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In this paper, a mathematical model for the system of prey-predator with immigrant prey has been analyzed to find an ap-
proximate solution for immigrant prey population density, local prey population density, and predator population density.
Furthermore, we present a novel soft computing technique named LeNN-WOA-NM algorithm for solving the mathematical
model of the prey-predator system with immigrant prey. The proposed algorithm uses a function approximating ability of
Legendre polynomials based on Legendre neural networks (LeNNs), global search ability of the whale optimization algorithm
(WOA), and a local search mechanism of the Nelder-Mead algorithm. The LeNN-WOA-NM algorithm is applied to study the
effect of variations on the growth rate, the force of interaction, and the catching rate of local prey and immigrant prey. The
statistical data obtained by the proposed technique establish the effectiveness of the proposed algorithm when compared with
techniques in the latest literature. The efficiency of solutions obtained by LeNN-WOA-NM is validated through performance
measures including absolute errors, MAD, TIC, and ENSE.

1. Introduction

A prey-predator system is one of the prevalent phenomena
in nature. The interaction between predators and prey in any
environment was first introduced by Lotka and Volterra in
1926 [1]. Holling in 1966 [2] elaborated prey-predictor
models with different kinds of functional responses for
predation. All these models are inspired by biological
phenomena and presented by nonlinear ordinary and partial
differential equations. Danca et al. [3] study the detailed
analysis of a nonlinear prey-predator model. A connection
between predators and prey has a long history and will
continue as a governing theme in biomathematics because of
its universal significance [4]. Researchers have made many
changes by introducing different facets to the predator-prey

system such as delay in predator growth, harvesting prey and
predators, and providing additional food to a predator for
sustaining prey population and prey diseases [5-7]. Cai et al.
[8] studied the dynamical system of prey-predator with Allee
effects in prey growth. A stage-structured predator-prey
model with gestation delay is investigated by [9]. In [10, 11],
bifurcation, chaos and dynamic behavior of the nonlinear
discrete-time predator-prey system is studied. Huang et al.
[12] study the stability analysis of the model with consid-
eration of the prey refuge. Studies by Din [13], Weide et al.
[14], and Gong et al. [15, 16] are presented for the discrete-
time nonlinear prey-predator types of model. Hadeler and
Freedman [17] provide extensive references to real-world
examples of three-species ecoepidemiological systems of
sound prey, infected prey, and predators.
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In recent years, there has been a substantial increase
in the amount of attention paid to population biology by
scientists due to the significant applications it has in
ecology. It bridges the gap between mathematics and
biology. The dynamical systems in biology have been
investigated to interpret various problems. The Lot-
ka-Volterra population model is a well-known mathe-
matical model that describes biological systems [18]. In
real life, there is a strong correlation between size, age,
and developmental stages of different populations of
species. It is an important strategy to incorporate all
these variables in the mathematical modeling of pop-
ulations of different spices. To develop more realistic and
accurate mathematical models, many scientists have
suggested noise-induced models [19, 20] and spatial
models [21]. In biomathematical problems, researchers
utilize mathematical modeling and simulations along
with biological structures to describe the phenomena by
the system of nonlinear differential equations. These
nonlinear models are considered stiff and unrealistic,
and therefore, finding exact and semianalytical solutions
for such problems is challenging because of nonlinearity.
Analytical approaches for solving nonlinear problems
are mostly based on Laplace or Fourier transformation,
Laguerre’s integral formula, and the Grunwald-Letnikov
concept [22,23]. When tackling complex problems, these
techniques may be challenging to use; in addition, the
solution is provided in a closed form that necessitates the
evaluation of special functions using complex expres-
sions, such as the Mittag-Leftler function [24].

In recent years, researchers have been working to de-
velop new techniques for finding approximate solutions to
nonlinear models; e.g., the Laplace Adomian decomposition
method [25], the new coupled fractional reduced differential
transform method [26], the Runge-Kutta-Fehlberg method
[27], the finite element method [28], the Sumudu decom-
position method [29], the implicit Adams methods [30], the
confidence domain technique [31], and the homotopy
analysis method [32] have become much more significant to
get accurate solutions. All these deterministic approaches
have their own advantages, applicability, and drawbacks.
With great interest, it is noted that such techniques are
gradient-based and call for information about the problem
beforehand. The availability of several local optima, which
leads to solutions where global optimality cannot be easily
ensured, is one of the fundamental limitations of gradient-
based approaches. Global optimality is sought in gradient-
based approaches by randomly scanning the design space
from various starting points. However, this causes the
technique to become sluggish and computationally ineffi-
cient for complex nonlinear optimization problems [33, 34].
In addition, the Runge-Kutta methods are self-starting and
stable techniques that can be easily implemented to cal-
culate the solution to different problems. The main
drawbacks of the Runge-Kutta methods are that they take
longer time to calculate solutions than other multistep
methods with equivalent precision, and it is difficult for
them to get accurate global estimates of the truncation
error [35]. To overcome these drawbacks, a stochastic
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metaheuristic approach with artificial neural networks is
developed, which is free of a gradient and does not require
any prior information about the problem. The majority of
metaheuristic techniques are inspired by natural, physical,
or biological processes and make use of a variety of op-
erators to mimic the fundamental behavior. The harmony
between exploration and exploitation is a recurring subject
in all metaheuristics.

In recent times, artificial neural network (ANN)-based
stochastic algorithms with global and local search opti-
mizers have been designed to solve differential equations
representing physical phenomena including flow in a
circular cylindrical conduit via electrohydrodynamics
[36], a model of an immobilized enzyme system that
follows the Michaelis-Menten (MM) Kkinetics for a
microdisk biosensor [37], flow of Johnson-Segalman fluid
on the surface of an infinitely long vertical cylinder [38],
and beam-column designs [39]. The abovementioned
techniques motivate authors to design a new soft com-
puting algorithm, the LeNN-WOA-NM algorithm, to find
approximate series solutions using Legendre polynomials
for the model presenting the prey-predator system with
immigrant prey. The salient features of the paper are
summarized as follows:

(i) A mathematical model for a prey-predator system
with immigrant prey is formulated and analyzed to
study the influence of variations on the growth rate,
force of interaction, and the catching rate of local
and immigrant prey.

(ii) Artificial neural network-based weighted Legendre
polynomials are used to construct the model of
approximate solutions for the prey-predator model.
A fitness function based on mean square errors is
designed to assess unknown parameters with the
help of global search ability of whale optimization
and a local search mechanism of the Nelder-Mead
algorithm.

(iii) The suggested technique can result in adequate
solutions for nonlinear hard problems for which no
exact algorithm exists that can solve them in a
reasonable amount of time.

(iv) Performance of the proposed algorithm is validated
in terms of absolute errors, mean absolute deviation,
Theil’s inequality coefficient, Nash-Sutcliffe effi-
ciency, and error in Nash-Sutcliffe efficiency.

(v) Approximate solutions, convergence of fitness, and
performance measures obtained by the LeNN-
WOA-NM algorithm for prey-predator systems
with immigrant prey are shown through different
graphs and tables, which shows the dominance and
robustness of the proposed algorithm in solving
real-world problems.

(vi) Unlike most classical methods, the LeNN-WOA-
NM algorithm requires no gradient information
and therefore can be used with nonanalytic, black-
box, or simulation-based objective functions to
approximate complex problems.
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2. Problem Formulation

Goteti developed the mathematical model for a prey-
predator system with immigrant prey to understand the
interaction and communication between predators and
immigrant prey. The model is assumed to follow mass action
theory and consists of prey population density, which is
defined as follows:

N(t)=X()+S(), (1)

where S(t) and X (¢) denote the population density of local
and immigrant prey, respectively. Population density of the
predator is denoted by Y (t).

The following assumptions are used in formulating the
mathematical model for the prey-predator system with
immigrant prey:

(i) In the presence of a predator, the population of prey
is classified into two subcategories named local prey
S(t) and immigrant prey X (¢).

(ii) In absence of the predator, the population growth of
local prey logistically increases with an intrinsic
growth rate «; with environmental carrying ca-
pacity denoted by k;.

(iii) With availability of the local and immigrant prey
population, the population of the predator grows
logistically with growth rates ¢, and c,, while suf-
fering loss of populations is denoted by y; and y,.

(iv) Immigrant and local prey can reproduce, and
therefore, it is assumed that birth rates should be
positive. The growth rate of immigrant prey in-
creases at the rate «, with environmental carrying
capacity denoted by k,.

(v) Itis assumed that immigrant prey is a natural choice
of predators. 8, and f3, denote the positive and
negative force of interaction between local and
immigrant prey.

(vi) Itis assumed that the local prey and immigrant prey
are caught by the predator at the rate of y; and y,,
respectively.

A mathematical model for a prey-predator system with
immigrant prey is given by the following system of differ-
ential equations:

ds S
= S((xl —OL) —B,SX +7,8Y =0,

dt k,
(2)
dx a, X
T X(oc2 - ;—2) + B,8X +y,XY =0,
dy
E—CISY—CZXY+y1Y+y2Y2 =0, (3)
with initial populations
S=8,X=X,Y=Y, at t=0. (4)

3. Approximate Solutions and Weighted
Legendre Polynomials

The Legendre polynomials are denoted by L, (t), where n
denotes the order of Legendre polynomials. These polyno-
mials constitute the set of orthogonal polynomials on
[-1,1]. The first eleven Legendre polynomials are given in
Table 1. High-order Legendre polynomials are generated by
the following recursive formula:

L, ()= ﬁ [(@n+ DL, () -nL_, (. (5

We consider an approximate series solution for equa-
tions (2)-(4) representing the prey-predator model with
immigrant prey as follows:

34
Sapprox () = D C,L, (v, (1) +6,),
n=1

68
1 Xapprox () = Y. CuLy (¥ (D) +6,), (6)

n=35

102

Yapprox (1) = z CaLn (l//n (1) + gn)’

n=69

where (,, y,, and 0, are unknown parameters.
Since nth order continuous derivatives of system (6)
exist, we consider the first derivative of system (6) as follows:

d 34
E (Sapprox) = Z {nLln (l//n (t) + 9,,)’
n=1
d 68
1 3 Kappron) = 2 Gl (v (6) +6,), (7)
n=35
d 102 ,
& (Yapprox) = z (nLn (V/n (1) + Gn),
L n=69

and we plug equations (6)-(7) in governing ordinary dif-
ferential equations. Equations (2)-(4) will be transformed
into an equivalent algebraic system of equations that can be
solved for unknown parameters (,, v,, and 6, using the
LeNN-WOA-NM algorithm.

4. Fitness Function Formulation

The mean square error (MSE)-based fitness function for
solving the prey-predator model for equations (2)-(4) can be
written as follows:

Minimizee = ¢, + &, + &5 + &, + &5 + &, (8)
where €, to ¢, are the fitness-based errors for equations

(2)-(4) along with the initial conditions and are given as
follows:
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TaBLE 1: Eleven Legendre polynomials with an independent variable ¢.

n L,(t)

0 1

1 t

2 1/2(3t> - 1)

3 1/2(5t3 - 3t)

4 1/8(35t* — 30t + 3)

5 1/8(63t> — 70t> + 15¢)

6 1/16(231£° - 315¢* + 105¢% - 5)

7 1/16 (429t7 — 693t + 315t> — 35¢)

8 1/128 (6435t% — 12012t° + 6930t* — 1260t% + 35)

9 1/128 (12155¢t° — 25740t7 + 18018t> — 4620t + 315¢)
10 1/256 (4618910 — 109395t + 90090t° — 30030t + 3465t> — 63)

i 1 & /ds,
slzﬁz<dt_sn<“l_

1 & /dx a, X ?
& :Nn:%( dtn_Xn<‘x2_ 22n>+ﬂzsnxn+y2xnyn) >

1 % dy,
Je o2 _
TN &\ at

S g
- n>_ﬂlsnxn+ylsnyn> >
ky

2
CISnYn - CZXnYn + xulyn + AuZYi> >

&, = (S, - 0.5)%,
2
& = (X, - 0.5)7,
2

| & = (Y, —0.5)".

©)

5. Optimization Network

5.1. Whale Optimization Algorithm. The whale optimization
algorithm is a nature-inspired metaheuristic algorithm
designed by Mirjalili and Lewis [40]. The working strategy of
WOA is inspired by foraging behavior of humpback whales.
The humpback whales chase prey or krill by swimming
around them in a molded way as shown in Figure 1. The
mathematical model of each phase is explained below.

5.1.1. Exploration Phase. Humpback whales encircle prey
for hunting. Equations (10) and (11) mathematically model
this behavior as follows:

E=C.Z 0-Zw)| (10)

Z (t+1)=Z (t)-A-D, (11)

where t denotes the current iteration, Z* has provided the
best solution so far, and D gives the location of humpback
whales to prey at each step. A and C are coeflicient vectors
which are defined as follows:

FiGure 1: Unique bubble-net feeding method and spiral moment
for updating the position of humpback whales.

A=23-7-3, (12)
C=2.7. (13)

where r € [0, 1] is an arbitrary nominated vector. The value
of a reduces from two to zero during exploration as well as in
the exploitation phase. During helix-shaped movement, the
distance between prey and the humpback whale is given as
follows:

Z(t+1) =D " cos@al)+ Z (t), (14)

where D/ represents the location of the ith whale to the prey
and is defined as follows:
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D =[Z -Zw)| (15)

Furthermore, b denotes the state of the logarithmic helix
and /€ [-1,1] is any arbitrary number. The shrinking
surrounding technique of humpback whales during con-
tracting loop is summarized as follows:

g - .
. Z(t)-A-D if p<0.5,
Z(t+1)=4 _, . s
Dr.e” - cos(2nl)+ Z (t) if p=0.5.
(16)

5.1.2. Exploitation Phase. In the exploration phase
(searching for prey), the heterogeneity of the vector A is
utilized. If |A| > 1, the position of the search agent is updated,
and the entire mechanism is modeled by the following
equations:

— *

D=C-Z.,-Z (17)
Z(t+1)=Z,4-A-D, (18)

where ﬁ is an arbitrary position vector taken from the
current population.

Figure 2 shows the flowchart of the WOA. It can be seen
that the WOA creates a random initial population from
candidate space and evaluates it using an error-based fitness
function when the optimization process starts. After finding
the best solution, the algorithm repeatedly executes the
following steps until ending criterion is achieved.

5.2. Nelder-Mead Algorithm. A Nelder-Mead (NM) algo-
rithm is a direct search method also known as a downbhill
simplex method developed by Nelder and Mead in 1965 to
solve different problems without any information about the
gradient [41]. NM is a single path following a local search
optimizer that can find good results if initialized with a
better initial solution. A simplex consisting of n + 1 vertices
is set up to minimize a function f with dimensions n [42].
The NM algorithm generates a sequence of simplices by
following four basic procedures, namely, reflection, ex-
pansion, contraction, and shrink. Further details about the
NM algorithm can be found in [43]. Figure 2 shows the
working procedure of the NM algorithm.

In recent times, the most successful and effective trend in
optimization is the action of integrating components from
different methods. The foremost motivation behind the
hybridization of diverse algorithmic ideas is to acquire better
performing systems, which exploit and coalesce benefits of
different techniques. Therefore, in this study, we have
combined the global and local search optimization algo-
rithms to achieve more efficient and robust solutions. The
hybridized working procedure of the designed LeNN-WOA-
NM algorithm is illustrated in Figure 2.

6. Performance Measures

To examine the performance of the proposed algorithm,
performance indices are defined in terms of mean absolute
deviation (MAD), Theil’s inequality coefficient (TIC), and
error in Nash-Sutcliffe efficiency (ENSE). Mathematical
formulation for S0 (1), Xypprox (£), and Y0, () of the

predator and prey model in the case of MAD, TIC, and
ENSE is presented as follows:

S T
; Z|S(tl) - Sapprox (ti)|
i=1
1 n
[MADg, MADy, MADy] = | - X () = Xappron (8] | - (19)
i=1
1 n
; Z|Y (ti) - Yapprox (ti)|
L™ =1 i

\/(1/1’1) Z?:l (S (ti) - Sapprox (ti))2

VW T, (S(E))2 + (W) X2, (Suppeon (85))

[TICs, TICy, TICy] =

\/(1/}1) Z?:l (X(tl) - Xapprox (ti))z

(20)

\/(l/i’l) Z?:l (X (ti))2 + \/(l/n) 2111 (Xapprox (ti))z

\/(1/1’1) Z?:l (Y (ti) - Yapprox (ti))2

L \/(1/1’1) Z?:l (Y (ti))2 + \/(1/1’1) Z?:l (Yapprox (ti))2 J
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WOA-NM AIGORITHM

WOA (Global search)

NM (Local search)

Start

Starts with the
simplex generated
using best solution

obtain in WOA

Initialize the data

Calculate the fitness
of each agent and

select the best search Fitness Evaluation

agent
No Use Eq (17) to update L
Ifp<0.5 the position of current Stz o
search agent
Yes No Yes
No Use Eq. (.13) to update . Substitute
If[Al <1 the position of current Shrink -
one point
search agent
Yes
Use Eq (10) to update Minimum Value
the position of current attained
search agent No
No
Ist=t+1
Display best result

Population of n best
solution is obtained End

Fitness Absolute

Unknown
parameters

Approximate

Value Errors Solution

F1GURE 2: Graphical illustration of the working steps of the whale optimization algorithm and Nelder-Mead algorithm for the training of
neurons in the LeNN architecture and the minimization of fitness functions.
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[NSEg, NSEx, NSEy | =

[ENSE, ENSEy, ENSEy] = [ 1 - NSEj,

where n shows total input grid points. The values of per-
formance measures of MAD, RMSE, and ENSE should be
equal to zero for perfect modeling, while NSE should be

GMADy,GMADy,GMADy | =
s X Y

GTIC,, GTIC, GTICy] =
S

-

==

=| =

1

Z?:I (S (ti) - Sapprox (ti))z
¥ (S) - 1)

s1(t) =3 ()

Y (X (1) = Xoppron (1))

St (X(0) - X0(e))

X1 (t;) =% ix(ti) ,

1 (Y (1) = Yappron (ti)z)z Yr(t) = Zn:Y(ti)
i (V) - v (e) tE

~ NSEy ],

1 - NSEy, 1

2 31500 = Sy (0 l)

1
//
AN

iD=
/
S| =
I

'Y (t ) Yapprox (t |

™=

1
n

M=

1

|X(t ) Xapprox (t ‘) >

<
Il
—

R \/(1/”)271(5(1‘)_ approx(t'))2
S\ W) T (S(8)) + W) 2 (Suppron (1))

*

~T

)

V) X (X)) + ) T (Xoppro (£))

\/(1/1’1) Z?:l (Y (ti) - Yapprox (ti))2

)

( \/(1/”) Yt X(t) - approx(t'))2

\/(l/n) Zl 1 i))Z + \/(l/l’l) Z?:l (Yapprox (ti))

(21)

(22)

equal to 1. The global versions of MAD, RMSE, and ENSE
for the given mathematical model of the prey-predator
system are formulated by given equations:

(23)

(24)



[GNSE,, GNSEy, GNSE, | =

Discrete Dynamics in Nature and Society

1 i 1 Z?:l (S (ti) B Sapprox (tf)z)z
=i s (s(t,.) - s,(ti)>

1 ER: 1 Y (X (t;) - Xapprox (tf))2

S1(t) = Y 5(6)

[GENSEg, GENSEy, GENSEy] = [1 - GNSEg, 1 — GNSEy, 1 - GNSEy |,

where R denotes the number of independent runs. Global
fitness (GFIT) is defined as the mean of fitness values
attained in independent runs. Mathematically, GFIT is given
as follows:
1 &
GFIT =— . 27
2 & (27)

r=1

7. Result and Discussion

The numerical solutions of the prey-predator system with
immigrant prey under the influence of variations in various

)| )= Y x(t) ] . (25)
AL L (xe) - xw)
1- S (7 (1) = Yapprox (ti)z) Yi(t) = 1 Z Y (t;)
A (Y- rw) S
(26)

ode45 and the homotopy perturbation method [44]. Six
problems of the prey-predator model are considered for
different cases depending on values of coeflicients, i.e,
&y, &y, B15 By V1> and y,. A graphical abstract of the paper is
shown in Figure 3.

7.1. Problem I: Influence of Variations in o, on the Prey-
Predator Model. In this problem, the effect of variations in
the intrinsic growth rate of local prey «a; on population
density is discussed. An error-based fitness function along
with initial populations is given as follows:

parameters are investigated with the proposed methodology. Minimizee =€, + €, + €5 + €, + €5 + €, (28)
The exact solution for these nonlinear models is not known,
5o the comparative study is conducted with MATLAB solver ~ Where €, to € are defined by
1 & /ds, @S, g
&=y n; T sn(oc1 - ¥> -(0.2)8,X,, +(0.01)S,Y, | ,
1 & (dx, (0.2)X, 2
&= ;5 ( e Xn<(0.2) L +(0.1)S,X,, +(0.9)X,Y, | ,
1 192 /4y 5 2
19=% D ( dt" -(0.9)S,Y, - (0.8)X,Y, +(0.01)Yn+(0.01)Yn) , (29)
n=69
2
ey = (S, —0.5)%,
es = (X, - 0.5)%,
2
| e = (Y, —0.5)".

Five cases are considered, depending on the value of «;.

Case I: &, = 0.06

Case II: a; = 0.08
Case III: a; = 0.10



Discrete Dynamics in Nature and Society 9

[ Mathematical model of Prey Predator System with Immigrant Prey )

?l v \

Population density of Population density of Population density of
local prey S (t) Immigrant prey X (t) Predator Y (t)

A 4

of le

Parameters J

Ll

Variations Variations Variations Variations Variations Variations
ina, in B, in a, inf, 87, i

FIGURE 3: Graphical overview of the paper.

TasLE 2: Comparison between approximate solutions obtained by the LeNN-WOA-NM algorithm for the prey-predator system with the
homotopy perturbation method [44] for a; = 0.12.

; N X () Y (t)

HPO LeNN-WOA-NM HPO LeNN-WOA-NM HPO LeNN-WOA-NM
0.0 0.500000 0.50000000 0.500000 0.50000000 0.500000 0.50000000
0.2 0.521458 0.52145956 0.466762 0.46676321 0.590440 0.59114765
0.4 0.542942 0.54294366 0.427969 0.42797117 0.695777 0.69922187
0.6 0.564244 0.56424422 0.384329 0.38433104 0.817468 0.82687284
0.8 0.585155 0.58515597 0.337008 0.33701139 0.956844 0.97704917

1.0 0.605478 0.60547960 0.287606 0.28761008 1.115127 1.15310441
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TABLE 3: Approximate solutions obtained by the LeNN-WOA-NM algorithm for population density of local prey S (¢) under the influence of
the intrinsic growth rate of local prey «;.

t a =0.06 a, =0.08 a, =0.10 a, =0.12 a, =025

0.0 0.50000029 0.50000024 0.50000001 0.50000000 0.50000000
0.2 0.51530461 0.51734394 0.51940166 0.52145956 0.53504743
0.4 0.53020804 0.53441582 0.53866566 0.54294366 0.57158810
0.6 0.54451936 0.55101532 0.55759565 0.56424422 0.60943884
0.8 0.55806566 0.56695084 0.57598624 0.58515597 0.64838425
1.0 0.57069056 0.58205878 0.59365221 0.60547960 0.68819372

TABLE 4: Approximate solutions obtained by the LeNN-WOA-NM algorithm for population density of immigrant prey X (¢) under the
influence of the intrinsic growth rate of local prey «;.

t a =0.06 a; =0.08 a, =0.10 a, =0.12 a, =025

0.0 0.49999979 0.49999997 0.49999999 0.50000000 0.50000000
02 0.46679789 0.46677660 0.46677363 0.46676321 0.46668320
0.4 0.42814941 0.42808998 0.42803011 0.42797117 0.42757426
0.6 0.38480296 0.38463971 0.38448897 0.38433104 038327075
0.8 0.33796050 0.33764489 0.33732977 033701139 0.33485636
1.0 0.28923060 0.28868911 0.28815986 0.28761008 0.28389875

TaBLE 5: Approximate solutions obtained by the LeNN-WOA-NM algorithm for population density of the predator Y (¢) under the
influence of the intrinsic growth rate of local prey «;.

t a, = 0.06 a; = 0.08 a, =0.10 a, =0.12 a, =0.25
0.0 0.49999991 0.49999919 0.49999999 0.50000000 0.50000000
0.2 0.59011694 0.59022292 0.59032756 0.59047007 0.59114765
0.4 0.69423291 0.69474410 0.69525628 0.69577735 0.69922187
0.6 0.81332517 0.81468984 0.81607383 0.81746843 0.82687284
0.8 0.94811217 0.95097827 0.95389198 0.95684491 0.97704917
1.0 1.09907344 1.10432082 1.10967602 1.11512837 1.15310441

TaBLE 6: Absolute errors obtained by the LeNN-WOA-NM algorithm for population density of local prey S(¢) under the influence of the
intrinsic growth rate of local prey «;.

t a, = 0.06 a, = 0.08 a, =0.10 a, = 0.12 a, = 0.25
0.0 4.25E-10 9.71E-11 4.27E-11 9.01E-11 3.05E-13
0.2 3.87E-10 3.87E-11 1.80E-09 8.37E-11 9.38E—-14
0.4 599E-11 1.16E-10 1.85E-09 3.57E-11 3.30E-13
0.6 1.46E-10 1.33E-10 2.21E-09 3.05E-11 1.05E-13
0.8 1.37E-10 215E-11 3.80E-09 7.04E-11 1.82E—-12
1.0 9.93E-11 2.11E-10 6.82E-11 6.49E-11 4.90E - 14

Case IV: ay = 0.12 comparison between approximate solutions obtained by the

Case V: a; = 0.25 LeNN-WOA-NM algorithm for the prey-predator system

with the homotopy perturbation method [44] for «; = 0.12
is illustrated in Table 2. Approximate solutions for pop-
ulation densities of local prey, immigrant prey, and predator
are given in Tables 3-5, respectively. Absolute errors are

The LeNN-WOA-NM algorithm is applied to prey-
predator model equation (29) to study the influence of
variations in the intrinsic growth rate of local prey. A
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TABLE 7: Absolute errors obtained by the LeNN-WOA-NM algorithm for population density of immigrant prey X (t) under the influence of
the intrinsic growth rate of local prey «;.

t a, = 0.06 a =0.08 @ =0.10 @ =0.12 a =025
0.0 333E-11 1.68E - 09 9.24E-12 3.85E—12 3.05E-13
0.2 5.66E— 12 7.98E-11 4.55E-10 3.72E-12 9.38E- 14
0.4 440E-11 4.29E-10 4.03E-10 1.09E-11 330E-13
0.6 6.22E—11 2.53E-09 515E—10 3.52E-12 1.05E-13
0.8 2.46E—12 3.20E-09 1.24E - 09 1.07E-12 1.82E-12
1.0 2.09E-11 1.17E-10 5.55E—11 4.44E-12 4.90E - 14

TaBLE 8: Absolute errors obtained by the LeNN-WOA-NM algorithm for population density of the predator Y () under the influence of the
intrinsic growth rate of local prey «;.

t a; = 0.06 a; = 0.08 a, =0.10 a; = 0.12 a, =025
0.0 217E-12 4.68E—11 5.32E-10 1.16E - 10 3.05E—13
0.2 3.04E-11 1.21E-10 3.32E-10 2.52E-11 9.38E—14
0.4 791E-11 7.16E—12 591E-10 1.83E-10 3.30E-13
0.6 712E-11 1.43E-10 5.80E—12 1.36E—10 1.05E—13
0.8 217E-18 2.46E—12 241E-10 3.16E-12 1.82E—12
1.0 1.60E—10 4.16E-12 1.40E—10 7.66E—11 4.90E - 14

N0}

100 10

Absolute Errors

Absolute Errors

107 107

X () Y(©)

Absolute Errors
3

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03

Case Il Case 111

04

()

L= — CaselV

(©

FIGURE 4: Absolute errors obtained by the LeNN-WOA-NM algorithm under the influence of variations in the intrinsic growth rate of local
prey on population densities of the prey-predator model. (a) Population density of local prey. (b) Population density of immigrant prey. (c)

Population density of the predator.

presented in Tables 6-8 and are graphically illustrated in
Figure4. Table 9 represents the statistics of global values of
performance indicators during 100 independent trails.
Figure 5 shows the convergence of the fitness value. It can be
seen that the fitness value for each case lies around 107° to
1071°, The percentage convergence of the fitness value and
performance indicators during multiple runs is shown in
Table 10. Trained neurons in the LeNN structure for
obtaining best solutions are shown in Table 11. From Fig-
ure 6, the following conclusions are drawn:

(i) Population density of local prey has a direct relation
with the intrinsic growth rate of local prey

(ii) Population density of immigrant prey has an inverse
relation with the intrinsic growth rate of local prey

(iii) Population density of the predator varies directly
with the intrinsic growth rate of local prey

7.2. Problem II: Effect of Variations in 3, on the Prey-Predator
Model. In this problem, the effect of variations in the
positive impact of force of interaction f3; between local and
immigrant prey on population densities of the prey-predator
model is discussed. An error-based fitness function along
with initial populations is given as follows:

Minimize€ = €, + €, + €; + €, + €5 + €, (30)

where €, to ¢, are defined as follows:
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Figure 5: Comparison between the box plots and the convergence graph of fitness evaluation over 100 independent runs for the prey-
predator model with variations in the intrinsic growth rate of local prey. (a) Box plots for fitness evaluation of the prey-predator model with
variations in «; (b) Convergence of the fitness value of the prey-predator model with variations in «;.

TaBLE 10: Convergence analysis for variation in «; on the prey-predator model.

Cases FIT MAD TIC ENSE
<1077 <107 <107® <107 <107* <107 <107® <107* <107° <107® <107® <1077 <1078
I 98 75 25 5 100 99 35 100 99 61 39 22
11 80 30 3 0 100 100 49 100 100 56 68 36 8
S(t) III 78 34 2 0 100 94 41 100 99 63 74 33 3
v 81 37 4 0 100 99 43 100 100 68 83 44 16
A% 77 27 5 0 100 97 42 100 100 66 87 60 27
I 81 37 13 3 96 44 2 98 54 3 65 23 6
II 85 41 11 0 100 43 1 100 100 58 71 20 3
X(t) III 74 41 17 1 97 39 0 100 98 52 64 24 8
v 86 47 16 4 100 46 4 100 100 55 73 37 9
A\ 80 47 12 1 98 43 3 100 99 57 68 26 6
I 80 41 16 3 100 95 21 99 57 9 47 14 7
11 86 47 9 1 100 98 28 100 68 5 46 13 0
Y() III 78 36 8 2 100 91 20 99 57 4 45 10 0
v 76 42 9 3 100 94 26 100 60 8 44 10 6
A\ 70 29 8 1 100 95 21 100 57 7 41 16 1
1 & /ds, (0.12)S ?
e =— Y [—=2-58 ((0.12) - —=22 ) —(B,)S, X, +(0.01)S,Y, |,
1 N = ( dt n ( ) 50 (ﬁl) n<*n ( ) n-n
2
1 & /dx 0.2)X
€= — “x (02 -O2%) L onys x, + 09)X,7, ),
N &\ dt
1 2 rqy 5\
Ve == > (52— (0.98,Y, - (0.8)X,Y, +(0.01)Y, +(0.0D)Y, | , (31)
N &\ dt
e, = (S, - 0.5)%,
es = (X, - 0.5)%,
[ &6 = (Yo - 0.5)%.
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TaBLE 11: Unknown parameters obtained by the LeNN-WOA-NM algorithm for the prey-predator model under the influence of variations
in the intrinsic growth rate of local prey «;.

S(t) X(t) Y (t)

(n Y en (n Y en (n Y Gn

0.24298626 —0.2668655 0.09328582 0.17524653 0.0657111 0.45518402 0.62050563 0.107119458  —0.184535

0.12478022 0.39026984 0.13404058 -0.1205176 —0.504835 —0.152368 0.29193615 -0.06286814 0.043174485
0.15946384 0.47205052 0.04884412 -0.0142591 -0.0346883 0.98886623 0.09715236 0.181551811 0.868732734
0.01120683 0.24610287 -0.2837988 0.14946792 0.16097393 —0.074499 0.46391737 -0.16073035 0.113397979
—0.022669 0.0943905 0.0992974 0.34191594 0.58292848 0.00959628 0.06797262 -0.11244358 0.013444379
-0.3216158 0.1410155 0.18325041 0.03228638 0.70287879 0.12845754 -0.1361841 0.158063474 -0.05836861
0.48768209 0.0293772  0.17094612 -0.0018354 0.14860632 0.65130564 0.67663964 0.314984108 0.261128949
0.08329406 0.04117897 —0.0205859 -0.1064367 —0.1326281 —0.0481534 -0.0486244 -0.33359642 0.564727586
0.87211207 -0.0743821 0.18882808 0.69221376 -0.1213543 0.01584571 0.00730463 -0.07959673 0.248981123
0.74644658 0.01575884 0.17044653 0.13151592 0.13622307 0.26101806 -0.1087744 -0.09419355 -32.2098458
0.26313561 0.09923455 -0.0506162 0.01009165 0.13795634 0.05968636 0.42506235 0.302798399 0.094716386

0.33259121 -0.3657449 0.21062276 0.25900442 0.15918437 0.41026629 0.29040796 -1.70842597 -0.22039024
0.17889024 -0.0431343 -0.6411116 0.23110108 0.42625725 0.08496042 -0.0683335 -0.01537247 0.252533232
0.07297637 0.1667513 —0.0811545 -0.2048892 -0.1120065 -0.0826385 —-0.6647359 -0.16394699 -0.00997236
—-0.1365861 0.47090897 -0.0639777 3.43E—-05 0.1546024 -0.178235 0.4646494 0.190521738 0.195440966
—-0.007358 0.13102291 0.24249896 -0.1088503 -0.1671249 0.16954851 -0.7315874 -0.03059029 -0.07106493
0.43362447 —0.155685 0.44563542 0.22079963 -0.6459135 -0.0878247 -0.5471167 -0.36068591 -0.90966495
—-0.4072594 0.43108895 -0.0973015 0.00859421 0.19519171 0.05831302 0.00294865 -0.03440871 0.372338435
—-0.015323 -0.0127997 -0.079715 0.41948941 -0.2878455 0.21735868 —0.839503 —0.04815065 0.025011228
0.26217328 0.20028492 0.2222801 -0.1630391 0.17520391 0.0974704 0.34891726 -0.13212935 -0.1419514

0.09242525 0.19371262 -0.1574267 0.34189851 0.28434772 0.08494461 0.46694404 -0.12329874 39.39674102
0.13225195 -0.0846055 —0.0281568 0.14217372 0.31887231 0.42910377 0.26716207 0.088173159 0.085561799

0.08792719  —0.02998  1.2174462 0.69165686 0.06374932 -0.0488322 0.11491028 0.090075909 -0.32604325
0.11610049 1.56406569 0.0795106 —0.0902964 0.09097774 -0.1017928 0.06371619 0.492255996 0.406557357
0.03262421 -0.2983161 0.4361223 0.71023061 0.27130756 0.53574029 0.74546663 0.731579954 -0.11925334
—0.8534256 0.27102507 0.09970798 -0.4630868 0.19588223 0.25655668 -0.1733402 0.4924538 —0.02738845
—-0.4373573 0.06892556 0.11113751 0.22424973 0.18678342 -0.0095592 0.13860986 0.342147207 -0.12816846
0.85585046 —0.0086572 0.70804298 0.16532453 0.46387591 0.19167055 -0.4155845 0.358174513 0.519586436
0.4731327 —0.0131084 0.53818072 0.00107541 -0.2371714 0.21538868 0.27067076 0.007722887 —0.11651201
—-0.1730569 -0.0542656 1.00463015 0.33304716 0.42111507 0.54031591 -0.0982948 -0.30964889 0.225264957
0.01950551 0.3195719 -0.1781725 0.00222254 -0.0527906 0.33879162 0.14536108 0.185060402 0.022547703
—-0.2758316 0.27171296 -0.0428651 0.07565986 0.29894632 -0.1182305 0.19684946 0.626442716 0.062105445
0.28574702 -0.2628512 0.06102257 0.04403502 0.22414615 0.40364307 0.55206157 0.429077344 -0.00256072

0.25369644 -0.4777306 -0.8361847 -0.0621264 0.27351167 -0.6065099 0.68147388 -1.43275825 -0.10932386
0.06991497 -0.1139906 -0.4735192 -0.5854725 -0.1661107 0.07770566 -0.2460336 0.052462785 0.191077917
—-0.2351744 -0.4870632 -0.0716903 -0.2556044 9.83E-05 0.02156199 -0.3140772 -0.4208503 —0.13182798
—0.0489805 0.03121692 -0.2705836 -0.2176759 -0.3388043 -0.1570093 -0.2947292 0.000861238 0.091135849
0.12066069 0.00528409 -0.1876653 0.18129324 -0.2476741 -0.0843931 0.33223353 0.037877215 0.552486838
—0.2917694 0.09885985 —0.655587 —0.5821936 0.02484774 -0.2678441 -0.1209825 0.019527337 -0.2041232
0.2180106 0.10156035 —0.0839076 -0.0408137 0.20227179 0.08783601 -1.1472874 0.088467804 —0.1006823
—0.3594382 -0.0329465 -0.0085748 -0.076245  0.071221 -0.2677479 -0.6912671 0.072673015 -0.60129414
0.12647778 —0.0321146 -0.1925977 -0.1982251 -0.1306954 -0.4290151 -0.4035842 -0.01597822 -0.09388657
-0.7218529 -0.127281 -0.253891 -0.520109 -0.148345 -0.1301849 0.45904036 -0.14555693 0.210878261
—0.0415557 -0.0626802 -0.0135924 -0.2376142 -0.2602334 0.31718881 —0.0300309 -0.07780308 0.119273654

0.11535169 0.09331411 0.06459598 0.13708955 0.02523131 0.14440187 0.53678594 0.289671331 0.265496244
1.2018728 0.66566882 —0.0195754 0.55314202 0.20920125 0.53535701 0.3092534 0.73571248 0.320987524
0.20319881 -0.8256885 1.09540267 0.09636349 0.12623634 -0.1361461 0.29987708 -0.14730456 —0.1852485
0.0272977 0.50122086 -0.2264851 -0.0410539 0.34541103 -0.1572514 0.88612589 0.219231183 0.296041826
0.13436663 0.09124816 0.31502947 0.03670816 -0.2842128 0.28047538 0.30493881 0.228728298 -0.83846218
0.59090535 0.2219209 0.35836933 0.13287532 0.07279467 0.5746159 0.05242013 0.22070811 0.059736502
0.57147768 0.17459027 0.74963519 0.96594705 0.18063006 -0.2505621 0.11584087 -0.02191061 0.160702925
0.14083549 0.5151422 0.06170226 0.18189487 0.19412865 0.22132998 0.9645296 —0.15578224 0.422131366
—0.0987012 -0.3447324 0.30547697 0.22752865 0.56631904 0.08438966 0.0392108 —0.15270349 0.520225963
0.05337954 0.38978704 0.32410767 0.04067255 0.40603952 0.21526779 -0.0360576 -0.00016971 -1.80718751
0.16882868 0.42247401 0.06696436 -0.0534127 0.38690363 0.40861018 -0.1032548 0.039874898 0.21583529
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FiGUure 6: Comparison between solutions obtained by the LeNN-WOA-NM algorithm under the influence of variations in the intrinsic
growth rate of local prey on population densities of the prey-predator model. (a) Approximate solutions for population density of local prey.
(b) Approximate solutions for population density of immigrant prey. (c) Approximate solutions for population density of the predator.

TaBLE 12: Approximate solutions obtained by the LeNN-WOA-NM algorithm for population density of local prey S (¢) under the influence
of f;.

t B, = 0.05 B, =0.10 B, =0.15 B, =0.20 B, =0.25

0.0 0.49999811 0.50000565 0.49999994 0.50000001 0.49999994
0.2 0.51394192 0.51644576 0.51893794 0.52145440 0.52399164
0.4 0.52796160 0.53293741 0.53790411 0.54293644 0.54801843
0.6 0.54203480 0.54936883 0.55674985 0.56424287 0.57183842
0.8 0.55610994 0.56564641 057531194 0.58515293 059516204
1.0 0.57009452 0.58167704 0.59345033 0.60547330 0.61773135

TaBLE 13: Approximate solutions obtained by the LeNN-WOA-NM algorithm for population density of immigrant prey X (t) under the
influence of §;.

t B, = 0.05 B, =0.10 B, =0.15 B, =0.20 B, =0.25

0.0 0.49999992 0.50000514 0.49999988 0.50000001 0.49999969
0.2 0.46680042 0.46679364 0.46677626 0.46676260 0.46673440
0.4 0.42817965 0.42812547 0.42804193 0.42797008 0.42789521
0.6 0.38488898 0.38470693 0.38451903 0.38432922 0.38413261
0.8 0.33810661 0.33775597 0.33737496 0.33701285 0.33663106
1.0 0.28943501 0.28883454 0.28823065 0.28760701 0.28697657

TaBLE 14: Approximate solutions obtained by the LeNN-WOA-NM algorithm for population density of the predator Y (¢) under the
influence of §;.

t B, =0.05 B, =0.10 B, =0.15 B, =0.20 B, =0.25

0.0 0.50000032 0.49999215 0.50000005 0.50000003 0.49999973
0.2 059004112 0.59016271 0.59030647 0.59044066 0.59057741
0.4 0.69390817 0.69451560 0.69516439 0.69578033 0.69640936
0.6 0.81260140 0.81419598 0.81584261 0.81746743 0.81912365
0.8 0.94690117 0.95016524 0.95348538 0.95684239 0.96025853
1.0 1.09742754 1.10322425 1.10912457 1.11513013 1.12125476
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TaBLE 15: Absolute errors obtained by the LeNN-WOA-NM algorithm for population density of local prey S (t) under the influence of f3;.

t B, = 0.05 B, =0.10 B, =0.15 B, =0.20 B, =0.25
0.0 1.38E—08 1.77E—09 1.10E - 09 1.24E—09 1.O4E—10
0.2 7.06E — 09 1.51E - 09 8.29E-10 9.85E—10 347E-10
0.4 421E-09 333E-11 2.05E—10 2.81E-10 1.92E-10
0.6 4.01E-09 243E-10 2.77E-10 2.79E—-10 2.07E—-09
0.8 1.44E- 08 219E-10 6.01E- 10 4.68E—10 1.57E—09
1.0 213E-08 4.83E-10 1.02E—09 3.60E — 10 7.30E - 10

TABLE 16: Absolute errors obtained by the LeNN-WOA-NM algorithm for population density of immigrant prey X (¢) under the influence
of B;.

t B, = 0.05 B, =0.10 B, =0.15 B, =0.20 B, =0.25
0.0 1.39E—09 3.44E-11 3.07E—10 1.07E—11 2.30E—-09
0.2 2.29E-09 435E-09 5.04E - 10 5.02E—12 424E-10
0.4 7.01E—10 5.98E - 10 6.77E—10 9.67E—11 1.96E—10
0.6 141E-11 2.14E-10 4.69E—10 6.77E-11 1.29E—-09
0.8 1.61E - 09 221E-10 8.72E—12 7.39E-11 1.42E-09
1.0 1.01E — 09 2.03E—-09 1.13E—- 09 3.02E-10 8.42E—11

TABLE 17: Absolute errors obtained by the LeNN-WOA-NM algorithm for population density of the predator Y (¢) under the influence of f3;.

t B, =0.05 B, =0.10 B, =0.15 B, =0.20 B, =025
0.0 3.95E-11 3.48E-09 4.48E-09 1.83E-10 4.83E-10
0.2 8.22E-10 1.51E - 09 3.01E—-09 319E-10 3.25E-10
0.4 3.03E-11 1.96E - 10 1.20E - 09 2.60E—-11 5.34E-10
0.6 9.03E-10 3.60E— 10 2.64E - 09 537E-10 8.30E—12
0.8 1.36E - 09 1.83E—-09 7.57E-10 5.75E—10 2.25E-10
1.0 3.84E - 09 7.37E— 09 1.40E - 09 9.52E—10 2.47E-10

Y (1)

10% 10*
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1000
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(a) () (©

FIGURE 7: Absolute errors obtained by the LeNN-WOA-NM algorithm under the influence of variations in 8, on population densities of the
prey-predator model. (a) Population density of local prey. (b) Population density of immigrant prey. (c) Population density of the predator.
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FiGgure 8: Comparison between the box plots and convergence graphs of fitness evaluation over 100 independent runs for the prey-predator
model with variations in force of interaction between local and immigrant prey. (a) Box plots for fitness evaluation of the prey-predator
model with variations in ;. (b) Convergence of the fitness value of the prey-predator model with variations in f3;.

Five cases are considered, depending on the value of f3;.

Case I: §; =0.05

Case II: 3, =0.10
Case III: 3; = 0.15
Case IV: 3, =0.20
Case V: 3, =0.25

Approximate solutions for the effect of variations in f;
on population densities of the prey-predator model are given
in Tables 12-14. Absolute errors in our solution for pop-
ulation densities are presented in Tables 15-17, respectively.
The solution of the design scheme overlaps the exact solution
with absolute errors that lie between 10~° and 107 !! as il-
lustrated in Figure 7. Figure 8 shows the behavior of fitness
evaluation for the prey-predator model under the influence
of f3;. Convergence analysis of performance measures is
given in Tables 18 and 19. Trained neurons obtained by the

dt

n=1

1 & /dx X
€, = ( ”—Xn(ocz—ain

LeNN-WOA-NM algorithm for different cases of Eq (31) are
shown in Table 20. From the solutions (see Figure 9), the
following conclusions can be drawn:

(i) The negative force of interaction between local and
immigrant prey has a direct relation with population
density of local prey and the predator, while pop-
ulation density is inversely related to f3,

7.3. Problem I1I: Effect of Variations in o, on the Prey-Predator
Model. In this problem, the effect of variations in the in-
creasing rate of immigrant prey a, on population densities of
the prey-predator model is discussed. An error-based fitness
function along with initial populations is given as follows:

Minimizee = €; + €, + €5 + €, + €5 + €, (32)

where €, to ¢4 are defined as follows:

34 2
€ = % (dS,, - sn<(o,12) - %) -(0.2)S,X, + (0.01)SnY,1) ,

2
) +(0.1)S,X,, + (0.9)XnYn> ,

ﬁn:?ﬁ dt 2
1e =t f (dY”—(09)S Y, - (0.8)X,Y, + (0.01)Y +(001)Y2)2 (33)
=N 2 @ 098~ 08X, + (000, +(0.00Y,
€4—(So_05)2’
es = (X, - 0.5)%
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TaBLE 19: Convergence analysis of population density of local, immigrant prey, and predator under the influence of variations in f3;.

FIT MAD TIC ENSE
Cases <10® <107 <100® <10”® <10* <10 <10 <10* <10 <10 <107 <10 <1077
I 89 55 16 0 99 83 6 100 91 35 71 38 4
II 87 61 25 6 100 84 10 100 94 29 73 39 7
S(t) 111 98 80 27 2 100 79 12 100 94 25 78 37 12
v 98 77 25 3 100 85 8 100 93 22 86 43 9
A 90 84 40 4 100 81 19 100 94 41 83 60 21
I 97 75 36 11 99 77 15 100 85 21 94 66 27
I 99 81 48 14 100 83 11 100 90 17 9 69 27
X () I 98 84 33 12 100 82 7 100 90 9 9 65 19
v 99 84 39 11 100 80 10 100 92 14 71 17 3
Vv 77 27 5 0 100 82 8 100 89 16 93 61 32
I 97 75 36 11 99 62 3 100 92 23 99 80 41
II 94 78 36 8 100 68 4 100 90 24 97 79 38
Y() I 81 37 4 0 99 65 5 100 87 20 80 49 9
v 97 74 34 7 99 67 4 100 90 21 81 43 11
Vv 77 27 5 0 100 97 42 100 100 66 87 60 27

Four cases are considered, depending on the value of a,.

Case I: &, = 0.05

Case II: a, = 0.10
Case III: «, = 0.15
Case IV: a, = 0.25

The LeNN-WOA-NM algorithm is used to optimize the
population densities of equation (33). Table 21 represents the
comparison between the Ranga-Kutta method and the
proposed technique LeNN-WOA-NM. A comparison be-
tween population density of local prey S(t), immigrant prey
X (t), and predator Y (¢) with variations in «, is shown in
Table 22. Statistics of absolute errors are given in Table 23
and graphically presented in Figure 10. The behavior of the

Unknown parameters achieved by the LeNN-WOA-NM
algorithm for the given problem are given in Table 26. From
solutions (see Figure 12), the following conclusion can be
drawn:

(i) Population density of local prey, immigrant prey, and
predator varies directly with an increasing rate of
immigrate prey a,

7.4. Problem IV. In this problem, the effect of variations in
the negative force of interaction between local prey and
immigrant prey on population densities of the prey-predator
model is discussed. An error-based fitness function along
with initial populations is given as follows:

fitness function for different cases is shown on boxplots as Minimize e = €, + €, + €; + €, + €5 + €, (34)
demonstrated in Figure 11. The mean values of the fitness
function lie around 1077 as shown in Tables 24 and 25.  where €, to ¢ are defined as follows:
' 1 & /ds, (0.12)8, 2
& =% ; (g = $,( (0.12) = == | = (02)8,X, +(0.01)S,Y,, | ,
1 & /dx (0.2)X 2
&= _ZSS< T Xn((o.z) - 72" +B,8, X, +(09)X,Y, |,
19~ D ( dt” -(0.9)8,Y,, - (0.8)X,Y, + (0.01)Y, + (0.0I)Yn) , (35)
n=69
2
ey = (S, —0.5)%,
2
e =(X,-05)7,

e = (Y, - 0.5)
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TaBLE 20: Unknown parameters obtained by the LeNN-WOA-NM algorithm for the prey-predator model under the influence of variations

in 3.

S(t) X (1) Y (1)
(ﬂ llln 9}1 (Vl l//}’l 671 (ﬂ Wn 6”
0.43006915 0.1953118 0.58526278 0.2039733 1.09461748 -0.3042383 0.45137375 0.613472621 0.21300391
—0.1817023 0.12967851 -0.2238481 -0.1299324 -0.2205129 -0.2434037 0.89383923 0.347571185 0.192691905
—0.1639676 -0.1906971 0.01654308 -0.2683275 0.21586942 -0.0650826 0.15826136 -0.38637064 0.544846185
0.6432707 -0.2243964 -0.0644709 -0.1415483 0.00139286 -0.1221445 0.21055624 -0.28460075 0.325283188
—0.063381 0.20479542 -0.0837701 0.37097529 -0.2551801 -0.1457444 0.85822173 -0.35898385 0.095809867
—-0.0587215 0.09571579 -0.2151334 0.23857131 0.30661251 0.34850165 —0.005745 0.620231649 0.59934855
0.31197992 -0.0344083 -0.0542888 0.01997741 -0.1641653 -0.0515449 0.00074005 0.000287462 -0.37381232
0.85365924 -0.0169789 0.25572233 0.80492801 -0.0023113 -0.2852425 -0.0522238 -0.2275238 0.146324864
—-0.2837938 —0.069528 —0.2221892 0.31692949 0.34731804 -0.0409553 -0.168709 —0.12570174 0.029229593
—-0.2720053 -0.0083273 0.71303279 0.0130666 0.04347241 0.10490579 1.16491711 -0.14620103 0.240782136
0.0232457 0.04413909 0.57180799 -0.3961779 0.13805184 -0.0250827 0.1189892 -0.09976743 0.676863876

0.20084257 0.01848105 0.01151112 0.18834185 0.07714385 1.00199221 0.33090711 0.591954522 0.172081801
0.77731512  0.20280783 —-0.1534665 —0.0898678 -0.0222164 0.05097659 0.39013928 -0.16168208 —0.87414288
—-0.8932687 0.01562423 -0.8790331 -0.8785872 -0.2400978 0.01126939 0.62600687 -0.07469029 0.293200012
—-0.1254086 0.08769516 -0.4580886 -0.2608019 -0.0870728 0.23316388 0.49916445 -0.27253148 -0.00841655
0.05410689 —0.0916165 —0.4295043 -0.5942252 -0.0340513 0.03471072 -0.0634013 -0.11877784 —0.77212021
0.22564844 0.11645954 -0.0194417 0.06716894 -0.0067884 -0.2770185 -0.3074844 -0.17361157 -0.02940934
0.25778166 0.02802331 0.32826015 0.0874406 —0.9239147 0.5776072 0.12893563 -0.07494518 0.101314911
—-0.6152252 0.08467719 —0.005507 —0.0016885 0.26959676 0.00027392 0.01072972 -0.05967189 0.794011281
—-0.4916591 0.03423008 0.35221385 0.1673546 0.20097946 0.03970559 -0.5329031 0.05685715 0.093143062
0.09372071 0.45237283 —0.4270023 0.12270954 0.01633451 —0.0244912 0.32114085 -0.08529571 0.896172613
1.84E-05 -0.1783898 -0.0967566 —0.032303 -0.3339006 -0.0531862 0.05299049 0.00250836  0.0227459

0.32865927 0.73232241 -0.0426226 0.3680448 0.12592558 -0.1711813 0.6895093 0.365675977  0.1815117

0.06352326 0.01615348 0.71943001 0.02765614 0.5770961 0.12508308 0.72579383 0.234207148 0.278978323
0.05902058 0.74414566 -0.0387953 -0.1285802 0.0259792 0.02360138 -0.0390772 0.334378871 0.373885739
0.01672986 0.30780827 —0.0305187 0.76478835 0.00922025 -0.0003176 0.39416458 -0.14105866 0.231267475
0.16886906 0.16663601 -0.1557756 0.14372478 -0.0053584 0.39867936 0.53867137 0.083576797 —0.0930085
—-0.1209806 —0.3749588 0.21620292 0.04682217 0.16582226 -0.1813835 0.31094709 -0.11844016 0.003817292
—-0.0756049 0.26868517 0.11232029 0.21554735 0.08172268 0.33302842 0.25825317 0.129740332 -0.27092193
0.17875086 —0.0130043 0.7761683 —0.2683637 -0.0568285 0.08575422 -0.3405182 0.078523738 —0.1038394
0.52179302 0.03458665 0.06475427 0.06956231 0.25072313 0.02715948 0.25907261 0.038549325 -0.02300298
0.44795101 0.14647434 0.16811506 -—0.0008598 0.31689128 0.21717058 0.55924027 0.030536512 —0.63332453
0.07886187 —0.1241851 0.13943947 0.01341213 -0.6267738 0.34912288 -0.1931707 -0.01298631 0.579458203

0.36926007 0.34021884 -0.0935731 0.16169213 0.09246816 1.38553805 0.44058544 0.499926759 0.127460796
0.32481477 0.21004215 0.17360292 0.06611299 —0.152444 0.17230255 0.4871752 0.240390062 -0.13247269
—-0.1570069 0.04398714 -0.1372116 0.10393927 0.27712388 0.21929305 0.35934559 0.072436543 0.599680184
0.10042725 -0.0405233 -0.0276124 0.00768115 -0.1152797 0.46671001 0.32697635 0.218813803 0.11578542
0.2981599 0.07895408 0.05929431 -0.2575791 0.18210718 0.27949753 0.11208642 -0.13550479 -0.19303355
0.01774278 0.0794438 0.34301322 0.3079287 -0.0288429 0.35285173 0.08051491 -0.0383289 0.301524551
0.15448802 —0.0290092 0.37921177 0.40577398 0.02317734 0.19760018 0.5453665 0.190128144 0.134972259
0.07303209 0.08335033 -0.0272924 -0.0268407 0.11495061 0.17565862 0.14548013 0.050459546 0.999559566
0.06638016 0.09365192 0.46046701 0.31157149 0.24788627 0.39745699 0.14745623 -0.0203899  0.11010541
0.14574411 0.27019012 0.08964107 -0.013653 0.6999887 0.14706426 0.14311693 0.085587473 0.406653134
0.00422723 -0.0202326 0.09754264 4.84E—05 0.01130254 0.4544351 0.20276643 -0.02176553 0.041899718

0.41668155 0.55141417 0.31705647 0.53356928 -2.0883662 -0.2610704 0.24747335 -0.49568348 0.15116601

0.28111104 0.29873199 0.12415861 0.01035183 0.3912644 —0.2250856 0.11463835 0.572594198 0.639529712
—0.2880051 0.47632466 0.02148248 0.42831754 0.25753792 -0.1067969 0.49570912 -0.56574524 0.140211616
0.28382154 0.07492232 0.25762031 -0.0051616 0.449995 —0.2583676 0.00862342 0.042826998 -0.24532638
—-0.1828993 0.05610035 0.41157899 0.10823296 -0.0022137 0.43840826 0.14531787 0.504082565 0.073357981
—-0.3536545 0.4045564 0.05410188 -0.1039612 -0.4487177 0.18545137 0.00207541 0.071838234 -0.18198509
0.23523025 -0.1197378 0.22737042 0.27683837 -0.4502542 0.53741643 -0.1929315 0.094579762 0.334936445
—-0.0101984 0.60796793 0.06730913 -0.0740784 0.1513789 0.63740825 -0.3265244 -0.27219855 0.235174666
—-0.0038892 —0.3239558 0.10405389 0.41194902 0.01303423 -0.058557 0.25579472 0.192432911 -0.11924924
0.20983244 0.24683053 0.09135039 0.0475623 0.44987648 -0.0005977 -0.2977078 0.013114946 0.599953402
0.17699185 0.19078854 —0.4635923 -0.0023057 -0.2080841 0.13883293 0.21279433 -0.19995201 0.280170884
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F1Gure 9: Comparison between solutions obtained by the LeNN-WOA-NM algorithm under the influence of variations in 3, on population
densities of the prey-predator model. (a) Approximate solutions for population density of local prey. (b) Approximate solutions for
population density of immigrant prey. (c) Approximate solutions for population density of the predator.

TaBLE 21: Comparison between solutions obtained by the LeNN-WOA-NM algorithm and ode45 for the prey-predator model with
a, = 0.15.

t S(t) ode45 X (1) ode45 Y (t) oded5
0.0 0.50000060 0.5 0.49999713 0.5 0.50000085 0.5

0.2 0.52140043 0.5214836 0.46218751 0.46914875 0.59021206 0.59055511
0.4 0.54273869 0.54304303 0.41967719 0.43242894 0.69476821 0.69630534
0.6 0.56382241 0.56446804 0.37330484 0.39042402 0.81497365 0.81880710
0.8 0.58443923 0.58554139 0.32433283 0.34420213 0.95201479 0.95948647
1.0 0.60442948 0.60605527 0.27440198 0.29530956 1.10702186 1.11963769

Three cases are considered, depending on the value of §3,.

Case I: §, =0.05
Case II: 3, =0.10
Case III: 3, = 0.20

The LeNN-WOA-NM algorithm is used to optimize the
population densities of prey-predator model equation (35).
Population densities of local prey, immigrant prey, and the
predator are given in Tables 27-28, while absolute errors are
shown in Table 29. The absolute errors in the solutions of the
proposed technique lie between 10~ and 10~!2 as shown in
Figure 13. Table 30 shows global values of performance in-
dices and convergence of the fitness value as shown in Fig-
ure 14. The statistics shown in Table 31 illustrate that the
global values of different performance functions lie between
10> and 1077, which highlights the robustness of the
technique. The values of the weights in the LeNN structure for

1 8 /dx,
=2 N nZ;‘S ( dt
1. 1w (dY

€3=N Z

- Xn<(0.2) -

" _(0.9)S,Y, - (0.8)

n=69 dr
e, = (S, - 0.5)%,
es = (X, - 0.5)%,

[ €5 = (Y, -0.5).

recreation of the approximate solutions are given in Table 32.
From Figure 15, the following conclusion can be drawn:

(i) Population density of local prey varies directly with
variations in f3,

(ii) Population density of immigrant prey and predator
varies inversely with variations in f3,

7.5. Problem V: Effect of Variation in y, on the Prey-Predator
Model. In this problem, the effect of variations in the
catching rate of local prey y, on population densities of the
prey-predator model is discussed. An error-based fitness
function along with initial populations is given as follows:

(1 ¥ as, (0.12)s, ’
€ = N r; ( T Sn<(0.12) - 50) -(0.2)8,X,, + YISnYn> >

(0.2)X
k,

Minimizee =€, + &, + &5 + & + &5 + &, (36)
where €, to ¢4 are defined as follows:
2
”) +(0.1)S, X, + (O.9)XnYn> ,
(37)

2
X,Y, +(0.01)Y, + (0.01)Y§> ,
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FIGURE 10: Absolute errors obtained by the LeENN-WOA-NM algorithm under the influence of variations in «, on population densities of
the prey-predator model. (a) Population density of local prey. (b) Population density of immigrant prey. (c) Population density of the

predator.
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FiGure 11: Comparison between the box plots and convergence graphs of fitness evaluation over 100 independent runs for the prey-
predator model with variations in the increasing rate of immigrant prey. (a) Box plots for fitness evaluation of the prey-predator model with
variations in a,. (b) Convergence of the fitness value of the prey-predator model with variations in a,.

Four cases are considered, depending on variations in y;.

Case I: y; = 0.005

Case II: y; = 0.015
Case III: y; = 0.020
Case IV: y; = 0.025

The LeNN-WOA-NM algorithm is used to optimize the
population densities of equation (37). Table 33 represents the
comparison between the Ranga-Kutta method (ode45) and
the proposed technique LeNN-WOA-NM algorithm. Ap-
proximate solutions for population density of local prey S (¢),
immigrant prey X (t), and the predator Y (¢) with different
values of y, are presented in Table 34. Statistics of absolute
errors are given in Table 35 and graphically shown in
Figure 16. The minimum and mean values of the fitness

function for each case lie between 107° and 1077, respec-
tively as illustrated in Figure 17. Convergence analysis of the
fitness value, MAD, TIC, and ENSE is given in Tables 36-37.
Unknown neurons of LeNN are shown in Table 38. From
Figure 18, the following conclusion can be drawn:

(i) Population density of local prey and population
density of the predator vary inversely with variations
in y;

(ii) Population density of immigrant prey has a direct
relation with variations in y,

7.6. Problem VI: Effect of Variations in y, on the Prey-Predator
Model. In this problem, the effect of variations in the
catching rate of immigrant prey on population densities of
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TaBLE 25: Convergence analysis of population density of local prey, immigrant prey, and predator under the influence of variations in the
increasing rate of immigrant prey o,.

C FIT MAD TIC ENSE
ases <107® <1077 <107 <107® <107* <107° <107® <107* <107 <107® <107° <10°® <1077
I 94 62 20 1 100 89 9 100 96 29 89 46 9
S II 100 70 16 1 100 91 14 100 98 26 91 42 14
111 99 65 16 1 100 96 11 100 29 27 96 47 11
v 100 87 38 6 100 85 20 100 98 42 87 53 21
I 98 78 45 14 100 85 13 100 90 17 95 65 37
X(0) II 100 89 54 17 100 87 11 100 92 19 100 86 38
11T 99 92 52 11 100 89 8 100 97 17 99 79 32
v 100 89 46 16 100 87 12 100 96 21 98 71 27
I 99 86 39 12 100 76 5 100 95 27 97 89 72
Y () II 100 92 46 11 100 79 6 100 97 31 100 93 60
III 100 83 46 15 100 74 8 100 929 26 100 87 56
v 98 78 43 11 100 69 4 100 98 19 929 93 54

TaBLE 26: Unknown parameters obtained by the LeNN-WOA-NM algorithm for the prey-predator model under the influence of variations
in the increasing rate of immigrant prey a,.

S(t) X () Y(t)

Ca Y, 6, - v, 6, Ca /A 0,

0.29809866 -0.0315366 0.58012735 0.47297503 0.16870771 0.25422827 0.04487536 0.494241827 0.219042842
0.07902509 -0.142623 -0.5326572 0.29933207 0.36334065 0.40051667 0.7993046 0.01500143 0.046498829
0.37716273 —0.0698453 —0.5278093 -0.5919778 0.06003798 -0.6780052 —0.608852 0.609110992 0.116343672
0.06418686 0.24209073 0.11910483 0.29508708 -0.0084275 0.0309784 —0.0262412 —0.34143893 -0.53664746
—0.0499254 -0.0250403 0.05106686 0.06326291 0.38462339 0.07701417 0.12151676 0.119098177 0.09960376
—0.0395958 0.01489951 -0.2883484 0.08480605 0.18102453 -0.0291467 0.00187112 -0.01144597 -0.34122987
0.15684755 0.08609064 0.20735343 0.51895958 0.4033704 0.21052592 0.49856342 0.262653738 0.034559337
—0.0340164 0.04863621 0.22276639 0.04403982 0.21344694 0.31828637 0.24286503 0.043774589 0.529564847
—-0.2519217  0.061991  0.13654615 0.1880865 0.14486401 0.37615985 0.46832364 0.174620368 0.266799487
0.54249116 -0.0324119 0.22565323 0.10730714 0.21764342 0.30007676 0.07731738 0.211031089 0.199472911
0.12904085 0.04855899 -0.4666845 0.25677349 -0.0420107 -0.1514589 -0.1778985 0.104252082 -0.3576282

0.22014881 -0.0955389 0.01922733 0.44099269 0.16902098 0.21058167 0.56662276 0.214534099 —0.12547843
—-0.510556  0.02522092 0.56596508 0.2853307 —0.0140499 0.1381917 -0.0004646 0.491829768 0.382367631
—-0.1657635 0.01472461 -0.1147983 0.39351912 0.21069293 -0.2685875 0.39509887 0.072673362 —0.18283919
0.05282327 0.07711052 -0.2051438 0.12992756 0.19352914 0.2499045 0.43645858 0.382113573 0.058714001
0.64499253 0.25762641 0.23808203 0.8495944 -0.0043216 -0.0017105 0.25457162 0.313158881 -0.13553561
0.09858966 —0.0273145 0.48787987 0.09374791 0.21889407 -0.0062504 -0.1344748 0.044741355 —0.2149526
0.23380371 -0.1260215 0.3289594 0.05799592 —0.333364 0.15201786 -0.4456943 -0.06976927 0.002138263
0.16035874 -0.1136321 -0.0036501 0.01897557 -0.0650362 0.09091915 1.14914925 -0.03585999 0.165910127
0.01683166 0.03027356 0.01366012 0.16775817 0.20057677 0.1459576 0.53828172 0.130328528 0.267951969
0.26771936 0.12204652 0.2996044 —0.1152812 0.18819176 0.17111444 -0.3869172 0.095372589 -1.04663455
—-0.1430149 0.0042418 -0.1108715 -0.1402711 0.17676553 -0.2193704 -0.2747091 0.12544106 0.108988227

1 0.20833477 0.87977164 —0.329864 0.37497171 0.15803512 1.08685499 0.81716797 —0.8285298 0.207619724
2 —-0.009672 -0.0834121 -0.0062989 0.00506333 0.45907436 -0.2830568 —0.055188 —1.29640697 0.383186286
3 -0.1260443 0.5466368 —0.2547923 -0.1978145 -0.3014792 0.01482453 0.16026646 —0.12624417 -0.14211688
4 -0.0459971 -0.1850824 0.44010074 0.85262434 -0.2293558 -0.1803312 0.15934035 -0.27875907 0.925897653
5  0.61609669 -0.0654918 —0.2249982 1.06003476 -0.0605608 0.0377206 —0.2465468 0.095037929 -0.00368046
6
7
8
9

Index

Case I

O 0 N O\ Ul kW~

— —
— O

Case 11

O 0 N O\ U W~

—
— O

Case III —-0.4221877 0.1915771 0.29040894 -0.1447329 -0.1716272 -0.2814112 0.10252045 0.140572643 0.100666708
0.12304762 —0.0412171 -0.2947437 -0.3344259 0.15047463 -0.0948965 -0.3952389 -0.18667499 0.22033229
0.22471377 -0.1369576 —0.0135929 0.46118375 0.09675102 0.25499179 0.6880506 —0.04146236 -0.02009528
—-0.0028525 0.28384483 -0.0137988 0.86855616 0.15119596 0.43141743 -0.310849 0.177047029 0.639644264

10 0.10012064 -0.0365188 -—0.3495845 0.3752446 0.15082062 0.39737423 0.02610775 -0.11632104 0.264941005

11

0.6577301 —0.1729186 0.28691512 —0.277895 —0.2620078 -0.3183686 0.4666604 0.182729564 -0.40213292




Discrete Dynamics in Nature and Society 27

TaBLE 26: Continued.

S(t) X (t) Y (t)
Index
Cu Vi 0, (o Vi, 6, Cu Yy 6,

1 0.27584273 0.14440132 0.05159123 -0.0014501 0.02944933 0.43857897 0.41541694 0.364106607 0.137637467

2 1.0378582 0.22634893 -0.1336449 0.37479484 0.32390138 0.11683191 1.10634191 0.743870281 0.133721081

3 0.30555234 0.14178372 0.09870863 0.1378461 —0.0134231 0.25235605 0.15847534 0.546747961 0.267557848

4 0.49396717 -0.0077854 0.12863956 0.3091184 —0.0434135 0.98475694 0.07222518 -0.0015274 0.03284215

5 0.96461172 0.48761051 0.0267945 0.4431833 0.19500184 0.28889858 0.10389701 -0.06048102 0.012779125
Case IV 6 —0.0311005 -0.2458898 0.01323704 0.39215778 0.07525855 0.0342729 -0.0239009 0.305047682 0.240819746

7 —0.0009785 0.27803419 0.43494014 0.0813522 0.16527361 0.10128603 -0.0235703 0.131236783 0.342597408

8 0.03245948 0.05591694 0.9180906 —0.064116 0.19286301 0.46309077 -0.0226751 0.265693128 0.191819022

9 0.04135314 -0.0595634 -0.018826 —0.0453863 0.10473006 0.09188733 0.12139352 0.281687652 0.039757676

10 0.06206464 0.10871955 0.21480649 0.12965376 —0.0275439 0.21169344 0.08952384 -0.23209362 -0.11227638

11 0.41183634 —0.0123283 0.31935826 —0.0629837 0.00702969 0.08486244 0.22578589 0.194356561 0.207691077
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FiGgure 12: Comparison between solutions obtained by the LeNN-WOA-NM algorithm under the influence of variations in the increasing
rate of immigrant prey on population densities of the prey-predator model. (a) Approximate solutions for population density of local prey.
(b) Approximate solutions for population density of immigrant prey. (c) Approximate solutions for population density of the predator.

TaBLE 27: Comparison between solutions obtained by the LeNN-WOA-NM algorithm and ode45 for the prey-predator model under the
influence of variations in f3,.

t S(t) ode45 X () ode45 Y (t) oded5
0.0 0.50000260 0.5 0.49999663 0.5 0.50000434 0.5

0.2 0.52140524 0.52140803 0.46202665 0.46202728 0.59020495 0.59020976
0.4 0.54273086 0.54274216 0.41918897 0.41919322 0.69472629 0.69473392
0.6 0.56379821 0.56380333 0.37243267 0.37243138 0.81483980 0.81483944
0.8 0.58439482 0.58439812 0.32308553 0.32307837 0.95168295 0.95168948
1.0 0.60434466 0.60435385 0.27281091 0.27280834 1.10636629 1.10638491

TaBLE 28: Approximate solutions obtained by the LeNN-WOA-NM algorithm for population densities of local prey, immigrant prey, and
predator under the influence of the negative impact of the force of interaction on immigrant prey f3,.

S(t) X (t) Y(t)
B, = 0.05 B, =0.10 B, =0.20 B, = 0.05 B, =0.10 B, =0.20 B, = 0.05 B, =0.10 B, =0.20

0.0 0.49999997  0.49999839  0.50000260  0.49999998  0.50000038  0.49999663  0.49999998  0.49999971  0.500004344
0.2 0.52147482  0.52146698  0.52140524  0.46914810  0.46676681  0.46202665 0.59055020  0.59044621  0.590204953
0.4 0.54303474  0.54294731  0.54273086  0.43242621  0.42797254  0.41918897  0.69630031  0.69578968  0.694726289
0.6 0.56446751  0.56424461  0.56379821  0.39042495 0.38432545 0.37243267  0.81880214  0.81747363  0.814839800
0.8 0.58553673  0.58516310  0.58439482  0.34420481  0.33701910  0.32308553  0.95947828  0.95685274  0.951682945
1.0 0.60604682  0.60548065  0.60434466  0.29530830  0.28760242  0.27281091  1.11962732  1.11514838  1.106366286
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TaBLE 29: Absolute errors obtained by the LeNN-WOA-NM algorithm for population densities of local prey, immigrant prey, and predator

under the influence of the negative impact of the force of interaction on immigrant prey ,.

, S(t) X(t) Y (t)

B, =005  B,=010 B,=020  B,=005 B,=010 B,=020  B,=005 B,=010 B, =020
0.0 3.09E-09 4.62E-09 1.04E-08 3.11E-10 2.55E-10 6.59E - 09 5.14E-10 2.00E-09 2.51E-09
0.2 2.26E-09 2.04E-09 5.78E—-09 3.65E—-10 2.21E-09 7.44E—-10 1.62E-10 2.46E—-09 3.36E-09
0.4 2.02E-09 3.08E—-09 2.81E-11 4.80E-15 3.55E-09 1.32E-11 4.25E-10 8.45E—-10 2.38E-09
0.6 2.16E-10 5.66E-10 1.57E-09 5.83E-10 1.08E - 09 1.97E-09 6.71E-11 1.23E-09 5.01E-10
0.8 1.96E - 09 1.72E-10 8.46E - 10 3.17E-10 1.01E-09 145E-11 3.56E-11 2.75E-09 6.92E-09
1.0 1.65E—-09 1.04E-10 7.87E-10 540E-10 1.98E-09 1.91E-10 1.55E-11 4.27E-09 4.61E-09

s X Y

Absolute Errors

Absolute Errors
Absolute Errors

0" E

10"

(®)

FIGURE 13: Absolute errors obtained by the LeNN-WOA-NM algorithm under the influence of variations in 3, on population densities of
the prey-predator model. (a) Population density of local prey. (b) Population density of immigrant prey. (c) Population density of the
predator.

the prey-predator model is discussed. An error-based fitness
function along with initial populations is given as follows:

(38)

where €, to ¢, are defined as follows:

Minimizee =& +¢&, + & + & + & + &.

i 1 & /ds, 0.12)S, ’
. (ﬁ B Sﬂ<(0.12) _ %) ~(0.2)8,X,, + (O.OI)SnYn) ,

(0.2)X,
k,

1 & /dx, g
&= D ( ;" —Xn((o.z)— >+(0.1)San+y2XnYn> ,

n=35

(39)

{e=— Z@( &~ (095,Y, — (08)X,Y,, + (0.0DY, + (0.01)Yn) ,
=

e, = (S, - 0.5),

es = (X, - 0.5)%,

[ e5 = (Y, -0.5)".

Five cases are considered, depending on the value of y,. Case I p, = 0.7
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FIGURe 14: Comparison between the box plots and convergence graphs of fitness evaluation over 100 independent runs for the prey-
predator model with variations in f3,. (a) Box plots for fitness evaluation of the prey-predator model with variations in 3,. (b) Convergence of
the fitness value of the prey-predator model with variations in ,.

TaBLE 31: Convergence analysis of population density of local, immigrant prey, and predator under the influence of variations in ,.

c FIT MAD TIC ENSE
ases <107® <1077 <107 <107® <107* <107° <107® <107* <107° <107® <10° <10°® <1077
I 100 86 32 3 100 92 10 100 100 25 92 44 10
S(t) II 100 63 12 0 100 89 10 100 99 26 89 48 10
I 96 65 14 2 100 89 15 100 97 37 89 52 15
I 100 86 45 14 100 88 9 100 94 15 100 68 25
X)) I 100 91 48 12 100 90 7 100 94 19 97 73 30
111 99 82 42 15 100 88 12 100 9 20 98 69 27
I 99 80 39 5 100 67 2 100 94 24 100 86 48
Y (t) I 100 76 39 14 100 71 3 100 93 23 100 88 42
111 98 86 48 12 100 77 3 100 9 26 100 89 64

TaBLE 32: Unknown parameters obtained by the LeNN-WOA-NM algorithm for the prey-predator model under the influence of variations

in S,.

Index S(t) X(t) Y (1)
- Y, 0, Ca Y, 6, Ca /A 0,
1 027535144 0.31269649 -0.212623 0.35537988 0.47248103 0.10822633 0.52114951 0.185720875 -0.00890278
2 0.61516838 0.24930343 -0.1133566 -0.2698898 0.23075745 1.45662131 0.00285471 0.54326608 —0.03948103
3 —0.3331712 0.13683002 0.07415358 —0.007558 —0.1414522 0.00429373 -0.2363309 -0.53264189 -0.12625219
4 —0.1724685 —0.1569281 -0.1780917 -0.0230189 0.06567477 -0.1619849 —0.07434 0.280494463 0.724308841
5 0.34235255 0.16601501 0.33779612 0.38214222 0.17206398 0.37567544 0.25394552 —-0.20424256 0.497829902
Case | 6 0.00647555 —-0.0671007 0.41848498 0.465563 0.17852399 0.25910001 0.62807088 -0.25015769 -0.03607794
7 0.39917241 -0.2086423 0.27916279 -0.1982513 -0.1003214 0.08612276 0.23112207 -0.11265536 -0.04638131
8 0.37891578 —-0.1471092 0.25516272 0.47437651 —-0.0479726 0.3954123 0.23371466 0.155785232 0.111525519
9 —0.1569822 0.21029864 —0.280122 —0.0498625 0.07898872 0.18498889 —0.1404023 -0.28974674 0.273393228

—0.1405838 -0.0119767 -0.1635125 0.11249313 -0.0654565 0.69188379 -0.0877791 —0.1594545 -0.77121428
0.39296939 0.02457412 -0.0200821 -0.1201447 0.17161889 0.03630063 0.04811392 0.279716864 -0.22688875

— —
— O
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TaBLE 32: Continued.

S(t) X (t) Y (t)
Index
G Y 0, G Yy 6, Cu Yy 6,
1 0.50105252 0.82536339 0.58045483 0.45518044 -0.1160988 -0.3093088 0.14735255 0.576552359 0.192127271
2 0.26141806 0.21796238 0.31815591 -0.1676624 0.4234933 -0.1614025 0.00975838 0.53917788 0.775847618
3 —0.1877622 —-0.1568166 —0.3859022 0.34192011 -0.1162183 0.78757311 0.40990792 -0.29126952 0.094655869
4 0.02599785 —-0.1764539 0.17491514 0.03149905 0.44911473 -0.1695519 -0.0583248 —-0.00447879 -0.06289373
5 —0.2923416 -0.1065739 0.38764839 0.10732316 -0.003522 0.43009606 0.20268435 0.627584449 0.02333884
Case 11 6 —0.3868009 0.44970016 -—0.0422409 -0.2581683 -0.4105199 0.01656808 0.00066793 0.075964394 —0.18685644
7 0.05739953 -0.1193984 -0.2607123 0.17181358 -0.2713628 0.66311474 —0.124996 —0.07981308 0.505938132
8 —0.0216328 0.8067003 0.31701813 —0.1511588 0.14092788 0.65770582 —-0.1918301 -0.00407396 0.121012726
9 —8.30E-07 -0.0664668 —0.1168664 0.63180611 -0.1478398 —0.1592677 0.27026843 0.113142772 0.003053122
10 0.09718671 -0.0187463 -0.0760148 -0.0444081 0.29980599 0.00951493 —0.1584802 -0.01177252 0.821398692
11 0.19396717 0.18738185 -0.4407164 -0.1400116 -0.1519869 0.03850045 0.32211631 -0.10616995 0.295182432
1 0.36877614 0.4187033 0.00551721 0.37106378 0.76553227 -0.1135028 0.36766284 0.656543877 0.074012878
2 0.57123158 0.39029235 0.26925195 0.02897603 —0.0177996 -0.2724976 0.68341531 -0.56659891 0.035271905
3 —0.2786739 —-0.1350866 —0.4079824 0.18172611 -0.1092217 -0.6535241 0.19817369 -0.18104441 0.127718735
4 0.24896052 0.13322324 0.34245899 0.18535487 0.18336655 0.32712799 -0.1422226 0.152834288 0.025045362
5 0.29175967 0.21119283 -0.1957816 0.31132875 -0.0532529 -0.3305964 0.04517261 -0.73533086 -0.21051239
Case 111 6 0.38609249 0.27590847 0.58209501 —0.535581 —-0.1823894 0.31125028 -0.0033038 0.082666375 0.323016755
7 0.01164667 -0.1421768 0.24328317 0.26480037 0.02173502 0.07848485 0.61775482 0.231893374 0.074346878
8 0.59381321 0.06375022 —0.3689713 0.35998444 -0.0368666 0.32907219 0.14877358 0.143483247 0.3344067
9 —0.2877027 —0.0812976 0.58513537 0.11454134 0.04186864 —0.3814356 0.28795352 -0.00041389 —0.13335931
10 -0.3073994 0.0111124 -0.0068885 0.04196657 —0.127565 0.14629639 -0.4081982 0.0030286 0.33443128
11 0.06421859 —0.0919722 0.34881249 -0.0684058 —0.1412179 0.497947 0.19874151 0.071110753 0.298703303
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FiGure 15: Comparison between solutions obtained by the LeNN-WOA-NM algorithm under the influence of variations in 8, on
population densities of the prey-predator model. (a) Approximate solutions for population density of local prey. (b) Approximate solutions
for population density of immigrant prey. (c) Approximate solutions for population density of the predator.

TaBLE 33: Comparison between solutions obtained by the LeNN-WOA-NM algorithm and ode45 for the prey-predator model with
7, = 0.015.

t S(t) ode45 X(t) ode45 Y (t) ode45
0.0 0.50000029 0.5 0.49999971 0.5 0.50000002 0.5

0.2 0.52117967 0.52117476 0.4667562 0.46676439 0.59043325 0.59042518
0.4 0.54230262 0.54229891 0.42797497 0.42797925 0.69572032 0.695704
0.6 0.5631532 0.56315108 0.38434774 0.38435442 0.81726419 0.81725811
0.8 0.58351051 0.58350611 0.33705551 0.33706036 0.95637538 0.95637013

1.0 0.60315238 0.6031513 0.28769246 0.28769927 1.11420939 1.11419232
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FIGURE 16: Absolute errors obtained by the LeNN-WOA-NM algorithm under the influence of variations in y; on population densities of
the prey-predator model. (a) Population density of local prey. (b) Population density of immigrant prey. (c) Population density of the

predator.
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FIGURE 17: Comparison between the box plots and the convergence graph of fitness evaluation over 100 independent runs for the prey-
predator model with variations in the catching rate of local prey. (a) Box plots for fitness evaluation of the prey-predator model with
variations in y,. (b) Convergence of the fitness value of the prey-predator model with variations in ;.

Case II: y, = 0.8
Case III: y, = 1.0
Case IV: p, = 1.1
The LeNN-WOA-NM algorithm is applied to prey-
predator model equation (39) to study the influence of
variations in the catching rate of immigrant prey. The

results calculated by the designed algorithm are compared
with those of the Runge-Kutta method using ode45 in

MATLAB as shown in Table 39. Approximate solutions for
population densities of local prey, immigrant prey, and the
predator are given in Table 40. Absolute errors are pre-
sented in Table 41 and graphically shown in Figure 19. The
minimum fitness values in Figure 20 reflect the accuracy of
the solutions by the proposed algorithm. The convergence
of our numerical approach is assessed by fitness values and
statistical analysis of the performance indicators (MAD,
TIC, and ENSE), see Table 42. Table 43 shows the
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TaBLE 37: Convergence analysis of population density of local prey, immigrant prey, and predator under the influence of variations in ;.

c FIT MAD TIC ENSE
ases <107® <1077 <107 <107® <107* <107° <107°® <107% <107° <107® <107° <10°¢ <1077
I 95 70 20 5 100 85 21 100 94 37 85 56 21
() I 94 67 25 2 99 81 23 100 94 43 83 57 21
I 95 71 17 2 100 90 19 100 9 42 91 55 19
v 97 78 29 6 100 91 26 100 97 42 90 57 26
I 97 90 59 22 100 91 15 100 94 27 97 8 38
X(t) I 97 86 56 24 99 84 16 99 91 28 96 78 40
I 99 85 64 17 100 88 15 100 89 21 94 81 33
v 99 93 57 22 100 93 20 100 96 31 98 81 46
I 99 87 51 15 99 77 7 100 95 25 99 91 59
Y () II 96 78 48 15 99 73 8 100 93 30 98 87 62
111 98 82 49 15 100 75 10 100 97 30 99 88 61
v 98 90 60 17 100 93 37 100 93 37 99 93 64

TaBLE 38: Unknown parameters obtained by the LeNN-WOA-NM algorithm for the prey-predator model under the influence of variations
in y;.

S(t) X (t) Y (t)
- Y 0, Ca /A 0, Ca Y 0,

0.10433411 -0.9093816 -0.0551384 0.10814164 -0.0975817 -0.4024759 0.11057901 0.030277215 -0.07683093
—-0.1015821 -0.2339063 0.11183609 -0.0079649 0.12409457 -0.0066366 0.03120447 0.065984151 0.169815479
—-0.1732219 0.05666544 -0.3418627 -0.1576219 0.20511634 0.23158339 -0.3370419 -0.15418238 0.194154313
0.2870666 0.04587599 -0.075017 0.0317597 —0.1567915 -0.2960607 0.12661418 0.176984003 —0.08307132
0.18918051 -0.2634862 0.09296959 0.17712714 0.06690293 0.05596124 0.06180474 —0.14442377 -0.98944725
0.08011991 -0.0241843 0.04384194 0.09323427 -0.1029541 0.30404503 -0.1508149 -0.05051503 0.191092976
—-0.4734878 —0.1888967 0.13971948 0.24925106 0.00225215 0.00501846 -0.9616715 -0.19702187 0.011340631
0.19753354 -0.0151743 -0.0358307 -0.2646482 -0.4318811 -0.2034545 -0.0870373 -0.08872014 0.079363347
0.07352321 0.04374259 0.17641082 -0.004594 -0.0709633 -0.188571 0.01228411 0.051586673 —0.1707669
0.05966701 —0.009466 0.11306597 -1.0101745 -0.1195556 0.30440396 —0.16551 0.072728886 0.05362364
0.24419278 0.21523627 0.12501506 0.10887851 0.12112026 -0.1899001 -0.157371 -0.15906121 0.128530508

0.42562436 0.22405135 0.02503956 0.35262391 -0.2253664 0.26259455 0.27111686 0.328796691 0.228927872
0.41666988 0.5078151 —0.1889093 0.12171391 0.20998105 0.3804858 0.30390747 0.389116532 0.460701796
0.10577695 0.06002846 0.21768786 —0.5393398 0.39027559 0.13902226 0.47350419 0.465419864 0.661970007
0.46517407 0.09698879 -0.1633478 0.11014297 0.19739907 0.6654931 0.05604469 -0.00392697 0.278777394
0.60100029 0.01932057 0.56830498 0.2354314 0.41404057 0.20437334 -0.1267241 -0.13128894 0.293844939
0.08127736 0.10628146 0.38610942 0.23539962 0.17187529 0.38579085 0.35225137 0.067649428 0.188489281
0.35498411 0.04490212 0.04900664 0.06476587 0.35238074 0.50235806 0.36253639 0.203702979 -0.0792048
0.38497077 0.01823575 0.34815044 -0.0755594 0.49478279 0.38035495 0.16102938 -0.12482814 0.340540011
-0.0561765 0.73291315 -0.1890215 0.0053794 —0.4438896 0.46641096 0.2889986 —0.01721494 0.103497157
-8.42E-05 -0.0191478 0.33057513 0.01138671 0.21012745 0.28013928 0.41790512 0.011022434 0.111373073
0.03758884 —0.0090962 0.29841949 0.06181435 0.28211233 0.1044331 0.76029441 -0.05305741 0.400559476

0.34210927 -0.1686215 -0.0637152 0.23427117 0.25285975 0.39214738 0.26900094 0.565520288 0.485240258
—-0.0413096 -0.0081301 0.10614537 0.60106519 -0.0765896 0.42188566 0.34146251 0.575583706 0.081232416
0.29904262 -0.075813 —-0.1967563 0.45939119 0.15935586 -0.0737513 -0.0371428 0.395780195 0.526025075
0.31966978 —0.0296846 0.13492819 0.74449918 0.13823099 0.14733057 0.31296573 0.170356341 0.449030416
0.38511171 0.02742915 0.19245868 0.17480946 0.26067733 0.19256129 -0.1966744 0.026652715 0.648556737
0.15405406 —0.085595 0.03900298 0.20316026 -0.0939363 0.36999635 0.14116303 0.18349354 0.157284014
0.01160236 0.19042424 -0.0099165 -0.1955586 -0.0145249 0.5115481 0.09234283 0.050183053 0.529576694
—-0.0119424 -0.0017222 0.19894821 -0.0459019 0.16995456 0.09912122 0.44277162 0.268197932 0.360452198
—-0.013509 0.02826738 0.13366696 —0.0986121 0.12555621 0.29387726 -0.0351511 0.15868406 —0.02656018
0.36233153 —0.0504481 0.46422188 0.33154131 0.04488349 0.44423777 0.18233457 0.002699819 0.25017744
0.20780852 0.06187582 0.19012834 0.47309423 -0.0001455 0.28544612 0.32655747 0.232204493 0.038376682

Index

Case I

O 0N QN U W

— =
— o

Case II

O 0NN U W~

—_ =
— o

Case III

O 0NNV WN -

—_
— o




Discrete Dynamics in Nature and Society 37
TaBLE 38: Continued.
S(t) X(t) Y (1)
Index
Cn Vi O, Cn Y O, Cn Vi O,

1 0.08743197 -0.0274586 0.13838454 0.10216597 -0.6205394 -1.1625473 0.08890874 —0.46821489 0.031906641
2 0.85138918 —0.2596089 0.27697631 -0.0395679 -0.3190484 0.47807164 -1.0766899 0.194522468 0.051473955
3 0.32484395 -0.0320128 0.04910259 0.59721285 -0.7402654 -0.5159275 -0.5457082 0.584514565 0.334208342
4 1.26539529 0.0637656 —0.3298542 0.00746795 0.12675579 -0.2119938 0.0689466 0.078060063 0.341243622
5 0.27124475 -0.0145706 -0.8795409 -0.2258574 -1.0489144 0.18138843 -0.7172783 -0.44654588 0.288352353

Case IV 6  -0.0615221 -0.0357181 0.05167451 -0.0093528 -0.9076303 0.00529929 0.11164685 0.084161905 0.021304977
7 —0.9330419 0.00587016 0.08238699 -0.0038462 0.5318456 —0.0029243 -0.5624983 0.07126723 —0.07194593
8  —0.2222851 0.15964489 0.15929347 0.02677628 -0.0859581 0.71257834 -0.1564259 0.011627909 -0.01141564
9 -0.0746732 0.03595603 -0.1688295 0.91853869 0.0432707 -0.1996406 0.9708232 -0.20718687 0.491048316
10 0.11105985 0.03339826 -0.0412419 -0.9111904 -0.0757299 0.38318296 0.14046109 0.068233399 0.447903219
11 -0.9956577 -0.0325751 0.95862042 0.01858614 -0.0328286 0.2342197 -0.8047726 -0.03547963 0.018056695

b ” ” ZX? \"\
= 0.56 ‘ 0 ZK?E{)‘)S 096 097 098 099

X (1)
2

—e— 7,=0.005 .
—e— ,=0015

—e— 1,=0.005
—®— y,=0015
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7,=0015

® =002
—® — 7,=0020
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Figure 18: Comparison between solutions obtained by the LeNN-WOA-NM algorithm under the influence of variations in y;, on
population densities of the prey-predator model. (a) Approximate solutions for population density of local prey. (b) Approximate solutions
for population density of immigrant prey. (c) Approximate solutions for population density of the predator.

TaBLE 39: Comparison between solutions obtained by the LeNN-WOA-NM algorithm and ode45 for the prey-predator model with y, = 0.8.

t S(t) ode45 X(t) ode45 Y (t) ode45
0.0 0.50000006 0.5 0.5000005 0.5 0.49999982 0.5

0.2 0.52151097 0.52117476 0.47186632 0.46676439 0.59068568 0.59042518
0.4 0.54316182 0.54229891 0.438185 0.42797925 0.69694028 0.695704
0.6 0.56475603 0.56315108 0.39935526 0.38435442 0.82053699 0.81725811
0.8 0.58608332 0.58350611 0.35617116 0.33706036 0.96319165 0.95637013
1.0 0.60693367 0.6031513 0.30986509 0.28769927 1.12649634 1.11419232
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FIGURE 19: Absolute errors obtained by the LeNN-WOA-NM algorithm under the influence of variations in p, on population densities of
the prey-predator model. (a) Population density of local prey. (b) Population density of immigrant prey. (c) Population density of the

predator.
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FIGUure 20: Comparison between the box plots and convergence graphs of fitness evaluation over 100 independent runs for the prey-
predator model with variations in the catching rate of immigrant prey. (a) Box plots for fitness evaluation of the prey-predator model with

variations in y,. (b) Convergence of the fitness value of the prey-predator model with variations in v,.

TaBLE 42: Convergence analysis of population density of local prey, immigrant prey, and predator under the influence of variations in y,.

c FIT MAD TIC ENSE
ases <107® <1077 <107 <107® <107* <107° <107® <107% <107° <107® <107° <10°® <1077
I 95 65 24 5 100 88 20 100 95 41 89 59 20
s() I 98 64 24 4 100 92 18 100 99 45 93 60 18
111 86 63 12 4 100 90 16 100 95 32 90 55 16
v 98 67 20 4 100 92 21 100 97 44 92 62 21
I 99 85 52 22 100 85 20 100 92 30 94 69 32
X II 100 87 57 22 100 87 23 100 91 27 98 73 33
111 98 83 46 13 100 82 10 100 93 16 98 71 28
v 99 90 54 19 100 94 17 100 97 23 99 82 44
I 98 84 44 17 100 77 11 100 92 28 100 87 57
Y () II 99 81 47 18 99 75 13 100 97 31 99 87 55
111 99 84 41 15 100 75 6 100 94 26 99 89 56
v 99 85 50 14 100 72 9 100 94 34 100 87 55
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TaBLE 44: Unknown parameters obtained by the LeNN-WOA-NM algorithm for the prey-predator model under the influence of variations
in y;.

S(t) X(t) Y (t)
(n 1//;1 9}1 (Vl W}’l 671 (n Wn 6”

0.27328231 -0.0407082 -0.0036568 0.19095405 0.19619913 0.25334058 0.15448032 0.339199456 0.646260329
0.00203693 0.00761269 0.24655049 0.67156041 —0.1202185 0.41029823 0.35456658 0.167129547 —0.02220108
0.22854565 —0.1965182 -0.0799706 0.423423 0.03898304 -0.1160494 -0.1932211 0.327298457 0.589634109
0.43068766 —0.0047135 -0.0067749 0.7614451 0.24436812  0.10386  0.45804558 -0.10504105 0.096632479
0.42381358 —0.1502652 0.51827442 0.10757996 0.24696908 0.11302049 -0.0490828 0.054497193 0.541464355
0.03064345 0.387909 —0.0908338 0.20021796 -0.1093334 0.49803749 0.08502235 0.292312181 0.168951799
—0.0256272 0.18134944 0.04903339 -0.1439181 0.01678089 0.01522287 0.12228645 0.040610745 0.504241595
—-0.0029234 0.05369165 0.16118629 0.09238371 0.35203171 -0.0742458 0.58296355 0.326394622 0.311232469
0.01433551 -0.0062826 0.11461784 0.00070281 0.08170655 0.27442616 -0.0624975 0.046728012 -0.00253833
0.52132655 —0.0745824 0.32373133 0.31625889 0.06469584 0.35518716 0.43265994 0.001675421 -0.07508196
0.04700892 -0.1431138 0.19096034 0.61086683 0.05879562 0.07145247 0.31602732 0.294568546 0.005492958

0.22888098 0.15662727 0.72118398 0.66396301 0.48400554 —0.0014987 0.2930431 —0.36246252 -0.19827556
0.32039169 0.21349716 0.26632024 -0.1848203 -0.0673308 -0.0648246 0.13125299 0.041657028 0.029954374
—-0.0829388 0.03094832 0.00303522 0.62951247 -0.1925438 0.24736655 -0.1963121 0.431531435 0.708095767
—-0.1658907 —0.1447463 -0.6955688 —0.232498 -0.2616095 0.27025227 0.22782911 -0.28937041 -0.12994496
—-0.0174758 0.23215182 0.04290016 0.12334482 -0.2128439 -0.0360696 -0.1459274 0.143383282 0.127654212
—-0.0712296 -0.3626918 -0.0348668 0.2600438 0.13168403 0.45131095 0.73463526 -0.09109894 0.100058657
—-0.0244551 -0.0112202 -0.1246274 -0.3445732 0.31169855 -0.0680798 0.14809738 0.029526212 0.176039899
—-0.2963948 0.27684365 0.02435043 -0.1570692 -0.1058024 0.01048308 -0.0287022 0.052204737 0.500290252
—-0.0250215 -0.1024261 0.05651485 0.61926963 -0.205578 0.43411127 -0.3748423 0.146360873 -0.41978655
—-0.2847311 0.13336075 -0.0903463 —0.1464593 -0.3554768 -0.0475072 0.16657978 —0.04184543 —0.04410262
—-0.0012914 0.02947063 -0.2027891 -0.0119255 0.47238101 0.09448735 0.42979806 -0.05005385 -0.00793862

0.17136911 -0.6220119 -0.0659451 0.16001338 0.06604026 —0.6259462 0.41743442 0.34745146 0.123402726
0.13248093 0.22407198 0.16846536 —0.0174004 0.46048206 0.16172196 0.6363567 0.027892663 0.349217115
—-0.029666 0.0085174 —0.4187633 -0.0573402 0.29673852 0.13113638 -0.7934564 -0.18170045 0.087257639
0.50916399 0.04634821 -0.1437019 0.08923057 -0.2567021 -0.2934746 0.26333479 -0.21308607 —0.02505351
0.28783823 -0.2662163 0.0766028 0.09914485 0.57665811 0.04300083 0.20662283 -0.48985711 -1.09740743
0.08917337 —0.1050009 0.23818256 0.02035607 -0.1072192 0.2659477 -0.0029764 -0.13148311 0.313665366
—-0.7503685 —0.1704471 0.18719634 -0.0233035 —0.0088938 0.26343414 -1.0737247 -0.19018699 0.280100524
0.34230089 0.00558946 —0.1427919 -0.2957063 -0.6490481 0.10546459 0.27322547 0.041606539 -0.10278157
0.25879736 0.21953927 0.11052919 0.00206003 -0.0680416 -0.2189914 0.0378666 0.055450179 -0.26693807
0.11482869 0.04256621 0.24740165 -1.0210288 0.10826852 0.1081171 0.28972162 0.107963625 -0.01416421
0.21645891 0.26405307 -0.2682646 -0.0251217 0.2673504 -0.2407415 -0.3201356 -0.12644907 0.363928738

0.16321044 1.00101739 0.44610851 0.19117524 -0.1869131 0.03284449 0.48709406 0.492839005 0.068811431
0.05034014 0.27448502 0.05595427 0.34759862 -0.0428559 -0.4656632 0.41211291 0.550350162 0.261254457
0.02309873 0.00700133 -0.3300406 —0.032857 -0.2059139 -0.1572132 0.43069278 0.119708938 0.13204548

0.60643185 -0.1677085 0.01351505 0.01269345 0.07414495 -0.2533687 -0.1990881 0.074189084 -0.00874219
0.06424168 -0.0394268 0.04062341 0.10346071 0.24294981 —0.1406991 0.1530591  0.00796601 0.142324569
—-0.1607398 -0.0067892 -0.1142057 -0.3542569 -0.317926 0.89646875 0.19029585 -0.0777253 0.138215439
—0.0249375 -0.142179 0.21181449 0.00745531 -0.0807929 -0.0606121 —0.3138917 —0.04179489 -0.08395995
0.01271854 0.07904033 -0.2032421 0.30678256 -0.0970233 -0.0973761 -0.2681465 -0.26023333 -0.05748785
0.15729166 0.02004037 0.08441775 0.50899351 -0.0107112 0.1654774 0.05321702 -0.55038421 -0.01142195
0.45526814 0.30848224 0.03885589 —0.067078 0.03709569 -0.1103419 0.00132508 -0.0601008 —0.00809993
0.00144682 -0.0160469 -0.1485655 0.07678165 -0.0117808 —0.039538 —0.1553724 0.090185082 -0.05537005
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Figure 21: Comparison between solutions obtained by the LeNN-WOA-NM algorithm under the influence of variations in y, on
population densities of the prey-predator model. (a) Approximate solutions for population density of local prey. (b) Approximate solutions
for population density of immigrant prey. (c) Approximate solutions for population density of the predator.



Discrete Dynamics in Nature and Society

correctness of the proposed algorithm to tackle real-world
problems. Trained neurons in LeNN are shown in Table 44.
From Figure 21, the following conclusions can be drawn:

(i) Population densities of local prey, immigrant prey,
and the predator vary inversely with variation in the
catching rate of immigrant prey y,.

8. Conclusion

In this paper, we have analyzed the system of the singular
differential equation (SDE) representing the phenomena of
the prey-predator model with immigrant prey. Generally,
solving SDE is one of the challenging tasks, and therefore, we
have designed a novel soft computing technique known as a
LeNN-WOA-NM algorithm. Weighted Legendre polyno-
mials are used to model approximate series solutions for the
prey-predator model with variations in various coefficients,
including the growth rate of local and immigrant prey
(a1, @), force interaction between local and immigrant prey
(B1>B,)> and the catching rate of local and immigrant prey
Y1, V- We summarize our findings as follows:

(i) Variations in «y, a,, B, and 3, has a direct impact
on population density of local prey S(t), while
population density of local prey is inversely affected
by variations in y, and y,.

(ii) Variationsin «;, a,, f3,, and y, has an inverse impact
on population density of immigrant prey X (f),
while population density of immigrant prey is di-
rectly affected by variations in f8; and y,.

(iii) Variations in «;,®, and f; has a direct impact on
population density of the predator S(t), while
population density of the predator is inversely af-
fected by variations in y;, f3,, and p,.

(iv) Approximate solutions obtained by the LeNN-
WOA-NM algorithm are compared with those
obtained by the homotopy perturbation method
and MATLAB solver ode45. The results show the
dominance of the proposed technique.

(v) Lower absolute errors in our solutions and con-
vergence analysis of fitness evaluation, MAD, TIC,
and ENSE show the accuracy and robustness of the
proposed algorithm for obtaining solutions to real-
world problems.

In future, this approach can be utilized to solve the
complex nonlinear systems of fractional differential equa-
tions characterizing real-world problems, for instance,
anomalous diffusion of contaminant from the fracture into
the porous rock matrix, microbial survival and growth
curves, smoking dynamics, parametric identification of
Hammerstein systems with time delay, and asymmetric dead
zones.

Abbreviations

LeNN: Legendre neural network
NM:  Nelder-Mead

43

Mean absolute diviation
TIC:  Theil’s inequality coefficient

NSE:  Nash-Sutcliffe efficiency

ENSE: Error in Nash-Sutcliffe efficiency
ANNSs: Artificial neural networks

WOA: Whale optimization algorithm

a: Intrinsic growth rate of local prey
Increasing rate of immigrant prey

Force of interaction between local prey and
immigrant prey

ky: Carrying capacity of local prey

k,: Carrying capacity of immigrant prey

¢y, ¢, Intrinsic growth rate of the predator population
Uy> 4y: Suffering loss of the predator population

2K Catching rate of local prey

Y, Catching rate of immigrant prey.
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According to the Global Cancer Statistics 2020 published in the official journal of the American Cancer Society (ACS), colorectal
cancer ranked 4th in incidence and 2nd in mortality, and the 2018 Cancer Registry Report of Taiwan Health Promotion
Administration showed that colorectal cancer ranked 2nd in incidence and 3rd in mortality. With the rapid evolution of the times,
the lifestyles of the people have shifted from what they used to be. In addition to uncontrollable factors such as family genetic
disorders, diet, and bad habits, life stress may lead to an unhealthy body mass index (BMI), which, together with aging, increases
the incidence of colorectal cancer. In this study, the convolutional neural network was used to assess the risk of tumor in the colon
by colonoscopy. The endoscopic images of the colon, which were classified into three categories of healthy (normal), benign
tumor, and malignant tumor, were adopted as training data. When this method is combined with the patient’s physical data, the
risk cancer can be calculated by the fuzzy algorithm. Based on the result of this study, the accuracy of the tumor profile by
colonoscopy, that is, 81.6%, is more precise than that of colorectal cancer tumor analysis studies in the recent literature. The
proposed method will help physicians in the diagnosis of colorectal cancer and treatment decisions.

1. Introduction

According to Global Cancer Statistics 2021 published in the
official journal of the American Cancer Society (ACS), co-
lorectal cancer is the 4th most common cancer and the 5th
most common mortality, posing a serious threat to the
health of the population [1, 2]. Another 2018 Cancer Registry
Report by Health Promotion Administration reveals that
colorectal cancer ranks 2nd in morbidity, 2nd in mortality,
Ist in morbidity for men and 3rd for women, and 3rd in
mortality for men and 4th for women [3].

In recent years, the incidence of colorectal cancer is on
the rise year by year as a result of the changing living pattern,
food culture, sedentary lifestyle, work environment, and
other factors, even with the trend of increasing youthfulness.
With the exclusion of family genetic history, the risk factors
for colorectal cancer are associated with the poor habits of
people’s lives, irregular work habits, physical inactivity, work
strain, lack of dietary control, and aging. It is also noted that
in terms of the risk of colorectal cancer, ranging from age
and genetic to environmental and lifestyle choices, factors
such as obesity, low physical activity, active and passive
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smoking, and high salt and red meat consumption are
correlated to a higher risk of colorectal cancer [4-6]. Re-
garding the impact of age, a recent study demonstrated a
steady yearly increase in the risk of young-onset colorectal
cancer [7].

For early detection of colorectal cancer, carbohydrate
antigen 19-9 (CA 19-9) and carcinoembryonic antigen
(CEA) are commonly used biomarkers [8]. There is a strong
correlation between CA 19-9 and CEA levels in colorectal
cancer patients (p =0.001and p<0.0001, respectively),
both of which are important biomarkers in the progression
of colorectal cancer [9]. Persistent smoking is known to alter
the prognostic value of postoperative serum CEA levels in
colorectal cancer patients because smoking can increase
serum CEA levels independent of the disease status [10].

Another recent breakthrough in the diagnosis of colo-
rectal cancer is deep neural network visualization [11-14].
An image analysis method based on deep learning can not
only accurately classify different types of polyps in the whole
slide image but also generate the main areas and features on
slides through the model visualization method. This visu-
alization method could significantly reduce the cognitive
burden of clinicians [11]. In recent years, the convolutional
neural network (CNN) model has been applied in the rel-
evant medical literature. The accuracy of most model vali-
dation from previous studies [12-14] related to colorectal
cancer falls between 75.1% and 83.9%. Based on the result of
this study, the accuracy of the tumor profile by colonoscopy,
that is, 81.6%, is more precise than those, 75.7% and 75.1%
respectively, of colorectal cancer tumor analysis studies in
references [12, 13]. It is slightly lower than that, 83.9%, in
reference [14]. However, the source of image acquisition and
research method are different. The cost is relatively high and
is seldom employed. The proximity and complexity of the
organs in the human body, the image resolution, size, and
angle can affect the accuracy of identifying the targeted
tissues and lesions using the training model.

The biggest difference between CNN and multilayer
perceptron (MLP) lies in the additional convolution layer
and pooling layer. These two layers enable CNN to have the
capability in extracting details from image or speech fea-
tures, instead of simply extracting data for calculation like
other neural networks [15, 16].

The fuzzy theory was introduced by Lotfi [17]. Then,
fuzzy logic of the concept of linguistic variables is proposed
in reference [18]. Nowadays, fuzzy systems are applied in
different fields, such as household appliances, industrial
system control, and image recognition [19]. The research
also pointed out that the application of professional fuzzy
rules could help in detecting colorectal cancer and help
doctors to easily identify diseases [20].

In this study, the convolutional neural network (CNN)
was used for the training and learning of feature extraction
from colonoscopy images. According to the health level, the
training data were classified into healthiness, benign tumors,
and malignant tumors. Colonoscopy images in the three
categories were randomly selected as test data, and designated
case images were used to assess the similarity of tumor profiles
between the designated image and the image from test data.
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The practical results of this study are summarized in the
following four points:

(1) By analyzing the polyp profile in colonoscopy im-
ages, the results can be used as a reference for
physicians to diagnose the symptoms as well as in-
crease the detection efficiency and reduce the mis-
diagnosis rate.

(2) The patient’s physical data are combined with the
risk of tumor for assessment in the fuzzy system,
which not only allows the patient to understand his
current physical condition through data analysis but
also enables the physician to make corresponding
treatment decisions for the patient through the as-
sessment results.

(3) After discussion on the results with clinicians, the
accuracy of the raw data and assessment results are
consistent with clinical analysis.

(4) The accuracy of the results of this study reaches
81.6%. Compared with the accuracy of colorectal
cancer tumor analysis and research in the literature,
the accuracy is better [12, 13], and the accuracy of the
original data and evaluation results after discussion
with clinicians is in line with clinical analysis.

2. Methodology

This study is based on the case data of colorectal cancer in a
medical center in southern Taiwan. The colonoscopy images
are trained and learned by convolutional neural networks.
After completing the learning verification, the colonoscopy
images of the designated patients will be tested and iden-
tified. Finally, the severity score and the patient-related
information are fuzzy analyzed through a fuzzy algorithm,
and the output is the risk of the patient’s colorectal cancer, so
that the doctor can diagnose colorectal cancer-related dis-
eases Time aids.

3. Methods

Between January 2016 and December 2020, the medical
records of the first 500 adults (i.e., age >18 years) of both
genders undergoing first-time colonoscopy at a single re-
ferral center (i.e., Kaohsiung Chang Gung Memorial Hos-
pital) regardless of indications were retrospectively
reviewed. Exclusion criteria were as follows: (1) patients
receiving previous colonoscopic examinations at other
medical institutes, (2) those with normal colonoscopic
findings, (3) those with a known history of benign or ma-
lignant colorectal diseases including familial polyposis and
inflammatory bowel disease (i.e., Crohn’s disease and ul-
cerative colitis), (4) those having received colorectal pro-
cedures (e.g., polypectomy and colorectal resection), (5)
those without pathological analysis of colorectal specimens,
and (6) those without complete information for the present
study (e.g., body mass index and circulating CEA levels).
Circulating CEA levels were determined in participants of
annual physical checkups and those with positive stool
occult blood test scheduled for colonoscopy.
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4. Results

Of the 992 adult patients receiving colonoscopic examina-
tion within the study period, the medical records of the first
500 eligible for the current study were reviewed. The patient
population comprised 275 males (55%) and 225 females
(45%) with a mean age of 62.1 + 11.8 (range, 31-85), a mean
body mass index of 23.5 + 3.7 (range, 17.5-31.6), and a mean
circulating level of CEA 23.5+280.6 (range, 0.5-1212.0).

In our routine practice, we take 12 images from a patient
during a colonoscopic examination. Therefore, we had a
total of 5950 images from 500 patients. All images were fed
into an imaging analyzing software (Spyder 4.2.0) that di-
vided the images into three categories, namely, normal
image (Figure 1), benign (Figure 2), and malignant (Fig-
ure 3) tumors. There was no human handling or annotation
of the images in the analytic process.

4.1. Research Environment. The colonoscopy images of 500
cases were divided into a training set, validation set, and test
set. Among them, the colonoscopy images of 10 cases in the
total data are taken as the test set, the rest is taken as the
training set, and the images from the training set of 10% are
used as the validation set of the training model for cross
validation. Table 1 lists the environment and hardware
configuration of this research.

4.2. System Software Design and Composition. Two kinds of
software are used in the development of the system, one is

Spyder, which is based on the development environment
under the Python language. The open-source cross-platform
scientific computing integrated development environment
(IDE) of the Python language provides advanced code
editing, interactive testing and debugging, computational
science, data processing, and predictive analysis and sup-
ports multiple programming languages and operating sys-
tems. The second is Matlab, which is an interactive
development environment based on algorithm develop-
ment, data analysis, and numerical calculation.

4.3. Experimental Steps

(1) Obtain the image data of the colonoscopy through a
medical center in the south, and search for the body-
related data of the case based on the image data.

(2) Keep the required data, delete the unnecessary data
such as blurred images, overexposed images, and
unrecognizable shooting angles during the colo-
noscopy, and classify them into healthy (normal),
benign, and malignant according to the type and
appearance characteristics of polyps.

(3) From the three types of image data, after the training
set and the test set are separated, the convolutional
neural network is used to learn and train them, and
the parameter values are adjusted to make the ver-
ification accuracy and loss value reach the expected
value. Set goals.
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(4) After completing the learning and training, perform
the result verification to check the corresponding
similarity evaluation of healthy (normal), benign,
and malignant in the test images. This value is also
used as the severity percentage in the fuzzy input,
which is called the tumor risk.

(5) Finally, input the age, BMI value, tumor risk, and
carcinoembryonic antigen index in the body data of
the corresponding case into the fuzzy algorithm to
evaluate the risk of cancer, and display the result.

4.4. Data Preprocessing. In the process of colonoscopy, the
large intestine will be affected by factors such as the width of
the intestine, bending of the intestine, the number of folds in
the intestinal wall, the position and size of polyps, the
shooting angle of the lens and whether it is accurately fo-
cused, and the overexposure or insufficient light source. The
output image quality of the mirror inspection, coupled with
the limited time of the inspection process, makes it inevitable
that there will be poor quality and difficulty to identify image
data in the screening results. Therefore, after filtering them,
the difficult-to-identify or poor-quality images are deleted to
improve the accuracy of the training model.

Since the human intestine is very long and the affected
part only exists in a certain part of the general intestine, the
results of colonoscopy screening may include normal images
(labeled as “healthy”) as well as those of polyps and ma-
lignant tumors. The colonoscopy images of these 500

patients are classified into three categories: “healthy” (Fig-
ure 1), “benign (Figure 2),” and “malignant” (Figure 3). This
classification is only based on the appearance of polyps as a
preliminary assessment, and the final judgment of the tumor
profile must be approved by a professional physician.
Screening and diagnosis are performed.

4.5. Convolutional Neural Network Model Architecture and
Parameter Settings. The neural network model used in this
research is SmallerVGGNet, which is the simplified CNN
model architecture of VGGNet [21], and the colonoscopy
data of 500 cases were classified into healthy (normal),
benign, and malignant categories. In order to avoid over-
fitting of CNN during training, the database was divided into
a training set and a test set without duplication, and 5%-10%
of the images in the training set were taken as the validation
set, which was repeatable. The purpose was to observe the
validation accuracy of the model after training and select the
training model with the highest validation accuracy as the
CNN model in this study for tumor risk assessment.

The CNN architecture of this study is based on the
SmallerVGGNet neural network as a multiconvolutional
deep learning classifier, which consists of 7 convolutional
layers and 4 pooling layers with MaxPooling added after
convolutional layers 1, 3, 5, and 7, respectively. The
remaining model parameters are presented in Table 2, with
the activation function being ReLU in the CNN training
model, sigmoid in the multitag classifier, adam in the
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TaBLE 1: Experimental setup.

TaBLE 2: CNN model parameter settings.

Test system

Various parameters

Operating system Windows 10 Professional (x64)

CPU Intel Core i5-4570 (4C4T@3.2 GHz)
GPU NVIDIA GeForce GT-710 2 GB
Memory 16 GB DDR3 1333 MHz

Tensorflow-Keras (Spyder 4.2.0)
Matlab R2020a
Python 3.6
5950 piece/225 piece

Development environment

Program language
Training set/test set

optimizer, stride of 1, dropout of 25%, the initial learning
rate of le-3, batch size of 32, training iteration epoch of 200,
and hidden layer neurons of 1024.

4.6. Fuzzy System Design. The tumor risk estimated by the
CNN training model can be combined with the patient’s
body-related data to derive the risk of colorectal cancer.
Therefore, a fuzzy system was designed by establishing se-
mantic variables of input and output, defining their mem-
bership functions, and formulating fuzzy rules, fuzzy
inference, and defuzzification. As such, a fuzzy system for
the risk of cancer was determined.

The tumor risk derived from the CNN model was
combined with four input variables, including the corre-
sponding age of the patients, BMI, and carcinoembryonic
antigen. After fuzzification of the triangular and trapezoidal

7 layers of convolutional layer and 4

Layers layers of pooling layer
Convolutional kernel 3%x3
MaxPooling 2x2

Multilabel classification: sigmoid neural

Activation functi -
ctivation function network training model: ReLU

Optimizer Adam
Stride 1
Dropout 25%
Learning rate 0.001
Batch size 32
Epoch 200
Number of hidden layer 1024
neurons

membership functions, the maximum-minimum (max-min)
synthesis operator was used for the computation of the
membership of the fuzzy set by the center-of-gravity method
and the output was the risk of colorectal cancer.

4.6.1. Design of Fuzzy Parameters. The fuzzy algorithm was
applied to assess the risk of colorectal cancer, as shown in
Figure 4, The tumor risk derived from the CNN model was
combined with four input variables, including the corre-
sponding age of patients, BMI, tumor risk, and
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carcinoembryonic antigen. After fuzzification of the trian-
gular and trapezoidal membership functions, the maximum-
minimum (max-min) synthesis operator was used for the

computation of the membership of the fuzzy set by the
center-of-gravity method and the output was the risk of
colorectal cancer.
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Risk Iindicator Tumor (%)
Low-risk group(LR) 0<x220
Low-to-medium risk(LM) 20<x<40 05 4
Medium risk group(MR) 40<x<60
High-medium risk 60<x<80
group(HM) XS 0
High-risk group(HR) x>80 0 10 20 30 40 50 60 70 80 90 100
output variable “Probability_of_Cancer”
FIGURE 9: Risk of cancer.
TaBLE 3: Risk of tumor. (a) Healthy: age/BMI; (b) age/CEA; (c) CEA/BML
(a) Healthy: age/BMI
BMI age (years) 0-20 15-40 30-50 40-60 50-70 60-85 Over 80
Underweight Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Normal weight Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Overweight Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Severe obesity Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Morbid obesity Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Super obesity Low risk Low risk Low risk Low risk Low risk Low risk Low risk
(b) Healthy: age/CEA
CEA age (years) 0-20 15-40 30-50 40-60 50-70 60-85 Over 80
Normal Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Smoker Low risk Low risk Low risk Low risk Low risk Low risk Low risk
Abnormal Low risk Low risk Low risk Low risk Low risk Low risk Low risk
(c) Healthy: CEA/BMI
BMI age Normal Smoker Abnormal
Underweight Low risk Low risk Low risk
Normal weight Low risk Low risk Low risk
Overweight Low risk Low risk Low risk
Severe obesity Low risk Low risk Low risk
Morbid obesity Low risk Low risk Low risk
Super obesity Low risk Low risk Low risk

4.6.2. Establishment of Semantic Variables and Membership
Functions. The fuzzy system has four input parameters and
one output. Input parameters are age in Figure 5, BMI in
Figure 6, carcinoembryonic antigen in Figure 7, and tumor
risk in Figure 8, respectively, and the output is risk of co-
lorectal cancer in Figure 9 The terms and the membership
functions of each parameter are explained below.

Once the terms were established, the membership
functions were defined based on the data from the pieces of
literature. The graphs of membership function of this study
were based on the triangular (Trimf) and trapezoidal
(Trapmf) membership functions referenced to obtain better
results and to facilitate the observation of the data in this
study, while the range of age membership was determined
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TaBLE 5: Risk of tumor. (a) Malignant: age/BMI; (b) age/CEA; (c) CEA/BMI.
(a) Malignant: age/BMI
BMI age (years) 0-20 15-40 30-50 40-60 50-70 60-85 Over 80
Underweight High risk High risk High risk High risk High risk High risk High risk
Normal weight High risk High risk High risk High risk High risk High risk High risk
Overweight High risk High risk High risk High risk High risk High risk High risk
Severe obesity High risk High risk High risk High risk High risk High risk High risk
Morbid obesity High risk High risk High risk High risk High risk High risk High risk
Super obesity High risk High risk High risk High risk High risk High risk High risk
(b) Malignant: age/CEA
CEA age (years) 0-20 15-40 30-50 40-60 50-70 60-85 Over 80
Normal High risk High risk High risk High risk High risk High risk High risk
Smoker High risk High risk High risk High risk High risk High risk High risk
Abnormal High risk High risk High risk High risk High risk High risk High risk
(¢) Malignant: CEA/BMI
BMI age Normal Smoker Abnormal
Underweight High risk High risk High risk
Normal weight High risk High risk High risk
Overweight High risk High risk High risk
Severe obesity High risk High risk High risk
Morbid obesity High risk High risk High risk
Super obesity High risk High risk High risk

from the statistics of reference [11], and BMI and CEA
obtained from the information from the Ministry of Health
and Welfare and major hospitals.

4.6.3. Establish Fuzzy Rule Base. After evaluating the polyp
profile of colorectal endoscopy based on the CNN network
model, combining the relevant risk factor parameters and
the clinical experience of professional physicians, the cor-
responding results can be summarized, which is also used as
a reference for the design of the fuzzy rule library. In the rule
table of the fuzzy system in this study, there are 7 semantic
variables in “age,” 6 semantic variables in “BMI value,” 3
semantic variables in “carcinoembryonic antigen index,”
and 3 in “tumor risk.” There are semantic variables, so there
are a total of 378 rules. Tables 3-5 list the comparison of the
tuzzy rule base of healthy, benign, and malignant.

4.6.4. Fuzzy Inference and Defuzzification. In the fuzzy
system of this study, the method of the center of gravity was
utilized for the computation of the defuzzification. With the
center of gravity method, the tumor risk and the three risk
factors can be derived to assess the risk of cancer. Finally, the
probabilistic assessment of the risk level allows the physician
to know the current physical data of the patient to assist the
physician in the diagnosis and treatment process, thus in-
creasing the efficiency of diagnosis and reducing the rate of
misdiagnosis. In the case of a patient aged 75, with a BMI of
25.5, a CEA of 10.55, and a tumor risk of 60.5%, the risk of
cancer is calculated to be 75.3%, which corresponds to a risk
assessment of the “moderate-to-high risk group.”

5. Results

5.1. The Proposed CNN Training Model. Following the
consummation of design of the neural network architecture,

the accuracy and loss function of the model were observed
by varying the number of iterations and the ratio of images
in the training and validation sets. The accuracy ranged from
0.6 to 0.65 for 50 and 75 iterations, indicating a poor training
effect. Figure 10 shows the training results of the model with
100, 150, 175, and 200 iterations, and it can be therefore
observed that when the ratio of the training set to the
validation set was 9:1 for 200 iterations, the accuracy rate
reached 81.6%, which was the model with the optimal
training effect after multiple adjustments. Thus, it was
chosen as the CNN training model for this study.

5.2. Analysis of the Risk of Tumor Detection by Colonoscopy.
After the CNN training model was selected, the image data
from the test set were classified and identified by a multi-
convolutional classification Keras model. The results of the
colonoscopy images in Figure 11 illustrate the percentage of
the images in each of the three categories of healthy, benign,
and malignant after assessment by the classification model,
and the assessed probabilities were benign, 87.88%; malig-
nant, 24.19%; healthy, 0.02%. Since the three categories of
healthy, benign, and malignant were analyzed separately in
the assessment process, the results were not 100% for the
three categories combined; instead, the percentages of the
three categories were assessed separately for each image.
From the above assessment results, the risk of the polyp
profile being a benign tumor was 87.88%.

5.3. Assessment of the Risk of Colorectal Cancer. There were
four input parameters of the fuzzy system in this study,
among which tumor risk was estimated by the CNN model,
and the remaining age, BMI, and CEA indexes were the
physical data of the patient corresponding to the colonos-
copy images. The risk of colorectal cancer was measured by
the fuzzy system, as shown in Figure 12 the result of
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FiGure 10: Epochs and validation accuracy difference comparison. (a) Epochs: 100, validation accuracy: 0.7424. (b) Epochs: 150, validation
accuracy: 0.7918. (c) Epochs: 150, validation accuracy: 0.8108. (d) Epochs: 175, validation accuracy: 0.7555. (e) Epochs: 200, validation

accuracy: 0.8027. (f) Epochs: 200, validation accuracy: 0.8161.

FiGure 12: Tumor risk assessment result: the risk of benign tumor

F1Gure 11: Tumor risk analysis result: the risk of benign tumor is
is 98.84%.

87.88%.
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colonoscopy image assessment was as follows: the risk of
benign tumor is 98.84% and is 65.23% after the conversion of
severity level, while the age of the patient was 44 years old,
with a BMI of 31.6 and a CEA index of 2.01, and the risk of
colorectal cancer was 60.6% after the assessment by the fuzzy
system.

6. Discussion

The results of this study are intended for diagnostic pur-
poses, not as a substitute for a physician’s decision, thus
there is no definite accuracy rate. Apart from discussing the
results of the analysis of different tumor probabilities and
physical conditions, the cases are also observed to see
whether the accuracy rates are clinically relevant in various
situations.

Case 1. Age=56, BMI=20.1, CEA=5.15, PoT=90.71%,
and the fuzzy system assesses the risk of cancer as 91.7%,
which corresponds to the interval of high-risk group. The
risk factors in this case are all within normal values except
for the age risk, which indicates that although this study
adopts relatively stable risk factors as the experimental data,
all risk factors can only function to the extent of increasing
or decreasing the risk, and the actual physical condition has
to be properly assessed by screening.

Case 2. Age=61, BMI=26.8, CEA=1.09, PoT =64.05%,
and the fuzzy system assesses the risk of cancer as 60.2%,
which corresponds to the interval of medium-high risk
group. The possibility of cancer in this case is subject to
assessment by the physician.

Case 3. Age=47, BMI=24.9, CEA=434.78, PoT =25.7%,
and the fuzzy system assesses the risk of cancer as 10.1%,
which corresponds to the interval of low-risk group. This
case shows an unusually high CEA. Although CEA is only a
reference value for risk factors, neither a high value means
cancer, nor a low value means no cancer. As the human
intestine is very long and the CEA in this case is significantly
elevated above the abnormal range, this phenomenon
suggests that the lesion may be located elsewhere in the
intestine.

Taking into account the promising association between
the imaging outcomes and the results of pathological ana-
lyses, the current study highlighted a time-efficient and
noninvasive approach to the diagnosis of potential colorectal
malignancies. The imaging tool may provide clinical guid-
ance for clinicians to determine whether to proceed with
high-risk procedures (e.g., polypectomy) or adopt a more
conservative strategy, particularly in patients at high risk of
complication (e.g., coagulopathy or impending colon per-
foration). Another advantage is the lack of requirement for
specific software for operation. Nevertheless, the current
study has its limitations. First, despite the involvement of up
to 500 patients in the current study, the sample size is still
relatively small to consolidate our findings. Second, although
we included patient factors including age, CEA, and body
mass index in our analysis, other risk factors for colorectal
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cancers such as dietary habits and family history were not
taken into account. Further large-scale studies are warranted
to validate the clinical application of the present imaging
approach. Finally, the lack of real-time feedback is another
limitation. Nevertheless, analyses of all images from a single
patient can be completed within five minutes. In routine
practice, such a short time could allow a clinician to decide
the appropriate colonoscopic management strategy (i.e.,
invasive vs. conservative) based on the results of analysis
when the patient is still under anesthesia or sedation.

The lack of real-time feedback is another limitation.
Nevertheless, analyses of all images from a single patient can
be completed within five minutes. In routine practice, such a
short time could allow a clinician to decide the appropriate
colonoscopic management strategy (i.e., invasive vs. con-
servative) based on the results of analysis when the patient is
still under anesthesia or sedation.

Essentially the fuzzy rules based on the way-wise phy-
sicians’ design and a large amount of learning information
will reduce, but not completely avoid, the misdiagnosis rate.

7. Conclusion

In this study, a CNN training model is employed to analyze
the assessment of tumor risk of healthy, benign, and ma-
lignant on colonoscopy images, and then the four param-
eters of tumor risk, age, BMI, and CEA are utilized to assess
the risk of colorectal cancer by fuzzy algorithm, which assists
physicians to effectively diagnose patients’ symptoms
through their current physical condition and data, thus
reducing the misdiagnosis rate.

However, from the analysis and discussion of the ex-
perimental results, it is evident that despite the high priority
of assessed tumor risk in the fuzzy system, as colonoscopy is
the most direct way to screen for colorectal cancer, the
consideration of risk factors has a certain degree of reference
value for diagnostic signs, clinical analysis, postoperative
follow-up, and prevention, in addition to the current
physical condition.

Among the many colorectal cancer screening methods,
colonoscopy is currently the most important and direct
screening method. Compared with other methods, this
method can directly observe the general situation of all
tumors in the intestine. Compared with medical image
computing together with MICCAI, CVC Colon DB, and
ISIT-UMR, the Association for Computer-Aided Inter-
vention used the image sequence data in the medical dataset
as the training model of the deep convolutional neural
network (DCNN) and trained two sets of settings Set-1 and
DCNN. The accuracy rates of Set-2 are 75.71% and 79.78%,
respectively [12]; based on computer-aided diagnosis
(CAD), combined with convolutional neural network
(CNN), through deep learning model after training, the
polyp status analyzed by CAD in colonoscopy was used for
verification test with CNN, and the accuracy rate of the
research results was 75.1% [13].

The proximity and complexity of the organs in the
human body, the image resolution, size, and angle can affect
the accuracy of identifying the targeted tissues and lesions
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using the training model. The biggest difference between
CNN and multilayer perceptron (MLP) lies in the additional
convolution layer and pooling layer. According to the
Cancer Registration Annual Report of the National Health
Administration of the Ministry of Health and Welfare of
Taiwan, 17,302 people were initially diagnosed with colo-
rectal cancer in 2019, of which 11,031 (63.8%) were colon
cancer, and 6,271 (36.2%) were rectal, sigmoid junction, and
anus [3]. Future research will be directed towards designing
CNN network model to observe the difference in the di-
agnostic accuracy of colorectal cancer in different parts.
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Isokinetic exercise is considered as one of the most effective ways for rehabilitation and muscle strength enhancement. As
rehabilitation equipment, the isokinetic exercise device assists isokinetic movement using a single fixed axis and relevant joint
adapters, and it requires high stability and safety performances to cooperate with human. In this paper, a brushless DC motor
(BLDCM) was adopted to make a study of isokinetic control. Fractional-order fuzzy PID (FOFPID) controller is an effective
controller for the nonlinear system to realize isokinetic control according to reference speed and irregular disturbance (load
torque). The model of the BLDCM and FOFPID controller system is built in MATLAB/Simulink to simulate the velocity response
of the controller, and a comparison between the FOFPID controller and PID controller is made to verify the system stability.

1. Introduction

Relevant research studies of muscular strength enhancement
are extremely meaningful for sports and rehabilitation areas
to improve the competitive performance and physical fitness
[1, 2]. Some isokinetic, isometric, and isotonic physical
training could be used with the equipment to achieve the
ideal effect of overcoming resistance to exercise muscle
strength [3-5]. According to some research studies of
muscle contractions, isokinetic exercise is considered as the
safest and reliable muscular exercise mode; meanwhile,
isokinetic dynamometry is regarded as one of the most
credible muscle strength assessments [6]. Hence, isokinetic
exercise is increasingly applied for people of dyskinesia and
athletes to recover motion ability or enhance muscular
strength. To maintain a constant velocity, the isokinetic
exercise is accomplished with the assistance of an isokinetic
exercise device. At present, isokinetic exercise device mainly
aims at “single-joint” configurations which drive a single
fixed axis with different adapters corresponding to each joint
assembling on it. The joint angular velocity is constant and
preset during isokinetic movement while the resistance
moment provided by the isokinetic device is equal to joint

torque and changes following joint torque [7]. Because of the
resistance moment and reciprocating motion provided by
the isokinetic exercise device, the isokinetic control under
external torque disturbance needs to meet high robustness
and reliability performance to achieve stability requirement
and security interaction with experimenters. As one of the
rehabilitation instruments, isokinetic exercise device has a
broad development prospect and potential for hemiplegic
patients and athletes. This paper mainly considered the study
of isokinetic control to enhance the stability and lay the
foundation of isokinetic exercise device development.
Direct current motor (DC motor) has been widely used
in industries for several years, owing to its advantages of
stability, fast response, high efficiency, simple control sys-
tem, etc. Brushless DC motor (BLDCM) has evolved from
DC motor driven from pulse width modulation (PWM)
inverters which overcomes the disadvantages of speed,
lifetime, and noise [8, 9]. For isokinetic control application,
the system is nonlinear and BLDCM needs a more com-
plicated controller to achieve constant speed control com-
pared with traditional DC motor. Many researchers have
dedicated themselves to study effective control strategies to
increase the capability of speed tracking under disturbance
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and sudden torque change [10, 11]. As a simple and useful
controller, conventional proportional-integral-derivative
(PID) controller is applied in industrial control systems
generally because of its performance of high adaptation and
simplicity [12]. However, its low-precision, poor anti-jam-
ming ability and fixed parameters make PID controller fail to
satisty the high-performance requirements in some indus-
trial applications especially for the systems with high dis-
turbances [13]. Therefore, various speed controllers have
been studied on the basis of conventional and intelligent
control strategies. Xia et al. discussed switching-gain ad-
aptation current control to achieve high performance with
changing disturbance in dynamic and static processes. The
result showed that the general disturbance could be elimi-
nated in different operating stages and the controller im-
proved the steady-state accuracy effectively [14]. Mandel and
Weiss used a resonant controller in which resonant fre-
quencies could be adjusted on the basis of motor speed to
reduce torque ripple. According to the experimental tests,
the controller showed the ability of tracking variable speed
command and restraining the influence of cogging torque
[15]. Wang et al. designed a quadratic single neuron (QSN)
adaptive PID controller which could follow the reference
speed successfully with sudden load disturbance [16].
Sivarani et al. proposed a novel bacterial foraging algorithm-
optimized online adaptive neuro-fuzzy inference system
(ANFIS) controller which performs better set point tracking
and has better learning parameter tuning ability and time
domain specifications [11]. Xu et al. proposed a novel real-
time planning method for robot to simultaneously avoid
obstacle and track the target [17]. For external disturbance,
many researchers used appropriate control strategies
according to their inherent properties to overcome the
perturbation, such as active disturbance rejection control
[18], neural network-based adaptive impedance control [19],
repetitive control [20], and so on [21].

In terms of various intelligent control techniques, fuzzy
logic control (FLC) is a robust, intelligent, and adaptive
control strategy for complex nonlinear dynamic systems
[22]. As the promotion of intelligent control strategies, FLC
is developing towards the trend of self-adaptive with other
controllers, such as fuzzy PID control [23], neuro-fuzzy
control [24], fuzzy predictive control [25], and so on.
Fractional-order fuzzy PID (FOFPID) controller is a

ue 0 o R JLi
iA + iB + iC = 0.
where u,, ug, uc refer to stator phase winding voltage (V);

i, ip, ic refer to stator phase winding current (A); e,, e, e
refer to stator phase winding electromotive force (V); R is the
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combination of fuzzy controller and PID controller with
noninteger orders in differential and integral parts. From
some relevant research studies, the efficiency and robustness
could be enhanced distinctly by combining fractional-order
operator. Kumar and Rana applied nonlinear adaptive
FOFPID controller for a 2-link planar rigid robotic ma-
nipulator with payload, and the results clearly revealed a
good trajectory tracking performance [26]. Kumar et al.
proposed a self-tuned robust FOFPID controller for a
nonlinear active suspension system of a quarter car, and the
simulation study showed a better performance by providing
comfort ride during hard constraint [27]. Although the
previous research studies of FOFPID presented better
control capability, there are less research studies of isokinetic
control with periodic velocities and irregular external load
torque.

In this paper, a FOFPID controller was applied to control
the isokinetic movement of BLDCM. Section 2 introduces
the mathematical model of BLDCM and the simulation
model in MATLAB/Simulink. FOFPID controller for iso-
kinetic control is proposed in Section 3. Section 4 presents
the simulation results and makes a comparison between
FOFPID controller and PID controller. The discussion and
conclusion are given in Section 5.

2. Model of BLDCM System

2.1. Mathematical Model of BLDCM System. The mathe-
matical model of BLDCM system would be established
under the condition of reasonable simplification. The fol-
lowing assumptions are proposed. (1) Stator has star con-
nection, three-phase winding is completely symmetrical, and
the model is working in two-phase conduction and three-
phase six states. (2) The magnetic circuit of the motor is
unsaturated during operation without eddy current and
hysteresis loss. (3) The air gap is uniform and the magnetic
field is a square wave. (4) The stator current and rotor
magnetic field are symmetrical. (5) The armature windings
are uniformly and continuously distributed on the inner
surface of the stator. (6) The armature effect and cogging
effect are ignored [28, 29].

Under the above assumptions, the voltage balance
equation of three-phase winding could be obtained by the
Kirchhoft voltage law (KVL):

1)

motor phase resistance (Q)); L is self-inductance of each
phase winding (H); and M is the mutual inductance between
each two-phase winding (H).
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The correlation between the stator winding input power
and the generated electromagnetic torque is described by the
following equation:

eqis +egipg +ecic = Tw. (2)

Hence, the electromagnetic torque of BLDCM could be
formulated as follows:

T = (eqin + ei)lB + ec’c)) (3)

where T is the electromagnetic torque (Nm) and w is the
angular velocity of motor (°/s).

The electromagnetic torque of BLDCM is generated
by the interaction between the current in the stator
winding and the magnetic field generated by the rotor
magnetic steel. From (3), it could be known that elec-
tromagnetic torque is proportional to the magnetic field
and phase current and inversely proportional to the
rotational angular velocity.

The motion equation could be expressed as

dw
T-T,=] T (4)
where T} is the load torque and ] is the moment of inertia of
motor.

For the isokinetic movement process, the motor angular
velocity w gradually increases during acceleration stage, then
remains constant during isokinetic stage, and decreases
during deceleration stage. The electromagnetic torque T
(resistance moment) is equal to joint torque (load torque).
Hence, the isokinetic motion state equations could be
expressed as
dw .

— = a >0 acceleration stage

dt

do . ..
yTi 0isokinetic stage
1 , (5)

w .
— = —a < 0 deceleration stage

dt

[ T=T,

where w is the preset joint angular velocity and a is the
acceleration of acceleration and deceleration stages.

2.2. Modelling BLDCM in MATLAB/Simulink. The BLDCM
system for isokinetic control consists of a BLDCM
module, reference current module, PWM current con-
troller module, voltage inverter module, and FOFPID
controller module. The modular modelling schematic of
the BLDCM system is shown in Figure 1. The system
consists of two control parts: speed control and torque
control. The FOFPID controller was applied for speed
control, and a conventional PID controller was used for
torque control. The application target of the BLDCM
system is to simulate the isokinetic movement stage

during isokinetic exercise with the preset speed and load
torque by the experimenter. To validate the robustness
and stability performance of the FOFPID controller and
BLDCM system during isokinetic movement under dis-
ordered joint torque, the system model was built in
MATLAB/Simulink as shown in Figure 2.

3. Isokinetic Control System of BLDCM

In this study, a fractional-order fuzzy PID controller, which
combines the fractional-order calculus, fuzzy logic control,
and conventional PID control, is proposed to control the
speed of the BLDCM system for tracking the reference speed
command under irregular load torque. The FOFPID con-
troller has evolved from fuzzy PI and fuzzy PD controllers
with self-tuning and adaptive capabilities [30]. The char-
acteristic of the FOFPID controller is using noninteger order
instead of integer order integrator and differentiator oper-
ators. In the subsequent sections, the design of the FOFPID
controller is presented.

3.1. Fuzzy PI and Fuzzy PD Controllers. The basic structures
of the FOFPID controller are fuzzy PI and fuzzy PD con-
trollers, which could provide proportional, integral, and
derivative parameters and fuzzy logic to realize adaptive
control for the system. The algorithms of fuzzy PI and fuzzy
PD controllers could be expressed as [26]

upy (1) = KLPe(t) + KT’ j e(t)dt,
(6)

de(z)
pp (1) = Kffe (1) + K=
where Kf P is the proportional gain of fuzzy control mod-
ulation, K{ is the integral gain of fuzzy control modulation,
and K£ is the derivative gain of fuzzy control modulation.

3.2. Design of FOFPID Controller. The FOFPID controller
has evolved from fuzzy PID with noninteger order calculus.
It consists of fractional calculus, fuzzy logic control, and two
separate PI and PD controllers, and the structure of the
FOFPID controller is shown in Figure 3. The structure only
has two input variables, and fuzzy PI and fuzzy PD con-
trollers share the same rule base to perform control actions.
The controller has six parameters, including four scaling
factors {K,, K,, K;, K;} and two fractional orders {u, A}.
Deviation e and its variation of deviation d*/dt*e are the two
input parameters of fuzzy controller which are used to
determine fuzzy rules. Two input scaling factors {K,,, K.} are
the common input gains of FOFPID controller, modulating
the input parameters to meet ranges of fuzzy membership
functions, and another two scaling factors {K;, K} are fuzzy
PI controller gain and fuzzy PD controller gain, respectively.
Fractional calculus is applied into derivative and integral
parts through fractional orders y and A, as the distinction of
fuzzy FID and FOFPID. For the fuzzy PID controller, y and A
are equal to 1, whereas ¢ and A are fractional in the FOFPID
controller.
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The FOFPID controller could be expressed as [23]

" 1
K,e+ Krwe = K upp + KiS_AuPI’ (7)
where d*/dt* is the differentiator, 1/s is the integrator, Upp,
is the control action of the fuzzy PD controller, and Up;
refers to control actions of the fuzzy PI controller.
Formulating fuzzy control rules is the key of designing a
fuzzy controller which includes selecting the linguistic variables
of input and output parameters, defining the fuzzy subset of
fuzzy variables, and establishing the control rules of fuzzy
controller [31]. The rule table of the fuzzy controller is a set of
fuzzy condition statement with several linguistic variables.
Choosing appropriate linguistic variables to describe input and

output parameters could make the establishment of control
rules more accurate, and defining the fuzzy subset is to de-
termine the shape of membership functions. Figure 4 shows the
membership functions of input and output of fuzzy logic
control. Symmetrical triangular membership functions were
adopted for three inputs factors, including negative (N), zero
(Z), and positive (P) variables, while singleton consequents
were adopted for five output factors, including NB (negative
big), NM (negative medium), ZO (zero), PM (positive me-
dium), and PB (positive big) variables.

Based on the membership functions of inputs and
outputs, the fuzzy control rules of fuzzy PI and fuzzy PD
controllers are described as follows:

Rule 1:if K ,e is N and K,d*/dt#e is N, then Upp/Up; is
NB.
Rule 2:if K, e is N and K,d"/dt*e is Z, then Upp/Up; is
NM.
Rule 3:if K e is N and K,d¥/dtte is P, then Upp/Up; is
Z0.
Rule 4: if K, e is Z and K, d"/dt#e is N, then Upp/Up; is
NM.
Rule 5: if K e is Z and K, d¥/dtte is Z, then Upp /U p; is
ZO.
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Rule 6: if K, e is Z and K,d"/dt*e is P, then Upp/Up; is
PM.

Rule 7:if K e is P and K, d"/dt#e is N, then Upp /U p; is
ZO.

Rule 8: if K, e is P and K,d"/dt*e is Z, then Upp/Up; is
PM.

Rule 9: if K e is P and K,d*/dt*e is P, then Upp/Up; is
PB.

Six tuned gains of the FOFPID controller {K,,, K,, K;,
K,} and {y, A}) which were adopted to control speed of the
simulation model are listed in Table 1.

4. Simulation Results

In this section, the simulation results and result analysis
would be presented to explore the stability of the BLDCM
system using the FOFPID controller.

4.1. Reference Data Collection. Reference speed and load
torque are the two input parameters which were collected
from the Isomed2000 isokinetic device. The experiment is
focused on the isokinetic movement of the elbow joint,
and the elbow adapter is assembled on the fixed axis. The
experimenter was seated on the seat with the right hand
holding the handle of adapter and was required to per-
form maximum voluntary torque (MVT) during the el-
bow joint isokinetic movement. The movement is a kind
of elbow joint flexion and extension movement. Eight sets
of experimental data were collected under the different
joint angular velocities of 30, 45, 60, 75, 90, 120, 150, and
180°/s, respectively, and the experimenter finished five
groups of reciprocating motions for each preset speed.
Each group includes an elbow flexion and extension
process which could be considered as motor forward
rotation and reverse rotation. Isokinetic movement is

divided into three stages: acceleration stage, isokinetic
stage, and deceleration stage. Under different reference
speeds (joint angular velocities), the training effects
are various and the stability is also affected diftferently by
load torque. The fluctuations of velocities and joint
torque were recorded by sensors of the isokinetic exercise
device.

4.2. Simulation Results. For the simulation experiment in
Simulink, the FOFPID controller was applied to control
the reference speed of the BLDCM; meanwhile, a PID
controller was used to control the load torque of the
system. According to the simulation model in Figure 2,
the control results under different reference speeds could
be obtained separately. Figures 5-7 show the following
under angular velocities of 30, 90, and 180°/s: (a) the elbow
joint torque resisting the resistance movement; (b) the
comparison between reference speed, speed response of
the FOFPID controller, and speed response of the PID
controller; (c) error between the reference speed and the
FOFPID controller speed response; (d) error between the
reference speed and the PID controller speed response.
These three figures could represent the variation tendency
of joint torque and speed response from low speed to high
speed.

For isokinetic movement, the joint torque is related to
the muscle force of the experimenter and the preset speed
of the equipment. In the experiment, the load torque is
the elbow joint torque under MVT. The torque values in
Figures 5(a), 6(a), and 7(a) show irregular periodic
fluctuations and have spikes between two isokinetic
stages especially in the high-speed conditions. This is
because the experimenter should follow the speed as
quick as possible and switch the directions rapidly. Thus,
the torque gained a peak value when the motor went from
forward to reverse or from reverse to forward
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(acceleration stages and deceleration stages) where the
accelerations are quite large when the angular velocities
are high relatively. The load torque in isokinetic stages
remains in a relatively stable state compared with other
two stages. These load torque values are the input dis-
turbances of the BLDCM system.

The comparison between different reference speeds,
speed response of the FOFPID controller, and speed
response of the PID controller provides an intuitive
presentation of controller’s tracking characteristics.
Figures 5(b), 6(b), and 7(b) show a good tracking per-
formance of the FOFPID controller and PID controller
that all the speed responses under 30, 90, and 180°/s joint
angular velocities could follow the reference speeds
successfully. To compare the stability of the FOFPID
controller and PID controller, the errors between ref-
erence speed and FOFPID controller speed response are
described in Figures 5(c), 6(c), and 7(c), and the errors
between reference speed and PID controller speed re-
sponse are given in Figures 5(d), 6(d), and 7(d). These
errors revealed the tracking ability during the simulation
processes. It is observed that the errors of the FOFPID
controller under three angular velocities have uniform
error ranges around +0.2°/s, while the errors of the PID
controller have obvious fluctuations along with the
changes of speed and torque. Also, comparing the errors
of the FOFPID controller with the errors of the PID
controller, the stability of the FOFPID controller is better
than that of the PID controller for the smaller fluctuation
ranges. In Figure 7(c), there exists some abnormal value
which exceeds the error range mainly caused by the
sudden peak values of load torque during acceleration
stages and deceleration stages.

In order to reflect the performance of the FOFPID
controller and PID controller more intuitively, data
statistics and distribution results of errors are shown in
Figures 8 and 9 which display the statistics and distri-
bution results of eight speed errors. The small boxes for
each velocity are the main data distribution regions which
are limited between the upper interquartile and lower
interquartile. Two segments above and under the boxes
are upper adjacent and lower adjacent to intercept ex-
treme outliers. The red plus signs which extend to the top
and bottom directions are the mild outliers. From Fig-
ure 8, the distribution of errors under eight angular
velocities remains between +0.5°/s, while the error dis-
tribution in Figure 9 shows an increasing trend. This
demonstrates that the FOFPID controller could maintain
the stability of the BLDCM system regardless of the
velocity change or torque disturbance; however, the
stability of the PID controller would decrease as the
preset velocity increases. Although some mild outliers
exist in Figure 8, all the mild outliers were produced
during acceleration stages and deceleration stages as
shown in Figure 7(c), where the deviations tend to occur
but have small impact on the system especially for iso-
kinetic stages. Meanwhile, the upper adjacent, median,
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and lower adjacent values of each error box were counted
as shown in Table 2. It is obvious to observe the error
comparison and system stability between the FOFPID
controller and PID controller.
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TABLE 2: Statistics of error upper boundary, lower boundary, and median under eight speeds.

Speed (°/s) 30 45 60 75 20 120 150 180
Upper adiacent FOFPID 0.456 0.340 0.404 0.409 0.449 0.496 0.464 0.518

pper ad) PID 0.593 0.630 0.718 0.675 0.879 1.006 1.599 1.792
Median FOFPID -2.6e—03 —4.5e-03 —-1.1e-02 4.0e-03 —6.0e-03 -2.3e-03 1.0e — 02 -9.8e - 04

PID 4.9e—-05 -72e-03 -1.6e-03 -6.2¢-03 —-1.5e-02 1.5e - 02 -1.5e-03 -1.3e-02
Lower adiacent FOFPID —0.384 —-0.393 —0.452 —-0.472 —0.450 —0.495 —-0.434 -0.471
) PID -0.689 —0.681 -0.703 -0.749 -0.873 -0.997 —1.058 -1.532

5. Conclusion

The simulation experiment in this paper is to explore the
stability of isokinetic control of the BLDCM system and
realize isokinetic control of the BLDCM system in MAT-
LAB/Simulink environment. As a nonlinear system, the
FOFPID controller was applied to implement the isokinetic
control based on the BLDCM system. This study of iso-
kinetic control discussed the stability performance of the
BLDCM system under different preset speeds and resistance
moments according to the comparison between the FOFPID
controller and PID controller. The biggest challenge is to
track the preset speed under continuous and various load
torques. From the simulation results in Section 4, the
FOFPID controller has better stability performance com-
pared with the PID controller which could maintain the
system errors around +0.5°/s for all joint angular velocities.

According to the comparison between reference speed
and FOFPID controller speed response, the proposed
controller could obtain a better dynamic performance under
various angular velocities and complex load torque. In the
future, the proposed controller needs to be further optimized
to enhance the stability and robustness by improving the
parameters and membership functions of variables and
further considering the characteristics of external distur-
bance. Meanwhile, the simulation results should be exper-
imentally validated to verify the effectiveness of the proposed
controller in real experiments.
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