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1. INTRODUCTION

Particle swarm optimisation (PSO) was born just over
ten years ago. The initial ideas on particle swarms of
Kennedy and Eberhart were aimed at producing computa-
tional intelligence by exploiting simple analogues of social
interaction, rather than purely individual cognitive abilities.
The first simulations [1] were influenced by Heppner’s
and Grenander’s work [2] and involved analogues of bird
flocks searching for corn. These soon developed [1, 3, 4]
into a powerful optimisation method—the particle swarm
optimiser.

In PSO, a number of simple entities—the particles—are
placed in the search space of some problem or function, and
each evaluates the objective function at its current location.
Each particle then determines its movement through the
search space by combining some aspect of the history
of its own current and best (best-fitness) locations with
those of one or more members of the swarm, with some
random perturbations. The next iteration takes place after
all particles have been moved. Eventually, the swarm as
a whole, like a flock of birds collectively foraging for
food, moves close to an optimum of the fitness func-
tion.

The particle swarm is more than just a collection of
particles. A particle by itself has almost no power to solve any
problem; progress occurs only when the particles interact.
Problem solving is a population-wide phenomenon, emerg-
ing from the individual behaviours of the particles through
their interactions. In any case, populations are organised
according to some sort of communication structure or
topology, often thought of as a social network. Each particle
communicates with some other particles and is affected

by the best point found by any member of its topological
neighbourhood. The potential kinds of topologies of social
networks are hugely varied, but in practice certain types,
such as rings and fully connected networks, have been used
more frequently.

2. PARTICLE SWARM OPTIMISATION IS
COMING OF AGE

The particle swarm paradigm, that was only a few years ago a
curiosity, has now attracted the interest of researchers around
the globe. In fact, simple queries in publication databases,
such as IEEE Xplore and Google Scholar, reveal that the
number of publications in particle swarm optimisation has
been exponentially growing for the last few years.

The aim of this special issue is to attract papers on
particularly innovative algorithms, speculative ideas, new
theoretical approaches, and novel applications that could
act as seeds for PSO research in its second decade. Topics
we solicited included the following: novel empirical and
theoretical analyses of PSO population dynamics; innovative
studies and algorithms for setting PSO parameters; new
adaptive and parameterless PSO; analyses and new proposals
of social network topologies; PSOs for combinatorial and
hierarchical search spaces; novel PSOs for dynamic prob-
lems, noisy functions, and multimodal functions; advanced
barebones/distribution-based PSOs; unconventional hybrids
of PSO with other techniques; as well as novel applications
in engineering, biomedicine, clustering, classification, enter-
tainment, finance, image and signal processing, graphics,
computational intelligence, and robotics. Amazingly, as we
will show in Section 3, we managed to attract high-quality
submissions in almost all these areas.
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As a first step in the direction of identifying new
ideas for the second decade, we proposed and organised a
workshop entitled “Particle Swarms: The Second Decade”
at the Genetic and Evolutionary Computation Conference
(GECCO) held in London in July 2007. Seven papers were
selected by a peer-review process and presented at the
workshop. The level of attendance was very good, the ideas
presented were exciting, and the discussion that followed
them was very lively.

Encouraged by this first success, we felt that we had
to follow this on with a second, higher-impact initiative:
this special issue of the Journal of Artificial Evolution and
Applications. All of the presenters at the GECCO workshop
were invited to extend their work and submit to this special
issue, although the special issue was also open to new
contributions. The special issue was a resounding success,
attracting a total of 50 high-quality submissions. After a
rigorous multistage review process, just under 20 papers were
eventually accepted, and are now presented in this special
issue. (Following the usual principles of blind review, papers
coauthored by one of the guest editors were handled by
another editor, so the former did not know which reviewers
were assigned to his paper and had no influence on the
editorial decision about the paper.)

3. THE PAPERS IN THIS SPECIAL ISSUE

We have chosen to divide the articles in this special issue
into three main categories (although some spanned more
than one): innovative theoretical/empirical analyses and
theoretically sound design (Section 3.1), new exciting types
of particle swarms (Section 3.2), and novel applications
(Section 3.3). We will briefly introduce them in the next
subsections.

3.1. Theory, analysis, and principled design
of particle swarms

After a decade of relatively slow progress, the theory of PSO is
now making significant and rapid progress, and this trend is
likely to continue in the second decade. Indeed, four papers
in this special issue deal with either theoretical explanations
or theoretically driven design of PSOs.

The success or failure of stochastic optimisation algo-
rithms depends on their ability to explore the search space
associated with a problem effectively. The search is controlled
by what is known as the sampling distribution of the
optimiser. The article “Dynamics and stability of the sam-
pling distribution of particle swarm optimisers via moment
analysis” by R. Poli looks at the precise identification of the
sampling distribution and its changes over time for standard
forms of PSO. The article “Examination of particle tails” by T.
Blackwell and D. Bratton focuses also on the characterisation
of the way PSOs sample the search space, but, in this case,
the analysis coarse-grains over the time variations of the
distribution; the resulting distribution is shown to follow a
power law.

One important source of innovation in PSO is the
extension of the paradigm to the exploration of discrete

search spaces. This is difficult because certain notions, such
as the notion of velocity, are not easily extended to such
spaces. So, until now, designing discrete PSOs has been
essentially a black art. In this special issue, however, we are
fortunate to have two articles—“Geometric particle swarm
optimisation” by A. Moraglio et al. and “Forma analysis
of particle swarm optimisation for permutation problems”
by T. Gong and A. L. Tuson—which provide two different
general approaches to derive theoretically sound PSOs for
generic discrete search spaces.

3.2. Novel particle swarms

Broadly speaking, a particle swarm has two elements: particle
dynamics and a mechanism for the sharing of information.
The dynamics tells a particle how to move given the
information that it has available; the result of this movement
is subsequently communicated to other particles. These
components, which mutually interact to deliver a swarm’s
searching capability, can be modified in various ways to
derive new particle swarms.

Novel particle dynamics are represented here by a
number of papers. S. Kok and J. A. Snyman in “A strongly
interacting dynamic particle swarm optimization method”
consider how particle dynamics can be affected by both
position (as in standard PSO) and function value at that
position, thereby introducing gradient information explicitly
into the update rules. In a novel approach, J. L. Fernández-
Martı́nez and E. Garcı́a-Gonzalo consider how PSOs can
be derived from discretisations of continuous particle tra-
jectories. Their paper “The generalized PSO: a new door
to PSO evolution” presents theoretical stability analysis and
experimental testing. A general trend in the work represented
by these two papers is a growing interest in considering a
swarm as an interacting system of “physical” particles, that is,
as physical entities with continuous trajectories, momentum,
energy dissipation, and force laws.

Two more papers consider alternative dynamics. In
“Novel orthogonal momentum-type particle swarm opti-
mization applied to solve large parameter optimization
problems,” J.-L. Liu and C.-C. Chang introduce an alternative
velocity update rules with a “delta momentum” rule. They
combine this rule with fractional factorial design for efficient
optimisation. In “A simplified recombinant PSO,” D. Bratton
and T. Blackwell consider a series of simplifications to a
biologically motivated dynamics based on genetic recombi-
nation. They demonstrate that velocity can be eliminated
from the algorithm altogether, thereby making contact with
distribution-based PSOs (“barebones” formulations).

The final two papers in this section consider how
biological metaphors can induce changes to swarm algo-
rithms at the population level. In “What else the evolution
of PSO is telling us,” L. Diosan and M. Oltean suggest
changes to the order and frequency by which particles are
updated. They use a genetic algorithm to explore various
strategies. In “Particle swarm optimization for multimodal
functions: a clustering approach,” A. Passaro and A. Starita
use k-means clustering to establish subswarm “niches.”
This approach involves dynamic information topologies
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that are linked to local spatial behaviour, features that
are surely likely to be the subject of much second decade
work.

3.3. Applications

Particle swarm optimisation has been enormously successful
at solving problems of practical interest. This is reflected in
this special issue by approximately half the articles reporting
novel and exciting applications for PSO. We briefly review
them below. Before we start, however, we would like to
emphasise that several of the particle swarms proposed in the
articles mentioned in this section are discrete PSOs, a char-
acteristic shared by two theoretical approaches mentioned in
Section 3.1. This indicates how prolific and important the
area of discrete PSOs is becoming. We expect this area to
grow significantly in the second decade.

The article “Optimizing the operation sequence of a
multi-head surface mounting machine using a discrete parti-
cle swarm optimization algorithm” by Y.-M. Chen and C.-T.
Lin, for example, describes how PSO can be used to optimise
the process of picking and placing components onto printed
circuit boards. R. Armellin and M. Lavagna’s article entitled
“Multidisciplinary optimization of aerocapture maneuvers”
shows how PSO can design maneuvers that ensure that a
spacecraft is captured by the gravitational attraction of a
planet, with minimal expenditure of energy.

In “A hybrid PSO/ACO algorithm for discovering clas-
sification rules in data mining,” N. Holden and A. A. Freitas
extend a PSO algorithm with ideas borrowed from ant colony
optimisation in order to cope with nominal (nonnumerical)
variables, and apply the proposed algorithm to a data
mining problem. In the article “An improved particle swarm
optimizer for placement constraints,” S.-T. Hsieh et al. show
how PSO can solve floor-planning problems very effectively.
With their paper entitled “Inverse parameter identification
technique using PSO algorithm applied to geotechnical
modeling,” J. Meier et al. show how the PSO can provide
valuable solutions in the difficult area of inverse-problem
solving.

In “Particle swarm optimization for antenna designs in
engineering electromagnetics,” N. Jin and Y. Rahmat-Samii
propose a PSO tailored to antenna design in engineering. The
proposed PSO can cope with both real and binary variables,
as well as multiobjective problems. In “Generating complete
bifurcation diagrams using a dynamic environment particle
swarm optimization algorithm,” J. Barrera et al. apply PSO
to the analysis of dynamical systems, which are represented
as a set of equations specifying how variables change over
time. In “A discrete particle swarm optimization algorithm
for uncapacitated facility location problem,” A. R. Guner and
M. Sevkli propose a discrete PSO, as well as a hybrid version
with local search, for solving a combinatorial optimization
problem. In “Particle swarm for attribute selection in
Bayesian classification: an application to protein function
prediction,” E. S. Correa et al. propose another type of
discrete PSO algorithm to the problem of selecting attributes
in data mining, and apply the algorithm to a bioinformatics
problem.
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1. INTRODUCTION

Let us consider the basic form of PSO with inertia weight,
which is controlled by the following two equations:

vit+1 = wvit + φ1 ⊗
(
yi − xit

)
+ φ2 ⊗

(
ŷ − xit

)
,

xit+1 = xit + vit+1,
(1)

where φ1 and φ2 represent vectors of random numbers uni-
formly distributed in [0, c1] and [0, c2], respectively, (c1 and
c2 are nonnegative constants), ⊗ is component wise mul-
tiplication, yi is the position of the ith particle’s personal
best, ŷ is the position of the particle’s neighbourhood best,
and w is a constant in [0, 1]. Following Kennedy’s graph-
ical examinations of the trajectories of individual particles
and their responses to variations in key parameters [1], tra-
ditionally, this model (and the related PSO with constriction
[2], which is, provably, mathematically equivalent) has been
studied theoretically under strong simplifying assumptions
such as isolated single individuals, search stagnation (i.e., no
improved solutions are found) and absence of randomness
[2–12]. While these assumptions make it possible to make
theoretical progress, they also make the results of the analy-
ses difficult to carry over to the real PSO (where stochasticity
is present).

Only very few attempts to understand the behaviour of
the PSO in the presence of stochasticity have been made. For
example, Clerc [13] analysed the distribution of velocities of
one particle controlled by the standard PSO update rule with
inertia and stochastic forces and was able to show that a par-
ticle’s new velocity is the sum of three components: a forward
force, a backward force, and noise. Kadirkamanathan et al.
[14] were able to study the stability of particles in the pres-
ence of stochasticity by using Lyapunov stability analysis.

These are good and important first steps in the direction
of modelling the real PSO. However, they only marginally
scratch the surface in relation to one of the most important
open problems in PSO research: the characterisation of the
PSO’s sampling distribution and its changes over time. Why
is this question so fundamental? For two reasons. Firstly, this
scientific knowledge gives us much greater understanding of
an algorithm’s behaviour. Secondly, on a more practical level,
the only way to beat the limitations implied by NFL [15] is
to match algorithms to problems. Naturally, at least in part,
this can be achieved by a trial-and-error approach involving
testing different algorithms and parameter settings on a par-
ticular problem or class of problems until a suitable match is
found. A more analytic approach to this problem, however,
requires two things: (a) knowing the search distribution of an
algorithm and (b) checking whether this is well matched to
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the features of a problem’s fitness landscape. Unfortunately,
the sampling distribution of the PSO has been unavailable
during the whole first decade (and beyond) of PSO research.

In recent work [16], we introduced a novel method,
which allowed us to exactly determine the mean and stan-
dard deviation of the sampling distribution of the canonical
PSO as well as their changes over any number of generations.
The only assumption we made was stagnation, that is, we
studied the sampling distribution produced by particles in
search for a better personal best. In this paper, we generalise
the technique and show how it can be used to determine any
number of moments of the sampling distribution of PSO’s.

The paper is organised as follows. In Section 2, we pro-
vide a summary of the results presented in [16]. In Section 3,
we generalised the method to moments of any order. In
Section 4, we apply the technique to compute the skewness
and kurtosis of the canonical PSO’s sampling distribution. In
Section 5, we further extend the generality of our technique
so as to cover a variety of PSO’s, not just the one in (1). This
allows us to compare, on a theoretical basis, different forms
of PSO. In Section 6, we then use the moments of the PSO’s
sampling distribution to approximately reconstruct the dis-
tribution itself, making it possible, for the first time, to un-
derstand the search strategy implemented by the canonical
PSO, while searching for new improvements. We discuss the
results and conclude in Section 7.

2. DYNAMICS OF FIRST- AND SECOND ORDER
MOMENTS OF THE PSO’s SAMPLING
DISTRIBUTION

2.1. Derivation of dynamic equations for the moments

During stagnation, each particle behaves independently.
Also, each dimension is treated independently. So we can
analyse each particle’s behaviour in isolation. Therefore, we
can drop the superscript i in (1), and rewrite them as

xt+1 = xt(1 +w)− xt
(
φ1 + φ2

)−wxt−1 + φ1y + φ2 ŷ, (2)

where we used the relation vt = xt − xt−1. Note that on the
r.h.s. of this equation, while w, y, and ŷ are constants, xt,
φ1, φ2, and xt−1 are stochastic variables. As a consequence,
xt+1 on the l.h.s. of the equation is a stochastic variable too
(in fact, it is a stochastic function of the stochastic variables
appearing in the r.h.s.).

In [16], we applied the expectation operator to both sides
of the equation obtaining

E
[
xt+1

] = E
[
xt
]
(1 +w)− E[xt

](
E
[
φ1
]

+ E
[
φ2
])

−wE[xt−1
]

+ E
[
φ1
]
y + E

[
φ2
]
ŷ,

(3)

where we performed the substitution E[xtφi] = E[xt]E[φi]
because of the statistical independence between φi and xt.
Assuming that c1 = c2 = c, that is, the φ1 and φ2 are both
uniformly distributed in [0, c], we have E[φi] = c/2, and so

E
[
xt+1

] = E
[
xt
]
(ρ− c)−wE[xt−1

]
+ c

y + ŷ

2
, (4)

where we renamed(1 + w) = ρ.

If we square both sides of (2), we obtain

x2
t+1 =

(
xtρ − xtφ1 − xtφ2 −wxt−1 + φ1y + φ2 ŷ

)2
. (5)

Expanding the r.h.s., we obtain an equation expressing the
stochastic variable x2

t+1 as a function of other stochastic vari-
ables, that is, x2

t , xt−1xt, φ2
1, and so forth. By applying the ex-

pectation operator to both sides of this equation, one obtains

E
[
x2
t+1

] = E
[
x2
t

](
ρ2 − 4μρ + 2ν + 2μ2)

+ E
[
xt−1xt

]
(−2wρ + 4wμ) + E

[
x2
t−1

](
w2)

+ E
[
xt
](

2μyρ+2μŷρ−2νy−2μ2 ŷ−2μ2y−2ν ŷ
)

+ E
[
xt−1

]
(−2μyw − 2μŷw) + νy2 + 2μ2y ŷ + ν ŷ2,

(6)

where we set μ = E[φi] = c/2 and ν = E[φ2
i ] = c2/3, for

brevity.
If, instead, we multiply both sides of (2) by xt and apply

the expectation operator, we obtain

E
[
xt+1xt

] = E
[
x2
t

]
(ρ− c)−wE[xtxt−1

]
+ E
[
xt
]
c
y + ŷ

2
.

(7)

Equations (4), (6), and (7) form a system of coupled
second-order difference equations using which, given appro-
priate initial conditions, one can compute E[xt], E[x2

t ] and
E[xtxt−1] for any t.

2.2. Analysis of the dynamics

Equations (4), (6), and (7) can also be written in matrix no-
tation as the extended first order system

z(t + 1) =Mz(t) + b, (8)

where

z(t) =
(
E
[
xt
]
E
[
xt−1

]
E
[
x2
t

]
E
[
x2
t−1

]
E
[
xtxt−1

])T
,

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ− c −w 0 0 0

1 0 0 0 0

A1 A2 A3 w2 2w(2μ− ρ)

0 0 1 0 0

cp 0 ρ − c 0 −w

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cp

0

νy2 + 2μ2y ŷ + ν ŷ2

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(9)

where A1 = 4p
(
μρ− ν− μ2

)
, A2 = −4μwp, A3 = ρ2− 4μρ+

2ν + 2μ2.
It is then trivial to verify under what conditions E[xt],

E[x2
t ], and E[xtxt−1] will converge to stable fixed points. We

need to have that all eigenvalues ofM must be within the unit
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circle, that is,Λm = maxi|λi| < 1. When this happens, we will
say that the PSO is order-2 stable.

Naturally, when Λm < 1, in principle, we could derive
(either symbolically or numerically) the fixed point for the
system, which we will denote as z∗. This would be simply
given by

z∗ = (I −M)−1b. (10)

When the system is order-2 stable, by the simple change of
variables z̃(t) = z(t) − z∗, we can represent the dynamics of
the system via the following linear homogeneous equation:

z̃(t + 1) =Mz̃(t), (11)

which can trivially be integrated to obtain the following ex-
plicit solution for the dynamics of the first two moments:

z̃(t) =Mt z̃(0). (12)

3. HIGHER-ORDER MOMENTS

In [16], we obtained recursions which describe the dynamics
of first- and second-order moments of the sampling distribu-
tion of a standard PSO during stagnation, as summarised in
the previous section. One may then wonder whether it would
be possible to follow a similar approach to study the dynam-
ics of higher-order moments.

3.1. Derivation of dynamic equations for
higher-order moments

The fundamental question is “what quantities would we have
to deal with if we took higher powers of both sides of (2) as
we did to derive (5)?” Generally, the r.h.s. would be a sum of
terms of the form

a0x
a1
t x

a2
t−1w

a3φa4
1 φ

a5
2 y

a6 ŷa7 , (13)

where ak are suitable constants. Naturally, taking powers of
(2) and then multiplying both sides by some power of xt
would also lead to equations involving terms such as those
in (13). That is, for any choice of b1 ∈ N and b2 ∈ N,

xb1
t+1x

b2
t =

∑

i

a0i x
a1i
t x

a2i
t−1w

a3i φ
a4i
1 φ

a5i
2 ya6i ŷa7i , (14)

where aki are suitable constants. If we then take expectations
for both sides, we obtain

E
[
xb1
t+1x

b2
t

] =
∑

i

a0iw
a3i ya6i ŷa7i E

[
φ
a4i
1

]
E
[
φ
a5i
2

]
E
[
x
a1i
t x

a2i
t−1

]
,

(15)

where we used the independence of φ1, φ2, xtxt−1, and, of
course, their powers. If φ1 and φ2 are uniformly distributed
in the same range, namely, [0, c], it is easy to verify that

E
[
φnj
] = cn

n + 1
. (16)

So

E
[
xb1
t+1x

b2
t

] =
∑

i

ωiE
[
x
a1i
t x

a2i
t−1

]
, (17)

where

ωi =
(
a0iw

a3i ca4i+a5i ya6i ŷa7i

(
1 + a4i

)(
1 + a5i

)
)
. (18)

It is important to note here that because (2) is linear in xt
and xt−1, all the terms on the r.h.s. of (14) and (17) respect
the relation a1i + a2i ≤ b1 + b2. This implies that it is possible
to construct recursions for moments of arbitrary order.

3.2. Complexity of the calculations

If one wanted to push the analysis developed in Section 2 up
to order 3, one would need to instantiate (17) for E[x3

t+1],
E[x2

t+1xt], E[xt+1x
2
t ] and add the resulting equations to (4),

(6), and (7). If one wanted to go to order 4, an additional
set of four equations (for E[x4

t+1], E[x3
t+1xt], E[x2

t+1x
2
t ], and

E[xt+1x
3
t ]) would be needed, bringing the total to 10.

More generally, in order to compute statistics of order n,
one needs to construct and iterate

Q(n) = n× (n + 1)
2

(19)

second-order difference equations. Since, after expansion,
the r.h.s. of (2) contains 7 atomic terms of the form in (13),
the r.h.s. of (17) contains 7b1 such terms (Note that the ex-
ponent b2 does not influence the number of terms because
the recursion for E[xb1

t+1x
b2
t ] is obtained as follows: (a) we

compute xb1
t+1, which is given by an expression containing

7b1 terms; (b) we multiply each term by xb2
t , which changes

the exponents a1i but does not alter the number of terms;
(c) we apply the expectation operator, which again does not
modify the number of terms.) So the total number of terms
one needs to compute to construct the equations for order- n
statistics is 7 (for the order 1 equations) plus (72 + 7) (for the
order 2 equations) plus (73 + 72 + 7) (for the order 3 equa-
tions), and so forth. This gives us a total of

T(n) =
n∑

i=1

(n− i + 1)× 7i (20)

terms. Note that T(n) grows exponentially approximately as
1.36 × 7n. So although the number of equations one needs
to deal with grows quadratically, the computational effort
required to instantiate them is exponential. For instance,
T(1) = 7, T(2) = 63, T(3) = 462, T(4) = 3262, and
T(5) = 22869. The growth in number of terms can be re-
duced if one makes explicit use of ρ (i.e., by adding the fac-
tor ρa8 in (13)). Then T(n) = O(6n). Either way, manually
deriving equations for moments of order 3 is already very la-
borious. The process, however, is clearly mechanisable. This
can be done using computer algebra systems, or by explicitly
representing and manipulating the ωi’s in each equation (this
is what we did). As a result of mechanisation, computing the
equations for up to order 6 or 7 is feasible with an ordinary
personal computer.

Some of the ωi’s in (17) present the same pattern of ex-
ponents for w, c, y, and ŷ, so terms can be collected leading
to more compact equations (e.g., compare (5) and (6)). Also,
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Figure 1: Magnitude of the largest eigenvalue of M4 as a function
of the parameters w and c. The curved line on the surface encloses
the order-4 stable region.

given their size, one will normally want to study (e.g., inte-
grate) (17) numerically. In this case, w, c, y, and ŷ are all nu-
merical parameters. So the ωi’s become constants and, after
collecting terms, each equation contains at most Q(n) terms,
which, as we know, is quadratic in the order n. As a result,
although the complexity of the construction of the motion
equations for the moments is exponential in the order of the
moments, their numerical integration is only of order O(n4).

Naturally, the system of Q(n) second-order difference
equations necessary to predict the dynamics of moments of
order 1 to n can be turned into a system of order 1 of the
form in (8), via the choice

z(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E[xt]

E[xt−1]

E[x2
t ]

E[xtxt−1]

E[x2
t−1]

E[x3
t ]

E[x2
t xt−1]

E[xtx2
t−1]

E[x3
t−1]

...

E[xnt−1]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (21)

This effectively means adding artificial update equations
of the form E[xkt ] = E[xkt ] for k = 1, . . . ,n, bringing the total
to Q′(n) = Q(n) + n. The transition matrix for the system
is, therefore, of size Q′(n) × Q′(n). We will denote this with
Mn. For example, for n = 4, which would allow one to study
the mean, variance, skewness, and kurtosis of the sampling
distribution as a function of t, M4 is merely a 14× 14 matrix.

Interestingly,Q′(n) grows so slowly that one can perform
an eigenvalue analysis for anyMn that one is able to compute.

That is, the expensive part of the process is the construction
of Mn. Once this is done, iterating the system, establishing its
stability, or finding its fixed points is a trivial matter.

In the next section, we provide results for statistics of or-
der 3 and 4, that is, n = 4, a value of n for which computing
Mn takes only a few seconds. However, before we do this, we
need to consider the initial conditions for the system.

3.3. Initial conditions

In order to provide initial conditions for the moments’ dy-
namics, we need to compute E[xk0] and E[xk1x

l
0] for generic

k > 0 and l ≥ 0.
If we are at the very first iteration of the PSO algorithm,

the initial conditions for the dynamics of the moments are
related to the ranges used to initialise positions and veloci-
ties in the PSO. Under the assumption that a particle’s initial
position, x0, is chosen uniformly at random in a symmetric
range [−Ω,Ω], we have

E
[
xk0
] =

⎧
⎪⎨

⎪⎩

0 if k is odd,
Ωk

k + 1
otherwise.

(22)

In order to compute E[xk1x
l
0], we need to consider the equa-

tion

x1 = x0 +wv0 − x0
(
φ1 + φ2

)
+ φ1y + φ2 ŷ, (23)

where a particle’s initial velocity, v0, is a stochastic variable
uniformly distributed the range [−Ωv,Ωv] (often Ωv = Ω).
By taking the kth power of both sides of the equation, multi-
plying by xl0, and taking expectations, as we did to construct
(17), one obtains the desired expressions for E[xk1x

l
0]. Like for

(17), these expressions contain a number of terms that grows
exponentially with n. However, this process, too, can be triv-
ially mechanised.

If the PSO is not at its first iteration, and a new im-
provement has just been found to a particle’s personal best
or neighbourhood best, then x0 is not a stochastic variable,
but a constant determined by the position where the particle
found the last improvement.

4. SKEWNESS AND KURTOSIS OF
THE PSO’s SAMPLING DISTRIBUTION

We constructed the recursions for moments of up to order 4
as described in the previous section for the canonical PSO.
Naturally, for higher-order moments, we can do exactly the
same type of eigenvalue analysis we did in [16] for the mean
and standard deviation of the sampling distribution. For ex-
ample, Figure 1 shows the magnitude of the largest eigen-
value,Λm, ofM4 as a function of the parametersw and c. The
system is order-4 stable, that is, mean, variance, skewness,
and kurtosis have a stable fixed point, whenever Λm < 1, that
is, within the curved region enclosed by the contour shown
in the figure.

For easier comparison, we show the lines where Λm = 1
for M1, M2, M3, and M4 in Figure 2 (ordered from top to
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Figure 2: Plot of the regions of order-1, -2, -3, and -4 stability for
the canonical PSO.

bottom, resp.). The regions of order-1, -2, -3, and -4 stabil-
ity are nested. Note how the Λm = 1 lines for M2 and M3

coincide for many values of w. Note also that the standard
setting, c = 1.49618 and w = 0.7298, lays within the narrow
region of order-3 stability. This implies that while mean, vari-
ance, and skewness of the standard PSO tend to a fixed point,
kurtosis is unstable and will tend to grow indefinitely. Inter-
estingly, a growth in the kurtosis of samples was observed by
Kennedy [17], although this was effectively computed under
the assumption that the sampling distribution is time inde-
pendent. So the values of xt recorded in a run at t grows were
treated as different samples from the same distribution, while
we now know this is incorrect.

That the predictions of the model are exact is also con-
firmed by the comparison of the dynamics of predicted and
recorded higher-order moments. Figure 3(a) shows a com-
parison between the skewness E[(xt − μt)

3]/σ3
t computed

using our model and the average positions of the particle
recorded in one billion (1 000 000 000) real runs in the first
30 iterations for the case c = 1.49618, w = 0.7298, y = 0,
ŷ = 1, and Ω = 5. As one can see, there is a very good
match between the model’s predictions and the stagnation
behaviour of particles in real runs. Only after about 20–25
generations, the sampling errors start accumulating enough
to show significant differences. We know that these differ-
ences are due to sampling errors because before performing
1 000 000 000 runs, we attempted to use much smaller sets of
runs. With fewer runs, we observed that errors were visible
well before generation 25. For example, with 1 000 000 runs,
there is a good match up to around iteration 15.

As shown in Figure 3(b), the model also predicts very
well the behaviour of the (excess) kurtosis E[(xt−μt)4]/σ2

t −3
of the sampling distribution. (Following standard practice, in
this paper whenever we use the term “kurtosis,” we will refer
to the excess kurtosis E[(xt−μt)4]/σ2

t −3. The excess kurtosis
of the normal distribution to 0.) Note that for c = 1.49618
and w = 0.7298, the system is order-3 stable, and so, al-
though the oscillations of the skewness shown in Figure 3(a)
appear to grow bigger and bigger, suggesting instability, this
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Figure 3: Comparison between predicted and experimental skew-
ness and (excess) kurtosis of the PSO sampling distribution for
c = 1.49618, w = 0.7298, y = 0, ŷ = 1, and Ω = 5. Kurtosis grows
exponentially, and so it is plotted on a logarithmic scale. The first
point is not plotted because the excess kurtosis was negative (−1.2).

is actually only a transient effect, as shown in Figure 4 where
we integrate the equations over 200 generations instead of 30.

5. COMPARISON BETWEEN PSO’s

In the previous sections, we studied the canonical PSO with
the restriction that the acceleration coefficients, c1 and c2,
were identical: c1 = c2 = c. One may wonder, how-
ever, whether allowing such coefficients to differ would pro-
duce qualitatively very different dynamics. For example, what
would happen if we set one of the ci’s to zero as in a purely
cognitive or purely social PSO model? This effectively would
reduce to one the sources of random influences on a parti-
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Figure 4: Predicted dynamics of the skewness of the PSO sampling
distribution over 200 generations for c = 1.49618, w = 0.7298, y =
0, ŷ = 1, and Ω = 5.

cle’s dynamics. Conversely, one might wonder what would
happen if we increased the number of such sources of influ-
ence, as is done, for example, in the fully informed particle
swarm (FIPS) [18, 19].

5.1. Moments of generalised PSO’s

To answer these (and other) important questions on the sam-
pling distribution of different PSO models, we adopt a FIPS-
like general class of PSO’s described by the following differ-
ence equation:

xt+1 = xt +wvt +
m∑

i=1

φi
(
ŷi − xt

)
, (24)

where the φi’s are stochastic variables uniformly distributed
in the range [0, ci], ci are constants, and the ŷi’s are the per-
sonal best positions of neighbours of the particle (the particle
itself may be included in its own neighbourhood). Naturally,
this equation can be converted into the following:

xt+1 = xt(1 +w)−wxt−1 −
m∑

i=1

φixt +
∑

i

φi ŷi, (25)

which is a generalisation of (2). All of the steps we performed
in Section 3 can be repeated for (25). These lead to recursions
of the form in (17) with the only difference that the coeffi-
cients ωi take the more general form

ωi =
(
a0iw

awi c
ac1i
1 · · · cacmim ŷ

ay1i
1 · · · ŷaymim

∏m
j=1

(
1 + ac ji

)
)

, (26)

where a0i , awi , ac1i , . . . , acmi , ay1i , . . . , aymi are appropriate
constants.

Because (25) contains 3 + 2 × m terms, the complexity
of the expansion now grows as O((3 + 2×m)n), where n is
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Figure 5: Lines below which the mean of the sampling distributions
for a social PSO, a canonical PSO, and FIPS with a neighbourhood
of three individuals have a fixed point (order-1 stability). The three
lines coincide.
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Figure 6: Lines below which the variance of the sampling distri-
butions for a social PSO (bottom), a canonical PSO (middle), and
FIPS with a neighbourhood of three individuals (top) have a fixed
point (order-2 stability).

the order of the moments we are interested in. So the larger
m, the heavier the computation load required to compute
Mn. Once the transition matricesMn are computed, however,
they are exactly of the same size for all PSO models within the
class defined by (24). Initial conditions can be found follow-
ing the approach described in Section 3. Calculations are ex-
pensive but can be mechanised. We did this for the examples
described below.

5.2. Three PSO’s we want to compare

An extensive comparison of different PSO’s is beyond the
scope of this paper. However, as an example of the kind of
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comparisons one can make using our approach, we consid-
ered the PSO’s in (24) with N = 3. Within this class of PSO’s,
we considered three variants as follows:

(a) a purely social variant of PSO, which we will call social
PSO for brevity, where c1 > 0 and c2 = c3 = 0 (due to
symmetries, the behaviour of a purely cognitive PSO
where c2 > 0 and c1 = c3 = 0 is effectively identical to
that of this social PSO);

(b) the canonical PSO we have studied so far in the paper,
which is obtained by setting c1 = c2 > 0 and c3 = 0;

(c) the simplest version of FIPS with a neighbourhood of
three individuals, for example, obtained using an lbest
topology and an interaction radius of 1, where c1 =
c2 = c3 > 0. We will call this version FIPS3.

In order to perform a fair comparison of the stability
properties of these PSO variants, we study them in condi-
tions where the sum of the amplitudes of the random compo-
nents, φi, is identical across models. That is, we set c = ∑ici,
and compare models with the same c value. Again, we analyse
eigenvalues.

5.3. Results of the comparison

Figures 5–8 show the lines in the (w, c) plane where the mag-
nitude of the largest eigenvalue of Mn , Λm is 1 for n =
1, 2, 3, 4 and for the three PSO variants mentioned above.
Each figure represents a different moment. In the plot for the
nth moment, the region below each line represents the set of
all (w, c) pairs for which the nth moment of the distribution
of the PSO corresponding to that line is stable. Let us analyse
these figures in detail.

Firstly, we should note that the regions of order-1 stabil-
ity for the three models are identical. This is because the dy-
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Figure 8: Lines below which the kurtosis of the sampling distri-
butions for a social PSO (bottom), a canonical PSO (middle), and
FIPS3 (top) have a fixed point (order-4 stability).

namics of the mean of the three models is governed by equa-
tions of the same form, namely,

E
[
xt+1

] = E
[
xt
](

1 +w − c

2

)
−wE[xt−1

]
+ constant, (27)

where the constant term may differ in different PSO variants.
(This is irrelevant for the stability of the system, since stabil-
ity is determined by the homogeneous part of the equation.)
Note also that the rightmost point in each plot is an artifact
due to the fact that, at w = 1, Λm = 1 for M1 irrespective of
the value of c.

The regions where the variance is stable for the three
models, instead, are different, with FIPS3 having the largest
region of order-2 stability, followed by the canonical PSO,
and finally, by the social PSO. Exactly the same happens with
skewness (Figure 7) and kurtosis (Figure 8), with the order-3
stability region largely coinciding with the order-2 ones also
for FIPS3 and the social PSO.

These results are counter intuitive. One would expect
that the more sources of randomness, the φi’s, there are, the
more a PSO should be unstable. However, the exact opposite
happens. The social PSO, where the only influence is φ1, is
the least stable of all models, while FIPS3, which has three
sources of randomness, is the most stable. What are the rea-
sons for this behaviour?

We can understand this by rewriting (25) as follows:

xt+1 = xt(1 +w)−wxt−1 − xtΦm +Ψm, (28)

where Φm =
∑m

i=1φi and Ψm =
∑

iφi ŷi. Both Φm and Ψm are
the sum of independent and uniformly distributed variables:
the variables φi in the case of Φm and the variables ŷiφi in the
case of Ψm.

We know that
∑

ici = c. To simplify our treatment, let
us further assume that the φi’s are i.i.d., that is, that all ci are
identical, and so ci = c/m. We can then apply the central limit
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Figure 9: Examples of GLD density functions.

theorem to Φm. This predicts that for sufficiently large m,
the distribution of Φm is approximately Gaussian with mean
∑

ici/2 = c/2 and variance
∑

i(c
2
i /3 − (ci/2)2) = ∑

ic
2
i /12 =

c2/(12m). So the largerm, the smaller the variance ofΦm and
the stochasticity of (28).

In the case of the stochastic variable Ψm, the quantities
φi ŷi are not identically distributed even if all ci are identical.
This is because, in principle, each ŷi may be different. This
prevents the use of the standard central limit theorem. We
can, however, apply Lyapunov’s central limit theorem to Ψm.
The conditions for its application are as follows:

(1) the variables φi ŷi must have finite mean, which is the
case since μi = E[φi ŷi] = ci ŷi/2 = cŷi/(2m),

(2) the variables φi ŷi must have finite variance, which,
again, is the case since σ2

i = E[(φi ŷi − μi))2] =
(ci ŷi)

2/12 = (cŷi/m)2/12,
(3) the variables φi ŷi must have finite third central mo-

ment, which is satisfied since r3
i = E[(φi ŷi − μi))3] =

0, and finally,

(4) the Lyapunov condition, limm→∞((
∑m

i=1r
3
i )

1/3
/

(
∑m

i=1σ
2
i )

1/2
) = 0, must be satisfied, which, again, is

the case since all r3
i = 0.

Then for sufficiently large m, also the distribution of
Ψm is approximately Gaussian with mean

∑
ic ŷi/(2m) =

(c/2) × (
∑

i ŷi/m) and variance (c2/12m) × (
∑

i ŷ
2
i /m). Note

that
∑

i ŷi/m and
∑

i ŷ
2
i /m are the mean ŷi and the mean ŷ2

i ,
respectively. So these are finite quantities if, as is normally
the case, all ŷi are finite. (PSO search is normally confined to
a prefixed, finite region of RN , and so all ŷi must be finite.)
So like for Φm, the larger m, the smaller the variance of Ψm,
and consequently, the less the stochasticity of (28).

Effectively, the largerm, the moreΦm andΨm become de-
terministic and approach constant values. This explains why
adding more and more sources of randomness—while keep-
ing c constant—produces progressively more and more sta-
ble PSO’s.
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Figure 10: Estimates of the sampling distribution of a canonical
PSO with parameters c = 1.49618, w = 0.7298, y = 0, ŷ = 10, and
Ω = 5 during stagnation, reconstructed via GLD best fitting vers.
histograms over 1 000 000 real runs. Snapshots at times t = 0, 2,
4, 12, and 24 are shown. For each theoretical sampling distribution,
we report the parameters of the corresponding GLD.

6. THE DENSITY FUNCTION OF THE CANONICAL
PSO’s SAMPLING DISTRIBUTION

The technique described in this paper, in principle, would
allow one to determine all the moments of the sampling dis-
tribution of the PSO at all times. The question then is “could
we derive the PSO sampling distribution itself ?” The answer
is of course in the positive since knowing all the moments of
a distribution implies knowing its moment generating func-
tion. This, in turn, allows one to obtain the density function
of the distribution via inverse Laplace transform.

In practice, however, it is impossible to compute all the
moments of the PSO sampling distribution. This is for two
reasons. Firstly, there are infinitely many such moments. Sec-
ondly, as we have seen in the previous sections, the cost of
computing moments is exponential in the order of the mo-
ments. The next question is then “to what extent can we still
reconstruct the PSO’s density function from a finite number
of moments?” This is an instance of the well-known trun-
cated moment problem, a difficult, inverse ill-posed problem
for which many approaches have been proposed. Here, we
consider only one such approach.

A particularly simple idea is to consider a family of den-
sity functions f (x; λ1, λ2, . . .) with parameters λ1, λ2, and so
forth, with sufficient expressive power to represent distribu-
tions with widely different shapes, with more or less asym-
metries, with tails of different characteristics, and so on.
Then one can use optimisation techniques to identify the pa-
rameters of the distribution f which minimise the difference
between the moments of f and the moments of the PSO’s
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sampling distribution. This is called the moment-matching
method. Once the parameters λ1, λ2, and so forth, are identi-
fied, f can be used as an approximation of the true PSO sam-
pling distribution. This approach to reconstructing probabil-
ity distributions from moments was proposed [20] (see also
[21, 22]), where a generalised lambda distribution (GLD) was
used. We adopt this same approach here.

GLD is a four-parameter distribution defined via its
quantile function as follows:

Q(u) = λ1 +
1
λ2

(
uλ3 − 1
λ3

+
1− (1− u)λ4

λ4

)
, (29)

where u ∈ [0, 1]. Its density function is given by

f
(
x; λ1, λ2, λ3, λ4

) =
(
dQ(u)
du

)−1

= λ2

u(λ3−1) + (1− u)(λ4−1) ,

(30)

where u = Q−1(x).
The GLD is enormously flexible in terms of the shape of

the distribution. For example, as shown in Figure 9, the uni-
form, Gaussian, exponential, and Gamma distributions are
all special cases of GLD. Effectively, λ1 determines the loca-
tion of the distribution, λ2 determines its scale, while λ3 and
λ4 determine other shape characteristics. In particular, only
if λ3 = λ4, the distribution is symmetric.

Because GLD has 4 parameters, all we need is four
moments—the mean, variance, skewness, and kurtosis—of
the PSO’s sampling distribution in order to identify such
parameters with the moment-matching method described
above.

As an illustration, we apply this technique to reconstruct
the sampling distribution during stagnation of a canonical
PSO with parameters c = 1.49618, w = 0.7298, y = 0,
ŷ = 10, and Ω = 5. With these parameters, limt→∞E[xt] = 5.
In Figure 10, we show snapshots at times t = 0, 2, 4, 12, and
24 of the theoretical sampling distribution together with es-
timates of the distribution based on 1 000 000 actual runs.
In all cases, the match between the moments of the GLD and
those of the PSO sampling distribution was exact (within ex-
perimental errors). Also, there is considerable agreement be-
tween the theoretical lines and histograms obtained in real
runs. Note how widely the mean of the density function os-
cillates around 5 in the first few generations. Also note the
asymmetry in the distributions due to the oscillations of the
skewness.

7. DISCUSSION AND CONCLUSIONS

Several theoretical analyses of the dynamics of particle
swarms have been offered in the literature over the last
decade. These have been very illuminating. However, virtu-
ally, all have relied on substantial simplifications and on the
assumption that the particles are deterministic. Naturally,
these simplifications make it impossible to derive an exact
characterisation of the sampling distribution of the PSO.

In previous work [16], by using surprisingly simple tech-
niques, we started by exactly determining, perhaps, the most

important characteristic of a PSO’s sampling distribution, its
variance, and we have been able to explain how it changes
over any number of generations. The only assumption we
made is stagnation. Here, we extended this technique to the
study of higher-order statistics. In particular, we analysed, in
detail, the skewness and kurtosis of the distribution. Because
of the complexity of the calculations involved, this required
mechanising the derivation of the recursions for these mo-
ments.

We applied the analysis to the PSO with inertia weight,
but the analysis is also valid for the PSO with constriction,
because of the well-known equivalence of these two models
(via a simple parameter mapping). We also generalised our
model so as to include FIPS. This made it possible to explic-
itly compare the stability of different forms of PSO, leading to
a deeper understanding of their properties. In particular, we
showed that while FIPS and standard forms of PSO present
exactly the same order-1 stability, in FIPS, higher-order mo-
ments are more stable than in the other PSO’s, and we were
able to explain why this is the case, using two forms of cen-
tral limit theorem (Section 5). Elsewhere [23], we also ap-
plied the same type of analysis to derive the stability regions
of a simpler form of velocity-based PSO.

Finally, with all these tools in hand, we went in search
for the “holy grail”—the actual PSO sampling density func-
tion. We treated the problem as an ill-posed inverse prob-
lem, which we regularised thanks to the use (and best fit)
of a family of distributions—the generalised lambda distri-
bution (GLD). All empirical evidence we have suggests that
this distribution approximates very closely the sampling be-
haviour of PSO’s (naturally, with parameters that are func-
tions of time, i.e., λi = λi(t)). We will attempt to characterise
the PSO’s sampling distribution in more depth in future re-
search.

Whether or not GLD is the exact PSO sampling distribu-
tion or just a very good approximation, if one could deter-
mine (again, either exactly or approximately) how the λi(t)’s
are affected by the parameters c, w, y, and ŷ and by the ini-
tial conditions x0 and v0, it would then be possible to accu-
rately simulate the behaviour of the PSO by sampling from
f (x; λ1(t), λ2(t), λ3(t), λ4(t)). This is easily done since GLD
deviates can trivially be produced by picking u uniformly
at random in the interval [0, 1] and applying (29), that is,
Q(U[0, 1]) is generalised lambda distributed. We will study
this more sophisticated form of bare-bones PSO [17] in fu-
ture research.

Bare-bone PSO’s have some resemblance with estima-
tion of distribution algorithms (EDA’s). EDA’s are power-
ful population-based searchers where the variation opera-
tions traditionally implemented via crossover and mutation
in evolutionary algorithms are replaced by the process of
sampling from a distribution (a review of EDA’s is available
in [24]). The distribution is modified generation after gen-
eration, by using information obtained from the more fit in-
dividuals in the population. The objective of these changes
is to increase the probability of generating individuals with
high fitness. As one can clearly see from this description, a
bare-bone PSO performs a very similar form of search to an
EDA. However, there is a difference between the two. While
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in a typical EDA the whole new population is generated from
a single distribution, in a bare-bone PSO, each individual has
a personal sampling distribution from which only one sam-
ple is drawn at each iteration. (The sampling distributions of
different particles may share some characteristics, since the
sampling distribution of a particle is determined by both per-
sonal best and neighbourhood best, and the neighbourhood
best can easily be the same for different particles.) Nonethe-
less, one could still interpret a bare-bone PSO as an unusual
type of EDE in which multiple distributions are used and up-
dated based on fitness during the search.
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[24] P. Larrañaga and J. A. Lozano, Estimation of Distribution Al-
gorithms: A New Tool for Evolutionary Computation, Kluwer
Academic Publishers, Boston, Mass, USA, 2002.



Hindawi Publishing Corporation
Journal of Artificial Evolution and Applications
Volume 2008, Article ID 893237, 10 pages
doi:10.1155/2008/893237

Research Article
Examination of Particle Tails

Tim Blackwell and Dan Bratton

Department of Computing Goldsmiths, University of London, New Cross, London SE14 6NW, UK

Correspondence should be addressed to Tim Blackwell, tim.blackwell@gold.ac.uk

Received 20 July 2007; Accepted 29 November 2007

Recommended by Riccardo Poli

The tail of the particle swarm optimisation (PSO) position distribution at stagnation is shown to be describable by a power
law. This tail fattening is attributed to particle bursting on all length scales. The origin of the power law is concluded to lie in
multiplicative randomness, previously encountered in the study of first-order stochastic difference equations, and generalised here
to second-order equations. It is argued that recombinant PSO, a competitive PSO variant without multiplicative randomness, does
not experience tail fattening at stagnation.

Copyright © 2008 T. Blackwell and D. Bratton. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

This paper focuses on the effective sampling distribution of
particle swarm optimisation (PSO). PSO is a population-
based global optimisation technique. The algorithm is
made of two essential steps: particle movement (dynamics)
through a search space of solutions and an indirect parti-
cle interaction which is mediated by information sharing
within a social network. Particles place personal “attractors”
in the search space at positions corresponding to the best lo-
cation (as determined by the evaluation of an objective func-
tion) that they have visited. The dynamical update rule which
specifies the acceleration of a particle i is a sum of an attrac-
tion towards a personal attractor and an attraction towards
the best attractor amongst other particles in i’s social neigh-
bourhood [1–3]. The particle acceleration is added to parti-
cle velocity in a discretisation of particle kinematics; the ve-
locity is added in turn to particle position and a new trial
solution is achieved. Despite the simplicity of this scheme,
the algorithm is effective over the standard benchmark prob-
lems and has increasing numbers of real-world applications.
However, little is known about how a PSO achieves its results.

The sampling distribution provides the probability den-
sity of particle placement between and around fixed attrac-
tors. This scenario occurs when the swarm “stagnates,” the
swarm is not improving, the network of attractors is fixed,
and the particles are moving independently of each other,
that is, the particles decouple. Stagnation can occur in the

full model, or can be imposed for the purposes of the oretical
analysis. In general, particles are expected to search in the im-
mediate vicinity of the attractors, and indeed this behaviour
is necessary for convergence. The central portion of the sam-
pling distribution is therefore coincident with this region.
However, the swarm must retain an ability to explore outside
the attractor vicinity if premature convergence, a problem in
complex environments, is to be avoided. This exploration is
due to the finite tail of the sampling distribution; there is a
small probability that a particle will be displaced far from the
region of convergence, and this probability increases with tail
fatness.

Some insights into the PSO sampling distribution have
been provided by a study of “bare bones” formulations [4].
In this work, Kennedy replaced the particle update rule with
sampling from a Gaussian distribution with mean at the cen-
troid of the personal and neighbourhood best positions of
each particle, and standard deviation was set to the sepa-
ration between them. Performance comparisons with a few
benchmark problems were disappointing (later confirmed
in [5]), but the addition by hand of particle “bursts” ame-
liorated the situation somewhat, indicating that the tails of
this Gaussian distribution function are too thin to enable es-
cape from stagnation. Further evidence for this conclusion
has been provided by a study of Lévy bare bones [5] where
more extensive trials showed that fat tails, as provided by the
Lévy distribution, improve bare bones performance so that
it becomes effectively equivalent to standard PSO. A recent
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0. initialise swarm
FOR EACH particle i

randomise �vi, �xi, set �pi = �xi
FOR EACH particle i

1. find neighbourhood best
�gi = arg min ( f (pj), j ∈ Ni)

FOR EACH dimension d
2. move particle

F(p) : xid ← xid
3. update memory

IF f (�xi) < f (�pi) THEN
�pi ← �xi

END
END

Algorithm 1: Particle swarm opimisation.

theoretical analysis of bare bones PSO has been given in [6].
However, a Gaussian bare bones version of a “fully informed”
particle swarm (FIPS) was able to deliver good performance
over a small testbed of functions [7], which suggests that par-
ticle tails might not be so important, at least for FIPS.

It is known that decoupled PSO exhibits bursts of outliers
[8]. Bursts are temporary excursions, along a coordinate axis,
of the particle to large distances from the attractors. A burst
will typically grow to a maximum and then return through
a number of damped oscillations to the region of the attrac-
tors. The addition of bursts to Gaussian bare bones increases
the chance of particle displacement away from the attractors,
fattening the tail of the overall sampling distribution. Lévy
distributions also produce particle outliers, but these outliers
are not correlated; they do not occur in sequence along a
single axis. At the moment, the circumstances, when a se-
quence of correlated outliers (as manifest, for example, in
PSO bursts) might prove to be fortuitous, are unknown. This
paper investigates the tail of the PSO sampling distribution.
Our results show that this tail is described by power laws and
is therefore fatter than Gaussian. This fattening is indeed due
to bursting, the origin of which is concluded to lie in a pro-
cess known as multiplicative randomness.

Bursting is already known to occur in first-order stochas-
tic difference equations [9]. This paper generalises the first
order results to second order difference equations with mul-
tiplicative randomness, a class of equations that includes
standard PSO. Since the amount of bursting is dependent on
the range of the probability distributions, the paper begins by
discussing possible parameter regimes. This is accomplished
by a formulation of PSO as a finite difference equation. The
paper continues with a series of experiments which reveal the
power law tails of the sampling distribution. Section 4 intro-
duces multiplicative randomness and power law tails in first-
order processes and extends these results to second-order dif-
ference equations. A competitive reformulation PSO without
multiplicative randomness has recently been proposed (re-
combinant PSO, [10]). Section 5 investigates decoupled re-
combinant PSO and demonstrates the consequent thinness
of the distribution tail. The results of this paper are drawn to-

gether in a concluding section and some open research ques-
tions are outlined.

2. PSO AND STOCHASTIC DIFFERENCE EQUATIONS

This section recasts PSO as a stochastic difference equation
(SDE). Since this is an unfamiliar form of PSO, a few re-
lations from the literature governing parameter choice are
gathered together and presented here.

Each PSO particle i in the swarm has dynamic variables
position and velocity, �xi and �vi, and a memory �pi of a past
position visited. Furthermore, each particle is embedded in
a social, rather than spatial, neighbourhood Ni of informers.
The algorithm is outlined in Algorithm 1. A general dynamic
rule F(p) for a single particle position update is

vid(t + 1) = wvid(t) +
K∑

j=1

Φ j(t)
(
pjd − xid(t)

)
,

xid(t + 1) = xid(t) + vid(t + 1).

(1)

The sum in (1) is over K informers pi and for each di-
mension d. In standard PSO [11], however, K = 2 and the
two attractors pi and pgi are the personal and neighbourbood
best positions. In this case,

Φ1,2 = φ1,2u1,2, (2)

where φ1,2 are “acceleration” constants and u1,2∼U(0, 1) are
random numbers drawn from the uniform distribution on
the unit interval. This “inertia weight” (IW) formulation of
PSO [12] derives its name from the parameter w which imi-
tates inertia in the sense that it weights the tendency to move
in a straight line at constant speed (w = 1) to the tendency to
move erratically about the attractors Φ. Other formulations
of PSO include Kennedy and Mendes’ [13] fully informed
particle swarm (FIPS), wherein a particle is influenced by
K > 2 neighbours, Φ j = (1/K)φjuj , and the “constricted”
Clerc-Kennedy (CK) swarm [14] which is equivalent to (1)
with the identification χ = w, φ1,2 = χφCK

1,2 .

At stagnation, we only need to consider a single parti-
cle in one dimension, so particle labels i will be dropped. By
virtue of v(t) = x(t) − x(t − 1), (1) can be rewritten as a
second-order stochastic difference equation (SDE)

x(t + 1) + a(t)x(t) + bx(t − 1) = c(t) (3)

with

a(t) =
∑

j

Φ j(t)−w − 1,

b = w,

c(t) =
∑

j

Φ j(t)pj ,

(4)

where the parameters a and c are stochastic variables because
of the presence of random numbers in (2). (However, they
are not independent because the same random numbers u1

and u2 appear in a and c.)
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Constant parameter SDEs have been studied by many
authors in a number of domains (e.g., [15] gives references
to population dynamics, epidemics, ARCH(1) processes, in-
vestment portfolios, immigrant populations, and internet
usage). A constant parameter second-order difference equa-
tion, a(t) = a, c(t) = a, Φ(t) = Φ, is obtained by replac-
ing the random variables u1,2 by a constant u. Stability con-
ditions can then be found by substituting the trial solution
x = λt into (3) and considering roots of the resulting char-
acteristic equation λ2 + aλ + b = c (see, e.g., [16]). Stability
then requires |λ| < 1. Complex, and therefore oscillatory, so-
lutions are found if

0 < b < 1,

a2 < 4b,
(5)

and stable real soutions exist for

|a| < 1 + b,

ca2 ≥ 4b.
(6)

The stability conditions can be combined:

|b| < 1,

|a| < 1 + b.
(7)

In order to relate these stability conditions to the stochas-
tic model of (3) and (4), a number of authors have suggested
replacing the random variable u1,2 by its maximum, that is,
u = 1 [14, 17, 18]. In terms of PSO parameters w and Φ
(assumed constant), this gives

|w| < 1,

0 <
∑

j

Φ j < 2(1 +w). (8)

Poli and Broomhead [19] has extended this analysis by
retaining randomness and deriving stability relations for the
expectations of the first and second moments of position.
The relation for the expected value of x is equivalent to the
above analysis with u = 0.5, so the upper bound on the ac-
celeration parameters φ is therefore twice the u = 1 bound.

Standard PSO is implemented with equal acceleration
parameters so that φ1 = φ2. Defining φ1 + φ2 = φ, the
dynamics for the inertia weight (IW) or the Clerc-Kennedy
(CK) formulations is

IW : v(t + 1) = wv(t) +
φIW

2

[
u1
(
pi − x(t)

)
+ u2

(
p2 − x(t)

)]
,

(9)

CK:v(t + 1) = χv(t) + χ
φCK

2

[
u1
(
pi−x(t)

)
+u2

(
p2 − x(t)

)]
.

(10)

Equation (8) gives, at u = 1,

0 < φIW < 2(1 +w), (11)

0 < φCK <
2(1 + χ)

χ
. (12)

The CK condition for complex eigenvalues and oscilla-
tion, a2 < 4b, becomes a = χφ, b = χ,

|χ| < 1,

1 +
1
χ
− 2√

χ
< φCK < 1 +

1
χ
− 2√

χ
.

(13)

In order to simplify the choice of χ and φCK, Clerc and
Kennedy suggest a single relation φCK = φCK(χ),

φCK = 1
χ

+ χ + 2 (14)

which can be simply rewritten as

χφCK = (χ + 1)2 (15)

and can be easily seen to satisfy (13). This relation is usually
inverted in the literature,

χCK = 2

φ − 2 +
√
φ2 − 4φ

, φ > 4, (16)

and a common choice is φCK = 4.1, χ ≈ 0.73.
As φCK→4, χ→1, the system becomes unstable, and as φCK

grows from 4, χ decreases from 1 and the system is increas-
ingly damped. In terms of the inertia weight formulation,
these parameters correspond to w ≈ 0.73 and φIW ≈ 3.0.
Many trials of PSO over commonly used test functions have
found that best performance is attained at φ close to the
u = 1 stability condition. The reason behind this can be elu-
cidated by considering the statistical distribution of x(t).

3. DISTRIBUTION TAIL

This section presents an experimental investigation of the
tail of sampling distribution for decoupled PSO. In each ex-
periment described here, x(1) and x(2) are random starting
positions between the two fixed attractors, p1 = −0.5 and
p2 = 0.5. Henceforth, only the IW form of PSO will be con-
sidered (the Clerc-Kennedy form is a simple parameter re-
definition) and the suffix IW will be dropped for ease of no-
tation.

Figure 1 shows the development of a spectacular burst for
the system defined by (9) at w = 0.75, φ = 3.0. The particle
is close to the u = 1 instability condition since, from (11),
φmax = 3.5. Figure 1 shows a burst of two orders of magni-
tude, as measured in units of the intrinsic scale |p1 − p2|.

Figure 2 shows the frequency N of particle distance r =
|x| for the same system as Figure 1 for a run of 106 itera-
tions. A logarithmic scale (all logs in this paper are to base
10) has been used for the y-axis so that the infrequent but
large bursts are visible on the plot. For this single run, the
mean distance was 0.747 (standard deviation 1.05) and all
distances are in the interval [1.01×10−6, 105]. Many updates
are therefore over very small distances from the origin, which
is the fixed point 〈c〉/(1 + 〈a〉+ b) of the expectation value of
x. Although the standard deviation is of the order of the at-
tractor separation, r can range over 8 orders of magnitude.
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Figure 1: A burst of outliers in decoupled PSO.
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Figure 2: Frequency N of particle distances r from the origin for
106 iterations of decoupled PSO.

Bursts would be expected to fatten the tail of the par-
ticle distance distribution p(r) when compared to distri-
butions with exponential falloffs such as a Gaussian. Evi-
dence for possible power law fattening of the distribution
tail, p(r)∼ r−α, where p(r)dr is the probability of a parti-
cle at distance r, would be revealed in a plot of the loga-
rithm of the cumulative distribution function, P(r), where
P(R) = prob (r > R). A cumulative plot (also known as a
rank/frequency plot [20]) reduces sampling errors in the tail
of the plot, even with logarithmic binning [21]. A relation
p(r)∼ r−α corresponds to P(R)∼ r1−α and a plot of log (P)
against log (r) would show a straight line with gradient 1−α.

Figure 3 shows cumulative distributions for 50 runs of
105 iterations, once more for the decoupled PSO defined by
w = 0.75, φ = 3.0, p1,2 = ± 0.5, x(1), x(2) = U(p1, p2).
All runs have been plotted on this figure to give an idea of
the deviations between runs. The straight portion in Figure 3
is evidence for a power law (although the underlying distri-
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Figure 3: Cumulative probability distribution P versus particle dis-
tance r from the origin. The plot shows 50 runs.
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Figure 4: Cumulative probability distribution of particle distances
r for various values of acceleration parameter φ.

bution might be log-normal; see discussion in the following
paragraphs).

Figure 4 shows cumulative probability distribution plots
for four values of φ at w = 0.75. This data is collected over
50 runs of 106 iterations for each value of φ. Each line shows
a straight central part. The lines curve inwards towards the
end of the sample where probabilities are small (<10−5) and
there are just a few events. Once more, a large part of the dis-
tribution is concentrated in the region between the attrac-
tors, r < 1. The power laws become established by r ≈ 1.0,
the separation of the attractors. At φ = 4.0 the power law is
evident for some 4 orders of magnitude.

Putative power laws as revealed by log-log plots are
hardly distinguished from log-normal laws p(x)∼ exp
(−ln (x − μ)2) over four or less orders of magnitude [21].
These plots therefore only show that the tails might be
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Figure 5: Power-law tails at various values of acceleration parame-
ter φ.

modelled by a power-law distribution. The underlying dis-
tribution could be power law or another distribution, such as
the log normal, whose tail can be approximated by a power
law over some range.

Figure 5 plots the same data as Figure 4 but over the in-
terval 10−4 < P(r) < 10−1 where the power laws are becom-
ing established. For clarity, every 1000th r in this range
has been plotted. The gradients and correlation coeffi-
cients of the four lines are −3.94(−0.987), −3.74(−0.998),
−1.08(−0.999), and −0.73(−0.999) for φ = 2.5, 3.0, 3.5, 4.0,
respectively. (A correlation coefficient of −1.0 indicates per-
fect negative correlation.)

If the sampling distribution p(r) does follow a power law
falloff, p(r)∼ r−α for r > rmin (as these results suggest), then
〈r〉 is well defined only for α > 2 because

∫∞
rmin
r p(r)dr di-

verges for α < 2. According to these experiments, at φ = 3.5,
the tail falls off as p∼ r−2.08, so 〈r〉 is finite at this value (and
at smaller values) of φ, but 〈r〉 diverges at larger values. This
edge is just at the u = 1 stability condition. Lower values of
u, and hence higher values of φ, lead to systems whose em-
pirical mean over a finite number of iterations will be finite
but will nevertheless vary enormously, sometimes taking on
large values, in order to respect the formal divergence of the
mathematical mean.

From the condition P(r) = 0.1, Figure 5 shows that 10
per cent of the particle positions are at distances greater than
0.21, 0.32, 0.92, and 56.8 from the origin for φ = 2.5, 3.0, 3.5,
and 4.0, respectively. This indicates that good coverage of the
region p1 < r < p2 is attained for φ = 2.5, 3.0 and 3.5. On the
other hand, there is no coverage outside this interval for φ =
2.5, showing that this PSO concentrates all its search between
the attractors. At φ = 3.0, particles will move outside this
region, enhancing exploration away from the fixed points in
the interactive model (where p1 and p2 can be updated). At
φ = 3.5, 4.0, the frequent bursts often take r far from the

attractors. These large bursts cannot help with convergence,
but they might help diversify the fully coupled system.

An analysis of the data for the 50 runs at φ = 4.0,w =
0.75 found a probability of 10 per cent for positions of at
least 1040. φ = 4.0 is between the u = 1 and u = 0.5 stability
conditions (3.5 and 7.0, resp.). Although none of these runs
exploded, bursts of extremely high amplitude were common.
The inference from these experiments is that the u = 1 sta-
bility condition corresponds to power law tails with bounded
mean. Moving φ beyond the u = 1 condition leads to un-
bounded mean displacements and little exploration of the
region between the attractors. This may explain the popular
empirical choices w ≈ 0.73 and φIW ≈ 3.0.

4. MULTIPLICATIVE RANDOMNESS

The PSO dynamics can produce, under stagnation, outly-
ing particles. However, these outliers particles are not iso-
lated; rather, large excursions exist in bursts or sequences
of increasing and then decreasing amplitudes away from
the origin. This must be true because arbitrarily large steps
r(t + 1)− r(t) are prohibited;

r(t + 1) <
∣∣− a(t)x(t)− bx(t − 1) + c(t)

∣∣

< max
(|a|)r(t) + br(t − 1) + max

(|c|). (17)

(This is in contrast to a bare bones formulations which
sample from a probability distribution N . N might itself has
fat tails but outliers need not be correlated and arbitrarily
large steps r(t + 1)− r(t) are possible. Bursts are a feature of
the finite difference equations.)

The previous section presented an evidence that the de-
coupled PSO shows power-law behaviour when close to
constant-u instability. Power-law tails are found in many nat-
ural systems. Well-known examples include the distribution
of earthquake magnitudes, frequency of words in a language,
wealth of the richest people, and physical quantities close to a
phase transition. Although power laws have been regarded as
an indicator of self-organisation (e.g., [22]), this explanation
is not necessary [21, 23].

Other possible explanations of bursts include resonance.
Certainly, (3) has a driving term c(t) and a spring-like term
Φ(t)(pi−x(t)), (1), and might be expected to resonate. How-
ever, the system does not have a well-defined resonant fre-
quency because the spring constants Φ are themselves ran-
dom.

Intermittent chaotic systems show periods of constant
amplitude punctuated by erratic bursts [24]. However, de-
coupled PSO is not chaotic in the stable regime. Another sim-
pler explanation for power laws can be found in the theory of
random multiplicative processes [9].

4.1. First-order SDE

Considering the first order SDE

x(t + 1) = −a(t)x(t), (18)

then x(t) = (−)ta(t − 1)a(t − 2) · · · a(0)x(0). The distribu-
tion of x is therefore given by the distribution of products of
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random numbers. The logarithm of x(t) is equal to a sum
of logarithms of random numbers, and by the central limit
theorem, the distribution of log (x) will be normal. The dis-
tribution of x(t) is therefore log normal, and log-normal laws
are well approximated by power laws over intervals of four or
less orders of magnitude [21]. This simple argument shows
that fat, power-law tails can derive from first-order multi-
plicative processes.

However, (18) is a very poor approximation to PSO. The
second-order SDE defined by (3) reduces to the first-order
SDE considered above for b = 0, c(t) = 0. This corresponds
to a PSO with w = 0 and

∑
Φi pi = 0. This implies that u1 =

u2 and p1 + p2 = 0; giving a PSO,

x(t + 1) = x(t) +
φ

2

[(
p1 − u3x(t)

)
+
(
p2 − u3x(t)

)]
r,

(19)

where u3 is a random value. (19) was tested over a suite of 14
objective functions, duplicating the test conditions of [11],
with very poor results.

The first-order SDE with additive noise,

x(t + 1) + a(t)x(t) = c(t), (20)

has been studied by Sornette and other workers (e.g., see
[9] for a(t) < 0). This system contains both multiplicative
a(t) and additive c(t) randomness. Decoupled PSO reduces
to (20) if the inertia weight is set to zero, w = 0,

x(t + 1) = x(t) +
φ

2

[
u1
(
p1 − x(t)

)
+ u2

(
p2 − x(t)

)]
.

(21)

Once more, performance of the fully coupled version of
(21) is very poor over the above test function set. Without ve-
locity, these PSOs cannot move through the search space and
are doomed to local exploration around the initial particle
configuration.

Equation (20) exhibits a regime of power-law behaviour.
With c(t) = 0, we recover model (18) which is log normal
in its central part [25]. For c finite, iterating (19) gives the
solution of (19) as

x(n) =
(n−1∏

l=0

a(l)

)
x(0) +

(n−2∑

l=0

c(l)
n−1∏

m=l+1

a(m)

)
+ c(n− 1)

(22)

which shows that the fate of x is determined by the multi-
plications over a. The surprising feature is that (21) exhibits
interesting behaviour in the stable regime 〈a〉 < 1 [9]. This
behaviour, namely intermittent bursts and power law tails to
the distribution of x, is contingent on max (a(t)) > 1 so that
amplification is possible, and upon the injection of noise,
c /= 0 so that convergence to the fixed point is prevented.

Rewriting the w = 0 PSO as

x(t + 1) +
[
φ

2

(
u1 + u2

)− 1
]
x(t) = φ

2

(
u1p1 + u2p2

)

(23)
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Figure 6: Investigation of stochastic first-order equation for various
ranges of random variables a(t).

facilitates the comparison with (20). The fixed- u stability
condition is 0 < φu < 2. Without loss of generality, we can
place p1 = 1.0, p2 = 0 so that c(t) = (φ/2)u1. From the u = 1
stability condition, φ < 2, c(t)∼U(0, cmax), cmax < 1. Fur-
thermore, a(t) ∈ [−1,φ], although the distribution within
this interval is triangular rather than uniform. This means
that the w = 0 PSO differs from (20) in two respects: a(t)
can become positive and c and a are not independent. In-
deed, a(t) = [c(t) + (φ/2)u2 − 1].

These changes were investigated by trials on Sornette
and Cont’s original system, (20) with a∼U(amin, amax) and
c(t)∼U(0, 1). The results are shown in Figure 6. The plots
depict average distances r = |x| from the origin over 50 runs
of 106 iterations and show results for four uniform distribu-
tions of a, each with |〈a〉| < 1.0 and max (|a| > 1). Line (i),
a∼U(−1.48,−0.48), corresponds to the system previously
studied by Sornette and Cont [26], line (ii), a∼U(−1.5, 1.5),
is a symmetrical distribution with 〈a〉 = 0, and line (iii),
a∼U(−1.75, 1.25), has 〈a〉 = −0.25.

The plot shows the fat power-law tail for the Sornette-
Cont system. The results also show thin tails when the mean
a is close to zero (lines (ii) and (iii)). This can be explained
by the relative drop in probability of amplification, |a| > 1.
In SDEs (ii) and (iii), prob (|a| > 1) = 1/3, whereas in the
Sornette-Cont system, prob (|a| > 1) = 0.48. The second
term of (22) can be ignored during a large burst |x(n)| �
|x(0)| � max (c),

x(n) ≈
n−1∏

l=0

a(l)x(0). (24)

Sequences of a(l) with large products will occur less of-
ten in (ii) and (iii) compared to (i), and the distribution
tail is quenched. A comparison of SDEs (ii) and (iii) re-
veals a slightly fatter tail for (iii). This is because max (|a|) is
larger in this system, and amplification is increased because
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products of a’s of a given length n,
∏ n−1

l=0 a(l)x(0), can attain
higher values.

In summary, power-law tail behaviour is possible in first-
order SDEs, although the fatness of the tail will depend
on the choice of parameters; fattening bursts are possible
if max (|a|) > 1 and the distribution assumes a power-law
tail for finite c. Standard PSO is badly approximated by a
first-order SDE (however, a novel first-order PSO variant, a
simplified version of recombinant PSO, does produce good
search behaviour [27]). The next section examines second-
order SDEs which provide a much closer model of standard
PSO.

4.2. Second-order SDE

The second-order stochastic system with uniform distribu-
tions

x(t + 1) +U(al, au)x(t) + bx(t − 1) = U(cl, cu) (25)

has not, to our knowledge, been studied in the burst regime
max (|a|) > 1. (25) is closely related to the decoupled PSO
with p1 = 1, p2 = 0:

x(t + 1) +
[
φ

2

(
u1 + u2

)−w − 1
]
x(t) +wx(t − 1) = φ

2
u1.

(26)

Replacing u1 + u2 with a uniform distributions leads to

x(t + 1)+U(−w − 1, φ −w − 1)x(t)+wx(t − 1)=U
(

0,
φ

2

)

(27)

and in particular, for the φ = 3.0, w = 0.75 system,

x(t + 1) +U(−1.75, 1.25)x(t) + 0.75x(t − 1) = U(0, 1.5).
(28)

Figure 7 shows the cumulative distribution r = |x| for
(28) for 50 runs of 106 iterations. Comparison with the first-
order SDEs of Figure 6 shows that this second-order SDE has
very fat tails with 10% of all positions at distances of 4× 105

or more from the origin. The frequent and large bursts are
not well modelled by a power law.

This behaviour is in contrast to the decoupled PSO of
(26), plotted in Figure 3, which shows a very much more re-
strained tail. The principle difference between (26) and (28)
is the replacement of the triangular-shaped random num-
ber distribution by a uniform distribution. Although 〈a〉 and
max (|a|) are identical, the uniform distribution increases
prob (|a| > 1), leading to an increased probability of large
products

∏ n−1
l=0 a(l).

The contribution of such products to a burst can be seen
by formally deriving a solution for x(t) as a sum over prod-
ucts of random variables. Rewriting (25) as

xn =
(
Lan − bL2)xn + cn, (29)

where L is the lag operator Lxj = xj−1, L2xj = xj−2, Laj =
aj−1L, a(t) = −aj , and iterating back in time,

xn =
(
La− bL2)(La− bL2)xn +

(
La− bL2)cn + cn. (30)

−6 −4 −2 0 2 4 6 8 10 12 14

log(r)

−6

−5

−4

−3

−2

−1

0

lo
g(
P

(r
))

x(t + 1) +U(−1.75, 1.25)x(t) + 0.75x(t − 1) = U(0, 1.5)

Figure 7: Investigation of a stochastic second-order equation.

Hence, after m iterations,

xn =
(
La− bL2)mxn +

(m−1∑

j=0

(
La− bL2) j

)
cn. (31)

Equation (31) reduces to the solution of the first-order
difference equation, (22), for m = n, b = 0.

During a large burst |xn| � xn−2m � max (c),

xn ≈
(
La− bL2)mxn

= ((La)m − (La)m−1b− (La)m−2b(La)− · · · )xn
(32)

which shows that the amplification of the burst is enhanced
compared to a first-order burst (24), by the terms in b. The
validity of this remark depends on the relative sign of each
term appearing in (32). To estimate just how big the en-
hancement might be, suppose that all the a’s are positive
and the x’s alternate in sign. The probability distribution
function Pm(A) of the product of the random multipliers
A = a1a − 2 · · · am is approximated by Pm(A) = (p(A1/m)

m

(see, e.g., [9]) for large A, where p(a) is the distribution of
a. Then, for large A, we can replace each random variable a
in (31) by the geometric mean a= A1/m. This gives an upper
bound to xm, xm < ((a +|b|)mxm−1 where (by assumption)
xn−1 > xn−2m. This second order burst is boosted in compar-
ison to a first-order burst xn = a

m
xm−n. Although such large

bursts will be rare, they will contribute to the overall prob-
ability distribution of x because, although exponentially un-
likely, they are of exponential size (see, e.g., the argument of
Redner [25] for the product of a binary sequence xyxxyxyy).

The oscillatory pattern of any large burst can be deduced
by considering xn+1 = anxn − 0.75xn−1 where |xn+1| > |xn| >
|xn−1| � max (c). Suppose, for the sake of argument, that
xn−1 is positive. Then |xn+1| will be maximised if anxn < 0
with the result xn+1 < 0. Hence, xn+1 and xn−1 differ in sign.
xn might be positive or negative; in either case, we expect xn+2

to be of the reverse sign in a large burst. The conclusion is
that large bursts are likely to follow a pattern sign (x) = {+ +
− − + + −−} as demonstrated in a close-up of the burst of
Figure 8.
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Figure 8: Start of a large burst, with deviations {+ +− − + + −−}
about x = 0.

5. ADDITIVE RANDOMNESS

If distribution tails in SDEs are caused solely by multiplica-
tive randomness, a second-order SDE with only additive ran-
domness, that is, a, b = const., c = c(t) should be tail free.
Recently, a novel PSO variant, recombinant PSO (DR), has
been proposed with only additive randomness [10]. Recent
work tests PSO-DR for various neighbourhoods and param-
eter choices with impressively competitive results over a suite
of 14 common benchmarks [28]. PSO-DR is similar to the
PSO-IW, (9), except that one of the informers is replaced by a
discrete recombination of a particle’s immediate neighbours
in a ring topology,

DR : v(t + 1) = wv(t) +
φDR

2

[(
p1 − x(t)

)
+
(
p2 − x(t)

)]
,

(33)

where p2 = ηpl + (1 − η)pr , η = U{0, 1}, and pl and pr are
left and right neighbours and p1 is either the personal best
position of particle i, or the best position in i’s neighbour-
hood, depending on the particular formulation of PSO-DR.
The stability condition from (11) is 0 < φDR < 2(1 +w).

Figure 9 reports on the cumulative distribution of par-
ticle separation r for (33). The distributions for w =
0.5 and various φ up to the maximum stable value of
φ = 3.0 were collected for 50 runs of 106 iterations with
x(1), x(2)∼U(−0.5, 0.5), p1 = −0.5, pl = 0.5, pr = 1.0.

The cumulative distributions are flat for small r, and then
drop vertically at a cutoff r − c, suggesting p(0 ≥ r ≥ rc) =
U(0, rc) (although the log-log plot is not sensitive enough to
show variations from uniformity). The noncritical systems
φ ≤ 2.9 place the majority of the positions between the at-
tractors. At subcriticality, φ = 2.99, the system is inclined to
explore beyond the attractors, rc > 1. At instability, rc is be-
tween 50 and 100. A vertical drop-off beyond rc would be an
evidence that additive-SDE does not develop tails, and this is
confirmed by these plots, except perhaps for φ = 2.99 which
appears to have a finite, but very large slope.

In fact, PSO models such as (33) might produce tails
from a resonance effect. This is because the spring constants
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Figure 9: Plot of cumulative probability r for PSO-DR.

are fixed and the system has a defined natural frequency. For
the case of PSO-DR, setting p3 = (p1 + p2)/2 gives a simple
oscillator with force law F = φ(p3−x) and natural frequency

ω =
√

(φ). The periodic time, T = 2π/ω for φ = 1 (this
is empirically a good value for interacting PSO-DR [28]), is
therefore about 6 with the implication that an oscillating p3

on the timescale of 6 iterations could drive the oscillator and
amplify x. This could happen from a shifting neighbour best
position p1, or from an oscillation between pl and pr in the
p2 term, or by a combination of the two.

6. CONCLUSIONS

This paper has investigated the position distribution of de-
coupled PSO. Particular attention has been paid to the tail of
this distribution, a regime dominated by power laws. The ori-
gin of these tails lies with the phenomenon of particle bursts.
Bursts occur at all scales with decreasing probability for in-
creasing size. The accumulation of bursts of all sizes results
in distribution tail fattening. In order to study how these
bursts might develop, decoupled PSO has been formulated
as a second-order stochastic difference equation. Fat distri-
bution tails, well modelled by power laws (although the un-
derlying distribution might be log normal, or some other dis-
tribution with a power-law regime), arise from multiplicative
randomness, a phenomenon previously encountered in first-
order SDEs, and generalised here to second order processes.

This conclusion is valid for first- or second-order SDEs
where the multiplicative random variable a is capable of am-
plification (max (|a|) > 1), but does not permit system ex-
plosion (〈|a|〉 < 1). According to the theoretical analysis pre-
sented here, bursting in a second-order SDE is built from a
sum of multiplicative stochastic processes, and the burst size
is boosted by the second-order parameter b. This result ex-
plains the observation that the particle distribution shifts as
more iterations are collected. The distribution is dominated
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by large but rare events that are only manifest after many it-
erations.

A stability condition for the PSO parameters w and φ can
be achieved by replacing the random variables in the differ-
ence equation by a constant u. The inference from a set of ex-
periments is that the u = 1 stability condition leads to power-
law tails with bounded mean. Moving φ beyond this condi-
tion leads to unbounded mean displacements. The popular
φ = 3.0,w = 0.75 PSO, is within the stable region and has
weak power-law tails, which enhance exploration, yet also has
good coverage of the region close to the attractors, enabling
convergence.

There is a tantalising possibility that the removal of
stochasticity from the dynamics might render PSO amenable
to further theoretical analysis. A recombinant PSO, which is
demonstrably competitive to standard PSO, almost achieves
this miracle. The acceleration parameters are constant in
PSO-DR, but randomness, and hence diversity regeneration,
is manifest in a jiggling of the attractor components. This jig-
gling will persist even at times of stagnation. PSO-DR, replete
with just additive randomness of this sort, does not, accord-
ing to the theoretical and empirical arguments supplied here,
enjoy bursting activity. It is conjectured that this transfer of
randomness from the dynamics to the information network
generates enough noise to mitigate against premature con-
vergence in the coupled model, despite the thin tails of the
decoupled equations. These issues are taken up in [27, 28].
(See also [29].)

PSO bursts differ from the outliers generated by bare
bones swarms in two respects: the outliers occur in sequence,
and they are one dimensional. Bursting will therefore pro-
duce periods of rectilinear motion where the particle will
have a large velocity parallel to a coordinate axis. Whether
bursts are generally beneficial, or a hindrance, to a fully in-
teractive PSO and under what circumstances, is the subject of
ongoing research [28]. What does appear to be certain is that
a distribution of outliers which decreases slower than a Gaus-
sian tail is important if PSO is to escape premature conver-
gence in difficult environments. Standard PSO achieves this
through multiplicative randomness and this occurs even in
the decoupled system; recombinant PSO can only, however,
gain its outliers through the interaction of the particles.
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1. INTRODUCTION

Particle swarm optimization (PSO) is a relatively recently de-
vised population-based stochastic global optimization algo-
rithm [1]. PSO has many similarities with evolutionary al-
gorithms, and has also proven to have robust performance
over a variety of difficult optimization problems. However,
the original formulation of PSO requires the search space to
be continuous and the individuals to be represented as vec-
tors of real numbers.

There is a number of extensions of PSO to combinato-
rial spaces with various degrees of success [2, 3]. (Notice that
applications of traditional PSO to combinatorial optimiza-
tion problems cast as continuous optimization problems are
not extensions of the PSO algorithm.) However, every time
a new solution representation is considered, the PSO algo-
rithm needs to be rethought and adapted to the new repre-
sentation. In this article, we extend PSO to richer spaces by
making use of a rigorous mathematical generalization of the
notion (and motion) of particles to a general class of spaces.
This approach has the advantage that a PSO can be derived in
a principled way for any search space belonging to the given
class.

In particular, we show formally how a general form of
PSO (without the inertia term) can be obtained by us-

ing theoretical tools developed for evolutionary algorithms
with geometric crossover and geometric mutation. These are
representation-independent operators that generalize many
pre-existing search operators for the major representations,
such as binary strings [4], real vectors [4], permutations [5],
syntactic trees [6], and sequences [7]. (The inertia weight was
not part of the original proposal of PSO, it was later intro-
duced by Shi and Eberhart [8].)

Firstly, we formally derive geometric PSOs (GPSOs) for
Euclidean, Manhattan, and Hamming spaces and discuss
how to derive GPSOs for virtually any representation in a
similar way. Then, we test the GPSO theory experimentally:
we implement the specific GPSO for Euclidean, Manhattan,
and Hamming spaces and report extensive experimental re-
sults showing that GPSOs perform very well.

Finally, we also demonstrate that GPSO can be special-
ized easily to nontrivial combinatorial spaces. In previous
work [9], we have used the geometric framework to design an
evolutionary algorithm to solve the Sudoku puzzle and ob-
tained very good experimental results. Here, we apply GPSO
to solve the Sudoku puzzle.

In Section 2, we introduce the geometric framework and
introduce the notion of multiparental geometric crossover.
In Section 3, we recast PSO in geometric terms and general-
ize it to generic metric spaces. In Section 4, we apply these
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notions to the Euclidean, Manhattan, and Hamming spaces.
In Section 5, we discuss how to specialize the general PSO
automatically to virtually any solution representation using
geometric crossover. Then, in Section 6, we report experi-
mental results with the GPSOs for Euclidean, Manhattan,
and Hamming spaces, and we compare them with a tradi-
tional PSO. In Section 7, we apply GPSO to Sudoku, and
we describe the results in Section 8. Finally, in Section 9, we
present conclusions and future work.

2. GEOMETRIC FRAMEWORK

Geometric operators are defined in geometric terms using
the notions of line segment and ball. These notions and the
corresponding genetic operators are well defined once a no-
tion of distance in the search space is defined. Defining search
operators as functions of the search space is opposite to the
standard way [10] in which the search space is seen as a func-
tion of the search operators employed.

2.1. Geometric preliminaries

In the following, we give necessary preliminary geometric
definitions and extend those introduced in [4]. For more de-
tails on these definitions, see [11].

The terms distance and metric denote any real valued
function that conforms to the axioms of identity, symmetry,
and triangular inequality. A simple connected graph is natu-
rally associated to a metric space via its path metric: the dis-
tance between two nodes in the graph is the length of a short-
est path between the nodes. Distances arising from graphs
via their path metric are called graphic distances. Similarly,
an edge-weighted graph with strictly positive weights is nat-
urally associated to a metric space via a weighted path metric.

In a metric space (S,d), a closed ball is a set of the form
B(x; r) = {y ∈ S | d(x, y) ≤ r}, where x ∈ S and r is a posi-
tive real number called the radius of the ball. A line segment is
a set of the form [x; y] = {z ∈ S | d(x, z)+d(z, y) = d(x, y)},
where x, y ∈ S are called extremes of the segment. Metric
ball and metric segment generalize the familiar notions of
ball and segment in the Euclidean space to any metric space
through distance redefinition. In general, there may be more
than one shortest path (geodesic) connecting the extremes
of a metric segment: the metric segment is the union of all
geodesics.

We assign a structure to the solution set by endowing it
with a notion of distance d. M = (S,d) is, therefore, a solu-
tion space and L = (M, g), where g is the fitness function, is
the corresponding fitness landscape.

2.2. Geometric crossover

Definition 1 (geometric crossover). A binary operator is a ge-
ometric crossover under the metric d if all offsprings are in
the segment between its parents.

The definition is representation-independent and, there-
fore, crossover is well defined for any representation. Being

based on the notion of metric segment, crossover is a function
only of the metric d associated with the search space.

The class of geometric crossover operators is very broad.
For vectors of reals, various types of blend or line crossovers,
box recombinations, and discrete recombinations are geo-
metric crossovers [4]. For binary and multary strings, all
homologous crossovers are geometric [4, 12]. For permu-
tations, PMX, Cycle crossover, merge crossover, and others
are geometric crossovers [5]. We describe this in more de-
tail in Section 2.3 since we will use the permutation rep-
resentation in this paper. For syntactic trees, the family of
homologous crossovers are geometric [6]. Recombinations
for several more complex representations are also geometric
[4, 5, 7, 13].

2.3. Geometric crossover for permutations

In previous work, we have studied various crossovers for per-
mutations, revealing that PMX [14], a well-known crossover
for permutations, is geometric under swap distance. Also,
we found that Cycle crossover [14], another traditional
crossover for permutations, is geometric under swap distance
and under Hamming distance (geometricity under Ham-
ming distance for permutations implies geometricity under
swap distance, but not vice versa). Finally, we showed that
geometric crossovers for permutations based on edit moves
are naturally associated with sorting algorithms: picking off-
spring on a minimum path between two parents corresponds
to picking partially sorted permutations on the minimal sort-
ing trajectory between the parents.

2.4. Geometric crossover landscape

Geometric operators are defined as functions of the distance
associated with the search space. However, the search space
does not come with the problem itself. The problem con-
sists of a fitness function to optimize and a solution set, but
not a neighbourhood relationship. The act of putting a struc-
ture over the solution set is part of the search algorithm de-
sign and it is a designer’s choice. A fitness landscape is the
fitness function plus a structure over the solution space. So
for each problem, there is one fitness function but as many
fitness landscapes as the number of possible different struc-
tures over the solution set. In principle, the designer could
choose the structure to assign to the solution set completely
independently from the problem at hand. However, because
the search operators are defined over such a structure, doing
so would make them decoupled from the problem at hand,
hence turning the search into something very close to ran-
dom search.

In order to avoid this, one can exploit problem knowl-
edge in the search. This can be achieved by carefully design-
ing the connectivity structure of the fitness landscape. For
example, one can study the objective function of the prob-
lem and select a neighbourhood structure that couples the
distance between solutions and their fitness values. Once this
is done, the problem knowledge can be exploited by search
operators to perform better than random search, even if the
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search operators are problem independent (as in the case of
geometric crossover and mutation).

Under which conditions is a landscape well searchable by
geometric operators? As a rule of thumb, geometric mutation
and geometric crossover work well on landscapes where the
closer pairs of solutions are, the more correlated their fitness
values. Of course this is no surprise: the importance of land-
scape smoothness has been advocated in many different con-
texts and has been confirmed in uncountable empirical stud-
ies with many neighborhood search metaheuristics [15, 16].
To summarize, consider the following.

(i) Rule of thumb 1: If we have a good distance for the
problem at hand, then we have good geometric muta-
tion and good geometric crossover.

(ii) Rule of thumb 2: A good distance for the problem at
hand is a distance that makes the landscape “smooth.”

2.5. Product geometric crossover

In recent work [12], we have introduced the notion of prod-
uct geometric crossover.

Theorem 1. Cartesian product of geometric crossover is geo-
metric under the sum of distances.

This theorem is very useful because it allows one to
build new geometric crossovers by combining crossovers that
are known to be geometric. In particular, this applies to
crossovers for mixed representations. The elementary geo-
metric crossovers do not need to be independent, to form
a valid product geometric crossover.

2.6. Multiparental geometric crossover

To extend geometric crossover to the case of multiple parents,
we need the following definitions [17].

Definition 2. A family X of subsets of a set X is called con-
vexity on X if

(C1) the empty set ∅ and the universal set X are in X,
(C2) D ⊆X is nonempty, then

⋂
D ∈X, and

(C3) D ⊆X is nonempty and totally ordered by inclu-
sion, then

⋃
D ∈X.

The pair (X , X) is called convex structure. The members
of X are called convex sets. By the axiom (C1), a subset A of
X of the convex structure is included in at least one convex
set, namely, X .

From axiom (C2), A is included in a smallest convex set,
the convex hull of A:

co (A) =
⋂
{C | A ⊆ C ∈X}. (1)

The convex hull of a finite set is called a polytope.
The axiom (C3) requires domain finiteness of the convex

hull operator: a set C is convex if it includes co (F) for each
finite subset F of C.

The convex hull operator applied to a set of cardinal-
ity two is called segment operator. Given a metric space

M = (X ,d), the segment between a and b is the set [a, b]d =
{z ∈ X | d(x, z) + d(z, y) = d(x, y)}. The abstract geodetic
convexity C on X induced by M is obtained as follows: a sub-
set C of X is geodetically convex, provided [x, y]d ⊆ C for all
x, y inC. If co denotes the convex hull operator of C, then for
all a, b ∈ X : [a, b]d ⊆ co {a, b}. The two operators need not
to be equal: there are metric spaces in which metric segments
are not all convex.

We can now provide the following extension.

Definition 3 (multiparental geometric crossover). In a mul-
tiparental geometric crossover, given n parents p1, p2, . . . , pn,
their offspring are contained in the metric convex hull of the
parents co ({p1, p2, . . . , pn}) for some metric d.

Theorem 2 (decomposable three-parent recombination).
Every multiparental recombination RX(p1, p2, p3) that can be
decomposed as a sequence of 2-parental geometric crossovers
under the same metric GX and GX ′, so that RX(p1, p2, p3) =
GX(GX ′(p1, p2), p3), is a three-parental geometric crossover.

Proof. Let P be the set of parents and co (P) their metric
convex hull. By definition of metric convex hull, for any
two points a, b ∈ co (P), their offspring are in the con-
vex hull [a, b] ⊆ co (P). Since P ⊆ co (P), any two parents
p1, p2 ∈ P have offspring o12 ∈ co (P). Then, any other par-
ent p3 ∈ P, when recombined with o12, produces offspring
o123 in the convex hull co (P). So the three-parental recom-
bination equivalent to the sequence of geometric crossover
GX ′(p1, p2) → o12 and GX(o12, p3) → o123 is a multiparental
geometric crossover.

3. GEOMETRIC PSO

3.1. Canonical PSO algorithm and geometric crossover

Consider the canonical PSO in Algorithm 1. It is well known
[18] that one can write the equation of motion of the particle
without making explicit use of its velocity.

Let x be the position of a particle and v its velocity. Let
x̂ be the current best position of the particle and let ĝ be the
global best. Let v′ and v′′ be the velocity of the particle and
x′ = x + v and x′′ = x′ + v′ its position at the next two time
ticks. The equation of velocity update is the linear combina-
tion: v′ = ωv + φ1(x̂ − x′) + φ2(ĝ − x′), where ω, φ1, and φ2
are scalar coefficients. To eliminate velocities, we substitute
the identities v = x′ − x and v′ = x′′ − x′ in the equation of
velocity update and rearrange it to obtain an equation that
expresses x′′ as function of x and x′ as follows:

x′′ = (1 + ω− φ1 − φ2

)
x′ − ωx + φ1x̂ + φ2ĝ . (2)

If we set ω = 0 (i.e., the particle has no inertia), x′′ be-
comes independent on its position x two time ticks earlier. If
we call w1 = 1−φ1−φ2, w2 = φ1, and w3 = φ2, the equation
of motion becomes

x′′ = w1x
′ +w2x̂ +w3ĝ . (3)

In these conditions, the main feature that allows the mo-
tion of particles is the ability to perform linear combinations
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(1) for all particle i do
(2) initialize position xi and velocity vi
(3) end for
(4) while stop criteria not met do
(5) for all particle i do
(6) set personal best x̂i as best position found so far by the particle
(7) set global best ĝ as best position found so far by the whole swarm
(8) end for
(9) for all particle i do
(10) update velocity using equation

vi(t + 1) = κ(ωvi(t) + φ1U(0, 1)(ĝ(t)− xi(t)) + φ2U(0, 1)(x̂i(t)− xi(t))),
where, typically, either (κ = 0.729, ω = 1.0) or (κ = 1.0, ω < 1)

(11) update position using equation
xi(t + 1) = xi(t) + vi(t + 1)

(12) end for
(13) end while

Algorithm 1: Standard PSO algorithm.

B

C

A

D

P′

P

Figure 1: Geometric crossover and particle motion.

of points in the search space. As we will see in the next sec-
tion, we can achieve this same ability by using multiple (geo-
metric) crossover operations. This makes it possible to obtain
a generalization of PSO to generic search spaces.

In the following, we illustrate the parallel between an
evolutionary algorithm with geometric crossover and the
motion of a particle in PSO (see Figure 1). Geometric
crossover picks offspring C on a line segment between par-
ents A and B. Geometric crossover can be interpreted as a
motion of a particle: consider a particle P that moves in the
direction of a point D reaching, in the next time step, posi-
tion P′. If one equates parentAwith the particle P and parent
B with the direction pointD, the offspring C is, therefore, the
particle at the next time step P′. The distance between par-
ent A and offspring C is the magnitude of the velocity of the
particle P. Notice that the particle moves from P to P′: this
means that the particle P is replaced by the particle P′ in the
next time step. In other words, the new position of the parti-
cle replaces the previous position. Coming back to the evolu-
tionary algorithm with geometric crossover, this means that
the offspring C replaces its parent A in the new population.
The fact that at a given time all particles move is equivalent
to say that each particle is selected for “mating.” Mating is a
weighted multirecombination involving the memory of the
particle and the best in the current population.

In the standard PSO, weights represent the propensity
of a particle towards memory, sociality, and cognition. In

the GPSO, they represent the attractions towards the parti-
cle’s previous position, the particle’s best position, and the
swarm’s best position.

Naturally, particle motion based on geometric crossover
leads to a form of search that cannot extend beyond the con-
vex hull of the initial population. Mutation can be used to
allow nonconvex search. We explain these ideas in detail in
the following sections.

3.2. Geometric interpretation of linear combinations

Definition 4. A convex combination of vectors v1, . . . , vn is a
linear combination a1v1 + a2v2 + a3v3 + · · · + anvn, where all
coefficients a1, . . . , an are nonnegative and add up to 1.

It is called “convex combination” because when vectors
represent points in space, the set of all convex combinations
constitutes the convex hull.

A special case is n = 2, where a point formed by the
convex combination will lie on a straight line between two
points. For three points, their convex hull is the triangle with
the points as vertices.

Theorem 3. In a PSO with no inertia (ω = 0) and where ac-
celeration coefficients are such that φ1 + φ2 ≤ 1, the next po-
sition x′ of a particle is within the convex hull formed by its
current position x, its local best x̂, and the swarm best ĝ.

Proof. As we have seen in Section 3.1, whenω = 0, a particle’s
update equation becomes the linear combination in (3). No-
tice that this is an affine combination since the coefficients of
x′, x̂, and ĝ add up to 1. Interestingly, this means that the new
position of the particle is coplanar with x′, x̂, and ĝ. If we re-
strictw2 andw3 to be positive and their sum to be less than 1,
(3) becomes a convex combination. Geometrically, this means
that the new position of the particle is in the convex hull formed
by (or more informally, is between) its previous position, its lo-
cal best, and the swarm best.
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(1) for all particle i do
(2) initialize position xi at random in the search space
(3) end for
(4) while stop criteria not met do
(5) for all particle i do
(6) set personal best x̂i as best position found so far by the particle
(7) set global best ĝ as best position found so far by the whole swarm
(8) end for
(9) for all particle i do
(10) update position using a randomized convex combination

xi = CX
((
xi,w1

)
,
(
ĝ,w2

)
,
(
x̂i,w3

))

(11) mutate xi
(12) end for
(13) end while

Algorithm 2: Geometric PSO algorithm.

In the next section, we generalize this simplified form of
PSO from real vectors to generic metric spaces. As mentioned
above, mutation will be required to extend the search beyond
the convex hull.

3.3. Convex combinations in metric spaces

Linear combinations are well defined for vector spaces: alge-
braic structures endowed with scalar product and vectorial
sum. A metric space is a set endowed with a notion of dis-
tance. The set underlying a metric space does not normally
come with well-defined notions of scalar product and sum
among its elements. Therefore, a linear combination of its
elements is not defined. How can we then define a convex
combination in a metric space? Vectors in a vector space can
easily be understood as points in a metric space. However, the
interpretation of scalars is not as straightforward: what do
the scalar weights in a convex combination mean in a metric
space?

As seen in Section 3.2, a convex combination is an alge-
braic description of a convex hull. However, even if the no-
tion of convex combination is not defined for metric spaces,
convexity in metric spaces is still well defined through the
notion of metric convex set that is a straightforward gener-
alization of traditional convex set. Since convexity is well de-
fined for metric spaces, we still have hope to generalize the
scalar weights of a convex combination trying to make sense
of them in terms of distance.

The weight of a point in a convex combination can be
seen as a measure of relative linear “attraction” toward its
corresponding point, versus attractions toward the other
points of the combination. The closer a weight to 1, the
stronger the attraction to the corresponding point. The point
resulting from a convex combination can be seen as the equi-
librium point of all the attraction forces. The distance be-
tween the equilibrium point and a point of the convex com-
bination is, therefore, a decreasing function of the level of at-
traction (weight) of the point: the stronger the attraction, the
smaller its distance to the equilibrium point. This observa-
tion can be used to reinterpret the weights of a convex com-

bination in a metric space as follows: y = w1x1 +w2x2 +w3x3

with w1, w2, and w3 greater than zero and w1 + w2 + w3 = 1
is generalized to mean that y is a point such that d(x1, y) =
f (w1), d(x2, y) = f (w2), and d(x3, y) = f (w3), where f is a
decreasing function.

This definition is formal and valid for all metric spaces,
but it is nonconstructive. In contrast, a convex combination
not only defines a convex hull, but also tells how to reach all
its points. So how can we actually pick a point in the convex
hull respecting the above distance requirements? Geometric
crossover will help us with this, as we show in the next sec-
tion.

To summarize, the requirements for a convex combina-
tion in a metric space are as follows.

(1) Convex weights: the weights respect the form of a con-
vex combination: w1,w2,w3 > 0 and w1 +w2 +w3 = 1.

(2) Convexity: the convex combination operator combines
x1, x2, and x3 and returns a point in theirmetric convex
hull (or simply triangle) under the metric of the space
considered.

(3) Coherence between weights and distances: the distances
to the equilibrium point are decreasing functions of
their weights.

(4) Symmetry: the same value assigned to w1, w2, or w3

has the same effect (e.g., in a equilateral triangle, if the
coefficients have all the same value, the distances to the
equilibrium point are the same).

3.4. Geometric PSO algorithm

The generic GPSO algorithm is illustrated in Algorithm 2.
This differs from the standard PSO (Algorithm 1), in that:

(i) there is no velocity,

(ii) the equation of position update is the convex combi-
nation,

(iii) there is mutation, and

(iv) the parametersw1,w2, andw3 are nonnegative and add
up to one.
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The specific PSOs for the Euclidean, Manhattan, and
Hamming spaces use the randomized convex combination
operators described in Section 4 and space-specific muta-
tions. The randomization introduced by the randomized
convex combination and by the mutation are of different
types. The former allows us to pick points at random ex-
clusively within the convex hull. The latter, as mentioned in
Section 3.1, allows us to pick points outside the convex hull.

4. GEOMETRIC PSO FOR SPECIFIC SPACES

4.1. Euclidean space

The GPSO for the Euclidean space is not an extension of the
traditional PSO. We include it to show how the general no-
tions introduced in the previous section materialize in a fa-
miliar context. The convex combination operator for the Eu-
clidean space is the traditional convex combination that pro-
duces points in the traditional convex hull.

In Section 3.3, we have mentioned how to interpret the
weights in a convex combination in terms of distances. In the
following, we show analytically how the weights of a convex
combination affect the relative distances to the equilibrium
point. In particular, we show that the relative distances are
decreasing functions of the corresponding weights.

Theorem 4. In a convex combination, the distances to the
equilibrium point are decreasing functions of the correspond-
ing weights.

Proof. Let a, b, and c be three points in Rn and let x = waa +
wbb + wcc be a convex combination. Let us now decrease wa

to w′a = wa − Δ such that w′a, w′b, and w′c still form a convex
combination and that the relative proportions of wb and wc

remain unchanged: w′b/w
′
c = wb/wc. This requires w′b and w′c

to bew′b = wb(1+Δ/(wb+wc)) andw′c = wc(1+Δ/(wb+wc)).
The equilibrium point for the new convex combination is

x′ = (wa − Δ
)
a +wb

(
1 + Δ/

(
wb +wc

))
b

+wc
(
1 + Δ/

(
wb +wc

))
c.

(4)

The distance between a and x is

|a− x| = ∣∣wb(a− b) +wc(a− c)
∣
∣, (5)

and the distance between a and the new equilibrium point is

∣
∣a− x′∣∣ = ∣∣wb

(
1 + Δ/

(
wb +wc

))(
a− b)

+wc
(
1 + Δ/

(
wb +wc

))
(a− c)∣∣

= (1 + Δ/
(
wb +wc

))|a− x|.
(6)

So when wa decreases (Δ > 0) and wb and wc maintain the
same relative proportions, the distance between the point a
and the equilibrium point x increases (|a − x′| > |a − x|).
Hence, the distance between a and the equilibrium point is a
decreasing function of wa. For symmetry, this applies to the
distances between b and c and the equilibrium point: they are
decreasing functions of their corresponding weights wb and
wc, respectively.

The traditional convex combination in the Euclidean
space respects the four requirements for a convex combina-
tion presented in Section 3.3.

4.2. Manhattan space

In the following, we first define a multiparental recombina-
tion for the Manhattan space and then prove that it respects
the four requirements for being a convex combination pre-
sented in Section 3.3.

Definition 5 (box recombination family). Given two parents
a and b in Rn, a box recombination operator returns off-
spring o such that oi ∈ [min (ai, bi), max (ai, bi)] for i =
1, . . . ,n.

Theorem 5 (geometricity of box recombination). Any box
recombination is a geometric crossover under Manhattan dis-
tance.

Proof. Theorem 5 is an immediate consequence of the prod-
uct geometric crossover (Theorem 1).

Definition 6 (three-parent box recombination family).
Given three parents a, b, and c in Rn, a box recom-
bination operator returns offspring o such that oi ∈
[min (ai, bi, ci), max (ai, bi, ci)] for i = 1, . . . ,n.

Theorem 6 (geometricity of a three-parent box recombi-
nation). Any three-parent box recombination is a geometric
crossover under Manhattan distance.

Proof. We prove it by showing that any multiparent box re-
combination BX(a, b, c) can be decomposed as a sequence of
two simple box recombinations. Since the simple box recom-
bination is geometric (Theorem 5), this theorem is a simple
corollary of the multiparental geometric decomposition the-
orem (Theorem 2).

We will show that o′ =BX(a, b) followed by BX(o′, c)
can reach any offspring o = BX(a, b, c). For each i,
we have oi ∈ [min(ai, bi, ci), max (ai, bi, ci)]. Notice that
[min (ai, bi), max (ai, bi)] ∪ [min (ai, ci), max (ai, ci)] =
[min (ai, bi, ci), max (ai, bi, ci)]. We have two cases: (i)
oi ∈ [min (ai, bi), max (ai, bi)] in which case oi is reach-
able by the sequence BX(a, b)i → oi,BX(o, c)i → oi;
(ii) oi /∈ [min (ai, bi), max (ai, bi)], then it must be in
[min (ai, ci), max (ai, ci)] in which case oi is reachable by the
sequence BX(a, b)i → ai,BX(a, c)i → oi.

Definition 7 (weighted multiparent box recombination).
Given three parents a, b, and c in Rn and weights wa, wb, and
wc, a weighted box recombination operator returns offspring
o such that oi = waiai + wbibi + wcici for i = 1, . . . ,n, where
wai , wbi , and wci are a convex combination of randomly per-
turbed weights with expected values wa, wb, and wc.

The difference between box recombination and linear
recombination (Euclidean space) is that in the latter, the
weights wa, wb, and wc are randomly perturbed only once
and the same weights are used for all the dimensions, whereas
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the former one has a different randomly perturbed version of
the weights for each dimension.

The weighted multiparent box recombination belongs to
the family of multiparent box recombination because oi =
waiai + wbibi + wcici ∈ [min (ai, bi, ci), max (ai, bi, ci)] for i =
1, . . . ,n, hence, it is geometric.

Theorem 7 (coherence between weights and distances). In
weighted multiparent box recombination, the distances of the
parents to the expected offspring are decreasing functions of the
corresponding weights.

Proof. The proof of Theorem 7 is a simple variation of that
of Theorem 4.

In summary, in this section, we have introduced the
weighted multiparent box recombination and shown that it
is a convex combination operator satisfying the four require-
ments of a metric convex combination for the Manhattan
space: convex weights (Definition 6), convexity (geometric-
ity, Theorem 6), coherence (Theorem 7), and symmetry (self
evident).

4.3. Hamming space

In this section, we first define a multiparental recombination
for binary strings, that is, a straightforward generalization of
mask-based crossover with two parents and then prove that
it respects the four requirements for being a convex combi-
nation in the Hamming space presented in Section 3.3.

Definition 8 (three-parent mask-based crossover family).
Given three parents a, b, and c in {0, 1}n, generate randomly
a crossover mask of length n with symbols from the alphabet
{a,b,c}. Build the offspring o filling each position with the
bit from the parent appearing in the crossover mask at the
corresponding position.

The weights wa, wb, and wc of the convex combination
indicate, for each position in the crossover mask, the proba-
bility of having the symbols a, b, or c.

Theorem 8 (geometricity of three-parent mask-based
crossover). Any three-parent mask-based crossover is a geo-
metric crossover under Hamming distance.

Proof. We prove it by showing that any three-parent mask-
based crossover can be decomposed as a sequence of two
simple mask-based crossovers. Since the simple mask-based
crossover is geometric, this theorem is a simple corol-
lary of the multiparental geometric decomposition theorem
(Theorem 2).

Let mabc be the mask to recombine a, b, and c, produc-
ing the offspring o. Let mab be the mask obtained by sub-
stituting all occurrences of c in mabc with b, and let mbc be
the mask obtained by substituting all occurrences of a in
mabc with b. First, recombine a and b using mab obtaining b′.
Then, recombine b′ and c usingmbc where the b’s in the mask
stand for alleles in b′. The offspring produced by the second
crossover is o, so the sequence of the two simple crossovers

is equivalent to the three-parent crossover. This is because
the first crossover passes to the offspring all genes it needs
to take from a according to mabc, and the rest of the genes
are all from b; the second crossover corrects those genes that
should have been taken from parent c according to mabc, but
were taken from b instead.

Theorem 9 (coherence between weights and distances). In
the weighted three-parent mask-based crossover, the distances
of the parents to the expected offspring are decreasing functions
of the corresponding weights.

Proof. We want to know the expected distance from parent
p1, p2, and p3 to their expected offspring o as a function of
the weights w1, w2, and w3. To do so, we first determine, for
each position in the offspring, the probability of it being the
same as p1. Then from that, we can easily compute the ex-
pected distance between p1 and o. We have that

pr
{
o = p1

} = pr
{
p1 −→ o

}
+ pr

{
p2 −→ o

}·pr
{
p1 | p2

}

+ pr
{
p3 −→ o

}·pr
{
p1 | p3

}
,

(7)

where pr {o = p1} is the probability of a bit of o at a certain
position to be the same as the bit of p1 at the same position;
pr {p1 → o}, pr {p2 → o}, and pr {p3 → o} are the proba-
bilities that a bit in o is taken from parents p1, p2, and p3,
respectively (these coincide with the weights of the convex
combination w1, w2, and w3); pr {p1 | p2} and pr {p1 | p3}
are the probabilities that a bit taken from p2 or p3 coincides
with the one in p1 at the same location. These last two prob-
abilities equal the number of common bits in p1 and p2 (and
p1 and p3) over the length of the strings n. So pr {p1 | p2} =
1 − H(p1, p2)/n and pr {p1 | p3} = 1 − H(p1, p3)/n, where
H(·, ·) is the Hamming distance. So (7) becomes

pr
{
o = p1

} = w1 +w2
(
1−H(p1, p2

)
/n
)

+w3
(
1−H(p1, p3

)
/n
)
.

(8)

Hence, the expected distance between the parent p1 and
the offspring o is E(H(p1, o)) = n·(1 − pr {o = p1}) =
w2H(p1, p2) +w3H(p1, p3).

Notice that this is a decreasing function of w1 because
increasing w1 forces w2 or w3 to decrease since the sum of
the weights is constant, hence, E(H(p1, o)) decreases. Analo-
gously, E(H(p2, o)) and E(H(p3, o)) are decreasing functions
of their weights w2 and w3, respectively.

In summary, in this section, we have introduced the
weighted multiparent mask-based crossover and shown that
it is a convex combination operator satisfying the four re-
quirements of a metric convex combination for the Ham-
ming space: convex weights (Definition 8), convexity (geo-
metricity, Theorem 8), coherence (Theorem 9), and symme-
try (self evident).

5. GEOMETRIC PSO FOR OTHER REPRESENTATIONS

Before looking into how we can extend GPSO to other so-
lution representations, we will discuss the relation between
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the three-parental geometric crossover and the symmetry re-
quirement for a convex combination.

For each of the spaces considered in Section 4, we have
first considered (or defined) a three-parental recombina-
tion and then proven that it is a three-parental geometric
crossover by showing that it can actually be decomposed into
two sequential applications of a geometric crossover for the
specific space.

However, we could have skipped the explicit definition of
a three-parental recombination altogether. In fact, to obtain
the three-parental recombination, we could have used two
sequential applications of a known two-parental geometric
crossover for the specific space. This composition is indeed
a three-parental recombination (it combines three parents)
and it is decomposable by construction. Hence, it is a three-
parental geometric crossover. This, indeed, would have been
simpler than the route we took.

The reason we preferred to define explicitly a three-
parental recombination is that the requirement of symmetry
of the convex combination is true by construction: if the roles
of any two parents are swapped by exchanging in the three-
parental recombination both positions and the respective re-
combination weights, the resulting recombination operator
is equivalent to the original operator.

The symmetry requirement becomes harder to enforce
and prove for a three-parental geometric crossover obtained
by two sequential applications of a two-parental geometric
crossover. We illustrate this in the following.

Let us consider three parents a, b, and c with positive
weightswa,wb, andwc which add up to one. If we have a sym-
metric three-parental weighted geometric crossover ΔGX ,
the symmetry of the recombination is guaranteed by the
symmetry of the operator. So ΔGX((a,wa), (b,wb), (c,wc))
is equivalent to ΔGX((b,wb), (a,wa), (c,wc)). Hence, the re-
quirement of symmetry on the weights of the convex combi-
nation holds. If we consider a three-parental recombination
defined by using twice a two-parental genetic crossover GX ,
we have

ΔGX
((
a,wa

)
,
(
b,wb

)
,
(
c,wc

))

= GX
((
GX
((
a,w′a

)
,
(
b,w′b

))
,wab

)
,
(
c,w′c

)) (9)

with the constraint that w′a and w′b are positive and add up
to one, and wab and w′c are positive and add up to one. No-
tice the inherent asymmetry in this expression: the weights
w′a and w′b are not directly comparable with w′c because they
are relative weights between a and b. Moreover, there is the
extra weight wab. This asymmetry makes the requirement of
symmetry problematic to meet: given the desired wa,wb, and
wc, what values of w′a, w′b, wab, and w′c should we choose to
obtain an equivalent symmetric three-parental weighted re-
combination expressed as a sequence of two two-parental ge-
ometric crossovers?

For the Euclidean space, it is easy to answer this question
using simple algebra as follows:

ΔGX = wa·a +wb·b +wc·c

= (wa +wb
)
(

wa

wa +wb
·a +

wb

wa +wb
·b
)

+wc·c.
(10)

Since the convex combination of two points in the Euclidean
space is GX((x,wx), (y,wy)) = wx·x + wy·y, and wx,wy > 0
and wx +wy = 1, then

ΔGX
((
a,wa

)
,
(
b,wb

)
,
(
c,wc

))

=GX
[(

GX
((

a,
wa

wa +wb

)

,
(

b,
wb

wa +wb

))

,wa +wb

)

,
(
c,wc

)
]

.

(11)

However, the question may be less straightforward to an-
swer for other spaces, although, we could use the equation
above as a rule-of-thumb to map the weights of ΔGX and
the weights in the sequential GX decomposition to obtain a
nearly symmetric convex combination.

Where does this discussion leave us in relation to the ex-
tension of GPSO to other representations? We have seen that
there are two alternative ways to produce a convex combi-
nation for a new representation: (i) explicitly define a sym-
metric three-parental recombination for the new represen-
tation and then prove its geometricity by showing that it is
decomposable into a sequence of two two-parental geometric
crossovers (explicit definition), or (ii) use twice the simple ge-
ometric crossover to produce a symmetric or nearly symmet-
ric three-parental recombination (implicit definition). The
second option is also very interesting because it allows us to
extended automatically GPSO to all representations we have
geometric crossovers for (such as permutations, GP trees, and
variable-length sequences, to mention but a few), and virtu-
ally to any other complex solution representation.

6. EXPERIMENTAL RESULTS FOR EUCLIDEAN,
MANHATTAN, AND HAMMING SPACES

We have run two groups of experiments: one for the continu-
ous version of the GPSO (EuclideanPSO, or EPSO for short,
and ManhattanPSO, or MPSO), and one for the binary ver-
sion (HammingPSO, or HPSO).

For the Euclidean and Manhattan versions, we have com-
pared the performances with those of a continuous PSO
(BasePSO, or BPSO) with constriction and inertia, whose
parameters are as in Table 1. We have run the experiments for
dimensions 2, 10, and 30 on the following five-benchmark
functions: F1C Sphere [19], F2C Rosenbrock [19], F3C Ackley
[20], F4C Griewangk [21], and F5C Rastrigin [22]. The Ham-
ming version has been tested on the De Jong’s test suite [19]:
F1 Sphere (30), F2 Rosenbrock (24), F3 Step (50), F4 Quartic
(240), and F5 Shekel (34), where the numbers in brackets are
the dimensions of the problems in bits. All functions in the
test bed have global optimum 0 and are to be maximized.

Since there is no equivalent GPSO with φ1 = φ2 = 2.05
(φ1 + φ2 > 1, which does not respect the conditions in
Theorem 3), we have decided to set w1, w2, and w3 propor-
tional to ω, φ1, and φ2, respectively, and summing up to one
(see Table 2).

For the binary version, the parameters of population size,
number of iterations, and w1, w2, and w3 have been tuned on
the sphere function and are as in Table 3. From the param-
eters tuning, it appears that there is a preference for values
of w1 close to zero. This means that there is a bias towards
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Table 1: Parameters for BPSO.

Population size 20, 50 particles

Stop condition 200 iterations

Vmax = Xmax Max value-min value

κ 0.729

ω 1.0

φ1 = φ2 2.05

Table 2: Parameters for EPSO and MPSO.

Population size 20, 50 particles

Stop condition 200 iterations

Vmax = Xmax Max value-min value

Mutation uniform in [−0.5,0.5]

w1 ω/(ω + φ1 + φ2) = 1.0/5.10

w2 φ1/(ω + φ1 + φ2) = 2.05/5.10

w3 φ2/(ω + φ1 + φ2) = 2.05/5.10

Table 3: Selected parameters for HPSO.

Population size 100 particles

Iterations 400

Bitwise mutation rate 1/N

w1 = 0 w2 = w3 = 1/2

w1 = 1/6 w2 = w3 = 5/12

the swarm and particle bests, and less attraction towards the
current particle position.

For each set up, we performed 20 independent runs.
Table 4 shows the best and the mean fitness value (i.e., the
fitness value at the position where the population converges)
found by the swarm when exploring continuous spaces. This
table summarizes the results for the three algorithms pre-
sented, over the five test functions, for the two choices of
population size, giving an immediate comparison of the per-
formances. Overall the GPSOs (EPSO and MPSO), compare
very favourably with BPSO, outperforming it in many cases.
This is particularly interesting since it suggests that the in-
ertia term (not present in GPSO) is not necessary for good
performance.

In two dimensions, the results for all the functions (for
PSOs both with 20 and 50 particles) are nearly identical, with
BPSO and the two GPSOs both performing equally well. In
higher dimensions, it is interesting to see how dimensionality
does not seem to affect the quality of the results of GPSOs
(while there is a fairly obvious decline in the performance of
BPSO when dimension increases).

Also, EPSO’s and MPSO’s results are virtually identical.
Let us recall from Section 4.2 the difference between Eu-
clidean and Manhattan spaces, that is, “the difference be-
tween box recombination and linear recombination (Eu-
clidean space) is that in the latter, the weights are randomly
perturbed only once and the same weights are used for all the
dimensions, whereas the former one has a different randomly
perturbed version of the weights for each dimension.” The
results obtained show, therefore, that at least in this context,

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

Figure 2: Example of Sudoku puzzle.

randomly perturbing the weights once for all dimensions, or
perturbing them for each dimension, does not seem to affect
the end result.

Table 5 shows the mean of the best fitness value and the
best fitness value over the whole population for the binary
version of the algorithm. The algorithm compares well with
results reported in the literature, with HPSO obtaining near
optimal results on all functions. Interestingly, the algorithm
works at its best when w1, the weight for xi (the particle po-
sition), is zero. This corresponds to a degenerated PSO that
makes decisions without considering the current position of
the particle.

7. GEOMETRIC PSO FOR SUDOKU

In this section, we will put into practice the ideas discussed in
Section 5 and propose a GPSO to solve the Sudoku puzzle. In
Section 7.1, we introduce the Sudoku puzzle. In Section 7.2,
we present a geometric crossover for Sudoku. In Section 7.3,
we present a three-parental crossover for Sudoku and show
that it is a convex combination.

7.1. Description of Sudoku

Sudoku is a logic-based placement puzzle. The aim of the
puzzle is to enter a digit from 1 through 9 in each cell of a 9×9
grid made up of 3 × 3 subgrids (called “regions”), starting
with various digits given in some cells (the “givens”). Each
row, column, and region must contain only one instance of
each digit. In Figure 2, we show an example of Sudoku puz-
zle. Sudoku puzzles with a unique solution are called proper
Sudoku, and the majority of published grids are of this type.

Published puzzles often are ranked in terms of difficulty.
Perhaps surprisingly, the number of “givens” has little or no
bearing on a puzzle’s difficulty. This is based on the relevance
and the positioning of the numbers rather than the quantity
of the numbers.

The 9 × 9 Sudoku puzzle of any difficulty can be solved
very quickly by a computer. The simplest way is to use some
brute force trial-and-error search employing back tracking.
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Table 4: Test results for continuous versions: best and mean fitness values found by the swarm over 20 runs at last iteration (iteration 200).

BPSO EPSO MPSO

Dim. 2 10 30 2 10 30 2 10 30

Popsize = 20

F1C best −5.35e-14 −1.04 −59.45 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

mean −6.54e-09 −20.75 −168.19 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

F2C best 0.00 −36.18 −1912.05 −0.71 −8.98 −28.97 −0.66 −8.96 −28.97

mean −97.91 −979.56 −8847.44 −1.0 −9.0 −29.0 −1.0 −9.0 −29.0

F3C best −3.06e-05 −8.05 −18.09 0.0 0.0 0.0 0.0 0.0 0.0

mean −0.00 −14.86 −20.49 0.0 0.0 0.0 0.0 0.0 0.0

F4C best −0.31 −1.10 −6.67 −0.29 −1.0 −1.0 −0.29 −1.0 −1.0

mean −1.52 −2.98 −17.04 −0.29 −1.0 −1.0 −0.29 −1.0 −1.0

F5C best −0.33 −58.78 −305.11 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

mean −10.41 −160.98 −504.62 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

Popsize = 50

F1C best −3.67e-13 −0.60 −53.93 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

mean −1.11e-08 −19.09 −176.07 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

F2C best 0.00 −19.46 −1639.46 −0.57 −8.96 −28.96 −0.53 −8.95 −29.0

mean −56.04 −791.88 −9425.92 −1.0 −9.0 −29.0 −1.0 −9.0 −29.0

F3C best −1.81e-06 −6.78 −17.62 0.0 0.0 0.0 0.0 0.0 0.0

mean −0.00 −15.55 −20.43 0.0 0.0 0.0 0.0 0.0 0.0

F4C best −0.30 −1.05 −6.14 −0.29 −1.0 −1.0 −0.29 −1.0 −1.0

mean −1.63 −2.79 −17.79 −0.29 −1.0 −1.0 −0.29 −1.0 −1.0

F5C best −0.10 −53.67 −302.29 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

mean −3.56 −159.76 −503.48 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

Table 5: Test results for HPSO with selected parameters for De Jong’s test suite.

F1 F2 F3 F4 F5

ω = 0.0 best −0.000 15 −0.000 34 −0.0 3.451 70 −1.131 83

mean −5.515 40 −54.144 53 −2.594 −5.382 33 −142.678 53

ω = 1
6

best −0.000 125 −0.000 297 −0.0 3.273 980 −1.111 220

mean −5.375 902 −85.170 099 −2.949 −6.919 343 −167.283 327

Constraint programming is a more efficient method that
propagates the constraints successively to narrow down the
solution space until a solution is found or until alternate val-
ues cannot otherwise be excluded, in which case, backtrack-
ing is applied. A highly efficient way of solving such con-
straint problems is the Dancing Links Algorithm by Donald
Knuth [23].

The general problem of solving Sudoku puzzles on n2×n2

boards of n × n blocks is known to be NP complete [24].
This means that, unless P = NP, the exact solution meth-
ods that solve very quickly the 9 × 9 boards take exponen-
tial time in the board size in the worst case. However, it is
unknown whether the general Sudoku problem restricted to
puzzles with unique solutions remains NP complete or be-
comes polynomial.

Solving Sudoku puzzles can be expressed as a graph col-
oring problem. The aim of the puzzle in its standard form is
to construct a proper 9 coloring of a particular graph, given
a partial 9 coloring.

A valid Sudoku solution grid is also a Latin square.
Sudoku imposes the additional regional constraint. Latin

square completion is known to be NP complete. A further
relaxation of the problem allowing repetitions on columns
(or rows) makes it polynomially solvable.

Admittedly, evolutionary algorithms and meta-heuristics
in general are not the best techniques to solve Sudoku be-
cause they do not exploit systematically the problem con-
straints to narrow down the search. However, Sudoku is an
interesting study case because it is a relatively simple prob-
lem but not trivial since is NP complete, and the different
types of constraints make Sudoku an interesting playground
for search operator design.

7.2. Geometric crossover for Sudoku

Sudoku is a constraint satisfaction problem with four types
of constraints:

(1) fixed elements,
(2) rows are permutations,
(3) columns are permutations,
(4) and boxes are permutations.
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It can be cast as an optimization problem by choosing
some of the constraints as hard constraints that all solutions
have to respect, and the remaining constraints as soft con-
straints that can be only partially fulfilled, and the level of
fulfilment is the fitness of the solution. We consider a space
with the following characteristics:

(i) hard constraints: fixed positions and permutations on
rows,

(ii) soft constraints: permutations on columns and boxes,
(iii) distance: sum of swap distances between paired rows

(row-swap distance),
(iv) feasible geometric mutation: swap two nonfixed ele-

ments in a row, and
(v) feasible geometric crossover: row-wise PMX and row-

wise cycle crossover.

The chosen mutation preserves both fixed positions and per-
mutations on rows (hard constraints) because swapping el-
ements within a row, which is a permutation, returns a
permutation. The mutation is 1-geometric under row-swap
distance. Row-wise PMX and row-wise cycle crossover re-
combine parent grids applying, respectively, PMX and cy-
cle crossover to each pair of corresponding rows. In case of
PMX, the crossover points can be selected to be the same for
all rows, or be random for each row. In terms of offspring
that can be generated, the second version of row-wise PMX
includes all the offspring of the first version.

Simple PMX and simple cycle crossover applied to par-
ent permutations always return permutations. They also pre-
serve fixed positions. This is because both are geometric un-
der swap distance and, in order to generate offspring on a
minimal sorting path between parents using swaps (sorting
one parent into the order of the other parent), they have to
avoid swaps that change common elements in both parents
(elements that are already sorted). Therefore, also row-wise
PMX and row-wise cycle crossover preserve both hard con-
straints.

Using the product geometric crossover Theorem 1, it is
immediate to see that both row-wise PMX and row-wise cy-
cle crossover are geometric under row-swap distance since
simple PMX and simple cycle crossover are geometric under
swap distance. Since simple cycle crossover is also geometric
under Hamming distance (restricted to permutations), row-
wise cycle crossover is also geometric under Hamming dis-
tance.

To restrict the search to the space of grids with fixed posi-
tions and permutations on rows, the initial population must
be seeded with feasible random solutions taken from this
space. Generating such solutions can be done still very ef-
ficiently.

The fitness function (to maximize) is the sum of the
number of unique elements in each row plus the sum of the
number of unique elements in each column plus the sum of
the number of unique elements in each box. So for a 9 × 9
grid, we have a maximum fitness of 9·9 + 9·9 + 9·9 = 243
for a completely correct Sudoku grid, and a minimum fit-
ness little more than 9·1 + 9·1 + 9·1 = 27 because for each
row, column, and square, there is at least one unique element
type.

Mask:

p1:

p2:

p3:

o:

1 2 2 3 1 3 2

1 2 3 4 5 6 7

3 5 1 4 2 7 6

3 2 1 4 5 7 6

1 5 3 4 2 7 6

Figure 3: Example of multiparental sorting crossover.

It is possible to show that the fitness landscapes associ-
ated with this space is smooth, making the search operators
proposed a good choice for Sudoku.

7.3. Convex combination for Sudoku

In this section, we first define a multiparental recombina-
tion for permutations and then prove that it respects the four
requirements for being a convex combination presented in
Section 3.3.

Let us consider the example in Figure 3 to illustrate how
the multiparental sorting crossover works.

The mask is generated at random and is a vector of the
same length of the parents. The number of 1’s, 2’s, and 3’s
in the mask is proportional to the recombination weights w1,
w2, and w3 of the parents. Every entry of the mask indicates
to which parent the other two parents need to be equal to for
that specific position. In a parent, the content of a position is
changed by swapping it with the content of another position
in the parent. The recombination proceeds as follows. The
mask is scanned from the left to the right. In position 1, the
mask has a 1. This means that at position 1, parent p2 and
parent p3 have to become equal to parent p1. This is done by
swapping the elements 1 and 3 in parent p2 and the elements
1 and 3 in parent p3. The recombination now continues on
the updated parents: parent p1 is left unchanged and the cur-
rent parent p2 and parent p3 are the original parents p2 and
p3 after the swap. At position 2, the mask has 2. This means
that at position 2, the current parent p1 and current parent
p3 have to become equal to the current parent p2. So at posi-
tion 2, parent p1 and parent p3 have to get 5. To achieve this,
in parent p1, we need to swap elements 2 and 5, and in par-
ent p3, we need to swap elements 2 and 5. The recombination
continues on the updated parents for position 3 and so on, up
to the last position in the mask. At this point, the three par-
ents are now equal because at each position, one element of
the permutation has been fixed in that position and it is au-
tomatically not involved in any further swap. Therefore, after
all positions have been considered, all elements are fixed. The
permutation to which the three parents converged is the off-
spring permutation. This recombination sorts by swaps the
three parents towards each other according to the contents of
the crossover mask, and the offspring is the result of this mul-
tiple sorting. This recombination can be easily generalized to
any number of parents.

Theorem 10 (geometricity of three-parental sorting cross-
over). Three-parental sorting crossover is a geometric crossover
under swap distance.
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Proof. A three-parental sorting crossover with recombina-
tion mask m123 is equivalent to a sequence of two two-
parental sorting crossovers: the first is between parents p1

and p2 with recombination mask m12 obtained by substitut-
ing all 3’s with 2’s in m123. The offspring p12 so obtained is
recombined with p3 with recombination mask m23 obtained
by substituting all 1’s with 2’s in m123. So for Theorem 2, the
three-parental sorting crossover is geometric.

Theorem 11 (coherence between weights and distances). In
a weighted multiparent sorting crossover, the swap distances of
the parents to the expected offspring are decreasing functions of
the corresponding weights.

Proof. The weights associated to the parents are propor-
tional to their frequencies in the recombination mask. The
more occurrences of a parent in the recombination mask,
the smaller the swap distance between this parent and the
offspring. This is because the mask tells the parent to copy
at each position. So the higher the weight of a parent, the
smaller its distance to the offspring.

The weighted multiparental sorting crossover is a con-
vex combination operator satisfying the four requirements
of a metric convex combination for the swap space: con-
vex weights sum to 1 by definition, convexity (geometricity,
Theorem 10), coherence (Theorem 11), and symmetry (self
evident).

The solution representation for Sudoku is a vector of per-
mutations. For the product geometric crossover theorem, the
compound crossover over the vector of permutations that
applies a geometric crossover to each permutation in the vec-
tor is a geometric crossover. Theorem 12 extends to the case
of a multiparent geometric crossover.

Theorem 12 (product geometric crossover for convex combi-
nations). A convex combination operator, applied to each en-
try of a vector, results in a convex combination operator for the
entire vector.

Proof. The product geometric crossover theorem (Theorem
1) is true because the segment of a product space is the Carte-
sian product of the segments of its projections. A segment is
the convex hull of two points (parents). More generally, it
holds that the convex hull (of any number of points) of a
product space is the Cartesian product of the convex hulls
of its projections [17]. The product geometric crossover then
naturally generalizes to the multiparent case.

8. EXPERIMENTAL RESULTS FOR SUDOKU

In order to test the efficacy of the GPSO algorithm on the Su-
doku problem, we ran several experiments in order to thor-
oughly explore the parameter space and variations of the al-
gorithm. The algorithm in itself is a straightforward imple-
mentation of the GPSO algorithm given in Section 3.4 with
the search operators for Sudoku presented in Section 7.3.

The parameters we varied were swarm sociality (w2) and
memory (w3), each of which were in turn set to 0, 0.2, 0.4,
0.6, 0.8, and 1.0. Since the attraction to each particle’s posi-

Table 6: Average of bests of 50 runs with population size 100, lattice
topology, and mutation 0.0, varying sociality (vertical) and memory
(horizontal).

Memory

Sociality 0.0 0.2 0.4 0.6 0.8 1.0

1.0 208 — — — — —

0.8 227 229 — — — —

0.6 230 233 235 — — —

0.4 231 236 237 240 — —

0.2 232 239 241 242 242 —

0.0 207 207 207 207 207 207

Table 7: Average of bests of 50 runs with population size 100, lattice
topology, and mutation 0.3, varying sociality (vertical) and memory
(horizontal).

Memory

Sociality 0.0 0.2 0.4 0.6 0.8 1.0

1.0 238 — — — — —

0.8 238 237 — — — —

0.6 239 239 240 — — —

0.4 240 240 241 241 — —

0.2 240 241 242 242 242 —

0.0 213 231 232 233 233 233

tion is defined as w1 = 1− w2 −w3, the space of this param-
eter was implicitly explored. Likewise, mutation probability
was set to either 0, 0.3, 0.7, or 1.0. The swarm size was set to
be either 20, 100, or 500 particles, but the number of updates
was set so that each run of the algorithm resulted in exactly
100 000 fitness evaluations (thus performing 5000, 1000, or
200 updates). Further, each combination was tried with ring
topology, von Neumann topology (or lattice topology), and
global topology, which are the most common topologies.

As explained in Section 5, there are two alternative ways
of producing a convex combination: either using a con-
vex combination operator or simply applying twice a two-
parental weighted recombination with appropriate weights
to obtain the convex combination. Both ways to produce
convex combination operators, explicit and implicit, were
tried on preliminary runs and turned out to produce indis-
tinguishable results. In the end, we used the convex combi-
nation operator.

8.1. Effects of varying coefficients

The best population size is 100. The other two sizes we stud-
ied (20 and 500) were considerably worse. The best topology
is the lattice (von Neumann) topology. The other two topolo-
gies we studied were worse (see Table 9).

From Tables 6–8, we can see that mutation rates of 0.3
and 0.7 perform better than no mutation at all. We can also
see that parameter settings with w1 (i.e., the attraction of
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Table 8: Average of bests of 50 runs with population size 100, lattice
topology and mutation 0.7, varying sociality (vertical) and memory
(horizontal).

Memory

Sociality 0.0 0.2 0.4 0.6 0.8 1.0

1.0 232 — — — — —

0.8 232 240 — — — —

0.6 228 241 241 — — —

0.4 224 242 242 242 — —

0.2 219 234 242 242 242 —

0.0 215 226 233 233 236 236

Table 9: Success rate of various methods.

Method Success

GA 50/50

Hillclimber 35/50

GPSO-global 7/50

GPSO-ring 20/50

GPSO-von Neumann 36/50

the particle’s previous position) set to more than 0.4 gener-
ally perform badly. The best configurations generally havew2

(i.e., sociality) set to 0.2 or 0.4, w3 (i.e., memory) set to 0.4
or 0.6, and w1 set to 0 or 0.2. This gives us some indication
of the importance of the various types of recombinations in
GPSO as applied at least to this particular problem. Surpris-
ingly, the algorithm works at its best when the weight of the
particle position (w1) is zero or nearly zero. In the case of w1

set to 0, GPSO, in fact, degenerates to a type of evolutionary
algorithm with deterministic uniform selection, mating with
the population best with local replacement between parents
and offspring.

8.2. PSO versus EA

Table 9 compares the success rate of the best configurations
of various methods we have tried. Success is here defined as
the number of runs (out of 50) where the global optimum
(243) is reached. All the methods were allotted the same
number of function evaluations per run.

From the table, we can see that the von Neumann topol-
ogy clearly outperforms the other topologies we tested, and
that a GPSO with this topology can achieve a respectable suc-
cess rate on this tricky noncontinuous problem. However,
the best genetic algorithm still significantly outperforms the
best GPSO we have found so far. (Notice that this is true only
when considering GPSO as an optimizer. The approximation
behavior of the GPSO is very good: with the right parameter
setting, the GPSO reaches on average a fitness of 242 out of
243 (see Tables 6–8).) We believe this to be at least partly the
effect of the even more extensive tuning of parameters and
operators undertaken in our GA experiments.

9. CONCLUSIONS AND FUTURE WORK

We have extended the geometric framework with the notion
of multiparent geometric crossover, that is, a natural gener-
alization of two-parental geometric crossover: offspring are
in the convex hull of the parents. Then, using the geometric
framework, we have shown an intimate relation between a
simplified form of PSO (without the inertia term) and evo-
lutionary algorithms. This has enabled us to generalize, in a
natural, rigorous, and automatic way, PSO for any type of
search space for which a geometric crossover is known.

We specialized the general PSO to Euclidean, Manhat-
tan, and Hamming spaces, obtaining three instances of the
general PSO for these spaces, EPSO, MPSO, and HPSO, re-
spectively. We have performed extensive experiments with
these new GPSOs. In particular, we applied EPSO, MPSO,
and HPSO to standard sets of benchmark functions and ob-
tained a few surprising results. Firstly, the GPSOs have per-
formed really well, beating the canonical PSO with standard
parameters most of the time. Secondly, they have done so
right out of the box. That is, unlike the early versions of PSO
which required considerable effort before a good general set
of parameters could be found, with GPSO, we have done very
limited preliminary testing and parameter tuning, and yet
the new PSOs have worked well. This suggests that they may
be quite robust optimisers. This will need to be verified in
future research. Thirdly, HPSO works at its best with only
weak attraction toward the current position of the particle.
With this configuration, GPSO almost degenerates to a type
of genetic algorithm.

An important feature of the GPSO algorithm is that it al-
lows one to automatically define PSOs for all spaces for which
a geometric crossover is known. Since geometric crossovers
are defined for all of the most frequently used representa-
tions and many variations and combinations of those, our
geometric framework makes it possible to derive PSOs for all
such representations. GPSO is rigorous generalization of the
classical PSO to general metric spaces. In particular, it applies
to combinatorial spaces.

We have demonstrated how simple it is to specify the
general GPSO algorithm to the space of Sudoku grids (vec-
tors of permutations), using both an explicit and an implicit
definitions of convex combination. We have tested the new
GPSO on Sudoku and have found that (i) the communica-
tion topology makes a huge difference and that the lattice
topology is by far the best; (ii) as for HPSO, the GPSO on
Sudoku works better with weak attraction toward the cur-
rent position of the particle; (iii) the GSPO on Sudoku finds
easily near-optimal solutions but it does not always find the
optimum. Admittedly, GPSO is not the best algorithm for
the Sudoku puzzle where the aim is to obtain the correct so-
lution all the times, not a nearly correct one. This suggests
that GPSO would be much more profitably applied to com-
binatorial problems for which one would be happy to find
near-optimal solutions quickly.

In summary, we presented a PSO algorithm that has
been quite successfully applied to a nontrivial combinato-
rial space. This shows that GPSO is indeed a natural and
promising generalization of classical PSO. In future work, we
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will consider GPSO for even more challenging combinatorial
spaces such as the space of genetic programs. Also, since the
inertia term is a very important feature of classical PSO, we
want to generalize it and test the GPSO with the inertia term
on combinatorial spaces.

ACKNOWLEDGMENT

The second and fourth authors would like to thank EPSRC,
Grant no. GR/T11234/01 “Extended Particle Swarms,” for
the financial support.

REFERENCES

[1] J. Kennedy and R. C. Eberhart, Swarm Intelligence, Morgan
Kaufmann, San Francisco, Calif, USA, 2001.

[2] M. Clerc, “Discrete particle swarm optimization, Illustrated by
the traveling salesman problem,” in New Optimization Tech-
niques in Engineering, Springer, New York, NY, USA, 2004.

[3] J. Kennedy and R. C. Eberhart, “A discrete binary version of
the particle swarm algorithm,” in Proceedings of the IEEE In-
ternational Conference on Systems, Man and Cybernetics (IC-
SMC ’97), vol. 5, pp. 4104–4108, Orlando, Fla, USA, October
1997.

[4] A. Moraglio and R. Poli, “Topological interpretation of
crossover,” in Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO ’04), vol. 3102, pp. 1377–1388,
Seattle, Wash, USA, June 2004.

[5] A. Moraglio and R. Poli, “Topological crossover for the per-
mutation representation,” in Proceedings of the Workshops on
Genetic and Evolutionary Computation (GECCO ’05), pp. 332–
338, Washington, DC, USA, June 2005.

[6] A. Moraglio and R. Poli, “Geometric landscape of homolo-
gous crossover for syntactic trees,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’05), pp. 427–
434, Edinburgh, UK, September 2005.

[7] A. Moraglio, R. Poli, and R. Seehuus, “Geometric crossover
for biological sequences,” in Proceedings of the 9th European
Conference on Genetic Programming, pp. 121–132, Budapest,
Hungary, April 2006.

[8] Y. Shi and R. C. Eberhart, “A modified particle swarm op-
timizer,” in Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 69–73, Anchorage, Alaska, USA, May 1998.

[9] A. Moraglio, J. Togelius, and S. Lucas, “Product geometric
crossover for the Sudoku puzzle,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’06), pp. 470–
476, Vancouver, BC, Canada, July 2006.

[10] T. Jones, Evolutionary algorithms, fitness landscapes and search,
Ph.D. thesis, University of New Mexico, Albuquerque, NM,
USA, 1995.

[11] M. Deza and M. Laurent, Geometry of Cuts and Metrics,
Springer, New York, NY, USA, 1991.

[12] A. Moraglio and R. Poli, “Product geometric crossover,” in
Proceedings of the 9th International Conference on Parallel Prob-
lem Solving from Nature (PPSN ’06), pp. 1018–1027, Reyk-
javik, Iceland, September 2006.

[13] A. Moraglio and R. Poli, “Geometric crossover for sets, multi-
sets and partitions,” in Proceedings of the 9th International Con-
ference on Parallel Problem Solving from Nature (PPSN ’06), pp.
1038–1047, Reykjavik, Iceland, September 2006.

[14] D. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Reading, Mass, USA,
1989.

[15] M. Clerc, “When nearer is better,” Hal Open Archive, 2007.
[16] P. M. Pardalos and M. G. C. Resende, Handbook of Applied

Optimization, Oxford University Press, Oxford, UK, 2002.
[17] M. L. J. van de Vel, Theory of Convex Structures, North-

Holland, Amsterdam, The Netherlands, 1993.
[18] M. Clerc and J. Kennedy, “The particle swarm-explosion, sta-

bility, and convergence in a multidimensional complex space,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 1,
pp. 58–73, 2002.

[19] K. De Jong, An analysis of the behaviour of a class of genetic
adaptive systems, Ph.D. thesis, University of Michigan, Ann Ar-
bor, Mich, USA, 1975.
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1. INTRODUCTION

PSO was originally designed as a numerical optimisation
technique based on swarm intelligence. In the literature,
there are a few attempts to exploit its usage in the discrete
problem domain [1–4], which are mostly performed using a
binary encoding. However, research on the transformation of
the working mechanism of PSO to the permutation problem
domain, where the representations are highly constrained,
has been relatively limited [3, 5, 6]. This limitation is mainly
caused by the lack of a principled generalisation of PSO to
guide its adaptation to discrete combinatorial problems [3].

In this paper, we aim to design PSO operators for
permutation problems without losing the underlining prin-
ciples of the original PSO. A PSO operator template will be
formally defined with forma analysis in form of equivalence
relations. Following the introduction of formal descriptions
of permutations, concrete PSO operators are then formally
derived based on the PSO operator template. Empirical study
of the derived PSO schemes is also carried out based on the
QAP benchmarks.

2. PARTICLE SWARM OPTIMISATION

PSO was initially introduced by Kennedy and Eberhart [7] as
a function optimisation technique inspired by the behaviors

of fish schooling and bird flocking. The PSO approach
simulates the social behavior of particles/agents moving in
a multidimensional search space, while each particle has its
position and velocity. Each particle is treated as a potential
solution to the optimisation problem. Usually, the position
is represented as a vector:

Xit =
(
xit(1), xit(2), . . . , xit(D)

)
, (1)

while the velocity is represented as another vector:

Vit =
(
vit(1), vit(2), . . . , vit(D)

)
, (2)

where i represents the index of the particle, t is the time step,
and D is the dimensionality of the search space.

For each generation, the particle compares its current
position with the goal (global best/personal best) position,
adjusting its velocity accordingly towards the goal with the
help of the explicit memory of the best position ever found
both globally and individually.

The most popular formulation of how particle adjusts its
velocity and position [8, 9] is shown in

vi(t+1)(d) = w∗vit(d) + c1r1
[
Pbi(d)− xit(d)

]

+ c2r2
[
Gb(d)− xit(d)

]
,

(3)

xi(t+1)(d) = xit(d) + vi(t+1)(d). (4)
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Alternatively, we may have

xi(t+1)(d) = xit(d) +wvit(d) + c1r1
[
Pbi(d)− xit(d)

]

+ c2r2
[
Gb(d)− xit(d)

]
.

(5)

In the above formulation, d is the index of dimension in
the search space, w represents the inertia weight of the
“flying” dynamic, which describes the degree of maintaining
its previous velocity vector against the attraction point. c1

and c2 are regarded as cognitive and social parameters for the
algorithm, respectively, while r1 and r2 are random numbers
within the interval [0, 1]. Pbi is the personal best position
which is recorded by particle i, while Gb is the global best
position obtained by any particle in the population.

Adapting standard PSO to permutation problems has
been a rather interesting task, as researchers are curious
about its performance in the discrete domain. In this paper,
we suggest that forma analysis gives a possible solution to
achieve such task in a principled manner.

3. FORMA ANALYSIS

Forma analysis [10] is a formal but practical method that
allows the problem representation and its operators to be
structured in a formal manner by using equivalence relations.
Each equivalence relation Ψ divides the search space into
disjoint equivalence classes Ξψ (depending on which value
the solutions match), with individual equivalence classes
being denoted by ξ, which gathers solutions that are
equivalent under a certain equivalence relation.

The initial aim of forma analysis [10] was to codify
knowledge of the problem domain using a set of equivalence
classes (or formae) which is assumed to be able to cluster
solutions with related performance in order to guide the
search process more effectively, for example, edges if we
are considering the travelling salesman problem. Since
equivalence relations/classes have the ability to capture the
properties of solutions, concrete operators can thus be math-
ematically derived with regards to how these equivalence
relations are formally manipulated by the operator tem-
plates.

Figure 1 illustrates briefly the approach we adopt here in
this paper, which can be explained as follows. Given an opera-
tor template, any suitable description of the considered problem
domain gives rise to a concrete operator, whose behavior and
performance are related to the assumption adopted to describe
the search space. This approach effectively allows PSO to be
adapted to arbitrary problem domain with the underlying
working mechanism retained. Taking a step further, this
approach is applicable across different problem domains and
different optimisation techniques.

Some of the characteristics and operator templates
related to forma analysis [10–12] are given below to facilitate
our generalisation of PSO.

3.1. Describing the search space

The key concept is that of a basis: a set of equivalence
relations that allows us to describe the search space S.

Basis defined for domain

Operator
template

Domain 1

Description 1

Description 2

Domain 2

Description 1

Description 2

Operator 1

Operator 2

Operator 3

Operator 4

Figure 1: Illustration of the methodology based on forma analysis.

Definition 1. A subset Ψ of a set of equivalence relations is
termed as a basis for the set of equivalence relations, if Ψ
spans the set and Ψ is independent.

An encoding can thus be derived by taking the image of
the basis equivalence classes corresponding to a particular
solution in the search space.

3.2. Domain independent operator templates

Forma analysis can derive operators that explicitly manip-
ulate the given equivalence relations. This is achieved by
combining the basis with domain independent operators for
specifying operator behavior in terms of basis.

One such (domain independent) operator template,
which is related to the work presented in this paper,
corresponds to the (strict) k-change operator template [12],
formally as

Ok(x, k,Ψ) = {y ∈ S | disΨ(x, y) = k
}

, (6)

where x and y represent the solution to be perturbed and
the produced child, respectively, while disΨ(x, y) represents
the forma distance [13] between x and y under basis Ψ. This
operator template can be interpreted as changing the values
for k equivalence relations in x produces solution y.

The other operator template, random transmitting
recombination (RTR) [10], is defined to select a child
solution z out of the dynastic potential of the parent solutions
x and y. RTR(x, y,Ψ) can be formally defined as

RTR(x, y,Ψ)

= {z ∈ S | ∀ψ ∈ Ψ : ψ(x, z) = 1∨ ψ(y, z) = 1
}

,
(7)

where the actual child solution z is chosen from the set
above uniformly at random. The underlying idea of RTR is to
randomly generate child solution using parental equivalence
classes (genetic material).

3.3. Applicability

Although the above concepts of forma analysis are developed
under genetic algorithms, it has been shown that the forma
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analysis methodology itself is generalisable to other evo-
lutionary optimisers based on (theoretically) any problem
domain from the knowledge-based system (KBS) design
standpoint [12]. Also, the underlying idea proposed by Surry
[11] on defining formal representation in order to derive
domain specific operators has also been justified to be rather
successful. Furthermore, our previous work on adapting
PSO to the binary search space following the forma analysis
approach has provided some preliminary positive results
and expectations. In summary, the proposed forma analysis-
based operator design approach is applicable in the context
of PSO and permutation problem domain, considering the
previous theoretical and practical evidence.

4. FORMAL DESCRIPTIONS OF PERMUTATION

As previously studied in [12, 14], there are mainly three
different representations for permutation that we can adopt
to describe the permutation problems:

(1) position-based representation, which decides the ab-
solute position of an item (e.g., item 5 is at position
4),

(2) precedence-based representation, which decides
whether one task is performed before another (e.g.,
task 5 appears before task 4),

(3) adjacency-based representation, which decides
whether two items are next to each other (e.g., item 4
is next to item 5).

In the following sections, formal descriptions for permuta-
tion with a set of n elementsN = {e1, . . . , en}will be reviewed
in form of equivalence relations, followed by some formal
definitions of their induced constraints and their distance
measurements [12, 15].

4.1. Position-based description of permutation

For position-based description, each position in the permu-
tation i (i = 1, . . . ,n) is defined as an equivalence relation
ψpos(i) to form the basis of position equivalence relations such
that

Ψpos =
{
ψpos(i) | i ∈ N

}
. (8)

The equivalence classes (formae) for each position i are the
set of n elements:

Ξψi =
{
ξe1

pos(i), . . . , ξ
en
pos(i)

}
. (9)

As an example, the permutation (1, 4, 3, 2) can be described
by the set of equivalence classes

{
ξ1

pos(1), ξ
4
pos(2), ξ

3
pos(3), ξ

2
pos(4)

}
. (10)

In addition, an induced feasibility constraint for this
description Cpos needs to be added to ensure that different
elements do not occupy the same position, and no two
different positions can take the same element, formally as
follows.

Definition 2. Given any two equivalence relations ψpos(i) and
ψpos( j) for a permutation, the position-based constraint Cpos

can be defined as

∀i, j (i /= j) : ψpos(i) /= ψpos( j). (11)

A direct implication of this constraint is that the 1-
change neighborhood structure should be prevented as this
would involve placing two elements in the same position.

The distance metric for this formal description is simply
the number of positions in the permutation that have
different elements (i.e., the hamming distance) according
to the definition of forma distance [13]. For example, the
distance between (1, 4, 3, 2) and (1, 4, 2, 3) is 2, since they are
different in two positions.

4.2. Precedence-based description of permutation

For precedence-based description, a set of basis precedence
equivalence relations Ψprec between any two different ele-
ments in the permutation will be considered formally as

Ψprec =
{
ψprec(ei,ej ) | ei, ej ∈ N ∧ ei /= ej

}
. (12)

However, by considering the fact (constraint) that ψprec(ei,ej )

and ψprec(ej ,ei) are reverse relations:

∀ei, ej ∈ N (ei /= ej) : ψprec(ei,ej ) ⇐⇒ ¬ψprec(ej ,ei), (13)

we can remove unnecessary relations by enforcing a sequence
(e.g., e1 < e2 < · · · < en) in the definition of the relation,
such that

Ψprec =
{
ψprec(ei ,ej ) | ei, ej ∈ N ∧ ei < ej

}
. (14)

Obviously, the equivalence classes are simply true/false for
whether element ei precedes element ej in the permutation
formally as

Ξψprec(ei ,e j )
= {ξ0

prec(ei,ej ), ξ
1
prec(ei,ej )

}
. (15)

In addition, the feasibility constraint Cprec needs to be added
that a valid permutation exists if and only if the relationship
between the precedences is consistent (in that the transitivity
condition is preserved), as shown below.

Definition 3. Given any two equivalence relations, ψprec(ei,ej )

and ψprec(ej ,ek), for a permutation, the precedence-based
constraint Cprec can be defined as

∀ei, ej , ek ∈ N
(
ei /= ej /= ek

)
: ψprec(ei,ej ) ∧ ψprec(ej ,ek)

=⇒ ψprec(ei,ek).
(16)

The distance metric can be specified as the number of
different precedence relations between two solutions. For
example, the distance between permutation (1, 2, 3, 4) and
(1, 4, 2, 3) can be obtained by comparing the following two
sets:

{
ξ1

prec(1,2), ξ
1
prec(1,3), . . . , ξ

1
prec(2,4), ξ

1
prec(3,4)

}
,

{
ξ1

prec(1,2), ξ
1
prec(1,3), . . . , ξ

0
prec(2,4), ξ

0
prec(3,4)

}
.

(17)
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In practice, bubble sort will be sufficient to calculate the
distance from one permutation towards another. This can be
achieved by sorting one permutation towards another, when
setting one as the initial permutation and the other as the
goal permutation which represents the right “order.” If we
are looking at the previous example with two permutations,
to calculate the distance from (1, 2, 3, 4) (i.e., the initial
permutation) to (1, 4, 2, 3) (i.e., the goal permutation), the
“priority” information can be obtained from (1, 4, 2, 3):

order(1) = 1, order(4) = 2, order(2) = 3, order(3) = 4.
(18)

Thus, the initial permutation can be represented (or more
closely, implemented) in terms of (ei, order(ei)):

(
(1, 1), (2, 3), (3, 4), (4, 2)

)
, (19)

and it should be sorted according to the values of order(ei) in
order to “transform” to the goal permutation with a certain
number of basic swap adjacency mutations.

4.3. Adjacency-based description of permutation

For adjacency-based description, a set of basis adjacency
equivalence relations Ψadj is considered for any two elements
to decide whether they are adjacent formally as

Ψadj =
{
ψadj(ei,ej ) | ei, ej ∈ N ∧ ei /= ej

}
. (20)

Due to the fact that ψadj(ei ,ej ) and ψadj(ej ,ei) are equivalent rela-
tions for symmetric problems (Surry presented an extensive
study about directed edge representation for permutation in
his work [11]):

∀ei, ej ∈ N
(
ei /= ej

)
: ψadj(ei ,ej ) ⇐⇒ ψadj(ej ,ei), (21)

we can remove redundant relations by enforcing a sequence
(e.g., e1 < e2 < · · · < en) in the definition of the relation,
such that

Ψadj =
{
ψadj(ei,ej ) | ei, ej ∈ N ∧ ei < ej

}
. (22)

As undirected edges are considered for adjacency-based
description, the equivalence classes are simply true/false for
whether there exists an edge between element ei and element
ej formally as

Ξψadj(ei ,e j )
= {ξ0

adj(ei,ej ), ξ
1
adj(ei,ej )

}
. (23)

In this case, ξ1
adj(ei,ej ) represents a positive edge so that edge

(ei, ej) must exists in the solution (e.g., a tour), while ξ0
adj(ei,ej )

stands for a negative edge so that edge (ei, ej) cannot be
included into the solution.

In addition, the feasibility constraint Cadj needs to
be added so that each vertex of the undirected graph
corresponding to the permutation can only participate in
two edges and still be a valid permutation as follows.

Definition 4. Given an equivalence relation ψadj(ei,ej ) for a
permutation, the adjacency-based constraint Cadj can be
defined as

∀ei, ej , ek, el ∈ N : ψadj(ei,ej ) ∧ ψadj(ei,ek) =⇒ ¬ψadj(ei,el).
(24)

The distance between any two solutions in the search
space under adjacency basis is thus calculated as the number
of different edges that they possess. For instance, the
distance between permutation (1, 2, 3, 4) and (1, 2, 4, 3) can
be obtained by calculating the number of different adjacency
relations between the following two sets:

{
ξ1

adj(1,2), ξ
0
adj(1,3), ξ

1
adj(1,4), ξ

1
adj(2,3), ξ

0
adj(2,4), ξ

1
adj(3,4)

}
,

{
ξ1

adj(1,2), ξ
1
adj(1,3), ξ

0
adj(1,4), ξ

0
adj(2,3), ξ

1
adj(2,4), ξ

1
adj(3,4)

}
.

(25)

However, on the “phenotypical” level this forma distance
reduces to the number of different positive edges (n minus
common positive edges), which should be 2 in this case.
This is mainly because negative edges do not directly affect
the quality of solution, although they implicitly affect the
selection of positive edges through the feasibility constraints.

5. PSO OPERATOR TEMPLATE—A GENERALISATION

The generalisation of PSO is not as straightforward as some
other optimisation techniques, such as the generalisation of
Differential Evolution [16]. This is mainly because, besides
the generalisation of position in a multi-dimensional space,
we also need to generalise the velocity of particle in a multi-
dimensional space.

By observing the update equation (as shown in (4)), we
can easily find out that

vi(t+1)(d) = xi(t+1)(d)− xit(d), (26)

in which case the velocity is effectively the step size to perturb
one solution towards another (in other words, the distance
between the two solutions), which is jointly decided by the
inertia component w∗vit(d), the bias towards its personal
best c1r1[Pbi(d)−xit(d)], and the bias towards the global best
c2r2[Gb(d)− xit(d)].

5.1. PSO operator template

By revealing the fact that velocity is the distance between the
previous and current positions of the particle, we can define
the operator template (under the basis Ψ) as follows.

Definition 5. Given a current position Xt (if one temporarily
ignores the index i of this particle in the population),
its position for the next time step Xt+1 can be produced
according to (27):

{
Xt+1 ∈ S | disΨ

(
Xt+1,Xt

)

= w∗disΨ
(
Xt,Xt−1

)⊕c1r1∗disΨ
(
Pb,Xt

)

⊕c2r2∗disΨ
(
Gb,Xt

)}
,

(27)
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where disΨ(Xt,Xt−1) is used to formalise the previous
velocity of the particle, while disΨ(Xt+1,Xt) represents the
current velocity for perturbing the current solution Xt.

5.2. Stochastic interpretation of accumulation

In the context of real-vectors, the accumulation of distances
is straightforward to understand. However, for permutation
problems the consideration of “directionality” becomes
rather complex from the practical standpoint. By taking
into account the fact that forma distance includes domain-
specific distance magnitude and direction which cause
certain difficulties in the context of permutation problems,
a reasonable interpretation of the PSO operator template
is required to facilitate the derivation of suitable PSO
operators for permutation problems. From this perspective,
the original PSO operator template (before interpretation),
which abstracts how solutions are manipulated, can be
regarded as an operator design guideline embedded with
the PSO working mechanism. As a matter of fact, various
interpretations and approximations have also been made
in the previous work of forma analysis for the purpose
of facilitating operator derivations [11, 12] (such as the
derivation of RTR operator template to blend crossover/line
recombination crossover for continuous domain).

By understanding the fact that the perturbation of the
current individual is jointly decided by three components
(with their degrees of influence distributed proportionally),
we can give a stochastic interpretation of the PSO operator
template as follows.

The perturbation disΨ(Xt+1,Xt) can be interpreted sepa-
rately in three cases:

Case 1 if rand() ≤ (w/b), disΨ(Xt,Xt−1);

Case 2 else if rand() ≤ (w/b) + (c1r1/b), disΨ(Pb,Xt);

Case 3 else, disΨ(Gb,Xt),

where b equals (w + c1r1 + c2r2). In this interpretation,
the parameters w and c1/c2 are used to represent the
probabilities of the current particle’s commitment to each
of the components. In other words, the new velocity has a
probability of (w/b) to stay the same as previous value, a
probability of (c1r1/b) to converge towards its personal best
record, and a probability of (c2r2/b) to converge towards the
global best record.

The decomposition of the flying dynamics of a particle
is illustrated in Figure 2. The current particle has three
options: a random k-change according to the magnitude of
its previous velocity, change towards its personal best record,
or change towards the global best record. (Strictly according
to the original PSO working mechanism, this should not
be a random k-change. Instead it should be a directed
perturbation following the previous direction. However,
since this direction is difficult to “replicate” practically, we
choose to simplify this to a random k-change with the
magnitude maintained only.)

However, the mixing effect of several distances with
different directions is hard to represent in the context of

Xt

Random
k-change Personal best

Global best

Figure 2: Decomposition of the flying dynamics of PSO.

permutation. Modelling the accumulation from a stochastic
perspective helps us avoid this unnecessary complication.

5.3. Incorporation of direction-A crossover perspective

Given that we already have the mechanism to separate each
distance component, the next question is how to incorporate
direction to guide our PSO operator so that the particles can
converge towards superior records.

As aforementioned, if a greedy component with superior
record considered is selected to perturb the current particle,
we directly have

disΨ
(
Xt+1,Xt

) =⇒ disΨ
(
Pb,Xt

)
, (28)

or

disΨ
(
Xt+1,Xt

) =⇒ disΨ
(
Gb,Xt

)
, (29)

which means that the particle should jump to the attraction
point (i.e., Pb/Gb) without any reservations. However, this
is the situation we should try to avoid in practice, since
the search may stagnate at a very early stage dominated
by the initial superior component. Thus, we desire the
current particle to converge somewhere between itself and
the attraction point along the right direction.

By taking a closer look at the guided PSO operator, we
can actually find that the effect of perturbing one individual
towards another is the same as making a crossover (e.g.,
RTR) between these two individuals where the direction can
be naturally retained. Understanding the greedy components
of PSO operator in terms of crossover makes the practical
incorporation of direction in the operator much easier.

5.4. Understanding PSO operator template

From the above discussion, we can evolve a new interpreta-
tion of the PSO operator template. The new positionXt+1 can
be generated according to three cases separately:

Case 1 if rand() ≤ (w/b), Ok(Xt, |disΨ(Xt,Xt−1)|);

Case 2 else if rand() ≤ (w/b) + (c1r1/b), RTR (Xt, Pb,Ψ);

Case 3 else, RTR (Xt, Gb,Ψ),

where for the first case a random k-change, with k =
|disΨ(Xt,Xt−1)|, is adopted to perturb the current particle,
while for the second and the third cases a RTR operator
template is used to perturb the current particle towards
the attraction point (i.e., Pb/Gb). For the first case, only
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the magnitude of the previous velocity is considered to
parameterise the random k-change. For the second and the
third cases, the magnitude of velocity should be updated
according to the difference between the new position and the
previous position of the particle after the RTR “move.”

5.5. Brief comparisons with geometric PSO

In this section, our forma analysis framework is compared
with the geometric framework [3] which has also been
proposed for generalising PSO.

5.5.1. Comparisons on the framework

On the framework level, both frameworks aim to generalise
PSO based on underlying optimisation components (e.g.,
solution representation or distance notion) so that the
abstraction of optimisers, either in the form of standard
operator template RTR/RRR/RAR or in the form of line
segment/ball [3], can be further generalised to arbitrary
problem domain. In both cases, these abstractions need to
be instantiated to concrete operators by embedding domain
knowledge into the corresponding abstraction. In other
words, these abstractions all carry some form of domain
knowledge, either by using equivalence relations or by using
distance notions, so that they can be applied to concrete
problem instances.

The main difference on the design concept level lies
in the choice of such abstractions and the “carrier” of
domain knowledge. For our forma analysis approach, the
solution representation is generalised with equivalence rela-
tions/classes so that formal representation can be defined
in an unified manner, while operators that manipulate the
solutions are abstracted as operator templates that process
equivalence relations. In contrast, the geometric framework
is more about generalising optimisers based on a notion
of distance where different distance metrics give rise to
different operators with regards to the predefined geometric
operators using the notions of line segment and ball [3]. Each
framework looks at operator design through abstraction
and formal description (of either solutions or distance) at
different levels, with potentially equivalence relations lying
at a slightly lower level than distance notion as distance
notion is effectively a derivative of equivalence relations once
forma distance [13, 15] is defined under the forma analysis
framework.

5.5.2. Comparisons on PSO generalisation

On the practical PSO generalisation level, both approaches
are generally different in two places as well.

First of all, the concept of velocity has been removed from
the geometric framework (thus, including the simplification
of the concept of inertia as a component in geometric
crossover), while a random mutation is added to the
geometric PSO as a potential replacement for perturbation
purposes. In our forma analysis approach, velocity has
been interpreted and formulated as distance (more precisely
forma distance) in the previous time step. However, velocity

itself is a rather complicated concept to formulate as it
involves the interpretation of both magnitude and direction
which are hard to represent in the context of permutation
problems. Certain simplifications and compromises have
been made to maintain this concept for future research.

Secondly, the accumulation of greediness toward per-
sonal best and global best, balanced by previous velocity
(or position), is interpreted differently as well. In geometric
PSO, multiparental geometric crossover is used to linearly
recombine these positions to produce the next position with
different weights taken into account through the concept
of product geometric crossover. In contrast, in our forma
analysis approach, different convergence components are
treated stochastically according to their different weights
where higher weight represents higher probability of being
treated as the convergence direction for the next time step
(and vice versa). By looking at the full picture, different
components (personal best, global best, or previous velocity)
all share the probability of being selected to guide the next
move. Standard RTR operator template is used to converge
towards superior solutions with the direction of distance
naturally maintained, while standard k-change operator
template is used to represent the inertia component.

6. “BLENDED” PSO OPERATORS FOR
PERMUTATION PROBLEMS

As mentioned earlier, the formal descriptions of permutation
problems implicitly introduces some feasibility constraints to
produce a valid solution. When we design PSO operators for
permutation problems, these constraints must be satisfied
(or handled properly) which is effectively a subproblem
to solve. (Of course, these constraints only exist if we are
only interested in searching feasible regions, while search
techniques making use of infeasible regions are out of the
scope in this discussion.) In our previous work [15], we have
presented that the application of standard genetic operators
for permutation problems can be viewed as a process of
constraint satisfaction, so as to instantiate the declarative
nature of forma analysis in a systematic manner and bring
forma analysis to a more practical level. In this section, we
will show how the PSO operators for permutation problems
can be obtained procedurally based on the operator template
from a constraint satisfaction problem (CSP) [17] solving
perspective.

According to the aforementioned stochastic interpreta-
tion of PSO operator template, the outcome is effectively
a blended operator with three different “phases”: k-change
according to k = |disΨ(Xt,Xt−1)|, RTR (Xt, Pb,Ψ), and
RTR (Xt, Gb,Ψ). The separate instantiations of k-change
and RTR in the context of different formal descriptions of
permutation should directly give rise to the instantiations of
the corresponding blended PSO operators.

6.1. Instantiations of k-change

6.1.1. Position-based k-change:Ok-pos

For the position-based description, disΨpos(Xt+1,Xt) can be
obtained as the hamming distance between Xt+1 and Xt
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under basis Ψpos. Thus, we only need to apply a distance of k
based on Xt to generate Xt+1 such that disΨpos(Xt+1,Xt) =
k. For example, given that Xt represents a permutation
(1, 2, 3, 4) such that

Xt =
{
ξ1

pos(1), ξ
2
pos(2), ξ

3
pos(3), ξ

4
pos(4)

}
, (30)

what would be the potential candidates for the permutation
Xt+1 so that they have a distance of k (e.g., k = 2)?

The most straightforward thought would be to randomly
select k equivalence relations and change the equivalence
classes they fall into. However, the feasibility constraint
Cpos induced by position-based description must be satis-
fied to produce a valid permutation. In this case, the k-
change operator for permutation following the position-
based description should involve a constraint satisfaction
subproblem, where Cpos must be satisfied to guarantee a valid
permutation.

The CSP we consider here is defined as the k-change
operator itself with Cpos satisfied. Classical CSP techniques
can be directly utilised to implement the operator. Now, we
will follow the above example to illustrate how CSP can be
effectively used in the position-based PSO operator design.

Given Xt
({
ξ1

pos(1), ξ
2
pos(2), ξ

3
pos(3), ξ

4
pos(4)

})
, we can first

uninstantiate k (e.g., k = 2) equivalence relations to produce
a partial permutation for a potential distance of 2. This
gives us C2

4 options from which we can uniformly select
one to serve as the base (partial permutation) of Xt+1 (e.g.,{
ξ−pos(1), ξ

2
pos(2), ξ

−
pos(3), ξ

4
pos(4)

}
).

Then, what we need to do is simply to reinstantiate these
2 equivalence relations to suitable classes such that Cpos is
satisfied. The first position of the partial solution (−, 2,−, 4)
is considered first. The domain of the first position is
{1, 3}, while the domain of the third position is {1, 3} as
well. After an equivalence class (1 or 3) is chosen for the
first position, the domain is reduced for the third position
through constraint propagation. After instantiating all the
possible solutions, Xt+1 can be randomly selected among the
whole set of feasible solutions to the CSP.

In fact, the working mechanism of Ok-pos has a similar
effect as the scramble mutation [18], which rearranges a
certain number of positions. The only difference is that the
selection of these positions should be purely random, other
than inside a continuous block. Thus, Ok-pos can be defined
as the modified scramble mutation operator with k random
positions, where k is decided by the magnitude of the current
velocity |disΨpos (Xt,Xt−1)|.

6.1.2. Precedence-based k-change:Ok-prec

For the precedence-based description of permutation, the
distance of two permutations is the number of different
precedence relations disΨprec (P1,P2). As aforementioned, the
bubble sort algorithm is sufficient to calculate the precedence
distance of two permutations, with the distance decided
as the number of adjacency-swap to sort one permutation
towards another.

(1, 2, 3, 4)

(1, 2, <) (1, 2, <)
(1, 3, <) (1, 3, <)
(1, 4, <) (1, 4, >)
(2, 3, >) (2, 3, >)
(2, 4, >) (2, 4, >)
(3, 4, >) (3, 4, >)

(2, 3, 4, 1) (2, 3, 1, 4)

BT (1, 2, <)
(1, 3, >)
(1, 4, >)
(2, 3, >)
(2, 4, >)
(3, 4, >)

(2, 1, 3, 4)

BTBTBT (1, 2, >)
(1, 3, >)
(1, 4, >)
(2, 3, >)
(2, 4, >)
(3, 4, >)

< > < > < > < >

(1, 2, <)
(1, 3, <)
(1, 4, )
(2, 3, >)
(2, 4, >)
(3, 4, >)

(1, 2, <)
(1, 3, >)
(1, 4, )
(2, 3, >)
(2, 4, >)
(3, 4, >)

(1, 2, >)
(1, 3, <)
(1, 4, )
(2, 3, >)
(2, 4, >)
(3, 4, >)

(1, 2, >)
(1, 3, >)
(1, 4, )
(2, 3, >)
(2, 4, >)
(3, 4, >)

< > < >

(1, 2, <)
(1, 3, )
(1, 4, )
(2, 3, >)
(2, 4, >)
(3, 4, >)

(1, 2, >)
(1, 3, )
(1, 4, )
(2, 3, >)
(2, 4, >)
(3, 4, >)

< >

(1, 2, )
(1, 3, )
(1, 4, )
(2, 3, >)
(2, 4, >)
(3, 4, >)

(1, 2, <)
(1, 3, <)
(1, 4, <)
(2, 3, >)
(2, 4, >)
(3, 4, >)

Uninstantiate

Figure 3: Illustration of reinstantiation of a permutation based on
precedence-based description. Symbol “(i, j,>)” means element i
is before element j, while “(i, j,<)” means otherwise. The framed
permutation has a “strict” distance of 3 to the initial permutation.

Assuming k = 3 which should be applied to Xt =
(2, 3, 4, 1) as an example, Xt+1 can be obtained by solving the
CSP as shown in Figure 3.

Given that Xt can be represented as

{
ξ0

prec(1,2), ξ
0
prec(1,3), ξ

0
prec(1,4), ξ

1
prec(2,3), ξ

1
prec(2,4), ξ

1
prec(3,4)

}
,

(31)

to apply a distance of 3 will be a reinstantiation of 3
equivalence relations. This gives us C3

C2
n

options from which
we can uniformly select one as the partial permutation to
generate Xt+1. For example, the partial permutation can be

{
ξ−prec(1,2), ξ

−
prec(1,3), ξ

−
prec(1,4), ξ

1
prec(2,3), ξ

1
prec(2,4), ξ

1
prec(3,4)

}
.

(32)

Reinstantiating these 3 precedence relations to suitable
classes such that Cprec is satisfied can give us potential
candidates for Xt+1.

As shown in Figure 3, the reinstantiation of precedence
relations is carried out one after another. The domain of
each relation is simply {0, 1}. Alternatively, we use “<” and
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“>” to represent the precedence such that symbol “(i, j,>)”
means element i is before element j while “(i, j,<)” means
otherwise. Xt+1 can be randomly selected among the set of
feasible solutions to the CSP.

By observing the effect of changing a single precedence
equivalence class, it is not difficult to find that a 1-change
(minimal mutation) reduces to the adjacent swap mutation
[18], which swaps two contiguous elements. Thus, Ok-prec

can be approximately regarded as equivalent to a k-iterated
adjacent swap mutation with k decided by the magnitude
of the current velocity |disΨprec (Xt,Xt−1)|, which can be
effectively calculated through bubble sort.

6.1.3. Adjacency-based k-change:Ok-adj

Since each potential edge is defined as an equivalence relation
for the adjacency-based description of permutation, the
distance of two permutations corresponds to the “edge-
difference” between them.

For the simplicity of illustration, we assume that k =
4, which should be applied to Xt to generate Xt+1. As
an example, given the base permutation (1, 2, 3, 4) being
represented as

Xt =
{
ξ1

adj(1,2), ξ
0
adj(1,3), ξ

1
adj(1,4), ξ

1
adj(2,3), ξ

0
adj(2,4), ξ

1
adj(3,4)

}
,

(33)

we first uninstantiate 4 relations (randomly chosen from C4
C2
n

options) to produce the partial permutation for Xt+1, for
example:

Xt+1 =
{
ξ−adj(1,2), ξ

−
adj(1,3), ξ

1
adj(1,4), ξ

1
adj(2,3), ξ

−
adj(2,4), ξ

−
adj(3,4)

}
.

(34)

By solving the CSP to generate Xt+1 such that Cadj is
satisfied, we can get a solution permutation (1, 3, 2, 4) with
a distance of 4 to Xt:

{
ξ0

adj(1,2), ξ
1
adj(1,3), ξ

1
adj(1,4), ξ

1
adj(2,3), ξ

1
adj(2,4), ξ

0
adj(3,4)

}
. (35)

The minimal mutation implied by the adjacency-based
description is an edge 2-change mutation, because 1-change
automatically violates the feasibility constraint Cadj. (A
standard edge2-change mutation involves the “replacement”
of 2 edges which in turn results in the change of 4 adjacency
equivalence relations, since there are also changes involving
negative edges. However, from the implementation perspec-
tive only phenotypical (or positive) edges are considered.)
This operator is equivalent to the edge-reverse mutation in
the literature [18], which reverses the positions of a segment
in the permutation in such a manner that the feasibility
constraint Cadj can be satisfied automatically. Due to the
fact that any edge-reverse mutation involves the change of 2
edges, Ok-adj can be generally approximated by a k∗-iterated
edge-reverse mutation with k∗ decided by k as follows:

k∗ = round
(
k

2

)
, (36)

where any function that rounds k/2 to its nearest integer is
sufficient.

(1, 2, 3, 4) X (1, 3, 2, 4) X X (4, 2, 3, 1) X (4, 3, 2, 1)

4 1 4 1 4 1 4 1

(1, 2, 3, ) X (1, 3, 2, )X X(4, 2, 3, ) X (4, 3, 2, )

3 2 3 2 3 2 3 2

(1, 2, , ) (1, 3, , ) (4, 2, , ) (4, 3, , )

2 3 2 3

(1, , , ) (4, , , )

1 4
( , , , )

Figure 4: The reinstantiation of Pc for RTRpos.

6.2. Instantiations of RTR

6.2.1. Position-based RTR: RTRpos

For the position-based description Ψpos, its feasibility con-
straint Cpos largely reduces the number of feasible solutions
to the basic CSP, where RTR is interpreted as recombination
of parental equivalence classes, because not all combinations
of them lead to valid permutations. By satisfying Cpos while
instantiating Pc, we can obtained all potential candidates for
RTRpos as a result of solving the CSP.

For example, given Pp1 = (1, 2, 3, 4) and Pp2 = (4, 3, 2, 1),
RTRpos can produce potential candidate(s) for Pc by rein-
stantiating it (as shown in Figure 4) with corresponding
equivalence classes, as shown in (37)

Pp1 =
{
ξ1

pos(1), ξ
2
pos(2), ξ

3
pos(3), ξ

4
pos(4)

}
,

Pp2 =
{
ξ4

pos(1), ξ
3
pos(2), ξ

2
pos(3), ξ

1
pos(4)

}
,

Pc =
{
ξ1

pos(1), ξ
3
pos(2), ξ

2
pos(3), ξ

4
pos(4)

}
.

(37)

To transmit position features from parents to children
and interpret the feasibility constraint Cpos in a more
natural way, we produce a fully-transmitting crossover for
permutation, namely position transmitting crossover (PTX),
by identifying the constraint satisfaction process of operator
as a CSP.

In PTX, both Cpos and transmitting Ct have to be
satisfied as an interpretation of its CSP. (Transmitting can be
regarded as an additional constraint imposed by operator.)
In this sense, constrained positions are clustered to function
separately. For example, given two permutations

(
3, 6, 5, 4, 2, 7, 8, 1

)
,

(
3, 6, 2, 5, 4, 8, 7, 1

)
,

(38)

we are able to construct the constraint graph implied by
both Cpos and transmitting Ct, as shown in Figure 5 with
constrained positions linked together.

The construction of the constraint graph is straight-
forward to understand—a value that has been taken for
one position must be forbidden (constrained) for another
position. For example, for position 3 (P3 in Figure 5) either



T. Gong and A. L. Tuson 9

P1 P2 P8

P3

P4P5

P6

P7

Figure 5: Illustration of the constraint graph of PTX.

5 or 2 should be chosen to achieve transmitting. However,
choosing either of them will forbid another position (e.g.,
P4 or P5 in Figure 5) from taking the same value, which
effectively reduces the domain for another position.

The only possibility that the value taken by one position
does not constrain the value taken by another is that the
parents both take the same value for that position (e.g., P1

in Figure 5), where taking (the only) one value automatically
satisfies the constraint.

Thus, as long as the constrained positions are transmitted
all-together to the child, PTX always satisfies both Cpos and
Ct, and the child solution is always a valid permutation.
Following the above example, the child produced by PTX
could be

(
3, 6, 5, 4, 2, 8, 7, 1

)
. (39)

In fact, PTX works in an equivalent manner as cycle
crossover [19] in the literature, which preserves absolute
positions in parents and guarantees feasibility of child
solutions.

6.2.2. Precedence-based RTR: RTRprec

To achieve transmitting in precedence-based crossover, both
transmitting Ct and Cprec should be satisfied from the CSP
viewpoint. It is easy to verify that this CSP is solvable, since
(in the worst case) taking all the equivalence classes for either
parent to produce child always gives one possible solution
such that constraints (Ct and Cprec) are satisfied.

Furthermore, precedence relation is special in that its
equivalence class is either 1 or 0. This means that in the
case when two parents are different for a certain equivalence
relation ψprec(ei,ej ), the domain of ψprec(ei,ej ) for the child is
always {0, 1}, which implicitly means that ψprec(ei,ej ) can take
any value for the child. In the case when two parents are
the same for ψprec(ei,ej ), the corresponding equivalence class
is fixed for the child to achieve transmitting.

For example, given permutations (3, 1, 2, 4) and
(4, 2, 3, 1) such that

{
ξ1

prec(1,2), ξ
0
prec(1,3), ξ

1
prec(1,4), ξ

0
prec(2,3), ξ

1
prec(2,4), ξ

1
prec(3,4)

}
,

{
ξ0

prec(1,2), ξ
0
prec(1,3), ξ

0
prec(1,4), ξ

1
prec(2,3), ξ

0
prec(2,4), ξ

0
prec(3,4)

}
,

(40)

the partial permutation as a child to achieve transmitting can
be
{
ξ−prec(1,2), ξ

0
precc(1,3), ξ

−
prec(1,4), ξ

−
prec(2,3), ξ

−
prec(2,4), ξ

−
prec(3,4)

}
,

(41)

while the uninstantiated relations can be reinstantiated
randomly to produce the child permutation, by solving a CSP
such that simply Cprec should be satisfied.

In fact, strictly transmitting crossover is also possible
for precedence-based description. Due to the fact that the
reinstantiation process of precedence relations is equivalent
to the topological sorting problems [20], where a partial
order needs to be completed to a linear order (in a
directed acyclic graph (DAG) based on precedence) with
a complexity of O(edges + vertices), we argue that the
reinstantiation of precedence relations in the considered
CSP can be solved in a deterministic polynomial-time in
terms of topological sorting problems. (The partial order
is defined by the equivalence relations where the parents
are equivalent—the order that must be enforced for the
child.)

In the literature, precedence preservative crossover (PPX)
[18] was found to be strictly transmitting. The underlining
principle in PPX is that the precedence equivalence classes of
parents are passed to the child in such an order (from left to
right or more specifically from the node with no incoming
edges in the precedence graph) that both Ct and Cprec are
satisfied automatically. Practically, this order is implemented
using a “from” table which indicates the switching process
between the two parents.

Many readers may find that this is rather similar to the
most popular algorithm used for topological sorting where
the order can be completed by starting from the node(s) with
no incoming edges. Switching between two parents simply
aims at recombining the precedence equivalence classes of
the two parents.

It is also easy to find that the set of all possible solutions
produced by PPX is in fact a subset of the set of solutions
produced by the above CSP approach. In other words, for
each of the solution produced by PPX, there is always a
corresponding reinstantiation of the partial child permuta-
tion.

6.2.3. Adjacency-based RTR: RTRadj

Regarding the adjacency-based description of permutation
which has been proved to be non g-separable [10], literature
[11, 12] pointed out that transmission cannot be achieved
without sacrificing assortment. From the CSP viewpoint,
this implies that Cadj and Ct all together may make the
corresponding CSP not strictly solvable (if the original
parental permutations are not allowed to be repeated as a
child permutation). Through investigation, we can also find
that it is the case when two parents are the same for some
equivalence relations that makes the CSP NP-complete in
“strict” sense. For those adjacency relations that two parents
are different, no restriction will be applied to the child
solution for that relation (as both {1, 0} are allowed).
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1. for all particle i do
2. initialize Pi (with its velocity Vi) and evaluate Pi;
3. endfor
4. do
5. for all particle i do
6. set Pbi as best position found by particle i so far;
7. set Gb as best position found by all particles so far;
8. if (rand() < w/b):
9. modified scramble mutation according to |Vi|;
10. elseif (rand() < (w + c1r1)/b):
11. cycle crossover CX (Pi, Pbi);
12. else:
13. cycle crossover CX (Pi, Gb);
14. endif
15. evaluate Pi and update |Vi|;
16. endfor
17. until (halting criterion met);

Algorithm 1: Position-based blended PSO scheme (PSOpos).

Furthermore, for those edges which are absent in both
parents (“negative edges” ξ 0

adj(i, j)), transmitting automati-
cally forbids them from being included in the children. In
this sense, the induced CSP is equivalent to the Hamiltonian
cycle problem [21] in an incomplete graph, which is NP-
complete. (It should be pointed out that this Hamiltonian
cycle problem is NP-complete only if the parental per-
mutations are forbidden for the child, since the parents
automatically gives 2 possible solutions. However, finding
the third solution is still NP-complete.) Those edges which
are common for both parents (“positive edges” ξ1

adj(i, j))
effectively enforce that some edges must be included in the
Hamiltonian cycles (solutions). This is actually a constrained
version of the original Hamiltonian cycle problem induced
by “negative edges,” which is also NP-complete.

Thus, approximation through relaxation of Ct may be
required to produce a valid new child permutation. In the
literature, enhanced edge recombination devised by [22] has
been noticed as an effective “edge-aware” recombination
operator which has a high rate (98%) of adjacency transmis-
sion. The transmitting of adjacency formae is approximated
by creating an edge table with the related edge information
for both parents and selecting edges in a heuristic manner to
construct the child solution.

6.3. The blended PSO schemes

In summary, the derived blended PSO schemes with different
formal descriptions of permutation can be described in the
following Algorithms 1, 2, and 3.

7. EXPERIMENTS OF PSO SCHEMES ON QUADRATIC
ASSIGNMENT PROBLEMS

To illustrate the search dynamics of the derived blended
PSO schemes, we evaluated the performance of these

1. for all particle i do
2. initialize Pi (with its velocity Vi) and evaluate Pi;
3. endfor
4. do
5. for all particle i do
6. set Pbi as best position found by particle i so far;
7. set Gb as best position found by all particles so far;
8. if (rand() < w/b):
9. k-iterated adjacent-swap with k = |Vi|;
10. elseif (rand() < (w + c1r1)/b):
11. precedence preservative crossover PPX (Pi, Pbi);
12. else:
13. precedence preservative crossover PPX (Pi, Gb);
14. endif
15. evaluate Pi and update |Vi|;
16. endfor
17. until (halting criterion met);

Algorithm 2: Precedence-based blended PSO scheme (PSOprec).

PSO schemes on the quadratic assignment problem (QAP)
benchmarks. However, due to the fact that for QAP the
absolute positioning of element is more related to the quality
of solution [14], it is estimated that the PSO scheme with
position-based description (i.e., PSOpos) should perform
better than the other PSO schemes.

After a brief description of the problem formulation, we
show both the experiment configurations and the experi-
mental results, followed by a few discussions to help the
understanding of the benefits of our approach.

7.1. Problem formulation of QAP

The quadratic assignment problem (QAP) is an important
problem in both practice and theory. Many practical prob-
lems can be formulated as QAPs [23–25]. The QAP can be
described as the problem of assigning a set of facilities to a
set of locations with the given distances between the locations
and the given flows between the facilities. The goal is to place
the facilities on locations such that the sum of the product
between flows and distances is minimised. Formally, given n
facilities and n locations, two n × n matrices A = [ai j] and
B = [brs], where ai j is the distance between locations i and j,
and brs is the flow between facilities r and s, the QAP can be
formally defined as

Min(ψ)
n∑

i=1

n∑

j=1

bi jaψiψj . (42)

The QAP is a class of NP-hard optimisation problems.
It is considered as one of the hardest optimisation problems
as general instances of size larger than 20 cannot be solved
to optimality. Therefore, to practically solve QAP with high
quality solutions various heuristic algorithms have been
proposed [26–28] trying to find high quality solution with
limited computational resources.
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1. for all particle i do
2. initialize Pi (with its velocity Vi) and evaluate Pi;
3. endfor
4. do
5. for all particle i do
6. set Pbi as best position found by particle i so far;
7. set Gb as best position found by all particles so far
8. if (rand() < w/b):
9. k-iterated edge-reverse mutation with k = round(|Vi|/2)
10. elseif (rand() < (w + c1r1)/b):
11. enhanced edge crossover EX (Pi, Pbi);
12. else:
13. enhanced edge crossover EX (Pi, Gb);
14. endif
15. evaluate Pi and update |Vi|;
16. endfor
17. until (halting criterion met);

Algorithm 3: Adjacency-based blended PSO scheme (PSOadj).

7.2. Benchmarks and experimental settings

The benchmarks for this experimental study are acquired
from QAP-LIB [29]. It has been pointed out [30] that
there are four types of QAP instances: unstructured, ran-
domly generated instances, unstructured instances with grid-
distances, real-life instances, real-life like instances. We select
2 instances for each type of QAP as our benchmarks, with
size no smaller than 20. For type 1, we choose Tai20a and
Tai40a. For type 2, we choose Nug20 and Sko56. For type 3,
we choose Bur26a and Ste36a. For type 4, we choose Tai20b
and Tai40b.

For each of the instances, fine tuning is carried out
for each of the algorithms to reach its best performance
among different combinations of parameter settings with
equal number of generations. The parameter settings with
the best performance over 20 independent runs for each
algorithm will be used to get the execution results. (The
performance is evaluated by considering both its average best
solution found and its average number of generations to
reach its best solution. The number of generation to reach its
best solution is only considered when two parameter settings
have the same average best solution.)

The original free parameters for each instances areW and
C, where W represents the parameter to control the inertia
weight and C represents the value taken by c1 and c2 (as in
literature c1 and c2 often adopt the same value). By taking
a closer look, it is not difficult to realise that in our PSO
schemes for QAP, the probability of taking each branch can
be simplified to

(W/C)
(W/C) + r1 + r2

,
r1

(W/C) + r1 + r2
,

r2

(W/C) + r1 + r2
.

(43)

The above simplification means that the essential element
controlling the search dynamics is (W/C). This implies that
(W/C) is effectively the only parameter we need to deal
with for our PSO scheme, where a relatively larger (W/C)

would encourage a more explorative search, while a relatively
smaller (W/C) would favour a greedier search towards either
one of the superior attraction points (i.e., Pb/Gb).

The population size is fixed to be an appropriate number
(100) for each instance through observations. Since we do
not have preknowledge about the discrete PSO operators,
the tuning process is only carried out in a coarse manner,
where the options for W and C are both formatively set to be
{1, 2, 3, . . . , 9, 10} (although only W/C matters).

7.3. Observations and experimental results

According to the tuned parameter settings, 50 independent
runs were executed for each PSO scheme under each instance
to produce experimental results.

7.3.1. Comparisons among PSO schemes

To examine the search behavior of the proposed PSO
schemes, we track three components of each scheme that are
felt to be essential to the search dynamics of PSO. These three
components are: the mean cost of the population; the average
best of the population; the average velocity of the population.
The mean cost and average best of the population are plotted
together to reveal the convergence pattern, while the average
velocity is plotted to track the exploration power. Only the
search patterns for Tai20a are illustrated here (as shown
in Figure 6), since the patterns for all the other instances
are quite similar. In addition, the execution results are also
shown in Table 1.

Through observation shown in Figure 6(a), we can
find that for position-based PSO (PSOpos) both the mean
cost and the average velocity of population are changing
throughout the search process smoothly, as the whole
population is constantly converging towards the attraction
point(s). The pattern of the corresponding velocity (as
shown in Figure 6(b)) implies that the exploration power
of the whole population initially increases to a relatively
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Average velocity of the population for Tai20a with PSOpos

0 5 10 15 20 25 30 35 40 45 50
×102

Generation

0

1

2

3

4

5

6

7

8

V
el

oc
it

y

(b) Tai20a-velocity with PSOpos
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(c) Tai20a-mean and best with PSOprec
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(d) Tai20a-velocity with PSOprec
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(e) Tai20a-mean and best with PSOadj
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(f) Tai20a-velocity with PSOadj

Figure 6: The mean cost, average best cost, and average velocity of the population over generation for Tai20a with different PSO schemes
(with global topology).
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Table 1: Experimental results over 50 independent runs for different PSO schemes.

Tai20a
SIZE GEN # POP size

Tai40a
SIZE GEN # POP size

20 5000 100 40 10000 100

Algorithms Mean best Std Dev Algorithms Mean best Std Dev

PSO POS 749292.1871 12172.79199 PSO POS 3332304 27611.47461

PSO PREC 756756.8125 6750.588867 PSO PREC 3475673 23905.56437

PSO ADJ 778401.8125 10900.51661 PSO ADJ 3547892 17521.19283

Nug20
SIZE GEN # POP size

Sko56
SIZE GEN # POP size

20 5000 100 65 10000 100

Algorithms Mean best Std Dev Algorithms Mean best Std Dev

PSO POS 2680.120117 34.834686 PSO POS 35955.64063 309.11557

PSO PREC 2717.847864 27.325028 PSO PREC 36078.96543 257.68971

PSO ADJ 2746.896391 25.121398 PSO ADJ 38423.78542 375.67864

Bur26a
SIZE GEN # POP size

Ste36a
SIZE GEN # POP size

26 5000 100 36 10000 100

Algorithms Mean best Std Dev Algorithms Mean best Std Dev

PSO POS 5445906.1 8688.298828 PSO POS 10808.51953 436.841125

PSO PREC 5462411.9 8622.741697 PSO PREC 11356.24567 553.488941

PSO ADJ 5489783.6 7989.741787 PSO ADJ 11667.04213 604.555.718

Tai20b
SIZE GEN # POP size

Tai40b
SIZE GEN # POP size

20 5000 100 40 10000 100

Algorithms Mean best Std Dev Algorithms Mean best Std Dev

PSO POS 124803488 1190690.75 PSO POS 696782272 28186792

PSO PREC 125760656 1622274.93 PSO PREC 706244099 17986929

PSO ADJ 128727848 1379135.25 PSO ADJ 722001585 18978233

higher level, before it decreases constantly as the search goes
to a later stage. These searching patterns are generally very
similar as those in the traditional PSO in the real-vector
space.

The situation for PSOprec is however slightly different
from PSOpos according to the patterns shown in Figures
6(c) and 6(d). Although the mean quality of the whole
population still converge towards the superior individuals
(i.e., the global/local best solutions) and the average velocity
decreases with the generation number, it is observed that
there are some “resistances” in its convergence process. The
situation is even worse for PSOadj (as shown in Figures
6(e) and 6(f)), as the mean quality of the whole population
hardly converges, and the average velocity of the population
decreases more slowly relative to the average velocity for
PSOpos. Presumably, the degree of such resistance is the main
cause for performance loss/gain, considering the fact that
both PSOprec and PSOadj are outperformed by PSOpos (as
shown in Table 1).

This can be mainly explained by the different infor-
mation transfer efficiencies with different descriptions for
QAP. The position-based PSO scheme (PSOpos) is the most
efficient scheme among the three since absolute positioning
is being processed for its corresponding position-based
description, which is most related to the quality of solution
for QAP. From the implementation standpoint, the “recom-
bination” of the position-based equivalence classes from
both the current individual and its superior records serves
as the main drive for convergence.

However, the information processing of absolute posi-
tioning is disrupted by both precedence description and
adjacency description to different degrees. This is also
quite obvious from the implementation standpoint, since
the “recombination” of precedence/adjacency information
certainly will not produce the convergence of solution
quality efficiently in terms of absolute positioning. The
degree of such “disruption/deviation” is mainly decided by
its correlations to the positional description. This can be
further illustrated by the fact that precedence-based PSO
performs better than adjacency-based PSO. As a matter of
fact, precedence relations are more correlated to positional
relations, which can be easily understood by inspecting the
shift operator—as the number of precedences changed by
the shift operator increases, so does the number of positions
in a smooth progression. In contrast, adjacency relations
are found to be poorly correlated with positional relations,
since the number of adjacency relations changed by edge-
reverse mutation is poorly correlated with the changes in the
absolute positioning of permutations.

The above results also reflect the main argument we
are making for the methodology in this paper: the search
behavior and performance of the derived operator depend on
the description for the specific problem. Further estimations
can be that PSOprec should perform well in those problems
where precedence information processing in permutation is
essential (e.g., JSSP), while PSOadj should perform well in
those problems where adjacency/edge information is related
to solution quality (e.g., TSP).
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(b) Tai20a-AVG velocity (global versus ring)

Figure 7: Comparison of average best cost and velocity of the population over generation for Tai20a between the global and ring structured
PSOpos schemes.

Table 2: Experimental results over 50 independent runs for PSO schemes with different topologies against a standard GA.

Tai20a
SIZE GEN # POP size

Tai40a
SIZE GEN # POP size

20 5000 100 40 10000 100

Algorithms Mean best Std Dev Algorithms Mean best Std Dev

PSO POS G 749292.1871 12172.79199 PSO POS G 3332304 27611.47461

PSO POS R 737858.2491 9983.63476 PSO POS R 3307909 28703.17578

GA 721765.0625 6995.33252 GA 3232640 14233.77148

Nug20
SIZE GEN # POP size

Sko56
SIZE GEN # POP size

20 5000 100 65 10000 100

Algorithms Mean best Std Dev Algorithms Mean best Std Dev

PSO POS G 2680.120117 34.834686 PSO POS G 35955.64063 309.11557

PSO POS R 2629.800049 24.587896 PSO POS R 35452.19922 179.47287

GA 2606.199951 21.662531 GA 35040.23828 184.824081

Bur26a
SIZE GEN # POP size

Ste36a
SIZE GEN # POP size

26 5000 100 36 10000 100

Algorithms Mean best Std Dev Algorithms Mean best Std Dev

PSO POS G 5445906.1 8688.298828 PSO POS G 10808.51953 436.841125

PSO POS R 5434604.5 3932.839611 PSO POS R 10252.40039 235.487991

GA 5436641.5 5282.220703 GA 10061.67969 219.714996

Tai20b
SIZE GEN # POP size

Tai40b
SIZE GEN # POP size

20 5000 100 40 10000 100

Algorithms Mean best Std Dev Algorithms Mean best Std Dev

PSO POS G 124803488 1190690.75 PSO POS G 696782272 28186792

PSO POS R 123274304 783373.25 PSO POS R 662772480 13308939

GA 125778728 5234746.11 GA 679525504 18660756

7.3.2. Extended comparisons

In addition, another PSO scheme for QAP is also imple-
mented with ring topology based on PSOpos to illustrate
the benefits of changing topology. As shown clearly in

Figure 7(a), the position-based PSO scheme with ring topol-
ogy (PSOpos R) outperforms the position-based PSO scheme
with global topology (PSOpos G) by enhancing the explo-
ration power through the implicit search control introduced
by ring topology. In order to compare the exploration power



T. Gong and A. L. Tuson 15

of both PSOs, the average velocities of both schemes are
plotted in Figures 7(b). From Figure 7(b), we can easily
find that the ring structured PSO (PSOpos R) has a greater
persistence in maintaining its velocity level than the global
PSO (PSOpos G), which in turn enables a better exploration
of the search space. Another observation is that, by the end
of the execution, the average velocity of PSOpos R has not
decreased to 0 yet, which means that given a larger number
of generation an even better performance can be expected.

The mean-best and standard deviation produced by our
PSO schemes for each instance are presented in Table 2 under
algorithms PSOpos G (for global structure) and PSOpos R
(for ring structure). The results are also compared against
a steady state standard GA using cycle crossover, with swap
mutation (mutation rate = 0.1).

From the results, we can see that PSOpos R with ring
topology overall outperforms PSOpos G with global topol-
ogy, while generally GA still performs slightly better than
the PSO schemes we have for some cases. We understand
that this inferiority is mainly caused by the simplification of
the inertia component in the PSO operator template, since a
random k-change is not good enough to represent a directed
k-change which should be parameterised by its previous
velocity. This drawback requires our further research on
how to replicate and apply distance, so that the previous
distance/velocity can be retained and applied during the next
generation. If we are able to implement this, the PSO should
display a better convergence pattern. Also, further tuning and
exploration of PSO options will inevitably lead to improved
performance. However, we should point out that the main
aim of this paper is certainly not to produce sophisticated
PSO schemes with competitive results. Instead, the intent
of this work is to generalise PSO in a formal manner,
adapt its working mechanism to the permutation problem
domain with reasonably good performance, and hopefully
show some future research directions on generalising PSO.
In this case, performance comparison at a competitive level
is not performed due to the fact that most of those results
were produced by highly tuned/adapted hybrid algorithms
[5, 31] where the separate contribution of each component is
usually hard to justify, and comparisons against them would
be of limited value.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented how the original PSO
operator can be generalised in a formal manner to the per-
mutation problem domain using forma analysis, with both
the formal descriptions of permutation and a stochastic PSO
operator template defined. By considering the application of
operators as a process of constraint satisfaction, we derived
several concrete PSO schemes for permutation problem,
each of which involves a different assumption made on the
description of the search space. Through observations of the
search patterns of the derived PSO schemes together with the
ring structured extension of position-based PSO on the QAP
benchmarks, it is clear that the description choice is a critical
issue in operator design, and the position-based PSO scheme
for QAP achieves a certain degree of convergence towards the

optimum in a similar manner as the traditional PSO for real-
vector space, with results comparable to a standard GA.

More importantly, we have presented in this paper a
principled approach to formally derive algorithms with
regard to the actual problem domain, in which case the
behaviors and the performance of the derived algorithms are
directly related to the assumption we make to describe the
search space.

In the future, efforts on the improvement of these
discrete PSO schemes are possible by considering additional
issues (e.g., topological search control, local search, and even
parameter selections). Application of our methodology to a
wider range of problems and optimisation techniques can
also be explored. In addition, the interpretation of applying a
directed k-change (e.g., distance replication) in the context of
permutation problems should be studied in the future to give
a better understanding of the working mechanism of PSO for
those problems.
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1. INTRODUCTION

A new direct search method using only function values is
proposed for finding a local minimizer x∗ with associated
function value f ∗ of a real valued function f (x), x = [x1,
x2, . . . , xn]T ∈ Rn. The method proposed may be consid-
ered as the synthesis of two unconventional trajectory meth-
ods for the unconstrained minimization of a multivariable
function. The first is the dynamic method of Snyman [1, 2],
and the second method is the particle swarm optimization
(PSO) method of Eberhardt and Kennedy [3]. In the dy-
namic method, also known as the leap-frog algorithm, the
minimum of the function is sought by considering the dy-
namic motion of a single particle of unit mass in an n-
dimensional force field, where the potential energy of the
particle is represented by the function to be minimized. In
the computation of the numerical trajectory (by means of
the leap-frog integration scheme of Greenspan [4]), an in-
terfering strategy is applied to the motion of the particle by
extracting kinetic energy whenever it moves “uphill” along
its trajectory. In this way, the particle is forced to converge

to a local minimum. This method requires the availability of
the gradient vector of the function, denoted ∇ f , the nega-
tive of which represents the force acting on the particle. The
particle’s acceleration is therefore proportional to−∇ f . This
is in contrast to classical gradient-based optimization, where
position updates (or parts thereof) are proportional to−∇ f .
In the PSO method, the motion of a swarm of loosely inter-
acting particles is considered. In this method, each particle is
attracted to the best location (lowest function value position)
along its path, as well as to the globally overall best position
over all the particle trajectories to date. This method requires
no gradient information and may therefore be considered a
direct search method.

In the new method proposed here, the minimization of
a function is achieved through the dynamic motion of a
strongly interacting particle swarm, where each particle in
the swarm is simultaneously attracted by all other particles
located at positions of lower function value. The specific
force law for the interaction between the individual parti-
cles within the swarm dictates that the force of attraction
experienced by a particle at higher function value position
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due to a particle at a lower function value position be equal
to the difference between the respective function values di-
vided by their distance of separation. The resultant motion
of the particles under the influence of the attracting forces
is computed by solving the associated equations of motion
numerically by using again the leap-frog numerical integra-
tion scheme. An energy dissipation strategy, similar to that
used in the original dynamic method, is applied to each par-
ticle by extracting kinetic energy from a particle whenever it
moves “uphill”. The specific chosen force law and the dissi-
pation strategy result in the rapid collapse (convergence) of
the swarm to a stationary point. To prevent the collapse of
the swarm to a minimum in a subspace of Rn, the computed
components of the respective attracting forces are individu-
ally stochastically perturbed in computing the respective par-
ticle trajectories. Because of the strong interaction, the result-
ing algorithm converges rapidly to a local minimum, as does
the original dynamic algorithm, but now without the need
of explicit gradient information. Note that the method pro-
posed here is not similar to the method proposed by Engel-
brecht [5], where the position of only the global best particle
is adjusted using the dynamic method, with the remainder of
the swarm using a standard PSO algorithm.

The proposed dynamic particle swarm optimization
(DYN-PSO) algorithm promises to be an extremely reliable,
robust, and easy-to-use method. As a preliminary test, it was
decided to evaluate its performance against that of both tra-
jectory methods it was constructed from, namely, a standard
PSO algorithm [6] and the dynamic method of Snyman. The
choice of a standard PSO algorithm is a deliberate one. The
intention with this paper is to determine whether or not
DYN-PSO deserves further investigation, not to suggest that
this is a superior algorithm. A comparison to a standard PSO
rather than a highly refined PSO variant serves this purpose
better.

Before proceeding, the constrained molecular dynamics
PSO by Poli and Stephens [7] deserves to be mentioned. In
essence, their method is similar is spirit, but the details differ.
They embed the cost function (the height above the search
space) as an artificial coordinate, and then constrain the par-
ticles “to be on the fitness landscape” via an equality con-
straint. Their general formulation allows for different types
of forces, one of which is a gravity-like force. In our imple-
mentation, this gravity-like force is the only external force.
Poli and Stephens also consider particle-interaction forces.
In particular, they discuss the case of particles connected by
springs and energy dissipation that occur via friction/viscous
damping. They then also numerically integrate the result-
ing differential equation, but elect to use the forward Euler
method. Their method still requires cost function gradients,
as well as second-order derivatives, which they approximate
numerically. Limited numerical testing was performed.

2. DESCRIPTION OF THE DYNAMIC-PSO METHOD

2.1. Computation of particle trajectories

The DYN-PSO method is started by generating at time t = 0,
a swarm of np particles, each of unit mass, with random ini-

tial positions denoted by x{i}(0) = x0{i}, i = 1, 2, . . . , np,
within the region (“box”) of interest in Rn. Initially, at t = 0,
these particles all have zero velocities, that is, v{i}(0) =
v0{i} = 0, i = 1, 2, . . . , np. We now postulate that at time
t each particle i experiences a force a{i}(t), which is to be a
function of the positions x{ j}(t) and corresponding func-
tion values f (x{ j}(t)), j = 1, 2, . . . , np of all the particles
at time t. The explicit analytical form of the force law giv-
ing a{i}(t) will be discussed in the next subsection. Thus, the
trajectories x{i}(t) of the particles are given by the solution
to the system of initial value problems

ẍ{i}(t) = a{i}(t) (1)

with initial conditions

x{i}(0) = x0{i},

ẋ{i}(0) = v{i}(0) = v0{i} = 0;
(2)

for i = 1, 2, . . . , np.
In practice, these equations are solved numerically by

discretizing the time interval into time steps δ, and com-
puting for i = 1, 2, . . . , np approximations xk{i} to x{i}(tk)
and vk{i} to v{i}(tk) at discrete time mesh points tk =
kδ, k = 0, 1, 2, . . . , by some suitable numerical integration
scheme. Here, we use the simple leap-frog numerical inte-
gration scheme of Greenspan [4].

Given x0{i} and v0{i} for i = 1, 2, . . . , np, then for itera-
tions k = 0, 1, 2, . . . , compute for i = 1, 2, . . . , np:

vk+1{i} = vk{i} + ak{i}δ,

xk+1{i} = xk{i} + vk+1{i}δ,
(3)

where ak{i} denotes the resultant force on particle i due to
the individual forces of all the other particles at respective
positions xk{ j}, j = 1, 2, . . . , np, j /= i (see next subsection).

This scheme has been found to be stable for sufficiently
small time steps δ. It is also approximately energy conserving
in the absence of energy dissipating forces, and was success-
fully used in the original single-particle dynamic method of
Snyman [1].

2.2. The interacting force law

In the original dynamic method of Snyman [1, 2], a single
particle is considered. The force a acting on this particle is
equal to the negative of the function gradient. Since we pro-
pose a direct search method, we no longer have gradient in-
formation available. Rather, we will use information available
in the swarm to generate the particle forces.

We now postulate that at iteration k each particle i in the
swarm is simultaneously attracted by all other particles lo-
cated at current computed positions of lower function value.
No force is exerted on particle i by particles at higher function
value positions. The explicit force law that we assume here
dictates that the force of attraction experienced by a particle
at higher function value due to a particle at a lower function
value position is equal to the difference between the respec-
tive function values, divided by their distance of separation.
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If the particle positions are randomly distributed, this force
law can be viewed as a coarse finite difference computation,
with the finite difference step equal to the distance of sepa-
ration. As the particle positions become biased, the analogy
between this proposed force law and a finite difference com-
putation breaks down. This breakdown occurs since multi-
ple forces in the same direction add up, opposed to stan-
dard finite difference perturbations which form an orthog-
onal set. Even considering generalized finite differences [8],
the gradient components due to multiple perturbations in
the same direction are averaged, rather than added together
as in our proposed force law. A stochastic element is intro-
duced into the proposed force law by randomly perturbing
the direction of action of the attracting force. More explic-
itly and precisely, at each iteration k the resultant force ex-
erted on particle i at current position xk{i} with function
value f (xk{i}) by the other np − 1 particles at current posi-
tions xk{ j}, j = 1, 2, . . . , np, j /= i with corresponding func-
tion values f (xk{ j}) is given by the force ak{i} with compo-
nents

akm{i} =
∑np

j=1, j /=i
[
xkm{ j} − xkm{i}

]
cj2(rd)

∥
∥xk{ j} − xk{i}∥∥ (4)

for m = 1, 2, . . . ,n. Here cj = max[0, f (xk{i}) − f (xk{ j})]
and rd is, for each j, an independent random number in [0,
1]. Note that the multiplication of a uniform random num-
ber in [0,1] by 2 results in a scheme that on average assigns
unit weight to each of the computed components. If this
stochastic element is omitted, the proposed algorithm suffers
from premature convergence due to collapse of the swarm to
a subspace in Rn. Similar observations have been made for
the linear PSO [9].

This proposed force law is in contrast to the standard
PSO, where particles are attracted to historic positions (per-
sonal and global bests) rather than the current position of
other particles. In addition, this force law automatically re-
sults in a dynamic neighborhood, where it is possible that
completely different particles exert forces on particle i in it-
eration k + 1, as compared to iteration k. In a given iteration
k, the complete range of interaction is also covered. One ex-
treme is the particle with the current worst function value,
which experiences forces from all other particles. The other
extreme is the particle with the current best function value,
which experiences no force and travels at constant velocity.

2.3. Energy dissipation strategy

In computing the trajectories of the particles xk{i}, i =
1, 2, . . . , np, for k = 0, 1, 2, . . . , the function values fk(i) =
f (xk{i}) at xk{i} are monitored at each iteration k so that
the best (lowest) function value fb{i} and the corresponding
best position xb{i} along each trajectory i are recorded. The
current overall globally best function value fg = mini( fb{i})
and the corresponding position xg are also recorded.

The following energy dissipation strategy is now applied
to ensure local descent of a particle and the overall collapse
of the swarm to a local minimum. Whenever a particle i
moves “uphill” at iteration k, that is, when fk+1{i} > fk{i},

then set xk+1{i} := [2xk{i} + xb{i} + xk+1{i}]/4 and set
vk+1{i} := [vk+1{i} + vk{i}]/4. Notice that the current ve-
locity vk+1{i} is recomputed to be half the average velocity
over the past two time steps. This interference will normally
result in a decrease in kinetic energy and together with the
“backward” adjustment of the position xk+1{i} will initiate
controlled motion of the particle towards a position of lower
function value. The trajectory of particle i is assumed to have
converged if the relative function value difference from iter-
ation k to k + 1, that is, | fk+1{i} − fk{i}|/(1 + | fk+1{i}|), is
less than some prescribed tolerance ε. The computation of
the trajectories are continued until a sufficient number (npc)
of the particles have converged to a stationary point. In prac-
tice, we choose npc = min[n, np].

A formal presentation of the basic DYN-PSO algorithm
is presented in Algorithm 1. For the sake of clarity and sim-
plicity of presentation of the algorithm, the function value
computation and monitoring procedure, and the recording
of best local fb{i} and global fg function values and corre-
sponding best local and global positions, xb{i} and xg are not
explicitly listed, but are implicitly assumed to be done in the
execution of Algorithm 1. Also the computation of the forces
ak{i}, i = 1, 2, . . . , np, according to (4), is assumed to have
been done as the need for the ak{i} arises in Algorithm 1.

2.4. Selection of suitable integration time step

An outstanding matter is the selection of an appropriate time
step δ to be used in the leap-frog integration scheme. This
value can be chosen arbitrarily, but if chosen too large may
result in individually erratic and unstable trajectories that fail
to converge because of very large zigzagging steps being taken
in space. On the other hand, if δ is too small, the steps in
space will be correspondingly small and the collapse of the
swarm may be very slow, requiring an excessively large num-
ber of iterations for convergence.

Many different schemes may be proposed to automati-
cally select and control the time step so that acceptable con-
vergence rates are obtained. Here, we firstly select an initial
time step which guarantees sufficiently large trajectory steps
in space for all the particles. Secondly, after the trajectories
are initiated, for each iteration k and for each particle i, the
magnitude of the actual step taken in space is monitored; and
if larger than some specified step limit, the time step associ-
ated with the particular trajectory is reduced, that is, we now
allow for different time steps δ{i}, i = 1, 2, . . . , np, for the
different particles. The details of these additional automatic
time step control procedures follow below.

In Step 1 of Algorithm 1, after the generation of the np
random particles, compute the average magnitude a of the
forces acting on the particles a =∑i‖a{i}‖/np. An associated
average computed initial step size follows from the leap-frog
scheme as Δx = aδ2. Requiring initially, on average, a step
size of Δx = D, where D is the diameter of the initial vari-
able “box”, we initially select as sufficiently large initial time
steps δ{i} = δ = √

D/ a, i = 1, 2, . . . , np, which is now in-
serted in Step 1 just after the generation of the initial random
particle positions. However, for a particular particle, this ini-
tial choice for the time step may still be too large and result
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Given the following:

(i) function f (x), x = [x1, x2, . . . , xn]T ∈ Rn;
(ii) np = number of particles;

(iii) y = central point of region (“box”) of interest;
(iv) range(i) = range of ith dimension of variable “box”;
(v) δ = integration time step;

(vi) ε = tolerance for convergence of a trajectory on
function value;

(vii) npc = number of particle trajectories required to
converge before termination (default: npc = min[n,
np]);

(viii) max = maximum number of iterations allowed,

then perform the following steps.
Step 1.

(i) For i = 1, 2, . . . , np, generate random particle
starting positions x0{i} within the specified box
with components: x0

j {i} = yj + range( j)(rd − 1/2);
j = 1, 2, . . . ,n, where rd is an independent random
number in the interval [0, 1];

(ii) set initial velocities equal to zero: v0{i} = 0 and set
iteration number k := 0; and convergence counter
ic := 0.

Step 2.

(i) Compute trajectory step k to k + 1 for each particle
i = 1, 2, . . . , np, using the leap-frog integration scheme:
for i = 1, 2, . . . , np,

vk+1{i} := vk{i} + ak{i}δ,
xk+1{i} := xk{i} + vk+1{i}δ,

end for

Step 3.

(i) for i = 1, 2, . . . , np:
if fk+1{i} > fk{i}, then

xk+1{i} := [2xk{i} + xb{i} + xk+1{i}]/4,
vk+1{i} := [vk+1{i} + vk{i}]/4

end if
if | fk+1{i} − fk{i}|/(1 + | fk+1{i}|) < ε and k > 0, then

set ic = ic + 1;
if ic = npc, then set x∗ := xg and f ∗ := fg and stop.
if k = max, then stop.
end for

(ii) set k := k + 1; ic := 0 and go to Step 2.

Algorithm 1: Basic DYN-PSO algorithm.

in erratic behavior along the computed trajectory. Thus, as a
further control measure, the magnitude of the step taken by
each particle is monitored at each iteration, and if it exceeds
a specified limit xlim, the current velocity is scaled down by
a factor xlim/‖xk+1{i} − xk{i}‖, the particle’s time step for
subsequent steps is reduced by a factor α, and the step to
xk+1{i} is recomputed using the rescaled velocity and new
time step. More specifically, we introduce at the end of Step
2 of Algorithm 1, for each iteration k and for each particle i,
the additional procedure given in Algorithm 2.

In practice, good choices for the additional parameters
introduced here are xlim = D/2 and α = 0.5. These values are
used in the numerical tests that are reported here.

if ‖xk+1{i} − xk{i}‖ > xlim then
δ{i} := αδ{i}
vk+1{i} := xlimvk+1{i}/‖xk+1{i} − xk{i}‖
xk+1{i} := xk{i} + vk+1δ{i}

end if

Algorithm 2: Adjustment of time step δ.

One complication of the above strategy arises if the na-
ture of the cost function changes dramatically as the search
proceeds. The initial time steps are appropriate during the
initial stages of the search. However, the average force acting
on the particles often decreases over time. Hence, the average
particle step size also decreases over time. This seems appro-
priate for swarm convergence, but the step size decrease may
be excessive if the average magnitudes of the forces computed
by (4) decrease dramatically. This typically happens in the
neighborhood of a local minimum of highly nonlinear func-
tions. To overcome this drawback, we simply recompute the
time steps δ{i} = δ = √D/ a, i = 1, 2, . . . , np, whenever ap-
propriate, using the recomputed average force a. For all the
results presented in this paper, the time steps are recomputed
every 100 iterations.

3. NUMERICAL PERFORMANCE OF
THE DYN-PSO METHOD

3.1. Illustrative two-dimensional trajectories

To illustrate the mechanics of the DYN-PSO algorithm, we
compute the trajectories for f (x) = x2

1 + 2x2
2 with 3 particles,

that is, the case n = 2 with np = 3. As starting points, we se-
lect the vertices (40, 40); (−40, 0); (40,−40). Figure 1 depicts
the three computed trajectories (using diameterD = 100) up
to the 30th iteration at which point fg = 9.48 × 10−4, with
x
g
1 = −0.0201; x

g
2 = 0.0165.

3.2. Choice of number of particles

Throughout the numerical experiments done here, the num-
ber of particle trajectories required to converge before termi-
nation of the algorithm is taken as npc = min[n, np]. It is
now required to obtain an indication of what is a good or an
optimum choice for the number of particles np to be used for
“normal” problems where one expects a single unique global
minimum in the region of interest. To get an indication of
what it should be, some experiments were performed (with
function value tolerance ε= 10−8) on the extended homoge-
neous quadratic test function (see list of test problems) for
n = 10 and n = 20, using different values for np and de-
termining the average number of functions evaluations (over
100 independent runs) required for successful convergence
in each case. The variation of the number of function evalu-
ations against np is shown in Figure 2. Note that for n = 20,
the number of function evaluations appears to be almost in-
sensitive to np over the range np = 15 to np = 25, with a
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variation of less than 4 percent being recorded. The corre-
sponding variation of average function value at convergence
with np is depicted in Figure 3. The results appear to indicate
that in general a choice of np = n+ 1 (i.e., with the positions
of the particles defining the vertices of an n-dimensional sim-
plex in Rn) is probably a good one. Consequently, the choice
np = n + 1 is used throughout the experiments performed
in the next subsection. Since this guideline is based on a very
narrow test, some future effort should be directed towards
improved guidelines to determine the number of particles. It
is anticipated that highly multimodal problems might benefit
from an increased number of particles.
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3.3. Performance on a set of test functions

The newly proposed DYN-PSO algorithm is tested on the fol-
lowing eight test problems.

(i) Homogeneous quadratic (unimodal)

f (x) =
n∑

i=1

ix2
i (5)

subject to −5 < xi < 5 for i = 1, 2, . . . ,n; f ∗ = 0, at x∗ =
[0, 0, . . . , 0]T .

(ii) Oren’s power function (unimodal) [1]

f (x) =
( n∑

i=1

ix2
i

)2

(6)

subject to −10 < xi < 10 for i = 1, 2, . . . ,n; f ∗ = 0, at x∗ =
[0, 0, . . . , 0]T .

(iii) Extended Rosenbrock (multimodal) [10]

f (x) =
n−1∑

i=1

[
100(xi+1 − x2

i )2 + (1− xi)2] (7)

subject to −2.048 < xi < 2.048 for i = 1, 2, . . . ,n; f ∗ = 0, at
x∗ = [1, 1, . . . , 1]T .

(iv) Neumaier 3 (multimodal) [10]

f (x) =
n∑

i=1

(xi − 1)2 −
n∑

i=2

xixi−1 (8)

subject to −n2 < xi < n2 for i = 1, 2, . . . ,n; f ∗ = −n(n +
4)(n− 1)/6, at x∗i = i(n + 1− i).

(v) Extended Manevich (unimodal) [11]

f (x) =
n∑

i=1

(
1− xi

)2

2i−1
(9)
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Figure 4: Convergence history on the homogeneous quadratic test
function.
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Figure 5: Convergence history on Oren’s power test function.

subject to −10 < xi < 10 for i = 1, 2, . . . ,n; f ∗ = 0, at x∗ =
[1, 1, . . . , 1]T .

(vi) Zakharov (unimodal) [12]

f (x) =
( n∑

i=1

x2
i

)

+

( n∑

i=1

0.5ixi

)2

+

( n∑

i=1

0.5ixi

)4

(10)

subject to −5 < xi < 10 for i = 1, 2, . . . ,n; f ∗ = 0, at x∗ =
[0, 0, . . . , 0]T .

(vii) Griewank (multimodal) [10]

f (x) = 1 +
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos
(
xi√
i

)

(11)
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Figure 6: Convergence history on the Rosenbrock test function.

subject to −600 < xi < 600 for i = 1, 2, . . . ,n; f ∗ = 0, at
x∗ = [0, 0, . . . , 0]T .

(viii) Rastrigin (multimodal) [10]

f (x) = 10n +
n∑

i=1

[x2
i − 10cos

(
2πxi

)
] (12)

subject to −5.12 < xi < 5.12 for i = 1, 2, . . . ,n; f ∗ = 0, at
x∗ = [0, 0, . . . , 0]T .

Each test problem is solved 100 times for problem di-
mension n = 10 and 30. The DYN-PSO algorithm is com-
pared to the dynamic method of Snyman [1, 2] (STD-
DYN) and a standard PSO algorithm (STD-PSO) (http://
www.particleswarm.info/Standard PSO 2006.c), making use
of settings proposed by Eberhart and Shi [6] (c1 = c2 =
1.49445, constant inertia weight of 0.729 and swarm size
of 20). The gradients required by the dynamic method are
computed using a forward difference method, using a per-
turbation size of 10−6. These additional function evaluations
are taken into consideration in the results of STD-DYN pre-
sented below. The convergence histories of the STD-DYN,
DYN-PSO, and STD-PSO algorithms are depicted in Figures
4 to 11, for the eight test functions. In these graphs, at each
iteration k = 0, 1, 2, . . . , the absolute relative error

er =
∣
∣ fg − f ∗

∣
∣

1 +
∣
∣ f ∗

∣
∣ , (13)

averaged over the 100 runs, is plotted against the correspond-
ing average number of function evaluations.

Two common scenarios exist to terminate optimization
algorithms. First, some convergence criteria are satisfied,
which indicates that no substantial improvement is likely and
search can terminate. Alternatively, a maximum number of
function evaluations may be specified. For the test problems
considered here, both these scenarios occur. The many local
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minima present in the multimodal Griewank and Rastrigin
test functions prevent the majority of particle trajectories to
converge, hence these problems are terminated based on a
maximum allowable number of function evaluations. The
proposed convergence criteria work well for all the remain-
ing test functions, where we used a convergence tolerance of
ε= 10−8.

The STD-DYN and DYN-PSO algorithms always locate
the global minimum for the homogeneous quadratic, Oren’s
power function, Neumaier 3, Manevich and Zakharov prob-
lems. The STD PSO fails to do so for the 30D Neumaier
problem. Also note that out of these 5 test problems, the
STD-DYN algorithm is most efficient on the homogeneous
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Figure 9: Convergence history on the Zakharov test function.
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Figure 10: Convergence history on the Griewank test function.

quadratic, Oren’s power function, and the Zakharov func-
tion, all of which are unimodal. The DYN-PSO algorithm
performs best on the Neumaier 3 problem and the 30D
Manevich function. STD PSO is only more efficient than the
DYN-PSO algorithm for Oren’s power function.

In the case of the Rosenbrock test function, the DYN-
PSO algorithm does not always locate the global minimum.
In those cases in which the global minimum is not found,
the algorithm converges to the only other local minimum, as
reported by Shang and Qiu [13]. In the Rosenbrock exper-
iments, 89 and 96 of the 100 runs converged to the global
minimum, for n = 10 and 30, respectively. The STD-DYN
method locates the global minimum 83 and 88 times, for
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Figure 11: Convergence history on the Rastrigin test function.

n = 10 and 30, respectively. Note however that the number of
function evaluations is more than a factor 10 less compared
to the DYN-PSO algorithm. In the case of the STD-PSO al-
gorithm, the majority of runs do not converge to either the
global or local minimum. The number of runs that has a
global best less than 1 after 3 × 105 function evaluations is
98 and 4, respectively, for n=10 and 30. The absolute relative
error in Figure 6 is computed by only averaging over those
runs that converge to the global minimum (DYN PSO and
STD DYN) or those that have a global best less than unity
after 3× 105 function evaluations (STD PSO).

Finally, the DYN-PSO algorithm never locates the global
minimum for the multimodal Griewank and Rastrigin test
functions. The dynamic method, which is the backbone of
the DYN-PSO algorithm, was developed as a local minimizer.
However, the energy dissipation strategy we opted in the
DYN-PSO algorithm is unchanged from that of the original
dynamic method. This strategy is quite severe on “uphill”
moves and hence energy is lost quickly if many local min-
imizers are present, such as in the Griewank and Rastrigin
test functions. Nevertheless, compared to the performance
of the STD-DYN method, the DYN PSO is vastly superior on
the Rastrigin test function. The STD-DYN method simply lo-
cates the first strong local minimum and cannot escape it. On
the Griewank function, DYN PSO is superior to STD DYN
for 10D, and vice versa for 30D. The STD PSO however far
outperforms both STD DYN and DYN PSO for the Griewank
function. However, in our experience, the performance of the
DYN-PSO algorithm is still comparable to that of more tradi-
tional global optimization algorithms. The current algorithm
does demonstrate the ability to escape some local minima,
similar to the standard PSO algorithm. The performance on
the 30D Rastrigin function is especially noteworthy, with a
mean function value less than 20 after only 5 000 function
evaluations. This is obtained with the standard settings pro-

posed here, with no tuning of parameters to suit the prob-
lem.

In summary, the DYN-PSO algorithm seems to inherit
the desired properties from both its ancestors. It can effi-
ciently solve unimodal functions, sometimes even more ef-
ficiently than the gradient-based local minimizer it is based
on, for example, the 30D Manevich problem. This is achieved
without making use of gradient information. Therefore, the
DYN-PSO method might even work for discontinuous prob-
lems. This efficient local character is blended with nonlocal
behavior, where the swarm provides sufficient information to
solve multimodal problems, illustrated best on the Rastrigin
function.

4. CONCLUSIONS

We have proposed a novel dynamic interacting particle
swarm optimization algorithm. The algorithm compares well
to a standard PSO implementation, especially in terms of effi-
cient solution of high-dimensional problems containing few
local minimizers. Based on these promising results, the DYN-
PSO algorithm deserves further development.

A number of outstanding issues remain. The importance
of recomputing appropriate time-step sizes is already rec-
ognized, but more refined criteria should be developed. A
guideline for the number of particles for efficient search is
already proposed, but since it is based on a very narrow test,
additional experiments are required. Also, the convergence
criterion can be refined in order to also work for functions
containing a very large number of local minimizers. The
mechanism that probably requires the most attention is the
energy dissipation scheme, which can be modified to increase
the probability of convergence to the global minimum in the
case of multiple local minima. This could be achieved by less
aggressive energy dissipation during “uphill” moves, but will
necessarily retard convergence.

The initial results indicate that the proposed DYN-PSO
algorithm shows much promise as an alternative direct
search method for solving large scale unconstrained opti-
mization problems. The algorithm seems capable of solving
unimodal problems economically, and it also has competitive
performance on functions containing many local minima.
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1. INTRODUCTION

Particle swarm optimization (PSO) is an evolutionary com-
putation technique [1] for optimization which is inspired by
the social behavior of individuals in groups in nature. The
particle swarm algorithm applied to optimization problems
is very simple.

(1) Individuals, or particles, are represented by vectors
whose length is the number of degrees of freedom of the op-
timization problem.

(2) To start, a population of particles is initialized with
random positions (x0

i) and velocities (v0
i ). A misfit or cost

function is evaluated for each particle.
(3) As time advances, the positions and velocities of each

particle are updated as a function of its own history of misfits,
and the misfit of its neighbors. At time-step k + 1, positions
(xk+1

i ) and velocities (vk+1
i ) of the individuals are calculated

as

follows:

vk+1
i = ωvki + φ1·1·

(
gk − xki

)
+ φ2·1·

(
lki − xki

)
,

xk+1
i = xki + vk+1

i ·1
(1)

with

φ1 = r1ag , φ2 = r2al, r1, r2 −→ U(0, 1), w, al, ag ∈ R,
(2)

where lki is the ith particle best position, gk is the global best
position found so far, φ1, φ2 are the global and local acceler-
ations, and ω is a real constant, called inertia.

The real scalar 1 in (1) stands for the time step necessary
to make this algorithm dimensionally correct, as corresponds
to the relationship between trajectories, velocities, and ac-
celerations. The random numbers, r1 and r2, affect the local
and global acceleration terms, al and ag , causing the particle
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trajectory to oscillate at each iteration around its center [2],
named

oki =
φ1gk + φ2lki
φ1 + φ2

. (3)

Thus, relative values of φ1 and φ2 affect the balance between
local and global search. PSO algorithm has been also adapted
to incorporate a different kind of topologies concerning the
“informant group.”

Convergence properties and PSO trajectories were ana-
lyzed, and helped to clarify some numerical aspects of the
PSO algorithm; see [2–6]. Also, based on these analysis, some
parameter selection strategies were proposed (see, e.g., [5]).

Stability analysis of the particle dynamics has also been
done in presence of randomness by Kadirkamanathan et al.
[7], using Lyapunov techniques. As result of this analysis,
they found a sufficient condition on (ω,φ) to achieve con-
vergence:

{
(ω,φ) : |ω| < 1, w /= 0, φ <

1− 2|w| +w2

1 +w

}
. (4)

Nevertheless, this condition is very restrictive, and this region
does not include the best parameters found in the literature.

Physical analogy with a damped mass-spring oscillator
was introduced by Brandstätter and Baumgartner [8] to opti-
mize electrical engineering problems, nevertheless, this anal-
ogy was not completely exploited in their work. Recently,
Fernández Martı́nez et al. [9] used this analogy to derive the
PSO continuous model and to present a systematic study of
PSO trajectories by means of stability analysis of the deter-
ministic PSO difference equations involved and fixed point
techniques. The PSO convergence can then be explained in
terms of some combined criteria: trajectory attenuation, tra-
jectory oscillation, and center attraction potential, explaining
the success in achieving convergence of some parameter sets
found in the literature.

Interdisciplinary approaches, from classical Newtonian
mechanics to molecular dynamics theory, have been recently
proposed by Mikki and Kishk [10] to study the thermody-
namic behavior of PSO, providing new criterion to analyze
the algorithm convergence. Also, stagnation analysis [11] and
statistical approaches [12] were used to characterize the sam-
pling distribution of PSO in presence of stochasticity and to
provide criteria for the PSO parameter selection.

In this paper, we present a generalized form of the par-
ticle swarm optimization (PSO), which is derived from a
continuous version of PSO. This idea has been partially pre-
sented in [9, 10, 13], but in this manuscript is fully devel-
oped.

(1) The deterministic and stochastic stability regions and
the asymptotic velocities of convergence of the GPSO algo-
rithm are analyzed as a function of the time step, the local
and global accelerations, and the inertia value.

(2) Generalized and continuous PSO models are com-
pared in terms of attenuation and oscillation properties as
a function of the time step and the PSO parameters. As ex-
pected, GPSO properties tend to those of the continuous
PSO model, as the time step goes to zero.

(3)The sampling distribution of the GPSO algorithm is
also analyzed and helps to study the effect of stochasticity
on the stability of trajectories. The stability region for the
second-, third-, and fourth-order moments depends on in-
ertia, local, and global accelerations and time discretization
step. These regions are smaller in size than the correspond-
ing deterministic stability region for the same time step. Re-
gions increase in size as time step decreases. Also, for a given
time step, the maximum size of the second-order stability re-
gion occurs when local and global accelerations are equal.
Properties of the second-order moments—variance, covari-
ance, variogram, and correlogram—are also explored with a
moving center of attraction, assuming that l(t) and g(t) ex-
hibit a deterministic behavior. This analysis serve to propose
some promising parameter sets. High variance and temporal
uncorrelation improve the exploration task needed to solve
ill-posed inverse problems. A similar idea has been also pro-
posed by Clerc [11] under stagnation.

(4) Finally, a comparison is made between PSO and
the GPSO by means of numerical experiments using well-
known benchmark functions supporting the theoretical re-
sults. Based on these results two variants of generalized PSO
algorithm are proposed, improving the convergence and the
exploration task while solving real applications in inverse
problems modeling.

2. THE PSO DIFFERENCE EQUATIONS

In the PSO algorithm, the following vectorial difference
equation is involved for each particle in the swarm:

xk+1
i + (φ − ω − 1)xki + ωxk−1

i = φoki = φ1gk + φ2lki ,

x0
i = xi0,

x1
i = x0

i +wvi0 + φ
(

o0
i − x0

i

)
,

(5)

where φ = φ1 + φ2 is a random variable with trapezoidal (or
triangular if al = ag) distribution, and i is the particle num-
ber.

Let us introduce the variables ξki = xki − oki , that is, parti-
cle’s positions in iteration k are referred to their oscillation
center oki (3). Then, the following second-order difference
equation is involved:

ξk+1
i + (φ − ω − 1)ξki + ωξk−1

i = β(o), k ∈ N,

β(o) = oki − ok+1
i +w

(
oki − ok−1

i

)
.

(6)

When the oscillation center oki stabilizes (stagnation case),
then the PSO algorithm involves the following vectorial
stochastic difference equation [6]:

ξk+1
i + (φ− ω− 1)ξki + ωξk−1

i = 0, k ∈ N,

ξ0
i = ξi0,

ξ1
i = (1− φ)ξi0 +wvi0.

(7)
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In this model, trajectories are considered as random func-
tions.

Let us introduce the PSO deterministic case which is
modeled by difference equation (7) and φ is in this case is
a real constant. As we will show on the stochastic stability
analysis, this model describes the mean behavior of random
trajectories, E(ξk+1

i ), when φ = φ = (ag + al)/2 is in this case
the average value of random variable φ.

The deterministic stability region of the PSO is the part
of the space (ω,φ), where the roots of the characteristic equa-
tion

λ2 + (φ− ω− 1)λ +w = 0 (8)

are in the unit circle. This region turns to be [4]

SD =
{

(ω,φ) : |ω| < 1, 0 < φ < 2(w + 1)
}
. (9)

The border line between complex and real roots of the char-
acteristic equation (8) is the parabola

(
φ −w − 1

)2 = 4w, 0 ≤ w < 1. (10)

Model (7) has been generalized, for any time t, to the so-
called PSO-discrete functional model,

ξ(t + 1) + (φ− ω − 1)ξ(t) + ωξ(t − 1) = 0, t ∈ R,

ξ(0) = ξ0,

ξ(1) = ξ0(1− φ) +wv0

(11)

that provides the continuous analytical function that over-
laps the discrete PSO points, and allows us to perform a sys-
tematic study of the PSO trajectories under stagnation [9].
Four different zones have been differentiated (see Figure 1)
showing a different behavior, depending on the character of
the eigenvalues of the characteristic equation (8) associated
to the PSO difference equation.

The PSO algorithm can also be written in terms of the
absolute position and velocity (xk, vk) in each iteration, as
the stochastic dynamical system

(
xk+1

vk+1

)

=MPSO

(
xk

vk

)

+ bPSO, (12)

where

MPSO =
(
w 1− φ
w −φ

)

,

bPSO =
(
φ1gk + φ2lk

φ1gk + φ2lk

)

.

(13)

The same considerations about random variables φ, φ1,
φ2, and the use of fixed point techniques applied to (12),
allow us to determine the deterministic stability region for
the (xk+1, vk+1) system. The deterministic stability region
with moving center of attraction turns to be SD. Also, this
methodology allows us to obtain information about the
asymptotic velocity of convergence, vc(w,φ), as a function
the spectral radius ρ of the iteration matrix MPSO [9]:

vc(w,φ) = −ln ρ
(
MPSO

)
. (14)

This velocity tends to infinite on the vertex of the parabola
(10), that is, the point (w,φ) = (0, 1).

3. THE PSO CONTINUOUS MODEL

Let us introduce the following stochastic differential equa-
tion:

x′′(t) + (1− ω)x′(t) + φx(t) = φ1g(t) + φ2l(t), t ∈ R,

x(0) = x0,

x′(0) = v0,
(15)

where l(t) and g(t) are respectively the trajectories of the
global and local best trajectories associated to each particle
in the swarm, and φ, φ1, φ2 are random variables.

This can be considered the PSO continuous model, de-
scribing the continuous movement of each coordinate of any
particle in the swarm. Referred to the oscillation center,

o(t) = φ1g(t) + φ2l(t)
φ

, (16)

the continuous model becomes

ξ′′(t)+(1−ω)ξ′(t)+φξ(t) = −(1−w)o′(t)−o′′(t), t ∈ R,

ξ(0) = ξ0,

ξ′(0) = ξ′0.
(17)

As mentioned before, this last differential equation becomes
homogeneous when the oscillation center is stable (stagna-
tion), helping to simplify the PSO analysis.

Let us consider for each of the ith particle coordinates,
a centered discretization in acceleration and a regressive
schema in velocity in time t = k ∈ N, and a unit discretiza-
tion time step, Δt = 1:

x′(k) � x(k)− x(k − 1)
1

,

x′′(k) � x(k + 1)− 2x(k) + x(k − 1)
1

.
(18)

It is straightforward to arrive at the PSO-discrete functional
model (5).

The PSO differential model (15) has been deduced from
a mechanical analogy [9]: a damped mass-spring system of
unit mass, damping factor, b = 1−w, and stiffness constant,
k = φ. The knowledge of the trajectories of both the continu-
ous and the discrete model helped to explain why some zones
of the parameter space (w,φ) provide better convergence, in
terms of some combined criteria: trajectory attenuation, tra-
jectory oscillation, and center attraction potential. The same
conclusions are true for the GPSO as it will be demonstrated.

4. THE GENERALIZED PSO

The idea we propose here is to generalize the PSO algorithm
for any time step, Δt. Without loss of generality, the theo-
retical development is done in one dimension, as if we were
reasoning separately for each particle coordinate.
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Figure 1: Trajectories for particles in different zones of the PSO deterministic stability region. ZONE 1: complex zone, ZONE 2: real symmet-
rical oscillating zone, ZONE 3: real asymmetrical oscillating zone, ZONE 4: real nonoscillating zone. The points represent the PSO values.
Continuous line is the solution of the PSO-discrete model at real times. Envelopes curves for trajectories are also shown.

Let us consider the same discretization schemes, men-
tioned above, for velocity and acceleration at time t ∈ R,

x′(t) � x(t)− x(t − Δt)
Δt

,

x′′(t) � x(t + Δt)− 2x(t) + x(t − Δt)
Δt2

,
(19)

and introduce them on the PSO continuous model (15).
Then, the following second-order difference equation is ob-
tained for any real times t and t + Δt:

x(t + Δt)− Ax(t)− Bx(t − Δt) = o(t)φΔt2, (20)

where

A = 2− (1−w)Δt − φΔt2,

B = (1−w)Δt − 1.
(21)

Stochastic functional equation (20) corresponds to the so-
called generalized PSO algorithm.

The GPSO algorithm can be written in terms of the ab-
solute position and velocity (x(t), v(t)) as follows:

v(t + Δt) = (1− (1− ω)Δt)v(t) + φΔt(o(t)− x(t)),

x(t + Δt) = x(t) + v(t + Δt)Δt.
(22)
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Introducing Δx(t+Δt) = v(t+Δt)Δt, the algorithm becomes

Δx(t + Δt) = (1− (1− ω)Δt)Δx(t) + φΔ2t((o(t)− x(t))),

x(t + Δt) = x(t) + Δx(t + Δt).
(23)

This model is valid for any of the particles of the swarm in
any dimension. Considering t = k ∈ N, Δt = 1, we arrive
at the PSO algorithm. Also, taking into account expression
(1), it is easy to show that this algorithm corresponds to a
modified PSO with inertia

wΔt = 1− (1− ω)Δt, (24)

and total acceleration

φΔt =
(
φ1 + φ2

)
Δt2 = φΔt2, (25)

and thus, the effect of decreasing Δt (PSO corresponds to
Δt = 1) is to lower the total acceleration according to Δt2,
and increasing the inertia proportionally to Δt. Thus, the
unit-mass damped spring system involved has a damping
factor

bΔt = 1−wΔt = (1− ω)Δt = bΔt, (26)

instead of b = 1−w, and a stiffness constant

kΔt = φΔt =
(
φ1 + φ2

)
Δ2t = φΔ2t, (27)

instead of k = φ. This means that the swarm movement be-
comes more elastic and less damped for Δt → 0. In fact, the
pair (wΔt,φΔt) follows the parabola

φΔt =
φ

(1−w)2

(
1−wΔt

)2
, (28)

approaching to the point (wΔt,φΔt) = (1, 0), as Δt decreases.

4.1. GPSO deterministic stability analysis

This approach allows us also to calculate the deterministic
stability region of the generalized PSO.

4.1.1. Stagnation case

In case of stagnation, the GPSO difference equation referred
to the oscillation center becomes

ξ(t + Δt)− Aξ(t)− Bξ(t − Δt) = 0,
ξ0 = ξ0,

ξ1 = (1− φΔt2)ξ0 + (1− (1−w)Δt)Δtv0,
(29)

where A,B are given by (21).
The deterministic stability region is the part of the space

(ω,φ), where the roots of the characteristic equation

λ2Δt +
(
(1−w)Δt − 2 + φΔt2

)
λΔt + (1− (1−w)Δt) = 0

(30)

1

1
Δt

1
Δt

ω

φ

4
Δt2

Limit between
complex and real

roots in the
continuous case

Figure 2: Deterministic stability region for the generalized PSO.

are in the unit circle. This region (see Figure 2) turns to be

SGPSO =
{

(ω,φ) : 1− 2
Δt

< ω < 1,

0 < φ <
1
Δt2

(2Δtω − 2Δt + 4)
}
.

(31)

The shadowed part represents the zone where roots are com-
plex. In the rest, both roots are real. Parabola separating real
and complex roots is given by

(
φΔt2 + (1−w)Δt − 2

)2

= 4(1− (1−w)Δt), 1− 1
Δt
≤ w < 1.

(32)

One can show that as Δt → 0, the stability region of the gen-
eralized PSO tends to the continuous stability region, that is,

SC =
{

(ω,φ) : ω < 1, φ > 0
}
. (33)

The upper border line of the PSO algorithm

φ = 2(w + 1), |ω| < 1 (34)

is in fact due to the time discretization adopted for PSO
(Δt = 1) and comes from a mathematical restriction to
achieve stability. Fernández Martı́nez et al. [9] mentioned
this effect, comparing the PSO stability region to its continu-
ous counterpart. Border line (32) separating real and com-
plex roots also follows a similar behavior. Figure 3 shows
numerically, when Δt → 0, how the discrete stability zone
increases its size, approaching the continuous region (33).
Figure 4 shows that, for a given parameter set (w,φ) on the
stability zone, the GPSO trajectories tend to the continuous
as Δt decreases, and thus, the GPSO sampling becomes more
dense. On the opposite, as Δt increases, the stability triangle
of the generalized PSO shrinks.
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4.1.2. Moving center of attraction

The same deterministic stability region, SGPSO, can be de-
duced applying fixed point techniques to the GPSO system:

(
x(t + Δt)
v(t + Δt)

)

=MGPSO

(
x(t)
v(t)

)

+ bGPSO,

MGPSO =
(

(1− (1−w)Δt)Δt 1− φΔt2
1− (1−w)Δt −φΔt

)

,

bGPSO =
⎛

⎝
Δt2(φ1g(t) + φ2l(t))

Δt(φ1g(t) + φ2l(t))

⎞

⎠ .

(35)

This proves that the GPSO deterministic stability analy-
sis shown before is also valid when the oscillation center
changes.

Figure 5 shows the deterministic spectral radius—
associated to the asymptotic velocity of convergence—for the
generalized PSO. The similarity with the PSO case (Δt = 1) is
absolute, and the black zone of high velocity increases in size.
The asymptotic velocity tends to infinite on the parabola ver-
tex, (1− 1/Δt, 1/Δt2).

5. SOME INTERESTING PROPERTIES OF THE GPSO

With GPSO, we have performed a numerical analysis that
seeks to explain why some pairs of (w,φ) in certain zones
of the deterministic convergence triangle work in achieving
convergence and why others do not.

5.1. Center attraction

For a GPSO simplified model where oki = 0, without objec-
tive function, two tests have been made: one deterministic
(see Figure 6(a)) and the other using random φ parameters
(see Figure 6(b)).

30252015105
t

−4

−2

2

4

ξ
Δt = 1

(a)

30252015105
t

−4

−2

2

4

ξ
Δt = 0.5

(b)

30252015105
t

−4

−2

2

4

ξ
Δt = 0.1

(c)

Figure 4: Convergence of the generalized PSO trajectories to the
continuous as Δt → 0. Black points represent GPSO values.

For the deterministic one,

(1) 100 particles, ξ0
p=(x0

p, y0
p), are randomly initialized

over the two dimensional domain [−100, 100] ×
[−100, 100];

(2) a parameter grid (ω,φ) is defined over the region
(ω,φ) ∈ [−3, 1]× [0, 18] with the following grid steps:
Δw = 0.06, Δφ = 0.02;

(3) each particle ξp=(xp, yp) follows the simplified trajec-
tory:

vk+1 = (1− (1− ω)Δt)vk − φΔtξk,

ξk+1 = ξk + vk+1Δt,
(36)

for each point (ω,φ) of the parameter grid;
(4) for each (ω,φ), the particle nearest to the attractor

point—(0, 0) in this case—is found after 100 itera-
tions. Its distance to the attractor point, dmin(ω,φ), is
calculated and expressed in logarithmic scale;

(5) The contour map logdmin(ω,φ) is plotted over the pa-
rameter region [−3, 1]× [0, 18].

In the random case, the same test has been performed,
but 300 simulations have been made for each (ω,φ) (instead
of only one simulation in the deterministic case) and the me-
dian of dmin(ω,φ) has been computed. It can be observed that
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10−1−2−3

ω

0

2

4

6

8

10

12

14

16

18

φ

−120

−100

−80

−60

−40

−20

0

20

40

60

(a) Deterministic case

10−1−2−3

ω

0

2

4

6

8

10

12

14

16

φ

−60

−50

−40

−30

−20

−10

(b) Random case

Figure 6: Effect of the randomness in the center attraction capability for GPSO with Δt = 0.5.

in the upper-right zone of the convergence triangle there is
no convergence (see Figure 6(b)). This is due to the high am-
plitudes and frequencies of the trajectories in this zone.

5.2. Comparison to the PSO continuous model

It has been observed that in zones of optimal convergence,
the continuous and discrete trajectories differ a little [9].
Figure 7 shows the relative logarithmic misfit between the
GPSO for Δt = 0.5 and the PSO continuous model, both us-
ing their trajectories and/or their respective envelope curves.
It can be observed that as Δt decreases, the size of the zone of
similarity increases. The PSO stability triangle is embedded
in this zone.

5.3. Attenuation and oscillation

No convergence close to the point (w,φ) = (1−1/Δt, 1/Δt2),
vertex of the parabola, can be explained by the quick attenua-
tion of the trajectories amplitude and fast convergence to the
oscillation center, that in the first moments of the application
of the algorithm is usually far from the optimum. Figure 8
shows, for different (w,φ) points on the stability region, the
number of iterations (expressed in logarithmic scale) needed
to reduce the amplitude of the GPSO trajectories in 90% for
Δt = 0.5, and the comparison to PSO and to the continuous
case. As in the previous figure, similarity with the continuous
increases as Δt → 0.

The area between envelopes for the discrete trajectories
has been used as a measure of the exploratory capacity of the
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Figure 7: GPSO for Δt = 0.5. (a) logarithmic relative misfit L2 error between continuous and discrete solutions; (b) logarithmic relative
misfit L2 error using envelope curves.

PSO. It can be seen that it is higher asw increases in the com-
plex zone and near to the upper convergence limit in the real
zone. Figure 9 shows the area between envelope curves for
the GPSO with Δt = 0.5 and its comparison to the PSO case.
These two last magnitudes (attenuation and oscillation) have
been proposed as measures of the exploration capabilities as-
sociated to the deterministic PSO trajectories [9].

6. THE SAMPLING DISTRIBUTION OF
THE GPSO ALGORITHM

In this section, we analyze the effect of stochasticity on the
stability of GPSO trajectories using the methodology first
proposed by Poli [12]. Trajectories are modeled as stochas-
tic processes whose univariate and bivariate statistical mo-
ments must satisfy the PSO difference equations involved.
The methodology consists in discretizing the PSO continu-
ous model (15) and applying fixed point analysis to the dy-
namical systems deduced for the first- to fourth-order mo-
ments describing the trajectories stability. This analysis is
performed under stagnation and with a moving center of at-
traction. We show that the stability regions are the same in
both cases.

This methodology becomes, nevertheless, complicated
and time consuming since it involves a linear system of the
kind

yn(t + Δt) =Mnyn(t) + bn (37)

with iteration matrix Mn ∈ M(n(n + 3)/2,n(n + 3)/2), for
controlling the stability of the n-order moments.

6.1. Stagnation case

6.1.1. First- and second-order moments

Let us consider the GPSO difference equation

ξ(t + Δt)− Aξ(t)− Bξ(t − Δt) = 0, t,Δt ∈ R, (38)

where A,B are given by (21).

Let us also consider the vector describing the dynamics
of the first- and second-order moments:

z2(t) = (E(ξ(t)),E
(
ξ(t − Δt)),

E
(
ξ2(t)

)
,E
(
ξ(t)ξ(t − Δt)),

E
(
ξ2(t − Δt)))t

(39)

It is straight forward to show that the stochastic GPSO dy-
namics can be written on algebraic form as

z2(t + Δt) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E(A) B 0 0 0
1 0 0 0 0
0 0 E

(
A2
)

2BE(A) B2

0 0 E(A) B 0
0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

z2(t), (40)

where

E(A) = 2− (1−w)Δt − Δt2φ,

E
(
A2) = (2−(1−w)Δt

)2−2(2−(1−w)Δt)Δt2φ+Δt4E
(
φ2),

E
(
φ2) = a2

l

3
+
a2
g

3
+
alag

2
.

(41)

The following results are of interest.
(1) Stability of the first-order moments only involves the

matrixM1 =
( E(A) B

1 0

)
, and logically provides the same results

as GPSO deterministic stability analysis.
(2) The stability of the second-order moments involves

the matrix

M2 =

⎛

⎜
⎝
E(A2) 2BE(A) B2

E(A) B 0
1 0 0

⎞

⎟
⎠ . (42)
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Figure 8: Number of iterations needed to decrease 90% in amplitude, expressed in logarithmic scale, with initial conditions x i(0) =
1, ν i(0) = 0. (a) continuous case, (b) PSO, (c) GPSO with Δt = 0.5.
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Figure 9: Area between envelope curves using logarithmic scale. (a) PSO, (b) GPSO with Δt = 0.5.

(3) Analysis of the fixed point linear system involved

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p1

p1

p2

p3

p2

⎞

⎟
⎟
⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E(A) B 0 0 0
1 0 0 0 0
0 0 E

(
A2
)

2BE(A) B2

0 0 E(A) B 0
0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

p1

p1

p2

p3

p2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(43)

has allowed us to determine the border line of the second
order stability region. Calling α = ag/φ, it is possible to show
that this line is a hyperbola and has the following explicit
equation:

φh(w,α,Δt) = 12
Δt

(1−w)(2 + (w − 1)Δt)
4−4(w−1)Δt+

(
α2−2α

)
(2+(w−1)Δt)

.

(44)

This line generalizes for anyΔt, the border line of the second-
order stability region deduced by Poli [12] for Δt = 1(PSO)

and α = 1 (al = ag). The GPSO stochastic stability region
turns to be

RGPSO

=
{

(ω,φ) : 1− 2
Δt

< ω < 1, 0 < φ < φh(w,α,Δt)
}

(45)

which is embedded on the deterministic stability region
SGPSO. Also, it is possible to show that this region reaches its
maximum size if α = 1 (al = ag).

Figure 10 shows the contour lines of the spectral radius of
the stochastic iteration matrix on the unit circle for Δt = 0.5
and α = 1. As it can be observed, the isolines bend on their
upper part, remembering the results shown in Figure 6(b).

Finally, the second-order stability region increases its size
as Δt diminishes. Besides, GPSO algorithm with Δt > 1 in-
troduces for the same (w,φ) a higher variance on the trajec-
tories.
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The same methodology can be applied to determine the
skewness and kurtosis stability regions. Results are presented
for a moving center of attraction.

6.2. Moving center of attraction

Let us consider the GPSO difference equation in absolute po-
sitions:

x(t + Δt)− Ax(t)− Bx(t − Δt)
= (φ1g(t) + φ2l(t)

)
Δt2, t,Δt ∈ R,

(46)

whereA,B are given by (21). In what follows we will consider
g(t) and l(t) as deterministic functions.

Let us also consider the vector

y2(t) = (E(x(t)),E(x(t − Δt)),E(x2(t)
)
,

E
(
x(t)x(t − Δt)),E(x2(t − Δt))

)t (47)

which describes the first- and second-order GPSO “abso-
lute” dynamics. The GPSO system can be written on alge-
braic form as

y2(t + Δt) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E(A) B 0 0 0
1 0 0 0 0

2E(AC) 2BE(C) E
(
A2
)

2BE(A) B2

E(C) 0 E(A) B 0
0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

y2(t)

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E(C)
0

E
(
C2
)

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(48)

where

C = (φ1g(t) + φ2l(t)
)
Δt2. (49)

In this case, the dynamics of the second-order moments also
depend on the first-order moments.

One can show the following.
(1) The stochastic stability region for the first- and the

second-order moments is the same that in case of stagnation.
(2) The fix points for y2(t + Δt) are the following:

E
(
x
(
tp
)) = agg

(
tp
)

+ all
(
tp
)

ag + al
, (50)

Var
(
x
(
tp
)) = 1

4

(
α− 2

)2
α2φ(2 + (w − 1)Δt)Δt

Δ

×(g(tp
)− l(tp

))2
,

(51)

Cov
(
x
(
tp
)
, x
(
tp + Δt

))

= 1
4

(
α− 2

)2
α2φ

(
2+(w−1)Δt−Δt2φ)Δt

Δ

(
g
(
tp
)−l(tp

))2
,

(52)

where

Δ = 24(1−w)− 2Δt
(
6(w − 1)2 + φ

(
α2 − 2α + 2

))

− Δt2φ(4 + 2α− α2)(1−w),
(53)

and tp stands for the time when the fixed point is reached.
(3) The variance increases its value from 0 in φ = 0, un-

til +∞ on the stochastic border line. Isolines are shown in
Figure 11(a). Variance is also null for α = 2 (al = 0), α =
0 (ag = 0).

(4) The covariance is zero in φ = 0, and in the line
φ = (2 + Δt(w − 1))/Δt2, which is one of the median
of the deterministic stability triangle. Covariance is nega-
tive above this line. Figure 11(b) shows the contour plot of
sgn(Cov)·| ln |Cov||· Covariance is also null for any Δt if
al = 0 or ag = 0.

(5) A useful measure for trajectories dispersion is the var-
iogram, defined as

γ
(
x
(
tp
)
, x
(
tp + Δt

)) = E
[(
x
(
tp
)− x(tp + Δt

))2
]

= 1
4

(
α− 2

)2
α2φ

2
Δt3

Δ

(
g
(
tp
)− l(tp

))2
.

(54)

Variogram shows that dispersion increases from 0 in φ = 0,
until +∞ on the second-order stability border line. The vari-
ogram is also null for any Δt if al = 0 or ag = 0. Isolines are
shown in Figure 11(c).

(6) The correlation coefficient is

ρ
(
x
(
tp
)
, x
(
tp + Δt

)) = Cov
(
x
(
tp
)
, x
(
tp + Δt

))

√
Var

(
x(t)

)·Var
(
x(t + Δt)

)

= 2 + (w − 1)Δt − Δt2φ
2 + (w − 1)Δt

, Δt /= 0,

(55)

for any point (w,φ) on the stability region of the second-
order moments, and does not depend on α, neither on the
local and global best trajectories. Correlation coefficient is 1
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Figure 11: Contour plots of the main second-order moments for al = 2ag (α = 0.5) and Δt = 0.8: (a) variance (in logaritmic scale), (b)
covariance (sign(cov)|log|cov||), (c) variogram (log), (d) correlation coefficient.

in φ = 0, and is null on the line φ = (2 + Δt(w − 1))/Δt2.
Isolines are straight lines passing in (w,φ) = (1 − 2/Δt, 0)
(see Figure 11(d)).

(7) A priori a good parameter choice is given by the inter-
section by the line, φ = (2+Δt(w−1))/Δt2 (no correlation be-
tween trajectories), with the border line of the stochastic sta-
bility region (maximum variance and dispersion). The point
of intersection has the following coordinates:

w = −4 + 4α− 2α2 + Δt
(
8− 2α + α2

)

(
8− 2α + α2

)
Δt

,

φ = 12
(
8− 2α + α2

)
Δt2

,
(56)

which in the case of PSO and α = 1 (maximum size of
the stochastic stability region) is (w,φ) = (5/7, 12/7) =
(0.714, 1.714).

(8) This analysis can be generalized when l(t) and g(t)
are considered as stochastic processes. (The results presented
here are valid considering that the center of attraction and
the trajectories are independent. Obviously, this is a wrong
hypothesis. The analysis of the general case will be addressed
in a future paper devoted to this important subject.) The

first- and second-order stability zones do not change. The
mean is, in this case,

E
(
x
(
tp
)) = 1

2

[
αE[g(t)] + (2− α)E[l(t)]

]
, (57)

which generalizes the expression (50). The variance, covari-
ance, and variogram show now a more complicated depen-
dency which involves the first- and second-order moments
of l(t) and g(t) in tp, instead of (g(tp)− l(tp))2. For instance,
the variance and covariance become

Var
(
x
(
tp
)) = 1

4
φ
(
2 + (w − 1)Δt

)
Δt

Δ
Kgl,

Cov
(
x
(
tp
)
, x
(
tp + Δt

)) = 1
4
φ
(
2 + (w − 1)Δt − Δt2φ)Δt

Δ
Kgl,

Kgl = 2(α− 2)2Var
[
l
(
tp
)]

+ 2α2Var
[
g
(
tp
)]− 3α(α− 2)

× Cov
[
g
(
tp
)
, l
(
tp
)]

+α2(α−2
)2(

E
[
g
(
tp
)]−E[l(tp

)])2
.

(58)

These expressions simplifies to (51), (52), and (54) in case
l(t) and g(t) are deterministic. Correlogram (55) has the
same expression in both cases.
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Figure 12: (a) Contour plot of skewness for al = 2ag (α = 0.5) and Δt = 0.8. (b) Stability regions of orders 1, 2, 3, and 4.

6.2.1. Skewness

The stability analysis for the third-order moments involves
a linear system with an R9 × R9 iteration matrix. The it-
eration matrix extra terms corresponding to the different
third-order moments (E(x3(t)),E(x3(t − Δt)),E(x2(t)x(t −
Δt)),E(x(t)x2(t − Δt))) are

M3 =

⎛

⎜
⎜
⎜
⎝

E
(
A3
)
B3 3E

(
A2
)
B 3E(A)B2

1 0 0 0
E
(
A2
)

0 2E(A)B B2

E(A) 0 B 0

⎞

⎟
⎟
⎟
⎠
. (59)

Our analysis provides the following results.

(i) The region where the skewness fix point exists coin-
cides with the region of stability of the second-order
moments, nevertheless, the region of skewness stabil-
ity (where the fixed point is correctly approximated by
the iterative PSO algorithm) is smaller in size than the
region of second-order stability. Both regions coincide
for many w values on (−1, 1). This result has been also
pointed by Poli [12] in the PSO case, for inertia val-
ues restricted to the interval [0, 1]. Also, the region of
skewness stability tends to the region of second-order
stability as time step, Δt, goes to zero.

(ii) Skewness is null for anyΔt if α = 1 (ag = al). Skewness
is positive in the upper zone under the second-order
stability hyperbola for α < 1 (ag < al), and negative in
the bottom zone. For α > 1 (ag > al) the sign swaps
between these two zones for any Δt (see Figure 12(a)).
Skewness does only depend on the sign of g(tp)− l(tp)
but not on its absolute value.

6.2.2. Kurtosis

Kurtosis stability analysis involves a linear system with R14 ×
R14 iteration matrix.

The main results are the following.

(i) The regions of orders 1, 2, 3, and 4 are nested, being
the region of kurtosis stability the smallest on size (see
Figure 12(b)). This imply that while mean, variance,
covariance, and skewness are stable, the kurtosis grows
indefinitely. This last result has been also pointed by
[12] in the PSO case under stagnation.

(ii) All these regions of stability tend to coincide as Δt de-
creases (GPSO case with Δt < 1). In the limit (Δt → 0),
they tend to the continuous stability region (33).

7. NUMERICAL EXPERIMENTS ON
BENCHMARK FUNCTIONS

To confirm the above-mentioned theoretical results, we ran
several numerical experiments on benchmark functions with
two types of ill-posedness commonly found in inverse prob-
lems: the Rosenbrock and the “elongated” DeJong func-
tions (global minimum located in a very flat area), and the
Griewank function (global minimum surrounded by multi-
ple minima). A similar analysis has been done in [9] for the
PSO case, showing that as the ill-posedness increases, PSO
parameters from the complex stability region, with inertia
values from 0.5 to 0.9, and medium to high total accelera-
tions (1.5 < φ < 2) seem to give systematically very good re-
sults. Also, in case of cost functions with multiple local min-
ima, the real stability zone of negative inertia values (around
−0.55) and total acceleration from 0.6 to 1.2 give very good
performance with respect to the percentage of success.

Figure 13 shows the percentage of times (over 100 sim-
ulations) that PSO and GPSO (with Δt = 0.5) arrive very
close (within a tolerance of 10−5) to the global optimum af-
ter 100 iterations. It can be observed that the convergence
zone increases in size and the best parameters move towards
decreasing inertia values and increasing accelerations, con-
firming our previous theoretical analysis. Good parameter
sets are close to the limit of stochastic stability region (hy-
perbola (44)). Only for the elongated DeJong function good
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Figure 13: Percentage of success for different functions for PSO and GPSO with Δt = 0.5.
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Figure 14: Percentage of success for the Rosenbrock function in R10 for PSO and GPSO with Δt = 0.8.

parameter sets are partly above this line. This parameter re-
gion has also been pointed by Clerc [11] in the PSO case, un-
der the stagnation hypothesis, and only for positive inertia
values.

For the Griewank function parameters between the me-
dian of the deterministic triangle and the hyperbola (44), and
inertia values around −0.5 (in the PSO case) give also a very
good performance. In the GPSO case, the inertia values are
shifted −1/Δt. Negative PSO inertia values have given good

results in the PSO case for cost functions with multiple min-
ima [9].

Figure 14 shows the same numerical analysis for the
Rosenbrock function defined inR10, both in the PSO (α = 1)
and GPSO cases (Δt = 0.8 and α = 1), under the same
tolerance requirements. As the number of dimensions in-
creases, the best parameter sets seem to fit better the limit of
the second-order stability. Also, the region of negative inertia
values seems to be more important in size than in dimension
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2. In the GPSO case, the “good” parameter region increases
its size.

7.1. Time-step adapted GPSO algorithms

As a result of the above-mentioned analysis and numerical
experiments, we propose the following algorithm.

(1) To specify the search space limits, and to initialize
swarm positions randomly within, velocities are ini-
tialized to zero and are not limited.

(2) To choose the (w,φ) parameters for the standard PSO
(Δt = 1), as a general rule, a good choice is an inertia
value ω in the range (0.5, 0.8) and a total acceleration
given by (44). For cost functions with multiple local

minima, inertia values in (−0.6,−0.5) and total accel-
eration following the same rule (44) seem to give also
very good results.

(3) At the exploration stage, the local acceleration φ2

should be bigger than the global term, φ1 (α < 1).

(4) At the convergence stage, we propose two different
variants with respect to the PSO case.

(a) GPSO algorithm withΔt < 1

The idea is to monitor the percentage of models having at
least one parameter on the lower or upper limit of the model
search space as a function of iterations. If this percentage de-
creases significantly (which is expected mainly in the conver-
gence stage), the time step Δt is reduced (e.g., Δt = 0.8−0.9)
in order to adapt the PSO amplitudes to locate accurately the
minima. Numerical experiments have shown that at the ex-
ploration stage it is common that some model parameters
reach the search space limits. Nevertheless, this circumstance
does not necessarily imply a time-step reduction. On the
contrary, at the convergence stage it is important to adapt the
PSO amplitudes in order to efficiently locate the optimum.

(b) Mixed GPSO algorithm

This algorithm consists in adopting Δt = 1.2 and 0.8 alterna-
tively for the odd and even iterations. When Δt = 1.2 the ex-
ploration capabilities increase (higher variance to avoid local
minima) and for Δt = 0.8 the search is done more accurately
around the global best.

We ran several numerical experiments with the Rosen-
brock, DeJong, and Griewank functions. Figure 15 shows the
percentage of times (over 100 simulations) that mixed GPSO
arrives very close (within a tolerance of 10−5) to the global
optimum after 100 iterations. It can be observed that good
parameter regions are close to both hyperbolas of the second-
order stability (Δt = 1.2 and Δt = 0.8).
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8. APPLICATION TO AN ENVIRONMENTAL REAL CASE

The vertical electrical sounding (VES) is a geophysical direct
current technique aiming to characterize the depth-variation
of the resistivity distribution of a stratified earth. The VES
methodology is as follows.

(i) On the surface, at each measuring station, two current
electrodes and two potential electrodes are symmetri-
cally laid at both sides of a fixed central point.

(ii) In successive stations, the two external current elec-
trodes are moved apart from each other, increasing
their mutual distance, while holding the two inner po-
tential electrodes fixed in place at a much shorter dis-
tance. At each position of injection the voltage differ-
ence, ΔV , is then measured.

The inverse problem consists in estimating the conduc-
tivity and thicknesses of the stratified earth that explains the
voltage measurements made on the surface. One, then, needs
to define a misfit function to quantify the distance between
observations and predictions issued from the earth models.
This geophysical inverse problem is nonlinear and ill-posed,
that is, different sets of earth models may give similar volt-
age predictions. In fact, the VES objective function has the
minima in a very narrow and flat valley [14], similar to the
Rosenbrock case in several dimensions.

Figure 16 shows the convergence curves (logarithmic er-
ror versus iterations) for a VES geophysical inverse prob-
lem having an important environmental application (salt in-
trusion in a coastal aquifer), using different GPSO versions.
The cost function is in this case defined in R11. As it can be
observed, GPSO with Δt = 0.9 performs better than PSO
from the first iterations. The mixed GPSO algorithms per-
form more slowly, nevertheless, it is the PSO variant that
reaches the lower misfit. These results obviously depend on
the search space size.

9. CONCLUSIONS

A new PSO algorithm, generalized PSO, has been presented
and analyzed. It comes from the continuous PSO model by
considering time steps different from the unit (PSO). Its de-
terministic and stochastic stability regions and their respec-
tive asymptotic velocities of convergence are also a general-
ization of those of the PSO case. A comparison to PSO and to
the continuous model is done, confirming that GPSO prop-
erties tend to the continuous as time step decreases. The size
of the time steps is thus presented as a numerical constriction
factor. Properties of the second-order moments—variance
and covariance—serve to propose some promising param-
eter sets. High variance and temporal uncorrelation improve
the exploration task while solving ill-posed inverse problems.

Comparisons between PSO and GPSO, by means of
some numerical experiments using well-known benchmark
functions and real data issued from environmental inverse
problems, show that generalized PSO is more effective than
PSO at accurately locating the global minimum of these cost
functions. Based on this analysis, we propose two new time-
step adapted PSO variants, GPSO, and mixed GPSO that im-

prove the convergence performance of PSO in a geophysical
inverse problem in R11.
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FFD algorithm efficiently solves large parameter optimization problems.
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1. INTRODUCTION

Many well-known representative evolutionary computation
(EC) techniques, suchas genetic algorithms (GAs) [1–3], ge-
netic programming (GP) [4], evolutionary programming
(EP) [5, 6], evolutionary strategies (ESs) [7, 8], and parti-
cle swarm optimization (PSO) [9], have emerged as efficient
computational tools for solving global optimization prob-
lems, especially for large parameter optimization problems
(LPOPs). These EC techniques are sufficiently robust when
coping with discontinuous, vast multimodal problems or
with noisy search spaces since they do not depend on deriva-
tives of objective functions and constraints. Among these
techniques, PSO is easily implemented and computationally
inexpensive as it has low memory and CPU costs. The PSO
methodology involves creation of a population of particles
such that each particle is capable of adjusting its flying veloc-
ity, according to its flying experience and the best experience
of the group. Therefore, each particle in the PSO can be re-
garded as a cooperating agent.

The original PSO algorithm, developed by Kennedy and
Eberhart in 1995 [9], was inspired by the swarm behaviors
of flocks of birds and schools of fish. Thus, the PSO method
is a swarm intelligence method [10] for solving global opti-
mization problems, and it compares favorably to other evo-
lutionary algorithms [11]. The original PSO is effective in de-
termining optimal solutions in static environments, but per-
forms poorly in locating a changing extremum. In addition,
imposing a maximum value Vmax is necessary to limit the
particle velocity. Shi and Eberhart introduced a parameter
called inertia weight (w), which dampens particles’ veloci-
ties over time, allowing a swarm to converge efficiently and
with increased accuracy [12, 13]. Furthermore, Clerc pro-
posed using a constriction factor (K), which improves the
ability of PSO to constrain and control velocities [14]. Eber-
hart and Shi found that K , combined with constraints on
the maximum allowable velocity vector (Vmax), improved the
PSO performance significantly [15]. Additionally, when uti-
lizing PSO with a constriction factor setting, the Xmax for
each dimension is the best approach. Constriction factor (K)
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implements velocity control for effectively erasing the ten-
dency of some particles to spiral into ever-increasing velocity
oscillations. Parsopoulos and Vrahatis presented an overview
of recent approaches for solving global optimization prob-
lems using PSOs [16].

This work presents a novel orthogonal momentum-type
PSO algorithm for locating the best position for each parti-
cle efficiently. The momentum-type PSO, proposed in previ-
ous work [17], has a delta momentum rule in the velocity-
updating equation, and efficiently determines the physical
motion of particles more reasonably than other PSO ver-
sions. The momentum-type PSO markedly outperformed
the original PSO [9] and modified PSO [13] versions. Fur-
thermore, this study incorporates the momentum-type PSO
and well-known fractional factorial analysis, which utilize
several factorial experiments, according to classical orthog-
onal tables, to identify intelligently the best combination
of factors from two-level variables to enhance algorithmic
search efficiency. The novel combination of the momentum-
type PSO and fractional factorial design (FFD) is termed the
momentum-type PSO with FFD herein. Ho et al. [18] and
Lin [19] developed Taguchi orthogonal tables for their GA
and PSO for constructing an orthogonal GA and orthogonal
PSO. Their strategies markedly improved the search ability
of their GA and PSO. In 1991, Bhote reported that classi-
cal fractional factorial analysis combined with evolutionary
optimization is superior to the Taguchi method [20]. Conse-
quently, this study proposes orthogonal PSO using the FFD,
rather than Taguchi tables, for a velocity-updating equation
of momentum-type PSO to analyze the best factor related
to cognitive learning and social learning terms with the goal
of enhancing algorithmic efficiency. This work also devel-
oped the original PSO with FFD, which combines the origi-
nal Kennedy and Eberhart PSO and classical orthogonal ar-
rays, to enhance the performance of the original PSO. Per-
formance of the original PSO, momentum-type PSO, origi-
nal PSO with FFD, and proposed momentum-type PSO with
FFD were compared using 12 benchmark LPOPs.

2. METHODOLOGY OF THE PROPOSED
PARTICLE SWARM OPTIMIZATION

2.1. Description of an objective function

The general form of an objective function with variable vec-

tor
⇀
x is expressed as f (

⇀
x). The variable

⇀
x represents the

solution vector with N variables, and is defined as the set
{xi, i = 1,N}. In PSO computation, each particle is assigned
a fitness value based on the calculation of objective func-
tion. Moreover, the fitness value of a particle determines the
best position of each particle over time and determines which
particle has the best global value in the current swarm.

2.2. Momentum-type particle swarm optimization

The original PSO developed by Kennedy and Eberhart [9]
supposed that the ith particle flies over a hyperspace; its po-
sition and velocity are given by �xi and �vi, respectively. Initial
particle position and velocity are chosen randomly. At time

step k, the best position of the current and previous moves
for the ith particle is denoted by pbesti; the best particle with
the best function value in the swarm is denoted by gbest.
Consequently, the next flying velocity and position of parti-
cle i at time step k+1 is updated using the following heuristic
equations:

�v k+1
i = �v ki + c1 × rand()× (pbesti −�x ki

)
+ c2

× rand()× (gbest−�x ki
)
,

(1)

�x k+1
i = �x ki +�v k+1

i , (2)

where c1 and c2 are cognitive and social learning rates, respec-
tively. These two parameters control the relative importance
of memory (position) of a particle itself and the neighbor-
hood memory, and are both set to 2.0 [9, 12, 21] for multi-
plying random values by a mean of 1, such that agents would
“overfly” the target about half the time [9]. Random function
rand() is uniformly distributed in the range [0,1]. As in (1),
the two random values are generated independently, and the
velocity vector of a particle is updated based on variations on
its current position, its previous best position, and the pre-
vious best position of its neighbors. After particle velocity is
updated using (1), its new position is updated by adding the
velocity vector to the current position. Analyses of algorith-
mic stability and convergence of the PSO have been exam-
ined theoretically by Clerc and Kennedy [22] and by Trelea
[23] who used dynamic system theory.

The goal of the momentum-type PSO [17], which in-
cludes a delta term for the velocity vector for detecting
particle-velocity variation, is to express the physical motion
of particles more accurately than current PSO algorithms do.
According to [17], the difference between a particle’s current
position �x ki and pbesti (as shown in (1)) represents the first
external effect on the particle and causes it to move, and the
difference between a particle’s current position �x ki and gbest,
which represents the second external effect on a particle. The
two effects propelling particle i to move can be expressed in
delta position forms as follows:

c1 × rand()× (pbesti −�x ki
) = p × (Δ�x ki

)
1,

c2 × rand()× (gbest−�x ki
) = q × (Δ�x ki

)
2,

(3)

where p = c1 × rand() and q = c2 × rand(). Combining the
two terms and using the velocity�v ki to represent the variation
of positions (Δ�x ki ), the composed velocity�v ki can be obtained
as follows:

�v ki = p × (�v ki
)

1 + q × (�v ki
)

2. (4)

Since �v ki is particle-composed velocity, velocity �v k+1
i of

particle i at next time step k + 1 may include a delta form for
velocity as Δ�v ki , rather than the velocity (�v ki ), as employed in
the original PSO, the Shi and Eberhart PSO, and many other
PSOs. Generally, Δ�v ki denotes the difference of velocities be-
tween time steps k + 1 and k, that is, Δ�v ki = �v k+1

i −�v ki . Thus,
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Table 1: Orthogonal table with seven factors.

Factor A B AB C AC BC ABC
Output

Factor level X±1 X±2 X±3 X±4 X±5 X±6 X±7
Experiment 1 − − + − + + − f1
2 + − − − − + + f2
3 − + − − + − + f3
4 + + + − − − − f4
5 − − + + − − + f5
6 + − − + + − − f6
7 − + − + − + − f7
8 + + + + + + + f8

Contribution C1 C2 C3 C4 C5 C6 C7

Select level + or − + or − + or − + or − + or − + or − + or −
Best factor X+

1 or X−1 X+
2 or X−2 X+

3 or X−3 X+
4 or X−4 X+

5 or X−5 X+
6 or X−6 X+

7 or X−7

the momentum-type form for velocity updating with param-
eter β can be written as

�v k+1
i = �v ki + β × Δ�v ki , (5)

where β is a positive number (0 ≤ β < 1) termed the momen-
tum constant, which controls velocity vector rate of change.
The momentum constant has characteristics that are rem-
iniscent of the stabilizing effect in backpropagation neural
networks [24] and accelerating convergence in numerical al-
gorithms [25]. Similarly, position �x k+1

i of particle i at time
step k + 1 can be written as the current position �x ki plus a
delta form of the position (Δ�x ki ):

�x k+1
i = �x ki + α× Δ�x ki . (6)

Parameter α is another momentum constant for adjusting
the rate of change of particle position. Consequently, (5) and
(6) correspond to each other, and both are consistent with
the physical behavior for variations in velocity and position
of particle motion. Hence, (5) and (6) can be combined to
form a matrix of the generalized delta rule:

�Sk+1
i = �S′ki +MΔ�Ski , (7)

where

�S =
[�v
�x

]

, �S′ =
⎡

⎣
�V
�x

⎤

⎦ , M =
[
β

α

]

. (8)

Equation (7) allows each particle the ability of dynamic self-
adaptation in the search space over time, that is, the ith par-
ticle can memorize the previous velocity variation state and
automatically adjust the next velocity value during move-
ment. The delta momentum term in the PSO algorithm sta-
bilizes searching, and an appropriate value for β = 0.1 im-
proves convergence and the optimal solution [17]. Parame-
ter α was set to 1 such that variable v could be interpreted as
true velocity, that is, the change between two successive par-
ticle positions [23]. Thus (7) satisfies the zero-velocity vari-
ation (Δ�vi = 0) and zero velocity (�vi = 0) conditions for the
particle considered.

2.3. Proposed momentum-type PSO with
fractional factorial design

This study integrates FFD into the momentum-type PSO to
determine the combination of factors associated with cogni-
tive learning and social learning terms. This study defined the
two states of orthogonal momentum-type PSO as follows:

�X+
i = �x ik + β × Δ�v ki + p × (�v ki

)
1,

�X−i = �x ik + β × Δ�v ki + q × (�v ki
)

2,
(9)

where �X+
i and �X−i indicate two possible new positions related

to cognitive learning and social learning for particle i. Thus,
updating rules for velocity and position using the proposed
momentum-type PSO with FFD can be expressed as

�v k+1
i =

(
�X+
i OR �X−i

)
−�x ki , (10)

�x k+1
i =

(
�X+
i OR �X−i

)
. (11)

The expression (�X+
i OR �X−i ) represents the implementation

of OR operator via fractional factorial analysis using vari-

ables �X+
i and �X−i . Therefore, the new flying position of parti-

cle i is determined by (11), namely, the best position of par-
ticle i on the next time k + 1 can be obtained using FFD.

2.4. Fractional factorial design (FFD)

To solve the operator (�X+
i OR �X−i ) shown in (10) and (11),

the FFD used in this work is based on classical full facto-
rial analysis with two-level, multivariable orthogonal tables
[20]. Applying the fractional factorial analysis to the oper-

ator (�X+
i OR �X−i ) yields an arrangement of two-level factors

that corresponds to the two possible states of the design vari-
ables. In the classical factorial experiments, the two levels of
a design variable are labeled by “−” and “+”. Hence, X−i and
X+
i represent the two levels of the design variable Xi in this

work. Table 1 lists the level distribution of seven factors with
the same number of levels “−” and “+” at each column to
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retain the balance of a statistically designed experiment. The
detailed steps of the numerical procedure for the fractional
factorial analysis are as follows.

(1) First, if N factors (termed by design variables in the
PSO) each has two levels, build a table of m rows and m − 1
columns. The value m is defined by the integer 2[log2(N+1)].
For example, if seven factors (N = 7) are associated with vec-

tor �X , then eight experiments (m = 8) are conducted for fac-
torial analysis. As shown in Table 1, the levels “−” and “+” in
columns A, B, and C are assigned to each cell position accord-
ing to the classical full factorial principle [20]. In columns
AB, AC, BC, and ABC, each level in the cells is determined
from the inner products of columns A and B, columns A and
C, columns B and C, and columns A, B, and C.

(2) The first experiment has a factor set to �X =
{X−1 , X−2 ,X+

3 ,X−4 ,X+
5 ,X+

6 ,X−7 }, obtained by combining the
factors A to ABC with the assigned levels. In the following,
its objective function, f1, is computed, and put it into the
first position of column “Output”. Repeat the computations
for the remaining seven experiments with function values
f2, f3, . . . , and f8; then, the eight experiments for seven fac-
tors are finished.

(3) In column A, multiply the function values f1, f2, . . . ,
and f8 by the corresponding algebraic value −1 for level “−,”
and 1 for level “+,” as listed in Table 1. The effect of fac-
tor A on the level is determined by adding the eight prod-
ucts together. The mathematical form for each factor i is
Ci =

∑8
j=1Ui, j × f j . Here, Ui, j equals −1 when the cell level

is at level “−,” and equals 1 when it is at level “+”. The sum-
mation C1 is placed in the first position in the row “Contri-
bution” which is associated with factor A. Repeat the mul-
tiplication and summation operations for the remaining six
values, C2,C3, . . . , and C7, and put them in corresponding
positions in the row “Contribution”; the effects of factors B,
C,. . ., and ABC on the levels are thus obtained.

(4) Check the signs of the seven values C1, C2, . . . , and
C7 listed in the row “Contribution”; if the sign of Ci is neg-
ative, then place the symbol “−” in the row “Selected level”
(Table 1). Otherwise, select symbol “+”. The dominant levels
of the seven factors are thus determined.

(5) The best combination of X∗i for the seven factors is
determined from the factors with selected levels, presented
in the row “Best factor” (Table 1), and the best value of the
function is obtained by calculating the objective function

f (�X∗). The choice principle for each best factor X∗i is ex-
pressed as follows:

X∗i =
⎧
⎨

⎩

X−i if sign
(
Ci
)
< 0

X+
i if sign

(
Ci
)
> 0.

(12)

Thus the new position xk+1
i of the particle i at time step k + 1

shown in (11) can be set equal to X∗i .

3. RESULTS AND DISCUSSION

3.1. Effect of number of particles

This work applied FFD to several factorial experiments to de-
termine the best position of particles. When the dimension of

design variables is high, that is, a large parameter optimiza-
tion problem, FFD usually required numerous function eval-
uations for factorial analysis. Therefore, few particles for the
proposed PSO with FFD should reduce CPU cost if the good
performance of searching of the PSO can be retained. To de-
termine how many particles are appropriate when using the
momentum-type PSO with FFD and original PSO with FFD
algorithms, adequate size of Nparticle is investigated by con-
ducting the following large parameter optimization problem
with low and high dimensions:

maximize f (�x)

= −
N∑

i=1

[
sin
(
xi
)

+ sin
(

2xi
3

)]
subject to xi ∈ [3, 13].

(13)

This function is a multimodal problem and has an an-
alytical optimum of 1.216N . In this computation, dimen-
sions were set at 10 and 100, and the maximum numbers
of function evaluation for the two cases were set at 10000
and 100000, respectively. Moreover, the number of particles
was 5, 10, 15, 20, 25, and 30 to investigate the effects of dif-
ferent swarm sizes of particles to orthogonal PSOs. Figures
1(a) and 1(b) reveal that the proposed momentum-type PSO
with the FFD algorithm and few particles achieved a favor-
able convergence rate and numerical accuracy; nevertheless,
many particles resulted in poor convergence. Using the pro-
posed momentum-type PSO with FFD and few particles for
N = 10 and N = 100 cases rapidly converges to optimal val-
ues 12.1598 and 121.598, respectively. In this study, numeri-
cal performance using Nparticle = 5 is better than other cases
using large number sizes of particles. Similar results shown
in Figures 2(a) and 2(b) are observed when using the origi-
nal PSO with the FFD technique. Accordingly, this work set
Nparticle = 5 for the momentum-type PSO with FFD and the
original PSO with FFD algorithms in the following compu-
tations.

3.2. Experiments for 12 large parameter
optimization problems (LPOPs)

Twelve benchmark LPOPs presented in [18] are evalu-
ated to further examine the performance of the pro-
posed momentum-type PSO with FFD. This study sets
Nparticle = 5 for the original PSO with FFD and the proposed
momentum-type PSO with FFD, and Nparticle = 30 for the
original PSO and momentum-type PSO. The number of di-
mensions for all benchmark LPOPs was set to 100, and the
terminated number of function evaluations for the four PSO
algorithms was set to 100000. Twenty independent runs were
conducted for each problem. Algorithmic performance was
assessed by the best solution, averaged best solution, mean
absolute error (MAE, and standard deviation. The MAE was
used as the measurement of error in this work with the fol-
lowing form:

MAE =
∣
∣ fopt − favg

∣
∣

N
. (14)
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Figure 1: Effect of number of particles using the momentum-type PSO with FFD for solving the LPOP at (a) N = 5 and (b) N = 100
dimensions.
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Figure 2: Effect of number of particles using the original PSO with FFD for solving the LPOP at (a) N = 5 and (b) N = 100 dimensions.

Table 2 lists the 12 objective functions with range con-
straints and their global optima [18]. Notably, the objectives
of problems 1–3 are set to maximize the objective functions
f 1–3, and other problems are set to minimize the objective
functions f 4–12. The optima of the first three maximal func-

tions f 1, f 2, and f 3 are 121.598, 200, and 185, respectively,
and the minimal functions f 4–12 are all zero. Table 3 lists
the computational results for the 12 functions at a dimen-
sion of N = 100 using the four PSOs. Computational re-
sults reveal that the evaluation results for maximal functions
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Table 2: Twelve objective functions with range constraints and their optima.

Problems Objective functions and ranges Optima

1 Maximize f 1 =
N∑

i=1

[
sin
(
xi
)

+ sin
(

2xi
3

)]
; xi ∈ [3, 13] 1.21598N

2 Maximize f 2 =
N−1∑

i=1

[
sin
(
xi + xi+1

)
+ sin

(
2xixi+1

3

)]
; xi ∈ [3, 13] ≈ 2N

3 Maximize f 3 =
N∑

i=1

[
xi sin

(
10πxi

)]
; xi ∈ [−1, 2] 1.85N

4 Minimize f 4 =
N∑

i=1

[
xi + 0.5

]2
; xi ∈ [−100, 100] 0

5 Minimize f 5 =
N∑

i=1

[
x2
i − 10 cos

(
2πxi

)
+ 10

]
; xi ∈ [−5.12, 5.12] 0

6 Minimize f 6 =
N∑

i=1

[
x2
i

]
; xi ∈ [−5.12, 5.12] 0

7 Minimize f 7 =
N∑

i=1

[
sin(10xiπ)

10xiπ

]
; xi ∈ [−0.5, 0.5] 0

8 Minimize f 8 = −20 exp

[

− 0.2

√
√
√
√ 1
N

N∑

i=1

x2
i

]

− exp

[
1
N

N∑

i=1

cos
(
2πxi

)
]

+ 20 + e; xi ∈ [−30, 30] 0

9 Minimize f 9 = 418.9828N −
N∑

i=1

(
xi sin

(√| xi |
))

; xi ∈ [−500, 500] 0

10 Minimize f 10 =
N−1∑

i=1

[
100

(
xi+1 − x2

i

)2
+
(
xi − 1

)2]
; xi ∈ [−5.12, 5.12] 0

11 Minimize f 11 = 6N +
N∑

i=1

�xi�; xi ∈ [−5.12, 5.12] 0

12 Minimize f 12 = 1
4000

N∑

i=1

x2
i −

N∏

i=1
cos
(
xi√
i

)
+ 1; xi ∈ [−600, 600] 0

f 1, f 2, and f 3 using the proposed momentum-type PSO
with FFD were 121.598, 174.452, and 182.798, respectively.
These computational results are better than those computed
by the other three PSOs. Additionally, the algorithmic per-
formance of the PSOs with FFD is superior to that of PSOs
without FFD. Consequently, the proposed PSO with FFD
promoted solution searches more effectively than the PSO
does without FFD. For the remaining nine minimal func-
tion evaluations, f 4–12, the optima obtained using the pro-
posed momentum-type PSO with FFD were 0.0, 11.946, 0.0,
0.00005, 0.000039, 3781.879, 92.874, 88.0, and 0.000059, re-
spectively, and the average solutions were 0.0, 32.4641, 0.0,
0.0001, 0.0139, 5676.0005, 181.8753, 88.2285, and 0.1009, re-
spectively. Both the best and average results are the best when
compared with solutions obtained by the other three PSOs.
Additionally, all MAEs and standard deviations are lowest
for the nine optimization functions evaluated by the pro-
posed momentum-type PSO with FFD over 20 independent
runs. From the computational results (Table 3), the proposed
momentum-type PSO with FFD performed well in solving
LPOPs. Figures 3(a)–3(l) represent the convergence histo-
ries of the 12 objection functions obtained by the four PSOs.
The proposed momentum-type PSO is superior to the other

PSOs in terms of convergence rate and optimal solution (Fig-
ures 3(a)–3(c)). Although the convergence rate of the origi-
nal PSO is relatively poor for solving LPOPs, it can be signifi-
cantly improved by introducing FFD into the PSO algorithm.
Figures 3(d)–3(l) present results similar to the maximization
cases.

4. CONCLUSION

This study examined the performance of the proposed
momentum-type PSO with the FFD algorithm, which uses
the delta momentum rule to update particle velocity and FFD
to locate a particle’s best location for handling LPOPs. Using
the momentum-type PSO, each particle can adjust its veloc-
ity vector according to its previous velocity change rate. The
new location of a particle is then determined by analyzing the
best combination of cognitive and social learning terms via
several factorial experiments based on the FFD. Moreover,
this work modified the original PSO by incorporating with
FFD, which also employs the classical orthogonal tables, and
improved significantly the efficiency of the original Kennedy
and Eberhart PSO. Through 12 benchmark function as-
sessments, the proposed momentum-type PSO algorithm
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Table 3: Results obtained using the original PSO, momentum-type PSO, original PSO with FFD, and momentum-type PSO with FFD
algorithms to solve the 12 benchmark LPOPs.

f (x) Algorithms fopt fbest favg | fopt − favg| MAE SD (20 runs)

f 1

Original PSO

121.598

26.5864 15.3709 106.2271 1.0623 5.8322

Momentum-type PSO 121.5966 119.6452 1.9528 0.0195 3.2968

Original PSO with FFD 121.5730 120.6245 0.9735 0.0097 2.7499

Momentum-type PSO with FFD 121.5980 120.3738 1.2242 0.0122 2.2866

f 2

Original PSO

200

41.3325 35.9429 164.0571 1.6406 2.9219

Momentum-type PSO 147.5408 135.8634 64.1366 0.6414 8.0647

Original PSO with FFD 163.7965 150.1892 49.8108 0.4981 6.3295

Momentum-type PSO with FFD 174.4516 166.6228 33.3772 0.3338 6.0346

f 3

Original PSO

185

41.7656 36.0755 148.9245 1.4892 5.6901

Momentum-type PSO 128.7731 116.8754 68.1246 0.6812 11.8977

Original PSO with FFD 165.4799 140.0511 44.9489 0.4495 25.4287

Momentum-type PSO with FFD 182.7978 174.9624 10.0376 0.1004 7.8354

f 4

Original PSO

0

1.3102 462.9955 462.9955 4.6300 461.6853

Momentum-type PSO 0.0001 1.9415 1.9415 0.0194 1.9413

Original PSO with FFD 3.6828 9.2072 9.2072 0.0921 5.5244

Momentum-type PSO with FFD 0.0000 0.0000 0.0000 0.0000 0.0000

f 5

Original PSO

0

1685.8392 1774.6315 1774.6315 17.7463 88.7923

Momentum-type PSO 408.6802 565.3514 565.3514 56.5351 156.6713

Original PSO with FFD 35.6695 76.3567 76.3567 0.7636 40.6872

Momentum-type PSO with FFD 11.9463 32.4641 32.4641 0.3246 20.5178

f 6

Original PSO

0

52.4517 186.2910 186.2910 1.8629 133.8393

Momentum-type PSO 0.0000 1.3711 1.3711 0.0137 1.3711

Original PSO with FFD 0.0000 0.0000 0.0000 0.0000 0.0000

Momentum-type PSO with FFD 0.0000 0.0000 0.0000 0.0000 0.0000

f 7

Original PSO

0

0.0001 0.0001 0.0001 0.0000 0.0000

Momentum-type PSO 0.0001 0.0211 0.0211 0.0002 0.0210

Original PSO with FFD 0.0001 0.0001 0.0001 0.0000 0.0000

Momentum-type PSO with FFD 0.0001 0.0001 0.0001 0.0000 0.0000

f 8

Original PSO

0

0.4069 3.9570 3.9570 0.0396 3.5501

Momentum-type PSO 0.0520 1.3377 1.3377 0.0134 1.2857

Original PSO with FFD 0.0000 0.6476 0.6476 0.0065 0.6476

Momentum-type PSO with FFD 0.0000 0.0139 0.0139 0.0001 0.0139

f 9

Original PSO

0

28122.4766 29843.7729 29843.7729 298.4377 1721.2964

Momentum-type PSO 7731.2314 9897.2021 9897.2021 98.9720 2165.9706

Original PSO with FFD 5363.7783 6583.7198 6583.7198 65.8372 1219.9415

Momentum-type PSO with FFD 3781.8799 5676.0005 5676.0005 56.7600 1894.1206

f 10

Original PSO

0

577.8867 64444.4250 64444.4250 644.4443 63866.5383

Momentum-type PSO 373.7911 635.0241 635.0241 6.3502 261.2330

Original PSO with FFD 341.0312 1292.7659 1292.7659 12.9277 951.7347

Momentum-type PSO with FFD 92.8743 181.8753 181.8753 1.8188 89.0009

f 11

Original PSO

0

231.3600 319.4241 319.4241 3.1942 88.0640

Momentum-type PSO 88.0000 89.7067 89.7067 0.8971 1.7067

Original PSO with FFD 88.0000 89.3653 89.3653 0.8937 1.3653

Momentum-type PSO with FFD 88.0000 88.2285 88.2285 0.8823 0.2285

f 12

Original PSO

0

0.2118 171.7896 171.7896 1.7179 171.5778

Momentum-type PSO 0.0183 3.2176 3.2176 0.0322 3.1992

Original PSO with FFD 0.8876 7.6815 7.6815 0.0768 6.7939

Momentum-type PSO with FFD 0.0001 0.1009 0.1009 0.0010 0.1008
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Figure 3: Evaluated results obtained using the four PSOs for solving functions (a) f 1, (b) f 2, (c) f 3, (d) f 4, (e) f 5, (f) f 6, (g) f 7, (h) f 8,
(i) f 9, (j) f 10, (k) f 11, and (l) f 12.
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outperformed the original PSO, momentum-type PSO and
original PSO with FFD in terms of solution accuracy, numer-
ical error and standard deviation. This work also determined
that algorithmic performance of the proposed PSO with FFD
is superior to that without FFD. Numerical results show that
the proposed momentum-type PSO with FFD algorithm is
efficient and is a promising method for solving LPOPs.
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1. INTRODUCTION

Originally conceived as a modification to the standard PSO
algorithm for use on self-reconfigurable adaptive systems
used in on-chip hardware processes, PSO with discrete re-
combination (PSO-DR) introduces several appealing and ef-
fective modifications, resulting in a simpler variant of the
original [1]. It is one of the more interesting advances in PSO
research over the last few years because these simplifications
apparently do not degrade performance yet they remove var-
ious issues associated with the stochasticity of the PSO accel-
eration parameters that hinder theoretical analysis of PSO.

Physical creation of hardware-based optimizers is a sub-
stantially more intricate undertaking than software imple-
mentations, so fast, simple algorithms are desirable in or-
der to minimize complexity. The comparative straightfor-
wardness of PSO to many other evolutionary optimization
algorithms makes it a good choice for this purpose, and fur-
ther modifications were applied by the authors of [1] in or-
der to simplify it even further and to introduce concepts
from recombinant evolutionary techniques. The resulting al-
gorithm, which can be implemented using only addition and
subtraction operators and a simple 1-bit random number
generator, is well suited for dedicated hardware settings.

Despite this rather specific original design specification,
PSO-DR has shown to be a robust optimizer in its own right,
equalling or surpassing a more common PSO implementa-
tion on a few tested benchmarks [1]. In this paper we ex-
tend the original work of Peña et al. by considering alter-

native topologies and parameter settings, running compar-
isons over a more comprehensive test suite, deriving simpli-
fied variants of the algorithm, and subjecting the model to a
burst analysis.

The following section introduces PSO-DR (known here
as model 1) as originally defined by Peña et al. and summa-
rizes the burst analysis of [2]. Section 3 describes a series of
simplifications to PSO-DR (models 2 and 3) which are intro-
duced in this paper. The motivations for these simplifications
are explained. Section 4 presents the results of performance
experiments of models 1–3, and for comparative purposes,
standard PSO. Following this, the paper proceeds with an
empirical investigation of bursting patterns in recombinant
PSO. The final section together draws together the experi-
mental results of this paper and advances some ideas for the
immediate future of PSO research.

2. PSO WITH DISCRETE RECOMBINATION

The velocity update for particle i in standard PSO (SPSO) in
the inertia weight formalism is

IW : vt+1
id = wvtid +

φ

2
u1
(
pid − xtid

)
+
φ

2
u2
(
pnd − xtid

)
, (1)

where d labels components of the position and velocity
vectors, d = 1, 2, . . . ,D, �pi is the personal best position
achieved by i, �pn is the best position of informers in i’s social
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neighborhood and u1,2∼U(0, 1) [3]. After velocity update,
the particle position is adjusted:

xt+1
id = vt+1

id + xtid. (2)

Peña et al. introduced a recombinant version of PSO by
replacing either the personal best or the neighborhood best
position by the recombinant position [1]. We focus here on
the former for reasons of improved performance and the
more interesting social aspect. A recombinant position vec-
tor �r is defined by

rid = ηd pld +
(
1− ηd

)
prd, (3)

where ηd = U{0, 1} and �pl,r are immediate left and right
neighbors of i in a ring topology. While separate random
numbers ηd are used for separate dimensions d, a single value
is generated for each single dimension and used for both oc-
currences of ηd in that dimension. This places �ri at a corner
of the smallest D-dimensional box which has pl and pr at its
corners.

The authors of [1], in a search for a very efficient imple-
mentation, argued for the removal of the random numbers
u1,2 from (1) and parameter settings φ = 2 and w = 0.5. The
velocity update for the original form of PSO-DR is

DR : vt+1
id = wvtid +

φ

2

(
rid − xtid

)
+
φ

2

(
pnd − xtid

)
. (4)

The choice of φwas based on the observation that φ ≈ 4.0
in standard PSO, but, since u1,2 are uniform in [0, 1], the ex-
pectation value of φu1,2 is 2.0. Furthermore, the multipli-
cation by w = 0.5 can be implemented in hardware by a
right shift operation. While optimal efficiency is desirable for
hardware implementations, this issue does not concern us to
the same degree in this study of (4) and it is one aim of this
paper to study PSO-DR for arbitrary parameter values.

Although (4) contains a random element in the recom-
binant position, the acceleration parameters are constant. In
other words, the update rule has additive rather than mul-
tiplicative stochasticity [2]. This has two ramifications; first,
a stability condition can be computed based on the theory
of second order, fixed parameter, difference equations and
second, recombinant PSO is predicted not to exhibit parti-
cle velocity bursts. The details of these results are to be found
in [2]. The stability condition is

|w| < 1, 0 < φ < 2(1 +w). (5)

It is known that PSO at stagnation, that is, when no im-
provements to personal bests are occurring, and the particles
effectively decouple, exhibits bursts of outliers [4]. These are
temporary excursions of the particle to large distances from
the attractors. A burst will typically grow to a maximum and
then return through a number of damped oscillations to the
region of the attractors. The origin of bursts, and of the con-
comitant fattening of the tails of the position distribution at
stagnation, can be traced to the second-order stochastic dif-
ference equation

x(t + 1) + a(t)x(t) + bx(t − 1) = c(t) (6)

which is equivalent to SPSO with the identification a(t) =
(φ/2)(u1 +u2)−w− 1, b = w, and c(t) = (φ/2)(u1p1 +u2p2)
for fixed attractors p1,2. Since max(|a|) > 0, amplification of
x(t) can occur through repeated multiplication of x(t) by a
despite the second order reduction by multiplication by the
constant b. Interestingly, the distribution tail of |x|, by virtue
of the bursts that become increasingly less probable for in-
creasing size, is fattened compared to an exponential falloff
as provided by, for example, a Gaussian. A theoretical justi-
fication of these power laws and some empirical tests can be
found in [2].

PSO bursts differ from the random outliers generated by
PSO models which replace velocity by sampling from a dis-
tribution with fat tails such as a Richer and Blackwell [5]. In
contradistinction to the outliers of these “bare bones” for-
mulations [6], the outliers from bursts occur in sequence,
and they are one dimensional. Bursting will therefore pro-
duce periods of rectilinear motion where the particle will
have a large velocity parallel to a coordinate axis. Further-
more, large bursts may take the particle outside the search
space. Although this will not incur any penalty in lost func-
tion evaluations if particles that exit the feasible bounds of
the problem are not evaluated, as is the common approach to
this situation, they are not contributing to the search while in
outer space. PSO-DR, which is predicted not to have bursts
[2], therefore provides a salient comparison.

3. SIMPLIFYING RECOMBINANT PSO

This section details the two new recombinant models that are
being proposed in this paper. To begin, an investigation into
PSO-DR reveals more interesting properties of the formula-
tion. Performance plots for a sweep through parameter space
to find an optimal balance between the inertia weight coef-
ficient w and the φ coefficients show that while the optimal
region is spread across the parameter space, it also intersects
the axis for the w term (see Figure 1 for results on selected
functions from Table 1). This demonstrates that the system
is able to obtain good optimal results even at w = 0.0 and
there is no inertia term in the velocity update equations.

Model 2 PSO-DR sets w = 0, with a velocity update,

DR2 : vt+1
id = φ

2

(
rid − xtid

)
+
φ

2

(
pnd − xtid

)
. (7)

Velocity now serves as a dummy variable in the update
equations (1) and (2) and model 2 can be represented as a
single, velocity-free rule

DR2 : xt+1
id = xtid +

φ

2

(
rid − xtid

)
+
φ

2

(
pnd − xtid

)
. (8)

At this point, the two φ terms were detached and another
sweep through parameter space to find an optimal combina-
tion of the recombinant component via its coefficient φ1 and
the neighborhood best component via its coefficient φ2 was
performed. Surprisingly, results again showed that the opti-
mal region intersects an axis, this time for the neighborhood
term (pgd − xtid) (see Figure 2 for selected results).
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Figure 1: Optimal regions for w versus φ in PSO-DR model 1, found empirically through 30 runs for each combination of parameters
w = 0.0, . . . , 1.0,φ = 0.0, . . . , 5.0 at a granularity of 0.1. Each contour line represents a 10% improvement in performance with the region
within the innermost line representing the best performing 10% of possible combinations of w and φ.

This allows a further simplification to the update equa-
tion (4), down to PSO-DR model 3:

DR3 : xt+1
id = xtid + φ

(
rid − xtid

)
(9)

which is clearly a substantial reduction of the original PSO-
DR equation.This PSO variant, if it proves to be viable,
would raise a couple of interesting questions.To what ex-
tent is velocity a necessary component, or is it a relic of the
biological origins of PSO [6]? Secondly, how important is
the neighborhood component drawn from the single best
neighbor? The optimization process of Model 3 is entirely
driven by the recombinant component; this idea is reminis-
cent of fully informed particle swarms (FIPS) [7], where the
entire neighborhood influences particle behavior. However,
whereas FIPS allows every neighbor to influence a particle’s
behavior in every dimension, Model 3 allows only a single

randomly chosen neighbor to fully influence the particle in
each dimension. This gives the particle an updated position
that is a combination of the best positions of all of its neigh-
bors throughout all dimensions.

The following section presents evidence that PSO-DR3 is
a viable alternative to standard PSO by reporting on perfor-
mance results for all three models of PSO-DR over a number
of commonly used test functions.

4. PERFORMANCE EXPERIMENTS

Algorithms were tested over a series of 14 benchmark func-
tions chosen for their variety, shown in Tables 1 and 2. Func-
tions f1 − f3 are unimodal functions with a single mini-
mum, f4 − f9 are complex high-dimensional multimodal
problems, each containing many local minima and a single
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Table 1: Benchmark function equations.

Equation

f1 =
D∑

i=1

x2
i

f2 =
D∑

i=1

( i∑

j=1

xj

)2

f3 =
D−1∑

i=1

{
100

(
xi+1 − x2

i

)2
+
(
xi − 1

)2}

f4 = −
D∑

i=1

xi sin
(√
xi
)

f5 =
D∑

i=1

{
x2
i − 10 cos

(
2πxi

)
+ 10

}

f6 = −20 exp

{

−0.2

√
1
D

∑ D

i=1
x2
i

}

− exp

{
1
D

D∑

i=1

cos
(
2πxi

)
}

+ 20 + e

f7 = 1
4000

D∑

i=1

x2
i −

D∏

i=1

cos
(
xi√
i

)
+ 1

f8 = π

D

{

10 sin 2(πyi
)

+
D−1∑

i=1

(
yi − 1

)2{
1 + 10 sin 2(πyi+1

)}
+
(
yD − 1

)2

}

+
D∑

i=1

μ
(
xi, 10, 100, 4

)

yi = 1 +
1
4

(
xi + 1

)

μ
(
xi, a, k,m

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k
(
xi − a

)m
xi > a

0 −a ≤ xi ≤ a

k
(− xi − a

)m
xi < −a

f9 = 0.1

{

sin 2(3πxi
)

+
D−1∑

i=1

(
xi − 1

)2{
1 + sin 2(3πxi+1

)}
+
(
xD − 1

)2

× {1 + sin 2(2πxD
)}
}

+
D∑

i=1

μ
(
xi, 5, 100, 4

)

f10 = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2

f11 =
{

1 +
(
x1 + x2 + 1

)2(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)}

× {
30 +

(
2x1 − 3x2

)2(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)}

f12 = −
5∑

i=1

{ 4∑

j=1

(
xj − ai j

)2
+ ci

}−1

f13 = −
7∑

i=1

{ 4∑

j=1

(
xj − ai j

)2
+ ci

}−1

f14 = −
10∑

i=1

{ 4∑

j=1

(
xj − ai j

)2
+ ci

}−1

global optimum, and f10 − f14 are lower-dimensional mul-
timodal problems with few local minima and a single global
optimum apart from f10, which is symmetric about the ori-
gin with two global optima.

Particles were initialized using the region scaling tech-
nique where initialization takes place in an area of the search
space known not to contain the global optimum [8]. To
avoid initializing the entire swarm directly within a local
minimum, as could be possible with f12 − f14 if initializa-
tion takes place in the bottom quarter of the search space
in each dimension (as is common), an area of initialization
composed of the randomly chosen top or bottom quarter

of each dimension was defined, into which all particles were
placed with uniform distribution. This method ensures that
the swarm will not be initialized within the same area for ev-
ery optimization run, but will still be confined to an area at
most 0.25D of the search space, making the chance of ini-
tialization directly on or near the global optimum extremely
unlikely. In instances where the global optimum was located
at the center of the search space (i.e., f1, f2, f5− f7), the func-
tion was shifted by a random vector with maximum mag-
nitude of a tenth of the size of the search space in each di-
mension for each run to remove any chance of a centrist bias
[9].
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Figure 2: Performance plots for φ1 and φ2 in PSO-DR model 2, found empirically through 30 runs for each combination of parameters
φ1 = 0.0, . . . , 4.5,φ2 = 0.0, . . . , 4.5 at granularity 0.1.

Table 2: Benchmark function details.

Function Name D Feasible bounds

f1 Sphere/parabola 30 (−100, 100)D

f2 Schwefel 1.2 30 (−100, 100)D

f3 Generalized Rosenbrock 30 (−30, 30)D

f4 Generalized Schwefel 2.6 30 (−500, 500)D

f5 Generalized Rastrigin 30 (−5.12, 5.12)D

f6 Ackley 30 (−32, 32)D

f7 Generalized Griewank 30 (−600, 600)D

f8 Penalized function P8 30 (−50, 50)D

f9 Penalized function P16 30 (−50, 50)D

f10 Six-hump camel-back 2 (−5, 5)D

f11 Goldstein-price 2 (−2, 2)D

f12 Shekel 5 4 (0, 10)D

f13 Shekel 7 4 (0, 10)D

f14 Shekel 10 4 (0, 10)D

This investigation tested PSO-DR model 1 using both
global (as used in the originally proposed algorithm) and lo-
cal ring topologies for selecting the neighborhood operator
pn. The parameter settings were Pena’s, giving a velocity up-
date with the form

vt+1
id = 0.5vtid +

(
rid − xtid

)
+
(
pnd − xtid

)
. (10)

Results shown for PSO-DR model 2 use the value φ ≈
1.6, while those for PSO-DR model 3 use φ ≈ 1.2. These val-
ues were empirically determined to be optimal for these algo-
rithms; an analytical determination is the subject of current
research. Results for both models 2 and 3 are shown for runs
using a ring topology, which showed superior performance
in testing.

For comparison, results are presented for a standard
PSO algorithm (SPSO), which operates using the constricted

velocity update equation

vt+1 = χ
(
vt +

φ

2
u1
(
pi − xt

)
+
φ

2
u2
(
pg − xt

))
(11)

with φ = 4.1, χ = 0.72984 and with 50 particles [3]. All PSO-
DR model tests were carried out using 50 particles as well.
Algorithm performance was measured as the minimum error
| f (x)− f (x�)| found over the trial where f (x�) is the fitness
at the global optimum for the problem. Results were averaged
over 30 independent trials, and are displayed, with standard
error, in Table 3. Values less than 10−15 have been rounded to
0.0.

Performance results in Table 3 for all models of PSO-DR
versus SPSO clearly indicate that it is a competitive variant,
especially on highly complex problems such as f5 (Rastrigin).
Statistical tests were performed on these results to determine
the significance of the performance differences between the
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Table 3: Mean error after 30 trials of 300 000 evaluations. Necessary function evaluations are shown where 0.0 error was attained.

SPSO SPSO PSO-DR PSO-DR PSO-DR PSO-DR

Ring Global M1 Ring M1 Global M2 M3

f1
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

97063 ± 377 46897 ± 421 59322 ± 125 33290 ± 170 60063 ± 41 75810 ± 322

f2
0.12 ± 0.01 0.0± 0.0 0.01 ± 0.002 0.0± 0.0 3.7E-7 ± 7.5E-8 5.14 ± 1.27

— 297800 ± 928 — 168852 ± 1205 — —

f3
6.18 ± 1.07 8.37 ± 2.26 16.79 ± 0.49 0.80 ± 0.29 34.57 ± 5.46 18.64 ± 4.45

— — — — — —

f4
3385 ± 40 3522 ± 32 2697 ± 36 3754 ± 48 2418 ± 27 1830 ± 46

— — — — — —

f5
163.50 ± 5.64 140.16 ± 5.87 44.64 ± 2.71 115.51 ± 7.03 35.21 ± 2.13 9.88 ± 0.86

— — — — — —

f6
18.28 ± 0.85 12.93 ± 1.59 0.68 ± 0.67 18.51 ± 0.90 0.0± 0.0 0.0± 0.0

— — — — 287220 ± 2105 248160 ± 1945

f7
0.0± 0.0 0.019 ± 0.004 0.0± 0.0 0.008 ± 0.002 0.0± 0.0 0.0± 0.0

110616 ± 3320 — 101526 ± 9227 — 81226 ± 6560 70348 ± 2954

f8
0.004 ± 0.003 0.15 ± 0.05 0.0± 0.0 0.05 ± 0.02 0.0± 0.0 0.0± 0.0

— — 61370 ± 249 — 85101 ± 581 95810 ± 655

f9
0.0± 0.0 0.003 ± 0.001 0.0± 0.0 0.002 ± 0.0007 0.0± 0.0 0.0± 0.0

106163 ± 537 — 61793 ± 221 — 86031 ± 377 92416 ± 437

f10
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

9348 ± 190 11808 ± 445 44577 ± 7608 40015 ± 4483 6103 ± 104 5918 ± 75

f11
0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0

8258 ± 104 7080 ± 108 4772 ± 47 3968 ± 27 6720 ± 66 6846 ± 87

f12
0.59 ± 0.33 4.61 ± 0.54 0.17 ± 0.17 4.34 ± 0.59 0.0± 0.0 0.0± 0.0

— — — — 59958 ± 43 16229 ± 855

f13
1.09 ± 0.45 4.40 ± 0.60 0.0± 0.0 2.55 ± 0.62 8.1E-11 ± 1.8E-11 0.0± 0.0

— — 13433 ± 249 — — 14012 ± 764

f14
0.96 ± 0.45 3.24 ± 0.66 0.0± 0.0 3.13 ± 0.66 6.6E-11 ± 1.7E-11 0.0± 0.0

— — 12760 ± 1386 — — 121031004±

two algorithms. To avoid the problem of the probabilistic na-
ture of t-tests potentially affecting results when conducting
multiple significance tests, a modified Bonferroni procedure
was applied to values of α for successive tests [10]. This pro-
cedure involves inversely ranking observations by ascending
values of p, then setting

α′ = α

inverse rank
. (12)

Results for these statistical tests on PSO-DR model 3 and
SPSO are shown in Table 4 and confirm that the performance
is significantly improved on 3 of the 14 tested functions,
equivalent for 10 functions, and worsened for 1 function for
PSO-DR model 3 versus SPSO with ring topology. Perhaps
the most impressive improvement comes for f5 (Rastrigin),
a notoriously difficult multimodal problem that PSO algo-
rithms perform poorly on some problems in high dimen-
sionality.

Due to the high number of function evaluations that
were performed to obtain these results relative to previ-

ous work (where only 30 k–60 k function evaluations might
be performed), selected convergence plots are shown in
Figure 3. These show that the standard PSO obtains supe-
rior results at the very start of the optimization process,
up to 5000 function evaluations for the highest observed
value (Figure 3(b)). After the point at which this occurs,
PSO-DR model 3 surpasses the standard algorithm in per-
formance, and maintains this advantage to the end of the
300 k function evaluations on 7 of the 14 tested problems
( f4 − f6, f8, f12 − f14). On problems for which both algo-
rithms attained equal error levels of 0.0 ( f1, f7, f9 − f11), the
point at which this occurs, that is, when SPSO “catches up”
to PSO-DR model 3, can be observed in Table 3. On av-
erage, SPSO took 25% more function evaluations to attain
the optimum than PSO-DR model 3 on these problems. Fi-
nally, for the two problems on which SPSO outperformed
PSO-DR model 3 ( f2, f3), the same early performance is seen
with PSO-DR model 3 surpassing SPSO in performance early
in the optimization process; in these cases, SPSO eventu-
ally repasses the other algorithm by 50 k function evalua-
tions.



D. Bratton and T. Blackwell 7

Table 4: Significance for SPSO versus PSO-DR model 3 with ring topologies.

Function p-value Inverse rank α′ Significant

f4 0 14 0.003 571 Yes

f5 0 13 0.003 846 Yes

f6 0 12 0.004 167 Yes

f2 2.11e-11 10 0.005 Yes

f3 0.0086 11 0.004 545 No

f13 0.02 9 0.005 556 No

f14 0.04 8 0.00 625 No

f12 0.2663 6 0.08 No

f8 0.3215 7 0.007 143 No

f1 1 5 0.01 No

f7 1 4 0.0125 No

f9 1 3 0.016 667 No

f10 1 2 0.025 No

f11 1 1 0.05 No
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Figure 3: Convergence plots for SPSO and PSO-DR model 3 early in the optimization process.

A potential explanation for this behavior lies in the
diversity of the swarms at this point in the optimization
process. Figure 4 shows the mean Euclidean distance be-
tween particles for the corresponding convergence plots of
Figure 3. It should be noted that uniform initialization was
used in the trials used to generate these plots; relative per-
formance between the algorithms was unaffected, and ini-
tializing particle positions uniformly throughout the search
space removes an unrelated phenomenon in subspace ini-
tialization wherein the swarm expands greatly beyond the
relatively small initialization region at the start of the op-
timization process to explore the search space. Expansion
is common in the first few iterations using uniform ini-

tialization as well, but this is inherent to the swarm be-
havior and influenced only by the size of the entire search
space.

As can be seen in the plots of Figure 4, neither swarm
type begins converging immediately following initialization
but rather they maintain their diversity or expand slightly.
On a comparative basis, the standard PSO swarm expands
substantially more than the PSO-DR model 3 swarm; for ex-
ample Figure 4(c) shows that after the first 100 function eval-
uations, the mean distance between particles in the standard
PSO swarm increases from 23 to 31.5, while the PSO-DR
swarm diversity increases only from 23 to 24.5. Similar dis-
parities were observed for all other tested problems.
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Figure 4: Diversity plots for SPSO and PSO-DR model 3 early in the optimization process.

It is reasonable to gather from these results that the
higher swarm diversity for the standard PSO algorithm early
in the optimization process demonstrates a wider spread of
particle dispersion, and hence an improved probability of
finding and starting to explore the basin of attraction for
global or good local optima. PSO-DR model 3 expands very
little, if at all, early in the optimization process, resulting in
delayed acquisition of optimal regions of the search space.

5. EXAMINATION OF BURSTING

Bursts in the velocities of particles are commonly observed
using the standard PSO algorithm. These are generated by

means of the multiplicative stochasticity of the algorithm
[2]. In order to investigate bursting behavior in PSO-DR and
SPSO an empirical measure was devised.

This bursting measure was implemented to highlight
when a particle had a velocity in a single dimension that was
considerably higher than the next highest dimensional veloc-
ity. Bursting patterns of behavior were detected by reporting
that every time particle velocity in a single dimension was a
set amount λ times higher than velocity in the next highest
dimension. Bursting behavior is demonstrated in Figure 6,
where the velocity of a single particle in a 10-dimensional
problem is shown. On the plot of the multidimensional ve-
locity of the SPSO particle, it can be seen that velocity in a
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single dimension increases suddenly and dramatically while
remaining relatively level and low in all other dimensions.
This is an example of a velocity burst. While the figure shows
velocity for a single particle on a single run, examination of
velocity plots for hundreds of particles over dozens of runs
confirmed this to be representative of general particle behav-
ior.

Velocity for a PSO-DR particle is also shown in Figure 6,
and demonstrates the absence of bursts. Similarly to the
SPSO plot, examination of a large number of plots confirmed
this to be representative of general behavior for PSO-DR.

Examination of these empirical analyses show that PSO-
DR clearly does not contain bursting behavior on the scale
of SPSO while demonstrating equal or superior performance
on 13 of the 14 benchmark functions, leading to the hypoth-
esis that bursts are not, in fact, integral to the successful op-
eration of particle swarm algorithms. The fact that a very few
bursts do occur with PSO-DR indicates that it is a highly im-
probable feature of DR dynamics.

Analysis performed on statistics of several functions
shows that particle updates involving bursts are far less effec-
tive than more common nonbursting updates. For example,
results showed that for SPSO on f5 with λ = 100, on aver-
age 20.1% of all particle, updates involve an improvement
to the particle’s best found position pi, whereas only 1.8%
of updates involving bursts result in an improvement to pi.
Likewise, on average 0.9% of all particle, updates improve
the best found swarm position g, as opposed to only 0.01%
for bursting particles. Burst frequencies for values of λ from
10 to 150 are shown in Figure 5.

It is also interesting to note that far fewer total updates
result in an improved pi or g for PSO-DR when compared to
SPSO, for example, results showed that 20.1% of all updates
improve pi for SPSO compared with 0.64% for PSO-DR, and
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Figure 6: Representative particle velocities for SPSO and PSO-DR
on 10D Rastrigin.

0.91% improve g for SPSO compared with 0.02% for PSO-
DR on f5 for λ = 100.

6. CONCLUSIONS

Simplification of the standard PSO algorithm is an impor-
tant step toward understanding how and why it is an effec-
tive optimizer. By removing components of the algorithm
and seeing how this affects performance, we are granted in-
sight into what those components contribute to overall par-
ticle and swarm behaviors.

In particular, this paper has proposed a very simple PSO

DR3 : xt+1
id = xtid + φ

(
rid − xtid

)
(13)

which offers competitive performance to standard PSO, but
removes multiplicative randomness, inertia, and the personal
memory term pi from the position update.



10 Journal of Artificial Evolution and Applications

There is still much to be done before questions concern-
ing PSO behavior can be completely answered, and it is ex-
pected that the next decade of PSO research will be focused
on understanding the basic algorithm that powers both the
standard implementation and its variants.

In that light, the PSO-DR variant is important not only
because of its improved performance on several benchmark
functions, but also because its simplified state allows us to ex-
amine what happens to the standard algorithm when pieces
are modified or removed. Based on the results presented
here, it can be argued that large bursts are not generally
beneficial or integral to PSO performance, and may possi-
bly be detrimental. Although the presence of particle out-
liers is demonstrably important for swarm optimization (as
demonstrated in bare bones analysis, [6]), bursts, which are
sequences of extreme particle positions, occurring along an
axis and reaching outside the search space, remain a special
feature of velocity-based swarms. This work, which compares
standard PSO to a burst-free but comparable optimizer sug-
gests that bursts are disadvantageous in general. (However, in
the coincidence that the objective function has a rectangular
symmetry aligned with the axes, then bursting may actually
be fortuitous.)

Further, the replacement of the direct personal influence
operator pi from SPSO with the recombinant term ri derived
from its neighborhood in PSO-DR strengthens the case for
PSO being mostly reliant on social interaction as opposed to
personal experience. This is further supported by the effec-
tiveness of PSO-DR model 3, which lacks a cognitive term
altogether. The social behavior occurring inside of a swarm
is still a wide-open area in the field, and will hopefully con-
stitute a great deal of the future research devoted to the devel-
opment of a better understanding of this deceptively simple
optimizer.

Another property of PSO-DR resides in attractor jiggling
that takes place even at stagnation (no updates to any pi)
since ri is never fixed. This jiggling will work against conver-
gence and could propel the swarm onwards. This, and other
matters concerning the nature of recombination within PSO,
will be the subject of further study.
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1. INTRODUCTION

Various evolutionary and nonevolutionary methods have
been proposed in order to solve complex search and opti-
mization problems. Among these methods, a special place
is occupied by evolutionary algorithms (EAs) [1, 2] and by
the techniques based on swarm intelligence (such as parti-
cle swarm optimization (PSO) [3] and ant colony optimiza-
tion [4]). The main advantage of these methods is given by
the possibility to use them for searching in various spaces
without performing big changes in the structure of the al-
gorithm. They can be easily adapted (by the human being or
by themselves) to the peculiarities of the problem which is
being solved.

PSO is a population-based stochastic optimization tech-
nique proposed by Kennedy and Eberhart [5–7]. The stan-
dard PSO algorithm randomly initializes a group of particles
(solutions) and then searches for optima by updating all the
particles along a number of iterations. In any iteration, each
particle is updated by following a few simple rules [8, 9].

The standard model implies that particles are updated
synchronously [6]. This means that the current position and
speed of a particle are computed by taking into account only
the information from the previous iteration of particles. The
model investigated in this paper is a more general one and

it was proposed in [10]. In this paper, we are taking fur-
ther steps into our research by exploring the phenomena that
arise inside a swarm during the evolutionary design.

Our analysis focuses on an asynchronous version of the
PSO algorithm. This variant has the following characteristics.

(i) When a particle is updated, the current state of the
swarm (the position and the velocity of all the particles) is
taken into account. The best global and local values are com-
puted for each particle which is about to be updated, be-
cause the previous modifications could affect these two val-
ues. This is different from the standard PSO algorithm (or
synchronous PSO algorithm [6]) where the particles were
updated taking into account only the information from the
previous iteration (the modifications performed so far by a
standard PSO in the current iteration had no influence over
the modifications performed further in the current iteration)
and it is closer to the asynchronous PSO algorithm [11, 12]
that updates particle positions and velocities continuously,
based on currently available information.

(ii) In our model, the particles are updated based on
their quality. This fitness-based update is important because
it could be better to firstly modify the best particles of the
swarm and secondly the worst particles (or vice versa). This
is again different from the standard asynchronous PSO al-
gorithm [11, 12], which updates the particle positions and
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velocities by always using the same predefined order: first
particle, second particle, and so on (there are no relation-
ships between the update order and the quality of the parti-
cles).

(iii) Some particles may be updated more often than
other particles. For instance, in some cases, it is more impor-
tant to update the best particles several times per iteration
than to update the worst particles.

(iv) During the evolution, the swarm size can be mod-
ified for at least two reasons: some particles perform more
moves (in order to improve their quality), while other parti-
cles are never updated. This is why the weakest particles are
eliminated from the swarm. Unlike the standard PSO algo-
rithm, which works with a pre-established swarm size, the
current model finds by itself the optimal size of the swarm
along the evolution.

We intend to study how we can obtain better PSO algo-
rithms. In order to achieve this goal we employ an evolution-
ary approach: we start with a population of randomly gen-
erated PSO algorithms and we try to improve them along a
fixed number of generations. During the evolution, we try to
discover new swarm phenomena such as the special relation-
ships between particles, their quality, their update order, and
the optimal swarm size or some rules in the update strategy
of the swarm during the evolution process. These rules can be
repeatedly applied in order to obtain better approximations
of the solution. The process of particle update is influenced
by these rules.

Because a PSO is a complex algorithm, we cannot evolve
all its aspects. We are taking into account only an important
one, namely the order in which the particles are updated.
Other aspects, such as the equation used for updating a parti-
cle, have been analyzed in [13]. The new swarm phenomena
investigated in this paper are

(i) the update frequencies, how many times a particle is
updated;

(ii) the order of the updates, the order of particles that is
taken into account in order to modify their position
and velocity;

(iii) the optimal swarm size.

Such information can help us design better PSO algorithms
for optimization. These phenomena have been examined for
different test problems.

The paper is structured as follows: Section 2 provides a
brief review of the work on PSO parameter optimization.
Section 3 describes the model for evolving the PSO update
strategy. In Section 4.1, an analysis of the optimal swarm size
detected during the evolution is presented. In addition, the
frequency of the updates performed in the swarm is investi-
gated. Several rules identified in the PSO update strategy are
presented in Section 4.3. Section 4.4 summarizes the most
important ideas of this analysis and the main features of the
developed model. Conclusions and further work directions
are suggested in Section 5.

2. RELATED WORK

Many improvements of the basic form of PSO have been pro-
posed and tested in the literature [14–19]. Also, several anal-

yses of the PSO behavior have been performed [13, 20–22].
Much of this work is focused on the convergence of the PSO
algorithm.

Ozcan and Mohan [22] have analyzed the trajectory of a
particle in the “original” PSO algorithm (without an inertia
weight or a constrict coefficient) and van der Bergh has car-
ried out the first PSO convergence study [23]. Later, Clerc
and Kennedy [20] have proposed the model based on the
constrict coefficient.

Langdon et al. [21] have evolved kernel functions, which
describe the average behavior of a swarm of particles as if
it were responding as a single point moving on a landscape
transformed by the kernel. The evolved functions (obtained
with the genetic programming technique) give another land-
scape, which is “perceived” by a simple hill climber. The goal
for the genetic programming is to evolve a kernel, which
causes the movement of the hill climber to resemble the
movement of the whole PSO swarm.

Several approaches [13, 19, 24–28] have proposed vari-
ous hybrid evolutionary algorithms that combine the con-
cepts of EA and PSO.

The aim of the model from [19] has been to extend the
PSO algorithm so that it could effectively search into multi-
constrained solution spaces (whose constraints are imposed
by some real-world problems, such as scheduling), due to the
constraints rigidly imposed by the PSO equations. In order
to overcome these constraints, this algorithm completely re-
places the PSO equations with a self-updating mechanism,
which emulates the workings of the equations and which al-
lows flexible incorporation of the real-world heuristics into
the algorithm.

Kwong and Jacob [25] have proved the way in which EAs
can be used to explore complex pattern formations of swarm
systems in 3D space. It is noteworthy that these patterns ex-
hibit a high level of self-organization.

The particle evolutionary swarm optimization algorithm
[27] has introduced two new perturbation operators: “c-
perturbation” and “m-perturbation.” The goal of these op-
erators is to fight premature convergence and poor diversity
issues observed in PSO implementations.

Hendtlass [24], Parsopoulos and Vrahatis [26], and
Zhang and Xie [28] have used the differential evolution algo-
rithm (suggested by Storn and Price [29]) for the “on the fly”
adaptation of the PSO parameters. Using genetic program-
ming, Poli et al. [13] have studied the possibility of evolv-
ing the optimal force generating equations, which control the
particles in a PSO (forces that stimulate each particle to fly
towards the best point sampled by it and towards the swarm
best and back).

Several attempts at evolving evolutionary algorithms
(EAs) using similar techniques have been performed in the
past. A nongenerational EA has been evolved [30] by us-
ing the multiexpression programming technique [31]. A
generational EA has been evolved [32] by using the lin-
ear genetic programming technique [33–35]. Numerical ex-
periments have shown [30, 32] that the evolved EAs per-
form similarly and sometimes even better than the stan-
dard evolutionary approaches with which they have been
compared.
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3. THE MODEL FOR EVOLVING THE UPDATE
STRATEGY OF PARTICLES

The main idea of the model proposed in [10] is to evolve ar-
rays of integers, which provide a meaning for updating the
individuals within a PSO algorithm during iteration. The
model is a hybrid technique that works at two levels: the
first (macro) level consists in a steady-state genetic algo-
rithm (GA) whose chromosomes encode the update strategy
of PSO algorithms. In order to compute the quality of a GA
chromosome, a PSO algorithm is run (its update order being
encoded into that chromosome). Thus, the second (micro)
level consists in a modified PSO algorithm that computes the
quality of a GA chromosome.

3.1. Representation

The standard PSO algorithm works with a group of parti-
cles (solutions) and then searches for the optima by updating
them during iteration. Each particle is updated following two
“best” values. The first one is the location of the best solution
that a particle has achieved so far. This value is called p Best.
Another “best” value is the location of the best solution that
any neighbor of a particle has achieved so far. This best value
is a neighbourhood best and called n Best.

In a standard PSO algorithm, all the particles will be up-
dated once during the course of the iteration. In a real world
swarm (such as a flock of birds), not all the birds update their
position and velocity at the same time. Some of them up-
date these values more often and others update theirs later
or never. By tacking into account these frequencies, it is in-
teresting to discover (evolve) a model that can tell us which
particles/birds must be updated and which is the optimal or-
der for updating them.

A GA [1] is used (in [10]) for evolving the update strat-
egy of a PSO algorithm. Each GA individual is a fixed-length
string of genes and each gene is an integer number, from
the {0, 1, . . . , Swarm Size− 1} set. These values represent the
indexes of the particles that will be updated during PSO
iterations. It is possible that some particles should be up-
dated more often, while others should not be updated at all.
Therefore, a GA chromosome must be transformed so that
it should contain only the values from 0 to Max, where Max
represents the number of different genes within the current
array.

Suppose that we want to evolve the update strategy
of a PSO algorithm with eight particles. This means that
the Swarm Size = 8 and all the chromosomes of the
macrolevel algorithm will have eight genes whose values are
in the {1, 2, . . . , 8} set. A GA individual with eight genes can
be

C1 = (3, 1, 5, 2, 8, 6, 7, 4). (1)

In order to compute the fitness of this chromosome, a swarm
with eight individuals is used and the following updates are

performed during iteration:

update (Swarm [3]),

update (Swarm [1]),

update (Swarm [5]),

update (Swarm [2]),

update (Swarm [8]),

update (Swarm [6]),

update (Swarm [7]),

update (Swarm [4]).

(2)

In this example, all the eight particles have been updated
once per iteration.

Let us consider another example, which consists of a
chromosome C2 with 8 genes that contain only 5 different
values

C2 = (6, 2, 1, 4, 7, 1, 6, 2). (3)

In this case, particles 1, 2, and 6 are updated two times each,
while the particles 3, 5, and 8 are not updated at all. Because
of this, it is necessary to remove the useless particles and to
scale the genes of the GA chromosome to the set {1, 2, . . . , 5}.
The obtained chromosome is

C′2 = (4, 2, 1, 3, 5, 1, 4, 2). (4)

The quality of this chromosome will be computed by using
a swarm of size five (five swarm particles), performing the
following eight updates:

update (Swarm [4]),

update (Swarm [2]),

update (Swarm [1]),

update (Swarm [3]),

update (Swarm [5]),

update (Swarm [1]),

update (Swarm [4]),

update (Swarm [2]).

(5)

Performing this transformation, we can obtain another
swarm which has a new size. The model described evolves
only the update strategy for a PSO algorithm, but it can also
find the optimal swarm size in the same time, even if this
parameter is not directly evolved.

We evolve an array of indexes based on the information
taken from the function to be optimized. In other words, we
evolve an array that contains the update order for the PSO
algorithm. This algorithm is used in order to find the optimal
value(s) of a function. The quality of the update strategy is
given by the performance of the PSO algorithm.

Note that the mentioned mechanism should not be only
based on the index of the particles in the Swarm array. This
means that it would not be interested in updating a particu-
lar position, since the same position can contain a very good
individual in one run and a very poor individual in another.
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For instance, it is easy to see that all the GA chromosomes,
encoding permutations, perform similarly when averaged.

In order to avoid this problem, the Swarm array is sorted
in an ascending way (after each iteration), based on the fit-
ness value. The first position will always hold the best particle
at the beginning of the iteration. The last particle in this ar-
ray will always hold the worst particle found at the beginning
of the iteration. In this way, it is known that update (Swarm
[1]) will mean that the respective particle is not updated, but
the best particle at the beginning of the current iteration will
be.

3.2. Fitness assignment

The model for evolving the PSO update strategy is structured
on two levels: a macrolevel and a microlevel. The macro-level
is a GA that evolves the update strategy of a PSO algorithm.
For this purpose, a particular function is used as a training
problem. The microlevel is a PSO algorithm used for com-
puting the quality of a GA chromosome from the macrolevel.

The array of integers encoded into a GA chromosome
represents the update order for the particles used by a PSO al-
gorithm in order to solve a particular problem. The evolved
order is embedded in a modified particle swarm optimiza-
tion algorithm, as described in Section 3.3.

Roughly speaking, the fitness of a GA individual is equal
to the fitness of the best solution generated by the PSO al-
gorithm encoded into that GA chromosome. However, since
the PSO algorithm uses pseudorandom numbers, it is very
likely that successive runs of the same algorithm should gen-
erate completely different solutions. This problem can be
handled in a standard manner: the PSO algorithm encoded
by the GA individual is run multiple times (50 runs, in fact)
and the fitness of the GA chromosome is averaged over all
the runs.

3.3. The algorithms

The algorithms used in order to evolve the PSO update strat-
egy are described in this section. Because the hybrid tech-
nique from [10] combines a GA and a PSO algorithm within
a two-level model, two algorithms are described: one for the
macrolevel (GA) and another one for the microlevel (PSO
algorithm).

3.3.1. The macrolevel algorithm

The macrolevel algorithm is a standard GA [1] used in order
to evolve the update order of the particles. We use the steady-
state evolutionary model [36] as the underlying mechanism
for our GA implementation. The GA starts by creating a ran-
dom population of individuals. Each individual is a fixed-
length array of integer numbers. The following steps are re-
peated until a given number of generations is reached: two
parents are selected using a standard selection procedure
[37, 38]. In order to perform selection, which is one step of
the algorithm, we run twice a “tournament” [38] between
two individuals randomly chosen from the population and
select the winner (the one with better fitness). The parents

are recombined (using one-cutting point crossover [2, 39])
in order to obtain two offspring O1 and O2; a crossover point
is selected in each parent. The genes after the cutting point
are swapped between the parents. The offspring are then con-
sidered for weak mutation [40] (the values of one or more
genes of each chromosome are replaced with other randomly
generated numbers from the {1, 2, . . . , Swarm Size } set), ob-
taining O′1 and O′2. The best offspring O∗ (out of O′1 and
O′2) replaces the worst individual W in the current popu-
lation only if O∗ is better than W [36]. This fact is similar
to what happens in nature for longer-lived species where the
offspring and parents are alive concurrently and have to com-
pete.

3.3.2. The microlevel algorithm

The microlevel algorithm is a modified PSO algorithm [8,
41] used for computing the fitness of a GA individual from
the macrolevel. The algorithm is quite different from the
standard synchronous PSO algorithm [8, 41] and from the
asynchronous PSO algorithm [11, 12].

The standard PSO algorithm works on two stages: one
stage establishes the fitness, the p Best and the n Best values
for each particle, and the other stage determines the velocity
and makes the updates for each particle. The standard PSO
usually works with two populations/swarms. The individuals
are updated by computing the p Best and n Best values using
the information from the previous population. The newly
obtained individuals are added to the current population.

The asynchronous PSO algorithm works only in one
stage: the fitness, p Best, n Best, velocity, and position of each
particle are continuously updated. The particles are consid-
ered one by one for these modifications, following a pre-
established order: the first particle, the second particle, and
so on.

The developed algorithm performs all the operations in
one stage only: it determines the fitness, p Best, n Best, and
velocity values only when a particle is about to be updated.
In this manner, the update of the current particle takes into
account the previous updates in the current iteration. This
PSO algorithm uses only one population/swarm. Each up-
dated particle will automatically replace its parent. Moreover,
the genes of the GA chromosome indicate the update order
of the particles. The PSO individuals are not modified one by
one following the initial order (1, 2, 3, . . .), but following the
sequence encoded into the GA chromosome.

Reference [10] presents some numerical experiments for
evolving the PSO update strategies. The results obtained have
proved the effectiveness of this approach. In this paper, we
just remember that the evolved PSO performs better than the
standard PSO (see Figure 1).

4. LESSONS LEARNT DURING THE EVOLUTION

We will try to identify some rules in the update strategy of the
swarm during the evolving process. We want to identify these
rules because they can help us design better PSO algorithms.
Before we detail our analysis, we will give a brief definition of
the swarm rule.
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Figure 1: The evolution of the fitness of the best particle along
the number of iterations for standard PSO (with a fixed order and
equal frequency) and evolved PSO (with the optimized update or-
der/frequency). These results have been obtained for the f1 test
function with 5 dimensions. The results are averaged over 30 runs.

A swarm rule is a sequence of operations, which can be
repeatedly used in order to generate a new swarm or some
subswarms. The set of rules regards the order of the updates
(e.g., this order could be correlated with the particle qual-
ity: better particles of the swarm are updated and only after
that, the weaker particles are), the frequency of the updates
(some particles are updated more frequently than others dur-
ing the search process), and the optimal swarm size. These
rules could emphasize some lessons learnt by the particles
during the evolutionary process.

All the numerical experiments performed in this pa-
per use a PSO algorithm in order to optimize several well-
known functions. Some of them are unimodal test functions,
while others are highly multimodal problems (the number of
the local minimum increases exponentially with the dimen-
sion of the problem [42]). These functions are described in
Table 1.

4.1. Determining the optimal swarm size

First we analyze the evolution of the swarm size along the
number of GA generations for an unimodal problem. For
GA we use a population of 20 individuals which are evolved
during 100 generations. Because we fix the problem size to 5
(n = 5), the maximal number of particles for each swarm is
14 (according to Clerc suggestions [41], a good value for the
swarm size is 10 + 2 × √n). Therefore, each GA individual
has 14 genes. We perform binary tournament selection, one
cutting point recombination (applied with a probability of
0.8) and weak mutation (applied with a probability of 0.1).
The parameters of the PSO algorithm (microlevel) are given
in Table 2. The real Swarm Size is not included in this table
because different PSOs may have different number of parti-
cles. However, the number of function evaluations/iteration
is 14 for all the evolved PSO.

In Figure 2 we have depicted the evolution of the swarm
size (a swarm whose update strategy is encoded into the GA
chromosome) for several particular GA generations in the
case of De Jong function 1. The function is smooth, uni-
modal, strongly convex, symmetric, and continuous.

We can observe that the smallest swarm from the first
GA generation contains only seven particles and the largest
swarm contains eleven particles. These statistics are repeated
during the next generation. Starting with the third genera-
tion, the smallest swarm and the largest one tend to decrease
their sizes. In the last GA generation, the majority of swarms
contain only five particles, this size seems to represent the
optimal swarm size for the current problem.

In Figure 3 we have depicted the evolution of the min-
imum, maximum, and average of the swarm size along the
number of GA generations. The test problem was, again,
function f1. The average of the swarm size in a particu-
lar generation is computed as the sum of swarm sizes (the
swarms encoded into all the GA chromosomes) over the
number of individuals from the GA population.

We can observe (in Figure 3) that the average of the
swarm size decrease from 9 in the first generation to 6 in the
25th generation and to 5.05 in the 85th GA generation. Start-
ing with the 85th generation, the mean of the swarm size is
stabilized at level 5; this value seems to be the optimal size of
the swarm for the considered problem.

The same experiment was repeated for each test function
presented in Table 1 (for n = 5). The results are depicted in
Figure 4. We can observe that our model is capable of identi-
fying the optimal swarm size. Even if during the first GA gen-
erations there are some fluctuations in the swarm sizes, these
sizes tend to be more and more stable, eventually freezing at
a particular level to the end of the evolutionary process.

Moreover, we can observe in Figure 4 that the optimal
evolved swarm sizes for unimodal test functions have a de-
scendent trend, while the optimal evolved swarm sizes for the
multimodal test functions tend to increase along the number
of GA generations.

In addition to these remarks, we want to verify our
model for more difficult problems. For this purpose, we have
chosen to evolve a PSO update order for three functions:
Griewangk’s function 8, Rosenbrock’s valley, and Rastrigin’s
function 6, for each of them being considered 30 dimen-
sions. Rosenbrock’s function is unimodal, but it is consid-
ered to be difficult as it has a very narrow ridge (the tip of
ridge is very sharp and it runs around a parabola), while the
other two functions are highly multimodal and nonlinear.
Rastringin’s function contains millions of local optima in the
interval of consideration, making it a fairly difficult problem.
In the Griewangk case, the terms of the summation produce
a parabola, while the local optima are above parabola level.
The location of the minima is regularly distributed.

We analyze the evolution of the swarm size along the
number of GA generations for these difficult problems as
well. Actually, the same methodology as that from the previ-
ous experiment is applied, but 30 dimensions are considered
for each function. Each swarm can contain no more than
20 particles (according to the Clerc’s suggestions [41]), and
a population of 100 individuals (each individual having 20
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Table 1: Test functions used in our experimental study: the parameter n represents the problem size and fmin is the minimum value of the
function. All the functions should be minimized.

Test function Domain fmin

De Jong’s function 1 f1(x) =
n∑

i=1

x2
i [−100, 100]n 0

Axis parallel hyperellipsoid function f2(x) =
n∑

i=1

(
i·x2

i

)
[−10, 10]n 0

Rosenbrock’s valley function f3(x) =
n−1∑

i=1

100·(xi+1 − x2
i

)2
+
(
1− xi

)2
[−10, 10]n 0

Rastrigin’s function 6 f4(x) = 10·n +
n∑

i=1

(
x2
i − 10·cos

(
2·π·xi

))
[−10, 10]n 0

Griewangk’s function 8 f5(x) = 1
4000

·
n∑

i=1

x2
i −

n∏

i=1

cos
(
xi√
i

)
+ 1 [−500, 500]n 0

Shifted parabola/sphere(a) f6(x) =
n∑

i=1

(
xi − gi

)
[−100, 100]n 0

(a)
CEC 2005 benchmark.

Table 2: The parameters of the PSO algorithm (the microlevel algorithm) used in order to compute the fitness of a GA chromosome.

Parameters n = 5 n = 30

Number of function evaluations/iteration 14 20

Maximal number of
evaluations for each PSO
run

f1 1000 7000

f2 1000 7000

f3 4000 40000

f4 4000 40000

f5 1000 9000

f6 1000 7000

Learning factor c1 1.193

Learning factor c2 1.193

Inertia weight 0.721

genes) is evolved during 100 generations. The parameters of
the PSO algorithm are those presented in Table 2.

In Figure 5 we have depicted the evolution of the average
swarm size along the number of GA generations. We can ob-
serve that the average of the swarm size increases during the
first 30 GA generations and it tends to stabilize during the
rest of generations for the majority of problems.

4.2. Which particles are updated more often?

The evolution of update frequencies for each particle along
the number of generations is presented in Figure 6. In order
to compute this statistic, we calculate the average number of
updates for each particle in all the GA chromosomes. For in-
stance, it is possible to update the best particle (which is the
first particle from the swarm because they are sorted based
on their quality) two times in a GA chromosome and three
times in other GA chromosomes. In other words, the first
particle is updated for an average of 2.5 times (supposing that
we have only two GA chromosomes for this example). In or-
der to obtain a synthesis over all the evolution process, this
average is computed for each particle that can be in a swarm
(in our case it is possible to have a maximum of ten particles)

over all the individuals from the GA population (20 chromo-
somes in this experiment).

In Figure 6 we have depicted the evolution of the update
frequencies only for the f1 test function (with five dimen-
sions). Therefore, in what follows, we will detail an analysis
for this case.

Taking into account the frequency of the updates per-
formed for a particle, we can observe (Figure 6) that the most
frequently updated particle is the first one. The best particle
is updated for an average of 1.38 times in the first GA gener-
ation. This average rises up to 4.5 during the last generation.
Note that in the first GA generation, other particles (p2 to
p8) are updated more frequently than the first one, but tak-
ing into account the frequencies from all generations, the first
particle is the most updated.

Although the swarm particles are sorted based on their
fitness, the next frequently updated particle is the third par-
ticle. The average of the update frequency for this particle
starts from 1.5 times in the first GA generation and increases
to 3, but this value is obtained only in the 75th genera-
tion.

A similar trend can be observed for the second and
the fourth particles as well. Unlike these particles, the rest
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Figure 2: The evolution of the swarm size during the GA generations. Each ray depicts the size of a swarm whose update order is encoded
into a GA chromosome (we have 20 rays because we work with a GA population made up of 20 chromosomes). These results were obtained
for the f1 test function with 5 dimensions.

of them are updated fewer times as the generation num-
ber increases. Moreover, starting with the fourth genera-
tion, the eleventh and twelfth particles are no longer up-
dated.

Another remark regards the last two particles from the
swarm: p13 and p14 (the “worst birds” of the swarm). These
particles are never updated. In other words, a smaller swarm
(with only twelve particles) can solve our problem. This phe-
nomenon can also be observed if we analyze the results ob-
tained for the other test functions: better particles are more
frequently updated than the worst particles.

4.3. Analyzing the swarm update order

Several rules identified during the evolution of the PSO up-
date strategy are investigated in this section.

For instance, the qualities of the particles from the PSO
algorithm whose update order is encoded in the best GA
chromosome for the f1 test problem with 5 dimensions (ob-
tained in a particular run) are presented in Figure 7. This
chromosome is c = (5 6 3 13 6 3 4 3 4 4 5 3 3 5) and it encodes
the update order for a swarm with only 5 particles (the scaled
order of updates being (3 4 1 5 4 1 2 1 2 2 3 1 1 3)).
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Figure 3: The evolution of the minimum, maximum, and average
of the swarm size along the number of generations; the function f1
with 5 dimensions was used as a test problem.
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Figure 4: The evolution of the average swarm size along the number
of generations for all the test functions (n = 5).

The values on the Ox scale indicate the update order of
the particles. The Oy values indicate the quality of the parti-
cles: the lower-sized bars indicate better particles.

The first graphic (top-left corner image) presents the ini-
tial swarm with five different particles. The order of the ini-
tialization of the particles is as follows: third, fourth, first,
fifth, fourth again, first, and so on.

In the second graphic (the top-right image), the first par-
ticle is updated at the 3rd step and again, at the 6th step. Af-
ter this modification, the quality of the first particle (given by
the p Best value) is improved. After the 8th step and the 12th
step, respectively, when the first particle is updated again, a
better fitness is obtained also. Even if at the 13th step the first
particle is updated another once, its quality is not improved.
An quality improvement is obtained also for the second par-
ticle after the 10th step (when this particle is updated for the
third time).

A more clear example can be observed in the forth
graphic (the middle-right image). In this case, the particles
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Figure 5: The evolution of the average swarm size along the num-
ber of generations for different problems. For all the problems, 30
dimensions have been considered.
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Figure 6: The evolution of the update frequency for each particle
during the GA generations. By pi we have denoted a particle, i =
1, 14.

that are modified more times during a PSO iteration (actu-
ally all the particles, except the weakest one p5) improve their
quality after each update:

(i) p3 improves its quality after the 11th and the 14th
steps;

(ii) p4 improves its quality after the 5th step;
(iii) p1 (the best particle) improves its quality after the 6th,

the 8th, the 12th, and the 13th steps;
(iv) p2 improves its quality after the 9th and the 10th steps.

Table 3 presents the average number of updates per-
formed for each swarm particle of the proposed algorithm
(function f1 with 5 dimensions was considered).

As already stated, we have performed 14 updates inside a
swarm even though the swarm size is smaller than 14 (in this
case, some particles are updated more than once). For each
particle the number of updates performed at each moment
is quantified (because we have performed 14 evaluations for
each swarm, we obviously have 14 time moments). The par-
ticles are indexed based on the p Best value.

The most frequently updated particle is the best one (p1);
it was updated in average for 148 times, while the less fre-
quent updated particle is the worst one. Moreover, we can
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Figure 7: The update order encoded into the best GA chromosome. We have depicted different iterations of the PSO algorithm that updates
the particles based on the order encoded into the GA chromosome. Different particles are represented with different colors and the height of
the columns represents the quality of a particle; the lower-sized bars indicate better particles.
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Table 3: The average number of updates performed for every swarm particle (P) from an iteration to another one or from an update step to
another one (during the same PSO iteration).

Particle p3 p4 p1 p5 p4 p1 p2 p1 p2 p2 p3 p1 p1 p3

Number of updates 32 28.6 43.6 18.8 24.8 25.4 41.8 27.6 26.4 25 27 26.4 25.4 24.8

observe that there are more improvements for a particle from
a PSO iteration to another PSO iteration than from a step to
another one (during the same PSO iteration).

The same conclusion can be drawn if we analyze the re-
sults obtained for the other test problems: better particles are
more frequently updated than the worst particles are.

4.4. Summarizing the analysis

Analyzing the evolved update order for particles and the rules
that appear during the evolution, we can conclude that

(i) the proposed model is able to determine the optimal
swarm size at the end of the evolutionary process;

(ii) the evolved update order is based on the particle qual-
ity; the best particles are updated, in general, before the
worst particles;

(iii) the frequency of the updates: the best particles are
more frequently updated than the worst particles; even
if the best particle from a swarm is updated more
than once, these updates are not consecutive. There are
some updates, for other particles than the best, which
are performed between two successive updates for the
best particle.

5. CONCLUSION AND FURTHER WORK

In this paper, we have performed an analysis of the evolution
of PSO algorithms. The model of the PSO algorithm involved
in this analysis has several particular properties.

(i) It is different from the standard synchronous PSO
where all the particles are simultaneously updated.

(ii) It is similar to the asynchronous PSO where the par-
ticles are continuously updated, but it is more gen-
eral because it considers a dynamical update order and
not a predefined one (as in the asynchronous model).
Moreover, the update order takes into account the par-
ticle quality.

Note that, according to the no-free-lunch theorems [43],
we cannot expect to design a perfect PSO which performs
the best for all optimization problems. This is why any claim
about the generalization ability of the evolved PSO should be
made only based on the results provided by numerical exper-
iments.

In addition to this, we have tried to analyze the data gen-
erated during the evolution of the update strategy. This will
help us understand the nature of the PSO algorithm and de-
sign PSO algorithms that use larger swarms. Based on the
analysis of the evolved update strategy, we can draw some
conclusions. The first one is that the best particles from the
swarm are updated most frequently. Moreover, the evolution
process can determine the optimal size of the swarm.

Further work will be focused on the following:

(i) several other kinds of function optimization problems
will be considered, in an attempt to get more generic
results, or to evolve PSOs able to solve a much more
challenging and a more interesting kind of problems,

(ii) evolving more parameters of the PSO algorithm (inde-
pendently, one by one, or synchronously),

(iii) using larger swarms,
(iv) using larger GA population, this will prevent the pre-

mature convergence of the macrolevel algorithm,
(v) studying the generalization ability of the evolved PSO

algorithm (how well it will perform on some new and
difficult problems),

(vi) designing an evolutionary algorithm able to identify by
itself the rules analyzed in this paper and studying if
these rules will actually improve the quality of a PSO
algorithm in terms of convergence speed or accuracy
of the solution.
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1. INTRODUCTION

The design of optimization algorithms is usually targeted
to the goal of finding a single optimal solution for a given
problem. However, in many situations, this can be less
than ideal. Some problems have multiple possible solutions
which are optimal according to the chosen criterion. In these
cases, an optimization algorithm should ideally find all the
optimal solutions; then, these solutions can be used in many
different ways, depending on the application field: a specific
solution can be selected from the set using additional criteria,
different solutions can be preferred in different situations, or
a combination of multiple solutions can be built.

In general, optimization problems are formalized iden-
tifying the function to optimize. When such a function
presents multiple global optima, or local optima whose
values are very close to the global one, it is said to be
multimodal. In dealing with multimodal functions, the
behavior of a standard optimization algorithm may be less
than ideal. In some cases, in fact, an algorithm designed to
look for a single optimum would arbitrarily pick just one
of the optimal solutions, or it could even be misled by the
presence of more than a single optimum and fail to converge

(e.g., some genetic algorithms [1]). Thus, it is necessary
either to design specific algorithms, or to modify the generic
ones in order to optimize multimodal functions.

The latter approach has been taken, for example, in the
field of evolutionary computation. Optimization algorithms
based on the principles of Darwinian evolution have been
modified introducing the concept of niching. In an environ-
ment with limited resources, the evolutionary process leads
to the emergence of different species, which tend to exploit
different niches. When applied to a search algorithm, niching
allows it to divide the space in different areas and search them
in parallel.

In this study we will focus on particle swarm optimiza-
tion (PSO), a class of optimization algorithms which is
strongly tied to evolutionary computation. We will examine
how niching techniques can be introduced in the particle
swarm algorithm, observing similarities and differences in
relation to evolutionary algorithms. After discussing previ-
ous approaches towards a niching particle swarm, we will
introduce a new approach based on clustering. Moreover, we
will produce an implementation of the clustering approach,
kPSO, which uses the k-means clustering algorithm to
identify niches in the population.



2 Journal of Artificial Evolution and Applications

The paper starts with a brief introduction to the PSO
algorithm, which focuses on pointing out the importance of
the neighborhood structure of the swarm (Section 2). Then,
in Section 3, the topics of multimodal function optimization
and niching are discussed and previous applications of
niching in the context of PSO are presented. Section 4
is dedicated to a detailed introduction of our clustering
approach to niching and its first implementation, kPSO. In
Section 5, we show the results obtained by the new algorithm
from the experiments set up to compare its performance to
those of other PSO niching algorithms. Finally, in Section 6,
conclusions are drawn from the current results, and future
research directions are pointed out.

2. PARTICLE SWARM OPTIMIZATION

PSO is a quite recent algorithm which can be used to
find optimal (or near optimal) solutions to numerical and
combinatorial problems. It is easily implemented and has
proven both very effective and quick when applied to a
diverse set of optimization problems.

PSO was originally developed by Kennedy and Eberhart
in 1995 [2], taking inspiration both in the related field of
evolutionary algorithms and in artificial life methodologies.
In fact, the origins of particle swarm algorithms are strongly
tied to the artificial life theory of bird flocking, fish schooling,
and swarming; however, PSO is also considered a kind of
evolutionary algorithm, with many similarities in particular
with genetic algorithms and evolutionary programming [3].

The PSO algorithm simulates the flight of a population
of particles (the swarm) in a multidimensional space,
where each particle represents a candidate solution to the
optimization problem. Particles’ flight is influenced by the
best positions previously found by themselves and the other
particles. The effect is that particles generally tend towards
optimal positions, while still searching a wide area around
them.

Here follows a formal description of the PSO algorithm
applied to the minimization of a real function of several real
variables. We employed one of the most used variations of
the algorithm, the constriction factor PSO, based on [4]. Let
d be the dimension of the search space and f : Rd → R
the function to minimize, then xi = (xi1, xi2, . . . , xid) denotes
the position of the particle i ∈ (1, 2, . . . ,N) of the swarm,
and pi = (pi1, pi2, . . . , pid) denotes the best position it has
ever visited. The index of the best particle in the population
(the one which has visited the global best position) is
represented by the symbol g. At each time step, t in the
simulation, the velocity of the ith particle, represented as
vi = (vi1, vi2, . . . , vid), is adjusted along each axis j following
the equation [4]:

vi j(t + 1)

= χ·(vi j(t) + ϕp·
(
pi j(t)− xi j(t)

)
+ ϕg·

(
pg j(t)− xi j(t))

)
,

(1)

where ϕp and ϕg are random numbers uniformly distributed
in [0, pincr] and [0, gincr]. pincr and gincr are respectively called
the cognitive and social acceleration coefficients. An illustra-

vi(t)

vi(t + 1)

pg

pi
xi

Figure 1: At each step t, a particle xi updates its velocity and
position. The new velocity vi(t + 1) is the sum of three terms: the
previous velocity vi(t), and two terms proportional to the distance
from pi, the best position visited so far by the particle, and from
pg , the best position visited so far by the whole swarm. The new
position of the particle is then computed by just adding the new
velocity.

tion of the three factors influencing the velocity update of a
particle is given in Figure 1.

The coefficient χ, called the constriction factor, results
from the following equation [4]:

χ = 2
∣
∣
∣2− ϕ−

√
ϕ2 − 4ϕ

∣
∣
∣

, (2)

where ϕ = pincr + gincr > 4.
Moreover, particles’ velocity can be constricted to stay in

a fixed range, by defining a maximum velocity valueVmax and
applying the following rule after every velocity updating:

vi j ∈ [−Vmax,Vmax]. (3)

In this way, the likelihood of particles leaving the
search space is reduced, although indirectly, by limiting the
maximum distance a particle will cover in a single step.

The new position of a particle is calculated using

xi(t + 1) = xi(t) + vi(t + 1). (4)

The personal best position of each particle and the global
best index are updated using

pi(t + 1) =
⎧
⎨

⎩

pi(t) if f (xi(t + 1)) ≥ f (pi(t)),

xi(t + 1) if f (xi(t + 1)) < f (pi(t)),

g = arg min
i

f (pi(t + 1)), 1 ≤ i ≤ N.

(5)

An essential feature of the PSO algorithm is the way
in which the local and global best positions, pi and pg ,
and their respective acceleration coefficients, are involved
in velocity updates. Conceptually, pi (also known as pbest)
represents the particle’s autobiographical memory, that is,
its own previous experience, and the velocity adjustment
associated with it is a kind of simple nostalgia, as it leads the
particle to return to the position where it obtained its best
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(a) gbest (b) lbest (c) Von Neumann

Figure 2: Examples of swarms with different social networks.

evaluation. On the other hand, pg (gbest) is a sort of group
knowledge, a common standard which every single particle
seeks to attain.

The overall effect is such that when particles find a good
position, they begin to look nearby for even better solutions,
but, on the other hand, they continue to explore a wider area,
likely avoiding premature convergence on local optima and
realizing a good balance between exploration of the whole
search space and exploitation of known good areas.

2.1. Neighborhood structure

So far, we have described swarms in which particles had
access to the accumulated knowledge of the whole popula-
tion, as they were attracted by the global best solution, gbest.
However, this is not by far the only possible choice. More
generally, in fact, we can have particles influenced by the best
solutions found in their neighborhood, that is a specific subset
of the population. The mathematical relation which defines
the neighbors of each particle constitutes the neighborhood
topology and can be described by a—typically undirected—
graph in which each particle is a vertex and its neighborhood
relations are represented by adjacent edges (see Figure 2).

The role of the neighborhood topology is to regulate the
information flow among particles. In the PSO algorithm,
particles communicate by sharing high-fitness solutions
they previously located with their neighbors. Thus, the
communication takes place along the channels defined by
the neighborhood structure. On a dense topology, particles
would have many neighbors, so the knowledge of a good
position would be rapidly shared. Conversely, on more sparse
structures, the information would spread at a slower rate.

The swarm in which a global best position is shared
among all particles, also called the gbest particle swarm, is
thus the special case whose topology is a fully connected
graph, so that each particle’s neighborhood is the whole
swarm (Figure 2(a)). At the other extreme is the cognition-
only model [5], in which we have no edges in the graph: a
particle’s neighborhood is thus empty. However, in this way
we would no longer have a swarm, but a group of isolated
particles wandering around with no interactions.

A more common variation is the so-called lbest particle
swarm, in which particles are modeled to have only local
interactions [6] (Figure 2(b)). The topology structure is a
regular ring lattice with k edges per vertex, so that each
particle is influenced by k neighbors. A commonly used lbest

case is k = 2, resulting in individuals affected by only their
immediately adjacent neighbors. In such a swarm, it might be
the case that a segment of the population converges on a local
optimum, while another converges on a different optimum
or keeps searching. However, if an optimum is really the
best found by any part of the population, its influence slowly
propagates along the ring, and eventually all the particles will
be pulled towards it.

First experiments with the particle swarm used mainly
the gbest and lbest versions, with the first generally thought
to perform better in most cases. Since then, many other
topologies have been proposed and studied. Suganthan [7],
for example, proposed a swarm in which neighborhood
relations extend over time, in order to increase cooperation
towards the end of a run.

In [8], probably the first systematic study on the perfor-
mances of different topologies, Kennedy and Mendes recom-
mended the Von Neumann’s architecture (Figure 2(c)), in
which a particle’s neighbors are above, below, and on each
side on a two-dimensional lattice, to be the most promising
one.

3. MULTIMODAL FUNCTION OPTIMIZATION

A function is multimodal if it has more than one optimum.
However, it may have either a single global optimum or
more than one. When trying to optimize a multimodal
function, very different problems arise in each of these
cases. Optimization algorithms applied to functions with a
single global optimum and many local optima usually have
the goal of locating the one global optimum. Thus, their
main problem is to avoid deception by the other optima of
the multimodal function, which would otherwise result in
premature convergence to a suboptimal solution. In the other
case, when the function has many optima with the same
value, the goal of an optimization algorithm may be to locate
all of them.

Most optimization techniques are designed to deal with
multimodal functions of the first kind. They usually assume
that there exists only a single best solution in the search
space, and they put efforts in isolating it from other spurious
solutions.

The situation is much different when dealing with
functions with more than a single global optimum. In this
case, standard techniques will usually either favor a single
solution, or get confused by the multiple possible solutions
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and fail to converge to a single one. Therefore, specific
algorithms need to be employed or the standard ones need to
be modified to be more effective on multimodal functions.

3.1. Niching

In the field of evolutionary algorithms, multimodal func-
tions are dealt with by introducing the concept of niching.
Niching techniques are modeled after a phenomenon in
nature where animal species specialize in exploiting different
kinds of resources, resulting in several species coexisting
in the same environment [1]. The introduction of this
specialization, or niching, into a search algorithm allows it
to divide the space in different areas and search them in
parallel. The technique has proven useful when the problem
domain includes multiple global and local deceptive optimal
solutions.

Given the similarities between the evolutionary and the
particle swarm approaches, it is natural to consider a parallel
development of niching for PSO. There are, however, some
peculiarities of the particle swarm approach which need to
be considered.

Niching methods for genetic algorithms modify the way
individuals interact with each other, in order to let them
specialize on different areas of the search space, instead of
converging on a single one. In the evolutionary approach
individuals interact rather indirectly, as a combined effect of
the selection and recombination operators. In fact, the vari-
ous niching methods use different approaches, depending on
the specific interaction factor they choose to modify.

The situation with the PSO algorithm is rather different.
The particles in the swarm interact in a much more
straightforward way than evolving individuals. In fact, the
interaction is implemented by sharing knowledge of the
search space with neighbor particles. Thus, the neighbor-
hood structure of the swarm is probably the single most
relevant aspect to consider in our analysis.

Let us consider for example the gbest swarm, that is a
PSO in its simplest form. The gbest topology let particles
interact with the whole swarm. As we have seen in the
previous section, this provides for very quick convergence
towards a good region of the space, which often is identified
early in the search process. On a function with multiple
global optima, this approach most often will simply converge
on one of the optima and ignore the others.

Conversely, neighborhood topologies more sparsely con-
nected lead to very different outcomes. A good example
is the lbest topology, where particles have a very small
neighborhood. In this case, the population tends to split
into small groups which explore independently the search
space. Thus, they can actually locate different optima at
the same time, resulting in a sort of implicit niching
capability. However, since the neighborhoods in the lbest
swarm overlap, in many cases particles end up converging
on the same optimum nonetheless. In the end, the implicit
niching performed by the swarm relies too much upon
random events during the running of the algorithm to be an
efficient niching approach.

Thus, as pointed out by Engelbrecht et al. [9], the stan-
dard PSO must be modified to allow the efficient location of
multiple solutions. Notwithstanding the differences between
the approaches we will discuss for the particle swarm, with
respect to the evolutionary ones, we will still refer to them as
niching strategies.

3.1.1. Objective function stretching

Objective function stretching, introduced by Parsopoulos
et al. [10, 11], was among the first strategies to modify
the particle swarm algorithm to deal with functions with
multiple optima. Specifically, the goal of the authors was
to overcome the limitations of PSO caused by premature
convergence to a local solution. The stretching approach
operates on the fitness landscape, adapting it to remove
local optima. Considering a minimization problem, when
the swarm converges on a—possibly local—minimum, the
fitness of that position is stretched so that it becomes a
local maximum. In this way, successive iterations of the PSO
algorithm will focus on other areas of the search space,
leading to the identification of other solutions.

In [12], Parsopoulos and Vrahatis further developed the
same technique to use it as a sequential niching approach.
Likewise other sequential niching approaches, the stretching
technique has some advantages, but critical issues. It requires
no modifications of the underlying PSO algorithm and
actually shows good performances on many multimodal
functions. However, the effectiveness of the stretching trans-
formation is not uniform on every function. In fact, in
some cases it can introduce false minima, which render this
method unreliable [13].

3.1.2. NichePSO

In 2002, Brits introduced the nbest PSO, reportedly the first
technique to achieve a parallel niching effect in a particle
swarm [14]. The nbest PSO was in particular aimed at
locating multiple solutions to a system of equations, and used
local neighborhoods determined by spatial proximity.

The same authors subsequently proposed a new
approach which used subswarms to locate multiple solutions
to multimodal function optimization problems: NichePSO
[15]. NichePSO maintains a main swarm which can generate
a subswarm each time a possible niche is identified. The main
swarm is trained using the cognition-only model [5], which
updates the velocities of particles considering only their per-
sonal best position. Since no social component is involved,
each particle will perform a local search. On the other hand,
the subswarms are trained using the GCPSO algorithm [16],
which ensures convergence to a local optimum.

Niches in the fitness landscape are identified by moni-
toring changes in the fitness of particles. Specifically, a new
subswarm is created when the fitness of a particle shows very
little change over a fixed number of iterations. NichePSO
has some rules to decide the absorption of particles into
a subswarm, and the merging of two subswarms, which
basically depends on the measure of the subswarm radius Rj .



A. Passaro and A. Starita 5

This approach was compared empirically and shown
to outperform two niching genetic algorithms—sequential
niching [17] and deterministic crowding [1]—on a set
of benchmark multimodal function optimization problems
[18].

3.1.3. Parallel vector-based PSO

Schoeman and Engelbrecht proposed a different niching
approach in [19], and implemented it in the vector-based
PSO (VPSO). Their approach considered the two vector
components of the velocity update formula in (1), which
point, respectively, towards the particle’s best position and
the neighborhood best. When these two vectors point
roughly towards the same direction (and thus have a positive
dot product), the particle will modify its trajectory towards
the neighborhood best, otherwise (negative dot product),
it will probably head for another optimal solution. Niches
are identified according to this criterion. In fact, once the
dot product is determined for each particle in the swarm,
the niche radius can be defined as the distance from the
neighborhood best of the closest particle with a negative dot
product.

The original VPSO algorithm identified and exploited
niches in a sequential way, starting from the global best
and then repeating the procedure for the particles outside
its niche. In [20], the same authors developed the parallel
vector-based PSO (PVPSO), a more efficient version, based
on the same principles, but which followed a parallel
approach. In this case, the different niches are identified and
maintained in parallel, with the introduction of a special
procedure which can merge two niches when they become
closer than a specified threshold ε.

The vector-based approach has the appealing property of
identifying niches by using operations on vectors which are
inherent to the particle swarm algorithm. Thus, it provides
an elegant way to build a particle swam for multimodal
function optimization. However, when it was tested on
common benchmark functions, the results showed that its
performances were lower than those of other approaches,
such as the NichePSO.

3.1.4. Species-based PSO

Another niching version of the particle swarm algorithm,
the species-based PSO (SPSO) was proposed by Li [21].
The approach was the adaptation to the particle swarm of
the species conserving genetic algorithm [22], of whom Li
himself had been among the proponents. In particular, SPSO
adopted the same procedure for determining the species
seeds, which identify the niches in the population. This
procedure is in fact essentially analogous to the clearing
procedure proposed by Petrowski [23].

Once the species seeds have been identified, all the other
particles are assigned to the niche formed by the closest seed,
and the neighborhood structure is adapted to reflect the
division in niches. In fact, each species seed would serve as
the nbest for all the other particles in its niche.

The SPSO niching approach can dynamically identify the
number of niches in the fitness landscape, and also proved
to be suitable for the application on dynamics environments
[24]. However, it still requires a radius parameter σ to
determine the extension of the niches. Moreover, it implicitly
assumes that all the niches have roughly the same extension.

3.1.5. Adaptive niching PSO

In [25], Bird and Li developed a new algorithm which
could adaptively determine the main niching parameters: the
adaptive niching PSO (ANPSO).

The first step of the algorithm calculates r, the average
distance between each particle and its closest neighbor as

r =
∑N

i=1min j /=i‖xi − x j‖
N

. (6)

This value is then used to determine the formation of
niches. In fact, ANPSO keeps track of the minimum distance
between particles over a number of steps. At each iteration,
the graph G with particles as nodes is considered, and an
edge is added between every pair of particles which have
been closer than r in the last 2 steps. Niches are formed
from the connected subgraphs of G, while all the particles
which end up with no edges remain outside any niches.
As it can be seen from (6), the computational cost of the
niche formation procedure is O(N2) with respect to distance
calculations, which is quite expensive in comparison to other
techniques. ANPSO executes a particle swarm simulation
with constriction factor, but redefines the neighborhood
topology at each step. In fact, once it determines the niches,
it uses a gbest topology for each niche, and a von Neumann
topology for unniched particles. In this way, the particles
which have formed a niche will tend to perform a local search
around an optimum, while the others will continue searching
the whole space.

4. CLUSTERING PARTICLES

The particle swarm optimization algorithm has many points
in common with evolutionary algorithms. Certainly enough
to allow the concept of niching, originated in the evo-
lutionary framework, to be applied to it. However, some
peculiarities of PSO must be taken into account. In PSO,
there is no selection mechanism: all interactions among
particles take place along the neighborhood structure. Thus
a niching mechanism should operate directly or indirectly on
it, modifying neighborhood relationships among particles.
Another aspect by which PSO differs from the evolutionary
approach is the memory particles keep of their previous best
positions. This information can definitely be exploited in the
discovery of niches.

We discussed in the previous section the implicit niching
capabilities which the PSO enjoys. Though they are not
sufficient to provide for an effective method for the location
of multiple optima, they are considered a good starting point
to build on. As stated by Kennedy and Eberhart:

After a few iterations, particles in the particle swarm are
seen to cluster in one or several regions of the search space.
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These clusters indicate the presence of optima, where indi-
viduals’ relatively good performances have caused them to
attract their neighbors, who in moving towards the optimal
regions improved their own performances, attracting their
neighbors, and so on [26].

In fact, the tendency of particles to group near the optima
of the function is balanced in the end by the social influence
of the particle which has found the best position. Depending
on the specific neighborhood topology, this influence will
extend to the other particles in the swarm at different rates.
However, since the graph representing the neighborhood
relationship is in general a connected graph, eventually all
particles will tend to be attracted towards a single position.

The basic idea behind our approach is to dynamically
adapt the neighborhood structure in order to form different
niches in the swarm. This is accomplished by applying a
standard clustering algorithm to identify niches and then
restricting the neighborhood of each particle to the other
particles in the same cluster. In this way each cluster of
particles tends to perform a local search in the function
domain and to locate a different optimum.

4.1. Stereotyping

The use of clustering on the particles of a swarm is not
new. In [27], Kennedy introduced the concept of stereotyping
and discussed its impact on the performance of the PSO
algorithm. A stereotype is an individual or the idealization
of an individual which represents the norm of a group. The
algorithm presented by Kennedy used clustering to identify
different groups in the swarm and defined the centroid of
each cluster as the stereotype which the particles in that
cluster would look at.

Kennedy’s study was related to the social metaphor
underlying the particle swarm. In the standard PSO, particles
are attracted towards their personal best position and the best
position among their neighbors. This attraction simulated
the tendency to follow the best individual of a group. The
application of stereotyping shifted this attraction from the
best individual to a statistical prototype (the centroid of each
cluster).

Stereotypes were identified by a cluster analysis on the
particles’ previous best positions, performed with a version
of the k-means clustering algorithm. The experiments on
stereotyping were aimed at studying the swarm behavior
when the cluster center was used in place of the individual
best or of the neighborhood best in the velocity update
formula. Results showed that substituting the individual
previous best with its cluster’s center gave it some advantage,
while substituting the neighborhood best with the respective
centroid did not. A possible explanation is that using a
stereotype in place of an individual is on average a quite
good choice, while substituting the best individual with the
stereotype will in general lower its fitness.

In the end, the use of clustering for a stereotyping
approach brought some useful insights in the study of
the particle swarm. However, its goals were completely
unrelated to niching. In the following, we will introduce a
new variation of the particle swarm technique which uses

a very similar clustering procedure, but focuses on the
identification of niches.

4.2. k-means particle swarm optimization

The algorithm we developed is the k-means particle swarm
optimization (kPSO), the first version of which was intro-
duced in [28]. It provides a basic implementation of our
clustering approach to niching. In particular, we employed
the standard k-means algorithm, which is probably the best-
known partitional clustering algorithm [29, 30], to cluster
particles according to their pbest, the previous best position.
k-means is a very simple algorithm and, as we have just seen,
it had already been applied by Kennedy to cluster particles in
a swarm in his research on stereotyping.

kPSO uses the clusters of particles to modify the neigh-
borhood topology so that each particle can communicate
only with particles in the same cluster. Therefore, the swarm
turns in a collection of subswarms which tend to explore
different regions of the search space. Since our goal is that the
subswarms perform a rather local search, each of them uses
a gbest topology, with all the particles in a cluster connected
to each other.

Clustering is performed after the swarm random ini-
tialization and then repeated at regular intervals during the
swarm simulation. Between two clustering applications the
swarm (or more precisely, the subswarms corresponding to
the various clusters) follows its (their) normal dynamics. In
fact, the multiple applications of the clustering algorithm
are meant to keep track of the swarm dynamics: particles
in different clusters at early stages of the simulation can end
up in the same cluster as they move towards the same local
optimum or, in contrast, a single cluster can be split into two
as some of its particles fly towards a different optimum.

A relevant difference between our approach and other
niching PSO techniques is the fact that the clustering algo-
rithm is not applied at each step of the swarm simulation, but
only every c step. The rationale behind this choice lies in the
natural tendency of the swarm to cluster around the function
optima. The application of a clustering procedure should
just enhance this natural tendency and, above all, maintain
the clusters over time by blocking communication between
particles in different clusters. However, if the algorithm
reidentified the subswarms at each step, the particles would
not have time to follow their natural dynamics. Therefore, we
let them evolve for some steps following the standard PSO
dynamics.

In the following, we will discuss in detail the conse-
quences of this approach, and set up some experiments to
determine the actual effect it has on the performance of
the algorithm. In the mean time, it should be noted that,
as a side effect, this choice has the obvious advantage of
introducing a smaller computational overhead, since the
clustering procedure is applied only ∼T/c times (T being the
total number of simulation steps).

After performing the clustering, a cutting procedure is
applied: we measure the average number of particles per
cluster Navg and proceed by removing the exceeding particles
from the clusters which are bigger than the average. To this
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procedure Identify Niches
Cluster particles’ pbests with the k-means algorithm.
Calculate the average number of particles per cluster, Navg.
Set Nu = 0.
for each cluster Cj do

if Nj > Navg then
remove the Nj −Navg worst particles from Cj .
Add Nj −Navg to Nu.

end if
Adapt the neighborhood structure for the particles in Cj .

end for
Reinitialize the Nu un-niched particles.

end procedure

Algorithm 1: The procedure to identify niches in the kPSO algorithm.

Figure 3: Particles are linked to all the other particles in the same
cluster. Clusters with a number of particles greater than the average
are reduced and the exceeding particles reinitialized (see the particle
in white).

end, we keep the particles in each cluster Cj sorted by their
previous best position fitness, so that we can remove the
worst Nj −Navg particles of the cluster.

The goal of the cutting procedure is to avoid the
formation of overcrowded niches, which would end up in a
waste of computational power, as too many particles would
explore the search space around a single optimum. Instead,
the Nu exceeding particles removed from the overcrowded
clusters can be randomly reinitialized, in order to explore
new areas.

Niches are modeled after the reduced clusters, as
described in Algorithm 1. Each particle’s neighborhood is set
to the ensemble of particles in the same cluster. Thus we will
have k (the number of clusters) niches whose particles are
fully—connected (see Figure 3), realizing a gbest topology in
each niche.

The remaining particles, which were removed from the
overcrowded clusters and reinitialized, are used to explore the
search space for possible new interesting areas. In the first
implementation of the algorithm, these unniched particles
had no connections, thus they performed the kind of
nondeterministic hill-climbing associated with the cognition-
only model [5]. However, the first experiments showed that
the poor capabilities of this model hindered the search for
new solutions, leading to a less-than-optimal performance
on complex functions.

Figure 4: The particles not belonging to any niche (drawn in white)
are organized in a von Neumann lattice topology.

Thus, we modified the kPSO algorithm so that the
unniched particles are organized in a von Neumann lattice
neighborhood (see Figure 4). In this way, when particles are
reinitialized, they start performing a more efficient search for
new solutions, which allows the algorithm to identify all the
multiple optima.

Once the neighborhood structure has been set both
for the niched and the unniched particles, the algorithm
performs a fixed number c of steps of the constriction-factor
PSO. In this phase there are only two aspects in which kPSO
differs from the standard algorithm.

(i) The particles assigned to a niche Cj will have their
velocities clamped to Vmax = 2σj (see (8)), which is
proportional to the width of the cluster.

(ii) The unniched particles will behave as in a con-
striction-factor PSO with the von Neumann lattice
topology.

After c steps, the clustering and cutting procedures
are repeated. The pseudocode for kPSO is reported in
Algorithm 2.

The application of the kPSO algorithm requires to set a
few additional parameters with respect to the standard PSO.
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procedure kPSO
Initialize particles with random positions and velocities.
Set particles’ pbests to their current positions.
Calculate particles’ fitness.
for step t = 0 → T − 1 do

if t mod c = 0 then Every c steps.
Execute the procedure Identify Niches.

end if
Update particles’ velocities. Perform the standard PSO step.
Update particles’ positions.
Recalculate particles’ fitness.
Update particles’ and neighborhood best positions.

end for
end procedure

Algorithm 2: kPSO algorithm pseudocode.

We already discussed the first one, c, the number of PSO steps
between two clustering applications.

The other additional parameters are strongly tied to the
specific clustering algorithm chosen, k-means. Since the k-
means algorithm depends on the initial assignment of the
seeds, it must be repeated a number rk of times for a single
clustering application to reduce its variability. The optimal
clustering is chosen by selecting the one with minimal
squared error (or scattering) J

J =
∑

j

σ j , (7)

where σj is the variance of the cluster Cj

σ2
j =

1
Nj − 1

∑

p∈Cj

‖p−m j‖2 (8)

with m j the center of the jth cluster, and Nj its size. In our
experiments we found out that it is generally sufficient to
repeat the application of k-means a few times to obtain good
results. Thus we set rk = 10.

The second parameter for the k-means algorithm is k,
the number of clusters, which is also the most problematic.
In fact, the value for k that leads to the best performance
of the algorithm is strongly dependent on the number m
of optima of the function under consideration. When the
latter is known, k can be set to a value which is slightly larger
than it. In this way, the algorithm will maintain a sufficient
number of clusters to be able to identify all the optima,
while possibly forming spurious clusters, that is, clusters not
corresponding to any optima.

Regarding those parameters which are in common with
the standard constriction-factor PSO, we used the common
values of pincr = gincr = 2.05 and χ � 0.730.

4.3. Estimating the number of clusters

One of the major issues with our approach in kPSO is the
fact that one needs to specify the number of clusters k, which

is strongly related to the number of optima of the function
under consideration. Unfortunately, often the number of
optima of a function cannot be estimated a priori; rather,
it would be desirable that it could be discovered by the
optimization algorithm itself.

The need to know the number of clusters is inherited
by kPSO from the specific clustering algorithm we chose,
k-means, although it is a problem which is common to
a wide class of clustering algorithms. Significant research
has focused on the problem of estimating k, using very
different approaches [30]. Here we will discuss an approach
which leads to the estimation of k by the optimization of a
criterion function in a probabilistic mixture-model frame-
work.

In this framework, the objects to be clustered (the
particles’ position in our case) are assumed to be gen-
erated by a mix of several probabilistic distributions. In
particular, to each different cluster corresponds a different
distribution. Thus, a general model for the whole set of
objects will be given by a combination of different probability
densities, the mixture densities [31], which can be defined
as

ρ(x|θ) =
k∑

j=1

P(Cj)ρ(x | Cj , θ j). (9)

In (9), P(Cj) is the prior probability of an object x to
belong to the cluster Cj , with the condition that

k∑

j=1

P(Cj) = 1. (10)

Next, ρ(x | Cj , θ j) is the conditional probability distribu-
tion associated with the same cluster (component density).
Finally, θ = (θ1, . . . , θk) is the vector of the parameters of the
distributions for all clusters.

Assuming the number of clusters k, the prior probabil-
ities, and the form of each of the probability densities to
be known, it is possible to estimate the best parameters of
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a model by maximizing the probability of generating all the
observations (maximum likelihood) as follows:

ρ
({

x1, . . . , xN
} | θ) =

N∏

i=1

ρ
(

xi | θ
)
, (11)

or, in a logarithm form

�(θ) =
N∑

i=1

log ρ
(

xi | θ
)
. (12)

It has been proven [29] that the k-means algorithm
implicitly performs a maximization of the likelihood under
the assumption that the component densities are spherical
Gaussian distributions.

Extending on these considerations, finding the number
of clusters k is equivalent to fitting the model with the
observed data and optimizing some criterion. This can be
done by applying the k-means algorithm with k varying
in a range of possible values and then choosing the best
clustering.

However, the problem arises of choosing a valid criterion
to select the best clustering. Here the maximum likelihood
is not helping, since it invariably leads to the choice of the
highest k. Thus, a large number of alternative criteria have
been proposed, which combine concepts from information
theory. The most typical examples include the Akaike’s
information criterion (AIC) [32, 33] and the Bayesian
information criterion (BIC) [34, 35].

4.3.1. The bayesian information criterion

In our approach, we chose to integrate the Bayesian infor-
mation criterion (BIC), also known as the Schwarz criterion,
in order to estimate the best choice of k. Given a clustering
C, formed by k clusters of a swarm with N particles, we can
calculate its BIC value with

BIC(C) = �(C)− p

2
· logN , (13)

where �(C) is the log-likelihood of the clustering and p is the
number of parameters. The formula for the log-likelihood
can be calculated considering that we are assuming compo-
nents densities in the form of spherical Gaussians

ρ(x | m j , σj) = 1√
2πσdj

e−(1/2σ2
j )‖x−m j‖2

, (14)

and the class probabilities are estimated with the ratios
between the number of particles in a cluster and the total
number of particles:

P(Cj) =
Nj

N
. (15)

With a few mathematical transformations, the log-
likelihood of the clustering, �(C), can be written as

�(C) =
N∑

i=1

log ρ(xi | C) =
k∑

j=1

�(Cj)−N· logN , (16)

where the term �(Cj) is the log-likelihood for each cluster Cj :

�(Cj) = −
Nj

2
· log 2π − Nj·d

2
· log σ2

j

− Nj − 1

2
+Nj· logNj.

(17)

The number of parameters p is given by the sum of k− 1
class probabilities (given the condition in (10)), d·k centroid
coordinates, and the k variance estimates σj . Thus we have

p = (k − 1) + d·k + k. (18)

In the improved version of the kPSO algorithm, at each
clustering application, k-means is thus repeated with varying
values for k (usually in the range from 2 to N/2), then the
clustering with the highest BIC is chosen. In this way, there
is no need to set a value for k at the beginning of the run.
Rather, it can vary across the execution of the algorithm, as
the particles in the swarm slowly discover new promising
areas and organize in new niches.

5. EXPERIMENTS

In [28], we presented a first version of the kPSO algorithm
without the automatic selection of the number of clusters
and evaluated its performance in comparison to those of
NichePSO [15] and parallel vector-based PSO [20]. Results
showed how kPSO could achieve similar or better results,
requiring quite low computational resources.

Thus, in this study we chose to compare the enhanced
version of kPSO with automatic selection of the number
of clusters (see Section 4.3.1) with other two niching algo-
rithms, the SPSO [21] and ANPSO [25] algorithms, which
probably represent the state-of-the-art of niching algorithms
for the particle swarm. The study was conducted on the same
set of benchmark functions used in [25] and reported in
Table 1.

The first function in the study was the Branin RCOS
function, a two-dimensional function with 3 global optima
in the region we considered (see Figure 5). The second
function was the six-hump camel back (Figure 6), with only
2 global optima, but several deceptive local ones. The third
function, the Deb’s 1st function, was a one-dimensional
function with 5 equally spaced global optima (see Figure 7).
The fourth one was the Himmelblau function (Figure 8),
again two-dimensional, with 4 global optima. Finally, the 5th
and last function of the study was the Shubert 2D function,
with 18 global optima grouped in 9 clusters and surrounded
by a very high number of local optima (Figure 9).

In order to show how the improved version of our algo-
rithm can effectively identify niches surrounding the optima
of a function, we report in Figure 10 several significant steps
of kPSO running on the Branin RCOS function M1. In the
snapshots we plotted, it is shown how at the beginning of the
run the particles of the swarm are randomly distributed on
the search space. Then, during the first steps of the particle
swarm simulation, they naturally start to split in different
groups, roughly adapting to the fitness landscape.
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Table 1: Benchmark functions.

Function Equation Domain

Branin RCOS M1(x, y) =
(
y − 5.1x2

4π2
+

5x
π
− 6
)2

+ 10
(

1− 1
8π

)
cos(x) + 10

−5 ≤ x ≤ 10

0 ≤ y ≤ 15

Six-Hump camel back M2(x, y) = −4
[(

4− 2.1x2 +
x4

3

)
x2 + xy +

(− 4 + 4y2
)
y2
] −1.9 ≤ x ≤ 1.9

−1.1 ≤ y ≤ 1.1

Deb’s 1st function M3(x) = sin6(5πx) 0 ≤ x ≤ 1

Himmelblau M4(x, y) = 200− (x2 + y − 11)2 − (x + y2 − 7)2 −6 ≤ x, y ≤ 6

Shubert 2D M5(x, y) =
5∑

i=1

i cos[(i + 1)x + i]
5∑

i=1

i cos[(i + 1)y + i] −10 ≤ x, y ≤ 10
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Figure 5: Function M1: Branin RCOS.
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Figure 6: Function M2: Six-Hump camel back.

When the first clustering application occurs (see
Figure 10(c)), it identifies 4 niches, 3 of which actually
correspond to the global optima, while the other is a spurious
one. In the particular case that is shown here, the algorithm
will eventually converge to exactly 3 clusters, as it is shown
in Figure 10(f), at the 62nd simulation step. However, such
convergence is not the final goal of kPSO: as long as a
sufficient number of clusters has formed to cover all the
optima, the presence of spurious clusters is really of no
harm to the optimization algorithms. Besides, in early phases
of the optimization, the presence of additional clusters can
be helpful in locating new interesting regions of the search
space.

In Table 2 we report the results obtained on the five
benchmark functions with kPSO, SPSO, and ANPSO. The
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Figure 7: Function M3: Deb’s 1st function.
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Figure 8: Function M4: Himmelblau.

experiments were carried out so that for each function
the optimization algorithm was executed with two different
populations sizes. Each execution was repeated 50 times,
setting the threshold for the maximum number of iteration
to 2000 simulation steps.

In all the experiments, the goal of the optimization
algorithm was to locate all the global optima with an
accuracy of ε = 0.00001 and to maintain all of them for
at least 10 simulation steps. Since all the algorithms could
actually fulfill the goal within the maximum number of 2000
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Table 2: Number of evaluations required to find all global optima (mean and standard deviation).

Function Particles SPSO ANPSO kPSO

M1
30 3169± 692 5220± 3323 2084± 440

60 6226± 1707 6927± 2034 3688± 717

M2
30 2872± 827 2798± 857 1124± 216

60 5820± 1469 4569± 1316 2127± 341

M3
30 2007± 703 6124± 2465 1207± 688

60 4848± 2092 8665± 2974 1654± 705

M4
30 4096± 731 16308± 13157 2259± 539

60 7590± 2018 17168± 12006 3713± 570

M5
300 166050± 42214 82248± 10605 81194± 45646

500 219420± 80179 114580± 18392 117503± 77451
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Figure 9: Function M5: Shubert 2D.

iterations, we only report in Table 2 their performance in
term of the number of function evaluations they required.

The first four functions in the benchmark, M1, . . . ,M4,
proved to be quite easy to optimize. A population size of just
30 particles was more than sufficient to identify all the global
optima with a quite low number of function evaluations. In
Table 2, we report also the results with a population of 60
particles in order to compare them to those in [25]. kPSO
proved to have a clear advantage on all of these functions
with respect to SPSO and ANPSO.

In the experiments with functions M1 to M4 we used
a value of c = 10 for the number of steps between two
clustering applications. With higher values, the performance
of the algorithm did not vary significantly, meaning that it
was a sufficient number of steps for the particles to adjust to
the changed social structure after a clustering application.

A special analysis was conducted regarding the optimiza-
tion of function M5, which was the most complex function
of the set, in particular because it presented many local
optima surrounding the global ones. As shown in Figure 11,
even if kPSO was able to find all the optima in all the
runs, the number of evaluations required changed greatly
depending on the value of c. A small value for c would
hamper the tendency of the particles to follow the standard
PSO dynamics, since they would be rearranged in different

clusters too often. A too high value would instead freeze the
swarm on fixed clusters for a long time, resulting in worse
performance, since a high number of function evaluations
would be wasted. We found that a good value was c = 50, so
we used it for the other experiments (Table 2 and Figure 12).

The higher degree of complexity of function M5 also led
to the use of a much larger population. In the experiments
reported in Table 2, we employed the two population sizes
of 300 and 500 in order to compare the results to those of
ANPSO and SPSO as reported in [25]. The performance of
kPSO appears to be quite better than those of SPSO and
comparable to those of ANPSO, although they exhibits a
larger variance over the 50 runs. However, kPSO successfully
located all the optima in M5 also with smaller population
sizes, as plotted in Figure 12, requiring rather fewer function
evaluations than the other algorithms. In particular, with a
population of only 200 particles, kPSO was able to locate all
the global optima performing just 59165 ± 32646 function
evaluations.

The set of experiments was intended to test the perfor-
mance of the improved version of kPSO and to compare
it with two of the best existing niching PSO algorithms,
SPSO and ANPSO. The results we obtained were quite good:
the kPSO algorithm, with the new mechanism to adaptively
determine the number of clusters, outperformed the other
algorithms by a good margin on most of the test functions.

The situation was rather more elaborated regarding
the most complex function of the group, the Shubert 2D
function. In this case, kPSO still showed very good results on
average, but also a very large variance. Moreover it needed an
adjustment of the newly introduced parameter, the number
of simulation steps between two clustering applications. In
fact, while for the simple functions this number was kept
constant at a quite low value, the application to the Shubert
function required a much higher value, in a way that is
consistent with what we found out in earlier experiments on
the influence of c.

5.1. Computational cost

Another important aspect to consider in the evaluation of the
different approaches to niching is the computational cost of
the niching procedure itself. In general, when considering the
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Figure 10: Significant steps of a kPSO run on function M1. The plots show the previous best positions of the particles. In the first step,
particles are randomly distributed on the search space and their previous best position is the current position. At step 6, the swarm is
naturally splitting in different groups of particles around the global optima of the function. At step 10, the first clustering is performed,
which identifies 4 niches. Step 17 shows how particles belonging to different niches can get mixed up when their niches are actually related
to the same global optimum. Finally, at step 65, the algorithm stabilizes on 3 niches corresponding to the 3 global optima.

efficiency of an optimization algorithm, the most significant
measure is the one we used in our last experiments,
that is the number of function evaluations the algorithm
requires to reach the predefined goal. In fact, calculating the
function value is usually the single operation with the highest
computational cost in a real-world problem.

However, in certain cases, the computational overhead
added by other operations required by the optimization algo-
rithm should be taken into account. In the comparison we
are discussing, all the algorithms implement a version of the
particle swarm approach, thus they share roughly the same
(quite low) computational costs related to the simulation of
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Figure 11: Performance of kPSO on function M5 using different
values for c, the number of steps between clusterings, and a fixed
population size of N = 300.
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Figure 12: Performance of kPSO on function M5 using different
population sizes N , and a fixed value of c = 50 for the number of
steps between two clustering applications.

particles’ dynamics. In this regard, the only aspect in which
they differ is the specific niching procedure they use. The
computational cost of these procedures can be evaluated
in terms of the number of distance calculations. For the
SPSO algorithm, this leads to a computational cost at each
iteration that is O(N·k), where N is the swarm size and k the
number of seeds or niches. The ANPSO algorithm, instead,
implements a more complex procedure, which has a cost of
O(N2).

Our approach basically inherits the computational com-
plexity of the k-means algorithm, that is O(N·k·rk). But
considering that the improved version actually repeats the
k-means application in order to determine the best number
of clusters, the final computational cost is in the order
of O(N2·rk). It should be noted, however, that kPSO,

Table 3: Computational overhead of the niching procedure
employed in different algorithms, averaged per single iteration. N
is the swarm size, k the number of niches, rk the number of runs of
k-means, and c the number of steps before clustering.

Algorithm Cost

SPSO O(N·k)

ANPSO O(N2)

kPSO O(N2·rk/c) � O(N2)

unlike the other algorithms, only executes the niching
procedure every c simulation steps, thus reducing its com-
putational overhead by the same factor. Considering the
order of magnitude of the parameters rk and c we used
in all the experiments, the average cost per iteration is
O(N2·rk/c) � O(N2), therefore in the same order as ANPSO.
A summary of the computational overhead of the various
niching procedure, averaged per single iteration, is given in
Table 3.

While in this analysis it emerges that the SPSO algorithm
is the one which adds the lowest computational overhead to
identify niches, compared to ANPSO and kPSO, whether this
is really important or not depends mainly on two factors.

(i) In many real-world optimization problems, the most
relevant component of the computational cost is
the number of function evaluations. Thus, an algo-
rithm with a highest overhead in term of distance
calculations, but which requires significantly less
evaluations, is surely to be preferred.

(ii) Fine-tuning the parameters adds another compu-
tational cost. This is just one of the main issues
Bird and Li tried to assess with the introduction of
ANPSO over SPSO. The latter, in fact, requires the
specification of a fixed niche radius, thus it realisti-
cally needs to be executed multiple times to find the
best value, while ANPSO can adaptively determine
it during a single run. In this regard, kPSO is more
similar to ANPSO, as it can adaptively determine k,
the most problem-dependent parameter. However,
it still needs a value for c to be chosen, which can
significantly influence its efficiency, but does not
really hinder its ability to locate all the optima.

6. CONCLUSIONS

In this paper, we introduced a new approach to niching
in particle swarm optimization based on clustering. Then
we described kPSO, our implementation which uses the
k-means clustering algorithm to identify niches and the
Bayesian information criterion to determine the number of
clusters. The resulting algorithm maintains essentially the
same structure as the standard PSO. In fact the niching effect
is obtained just by influencing the neighborhood structure of
the swarm, while the dynamics of the single particles remain
unchanged. Thus, each subswarm created by the clustering
process performs a local search with the same efficiency as
the standard PSO.
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The kPSO algorithm was competitive with other niching
algorithms for the particle swarm. In particular, it markedly
outperformed one of the best existing algorithms, SPSO,
in term of the number of function evaluations needed
to discover all the optima of the test functions. Even
though the computational cost of the clustering procedure
in kPSO is higher than that of SPSO, we thought that
it is balanced by the improved ability to adapt with far
less manual tuning to different function landscapes, and
by the sensible gain in performance. In this respect, the
advantages of kPSO are rather similar to those of ANPSO,
another interesting algorithm which adaptively determines
the main niching parameters. The two algorithms, in fact,
introduce a comparable computational overhead with the
procedure to identify niches. kPSO, however, showed higher
or comparable performance in all the tests we conducted.

Research on the clustering approach will continue in
several directions. To begin with, the kPSO algorithm will be
put to test with higher-dimensionality benchmark functions
together with real-world problems in order to better assess
its capabilities. Another interesting research line involves
the development of a more flexible version of kPSO, which
will avoid the need to set c, the number of steps between
clusterings. This could be accomplished for example by
developing an algorithm which could estimate when a new
clustering application is needed, rather than performing it
at fixed intervals. Further research will also be devoted to
investigate the employment of different clustering algorithms
rather than the k-means.
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1. INTRODUCTION

The optimization of feeder setup and component placement
sequences is very important to the efficiency of a surface
mount machine (SMM). The increase of the number of
components to be placed on a single board has made the
reduction of assembly time probably the most important
issue to further cut down production costs and increase
productivity. The assembly of printed circuit board (PCB) on
a production line can be divided into four process-planning
subproblems: grouping (i.e., assigning PCB types to product
families and to machines), allocation (i.e., assigning nozzles
to the heads), arrangement (i.e., assigning reels to slots on
the feeder rack), and sequencing (i.e., the components’ pick-
and-place operations). Many publications have been devoted
to these complex optimization subproblems, and various
models and techniques have been presented, for example, by
Ball and Magazine [1] and Brad et al. [2]. These subproblems
are tightly intertwined, and each of them is very difficult to
solve to optimality. For example, the quality of a component
pick-and-place sequence is dependent on the feeder setup

and vice versa [2]. Various approaches have been proposed
to improve sequence of placement points and/or feeder
assignment for the PCB assembly process [3]. Egbelu et al.
[4] investigated assigning components to feeder slots and
sequencing component placement onto the PCB in order
to minimize the total assembly cycle time. They classified
machines depending upon whether the PCB table and the
feeder carrier were stationary or not. They developed rules
such as the centroid rule, the proportion rule, the partition
rule, and the weighted rule to initially assign components to
feeder slots. To obtain the component insertion sequence,
they modeled the problem as a traveling salesman problem
(TSP). Finally, by having the component insertion sequence
and the initial feeder setup, Egbelu et al. [4] converted
the component slot assignment into a quadratic assignment
problem (QAP) where the cutting plane and exchange
heuristic were used. Results showed that the assembly cycle
times were minimized when both the feeder rack and PCB
table were able to move (Egbelu et al. [4]). Some researchers
(see, e.g., [5]) have tackled the subproblems independently
but also have some researchers (see, e.g., Ho and Ji [6])
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preferred to solve these subproblems in an integrated way.
The literature is rich with work that has tackled this subject,
especially investigating how to improve the efficiency of
SMM [7, 8]. The technological characteristics of the SMM
can also influence the nature of some of the subproblems to
be solved and the formulation of the associated models [9].
As a result, many researchers solved the problem as a unique
problem since the problem relies heavily on the machine
characteristics (Ho and Ji, 2003). This causes difficulties in
applying or comparing the various approaches from the
literature.

In the recent years, a heuristic approach was developed
to solve the subproblems. Genetic algorithms (GAs) have
been applied successfully to a wide variety of optimization
arrangement/sequencing problems [10]. The GA and its
many versions have been popular in academia and the
industry mainly because of their intuitiveness, ease of
implementation, and the ability to effectively solve highly
nonlinear, mixed integer optimization problems that are
typical of complex engineering systems. The drawback of
the GA is its expensive computational cost. Particle swarm
optimization (PSO), introduced by [11] is a relatively recent
heuristic search method whose mechanics are inspired
by the swarming or collaborative behavior of biological
populations. PSO is similar to the GA in the sense that
these two heuristics are population-based search methods.
In other words, PSO and the GA move from a set of
points (population) to another set of points in a single
iteration with likely improvement using a combination of
deterministic and probabilistic rules. Critical ingredients for
the success of PSO are simplicity, ease of operation, and great
flexibility.

When the SMM has more than one nozzle per head
(or even a single nozzle per head), choosing an effective
nozzle group (or a nozzle) is important since a nozzle
change operation is time consuming. Optimizing the pick
and place operations without considering the nozzles chang-
ing operations may not be efficient since it may cause
many unnecessary nozzle changes that will significantly
reduce the machine throughput. However, to date, only a
few researchers [3] have tackled the nozzle optimization
problem. Due to its global and local exploration abilities,
simplicity in coding and consistency in performance, PSO
has been widely applied in many fields beyond its original
applications to the solution of continuous optimization
problems. In our research, we mainly use discrete data to
process SMM problems. Therefore, developing a mecha-
nism to realize discrete optimization problem is attractive.
Hence, in this paper, we develop a discrete particle swarm
optimization (DPSO) algorithm for nozzles selection and
sequencing components pick and place operations in a SMM
equipped with multiple placement heads. The objective
of the algorithm is to minimize the nozzle selection for
sequencing component pick and place operations so as to
increase the machines throughput.

The organization of this paper is as follows. Section 2
is a description of the SMM problem and its assumptions.
In Section 3, we propose a DPSO algorithm for multihead
SMM which is used to minimizing the nozzle changes
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Head N PCB
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Feeder rack
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Figure 1: Schematic diagram of a multihead surface mounting
machine.

and minimizing the pick and place operations. The fourth
section discusses the experiment results we have gained for
the heuristics described in this paper applied to 10 test
print circuit boards of SMM. The last section covers the
conclusions we have drawn from this research and gives a
brief overview of planned future research.

2. SMM DESCRIPTION AND ASSUMPTIONS

SMMs are classified into five categories based on their spec-
ification and operational methods. These are: dual delivery,
multistation, turret style, multihead, and a sequential SMM.
In general, each SMM has a feeder rack (sometimes called a
feeder carrier), a PCB table (or worktable), head(s), nozzle(s)
(or gripper(s)), and a tool magazine. The multihead surface
mounting machine is becoming increasingly popular. Its
strong point is that the mounting speed is high though
the price is low. Components are supplied to the machine
by reels. Each reel contains only one type of components.
Two feeder racks are located on both sides of the conveyor,
and each feeder rack has a number of slots for reels. The
actual pick-and-place unit is the arm, which has multiple
heads. The arm always moves from one location to another
along a straight line at a constant speed. Therefore, the
distance between two coordinate positions (x1, y1) and

(x2y2) can be defined as
√
|x1 − x2|2 + |y1 − y2|2 which is

called the Euclidean metric. The heads pickup components
from feeders and place them on the board. Since the distance
between adjacent heads is equal to a multiple of the distance
between two adjacent slots, the arm can pick multiple
components simultaneously by one pickup operation. This
operation is called simultaneous pickup. Each head has a
nozzle that grips and holds a component until it is placed on
the board. Nozzles of different diameters are used depending
on the size of the component to be retrieved. The nozzle
is automatically changed at the automatic nozzle changer
(ANC) (see Figure 1) when it cannot grip the required
component. The assumptions of the problem are as follows.
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(1) The number of heads is not limited. That is the arm
may have any number of heads.

(2) The different types of components cannot be con-
tained in one reel.

(3) The number of reels required to complete the job is,
at most, equal to the capacity of the feeder racks.

The above assumptions are practical and true in real settings.

3. DISCRETE PARTICLE SWARM
OPTIMIZATION ALGORITHMS

PSO is inherently continuous but recently the discrete
particle swarm optimization algorithm has been proposed to
solve discrete problems successfully. Ucar and Tasgetiren [12]
proposed a discrete particle swarm optimization algorithm
to determine a sequence of n jobs to be processed through
m machines that minimizes the number of tardy jobs.
Other papers proposing discrete particle swarm optimization
algorithms can be found in Shen et al. [13], Tasgetiren et al.
[14], Onwubolu [15], and Clerc [16].

Since, for each printed circuit board, the location of
each component has been decided, the critical decisions
left for optimization are where the different reel groups
should be placed in feeder slots. Moreover, in the mul-
tihead case, the optimal solution does not only require
the local optimization of a single head but also the global
optimization of the head group. In addition, there is only
a finite number of feeder slots, and each feeder slot can
only contain one reel of component(s). These properties
match the properties of particle swarm optimization that is
why we propose the DPSO algorithms to solve the SMM’s
arrangement/sequencing problems.

Considering the characteristics of the multihead case, we
decompose the component arrangement/sequencing prob-
lem into three phases: assignment of reels to heads, con-
struction of reel-groups, and the assignment of component
placement. In phase I, heads assignment algorithm, the
most critical decision is to assign jobs to each head with
a balanced loading simultaneously. Therefore, in order to
balance the loading of each head, first, we construct a
head-nozzle relative matrix; then, an algorithm is developed
to minimize the variance of component loadings on each
head based on the component types and their associated
nozzle types to produce an optimal solution of head
assignment.

3.1. Phase I: heads assignment algorithm

In order to balance the loading of each head, the heads
assignment algorithm essentially solves the following linear
programming problems. Let H be the head set where Hi

denoted the nozzle types which assigned to head i. Let N
be the nozzle set where Nj is the set which contained the
components associated with the nozzle type j, and let Mj be
the number of components associated to nozzle type j. Then,

Step 1. Construct a head-nozzle relative matrix A(i, j)
through randomly assigning each nozzle to each head and

satisfied:

H = AN , where A(i, j) = 0 or 1,
∑

j

A(i, j) = 1, for every i. (1)

A(i, j) = 1 means that the nozzle j has been assigned to head
i; in contradiction to this, A(i, j) = 0 means that there is
nothing assigned to head i.

Step 2. Calculate the fitness of head assignment to minimize
the variance of component loading on each head:

Min Fitness =
∑

i

(∑

j

Mj × A(i, j)− Average loading

)2

.

(2)

3.2. Phase II: reel grouping optimization

In phase II, since the time for the operation of pick-and-
place for each component is constant, the only difference
is how many nozzle changes are needed in the pick-and-
place process. The assignment of nozzles to each head was
optimally determined by phase I; therefore, the next objective
is to minimize the total number of times of nozzle changes
in the pick-and-place process according to the different type
of nozzle needed. In addition, each reel on the feeder rack
can only hold one kind of component. The optimal number
of reel groups needed to minimize the number of times of
nozzle changes can be developed as follows.

Step 1. Based on phase I, construct a matrix of component
assigned for the head group, that is H = AN ≈ Hi =
∪A(i, j)×Nj .

Step 2. From the component matrix, randomly assign
components to each head and generate the reel group,
{reel groupi( j, k) | 1 ≤ i ≤ No reel group}, where reel
groupi( j, k) means that the component assigned to head k
on the jth row for the ith reel group.

Step 3. Determine whether it is necessary to change the
nozzle from the consecutive component group assignment, if
so, calculate the number of nozzle changes and create a new
reel group, otherwise, continue the assignment process.

Step 4. Evaluate the performance of assignment to minimize
the number of nozzle changes and repeat Steps 1 and 3 until
a stop criterion is met.

3.3. Phase III: DPSO for assignment of
component placement

In Phase III, the assignment of component placement based
on particle swarm optimization approach is developed in
order to minimize the total time of pick-and-place calculated
by the traveling distances, one dimension Euclidean distance
times the unit assembly time in the entire process. The
discrete particle swarm optimization (DPSO) approach is
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used to search the optimal locations for the reel group. Since
the number of feeder slots in each surface mounting machine
is finite and discrete, each particle cannot fly outside the
range of feeder rack, that is, the position of each particle
is constrained. In order to satisfy these constrains, the
Vmax velocity update equation is used in this case, and the
maximum velocity which each particle can fly is calculated as
the half of the number of feeder slots. Furthermore, Zhang
et al. [17] proposed a new boundary handling method,
which is called as “periodic mode.” It provides an infinite
search space for the flying of particles, which is composed
of periodic copies of original search space with same fitness
landscape. Since each feeder slot can only contain one reel,
some modification on the position update equation with
boundary constraints handling should be made to protect
against infeasibility.

In this phase, assignment of component placement, the
fitness is determined as follows.

A = the distance that the arm moves from automatic nozzle

changer (ANC) to reel to pickup component

= ∣∣P(N(the last change for this pick-up)

− P
(
reel groupi( j, 1)

))∣∣,
(3)

where P(N(the last change for this pick-up) denotes the last
position of associated nozzle type needed to changed in this
pickup sequence.

B = the distance that arm moves from reel to broad and to

place the components

= ∣∣Xid(i)− P
(
reel groupi( j, 1)

)∣∣
for 1 ≤ i ≤ Opt No reel group,

(4)

where P(reel groupi( j, 1)) denotes the position of compo-
nent assigned to head 1 in the reel group i of jth row on the
print board.

C = the distance between the different components positions

in this placement sequence

=
No of head−1∑

k=1

∣∣P(reel groupi( j, k)
)

− p
(
reel group( j, k + 1)

)∣∣.
(5)

D = the distance between the last position of this placement

and the position of current reel group

= ∣∣Xid(i)− P
(
reel groupi

(
j, No of Heads

))∣∣.
(6)

E = the distance between the last position of this placement

and the position of current nozzle to be released on ANC

= ∣∣P(N(the current nozzle type needed to be changed)

− P
(
reel groupi

(
j, No of Heads

))∣∣.
(7)

F = the distance between the last position of this placement

and the position of next reel group on the feeder slot

without changing nozzle

= ∣∣P(reel groupi

(
j, No of Heads

))− Xid(i + 1)
∣∣.

(8)

G = the distance that the arm moves from nozzle to nozzle to

change different nozzle type on ATC

= ∣∣P(N(i)
)− P

(
N( j)

)∣∣,
(9)

where P(N(i)) denotes the position of nozzle type i.

H = the time needed for nozzle′s change. (10)

The algorithm for component placement is given below.

Step 1. An individual particle of reel groups is randomly
assigned to a feeder rack, and an initial solution based on
the optimal assignment of reel groups from Algorithm II is
generated according to the fitness function:

fitness =
∑

i

∑

j

∑

k

(A + B + C + D + E + F + G) + H

×No of Changes,
(11)

where 1 ≤ i ≤ Opt No Reel Group, 1 ≤ j ≤ Row(i), and
Row(i) denotes the number of rows in reel group i, 1 ≤ k ≤
No of Heads.

Step 2. Run the iterations of population with the following
update equation.

(i) Update the velocity with maximum velocity, Vmax,
constrained within the range of feeder rack. The
velocity update equation is influenced simultane-
ously by the individual’s experience and neighbor’s
experience as follows:

Vnew
id = w ×Vold

id + c1 × rand1()× (Pid − Xid
)

+ c2

× rand2()× (Pgd − Xid
)
,

(12)

if Vid > Vmax, Vid = Vmax, (13a)

else if Vid < −Vmax, Vid = −Vmax, (13b)

where w is the inertia weight in the range [0, 1],
the cognitive parameter c1 ∈ [0.5, 2], and the social
parameter c2 ∈ [1, 3].

(ii) Update the particle’s position using the new velocity:

Xnew
id = Xold

id + Vnew
id . (14)

(iii) If the reel allocation is out of boundary, then
a boundary constraint handling modification on
position updating is made as the follows:

Xnew
id = Xold

id + (−1)×Vnew
id . (15)

If the reel allocation is infeasible, then go to (i) again.
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Table 1: The comparison of experiment results between DPSO and the standard PSO.

Average time Opt solution time Improvement Paired t test

Components DPSO PSO DPSO PSO DPSO PSO α = 0.05

21 372 375 311 335 16.3% 10.63% 0.2893

42 1345 1351 1166 1172 13.3% 13.25% 0.4187

63 1686 2243 1477 1990 12.38% 11.29% 0.0000∗

84 3916 4732 3411 4203 12.90% 11.17% 0.0000∗

105 5925 6033 5282 5389 10.86% 10.67% 0.3853

126 5986 7277 5357 6607 10.50% 9.21% 0.0000∗

147 7038 8562 6287 7937 10.67% 7.30% 0.0000∗

168 8087 9684 7443 8845 7.96% 8.67% 0.0000∗

189 9091 11013 8667 10417 4.67% 5.41% 0.0000∗

210 11793 12379 10005 11617 15.16% 6.15% 0.0122∗

∗means that the paired t-test is significant, that is, p < α/2.

Table 2: The CPU time comparison between DPSO and the standard PSO.

Components

21 42 63 84 105 126 147 168 189 210

Approaches

DPSO 16.5 32 51 77 94 117 137 163 190 204

PSO 16.65 33 52 82 106 120 152 173 196 216

Saving (%) 0.91 3.03 1.92 6.10 11.32 2.50 9.87 5.78 3.06 5.56
∗Saving = (CPU time of PSO-CPU time of DPSO)/ CPU time of PSO ∗100%.

Step 3. Based on the fitness function, update Pid and Pgd.

Step 4. Repeat Steps 2 and 3 until the stopping criterion is
met.

Figure 2 shows the flowchart of the DPSO for optimiza-
tion of the operation sequence placement in multiheaded
SMM.

4. EXPERIMENT RESULTS

According to the DPSO approach proposed in Section 3,
even though we only considered one machine to one printed
circuit board, there are many possibilities of combination
of processing procedures. Depending on what nozzle is
assigned to what head or what component is assigned to
what reel of each head different solutions will emerge. In
this section, we consider a practical SMM that has 3 heads
for a 300 × 250 mm2 board. In order to emphasize the
effectiveness of DPSO, we made a comparison of the standard
PSO approach with our DPSO approach according to the
quality of solution found. This is measured by the optimal
solution found, the average traveling time (unit assembly
time), the improvement percentage, and paired t-test for
significance. The computer simulation is performed in the
operating environment of Window XP Professional with
Pentium III CPU, 846 MHz, 1 GB RAM. The software was
coded in MATLAB 7.0.

Since the exhaustive examination of the quality of
solutions requires a large number of problems, the algorithm

is tested on a set of randomly generated problems. The
component locations on the print board are randomly deter-
mined. In these simulations, both DPSO and the standard
PSO use the same parameters. Namely, the population size is
10, and the relative parameters of velocity update equation,
the cognition parameter c1, and the social parameter c2

are set equal to 2 to result in the most effective search of
the problem domain [11]. Furthermore, a linear decreasing
inertia weight w is used in this simulation.

To illustrate the performance of this meta-heuristic
approach, the number of placements and component types
ranged between 21 and 210 components to be placed and
of up to 34 different component types. Tables 1 and 2 show
the results of 10 different PCB boards with 20 runs with a
different random seed for each problem case.

In order to compare the performances of opt solution
time, we define the improvement percentage of average time
versus opt solution time as

Improvement =
(
Average Time−Opt Solution Time

)

Average Time

× 100%.
(16)

The results are shown on the fourth column of Table 1. In
addition, under the confidence level of α = 0.05, a paired t-
test mentioned on the fifth column of Table 1 is calculated as

follows: t = (X − Y)
√

(n(n− 1))/
∑n

i=1(x̂i − ŷi)
2 with n − 1

degree of freedom and x̂i = (xi − X), ŷi = (yi − Y), where X
is the sample mean of the observed set {xi = i | 1 ≤ i ≤ 20},
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No reel group +1 >

opt no reel group

N

Y

No reel group =
no reel group +1

Iteration = 1
No reel group = 1

Randomly assign the first reel
group to the feeder slot

Velocity update from Eq. (12),
(13a), (13b)

Is this position out of
boundary?

Is the pick-up-place
finished?

N

Does the nozzle need to
change?

Stop?
N

Stop

Y

Position update from Eq. (14)

N

Boundary handling from Eq. (15)Y

Is this assignment feasible?

N

Y

Calculate A from Eq. (3) Calculate B from Eq. (4) Calculate C from Eq. (5)

Calculate E from Eq. (7)
N

Is the reel group empty?

Y

Calculate F from Eq. (8)
N

Iteration = iteration +1

Optimization updateY

Calculate D from Eq. (6)Y

Calculate G from Eq. (9) and H

Figure 2: The flowchart of DPSO.

the number of iteration in observation, and Y is the sample
mean of the observed set {yi}, the traveling time at iteration i.

From Table 1, it is easy to see that the DPSO outperforms
the standard PSO in every case; particularly, as the number
of components increased, the difference in performance is
more significant. Moreover, with the reversed modification

of boundary handling in (15), the CPU time needed to search
the optimal solution through DPSO is a little shorter than the
time taken by the standard PSO, as shown in Table 2.

It shows that DPSO outperforms the standard PSO on
the ability to find the optimal solutions, and the performance
improvement is shown in Table 2. From the significance
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t-paired test, we also can see that the performance of DPSO
is better than the performance of standard PSO in PCB
component assignment/sequencing problems.

5. CONCLUSION

In this paper, we proposed a DPSO approach to solve
the problem of minimizing the PCB assembly time and
simultaneously optimizing assignment/sequencing problems
for multiheaded SMM. We decomposed the DPSO approach
into three phases: heads assignment algorithm, reel grouping
optimization, and the assignment of component placement.
These results lead to minimize the total assembly time of
assignment/sequencing time of the placement of component
on PCB board. From the experiment results, the DPSO
outperforms the standard PSO in the quality of the solution
found and in the time taken to search for the optimal
solution.

In this paper, we only discuss the application of DPSO
in a SMM. But, it is easy to modify the DPSO approach for
different applications including the consideration of compo-
nent placement for multiple printed circuit boards operation
simultaneously and with time limitation on operations. In
addition, the different parameter selection for the DPSO
and different velocity updating equation selection applied in
DPSO can be compared and considered.

APPENDIX

NOMENCLATURE

Vold
id : the individual particle previous velocity.

Vnew
id : the updating velocity of individual

particle in next movement.

Vmax: the limitation velocity updating is
calculated by half of the number of slots.

Nij : the nozzle of type j assigned to head i in
the head-nozzle relative matrix.

Xold
id : the previous position of individual

particle.

Xnew
id : the updating position of individual

particle.

Xnozzle
id : the position of nozzle.

X reel
id : the position of reel group.

Xid: the current position of individual
particle.

Pid: the best-so-far position of individual
particle.

Pgd: the best-so-far position of neighbors.

no change: the number of nozzle changes in need.

no component: the number of components used in
board.

Average loading: the average of component loading at each
head is calculated by dividing the number
of components by the number of heads.
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Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy

Correspondence should be addressed to Roberto Armellin, armellin@aero.polimi.it

Received 15 July 2007; Accepted 13 December 2007

Recommended by Alex Freitas

A multidisciplinary-multiobjective optimization of aerocapture maneuvers is presented. The proposed approach allows a detailed
analysis of the coupling among vehicle’s shape, trajectory control, and thermal protection system design. A set of simplified models
are developed to address this analysis and a multiobjective particle swarm optimizer is adopted to obtain the set of Pareto optimal
solutions. In order to deal with an unconstrained multiobjective optimization, a two-point boundary value problem is formulated
to implicitly satisfy the constraints on the atmospheric exit conditions. The trajectories of the most promising solutions are further
optimized in a more refined dynamical system by solving an optimal control problem using a direct multiple shooting transcription
method. Furthermore, a more complete vehicle control is considered. All the simulations presented consider an aerocapture at
Mars with a polar orbit of 200 km of altitude as target orbit.

Copyright © 2008 R. Armellin and M. Lavagna. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Aerocapture is a state-of-the-art technology considered to re-
duce the cost of planetary exploration. This technique, firstly
proposed by Cruz in 1979 [1], allows the reduction of fuel
cost for planetary insertion by using atmospheric drag to de-
crease the total orbital energy of the vehicle. The aerocapture
is designed to aerodynamically decelerate a spacecraft from
hyperbolic approach to a captured orbit within a single pass
through the atmosphere with no propulsion exploitation.
Once the vehicle enters the atmosphere, bank angle modu-
lation is used to safely remain within the flight corridor, pre-
venting skip-out or planetary impact. Propulsion is used for
attitude control and periapsis raise only.

Several missions—such as Magellan and Mars Global
Surveyor—have already employed aerobraking strategy:
multiple atmospheric passes over an extended period of time
allow to gradually get the desired orbit; but in these cases an
impulsive maneuver is first required to make the target planet
capture the spacecraft. Future missions, like either robotic
and human missions to Mars or the Titan Explorer, are con-
sidering using a lifting body to perform an aerocapture ma-
neuver at the arrival planet: a lifting body is less sensitive
to variation in the entry angle and the drag is easily modu-
lated. As counterpart, sophisticated guidance algorithms are

required to successfully drive the vehicle in the atmospheric
path.

Many studies in the last thirty years focused on the ae-
rocapture maneuver optimization. This optimization was
mainly conducted in terms of trajectory: the shape and the
aerodynamic characteristics were fixed. Within this frame-
work many techniques were developed to optimize an aero-
capture maneuver focusing on different control variables and
on the minimization of the path constraints [2–6].

Bearing in mind space utilization and exploration, the
payload mass delivery’s capability is an open issue that leads
to a wider analysis of aeroassisted maneuvers. The shape
definition could be considered as an additional degree of
freedom to enhance the overall maneuver efficiency. In this
frame, parametric studies analyzing the influence of differ-
ent shapes on the considered maneuvers were accomplished
[7, 8].

The influence of variation of shape on this class of prob-
lems shows the high sensitivity the aeroassisted maneuvers
have, and confirms the need of a multidisciplinary approach.
In this context, the work of Sudmeijer and Mooij underlined
the relevance of the shape optimization process to improve
the performance of reentry probes [9].

A multidisciplinary-multiobjective approach for the cou-
pled vehicle’s shape and trajectory optimization of aero-
gravity assist maneuvers has been recently proposed by the
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authors [10]. The coupling among vehicle’s shape, trajectory
control, and heating rates has been exploited and a tool use-
ful for the preliminary design of aerogravity assist maneuvers
has been developed.

A similar architecture is here proposed to address the
preliminary design of aerocapture maneuvers from a
multidisciplinary-multiobjective standpoint. It is important
to note that the aerocapture modeling and the optimization
problem setup is completely different form the aerogravity
assist one. In fact, a capsule-like vehicle is considered, a dif-
ferent control strategy is employed (exploiting both the an-
gle of attach and the bank angle), and a different set of or-
dinary differential equations is carried out for the simplified
dynamical model. Furthermore, the optimization process is
aimed in this case to minimize the thermal protection sys-
tem mass and to maximize the volumetric efficiency of the
capsule, thus optimizing the payload mass delivery capabil-
ity. Moreover, the aerocapture optimization problem is more
challenging, as it involves the solution of a boundary value
problem within each objective function evaluation. This ex-
pedient is necessary both to avoid equality constraints and to
bound the propellant required for the periapsis raise.

A multiobjective particle swarm optimizer (MOPSO) is
applied to detect the set of Pareto optimal solutions of the
analyzed problem. The particle swarm optimization (PSO)
method has been introduced for the first time by Kennedy
and Eberhart in 1995 [11, 12]. Since its introduction several
works have been carried out on PSO improving the original
method and proving its efficiency; an overview of the more
important ones is given by Poli et al. in [13]. In recent years
there have been several proposals to extend particle swarm
optimization to multiobjective optimization problems [14–
18]. The algorithm implemented in this work is based on that
proposed by Coello et al., the adoption of a variable inertia
and the application of the preservation of feasible solution
method (FSM) being the two main differences.

The paper is organized as follows. The models developed
for the multidisciplinary treatment of the maneuver are pre-
sented first. In particular the configuration, the aerodynam-
ics, the thermal protection system (TPS), and the dynamics
models are described. Some considerations on the clashing
requirements of maximizing the vehicle volumetric efficiency
and reducing the TPS mass follow. Subsequently the guide-
lines of the MOPSO implementations are given. The coupled
vehicle’s shape and trajectory optimization is then presented
and results are discussed. As a conclusion the trajectory re-
finement is analyzed.

2. MODELS

2.1. Capsule

The capsules considered in this work are axisimmetric vehi-
cles whose geometry is described by means of five parame-
ters (rn, rb, rr , θ, δ). These parameters are the vehicle nose ra-
dius, the base radius, the rear-base radius, the front cone half-
angle, and the rear-cone half-angle, as shown in Figure 1.

By allowing a quite wide search space for the parameters,
significantly different configurations can be obtained, from

rn

rb

rr

θ
δ

Figure 1: Shape parameters (rn, rb, rr , θ, δ) visualization.

(a) (b)

Figure 2: (a) Higly blunted vehicle and (b) slender vehicle.

highly blunted to slender vehicles, as reported in Figure 2.
The base area S = πr2

b is considered as reference surface
for aerodynamic coefficients. A constraint of 5 m3 on cap-
sule volume is considered. A density value ρv = 230 kg/m3 is
considered for a volume of 3.8 m3, equivalent to that of Mars
Express mission, whereas a reduced density value is consid-
ered for the exceeding volume, as it serves only as structural
mass.

2.2. Newtonian flow

The aerodynamic properties for the capsule-like vehicles de-
scribed in the previous section are computed by summing up
the contributes given by each panel in which the geometry is
discretized. The Newtonian flow theory with Lee modifica-
tion is applied for the estimate of the pressure coefficient, Cp

[19].
The modified Newtonian flow is a local surface inclina-

tion method in which Cp depends only on the local surface
deflection angle α; it does not depend on any surrounding
flowfield. Within this approximation, the classical expression
for the pressure coefficient can be derived as

Cp = Cpmax sin2α, (1)
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where the maximum value of the pressure coefficients, Cpmax ,
is evaluated at the stagnation point behind a normal shock
wave by

Cpmax =
p0 − p

(1/2)ρv2
. (2)

In the former expression p, v, and ρ are the asymptotic flow
pressure, velocity, and density, respectively; p0 indicates the
stagnation point pressure. As the free stream collides only
against the frontal area of a body and it cannot curl around
the body and collide against the back surface, the shadow
part of the body is characterized by free-stream pressure and
therefore Cp = 0.

In order to encompass high temperature effects, the value
of p0 is computed with the NASA Chemical Equilibrium with
Application code [20]. As a result the computed stagnation
pressure takes into account of the high temperature effects
that characterize hypersonic flows.

The aerodynamic code has been validated on the Viking
lander capsule hypersonic aerodynamics data from on-
ground and on-board measurements, which have been re-
cently used by Edquist for comparison to the LAURA Navier-
Stokes code [21]. A high accuracy, average errors lower than
6%, is achieved for both drag and lift-to-drag coefficients.
The obtained accuracy is remarkably high and comparable to
that attained through the sophisticated CFD code LAURA.

2.3. Thermal protection system

As aerodynamic efficiency is not a major issue for aerocap-
ture application, and the heating rate experienced are com-
parable to previous Mars missions, ablative thermal protec-
tion systems are the natural selection for this kind of ma-
neuvers. In fact, ablative materials can accommodate heat-
ing rates and heat loads through phase change and mass loss;
this represents the classical approach to TPS used for over 40
years in a broad range of applications, and all NASA plane-
tary entry probes (to date) have used it [22].

Therefore, the main issue for the aerocapture maneuver
stays in lowering the TPS mass fraction. In fact the mass
saving gained by reducing the propellant required for the
achievement of the final orbit must not be jeopardized by
the need of a heavy heat shield. An analysis on past NASA
missions reveals a direct connection between the TPS mass
fraction and the total heat q0 experienced by the vehicles at
the stagnation point. Based on this consideration, the TPS
mass fraction is simply estimated through the power law fit
curve:

TPS % = mTPS

m
= 0.0091q0.51575

0 . (3)

Neglecting the radiative heating, the total heat is calculated
integrating the well-known relation for convective heating
[23]:

q̇0= 1.35
(
10
−8)

(
ρ

rn

)1/2

v3.04
(

1− hw
h0

)
, (4)

in which hw is the wall enthalpy, and h0 is the total enthalpy.

2.4. Dynamics

Two different sets of ordinary differential equations are cho-
sen to describe the vehicle dynamics: a simpler formulation
to facilitate the solution of the coupled trajectory and vehi-
cle’s shape optimization problem, and a more complex set for
trajectory further refinement.

The complete dynamical model, written in a local nonin-
ertial reference frame, reads

ṙ = v sin γ,

ϑ̇ = vcosγcosψ
rcosϕ

,

ϕ̇ = vcosγ sinψ
r

,

v̇ = D

m
− g sin γ,

vγ̇ = Lcosσ
m

− gcosγ +
v2cosγ
r

,

vψ̇ = L sin σ
mcosγ

− v2 tanϕcosγcosψ
r

,

(5)

in which the state vector (r, ϑ,ϕ, v, γ,ψ) is made up by the or-
bital radius, the longitude, the latitude, the velocity, the flight
path angle, and the heading angle of the spacecraft. Further-
more, L = (1/2) ρSCLv2 and D = (1/2) ρSCDv2 are the clas-
sical expressions for the lift and the drag force, σ is the bank
angle and g the gravitational acceleration. (Consult [10] for
a complete description of the dynamics.)

In the first phase of the optimization process, when the
coupled shape and trajectory’s optimization are considered,
we are only concerned with parameters directly related to
enter a closed orbit, no matter whether a specific three di-
mensional orbit the spacecraft will be finally placed on. For
this reason, the variables of interest are r and v only. In or-
der to analyze the behavior of these variables, the equation of
flight path angle must also be taken into account. The sim-
plified model for the aerocapture maneuver is made up by
a set of three differential equations. To facilitate the analysis,
the equations of motion are nondimensionalized [4]. The di-
mensionless arc length s replaces the time t:

ds =
√
β

re
vdt. (6)

The altitude is nondimensionalized with

y = ρ

ρe
= e−βh, (7)

in which the altitude h is relative to the planet’s atmosphere
boundary, h < 0 means the vehicle is within the atmosphere.
Note that a simple exponential model for the planetary den-
sity ρ = e−βh is considered, in which β is the inverse scale
height of the atmosphere, whose boundary is fixed for Mars
at 100 km of altitude. With the concerned speed, the follow-
ing expression is used:

x = ln
(
ve
v

)2

. (8)
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In the previous equations, and throughout the paper, the e
subscript refers to properties at the atmosphere’s boundary.
The remaining required nondimensional parameters are de-
fined by

ε =
√
β

re

ρeSCD
m

,

δ = μ/re
v2
e

,

(9)

in which μ is the gravitational parameter of the the planet.
The complete nondimensional set of equations is then

ẏ = −
√
βre y sin γ,

ẋ = εy +
2δex
√
βre

sin γ,

γ̇ = ε

2

(
CL
CD

)
cosσ +

cosγ
√
βre

(
1− δex).

(10)

The initial values of x and y are known from the entry condi-
tion in the planetary sphere of influence, whereas the entire
final state is univocally defined if the apogee of the exit trajec-
tory is prescribed to minimize the required Δv for the circu-
larization. In order to have the same number of differential
equations and boundary conditions, two differential equa-
tions must be added to the system (10). For this purpose, the
arc length is scaled as s = Tτ where τ belongs to the interval
[0, 1], and T is the unknown final arc length, which is an un-
known constant. One additional differential equation is then
Ṫ = 0. Furthermore, if a constant bank angle control law is
considered, the differential equation σ̇ = 0 can be used to
match the number of equations and the number of bound-
ary conditions. The constant bank angle approximation rep-
resents the simplest control law that can be adopted as far
as the achievement of the tridimensional final orbit is not of
concern. In this work frame, the complete set of equations in
the new independent variable τ is

ẏ = T
(
−
√
βre y sin γ

)
,

ẋ = T
(
εy +

2δex
√
βre

sin γ
)

,

γ̇ = T
(
ε

2
CL
CD

cosσ +
cosγ
√
βre

(
1− δex)

)
,

Ṫ = 0,

σ̇ = 0.

(11)

This set of equations is suitable to define the two-point
boundary value problem (TPBVP) described in detail in the
following section.

3. VOLUMETRIC EFFICIENCY AND TPS MASS
PERCENTAGE ANALYSIS

To better understand the results of the following section, the
effects of the vehicle’s shape on the trajectory minimum al-
titude, on the heat shield percentage, and on the volumetric
efficiency are analyzed firstly. The simplified model of the dy-
namic (11) is considered.

The selected control law imposes both bank angle σ and
the angle of attack α to be constant; the CL/CD is, therefore,
determined by the angle of attack α. The goal is to use the
atmospheric path to reduce the Δv required to achieve a cir-
cular target orbit of 200 km of altitude. Within this frame, the
atmospheric path is used to model the incoming hyperbola
into an elliptical trajectory having the apogee at an altitude
of 200 km, without considering the achievement of the 3D
target orbit. The achieved orbital plane as the vehicle leaves
the atmosphere, is assumed to be the target orbit plane: that
matching condition is assured by a proper choice of the entry
plane in the planet’s atmosphere (i.e., the proper selection of
the pericenter radius of the incoming hyperbola). The sat-
isfaction of this constraint is addressed within the solution
refinement process. The atmospheric path is computed by
solving the TPBVP after the vehicle aerodynamic coefficients,
the volume, and the mass have been computed. Some details
of the TPBVP formulation are now illustrated.

The conditions at the edge of the atmosphere are labeled
with the subscript e, those at Mars sphere of influence by
∞, and the entry and exit conditions with the superscripts
− and +, respectively. The atmospheric boundary is settled
at 100 km over Mars mean radius. The 2-body problem and
(11) completely describes the system dynamics outside and
inside the atmosphere respectively [24]. The velocity magni-
tude at the boundary of the sphere of influence is assigned to
v−∞ = 5 km/s. At the atmospheric entry, the initial radius r−e
is re and the entry velocity v−e is computed by the solution of
the Vis-Viva equation:

1
2
v−2
e − μ

r−e
= 1

2
v−2
∞ . (12)

In order to apply a tangentialΔv correction, which represents
the minimum propellant strategy, the apogee ra of the trajec-
tory obtained after the atmospheric phase is constrained to
lie on the target orbit. Thus, the values of γ+

e and Δv required
for the circularization can be computed as a function of the
final velocity v+

e through the following procedure.

(1) Evaluate the energy of the exit trajectory:

E = 1
2
v+2
e − μ

r+
e
. (13)

(2) Compute the semimajor axis and the eccentricity:

a = − μ

2E
,

e = ra
a
− 1.

(14)

(3) Obtain the angular momentum:

Γ =
√
a
(
1− e2

)
μ. (15)
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(4) Finally, compute the exit flight path angle and the Δv
burn:

γ+
e = acos

(
Γ

v+
e r+

e

)
,

Δv =
√
μ

ra
−
√

−μ
a

+ 2
μ

ra
.

(16)

The procedure admits solutions of Figure 3 for values of v+
e

in the range [825.9, 3527.4] m/s.
A subset of exit trajectories with the apogee on the target

orbit are sketched in Figure 4. The Δvmax corresponds to the
unrealistic vertical exit from the atmosphere. In that case the
spacecraft would arrive at the apogee at zero velocity, result-
ing in a Δv = 3453.7 m/s: the circular target orbit velocity.
The minimum Δv correction is 24.4 m/s and it is associated
to the maximum exit velocity v+

e = 3527.4 m/s and to the
minimum exit flight path angle γ+

e = 0 deg. The exit trajec-
tory can be identified with an Hohmann transfer connecting
the circular orbit at the atmosphere boundary to the target
orbit, with the main difference being only the apogee impulse
to be required.

To facilitate the TPBVP numerical solution, a 3500 m/s
constraint on v+

e is posed; the resultant γ+
e andΔv are 1.73 deg

and 52.6 m/s, respectively. It’s worth noting that the com-
puted trajectories are not optimal from the Δv standpoint,
although the selected constraints assure them to be close
to the theoretical minimum (considering the required addi-
tional propellant). The proposed procedure assures a com-
plete knowledge of the final state x, y, and γ; the remaining
unknowns, that is, the total arc length T , the entry flight path
angle γ−e and the bank angle σ , are computed by the TPBVP
solver. A linear multipoint method [25–27] is applied to solve
the problem and the second order solution derived by Vihn
et al. [4] is used as first guess solution. The algorithm shows
quadratic convergence typical of Newton’s method and con-
verges on average within 10 iterations. The integration in-
terval is transcribed using 100 nodes to assure absolute and
relative accuracy of 10−8.

TheΔv correction is univocally determined once the con-
straints on the final conditions are satisfied, therefore no Δv
optimization is required. As the Δv minimization is substi-
tuted by a constraint satisfaction problem, the attention can
be focused on two other important aspects of the aerocap-
ture design: the vehicle volumetric efficiency maximization
and the TPS mass fraction minimization. A high volumet-
ric efficiency has two main benefits: a smaller launcher fair-
ing is required as the vehicle is more bulky, and the vehicle’s
volume can be better exploited for the spacecraft accommo-
dation. The minimization of the TPS mass ratio leads to a
maximization of the mission outcome, as the percentage of
payload mass increases. It needs to be remarked that the TPS
mass must be lower than the propellant required to achieve
the target trajectory without using the aerocapture in order
to consider the aerocapture beneficial. These goals are mon-
itored by the TPS mass fraction of (3) and

η = lmax

V
, (17)

where lmax is the maximum linear dimension of the capsule.
The main difference between these two indexes is that η is
simply a geometric value, whereas TPS% depends on the ve-
hicle’s geometry and on the atmospheric trajectory.

It is now shown that these indexes have clashing be-
haviors, thus justifying the multiobjective optimization ap-
proach described in the following section. The vehicles of
Figures 5 and 6 are considered to clarify this concept: the first
one is more compact and it is characterized by η = 0.59 m−2,
the second has a bigger base area and being shorter, result-
ing in η = 0.71 m−2.Both the shapes have a volume of 5 m3,
and the same trim angle of attack α = −20 deg. The bank
angle that guarantees the satisfaction of the constraint on
the exit conditions is σ = 163.05 deg for the first shape and
σ = 115.7 deg for the second. Figures 7 and 8 describe the
atmospheric path and the velocity history. Shape 1 requires a
steeper entry, a longer maneuver, and a lower altitude in or-
der to achieve the required kinetic energy loss. As a result, the
vehicle experiences a greater value of total heat load, there-
fore a greater TPS mass is needed. More specifically, the TPS
mass percentage are 9.48 and 7.44 for Shape 1 and Shape 2,
respectively. In general, for a given mass, a more compact ve-
hicle (i.e., high volumetric efficiency) must fly deeper into
the atmosphere to lose its kinetic energy, thus experiencing
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Figure 5: Shape 1, volumetric efficiency oriented vehicle.

high thermal loads (i.e., high TPS mass). It should be under-
lined that within the framework of constant vehicle volume
and density, the performance index η plays a role similar to
that of the ballistic coefficient, defined as m/(SCD), and fre-
quently used in literature. A high volumetric efficiency trans-
lates into a high ballistic coefficient (see Table 1), thus a great
value of atmosphere density is required to produce a signif-
icant amount of drag. Furthermore, for a fixed shape, the
ballistic coefficient almost linearly increases with the vehi-
cle’s dimension. That is the reason why special devices like
parachutes or ballutes are considered when the aerocapture
maneuver for human missions to Mars is studied.

4. MULTIDISCIPLINARY OPTIMIZATION

4.1. Multiobjective particle swarm optimizer

As shown in the previous section, it is difficult to iden-
tify a single objective function when designing an aerocap-
ture maneuver. In order to use classic optimization codes
(i.e., gradient based methods) to solve a multiobjective op-
timization problem a common practise is to merge the dif-
ferent objective functions into a single scalar objective func-
tion by means of weighting factors. This technique requires
an accurate selection of the weights, and it has, as ma-
jor drawback, the identification of a single optimal solution
per run. On the contrary, population-based optimizers can
be more easily modified to deal with a vector of objective
functions delivering the entire set of Pareto optimal solu-
tions. Furthermore, particle swarm optimization seems par-
ticularly suitable for multiobjective optimization mainly be-
cause of the high speed of convergence that the algorithm
presents for single-objective optimization [28]. In a multi-
objective optimization problem, the objective function is an
M-dimensional vector:

f(x) = ( f1(x), f2(x), . . . , fM(x)
)
. (18)

In this frame, a criterion to compare vectors is necessary to
identify the optimal solution set. The Pareto dominance is
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Figure 6: Shape 2, TPS% oriented vehicle.

the appropriate criterion to serve this aim, enabling the solu-
tions ranking [29].

The MOPSO implemented for the solution of the prob-
lem at hand is based on the following algorithmic flow.

(1) Randomly initialize a number of individuals or parti-
cles N within the design space.

(2) Evaluate the objective function:

yi = f
(

xi
)

for i = 1, . . . ,N. (19)

(3) Update the personal best solution pbest. The solutions
are compared using the Pareto dominance criterion.
Thus, for each particle we have

pbest =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi, if xi dominates pbest,

pbest, if pbest dominates xi,

xi or pbest, randomly in the other cases.

for i = 1, . . . ,N ,

(20)

(4) Update global best list Gbest. In the multiobjective
problem, Gbest is the analogous of the scalar global best
gbest and it represents the entire set of nondominated
solutions. This list is updated by processing the subset
of nondominated solutions x j with j = 1, . . . ,N∗ ≤
N .

(i) If x j is dominated by one of the solution belong-
ing to the list, do not updated the list.

(ii) If x j dominates one or more solutions belonging
to the list, then add x j to the Gbest list and delete
the dominated solutions.

(iii) If x j neither dominates nor is dominated by any
solution belonging to the Gbest list, then simply
add x j to the list.

(5) Update the global best solution gbest. Note that the
gbest is univocally defined for a scalar objective func-
tion, whereas it must be opportunely chosen within
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Table 1: Numerical results for the two analyzed shapes.

Parameter Shape 1 Shape 2

TPS% — 9.48 7.44

η m−2 0.56 0.71

α deg −20 −20

σ deg 163.18 115.7

CL/CD — 0.15 0.31

m0/(SCD) kg/m2 135.99 69.62

hmin km 43.01 48.6

γ−e deg −8.57 −8.11
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Figure 7: Shape 1 and Shape 2 altitude profile comparison.

the Gbest list in the multiobjective case. The selection
of the gbest plays a key role in obtaining a uniform set
of Pareto optimal solutions. For this purpose, a uni-
form 30-cell grid in the objective space is defined at
each iteration and the number of solutions belonging
to each grid cell is calculated. Based on this number, a
roulette-wheel method is then applied to promote the
selection of gbest in a low-populated grid cell.

(6) Compute the new particles position by

xk+1
i = xki + vk+1

i Δt for i = 1, . . . ,N , (21)

in which vk+1
i is the velocity of the ith particle at the

(k + 1) iteration, given by

vk+1
i = wvki + c1r1

xki − pbest

Δt
+ c2r2

xki − gbest

Δt
. (22)

(7) Repeat (2)–(6) until the convergence criterion is satis-
fied or the maximum number of iterations is reached.

The parameters c1 and c2 of (22) are considered constant
and equal to 2 during the optimization, assuring a balance
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Figure 8: Shape 1 and Shape 2 velocity comparison.

between local and global terms. A linear decrease of w with
the iteration number in the interval [0.4, 1.4] is adopted. In
particular a greater value of the inertia enables a better ex-
ploration of the search domain in the first phase of the op-
timization, whereas a lower value allows a better analysis of
the most promising areas of research space in the subsequent
phases. Note that if the position of a particle goes outside the
search space, the violated component of the decision vector
takes the value of the corresponding boundary and its veloc-
ity component is multiplied by a random number between
[−1, 0].

The maximum numbers of particle belonging to the Gbest

is fixed to 100 units. The same procedure adopted for select-
ing the gbest is used to delete those solutions belonging to
a highly populated grid-cell, if the maximum list size is ex-
ceeded.

The problem addressed with implemented MOPSO is
characterized by the presence of inequality constraints nec-
essary to guarantee a minimum aerodynamic performance
and vehicle’s length. As the feasible domain inside the
search space is sufficiently large the FSM is adopted for
the constraints handling [30]. More specifically the swarm
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initialization is performed randomly, but only feasible solu-
tions are retained. This implies that the first step of the al-
gorithm generally requires the evaluation of a number of so-
lutions greater than the population size. Furthermore, only
feasible solutions are counted for the gbest and pbest values
during the optimization. The initial velocity of the particle is
set to be 0.

The convergence criterion adopted is based on the com-
parison of the average position of the non dominated solu-
tions in the objective space with the same average position of
the previous 20 iterations. If the componentwise difference
of this two vectors is lower than 1% the Pareto set of opti-
mal solutions is assumed to have been found. Furthermore,
a maximum number of iterations of 100 and a 20-particle
swarm are considered. These values are chosen, on the basis
of several experiments, to assure an acceptable repeatability
of the Pareto optimal solution set with a limited computa-
tional time.

4.2. Optimization architecture

Since the minimization of η and TPS% are two clashing
requirements, a multiobjective optimization architecture is
adopted. The overall optimization architecture is then given,
the scheme of Figure 9 can be used as a visual aid. The opti-
mization variables are the four geometric parameters rn ∈
[0.1, 0.9], rr ∈ [0.2, 0.9], θ ∈ [20, 70] deg, δ ∈ [5, 60] deg,
and the angle of attack α ∈ [−30, 30] deg. Note that the ve-
hicle nose radius and the rear radius are expressed as frac-
tion of the base radius, whose value is computed to satisfy
the constraint of 5 m3 for the capsule’s volume. The sphere
of influence entry velocity v−∞ = 5 km/s and the vehicle’s den-
sity ρv = 230 kg/m3 are user provided constants necessary to
define the optimization problem.

For each set of optimization variables the vehicle’s aero-
dynamic performance at the trim angle of attack are com-
puted. At this point the TPBVP can be formulated and
solved, delivering the total heat load experienced by the ve-
hicle. The γ+

e is constrained to 1.73 deg as in Section 3, re-
sulting in the same Δv of 52.6 m/s for all the solutions. The
two performance indexes are then simply evaluated and the
optimizer iterates until the convergence criterion is satisfied
or the maximum iteration number reached. Two simple in-
equality constraints are also considered on the lift-to-drag ra-
tio, |L/D| ≥ 0.3, and vehicle length, l ≥ 0.8 m. The fist one
is necessary to provide the vehicle with a means to accurately
control the atmospheric path, the second removes solutions
with extremely short length from the search space. A func-
tion evaluation takes on average 1.26 s on a Intel Pentium 4,
2.53 GHz Desktop.

4.3. Experiments and results

The values of the MOPSO parameters given in Section 4.1
are the result of a tuning process based on several experi-
ments in which the swarm size, the maximum number of
iterations, and the value of the inertia have been changed.
The average behavior of the algorithm is shown in Figure 10
with a plot of 30 simulations in which the solutions belong-

ing to the Gbest list are interpolated by means of cubic splines
to avoid cluttering the plot. The result is satisfactory from the
preliminary design point of view. The algorithm is very effec-
tive in computing the Pareto optimal solutions for low TPS
mass vehicles; on the other hand suboptimal solutions ap-
pear in the high volumetric efficiency region. This behavior
is mainly due to the difficulty in finding feasible solutions of
the TPBVP when compact capsules are considered. In these
cases, is not always possible to decelerate the vehicle’s as re-
quired to satisfy the constraints imposed in the TPBVP for-
mulation. Furthermore, note that the poor behavior in the
flat part of the Pareto front is due more to the interpolation
process than to the actual values of the solutions. Only 5 sim-
ulations out of 30 stop for the satisfaction of the convergence
criteria, whereas the reamaining ones reach the maximum
number of iterations. Nevertheless, it has been noticed that
increasing the iterations does not significantly improve the
quality of the solution, whereas augmenting the computa-
tional time. These considerations underline the difficulty of
defining an appropiate convergence criteria in multiobjective
optimization.

The x in Figure 11 shows the mean values of the two ob-
jective functions for each of the Pareto set analyzed before. It
is worth noting that the mean values are all within a range of
5%. Their values also show that, as already pointed out, the
left branch of the Pareto front is more densely sampled than
the right one. The � and • describe a typical behavior of the
algortithm when the constant value w = 0.4 is employed for
the iniertia. In these cases the algorithm tend to locally con-
verge to one of the two branches of the Pareto set, as clearly
enlighten in Figure 12.

In Figure 13 the Gbest list after 100 iterations of one of the
30 simulations performed is plotted. The Pareto front con-
firms the considerations reported in Section 3: the volumet-
ric efficiency oriented solutions (bottom right) are compact
capsules with higher value of TPS mass; as opposite the TPS
oriented solutions tend to have high base radius and to be
very short.

Table 2 summarizes the numerical data of the five solu-
tions highlighted in the previous figure. All the solutions tend
to the minimum value allowed for the lift-to-drag ratio in
order to decelerate the capsule at higher altitudes, thus re-
ducing the TPS mass ratio. Soln 2 to Soln 5 are characterized
by almost the same value of the front cone half-angle which
allows to consider large nose radii. Soln 1 belongs to a dif-
ferent class of vehicles: the front cone half-angle is the low-
est allowed, and the forebody is longer than the aftbody. The
difference between these two classes of vehicles is highlighted
also by the different sign of the lift-to-drag ratio: Soln 1 is
the only shape that produces negative CL for negative angles
of attack. Eventually, note that TPS oriented solutions have
higher values of minimum altitude, shallower entry angles,
and lower ballistic coefficient.

The maximum of TPS% is 13.30, which results in 126 kg
of TPS mass in the worse case solution. In order to establish
the aerocapture effectiveness, the TPS mass must be com-
pared with the propellant required for the circularization
without employing aerocapture. This value is computed in
a 2-body approximation and the spacecraft is assumed to
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Figure 9: Aerocapture optimization scheme.

Table 2: Numerical results for five solutions belonging to the Pareto optimal set.

Parameter Soln 1 Soln 2 Soln 3 Soln 4 Soln 5

TPS% — 13.28 9 7.9 7.5 6.1

η m−2 0.46 0.55 0.63 0.68 0.89

α deg −29.45 −21.13 −19.3 −20.3 −19.27

σ deg 57.4 116.9 117.2 115.8 115

CL/CD — −0.31 0.32 0.30 0.31 0.30

m/(SCD) kg/m2 299.72 120.26 86.13 77.11 45.02

hmin km 36.5 43.9 46.7 47.7 52.3

γ−e deg −9.08 −8.50 −8.25 −8.19 −7.73

rb m 1.16 1.37 1.59 1.69 2.19

rn m 0.73 1.22 1.42 1.52 1.94

rr m 0.58 0.47 0.45 0.48 0.82

θ deg 21 68.51 70 69.64 70

δ deg 41 56.59 40 42.07 5.2

switch on the thrusters at the hyperbola pericenter, located
at 200 km of altitude. The Δv required to circularize the orbit
is given by

Δv =
√
μ

ra
+ v−2∞ −

√
μ

ra
(23)

and the propellant fraction by rocket equation
mp

m
= 1− e−(Δv/Ispg0), (24)

in which Isp is the thruster specific impulse, and g0 =
9.81 m/s2 represents the Earth gravitational acceleration at
sea level. For a value of Isp = 400 s it results mp/m =
0.594, which means that more than the 59% of the spacecraft
should be propellant, largely greater than the 13.30% of TPS.
Therefore the aerocapture represents an effective means to
reduce the propellant compared to a classical orbital circu-
larization, thus significantly increasing the mass specifically
devoted to the payload. In the following section, the refine-
ment of the Soln 2 and Soln 3 is addressed, as they show
a good compromise between volumetric efficiency and TPS
mass ratio.

5. TRAJECTORY REFINEMENT

The dynamical model applied for the solution of the TPBVP
considers the evolution of the velocity, the altitude, and the
flight path angle only, and terms of order Δr/re are neglected.

In order to address the problem of achieving the 3D tar-
get orbit the complete dynamical model (3) is considered.
The constant bank angle approximation is lifted and an opti-
mal control problem is formulated to optimize the bank pro-
file. In the trajectory refinement the vehicle’s shape is fixed
and the constant angle of attack strategy is retained, taking
advantage of the values computed in the coupled trajectory-
shape optimization. Thus, all the variables considered in the
former optimization are fixed parameters. The state and con-
trol vectors are x = (r, θ,ϕ, v, γ,ψ)T and u = σ , respectively.
The initial conditions are expressed by

r−e = re,

v−∞(x−e ) = v−∞.
(25)
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Figure 10: Cubic spline interpolated Pareto optimal sets.
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Figure 11: Mean values of the Pareto optimal solutions.
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Figure 12: Two examples of local convergences (w = 0.4).
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Figure 13: Aerocapture Pareto optimal solutions.
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Figure 14: Soln 2 and Soln 3 refined solution: height profile.

The scalar constraint assures that the maneuver begins at the
planet atmosphere interface. The vectorial constraint states
that the incoming velocity at the planet sphere of influence
corresponding to the initial state x−e , that is, v−∞(x−e ), must
be equal to the spacecraft incoming velocity v−∞, imposed by
the heliocentric trajectory analysis. The optimizers exploits
the two degrees of freedom on the initial state to choose the
proper entry plane in the Martian atmosphere. The following
three scalar constraints are enforced on the final position:

r+
e = re,

a sin
(
Γ+
e,z

Γ+
e

)
= π

2
,

− μ

v+
e

2 − (2μ/r+
e

)

(

1 +
∥∥
∥
∥

v+
e × Γ+

e

μ
− r+

e

r+
e

∥∥
∥
∥

)

= ra

(26)
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Figure 15: Soln 2 and Soln 3 refined solution: velocity magnitude.

The first constraint assures that the trajectory ends at the at-
mospheric boundary, whereas the remaining two guarantee
the exit trajectory to be polar and with an apogee lying on the
target orbit. If the additional constraint γ+

e = 0 is considered,
thus achieving the theoretical minimum Δv = 24.4 m/s as
explained in Section 3, the local optimizer fails to converge.
More specifically, the tight relative tolerance of 10−8 on the
constraints satisfaction is violated. This problem is avoided if
the constraint on the final flight path angle is dropped and
the Δv minimization is addressed. Thus the objective func-
tion is

J = Δv =
√
μ

ra
−
√

v+
e

2 − 2μ
(

1
r+
e
− 1
ra

)
, (27)

in which the first term represents the target orbit velocity and
the second one the vehicle’s velocity at the apogee.

For each shape the TPS% is bounded by the value of
the coupled shape-trajectory optimization. In order to eval-
uate the constraint, the stagnation heat load is added to the
state vector and it is integrated along with the dynamics. The
trajectory is split into four multiple shooting intervals, and
the integration is performed adopting a 8th order fixed-step
Runge-Kutta scheme with absolute and relative tolerances
of 10−8. The optimal solution is found using a sequential
quadratic programming (SQP) optimizer.

The results obtained for the Soln 2 and Soln 3 are shown
in Figures 14–17. For both the solutions the value of the min-
imum altitude is slightly lower than the one found in the pre-
vious section due to a steeper entry flight path angle. The
optimizer completely changes the bank control law; the bank
modulation is exploited to minimize the Δv and mainly to
match the target orbital plane. Note that the maximum value
of the aerodynamic forces on the trajectory is reached during
the deepest phase in the atmosphere, when the bank angle is
not far from the value found in the coupled shape-trajectory
optimization. Furthermore, if most of the points describing
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Figure 16: Soln 2 and Soln 3 refined solution: flight path angle.
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Figure 17: Soln 2 and Soln 3 refined solution: bank profile.

the optimal bank angle spline are substituted by the con-
stant bank angle value computed in the shape-trajectory op-
timization, only a slight change in the trajectory is obtained.
Moreover the trajectory refinement has a high convergence
rate when the constant bank angle law is used as first guess
solution. These considerations prove that the assumptions
adopted in Section 4 deliver sufficiently accurate results.

The Δv is 39.22 m/s for Soln 2 and 38.25 m/s for Soln 3,
close to the theoretical minimum of 24.4 m/s, and slightly
lower than the 52.6 m/s constraint of the shape-trajectory
optimization. Furthermore, the TPS mass ratio is lower com-
pared to the one found in the shape-trajectory optimization
for both of the solutions. This result is a consequence of the
shorter permanence of the vehicles in the lower layers of Mars
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Table 3: Aerocapture trajectory refinement: numerical results.

hmin [km] γ−e [deg] TPS% Δv [m/s]

Soln 2 40.85 −9.16 7.98 39.22

Soln 3 44.8 −9.38 7.05 38.25

atmosphere. Note that, although the trajectory refinement
changes the value of the TPS mass, the trend highlighted
in the previous section still holds, that is, a higher ballistic
vehicle requires a higher TPS mass. The main results of the
trajectory refinement are summarized in Table 3.

6. CONCLUSIONS

The use of an MOPSO for the optimization of an aerocapture
maneuver at Mars from a multidisciplinary-multiobjective
standpoint is presented. More specifically, the interaction
among vehicle’s shape, trajectory control, and TPS design is
taken into account in the preliminary design of the maneu-
ver. The aerocapture multiobjective optimization empha-
sizes the conflict between volumetric efficiency maximiza-
tion and thermal protection system mass ratio minimization.
Solutions that show a compromise between the two objec-
tive goals have shapes similar to those adopted in previous
landing missions to Mars. Aerocapture maneuver is demon-
strated to be a valid means for lowering the propellant re-
quired to accomplish interplanetary missions if compared
to classical circularization maneuvers. The models adopted
are suitable for Phase-A studies of future aerocapture mis-
sions, and the proposed method properly matches the re-
quirements of concurrent engineering, which is nowadays
the leading approach in aerospace field. The MOPSO, al-
though of simple implementation, effectively compute the
Pareto optimal solution set of a complex engineering prob-
lem using low number of function evaluations. The advan-
tage of having a set of Pareto optimal solutions is of vital im-
portance in aerospace field, where most of the design pro-
cesses are characterized by the interaction of several subsys-
tems and disciplines, and it is often impossible to identify a
single performance index. Based on these considerations, in
the authors belief, MOPSO could be successfully applied to
a broad set of aerospace engineering problems, especially in
system design and trajectory optimization fields.

REFERENCES

[1] M. I. Cruz, “The aerocapture vehicle mission design concept,”
in Proceedings of the AIAA Joint Propulsion Conference, 1979,
AIAA papar 79-0893.

[2] M. Bello Mora and G. Dutruel-Lecohier, “Reentry and aeroas-
sisted transfer trajectory optimal control: the gradient restora-
tion algorithm,” in Proceedings of the 3rd International Confer-
ence on Space Guidance, Navigation, and Control Systems (ES-
TEC ’96), pp. 95–101, Nooordwijk, The Netherlands, Novem-
ber 1996.

[3] K. D. Mease, “Optimization of aeroassisted orbit transfer: cur-
rent status,” Journal of the Astronautical Sciences, vol. 36, no. 1
part 2, pp. 7–33, 1988.

[4] N. X. Vinh, W. R. Johnson, and J. M. Longusky, “Mars

aerocapture using bank modulation,” in Proceedings of the
AIAA/AAS Astrodynamics Specialist Conference, Denver, Colo,
USA, August 2000, collection of technical papers.

[5] E. Sigal and M. Guelman, “Optimal aerocapture with mini-
mum total heat load,” in Proceedings of the 52nd International
Astronautical Congress, Toulouse, France, October 2001.

[6] D. Vaughan, H. C. Miller, B. Griffin, B. F. James, and
M. M. Munk, “A comparative study of aerocapture mis-
sions with a Mars destination,” in Proceedings of the 41st
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Ex-
hibit, Tucson, Ariz, USA, July 2005.

[7] S. A. Whitmore, D. W. Banks, B. M. Andersen, and P. R. Jol-
ley, “Direct—entry, aerobraking, and lifting aerocapture for
human-rated lunar return vehicles,” in Proceedings of the 44th
AIAA Aerospace Sciences Meeting and Exibit, Reno, Nev, USA,
January 2006.

[8] R. D. Braun and R. W. Powell, “Aerodynamic requirements of
a manned aerobraking transfer vehicle,” in Proceedings of the
AIAA Atmospheric Flight Mechanics Conference, Portland, Ore,
USA, August 1990.

[9] K. J. Sudmeijer and E. Mooij, “Shape optimization for small
experimental re-entry module,” in Proceedings of the 11th
AIAA International Space Planes and Hypersonic Systems and
Technologies Conference, Orleans, France, September-October
2002.

[10] R. Armellin, M. Lavagna, R. P. Starkey, and M. J. Lewis,
“Aerogravity-assist maneuvers: coupled trajectory and vehicle
shape optimization,” Journal of Spacecraft and Rockets, vol. 44,
no. 5, pp. 1051–1059, 2007.

[11] R. C. Eberhart and J. Kennedy, “A new optimizer using par-
ticle swarm theory,” in Proceedings of the 6th International
Symposium on Micro Machine and Human Science, pp. 39–43,
Nagoya, Japan, October 1995.

[12] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
in Proceedings of IEEE International Conference on Neural Net-
works (ICNN ’95), vol. vol. 4, pp. 1942–1948, Perth, Western
Australia, November-December 1995.

[13] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm op-
timization: an overview,” Swarm Intelligence Journal, vol. 1,
no. 1, pp. 33–57, 2007.

[14] X. Hu and R. Eberhart, “Multiobjective optimization using
dynamic neighborhood particle swarm optimization,” in Pro-
ceedings of the Congress on Evolutionary Computation (CEC
’02), vol. vol. 2, pp. 1677–1681, Honolulu, Hawaii, USA, May
2002.

[15] K. E. Parsoupulos and M. N. Vrahatis, “Particle swarm opti-
mization method in multiobjective problems,” in Proceedings
of ACM Symposium on Applied Computing (SAC ’02), pp. 603–
607, Madrid, Spain, March 2002.

[16] T. Ray and K. M. Liew, “A swarm methaphor for multiobjec-
tive design optimization,” Engineering Optimization, vol. 34,
no. 2, pp. 141–153, 2002.

[17] C. A. Coello Coello and M. S. Lechuga, “MOPSO: a proposal
for multiple objective particle swarm optimization,” in Pro-
ceedings of the Congress on Evolutionary Computation (CEC
’02), pp. 1051–1056, Honolulu, Hawaii, USA, May 2002.

[18] C. A. Coello Coello, G. T. Pulido, and M. S. Lechuga, “Han-
dling multiple objectives with particle swarm optimization,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 3,
pp. 256–279, 2004.

[19] J. D. Anderson, Hypersonic and High Temperature Gas Dynam-
ics, McGraw-Hill, New York, NY, USA, 1989.

[20] B. J. McBride and S. Gordon, “Computer program for cal-
culation of complex chemical equilibrium compositions and



R. Armellin and M. Lavagna 13

applications II. User’s manual and program description,” Tech.
Rep. E-8017-1, NASA Lewis Research Center, Cleveland, Ohio,
USA, 1996.

[21] K. A. Edquist, “Computations of viking lander capsule hyper-
sonic aerodynamics with comparisons to ground and flight
data,” in Proceedings of AIAA Atmospheric Flight Mechanics
Conference and Exhibit, Keystone, Colo, USA, August 2006.

[22] B. Laub and E. Venkatapathy, “Thermal protection system
technology and facility needs for demanding future planetary
missions,” in Proceedings of International Workshop on Plane-
tary Probe Atmospheric Entry and Descent Trajectory Analysis
and Science, Lisbon, Portugal, October 2003.

[23] M. Tauber and J. Bowles, “The use of atmospheric braking
during mars missions,” in Proceedings of the 4th AIAA Ther-
mophysics Conference, Buffalo, NY, USA, June 1989.

[24] R. H. Battin, An Introduction to the Mathematics and Meth-
ods of Astrodynamics, Aiaa Education Series, Reston, Va, USA,
1999.

[25] L. Quartapelle and S. Rebay, “Numerical solution of two-point
boundary value problems,” Journal of Computational Physics,
vol. 86, no. 2, pp. 314–354, 1990.

[26] L. Quartapelle and A. Scandroglio, “Solution of the Falkner-
Skan Equation to Determine Reverse Flow,” DIA-SR 03-05,
2003.

[27] R. Armellin and F. Topputo, “A sixth-order accurate scheme
for solving two-point boundary value problems in astro-
dynamics,” Celestial Mechanics and Dynamical Astronomy,
vol. 96, no. 3-4, pp. 289–309, 2006.

[28] J. Kennedy and R. C. Russel, Swarm Intelligence, Morgan Kauf-
mann Publishers, San Fransisco, Calif, USA, 2001.

[29] K. Deb, “Evolutionary algorithms for multi-criterion opti-
mization in engineering design,” in Evolutionary Algorithms in
Engineering and Computer Science, pp. 135–161, John Wiley &
Sons, Chichester, UK, 1999.

[30] G. Coath and S. K. Halgamuge, “A comparison of constraint-
handling methods for the application of particle swarm opti-
mization to constrained nonlinear optimization problems,” in
Proceedings of the Congress on Evolutionary Computation (CEC
’03), vol. vol. 4, pp. 2419–2435, Canberra, Australia, December
2003.



Hindawi Publishing Corporation
Journal of Artificial Evolution and Applications
Volume 2008, Article ID 316145, 11 pages
doi:10.1155/2008/316145

Research Article
A Hybrid PSO/ACO Algorithm for Discovering
Classification Rules in Data Mining

Nicholas Holden and Alex A. Freitas

Computing Laboratory, University of Kent, Canterbury, Kent CT2 7NF, UK

Correspondence should be addressed to Nicholas Holden, nickpholden@gmail.com

Received 20 July 2007; Accepted 6 March 2008

Recommended by Jim Kennedy

We have previously proposed a hybrid particle swarm optimisation/ant colony optimisation (PSO/ACO) algorithm for the
discovery of classification rules. Unlike a conventional PSO algorithm, this hybrid algorithm can directly cope with nominal
attributes, without converting nominal values into binary numbers in a preprocessing phase. PSO/ACO2 also directly deals with
both continuous and nominal attribute values, a feature that current PSO and ACO rule induction algorithms lack. We evaluate
the new version of the PSO/ACO algorithm (PSO/ACO2) in 27 public-domain, real-world data sets often used to benchmark the
performance of classification algorithms. We compare the PSO/ACO2 algorithm to an industry standard algorithm PART and
compare a reduced version of our PSO/ACO2 algorithm, coping only with continuous data, to our new classification algorithm
for continuous data based on differential evolution. The results show that PSO/ACO2 is very competitive in terms of accuracy to
PART and that PSO/ACO2 produces significantly simpler (smaller) rule sets, a desirable result in data mining—where the goal is
to discover knowledge that is not only accurate but also comprehensible to the user. The results also show that the reduced PSO
version for continuous attributes provides a slight increase in accuracy when compared to the differential evolution variant.

Copyright © 2008 N. Holden and A. A. Freitas. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The focus of this paper is on supervised learning, more
specifically, the classification task of data mining. In classi-
fication, the knowledge or patterns discovered in the dataset
can be represented in terms of a set of rules. A rule consists
of an antecedent (a set of attribute values) and a consequent
(class):

IF 〈attrib = value〉 AND · · ·AND

〈attrib = value〉 THEN 〈class〉.
(1)

The consequent of the rule is the class that is predicted
by that rule. The antecedent consists of a set of terms,
where each term is essentially an attribute value pair. More
precisely, a term is defined by a triple 〈attribute, operator,
value〉, where value is a value belonging to the domain of
attribute. The operator used in this paper is “=” in the case
of categorical/nominal attributes, or “≤” and “>” in the
case of continuous attributes. The knowledge representation

in the form of rules has the advantage of being intuitively
comprehensible to the user. This is important because the
general goal of data mining is to discover knowledge that is
not only accurate, but also comprehensible [1, 2].

We previously proposed a hybrid particle swarm opti-
misation [3, 4]/ant colony optimisation [5] (PSO/ACO)
algorithm for the discovery of classification rules [6, 7] (the
PSO/ACO2 classification algorithm is freely available on
Sourceforge: http://sourceforge.net/projects/psoaco2). PSO
has been explored as a mean for classification in previous
work [8, 9] and shown to be rather successful. However,
previous authors have never addressed the case, where PSO
is used for datasets containing both continuous and nominal
attributes. The same can be said for ACO, where no variants
have been proposed that deal directly with continuous
attributes [10].

ACO has been shown to be a powerful paradigm
when used for the discovery of classification rules involving
nominal attributes [11] and is considered state-of-the-
art for many combinatorial optimisation problems [12].
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Furthermore, ACO deals directly with nominal attributes
rather than having to convert the problem first into a
binary optimisation problem. When compared to other
combinatorial optimisation algorithms (e.g., binary PSO),
this reduces the complexity of the algorithm and frees the
user from the issues involved in the conversion process. Note
that, in the case of a nominal attribute containing more
than two values the conversion of the nominal attribute
into a binary one in order to use binary PSO is not trivial.
For instance, consider the nominal attribute marital status
taking on 4 values: “single, married, divorced, and widow.”
One could convert this attribute into four binary values—
“yes” or “no” for each original nominal value—but this has
the drawbacks of increasing the number of attributes (and
so the dimensionality of the search space) and requiring a
special mechanism to guarantee that, out of the 4 values,
exactly one is “turned on” in each candidate classification
rule. Alternatively, we could try to use a standard PSO for
continuous attributes by converting the original nominal
values into numbers, say “1, 2, 3, 4,” but this introduces an
artificial ordering in the values, whereas there is no such
order in the original nominal values.

PSO/ACO2 uses ideas from ACO to cope directly with
nominal attributes, and uses ideas from PSO to cope with
continuous attributes, trying to combine “the best of both
worlds” in a single algorithm.

We have shown [6, 7] in two of our previous papers that
PSO/ACO is at least competitive with binary PSO in terms
of a search mechanism for discovering rules. PSO/ACO is
competitive with binary PSO in terms of accuracy, and often
beats binary PSO when rule set complexity is taken into
account. In this paper, we propose an improved PSO/ACO
variant for classification rule discovery (PSO/ACO2) and
provide a comprehensive comparison between it and an
industrial standard classification algorithm (PART [1])
across 27 datasets (involving both continuous and nom-
inal attributes). We also introduce and compare another
PSO/ACO2 classification algorithm variant for continuous
data based on differential evolution (DE) [13].

We propose several modifications to the original
PSO/ACO algorithm. In essence, the proposed modifications
involve changes in the pheromone updating procedure and
in the rule initialisation method, as well as—significantly—
the splitting of the rule discovery process into two separate
phases. In the first phase, a rule is discovered using nominal
attributes only. In the second phase, the rule is potentially
extended with continuous attributes. This further increases
the ability of the PSO/ACO algorithm in treating nominal
and continuous attributes in different ways, recognising the
differences in these two kinds of attributes (a fact ignored by
a conventional PSO algorithm, as mentioned earlier).

The remainder of the paper is organised as follows.
Section 2 describes in detail the workings of the modified
algorithm (PSO/ACO2). Section 3 discusses the reasons for
the modifications. In Section 4, we present the experimental
setup and results. In Section 5, we draw some conclusions
from the work and discuss possible future research. This
paper is a significantly extended version of our recent
workshop paper [14].

2. THE NEW PSO/ACO2 ALGORITHM

In this section, we provide an overview of the new version
of the hybrid particle swarm optimization/ant colony opti-
mization (PSO/ACO2) algorithm. PSO/ACO2 is a significant
extension of the original PSO/ACO algorithm (here denoted
PSO/ACO1) proposed in [6, 7]. The PSO/ACO1 algorithm
was designed to be the first PSO-based classification algo-
rithm to natively support nominal data—that is, to cope
with nominal data directly, without converting a nominal
attribute into a numeric or binary one and then applying
a mathematical operator to the converted value, as is the
case in [8]. The PSO/ACO1 algorithm achieves a native
support of nominal data by combining ideas from ant colony
optimisation [5] (the successful ant-miner classification
algorithm [11]) and particle swarm optimisation [3, 8] to
create a classification meta heuristic that supports innately
both nominal (including binary as a special case) and
continuous attributes.

2.1. PSO/ACO2’s sequential covering approach

Both the original PSO/ACO1 algorithm and the new
modified version (PSO/ACO2) use a sequential covering
approach [1] to discover one classification rule at a time. The
original PSO/ACO1 algorithm is described in detail in [6, 7],
hereafter we describe how the sequential covering approach
is used in PSO/ACO2 as described in Algorithm 1. The
sequential covering approach is used to discover a set of rules.
While the rules themselves may conflict (in the sense that
different rules covering a given example may predict different
classes), the “default” conflict resolution scheme is used by
PSO/ACO2. This is where any example is only considered
covered by the first rule that matches it from the ordered
rule list, for example, the first and third rules may cover an
example, but the algorithm will stop testing after it reaches
the first rule. Although the rule set is generated on a per class
basis, it is ordered according to rule quality before it is used
to classify examples (to be discussed later in this paper).

The sequential covering approach starts by initialising
the rule set (RS) with the empty set. Then, for each class
the algorithm performs a WHILE loop, where TS is used to
store the set of training examples the rules will be created
from. Each iteration of this loop performs one run of the
PSO/ACO2 algorithm, which only discovers rules based
on nominal attributes, returning the best discovered rule
(Rule), predicting examples of the current class (C). The
rule returned by the PSO/ACO2 algorithm is not (usually)
complete as it does not include any terms with continuous
values. For this to happen, the best rule discovered by the
PSO/ACO2 algorithm is used as a base for the discovery of
terms with continuous values.

For the continuous part of the rule, a conventional
PSO algorithm (applied only to numeric attributes) with
constriction is used [4]. The vector to be optimised consists
of two dimensions per continuous attribute, one for an upper
bound (ub) and one for a lower bound (lb). At every particle
evaluation, the vector is converted to a set of terms (rule
conditions) and added to Rule produced by the PSO/ACO2
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RS = ∅ /∗ initially, Rule Set is empty ∗/
FOR EACH class C

TS = {All training examples belonging to any class}
WHILE (Number of uncovered training examples belonging to class C > MaxUncovExampPerClass)

Run the PSO/ACO2 algorithm to discover the best nominal rule predicting class C called Rule
Run the standard PSO algorithm to add continuous terms to Rule, and return the best discovered rule BestRule
Prune BestRule
RS = RS ∪ BestRule
TS = TS −{training examples covered by discovered rule}

END WHILE
END FOR
Order rules in RS by decending Quality
Prune RS removing unnecessary terms and/or rules

Algorithm 1: Sequential covering approach used by the hybrid PSO/ACO2 algorithm.

algorithm for fitness evaluation. For instance, if the dataset
contained one nominal attribute An0 and one continuous
attribute Ac0, the PSO/ACO2 algorithm might produce a
rule like IF An0 = 〈value〉 THEN class C. The standard PSO
algorithm would then attempt to improve this rule by adding
the terms xub0 > Ac0 and xlb0 ≤ Ac0, which effectively
corresponds to a term of the form xub0 > Ac0 > xlb0. Where
a single particle’s position would be the vectors �xlb,�xub. The
rule for evaluation purposes would be

IF An0 = 〈value〉 AND xub0 > Ac0

AND xlb0 ≤ Ac0 THEN Class C.
(2)

If the two bounds cross over, (i.e., xlb0 ≥ xub0) both terms are
omitted from the decoded rule, but the Personal Best position
is still updated in those dimensions:

PSO velocity update:

vid = χ
(
vid + c1ϕ1

(
pid − xid

)
+ c2ϕ2

(
pgd − xid

))
, (3)

PSO position update:

xid = xid + vid. (4)

To improve the performance of the PSO algorithm, the
upper bound for each dimension is initialised (seeded) in
the following manner. Each example in the training set is
examined to find the lowest and highest values that each
continuous attribute takes. From these values, the ranges of
each continuous attribute are found. Then, each particle’s
initial position (for the upper bound dimension) is set to
a uniformly distributed position between the value of a
randomly chosen seed example’s continuous attribute and
that value added to the range for that attribute. For the
lower bound, the same procedure is also conducted except
that the position is initialised at a uniformly distributed
position between an example’s value (for that attribute) and
an example’s value minus the range for that attribute. This
seeding procedure will likely produce some seeding positions
outside the range of the values seen within the dataset. This
is an intended feature as for some attributes it might never be
beneficial to set lower or upper bounds on their values. The

most likely place a particle will be seeded is around the lowest
and highest values the seeding examples have (for lower and
upper bounds, resp.). However, the seeding examples are
from the class being predicted by the rule that the particle
is encoding, so if the way in which the values from these
examples are distributed is different from all the examples,
then hopefully the search will be biased in a useful way.
This idea is backed up by an improvement in performance
observed in initial experiments.

While the standard PSO algorithm attempts to optimise
the values for the upper and lower bounds of these terms, it
is still possible that the nominal part of the rule may change.
The particles in the PSO/ACO2 algorithm are prevented
from fully converging using the Min-Max system (discussed
in the next subsection) used by some ACO algorithms,
so that an element of random search remains for the
nominal part of the rule. This is helpful for the search, as
in combination with the continuous terms, some nominal
terms may become redundant or detrimental to the overall
rule-quality. The exact mechanism of this partially random
search is discussed in Section 2.2.

After the BestRule has been generated it is then added to
the rule set after being pruned using a pruning procedure
inspired by Ant-Miner’s pruning procedure [11]. Ant-
Miner’s pruning procedure involves finding the term which,
when removed from a rule, gives the biggest improvement in
rule quality. When this term is found (by iteratively removing
each term tentatively, measuring the rule’s quality and then
replacing the term) it is permanently removed from the rule.
This procedure is repeated until no terms can be removed
without loss of rule quality. Ant-Miner’s pruning procedure
attempts to maximise the quality of the rule in any class,
so the consequent class of the rule may change during the
procedure. The procedure is obviously very computationally
expensive; a rule with n terms may require in the worst case
∑n

i=1i = n(n+ 1)/2—that is, O(n2)—rule quality evaluations
before it is fully pruned. For this reason, the PSO/ACO2
classification algorithm only uses the Ant-Miner pruning
procedure if a rule has less than 20 terms. If there are more
than 20 terms then the rule’s terms are iterated through once,
removing each one if it is detrimental or unimportant for
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the rule’s quality—that is, if the removal of the term does not
decrease the classification accuracy of the rule on the training
set. Also, for reasons of simplicity the rule’s consequent class
is fixed throughout the pruning procedure in PSO/ACO2.
These alterations were observed (in initial experiments) to
make little or no difference to rule quality.

After the pruning procedure, the examples covered by
that rule are removed from the training set (TS). An example
is said to be covered by a rule if that example satisfies
all the terms (attribute value pairs) in the rule antecedent
(“IF part”). This WHILE loop is performed as long as the
number of uncovered examples of the class C is greater than a
user-defined threshold, the maximum number of uncovered
examples per class (MaxUncovExampPerClass). After this
threshold has been reached TS is reset by adding all the
previously covered examples. This process means that the
rule set generated is unordered—it is possible to use the rules
in the rule set in any order to classify an example without
unnecessary degradation of predictive accuracy. Having an
unordered rule set is important because after the entire
rule set is created, the rules are ordered by their quality
and not the order they were created in. This is a common
approach often used by rule induction algorithms [15, 16].
Also, after the rule set has been ordered it is pruned as a
whole. This involves tentatively removing terms from each
rule and seeing if each term’s removal affects the accuracy
of the entire rule set. If that individual term’s removal does
not affect the accuracy then it is permanently removed. If it
does affect the accuracy then it is replaced and the algorithm
moves onto the next term, and eventually the next rule. After
this process is complete, the algorithm also removes whole
rules that do not contribute to the classification accuracy.
This is achieved by classifying the training set using the rule
list, if any rules do not classify any examples correctly then
they are removed.

2.2. The part of the PSO/ACO2 algorithm coping
with nominal data in detail

The PSO/ACO2 algorithm initially generates the nominal
part of the rule, by selecting a (hopefully) near optimal
combination of attribute value pairs to appear in the rule
antecedent (the way in which rules are assessed is discussed
in Section 2.4). The PSO/ACO2 algorithm generates one rule
per run and so must be run multiple times to generate
a set of rules that cover the training set. The sequential
covering approach, as described in Section 2.1, attempts to
ensure that the set of rules cover the training set in an
effective manner. This section describes in detail the part of
the PSO/ACO2 algorithm coping with nominal data, which
is the part inspired by ACO. The part of the PSO/ACO2
algorithm coping with continuous data is essentially a
variation of standard PSO, where each continuous attribute
is represented by two dimensions, referring to the lower
and upper bound values for that attribute in the rule to be
decoded from the particle, as explained in Section 2.1.

To understand—in an intuitive and informal way—
why the PSO/ACO2 algorithm is an effective rule discovery
metaheuristic, it may be useful to first consider how one

might create a very simple algorithm for the discovery of
rules. An effective rule should cover as many examples as
possible in the class given in the consequent of the rule,
and as few examples as possible in the other classes in the
dataset. Given this fact a good rule should have the same
attribute-value pairs (terms) as many of the examples in
the consequent class. A simple way to produce such a rule
would be to use the intersection of the terms in all examples
in the consequent class as the rule antecedent. This simple
procedure can be replicated by an agent-based system. Each
agent has the terms from one example from the consequent
class (it is seeded with these terms), each agent could then
take the intersection of its terms with its neighbours and
then keep this new set. If this process is iterated, eventually
all agents will have the intersection of the terms from all
examples in the consequent class.

This simple procedure may work well for very simple
datasets, but we must consider that it is highly likely that
such a procedure would produce a rule with an empty
antecedent (as no single term may occur in every example
in the consequent class). Also, just because certain terms
frequently occur in the consequent class does not mean that
they will also not frequently occur in other classes, meaning
that our rule will possibly cover many examples in other
classes.

PSO/ACO2 was designed to “intelligently” deal with the
aforementioned problems with the simple agent-based algo-
rithm by taking ideas from PSO and ACO. From PSO: having
a particle network, the idea of a best neighbour and best
previous position. From ACO: probabilistic term generation
guided by the performance of good rules produced in the
past. PSO/ACO2 still follows the basic principle of the simple
agent-based system, but each particle takes the intersection
of its best neighbour’s and previous personal best position’s
terms in a selective (according to fitness) and probabilistic
way.

Each particle in the PSO/ACO2 population is a collection
of n pheromone matrices (each matrix encodes a set of
probabilities), where n is the number of nominal attributes
in a dataset. Each particle can be decoded probabilistically
into a rule with a predefined consequent class. Each of
the n matrices has two entries, one entry represents an off
state and one entry represents an on state. If the off state
is (probabilistically) selected, the corresponding (seeding)
attribute-value pair will not be included in the decoded rule.
If the on state is selected when the rule is decoded, the
corresponding (seeding) attribute-value pair will be added to
the decoded rule. Which value is included in this attribute-
value pair (term) is dependant on the seeding values.

The seeding values are set when the population of
particles is initialised. Initially, each particle has its past best
state set to the terms from a randomly chosen example from
class C—the same class as the predefined consequent class
for the decoded rule. From now on, the particle is only able
to decode to a rule with attribute values equal to the seeding
terms, or to a rule without some or all those terms. This may
seem at first glance counter intuitive as flexibility is lost—
each particle cannot be translated into any possible rule, the
reasons for this will be discussed later.
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Table 1

Colour Has fur Swims

(on) Colour = blue Off (on) Has fur = false off (on) Swims = true off

0.01 0.99 0.8 0.2 0.9 0.1

Initialise population
REPEAT for MaxInterations

FOR every particle x
/∗Rule Creation ∗/
Set Rule Rx = “IF ∅ THEN C”
FOR every dimension d in x

Use roulette selection to choose whether the state should be set to off or on. If it is on then the
corresponding attribute-value pair set in the initialisation will be added to Rx; otherwise (i.e., if
off is selected) nothing will be added.

LOOP
Calculate Quality Qx of Rx
/∗Set the past best position ∗/
P = x’s past best state
Qp = P’s quality
IF Qx > Qp

Qp = Qx

P = x
END IF

LOOP
FOR every particle x

P = x’s past best state
N = the best state ever held by a neighbour of x according to N ’s quality QN

FOR every dimension d in x
/∗Pheromone updating procedure ∗/
IF Pd = Nd THEN

pheromone entry corresponding to the value of Nd in the current xd is increased by Qp

ELSE IF Pd = off AND seeding term for xd /=Nd THEN
pheromone entry for the off state in xd is increased by Qp

ELSE
pheromone entry corresponding to the value of Nd in the current xd is increased by Qp

END IF
Normalize pheromone entries

LOOP
LOOP

LOOP
RETURN best rule discovered

Algorithm 2: The part of the PSO/ACO2 algorithm coping with nominal data.

Each pheromone matrix entry is a number representing
a probability and all the entries in each matrix for each
attribute add up to 1. Each entry in each pheromone
matrix is associated with a minimum, positive, and nonzero
pheromone value. This prevents a pheromone from drop-
ping to zero, helping to increase the diversity of the
population (reducing the risk of premature convergence).

For instance, a particle may have the following three
pheromone matrices for attributes Colour, Has fur and
Swims. It was seeded with an example: Colour = Blue, Has fur
= False, Swims = True, Class = Fish as shown in Table 1.

The probability of choosing the term involving the
attribute colour to be included in the rule is low, as the off
flag has a high probability in the first pheromone matrix
(0.99). It is likely that the term Has fur = False will be

included in the decoded rule as it has a high probability (0.8)
in the second pheromone matrix. It is also likely that the term
Swims = True will be included in the decoded rule.

The most likely rule decoded from this set of pheromone
matrices is

IF Has fur = False AND

Swims = True THEN

Class = Fish.

(5)

Algorithm 2 shows the modified PSO/ACO2 algorithm
proposed in this paper and utilised in Algorithm 1. Firstly,
the population of particles is initialised. Each particle is
seeded with terms from a randomly selected example, as
described earlier. Initially, in each dimension the pheromone
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Figure 1: The Von-Neumann topology used by PSO/ACO2.

for the on state is set to 0.9 and the pheromone for the off
state is set to 0.1. The first loop (REPEAT statement) iterates
the whole population for MaxIterations. Then, for each
particle x a rule is built probabilistically from its pheromone
matrices. For each dimension d in x, roulette selection—a
well-known selection method in evolutionary algorithms—
is used to decide if the on or off state should be selected [6].
In PSO/ACO2 this simply involves the following rule:

IF rand() > pheromone in entry for on state THEN

Select on state

ELSE

Select off state

(6)

where rand() returns a number from the interval [0 · · · 1]
with a uniform probability distribution. If the on state
is selected, then the corresponding term is added to the
antecedent of Rx, this is an attribute value pair, where the
attribute corresponds to the dimension d and the value
corresponds to the initial seeding value. After this process has
been repeated for every dimension, the quality Qx of the rule
is calculated. If the new Qx is greater than the previous best
Qp, then the particle’s state is saved as P.

After the rule creation phase, the pheromone is updated
for every particle. Each particle finds its best neighbour’s best
state (N) according to QN (the quality of the best rule N
has ever produced). The particles are in a static topology,
so each particle has a fixed set of neighbour particles
throughout the entire run of the algorithm. PSO/ACO2
uses Von-Neumann [17] topology, where the particles are
arranged in a 2D grid, each particle having four neighbours.
This topology was chosen as it consistently performed the
best in initial experiments. This is likely due to the level
of connectivity present in this particular topology, that is,
enough connectivity but not too much (global topology
showed to be suboptimal due to premature convergence to
a local optimum in the search space).

The pheromone updating procedure is influenced by two
factors, the best state a particle x has ever held (the state P),
and the best state ever held by a neighbour particle N. As

discussed previously, each dimension can take two values and
so it has two corresponding pheromone entries, one for the
on state and one for the off state. These states are examined
in every dimension d and the following rules are applied. If
Pd is the same as Nd, then an amount of pheromone equal
to Qp (the quality of P) is added to the pheromone entry in
xd corresponding to the value of Pd. The second pheromone
updating rule is (the ELSE statement) if Pd is not the same
as Nd then an amount of pheromone equal to Qp is removed
from the pheromone entry in xp corresponding to the value
of Pd. In other words, if a particle and its neighbour have
both found that a particular attribute-value is good, then
pheromone is added to the entry corresponding to it. If
they disagree about that attribute value, then pheromone is
removed from the corresponding entry.

There is a caveat in this pheromone updating procedure
given by the “ELSE IF” statement in Algorithm 2. It states
that if Pd is off and the current particle and its best neighbour
do not have the same seeding terms, then increase the
likelihood of choosing the off state (by adding pheromone
to the pheromone entry corresponding to the off value). The
reason for this is to maintain the idea from the simple agent-
based system described earlier in this section. That is, when
two particles have different seeding terms, then those terms
should tend to be omitted. Without this caveat the opposite
would happen, the probability of the term being omitted
would become less, as pheromone is usually removed from
Pd (off ) if Pd and Nd do not agree. A more detailed
examination of the effect of the pheromone updating rules
can be seen in Table 2 with this caveat being shown in the
second row from the bottom.

If after this process is completed any pheromone entry is
less than a predefined minimum amount, then it is set to that
amount (0.01). Importantly, this allows the pheromone entry
that is not the best state to increase due to the normalisation
procedure. This increase will occur if pheromone is removed
from a state. If this happens, the amount of pheromone in
the matrix becomes less than 1 and, as long as both entries
have a greater than zero amount of pheromone, when the
matrix is normalised both entries will increase. It also aids
search in a conceptually similar way to mutation in GAs and
the Min-Max system in the ACO literature [5].

In Table 2, the six possible scenarios for pheromone
updating are described given the differing states of Pd,Nd and
also the seeding term for xd. These outcomes are controlled
by the pheromone updating rules shown in Algorithm 2
(discussed previously). The first and last cases shown in the
table are quite intuitive, if both Pd and Nd agree on a state
that state is made more likely, this allows the algorithm to
converge on a good solution that the particles agree on. Cases
of the second type are shown in the second and fifth rows,
where Pd and Nd have different seeding terms. In these cases,
the particle makes it more likely that the conflicting term will
be omitted from the decoded rule, by selecting the off state.
This feature allows the particle to create rules that generalise
well, covering more examples from the consequent class
(discussed further in Section 3). Cases of the third type—
which involve a disagreement between Pd and Nd about
whether or not the seeded term should be used in the rule
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decoded from the current particle—are shown in the third
and fourth rows. These cases bias the search towards Nd so
that each particle tries to emulate its best neighbour. In the
third row; if Nd = off then the probability of xd decoding to
off will be increased (by increasing the pheromone associated
with the off state). In the fourth row; if Nd = w (and Nd and
xd have the same seeing terms) the probability of xd decoding
to on will be increased. The cases of the third type allow the
particles to come to a consensus about the best set of states.
By trying to emulate its best neighbour, each particle has the
potential to create (in future iterations) a new past best state
(P) based on a mix of its own current P and N.

2.3. A differential evolution classification algorithm
for continuous data

Differential evolution (DE) [13] has become a popular
optimisation algorithm for continuous spaces. It has been
shown to be very competitive with respect to other search
algorithms [18]. It can be considered a kind of evolutionary
algorithm whose population moves around the search space
in a greedy manner. Each offspring is (usually) generated
from the weighted combination of the best member of
the population with two or more other members of the
population. If this offspring has a higher fitness then it
replaces its parent, if not it is discarded. There are many
variations on this basic evolutionary method for DE, the ones
used in this paper are the rand-to-best/1 and best/1 as they
seemed to be good during initial experiments. The formulas
for offspring generation in these DE variants are as follows:

DE update equation for best/1:

v = xbest + F(xr1 − xr2), (7)

DE update equation for rand-to-best/1

v = xi + F(xbest − xi) + F(xr1 − xr2), (8)

where v is the offspring vector, xbest is the best member of
the current population. xr1 and xr2 are randomly-selected
members of the population, xi is the parent vector, and
F is the weighting factor. The other parameters for the
algorithm are: CR—a crossover likelihood factor and NP—
the population size.

As we already have the framework for a PSO-based
classification algorithm using sequential covering (as detailed
in Section 2.1), the DE optimiser can essentially be “plugged-
in,” replacing standard PSO as the rule discovery algorithm
(for continuous data). To make any comparisons fair the
same seeding mechanism and procedure to deal with crossed
over attribute value bounds is used both in the PSO and DE
classification algorithm.

2.4. Quality measures

It is necessary to estimate the quality of every candidate
rule (decoded particle). A measure must be used in the
training phase in an attempt to estimate how well a rule
will perform in the testing phase. Given such a measure, it
becomes possible for an algorithm to optimise a rule’s quality

(the fitness function). In our previous work [6], the quality
measure used was Sensitivity × Specificity (9) [19].

Quality Measure used by PSO/ACO1 [6]:

Sensitivity× Specificity = TP/(TP + FN)× TN/(TN + FP),
(9)

where TP, FN, FP and TN are, respectively, the number of
true positives, false negatives, false positives, and true
negatives associated with the rule [1]:

(i) true positives (TP) are the number of examples that
match the rule antecedent (attribute values) and also
match the rule consequent (class). These are desirable
correct predictions;

(ii) false positives (FP) are the number of examples
that match the rule antecedent, but do not match
the rule consequent. These are undesirable incorrect
predictions;

(iii) false negatives (FN) are the number of examples that
do not match the rule antecedent but do match the
rule consequent. These are undesirable uncovered
cases and are caused by an overly specific rule;

(iv) true negatives (TN) are the number of examples
that do not match the rule antecedent and do not
match the rule consequent. These are desirable and
are caused by a rule’s antecedent being specific to its
consequent class.

In the new PSO/ACO2 classification algorithm proposed
in this paper, the quality measure is Precision with Laplace
correction [1, 20], as per (10). In initial experiments this
quality measure was observed to lead to the creation of rules
that were more accurate (when compared to the original
quality measure shown in (9).

New Quality Measure used by PSO/ACO2:

Laplace-corrected Precision = (1 + TP)/(1 + TP + FP),
(10)

We observed that in some cases (when using (10) as a
quality measure), rules would be generated covering very few
examples. These cases were likely due to the way in which the
Laplace-Corrected Precision measure penalises false positives
very severely (when compared to Sensitivity × Specificity).
To stop this less than ideal situation we added the following
conditional statement to the new quality measure:

IF TP < MinTP

Rule Quality = Laplace-Corrected Precision∗0.1,

ELSE

Rule Quality = Laplace-Corrected Precision,

END IF
(11)

where MinTP is the least number of correctly covered
examples that a rule has to cover before it is given a “normal”
value, as computed by (10). When a rule covers too few
examples the quality is severely reduced (by a factor of 100).
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Table 2: Different pheromone updating scenarios.

Seeding Term for xd Pd Nd Outcome for entries in xd

〈value〉 = w (on) 〈value〉 = w (on) 〈value〉 = w on pheromone increased

off pheromone decreased

〈value〉 = w (on) 〈value〉 = w (on) 〈value〉 /= w
on pheromone increased
off pheromone decreased

〈value〉 = w (on) 〈value〉 = w off
on pheromone increased
off pheromone decreased

〈value〉 = w off (on) 〈value〉 = w on pheromone increased
off pheromone decreased

〈value〉 = w off (on) 〈value〉 /= w
on pheromone increased
off pheromone decreased

〈value〉 = w off off
on pheromone increased
off pheromone decreased

Table 3: An example single class dataset, R’s are records, An’s are
nominal attributes.

An1 An2 An3

R1 a a a

R2 a a b

R3 a a b

R4 b b b

R5 b b b

R6 b b b

This procedure reduces the quality below the quality of any
normal rule, but still allows the particles covering fewer than
MinTP examples to compare their solutions effectively. In
our experiments, we set MinTP to 10, but any comparably
small number will have a similar effect.

3. MOTIVATIONS FOR PSO/ACO2 AND DISCUSSION

The modified algorithm (PSO/ACO2) proposed in this paper
differs from the original algorithm (PSO/ACO1) proposed in
[6, 7] in five important ways. Firstly, PSO/ACO1 attempted
to optimise both the continuous and nominal attribute
values present in a rule antecedent at the same time,
whereas PSO/ACO2 takes the best nominal rule built by
PSO/ACO2 and then attempts to add continuous attributes
to it using a conventional PSO algorithm. Secondly, the
original algorithm used a type of rule pruning to create
seeding terms for each particle, whilst PSO/ACO2 uses all the
terms from an entire training example (record). Thirdly, in
PSO/ACO1 it was possible for a particle to select a value for
an attribute that was not present in its seeding terms, whilst

in PSO/ACO2 only the seeding term values may be added
to the decoded rule. Fourthly, the pheromone updating
rules have been simplified to concentrate on the optimi-
sation properties of the original algorithm. In PSO/ACO1
pheromone was added to each entry that corresponded
to the particle’s past best state, its best neighbour’s best
state, and the particle’s current state in proportion to a
random learning factor. Now, pheromone is only added to
a pheromone matrix entry in the current particle when Nd

and Pd match, or taken away when they do not. Fifthly, the
algorithm now prunes the entire rule set after creation, not
simply on a per rule basis.

In PSO/ACO2, the conventional PSO for continuous
data and the hybrid PSO/ACO2 algorithm for nominal
data have been separated partially because they differ quite
largely in the time taken to reach peak fitness. It usually
takes about 30 iterations (depending on the complexity
of the dataset) for the pheromone matrices to reach a
stable state in PSO/ACO2, whilst it tends to take consid-
erably longer for the standard PSO algorithm to converge.
Due to this fact, the standard PSO algorithm’s particles
set past best positions in quite dissimilar positions, as
their fitness is dependant on the quickly converging part
of the PSO/ACO2 algorithm coping with nominal data.
This causes high velocities and suboptimal search, with
a higher likelihood of missing a position of high fitness.
Therefore, separating the rule discovery process into two
stages—one stage for the part of the PSO/ACO2 algorithm
coping with nominal data and one stage for the part of
the PSO/ACO2 algorithm coping with continuous data
(essentially a variation of a standard PSO)—provides more
consistent results.

Secondly, in the PSO/ACO1 algorithm, sets of seeding
terms were pruned before they were used. This aggressive
pruning algorithm used a heuristic to discard certain terms.
This is less than ideal as the heuristic does not take into
account attribute interaction, and so potentially useful terms
are not investigated.
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Table 4: Accuracy of labelled approaches in UCI datasets, with standard deviation and Student’s t-test shadings.

Data set
Accuracy

PSO/ACO2 PART

Average rule size

PSO/ACO2 PART

Average rule set length

PSO/ACO2 PART

Autos

Balance scale

Breast cancer

Breast w

Credit-a

Credit-g

Crx

Diabetes

Glass

Heart-c

Heart-statlog

Ionosphere

Iris

Iris d

Lymph

Mmushroom

Promoters

Segment

Sonar

Soybean

Tic-tac-toe

Vehicle

Vowel

Wisconsin

Kr-vs-kp

Zoo

Splice

76.63± 8.36

82.72± 4.77

72.62± 6.84

93.42± 3.79

85.31± 4.14

67.9± 5.82

85.6± 2.84

72.67± 4.98

70.95± 7.5

77.38± 5.45

81.11± 6.16

88.06± 4.91

94.67± 5.26

94.67± 6.13

83.05± 6.67

99.9± 0.11

81.0± 12.12

96.67± 1.17

75.05± 9.11

87.01± 6.53

100.0± 0.0

73.05± 4.45

86.16± 3.47

94.87± 2.53

99.47± 0.51

97.18± 6.25

93.48± 1.24

79.83± 11.43

79.38± 7.81

69.7± 7.8

93.7± 4.05

84.23± 3.35

69.7± 4.4

84.54± 2.8

74.36± 4.51

65.43± 11.45

78.72± 5.92

78.15± 6.64

90.04± 4.68

90.67± 7.17

94.0± 5.84

83.19± 9.47

100.0± 0.0

83.91± 7.91

96.67± 0.84

72.52± 10.57

90.57± 3.96

93.85± 2.7

73.29± 2.77

85.05± 5.79

94.43± 2.06

99.37± 0.29

94.18± 6.6

92.79± 1.65

2.8± 0.17

2.56± 0.17

1.73± 0.26

1.17± 0.09

2.94± 0.31

4.23± 0.19

2.94± 0.28

3.88± 0.29

3.11± 0.18

3.33± 0.19

3.17± 0.44

3.33± 0.79

0.93± 0.14

0.68± 0.04

1.89± 0.15

1.86± 0.18

1.02± 0.05

2.8± 0.27

2.6± 0.63

2.08± 0.21

2.67± 0.0

3.85± 0.18

4.2± 0.25

1.21± 0.07

2.25± 0.15

1.14± 0.18

3.0± 0.07

2.54± 0.24

3.13± 0.16

1.91± 0.18

1.01± 0.03

2.46± 0.34

3.01± 0.25

2.44± 0.31

1.88± 0.23

2.7± 0.28

2.42± 0.21

2.88± 0.34

2.35± 0.43

1.02± 0.05

0.76± 0.06

2.26± 0.42

1.55± 0.02

1.02± 0.14

3.07± 0.17

2.23± 0.49

2.66± 0.16

2.65± 0.11

3.84± 0.38

3.55± 0.21

1.02± 0.03

3.03± 0.35

1.48± 0.12

2.65± 0.1

16.0± 1.25

26.6± 1.07

12.4± 2.27

9.9± 1.6

22.7± 2.0

54.3± 1.89

22.5± 3.1

33.4± 1.43

20.4± 1.35

12.6± 0.84

9.7± 1.34

3.6± 0.97

3.0± 0.0

3.2± 0.42

14.7± 2.0

8.7± 0.48

5.1± 0.32

21.9± 0.99

4.4± 1.58

24.2± 1.03

9.0± 0.0

37.8± 1.2

29.0± 0.82

10.2± 1.87

18.7± 2.0

7.1± 0.32

88.0± 2.91

14.2± 2.74

38.9± 3.25

17.3± 4.72

10.4± 3.03

30.8± 9.66

77.0± 4.57

29.9± 8.67

7.1± 1.52

16.1± 1.6

19.9± 2.42

18.4± 1.9

8.9± 1.91

4.3± 1.42

4.4± 0.97

10.0± 1.25

12.8± 0.42

6.9± 1.2

26.3± 1.7

7.4± 1.17

32.1± 3.21

38.3± 3.06

34.0± 3.02

50.5± 3.57

9.9± 3.11

22.7± 1.34

7.6± 0.52

99.6± 6.1

Table 5: Overall performance of PSO/ACO2 against PART accord-
ing to WEKA’s Student’s t-test (out of 27 datasets).

Accuracy Average rule size Average rule length

Total 1 −6 14

To understand the reasons behind the last two modifica-
tions, it is important to understand how the algorithms find
good rules. In both PSO/ACO1 and PSO/ACO2, sets of terms
are generated by mixing together the experiences of the par-
ticles and their neighbours. As the entries in the pheromone
matrices converge and reach one (and zero), better rules
should be generated more often. In PSO/ACO1, the levels of
the pheromone in the matrices are influenced by three factors
(current state, past best state, and best neighbours’ best state)
[6]. If these factors do not agree, then the pheromone matrix
will be slow to converge. Slow convergence can sometimes
be advantageous as the algorithm should not prematurely
converge to a local maximum. However, in PSO/ACO1 the
result of this slow convergence is usually destructive, as
incompatible terms can be mixed together over and over
again. Incompatible terms are terms that do not cover any
of the same examples. For instance, in Table 3, incompatible
terms are An1 = a and An2 = b. A rule including both

these terms would have a quality of zero as it would not
cover any examples. This problem is addressed by the third
modification in PSO/ACO2, now incompatible terms will
not be mixed. This modification also ensures a particle will
always cover at least one example (the seeding example) even
if all the terms are included in the decoded rule. This was not
the case in PSO/ACO1 as at the beginning of the search many
incompatible terms could be mixed, creating many particles
with zero fitness.

In PSO/ACO2, the pattern being investigated by the
particles will likely include relatively general terms—an
example might be a rule including the term An3 = b in
Table 3. It is the job of the PSO/ACO2 algorithm to find
terms that interact well to create a rule that is not only general
to the class being predicted (covering many examples of that
class) but also specific to the class (by not covering examples
in other classes). It is also the job of the PSO/ACO2 algorithm
to turn off terms that limit the generality of the rule without
adding specificity to it. This trade-off between specificity and
generality (or sensitivity) is calculated by the rule quality
measure. It is clear, in Table 3, that including values for An1

and An2 will not ever lead to the most general rule (the
optimal rule only has one term, An3 = b). Due to the new
pheromone updating procedures a particle would choose the
off state for these conflicting attributes quickly.
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Table 6: Accuracy of labelled approaches in UCI datasets containing only continuous attributes, with standard deviation and Student’s t-test
shadings.

Data set
PSO/ACO2 using
standard PSO

PSO/ACO2 using differential
evolution (P) (rand-to-best/1)

PSO/ACO2 using differential
Evolution (P) (best/1)

Balance-scale 81.46± 6.33 81.94± 5.1 80.33± 3.4

Diabetes 76.19± 3.79 74.11± 5.82 74.04± 5.39

Glass 67.68± 11.27 66.73± 10.98 68.45± 7.69

Heart-statlog 79.26± 6.34 76.3± 8.41 76.3± 10.36

Ionosphere 84.33± 6.51 84.33± 3.85 80.33± 7.09

Iris 87.33± 11.95 94.67± 5.26 93.67± 5.54

Segment 95.89± 0.82 93.9± 1.38 94.2± 0.85

Sonar 69.71± 10.02 76.9± 7.89 77.4± 10.29

Vehicle 70.1± 5.75 65.72± 6.24 66.01± 3.94

4. RESULTS

For the experiments, we used 27 datasets from the well-
known UCI dataset repository [21]. We performed 10-fold
cross validation [1], and run each algorithm 10 times for each
fold for the stochastic algorithms (PSO/ACO2 and the DE
algorithm).

Both the part of the PSO/ACO2 algorithm coping with
nominal data and the standard PSO algorithm (i.e., the
part of PSO/ACO2 coping with continuous data) had 100
particles, and these two algorithms ran for a maximum of
100 iterations (MaxIterations) per rule discovered. In all
experiments, constriction factor χ = 0.72984 and social and
personal learning coefficients c1 = c2 = 2.05 [4]. PSO/ACO2
is freely available on sourceforge.

A freely available java implementation of DE by Mikal
Keenan and Rainer Storn was used in all experiments
presented in this paper [22]. The default values (as stated
in the JavaDoc) of F = 0.5, CR = 1 for rand-to-best/1
and F = 0.5, CR = 1 for best/1 were used, so as not to
delve into the realms of parameter tweaking. To maintain
consistency with the PSO algorithm, a population size of 100
was used and the number of fitness evaluations was kept the
same as the PSO variant. As to not bias the comparison,
the PSO/ACO2 and DE classification algorithms were only
compared on continuous attribute only datasets. This was
done in an attempt to prevent any bias that might occur
from the interaction with the nominal PSO/ACO2 part of
the algorithm.

MaxUncovExampPerClass was set to 10 as this is
standard in the literature [11]. As mentioned previously,
PSO/ACO2 uses Von-Neumann topology, where each par-
ticle has four neighbours, with the population being con-
nected together in a 2D grid. The corrected WEKA [1]
statistics class was used to compute the standard deviation
of the predictive accuracies and to apply the corresponding
corrected two-tailed Student’s t-test—with a significance
level of 5%—in the results presented in Tables 4, 5, and 6.

The algorithms compared in Table 4 are PSO/ACO2 and
PART. PART is WEKA’s improved implementation of C4.5
rules [1]. PART extracts rules from decision trees created
by J48 (WEKA’s implementation of C4.5). We compared

PSO/ACO2 against this algorithm as it is considered an
industry standard.

The first two columns (not including the dataset column)
in Table 4 show the percentage predictive accuracy of both
algorithms. The second two columns show the average rule
size (number of terms, or attribute-value pairs) for the rules
generated for each dataset. The third two columns show
the average rule set size for each dataset; this is simply the
average number of rules in each rule set. The measures of
average rule size and average rule set size give an indication
of the complexity (and so comprehensibility) of the rule
sets produced by each algorithm. The shading in these six
columns denotes a statistically significant win or a loss
(according to the corrected WEKA two-tailed Student’s t-
test), light grey for a win and dark grey for a loss against the
baseline algorithm (PART). Table 5 shows the overall score
of the PSO/ACO2 classification algorithm against PART,
considering that a significant win counts as “+1” and a
significant loss counts as a “−1,” and then calculating the
overall score across the 27 datasets.

It can be seen from Tables 4 and 5 that in terms of
accuracy PART and PSO/ACO2 are quite closely matched.
This is not completely surprising as PART is already con-
sidered to be very good in terms of predictive accuracy.
Furthermore, there is only one result that is significant in
terms of accuracy; the accuracy result for the tic-tac-toe
dataset. However, if one scans through the accuracy results
it is clear that often one algorithm outperforms the other
slightly. In terms of rule set complexity, the algorithms
are much less closely matched. When the average rule size
results are taken as a whole, PSO/ACO2 generates longer
rules in 6 cases overall. Although the average rule size
results are significant, the real impact of having a rule
that is under one term longer is arguable (as is found
in many cases). The most significant results by far are in
the rule set size columns. PSO/ACO produces significantly
smaller rule sets in 14 cases overall, sometimes having
tens of rules less than PART. These improvements have a
tangible effect on the comprehensibility of the rule set as a
whole.

The reduced PSO/ACO2 classification algorithm (for
continuous data only) using standard PSO (i.e., coping only
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with continuous attributes) is compared with the PSO/ACO2
classification algorithm using two DE variants in Table 6.
Although there is one significant loss for each DE variant
against the PSO variant, both algorithms seem to slightly
outperform each other on certain datasets. Also, there is no
clear winner between the different DE variants.

5. DISCUSSION AND CONCLUSIONS

We have conducted our experiments on 27 public domain
“benchmark” datasets used in the classification literature,
and we have shown that PSO/ACO2 is at least competitive
with PART (an industry standard classification algorithm) in
terms of accuracy, and that PSO/ACO2 often generates much
simpler (smaller) rule sets. This is a desirable result in data
mining—where the goal is to discover knowledge that is not
only accurate but also comprehensible to the user.

At present, PSO/ACO2 is partly greedy in the sense that
it builds each rule with the aim of optimising that rule’s
quality individually, without directly taking into account the
interaction with other rules. A less greedy, but possibly more
computationally expensive way to approach the problem
would be to associate a particle with an entire rule set and
then to consider the quality of the entire rule set when
evaluating a particle. This is known as the “Pittsburgh
approach” in the evolutionary algorithm literature, and it
could be an interesting research direction. Also the nominal
part of the rule is always discovered first and separately from
the continuous part, it could be advantageous to use a more
“coevolved” approach.
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1. INTRODUCTION

VLSI floorplanning is an important aspect in chip design. It
involves the placement of a set of rectangular circuit modules
(macrocells) on a chip to minimize the total area and the to-
tal interconnecting wire length and without overlap between
two modules since larger chip sizes increase production cost
while longer wire lengths increase power consumption and
decrease system performance.

The physical placement of circuits in VLSI chips or system
on chips (SoC’s) has been given constant attention in recent
years. Early research on the placement problem applied force
to reduce the overlap between cells [1]. However, [2–4] show
the generation of overlap-free placements and [5, 6] show
the generated layouts with cell overlaps. While allowing over-
laps during the process of placement was shown to obtain
better floorplanning solutions, this process could not guar-
antee the entire elimination of overlaps. Later, Vijayan and
Tsay [7] proposed the topological overlap removal method,
an approach that removes a redundant edge from two criti-
cal paths and repeats the process continuously until it makes
a significant improvement on the layout area. However, the
drawback to this approach was the random selection, if there

were two or more edges qualified for removal, it cannot pre-
dict which removal will lead to a better placement. Asato
and Ali [8] improved this method by removing all redun-
dant edges from one of the constraint graphs following the
iteration.

The recent approach, conducted by Alupoaei and
Katkoori, proposed a macrocell overlap removal algorithm
that was based on the ant colony optimization (ACO)
method [9]. Each ant in the colony generated a placement
based on the macrocells’ relative positions and informa-
tion regarding the optimal placement obtained by previous
colonies. The disadvantage to this macrocell movement pro-
cedure was that the initial relationship between macrocells
would influence the final result directly, plus the result could
be trapped in the local minimum.

All the approaches mentioned above have their advan-
tages and disadvantages; however, none of them is able to
cover placement constraint problems. Due to in the analog
design, designers are also interested in a particular kind of
placement constraint called symmetry, some recent literature
on this problem can be found in [10, 11]. The floorplanner
in [12] can handle alignment constraints which may appear
in bus-based routing. The floorplanners in [4, 13, 14] can
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Figure 1: Cell definition.

handle preplaced constraints, where some modules are fixed
in position. Different approaches are used to handle the dif-
ferent kinds of constraints, but there are no unified methods
that can handle all constraints simultaneously.

As opposed to these previously mentioned methods,this
paper utilizes particle swarm optimization (PSO) with an
overlap detection and removal mechanism to search for the
optimal placement solution. PSO is a swarm intelligence
method that roughly models the social behavior of swarms.
The advantage with this behavioral model is the search pro-
cess which allows stochastic return of particles towards pre-
viously successful regions in the search space. This method
has been proven to be efficient on a plethora of problems in
science and engineering.

In order to make PSO more capable when dealing with
placement problems, a turnaround factor [15] is adopted to
extend the particles’ search space. A disturbance mechanism
[16] is also introduced to prevent the solution from falling
into the local minimum. Furthermore, the proposed method
can handle several kinds of placement constraints simulta-
neously, including boundary, preplaced, range, abutment,
alignment, and clustering. Users can dictate a mixed set of
constraints and their preferred way of arrangement for the
assigned macrocell. The proposed floorplanner will then be
able to place these macrocells based on the given criteria.

Section 2 contains the definition of various placement
constraint problems; Section 3 describes the original PSO
methodology; Section 4 presents the proposed methods; and
Section 5 presents the experimental results, which aside from
the comparisons with ACO and B∗-tree in unconstrained
conditions, also contains the experiment results of situa-
tions involving different kinds of randomly selected multi-
constraints in floorplanning. Section 6 of the paper contains
the conclusion.

2. PLACEMENT CONSTRAINTS

2.1. Cell definition

During floorplanning, information is given to a set of macro-
cells; the information includes their width, length, and cell
numbers. In this paper, the floorplanning problem is ad-
dressed with a number of placement constraints, other than
the module information, some placement constraints are
given between the modules. The goal of proposed method
is to plan all macrocells’ positions on a chip such that all the

A D
B

C

Figure 2: Example of alignment constraint.

placement constraints can be satisfied and the area and inter-
connection cost minimized.

In this paper, the notation c(i, x, y) is used to denote the
ith cell’s location, where x and y are presented, ith cell’s po-
sition on x-axis and y-axis, respectively. Note that, the cell
positions are defined as the cell’s lower left corner. Figure 1
illustrates these definitions.

2.2. Relative and absolute constraints

In general, placement constraints can be classified as relative
and absolute. A relative placement constraint describes the
relationship between two modules, and an absolute place-
ment constraint describes the relationship between a mod-
ule and the chip. Using relative placement constraints, users
can restrict the horizontal or vertical distance between two
modules to a certain range of values; using absolute place-
ment constraints, the placement of a module is modified
with respect to the whole chip, like restricting a cell to a cer-
tain distance from the boundary of the chip. Modules classi-
fied under either kind of constraints can be set as restriction
conditions for particle movement during the PSO evolution
process. Details of the definition and applications will be de-
scribed in the following section.

2.3. General use placement constraints

Using the above specifications for absolute and relative place-
ment criteria, many different kinds of placement constraints
can be created. In this section, a few commonly used con-
straints will be picked up and show how each can be specified
using a combination of the relative and absolute placement
constraints.

2.3.1. Alignment

To align modules A, B, C, and D horizontally (Figure 2), the
following constraints can be imposed:

yA = yB = yC = yD. (1)

The horizontal axes of each module to be restricted the same;
they will thus align horizontally. A similar definition can be
applied to their vertical alignment.
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Figure 3: Example of abutment constraint.
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Figure 4: Example of preplace constraint.

2.3.2. Abutment

To abut modules A, B, and C horizontally (Figure 3), the fol-
lowing constraints can be imposed:

xB = xA + wA,

xC = xB + wB,

yA = yB = yC,

(2)

where wA and wB are the widths of modules A and B, re-
spectively. In this formulation, the horizontal axes of each
module are the same; so they will align horizontally. It also
restricts module B to being placed next to module A on the
right-hand side, and so on. The end result is their horizontal
abutment.

2.3.3. Preplace constraint

To preplace module A with its lower left corner at axis
(x1, y1) and module B with its lower left corner at axis (x2, y2)
(Figure 4), the following constraints can be imposed:

xA = x1, yA = y1,

xB = x2, yB = y2.
(3)

Module A is restricted to be x1 units from the left boundary
and y1 units from the bottom boundary. A similar definition
can be applied to module B. Each restricted module will be
preplaced with its lower left corner in the final packing.

2.3.4. Range constraint

To restrict the position of module A in the range {(xA, yA) |
x1 ≤ xA ≤ x2, y1 ≤ yA ≤ y2} (Figure 5), the following con-
straints can be imposed:

xA =
[
x1, x2

]
, yA =

[
y1, y2

]
. (4)

A

y2

x1

y1

x2

Figure 5: Example of range constraint.
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Figure 6: Example of boundary constraint.

In this formulation, module A is restricted to be x1 to x2 units
from the left boundary and to be y1 to y2 units from the bot-
tom boundary, restricting module A to the designated rect-
angular region.

2.3.5. Boundary constraint

To place module A along the left boundary and place module
B along the bottom boundary in the final packing (Figure 6),
the following constraints can be imposed:

xA = 0, yB = 0. (5)

In this formulation, module A is restricted to be 0 units from
the left boundary, so module A will be abut with the left
boundary in the final packing. Module B is restricted to be
0 units from the bottom boundary, so module B will abut
with the bottom boundary as required.

2.3.6. Clustering constraint

To cluster modules A and B around C at a distance of most
units away vertically (Figure 7), the following constraints can
be imposed:

xA = xC + wC , yA =
[
yC, yC + hC

]
,

xB = xC + wC , yB =
[
yC, yC + hC

]
.

(6)

In this formulation, the vertical distances of A and B from
C are restricted to be at most a certain unit in vertical direc-
tions, so they will cluster around C at a vertical distance of
at most hC units away. The horizontal distances of A and B
from C can also be restricted in a similar way.

3. PARTICLE SWARM OPTIMIZATION (PSO)

The PSO is a population-based optimization technique that
was proposed by Eberhart and Kennedy [17] in 1995, in
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Figure 7: Example of cluster constraint.

which the population is referred to as a swarm. The particles
exhibit the ability of fast convergence to local and/or global
optimal positions over a small number of generations.

A swarm in PSO consists of a number of particles. Each
particle represents a potential solution to the optimization
task. All of the particles iteratively discover a probable solu-
tion. Each particle generates a position according to the new
velocity and the previous positions of the cell. This is com-
pared with the best position generated by previous particles
in the cost function and the best one is kept; each particle ac-
celerates in the direction of not only the local best solution
but also the global best position. If a particle discovers a new
probable solution, other particles will move closer to explore
the region in more details [18].

Let s denote the swarm size. In general, there are three
attributes, current position xi, current velocity vi, past best
position Pbesti, and global best position Gbest, as the main
guidelines for each particle in the search space. Each particle
in the swarm is iteratively updated according to the afore-
mentioned attributes. Assuming that the objective function
f is to be minimized so that the particle contains N dimen-
sions, the new velocity of every particle is updated using

vi, j(t + 1) = wvi, j(t) + c1r1i, j (t)
[
Pbesti, j(t)− xi, j(t)

]

+ c2r2i, j (t)
[
Gbest j(t)− xi, j(t)

]
.

(7)

For all j ∈ 1, . . . ,N , vi, j is the velocity of the jth dimension of
the ith particle, w is the inertia weight of velocity [19], c1 and
c2 denote the acceleration coefficients, r1 and r2 are elements
from two uniform random sequences in the range (0, 1), and
t is the number of generations. The new position of the ith
particle is calculated as follows:

xi, j(t + 1) = xi, j(t) + vi, j(t + 1). (8)

The past best position of each particle is updated by

Pbesti(t + 1) =
⎧
⎨

⎩

Pbesti(t), if f
(
xi(t + 1)

) ≥ f
(
Pbesti(t)

)
,

xi(t + 1), otherwise.
(9)

The global best position Gbest found by all particles dur-
ing previous three steps is defined as

Gbest(t + 1) = arg min
Pbesti

f
(
Pbesti(t + 1)

)
, 1 ≤ i ≤ s.

(10)

4. PSO ALGORITHM FOR MACROCELL OVERLAP
REMOVAL AND PLACEMENT

The first step to using PSO as a way to handle the macrocell
overlap removal and placement is defining each macrocell’s
position as a dimension of a particle. That is, 20 dimensional
particles can be used to optimize placement problems whose
circuit contains 20 macrocells. The definition of the macro-
cells’ position is stated in the previous section. While a swarm
consists of a number of particles, the particle’s movement
will lead the module to find another potential or superior
solution for placement. For the initial state of the placement,
each module was randomly generated in the floorplanning
and overlap was allowed. After a number of generations, the
distance between each of the modules will shrink, meaning
the chip size will get smaller. The overlap between the two
modules will be eliminated by proposed overlap detection
and removal mechanism.

4.1. Handling placement constraints by PSO

Both relative and absolute placement constraints can be set
as a particle’s movement constraints and can be included in
the PSO algorithm. Because of the combination of horizon-
tal and vertical vectors into the particles’ moving vector, in
this paper, a constraints handling process is instituted in the
proposed floorplanner to guarantee that each macrocell’s ar-
rangement will follow the placement constraints. Therefore,
each particle can move according to the original PSO algo-
rithm, but any moving vector that violates the setting rules
(placement constraints) will be stopped by the constraints
handling process; the movement of particles could be lim-
ited to one or both directions and the moving vectors could
be reduced in each move to comply with the placement con-
straints.

Here, the two general kinds of placement constraints, ab-
solute and relative, are taken into consideration. For relative
placement constraint, users can restrict the horizontal or ver-
tical distance between two modules to a certain value, or to a
certain range of values.

In this paper, a master-slave concept is introduced to
define the relationship between cells. For a set constrained
macrocells, one of them will be defined as master; the oth-
ers will be slaves. All the slave cells will be moved only after
the master cell has moved. Furthermore, the movement strat-
egy of slave cells will also obey the cell’s relationship defined
by the constraints. For example, if cell A and cell B are both
constrained to vertical alignment, and cell A is defined as the
master cell, then cell B will be moved only after cell A has
moved, and the x-axis of cell B will be set according to cell A’s
current position. Absolute placement constraint is similarly
specified except it does not involve or need the master-slave
concept.

4.2. Overlap detection and removal mechanism

Before the global best position Gbest is updated to move
the macrocell to a new position, the proposed floorplan-
ner should detect if the current macrocell overlaps with any
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dh

sh 2
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sh 1

sw = sw 1 + sw 2
sh = sh 1 + sh 2

sw 1

dv

Figure 8: The distance measure between two macrocells mecha-
nism.

existing macrocells. The horizontal distance dh and vertical
distance dv between two macrocells depicted in Figure 8 are
measured via the macrocells’ center. Then, they are com-
pared with the half sum of two the macrocells’ height sh and
half sum of the two macrocells’ width sw to estimate the oc-
currence of overlap using

Overlap =
⎧
⎨

⎩

1, if dh < 0.5sw, dv < 0.5sh,

0, otherwise.
(11)

The area with an existing macrocell will be regarded
as a forbidden region. If a macrocell is moved to intersect
a forbidden region (overlaps with another macrocell), this
macrocell will be eliminated and restored to its former loca-
tion. The macrocells’ new position will be updated until it
is overlap-free. This process requires more time for compu-
tation (particle movement), but it will guarantee that each
macrocell’s placement is overlap-free.

4.3. Turnaround factor for particles’ movement

In the original PSO, the moving vector (velocity) of each par-
ticle is decided according to its past best solution and the
global best solution. This procedure makes sense in evolu-
tional computing, where all new generations would inherit
past generations’ experience or ability and move all particles
toward the global best solution.

In some applications, such as placement, the optimal so-
lution will change in each time slot. The original PSOs will
ignore some of the better solutions that are beyond the par-
ticles in the searching space, and continue to drive parti-
cles toward a specific direction according to previous expe-
riences. Particles will miss the optimal solution in the cur-
rent slot and spend more time on turning particles in the
right direction, and toward to the global optimal solution.
Figure 9 shows the particles’ searching behavior, driven by
(7) in a two-dimensional search space. It would lead parti-
cles to some searching spaces and skip the areas which have
already been searched before in previous generations. This
searching behavior is more suited to applications whose op-
timal solution is fixed at a specific position, but not time
varying or dynamic. In different applications, the algorithm
should be modified to be more suitable under the circum-
stances.

For example, in order to prevent macrocells from over-
lapping, all areas with existing macrocells will be regarded as

Unsearchable
region

Optimal solution

Particle’s current position

Global best solution

Particles next
position by (7)

Past best solution

Figure 9: Particle movement behavior.

Optimal solution

Particle’s current position

Global best solution

Particle’s next position
by (7) or (12)

Past best solution

Particle’s next position by (12)

Figure 10: Extended searching space.

a forbidden region; that is, each rearrangement of a macro-
cell must be overlap-free. Thus, particles may not be able to
find feasible solution by moving forward (according to pre-
vious experience) in the current generation. Therefore, to
search for better placement solutions, particles should not
move only forwards, but also backwards to find possible so-
lutions.

To enhance the particles’ searching ability and save evolu-
tion time, the velocity update equation is modified as follows:

vi, j(t + 1) = T
{
wvi, j(t) + c1r1i, j (t)

[
Pbesti, j(t)− xi, j(t)

]

+ c2r2i, j (t)
[
Gbest j(t)− xi, j(t)

]}
,

(12)

where T denotes the turnaround factor [15]. Normally, the T
would be set at 1 (moving forward). The particle’s movement
will follow the original PSO. If the particle can not find a fea-
sible solution however, the T of the regenerated macrocell
will be switched to −1 (moving backward) for this genera-
tion. After feasible solutions have been found, the particles
will then follow in the current direction in its successive gen-
erations to find better solutions. Thus, T must be restored to
1. Particles will then continue the solution searching by mov-
ing according to the original PSO. Figure 10 illustrates the
extended searching space possible with proposed method.

The turnaround factor can extend the particles’ searching
space from the usual frontal 180 degrees to a full 360 degrees.
It can stop particles from missing the solutions located be-
hind them or located in already explored areas.
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if disturbance mechanism activated
random select a particle (macrocell) and place it randomly
in the searching space (enclosing rectangle of the
floorplanning)
if overlap

restore the particle’s position
else

update the particle’s position
endif

endif

Algorithm 1: Pseudocode of disturbance mechanism for placement.
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Figure 11: Macrocell replaced by disturbance.

4.4. Disturbance mechanism

In this paper, the PSO placement procedure is incorporated
with a disturbance mechanism [16], the mutation-like evo-
lutionary strategy, to prevent particles from being trapped in
the local optimum.

Because each macrocell has a unique length-height ratio,
after numbers of generations, the gap and free space between
each macrocell should become smaller as each cell moves
closer together. But it is almost unavoidable for the solution
to fall into the local minimum during each particle’s search
for a better placement solution.

Hence, a disturbance mechanism was added into the PSO
process to prevent the search from falling into the local min-
imum and to escape from the trap to find the global mini-
mal. The disturbance mechanism will pick up a particle ran-
domly and disturb its position information; a randomly se-
lected macrocell will be reordered in the enclosed rectangle
of the floorplan while the disturbance mechanism is active.
The placement process was then redone to achieve a better
placement solution. Figure 11 shows that the macrocell has
been replaced by disturbance mechanism.

The selected macrocell will keep following the PSO itera-
tion and continue to find new placement solutions. The dis-
turbance mechanism will cause a slight rearrangement of the
floorplan and prevent the solution from falling into the local
minimum.

It takes many tries for the particles to find the best so-
lution for the following generation. After the disturbance
mechanism activates, the removed macrocell will create an
empty space for other macrocells, so it can also reduce the
PSO iteration time and help other macrocells find the next
solution. The disturbance mechanism provides two advan-

tages with a single process. The pseudocode of the distur-
bance mechanism for placement is presented Algorithm 1.

4.5. Objective function

In general, the objective functions are dependent on the ap-
plication’s demands. In this paper, the focus will be smaller
chip size and shorter wire length also. Just as chip size gets
smaller, the wire length should also be shorter. Therefore, we
defined the objective function f as follows:

f =
⎧
⎨

⎩

√
D2

h + D2
v , if i = 0,

Dh + Dv +
∣
∣Dh −Dv

∣
∣, if i = 1,

(13)

where Dh and Dv are the horizontal distance and the verti-
cal distance with coordinates (0, 0), respectively, and i is pro-
duced by a random integer generator with a result of either

1 or 0. The function
√
D2

h + D2
v can make cells get as close as

possible, while the function value gets smaller. The function
Dh + Dv + |Dh − Dv| can arrange cells in a uniform distri-
bution. Both cost functions are integral parts and must work
alternately in PSO evolution. Adopting the first one only will
form a tight cell arrangement but the side effect is a place-
ment that forms an arced contour, on the other hand, adopt-
ing the second one only will create results with better con-
tours but will lead to loose cells arrangements.

4.6. PSO for placement constraint and
overlap removal

The dimension numbers N denote the number of macro-
cells and the particle number is defined as 1 ≤ i ≤ s. The
macrocells were randomly placed on the floorplan and over-
lap was allowed initially. The xi represents the macrocells’
current positions and the initial state of vi, j , Pbesti, and Gbest
were set to 0. After that, particles are moved by (11) and
(8); vectors violating movement restraints are cut off with
the constraints handling process. The overlap detection and
removal mechanism will also eliminate any cells that over-
lap with other macrocells. Then, the new local best posi-
tion would be updated with (9) and the global best po-
sition would be updated with (10). In order to guarantee
that each constrained macrocell would not violate place-
ment constraints, all constrained modules are set to have
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Create and initiate a 2∗N-dimensional PSO: P
Repeat:

Disturbance mechanism
Execute PSO to update P by (11) and (8)
Constraints handling process
Overlap detection and removal by (12)
for each particle i ∈ [1, . . . , s]

if f (xi) < f (Pbesti)
then Pbesti = xi

if f (Pbesti) < f (Gbest)
then Gbest = Pbesti

endfor
Until termination condition is reached

Algorithm 2: Pseudocode.
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Figure 12: Cells 0–3 abut vertically, cells 4, 6, and 7 cluster around
cell 5, and cells 7–9 align horizontally.

higher priority in each movement during the earlier gen-
erations to ensure that all set constraints were reached, in
other words, if a nonconstrained module overlaps with a
constrained module, this nonconstrained module would be
removed and regenerated. Thus, all the particles would keep
moving to find a better solution until it reached the goal
or met the termination condition. The pseudocode of im-
proved PSO for macrocell overlap removal and placement
is presented in Algorithm 2. The dimension of each particle
will be 2∗N since there are 2 parameters (x- and y-axes) per
cell.

4.7. Time complexity

In this paper, the time complexity of the proposed floorplan-
ner is O(Nd/Np(n − 1) + d + c), where Nd is the dimensions
of particles, Np the number of particles in the swarm, n is the
number of macrocells, (n − 1) is overlap detection and re-
moval (compare one macrocell with others), d is the distur-
bance mechanism, and c is the constraints handling process.
Thus, Nd equals to n. The number of particles is typically less
than n, since the number of particles in a swarm has no need
to surpass a constant limit, and the activating probability of
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Figure 13: Cells 0–3 cluster at lower left corner of the chip, cells 4–8
abut horizontally, and cells 9-10 are placed at range 100–200 in both
axes.
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Figure 14: Cells 0–3 cluster at lower left corner of the chip, cells 4,
6, and 7 cluster around cells 5, cells 8–10 abut vertically, and cells
11-12 align horizontally.

disturbance mechanism is much smaller than n2. Thus, the
overall time complexity of the algorithm is O(n2).

5. EXPERIMENTS

The experiments in this study employed GSRC and MCNC
benchmarks [20] for the proposed placement constraints and
overlap removal procedures and compared the results with
other related researches. All the macrocells were set as hard
IP modules and without rotation. The simulation programs
were written in Matlab [21], and the results were obtained on
Pentium 4 1.7 GHz with 512 MB RAM. The initial parame-
ters of w, c1, and c2 for the proposed method and [19] were
empirically set as 0.12, 0.25, and 0.25, respectively. Both their
particle numbers were set as ten and the termination condi-
tion was set at 100 generations. The algorithm and parame-
ters of ACO and B∗-tree were complete following the original
setting of [9] and [4], respectively. Each floorplanner was run
25 times for each of the benchmarks and their average out-
comes of wire length, chip area, and run time were recorded.
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Table 1: Compared proposed method with other approaches without placement constraints.

Circuits Cells

Ant Colony [9]

Proposed method PSO [19] 100 Colony 200 Ants B∗-tree [4]

Area Wire Run Area Wire Run Area Wire Run Area Wire Run

(mm2) (mm) time (mm2) (mm) time (mm2) (mm) time (mm2) (mm) time

ami49 49 51.46 179.28 1m52s 58.75 212.75 1m57s 63.32 218.36 7m58s 50.71 208.38 1m49s

n 50 50 0.27 12.8 1m40s 0.39 17.85 1m50s 0.41 18.01 7m12s 0.27 14.97 1m40s

n 100 100 0.24 24.17 3m43s 0.41 35.07 3m51s 0.45 40.36 15m01s 0.27 31.75 11m39s

n 200 200 0.24 47.74 8m48s 0.42 71.93 8m55s 0.46 73.68 45m59s 0.28 84.01 1h36m12s

n 300 300 0.38 89.84 15m43s 0.40 132.91 15m59s 0.57 119.43 1h24m1s 0.49 204.44 5h26m50s

Table 2: The proposed method with different placement constraints.

Circuits Cells
4 macrocells in 2 random 8 macrocells in 4 random 12 macrocells in 4 random

selected constraints selected constraints selected constraints

Area (mm2) Wire (mm) Run time Area (mm2) Wire (mm) Run time Area (mm2) Wire (mm) Run time

ami49 49 50.7 186.29 2m30s 51.91 177.672 2m51s 52.21 186.82 3m2s

n 50 50 0.28 13.47 2m26s 0.29 13.65 3m21s 0.3 13.86 3m56s

n 100 100 0.27 25.91 5m5s 0.27 26.17 5m23s 0.28 26.42 5m50s

n 200 200 0.28 52.11 10m59s 0.28 52.47 11m18s 0.28 52.95 12m25s

n 300 300 0.42 97.12 18m58s 0.43 97.09 20m6s 0.43 97.79 20m35s
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Figure 15: Cells 0–3 clustering, cells 4–7 abut vertically, cells 8–10
cluster at lower left corner of the chip, and cell 11 places at bottom
boundary.

The experimental results of placements are shown in
Table 1. Compared with related methods, the proposed
method is more efficient in finding solutions with respect
to chip area or wire length and can prevent solutions fall
into the local minimum. The convergence of [19] is quite ac-
ceptable. Good solutions can be found after reasonable com-
putation time. The ACO method allows overlap in the ini-
tial stage; this means it not only has to execute the ACO
procedure, detect and remove overlaps, but must also deal
with constraint graphs for each macrocell. However, the ACO
method shows impressive results for the floorplan. In the B∗-
tree structure, all macrocells are overlap-free, saving detec-
tion time to find and remove overlapping cells, but it would
then spend more time arranging the cells after one cell was
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Figure 16: Cells 0–2 abut vertically and place at left boundary, cells
3–6 cluster at lower corner of the chip, and cells 7-8 align vertically.

removed, exchanged, or placed. In a minority of cases, it dis-
plays more efficiency with placement. Once the cell num-
ber was increased, however, the computation burden of this
method would increase nonlinearly, furthermore, it would
likely fall into the local minimum. In unconstrained cases,
the proposed method expressed more optimal results for
wire length and chip area, and shorter run times than ACO
[9], PSO [19], and B∗-tree [4].

Because there are hundreds of combinations for place-
ment constraints mentioned in Section 2, it was not possible
to present every case here. In placement constraints simula-
tion, the constraint types were selected by a random num-
ber generator. The constrained macrocells are selected by
its serial number. For example, if the user wants to have 8
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constrained macrocells in the GSRC n100 benchmark, cells
sb0 to sb7 would be chosen. The placement constraint exper-
imental results are shown in Table 2. Even when restricted to
different numbers of macrocells during placement, the pro-
posed method exhibited reasonable outcomes for chip size,
wire length and run times, and fit all selected constraints.
Furthermore, the proposed method has no cases of con-
straint violations in each experiment. Only little fluctuation
in computation times in the proposed method when using
different restricted cells can also be observed. The proposed
floorplanner is more robust than related research in being
more adaptable to various placement requirements. The fi-
nal five multiconstraint floorplanning results in GSRC n100
were illustrated in Figures 12–16.

6. CONCLUSIONS

This paper presents a method to handle various placement
constraints in floorplanning. Two techniques are introduced,
which are the turnaround factor and the disturbance mecha-
nism, to improve capability of the algorithm. When it was ap-
plied to problems without constraints, the proposed method
exhibited more efficiency and robustness when searching for
the solution than ACO, PSO, and B∗-tree. In order to per-
form a wide optimal solution search, the overlap between
macrocells was allowed in the initial stage, the proposed
method can guarantee that all the overlaps will be eliminated
in the final floorplan. The experimental results proved that
the proposed method can lead to more optimal solutions
within reasonable computation times for hard IP modules in
unconstrained placement. Furthermore, the propose method
also has ability to deal with constrained placement problems.
Several benchmarks were adopted for testing and the results
were very reliable. Placements with all the constraints satis-
fied can be obtained efficiently by the proposed method.

7. FUTURE WORKS

The authors’ future works will focus on finding ways to ap-
ply their method to different architecture in order to enhance
the efficiency of floorplanning, and deal with soft IP module
placement problems.
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1. INTRODUCTION

When compared to most other engineering tasks, geotech-
nical problems are often characterized by the following
peculiarities. The materials involved are geological materials,
that is, soils and rocks, which are inhomogeneous and consist
of various phases in different states of aggregation. Initial and
boundary conditions tend to be complex and heterogeneous.
Furthermore, in real geotechnical field problems, the exact
geometry is usually not known, with the available geometry
information being limited to topographical surface data and
punctual outcrops or soundings. For this reason, in geotech-
nics, there is always a need for a high level of simplification
and abstraction. Frequently, continuum methods are used
to calculate deformations in soil or rock, and the material
behavior is simulated by means of constitutive models, which
require a certain set of material parameters.

Normally, in geotechnical engineering, the values of
these parameters are set based on the results of laboratory
experiments, literature data, or even just experience values
are used. The results of the calculation, a forward calculation,
are then compared to measurement data obtained in the
laboratory or in the field. Provided that the simplifica-

tions made and the constitutive model chosen are appro-
priate and provided that the performed calculation gives
plausible results, parameter values are then varied by trial
and error in order to reach an improved fit of the calculation
results to the measured data, the reference data.

Though this is done based on the experience of the
geoscientist, the procedure remains to a certain extent
arbitrary or at least subjective.

In recent years, due to the availability of sufficiently fast
computer hardware, there has been a growing interest in the
application of inverse parameter identification strategies and
optimization algorithms to geotechnical modeling in order
to make this procedure automated [1–5] and thus more
traceable and objective. Furthermore, this approach provides
statistical information, which can be used to quantify the
calibration quality of the developed geotechnical model.

Applications of optimization procedures in geotechnics
were described by many authors, for example, in the cali-
bration process of geotechnical models [1, 2], or to identify
hydraulic parameters from field drainage tests [6]. Already in
1996, Ledesma et al. [7] and Gens et al. [8] applied gradient
methods to a synthetic and a real example of a tunnel drift
simulation. Also during the excavation of a cavern in the
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Figure 1: Flowchart of the adopted iterative procedure.

Spanish Pyrenees the above mentioned group of authors
was applying gradient methods for the identification of
geotechnical parameters [9]. Malecot et al. [10] used inverse
parameter identification techniques for analyzing pressure-
meter tests and finite-element simulations of excavation
problems. For the identification of soil parameters, also
genetic algorithms were studied [11, 12]. Feng et al. [13] used
an inverse technique for the determination of the parameters
of viscoelastic constitutive models for rocks, based on genetic
programming and a particle swarm optimization algorithm.
In the field of geoenvironmental engineering, Finsterle
[14] examined the potential use of standard optimization
algorithms for the solution of aquifer remediation problems
in three-phase and three-component flow and transport
simulations of contamination plumes. As a different aspect
of parameter identification, Cui and Sheng [15] determined
the minimum parametric distance to the limit state of a strip
foundation by optimizing a reliability index. In 2006, J. Meier
and T. Schanzin [5] applied particle swarm optimization
techniques to geotechnical field projects and laboratory tests,
namely, a multistage excavation and the desaturation of a
sand column.

All cited references agree on the fact that back-calculation
of model parameters by means of optimization routines
is possible in the field of geotechnics, if an appropriate
forward calculation depending on adequately realistic model
assumptions is provided, for example, Calvello and Finno
[1, 2]. In this context, particle swarms represent a powerful
tool for finding parameter sets that best represent the
reference data, with acceptable calculation effort and time
consumption.

2. WORKING SCHEME OF THE ADOPTED PARAMETER
IDENTIFICATION STRATEGY

The starting point of the parameter identification strategy
presented in this study is given by an ordinary geotechnical
modeling-task, the so-called forward calculation. This for-
ward problem consists of a specified geometry with given
initial and boundary conditions and a material model, which
requires a set of material parameters to be determined. It
is generally also possible to identify geometrical parameters
[4], but this issue will not be discussed in this article. For
the first run of the forward calculation, the user presets

the unknown parameters, for example, entering estimated
values, or the preset of the parameter vector is done by a
random generator within values margins specified by the
user. The relevant results of the forward calculation are
then read out and their deviation from a set of reference
data, usually measured data, is determined by means of an
objective function. This procedure is repeated many times,
while at any one time, an optimization algorithm, based on
the parameter combinations and the values of the objective
function during the previous forward calculations, identifies
an improved parameter set to be used in the next forward
calculation.

This sequence of cycles, illustrated in Figure 1, is inter-
rupted when one of the following stop criteria is fulfilled:

(i) a maximum number of runs or maximum calcula-
tion time is reached;

(ii) the deviation from the reference dataset, described
by the value of the objective function, falls below a
specified limit;

(iii) the deviation could not be lowered during a certain
number of cycles.

Hence we use a direct approach as described by Cividini
et al. [16] to solve a back-analysis problem. In an iterative
procedure, the trial values of the unknown parameters are
corrected by minimizing an error function. It is therefore not
necessary to formulate the inverse problem itself, the desired
solution is obtained by combining the results of numerous
forward calculations with an optimization routine.

To quantify the deviation between the reference data
and the modeling results, we chose the frequently used and
relatively simple method of least squares. In this method, the
objective function f (x) for more than one reference dataset
is defined as

f (x) =
∑

g

[wg f
′
g (x)] (1)

with

f ′g (x) = 1
m

m∑

h=1

wh(ycalc
h, g (x)− ymeas

h, g )
2
. (2)

In (1) and (2), x denotes the parameter vector to be
estimated and wg are positive weighting factors associated
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“initialization of swarm”
create particle list
for each particle

set initial particle position and velocity
next particle
“processing loop”
do

“get global best particle position”
determine best position in past of all particles
“determine current particle positions”
for each particle

calculate and set new velocity based on a corresponding equation
calculate and set new position based on a corresponding equation

next particle
“parallelized calculation of objective function values”
for each particle

start forward calculation and calculate objective function value
next particle
“join all calculations”
wait for all particle threads
“post-processing”
for each particle

if current objective function is less than own best in past:
save position as own best

end if
next particle

loop until stop criterion is met

Algorithm 1: Pseudocode of the used particle swarm optimizer.

correspondingly with the error measure f ′g (x). Via the
weights wg , the different series g can be scaled to the same
value range and different precisions can be merged, for
example, a series of measuring data possessing a higher pre-
cision is included with a higher weighting factor compared
to more uncertain data. The particular numbers for the
weights have to be given manually respecting the engineer’s
experience and they have to be specified depending on the
optimization problem. The weighting factors wh are used to
provide a possibility for considering different precisions and
measurement errors within one and the same data series. The
dimensions of the weighting factors can be taken in the way
to obtain a dimensionless objective function quantity. For
minimizing the objective function, we use a particle swarm
optimization algorithm described by Eberhart and Kennedy
[17, 18].

A computer program developed by the first author
of this paper implements this algorithm and disposes of
interfaces to several commercial finite-element packages
used in geotechnical engineering. A short pseudocode of
the implemented PSO used in this study is presented in
Algorithm 1.

3. CONCEPT FOR THE APPLICATION TO
GEOTECHNICAL PROBLEMS

If the parameter identification strategy described above is
to be applied to geotechnical tasks, the geotechnical model

of the forward problem usually has to be adapted for its
use in the optimization routine. The runtime of a single
forward calculation has to be minimized in order to allow for
a high number of calls. The number of calls needed depends
furthermore on the number of parameters to be identified
and, of course, on the used optimization algorithm.

While the reduction of calculation time demands simpli-
fication and abstraction, the model still should be sufficiently
complex to reproduce the reference data with the required
accuracy. Furthermore, the number of required forward cal-
culations can be reduced by applying hypersurface approxi-
mation methods [4].

As a next step, it is essential to select the parameters to
be identified and to decide on the upper and lower limits
of their plausible values margins. The values of some of
the parameters might be fixed with the aid of previous
knowledge. These specifications must be done with care and
require the experience of the geoscientist, since they influ-
ence the obtained results. However, due to the application of
a particle swarm optimizer instead of, for example, a gradient
method, no initial guess for the parameter set is necessary
because initial positions are generated randomly within the
parameter value margins.

Due to the inhomogeneities of the geological materials
involved and the uncertainties related to the initial condi-
tions and the geometrical boundary conditions, geotechnical
problems tend to be underdetermined. In order to improve
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and ensure the efficiency of the back-analysis, it is of
significant importance to check if the set of parameters
to be identified may be reduced and if for the prescribed
trusted zone the optimization problem is well posed. For this
purpose, a statistical analysis is done based on the results of
a Monte Carlo procedure including a sufficient parameter
set. Figure 2 shows the principle scheme of the matrix
plot used here to visualize the results of the Monte Carlo
simulation. A standard mathematical tool for examining
multidimensional datasets is the scatter plot matrix (see
[19]), whic is included in the matrix plot presented in
Figure 2, where each nondiagonal element shows the scatter
plots of the respective parameters. The matrix is symmetric.
Matrix element D-B, for example, may suggest that the
involved parameters B and D are not independent, but
strongly correlated. The diagonal matrix plot elements (A-
A, . . . ,D-D) show plots where the value of the objective
function is given over the parameter which is associated with
the corresponding column. These plots are called hereafter
objective function projections. If the problem is well posed,
each of these plots of the objective function projections has
to present one firm extreme value as it is the case in the
diagram D-D.Otherwise, the respective parameter could not
be identified reliably. By filtering out data points that have
objective function values larger than a certain threshold level,
the distribution of the remaining points gives a rough idea
of the size and shape of the extreme value (solution) space.
For further statistical analyses, the well-known linear 2D
correlation coefficient can be calculated from the individual
scatter plots. Referring to [20] in the analysis of our case
studies, we consider variables with a correlation coefficient
of less than 0.5 as “noncorrelated”.

4. APPLICATIONS

4.1. Description of the studied geological material
and the adopted constitutive model

In the following examples of applications of the presented
parameter identification technique using PSO, we are model-
ing the mechanical behavior of a natural soil. It is of geotech-
nical interest because it favors the development of numerous
landslides, namely, rotational soil slips, earth slides, and
earthflows. The studied material is clay that results from the
weathering of structurally complex geological formations,
the San Cassiano formation (Kassianer Schichten), and the
La Valle formation (Wengener Schichten) of the Alpine
Trias. These rock formations are made up by interbedded
strata of marls, tuffites, claystones, limestones, dolomites,
and sandstones. Like its source rocks, the soil is characterized
by a high clay and silt content. In the field, it consists
of a clayey matrix with coarser components, of diameters
from centimeters up to meters, floating in it without mutual
support. Therefore, it is not possible to sample the material as
a whole representatively. As it has been completely remolded
by earthflow phenomena, no preferred orientation of the
components can be observed. For this study, only the fraction
smaller than 2 mm was taken, as it is considered to determine
the relevant mechanical properties of the entire soil and it
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Figure 2: Statistical analyses via matrix plot, principle scheme.

Table 1: Properties of the studied soil.

Percentage of clay particles (diameter < 2 μm) 26–34%

Bulk density (g/cm3) 1.82

Dry density (g/cm3) 1.29

Density of grains (g/cm3) 2.76

Porosity n 53%

Lime content 36%

Loss of ignition 6.5%

Liquid Limit WL 0.50

Plastic Limit WP 0.27

Water content 0.41

allows for the manufacturing of reproducible samples and
test specimens. Some properties of the studied material are
listed in Table 1. Unless otherwise expressly stated, all tests
and classifications were carried out according to the German
standard DIN.

From this description of the material, it becomes clear
that its mechanical behavior is expected to be very complex
and therefore it is only possible to model some important
aspects of this behavior. Like many soils with a high clay and
silt content, the studied material is highly compressible and
exhibits a significant amount of creep deformations, thus
its behavior is strongly time-dependent. As a constitutive
model, we chose the soft soil creep model, which was
developed by Vermeer and Neher [21] to account particularly
for these phenomena. The soft soil creep model requires the
following material parameters to be specified (see Table 2).

A set of three parameters (c,ϕ and,ψ) is needed to
model failure according to the Mohr-Coulomb criterion.
Two further parameters are used to model the amount of
elastic and plastic strains and their stress dependency. The
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modified compression index (λ∗) represents the slope of
the normal consolidation line during one-dimensional or
isotropic logarithmic compression. In the same manner, the
modified swelling index (κ∗) is related to the unloading or
swelling line. The modified creep index (μ∗) serves as a
measure to simulate the development of volumetric creep
deformations with the logarithm of time.

In the modeling examples of this article, we will not
take into account the development and the influence of
water pressures, which would be also possible but imply a
considerable increase in calculation effort; and in the case
of the slope example in Section 4.4, more reference data
would be needed. All forward calculations were carried out
applying the finite-element method using the commercial
code PLAXIS (Version 8.2, professional, update-pack 8, build
1499) and considering the effect of large deformations by
means of an updated Lagrangian formulation (updated mesh
analysis) [22].

4.2. Oedometer test

A one-dimensional compression test was conducted by
MFPA Weimar (Germany) [23] in a fixed oedometer ring
with an inner diameter of around 7 cm (71.45 mm) and a
height of around 2 cm (20.21 mm). Drainage was allowed on
the top and at the bottom of the soil sample. All load steps
were applied vertically, while the sample was held radially,
impeding horizontal displacements. First, the sample was
preloaded with 9 kPa during two days and with 13 kPa during
one day. Then the load was doubled successively, with each
load step lasting 24 hours, loading the sample with 25, 50,
100, 200, 400, and 800 kPa. After that, it was unloaded at
400, 200, 100, and 50 kPa, and finally it was reloaded again
with 100, 200, 400, and 800 kPa (last step took 43 hours). The
displacements of the sample top were recorded continuously.

For the numerical model of the test setting, we used
an axisymmetric geometrical configuration with the exact
dimensions of the test specimen. In order to minimize
calculation runtime, the discretization was done with two
six-node triangular elements only, which is the minimum
possible number, as the software offers only triangular
elements. Thereby, the duration of a forward calculation
could be reduced to less than one minute on an ordinary
personal computer. The accuracy of the deformation results
was checked by carrying out comparative analyses with
finer meshes. Horizontal fixities were assigned to the lateral
boundary and to the rotation axis, simulating the stiff
oedometer ring and vertical fixities were attributed to the
basal boundary, representing the fix filter plate at the bottom.
After generating the initial stress state by applying the soil
self-weight (gravity loading procedure), distributed loads
were applied perpendicular to the top boundary analog to
the laboratory conditions.

Three parameters of the material model (λ∗, κ∗, and μ∗)
can be determined directly from the oedometer test. As the
material is known to show no dilatancy, ψ can be set to
0◦ in all calculations. Laboratory data from shear tests on
similar soil samples reported by Panizza et al. [24] is shown
in Table 3.

Table 2: Parameters of the soft soil creep model.

Parameter Description (Unit)

c Effective cohesion (kPa)

ϕ Effective friction angle (◦)

ψ Dilatancy angle (◦)

λ∗ Modified compression index (dimensionless)

κ∗ Modified swelling index (dimensionless)

μ∗ Modified creep index (dimensionless)

Table 3: Shear-test data reported by Panizza et al. 2006 [24].

Effective friction
angle ϕ′(◦)

Effective cohesion
c′(kPa)

Direct shear
tests

18 20

18 10

20 49

18 39

16 49

14 69

18 25

20 20

Triaxial tests
19 7

28 14

We averaged these values, giving double weight to the
triaxial test data, which we assumed to be more precise,
coming out with an average friction angle of 20◦ and
an average cohesion of 27 kPa. The set of experimental
parameter values is shown by Table 4 and the results of a
forward calculation using these parameters are presented
in Figure 3 comparing them with the reference data of the
oedometer test.

The graph shows that the deformations are underesti-
mated by the simulation. In order to test the ability of the
PSO algorithm to find good parameter combinations, wide
search areas were chosen for the five parameters. A statistical
analysis (see Section 3) comprising 2000 calls of the forward
calculation was then performed varying these parameters.
Their value margins are displayed in Table 5.

The scatter plot matrix of all data points with objective
function values lower than 10−7 is given in Figure 4. For the
parameters λ∗, κ∗, and μ∗, logarithmized margins of the
search intervals were used in order to avoid overrepresen-
tation of high parameter values. Furthermore, a parameter
constraint was prescribed, demanding for λ∗ > κ∗, which has
to apply for all materials. The objective function projections
of c, κ∗, and λ∗ indicate that the data points showing good
model fits seem to concentrate in quantifiable value ranges
of these parameters, whereas μ∗ and ϕ cannot be identified.
The modified compression index (λ∗) and the cohesion (c)
appear to be correlated (correlation coefficient of 0.88), to a
lesser extent, this holds true also for λ∗ and κ∗ (correlation
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Figure 3: Oedometer test calculation results versus reference data.

Table 4: Parameters obtained from experiments and identified
parameters using PSO.

Experimental parameter values Identified values PSO

λ∗ 0.064 0.082

κ∗ 0.035 0.051

μ∗ 1.46E–03 —

ϕ (◦) 20 —

c (kPa) 27 25

ψ (◦) 0 —

Table 5: Search intervals for the parameters of the oedometer test.

Maximum Minimum ln (max.) ln (min.)

ϕ 30 8 — —

c 100 0.001 — —

λ∗ 1 0.002 0.00 −6.21

κ∗ 0.5 0.001 −0.69 −6.91

μ∗ 0.75 0.00001 −0.29 −11.51

coefficient of 0.64). According to these findings, λ∗, κ∗, and
c were selected for the optimization procedure. The friction
angle (ϕ) and the modified creep index (μ∗) were fixed on
their experimental values.

After 159 cycles (1590 calls) the particle swarm optimizer
had reduced the deviation to 5∗10−9, which was found to
be a sufficiently low value to stop the optimization routine.
The identified best parameter set and the corresponding
calculation results can be seen also in Table 4 and Figure 3. It
becomes clear that the identified parameter set represents the
measurement data much better than the available laboratory
parameters.

4.3. Isotropic compression test

An isotropic compression test was performed in the triaxial
apparatus on a cylindrical soil sample with a diameter of 5 cm

(49.88 mm) and a height of 10 cm (98.55 mm). Drainage was
allowed on top and at the bottom of the specimen. All load
steps were performed isotropically, applying a hydrostatic
cell pressure. The sample was preloaded at 30 kPa for three
hours and, after that, at 50 kPa for 17 hours. Then it was
gradually loaded to 800 kPa in one hour, increasing the load
by steps of 100 kPa. After reaching this target load, the stress
level was left constant for 3 weeks. Top displacements and
volume change of the sample were recorded during the whole
test. A reference dataset for the horizontal displacements was
calculated from the vertical displacements and the volume
change, assuming the shape of the specimen to remain
exactly cylindrical until the end of the test.

For the numerical model of the test setting, an axisym-
metric geometrical configuration with the exact dimensions
of the test specimen was used. Again, the model was dis-
cretized only with two six-node triangular elements, to save
calculation time. The accuracy of the deformation results
was checked by carrying out several comparative analyses
with finer meshes. Horizontal fixities were assigned to the
rotation axis. Vertical fixities were attributed to the basal
boundary, representing the fix filter plate at the bottom. After
generating the initial stress state by applying the soil self-
weight (gravity loading procedure), two independent and
identical distributed loads were applied, one perpendicular
to the upper boundary (vertically) and the other one
perpendicular to the lateral boundary (radially). Loading was
carried out the same way as in the laboratory, but instead of
the stepwise application of the 800 kPa target load, this load
was applied directly after the 50 kPa load step. For this reason,
the 50 kPa load step in the model was prolonged in such a
manner that the integral of the load as a function of time
equals the test conditions.

In the example of the isotropic compression test, except
for the relatively short phases before reaching the target load,
only one load step (800 kPa) is applied. Therefore, of the
model parameters only μ∗ can be determined directly from
the test. This value (1.3∗10−3) is very similar to the one
obtained from the oedometer test. Figure 5 shows the results
of a forward calculation using this value together with the
laboratory values of Section 4.2.

Also in this example, the deformations are underesti-
mated by the simulation. A statistical analysis with 1820
calls was carried out varying the parameters c (cohesion),
λ∗ (modified compression index), and μ∗ (modified creep
index) within the boundaries given in Table 7, logarithmic
values were used for the search intervals of the latter two
parameters.

As the modeled test contains no unloading phases, it
makes no sense to identify the modified swelling index κ∗. Its
value was therefore linked to the value of λ∗ by multiplying
this parameter by 0.5, which is the typical κ∗/λ∗ ratio, we
observed in our laboratory tests performed on this material
and similar materials.

The results of the statistical tests presented in Figure 6
suggest that good fits can be obtained for cohesion values
between 20 kPa and 90 kPa, but apart from this, the cohesion
value seems to have no influence on the quality of the
model calibration. Whereas for the modified compression



Joerg Meier et al. 7

c ϕ ln κ∗ ln λ∗ lnμ∗

c

ϕ

ln κ∗

ln λ∗

lnμ∗

0.88

0.64

0.64

0.88

0.001 100 8 30 −6.91 −0.69 −6.21 0 −11.51 −2.3

100

0.001
30

8
−0.69

−6.91
0

−6.21
−2.3

−11.51

Figure 4: Scatter plot matrix for the oedometer test.
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Figure 5: Isotropic compression test calculation results versus reference data.

index (λ∗) and the modified creep index (μ∗), the objective
function projections suggest a preferred value range for the
data points with low deviation values.

Furthermore, it can be concluded that λ∗ and c might
be quite closely related to each other (correlation coefficient
0.96), this means, for a given λ∗, an appropriated cohesion
value could be computed by the equation given also in

Figure 6. This linear relationship seems to be valid for
cohesion values between 20 and 90 kPa and λ∗ values
between 0.064 and 0.165.

Therefore, only the parameters λ∗ and μ∗ were selected
for the optimization procedure via PSO. We stopped this
procedure after 500 calls (50 cycles). The identified values
are shown in Table 6. In Figure 5, the calculation results are
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Figure 6: Scatter plot matrix for the isotropic compression test.

Table 6: Parameters from laboratory tests and identified parame-
ters using PSO.

Experimental values Identified values (PSO)

λ∗ 0.064 0.089

κ∗ 0.035 —

μ∗ 1.30E–03 2.33E–03

ϕ (◦) 20 —

c (kPa) 27 —

ψ (◦) 0 —

Table 7: Isotropic compression test search intervals for the varied
parameters.

Maximum Minimum ln (max.) ln (min.)

c (kPa) 100 0.001 — —

λ∗ 1.00 6.74E–03 0.00 −5.00

μ∗ 0.75 0.00001 −0.29 −11.51

compared to the reference dataset and the results obtained by
using only laboratory data.

Like for the oedometer test, an improved parameter set
could be found also for the isotropic compression test. It can
be observed that the results are much better for the vertical
displacements, although a weighting factor of one had been
assigned to both datasets.

This may be due to the fact that the precision of the
reference data is lower for the horizontal displacements,
since the volume change of the sample could not be
measured with the same accuracy as the top displacements.
In addition to this, small inhomogeneities of the material
or a small frictional resistance at the sample top could have
caused a slight distortion of the cylindrical shape of the
specimen which was assumed to calculate the horizontal
displacements.

4.4. Deformations along a shear zone in
a natural slope

4.4.1. Analyzed section and reference data

The presented parameter identification technique was also
applied to the 2D-model of a natural slope which is located
in the municipality of Corvara in the Dolomites (Italy). It
shows continuous creep deformations at the basis of a 20–
40 m thick soil cover consisting mainly of the above studied
material and very similar materials. As slopes of this type
are known to show potential acceleration phases that can
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Figure 7: Site map with the location of the section and the GPS
points.

endanger human settlements, a detailed study of the geology
and geomorphology as well as comprehensive monitoring
were carried out by the University of Modena and Reggio
Emilia and by the National Research Council’s Group for
Hydrogeological Catastrophes Defense (CNR-GNDCI) [25]
by order of the Autonomous Province of Bolzano/South-
Tyrol [24].

In this context, the displacements of several surface
points were observed regularly by means of global position-
ing system (GPS) measurements. In our study, a subarea of
the slope was modeled along a representative 2D section. A
site plan with the location of the section and the GPS points
is given in Figure 7, whereas Figure 8 depicts a field survey of
this section and shows the abstracted geometry model.

4.4.2. Geotechnical model

The geometry was determined using all the information
available, that is, a core drilling near section-point B, the
local geomorphology, refraction seismics, and direct current
resistivity (DC-resistivity) [24]. As exposed in Figure 9,
the vertical profile of the slope was divided into three
layers interpreting various inclinometer profiles reported by
Corsini et al. [25]; the illustrated one is located near section-
point B. The uppermost layer, the soft soil cover, which is
showing little internal deformations, was only considered in
the form of its weight acting on the intermediate layer, the
shear zone. Therefore, the displacement vectors of section-
points C and F are presumed to be equal to those of section-
points B and E, respectively. The shear zone is assumed to be
a thin, soft, and highly plastic layer, exhibiting a pronounced
time dependency in its mechanical behavior. The third layer
is given by the underlying weathered bedrock, which is
supposed to be stable. The earth pressure at the foot of
the slope was assumed to be slightly lower than the earth

pressure at rest; this means that there is no support obtained
from the soil layer further downslope. A description of the
assumptions made for the foot load is shown in Figure 10.

The actual main detachment zone is modeled as an
open crack. No tensile forces are acting across it onto the
downslope section of the sliding body, which is moving
as a whole. Around section-point A, the soil body below
the secondary shear zone is assumed to move at the same
velocity as point B. The material properties of the secondary
shear zone, which is not subject of this study, were fixed
to comply with this criterion. At present, the displacement
rates observed along the slope are more or less constant,
being superposed only by seasonal variations attributed to
fluctuations of the groundwater conditions which are not
modeled in this study. Therefore, our geotechnical model
features displacement rates remaining constant with time.

4.4.3. Numerical model

Figure 11 shows the characteristics of the numerical model of
the studied slope. A plane strain geometrical configuration
with the real dimensions of the slope was used. The model
was discretized with 1070 triangular six-node elements. To
save calculation time, the number of elements was reduced by
modeling only the uppermost 20 m of the bedrock layer. The
upper and the lower layers were meshed with the automatic
meshing procedure of the software and using a very coarse
setting. A linear elastic material model was assigned to them.
Finally, one forward calculation took approximately three
minutes on an ordinary personal computer. The interme-
diate layer was meshed manually by predefining geometry
points in order to assure a sufficiently fine mesh and a
suitable orientation of the triangles in order to go against an
excessive distortion of the element shapes by the calculated
deformations. For the same reason, the updated mesh option
was only used in the last three years of the simulation (which
are compared to the reference dataset). The detachment
zones were modeled by means of interfaces on both sides
of their geometry lines. The interfaces were modeled with
a Mohr-Coulomb material model, with negligible cohesion,
the same friction angle as the basal shear zone and with
a constant reference stiffness in the order of magnitude
of the shear zone stiffness. The accuracy of the calculated
deformation results was checked by carrying out several
comparative analyses with finer meshes and also with a
horizontal basal boundary. Horizontal fixities were assigned
to the lateral edges of the model, which extends over a total
length of 1080 m. Vertical fixities were attributed to the basal
boundary, representing the stable bedrock.

4.4.4. Calculation phases

In the first calculation phase, all three layers are made up
by the bedrock material. An initial stress state is generated
by applying the self-weight of this material (gravity loading
procedure). In the second calculation phase, the two upper
layers are replaced by the weaker material of the soil cover.
The third calculation phase marks the starting point of the
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e(h) = earth pressure at depth h

φ′ = effective friction angle of soil cover
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Figure 10: Earth pressure assumptions made for the foot of the slope.

(a)

20–40 m

2 m

20–30 m

(b) (c)

Figure 11: Discretization of the slope model: foot zone, vertical profile, and detachment zone.
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Figure 12: Results of a forward calculation using laboratory values of the parameters.
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Figure 13: Calibrated slope model—comparison of modeled displacement vectors (blue) with reference data derived from the GPS
measurements (brown).

slope instability in the model. The shear zone material with
time-dependent mechanical behavior is inserted and the
horizontal load at the foot is set. After that, the model is
left creeping with unchanged boundary conditions during
a period of 33 years. As the loading history of the shear
zone material is unknown, this time period had to be chosen
arbitrarily to reach constant displacement rates as they are
presently observed along the natural slope.

4.4.5. Results of initial model using parameters
derived from experiments

In a first trial forward calculation, for λ∗, κ∗, and μ∗, the
parameters calculated from the laboratory experiments were
used as input values. As the deformations along the shear
zone are known to persist since hundreds or thousands of
years [26], the shear strength of this zone has decreased to
a residual value that is characteristic for the soils originated
by the weathering of the San Cassiano and La Valle beds
outcropping in the whole slope area. Therefore, cohesion
was assumed to be negligible (0.01 kPa) and a friction
angle of 10◦ was adopted, according to the average slope
inclination observed in nearby areas which were formed
since the Late Glacial by the studied processes (earth slides
and earthflows) and covered by comparable soil covers [27].
The stiffness of the uppermost layer was set equal to the
stiffness modulus observed in the oedometer test during
unloading and reloading between the load steps 400 kPa and
800 kPa. For Poisson’s ratio of this layer, we used 0.35, a
value that is considered to be characteristic of clayey soils.
The experimental parameter values are shown in Table 8
and the deformations calculated on their basis for the last
three years of the creep phase are presented by Figure 12.

The latter are only in the range of millimeters, and thus not
representing the actual situation in the field, where between
September 2001 and September 2004, displacements from
several centimeters to several decimeters were measured.

Table 8: Laboratory values of the parameters used for the slope
example.

Experimental parameter values

λ∗ 0.064

κ∗ 0.035

μ∗ 0.00146

c (kPa) 0.01

ϕ (◦) 10

G (kPa) 5560

v 0.35

4.4.6. Results of statistical analysis and
optimization procedure

A statistical analysis was carried out (which will not be
reported in detail here). One interesting finding of this
analysis was that the friction angle and the modified creep
index appeared to be closely correlated (coefficient of 0.92).
The parameters λ∗, κ∗, and μ∗; the friction angle; and the
stiffness of the uppermost layer (represented by its shear
modulus G) were chosen for the optimization procedure
during which they were varied within the intervals specified
in Table 9.

After 82 cycles, each of them consisting of 10 forward
calculations, the procedure was stopped because, from then
on, the deviation could no longer be reduced significantly.
The resulting parameter set is also given in Table 9. Figure 13
depicts the calculated deformations using the identified
parameter combination, together with the displacement
vectors of the GPS measurement points.

It can be observed that the identified parameter set is able
to reproduce the field measurements qualitatively. Because
of the simplifications made in the model, no exact fit of the
displacement vectors is possible. The presented back analysis
procedure gives one of a number of possible approximate
solutions to the geotechnical problem and the result returned
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Table 9: Search intervals and identified parameters for the slope example.

Parameter Fixed parameters
Varied parameters Identified values

(PSO)

Maximum Minimum

v 0.35 — — —

G (kPa) — 20000 200 5160

c (kPa) 0.01 — — —

ψ (◦) 0 — — —

κ∗ — 1 0.005 0.60

λ∗ — 2 0.01 1.42

μ∗ — 1.5 0.001 0.145

ϕ (◦) — 16 8 10.7

by the particle swarm optimizer can be seen as a parameter
set that best represents the reference data.

5. CONCLUSIONS

A back analysis procedure for the identification of material
parameters of constitutive models applied to geotechnical
problems was presented. This procedure represents a direct
approach based on the method of least squares, correlation
analyses, and a particle swarm optimization algorithm. The
applicability and suitability of the technique was demon-
strated by means of three examples from the fields of soil
mechanics and engineering geology. The studied material
was a natural soil. Besides being way more objective and less
arbitrary than the conventional trial and error procedure,
the outlined method provides valuable information on the
quality of the model calibration, the uniqueness of an
obtained solution, or the determinateness of the problem.
In all three examples, the particle swarm optimizer was
able to identify an improved parameter set after a justifiable
amount of forward calculations. Further research should
also concentrate on the identification of the geometrical
parameters of geotechnical problems.
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1. INTRODUCTION

As access to previously unimaginable computational re-
sources has become commonplace, many aspects of electro-
magnetic (EM) design have undergone titanic shifts. In par-
ticular, the fast and accurate simulation of an antenna de-
sign on a PC or parallel platforms has opened the door for
stochastic optimizers to augment design processes in a large
variety of engineering EM problems. As a novel evolutionary
algorithm proposed in mid 1990s [1–3], particle swarm op-
timization (PSO) has been introduced into the EM commu-
nity by one of the authors [4, 5], and its applications have re-
ceived enormous attention in recent years. Unlike genetic al-
gorithms (GAs) [6, 7], which rely on Darwin’s theory of nat-
ural selection and the competition between individual chro-
mosomes, the swarm intelligence in the nature is modelled
by fundamental Newtonian mechanics in PSO for optimiza-
tion purposes. This corporative scheme manifests PSO the
concise formulation, the ease in implementation, and many
distinct features in different types of optimizations.

In this paper, representative examples of PSO-optimized
antennas developed at UCLA antenna laboratory are col-
lected from the authors’ previous publications and current
research activities, in order to present the recent progress
of applying swarm intelligence in practical engineering EM

problems. Basic concepts in antenna design problems are in-
troduced in Section 2, with unique advantages of applying
PSO in these problems discussed. The implementation of a
PSO engine for antenna optimizations is briefly described in
Section 3, and three concrete design examples are presented
in the following sections. The useful design guidelines pro-
vided by PSO are validated by both simulation and measure-
ment results. The paper is summarized in Section 7.

2. ANTENNA DESIGN AS AN OPTIMIZATION
PROBLEM: WHY PSO?

In transmitting or receiving systems, an antenna is a trans-
ducer of guided EM waves into propagating waves. As shown
in Figure 1, the guided wave is injected into an antenna,
which generates equivalent electric current

−→
J eq and mag-

netic current
−→
K eq over its enclosure. The specific configu-

ration of antenna is not necessarily the horn as illustrated
in Figure 1, and it may belong to other paradigms such as
patch antennas, wire antennas, reflector antennas, or antenna
arrays which assemble multiple antenna elements, and so
forth. The radiation pattern of an antenna is obtained
by Fourier transforming

−→
J eq and

−→
K eq from the spatial do-
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Figure 1: An antenna operates as a transducer of guided waves into
propagating waves. The syntheses of frequency-dependent return
loss and angular-dependant radiation pattern are formulated as op-
timization problems.

main into the angular domain. In general, the figures of merit
of an antenna include the following.

Return loss

Usually the incident power is partially reflected due to the
imperfect matching between the antenna and the front-end
circuits. The return loss is measured by the reflection coef-
ficient S11, which is the ratio between the amplitudes of re-
flected wave and incident wave at the feeding point:

S11( f ) = 20 log10

Vinc( f )
Vref( f )

(dB), (1)

where S11, Vinc, and Vref are all frequency-dependent. A
standard definition of operating bandwidth is the frequency
range in which S11 < −10 dB with over 90% incident power
delivered to the antenna.

Radiation pattern

The radiation characteristics of an antenna, that is, the
beamwidth, the sidelobe level (SLL), the directivity, and so
forth, need to be synthesized to concentrate radiated power
into desired directions.

Designing an antenna at a certain operating frequency
f0 (or within a bandwidth from fL to fH) is inherently an
optimization problem. In particular, by optimizing the an-
tenna configuration, a desired return loss can be obtained by
minimizing S11( f0), and a desired radiation pattern can be
achieved by minimizing the difference between the actual an-
tenna pattern and the desired pattern. The fitness functions
may have different forms according to the specific applica-
tion, while most antenna design problems can be categorized
into these two scenarios. The evaluations of S11 and radi-
ation pattern are performed by solving Maxwell equations
under different boundary conditions. As a stochastic global
optimizer, PSO is a good candidate to address the significant
nonlinearity and multimodal effect induced by the full-wave
analysis.

In antenna optimizations, the coordinates of each point
in the solution space are mapped into a candidate antenna
configuration. This mapping may occur from either a contin-
uous or a discrete space to the actual design space. In many
design problems, the basic antenna configuration is deter-
mined by the designer’s a priori EM knowledge, while spe-
cific geometrical parameters of the antenna need to be fine-
tuned to achieve the desired performance, which is a con-
tinuous optimization. In contrast, if the operating scheme of
a desired antenna is relatively unknown, the design space is
typically discretized into pixels and the basic antenna topol-
ogy needs to be explored by optimizing a binary string to fill
in the pixels. Therefore, another advantage of applying PSO
to antenna designs arises from the ease and flexibility in im-
plementing PSO for both real and binary variables. Since the
only major difference between real-number and binary PSO
algorithms lies in their position updating equations, real and
binary variables can be even hybridized to represent a candi-
date design [8].

The recent popularity of PSO in antenna designs is also
attributed to its capability to efficiently handle multiple de-
sign goals. In single-objective optimizations with conven-
tional weighted aggregation (CWA), fitness functions related
to different design goals are often weighted and summed.
However, the weighting coefficients need to be carefully se-
lected via trial-and-error, which is impractical for antenna
optimizations that are computationally expensive. On the
other hand, multiobjective PSO (MOPSO) provides an effi-
cient way of exploiting the best tradeoff possibilities between
multiple design goals. The output of MOPSO is the Pareto
front that consists of a set of nondominated designs, and one
has the freedom in selecting any of them according to the
specific design requirement.

3. IMPLEMENTATION OF THE PSO ENGINE

With the unique advantages of applying PSO to antenna de-
sign problems discussed above, a PSO engine is implemented
at UCLA with the full capability to address continuous, bi-
nary, single- and multiobjective optimizations [9]. Differ-
ent EM analyzers are linked with the PSO kernel via a user-
oriented interface, in order to simulate the performance of
candidate antenna designs and to evaluate the fitness func-
tion. For each particular design, the user needs to select a
proper optimization scenario and an EM analyzer according
to the modelling of problem. A flowchart of the PSO engine
is sketched in Figure 2. In this section, the implementation
of different optimization scenarios is briefly described by fol-
lowing canonical PSO algorithms proposed in [10–12]. Op-
tional parameters are also specified similar to the values sug-
gested in these literature to maximize the optimizer’s perfor-
mance.

3.1. Real-number PSO (RPSO)

A RPSO algorithm proposed in [10] is implemented in the
PSO kernel for continuous optimizations. The gbest swarm
topology is used as well as in other optimization scenarios.
Assume M agents are used in an N-dimensional problem,
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Figure 2: A flowchart of the PSO engine implemented at UCLA. The PSO kernel has the capability to handle continuous, binary, single-
and multiobjective optimizations. Different EM analyzers are linked with the PSO kernel as external fitness evaluators.

at the tth iteration, the agents’ velocities and positions are
updated by

Vt = wtVt−1 + c1η1 ⊗ (Pt−1 −Xt−1) + c2η2 ⊗ (Gt−1 −Xt−1),
(2)

Xt = Xt−1 + Vt . (3)

Here, V, X, P, and G are all M × N matrices that store the
agents’ velocities, positions, personal bests, and the global
best, respectively. The notation ⊗ represents a component-
wise multiplication. As suggested by [10], in the velocity up-
dating (2), a time-varying inertia weight wt is applied by
changing its value from 0.9 at the beginning of optimization
to 0.4 towards the end. Each component in matrices η1 and

η2 has a uniform distribution in (0, 1) to inject the random-
ness. Constants c1 and c2 both take a value of 2.0 to balance
the cognitive and social influences.

The maximum velocity, Vmax, is imposed to prevent an
agent from flying out of the physically meaningful solu-
tion space too often [13]. The value of each component of
Vmax is selected to be equal to the dynamic range of that
dimension. However, this limitation does not always con-
strain the agent in the solution space. In [4, 14], three ba-
sic boundary handling techniques, the absorbing wall, the re-
flecting wall, and the invisible wall, are illustrated and com-
pared. In RPSO, the invisible boundary condition is used
due to its distinct advantage in reducing the computational
cost.
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3.2. Binary PSO (BPSO)

The BPSO subroutine in the PSO kernel follows an algorithm
proposed by Kennedy and Eberhart [11]. In BPSO, the ve-
locity update has a similar form to (2), while the agents’ po-
sitions are updated via the sigmoid limiting transformation
instead of directly applying (3). In particular, for the nth di-
mension of the mth agent, the sigmoid limiting transforma-
tion is defined as

S(vmn,t) = 1
1 + e−vmn,t

, (4)

where vmn,t is the agent’s velocity component in the nth di-
mension at the tth iteration. The associated position compo-
nent, xmn,t, is updated by

xmn,t =
⎧
⎨

⎩

1, rmn,t < S
(
vmn,t

)
,

0, rmn,t ≥ S
(
vmn,t

)
,

(5)

with rmn,t a random number uniformly distributed in (0, 1).
A maximum velocity of Vmax = 6.0 is used as suggested by
[11]. The inertia weight is kept as 1.0 throughout the opti-
mization since the time varying inertia weight is observed to
be harmful for the swarm’s convergence in a binary solution
space [9]. Boundary conditions are not necessary to be ap-
plied due to the fact that an agent will be always located in
the binary solution space during the optimization.

3.3. Multi-objective PSO (MOPSO)

Among several existing MOPSO algorithms [12, 15–17], the
directed MOPSO (d-MOPSO) proposed by Fieldsend and
Singh is selected due to its potential for handling more than
two design objectives. In MOPSO, an archive that stores all
nondominated solutions is updated at each iteration by fol-
lowing an algorithm proposed in [18]. The velocity and po-
sition updating equations have the same form as in single-
objective PSO algorithms, while the global best of each agent
is selected as the closest nondominated solution to that agent
on the Pareto front in the objective space. A turbulence term
is added into the velocity updating, and the magnitude of
each turbulence component is one-tenth of the dynamic
range of that dimension.

Before applying the PSO engine to practical antenna de-
sign problems, the algorithms described above are well ex-
amined using classic functional testbeds provided in [2] (for
RPSO), [11] (for BPSO), and [15] (for MOPSO). The test-
ing results and parameter tuning of these algorithms will not
be presented here in order to keep the paper in a reason-
able length, while interested readers are encouraged to refer
to [14, 19] for relevant details that validate the PSO engine.

4. REAL-NUMBER PSO: A DUAL-BAND E-SHAPED
PATCH ANTENNA

The first example of PSO-optimized antenna is presented in
this section by applying RPSO in a parameter refinement
problem [20]. In order to cover frequency bands for cellu-
lar communication systems such as the digital communica-
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Figure 3: The topology of an E-shaped patch antenna. Each candi-
date design is represented by six geometrical parameters.

tion system (DCS, 1.71–1.88 GHz) and wireless local area
networks (WLAN, 2.40 GH–2.48 GHz), a base station an-
tenna is proposed in [21] for dual-band or wideband applica-
tions. The configuration of the antenna is plotted in Figure 3,
which resembles a capital letter “E” and the design is there-
fore referred as an E-shaped antenna. Since the operating
frequencies of this resonant-type antenna are closely related
to current path lengths in the patch, the six geometrical pa-
rameters in Figure 3, including the patch length L, the patch
width W , the slot length Ls, the slot width Ws, the slot po-
sition Ps, and the feed position x are optimized to design a
dual-band antenna with resonant frequencies at 1.8 GHz and
2.4 GHz.

As discussed above, optimization of S11 can be formu-
lated as a minimax problem. In other words, the relatively
worse S11 at two desired frequencies is minimized. The fit-
ness functions is therefore defined as

f = 50 + max
{
S11(1.8 GHz), S11(2.4 GHz)

}
. (6)

In (6), S11( f ) is evaluated by the finite difference time do-
main (FDTD) algorithm and each FDTD simulation takes
about 7 minutes. The six geometrical parameters are opti-
mized by being subjected to (unit: mm)

L ∈ (30, 96), W ∈ (30, 96), Ls ∈ (0, 96),

Ws ∈ (0, 96), Ps ∈ (0, 96), x ∈ (−48, 48).
(7)
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Figure 4: Convergence curves of the RPSO optimization by using
a 10-agent swarm for 1000 iterations and applying the fitness func-
tion defined in (6).

For each candidate design, the following equations also need
to be satisfied to maintain the E-shape of the patch and to
retain the desired dual-band performance:

Ls < L, Ps >
Ws

2
, Ps +

Ws

2
<
W

2
, |x| < L

2
.

(8)

Before evaluating the fitness function at each iteration, the
six geometrical parameters are checked against (8), and the
agent is treated as out-of-boundary if any equation is not sat-
isfied.

In order to overcome the significant computational cost
induced by FDTD simulations, the algorithm is implemented
on 4 parallel Intel Xeon 3.0 GHz processors at UCLA Ad-
vanced Technology Service’s Beowulf Linux cluster. The mes-
sage passing interface (MPI) is used to communicate be-
tween the master and slave nodes. Figure 4 plots the conver-
gence curves by using a 10-agent swarm in the optimization
for 1000 iterations. The optimal design is observed after the
500th iteration with six geometrical parameters optimized as
(unit: mm)

L = 54.0, W = 46.0, Ls = 47.0,

Ws = 20.0, Ps = 12.0, x = 14.0.
(9)

The optimal dual-band antenna is prototyped and mea-
sured, with both simulated and measured S11 results plot-
ted in Figure 5. A photograph of the antenna is shown by
the inset. The optimal design has S11 values of −18.5 dB
and −19.4 dB at 1.8 GHz and 2.4 GHz, respectively. The as-
sociated S11 < 10 dB bandwidths are 110 MHz at 1.8 GHz
(6.1%) and 270 MHz at 2.4 GHz (11.2%). The measured re-
sults agree quite well with the simulation despite a slight fre-
quency shift. A less than −15 dB return loss is observed at
both operating frequencies.

Simulation
Measurement

Frequency (GHz)

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

R
et

u
rn

lo
ss
S 1

1
(d

B
)

−30

−25

−20

−15

−10

−5

0

Figure 5: Simulated and measured S11 curves of the optimal dual-
band antenna, which is prototyped and shown by the inset. Mea-
surement results show a −15 dB return loss at both 1.8 GHz and
2.4 GHz.
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Figure 6: The profile of a conventional vertical dipole can be signif-
icantly reduced by an SWA. The unit cell of artificial ground plane
in SWA is optimized by BPSO to match the horizontal dipole.

5. BINARY PSO: ARTIFICIAL GROUND PLANE FOR
SURFACE WAVE ANTENNAS

As a comparison to the parameter refinement problem dis-
cussed above, the design of an artificial ground plane for sur-
face wave antennas (SWAs) is presented in this section to il-
lustrate the capability of BPSO in topology explorations. As
shown in Figure 6, vertical monopole antennas with a per-
fect electric conductor (PEC) as the ground plane are often
used in mobile communications (for instance, on the roof of
a vehicle) to obtain the maximum radiation near the grazing
angle. In order to reduce the profile of the antenna, which is
typically a quarter free space wavelength (λ0), a SWA is pro-
posed in [22] by horizontally mounting a 0.28 λ0 long dipole
over an artificial ground plane.

According to the image theory in electromagnetics, it is
difficult to match a horizontal dipole near the ground plane
due to the radiation cancellation by the image of dipole.
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However, investigations [23] have shown that by periodi-
cally loading a dielectric slab, a horizontal dipole can be well
matched in a frequency band where the phase of normal re-
flection coefficient (Γ) of the periodic structure varies be-
tween 45◦ and 135◦. Generally this unique reflection charac-
teristic of periodic structure is closely related to the topology
of unit cell. In this example, the unit cell with a dimension
of 7.5 mm × 7.5 mm is discretized into 10 × 10 pixels. The
BPSO algorithm is applied to determine the PEC/dielectric
state of each pixel and explore the unit cell topology, in or-
der to achieve the lowest center frequency of the matching
band where phase (Γ) = 90◦. For a fixed unit cell dimension,
the optimal solution is inherently the miniaturized design
that improves the homogeneity of the artificial ground plane.
Compared to the optimization goal in the design of E-shaped
antenna, it should be clarified that we are still trying to min-
imize the return loss of the SWA, while it is accomplished
here in an indirect manner by characterizing the reflection
coefficient of the artificial ground plane.

As shown in Figure 6, in order to achieve a polarization-
independent design, the candidate unit cell has a fourfold
symmetry, and only 15 pixels are optimized. A 15-bit binary
string xi (i = 1, 2, . . . , 15) is used by each agent to map the
candidate design into a discrete solution space. In particular,
the ith pixel is filled by PEC, if xi = 1, and by dielectric when
xi = 0. The fitness function is defined as

f = freqphase (Γ)=90◦ (10)

to minimize the phase (Γ) = 90◦ frequency. For fabrication
purpose, unit cell topologies with any two PEC pixels diag-
onally connected are prohibited and are assigned a very bad
fitness value. The reflection phase of each candidate design
is calculated by analyzing the unit cell using FDTD algo-
rithm with periodic boundary condition, which takes about
3 minutes. In order to reduce the computational cost, an
agent is checked at each iteration against the previous records
before its fitness evaluation. If the same topology has been
visited by the optimizer, the associated fitness value will be
directly assigned to the agent with the repeated solution. The
full-wave analysis is only executed for those agents located at
positions that have never been explored. This repeated solu-
tion checking scheme is suitable for accelerating the BPSO
process since the solution space is a finite set, particularly
during the late stage of optimization when most agents have
converged to the global optima.

Figure 7 plots the convergence curves by using a 10-agent
swarm for 100 iterations. The global optimum is observed at
the 27th iteration, and the average fitness indicates a quite
good convergence at the 100th iteration. The optimal design
is represented by a binary string of

{
xi
} = {0 0 0 0 0 1 1 1 1 0 0 0 1 1 1}, (11)

and the unit cell topology is plotted in Figure 8. The simu-
lated reflection phase of the optimal design is also plotted.
The phase (Γ) = 90◦ frequency is observed at 5.18 GHz.

A SWA based on the optimized artificial ground plane is
fabricated and measured, as shown in Figure 9. The ground
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Figure 7: Convergence curves of the BPSO optimization by using
10 agents for 100 iterations. The fitness function is defined in (10).
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Figure 8: Simulated reflection phase of the optimal design with a
phase (Γ) = 90◦ frequency of 5.18 GHz observed. The optimal unit
cell topology is plotted by the inset.

plane is etched on a 3-mm-thick substrate with a relative per-
mittivity of 2.94 (εr = 2.94) and consists of 18 × 18 opti-
mized unit cells. Figure 10 plots measured return loss of the
SWA. The antenna has a minimum return loss of 5.26 GHz,
which is only 1.5% off the optimized phase (Γ) = 90◦ fre-
quency at 5.18 GHz. Also plotted in Figure 10 is the S11 curve
of a horizontal dipole with the same size on a PEC ground
plane. It is observed that the matching of antenna is signifi-
cantly deteriorated due to the existence of image dipole. The
measured radiation pattern of SWA is shown in Figure 11,
where maximum radiations are observed at 70◦ and 290◦.
Compared to the pattern of a vertical monopole on a PEC
ground plane with the same size of 2.4λ0 × 2.4λ0, the pattern
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Figure 9: An SWA is fabricated based on the artificial ground plane
which consists of 18× 18 optimized unit cells.

Dipole over PEC
Surface wave antenna

Frequency (GHz)

3 4 5 6 7 8 9

R
et

u
rn

lo
ss
S 1

1
(d

B
)

−40

−35

−30

−25

−20

−15

−10

−5

0

Figure 10: Measured S11 of the SWA. Compared to a horizontal
dipole over a conventional PEC ground, the SWA is well matched at
5.26 GHz with a return loss of −35 dB.

of SWA shows a great similarity, while the 0.25 λ0-profile of
the vertical monopole is reduced to 0.08 λ0 in this example.

6. MULTIOBJECTIVE PSO: LOW-SIDELOBE APERIODIC
ANTENNA ARRAYS

Antenna arrays have been broadly used in communication
and radar systems where a highly directive radiation pat-
tern is desired. For conventional periodic arrays, complete
design and synthesis theories have been established for sev-
eral decades. However, grating lobes (sidelobes with the same
level as the main beam) in the radiation patterns of periodic
arrays are inevitable, when the uniform element spacing is
greater than λ0. In recent years, evolutionary algorithms have
been extensively used in the design of aperiodic antenna ar-
rays to obtain the lowest peak SLL [24–27]. In this exam-
ple, MOPSO is applied to design an 8-element nonuniform
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Figure 11: Measured radiation pattern of the SWA which resembles
the pattern of a vertical monopole.

antenna array by optimizing the element positions, in or-
der to investigate the best tradeoff between its peak SLL and
beamwidth.

An 8-element linear nonuniform array is shown in
Figure 12. The antenna elements are identical patch anten-
nas etched on an 0.787 mm thick substrate with εr = 2.2.
The dimension of each patch antenna is 0.49λg × 0.70λg
(0.33λ0 × 0.48λ0). The array is assumed to be symmetric
with respect to the z-axis, and the array configuration is
mapped into a 4-dimensional real-valued solution space {di}
(i = 1, 2, 3, 4) which represents the element spacings. All ele-
ments are allowed to vary within ±5.0λ0, which gives a max-
imum element spacing of davg = 1.43λ0. To prevent adjacent
elements from getting overlapped, the element spacings are
subjected to

d1 ∈
(
0.24λ0, 3.56λ0

)
, d2,d3,d4 ∈

(
0.48λ0, 3.8λ0

)
,

4∑

i=1

di ≤ 5.0λ0.

(12)

The lower bound of each variable is defined according to the
width of patch, and the upper bound is calculated by assum-
ing that other three patches are connected to each other.

The peak SLL and the null-to-null beamwidth are repre-
sented by the following two fitness functions:

f1 = max
{

20 log |AF(θ)× EF(θ)|}, 0◦ < θ < θn,

f2 = 2
(
90
◦ − θn

)
,

(13)
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Figure 12: An 8-element, symmetric, nonuniform antenna array
with a maximum aperture size of 10 λ0. The element positions are
optimized by MOPSO to investigate the best tradeoff relationship
between its peak SLL and beamwidth.

where AF(θ) and EF(θ) are the array factor, and the element
pattern analytically calculated by

AF(θ) =
4∑

i=1

cos

[

2π
i∑

k=1

dk(cosθ)

]

, (14)

EF(θ) = tanθsin(0.49cosθ), (15)

respectively. θn denotes the position of the first null away
from the broadside (θ= 90◦). It should be noted that the ra-
diation pattern only depends on the elevation angle θ in this
linear array case. Compare to the general pattern optimiza-
tion problem discussed in Section 2, the fitness function has
a simpler form since the design goal is to achieve the mini-
mum peak SLL instead of matching a desired pattern in the
entire angular domain.

The optimization is executed for 4000 iterations using a
20-agent swarm. Figure 13 plots the Pareto front. Each non-
dominated design located at (ξ,η) can be interpreted as, for
any design that has a null-to-null beamwidth of η-degree, its
peak SLL can not be lower than ξ-dB. As a comparison, the
beamwidth-SLL relationship of an 8-element periodic array
is plotted in Figure 13. This curve is completely dominated
by the Pareto front, which indicates that an aperiodic array
on the Pareto front always has a lower SLL than a periodic
array with the same beamwidth. For instance, design A is ar-
bitrarily selected from the Pareto front with optimized ele-
ment spacings of

{di} =
{

0.49λ0, 2.17λ0, 1.13λ0, 1.21λ0
}

, (16)

and an aperture size of 10 λ0. Compared to a periodic array
with the same aperture size, A′, the aperiodic array has a sim-
ilar beamwidth but a significantly reduced peak SLL. Their
radiation patterns calculated by (14) and (15) are plotted in
Figure 14. The periodic array A′ has a high SLL of −4.3 dB
due to the strong grating lobes in the array factor, while de-
sign A has a much lower SLL of−10.1 dB by aperiodically ar-
ranging the elements and eliminating the grating lobes. The
directivities of arrays A′ and A are 17.2 dB and 17.6 dB, re-
spectively.

Figure 15 shows fabricated prototypes of both arrays,
and their measured radiation patterns at the operating fre-
quency of 15 GHz are shown in Figure 16. It is observed that
the −3.9 dB grating lobes of the periodic array are reduced
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Figure 13: The Pareto front of the MOPSO optimization for trad-
ing off the peak SLL and the beamwidth of an 8-element nonuni-
form patch antenna array. The SLL-beamwidth relationship of pe-
riodic arrays is also plotted.
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Figure 14: Comparison between the radiation patterns of a selected
nonuniform array A and a periodic array A′ in Figure 13.

to −9.6 dB, and the nonuniform array exhibits an approx-
imate equal-sidelobe feature. Furthermore, the beamwidth,
the number, and the location of sidelobes of both arrays
agree fairly well with the analytical simulation results shown
in Figure 14. It is believed that in the fabricated antenna ar-
rays, the mutual coupling is considerably small due to a large
davg = 1.43λ0, which makes the optimization result a good
prediction for designing a low-SLL array with a sparse con-
figuration.
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Periodic array
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Figure 15: Fabricated array prototypes of designs A and A′ in
Figure 13.
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Figure 16: Measured radiation patterns of designs A and A′. Grat-
ing lobes of the periodic array are eliminated by the nonuniform
array configuration.

7. CONCLUSION

The enormous interest in applying PSO technique to an-
tenna designs is evident due to the wide range of practical
problems that can be solved by this novel, nature-inspired,
evolutionary algorithm. Modelled by fundamental Newto-
nian mechanics, the swarm intelligence is imbedded in the
design process to accommodate different types of optimiza-
tions. With this powerful PSO engine available, it is relatively
easy to apply it to different problems without making signif-
icant changes to the kernel of the optimizer.

In this paper, we only present three examples to illustrate
the functionality of PSO in a large variety of real-world prob-
lems. These examples are categorized into the optimizations
of return loss and radiation pattern, while the flexibility in
defining the fitness function allows PSO to address other de-
sign requirements. It is observed that as a stochastic global
optimizer, PSO is particularly suitable for antenna optimiza-
tions which are in general extremely nonlinear and multi-
modal. Both simulation and measurement results of PSO-
optimized antennas are presented in each example, in order

to validate the capability of PSO in producing a useful and
practical design.
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1. INTRODUCTION

A dynamic system is represented as a set of equations that
specify how variables change over time. The minimum set
of variables that uniquely determines the state of a system
is called state variables. The equations in the system spec-
ify how to compute the new values of the state variables as a
function of their current values and the values of the control
parameters. If we allow the control parameters to change, the
system changes with them. If those parameters change be-
yond certain values, the system exhibits qualitative changes
in its behavior. Those qualitative changes are called bifurca-
tions, and the values for the parameters where those changes
occur are called bifurcation points.

If we allow one parameter to vary and plot the norm of
the vector of state variables for which we find fixed points of
the system, against the changing parameter, we obtain what
we call a bifurcation diagram. In a bifurcation diagram, we
see that fixed points may disappear, appear, or even change
their stability nature as the changing parameter varies. Those
changes may occur even for infinitesimal changes in the con-
trol parameter. Bifurcation diagrams are a tool used in sta-
bility analysis of dynamic systems.

Traditionally, bifurcation diagrams are plotted starting
from a fixed point and using the so-called continuation met-

hods to determine how the fixed point moves with changes
in the control parameter.

In this paper, we propose an alternative by using an in-
telligent optimization method, namely, particle swarm op-
timization (PSO); we can determine all fixed points of the
system for a given value of the control parameter. Iterating
through the allowed range of the control parameter, we can
build the whole bifurcation diagram in one pass, without the
need for continuation methods.

PSO is one of the several bioinspired techniques found in
artificial intelligence. PSO algorithms are inspired in the be-
havior of bird flocking and fish schooling [1]. When a bird
finds a region with food, the others will follow it in its direc-
tion.

To illustrate our ideas and implementation work, we use
a set of examples in this paper. The first examples show how
the system is able to produce bifurcation diagrams for prob-
lems belonging to each one of the classes known as normal
forms. Normal forms typify dynamic systems by the kind of
bifurcations they may exhibit. The results match very accu-
rately those shown in text books and the results produced
with XPPAUT [2]. The last example shows a power system
and its governing differential equations. Even though the sys-
tem may look like a toy problem, it is in fact a benchmark in
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electrical engineering, for the richness of the set of qualitative
features that its behavior exhibits.

The rest of the article is organized as follows. Section 2
provides the necessary background on dynamic systems and
bifurcation diagrams. Section 3 mentions the particular ideas
in the implementation of the PSO optimizer used in this
work. (We assume the reader is already familiar with PSO,
and just mention the fine details. The novice reader may con-
sult [3].) Section 4 proposes a novel approach to the con-
struction of bifurcation diagrams, using a PSO-based op-
timizer to determine all fixed points of a dynamic system.
Section 5 illustrates the validity and applicability of our pro-
posal through several examples. Finally, Section 6 concludes
the work with a comparison between our proposal and tra-
ditional methods, and states several directions of research
found in our agenda.

2. BACKGROUND

Electric power systems are the large physical systems inter-
connecting various devices to perform generation, delivery,
and consumption of electricity. From an engineering point
of view, the task in the power system operation is to maintain
proper frequency and voltage magnitude within appropriate
tolerance so that the system may operate at a stable equi-
librium point in the steady state. Power system equilibrium
equations which determine the system’s operation state typ-
ically depend on a very large number of parameters. Hence,
numerous parameters such as generation, load, network con-
ditions, and so forth, that can change with time and circum-
stances, affect the system behavior. Under normal variations
of those parameters, the operating point varies smoothly so
the variation can be tracked by local linear analysis. However,
this behavior changes qualitatively at certain critical param-
eter values such that the equilibrium point becomes unsta-
ble causing operational problems. One such operation prob-
lem occurs in the area of system magnitude voltages, which
gradually decrease as the system load increases. This volt-
age decrement could be spread uncontrollably throughout
the power system causing a total (blackout) or partial dis-
ruption on the power system operation. The phenomenon
of this catastrophic event is referred to as a voltage collapse.
Nowadays, voltage collapse problems are considered to be the
principal threat to power system stability, security, and relia-
bility in many utilities around the world [4, 5].

Several methods have been proposed to find the critical
parameters that make an equilibrium point become unsta-
ble or disappear, producing a voltage collapse [5]. However,
in the last decade, bifurcation theory received considerable
attention from researches to increase the understanding of
the complex behavior associated to the voltage collapse phe-
nomenon [6–13]. Bifurcation theory refers to characterizing
sudden changes in the qualitative response of the system as
its parameters are varied smoothly and continuously over a
specified range [13, 14]. When these changes relate to quali-
tative changes occurring in the neighborhood of an equilib-
rium point or limit cycle such that an equilibrium point or
limit cycle appears, disappears, or losses stability, they are re-
ferred to as local bifurcations. In bifurcation problems, it is

very useful to consider a space formed by system state vari-
ables and parameters, called state-control space. In this space,
locations at which bifurcations occur are called bifurcation
points.

The numerical analysis to locate these points is based
on the principle of continuation [14, 15]. A continua-
tion method generates a chain of solutions from an es-
tablished solution of the equations representing the system
under analysis. The solution branch thus established can
then be examined for bifurcation points, at which a quali-
tative change of the preceding solution type can be observed.
The representation of this branch of solutions in the state-
control space is referred to as bifurcation diagram. The con-
tinuation methods applied to obtain bifurcation diagrams
are based on prediction-correction schemes [15]. Generally,
most prediction-correction schemes have similar prediction
steps, prediction along the tangent direction, but different
correction steps [15].

Opposite to the continuation methods commonly used
to compute bifurcation diagrams, this paper proposes a
heuristic-based method to assess these diagrams. The pro-
posed approach solves the set of nonlinear equations repre-
senting the system under analysis by applying particle swarm
optimization.

This new method is first tested to obtain bifurcation dia-
grams of normal forms related to generic bifurcations. In or-
der to validate the new proposal, it is applied to a benchmark
power system proposed in [8] to analyze the bifurcation di-
agram involved in a voltage collapse process. The model de-
veloped in [8] has been thoroughly tested by several authors
[9–11, 13] in order to show that several kinds of bifurcations
coexist in the voltage collapse phenomenon at different levels
of system loadings. The results obtained compared well with
those obtained with the popular continuation package.

3. PARTICLE SWARM OPTIMIZATION METHODS
FOR DYNAMIC ENVIRONMENTS

The problem of plotting a bifurcation diagram can be stated
as the problem to find all solutions of a nonlinear equa-
tion system in a given region and trace the solutions when
a change in one or more parameters is introduced. This is
the case of environments which present changes in the po-
sition or number of the optima of the given fitness function
in the presence of one or more parameters that change. The
particle swarm optimization method, developed by Li et al.
[16], presents good results in this type of environments.

3.1. Particle swarm optimization

Particle swarm optimization is a nature inspired algorithm
that has been developed for function optimization; particle
swarm algorithms are inspired in the behavior of bird flock-
ing and fish schooling [1]. When a bird finds a region with
food, other birds in the flock will follow it in its direction. In
the particle swarm algorithm, a point in the search space is
viewed as a particle; the fitness value of a particle is equiva-
lent to the fitness value in genetic algorithms.
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In a first state, all particles have no velocity, and the par-
ticle with optimal value of fitness is selected and all the other
particles are directed towards it. A velocity is computed for
each of the other particles and the position of each particle
is updated. This procedure is repeated for a given number of
times until an optimum or a limit is reached. Variations of
those algorithms have been developed for multimodal prob-
lems [3, 16].

3.2. Genetic algorithms and species

The particle swarm optimization method, developed by Xi-
aodong Li, takes two concepts from genetic algorithms for
multimodal optimization: species and clearing. Dividing a
population in species is a method used in genetic algorithms
to preserve diversity; it consists of selecting the best available
individual; all individuals with a distance less than a parame-
ter value, called radius, with respect to the selected individual
are considered to be in the same species. The selected indi-
vidual and the individuals in the species are marked as used
and the procedure is repeated until all individuals belong to
a species. A good example is the species conservation algo-
rithm of J.-P. Li [17]. In this method, the best individual in a
species is preserved to be reinserted in the next generation of
the population.

The fitness value of the individuals that are in the same
species can be modified by a function to improve the prob-
ability of the best individual in the species being selected in
the matting process. In some cases, only a given number of
individuals are maintained with their fitness value without
change, and the value of fitness of all other individuals is set
to zero or they are placed in a random position within the
search space; this procedure is called clearing. An example of
this method is examined in the work of Pétrowski [18] where
the fitness value of all individuals in a species, except for the
best individual, is set to zero. A complete review of some of
the methods of genetic algorithms can be found in [19].

3.3. Hybrid particle swarm optimization method

In addition to the basic particle swarm optimization method,
two steps are added; after the initial swarm is created, the
particle with the best fitness value is selected and all particles
with distance less than the value of a parameter r are selected
as individuals of a species; the global optimum of the parti-
cles in the species is set to the particle initially selected. The
particles in the species are marked as used, and the next par-
ticle with the best fitness value available is selected to form
a new species. The procedure is repeated until all particles
belong to a species (the fitness value of all particles is pre-
served). After all species are formed, only a given number
of particles are permitted in the species. Only the n particles
closest to the particle with the best fitness value are preserved;
the remaining particles are reinitialized at random positions.

Once the previous steps have been made, the velocity and
position of all the particles are updated according to the rules
given as follows:

vnew = χ
[
v + C1R1

(
Pbest − P

)
+ C2R2

(
Pglobal − P

)]
,

Pnew = P +Vnew,
(1)

where v, P are the current velocity and position, respectively,
R1 and R2 are random numbers generated in the range of
[0, 1], C1 and C2 are the learning factors, Pbest is the posi-
tion of the best fitness of the particle at the current iteration,
Pglobal is the position of the particle with the best fitness in the
swarm (in this case, in the species), and vnew, Pnew represent
the new position and velocity of the particle. The constant χ
is calculated according to

φ = C1 + C2,

χ = 2
∣
∣
∣∣2− φ −

√
φ2 − 4φ

∣
∣
∣∣

. (2)

The constant χ is called constriction coefficient [3, 16, 20],
and it prevents that the particles explore too far away from
the search space. Thus, we do not need a vmax limit for the
velocity of the particles.

4. GENERATING BIFURCATION DIAGRAMS

Given the set of differential equations (see (3)) that models a
dynamic system with one parameter:

ẋ = f (x,α), x ∈ Rn, α ∈ R1, (3)

the generation of the bifurcation diagram consists of finding
one stable fixed point and then using a continuation method
to find the next fixed point based on the condition

f (x,α) = 0 (4)

which defines a smooth one-dimensional curve in Rn+1. Our
approach to this problem is to determine all points x ∈ X ,
for a given region X ⊂ Rn, that satisfy (4) for a given value of
the parameter α.

To find all points x using particle swarm optimization,
we first transform the problem of finding all solutions for (4)
into a problem of finding maxima using the transformation

g(x) = 1
1 +

∣
∣ f (x)

∣
∣ . (5)

This nontrivial transformation sends all points x such
that f (x) = 0 to 1, and maps the domain of the function
f (x) to (0, 1], thus zeroes of f map to maxima of function g.

Starting with a value α = α0, the hybrid particle swarm
optimization method is applied to a given number of itera-
tions to find all maxima of function g with the fixed value α0.
Once all the points x for a given region and fixed parame-
ter value α0 are found, they are recorded; then the parameter
α is changed to α1 = α0 + Δα and a new set of fixed points
x is determined. The search is based on the information ac-
cumulated in the previous swarm. A bifurcation diagram is
generated by changing the parameter α and recording all so-
lutions found for each value αk of the parameter.

5. RESULTS

We present two examples. The normal forms for systems with
one parameter that exhibit bifurcations are examined; the
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Figure 1: Bifurcation diagrams generated with the PSO for the normal forms: (a) saddle-node bifurcation (see (6)), (b) transcritical bifur-
cation (see (7)), (c) pitchfork supercritical bifurcation (see (8)), and (d) pitchfork subcritical bifurcation (see (9)).

bifurcation types that the systems exhibit are saddle-node,
transcritical, pitchfork supercritical, and pitchfork subcriti-
cal [21, 22] (see Figure 1), and a comparative of bifurcation
diagrams generated with the XPPAUT software and the par-
ticle swarm optimization method for an electrical network
that illustrates the voltage collapse phenomenon arising from
the load variation is presented.

5.1. Normal forms for systems with one parameter

A fixed point associated to a dynamic system where the Jaco-
bian matrix presents all eigenvalues with nonzero real parts
is called hyperbolic fixed point. If we examine the behavior
of this fixed point under the variation of the parameter, the
eigenvalues of the Jacobian matrix condition can only be vi-
olated in two ways: the real part of an eigenvalue approaches
zero, or two eigenvalues reach the imaginary axis. When the
condition is violated, the bifurcations that the dynamic sys-

tem presents can be one of the bifurcations arising in the sys-
tems represented by

ẋ = μ− x2, (6)

ẋ = (μ− x)x, (7)

ẋ = (μ− x2)x, (8)

ẋ = (μ + x2)x. (9)

These equations are called normal forms or topological
normal forms, and they are employed to reduce a given non-
linear system to the simplest possible form preserving the
dynamics in a neighborhood of the fixed point where the
condition is violated. In this context, by means of a variable
change, a dynamic system with one parameter, close to the
hyperbolic fixed point, can be rewritten as one of the nor-
mal forms, having the same bifurcation diagram. The vari-
able change is often nontrivial.
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Figure 2: Diagram for the power system analyzed.

For the normal forms, the particle swarm optimization
algorithm was set up with a swarm of 500 particles, a max-
imum of 10 particles per species, and r = 0.15. The search
space for all normal forms was the interval [−2, 2]. The ini-
tial value μ = −2 was incremented in Δμ = 0.05 until μ = 2.
For each μk, the PSO was run for 100 cycles. The bifurcation
diagrams that were found for each one of the normal forms
are shown in Figure 1; these results match those in the bibli-
ography (see [14, 21, 22]).

5.2. Bifurcation diagram for
an electrical power system

The electrical network shown in Figure 2 has been used in
[8, 23] and other papers to illustrate the voltage collapse phe-
nomenon arising from the load variation. The three-node
equivalent circuit is to be viewed as an equivalent circuit of
a local area of interest connected to a large network. The
network is modeled as an infinite bus represented by a volt-
age source providing constant voltage magnitude and phase,
E0θ0, regardless of power flow. The generator terminal bus
is Emδm. The complex admittance of the transmission lines
connected to the generator and infinite bus, a load, and a ca-
pacitor are also shown in Figure 2. The measured voltage at
the load terminal is Vδ.

The system’s dynamics are governed by the following four
ordinary differential equations:

δ̇m= ω,

ω̇= 1
M

(
Pm−Dmω+VEmYm sin

(
δ−δm−θm

)
+E2

mYm sin θm
)
,

δ̇= 1
Kqw

(− Kqv2V
2 − KqvV +Q −Q0 −Q1

)
,

V̇= 1
TKqwKpv

[−Kqw
(
P0+P1−P

)
+
(
KpwKqv−KqwKpv

)
V

+ Kpw
(
Q0 +Q1 +Q

)
+ KpwKqv2V

2].
(10)

In these equations, the state variables are defined as fol-
lows. δm is the generator voltage angle phase, ω is the rotor
speed, δ is the load voltage phase angle, and V is the load
voltage magnitude. The functions P andQ appearing in these

equations represent, respectively, the active and reactive pow-
ers supplied to the load by the network. They are given by

P = −VE′0Y ′0 sin
(
δ + θ′0

)−VEmYm sin
(
δ − δm + θm

)

+V 2(Y ′0 sin θ′0 + Ym sin θm
)
,

Q = VE′0Y
′
0 cos

(
δ + θ′0

)
+VEmYm cos

(
δ − δm + θm

)

−V 2(Y ′0 cos θ′0 + Ym cos θm
)
.

(11)

In the above equations, instead of including the capacitor
in the circuit, a Thevenin equivalent circuit with the capaci-
tor has been derived with values given by

E′0 =
E0√

1 + C2Y−2
0 − 2CY−1

0 cos θ0

,

Y ′0 = Y0

√
1 + C2Y−2

0 − 2CY−1
0 cos θ0,

θ′0 = −
π

2
+ tan−1C − Y0 cos θ0

−Y0 sin θ0
.

(12)

Other quantities appearing in (10)–(12) are constant pa-
rameters, relating to either the load or the network and gen-
erator. All of these parameters are fixed during the analysis,
except for Q1, the reactive power demand of the load. The
load, network, and generator parameters are given in Table 1.

The bifurcation diagram for the system, relating the volt-
age magnitude V to the bifurcation parameter Q1 (reactive
power load), is obtained by the proposed approach. In order
to show the validity of this result, the same analysis is carried
out employing the continuation/bifurcation software pack-
age XPPAUT [24].

For the electrical network, the particle swarm optimiza-
tion algorithm was set up with a swarm of 500 particles, 20-
particle admittance for species, and r = 0.1. The intervals
for the four variables for the electrical network are shown
in Table 2. The initial value Q1 = 10 was incremented in
ΔQ1 = 0.01 until a Q1 value of 11.5 is reached. For each Q1k,
the PSO was run for 100 cycles. The fixed points that were
found for electrical network with the PSO and the bifurca-
tion diagram generated by the XPPAUT software package are
shown in Figure 3.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we report our research work on the application
of intelligent optimization methods, namely, particle swarm
optimization, to the production of bifurcation diagrams. Bi-
furcation diagrams are a tool for stability analysis of dynamic
systems, with applications to electrical power systems, biol-
ogy, chemistry, economics, and so forth.

The obtained results correspond to those produced by
XPPAUT [24], which is the standard tool for producing bi-
furcation diagrams. This fact validates our results in the sense
that the bifurcation diagrams produced with our method are
as good approximations to the ideal ones as those produced
by XPPAUT.
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Table 1: Constant values for the symbols in the differential equation system.

Symbol Value Symbol Value Symbol Value

Kpw 0.4 Kpv 0.3 Kqw −0.03

Kqv2 2.1 T 8.5 Kqv −2.8

P0 0.6 P1 0 Q0 1.3

E′0 2.5 Pm 1 Em 1

M 0.3 Ym 5 Y ′0 8

θ′0 −0.2094 Q1 10 θm −0.08726

Dm 0.05 — — — —

Table 2: Values of the ranges of search for variables.

Variable Range Variable Range Variable Range Variable Range

δm [0, 1] ω [−1, 1] δ [0, 1] V [0, 2]

Comparing our results with those produced by XPPAUT,
the proposed method presents several advantages.

(1) XPPAUT requires 14 parameters to produce a bi-
furcation diagram, while ours depends only on four
(r,Δr,Np,n).

(2) The sensitivity of XPPAUT to those parameters is very
high, while our method is sensitive only to r, the ra-
dius. This dependence, though, affects only the accu-
racy of the results. If those parameters are not set right,
XPPAUT may not produce any diagram at all.

(3) Besides those parameters, XPPAUT needs a stable
fixed point to start a bifurcation diagram. If the engi-
neer/scientist does not count with one, the system can-
not produce any results. Our approach does not need
initial conditions at all.

(4) In terms of time, XPPAUT is faster than our method.
For a given dynamic system, XPPAUT may produce re-
sults in, let us say, 15 seconds, while ours may take 15
minutes. Nevertheless, taking into account the setting
of all parameters that XPPAUT needs for operation, it
may take a student/engineer about 3 days to complete
an experiment. Using our system, the total time to pro-
duce results is still 15 minutes.

(5) XPPAUT uses a continuation method (that is why it
needs initial conditions to start with) and produces
only a segment of the total bifurcation diagram, stop-
ping where it finds a bifurcation. Our approach pro-
duces the whole bifurcation diagram for the specified
region.

(6) An additional effect of using our approach is to fur-
ther the automation of the production of bifurcation
diagrams, since they can be produced without any hu-
man intervention, other than the specification of the
system (through a set of differential equations). Using
XPPAUT, on the other hand, the user needs to spec-
ify new initial conditions to produce more segments of
the diagram, or to select bifurcation points to continue
plotting a given segment.

(7) Finally, XPPAUT produces only bifurcation diagrams
of systems with one parameter (two-dimensional di-
agrams). Using our approach, we have already pro-
duced bifurcation diagrams for systems with more
than one parameter, being able to plot them for 2 pa-
rameters varying at the same time (three-dimensional
diagrams).

There are several directions to work on. You may have
noticed from Figure 3 that the parabole in the bifurcation
diagram presents a discontinuity; this is caused by the ra-
dius value needed to determine to which species a particle
belongs. Since the method is based on the radius of species,
it can only detect one solution per species, and since there
is one species per region of radius r, their representative in-
dividuals must be at least at a distance r from each other.
So, the method cannot detect solutions appearing closer than
the radius r, even though regions may intersect. Therefore,
we are missing solutions in areas where they become very
close together. From a practical viewpoint, the closeness of
the points does not have a practical implication given that the
bifurcation region has been determined, as well as solution
trajectories emanating from the bifurcation point. Hence,
further calculations, such as stability analysis and computa-
tion of doubling period branches, can be done from those
fixed points composing the solution trajectories. The men-
tioned problem can be fixed by using a variable-radius strat-
egy, similar to the variable-step integration methods [25].
Another approach to solve this problem is to use the convex
hull method presented by Barrera and Flores in [26].

One feature found in XPPAUT and not in our implemen-
tation is the determination of period-doubling fixed points.
Those points correspond to complex roots of the characteris-
tic equation of the differential equation. Those solutions rep-
resent limit cyclic or strange attractor solutions. The exten-
sion to determine those is, in principle, straightforward. By
extending the search space to include imaginary components
in the roots, the same search procedure will be able to find
real and imaginary roots. We do expect to find detail that
will need refinement, once this extension is implemented.
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Figure 3: Bifurcation diagrams obtained (a) with the XPPAUT software package, and (b) hybrid particle swarm optimization.

Another feature not included in our implementation is
discerning between stable and unstable fixed points. The de-
termination of the nature of the fixed points has been in the
literature (see [22]) for a while; so it will not present an ob-
stacle.

In summary, we will continue this area of research, with
the goals of producing alternative solutions to mathematical
and engineering problems in the area of dynamical systems,
and furthering the automation of the overall process, leaving
more work to the computer and less to the scientist. As in all
applications of computer science, the idea is not to replace
the human being behind this process, but to free him/her
from tedious work providing more time to do more produc-
tive work.
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1. INTRODUCTION

Efficient supply chain management has led to increased
profit, increased market share, reduced operating cost, and
improved customer satisfaction for many businesses. One
strategic decision in supply chain management is facility lo-
cation [1]. Location problems are classified into categories
with some assumptions such as limiting the capacity and
open number of sites. The uncapacitated facility location
(UFL) problem assumes the cost of satisfying the client re-
quirements has two components: a fixed cost of setting up a
facility in a given site, and a transportation cost of satisfying
the customer requirements from a facility. The capacities of
all the facilities are assumed to be infinite [2].

1.1. Literature review

There are many different titles for the UFL problem in the lit-
erature: the problem of a nonrecoverable tools optimal sys-
tem [3], the standardization and unification problem [4], the
location of bank accounts problem [5], warehouse location
problem [6], uncapacitated facility location problem [7], and
so on. The academic interest to investigate this mathemat-
ical model reasoned different interpretations. UFL problem

is one of the most widely studied problems in combinato-
rial optimization problems thus there is a very rich litera-
ture in operations research (OR) for this kind of problem
[8]. All important approaches relevant to UFL problems can
be classified into two main categories: exact algorithms and
metaheuristics-based methods.

There is a variety of exact algorithms to solve the UFL
problem, such as branch and bound [6, 9], linear program-
ming [10], Lagrangean relaxation algorithms [11], dual ap-
proach (DUALLOC) of Erlenkotter [12], and the primal-
dual approaches of Körkel [13]. Although Erlenkotter [12]
developed this dual approach as an exact algorithm, it can
also be used as a heuristic to find good solutions. It is ob-
vious that since the UFL problem is NP-hard [14], exact
algorithms may not be able to solve large practical prob-
lems efficiently. There are several studies to solve UFL prob-
lem with heuristics and metaheuristics methods. Alves and
Almeida [15] proposed a simulated annealing algorithms
and reported they produce high-quality solutions, but quite
expensive in computation times. A new version of evo-
lutionary simulated annealing algorithm (ESA) called dis-
tributed ESA presented by Aydin and Fogarty [16]. They
stated that with implementing it they get good quality of so-
lutions within short times. Another popular metaheuristic,
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tabu search algorithm, is applied by Al-Sultan and Al-Fawzan
in [17]. Their application produces good solutions, but takes
significant computing time and limits the applicability of
the algorithm. Michel and Van Hentenryck [18] also ap-
plied tabu search and their proposed algorithm generates
more robust solutions. Sun [19] examined tabu search pro-
cedure against the Lagrangean method and heuristic pro-
cedures reported by Ghosh [2]. Genetic algorithms (GA)
are also applied by Kratica and Jaramillo [20, 21]. Finally,
there are also artificial neural network approaches to solve
UFL problems in Gen et al. [22] and Vaithyanathan et al.
[23].

The particle swarm optimization (PSO) is one of the re-
cent metaheuristics invented by Eberhart and Kennedy [24]
based on the metaphor of social interaction and communi-
cation such as bird flocking and fish schooling. On one hand,
it can be counted as an evolutionary method with its way of
exploration via neighborhood of solutions (particles) across
a population (swarm) and exploiting the generational infor-
mation gained. On the other hand, it is different from other
evolutionary methods in such a way that it has no evolu-
tionary operators such as crossover and mutation. Another
advantage is its ease of use with fewer parameters to adjust.
In PSO, the potential solutions, the so-called particles, move
around in a multidimensional search space with a velocity,
which is constantly updated by the particle’s own experience
and the experience of the particle’s neighbors or the experi-
ence of the whole swarm. PSO has been successfully applied
to a wide range of applications such as function optimiza-
tion, neural network training [25], task assignment [26], and
scheduling problem [27, 28].

Since PSO is developed for continuous optimization
problem initially, most existing PSO applications are resort-
ing to continuous function value optimization [29–32]. Re-
cently, a few researches applied PSO for discrete combinato-
rial optimization problems [26–28, 33–37].

1.2. UFL problem definition

In a UFL problem, there are a number of customers, m, to
be satisfied by a number of facilities, n. Each facility has a
fixed cost, f c j . A transport cost, ci j , is accrued for serving
customer, i, from facility, j. There is no limit of capacity for
any candidate facility and the whole demand of each cus-
tomer has to be assigned to one of the facilities. We are asked
to find the number of facilities to be established and specify
those facilities such that the total cost will be minimized (1).
The mathematical formulation of the problem can be stated
as follows [14]:

Z = min

( m∑
i=1

n∑
j=1

ci j · xi j +
n∑
j=1

f c j · yj
)

, (1)

subject to

n∑
j=1

xi j = 1 ∀i inm, (2)

0 ≤ xi j ≤ yj , yj ∈ {0; 1}, (3)

where i = 1, . . . ,m; j = 1, . . . ,n; xi j represents the quantity
supplied from facility i to customer j; yj indicates whether
facility j is established (yj = 1) or not (yj = 0).

Constraint (2) makes sure that all customers demands
have been met by an open facility and (3) is to keep integrity.
Since it is assumed that there is no capacity limit for any facil-
ity, the demand size of each customer is ignored, and there-
fore (2) established without considering demand variable.

It is obvious that since the main decision in UFL is open-
ing or closing facilities, UFL problems are classified in dis-
crete problems. On the other hand, PSO is mainly designed
for continuous problem thus it has some drawbacks when
applying PSO for a discrete problem. This tradeoff increased
our curiosity to apply PSO algorithm for solving UFL prob-
lem.

The organization of the paper is as follows: in Section 2,
the implementation of both continuous and discrete PSO al-
gorithms for UFL problem is given with the details of how a
local search procedure is embedded. Section 3 reports the ex-
perimental settings and results. There are three sets of com-
parisons: the first is between CPSO and DPSO algorithms;
the second is between CPSO with local search (CPSOLS) and
DPSO with local search (DPSOLS) algorithms; and the third
is among DPSOLS with two other algorithms from the litera-
ture. Finally, Section 4 provides with the conclusion.

2. PSO ALGORITHMS FOR UFL PROBLEM

As mentioned Section 1, PSO is one of the population-based
optimization technique inspired by nature. It is a simulation
of social behaviour of a swarm, that is, bird flocking, fish
schooling. Suppose the following scenario: a flock of bird is
randomly searching for food in an area, where there is only
one piece of food available and none of them knows where
it is, but they can estimate how far it would be at each iter-
ation. The problem here is “what is the best strategy to find
and get the food?”. Obviously, the simplest strategy is to fol-
low the bird known as the nearest one to the food. PSO in-
venters were inspired of such natural process-based scenar-
ios to solve the optimization problems. In PSO, each single
solution, called a particle, is considered as a bird, the group
becomes a swarm (population) and the search space is the
area to explore. Each particle has a fitness value calculated by
a fitness function, and a velocity of flying towards the opti-
mum, the food. All particles fly across the problem space fol-
lowing the particle nearest to the optimum. PSO starts with
initial population of solutions, which is updated iteration-
by-iteration. Therefore, PSO can be counted as an evolution-
ary algorithm besides being a metaheuristics method, which
allows exploiting the searching experience of a single particle
as well as the best of the whole swarm.

2.1. Continuous PSO algorithm for UFL problem

The continuous particle swarm optimization (CPSO) al-
gorithm used here is proposed by the authors, Sevkli and
Guner [33]. The CPSO considers each particle has three
key vectors: position (Xi), velocity (Vi), and open facil-
ity (Yi). Xi denotes the ith position vector in the swarm,
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Table 1: An illustration of deriving open facility vector from posi-
tion vector for a 6-customer 5-facility problem.

ith particle vectors Particle dimension (k)

1 2 3 4 5

Position vector (Xi) 1.8 3.01 −0.99 0.72 −5.45

Velocity vector (Vi) −0.52 2.06 3.56 2.45 −1.44

Open facility vector (Yi) 1 1 0 0 1

Xi = [xi1, xi2, xi3, . . . , xin], where xik is the position value
of the ith particle with respect to the kth dimension (k =
1, 2, 3, . . . n). Vi denotes the ith velocity vector in the swarm,
Vi = [vi1, vi2, vi3, . . . , vin], where vik is the velocity value of the
ith particle with respect to the kth dimension. Yi represents
the opening or closing facilities based on the position vector
(Xi), Yi = [yi1, yi2, yi3, . . . , yin], where yik represents open-
ing or closing kth facility of the ith particle. For an n-facility
problem, each particle contains n number of dimensions.

Initially, the position and the velocity vectors are gener-
ated as continuous uniform random variables, using the fol-
lowing rules:

xi j = xmin + (xmax − xmin)× r1,

vi j = vmin + (vmax − vmin)× r2,
(4)

where xmin = −10.0, xmax = 10.0, vmin = −4.0, vmax = 4.0
which are consistent with the literature [38], and r1 and r2 are
uniform random numbers in [0, 1] for each dimension and
particle. The position vector Xi = [xi1, xi2, xi3, . . . , xin] corre-
sponds to the continuous position values for the n facilities,
but it does not represent a candidate solution to calculate a
total cost (fitness value). In order to create a candidate solu-
tion, a particle, the position vector is converted to a binary
variable, Yi ← Xi, which is also a key element of a particle.
In other words, a continuous set is converted to a discrete set
for the purpose of creating a candidate solution, particle. The
fitness of the ith particle is calculated by using open facility
vector (Yi). For simplicity, let fi(Yi ← Xi) be denoted as fi.

In order to ascertain how to derive an open facility vec-
tor from position vector, an instance of 5-facility problem is
illustrated in Table 1. Position values are converted to binary
variables using following formula:

yi =
⌊∣∣xi∣∣(mod 2)

⌋
. (5)

In (5), the absolute value of a position value is first di-
vided by 2 and then the remainder is floored to nearest in-
teger number. Then it is assigned to corresponding element
of the open facility vector. For example, fifth element of the
open facility vector, y5, can be calculated as follows:

⌊| − 5.45|(mod 2)
⌋ = ⌊5.45(mod 2)

⌋ = �1.45� = 1. (6)

Table 2: An example of 5-facility to 6-customer.

Facility locations 1 2 3 4 5

Fixed cost 12 5 3 7 9

Customers

1 2 3 6 7 1

2 0 5 8 4 12

3 11 6 14 5 8

4 19 18 21 16 13

5 3 9 8 7 10

6 4 7 9 6 0

Considering the 5-facility to 6-customer example shown
in Table 2, the total cost of open facility vector (Yi) can be
calculated as follows:

total cost

= {open facilities fixes costs
(
f c j
)

+ min
(
cost of supply from open

facilities to customer i
[
ci j
])}

· {(12 + 5 + 9) + min(2, 3, 1)

+ min(0, 5, 12) + min(11, 6, 8)

+ min(19, 18, 13) + min(3, 9, 10) + min(4, 7, 0)
}

= {(26) + (1 + 0 + 6 + 13 + 3 + 0)
}

= {26 + 23} = {49}.
(7)

For each particle in the swarm, let define Pi = [pi1, pi2,
. . . , pin], as the personal best, where pik denotes the posi-
tion value of the ith personal best with respect to the kth
dimension. The personal bests are determined just after gen-
erating Yi vectors and their corresponding fitness values. In
every generation, the personal best of each particle is up-
dated based on its position vector and fitness value. Regard-
ing the objective function, fi(Yi ← Xi), the fitness values
for the personal best of the ith particle, Pi, is denoted by

f
pb
i = f (Yi ← Pi). At the beginning, the personal best values

are equal to position values (Pi = Xi), explicitly Pi = [pi1 =
xi1, pi2 = xi2, pi3 = xi3, . . . , pin = xin] and the fitness val-
ues of the personal bests are equal to the fitness of positions,

f
pb
i = fi.

Then the best particle in the whole swarm is selected as
the global best. G = [g1, g2, g3, . . . , gn] denotes the best posi-
tion of the globally best particle, fg = f (Y ← G), achieved
so far in the whole swarm. At the beginning, global best fit-
ness value is determined as the best of personal bests over

the whole swarm, fg = min{ f pbi }, with its corresponding
position vector Xg , which is to be used for G = Xg , where
G = [g1 = xg1, g2 = xg2, g3 = xg3, . . . , gn = xgn] and corre-
sponding Yg = [yg1, yg2, yg3, . . . , ygn] denotes the open facil-
ity vector of the global best found.
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Begin
Initialize particles (population) randomly
For each particle
Calculate open facility vectors (1)
Calculate fitness value using open facility vector
Set to position vector and fitness value
as personal best (Pt

i )
Select the best particle and its position
vector as global(Gt)

End
Do {
Update inertia weight
For each particle

Update velocity (8)
Update position(9)
Find open facility vectors
Calculate fitness value using open
facility vector (1)
Update personal best(Pt

i )
Update the global best (Gt) value with
position vector

End
Apply local search (for CPSOLS) to global best
}While (Maximum Iteration is not reached)

End

Algorithm 1: Pseudocode of CPSO algorithm for UFL problem.

The velocity of each particle is updated based on its per-
sonal best and the global best in the following way:

vik(t + 1) = w · vik(t) + c1r1
(
pik(t)− xik(t)

)
+ c2r2

(
gk(t)− xik(t)

)
,

(8)

wherew is the inertia weight used to control the impact of the
previous velocities on the current one, t is generation index,
r1 and r2 are different random numbers for each dimension
and particle in [0, 1], and c1 and c2 are the learning factors
which are also called social and cognitive parameters. The
next step is to update the positions.

xik(t + 1) = xik(t) + vik(t + 1). (9)

After updating position values for all particles, the cor-
responding open facility vectors can be determined by their
fitness values in order to start a new iteration if the predeter-
mined stopping criterion has not met yet. In this study, we
employed the gbest model of Kennedy et al. [38] for CPSO,
which is elaborated in the pseudocode given below.

2.2. Discrete PSO algorithm for UFL problem

The discrete PSO (DPSO) algorithm used here is first pro-
posed by Pan et al. [37] for the no-wait flowshop scheduling
problem. We employed the DPSO algorithm for UFL prob-
lem. In DPSO, each particle is based on only the open fa-
cility vector Yi = [yi1, yi2, yi3, . . . , yin], where yik represents
opening or closing kth facility of the ith particle. For an n-
facility problem, each particle contains n number of dimen-

Selected two distinct facilities

0 1 0 1 0 1 Before exchange

After exchange0 0 0 1 1 1

Figure 1: Exchange operator.

sions. The dimensions ofYi are binary random numbers. The
fitness of the ith particle is calculated by fi(Yi).

The open facility vector (Yi) of the particle i at iteration t
can be updated as follows [37]:

Yt
i = c2 ⊕ F3

(
c1 ⊕ F2

(
w ⊕ F1

(
Yt−1
i

)
,Pt−1

i

)
,Gt−1), (10)

λti = w ⊕ F1
(
Yt−1
i

)
. (11)

Equation (10) consists of three components: the first
component (11) is the velocity of the particle. F1 represents
the exchange operator (Figure 1) which is selecting two dis-
tinct facilities from the open facility vector, Yt−1

i , of particle
and swapping randomly with the probability of w. In other
words, a uniform random number, r, is generated between
0 and 1. If r is less than w then the exchange operator is
applied to generate a perturbed Yi vector of the particle by
λti = F1(Yt−1

i ), otherwise current Yi is kept as λti = Yt−1
i .

δti = c1 ⊕ F2
(
λti ,P

t−1
i

)
. (12)

The second component (12) is the cognition part of the
particle representing particle’s own experience. F2 represents
the one-cut crossover (Figure 2) with the probability of c1.
Note that λti and Pt−1

i will be the first and second parents
for the crossover operator, respectively. It is resulted either
in δti = F2(λti ,P

t−1
i ) or in δti = λti depending on the choice of

a uniform random number

Xt
i = c2 ⊕ F3

(
δti ,G

t
)
. (13)

The third component (13) is the social part of the particle
representing experience of whole swarm. F3 represents the
two-crossover (Figure 3) operator with the probability of c2.
Note that δti and Gt−1 will be the first and second parents
for the crossover operator, respectively. It is resulted either in
Yt
i = F3(δti ,G

t−1) or in Yt
i = δti depending on the choice of a

uniform random number. In addition, one-cut and two-cut
crossovers produce two children. In this study, we selected
one of the children randomly.

The corresponding Yi vectors are determined with their
fitness values so as to start a new iteration if the predeter-
mined stopping criterion has not met yet. We apply the gbest
model of Kennedy and Eberhart for DPSO. The pseudocode
of DPSO is given in Algorithm 2.

2.3. Local search for CPSO and DPSO algorithm

Apparently, CPSO and DPSO conduct such a rough search
that they produce premature results, which do not offer sat-
isfactory solutions. For this reason, it is inevitable to embed
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Cutting point

0 1 0 1 0 1 First parent

1 0 0 1 1 1 Second parent

First child0 1 0 1 1 1

Second child1 0 0 1 0 1

Figure 2: One-cut crossover operator.

Cutting point

0 1 0 1 0 1 First parent

1 0 1 1 1 1 Second parent

First child0 1 1 1 0 1

Second child1 0 0 1 1 1

Figure 3: Two-cut crossover operator.

Table 3: Benchmarks tackled with the sizes and the optimum val-
ues.

Benchmarks

Problems Size (m× n) Optimum

Cap71 16×50 932615.75

Cap72 16×50 977799.40

Cap73 16×50 1010641.45

Cap74 16×50 1034976.98

Cap101 25×50 796648.44

Cap102 25×50 854704.20

Cap103 25×50 893782.11

Cap104 25×50 928941.75

Cap131 50×50 793439.56

Cap132 50×50 851495.33

Cap133 50×50 893076.71

Cap134 50×50 928941.75

CapA 100×1000 17156454.48

CapB 100×1000 12979071.58

CapC 100×1000 11505594.33

a local search algorithm to CPSO and DPSO so as to produce
more satisfactory solutions. In this study, we have applied a
simple local search method to neighbours of the global best
particle in every generation. In CPSO global best has three
vectors, so local search is applied to the position vector (Xi).
Since DPSO has one vector. Local search is applied only this
vector (Yi).

The neighbourhood structure with which neighbour so-
lutions are determined to move is one of the key elements
in metaheuristics. The performance of the hybrid algorithm
depends on the efficiency of the neighbourhood structure.
For both algorithms, flip operator is employed as a neigh-

Begin
Initialize open facility vector
Calculate fitness value using Yi(1)
Do

Find personal best (Pt
i )

Find global best (Gt)
For Each Particle

Apply velocity component (11)
Apply cognition component (12)
Apply social component (13)
Calculate fitness value using Yi(1)

Apply local search (for DPSOLS)
to global best

While (Maximum Iteration is not reached)
End

Algorithm 2: Pseudocode of DPSO algorithm for UFL problem.

bourhood structure. It is defined as: picking randomly one
position value (i) of the global best, then changing its value
with using formula (14) for CPSOLS and formula (15) for
DPSOLS. Since binary and continuous values are stored in Yi

and Xi vectors, respectively, the equations are slightly differ-
ent

gi ←− gi + 1, (14)

gi ←− 1− gi. (15)

The local search algorithm applied in this study is
sketched in Algorithm 3. The global best found at the end
of each iteration of CPSO and DPSO is adopted as the initial
solution by the local search algorithm. In order not to lose
the best found and to diversify the solution, the global best
is modified with two facilities (η and κ) which are randomly
chosen. Then flip operator is applied to as long as it gets a
better solution. The final produced solution, s , is replaced
with the old global best if its fitness value is better than the
initial one.

3. EXPERIMENTAL RESULTS

The experimental study has been completed in three stages;
first, we compared the CPSO and DPSO algorithms without
local search, then we compared these algorithms with local
search (CPSOLS and DPSOLS) with respect to their solution
quality; finally, DPSOLS results are compared with other two
metaheuristics, namely, genetic algorithm (GA) and evolu-
tionary simulated annealing algorithm (ESA). Experimen-
tal results provided in this section are carried out over 15
benchmark problems well-known by the researchers of UFL
problem. The benchmarks are undertaken from the OR li-
brary [39], a collection of benchmarks for operations re-
search (OR) studies. There are currently 15 UFL test prob-
lems in the OR-library. Among these test problems, 12 are
relatively small in size ranging from m × n = 50 × 16 to
m × n = 50 × 50. The other three are relatively large with
m × n = 1000 × 100. The benchmarks are introduced in
Table 3 with their optimum values. Although the optimum
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Table 4: Experimental results gained for CPSO and DPSO without local search.

CPSO DPSO

Problem ARPE HR ACPU ARPE HR ACPU

Cap71 0.026 0.83 0.1218 0.000 1.00 0.0641

Cap72 0.050 0.83 0.1318 0.000 1.00 0.0651

Cap73 0.034 0.73 0.1865 0.000 1.00 0.0708

Cap74 0.095 0.00 0.1781 0.000 1.00 0.0693

Cap101 0.183 0.00 0.8818 0.000 1.00 0.3130

Cap102 0.135 0.33 0.7667 0.000 1.00 0.3062

Cap103 0.145 0.00 0.9938 0.000 1.00 0.3625

Cap104 0.286 0.60 0.6026 0.002 0.93 0.2021

Cap131 0.911 0.00 3.6156 0.173 0.13 2.5464

Cap132 0.756 0.00 3.5599 0.090 0.17 2.6328

Cap133 0.496 0.00 3.7792 0.042 0.43 2.5292

Cap134 0.691 0.23 3.3333 0.000 1.00 1.7167

CapA 21.242 0.00 29.5739 8.654 0.00 24.8972

CapB 10.135 0.00 27.1318 4.918 0.00 22.0652

CapC 8.162 0.00 27.6149 4.545 0.00 23.1340

Table 5: Experimental results of CPSOLS and DPSOLS.

CPSOLS DPSOLS

Problem ARPE HR ACPU ARPE HR ACPU

Cap71 0.000 1.00 0.0146 0.000 1.00 0.0130

Cap72 0.000 1.00 0.0172 0.000 1.00 0.0078

Cap73 0.000 1.00 0.0281 0.000 1.00 0.0203

Cap74 0.000 1.00 0.0182 0.000 1.00 0.0109

Cap101 0.000 1.00 0.1880 0.000 1.00 0.1505

Cap102 0.000 1.00 0.0906 0.000 1.00 0.0557

Cap103 0.000 1.00 0.2151 0.000 1.00 0.1693

Cap104 0.000 1.00 0.0370 0.000 1.00 0.0344

Cap131 0.000 1.00 1.4281 0.000 1.00 0.4922

Cap132 0.000 1.00 1.0245 0.000 1.00 0.2745

Cap133 0.000 1.00 1.3651 0.000 1.00 0.4516

Cap134 0.000 1.00 0.3635 0.000 1.00 0.0594

CapA 0.037 1.00 16.3920 0.051 0.53 14.5881

CapB 0.327 0.63 19.6541 0.085 0.40 17.6359

CapC 0.091 0.00 17.4234 0.036 0.13 15.7685

values are known, it is really hard to hit the optima in ev-
ery attempt of optimization. Since the main idea is to test the
performance of CPSO and DPSO algorithm with UFL bench-
mark, the results of both algorithms are provided in Table 4
as the solution quality: average relative percent error (ARPE),
hit to optimum rate, (HR) and average computational process-
ing time (ACPU) in seconds. ARPE is the percentage of dif-
ference from the optimum and defined as following:

ARPE =
R∑
i=1

(
Hi −U

U

)
× 100

R
, (16)

where Hi denotes the ith replication solution value, U is the
optimal value provided in the literature, and R is the number

of replications. HR provides the ratio between the number of
runs yielded the optimum and the total numbers of experi-
mental trials.

Obviously, the higher the HR the better quality of solu-
tion, while the lower the ARPE the better quality. The com-
putational time spent for CPSO [33] and DPSO cases are ob-
tained as time to get best value over 1000 iterations, while for
CPSOLS and DPSOLS cases are obtained as time to get best
value over 250 iterations. All algorithms and other related
software were coded with Borland C++ Builder 6 and run
on an Intel Centrino 1.7 GHz PC with 512 MB memory.

There are fewer parameters used for the DPSO and
DPSOLS algorithms and they are as follows: the size of the
population (swarm) is the number of facilities, the social and
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Table 6: Summary of results gained from different algorithms for comparison.

Deviation from optimum [33] Average CPU

Problem GA [21] ESA [16] DPSOLS GA [21] ESA [16] DPSOLS

Cap71 0.00 0.00 0.000 0.287 0.041 0.0130

Cap72 0.00 0.00 0.000 0.322 0.028 0.0078

Cap73 0.00033 0.00 0.000 0.773 0.031 0.0203

Cap74 0.00 0.00 0.000 0.200 0.018 0.0109

Cap101 0.00020 0.00 0.000 0.801 0.256 0.1505

Cap102 0.00 0.00 0.000 0.896 0.098 0.0557

Cap103 0.00015 0.00 0.000 1.371 0.119 0.1693

Cap104 0.00 0.00 0.000 0.514 0.026 0.0344

Cap131 0.00065 0.00008 0.000 6.663 2.506 0.4922

Cap132 0.00 0.00 0.000 5.274 0.446 0.2745

Cap133 0.00037 0.00002 0.000 7.189 0.443 0.4516

Cap134 0.00 0.00 0.000 2.573 0.079 0.0594

CapA 0.00 0.00 0.051 184.422 17.930 14.5881

CapB 0.00172 0.00070 0.085 510.445 91.937 17.6359

CapC 0.00131 0.00119 0.036 591.516 131.345 15.7685

Begin
Set globalbest open facility vector (Yg)
to s0 (for DPSOLS)
Set globalbest position vector (Xg)
to s0 (for CPSOLS)
Modify s0 based on η, κ and set to s
Set 0 to loop
Repeat:

Apply Flip to s and get s1

if (f(s1) ≤ f(s0))
Replace s with s1

else
loop = loop + 1

Until loop < n is false.
if (f(s) ≤ f(s0)) Replace Yg with s (for DPSOLS)
if (f(s) ≤ f(s0)) Replace Xg with s (for CPSOLS)
End.

Algorithm 3: Pseudocode for local search.

cognitive probabilities, c1 and c2, are set as c1= c2 = 0.5, and
inertia weight, w, is set to 0, 9. Each problem solution run
is conducted for 30 replications. There were two termination
criteria that have been applied for every run: first, one is get-
ting the optimum solution, the other is reaching the maxi-
mum iteration number that is chosen for obtaining the result
in a reasonable CPU time.

The performance of CPSO algorithm looks not very im-
pressive as the results produced within the range of time over
1000 iterations. The CPSO search found 6 optimal solutions,
whereas the DPSO algorithm found 12 among 15 bench-
mark problems. The ARPE index which is expected lower
for good solution quality is very high for CPSO when ap-
plied CapA, CapB, and CapC benchmarks and none of the
attempts for these benchmarks hit the optimum value. As

come to the ARPE index of DPSO, it is better than the ARPE
index of CPSO, but not satisfactory as expected. In term of
CPU, DPSO is better than CPSO as well. When the results
are investigated statistically with using the t-test with 99%
levels of confidence, the DPSO produced significantly better
fitness results than CPSO when CapA, CapB, and CapC fit-
ness results are excluded. It may be possible to improve the
solutions quality by carrying on with algorithms for a fur-
ther number of iterations, but, then the main idea and use-
ful motivation of employing the heuristics, that is, getting a
better quality within shorter time, will be lost. This fact im-
posed that it is essential to empower CPSO and DPSO with
hybridizing with a local search algorithm. Thus a simple local
search algorithm is employed in this case for that purpose, as
mentioned before.

The results of CPSOLS and DPSOLS are shown in Table 5.
The performance of CPSOLS and DPSOLS looks very impres-
sive compared to the CPSO and the DPSO algorithms with
respect of all three indexes. HR is 1.00 which means 100% of
the runs yield with optimum for all benchmark except CapB
and CapC for CPSOLS and except CapA, CapB, and CapC
for DPSOLS. On the other hand, it should be mentioned
that DPSOLS found optimum solutions of all instances, while
CPSOLS found optimums except for CapC. The ARPE in-
dex results of CPSOLS and DPSOLS are very small for both
algorithms and very similar to each other thus there is no
meaningful difference. When the results are compared statis-
tically with using the t-test with 99% levels of confidence, the
CPSOLS and DPSOLS can be considered as equal. In term of
CPU, CPSOLS consumed 18% more time than DPSOLS thus
we can say that the results of DPSOLS are slightly better than
CPSOLS.

The experimental study is also carried out as a compar-
ative work in Table 6. A genetic algorithm (GA) introduced
by Jaramillo et al. [21] and an evolutionary simulated an-
nealing algorithm (ESA) proposed by Aydin and Fogarty [16]
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are taken for the comparison. These algorithms were coded
and run under the same condition with the DPSOLS algo-
rithm. The performance of DPSOLS algorithm looks slightly
better than GA in both two indexes. Especially, in respect
of CPU time DPSOLS much more better than GA. Compar-
ing with ESA, both algorithms deviations from optimum are
very similar. However, especially for CapA, CapB, and CapC;
GA and ESA consume more CPU time than DPSOLS algo-
rithm.

4. CONCLUSION

In this paper, one of the recent metaheuristics algorithms
called DPSO is applied to solve UFL benchmark problems.
The algorithm has been tested on several benchmark prob-
lem instances and optimal results are obtained in a rea-
sonable computing time. The results of DPSO with local
search (DPSOLS) are compared with results of a CPSO [33]
with local search (CPSOLS) and two other metaheuristics ap-
proaches, namely, GA [21] and ESA [16]. It is concluded that
the DPSOLS is slightly better than the CPSOLS and competi-
tive with GA and ESA.

The main purpose of this paper is testing performance
of CPSO and DPSO algorithms under the same condition.
When compared CPSO, DPSO proves to be a better algo-
rithm for UFL problems. It also should be noted that, since
CPSO considers each particle based on three key vectors; po-
sition (Xi), velocity (Vi), and open facility (Yi). So, CPSO al-
locates more memory than DPSO for each particle. In addi-
tion, to the best our knowledge, this is the first application of
discrete PSO algorithm applied to the UFL problem.
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1. INTRODUCTION

Most of the particle swarm algorithms present in the litera-
ture deal only with continuous variables [1–3]. This is a sig-
nificant limitation because many optimization problems are
set in a search space featuring discrete variables. Typical ex-
amples include problems which require the ordering or ar-
ranging of discrete variables, such as scheduling or routing
problems [4]. Therefore, the design of particle swarm algo-
rithms that deal directly with discrete variables is pertinent
to this field of study.

The work in [5] proposed a discrete particle swarm op-
timization (PSO) algorithm for attribute selection in Data
Mining. Hereafter, this algorithm will be refereed to as the
discrete particle swarm optimization (DPSO) algorithm. The
DPSO deals directly with discrete variables, and its popu-
lation of candidate solutions contains particles of different
sizes—the DPSO forces each particle to carry a constant
number of attributes across iterations. The DPSO algorithm
interprets the concept of velocity, used in traditional PSO, as
“probability;” renders velocity as a proportional likelihood;
and uses this information to sample new particle positions.
The motivation behind the DPSO algorithm is indeed to in-
troduce a probability-like approach to particle swarm.

Although specifically designed for the task of attribute se-
lection, the DPSO is not limited to this kind of application.
By performing a few modifications, one can apply this algo-
rithm to many other discrete optimization problems, such as
facility location problems [6].

Many data mining applications involve the task of build-
ing a model for predictive classification. The goal of such a
model is to classify examples—records or data instances—
into classes or categories of the same type. Noise or unnec-
essary attributes may reduce the accuracy and reliability of
a classification or prediction model. Unnecessary attributes
also increase the costs of building and running a model—
particularly on large data sets. Before performing classifica-
tion, it is therefore important to select an appropriate sub-
set of “good” attributes. Attribute selection tries to simplify
a data set by reducing its dimensionality and identifying rel-
evant underlying attributes without sacrificing predictive ac-
curacy. As a result, it reduces redundancy in the information
provided by the attributes used for prediction. For a more
detailed review of the attribute selection task using genetic
algorithms, see [7].

The main difference between the DPSO and other tra-
ditional PSO algorithms is that the particles in the DPSO
do not represent points inside an n-dimensional Euclidean
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space (continuous case) or lattice (binary case) as in the stan-
dard PSO algorithms [8]. Instead, they represent a combina-
tion of selected attributes. In previous work, the DPSO was
used to select attributes for a Naive Bayes (NB) classifier. The
resulting NB classifier was then used to predict postsynaptic
function in proteins.

The study presented here extends previous work reported
in [5, 9] in two ways. First, it enables the DPSO to select at-
tributes for a Bayesian network algorithm, which is more so-
phisticated than the Naive Bayes algorithm previously used.
Second, it increases the number of data sets used to evalu-
ate the PSO from 1 to 6. All the 6 functional classification
data sets used have a much greater number of classes to be
predicted—in contrast with the postsynaptic data set used in
[5] which had just two classes to be predicted.

The work is organized as follows. Section 2 briefly
addresses Bayesian networks and Naive Bayes classifier.
Section 3 shortly discusses PSO algorithms. Section 4 de-
scribes the standard binary PSO algorithm and Section 5
the DPSO algorithm. Section 6 describes the G-protein-
coupled receptors (GPCRs) and Enzyme data sets used in
the computational experiments. Section 7 reports computa-
tional experiments—it also includes a discussion of the re-
sults obtained. Section 8 presents conclusions and points out
future research directions.

2. BAYESIAN NETWORKS AND NAIVE BAYES

The Naive Bayes (NB) classifier uses a probabilistic approach
to assign each record of the data set to a possible class. In this
work, the NB classifier assigns a protein of a data set of pro-
teins to a possible class. A Naive Bayes classifier assumes that
all attributes are conditionally independent of one another
given the class [10].

A Bayesian network (BN), by contrast, detects probabilis-
tic relationships among these attributes and uses this infor-
mation to aid the attribute selection process.

Bayesian networks are graphical representations of a
probability distribution over a set of variables of a given
problem domain [11, 12]. This graphical representation is a
directed acyclic graph in which nodes represent the variables
of the problem and arcs represent conditional probabilistic
independencies among the nodes. A directed acyclic graph G
is an ordered pair G = (V ,E), where V is a set whose ele-
ments are called vertices or nodes and E is a set whose ele-
ments are called directed edges, arcs, or arrows. The graph G
contains no directed cycles—for any vertex v ∈ V , there is
no directed path that starts and ends on v.

An example of a Bayesian network is as follows. (This
is a modified version of the so-called “Asia” problem [13].)
Suppose that a doctor is treating a patient who has been
suffering from shortness of breath—called dyspnoea. The
doctor knows that diseases such as tuberculosis, bronchitis,
and lung cancer are possible causes for that. The doctor also
knows that other relevant information includes whether the
patient is a smoker—increasing the chances of lung cancer
and bronchitis—and what sort of air pollution the patient
has been exposed to. A positive x-ray would indicate either

Table 1: Bayesian network: nodes and values for the lung cancer
problem. L = low, H = high, T = true, F = false, Pos = positive, and
Neg = negative.

Node name Values

Pollution {L, H}
Smoker {T, F}
Cancer {T, F}
Dyspnoea {T, F}
X-ray {Pos, Neg}

tuberculosis or lung cancer. The set of variables for this prob-
lem and their possible values are shown in Table 1.

Figure 1 shows a Bayesian network representing this
problem. For applications of Bayesian networks on evolu-
tionary algorithms and optimization problems, see [14, 15].

More formally, let X = {X1,X2, . . . ,Xn} be a multivariate
random variable whose componentsXi are also random vari-
ables. A corresponding lower-case letter xi denotes an assign-
ment of state or value to the random variable Xi. Parents (Xi)
represent the set of nodes—variables or attributes in this
work—that have a directed edge pointing to Xi. Let us con-
sider a BN containing n nodes, X1 to Xn, taken in that order.
A particular value of X = {X1,X2, . . . ,Xn} in the joint prob-
ability distribution is represented by

p(X) = p
(
X1 = x1, X2 = x2, . . . , Xn = xn

)
, (1)

or more compactly, p(x1, x2, ..., xn). The chain rule of prob-
ability theory allows the factorization of joint probabilities,
therefore

p(X) = p
(
x1
)
p
(
x2 | x1

) · · · p(xn | x1, . . . , xn−1
)

=
∏

i

p
(
xi | x1, . . . , xi−1

)
. (2)

As the structure of a BN implies that the value of a par-
ticular node is conditional only on the values of its parent
nodes, (2) may be reduced to

p(X) =
∏

i

p
(
Xi | Parents

(
Xi
))
. (3)

Learning the structure of a BN is an NP-hard problem
[16, 17]. Many algorithms that were developed to this end use
a scoring metric and a search procedure. The scoring metric
evaluates the goodness-of-fit of a structure to the data. The
search procedure generates alternative structures and selects
the best one based on the scoring metric. To reduce the search
space of networks, only candidate networks in which each
node has at most k-inward arcs (parents) are considered —k
is a parameter determined by the user. In the present work, k
is set to 20 (k = 20) to avoid overly complex models.

A greedy search algorithm is used to generate alternative
structures for the BN starting with an empty network, the
greedy search algorithm adds into the network the edge that
most increases the score of the resulting network. The search
stops when no other edge addition improves the score of the
network. Algorithm 1 shows the pseudocode of this generic
greedy search algorithm.
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Figure 1: A Bayesian network representing the lung cancer problem.

Require: Initialize an empty Bayesian network G containing n nodes (i.e., a BN with n nodes but no edges)

1: Evaluate the score of G: Score (G)

2: BEST = Score (G)

3: repeat

4: FROM = 0

5: TO = 0

6: for i = 1 to n do

7: for j = 1 to n do

8: G′ = G

9: if i /= j then

10: if there is no edge between the nodes i and j in G′ then

11: Modify G′: add an edge between the nodes i and j in G′ such that i is a parent of j: (i→ j)

12: if the resulting G′ is a DAG then

13: if (Score (G′) > BEST) then

14: BEST = Score (G′)
15: FROM = i
16: TO = j

17: end if

18: end if

19: end if

20: end if

21: end for

22: end for

23: if FROM > 0 then

24: Modify G: add an edge between the nodes FROM and TO in G such that FROM is a parent of TO: (FROM → TO)

25: end if

26: until FROM = 0

27: return G as the structure of the BN

Algorithm 1: Pseudocode for a generic greedy search algorithm.



4 Journal of Artificial Evolution and Applications

To evaluate the “goodness-of-fit” (score) of a network
structure to the data, an unconventional scoring metric—
specific for the target classification task—is adopted. The en-
tire data set is divided into mutually exclusive training and
test sets—the standard methodology for evaluating classi-
fiers, see Section 7.1. The training set is further divided into
two mutually exclusive parts. The first part is used to com-
pute the probabilities for the Bayesian network. The second
part is used as the validation set. During the search for the
best possible network structure, only the validation set is
used to compute predictive accuracy. The score of a candi-
date network is given by the classification accuracy in the val-
idation set. The graphical model of the network that shows
the highest predictive accuracy on the validation set—during
the entire PSO run—is then used to compute the predictive
accuracy on the test set.

Once the best network structure is selected, at the end
of the PSO run, the validation set and the other part of the
training set are merged and this merged data—that is, the
entire original training set—is used to compute the prob-
abilities for the selected Bayesian network. The predicted
accuracy—reported as the final result—is then computed on
the previously untouched test set. This process is discussed
again, in more details, in Section 7.1. A similar process is
adopted for the computation of the predictive accuracy us-
ing the Naive Bayes classifier.

3. A BRIEF INTRODUCTION TO PARTICLE
SWARM OPTIMIZATION

Particle swarm optimization (PSO) comprises a set of search
techniques, inspired by the behavior of natural swarms, for
solving optimization problems [8]. In PSO, a potential so-
lution to a problem is represented by a particle, Y(i) =
(Y(i,1),Y(i,2), . . . ,Y(i,n)) in an n-dimensional search space. Y(i)
represents the ith particle in the population and n repre-
sents the number of variables of the problem. The coordi-
nates Y(i,d) of these particles have a rate of change (velocity)
V(i,d), d = 1, 2, . . . ,n. Note that the use of the double sub-
script notation (i, d) like in Y(i,d) represents the dth compo-
nent of the ith particle in the swarm Y(i)—the same rationale
is used for V(i,d), and so forth.

Every particle keeps a record of the best position that it
has ever visited. Such a record is called the particle’s previous
best position and denoted by B(i). The global best position
attained by any particle so far is also recorded and stored in a
particle denoted by G. An iteration comprises evaluation of
each particle, then stochastic adjustment of V(i,d) in the di-
rection of particle Y(i)’s previous best position and the pre-
vious best position of any particle in the neighborhood [18].
There is much variety in the neighborhood topology used
in PSO, but quite often gbest or lbest topologies are used. In
the gbest topology, the neighborhood of a particle consists
of all the other particles in the swarm, and therefore all the
particles will have the same global best neighbor—which is
the best particle in the entire population. In the lbest topol-
ogy, each particle has just a “local” set of neighbors, typically
much fewer than the number of particles in the swarm, and
so different particles can have different best local neighbors.

For a review of the neighborhood topologies used in PSO the
reader is referred to [8, 19].

As a whole, the set of rules that govern PSO are eval-
uate, compare, and imitate. The evaluation phase measures
how well each particle (candidate solution) solves the prob-
lem at hand. The comparison phase identifies the best par-
ticles. The imitation phase produces new particle positions
based on some of the best particles previously found. These
three phases are repeated until a given stopping criterion is
met. The objective is to find the particle that best solves the
target problem.

Important concepts in PSO are velocity and neighbor-
hood topology. Each particle, Y(i), is associated with a ve-
locity vector. This velocity vector is updated at every gener-
ation. The updated velocity vector is then used to generate a
new particle position Y(i). The neighborhood topology de-
fines how other particles in the swarm, such as B(i) and G,
interact with Y(i) to modify its respective velocity vector and,
consequently, its position as well.

4. THE STANDARD BINARY PSO ALGORITHM

Potential solutions to the target problem are encoded as
fixed size binary strings; that is, Y(i) = (Y(i,1),Y(i,2), . . . ,Y(i,n)),
where Y(i, j) ∈ {0, 1}, i = 1, 2, . . . ,N , and j = 1, 2, . . . ,n [8].
Given a list of attributes A = (A1,A2, . . . ,An), the first ele-
ment of Y(i), from the left to the right hand side, corresponds
to the first attribute “A1,” the second to the second attribute
“A2,” and so forth. A value of 0 on the site associated to an at-
tribute indicates that the respective attribute is not selected.
A value of 1 indicates that it is selected.

4.1. The initial population for the standard binary
PSO algorithm

For the initial population, N binary strings of size n are ran-
domly generated. Each particle Y(i) is generated indepen-
dently. For every position Y(i,d) in Y(i), a uniform random
number ϕ is drawn on the interval (0, 1). If ϕ < 0.5, then
Y(i,d) = 1, otherwise Y(i,d) = 0.

4.2. Updating the records for the standard binary
PSO algorithm

At the beginning, the previous best position of Y(i), denoted
by B(i), is empty. Therefore, once the initial particle Y(i) is
generated, B(i) is set to B(i) = Y(i). After that, every time
that Y(i) is updated, B(i) is also updated if f (Y(i)) is better
than f (B(i)). Otherwise, B(i) remains as it is. Note that f (·)
represents the fitness function used to measure the quality of
the candidate solutions. A similar process is used to update
the global best position G. Once that all the B(i) have been
determined, G is set to the fittest B(i) previously computed.
After that, G is updated if the fittest B(i) in the swarm is bet-
ter than G. And, in that case, f (G) is set to f (G) = f (fittest
B(i)). Otherwise, G remains as it is.
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4.3. Updating the velocities for the standard binary
PSO algorithm

Every particle Y(i) is associated to a unique vector of veloc-
ities V(i) = (V(i,1),V(i,2), . . . ,V(i,n)). Note that, for simplicity,
this work uses row vectors rather than column vectors. The
elements V(i,d) in V(i) determine the rate of change of each
respective coordinate Y(i,d) in Y(i), d = 1, 2, . . . ,n. Each ele-
ment V(i,d) ∈ V(i) is updated according to the equation

V(i,d) = wV(i,d) + ϕ1
(
B(i,d) − Y(i,d)

)
+ ϕ2

(
G(d) − Y(i,d)

)
,

(4)

where w (0 < w < 1), called the inertia weight, is a constant
value chosen by the user and d = 1, 2, . . . ,n. Equation (4)
is a standard equation used in PSO algorithms to update the
velocities [20, 21]. The factors ϕ1 and ϕ2 are uniform random
numbers independently generated in the interval (0, 1).

4.4. Sampling new particle positions for the standard
binary PSO algorithm

For each particle Y(i) and each dimension d, the value of the
new coordinate Y(i,d) ∈ Y(i) can be either 0 or 1. The deci-
sion of whether Y(i,d) will be 0 or 1 is based on its respective
velocity V(i,d) ∈ V(i) and is given by the equation

Y(i,d) =
{

1, if
(
rand < S

(
V(i,d)

))
,

0, otherwise;
(5)

where 0 ≤ rand ≤ 1 is a uniform random number, and

S
(
V(i,d)

) = 1
1 + exp

(−V(i,d)
) (6)

is the sigmoid function. Equation (5) is a standard equation
used to sample new particle positions in the binary PSO algo-
rithm [8]. Note that the lower the value of V(i,d) is, the more
likely the value of Y(i,d) will be 0. By contrast, the higher the
value of V(i,d) is, the more likely the value of Y(i,d) will be 1.
The motivation to use the sigmoid function is to map the in-
terval [−V(i,d), V(i,d)] for all i,d into the interval (0, 1) which
is equivalent to the interval of a probability function.

5. THE DISCRETE PSO (DPSO) ALGORITHM

The DPSO algorithm deals directly with discrete variables
(attributes) and, unlike the binary PSO algorithm, its pop-
ulation of candidate solutions contains particles of differ-
ent sizes. Potential solutions to the optimization problem at
hand are represented by a swarm of particles. There are N
particles in a swarm. The size of each particle may vary from
1 to n, where n is the number of variables—attributes in this
work—of the problem. In this context, the size of a parti-
cle refers to the number of different attribute indices that the
particle is able to represent at a single time.

For example, given i, j ∈ {1, 2, . . . ,N}, in DPSO it may
occur that a particle Z(i) in the population has size 6 (Z(i) =
{∗,∗ ,∗ ,∗ ,∗ ,∗ }), whereas another particle Z( j) in the same
population has size 2 (Z(i) = {∗,∗ }), and so forth, or any
other sizes between 1 and n.

Each particle Z(i) keeps a record of the best position it has
ever attained. This information is stored in a separate vector
labeled as B(i). The swarm also keeps a record of the global
best position ever attained by any particle in the swarm. This
information is also stored in a separate vector labeled G. Note
that G is equal to the best B(i) present in the swarm.

5.1. Encoding of the particles for the DPSO algorithm

Each attribute is represented by a unique positive integer
number, or index. These numbers, indices, vary from 1 to
n. A particle is a subset of nonordered indices without repe-
tition, for example, Z(k) = {2, 4, 18, 1}, k ∈ {1, 2, . . . ,N}.

5.2. The initial population for the DPSO algorithm

The original work on DPSO [5] used a randomly generated
initial population for the standard PSO algorithm and a new
randomly generated initial population for the DPSO algo-
rithm, when comparing these algorithms’ performances in a
given data set. However, the way in which those populations
were initialized generated a doubt about a possible advan-
tage of one initial population over the other—which would
bias the performance of one algorithm over the other. In this
work, to eliminate this possible bias, the initial population
used by the DPSO is always identical to the initial population
used by the binary PSO. They differ only in the way in which
solutions are represented. The conversion of every particle in
the initial population of solutions of the binary PSO to the
Discrete PSO initial population is as follows.

The index of every attribute that has value 1 is copied
to the new solution (particle) of the DPSO initial popula-
tion. For instance, an initial candidate solution for the bi-
nary PSO algorithm equal to Y(k) = (1, 0, 1, 1, 0) is converted
into Z(k) = {1, 3, 4} for the DPSO algorithm—because at-
tributes A1, A3, and A4 are set to 1 (are present) in Y(k),
k ∈ {1, 2, . . . ,N}. Note that the same initial population of
solutions is used to both algorithms, binary PSO and DPSO,
to make the comparison between the performances of these
algorithms as free from initialization bias as possible.

Initializing the particles Z(i) in this way causes different
particles, in DPSO, to have different sizes. For instance, an
initial candidate solution Y( j) = (1, 1, 0, 0, 0) (from the bi-
nary PSO algorithm) is converted into the initial candidate
solution Z( j) = {1, 2} (to the DPSO algorithm) which has
size 2, whereas another initial candidate solution Y(k) =
(0, 1, 1, 1, 1) (binary PSO) is converted into the initial can-
didate solution Z(k) = {2, 3, 4, 5} (DPSO) which has size 4,
j, k ∈ {1, 2, . . . ,N} and n = 5.

In the DPSO algorithm, for simplicity, once the size of
a particle is determined at the initialization, the particle will
keep that same size during the entire execution of the algo-
rithm. For example, particle Z(k) = {2, 3, 4, 5} above, which
has been initialized with 4 indices, will always carry exactly
4 indices, Z(k) = {∗,∗ ,∗ ,∗ }. The values of those 4 indices,
however, are likely to change every time that the particle is
updated.
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5.3. Velocities = proportional likelihoods

The DPSO algorithm does not use a vector of velocities as
the standard PSO algorithm does. It works with propor-
tional likelihoods instead. Arguably, the notion of propor-
tional likelihood used in the DPSO algorithm and the notion
of velocity used in the standard PSO are somewhat similar.
DPSO uses M(i) to represent an array of proportional likeli-
hoods and M(i,d) to represent one of M(i)’s components.

Every particle in DPSO is associated with a 2-by-n array
of proportional likelihoods, where 2 is the number of rows
in this array and n is the number of columns—note that the
number of columns in M(i) is equal to the number of vari-
ables of the problem n.

This is an example of a generic proportional likelihood
array

M(i) =
(

proportional-likelihood-row
attribute-index-row

)

. (7)

Each of the n elements in the first row of M(i) represents the
proportional likelihood that an attribute be selected. The sec-
ond row of M(i) shows the indices of the attributes associated
with the respective proportional likelihoods.

There is a one-to-one correspondence between the
columns of this array and the attributes of the problem do-
main. At the beginning, all elements in the first row of M(i)
are set to 1, for example,

M(i) =
(

1.0 1.0 1.0 1.0 1.0
1 2 3 4 5

)

. (8)

After the initial population of particles is generated, this array
is always updated before a new configuration for the particle
associated to it is generated. The updating of the likelihoods
M(i,d) is based on Z(i), B(i), G and three constant updating
factors, namely, α, β, and γ. The updating factors (α, β, and
γ) determine the strength of the contribution of Z(i), B(i),
and G to the adjustment of every coordinate M(i,d) ∈ M(i).

Note that α, β, and γ are parameters chosen by the user.
The contribution of these parameters to the updating of
M(i,d) is as follows. All indices present in Z(i) have their corre-
spondent proportional likelihood increased by α. In addition
to that, all indices present in B(i) have their correspondent
proportional likelihood increased by β. The same for G for
which the proportional likelihoods are increased by γ.

For instance, given n = 5, α = 0.10, β = 0.12, γ = 0.14,
Z(i) = {2, 3, 4}, B(i) = {3, 5, 2}, G = {5, 2}, and also

M(i) =
(

1.0 1.0 1.0 1.0 1.0
1 2 3 4 5

)

, (9)

the updated M(i) would be

M(i) =
(

(1.0) (1.0+α+β+γ) (1.0+α+β) (1.0+α) (1.0+ β +γ)
1 2 3 4 5

)

.

(10)

Note that index 1 is absent in Z(i), B(i), and G. There-
fore, the proportional likelihood of attribute 1 in M(i) re-
mains as it is. In this work, the values used for α, β, and γ

were α = 0.10, β = 0.12, and γ = 0.14. These values were
empirically determined in preliminary experiments; but this
work makes no claim that these are optimal values. Param-
eter optimization is a topic for future research. As a whole,
these values make the contribution of B(i) (β = 0.12) to the
updating of the V(i) a bit stronger than the contribution of
Z(i) (α = 0.10); and the contribution of G (γ = 0.14) even
stronger.

The new updated array M(i) replaces the old one and will
be used to generate a new configuration to the particle asso-
ciated to it as follows.

5.4. Sampling new particle positions for
the DPSO algorithm

The proportional likelihood array M(i) is then used to sam-
ple a new instance of particle Z(i)—the particle associated
to M(i). For this sampling process, a series of operations is
performed on the array. To start with, every element of the
first row of the array M(i) is multiplied by a uniform random
number between 0 and 1. A new random number is drawn
for every single multiplication performed.

To illustrate, suppose that

M(i) =
(

1.00 1.36 1.22 1.10 1.26
1 2 3 4 5

)

. (11)

The multiplied proportional likelihood array would be

M(i)

=
((

1.00 · ϕ1
) (

1.36 · ϕ2
) (

1.22 · ϕ3
) (

1.10 · ϕ4
) (

1.26 · ϕ5
)

1 2 3 4 5

)

,

(12)

where ϕ1, . . . ,ϕ5 are uniform random numbers indepen-
dently drawn on the interval (0, 1).

Suppose that this is the resulting array M(i) after the mul-
tiplication

M(i) =
(

0.11 0.86 0.57 0.62 1.09
1 2 3 4 5

)

. (13)

A new particle position is then defined by ranking the
columns in M(i) by the values in its first row. That is, the ele-
ments in the first row of the array are ranked in a decreasing
order of value; and the indices of the attributes—in the sec-
ond row of M(i)—follow their respective proportional like-
lihoods. For example, ranking the array M(i) (shown imme-
diately above) would generate

M(i) =
(

1.09 0.86 0.62 0.57 0.11
5 2 4 3 1

)

. (14)

The next operation now is to select the indices that will
compose the new particle position. After ranking the array
M(i), the first si indices (in the second row of M(i)), from
left to right, are selected to compose the new particle posi-
tion. Note that si represents the size of the particle Z(i)—the
particle associated to the ranked array M(i).
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Suppose that the particle Z(i) associated to

M(i) =
(

1.09 0.86 0.62 0.57 0.11
5 2 4 3 1

)

(15)

has size 3 (Z(i) = {∗,∗ ,∗ }). That makes si = 3—note that
Z( j), for instance, may have a different size and consequently
a different s j value. For the Z(i) above, however, as si = 3
the first 3 indices from the second row of M(i) would be se-
lected to compose the new particle position. Based on the
array M(i) given above and si = 3, the indices (attributes) 5,
2, and 4 would be selected to compose the new particle po-
sition, that is, Z(i) = {5, 2, 4}. Note that indices that have a
higher proportional likelihood are, on average, more likely to
be selected.

The updating of Z(i), B(i), and G follows what is de-
scribed in Section 4.2.

Once the algorithms have been explained, the next sec-
tion briefly introduces the particular data sets (case studies)
used to test the algorithms.

6. CASE STUDY: THE GPCR AND ENZYME DATA SETS
USED IN THE COMPUTATIONAL EXPERIMENTS

The experiments involved 6 data sets comprising two kinds
of proteins, namely, G-protein-coupled receptors (GPCRs)
and Enzymes.

The G-protein-coupled receptors (GPCRs) are a pro-
tein superfamily of transmembrane receptors. Their func-
tion is to transduce signals that induce a cellular response
to the environment. GPCRs are involved in many types of
stimulus-response pathways, from intercellular communica-
tion to physiological senses. GPCRs are of much interest to
the pharmaceutical industry because these proteins are in-
volved in many pathological conditions—it is estimated that
GPCRs are the target of 40% to 50% of modern medical
drugs [22]

Enzymes are proteins that accelerate chemical reac-
tions—they participate in many processes in a biological cell.
Some enzymes are used in the chemical industry and other
industrial applications where extremely specific catalysts are
required. In Enzyme Nomenclature, enzymes are assigned
and identified by an Enzyme Commission (EC) number. For
instance, EC 2.3.4 is an enzyme with class value 2 in the first
hierarchical class level, class value 3 in the second class level,
and so forth. This work uses the GPCRs and EC data sets de-
scribed in Table 2.

These data sets were derived from the data sets used in
[23, 24]. Note that both the GPCR and the Enzyme data sets
have hierarchical classes. Each protein in these data sets is
assigned one class at the first (top) hierarchical level, cor-
responding to a broad function, another class at the second
level, corresponding to a more specialized function, and an-
other class at the third level, corresponding to an even more
specialized function, and so forth. This work copes with these
hierarchical classes in a simple way by predicting classes one
level at a time, as explained in more detail later.

The data sets used in the experiments involved four kinds
of protein signatures (biological “motifs”), namely, PROSITE

Table 2: GPCR and EC data sets. “Cases” represents the number
of proteins in the data set, “Attributes” represents the total num-
ber of attributes that describe the proteins in the data set, and
“L1”, . . . , “L4” represent the number of classes at hierarchical class
levels 1, . . . , 4, respectively.

# Classes at

Data set Cases Attributes L1 L2 L3 L4

GPCR-PRINTS 330 281 8 36 52 44

GPCR-PROSITE 190 127 8 32 32 —

GPCR-InterPro 580 448 12 43 67 46

EC-PRINTS 500 380 6 43 83 —

EC-PROSITE 570 583 6 42 84 —

EC-Pfam 730 706 6 41 92 —

Table 3: Predictive accuracy: binary PSO versus DPSO. Paired two-
tailed t test for the predictive accuracy—significance level 0.05.

Class level Naive Bayes Bayesian network

1 t(9) = 0.467, p = 0.651 t(9) = 3.407, p = 0.007

2 t(9) = 2.221, p = 0.053 t(9) = 3.200, p = 0.010

3 t(9) = 3.307, p = 0.009 t(9) = 3.556, p = 0.006

patterns, PRINTS fingerprints, InterPro entries, and Pfam
signatures.

PROSITE is a database of protein families and domains.
It is based on the observation that, while there is a huge
number of different proteins, most of them can be grouped,
on the basis of similarities in their sequences, into a limited
number of families (a protein consists of a sequence of amino
acids). PROSITE patterns are essentially regular expressions
describing small regions of a protein sequence which present
a high sequence similarity when compared to other proteins
in the same functional family.

In the data sets, the absence of a given PROSITE pattern
is indicated by a value of 0 for the attribute corresponding
to that PROSITE pattern. The presence of it is indicated by a
value of 1 for that same attribute.

PRINTS is a compendium of protein fingerprints. A fin-
gerprint is a group of conserved motifs used to characterize
a protein family. In the PRINTS data sets, a fingerprint cor-
responds to an attribute. The presence of a fingerprint is in-
dicated by a value of 1 for that same attribute; the absence by
a 0.

Pfam signatures are produced by hidden Markov mod-
els, and InterPro integrates a number of protein signature
databases into a single database. In this work, Pfam and In-
terPro entries also correspond to binary attributes indicat-
ing whether or not a protein matches those entries, using the
same codification described for the PROSITE patterns and
Fingerprints.

The objective of the binary PSO and DPSO algorithms is
to classify each protein into its most suitable functional class
level. The classification of the proteins is performed in each
class level individually. For instance, given protein Υ, at first,
a conventional “flat” classification algorithm assigns a class to
Υ at the first class level only. Once Υ has been classified at the
first class level, the conventional flat classification algorithm
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Table 4: Number of selected attributes: binary PSO versus DPSO.
Paired two-tailed t test for the number of attributes selected—
significance level 0.05.

Class level Naive Bayes Bayesian network

1 t(9) = 7.248, p = 4.8E-5 t(9) = 8.2770, p = 1.6E-5

2 t(9) = 9.052, p = 8.1E-6 t(9) = 14.890, p = 1.2E-7

3 t(9) = 6.887, p = 7.1E-5 t(9) = 9.1730, p = 7.3E-6

is again applied to assign a class to Υ at the second level—no
information about Υ’s class at the previous level is used. The
same process is used to assign a class to protein Υ at the third
class level, and so forth.

7. EXPERIMENTS

The quality of a candidate solution (fitness) is evaluated in
three different ways: (1) by a baseline algorithm—using all
possible attributes; (2) by the binary PSO—using only the
attributes selected by this algorithm; and (3) by the discrete
PSO (DPSO) algorithm—using only the attributes selected
by this algorithm. Each of these algorithms computes the fit-
ness of every given solution using two distinct techniques: (a)
using a Naive Bayes classifier; and (b) using a Bayesian net-
work.

7.1. Experimental methodology

Note that the computation of the fitness function f (·) for
the particles Y(i) (binary PSO algorithm) and Z(i) (DPSO
algorithm) follows the description given below. For simplic-
ity, only the process using Y(i) is described—but the same
is applicable to Z(i). f (Y(i)) is equal to the predictive accu-
racy achieved by the Naive Bayes classifier—and the Bayesian
network—on each data set and using only the attributes se-
lected in Y(i).

The measurement of f (Y(i)) follows a wrapper ap-
proach. The wrapper approach searches for an optimal at-
tribute subset tailored to a particular algorithm, such as the
Naive Bayes classifier or Bayesian network. For more infor-
mation on wrapper and other attribute selection approaches,
see [25].

The computational experiments involved a 10-fold cross-
validation method [25]. First, the data set being considered
is divided into 10 equally sized folds. The folds are randomly
generated but under the following criterion. The proportion
of classes in every single fold must be similar to the propor-
tion of classes found in the original data set containing all
records. This is known as stratified crossvalidation.

Each of the 10 folds is used once as a test set and the re-
maining of the data is used as training set. Out of the 9 folds
in the training set one is reserved to be used as a validation
set. The Naive Bayes classifier and the Bayesian network use
the remaining 8 folds to compute the probabilities required
to classify new examples. Once those probabilities have been
computed, the Naive Bayes (NB) classifier and the Bayesian
network (BN) classify the examples in the validation set.

The accuracy of this classification on the validation set is
the value of the fitness functions fNB (Y(i)) and fBN (Y(i))—
the same for fNB (Z(i)) and fBN (Z(i)). When the run of the
PSO algorithm is completed, the 9 folds are merged into a
full training set. The Naive Bayes classifier and the Bayesian
network are then trained again on this full-training set (9
merged folds), and the probabilities computed in this final,
full-training set are used to classify examples in the test set
(the 10th fold), which was never accessed during the run of
the algorithms.

The reasons for having separate validation and test sets
are as follows. In the classification task of data mining,
by definition, the goal is to measure predictive accuracy—
generalization ability—on a test set unseen during training.
Hence, the test set cannot be accessed by the PSO, and is
reserved just to compute the predictive accuracy associated
with the Bayesian classifier constructed with the best set of
attributes selected at the end of the PSO run.

Concerning the validation set, which is used to compute
the fitness of particles during the PSO run, this is a part of
the original training set which is different from the part of
the training set used to build the Bayesian classifier, and the
reason for having these two separate parts of the training set
is to avoid overfitting of the classifier to the training data; for
overfitting in the context of classification, see [7, pages 17,
18]. In other words, if the same training set that was used to
build a Bayesian classifier was also used to measure the fitness
(accuracy) of the corresponding particle, there would be no
pressure to build classifiers with a good generalization ability
on data unseen during training, and a classifier could obtain
a high accuracy by simply being overfitted to idiosyncrasies
of the training set which are unlikely to generalize well to un-
seen data. By measuring fitness on a validation set separated
from the data used to build the classifier, this is avoided, and
a pressure to build classifiers with good generalization ability
is introduced in the fitness function.

In each of the 10 iterations of the crossvalidation proce-
dure, the predictive accuracy of the classification is assessed
by 3 different methods, as follows.

(1) Using all possible original attributes: all possible at-
tributes are used by the Naive Bayes classifier and the
Bayesian network—there is no attribute selection.

(2) Standard binary PSO algorithm: only the attributes se-
lected by the best particle found by the binary PSO al-
gorithm are used by the Naive Bayes classifier and the
Bayesian network.

(3) DPSO algorithm: only the attributes selected by the
best particle found by the DPSO algorithm are used
by the Naive Bayes classifier and the Bayesian network.

Since the Naive Bayes and Bayesian network classifiers
used in this work are deterministic, only one run—for each
of these algorithms—is performed for the classification using
all possible attributes.

For the binary PSO and the DPSO algorithms, 30 inde-
pendent runs are performed for each iteration of the cross-
validation procedure. The results reported are averaged over
these 30 independent runs and over the 10 iterations of the
crossvalidation procedure.
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The population size used for both algorithms (binary
PSO and DPSO) is 200 and the search stops after 20 000 fit-
ness evaluations—or 100 iterations.

The binary PSO algorithm uses an inertia weight value of
0.8 (i.e., w = 0.8). The choice of the value of this parameter
was based on the work presented in [26].

Other choices of parameter values for the DPSO were α =
0.10, β = 0.12, and γ = 0.14, chosen based on empirical
experiments but probably not optimal values.

The measurement of the predictive accuracy rate of
a model should be a reliable estimate of how well that
model classifies the test examples—unseen during the train-
ing phase—on the target problem.

In Data Mining, typically, the equation

standard accuracy rate = TP + TN
TP + FP + FN + TN

(16)

is used to assess the accuracy rate of a classifier—where TP,
TN, FP, and FN are the numbers of true positives, true neg-
atives, false positives, and false negatives, respectively [25].

However, if the class distribution is highly unbalanced,
(16) is an ineffective way of measuring the accuracy rate of a
model. For instance, in many problems, it is easy to achieve a
high value for (16) by simply predicting always the majority
class. Therefore, on the experiments reported on this work,
a more demanding measurement for the accuracy rate of a
classification model is used.

This measurement has been used before in [27]. It is
given by the equation

predictive accuracy rate = TPR · TNR, (17)

where, TPR = TP/(TP+FN) and TNR = TN/(TN+FP)—TPR
stands for true positive rate and TNR stands for true negative
rate.

Note that if any of the quantities TPR or TNR is zero, the
value returned by (17) is also zero.

7.2. Discussion

Computational results are reported in Tables 5 and 6. Let us
focus the discussion on the results obtained by the 3 algo-
rithms (binary PSO, DPSO, and baseline algorithm) for at-
tribute selection on the GPCR-PROSITE data set, see Table 5.
The results obtained for the other 5 data sets are similar. To
start with, the results obtained using the Naive Bayes classi-
fier are presented.

Results obtained using the Naive Bayes classifier approach

To assess the performance of the algorithms, two criteria
were considered: (1) maximizing predictive accuracy; and (2)
finding the smallest subset of attributes.

The results for the first criterion, accuracy, show that
both versions of the PSO algorithm did better—in all class
levels—than the baseline algorithm using all attributes.

Furthermore, the DPSO algorithm did slightly better
than the binary PSO algorithm also in all class levels. Never-
theless, the difference in the predictive accuracy performance

between these algorithms is, in some cases, statistically in-
significant.

Table 3 shows the results of a paired two-tailed t-test for
the predictive accuracy of the binary PSO versus the predic-
tive accuracy of the DPSO at a significance level of 0.05.

Table 3 shows that, using Naive Bayes as classifier, the
only statistically significant difference in performance—in
terms of predictive accuracy—between the algorithms binary
PSO and DPSO is at the third class level. By contrast, using
Bayesian networks as classifier, the difference in performance
is statistically significant at all class levels.

Nevertheless, the discriminating factor between the per-
formance of these algorithms is on the second comparison
criterion—finding the smallest subset of attributes.

The DPSO not only outperformed the binary PSO in pre-
dictive accuracy, but also did so using a smaller subset of
attributes in all class levels. Moreover, when it comes to ef-
fectively pruning the set of attributes, the difference in per-
formance between the binary PSO and the DPSO is always
statistically significant, as Table 4 shows.

Results obtained using the the Bayesian network approach

Again, the predictive accuracy attained by both versions of
the PSO algorithm surpassed the predictive accuracy ob-
tained by the baseline algorithm in all class levels.

DPSO obtained the best predictive accuracy of all al-
gorithms in all class levels. Regarding the second compari-
son criterion, finding the smallest subset of attributes, again
DPSO always selected the smallest subset of attributes in all
hierarchical levels.

The results on the performance of the classifiers—Naive
Bayes versus Bayesian networks—show that Bayesian net-
works did a much better job. For all class levels, the pre-
dictive accuracy obtained by the 3 approaches (baseline, bi-
nary PSO and DPSO) using Bayesian networks was signif-
icantly better than the predictive accuracy obtained using
Naive Bayes classifier. The Bayesian networks approach also
enabled the two PSO algorithms to do the job using fewer
selected attributes—compared to the Naive Bayes approach.

The results emphasize the importance of taking relation-
ships among attributes into account—as Bayesian networks
do—when performing attribute selection. If these relation-
ships are ignored, predictive accuracy is adversely affected.

The results also show that for all 6 data sets tested, the
DPSO algorithm not only selected the smallest subset of at-
tributes, but also obtained the highest predictive accuracy in
every single class level.

8. CONCLUSIONS

Computational results show that the use of unnecessary at-
tributes tends to derail classifiers and hurt classification ac-
curacy. Using only a small subset of selected attributes, the
binary PSO and DPSO algorithms obtained better predictive
accuracy than the baseline algorithm using all attributes. Pre-
vious work had already shown that the DPSO algorithm out-
performs the binary PSO in the task of attribute selection [5],
but that work involves only one data set. This current work
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Table 5: Results for the GPCRs data sets. For the binary PSO and DPSO algorithms, 30 independent runs are performed. The results reported
are averaged over these 30 independent runs. The best result on each line for each performance criterion is marked with an asterisk (∗).

GPCR-PRINTS (281 attributes)

Average predictive accuracy Average number of selected attributes

Method Class level Using all attributes Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes

1 72.36 ± 2.64 73.10 ± 2.71 ∗73.98 ± 3.13 97.40 ± 1.26 ∗73.30 ± 4.35

2 35.56 ± 2.56 37.10 ± 3.10 ∗40.74 ± 5.36 130.30 ± 1.34 ∗117.30 ± 6.04

3 27.00 ± 1.82 29.05 ± 2.71 ∗31.55 ± 4.54 171.10 ± 3.93 ∗145.70 ± 3.80

4 24.26 ± 1.75 26.97 ± 2.24 ∗30.14 ± 3.78 165.00 ± 4.11 ∗141.30 ± 5.21

Bayesian network

1 88.67 ± 1.72 89.46 ± 1.73 ∗89.97 ± 2.11 89.30 ± 3.77 ∗63.80 ± 3.99

2 53.46 ± 1.40 56.75 ± 2.47 ∗58.91 ± 3.95 123.70 ± 3.89 ∗103.00 ± 4.27

3 38.93 ± 1.92 43.08 ± 3.03 ∗50.33 ± 6.45 158.20 ± 4.21 ∗134.50 ± 4.60

4 28.47 ± 1.90 30.56 ± 2.63 ∗39.52 ± 5.32 152.60 ± 3.53 ∗126.80 ± 4.59

GPCR-PROSITE (127 attributes)

Average predictive accuracy Average number of selected attributes

Method Class level Using all attributes Binary PSO Discrete PSO Discrete PSO Binary PSO

Naive Bayes
1 71.27 ± 2.08 72.88 ± 2.40 ∗73.05 ± 2.31 85.60 ± 2.84 ∗74.90 ± 3.48

2 30.00 ± 2.10 31.34 ± 2.47 ∗32.60 ± 2.31 101.50 ± 3.14 ∗83.80 ± 4.64

3 20.47 ± 0.96 21.47 ± 1.16 ∗23.25 ± 1.08 102.30 ± 3.77 ∗87.50 ± 4.25

Bayesian network
1 78.05 ± 2.33 79.03 ± 2.57 ∗80.54 ± 2.46 78.50 ± 3.50 ∗65.50 ± 3.41

2 39.08 ± 2.67 40.31 ± 2.85 ∗43.24 ± 4.67 94.10 ± 3.70 ∗73.30 ± 2.67

3 24.70 ± 1.83 26.14 ± 2.11 ∗28.97 ± 2.77 94.90 ± 3.90 ∗77.60 ± 4.35

GPCR-INTERPRO (448 attributes)

Average predictive accuracy Average number of selected attributes

Method Class level Using all attributes Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes

1 54.17 ± 2.26 55.33 ± 2.36 ∗56.55 ± 2.61 136.40 ± 1.17 ∗120.70 ± 5.01

2 25.19 ± 1.50 26.08 ± 1.62 ∗27.27 ± 1.87 158.60 ± 1.07 ∗136.20 ± 5.53

3 20.03 ± 0.65 21.19 ± 1.03 ∗22.03 ± 1.63 203.60 ± 1.26 ∗162.40 ± 6.62

4 27.97 ± 1.13 29.95 ± 2.18 ∗30.43 ± 2.56 168.00 ± 0.94 ∗150.10 ± 7.31

Bayesian network

1 86.68 ± 2.99 89.20 ± 3.06 ∗89.49 ± 4.28 122.60 ± 4.03 ∗107.70 ± 5.12

2 61.85 ± 1.71 64.57 ± 1.43 ∗68.66 ± 3.82 146.80 ± 3.12 ∗128.40 ± 5.02

3 40.77 ± 2.13 44.11 ± 2.48 ∗46.51 ± 3.41 184.60 ± 2.41 ∗148.10 ± 3.98

4 34.05 ± 1.64 36.89 ± 2.56 ∗39.03 ± 3.63 149.70 ± 2.41 ∗131.50 ± 4.12

shows much stronger evidence for the effectiveness of DPSO
in 6 data sets. In addition, the 6 data sets mined in this work
are much more challenging than the two-class data set mined
in [5], because the former have several hierarchical class lev-
els per data set, leading to a much larger number of classes to
be predicted for each data set.

Even when the difference in predictive accuracy is in-
significant, by selecting fewer attributes than the binary PSO,
the DPSO certainly enhances computational efficiency of the
classifier and is therefore preferable.

The original work on DPSO [5] questioned whether the
difference in performance between these two algorithms was
attributable to variations in the initial population of solu-
tions. To overcome this possible advantage/disadvantage for
one algorithm or the other, the present work used the same
initial population for both algorithms.

The results demonstrate that, even using an identical ini-
tial population of particles, the DPSO is still outperforming

the binary PSO in both predictive accuracy and number of
selected attributes. The DPSO is arguably not too different
from traditional PSO but still the algorithm has features that
enable it to improve over binary PSO on the task of attribute
selection.

Another result—although expected—from the experi-
ments is the clear difference in performance between Naive
Bayes and Bayesian networks used as classifiers. The Bayesian
networks approach outperformed the Naive Bayes approach
in all experiments and in all hierarchical class levels.

In this work, the hierarchical classification problem was
dealt with in a simple way by “flattening” the hierarchy, that
is, by predicting classes for one class level at a time, which
permitted the use of flat classification algorithms. The algo-
rithms made no use of the information of the class assigned
to a protein in one level to help predict the class at the next hi-
erarchical level. Future work intends to look at an algorithm
that makes use of this information.
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Table 6: Results for the EC data sets. For the binary PSO and the DPSO algorithms, 30 independent runs are performed. The results reported
are averaged over these 30 independent runs. The best result on each line for each performance criterion is marked with an asterisk (∗).

EC-PRINTS (380 attributes)

Average predictive accuracy Average number of selected attributes

METHOD Class level Using all attributesS Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes
1 72.35 ± 3.33 73.78 ± 3.78 ∗74.81 ± 3.79 102.80 ± 1.23 ∗64.20 ± 4.37

2 31.19 ± 2.26 32.07 ± 2.48 ∗34.06 ± 2.91 149.00 ± 1.25 ∗112.30 ± 3.06

3 23.37 ± 1.73 24.64 ± 2.01 ∗26.97 ± 2.49 211.10 ± 1.37 ∗150.60 ± 5.58

Bayesian network
1 88.30 ± 1.94 89.51 ± 2.51 ∗90.73 ± 2.59 92.80 ± 4.57 ∗48.90 ± 4.68

2 53.15 ± 1.49 55.14 ± 1.87 ∗56.92 ± 2.93 129.70 ± 4.11 ∗102.00 ± 5.52

3 36.24 ± 1.62 38.26 ± 2.65 ∗40.95 ± 4.16 190.40 ± 4.55 ∗135.10 ± 4.28

EC-PROSITE (583 attributes)

Average predictive accuracy Average number of selected attributes

METHOD Class level Using all attributes Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes
1 69.52 ± 5.02 70.37 ± 5.15 ∗72.31 ± 5.44 118.80 ± 1.14 ∗98.90 ± 1.85

2 35.70 ± 1.73 37.73 ± 2.04 ∗38.83 ± 2.66 154.50 ± 0.85 ∗134.90 ± 4.93

3 21.91 ± 1.13 22.86 ± 1.30 ∗24.36 ± 1.66 197.70 ± 1.16 ∗154.50 ± 5.34

Bayesian network
1 82.80 ± 1.09 84.83 ± 1.46 ∗85.95 ± 2.31 105.00 ± 3.62 ∗92.70 ± 4.00

2 45.30 ± 2.41 47.82 ± 2.80 ∗49.50 ± 3.33 135.20 ± 3.65 ∗119.00 ± 3.89

3 28.44 ± 2.37 29.40 ± 2.64 ∗32.52 ± 3.71 172.00 ± 2.94 ∗146.50 ± 4.40

EC-PFAM (706 attributes)

Average predictive accuracy Average number of selected attributes

METHOD Class level Using all attributes Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes
1 71.61 ± 3.52 72.87 ± 4.02 ∗74.62 ± 3.77 131.60 ± 5.50 ∗102.20 ± 3.85

2 46.70 ± 1.21 48.24 ± 1.39 ∗49.02 ± 1.17 212.60 ± 5.10 ∗153.90 ± 5.26

3 31.00 ± 1.08 32.20 ± 1.53 ∗33.24 ± 1.76 244.40 ± 4.53 ∗177.70 ± 2.58

Bayesian network
1 85.94 ± 1.80 87.94 ± 1.80 ∗89.64 ± 3.27 116.60 ± 4.22 ∗91.80 ± 4.52

2 55.34 ± 1.30 56.84 ± 1.49 ∗58.02 ± 2.02 198.00 ± 4.40 ∗141.90 ± 4.63

3 36.56 ± 1.56 37.61 ± 1.44 ∗39.44 ± 3.07 221.70 ± 4.64 ∗168.60 ± 4.43
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