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In this paper, we introduce the concept of complex neutrosophic soft matrices. We define some basic operations including
complement, union, and intersection on these matrices. We extend the concept of complex neutrosophic soft sets to complex
neutrosophic soft matrices and prove related properties. Moreover, we develop an algorithm using complex neutrosophic soft

matrices and apply it in signal processing.

1. Introduction

The models of real-life problems in almost every field of
science like mathematics, physics, operations research,
medical sciences, engineering, computer science, artificial
intelligence, and management sciences are mostly full of
complexities. Many theories have been developed to over-
come these uncertainties; one among those theories is fuzzy
set theory. Zadeh was the first who gave the concept of a
fuzzy set in 1965 [1]. Fuzzy sets are the generalizations or
extensions of crisps sets.

In order to add the concept of nonmembership term to
the definition of fuzzy set, the concept of an intuitionistic
fuzzy set was introduced by Atanassov in 1986 [2], where he
added the concept of nonmembership term to the definition
of fuzzy set. The intuitionistic fuzzy set is characterized by a
membership function g and a nonmembership function v
with ranges [0, 1]. The intuitionistic fuzzy set is the gen-
eralization of a fuzzy set. An intuitionistic fuzzy set can be
applied in several fields including modeling, medical diag-
nosis, and decision-making. [3] Molodtsov introduced the
concept of a soft set in 1999 and developed the fundamental
results related to this theory. Basic operations including
complement, union, and intersection are also defined on this
set. Molodtsov used soft sets for applications in games,

probability, and operational theories [3-6]. In 2018,
Smarandache generalized the soft set to the hypersoft set by
transforming the classical uniargument function F into a
multiargument function [7]. Maji et al. [8] introduced the
concept of fuzzy soft sets by combining soft sets and fuzzy
sets and applied them in decision-making problems [9]. In
[10], Cagman and Enginolu used soft matrix theory for
applications in decision-making problems.

The concept of neutrosophy was introduced by Smar-
andache [11] in 1998. A neutrosophic set is characterized by
a truth membership function T, an indeterminacy function
I, and a falsity membership function F. A neutrosophic set is
a mathematical framework which generalizes the concept of
a classical set, fuzzy set, intuitionistic fuzzy set, and interval
valued fuzzy set [12]. In [13], Nabeeh introduced a method
that can promote a personal selection process by integrating
the neutrosophic analytical hierarchy process to show the
proper solution among distinct options with order prefer-
ence technique similar to an ideal solution (TOPSIS). In [14],
Baset introduced a concept of a neutrosophy technique
called type 2 neutrosophic numbers. By combining type 2
neutrosophic numbers and TOPSIS, they suggested a novel
method T2NN-TOPSIS which has a lot of applications in
group decision-making. They worked on a multicriteria
group decision-making technique of the analytical network
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process method and Visekriterijusmska Optmzacija I
Kommpromisno Resenje method under neutrosophic en-
vironment that deals high-order imprecision and incom-
plete information [15].

The largest number set is a complex set which is in-
troduced by Gauss in 1795 and is the extension of a real
number set. According to same fashion, a complex fuzzy set
is extension to a fuzzy set as here the range set is extended
from interval [0, 1] to a closed disc of radius one in complex
plane. The degree of membership a complex fuzzy set is not
restricted to a value in [0, 1]; it is extended to a complex
value lies in a disc of radius one in the complex plane.

Complex fuzzy sets are not simply a linear extension of
conventional fuzzy sets; complex fuzzy sets allow a natural
extension of fuzzy set theory to problems that are either very
difficult or impossible to address with one-dimensional
grades of membership. It is an obvious fact that uncertainty,
indeterminacy, inconsistency, and incompleteness in data
are periodic in nature. In order to address this difficulty, in
2002, Daniel Ramot was the first who gave the concept of a
complex fuzzy set. The concept of a complex neutrosophic
set was introduced in [16].

The complex fuzzy set C is described as membership
function, with range in closed unit disc in the complex plane.
The complex-valued membership function ¢, (x) is defined
as ¢ (x) =t (x)e" ¥ that assigns a complex value of
membership to any x in U (universal set) such that ¢, (x) and
#(x) both are real-valued with t,(x) is fuzzy set and
i = /-1, where t,(x) is called amplitude term and 7, (x) is
called phase term.

Physically the complex fuzzy set is used for representing
the complex fuzzy solar activity (solar maximum and solar
minimum) through the measurement of sunspot number
and is also used in signal processing. The complex neu-
trosophic set is the generalization of a complex fuzzy set and
a neutrosophic set. The complex neutrosophic set is char-
acterized by complex-valued truth membership function,
complex-valued indeterminate function, and complex-val-
ued falsehood function. In short, a complex neutrosophic set
is more generalized because it is not only the generalization
of all the current frameworks but also describes the infor-
mation in a complete and comprehensive way.

A fuzzy set with its generalizations, like intuitionistic
fuzzy sets, interval valued fuzzy sets, and cubic sets, rep-
resents uncertainties in models of the one-dimensional
phenomenon while a complex fuzzy set is the only
generalization of a fuzzy set which deals with the models of
real-life problems with the two-dimensional and periodic
phenomenon. A complex fuzzy set is more applicable
because of its nature and can be used more widely in all
branches of sciences. Since it is similar to that of a Fourier
transform, more explicitly it is a particular sort of Fourier
transform with the only restriction on the range which is a
complex unit disc. A Fourier transform is used in signals and
systems; that is, a Fourier transform is the mathematical tool
for representing both continuous and discrete signals.
Taking advantage of a complex fuzzy set, being a specific
form of Fourier transform, it can be used to represent signals
in a particular region of consideration. A neutrosophic set is
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the generalization of a fuzzy set which deals with the
problems containing uncertainties of truthfulness, false-
hood, and neutrality. The complex neutrosophic set has
three major parts, that is, truth, intermediate, and falsehood
membership functions. The truth membership function is
totally the same as that of a complex fuzzy set while in-
termediate and falsehood membership functions are the new
additions to it. Thus, a complex neutrosophic set can be
applied more widely compared with other fuzzy sets.

In the vast area of science and technology, matrices play
an important role. Classical matrix theory cannot solve all
models of the daily life problems. In order to overcome these
difficulties, Yang and Ji in [17] initiated a matrix repre-
sentation of a fuzzy soft set and successfully applied the
proposed notion of a fuzzy soft matrix in certain decision-
making problems.

This work is basically the extension of the work of Ramot
et al. [18], Alkouri and Saleh [19], Cai [20, 21], and Zhang
et al. [22] to neutrosophic sets. Here, in this paper, we extend
the concept by defining the complex neutrosophic fuzzy soft
set and then the complex neutrosophic fuzzy soft matrix
(CNFSM). Further, we discuss some basic operations on
CNESM and finally we develop an algorithm using these
matrices and apply it in signal processing.

Soft matrices are widely used in signals and systems,
decision-making problems, and medical diagnosis. This
article has two aims. In the first part, we present theoretical
foundations of the complex neutrosophic fuzzy soft ma-
trices. These theoretical foundations provide basic notions
and operations on complex neutrosophic soft matrices such
as complex neutrosophic fuzzy soft zero matrix, complex
neutrosophic fuzzy soft universal matrix, complex neu-
trosophic fuzzy soft submatrices, union of complex neu-
trosophic fuzzy soft matrices, intersection of complex
neutrosophic fuzzy soft matrices, and complement of
complex neutrosophic fuzzy soft matrices. Then, we intro-
duce some fundamental results and discuss main strategies
for applications of this concept in signals and systems, as
well as a coherent discussion of the theory of complex
neutrosophic fuzzy soft matrices. The aim of these new
concepts is to provide a modern method with mathematical
procedure to identify a reference signal out of large number
of signals received by a digital receiver. The complex neu-
trosophic fuzzy soft matrix is the generalization of the fuzzy
soft matrix, complex fuzzy soft matrix, and Pythagorean
fuzzy soft matrix. The degree of membership function,
nonmembership function, and phase terms are all applied to
each entry of the matrix which give more fruitful results for a
better choice in signals and systems along with other fields
such as decision-making problems, medical diagnosis, and
pattern recognition. These applied contexts provide solid
evidence of the wide applications of the complex neu-
trosophic fuzzy soft matrices approach to signals and sys-
tems and decision-making problems.

2. Preliminaries

Here, we begin with a numerical example of a complex
neutrosophic set which is already defined above.
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Example 1. Let X = {x,x,,x;} be a universe of discourse.
Then, the complex neutrosophic set S in X is given as

(0.6¢"%, e, 0.3ef°'6) (0.4ef°, 0.9¢/™4, 0.4ef”’4) (0.5ef'2”/3, 0.2¢/%2, 0.7ej”/3)

= +

s , (1)

X

Definition 1 (fuzzy set (FS) [1]). Fuzzy set is defined by an
arbitrary mapping from a nonempty set X to the unit interval
[0,1], i.e,, f: X —> [0, 1]. The set of all fuzzy subsets of X
is denoted by F(X), ie., FX)=1{f:f
is a function from Xinto [0, 1]}.

Soft set theory is a generalization of fuzzy set theory,
which was proposed by Molodtsov in 1999.

Definition 2 (soft set (SS) [3]). Let U be the universal set, E
be the set of parameters, and ACE and P(U) be the power
set of U, then a soft set F, is defined by a mapping.

fa: E— P(U) such that f,(x) = ¢ if x ¢ A.

In other words, we can say that soft set F, over U is the
parameterized family of subsets of U, that is,
Fy={(x,fo(x): x €E, f,(x) € P(U)}.

Definition 3 (fuzzy soft set (FSS) [8]). Let U be the universe
of discourse, E be the set of parameters, and A CE, then a
fuzzy soft set G, is defined by a mapping: g,: E — P' (U)
where P' (U) is the collection of all fuzzy subsets of U, such
that g, (x) = ¢ if x ¢ A.

In other words, we can say that fuzzy soft set G, over U is
the parameterized family of fuzzy subsets of U, that is,
Ga={(x,9,(x)): x € E,g,(x) € P'"(U)}.

Definition 4 (intuitionistic fuzzy set (IFS) [2]). An intui-
tionistic fuzzy set I on a nonempty set U (universal set) is
defined by the set of triplets given by

I ={(x,p;(x),y;(x)): x e U}. (2)

Here, y;(x) and y;(x) both are functions from U to
[0,1] as y; (x): U —> [0,1] and y; (x): U — [0, 1]. Here,
yr(x) represents the degree of membership and y,(x)
represents the degree of nonmembership of each element
x € U to the set I, respectively, also 0 < y; (x) + y; (x) <2, for
all x e U.

Definition 5 (complex fuzzy set (CFS) [18]). The complex
fuzzy set S on universe of discourse X is described as
complex-valued membership function ug(x) that assigns
value of membership of the form r, (x)e/*:*) to any element
x € X, where j = V-1, yg (x) involves two real-valued r_ (x)
and w, (x), with r,(x) € [0, 1].

Here,a,, =<| '/‘j (”i)' :<|/41T (”i)" |,,¢§ (”i)|> |.”;D (”i)|>’ ife; € A,

(0,0,0)

X3

Mathematically, S = {(x, y, (x)): x € X}.

Definition 6 (complex intuitionistic fuzzy set (CIFS) [19]).
The complex intuitionistic fuzzy set CI on a nonempty set U
(universal set) is defined by the set of triplets given by
CI = {(x, pcy (%), yer (x)): x € U} Here, pey (x) =
rep (x)ei?er ™ and yo; (x) = Iy (x)e/™er ) both are functions
from U to closed unit disc in the complex plane and also
Ucy (x) represents the degree of membership and y.; (x)
represents the degree of nonmembership of each element
xeU to the set CI, respectively, and also
0<rer(x) + 1o (x) <2, for all x € U.

Definition 7 (complex neutrosophic fuzzy set (CNFS) [16]).
The complex neutrosophicfuzzy set N on a nonempty set U
(universal set) is defined by the set as N ={(x,
Ty (x),Iy(x),Fy(x): x €eU)}. Here, Ty(x)=ry(x)
NG T (x) = Iy (x)e/™ X)) and Fy (x) = py (x)efdy®)
are the complex-valued functions from U to the closed unit
disc in the complex plane where T, (x) describes complex-
valued truth membership function, I, (x) describes com-
plex-valued indeterminate membership function, and
Fy(x) describes complex-valued falsehood membership
function of each element x € U to the set N, respectively,
and also 0 <7y (x) + Iy (x) + py(x) <3, for all x e U.

3. Complex Neutrosophic Fuzzy Soft
Matrix Theory

In this section, we introduced a new concept of complex
neutrosophic fuzzy soft matrices. We defined the operations
of union, intersection, compliment, and submatrices. We
defined zero and universal matrices. Moreover, we proved
some related results.

Definition 8 (complex neutrosophic fuzzy soft matrix
(CNFSM)). Consider a universal set U = {uy, uy, U, . . ., U}
and set of parameters E = {e;, e,,e;,...,¢,} such that ACE
and (c4, A) be a complex neutrosophic fuzzy soft set over
(U, E). Then, the CNFSS (c,, A) in matrix form is repre-
sented by A, = (4l or A =la;] where
i=1,23,...,mand j=1,2,3,...,n.

(3)
ife]- ¢ A
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Now, (y]T (ui),yﬁ(ui),yf(ui)) represents degrees of  Example 2. Let U = {u;,u,,u;} be a universal set repre-
membership of truth, intermediate, and falsehood on u;. senting the three firms, E = {e1 (costly),e, (beautiful), e,
Throughout this paper, we will use the abbreviation (luxurious)} be the parameters set, and A = {e;,e,} CE.
CNFSM,,,, for complex neutrosophic fuzzy soft matrix =~ Then, CNFSS (c,, A) over the universal set U is given by

over U. Following is the example of a complex neutrosophic

fuzzy soft matrix.

(carA) = {CA (e;) = {(”1» <|O.3ej”

= {(ul, (|O.lejﬂ/3

Here,

0.6e/™2|, |

, |0.2ej”/2|)),cA (e,)

i

|0.8ej"/4

‘0.5€jﬂ/2

)) (u3, (|0.9ej"|, 0.1

)) (u3, <|0.5ef”’3 ,[0.5¢ |0.6¢™™

))} (”z) (|o.7efn/4
e

>

0.3¢/™2

>

) ‘O.Iej”

|0.9ef”/“

|0.9ej"/ 2

‘0.2€jn/6

(4)

0.3¢" = 0.3 (cos 7 + j sin 7) = 0.3(~1+0) = —0.3

|0.3ef” =|-0.3] = 0.3 0.6

6ei™ = 0.6<cos(g) +j sin<g>) = 0.6(0+ j) = 0.6
|0.6¢"™| =10.6j1 = V0.36 = 0.6

e =cosm+jsinm=-1+0=-1

=|-1] =1,0.7e/™* = 0.7<cos(7£> +j sin(z» =0.7 L_Fji
4 4 vitva

=0.7(0.707 + j0.707) = 0.494 + j0.494

"

|0.7¢"™*| =10.494 + j0.494] = V0.244+0.244 = 0.69,

ose=as(os(3) + n(3)) =03( )

= 0.8(0.707 + j0.707) = 0.5656 + j0.5656,

10.8¢/™*| = |0.5656 + j0.5656| = v/0.319 + 0.319 = 0.790.5

0.5¢/™ = 0.5(c0s<z> +j sin(7—[>> =0.5j
2 2
|0.5¢/| =10.5j1 = V025 = 0.5,
0.9¢/" = 0.9(cos 7 + j sin ) = 0.9(-1) = —0.9

|0.9ej” =|-0.9] = 0.9

jnl6 T .. (T . .
0.1e/"” = 0.1<c05<g> +j sm<g>> =0.1(0.866 + j0.5) = 0.0866 + j0.05

|o.1ef”’6| = 10.0866 + j0.05] = v/0.0074 + 0.0025 = 0.099,
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0.2e7 = 0.2<cos<g> +j sin(%)) =0.2(0+ j) = 0.2j
0.2/ =]0.2jl = V0.04 = 0.2,
jnl3 T .. (T . .

0.1e = 0.1<cos<§> +j s1n<§>> =0.1(0.5 + j0.866) = 0.05 + j0.0866

0.1/ =10.05 + j0.0866] = 1/0.0025 + 0.0074 = 0.090.2¢"""
T .. T . .

= 0.2<cos<g) +j sm<g>) =0.2(0.866 + j0.5) = 0.1732 + jO.1

|0.2¢/™°|  =10.1732 + jo.1] = V0.029 + 0.01 = 0.19,

0.1¢/"  =0.1(cos 7+ j sin 1) = 0.1(~1 +0) = 0.1

|0.1ef” =|-0.1]=0.1,

0.3¢™ = 0.3<cos<z> +j sin<z>> =0.3f
2 2

0.3/ =10.3j] = v0.09 = 0.3

0.9¢7 = 0.9<cos 2+ j sin(%’)) = 0.9 (5)

|o.9ef”/2| =10.9 = +0.81 = 0.9,

0.9¢™ =0 9<cos<z> +] sin<z>> —oof Ly L
: = 0. 1)t )=\ 5t
= 0.9(0.707 + j0.707) = 0.636 + j0.636

|0.9¢/™*|  =10.636 + j0.636| = 1/0.404 + 0.404 = 0.898,

in/3 T .o (T . s
0.5¢’ = 0.5<cos(§> +j sm<§)> =0.5(0.5 + j0.866) = 0.25 + j0.433

|0.5¢/™|  =10.25 + j0.433] = /0.0625 + 0.187 = 0.499

0.5¢/™

|0.Sej"

=|-0.5| = 0.5,

=0.5(cos m+ j sin ) = 0.5(-1) = -0.5

jnl3 T .. (T . .
0.6e = 0.6<cos<§> +j sm<§>> =0.6(0.5 + j0.866) = 0.3 + j0.519

0.6/ =10.3 + j0.519] = 1/0.09 +0.260 = 0.599.

Now, the abovementioned CNFSS (c4, A) in matrix
form is given by

(0.3,0.6,1) (0.09,0.19,0.1)  (0,0,0)
A= (0.69,0.79,0.5) (0.3,0.9,0.898) (0,0,0) |. (6)
(0.9,0.099,0.2) (0.499,0.5,0.599) (0,0,0)

Definition 9 (complex neutrosophic fuzzy soft zero natrix).
Let [a;;] € CNFSM,,,,, then [a;;] is called complex neu-
trosophic fuzzy soft zero matrix if (a; P Tij ll-]-) = (0,0,0), for
all i and j, and is denoted by [0].

Example 3

(0,0,0) (0,0,0) (0,0,0)

(0,0,0) (0,0,0) (0,0,0) |- (7)
(0,0,0) (0,0,0) (0,0,0)

[0] =

Definition 10 (complex neutrosophic fuzzy soft universal
matrix). Let [a;;] € CNFSM,,,, then [a;;] is called complex
neutrosophic ~ fuzzy  soft  universal matrix if
(a;j1ij1;) = (1,1,1), for all i and j, and is represented by
[1].



(1,1,1) (1,1,1) (1,1,1)
[1] =] (1,1,1) (1,1,1) (1,1,1) | (8)
(1,1,1) (1,1,1) (1,1,1)

Definition 11  (complex neutrosophic fuzzy soft
submatrices). Let A, and B, be two CNFSMs, then

(i) A,,, is a CNES submatrix of B,,,,, and is denoted by
A,xnEB if = (a;;a; ”)<b (b;

mxn = mxn l]’ l]’ l]’
/ /! " / n
bi;»b;; ), that is, (a;; bl],a bl], bij), for all
Aj; € Ay bjj € By

(i) Amx,, is a proper CNFS submatrix of B, and is
denoted b”y Apin C B 1f a5 = (a5, ";], a%; )<b;; =
(bij» U,b ), thatis, (a;;<b;;,a <b,],a1<bij),forall
ai; € Ay bij € By and for at least one entry

. " /!
a;; <b,], that is, (ai]-<bl], i< bl],aj <b;;)

(iii) Two CNFSMs A,,,, and Bmen are equal and are

denoted by A,.,=B if a;;= (a,],a,'],ai’]) =

mxn>

= (b, ,],b") that  is. (a; b,],a
bij, a" b" ), for all a;; € A, b;; € B
Example 4. Let
[(0.2,0.4,0.1) (0.1,0.5,0.2)
2x2 =
(0.3,0.7,0.3) (0.5,0.4,0.4)
9)

[ (0.2,0.4,0.1) (0.3,0.7, 0.9)]
271 (0.3,0.7,0.3) (0.7,0.5,0.7) |

So, we can write that A,,, C B,,,. Moreover, AC B.

Definition 12. (union/intersection and compliment of
complex neutrosophic fuzzy soft matrices).

Let A,,, and B,,, be two CNFSM,
CNESMC,,,,,,, is called

(i) Union of A,., and B, and is denoted by
Am><n m><n lf men - maX{Amxn’ mxn} fOI‘ all i
and j, that is, ¢; = (max(a,],b ) mln(alj, )
mln(al],b ")) where ¢;j = (Cz]> i€

(ii) Intersectlon of A, and B, is denoted by
A,n N B, if C, = min{A, ., B,..}, for all i
and j, that is, ¢ij = (mln(a,], ) max (“;y )
max (a;; " b, )) where ¢;; = (CU,CU,CU)

then the

Xn

(iii) Complement of AmXn is denoted by A,.,if
Cosn =1 — Ay for all i and j, that is,
ij = (1 a1~ a;j, 1- a;']- ,  where = (¢;j»
Cij> C,']')

Example 5. Assume that
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N [(0.3,0.6,1) (0.65,0,0.6) :|
271 (0.3,0.9,0) (0.8,0.7,0.9) |’
[(0.49,0.5,0.4) (0.2,0,0.3)
By, = >
| (0.1,0.9,0.3)  (0,0,0)
then,
r(0.49,0.5,0.4) (0.65,0,0.3) (10)
AsoUByy, = >
| (0.3,0.9,0)  (0.8,0,0)
[ (0.3,0.6,1) (0.2,0,0.6)
AgoMByyy =
| (0.1,0.9,0.3) (0,0.7,0.9)
A [(0.7,0.4,0) (0.35,1,0.4) :|
271 (0.7,0.1,1) (0.2,0.3,0.1) |
Proposition 1. Let A, be a CNFSM, then
@ ((A mxn) )I = A (11)
(i) [0]" = [1].
Proof. It follows from definition. O
Proposition 2. Let A, B, and C,,,,, be three CNFSMs,
then
(1) Amxn = B and Bmxn men = A - men’
(ii) Apin E Brixn and Bin E Apsn = Amxn = B
(12)
Proof. It follows from definition. O

Proposition 3. Let A, and B, be two CNFSMs, then

A andB,,,,CC, .., = A, E Crrvn- (13)

an = an mxn = ~'mxXn

Proof. It follows from definition. O

Proposition 4. Let A,,,, and B,,,,, be two CNFSMs, then

(i) A wn = BsnlA

an mMXn>
(i) A Bosn = BN A s>
(iii) (AmxnUBmxn)Umen = Ayl ( mxnucmxn)’

(IV) (AmxnﬂBmxn)rlmen = A r] (Bmxn an)’
(V) A Ll (Ban mxn) = (AanLIBmXﬂ)l_l (AmXﬂUCan)’
(Vl) Al_l (BmXﬂLlCmXﬂ) = (Amxnrlexn)u (Amxnrlcmxn)'

(14)

mxn
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Proof

(i) Ay U By = max (A, i)

B
= max (Bmxn’ Amxn)
=B, LA

WIXP’l mxn mxn>

mxn>
B, = min (Amxn’ Bmxn)
A

(11 m><n
=min(B

=B,

mxn> m><n)

nA,

-
(i) (AxnlB s )UC iy = MaX ((AyissUB s )s Con)
(max (A, Brixn)s Coxn)
( mons o)
(Apx> (ByxnlICicn)

= A (ByxnUC i )»
(V) (ApsenBrsen) IConn = 10 ((Aysu1Bsn)s C.

= min (min (A,,,,»

A, max (B

Wlxn) WIXVI)

mxn) men)

(
= min (A, M (Byss Crcn)
= min (A, (BrunMCrixn))
= A1 (B
() Apsinld (BursaMConxn) = Max (Apss (B Conn))

= max (A, min (B, Con))

mxn

mxn)

= min (max (A, Byxn)s MaX (A Crixn))
= min ((A,,UBy0)s (ApixnliCpicn)
(AmxnBusn) T (ArnsnHComcn )

min (A (ByinlICnxn))

min (A,,,,, max (B, C,n))

(vi) Apsenll (Bmxn u men)

= max (min (A, Buen)> Min (A Crisn))
= max ((Amxrll_lexn) ( mXYll_lCmXV’))
= (Amxnl—leXVl) (Aan |_| men).

(15)
O

Proposition 5. Let A,,,, and B,,,.,, be two CNFSMs, then the

De-Morgan laws are valid:

mxn

(i) (AanLIBmXVl)l = (Amxn) I—l(Bmel) (16)
(11) (Amxnl_lexn)’ = (Amxn) U(Bmxn) °

Proof.

(1) (AppentBycn)' s Bunxn) ]

1= max (A, By ]
Ao 1= By
mxn] T Bren]
mln(Amxw B,)]'

1= min (A, B )]
A 1= By

mxn] U By

max (A

m1n(1

(4 (17)

max(l

=[
=[
=[
=[A
mxnByxn) = [
=[
=[
=[A

4. Complex Neutrosophic Fuzzy Soft Decision-
Making Method

Now, we are going to discuss real-life applications of newly
defined CNFSM,,,,,,. We will show how our theoretical
concepts and results can be applied to the real-life phe—
nomenon. Specifically, we will show that CNFSM,,,.,, e
plains how to get a better and clear signal for 1dent1ﬁcat10n
with a given reference signal. Before moving towards the
algorithm, we will define the fuzzy soft (FS) max-min de-
cision-making method (FSMmDM) by using FS max-min
decision function and also define here the optimum FS on
universal set U.

Definition 13 (fuzzy soft (FS) max-min decision-making
function [10]). Let [c;)] € SM,,,p, Ij = {p: thereexisti,
Cip #0, (k—-ln<p<kn}, for all kel={1,2,3,...,n}
Then, soft max-min decision function, denoted Mm, is
defined as follows:

Mm: SM,,... — SMm,,.,, Mm [cip] = [maxy {ti}]

(18)

,if I #
f = <Iﬁm{ ph i {}> (19)

0, lfIkz{}.

where

The one column soft matrix Mm [cip] is called max-min
soft decision-making matrix.

Definition 14 (see [10]). Let U = {uy, u,,...,u,,} be a uni-
versal set and Mm [cipl = [d;1]. Then, a subset of U can be
obtained by using [d;] as in the following way
optyy |(U) = {w;: u; € U,d;; = 1}, which is called an opti-
mum set on U.

4.1. Decision-Making Algorithm

step 1. Suppose that M different signals S, (t),
Sy(t"),...,Sy (t") are detected and sampled by a receiver
andletU = {S; (¢'),S, ('), ..., Sy (t")}. Each of these signals
is sampled N times. Let S,,(r') denote the r/th sample
(1<r' <N) of the mth signal (1<m< M). Now, we know
that each signal has its Fourier transform. So, each received
signal can be expressed as summation of its Fourier com-
ponents as

N

) =(§) 2 o

1271(n— 1) (r'— 1)/N, then

< )Zlcmn .|ei2n(n— 1)(r’—1)/N|,

where C,,,(1<n<N) represents complex Fourier coeffi-
cients of S,,. The above expression can also be rewritten as
follows:

1S, ()



19,0 ()] = (UN) EN 1By - [l =00 DB
where C, , =B, ePm, with B, B, real-valued and

B, . >0, for all n, where 1<n<N.

mmn =

(S (1), 81(1), 87 (1))

| (1@.52.52)

(ST (N), S1(N) - S; (N)) (S5 (N),S;(N),S; (N)) .

step 3. Similarly, we will construct another matrix by the
signals S ().

(SI*T(I),SI*I(l), SI*F(I))

B (SI*T(Z),SI*I(Z), SI*F (2))

(83 (1),85(1), 85 (1))
($;(2),5,(2),5; (2))

(87,8, (1), 87 (1)
(872,81 (2),8;7(2)
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step 2. The above given signals are expressed as in matrix
form as A = [|S,, (r")|lyxap that is, express N samples of
each signal (total M signals) in columns:

(Sh (10,83, (1), S (1)
(Sh (2,83, (2), S} (2))

(21)
- (Sh (N), Sy (N), Sy (N))

(Sy (1,85 (1), 837 (1)

(S (2,85 2,53 (@) 22)

(STT N, SN, ST (N)) (857 (), ST (N), Sy T (ND) . (Sard (N, 83 (N), Sy (M)

step 4. Multiply matrices A and B using usual multiplication
of matrices. In this multiplication, the truth value of the
entry of the first matrix will be multiplied by the truth value
of the entry of the second matrix. The intermediate and false
values of the entries are multiplied similarly.

step 5. The complex neutrosophic fuzzy soft max-min de-
cision-making matrix (CNFSMmDM) is found by taking
minimum of truth, intermediate memberships, and maxi-
mum of falsehood membership values of each column, and
we will get a column matrix [d;;], where 1<i< M.

step 6. An optimum set opt,,,, (45 (U) on U is found, that is,

{(maX{IS? @@, max{'# (ui)”, min|S§D (ui)|>, forl<j<Mandl<i< N}. (23)

5. Applications

Step 1. Assume that u,,u,, and u; be any three signals
received by a digital receiver from any source. Each signal is
a triplet of numbers. The first number of triplet represents
the truth value, second represents the intermediate value,
and the third represents the false value corresponding to
each signal. Now, each of these signals is sampled three
times. Let R be the given known reference signal. Each signal
is compared with the reference signal in order to get the high
degree of resemblance with the reference signal R. Now, we
obtain the matrix A by setting the signals along column and
their three times sampling along row. Similarly, we will
obtain the matrix B.

step 2. Matrices A and B are given by

(0.7,0.4,0.5) (0.6,0.7,1) (0.8,1,0.7)
A=]1(08,05,0.3) (0.2,0,0.9) (0.5,0.8,0.4) | (24)
(0.4,0,0.8) (0.8,0.4,0.6) (0,0.3,0.9)

step 3
(0.4,0.4,0) (0.6,0.7,0.4) (0.1,0.3,0)
B=]1(0.3,0.7,0.7) (0.4,0.9,0.4) (0.1,0.6,0.4) [. (25)
(0.2,0.4,0.5) (0.4,0.5,0.3) (0.8,0.5,0.8)

step 4. Now, we will calculate the product of above defined
matrices by usual multiplication of matrices. In this mul-
tiplication, the truth value of the entry of the first matrix will
be multiplied by the truth value of the entry of the second
matrix. Similarly, the intermediate and false values of the

entries are multiplied.
(0.62,0.69,0.42) (0.98,0.96,0.45) (0.77,0.59,0.6)

(0.48,0.52,0.83) (0.76,0.75,0.6)  (0.5,0.55,0.68)

(0.4,0.4,0.87)  (0.56,0.51,0.83) (0.12,0.39,0.96)
(26)

AB =

step 5. We calculate CNFSMmDM|[AB] = [d;,], for all
i =1,2,3, where d;, is defined as d;; = min{t;;} = min{t,;,
ty,t3 ) forall k =1,2,3.
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dyy = min{t,;} = min{t,;, t,;, 5}

= min{(0.62, 0.69, 0.42), (0.48,0.52,0.83), (0.4, 0.4,0.87)} = (0.4, 0.4, 0.42),

dy = min{tkz} = min{tlzxtzz»tn}

(27)

= min{(0.98, 0.96, 0.45), (0.76,0.75,0.6), (0.56,0.51,0.83)} = (0.56,0.51, 0.45),

{
dy = min{tk3} = min{t13,t23,t33}

= min{(0.77,0.59, 0.6), (0.5,0.55,0.68), (0.12,0.39,0.96)} = (0.12,0.39,0.6).

We obtain CNFSMmDM as follows:
(0.4,0.4,0.42)
CNFSMmDM [AB] = [d,,] = (0.56,0.51,0.45) |.  (28)
(0.12,0.39,0.6)

Step 6. Finally, we find out an optimum set on U as follows:
OPtyrmrap) (U) = u,. So, the signal which is identified as a
reference signal is the signal u,.

6. Conclusion

This paper consists of CNFSM and different types of
complex neutrosophic soft matrices with examples. We
introduced some new operations on complex neutrosophic
fuzzy soft matrices and explore related properties. Further,
we constructed a complex neutrosophic soft decision-
making algorithm with the help of these matrices and used it
in signal processing. We hope that our finding will help in
enhancing the study on complex neutrosophic soft theory
and will open a new direction for applications especially in
decision sciences. In future, we will define some new op-
erations on complex neutrosophic fuzzy soft sets and will
introduce some new algorithms for signals and other related
decision-making in social sciences. Specifically, we will use
complex fuzzy sets and complex neutrosophic fuzzy sets in
signal processing for modeling of continuous signals.
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The aim of this paper is to propose the generalized version of the multipolar neutrosophic soft set with operations and basic
properties. Here, we define the AND, OR, Truth-Favorite, and False-Favorite operators along with their properties. Also, we define
the necessity and possibility of operations for them. Later on, to extend it to solve the decision-making problems, we define some
information measures such as distance, similarity, and correlation coefficient for the generalized multipolar neutrosophic soft set.
Several desirable properties and their relationship between them are derived. Finally, based on these information measures, a
decision-making algorithm is stated under the neutrosophic environment to tackle the uncertain and vague information. The
applicability of the proposed algorithm is demonstrated through a case study of the medical-diagnosis and the decision-making

problems. A comparative analysis with several existing studies reveals the effectiveness of the approach.

1. Introduction

Uncertainty plays a dynamic part in numerous fields of life
such as modeling, medical, and engineering fields. However,
a general question of how we can express and use the un-
certainty concept in mathematical modeling is raised. A lot
of researchers in the world proposed and recommended
different approaches to use uncertainty theory. First of all,
Zadeh developed the notion of fuzzy sets [1] to solve those
problems which contain uncertainty and vagueness. It is
observed that in some cases circumstances cannot be han-
dled by fuzzy sets; to overcome such types of situations,
Turksen [2] gave the idea of the interval-valued fuzzy set
(IVES). In some cases, we must deliberate membership
unbiassed as the nonmembership values for the suitable

representation of an object in uncertain and indeterminate
conditions that could not be handled by fuzzy sets or by
IVFES. To overcome these difficulties, Atanassov presented
the notion of intuitionistic fuzzy sets (IFSs) in [3]. The theory
that was presented by Atanassov only deals with the in-
sufficient data considering both membership and non-
membership values; however, the IFSs theory cannot handle
the overall incompatible as well as imprecise information. To
address such incompatible as well as imprecise records, the
idea of the neutrosophic set (NS) was developed by Smar-
andache [4]. A general mathematical tool was proposed by
Molodtsov [5] to deal with indeterminate, fuzzy, and not
clearly defined substances known as a soft set (SS). Maji et al.
[6] extended the work on SS and defined some operations
and their properties. Maji et al. [7] utilized the SS theory for
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decision-making. Ali et al. [8] revised the Maji approach to
SS and developed some new operations with their properties.
De Morgan’s Law on SS theory was proved in [9] by using
different operators.

Maji [10] offered the idea of a neutrosophic soft set (NSS)
with necessary operations and properties. The idea of the
possibility NSS was developed by Karaaslan [11] and in-
troduced a possibility of neutrosophic soft decision-making
method to solve those problems which contain uncertainty
based on And-product. Broumi [12] developed the gener-
alized NSS with some operations and properties and used the
proposed concept for decision-making. To solve MCDM
problems with single-valued neutrosophic numbers
(SVNNs) presented by Deli and Subas in [13], they con-
structed the concept of cut sets of SVNNs. On the basis of the
correlation of IFS, the term correlation coefficient (CC) of
SVNSs [14] was introduced. Ye [15] presented the simplified
NSs introduced with some operational laws and aggregation
operators such as weighted arithmetic and weighted geo-
metric average operators. Therein, a multicriteria decision-
making (MCDM) method was constructed based on pro-
posed aggregation operators. Masooma et al. [16] progressed
a new concept by combining the multipolar fuzzy set and
neutrosophic set, which is known as the multipolar neu-
trosophic set. They also established various characterizations
and operations with examples. Dey et al. [17] developed the
grey relational projection method based on NSS to solve
MADM complications. Pramanik et al. [18] extended the
VIKOR technique to solve MAGDM problems under a
bipolar neutrosophic set environment. Pramanik et al. [19]
established the TOPSIS technique to solve MADM problems
utilizing single-valued neutrosophic soft expert sets. Pra-
manik et al. [20] developed three different hybrid projection
measures projection, bidirectional projection, and hybrid
projection measures between bipolar neutrosophic sets.

Peng et al. [21] established the probability multivalued
neutrosophic set by combining the multivalued neu-
trosophic set and probability distribution and used it for
decision-making problems. Kamal et al. [22] proposed the
idea of mPNSS with some important operations and
properties; they also used the developed technique for de-
cision-making. Garg [23] developed the MCDM method
based on weighted cosine similarity measures under an
intuitionistic fuzzy environment and used the proposed
technique for pattern recognition and medical diagnoses. To
measure the relative strength of IFS, Garg and Kumar [24]
presented some new similarity measures. They also for-
mulated a connection number for set pair analysis (SPA) and
developed some new similarity measures and weighted
similarity measures based on defined SPA. Garg and Rani
[25] extended the IFS technique to complex intuitionistic
fuzzy sets (CIFS) and developed the correlation and
weighted correlation coefficient under the CIFS environ-
ment. To measure the relation between two Pythagorean
tuzzy sets (PES), Garg [26] proposed a novel CC and WCC
and presented the numerical examples of pattern recogni-
tion and medical diagnoses to verify the validity of the
proposed measures. Zulgarnain et al. [27] developed the
aggregation operators for Pythagorean fuzzy soft sets and
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proposed a decision-making methodology using their de-
veloped aggregation operators. They also utilized their
established decision-making technique for the selection of
suppliers in green supply chain management. Zulgarnain
et al. [28] extended the TOPSIS technique under Pythag-
orean fuzzy soft environment. Nguyen et al. [29] defined
some similarity measures for PFS by using the exponential
tunction for the membership and nonmembership degrees
with its several properties and relations. Peng and Garg [30]
presented some diverse types of similarity measures for PFS
with multiple parameters. Wang and Li [31] introduced
Pythagorean fuzzy interaction power Bonferroni mean
(PBM) operators for solving MADM issues. Wang et al. [32]
proposed the Pythagorean fuzzy interactive Hamacher
power aggregation operators for assessment of express
service quality with entropy weight. Saeed et al. [33]
established the concept of mPNSS with its properties and
operators; they also developed the distance-based similarity
measures and used the proposed similarity measures for
decision-making and medical diagnoses.

Gerstenkorn and Mafiko [34] proposed the functional
measuring of the interrelation of IFSs, which is known
nowadays as correlation, and developed its coefficient with
properties. To measure the interrelation of fuzzy numbers,
Yu [35] established the CC of fuzzy numbers. Evaluating the
CC for fuzzy data had been developed by Chiang and Lin
[36]. Hung and Wu [37] proposed the centroid method to
calculate the CC of IFSs and extended the proposed method
to interval-valued intuitionistic fuzzy sets (IVIFSs). Hong
[38] and Mitchell [39] also established the CC for IFSs and
IVIESs, respectively. Ye [40] extended the work on IFSs and
developed the CC of a single-valued neutrosophic set and
developed a decision-making method for similarity measure.
Xue et al. [41] developed the CC on a single-valued neu-
trosophic set and proposed a decision-making method for
pattern recognition. Zulqarnain et al. [42] utilized the
neutrosophic TOPSIS in the production industry for sup-
plier selection. Garg and Arora [43] introduced the corre-
lation measures on intuitionistic fuzzy soft sets and
constructed the TOPSIS technique on developed correlation
measures. In Iryna et al.’s work [44], an algorithm has been
proposed to handle uncertainty in fault diagnoses by using
single-valued neutrosophic sets. Faruk [45] established CC
between possibility NSS and proved some properties. He
also developed CC for a single-valued neutrosophic refined
soft set, and it was used for clustering analysis [46]. A
correlation measure of neutrosophic refined sets has been
developed, which is the extension of the correlation measure
of neutrosophic sets and intuitionistic fuzzy multisets [47].

In this era, professionals consider that the real life is
moving in the direction of multipolarity. Thus, it projects as
no surprise that multipolarity in information performs a
significant part in flourishing numerous fields of science as
well as technology. In neurobiology, multipolar neurons in
the brain gather a good deal of information from other
neurons. In information technology, multipolar technology
could be used to control extensive structures. The motivation
of the present research is extended and hybrid work is given
step by step in the complete article. We demonstrate that
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different hybrid structures containing fuzzy sets are con-
verted into the special privilege of mPNSS under whatsoever
appropriate circumstances. The concept of a neutrosophic
environment to a multipolar neutrosophic soft set is novel.
We tend to discuss the effectiveness, flexibility, quality, and
favorable position of our planned work and algorithms. The
present research will be the most generalized form and is
used to assemble data in considerable and appropriate
medical, engineering, artificial intelligence, agriculture, and
other everyday life complications. In the future, the present
work might be gone competently for other approaches and
different types of hybrid structures.

The remainder of the paper is organized as follows: in
Section 2, we recollected some basic definitions which are
used in the following sequel such as NS, SS, NSS, and
multipolar neutrosophic set. In Section 3, we proposed the
generalized version of mPNSS with its properties and op-
erations, and we also developed the Truth-Favorite, False-
Favorite, AND, and OR operators in this section. In Section
4, distance-based similarity measures have been developed
by using Hamming distance and Euclidean distance between
two generalized multipolar neutrosophic soft sets
(GmPNSS). In Section 5, the idea of CC and WCC with their
properties has been established. Finally, we use the devel-
oped distance-based similarity measures and CC for medical
diagnoses and decision-making in Section 6. We also present
the comparative study of our proposed similarity measures
and CC with some already existing techniques in Section 7.

2. Preliminaries

In this section, we recollect some basic concepts such as
neutrosophic set, soft set, neutrosophic soft set, and m-polar
neutrosophic soft set, which are used in the following sequel.

Definition 1 (see [4]).

Let 2% be a universe and let &/ be an NS on % defined as
A ={u, (uy u),vy ), wy (u): ue %}, where u, v, w: %
— 07, 1" and 0" <uy (u) +vy (u) +wy (u) <3*.

Definition 2 (see [5]).

Let % be the universal set and let & be the set of at-
tributes concerning %. Let 2 (%) be the power set of % and
ACE. A pair (F,9) is called a soft set over % and its
mapping is given as

Fod — P(U). (D

It is also defined as
(F,d)={F(e) e P(U):ec & F(e)= Dife ¢ A}
(2)

Definition 3 (see [10]).

Let 2 be the universal set and let & be the set of at-
tributes concerning %. Let 9 (%) be the set of neutrosophic
values of  and A C&. A pair (¥, ) is called a neutrosophic
soft set over % and its mapping is given as

F.d — P(U). (3)

Definition 4 (see [16]).

Let % be the universal set and let & be the set of at-
tributes concerning %; then F is said to be a multipolar
neutrosophic set if Fy ={u, (s;ou, (u), s;®v,(u),s;
ew,(u): uelU,eecE i=1,23,...,m}, where
S;®Ug, S; Vg, s;0Wg: U — [0, 1], and 0 < s;0uy (1) +
s;ove(u) + s;owg(u) <3;i=1,2,3,...,mu,v,and w,
represent the truth, indeterminacy, and falsity of the con-
sidered alternative.

3. Generalized Multipolar Neutrosophic Soft Set
(GmPNSS) with Operators and Properties

In this section, we develop the concept of GmPNSS and
introduce aggregate operators on GmPNSS with their
properties.

Definition 5. Let % and E be universal and set of attributes,
respectively, and & CE, if there exists a mapping ® such that
®: 9/ — GmPNSS”, (4)

then (@, &) is called GmPNSS over % defined as follows:
Y. =(D, ) ={(e, (u, Dy (u))): e €Euc %}, (5)

where @, (e) = {u, (si®Ug o) (U), 5@ V(e (1), s;0Wy
(W): ue U e €kE;i€l,2,3,...,mhand 0< s;0uy(,

() + 5,0V (U) +s;0wy (1) < 3foralliel,2,3,...,m;
ecEanduc .

Definition 6. Let Y, and Y be two GmPNSS over %; then
Y, is called a multipolar neutrosophic soft subset of Yy, if
S;® Uy () (1) <5 0Up () (1),

S; 9V (o) (W) <505, (1), (6)
S; @ Wy () (U) =5 owp, (1),
foralliel,2,3,...,mecEand ue %.
Definition 7. Let Y, and Y be two GmPNSS over %, then
Y, =Yy, if
S;® Uy () (1) <s;0up(, (1),
s;®upy (u) <s;ouy ) (1),
i ® V(o) (1) 25,0 vp () (1), )
i@ Vg (U) 25,0V, (1),
;@ Wy (e (U) 25, 0 wp(,) (1),
S;® Wy, (u) =s; Wy (e (u),
foralliel, 2,3,...,mec Eandu € %.

Definition 8. Let #_ be a GmPNSS over %, then empty
GmPNSS can be represented as F; and defined as follows:
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Fo={e,(u, (0,1,1), (0,1, 1),..., (0, 1,1): e € E, u € %}.

Definition 9. Let F , be a GmPNSS over %, then universal
GmPNSS can be represented as Fj; and defined as follows:

Fip={e (u, (1,0,0), (1,0,0),..., (1,0,0): ecE, uec%.

Definition 10. Let ¥, be a GmPNSS over %, then the
complement of GmPNSS is defined as follows:

F(e) ={(e; (t ;0w (W), 1= 50V (W), 50Uy (W)): ue %},

foralli€l,2,3,...,mecEandu € %. 3) (Fp)=F;

Proposition 1. If #, is a GmPNSS, then
D) (FY =F4
2) (Fo) =Fp

Proof. Let

Fy(e) ={(e, (u, (siouﬂ(e) (1), s;9vy (e (1), si-wm(u)))): uelU,e€E;i€l,2,3,...,m }

Then, by using Definition 10, we get

F,(e) :{(e, (u, (siowd(e) (U), 1= s5;9v ) (1), 59U, (u)))): ueU,ecE;iel,2,3,..., m}.
Again, by using Definition 10,
(F5,(e) = (e, (u, (sioud(e) (u), 1 —(1 — 5%y (0 (u)), %Wy () (u)))): uelU,e€E;i€l,2,3,..., m},

(F5, ) :{ (e, (u, (Si.ud(e) (1), 5,9V (), S;9W () (u)))): uelU,e€E;i€l,2,3,...,m },

(F5,(e) =F(e).

Proof. Let F; be an empty GmPNSS over %.

Fy=1e(u, (0,1,1), (0,1,1),..., (0,1,1)): ec E, u e U}

(8)

)

(10)

(11)

(12)

(13)

(14)
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Utilizing Definition 10,

(F5) ={e (u, (1,0,0), (1,0,0),..., (1,0,0): e €E, ue¥}, (15)

(Fo) = Fp. (16)

O Definition 11. Let F (. and &g, be two GmPNSS over %.
Then,

Similarly, we can prove 3.

max{ S;%U () (1), s;oUp(, (u)}

F V5 = e, | u, min{siovﬂ(e)(u), ;% () (u)} ruelU,e€eE;iel, 2,3,...,m¢. (17)

min{ 5;9W () (1), sowB(E)(u)}

3) 9’}1 U ?B:?B U '?A

Proposition 2. Let F;, G5, and ' be GmPNSS over %.
(4) (97A U ?B)U %ngA U (?B U %C)

Then,

(1) F4 U

F
2 Fz U Fyg=F; Proof. Let

F 4 (e) ={(€, (u) (SOMA e)(u) Si®Vi(e) (u), S; %Wy (o) (u)))) uelU,ecE;i€l, 2,3,..., m}, (18)
be a GmPNSS. Then,
max{siouA(E) (1), s;®uj (u)}
F(UF,(e) = u, | minfsevs e ), sovic )] cuecU,ecE;i€l,2,3,...,mp, (19)
min{s;ewy ) (1), 59wy, (1)}
F (e u, '”A( ) (1), s;ovy ) (u), s;owy (u)))): uelU,e€ek;i€l, 2,3,..., m}, (20)

1={(e
UF 3 =F;.

By using Definition 11, we can easily prove the  Definition 12. Let ¥ and &g, be GmPNSS over %.

remaining properties. O Then,

min{sioume) (1), s;®up(e) (”)}

Fope)NTpe) = e, | u, max{siovd(e) (1), s;9Vp(e) (u)} cuelU,e€Ei€l, 2,3,...,m . (21)
max{siowd(e) (u), s;owp (u)}
Proposition 3. Let 3, 3, and ' be GmPNSS over %. 2) Fz 0N Fyg=F;
Then, (3)97}& n‘C}TE:gE

(l)gAﬂgAZgA (4)‘0;}&0?3:?30928
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(B)(Fi NN He=F; N (% N He) 1) (E/TA(E)U?B(e)f:gvg(e)ngcg(e)
(@) (FawNGre) =F49Y T3
Proof. By using Definition 12, the proof is easy. O

Proposition 4. Let % ; and &}, be GmPNSS over %. Then, ~ Proof. We know that

F 5 (e) :{(e, (u, (situA(e) (1), s;ovj () (1), s;owy (u)))): uelU,e€E;i€l, 2,3,..., m}, (22)
Zj(e) :{ (e, (u, (51’“3(3) (1), s;ovp () (U), s;owp (u)))): uelU,ecE;i€l, 2,3,..., m}, (23)
are two GmPNSS. By using Definition 11,

max{simA(e) (1), s;oup(,) (”)}
Fa@UGs=1 | & | u| minfsevsq W), sevs W)} uetheeBiel a3 om (29

min{s,-owA(e) (u), 5;9Wp ) (u)}

Now, by using Definition 10,

min{siow,;(e) (u), Si®Wg () (”)}
(Fa(@U gé(e))c =1 | e|u| 1-minfsevy ), sovye )} cueU,ecE;i€l,2,3,....,m¢. (25)

max{si o uj( (u), s;oup (”)}

Now,

F 4 (e)° ={(e, (u, (siowA(e> (1), 1= s;0v3, (u), s;ouy, (u)))): ueU,ecE;iel, 2,3,..., m}, (26)

?g(e) ={(e, (u, (siowB(E) (1), 1= s;9 v, (1), s;oug (u)))): uelU,e€E;i€l, 2,3,..., m}. (27)

By using Definition 12,

min{si CWy (), s; *wg(, (u)}
Fa@ NG5, =1 | &| u | max{l—sevy, w),1-sevy, W)} cueUecE;iel,2,3,...m¢, (28)
max{si oUj () (1), s; oUp(, (u)}

min{si QW (U), s; @ wp(, (u)}

gA(e)C n ?g(e) =<2 le|u]| 1- min{siovA(e) (1), s;®vp(,) (u)} cuelU,e€E;i€l,2,3,...,m ¢. (29)

max{si *Uj (e (), s; oUg () (u)}

Fi(UCs ¢ =F;()°nEs, . (30)
Hence, a(e) B(e) ale) B(e) O
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Proof. We know that

F 5 (e) ={(e, (u, (Si'”A(e) (1), 5,9V () (1), s;0W}5 (u)))): uelU,e€eE;i€l,2,3,..., m},

Zj(e) ={ (e, (u, (%'“B(e) (W), s;®Vp () (1), s;owp, (u)))): uelU,ecE;i€l, 2,3,..., m},

are two GmPNSS. Utilizing Definition 12,

min{siouA(e) (u), s;oup, (u)}

F i) NGpe) = e, | u max{siovA(e) (1), s;%vp(,) (u)} cruelU,e€eE;iel, 2,3,...,m

max{s,-'wA(E) (u), s;owp, (u)}

By Definition 10,

max{siowA(e) (1), s;owp(, (u)}

c
(%A(e) nGB(e)) = e, |u | 1- max{siwA(e) (1), 5,9V, (u)} cuelU,eeEjiel, 2,3,...,m

min{siouA(e) (u), s;oup, (u)}

Now,

F i (e)C ={(e, (u, (siOwA(e) (1), 1—5;9v5(,) (u), 5,015, (u)))): ueU,eceE;i€l, 2,3,..., m},

?g(e) ={(e, (u, (siowB(e) (1), 1= s;9vp, (u), s;oug, (u)))): uelU,ecE;iel, 2,3,..., m}.

By using Definition 11,

max{si Cwy () (1), s; o wp, (u)}

F i (e)cu‘fg(e) =1 ]e|u min{l — 5% (1), 1 —siovB(e)(u)} cuelU,e€eE;i€l,2,3,...m

min{si *Uj () (1), ; oUg(, (u)}

max{si CWj i, (u), s;® Wp(e) (u)}

Fie)u ?(Bj(e) =1 |e|u] 1- max{siovA(e) (u), siovB(e)(u)} ruelU,e€E;i€l, 2,3,...,m

min{si oUj () (1), s; oUp(, (u)}

Hence,

c C C
(FawNGre) = FawY T (39)

Y

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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Proposition 5. Let *G}Aie)) ?B(e), and %c(e) be GmPNSS over (3) J*A(e U (J«A(e) N Gy )) JA(e)
4. Then, (4) Fp1ep N (F a9 Y g13(e))—‘9"fx(e)
M Faiey Y Gpiey N Fcty) = Faig Y i) N
(‘/’Afe) U Cle)

P "~ We k that
Q) Fp N (Gyy U Hop)=(Fag N Gy 100k Welnowitha

U (gA(e) n %Cfe))

min{siouB(e) (u), Si®UC,) (u)}
G N i) = e | u, max{siovB(e) (u), Si*Vcio (u)} cuelU,e€E;i€l, 2,3,...,m

max{s,-‘wB(e) (), sipwcy, (”)}

(40)
max{siouA(e) (u), min{s Uzl (u), s; UG (u)}}
g:Afe) u (?B(e) ﬂ?fc@) = e, | u, min{siovA(e) (u), max{siovB(e) (u), Si*Vcie) (u)}} cuelU,e€E,;
min{s,-owAEe) (u), max{siowB(E) (u), S *Weie) (u)}}
iel, 2, 3,...,m},
(41)

min{s,ﬁuAEe) (1), s;oup, (u)
gAEe)ngB(e): e, | u, max{s»ovA(e (u), S-OVB(e)(u) cuelU,e€E;i€l,2,3,....,m¢,
max{s W,y (u), S;®Wpg(,) (u)

(42)

FaigN i = e | u, max{ Si®Va(e (W), sovc(e)(u) ruelU,ec€E;i€l,2,3,...,m

min{s U, (1), Si%Ucr, (u) )

max{siowAZe) (u), s S OWe(, (u)

(43)
max{min{s 0u;~ (u),s; u (u)]> mm{ 0u~ (u),s; u (u)]»}
(F}A(e) N ?B(e)) U (S‘TA(e) n %C(e)) = e | u, min{max{siov;;) (u),s,-ova; (u)}, max{siov; (u),s,.ovc—: (u)” ueU,
min{max{siow&; (u),siowgz:) (u)}, max{s 0w~ (u), s; w (u)H
ecE;iel,?2, 3,...,m},
(44)
max{siouA(e) (u), min{spuB(e) (u), Si®UCl,) (u)}}
(‘G/:Aie) n ?B(e)) u ((%”A(e) n%cZe)) = e | u, min{s *Vale) (u), max{ S ®Vp( )(u) Si*Vcie) (u)}} ruel,
(45)

min{siowA(e) (u), max{siowB(e) (u), ;%W (u)}}

eeE;iel,Z,Zw,...,m}.
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Hence,

F 210 Y(Zi0 N 1) =(F a0 Y E10) N (Fato U i)

Similarly, we can prove other results.

u(ngUs?B) =9

<

V(F4U,.%5)

w(F4U,9%) =

O

S;9U 4 () (u),

;9 Up () (u),

[ Si®Vae) (1),

5;® Vp(e) (1),

. maX{Si'UA(e) (u), s;oup, (u)},

min{sio Vaie) (U), S:9Vp () (u)},

S;OW4 () (u),

s;oWp(,) (1),

ifee A-B,
ifee B—A,
ifee ANB,
ifee A-B,

ifee B—A,
ife e ANB,

ifee A-B,
ifee B— A,

min{sio Wy () (W), s;0wp (u)}, ifee ANB.

Example 1. Assume that % ={u,, u,} is a universe of dis-
course and let E={x,, x,, x5, x4} be a set of attributes and
A={x,, x,} and B={x,, x;} CE. Consider & ;) and T3,
€ G3-PNSS over % can be represented as follows:

( (50 {1y, (5,.2,.1), (3,.1,.2), (6,

gAzd

(uy (1,.1,.4), (.3,.3, 1), (.5, .3,

<

u(F,n,.95)

<

v(FAN,Y5)

7,.8)) )
(4, (:2,.3,.1), (:2,.1,.1), (.8, .6,
(%, {uy, (:3,.1,.3), (0, .1,.3), (.5, .
(4, (:2,.2,.5), (.3,.1,.5), (.6, .5,

(x5, {uy> (4,.3,.2), (.2,.3,.4), (.7,.
(uy, (.1,.5,.1), (.3,.2,.2), (.5,.7,
(x5 {uy, (:2,.3,.2), (.1,.2,.2), (4,.

6))
3,.5))

6))
(50)

4,.5)) )
4))
4,.5))
1))

(51)

[ s;0u, () (1),

S;® HB(e) (H),

min{si° Up (o) (1), 5;9Up (u)},

(5 Va(e) (1),

5i® V(o) (u),

Then,

FaU g =1

(x1 {ups (5,.2,.1), (.3,.1,.2), (.6, .7, .8))
(uy (2,.3,.1), (:2,.1,.1), (.8, .6, .6))
(x5, {uy, (4.1, .2), (:2,.1,.3), (.7, .3,.5))
(uy (:2,.2,.1), (:3,.1,.2), (.6, .5, .4))
(x5 {uys (:2,.3,.2), (1,.2,.2), (4, .4,.5))

(tyy (1,.1,.4), (3,3, 1), (.5,.3,.1))

(46)

Definition 13. Let %4 and &3 be GmPNSS, then their
extended union is defined as

(47)

(48)

(49)

(52)

Definition 14. Let ¥ ; and & be GmPNSS; then their
extended union is defined as

| max{s,-' Va(e) (1), 59V, (”)}’

ifee A-B,
ifee B—A,
ifee ANB,
ifee A-B,
ifee B- A,
ifee ANB,

(53)

(54)
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SO Wy () (1), ifee A—B,
w(gAﬂegg) =4 S;®Wpg(e (u), ifee B— A, (55)

max{sio Wy () (1), s;owp, (u)}, ifee ANB.

Definition 15. Let ¥ and &3 be GmPNSS, then their
difference is defined as follows:

F i\ = {(e, (u, min{siouA(e) (), s;0up, (u)}, max{siovA(e) (1), 1 = s;9vp,, (u)}, max{sio Wy () (1), ;2 Wp () (M)}))i

ueU;ie€l,23,..., m}
(56)

Definition 16. Let ¥ ; and & be GmPNSS, then their
addition is defined as follows:

Fi+8p= {(e, (u, min{siouA(e) (u) + s;oup, (u), 1}, min{ s;®v, ) (1) + s;ovg(e) (u), 1}, min{s;e w, (1) + s;® wy (u), 1}):
uelU;iel, 2,3,..., m)}.

(57)

Definition 17. Let & ; be a GmPNSS, then its scalar mul-
tiplication is represented as & ; (e). a, where a € [0, 1] and it
is defined as follows:

F 4 -a={e, (u, min{s;ou, ) (u).a, 1}, min{s;®v,, (u).a, 1}, min{s;ow,, (u).a,1}: ueU)}. (58)

Definition 18. Let F ; be a GmPNSS, then its scalar division
is represented as F ;/a, where a € [0, 1] and it is defined as
follows:

Fila= { e, (u, min{ siow, 1 }, min{ Si'w) 1 }, min{ siow, 1 }: ue€ U) } (59)
a

a a

Definition 19. Let & 3 be a GmPNSS over %, then Truth-
Favorite operator on & ; can be represented by AF ; and it
is defined as follows:

AF :({e, u, min{siouA(e) (1) + s5;9v, () (1), 1},0, Si0W 4 () (1) }: uelU;iel, 23,..., m). (60)
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Proposition 6. Let F 3 and G5 be GmPNSS over %. Then,
(1) MAF 5 =AF 4
(2) A(FRU%y) CAF UAG
(3) AM(F 3N Cp) CAF 3 NAG,
4) 3(9A+53)=Zggx+2f3

VF,4 ={e, (u, si%U4 () (1), O, min{sich(e) (1) + 5,9V (1), 1}: ueclU;iel, 2,3,..., m) }

Proposition 7. Let F 3 and G be GmPNSS over %. Then,
1) \VAY Fi= \Y Fi
)V (F ugy)cVF UV g,
B)V(FinEp)cVF; NV Gy
WV (Fi+%p)=VF,+VZG,
The proof of the above proposition is easily obtained by
using Definitions 11, 12, 16, and 20.

Definition 21. Let & ; and &3 be GmPNSS; then their AND
operator is represented by F 3 A € and it is defined as

11

The proof of the above proposition is easily obtained by
using Definitions 11, 12, 16, and 19.

Definition 20. Let F ; be a GmPNSS over %, Ehen False-
Favorite operator on % ; can be represented by V.# ; and it
is defined as follows:

(61)

follows: F 3 N Gp=1,,5, where l,,5(x, y)=F ,(,,(x) N
gB(e)()’) for all (x, )/) € AXB.

Definition 22. Let % ; and & be GmPNSS; then their OR
operator is represented by F; V € and it is defined as
follows: F 3 vV G5 =1,,5 where 1,,5(x, y)=F ,, (x) U
?B(e)(y) for all (x, y) € AxB.

Example 2. Reconsider Example 1.

- _{ (x1, {uys (5,.2,.1), (3,.1,.2), (.6,.7,.8)) (up (:2,.3,.1), (:2,.1,.1), (.8, .6, .6)) } -
A0 (0 {uy, (3,.1,.3), (0, .1,.3), (:5,.3,.5)) (uy (2,.2,.5), (.3,.1,.5), (.6,.5,.6)) |
. _{ (% {uy, (4,.3,.2), (:2,.3,.4), (.7, .4,.5)) (uy (.1,.5,.1), (.3,.2,.2), (.5 .7, .4)) } (63)
BT (g {uy, (2,.3,.2), (1,2, .2), (4, 4,.5)) (uy (1,.1,.4), (:3,.3, 1), (5.3,.1) |
(%1, %), (uy, (4,.3,.2), (:2,.3,.4), (.6,.7,.8)), (t4y, (.1,.5,.1), (.2,.2,.2), (.5,.7,.6)),
F ATy = (1, %3)s (w1, (2,.3,.2), (.1,.2,.1), (:4,.7,.8)), (t4y, (.1,.3,.4), (.2,.3,.1), (.5,.6,.6)), 0

(%3, %5), (uy, (.3,.1,.3), (.0,.1,.3), (.5,

3,.5)), (uy, (.2,.2,.5), (.3,.1,.5), (.6,.5,.6)),

(%3, %3), (uy, (:2,.1,.3), (.0,.2,.3), (.4,.4,.5)), (u,, (.1,.2,.5), (.3,.3,.5), (.5,.5,.6))

Proposition 8. Let F 3, &5, and # be GmPNSS. Then,
(1) FVG3=83VF
(2) F NGy = GpNF
(3) F V(v ) = (F VG )VH ¢
(4) FN(GyNH ) = (F NG )NK ¢
(5) (F3vG5)°" = F(ANG (B)
(6) (FanTp)° = F(AVE(B)

OF 4 :{(e, (u, (siouA(e)(u), SV (U, 1- s,-OuA(e)(u)))): ueU,ecE;ie€l,2,3,..., m}.

Proof. We can prove this easily by using Definitions 10, 21,
and 22. O

Definition 23. Let F 3 be a GmPNSS; then necessity oper-
ation on GmPNSS is represented by @ & ; and defined as
follows:

(65)
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Definition 24. Let & 3 be a GmPNSS; then possibility op-
eration on GmPNSS is represented by ® % ; and defined as
follows:

Journal of Mathematics

F ;4 ={(e, (u, (1 —sowy (u), s;0 vy, (1), siowA(u)))): ueU,ecE;i€l,2,3,..., m}. (66)

Proposition 9. Let F 3 and G be two GmPNSS. Then,
1) Q)(g;A U, ?B)=®?B USGBgA
2)e(Fzn . Tp) =053 N, 0F,

Proof. We know that

Fa ={(e, (”, (si.uA(g) (u), Si®VA(e) (u), S;%Wj () (u)))): ueU,ecE;iel, 2,3,..., m}, (67)
Gy ={(e, (u, (Si Uy (1), 59 Vi, (1), 5,9 Wi, (u)))): ueU,e€E;i€l,2,3,...,m } (68)
are two GmPNSS. s;oU () (14), ifee A-B,
Let F3U , Zp=¢. .
. @u(%c) ER A uB(e)(u)) ifee B—A,
si.uA(e) (u)> ifee A- B,
) max{s,-o Uy (e (U), s;0Up(, (u)}, ifee ANB,
u(F#e) =14 Si®Use) (u), ifee B—A, o
max{si-uA(e) (1), s;oup (u)}, ifee ANB,
(69) Si®VA(e) (u), ifee A-B,
£ GBV(%C) =14 Si®VB(e) (u), ifee B— A,
Si®VA(e) ((I/l)), lfe € A-B, min{sio Va(e) (u), Si%g(e) (u)}’ ifee ANB,
) =4 s;evp, (1), ifee B—A,
v(Ze) B(e) o
min{sio Va(e) (1), 5;9Vp ) (u)}, ife e ANB,
(70) Si®W4 (e) (u), ifee A- B,
£ ow(H ) =1 Si®Ws(e) (), ifee B—A,
oWy (o) (1), 1 ec A-B, min{sio W (e (1), s0Wpe (u)}, ifec ANB.
w(Ze) =4 Si® Wpe (W), ife e B- A,

min{sio Wy () (1), s;0wp ) (u)}, ifee ANB.
(71)

By using Definition 23,

OF ={(e, (u, (Si‘”A(e) (1), s;®Vja () (W), 1—s;0u;, (u)))): ueU,e€kE;i€l, 2,3,...

(74)

Assume that 895 U @F ; = N, where ®F 3 and &%, are
given as follows by using the definition of necessity
operation:

, m}, (75)

&7 ={(e, (u, (5i°”B(e) (u), Si%VE(e) (u), 1-s; ® UL (u)))): ueU,e€E;iel, 2,3,..., m}. (76)
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Then, by using Definition 13,
S;9U 4 () (1),
u(R) =1 s;®uUp( (u),

max{sio Uy (o) (W), s;0Up () (u)},

Si%4(e) (u),
V(N) = Si. VB(e) (I/l),

min{sio Vace) (U),5;9Vp () (u)},

s;®Uy () (1),

w(R) =4 si®up( (),

ifee A-B,

ifee B-A,

ifee ANB,
(77)

ifee A-B,

ifee B-A,

ifee ANB,
(78)

ifee A-B,
ifee B—A,

1- min{sio Up (e (1), s;0Up () (u)}, ifee ANB.

(79)

Consequently, (%) and X are the same, so

F i :{(e, (u, (s,-ouA(e)(u), S;® V(e (1), siowA(e)(u)))): ueU,ecE;iel, 2,3,...

Let (F3A%p) =%, where C=Ax B.

o - {(e,., ) [u, mm{

By using Definition 23,

o - {(ei, ) [u, mm{

We have

13
GB(gA US?B) =0Y3U BF ;. (80)
Similarly, we can prove 2. O

Proposition 10. Let F; and G be two GmPNSS. Then,
(1) ®, (gA UegB): ®, ?B U, ®, gA
2) ®, (F3N,85)=0, %3 N, ®, Fy

Proof. The proof is similar to that of Proposition 9. O

Proposition 11. Let F 3 and G be GmPNSS, then we have
the following:

(1) ®(F ;NGp)=0F 3 NOT

(2) &(F 31VGp)=0F 4 VOT;

(3) @(F 3NC)=0F 4 N ®T}

(4) ®(F;V83)=0F ; V ®%3

Proof. We know that &% 3 and & are GmPNSS:

,m}, (81)
G :{(e, (u, (si *Up () (1), S0 V() (U), s; 0w, (u)))): ueU,e€E;i€l,2,3,..., m}. (82)
Si%U () (u) Si%a(e) (u) Si®Wj () (u)
, max , max . (83)
S;%UR () (u) 5% (e) (u) 5;%Wp 4 (u)
s;ou ;. (1) s;ovi (1) s;ou (1)
FrAE , max FAR ,1 —min FrAR . (84)
S;OUR () (u) S %V () (u) S;OUE () (u)
OF 3 ={(e, (u, (siouA(e) (1), s;#Vj( (1), 1 —s;0u;, (u)))): ueU,ecE;i€el, 2,3,..., m}, (85)
(XA ={(e, (u, (Si.uB(e) (1), s;9vp(p) (), 1 = s;oup, (u)))): uelU,e€E;iel, 2,3,..., m}. (86)
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By using Definition 21, we get
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OF N7 ={(ei, ej), [u, min{siouA(e) (1), s;oup (u)}, max{siovA(E) (1), s;%Vg () (u)},

max{(l —Si0U; (u)), (1

OF 3 NOTG 5 ={(ei, ej), [u, min{siOuA(E) (1), s;oup ) (u)}, max{siwA(E) (1), s;%Vg () (u)},l

So GB(F/TA/\?B)ZGB&TA /\GB?B.
Similar to Assertion 1, we can prove 2, 3, and 4. [

4. Distance and Similarity Measure of
Generalized Multipolar Neutrosophic
Soft Set

In this section, we introduce the Hamming distance and
Euclidean distance between two GmPNSS and develop the
similarity measure by using these distances.

M§

Il
—

j=1

dGmPNSS((D‘T(e) pg(e) = ‘l

= Si®Up( (l/l))} ]}’

(87)

- min{siOMA(e) (u), s;9up (”)}]}'

(88)

Definition 25. 7% and E are a universal set and a set of at-
tributes, respectively; assume that GmPNSS(%) represents
the collection of all GmPNSS. Consider (®g, E) as well as
(¢g, E) € GmPNSS and there exists a mapping @y, ¢z: E
— GmPNSS(%); after that, we tend to establish the
distances between (¥, E) and (¢, E) as follows.

4.1. Hamming Distance

3 (Jse st () = st ()] ) + ([ v, (1) = 504, (1))

(89)

(Jsv s, o) - s o)) |

4.2. Normalized Hamming Distance

s (05 (@) = {ii(ls-% (1)~ s )) + (J 0, ) 5090

i=1 j=1

(90)

+<|$i' wo, (1)) - 50 ww(”j)D}'

4.3. Euclidean Distance

s (05 0 95,0 - (—m {ii(w o, (1) = sy (1)) ¢ ([0, 1)~ 507, 1))

i=1 j=1

2

(91)

(o, ) - sown )) )
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4.4. Normalized Euclidean Distance

Agmpnss (P (€), 9 (€)) = < ‘Iii(k'”fb (1)) = siouy, (”f)|)2 " <|5f° CACHERT V%(”;‘)D

i=1 j=1
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2

(92)

(o, ) - swwn))])

4.5. Weighted Distance

dGmpnss (P (€), 95 (e)) = (i ‘|§: i wi{(|5i° U, (“j) - s ”%(”J’)
"

(s, (1) - 521 o

where r > 0 and w= (w,, wy, w5, ..., w,)" is a weight
vector ofe; (i=1,2,3,...,n).Ifr=1and r =2, then equation
(5) becomes the weighted hamming and weighted Euclidean
distances, respectively.

Definition 26. 7% and E are a universal set and a set of at-
tributes, respectively, and (®g, E) and (¢y, E) are two
GmPNSS(%). Then similarity measure based on Definition
25 between (®g, E) and (¢, E) is defined as follows:

Scmenss (P 9g) = (94)

1
1+d(Pg,05)

i=1 j=1

m P
dimenss (P (€), 95 (€)) = ( ‘{ZZ<|S'“®( ) 5i®Ug, (”]‘)
)r}>1/r,
dgmenss (P (€), 9z (e)) <2mp {ii 'S°”<l> ( )_ Si'“w(”i)

(sowq,

i=1j

#(Jsie w, (1)) - 00, (1))

where r > 0, and equations (8) and (9) are reduced to
equations (1) and (2), respectively, if r= 1. Similarly, if r=2,

TS0 Wy, (”J‘)

Another similarity measure between (®g, E) and (¢, E)
is defined as

Scmpnss (P 95) = e’ d(%’%)) (95)

where f3 is a steepness measure and a positive real number.

Definition 27. % and E are a universal set and a set of at-
tributes, respectively, and (®g, E) and (¢g, E) are two
GmPNSS(%). Then, the distances between (®g, E) and (¢,
E) are defined as follows:

)+ (Js v, () = 50, ()] )

(96)

r

)r + (|5i' vo, (1)) = e Vv’v(”f)D

) 97

then equations (8) and (9) are reduced to equations (3) and
(4), respectively.
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Definition 28. Similarity measure between two GmPNSS 5, Correlation Coefficient of Generalized

(P4, E) and (¢, E) based on the weighted distance of (O, Multipolar Neutrosophic Soft Set
E) and (¢, E) is defined as follows:

1 In this section, we propose the concept of correlation co-
1+ d° @ y (98) efficient and weighted correlation coefficient of GmPNSS
GmpNss (P> with some properties.

SGmpNss ((Dfi’ 9"?) =

Definition 29. Let @4 and ¢, be GmPNSS over the uni- Definition 30. Let
versal set; then @ and ¢, are said to be a-similar if and only

if Sgmpnss (P> @) = afor a € (0, 1). If S pnss (P> @) >
1/2, then we can say that @ and ¢, are significantly similar.

F i ={u (siouy (ug), s;ov4 (uy), sowy (uy)): uy € Usi € 1,2,3,...,m}, (99)

G; ={uk, (s,--ué (1), siovy (), siows; (uk)): u, €U;i€1,2,3,... ,m}, (100)
be two GmPNSS over a set of parameters Then, informational neutrosophic energies of two
E = {x},x5,%X3,...,%,}. GmPNSS can be expressed as follows:

SGmPNSS( ) ii(( UL (”k )2+(5i'ng(“k))2+<5i°w;j(”k))2)’ (101)

(( ou uk))2 (SiOVEj(Mk))z+<si'w§j(uk))2). (102)

4

‘SGmPNSS( ) Z
j=1k

Definition 31. The correlation of two GmPNSS can be

presented as follows:

M-

1

M-

(GmPNSS(F;" GE) = {(s ou. (uk)s ou (uk) + 5,072 (uk)s v (uk) + 50w (uk) siowg (uk)): i€1,2,3,... ,m}.

=1 k=1
(103)
Definition 32. Let F, and G be two GmPNSS; then the CC
between them can be defined as follows:
{GmpNss (FV > GV)
RGmPNSS(F;\’ Gg) = =S (104)

\/sGmPNSS (F5 F3) - €omenss (G G3)

351 T (o (ot () + siov, (s () + sowr (e)siouw () )

sz_l z;(:l<(5iou2} (uk))2 e (uk))2 (5w (uk>)2>\j2§-1 22:1<( o (uk))2 e (uk))2 (5w (uk))2>

(105)

RGmPNSS(FA’GB) =
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Proposition 12. Let F-. and G; be two GmPNSS; then the

17

all j,k, where i€1,2,3,...,m, then Rg,pnss

CC Rgppnss (F>Gy) between them satisfies the following (F,Gp) =1

properties:
(1) 0= Repmpyss (F 3, Gg) <1 Proof. Rempnss (F5,G5) 20 is trivial, so we just need to
(2) Rgmpnss (F 3> Gg) = Reppnss (G, F) prove that RGmPNSS (F Gy <L

3) If F~ = Gu that is, s; oy (u) =s; ouy (), s;9v~ We know that
(uk) =5 Ovv (uk) and s; Od) (uk) =5 Oiu (uk) fA%

MN
M-»

(GmPNss(F;) Gg) = (Si : ”gj ()i - “gj () + ;- ng ()i - ng () + ;- w;‘}_ (we)si - wj;j (”k))

k

(5105 o) s o) 50w (o) v () 550 (s wy ()

1

-
Il
—_

Il
M

-
Il
—_

o3 (st (s () 5 v ) v () 5, (s () )+

j=

_

R

Il
—_

(510 (s ) 420, s vg )+ 5,00 )y ()

J

<s g (ul) U (u1)+s VL (uy)s; - vy (uy) +s; - “wy (ul)s - wy (u1)>
J <Si Uy (u1)s; - U () +s; - Vi (uy)s; - Vi (uy) +s;- wy (u))s; ‘wy (u1)> bt

Y

<5i e (u1)s; "Ug, () + 5 Vi (u4y)s; - Vs, () +5;- wa, ()5 - Wy, (”1)>+

(106)

<Si U3 (4)s; - Ug, (uy) +5;- Vi, (t4)s; - VB, () + 5 - Wi (u2)s; - Wy (”2))*’

Y

) <5i U (u)s; - U, (1) +5; - Vi, (u)s; - Vs, (u2) +5; wa, (up)s; - Wy, (“z)) Tt

(Si UL (1)s; U (1) +5; - Vi (1)s; - V. (uy) +5;- wa (u)s; - Wg. (”2)>+

+ e
<Si oy (ug)s; - Ug () + 5+ Vi, (ug)s; - VE, () + 5+ wa (ug)s; - Wy (”k)>+

1 <Si U (uge)s; - Ug, () + 5+ Vi, (uge)s; - Vs, () +5; - wa, (we)s; - Wy, (”k)) SERR

(s Uy (uk)s U (uk)+s vy (uk)s vy (uk)+s ‘wy (uk)s Ez(uk)>+

:i<s o (uy)s; - (u1)+s Uy (uz)s U (u2)+ +si-u2j(ut)si-u§j(ut)>

\.

+

M

(Si . V;‘J (u1)s; - Vs, (uy) +5; Vi, (ug)s; - Vg, (up) - ts;- ng (ue)s; - Vg, (”t))

j=1

+ Z(Si W, (uy)s; - Wy, (wy) +s;- w3, (u)s; - Wy, (up) +--+5; v, (ue)s; - Wg, (“t)>~
j=1
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By using Cauchy-Schwarz inequality, we get

(Camprss(F3 G5)) <

i((si.ugj(ul))z+(si.u;{j(u2))2+...+<Si,ugj(ut)>2>+
<<s Ve (ul)) <i'VZ;j(uZ))z+"'+(5i'VAj(”t)>2>+"'+ [

X i((si'véj(ul)>2+<5i'VEJ(M2)>2+...+(si.véj(ut)>2>+...+ g (107)

(B8 oo oot

= sGmPNSS(F ).eGmPNSS(G )

Therefore, Proof. The proof is obvious. O

(Comenss (F> Gy )) < €Gmenss (F3) - égmpnss (Gy)- Hence, by
using Definition 32, we get Rempnss (F» G- 7 =1, so
0< Ropnss (F; Gy) < 1. 0 Proof. We know that

ijl Z;c:l(si U, (ug)s; - ug, (ug) +s; - V3, (ue)s; - v, (ug) +5; - wy (e)s; - wy, (uk))

\jZle Zi:l((si'“j;’ (”k))z (5 Vg (“k))z +(5i'w§) (uk))2>\j2;:1 Zf(:l<(5 ug (uk))2 +(si~v§j(uk))2 +(5"'w1§, (uk))2>

(108)

RGmPNSS(FA’GE) =

As we know that uA () =s; Uy (up),
() =s; Vg (ug), and s; (uk =5 wy (uk]) for
all ]Ak by using Befinition 32, we Have
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RGmPNSS(F x Gg) =

19

Y Yit < (Si g, (”k))z + (Si B, (”k))2 + (Si Wy, (”k))2>

Hence, RGmPNSS (FZ) GE) = 1. D

Comenss(F5 Gy)

V52 (s ) s, 00) (5 00 ) )55 55 (s, 00 (00, 00 (s ) )

(109)

Definition 33. Let F, and G be two GmPNSS; then the CC
between them also can be cﬁzﬁned as follows:

RévaNSS(F e Gg) =

Ré}mPNSS(F;" Gj;) =

max

> (110)
max{ecmPNss(Fg’ Fg)> sGmPNSS(GE’ Gg)}
i S uy (g )s; - ug, () +s; i (ug)s; - v, () +s; - wy (ug)s; - wy, (ug)
2 2 2
5 T (53 0 (5005 00) (5, @) ) an

55t (-t 0) (555 ) (5 )

Proposition 13. Let F- and G+ are two GmPNSS; then the

B . .
CC RE, pss (FGyp) between 'them satisfies the following
properties:

(1)0< RlePNss(F;7G§) <1
(2) RGmpnss (F 3 Gg) = Rimpwss (G F)
(3) If FL =G, that is, ;- us () = s;-uz, (), s;+ v+
(Mk)AZ S; . (uy), and sif}’wu () = siB.’ w- (uk)’ﬁ,“;,
. . B K A, B.
all i, j, where i€1,2,3,)..,m, then R{,pnss

Proof. The proof is easy according to Definition 33.
Nowadays, considering that the weight of GmPNSS is
very necessary for practical applications, the result of

CompNss (F e Gg)

RGWmPNSS(F g:Gg) = \/

decisions may vary, whenever decision-makers adjust the
different weight to every element in the universe of dis-
course. Consequently, it is particularly significant to plan
the weight before decision-making. Let W = {w,,Ww,,
Wws, . . ., W,} be a weight vector for experts such as W, >0 and
Yo W =1, and let &=1{58;,8,,8;,...,0,} be a weight
vector for parameters such as §; >0 and 27:1 d;=1.In the
following, we develop the WCC between GmPNSS by

extending Definitions 32 and 33. O

Definition 34. For two GmPNSS F-. and G, the WCC
between them can be defined as follows:

Rempnss(F +05) =

(112)
SGmPNSS(FZ’F;)gGmpNss(Gé, GE)
B §:1 5j<21t<:1 (i)k<s,- Ty (ug)s; - ug, () +s; - 151 (ue)s; - 5, () +5; - wy (uy)s; - wy (”k)))
2 2 >
\]Zj—l ‘SJ(Z§<_1 d’k((% s (“k)) +<s,» Vi, (uk)> +<Si Ty (uk)> )) (113)

V28 (s, )

Definition 35. Let FE and G- be two GmPNSS, then the
WCC between them can be cfeﬁned as follows:

»

a0 (uk))2 +(s,. "W, (”k))z))
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CGmPNss(F“»G“)

Reywmpnss(Fxr Gz ) = 4B . (114)

o PNSS( 4 B) aX{sGmPNSS(F;\’F;\)’sGmPNSS(Gg’GE)}
X i 5j<22=1 U'Jk<5i cug (w)s; - ug () + 500 vy (s vy () +5;0wy (we)s; - wy (”k)))

] J ] J ] J
RGmPNss(Fg’GI;) = 2 2 2
z t ’
500 b 0 (500 0)) (50, @0) #5005 () ) ws)

max

¥, 8},(2;_1 d,k((Si u (uk)>2 +(Si - (uk)>2 +(si vy (uk))2>>

If we consider w = {l/t,tl/tn,q...h,l,t} and &= {1/
z,tl/zn,q.. . h,,,  then  Rgwmpnss  (F3,Gz)  and
R%}WmPNSS (F,Gy) are reduced to Rgympxss (F-./G. =) and
RGWmPNSS( »Gy), respectively, defined in Deﬁ?ntlons 32
and 33.

Proposition 14. Let F- and G be two GmPNSS; then the
CC Rewmpnss (F 3, Gy )[)aetween them satisfies the following
properties:

(2) Rowmpnss (F5>G3) = Rowmenss (G F7)

3) If Fv = Gv that is, s; U (uk) =5 uy (),
s; VA (uk) =85V (uy), B and
siwy () =s;-wy (w), for all j, k. where
16123 .m, thénRGWmPNSS(F Gy =1

Proof. Rgwmpnss (F3,Gz) 20 is trivial, so we just need to
prove that RGWmPNSS (F Gy <L

(1) 0= Rgwmpnss (F Gy <1 We know that
z t
(GWmPNSS F G Z‘%(Z Wl ;- uy ”k Si-Ug (”k) +si-vy (uk)s Vg (”k) 5wy (uk)s cWwy (”k)))
j=1 k=1
= 35,0050y (o) (o) 5 o) v () 5 ) )

(Sj(('bl(sz 3, (up)s; - g, () +5;-

* VAJ (uy)s; - vé (uy) +s; wy (uz) ‘wy (uz)))
j=1
j; 03605+ (s 10y () 57w (s v () 0wy (1) ()
01 (5110 o)y (o) 5w (o) (ae) 5wy o), ()
52(‘1’1(51"”;,2 (ul)si'ugz () *tSivy (w))s; - vy (“1) tsi-wy (”1) "Wg, (”1))>+
0.1y ()i (1) 550y ()i vg () 0wy (o) wy (u)))
61((1)2(5,--14;‘1 (uz)si-uél (1) SV (up)s; - vy (uz) +s;ws (uz)s w; (uz)))+
%@&wd@»g%ﬂ»u%ﬁ%%%swwﬁBﬁﬁ}
8z<d)2(5i o (u)s; - Uy (”2)+5 VA, (u)s; - V3, (1) +5i'wgz(”2)5i'w1§z (”2)))
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+
00 (s 1 (o)t (1) 5 v (s v (1) 50w () () o
a5 10y ()5t () 45, v (s v (o) + 5wy (s () o

+

(@510 (s g () 5,0 sy vg () + 5,0 wy (s wy ()

+

i 81(\/5)-1(51- Uy (”1)) * \/(_bj(s,- U, (ul)) + \/(—i):(si V3, (ul)) * \/E)T(Si Vi, (”1)) + \/E’T(Si Wy, (”1)) * \/251(5:' "W, (“1)))+ ‘
) 52(\/0'071(51' UL (”1)) * \/‘E(Si Uy, (“1)) + \/U"Tl(si Vi, (“1)) * \/dTl(si "V, (”1)) + \/dTl(si “wi (”1)) * \/(iTl(si "Wy, (”1)))+ i
[ 0-(Voo (s (a0 ) o (st o)) oy (v o)) o (5w (ae) )+ (s o)) oy (5w () ))

21
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[ (V80 Gy (510 (0) ) o 85 VG, (5105 ) ) V8 NGy (5w ) ) LD (s, () ) 85 NGBy (5 (u)) /8 VG (57 () ) |
(82 81 (s, o)) o B G (s, ) ) VB G (5, ) ) = 8 B (s, ) )+ 48 3 (5w, ) #8548 (s ) )+ |
(VBN (5710 () ) o B2 Dy (s () 4 B2 NGBy (s, () ) VB Dy (s v o) )+ VBV (50 () ) o VB Dy (5w () )
+
(\/3—1\/6’-2(51 ,; ) \/—\/_'-("“g‘(“2)>+\/5—1\/&-2(51’"’;,|(“2))*\/5—1\/&-2<5i"’,§‘(”z)>+\/5_1\/&-2(% (”2)) \/_\/_-(5 Wy (”2)))*"
(0 (5, ) ) VB2 B (s, ) 08 B (v, () ) = 85 B (s, 0)) B B (500, () = B 5 (5w, ) )+ |

(VB2 (501 (1) ) 5B D, (505 (1) ) + 2 NGBy (v (1)) 2 D, (v () ) 4 VB VD5 (50 () ) ¢ VB NGB (510w () ) )
+
+

(V85 (s () % 8, NGB (51145 () ) + N,V (s () 2 LG (s o))+ Y NGB (5w (1)) 85 D (5w (1) ) )+
(VB (s (1) ) s D (505, 0 )+ s VB (5 () ) s NGB (v o)) B D, (50 o)) 2 3B B (s (o)) )

(VB (-5 (o) ) VB2 D (505 o))+ 82 NGB (57w (o) ) /B2 Dy (5w () + VBB (500 () = 2 NGB (50w (1))
(117)

By using Cauchy-Schwarz inequality, we get

((GWmPNSS(F/;,le;))2 <
(5100 (s U (ul))2 + Sldn(si i (ul))z + 510'01(5. “wy (m ))z ( (u1)> +8,0 ( (u1)>2 +51®1<S,- . wgz(“l))2>+
<5'w‘(s"'“iz(“‘))z+5‘d’ (si-7y (w) )2+6 5wy () )
)

+ 61d)2(si wy (uz)) + 51w2(s,. Uy (uz)>2 + 51d)2(si Va (uz))2 + 6101)2(51 cwy (uz))2)+

+

(61(.0((5,- Uy (u,))2 + 61(.'0[(5, vy (ut))z + Sld)‘<s,- wy (ut))z + éld)l<s,- Uy (ut)>z + 510'0‘(51- . vgz(ut))z + Gl(i)t(s,v wy (ut))2)+

<8,(bt<si . u/—iz(ut))z + Bld)t(si Vi (ut))z + 61(1)((5, “wy (ut)>2>
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<61Cul(si.u3‘ () ) +8 wl(s vy >2+5 wl(s wy ”1)) +81(i)l<s,»~uBz(ul))2+61(bl(si~1/Bz(ul))2+61d)1(si~sz(ul)>2>+
( (55, 1))+ 8,0, (5-v Bz(ul)>2+§1(i)1(si~wl§z(ul)>z)
8,0, 5['”5(”2 8,0, 5 - V3 ' 8,0, 5 - wg ”2 ' 8,0, 5;'”;;(”2) 8,w, Si'Vg(uz)z 8,W, Si‘wg(”z)z
<w( 1 >+w< (1)) + 8,0 )+w(22 )+w(22 ) 805wy, >>+’+ -
1 (510'32(51"14;32(”2)) +51w2<5i"’gz(”z)> +51w2<5i'w1§z(u2)>) (

+

(61(i)t(si Uy (ut)>2 + 610'0((51- v, (ut))2 + 5lu'ut<s,- wy (ut))2 + SI(bt(s,- Uy (ut))2 + 51‘i’:<5i v, (ut))z + Sld)‘(si ‘wy, (u,))z>+ ’

2

(Cowmpnss (F a5 ?B))Z < ZZ: 8j <Z (bk( <5i‘”Aj (Mk))2 +<51'VA]. (”k))2 +<Si.wAj (”k)>2 >>

j=1 k=1
z t 2 2 2 (119)
x Z%-(Z wk( (sioms, 05) )+ (500, (10} +(si0w5 (1) ))
=t et J J J
= EGwmenss (Fa) - Ewmenss (9p)-
Therefore, ({gwmpnss (Fi> 5))° < Egwmenss (Fi)-  Proof. The proof is obvious. O

& gwmpnss (€5). Hence, by using Definition 34, we get

Rewmenss (F 4> Gp) < 1,50 0 < Rowmenss (F 4> Tp) <
O

] Proof. Utilizing Definition 34,

RGWmPNSS(F ;’Gg) =
Z;:l 6j<ztk:1 d‘)k(si : ”,;j (we)si - “gj () +s; - ng (1)s; - Vg}_ () +5; - w;,j (1)s; - ng (”k)))

\jle ’(Zk 1w"<( “gj(uk))z+<si-vgj(uk)>2+<si.wzj(uk)>2>> (120
Jz, ! J<zk 1 wk((si g (uk)>2 #(s v (uk)>2 (s wy (uk))2>>

As we know that siouy, (ug) = s;oup (ug),
siovy (u) =s; i*Vp, (4g), and s; wy, (ug) =5, wp, (uy), for all
j» k, by using Definition 34, we have

50 s (50 () (500 ) (0, ) ) )
\]Z 5, Zklwk(( ouAj(uk)>2+<siovAj(uk)>2+<siowAj(uk))2)) (o)

\jz 15] 3t 1wk(( ouAj(uk)>2+<Si0VAj(uk)>2+<Si0wA}-(uk))2))

Rwmenss (F 4> Gp) =
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Hence, Zgwmpnss (F 4> T3)=1. O

6. Applications of Similarity Measures and
Correlation Coefficient of GmPNSS in
Medical Diagnoses and Decision-Making

In this section, we proposed the algorithm for GmPNSS by
using developed similarity measures and CC. We also used
the proposed methods for medical diagnoses and decision-
making in real-life problems.

6.1. Application of Similarity Measure in Medical Diagnoses.
We develop the algorithm of GmPNSS for similarity mea-
sure and use the developed similarity measure for medical

NgE
TN

Il
—_

H _ 1
dimpnss (P (€), 9y (e)) = m {

Il
—_

i=1j
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diagnoses by using the proposed algorithm, shown in
Figure 1.

6.1.1. Algorithm for Similarity Measure of GmPNSS

Step 1. Pick out the set containing parameters.
Step 2. Construct the GmPNSS according to experts.

Step 3. Construct GmPNSS ¢, for the evaluation of
different decision-makers, where t =1, 2, ..., m.

Step 4. Find the distance between two GmPNSS by
using the distance formula:

(I 0, () - st 1)) # (Jso v, 1) - 5034, ()])

(122)

+<|51..w®_@(uj) - s,~°w%(”j)|> }

Step 5. Compute the similarity measure between two
GmPNSS by utilizing the following formula:

1

Somenss (P> 95) = T+d(@g90) (123)

Step 6. Analyze the result.

The flow chart of the presented algorithm can be seen in
Figure 1.

6.2. Problem Formulation and Application of Similarity
Measure and CC of GmPNSS for Disease Diagnoses. The
general proposed algorithm can be used in diagnosis
complications. In the light of scientific discipline, a nu-
merical example is presented to deal the diagnostic diffi-
culties. This planned algorithm may be obtained from
immoderate medical disease diagnosis complications. We
consider typhoid disease as a diagnosis problem, so re-
gardless of whether a well-advised patient has typhoid or
not, as many containing the overall signs and symptoms of
typhoid are going to be compatible as well as other diseases
such as malaria. For a verbal description of the disease, we
tend to dispensed similarity measures along the GmPNSS
structure to attain an insured person as well as high-fidelity
consequences. The general m-polar anatomical structure
offers us a record of medical experts rating for the ex-
traordinary disease.

6.2.1. Application of Similarity Measure. Now, we consider
the wuniversal set as follows: % ={u, =typhoid,
u, =nontyphoid} and E is a set of parameters consisting of
symptoms of typhoid disease such as E = {x, =flu, x, = body

pain, x;=headache}. Consider # and & < E; then we
construct the G3-PNSS of # and & such as ®g (x) and
¢+ (x) according to experts as given in Tables 1 and 2.

Compute distances between @ (x) and ¢, (x) by using
Definition 25 given as follows:

dds_pass (@g (e), 9z (€)) =0.6183
dg?—PNss (Dg (e), ¢y (e)) =0.3092
A&, pnss (P (€), 9y (€)) =0.7749
dl(\}lg—PNSS (Dg (e), gy (e)) =0.5481

By using Hamming distance, we will find the similarity
measure between @ (e) and ¢ (e) given as follows:

Sas-pnss (P> @) =0.6179 > 0.5.

According to the above calculation, Sg;_pnss (P
¢¢) =2 0.5, so G3-PNSS of &5 and ¢y are significantly
similar, which shows that the patient suffers from typhoid.

6.3. Applications of Correlation Coefficient in Medical
Diagnoses. We develop the algorithm of GmPNSS for CC
and use the developed CC for medical diagnoses by de-
veloping an algorithm.

6.3.1. Algorithm for Correlation Coefficient of GmPNSS
Step 1. Pick out the set containing parameters.

Step 2. Construct the GmPNSS according to experts.

Step 3. Find the informational neutrosophic energies of
any two GmPNSS.

Step 4. Calculate the correlation between two GmPNSS
by using the following formula:
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Step 1

()

(i) Input GmPNSS according to requirement

Step 2

(ii) Construct the evaluation report for each
alternative in the form of GmPNSS

Q

Step 3
(iii) Compute the distance between GmPNSS

Step 4

(iv) Compute the similarity measures

Step 5

(v) Choose the alternative with highest similarity

Step 6

SIPIOI®

(vi) Analyze the ranking

FIGURE 1: Flow chart of presented algorithm for GmPNSS based on the similarity measure.

TaBLE 1: G3-PNSS of F; according to experts.

Dy (x) X, X, X5
u, (.69, .52, .61), (.37, .44, 23), (.46, .37, .29) (.54, .63, .55), (48, .44, 26), (.63, 47, .59) (.34, .47, 27), (46, 48, .37), (.75, .58, .69)
u, (.43, .66, .62), (.48, .45, .53), (47, .52,.36) (17, 23, .29), (.37, .41, 47), (.53, .59, .61) (.58,.53,.55), (.37, .35, .32), (.65, .63, .59)

TaBLE 2: G3-PNSS of &} according to experts.

9z (x) X1 X, X3
u, (.63, .57, .54), (47, .46, 32), (.62, .75, .67) (45, .71, .50), (.50, .43, 26), (.61, .50, .47) (.27, .38, .24), (.58, .37, .47), (.65, .69, .70)
U, (.47, .59, .69), (.53, .50, .60), (.43, .58, .32) (.15, .25, .25), (.32, .40, .43), (.53, .60, .60) (.47, .46, .64), (.44, .40, .30), (.61, .60, .68)

Zt
Comenss (F 4, ) = Z > (s,-OuAj (uk)s,-Oqu () + si*Va, (uk)sioij () + siowy, (uk)siowB]_ (ue):i€1,2,3,..., m).
=1 k=1
(124)
Step 5. Calculate the CC between any two GmPNSS by
using the following formula:
CGm F 4, G
Rcmpnss (F 4 Gp) = mpss (70 71) (125)
\/gGmPNSS (9A, gA) - EGmpnss (31’3’ ?B)
Step 6. Analyze the results. consider that & ; and ¥ are G3-PNSS which are described in

Section 6.2.1 in Tables 1 and 2, respectively. By using equation
(12), we can find CC against the values of the universal set given
as follows: B3 pnss(u,) (F 4> T) =0.9967 and g3 pss(uy)
(F 4, €5)=0.9925. By the above calculation, we analyze the

6.3.2. Application of Correlation Coefficient. We use the  results @d get ‘%GS—PNSS(ME) (Fa 9p) > '%G3—PNSS(MZ) (F 4
proposed algorithm for medical diagnoses. For this, we  ¥3), which shows that patient suffers from typhoid.

The flow chart of the presented algorithm can be seen in
Figure 2.



2

)

(i) Input GmPNSS according to requirement

(i) Construct the evaluation report for each alternative in the form of GmPNSS

(iii) Compute the neutrosophic informational energies

(v) Calculate the correlation coefficient

(vi) Choose the alternative with maximum score value

(iv) Compute the correlation between GmPNSS }
(vii) Ranking alternatives }

€€ EK

FiGure 2: Flow chart of the presented algorithm based on the
correlation coefficient.

6.4. Problem Formulation and Application of GmPNSS for
Decision-Making. Department of the scientific discipline of
some university U will have one scholarship for a post-
doctoral position. Several applicants apply for scholarship
but only four S={S,, S,, S;, S} applicants received the
interview call for evaluation based on their CGPA (cumu-
lative grade points average). The president of the university
hires a committee of four experts X ={X,, X,, X5, X,} for
the selection of the postdoctoral scholars. First of all, the
committee decides the set of parameters such as E = {x,, x,,
x5}, where x;, x,, and x; represent the research papers,
research quality, and communication skills for the selection
of postdoctoral scholars. The experts evaluate the scholars
under defined parameters and forward the performance
evaluation to the president of the university. Finally, the
president of the university scrutinizes the one best scholar
based on the expert’s evaluation for the postdoctoral
scholarship.

6.4.1. Application of GmPNSS for Decision-Making.
Assume that S={S,, S,, S;, S;} is a set of scholars who are
shortlisted for interview and E={x, =research paper,
x, =research quality, x5 =interview} is a set of parameters
for the selection of scholarship. Let & and & C E; then we
construct the G3-PNSS @, (x) according to the requirement
of the scientific discipline department.

Now we will construct the G3-PNSS ¢, according to
four experts, where t=1, 2, 3, 4.

By using equation (3), we calculate the Euclidean dis-
tance between @ and ¢, as follows:

AEs_pnss (Pgrs 9L) =1.32

AEs_pnss (P> 9%) =1.3185
dE, onss (Pgry 93) =0.4598
dE s (Do @) =1.1132

Similarity measures of @ and ¢/, can be calculated as
follows:

Sgs_pnss (P> 9i) =0.4310
Sgs_pnss (P 9%) =0.4313
Sgs-pnss (Pgs 93) =0.6850
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Sgapnss (P> 93) =0.4732

According to the proposed similarity measure, ranking
of the alternatives is S; > S, > S, > §;, and it is clear that
Sga—pnss (P> 93) =0.6850 > 0.5, which shows that @4 and
@3, are significantly similar to G3-PNSS. So S, is the best
scholar for the postdoctoral position. Graphical represen-
tation of alternatives ranking can be seen in Figure 3.

6.4.2. Solution by Using Algorithm 2. Now, by using
Tables 3-7, we can find the correlation coefficient for each
alternative by using equation (12) given as Rgppnss
(g, 95) = 8374, Rgmenss (P> 9%) =7821, Rgmpnss
(Og, ¢3)=.9462, and Rgrpnss (Pg» 93) =.9422. This
shows that Reupnss (Pgs 9%) > Rgmpnss (P> 9) >
Rcmpnss (P> 95) > Rcmpnss (P 9%). Hence, S; s the
best scholar for a postdoctoral position. In Figure 3, we can
see the graphical representation of alternatives ranking.

7. Result Discussion and Comparative Analysis

In the following section, we will discuss the effectiveness,
naivety, flexibility, and advantages of the proposed methods
and algorithms. We also conducted a brief comparative
analysis of the following: suggested methods and existing
methods.

7.1. Advantages and Flexibility of the Proposed Approach.
The recommended technique is effective and applicable to all
forms of input data. Here, we introduce two novel algo-
rithms based on GmPNSS: one is CC, and the other is
similarity measures. Both algorithms are effective and can
provide the best results in MCDM problems. The recom-
mended algorithm is simple and easy to understand, can
deepen understanding, and is suitable for many types of
choices and indicators. Developed algorithms are flexible
and easy to change to suit different situations, inputs, and
outputs. There are subtle differences between the rankings of
the suggested methods because different techniques have
different ranking methods, so they can be afforded according
to their considerations.

7.1.1. Superiority of the Proposed Method. Through this
research and comparative analysis, we have concluded that
the results obtained by the proposed method are more
general than the prevailing methods. However, in the de-
cision-making process, compared with the existing decision-
making methods, it contains more information to deal with
the uncertainty in the data. Moreover, the mixed structure of
many FS has become a special case of GmPNSS, by adding
some suitable conditions. Among them, the information
related to the object can be expressed more accurately and
empirically, so it is a convenient tool for combining inac-
curate and uncertain information in the decision-making
process. Therefore, our proposed method is effective, flex-
ible, simple, and superior to other hybrid structures of fuzzy
sets.
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TaBLE 3: Construction of G3-PNSS of all scholars according to department requirement.

Score value

Correlation coefficient

Similarity measure

0.8374

0.431

0.7821

0.4313

0.9462

0.6819

0.9422

0.4491

FIGURE 3: Alternative final score value with the proposed algorithms.
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.46,
.57,
.34,
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31,
71,
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TABLE 4: G3-PNSS evaluation report according to experts of S,
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29)
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TaBLE 5: G3-PNSS evaluation report according to experts of S,.

X1

X2

(.16,
(13,
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.20
21,
16
.81,

27), (.83,

27), (.29,
.90), (.40,

.87, .89), (70,
24), (.18, .20, .20), (.70,
17, .26), (.14,
20, .26), (.22,

75, .86) (.91,
84, .90) (.39,
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TaBLE 6: G3-PNSS evaluation report according to experts of S;.
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TaBLE 7: G3-PNSS evaluation report according to experts of S,.
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TaBLE 8: Comparative analysis between some existing techniques and the proposed approach.

Set Truthiness Indeterminacy Falsity Multipolarity Loss of information
Chen et al. [48] mPFS v X X V4 X
Xu et al. [49] IFS v X v X X
Zhang et al. [50] IFS v X v X v
Ali et al. [51] BPNSS v v v X X
Proposed approach GmPNSS v v v v X

TaBLE 9: Comparison between GmPNSS and some existing studies.

Method Alternative final ranking Optimal choice
Masooma et al. [16] $:>85,>85 >, S5
Saeed et al. [33] $5>8,>S5,>8; S;
Riaz et al. [52] $5>8,>8,>8, S;
Kamal et al. [22] $5>8,>S5,>8; S,
Proposed algorithm 1 S5>8,>S5,>8; S;
Proposed algorithm 2 S;>8,>8 >, Ss

It turns out that this is a contemporary issue. Why do we
have to express novel algorithms based on the current novel
structure? Many indications are compared with other
existing methods, and the recommended methods are surely
competent. We remember the following fact: the mixed
structures have some limitations in IFS, picture fuzzy sets,
FS, hesitation fuzzy sets, NS, and other fuzzy sets, so
complete information about the situation cannot be pro-
vided. But our m-polar model GmPNSS can be the most
suitable for MCDM because it can deal with truth, inde-
terminacy, and falsity. Due to the exaggerated multipolar
neutrosophy, these three degrees are independent of each
other and provide a lot of information about alternative
norms. Other similarity measures of available hybrid
structures are converted into special cases of GmPNSS. A
comparative analysis of some existing techniques is listed in
Table 8. Therefore, compared with intuitionistic, neu-
trosophy, hesitant, image, and ambiguity substitution, this
model is more versatile and can easily resolve complications.
The similarity measures established for GmPNSS become
better than the existing similarity measures for MCDM.

7.1.2. Discussion. By using the technique of Chen et al. [48],
we deal with the multipolar information of fuzzy sets, but,
with this method, we cannot deal with the indeterminacy
and falsity objects of alternatives. By using the methodol-
ogies of Xu et al. [49] and Zhang et al. [50], we cannot deal
with the multipolar information and uncertainty part of the
alternative. But, on the other hand, the methodology we
established involves the truthiness, indeterminacy, and
falsity of alternatives with multiple data. Therefore, the
technique we developed is more efficient and can provide
better results for decision-makers through various infor-
mation. Ali et al.’s method [51] dealt with the truthiness,
indeterminacy, and falsity levels of alternatives, but these
techniques cannot manage multiple data. Instead, the
method we developed is an advanced technique that can
handle alternatives with multiple types of information. It can
be seen in Table 8.

7.1.3. Comparative Analysis. In this article, we propose two
types of algorithms. First, an algorithm is proposed based on
the correlation coefficient, and the other is based on simi-
larity measures for GmPNSS. Next, both algorithms are
utilized to solve practical problems in real life, that is, for the
selection of a postdoctoral position. The graphical repre-
sentation of results obtained by both algorithms is shown in
Figure 3. The results show that the proposed technique is
effective and practical. Finally, the ranking of all alternatives
using the existing methodologies gives the same final de-
cision; that is, the “postdoctoral” position is selected as S;.
All rankings are also calculated by applying existing methods
with the same case study. The proposed method is also
compared with other existing methods: Saeed et al. [33],
Masooma et al. [16], Riaz et al. [52], and Kamal et al. [22].
The comparison results are listed in Table 9, which shows the
final ranking of the top 4 alternatives. It can be observed that
the best selections made by the proposed methods are
compared with the already established methods which are
expressive in themselves and approve the reliability and
validity of the proposed method.

8. Conclusion

In this paper, we study the mPNSS and propose a generalized
version of mPNSS with some basic operations and prop-
erties. We also develop the AND operator, OR operator,
Truth-Favorite operator, and False-Favorite operator with
properties and examples. The concepts of necessity and
possibility operations with their properties are developed in
this research. The distance-based similarity measures on
GmPNSS are established by using the Hamming and Eu-
clidean distances with their properties, and a decision-
making approach is presented to solve multicriteria deci-
sion-making problems. We also established the correlation
coefficient and the weighted correlation coefficient of
GmPNSS with the decision-making technique. Further-
more, a numerical illustration has been described to solve
the MCDM problem by using the proposed decision-making
approaches for medical diagnoses and decision-making. A
comparative analysis is presented to verify the validity and
demonstration of the proposed method. Finally, the sug-
gested techniques showed higher stability and practicality
for decision-makers in the decision-making process. Based
on the results obtained, it is concluded that the proposed
method is most suitable for solving the MCDM problem in
today’s life. The presented technique is unable to handle the
scenario when the information of truth, falsity, and inde-
terminacy is given in intervals. In the future, the concept of
mPNSS will be extended to interval-valued mPNSS and the
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developed techniques to other fields, such as mathematical
programming, cluster analysis, and big data analysis.
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Strategy is the main source of long-term growth for organizations, and if it is not successfully implemented, even if appropriate
ones are adopted, the process is futile. The balanced scorecard which focuses on four aspects such as growth and learning, internal
processes, customer, and financial is considered as a comprehensive framework for assessing performance and the progress of the
strategy. Moreover, the data envelopment analysis is one of the best mathematical methods to compute the efficiency of or-
ganizations. The combination of these two techniques is a significant quantitative measurement with respect to the organization’s
performance. However, in the real world, determinate and indeterminate information exists. Henceforth, the indeterminate issues
are inescapable and must be considered in the performance evaluation. Neutrosophic number is a helpful tool for dealing with
information that is indeterminate and incomplete. In this paper, we propose a new model of data envelopment analysis in the
neutrosophic number environment. Furthermore, we attempt to combine the new model with the balanced scorecard to rank
different decision-making units. Finally, the proposed method is illustrated by an empirical study involving 20 banking branches.
The results show the effectiveness of the proposed method and indicate that the model has practical outcomes for decision-makers.

1. Introduction

All organizations whether governmental or private require
an effective performance assessment for development,
growth, and sustainability in the competitive world of today.
In other words, senior executive managers have always been
seeking a solution to ensure that their strategies are executed
and, hence, have selected performance assessment methods
as tools to implement their strategies.

The balanced scorecard (BSC) has been introduced as a
comprehensive framework for performance assessment and
advancement of strategy, which balances the short- and
long-term goals, financial and nonfinancial measures, in-
ternal and external performance, internal and external
stakeholders, and the occurring progressive and nonpro-
gressive performance indexes. BSC is a proven framework
that describes and operates the organization’s strategy [1].

Data envelopment analysis (DEA) is a mathematical
programming for measuring the relative efficiencies of
homogeneous decision-making units (DMUs) without

knowing production functions, just by utilizing input and
output information [2, 3]. The first models in DEA are the
CCR and BCC models in which the efficiency of each DMU
obtained as the maximum of a ratio of weighted outputs to
weighted inputs subject to that of the similar ratio for all
DMUs is less than or equal to one [2, 3]. DEA technique has
just been effectively connected in various cases such as
broadcasting companies [4], banking institutions [5-8],
R&D organizations [9, 10], health care services [11],
manufacturing [12, 13], telecommunication [14], and supply
chain management [15].

One of the disadvantages of the BSC is the lack of a
quantitative measurement of the organization’s performance
using the mathematical method. Therefore, the integrated
BSC-DEA approach can be used to provide a mathematical
model of performance measurement for macrogoals, which
is complete than the separate models [16]. In the hybrid
BSC-DEA technique, BSC is utilized as a tool for designing
the assessment indexes for performance, whereas the DEA is
used as a tool for performance evaluation. This approach has
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drawn the attention of several researchers within a very short
period of time.

Eilat et al. [17-19] used the BSC-DEA method for the
first time in R&D projects. Min et al. [20] applied the BSC
model and the DEA technique for the efficiency of Korean
hotels. Chen et al. [21, 22], based on the four perspectives of
the BSC, with the help of the quantitative DEA tools, carried
out the efficiency evaluation of semiconductor industries
and cooperative credit banks in Taiwan. Macedo et al. [23]
applied a hybrid BSC-DEA model to performance mea-
surement of the bank branches in Brazil with 6 indexes.
Garcia-Valderrama et al. [24] proposed a framework for the
analysis of the relationships between the four perspectives of
the BSC, and utilizing DEA developed several different
models of efficiency. Chiang et al. [25] attempted to develop
an integrated framework to encompass the BSC and DEA for
measuring management performance and selected auto and
commercial bank industries as the targets for empirical
investigation. Amado et al. [26] presented the development
of a conceptual framework which aims to assess DMUs from
multiple perspectives. The proposed conceptual framework
combines the BSC method with DEA by using various
interconnected models which try to encapsulate four per-
spectives of BSC. Wu and Liao [27] proposed an integrated
DEA-BSC model to evaluate the operational efficiency of
airlines. To adapt this model, 38 major airlines in the world
were selected to assess their relative performance. In [28],
the information technology (IT) project has been evaluated
by using a hybrid DEA-BSC model. This approach uses BSC
as a comprehensive framework for defining IT project
evaluation criteria and uses DEA as a nonparametric
technique for ranking IT projects. For illustrations of the
other researches which have been executed in relative to
assessing the efficiency of organizations by utilizing the DEA
and the BSC, refer to [29-32].

However, data in real world are imprecise and vague, and
one of the main tools for description of this kind of data is
fuzzy number. Since Zadeh [33] presented fuzzy sets (FS),
fuzzy theory has been applied effectively in an extensive
variety of subject fields [34-37]. Some researchers also
considered the BSC-DEA models under fuzzy environment
[38-42]. Since the fuzzy set considers only the degree of
membership and has not the degree of nonmembership,
Atanassov [43] made an enhancement to overcome this
weakness and presented the intuitionist fuzzy set (IFS)
consisting of the degree of membership and the degree of
nonmembership. There are various models of DEA with IFSs
(see [44-46]). However, the IFS did not consider the degree
of indeterminacy. We know that the incomplete, indeter-
minate, and inconsistent information in real life often exists.
Because of an absence of data, estimation mistakes, or the
limited attention and knowledge of decision-makers, in
numerous circumstances, the obtained information might
be partial determinacy and/or partial indeterminacy. Fuzzy
and intuitionist fuzzy sets cannot therefore represent data
with both determined and indefinite data.

To express this kind of information, Smarandache
[47-49] originally established the neutrosophic logic, which
generalizes the concept of the classic set, fuzzy set, interval-
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valued fuzzy set, and intuitionistic fuzzy set. This logic di-
vided into two categories of the neutrosophic sets (NSs) and
the neutrosophic numbers (NNs).

The neutrosophic sets (NSs) are represented by a
truth-membership degree, an indeterminacy-membership
degree, and a falsity-membership degree and have some
subclasses such as single valued neutrosophic sets [50-60],
interval neutrosophic sets [61-65], and simplified
neutrosophic sets [64, 66-68]. A neutrosophic set A in X is
characterized by a truth-membership function T,(x), an
indeterminacy-membership function I,(x), and a falsity-
membership function F4(x). The functions Tx(x), I4(x), and
Fa(x) are real standard or nonstandard subsets of |07, 1% [;
that is, Tu(x): X — 107,17 [, I4(x): X — ]07,1%[,and
F4(x): X —> 107,17 [. There is no restriction on the sum of
T4(x), I4(x), and F4(x), so

0 <supT 4 (x) + supl, (x) + supF, (x) <3". (1)

The neutrosophic number (NN) introduces a concept of
indeterminacy, denoted by A =m+nl(m,neR), and
consists of its determinate part m and its indeterminate part
nl. In the worst scenario, A can be unknown, i.e., A = nl.
However, when there is no indeterminacy related to A, in the
best scenario, there is only its determinate part, i.e., A = m.
Smarandache also refined the NNs by decomposition of the
indeterminacy I into different types of indeterminacies such
as I,1,,...,1,, and extended the neutrosophic number to
the refined neutrosophic number [69, 70].

It is worth mentioning that the neutrosophic sets (NSs)
cannot deal with decision-making problems with neu-
trosophic numbers, as NSs and NNs are two different
branches in neutrosophic theory and indicate different
forms and concepts of information.

It is clear that the NNs are very practical for conveying
information about indeterminate evaluations in complex
decision-making problems. For example, Ye [71] provided a
neutrosophic number tool for a multiple attribute group
decision-making (MAGDM) problem with NNs. He pre-
sented a de-neutrosophication method and a possibility
degree ranking method for NN as a methodological support
for group decision-making problems. Additionally, Ye [72]
developed a bidirectional projection measure of NNs for
MAGDM problems. Under a NN environment, Chen and
Ye [73] presented a projection model of NNs and its de-
cision-making method for the selecting problems of clay-
bricks. Kong et al. [74] presented a distance measure and
cosine similarity measure between NNs and applied it to the
misfire fault diagnosis of gasoline engines. Furthermore,
Smarandache [75] introduced the concept of a neutrosophic
linguistic number (NLN) in symbolic neutrosophic theory.
Based on this concept, Ye [76] proposed basic operational
laws of NLNs. Zhang et al. [77] proposed an extend TODIM
method to handle multiple attribute group decision-making
problems in which the evaluation information is expressed
by NNs. Zheng et al. [78] presented some aggregation op-
erators based on NNs, which are used to handle MAGDM
problems. Furthermore, under this environment, Liu and
Liu [79] proposed some generalized weighted power
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aggregation operators that are used to deal with MAGDM
problems more effectively. Jiang and Ye [80] defined a new
concept of neutrosophic number functions for the objective
functions and constraints in engineering optimization de-
sign problems with determinate and indeterminate infor-
mation and obtained a general NN optimization model of
truss structure design. To overcome the complex calculation
and difficult solution problems in methods of [80], Ye [81]
proposed an improved NN optimization method and ap-
plied it to a three-bar planar truss structural design with
indeterminate information. Furthermore, Ye et al. [82] using
the neutrosophic number functions investigated the an-
isotropy and scale effect of indeterminate joint roughness
coefficient (JRC), which is a quite crucial parameter for
determining the shear strength in rock mechanics. Recently,
some scholars also under NN environment proposed some
models for various optimization problems such as linear
programming [83], multiobjective programming [84],
nonlinear programming [85], and bilevel linear program-
ming problem [86].

The first model of DEA with NS was established by
Edalatpanah [87], and additional investigations have been
accessible in [88-95]. However, these models are formulated
solely for NSs. In real-life situations, some inputs/outputs in
DEA may also be indeterminate and inconsistent, and
considering neutrosophic number for each input/output of
DMUs helps decision-makers to obtain a better interpre-
tation of information. In addition, by using the NNs in DEA,
analysts can obtain a better representation of reality through
considering all aspects of the decision-making process.
Unfortunately, in the current literature, there is no study of
data envelopment analysis (DEA) models and  also
BSC-DEA methodology in the NN environment. It is clear
that the conventional fuzzy sets cannot express neutrosophic
DEA with both determinate and indeterminate information.
Therefore, it is necessary to propose a new method based on
the neutrosophic numbers to BSC-DEA methodology. The
main purposes of this paper are as follows: (1) to develop a
new model for DEA within the NN environment and (2) to
combine the new model with BSC to rank different decision-
making units. There are usually many qualitative ways to
evaluate an organization’s performance. One of these tools is
the balanced scorecard approach that separates the orga-
nization from the operational point of view. By examining
the organization using this segmentation, one can usually
gain an understanding of organizational performance, but in
quantitative terms, approaches are always needed to evaluate
activities separately and to provide accurate benchmarks for
different decisions. Data envelopment analysis approach is
one of the tools that can be helpful and provides a little
understanding of the various points of the scorecard. Un-
derstanding the need and the precise relationship between
these two concepts illustrates the importance of the subject
and led us to present this hybrid model for ranking the
decision-making units in the organization.

This hybrid model is presented in an innovative way and
demonstrates the significant relationship between the
qualitative concepts in the BSC and the quantitative con-
cepts in data envelopment analysis for the purpose of

decision-making strategy and ultimately enhancing orga-
nizational performance.

The rest of the paper is organized as follows: Section 2
presents some essential concepts regarding neutrosophic
numbers and BSC and DEA models. Section 3 proposes a
new model of DEA in neutrosophic number environment.
Section 4 explains a hybrid BSC-DEA model with NNs. An
empirical study involving 20 banking branches and con-
clusions are given in Sections 5 and 6, respectively.

2. Preliminary Concepts

In this section, we present several basic discussion con-
cerning neutrosophic numbers, balance scorecard, and data
envelopment analysis.

2.1. Neutrosophic Number Concept. A neutrosophic number
(NN) is represented by A = m + nl (m,n € R), where m and
nl are determinate and indeterminate parts, respectively; for
example, consider a NN as A = 3 + 4I. Then, it indicates that
its determinate value is 3, and its indeterminate value is 41I.
Assume that the indeterminacy I is considered as such a
possible interval [0, 2], and then, it is equivalent to
A = [3,11], where A is within the interval [3,11]. For the
best case, we have nl =0 and A can be expressed as the
determinate part A = m, whereas in the worst case m =0
and A expressed as the indeterminate part, A =nl. For
convenience, let N be the set of all NNs, and then, a NN is
denoted by A =m+nl = [m+n(inf(I)),m+n(sup(I))]
for IC[inf (I),sup(I)] and A € N.

Definition 1 (see [80, 83]).

Let A, =m; +nI and A, =m, +n,I for m;,n; € R,
A; € R, and I € [I5,1V] be two NN, then they contain the
following arithmetic laws:

(1) Ay + Ay = (my +my) + (1, +n,y)I,
(ii) A; = Ay = (my —my) + (n, —my)I, (2)

(iii) A; X A, = mym, + (myny + myn) )1+ nyn, I,

Definition 2 (see [81]). A NN function with #n variables and
N domain is defined as f(x,I): X" — N, where,
X = [xl,...,xn]T e N" and I € [I%, IY]. Moreover, I is in-
determinacy and f(x,I) can be an NN linear/ nonlinear
function; for example, f(x,I): (5+4@)x, + (1 +2I)x, + 31
for x = [x,,,]7 € X% is an NN linear function.

2.2. Balance Scorecard (BSC). Kaplan and Norton proposed
the BSC model as a method to evaluate the performance of
an organization. The traditional performance assessment
systems are more prominently based on financial indexes,
whereas successful companies rely not only on financial
indicators to evaluate their performance but they also
considered their performance from three other BSC per-
spectives; i.e., customer, internal processes, learning, and
growth [96, 97]. The BSC method is a performance mea-
surement framework that provides a complete overview of



an organization’s performance with a set of financial and
nonfinancial scales. The BSC model has been utilized ef-
fectively in manufacturing, service, nonprofitable, and
government organizations. Many applications for a balanced
scorecard have defined from a business perspective [98, 99].
In Figure 1, the four aspects of the balanced scorecard have
been depicted.

According to Figure 2, we must create value for our
customers (the customer perspective) in order to achieve
financial (the financial perspective). This would not be
feasible unless we excel in our operational processes and
adapt them to the needs of our customers (the internal
processes perspective). It is not possible to gain excellence in
operation and process of value unless we create the right
work environment for employees and strengthen the in-
novation and creativity in learning and growth (the learning
and growth perspective).

2.3. Data Envelopment Analysis (DEA). Data envelopment
analysis (DEA) is a linear programming method for
assessing the efficiency and productivity of decision-making
units (DMUs). In the traditional DEA literature, various
well-known DEA approaches can be found such as CCR and
BCC models [2, 3]. The efficiency of a DMU is established as
the ratio of sum weighted output to sum weighted input,
subjected to happen between one and zero. The outputs and
inputs are known, and the weighted value of the inputs and
outputs is selected in such a manner that the efficiency of
that DMU is maximized.

Let us assume that n DMU’s are present as {DMUj: j=1,
., n}, which utilize m inputs x;; (i=1,2,...,m) to produce
s outputs x;; (i=1,2,...,m). Here, u,(r =1,2,...,s) and
v;(i=1,2,...,m) are the weights of the ith input and rth
output. Then, the CCR model is as follows:

S
.
Gp = maxZu,y,P,
r=1
s.t:

m
Zvixip = 1, (3)
i=1

N m
Zuryrj g Z"ixij <0, Vj,
r=1 i=1

u,,v; 20, Vr,i

We solve model (3) n-times to work out the efficiency of
n DMUs. If 0, =1, we say that the DMUp is efficient;
otherwise, it is inefficient.

3. New Model of DEA in NN Environment

In this section, we propose a new model of DEA in the
neutrosophic number environment. Let us consider the CCR
model (3) under the environment of the neutrosophic
number. Then, we have
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S
* _~
0, = maxZuryrp,
r=1

s.t:

™:

Il
—

ViXi, =1, (4)

S m
Zuryrj - Zvixij <0, Vj,
r=1 i=1

u,,v; >0, Vr,i,

where X;; = x;; + ;1 (i=12,...,m) and 3,; = y,; +y,;]
(r=1,2,...,s)are neutrosophic numbers of the input and
output for the jth DMU and also IC[inf (I),sup(I)]. We
propose a new model to solve (4).

Theorem 1 shows the feasibility and boundedness of
model (4).

Theorem 1. Model (4) is always feasible and bounded.
Furthermore, its optimal objective function is 1.

Proof. With the solution u! = (0,...,0) and v/ = (0,..., (1
/Eip), ...,0), it is easy to see that model (11) is always
feasible. Thus, regardless of the values of inputs and outputs,
there is always at least one feasible solution for model (11).
On the other hand, by this solution, we have

m
Zvi%ip =1,
i=1

i (5)
Zu,)"/rj <L
r=1

Because the above solution is feasible along with the
objective function of model (4) is maximization, the best
value regarding the objective function is certainly equal to
1. O

4. A Hybrid BSC-DEA Model with
Neutrosophic Numbers

In this section, we attempt to combine the new neutrosophic
DEA model proposed in Section 3 with the BSC to rank
different DMUs. Since the BSC model evaluates the per-
formance of an organization in the grounds of macrogoals
and model of DEA with neutrosophic numbers is also a
method to measure efficiency or performance with inde-
terminate information, therefore, by combining the
two-abovementioned measuring methods, the performance
is measured and aligned with strategic goals. In the hybrid of
DEA and BSC models, the BSC is utilized as a tool for the
assessment of performance indexes and the neutrosophic
DEA model is used as a tool to evaluate the efliciency in this
model. The entire structure of the hybrid DEA-BSC model is
shown in Figure 3.

Figure 4 also denotes the four aspects of the performance
of the BSC with specific organizational strategies, and in
each of the domains, the relative indexes have been defined.
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FIGURE 4: A hybrid BSC-DEA strategy with neutrosophic numbers.

A number of these indexes could be inputs and or outputs.
Following Figure 4, we have defined two areas of “Enablers”
and “Results.”

The enabler’s field, which consists of the two parts of
“learning and growth” and “internal process,” is an area in
which every organization should invest in order to build
strong and motivated personnel alongside a secure process.
The results’ field which includes “customer” and “financial”
is the indicator that provides the benefit of customers to
realize the financial goals. There is no doubt that the profit
and loss of the organization are determined in the field of
results, but creating a margin of profit is surely the yield of
efforts and investment in the field of enablers.

The steps of indexing and performance evaluation using
the two techniques BSC and DEA can be expressed as follows:

(i) Organization identification: at this stage, the goals
and strategies of the organization are identified, and
using the BSC technique, indicators are created in a
balanced manner with different perspectives.

(ii) Performance evaluation: the indicators evaluated by
the BSC are classified in two areas of enablers and
results, and each area is classified into both input and
output groups and used by the neutrosophic DEA in
horizontal assessment (overtime periods) or vertical
evaluation (in comparison with similar DMUs).

(iii) The correction and improvement of path design: by
the neutrosophic DEA, the path to correction and
improvement for each indicator is determined.

(iv) Determination of target goals for the next period.

The goals of the indicators that set by the neutrosophic
DEA are set as the goals of the indicators for the next period of
BSC implementation. In this method, each time the BSC is
executed, i.e., at each period when the organization’s data are
entered into the BSC system, and the results are presented, the
neutrosophic DEA model assesses the organization, and the
objectives of the indices are determined in the next period. If
the goals are met, the organization will achieve the desired and
expected efficiency. In the next period of performance eval-
uation, the organization’s condition is compared with the
expected conditions from the previous period and the new
efficiency is determined. This method is executed periodically,
and after each implementation, the manager is expected to lead
the organization into the desired optimal efficiency.

5. Numerical Experiment

In Section 4, phases that must be considered in the designing
of a hybrid BSC and DEA system were explained. In this
section, a case study of this combined system, which has
been executed on 20 branches of one of the Iranian banks,



Journal of Mathematics

will be described. It is worth emphasizing that, due to the
privacy policies, the names of these branches are not shared.
Furthermore, for each branch of the bank, we gather the
related data from the records unit of the bank, the statistical
center of Iran, the reliable library, online resources, and the
judgments of some experts. After collecting data, we found
that the information is sometimes inconsistent, indetermi-
nate, and incomplete. The investigation revealed that several
reforms of the mentioned bank and other issues have led to
considerable uncertainty and indeterminacy about the data.
As a result, we identified them as NNs. According to the
presented model, information has been gathered in the two
domains of the enablers and the results. Tables 1 and 2 show
the indicators and their information in these two domains.
As can be seen, the percentage of banking services and the
growth rate of services have grown dramatically.

According to Algorithm 1, we can obtain the relative
efficiency of DMUs. In this paper, we consider A = 0,0.5, 1
and I=1[0,1.2]. For example, in the enablers’ stage, the
relative efficiency of DMUI1 can be used as follows:
0] = maxz, = (47 + 3Duy + (3.5 + 2Du, + (83.5 + Dus,

s.t:
(12+2Dv; +12.2v, + (50 + v, = 1,
(47 +3Du; + (3.5 + 21)u, +(83.5 + Iu,—
(12 +2I)v, — 12.2v, — (50 + I)v; <0,
(45 + Du, + (3.4 + 41)u, + (80.4 + 31)us—
(63 +3I)v, — (10.6 + I)v, — 16.2v3 <0,
(43.8 + 31)u; + 6.2u, + (80.7 + Nus—
(14 + I)v, — 10.7v, — (65.5 + 51)v, <0,
(65 +2D)u; + (8.5 + Nuy + 93u5—
(15.3 + 61)v; —(11.6 + I)v, — 32.5v; <0,
(40.4 + Duy + (5.2 + 2Du, + 84.6u5—
(17.8 +1)v, = (11.3+ I)v, — (38 + 31)v, <0,
(65.8 + Nuy + (3.7 + 2Duy + (88.2 + Nuy—
(14.8 + I)v, — 10.6v, — (38 + 3)v, <0,
(47.3 + 3Duy + (8.5+ 2Du, + (91.1 + 4Du5—
18.4v, — (13.2 + I)v, — 67v, <0,
(55.4 + 4Du; + (8.2 + 2u, + (83.6 + Nus—
16.9v, — 12.5v, — (65.8 + 2I)v; <0,
(58 + Du, + 3.7u, + (76 + 41)u5—
(21.5 + I)v, — 11.9v, — 73.5v, <0,
(54.7 + Duy + (8.4 + 4Duy + (79.8 + 51)us—
12.2v, — (10.5 + 2I)v, — (65 + I)v; <0,
(69.2 + 61)u; + (4.6 + Duy + (96.3 + 31)us—
(19.7 + 4I)v; — (10.7 + 3I)v, — (60 + I)v, <0,
(64 + Duy + (4.3 + Du, + (94 + Duy—

(15.3 + 2I)v; — 12.2v, — 87v; <0,
(58.3+2Nu; + (5.9 + 3Du, +(96.2 + 21)u,—
(18.7 + I)v; — 14v, — (71.2 + I)v; <0,

(55.7 + 2uy + (5.5 + 50uy + (81 + Ius—
(25 +4I)v, — (14 + 3)v, — (78.6 + 2I)v3 <0,
47uy + (9.4 + 31)u, + (84.1 + 50u,—

(19.3 + 3I)v, — 10.8v, — (65.6 + 2I)v; <0,
(67.1 + Duy + (5.3 + 4Duy + (85.7 + Nus—
(18 + I)v, — (12 + 51)v, — 72.8v, <0,

(59.5 +2Nu; + (6.9 + 61)u, + (90 + 41)u;— (6)
(17.8 + 41)v, = (11 + 4I)v, — 64v, <0,

(65.3 + Duy + (7 + Du, +(86.4 + Iuy—

(20 +20)v; — (11 + I)v, = (62 + I)v, <0,

(49 + Du, + (4.1 + Du, + (914 + 21u,—

(22 + 2I)v, — (12.5 + 31)v, — (74.5 + I)v; <0,
(65 + Du, + (6.4 + 2D)u, + (95 + Nuy—

(15.4 + I)vy — (18 + 4I)v, — (70 + I)v5 <0,
I1-121=0,

Uy, Uy, Uz, > Vis Vo, V3 2 0.

Now, by solving above problem, we can see that, for all
values of A, the relative efficiency of DMUI is one. Fur-
thermore, the relative efficiency of all DMUs for A = 0, 0.5, 1
and I=[0,1.2] was calculated, and the results are obtained in
Tables 3 and 4 .

For better understanding, in Figure 5, we show the
relative efficiency of DMUs for I=[0,1.2] and different \.

Form Tables 3-4 and Figure 5, it can be seen that
obtaining the optimal results depends on the investment and
effort in the enablers sector; that is, until the “learning and
growth” and “internal processes” sections do not work well,
gaining success is undoubtedly impossible. However, for the
success of an organization, planning should be done in the
two areas of enablers and results, but it can be clearly stated
that the “results” sector requires appropriate measures in the
field of enablers. In other words, efficiency in the field of
results depends on the efficiency of enablers. Looking at
Figure 5, we can infer the following:

(i) The DMUs 1,4,10, and 15, which were efficient in
enablers sector, were also able to be efficient in the
results section, using the capabilities they gained. It
can be said that the efficiency condition in the field
of results is efficiency in enablers sector.

(ii) Other DMUs that were not efficient in enablers
sector could not be efficient in the results.

(iii) The DMUs 3, 5, 12, 16, 17, 18, and 20, despite the
great efforts and obtaining privileges close to the
efficient DMU s in the field of results, could not be
efficient due to weaknesses in the enablers sector. It
can be predicted that these DMUs will be efficient in
the results sector if they are efficient in the field of
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TaBLE 1: Input and output of enablers.
Inputs Outputs
DMUs  Motivational  Increasing expertise of Employee Banking Improvement of Increasing speed of
costs (%) employees (%) satisfaction (%) services (%) computer software (%) service (%)
1 12+21 12.2 50+1 47 +31 3.5+2I 83.5+1
2 16.2 10.6 +1 63 +31 45+1 3.4+4] 80.4 + 31
3 14+1 10.7 65.5+ 51 43.8+31 6.2 80.7+1
4 15.3+61 11.6+1 32.5 65+21 85+1 93
5 17.8+1 11.3+1 38 +31 404 +1 52+2] 84.6
6 14.8+1 10.6 78 +1 65.8+1 3.7+21 88.2+1
7 18.4 132+1 67 47.3 +31 8.5+2] 91.1 +41
8 16.9 12.5 65.8 + 21 55.4+41 8.2+21 83.6+1
9 21.5+1 11.9 73.5 58 +1 3.7 76+ 41
10 12.2 10.5+21 65+1 54.7+1 8.4 +41 79.8 + 51
11 19.7 +41 10.7 + 31 60 +1 69.2 +61 4.6+1 96.3 + 31
12 15.3+21 12.2 87 64+1 43+1 94 +1
13 18.7+1 14 71.2+1 58.3+21 5.9+ 31 96.2 +21
14 25+41 14 +3I 78.6 +21 55.7+21 5.5+5] 81+1
15 19.3+3I 10.8 65.6 +21 47 9.4+ 31 84.1+5I
16 18+1 12 +51 72.8 67.1+1 53+4] 85.7+1
17 17.8 +41 11 +4I 64 59.5+21 6.9 +6I 90 + 41
18 20+21 11+1 62+1 65.3+1 7+1 86.4+1
19 22+21 12.5+31 74.5+1 49+1 41+1 91.4+2I
20 154+1 18 +41 70+1 65+1 6.4 +21 95+1
TaBLE 2: Input and output of results part.
Inputs Outputs
DMUs Improvement of operational Customer acquisition  Customer satisfaction Profit margin Returns to investment
processes (%) rate (%) (%) (%) (%)
1 42+]1 20+21 41+]1 6.5+61 6.9+4I
2 5541 23.1+21 314+ 5.8+41 5.6+ 31
3 7.6+ 31 204+1 471 49+61 7.5+31
4 33 22.6+21 46.4+1 6.4+71 7.9+31
5 5.4+2] 17.9+31 29+1 48+41 4+21
6 45 28.1+21 432 7.5+61 8.9+2I
7 7.2 20.9 36.8+1 44+31 6.1+2I
8 5441 18.7 + 21 39.4+21 5.7 +21 3.8+3]
9 6.5+1 28.4+21 543+]1 5.4+3] 5.7+21
10 58+1 17.6+21 42+21 6.1+8I 7.5+31
11 62+1 23 +41 36.6+ 61 59431 8.1+2I
12 46 194+1 51.3+21 5.8+ 31 62+1
13 59+1 24 +2] 492 6.2+31 5.1+41
14 7.1 46.2+21 57.5 45+]1 35+1
15 6 27241 226 8+1 6.8+ 31
16 35431 224+21 475+1 5.8+21 7.4+ 31
17 51+1 17.3+1 453+1 5.6+1 4.6+2I
18 44431 217 +1 34.6+21 6.6+1 71+21
19 46+1 28.4+1 48.9+41 6.9+41 7+1
20 4421 18+ 21 522421 55+1 6.3+3I

enablers. Meanwhile, the behaviour of the DMU18
is interesting.

(iv) Before calculations, it was anticipated that in-
efficiencies in enablers sector would have the
most ineffective outcomes in the results sector.
These contents are seen in DMUs 8, 9, 13, 14, 17,
and 18 with the efficiency level in the field of
results, lower than the efficiency in the enablers
sector.

To validate the proposed efficiencies, the proposed ef-
ficiencies are compared with the efficiencies of crisp CCR
(model (3), or in our model when I (1) = 0) that are given in
Figure 5. In this figure, the efficiencies of DMUs are found to
be smaller by our model compared to crisp CCR. It is in-
teresting that DMU11 and DMU18 are efficient in crisp
DEA, but they are inefficient using a new model. Therefore,
the new neutrosophic DEA is more realistic rather than crisp
CCR. Also, crisp CCR and the new neutrosophic DEA may
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Step 1. Consider the DEA model that the inputs and outputs of each DMU are neutrosophic numbers.
Step 2. Using NN function, transform model (2) into the following model:

9; = max f, (1),

s.t:

gy =1,

fj(u,I)—gj(v,I)SO, j=1...,n
T

u=[u,...,uy,

V= [vl,,..,um]TZO,

where f;(u,1) =¥, u,(y,; +y,Dand g; (v, I) = X, v; (x;; + ;1)

Step 3. Consider IC [inf (I), sup (I)] and using de-neutrosophication model of [77]; for A € [0,1], set I (A) = (1 — A)inf (I) + Asup (I);
then, for I (1) € [0,1], transform model (3) into the following model:

9; = max f, (u, 1 (1))

s.t:

9, I =1,

fiwI)-g;(n,IM)<0, j=1,....n,

u=[u,... ,uS]T,

y= [vl,..,,um]TZO.
Step 4. Obtain the corresponding optimal solutions of uand v for I (1) = 0,0.5, 1 that are considered as the minimum, the moderate,
and the maximum indeterminacy, respectively, in the DEA problem (3).

ALGORITHM 1

TaBLE 3: The relative efficiency of DMUs for enablers’ stage.

A
DMUs 1=0 1=05 A=
DMU1 1.0000 1.0000 1.0000
DMU2 0.8936 0.9140 0.9370
DMU3 0.9400 0.9534 0.9522
DMU4 1.0000 1.0000 1.0000
DMUS5 0.9115 0.9196 0.9445
DMU6 1.0000 1.0000 1.0000
DMU7 0.8624 0.8987 0.9356
DMUS 0.8496 0.9072 0.9614
DMU9 0.7560 0.8137 0.8345
DMU10 1.0000 1.0000 1.0000
DMUI11 1.0000 1.0000 0.9476
DMUI2 0.9773 0.9622 0.9487
DMU13 0.8480 0.8984 0.9344
DMU14 0.6766 0.6831 0.6852
DMU15 1.0000 1.0000 1.0000
DMU16 0.9156 0.8867 0.9050
DMU17 0.9788 0.9090 0.9716
DMU18 1.0000 0.9983 0.9556
DMU19 0.8238 0.8060 0.7681
DMU20 0.9569 0.9622 0.9659
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TaBLE 4: The relative efficiency of DMUs for results’ stage.

DMUs A
A=0 A=0.5 A=
DMU1 1.0000 1.0000 1.0000
DMU2 0.8103 0.8477 0.8657
DMU3 0.8571 0.8898 0.9065
DMU4 1.0000 1.0000 1.0000
DMU5 0.8361 0.8403 0.8569
DMU6 1.0000 1.0000 1.0000
DMU7 0.7932 0.8100 0.7930
DMUS8 0.9102 0.6600 0.6595
DMU9 0.5880 0.5434 0.5151
DMUI10 1.0000 1.0000 1.0000
DMUI11 1.0000 0.9078 0.7900
DMUI12 0.9062 0.7606 0.7104
DMU13 0.7856 0.6722 0.7220
DMU14 0.3990 0.3264 0.2853
DMU15 1.0000 1.0000 1.0000
DMUI16 0.9337 0.8832 0.8368
DMU17 0.9512 0.6678 0.6853
DMU18 1.0000 0.9133 0.8574
DMUI19 0.7699 0.7066 0.6278
DMU20 0.9569 0.9080 0.8919
1 T
5 0.8 _
8
“i 206 _
S
g 204 4
= =
021 -
0
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FiGure 5: The relative efficiency of DMUs for enablers and results stages.
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give the same efficiencies for certain data. However, crisp
CCR model does not deal with the uncertain, indeterminate,
and incongruous information. Therefore, the new model is
more efficient rather than crisp CCR.

6. Conclusions

Specitying the various performance evaluation models and
the appropriate utilization of these models in organizations
is a crucial issue. In this paper, we proposed a new model of
DEA in neutrosophic number environment and combined
this model with BSC to rank different decision-making units.
Finally, the proposed method is illustrated by an empirical
study involving 20 banking branches. The results provide a
more realistic framework and consider various aspects of
indeterminate information. Moreover, although the new
model and results presented here demonstrate the effec-
tiveness of our approach, it could also be considered in other
types of DEA models such as network DEA and their ap-
plications to banks, supplier selection, police stations,
hospitals, tax offices, prisons, schools, and universities.
However, developing data envelopment analysis models
based on the plithogenic set, which is a generalization of
neutrosophic set, and other perspectives of neutrosophic set
is another area for further studies. As future researches, we
intend to study these problems.
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The theory of complex dual type-2 hesitant fuzzy sets (CDT-2HFSs) is a blend of two different modifications of fuzzy sets (FSs),
called complex fuzzy sets (CFSs) and dual type-2 hesitant fuzzy sets (DT-2HFSs). CDT-2HES is a proficient technique to cope with
unpredictable and awkward information in realistic decision problems. CDT-2HFS is composed of the grade of truth and the
grade of falsity, and the grade of truth (also for grade of falsity) contains the grade of primary and secondary parts in the form of
polar coordinates with the condition that the sum of the maximum of the real part (also for the imaginary part) of the primary
grade (also for the secondary grade) cannot exceed the unit interval [0, 1]. The aims of this manuscript are to discover the novel
approach of CDT-2HFS and its operational laws. These operational laws are also justified with the help of an example. Ad-
ditionally, based on a novel CDT-2HEFS, we explored the correlation coefficient (CC) and entropy measures (EMs), and their
special cases are also discussed. TOPSIS method based on CDT-2HFS is also explored. Then, we applied our explored measures
based on CDT-2HFSs in the environment of the TOPSIS method, medical diagnosis, pattern recognition, and clustering al-
gorithm to cope with the awkward and complicated information in realistic decision issues. Finally, some numerical examples are
given to examine the proficiency and validity of the explored measures. Comparative analysis, advantages, and graphical in-
terpretation of the explored measures with some other existing measures are also discussed.

1. Introduction

The present decision-making is one of the genuinely basic
movements in individuals’ everyday life, the reason for
existing of which is to rank the limited arrangement of
options regarding that they are so solid to the choice
maker(s). Multiattribute decision-making (MADM) is a part
of decision-making and is viewed as an intellectual-based
human movement. People unavoidably are confronted with
different decision-making issues, which include numerous

fields [1-3]. The idea of the fuzzy set (FS) proposed by Zadeh
[4] modified the method of measuring the vulnerability/
fuzziness. Before the development of the FS hypothesis
by Zadeh [4], the likelihood hypothesis was the customary
instrument to quantify the vulnerability. Be that as it may,
to gauge the vulnerability utilizing likelihood, it ought to
have been communicated as exact numbers which are its
primary constraints. The obscure terms, for instance,
“without doubt” and “marginally,” could not be measured
utilizing the likelihood hypothesis. To gauge the
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vulnerability/fuzziness related to such unclear terms, the FS
hypothesis has ended up being a successful apparatus. In the
FS hypothesis, every component relating to a specific uni-
verse of talk has been appointed an enrollment degree lying
somewhere in the range of 0 and 1, which indicates its level
of belongingness to the set being referred to called FS. By the
goodness of its reasonableness in genuine issues, FSs in-
creased a lot of prevalence with analysts around the world.
Endeavors were made to additionally sum up the idea by
numerous creators to make it progressively versatile for
viable issues.

Notwithstanding, in certain issues including etymolog-
ical factors, for example, exceptionally low, low, medium,
high, and extremely high, the assurance of the participation
capacity may not be simple; that is, in an issue, dubious
participation capacity might be experienced. To survive such
circumstances, the idea of type-2 FSs (T-2FSs) was presented
by Zadeh [5], as a distinction from common FSs. Many
researchers have utilized T-2FSs in different areas [6-8]. The
tale structures, which are speculations and expansions of the
FSs, have been proposed by numerous analysts since Zadeh
presented the FSs. The fundamental motivation behind these
structures is to take out vulnerabilities and to guarantee that
specialists settle on choices in a way that is without blunder
or with not many mistakes. One of these structures is the
idea of hesitant FS (HFS) characterized by Torra [9]. Feng
et al. [10] presented the type-2 hesitant fuzzy set (T-2HFS).
The idea of dual HFS (DHFS) was first characterized as
a speculation of the HFSs characterized by Zhu et al. [11]. A
DHEFS is distinguished as two distinct capacities called en-
rollment and nonmembership capacity. This structure
permits the leader to make more adaptable, precise, and
reasonable remarks about the components under the re-
luctant zone. In this manner, it limits the blunder edge by
giving more solid outcomes than the current structures, as
HFSs and interval-valued HFSs. Alcantud et al. [12] char-
acterized the idea of the double broadened HFSs and applied
it to a decision-making issue under dual extended hesitant
fuzzy data.

As for the above existing examinations, it has been
dissected that they have researched the decision-making
issues under the FS, IFS, or its speculations, which are just
ready to manage the vulnerability and dubiousness existing
in the information. These models cannot speak to the
fractional obliviousness of the information and its changes at
a given period of time. Be that as it may, in complex in-
formational collections, vulnerability and ambiguity in the
information happen simultaneously with changes to the
stage (periodicity) of the information. Instances of complex
informational indexes incorporate a lot of information that
is created from clinical research, just as government data-
bases for biometric and facial acknowledgments, sound, and
pictures, all of which may contain a lot of deficient, dubious,
and ambiguous data. To deal with these kinds of issues, the
theory of complex FS (CFS) was discovered by Ramot et al.
[13]. CFS contains the grade of membership in the form of
a complex number belonging to a unit disc in a complex
plane. Various scholars utilized CFS in different fields
[14-16].
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Correlation examination shows a direct connection
between two sets and it has a very significant spot for dy-
namics. In this way, numerous researchers in various fields
have considered the relationship coefficients. Additionally,
the FS and its speculations have a significant job in dy-
namics, so CCs have drawn in the consideration of scientists
examining the FS and its speculations. For instance, Chiang
and Lin [17] and Chaudhuri and Bhattacharya [18] exam-
ined the correlation between two FSs. Gerstenkorn and
Manko [19] worked the relationship and CC of the intui-
tionistic FSs (IFSs). The entropy of FSs is a proportion of
fuzziness between FSs. De Luca and Termini [20] first
presented the aphorism development for the entropy of FSs
concerning Shannon’s likelihood entropy. Yager [21]
characterized fuzziness proportions of FSs as far as a need of
differentiation between the FS and its nullification based on
Lp standard. Kosko [22] gave a proportion of fuzziness
between FSs utilizing a proportion of separation between the
FS and its closest set to the separation between the FS and its
farthest set. Xuecheng [23] gave some aphorism definitions
of entropy and furthermore characterized a o-entropy. Pal
and Pal [24] proposed exponential entropy. Meanwhile Fan
and Ma [25] gave some new fuzzy entropy equations. The
technique for establishing order preference by similarity to
the ideal solution (TOPSIS) technique as a strategy for
building up request inclination by likeness to the perfect
arrangement, started by Hwang and Yoon [26], is one of the
best and beneficial methods for decision-making. The basic
idea of TOPSIS strategy is to pick the elective that has the
briefest good way from the positive perfect arrangement
(PIS) and the greatest good way from the negative perfect
arrangement (NIS). There exists a tremendous writing in-
cluding study and utilization of TOPSIS hypothesis in a wide
scope of MCDM just as multicriteria group decision-making
(MCGDM) issues [27-29].

Dual type-2 hesitant fuzzy set contains the grade of truth
and the grade of falsity in the form of the subset of the unit
interval with the condition that the sum of the maximum of the
truth grade and the maximum of the falsity grade cannot
exceed the unit interval. The complex dual type-2 hesitant fuzzy
set is a generalization of the dual type-2 hesitant fuzzy set, in
which the amplitude term provides the extent of belonging of
an object, while the phase term describes the periodicity. These
phase terms distinguish the complex dual type-2 hesitant fuzzy
set from the traditional dual type-2 hesitant fuzzy set theories.
In dual type-2 hesitant fuzzy set theory, the data are managed
with the compensation of only the degree of belonging, while
the part of periodicity is completely ignored. Hence, this may
result in the loss of information during the decision-making
processes in some certain cases. To further illustrate the concept
of phase terms, we take an example. Suppose that a person
wants to purchase a car under crucial factors such as its model
and its production date. Since the model of each car moves with
the evolution of the production dates, to make a selection or
decision regarding choosing the optimal car is a decision-
making process taking these two factors into account simul-
taneously. Moreover, it is quite obvious that such types of
problems cannot be modeled accurately with traditional the-
ories. However, complex dual type-2 hesitant fuzzy set theory is
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well suited for such classes of problems, where the amplitude
terms may be used to provide a decision about the model of
a car, while the phase term concerns its production dates.
Henceforth, a complex dual type-2 hesitant fuzzy set is a more
generalized continuation of the existing theories, such as type-2
hesitant fuzzy sets and dual type-2 hesitant fuzzy sets.

When a decision-maker gives (0.4¢27(03),(,3¢/27(02))
and (0.41e27(31 0,31¢27(02D) for the grade of complex-
valued supporting and the grade of complex-valued sup-
porting against in the form of primary and secondary
information with the condition that the sum of the maxi-
mum of the real part (also for the imaginary part) of the
complex-valued supporting (also for supporting against)
grade for primary (also for secondary) information cannot
exceed the unit interval, There exist notions like FSs, T-2FSs,
HFESs, DHESs, CESs, and DT-2HFSs. Handling such kind of
issues is very difficult, but when a decision-maker provides
such kind of information in the form of the finite subset of
unit interval, then it is very complicated for a decision-
maker to handle it. For coping with such kind of issues, in
this manuscript, the novel approach of CDT-2HFS, which is
a mixture of two different modifications of FS, that is, CFS
and DT-2HFS, is explored. CDT-2HFS is a proficient
technique to cope with unpredictable and awkward in-
formation in realistic decision problems. CDT-2HFS com-
poses the grade of truth and the grade of falsity, and the
grade truth (also for falsity grade) contains the grade of
primary and secondary parts in the form of polar co-
ordinates with the condition that the sum of the maximum
of the real part (also for the imaginary part) of the primary
grade (also for the secondary grade) cannot exceed the unit
interval. The aims of this manuscript are to discover the
novel approach of CDT-2HFS and its operational laws.
These operational laws are also justified with the help of an
example. Additionally, based on a novel CDT-2HFS, we
explored the correlation coeflicient (CC) and entropy
measures (EMs), and their special cases are discussed.
TOPSIS method based on CDT-2HFS is also explored. Then,
we applied our explored measures based on CDT-2HFSs in
the environment of the TOPSIS method, medical diagnosis,
pattern recognition, and clustering algorithm to cope with
awkward and complicated information in realistic decision
issues. Finally, four numerical examples are resolved to
examine the proficiency and validity of the explored mea-
sures. Comparative analysis, advantages, and graphical in-
terpretation of the explored measures with some other
existing measures are also discussed.

The aims of this manuscript are summarized as follows:
in Section 2, we review some basic notions like FSs, T-2FSs,
HESs, DHEFSs, CFSs, and their basic laws. In Section 3, the
theory of CDT-2HFS, which is a mixture of two different
modifications of FS, that is, CFS and DT-2HFS, is presented.
CDT-2HFS is a proficient technique to cope with un-
predictable and awkward information in realistic decision
problems. CDT-2HFS is composed of the grade of truth and
the grade of falsity, and the grade truth (also for falsity grade)
contains the grade of primary and secondary parts in the
form of polar coordinates with the condition that the sum of
the maximum of the real part (also for the imaginary part) of

the primary grade (also for secondary grade) cannot exceed
the unit interval. The aims of this manuscript were to dis-
cover the novel approach of CDT-2HFS and its operational
laws. These operational laws are also justified with the help of
examples. In Sections 4 and 5, based on a novel CDT-2HFS,
we explored the correlation coefficient (CC) and entropy
measures (EMs), and their special cases are discussed. In
Section 6, TOPSIS method based on CDT-2HES is also
explored. Then, we applied our explored measures based on
CDT-2HFSs in the environment of TOPSIS method,
medical diagnosis, pattern recognition, and clustering al-
gorithm to cope with awkward and complicated information
in realistic decision issues. Finally, four numerical examples
are resolved to examine the proficiency and validity of the
explored measures. Comparative analysis, advantages, and
graphical interpretation of the explored measures with some
other existing measures are also discussed. The conclusion of
this paper is discussed in Section 7.

2. Preliminaries

Basic notions of FSs, T-2FSs, HESs, DHFSs, CESs, and their
operational laws are briefly reviewed in this study. Throughout
this manuscript, the symbol 2y, denotes the fixed set.

Definition 1 (see [4]). A FS is an object of the form
Qs ={(% Mg, (%): X € Lyn)s (1)

where M, = represents the grade of supporting with the
condition that 0< M, <1.

Definition 2 (see [5]). A T-2FS is an object of the form

Qr_sps :{((%,E'),M@HFS (2”?,)): VX € Ly X' € Jz€[0, 1]},

(2)

where M, (%,%') represents the grade of type-2 sup-
. < 172FS g ~ ~I
porting with the condition that 0< M, (%,X)<1.

Definition 3 (see [9]). A HES is an object of the form
Qpps ={(% Mg, (R): X € Lyl (3)

where M, represents the grade of supporting in the form
of the subset of the unit interval, with the condition that
0<Max (Mg )<1, whenever Mg, <[0,1].

Definition 4 (see [11]). A DHES is an object of the form
@DHFS = {(;C’ M@mu-'s (55)’ N@DHFS (yc)) x € ‘(:Z‘UNI}’ (4)

where M, and N, represent the grade of supporting
DHFS DHEFS, . . o e
and the grade of supporting against with the condition that
0<max(Mgz )+max(Ng )<1, whenever
DHFS DHFS
M@DHFS’ NQDHFSQ [0, 1].

Additionally, we defined some operational laws based on
DHEFSs. For any two DHEFSs Fs] = 6@(2 y
@)ilN%fim (%)) and @pppsy = (MG (), N5 (%)),
we have
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_ MM ) i (6D =y A (=
@DHF571 U @DHF572 - (ma ( @DHFS 1 ( ) @DHFS 2 (x))’ mln(N@DHF§ 1 (x), N@DHFS—Z (x)))) (5)
Qppps 1 N Q@ =(min(Mg" (%), Mg (%), max(Ng (%),Ng (%))
DHFS-1 DHFS-2 @DHFS 1 QDHFS 2 > @DHFS 1 QDHFS*Z :
Definition 5 (see [13]). A CFS is an object of the form where Mg (%) = (M@cmnkp . (DE)- e’ Mecurane- O
~ ~ ~ 6(]) i2m (M) () _
@CFS = {(x’ M@cys (X))I X € ‘%‘UNI}’ (6) @(D[HI{P s ( ) QLDTHRP ¥ ) J 12,3, I’l} and
, ~ _ (k) =y im(Me® ) 6(k)
where Mg =Mg_ (%)e > Macerr ™) represents the grade N ey (%) = {(N NN CO R B A
N . . I . )(k) o~
of complex-valued supporting with the condition that (%) - elzn(M(@cu'rHRP—S (x))): k=1,2,3,...,m) represent the

0< MQCFRP’ M@CFIP <L

3. Complex Dual Type-2 Hesitant Fuzzy Sets

Based on the existing drawbacks [30], in this study, we
discovered the new theory of CDT-2HFSs and their oper-
ational laws. The presented operational laws are also justified
with the help of some examples.

Definition 6. A CDT-2HFS is an object of the form

@CDTH = {(3’2’ (M@CDTH (55)’ N@CDTH OE))) X e e£?’/.UNI}'
(7)

grade of complex-valued supporting and the grade of
complex-valued supporting against in the form of complex

type-2 hesitant fuzzy elements (CT-2HFEs) with the fol-

(C];THRPfP) + maXNg(c};)THRH -

NO®
@CDTHRP P) < 1 0 < max
)<1 and 0< max(M@CDTHIP b)

)<1. The complex dual type-2 hesitant
fuzzy set is expressed by

lowing conditions: 0<max (M,

6(j)
1’06(') Qcprire- P)+
(Mg’

N6(k)

@CDTHRP S

< max(M max (N

) + max(

; 0] 5()) ~
(Mg(") (%) - elzﬂ(MQCDTHxP P( )) Mg(") (%) - EIZH(MQC’DTHIPfs (x))))
CDTHRP-P CDTHRP-S
Qcpra = @ B " ~ ., Hk=1,23,...,nm (8)
( g(cl;)THRP_P (%) . 61271(NQCDTHIP—P (x))) ZE‘I;)THRP—S (?c)elzn(N@cm'mp—s (X)) )
Additionally, fi ional 1 6(1) A
dditionally, we defined some operational laws based on ( (MED (3) - M 1<")),M6(1) @ . ¥
CDT-2HFEs. For any two CDT-2HFEs @CDTH—l = Qcprire-p-2 QcprHrp-s-1
MO i2 6(1) 6(1 ~ MOW No® L i NOD
( ( Q(CDTHRP P-1 (X) el g (MQ(CDTHIP P-1 (x))) M@i[))”r]-mp_s_l (x) ’ ( Qcprhip-s-1 ( ))) ( QcprHrRe-P-2 (x) ¢ ( Qcpraip-p-2 (x))’
ian 6(1 6(1) —y i2m(NgD ) 6(1) (%) - 2" Maomp-s-2 DY), we have
€ (MQCDTHIP 5-1 ), (N@CDTHRP—P—l (%)-e o Qeorire-s-2
6(1) 127r(M@ ) _
QcprHrp-s-1 ( )-e oS ) and @CDTH—Z -
; 5(1) &)
max(Mg(l) (%), Mg(l) (?c))elh(max( acorrp—p ) QCDTHIP P ))
CDTHRP-P-1 CDTHRP-P-2
. 5(1) ~ ’
max(Mg(l) (%), Mg(l) (52))elzn(max(M’QCD'rHlpfs 2 (.M fcmmp 5 z( )))
CDTHRP-S-1 CDTHRP-$-2
Qcpri-1 Y Qepri-2 = 7 s . o )
mln(N@ (%), Ng(l) (fc))elzn(mm(N@cpTHIP py OOV @cm-np 52 ¢ ))
CDTHRP-P-1 CDTHRP-5-2
. 5(1)
min(Ng(l (x) @ (E)>612ﬂ(mm(N@CDTHRP—S 2 CON ((‘DIH[P - 2 ))
CDTHRP-$-1 CDTHRP-S-2
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. 6(1) ) A0 “
min(M6(1) (TC) Mﬁ(l) (}?’))elzn(mln(MaClDTHlePfl (x)’MCfchTHIPP—z( )))
QcprHrp-p-1 > “" Qeprare-p-2 >
; W ~ 260 ~ ’
mln(Mg(l) (%), Mg(l)ﬂ (}))elzn(mm(MGQCIDTHIPfsq (x)’Mg'chTmpfsfz (x)))
@CDTH_I n @CDTH_Z — CDTHRP-S-1 CDTHRP-S§-2 . B o B L (10)
6 ~ 9] ~ i2 N (x),N (x)
1’1’121)((I\]@(CL)T]_W\}HL1 (X), N@E:L)THRP}LZ (x))el ﬂ(max( Gcprap-p-1 " Gcprap-po2 )),
61 — 61 =) 127 max( N! (x),N8W e
maX(N Ocomimp_sii (%), N Cenrriess ( x))e ( ( @CDTHIP-5-1 GcpTHIP-5-2 ))
Example 1. For any two CDT-2HFSs, all their entries in the
form of complex numbers are stated as follows:
{(0.161'27:(0.2), 0.2¢127(03) ) (0 262703 () 352700, 4)) (0.3ei2"(0'4>, 0.4ei2n(0.5))},
Qcpri-1 = . . . . >
{(0.01e'2”(0‘02), 0.02e'2"(0'03)), (0_0361271(0.04)’ 0_05612;1(0.06))}
, . . . . 4 (11)
{(0.7612n(0.6)’ 0.661271(0'5)), (0.66127[(0.5)’ 0.5612n(0,4))) (0.561271(0'4), 0'461211(0.3))})
Qcpru1 = . . ) )
{(0.0761271(0'08), 0.0961271(0.01))’ (0.0161271(0,03)) 0.22612n(0.03))}
Then, by using equations (9) and (10), we get
{(0.761'271(0,6)’ 0‘6ei2n(0.5)), (0.6ei2”(0‘5), O.Sei2"(0‘4)), (O'Sei2n(0.4)) 0.4ei2"(0‘5))},
Qcpru-1Y Qcpras = ‘ ,
{(0.016127[(0‘02)’ 0.02@1271(0‘01)), (0'0161271(0.03), 0'05612n(0403))}
(12)

{(0 lei271 (0.2), 0.26i2ﬂ(0'3)), (0.261.271(0‘3), 0.361'271(0.4))’ (0'3ei2n(0.4)) 0.461'271(0‘3) )})

Ocori-1 N Qcpr-z = . . . .
{(0.0761271(0'08), 0.0961271(0.03))’ (0.03612” (0404), 0.226127!(0.06))}

The explored notions, which are stated in the form of  Definition 7. For any two CDT-2HFSs, @CDTH 1=

equations (7), (9), and (10), are more proficient and more 60)) o\ (MO )
modified than the existing drawbacks; for instance, if we {( (M@cumap N CORCE Mg CQ‘CDTHRP o (%)
choose the imaginary part of equations (7), (9), and (10) to i2n 6(j 2m(NOW
> > e M N e @CDTHIP-P-
be zero, then equations (7), (9), and (10) convert it for DT- ~ ( @cnmp s (KD, ( QCGD(L)HRP o () 1
2HES [30]. (fi))’ M@(C’]())THRPfPfl (fl) : QIZH(MQCDTHH’ $- 1( )))) , k=1,2,3,
. _ o mand G = {0 ()
4. Correlation Coefficient for Complex Dual o o @CDT“R"G-(F_)-Z '
. (j . J
Type-2 Hesitant Fuzzy Sets ¢ Malpran 2 G (&) Mo
- 6 (k)
The aim of this study is to present the novel correlation,  (X;))), (Ng(c];)T o (X2 e WNecomw »o (X, ), N @cmm .

correlation coefficient (CC), maximum-based CC (MCC), o\ (NS G ~
weighted CC (WCC), and maximum-based WCC (MWCC). (k) (%)) - e comar-s2 =), ok =1,2,3,.., l},.’ ’Ml},}’
The special cases of the explored measures are also explored.  the correlation is of the form



j, k = 1, 2, 3, R (S m} and @CDTH—Z {( (M

6(j)

@CDTHRILPfZ

(%) -

CCDTHF*CC (C{ZCDTHfl’ QCDTH*Z) =

lation coefficient is of the form

CCDTHF*E (@CDTHJ’ @CDTH&)

(1/2)
CCDTHF*C (@CDTH%’ @CDTH—I)

(1/72)2?;1(M

- CCDTHF*: (@CDTHf

(1/2)
1> QCDTH*Z)
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T
LS00 =\ 00 = 5() =\ 00 -
'-Z 4 l< @CDTHRl’fpfl (xi)M@C[)THRPff)72(xi) + MGCDTHRP*S*I (x )M@LT)TH](P - Z(xl))+
=
Xi
s
1 & ) . )
— (MZ.(J) (%i)Mg‘” (%) + MY (;ci)Mg(” (xi))+
l J71 CDTHRP-P-1 CDTHIP-P-2 ‘CDTHIP-S-1 CDTHIP-S-2
1 & X
CeprHE-c (@CDTH—I’ @CDTH—Z) = n Z _ (13)
i=1 L
1 &
)| G C) LN ) R O L S )
l,__ = CDTHRP-P-1 ‘CDTHRP-P-2 ‘CDTHRP-P-1 CDTHRP-P-2
X
T
1 &
(e () () (e (5)
CDTHRP-P-1 CDTHRP-P-2 CDTHRP-S-1 CDTHRP-S-2
s
Definition 8. For any two CDT-2HFSs, Qcpry; = e'z”(M@cmmp by D) 600 (%) -2 (MO (%))
M6(j) (%) i2m (M6(j) (%) 6(j) > Qeprarp-s2 N QcprHip-s-2 i
Qoprmrp p1 Vi) "€ Qcprip-p1 NP Qcprare-s-1 (N (%) i2m (N ?SCDTH“, by (%)) N6(k) (%)
MO ) (N NOW (%) QCDTHRP pa \Ki) € ’ @corip-s2 X
pe—— i) _
Qcprirp-p-1 V7F elzn(N@cm‘HIP s 2( )))) ]’ -1,2,3,...,L, ,-'«l..}, the corre-
oW ) 7r6(k) .\ 2n(NOW ) %
Gcprap-p-1 N (x))-e Gcpramp-s-1 -7 ));
QcorHRp-5-1 !

6(j) < 6(j) < Mo
Qcprre-p-1 (xi)M@CDTHRP—P—Z(xi> rCDTHRP s |< ’) Ocprirp-s- 7( ’))+
1L z%' MY FANY ol %, % )Mo %))+
%, )<=l Qeprip-p-1 \ Ceprip-p2 \ " @cmnu s\ qumn s2\ "1
n
T, i
L
i 2 6 (k) < A0 (k) z 6(k) N =
T 1 6 (k) 6(k
. (1”},)2";1<NQCDTHW P 1( ) Ocpram-p z( ’) Oc[m-m: P 1( ’) Qeprip-r. >< ’))
- (1/2)
MO 2 (MO 2
<1/l~ )ZJ 1(( Qcorire-p- 1( )) +( Ceprire- 51 +
VLS (M8 (%)) +(MEY )
X, )~ Ocprrp-p-1 \™ Qcpraip-s- 1
n
Yint B X
v zﬁ (NS () +(NSW F)
X, )&=t Ocorrme-p-1 \ "1 Qeprire-s- 1 ’
)5 (N59,, (R (V5 y
X; Qcpramp-p-1 \" QcprHRe-s- 1 '
~ (1/2)
Ty 6()) <)) 2
(1/ l;;,>zj:1<(M e (50)) + (M0 (7))
L) ((M89 (@) (M2 (&)))+
%, )&=t Qcorrp-p2 \ " Qeprie-s- z '
n
5, i
L
VL)g (NS (%)) +(NS© Y )+
X, )&=l Qcprarp-p-2 \" 1 QcpriRe-s- >
= \on 6(k) . 6(j) 2
(V)2 s( NE (5 + (Ve (5))

(14)
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Proposition 1. For any two CDT-2HFSs, QCDTH-1 and
QCDTH-2, the CC among CDT-2HFSs satisfies the following
axioms:

(1) 0< Ceprup-cc (Qepra-1> Cepra-2) <1

(2) Ceprar-ce (Qepra-1>

Qcpru-2) = 19Qcpry—1 =
Qcpri-2

!

=

(2 60))
@CDTHR}LP%

(m

6 (k)
QcorHRp-P-1

o

6(j
M S
QcprHRP-P-1

%, 6(j)

—

()
(5)m
(=)
(%)
()

T

.
1l
—_

200

6(j)
Qcpramp-po1

6(j)

AT

-~
Il
—_

CCDTHF—C (@CDTH—I’ @CDTH—Z) =

- 6(k)
@CDT

M T
—
Z,

Xi

T

=~
Il

—_

l

6(k)

(‘?CDTHIILI’*I

fi 6 (k

g

kel

2T

S

T =

—
=
-
Il
—_

=

=

S (2 60)
@CDTHRIL}LI

+

xr‘li"rl"_‘

(M

6(j)
@CDTHI}LI’LI

(m

6 (k)
Qcprare-p-1

(n

0 (k)
@CDTHRPfPfl

-
1l
P

®

T =

=

)m

~—
®
[
1l
—

T

=

6 (/)
Qcoramp-p-1

+

L e
1l

-

=

i

(=

—
Z

v
(
v
(

P
Il

T [

6(k)

(‘QCDTHRPJLI

NgER

+

|l

Xn

=~

=

i

(=

T =

—
Z

=~

—_

—
®

L

L=
X,

6(k) <
Qcprirp-p-1 \ "1

i

By using the Cauchy-Schwarz inequality, (x; ¥, + x, ¥,
ot X,y (XX (P R+ YR, we
have

@CUI 'HRP-P-2

@CDTHIPfsz

QCDTHIP*P*Z

6(j)
QcnrHRP-P-2

ar

6(j)

@CDTHI}L}LZ

ar

6 (k)
Qcprare-p-2

N

G (k)
@CDTHRPfPfZ

N

(3) CCDTHF—CC (@CDTH—l’ C(ECDTH—Z) =
CCDTHF—CC (QCDTH—Z’ QCDTH—l)

Proof. We prove the three above conditions by using
equation (14). By using the inequality, it is clear that
0< Ceprap-ce (Qepri-1> @eprh-z); then we only prove that
Ceprar-ce (@eprh-1> @cpria) < 1. For this, we choose that

6(j)

@Cl)‘l‘HRl’fol

6(j)

@CDTHI{PfoZ

Xi

() -1
() 1
() 4
(2)
(%)
(5)+u
(7)+u
(%) u
Jon
(%)
Jon
(%)

Xi

(o)
or
(o)
(o)

(5 )m
or
()

@Cl)‘l‘Hll’foZ

6 (k)
)N@CDTHRPS—Z
(&)

N
(&)

(
(
(
(

)
)
)
)
(

6(j)
Qcpramp-s-1

6(3)
aCDTHIP*S*Z

fi X

6 (k)
QcprHre-p-1

% )No™ %
HRP-P-2 ! Qcprarp-s-2\ 7

) 6 (k)

@CDTHULPfl

6 (k) %
Qcpriip-s-—2 \ *1

6(5)

@CDTHRPfsfl

1

6(j)
Qcprare-s-2

)

(=)
(<))

(=)
()
(<))
)
(

6(j)
@CDTHRPfPfZ

6(j)
QcprHRe-5-1

6(j)

X,
@CDTHRPfoZ

n

(15)

6(j)
@CD'I HIP-$-1

6(j)
Qcprap-p-2

(

6 (/)
Qcpramp-s-1

—~ 6(j) —~
X X
n Qcpramp-s2 \ "1

X1

(s

6 (k)
QcprHRrp-p-1

6 (k)
Qcprare-p-2

(

6 (k)

@CI)THRPLP*I

6 (k) <
Qcprare-s-2\ "1

)

£ 6 (k)

@CDTHRPfPfl

0 (k)
@CDTHRPfsz

(s

(=

+

6 (k)
Qcprire-p-2

6 (k)
Qcprre-p-1

6 (k) <
Qcprirp-s-2 \ "1

)
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s
1 &/ 60 2 - 6(j) 2
(ot () om0 ()

T
L (600 2 - 5()) 2 -
..+? ZI(M@CDTHRP—PA (xn)+M@CDTHKP—S—l (x“>>
£

T
1 <60 j
in _ 6(j12 -
T Z(M{QCDTHIPfPfl (xl ) + MQCDTHIP*S’I (xl >>+
L )
X,

1 6(j)2 - 6(j)2 -
e Y (M (%) el (=)
%

(CCDTHch (@CDTHf 1 @CDTHfz))Z =

1 G/ 6002 - 6(k)2 ~

'i_ k (NQCD]’HRP,[J,| <xl> + Ng(‘.DTHRP*P*I <xl))+
_ =1
X

1 S o2 - 6(k)2 .
. +? ;(N@CDTHRP P A(x”> + N@cDTHkP P n(x”))
k=1

[
1 &
=Y (nee, . (5) v, (=)

T
1 O/ 6002 _ 6 (k)2 .
et f ]{z(N@chHuqu (x") s N@cnmnum <x"))
=1

Xn
- (16)
L
1 & ; _ i N
£ 3o ) i )
‘CDTHRP-P-2 "CDTHRP-S-2
=
*1
L
L S, 6002 ~ 602 _
a8 Z(M@cDTHRP—P—l (x”> X M@cDTHRP—s—I <X"))
I 5=
X
T
1 i p 2
23t o) s ()
£ CDTHIP-P-1 CDTHIP-5-1
L =
X1
T
LS 5002 - 62 -
o +~l~_ ZI(M@r.Drmpf}u (x“> + M@cmm}tsq (x"))
_ s
Xp
. = Coprrr—c (Qcori-i> @cpriiat)-Coprir—c (Ceprias Cepras)-
s

1 <560k . 6(k2 -
= (N@CDTHRP*P*I (xl ) + N@CDTHRP*P*I (xl ))+
l; k=1

L
1 &/ o602 - 6(k)2 -
. +'l~_ Z(N@CDTHRM4 (x”) + NQCDTIIRP—P—! (x"’))
e
T

1 5 6(k)2 . 6(k)2 ~
'i_ k (N@CDTHIPfPfl (xl ) + NQCDTHIP*P’I <xl>>+
k=1

X,

LS n6002 . 6(k2 -
ot ? kz: (N@cDTHIP—P—l (x”) + N@cDTHIP—P—l (x" ) )
o~ =1

X,

n
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Ceprre  (Qcpri-1> @epri-2) < (Coprar- ¢ (@epra- 10
Qcprit- )" (Ceprar-c (Qepi-2» @eprig-2) "5 thus
0< Ceprurce (Ceprh-1> Cepra-2) < 1. Further, we prove the
second part by using (13)fd14. By hypothesis, it is given that

@cpru-1 = @eprro» and  then M@ oo, (D(ED) =

6(5) . _ 6(1) =
M@(,DIHRP P-2 ( ) @CDTHIP P-1 (J) (x) - @CDTHIP—P—Z (xl))

6(j) =\ _ 6(1) =Y
MGCDTHRP*S*I (xl) - @CDTHRPfSQ ( ) QCDTHIP S-1 (xl) -

6(j)
Qcprure-s-2
6(k)

QCDTHRP*P*I

(%), Mgy

6 (k)
Qcprare-p-2’

QCDT HIP-$-1

9

=\ _ 6(j) —~
(xi) - MQCDTHIP 5 2 (xi)’
Qcprare-p-1 ( ) - @CDTHIP P2

@CDTHIP—S—!

(%) =

we  get

= 6 (k) 6 6 (k)
(xi)’ and Z}_TQCDTHRP-S-l - N@CDTHRILS*Z (k), N
6 (k ~ .
cotar-ce (Qepthot> @cprhz) = 1. Additionally, we prove

the third condition such that

i 5(1) Mo 5(1) 5(1)
(V)50 (DD, () 0 (520 ()
i x 6(j) = 6() 0(1) =
O (e ()M (5) M ()M, (5))
zi:l
6 (k) = o(k) NO® NO®
()52 (N2 (2N () N ()M, (5))+
L
i h NOW Nﬁ(k) 4+ NO® NO®
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Definition 9. For any two CDT-2HESs, Qcpry., =
j x i . 6(j) ~
(MZ(CJD)THRP P-1 (f') IZﬂ(MCCD"“P o (X())’ Z((:;)THRP s-1 (%) 'eXZH(MaCDTHW s (X’)))>
* £). e Nal EAINEIE —y n(NS® )
( rC[))TIIRP P-1 (xi). T o ’N@ETD:'IIRIJ—S—\ ( i) ,e‘ " o )
5 k=1,2,3,...,n,m and Ocpry-s =
6(j) —\ i2n(MOY (X)) £ ,60)) o ia(m% )
(M@cjmmw P-2 (xi). o &CDTHIP it @c]m HRP-$-2 (x) ik OCDTH[P s )>
-~ bl
K ). e2T N, ENINGI! —y i2m(NU )
(N fCD)Tlmy . (x,')' T aorp-por ’Nﬁimunp,s,z (xi)~ il ‘mep 51 )

CCDTHF—mcc (@CDTH—I’ @CDTH—Z) =

jk=1,2,3,...

)l~) l"
Xi X
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coeflicient (MCC) is of the form

CCDTHF—C (@CDTH—I > @C DT H—Z)

/
aX(CCDTHF—c (C@cpra-1s @CDTH—I)“ 2)>

6(j) ~
Qcprire-p-2 (xi)
6(j) A
Qcpriip-p-2 (xi)
ﬁ(k) =
) Qcpraip-p-2 ()C )

6 (k)

@CDTHRP—P— 2

@LDIHRP -S- l(

@CDTHIP S-1

+NoWM

6(k
@wmu’ s-1

QcprHre-s- 1( i

CCDTHF*C (@CDTH—I > @CDTH»Z) a2 )

6(j)

6 ()
FCDTHIP §-2

(=)
(7))
(=)

6(k)

QLDIHIP §-2

I
i
W
5y

QCDTHRP*S*Z ( ) )+

6(j)
1 ( M@CDTHRI’—P—Z

X

g(c‘]]))'IHRP P- 1 ‘41))2 +(

R

Zfi))lHRP P- l -’1))2 +(M

N o () (VG

rCDTHRP P-2

| .
(l/l~ )Z - (Mg(cju)'mk?#fl (551>M
~ L 6(j)
(l/l;x)z]‘:xl (M@c';THIP—Pfl (xi)M
Y -
(2 )2 (N (5N
~ 1 6(k)
(l/l';i)Zkél( QcprHip-po1 (
(1/ x1>2;:xl (
L
(1/ xl)z;‘:ll(
Y
(1/ )Z ;1(
L
(1/1;)Z,§LI<(N6(M
max fi
L
()5 ( (
L
()5 (
Y -
l_
(1/l~) <<N6(k)

()2

Proposition 2. For any two CDT-2HFSs, QCDTH-1 and
QCDTH-2, the MCC among CDT-2HFSs satisfies the fol-
lowing axioms:

(1) 0< Cepri-mee (Copr-1> Coprr-2) <1

(2) Ceprar-mee (Qcpra-1> Cepra—2) = 19 Qcpry-y =
Qcpra->

3) CoDTHF-mec (@CDTH—P Qcpra-2) = CopTHF-mec

~\\? 6
@CDTHRPfP—l(xi)) +(N
2
(%)) +(e
. 2
Mo %)) +(Mm
Qcprap-pa\ "t
2
(%)) +(~
6 (k = 2
N@(DTHIPPZ(xi)) +(N

MoW (

@CDIHKP S-1

@CDIHRP S-1
k) ( =
Qcprarp-s-1 \ ™

@CDTHRPfol

()

@CDTHRP N 2

6(j)

@( _DTHIP-S-2

6 (k)

QFDTHRP S 2

6 (k)
Qcpraip-s-2

(@CDTH—Z’ @CDTH—I )

on (7))2)+

(k) (55

(1/2)

7)) )

) )+

)))

%)) )
~)+
~,>

NR

><

, the maximum-based correlation

Proof. We prove the three above conditions by using
equation (18). By using the inequality, it is clear that
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0= Cepr-mee (@eprr-1> @cpra-2); then, we only prove that
Ceprimee (Ceprh-10 @epr-z) < 1. For this, we choose that

Qcprire-p2 Qcprire-s-1

s
1S 60 ~\ 00 _ 50) <\ ,60) -
'Z_ Z(M@CDT“RP*I’*[ (xI)M (xl) + M (xi)M@CD‘l'HRPﬁS‘*Z(xi))+
£
X

T =
T T

~
®

60)) =\ 000 - 50)) =\ 00 -
(M@CDTHIPfPfl (xl )MQCDTHHLP*Z <xt) + MQCDTHIP*S% (x1 )M@CDTHIPfsz (xl ) >+

CCDTHF—C ( @CDTH—I > @CDTH—Z )

il

X;

NO® %, JNS® %)+ NOW %, |NOW %))+
h Qcprirp-p-1\ 7F Qcprirp-p-2 \ 7 g g

+
@CDTHRPfPfl QCDTHRF*P*Z

T =

—
2

T
1 (60 60 - 6(K) = \ns0 (k) =
= (NQ(:DTHIPfPfI (xt )N@CD'I‘HIPfPLZ (xl ) + NQCDTH]P*P*I (x1 ) NQCD'I'HIP*P*Z (xt ) )
;1 k=1
s
1 S50 ,60) _\ 1 ,60) . 5()) _\ 1,60 _
? £ (M@CDTHR[LILI (xl )M@CDTHRP71’72 (xl ) + MQCDTHR[’*F*Z*S*l (xl )M@CDTIIRILP*ZfoZ (xl ))+
5,
T

(2 60) =\ As60) - 6(j)
s Z(MQCDTWH (xn)M (xn) +M
xn

=\ 150 -
@CDTHRPfP—Z—P—Z @CDTHRPfPonVf] <xn)M@CDTHRP7P727572 xn

(19)
1 & 6(j) = 6(j) = 6(j) _ 5(j)
E i 1(M@U‘DT”H”P’l (xl )M@cbﬂnp,p,z (xl) + M (xl)
j=

M X))+
@CDTI 11P-S5-1 @CDTI 11P-S-2 1

Qcpraip-p-2 \ 71

T
[ 1/50) =\ 200 - 5()) =\ 00 -
ot Z(MQCDTHIP—;LI (x”)M (x ) +M (x”)MQCDTHIP—s—z (x”))

1 &
— N6(k) fl NG(k) fl +N6(k) fl 6 (k)
I Qcprhre-p-1 Qcorire-p-2

p k=1

CrzCDTHR}?*P*I NQCDTHRP*P*Z (xl ) ) +

Eal

1 6(k) _\ 1,60k _ (k)

S ‘[7 kz: (NQCDTHRP—FA (XW)N@CDTHRPJLZ (X”) + NQCDTHRP—P—l (
~ k=1

Xn

~ 6(k) ~
Xn ) N@CDTHRP—P—Z (x” ) )

L

=

1 6(k) ~ \ 600 - 6(k) ~\ A6k -
E kz: (N@CDTH"’fPfl (xl )N@CDTHH’fPfZ (xl ) + N@CDTHH’fPfl (xl )NC/ZCDTH”’fPfZ (xl ))+
o

T

LI ST ANET) =\ oo - 60 _\ 00

o +7 ;(N@cmmwfl (XW)N@CDTHIPJLZ (X”) +N (x”)N (
~ k=1
X,

@CDTHIPfPfl CerDTHI}?*P*Z
n

%))
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By using the  Cauchy-Schwarz  inequality,
oy + %y, + o+ X,y <+ x3++x2) (P +
¥5+ -+ y2), we have

| —
M

S (26002 - 6(j)2 _
(M@cmlmv—r—x (xl ) + M@cn'nmr—s—l (xl ))Jr

l—);1 j=1
C
1S ( 5002 _ 6(j2 -
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=
X
L
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=
X1
L
L QA 2,600 _ 6(j)2 _
a +~Z I(M@cnnm’—ful <xn> + M@CDTIH}L&I (x"))
=
2 Xn
(CCDTHF'C (@CDTHf 1> @CDTH72)) < Z
1 S5/ 6002 . 6 (k)2 -
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~ k=1
X1
=

1 &/ 6002 ~ 6 (k)2 =
-t ~l~_ (NQCDTHRP—P—l (x") + N@cDTHRP—P—l (x”))
X,

k=1
L
1 &
— (Ng(")2 (:a) + NG (x~1 >)+
CDTHIP-P-1 CDTHIP-P-1
L =1
X
L
[IRNTANCI - 6 (k)2 -
- Z (N@CDTHIF—ILI (x") w7 N@CDTHHLP—I <x”>)
I =1
Xp
L
1 5o 600 _ 6(j)2 -
= (Mannmerfz (xl) b ManTuRrLsfz (xl )>+
L=
X
C
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o (MQCDTHRPJ—z (x") + MQCDTHmLsfz (x">>
L =2
Xn
L

1 i p -
= 2 (Mo, (m ) Mo (5))
Qcpraip-p-2 QcprHip-s-2
I =
X
C
L (6002 - 6(j)2 -
- +? Z(M@cDrHlP—P—z <x") + Mﬁcnn—np—sfz (x”))
X,
6 (k)2 = 6 (k)2 ~
(N@cnnmp—r—z (xl) + N@cmukpfp—z (XI))+
L 5[ 62 . 6 (k2 -
ot 77 ZI(NQCDTHRPP—z (x”) + N@cnmkpfp—z (x"))
X,

L
1 &/ 6002 = 6(k)2 =
= Z(NQCDI‘HH’ P Z(xl) + N@CDTHIP P- Z(xl))+

L =
X1
L
L G602 _ 6(k2 -
-t ~l~_ ,;(NQCDTHIP—P—z (x") + NQCDTHIP—P—z (X”>)
=
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= CCDTHF*C (@CDTH—I > @CDTH—I )‘CCDTHF*L’ (QCDTH—Z’ @CDTH—Z)'

(20)
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Ceprare (Qeprio1»Qepraa) < (Coprar-c (Qepra-1» pr00) ( ), N
(1/2) (1/2), h Qcpraip-s-2
Qcpru-1)) (Ceprr-c (Qcprh-20 Qepru-2))" s thus 6(k) ( )
0 < Ceprap-mee (Qeprh-1- Qepra2) £ 1. Furthermore,  we Qcpraip-p-2
prove the second part by using equation (18). By hypothesis, gU‘) ( %)=
.. . _ . 6(]) N _ CDTHIP-S-1
it is given that Qcpry_; = QCDTH 2 then My (X)) =
6(}) = 6(}) ~
M?EDTHRP P-2 (x ) 6( ) @CDTHIP P-1 ( ) - 6(@§DTHIPfPf2 (xl),
j j s
QcprHrp-5-1 (x )= MQ(,DTHRP—S—Z (xi) > QcprHIp-5-1 (xi) -

I

Xi
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(1/7;)

L
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13

N0 6(k) ( ,%') _
@LDTHRP P-1 @CDTHRILPfZ) @CDTHIPJLZ t
6(k) 6(k)
and @CDTHRPfsfl - @CDTHRP—S—Z’

@CDTHIP 52 (x;); then, by using equation

(18), we get Ceprp-mee (Qcpra-1>@eprr-2) = 1. Addition-
ally, we prove the third condition such that

6(j)
@CDTHRPfsz

6(j)
c'zCDTHRPfol

(=)
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(o)
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(o)

(5)om
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()25 0
()85
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6 (k) = 6 (k) = 6 (k) =
Qcpramp-p- (xi) + N@CDTHIP—P—I (xi )N@CDTHIP—P—Z (xi ))
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6(j) =\\? 6(j) ~\\2
@cprirp-p-1 (xi)) + (M@CDTHRP,S,I (xi)) +

6(j)
Qcprarp-p-1

6 (k)
QcoTHRP-P-1

6 (k)
Qcpraip-p-1

6(j)
@CDTHRPfPfZ

6(j)
QCDTHIP—P—Z

6 (k)
Qcprare-p-2

6 (k)
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(=) +(v
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(

@CDTHIP—P—Z

6(j)
Qcpraip-s-1

(=) )+
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Qcprare-s5-1

(

6 (k)
Qcpraip-s-1
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(1/2)
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6(j)
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6 (k)
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6 (k)
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()5

j=

(o

6(j)
@CDTHRFLP*Z

(o)
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6(j)
QcprHRP-s5-1

6(j)
@CDTHRPfPfl

6(j)
@CDTHRILSfZ

(%) M ()M, (5))

L
7 s (400 =\ 00 . 60)) —\ 00 .
(1/1;1)21‘:1 <MQCDTHIP*P72 <xi)MQCDTHIP—P—] <xi) + M@crm—mhsfz ('xi )M@CDTHIP—S—I (xi >>
Y
7 x; 6(k) = 6 (k) = 6(k) = 6 (k) =
( l/l},> k=1 (N@CDTHRPfPfZ (xl )N@CDTHRPfPfl <xl) + NQCDTHRP*P*Z (xi>N@CDTHRP7P71 <xl) )
-~ V& 6 (k) 6(k) 6 (k) 6 (k)
<l/l;/> k1:1 <N@CDTHIP7P72 <xi)N@CDTHIP7P71 <xl) + NQCDTHIP*F*Z (‘xi>N@CDTHIPf}LI (xl>>
- ) = CCDTHE-mec (Qepra-1> Qeprn2)-
L
7 pt 6(j) =\\? 6(j) =\)?
( Ul}i > Zj:l ((M@CDTHRP*P*Z (xi )) * (M@CDTHRP—S—Z (xi)) +
S (VB0 () + 2D ()))
},- j=1 Qcprap-p-2 \ 7 Qcpraip-s-2 \71
n
S i
VLS (N9 (&) (NS (=)
;L. k=1 QcprHRP-P-2 i QcprHRP-5-2 i
)5 (N5, (2) (Ve ()
}l k: 1 QCDTHIILILZ i @CDTHIP—S—Z i
max
- (1/2)
)5 (20, o (8)) (0 (@)
}[ j:1 @CDTHRP—P—I i @CDTHRP—S—l i
V)52, (R 420, (%))
;i ]:1 QCDTH[P*P*I i @CDTHIP—S—I i
Y
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;i k=1 @CDTHRP—P—I i @CDTHRP—S—I i
- P 6(k) =\\2 6 (k) ~\\?
<1/l;,) k=1 ((N@CDTHIPfPfl (xl)) + (N@CDTHIPfol (xl)) )
(21)
Definition  10. For any two CDT-2HFSs, Qcpry_, = M () - Mot D, g0 (£) - ¥ Mechrnss E),
( M‘;’;C jp)mm,. ). M o (i',)), Mg(r :Tm,s,, % 