)
a4 (0, 0) (0, 1) (0, 1) (1, 0) (1, 1) (1, 1) (1, 0) (1, 1) (1, 1) (1, 0) (1, 1) (1, 1)
a5 (0, 0) (0, 1) (0, 0) (1, 0) (1, 1) (1, 0) (0, 0) (0, 1) (0, 0) (1, 0) (1, 1) (1, 0)
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F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁∩ E F3, G3, C( 􏼁􏼂 􏼃

� F1, G1, A( 􏼁∩ E F3, G3, C( 􏼁

� 〈 < x ∈ A∩C: F1(x)∩F3(x), G1(x)∪G3(x)>􏼈 􏼉〉􏼈 􏼉,

· F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁􏼂 􏼃∩ E F3, G3, C( 􏼁

� F1, G1, A( 􏼁∩ E F3, G3, C( 􏼁

� 〈x ∈ A∩C: F1(x)∩F3(x), G1(x)∪G3(x)〉􏼈 􏼉.

(9)

When x ∈ A, x ∈ B , and x ∉ C, then

F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁∩ E F3, G3, C( 􏼁􏼂 􏼃

� F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁

� 〈x ∈ A∩B: F1(x)∩F2(x), G1(x)∪G2(x)〉􏼈 􏼉,

· F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁􏼂 􏼃∩ E F3, G3, C( 􏼁

� F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁

� 〈x ∈ A∩B: F1(x)∩F2(x), G1(x)∪G2(x)〉􏼈 􏼉.

(10)

When x ∉ A, x ∈ B , and x ∈ C, then

F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁∩ E F3, G3, C( 􏼁􏼂 􏼃

� F2, G2, B( 􏼁∩ E F3, G3, C( 􏼁

� 〈x ∈ B∩C: F2(x)∩F3(x), G2(x)∪G3(x)〉􏼈 􏼉,

· F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁􏼂 􏼃∩ E F3, G3, C( 􏼁

� F2, G2, B( 􏼁∩ E F3, G3, C( 􏼁

� 〈x ∈ B∩C: F2(x)∩F3(x), G2(x)∪G3(x)〉􏼈 􏼉.

(11)

When x ∉ A, x ∈ B , and x ∈ C, then result is
obvious. Hence, it concludes that (F1,G1,A)∩E

[(F2,G2,B)∩E (F3,G3,C)] � [(F1,G1,A)∩E (F2,

G2, B)] ∩E(F3,G3,C). Similarly (F1,G1,A)∪E

[(F2,G2,B)∪E(F3,G3,C)] � [(F1,G1,A)∪E (F2,G2,

B)]∪E(F3,G3,C).

(vii) When (x ∈ A) and (x ∉ B), then

F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁􏼂 􏼃
c

� F1, G1, A( 􏼁􏼂 􏼃
c
,

F1, G1, A( 􏼁􏼂 􏼃
c ∪ E F2, G2, B( 􏼁􏼂 􏼃

c
� F1, G1, A( 􏼁􏼂 􏼃

c
.

(12)

When (x ∉ A) and (x ∈ B), then

F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁􏼂 􏼃
c

� F2, G2, B( 􏼁􏼂 􏼃
c
,

F1, G1, A( 􏼁􏼂 􏼃
c ∪ E F2, G2, B( 􏼁􏼂 􏼃

c
� F2, G2, B( 􏼁􏼂 􏼃

c
.

(13)

When x ∈ A and x ∈ B, then the result is a trivial case.
Hence, in either case ([(F1, G1, A)∩ E (F2, G2, B)]c �

[(F1, G1, A)]c ∪ E[(F2, G2, B)]c) Similarly, ([(F1,G1,A)

∪E (F2,G2,B)]c � [(F1,G1,A)]c ∩E[(F2,G2,B)]c). □

Remark 3. For any arbitrary (F1, G1, A) (F2, G2, B),
(F3, G3, C) ∈ (T − BSS)(U), it is not necessary that

(i) (F1, G1, A)∩ E[(F2, G2, B)∪ E(F3, G3, C)] � [(F1,

G1, A)∩ E(F2, G2, B)] ∪ E[(F1, G1, A)∩ E(F3, G3, C)]

(ii) (F1, G1, A)∪ E[(F2, G2, B)∩ E(F3, G3, C)] � [(F1,

G1, A)∪ E(F2, G2, B)] ∩ E[(F1, G1, A)∪ E(F3, G3, C)]

Example 3. Let E � e1, e2, e3, e4, e5􏼈 􏼉, A � e1, e2, e3􏼈 􏼉, B �

e3, e4􏼈 􏼉, C � e4, e5􏼈 􏼉, U � x1, x2, x3, x4, x5􏼈 􏼉, X � x1, x2,􏼈

x3}, and Y � x4, x5􏼈 􏼉.
Now let

F1, G1, A( 􏼁 � 〈e1, x1, x2􏼈 􏼉, x4􏼈 􏼉〉, 〈e2, x1􏼈 􏼉, x4, x5􏼈 􏼉〉,􏼈

· 〈e3, x1, x3􏼈 􏼉, x4􏼈 􏼉〉􏼉,

F2, G2, B( 􏼁 � 〈e3, x2, x3􏼈 􏼉, x5􏼈 􏼉〉, 〈e4, x1, x2􏼈 􏼉, x4, x5􏼈 􏼉〉􏼈 􏼉,

F3, G3, C( 􏼁 � 〈e4, x1, x2, x3􏼈 􏼉,∅〉, 〈e5, x1, x2􏼈 􏼉, x5􏼈 􏼉〉􏼈 􏼉.

(14)

Now

F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁∪ E F3, G3, C( 􏼁􏼂 􏼃

� F1, G1, A( 􏼁∩ E 〈e3, x2, x3􏼈 􏼉, x5􏼈 􏼉〉, 〈e4, x1, x2, x3􏼈 􏼉,∅〉,􏼈

· 〈e5, x1, x2􏼈 􏼉, x5􏼈 􏼉〉􏼉,

� 〈e1, x1, x2􏼈 􏼉, x4􏼈 􏼉〉, 〈e2, x1􏼈 􏼉, x4, x5􏼈 􏼉〉,􏼈

〈e3, x3􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e4, x1, x2, x3􏼈 􏼉,∅〉, 〈e5, x1, x2􏼈 􏼉, x5􏼈 􏼉〉􏼉.

(15)

Next

F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁􏼂 􏼃∪ E F1, G1, A( 􏼁∩ E F3, G3, C( 􏼁􏼂 􏼃 〈e1, x1, x2􏼈 􏼉, x4􏼈 􏼉〉, 〈e2, x1􏼈 􏼉, x4, x5􏼈 􏼉〉,􏼈

· 〈e3, x3􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e4, x1, x2􏼈 􏼉, x4, x5􏼈 􏼉〉􏼉∪E
〈e1, x1, x2􏼈 􏼉, x4􏼈 􏼉〉, 〈e2, x1􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e3, x1, x3􏼈 􏼉, x4􏼈 􏼉〉, 〈e4, x1, x2, x3􏼈 􏼉,∅〉, 〈e5, x1, x2􏼈 􏼉, x5􏼈 􏼉〉􏼈 􏼉

� 〈e1, x1, x2􏼈 􏼉, x4􏼈 􏼉〉, 〈e2, x1􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e3, x1, x3􏼈 􏼉, x4􏼈 􏼉〉, 〈e4, x1, x2, x3􏼈 􏼉,∅〉, 〈e5, x1, x2􏼈 􏼉, x5􏼈 􏼉〉􏼈 􏼉,

⟹ F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁∪ E F3, G3, C( 􏼁􏼂 􏼃≠ F1, G1, A( 􏼁∩ E F2, G2, B( 􏼁􏼂 􏼃∪ E F1, G1, A( 􏼁∩ E F3, G3, C( 􏼁􏼂 􏼃.

(16)
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Now

F1, G1, A( 􏼁∪ E F2, G2, B( 􏼁∩ E F3, G3, C( 􏼁􏼂 􏼃 � F1, G1, A( 􏼁∪ E 〈e3, x2, x3􏼈 􏼉, x5􏼈 􏼉〉, 〈e4, x1, x2􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e5, x1, x2􏼈 􏼉, x5􏼈 􏼉〉􏼈 􏼉

� 〈e1, x1, x2􏼈 􏼉, x4􏼈 􏼉〉, 〈e2, x1􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e3, x1, x2, x3􏼈 􏼉,∅〉, 〈e4, x1, x2􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e5, x1, x2􏼈 􏼉, x5􏼈 􏼉〉􏼈 􏼉.

(17)

Next

F1, G1, A( 􏼁∪ E F2, G2, B( 􏼁􏼂 􏼃∩ E F1, G1, A( 􏼁∪ E F3, G3, C( 􏼁􏼂 􏼃 � 〈e1, x1, x2􏼈 􏼉, x4􏼈 􏼉〉, 〈e2, x1􏼈 􏼉, x4, x5􏼈 􏼉〉,􏼈

· 〈e3, x1, x2, x3􏼈 􏼉,∅〉, 〈e4, x1, x2􏼈 􏼉, x4, x5􏼈 􏼉〉􏼉∩ ​ E
〈e1, x1, x2􏼈 􏼉, x4􏼈 􏼉〉, 〈e2, x1􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e3, x1, x3􏼈 􏼉, x4􏼈 􏼉〉, 〈e4, x1, x2, x3􏼈 􏼉,∅〉, 〈e5, x1, x2􏼈 􏼉, x5􏼈 􏼉〉􏼈 􏼉

� 〈e1, x1, x2􏼈 􏼉, x4􏼈 􏼉〉, 〈e2, x1􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e3, x1, x3􏼈 􏼉, x4􏼈 􏼉〉, 〈e4, x1, x2􏼈 􏼉, x4, x5􏼈 􏼉〉, 〈e5, x1, x2􏼈 􏼉, x5􏼈 􏼉〉􏼈 􏼉

⟹ F1, G1, A( 􏼁∪ E F2, G2, B( 􏼁∩ E F3, G3, C( 􏼁􏼂 􏼃≠ F1, G1, A( 􏼁∪ E F2, G2, B( 􏼁􏼂 􏼃∩ E F1, G1, A( 􏼁∪ E F3, G3, C( 􏼁􏼂 􏼃.

(18)

Definition 20. Let (F1, G1, A) (F2, G2, B) ∈ (T − BSS)(U)

with A∩B≠∅. 'en,
(i) “Restricted union” of (F1, G1, A) and (F2, G2, B) is

designated and demarcated by

F1, G1, A( 􏼁∪ R F2, G2, B( 􏼁 � 〈c, F1(c)∪F2(c), G1(c)∩G2(c)〉: c ∈ A∩B􏼈 􏼉. (19)

(ii) “Restricted intersection” of (F1, G1, A) and
(F2, G2, B) is designated and demarcated by

F1, G1, A( 􏼁∩ R F2, G2, B( 􏼁 � 〈c, F1(c)∩F2(c), G1(c)∪G2(c)〉: c ∈ A∩B􏼈 􏼉. (20)

Proposition 3. For any T-BSSs (F1, G1, A), (F2, G2, B), and
(F3, G3, C),

(i) (F1, G1, A)∩ Rϕ � ϕ, (F1, G1, A)∪ R ϕ � (F1,

G1, A), (F1, G1, A)∩ RA � (F1, G1, A), (F1, G1,

A)∪ RA � A

(ii) (F1, G1, A)∩ R(F1, G1, A) � (F1, G1, A), (F1, G1,

A)∪ R(F1, G1, A) � (F1, G1, A)

(iii) (F1, G1, A)∩ R(F2, G2, B) � (F2, G2, B)∩ R(F1, G1,

A), (F1, G1, A)∪ R(F2, G2, B) � (F2, G2, B)∪ R(F1,

G1, A), (F1, G1, A)∪ R (F2, G2, B) � (F2, G2, B)∪ R

(F1, G1, A), (F1, G1, A)∪ R(F2, G2, B) � (F2, G2,

B)∪ R(F1, G1, A)

(iv) (F1, G1, A)∩ R[(F2, G2, B)∩ R(F3, G3, C)] � [(F1,

G1, A)∩ R(F2, G2, B)]∩ R (F3, G3, C), (F1, G1, A)

∪ R[(F2, G2, B)∪ R(F3, G3, C)] � [(F1, G1, A)∪ R

(F2, G2, B)]∪ R(F3, G3, C)

(v) (F1, G1, A) ∩ R[(F2, G2, B) ∪ R(F3, G3, C)] � [(F1,

G1, A) ∩ R(F2, G2, B)] ∪ R[(F1, G1, A) ∩ R(F3, G3,

C)], (F1, G1, A)∪ R[(F2, G2, B)∩ R(F3, G3, C)] �

[(F1, G1, A)∪ R(F2, G2, B)]∩ R[(F1, G1, A) ∪ R(F3,

G3, C)]

(vi) (F1, G1, A) ∩ R[(F2, G2, B) ∪ R(F1, G1, A)] � (F1,

G1, A), (F1, G1, A)∪ R[(F2, G2, B)∩ R(F1, G1, A)] �

(F1, G1, A)

(vii) [(F1, G1, A)c]c � (F1, G1, A), (F1, G1, A)∩ R[(F1,

G1, A)]c � ϕ, (F1, G1, A)∪ R[(F1, G1, A)]c � A

(viii) [(F1, G1, A) ∩ R(F2, G2, B)]c � [(F1, G1, A)]c ∪ R

[(F2, G2, B)]c, [(F1, G1, A) ∪ R(F2, G2, B)]c � [(F1,

G1, A)]c ∩ R[(F2, G2, B)]c
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Proof. Straightforward. □

4. Algebraic Structures Associated with T-BSSs

In this section, we will discuss some algebraic structures
associated with T-BSSs. Recall that (T − BSS)(U) denotes the
collection of all T-BSSs over U. Now in this section,
(T − BSS)A

(U) denotes the collection of all T-BSSs over U with
domain A.

Proposition 4. For any Δ ∈ ∩ E, ∪ E, ∩ R, ∪ R􏼈 􏼉,
((T − BSS)(U), Δ) is a commutative semigroup whose every
element is idempotent.

Proof. 'e proof is straightforward by using the Proposition
2 and Proposition 3. □

Proposition 5. ((T − BSS)(U), ∩ R, ∪ R) is a commutative
semiring.

Proof. 'e proof follows from the definitions of restricted
intersection of T-BSSs, restricted union of T-BSSs, and parts
(iv) and (v) of Proposition 3. □

Remark 4. It follows from Proposition 2 and Remark 3 that
((T − BSS)(U), ∩ E, ∪ E) is not a semiring.

Proposition 6. ((T − BSS)A
(U), ∩ E, ∪ E) is a commutative

semiring.

Proof. 'is is straightforward as extended intersection of
T-BSSs and extended union of T-BSSs satisfy the distributive
laws, which usually do not hold (Remark 3), if all the T-BSSs
have same domain A. □

Proposition 7. (T − BSS)(U), ∩ E, ∪ E,
c, (ϕ,A) is a bounded

lattice.

Proof. 'e result follows from conditions (i)–(v) of Prop-
osition 2. □

Proposition 8. (T − BSS)(U), ∩ R, ∪ R,
c, (ϕ,A) is a boun-

ded distributive lattice.

Proof. 'e result follows from Proposition 3. □

5. Applications of T-BSSs in Decision Making

In this section, we will discuss some decision-making
problems by using T-BSSs. We will discuss decision-making
problems in the absence of weights, in the presence of
weights selected randomly, and in the presence of weights
taken as discussed in [48].

Definition 21. Let A � a1, a2, a3, . . . , al􏼈 􏼉⊆E, X � x1, x2,􏼈

x3, . . . , xm}, Y � y1, y2, y3, . . . , yn􏼈 􏼉, and (F, G, A) be
corresponding T-BSS.'en, score of (ai, 1≤ i≤ l) is denoted
and defined as (Si � σi − σi ), where (σi � 􏽐j,kζ

∗
ijk) and

( σi � 􏽐j,kζ°ijk ).

Definition 22. Let A � a1, a2, a3, . . . , al􏼈 􏼉⊆E, X � x1, x2,􏼈

x3, . . . , xm}, Y � y1, y2, y3, . . . , yn􏼈 􏼉, and (F, G, A) be cor-
responding T-BSS.'en, (ai, 1≤ i≤ l) is said to be optimal if
and only if (Si > Si′), for all (i′ ≠ i).

Example 4. Consider Example 2 with (F, G, A) � 〈a1,􏼈

x1, x3􏼈 􏼉, y3􏼈 􏼉〉, 〈a2, x1, x2, x4􏼈 􏼉, y1􏼈 􏼉〉, 〈a3, x1,􏼈 x4}, y1,􏼈

y3}〉, 〈a4, x2, x3,􏼈 x4}, y2, y3􏼈 􏼉〉, 〈a5, x2, x4􏼈 􏼉, y2􏼈 􏼉〉}, with
tabular form as in Table 3.

'en, the score values are given in Table 4.
'en, according to the Algorithm 1, the candidate “a2”

will be selected.

Remark 5. Sometimes in decision making, some decision
makers have less importance as compared to other decision
makers, for example, to decide about admission policy of a
school, a meeting was called in which four persons partic-
ipated who were the school owner, school principal, school
vice principal, and accountant of the school. Now here it is
clear that all the decision makers have not the same
weightage. So, in decision making, the weightage of a de-
cision maker also matters a lot. So, now we establish an
algorithm to handle a decision-making problem in the
presence of weights.

Definition 23. Let A � a1, a2, a3, . . . , al􏼈 􏼉⊆E, X � x1, x2,􏼈

x3, . . . , xm}, and Y � y1, y2, y3, . . . , yn􏼈 􏼉 such that each xj

has weight wj and each yk has weight wk
′ with

􏽐jwj � 1&􏽐kwk
′ � 1. 'en, for all i, (Si � σi − σi ), where

σi � 􏽐j,kwj ζ
∗
ijk and σi � 􏽐j,kwk

′ ζ°ijk.

Remark 6. 'e above stated algorithm (Algorithm 1) also
works in the present case.

Example 5. Consider Example 4, with Table 5 representing
weight values and Table 6 representing score values.

'en, according to the new criteria, the candidate “a1”
will be selected.

Remark 7. According to Xu [48], the weight vector w �

(w1, w2, w3, . . . , wn)T can also be calculated as

wi �
e

− j− μn( )
2/2σ2n( 􏼁􏼂 􏼃

􏽐
n
j�1 e

− j− μn( )
2/2σ2n( 􏼁􏼂 􏼃

, (21)

where

μn �
1 + n

2
,

σn �

�����������

1
n

􏽘

n

i�1
i − μn( 􏼁

2

􏽶
􏽴

.

(22)

In this case, Example 5 takes the following form (Tables 7
and 8).

'en, in this case, the candidate “a2” will be selected.
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6. Conclusion and Future Prospective

Keeping in view the shortcoming in predefined notions of BSSs,
in this article, we have defined and discussed the notion of
T-BSS. 'en, rendering to new definition, we have defined
different binary operations for T-BSSs and then we conferred
some results associated with these binary operations. We evi-
denced the existence of bounded lattices and De Morgan

Table 3: Tabular expression of the T-bipolar soft set (F, G, A).

(F, G, A) (x1, y1) (x1, y2) (x1, y3) (x2, y1) (x2, y2) (x2, y3) (x3, y1) (x3, y2) (x3, y3) (x4, y1) (x4, y2) (x4, y3)

a1 (1, 0) (1, 0) (1, 1) (0, 0) (0, 0) (0, 1) (1, 0) (1, 0) (1, 1) (0, 0) (0, 0) (0, 1)
a2 (1, 1) (1, 0) (1, 0) (1, 1) (1, 0) (1, 0) (0, 1) (0, 0) (0, 0) (1, 1) (1, 0) (1, 0)
a3 (1, 1) (1, 0) (1, 1) (0, 1) (0, 0) (0, 1) (0, 1) (0, 0) (0, 1) (1, 1) (1, 0) (1, 1)
a4 (0, 0) (0, 1) (0, 1) (1, 0) (1, 1) (1, 1) (1, 0) (1, 1) (1, 1) (1, 0) (1, 1) (1, 1)
a5 (0, 0) (0, 1) (0, 0) (1, 0) (1, 1) (1, 0) (0, 0) (0, 1) (0, 0) (1, 0) (1, 1) (1, 0)

Table 4: Scores of a1, a2, a3, a4, a5.

(F, G, A) σi σi Si

a1 6 4 2
a2 9 4 5
a3 6 8 − 2
a4 9 8 1
a5 6 4 2

(1 Here we state an algorithm for finding an optimal value for a given data.
Step 1. Write given T-BSS in tabular form.

Step 2. Calculate S1, S2, S3, . . . , Sl.
Step 3. Put max

i
Si � Sp.

Step 4. Sp is optimal value.

ALGORITHM 1: Finding an optimal value for a given data.

Table 5: Weight values.

xj Weight of xj yk Weight of yk

x1 0.3 y1 0.4
x2 0.2 y2 0.4
x3 0.4 y3 0.2
x4 0.1 — —

Table 6: Scores of a1, a2, a3, a4, a5.

(F, G, A) σi σi Si

a1 2.1 0.8 1.3
a2 1.8 1.6 0.2
a3 1.2 2.4 − 1.2
a4 2.1 2.4 − 0.3
a5 0.9 1.6 − 0.7

Table 7: Weight values.

xj Weight of xj yk Weight of yk

x1 0.1550 y1 0.2429
x2 0.3450 y2 0.5142
x3 0.3450 y3 0.2429
x4 0.1550 — —

Table 8: Scores of a1, a2, a3, a4, a5.

(F, G, A) σi σi Si

a1 1.5 0.9716 0.5284
a2 1.965 0.9716 0.9934
a3 0.93 1.9432 − 1.0132
a4 2.535 3.0284 − 0.4934
a5 1.5 2.0568 − 0.5568
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algebras interrelated with these binary operations. We also
established some algorithms to solve decision-making problems
and then solved the problems from daily life by using these
algorithms. In future, this work can be extended to its appli-
cations in algebraic structures and in rough set theory.

Data Availability
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and anyone can use these data before prior permission by
just citing this article.
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)e purpose of this study is to propose an integrated distance-based methodology for multiple attribute group decision making
(MAGDM) within single-valued neutrosophic linguistic (SVNL) environments. A new SVNL distancemeasure, namely the SVNL
integrated weighted distance (SVNLIWD) measure, is first developed for achieving the aim. )e remarkable feature of the
SVNLIWD is that it integrates both merits of ordered weighting and average weighting into aggregating SVNL distances;
therefore, it can account for both the importance of aggregated deviations as well as ordered positions. )us, it can highlight the
decision makers’ subjective risk attitudes and combine the importance of objective decision information. Some distinctive
characteristics and special forms of the presented distance framework are then specifically studied. Moreover, a MAGDMmodel
on the basis of the proposed SVNLIWD form is formulated. Finally, an illustrative numerical case regarding selecting low-carbon
supplier is used to test the performance of the designed method.

1. Introduction

With the increasing vagueness and uncertainties of objects
in multiple attribute group decision making (MAGDM)
problems, people may find it more and more difficult to
express accurate evaluation on the attributes during decision
process. )erefore, it has become a hot issue in decision
making areas to research a scientific and reasonable tool for
handling such vague and uncertain information. Linguistic
term sets [1, 2], intuitionistic fuzzy sets (FSs) [3], hesitant FSs
[4], single-valued neutrosophic sets (SVNSs) [5], Pythago-
rean FSs [6], and spherical FSs [7] emerge at a historic
moment in recent years, which have been widely used to
express uncertainties or vagueness in various complex de-
cision making situations. )e emergence of these methods
greatly reduces the pressure of decision makers’ depiction of
the fuzziness of evaluation objects in the process of decision
making.

Generally speaking, due to the complexity of people’s
judgement and the fuzziness of objective things, people tend

to use language terms instead of actual values or fuzzy values.
However, the use of linguistic variables usually means that
the truth degree of a linguistic term is 1, while the degrees of
indeterminacy and falsity cannot be described. )is defect
hinders its application in decision making problems. To
improve this limitation, a new powerful fuzzy tool intro-
duced by Ye [8], called the single-valued neutrosophic
linguistic set (SVNLS), has attracted growing concerns from
worldwide authors. )e key feature of the SVNLS is that it
takes advantage of both the linguistic terms and SVNSs, and
thus, it can successfully describe the uncertain information
comprehensively and reasonably. In addition, it can elimi-
nate the limitations of intuitionistic linguistic set [9] and the
Pythagorean linguistic set [10] as it has three membership
(i.e., truth, indeterminacy, and falsity) elements, which
makes it more suitable to handle a higher degree of imprecise
evaluations.

From the latest research trends, it can be seen that the
SVNLS is widely used to deal with MAGDM problems in
uncertain and complex environments. Guo and Sun [11]
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gave a SVNL decision making using prospect theory. Zhao
et al. [12] developed some induced Choquet integral
weighted operators for SVNLS and explored their applica-
tion in MAGDM. Ye [8] extended the classic TOPSIS to
handle SVNL information and investigated its application in
selecting investment context. Ye [13] introduced several
neutrosophic linguistic aggregation methods and used them
to select the flexible operating system supplier. Wang et al.
[14] studied the usefulness of Maclaurin symmetric mean
technique in aggregating SVNL preferences. Chen et al. [15]
presented a new aggregated SVNL distance framework by
utilizing the ordered weight technique. Based on the results
obtained by Chen et al. [15], Cao et al. [16] introduced a
combined SVNL distance measure. Kazimieras et al. [17]
constructed a WASPAS model to solve SVNL MAGDM
problems. Garg and Nancy [18] introduced some prioritized
weighted methods to aggregate SVNL information with
priority among the attributes.

In MAGDM problems, it is often necessary to measure
the deviations between the alternatives and certain ideal
schemes, wherein the construction of the distance mea-
sure plays a decisive role. Until now, the weighted distance
(WD) and the ordered weighted averaging (OWAD)
measures [19] are two most widely used tools for reflecting
deviations in practical application. In general, the WD
measure can account for the importance of the attributes,
while the OWAD measure is helpful to highlight decision
makers’ risk attitude through the weight designing
schemes in the aggregation process. At present, numerous
OWAD’s extensions and their corresponding usefulness
in MAGDM problems have shown an increasing trend in
recent research, such as the induced OWAD [20, 21],
probabilistic OWAD [22], continuous OWAD [23],
intuitionistic fuzzy OWAD [24], hesitant fuzzy OWAD
[25, 26], intuitionistic fuzzy weighted induced OWAD
[27], and Pythagorean OWAD measures [28, 29]. In
particular, Chen et al. [15] defined the single-valued
neutrosophic linguistic OWAD (SVNLOWAD) measure
and explored its extension with the TOPSIS model for
handling MAGDM with SVNL information.

Following the previous literature analysis, one can see
that the SVNLS is regarded as a popularized tool, while the
OWAD measure is of great strategic significance mea-
surement tool and has shown its advantages in actual use.
)erefore, it is a very interesting topic to study the theo-
retical development and application of OWAD framework
in the SVNL context. For doing so, this paper tries to further
explore the usefulness of the OWAD in solving SVNL de-
cision making problems. To achieve this aim, we first de-
velop a new distance measure for SVNLSs, named the SVNL
integrated weighted distance (SVNLIWD)measure, which is
a useful extension of the existing SVNLOWAD measure.
Moreover, the SVNLIWDmeasure can overcome the defects
of the SVNLOWAD measure as it unifies the superiority of
the weighted distance and ordered weighted distance. Sev-
eral properties and main families of the proposed distance
measures are then explored. A MAGDM framework based
on the SVNLIWDmeasure is constructed and its application
is verified.

)e remainder of this research is carried out as follows:
Section 2 reviews some concepts of SVNLS and the OWAD
measure. Section 3 proposes the SVNLIWD measure and
explores some of its properties and families. Section 4mainly
describes the usefulness of the proposed SVNLIWD in
MAGDM field. In Section 5, feasibility and effectiveness of
the presentedmethod are discussed through comparing with
existing methods. Finally, Section 6 makes a systematic
summary of this paper.

2. Preliminaries

Some important concepts concerning the definitions of the
SVNLS, the OWAD, and the SVNLOWAD measures are
briefly reviewed in this section.

2.1. Single-Valued Neutrosophic Set (SVNS). To improve the
computational efficiency of the neutrosophic set [30], Ye [5]
gave the definition of SVNS.

Definition 1 (see [5]). A single-valued neutrosophic set
(SVNS) Z in finite set X is denoted by a mathematical form
as follows:

Z � 〈x, TZ(x), IZ(x), FZ(x)〉
􏼌􏼌􏼌􏼌 , x ∈ X􏽮 􏽯, (1)

where TZ(x), IZ(x), and FZ(x), respectively, denote the
truth, the indeterminacy, and the falsity-membership
functions, and they must satisfy the following conditions:

0≤TZ(x), IZ(x), FZ(x)≤ 1,

0≤TZ(x) + IZ(x) + FZ(x)≤ 3.
(2)

)e triplet (TZ(x), IZ(x), FZ(x)) is named SVN
number (SVNN) and simply described as Z � (TZ, IZ, FZ).
Let y � (Ty, Iy, Fy) and z � (Tz, Iz, Fz) be two SVNNs;
some mathematical operational rules are given as follows
[30]:

(1) y⊕ z � (Ty + Tz − Ty ∗Tz, Iy ∗Tz, Fy ∗Fz)

(2) λy � (1 − (1 − Ty)λ, (Iy)λ, (Fy)λ), λ> 0
(3) yλ � ((Ty)λ, 1 − (1 − Iy)λ, 1 − (1 − Fy)λ), λ> 0

2.2. Linguistic Set. A linguistic term set S is generally defined
as a finitely ordered discrete set S � sα | α � 1, . . . , l􏼈 􏼉, where
l is an odd number and sα is a possible linguistic term. Let
l � 7; then, S shall be specified
S � s1, s2, s3, s4, s5, s6, s7􏼈 􏼉 � {extremely poor, very poor, poor,
fair, good, very good, extremely good}. Let si and sj be two
linguistic terms in S, and they should meet the following
rules [1]:

(1) si ≤ sj⟺ i≤ j

(2) Neg(si) � s− i

In practical application, discrete set S shall be extended
into a continuous set S � sα | α ∈ R􏼈 􏼉 for minimizing in-
formation loss. In this case, for sα, sβ ∈ S, they shall meet the
following operational laws [31]:
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(1) sα ⊕ sβ � sα+β

(2) μsα � sμα, μ≥ 0
(3) (sα/sβ) � s(α/β)

2.3. Single-Valued Neutrosophic Linguistic Set (SVNLS)

Definition 2 (see [8]). )emathematical form of a SVNLS in
X is described as in

P � 〈x, sθ(x), TP(x), IP(x), FP(x)( 􏼁􏽨 􏽩〉
􏼌􏼌􏼌􏼌􏼌 , x ∈ X􏼚 􏼛,

(3)

where sθ(x) ∈ S, while Tp(x), Ip(x), and Fp(x) have the
following constraints:

0≤Tp(x), Ip(x), Fp(x)≤ 1,

0≤Tp(x) + Ip(x) + Fp(x)≤ 3.
(4)

For a SVNLS P in X, the SVNL number (SVNLN)
〈sθ(x), (TP(x), IP(x), FP(x))〉 is simply formulated as x �

〈sθ(x), (Tx, Ix, Fx)〉 for the convenience of application. Let
xi � 〈sθ(xi)

, (Txi
, Ixi

, Fxi
)〉(i � 1, 2) be two SVNLNs; then,

the following are considered:

(1) x1 ⊕ x2 � 〈sθ(x1)+θ(x2), (Tx1
+ Tx2

− Tx1
∗Tx2

, Ix1
∗

Tx2
, Fx1
∗Fx2

)〉

(2) λx1 � 〈sλθ(x1), (1 − (1 − Tx1
)λ, (Ix1

)λ, (Fx1
)λ)〉, λ> 0

(3) xλ
1 � 〈sθλ(x1)

, ((Tx1
)λ, 1 − (1 − Ix1

)λ, 1 − (1−

Fx1
)λ)〉, λ> 0

Definition 3 (see [8]). Let λ> 0; then, the distance measure
between SVNLNs xi � 〈sθ(xi)

, (Txi
, Ixi

, Fxi
)〉(i � 1, 2) is de-

fined as follows:

dSVNL x1, x2( 􏼁 � θ x1( 􏼁Tx1
− θ x2( 􏼁Tx2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ

+ θ x1( 􏼁Ix1
− θ x2( 􏼁Ix2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ

+ θ x1( 􏼁Fx1
− θ x2( 􏼁Fx2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ

􏼔 􏼕
(1/λ)

. (5)

On the basis of Definition 3, the SVNL weighted distance
(SVNLWD) measure is formulated in equation (6) if we
consider different importance for the individual deviation:

SVNLWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � 􏽘

n

j�1
wjdSVNL xj, xj

′􏼐 􏼑,

(6)

where the relative weight vector W satisfies wj ∈ [0, 1] and
􏽐

n
j�1 wj � 1.

2.4. OWAD Measure. )e OWAD measure introduced by
Merigó and Gil-Lafuente [19] is used to characterize indi-
vidual distances on the basis of the ordered weighted av-
eraging method [32]. Let η � η1, η2, . . . , ηn􏼈 􏼉 and
c � c1, c2, . . . , cn􏼈 􏼉 be two crisp sets and di � |ηi − ci| be the
distance between the crisp numbers ηi and ci; then, we can
define the OWAD measure as follows.

Definition 4 (see [19]). An OWAD measure with the
weighting vector W � wj | 􏽐

n
i�1 wj � 1, 0≤wj ≤ 1􏽮 􏽯 is

defined as

OWAD(A, B) � OWAD d1, . . . , dn( 􏼁 � 􏽘
n

j�1
wjdσ(j), (7)

where dσ(j)(j � 1, . . . , n) is the reorder values of
dj(j � 1, . . . , n), such that dσ(1) ≥ . . . ≥ dσ(n).

)e OWAD measure is generally effective for crisp sets.
In order to adapt the OWAD measure to deal with SVNL
information, Chen et al. [15] developed the SVNLOWAD
measure.

Definition 5 (see [15]). Let dSVNL(xj, xj
′) be the deviation

between two SVNLNs xj, xj
′ (j � 1, . . . , n) defined in

equation (5); then, SVNLOWAD measure is defined as

SVNLOWAD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � 􏽘

n

j�1
wjdSVNL xσ(j), x(j)

′􏼐 􏼑,

(8)

where dSVNL(xσ(j), xσ(j)
′) (j � 1, . . . , n) is the reorder

values of dSVNL(xj, xj
′) (j � 1, . . . , n) such that

dSVNL(xσ(1), xσ(1)
′)≥ . . . ≥dSVNL(xσ(n), xσ(n)

′).
w � (w1, . . . , wn)T is the associated weighting vector of the
SVNLOWAD measure, satisfying 􏽐

n
j�1 wj � 1 and

wj ∈ [0, 1].
Chen et al. [15] explored some characteristics of the

SVNLOWAD measure, such as commutativity, bounded-
ness, idempotency, and monotonicity. Moreover, they
verified its desired performance in solving SVNL MAGDM
problems by constructing a new TOPSIS model. However,
the SVNLOWADmeasure has some shortcomings; that is, it
can only integrate the decision makers’ special interests but
fails to account for the weights of attributes in aggregation
outcomes, which goes against its further application. So we
shall present a new SVNL distance measure in the next
section.

3. SVNL Integrated Weighted Distance
(SVNLIWD) Measure

)e SVNL integrated weighted distance (SVNLIWD) is a
new extension of SVNL distance that unifies both the merits
of the SVNLOWAD and the the SVNLWD measures.
)erefore, it can highlight the decision makers’ attitudes
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through the ordered weighted arguments and combine the
importance of attributes’ weights in decision making.
Moreover, it enables decision makers the chance to flexibly
change the weight ratio of the SVNLWD and the
SVNLOWAD according to the demands for the specific
problem or actual preferences.

Definition 6. Let dSVNL(xj, xj
′) be the distance between two

SVNLNs xj, xj
′(j � 1, . . . , n) described as in equation (5); if

SVNLIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � 􏽘

n

j�1
wjdSVNL xσ(j), x

’
(j)􏼐 􏼑,

(9)

then the SVNLIWD is called the SVNL integrated weighted
distance measure, where dSVNL(xσ(j), x’

σ(j)) (j � 1, . . . , n)

is the reorder values of dSVNL(xj, xj
′) (j � 1, . . . , n) such

that dSVNL(xσ(1), x’
σ(1))≥ . . . ≥ dSVNL(xσ(n), x’

σ(n)). )e in-
tegrated weightwj is determined by two weight values: one is
the weight wj for the OWA satisfying 􏽐

n
j�1 wj � 1 and

wj ∈ [0, 1], and the other is the weight ωj for weighted
average with 􏽐

n
j�1 ωj � 1 and ωj ∈ [0, 1]. )e unified weight

wj(j � 1, . . . , n) is defined as

wj �
w

θ
jω

1− θ
σ(j)

􏽘

n

j�1
w

θ
jω

1− θ
σ(j)􏼐 􏼑

,
(10)

with θ ∈ [0, 1] and ωσ(j) is the reordered element of the
weight ωj.

Following the Definition 6, one can see that the
SVNLIWD is generalized to the SVNLWD and SVNLO-
WAD measures when θ � 0 and θ � 1, respectively. )us,
the SVNLIWD measure is a generalized model that unifies
the SVNLWD, SVNLOWAD, and many other existing
distance measures. A mathematical example is utilized to
illustrate the computational process of the SVNLIWD
measure.

Example 1. Let X � (x1, x2, x3, x4, x5) � (〈s3, (0.6, 0.3,

0.1)〉, 〈s5, (0.2, 0.5, 0.5)〉, 〈s6, (0.7, 0.1, 0.1)〉, 〈s1, (0.6, 0.1,

0.6)〉, 〈s4, (0.3, 0.1, 0.9)〉) and X′ � (x1′, x2′, x3′, x4′, x5′) �

(〈s5, (0.2, 0.9, 0)〉, 〈s4, (0.5, 0.7, 0.2)〉, 〈s5, (0.4, 0.4, 0.5)〉,

〈s3, (0.5, 0.7, 0.2)〉, 〈s3, (0.4, 0.2, 0.6)〉) be two SVNLSs de-
fined in set S � s1, s2, s3, s4, s5, s6, s7􏼈 􏼉. )e weighting vector
of SVNLIWD measure is supposed to be
w � (0.3, 0.15, 0.25, 0.2, 0.1)T. )en, the computational
process through the SVNLUWD can be performed as
follows:

(1) Calculate distances dSVNL(xi, xi
′) (i � 1, 2, . . . , 5)

according to equation (5) (let λ � 1):

dSVNL x1, x1′( 􏼁 � |3 × 0.6 − 5 × 0.2| +|3 × 0.3 − 5 × 0.9| +|3 × 0.1 − 5 × 0| � 4.7,

dSVNL x2, x2′( 􏼁 � |5 × 0.2 − 4 × 0.5| +|5 × 0.5 − 4 × 0.7| +|5 × 0.5 − 4 × 0.2| � 3,

dSVNL x3, x3′( 􏼁 � |6 × 0.7 − 5 × 0.4| +|6 × 0.1 − 5 × 0.4| +|6 × 0.1 − 5 × 0.5| � 5.5,

dSVNL x4, x4′( 􏼁 � |1 × 0.6 − 3 × 0.5| +|1 × 0.1 − 3 × 0.7| +|1 × 0.6 − 3 × 0.2| � 2.9,

dSVNL x5, x5′( 􏼁 � |4 × 0.3 − 3 × 0.4| +|4 × 0.1 − 3 × 0.2| +|4 × 0.9 − 3 × 0.6| � 2.

(11)

(2) Sort the d(xi, xi
′) (i � 1, 2, . . . , 5) in nonincreasing

order:

dSVNL xσ(1), x
’
σ(1)􏼐 􏼑 � dSVNL x3, x3′( 􏼁 � 5.5,

dSVNL xσ(2), x
’
σ(2)􏼐 􏼑 � dSVNL x1, x1′( 􏼁 � 4.7,

dSVNL xσ(3), x
’
σ(3)􏼐 􏼑 � dSVNL x2, x2′( 􏼁 � 3,

dSVNL xσ(4), x
’
σ(4)􏼐 􏼑 � dSVNL x4, x4′( 􏼁 � 2.9,

dSVNL xσ(5), x
’
σ(5)􏼐 􏼑 � dSVNL x5, x5′( 􏼁 � 2.

(12)
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(3) Let ω � (0.15, 0.2, 0.1, 0.35, 0.2)T and θ � 0.5; com-
pute the integrated weights wj according to equation
(10):

w1 �
w

0.5
1 ω1− 0.5

σ(1)

􏽘

n

j�1
w

0.5
j ω1− 0.5

σ(j)􏼐 􏼑

�
0.30.5

× 0.10.5

0.30.5
× 0.10.5

+ 0.150.5
× 0.150.5

+ 0.250.5
× 0.20.5

+ 0.20.5
× 0.350.5

+ 0.10.5
× 0.20.5

􏼐 􏼑
� 0.1791.

(13)

Similarly, we can obtain

w2 � 0.1901,

w3 � 0.2183,

􏽢w4 � 0.2366,

w5 � 0.1757.

(14)

(4) Utilize the SVNLIWD given in equation (9) to
compute the distance measure between X and X′:

SVNLIWD X, X′( 􏼁 � 0.1791 × 5.5 + 0.1901 × 4.7

+ 0.2183 × 3 + 0.2366 × 2.9

+ 0.1757 × 2 � 3.5719.

(15)

If we use the SVNLOWAD and the SVNLWD to per-
form the aggregation process, we have

SVNLOWAD X, X′( 􏼁 � 0.3 × 5.5 + 0.15 × 4.7 + 0.25 × 3

+ 0.2 × 2.9 + 0.1 × 2 � 3.885,

SVNLWD X, X′( 􏼁 � 0.15 × 4.7 + 0.2 × 3 + 0.1 × 5.5

+ 0.35 × 2.9 + 0.2 × 2 � 3.27.

(16)

Apparently, we obtain different results from three
methods. In fact, the SVNLWD model only considers the
importance of the individual deviations, while the
SVNLOWAD focuses on the weights of the ordered devi-
ations. )e SVNLIWD measure unifies the features of both
the SVNLOWAD and the SVNLWD measures, and thus, it
can not only highlight the ordered weights of positions but
also incorporate deviations’ importance.

Moreover, some particular SVNL weighted distance
measures can be obtained if we sign different weighted
schemes for the SVNLIWD measure:

(i) If w1 � 1 and wj � 0 for j ∈ [2, n], then we obtain
the max-SVNLIWD measure

(ii) If wn � 1 and wj � 0 for j ∈ [1, n − 1], then the min-
SVNLIWD measure is constructed

(iii) )e step-SVNLIWD measure is formed by signing
w1 � . . . � wk− 1 � 0, wk � 1, and
wk+1 � . . . � wn � 0

(iv) Other special cases of the SVNLIWD can be created
by using the similar methods provided in references
[15, 33–36]

)e SVNLIWD measure is monotonic, bounded,
idempotent, and commutative, which can be demonstrated
by following theorems.

Theorem 1 (monotonicity). If dSVNL(yi, yi
′)≥ dSVNL(xi, xi

′)
for all i, then the following feature holds:

SVNLIWD y1, y1′( 􏼁, . . . , yn, yn
′( 􏼁( 􏼁≥ SVNLIWD x1, x1′( 􏼁,(

. . . , xn, xn
′( 􏼁􏼁.

(17)

Theorem 2 (boundedness). Let dmin � min
i

dSVNL(xi, xi
′)􏼈 􏼉

and dmax � max
i

dSVNL(xi, xi
′)􏼈 􏼉; then,

dmin ≤ SVNLIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁≤dmax. (18)

Theorem 3 (idempotency). If dSVNL(xi, xi
′) � D for all i,

then

SVNLIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � D. (19)

Theorem 4 (commutativity). <is property can also be
rendered from the following equation:

SVNLIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � SVNLIWD x1′, x1( 􏼁,(

. . . , xn
′, xn( 􏼁􏼁.

(20)

It is noted that the proof of these theorems are omitted as
they are straightforward.

In addition, we can utilize the generalized mean method
[37] to achieve a more generalization for SVNL distance
measure, obtaining the SVNL generalized integrated
weighted distance (SVNLGIWD) measure:
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SVNLGIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � 􏽘

n

j�1
wj dSVNL xσ(j), x

’
(j)􏼐 􏼑􏼐 􏼑

p
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/p)

, (21)

where p is a parameter that meets p ∈ (− ∞, +∞) − 0{ }.
Several representative cases of the SVNLGIWDmeasure can
be determined based on the variation of parameter p; for
example, the SVNLIWD is formed when p � 1, the SVNL
integrated weighted quadratic distance (SVNLIWQD) is
obtained if p � 2, and the SVNL integrated weighted har-
monic distance (SVNLIWHD) is rendered if p � − 1. Many
other cases of the SVNLGIWD measure can be analyzed by
using the similar method provided in references [37–43].

4. Application of SVNLIWD in
MAGDM Problems

As a more representative distance measurement method, the
SVNLIWD can be broadly used in different areas, such as
social management, pattern recognition, decision making,
data analysis, medical diagnosis, and financial investment.
Subsequently, an application of the SVNLIWD measure in
MAGDM is presented within SVNL environments. Let A �

A1,A2, . . . ,An􏼈 􏼉 be a set of finite attributes and
B � B1,B2, . . . ,Bm􏼈 􏼉 be the set of schemes; then, the decision
procedure is summarized as follows.

Step 1. Each expert et(t � 1, 2, . . . , k) (the weight is δt with
δt ≥ 0 and 􏽐

k
t�1 δt � 1) expresses his or her evaluation on

each attribute of the assessed objects in the form of SVNLNs,
thus forming the individual SVNL decision matrix
Xt � (x

(t)
ij )m×n.

Step 2. Apply the SVNL weighted average (SVNLWA)
operator [8] to aggregate all individual evaluations into a
group decision matrix:

X � xij􏼐 􏼑
m×n

�

x11 · · · x1n

⋮ ⋱ ⋮

xm1 · · · xmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (22)

where the SVNLN xij � 􏽐
k
t�1 δtx

(t)
ij .

Step 3. Determine the ideal gradation of each attribute to
construct the ideal solution shown in Table 1.

Step 4. Calculate the deviations between the alternative
Bi(i � 1, 2, ..., m) and the ideal alternative I by utilizing the
SVNLIWD measure.

Step 5. Rank all alternatives and select the best one(s)
according to the distances rendered from the previous step.

Step 6. End.

5. Application in Low-Carbon
Supplier Selection

)e green and low-carbon economic development mode has
received more and more attention from the governments
and enterprises all over the world. Choosing a suitable low-
carbon supplier has become an important issue for the
development of enterprises. As a result, many supplier se-
lection methods have been proposed in the existing litera-
ture [44, 45]. In this section, a mathematical case of selecting
a low-carbon supplier introduced by Chen et al. [15] is used
to verify the usefulness of the proposed method. A company
invites three experts to evaluate four potential low-carbon
suppliers Bi(i � 1, 2, 3, 4) from the following aspects: low-
carbon technology (A1), cost (A2), risk factor (A3), and
capacity (A4). )e SVNL decision matrices expressed by the
experts regarding these four attributes within set
S � s1, s2, s3, s4, s5, s6, s7􏼈 􏼉 are given in Tables 2–4.

)e weights of the experts are supposed to be δ1 � 0.30,
δ2 � 0.37, and δ3 � 0.33, respectively. )e group SVNL
decision matrix is then formed by aggregating the three
individual opinions, which are listed in Table 5.

According to the actual performance level of these al-
ternative companies, the experts determine the ideal scheme
listed in Table 6.

Let the weighting vectors of the SVNLIWDmeasure and
the attributes be w � (0.15, 0.3, 0.3, 0.25)T and
ω � (0.2, 0.3, 0.3, 0.2)T, respectively. According to the
available information, let the parameter θ � 0.5; then, the
SVNLIWD can be used to compute the deviations between
the alternative Bi(i � 1, 2, 3, 4) and the ideal supplier I:

SVNLIWD I, B1( 􏼁 � 5.0563,

SVNLIWD I, B2( 􏼁 � 5.7334,

SVNLIWD I, B3( 􏼁 � 6.5700,

SVNLIWD I, B4( 􏼁 � 6.5798.

(23)

)e smaller the value of SVNLIWD(I, Bi) is, the closer
the alternative Bi is to the ideal scheme and the better scheme
Bi is. )us, the ranking of all alternatives yields

B1≻B2≻B3≻B4. (24)

)e results show that B1 is the most desirable alternative
as it possesses the smallest distance from the ideal scheme.

To more effectively show the superiority of the
SVNLIWD measure, we also utilize the SVNLOWAD and
the SVNLWD measures to calculate the subsequent dis-
tances of each alternative to the ideal supplier. For the
SVNLOWAD measure, we have
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SVNLOWAD I, B1( 􏼁 � 5.0171,

SVNLOWAD I, B2( 􏼁 � 5.6742,

SVNLOWAD I, B3( 􏼁 � 6.5613,

SVNLOWAD I, B4( 􏼁 � 6.6086.

(25)

And for the SVNLWD measure, we have

SVNLWD I, B1( 􏼁 � 5.1268,

SVNLWD I, B2( 􏼁 � 5.8078,

SVNLWD I, B3( 􏼁 � 6.6038,

SVNLWD I, B4( 􏼁 � 6.5743.

(26)

Table 1: Ideal solution.

A1 A2 · · · An

I 􏽥y1 􏽥y2 . . . 􏽥yn

Table 2: SVNL decision matrix X1.

A1 A2 A3 A4

B1 〈s
(3)
5 , (0.7, 0.2, 0.1)〉 〈s

(3)
4 , (0.5, 0.2, 0.2)〉 〈s

(3)
3 , (0.4, 0.1, 0.1)〉 〈s

(3)
4 , (0.6, 0.1, 0.2)〉

B2 〈s
(3)
6 , (0.4, 0.6, 0.2)〉 〈s

(3)
4 , (0.7, 0.2, 0.2)〉 〈s

(3)
5 , (0.7, 0.2, 0.1)〉 〈s

(3)
5 , (0.5, 0.2, 0.3)〉

B3 〈s
(3)
4 , (0.3, 0.6, 0.2)〉 〈s

(3)
5 , (0.6, 0.1, 0.3)〉 〈s

(3)
4 , (0.6, 0.2, 0.1)〉 〈s

(3)
6 , (0.5, 0.1, 0.3)〉

B4 〈s
(3)
4 , (0.5, 0.2, 0.3)〉 〈s

(3)
6 , (0.6, 0.2, 0.4)〉 〈s

(3)
5 , (0.2, 0.1, 0.6)〉 〈s

(3)
6 , (0.5, 0.2, 0.3)〉

Table 3: SVNL decision matrix X2.

A1 A2 A3 A4

B1 〈s
(1)
6 , (0.6, 0.1, 0.2)〉 〈s

(1)
4 , (0.6, 0.1, 0.2)〉 〈s

(1)
3 , (0.3, 0.1, 0.2)〉 〈s

(1)
5 , (0.7, 0.0, 0.1)〉

B2 〈s
(1)
3 , (0.6, 0.2, 0.4)〉 〈s

(1)
5 , (0.6, 0.1, 0.2)〉 〈s

(1)
4 , (0.5, 0.2, 0.2)〉 〈s

(1)
6 , (0.6, 0.1, 0.2)〉

B3 〈s
(1)
5 , (0.3, 0.5, 0.2)〉 〈s

(1)
4 , (0.5, 0.2, 0.3)〉 〈s

(1)
3 , (0.5, 0.3, 0.1)〉 〈s

(1)
4 , (0.3, 0.2, 0.3)〉

B4 〈s
(1)
4 , (0.5, 0.3, 0.3)〉 〈s

(1)
5 , (0.4, 0.2, 0.3)〉 〈s

(1)
3 , (0.3, 0.2, 0.5)〉 〈s

(1)
5 , (0.4, 0.2, 0.3)〉

Table 4: SVNL decision matrix X3.

A1 A2 A3 A4

B1 〈s
(2)
6 , (0.6, 0.3, 0.3)〉 〈s

(2)
5 , (0.7, 0.2, 0.3)〉 〈s

(2)
4 , (0.4, 0.2, 0.2)〉 〈s

(2)
4 , (0.8, 0.1, 0.2)〉

B2 〈s
(2)
4 , (0.5, 0.4, 0.2)〉 〈s

(2)
6 , (0.7, 0.2, 0.3)〉 〈s

(2)
5 , (0.6, 0.2, 0.2)〉 〈s

(2)
6 , (0.7, 0.2, 0.3)〉

B3 〈s
(2)
5 , (0.4, 0.4, 0.1)〉 〈s

(2)
6 , (0.6, 0.3, 0.4)〉 〈s

(2)
4 , (0.6, 0.1, 0.3)〉 〈s

(2)
6 , (0.4, 0.2, 0.4)〉

B4 〈s
(2)
3 , (0.7, 0.1, 0.1)〉 〈s

(2)
6 , (0.5, 0.1, 0.2)〉 〈s

(2)
5 , (0.3, 0.1, 0.6)〉 〈s

(2)
5 , (0.4, 0.3, 0.4)〉

Table 5: Group SVNL decision matrix R.

A1 A2 A3 A4

C1 〈s5.70, (0.633, 0.180, 0.186)〉 〈s4.33, (0.611, 0.155, 0.229)〉 〈s3.67, (0.365, 0.128, 0.163)〉 〈s4.37, (0.714, 0.000, 0.155)〉

C2 〈s4.23, (0.514, 0.350, 0.258)〉 〈s4.70, (0.666, 0.155, 0.229)〉 〈s2.37, (0.602, 0.200, 0.162)〉 〈s5.70, (0.611, 0.155, 0.258)〉

C3 〈s4.70, (0.335, 0.491, 0.159)〉 〈s4.96, (0.566, 0.186, 0.330)〉 〈s3.37, (0.566, 0.185, 0.144)〉 〈s5.26, (0.399, 0.163, 0.330)〉

C4 〈s3.67, (0.578, 0.185, 0.209)〉 〈s5.63, (0.450, 0.159, 0.286)〉 〈s2.37, (0.271, 0.129, 0.561)〉 〈s5.30, (0.432, 0.229, 0.330)〉

Table 6: Ideal scheme.

A1 A2 A3 A4

I 〈s7, (0.9, 0.1, 0)〉 〈s7, (1, 0, 0.1)〉 〈s7, (0.9, 0, 0.1)〉 〈s6, (0.9, 0, 0)〉
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From the results, one can find that B1 is the best choice
for both the SVNLOWAD and SVNLWDmeasures, which is
consistent with the result obtained by the SVNLIWD
measure. However, from the comparisons with the
SVNLWD and SVNLOWAD measures discussed in the
previous example, one can see that the SVNLIWD measure
can not only overcome the SVNLWD’s disadvantage of just
considering the importance of attributes but also make up
for the SVNLOWAD’s defects of only reflecting expert’s risk
preference but fails to integrate attributes’ weights; therefore,
it can yield a more reasonable result. Furthermore, the
SVNLIWD-based MAGDM method will not be affected by
the parameter θ change, which can be verified by Figure 1.

Following the results from Figure 1, the best alternative is
A1 for all θ ∈ [0, 1]. It shows that the variation of parameter
θ will not affect the final integration results; that is, the
MAGDM approach based on the SVNLIWD will not be
affected by the parameter variation. )us, the proposed
method has certain stability and robustness.

6. Conclusions

)is paper introduces a new integrated aggregation distance
method for handling single-valued neutrosophic linguistic
MAGDM problems. )us, we obtain the SVNL integrated
weighted (SVNLIWD) measure. Given that the presented
distance measure generalizes both advantages of the arith-
metic weight and ordered weight approaches during ag-
gregating process, the importance for separate attributes and
attitudes towards ordered deviations is taken into account.
Moreover, the SVNLIWDmeasure generalizes a wide type of
SVNL distance measures, such as the SVNLWD and the
SVNLOWADmeasures.)erefore, it provides a much wider
model to solve complex situations in a more efficient and
flexible way, which further illustrates the promotion of the
previous methods. )e application of the proposed model is
taken to deal with the supplier selection problem, which

demonstrates that the presented methodology can consider
capricious decision makers’ preferences as well as the dif-
ferent importance of attributes during the decision process.
Finally, we verify that the presented SVNLIWD-based
MAGDM method will not be affected by the parameter
variation. )erefore, this method has certain stability and
robustness and can achieve more accurate results.

In future work, both extensions of mathematical formula
and application in different areas will be considered. Various
variables can be considered in the SVNLIWD for future
analysis, such as the induced variables, heavy aggregation,
and q-rung orthopair fuzzy set [46]. Also, the method of
entropy will be considered to account for the weighting
schemes.
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An m-polar fuzzy set is a powerful mathematical model to analyze multipolar, multiattribute, and multi-index data. 'e m-polar
fuzzy sets have appeared as a useful tool to portray uncertainty in multiattribute decision making. 'e purpose of this article is to
analyze the aggregation operators under the m-polar fuzzy environment with the help of Dombi norm operations. In this article,
we develop some averaging and geometric aggregation operators using Dombi t-norm and t-conorm to handle uncertainty in
m-polar fuzzy (mF, henceforth) information, which are mF Dombi weighted averaging (mFDWA) operator, mF Dombi ordered
weighted averaging (mFDOWA) operator, mF Dombi hybrid averaging (mFDHA) operator, mF Dombi weighted geometric
(mFDWG) operator, mF Dombi weighted ordered geometric operator, and mF Dombi hybrid geometric (mFDHG) operator. We
investigate properties, namely, idempotency, monotonicity, and boundedness, for the proposed operators. Moreover, we give an
algorithm to solve multicriteria decision-making issues which involve mF information with mFDWA and mFDWG operators. To
prove the validity and feasibility of the proposed model, we solve two numerical examples with our proposed models and give
comparison with mF-ELECTRE-I approach (Akram et al. 2019) and mF Hamacher aggregation operators (Waseem et al. 2019).
Finally, we check the effectiveness of the developed operators by a validity test.

1. Introduction

Multicriteria decisionmaking (MCDM) is performing a vital
role in different areas, including social, physical, medical,
and environmental sciences. MCDM methods are not only
used to determine a suitable object but also used to rank the
objects in an appointed problem. To solve different un-
certain problems for decision making, Atanassov [1] pre-
sented the concept of intuitionistic fuzzy set (IFS) which
considers both membership and nonmembership parts, an
extension of fuzzy set [2] in which simple membership part
is characterized.

Aggregation operators (AOs) perform an important
role in order to combine data into a single form and solve
MCDM problems. For example, Yager [3] introduced
weighted AOs. Xu [4] proposed some new AOs under

IFSs. Xu and Yager [5] developed certain new geometric
AOs and solved some real-world MCDM problems. From
the inspection of an object, it can be easily seen that there
exist two properties of the object which are opposite to
each other. With this perspective, Zhang [6] presented
the idea of bipolar fuzzy set (BFS). BFSs provide gen-
eralized structure as compared to fuzzy sets [2] whose
memberships belong to [− 1, 0] × [0, 1]. Bipolarity plays
an important role in different research areas and pro-
vides more flexibility as compared to the fuzzy methods.
In the last decades, a lot of researchers, attracted by this
efficient concept, applied it to aggregate bipolar infor-
mation using different t-norms and their corresponding
conorms, including Hamacher and Dombi t-norms and
their corresponding conorms. For example, Wei et al. [7]
developed some bipolar fuzzy Hamacher weighted
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averaging and geometric AOs. By combining Hamacher
operations and prioritized AOs, Gao et al. [8] proposed
dual hesitant bipolar fuzzy Hamacher prioritized
weighted AOs and applied the proposed methodologies
to an MCDM problem. Liu [9] utilized interval-valued
intuitionistic fuzzy numbers with Hamacher AOs and
developed multicriteria methods for group decision
making. Jana et al. [10] applied weighted, ordered
weighted, and hybrid average and geometric AOs for the
aggregation of bipolar fuzzy information using Dombi
t-conorm and t-norm. 'ey also proposed bipolar fuzzy
Dombi prioritized AOs in [11]. He [12] developed hes-
itant fuzzy Dombi AOs and investigated typhoon disaster
assessment using proposed theory. Xu and Wei [13]
introduced different dual hesitant bipolar fuzzy AOs to
solve MCDM problems. Xu [14] proposed intuitionistic
fuzzy power AOs for multiattribute group decision
making. Xiao [15] constructed induced interval-valued
intuitionistic fuzzy Hamacher AOs and discussed their
application to MCDM. Chen and Ye [16] discussed
MCDM problem under Dombi operations in single-
valued neutrosophic situation. Garg [17] presented some
generalized interactive AOs under Einstein operations in
Pythagorean fuzzy environment and discussed a deci-
sion-making issue. Akram et al. [18] proposed different
Pythagorean Dombi fuzzy AOs and studied their ap-
plications in MCDM. Shahzadi et al. [19] introduced
Pythagorean fuzzy Yager AOs for decision making. Peng
and Yang [20] investigated different basic properties of
interval-valued Pythagorean fuzzy AOs. Wang et al. [21]
introduced some new types of q-rung orthopair fuzzy
Hamy mean AOs to handle MCDM situations. Arora and
Garg [22] proposed robust AOs with an intuitionistic
fuzzy soft environment. Wang and Li [23] developed
Pythagorean fuzzy interaction power Bonferroni mean
AOs and discussed their applications to MCDM. Chi-
clana et al. [24] introduced some ordered weighted
geometric operators and solved a decision-making
problem. Liang et al. [25] developed Pythagorean fuzzy
Bonferroni mean AOs.

Nowadays, experts believe that multipolarity per-
forms a vital role in many practical situations. Due to the
presence of multipolar data in different daily life prob-
lems of science and technology, Chen et al. [26] initiated
the notion of mF set theory as generalization of fuzzy and
bipolar fuzzy sets. Waseem et al. [27] studied recently
MCDM problems based on mF Hamacher AOs. Kha-
meneh and Kilicman [28] proposed mF soft weighted
AOs and applied these AOs in decision making. In view
of the fact that mF sets have an efficient strength to
handle vague data which arise in several real-life prob-
lems, in this paper, we generalize Dombi AOs to ag-
gregate the mF information. 'e study of AOs under
Dombi operations is very popular. 'us, an efficient
research topic is how to aggregate mF numbers with
Dombi operations. To tackle this dilemma, in this article,

we present some mF Dombi AOs on the ground of
classical geometric, arithmetic, and Dombi operations.
For more information and terminologies on AOs, the
readers are referred to [29–45].

An mF model is more general than the fuzzy sets and
BFSs due to the wider range of applicability over different
complex problems. 'e mF sets can handle much more
details about an element and can explain uncertainties
concurrently more precisely than the other existing
methods, like fuzzy set and BFS. 'e motivation of devel-
oped AOs is summarized as below.

(1) A very difficult MCDM problem is the estimation of
the supreme option in an mF environment due to the
involvement of several imprecise factors. Assessment
of information in different MCDM techniques is
simply depicted through fuzzy and bipolar fuzzy
numbers which may not consider all the data in a
real-world problem.

(2) As a general theory, mF numbers describe efficient
execution in the assessment process about un-
certain, imprecise, and vague multipolar infor-
mation. 'us, mF theory provides an excellent
approach for the assessment of objects under
multinary data.

(3) In view of the fact that Dombi AOs are simple but
provide a pioneering tool for solving MCDM
problems when combined with other powerful
mathematical tools, this article aims to develop
Dombi AOs in an mF environment to handle
complex problems.

(4) An mF model is different from the mathematical
tools like fuzzy sets and BFSs because the fuzzy set
and BFS can only handle one-dimensional data and
two-dimensional data, respectively, which may
prompt a loss in data. Nevertheless, in many daily life
problems, we handle the situations having higher
dimension to sort out all the attributes and their
subcharacteristics.

(5) 'e Dombi AOs employed in the construction of
mF Dombi AOs are more suitable than all other
aggregation approaches to tackle the MCDM sit-
uations as developed AOs have ability to consider
all the information within the aggregation
procedure.

(6) Dombi AOs make the optimal outcomes more ac-
curate and definite when utilized in practical MCDM
problems under mF environment.

(7) 'e proposed mF Dombi operators handle the
drawbacks of existing AOs, including bipolar fuzzy
Dombi AOs [10].

'erefore, somemFDombi AOs are developed to choose
the best option in different decision-making situations. 'e
developed operators have some advantages over other ap-
proaches which are given as follows:
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(1) Our proposed methods explain the problems more
accurately which involve multiple attributes because
they consider mF numbers.

(2) 'e developed AOs are more precise and efficient
with single attribute.

(3) To solve practical problems by using Dombi AOs
with mF numbers is very significant.

'e rest of this article is structured as follows. Section 2
recalls some fundamental definitions and operations of the
mF numbers (mFNs). Section 3 presents mFDWA,
mFDOWA, mFDHA, mFDWG, mFDOWG, and mFDHG
operators. Section 4 develops a methodology of these AOs to
model mF MCDM problems. Section 5 discusses two ap-
plications: first for the selection of best agricultural land and
second for the selection of best commercial bank. Section 6
provides comparative analysis of developed approaches with
mF ELECTRE-I model [46] and mF Hamacher AOs [27].
Section 7 discusses the conclusions and future directions.

2. Preliminaries

Definition 1 (see [26]). An mF set on a universal set U is a
mapping ζ: U⟶ [0, 1]m. 'e membership of every object
is described by ζ(u) � (p1 ∘ ζ(u), p2 ∘ ζ(u), . . . , pm ∘ ζ(u))

where pr ∘ ζ: [0, 1]m⟶ [0, 1] is the r-th projection
mapping.

Let 􏽢ζ � (p1 ∘ ζ, . . . , pm ∘ ζ) be an mFN, where
pr ∘ ζ ∈ [0, 1], ∀r � 1, 2, . . . , m. We define the score and
accuracy functions of 􏽢ζ, respectively, as follows.

Definition 2 (see [27]). For an mFN 􏽢ζ � (p1 ∘ ζ, . . . , pm ∘ ζ),
we define a score function S as follows:

S(􏽢ζ) �
1
m

􏽘

m

r�1
pr ∘ ζ( 􏼁⎛⎝ ⎞⎠, S(􏽢ζ) ∈ [0, 1]. (1)

Definition 3 (see [27]). For an mFN 􏽢ζ � (p1 ∘ ζ, . . . , pm ∘ ζ),
an accuracy function H is defined as

H(􏽢ζ) �
1
m

􏽘

m

r�1
(− 1)

r+1
pr ∘ ζ − 1( 􏼁⎛⎝ ⎞⎠, H(􏽢ζ) ∈ [− 1, 1].

(2)

From Definitions 2 and 3, it can be readily seen that for
any mFN 􏽢ζ, S(􏽢ζ) ∈ [0, 1] and H(􏽢ζ) ∈ [− 1, 1]. Notice that
H(􏽢ζ) represents the accuracy degree of 􏽢ζ. 'us, a higher
value of H(􏽢ζ) represents a higher accuracy degree for mFN
􏽢ζ.

Using Definitions 2 and 3, we now give the following
ordered relation criteria for any two mFNs.

Definition 4 (see [27]). Let 􏽢ζ1 � (p1 ∘ ζ1, . . . , pm ∘ ζ1) and
􏽢ζ2 � (p1 ∘ ζ2, . . . , pm ∘ ζ2) be two mFNs. 'en,

(1) 􏽢ζ1 < 􏽢ζ2, if S(􏽢ζ1)< S(􏽢ζ2).

(2) 􏽢ζ1 > 􏽢ζ2, if S(􏽢ζ1)> S(􏽢ζ2).
(3) 􏽢ζ1 � 􏽢ζ2, if S(􏽢ζ1) � S(􏽢ζ2) andH(􏽢ζ1) � H(􏽢ζ2).
(4) 􏽢ζ1 < 􏽢ζ2, if S(􏽢ζ1) � S(􏽢ζ2), butH(􏽢ζ1)<H(􏽢ζ2).
(5) 􏽢ζ1 > 􏽢ζ2, if S(􏽢ζ1) � S(􏽢ζ2), butH(􏽢ζ1)>H(􏽢ζ2).

Some basic operations for mFNs are given by [27]

(1) 􏽢ζ1⊞􏽢ζ2 � (p1 ∘ ζ1 + p1 ∘ ζ2 − p1 ∘ ζ1.p1 ∘ ζ2, . . . , pm

∘ ζ1 + pm ∘ ζ2 − pm ∘ ζ1.pm ∘ ζ2).
(2) 􏽢ζ1⊠􏽢ζ2 � (p1 ∘ ζ1.p1 ∘ ζ2, . . . , pm ∘ ζ1.pm ∘ ζ2).
(3) β􏽢ζ � (1 − (1 − p1 ∘ ζ)

β), . . . , 1 − (1 − pm ∘ ζ)β),

β> 0.
(4) (􏽢ζ)β � ((p1 ∘ ζ)β, . . . , (pm ∘ ζ)β), β> 0.
(5) 􏽢ζ

c
� (1 − p1 ∘ ζ, . . . , 1 − pm ∘ ζ).

(6) 􏽢ζ1 ⊆ 􏽢ζ2, if and only if
p1 ∘ ζ1 ≤p1 ∘ ζ2, . . . , pm ∘ ζ1 ≤pm ∘ ζ2.

(7) 􏽢ζ1∪􏽢ζ2 � (max(p1 ∘ ζ1, p1 ∘ ζ2), . . . , max(pm ∘ ζ1,
pm ∘ ζ2)).

(8) 􏽢ζ1∩􏽢ζ2 � (min(p1 ∘ ζ1, p1 ∘ ζ2), . . . , min
(pm ∘ ζ1, pm ∘ ζ2)).

Theorem 1 (see [27]). For two mFNs
􏽢ζ1 � (p1 ∘ ζ1, . . . , pm ∘ ζ1(u)) and 􏽢ζ2 � (p1 ∘ ζ2, . . . , pm ∘ ζ2)
with β, β1, β2 > 0, we have

(1) 􏽢ζ1⊞􏽢ζ2 � 􏽢ζ2⊞􏽢ζ1.
(2) 􏽢ζ1⊠􏽢ζ2 � 􏽢ζ2⊠􏽢ζ1.
(3) β(􏽢ζ1⊞􏽢ζ2) � β(􏽢ζ1)⊞β(􏽢ζ2).
(4) (􏽢ζ1⊠􏽢ζ2)

β � (􏽢ζ1)
β⊞(􏽢ζ2)

β.
(5) β1􏽢ζ1⊞β2􏽢ζ1 � (β1 + β2)􏽢ζ1.
(6) (􏽢ζ1)

β1⊠(􏽢ζ2)
β2 � (􏽢ζ1)

β1+β2 .
(7) ((􏽢ζ1)

β1)β2 � (􏽢ζ1)
β1β2 .

Dombi [47] proposed operations, namely, Dombi sum ⊕
and Dombi product ⊗, which are, respectively, t-conorm and
t-norm given by

D
∗
(a, b) � a⊕b � 1 −

1

1 + (a/1 − a)k +(b/1 − b)k
􏽮 􏽯

1/k,

D(a, b) � a⊗b �
1

1 + (1 − a/a)k +(1 − b/b)k
􏽮 􏽯

1/k,

(3)

where k≥ 1 and a, b ∈ [0, 1].

3. mF Dombi AOs

In this section, we first give Dombi operations for mFNs via
Dombi t-conorm and Dombi t-norm and then we present
mF Dombi arithmetic and geometric AOs. Let
􏽢ζ1 � (p1 ∘ ζ1, . . . , pm ∘ ζ1), 􏽢ζ2 � (p1 ∘ ζ2, . . . , pm ∘ ζ2) and
􏽢ζ � (p1 ∘ ζ, . . . , pm ∘ ζ) be mFNs.We give some fundamental
Dombi operations of mFNs as follows:
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􏽢ζ1⊕􏽢ζ2 � 1 −
1

1 + p1 ∘ ζ1/1 − p1 ∘ ζ1( 􏼁
k

+ p1 ∘ ζ2/1 − p1 ∘ ζ2( 􏼁
k

􏽮 􏽯
1/k, . . . , 1 −

1

1 + pm ∘ ζ1/1 − pm ∘ ζ1( 􏼁
k

+ pm ∘ ζ2/1 − pm ∘ ζ2( 􏼁
k

􏽮 􏽯
1/k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

􏽢ζ1⊗􏽢ζ2 �
1

1 + 1 − p1 ∘ ζ1/p1 ∘ ζ1( 􏼁
k

+ 1 − p1 ∘ ζ2/p1 ∘ ζ2( 􏼁
k

􏽮 􏽯
1/k, . . . ,

1

1 + 1 − pm ∘ ζ1/pm ∘ ζ1( 􏼁
k

+ 1 − pm ∘ ζ2/pm ∘ ζ2( 􏼁
k

􏽮 􏽯
1/k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

β􏽢ζ � 1 −
1

1 + β p1 ∘ ζ/1 − p1 ∘ ζ( 􏼁
k

􏽮 􏽯
1/k, . . . , 1 −

1

1 + β pm ∘ ζ/1 − pm ∘ ζ( 􏼁
k

􏽮 􏽯
1/k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(􏽢ζ)
β

� 1 −
1

1 + β 1 − p1 ∘ ζ/p1 ∘ ζ( 􏼁
k

􏽮 􏽯
1/k, . . . , 1 −

1

1 + β 1 − pm ∘ ζ/pm ∘ ζ( 􏼁
k

􏽮 􏽯
1/k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(4)

where k> 0.

3.1. mF Dombi Arithmetic AOs. We present mF Dombi
arithmetic AOs as follows.

Definition 5. For a collection of mFNs
􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj) where j � 1, 2, . . . , n, a mapping
from 􏽢ζ

n
to 􏽢ζ is called an mFDWA operator, which is given by

mFDWAΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � ⊕nj�1 Θj
􏽢ζj􏼐 􏼑,􏼐 (5)

whereΘ � (Θ1,Θ2, . . . ,Θn)T denotes the weights of 􏽢ζj, ∀j �

1, . . . , n and Θj > 0 with 􏽐
n
j�1Θj � 1.

We give the following theorem, which is used to apply
the Dombi operations on mFNs.

Theorem 2. For a collection of mFNs
􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj) where j � 1, 2, . . . , n, an accumu-
lated value of these mFNs using the mFDWA operators is
defined as

mFDWAΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn􏼐 􏼑 � ⊕nj�1 Θj
􏽢ζj􏼐 􏼑,

� 1 −
1

1 + 􏽐
n
j�1Θj p1 ∘ ζj/1 − p1 ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
j�1Θj pm ∘ ζj/1 − pm ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(6)

Proof. We utilize the induction approach to show it. Case 1. For n � 1, by equation (6), we obtain

mFDWAΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn􏼐 􏼑 � Θ1􏽢ζ1 � 􏽢ζ1, sinceΘ1 � 1( 􏼁

� 1 −
1

1 + p1 ∘ ζ1/1 − p1 ∘ ζ1( 􏼁
k

􏽮 􏽯
1/k, . . . , 1 −

1

1 + pm ∘ ζ1/1 − pm ∘ ζ1( 􏼁
k

􏽮 􏽯
1/k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.
(7)

Hence, equation (6) satisfies when n � 1. Case 2. Now, we presume that equation (6) satisfies for n � t;
here t is an arbitrary natural number; then,

mFDWAΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζt􏼐 􏼑 � ⊕tj�1 Θj
􏽢ζj􏼐 􏼑,

� 1 −
1

1 + 􏽐
t
j�1Θj p1 ∘ ζj/1 − p1 ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
t
j�1Θj pm ∘ ζj/1 − pm ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(8)

For n � t + 1,
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mFDWAΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζt,
􏽢ζt+1􏼐 􏼑 � ⊕tj�1 Θj

􏽢ζj􏼐 􏼑⊕ Θt+1
􏽢ζt+1􏼐 􏼑,

� 1 −
1

1 + 􏽐
t
j�1Θj p1 ∘ ζj/1 − p1 ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
t
j�1Θj pm ∘ ζj/1 − pm ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕ 1 −
1

1 + Θt+1 p1 ∘ ζt+1/1 − p1 ∘ ζt+1( 􏼁
k

􏽮 􏽯
1/k, . . . , 1 −

1

1 + Θt+1 pm ∘ ζt+1/1 − pm ∘ ζt+1( 􏼁
k

􏽮 􏽯
1/k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� 1 −
1

1 + 􏽐
t+1
j�1Θj p1 ∘ ζj/1 − p1 ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
t+1
j�1Θj pm ∘ ζj/1 − pm ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(9)

'erefore, equation (6) satisfies for n � t + 1. Hence, we
deduce that equation (6) satisfies for every natural number
n. □

Example 1. Let 􏽢ζ1 � (0.4, 0.3, 0.8), 􏽢ζ2 � (0.3, 0.5, 0.1), 􏽢ζ3 �

(0.7, 0.2, 0.4), and 􏽢ζ4 � (0.5, 0.4, 0.6) be 3FNs and
Θ � (0.2, 0.3, 0.1, 0.4)T be weights related to these 3FNs.
'en, for k � 3,

mFDWAΘ 􏽢ζ1, 􏽢ζ2, 􏽢ζ3􏼐 􏼑 � ⊕3j�1 Θj
􏽢ζj􏼐 􏼑

� 1 −
1

1 + 􏽐
n
j�1Θj p1 ∘ ζj/1 − p1 ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
j�1Θj pm ∘ ζj/1 − pm ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1 −
1

1 + 0.2 ×(0.4/1 − 0.4)3 + 0.3 ×(0.3/1 − 0.3)3 + 0.1 ×(0.7/1 − 0.7)3 + 0.4 ×(0.5/1 − 0.5)3􏼐 􏼑
1/3,

⎛⎜⎝

1 −
1

1 + 0.2 ×(0.3/1 − 0.3)3 + 0.3 ×(0.5/1 − 0.5)3 + 0.1 ×(0.2/1 − 0.2)3 + 0.4 ×(0.4/1 − 0.4)3􏼐 􏼑
1/3,

1−
1

1 + 0.2 ×(0.8/1 − 0.8)3 + 0.3 ×(0.1/1 − 0.1)3 + 0.1 ×(0.4/1 − 0.4)3 + 0.4 ×(0.6/1 − 0.6)3􏼐 􏼑
1/3

⎞⎟⎠,

� (0.5467, 0.4312, 0.7076).

(10)

We now explore some useful laws of mFDWA operators
as follows.

Theorem 3 (idempotent law). Let 􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj)

be a family of “n” mFNs, which are equal, i.e., 􏽢ζj � 􏽢ζ; then,

mFDWAΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � 􏽢ζ.􏼐 (11)

Proof. Since 􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj) � 􏽢ζ, where
j � 1, . . . , n, then by equation (6),
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mFDWAΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn􏼐 􏼑 � ⊕nj�1 Θj
􏽢ζj􏼐 􏼑,

� 1 −
1

1 + 􏽐
n
j�1Θj p1 ∘ ζj/1 − p1°ζ j􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
j�1Θj pm ∘ ζj/1 − pm°ζ j􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

� 1 −
1

1 + p1 ∘ ζ/1 − p1 ∘ ζ( 􏼁
k

􏽮 􏽯
1/k, . . . , 1 −

1

1 + pm ∘ ζ/1 − pm ∘ ζ( 􏼁
k

􏽮 􏽯
1/k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

� p1 ∘ ζ, p2 ∘ ζ, . . . , pm ∘ ζ( 􏼁, for k � 1

� 􏽢ζ.

(12)

Hence, mFDWAΘ( 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � 􏽢ζ holds if 􏽢ζj � 􏽢ζ, for
all “j” varies from 1 to n. □

Theorem 4 (bounded law). Let 􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj) be
a collection of “n” mFNs, 􏽢ζ

−
� ∩nj�1(ζj), and 􏽢ζ

+
� ∪nj�1(ζj);

then,

􏽢ζ
−
≤mFDWAΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn)≤ 􏽢ζ

+
.􏼒 (13)

Theorem 5 (monotonic law). For two collections of mFNs 􏽢ζj

and 􏽢ζj
′, j � 1, 2, . . . , n, if 􏽢ζj ≤ 􏽢ζj

′,

mFDWAΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn)≤mFDWAΘ 􏽢ζ1′, 􏽢ζ2′, . . . , 􏽢ζn
′􏼒 􏼓.􏼒

(14)

Now, we present mFDOWA operator.

Definition 6. For a collection of mFNs
􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj), j � 1, 2, . . . , n, an mFDOWA
operator is a function mFDOWA: 􏽢ζ

n
⟶ 􏽢ζ, which is given

by

mFDOWAw
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � ⊕nj�1 wj

􏽢ζσ(j)􏼐 􏼑,􏼐 (15)

where w � (w1, w2, . . . , wn)T denotes the weights and
wj ∈ (0, 1] with 􏽐

n
j�1 wj � 1. σ(j), (j � 1, 2, . . . , n) repre-

sents the permutation, for which 􏽢ζσ(j− 1) ≥ 􏽢ζσ(j).

Theorem 6. For a collection of mFNs
􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj) where j � 1, 2, . . . , n, an accumu-
lated value of these mFNs using the mFDOWA operators is
defined as

mFDOWAw
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn􏼐 􏼑 � ⊕nj�1 wj

􏽢ζσ(j)􏼐 􏼑

� 1 −
1

1 + 􏽐
n
j�1 wj p1 ∘ ζσ(j)/1 − p1 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
j�1 wj pm ∘ ζσ(j)/1 − pm ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(16)

Example 2. Let 􏽢ζ1 � (0.4, 0.5, 0.3, 0.8), 􏽢ζ2 � (0.3, 0.4, 0.1,

0.7), and 􏽢ζ3 � (0.8, 0.7, 0.6, 0.4) be 4FNs with weights w �

(0.3, 0.1, 0.6)T.'en, for k � 3, we compute the score values as

S 􏽢ζ1􏼐 􏼑 �
0.4 + 0.5 + 0.3 + 0.8

4
� 0.5,

S 􏽢ζ2􏼐 􏼑 �
0.3 + 0.4 + 0.1 + 0.7

4
� 0.375,

S 􏽢ζ3􏼐 􏼑 �
0.8 + 0.7 + 0.6 + 0.4

4
� 0.625.

(17)

Since S(􏽢ζ3)> S(􏽢ζ1)> S(􏽢ζ2),

􏽢ζσ(1) � 􏽢ζ3 � (0.8, 0.7, 0.6, 0.4),

􏽢ζσ(2) � 􏽢ζ1 � (0.4, 0.5, 0.3, 0.8),

􏽢ζσ(3) � 􏽢ζ2 � (0.3, 0.4, 0.1, 0.7).

(18)

'en, from Definition 6,
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mFDOWAw
􏽢ζ1, 􏽢ζ2, 􏽢ζ3􏼐 􏼑 � ⊕3j�1 wj

􏽢ζσ(j)􏼐 􏼑,

� 1 −
1

1 + 􏽐
n
j�1 wj p1 ∘ ζσ(j)/1 − p1 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
j�1 wj pm ∘ ζσ(j)/1 − pm ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

� 1 −
1

1 + 0.3 ×(0.8/1 − 0.8)3 + 0.1 ×(0.4/1 − 0.4)3 + 0.6 ×(0.3/1 − 0.3)3􏼐 􏼑
1/3,

⎛⎜⎝

1−
1

1 + 0.3 ×(0.7/1 − 0.7)3 + 0.1 ×(0.5/1 − 0.5)3 + 0.6 ×(0.4/1 − 0.4)3􏼐 􏼑
1/3,

1−
1

1 + 0.3 ×(0.6/1 − 0.6)3 + 0.1 ×(0.3/1 − 0.3)3 + 0.6 ×(0.1/1 − 0.1)3􏼐 􏼑
1/3,

1−
1

1 + 0.3 ×(0.4/1 − 0.4)3 + 0.1 ×(0.8/1 − 0.8)3 + 0.6 ×(0.7/1 − 0.7)3􏼐 􏼑
1/3

⎞⎟⎠,

� (0.7284, 0.6152, 0.5017, 0.7073).

(19)

Remark 1. Note thatmFDOWAoperators satisfy properties,
namely, idempotency, boundedness, and monotonicity, as
described in 'eorems 3, 4, and 5.

Theorem 7 (commutative law). For any two collections of
mFNs 􏽢ζj and 􏽢ζj

′j � 1, 2, . . . , n, we get

mFDOWAw
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � mFDOWζw

􏽢ζ1′, 􏽢ζ2′, . . . , 􏽢ζn
′􏼒 􏼓,􏼒

(20)

where 􏽢ζj
′ is any permutation of 􏽢ζj.

We see that mFDWA and mFDOWA operators aggregate
weighted mFNs and their ordering, respectively. Now, we
develop a novel operator called mFDHA operator, which
obtains the properties of both mFDWA and mFDOWA
operators.

Definition 7. For a family of mFNs
􏽢ζj � (p1 ∘ ζj, p2 ∘ ζj, . . . , pm ∘ ζj), j � 1, 2, . . . , n, an mFDHA
operator is defined as

mFDHAw,Θ
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � ⊕nj�1 wj

􏽥􏽢ζσ(j)􏼒 􏼓,􏼒 (21)

where w � (w1, w2, . . . , wn)T denotes the weights corre-
sponding to the mFNs 􏽢ζj with the conditions
wj ∈ (0, 1], 􏽐

n
j�1 wj � 1, 􏽥􏽢ζσ(j) is the jth biggest mFN,

􏽥􏽢ζσ(j) � (nΘj)
􏽢ζj, (j � 1, 2, . . . , n), and Θ � (Θ1,Θ2, . . . ,Θn)

is a vector having weights, with Θj ∈ (0, 1], 􏽐
n
j�1Θj � 1.

Notice that when w � ((1/n), (1/n), . . . , (1/n)), mFDHA
operator converts into mFDWA operator. If
Θ � ((1/n), (1/n), . . . , (1/n)), then mFDHA operator be-
comes mFDOWA operator. 'us, mFDHA operator is a
generalization for both operators, mFDWA and mFDOWA,
which describes the degrees and ordering of mFNs.

'e following theorem can be readily showed by same
steps as in 'eorem 2.

Theorem 8. For a collection of mFNs
􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj) where j � 1, 2, . . . , n, an accumu-
lated score of these mFNs using the mFDHA operators is
defined as

mFDHAw,Θ
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn􏼐 􏼑 � ⊕nj�1 wj

􏽥􏽢ζσ(j)􏼒 􏼓,

� 1 −
1

1 + 􏽐
n
j�1 wj p1 ∘ ζσ(j)/1 − p1 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
j�1 wj pm ∘ ζσ(j)/1 − pm ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(22)

Journal of Mathematics 7



Example 3. Let 􏽢ζ1 � (0.7, 0.3, 0.5), 􏽢ζ2 � (0.2, 0.5, 0.7),
􏽢ζ3 � (0.8, 0.2, 0.1), and 􏽢ζ4 � (0.6, 0.7, 0.9) be 3FNs with
w � (0.2, 0.3, 0.1, 0.4)T, a weight vector corresponding to

given 3FNs, and a vector Θ � (0.3, 0.1, 0.4, 0.2)T having
weights. 'en, by Definition 7, for k � 3,

􏽥􏽢ζ1 � 1 −
1

1 + nΘ1 p1 ∘ ζ1/1 − p1°ζ1( 􏼁
k

􏽮 􏽯
1/k, . . . , 1 −

1

1 + nΘ1 p3 ∘ ζ1/1 − p3°ζ1( 􏼁
k

􏽮 􏽯
1/k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

� 1 −
1

1 + 4 × 0.3 ×(0.7/1 − 0.7)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.3 ×(0.3/1 − 0.3)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.3 ×(0.5/1 − 0.5)3􏼐 􏼑
1/3

⎛⎜⎝ ⎞⎟⎠,

� (0.7126, 0.3129, 0.5152).

(23)

Similarly,

􏽥􏽢ζ2 � 1 −
1

1 + 4 × 0.1 ×(0.2/1 − 0.2)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.1 ×(0.5/1 − 0.5)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.1 ×(0.7/1 − 0.7)3􏼐 􏼑
1/3

⎛⎜⎝ ⎞⎟⎠,

� (0.1555, 0.4242, 0.6322),

􏽥􏽢ζ3 � 1 −
1

1 + 4 × 0.4 ×(0.8/1 − 0.8)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.4 ×(0.2/1 − 0.2)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.4 ×(01/1 − 0.1)3􏼐 􏼑
1/3

⎛⎜⎝ ⎞⎟⎠,

� (0.8239, 0.2262, 0.1150),

􏽥􏽢ζ4 � 1 −
1

1 + 4 × 0.2 ×(0.6/1 − 0.6)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.2 ×(0.7/1 − 0.7)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.2 ×(0.9/1 − 0.9)3􏼐 􏼑
1/3

⎛⎜⎝ ⎞⎟⎠,

� (0.5820, 0.6842, 0.8931).

(24)

'en, scores of mFNs for k � 3 are calculated as

S
􏽥􏽢ζ1􏼒 􏼓 �

0.7126 + 0.3129 + 0.5152
3

� 0.5136,

S
􏽥􏽢ζ2􏼒 􏼓 �

0.1555 + 0.4242 + 0.6322
3

� 0.4040,

S
􏽥􏽢ζ3􏼒 􏼓 �

0.8239 + 0.2262 + 0.1150
3

� 0.3884,

S
􏽥􏽢ζ4􏼒 􏼓 �

0.5820 + 0.6842 + 0.8931
3

� 0.7198.

(25)

Since S(
􏽥􏽢ζ4)> S(

􏽥􏽢ζ1)> S(
􏽥􏽢ζ2)> S(

􏽥􏽢ζ3),

􏽥􏽢ζσ(1) � 􏽢ζ4 � (0.5820, 0.6842, 0.8931),

􏽥􏽢ζσ(2) � 􏽢ζ1 � (0.7126, 0.3129, 0.5152),

􏽥􏽢ζσ(3) � 􏽢ζ2 � (0.1555, 0.4242, 0.6322),

􏽥􏽢ζσ(4) � 􏽢ζ3 � (0.8239, 0.2262, 0.1150).

(26)

'en, from 'eorem 8,
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mFDHAw,Θ
􏽢ζ1, 􏽢ζ2, 􏽢ζ3, 􏽢ζ4􏼐 􏼑 � ⊕4j�1 wj

􏽢ζσ(j)􏼐 􏼑

� 1 −
1

1 + 􏽐
4
j�1 wj p1 ∘ ζσ(j)/1 − p1 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
4
j�1 wj p3 ∘ ζσ(j)/1 − p3 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

� 1 −
1

1 + 0.2 ×(0.5820/1 − 0.5820)3 + 0.3 ×(0.7126/1 − 0.7126)3 + 0.1 ×(0.1555/1 − 0.1555)3 + 0.4 ×(0.8239/1 − 0.8239)3􏼐 􏼑
1/3,

⎛⎜⎝

1−
1

1 + 0.2 ×(0.6842/1 − 0.6842)3 + 0.3 ×(0.3129/1 − 0.3129)3 + 0.1 ×(0.4242/1 − 0.4242)3 + 0.4 ×(0.2262/1 − 0.2262)3􏼐 􏼑
1/3,

1−
1

1 + 0.2 ×(0.8931/1 − 0.8931)3 + 0.3 ×(0.5152/1 − 0.5152)3 + 0.1 ×(0.6322/1 − 0.6322)3 + 0.4 ×(0.1150/1 − 0.1150)3􏼐 􏼑
1/3

⎞⎟⎠,

� (0.7819, 0.5620, 0.8304).

(27)

3.2. mF Dombi Geometric AOs. We now propose different
types of Dombi geometric AOs with mFNs, namely,mFDWG
operator, mFDOWG operator, and mFDHG operator.

Definition 8. For a family of mFNs 􏽢ζj �

(p1 ∘ ζj, p2 ∘ ζj, . . . , pm ∘ ζj), j � 1, 2, . . . , n, a mapping
mFDWG: 􏽢ζ

n
⟶ 􏽢ζ is called mFDWG operator, which is

given by

mFDWGΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � ⊗nj�1
􏽢ζj􏼐 􏼑
Θj

,􏼒 (28)

where Θ � (Θ1,Θ2, . . . ,Θn)T represents the weights, with
􏽐

n
j�1Θj � 1,Θj ∈ (0, 1].

Theorem 9. For a collection of mFNs
􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj) where j � 1, 2, . . . , n, an accumu-
lated score of these mFNs using the mFDWG operators is
defined by

mFDWGΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn􏼐 􏼑 � ⊗nj�1
􏽢ζj􏼐 􏼑
Θj

,

1 −
1

1 + 􏽐
n
j�1Θj 1 − p1 ∘ ζj/p1 ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
Θj
Θj 1 − pm ∘ ζj/pm ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(29)

Proof. Its proof is identical to 'eorem 2. □ Example 4. Let 􏽢ζ1 � (0.2, 0.6, 0.3), 􏽢ζ2 � (0.9, 1.0, 0.7), 􏽢ζ3 �

(0.1, 0.8, 0.4), and 􏽢ζ4 � (0.4, 0.7, 0.3) be 3FNs with weights
Θ � (0.1, 0.5, 0.3, 0.1)T. 'en, for k � 3,

mFDWGΘ 􏽢ζ1, 􏽢ζ2, 􏽢ζ3􏼐 􏼑 � ⊗3j�1
􏽢ζj􏼐 􏼑
Θj

,

� 1 −
1

1 + 􏽐
n
j�1Θj 1 − p1 ∘ ζj/p1 ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
j�1Θj 1 − pm ∘ ζj/pm ∘ ζj􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

� 1 −
1

1 + 0.1 ×(1 − 0.2/0.2)3 + 0.5 ×(1 − 0.9/0.9)3 + 0.3 ×(1 − 0.1/0.1)3 + 0.1 ×(1 − 0.4/0.4)3􏼐 􏼑
1/3,

⎛⎜⎝

1 −
1

1 + 0.1 ×(1 − 0.6/0.6)3 + 0.5 ×(1 − 0.1/0.1)3 + 0.3 ×(1 − 0.8/0.8)3 + 0.1 ×(1 − 0.7/0.7)3􏼐 􏼑
1/3,

1−
1

1 + 0.1 ×(1 − 0.3/0.3)3 + 0.5 ×(1 − 0.7/0.7)3 + 0.3 ×(1 − 0.4/0.4)3 + 0.1 ×(1 − 0.3/0.3)3􏼐 􏼑
1/3

⎞⎟⎠,

� (0.8589, 0.2582, 0.6052).

(30)
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It can be readily shown that the mFDWG operator holds
the notions given below.

Theorem 10 (idempotent law). Let 􏽢ζj � (p1 ∘ζj, . . . ,pm ∘ζj)

be a family of “n” mFNs, which are equal, i.e., 􏽢ζj � 􏽢ζ; then,

mFDWGΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � 􏽢ζ.􏼐 (31)

Theorem 11 (bounded law). Let 􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj)

be a collection of “n” mFNs, 􏽢ζ
−

� ∩nj�1(ζj), and 􏽢ζ
+

� ∪nj�1(ζj);
then,

􏽢ζ
−
≤mFDWGΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn)≤ 􏽢ζ

+
.􏼒 (32)

Theorem 12 (monotonic law). For two collections of mFNs
􏽢ζj and 􏽢ζj

′, (j � 1, 2, . . . , n), if 􏽢ζj ≤ 􏽢ζj
′, then

mFDWGΘ 􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn)≤mFDWGΘ 􏽢ζ1′, 􏽢ζ2′, . . . , 􏽢ζn
′􏼒 􏼓.􏼒

(33)

Now, we develop mFDOWG operators.

Definition 9. For a family of mFNs
􏽢ζj � (p1 ∘ ζj, p2 ∘ ζj, . . . , pm ∘ ζj), j � 1, 2, . . . , n, an
mFDOWG operator is a mapping mFDOWG: 􏽢ζ

n
⟶ 􏽢ζ,

which is given as

mFDOWGw
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � ⊗nj�1 wj

􏽢ζσ(j)􏼐 􏼑,􏼐 (34)

where w � (w1, w2, . . . , wn)T is the weight vector and
wj ∈ (0, 1] with 􏽐

n
j�1 wj � 1. σ(j), j � 1, 2, . . . , n represents

the permutation, such that 􏽢ζσ(j− 1) ≥ 􏽢ζσ(j).

Theorem 13. For a collection of mFNs
􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj) where j � 1, 2, . . . , n, an accumu-
lated score of these mFNs using an mFDOWG operator is
defined by

mFDOWGw
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn􏼐 􏼑 � ⊗nj�1

􏽢ζσ(j)􏼐 􏼑
wj

,

� 1 −
1

1 + 􏽐
n
j�1 wj 1 − p1 ∘ ζσ(j)/p1 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
j�1 wj 1 − pm ∘ ζσ(j)/pm ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(35)

Example 5. Let 􏽢ζ1 � (0.2, 0.4, 0.7), 􏽢ζ2 � (0.3, 0.6, 0.1), 􏽢ζ3 �

(0.8, 0.3, 0.5), and 􏽢ζ4 � (0.6, 0.4, 0.7) be 3FNs and
w � (0.3, 0.1, 0.2, 0.4)T be a weight vector.'en, score values
of mFNs for k � 3 are calculated as

S 􏽢ζ1􏼐 􏼑 �
0.2 + 0.4 + 0.7

3
� 0.4333,

S 􏽢ζ2􏼐 􏼑 �
0.3 + 0.6 + 0.1

3
� 0.3333,

S 􏽢ζ3􏼐 􏼑 �
0.8 + 0.3 + 0.5

3
� 0.5333,

S 􏽢ζ4􏼐 􏼑 �
0.6 + 0.4 + 0.7

3
� 0.5667.

(36)

Since S(􏽢ζ4)> S(􏽢ζ3)> S(􏽢ζ1)> S(􏽢ζ2),

􏽢ζσ(1) � 􏽢ζ3 � (0.6, 0.4, 0.7),

􏽢ζσ(2) � 􏽢ζ3 � (0.8, 0.3, 0.5),

􏽢ζσ(3) � 􏽢ζ1 � (0.2, 0.4, 0.7),

􏽢ζσ(4) � 􏽢ζ2 � (0.3, 0.6, 0.1).

(37)

'en, from Definition 9,
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mFDOWGw
􏽢ζ1, 􏽢ζ2, 􏽢ζ3, 􏽢ζ4􏼐 􏼑 � ⊗4j�1

􏽢ζσ(j)􏼐 􏼑
wj

,

� 1 −
1

1 + 􏽐
4
j�1 wj 1 − p1 ∘ ζσ(j)/p1 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
4
j�1 wj 1 − p3 ∘ ζσ(j)/p3 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

� 1 −
1

1 + 0.3 ×(1 − 0.6/0.6)3 + 0.1 ×(1 − 0.8/0.8)3 + 0.2 ×(1 − 0.2/0.2)3 + 0.4 ×(1 − 0.3/0.3)3􏼐 􏼑
1/3,

⎛⎜⎝

1−
1

1 + 0.3 ×(1 − 0.4/0.4)3 + 0.1 ×(1 − 0.3/0.3)3 + 0.2 ×(1 − 0.4/0.4)3 + 0.4 ×(1 − 0.6/0.6)3􏼐 􏼑
1/3,

1−
1

1 + 0.3 ×(1 − 0.7/0.7)3 + 0.1 ×(1 − 0.5/0.5)3 + 0.2 ×(1 − 0.7/0.7)3 + 0.4 ×(1 − 0.1/0.1)3􏼐 􏼑
1/3

⎞⎟⎠,

� (0.7237, 0.5926, 0.8690).

(38)

Remark 2. Note that mFDOWG operators satisfy proper-
ties, namely, idempotency, boundedness, and monotonicity,
as described in 'eorems 10, 11, and 12.

Theorem 14 (commutative law). For two arbitrary collec-
tions of mFNs 􏽢ζj and 􏽢ζj

′(j � 1, 2, . . . , n), if 􏽢ζj ≤ 􏽢ζj
′, then

mFDOWGw
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � mFDOWGw

􏽢ζ1′, 􏽢ζ2′, . . . , 􏽢ζn
′􏼒 􏼓,􏼒

(39)

where 􏽢ζj
′ is any permutation of 􏽢ζj.

In Definitions 5 and 6, we see that mFDWG and
mFDOWG operators aggregate weighted mFNs and their
ordering, respectively. Now, we develop a new operator
called mFDHG operator, which contains the properties of
both mFDWG and mFDOWG operators.

Definition 10. For a family of mFNs
􏽢ζj � (p1 ∘ ζj, p2 ∘ ζj, . . . , pm ∘ ζj), j � 1, 2, . . . , n, an mFDHG
operator is defined by

mFDHGw,Θ
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn) � ⊗nj�1

􏽥􏽢ζσ(j)􏼒 􏼓
wj

,􏼒 (40)

where w � (w1, w2, . . . , wn)T denotes the weights associated
to the mFNs 􏽢ζj, j � 1, 2, . . . , n, wj ∈ (0, 1], 􏽐

n
j�1 wj � 1,

􏽥􏽢ζσ(j) is the j-th largest mFN,
􏽥􏽢ζσ(j) � (nΘj)

􏽢ζj, (j � 1, 2, . . . , n), and Θ � (Θ1,Θ2, . . . ,Θn)

is a vector having weights, with Θj ∈ (0, 1], 􏽐
n
j�1Θj � 1.

Notice that when w � ((1/n), (1/n), . . . , (1/n))T,
mFDHG operator becomes mFDWG operator. When
Θ � ((1/n), (1/n), . . . , (1/n))T, then mFDHG operator
converts into mFDOWG operator. 'us, mFDHG operator
is a generalization of mFDWG and mFDOWG operators.

With the induction technique, one can readily show the
next theorem.

Theorem 15. For a collection of mFNs
􏽢ζj � (p1 ∘ ζj, . . . , pm ∘ ζj) where j � 1, 2, . . . , n, an accumu-
lated score of these mFNs using an mFDHG operator is de-
fined as

mFDHGw,Θ
􏽢ζ1, 􏽢ζ2, . . . , 􏽢ζn􏼐 􏼑 � ⊗nj�1

􏽥􏽢ζσ(j)􏼒 􏼓
wj

,

� 1 −
1

1 + 􏽐
n
j�1 wj 1 − p1 ∘ ζσ(j)/p1 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
n
j�1 wj 1 − pm ∘ ζσ(j)/pm ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(41)
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Example 6. Let 􏽢ζ1 � (0.4, 0.6, 0.3), 􏽢ζ2 � (0.3, 0.2, 0.9),
􏽢ζ3 � (0.6, 0.3, 0.5), and 􏽢ζ4 � (0.3, 0.5, 0.7) be 3FNs and w �

(0.4, 0.1, 0.3, 0.2)T be an associated weight vector and a

vector Θ � (0.5, 0.2, 0.1, 0.2)T be weights. By Definition 10,
for k � 3,

􏽥􏽢ζ1 � 1 −
1

1 + nΘ1 1 − p1 ∘ ζ1/p1 ∘ ζ1( 􏼁
k

􏽮 􏽯
1/k, . . . , 1 −

1

1 + nΘ1 1 − p3 ∘ ζ1/p3 ∘ ζ1( 􏼁
k

􏽮 􏽯
1/k

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

� 1 −
1

1 + 4 × 0.5 ×(1 − 0.4/0.4)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.5 ×(1 − 0.6/0.6)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.5 ×(1 − 0.3/0.3)3􏼐 􏼑
1/3

⎛⎜⎝ ⎞⎟⎠,

� (0.6540, 0.4565, 0.7462).

(42)

Similarly,

􏽥􏽢ζ2 � 1 −
1

1 + 4 × 0.2 ×(1 − 0.3/0.3)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.2 ×(1 − 0.2/0.2)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.2 ×(1 − 0.9/0.9)3􏼐 􏼑
1/3

⎛⎜⎝ ⎞⎟⎠,

� (0.6842, 0.7878, 0.0935),

􏽥􏽢ζ3 � 1 −
1

1 + 4 × 0.1 ×(1 − 0.6/0.6)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.1 ×(1 − 0.3/0.3)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.1 ×(1 − 0.5/0.5)3􏼐 􏼑
1/3

⎛⎜⎝ ⎞⎟⎠,

� (0.3294, 0.6322, 0.4242),

􏽥􏽢ζ4 � 1 −
1

1 + 4 × 0.2 ×(1 − 0.3/0.3)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.2 ×(1 − 0.5/0.5)3􏼐 􏼑
1/3, 1 −

1

1 + 4 × 0.2 ×(1 − 0.7/0.7)3􏼐 􏼑
1/3

⎛⎜⎝ ⎞⎟⎠,

� (0.6842, 0.4814, 0.2846).

(43)

'en, score values of mFNs for k � 3 are given as follows:

S
􏽥􏽢ζ1􏼒 􏼓 �

0.6540 + 0.4565 + 0.7462
3

� 0.6189,

S
􏽥􏽢ζ2􏼒 􏼓 �

0.6842 + 0.7878 + 0.0935
3

� 0.5218,

S
􏽥􏽢ζ3􏼒 􏼓 �

0.3294 + 0.6322 + 0.4242
3

� 0.4620,

S
􏽥􏽢ζ4􏼒 􏼓 �

0.6842 + 0.4814 + 0.2846
3

� 0.4834.

(44)

Since S(
􏽥􏽢ζ1)> S(

􏽥􏽢ζ2)> S(
􏽥􏽢ζ4)> S(

􏽥􏽢ζ3),

􏽥􏽢ζσ(1) � 􏽢ζ1 � (0.6540, 0.4565, 0.7462),

􏽥􏽢ζσ(2) � 􏽢ζ2 � (0.6842, 0.7878, 0.0935),

􏽥􏽢ζσ(3) � 􏽢ζ4 � (0.6842, 0.4814, 0.2846),

􏽥􏽢ζσ(4) � 􏽢ζ3 � (0.3294, 0.6322, 0.4242).

(45)

'en, from Definition 9,
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mFDHζw,Θ
􏽢ζ1, 􏽢ζ2, 􏽢ζ3, 􏽢ζ4􏼐 􏼑 � ⊗4j�1

􏽢ζσ(j)􏼐 􏼑
wj

,

� 1 −
1

1 + 􏽐
4
j�1 wj 1 − p1 ∘ ζσ(j)/p1 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k, . . . , 1 −
1

1 + 􏽐
4
j�1 wj 1 − p3 ∘ ζσ(j)/p3 ∘ ζσ(j)􏼐 􏼑

k
􏼚 􏼛

1/k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

� 1 −
1

1 + 0.4 ×(1 − 0.6540/0.6540)3 + 0.1 ×(1 − 0.6842/0.6842)3 + 0.3 ×(1 − 0.6842/0.6842)3 + 0.2 ×(1 − 0.3294/0.3294)3􏼐 􏼑
1/3,

⎛⎜⎝

1−
1

1 + 0.4 ×(1 − 0.4565/0.4565)3 + 0.1 ×(1 − 0.7878/0.7878)3 + 0.3 ×(1 − 0.4814/0.4814)3 + 0.2 ×(1 − 0.6322/0.6322)3􏼐 􏼑
1/3,

1−
1

1 + 0.4 ×(1 − 0.7462/0.7462)3 + 0.1 ×(1 − 0.0935/0.0935)3 + 0.3 ×(1 − 0.2846/0.2846)3 + 0.2 ×(1 − 0.4242/0.4242)3􏼐 􏼑
1/3

⎞⎟⎠,

� (0.5482, 0.5073, 0.8210).

(46)

4. Mathematical Method for MCDM with
mF Data

To solve MCDM problems containing mF data, we apply mF
Dombi AOs. 'e following notions are utilized to tackle the
MCDM situations having mF information. Suppose that
Y1, Y2, . . . , Yk􏼈 􏼉 is a universal set and S1, S2, . . . , Sn􏼈 􏼉 is the
universe of attributes. Assume Θ � Θ1,Θ2, . . . ,Θn􏼈 􏼉 is a
weight vector with 􏽐

n
j�1Θj � 1, Θj ∈ (0, 1], for all

j � 1, . . . , n. Consider 􏽢S � (􏽢sij)k×n � (p1 ∘ζ ij,p2 ∘ζ ij, . . . ,pm ∘
ζ ij)k×n is an mF decision matrix, which represents the
membership values evaluated by the experts.

We construct an algorithmic method to handle MCDM
problems by an mFDWA (or mFDWG) operator.

5. Applications

5.1. Agriculture Land Selection. Agriculture is an essential part
of Pakistan’s economic system. 'is area directly supports the
population of the country and accounts for 26% of gross do-
mestic product (GDP). 'e leading agricultural crops include
sugarcane, wheat, rice, cotton, vegetables, and fruits. A business
man wants to invest in agriculture sector and is searching for an
appropriate land. 'e options in his brain are Y1, Y2, . . . , Y5.
He consults an expert to get his suggestion about the alternatives
based on the following desired parameters:

S1 denotes the “Location”
S2 denotes the “Climate”
S3 denotes the “Fertility”
S4 denotes the “Price”

Each parameter has been characterized into three parts to
construct a 3FN.

(i) “Location” includes near to market, near to water
channel, and transport availability.

(ii) “Climate” includes temperature, pollution level, and
humidity level.

(iii) “Fertility” includes soil PH, level of nutrients, and
water retention capacity of land.

(iv) “Price” includes low, medium, and high.

'e 3F decision matrix is shown in Table 1.
According to the businessman, the expert assigns

weights to parameters as follows:

Θ1 � 0.35,

Θ2 � 0.25,

Θ3 � 0.30,

Θ4 � 0.10.

(47)

Clearly, 􏽐
3
j�1Θj � 1. To compute the most suitable land

regarding agriculture, we use the two operators, namely,
mFDWA and mFDWG, respectively:

(1) For k � 3, by applying the mFDWA operator, we
calculate the values 􏽢si of the lands Yi, i � 1, 2, . . . , 5
regarding agriculture.

􏽢s1 � (0.8107, 0.6224, 0.6109),

􏽢s2 � (0.8662, 0.6679, 0.7297),

􏽢s3 � (0.5443, 0.7418, 0.6515),

􏽢s4 � (0.8192, 0.7347, 0.5366),

􏽢s5 � (0.8663, 0.6334, 0.6327).

(48)

(2) Find the score values S(􏽢si) of 3FNs
􏽢si, (i � 1, 2, . . . , 5) of the lands Yi:

S 􏽢s1( 􏼁 � 0.6814,

S 􏽢s2( 􏼁 � 0.7546,

S 􏽢s3( 􏼁 � 0.6459,

S 􏽢s4( 􏼁 � 0.6968,

S 􏽢s5( 􏼁 � 0.7108.

(49)

(3) Rank the lands using scores S(si), (i � 1, 2, . . . , 5)

obtained from the preference values in the form of
3FNs: Y2 >Y5 >Y4 >Y1 >Y3.

Journal of Mathematics 13



(4) Y2 has a high score value, so it is the best land for
agriculture.

In a similar way, apply an mFDWG operator to find an
appropriate land.

(1) Take k � 3. Apply an mFDWG operator to determine
the values 􏽢si of the lands Yi.

􏽢s1 � (0.4171, 0.6142, 0.7334),

􏽢s2 � (0.5092, 0.4648, 0.6058),

􏽢s3 � (0.5364, 0.5633, 0.6723),

􏽢s4 � (0.4196, 0.5311, 0.7423),

􏽢s5 � (0.4303, 0.5153, 0.6007).

(50)

(2) Determine the score values S(􏽢si) of 3FNs 􏽢si of the
lands Yi:

S 􏽢s1( 􏼁 � 0.5882,

S 􏽢s2( 􏼁 � 0.5266,

S 􏽢s3( 􏼁 � 0.5907,

S 􏽢s4( 􏼁 � 0.5643,

S 􏽢s5( 􏼁 � 0.5154.

(51)

(3) Rank the lands using scores S(􏽢si), (i � 1, 2, . . . , 5)

obtained from the preference values in the form of
3FNs: Y3 >Y1 >Y4 >Y2 >Y5.

(4) Y3 has high score, so it is the best land for agriculture.

5.2. Performance Evaluation of Commercial Banks.
Commercial bank is one of the largest essential economic
institutions. It can pull in money related streams, offering
credit and different monetary administrations. 'ese ac-
tivities vitally affect national monetary improvements.
Hence, commercial banks ought to be assessed by the
modern and reliable procedures to rank commercial banks
in the financial framework. 'is research establishes a
MCDM model that uses mFDWA, mFDWG, and mF
ELECTRE-I methods under a set of criteria and rank
commercial banks. 'e board of specialists will assess each
bank under chosen criteria. After a primer evaluation, six
banks B1, B2, B3, B4, B5, B6􏼈 􏼉 are assessed and ranked to pick
the best bank. 'e banks are evaluated on the basis of four
parameters.

S1 denotes the “Net Income”
S2 denotes the “Customer Service”

S3 denotes the “Nonfinancial Performance”
S4 denotes the “Potential Attractiveness”

Each parameter has been characterized into four parts to
form a 4FN.

(i) “Net Income” includes total equity, operating in-
come, total assets, and net interest income.

(ii) “Customer Service” includes accessibility for cus-
tomers, the evaluation of Internet page, the number
of new services, and the number of new products.

(iii) “Nonfinancial Performance” includes support from
main stake holders, bank management, employee
stability, and ownership structure.

(iv) “Potential Attractiveness” includes location, in-
volving environment, strategic dimension, and ex-
ternal and internal characteristics.

'e 4F decision matrix is represented by Table 2.
'e expert assigns weights to parameters as follows:

Θ1 � 0.28,

Θ2 � 0.34,

Θ3 � 0.22,

Θ4 � 0.16.

(52)

Clearly, 􏽐
4
j�1Θj � 1. To select the most efficient

bank, we use the two operators, namely, mFDWA
and mFDWG, respectively:

(1) For k � 3, utilize the mFDWA operator to compute
the values 􏽢si for the banks Bi, i � 1, 2, . . . , 6.

􏽢s1 � (0.6188, 0.5392, 0.6306, 0.6723),

􏽢s2 � (0.8617, 0.8639, 0.7895, 0.6875),

􏽢s3 � (0.5139, 0.7319, 0.5492, 0.5097),

􏽢s4 � (0.7385, 0.6188, 0.5699, 0.5492),

􏽢s5 � (0.6551, 0.6323, 0.5227, 0.6112),

􏽢s6 � (0.7689, 0.7302, 0.6562, 0.6228).

(53)

(2) Calculate the score values S(􏽢si) of 4FNs
􏽢si, (i � 1, 2, . . . , 6) for the banks Bi.

S 􏽢s1( 􏼁 � 0.6152,

S 􏽢s2( 􏼁 � 0.8007,

S 􏽢s3( 􏼁 � 0.5762,

S 􏽢s4( 􏼁 � 0.6191,

S 􏽢s5( 􏼁 � 0.6053,

S 􏽢s6( 􏼁 � 0.6945.

(54)

(3) Now, rank the banks using scores
S(si), (i � 1, 2, . . . , 6) obtained from the preference
values in the form of 4F numbers:
B2 >B6 >B4 >B1 >B5 >B3.

(4) B2 has a high score value, so it is the best bank.

Table 1: 3F decision matrix.

S1 S2 S3 S4

Y1 (0.7, 0.6, 0.3) (0.5, 0.7, 0.2) (0.6, 0.3, 0.7) (0.9, 0.5, 0.4)
Y2 (0.9, 0.6, 0.5) (0.8, 0.5, 0.3) (0.4, 0.5, 0.8) (0.5, 0.8, 0.5)
Y3 (0.4, 0.7, 0.3) (0.5, 0.4, 0.3) (0.6, 0.8, 0.4) (0.6, 0.3, 0.8)
Y4 (0.5, 0.6, 0.3) (0.8, 0.6, 0.5) (0.7, 0.8, 0.2) (0.9, 0.3, 0.7)
Y5 (0.9, 0.7, 0.6) (0.8, 0.4, 0.3) (0.6, 0.5, 0.7) (0.4, 0.6, 0.5)
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In a similar way, apply the mFDWG operator to de-
termine the most efficient bank.

(1) Take k � 3. We employ the mFDWG operator to
compute the values 􏽢si for the banks Bi.

􏽢s1 � (0.4752, 0.6016, 0.4896, 0.4052),

􏽢s2 � (0.2182, 0.2723, 0.2361, 0.3343),

􏽢s3 � (0.5366, 0.3756, 0.4772, 0.6136),

􏽢s4 � (0.4006, 0.5206, 0.5246, 0.4772),

􏽢s5 � (0.4487, 0.4429, 0.4952, 0.5604),

􏽢s6 � (0.3029, 0.4185, 0.4146, 0.5118).

(55)

(2) Find the score values S(􏽢si) of 4FNs 􏽢si for the banks
Bi.

S 􏽢s1( 􏼁 � 0.4929,

S 􏽢s2( 􏼁 � 0.2652,

S 􏽢s3( 􏼁 � 0.5008,

S 􏽢s4( 􏼁 � 0.4808,

S 􏽢s5( 􏼁 � 0.4868,

S 􏽢s6( 􏼁 � 0.4269.

(56)

(3) Rank the banks with scores S(􏽢si), (i � 1, 2, . . . , 6)

obtained from the preference values in the form of 4F
numbers: B3 >B1 >B5 >B4 >B6 >B2.

(4) B3 has high score, so it is the best bank.

'e methodology utilized in the applications to find the
best alternative is shown in Figure 1.

5.3. mF-ELECTRE-I Method. In this section, we apply
mF-ELECTRE-I approach [27] to the problem (performance
evaluation of commercial banks, Section 5.2) (Tables 3–5).

(1) Table 3 describes the 4F decision matrix.
(2) Tables 4 and 5, respectively, describe the 4F con-

cordance and discordance values.
(3) 'e 4F concordance matrix is calculated by

F �

− 0 0.84 0.62 0.62 0.34

1 − 1 1 1 1

0.16 0 − 0.16 0.34 0

0.38 0 1 − 0.56 0.22

0.66 0 0.66 0.44 − 0

0.66 0 1 0.78 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (57)

(4) 'e 4F concordance level f � 0.498.
(5) 'e 4F discordance matrix is computed by

G �

− 1 0.522 0.289 0.7484 1

0 − 0 0 0 0

1 1 − 1 1 1

1 1 0.413 − 1 0.8303

1 1 0.7010 1 − 1

0.95 0 0 1 0 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (58)

(6) 'e 4F discordance level g � 0.65.
(7) 'e 4F concordance and discordance matrices are

given by

H �

− 0 0 1 1 0

1 − 1 1 1 1

0 0 − 0 0 0

0 0 1 − 1 0

1 0 1 0 − 0

1 0 1 1 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L �

− 0 1 1 0 0

0 − 1 1 1 1

0 0 − 0 0 0

0 0 1 − 0 0

0 0 0 0 − 0

0 1 1 0 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(59)

(8) 'e 4F aggregated dominance matrix is constructed
as

Table 2: 4F decision matrix.

S1 S2 S3 S4

B1 (0.7, 0.6, 0.7, 0.7) (0.5, 0.7, 0.6, 0.7) (0.5, 0.3, 0.5, 0.5) (0.5, 0.4, 0.4, 0.6)
B2 (0.9, 0.7, 0.8, 0.7) (0.8, 0.9, 0.8, 0.7) (0.8, 0.7, 0.7, 0.6) (0.7, 0.7, 0.8, 0.7)
B3 (0.4, 0.8, 0.5, 0.6) (0.5, 0.6, 0.6, 0.4) (0.5, 0.6, 0.5 0.4) (0.6, 0.6, 0.5, 0.3)
B4 (0.8, 0.7, 0.6, 0.5) (0.7, 0.5, 0.4, 0.6) (0.5, 0.5, 0.6, 0.5) (0.4, 0.5, 0.6, 0.5)
B5 (0.7, 0.7, 0.6, 0.7) (0.5, 0.6, 0.4, 0.4) (0.7, 0.5, 0.5, 0.4) (0.5, 0.5, 0.4, 0.5)
B6 (0.8, 0.8, 0.7, 0.6) (0.7, 0.6, 0.6, 0.5) (0.8, 0.5, 0.5, 0.4) (0.6, 0.6, 0.7, 0.6)
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An mF decision matrix with respect to object and attributesInput

Consider weights for attributes

Calculate aggregated values of objects with
the help of mFDWA and mFDWG AOs

Compute
score
values

Choose the object which has the optimal scoreOutput

Figure 1: Flowchart of selecting the best option.

Table 3: 4F weighted decision matrix.

S1 S2 S3 S4

B1 (0.196, 0.168, 0.196, 0.196) (0.17, 0.238, 0.204, 0.238) (0.11, 0.066, 0.11, 0.11) (0.08, 0.064, 0.064, 0.096)
B2 (0.252, 0.196, 0.224, 0.196) (0.272, 0.306, 0.272, 0.238) (0.176, 0.154, 0.154, 0.132) (0.112, 0.112, 0.128, 0.112)
B3 (0.112, 0.224, 0.14, 0.168) (0.17, 0.204, 0.204, 0.136) (0.11, 0.132, 0.11, 0.038) (0.096, 0.096, 0.08, 0.048)
B4 (0.224, 0.196, 0.168, 0.14) (0.238, 0.17, 0.136, 0.204) (0.11, 0.11, 0.132, 0.11) (0.064, 0.08, 0.096, 0.08)
B5 (0.196, 0.196, 0.168, 0.196) (0.17, 0.204, 0.136, 0.136) (0.154, 0.11, 0.11, 0.038) (0.08, 0.08, 0.096, 0.08)
B6 (0.224, 0.224, 0.196, 0.168) (0.238, 0.204, 0.204, 0.17) (0.176, 0.11, 0.11, 0.038) (0.096, 0.096, 0.112, 0.096)

Table 4: 4F concordance set.

j 1 2 3 4 5 6
F1j — {} {1, 2, 3} {1, 2} {1, 2} {2}
F2j {1, 2, 3, 4} — {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
F3j {4} {} — {4} {2} {}
F4j {3, 4} {} {1, 2, 3, 4} — {2, 3} {3}
F5j {1, 3, 4} {} {1, 3, 4} {1, 4} — {}
F6j {1, 3, 4} {} {1, 2, 3, 4} {1, 2, 4} {1, 2, 3, 4} —

Table 5: 4F discordance set.

j 1 2 3 4 5 6
G1j — {1, 2, 3, 4} {4} {3, 4} {1, 3, 4} {1, 3, 4}
G2j {} — {} {} {} {}
G3j {1, 2, 3} {1, 2, 3, 4} — {1, 2, 3, 4} {1, 3, 4} {1, 2, 3, 4}
G4j {1, 2} {1, 2, 3, 4} {4} — {1, 4} {1, 2, 4}
G5j {1, 2} {1, 2, 3, 4} {2} {2, 3} — {1, 2, 3, 4}
G6j {2} {} {} {3} {} —
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M �

− 0 0 1 0 0

1 − 1 1 1 1

0 0 − 0 0 0

0 0 1 − 0 0

0 0 0 0 − 0

0 0 1 0 1 −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (60)

(9) Figure 2 shows the preference relations between the
banks.

From Figure 2, it is clear that B2 is the best option
(Tables 6 and 7).

6. Comparison Analysis and Discussion

'is section gives a comparison of the developed Dombi
AOs with mF Hamacher AOs [27] and an mF-ELECTRE-I
model [46] to show their feasibility and practicality.

(1) We compare the results of developed mF Dombi
AOs with mF Hamacher AOs [27]. 'e results
computed by applying both operators in first ap-
plication are explained by Table 6 and Figure 3. In a
similar way, the results computed using both op-
erators in second application are explained by Ta-
ble 7 and Figure 4. Clearly, the results of mF
Hamacher weighted average (mFHWA) and mF
Hamacher weighted geometric (mFHWG) operators
are different from our newly constructed mFDWA
and mFDWG operators. 'e results of mFHWA and
mFHWG operators are the same. 'erefore, our
developed AOs are more generalized and versatile
than some existing models to handle mF MCDM
problems.

(2) From the second application, it can be observed that
the final rankings by applying the mFDWA and
mFDWG operators are B2 >B6 >B4 >B1 >B5 >B3
and B3 >B1 >B5 >B4 >B6 >B2, respectively. How-
ever, the final score values are not the same. When
mF-ELECTRE-I method is applied, the best option is
B2. Clearly, the optimal decision using mF-ELEC-
TRE-I method and mFDWA operator is B2.

(3) When a number of mFNs are aggregated with the
help of mFDWA and mFDWG operators, different
computations will increase rapidly. But our devel-
oped AOs can explain the assessed data more flexibly
for decision making. 'e developed method ranks
every objects in a given problem in comparison with
mF-ELECTRE-I approach [46].

6.1. Effectiveness Test. To examine the validity of the pro-
vided algorithm, we verify it with test criteria developed by
Wang and Triantaphyllou [21] as follows (Tables 8 and 9):

(i) Test criterion I: if we change the membership grades
of nonoptimal object with worse membership values

without effecting criteria, then the optimal object
should not change.

(ii) Test criterion II: MCDM approach should satisfy
transitive property.

(iii) Test criterion III: when a designated problem is
resolved into different small issues and the similar

B1

B2

B5B4

B3

B6

Figure 2: Outranking relation of banks.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
S (s1) S (s2) S (s3) S (s4) S (s5)

mFDWA
mFDWG

mFHWA
mFHWG

Figure 3: Comparison of first application in Section 5.1.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
S (s1) S (s2) S (s3) S (s4) S (s6)S (s5)

mFDWA
mFDWG

mFHWA
mFHWG

Figure 4: Comparison of second application in Section 5.2.

Journal of Mathematics 17



MCDM technique has been utilized, then the rank
order of the objects should be similar to the original
ranking order. We have checked these test criteria
on developed MCDM approach under mF Dombi
AOs as below.

(1) Effectiveness test by criterion I: using this test, if we
change only the membership grades of alternative
Y3 with Y3′ � (0.3, 0.6, 0.2), (0.4, 0.3, 0.2),

(0.5, 0.7, 0.3), (0.5, 0.1, 0.6) in Table 1 (that is, 3F
decision matrix), then the new 3F decision matrix is
shown in Table 8. By using mFDWA operator, the
score values of the alternative are S(􏽢s1) �

0.6814, S(􏽢s2) � 0.7546, S(􏽢s3′) � 0.6459, S(􏽢s4) �

0.6968, S(􏽢s5) � 0.7108. Clearly, S(􏽢s2)> S(􏽢s5)>
S(􏽢s4)> S(􏽢s1)> S(􏽢s3′); consequently, the ranking of
the objects is Y2 >Y5 >Y4 >Y1 >Y3′. 'us, Y2 is the
best alternative. According to above information,
the presented AOs have been employed, and the
decision alternative is Y2 which is similar to the
original optimal object. Similarly, if we change the
membership grades of alternative Y4 with
Y4′ � (0.4, 0.5, 0.2), (0.7, 0.5, 0.5), (0.8, 0.7,

0.1), (0.8, 0.2, 0.5) in Table 1 (that is, 3F decision
matrix), then the new 3F decisionmatrix is shown in
Table 9. By applying the mFDWA operator, the
ranking order of the alternatives is
Y2 >Y5 >Y1 >Y3 >Y4′. 'us, the optimal alternative
is Y2 which is same as that of the original ranking.
'erefore, the proposed algorithm is feasible under
test criterion I.

(2) Effectiveness test by criteria II and III: based
upon these test criteria, if we dissolved the des-
ignated problem (Application 1) into the sub-
issues Y1, Y2, Y3􏼈 􏼉, Y2, Y3, Y4􏼈 􏼉, Y3, Y4, Y5􏼈 􏼉, and
Y4, Y5, Y1􏼈 􏼉 and employed the procedure steps of
Algorithm 1, then we obtain the ranking of these
smaller issues as Y2 >Y1 >Y3, Y2 >Y4 >Y3,
Y5 >Y4 >Y3, and Y5 >Y4 >Y1, respectively.
Hence, by uniting above criteria II and III, we
obtain the overall ranking order of the alterna-
tives as Y2 >Y5 >Y4 >Y1 >Y3, which is exactly
same as the original ranking order. 'erefore, the
developed algorithm is feasible under test criteria
II and III.

Table 6: Comparison of mF Dombi AOs with mF Hamacher AOs [27] in agriculture land selection.

AO S(􏽢s1) S(􏽢s2) S(􏽢s3) S(􏽢s4) S(􏽢s5) Ranking order

Proposed mFDWA 0.6814 0.7546 0.6459 0.6968 0.7108 Y2 >Y5 >Y4 >Y1 >Y3
Proposed mFDWG 0.5882 0.5266 0.5907 0.5643 0.5154 Y3 >Y1 >Y4 >Y2 >Y5
mFHWA [27] 0.5403 0.6287 0.5151 0.5725 0.6327 Y5 >Y2 >Y4 >Y1 >Y3
mFHWG [27] 0.5084 0.5881 0.4908 0.5445 0.5909 Y5 >Y2 >Y4 >Y1 >Y3

Table 7: Comparison of mF Dombi AOs with mF Hamacher AOs [27] in bank selection.

AO S(􏽢s1) S(􏽢s2) S(􏽢s3) S(􏽢s4) S(􏽢s5) S(􏽢s6) Ranking order

Proposed mFDWA 0.6152 0.8007 0.5762 0.6191 0.6053 0.6945 B2 >B6 >B4 >B1 >B5 >B3
Proposed mFDWG 0.4929 0.2652 0.5008 0.4808 0.4868 0.4269 B3 >B1 >B5 >B4 >B6 >B2
mFHWA [27] 0.5851 0.7681 0.5342 0.5727 0.5490 0.6355 B2 >B6 >B1 >B4 >B5 >B3
mFHWG [27] 0.5711 0.7592 0.5267 0.5611 0.5381 0.6262 B2 >B6 >B1 >B4 >B5 >B3

(1) Input:
􏽢S, an mF decision matrix having k objects and n attributes.
Θ � (Θ1,Θ2, . . . ,Θn), the vector having weights.

(2) Apply the mFDWA operators to aggregate the data in mF decision matrix 􏽢S and calculate the preference values 􏽢si, where “i” varies
from 1 to k for the mFNs ζ i.
􏽢si � mFDWAΘ(􏽢ζ i1,

􏽢ζ i2, . . . , 􏽢ζ in) � ⊕nj�1(Θj
􏽢ζ ij)

� (1 − (1/1 + 􏽐
n
j�1Θj(p1∘ζij/1 − p1∘ζ ij)

k
􏽮 􏽯

1/k
), . . . , 1 − (1/1 + 􏽐

n
j�1Θj(pm∘ζij/1 − pm∘ζ ij)

k
􏽮 􏽯

1/k
)).

When we use mFDWG operators,
􏽢si � mFDWGΘ(􏽢ζ i1,

􏽢ζi2, . . . , 􏽢ζ in) � ⊗nj�1(
􏽢ζ ij)
Θj ,

� (1 − (1/1 + 􏽐
n
j�1Θj(1 − p1∘ζ ij/p1∘ζ ij)

k
􏽮 􏽯

1/k
), . . . , 1 − (1/ 􏽐

n
j�1Θj(1 − pm∘ζij/pm∘ζij)

k
􏽮 􏽯)).

(3) Compute the score values S(􏽢si), i � 1, 2, . . . , k.
(4) Rank the objects ui, i � 1, 2, . . . , k with respect to their scores S(􏽢si). When the scores of two objects are equal, we apply the accuracy

function to find the order of alternatives.
Output: the object containing maximum score value in last step will be the decision.

ALGORITHM 1: Computing maximum score value.
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7. Conclusions and Future Directions

Aggregation operators are mathematical functions and
essential tools of unifying several inputs into single valuable
output. Due to the existence of multipolar data and mul-
tiple attributes in many real-world problems, classical
MCDM methods are not useful to tackle complicated
decision-making situations. To overcome the difficulties of
existing models, we have combined mFNs with Dombi
AOs.

In this article, we have discussed MCDM issues based on
mF information. Motivated by Dombi operations, we have
proposed certain mF Dombi AOs, namely, mFDWA,
mFDOWA, mFDHA, mFDWG, mFDOWG, and mFDHG
operators. We have investigated different features of these
operators. We have employed these AOs to enlarge the
applicability scope of MCDM. We have given real-life ap-
plications for the selection of best agricultural land and for
the selection of best bank regarding performance. At the end,
we have provided a comparison of developed AOs with
mF-ELECTRE-I method [46] and mF Hamacher AOs [27]
and have authenticated the proposed strategy by effective-
ness tests to check its validity. In the comparison, we have
seen that the optimal alternative is the same by applying
mF-ELECTRE-I method [46], mF Hamacher AOs [27], and
proposed mFDWA operator. However, it is different in case
of mFDWG operator. In the future, we plan to extend our
work to (i) mF Dombi prioritized AOs, (ii) mF soft Dombi
AOs, (iii) q-rung orthopair fuzzy Dombi AOs, and (iv)
q-rung orthopair fuzzy soft Dombi AOs.

Data Availability

No data were used to support this study.

Conflicts of Interest

'e authors declare that they have no conflicts of interest
regarding the publication of the research article.

Acknowledgments

'e authors extend their appreciation to the Deanship of
Scientific Research at Majmaah University for funding this
work under Project Number No. (RGP-2019- 5).

References

[1] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87–96, 1986.

[2] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[3] R. R. Yager, “On ordered weighted averaging aggregation
operators in multicriteria decisionmaking,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 183–190,
1988.

[4] Z. Xu, “Intuitionistic fuzzy Aggregation operators,” IEEE
Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1179–1187,
2007.

[5] Z. Xu and R. R. Yager, “Some geometric Aggregation oper-
ators based on intuitionistic fuzzy sets,” International Journal
of General Systems, vol. 35, no. 4, pp. 417–433, 2006.

[6] W. R. Zhang, “Bipolar fuzzy sets and relations. A computa-
tional framework for cognitive modeling and multiagent
decision analysis,” in Proceedings of the First International
Joint Conference of the North American Fuzzy Information
Processing Society Biannual Conference. Ge Industrial Fuzzy
Control and Intellige, IEEE, pp. 305–309, Vancouver, British
Columbia, Canada, July 1994.

[7] G. Wei, F. E. Alsaadi, T. Hayat, and A. Alsaedi, “Bipolar fuzzy
Hamacher Aggregation operators in multiple attribute deci-
sion making,” International Journal of Fuzzy Systems, vol. 20,
no. 1, pp. 1–12, 2018.

[8] H. Gao, G. Wei, and Y. Huang, “Dual hesitant bipolar fuzzy
Hamacher prioritized Aggregation operators in multiple at-
tribute decision making,” IEEE Access, vol. 6, pp. 11508–
11522, 2018.

[9] P. Liu, “Some Hamacher Aggregation operators based on the
interval-valued intuitionistic fuzzy numbers and their ap-
plication to group decision making,” IEEE Transactions on
Fuzzy Systems, vol. 22, no. 1, pp. 83–97, 2013.

[10] C. Jana, M. Pal, and J.-q. Wang, “Bipolar fuzzy Dombi ag-
gregation operators and its application in multiple-attribute
decision-making process,” Journal of Ambient Intelligence and
Humanized Computing, vol. 10, no. 9, pp. 3533–3549, 2019.

[11] C. Jana, M. Pal, and J.-q. Wang, “Bipolar fuzzy Dombi pri-
oritized Aggregation operators in multiple attribute decision
making,” Soft Computing, vol. 24, no. 5, pp. 3631–3646, 2020.

[12] X. He, “Typhoon disaster assessment based onDombi hesitant
fuzzy information aggregation operators,” Natural Hazards,
vol. 90, no. 3, pp. 1153–1175, 2018.

[13] X.-R. Xu and G.-W. Wei, “Dual hesitant bipolar fuzzy Ag-
gregation operators in multiple attribute decision making,”
International Journal of Knowledge-Based and Intelligent
Engineering Systems, vol. 21, no. 3, pp. 155–164, 2017.

[14] Z. Xu, “Approaches to multiple attribute group decision
making based on intuitionistic fuzzy power Aggregation
operators,” Knowledge-Based Systems, vol. 24, no. 6,
pp. 749–760, 2011.

[15] S. Xiao, “Induced interval-valued intuitionistic fuzzy
Hamacher ordered weighted geometric operator and their
application to multiple attribute decision making,” Journal of
Intelligent & Fuzzy Systems, vol. 27, no. 1, pp. 527–534, 2014.

Table 8: 3F decision matrix.

S1 S2 S3 S4

Y1 (0.7, 0.6, 0.3) (0.5, 0.7, 0.2) (0.6, 0.3, 0.7) (0.9, 0.5, 0.4)
Y2 (0.9, 0.6, 0.5) (0.8, 0.5, 0.3) (0.4, 0.5, 0.8) (0.5, 0.8, 0.5)
Y3′ (0.3, 0.6, 0.2) (0.4, 0.3, 0.2) (0.5, 0.7, 0.3) (0.5, 0.1, 0.6)
Y4 (0.5, 0.6, 0.3) (0.8, 0.6, 0.5) (0.7, 0.8, 0.2) (0.9, 0.3, 0.7)
Y5 (0.9, 0.7, 0.6) (0.8, 0.4, 0.3) (0.6, 0.5, 0.7) (0.4, 0.6, 0.5)

Table 9: 3F decision matrix.

S1 S2 S3 S4

Y1 (0.7, 0.6, 0.3) (0.5, 0.7, 0.2) (0.6, 0.3, 0.7) (0.9, 0.5, 0.4)
Y2 (0.9, 0.6, 0.5) (0.8, 0.5, 0.3) (0.4, 0.5, 0.8) (0.5, 0.8, 0.5)
Y3 (0.3, 0.6, 0.2) (0.4, 0.3, 0.2) (0.5, 0.7, 0.3) (0.5, 0.1, 0.6)
Y4′ (0.4, 0.5, 0.2) (0.7, 0.5, 0.5) (0.8, 0.7, 0.1) (0.8, 0.2, 0.5)
Y5 (0.9, 0.7, 0.6) (0.8, 0.4, 0.3) (0.6, 0.5, 0.7) (0.4, 0.6, 0.5)

Journal of Mathematics 19



[16] J. Chen and J. Ye, “Some single-valued neutrosophic Dombi
weighted aggregation operators for multiple attribute deci-
sion-making,” Symmetry, vol. 9, no. 82, pp. 1–11, 2017.

[17] H. Garg, “Generalised Pythagorean fuzzy geometric inter-
active Aggregation operators using Einstein operations and
their application to decision making,” Journal of Experimental
&Georetical Artificial Intelligence, vol. 30, no. 6, pp. 763–794,
2018.

[18] M. Akram, W. A. Dudek, and J. M. Dar, “Pythagorean Dombi
fuzzy aggregation operators with application in multicriteria
decision-making,” International Journal of Intelligent Systems,
vol. 34, no. 11, pp. 3000–3019, 2019.

[19] G. Shahzadi, M. Akram, and A. N. Al-Kenani, “Decision-
making approach under Pythagorean fuzzy Yager weighted
operators,” Mathematics, vol. 8, no. 1, p. 70, 2020.

[20] X. Peng and Y. Yang, “Fundamental properties of interval-
valued Pythagorean fuzzy aggregation operators,” Interna-
tional Journal of Intelligent Systems, vol. 31, no. 5, pp. 444–487,
2016.

[21] J. Wang, G. Wei, J. Lu et al., “Some q-rung orthopair fuzzy
Hamy mean operators in multiple attribute decision-making
and their application to enterprise resource planning systems
selection,” International Journal of Intelligent Systems, vol. 34,
no. 10, pp. 2429–2458, 2019.

[22] R. Arora and H. Garg, “Robust Aggregation operators for
multi-criteria decision-making with intuitionistic fuzzy soft
set environment,” Scientia Iranica, vol. 25, no. 2, pp. 931–942,
2018.

[23] L. Wang and N. Li, “Pythagorean fuzzy interaction power
Bonferroni mean aggregation operators in multiple attribute
decision making,” International Journal of Intelligent Systems,
vol. 35, no. 1, pp. 150–183, 2020.

[24] F. Chiclana, F. Herrera, and E. Herrera-Viedma, “'e ordered
weighted geometric operator: properties and application in
MCDMproblems,” in Technologies for Constructing Intelligent
Systems, vol. 2, pp. 173–183, Physica, Heidelberg, Germany,
2002.

[25] D. Liang, Y. Zhang, Z. Xu, and A. P. Darko, “Pythagorean
fuzzy Bonferroni mean aggregation operator and its accel-
erative calculating algorithm with the multithreading,” In-
ternational Journal of Intelligent Systems, vol. 33, no. 3,
pp. 615–633, 2018.

[26] J. Chen, S. Li, S. Ma, and X. Wang, “m-polar fuzzy sets: an
extension of bipolar fuzzy sets,” Ge Scientific World Journal,
vol. 2014, Article ID 416530, 8 pages, 2014.

[27] N. Waseem, M. Akram, and J. C. R. Alcantud, “Multi-attri-
bute decision-making based on m-polar fuzzy Hamacher
aggregation operators,” Symmetry, vol. 11, no. 12, p. 1498,
2019.

[28] A. Khameneh and A. Kiliçman, “m-Polar fuzzy soft weighted
aggregation operators and their applications in group deci-
sion-making,” Symmetry, vol. 10, no. 11, p. 636, 2018.

[29] M. Akram, m–polar Fuzzy Graphs, Studies in Fuzziness and
Soft Computing, p. 371, Springer, Berlin, Germany, 2019.

[30] M. Akram, A. Adeel, and J. C. R. Alcantud, “Multi-criteria
group decision-making using an m-polar hesitant fuzzy
TOPSIS approach,” Symmetry, vol. 11, no. 6, p. 795, 2019.

[31] A. Adeel, M. Akram, and A. N. A. Koam, “Group decision-
making based on m-polar fuzzy Linguistic TOPSIS method,”
Symmetry, vol. 11, no. 6, p. 735, 2019.

[32] M. Akram, Shumaiza, and M. Arshad, “Bipolar fuzzy TOPSIS
and bipolar fuzzy ELECTRE-I methods to diagnosis,” Com-
putational and Applied Mathematics, vol. 39, pp. 1–21, 2020.

[33] M. Akram, F. Ilyas, and H. Garg, “Multi-criteria group de-
cision making based on ELECTRE I method in Pythagorean
fuzzy information,” Soft Computing, vol. 24, no. 5,
pp. 3425–3453, 2020.

[34] G. Beliakov, A. Pradera, and T. Calvo, Aggregation Functions:
A Guide for Practitioners, p. 221, Springer, Berlin, Germany,
2007.

[35] H. Garg and Nancy, “Linguistic single-valued neutrosophic
prioritized Aggregation operators and their applications to
multiple-attribute group decision-making,” Journal of Am-
bient Intelligence and Humanized Computing, vol. 9, no. 6,
pp. 1975–1997, 2018.

[36] H. Hamachar, “Uber logische verknunpfungenn unssharfer
Aussagen und deren Zugenhorige Bewertungsfunktione
Trappl,” in Progress in Cybernatics and Systems Research,
R. Klir, Ed., vol. 3pp. 276–288, 1978.

[37] P. P. Li, “Global implications of the indigenous epistemo-
logical system from the east,” Cross Cultural & Strategic
Management, vol. 23, no. 1, pp. 42–77, 2016.

[38] W. Li, “Approaches to decision making with interval-valued
intuitionistic fuzzy information and their application to en-
terprise financial performance assessment,” Journal of Intel-
ligent & Fuzzy Systems, vol. 27, no. 1, pp. 1–8, 2014.

[39] X. Peng and Y. Yang, “Some results for Pythagorean fuzzy
sets,” International Journal of Intelligent Systems, vol. 30,
no. 11, pp. 1133–1160, 2015.

[40] X. Peng and G. Selvachandran, “Pythagorean fuzzy set: state of
the art and future directions,” Artificial Intelligence Review,
vol. 52, no. 3, pp. 1873–1927, 2019.

[41] X. Peng and J. Dai, “A bibliometric analysis of neutrosophic
set: two decades review from 1998 to 2017,” Artificial Intel-
ligence Review, vol. 53, no. 2020, pp. 199–255.

[42] X. Wang and E. Triantaphyllou, “Ranking irregularities when
evaluating alternatives by using some ELECTRE methods,”
Omega, vol. 36, no. 1, pp. 45–63, 2008.

[43] Z. S. Xu and Q. L. Da, “An overview of operators for ag-
gregating information,” International Journal of Intelligent
Systems, vol. 18, no. 9, pp. 953–969, 2003.

[44] S. Zeng and W. Su, “Intuitionistic fuzzy ordered weighted
distance operator,” Knowledge-Based Systems, vol. 24, no. 8,
pp. 1224–1232, 2011.

[45] L. Zhou, X. Zhao, and G. Wei, “Hesitant fuzzy Hamacher
Aggregation operators and their application to multiple at-
tribute decision making,” Journal of Intelligent & Fuzzy
Systems, vol. 26, no. 6, pp. 2689–2699, 2014.

[46] M. Akram, N. Waseem, and P. Liu, “Novel approach in
decision making with m-polar fuzzy ELECTRE-I,” Interna-
tional Journal of Fuzzy Systems, vol. 21, no. 4, pp. 1117–1129,
2019.

[47] J. Dombi, “A general class of fuzzy operators, the DeMorgan
class of fuzzy operators and fuzziness measures induced by
fuzzy operators,” Fuzzy Sets and Systems, vol. 8, no. 2,
pp. 149–163, 1982.

20 Journal of Mathematics


