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To solve the dynamic and real-time problem of multirobot task allocation in intelligent warehouse system under parts-to-picker
mode, this paper presents a combined solution based on adaptive task pool strategy and Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) algorithm. In the first stage of the solution, a variable task pool is used to store dynamically
added tasks, which can dynamically divide continuous and large-scale task allocation problems into small-scale subproblems to
solve them to meet dynamic requirements. And an adaptive control strategy is used to automatically adjust the total number of
tasks in the task pool to achieve a trade-off among throughput, energy consumption, and waiting time, which has better
adaptability than manually adjusting the size of the task pool. In the second stage of the solution, when the task pool is full,
tasks in the task pool will be assigned to robots. For the task allocation problem, this paper regards it as an optimization
problem and uses the CMA-ES algorithm to find the optimal task assignment solution for all the robots. By comparing with
fixed threshold method under 56 different task pool sizes, the experimental results show that the throughput can be close to
reaching the optimal level, and the average distance traveled by robots to handle each unit is lower using adaptive threshold
method; so, adaptive task pool solution has better adaptability and can find the optimal task pool size by itself. This method
can satisfy the dynamic and real-time requirements and can be effectively applied to the intelligent warehouse system.

1. Introduction

In recent years, the orders of various e-commerce platforms
have soared, and the scale of distribution centers has become
increasingly large, which has brought great challenges to the
traditional logistics industry [1]. In the traditional ware-
house, 60% to 70% of the workers’ time is spent on picking
up goods [2], and the efficiency is extremely low. Therefore,
more and more automatic machines and equipment have
been applied in the field of warehouse [2]. Many companies
have started to adopt a new kind of parts-to-picker intelli-
gent warehouse system, such as Kiva system [3]. In the sys-
tem as shown in Figure 1, robots transport the shelves from
storage areas to workstations, and workers need to wait at
the stations. When the shelves reach the workstations, they
take the needed goods from the shelves or store bundles into

the shelves. It has been proved that this kind of the intelli-
gent warehouse system greatly saves labor cost and improves
the efficiency of warehouse operation [4].

Cooperative control of multiple mobile robots is the key
to realize intelligent warehousing. In a warehouse as shown
in Figure 1, there are often numerous tasks such as replen-
ishment and picking, as well as numerous robots to perform
these tasks. In addition, the costs of different robots to per-
form a task are also different. Therefore, the efficiency of
the warehouse is determined by selecting suitable robots to
perform specific tasks. This is a typical multirobot task allo-
cation (MRTA) problem [5]. With the operation of the
warehouse, tasks and the warehouse environment will con-
stantly change. How to find a better task allocation scheme
for pick-task and replenishment-task assignment in such a
highly dynamic environment [3, 4] is the focus of this paper.
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MRTA is one of the most challenging problems in the
multirobot system [6]. Market-based methods are the most
studied methods at present, such as the single-task auction
algorithm proposed in ref. [7]. In order to solve the problem
that the single-task auction algorithm is difficult to get the
optimal solution, a combined auction algorithm which con-
siders the correlation between tasks was proposed in ref. [8].
When the number of robots and tasks is small, MRTA can
be regarded as a zero-one integer linear programming prob-
lem and solved by simplex method, branch and bound
method, Hungarian algorithm [9], etc. For example, the
Hungarian algorithm was adopted in ref. [10] to solve the
role assignment problem in robot soccer game. There are
also some thresholding based methods such as ALLIANCE
[11] and Broadcast of Local Eligibility (BLE) [12], which
have good real-time, fault tolerance, and robustness, but
usually only local optimal solution can be obtained. For
large-scale problems, the heuristic algorithm can effectively
reduce solution space and improve search efficiency. For
example, in ref. [13], the heuristic algorithm was adopted
to solve the task assignment problem in multi-core proces-
sor. Evolutionary algorithms are mature global optimization
methods with high robustness and wide applicability, which
can effectively deal with complex problems that are difficult
to be solved by traditional optimization algorithms. Various
evolutionary algorithms such as genetic algorithm and sim-
ulated annealing algorithm have been widely used in MRTA
problem. In ref. [14], the genetic algorithm was used to solve
the time-extended multirobot task allocation problem in the
case of disaster. A hybrid genetic and ant colony algorithm
was proposed in ref. [15] to improve the solving accuracy
of the genetic algorithm. In ref. [16], the genetic algorithm
was used to solve MRTA problem in the intelligent ware-
house. Ref. [17] designed an improved quantum evolution-
ary algorithm based on the niche coevolution strategy and
enhanced particle swarm optimization (IPOQEA) to solve
the airport gate allocation problem. In ref. [18], an improved
quantum-inspired cooperative coevolution algorithm with

multistrategy is used to solve the knapsack problem and
the actual airport gate allocation problem. Refs. [17–20]
use the cooperative coevolution framework to divide the
complex optimization problem into several subproblems,
and these subproblems were solved by independent search-
ing in order to improve the solution efficiency. Similarly,
the situation where the number of tasks is variable in an
intelligent warehouse can be studied using the idea of
divide-and-conquer in Refs. [17–20].

Therefore, we use a task pool to store dynamically added
tasks and propose an adaptive control strategy to automati-
cally adjust the task pool size according to the current envi-
ronment. When the task pool is full, the tasks in the pool will
be assigned to the robots. Then, the task allocation problem
is regarded as an optimization problem and solved by the
CMA-ES algorithm [21].

2. Problem Formulation

The intelligent warehouse system consists of many movable
shelves and robots as well as some workstations. The robots
transport the needed shelves from the storage area to the
workstations, and the workers can complete the replenish-
ment and picking without moving. A typical intelligent
warehouse layout (a screenshot from the open source soft-
ware RAWSim-O [22]) is shown in Figure 2. In the figure,
the four squares on the left represent the replenishment sta-
tion, and the replenished bundles are temporarily stored
here waiting for shelves. The four squares on the right repre-
sent picking stations. After receiving orders, the system will
use a special algorithm to assign orders to different stations.
There will be an upper limit on the number of orders in the
stations [23]. The squares in the middle area are the shelves,
in which the goods in the warehouse are stored. Shelves can
be lifted and moved by robots. The circles in the figure are
robots. A robot can carry a shelf to move. When a robot does
not carry a shelf, it can move freely under the shelf.

Shelves Storage areaRobot

W
orkstation

Worker

Figure 1: Parts-to-picker intelligent warehouse system from ref. [4].
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In order to facilitate problem analysis, we make the fol-
lowing assumptions:

(1) Robots are all isomorphic and travel at exactly the
same speed. They can only move forward, backward,
left, and right.

(2) The time for a robot to lift a shelf and stay at a work-
station is very short, which can be ignored.

(3) Every robot carries the required shelf and travels
from the position of the shelf to the designated sta-
tion and then carries the shelf back to its original
location.

The shelf selection algorithm will select shelves for each
workstation according to requirements. The selected shelves
need to be transported from the shelf storage area to the
appropriate station for picking up or replenishing goods,
and then they are transported back to the original position,
which is the task of the robots. If a robot is not assigned a
task, it will move to a special resting area for rest. How to
reasonably assign tasks to robots is the problem to be studied
in this paper.

Referring to ref. [16], suppose that there are m tasks
(refers to all tasks from the beginning to the end of the ware-
house operation) and n robots in the warehouse, the set of
tasks is T = ft1, t2, t3,⋯,tmg, and the set of robots is R =
fr1, r2, r3⋯,rng. The set of tasks assigned to robot ri is
Ti, which is a subset of T . T1 ∪ T2 ∪ T3 ∪⋯ ∪ Tn = T
and T1 ∩ T2 ∩ T3 ∩⋯∩ Tn =∅. Let Ti = fti1, ti2, ti3,⋯,tikg
and Ti is ordered, and then the sequence of tasks to be
completed by the robot ri is ti1 ⟶ ti2 ⟶ ti3 ⟶⋯⟶
tik. The cost of robot r to complete its task sequence can
be expressed as

C rið Þ = I ri, ti1ð Þ + 〠
k

h=1
S thð Þ + 〠

k−1

h=1
R th, th+1ð Þ, ð1Þ

where CðriÞ represents the cost of the robot ri to complete
all tasks. Since all robots travel at the same speed, the cost
can be expressed as the distance traveled by the robot. The
robot can only move forward, backward, left, and right; so,
the distance traveled between the two points can be
expressed as Manhattan distance.

Iðri, ti1Þ represents the cost for the robot to get from the
initial position to the position of required shelf for the first
task ti1. Let the initial coordinate of the robot be ðxr , yrÞ
and the coordinate of the required shelf for the first task be
ðxt1, yt1Þ, and then

I ri, ti1ð Þ = xr − xt1j j + yr − yt1j j: ð2Þ

SðthÞ represents the cost for the robot to complete task th
, which is only related to task th itself. It can be represented
by the distance that after the robot carries the required shelf,
it travels from the position of the required shelf for the task
to the designated station and then returns to the shelf’s orig-
inal position from the station. Let the coordinate of required
shelf for task th be ðxp, ypÞ and the coordinate of target sta-
tion be ðxs, ysÞ, and then

S thð Þ = xp − xs
�
�

�
� + yp − ys

�
�
�

�
�
�

� �

∗ 2: ð3Þ

Rðth, th+1Þ represents the cost for the robot to reach the
starting position of the next task th+1 after completing task
th. Since the robot needs to transport the shelf back to the
original position after completing task th, it can be directly
represented by the Manhattan distance from the position
of required shelf for task th to the position of required shelf
for task th+1. Let the coordinate of required shelf for task th
be ðxp1, yp1Þ and the coordinate of required shelf for task
th+1 be ðxp2, yp2Þ, and then

Figure 2: A typical intelligent warehouse layout from ref. [22].
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R th, th+1ð Þ = xp1 − xp2
�
�

�
� + yp1 − yp2

�
�
�

�
�
�: ð4Þ

In order to make the overall allocation scheme as opti-
mal as possible, we consider the following two optimization
objectives:

(1) The maximum time taken by all robots to complete
all tasks (Ctime)

(2) The mean distance traveled by all robots (Cdistance)

where

Ctime = max
i

C rið Þ,

Cdistance =
∑n

i=1C rið Þ
n

:

ð5Þ

Ctime describes the efficiency of the robots to complete
tasks. The smaller Ctime is, the less time the robots take to
complete all tasks, and the higher the efficiency is. Cdistance
describes the power consumption of the multirobot system.
The smaller Cdistance is, the shorter the total travel distance
of all robots is, and the lower the power consumption is.
The goal of the method studied in this paper is to reasonably
assign all tasks in the system to all robots so that these two
values can be as small as possible.

3. Method

3.1. Architecture.With the entry of new orders, new tasks are
constantly generated and must be completed as soon as pos-
sible; so, the warehouse system is a highly dynamic and real-
time system. In such a highly dynamic system, it is difficult
to find the global optimal solution; so, the problem is divided
into many subproblems. Specifically, we created a task pool
P. When a new task is generated, it is immediately added
to P. When the number of tasks in the task pool P reaches
the threshold value (automatic adjustment of the threshold
will be described in Section 3.3), the CMA-ES method in
Section 3.2 is used to allocate the tasks in the task pool to
robots. The robots insert the new task sequence allocated
into the rear of the previous unfinished task sequence, and
then the task pool is emptied. The robots execute tasks
according to their own task sequence, and the executed tasks
are deleted from the sequence. As the new tasks are gener-
ated again, the tasks are added to P again. Loop until the
warehouse stops running. In Figure 3, the specific steps are
as follows:

Step 1. Initialize the task pool size and set the task pool P to
be empty. For all robots, initialize task sequence Ti of every
robot ri.

Step 2. The threshold of the task pool size is automatically
adjusted using adaptive control strategy in Section 3.3.

Step 3. New tasks are constantly added to P. Jump to step 4
when the number of tasks in the task pool reaches the
threshold.

Step 4. The tasks in the task pool are assigned to the robots
using the CMA-ES method in Section 3.2, and for all robots,
the new task sequence assigned to robot ri is inserted at the
end of the current task sequence Ti.

Step 5. Clear the task pool P and jump to step 2.
The above solution in Figure 3 is executed by the central

controller, and the robot only needs to execute the tasks
according to the assigned task sequence. The parallel opera-
tion of the two parts enables the robots to be busy all the
time, which saves time and meets the requirement of real-
time storage system.

3.2. CMA-ES Algorithm. As mentioned in Section 3.1, tasks
are assigned to robots when the number of tasks in the task
pool reaches the threshold. This problem is regarded as an
optimization problem in a static environment. This is a
NP-hard problem, and the CMA-ES algorithm is used to
find the optimal solution. The successful application in
many fields [24–26] proves that the CMA-ES algorithm is
a good search algorithm.

3.2.1. Representation of Solutions. Referring to ref. [27], for
the task allocation problem withm tasks and n robots, a can-
didate to represent a task assignment scheme is X = ½x1, x2,
x3 ⋯ xm�. X contains m real numbers, and for each real
number xi, it satisfies 1 ≤ xi < n + 1, i = 1, 2, 3,⋯,m, where
xi means task i is performed by robot IntðxiÞ, and IntðxiÞ
means the integer of real number xi. If IntðxiÞ = IntðxjÞ, i ≠
j, this means that the task xi and xj are both assigned to
the same robot, and the task represented by the smaller
number between xi and xj is executed first. If xi = xj, the exe-
cution order of these two tasks is determined randomly.

For example, there are 8 tasks (represented by numbers
1, 2, 3,..., 8) and 3 robots (represented by numbers 1, 2, 3),
and an individual [1.7, 3.8, 2.2, 1.3, 2.8, 1.5, 3.3, 3.7] is
generated. Then, the task sequence assigned to robot 1
is 4⟶ 6⟶ 1. The task sequence assigned to robot 2
is 3⟶ 5. The task sequence assigned to robot 3 is 7
⟶ 8⟶ 2.

3.2.2. Fitness Function. Fitness function is used to evaluate
candidates. For the CMA-ES algorithm, individuals with
lower fitness value are more excellent. In Section 2, two opti-
mization goals are proposed for the whole system: one is the
time Ctime for the robots to complete all tasks; the second is
the mean driving distance Cdistance of all robots. Each planning
can be regarded as a subproblem of the whole. For each sub-
problem, in order to achieve the optimal overall performance,
these two goals are still considered; so, fitness function f is cal-
culated through the following equation [16]:
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f = αC′time + 1 − αð ÞC′distance, 0 ≤ α ≤ 1,

C′time = max
i
C′ rið Þ,

C′distance =
∑n

i=1C′ rið Þ
n

,

ð6Þ

where α is a constant that can be adjusted according to the
actual demand. If more attention is paid to the completion
time of a single order, α can be increased. If more attention
is paid to the energy consumption of all robots, α can be
reduced. C′ðriÞ is the cost of robot ri to execute the tasks in
the current task sequence first and then execute the tasks
according to the candidate. C′time is the maximum time taken
by the robots. C′distance is the mean distance traveled by all
robots. In the current moment, there may be unfinished tasks
in the task sequence. The robot must first complete these tasks
before performing the tasks assigned at the current moment.
Therefore, for C′ðriÞ, we divide it into two parts to calculate:

C′ rið Þ = C′1 rið Þ + C′2 rið Þ, ð7Þ

where C′1ðriÞ is the cost for the robot to complete the tasks in
the current task sequence, and C′2ðriÞ is the cost for the robot

to execute the tasks according to the candidate. C′1ðriÞ and
C′2ðriÞ are represented by the distance traveled by the robot
and calculated using the method described in Equation (1).

With this fitness function, we try to find the optimal
solution at that moment in each optimization and try to
approximate the global optimal solution by this method.

3.3. Automatic Adjustment of Task Pool. When the number
of tasks in the task pool reaches the threshold, the tasks in
the task pool will be assigned to the robots. The threshold
plays a decisive role in the efficiency of assignment. The
larger the threshold is, the more tasks will be involved in
the optimization, and then the more the planned scheme will
be close to the global optimal solution. If an optimization
contains all the tasks in the system, the optimal solution
found by the optimization will be the optimal solution of
the whole system. But orders in the warehouse are added
dynamically over time, so tasks are also generated dynami-
cally. As the threshold increases, the time required for the
task pool to be filled will also increase, and this situation will
occur: the robot has finished all the tasks assigned to it, but
the number of tasks in the task pool has not reached the
threshold; so, the next optimization cannot start, and the
robot can only wait. This leads to a waste of time and cannot
meet the real-time of the warehouse system. Moreover,

Initialize the task pool size using Equation 8;
Task pool P = {};

Foreach (the robot ri in all robots)
task sequence Ti of robot ri = {};

The threshold of the task pool size is
automatically adjusted using adaptive control

strategy in section 3.3.

if (size(P) < threshold)
when (the new task reached)

add the new task t into P;

The tasks in the task pool P are assigned to the robots
using CMA-ES method in section 3.2. 

Foreach (the robot ri in all robots)
Insert the new task sequence assigned to robot ri into the end of the current task sequence Ti;

Task pool P = {};

False

True

Step1

Step2

Step3

Step4

Step5

Figure 3: The flow chart of the combined solution based on adaptive task pool strategy and CMA-ES.
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because each workstation has an order capacity limit, there
is also an upper limit on the total number of tasks in the sys-
tem, and if the task pool size exceeds this upper limit, the
number of tasks in the task pool will never reach the thresh-
old, and the system will be stagnant. Therefore, it is very
important to set a threshold of appropriate size.

Obviously, for different warehouses, the threshold
should be set differently depending on the actual situation.
Even for the same warehouse, the number of robots may
be adjusted, and the rate of order generation may vary at
different times; so, it is not appropriate to set the threshold
to a fixed value. Therefore, we design an adaptive control
strategy to dynamically adjust the task pool, as shown in
Algorithm 1.

First, the setting of the initial threshold is important,
which determines the speed of finding the optimal threshold.
We believe that the size of the initial threshold should be
related to the number of robots and the upper limit number
of tasks in the warehouse. The upper limit number of tasks
in the warehouse is related to the number of workstations
and the capacity of each workstation. So, we propose the fol-
lowing heuristic formula to calculate the initial threshold:

initialThreshold = γ ∗ stations + robotsð Þ
2

, ð8Þ

where γ is a constant representing the average number of
tasks per workstation in unit time, which is set according
to the actual situation. stations is the number of stations,
and robots is the number of robots. We set a time interval
I (It is a constant that can be set according to actual require-
ments), and every I seconds, the threshold is adjusted (line 1).
lastAction is used to record the last adjustment. We counted
the total number of tasks completed by the robot from the last
adjusted moment to the current moment, and the total num-
ber of tasks completed from the penultimate adjusted moment
to the last adjustedmoment, expressed by tasksCompleted and
lastTasksCompleted, respectively. If taskCompleted is 0, indi-
cating that the threshold has been set so high that the number
of tasks has not reached the threshold, then simply cut the
threshold in half and set lastAction to −1 (line 2, line 3, and
line 4). If tasksCompleted is greater than or equal to

lastTasksCompleted, it indicates that the last adjustment has
had a positive effect on the system, and the same adjustment
will be performed (line 5 and line 6). If tasksCompleted is less
than lastTasksCompleted, it indicates that the last adjustment
had a negative effect on the system, and the reverse adjustment
will be performed (line 7 and line 8). In addition, lastAction
will be reversed (line 9).

4. Experiments

We used RAWSim-O [22], an open source framework devel-
oped by Merschformann et al., as the experimental platform.
RAWSim-O is a simulation framework that simulates the
operation of an intelligent warehouse system and allows us
to test our own methods.

We used the warehouse layout shown in Figure 2. In the
warehouse layout, there are 32 robots and 550 shelves. The
storage positions of the shelves are at the middle area of
the layout. And there are four replenishment stations on
the left and four picking stations on the right. To simplify
the problem, we set the duration of a robot staying at a
workstation to a very small value of 0.1.

For the assessment of performance we take the sum of
SKUs (stock keeping unit) in both item bundles stored at
the replenishment stations and orders picked at the picking
stations as handled units. This represents the throughput
of the warehouse, and the higher the better. We also look
at the average distance traveled by robots to handle each
unit. This can represent the power consumption of the mul-
tirobot system.

In order to test the impact of task pool threshold size on
the allocation effect, we did 56 experiments, each experiment
corresponding to different pool sizes. Each experiment was
simulated for 24 hours with 10 repetitions.

Under different task pool sizes, the number of units
handled by robots is shown in the blue solid line in
Figure 4, and the average distance traveled by robots to han-
dle each unit is shown in the blue solid line in Figure 5. The
comparison results among different fixed threshold on han-
dled units and travel distance per unit are shown in Table 1.
The maximum number of handled units is 207583 when the
fixed threshold is set to 18. The minimum number of travel

Input: lastAdjustTime, currentTime, lastTasksCompleted, tasksCompleted, oldThreshold, lastAction
Output: newThreshold, lastAction
1: if currentTime − lastAdjustTime > I then
2: if tasksCompleted = 0 then
3: newThreshold⟵ oldThreshold/2
4: lastAction⟵ −1
5: else if tasksCompleted − lastTaskCompleted ≥ 0 then
6: newThreshold⟵ newThreshold + lastAction
7: else
8: newThreshold⟵ newThreshold − lastAction
9: lastAction⟵ −lastAction
10: else
11: newThreshold⟵ oldThreshold
12: return newThreshold, lastAction

Algorithm 1: Adaptive control strategy.
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distance per unit is 10.73 when the fixed threshold is set to
36, 45, or 47. According to Figures 4 and 5 and Table 1, it
is not good to set the threshold too large or too small, which
is consistent with our conjecture. If the threshold is set too
small, the solution will be too far away from the global opti-
mal solution; therefore, the number of handled units is
small, and the travel distance per unit is large. If the thresh-
old is set too large, the solution will be closer to the global
optimal solution; so, the travel distance per unit is small,
but the robot will have a long waiting time; therefore, the
number of handled units will be small.

To sum up, a bad threshold can be very inefficient; so,
setting the threshold manually is very risky. Therefore, a
method of automatically adjusting threshold is necessary.
We used the adaptive control strategy proposed by ourselves
to conduct the experiment again, and all conditions were
identical except the threshold. According to the workstation
capacity, γ in Equation (8) was set to 4; so, the initial thresh-
old was calculated as 32. The results are shown in Table 1.
We compared the results with the fixed threshold approach,

as shown in Figures 4 and 5. The red dotted line is the adap-
tive threshold method, and the blue solid line is the fixed
threshold method. Compared with fixed threshold 18, the
adaptive threshold method gets worse result in handled units
but better result in travel distance per unit. Compared with
fixed threshold 36, 45, and 47, the adaptive threshold
method gets better result in handled units but worse result
in travel distance per unit. Taken together, it can be seen
from the two figures that the adaptive threshold method
can be close to reaching the level when the threshold is set
to the optimal in both indexes. The experimental results
show that the proposed adaptive control strategy has good
application effect.

5. Conclusion

In order to solve the dynamic and real-time problem of mul-
tirobot task allocation in the intelligent warehouse system, a
combined solution based on adaptive task pool strategy and
CMA-ES algorithm is proposed in the paper. In the early
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Figure 4: Comparison between adaptive threshold method and fixed threshold method on handled units. The red dotted line is the adaptive
threshold method, and the blue solid line is the fixed threshold method.
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stage of the solution, the divide-to-conquer idea is used to
design a variable task pool that is used to store dynamically
added tasks. The variable task pool is designed to dynami-
cally divide continuous and large-scale task allocation prob-
lems into small-scale subproblems to solve them to meet
dynamic requirements. And an adaptive control strategy is
used to automatically adjust the threshold of the task pool
size in real time to achieve a trade-off among throughtput,
energy consumption, and waiting time, which has better
adaptability than manually adjusting the size of the task

pool. In the later stage of the solution, when the task pool
is full, tasks in the task pool will be assigned to robots using
the CMA-ES algorithm to find the optimal task assignment
solution for all the robots according to the fitness function
including the maximum time and the mean travel distance
required by all robots to complete all the tasks. By compar-
ing with fixed threshold method under 56 different task pool
sizes, the experimental results show that the handled units
can be close to reaching the optimal level, and the average
travel distance per unit is lower using adaptive threshold
method; so, adaptive threshold solution indeed has better
adaptability. This method can satisfy the dynamic and real-
time requirements and can be effectively applied to the intel-
ligent warehouse system.

However, because of the complexity and dynamics of the
warehouse environment, it may not be accurate to measure
the cost by Manhattan distance. Therefore, how to introduce
accurate robot motion model to evaluate the cost will be the
next work. Furthermore, the relationships among handled
units, travel distance per unit, the maximum time taken by
all robots to complete all tasks, and the mean distance trav-
eled by all robots need further study. In addition, the effect
of communication quality on allocation is not taken into
account and will be deeply studied.
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Figure 5: Comparison between adaptive threshold method and fixed threshold method on travel distance per unit. The red dotted line is the
adaptive threshold method, and the blue solid line is the fixed threshold method.

Table 1: Comparison between adaptive threshold method and
fixed threshold method on handled units and travel distance per
unit.

Method (initial
threshold)

Handled
units

Travel distance per
unit

Fixed threshold (18) 207583 10.82

Fixed threshold (36) 204642 10.73

Fixed threshold (45) 201046 10.73

Fixed threshold (47) 200342 10.73

Adaptive threshold (32) 205372 10.79
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Normal operation of the pressure sensor is important for the safe operation of the locomotive electro-pneumatic brake
system. Sensor fault diagnosis technology facilitates detection of sensor health. However, the strong nonlinearity and
variable process noise of the brake system make the sensor fault diagnosis become challenging. In this paper, an adaptive
unscented Kalman filter- (UKF-) based fault diagnosis strategy is proposed, aimed at detecting bias faults and drift faults
of the equalizing reservoir pressure sensor in the brake system. Firstly, an adaptive UKF based on the Sage-Husa method
is applied to accurately estimate the pressure transients in the equalizing reservoir of the brake system. Then, the residual
is generated between the estimated pressure by the UKF and the measured pressure by the sensor. Afterwards, the
Sequential Probability Ratio Test is used to evaluate the residual so that the incipient and gradual sensor faults can be
diagnosed. An experimental prototype platform for diagnosis of the equalizing reservoir pressure control system is
constructed to validate the proposed method.

1. Introduction

The electro-pneumatic brake system has shown the exten-
sive applications in passenger trains, metros, and heavy haul
trains because of its fast response time and high reliability
[1]. Locomotive electro-pneumatic brake is a crucial compo-
nent which has an important function for the operational
safety of the train. Faults in braking systems can lead to a
reduction in locomotive braking performance and even
induce safety accidents. Therefore, early detection and isola-
tion of faults in the braking system are necessary [2]. Pres-
sure sensors are vital components in the brake system
because their reliability and measuring accuracy are crucial
to achieving the accurate pressure control and approving
braking performance.

The fault diagnosis of the equalizing reservoir pressure
sensor is a challenging task. The brake system is composed
of the electric, pneumatic, and mechanical subsystem, show-
ing a sophisticated nonlinearity [1]. The energy transmitting

medium of the braking force is compressed air, and the com-
pressibility of air makes the system highly nonlinear [3],
which makes it difficult to build a precise mathematical
model of the brake system. Furthermore, the process noise
and measurement noise in the braking process, which are
caused by the harsh and noisy working environment, make
the fault diagnosis of the brake become more challenging.

Recent years, many studies have developed sensor fault
diagnosis methods [4–8]. There are three main categories
of sensor fault diagnosis methods: the redundancy method
and the knowledge-based method and the model-based
approaches. The redundancy method is implemented by
the comparison of measurements among several sensors,
which has been used in wireless sensor networks [9] or the
aerospace system [10], such as satellite attitude control sys-
tems [11]. The minimum degree of sensor redundancy nec-
essary to pinpoint the distinction between sensor faults and
system faults in the monitoring process is determined in
[12]. However, the redundancy methods require additional
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hardware sensors, showing less cost-effectiveness, which are
not appropriate for the locomotive electro-pneumatic brake
system [13].

The development of computer technology has provided
a new method for fault diagnosis technology. Knowledge-
based method uses an expert system to locate and diagnose
sensor faults and does not require a quantitative mathemat-
ical model. A fuzzy expert system is established to locate sen-
sor faults [14], and the residual generation and residual
evaluation are analyzed in [15], showing its instantaneous
handling capability for the fault. The problem of sensor fault
recognition is considered pattern recognition in [2]. The
sample data is acquired and trained to obtain a classifier,
and then, the data is matched according to the classification
rules. However, it is general that knowledge-based methods
require a large enough amount of data, which means that
many types and numbers of sensors need to be added in
the brake system.

For model-based methods, the Kalman filter and its
enhanced varieties are widely utilized [5, 7, 16] because of
their robustness to process and measurement noise and their
efficient real-time performance [17]. However, the Kalman
filter is not available for the brake system because of its
intrinsic nonlinear properties. Therefore, an unscented Kal-
man filter (UKF) is proposed to address the nonlinear prob-
lem. The UKF, which applies the unscented transform to
calculate the mean and variance of measurement and pro-
cess noise, has higher accuracy than the extended Kalman
filter [18, 19]. However, the process noise and covariance
matrices of measurement for UKF are generally assumed
to be stable. And it is difficult to determine the covariance
matrices in practical applications. The fault diagnosis
method will suffer from performance degradation if the
model uncertainty is not well defined by the process noise
covariance [20]. To overcome the difficulty, the adaptivity
of UKF should be improved. That is, the covariance matrices
of measurement and process noise should be adaptively
adjusted [8, 21, 22].

This paper proposes an adaptive UKF-based scheme to
detect bias faults and drift faults of the equalizing reservoir
pressure sensor. For the locomotive electro-pneumatic brake
system, different from existing UKF-based fault diagnosis
methods, the proposed scheme can detect incipient and
gradual sensor faults. The scheme introduced the Sage-
Husa mechanism to accurately estimate the pressure tran-
sients in the equalizing reservoir by filtering out the mea-
surement noise and the changing process noise of the
brake system. Further, the Sequential Probability Ratio Test
is utilized to evaluate the residual, the difference between
the estimated pressure, and the online sensor measurement.
By combining the Sage-Husa mechanism and Sequential
Probability Ratio Test, the proposed scheme can detect the
incipient and gradual sensor faults of the locomotive
electro-pneumatic brake system. The main contributions in
this paper include the following:

(i) The mechanism of the electro-pneumatic brake sys-
tem is analysed adequately, and the accurate analyt-
ical pressure model is established

(ii) The adaptive UKF is applied to estimate the system
output pressure, improving the robustness of the
fault diagnosis approach under the uncertainty
and noise

(iii) The Sequential Probability Ratio Test is introduced
to evaluate the residual to minimize the occurrence
of misinformation or false detection in fault
diagnosis

The rest of this paper is organized as follows. Section 2
gives a description of the brake system and builds the math-
ematical model. Section 3 introduces the theory of adaptive
UKF and presents the fault diagnosis scheme of the pressure
sensor bias and drift faults. Section 4 shows the experimental
results and analysis. Finally, the conclusion is drawn in Sec-
tion 5.

2. System Model and Problem Formulation

2.1. Principle of the Electro-Pneumatic Brake System. The
electro-pneumatic brake system (see Figure 1) consists of
the mechanical, pneumatic, and electric subsystem. The
mechanical subsystem is the foundation brake rigging which
mainly consists of the brake pads, drum, and shoes. The
pneumatic subsystem consists of many components, includ-
ing the main reservoir, the brake pipe and chamber, an
equalizing reservoir, a relay valve, and a compressor. The
electrical subsystem mainly contains a brake control unit
(BCU), pressure sensors, and solenoid valves (brake valve
and release valve).

2.2. Model of the Equalizing Reservoir Pressure Control
System. The ideal gas law equation is as follows:

P = nRT
V

, ð1Þ

which describes the quantitative relation among pressure, air
temperature, and volume of a chamber, where n, R, P, T , and
V represent the number of moles of the gas, the gas constant,
the absolute pressure, the absolute air temperature, and the
chamber volume, respectively. Assuming the volume V is
invariable, taking the derivative of the equation with respect
to time, we can get

_P = RT
V

qm, ð2Þ

where qm is the mass flow in the chamber. According to Ber-
noulli’s equation for adiabatic and isentropic airflow, qm is
calculated as follows [23]:

qm = f Pu, Pdð Þ =
∗20c PuC1Affiffiffiffiffiffiffi

RT
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

2
γ + 1

� � γ+1ð Þ/ γ−1ð Þ
s

, Pd
Pu

≤ 0:528,

PuC2Affiffiffiffiffiffiffi
RT

p
ffiffiffiffiffiffiffiffiffiffi
2γ
γ − 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd
Pu

� �2/γ
−

Pd
Pu

� � γ+1ð Þ/γ
s

, 0:528 < Pd
Pu

≤ 1,

8>>>>><
>>>>>:

ð3Þ
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where R and T have the same meanings as those in the ideal
gas law equation. Pd and Pu are the downstream pressure
and upstream pressure, respectively. C1 and C2 are the flow
rate coefficients. γ represents the adiabatic exponent of air,
and A represents the orifice passage area. By combining (1)
and (2), the equalizing reservoir pressure transients of the
brake system in different operating modes can be formulated
as (4), (5), and (6).

The equalizing reservoir pressure dynamics in the release
process is formulated as

_P =

PsC1A1
ffiffiffiffiffiffiffi
TR

p

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

2
γ + 1

� � γ+1ð Þ/ γ−1ð Þ
s

, P
Ps

≤ 0:528,

PsC2A1
ffiffiffiffiffiffiffi
TR

p

V

ffiffiffiffiffiffiffiffiffiffi
2γ
γ − 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
Ps

� �2/γ
−

P
Ps

� � γ+1ð Þ/γ
s

, 0:528 < P
Ps

≤ 1,

8>>>>><
>>>>>:

ð4Þ

where P is the equalizing reservoir pressure, Ps is the main
reservoir pressure, A1 represents the orifice passage area of
the release valve, and V is the equalizing reservoir volume.

The pressure in the equalizing reservoir remains steady
in the hold mode. Then, the pressure dynamics can be
described as

_P = 0: ð5Þ

The equalizing reservoir pressure dynamics in the brak-
ing process is formulated as

_P =
−
PC3A2

ffiffiffiffiffiffiffi
TR

p

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

2
γ + 1

� � γ+1ð Þ/ γ−1ð Þ
s

, Po

P
≤ 0:528,

−
PC4A2

ffiffiffiffiffiffiffi
TR

p

V

ffiffiffiffiffiffiffiffiffiffi
2γ
γ − 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Po

P

� �2/γ
−

Po

P

� � γ+1ð Þ/γ
s

, 0:528 < Po

P
≤,1

8>>>>><
>>>>>:

ð6Þ

where Po is the atmosphere pressure, A2 represents the ori-
fice passage area of the brake valve, and C3 and C4 are the
flow rate coefficients.

From (4) and (6), we can know that the brake system is
strongly nonlinear; thus, we choose the UKF as the pressure
estimator. The mathematical model should be as accurate as
possible in order to realize an effective fault diagnosis
scheme. Therefore, the parameters in the models should be
obtained accurately. The equalizing reservoir volume, the
orifice passage areas of the release valve, and the brake valve
can be measured directly. However, the flow rate coefficients
in (4) and (6) need to be identified. In this paper, the flow
rate coefficients C1 ~ C4 are identified by the least square
method [24]. The validity of the model is tested by experi-
ments, which is described in Section 4.

3. The Proposed Sensor Fault
Diagnosis Method

The theory of adaptive UKF and the proposed sensor fault
diagnosis method are introduced in this section. Firstly, the
principle of adaptive UKF is developed, and then, the algo-
rithm is applied to fault diagnosis of the equalizing reservoir
pressure sensor.

3.1. The Theory of Adaptive UKF. Based on the theory of tra-
ditional UKF, the prior statistics of the process noise is used
to compensate for the changing model uncertainty [25],
which is adaptively corrected by the Sage-Husa noise estima-
tor. The UKF is used for the discrete system generally. The
general form of a discrete nonlinear system is defined by

xk+1 = f xk, ykð Þ + qk = Fkxk + Bkuk + qk,
yk = h xkð Þ + rk,

(
ð7Þ

where uk and xk are the input vector and n-dimensional state
vector, respectively. yk is the m-dimensional observation
vector. qk and rk represent the process noise and measure-
ment noise, respectively, which are the Gaussian white noise
with zero mean.

Reference
pressure

Main reservoir pipe
Reduction valve

Brake control
unit

Release valve Brake valve

Orifice 1 Orifice 2
Atmosphere

Equalizing reservoir
pressure system

The foundation
brake rigging

Pressure sensor
E P

Equalizing reservoir

…

Brake pipeRelay valve

P T

Figure 1: The schematic of the locomotive electro-pneumatic brake system.
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Normally, the statistics of the measurement noise and
process noise is unvarying in the UKF. However, the pro-
cess noise of the brake system is varying and difficult to be
determined. The measurement noise lies on the accuracy
of the pressure sensor and is relatively constant. The sta-
tistics of process noise is described by the covariance
matrices Q. Similarly, the measurement noise R can be cal-
culated from historical measurements. Then, the Sage-
Husa method is applied to tune the covariance matrices
Q adaptively. The Sage-Husa suboptimal noise estimator
is depicted as follows [26]:

dk =
1 − bð Þ
1 − bk

� � ,

vk = yk − h �xk∣k−1
� �

,

Qk = 1 − dk−1ð ÞQk−1 + dk−1 Kvvkv
T
k K

T
k + Pk −〠

2n

i=0
ωc
i χi,k∣k−1 − �xk∣k−1
� �

ρi,k∣k−1 − �yk∣k−1
� �T#"

,

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

where b ∈ ð0:95,0:99Þ is the forgetting factor and Kk is the
Kalman gain.

The more the process and measurement noise change,
the higher the value of b. The Sage-Husa noise estimator
cannot normally work when the prior statistical characteris-
tic of noises is unknown; otherwise, the filter will diverge
[27]. The statistics of the measurement noises in the brake
system can be obtained according to historical
measurements.

3.2. Residual Evaluation through the Sequential Probability
Ratio Test. In order to minimize the occurrence of misinfor-
mation or false detection in fault diagnosis, [28] proposed an
improved Sequential Probability Ratio Test (SPRT) method.
In this method, statistical hypothesis tests are used, where
H0 and H1 are supposed to be the nonfault hypothesis and
faulty hypothesis, respectively [29]. The residuals under
fault-free condition conform to a normal random variable
(variance value σ and mean value μ0), while the residuals
in faulty condition have the same variance value σ, whose
mean value is μ1. The log-likelihood ratio is calculated as fol-
lows:

L kð Þ = ln p ri ∣H0ð Þ
ri ∣H1ð Þ = k �rk − μ0ð Þ2

2σ2 , �rk =
1
k
〠
k

i=1
ri: ð9Þ

The fault detection is then converted into detecting the
changes of the residual mean. When there is no fault, LðkÞ
is near to zero. When there is a fault, �rk would be away from
μ0 and LðkÞ would be away from zero.

A fault is detected when LðkÞ ≥ TðH1Þ, where TðH1Þ is
the threshold, PM is the missing report rate, and PF is the
false alarm rate. In this paper, we set PM = 0:01, PF = 0:01,
and TðH1Þ = 4:595. When k is too large, LðkÞ will exceed
TðH1Þ even though a small deviation between �rk and μ0
exists. In order to solve the issue, we set an upper bound,
2000 on k, and the upper bound is calibrated through
experiments.

3.3. The Proposed Sensor Fault Diagnosis Method. The sche-
matic of the proposed sensor fault diagnosis approach is
described in Figure 2. It is assumed that the process and
measurement noise of the equalizing reservoir pressure sys-
tem is the Gaussian white noise. Thus, an adaptive UKF can
be employed to estimate output pressure according to the
inputs and outputs of equalizing reservoir pressure system.
The inputs of the equalizing reservoir pressure system are
generated by the brake control unit. The outputs of the
equalizing reservoir pressure system are measured by a pres-
sure sensor. Then, the residual is generated by subtracting
the pressure sensor measurement from the adaptive UKF
pressure estimation. Afterwards, the residual is passed
through the Sequential Probability Ratio Test to increase
the sensing sensitivity. By comparing the preset threshold,
the fault detection result can be obtained.

The adaptive UKF is applied as the state estimator in this
paper. Based on the conventional UKF algorithm, the mea-
surement noise and process noise covariance is adaptively
tuned according to (7) by using the Sage-Husa method.
The fault diagnosis scheme is based on the equalizing reser-
voir pressure system models (3), (4), and (5). Since the sys-
tem is nonlinear, we choose the Runge-Kutta methods to
discretize the system models. Because the UKF algorithm
can achieve third-order accuracy of the covariance and pos-
terior mean [18], we use the second-order Runge-Kutta
method [30], whose local truncation error is Oðh3Þ and h
is the step size. The process of the proposed sensor fault
diagnosis scheme is depicted in Algorithm 1, where the
equalizing reservoir pressure, P, is chosen as the state vari-
able, and the system state equations (3), (4), and (5) are sim-
plified as _x = f ðxÞ. The observation equation is y = x, where y
is the pressure sensor measurement. T = 0:02 (second) is the
step size.

4. Simulation Results and Discussions

We construct an experimental platform for the equalizing
reservoir pressure system and verify the effectiveness and
feasibility of the proposed sensor fault diagnosis strategy.
The experimental platform (see Figure 3) is part of the real
locomotive electro-pneumatic brake.

The detailed parameters of the mathematical models are
shown in Table 1, and the flow rate coefficients of the system
are identified by the least square method. Firstly, the validity
of the mathematical model of the equalizing reservoir pres-
sure system is verified by experiments. Then, bias faults
and drift faults are injected into the equalizing reservoir
pressure sensor, and fault diagnosis performance of the pro-
posed method is evaluated. Finally, fault diagnosis perfor-
mance of the proposed method is compared with that of
the Luenberger observer.

4.1. Model Verification. Figure 4 depicts the equalizing reser-
voir pressure transients, where the red line represents the
equalizing reservoir pressure measured by a normal sensor
and the blue line represents the pressure calculated from
the mathematical model. The relative error between sensor
measurement and model output is described by the green
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line. The equalizing reservoir pressure transients in the brak-
ing process are illustrated (see Figure 5), and the relative
error between sensor measurement and model output is
plotted by the green line. It can be found that the accuracy
of the system model is high adequately.

4.2. Bias Fault Detection. The residuals resulted from sensor
bias faults in the release process are shown (see Figure 6),
and the bias faults are injected to the sensor at the third sec-
ond after the release operation. In this figure, the blue line
describes the residuals resulting from the bias fault whose
magnitude is 1 kPa, and the residuals resulting from the bias
fault of 2 kPa magnitude are depicted by the red line. We see
that the amplitude of the residuals changes after the bias
fault occurs (see Figure 6). The larger the fault magnitude,
the larger the residual magnitude. The fault detection result
of sensor bias faults with different magnitudes is shown in
the release process (see Figure 7). In this figure, we can see
that the bias fault whose magnitude is 2 kPa is detected,
while the bias fault of 1 kPa magnitude has not been
detected. This is because the model is not accurate enough.
To improve the sensitivity of fault detection, the model
needs to be sufficiently accurate.

The residuals of sensor bias faults in the braking process
are depicted (see Figure 8), and sensor bias faults with differ-
ent magnitudes occur at the eighth second after the braking
operation. The blue line represents the residuals of the bias
fault whose magnitude is 1 kPa, and the bias fault of 2 kPa
magnitude is represented by the red line. We can know that

Brake control
unit

Inputs Equalizing reservoir
pressure system

Pressure
sensor

Pressure

Estimated pressureAdaptive UKF

Sequential probability
ratio test

Fault detection result

Residual

Figure 2: Schematic of the proposed sensor fault diagnosis method.

1: Determination of the system state equation and observation equation: the system state equation _x = f ðxÞ and the observation equa-
tion y = x;
2: Discretization of the system equation and observation equation: discretized system equation xk+1 = xk + ðT/2Þ × ðk1 + k2Þ, k1 = f ðxkÞ
and k2 = f ðxk + T × k1Þ, T = 0:02 ; discretized observation equation yk = xk;
3: Initialization: for k = 0, set: �x0 = E½x0�, initial estimation error covariance P0 = E½ðx0 − �x0Þðx0 − �x0ÞT �, initial process noise covari-
ance Q0 = 0:1, measurement noise covariance R = 0:03;
4: Time update and measurement update for k = 1, 2,⋯;
5: residual generation by making a difference between the pressure sensor measurement and the UKF estimation rk = �xk − yk;
6: residual evaluation through Sequential Probability Ratio Test;
7: gotoTime update and measurement update

Algorithm 1: The procedure of sensor fault diagnosis.

Figure 3: The experimental platform for the equalizing reservoir
pressure control system, which is part of the real locomotive
electro-pneumatic brake, including the following: (a) upper
computer, (b) brake control unit, (c) value and installation gas
circuit plate, (d) pressure sensor, (e) equalizing cylinder, and (f)
cylinder to simulate a train pipe.

Table 1: Parameters of the system model.

Parameter Value Parameter Value

Ps 650 kPa Po 101.33 kPa

A1 4mm2 A2 3mm2

T 293K R 287 J/(kg·K)
γ 1.403 V 1.5 L

C1 0.4593 C2 0.4362

C3 0.2505 C4 0.1905
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the residual magnitudes change after the bias fault occurs
(see Figure 8). The fault detection result of sensor bias faults
with different magnitudes is shown in the braking process

(see Figure 9). From the figure, we can see that the bias fault
of 2 kPa magnitude has been detected, while the bias fault
whose magnitude is 1 kPa has not been detected.

4.3. Drift Fault Detection. In this part, the drift fault detec-
tion is implemented in the braking and release processes,
which is simulated by injecting a varying error to the mea-
surement process, and the error magnitude increases each
sampling period.

The residuals resulting from a sensor drift fault in the
release process are described (see Figure 10), and the sensor
drift fault occurs at the third second after the release opera-
tion. The measurement error increases artificially by
0.02 kPa each sampling period to simulate the drift fault. It
can be seen that the residual changes slightly after the drift
fault occurs (see Figure 10). The sensor drift fault detection
results are shown in the release process (see Figure 11),
where the log-likelihood ratio, LðkÞ, changes after the fault
occurrence. The drift fault is detected about 2.5 seconds after
its occurrence. Then, we can conclude that the Sequential
Probability Ratio Test method has excellent performance
in detecting the gradual fault. The drift fault detection result
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Figure 4: Pressure transients measured by a sensor and calculated by a mathematical model in the release process.
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Figure 5: Pressure transients measured by a sensor and calculated by a mathematical model in the braking process.
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of the equalizing reservoir pressure sensor in the braking
process is similar to that in the release process.

4.4. Performance Comparison of Sensor Fault Diagnosis
Methods. In order to compare the performance of different
fault diagnosis methods, the residual of the proposed fault
diagnosis method is compared with that of the Luenberger
observer during the brake release procedure. Residual com-
parison of different methods is carried out when the
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Figure 7: Fault detection result of sensor bias faults with different
magnitudes in the release process.
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locomotive electro-pneumatic brake system is operated
under normal conditions. In the experiment, the residuals
are generated by subtracting the sensor measurement from
the equalization cylinder pressure estimated by the observer
and the proposed method based on the adaptive unscented
Kalman filter, respectively.

In Figure 12, the blue line describes the residuals of the
fault detection method based on the adaptive untraceless
Kalman filter. The black line represents the residuals of the
Luenberger observer. And the red line represents the fault
detection threshold. From Figure 12, it can be seen that there
are many false error detections when using the Luenberger
observer for fault detection, because the error of the mecha-
nism model is too large. If the threshold is increased to
reduce the false positive rate of the Luenberger observer
method, the sensitivity of the Luenberger observer method
will be reduced. On the contrary, the residual error of the
proposed method is much smaller than that of the Luenber-
ger observer method and fluctuates little. By comparing the
residuals generated by the two methods and analysing the
fault detection results, the conclusion can be drawn that
the proposed fault detection method has better accuracy
and sensitivity than the Luenberger observer method. This
is because the adaptive unscented Kalman filter can filter
out the changing process noise and measurement noise
and accurately estimate the pressure of the equalizing air
cylinder.

5. Conclusions

This paper proposes an efficient and novel model-based sen-
sor fault diagnosis algorithm based on UKF for the locomo-
tive electro-pneumatic brake system. For this purpose, the
accurate pressure mathematical model is first built. Then,
an adaptive UKF is applied to estimate the pressure tran-
sients of the equalizing reservoir to improve the algorithm’s
robustness. The residuals are calculated, and the residual
evaluation is implemented by an improved Sequential Prob-
ability Ratio Test method. The proposed algorithm can effi-
ciently detect drift faults and bias faults of the equalizing
reservoir pressure sensor. Experiments validate the feasibil-
ity and effectiveness. The future work that needs to be inves-
tigated is to improve the fault detection sensitivity for minor
and gradual fault.
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This paper describes the design and implementation of an in-body electromagnetic sensor for patients with implanted
pacemakers. The sensor can either be mounted on myocardial tissue and monitor the electrocardiography (ECG) with contact
electrodes or implanted under the skin and monitor the ECG with coaxial leads. A 16-bit high-resolution analog front-end
(AFE) and an energy-efficient 32-bit CPU are used for instantaneous ECG recording. Wireless data transmission between the
sensor and clinician’s computer is achieved by an embedded low-power Bluetooth transmitter. In order to automatically
recognize the working status of the pacemaker and alarm the episodes of arrhythmias caused by pacemaker malfunctions,
pacing mode classification and fault diagnosis on the recorded ECG were achieved based on an AI algorithm, i.e., a resource
allocation network (RAN). A prototype of the sensor was implemented on a human torso, and the in vitro test results prove
that the sensor can work properly for the 1-4-meter transmission range.

1. Introduction

According to the WHO’s 2019 Global Health Estimates [1],
cardiovascular diseases (CVD) have become one of the main
sources of human death in the last 20 years, accounting for
16 percent of total death cases. Accurate and advanced
screening of heart failure signs is an effective method in
reducing the mortality of patients caused by heart failures.
Among all the cardiac monitoring technologies, electrocar-
diography (ECG) signals are most commonly used to assess
the state of the heart and indicate irregular heartbeats, due to
its high resolution and strong anti-interference abilities.

For continuous heart monitoring, pacing of the heart is
generally monitored by a mobile ECG monitoring device,
i.e., Holter [2, 3]. However, there are some disadvantages of
the Holter. Firstly, it is bulky and inconvenient to carry, which
leads to the need for a specific environment for operation. Sec-
ondly, patients with CVD need to paste the electrodes on their
skin which may lead to allergy. Thirdly, the Holter is not
allowed to operate at frequencies above 1 kHz [4], which

makes it difficult to detect abnormal cardiac events in extreme
conditions. For example, when a patient with implanted pace-
maker is exposed to a transient electromagnetic field, the elec-
tromagnetic interference (EMI) with frequency of ~kHz to
~MHz could be created in the pacing loop formed by the leads
and the pulse generator. These EMI signals are difficult to
detect by a regular Holter, but they need to be properly mon-
itored since these signals could be misunderstood as the nor-
mal pacing pulses by the pacemaker and potentially cause
pacemaker malfunctions. A sensor which can monitor the
normal ECG and the high frequency EMI signals simulta-
neously is necessary for heart failure protection.

At present, various wearable and implantable sensors have
been developed for monitoring heart activity based on surface
ECG, but most of them can only detect ECGwithout classifying
the pacing mode [3, 5, 6]. As a result, abnormal ECG signals,
such as arrhythmias, can only be recognized by manual visual
examination of the ECG by physicians. However, some abnor-
mal signals lack specificity, and the differences between them
and normal signals are inconspicuous. Misunderstandings and
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omissions of important information in ECG diagnosis are
inevitable. Therefore, an intelligent diagnostic method is nec-
essary to improve the accuracy of ECG diagnosis. Recent
research has shown that deep machine learning can establish
the mapping relationship of nonlinear functions in ECG and
fully explore the information that is difficult to identify manu-
ally [6, 7]. For this reason, the introduction of machine learn-
ing to assist the identification and diagnosis of ECG signals
detected by an implantable sensor can greatly improve the effi-
ciency of diagnosis, reduce the rate of misdiagnosis, and save
medical costs [6–8].

In this paper, the design and evaluation of an implant-
able electromagnetic sensor are introduced, which can mon-
itor and classify ECG with ultralow power consumption,
high signal resolution, and automatic pacing mode recogni-
tion. This paper is organized as follows: firstly, we describe
the architecture and key parameters of the joint ECG tele-
monitoring system, followed by the embedded forms in var-
ious clinical conditions and main circuit blocks of the
sensor. Next, a deep learning network based on the RAN
model is introduced for automatic fault diagnosis of the
measured ECG signal. Eventually, the feasibility of the in-
body sensor is tested by in vitro tests, where it is indicated
that the sensor can work properly for the 1-4-meter trans-
mission range, and two types of the abnormal pacing mode,
i.e., pulmonary hypertension (PH) and respiratory sinus
arrhythmia (RSA), are successfully validated through the
AI-enhanced ECG signals.

2. Design of the Implantable Electromagnetic
Sensing System

2.1. System Architecture. As shown in Figure 1, the implant-
able electromagnetic sensing system consists of two parts,

i.e., the in-body electromagnetic sensor and the AI diagnos-
tic system. For the in-body sensor, the heart rhythms on the
surface of the myocardium are detected by the contact elec-
trodes and amplified by a highly sensitive and low-noise
operational amplifier (TLV 9152) integrated with a resis-
tance network and high-pass filter. A time-multiplexed 16-
bit SAR ADC digitizes the output signals. The output of
the ADC is then sent to the central processing unit (CPU
MSP432P4011RGCR), which packs the ADC output data
with the proposed frame structure. The recorded data is
stored in a 1GB SPI Flash memory and transmitted wire-
lessly by an energy-efficient Bluetooth transmitter to the
PC. A 3.7V lithium battery is chosen as the power supply
to support up to 1MHz sampling rate for the 1-4-meter
transmission range. The transmitted heart rhythms are in
the form of ECG and examined by the AI diagnostic system
on the PC. The AI diagnostic system is achieved by offline
network training and online pattern recognition. In the off-
line training section, typical ECG in normal, pulmonary P
wave, and arrhythmia cases monitored by Holter were
packed into the ECG database. Wavelet packet decomposi-
tion (WPD) and principal component analysis (PCA) are
used to extract the features of the above three types of
ECG. Then, the training was carried out in the model based
on the RAN algorithm. For the online model evaluation, the
ECG monitored in real time by the in-body sensor are
scanned online through WPD and the feature extraction is
achieved online by PCA. By using the pretrained weights
of the network, the pacing mode can be correctly recognized.

2.2. Sensor Geometry. As shown in Figure 2, the implantable
electromagnetic sensor mainly consists of a titanium alloy
shell and a built-in sampling chip. The titanium alloy shell
can be described as a cylindrical shielded container with
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proper seal cover, which ensures good electromagnetic shield-
ing with frequency up to GHz and is waterproof. It is noted
that the contact electrodes for heart rhythm measurement
are different for in vivo and in vitro conditions. For the
in vitro test, the sensor can stay close to the torso, so that the
contact electrodes are designed as a pair of probe needles.
For the in vivo test, the sensor can only stay in the subcutane-
ous pocket, so that the contact electrodes are designed as coax-
ial lead electrodes which can pass through the veins. The built-
in sampling chip consists of four parts, i.e., a signal modula-
tion board, a master control board, a wireless communication,
and a data storing board. The detailed implementations of
each part are described in the following sections.

2.3. Circuit Implementation

2.3.1. Signal Modulation Board. As shown in Figure 3, the
signal modulation board is completely achieved by the
implementation of an analog circuit. Its main function is
to filter clutter and amplify the heart rhythm signal. The
analog circuit is composed of the input circuit, the secondary
amplifier circuit, and the trailing circuit. The input circuit is
made by two resistances with values of 800 kΩ and 200 kΩ
in series, which can realize the function of reducing the
input signal by 4/5 through resistor voltage division. The

secondary amplifier is a coamplifier with model TLV9152.
The role of the secondary amplifier circuit is to make the sig-
nal to the setting threshold value, and ensure that the polar-
ity of the signal can be recorded. The trailing circuit is a
resistance network composed of an eight-choice analog
switch with model SN74CBTLV3251, which can amplify
the signal by 128 times. The trailing circuit can remove clut-
ter which is below the setting threshold. Further, by setting
the parameters of the filter, the device can measure signals
with frequencies up to 1MHz.

2.3.2. Master Control Board. As shown in Figure 4, the func-
tion of the master control system is to transform the ampli-
fied and noiseless electrical signals into digital signals. A
time-multiplexed 16-bit SAR ADC digitizes the output sig-
nals. The output of the ADC is then sent to the central pro-
cessing unit (CPU MSP432P4011RGCR), which packs the
ADC output data with the proposed frame structure. Fur-
ther, the reference voltage chip (REF4132) provides voltage
with the amplitude of 2.5V to ensure high accuracy and high
stability of ADC. This section guarantees that the device has
a sampling rate of up to 1Mbps.

2.3.3. Wireless Communication and Data Storing Board. As
shown in Figure 5, digital signals are stored in a 1GB flash
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memory (TC58CVG1S3HRAIJ), which is controlled
through the serial interface (SPI) of the CPU. The device
can connect to the PC to transmit data through wireless
Bluetooth (CC2650). Then, the types of CVD can be recog-
nized through the AI diagnostic system on the PC.

2.4. AI Diagnostic System. The offline network training pro-
cess provides the pretrained weights of pacing modes for the
online classification of the AI diagnostic system. Offline
training uses the open data of ECG signals from the Physi-
oNet database [9]. A typical ECG signal from PhysioNet is
shown in Figure 6. Three types of ECG signals are selected
as the training target, i.e., normal, pulmonary hypertension
(PH), and respiratory sinus arrhythmia (RSA), and the sam-
ple size for each pacing mode is defined as 500. For the pre-
cision of AI algorithm validation, ECG cases with PH and
RAS are selected from people with different degrees of dis-
ease. The testing targets for online classification are the
ECG signals obtained by the electromagnetic sensor. The
detailed evaluations of the AI technology are described in
the following sections.

2.4.1. Data Processing. ECG signals processing includes noise
elimination, baseline drift, and data enhancement [10, 11].
The empirical decomposition algorithm (EDM) is used to
decompose the ECG signal into 10 intrinsic mode functions
(IMF) [12]. The wavelet transform algorithm is used to
denoise IMF1 and IMF2 with high frequency. IMF9 and
IMF10 with low frequency can eliminate baseline drift
according to the median filtering algorithm. Then, the proc-
essed IMF mode and the remaining unprocessed IMF mode
are reconstructed to obtain a smooth and noiseless ECG sig-
nal. Finally, data enhancement is performed to prevent the
neural network from overfitting and to improve the unbal-
anced frequency of the ECG [13]. The ECG after data pro-
cessing is shown in Figure 7.

After the ECG is enhanced by data processing, the pan-
Tompkins QRS feature detection algorithm is applied to
the processed ECG to locate QRS peak points. According

to the position of QRS, the heartbeat signals are cut apart into
singles [14]. After the position of QRS is determined, the posi-
tion of the P wave which is about 200ms away from QRS can
also be located. The peak of the P wave can be obtained in the
range of 150ms-200ms ahead of the appearance of the peak of
QRS [15]. In the process of heartbeat segmentation, 99 sample
points were intercepted forward and 100 sample points were
intercepted backward at the QRS peak points which had been
located. Each sample can contain a P wave, QRS wave, T wave,
and other information of a heartbeat cycle. The positioned P
wave is shown in Figure 8.

2.4.2. Feature Extraction. In this paper, wavelet packet
decomposition (WPD) and principal component analysis
(PCA) are used to extract ECG features. After three-layer
wavelet packet decomposition of ECG, 8 wavelet packet
coefficients of the subfrequency band can be obtained, which
help to analyze signals with different frequency bands [16].
The time frequency of ECG cases with normal, PH, and
RAS is totally different, so the energy of each ECG is differ-
ent in various frequency bands. As a result, the energy of
each frequency band is calculated as the feature vector to
diagnose the ECG type [17]. After the decomposition of
the signal wavelet packet, the energy in each subfrequency
band is calculated as follows:

E∗
j = 〠

N

k=1
dkj
��� ���2, ð1Þ

where n is the number of wavelet packet decomposition
layers, N is the number of coefficients in dj, and dj

k is the
coefficient obtained from the decomposition of the j-layer
wavelet packet.

The energy in each subfrequency band obtained after n
-layer wavelet packet decomposition of the signal is calcu-
lated as

E∗ = E∗
1 , E∗

2 ,⋯,E∗
2nð Þ, ð2Þ
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where the signal is decomposed by a 3-layer wavelet packet
to get 8 frequency bands, and then, the energy in each sub-
frequency band is calculated and normalized to get the fea-
ture vector of each ECG.

In order to simplify the calculation process, principal
component analysis is used, which can be utilized to remove
the redundant feature components and extract the main
part. Ck is the corresponding characteristic unit vector, k =
1, 2,⋯, K . λk is the characteristic root. The relationship
between the principal component yk (k = 1, 2,⋯, K), the
eigenvector matrix D, and the contribution factors of the
first N principal components can be expressed as

yk = ck′D, ð3Þ

ηn =
∑n

k=1λk
∑K

k=1λk
: ð4Þ

2.4.3. Classification Tools. The resource allocation network
(RAN) is a single hidden layer forward network, which can

create a compact network, and has the characteristics of
high learning speed [18]. Because of its structure and effi-
cient performance, the RAN network can be used to clas-
sify ECG data after feature extraction. The Gaussian
activation function is used for each hidden node of the
hidden layer in RAN, and the following local mapping is
implemented:

zj =〠
k

cjk − Ik
� �2, ð5Þ

xj = exp −
zj
ω2
j

 !
: ð6Þ

cjk is the data center of the hidden node of RAN. ωj is the
width of the hidden node. xj is the output of the hidden
node. zj is the connection weight between the hidden node
and the output node. In order to accelerate the learning
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Figure 7: Original normal ECG after data processing.
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speed of the algorithm, the following equation is usually
adopted to replace equation (6).

xj =
1 −

zj
qω2

j

 !2

, zj < qω2
j ,

0, other,

8>><
>>: ð7Þ

where q is an empirical value of 2.67.
In the offline training process, the ECG cases with nor-

mal, PH, and RAS from the PhysioNet database were tagged
as the dataset for ECG classification. Then, the ECG features
were extracted by WPD and optimized by PCA. Finally, 80%
of the ECG data was fed to the RAN network for training,
and the remaining 20% of the ECG data was used to test
the RAN classifier and establish the ECG diagnostic model.

In the online classification process, the ECG data on the
myocardium is collected by the in-body electromagnetic
sensor. The features are obtained and selected, and then,
the preferred abnormal features are sent to the RAN classi-
fier for online diagnosis. Finally, the ECG type correspond-
ing to the real ECG cases is indicted. The working
flowchart of the AI diagnostic system is shown in Figure 9.

3. In Vitro Experimental Verifications

To further validate our design, an in vitro experiment using
the prototype sensor is performed, as shown in Figure 10. A
human torso phantom with an EMI source is introduced.
The human torso phantom is made by a pacemaker con-
nected to a pork heart immersed in saline solution. The
EMI source uses the air gap as the on/off switch to charge/
discharge a series of capacitors to generate an impulse
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current with duration in microseconds and amplitude of
kiloampere, which can create a radiated electromagnetic
field in milliteslas surrounding the torso.

During the test, the swine heart is continually excited by
pacing pulses at 60 ppm emitted from the pacemaker, with
the amplitude of the normal ECG of approximately 0.6-
0.8mV. The implantable electromagnetic sensor was used
to monitor ECG signals on the myocardium continually.

The typical ECG signals measured by the in-body sensor
are shown in Figure 11. Figure 11(a) shows the normal ECG
measured by the sensor. The single ECG cycle is about
800ms and its amplitude is 0.6mV, which is the same as
the ECG detected by Holter. Moreover, the characteristics
of the P wave and the QRS wave can be fully demonstrated
by the normal ECG signals measured by the sensor.
Figure 11(b) shows the ECG cases with PH measured by
the sensor. The key characteristic of this kind of ECG is that
the P wave is a peaked wave with an extremely high ampli-
tude, which is about 5 times of the normal P wave. This fea-
ture is identical to the clinical ECG cases with PH.

Figure 11(c) shows the ECG cases with RAS recorded by
the sensor. The key characteristic of this kind of ECG is
that the interval time of the single ECG signal is greater
than 1000ms, which can correspond to clinical ECG cases
with RAS.

In order to fully reflect the applicability of the model,
we selected three kinds of pacemakers as heartbeat pulse
sources in the in vitro experiment. Taking 1 kA as the step
length, the three pacemakers worked under 1-5 kA, and 5
experiments were conducted at each current level. The
identification results are shown in Figure 12 and Table 1.
It is shown that the system can automatically distinguish
three types of ECG, with an overall classification precision
of 83.2%.

4. Conclusion

This paper presents a novel sensor system for implantable,
wireless communicated, and easy-to-use ECG data acquisi-
tion and pacing mode recognition. This system is based on
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Figure 11: The ECG measured by implantable electromagnetic sensor.
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a cooperative heart-computer-interface technology, i.e., an
in-body electromagnetic sensor combined with AI-
enhanced ECG. The in-body sensor is formed by a highly
sensitive and low-noise analog signal measuring module, a
time-multiplexed ADC and high-resolution CPU for data
processing, and an energy-efficient Bluetooth transmitter
for data transferring to PC. The highly integrated chip-on-
chip packaging allows the contact electrode on the sensor
in either probe or coaxial lead forms and monitoring normal
ECG and EMI signals simultaneously. Further, the deep
learning network based on the RAN algorithm is applied
on the measured ECG signals from PC, which allows the

precise feature extraction and pattern recognition of both
normal and abnormal ECG. The sensor is tested in an
in vitro experiment, and the results indicate that the system
is able to synchronously measure and diagnose ECG signals
from pacemakers. Two types of abnormal ECG, i.e., PH and
RAS cases, as well as the normal ECG are successfully recog-
nized by the AI diagnosis system with overall classification
precision of 83.2%. Overall, the validated and verified design
of in-body sensor and AI-enhanced ECG could potentially
be used as human-like interpretation of the ECG but also
as a powerful tool for long-term and emergency monitoring
of cardiac health and diseases.
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Table 1: Classification precision of AI system.

Category
Number of

input pictures

Number of
recognized
pictures

Precision
Mean average
precision

Normal 100 85 85.0%

83.2%PH 78 64 81.9%

RAS 40 33 82.6%
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Aiming at the formation and path planning of multirobot systems in an unknown environment, a path planning method for
multirobot formation based on improved Q-learning is proposed. Based on the leader-following approach, the leader robot
uses an improved Q-learning algorithm to plan the path and the follower robot achieves a tracking strategy of gravitational
potential field (GPF) by designing a cost function to select actions. Specifically, to improve the Q-learning, Q-value is
initialized by environmental guidance of the target’s GPF. Then, the virtual obstacle-filling avoidance strategy is presented to
fill non-obstacles which is judged to tend to concave obstacles with virtual obstacles. Besides, the simulated annealing (SA)
algorithm whose controlling temperature is adjusted in real time according to the learning situation of the Q-learning is
applied to improve the action selection strategy. The experimental results show that the improved Q-learning algorithm
reduces the convergence time by 89.9% and the number of convergence rounds by 63.4% compared with the traditional
algorithm. With the help of the method, multiple robots have a clear division of labor and quickly plan a globally optimized
formation path in a completely unknown environment.

1. Introduction

As robots become more and more widely used in various
industries, a single robot cannot be competent for complex
tasks. Therefore, multirobot formation [1] and path planning
have become research hotspots, and they have good applica-
tions [2, 3] in collaborative search, exploration, handling, res-
cue, and group operations. Path planning of multirobot
formation requires multiple robots to form a formation and
maintain this positional relationship to move to the target. It
is necessary not only to avoid obstacles safely but also to find
a better path. In addition, compared to the simpler path
planning in the known environment, higher requirements
on the ability of multiple robots to plan paths are put in
the unknown environment. There have beenmany implemen-
tation methods for multirobot formation, including behavior-
based method [4], virtual structure method [5], and leader-
followingmethod [6]. The behavior-basedmethod is to design

sub-behaviors in advance and choose the behavior to execute
according to the changes in the situation, but the accuracy is
not enough to integrate various behaviors in a complex envi-
ronment. The virtual structure method regards the formation
as a fixed rigid structure and cannot effectively avoid obstacles.
The leader-following method with the advantage of simple
and flexible structure mainly realizes collaboration by sharing
information of leader. For robot’s path planning, A∗ algo-
rithm [7] and reinforcement learning (RL) algorithm [8] are
commonly used in global path planning; the former can effec-
tively solve the optimal path, but it needs to know all the envi-
ronmental information in advance; the latter can learn
autonomously in the environment, but it takes more time.
The artificial potential field (APF) method [9] is widely used
in local path planning, which can cope with the real-time
changing environment but lacks the global planning ability.

For the problem of multirobot formation and path plan-
ning, Chen et al. [10] proposed a new leader-following
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control framework by introducing the RH method, which
enables fast convergence of a formation task for a group of
mobile robots. Based on the path planning of a single robot,
Sruthi et al. [11] designed a nonlinear controller for tracking
to achieve the multirobot formation. The above two
methods require rigorous modeling of the system and cum-
bersome theory, which are weak in the application. By mix-
ing formation control with leader-following and priority
methods, Sang et al. [12] used the MTAPF algorithm with
an improved A∗ algorithm for path planning. Das and Jena
[13] implemented collision-free path planning for multiple
robots by using an improved particle swarm algorithm and
evolutionary operators. Qu et al. [14] used a modified
genetic algorithm to plan paths for multiple robots by add-
ing a co-evolution mechanism. Lazarowska [15] used the
discrete APF to find crash-free paths for robots in dynamic
and static environments. Some of the above methods cannot
be carried out in an unknown environment and some can-
not plan an optimal path.

At present, Q-learning is a widely applied reinforcement
learning algorithm. The limitation of Q-learning is that it is
trial-and-error learning, which requires constant iteration
and is time-consuming. Thus, it needs to be improved to
quickly plan a globally optimal path. Maoudj and Hentout
[16] initialize the Q-table to accelerate convergence by pre-
senting a distance-based reward function. Soong et al. [17]
integrated the prior knowledge gained from FPA into the
traditional Q-learning, which provided a good exploration
basis for accelerating the learning of mobile robots. Xu and
Yuan [18] increased the step length of movement and the
direction of the robot to plan a fast and smooth path. Oh
et al. [19] specified the initial Q-value of the traditional
Q-learning through the fuzzy rule-based Q-learning, which
speeded up learning and stabilized convergence. Yan and
Xiang [20] initialized the Q-table by using inverse Euclidean
distance from the current position to the goal position, which
improves the efficiency of Q-learning. The above methods all
initialize the Q-value simply by some prior information to
improve the algorithm, without considering the avoidance
of concave obstacles and the adjustment of the action selec-
tion strategy.

In summary, there are still many difficult problems in
the formation and path planning of multiple robots in
unknown environments. In this paper, we adopt the
leader-following approach to study the multirobot dynamic
formation problem. The innovation in this paper is as
follows: The improved Q-learning algorithm is presented
to plan paths, in which environmental guidance and virtual
obstacle-filling avoidance strategy are added to accelerate
convergence and the SA algorithm is applied to improve
the action selection strategy; the follower robot can achieve
the tracking strategy of GPF by designing the cost function
to select actions.

2. Related Methods

2.1. Q-Learning Algorithm. The Q-learning algorithm [21] is
an RL algorithm based on temporal-difference, which com-
bines the Monte Carlo sampling method and the bootstrap-

ping idea of dynamic programming. It is described with the
Markov decision process as follows: Firstly, limited state
space and action space are given. When the robot needs to
accomplish a certain task, it selects and performs the action
in the current state, which interacts with the environment.
Then, the robot enters the next state and is given an instant
reward as feedback by the environment. Finally, the value
function is updated according to the update rule by using
the reward which is passed to it. One round is continuing
the above process until the robot reaches the target, and
the rounds are iterated until the cumulative reward is maxi-
mum. The update equation of the Q − value function is

Q st , atð Þ =Q st , atð Þ + α rt + γ max
a

Q st+1, að Þ −Q st , atð Þ
h i

,

ð1Þ

where st is the state and at is the action at current time t, st+1
is the state and a is the action at next time t + 1, rt is the
reward obtained by performing action at at state st+1, α ∈ ð
0, 1Þ is the learning rate, and γ ∈ ð0, 1Þ is the discount factor.

In order to ensure the exploratory nature of the algo-
rithm, the ε‐greedy strategy is usually adopted, with the
probability 1 − ε of selecting the action that maximizes the
value function, and the small probability ε that is still
reserved for random exploration. The mathematical equa-
tion of the strategy is

π stð Þ =
arandom, if δ < ε,
arg max Q s, að Þ,

a
else,

8<
: ð2Þ

where πðstÞ is the selected strategy, ε ∈ ð0, 1Þ is the greedy
factor, δ ∈ ð0, 1Þ is a random number, arandom is a randomly
selected action, and arg max Qðs, aÞ

a
is an action that maxi-

mize Q-value at state s.
The classical Q-learning algorithm is described in

Algorithm1.

2.2. APF Method. The APF method is a virtual potential field
established artificially, including the GPF and the repulsive
potential field. The target generates a gravitational force on
the robot to make the robot move towards it. The GPF func-
tion is

Ugra qð Þ = 1
2 ξd

2 q, qgoal
� �

, ð3Þ

where ξ is the GPF factor, q is the state position of the robot,
UgraðqÞ is the GPF at q, qgoal is the state position of the target
to be reached by the robot, and dðq, qgoalÞ is the distance
between the robot and the target, which can be measured
by specific sensors in practice and is one-dimensional. Grav-
itation is the negative gradient of the GPF, and the gravita-
tional function is defined as

Fgra = −∇Ugra = −ξd q, qgoal
� �

: ð4Þ
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Obstacles generate a repulsive force on the robot to make
the robot move away from it. The repulsive potential field
function is

U rep qð Þ =
1
2 η

1
d q, qobstð Þ −

1
d0

� �
, if d q, qobstð Þ ≤ d0,

0, if d q, qobstð Þ > d0,

8><
>:

ð5Þ

where η is the repulsive potential field factor, q is the state
position of the robot, U repðqÞ is the repulsive potential field
at q, qobst is the obstacle state position, dðq, qobstÞ is the dis-
tance between the robot and the obstacle, which can be mea-
sured by specific sensors in practice and is one-dimensional.
d0 is the influence radius of the obstacle, which is artificially
set according to the experimental requirements in practice.
Repulsion is the negative gradient of the repulsion potential
field, and the repulsion function is defined as

Therefore, the traditional APF method guides the robot’s
direction of movement based on the combined force of grav-
itation and repulsion, but its shortcomings are as follows:

(1) When the robot is far away from the target, the grav-
itational force is much greater than the repulsive
force, and it may hit an obstacle

(2) When the distance between them is relatively close,
the obstacles will repel the robot too much to reach
the target

(3) When the two reaction forces just cancel out, the
phenomenon of local optimum or oscillation may
appear

Because of the above shortcomings, the APF method
generally cannot be used directly and needs to be improved
to use.

2.3. SA Algorithm. The idea of the SA algorithm comes from
the solid annealing process, which is an algorithm that jumps
out of the local optimum to get the global optimum. The algo-
rithm uses temperature parameters T to control convergence
in a finite time. Firstly, the initial temperature and the end
temperature are set. The algorithm starts from the initial state
and takes it as the current state. Then, it generates a new state
in its neighborhood and determines whether to accept the new
state based on the Metropolis criterion. The generation pro-
cess of the new state iterates while the T decays until T is the
end temperature. Finally, the algorithm ends with the global
approximate optimal solution.

The Metropolis criterion is that when a system enters a
state snew due to a certain change in state sold, the energy of
the system correspondingly changes from EðsoldÞ to EðsnewÞ
and then the accepted probability equation of the system
from sold to snew is

begin
Initialization:
Qðs, aÞ = f0g, ∀s ∈ S, a ∈ AðsÞ = fup, down, left, rightg %Initialize Q value with 0, determine the state set and the action set

containing four actions
for(episode <m) %The episode cannot exceed m which is the maximum number of episodes
Given initial state s0;
while (st ≠ target state)

(1) Select an action at at state st according to ε‐greedy; % ε‐greedy is the action selection strategy;
(2) Execute the action at , then enter state st+1 and get a reward rt; %Get immediate rewards by performing actions to inter-

act with environment
(3) Update Qðst , atÞ using Qðst , atÞ =Qðst , atÞ + α½rt + γ max

a
Qðst+1, aÞ −Qðst , atÞ�;

% Update the value function according to the update equation by using the reward
(4) st ⟵ st+1; %Update state

end-while
Episode = episode + 1; % Update episode

end-for
end

Algorithm 1: Classical Q-learning algorithm.

Frep = −∇U rep =
η

1
d q, qobstð Þ −

1
d0

� � 1
d2 q, qobstð Þ∇d q, qobstð Þ, if d q, qobstð Þ ≤ d0,

0, if d q, qobstð Þ > d0:

8><
>: ð6Þ
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P sold ⟶ snewð Þ =
1, E snewð Þ ≤ E soldð Þ,
eE snewð Þ−E soldð Þ/T , E snewð Þ > E soldð Þ:

(

ð7Þ

When EðsnewÞ ≤ EðsoldÞ, the new state is accepted as the
current state. When EðsnewÞ > EðsoldÞ, if eEðsnewÞ−EðsoldÞ/T > δ,
the new state is accepted as the current state; otherwise, the
new state is not accepted and the system remains in the cur-
rent state. δ ∈ ð0, 1Þ is the randomly generated number.

3. Improved Q-Learning Proposed for Path
Planning of Leader Robot

3.1. Environmental Guidance Based on GPF of Target. The
traditional Q-learning algorithm has no prior knowledge.
In the early learning process, the robot’s aimless exploration
causes many invalid iterations and slow convergence. So, the
idea of the APF method is introduced to guide moving. In
this paper, the robot plans a path in an unknown environ-
ment where only the start and the target of the task are
known. Due to the less environmental information and the
shortcomings of the traditional APF method, only the GPF
of the target is introduced to initialize the Q value without
considering the effect of the repulsive potential field. In
order to make the target direction consistent with the
increasing direction of the Q-value, the GPF function is con-
structed as

U′gra sð Þ = ξ ∗
daim sð Þ

daim sð Þ + η
, ð8Þ

where ξ is the GPF factor which is negative and controls the
value inversely proportional to the distance, daimðsÞ is the dis-
tance from the current position to the target, and η is a positive
constant that prevents the denominator from being 0.

When the robot moves, the instant reward is detected by
sensors and the Q-table is initialized at the same time.
Therefore, the instant reward of environmental information
is added to the Q-value initialization. The purpose of RL is to
maximize the cumulative reward by maximizing the Q-value.
The robot always tends to choose the action with the maxi-
mum Q-value, which will guide the robot to move toward
the target while avoiding obstacles. The mathematical equa-
tion of Q-value initialization with environmental guidance
based on GPF of the target is

Q s, að Þ = kq ∗ rq + γ ∗U′gra sð Þ
� �

, ð9Þ

where rq =
1, at target
0, else
‐1, at obstacle

8>><
>>: , kq is the scale coefficient

adjusted according to the actual algorithm, γ is the discount
factor, and U′graðsÞ is the GPF at state s.

3.2. Virtual Obstacle-Filling Avoidance Strategy. There will
be concave obstacles in a more complex environment. The
traditional Q-learning algorithm can escape from such
obstacles through continuous exploration, which greatly
extends the learning time. In addition, the robot is more
likely to fall into concave obstacles and cannot escape after
adding GPF guidance. In the grid map environment, the
obstacle grid is the infeasible area and the rest are feasible
areas. Setting certain key position grids which is feasible in
the path of possibly tending to concave obstacles as infeasi-
ble areas can effectively fill and avoid concave obstacles.
Therefore, a virtual obstacle-filling avoidance strategy is
established for concave obstacles. The strategy is to judge
whether the current grid possibly tends to concave obstacles
by adding real-time detection information based on the tar-
get tendency before the robot takes the next step. Then, it
fills non-obstacles on the path of possibly tending to the
concave obstacle with virtual obstacles until the concave
shape is filled. The filled concave obstacle as a whole
becomes an infeasible area, so the robot will not fall into
the concave obstacle in subsequent iterations. This strategy
makes full use of sensors and the environmental information
which have been learned. It not only prevents the robot from
falling into concave obstacles but also reduces invalid explo-
ration of some infeasible positions, which improves the effi-
ciency of path planning.

The specific implementation of the virtual obstacle-
filling avoidance strategy is as follows.

Firstly, the sensor is used to detect the position status
and distance in real time. And a current position-action
array is established to store the feasible adjacent positions
from the current position. Before the robot moves, the
Euclidean distance from the 3 ∗ 3 grid positions adjacent
to the robot’s current position to the target position is calcu-
lated in turn. Next are the specific judgement steps to judge
whether the current grid possibly tends to concave obstacles
according to the calculated distances.

If the distance is less than the distance from the current
position to the target position, it is further judged whether
this adjacent position is an obstacle or not. If the adjacent
position is not an obstacle, it is feasible and will be added
to the corresponding position of the current position-
action array.

If the adjacent position is further away from the target or
it is further judged an obstacle, it is an infeasible position
and will not be added to the corresponding position.

If the final current position-action array is empty, it indi-
cates that the current position completely tends to infeasible
areas which may be in a concave obstacle. The current posi-
tion will be filled with a virtual obstacle.

Finally, each step of the robot is judged until concave
obstacles are filled.

One-step filling of the virtual obstacle-filling avoidance
strategy is shown in Figure 1. In the figure, the red grid is
the robot, and the yellow grid is the target. As Figure 1(a)
shows, the robot enters the grey concave obstacle during
the path planning process. According to the distance calcu-
lation, the adjacent positions which are down, right, and
lower right of the robot’s current position are determined
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as the positions which are near the target more and are the
dark grey grid in Figure 1(b). The three adjacent positions
are further judged obstacles which are infeasible positions,
indicating that the current position is completely toward
the infeasible area which may be in a concave obstacle. Thus,
the current position is filled with light grey virtual obstacles,
which is seen in Figure 1(c).

3.3. Action Selection Strategy Improved by SA. In the process
of path planning with Q-learning, the robot expands the

range of movement by exploring the environment and accu-
mulates knowledge of environmental rewards and punish-
ments. Finally, it uses the value function to select the optimal
action. In the robot’s iterative learning process, more explora-
tion is required in the early stage, but too much or too long
exploration will greatly extend the learning time and reduce
the learning efficiency. On the contrary, too little exploration
will lead to insufficient experience and the action selected
finally may be sub-optimal. Thus, it is necessary to balance
exploration and utilization. The traditional ε‐greedy strategy

Robot

Target

(a) (b) (c)

Robot

Target

Filling

Target

Figure 1: One-step filling of the virtual obstacle filling avoidance strategy [22].

begin
Initialization:

Qðs, aÞ =∅, currentðs, aÞ =∅, n, T , ∀s ∈ S,
a ∈ AðsÞ = fup, down, left, right, upleft, upright, downleft, downrightg
%Establish Q-table and current position-action array, define n as times of consecutive iterations, define T as the initial tem-

perature, determine the state set and the action set containing eight actions
for (episode <m) %The episode cannot exceed m which is the maximum number of episodes

Given initial state s0;
If episode%n == 0 Then use ε = eðQðs,arandomÞ−Qðs,amaxÞ−qÞ/T to calculate and update ε; %Adjust ε dynamically using T of the SA

algorithm.
while (st ≠ target state)
(1) If st exists in the Q-table then continue to next step;

Else use Qðs, aÞ = kq ∗ ðrq + γ ∗ ξ ∗ ðdaimðs′Þ/ðdaimðs′Þ + ηÞÞÞ to initialize Qðst , aÞ;
%Initialize the Q-table

(2) If ðst , aÞ is a feasible area towards the target then add it to the corresponding position of currentðst , aÞ;
Else the corresponding position of currentðst , aÞ is kept empty;
% Add the feasible adjacent positions from the current position to the current position-action array

(3) If currentðst , aÞ is empty then ðst , aÞ is completely toward the infeasible area which possibly tends to concave obsta-
cles and fill it with virtual obstacle;

Select action at in state st according to ε‐greedy which is improved by SA;
%Fill concave obstacles using the virtual obstacle-filling avoidance strategy while selecting actions

(4) Execute at in st , enter st+1 and get rt;
(5) Update Qðst , atÞ using Qðst , atÞ =Qðst , atÞ + α½rt + γ max

a
Qðst+1, aÞ −Qðst , atÞ�;

(6) st ⟵ st+1;
end-while
Episode = episode + 1;

end-for
end

Algorithm 2: Improved Q-learning algorithm.
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often used in the Q-learning algorithm balances exploration
and utilization to a certain extent by setting ε. However, the
fixed greedy factor in the learning process makes random
actions selected with the same probability each time, which
causes slow convergence and fluctuations after convergence.
Therefore, the greedy factor needs to be adjusted dynamically
with the learning process. One method commonly used in
experiments is to set ε to decrease at a fixed rate, but it is not
universal to set a fixed rate of decrease based on experience.

In response to the above problems, the ε‐greedy strategy
improved by SA which is used to adjust ε dynamically is pro-
posed. The controlled temperature of SA is adjusted in real
time according to the learning situation of the Q-learning
algorithm. The algorithm explores as much as possible in
the early stage of path planning to increase more prior
knowledge and prevent local optimum and cancels unneces-
sary exploration when approaching convergence later. The
steps of the action selection strategy improved by the SA
algorithm are as follows:

(1) Define the temperature parameter T and set the ini-
tial value T0. Then, use the sample standard devia-
tion of step numbers for n consecutive iterations to
control the cooling temperature. The mathematical
equation of T is

T = i + k ∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stepm+1 − stepavg

� �2
+⋯+ stepm+n − stepavg

� �2

n − 1

vuut
,

ð10Þ

where stepm+1,⋯, stepm+n, respectively, are the
number of steps for n consecutive iterations, stepavg
is the average number of n consecutive iterations,
and k is the control factor, which is obtained by
repeatedly adjusting according to the experimental
effect and controls T in a suitable range. i is a
smaller non-zero constant to prevent T from being
0 after convergence

(2) Calculate the accepted probability of randomly
selected actions according to the Metropolis criterion.
And use it to redefine the greedy factor ε at T. The
mathematical equation of ε is

ε = e Q s,arandomð Þ−Q s,amaxð Þ−qð Þ/T , ð11Þ

where Qðs, arandomÞ is the Q-value of the random
action selected at state s, Qðs, amaxÞ is the Q-value of
the optimal action at state s, q is a non-zero constant

Figure 2: The multi-robot action, step length, and detection range
of sensor[22].

Start

Establish grid maps, design formations, and assign robot roles

Establish the Q-table of the leader robot and initialize it with
the gravitational potential field method

Step = step+1

Initialize temperature T, reward function, detection mechanism

Leader robot uses behavior strategy to
select and execute actions 

Pass the reward function to the value
function for Q-value update 

Episode = episode+1

Episode > n ?

Initialize the position of the leader robot 

The status of the leader robot is the
target position?

End

Enter the next state and get a reward, broadcast
the position coordinates to the follower robot 

No

Episode%n = =
 0 ?

Calculate the
standard deviation,

update T

Use virtual obstacle obstacle-filling
avoidance strategy to accelerate iteration

No

Yes

Yes

Yes

No

Figure 3: The flow chart of the leader robot’s path planning.
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to prevent the numerator from being 0, and T is the
temperature parameter

(3) If δ < ε, choose the action randomly, otherwise
choose arg max

a
Qðs, aÞ, where δ is the randomly gen-

erated number

3.4. Improved Q-Learning Algorithm. Compared with the
original algorithm, there are three innovations in the
improved Q-learning algorithm proposed in this paper.

Firstly, the Q-table of the original Q-learning algorithm
is initially a zero-value table without any prior knowledge.
The improved Q-learning algorithm uses the GPF of the
known target in the task to initialize the Q-table, which adds
environmental guidance and reduces invalid exploration.

Secondly, the robot moves immediately after selecting an
action in the original algorithm. This algorithm designs a
virtual obstacle-filling avoidance strategy for judgment
before each step. It fills non-obstacles which is judged to
tend to concave obstacles with virtual obstacles.

Finally, the original algorithm uses the traditional
ε‐greedy strategy to select actions. The strategy improved
by the SA algorithm is proposed in the new algorithm. It
adjusts ε dynamically by adjusting the temperature in real
time according to the learning situation of Q-learning.

The steps of the improved Q-learning algorithm are
shown in Algorithm 2.

4. A Path Planning Method for
multirobot Formation

4.1. Tracking Strategy Based on GPF for Follower Robot. The
steps of the tracking strategy based on GPF for the follower
robot are as follows:

Step 1: if the follower robot obtains the coordinates
broadcast by the leader robot, it will determine the next tar-
get state according to the formation, i.e., the desired target
position at this time. Otherwise, it means that the formation
has reached the target position and the path planning ends.

Step 2: the follower robot moves to the target position.
Firstly, the robot uses the cost function to calculate the cost

Start

Initialize the follower robot position

S is the target state?

End

Yes

Obtain the target status broadcast by the leader robot? 

No

Calculate the cost of the eight adjacent states of the current
state and determine the state s with the smallest cost 

Select and execute action

Yes

No

Parallel to the leader robot, virtual obstacle
filling avoidance strategy is used

Figure 4: The flow chart of the follower robot’s path planning.

Table 1: Implementation details of Q-L1 to Q-L5 algorithms.

Algorithm number Implementation details

Q-L1 Algorithm 1

Q-L2 Q-L1 with the dynamic greedy factor of SA

Q-L3 Q-L2 with environmental guidance

Q-L4 Algorithm 2

Q-L5 Q-L4 with a modified reward function
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(a) Q-L1 (b) Q-L2

(c) Q-L3 (d) Q-L4

Figure 5: Continued.
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for the eight neighboring states of the current state, which
determines the state s with the smallest cost. Then, it selects
the corresponding action and executes it. At the same time,
it adopts the virtual obstacle-filling avoidance strategy in
parallel with the leader robot to share information. Specifi-
cally, the cost function is designed by using the idea of
GPF. The GPF of the target to the current position is mea-
sured by the Euclidean distance from the current position
to the target position, which is proportional to the distance.
When the checked state is an obstacle, the penalty function
Rstatic is given a positive value; otherwise, the value is 0.
The equation for measuring the GPF is

dattr =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs − xgoal
� �2 + ys − ygoal

� �2
r

: ð12Þ

The cost function equation is

C st , atð Þ = c ∗ dattr + Rstatic st , atð Þ, ð13Þ

where dattr is the GPF which is measured, xs is the horizontal
coordinate of the current state, ys is the vertical coordinate of
the current state, xgoal is the horizontal coordinate of the
target at this moment, ygoal is the vertical coordinate of the
target at this moment, Cðst , atÞ is the cost function at t, st
is the state at t, at is the action at t, c is the adjustment coef-
ficient, and Rstaticðst , atÞ is the penalty function.

Step 3: if the state with theminimum cost entered is the tar-
get state at this time, return to step 1 and continue. If the state is
not the target state at this time, go to step 2 and continue.

4.2. Design Scheme of Path Planning for Leader-following
Formation. Adopting the leader-following method, the

design scheme of path planning for leader-following forma-
tion proposed in this paper includes three parts:

(1) Initialization: the grid environment is adopted, and the
starting position and target position of the multiple
robots are determined. A leader-following formation
is designed and the robots are divided into two types:
leader and follower. Then, one robot is selected as the
leader or a virtual robot is supposed to act as the leader,
and the rest are follower robots. Multiple robots have
eight actions including up, down, left, right, upper left,
upper right, lower left, and lower right. Each robot is
equipped with a sensor, which can detect the environ-
mental information of the 3 ∗ 3 grids centering on its
position. The multirobot action, step length, and detec-
tion range of the sensor are shown in Figure 2

(2) Path planning of leader robot: the leader robot is
responsible for planning the path. It uses the
improved Q-learning algorithm to plan a globally
optimal path with avoiding simple obstacles and
concave obstacles after trial-and-error training. At
the same time, it broadcasts the position of each step
and some environmental information to the follower
robot. The process of the leader robot’s path plan-
ning is shown in Figure 3

(3) Local following of follower robot: the follower robot
is responsible for following the leader robot to main-
tain the formation according to the requirements.
When the follower robot receives the position

(e) Q-L5

Figure 5: Path planning maps of 5 Q-learning algorithms.
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information broadcast by the leader robot, it deter-
mines the desired target depending on the forma-
tion. Then, it follows locally using the tracking
strategy based on the GPF and avoids obstacles
autonomously. The process of the follower robot’s
path planning is shown in Figure 4

5. Experiments Analysis

According to the design scheme of path planning for multi-
ple robots, the method is tested experimentally. The experi-
ment uses Python standard GUI toolkit Tkinter to establish
simulation environments.

5.1. Comparison Experiments of Improved Q-Learning
Algorithm. For the improved Q-learning algorithm, a grid
map with three elements: starting point, target point, and
obstacles, is first established. The map size is set to 20 × 20

grids, and the resolution of each grid is 26 × 26 pixels. The
starting position of the robot represented by a red grid is
set at (0, 0), and the target position represented by a yellow
grid is at (19, 19). Obstacles which are black grids are ran-
domly placed on the map, including concave and simple
obstacles. To distinguish actual obstacles from virtual obsta-
cles filled during the algorithm operation, virtual obstacles
are gray grids.

The experiment is carried out in a comparative way, and
five algorithms are implemented: Q-L1 is the traditional Q
-learning algorithm, Q-L2 is the Q-learning algorithm with
the dynamic greedy factor of SA, Q-L3 adds environmental
guidance of GPF on the basis of Q-L2, Q-L4 is the Q
-learning algorithm proposed in this paper with the
improvements 3.1, 3.2, and 3.3, Q-L5 is the Q-learning algo-
rithm with a modified reward function based on Q-L4. The
implementation details of Q-L1 to Q-L5 algorithms are
shown in Table 1.
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Figure 6: The cumulative reward change graphs with rounds of 5 Q-learning algorithms.
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The same parameter settings of the algorithm are as fol-
lows: the maximum number of iteration rounds is 10000, the
learning rate α is 0.01, and the discount factor γ is 0.9. For
using the traditional ε‐greedy strategy in the algorithm, the
greedy factor ε is 0.2, and the convergence is determined that
the standard deviation of step numbers for 10 consecutive

iterations is less than 5. Parameter settings for using SA in
the algorithm are as follows: the initial temperature T0 is
set to 10, the number of consecutive iterations n is set to
10, the constant i is set to 0.1, the control factor k is set to
0.03, and the non-zero constant q is set to 1. In the algo-
rithm using the GPF method to improve, the GPF factor ξ
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Figure 7: The step numbers change graphs with rounds of 5 Q-learning algorithms.

Table 2: Comparison table of Q-L1 to Q-L5 algorithm performance.

Algorithm Potential field Filling r ε Convergence time Convergence round Steps Length

Q-L1 No No r1 0.2 479.0037 2760 30 37.4558

Q-L2 No No r1 Dynamic 379.4773 3520 30 36.0416

Q-L3 Yes No r1 Dynamic No No No No

Q-L4 Yes Yes r1 Dynamic 5.7183 120 26 32.6274

Q-L5 Yes Yes r2 Dynamic 48.3259 1010 22 28.6274
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is set to -10, the constant η is set to 735, and the scale
coefficient kq is set to 0.1. The reward function is set to

r1 =
1, reach the target,
0, else,
‐1, hit an obstacle,

8><
>:

r2 =
1, reach the target,
‐0:05, else,
‐1, hit an obstacle:

8><
>:

ð14Þ

After setting the parameters, simulation experiments are
conducted. The path planning map, the cumulative reward
change graph with the round, and the path planning step
numbers change graph with the round are obtained. From
the figure, the path planning and convergence of each algo-
rithm can be seen. Figures 5(a)–5(e), respectively, show the
path planning maps of the robot under algorithms Q-L1 to
Q-L5. Figures 6(a)–6(e), respectively, show the change of
cumulative reward with rounds for the robot under algorithms
Q-L1 toQ-L5. Figures 7(a)–7(e), respectively, show the change
of step numbers with rounds for the robot under algorithms
Q-L1 to Q-L5.

Figure 5(c) shows that the robot is trapped in a concave
obstacle and cannot escape. Figure 6(c) shows that the
cumulative reward curve of path planning changes irregu-
larly during the iterative process. Figure 7(c) shows that
the step number curve of path planning changes irregularly
during the iterative process. The above three results of
Q-L3 ndicate the algorithm does not converge in the iterative
process, and the robot cannot reach the target when only
adding the GPF of the target to improve when encountering
concave obstacles.

Figures 5(a)–5(e) show that the robot uses the Q-L1,
Q-L2, Q-L4, and Q-L5 algorithms to effectively avoid black
obstacles and plan a red path from the starting to the target,
but the path planned by the Q-L1 and Q-L2 algorithms is
more tortuous, the Q-L4 algorithm plans a smoother feasible
path, and the Q-L5 algorithm plans the optimal path. The
cumulative reward curve showed by Figures 6(a)–6(e) and
the step number curve showed by Figures 7(a), 7(b), 7(d),
and 7(e) are both stable after iterating to a certain round,
indicating that the algorithms gradually converge as the iter-
ations proceed.

However, curves of Figures 6(a) and 7(a) converges with
small fluctuations, curves of Figures 6(b) and 7(b) converges
with smoothness, curves of Figures 6(d), 7(d), 6(e), and 7(e)
reach smoothness in fewer rounds of iteration. The above
shows that by adding the improvements proposed in this
paper to Q-L4 algorithm and Q-L5 algorithm, the experi-
ments achieve better results. The robot moves while initializ-
ing the Q-value by the environmental guidance based on the
GPF of the target, which makes the robot guided by the tar-
get direction all the time. It removes invalid movement and
speeds up the convergence time. When the robot encounters
a concave obstacle, it identifies effectively the infeasible area
and fills it with light gray virtual obstacles to prevent the
robot from falling into the concave obstacle. The SA method
is used to dynamically adjust the greedy factor to accelerate
the algorithm convergence and make it stable after conver-
gence. In addition, the Q-L5 algorithm adjusts the reward
function on the basis of the Q-L4 algorithm by giving each
step a smaller penalty, and the robot learns the optimal path
with the maximum cumulative reward.

Table 2 compares the performance of the above five
algorithms after path planning. The data in the table are the
average results from conducting several experiments. The
analysis is as follows: based on the traditional Q-learning

(a) In an obstacle-free environment (b) In a static obstacle environment

Figure 8: Map of multi-robot formation’s path planning experiments.
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algorithm, Q-L2 uses the SA algorithm to improve ε‐greedy
strategy. Although the convergence round of the algorithm
increases, the convergence time is shortened and the overall
stability of path planning is improved. Comparing the algo-
rithms Q-L3 and Q-L4, if the environmental guidance of
GPF is added to the algorithm without the virtual obstacle-
filling avoidance strategy, the algorithm is difficult to converge
when encountering concave obstacles. Comparing the algo-
rithms Q-L2 and Q-L4, by adding environmental guidance
and the virtual obstacle-filling avoidance strategy, the conver-
gence time is reduced by 98.5%, and the convergence rounds is
reduced by 96.6%; the total step numbers and the length of the
path are stabilized at 26 and 32.6274, respectively. Comparing
the algorithms Q-L4 and Q-L5, adjusting the reward function
reasonably on the improvedQ-learning algorithm proposed in
this paper will make the robot plan the optimal path quickly,
which is 89.9% shorter than the traditional Q-learning algo-
rithm. And the number of convergence rounds is reduced by
63.4%, the step numbers are reduced to 22 and the length of
the path is reduced to 28.6274.

5.2. Experiments of Path Planning for multirobot Formation.
After experimenting with the improved algorithm of the
leader robot’s path planning, the follower robot is added to
verify the effectiveness of the path planning method for
multirobot formation in this paper. The experiment uses a
triangular formation and three robots. The leader robot is
represented by a red grid, and its initial position is ð2, 2Þ.
The follower robots are represented by a blue grid and a
green grid, respectively, and their initial positions are ð0, 2Þ
and ð2, 0Þ, respectively. The target position of the leader
robot is ð19, 19Þ, which also determines the target position
of the follower robots. The leader robot uses the improved
Q-learning algorithm Q-L5 to plan the optimal path with
the same parameter settings as in 5.1 simulation experi-
ments. The two follower robots, respectively, use the track-
ing strategy based on the GPF to follow: the penalty
function Rstatic = 1 and the adjustment coefficient c = 0:09.

The experimental effect is shown in Figure 8(a) that the
three robots quickly reach the target with a fixed triangle for-
mation in an obstacle-free environment. In an environment
with static obstacles, the leader robot moves first, and the
two follower robots immediately move to the corresponding
positions in the formation. The green follower robot firstly
encounters a black lateral obstacle. It moves along the obsta-
cle to the target direction and smoothly avoids the obstacle.
Then, it continues to accelerate to move to the correspond-
ing position of the formation at the current time to maintain
the formation. Finally, the leader robot plans a red path, the
two follower robots avoid obstacles by themselves during the
following process and plan a green path and a blue path,
respectively. The three robots reach the target at the same
time and complete the formation task. The experimental
effect is shown in Figure 8(b).

6. Conclusion

In this paper, by combining the improved Q-learning algo-
rithm and the idea of the GPF method, a method for

multirobot formation and path planning is proposed. The
division of labor among multiple robots is clear. The leader
robot uses the improved Q-learning algorithm to plan the
path. It is found that adding environment guidance of the
target’s GPF and virtual obstacle-filling avoidance strategy
effectively accelerates iterative convergence and avoids con-
cave obstacles. It is stable and efficient for the action selec-
tion strategy to be improved by the SA method. At the
same time, the follower robot uses a tracking strategy based
on the improved GPF to follow in real time, which is simple
and efficient. This formation method effectively solves the for-
mation and path planning problems of multiple robots in an
unknown environment with concave obstacles. In the future,
the multirobot formation will be further studied in the context
of dynamic environments and privacy protection.
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In this paper, eddy current thermography is used to detect metal in wood materials, and thermal signal reconstruction (TSR)
algorithm has been proposed to solve the problem of low resolution of metal detection. The basic principle of current
nondestructive testing technologies for wood materials has been briefly reviewed, and the advantages and disadvantages have
been analyzed. TSR algorithm can significantly enhance the contrast ration between metal and surrounding areas, different
quantities of metal can be effective identified, and metal positions can be accurately realized. The experimental results show
that the proposed eddy current thermography technology can quickly detect metal in wood materials and improve the
efficiency and accuracy. The size and quantity of metal can be intuitively observed through thermal images.

1. Introduction

With the rapid development of modern industry, China’s wood
processing industry has developed rapidly. In 2021, the global
woodmarket will reach 41.273 billion US dollars [1]. The wood
trading market is an important part of the commodity trading
market, which plays an important role in promoting the trad-
ing and circulation of wood products and stimulating the local
economy [2]. In the process of wood production, there are
metal materials in wood, which have a negative impact on
the use and commercial value of wood. The existence of metal
in wood usually reduces the strength of wood and also affects
the appearance and processing process of wood. Therefore,
the detection of metal in wood can improve the use safety
and maximize the economic benefits.

At present, nondestructive testing of woodmaterials mainly
includes defect detection and mechanical property measure-
ment [3]. The basic methods of nondestructive testing mainly
include stress wave method, mechanical stress deformation

method, vibration method, microdrilling resistance method,
ray method, and radar wave method. According to different
wood materials, there are different detection methods, and the
metal detection technology for ancient building wood materials
is most widely used by stress wave method [4]. The general
principle of stress wave for metal detection is that when impact
force is applied to wood material, stress waves will be generated
inside wood and propagate around. Sensors at both ends are
used to receive signals of stress waves. The time difference
between two points is calculated in a timer, and then, the prop-
agation speed change of stress waves is obtained to judge the
condition of metal inside wood materials. Compared with CT,
X-ray, and the like, stress wave in woodmaterials has the advan-
tages of lower cost, safety and reliability, harmlessness to human
body, unaffected by tested materials and sizes, suitability for
various environments, and can accurately judge whether there
are metals, cavities, and wood knots in wood materials. How-
ever, the propagation of stress wave in wood is a complex
dynamic process, which is affected by many factors, including
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the following aspects: the properties of wood, microstructure of
wood, water content of wood, defects of wood, and wood mor-
phology [5]. Additional, stress wave systems can only be used
for qualitative testing. Additional NDT methods are required
to obtain quantitative results in regard to the size and depth
of metal.

This paper proposes eddy current thermography for wood
metal detection. Eddy current shielded by vacuum magnetic
can effectively improve the sensitivity of ferromagnetic metal.
It is a nondestructive and noncontact detection technology
based on eddy current effect. It has the characteristics of high
linearity, high resolution, fast response, simple structure, and
static and dynamic measurement [6]. Eddy current excited
thermography technology employed the different thermal
radiation physical characteristics of structures or materials to
detect various defects and damages on the surface or inside
of materials. The obtained thermal images have the disadvan-
tages of fuzzy edge, noise interference, and low resolution. In
order to improve the accuracy, efficiency, and resolution of
defect detection, different feature extraction algorithms have
been used to extract defect information. Xingwang et al.
carried out wavelet transform on thermal image sequence,
and image fusion algorithm based on pixel level and feature
level has been used to process thermal image sequence [7].
The test results of aluminum alloy samples show that the
image fusion algorithm can effectively reduce the adverse
effects of uneven heating and background noise on defect rec-
ognition. To enhance cracks characteristics in the original IR
images, Peng et al. applied eddy current pulsed thermography
(ECPT) for motor winding defects detection with fast Fourier
transform (FFT) and principal component analysis (PCA) by
eliminating the nonuniform heating effect [8]. L-shaped ferrite
magnetic open sensing structure was proposed for fatigue
crack inspection on metallic materials with anomalistic geom-
etry. The modified eddy current pulsed thermography system
has better performance in omnidirectional microfatigue crack
detection. He et al. discussed the applications of deep learning
applied infrared imaging-based machine vision. The principle,
cameras, and thermal data of infrared imaging-based machine
vision have been reviewed [9].

He et al. used fast Fourier transform (FFT) to process
phase-locked thermal imaging data, and its calculation speed
is faster than discrete Fourier transform and can observe defect
information in frequency domain [10]. The fitting function
relationship is used to realize the quantitative recognition of
defects in infrared thermal wave detection. Numerical calcula-
tion method is used to provide samples for training neural
network, which proves the feasibility of the method. Rajic
employed principal component analysis (PCA) method to
decompose the thermal image sequence into a group of orthog-
onal statistical patterns by singular value decomposition [11].
PCA is used to reduce redundancy, remove noise, and improve
the accuracy of detection. Liang et al. used wavelet transform
and PCA to detect the impact defects of composite materials
[12]. Sripragash and Sundaresan used thermal signal recon-
struction (TSR) to detect the defect depth. Temporal and
spatial resolutions of thermal image sequence have been
improved [13]. Hyvarinen and Oja employed independent
component analysis (ICA) method that is used to extract inde-

pendent components in thermal image sequence to remove
data redundancy and obtain high-order statistical characteris-
tics [14]. Świta and Suszyński used kd-tree algorithm to cluster
infrared thermal image sequence to extract depth information
and reduce the amount of data [15]. Maldague and Marinetti
proposed pulse phase infrared thermography (PPT) algorithm,
which transforms the time and space information into the
frequency domain through Fourier transform to obtain the
phase and amplitude information. The defect information
can be extracted through the difference of the phase and ampli-
tude between the defect and nondefect regions [16]. A hybrid
multidimensional feature fusion structure of spatial and tem-
poral segmentation model was proposed by Hu et al. for defect
detection with thermography. The semantic information can
be captured easily. He et al. made a profound study infrared
machine vision and infrared thermography with deep learning
[17]. Theoretical research and case study method are used in
this review paper.

In order to improve the detection accuracy and metal res-
olution, this paper employed thermal signal reconstruction
algorithm to detect metal in wood. The metal materials in
wood are measured with eddy current thermography, and
the infrared thermal images are analyzed by the proposed
TSR algorithm. Compared with the stress wave method, it
has advantage of nondestructive testing. Furthermore, the
position, size, and number of metal materials are detected.

The rest of paper is organized as follows: Firstly, the pro-
posed method is introduced in Section 2. The experimental
set-up is described, and feature extraction and optimization
are introduced in Section 3. Then, wood with different metal
are characterized. It can prove the accuracy and efficiency of
eddy current thermal imaging method in the detection of
wood materials. Finally, conclusions are outlined in Section 4.

2. Methods and Image Processing

2.1. Principle of Eddy Current Thermography. As shown in
Figure 1, the measurement device is mainly composed of an
excitation system, an excitation coil, IR camera, a cooling sys-
tem, an excitation system, sample under test, and a PC. Ther-
mal information of eddy current and materials under test is
obtained by IR camera. Different types of information can be
obtained according to different analysis methods, and corre-
sponding defect information can be obtained by analyzing
these information. Eddy current thermography is based on
electromagnetic induction, which involves many physical pro-
cesses such as Joule heating, heat conduction, and infrared
radiation. When the excitation coil carrying high-frequency
alternating current is close to the conductor to be tested, under
the action of the magnetic field of the coil, eddy current will be
generated in the place where there are metal bodies or defects
in the conductor to be tested, and eddy current will generate
heat in the place where there are foreign bodies or defects in
the sample under test, causing temperature changes on the
surface of the material and from the inside through heat con-
duction. The information of foreign bodies or defects in mate-
rials can be obtained by graphic analysis and processing
collected by IR camera.
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The eddy current thermography detection technology can
evaluate the metal in the reflection mode and the penetration
mode, respectively [18]. With eddy current thermography
detection technology in penetration mode can easily detect
the surface fracture structure caused by metal. But there are
the following disadvantages: (1) Due to the shape of the coil,
it will bring uneven heating effect; (2) As time increases, lateral
blurring will occur; (3) Periodic wood structure causes thermal
abnormalities. Therefore, eddy current thermography in the
reflection mode has been employed for the metal evaluation
in wood.

2.1.1. Electromagnetic Induction Heating. When the excita-
tion coil passes through alternating current with frequency
f , induced eddy current with the same frequency is gener-
ated inside the tested material according to the law of elec-
tromagnetic induction. Time-varying equation of eddy
current excitation in eddy current pulse thermal imaging is
as follows:

Je+∇ × 1
μ
∇ × A

� �
−

σffiffiffiffiffi
με

p × ∇ × Að Þ = σ
V loop
2πrd

+ Js: ð1Þ

Among them, μ is the magnetic permeability of the
measured material, and ε is the dielectric constant and eddy
current density of the measured material:

Je = σ
∂A
∂t

, ð2Þ

where Je is the current density of the excitation coil. V loop is
the loop potential, and rd is the loop radius, which is the
conductivity of the material. A is the magnetic vector poten-
tial instead of the magnetic induction intensity B to satisfy:

B =▽× A: ð3Þ

Due to the resistance inside the material, eddy current is
converted from electric energy to heat energy inside the
material. According to Joule’s law, the generated thermal
power Pw is proportional to the eddy current density Je
and the electric field strength E:

Pw = 1
σ

Jej j2 = 1
σ
σEj j2: ð4Þ

2.1.2. Heat Conduction.The generated Joule heatQ propagates
inside the material, and the propagation process follows the
formula.

ρCp
∂T
∂t

−∇ σT∇Tð Þ =Q, ð5Þ

where ρ is the density of the material, Cp is the specific heat
capacity of the material, T is the thermal conductivity of the
material, and t is the temperature of the material. In the exper-
iment, the magnetic induction intensity B around the infinite
straight wire is defined by the formula:

PC with algorithm

Easyheat

IR camera

Coil and sample

Figure 1: Diagram of eddy current thermography.
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B = μI
2πh , ð6Þ

where H is the distance to the straight wire. It can be obtained
that the magnetic field strength of B decays rapidly with the
increase of the distance to the coil. The thermal power in
induction heating is proportional to the square of eddy current
density, which can be obtained from (6).

2.1.3. Infrared Radiation. According to Stefan-Boltzmann’s
law, an object whose temperature is higher than zero degree
Kelvin will spontaneously generate infrared radiation outward.

J∗ = εσsbT
4, ð7Þ

where ε is the emissivity of the material, σSb is Stezmann-
Boltzmann constant, and T is the absolute temperature.

2.2. Thermal Signal Reconstruction (TSR). The reconstruction
of thermal signal sequence is based on one-dimensional heat
conduction equation, and the surface temperature response
equation of applying instantaneous uniform excitation to
thick materials is as follows:

∂2T
∂χ2 + 1

k
g x, tð Þ − 1

α

∂T
∂t

= 0, ð8Þ

g x, tð Þ =Qδ xð Þδ tð Þα = k
ρc

, ð9Þ

where Q is the energy applied to the surface, K is the thermal
conductivity, ρ is the density of the material to be detected,
and c is the specific heat capacity;

T tð Þ = Q

e
ffiffiffiffiffi
πt

p : ð10Þ

Polynomial fitting is performed on it:

ln ∇T tð Þ½ � = 〠
N

n=0
an ln tð Þ½ �n: ð11Þ

The original data is reconstructed when the coefficientanis
fitted from Equation (11) as a function of the change of tem-
perature with time at each point

∇T tð Þ = exp 〠
N

n=0
an ln tð Þ½ �n

 !
: ð12Þ

After reconstruction from Equation (11), differential oper-
ation can be performed, so that first-order and second-order
differential can be performed. The image and differential
obtained after reconstruction of any point of the heat map
sequence are obtained by Equation (12). The thermal imaging
image processed by TSR increases the spatial and temporal
resolution of the thermal image. Between (1) and (5), it is
known that the heat generated inside the tested material and
its conduction are directly affected by the electrical conductiv-

ity and thermal conductivity of the material, and the temper-
ature of the area where the wood material has metal matter
will be significantly different from that of the nondefective
area. Radiation energy also has certain influence on thermal
conductivity.

The location of metal area in the measured wood material
can be observed from infrared thermal imaging to capture the
surface temperature thermal image of wood material. At the
end, TSR algorithm is used to process data to evaluate metal
in wood. The TSR algorithm employs the temporal and spatial
variation information of surface temperature to process the
temporal information of each pixel in the thermal image
sequence and transforms the temperature response curve of
each pixel from the time domain to the logarithmic domain.
From Equation (12), it can be seen that the temperature
change curve of the nonmetal area satisfies the linear relation-
ship, and the temperature change curve of the metal area is
nonlinear.

3. Experimental Study

The samples under test are two pieces of dry wood materials
with a width of 42mm. In Figure 2, two blocks contain differ-
ent amounts of metal foreign matter, marked as L1 and L2.
The physical diagram of eddy current thermal imaging system
is shown as Figure 1. The power source of the excitation
induction heating system is MDS-GLY-01, the input voltage
is single-phase 220V/50Hz, the operation frequency is
150 kHz-250 kHz, and a circular excitation coil is adopted.
Specification model of water cooling equipment is MDS-SL-
03. For long-wave infrared thermal camera model, FLIR
A655SC, its resolution is 640 × 480. The speed of full frame
16-bit data is 50 fps. The metal body-containing regions were
placed under coil, and the excitation voltage was 58V, the
excitation current was 339A, and the excitation frequency
was 1055Hz. The excitation time was 1500ms.

4. Results and Discussion

After heating, the frame is selected. The obtained infrared
thermal image has been analyzed. During the experiment,
the environmental interference is eliminated. As can be seen
from Figure 3, the temperature of metal-free wood area is
blue area, which means temperature remains constant. The
representing metal is at the red dot. The fitting graph of
transient temperature is increasing with time. The locations
of the metals can be determined from the infrared thermal
images due to the effect of thermal diffusion whereas it is dif-
ficult to identify the real size of a metal.

The temperature rise in the excitation coil area without
metal is almost the same.When there is metal in the specimen,
the temperature rise curve with metal is obviously higher than
that of without metal, and the temperature rise changes more
when the metal is close to the excitation coil. At the end of
heating, the temperature rise of the metal-free area and the
metal area in L1 is about 14°C, and the temperature rise of
L2 is about 24°C. It takes a certain time for metal in wood
materials to affect the change of surface temperature. After
the excitation time is over, the temperature of the metal drops
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slowly, which is due to the poor heat dissipation of the wood
material. The heat generated by the metal will be stored in
the wood material for a certain period of time. Therefore,

when the excitation time is over, the temperature of the metal
area drops slowly, and the curve drops slowly. On the other
hand, the temperature rise of metal material shows that the

(a) (b)

Figure 2: Sample under test L1 (a)/L2 (b).

Amplitude

200 400 600
Spatial X axis

100

200

300

400

Sp
at

ia
l Y

 ax
is

3000

3500

4000

(a)

Amplitude

200 400 600
Spatial X axis

100

200

300

400

Sp
at

ia
l Y

 ax
is

3000

3500

4000

4500

(b)

Figure 3: Thermal imaging for samples under test ((a) L1; (b) L2).
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Figure 4: PCA results for sample under test.
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metal in wood material has produced eddy current by excita-
tion power supply. As a result, the eddy current density
increases in the metal region. With stronger the induction
intensity near the excitation coil, the smaller the eddy current
density in the metal-free region. Therefore, the temperature
characterization of the thermal imaging can be obtained by
the eddy current method. It can effectively identify the loca-
tion of metal in wood.

In this section, in order to evaluate the proposed algo-
rithm, principal component analysis (PCA) and independent
component analysis (ICA) algorithms have been selected for
comparison. As shown in Figures 4 and 5, the temperature rise
of the metal area is not obviously displayed in the image with
PCA, and the position and size of the metal are blurred.
Despite this, these algorithms can extract features effectively
in detecting metals from ECPT system which have more obvi-
ous metal characteristics. The metals in the thermal images are
relatively easy for human to discern.

After TSR, the results are shown in Figure 6. The temper-
ature rise of metal in wood materials changes more obviously,
and the position and size of metal foreign bodies are clearer.

The temperature difference between metal and nonmetal
decreases from inside to outside, the temperature rise in metal
area increases obviously, and the surrounding temperature is
decreasing, forming obvious temperature difference. As shown
in TSR, that number of metal in L1 is 4 metals, the number of
metal in L2 is 5 metals, and the area size represents the size of
the metals. Experimental results shows that the location, size,
and quantity of metal can be clearly identified.

The proposed method is compared with two state-of-the-
art methods by using two samples. The evaluation metrics
concern both efficiency (inference time) and effectiveness.
The results are the mean of five different infrared thermal
datasets. The same platform has been used to run them, and
the results are given in Table 1. From Table 1, conclusions
can draw that all algorithms can have certain improvements
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Table 1: Evaluation table for proposed method.

Case PCA ICA TSR

L1 84.34% 86.42% 86.70%

L2 84.88% 86.01% 86.98%
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Figure 5: ICA results for sample under test.
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onmetal detection, especially for the size detection. The results
are achieving 2.34% and 2.1% gains.

5. Conclusions

At the present time, stress wave systems can only be used for
qualitative testing. In this paper, eddy current thermography
is used to detect metal in wood materials, and the detection
principle and thermal signal reconstruction technology (TSR)
are analyzed in detail. The conclusions are as follows:

(1) It can accurately detect the presence or absence of
metal in wood and other materials and determine
the quantity and size of metal

(2) Compared with other nondestructive testing, the
effectiveness is reflected in the fact that there is no
lift-off effect, the heating is rapid, the rapid detection
is convenient, the detection area is large, the sensitivity
is high, the use is convenient, and the influence of the
shape and structure of the detected object is small

(3) High efficiency is reflected in the ability to accurately
determine the position of metal in wood, obtain the
size of metal, and greatly improve the production
and processing efficiency and detection

However, the main limitation of proposed method is that
the overall algorithm is complicated, and the amount of data
is large, which requires more calculation and time. The subse-
quent algorithm and workflow need to be simplified to a
certain extent to reduce the amount of calculation. With fur-
ther research, this problem will be solved in the near future.
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The delayed fracture of high-strength bolts occurs frequently in the bolt connections of long-span steel bridges. This phenomenon
can threaten the safety of structures and even lead to serious accidents in certain cases. However, the manual inspection
commonly used in engineering to detect the fractured bolts is time-consuming and inconvenient. Therefore, a computer
vision-based inspection approach is proposed in this paper to rapidly and automatically detect the fractured bolts. The
proposed approach is realized by a convolutional neural network- (CNN-) based deep learning algorithm, the third version of
You Only Look Once (YOLOv3). A challenge for the detector training using YOLOv3 is that only limited amounts of images
of the fractured bolts are available in practice. To address this challenge, five data augmentation methods are introduced to
produce more labeled images, including brightness transformation, Gaussian blur, flipping, perspective transformation, and
scaling. Six YOLOv3 neural networks are trained using six different augmented training sets, and then, the performance of
each detector is tested on the same testing set to compare the effectiveness of different augmentation methods. The highest
average precision (AP) of the trained detectors is 89.14% when the intersection over union (IOU) threshold is set to 0.5. The
practicality and robustness of the proposed method are further demonstrated on images that were never used in the training
and testing of the detector. The results demonstrate that the proposed method can quickly and automatically detect the
delayed fracture of high-strength bolts.

1. Introduction

High-strength bolt connections are widely used to assemble
the load-bearing members of the steel structure in long-span
steel bridges. The popularity of the bolt connections is attrib-
uted to their low cost, high reliability, and rapid assembly
[1]. However, these bridges are often operated in adverse envi-
ronments and subject to corrosion [2, 3], vibration and fatigue
[4, 5], and thermal cycling, which can contribute to the dam-
age of bolts. The damage types of bolts that occur the most
include the looseness and delayed fracture. The delayed frac-
ture of bolts refers to the sudden fracture of bolts under con-
stant tension [6]. Due to the huge energy released by the
brittle fracture, the fractured bolts will be missing. The damage
of bolts will threaten the safety of the bridges and may even
lead to severe accidents. Hence, it is necessary to monitor the
bolt condition in the daily operation and maintenance phase.

Over the decades, structural health monitoring methods
have attracted lots of attention [7–10], and they have been
applied to detect the bolt damage [11, 12]. They mainly rely
on the sensor technology to identify the variations of the pre-
load, including piezoelectric active sensing methods [13, 14],
the electromechanical impedance methods [15, 16], and the
vibroacoustic modulation methods [17, 18]. A “smart washer”
with a piezoceramic patch sandwiched between two flat metal
rings was developed to monitor the bolted joint through the
active sensing method [19]. Further, the fluctuation of the
impedance signatures in frequency was utilized to evaluate
the bolted joint with the developed “smart washer” [20]. A
novel vibroacoustic modulation method was proposed to
monitor the early looseness of a bolt in real time [21]. Notably,
although the contact sensor-based methods are proposed to
detect the decrease of preload induced by initial bolt looseness,
they can also be used to detect the delayed fracture of bolts,
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which is a kind of brittle damage and can result in the disap-
pearance of the preload [22, 23]. Nonetheless, the contact
sensor-based methods face the challenge of the cost scaling
up when monitoring multiple bolts, because one sensor can
only perform the measurement at one bolt. As a result, most
bridges are impossible to equip with enough sensors, and the
current monitoring method in practice highly relies on man-
ual inspection. However, the whole inspection process is very
dangerous and inefficient. As shown in Figure 1, maintenance
workers are inspecting the delayed fracture of high-strength
bolts on a long-span steel bridge.

In recent years, computer vision technology has received
substantial attention as an interdisciplinary subject, and it
has been applied in civil infrastructure inspection and moni-
toring to improve the accuracy and efficiency of manual vision
inspection [24, 25]. It has been applied to detect bolt damage
because there are always a huge number of bolts in actual steel
structures. Park et al. [26] proposed a vision-based method to
evaluate the rotation angle of a bolt nut. Cha et al. [27] utilized
the image-processing techniques and the support vector
machine to detect the bolt looseness. However, traditional
computer vision-based methods have poor robustness and
low accuracy. On the other hand, the convolutional neural
network (CNN) has gained great success in computer vision
[28] with the development of deep learning technology, and
CNN-based algorithms have achieved the most advanced
performance in various tasks, including image classification
[29], object detection [30], and semantic segmentation [31].
This kind of technology has also been applied for bolt damage
detection. Huynh et al. [32] proposed a quasiautonomous bolt
looseness detection method, where the plausible bolts were
detected using a CNN-based object detector and the rotation
angle of each bolt was measured by the Hough line transform.
Zhao et al. [33] proposed a method for the measurement of the
bolt-loosening rotation angle using a CNN-based object detec-
tor. Wang et al. [34] designed a computer vision-based method
by integrating the perspective transformation to detect the bolt
looseness for flange connections. However, most studies have
only focused on the detection of bolt looseness, and there is
no research on the inspection of the delayed fractures in
high-strength bolts, to the authors’ best knowledge. The visual
characteristics of the delayed fracture of high-strength bolts are
totally different from looseness, because the fractured bolts will
be missing due to the tremendous amount of energy released
by the fracture [22, 23]. Notably, bolt delayed fracture can be
more dangerous than bolt looseness in theory, because the
former will cause the vanishing of the preload, whereas the
latter will only reduce the force. Hence, this paper proposed a
computer vision-based inspection method for the delayed frac-
ture of bolts, where the damage was detected and located in an
automated fashion using an object detection algorithm.

The task of the object detection is to classify and locate the
targets in the image, and various algorithms have been devel-
oped with high recognition accuracy. The CNN-based object
detection methods can be divided into region-based and
region-free classifications according to the differences in the
idea of the algorithm. The region-based approaches, such as
the region-based convolutional neural network (R-CNN)
[35], Fast R-CNN [36], and Faster R-CNN [37], combine

region proposals and CNN to detect objects. The region pro-
posals are produced from the input image, and they are treated
as the set of candidate detections. The region-free methods,
such as Single Shot MultiBox Detector (SSD) [38], You Only
Look Once (YOLO) [39], YOLOv2 [40], YOLOv3 [41], and
YOLOv4 [42], frame the object detection task as a regression
problem, and these methods directly detect objects from the
input image by using CNN. The speed of region-based
methods is slower than region-free methods due to the neces-
sity of region proposals. Hence, the region-free methods were
selected in our research for the real-time detection. In addition,
YOLOv3 boasts improved performance for detecting small
objects in wide-scale images [43, 44]. The size of the delayed
fracture of bolts is relatively small in an image of a bolt connec-
tion. Therefore, YOLOv3 is selected to detect the delayed
fracture of bolts.

On the other hand, the performance of the CNN-based
object detector heavily relies on extracting information from
abundant labeled images, and the performance can be
improved with the increase of training data in amount and
diversity. However, it is quite difficult to acquire enough
labeled images in practice, and then, the performance of the
trained detector is always limited to some extent. For the bolt
damage detection task in long-span steel bridges, images are
difficult to be captured due to the environmental complexity
and limitation (such as the positions of fractured bolts in a
long-span bridge are inaccessible in most cases), and the man-
ual labeling of the images is laborious due to the concentration
of bolts.

Data augmentation is one of the most commonly used
methods to alleviate this problem, and it can automatically
enlarge the dataset by utilizing the existing images [45, 46]. In
recent years, many data augmentation methods have been
developed for object detection, and images are augmented by
many kinds of image-processing technologies. The widely used
technologies include brightness transformation, flipping, noise
addition, and perspective transformation [47]. For example,
Fast R-CNN and Faster R-CNN use horizontal flipping to
augment training data [36, 37]. The perspective transformation
was introduced to enlarge the training dataset for transmission-
line object detection [48]. Although many augmentation tech-
niques are available, the selection of the techniques is task-
specific and primarily depends on the experience. Thus, the
augmentation effects are still unclear for each method in the

Figure 1: Maintenance workers are inspecting the bolt delayed
fracture in a long-span steel bridge.
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detector training of fractured bolts, and it is necessary to study
the effectiveness of different data augmentation methods.

In this paper, a computer vision-based inspection method
is developed to automatically detect and locate the bolt delayed
fracture, and a series of data augmentation methods are
utilized to improve the performance of the detector without
external laboriousness. In addition, the impact of different data
augmentation methods on the performance of the detector is
analyzed.

2. Methodology

2.1. Workflow of the Detection Method for the Bolt Delayed
Fracture. As shown in Figure 2, the whole process involves
three steps, including dataset preparation, detector training,
and damage detection. During dataset preparation, many raw
images of high-strength bolt connections are first collected
through a camera device. Then, the labeled images can be
obtained by artificial labeling and data augmentation, where
the damage is labeled by enclosing rectangle bounding boxes.
The pairwise images and labels are used to train the YOLOv3
neural network until it can pass the performance checking.
Finally, the trained neural network can be used as a damage
detector to perform damage detection in the real world.

2.2. Overview of YOLOv3 Detector. YOLOv3 is evolved from
its predecessors: YOLO and YOLOv2, which mainly improves
the detection accuracy, especially for the detection of small tar-
gets. Specifically, a new network, Darknet53, integrating resid-
ual networks and Darknet19 (the network used in YOLOv2)
was introduced to improve the ability of feature extraction,
and the multiscale prediction is used to help simultaneously
obtain semantic information and fine-grained information
from different feature maps. The architecture of YOLOv3 is
shown in Figure 3.

At the beginning of the training process, the image-label
pairs are fed into the neural network. Each input image is
adjusted to a fixed size, and then, it is divided into S × S grids
using upsampling and feature fusion operations. Each grid is
tasked with detecting objects that have their center coordinates
enclosed by the grid. Each grid outputs b bounding boxes and c
conditional category probability. Each bounding box can be
determined by the coordinate information (x, y, w, and h)
and the confidence score (Sc). The coordinates (x, y) point
towards the center of the bounding box. The parameters w
and h are, respectively, the width and height of the bounding
box. Sc can be obtained according to Equation (1). The loss
function value is calculated using the prediction value and label
value. The adjustable parameters in the neural network are
updated using a backpropagation algorithm. The process is
repeated until the loss function value converges at a small
value. During the inference process, only the image is fed into
the trained neural network, and the prediction of the neural
network is regarded as the detection result.

Sc = P Objectð Þ × IOUtruth
pred , P Objectð Þ ∈ 0, 1f g, ð1Þ

where PðObjectÞ is equal to 0 when no object exists in the grid;
otherwise, its value is 1. IOUtruth

pred is the intersection over union

(IOU) between the predicted bounding box and the ground
truth of the object.

The loss function in YOLOv3 consists of three parts: coor-
dinate loss, IOU loss, and classification loss. All of them corre-
spond to the output of the neural network prediction. However,
the classification loss is removed in this paper, because the
number of classifications is only one. The loss function used
in this paper is shown in the following equation:

loss = λcoord 〠
S×S
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where λnoobj and λcoord are the efficiencies of the IOU loss and

coordinate loss, respectively; x̂i, ŷi, ŵi, ĥi, Ŝci are the ground

truth values. The value of Iobjij is 1, when the target falls into
the jth bounding box of the ith grid; otherwise, it is equal to 0.

In addition, the average precision (AP) is used as an
indicator to estimate the performance of the damage detec-
tor. The AP sums up the precision-recall curve by comput-
ing the area under the curve [49]. The precision (P) and
recall (R) are defined as follows:

P =
TP

TP + FP
,

R = TP
TP + FN

,
ð3Þ

where true positives (TP) indicate the number of fractured
bolts correctly detected by the detector. False positives (FP)
point to the number of other objects in the background
falsely detected as fractured bolts. False negatives (FN) refer
to the number of fractured bolts missed by the detector.

2.3. Data Augmentation Methods to Improve the Detector
Performance. To improve the performance of the detector, five
data augmentation methods were introduced in this paper,
including brightness transformation (BT), Gaussian blur
(GB), flipping (FL), perspective transformation (PT), and scal-
ing (SC). The data augmentation methods are selected consid-
ering the practical change of the captured images in engineering
and the label preserving ability after augmentation. The BT can
mimic images taken under different light intensity conditions.
The GB can simulate vague images taken under some unfavor-
able situations, such as long-distance, slightly out of focus, and
foggy weather. The PT can imitate images taken from different
viewpoints, including the positions that the camera device
cannot reach. The FL can further produce new images captured
from different viewpoints. The SC can simulate the image
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resolution changes. The sample images after data augmentation
are shown in Figure 4, where the labels of the image are repre-
sented by green rectangular bounding boxes.

The data augmentation methods take an image and its
label as input and automatically generate a new augmented
image and corresponding label. As shown in Figure 4, the
BT and GB do not change the coordinates of the bounding

box, whereas the PT, FL, and SC can result in the coordinate
change of the bounding box. Hence, the bounding boxes
after BT and GB are the same as the original bounding
boxes, and the bounding boxes after FL, PT, and SC should
be rectified.

The details of the data augmentation methods are
described in the following text. The linear BT was used in

Raw images

Labeled images

New raw images

YOLOv3
neural network

Performance
checking

Satisfied?

Damage
detector

Reporting
detection

result

1. Dataset preparation 2. Detector training 3. Damage detection

No Yes

Figure 2: Flowchart of the proposed bolt delayed fracture-detection method.

Type Filters Size
Convolutional 32 3×3
Convolutional 64 3×3/2

1×
Convolutional 32 1×1
Convolutional 64 3×3
Residual
Convolutional 128 3×3/2

2×
Convolutional 64 1×1
Convolutional 128 3×3
Residual
Convolutional 256 3×3/2

8×
Convolutional 128 1×1
Convolutional 256 3×3
Residual
Convolutional 512 3×3/2

8×
Convolutional 256 1×1
Convolutional 512 3×3
Residual
Convolutional 1024 3×3/2

4×
Convolutional 512 1×1
Convolutional 1024 3×3
Residual

YOLOv3 detection

Convolutional sets Convolutional sets Convolutional sets

Darknet53 without FC layers

Scale 1 Scale 2 Scale 3

Figure 3: The architecture of YOLOv3 neural network.
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this paper, which directly multiplies the pixel value of the
image by a certain coefficient. The GB takes the average
value of pixels around a certain point as the pixel value of
that point, and the surrounding pixels are assigned different
weights according to the distance and the normal distribu-
tion. The FL consists of vertical flipping and horizontal flip-
ping, and the rectified bounding box can be obtained easily
according to the symmetry. The bilinear interpolation tech-
nique was used to change the image resolution, and the rec-
tified image and bounding box can be obtained according to
the scaling coefficient. The PT transforms an image from
one plane into another plane by a perspective transforma-
tion matrix, as shown in Equation (4). The components of
the matrix can be obtained according to four pairs of points
following Equation (5). As shown in Figure 5, four vertices
(A0, B0, C0, and D0) of the input image and four random

sampling points ðA0
∗, B0

∗, C0
∗, andD0

∗Þ of the augmented
image were used to calculate the perspective transformation
matrix, and the coordinates of each point can be obtained
following Equations (6) and (7). After obtaining the perspec-
tive transformation matrix, a rectangular bounding box
(A1B1C1D1) in the input image can be transformed to a
quadrangle bounding box (A1

∗B1
∗C1

∗D1
∗) in the aug-

mented image following Equation (4). However, the nonrec-
tangular bounding boxes cannot be trained by CNN. To
tackle this problem, the nonrectangular bounding boxes
are rectified using label alignment to generate the new rect-
angular bounding boxes automatically. To make sure the
generated rectangular bounding box totally contain the bolt
damage, we let x1PT = x2PT = min fx1∗, x2∗, x3∗, x4∗g, y1PT =
y3PT = min fy1∗, y2∗, y3∗, y4∗g, x3PT = x4PT = max fx1∗, x2∗,
x3

∗, x4∗g, and y2PT = y4PT = max fy1∗, y2∗, y3∗, y4∗g. The

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4: Sample labeled images with different augmentation methods: (a) original image, (b, c) brightness transformation, (d, e) Gaussian
blur, (f, g) flipping, (h, i) perspective transformation, and (j, k) image scaling.
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generated rectangular bounding box can be represented by
A1PT = ðx1PT, y1PTÞ, B1PT = ðx2PT, y2PTÞ, C1PT = ðx3PT, y3PTÞ,
andD1PT = ðx4PT, y4PTÞ. The augmented image and the original
image have the same size, and the blank area in the augmented
image is filled with black pixels.

ui = Tvi =
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ð5Þ

where T is the projective transformation matrix, vi = ðxi, yi, 1Þ
is a point in the original image, and ui = ðx∗i , y∗i , 1Þ is a point
in the PT augmented image.

xtl, xbl, xbr, xtr ∈ 0,W × λð Þ, ð6Þ

ytl, ybl, ybr, ytr ∈ 0,H × λð Þ, ð7Þ

whereW andH represent the width and height of the image; xtl
, xbl, xbr, xtr, ytl, ybl, ybr, and ytr are the distances from points to
the corresponding image boundary; and λ is the intensity
parameter for perspective transformation; and the greater the
λ, the more obvious the perspective phenomenon.

3. Experimental Verification

3.1. Dataset Preparation. Due to the practical challenges of
obtaining large amounts of images depicting the bolt delayed
fracture in real bridges, only two images of delayed fractured
bolts from an actual suspension bridge were collected in this
study. It is impossible to train the YOLOv3 neural network
with such a limited number of images; however, these two
images can be used to demonstrate the practicability of the
proposed method. Thus, training images were generated
using two steel plates held together with high-strength bolts.
Many images of fractured bolts were collected from the fab-
ricated steel plates to train the neural network.

In this paper, a total of 500 raw images were collected at
3016 × 3016-pixel and 3016 × 4032-pixel resolutions by a
smartphone camera from Xiaomi Mi 6. The distance between
the object and the camera is approximately from 0.2m to
1.5m. To obtain different lighting intensities of a bolt image
in an actual bridge, the images were collected outside during
different times of the day (e.g., 9 a.m., 1 p.m., and 5p.m.).
The relationship between the camera’s viewing direction and
the direction of the sunlight illumination will also influence
the brightness of the images. Hence, during the image collec-
tion, the conditions of front-lighting, back-lighting, and side-

Perspective transformation

Label alignment

A1 (x1, y1)

A0 (0, 0) D0 (W, 0)

B0 (0, H)

A0
⁎ (xt1, yt1)

C0 (W, H)

B0
⁎ (xbl, H-ybl)

D0
⁎ (W-xtr, ytr)

C0
⁎ (W-xbr, H-ybr)

B1(x2, y2) C1 (x3, y3)

D1 (x4, y4)

A1
⁎(x1

⁎, y1
⁎) D1

⁎(x4
⁎, y4

⁎)

B1
⁎(x2

⁎, y2
⁎) C1

⁎(x3
⁎, y3

⁎)

A1PT (x1PT, y1PT) D1PT (x4PT, y4PT)

C1PT (x3PT, y3PT)B1PT (x2PT, y2PT)

Figure 5: Flowchart of the perspective transformation data augmentation.
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lighting are all considered. The direction of the camera viewing
was set parallel, antiparallel, and perpendicular to the vector of
the sunlight, which can, respectively, simulate front-lighting,
back-lighting, and side-lighting. Since the shadow from clouds
or the bridge structure will affect the detection accuracy, images
were also gathered under scattered tree shade. The apparent
shape of the bolt changes based on the viewing angle, and thus,
images were taken from multiple viewing angles for the same
fractured bolt during image acquisition.

After the image acquisition, the fractured bolts in all 500
images were manually labeled with bounding boxes using
the custom code written in Python. And considering the
convenience of using the dataset in the future, the dataset
is converted to PASCAL VOC format [49]. A “.XML” file
including the information of the labeled bounding boxes
was generated for each image after successful labeling. The
file was then converted into a “.txt” file suitable for the train-
ing. The labeled images were then randomly divided into
three sets: training set, validation set, and testing set, with
320, 80, and 100 images for each set, respectively. During
the labeling process, a total of 439 objects were annotated
in the 320 training images. The training set was utilized to
train the neural network, and the validation set was used
to aid the training and avoid overfitting. After training, the
performance of the trained detector was estimated with the
testing set. Notably, five extra training sets were generated
using five data augmentation methods based on the original
training set, and finally, a total of six training sets (DAOR,
DABT, DAGB, DAFL, DAPT, and DASC) were established in
this research and used to train six neural networks. DAOR
is the original training set with 320 manually labeled images.

DABT, DAGB, DAFL, DAPT, and DASC are the training sets
consisting of augmented images generated by the corre-
sponding augmentation method and manually labeled
images. The augmented images were produced before train-
ing for convenience.

Two BT coefficients were randomly selected from 0.6 to
1.4 and utilized to adjust the brightness for images in DAOR,
and as a result, 640 new images were generated. The range of
the brightness transformation coefficient was determined
based on whether the edge of the target can be identified using
naked eyes. The original images in DAOR were also modified
using GB to generate 640 additional images. The standard
deviation for the Gaussian kernel was randomly selected
between 0 and 3.0. The range of standard deviations was set
in the same manner mentioned in BT. The images in DAOR
were horizontally and vertically flipped, and 640 new flipping
images were produced. The scaling coefficient was selected
from 0.1 to 1.9, and 640 new augmented images were pro-
duced. The PT was applied twice, and 640 new augmented
images were generated. The perspective intensity parameter
λ was selected from 0.1 to 0.3. The number of images in differ-
ent data sets is shown in Table 1.

3.2. Implementation Details during Training Process. All
experiments were performed on a personal computer:
Lenovo R720 (a Core i7-7700HQ CPU @ 2.80GHz, 8GB
DDR4 memory, and 2GB memory NVIDIA GeForce GTX
1050 Ti GPU). All the training and testing processes were
conducted on the GPU. The YOLOv3 neural network was
developed using Python 3.6.5 under TensorFlow 1.8.0 frame.

Before the beginning of experiments, the k-means cluster-
ing algorithm was applied on the size of the bounding boxes
of images in DAOR to obtain the bounding box priors and facil-
itate network learning and detection results. The clustering
results are shown in Figure 6. The number of clusters is set at
9 as follows: ð15 × 11Þ, ð13 × 14Þ, ð20 × 17Þ, ð22 × 21Þ, ð25 ×
26Þ, ð35 × 31Þ, ð45 × 45Þ, ð74 × 74Þ, and ð131 × 160Þ.

In order to improve the detection accuracy of the detec-
tor and adapt to the required input format of the Darknet53,
the size of the input image is set to 416 × 416 pixels. Due to

Table 1: The number of images in the datasets.

Dataset DAOR DABT DAGB DAPT DAFL DASC Validation set Testing set

Number 320 960 960 960 960 960 80 100
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Figure 6: The result of k-means clustering on the original training
set.

Table 2: The average precision (AP) of the detectors using different
training sets (%).

Training set DAOR DABT DAGB DAPT DAFL DASC

AP0.5 84.62 81.81 81.29 89.14 86.37 82.99

Increment — -2.81 -3.33 4.52 1.75 -1.63

AP0.6 70.09 75.16 67.31 83.48 75.93 69.39

Increment — 5.07 -2.78 13.39 5.84 -0.7

AP0.7 42.11 47.55 38.73 60.56 48.87 46.69

Increment — 5.44 -3.38 18.45 6.76 4.58
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the constraints of the GPU memory, the batch size was set to
8. And the training step was set to 10000 to analyze the
training process by the loss curve. To prevent training the
neural network from scratch, the internal adjustable param-
eters was initialized by using a pretrained weight, which can
be obtained from the website (https://pjreddie.com/yolo/).
The initial learning rate was set to 0.003 through trial and
error with the help of the validation set. The λcoord and
λnoobj are set to 5 and 0.5, respectively. To analyze the impact
of different data augmentation methods, six neural networks
were trained using six training sets. The parameter settings
during training process are the same except using the differ-
ent training sets.

4. Result and Discussion

After training, the images in the testing set were used to test
the performance of the six detectors, and the IOU threshold
is set to 0.5, 0.6, and 0.7. The AP values of six detectors
under different IOU thresholds were calculated, as shown
in Table 2. The highest AP value is 89.14%, which indicates
that the trained detector has a strong generalization and
excellent detection performance, and the AP value decreases

with the increase of the IOU threshold. The AP of the detector
trained using DAOR is used as a benchmark, and the AP incre-
ment of other detectors is used to estimate the usefulness of dif-
ferent methods. The PT and FL both improve the AP value on
the testing set, and the highest increment of AP is induced by
PT, achieving 4.52%, 13.39%, and 18.45% corresponding to
three different IOU thresholds. In theory, five data augmenta-
tion methods all can improve the richness of the training set,
and the performance of the detectors trained by augmented
training sets should be better than the detector trained by the
original training set. However, the BT, GB, and SC reduce the
performance, as shown in Table 2. The reason can be that
although the change of lighting intensity, distance, and resolu-
tion was considered during image collection, the number of the
collected raw images in the testing set is too small to represent
the entire image sample. Hence, the promotion of the ability of
the detector to detect vague images, brightness changes, and
resolution changes cannot be reflected on the existing testing
set, whereas the improvement of the ability to detect objects
captured from different viewpoints is the most obvious,
because all images were captured from different viewpoints.

The detection results of some images in the testing set
are shown in Figure 7. The fractured bolts in the image were

Damage

Damage

(a)
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Figure 7: Sample images of detected bolt delayed fracture.
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Figure 8: Sample images of detected bolt delayed fracture considering the color and weather.
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automatically detected (indicated with a solid red box) by
the detector after the test images were inputted into the best
detector. The detection process spends only 0.06 seconds for
each input image (416 × 416 resolution). It should be noted
that the detection speed is affected by hardware limitations.
In [41], the detection speed for a 416 × 416 resolution image
is 0.029 seconds. Hence, this method can accomplish real-
time autonomous damage detection when a camera is used
in conjunction with a processor. The proposed method can
facilitate the transition from manual inspection to auto-
mated inspection or monitoring carried out by fixed cam-
eras, UAVs, or remote-controlled robots in the future.

The generalization ability of the trained detector was further
demonstrated using the new images of bolts with different
colors (black, red, gray, and blue) and covered with raindrops
and the images of fractured bolts from an actual bridge (two
3024 × 4032-pixel images taken from a real long-span steel
bridge in China). The detection results are shown in Figures 8
and 9, and the trained detector can correctly detect the damage
from the new images. The results show that the trained detector
does not overfit the two sample steel plates. It also demonstrates
the practicality of the proposed method.

On the other hand, although the detector can detect the
damage correctly, the predicted bounding boxes do not per-
fectly fit the fractured bolts. The minor errors may be induced
by the limitation of the training set, such as the lack of images
taken from actual bridges. In addition, a comprehensive anal-
ysis of the effectiveness of different augmentation techniques
for this detection task needs a comprehensive image dataset.
The images in the dataset should be collected from actual engi-
neering. Thus, more actual images need to be collected and a
larger image dataset will be established in the future to further
analyze the effectiveness of different augmentation methods
and how to use them in combination.

5. Conclusion

This paper presents a new, automated method to inspect
fracture failures for bolts. The method is developed based
upon the CNN-based object detection algorithm YOLOv3,

and the performance of the detector is improved by data
augmentation. An image dataset was developed through
image acquisition, image labeling, and data augmentation,
and six YOLOv3 neural networks were trained using differ-
ent augmented training sets to analyze the impact of differ-
ent augmentation methods. The highest AP of the trained
detectors is 89.14% when the IOU threshold equals to 0.5.
The effectiveness of different data augmentation methods is
evaluated by the increment of AP. The highest increment of
AP on the testing set is achieved by perspective transformation
augmentation. The detection speed of the trained detector
achieved 0.06 seconds for each input image with 416 × 416
resolution. The generalization of the trained network and the
practicality of the proposed method were validated using
new images that were never used in the training and testing.
The proposed method has the potential to enable safe, real-
time, and autonomous detection of delayed fracture of high-
strength bolts with high accuracy.
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With the increase of household electricity consumption and the introduction of distributed new energy sources, more attention
has been paid to the issue of optimizing the cost of electricity purchase for household customers. An effective way to deal with
these problems is through home energy management system (HEMS). In this paper, a model of home energy management is
presented to optimize the home energy mix. The operation of home electricity consumption devices, distributed generation
systems, and energy storage devices, as well as the charging and discharging of electric vehicles, are all considered. HEMS is a
self-regulating system that can accommodate fluctuations in tariffs and home electricity consumption. The structure and the
optimal scheduling algorithm of HEMS are introduced. The smart grid and demand response, smart home, new energy
generation, energy storage, and other related technologies are discussed. Furthermore, the optimal scheduling of power
consumption devices and energy sources in the HEMS and future development directions are explained and analyzed. A
framework of HEMS is presented on the basis of advanced metering infrastructure (AMI). The framework adopts a local
information management terminal as the core of data storage and scheduling in the home. Based on the timely purchase of
electricity from the grid and the generation of electricity in combination with PV systems, an optimized simulation model for
the scheduling of a new home energy management system is established. In addition, the application prospects of artificial
intelligence in the HEMS are overviewed.

1. Introduction

Home energy management system (HEMS) is an intelligent
network control system based on smart grid, smart home,
and smart meters [1–3]. It integrates power generation, elec-
tricity consumption, and energy storage devices into a single
system for management and control [4–6]. HEMS can
improve the efficiency of household renewable energy and
save electricity bills for customers [7, 8]. The traditional
power market lacks interaction with customers, and the elec-
tricity tariff form is single, resulting in the insufficient supply
of electricity during peak hours, as well as wasted electricity
in low hours. Subsequently, the peak and off-peak tariff
mechanism is introduced, which plays a role in guiding cus-
tomers to adjust the time of electricity consumption [9].
However, it is less flexible and cannot reflect the real rela-

tionship between electricity consumption and supply. More-
over, HEMS can fully interact with the power grid to obtain
accurate real-time price, cooperate with generation and load
forecasting, perform an intelligent allocation of household
energy, optimize the allocation of household load in the time
dimension, achieve demand response on the customer side,
relieve the pressure on the grid during peak hours, and
improve the stability of grid [10]. HEMS is the minimal unit
of smart grid, which is a new generation of information tech-
nologies such as Internet of Things, cloud computing,
mobile Internet, and big data, combined with the household
as a carrier to achieve a low-carbon, healthy, intelligent,
comfortable, and safe family lifestyle [11, 12]. By combining
distributed power technologies such as household photovol-
taic and energy storage, it flexibly controls various house-
hold appliances and realizes an intelligent mode of
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electricity and energy use. Currently, HEMS has been a hot
research topic, and its optimization objectives contain the
aspects such as economy, comfort, and load shedding.

Extensive research has been conducted to describe
household electricity behavior and establish an intelligent
model of household electricity, aiming for maximum peak
load shedding and minimum electricity cost [13]. Alterna-
tively, some studies consider the correlation between the
use of home appliances and the optimization of household
electricity behavior with the goal of minimizing electricity
bills and maximizing comfort [14]. In addition to a variety
of household appliances, there are scholars who investigate
the impact of electric vehicles and energy storage devices
in the optimization of smart homes, in order to propose a
method of household energy that considers real-time control
strategies for energy storage devices [15, 16]. Although the
above studies coordinate the consideration of smart home
energy management with the charging and discharge strate-
gies of energy storage devices, there are very few studies con-
cerned with the rational allocation methods.

In this paper, the structure of HEMS is introduced and
the optimal scheduling algorithm of HEMS is analyzed;
smart grid and demand response, smart home, new energy
generation, and energy storage technologies are discussed;
and an analysis of the optimal scheduling of power con-
sumption devices and energy in the HEMS is discussed. Fur-
thermore, a framework for an advanced measurement
infrastructure (AMI) is presented for HEMS. Based on the
timely purchase of electricity from the grid and the genera-
tion of electricity from PV systems, an optimized simulation
model for the scheduling of a new HEMS is developed. The
prospects for the application of artificial intelligence in the
HEMS are also discussed.

2. Operating Principle of HEMS

2.1. Structure of HEMS. HEMS is a system for the residential
user side, which is based on technologies such as AMI,
intelligent collection, and intelligent interaction. It is a
household area network with smart devices like smart
meters, smart sockets/switches, smart appliances and smart
interactive terminals in the home [17]. Moreover, it can
support the access of distributed energy, electric vehicles,
and other devices and uses the local information manage-
ment terminal as a bridge for comprehensive management
of user information and information interaction with the
main station, thus realizing the bidirectional interaction
between grid and user, energy management, and other
functions [18, 19].

The bidirectional smart metering terminal is responsi-
ble for acquiring electricity generation and consumption
information of the household. The mobile terminal sup-
plies the function of interacting with users, which is
responsible for acquiring electricity consumption settings
of users and displaying household electricity consumption
information. As the verification and control device of the
HEMS, the local information management terminal is
capable of communicating with the bidirectional smart
meter and the mobile terminal, acquiring the necessary

electricity and setting data, and integrating with the
weather, demand response, and other information
acquired from the external network to invoke the localized
forecasting module and scheduling module to achieve
intelligent control of household electricity consumption.
Particularly, the scheduling module considers the impact
of distributed generation and energy storage access in
order to find the optimal control result.

2.2. AMI Architecture. AMI is an open bidirectional commu-
nication platform, which is used to connect the system and
power load and collect and manage grid data through elec-
tricity metering technology to achieve smart usage [20]. It
provides customers with time-phased or instantaneous
metering values, which improves the efficiency of equipment
usage and supports the grid. AMI consists of four main com-
ponents: smart meters, communication networks, measure-
ment data management systems (MDMS), and home area
network. AMI architecture is given in Figure 1.

MDMS is based on the main station and works in con-
junction with the AMI Automatic Data Collection System
to acquire and store metered values. After getting the data,
validation, editing, and estimation are conducted through
MDMS. It can provide the processed data to the required
systems and ensure that the data stream from other systems
is accurate and complete under communication disruptions
and customer-side failures. By using the data provided by
the MDMS, the utility can implement peak and off-peak tar-
iffs, time-of-use tariffs, and a number of other complex bill-
ing methods.

The intelligence of smart meters is embodied in their
programmable capability. Except for metering, smart meters
also have functions such as compound rate metering, event
recording, data storage, and bidirectional communication.
As the foundation of HEMS, it offers data support for home
energy dispatch and customer demand-side response.

Bidirectional communication network is the bridge
between the company and customer, which is responsible
for reading the data of smart meter at regular intervals and
sending the demand response information to the customer.
PLC, RF, GPRS, and McWiLL are the common communica-
tion methods.

Home network is used to connect the intelligent con-
trol terminal, the intelligent power consumption equip-
ment, and the intelligent electricity meter [21]. The
intelligent control terminal can acquire all the information
on electricity consumption and equipment status and send
the results of electricity dispatch to the electricity equip-
ment. Wireless communication is often used in the house-
hold. The common wireless communication methods are
ZigBee, Wi-Fi, etc. ZigBee has greater advantages in power
consumption, cost, and networking whereas Wi-Fi has rel-
atively fast speed and can be directly connected to the
Internet [22–24]. It has a wide range of applications in
mobile networking devices.

2.3. HEMS Topology. The home distributed PV/energy stor-
age power generation system can be divided into two types:
DC topology and AC topology, as shown in Figures 2(a) and
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2(b), respectively. The system consists of PV equipment,
energy storage equipment, grid-connected inverter, and
load. In this system, the photovoltaic panels are measured
by a separate meter. The AC grid electricity consumption
and the residual grid electricity are measured by a bidirec-
tional meter. The appliance load can be monitored through
a smart socket.

3. Home Energy Management Model

Household electrical appliances, in addition to room tem-
perature heating and domestic hot water systems, can be
divided into automatic of appliance (AOA) and manual of
appliance (MOA). AOA refers to appliances that can be
operated automatically without human intervention, such
as washing machines and dishwashers. MOA means the
devices that must be operated manually by the user, such
as computers, TVs, and hoovers. Since MOAs are only suit-
able for manual switching, other electrical appliance strate-
gies in the home are aimed at AOAs.

3.1. Photovoltaic Cell Model. The output of power photovol-
taic cell is a function of solar irradiance and temperature,
and it can be obtained using the daily irradiance curve.

The output power can be expressed as follows:

PPV tð Þ = PSTC
G tð Þ
GSTC

1 + k T tð Þ − TSTCð Þ½ �,

T tð Þ = Tair tð Þ + 0:0318G tð Þ 1 + 0:031Tair tð Þð Þ 1 − 0:042VWð Þ,

8><
>:

ð1Þ

where PPVðtÞ is the photovoltaic output, PSTC is the maxi-
mum output under standard test conditions, GðtÞ is the cur-
rent solar irradiance, GSTC is the rated solar irradiance, k is
the temperature coefficient, TðtÞ is the temperature of cell
module at the current moment, TairðtÞ is the ambient tem-
perature, TSTC is the rated reference temperature, and VW
is the current wind speed.

3.2. Battery Model. The battery model mainly regards the
state during the charging and discharging process. The
remaining capacity of battery is expressed as

SSOC t + 1ð Þ = Cr
CN

× 100% =
SSOC tð Þ + ηchPch tð ÞΔt,

SSOC tð Þ − Pdis tð ÞΔt
ηdis

,

8><
>:

ð2Þ

Electricity
price

information

Demand response
load control

remote opening and closing

Advanced metering infrastructure (AMI)

Home
network

Smart energy
meter

Measurement
data

management
system

(MDMS)

Advanced power
distribution
operation

infrastructure
(ADOI)

Figure 1: Structure of AMI architecture.

Home energy
management terminal

M

Accumulator
Grid inverter

DC bus AC bus

MDC /AC

DC/AC

PV
controller

PV panels

One-way
billing
meter

Family
load

Two-way
billing meter

AC
grid

(a)

Home energy
management terminal

DC /AC

DC /AC

M M

PV panels

Accumulator

Grid inverter

AC
grid 

AC bus

Two-way
billing meter

One-way
billing
meter

Bidirectional
inverter

Family
load

(b)
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where SSOCðt + 1Þ is the next charge state, Cr is the actual
charge capacity, CN is the nominal charge capacity; SSOCðtÞ
is the current charge state, ηch is the battery charge effi-
ciency; ηdis is the battery discharge efficiency, PchðtÞ is the
current charge power, PdisðtÞ is the current discharge power,
and PdisðtÞ is the charge and discharge time.

Additionally, the life of battery is related to the depth of
discharge and the number of cycles, where the life consump-
tion D of lead-acid battery can be expressed as

Di = 〠
n

i=1

1

a1 + a2e
−a3 1−SSOC ið Þð Þ + a4e

−a5 1−SSOC ið Þð Þ , ð3Þ

where SSOC
ðiÞ is the state of charge when it is transferred

from discharge to charge, which represents one discharge
cycle.

The battery life parameter is obtained by fitting the num-
ber of cycle curves provided by its equipment manufacturer.

3.3. Load Model. The loads in the HEMS can be divided into
4 categories in accordance with their control level as follows:

(1) Temperature-controlled loads, which include air
conditioners, water heaters, and refrigerators, with
a certain degree of cooling or heat storage capacity

(2) Active controllable loads, including washing
machines and rice cookers, with a fixed working
cycle and a certain flexibility of use time

(3) Passive controllable loads, including lights and fans,
which can be intelligently controlled but have inflex-
ible operating hours

(4) Noncontrollable loads

3.3.1. Air Conditioner. Assume that the air conditioner is
operating in cooling mode and the operating state is related
to the room temperature setting. The air conditioner is ener-
gized when the room temperature is above the maximum
value. As the temperature is below the minimum value, the
air conditioner is disconnected. It maintains the original
state if the temperature is within the set range. Its control
model and the comfort index KAC,t are shown as follows:

SAC,t =

0 TAC,t < TAC,s,

1 TAC,t > TAC,s + ΔTAC,

SAC,t−1 TAC,s < TAC,t < TAC,s + ΔTAC,

8>><
>>:

KAC,t =
TAC,t − TAC,s

ΔTAC
,

ð4Þ

where SAC,t is the state of air conditioning (the value of 0
means power off; the value of 1 means power on). TAC,s is
the minimum setting temperature. ΔTAC is the room tem-
perature set range. TAC,t is the room temperature at time t.

KAC,t is the difference between the current room temper-
ature and the minimum set value after standardization; the
higher the room temperature, the greater the comfort index

KAC,t ; the lower the satisfaction of the user, thus the higher
the power priority. During demand response, the power sup-
ply is controlled based on the priority of the air condi-
tioner [25].

3.3.2. Water Heater. Water heater operation status is related
to the water temperature setting. When the water tempera-
ture is above the maximum temperature TWH,s, the water
heater is disconnected; when it is below the minimum tem-
perature, the water heater is powered on; when it is within
the set range, it remains in the original state. The water
heater control model and its comfort index KWH,t are given
as follows:

SWH,t =

0 TWH,t > TWH,s,

1 TWH,t < TWH,s − ΔTWH,

SWH,t−1 TWH,s − ΔTWH < TWH,t < TWH,s,

8>><
>>:

KWH,t =
TWH,s − TWH,t

ΔTWH
,

ð5Þ

where SWH,t is the working state of water heater at time t (the
value of 0 means power off; the value of 1 means power on).
TWH,s is the highest water temperature setting value. ΔTWH
is the water temperature setting range. TWH,t is the water
temperature at time t.

KWH,t is the difference between the current water tem-
perature and the highest set value after normalisation; the
lower the water temperature, the greater the comfort index
KWH,t ; the lower the customer satisfaction, thus the higher
the priority of electricity consumption. During demand
response, the water heater is controlled based on its priority.

3.3.3. Electric Vehicles. It is assumed that the electric vehicle
is plug-and-charge type. On the basis of its charging charac-
teristics, the load demand is set as follows. The electric vehi-
cle should be fully charged by the specified time [26]. For
instance, if charging is assumed to start at 21:00, it is set to
reach full charge at 04:00 on the next day. The electric vehi-
cle control model is presented in Equation (6). The comfort
index of electric vehicles is calculated in a different way from
air conditioning and water heaters. It is specified that the
comfort index tends to infinity when the electric vehicle is
not expected to finish charging before the specified time;
otherwise, the index is zero

SEV,t =
0 Qt ≥Qmax,

1 Qt <Qmax,

(
ð6Þ

KEV,t = 0 Qt >Qmin,t ,

KEV,t⟶∞ Qt ≤Qmin,t ,

(
ð7Þ

where SEV,t is the state of the EV at time t (a value of 0 means
disconnected; a value of 1 means energized), Qt is the charge
of the EV at time t, Qmax is the maximum value of the
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battery state of charge (SOC), Qmin,t is the minimum value of
the battery SOC at time t.

When KEV,t tends to infinity, it indicates that the EV
cannot finish charging before the specified time, at which
time its power consumption priority can be set to the high-
est. During demand response, the power supply state of the
EV is controlled based on its priority level.

4. Artificial Intelligence and Its
Application in HEMS

Artificial intelligence is a comprehensive discipline devel-
oped through the interplay of many disciplines such as
mathematical logic, computer science, cybernetics, informa-
tion theory, neurobiology, and linguistics. The main objec-
tive is to develop a theory of intelligent information
processing and to design computer systems that can display
certain behaviors approximating human intelligence.

4.1. Deep Learning. Deep learning was originally proposed
by Hinton at the University of Toronto. Deep learning
algorithms draw on the neural working mechanism of
the brain, which is an extension and development on the
traditional artificial neural network technology. Through
increasing the number of hidden layers of artificial neural
networks and proposing effective training methods, the
gradient diffusion (GD) problem of neural network train-
ing has been solved, which effectively improves the feature
extraction ability and classification ability of neural net-
works. According to the problems and tasks, different
model structures and open-source technology platforms
have been developed for deep learning techniques. The
main deep learning models are deep autoencoder (DAE),
deep belief networks (DBN), convolutional neural network
(CNN), and long short-term memory (LSTM). A typical
deep learning model structure is shown in Figure 3. The
main open-source platforms are TensorFlow, Caffe,
DMTK, SystemML, etc.
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Figure 3: Schematic diagram of neural network model: (a) DAE; (b) DBN; (c) CNN. (d) LSTM.
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The deep learning model has many parameters, a large
training data scale, and a large amount of calculation, which
consumes massive computing resources. Deep learning
model parameters need to be debugged and optimized, such
as network structure selection, neuron number setting,
weight parameter initialization, learning rate adjustment,
and minibatch control. In practice, it requires multiple train-
ings and constant exploration and experimentation, which
further increases the demand for computing resources. With
the increase of model depth and training data volume, the
training acceleration method of the deep learning model
becomes more and more important. Typical acceleration
methods mainly include algorithm optimization, GPU accel-
eration, and computing cluster acceleration.

4.2. Knowledge Graph. Knowledge graph, as another impor-
tant research direction in the field of artificial intelligence, is
widely used in semantic search and automatic question
answering. The knowledge graph usually organizes knowl-
edge in the form of a network, describing the relationship
between entities in the real world; each node represents an
entity; and each edge represents the relationship between
entities. After Google proposed the concept of knowledge
graph, this form of network representation of knowledge
has been widely recognized. The main research goal of
knowledge graph is to propose knowledge from unstruc-
tured or semistructured information and carry out struc-
tured processing, automatic construction of knowledge
base, knowledge reasoning, and so on. Knowledge represen-
tation is the basis of the research and application of knowl-
edge graphs. The Word2Vec word representation model
and toolkit found that there is a translation-invariant rela-
tionship in the word vector space, which makes representa-
tion learning gain widespread attention in the field of
natural language processing. The TransE model expresses
the relationship in the knowledge base as a translation vector

between entities, which has become the mainstream research
method of knowledge representation today. The technical
architecture of the knowledge graph is shown in Figure 4,
including three parts: information extraction, knowledge
fusion, and knowledge processing. Information extraction
includes key technologies such as entity extraction, relation-
ship extraction, and attribute extraction. Knowledge fusion
includes entity disambiguation, coreference analysis, and
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Figure 4: Technical architecture of knowledge graph.
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knowledge fusion. Knowledge processing includes knowl-
edge reasoning, quality evaluation, and ontology extraction.

4.3. Expert System. The expert system was produced in the
mid-1960s and is an important branch of artificial intelli-
gence applications. Expert system is a computer program
system that solves specific problems based on the knowledge
of specialized fields. It can simulate the thinking activities of
human experts to solve complex problems through reason-
ing and judgment like experts. A typical expert system is
mainly composed of knowledge base, database, inference
engine, and man-machine interface, and its structure is
shown in Figure 5. There are many problems in the power
system that need to be solved by expert planning, designers,
dispatchers, etc. in related fields. Some rely on expert experi-
ence, and some integrate judgment based on experience with
results obtained based on numerical analysis methods.
Expert systems have become the most mature artificial intel-
ligence technology used in power systems so far. The main
application areas include power grid monitoring and fault
diagnosis, power grid dispatching operation guidance, and
fault recovery.

4.4. Agent Technology. Agent is an entity with high self-
control capability that runs in a dynamic environment, and
its structure is shown in Figure 6. From a software perspec-
tive, it is a computer program that communicates with the
outside through a predefined protocol and is loosely
coupled. Distributed intelligent solution is performed in a
way. It is an entity that can work autonomously and has
semantic interoperability and protocol interaction capabili-

ties. It is a distributed technology in the field of artificial
intelligence. Due to the advantages of adaptability and open-
ness, it has a good prospect in the new generation of dis-
patching automation system.

Agent encapsulates the tasks and goals to be completed
in the target module and collects external data through the
perception module. The information processing module
makes corresponding decisions based on the data collected
by the sensor. The communication module provides condi-
tions for coordination between Agents. An independent rule
library is set up in the Agent to provide choices for decision-
making and improve the efficiency. Mobile agent server
(MAS) achieves the goal of entire system by coordinating
and controlling each agent. The architecture of MAS system
can generally be divided into three types: centralized struc-
ture, decentralized structure, and hybrid structure, as shown
in Figure 7.

5. Resident HEMS Application

On December 9, 2019, the first demonstration project for
HEMS in Jiangsu was completed and put into operation in
Huangzhuang Village in Jinhu County, Jiangsu Province.
Jiangsu Electric Power Co., Ltd., of State Grid installed a
set of ubiquitous Internet of Things devices such as energy
controllers and household appliances in the demonstration
area to realize the in-depth perception and precise adjust-
ment of residential loads at the electrical level, allowing res-
idents to interact friendly with the demand of power grid. By
cooperating with the cloud master station, the energy con-
troller can accurately predict load fluctuations in the station
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Figure 7: MAS system architecture: (a) centralized structure; (b) decentralized structure; (c) hybrid structure.
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area and effectively converge and regulate customer-side
load resources without affecting the daily energy consump-
tion. The temperature of residential air conditioner is
adjusted through the energy control system. During the peak
period of power consumption in the station area, the heating
time of water heater would be adjusted to reduce the total
load.

For instance, on a peak load forecasting day, the station
area is in the second-level interval during the period from
19:00 to 20:40. According to the load forecasting result and
the load coordinated control framework, the main adjust-
ment potential of this period is the air conditioning load,
and this period is selected through air conditioning adjust-
ment. 10 users are selected, and their air conditioning tem-
peratures are adjusted from the original 25°C to 23°C. The
air condition response of user is shown in Figure 8.

6. Conclusion

(i) HEMS connects users and the grid. The smart ter-
minal of HEMS enables to read, process, and display
information such as household electricity, water,
and faults, so as to guide users to use electricity rea-
sonably and save energy. Users can realize remote
monitoring of home appliances and achieve prepaid
services through the Internet, mobile phones, etc.

(ii) Advanced sensing equipment can sense changes in
the external environment in real time and commu-
nicate with humans in time. The artificial intelli-
gence enables power equipment to calculate and
fuse the sensed information to reach the corre-
sponding conclusion and report it to the user. It
can even analyze real-time information and histori-
cal data and propose long-term decision-making
suggestions to provide reference for user services

(iii) Traditional artificial intelligence technologies such
as expert systems, neural networks, fuzzy sets, and
heuristic search algorithms have been widely used

in power systems. New-generation artificial intelli-
gence technology is a breakthrough in distributed
power and distributed energy storage. In response
to the complex nonlinearity, uncertainty, and tem-
poral and spatial differences brought by the high-
proportion access of various new energy sources to
the grid, effective solutions have been proposed
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Aiming at solving the problem that the detection methods used in the existing helmet detection research has low detection
efficiency and the cumulative error influences accuracy, a new algorithm for improving YOLOv5 helmet wearing detection is
proposed. First of all, we use the K-means++ algorithm to improve the size matching degree of the a priori anchor box;
secondly, integrate the Depthwise Coordinate Attention (DWCA) mechanism in the backbone network, so that the network
can learn the weight of each channel independently and enhance the information dissemination between features, thereby
strengthening the network’s ability to distinguish foreground and background. The experimental results show as follows: in the
self-made safety helmet wearing detection dataset, the average accuracy rate reached 95.9%, the average accuracy of the helmet
detection reached 96.5%, and the average accuracy of the worker’s head detection reached 95.2%. Making a comparison with
the YOLOv5 algorithm, our model has a 3% increase in the average accuracy of helmet detection, which is in line with the
accuracy requirements of helmet wearing detection in complex construction scenarios.

1. Introduction

According to a series of statistical reports issued by the Min-
istry of Housing and Urban-Rural Development, compared
with 934 accidents and 840 deaths in 2018, there were a total
of 773 construction production safety accidents and 904
deaths across the country in 2019. The number of accidents
and deaths increased by 5.31% and 7.62%. In general, the
number of accidents in the construction industry is showing
a gradual increase. In the literature [1], when studying the
relationship between the use of safety protection equipment
and the number of deaths in construction sites, it was found
that 67.95% of the victims had not used or used safety protec-
tion (such as safety helmets and safety belts). Due to the weak
awareness of safety protection of construction workers, the
importance of wearing safety helmets is often ignored. At
the construction site, manual supervision is usually used to

monitor whether workers wear safety helmets [2], which
makes it impossible to manage all construction workers
promptly on the construction site and to know the move-
ment tracks of all construction workers. The use of automatic
monitoring methods helps to monitor the construction per-
sonnel and confirm the specific conditions of all construction
workers wearing helmets at the construction site, especially
when the traditional monitoring methods are time-
consuming and expensive, easy to detect errors, and are not
enough to meet the safety of modern building construction
management requirements. The use of automatic supervision
of deep learning methods is conducive to supervising all con-
struction personnel onsite.

Traditional object detection often uses an artificial selec-
tion of features and design and training classifiers based on
specific detection objects. This method is highly subjective,
complex in the design process, has poor generalization
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ability, and has great limitations in engineering applications.
In recent years, due to the fact that convolutional neural net-
works (CNN) do not use an artificial selection of features,
they have gradually been sought after by scholars in the field
of deep learning. The deep convolutional neural network has
good comprehensive performance in the field of object
detection. In 2014, Girshick et al. successfully proposed R-
CNN [3], fast R-CNN [4], and faster R-CNN [5], which were
verified in the PASCAL VOC2007dataset, respectively, and
gradually improved the experimental effect. The method of
extracting feature frames by these models gradually changes
from selective search to regional proposal network (RPN),
thus getting rid of the traditional manual feature extraction
method. In 2015, Redmon and others proposed a one-stage
object detection model YOLO [6], which abstracted the
detection task as a regression problem for the first time,
avoiding the cumbersome operation of dividing the detec-
tion task into two steps in the R-CNN series. In 2016, Liu
et al. proposed the SSD [7] detection algorithm, which intro-
duced a multiscale detection method, which can effectively
detect groups of small targets. In 2017, Lin et al. proposed
the RetinaNet [8] dense detector, which solves the problem
of extreme foreground and background imbalance encoun-
tered during training by reshaping the standard entropy loss.
In 2017, Redmon and others proposed the YOLOv2 [9]
detection model, which selected a new basic model
Darknet-19 to achieve end-to-end training. In 2018, Red-
mon et al. proposed YOLOV3 [10] based onYOLOV1 and
YOLOV2. In this model, the FPN method was adopted to
integrate three different sizes feature maps to accomplish
detection tasks, which significantly improved the detection
effect of small-size targets. In April 2020, Bochkovskiy pro-
posed YOLOv4 [11], which uses PANet instead of FPN used
in YOLOv3 as the path aggregation method; at the same
time, the backbone network uses CSP Darknet53, which sig-
nificantly enhances the detection accuracy of the network. In
June 2020, Glenn proposed YOLov5 [12], which designed a
new focus structure and added it to the backbone network
to achieve a new benchmark for the perfect combination of
speed and accuracy.

Because of the rapid rise of computer vision in the direc-
tion of object detection, more and more researchers are
focusing on combining deep learning with practical applica-
tion scenarios. For example, Chen et al. [13] improved the
SSD model by adding an inception module before the pre-
diction layer to achieve rapid and accurate detection of small
vehicles. Tian et al. [14] used DenseNet to optimize the low-
resolution layer in the feature layer of the YOLOv3 network
and applied the improved YOLOv3 to the detection of
anthrax lesions on the surface of orchard apples to achieve
real-time detection. Dashun et al. [15] applied the improved
RetinanNet network to the field of pedestrian detection and
realized the rapid detection of multispectral pedestrians.
Zhong et al. [16] used the LocNet positioning module to
replace the boundary regression module to improve the fas-
ter R-CNN model and applied it to multidirectional text
instance detection. Zhang et al. [17, 18] used the residual
network (reset) in the prediction part to encode the input
features of the image and chose to increase the deconvolu-

tion layer to change the MMDetection network model in
the process of feature information decoding, to achieve a
higher crowd in dense scenes. And it can be seen that deep
learning has become a popular research direction, and it
has become the mainstream field in combination with actual
application scenarios.

Safety helmet detection is one of the application areas of
object detection. So far, many researchers at home and
abroad have conducted several related investigations on
safety helmet detection. In 2013, Kelm [19] and others
designed a mobile radio frequency identification (RFID)
portal to check the compliance of construction workers
wearing safety protective equipment. However, the recogni-
tion area of the radio frequency identification reader is lim-
ited. It is only recommended that the helmet be close to the
worker, but it cannot be confirmed whether the helmet is
worn correctly. In 2014, Liu [20] and others used a combina-
tion of support vector machines and skin color detection to
achieve helmet detection. In 2016, Rubaiya [21] and Silva
[22] and others combined the histogram of gradient
(HOG) algorithm with the frequency domain-related infor-
mation in the image for human detection and then used
the circular Hough transform (CHT) to detect the helmet.
In 2017, Li [23] and others used the vibe algorithm to locate
the human body position, followed by the embossing algo-
rithm to detect the worker’s head and finally combined the
HOG algorithm and SVM to realize the helmet wearing
detection. In 2018, Wu et al. [24] used Hu moment invariant
(HMI), color histogram (CH), and local binary pattern (LBP)
to extract the characteristics of different color helmets and
then constructed a hierarchical support vector machine
(H-SVM) for safety cap wearing detection. Due to the
complex environment, the detection accuracy of helmet wear-
ing detection is low at this stage, which is quite different from
the management requirements in actual building construction.

In this paper, two types of targets for construction
workers wearing helmets and those not wearing helmets
are the detection tasks, and more than 7,000 pictures are col-
lected from the Internet for preprocessing to construct a hel-
met detection dataset. Select the YOLOv5 network model as
the main body, and first, use the k-means++ algorithm to
cluster the target anchor box to obtain a bounding box suit-
able for the target, so that the model can converge faster.
Secondly, a new DWCA module is designed and integrated
with the features of the backbone network to strengthen
the attention to enhance the attention of the detection target
and improve the ability to resist background interference.
According to the final experimental results, the average
detection accuracy (mAP) of the DWCA-YOLOv5 detection
model has been significantly improved, and it can effectively
detect the unsafe behavior of workers on the construction
site not wearing helmets.

2. Related Work

2.1. YOLOv5 Algorithm Principle. YOLOv5 is a new-
generation target detection network of the YOLO series. It
is a product of continuous integration and innovation based
on YOLOv3 and YOLOv4. Secondly, YOLOv5 has achieved
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better results in PASCAL VOC and COCO object detection
tasks; so, this article uses the YOLOv5 detection network to
detect the construction workers’ helmet wearing.

The YOLOv5 object detection network official gave four
network models: YOLOv5s, YOLOv5m, YOLOv51, and
YOLOv5x. The three models of YOLOv5m, YOLOv51, and
YOLOv5x are the products of continuous deepening and wid-
ening based on YOLOv5s. The YOLOv5 network structure is
divided into four parts: input, backbone, neck, and prediction.
YOLOv5 adds Mosaic data enhancement in the data input
part; focus structure and CSP structure are used in the back-
bone; the FPN+PAN structure is added to the neck; the pre-
diction part improves the bounding box loss function from
CIOU_Loss to GIOU_Loss; YOLOv5 targets many in the
postprocessing process of object detection. The screening of
the target anchor frame adopts a weighted NMS operation.

Compared with YOLOv4, YOLOv5 has a new focus
structure in the backbone network, which is mainly used
for slicing operations. In the YOLOv5s network model, an
ordinary image with a size of 3 × 608 × 608 is input into
the network, and after a focus slice operation, the feature
map with a size of 12 × 304 × 304 is converted, followed by
the ordinary convolution operation of 32 convolution ker-
nels. It is finally converted into a feature map with a size of
32 × 304 × 304. Different from the YOLOv4 network model
that only uses the CSP structure in the backbone network,
the YOLOv5 network model has designed two new CSP
structures. Taking the YOLOv5s network model as an exam-
ple, the backbone network uses the CSP1_1 structure and
the CSP1_3 structure, and the neck uses the CSP2_1 struc-
ture to enhance the feature fusion between networks. The
network structure of YOLOv5s is shown in Figure 1.

2.2. DWCA Moduel. The traditional channel module is ded-
icated to constructing various channel importance weight
functions. For example, SEnet [25] obtained a significant

effect improvement by calculating channel attention with
the aid of a 2D global pool and with a small computational
overhead. However, SENet only considers the encoding of
information between channels and ignores the importance
of position information, which is essential for capturing
the structure of objects in vision tasks. Coordinate attention
[26] has achieved significant performance improvement by
encoding the interchannel relationship and long-term
dependence. ECANet [27] proposed a method that does
not take dimensionality reduction measures to achieve
cross-channel local interaction and a method that automat-
ically adapts to select one-dimensional ordinary convolu-
tion, thereby achieving performance improvement. CBAM
[28] and BAM [29] reduce the channel input dimension of
the tensor and secondly use convolution to calculate spatial
attention to use position information. However, convolution
can only capture local relationships, but not what is needed
for modeling long-term dependence on visual tasks.

To solve the above problems, we designed a new atten-
tion mechanism based on previous work, which integrates
the position information in the feature space into the chan-
nel attention, so that the network can participate in a larger
area and at the same time avoid a lot of model parameters
overhead. The structure diagram of DWCA mechanism is
shown in Figure 2.

To reduce the lack of relevant location information
caused by two-dimensional global sharing, we use two one-
dimensional global aggregation operations to decompose
the channel attention into two aggregated features along
with the vertical and horizontal directions and then aggre-
gate the obtained features into two independent directional
perception features map. To promote the module to capture
the remote spatial interaction with precise location informa-
tion, this paper decomposes the global pooling according to
formula (1) and transforms it into a one-to-one dimensional
feature encoding operation. The specific operation process is
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Figure 1: Network structure diagram of YOLO v5s.
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as follows: first, use a pooling kernel of size (H, 1) or (1, W)
to encode the single dimension and horizontal and vertical
coordinates of input X. Therefore, the cth channel of the
output with a height of h can be seen below, and the details
are shown in formula (2).

Zc =
1

H ×W
〠
H

i=1
〠
W

j=1
xc i, jð Þ: ð1Þ

In the formula, Zc is the output related to the cth chan-
nel, H is the height of the input X, and W is the width of
the input X.

Zh
c hð Þ = 1

W
〠

0≤i<W
xc h, ið Þ: ð2Þ

In the formula, Zh
c ðhÞ is the specific output of the cth

channel where the height is h, and W is the width of the
input X.

By analogy, the specific output of the cth channel with
width w can be seen below, see formula (3) for details.

Zw
c wð Þ = 1

H
〠

0≤j<H
xc j,wð Þ: ð3Þ

In the formula,Zh
c ðwÞ is the output of the cth channel at

the width w, and H is the height of the input X.
By extending the above two features to the transforma-

tion of the aggregation of the two spatial dimensions, the
direction-aware feature map is obtained, followed by
CONCAT operation, and then use the shared 1 × 1 conven-
tional convolution transformation function to transform it,
such as the formula (4) shown.

f = δ F1 zh, zh
h i� �� �

: ð4Þ

In the formula, f ∈ RC/r×ðH+WÞ is an intermediate feature
map, which encodes the spatially related information in the
vertical and horizontal directions, δ is a nonlinear activation
function, and [·, ·] represents the splicing operation along
the spatial dimension.

Then, follow the spatial dimension, and f is transformed
into two independent tensors f h ∈ RC/r×H and f w ∈ RC/r×W ,
using two effective depthwise separable convolution trans-
forms f h and f w and then transforms the tensors f h and
f w with the same number of channels into input X, as shown
in formulae (5) and (6).

gh = σ Fh f h
� �� �

, ð5Þ

gw = σ Fw f wð Þð Þ: ð6Þ
In the formula, gh and gw are the attention weights to be

expanded, σ is the Sigmoid function, and r is the reduction
ratio of the number of channels.

Finally, the entire DWCA module can be expressed as
follows, see formula (7) for details:

yc i, jð Þ = xc i, jð Þ × ghc ið Þ × gw
c jð Þ, ð7Þ

2.3. Improve the YOLOv5 Algorithm

2.3.1. K-Means++ for Target Frame Optimization. Perform
K-means dimensional clustering on the general target detec-
tion dataset COCO to obtain the initial a priori anchor frame
parameters of YOLOv5. However, because the target types of
the COCO dataset have 80 categories, the helmet detection
types in this article only have two categories, which cannot
be to meet the actual needs of helmet wearing detection, and
the size of the a priori frame needs to be redesigned. Com-
pared with the size of the anchor frame designed only relying
on human prior knowledge, for the helmet wearing dataset, we
select the K-means++ algorithm to performmultidimensional
clustering on the marked target frame, resulting in different
numbers and sizes. As far as possible, the accurate matching
between the a priori anchor frame and the actual object is
achieved, thereby further improving the accuracy of helmet
detection. In the clustering process, the average intersection
ratio (IoU) corresponding to the number of centers of differ-
ent clusters is shown in Figure 3.

Observing Figure 3, we can get that when the number of
prior anchor box clusters is 0 to 9, the average intersection
ratio shows a rapid upward trend, but when the number of
a priori anchor boxes is 9 to 12, the average intersection ratio
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Figure 2: DWCA model network structure.
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increases gradually gentle. To balance the calculation accu-
racy and efficiency, 9 a priori anchor frames are finally
selected and equally distributed to 3 prediction branches of
different sizes. The determined a priori anchor frame sizes
are normalized as shown in Table 1.

Table 2 illustrates the pros and cons of the model’s per-
formance. Among them, the clustering method of a priori
anchor box is changed from K-means algorithm to K
-means++ algorithm, mAP has a certain improvement, and
the improved YOLOv5 algorithm changes due to the net-
work structure and the detection accuracy. There is also a
big improvement. At the same time, selecting the K
-means++ clustering method and the improved YOLOv5
model is 3.2 percentage points higher than the original
YOLOv5 algorithm. The average accuracy of the self-
made helmet wearing detection dataset reaches 95.9%,
which can accurately detect whether the construction per-
sonnel wears a hard hat.

2.3.2. DWCA Module Fusion Design. For small target detec-
tion tasks, as the sum of the model network layers gradually
increases, the feature information of small targets that can be
collected gradually decreases. So, it is easy to cause the net-
work model to false detection and miss detection of small
targets. The DWCA module itself is to integrate the location
information of the feature space with the channel features so
that the network can grasp the “key points” of the target fea-
tures during the training process. However, under specific
circumstances, which position of the DWCA module to per-
form feature fusion in the network model is effective is still a
question to be studied.

In this paper, the DWCA module is merged into differ-
ent positions of the network model, and the detection results
are studied. According to the structure of the YOLOv5s net-
work model, this paper will integrate the DWCA module in
the three areas of the backbone network, the neck, and the
prediction module of YOLOv5s. Since the DWCA module
is to enhance the relationship between channel information
and channel information in the feature space, our embeds

the DWCA module into each feature fusion area in the above
three parts, thereby generating three new types based on the
YOLOv5s algorithm. Network model is as follows: DWCA-
YOLOv5s-backbone, DWCA-YOLOv5s-neck, and DWCA-
YOLOv5s-prediction. Figure 4 shows the specific location
where the DWCA module is integrated into the network.

In Figure 3(a), the DWCA module is integrated at
CSP1_3 (i. e., the feature fusion) in the backbone network
of YOLOV5s. In Figure 3(b), the DWCA module is inte-
grated behind the CONCAT layer on the neck of YOLOV5s.
In Figure 3(c), the DWCA module is integrated, respectively,
before the convolution of each prediction in YOLOV5s.
Table 3 shows the experimental results of whether the
DWCA module is integrated with three different positions.

By visualizing the output of the same channel of the
three fusion-designed networks, as shown in Figure 5 (only
the channel output of the same feature map is visualized),
the experimental results show that, compared to fusing the
DWCA module into the network neck and network

Table 2: Effect evaluation of different models on the test set.

Detection model Clustering method
AP50/%

mAP/%
Hat Person

Original YOLOv5 K-means 93.3 91.7 92.7

Original YOLOv5 K-means++ 94.4 92.8 93.6

Improved YOLOv5 K-means 95.5 94.6 95.1

Improved YOLOv5 K-means++ 96.5 95.2 95.9

Table 1: Prior anchor box scales.

Feature map scale
Anchor box size

Anchor 1 Anchor 2 Anchor 3

Small scale (11.09,18) (21.5,30.8) (30.8,43)

Middle scale (38.1, 60) (52.3, 73.6) (63,103.3)

Large scale (89.2, 135) (120, 207.5) (209.4, 324)
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prediction part, fusing DWCA into the backbone network
can effectively strengthen the semantic information of the
feature layer on the instance and pay more attention to
the target hidden in the lower layer, which is easy to
ignore. The texture information and contour information
can effectively improve the network’s attention to small
targets.

3. Experimental Results and Analysis

3.1. Dataset Construction. In the detection direction, the
dataset required by experiments has always been an essential
basic condition. The safety helmet dataset that has been
open sourced is only SHWD (SafetyHelmetWearing-Data-
set). In this dataset, the category label data of not wearing
a helmet is mainly derived from the SCUT-HEAD dataset.
The SCUT-HEAD dataset is used by students in classroom
scenarios monitoring diagrams or photos taken, so the data-
set is not a standard construction site scene dataset, which
does not meet the detection requirements of actual building
construction scenarios. To solve this problem, this article
self-made a helmet wearing detection dataset in construction
scenarios. The main process of constructing this dataset
includes data collection, screening, and processing.

3.2. Data Collection. The images required for the dataset in
this article mainly come from the surveillance video framing
of the construction site, self-collecting on the construction
site, and Internet crawling. The collected data includes two

types of pictures of workers wearing and not wearing hel-
mets in different environments, different resolutions, and
different construction sites. Multiple sets of interference pic-
tures are added to the dataset, such as construction workers
wearing baseball caps and safety helmets. Construction
workers with hats placed on the table or in hand, construc-
tion workers wearing bamboo woven hats, etc., increase the
diversity of the dataset, thereby enhancing the robustness
of the network. The sample map of the dataset collected this
time is shown in Figure 6.

3.3. Data Screening and Processing. The pictures collected
from the surveillance video of the construction site are
divided into frames or crawled on the Internet. Many of
the pictures do not contain the construction personnel as
the research object. They can be regarded as background
pictures and have no practical significance for the study of
this article. The picture data is confirmed as the background
is deleted. This paper conducts a preliminary screening of
the collected image and selects the images that meet the
requirements as the annotation dataset.

Preprocess the data, convert the images that meet the
requirements into.jpg format, and use the labeling tool
labellmg to manually label each image, and the construction
personnel in the image i under wearing a helmet (hat) and
not wearing a helmet (person) These two categories are
labeled, as shown in Figure 7; after processing, a correspond-
ing XML tag file is formed, which contains the four

Table 3: Comparison of results of different detection models.

Network model P/% R/% Model parameters/M mAP/%

YOLOv5s 76.4 92.5 7.26 92.7

DWCA-YOLOv5-backbone 82.5 95.4 7.27 95.9

DWCA-YOLOv5-neck 70.9 93.7 7.26 91.6

DWCA-YOLOv5-prediction 72.5 92.8 7.27 92.4
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Original image DWCA-YOLOv5s-backbone DWCA-YOLOv5s-neck DWCA-YOLOv5s-prediction

Figure 5: Model heat map comparison.

(a) Put on the table (b) Hand held (c) Hand held (d) Hand held

(e) Hand held (f) Baseball cap (g) baseball cap (h) Normal sample

(i) Bamboo braided hat (j) Police_cap (k) Normal sample (l) Sunhat

Figure 6: Safety helmet sample image.
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coordinates of the target in the frame and the given category
(PASCAL VOC format).

The final dataset obtained in this paper has a total of
7076 images. Among them, the specific information of
whether to wear a helmet in the dataset can be seen in
Table 4. And the dataset contains a variety of construc-
tion scenes, which can more fully reflect the actual con-
struction scenes. The final dataset is subdivided into

training and validation in line with the 9 : 1 division ratio.
The number of training set pictures in the final 7076 pic-
ture dataset is 6,370 pictures, and there are 706 pictures
in the test set.

3.4. Experimental Environment. During the experiment,
this article has high requirements for the configuration
of the operating environment, and GPU acceleration is
required for the experiment. Table 5 shows the configura-
tion instructions for the experiment operating environ-
ment of this article. The model building, training, and
result testing are all completed under the PyTorch frame-
work, using the CUDA parallel computing architecture
and at the same time integrating the cuDNN acceleration
library into the PyTorch framework to accelerate com-
puter computing capabilities.

Figure 7: Safety helmet wearing status mark.

Table 4: Dataset category allocation.

Target
category

Training set a
target number

A test set the
target number

Total number
of labeled
targets

Wearing
helmets
category

81836 11316 93152

Not wearing
helmets
category

98187 12021 110208

Table 5: Experiment operating environment.

Category Entry Version

Hardware
configuration

System Ubuntu 18.04

GPU GeForce RTX 2080 Ti

Software
configuration

CPU
AMD Ryzen 7 3800X

8-Core

Python version 3.8

Deep learning
framework

Pytorch

CUDA 10.0

Table 6: Comparison of experimental results of multiple detection
algorithms.

Detection model
AP50/%

mAP/%
Hat Person

Faster RCNN 80.8 42.2 61.5

SSD 78.8 68.2 73.5

YOLOv3 89.12 80.7 84.9

YOLOv3 + SPP 90.5 86.3 88.4

YOLOv5m 94.8 93.1 93.9

YOLOv5l 95.1 93.5 94.3

YOLOv5x 95.6 94.3 95.0

YOLOv5s 93.3 91.7 92.7

Ours 96.5 95.2 95.9
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4. Result Analysis

4.1. Evaluation Index. In object detection, detection accuracy,
and recall, the average accuracy rate (mAP) is the basic index
to test the training model’s overall stability and performance.
This article also uses the above evaluation indicators to detect
helmet wearing model performance that is evaluated.

Apply the above evaluation indicators to the stability test of
the helmet detection model and then the detection results of
whether the construction worker wears a helmet are compared.
Among them, TPhat (true example), FPhat (false positive exam-
ple), TNhat (true negative example), and FNhat (false negative
example) are key indicators used to describe accuracy. Specifi-
cally, TP refers to the sum of workers who did not wear helmets
and whose test results were correct within the monitoring
range of the construction site. FP indicates the sum of workers
who wear helmets but are mistakenly detected, TN indicates
that results are completely correct, and FN indicates the sum
of workers who did not wear helmets but were mistakenly

detected as wearing helmets. The calculation process of accu-
racy rate and recall rate is shown in formulae (8) and (9).

APhat =
TNhat + TPhat

TNhat + TPhat + FPhat
, ð8Þ

Recallhat =
TPhat

FNhat + TPhat
, ð9Þ

Precisionhat =
TPhat

TPhat + FPhat
: ð10Þ

Precisionhat represents the ratio of real cases (TPhat) to the
sum of real cases and false real cases (TPhat+FPhat), and the
sum of real cases and false real cases is the total number of hel-
mets; Recallhatrepresents the sum of real cases(TPhat)and real
cases and false counterexamples (TPhat + FNhat). The ratio of
true cases and false counterexamples is the actual number
of helmets.

(a) Detection of strong light construction scene

Missed Detection

(b) Detection of construction scenes occluded by steel bars

Missed

Error

Detection

(c) Detection of targets of different sizes

Missed

Missed

Detection
Detection

(d) Detection of long-distance construction scenes

Figure 8: Comparison of test results of model parts under different construction scenarios.
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AP refers to the average value of all precisions obtained
under all possible recall rates. The average precision of the
mean is the average of the AP value in all categories, and
the calculation formula is shown in (3).

mAP =
1
C
〠
c∈C

AP cð Þ: ð11Þ

4.2. Result Analysis. This article uses the YOLOv5 algorithm
for helmet wearing detection. To verify that the algorithm
proposed has better results, the same number of test sets is
used under the same configuration conditions, and several
popular object detection networks at this stage are used for
comparative experiments: faster RCNN, SSD, and YOLOv3.
Among them, SSD and YOLOv3 are single-stage detection
algorithms, and faster RCNN is a two-stage detection algo-
rithm. The experimental results are evaluated using two
evaluation indicators AP50 and mAP. The experimental
results are shown in Table 6.

Observing Table 6, we can know that the DWCA-
YOLOv5 algorithm can significantly improve the accuracy
of detecting whether a worker is wearing a helmet. The aver-
age accuracy of the DWCA-YOLOv5 algorithm in this paper
can reach 96.2% for the construction personnel who wear
the helmet correctly and 95.1% for the construction person-
nel who do not wear the helmet. mAP (mean average preci-
sion) can reach 95.7%. Compared with faster RCNN and
SSD, our model detection results are better. Compared with
YOLOv3 and YOLOv5, the algorithm in this paper has a cer-
tain improvement in AP50 and mAP. This shows that the
DWCA-YOLOv5 algorithm has an excellent performance
in the accuracy of detection and detection of helmet wearing,
and it can ensure the accuracy of helmet detection in a com-
plex construction environment.

In addition, to more intuitively see the detection gap
between different algorithms, this paper also collected 158
pictures of the construction work site as a test set. In this test
set, we use YOLOv5 and our model to test separately. Some
of the detection results are shown in Figure 8 below.

From Figure 8, we can observe that the operator who
wears the helmet correctly is marked with a red frame, and
the operator who does not wear the helmet is marked with
a light green frame. Figure 8(a) shows the detection in a
strong light construction scene. In comparison, the detection
accuracy of the original YOLOv5 algorithm is much lower
than our algorithm; Figure 8(b) shows the detection of small
targets in the construction scene where steel bars are
shielded. After observation, the original model missed a con-
struction worker wearing a helmet who was behind the steel
bars; Figure 8(c) shows the detection of targets with different
sizes. The target size in close range is larger, and the target
size in distant range is smaller. Our model has detected all
the targets, while the original model missed the small targets
in distant range and mistakenly detected steel pipes as two
construction workers wearing safety helmets; Figure 8(d)
shows the detection of small targets in a long-distance con-
struction scene. The comparison shows that the original
YOLOv5 model has missed detection of long-distance small

helmets, and our model has a better detection effect. The
original YOLOv5 model misses this situation. There are
many inspections, but our model performs better. It can be
seen from the detection comparison in the abovementioned
various construction scenarios that the improved YOLOv5
model is better for the detection of safety helmets in a com-
plex operating environment.

5. Conclusions

This paper proposes an improved YOLOv5 helmet wearing
detection method. First, use the K-means++ method to per-
form dimensional clustering on the dataset of the self-made
construction operation scene; secondly, so as to capture
more detailed information, the DWCA attention mechanism
is combined with the backbone network. According to the
comparison of the final experimental results, our model
can obtain high detection accuracy, which can meet the
detection accuracy of helmets in the current complex operat-
ing environment. In the future, we will explore ways to keep
the model detection accuracy as much as possible while
reducing the weight of the model.
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An in-depth study on a lighting location system is conducted in this paper. Firstly, the history and application of this system are
summarized. The overall structure is detailed, including the detection principle of the lightning location, the orientation method,
the detection circuit, the method of discriminating cloud flash and ground lightning signal, the error analysis, the guideline for
station deployment, the preprocessing of the central station, and the function and structure of data server and user interface.
The development of a lightning monitoring system in China is presented, and the construction of a new generation of a
lightning location system in the Hubei Province power grid is introduced. Through the collection of measured data, the
performance of the lightning location system in the lightning accident inspection rate, lightning location, and lightning
situation statistics are analyzed. Artificial intelligence algorithms are applied in the lightning warning system. The new system
has a high predicting accuracy.

1. Introduction

Lightning is a high-intensity electromagnetic pulse phenom-
enon that frequently occurs in nature [1, 2]. As its impact is
huge, it has received extensive attention from many industry
fields, such as meteorology, aerospace, aviation, electric
power, and petroleum. Among them, the power grid is sus-
ceptible to lightning due to its wide-area distribution and a
geometric scale of thousands of kilometers [3]. It is estimated
that the number of trips on high-voltage transmission lines
caused by lightning accounts for 40% to 70% in China. Light-
ning is an important factor that seriously affects the safe
operation of the power grid.

The observation of accurate lightning parameters is the
basis for lightning protection [4–6]. The key to detect light-
ning is the lightning location. It refers to automatic detection
equipment, which uses the characteristics of sound, light,
and electromagnetic wave radiated by the lightning return
strike to remotely measure the discharge parameters [7].
Several methods for detecting lighting have been proposed

including acoustic, optical, and electromagnetic field
methods [8–10]. The modern lightning location system
started in 1976. Krider used a single-chip technique to suc-
cessfully transform the original double-cathode oscilloscope
lightning detector into an intelligent magnetic direction
lightning location system, which effectively improved the
accuracy of lightning angle measurement. In the early
1980s, the emergence and application of cloud-to-ground
lightning waveform identification technology enabled the
detection efficiency to reach up to 90%. Since then, all devel-
oped countries and regions in the world have begun to
install lightning monitoring and location networks, e.g., the
United States, Canada, Japan, France, and Germany. In the
1990s, due to the use of the global positioning system
(GPS), lightning monitoring added GPS clocks based on a
direction finding system to form a time difference direction
hybrid system. Meanwhile, the use of digital signal process-
ing (DSP) and integrated technology to perform correlation
analysis and position processing on the waveform greatly
improves the prediction performance. Currently, there are
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more than 60 lightning location system networks worldwide
that employ commercial instrumentation operating in the
very low frequency/low frequency range.

The lightning location system has been widely used in
the aerospace, disaster reduction, and prevention and power
industries, especially in the global power system. Over 40
countries in the world have installed lightning monitoring
systems. Over the past decades, with the development of sci-
ence and technology and the continuous improvement of
itself, the location accuracy and detection efficiency of the
lightning location system have been greatly improved. The
current lightning location system uses GPS satellite position-
ing technology, satellite communications, geographic infor-
mation system (GIS), and other high-tech technologies to
form a real-time dynamic multipurpose large-scale informa-
tion system.

Extensive research has been done on the statistical anal-
ysis of lightning parameters [11, 12]. Chen et al. proposed a
grid method based on the huge data accumulated by the
lightning location systems and used data mining technology
to analyze the temporal and spatial distribution of lightning
[13]. An improved grid method using the two parameters of
a grid area and observation range is developed to further
improve the accuracy. Many scholars have analyzed the
influence of region and climate change on lightning param-
eters [14–17]. The lightning parameters of crucial transmis-
sion line corridors are analyzed, reducing the error in the
area where the line is located. The influence of lightning cur-
rent amplitude probabilities on the trip rate of the transmis-
sion line is investigated, considering different topography
and landforms.

2. Sensing Principle of the Lightning
Location System

2.1. Structure of the Lightning Location Station. The detec-
tion station is composed of an electromagnetic field antenna,
lightning waveform recognition and processing unit, high-
precision crystal oscillator and GPS clock unit, communica-
tion, power supply, and protection unit [18]. It measures
and outputs the characteristic quantities of ground-flash
waves: the time, direction, and relative signal strength of
each return strike, and sends the original measurement data
to the central station in real time. Each part of the detection
station has a unique function [19]. The GPS antenna is
mainly used to receive a GPS synchronization signal. The
electromagnetic antenna is composed of two vertical orthog-
onal frame antennas for receiving electromagnetic wave sig-
nals. The circuit structure of the detection station is shown
in Figure 1.

The GPS clock unit is used to provide the required high-
precision synchronization time signal. The lightning wave-
form delay processing circuit and the overrange timing cir-
cuit are specially designed to improve the accuracy of
electromagnetic wave signal detection and lightning strike
location. Meanwhile, a drift calibration is developed to avoid
errors caused by the drift of the GPS clock crystal oscillator
affected by temperature rise. These devices would improve
both the detection efficiency and accuracy.

Each detection station of the lightning location system is
equipped with a time difference clock, which is composed of
a high-stability constant temperature crystal oscillator, a
GPS antenna, and a clock board, as given in Figure 2. The
clock consists of a highly stable crystal oscillator. GPS can
receive a high-precision second pulse time signal and use
this signal to correct the clock. The accuracy and reliability
of the revised clock are greatly improved. The quality of
the GPS receiving board and antenna is reliable, and the
time error is less than 0.5μs.

2.2. Directional Location Principle of the Lightning Location
System. The lightning is accompanied by strong light, sound,
and electromagnetic radiation. Among them, the most suit-
able signal for detecting in a relatively large range is electro-
magnetic radiation. The electromagnetic radiation of
thunder and lightning mainly spreads along the earth sur-
face through low frequency and very low frequency. The
range is several hundred kilometers and sometimes can be
wider, which is determined by the discharge energy. When
extracting signals, the lightning location system activates
multiple detection stations to measure the electromagnetic
radiation generated by lightning, eliminate the signal of
cloud flashes, and identify ground-to-ground flashes. The
antenna can measure signals with a frequency ranging from
1kHz to 1MHz. Through the electronic circuit, the ground
flashing signal is identified and the peak value of each return
wave is sampled. The orientation method is the most widely
used in the directional location principle.

It employs the magnetic field intensity to obtain the azi-
muth of the lightning strike point relative to the detection
station. In order to detect the radiation waves of the ground
flash magnetic field, as depicted in Figure 3, the two orthog-
onal antennas are in east-west and north-south directions,
respectively. If a lightning strike occurs on A, the orthogonal
antenna can receive two magnetic signals of different
strengths. Assuming that the measured magnetic field
strengths in the east-west and north-south directions are
HWE and HNS, respectively, the direction angle of the light-
ning strike point can be calculated as follows:

tan α =
HNS
HWE

: ð1Þ

The angles measured by two detection stations are
shown in Figure 4. According to the angle relationship of
the triangle, the azimuth of point A is expressed as

B = B1 + αB1P 1 + η21
� �

1 −
3
2
η21 tan B αB1P

� �
, ð2Þ

L = L1 + sin−1
sin α1P sin β1p

cos β1 + αB1P
� �

" #
: ð3Þ

In Figure 4, A is the location of the lightning strike,
TDF1 and TDF2 are two different detection stations, the
coordinates of TDF1 are ðB1, L1Þ, the coordinates of TDF2
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are ðB2, L2Þ, B is the latitude, L is the longitude, and β1P and
β2p are the azimuth angle.

2.3. Structure of the Lightning Location System. The lightning
location system uses a browser/server mode to publish the
lightning location information on the web, and its structure
is given in Figure 5.

3. Application of the Lightning Location
System in the Hubei Power Grid

3.1. Hubei Power Grid Lightning Location System. The light-
ning location system of the Hubei power grid was estab-
lished in 1998, with six base stations located in Puqi,
Huangshi, Xiaogan, Jingmen, Jingzhou, and Yichang,
respectively. In 2000, three stations were added in Suizhou,
Xiangfan, and Shiyan, and from 2002 to 2005, five other sta-
tions were built in Enshi, Qianjiang, Macheng, Shishou, and
Badong. After 13 years of construction and operation, a
lightning detection network consisting of 14 lightning detec-
tion stations has been developed. Based on the principles of
time difference and direction location as well as modern
communication technology, the automatic monitor with full
real-time function in most areas in Hubei Province has been
realized.

More than 1930 transmission lines of various voltage
grades in Hubei Province were input into the system. It

can be widely used in investigation of the line fault point,
lightning parameter statistics, and lightning accident analy-
sis. It reduces the loss of power failure caused by lightning
strike and the labor intensity of searching the lightning strike
point. The safety of the power system can be ensured.

3.2. Frequency of Lightning Activity in the Hubei Power Grid.
From 2014 to 2018, the lightning activity was frequent in
Hubei, and the average lightning density in the whole prov-
ince was between 1.6 and 2.3 times/km2. In 2018, lightning
activity was the most intense, and the density reached 2.29
times/km2. The lightning activity in Hubei in recent 5 years
is listed in Table 1.

Taking 2018 as an example, there were 10 times of the
lightning trip in the Hubei power grid for voltage levels of
500 kV and above, including once in March, once in April,
thrice in June, quartic in July, and once in August. The
most lightning trips were in June and July. The time dis-
tribution characteristics of lightning tripping are shown
in Figure 6.

In 2018, overhead transmission lines of 500 kV and
above were tripped 10 times due to lightning strikes, an
increase of 6 times over the same period last year. The light-
ning density was 2.29 times/km2, 1.44 times higher than that
of the same period last year, which was the highest in the
past five years. The results of ground lightning density and
lightning trip times are shown in Figure 7. The number of
lightning strikes increases with the rise of lightning density.

Compared with the lightning density map in 2017, the
lightning activity is changed significantly in 2018. In 2017,
the areas with high lightning density were mainly concen-
trated in the southern part of Jingzhou, Huangshi, Huang-
gang, and Xianning. In 2018, a large area of C1 level
regions appeared in central Yichang, Jingzhou, Jingmen, Shi-
yan, and Wuhan, as shown in Figure 8.

220 kV Hubei Qiaoshun line fault analysis: on July 31,
2012, 220 kV Qiaoshun line was tripped and the reclose
was successful. There were obvious discharge traces on both
the left front and the right back of ground wire of the #017
pole. In the large side of the middle phase (phase C), the
internal string porcelain insulators and connecting fittings
had obvious discharge traces. The other poles passed ground
and pole climbing inspection, and no abnormality was
found. During the fault inspection, it was found that around
15:30-22:00 of July 31, strong lightning and heavy rain began
to appear in the area. The lightning information query sys-
tem is shown in Table 2: within 5 minutes before and after
21:21 on July 31, there were 4 lightning strikes along the sec-
ond circuit of 220 kV Qiaoshun, and the lightning current
amplitude was from -3.4 kA to -18.5 kA, distributed near
#016~#020 towers.

After inspecting the transmission tower, the faulty sec-
tion was located in the vegetable garden in Baijiawan Village,
Xiangyang. The line right-of-way was in good condition,
without tree barriers, external damage traces, industrial pol-
lution sources, and fouling on insulator strings. There was
no strong wind or abnormal local air flow during the fault,
and possibilities caused by wind deviation, external damage,
pollution, and tree barriers were ruled out, and it was judged
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Figure 4: Obtaining the location of lightning strikes by the
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Table 1: Statistics of lightning parameters in Hubei from 2014 to 2018.

Years
Thunder

day
Density (times/

km2)
Positive
number

Negative
number

Positive density (times/
km2)

Negative density (times/
km2)

2014 293 1.7 60419 257572 0.3 1.4

2015 320 2.1 93267 303948 0.5 1.6

2016 256 1.7 82627 236089 0.4 1.3

2017 213 1.6 59874 201418 0.3 1.3

2018 247 2.3 103148 321648 0.6 1.7
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Figure 6: Lightning frequency and lightning tripping frequency of the Hubei power grid.
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as a lightning fault, line fault scene photo as shown in
Figure 9.

4. Application of Artificial Intelligence in the
Lightning Warning System

4.1. Principle of Lightning Warning. The key of the lightning
warning system is the thunderstorm forecast model, which
can send out the lightning warning information in advance
and effectively avoid the damage caused by lightning strike
to the staff and equipment in the protected area. Thunder-
storm prediction is based on a subjective and objective pre-
diction algorithm. Subjective forecast takes observations
from Doppler weather radar and combines them with other
meteorological satellite cloud maps. The objective algo-
rithms include radar echo or cloud image extrapolation
and severe convective weather recognition [20]. However,
the success rate of forecast and warning is quite limited.
The advancement of big data and artificial intelligence tech-
nology, massive historical lightning data, and other meteoro-
logical monitoring data are processed and modeled through
a deep learning method. As a result, a more accurate local
lightning warning model is obtained. In practice, most warn-
ing methods are based on the data of the lightning location
and atmospheric electric field. The electric field meter is used
to determine the lightning probability by measuring the
intensity and change trend of the atmospheric electric field,
so that different alarm levels can be determined by setting
the proper threshold. Under different alarm levels, contin-
gency plans are made to implement actions such as stopping
sending and receiving oil to achieve the purpose of active
lightning protection.

4.2. Lightning Warning Model. The data of the lightning
warning model comes from a 3D lightning locator and other
meteorological observation data such as meteorological
radar cloud image. The 3D lightning locator is a high-
precision system for locating lightning strikes and lightning

within clouds. The average detection accuracy is about
300m, and the detection efficiency is up to 95%. The light-
ning locator is used to collect the lightning location data
within the region, including the time, the location (latitude
and longitude information), the height of lightning from
the ground, and other attribute information. The XGB
(Extreme Gradient Boosting) algorithm is used to build a
scoring model for the occurrence probability of lightning
strike in the protected area to solve the problem of 0-2-
hour approaching warning. The model structure is shown
in Figure 10.

An is the n basic feature data. An XGB lightning predic-
tion model is built based on the data, and the output is the
probability of lightning strike in the surveillance area (the
probability value between 0 and 1).

4.3. Feature Extraction. After obtaining the relevant light-
ning data, it is necessary to extract the data features. Accord-
ing to the periodicity, instantaneity, and mobility of
lightning, the following targeted features were extracted
from the collected data sources:

(1) Thunderstorm proximity: the distance between the
thunderstorm cluster and the protection point

(2) Total number of lightning at close range

(3) Thunderstorm approaching speed in the protected
area: the speed of the nearest thunderstorm group
approaching the protected area

(4) The increasing trend of lightning strikes: the increas-
ing trend of thunderstorm cluster energy in the pre-
sentation window

4.4. Model Training and Evaluation. After completing the
selection of characteristic values required for model training,
the next step is to use a characteristic variable to train the
model and get the best parameters. XGB is used for data
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classification with machine learning integration, and the
XGB algorithm structure is shown in Figure 11.

XGB is based on the gradient lifting decision tree
(GDBT), which reduces the complexity of the model and
avoids overfitting by adding a regularization term into the
objective function. The objective function is

Obj =〠
i

l ŷi, yið Þ +〠
k

Ω f kð Þ + c, ð4Þ
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Figure 8: Lightning density distribution in Hubei: (a) 2018 year and (b) 2017 year.

Table 2: Query results of the lightning location system of the
Hubei power grid.

Number Time Longitude Latitude Current (kA) Reply

1 21:18:54 112.0387 32.0604 -6.3 1

2 21:20:56 112.0521 32.0515 -14.5 1

3 21:21:48 112.0269 32.0737 -18.5 1

4 21:23:26 112.0403 32.0732 -3.4 -1
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Ω f kð Þ = γT +
1
2
λ ωk k2 = γT +

1
2
λ〠

T

j=1
ωj

2, ð5Þ

where ŷi is the predicted value, yi is the actual value, and l is
the loss function, which shows the residual value between
the predicted value and the real value.Ωð f kÞ shows the com-
plexity of the model. f k is the k

th decision tree. γ and λ rep-
resent the penalty coefficient of the model. T and ω are the
number and the weight of leaves for the kth tree, respectively.

c is a constant. It is relatively simple to solve the optimal
solution for the general least square loss. However, when it
is replaced by other loss functions [15], the solution process
will become more complex. To solve this problem, the XGB
algorithm performs second-order Taylor expansion on this
basis. Assume that the tth loss function is defined as

Obj tð Þ =〠
i

l y∧i
t−1ð Þ, yi + f t xið Þ

� �
+Ω f tð Þ: ð6Þ

The second-order Taylor expansion of formula (6) is
carried out, and formula (7) is simplified by removing the
constant term.

Obj tð Þ = 〠
n

i=1
gi f t xið Þ + 1

2
hi f t xið Þ2

� 	
+Ω f tð Þ: ð7Þ

Here,

gi = ∂ŷi t−1ð Þl yi, y∧i
t−1ð Þ

� �
,

hi = ∂2 ŷi t−1ð Þl yi, y∧i
t−1ð Þ

� �
:

8><
>: ð8Þ
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The objective function is

Obj tð Þ = 〠
n

i=1
gi f t xið Þ + 1

2
hi f t xið Þ2

� 	
+ γT + ωk k2

= 〠
n

j=1
〠
i∈I j

gi

 !
ωj +

1
2

〠
iϵIi

hi + λ

 !
ωj

2

" #
+ γT ,

ð9Þ

where I j = fijqðxiÞ = jg represents the jth group of leaf nodes.
At this time, the objective function is transformed into the
problem of seeking the minimum of the element quadratic
equation on ωj. Assume that the tree structure is fixed. The
optimal weight of leaf node j is in

ωj =
Gi

Hj + λ
: ð10Þ

Then, the objective function is expressed as

Obj∗ = −
1
2
〠
T

j=1

Gj
2

Hj + λ
+ λT: ð11Þ

Here,

Gj =〠
i∈I j

gi,

Hj =〠
i∈I j

hi:

8>>><
>>>:

ð12Þ

Obj ∗ represents the structure score of the regression
tree. The smaller the value, the better the structure. Since
the structure of all the trees cannot be listed, the greedy algo-
rithm is used for the division of subtrees. Each attempt is
made to add a division point to the existing leaf node. The
feasible division points are listed, and the division point with
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the smallest objective function and the largest gain is
selected [16]. The gain formula is given in

Gain =
1
2

GL
2

HL + λ
+

GR
2

HR + λ
−

GL + GR

HL +HR + λ

� 	
− γ: ð13Þ

After the XGB model integrates several regression trees,
the nodes of each tree are doing feature splitting. The num-
ber of times a feature is selected as a split feature can be used
as the importance.

After the model training, the model evaluation index is
the AUC (Area Under ROC Curve) value and ROC
(Receiver Operating Characteristic) curve. Based on the data
of the lightning location and other meteorological observa-
tion, the AUC value of the model reached 0.95 and the best
performance was 1, indicating that the model has a good
classification effect. AUC is the area of the ROC curve, which
is used to evaluate the quality of the dichotomy system.

AUC =
ð+∞
−∞

y tð Þdx tð Þ, ð14Þ

where x and y are the false-positive rate and true-positive
rate, respectively, and also the horizontal and vertical coor-
dinates of the ROC curve.

5. Conclusion

The conclusions are drawn as follows.

(i) The charge distribution of thunderstorm, the den-
sity and pressure level of air, and the topography
and geological conditions are various in different
climatic and geographical areas. In order to improve
the accuracy and performance evaluation of the
lightning location system, it is necessary to
strengthen the observation of natural lightning in
different areas

(ii) The cause of a typical lightning fault for a 500 kV
transmission line is analyzed in this paper. Several
lightning protection measures are introduced. Cur-
rently, the lightning protection methods available
for transmission lines cannot completely eliminate
the impact of lightning. In recent years, extreme
weather occurred frequently and there are great
uncertainties in lightning activity. It is necessary to
further study climate change and lightning behavior

(iii) The lightning warning system can send out the
lightning warning information in advance and effec-
tively avoid the damage caused by lightning strike to
the staff and equipment in the protected area. The
use of artificial intelligence algorithms in the light-
ning warning system can improve the predicted
accuracy
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In the farmland Internet of Things, to achieve precise control of production, it is necessary to obtain more data support, which
requires the deployment of many sensors, and this will inevitably bring about high investment and high-cost problems. This
paper mainly studies the optimization of sensor placement in the agricultural field. Through compressed sensing and algorithm
optimization, the number of sensors used is reduced and the cost is reduced on the premise of ensuring the effect. At present,
there are many mature sensor layout optimization methods, but these methods will have incomplete parameters due to
experimental conditions and environmental factors. They are more suitable for structural health monitoring and lack research
in agricultural applications. Considering that the sensor layout optimization can be converted into the characteristics of image
compression selection and the compression effect of the compressed sensing theory is better, therefore, this paper proposes a
sensor layout optimization method based on compressed sensing. Due to the structural characteristics of the existing
measurement matrix in the compressed sensing theory, the specific position distribution of the optimized sensor layout cannot
be obtained directly. This paper improves the existing sparse random measurement matrix to determine the number of sensors
required for a given region and the function of the specific location of each sensor. The experimental results show that soil
moisture can be measured with a small error of 0.91 by using 1/3 of the original sensor number. The result of data
reconstruction using 1/6 of the original sensor is average, and the average error is up to 1.68, which is suitable for the
environment with small data fluctuation.

1. Introduction

Precise irrigation and irrigation automation are the inexora-
ble trends of the development of modern agriculture. The
accurate measurement of soil moisture content is the basis
of precision irrigation and irrigation automation [1]. There
are mainly 3 methods for soil moisture measurement,
namely, manual soil sampling and drying, remote radar sens-
ing, and acquisition by sensors. Manual soil sampling and
drying are accurate but require the manual collection of soil
samples at multiple locations. High in cost and weak in time-
liness [2], this method is difficult to adapt to modern agricul-
tural production. Remote radar sensing is the use of
microwave radar on the satellite to measure the water on
the soil surface. However, the measurement result is too
coarse-grained [3] to guide fine agriculture production. Soil
moisture sensors can quickly and accurately measure the

same point in the soil and are widely used in precision
irrigation.

When soil humidity sensors are applied to measure the
soil moisture content, the more soil humidity sensors are
buried in a profile, the more precisely the soil moisture mea-
surement will be [4]. However, as the number of sensors
increases, so does the cost of production systems, and there
is a contradiction between cost and data accuracy. To save
the agricultural irrigation system cost and improve the effi-
ciency of the state estimators, the paper proposes a method
for soil humidity sensor layout based on compressed sens-
ing, aiming at reducing the number of sensors as much as
possible on the premise of accuracy.

Compressed sensing, also known as compressive sam-
pling or sparse sampling, is a technique for finding sparse
solutions of underdetermined linear systems. According to
this theory, if the signal is sparse, it can be reconstructed
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and recovered from sampling points much lower than the
sampling theorem requires [5]. Compressed sensing is used
in electronic engineering, especially signal processing, to
obtain and reconstruct sparse or compressible signals. This
method takes advantage of the sparsity of the signal. Com-
pared with the Nyquist theory, this method can recover the
entire desired signal from fewer measured values. Simply
put, the process of data compression is completed during
the sampling process. In the process of signal sampling,
compressed sensing uses a few sampling points to achieve
the same effect as full sampling. In the compressed sensing
theory, the original signal can be accurately reconstructed
under the condition of few measuring points. Based on this
feature, an optimization method based on compressed sens-
ing of soil humidity sensor layout is proposed in the paper.
Firstly, the sensors are densely placed in farmland soil by
which original soil humidity data is obtained, and then Fou-
rier Transform is applied for sparse representation of the
data; secondly, the sparse presentation data is operated
through the improved sparse random measurement matrix
and an observed value is obtained; finally, through the
reconstruction algorithm, the reconstructed signals are
obtained. Through comparison of the three kinds of sensor
layout optimization strategies, it is found that 1/3 of the
original number of sensors can measure the soil moisture
with a minor error.

This paper theoretically ameliorates the existing sparse
random measuring matrix, proposing a soil humidity sensor
layout optimization method based on compressed sensing.
The implemented functions are to quantify the required sen-
sors in a given area and place them at specific locations.
Effects are achieved that with fewer sensors, the whole
farmland soil temperature distribution is measured, which
reduces the costs effectively while increasing the efficiency
of information processing of the system.

2. Related Work

In farmland IoT, strengthening the research on soil quality
protection and management and realizing the intelligent
management of farmland protection are the key to guarantee
the safety of agricultural products [6]. In the field of farm-
land irrigation IoT, many scholars have been solving the
problems on the hardware level. For example, Feng, to lower
the irrigation water cost, achieved water saving by intelligent
irrigation and raising irrigation water efficiency through
embedded control technology [7]. Liu, on the possible time
out and cross-restriction problems, proposed the farmland
data collection mechanism to guarantee the reliable trans-
mission of data [8]. Liu and Yang proposed a network man-
agement project of network topology management, location
management, energy management, and fault management,
referring to the features of node power and limited process-
ing energy in sensor networks, to realize the remote manage-
ment of the sensor monitoring network and the effective
detection of the farmland environment for the users [9].
Singh and Saikia proposed an irrigation control system
based on Arduino. The system collects and receives data
through Arduino and uploads it to a designated interactive

website, on which the real-time soil status factor and the stan-
dard value of different factors required by crops are shown
[10]. All these research studies ensure the instantaneity, accu-
racy, and reliability of the soil humidity data on the hardware
level. It alleviates the noise folding phenomenon of com-
pressed sensing [11], making compressed sensing a more
effective choice in the optimization of agricultural sensors.

Sensor layout optimization plays an important role in
different fields. In structural dynamics, a good sensor layout
could recognize accurately the model parameter of a struc-
ture and ascertain the damage degree of the structure [12].
In direct kinematics, the location of the sensors will influ-
ence the calculation complexity, the accuracy of position
sensing, and the reliability of the system [13]. In a network
warning system, the position of sensors affects the effective-
ness of warnings [14]. In thermology, placing a temperature
sensor in an optimal position helps to accurately and in real
time predict thermally induced deformation at a particular
location [15].

Sensor layout optimization based on the model analysis
method is a methodology by which the layout strategy is
obtained through optimum analysis based on establishing a
finite element model and setting an optimization target.
The sensor layout optimization method based on the model
analysis method was first proposed by Kammer as the effec-
tive influence method [16]; that is, a sensor placement pro-
gram is to be obtained by maximizing the spatial
independence and signal intensity of the target finite ele-
ment model. Then, Heo et al. proposed kinetic energy to
place the sensors [17]. Based on the EI method and KE
method, Wu et al. proposed the effective independence
driving-point residue method, improving the spatial inde-
pendence and element strain energy of the above two
methods [18]. Mukherjee et al. applied a reweighing method
replacing repeated function simulation to estimate the
expected influence value and proposed a mode analyzing
method for sensor placement for nonlinear uncertain
systems [19]. Modeling error was caused inevitably in the
course of establishing a finite element model with the above-
mentioned sensor layout optimization method, and model-
ing tends to be trapped into the local optimum.

To avoid modeling error, Krause et al. proposed a sensor
node placement method driven by data [20]. Guestrin et al.
proposed to place the sensor based on rules of mutual infor-
mation [21]. Xu and Choi used noise measurement and a
mobile self-adaption anisotropy space-time Gaussian
process, which enables nonparametric prediction toward a
given space-time phenomenon [22]. The abovementioned
methods presume that the space random process is Gaussian
distribution; however, soil humidity in farmland does not
completely follow Gaussian distribution, and thus, it does
not work very well.

Compressed sensing is a technology that could be used
to obtain and reconstruct sparse signals and does not depend
on the Gaussian distribution of data. Put forward in 2006 by
Donoho [23], now, compressed sensing has been extensively
used in fields like wireless communication. Compressed
sensing is extensively applied in sensor node information
collection [24–26], but few studies have been made in the
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sensor. In this paper, soil water distribution is treated as a
two-dimensional image. The compressed sensory theory
has a good effect and has been proved by a large amount
of theoretical proofs in the field of image compression.
Therefore, this method has general conditions.

3. Method

3.1. Compressed Sensing Theory. Compressed sensing of the
signal mainly includes three steps [23]: the first step is sparse
representation, which converts the original signal into a
sparse signal on another dimension; the second step is to
reduce the dimension of the observation matrix to minimize
the information loss of the original signal; and the third step
is to design a reconstruction algorithm to recover the N
-dimensional original signal from the m-dimensional sam-
pled signal (m < n). Figure 1 shows the compressed sensing
framework.

3.1.1. Sparse Representation. Based on the signal sparse
decomposition theory, N-dimensional discrete real value
signal x = ðx1, x2,⋯, xnÞ could be denoted as a linear combi-
nation of a group of uncorrelated bases ψiði = 1, 2, 3,⋯,NÞ.

x = 〠
N

i=1
ψiαi = ψα: ð1Þ

In the formula, ψ = ½ψ1, ψ2,⋯,ψN � is the basis matrix
N ×N . If there are only K nonzero coefficients in α, then x
is called the K sparse signal in basis matrix ψ. If the conver-
sion coefficient of the signal decays to zero exponentially
with the order sorted, the signal is compressible.

3.1.2. Measurement Matrix. Suppose signal x, with length as
N , is reflected by a group of unit vectors Ф = ½Ф1,Ф2,⋯,ФN �
and the measured value y ∈ RMðM≪NÞ is obtained. This
process could be shown as

y =Φx: ð2Þ

We put formula (1) into formula (2) and obtain

y =Φx =Φψα =Θα: ð3Þ

In the formula, Φ is the measurement matrix, while Θ
=Φψ is the sensing matrix; both are matrix M ×N . The
sampled signal y obtained is the linear combination of the
column of matrix Θ. The linear combination coefficient is
that in the corresponding original signal α.

Since measurement matrix dimension M≪N , the pro-
cess of solving formula (1) is pathological and it is impossi-
ble to obtain original signal x directly from y. However, as α
is sparse, the estimated signal bα could be obtained almost
perfectly through the compressed sensing reconstruction
algorithm by the known sensing matrix Θ, and then the
original signal could be approximated with x̂ = φbα .

To ensure that K coefficients can be accurately recovered
from M measurements, that is, to ensure that the algorithm
is convergent, theΘ in formula (3) must satisfy the restricted

equidistance (RIP) criterion [5]; that is, for the matrix Θ of
size M ×N and M≪N , if there is a constant δk ∈ ð0, 1Þ,
make all submatrices Θk ∈ RM×k for any vector s ∈ Rjkj and
Θ, that is,

1 − δkð Þ sk k22 ≤ Θksk k22 ≤ 1 + δkð Þ sk k22: ð4Þ

It is said to satisfy the k-bound isometric property (K-
RIP).

3.1.3. Reconstruction Algorithm.WhenΘ satisfies the limited
equidistance property, the known perceptual matrix Θ can
be used to solve formula (3) through the l0 norm.

min αk kl0 s:t:y =Θbα: ð5Þ

Thus, the estimated signal bα is obtained. However, since
the solution of Equation (5) is an NP-hard problem, litera-
ture shows that under certain conditions, the minimum
norm of l1 and the minimum norm of l0 are equivalent,
and the same solution can be obtained [23]. Then, Equation
(5) can be transformed into an optimization problem of the
minimum norm of l1.

min αk kl1 s:t:y =Θbα: ð6Þ

The original signal is then approximated by x̂ = φbα .
However, the algorithm for solving the minimum norm of
l1 is slow. Therefore, new reconstruction algorithms such
as OMP [27], CoSaMP [28], and GOMP [29] have been pro-
posed and achieved good results.

3.2. Algorithm Flow. The algorithm is divided into three
steps. In the first step, the data obtained by the soil moisture
sensor is not sparse, so the partial Fourier Transform
(Permute Fast Fourier Transform (PFFT)) is adopted for
sparse representation. The second step is to optimize the
selection method of the sparse random observation matrix
as the observation matrix suitable for this study to obtain
the number and optimal location of sensors. Third, OMP,
GOMP, and CoSaMP reconstruction algorithms were used
to reconstruct the compressed data and compared with the
original data, and it was found that OMP was more accurate
in calculating the distribution of soil moisture data.

3.2.1. Introduction and Evaluation of the Original
Observation Matrix. The sparse random observation matrix
construction method [30] first generates an M ×N all-zero

Signal x

Start

Sparse transformation of
orthogonal basis θψTx

The observation vector is obtained
through the observation

matrix y = Фx

Reconstructed signal
min| |ψTx| |0, s.t. θψTx

End

Figure 1: The compressed sensing framework.
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matrix, and M≪N in the matrix Φ of each column vector,
randomly selected d positions; in the selected location
assignment 1, d values are generally d ∈ f4, 8, 10, 16g and
have little effect on the reconstruction results [31]. M is the
observed value, and the number of sensors is shown herein.

When d = 4, the expansion of the matrix multiplication
is as follows:

Y =ΦX =

y1

y2

y3

⋮

yM−1

yM

2
66666666666664

3
77777777777775

=

1 1 0 0 0 0 ⋯ 0

0 0 1 1 0 0 ⋯ 0

0 0 1 0 1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 1 ⋯ 1

0 0 0 0 0 1 ⋯ 0

2
66666666666664

3
77777777777775

�

x1

x2

x3

x4

x5

⋮

xN−1

xN

2
666666666666666666664

3
777777777777777777775

=

x1 + x2

x2 + x3

x2 + x4

⋮

x5 + xn

x5+⋯

2
66666666666664

3
77777777777775

,

ð7Þ

where Y is anM × 1matrix and X is anN × 1matrix. The col-
umn vector selects four positions of 1 so that each row vector
is likely to have many 1’s, and the row position of the elements
in the different row vectors is different. The result Y may be
related to all the elements in X, that is, Y ∉ X.

The idea of this paper is to select a part of the sensors to
collect data in the original sensor layout. That is, in the
matrix X, select a part of the elements to form the Y matrix
to meet Y ∈ X. The above observation matrix cannot be sat-
isfied, and it is necessary to optimize the observation matrix.

3.2.2. Observation Matrix Optimization. The sparse random
observation matrix is changed twice. First, the randomly
selected object is the row vector of the matrix Φ. Second,
only one position is selected in each row vector to assign it
to 1. Make sure that the optimized observation matrix has
only one element value per line.

The improved method for constructing a sparse random
measurement matrix is as follows. Firstly, generate an iden-
tity matrix Φ ∈ onesN×N . Secondly, randomly select M row
vectors from the generated matrix to form a matrix of M
×N . Since the identity matrix is an orthogonal matrix, the
partial identity matrix of M ×N size obtained after taking
M rows from it still has a strong noncorrelation and partial
orthogonality. It satisfies the RIP theorem and ensures that
the observation matrix will not combine two different sparse
data mapped to the same collection.

When d = 4, after improving the measurement matrix,
Y =ΦX corresponds to the expanded form of matrix multi-
plication as follows:

Y =ΦX =

y1

y2

y3

⋮

yM−1

yM

2
66666666666664

3
77777777777775

=

0 1 0 0 0 0 ⋯ 0

0 0 0 1 0 0 ⋯ 0

0 0 1 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 0 ⋯ 1

0 0 0 0 0 1 ⋯ 0

2
66666666666664

3
77777777777775

�

x1

x2

x3

x4

x5

⋮

xN−1

xN

2
666666666666666666664

3
777777777777777777775

=

x2

x4

x3

⋮

xN

x6

2
66666666666664

3
77777777777775

:

ð8Þ
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Y ½m, 1� =Φ½m, n� ∗ X½n, 1�, when Φ½m, n� = 1 and Y ½m,
1� = X½n, 1�. If the element 1 in Φ is in the m rows and n col-
umns, themth sensor position after sampling corresponds to
the position of the nth sensor in X.

Compared with the gridded dense sensors, M sensors
should be selected based on N sensors for sampling; that
is, for the observation matrix Φ of M ×N , each row has an
only one value of 1, and each column has at most one value
of 1; that is, the M sensor should be deployed at the element
position with the M row vector of 1.

4. Experiments

4.1. Data Acquisition. The soil humidity sensors numbered
successively with 1, 2,⋯, 64 are placed evenly at 10 cm
below the soil surface of a 40m × 40m farmland as shown
in Figure 2. Experimental data is the soil moisture value
measured by all sensors on June 1, 2015, solstice, and
November 30, 2015.

Through data analysis, it is found that farmland soil
moisture has strong spatial and temporal differences, so it
is necessary to deploy more sensors to accurately monitor it.

Firstly, the soil moisture data of farmland have spatial
differences. Figure 3 shows the soil moisture surface at
21:00 on May 31, 2015, obtained by the bilinear interpola-

tion method. The maximum value of moisture at point ð8,
4Þ is 32.91, and the minimum value at point ð7, 8Þ is 25.52,
with a difference of 22.5%.

Secondly, the soil moisture data of farmland varies with
time. Figure 4 shows the soil moisture curves of 10 sensors
at 100 time points during June 1, 2015, solstice, and June
30, 2015. For sensor number 10, the maximum humidity at
point ð10, 83Þ is 34.36, and the minimum humidity at point
ð10, 1Þ is 17.5, with a difference of 49.07%.

4.2. The Evaluation Indexes. To analyze the performance
index of sensor layout optimization in different compressive
sampling conditions, an indicator of absolute error is pro-
vided in this paper. The formula is as follows:

mean absolute error : a = ∑n
i=1 xi − x̂ij j

n
,

average relative error : r = ∑n
i=1 xi − x̂ij j/xið Þ

n
,

ð9Þ

where xi represents the original soil moisture data, x̂i repre-
sents the reconstructed soil moisture data, i represents the
number of the sensor in Figure 2, and n represents the num-
ber of soil moisture data. The unit of a is %, which indicates
the relative moisture content value.

4.3. Selection of the Reconstruction Algorithm. In this exper-
iment, the soil moisture distribution image composed of 64
sensor points is relatively simple; OMP, CoSaMP, GOMP,
and other algorithms are suitable for a relatively simple
image selected point compression. Therefore, OMP, GOMP,
and CoSaMP algorithms are used for comparative analysis.

Compare the three kinds of reconstruction accuracy of
the algorithm (OMP, GOMP, and CoSaMP). The data of soil
moisture measured by all sensors in a set of dry soil (23:00
on May 28, 2015) and a set of irrigated soil (6:00 on July
15, 2015) were selected. The number of original sparse sig-
nals is N = 64, the observed values are 0 <M < 64, and the
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Table 1: Comparison of different reconstruction algorithms.

Soil type
Reconstruction

algorithm
Observed
value M

Average
relative error

Dry soil

OMP 41 3%

GOMP 41 5%

CoSaMP 41 6%

Moist soil after
irrigation

OMP 39 9%

GOMP 39 11%

CoSaMP 39 12%
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sparsity is K ∈ f3, 7, 9, 13g. The observation matrix is an
optimized sparse random measurement matrix. Each
observed value was simulated 500 times to determine the
probability of accurate recovery. OMP, GOMP, and
CoSaMP algorithms were compared to determine the rela-
tionship between the recovered data and the observed value
M and the sparsity K under a given sparsity. The experimen-
tal results are shown in Table 1.

For the two sets of data, under the same upper limit of
residual error and the same observed value M, the average
relative error of the OMP algorithm is only 3%-9%, which
is better than that of the GOMP algorithm (5%-11%) and
CoSaMP algorithm (6%-12%). Therefore, among the three
reconstruction algorithms, the OMP reconstruction algo-
rithm has a better effect. In the following experiments, the
OMP algorithm is used to reconstruct data.
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Figure 5: Error-sparsity variation curve.
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4.4. Sparsity Selection. When original data is converted to a
sparse vector through PFFT, the number of nonzero ele-
ments in the sparse vector is denoted as the sparsity degree
K . For the determined reconstruction algorithm and M,
the errors vary with the value of K . With the soil humidity
value at 21 o’clock on July 30, 2015, under the conditions
M1 = 10, M2 = 20, and M3 = 40, respectively, we change the
value of K and take an iteration of 500 times for each spar-
sity to average the errors and observe the variation of errors
with K . The simulation results are shown in Figure 5.

When the observed value M = 10 or M = 20 and K = 3,
the mean absolute error is the minimum, while when M =
40, sparsity K should be 13, to minimize the mean absolute
error. Therefore, in the following experiments, we all
adopted the optimal sparsity.

4.5. Reconstruction of Soil Water Spatial Distribution. Soil
humidity at 21 o’clock on July 30, 2015, is selected as exper-
imental data. With the OMP reconstruction algorithm,
under the circumstances of M1 = 10 plus K1 = 3, M2 = 20
plus K2 = 3, and M3 = 40 plus K3 = 13, respectively, multiple

iterations are used to get a minimum of errors to determine
the location of corresponding sensors. The locations under
the 3 circumstances are shown in Figure 6.

Consider three cases, and the refactoring effect is shown
in Figure 7. The abscissa represents 64 sensors, and the ordi-
nate represents the soil moisture value. When M = 40, the
predicted value almost coincides with the actual value.
When M = 20, the conformance is also good, and the result
is acceptable. However, when M = 10, the predicted value
differs greatly from the actual value and cannot be used.

In the three cases, the distribution of mean absolute
errors at all sampling moments is shown in Table 2.

30

29

28

27

26

25

24

23
0 20 40

Data lenght

OMP, M = 10, K = 3

So
il 

m
oi

stu
re

60 80

(a) Reconstruction effects of 10 sensors

30

29

28

27

26

25

24

23
0 20 40

Data lenght

OMP, M = 20, K = 3

So
il 

m
oi

stu
re

60 80

(b) Reconstruction effects of 20 sensors

30

29

28

27

26

25

24

23
0 20 40

Data lenght

OMP, M = 40, K = 13

So
il 

m
oi

stu
re

60 80

Original data
Recoveery data

(c) Reconstruction effects of 40 sensors

Figure 7: Error-sparsity variation curve.

Table 2: Comparison of reconstruction effects of different M
values.

M
Mean absolute

error
Least absolute

error
Maximum absolute

error

10 1.68 0.41 3.71

20 0.91 0.37 2.12

40 0.47 0.18 1.14
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When M = 10, the mean absolute error of 80% of the
sampling moments is concentrated below 1.5, the error of
12% of the sampling moments is between 1.5 and 2.5, and
the error of 8% of the sampling moments is between 2.5
and 3.5. When M = 20, the mean absolute error of 85% of
the sampling moments is below 1, the error of about 12%
is between 1 and 1.5, and the error of only about 3% is above
1.5. When M = 40, the errors of all sampling moments are
below 1.14. Therefore, considering the balance between sen-
sor installation cost and reconstruction accuracy, it is recom-
mended to deploy 20 sensor sampling points to obtain more
accurate reconstruction results of soil water distribution.

5. Evaluation of the Effectiveness of
Sensor Placement

It is limited to get the abovementioned sensor arrangement
optimization at a moment. Therefore, the 250 time points
from June 1, 2015, to November 30, 2015, are selected as
the experimental data. The overall error distribution of the
three strategies at different times is shown in Figure 8.

In Figure 8, the rx,y distributions in the three graphs are
relatively concentrated, which proves that the strategies of
optimization sensor placement in this experiment are
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effective and feasible. Most of the rx,y in Figure 8(a) are con-
centrated below 1.5, and the rx,y of about 30 points is
between 1.5 and 2.5, and the rx,y of about 20 points is
between 2.5 and 3.5; the error of Figure 8(b) is mostly below
1, and the error of a few points is above 1; the rx,y of
Figure 8(c) is below 1.134. It can be seen that the rx,y of 10
sensors is maximum, and the placement of 20 sensors and
40 sensors is similar. Considering the cost of the sensor, 20
sensors can be arranged to achieve more accurate
measurements.

In Figure 8(a), there are some errors between ½3, 3:5�.
Choose two of them for detailed analysis, and get Figure 9.

Figure 9 is the 220th time in Figure 8(a). The error is
3.2325. The effect is generally and only part of the data close
to the original data. The placement of the 10 sensors is too
difficult to obtain all the features mainly due to significant
changes in soil characteristics. However, it can be found that
the amplitude of the reconstruction curve is stable, and the
optimization strategy of 10 sensors is not suitable for the
environment with high accuracy or obvious soil characteris-
tic change.

6. Discussion

In summary, the overall error of arranging 20 sensors is
close to that of arranging 40 sensors. Considering the cost
issue, using 20 sensors can get a more accurate acquisition
of soil moisture. Due to the obvious changes in soil moisture
characteristics, the placement of 10 sensors is too small,
resulting in large errors. By observing the data recovery of
10 sensors at a certain moment, it is found that the error is
large at the maximum and minimum values, but the overall
curve fluctuates stably. Therefore, the method of using only
10 sensors is suitable for situations where the data change
range is not large.

7. Conclusions

Aiming at the problems of unreasonable sensor placement
and high cost in the agricultural IoT, this paper proposes
an optimization strategy of sensor placement based on the
compressed sensing theory. By analyzing the soil moisture
data at a certain moment and the optimization of the obser-
vation matrix, three optimal strategies of sensor layout were
obtained and then verified at more time points. Through
experiments, it is found that 1/3 of the original sensor can
be used to measure soil moisture with a lower error. The
purpose of obtaining more accurate data with fewer sensors
is realized. The overall error of 20 sensors is close to that of
40 sensors. Considering the cost, 20 sensors can be used to
obtain soil moisture more accurately. Due to the obvious
change of soil moisture characteristics, the 10 sensors were
too few, resulting in a large error. When observing the data
recovery situation at a certain moment, it was found that
the error was large at the maximum and minimum values,
but the overall fluctuation of the curve was stable, which
was suitable for the situation with a small range of data
changes.

When used, the moisture distribution of the mesh point
can rely on manual multiple measurements, no need to
install the sensor. After several measurements, the sensor
deployment can be determined by this article, and only
about 1/3 of the sensor can achieve a better effect, so the cost
is relatively low.

The shortcomings of the experiment mainly include the
following two aspects: (1) the sensor was numbered in one
dimension, while the two-dimensional spatial correlation
of soil moisture was ignored; and (2) soil moisture data at
different moments were uniformly set to equal sparsity,
resulting in large errors. These will be the focus of future
research.
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A face-based authentication system has become an important topic in various fields of IoT applications such as identity validation
for social care, crime detection, ATM access, computer security, etc. However, these authentication systems are vulnerable to
different attacks. Presentation attacks have become a clear threat for facial biometric-based authentication and security
applications. To address this issue, we proposed a deep learning approach for face spoofing detection systems in IoT cloud-
based environment. The deep learning approach extracted features from multicolor space to obtain more information from the
input face image regarding luminance and chrominance data. These features are combined and selected by the Minimum
Redundancy Maximum Relevance (mRMR) algorithm to provide an efficient and discriminate feature set. Finally, the extracted
deep color-based features of the face image are used for face spoofing detection in a cloud environment. The proposed method
achieves stable results with less training data compared to conventional deep learning methods. This advantage of the proposed
approach reduces the time of processing in the training phase and optimizes resource management in storing training data on
the cloud. The proposed system was tested and evaluated based on two challenging public access face spoofing databases,
namely, Replay-Attack and ROSE-Youtu. The experimental results based on these databases showed that the proposed method
achieved satisfactory results compared to the state-of-the-art methods based on an equal error rate (EER) of 0.2% and 3.8%,
respectively, for the Replay-Attack and ROSE-Youtu databases.

1. Introduction

Nowadays, the Internet of Things (IoT) affects human lives in a
wide range of technology from smart homes to smart cities. An
enormous number of IoT devices are utilized for collecting and
analyzing information for different reasons, such as healthcare,
security, and management. According to the estimation of sci-
entifics, around 90% of storing data would be useless [1].
Therefore, the researchers proposed [1] utilizing the edge
devices in the architecture of applications or services for cloud
computing. In this way, the data can be analyzed and filtered in
edge devices and send more enhanced data for processing in
the cloud. For example, the deployed sensors for traffic moni-
toring can be also utilized for fire detection with low-cost and
low-performance devices. However, IoT-based systems are
faced with different problems such as security threats from

the Internet. For instance, let us consider an IoT-based health-
care application which contains critical information such as
blood sugar level and blood pressure. The authentication sys-
tem for data communication through wireless channels should
be secured for protecting critical information of clients. Bio-
metric authentication can be utilized for identifying a person
in wireless communication. This authentication requires using
personal attributes, such as speech, face, fingerprints, palm-
print, gait, and iris [2]. This kind of authentication is based
on a comparison between the physical aspect of the client that
is collected with the help of different sensors and a copy that
was stored. The physiological information of clients is more
reliable when compared to knowledge-based or token-based
methods because this information is unique and not shareable.
For this reason, IoT-based cloud computing systems for
authentication of clients applied their biometric information.
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For instance, Kumari and Thangaraj [3] proposed a fea-
ture selection technique in biometric authentication using a
cloud framework. In another similar study, Shakil et al. [4]
proposed a biometric authentication system and data man-
agement application for security of healthcare data in the
cloud. Also, Vidya and Chandra [5] proposed a multimodal
biometric authentication system based on entropy-based
local binary pattern feature description technique for cloud
computing. Additionally, Masud et al. [6] proposed a deep
learning-based approach for face recognition in IoT environ-
ments. Face recognition systems have achieved significant
interest in many applications such as cell phones’ and lap-
tops’ authentication or registration systems at places such
as online exam centers and airports [1]. These kinds of secu-
rity systems in the Big Data analytics platform are a topic of
concern for real-time applications. Consider the scenario
when a person is to be recognized in an airport for registra-
tion or a student is attending an online exam. In these scenar-
ios and other similar conditions, the camera captures images
of the face continuously and sends these data for processing
in the cloud environment. Based on meaningful information
of face image, a certain person can easily be identified. Nev-
ertheless, these kinds of authentication and registration sys-
tems are vulnerable to different types of attacks. For
improving the security of biometric authentication systems,
various methods and models are proposed.

For example, Ali et al. [1] proposed a multimodal bio-
metric authentication system using an encryption method
for protecting the privacy of biometric information in the
IoT-based cloud environment. In another study, Gomez-
Barrero et al. [2] proposed a framework for the protection
of the privacy of multibiometric templates with an encryp-
tion method. However, the aforementioned methods are
designed for protection based on man-in-the-middle attacks
in wireless communication. According to the literature, face
spoofing attacks in IoT cloud environments are not discussed
and studied yet. The main objective of this study is to present
an IoT cloud-based framework for protecting client’s infor-
mation from face spoofing attacks. In a face spoofing attack,
the intruder bypasses the authentication system by present-
ing a fake face of the victim. Due to this threat, robust and
stable face Presentation Attack Detection (PAD) methods
must be developed and designed. Face spoofing attacks may
be classified into four main groups: print, display, replay,
and mask attacks [7].

According to the types of sensors for detection of these
kinds of attacks, different algorithms are proposed [9–11].
Generally, light field camera sensors are more popular com-
pared to other sensors such as infrared and thermal ones
[8] or multibiometric fusion systems [9] because this addi-
tional equipment increases the cost of authentication sys-
tems. In this case, many researchers investigate feature-
based methods. These kinds of spoofing detection methods
attempt to extract discriminative features to recognize the
genuine user from a fake face. For example, in print, display,
and mask attacks, facial liveness features such as lip move-
ment, head movement, and eye blinking can help recognize
spoofing attacks. Furthermore, detection of replay attacks is
more challenging because they contain this kind of liveness

feature [7]. In some cases, the intruder applies liveness fea-
tures in a mask attack by cropping the lip and eye area from
a mask, which shows that liveness features alone cannot
detect spoofing attacks properly. Replay display and printed
attack images contain some noise and defects because of
recapturing of information by a camera. During recapturing
of information, the fake face loses the high-frequency infor-
mation by getting affected in terms of the texture and color
information of images, and these features can help distin-
guish a genuine person and a recaptured face image. Espe-
cially in printing and displaying attacks, during recapturing
of information, some defects and noises appear in the spoof-
ing face image. These artifacts lead to inadequate color repro-
duction in comparison to real biometric samples [10]. RGB is
the commonly employed color space for sensing and display-
ing color images on many devices. Nevertheless, this color
space in image analysis is inadequate due to the high correla-
tion between the red, green, and blue color components and
incomplete separation of the luminance and chrominance
information [11]. Therefore, a different color space may help
extract discriminative features for extraction of liveness cues
of skin tones for detection of live and fake images. Therefore,
image texture analysis based on different color spaces has
attracted the consideration of research areas in the field of
face spoofing attacks [11, 12]. By the success of deep learning
algorithms in the field of computer vision and multimedia
analysis, deep texture analysis-based algorithms have been
employed in face spoofing problems. Nevertheless, deep
learning-based face spoofing detection algorithms are faced
with some problems such as few numbers of spoofing data
and lack of diversity of scenarios which make it difficult to
train a deep network [13, 14]. Additionally, IoT-based
authentication systems encountered several difficulties such
as storing or processing in a real-time manner [6].

To address these problems, we presented a novel
approach based on hybrid convolutional neural network
(CNN) models on different color spaces for IoT-based
cloud computing. The proposed deep learning approach
utilized three pretrained models in different color spaces
for extracting luminance and chrominance information
which are useful in recognition of spoofing face images.
Due to extracted robust and discriminative features from
a single image, this proposed model can achieve satisfactory
results with less training dataset. This advantage of the pro-
posed approach helps to decrease the storing training data
in cloud computing which tackles one of the major prob-
lems of cloud computing systems. To the best of our
knowledge, for the first time, in this paper, an IoT security
framework is proposed for face spoofing detection. Exten-
sive experimental analysis was conducted based on two
challenging public access spoofing databases with their pre-
defined evaluation protocols for comparison of our pro-
posed approach against state-of-the-art methods. These
experimental results show that our proposed approach out-
performs all existing deep-based methods among state-of-
the-art methods based on benchmark databases. In addi-
tion, experimental results show that the proposed approach
can achieve stable results with less training dataset com-
pared to benchmark deep learning models.
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In light of this information, the main contributions of this
paper are presenting an IoT security framework for face spoof-
ing detection which achieved significant results compared to
the state of algorithms based on two public databases. Also,
the proposed approach achieved stable results with less train-
ing dataset compared to benchmark deep learning models.

This paper is briefly organized as follows: In Section 2,
short information about types of existing systems and related
works on face spoofing methods are available. In Section 3,
the methodology of the proposed approach is briefly pre-
sented. In Section 4, the experimental results and state-of-
the-art algorithms with benchmark databases and protocols
are presented. As the final section, conclusion statements
are provided in Section 5.

2. Related Work for Face Spoofing Methods

Recently, a lot of face spoofing detection algorithms have been
proposed [1–7], based on different cues and attacks. Based on
our prior knowledge, the algorithms can be categorized into
four different groups: texture analysis, motion analysis, image
quality analysis, and hardware-based methods.

2.1. Texture-Based Methods. Face liveness detection algo-
rithms based on texture analysis usually recognize the effects
of illumination limitations of a printer or any other device
during display, such as printing failures, blurring, and other
effects. The RGB color space, as discussed in Section 1, can-
not clearly present features regarding illumination and chro-
minance. In this case, a previous study [12] proposed a deep
learning system based on the RGB, HSV, and YCbCr color
spaces. In the paper, the CompactNet model was proposed
as a layer-by-layer progressively generated color space. Addi-
tionally, features of spoofing databases are extracted by a pre-
trained feature extractor model. Researchers [11] proposed a
color feature descriptor method based on different color
spaces. In this method, information on the luminance and
chrominance channels was extracted by a low-level feature
descriptor. Due to the impact of a smaller number of data-
bases in face spoofing detection on training deep learning
methods and overfitting problems, researchers investigate
the extraction of discriminative and deep features. For
instance, a study [15] proposed a perturbation layer (low-
level deep features) to extract the deep features of a convolu-
tional neural network (CNN) for classification. Another
study [16] presented an adaptive fusion of convolutional fea-
ture models to learn the features of face images, and a deep
autoencoder was utilized for generating a face image to detect
spoofing face images. Some authors [7] proposed a Spatial
Pyramid Coding Microtexture (SPMT) feature extractor with
a deep learning system for detection of liveness cues and
employed the Single Shot Multibox Detector (SSD) as an
end-to-end face spoofing detection model. Besides the afore-
mentioned color-based deep learning methods, some
methods presented local binary pattern- (LBP-) based feature
descriptors for spoofing detection. For instance, a hybrid
method was proposed [17] based on the Chromatic Cooccur-
rence of Local Binary Pattern (CCoLBP) and Ensemble
Learning (EL) algorithms. In the case of reducing the param-

eters of CNNmodels and extraction of deep features, an end-
to-end learnable LBP network was proposed [18]. A previous
study [19] proposed an algorithm by integrating the LBP
descriptor with a modified convolution neural network that
extracted deep texture. For extraction of discriminative fea-
tures of presentation attacks, the Extended Local Ternary
Corelation Pattern (ELTCP) feature extraction method was
proposed [20]. This feature descriptor with extraction of spa-
tial information of an image in multiple directions achieved
robust results on presentation attacks. In recent years, with
increasing attention to 3D face spoofing attacks, several stud-
ies have been devoted to recognizing 3D mask attacks. For
instance, the 3D wax face attacks [21] approach is proposed
with a convolutional neural network based on the Residual
Attention Network (RAN) for 3D face spoofing detection.
In another similar study, a multichannel CNN [22] approach
with a one-class Gaussian mixture model is proposed for the
detection of 2D and 3D attacks. Another study [23] pre-
sented a shading-based 3D feature description method to
extract discriminative and robust 3D features from the face
image. In another study, researchers proposed [24] a face
spoofing framework with the help of convolutional autoen-
coders for the detection of 3D mask attacks. Another study
[10] investigated various factors of affection of acquisition
conditions and devices with different resolutions on the gen-
eralization of color texture features for spoofing detection. In
this light, another possibility seems to be analyzing image
textures based on deep features from multiple color spaces,
which is proposed in this paper. The experimental results
show that our proposed algorithm is superior in color texture
extraction and classification over state-of-the-art methods.

2.2. Motion Analysis Algorithms. Among texture recognition
techniques, motion-based analysis also plays an important
role in spoofing detection. For instance, a study [25] proposed
a motion-based analysis approach based on rigid and nonrigid
facial movements. The proposed system extractedmotion cues
such as face movement, lip movement, and hand shaking and
classified them into natural and fake motions. In another
study [8], an undirected conditional random field in video
processing was proposed for the detection of eye blinking.
Other researchers [26] proposed a dynamic mode decomposi-
tion pipeline with SVM and LBP. This algorithm extracted
facial dynamic information in videos as an image sequence.

2.3. Image Quality Analysis. In spoofing attacks, the image
quality is mostly reduced due to the image being reproduced.
Based on this inability of devices, some methods have been
proposed. For instance, in a previous study [27], an algorithm
was proposed where real and fake face images were deter-
mined by analysis and comparison of both reflections taken
from an LCD screen. In another study [28], it was posited that
it is possible to differentiate a fake image from a real one by
analyzing the noise signatures with the Fourier spectrum.

2.4. Hardware-Based Analysis. Researchers [29] proposed
video-based stereo face antispoofing recognition systems. In
this approach, for learning a dynamic disparity map, a
CNN classifier with a disparity layer was proposed. In
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another study [30], it was proposed to assign a light field to
traditional HOG which was utilized for gathering texture
information from 2D images and Light Field Histogram Of
Gradient (LFHOG).

Apart from the mentioned proposed systems based on
single cues, some methods have been proposed based on
multicue approaches. For instance, another study [31]
proposed a multicue face spoofing detection framework
involving image quality analysis by employing the Shearlet
method and motion analysis by utilizing the dense optical
flow method. In this study, the extracted multicue features
were fused and classified with a deep neural network.

3. Proposed IoT-Based Framework Face
Spoofing Detection

The smart city framework contains multiple components such
as smart devices, high-speed wireless networks, and cloud
servers, as presented in Figure 1. The captured face images by
IoT devices are analyzed and preprocessed with edges. The pre-
processing section with edges and smart devices included Viola
and Jone’s [32] face detection algorithm for extracting face
images and sending more enhanced data to optimize the
resource of the cloud. Then, the captured faced images are con-
tinually sent to a cloud environment using wireless technology.
In the cloud section, several Virtual Machines (VMs) work in a
parallel mode. These VMs by employing a deep learning
approach recognize spoofing attacks.

Before feeding the face image to the deep model for clas-
sification in cloud computing environments, RGB color
space is transformed to the HSV and YCbCr color spaces.
Three parallel pretrained models are utilized in the proposed
deep learning approach. Based on the literature, because of
the small number of data and lack of scenarios in controlled
environments, it is quite hard to train CNN models from
scratch and achieve a stable and high-performance model.
In this case, we utilized the VGG-face [33] model in the
RGB color space for face spoofing detection [14, 18]. In addi-
tion, the transformed images of the HSV and YCbCr color
spaces are trained by the VGG16 [34] model individually
on the cloud side. After fine-tuning models by a different
color space, the features of the last fully connected layer
which consists of 4096 features for each deep model are
extracted. These features are combined and then selected by
employing the Minimum Redundancy Maximum Relevance
(mRMR) feature selection algorithm. These selected features
are classified with the help of different classification algo-
rithms such as linear regression (LR), Support Vector
Machine (SVM), Linear Discriminative Analysis (LDA),
and K Nearest Neighborhood (KNN) for detection of the
spoof image, as presented in Figure 2.

Suppose a scenario where a student wants to access an
online exam. A smart device such as a smart phone or com-
puter captures the student’s facial image and sends this image
to the cloud using 5G wireless technology. In the cloud
server, by employing the face spoofing image database and
deep learning method, a deep feature set of face image is
extracted in three different color spaces. These combined fea-
ture sets contain various aliveness keys from face skin tones

which help to detect face spoofing in the online exam sce-
nario. The proposed method is tested and evaluated based
on two public access databases, namely, Replay-Attack and
ROSE-Youtu. The Replay-Attack database is captured by a
MacBook laptop webcam and the ROSE-Youtu database
captured by Huawei, iPhone 5s, ZTE, and Hasee smart
phone.

3.1. Color Space Transform. RGB is a common color space for
many devices and sensors for displaying and sensing color
images. Nevertheless, this color space is quite limited for ana-
lyzing images because of the high correlation of red, green,
and blue colors and incomplete separation of the luminance
and chrominance information.

In this case, for the detection of recapping artifacts in
spoofing databases, different color spaces are utilized [12].
HSV and YCbCr in addition to RGB provide robust features
to detect different liveness cues from face skin tones. Both the
HSV and YCbCr color spaces provide color texture informa-
tion such as the luminance and the chrominance compo-
nents. In the HSV color space, the H and S define the hue
and saturation dimensions for presenting the chrominance
information, and V defines the value dimension for present-
ing the luminance information of images. The YCbCr space
separates RGB into luminance (Y), Chrominance Blue (Cb),
and Chrominance Red (Cr). The HSV and YCbCr spaces
provide discriminative color-based texture from face skin
tones in different spoofing attacks [11, 12]. Figure 3 presents
different color spaces on the Replay-Attack database for both
live and fake face images.

3.2. Convolutional Neural Networks. Convolutional neural
networks (CNNs) are designed and developed to automatically
learn the spatial hierarchies of features with the help of back
propagation algorithms [35]. CNNs are designed based on
multiple layers of neurons which mainly include multiple basic
structural blocks such as the convolution, pooling, and fully
connected (FC) layers. Each convolutional layer contains a set
of filters whose sizes can be 3 × 3, 5 × 5, or 7 × 7 pixels. There-
fore, each convolutional layer, by applying a filter, creates the
input of the next layer [36]. The results of this convolution pro-
cess are activation maps which contain local distinctive fea-

tures. Based on Equation (1), the output of Y ðl−1Þ
i of the L

layer containsmðlÞ
1 feature maps with sizes ofmðlÞ

2 ×mðlÞ
3 . In this

equation, BðlÞ
i and kðlÞI,j represent, respectively, the basis matrix

and the filter size for the ith feature map [37]:

Y lð Þ
i = f B lð Þ

i + 〠
m l−1ð Þ

i

j=1
k lð Þ
i,j × Y l−1ð Þ

j

0
@

1
A: ð1Þ

The pooling layer reduces the spatial size of the image to
reduce the number of parameters and computations in the
model. This layer operates on each feature map independently
to keep the image features and information intact. Each pooling
layer L contains two main parameters as the spatial size of the
filter FðlÞ and SðlÞ step. The input of the pooling layer is data
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with the size ofmðl−1Þ
1 ×mðl−1Þ

2 × mðl−1Þ
3 , and the output volume

of this layer is mðlÞ
1 × mðlÞ

2 × mðlÞ
3 . Equation (2) briefly presents

the operation of the pooling layer:

m lð Þ
1 =m l−1ð Þ

1 ,

m lð Þ
2 =

m l−1ð Þ
2 − F lð Þ

S lð Þ + 1,

m lð Þ
3 =

m l−1ð Þ
3 − F lð Þ

S lð Þ + 1:

8>>>>>>><
>>>>>>>:

ð2Þ

The output of feature maps of the last convolutional or
pooling layer is flattened in the layer named the fully con-
nected layer. The FC layer transforms the output of previous
layers into a one-dimensional feature vector, updates the

weights, and provides the latest possible values for each label
[37]. These layers may be connected to a more fully con-
nected layer which is also known as the dense layer. By
employing a learning rate, every input is connected to every
output. The features are extracted by the convolution layers,
downsampled by the pooling layers, and mapped by the FC
layer to the final output of the model. The last FC layer
contains a number of nodes equal to the number of classes
of classification images. Each FC layer is supported by a
nonlinear function such as the ReLU function. Equation
(3) presents the FC layer’s processing steps by weights (W
) and the f ðZðlÞ

i Þ nonlinear function:

Y lð Þ
i = f Z lð Þ

i

� �
withZ lð Þ

i = 〠
m l−1ð Þ

i

j=1
w lð Þ

i,j × y l−1ð Þ
j : ð3Þ
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Figure 1: Proposed IoT-based framework for face spoofing detection.
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3.2.1. Pretrained Models. Tomodify the pretrained experiment
models for face spoofing recognition, the models were fine-
tuned by spoofing databases. The binary classification was uti-
lized for spoofing detection problems and changing the output
of the classification layer to two classes of spoof and real face.

After modifying the SoftMax classification layer based on
the spoofing database in the training phase, the VGG16 and
VGG-face models were fine-tuned based on the spoofing
database. The VGG-face model is one of the popular pre-
trained models for face recognition systems. This model
was developed by the Oxford Visual Geometry Group [33].
The model was trained by 2.6M to face images in the RGB
color space, and the default size of an input image is 224 ×
224 [18]. This model contains five max pooling, thirteen con-
volutional layers with the rectified linear unit (ReLU) func-
tion, and three fully connected layers, namely, FC6, FC7,
and FC8. The last fully connected layer (FC8) modifies from
2622 (face image classes) to 2 classes of spoof and real. The
architecture of the VGG-face model is a variant of VGG16,
which is trained by face images, as presented in Table 1. In
this approach, the fine-tuned VGG-face and VGG-16 models
based on the face spoofing database are utilized as a deep fea-
ture extractor. The deep features are taken from FC7 (seventh
fully connected layer), the last layer before the output layer.
The activation values of this FC layer for all models are set
as default values equal to 4096 (dimensional feature vectors)
for the input images.

3.3. Feature Selection. The main purpose of the mRMR
method is to select the subset of features which has the most

correlation with the class and reduce irrelevant and redun-
dancy features based on mutual information [38, 39]. Mea-
surement of the mutual information of I between two x and
y attributes is defined based on

I x, yð Þ =〠
i,j
p xi, yj
� �

log
p xi, yj
� �

p xið Þp yj
� � , ð4Þ

(a) RGB color space live (b) YCbCr color space live

(c) HSV color space live (d) RGB color space spoof

(e) YCbCr color space spoof (f) HSV color space spoof

Figure 3: Different color spaces based on Replay-Attack databases.

Table 1: VGG16 architecture.

Layer Patch size/stride Input size

Conv × 2 3 × 3/1 64 × 224 × 224

Pool 2 × 2 64 × 224 × 224
Conv × 2 3 × 3/1 128 × 112 × 112

Pool 2 × 2 128 × 112 × 112
Conv × 3 3 × 3/1 256 × 56 × 56

Pool 2 × 2 256 × 56 × 56
Conv × 3 3 × 3/1 512 × 28 × 28

Pool 2 × 2 512 × 28 × 28
Conv × 3 3 × 3/1 512 × 14 × 14

Pool 2 × 2 512 × 14 × 14

FC 25088 × 4096 25088

FC 4096 × 4096 4096
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where pðxiÞ and pðyjÞ represent the marginal probabilities
and pðxi, yjÞ represents the joint probabilistic distribution.
Let us define each property of the equation as Fi in a K-size
vector (Fi = ½F1i, F2i, F3i,⋯, FKi�). In this case, the mutual
information of the variables ði, jÞ is defined as IðFi, FjÞ. In
order to find the best features of the selected subset, Equa-
tions (5) and (6) must be satisfied. The minimum redun-
dancy feature is presented in Equation (8), and the
maximum relevance condition is presented in Equation (6):

min W,W =
1
sj j2 〠

Fi F j

I Fi, Fj

� �
, ð5Þ

max V , V =
1
sj j 〠Fi F j

I H, Fið Þ, ð6Þ

whereH represents the class label and s shows the number of
features selected. The mRMR feature set is obtained by opti-
mizing the combination of feature selection criteria, namely,
Mutual Information Difference (MID) and Mutual Informa-
tion Quotient (MIQ), which are presented in

MID =max v −wð Þ,
MIQ =max

v
w

� �
:

8<
: ð7Þ

For optimizing the MID and MIQ conditions, it is
required to combine them into a single criterion function
[40], as shown in the following equation:

fmRMR Xið Þ = I H, Fið Þ − 1
sj j 〠Fi F j

I Fi, Fj

� �
, ð8Þ

where IðH, FiÞmeasures the relevance feature to be added for
the class and 1/jsj∑Fi F j

IðFi, FjÞ estimates the redundancy of

features with respect to previously selected s features. These
selected features are classified with a linear regression classi-
fication algorithm for detection of face presentation attacks.

4. Experimental Results

The proposed method as shown in Figure 2 was compiled
with an NVIDIA GeForce 4GB graphics card (GPU). Other
hardware details were Intel Core i5 3.6GHz processor and
16GB RAM. As presented in Table 2, these parameters were
used with their default values. Additionally, the minibatch
size was set as 32.

4.1. Experimental Databases

4.1.1. The Replay-Attack Database [41]. The Replay-Attack
database consists of 1300 videos of 2D face attacks under dif-
ferent conditions. This database contains three main sub-
groups for training, validation, and testing folders with
names of training data, development data, and test data.
Two main different lighting conditions in this database were
named as controlled and adverse. The controlled scenario

data were collected under homogeneous backgrounds and
with office lights turned on, and the adverse data were col-
lected with more complex backgrounds and without office
lights as presented in Figure 4.

4.1.2. ROSE-Youtu Face Liveness Detection Dataset [42]. This
database contains a large variety of illumination conditions,
cameras with different resolutions, and types of attacks such
as display, print, and mask attacks. The ROSE-Youtu data-
base contains 4225 videos with 25 subjects, and each video
duration average is around 10 seconds. The ROSE-Youtu
database is divided into two subsets of training and testing.
The first 10 indexed units are separate for training, and the
rest of the videos belong to testing. The numbers of samples
from this database are presented in Figure 5.

4.2. Evaluation Metric. To measure the performance of the
models, accuracy (Acc), sensitivity (Se), specificity (Sp), pre-
cision (Pr), and F-score metrics derived from the confusion
matrix were used, and the formulations of the metrics were
as follows [43]:

Acc = TP + TNð Þ
TF + FNð Þ + FP + TNð Þ ,

Se = TPð Þ
TP + FNð Þ ,

Pr =
TPð Þ

TP + FPð Þ ,

F‐score = 2 × TPð Þ
2 × TP + FP + FNð Þ :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð9Þ

To evaluate our new approach against state-of-the-art
methods, we applied the formula of the Half Total Error Rate
(HTER) in

HTER =
FRR K ,Dð Þ + FAR K ,Dð Þ

2
, ð10Þ

where FRRðK ,DÞ is a false rejection rate, D denotes the
used database, and K is estimated on the equal error rate
(EER). In this context FARðK ,DÞ stands for the False
Acceptance Rate.

4.3. Fine-Tuning VGG-Face Model for Face Spoofing
Detection.Our face spoofing recognition approach in the first
steps was based on the VGG-face model. The VGG-face
model is trained by a large database of face images. As pre-
sented in Figure 6, each convolution block contains the recti-
fied linear unit (ReLU) function and a 3 × 3 kernel size. Also,
each convolution block contains a max pooling layer with a
kernel size of 2 × 2. Two FC layers are set with 4096 channels
with the ReLU function and batch normalization. The last FC
layer contains the ReLU function, batch normalization, and
the SoftMax activation function where the output of this
layer presents categorical distribution over face spoofing rec-
ognition labels.
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The performance of the VGG-face model for face spoof-
ing detection databases depends on the level of fine-tuning of
the convolutional blocks. For this reason, in this test, we eval-
uated the effects of each pretrained convolutional block on
the accuracy of the model [14]. Different models arranged
based on the retrained and frozen levels of the parameters
of the network with names of the A, B, C, and D models
are presented in Figure 7. Five convolution blocks with the
names of Conv1, Conv2, Conv3, Conv4, and Conv5 and
two FC layers were trained based on the level of fine-
tuning. For example, the first model (A) consisted of the
Conv2-5 and FC layers, which means that the convolutional
blocks from 2 up to 5 were trained based on new datasets, and
the rest of the parameters of the model were frozen. In the
same way, the models B, C, and D were, respectively, trained
from the third, fourth, and fifth convolutional blocks with the
fully connected layer.

Based on the experimental results presented in Figure 8,
the best accuracy was for model A (Conv2-5 and FC layers)
with 97.99% and 82%, respectively, for the Replay-Attack
and ROSE-Youtu databases which were highlighted with
gray shading. All models (A, B, C, and D) were trained based
on the parameters presented in Table 2 and 1000 epochs.
Additionally, for the classification of the images, the SoftMax
classifier was utilized with two channels of live and spoof
labels. As a result, for the Replay-Attack and ROSE-Youtu
databases, model A stayed on the best accuracy, respectively,
with (97%, 82%) compared to B (96%, 66%), C (96%, 76%),
and D (92%, 66%). Based on these experimental results, it
may be proven that, for spoofing detection based on the
RGB color space, the optimum level of fine-tuning of the
VGG-face model was the trained convolutional blocks num-
bered 2 up to 5 with two fully connected layers and by freez-
ing the first convolutional block parameters.

(a) Live face

(b) Spoof face

Figure 4: Replay-Attack database samples for live and spoof images.

(a) Live face

(b) Spoof face

Figure 5: ROSE-Youtu face liveness detection samples for live and spoof face images.

Table 2: Parameter values of the proposed approach used in this study.

Software Optimization Activation function Momentum Decay Minibatch Learning rate

Keras Adam ReLU 0.9 1e − 6 32 0.01
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In this case, in the rest of the experimental results for the
RGB color space, we utilized the same level of fine-tuning
(model A) which stayed on the best accuracy rate for the
VGG-face model for face spoofing detection. For training
the deep models with the ROSE-Youtu database, we selected
70% of the data from the first 10 indexed samples of data for
training, and the rest of these were used for validation. In this
case, the training and validation data were totally separated.
Because the ROSE-Youtu database contains data with differ-
ent rotations such as 90 degrees clockwise and counterclock-
wise, the image data augmentation technique in the Keras
library was utilized.

4.4. Color-Based Approach Model. In this section, we explain
the process of converting the color space from RGB to HSV
and YCbCr. Furthermore, we evaluated three benchmark
VGG models for finding the effects of each color space on
the accuracy of classification. In this test, we utilized two
VGG16 models and trained the entirety of each network with
HSV and YCbCr color space images from spoofing datasets
with the default window size. All models were trained based
on the parameters presented in Table 2 and 1000 epochs.

Table 3 presents the experimental results on the HSV and
YCbCr color spaces and the evaluation of fine-tuning of the
entirety of the networks with these color spaces. According

to the results obtained, the HSV color space-based image in
the Replay-Attack database achieved significant results com-
pared to the YCbCr color space by improving 0.71% in accu-
racy. Nevertheless, in the ROSE-Youtu database, the YCbCr
space provided better results compared to HSV by improving
7.59%. According to these results, it may be concluded that,
for face spoofing recognition under different conditions such
as illumination changes and displaying a high-resolution
camera, both color spaces contain discriminative features
which can help distinguish a live image from a fake face in
different scenarios.

4.5. Deep Feature Extraction. In the second step of our exper-
imental procedure, the features of the fully connected layer
(FC7) of the pretrained VGG-face model based on the RGB
color space were extracted, which included 4096 channels.
The features extracted from this layer were classified with dif-
ferent typical classifiers such as SVM, LDA, and KNN. More-
over, these results were compared to the SoftMax classifier to
evaluate the performance of the extracted deep features with
other classification algorithms. Based on the experimental
results shown in Table 4, the best results were for SVM and
KNN in the Replay-Attack database with 98.93 (Acc), 98.50
(Se), 100 (Sp), 98.97 (Pr), and 98.93% (F-score) for both clas-
sification algorithms.

In the Replay-Attack database, the SoftMax classifier was
placed on the fourth stage among the other classifiers based
on the results. However, in the ROSE-Youtu database, the
SoftMax classifier achieved significant results compared to
the other classifiers with 82.84 (Acc), 97.42 (Se), 72.41 (Sp),
89.52 (Pr), and 88.00% (F-score).

4.6. Feature Selection and Classification. In this step, we uti-
lized mRMR to reduce the size of the extracted features from
three different models and select robust and discriminative
feature sets. The size of the extracted features for each model
was 4096, and by combining these three VGG models, the
size increased to 12288 features. For finding the optimum
dimension of feature sets, we analyzed different sizes of fea-
tures with the help of mRMR feature selection as presented
in Figures 9(a) and 9(b). Based on the results, the best feature
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Figure 6: Structure of VGG-face model [33].
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sizes for Replay-Attack were 400, 500, and 700, and those for
the ROSE-Youtu database were 300, 500, and 700, respec-
tively, for RGB, HSV, and YCbCr based on the LR classifier.
In this case, the optimum feature size for covering both data-
bases and all color spaces may be set to 1600 features. In con-
tinuation of this test, we analyzed the effects of the deep
features of HSV color spaces on the improvement of accuracy
rates. In this case, we combined extracted features from the
FC7 layer of the pretrained VGG-face model (RGB) with
the VGG16 model (HSV). The experimental results pre-
sented in Table 5 show that the accuracy of the face spoofing
detection approach was improved drastically in the Replay-
Attack database.

In this database, all evaluation metrics with the LR, SVM,
and KNN classifiers stayed on significant rates with 99.82
(Acc), 99.75 (Se), 100 (Sp), 99.82 (Pr), and 99.82 (F-score)
%. In the ROSE-Youtu database, also, all evaluation metrics
were improved with four different classifiers, and the best
results were obtained for the linear regression classifier by
95.98 (Acc), 99.00 (Se), 93.24 (Sp), 95.98 (Pr), and 95.98 (F
-score) %. The experimental results in this table compared
to Table 4 showed that HSV deep features improved the

effectiveness of detection of spoofing data. The comparison
of two experimental results of Tables 4 and 5 showed that
all evaluation metrics were improved by combining HSV
deep features with VGG-face deep features, and these results
were improved by 13.14 (Acc), 1.58 (Se), 20.83 (Sp), 6.46
(Pr), and 7.98 (F-score) based on the LR classifier in the
ROSE-Youtu database.

In Table 6, the experimental results of the proposed deep
model by applying the feature selection method are pre-
sented. After concatenation of three extracted features from
different color spaces from the VGG models, mRMR feature
selection was applied. As discussed in Section 3.3, the main
reason for applying the mRMR algorithm was to reduce the
irrelevant features and select robust and discriminative fea-
tures. Figure 10 presents a visualization of the first four fea-
ture maps of each five convolutional blocks with the RGB,
HSV, and YCbCr color spaces. According to the extracted
features from each convolutional block and specifically the
fifth convolutional block, it was obtained that combining fea-
tures from each model with different color spaces includes
redundant and irrelevant features which decrease the effec-
tiveness of our proposed approach. Based on these results
in Table 6, the extracted YCbCr features cannot improve
the evaluation metrics in the replay-attack database. How-
ever, on the other hand, these features improved the effec-
tiveness of recognition of spoofing data in the ROSE-Youtu
database and increased the results by 1.18 (Acc), 2.91 (Sp),
2.25 (Pr), and 1.19 (F-score) based on the LR classifier. Addi-
tionally, the linear regression classifier stayed on the best
results compared to SVM, KNN, and LDA.

To better present the results, we utilized ROC curve
analysis for both experiment databases as shown in
Figure 11. The ROC curve analysis showed that the pro-
posed approach with the help of well-known pretrained
models in the RGB, HSV, and YCbCr color spaces
extracted discriminative features for the detection of spoof-
ing face images. Based on these results, the LR classifiers
stayed on the best AUC compared to the other mentioned
classification algorithms by 0.995 and 1.00 for the ROSE-
Youtu (Figure 11(b)) and Replay-Attack (Figure 11(a))
databases, respectively. In this case, we selected the LR clas-
sifier as the base classification algorithm for our proposed
approach and employed this classification algorithm in
the rest of the paper.

4.7. Evaluation of Different Attacks. For evaluation of our
proposed approach in different scenarios of spoofing attacks
and for finding the advantages and disadvantages of our pro-
posed approach, we tested our deep learning approach on
different attacks individually. Based on the experimental
results on Replay-Attack (Table 6), it may be concluded that
our proposed approach had satisfactory results in the replay,
display, and print attacks which are presented in the Replay-
Attack database. Furthermore, this approach achieved
97.16% accuracy in the ROSE-Youtu database, in which, for
finding misclassification reasons, in this test, the spoofing
scenarios were individually analyzed. We categorized the
ROSE-Youtu database into five different groups such as the
real, display and print, mask with cropping, and mask
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Figure 8: Accuracy of VGG-face model based on level of fine-
tuning of the networks.

Table 3: Experimental results of fine-tuning pretrained VGG16
models with the HSV and YCbCr color spaces.

Metrics
(%)

HSV YCbCr
Replay-
Attack

ROSE-
Youtu

Replay-
Attack

ROSE-
Youtu

Acc 99.46 71.94 98.75 79.53

Se 99.25 77.42 99.25 88.61

Sp 100 66.67 97.50 45.77

Pr 99.47 71.87 98.75 83.75

F-score 99.47 71.87 98.75 71.03
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without cropping groups containing videos from persons as
presented in Figure 12. Display and replay attacks are already
tested in different conditions such as light change and shak-
ing hands in experimental databases, namely, Replay-
Attack. We set the displayed attack and print attack catego-

ries together and labeled them as display. However, the main
difference of the ROSE-Youtu database is mask attack in dif-
ferent conditions and scenarios which are not available in
other experimental databases. Mask attack in the ROSE-
Youtu database contains scenarios such as a mask with two
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Figure 9: Accuracy of LR classification based on different sizes of features.

Table 5: The classification results of the extracted features from RGB and HSV on the Replay-Attack and ROSE-Youtu databases.

Model Databases Classification Acc (%) Se (%) Sp (%) Pr (%) F-score (%)

VGG-face (RGB)+VGG16 (HSV)

Replay-Attack database

LR 99.82 99.75 100 99.82 99.82

SVM 99.82 99.75 100 99.82 99.82

LDA 98.75 99.50 96.88 98.75 98.75

KNN(K = 1) 99.82 99.75 100 99.82 99.82

ROSE-Youtu

LR 95.98 99.00 93.24 95.98 95.98

SVM 95.98 97.51 94.59 96.04 95.98

LDA 83.34 77.11 92.79 85.97 85.22

KNN(K = 1) 94.79 97.51 92.34 94.96 94.80

Table 4: The classification results based on different classifiers and deep features of the VGG-face model on the Replay-Attack and ROSE-
Youtu databases.

Model Database Classification Acc (%) Se (%) Sp (%) Pr (%) F-score (%)

VGG-face (RGB color space)

Replay-Attack database

SoftMax 97.32 99.25 99.50 97.34 97.30

SVM 98.93 98.50 100 98.97 98.93

LDA 98.91 98.91 100 99.78 99.78

KNN (K = 1) 98.93 98.50 100 98.97 98.93

ROSE-Youtu

SoftMax 82.84 97.42 72.41 89.52 88.00

SVM 78.38 59.75 90.03 78.46 77.65

LDA 70.30 50.13 82.91 69.61 69.39

KNN (K = 1) 78.38 59.75 90.03 78.46 77.65
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eyes and mouth cropped out, mask without cropping, mask
with the upper part cut in the middle, and mask with the
lower part cut in the middle.

In this test, we categorized these mask attack scenarios
into two main groups as a mask without cropping and mask
with cropping. Based on the experimental results which are
presented in Table 7, it appeared that the main advantage
of the proposed approach was the detection of spoofing
attacks such as display and print attacks. The accuracy of rec-
ognition of display and print attacks was 98.00%, which
stayed on the highest value compared to other spoofing data.
The second highest value of accuracy was for the mask with
cropping attacks with 97.82% accuracy. The results for replay
attacks were also compatible with 94.64% accuracy. On the
other hand, the lowest results were for a mask without crop-
ping with 92.59 (Acc), 96.81 (Se), 98.93 (Sp), 92.70 (Pr), and
92.33 (F-score) %. These results proved that the proposed
approach has a significant accuracy in recognition of display
and printed attack and compatible accuracy in a mask with-
out cropping scenarios.

In continuation of this test, we utilized the scatter plot of
the extracted features based on the attack groups and real
videos. In this part, we selected one frame from each video
from the test set and reduced the dimensions of the features
with the help of Principal Component Analysis (PCA) from
1600 to 3 to obtain the X, Y , and Z values for each image
and present them in 3D scatter plots. As presented in
Figure 13, it appeared that the mask without cropping and
replay attack features were overlapped with real video frames.
Furthermore, other spoofing attacks such as display and
mask with cropping were clearly separated from real videos.

4.8. Evaluation Efficiency of the Proposed Method in Cloud
System. As presented before, one of the main problems of
cloud computing systems is the management of storing data
and optimizing resources. For this reason, we proposed a
deep learning approach that trains with fewer data and
achieved significant results based on accuracy compared to
existing models. For evaluating our approach, we train the
model in four different types. First, the models are trained

Table 6: The classification results of the extracted features from RGB and HSV and YCbCr.

Model Databases Classification Acc (%) Se (%) Sp (%) Pr (%)
F-score
(%)

VGG-face (RGB)+VGG16 (HSV)+VGG16
(YCbCr)

Replay-Attack
database

LR 99.82 99.75 100 99.82 99.82

SVM 99.82 99.75 100 99.82 99.82

LDA 98.75 99.50 96.88 98.75 98.75

KNN(K = 1) 99.82 99.75 100 99.82 99.82

ROSE-Youtu

LR 97.16 98.41 96.15 97.21 97.17

SVM 95.98 93.12 98.29 96.05 95.97

LDA 96.45 97.73 95.73 96.49 96.46

KNN (K = 1) 88.17 86.77 89.32 88.18 88.18

Input image First block Second block Third block Fourth block Fifth block

Figure 10: Extracted feature maps from each convolutional block.
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Figure 12: Categorization of spoofing attacks of the ROSE-Youtu database.
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on 10% of frames of each video and test on all frames. The
second, third, and fourth modes of evaluation are in the same
condition, such as 20, 30, and 40% of the frames for training
and evaluating on all frames of test sets. These scenarios are

tested on well-known deep learning models in RGB color
space such as Inception V3 [44], InceptionResNetV2 [45],
and VGG 19 [34]. These pretrained models on the ImageNet
database are employed as a deep feature extractor. For fine-

Table 7: Evaluation of different types of attacks on the ROSE-Youtu database.

Database Types of attacks Acc (%) Se (%) Sp (%) Pr (%) F-score (%)

ROSE-Youtu

Mask without cropping 92.59 96.81 98.93 92.70 92.33

Replay attack 94.64 90.99 96.81 94.64 94.63

Mask with cropping 97.82 95.83 98.89 97.83 97.82

Display and print attack 98.00 96.46 98.93 98.00 98.00
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Figure 13: 3D and 2D scatter plots of features based on attacks.

14 Journal of Sensors



tuning of parameters in these models with the face spoofing
database, we changed the SoftMax classification layer to
two classes of spoof and real face. In addition, the small num-
ber of learning rates with 0.0001 is set for all models; besides,
we employed Adam optimization, batch size 16, and 10000
epochs. Suppose we capture a one-minute video with 720 p
resolution at 30 fps containing 1800 frames which are around

60MB. Therefore, training the model with 10% of frames of
each video not only reduced the size of data for training
(around 6MB) but also decreased the computation cost in
the training phase.

Based on experimental results presented in Figure 14, it
appears that the proposed method achieved significant
results in the detection of spoofing attacks with less training
data compared to benchmark deep learning methods. The
proposed method achieved the accuracy of classification with
96.3% in ten percent of frames of each video for training and
testing on entire videos which this score is better than the
results achieved by Inception V3, InceptionResNetV2, and
VGG 19 with 70.32, 62.3, and 79.1, respectively, in the
Replay-Attack database. The results of the proposed method
are 96.3, 96.3, 98.5, 99.2, and 99.8% which are better than
other experimented deep learning methods, respectively, for
10, 20, 30, 40, and 100% of frames of each video in the
Replay-Attack database. In the same condition, in the
ROSE-Youtu database, also, our proposed method stayed
on the best results with 93.7, 95.1, 96.2, and 96.5 in 10, 20,
30, and 40 percent of frames of each video for training.

4.9. Comparison of the Proposed Approach against State-of-
the-Art Algorithms. Table 8 provides a comparison between
the proposed approach and state-of-the-art methods. The
experimental results shown in Table 8 demonstrated the
effectiveness of our extracted deep features in the Replay-
Attack database.

We may observe that, among the state-of-the-art
methods presented in this table, the best results were for deep
learning-based methods like the LBP net [18] with 0.6 (EER)
and 1.3 (HTER). The best HTER was for dense optical flow
+Shearlet [31] with 0.0. Furthermore, our proposed method
achieved 0.2 (EER), which was better than the multicue deep
method proposed in a previous study [31] with a single cue
(color texture analysis).
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Figure 14: Evaluation of different sizes of training data on the accuracy of classification.

Table 9: Comparison of the proposed approach against state-of-
the-art algorithms based on the ROSE-Youtu database.

Method EER (%)

Deep color-based feature [42] 8.0

SE-ResNet 18 [48] 7.2

3D CNN [49] 7.0

Two-stage deep model [47] 4.56

Proposed method 3.8

Table 8: Comparison of the proposed approach against state-of-
the-art algorithms based on the Replay-Attack database.

Method EER (%) HTER (%)

Motion+LBP [45] 4.5 5.1

DMD [26] 3.8 5.3

SURF color texture [10] 1.2 4.2

Color texture [11] 0.4 2.8

LBP net [18] 0.6 1.3

Color LBP [46] 0.9 4.9

Partial CNN [14] 2.9 4.3

CompactNet [12] 0.8 0.7

Dense optical flow+Shearlet [31] 0.83 0.0

Proposed method 0.2 0.4
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Table 9 provides a comparison between the proposed
approach and state-of-the-art methods in the aspect of
EER. According to these experimental results, it may be
argued that our proposed approach is more applicable and
stayed on the best EER (%) values in comparison to state-
of-the-art methods in the Replay-Attack database. In the
other benchmark public access database (ROSE-Youtu), our
proposed approach also stayed on the best ERR (%) values.
In this database, the best EER in state-of-the-art algorithms
was for the two-stage deep model [47] approach over which
our proposed approach improved the EER value by 0.76%.
Based on these experimental results and comparison with
state-of-the-art algorithms, it may be concluded that our pro-
posed approach achieved robust and significant results for
distinguishing fake faces from live faces with 0.2 and 3.8 for
EER (%) in the replay-attack and ROSE-Youtu databases,
respectively.

5. Conclusion

The IoT cloud-based framework for face spoofing detection
is proposed and implemented in this study. The proposed
system detects face spoofing attacks by applying the new deep
learning framework. This approach can be used reliably in
the cloud-based environment by storing less data which
decreased both processing cost and size of data in the training
phase. Moreover, the proposed multicolor deep feature-
based approach outperformed the baseline methods on the
Replay-Attack database, while achieving competitive results
on the ROSE-Youtu database. The results obtained for the
Replay-Attack and ROSE-Youtu databases proved that envi-
ronmental factors and scenarios such as background
changes, shaking hands, high-resolution camera, and illumi-
nation did not limit the effectiveness of our proposed
approach. Furthermore, our proposed approach achieved
satisfactory results in scenarios such as print, display, and
replay attacks. In the case of mask attacks in different scenar-
ios such as without cropping, with cropping, upper part cut,
lower part cut, and mask with two eyes and mouth cropped
out, the proposed approach presented compatible results.
Furthermore, in mask without cropping attacks, the pro-
posed approach achieved the lowest rate of accuracy
(92.59%) compared to different attacks such as replay or
print attacks. This inefficiency of the proposed approach in
mask attack types makes us eager to solve this problem in
future work. In future work, we will investigate adding depth
information to our color-based deep features to improve the
effectiveness of recognition of spoofing attacks in different
mask scenarios in IoT cloud environments.
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Wood defects are quickly identified from an optical image based on deep learning methodology, which effectively improves the
wood utilization. The traditional neural network technique is unemployed for the wood defect detection of optical image used,
which results from a long training time, low recognition accuracy, and nonautomatic extraction of defect image features. In this
paper, a wood knot defect detection model (so-called BLNN) combined deep learning is reported. Two subnetworks composed
of convolutional neural networks are trained by Pytorch. By using the feature extraction capabilities of the two subnetworks and
combining the bilinear join operation, the fine-grained features of the image are obtained. The experimental results show that
the accuracy has reached up 99.20%, and the training time is obviously reduced with the speed of defect detection about
0.0795 s/image. It indicates that BLNN has the ability to improve the accuracy of defect recognition and has a potential
application in the detection of wood knot defects.

1. Introduction

Wood knot defect detection is an important link in evaluat-
ing wood quality, which ultimately affects the quality of wood
products [1]. Rapid detection of knot defects on wood surface
can effectively improve the qualified rate of wood products
[2, 3]. Consequently, it is important to identify the defects
of wood knots in a short time. Although manual recognition
is accurate, it takes a lot of time to train the staff, and the rec-
ognition speed on the assembly line is very slow compared to
machine recognition [4, 5]. With the development of artifi-
cial intelligence and computer vision technology, deep learn-
ing has potential significance in the application of wood knot
defect classification [6–8].

In recent years, image recognition based on artificial neu-
ral network and image processing has been widely studied. In
order to identify the target accurately, the first step is to
extract image features. For example, a Hu invariant moment

feature extraction method combined with a BP (back propa-
gation) neural network to classify wood knot defects was pro-
posed by Qi and Mu [9]. The accuracy of this method for
wood knot defect recognition is over 86%. In the same year,
Khwaja et al. proposed a defect detection and classification
method for wet-blue leather using artificial neural network
(ANN). The features of several defects on leather were
extracted by using grey level cooccurrence matrix (GLCM)
and grey level run-length matrix (GLRLM). The acquired
features are passed to the multilayer perceptron using the
Levenberg-Marquardt (LM) algorithm. The accuracy of this
model is 97.85% [10]. In 2021, Aditya et al. proposed a
method based on statistical texture features in GLCM to clas-
sify leaf blight of four plants by selecting appropriate thresh-
olds. The accuracy of this method can reach 74% under
optimal conditions [11]. The above methods require manual
feature extraction, and the recognition rate is not high. Con-
sequently, a convolutional neural network (CNN) which can
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automatically learn the target features is needed to replace
the complex artificial defect feature extraction. In 2020,
Zhang et al. proposed a CNN image recognition algorithm
for supermarket shopping robots. This algorithm overcomes
the problems of low accuracy and slow speed in image recog-
nition. The experimental results show that the accuracy of
the algorithm can reach more than 98%. It also verifies that
the image recognition algorithm can be applied to supermar-
ket shopping robots to meet the needs of competition [12]. In
the same year, Liu et al. proposed an intangible cultural her-

itage image recognition model based on color feature extrac-
tion and CNN, with the recognition rate reaching 94.8% [13].
In 2021, a new method based on transfer learning and
ResNet-34 convolutional neural network for recognizing
wood knot defects was presented by Gao et al. The experi-
mental results show that the classification accuracy of this
method can reach 98.69% [14]. Although these methods are
practical, their accuracy can still be improved, and they have
less application in wood knot defect detection. In order to
solve these problems, improve the accuracy and recognition

(a) (b)

(c) (d)

Figure 1: Four types of wood knot defects: (a) dry knot, (b) edge knot, (c) leaf knot, and (d) sound knot.
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(b) (c)

Figure 2: Continued.
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speed of the model, and reduce the training time, a high-
accuracy wood knot defect detection method based on con-
volutional neural network is required.

In this paper, a bilinear classification model based on fea-
ture fine-grained fusion strategy named BLNN was proposed
to detect wood knot defects. This paper is arranged and struc-
tured as follows. Firstly, the dataset of wood knot defects is
acquired and augmented. Then, the proposed BLNN model
is introduced. Subsequently, the network is trained and tested

by using the dataset of wood knot defects. Finally, based on a
benchmark dataset, the test results are compared and ana-
lyzed with other deep learning models.

2. Materials and Methodology

2.1. Dataset Acquisition. The dataset was downloaded from
the website of the Computer Laboratory, Department of
Electrical Engineering, University of Oulu [15–17], and

(d) (e)

(f) (g)

Figure 2: Original images of wood knot defect and those created through data augmentation: (a) original image, (b) vertical mirroring, (c)
rotation by 180°, (d) horizontal mirroring, (e) adding Gaussian noise to image, (f) increasing the hue by 10, and (g) adding salt-and-
pepper noise to the image.
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consists of 365 images with four types of spruce knot defects.
These are dry knot, edge knot, leaf knot, and sound knot,
respectively. Figure 1 shows the four types of wood knot
defects in the dataset used in this paper.

2.2. Image Preprocessing and Augmentation. Deep learning
networks have to be trained on massive datasets to achieve
good performance [18]. Therefore, when the original dataset
contains a limited number of images, data augmentation [19]
is required to improve accuracy and prevent overfitting [20].
In this case, six methods are employed to augment the data-
set, namely, vertical mirroring, rotation by 180°, horizontal
mirroring, adding Gaussian noise, increasing the hue by 10,
and adding salt-and-pepper noise. Consequently, the num-
ber of images was increased to seven times the original num-
ber. Due to more image augmentation, the learning ability of
the network has increased. The data augmentation is shown
in Figure 2. Table 1 lists the names and the number of images
used for the experiments. Eventually, the dataset was ran-
domly divided into a training set, a validation set, and a test-
ing set in ratio of 3 : 1 : 1.

2.3. Proposed Classification Model. A CNN network called
BLNN is proposed for fine-grained feature extraction
[21–23] based on images, which consists of two different
branching convolutional neural networks. Since the two

CNNs are different, they are used to extract features of differ-
ent scales. These two features are confluence together to form
a one-dimensional feature vector using the bilinear pooling
operation [24, 25], and finally, the feature vector is classified
using a classifier to obtain the recognized class. An overview
of the proposed network architecture is shown in Figure 3.
The parameters of BLNN are shown in Table 2.

2.4. Multiscale Information Fusion Strategy. The core of the
BLNN lies in the fusion of two bilinear layer output vectors.
According to this, a CNN-based fusion network structure is
proposed to extract information about wood knot defects
from different dimensions. BLNN can be expressed as fol-
lows:

B = F1, F2, Fc31, Fc32ð Þ, ð1Þ

where F1 and F2 denote two feature extraction functions and
Fc31 and Fc32 are the fully connected layers.

F1 = C, B, R, P, Fc11ð Þ,
F2 = C, R, P, Fc21ð Þ,

ð2Þ

where C, B, R, P, Fc11, and Fc21 denote the convolutional
layer [26], BatchNorm layer [27], ReLU activation function

Conv 11:
3×3×16

Pool 12:
2×2/2

···
···

···
···

···
···

···

···
···

···

···

Input size:
85×85×3

BN 11:
16

ReLU 11 Pool 11:
2×2/2 Conv 12:

3×3×32

ReLU 12

Conv21:
8×8×16

ReLU21 Pool 21:
2×2/2 Conv 22:

8×8×32

ReLU 22 Pool 22:
2×2/2

FC11

FC21

Cas

FC31

FC32

Output

Figure 3: Structure of the proposed fusion network.

Table 1: Number of datasets.

Wood knot
defect

Before data augmentation After data augmentation
Training
dataset

Validation
dataset

Testing
dataset

Original
dataset

Training
dataset

Validation
dataset

Testing
dataset

Total
dataset

Dry knot 41 14 14 69 291 96 96 483

Edge knot 39 13 13 65 273 91 91 455

Leaf knot 27 10 10 47 198 65 66 329

Sound knot 110 37 37 184 772 266 250 1288

Total 217 74 74 365 1534 518 503 2555
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[28], pooling layer [29], and fully connected layers [30] of F1
and F2, respectively. First of all, the algorithm uses two
branch networks named F1 and F2 to train the wood knot

defect images, respectively. A smaller 3 × 3 convolutional
kernel is used in F1 to extract a rough feature; it can reduce
the parameters. F2 uses a larger 8 × 8 convolutional kernel

fc11

···
···

x1

···
···

···

···
···

···

Output

fc21 x2

x3

x

x = fcas(x1, x2)

Figure 4: Local structure illustration of multiscale information fusion.

Table 2: Parameters of BLNN layers.

Layer Type Patch size Kernel sum Stride Output size Neuron sum

Input Input 85 × 85 × 3

Conv11 Convolution 3 × 3 16 1 83 × 83 × 16 83 × 83 × 16

BN11 BatchNorm 83 × 83 × 16 83 × 83 × 16

ReLU11 ReLU 83 × 83 × 16 83 × 83 × 16

Pool11 Avg-pooling 2 × 2 2 41 × 41 × 16 41 × 41 × 16

Conv12 Convolution 3 × 3 32 1 39 × 39 × 32 39 × 39 × 32

ReLU12 ReLU 39 × 39 × 32 39 × 39 × 32

Pool12 Avg-pooling 2 × 2 2 19 × 19 × 32 19 × 19 × 32

FC11 Fully connected 1 × 1 120 1 × 1 × 120 1 × 1 × 120

Conv21 Convolution 8 × 8 16 1 78 × 78 × 16 78 × 78 × 16

ReLU21 ReLU 78 × 78 × 16 78 × 78 × 16

Pool21 Avg-pooling 2 × 2 2 39 × 39 × 16 39 × 39 × 16

Conv22 Convolution 8 × 8 32 1 32 × 32 × 32 32 × 32 × 32

ReLU22 ReLU 32 × 32 × 32 32 × 32 × 32

Pool22 Avg-pooling 2 × 2 2 16 × 16 × 32 16 × 16 × 32

FC21 Fully connected 1 × 1 120 1 × 1 × 120 1 × 1 × 120

Cas Cascade 1 × 1 × 240 1 × 1 × 240

FC31 Fully connected 1 × 1 50 1 × 1 × 50 1 × 1 × 50

FC32 Fully connected 1 × 1 4 1 × 1 × 4 1 × 1 × 4

Output Output 1 × 1 4 1 × 1 × 4
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to extract features. The larger convolutional kernel can pro-
vide higher receptive field and extract more fine features.
Therefore, F2 is designed to capture the fine-grained charac-
teristics [31] of wood knots. The fusion of two branches in
the fully connected layer is shown in Figure 4.

After the first fully connected layer, vectors x1 and x2
with a dimension of 1 × 120 are obtained from the two
branches, respectively (Figure 4). Then, x1 and x2 cascade
to get x3. Cascade fusion [32] is employed to superpose the
two outputs, which can be expressed as follows:

f cas x1, x2ð Þ, ð3Þ

where x1 and x2 are the outputs behind Fc11 and Fc21, respec-
tively. Two vectors are cascaded and spliced along the vertical
axis into one vector with a dimension of 1 × 240. Therefore,
the vector x3 contains all the eigenvectors computed by the
two branches, which is computed from the image features
of two different scales, and the features are represented more
comprehensively. Next, a one-dimensional vector with a
dimension of 1 × 50 is set after x3, and finally, set the output
of the fully connected layer to 4, indicating the category of
classification.

2.5. Loss Function and Optimizer. The loss function is applied
to evaluate the difference between the predicted and actual
values of the model [33–35]. The smaller the difference, the
smaller the cross-entropy. This study uses the cross-entropy
loss function, which is expressed as follows:

L = −〠
n

i=1
pi xð Þ log qi xð Þ½ �, ð4Þ

where L represents the loss value of the sample and piðxÞ and
qiðxÞ represent the target output and the actual output,
respectively. Cross-entropy overcomes the problem that
weights and deviations are updated too slowly. When the
error is large, the weight updates quickly, and when the error
is small, the weight updates slowly.

The optimizer is used to update and compute the net-
work parameters that affect the model training and output
to approximate or reach the optimal value, thereupon then
minimizing (or maximizing) the loss function [36]. In this
case, the Adam optimizer is used. The Adam optimizer com-
bines the advantages of AdaGrad [37] and RMSProp [38]. It
takes the first-order moment estimation (i.e., the mean of the
gradient) and second-order moment estimation (i.e., the
uncentered variance of the gradient) of the gradient into

account and calculates the update step. Adam is simple to
implement, is computationally efficient, and has lowmemory
requirements, and the hyperparameters usually require no or
little fine-tuning.

3. Experiment Results and Discussion

The experiment was performed on a Windows 10 64-bit PC
equipped with an Intel(R) Xeon(R) Bronze 3204 CPU @
1.90GHz processor and 128GB RAM. The deep learning
programs were run on two NVIDIA GeForce RTX 3090
GPUs with 24G RAM. The code is mainly implemented in
Python, including data preprocessing and algorithm imple-
mentation. The deep learning framework is Pytorch. The
experimental environment is shown in Table 3.

3.1. Model Training. In this study, the dataset is divided into a
training set, a validation set, and a testing set, which contain
1534, 518, and 503 images, respectively. The hyperparameter
setting for model training is shown in Table 4. The epoch,
batch size, and learning rate are set to 200, 128, and 1e − 3
to make all models converge stably. The model training pro-
cess is shown in Figure 5.

3.1.1. The Training Results of the BLNN Model. The accuracy
and loss curves for the training and verification stages are
shown in Figure 6, respectively.

Figure 6 shows that the model has trained 200 epochs; it
can be seen that the training accuracy of the model remains
stable after 50 epochs. Most of the fluctuations are between
0.95 and 1.00, and the loss decreases to around 0.2 to 0.35
with little fluctuation. After nearly 100 epochs, the loss of
training phase decreased to about 0.2, but there are still fluc-
tuations. The accuracy remained stable during the validation
phase, most of which fluctuated between 0.95 and 1.00. Better
classification results are obtained.

Table 3: Experimental environment.

Hardware environment Software environment

Memory 128.00GB System Windows 10

CPU
Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz

(6 core) Environment
configuration

Pytorch-gpu 1.8.0 + Python 3.8.8 + cuda 11.1
+ cudnn 8.0.5Graphics

card
NVIDIA GeForce RTX 3090 (24G)

Table 4: Training hyperparameters.

Related parameter Value

Batch size 128

Learning rate 1e − 3
Epoch 200

Optimizer Adam

Loss function Cross-entropy

CUDA Enable

CUDNN Enable

7Journal of Sensors



3.1.2. Contrast Experiment. The results of BLNN are com-
pared with those of AlexNet, VGGNet-16, GoogLeNet,
ResNet-18, and MobileNet-V2 to verify the effectiveness of
the model. ResNet-18 achieves feature reuse by identity
shortcut. Similar to ResNet, the fusion strategy of BLNN is
to combine in-depth and shallow-depth features to obtain
more detailed feature information. By comparing the perfor-
mance of different network structures on the same wood
knot defect dataset, the effectiveness and the superiority in
identifying wood knot defects of BLNN are proved.

As shown in Figure 7, BLNN has a faster convergence
rate than other models and finishes convergence at the 50th
epoch. Consequently, a smaller epoch has the opportunity
to be chosen to use in practice.

Five learning rates, 0.1, 0.01, 0.001, 0.0001, and 0.00001,
were tested after establishing the BLNN model. The experi-
mental results are shown in Table 5.

In Table 5, it is observed that when the learning rate is
0.1, the model does not converge effectively. The main
reason is that an excessively large learning rate will cause
the parameters of the model to oscillate beyond the valid
range rapidly. When the learning rate has been reduced
to 0.01, 0.001, and 0.0001, good results have been
achieved, the error has been converged, and test accuracy
has reached 94.43%, 99.20%, and 96.62%, respectively.
When the learning rate continues to drop to 0.00001, the
network convergence is very slow and the time to find
the optimal value increases. At the same time, convergence
may occur when entering the local extreme point, and no
optimal value can be found. By continuously reducing the
learning rate, it is found that the training results of differ-
ent learning rates are different. Consequently, considering
the accuracy and training time of the model, 0.001 is cho-
sen as the initial learning rate to train the model.

Dataset

Partitioning
Data

acquisition
Training 

dataset
(60%)

Validation 
dataset 
(20%)

Testing 
dataset 
(20%)

+ +Image
pre-processing

Model
training

Model
constructing

ClassificationEdge knot

Leaf knot Sound knot

Dry knotAnalysisPerformance 
evaluation

Figure 5: Process flow diagram of wood knot defect detection.
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Figure 6: The model was trained in the training dataset and validation dataset: (a) loss value; (b) accuracy value.
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The optimization algorithm is applied to find the optimal
solution of the model. In this case, the Adam is employed and
compared with SGD, AdaGrad, and Adax, as shown in
Figure 8. The results show that the model with Adam has
the fastest convergence speed and the highest accuracy.
Table 6 shows the prediction results of the four optimization
algorithms under the same condition. The results show that
the accuracy of SGD, AdaGrad, Adamax, and Adam is

79.32%, 94.04%, 98.01%, and 99.20%, respectively. Conse-
quently, considering the accuracy and training time of the
model, Adam is chosen as the optimizer of the model.

3.2. Evaluation Metrics. To evaluate the performance of the
BLNN, the precision (P), recall (R), F1 score (F1), and false
alarm rate (FAR) were applied for the evaluation shown as
follows:

P = TP
TP + FP

, ð5aÞ

R =
TP

TP + FN
, ð5bÞ

FAR =
FP

FP + TN
, ð5cÞ
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Figure 7: Results in the training set of all the applied models.

Table 5: The comparison of results in different learning rates.

Leaning rate Number Accuracy (%)

0.1 250 49.70

0.01 475 94.43

0.001 499 99.20

0.0001 486 96.62

0.00001 436 86.68
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F1 = 2
P ⋅ R
P + R

, ð5dÞ

where TP, FP, TN, and FN represent the true positive, false
positive, true negative, and false negative.

3.3. Model Evaluation. The performance of BLNN is evalu-
ated in the task of wood knot defect classification. 503 wood
knot defect images were used as testing dataset. The trained
BLNN was compared with AlexNet, GoogLeNet, MobileNet,
ResNet-18, and VGGNet-16, and the network was evaluated
according to confusion matrix, precision, recall, F1 score,
FAR, accuracy, training time, and detection time.

As shown in the confusion matrix in Figure 9, the
accuracy of each category is described by comparing the
actual category with the predicted category. The numerical
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Figure 8: Results in the training and validation sets of all the applied optimizers.

Table 6: The comparison of results in different optimizers.

Optimizer Number Accuracy (%)

AdaGrad 473 94.04

Adamax 493 98.01

SGD 399 79.32

Adam 499 99.20
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distribution of confusion matrix shows that AlexNet and
BLNN have better classification results. BLNN can recog-
nize edge knot and sound knot up to 100%, and dry knot
and leaf knot are slightly lower than AlexNet, which is the
direction to improve in the future. However, as shown in
Figure 10, BLNN has the highest overall recognition rate
of knot defects, reaching 99.20%. Table 7 shows the train-
ing time and the detection time of all models for each
wood image. It can be seen that BLNN has the shortest
training time and the fastest detection speed in all models
due to its fewer parameters and higher feature extraction
ability.

Precision, recall, F1, and FAR of the four categories of
wood knot defect images in the testing set are shown in

Figure 11. It can be seen that BLNN is superior to Mobile-
Net-V2, ResNet-18, and VGGNet-16 in the classification of
four wood knot defects. Compared with AlexNet and Goo-
gLeNet, some of the BLNN metrics are slightly worse, but
the gap is not big, which requires further improvement in
the future. As shown in Figure 10 and Table 7, although
BLNN is not always optimal in these models, BLNN has the
highest accuracy and the fastest training time and detection
speed, and it is easy to be built and embedded into other
models because of its small parameters and computation,
which makes it possible to identify wood knot defects. Com-
pared with other models, BLNN has obvious advantages in
accuracy and calculation, so it has more practical application
value. An unexpected phenomenon is that MobileNet,
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Figure 9: Confusion matrix in the testing dataset of all the applied models: (a) AlexNet, (b) GoogLeNet, (c) MobileNet, (d) ResNet-18, (e)
VGGNet-16, and (f) BLNN.
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ResNet-18, and VGGNet-16 do not achieve the desired per-
formance, especially ResNet which has the lowest recognition
rate. Therefore, the network structure has a great impact on
the training results.

As shown in Figure 3, BLNN consists of two single-
branch networks. To verify the improvement of model per-
formance by using two-branch networks, the upper and
lower branches of BLNN are compared with BLNN, respec-
tively. The results are shown in Figures 12 and 13.

From Figures 12 and 13, it can be seen that BLNN has the
fastest convergence speed and highest accuracy in the three
networks. In addition, the convergence speed of the upper
branch network in the training set is faster than that of the
lower branch network, and the performance of the lower
branch network in the verification set is better than that of
the upper branch network. As shown in Figure 13, BLNN
has the best performance, the lower network has the second
performance, and the upper network has the worst perfor-
mance, because the upper network uses 3 × 3 convolutional
kernel, the lower network uses 8 × 8 convolutional kernel,
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Figure 10: Prediction results of all the applied models in the testing dataset.

Table 7: Training time and detection time of all the applied
methods.

Method Training time (min) Detection time (s/image)

AlexNet 37.32 0.2744

GoogLeNet 44.27 0.3519

MobileNet-V2 12.97 0.2425

ResNet-18 15.95 0.4573

VGGNet-16 36.88 1.9583

BLNN 11.22 0.0795
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and the lower network has a larger receptive field. Therefore,
the bilinear structure of BLNN has better performance than
that of single-branch networks.

As shown in Figure 3, BLNN has two single-branch net-
works. The upper and lower branch networks use different
sizes of convolutional kernel; the upper branch network con-
volutional kernel is 3 × 3, and the lower branch network con-
volutional kernel is 8 × 8. To verify the effect of different
convolutional kernel sizes on the model performance, we
separately use BLNN (the upper branch network is 3 × 3,
the lower branch network is 8 × 8) compared with two net-
works with 3 × 3 and 8 × 8; the results are shown in
Figures 14 and 15.

From Figures 14 and 15, it can be seen that BLNN has the
fastest convergence speed and highest accuracy in these three
networks. In addition, the network with convolutional kernel
size 3 × 3 in the training set converges faster than 8 × 8, and
the network with convolutional kernel size 8 × 8 in the verifi-
cation set performs better than 3 × 3. As shown in Figure 15,
BLNN performs best, the network with convolutional kernel
size 8 × 8 performs second, and the network with convolu-
tional kernel size 3 × 3 performs worst. This is because net-
works with 8 × 8 convolutional kernel have a larger
receptive field, but BLNN uses dual-branch networks with
different sizes of convolutional kernel, smaller convolutional
kernel (3 × 3) for upper branch networks to extract local
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Figure 11: The evaluation index values of network.
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details and larger convolutional kernel (8 × 8) for lower
branch networks to extract more comprehensive global
information, and then, these two kinds of feature informa-
tion are fused. More comprehensive information can be
acquired, so the performance of BLNN is better than that of
the other two networks with different convolutional kernels.

3.4. Model Generalization. In order to evaluate the generali-
zation ability of BLNN, we tested the classification ability of
BLNN on some boards. Green means correct recognition
was used to mark in green and the wrong recognition was
marked in grey in this case. Details of the identification such

as the name and probability of wood knot defects are dis-
played next to each label. Figure 16 shows four wood knot
defects and the corresponding identification results.

It can be seen that most of the wood knot defects in the
image are correctly identified. Some of the wood knot defects
are similar in shape to other defects, and some of the wood
defects are not trained, which makes the model appear to
identify errors. In most cases, our method (BLNN) still has
high accuracy. This indicates that BLNN has certain applica-
tion value in practice.

As shown in Figure 16, since we only focus on the four
defects of dry knot, edge knot, leaf knot, and sound knot

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Epoch
Upper branch network
Lower branch network
BLNN

(a)

0 50 100 150 200

A
cc

ur
ac

y

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Upper branch network
Lower branch network
BLNN

(b)

Figure 12: Results in the training and validation sets of BLNN and its component.
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Figure 13: Prediction results of BLNN and its component in the testing dataset.
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when training the network, it can be seen that there are some
defects that have not been identified. This is one of our future
research directions to increase the types of defect
classification.

3.5. Discussion. The effectiveness of BLNN can be discussed
in two aspects.

3.5.1. Feasibility of Bilinear Network Structure. Compared
with single-branch network, BLNN has obvious advantages
in accuracy and convergence speed, which proves that the
classification ability of the network can be improved by
extracting and fusing features from the bilinear network. This
network extracts features from two parallel single-branch
networks, which can make the extracted features more com-

prehensive. This is the key to improve the classification per-
formance. Although classical network structures such as
ResNet are generally single-branch networks, their features
are relatively single. Bilinear network can extract more infor-
mation than a single network.

3.5.2. Rationality of Using Different Convolutional Kernel
Sizes. Compared with other classical networks, BLNN has
obvious advantages in accuracy and computation, which
proves that the classification ability of networks can be
improved by fusing local features (convolutional kernel size
3 × 3) and global features (convolutional kernel size 8 × 8)
through a bilinear fusion structure. The network uses convo-
lutional kernel with different sizes to extract multiscale
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Figure 14: Results in the training and validation sets of BLNN and other convolutional kernel sizes.
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Figure 15: Prediction results of BLNN and other convolutional kernel sizes in the testing dataset.
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features from the same image, and this fine-grained informa-
tion is the key to classification.

For the proposed BLNN network, the local and global fea-
tures extracted by the convolutional layer are fused in the fully
connected layer. In other words, it fuses all the features of dif-
ferent scales together through a fusion operation. Therefore,
BLNN expands the number of features without generating
many complex feature maps. In the fully connected layer, we
improve the robustness and classification accuracy of the net-
work by setting an appropriate number of neurons.

BLNN performs well in the classification of wood knot
defects. However, performing network fusion operations in
the fully connected layer may not be optimal for other tasks.
This requires more research in the future.

4. Conclusion

In conclusion, a bilinear classification model based on feature
fine-grained fusion strategy named BLNNwas proposed in this

case. The convolutional kernel size of the upper branch net-
work of BLNN was set to 3 × 3, and the convolutional kernel
size of the lower branch network was set to 8 × 8. Two different
sizes of convolutional kernels were used to extract features at
different scales, and feature fusion was used to classify thewood
knot defects. 2052 images of wood knot defects were used for
training after 200 training epochs. The experimental results
show that the accuracy of BLNN reaches 99.20% during the
testing phase. In addition, when wood knot defects are detected
by this method, a large number of image preprocessing and
manual feature extraction are not demanded, which greatly
improves the recognition efficiency. The speed of defect detec-
tion is only 0.0795 s/image, and the training time is reduced.
This means that BLNN has potential application value in wood
nondestructive testing and wood knot defect detection and
provides a feasible solution for future wood knot defect identi-
fication. In addition, the experimental results also show that
multiscale information fusion is effective to improve model
performance through network fusion.
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Wood defects are quickly identified from an optical image based on deep learning methodology, which effectively improves wood
utilization. Traditional neural network techniques have not yet been employed for wood defect detection due to long training time,
low recognition accuracy, and nonautomatical extraction of defect image features. In this work, a model (so-called ReSENet-18) for
wood knot defect detection that combined deep learning and transfer learning is proposed. The “squeeze-and-excitation” (SE)
module is firstly embedded into the “residual basic block” structure for a “SE-Basic-Block” module construction. This model has
the advantages of the features that are extracted in the channel dimension, and it is fused in multiscale with original features.
Instantaneously, the fully connected layer is replaced with a global average pooling; consequently, the model parameters could
be reduced effectively. The experimental results show that the accuracy has reached 99.02%, meanwhile the training time is also
reduced. It shows that the proposed deep convolutional neural network based on ReSENet-18 combined with transfer learning
can improve the accuracy of defect recognition and has a potential application in the detection of wood knot defects.

1. Introduction

Wood knot defect detection is an important part in the pro-
duction of wood products and finally affects the quality of
wood products. Rapid detection of wood knot defects on
the surface of the wood can effectively improve the qualifica-
tion rate of wood products. Consequently, it is important to
quickly identify the wood knot defects in a short time [1–
4]. Although the traditional manual recognition is widely
used and accurate, it is still a subjective [5] and inefficient
method to identify wood knot defects [6]. With the rapid
development of digital image processing and computer
vision, artificial intelligence technology can improve the rec-
ognition speed and accuracy at a certain extent [7–9]. Among
them, deep learning is the most potential method in the field
of artificial intelligence.

In recent years, wood knot defect recognition based on
the artificial neural network and image analysis processing
has been widely studied [10–15]. Because of its simple basic
structure, the neural network can fit various data in theory.
Because of this, large-scale neural network combination is
needed. Due to the limitation of hardware, the current tools
are not enough to run this complex network, resulting in its
slow evolution. At present, with the development of robots
and so on, the demand for computer vision technology based
on CNN (convolutional neural network) is gradually increas-
ing. Therefore, the neural network still has a great application
value in the future. In the field of wood defect detection, the
accurate recognition of wood needs to collect the defect
image by camera or X-ray and then recognize it by image
processing and artificial intelligence. In order to accurately
identify the wood knot defects, image features must be
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extracted first. For example, Lin et al. in 2015 proposed a
method to classify wood knot defects by combining the
aspect ratio, grayscale, and variance feature extraction
method of the back propagation (BP) network [10]. The
accuracy of this method can reach 86.67%. In the same year,
Mu et al. proposed a wood defect classification method by
extracting the perimeter, area, aspect ratio, and mean gray-
scale value of the defect, combined with the radial basis
function (RBF) neural network with the accuracy over 85%
[11]. In 2019, Ji et al. proposed a wood defect classification
method based on Hu moment invariant feature extraction
and a combination of wavelet moment with BP network
[12]. The crack identification accuracy of this method can
reach 98%. However, due to the shape of flying knot scar
and hole being similar, it is easy to induce a misclassification
in some cases. Due to the quite unique shape of each wood
knot defect, it is difficult and complex to identify the defect

by extracting the image features manually [13]. Therefore,
a convolutional neural network (CNN) which can automat-
ically learn the wood knot features is needed to replace the
complex manual defect feature extraction. In 2019, Liu
et al. proposed a CNN based on split-shuffle-residual (SSR)
for real-time classification of rubber boards [14]. Compre-
hensive experiments show that the algorithm is superior
than other classification methods and the latest deep learn-
ing classification network at that time has an accuracy of
94.86%, but there is still room for improvement. In 2021, a
new method based on transfer learning and ResNet-34 con-
volutional neural network for recognizing wood knot defects
was presented by Gao et al. [15]. The experimental results
show that the classification accuracy of this method can
reach 98.69%. Although both methods are practical, with
the increase of network depth, the model parameters become
more complex and the amount of calculation becomes

(a) (b) (c)

(d) (e) (f) (g)

Figure 1: Seven types of wood knot defects: (a) decayed knot, (b) dry knot, (c) edge knot, (d) encased knot, (e) horn knot, (f) leaf knot, and (g)
sound knot.

Table 1: Number of datasets.

Wood knot
Before data augmentation After data augmentation

Training
dataset

Validation
dataset

Testing
dataset

Original
dataset

Training
dataset

Validation
dataset

Testing
dataset

Total
dataset

Decayed
knot

10 3 3 16 68 25 19 112

Dry knot 41 14 14 69 291 96 96 483

Edge knot 39 13 13 65 273 91 91 455

Encased
knot

20 6 6 32 136 44 44 224

Horn knot 21 7 7 35 147 49 49 245

Leaf knot 27 10 10 47 198 65 66 329

Sound knot 110 37 37 184 772 266 250 1288

Total 268 90 90 448 1885 636 615 3136
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larger. To solve these problems and improve the accuracy of
the model, a high accuracy wood knot defect detection
method based on the convolutional neural network is
required.

Decayed knot
1 2 3 4 5 6 7

(a) Decayed knot

Dry knot

1 2 3 4 5 6 7

(b) Dry knot

Edge knot

1 2 3 4 5 6 7

(c) Edge knot

Encased knot

1 2 3 4 5 6 7

(d) Encased knot

Horn knot

1 2 3 4 5 6 7

(e) Horn knot

Leaf knot

1 2 3 4 5 6 7

(f) Leaf knot

Sound knot

1 2 3 4 5 6 7

(g) Sound knot

Figure 2: Seven commonwood knots and data augmentation of the dataset. Original images and those created through data augmentation:①
original image,② vertical mirror,③ rotated by 180,④ horizontal mirror,⑤ added Gaussian noise to image,⑥ increased the hue by 10, and

⑦ added salt-and-pepper noise to image.

x

x

identity

3×3,channel

3×3,channel

F (x) + x

F (x)

ReLU

ReLU

x̃

Figure 3: “Residual Basic-Block” structure of ResNet-18 acting as a
building block for the network.

Table 2: The structure of ResNet-18.

Layer name Output size 18-layer

Conv1 112 × 112 7 × 7, 64, stride 2

Conv2_x 56 × 56
3 × 3 max pool, stride 2

3 × 3, 64
3 × 3, 64

" #
× 2

Conv3_x 28 × 28
3 × 3, 128
3 × 3, 128

" #
× 2

Conv4_x 14 × 14
3 × 3, 256
3 × 3, 256

" #
× 2

Conv5_x 7 × 7
3 × 3, 512
3 × 3, 512

" #
× 2
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In this paper, a model based on the attention mechanism
and deep transfer residual convolutional neural network
structure named ReSENet-18 is proposed to detect wood
knot defects. This paper is arranged and structured as fol-
lows. Firstly, the dataset of wood knot defects is acquired
and preprocessed. Then, the proposed ReSENet-18 model is
introduced. A squeeze-and-excitation-basic block (SE-
Basic-Block) is added, and the fully connected layer is
replaced by a global average pooling layer to adjust the net-
work structure. At the same time, combined with the ideol-
ogy of transfer learning, the ReSENet-18 network is
pretrained on ImageNet. Subsequently, the network is
trained and tested by using the dataset of wood knot defects.
Finally, based on a benchmark dataset, the test results are
compared and analyzed with other deep learning models.

2. Image Processing and Methods

2.1. Dataset. In order to realize the classification and recogni-
tion of wood knot defects, firstly, the image information of
448 wood knot defects of spruce trees with seven kinds of

knot defects were collected on the website of Computer Lab-
oratory of Department of Electrical Engineering, University
of Oulu [16–18] (shown in Figure 1), and made them into a
dataset that can simulate the actual use scene of ReSENet-
18 model. Then, the preprocessing operations such as image
scaling and adding noise were carried out to realize data aug-
mentation. Finally, the dataset was divided into three parts: a
training set, a verification set, and a testing set for training,
verification, and testing.

2.2. Data Preprocessing and Augmentation. The dataset of
wood knot defects with 448 images was divided into a train-
ing set, a verification set, and a testing set according to the
ratio of 6 : 2 : 2, which refers to 268 training images, 90 verifi-
cation images, and 90 testing images, respectively (Table 1).
The powerful generalization ability of the convolutional neu-
ral network is based on a large amount of data; thus, the
model will induce the overfitting problem when the amount
of data is not large enough which greatly limits the generali-
zation ability [19–22]. Data augmentation technology [23,
24] was always used to expand the dataset of wood knot
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Figure 4: A squeeze-and-excitation block.
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Figure 5: A “SE-Basic-Block” building block.
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Figure 6: Comparison of the FC layer (a) and the GAP layer (b).
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defects using color digital image processing technology to
expand the data set and add it to the original image dataset;
the problem of insufficient data can be easily solved.

The preprocessing of wood knot defect images was com-
pleted by simulating the change of angle, noise, and color of
different tree species. In order to simulate these changes, the
images of wood knots were mirrored horizontally, rotated by
180°, and mirrored vertically to simulate different angles of
actual images. By the operation of increasing hue by 10, the
color of different defects in actual image acquisition is simu-
lated. At the same time, in order to simulate the noise that
may appear in the process of image acquisition, appropriate
Gaussian noise and salt-and-pepper noise are added to the
image of wood knot defect to further enhance the dataset.
In this work, the results of the data augmentation are shown
in Figure 2. After data augmentation, the size of the dataset of
wood knot defects is expanded from 448 images to 3136
images (7 times expansion). The number of training set,
verification set, and testing set is 1885, 636, and 615, respec-
tively, which can effectively reduce the overfitting phenome-
non of the convolutional neural network during the training
phase.

2.3. Improved Deep Convolutional Neural Network- (DCNN-)
Based Method

2.3.1. ResNet-18. ResNet-18 consists of a convolutional layer
and eight residual building blocks. A residual building block
is the basic structure of the ResNet-18 network. The structure

Table 3: Experimental environment.

Hardware environment Software environment

Memory 16.00GB System Windows 10

CPU Intel Core i5-4210H 2.90GHz (2 core)
Environment
configuration

Pytorch-gpu 1.0.0 + Python 3.7.3 + cuda 8.0
+ cudnn7.1.3Graphics

card
NVIDIA GeForce GTX 960M(2G)

Table 4: Training parameters.

Related parameter Value Meaning

Batch size 128 Number of pictures per training

Learning rate 1e-4 Initial learning rate

Epoch 200 Training iteration times

CUDA Enable Computer unified device architecture

CUDNN Enable A GPU acceleration library for deep neural networks

Classification

Validation dataset

Training dataset

Data acquisition

Image
per-processing

Dataset
Partitioning 

Model
constructing

Transfer learning

Testing dataset

Training model

Prediction result

Figure 8: Wood knot defect detection process.

LabelImage

Conv1 BN ReLU Max-pooling Conv2_x Conv3_x Conv4_x

Conv5_x Global average pool Fully connected layerSE-Basic-Block

Figure 7: Architecture of the proposed ReSENet-18 model.
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of the residual building block [25, 26] is shown in Figure 3. A
kind of short-cut is used to skip the convolutional layer [27].
The input vector and the vector output through the convolu-
tional layer can be added directly [28] and then output
through the rectified linear unit (ReLU) activation function.
This method can powerfully alleviate the problem of a van-
ishing gradient or exploding gradient caused by the increase
of neural network depth and can eventually improve the rec-
ognition accuracy of wood knot defects.

The output of the residual building block is written as fol-
lows:

y = F xð Þ + x, ð1Þ

where F presents the residual function and x and y stand for
the input and output, respectively.

ResNet-18 consists of 17 convolutional layers, a max-
pooling layer with the filter size of 3 × 3, and a fully con-

nected layer. A classical ResNet-18 model involves 33.16 mil-
lion parameters, in which ReLU activation function and
batch normalization (BN) are applied to the back of entire
convolutional layers in “basic block.” The structure of
ResNet-18 is shown in Table 2 [27].

2.3.2. SE-Basic-Block Module. The SE-Basic-Block module
has been used during the champion of ImageNet 2017 classi-
fication competition [29]. The structure is shown in Figure 4,
which mainly includes squeeze and excitation [30]. The input
image has the size of W ×H × C, where W and H represent
the width and height, respectively, and C represents the num-
ber of channels. The structure of the SE module is uncompli-
cated and easy to implement. It can be easily embedded into
the existing network framework. The SE module mainly
studies the correlation between channels, which only
increases a small amount of calculation but can achieve better
results.
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Figure 9: The model was trained with a training dataset and validating datasets: (a) loss value and (b) accuracy value.
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Figure 10: Confusion matrix of the model with 99.02% accuracy.
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The attention mechanism of the SE module is mainly
realized by multiplying the fully connected layer and input
vector for feature fusion. Assume that the size of the input
image is H ×W × C, after passing through the global pooling
layer and the fully connected layer, the input image is
stretched to 1 × 1 × C and then multiplied with the original
image to give weights to each channel. In the denoising task,
each noise point is given weight, the low weight noise points
are removed automatically, and the high weight noise points
are retained. During this process, the network running effi-
ciency can be improved, the parameters and computational
cost can be reduced, and the recognition accuracy is
improved [31]. As shown in Figure 4, by processing the fea-
ture map of convolutional, a one-dimensional vector with
the same number of channels is obtained as the evaluation
score of each channel [32], and then, the score is used for
the corresponding channel to get the result.

The SE module can be embedded into the residual basic
block of ResNet-18. Figure 5 shows the combined structure
of the SE module and residual basic block module.

2.3.3. Transfer Learning of DCNNs. Due to the small size of
the data in this experiment and a certain depth of the pro-
posed network (ReSENet-18), it is easy to induce the overfit-
ting problem in the training process, which leads to a poor
recognition ability [33, 34]. In this case, the transfer learning
is used to pretrain the deep learning model and then retrain
for the wood knot defect detection task using the dataset in
this study, which can make our model converge rapidly; thus,
a lot of training time can be saved. The deep learning model
includes a hierarchical architecture with various layers to
learn the complex features of images with wood knot defects
[35, 36]. Finally, all these layers are connected to the final
fully connected layer classifier to obtain the final results. In
the transfer learning, ResNet, VGG and AlexNet models have
been trained in ImageNet [37], so that the better classifica-
tion performance of wood knot defects can be achieved with
less training time.

2.3.4. Global Average Pooling. The fully connected layer is
usually used as a classifier of CNN, but too many parameters
of the fully connected layer will increase the calculation
amount of the network and thus slow down the training
speed and also easily appear the overfitting problem [38].
Global average pooling (GAP) is a global average of all pixels
in the feature map of each channel and obtains the output of
each feature map [39–41]. GAP directly removes the features
of black box in the fully connected layer and gives each chan-
nel practical significance; then, the vectors composed of these
output features will be sent to the classifier for classification
directly [42]. Figure 6 shows the comparison between the
fully connected layer and the global average pool layer.

2.3.5. Overall Architecture. ReSENet-18 is a deep neural net-
work based on the residual structure and attention mecha-
nism (Figure 7). The main features of the architecture are
described below.

ReSENet-18 network based on deep learning consists of a
ResNet-18, a residual basic block and a squeeze-and-

excitation (SE) module. The ReSENet-18 model has 22
layers, including 8 parts: Conv1, SE-Basic-Block, Conv2_x,
Conv3_x, Conv4_x, Conv5_x, a global average pooling layer,
and a fully connected layer. The first part (Conv1) includes a
convolutional layer, a batch normalization layer, a ReLU

Table 5: The evaluation index values of network.

Classes Model P R F1 FAR

Decayed knot

LeNet-5 — 0% — 3.11%

AlexNet 72% 94.74% 81.82% 0.17%

VGGNet-16 90.91% 52.63% 66.67% 1.5%

GoogLeNet 65.22% 78.95% 71.43% 0.68%

MobileNet V2 100% 68.42% 81.25% 1.00%

ReSENet-18 100% 94.74% 97.30% 0.17%

Dry knot

LeNet-5 66.39% 82.29% 73.49% 3.46%

AlexNet 96.81% 94.79% 95.79% 0.97%

VGGNet-16 90.48% 98.96% 94.53% 0.20%

GoogLeNet 93.75% 78.13% 85.23% 3.95%

MobileNet V2 95.83% 95.83% 95.83% 0.78%

ReSENet-18 100% 100% 100% 0%

Edge knot

LeNet-5 91.49% 94.51% 92.98% 0.97%

AlexNet 94.74% 98.90% 96.78% 0.19%

VGGNet-16 94.68% 97.80% 96.21% 0.39%

GoogLeNet 97.67% 92.31% 94.92% 1.33%

MobileNet V2 96.70% 96.70% 96.7% 0.58%

ReSENet-18 100% 100% 100% 0%

Encased knot

LeNet-5 95.45% 52.5% 67.74% 3.23%

AlexNet 100% 90% 94.74% 0.70%

VGGNet-16 100% 90% 94.74% 0.70%

GoogLeNet 100% 75% 85.71% 1.72%

MobileNet V2 97.30% 90% 93.51% 0.70%

ReSENet-18 100% 95% 97.44% 0.35%

Horn knot

LeNet-5 83.33% 51.02% 63.29% 4.13%

AlexNet 97.96% 97.96% 97.96% 0.18%

VGGNet-16 88.89% 97.96% 93.20% 0.18%

GoogLeNet 87.27% 97.96% 92.31% 0.18%

MobileNet V2 88% 89.80% 88.89% 0.89%

ReSENet-18 100% 100% 100% 0%

Leaf knot

LeNet-5 70.89% 84.85% 77.24% 1.88%

AlexNet 98.39% 92.42% 95.31% 0.91%

VGGNet-16 98.15% 80.30% 88.33% 2.33%

GoogLeNet 98.25% 84.85% 91.06% 1.81%

MobileNet V2 90% 95.45% 92.64% 0.55%

ReSENet-18 97.01% 98.48% 97.74% 0.18%

Sound knot

LeNet-5 85.39% 91.2% 88.20% 6.40%

AlexNet 96.8% 96.8% 96.8% 2.22%

VGGNet-16 95.33% 98% 96.65% 1.41%

GoogLeNet 88.93% 99.6% 93.96% 0.30%

MobileNet V2 96.06% 97.6% 96.82% 1.68%

ReSENet-18 99.20% 99.20% 99.2% 0.55%
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activation function, and a max-pooling layer. The convolu-
tional layer with the kernel size of 7 × 7, stride of 2, padding
of 3, and the max-pooling layer with the kernel size of 3 × 3
, stride of 2, padding of 1 were employed. Adding the max-
pooling layer helps to reduce the dimensions and the param-
eters of model, to expand the receptive fields, and to retain
important feature information. The second part (SE-Basic-
Block) consists of a residual basic block and a squeeze-and-
excitation (SE) module. There are two convolutional layers
in the second part. The SE module was embedded into the
residual basic block to form a SE-Basic-Block. The structure
of the SE-Basic-Block module is shown in Figure 5. In the
proposed SE-Basic-Block module, two convolutional layers
with the kernel size of 3 × 3 and the stride of 1 were used.
The first convolutional layer is followed by a BN layer and
a ReLU activation function, while the second convolutional
layer is only followed by a BN layer. As discussed above,
the SE module mainly includes two parts. The first is squeeze,
which makes the input image global average pooling; then,
the feature map is compressed into a 1 × 1 × C vector. The
second is excitation, which is composed of two fully con-
nected layers and two activation functions (ReLU and Sig-
moid). The input of the first fully connected layer is
1 × 1 × C, and the output is 1 × 1 × C × 1/r, where r is a scal-
ing parameter which is used to reduce the number of chan-

nels so as to reduce the amount of calculation. The input of
the second fully connected layer is 1 × 1 × C × 1/r, and the
output is 1 × 1 × C. In this paper, r = 16 is used. After getting
the vector of 1 × 1 × C, the initial feature map and the vector
of 1 × 1 × C will be scaled. The size of the original feature
map is W ×H × C, the weight value of each channel output
by the SE module is multiplied by the two-dimensional
matrix of the corresponding channel of the original feature
map, and the final output result is obtained. Parts three to
six (Conv2_x, Conv3_x, Conv4_x, and Conv5_x) are shown
in Figure 2. The seventh part (global average pool) uses
AdaptiveAvgPool function, and the output size of this layer
was set to 1 × 1. The eighth part (fully connected layer) is
the classifier of ReSENet-18. Its output was set to 7, which
corresponds to the types of datasets to train and classify.

ReSENet-18 takes RGB image with the random size as
input, and then, the image is adjusted to 85 × 85 in batch.
The input layer of ReSENet-18 is followed by a series of con-
volutional blocks and a subsampling layer. The CNN struc-
ture used in this paper is a variant of ResNet-18, and the
feature extraction part of this network is similar to ResNet-
18. We used 17 convolutional layers of ResNet-18 to self-
study the features of input RGB images from low to high.
With the deepening of convolutional layers, the resolution
of feature map is reduced, and more abstract high-level

Table 6: Accuracy of different models.

Different models Accuracy Different models Accuracy

Add a logsoftmax classifier and a NLLLoss function 14.08% Add a ReLU and a fully connected layer 14.08%

Add a softmax classifier 14.40% Without ReLU 84.78%

Without batch normal 96.07% Add a convolutional layer, a BN layer, and a ReLU function 96.24%

Without squeeze-and-excitation basic-block module 98.53% ReSENet-18 (our method) 99.02%
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Figure 11: Training and prediction results of the ReSENet-18 model and its component models: (a) training loss value and (b) validation
accuracy value.
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features are extracted. Then, inspired by the success of SENet,
we use a SE-Basic-Block module to improve the receptive
field. The SE-Basic-Block was embedded between Conv1
and Conv2_x. To improve the sensitivity of the model to
channel features, the original features are recalibrated in the
channel dimension, so that the model can automatically learn
the importance features of different channels. Then, the fully
connected layer is replaced by the global average pooling

layer to reduce the training parameters, to accelerate the con-
vergence speed of the model, and to improve the classifica-
tion accuracy of the model.

Finally, we use transfer learning in ReSENet-18 to maxi-
mize the collected data and prevent overfitting problem. Dur-
ing the training phase, the weights of 17 convolutional layers
except SE-Basic-Block are initialized by the pretraining
model of ResNet-18. In this paper, all the parameters would

Table 7: Wood knots classification results of ReSENet-18 and its component networks.

Method
Actual
category

Predict category
Decayed
knot

Dry knot
Edge
knot

Encased
knot

Horn
knot

Leaf knot
Sound
knot

Total

ReSENet-18 (our
method)

Decayed knot 18 0 0 0 0 0 1 19

Dry knot 0 96 0 0 0 0 0 96

Edge knot 0 0 91 0 0 0 0 91

Encased knot 0 0 2 38 0 0 0 40

Horn knot 0 0 0 0 49 0 0 49

Leaf knot 0 0 0 0 0 65 1 66

Sound knot 0 0 0 0 0 2 248 250

ResNet-18

Decayed knot 17 0 1 0 0 0 1 19

Dry knot 4 86 1 2 0 0 3 96

Edge knot 0 2 89 0 0 0 0 91

Encased knot 2 2 0 33 0 0 3 40

Horn knot 0 0 1 0 47 0 1 49

Leaf knot 0 3 0 0 19 42 2 66

Sound knot 4 5 0 0 0 0 241 250

SENet

Decayed knot 16 0 1 0 0 0 2 19

Dry knot 0 95 1 0 0 0 0 96

Edge knot 0 1 89 0 0 0 1 91

Encased knot 0 1 1 36 0 0 2 40

Horn knot 0 0 1 0 48 0 0 49

Leaf knot 0 0 0 0 1 65 0 66

Sound knot 0 1 0 0 0 2 247 250
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Figure 12: Prediction results of the ReSENet-18 model and its component models.
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not be frozen. After loading the pretraining weights, the cur-
rent dataset of wood knot defects was used to retrain the
whole model, which can not only improve the accuracy and
speed of training but also improve the recognition ability of
the model in the current dataset of wood knot defects. This
is very important for effective and stable feature learning.

2.4. Training. The proposed ReSENet-18 was used and
trained on one GPU (GTX 960M 2G). The experimental
environment is presented in Table 3. The parameter configu-
ration is shown in Table 4. The model using the Adam opti-
mization algorithm and the cross-entropy loss function was
trained for 200 epochs, whose batch size is 128 and learning
rate is 1e-4.

The flow diagram of the detection process of wood knot
defects is shown in Figure 8. First, the images of knot defects
were collected from logs. The original datasets were classified
by experienced professionals according to the types of
defects. Then, the datasets were divided into a training data-
set, a verification dataset, and a testing dataset. Subsequently,

the proposed ReSENet-18 model was trained on the dataset
of wood knot defects. Finally, the model is used to detect
the defect types of each image in the testing dataset.

Figure 9 shows the process of training the model using
the training and validation datasets. The best accuracy is
99.062%, the best loss is about 0.044, and the overall accuracy
in the test phase is about 99.02%.

3. Experimental Results and Discussion

3.1. Comparisons of Model Performance. To evaluate the per-
formance of the proposed model, the dataset was randomly
divided and trained 10 times in our case. The classification
accuracy of these 10 models is 99.02%, 98.20%, 98.20%,
98.20%, 98.20%, 98.36%, 97.71%, 97.87%, 99.02%, and
98.20%, respectively. The average classification accuracy of
the 10 models is 98:30 ± 0:16% and the variance is 0.40%,
which indicates a good stability. Taking the first model with
the accuracy of 99.02% as an example, the confusion matrix
is established by analyzing the predicted labels and true labels
of the testing dataset, as shown in Figure 10. All the correct
predictions are on the square of the diagonal.

Figure 10 shows that the recognition accuracy of the
model for dry knot, edge knot, and horn knot are 100%. In
the testing set, the total number of images is 611. The classi-
fication accuracies for decayed knot defect and encased knot
defect are both 95%, which is due to the small number of
decayed knot images and the quite shape difference of
encased knot. For leaf knot defect, the classification accuracy
is 98% due to the similarity of geometric features between the
horn knot and the leaf knot which is easy to be mixed. The
classification accuracy of sound knot is 99% which is due to
the largest number of sound knot images.
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Figure 13: Training and prediction results of ReSENet-18 model and others classical CNN models: (a) training loss value and (b) validation
accuracy value.

Table 8: Prediction results of ReSENet-18 model and other classical
CNN models.

Different models Number Accuracy
Parameters
(million)

LeNet-5 495 81.01% 0.06

AlexNet 586 95.91% 60

VGGNet-16 576 94.27% 138

GoogLeNet 557 91.16% 6.8

MobileNet V2 580 94.93% 3.5

ReSENet-18 (our
method)

605 99.02% 33
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To evaluate the performance of the ReSENet-18, the pre-
cision (P), recall (R), f1-score (F1), and false alarm rate (FAR)
were applied for the evaluation shown as follows:

P = Tii

Tii + Tij
, ð2aÞ

R = Tii

Tii + T ji
, ð2bÞ

FAR =
Tij

Tij + T jj
, ð2cÞ

F1 = 2 P ⋅ R
P + R

, ð2dÞ

where Tii, Tij, T ji, and T jj represent the confusion matrix
components.

Table 5 shows the precision, recall, f1-score, and false
alarm rate of ReSENet-18 for the seven types of wood knot
defect and the other five models for comparison. It can be
seen from Table 5 that the four indicators of ReSENet-18
are the best in the recognition of five knots (decayed knot,
dry knot, edge knot, encased knot, and horn knot) compared
with other five classical CNN models, i.e., LeNet-5, AlexNet,
VGGNet-16, GoogLeNet, and MobileNet V2. In the recogni-
tion of leaf and sound knots, some indicators of ReSENet-18
are slightly worse than other models. For example, the preci-
sion of ResNet-18 is higher than that of LeNet-5 and Mobile-
Net V2, but slightly worse than that of AlexNet, VGGNet-16,
and GoogLeNet. Among the other three indicators (R, F1,
and FAR), ReSENet-18 is still the best of the six models. In
the recognition of sound knot, recall and false accept rate of
ReSENet-18 are slightly worse than GoogLeNet and preci-
sion and f1-score are better than GoogLeNet. Compared with
LeNet-5, AlexNet, VGGNet-16, and MobileNet V2, all the
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Figure 14: Training results of ReSENet-18 model with and without transfer learning: (a) training loss value and (b) validation accuracy value.
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Figure 15: Prediction results of ReSENet-18 model with and without transfer learning.
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indicators of ReSENet-18 are better than them. Based on the
above analysis, although there is still room for improvement
in a few indicators, compared with the other five methods, it
can be seen that ReSENet-18 still has a good performance in
the identification of wood knot defects.

3.2. Comparison of the Accuracy of Different Models. The
ReSENet-18 model was modified, and the test results are
shown in Table 6. The accuracy of without ReLU, BN, or
SE Basic-Block models is 84.78%, 96.07%, and 98.53%,
respectively. The accuracy of adding a BN layer and a ReLU
is 96.24%. The accuracy of adding a logsoftmax classifier
and replacing Adam with NLLLoss, adding a ReLU and a
fully connected layer, and adding a softmax classifier are
14.08%, 14.08%, and 14.40%, respectively. By comparing
the performance of different structures of the ReSENet-18

model, the experimental results show that the ReSENet-18
model has the highest recognition accuracy.

3.3. Convergence and Prediction Accuracy Analysis of
ReSENet-18 Network Model

3.3.1. Comparison with ReSENet-18 Model and Its
Component Models. As demonstrated above, ReSENet-18 is
composed of ResNet-18, SE module, and residual basic block.
Therefore, to test the performance of the ReSENet-18 model,
it was compared with ResNet-18 (composed of residual basic
block) and SENet (composed of SE module). Figure 11 shows
the loss curve and accuracy curve of ResNet-18, SENet, and
ReSENet-18 during the training phase, which are trained by
the wood knot defects dataset. One could learn from
Figure 11 that our proposed method has the lowest loss value
and highest accuracy compared with ResNet-18 and SENet.
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Figure 17: Prediction results of the ReSENet-18 model with and without data augmentation.
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Figure 16: Training results of the ReSENet-18 model with and without data augmentation: (a) training loss value and (b) validation accuracy
value.
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The classification results of wood knot defects are shown
in Table 7, in which the italic entries represent the number of
knot defects correctly identified by the corresponding model,
and bold entries represent the total number of the wood knot
defects. From Table 7 and Figure 12, ReSENet-18 has the best
recognition effect among seven kinds of wood knot defects.
Compared with other networks, the ResNet-18 network is
relatively shallow in depth, so some degrees of underfitting
phenomenon might appear, which leads to a low accuracy
on the testing set. The SENet network has the largest number
of layers among the three networks, but it can be seen from
Table 7 and Figure 12 that the result of identification of
SENet is not the best among them due to the increase of net-
work layers and the appearance of overfitting phenomenon.
The accuracy of the proposed model with lightweight of
ResNet-18 in the testing dataset reaches 99.02% (Figure 12).
At the same time, it can combine the features of channel into
the network, which improves the feature extraction ability.

Based on the above analysis, ReSENet-18 has been
proved to have the highest accuracy and fastest convergence
speed in the wood knot defect dataset than other models.

3.3.2. Comparison with Classical CNN Model. Figure 13
shows the training of ReSENet-18 and other five CNN
models which was mentioned in Section 3.1. These networks
are trained through the dataset of wood knot defects. It can
be seen that the ReSENet-18 network has the highest accu-
racy and the fastest convergence speed than other models
on the wood knot defect dataset.

Table 8 compares the number and accuracy of the six net-
work models on the testing dataset. The results show that the
LeNet-5 model has the minimal training parameters, which
may lead to the underfitting of the network which leads to
the lowest accuracy. The parameters of GoogLeNet and Mobi-
leNet V2 models are slightly more than LeNet-5, but they are
more complex than LeNet-5. It can be seen from Table 8 that

their accuracy is improved compared with that of LeNet-5.
VGGNet-16 has the maximum parameters among the six
models, and AlexNet follows. However, the accuracy is lower
than that of ReSENet-18 even through the increase of parame-
ters and longer training time. Compared with VGGNet-16,
ReSENet-18 is a kind of lightweight network. At the same time,
it can use SE-Basic-Block to weight and recalibrate features. It
has stronger feature extraction ability and higher accuracy. It
can be seen that, compared with other models, we have
improved the performance of the ReSENet-18model by adding
appropriate parameters, while maintaining the robustness and
efficiency of the model. Among the six models, the recognition
accuracy of the ReSENet-18 model is the highest.

3.3.3. Transfer Learning. A pretraining model of ResNet-18
which includes 1.2 million color images and 1000 categories
is used in this study. The weight of the pretrained model is
taken as the initial weight of the dataset of wood knot defects.
Figures 14 and 15 show the influence and prediction results
of transfer learning on the classification accuracy and conver-
gence speed of the ReSENet-18 model. It can be seen that the
convergence speed and accuracy of the model have been
improved after using transfer learning. The experimental
results show that the accuracy of the model with transfer
learning is 2.29% higher than that of the model without
transfer learning on the testing dataset. Therefore, better con-
vergence can be achieved using transfer learning.
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Figure 18: Training results of the ReSENet-18 model with different optimization algorithms: (a) training loss value and (b) validation
accuracy value.

Table 9: Accuracy of different optimization algorithms.

Different models Number Accuracy

SGD algorithm 429 70.21%

AdaGrad algorithm 562 91.98%

AdaMax algorithm 586 95.91%

Adam algorithm (our method) 605 99.02%
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3.3.4. Data Augmentation. Figure 16 shows the convergence
and recognition accuracy curves of ReSENet-18 with and
without data augmentation. Under the same experimental
conditions, ReSENet-18 was trained on 3136 images after
data augmentation, and the final classification accuracy in
testing dataset reached 99.02% while the accuracy was
80.68% before data augmentation, which is shown in
Figure 17.

3.3.5. Comparison of Optimization Algorithms. The optimiza-
tion algorithm has an important influence on the model per-
formance. In this study, the Adam optimization algorithm is
used and compared with SGD, AdaGrad, and AdaMax,
which are shown in Figure 18. The results show that the
model with Adam algorithm has fastest convergence speed.
Table 9 shows the prediction results of these four optimiza-
tion algorithms under the same environment. The results
show that the accuracy in the testing phase is 70.21% for
SGD algorithm, 91.98% for AdaGrad algorithm, 95.91% for
AdaMax algorithm, and 99.02% for Adam algorithm. It can
be seen that the ReSENet-18 model has the best training
effect using the Adam optimization algorithm.

3.3.6. Recognition Results of Different Kinds of Wood Knot
Defects. “Correct recognition” was used to mark in green,
and the “Wrong recognition” was marked in grey in this
study. Details of the identification, such as the name and
probability of wood knot defects, are displayed next to each
label. Figure 19 shows seven wood knot defects and the cor-
responding identification results.

It can be seen that most of the wood knot defects in the
image were correctly identified. Due to the shape of some
wood knot defects being similar to other defects, there is no
clear feature to extract under this background to induce a

few regions incorrectly identified. In addition, the shape of
the defect is blurred due to the low resolution of some
images, which also makes the extracted features different
from those in the training set. In the most cases, our method
(ReSENet-18) still has a high accuracy.

4. Conclusions

In conclusion, a novel convolutional neural network model
ReSENet-18 is proposed. In the feature extraction part of
the network, the SE module is embedded into the residual
basic blocks to form SE-Basic-Block. The classifier of the net-
work selects the global average pool to replace the fully con-
nected layer after the convolutional layer at the end to speed
up the convergence speed and reduce the model parameters.
2521 images of wood knot defects were used for training after
200 training epochs. Experimental results show that the accu-
racy of ReSENet-18 in the test phase reaches 99.02%, which is
8.19% higher than the classical ResNet-18 (90.83%). In addi-
tion, when various wood knot defects are detected by this
method, a large amount of image preprocessing and manual
feature extraction are not required, which greatly improves
the recognition efficiency. This means that ReSENet-18 has
a potential application in wood nondestructive testing and
knot defect identification, and it provides a feasible solution
for future wood knot defect identification.

Data Availability

The datasets, codes, and weight files used to support the find-
ings of this study are available from the corresponding author
upon request.
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A novel data-driven learning approach of nonlinear system represented by neural fuzzy Hammerstein-Wiener model is
presented. The Hammerstein-Wiener system has two static nonlinear blocks represented by two independent neural fuzzy
models surrounding a dynamic linear block described by finite impulse response model. The multisignal theory is designed
for employing Hammerstein-Wiener system to separate parameter learning issues. To begin with, the output nonlinearity
parameters are learned utilizing separable signal with different amplitudes. Furthermore, correlation analysis method is
implemented for estimating linear block parameters using separable signal inputs and outputs; thereby, the interference of
process noise is effectively handled. Finally, multi-innovation learning technology is introduced to improve system learning
accuracy, and then, multi-innovation extended stochastic gradient algorithm is obtained for optimizing input nonlinearity
and noise model using multi-innovation technique and gradient search method. The simulation results display that
presented data-driven learning approach has the availability of learning Hammerstein-Wiener system.

1. Introduction

The real industrial processes are almost nonlinear systems to
some extent, and linear approximation means are usually
unacceptable, and nonlinear models should be taken into
account that they can present the nonlinearity successfully.
For this, block-oriented nonlinear models which are com-
posed of linear dynamic block and static nonlinear functions
for instance Hammerstein model and Wiener model have
been performed on account of their simple structures. The
two nonlinear models can approximate nonlinear dynamics
of many practical industrial processes applications [1–7].

In the past few years, many theoretical researchers and
engineers have been performed for extensions of the Hammer-
stein and Wiener models to improve approximation capabili-
ties of nonlinear systems for instance Hammerstein-Wiener
system. In the existing literatures, a lot of optimization tech-
niques have been developed to research the Hammerstein-

Wiener system [8–15]. For Hammerstein-Wiener system, the
least square algorithm and blind identification method are
put forward by Bai in [8, 9]. In literature [10], recursive
parameter learning method are developed for a special nonlin-
ear form described by a Hammerstein-Wiener nonlinear sys-
tem including dead-zone input nonlinear function. Vörös
[11] applied least square-based iterative technique to research
Hammerstein-Wiener model parameters using measured
input-output data. Xu et al. [12] used two extreme learning
machine networks to approximate nonlinear functions of
Hammerstein-Wiener system, and parameter estimation
method of extreme learning machine-based Hammerstein-
Wiener system is developed for large-scale complex nonlinear
dynamic systems. The major drawback of the above-analyzed
literatures is that the unmodeled dynamic or stochastic distur-
bances of the Hammerstein-Wiener process is not taken into
account, which is an important factor for designing significant
parameters learning algorithms [16, 17].
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The stochastic gradient estimation methods have
attracted much attention due to its less computational load
in parameter learning. In recent years, the stochastic
gradient-based algorithms have also been implemented to
optimize Hammerstein-Wiener models corrupted by sto-
chastic disturbances. For the Hammerstein-Wiener ARMAX
system,Wang and Ding [18] investigated extended stochastic
gradient estimation. Mansouri et al. [19] developed parame-
ter estimation method through extended Kalman filter the-
ory. Based on data filtering technique, a data filtering-based
generalized extended stochastic gradient algorithm is derived
for estimating Hammerstein-Wiener system parameters for
improving computational efficiency in [20]. It is recognizable
that two main problems should be considered in these pro-
posed methods. On the one hand, methods mentioned above
assume that unknown nonlinearities in systems are modeled
by polynomial functions; if these nonlinearities are not poly-
nomial functions or nonsmooth, methods mentioned do not
converge [21]. On the other hand, the parameter cross-
products of estimated system are included in learned system,
thereby separating each block parameters from obtained
parameter estimation of the cross-product terms is required,
which increases computation load of learning algorithms [22].

Although many contributions in existing literatures
have developed to learn nonlinear system represented by
Hammerstein-Wiener model, the problem of stochastic
disturbances is not fully considered. This paper focuses atten-
tion on a three-stage parameter learning approach of the
Hammerstein-Wiener nonlinear systems with stochastic dis-
turbances using multisignal data. In the first stage, the output
nonlinearity are estimated depending on separable signal
with different amplitudes. In phase two, correlation analysis
method is implemented for estimating the linear dynamic
block parameter according to one of separable signal inputs
and outputs. In the third stage, in order to achieve a fast
convergence rate of stochastic gradient algorithm, multi-
innovation-based extended stochastic gradient scheme by
expanding the scalar innovation to an innovation vector is
used to learn parameters of input nonlinearity and noise
model. The contributions of developed learning approach
lies in:

(1) Multisignal theory is designed to employ the
Hammerstein-Wiener system to separate parameter
learning issues, thereby avoiding redundant
parameters

(2) The unmeasurable problems of Hammerstein-
Wiener system are well settled by using correlation
analysis method

(3) The multi-innovation-based extended stochastic gra-
dient scheme by expanding the scalar innovation to
an innovation vector is used to achieve a fast conver-
gence rate

The paper is organized as follows. Section 2 introduces
problem statement of the neural fuzzy Hammerstein-
Wiener system. Section 3 analyzes parameter learning based
on multisignal data for the Hammerstein-Wiener systems

with stochastic disturbances. Section 4 presents simulation
cases of presented learning method. Lastly, the concluding
remark is approached.

2. Preliminaries and Problem Statements

As described Figure 1, the nonlinear system represented by
Hammerstein-Wiener model with disturbance is modeled
by two neural fuzzy networks and finite impulse response
model, which is formulated by

v kð Þ = f u kð Þð Þ, ð1Þ

x kð Þ = B zð Þv kð Þ, ð2Þ

w kð Þ =D zð Þe kð Þ, ð3Þ

z kð Þ = x kð Þ +w kð Þ, ð4Þ

y kð Þ = g z kð Þð Þ, ð5Þ
where uðkÞ and yðkÞ denote input and output, vðkÞ and xðkÞ
represent outputs of input nonlinearity and linear block, eðkÞ
indicates white noise sequence, f ð⋅Þ shows input nonlinear-
ity, gð⋅Þ is output nonlinearity, BðzÞ is finite impulse response
model with BðzÞ = b1z

−1 +⋯+bnbz
−nb , and DðzÞ = 1 + d1z

−1

+⋯+dnd z
−nd is noise model.

For the given parameter ε, the establishment of the Ham-
merstein nonlinear system is to seek parameters satisfying
the following conditions:

E f̂ u kð Þð Þ, b̂1,⋯,b̂nb , d̂1,⋯,d̂nd , ĝ ẑ kð Þð Þ
� �
=

1
2N

〠
N

k=1
y kð Þ − ŷ kð Þ½ �2 ≤ ε,

subject to v̂ kð Þ = f̂ u kð Þð Þ,
ẑ kð Þ = B̂ zð Þv̂ kð Þ + D̂ zð Þe kð Þ,

ŷ kð Þ = ĝ ẑ kð Þð Þ,

ð6Þ

where “∧” is estimate and N represents length of measured
data. From the perspective of easy analysis, the output non-
linearity is expressed by ẑðkÞ = ĝ−1ðyðkÞÞ.

In this research, input nonlinear function and output
nonlinear function are modeled using two independent neu-
ral fuzzy networks [23]. Figure 1 exhibits the neural fuzzy
network, and its output is expressed as

v̂ kð Þ = f̂ u kð Þð Þ = 〠
L

l=1
ϕl u kð Þð Þwl, ð7Þ

where

ϕl u kð Þð Þ = μl u kð Þð Þ
∑L

l=1μl u kð Þð Þ
, ð8Þ
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where μl = exp ð−ððuðkÞ − clÞ2/σ2l ÞÞ, wl represents weights of
neural fuzzy network, cl and σl are the center and width, and
L is the number of fuzzy rules.

Moreover, expressions of input-output nonlinear blocks
are provided

v̂ kð Þ = f̂ u kð Þð Þ = 〠
Linput

l=1
ϕinputl u kð Þð Þwinput

l , ð9Þ

ẑ kð Þ = ĝ−1 y kð Þð Þ = 〠
Loutput

l=1
ϕoutputl y kð Þð Þwoutput

l , ð10Þ

where “input” refers to input nonlinearity and “output”
means output nonlinearity.

3. Learning Approach of Neural Fuzzy
Hammerstein-Wiener System with Moving
Average Noise

The tasks of parameter learning method are to estimate
Hammerstein-Wiener system parameters, that is, two non-
linear blocks, linear block, and noise model. Previous
research [24] pointed out that the separable signals are
employed to realize separation identification of nonlinear
block and linear block for the Hammerstein model. Inspired
by this work, the separable signals are extended to present
Hammerstein-Wiener system with unknown disturbance.

Theorem 1. Considering a type of Hammerstein-Wiener sys-
tem, when the separable signals are used as input signal, then
the following expression maintains.

Rvu τð Þ = b0Ru τð Þ, ∀τ ∈ Z, ð11Þ

where RuðτÞ = EðuðkÞuðk − τÞÞ is the autocorrelation func-
tion, RvuðτÞ = EðvðkÞuðk − τÞÞ is the cross-correlation func-
tion, and b0 = EðvðkÞuðkÞÞ/EðuðkÞuðkÞÞ is a constant.

The proof can be done by referring to previous method in
[23], hence omitted here.

According to Theorem 1, cross-correlation function Rvu
ðτÞ is taken over by autocorrelation function RuðτÞ utilizing

separable signal. Therefore, the unknown variable vðkÞ in
Hammerstein-Wiener system is solved.

3.1. Learning Parameters of Output Nonlinearity. The
parameters of output nonlinearity are computed using sep-
arable signals with multiple relation. In the light of
description, the output nonlinearity is modeled by neural
fuzzy network, thereby the centre coutputl , the width σoutputl ,
and the weightswoutput

l need to be estimated. The centre
coutputl and width σoutputl are learned using previous cluster
method [24]. Now, a crucial problem needs to be solved for
learning parameters woutput

l .
Under the condition of two groups of separable signal

with multiple relation, we can obtain following output non-
linearities:

z1 kð Þ = ĝ−1 y1 kð Þð Þ = 〠
Loutput

l=1
ϕoutputl y1 kð Þð Þwoutput

l , ð12Þ

z2 kð Þ = ĝ−1 y2 kð Þð Þ = 〠
Loutput

l=1
ϕoutputl y2 kð Þð Þwoutput

l : ð13Þ

From Equation (2) to Equation (4), we derive

z1 kð Þ = 〠
nb

j=1
bjv1 k − jð Þ + 〠

nd

m=1
dme k −mð Þ + e kð Þ, ð14Þ

z2 kð Þ = 〠
nb

j=1
bjv2 k − jð Þ + 〠

nd

m=1
dme k −mð Þ + e kð Þ: ð15Þ

Using u1ðk − τÞ and u2ðk − τÞ to multiply Equation (14)
and Equation (15), respectively, the relation of correlation
function are as below.

Rz1u1
τð Þ = 〠

nb

j=1
bjRv1u1

τ − jð Þ + 〠
nd

m=1
dmReu1

τ −mð Þ + Reu1
τð Þ,

Rz2u2
τð Þ = 〠

nb

j=1
bjRv2u2

τ − jð Þ + 〠
nd

m=1
dmReu2

τ −mð Þ + Reu2
τð Þ:

ð16Þ

... ...
u (k) v (k)

e (k)

w (k)

x (k) z (k) y (k)

wl
Inputw2

Input

w1
Input

w1
Output

w2
Output

wl
Output

b1z–1+b2z–2+...+bnb
z–nb

1+d1z–1+...+bnd
z–nd

Figure 1: Mathematical model of neural fuzzy Hammerstein-Wiener system.
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It should be noted that eðkÞ is uncorrelated with uðkÞ,
thereby ReuðτÞ = 0, and Reuðτ −mÞ = 0. Thus,

Rz1u1
τð Þ = 〠

nb

j=1
bjRv1u1

τ − jð Þ,

Rz2u2
τð Þ = 〠

nb

j=1
bjRv2u2

τ − jð Þ:
ð17Þ

Using Theorem 1, we have

Rz1u1
τð Þ = 〠

nb

j=1
b01bjRu1

τ − jð Þ, ð18Þ

Rz2u2
τð Þ = 〠

nb

j=1
b02bjRu2

τ − jð Þ = λ2 〠
nb

j=1
b02bjRu1

τ − jð Þ,

ð19Þ
where b01 = Eðv1ðkÞu1ðkÞÞ/Eðu1ðkÞu1ðkÞÞ and b02 = Eðv2ðkÞ
u2ðkÞÞ/Eðu2ðkÞu2ðkÞÞ.

Using Equation (18) and Equation (19) acquires

Rz2u2
τð Þ = βRz1u1

τð Þ, ð20Þ

where β = ðλ2b01Þ/b02 and λ = u2/u1.
Equation (20) is given by

E z2 kð Þu2 k − τð Þð Þ = βE z1 kð Þu1 k − τð Þð Þ: ð21Þ

According to Equation (12), Equation (13) and Equation
(21) yields

〠
Loutput

l=1
woutput

l E ϕoutputl y2 kð Þð Þu2 k − τð Þ
� �
= β 〠

Loutput

l=1
woutput

l E ϕoutputl y1 kð Þð Þu1 k − τð Þ
� �

:

ð22Þ

Let ϕoutputl,i ðkÞ = ϕoutputl yiðkÞðl = 1,⋯,Loutput ; i = 1, 2Þ, we
have

〠
Loutput

l=1
woutput

l Rϕoutputl,2 u2
τð Þ = β 〠

Loutput

l=1
woutput

l Rϕoutputl,1 u1
τð Þ: ð23Þ

Equation (23) is divided by woutput
1 gets

Rϕoutput1,2 u2
τð Þ − βRϕoutput1,1 u1

τð Þ

=
β∑Loutput

l=2 woutput
l Rϕoutputl,1 u1

τð Þ −∑Loutput

l=2 woutput
l Rϕoutputl,2 u2

τð Þ
woutput

1
:

ð24Þ

Let ~woutput
l =woutput

l /woutput
1 , we have

Rϕoutput1,2 u2
τð Þ − βRϕoutput1,1 u1

τð Þ

= 〠
Loutput

l=2
βwoutput

l Rϕoutputl,1 u1
τð Þ − Rϕoutputl,2 u2

τð Þ
" #

~woutput
l :

ð25Þ

Assuming τ = 1, 2,⋯, PðP ≥ Loutput − 1Þ, and defining the
following cost function according to Equation (20),

E ~woutput
l

� �
=
1
2
〠
P

τ=1
Rz2u2

τð Þ − βRz1u1
τð Þ� �2

: ð26Þ

Based on least square method, parameter θ is estimated

bθ = XTX
� �−1

XTY , ð27Þ

where bθ = ½~woutput
2 , ~woutput

3 ,⋯,~woutput
Loutput � T is estimation, and

X = x1, x2,⋯,xLoutput−1½ �, xl−1 =

βRϕoutputl,1 u1
1ð Þ − Rϕoutputl,2 u2

1ð Þ
βRϕoutputl,1 u1

2ð Þ − Rϕoutputl,2 u2
2ð Þ

⋮

βRϕoutputl,1 u1
Pð Þ − Rϕoutputl,2 u2

Pð Þ

26666664

37777775,

Y =

Rϕoutput1,2 u2
1ð Þ − βRϕoutput1,1 u1

1ð Þ
Rϕoutput1,2 u2

2ð Þ − βRϕoutput1,1 u1
2ð Þ

⋮

Rϕoutput1,2 u2
Pð Þ − βRϕoutput1,1 u1

Pð Þ

26666664

37777775:
ð28Þ

The correlation functions Rϕoutputl,1 u1
ðτÞ and Rϕoutputl,2 u1

ðτÞ are
given by

Rϕoutputl,1 u1
τð Þ = 1

N
〠
N

k=1
〠

Loutput

l=2
ϕoutputl,1 y1 kð Þð Þu1 k − τð Þ,

Rϕoutputl,2 u2
τð Þ = 1

N
〠
N

k=1
〠

Loutput

l=2
ϕoutputl,2 y2 kð Þð Þu2 k − τð Þ:

ð29Þ

Taking the derivative of Equation (26) obtains

β =
∑P

τ=1Rz1u1
τð ÞRz2u2

τð Þ
∑P

τ=1 Rz1u1
τð Þ� �2 : ð30Þ

3.2. Learning Parameters of the Linear Block. The measured
input-output data of separable signal are implemented to
optimize linear block relying on correlation analysis method.
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Using Equation (4) gets

z1 kð Þ = 〠
nb

j=1
bjv1 k − jð Þ + 〠

nd

m=1
dme k −mð Þ + e kð Þ: ð31Þ

According to Equation (14)–Equation (18), we have

Rz1u1
τð Þ = 〠

nb

j=1

~bjRu1
τ − jð Þ, ð32Þ

where ~bj = b01bj, b01 = Eðv1ðkÞu1ðkÞÞ/Eðu1ðkÞu1ðkÞÞ:
Using Equation (32) gets

R = θ1ψ, ð33Þ

where

θ1 = ~b1, ~b2,⋯,~bnb
h i

, R = Rz1u1
1ð Þ, Rz1u1

2ð Þ,⋯,Rz1u1
Pð Þ� �

, ψ

=

Ru1
0ð Þ Ru1

1ð Þ Ru1
2ð Þ ⋯ Ru1

P − 1ð Þ
0 Ru1

0ð Þ Ru1
1ð Þ ⋯ Ru1

P − 2ð Þ
⋮ ⋮ ⋮ ⋯ ⋮

0 0 0 ⋯ Ru1
P − nbð Þ

26666664

37777775:

ð34Þ

Defining the following criterion function:

E θ1ð Þ = R − θ1ψk k2: ð35Þ

Taking derivative of Equation (43) obtains

∂E θ1ð Þ
∂θ1

=
∂ R − θ1ψð ÞT R − θ1ψð Þ
h i

∂θ1
= 2θ1ψψT − 2Rψ: ð36Þ

Let ∂Eðθ1Þ/∂θ1 = 0, we get

θ1ψψ
T = RψT: ð37Þ

Equation (37) is multiplied by ðψψTÞ−1 achieves

bθ1 = RψT ψψT� �−1
: ð38Þ

The correlation functions Rz1u1
ðτÞ and Ru1

ðτÞ are pre-
sented by

Rz1u1
τð Þ = 1

N
〠
N

k=1
〠

Loutput

l=2
ϕoutputl,1 y1 kð Þð Þu1 k − τð Þ,

Ru1
τð Þ = 1

N
〠
N

k=1
u1 kð Þu1 k − τð Þ:

ð39Þ

3.3. Learning Parameters of Input Nonlinearity and Noise
Model. Based on the measured data of random signals, param-
eters of input nonlinearity and noise model, that is, cinputl , σinputl ,

winput
l , and dm, are learned. Parameters cinputl and σinputl of input

neural fuzzy network are learned using cluster method. There-
fore, we need to learn parameters winput

l and dm.
Using Equation (1)–Equation (4) and Equation (9) gets

z kð Þ = 〠
nb

j=1
〠
Linput

l=1
bjϕl u kð Þð Þwinput

l + 〠
nd

m=1
dme k −mð Þ + e kð Þ:

ð40Þ

For convenience, the above equation is described as
below:

z kð Þ = φT kð Þθ2 + e kð Þ, ð41Þ

where

θ2 = θs, θe½ �T, θs = b1 ~w
input
2 , b1 ~w

input
3 ,⋯,b1 ~w

input
Linput ,⋯,bnb ~w

input
2 ,⋯,bnb ~w

input
Linput

h iT
,

θe = d1, d2,⋯,dnd
� �T, φs kð Þ = ϕ1 u k − 1ð Þð Þ,⋯,½ ϕLinput u k − 1ð Þð Þ,⋯,

ϕ1 u k − nbð Þð Þ,⋯,ϕLinput u k − nbð Þð Þ�T, φ kð Þ = φs kð Þ, φe kð Þ½ �T, φe kð Þ

= e k − 1ð Þ,⋯,e k − ndð Þ½ �T:

ð42Þ

The quadratic cost function is defined as

J θ2ð Þ = 〠
N

k=1
z kð Þ − φT kð Þθ2

�� ��2: ð43Þ

Based on negative search theory, minimizing Jðθ2Þ draws

bθ2 kð Þ = bθ2 k − 1ð Þ − 1
2r kð Þ grad J bθ2 k − 1ð Þ

� �h i
= bθ2 k − 1ð Þ + φ kð Þ

r kð Þ z kð Þ − φT kð Þbθ2 k − 1ð Þ
h i

,
ð44Þ

r kð Þ = r k − 1ð Þ + φ kð Þk k2: ð45Þ
It is worth emphasizing that the algorithm in Equation

(44) and Equation (45) is not carried out due to unknown
noise terms eðkÞ in φðkÞ. In order to solve this issue, a feasible
method is to use noise estimation, that is, replacing unmea-
surable noise terms eðkÞ with corresponding estimates êðkÞ.

The estimate êðkÞ is expressed as

ê kð Þ = z kð Þ − bφT kð Þbθ2 kð Þ, ð46Þ

where

bφ kð Þ = φs kð Þ, bφe kð Þ½ �T, bφe kð Þ
= ê k − 1ð Þ,⋯,̂e k − ndð Þ½ �T, bθ2 = bθ s, bθe

h iT
:

ð47Þ
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As a consequence, the following algorithm is obtain:

bθ2 kð Þ = bθ2 k − 1ð Þ + bφ kð Þ
r kð Þ z kð Þ − bφT kð Þbθ2 k − 1ð Þ

h i
,

r kð Þ = r k − 1ð Þ + bφ kð Þk k2,

bφ kð Þ = φs kð Þ, bφe kð Þ½ �T, bθ2 = bθ s, bθe

h iT
,

bφe kð Þ = ê k − 1ð Þ,⋯,̂e k − ndð Þ½ �T,
ê kð Þ = z kð Þ − bφT kð Þbθ2 kð Þ:

ð48Þ

As is known to all, stochastic gradient algorithm has poor
convergence rate. To improve convergence rate, an effective
method is to use multi-innovation learning theory by
expanding the scalar innovation to an innovation vector

[25], which uses not only the current data but also past data
at each recursive computation.

Set the length of p from t = k − p + 1 to t = k and define
cost function as below.

J θ2ð Þ = 〠
p−1

t=0
z k − tð Þ − φT k − tð Þθ2

�� ��2: ð49Þ

Using stochastic gradient and minimizing Jðθ2Þ gets

bθ2 kð Þ = bθ2 k − 1ð Þ + 1
r kð Þ〠

p−1

t=0
φ k − tð Þ z k − tð Þ − φT k − tð Þbθ2 k − 1ð Þ

h i
,

ð50Þ

where p is innovation length.
It is similar to extend stochastic gradient method, replac-

ing unknown variables φðk − tÞ in Equation (50) by their esti-
mates bφðk − tÞ, and then, the following approach combining
multi-innovation theory with stochastic gradient technique is
accomplished:

bθ2 kð Þ = bθ2 k − 1ð Þ + 1
r kð Þ〠

p−1

t=0
bφ k − tð Þ

� z k − tð Þ − bφT k − tð Þbθ2 k − 1ð Þ
h i

,

r kð Þ = r k − 1ð Þ + 〠
p−1

t=0
bφ k − tð Þk k2,

bθ2 = bθ s, bθe

h iT
, bφ kð Þ = φs kð Þ, bφe kð Þ½ �T,

bφe kð Þ = ê k − 1ð Þ,⋯,̂e k − ndð Þ½ �T,
ê kð Þ = z kð Þ − bφT kð Þbθ2 kð Þ:

ð51Þ

Start
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length N ?

End

Yes
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 and 𝜎l

Estimate 𝜃 

Estimate 𝜃1 

Use input and output of separable signals: u1 (k) and y1 (k)

Initialize: k = 1

Use random signals: u2 (k), y2 (k)

Set the newest p data, j = k – p+1 to j = k

Computer r (k)

Update parameter estimation 𝜃3 (k)ˆ

ˆComputer e (k – j)
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Figure 2: The flowchart of developed learning method.
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Figure 3: The estimation of the output nonlinearity.
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From the above analysis, the flowchart of developed data-
driven learning method is shown in Figure 2.

Remark 2. The proposed three-stage parameter learning
approach estimates independently each block parameters of
identified Hammerstein-Wiener system using designed mul-
tisignals, which avoids the redundant parameters of the sys-
tem. In contrast, other algorithms like blind parameter
identification method [9], extended stochastic gradient iden-
tification algorithm [18], and modified bias-eliminating least
square algorithm [26] estimate parameters in the product
term form, and they need another algorithms such as singu-
lar value decomposition method and average method to sep-
arate the hybrid parameters. Therefore, the computational
complexity of these approaches increases.

4. Numerical Examples

For the developed learning approach, two kinds of multi-
signals are designed, and numerical cases of nonlinear system
represented by Hammerstein-Wiener model with distur-
bance are applied into certificating the availability.

4.1. Numerical Example 1. The Hammerstein-Wiener system
corrupted by noise is concerned with, where the input non-
linearity is polynomial.

v kð Þ = 0:98u kð Þ + 0:2u kð Þ2,
x kð Þ = 0:2v k − 1ð Þ + 0:5v k − 2ð Þ,
z kð Þ = x kð Þ +w kð Þ,
w kð Þ = e kð Þ + 0:5e k − 1ð Þ,

y kð Þ =
0:1z kð Þ z kð Þ ≤ 1:5,

0:15 exp z kð Þ − 1:5ð Þ z kð Þ > 1:5,

(
ð52Þ

where eðkÞ is stochastic white noise.
Define the noise-to-signal ratios as δns =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ½wðkÞ�/var ½xðkÞ�p

× 100% and parameter estimation

error δ = kbθ1ðkÞ − θ1k/kθ1k at sample time k.
The designed multisignal data consist of two sets of

Gaussian signals and random signals, including Gaussian
signals with mean value of 0 and variance of 1, the mean
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Figure 4: Error comparisons using CA method and RELS method.
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value of Gaussian signal is 0, and the variance is 0.5, and the
range of random signal is -3 to 3.

To begin with, parameters of output nonlinear block are
learned with the aid of collected input-output data of two sets
of Gaussian signals using least square method. Set the param-
eters as below: S0 = 0:99, ρ = 1, and λ = 0:01. The estimation of
output nonlinearity is depicted in Figure 3. From Figure 3,
neural fuzzy networks can well approximate the output non-
linearity by means of developed parameter learning approach.

Moreover, based on input-output data of Gaussian sig-
nals with variance of 1, the CA (correlation analysis) algo-
rithm and RELS (recursive extended least square) algorithm
[20] are implemented for optimizing linear block. Figure 4
shows error comparisons using CA method and RELS
method of different noise-to-signal ratios. The CA algorithm

uses cross-covariance function between input and output
variables and auto covariance function of input variables to
learn the model parameters, which can effectively handle
noise interference and improve learning accuracy. From
Figure 4, with noise-to-signal ratio increases, the CA algo-
rithm has higher precision than RELS method.

Finally, on the basis of measured input-output data of ran-
dom signals, parameters of input nonlinearity and noise
model are learned adopting S0 = 0:9, λ = 0:01, and ρ = 1.
Figure 5 displays the approximation of the input nonlinearity
with different innovation length. Figure 6 shows estimate of
noise model.

According to Figure 5, it is evident that presented learning
method can effectively model input nonlinearity and obtain
small approximation error with p increases. According to
Figure 6, with the increase of p, the noise model estimate is
closer to real value. As a consequence, the introduction of inno-
vation length in developed algorithm can obtain fast conver-
gence rate. This demonstrates that presented three-stage
method can accurately learn the Hammerstein-Wiener system.

4.2. Numerical Example 2. In view of a class of Hammerstein-
Wiener system with disturbance whose input nonlinearity is
discontinuous function:

v kð Þ =
2 − cos 3u kð Þð Þ − exp −u kð Þð Þ u kð Þ ≤ 3:15,

3 u kð Þ > 3:15,

(
x kð Þ = 0:9v k − 1ð Þ + 0:6v k − 2ð Þ + 0:3v k − 3ð Þ + 0:1v k − 4ð Þ,
z kð Þ = x kð Þ +w kð Þ,
w kð Þ = e kð Þ + 0:5e k − 1ð Þ,

y kð Þ =
0:25 exp z kð Þ − 2:5ð Þ z kð Þ > 2:5,

0:1z kð Þ z kð Þ ≤ 2:5,

(
ð53Þ

where eðkÞ is noise sequence.
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Figure 5: Approximation of the input nonlinearity using different
innovation length.
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The designed multisignal data consist of two sets of
binary signals and random signals, including the amplitudes
of the two binary signals are 2 and 4, respectively, and inter-
val of random signal is 0 to 5.

The parameters of output nonlinearity are calculated with
the aid of collected input-output data of two sets of binary
signals using least square method. Set the parameters as below:
S0 = 0:99, ρ = 1, and λ = 0. The estimation of output nonline-
arity is described in Figure 7. From Figure 7, the neural fuzzy
networks can well approximate the output nonlinearity with
the help of developed parameter learning approach.

In addition, using data of binary signals whose amplitude
is 4, the CA algorithm and RELS algorithm are used. Figure 8
gives error comparisons using two methods in presence of
different noise-to-signal ratios. The CA method can effec-
tively deal with the process noise disturbance, so it achieves
good parameters learning results. As can be evidently seen
from Figure 8, the CA method can more effectively obtain
linear block parameters and have better robustness than
RELS method.

Lastly, on the basis of measured input-output data of
random signals, parameters of input nonlinearity and
noise model are learned adopting S0 = 0:92, λ = 0:01, and

ρ = 1. Figure 9 displays the approximation of the input
nonlinearity with different innovation length. Figure 10
lists estimate of moving average noise model for different
innovation length.

Multi-innovation learning theory is combined with sto-
chastic gradient technique to jointly improve convergence
rate by expanding the scalar innovation to an innovation vec-
tor. According to Figure 9, it is recognizable that presented
learning method can effectively model input nonlinearity
and obtain small approximation error with p increases.
According to Figure 10, the noise mode estimate is closer to
real value with larger innovation length.

Remark 3. For more complex Hammerstein-Wiener system
with unknown disturbance in example 2, its input nonlinearity
is a discontinuous function; the learning accuracy of parame-
ter learning method proposed is reduced. In addition, it is a
common knowledge that convergence rate of stochastic gradi-
ent algorithm is poor, the parameter estimation results fluctu-
ate greatly owing to the less information in data used. With
data length increases, more data information are used in
parameter learning; thus, the fluctuation decreases gradually.
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Figure 8: Error comparisons using two methods with different noise-to-signal ratios.
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5. Conclusions

A novel data-driven learning approach of the nonlinear sys-
tem represented by neural fuzzy Hammerstein-Wiener
model with stochastic disturbances is presented. The idea of
the developed method is to model the structure of two non-
linear blocks and a linear block at first and then learn the
unknown parameters of each block. In the process of
Hammerstein-Wiener model modeling, two nonlinear func-
tions are approximated utilizing two neural fuzzy networks,
the linear block is modeled applying impulse response model,
and stochastic disturbances are described by means of mov-
ing average noise.

Multisignal theory is designed for implementing the
Hammerstein-Wiener system to segregate parameter learn-
ing issues of each block, simplifying parameter learning pro-
cess. Firstly, the output nonlinear block parameters are
learned utilizing separable signal with different amplitudes.
Secondly, the correlation analysis algorithm is used; thereby,
the interference of process disturbance is effectively settled
when estimating linear block. In the end, multi-innovation
learning technique is combined with stochastic gradient the-
ory to jointly learn parameters of input nonlinearity and
noise model by expanding the scalar innovation to an inno-
vation vector; the convergence rate of the system is
improved. This demonstrates the availability of presented
Hammerstein-Wiener system with stochastic disturbances
using developed learning method.
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Piezoelectric fiber rosettes respond to the directivity characteristics of Lamb waves, and therefore, are useful in detecting the Lamb
wave propagation direction. Considering material damage as a secondary wave source, two piezoelectric fiber rosettes are arranged
to measure the scattered wave propagation directions for damage localization. The influences of various rosette configurations, i.e.,
45°-rectangular, 135°-rectangular, 60°-delta, and 120°-delta, on the estimation accuracy of the propagation direction are
investigated in this paper. The response of the piezoelectric fiber to the A0 mode Lamb wave under narrowband tone-burst
excitation is theoretically derived. Experimental tests and piezoelectric coupling simulations are performed to obtain the Lamb
wave signal of each fiber. The matching pursuit (MP) algorithm is applied to extract the weak damage-related wave packet by
using Hann-windowed narrowband excitation as an atom. The Lamb wave propagation directions are estimated based on the
error function. The accuracies of the directions with 4 types of rosette configurations are compared, and their error sources are
discussed. The results show that the accuracy of the 135°-rectangular configuration is relatively satisfactory, and the errors
depend on the size and location of each fiber in the rosette. The proposed damage localization method is validated by
experimental tests. The predicted locations are close to the actual damage location. The research results are significant for
piezoelectric fiber rosette design and optimization and damage location without wave speed or time-of-flight information in
complex or irregular structures.

1. Introduction

Lamb-wave-based damage detection in plate-like structures
draws increasing attention as Lamb waves can travel a long
distance even in materials with low attenuation and are
highly susceptible to small damage along a propagation path
[1, 2]. For isotropic plates, damage can be located after
detecting the scattered Lamb wave signal by at least three
sensors and applying conventional time-of-flight triangula-
tion. However, the approach requires a priori knowledge of
the Lamb wave velocity in a plate to translate arrival time
measurements into damage locations. This requirement is a
fundamental limitation for complex or irregularly shaped
structures.

An alternative damage localization technique is to apply a
rosette-like directional sensor to predict the wave direction
[3–6]. These directional sensors are similar with well-
known electrical resistance strain gage rosette constructed
of three gage grids in a certain configuration, which are gen-
erally used to resolve the principal strain directions. Thus, the
wave propagation direction can be evaluated from the princi-
pal strain direction when this direction coincides with the
principal strain direction for isotropic plates. Consequently,
damage can be located from the point of the intersection of
two wave propagation directions obtained from two direc-
tional sensors. Two directional sensor types have been pro-
posed: the first sensor is based on fiber optics [7], and the
second sensor is based on different piezoelectric elements,
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e.g., macrofiber composites (MFCs) [8, 9], metal-core piezo-
electric fibers [10], rectangular piezoelectric sheets [11], and
round piezoelectric fibers [12]. The directivities of the piezo-
electric element responses to Lamb waves have been well
explored, which enables the use of rosettes for wave direction
evaluation.

Kundu et al. [4] proposed a technique that performs
acoustic source localization by acquiring and analyzing the
signal data at several sensors in L-shaped clusters. The wave
propagation direction (of the group velocity) is determined
by the time difference of the arrival of waves at each sensor
of a cluster. Their method was subsequently extended by
Yin et al. [13, 14], and different Z-shaped clusters were intro-
duced to decrease the number of required sensors. This
method can works for an anisotropic plate despite the wave
direction does not coincide with the principal strain direction
[15]. However, it is difficult to extract the small differences in
the time of arrival (TOA) from the weak noise signal of each
sensor.

Three-element rectangular or delta rosettes are preferable
in application where the principal strains are unknown
[16, 17]. Rosette configurations allow us to determine the
principal strain direction of the Lamb wave. The 120°

and 60° delta configurations are applied in Refs. [7–10]
to locate acoustic sources and 45° rectangular rosette in
Refs. [11, 12]. The high directivity of those piezoelectric
elements to sensing Lamb waves contributes to the princi-
pal strain direction evaluation. The delta configuration has
the advantage that it enables a somewhat simpler estimation
when the directivity of the rosette sensor is approximated by
a cosine-squared function, as in Refs. [7, 10]. However, the
presumed directivity function is not adapted to high-
frequency excitation conditions. In conclusion, the rosette
configuration is an important parameter for the accuracy of
Lamb wave direction estimation but is still not sufficiently
characterized.

The primary focus of this paper is the piezoelectric fiber
rosette configurations; these rosettes are used to determine
the damage location based on the measured scattered wave
propagation directions. Four types of well-established rect-
angular and delta rosette configurations of conventional
electrical strain gauges are discussed, i.e., the 45° and 135°

rectangular configurations and the 60° and the 120° delta
configurations. Considering the damping effect, the direc-
tivity response of the piezoelectric fiber to A0 mode Lamb
wave is theoretically derived, which allows the Lamb wave
propagation direction to be evaluated. As the damage is
small and can be treated as a secondary wave source, the
damage location is determined by the intersection of the
scattered wave propagation directions with two rosettes.
Coupled finite element analysis and experimental tests are
performed to demonstrate the accuracies of Lamb wave
propagation direction estimations with various rosette con-
figurations. The matching pursuit (MP) algorithm is
applied to extract the incident and the scattered wave signal
from the measured noisy Lamb wave signals by using
Hann-windowed narrowband excitation as a so-called
atom. Error analyses for Lamb wave direction estimations
are discussed in terms of various rosette configurations.

The performance of the rosettes for damage localization is
validated through artificial damage manufactured on the
specimen.

2. Damage Localization Method with
Directional Piezoelectric Fiber Rosettes

Assume that piezoelectric fiber is well bonded to the top sur-
face of a plate with thickness of 2h, as shown in Figure 1. The
angle between the wave propagation direction x′ and the
lengthwise direction of piezoelectric fiber is defined as θ.
The response voltage amplitude depends on the angle θ
between the wave propagation direction x′ and the length-
wise direction of piezoelectric fiber. The directional response
of piezoelectric fiber under narrowband tone-burst excitation
has been theoretically deduced in our previous work [12]. To
investigate the effect of piezoelectric fiber rosette configura-
tions on Lamb wave direction detection, the lengths and the
actual positions of piezoelectric fibers are considered. There-
fore, the wave attenuation factors, including geometry
spreading and material damping, are considered in this
paper. The in-plate displacement of the flexural Lamb wave
can be written as [8]

ux ′jx ′=L = Bk

ffiffiffiffi
ra
L

r
sinh az
cosh ah

−
2ab

k2 + b2
⋅
sinh bz
cosh bh

� �
× e−kd L−rað Þ+i kL−ωt−π/2ð Þ,

ð1Þ

where L is the distance between the Lamb wave source point
and the center of the piezoelectric fiber, B is an arbitrary con-
stant, ra is the radius of the actuator, kd is the attenuation fac-
tor in the material, h is half of the plate thickness, and the
parameters a and b are defined as

a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

ω2

cL2

s
, b =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

ω2

cT 2

s
, k = 2π

λ
, ð2Þ

where k, λ, and ω are the wavenumber, wavelength, and cir-
cular central frequency, respectively, and cL and cT are the
longitudinal velocity and transversal velocity, respectively,
in the plate.

Similarly, the piezoelectric fiber’s response to the flexural
Lamb wave is expressed as [12]

�V = Ed33λ
πe33

ffiffiffiffi
ra
L

r
e−kdLS θð Þ × �εx ′x ′ , ð3Þ

where �εx ′x ′ is the amplitude of the in-plane strain under exci-
tation and SðθÞ is the sensitivity factor

S θð Þ = cos θ sin πl cos θ
λ

� �
: ð4Þ

Hann-windowed narrowband excitation signals are typi-
cally employed in applications to excite a Lamb wave, which
is expressed as
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A tð Þ = Aa H tð Þ −H t −
2πn
ωc

� �� �
× sin ωctð Þ 1 − cos ωct

n

� �� �
,

ð5Þ

where Aa is the excitation amplitude, n is the cycle number of
the tune-burst excitation signal, and ωc is the central circular
frequency.

The response to the narrowband excitation can be
expressed as [12]

U tð Þ =
ðωc+Δω/2

ωc−Δω/2
A ωð Þ�V ωð Þe‐iωtdω

=
ðωc+Δω/2

ωc−Δω/2

Ed33λ
πe33

ffiffiffiffi
rp
L

r
e−kdLS θð Þ�εx ′x ′A ωð Þe‐iωtdω,

ð6Þ

where Δω = 4ωc/n denotes the frequency bandwidth.
From Equation (6), the time-domain response to the

narrowband excitation depends on the angle θ and the dis-
tance L. Considering Equation (6), the response voltage is
just equal to the excitation with a time shift, a phase varia-
tion, and additional amplitude attenuation. The response
voltages can be represented by their Hilbert envelope for dis-
regarding the effect of the phase change with in the wave
packet [18], and the scattered wave peak of the energy enve-
lopes is introduced to quantify the response amplitude,
which is expressed as

~U = U tð Þ + iH U tð Þ½ �j jpeak, ð7Þ

where H½UðtÞ� denotes the Hilbert transform (HT) of the
wave signal.

Let three piezoelectric fibers A, B, and C are arranged in
an arbitrary rosette configuration, as shown in Figure 2(a),
and αiði = A, B, CÞ denote the angle between the ith piezoelec-
tric fiber and the referenced piezoelectric fiber A. It is
assumed that αA is 0. According to Equation (7), the voltage
response of the three piezoelectric fibers can be expressed as

~Ui = ~Umax cos θ − αið Þ sin πl cos θ − αið Þ
λ

� �
 i = A, B, C,

ð8Þ

where ~Ui max is the maximum voltage response of the piezo-
electric fiber, which is parallel to the Lamb wave propagation
direction.

In this paper, the actual sum is still applied to normalize
the response. The normalized amplitudes of piezoelectric
fibers can be expressed as

Ti =
3~Ui

∑3
i=1 ~Ui

= 3 cos θ + αið Þ sin πl cos θ + αið Þ/λð Þ
∑3

i=1cos θ + αið Þ sin πl cos θ + αið Þ/λð Þ
: ð9Þ

The angle θ can be evaluated by the error between the
experimental normalized voltage amplitude and the theoret-
ical normalized voltage amplitude using the numerical com-
putation method. The error is defined as [12]

e bθ� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3〠

3

i=1
Ti − Ti θ∧ð Þð Þ2

s
, ð10Þ

where bθ is the estimation of the Lamb wave propagation
direction for theoretical calculation.

According to Equation (10), the error value eðbθÞ will be 0
when bθ = θ. In practical application, eðbθÞ is impossible to be
0 because of the unavoidable measurement error. Therefore,

the estimation of θ is assumed to be bθ when eðbθÞ trends to
the minimum. The detailed discussion is presented in our
previous work [12]. Considering the damage as a secondary
wave source, the damage location can be evaluated by the
intersection of the scattered wave propagation directions by
two rosettes, as shown in Figure 2(b). The damage location
ðx, yÞ can be determined by the scattered wave propagation
directions θ1 and θ2 according to

x = y2 − y1 + x1 tan θ1 − x2 tan θ2
tan θ1 − tan θ2

,

y = x − x1ð Þ tan θ1 + y1,

8><
>: ð11Þ

where ðx1, y1Þ and ðx2, y2Þ are the coordinates of the layout
origin of the corresponding rosette.

Considering the dimension and the configuration of the
piezoelectric rosette, the actual direction angle is different
from the theoretical angle of the rosette. In theory, the volt-
age responses of the piezoelectric fibers B and C are refer-
enced to the piezoelectric fiber A as the base, and the
distance error ΔLi and the angle error Δθi are included in
Equation (8). Figure 3 shows the distance error ΔLB and the
angle error ΔθB of the piezoelectric fiber B. Therefore, Equa-
tion (8) is rewritten as

~Ui = ~Ui max cos θ − αi + Δθið Þ sin πl cos θ − αi + Δθið Þ
λ

� �
,

ð12Þ

where Ui max is the maximum voltage response of the piezo-
electric fiber which is located in parallel with the Lamb wave
propagation direction at the distance L + ΔLi, while Ui max

1 (Y)

3 (X)
l

L

Lamb wave
y

x2h

y′

x′

z

𝜃

Figure 1: Directional response of a piezoelectric fiber to Lamb wave.
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used in Equation (8) is the response of the piezoelectric fiber
located at the distance L.

Similar to conventional electrical strain gauges, piezo-
electric fiber rosettes can be arranged with different configu-
rations. Four types of rosette configurations are discussed in
this paper, as shown in Figure 4. Three piezoelectric fibers are
numbered in the counterclockwise direction. O is the layout
origin for rosette sensor placement. Figure 4(a) shows the
45° rectangular configuration denoted by RC1 in this paper,
and the configuration angles of the three piezoelectric fibers
are 0°, 45°, and 90°, respectively. Figure 4(b) shows the 135°
rectangular configuration denoted RC2, and the configura-
tion angles of the three piezoelectric fibers are 0°, 135°, and
90°, respectively. Figure 4(c) shows the 60° delta configura-
tion denoted by DC1, and the configuration angles of the
three piezoelectric fibers are 0°, 120°, and 240°, respectively.
Figure 4(d) shows the 120° delta configuration denoted by
DC2, and the configuration angles are the same with DC1.
In this paper, the piezoelectric fiber with a length of 10mm
is cut from a round piezoelectric fiber with a length of
150mm and a diameter of 0.8mm, produced by Smart Mate-
rial Corp. The piezoelectric material is PZT SP505 (Navy
type II). The electrodes at two ends of a piezoelectric fiber

are covered with silver paint. The signal wires are wired to
the electrodes of the piezoelectric fibers and connected to
the signal collector.

3. Experiment Test and Simulation Analysis

The accuracies of the Lamb wave direction estimations using
the four different rosette configurations are compared by
experimental tests and finite element simulations with
coupled-field elements. The damage localization method is
validated by experimental tests with artificial damage.

3.1. Experimental Test Setup. Rectangular aluminum plate
specimens are employed with dimensions of 1m × 1m and
a thickness of 1mm for both simulation analysis and experi-
mental testing. The density is 2730kg/m3, the elastic modulus
is 68:9GPa, and Poisson’s ratio is 0.33. A piezoelectric wafer
is applied to excite the Lamb wave in the plate. This wafer
is made from PZT8 material with a radius of 10mm and a
thickness of 0.8mm. The piezoelectric wafer is manufactured
by Smart Material Corp., USA. A 5-cycle narrowband tone-
burst signal modulated by the Hamming window is
employed to excite a Lamb wave in the plate. An EPA-10
power amplifier, which is produced by Piezo System Inc.,
USA, is applied to amplify the excitation narrowband signals.
An 80V peak-to-peak amplification excitation is applied to
the actuator. An NI PXle-6361 platform is applied to collect
the response output voltage of the piezoelectric sensors.

The piezoelectric fiber rosettes are directly connected to
the platform to acquire the electric signals generated through
the piezoelectric coupling between the strain field and the
electric field. Four piezoelectric fiber rosette configurations
are applied to estimate the incident Lamb wave propagation
direction, as shown in Figure 5(a). The actuator is placed at
an angle of 32° with four rosettes, and the distance between
the actuator and the sensors is 300mm. For the damage loca-
tion experimental test, a hole with a diameter of 20mm is
manufactured in the aluminum plate. The arrangement of
the actuator, rosettes, and damage is shown in Figure 4(b).
The central frequencies of the excitation waves are 20 kHz,
40 kHz, and 60 kHz. The sampling frequency is 2MHz. The
measured signals of the piezoelectric sensors are averaged

Piezoelectric

Lamb wave Actuator

y

x

A

B

𝛼B

Cx′

𝜃

(a)

Actuator

Rosette 1

Rosette 2

Damage

y

x𝜃1

𝜃2

(b)

Figure 2: Damage location with the estimated scattered wave directions. (a) The Lamb wave propagation direction. (b) Damage location with
two rosettes.
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Figure 3: The error of the direction estimation with the rosette.
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100 times. An NI LabVIEW program was written to generate
excitation waves and acquire the sensor data. A MATLAB
program was written for Lamb wave signal analysis, Lamb
wave propagation direction estimation, and damage location
computation.

3.2. Coupled Finite Element Analysis. Mechanical-electrical
coupled finite element analysis, which takes into account
both the piezoelectric wafer actuator and the piezoelectric
fibers, is performed. The corresponding material physical
parameters are listed in Table 1.

The commercial finite element software ANSYS is
employed for this analysis. SOLID5 coupled-field elements
are applied to simulate the piezoelectric effects of the piezo-
electric wafer and piezoelectric fibers. SHELL181 elements
are employed to model the aluminum plate specimen. The
mesh size of the finite element model is 1mm which is
smaller than one-twentieth of the Lamb wavelength at
60 kHz to ensure the accuracy of the analysis results. The
time step is set to 0:5μs. Both the mesh size and the time step
set satisfy the criteria of transient dynamic analysis [19]. A

total of 1,033,000 elements are employed. The voltage DOFs
of the nodes located on two surfaces of the piezoelectric wafer
and two ends of each piezoelectric fiber are coupled to only
one master node to simulate their electrodes, as shown in
Figure 6.

The excitation voltage of the narrowband tone-burst sig-
nal is applied to the upper electrode of the piezoelectric
wafer. The output voltages of the three piezoelectric fibers
in the rosettes are analyzed to calculate the Lamb wave prop-
agation direction. To verify the effects of the rosette configu-
rations on the accuracies of the direction estimation, the first
arrival flexural Lamb waves are employed to extract the
response amplitudes of each piezoelectric fiber. The resultant
voltage outputs of the piezoelectric fiber C in RC2 at a central
frequency of 40 kHz are plotted in Figure 7, which is located
in Rosette 1 to measure the scattered wave from damage 1.
The first arrival wave of the simulation resultant wave shows
agreement with the experimental measured signal, and an
amplitude difference is caused by the measurement noise.
Note that the obscurity of the scattered waves is attributed
to their weakness. Considering the overlapped wave packets

C

B

AO

(a)

C

B

AO

(b)

C
B

60°
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(c)

C

120°

B

A

O

(d)

Figure 4: Four types of piezoelectric fiber rosette configuration: (a) rectangular (RC1); (b) rectangular (RC2); (c) delta (DC1); and (d) delta
(DC2).
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Figure 5: Experimental test setup. (a) Four rosette configurations. (b) Damage location.
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and the measurement noise, extraction of the damage-related
wave packets from the measured signal is difficult. Therefore,
considering a suitable signal decomposition method is essen-
tial to effectively separate the individual wave packets and
obtain the exact required wave for further scattered wave
direction calculation.

3.3. Signal Decomposition Based on the MP Algorithm. More
advanced signal processing techniques are required to accu-
rately separate the weak scattered wave packet from the noisy
overlapped signal in an application. Sparse reconstruction

has attracted a substantial amount of attention in ultrasonic
guided wave-based damage detection [18, 20]. The MP algo-
rithm introduced by Mallat and Zhifeng [21] is one of the
most extensively applied algorithms for sparse signal repre-
sentation. MP is an iterative greedy algorithm that computes
an accurate solution for a signal in terms of the linear combi-
nations of predefined atoms that construct an overcomplete
dictionary. The algorithm of MP is described as follows.

Step 1. Construct a dictionary D

D = gγ1 , gγ2 ,⋯,gγ j
,⋯gγ J

n o
, ð13Þ

where γj is the j
th parameter set of possible parameter combi-

nations and gγ j
is the atom determined by the jth parameter

set.

Step 2. Initialize the iteration number κ = 1 and set the mea-
sured signal f to the residual Rκ.

Step 3. Search for the dictionary atom gγκ that best resembles

the measured signal f , which is achieved by solving the opti-
mization problem

gγκ
= arg max

gγ j∈D
Rκ, gγ

D E			 			: ð14Þ

Step 4. Calculate the amplitude of the chosen atom to the
measured signal

Table 1: Material physical parameters of the piezoelectric wafer and piezoelectric fibers.

Parameter Piezoelectric wafer Piezoelectric fibers

Density (kg/m3) 7600 7850

Relative dielectric constant 900 1850

Piezoelectric constant d33 ( × 10−12C/N) 225 440

Piezoelectric constant d31 ( × 10−12C/N) 97 185

Elastic compliance constant sE11 ( × 10−12m/N) 11.20 18.50

Elastic compliance constant sE33 ( × 10−12C/N) 13.36 20.70

Electromechanical coupling factors kp 0.6 0.62

Electromechanical coupling factors k33 0.7 0.72

(a) (b)

Figure 6: Coupled analysis model. (a) Local mesh of piezoelectric wafer. (b) Local mesh of RD1.

6

4

2

0

–2

V
ol

ta
ge

 (m
V

)

–4

–6

–8
0 0.2 0.4

Time (ms)

0.6 0.75

Experiment
Simulation
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cκ = Rκ, ~gγκ
D E

, ð15Þ

where ~gγκ
= gγκ /hgγκ , gγκi.

Step 5. Calculate a new residue by subtracting the chosen
atom and adjusting the amplitude

Rκ+1 = Rκ − cκgγκ : ð16Þ

Step 6. Perform the next iteration with the residual signal
Rκ+1, i.e., return to Step 3, until the energy of the residual sig-
nal becomes sufficiently small. After K iterations, MP decom-
poses the signal into

f recon = 〠
K

i=1
cκgγk + RK+1: ð17Þ

To quickly and effectively decompose the measured signal,
many possible atom functions are employed to construct an
overcomplete dictionary, such as the Gabor atom [22], Chir-
plet atom [23], and an atom based on Hann-windowed nar-
rowband excitation [18, 24, 25]. The atom dictionary should
take into account the actual problem. Equations (1) and (6)
indicate that the measured signal of each piezoelectric fiber
is equal to the excitation with a time shift, a phase variation,
and additional amplitude attenuation. Therefore, the atom in
the overcomplete waveform dictionary is defined as [18]

gγ tð Þ = H t − τð Þ −H t − τ −
2πn
ωc

� �� �
× sin ωc t − τð Þ + φð Þ

� 1 − cos ωc t − τð Þ
n

� �� �
,

ð18Þ

where τ is the time delay and φ is the shifted phase.

The finite set of parameters τ, ϕ, andωc for the dictionary
should be discretized uniformly for the measured Lamb wave
signal [26]. τ is discretized as nTs, where n and Ts denote the
sample length and the sampling rate, respectively. ωc is the
excitation central frequency. Many optimization algorithms
can be applied to determine the parameter set, such as the
genetic algorithm (GA) [27] and the artificial bee colony
algorithm [28]. The GA is employed in this paper to obtain
the global optimal solution in a continuous parameter space.

The damage-scattered Lamb wave signal with an excita-
tion frequency 40 kHz, as shown in Figure 8, is decomposed
after five iterations by applying the proposed MP algorithm,
which is based on GA optimization. Figure 8(a) represents
the individual wave packet after decomposing the measured
signal, and Figure 8(b) is the reconstructed signal. Wave
packets ① and ③ are the first-arrival A0 and S0 waves,
respectively, ④ is the damage-scattered wave, and ② and ⑤

are bounced back from the edge. The dictionary is based on
Hann-windowed narrowband excitation as an atom, which
can match the individual wave packet and the weak scattered
wave packet. The MP method has the advantage of excellent
noise robustness.

4. Results and Discussion

4.1. Lamb Wave Direction Estimation Results and Error
Analysis. Lamb wave direction estimation results of the four
types of rosette configurations are listed in Table 2. Compar-
ing the results of four rosette configurations from simulation
and experiment signals, ANSYS results indicate that the esti-
mation errors increased as the excitation frequency
increased; the rosette in RC2 shows the best estimation accu-
racy, which is less than 4%; DC2 shows the largest error of
15%; and RC1 and DC1 have an equivalent accuracy of less
than 8%. Experimental test results show larger errors than
the ANSYS results. RC2 and DC1 have equivalent accuracies,
which are less than 8%; RC1 presents a larger error than 10%,
and DC2 shows the largest error of 30%. The differences
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Figure 8: Wave packets decomposed after five iterations using the MP algorithm. (a) MP decomposition results and (b) reconstructed signal.
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between the simulation results and the experimental results
are caused by measurement errors and noise.

As presented in Equation (12), the attenuation caused by
different distances can generate differences in the wave
amplitude detected by each piezoelectric fiber in different
rosette configurations, and the actual angle deviates from
the ideal value. This deviation is the error in the Lamb wave
direction estimation method. As the scatter wave direction is
varied, the distance and angle errors also vary. To compare
the accuracies of four types of rosette configurations, the
average errors ðjΔLBj + jΔLCjÞ/2 and ðjΔθBj + jΔθCjÞ/2 of
different rosette configurations are plotted in Figure 9. The
distance and angle error ranges of DC2 are larger than those
of the other rosette configurations; those of RC1 and RC2 are
equivalent, and those of DC1 are slightly better than those of
RC1 and RC2. The largest distance error in the direction of
32° is associated with DC2, which shows poor performance
in estimating the Lamb wave propagation direction, as listed

in Table 2. RC2 shows better performance than the other
rosette configurations due to its small distance and angle
error.

4.2. Damage Localization Results. Considering its strong per-
formance, RC2 is employed to perform damage localization
tests. Figure 5(b) shows the arrangement of two rosettes
and the actuator. The excitation central frequency is
40 kHz. Considering the damage as a secondary wave source
actuator, the corresponding damage location can be esti-
mated with the scattered signals. The related scattered wave
propagation directions of the two rosettes and the predicted
damage locations are listed in Table 3. The intersection point
of two direction lines provides the predicted damage loca-
tion. The predicted and actual damage locations are shown
in Figure 10. The predicted locations are not located far from
the actual locations. Note that when the damage is on the
path between the actuator and the rosette, the damage-

Table 2: Lamb wave direction estimation of the four types of rosette configurations.

Frequency (kHz) Results
RC1 RC2 DC1 DC2

/° /%E /° /%E /° /%E /° /%E

20 ANSYS 32.3 0.8 32.0 -0.2 30.2 -5.6 33.3 3.9

40 ANSYS 33.3 3.9 33.1 3.3 32.6 1.8 36.4 13.8

60 ANSYS 30.3 -5.5 32.3 0.8 34.8 7.8 36.8 15.0

20 Test 37.8 18.1 32.4 1.3 33.7 5.2 42.4 32.5

40 Test 36.2 13.1 31.4 -1.9 33.1 3.3 42.9 33.9

60 Test 34.0 6.3 30.0 -6.3 34.6 8.1 41.9 30.8
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Figure 9: The distance errors and the angle errors of various rosette configurations. (a) Distance error and (b) Angle error.

Table 3: The experimental results of damage localization.

Damage number
Rosette 1 Rosette 2 Location

Actual (°) Test (°) %E Actual (°) Test (°) %E Actual (mm) Test (mm)

Damage 1 56.4 59.0 4.6 31.0 25.2 -18.8 (350, 400) (391, 451)

Damage 2 108.4 101.4 -6.5 56.3 57.2 1.5 (450, 400) (486, 373)
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transmitted wave packets are applied to estimate the scat-
tered wave propagation direction. When the damage is
located on or near the line between two rosettes, more
rosettes are required to solve for the damage location [10].
In the future, the prediction process can be improved by
using transmitted and reflected wave packets from additional
rosettes for wave direction estimation.

5. Conclusion

This paper focuses on a damage localization method by using
two piezoelectric fiber rosettes to measure the scattered Lamb
wave propagation direction. The advantage of this method is
that wave speed or time-of-flight information is not needed.
The effects of various piezoelectric fiber rosette configurations,
i.e., 45°-rectangular, 135°-rectangular, 60°-delta, and 120°-delta
configurations, on the accuracies of Lamb wave propagation
direction estimation are investigated. Mechanical-electric
coupled finite element analyses and experimental tests are per-
formed. The MP algorithm that is based on GA optimization
by using Hann-window excitation as an atom is proposed to
extract the weak damage-related wave packet. The rosette in
the 135°-rectangular configuration shows satisfactory perfor-
mance in determining the wave direction, but the 120°-delta
configuration suffers from poor accuracy. Error analyses are
performed by analyzing the distance and the angle error of
each piezoelectric fiber, which deviates from the theoretical
assumption. Considering damage as a secondary wave source,
the damage location is determined by the intersection of two
scattered wave propagation directions with two rosettes. The
proposed damage localization method is validated by experi-
mental tests, and the predicted locations are close to the actual
damage locations. Future work will focus on improving the

damage localization by using transmitted and reflected wave
packets from a larger number of rosettes.

Data Availability

The data and the MATLAB programs used to support the
findings of this study are available from the corresponding
author upon request.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

S.J. contributed to the methodology, experimental test, and
writing—original. Y.S. supervised this research and helped
in data analysis and modification. S.W. was responsible for
the data analysis and the writing—review and editing. Y.P.
and Y.L. were responsible for the simulation and validation.
All authors have read and agreed to the published version
of the manuscript.

Acknowledgments

This research was funded by the Hunan Innovative Province
Construction Special Foundation (No. 2020RC3049), the
Hunan Provincial Natural Science Foundation (No.
2020JJ6029), and the Foundation of Hunan Educational
Committee (No. 18B567).

1000

Actuator

(391, 452)
Damage 1
(350, 400)

Damage 2
(450, 400)

(486, 373)

0
0

(mm)

1000

(m
m

)

Actual location
Predicted location

Figure 10: The predicted and actual damage locations.

9Journal of Sensors



References

[1] X. Qing, W. Li, Y. Wang, and H. Sun, “Piezoelectric
transducer-based structural health monitoring for aircraft
applications,” Sensors, vol. 19, no. 3, p. 545, 2019.

[2] X. Li, Z. Yang, and X. Chen, “Quantitative damage detection
and sparse sensor array optimization of carbon fiber rein-
forced resin composite laminates for wind turbine blade struc-
tural health monitoring,” Sensors, vol. 14, no. 4, pp. 7312–
7331, 2014.

[3] T. Stepinski, M. Mańka, and A. Martowicz, “Interdigital lamb
wave transducers for applications in structural healthmonitor-
ing,” NDT & E International, vol. 86, pp. 199–210, 2017.

[4] T. Kundu, H. Nakatani, and N. Takeda, “Acoustic source local-
ization in anisotropic plates,” Ultrasonics, vol. 52, no. 6,
pp. 740–746, 2012.

[5] X. Lin, G. Chen, J. Li, F. Lu, S. Huang, and X. Cheng, “Investi-
gation of acoustic emission source localization performance on
the plate structure using piezoelectric fiber composites,” Sen-
sors and Actuators A: Physical, vol. 282, pp. 9–16, 2018.

[6] V. Giurgiutiu, SHM of Aerospace Composites–Challenges and
Opportunities, CAMX Conference Proceedings, Dallas, TX,
USA, 2015.

[7] D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski,
“Lamb wave detection and source location using fiber Bragg
gratin rosettes,” in Smart Structures and Materials 2003: Smart
Sensor Technology and Measurement Systems, vol. 5050,
pp. 117–128, San Diego, CA, USA, July 2003.

[8] H. M. Matt and F. L. di Scalea, “Macro-fiber composite piezo-
electric rosettes for acoustic source location in complex struc-
tures,” Smart Materials and Structures, vol. 16, no. 4, pp. 1489–
1499, 2007.

[9] S. Salamone, I. Bartoli, P. di Leo et al., “High-velocity impact
location on aircraft panels using macro-fiber composite piezo-
electric rosettes,” Journal of Intelligent Material Systems and
Structures, vol. 21, no. 9, pp. 887–896, 2010.

[10] C. Zhang, J. Qiu, H. Ji, and S. Shan, “An imaging method for
impact localization using metal-core piezoelectric fiber
rosettes,” Journal of Intelligent Material Systems and Struc-
tures, vol. 26, no. 16, pp. 2205–2215, 2015.

[11] P. Zhao, D. Pisani, and C. S. Lynch, “Piezoelectric strain sen-
sor/actuator rosettes,” Smart Materials and Structures,
vol. 20, no. 10, p. 102002, 2011.

[12] S. Wang, W. Wu, Y. Shen, H. Li, and B. Tang, “Lamb wave
directional sensing with piezoelectric fiber rosette in structure
health monitoring,” Shock and Vibration, vol. 2019, Article ID
6189290, 12 pages, 2019.

[13] S. Yin, Z. Cui, and T. Kundu, “Acoustic source localization in
anisotropic plates with "Z" shaped sensor clusters,” Ultrason-
ics, vol. 84, pp. 34–37, 2018.

[14] N. Sen and T. Kundu, “Acoustic source localization in a highly
anisotropic plate with unknown orientation of its axes of sym-
metry and material properties with numerical verification,”
Ultrasonics, vol. 100, article 105977, 2020.

[15] J. Zhao, J. Qiu, H. Ji, and N. Hu, “Four vectors of Lamb waves
in composites: semianalysis and numerical simulation,” Jour-
nal of Intelligent Material Systems and Structures, vol. 24,
no. 16, pp. 1985–1994, 2013.

[16] V. Micro-Measurements, Strain Gage Selection: Criteria, Pro-
cedures, Recommendations, Technical Note. Vishay Precision
Group, Inc. TN-5052007, 2007.

[17] D. A. Drake, R. W. Sullivan, and J. C. Wilson, “Distributed
strain sensing from different optical fiber configurations,”
Inventions, vol. 3, no. 4, p. 67, 2018.

[18] C. Xu, Z. Yang, S. Tian, and X. Chen, “Lamb wave inspection
for composite laminates using a combined method of sparse
reconstruction and delay-and-sum,” Composite Structures,
vol. 223, p. 110973, 2019.

[19] Y. Shen and V. Giurgiutiu, “Combined analytical FEM
approach for efficient simulation of Lamb wave damage detec-
tion,” Ultrasonics, vol. 69, pp. 116–128, 2016.

[20] W. Wang, Y. Bao, W. Zhou, and H. Li, “Sparse representation
for Lamb-wave-based damage detection using a dictionary
algorithm,” Ultrasonics, vol. 87, pp. 48–58, 2018.

[21] S. G. Mallat and Z. Zhifeng, “Matching pursuits with time-
frequency dictionaries,” IEEE Transactions on Signal Process-
ing, vol. 41, no. 12, pp. 3397–3415, 1993.

[22] J. C. Hong, K. H. Sun, and Y. Y. Kim, “The matching pursuit
approach based on the modulated Gaussian pulse for efficient
guided-wave damage inspection,” Smart Materials and Struc-
tures, vol. 14, no. 4, pp. 548–560, 2005.

[23] A. Raghavan and C. E. S. Cesnik, “Guided-wave signal process-
ing using chirplet matching pursuits and mode correlation for
structural health monitoring,” Smart Materials and Structures,
vol. 16, no. 2, pp. 355–366, 2007.

[24] H. W. Kim and F. G. Yuan, “Enhanced damage imaging of a
metallic plate using matching pursuit algorithm with multiple
wavepaths,” Ultrasonics, vol. 89, pp. 84–101, 2018.

[25] Y. Xu, M. Luo, Q. Liu, G. du, and G. Song, “PZT transducer
array enabled pipeline defect locating based on time-reversal
method and matching pursuit de-noising,” Smart Materials
and Structures, vol. 28, no. 7, article 075019, 2019.

[26] Y. Lu and J. E. Michaels, “Numerical implementation of
matching pursuit for the analysis of complex ultrasonic sig-
nals,” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 55, no. 1, pp. 173–182, 2008.

[27] Y. Liu, C. Shen, Y. Wang, and F. Sun, “Guided wave NDT sig-
nal recognition with orthogonal matching pursuit based on
modified evolutionary programming,” AASRI Procedia,
vol. 3, pp. 43–48, 2012.

[28] A. L. Qi, G. M. Zhang, M. Dong, H. W. Ma, and D. M. Harvey,
“An artificial bee colony optimization based matching pursuit
approach for ultrasonic echo estimation,” Ultrasonics, vol. 88,
pp. 1–8, 2018.

10 Journal of Sensors


