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Purpose. +is study aimed to estimate the diagnostic accuracy of machine learning- (ML-) based radiomics in differentiating high-
grade gliomas (HGG) from low-grade gliomas (LGG) and to identify potential covariates that could affect the diagnostic accuracy of
ML-based radiomic analysis in classifying gliomas. Method. A primary literature search of the PubMed database was conducted to
find all related literatures in English between January 1, 2009, and May 1, 2020, with combining synonyms for “machine learning,”
“glioma,” and “radiomics.” Five retrospective designed original articles including LGG and HGG subjects were chosen. Pooled
sensitivity, specificity, their 95% confidence interval, area under curve (AUC), and hierarchical summary receiver-operating
characteristic (HSROC) models were obtained. Result. +e pooled sensitivity when diagnosing HGG was higher (96% (95% CI: 0.93,
0.98)) than the specificity when diagnosing LGG (90% (95% CI 0.85, 0.93)). Heterogeneity was observed in both sensitivity and
specificity. Metaregression confirmed the heterogeneity in sample sizes (p � 0.05), imaging sequence types (p � 0.02), and data
sources (p � 0.01), but not for the inclusion of the testing set (p � 0.19), feature extraction number (p � 0.36), and selection of
feature number (p � 0.18). +e results of subgroup analysis indicate that sample sizes of more than 100 and feature selection
numbers less than the total sample size positively affected the diagnostic performance in differentiating HGG from LGG. Conclusion.
+is study demonstrates the excellent diagnostic performance of ML-based radiomics in differentiating HGG from LGG.

1. Introduction

Glioma is the most common primary malignant brain tumor
that accounts for 80% of malignancies [1], and 2% of all
cancers in US adults [2]. According to the World Health
Organization (WHO) classification [3], gliomas are sub-
divided into two groups based on their malignant status low-
grade glioma (LGG) for grades I to II with focal symptoms
and high-grade glioma (HGG) for III to IV with generalized
symptoms. Grade IV tumors called glioblastoma (GBM)
account for 54% of all gliomas [4], with a median survival rate
of 15 months [5]. Treatment of gliomas is essential since there
is an eventual progression from LGG to HGG due to gliomas’
distinctive molecular and clinical features [6]. For targeted
treatment that is individualized to specific changes in

individual tumors, different treatments including a near-total
resection, postsurgical radiation, or temozolomide combined
with radiation must be considered depending on the glioma’s
grade [2]. +erefore, the classification of tumor levels is
crucial for intraoperative decision-making.

Magnetic resonance imaging (MRI) has been utilized to
classify gliomas noninvasively for histopathological pur-
poses. Recent studies have demonstrated the feasibility of
conventional MRI sequences, especially gadolinium-based
contrast-enhanced T1-weighted imaging (T1-CE) [7] when
grading gliomas. With technological developments, ad-
vanced MRI sequences also contribute to physiological and
metabolic assessments when classifying gliomas, such as
perfusion-weighted imaging (PWI) [8] and diffusion-
weighted imaging (DWI) [9]. However, previous studies on
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grading gliomas were limited due to utilizing only a small
number of parameters extracted from a single MRI
sequence.

A capability of radiomics analysis, which maximizes the
number of quantitative image features from digital images,
has great potential for the assessment of tumor biology [10].
+e vast quantities of radiomics data enable information to be
extracted from the entire tumor. As a result, radiomics can
overcome intratumoral heterogeneities in both the molecular
and histopathological assessment of tumors using quantitative
values [11] that contribute to evidence-based decision-making
in oncology.+e assessment of both mutation status and gene
expression, such as O6-methylguanine-DNA-methyl-
transferase (MGMT) gene expression or isocitrate dehydro-
genase (IDH) mutation, is essential for predicting therapeutic
responses when treating gliomas. Radiomics has proven the
potential for the genotype classification of prognostic factors
to predict IDH status, 1/19q codeletion status, or MGMT
methylation status [12–14] in glioma-related studies. How-
ever, the treatment of gliomas cannot be processed by ge-
notype alone since IDH mutation or 1/19q codeletion status
tends to be used for classifying grades II and III and MGMT
promotermethylation for grade IV.+erefore, the histological
grade should also be incorporated into the genotype classi-
fication of gliomas. +e vast amount of quantitative image
features, including first-, second-, and higher-order statistical
features, can represent histological values that include in-
tensity differences and spatial interrelationships. As a result,
radiomic features can provide distinctive information about
tumor phenotypes and their microenvironments. Considering
the heterogeneous histopathology biomarkers of angiogenesis,
apoptosis, proliferation, and cellular invasion in gliomas [15],
extracting a large amount of hidden data using radiomics
could be a potential tool in classifying gliomas from single- or
multiparameter MRI sequences.

As far as we know, no previous research has performed a
systematic evaluation of the accuracy of machine learning-
(ML-) based radiomics analysis in differentiating HGG from
LGG. +erefore, the purpose of the study was twofold: first,
to estimate the diagnostic accuracy of ML-based radiomics
analysis in classifying HGG and second, to identify the
potential covariates that could affect the diagnostic accuracy
of ML-based radiomics.

2. Method

Ameta-analysis was performed using Meta-DiSc version 1.4
(Unit of Clinical Biostatistics Team, Hospital Universitario
Ramón y Cajal, Madrid, Spain). However, the Meta-DiSc
version 1.4 uses outdated statistical methods since the
Moses–Littenberg method does not account for between-
study variances [16]. +erefore, RStudio (version 4.0.2)
using the MADA package was implemented to utilize hi-
erarchical summary receiver-operating characteristic
(HSROC) models and bivariate models.

2.1. Literature Search. +is meta-analysis was performed
following the Preferred Reporting Items for Systematic

Reviews and Meta-Analysis guidelines [17]. A primary lit-
erature search of the PubMed database was conducted to
find all related literature in English between January 1, 2009,
and May 1, 2020, including Medical Subject Headings
(MeSH) and non-MeSH terms (see SupplementaryMaterials
for key terms (available (here))).

2.2. Inclusion and Exclusion Criteria. All studies were se-
lected by the following criteria: (a) original research articles;
(b) patients with histopathologically confirmed WHO grade
gliomas including both lower-grade glioma and high-grade
glioma; (c) ML-based with radiomics features that were
applied to classify gliomas using radiomics features; and (d)
information for reconstructing 2× 2 tables to estimate the
diagnostic sensitivity and specificity for grading gliomas was
included.

Studies were excluded if (a) they did not use ML to
classify the grade of gliomas; (b) did not focus on differ-
entiating between LGG and HGG; (c) no replies were re-
ceived from the authors after requesting the data related to
reconstructing the 2× 2 table or subgroup analysis; and (d)
they had a small sample size for performing the machine
learning classifier.

2.3. Quality Assessment. Two independent reviewers con-
ducted the quality assessment (S.C. and B.S.). Four main
domains including patient selection, index test, reference
standard, and flow and timing were evaluated based on the
Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) [18].

2.4. Statistical Analysis. A meta-analysis of the performance
of radiomics-based ML in differentiating HGG from LGG
was conducted. +erefore, the definition of true positive
(TP) was set for HGG and true negative (TN) for LGG. For
consistency, the TP definition in the study of Zhao et al. had
to be redefined by switching sensitivity and specificity in the
calculation. If the data for reconstructing the 2× 2 table and
analyzing subgroup analysis were insufficient, we contacted
the authors.

+e performance of the studies that implemented
multiple ML classifiers for grading gliomas was averaged.
For studies that reported the results of both the training and
testing sets, the best result was selected for the meta-analysis.
+e performance of ML using radiomics in differentiating
HGG from LGG was performed using the bivariate random
effects model.

+e followingmethods and criteria were used to estimate
heterogeneity: (a) considering the small number of studies
and lower statistical strength of Cochrane’s Q test, p value
<0.10 (not 0.05) indicated the presence of heterogeneity (14);
(b) Higgins inconsistency index (I2) test values of 25%, 50%,
and 75% defined the heterogeneity as low, moderate, or high;
(c) a forest plot for assessing the heterogeneity in sensitivity
and specificity and the visual assessment of the forest plots to
assess the presence of threshold effect (increasing sensitivity
with decreasing specificity and a positive correlation
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between sensitivity and the false-positive rate); (d) a large
difference between the 95% confidence region and 95%
prediction region in the HSROC curve; and (e) a Spearman
correlation coefficient value >0.6, that indicated a threshold
effect across all studies.

Metaregression and subgroup analysis were performed
to explain the possible factors that contribute to heteroge-
neity and the factors contributing to the diagnostic per-
formance of ML-based radiomics when grading gliomas
with the following covariates: (a) subject number, (b) se-
quence types, (c) selected feature numbers, and (d) inclusion
of the testing set.

3. Result

3.1. Literature Search. One hundred and ninety-four studies
of interest were found, and five studies were selected for this
meta-analysis after considering the inclusion and exclusion
criteria (Figure 1).

3.2. Risk of Bias Assessment. Overall, a high risk of bias was
estimated in the studies summarized in Table 1, with detailed
descriptions given in Table 2. +e high risk of bias could be
attributed to the nature of the retrospective study, in which
the patient’s outcomes are known. +erefore, a case-control
design for selecting patients already represents a high risk of
bias. Furthermore, using public data could also lead to a high
risk of bias in the QUADAS-2 assessment because not all
acquisition factors for LGG and HGG in public data can be
controlled. An assessor already knows the patients’ diagnosis
or reference standard results because WHO-classified pa-
tients were considered for research. ML-based radiomics
analysis studies tend to find a methodological justification
from a previous study method with an advanced ML clas-
sifier to improve the diagnostic accuracy. +erefore, prior
knowledge before implementing the index test may intro-
duce a high risk to the “index test” in the second domain.
However, the reference standard for the histological diag-
nosis of HGG and LGG has already taken into account the
accurate grading of gliomas that leads to reducing the risk of
bias in the “reference standard” domain. Finally, though it
was assumed that most were related to preoperative studies,
it was unclear whether there was an appropriate interval
between the index test and the reference standard or whether
patients received a specific therapy. +erefore, the fourth
domain of “flow and timing” in the reviewed studies had an
unclear general bias content. Significant heterogeneity was
present in data sources regarding image acquisition, feature
engineering, and ad hoc analysis. Consequently, the quality
assessment was limited regarding the applicability of ML-
based radiomics analysis for grading gliomas.

3.3. Data Extraction. A summary of the results is presented
in Table 3, while the method-related information is sum-
marized in Table 4.+ree of five studies utilized a single MRI
sequence acquired by either conventional or advanced
imaging [14, 19, 20], while the remaining studies imple-
mented both conventional and advanced ASL and DWI

sequences in [21, 22]. An imbalanced ratio was observed
between the HGG and LGG datasets in the studies that used
a large number of samples [19, 21], while the remaining three
studies had a ratio equal to the sample [14, 20, 22]. Two of the
five studies selected feature numbers equal to or greater than
the total sample size [14, 20], while the remaining three
studies selected fewer than the total sample size [19, 21, 22].
Only two studies included a testing set [20] without
reporting the sample size of the testing set [19].

3.4. Heterogeneity Assessment. A forest plot was drawn to
estimate the heterogeneity in sensitivity and specificity in
Figure 2. Heterogeneity was found in both sensitivity
(I2 � 69.70%, p � 0.01) and specificity (I2 � 80.20%,
p≤ 0.01).

A large difference between the confidence region and
95% prediction regions in the HSROC curve represents the
possibility of heterogeneity across the studies in Figure 3.

3.5. (reshold Effect Assessment. +e Spearman correlation
coefficient between the sensitivity and false-positive rate was
− 0.4 (p � 0.51), indicating the absence of a threshold effect.
A threshold effect indicates a positive correlation between
sensitivities and the false-positive rate that leads to a
“shoulder arm” plot in the summary receiver-operating
characteristic curve space. However, the visual assessment of
the HSROC indicates the absence of a threshold effect as
shoulder is absent in the HSROC space.

3.6.DataAnalysis. Significant heterogeneity was observed in
both pooled sensitivity (I2 � 69.70%, p � 0.0104) and pooled
specificity (I2 � 80.20%, p≤ 0.01) as is shown in Figure 2.
+erefore, the HSROC model based on a random effect
model was applied to account for both intra- and interstudy
variances in analyzing the diagnostic accuracy of the ML
method with radiomics based on differentiating HGG from
LGG.+e area under the curve (AUC) value of 0.96 indicates
high diagnostic performance.

3.7. Metaregression. A bivariate metaregression with a p

value-based chi-squared statistic recommended by the
Cochrane diagnostic test accuracy (DTA) handbook [23] was
performed for the metaregression. As a result, the metare-
gression confirmed the heterogeneity in sample size
(p � 0.05), imaging sequence types (p � 0.02), and data
sources (p � 0.01), but not in the testing set (p � 0.19),
feature extraction number (p � 0.36), or selecting feature
number (p � 0.18). Bivariate metaregression based on the
random effect model was also performed to analyze the
regression coefficients between two groups related to four
covariates: (a) subject number sample size of fewer than 100
vs. sample size of more than 100; (b) implementing only
conventional or advanced MRI sequences vs. using both
advanced MRI sequences and conventional MRI sequences;
(c) selecting a feature number greater than or close to the
total sample size vs. smaller than the total sample size; and
(d) including testing set (validation set) or not.

Contrast Media & Molecular Imaging 3



+e z-value for the regression coefficients for the sen-
sitivities was significant for the sample size (p≤ 0.01) and
feature number (p≤ 0.01). +erefore, the studies with
sample sizes of more than 100 and a feature number smaller
than the sample size exhibited better sensitivity, while the
point estimate for the false positive rate did not indicate any
effect. +e z-value for the regression coefficient for the false-
positive rate was significant (p≤ 0.01) in the single-image
sequences group, which offered a higher false-positive rate
than themultiparameter image group.+e point estimate for
sensitivity did not indicate any effect. +e z-values for the
regression coefficient for both the sensitivity and false-
positive rate were insignificant (p � 0.3) and (p � 0.4),

indicating no statistical difference whether the testing set
was included or not.

3.8. Subgroup Analysis. +e sensitivity, specificity, positive
likelihood ratio (PLR), negative likelihood ratio (NLR), and
diagnostic odds ratio (DOR) were combined using a random
effects model because of the heterogeneity across the
reviewed studies in Table 5. In the subgroup analysis, the
overall sensitivity of diagnosing HGG was higher (96% (95%
CI, 0.93, 0.98)) than the specificity of diagnosing LGG (90%
(95% CI, 0.85, 0.93)).

Similar to the result of metaregression, significant sen-
sitivity, PLR, and NLR differences were found in the

Records identified through 
database searching

(n = 215)

Additional records identified 
through other sources

(n = 0)

Studies included in 
quantitative synthesis 

(meta-analysis)
(n = 5)

Full-text articles 
assessed for

eligibility (n = 15)

Full-text articles excluded, 
with reasons

No ML classifier (n = 3) 
No radiomics features (n = 5)
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Figure 1: Search-strategy flowchart in accordance with the PRISMA guidelines used in the meta-analysis.

Table 1: Summary of QUADS-2 tool assessment of the literature used in the meta-analysis.

Authors and year
Risk of bias

Patient selection Index test Reference standard Flow and timing
Cho et al. 2018 + + − ?
Tian et al. 2018 + + − −

Hashido et al. 2018 + − − ?
Vamvakas et al. 2019 + + + ?
Zhao et al. 2020 + − − ?
Risk of bias: +� high, − � low, and ?� unclear risk.
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covariates of sample size and feature number; however,
specificity was not detected. +e studies using a sample size
of more than 100 had higher sensitivity, PLR, and lower NLR
than studies with a sample size of fewer than 100 (98 vs. 88),
PLR (12.10 vs. 7.89), and NLR (0.03 vs. 0.14), but no dif-
ference in the specificity (90% vs. 90%). Furthermore, this

result was aligned with the metaregression result, in which
the studies using sample sizes of more than 100 had a lower
false-positive rate.

In terms of feature engineering, the studies with selected
feature numbers smaller than the total sample size had better
sensitivity (97% vs. 85%), PLR (13.48 vs. 5.71), specificity

Table 2: Detailed QUADS-2 tool assessment after the two reviewers reached a consensus.

Authors and
year Patient selection Index test Reference standard Flow and timing

Cho et al.
2018

+e experiment was designed
to be a retrospective study and
did not include a random
sample. However, the study

avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted knowing the
results of the reference
standard. It was unclear
whether a prespecified

threshold was used (high risk)

It was unclear whether the
reference standard was

likely to classify the target
condition accurately. +e
reference standard results
were interpreted knowing
the results of the index test

(low risk)

It was unclear whether there
was an appropriate interval
between the index test and
reference standard and
whether all patients were

included in the analysis. All
patients received a reference
standard, but it is unclear
whether it was the same

reference standard (unclear)

Tian et al.
2018

+e experiment was designed
to be a retrospective study and
did not include a random
sample. However, the study

avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted knowing the
results of the reference
standard. However, a pre

specified threshold was used
(high risk)

+e reference standard was
likely to classify the target
condition accurately. +e
reference standard results
were interpreted without
knowing the results of the

index test (low risk)

It was clear whether there
was an appropriate interval
between the index test and
reference standard. All

patients received a reference
standard, but it was unclear
whether it was the same
reference standard. Not all
patients were included in the

analysis (low risk)

Hashido
et al. 2018

+e experiment was designed
to be a retrospective study and
did not include a random
sample. However, the study

avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted without knowing
the results of the reference
standard. Furthermore, a pre
specified threshold was used

(low risk)

+e reference standard was
likely to classify the target
condition accurately. +e
reference standard results
were interpreted without
knowing the results of the

index test (low risk)

It was unclear whether there
was an appropriate interval
between the index test and
reference standard. All

patients received a reference
standard, but it was unclear
whether it was the same
reference standard. Not all
patients were included in the

analysis (unclear)

Vamvakas
et al. 2019

+e experiment was designed
to be a retrospective study and
did not include a random
sample. In addition, it was
unclear whether the study
avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted knowing the
results of the reference
standard. It was unclear
whether a prespecified

threshold was used (high risk)

+e reference standard was
likely to classify the target
condition accurately. +e
reference standard results
were interpreted knowing
the results of the index test

(high risk)

It was unclear whether there
was an appropriate interval
between the index test and
reference standard and

included all patients in the
analysis. All patients
received a reference

standard, but it was unclear
whether it was the same

reference standard (unclear)

Zhao et al.
2020

+e experiment was designed
to be a retrospective study and
did not include a random
sample. In addition, it was
unclear whether the study
avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted without knowing
the results of the reference
standard. However, it was

unclear whether a prespecified
threshold was used (low risk)

It was unclear whether the
reference standard was

likely to classify the target
condition accurately. +e
reference standard results
were interpreted without
knowing the results of the

index test (low risk)

It was unclear whether there
was an appropriate interval
between the index test and
reference standard. All

patients received a reference
standard, but it was unclear
whether it was the same
reference standard. Not all
patients were included in the

analysis (unclear)
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(90% vs. 85%), and lower NLR (0.03 vs. 0.18) than the studies
that selected feature numbers close to or greater than the
total sample size. Furthermore, the lower false-positive rate
result from the metaregression when selecting a number of
features fewer than the total sample size was observed.
However, there was no significant statistical difference in
sensitivity between the studies that extracted only second-
order features or both first- and second-order features
(p � 0.3), even with the higher sensitivity in the group that
extracted both features (97% vs. 94%) in the subgroup
analysis, but with lower specificity (84% vs. 95%), high PLR
(11.19 vs. 7.23), and NLR (0.11 vs. 0.05).

No sensitivity difference was estimated in the group
using single sequence andmultiple sequences (96% vs. 96%),
but the specificity was higher in the group using multiple
sequences (97% vs. 81%) with a higher PLR (30.39 vs. 4.61)

and lower NLR (0.04 vs. 0.09). Applying only the training set
produced a higher sensitivity (94% vs. 97%), specificity (95%
vs. 81%), PLR (12.91 vs. 5.32), and lower NLR (0.09 vs. 0.05)
than the group that used both the training and testing sets.
However, the result of metaregression indicated no statis-
tical difference in either the sensitivity or false-positive rate.
+e overlap of the confidence interval in the sensitivity
between the two groups was aligned with the result of
metaregression. However, the higher specificity in the group
that used only the training set indicated a better differen-
tiation of LGG.

4. Discussion

Overall, the meta-analysis confirmed the source of hetero-
geneity from the covariates, including sensitivity, specificity,

Table 3: Summary of the results evaluated in the reviewed studies.

Study and
year Method Algorithm Dataset/

HGG-LGG MRI sequence
Best performance

Limitation
AUC DA

(%)
Sen
(%)

Spe
(%)

Cho et al.
2018

Classic
machine
learning

Multiple
algorithms

WHO II–IV
(n� 285)/210-

75

T1, T1-C, T2, T2-
FLAIR 0.94 92.92 97.86 79.11

No dataset separation
information for training and

testing cohort. Sample
imbalance size between LGG

and HGG.

Tian et al.
2018

Classic
machine
learning

SVM

WHO II–IV
gliomas

(n� 153)/111-
42

Multiparametric 0.99 96.80 96.40 97.30 Sample imbalance sample size
between LGG and HGG.

Hashido
et al. 2018

Classic
machine
learning

Logistic
regression

WHO II–IV
(n� 46)/31-15 ASL, PWI (DSC) 0.96 NA 89.30 92.90

Small sample size. Small
sample size used in the
training set. Large feature

number than the total sample
size.

Vamvakas
et al. 2019

Classic
machine
learning

SVM WHO I–IV
(n� 40) 20-20 Multiparametric 0.96 95.50 95 96 Small sample size.

Zhao et al.
2020

Classic
machine
learning

RF
WHO II-III
gliomas

(n� 36) 17-19
T1-C, T2- FLAIR 0.86 78.10 78.30 77.80

Small sample size. Large
feature number compared to

the total sample size.

Table 4: Summary of the methods used in the reviewed studies.

Study and year Data
source External validation Feature type Feature

extraction
Feature
selection Segmentation

Cho et al. 2018 Public Training + testing First-order and second-order
(GLCM, ISZ) 486 5 ROI

Tian et al. 2018 Private Training First-order, second-order (GLCM,
GLCGM) 510 30 VOI

Hashido et al. 2018 Private Training
(42) + testing (4)

First-order, second-order (GLCM,
GLDM, GLRLM, GLSZM, and

NGTDM)
91 75

Random forest-based
semiautomatic tumor

segmentation
Vamvakas et al.
2019 Private Training First-order and second-order

texture (GLCM, GLRLM) 581 21 VOI

Zhao et al. 2020 Private Training
First-order and second-order
(GLCM, GLRLM, GLSZM, and

GLDM)
1072 30 VOI
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sample size, imaging sequences, and data source. +e main
reason for greater heterogeneity could be attributed to the
nature of the multiple steps included in the radiomics
process of image acquisition, data source, segmentation,
feature engineering, and ad hoc analysis [24].

+e results of the meta-analysis indicated that a greater
than 100 sample size positively affected the diagnostic
performance of sensitivity (HGG), but not specificity (LGG).
+is result could be attributed to two causes. First, having a

large sample size is essential to improve training [25] and to
avoid the overfitting that occurs in ML-based research.
+erefore, both statistical analysis and ML training may
favor the result of the group with a greater than 100 sample
size. +e total sample size difference between the two groups
(507 vs. 122) also contributed to the results. Second, the
result could be attributed mainly to the imbalance in the
HGG and LGG sample ratio. +is is the main challenge in
the medical dataset, where the ML-based classification

Sensitivity (95% CI)

0.96
0.95
0.98
0.90
0.76

(0.91–0.99)
(0.75–1.00)
(0.95–0.99)
(0.74–0.98)
(0.50–0.93)

Tian et al. , 2018
Vamvakas et al. , 2019
Cho et al. , 2017
Hashido et al. , 2018
Zhao et al. , 2020

Pooled sensitivity = 0.96 (0.93 to 0.98)
Chi-square = 13.19; df = 4 (p = 0.0104)
Inconsistency (I-square) = 69.7%

0.2 0.4 0.6 0.8 10
Sensitivity

(a)

Specificity (95% CI)

0.97
0.95
0.79
0.93
0.79

(0.92–0.99)
(0.75–1.00)
(0.68–0.87)
(0.68–1.00)
(0.54–0.94)

Tian et al. , 2018
Vamvakas et al. , 2019
Cho et al. , 2017
Hashido et al. , 2018
Zhao et al. , 2020

Pooled specificity = 0.90 (0.85 to 0.93)
Chi-square = 20.21; df = 4 (p = 0.0005)
Inconsistency (I-square) = 80.2%

0.2 0.4 0.6 0.8 10
Specificity

(b)

Figure 2: Pooled estimation of sensitivity and specificity for the diagnostic accuracy of radiomics using machine learning in differentiating
HGG from LGG. Circles and horizontal lines represent the point estimate and 95% confidence intervals.
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Figure 3: +e HSROC curve displaying the diagnostic performance of ML-based radiomics in differentiating HGG from LGG. A large
difference between the 95% confidence and prediction regions indicates a high possibility of heterogeneity across the reviewed studies.
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method prefers a larger to a smaller sample during training
[26, 27]. +erefore, the imbalanced ratio between LGG and
HGG (total sample 240 vs. 389) may increase the sensitivity
due to the large sample size of HGG without considering the
distribution of data ratio between LGG and HGG, while
reducing the specificity performance [19, 21]. In contrast, the
overall equal sample ratio was found in the group with a
sample size of less than 100, as summarized in Table 3
[14, 20, 22]. As a result, the specificity may increase in
the small sample size group that did not consider the LGG
sample as a minor group during the classifier training.
+erefore, there was no difference in the specificity even with
the higher sample size of LGG in the large sample size group
than in the small sample size group (117 vs. 54). Both limited
and imbalanced numbers of samples between LGG and
HGG across the studies also affected the separation of the
validation and testing datasets. +e majority of studies did
not include the testing set because of the small sample size.
Furthermore, poor-quality reporting that did not include the
subject number used in training and testing [19] and in-
cluded only four subjects in the testing set [20] was observed.
+erefore, subgroup analysis that includes the testing set
may not be an appropriate criterion for this meta-analysis,
even though it is necessary for the external validation of the
model. However, a higher specificity was observed in the
group that included only the training set [14, 21, 22]. +is
could be attributed to the balanced ratio between LGG and
HGG in the group described in Table 3, not to the inclusion
of the testing set. In contrast, imbalanced ratios of large
HGG samples over LGG samples were observed in the group
that included both the training and testing sets [19, 20]. In

short, it is reasonable to assume that the labeled data balance
plays a key role in grading gliomas.

Interestingly, there was a significant difference in the
specificity but not in the sensitivity between the groups
using a single MRI sequence [14, 19, 20] and multi-
parametric images [21, 22]. +e nonsignificant sensitivity
difference between the two groups can be attributed to two
reasons. First, quantifying the heterogeneous spatial gray
distribution including intratumoral spatial variation and
intensity of the entire tumor in the second-order features
allowed for the classification of the heterogeneous HGG
over the first-order statistical TA [21, 28]. +erefore, the
second-order features that were extracted in all reviewed
studies could contribute to a statistically insignificant
sensitivity difference between the two groups. Second, the
performance of combining different MRI techniques in
differentiating HGG from LGG is questionable because
the combination of conventional and advanced MRI se-
quences, including PWI, DWI, and magnetic resonance
spectroscopy, did not significantly increase the glioma
grading performance [29, 30]. Furthermore, conventional
MRI variables including enhancement and necrosis have
been reported as the major predictors in differentiating
HGG from LGG above the combination of conventional
MRI with PWI, DWI, and MRS [31]. +erefore, the se-
quence differences between the two groups may be in-
significant because of the contributory role played by the
conventional MRI sequences that were included in each
group. As a result, no significant difference in the sen-
sitivity between the single MRI sequence and the multi-
parametric image was observed in this study.

Table 5: Result of multiple subgroup analysis of machine learning-based radiomics for grading gliomas.

Subgroup Study
number

Patient
number Sensitivity Specificity PLR NLR Diagnostic odds

ratio

All combined 5 629 0.96
(0.93–0.98)

0.90
(0.85–0.93) 9.53 (3.55–25.57) 0.07

(0.02–0.20)
153.85

(32.36–731.44)
Populations

>100 2 507 0.98
(0.95–0.99)

0.90
(0.85–0.94)

12.099
(1.37–107.12)

0.03
(0.02–0.06)

393.81
(80.89–1917.3)_

<100 3 122 0.88
(0.78–0.95)

0.90
(0.77–0.96) 7.89 (2.21–28.15) 0.14

(0.05–0.39) 65.13 (7.84–540.95)

Sequence
Single (CS or
advanced) 2 262 0.96

(0.93–0.98)
0.81

(0.72–0.88) 4.61 (3.14–6.77) 0.09
(0.02–0.44) 66.75 (10.33–431.19)

Multiple (CS and
advanced) 3 367 0.96

(0.91–0.99)
0.97

(0.92–0.99)
30.391

(11.585–79.726)
0.04

(0.017–0.09)
774.25

(202.54–2959.77)
Feature number

≥Sample size 2 82 0.85
(0.72–0.94)

0.85
(0.69–0.95) 5.71 (1.39–23.46) 0.18

(0.07–0.52) 33.76 (3.36–339.14)

<Sample size 3 547 0.97
(0.95–0.99)

0.90
(0.85–0.94) 13.48 (2.56–71.12) 0.03

(0.02–0.06)
369.98

(19.68–6956.0)
Training and testing set

Training set 3 331 0.94
(0.88–0.97)

0.95
(0.89–0.98) 12.91 (2.02–82.22) 0.09

(0.02–0.47)
154.56

(7.30–3276.9)

Training + testing set 2 298 0.97
(0.94–0.99)

0.81
(0.72–0.89) 5.32 (2.55–11.09) 0.05

(0.1–0.22)
176.99

(63.76–491.30)
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+e higher specificity in the multiparametric group can
be attributed to the apparent diffusion coefficient (ADC)
values extracted from DWI [21] and cerebral blood flow
extracted by perfusion imaging [22]. Even though the ADC
values in differentiating LGG from HGG varied from study
to study [29], T1-CE, ADC slow, T2 WI, and CBF have been
widely used to classify LGG. Among various biomarkers, the
ADC value has demonstrated the feasibility of classifying
LGG by the higher ADC values in LGG than HGG [32, 33],
and the entropy of ADC values among various texture
analysis software showed promising results [7, 9]. +erefore,
it is reasonable to assume that advanced MRI sequences for
estimating angiogenesis and blood perfusion play a role in
classifying LGG. In short, the higher false-positive rate in the
single-image sequence group and the higher specificity of
differentiating LGG in the multiple sequences resulted from
the use of multiple imaging sequences for grading gliomas.

All results including sensitivity, specificity, PLR, and
NLR were higher in the group with fewer feature numbers
[14, 19, 21] than those that were greater than or equal to the
total sample size [20, 22]. +is can be attributed to two
causes. First, the sample size difference between the two
groups may affect the performance of the group that selected
fewer feature numbers than the total sample size (547 vs. 82),
as described in the following section of this paper. Second,
selecting a method to reduce the dimensionality of feature
space in radiomics is an essential component of feature
selection. In fact, reducing redundant features is important
to avoid overfitting and improving data, even though there is
no gold standard for the appropriate number of features.
+erefore, a small number of features are recommended,
either one-tenth of the total sample data [34] or the square
root of the total sample data [35]. Furthermore, a high
contribution of the gray-level gradient cooccurrence matrix
(GLGCM) features when grading gliomas suggested the
importance of the second-order feature numbers in the
study [21]. In short, the group that selected a smaller number
of quantitative features than the total sample size exhibited
better performance in grading gliomas.

4.1. Limitation. Several limitations were observed in our
study. Only five studies were included in the meta-analysis,
while the recommended number of studies for meta-anal-
ysis, according to the Cochrane DTA handbook, is at least 30
for sufficient power [23].

+erefore, the assessment of a publication bias using the
Deek funnel plot asymmetry test was excluded because the
small number of meta-analyses could skew the result due to
the number difference between the small and large studies
[36, 37] and the heterogeneous sources in the meta-analysis
[38].

+e poor quality of the report that excluded crucial result
information contributed to the scarcity of literature for
performing a meta-analysis of the accuracy of this diagnostic
test in radiomics studies. Overall, the poor quality of the
reporting has limited the study of radiomics in neuro-
oncology [39] because guidelines for reporting quantitative
imaging results have not yet been established. Regardless of

the scarcity of literature, the total sample size of 629 subjects
may be sufficient to represent the predictive value of ML-
based radiomics analysis in differentiating HGG from LGG.

4.2. Future. Several factors should be improved for future
studies related to ML-based radiomics for grading glioma.
First, all reviewed studies did not include the updated WHO
2016 glioma classification standard for combining molecular
profiling with histopathological profiling. Second, the
dataset size still plays a key role in grading gliomas.
+erefore, enlarging the dataset should also be considered to
overcome the imbalance caused by oversampling a small
sample to improve classifier performance [21].

Furthermore, the enlarged dataset would lead to separate
training and testing sets that allow for the external validation of
ML classifier performance. +ird, incorporating patient de-
mographics or clinical history should be considered to improve
the classification of ML models. Finally, the variation process
included in the radiomics analysis that is based on the nu-
merical extraction approach to image analysis could affect the
result due to bias and variance, not underlying biologic effects.
+erefore, standardization in image acquisition, segmentation,
feature engineering, statistical analysis, and the reporting
format should be established for reproducibility and the
generalization of ML-based radiomics studies. Essential steps
for standardization include optimizing the standard imaging
acquisition process, fully automating the process for seg-
mentation and feature engineering, reducing the redundancy
of feature numbers, enhancing the reproducibility of radiomics
features, and transparently reporting results. +erefore, the
following guidelines suggested by the relevant professional
societies, such as the Society of Nuclear Medicine and Mo-
lecular Imaging, the Quantitative Imaging Network, Radiology
Society of North America, and the European Society of Ra-
diology that lead the field in imaging methods, including
radiomics, should be considered. Furthermore, it has been
reported that the magnet strength, flip angles, number of
excitations, and different scanner platforms could affect both
first-order and second-order features [40]. For example, the
gray-level gradient cooccurrence matrix (GLCM) could be
invariant to magnetic strength but susceptible to flip angles.
However, the first-order features of entropy that are considered
the most stable features have high reproducibility [41].
+erefore, the reproducibility of information related to
radiomics features should be considered depending on the
image acquisition method. Apart from the radiomics feature
type, a segmentation method should be considered for the
reproducibility of radiomics features. A registration distortion
between MRI sequences could cause the incorrect localization
of the region of interest and could affect the feature extraction
process in radiomics analysis [42]. To reduce individual var-
iability, deep learning-based automated segmentation and
feature engineering gained attention [43]. +erefore, a deep
learning-based approach should also be considered in radio-
mics analysis. +e SVM-based classifier with recursive feature
elimination (RFE) was found to be superior to other 25 ML-
based classifiers and 8 independent attribute selection methods
in grading gliomas using the multiparameter approach [44].
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+erefore, an SVM-based classifier with RFE could be the best
method to reduce feature redundancy and improve the ML
classifier performance of glioma grading [28].

5. Conclusion

ML with radiomics demonstrated excellent diagnostic per-
formance in differentiating HGG from LGG.+e results of the
meta-analysis provide the following recommendations to
perform grading gliomas with ML-based radiomics: (a) use a
large sample with oversampling of a minor class to balance the
sample ratio and include the external validation set; (b) employ
amultiparameter approach to extract the second-order features
from the T1-CE sequence and ADC entropy from DWI; (c)
select features with a number smaller than the total sample size
by combining clinical information; and (d) implement the
SVM classifier with SVM-REF attribute selection.

We submit that a methodological standard to ensure the
reproducibility of ML-based radiomics is warranted for
clinical application.

Abbreviations

ASL: Arterial spin labeling
HGG: High-grade glioma
LGG: Low-grade glioma
ML: Machine learning
ADC: Apparent diffusion coefficient
FA: Fractional anisotropy
MRI: Magnetic resonance imaging
DWI: Diffusion-weighted imaging
DTI: Diffusion tensor imaging
GBM: Glioblastoma
SVM: Support vector machine
SVM-RFE: Recursive feature elimination
IDH: Isocitrate dehydrogenase
MGMT: O6-Methylguanine-DNA-methyltransferase
HSROC: Hierarchical summary receiver-operating

characteristic curve
AUC: Area under curve
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Additional Points

Key Findings. (i) Machine learning with radiomics dem-
onstrated excellent diagnostic performance in differentiating
high-grade glioma from low-grade glioma. (ii) +e lower

false-positive rate and higher specificity for classifying
lower-grade glioma favored the use of multiparametric
imaging, even though a nonstatistically significant sensitivity
difference between the single-image sequence and multi-
parameter imaging group was observed. (iii) Based on the
results of themeta-analysis, several factors positively affected
the performance of machine learning-based radiomics when
grading gliomas: (a) a large sample size with oversampling of
a minor class to balance the sample ratio; (b) use of the
multiparametric approach to extract the second-order fea-
tures from the gadolinium-based contrast-enhanced se-
quence and an apparent diffusion coefficient entropy from
diffusion-weighted image; (c) selection of features with
fewer numbers than the total sample size combined with
clinical information; and (d) implementation of a support
vector machine classifier with support vector machine-re-
cursive feature elimination attribute selection. (iv) A
methodological standard to ensure the reproducibility of
ML-based radiomics is warranted for clinical application.
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Epilepsy is a common nervous system disease, which affects about 70 million people all over the world. In 2017, the International
League Against Epilepsy (ILAE) considered immune factors as its independent cause, and the concept of autoimmune epilepsy
(AE) was widely accepted. Early diagnosis and timely treatment can effectively improve the prognosis of the disease. However, due
to the diversity of clinical manifestations, the expensive cost of autoantibody detection, and the increased prevalence in Western
China, the difficulty for clinicians in early diagnosis and treatment has increased. Fortunately, convenient and fast imaging
examinations are expected to help even more. +e imaging manifestations of AE patients were characteristic, especially the
combined application of structural and functional neuroimaging, which improved the diagnostic value of imaging. In this paper,
several common autoantibodies associated with AE and their structure and function changes in neuroimaging were reviewed to
provide help for neurologists to achieve the goal of precision medicine.

1. Introduction

Precision medicine is increasingly important in modern
clinical medicine, as it aims to obtain an early and accurate
diagnosis and reduce the subsequent treatment failure and
intervention in disease development, which usually involves
a highly individualized patient management and multidis-
ciplinary cooperation [1–3]. For clinicians, the goal of
achieving precision medicine for autoimmune epilepsy is
fraught with challenges.

Epilepsy is a chronic neurological disorder characterized
by recurrent abnormal discharge of neurons. Its etiology is
complex, and a lot of studies showed that autoimmune factors
may participate in its occurrence and development [4–6]. In
2017, ILAE regards immune factors as one of its six inde-
pendent causes, and more attention has been paid to the
research progress of AE [7, 8]. +e understanding of AE can
be divided into two types: one covers all epilepsy related to
systemic autoimmune diseases and the other mainly includes
epilepsy related to nervous system autoantibodies [9, 10].

Here, we mainly focus on the latter. Early and accurate di-
agnosis of AE is important because affected patients have
seizures that are resistant to common antiepileptic therapy
but usually respond to immunotherapy [6, 11, 12]. Antibody
testing has always been essential for the diagnosis and
evaluation of autoimmune diseases. +ere are still some
situations in the laboratory examination of AE, such as
sensitivity/specificity of antibody testing, inconsistent anti-
body titer between serum and cerebrospinal fluid (CSF), and
lack of the rare antibody test and low popularity [13–15]. It
should be noted that there was no difference in prevalence or
incidence between autoimmune and infectious factors for
inflammatory lesions of the central nervous system, and more
than 50% of patients do not have specific autoantibodies
[16, 17]. In patients with presumptive autoimmune en-
cephalitis, there was no significant difference in the clinical
manifestations of antibody-negative cases and confirmed
cases, and the therapeutic response to immunotherapy was
similar [18]. +erefore, the better application of convenient
and fast imaging examination cannot be postponed.
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In recent years, many studies have found that there is a
unique value in the diagnosis and prognosis evaluation of
structural and functional neuroimaging features in patients
with AE. +ese imaging technologies, including magnetic
resonance imaging (MRI), functional MRI (fMRI), positron
emission tomography (PET), and single-photon emission
computed tomography (SPECT), have opened a new way for
the diagnosis and treatment of diseases [19–22]. Although
the imaging changes of AE are relatively new in the field of
radiology, the aim of this paper is to review the major
antibody subtypes and imaging changes of AE, provide a
framework for radiologists to understand the relevant
neuroimmunology, and help clinicians to identify the causes
of epilepsy for early and precise treatment (Table 1).

2. Neuroimaging Techniques

+e etiologies of epilepsy are varied and multifactorial in
most cases. Autoantibody testing takes a long time and has
not been carried out in some hospitals, but immunotherapy
usually must be based on clinical presentation and quasi-
clinical results obtained during that time. And in these
circumstances, the study of biomarkers may be further
helpful for the early and accurate diagnosis of AE. In ad-
dition to CSF analysis, electroencephalogram, and physical
examination, neuroimaging techniques are also included.
Because of the special anatomy of the brain, here we focus on
MRI, PET, and SPECT.

MRI is the most commonly used neuroimaging test for
lesions of the brain parenchyma. +e magnetic resonance
signal is generated by the radiofrequency pulsations, and
the selected pulse sequence will determine the appearance
of the image. T1-weighted images have an advantage in the
presentation of anatomic detail, but T2-weighted images
are often needed to demonstrate pathology [23]. +e
purpose of MRI in epileptic patients includes etiology/
differential diagnosis, follow-up observation, and pre-
operative evaluation [20]. Not only can T1 and T2-
weighted be contrasted in conventional MRI images, fMRI
can also improve the detection of pathological conditions
[24, 25]. +e fMRI is increasingly used to evaluate the
relationship between brain activation and sensory/motor
and cognitive activities, and its application in AE has also
been reported [26–28]. +e fMRI usually uses blood ox-
ygen level-dependent (BOLD) contrast to locate brain
function [29]. In this paper, fMRI not only refers to the
application of BOLD technology but also includes mag-
netic resonance spectroscopy (MRS), diffusion tensor
imaging (DTI), and so on.

PET is a nuclear medical imaging technology that can be
used to investigate human metabolic processes. +e 2-deoxy-2-
18F-fluoro-D-glucose positron emission tomography/computer
tomography (18F-FDG PET/CT) visualizes regional neuronal
activity by measuring cerebral glucose, and 18F-FDG activity
was projected to predefined surface pixels after stereotactic
anatomic standardization [30]. In the field of inflammation and
tumor, the use of FDG-PET imaging has been widely reported
[31, 32]. In recent years, its application in AE is also on the rise.

SPECT is a high-resolution noninvasive imaging mode,
which belongs to the category of functional imaging. +e
imaging principle is to image the gamma ray emitted from
the patient’s body and realize the imaging of body function
and metabolism with the aid of single photon nuclide-la-
beled drugs [33, 34]. SPECT is not only widely used in the
diagnosis and follow-up of cardiovascular diseases, tumors,
and kidney diseases but also in epilepsy [35–38]. It can locate
the active epileptic brain tissue according to the change of
local cerebral blood flow and provide important basis in the
preoperative evaluation of drug-resistant epilepsy [39, 40].

3. Structural and Functional Neuroimaging
Imaging Features of AE

In the central nervous system (CNS), neural antigen-specific
autoimmune diseases characterized by seizures and other
symptoms have been identified. According to the existing
reports, some patients with the CNS autoimmunity showed
focal seizures alone or seizures as the most prominent
clinical manifestation [41]. +ere is a tendency to classify
autoimmune antibodies associated with central nervous
system diseases into three categories: anti-NMDAR anti-
bodies, limbic encephalitis- (LE-) related antibodies, and
other antibodies [42]. +ey are organized as a review for
those autoantibodies associated with AE and a description of
the reported structural and functional imaging findings.

3.1. NMDAR Antibody-Related AE. +e N-methyl-D-
aspartate receptor (NMDAR) is a type of ligand-gated ion
channel that mediates a major component of excitatory
neurotransmission in the CNS, widely present in the brain.
+e anti-NMDAR encephalitis is the most common form of
autoimmune antibody-mediated encephalitis, and the an-
tibody caused a titer-dependent and reversible reduction of
synaptic NMDAR through an approach of internalisation
and crosslinking [43].+e specific binding of CSF antibodies
to their cognate receptor leads to the functional decline and
reversible reduction of NMDAR synaptic localization and
surface density [44, 45]. For people with anti-NMDAR
encephalitis, women are more likely to develop psychiatric
disorders at the beginning, while male patients are more
likely to have seizures initially [46, 47]. +ere are many types
of epileptic seizures in NMDAR antibodies related to AE,
including complex partial seizures, generalized tonic-clonic
seizure, epilepticus state, and persistent intractable epilepsy,
and some patients may have two or more types of seizures in
the course of the disease [47, 48].

Although anti-NMDAR encephalitis has various
symptoms and frequency of seizures, the MRI is usually
normal in most cases. Previous studies have shown that the
proportion of MRI abnormalities is less than 50%, with most
of these abnormalities presenting T2 and fluid-attenuated
inversion recovery (FLAIR) hyperintensity [49]. Lesions can
be widely found in the cortex and subcortical white matter
area; the most common is the temporal lobe, especially the
medial temporal lobe (MTL), followed by the frontal lobe,
and others include the thalamus, basal ganglia, cerebellum,
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and brainstem [50–53]. +e only prognostic MRI finding in
this type of encephalitis is progressive cerebellar atrophy. A
long-term follow-up study found that some patients de-
veloped reversible diffuse cerebral atrophy and progressive
cerebellar atrophy which is irreversible and is closely as-
sociated with a poor long-term prognosis [54]. Recurrence
of encephalitis can be manifested as isolated atypical
symptoms, suggesting involvements of the brainstem and
cerebellum, but recurrence is not associated with abnormal
MRI manifestations [55].

Some scholars confirmed that the functional connectivity
of bilateral hippocampus decreased in resting state fMRI, and
DTI revealed widespread changes in the white matter, espe-
cially in cingulate gyrus, which was related to the severity of the
disease [28, 56]. In the brain functional activity analysis of 17

patients with anti-NMDAR encephalitis, the decrease of am-
plitude of low-frequency fluctuation values in the left pre-
cuneus, bilateral posterior cingulate gyrus, and cerebellum
could be observed [57]. Leptomeningeal contrast enhancement
was also observed in some patients [49]. A neurometabolic
study showed that in a 31-year-old woman, MRS revealed a
hypoglutamatergic state in the left prefrontal cortex, and the
increasedN-acetylaspartate (NAA) concentration was detected
only in the left hemisphere with low metabolism [58]. +e
decrease of NAA concentration in the basal ganglia and
thalamus was also observed on MRS, and the NAA signal
returned to normal after the clinical symptoms subsided [22].
In a male patient who was admitted to hospital with epilepsy
and was finally diagnosed with anti-NMDAR encephalitis,
MRS indicated a decrease in NAA, and SPECT showed

Table 1: Types and imaging characteristics of antibodies related to AE.

Antibody types
MRI

PET SPECT
Regular MRI fMRI

NMDAR
antibody

T2/FLAIR hyperintensity in
the cortex and subcortical

white matter areas, including
temporal lobe, cerebellum,
thalamus, basal ganglia, etc.

Bilateral functional
connectivity of

hippocampus decreased.
DTI revealed widespread
changes in white matter.
+e decrease of NAA is

related to clinical
improvement

A high to low metabolic
gradient from the frontal lobe

to the occipital lobe

Hyperperfusion in basal
ganglia and cortex,

especially frontal cortex

Limbic
encephalitis-
related
antibodies

T2/FLAIR hyperintensity in
MTL. MTL and hippocampal
volume from swelling to

atrophy

Extensive damage to brain
network connections. MRS
showed that NAA decreased
and lactate peak increased

MTL hypermetabolisma is the
most common manifestation

Hypoperfusio-n in the
frontal lobe, parietal lobe,
thalamus, and cerebellum

GABAAR
antibody

Multifocal cortical-
subcortical T2/FLAIR

abnormalities,
predominantly involved

temporal and frontal lobes
but also basal ganglia and

other regions

MRS showed elevated
lactate signals and Lac/

creatine ratio in the voxel of
interest

— —

CASPR2
antibody

T2/FLAIR hyperintensity in
MTL and diffuse meningeal

enhancement. Bilateral
hippocampal and generalized

cortical atrophy

—
Temporal hypermetabolism,
temporomandibular, frontal
and diffuse hypometabolism

—

GAD antibody

Acute/subacute lesions
usually presented as

temporal lobe encephalitis
with high T2/FLAIR signal
and swelling of unilateral or
bilateral medial temporal
structures. Hippocampal
atrophy is associated with

drug-resistant temporal lobe
epilepsy

DTI showed wide range of
effects in various regions of

brain

Multiple hypermetabolism in
brain tissue, mainly in the
frontal or temporal lobes

—

Anti-Hu
antibody

+e most common
abnormality on MRI was T2/
FLAIR hyperintensity in the
temporal lobe and showed
multifocal subcortical/

subcortical lesions in patients
with SCLC

—

High metabolism in one or two
temporal lobes, only a small

number of brain MRI cases are
related to PET

SPECT scan revealed
asymmetric cortical
activity, but distinct

seizure focus could not be
identified
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hyperperfusion in the right temporooccipital territory [59].
+ese findings are progressive reversibility with clinical im-
provement [60]. +e SPECT in patient with anti-NMDAR
encephalitis also indicated hyperperfusion in the basal ganglia
and cortex, especially in the frontal cortex [56].

+e correlation between FDG-PET findings and epi-
leptic activity is always direct. Compared with MRI with
poor sensitivity, FDG-PET showed more evidence in
detecting the progressive stages of anti-NMDAR encepha-
litis [61]. +e metabolic changes on FDG-PET vary widely
and involve all the cerebral lobes, including the temporal and
occipital lobes, insular cortex, basal ganglia, hippocampi,
striatum, caudate nuclei, cerebellum, and brainstem
[51, 62–64]. +e FDG-PET images of anti-NMDAR en-
cephalitis-associated epilepsy showed a pattern of decreased
metabolism from the front to the back, that is, high
metabolism in the frontal lobe, temporal lobe, and basal
ganglia and low metabolism in the parietal occipital lobe,
and the metabolic pattern could change with disease pro-
gression, treatment, and follow-up [63]. During the acute
and subacute phases, antibody levels were high in all pa-
tients, and FDG-PET indicated severe hypermetabolism in
the frontal, temporal cortex, and basal ganglia and hypo-
metabolism in bilateral occipital lobes; in the early stage of
recovery, diffuse cortical metabolism was the main feature,
and the antibody levels of these patients were weak and
positive at the same time; during the recovery period, ab-
normal metabolism and antibody levels returned to normal
[61, 63, 65]. +e comparison of FDG uptake in patients and
healthy probands showed the cortical anteroposterior gra-
dient and increased uptake in the striatum [64]. During the
treatment, the deterioration of brain metabolism occurred
when the clinical condition deteriorated, which was ac-
companied by severe extensive cortical hypometabolism and
basal ganglia hypermetabolism [66]. Focal hypermetabolism
of the left temporal lobe can be observed in the context of
decreased diffuse cortical uptake, as the patient was in a
long-term epileptic state throughout the course of the dis-
ease [61]. It is important to note that the manifestations of
FDG-PET could be almost normal in patients without ob-
vious clinical abnormalities and negative antibody recovery
after treatment, but it may become abnormal again with the
recurrence of the patient’s condition; these abnormal
manifestations include previous or new ones, and dynamic
monitoring of FDG-PET showed a parallel relationship
between cerebral glucose metabolism and clinical im-
provement [58, 61, 66].

3.2. Limbic Encephalitis-Related Antibodies. Autoimmune
limbic encephalitis is an inflammatory disease of the central
nervous system that mainly involves the MTL [67]. Al-
though the types and techniques of antibody testing have
improved, there are still a number of patients who are
antibody-negative and can get a certain degree of clinical
improvement by immunotherapy [68]. In the absence of
antibody test results or negative antibody detection, LE can
be diagnosed by clinical symptoms and abnormal T2/FLAIR
high signal intensity of bilateral brain parenchyma highly

limited to MTL on MRI [69]. +e related autoimmune
antibodies mainly include AMPAR, LGI1, and GABABR
[42].

3.2.1. AMPAR Antibody-Related AE. +e α-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is
a type of excitatory ionotropic glutamatergic receptor, which
participated inmajority of rapid excitatory synaptic transmission
activities in the brain. Anti-AMPAR encephalitis patients con-
tain antibodies against GluR1/2, which changes synaptic local-
ization and number of AMPARs [70]. Anti-AMPAR selectively
eliminated the surface and synaptic AMPARs and caused the
amplitude and frequency of the microexcitatory postsynaptic
current in neurons induced, resulting in the steady-state decrease
of inhibitory synaptic transmission and the enhancement of
intrinsic excitability, which may be an important cause of
memory impairment and epilepsy [71, 72].

AMPAR antibody-associated encephalitis is relatively
rare in AE and is often associated with MTL abnormals on
MRI [73, 74]. In a 66-year-old woman with anti-AMPAR
encephalitis and diabetes mellitus, MRI showed only a few
high-intensity punctate lesions in the white matter, but
FDG-PET revealed a wide range of low metabolism areas
including the frontal, parietal, and temporal para-
hippocampal areas [65]. Anti-AMPAR encephalitis with
generalized seizures was closely associated with sustained
hypermetabolism of left hippocampal FDG in FDG-PET
[75]. In a pregnant woman with anti-AMPAR encephalitis,
the initial brain MRI showed bilateral marginal encephalitis,
but with clinical progression, rapid brain atrophy appeared
on MRI, and extensive cortical cortex, caudate metabolism,
and brain stem perfusion were observed on FDG-PET [74].
Analysis of FDG-PETwas performed in 2 patients with anti-
AMPAR encephalitis without seizures. One patient pre-
sented with bilateral cerebellar hypermetabolism and the
other with total cortical hypometabolism [76]. +e meta-
bolism of FDG in the brain is correlated with clinical
manifestations, and abnormal metabolism turned to normal
after antiepileptic and immune treatment [65, 75]. Due to
the low incidence of anti-AMPAR encephalitis, current
functional imaging studies are limited to PET imaging, and
further SPECT and fMRI studies are needed.

3.2.2. GABABR Antibody-Related AE.
Gamma-aminobutyric acid (GABA) is an inhibitory neuro-
transmitter that exists in the CNS, which can decrease the
excitability of neurons and plays a significant role in the reg-
ulation of muscle tone. +e GABABR is a G protein-coupled
receptor composed of two subunits, GABA-B1 and GABA-B2,
both of which are essential for the receptor to perform its
functions [77]. GABABR antibodies bind to the extracellular
domain of the GABA-B1 subunit, which is an inhibitory re-
ceptor associated with seizure and memory dysfunction when
disrupted [78]. GABABR antibody-associated encephalitis is
characterized by epilepsy and is associatedwith other conditions
such as opsoclonus-myoclonus syndrome, ataxia, and small-cell
lung cancer [78, 79].
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MRI findings in most cases of GABABR encephalities
showed T2/FLAIR hyperintensity in medial temporal lobes
[73, 78, 80]. Atrophy and hypointensity of the MTL were
also found in rare cases [81]. In a prospective study of 15
patients, all patients developed seizures, and in 13 patients,
the seizures were the presenting symptom. MRI indicated
MTL T2/FLAIR hyperintensity in 10 patients, increased
FLAIR signal in the corpus callosum in 1 patient, and normal
in 4 patients [78]. MRI findings can reflect the progress of
the disease to a certain extent. +e involvement of the limbic
system in the group with poor prognosis is more extensive
than that in the group with good prognosis [80]. MTL
hypermetabolism is the most common manifestation in
FDG-PET [82]. A 55-year-old male presented with pro-
gressive seizures at 3 weeks with a high anti-GABABR
antibody titer in CSF. FDG-PET showed significant MTL
hypermetabolism and hypometabolism in other parts of the
brain, but there were no related abnormal findings on MRI
[83]. SPECT revealed that the hypoperfusion areas were
consistent with the high expression area of GABABR, and
the uptake of the motor area and left temporal lobe was
increased, which may be related to convulsive seizures and
tongue movement disorder, and all areas showed normal
absorption following corticosteroid treatment and neuro-
logic improvement [84]. Anti-GABABR encephalitis in MRS
also suggested inflammatory changes, mainly manifested as
decreased NAA and elevated lactate peaks [85].

3.2.3. LGI1 Antibody-Related AE. Leucine-rich glioma-
inactivated 1 (LGI1) is a secreted neuronal protein that
interacts with voltage-gated potassium channels Kv1.1 to
perform its functions. +e patient’s antibodies destroy the
LGI1 signal transduction around synapses, leading to
neuronal overexcitement and reduced plasticity [86]. Anti-
LGI1 encephalitis is the second most common type of au-
toimmune encephalitis known, which can lead to memory
impairment and various forms of seizures, among which
faciobrachial dystonic seizure (FBDS) was representative to a
certain extent [87, 88]. LGI1 gene mutation is associated
with autosomal dominant temporal lobe epilepsy that sei-
zures can be well controlled by antiepileptic treatment [89].

MRI abnormalities inMTL at the early stage of the disease
are an important basis for the diagnosis of anti-LGI1 en-
cephalitis [90, 91]. MRI abnormalities in anti-LGI1 enceph-
alitis are most common in MTL and basal ganglia with T2/
FLAIR hyperintensity [90, 92–95]. Other manifestations may
also involve extratemporal structures which include insula,
thalamus, and frontal cortex; however, cortical involvement
beyond the limbic region on MRI is rare [90, 94–96]. MRI
findings are abnormal in patients with FBDS, usually located
in the basal ganglia, in which T1 hyperintensity can be a useful
biomarker for FBDS [97, 98]. Radiologic progression was also
noted. Most patients showed T2/FLAIR hyperintensities on
conventional MRI in the hippocampus during the acute phase
of the disease [91]. Changes inMTL and hippocampal volume
from swelling to atrophy were observed during the follow-up,
and anti-LGI1 encephalitis can be considered as a potential
cause of MTL sclerosis [92, 99, 100].

+e results of the fMRI study on 27 sufferers with anti-
LGI1 encephalitis showed that the disease had extensive
damage to brain network connections, including the change
of the brain default mode network, and it suggested that the
hippocampal damage and the increase of brain default mode
network connections might be a compensation mechanism
for memory damage [91].

+e PET-CT obtained in the acute disease stage often
showed FDG hypermetabolism in the affected area. In a
study of 18 anti-LGI1 encephalitis patients with seizures,
abnormalities were found in 50% of patients and most
commonly involved the middle temporal lobe [94]. Even if
MRI indicated no structural changes in the brain, abnormal
FDG uptake could be seen on PET [101]. +e hyperme-
tabolism of bilateral temporal lobes shown in the PET-CTof
the studied patients corresponded to the patient’s seizure
pattern [99]. Hypermetabolism in the striatum and cere-
bellum was also observed [52, 102]. +ere was a significant
correlation between anti-LGI1 encephalitis with FDBS and
basal ganglia [100]. In a study, five out of the eight patients
had hypermetabolic abnormalities in basal ganglia [101].
One case of anti LGI1 encephalitis complicated with FDBs
showed hyperintense T1 signal in basal ganglia on MRI,
while hypermetabolism was found in the same area on PET
[98]. However, the location of the MRI results is not always
consistent with that of the FDG-PET, and this is a hint that
the LGI1 antibodies may affect sugar metabolism and the
hippocampus structure through two different steps [94].

3.3. Other Antibodies

3.3.1. GABAAR Antibody-Related AE. GABAARs are a class
of ligand-gated ion channels, and its main epitope targets
were the α1/β3 subunits of the GABAAR [103, 104]. +e
antibodies caused a decrease in synaptic GABAAR selec-
tivity, and high antibody titers in CSF and serum are as-
sociated with brain parenchymal lesions with seizures and/
or intractable status epilepticus [105]. Compared with
adults, children were more likely to have generalized seizures
in GABAAR antibody-associated encephalitis; this disorder
is severe, but most patients respond to treatment [104].

MRI abnormalities in most cases of anti-GABAAR ence-
phalities showed not only multifocal cortical-subcortical T2/
FLAIR abnormalities and predominantly involved temporal and
frontal lobes but also basal ganglia and other regions [104, 106].
Epileptic persistence accompanied with extensive cortical-sub-
cortical MRI abnormalities and limbic involvement occurs and
is often accompanied by stiff-person syndrome [105, 106]. MRI
pathologies are associated with disease progression and can be
resolved completely after early immunoregulatory therapy [106].
In febrile infection-associated epileptic syndrome caused by
GABAAR antibody with refractory status epilepticus, MRI re-
mains consistently negative over the course of the disease,
despite the epileptic discharge shown by electroencephalogram
[107]. In a 67-year-old woman with anti-GABAaR encephalitis,
MRI demonstrated a multifocal cortical-subcortical lesion, and
MRS showed elevated lactate signals and Lac/creatine ratio in
the voxel of interest [108].
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3.3.2. CASPR2 Antibody-Related AE. Contactin-associated
protein 2 (CASPR2) is a transmembrane axonal protein
localized at the juxtaparanodes of myelinated axons, a
specialized region between axons and myelinating glial cells,
and contributes to the jump conduction of action potential
[109, 110]. CASPR2 autoantibodies are predominantly IgG4,
which target multiple epitopes on the extracellular domain
of the protein and destroy the combination of CASPR2 with
contactin-2; it may interfere with the accumulation of of
voltage-gated potassium channel (VGKC) at juxtaparanodes
and leading to hyperexcitability of peripheral nerves
[110, 111]. CASPR2 antibodies can also bind to hippocampal
inhibitory interneurons at the presynaptic level and have a
disruptive effect on inhibitory synapses [112]. Seizure is the
first symptom, and sometimes, it is the only clinical man-
ifestation in some CASPR2 antibodies positive patients;
immunotherapy has a good effect on clinical improvement
[113]. Patients can have a variety of seizures, including
generalized tonic-clonic, which is the most common form of
seizures, and the rest also includes simple partial seizures,
complex partial seizures, and even epileptic persistence
[113, 114].

MRI is a highly sensitive and specific predictor for
CASPR2 encephalitis [115]. MRI abnormalities in anti-
CASPR2 encephalitis are most common in MTL with T2/
FLAIR hyperintensity [114, 116, 117]. Such abnormal
changes in T2 can be restored to normal after immuno-
therapy [115]. Bilateral hippocampal atrophy was observed
in the first MRI analysis in 13.3% of patients [114]. Gen-
eralized cortical atrophy and diffuse meningeal enhance-
ment were also found in a small number of patients
[113, 117].

In a retrospective study, FDG-PET was performed in 35
patients with CASPR2 autoantibodies-related diseases, of
which 85.7% was abnormal, which commonly included
temporomandibular hypometabolism (36.7%), frontal
hypometabolism (20%), temporal hypermetabolism (16.7%),
and diffuse hypometabolism (10%) [118]. FDG-PET showed
reduced FDG uptake in one case of anti-CASPR2 enceph-
alitis with generalized seizures, especially in orbitofrontal
regions bilaterally, as well as in bilateral anterolateral
temporal and left medial temporal regions [119]. A 72-year-
old man with positive CASPR2 antibodies presented with
hallucinations and seizures, on FDG-PET, revealed hypo-
metabolism in the left temporal and occipital cortex [120].
+e imaging findings of FDG-PET in two patients with anti-
CASPR2 encephalitis were studied retrospectively: one pa-
tient had hypometabolism in association cortices and hy-
permetabolism of striata and the other showed normal [52].
+ere are no SPECT and fMRI studies on CASPR2 anti-
bodies associated with AE, and further functional imaging
studies are needed.

3.3.3. GAD Antibody-Related AE. Glutamic acid decar-
boxylase (GAD) is an intracellular enzyme expressed in
GABAergic neurons, which catalyzes the transformation of
glutamate into GABA [121, 122]. GAD antibodies interfere
with the endocytosis of GABAergic neuron vesicles and have

been proved to be related to immune response [123, 124].
Acute seizures and chronic epilepsy with temporal lobe
onset have been reported in patients with GAD encephalitis
[125, 126]. Seizure can be the only clinical symptom of it
[127]. A study on the etiologies of temporal lobe epilepsy
shows that GAD antibodies were positive in 21.7% of the
unknown etiology group, and epilepsy in patients with high
antibody titers is often drug-resistant and has been linked to
depression, memory disorders, and other autoimmune
diseases [128].

+eMRImanifestations of GAD antibodies associated to
encephalitis involve a wide range, including the thalamus,
insulae, parietal lobe, and brain stem, in addition to the most
common temporal lobes [127, 129]. Patients in the acute/
subacute setting often present with temporal encephalitis
evidenced by T2/FLAIR hyperintensity and swelling of
temporal structures [127, 130]. Hippocampal atrophy has
been found in patients with GAD positive drug-resistant
temporal lobe epilepsy [131]. Compared with the patients
with positive anti-NMDAR and anti-VGKC antibodies,
anti-GAD encephalitis showed higher FLAIR intensity in
hippocampus on postprocessed images [130]. A volumetric
analysis of serial MRIs indicated that the amygdala volume
was increased obviously within the first 12 months after the
onset of GAD encephalitis and and tended to be normal
during the follow-up period; the increase of hippocampal
volume showed no significant difference from the control
group [132]. It is worth noting that although early immu-
notherapy is helpful to avoid brain injury, MRI abnor-
malities may not be visible in patients with anti-GAD in the
early stages of acute immunoactivation [133].

DTI was used to study the changes of white matter in
anti-GAD encephalitis, and the results showed that there
was a wide range of effects in various regions of the brain,
including wide changes of fractional anisotropy and all
diffusivity parameters, and lesions with a trend toward a
negative correlation of figural memory performance with
diffusivity parameters were mainly appeared in the right
temporal lobe [134].

+e relevant FDG-PET results showed that high meta-
bolism corresponds to early swelling of the lesion paren-
chyma, and low metabolism corresponds to atrophy at the
later stage of the lesion process [127]. In patients with anti-
GAD encephalitis, FDG-PET showed multiple hyperme-
tabolism in brain tissue, mainly in the frontal or temporal
lobes [127, 135]. When patient presents with cognitive
decline, FDG-PET indicated bifrontal hypometabolism and
hypoperfusion [136].

3.3.4. Anti-Hu Antibody-Related AE. Anti-Hu antibody is a
kind of antinuclear antibody that is related to a variety of
tumors, including neuroendocrine tumor of the duodenum,
neuroblastoma, and small cell lung cancer (SCLC)
[137–139]. +e paraneoplastic neurological syndromes as-
sociated to anti-Hu are severe and have no effective treat-
ment. Its pathogenicity is believed to be related to nerve cells
death and T cell immune response [140, 141]. Epilepsia
partialis continua and intractable epilepsy are associated

6 Contrast Media & Molecular Imaging



with Hu-ab [138, 142, 143].+emanagement of epilepsy was
difficult in those epileptics without cancer-received anti-
epileptic drugs and immunotherapy [144].

When epilepsy occurs in patients with anti-Hu enceph-
alitis, the most common abnormality on MRI was T2/FLAIR
hyperintensity in the temporal lobe [19, 138, 142, 144]. In a
boy with anti-Hu encephalitis, his MRI had no abnormality at
the time of paroxysmal ataxia at first, but T2/FLAIR
hyperintensity in the temporal lobe appeared after intractable
epilepsy, and this change was consistent with electroen-
cephalogram [142]. In patients’ combination with SCLC,MRI
showed multifocal subcortical/subcortical lesions with T2/
FLAIR hyperintensity without any contrast enhancement in
T1-weighted images, and with the development of the disease,
brain atrophy and ventricular enlargement may occur [145].
Abnormalities in T2 may represent the sequelae of recurrent
seizures, and changes from focal to multifocal may be ob-
served in the course of the disease [146].

In the case of paraneoplastic limbic encephalitis, FDG-
PETusually shows high metabolism in one or two temporal
lobes, but only a small number of brainMRI cases are related
to FDG-PET [147]. FDG-PET is particularly useful for di-
agnosis, recurrence, and evolution of tumors for anti-Hu-
related AE [145, 147]. When patients with anti-Hu para-
neoplastic syndrome developed partial status epilepticus,
SPECT scan revealed asymmetric cortical activity, but could
not identify obvious epileptic foci [148].

+ere are also some autoantibodies related to AE, such as
those related to recombinant dipeptidyl peptidase 6, Ma2,
mGluR5, and so on [7]. However, there are few reports or no
specific manifestations on neuroimaging; so, we will not list
them in this review.

4. Conclusions and Future Perspectives

+e current diagnosis of AE relies too much on antibody
detection and immunotherapy response. However, many
institutions are not easy to carry out antibody detection, and
it takes some time to obtain the test results, and it is not easy
to obtain the information of immunotherapy response in the
early stage. When the status of autoantibodies is not clear,
clinical syndrome and imaging findings can determine the
diagnosis of probable or definite autoimmune encephalitis
[69]. +erefore, the value of convenient imaging in the
diagnosis of AE should be paid more attention. MRI and
PET are important imaging methods for detecting paren-
chymal lesions, and they have their own advantages and
disadvantages. MRI is more readily available and is essential
for preoperative evaluation of epileptic lesion resection [20].
Due to the wide popularity of magnetic resonance, many
large sample data can be obtained, and sometimes, PETdoes
not seem particularly important. One study showed that
anti-LGI1 LE affects a wide range of brain regions, including
the medial temporal lobe and basal ganglia, and these
changes can be detected by head MRI without the need for
PET/CT [96]. Multiple studies have found that PET is more
sensitive than MRI because it can be abnormal in patients
with normal MRI, and it is a trend toward that PETcould be
better used as an early biomarker for AE, so that treatment

can start in the early phase [30]. Region-specific changes in
brain FDG uptake occurred throughout childhood; so, age-
specific adjustments were necessary in the statistical analysis
of studies comparing FDG images of children’s brains [149].
Considering the characteristics of the two technologies,
simultaneous PET/MRI combines metabolic information of
PET to localize the abnormality with high-resolution
structural and functional information of MRI and holds the
dual advantage of providing PETandMRI in single temporal
as well as spatial domain [150].

At present, there are still some deficiencies in the re-
search of functional imaging. On the one hand, there is a lack
of large-scale prospective research on the causal relationship
between brain dysfunction and autoimmune epilepsy. On
the other hand, for some antibody types, due to the lack of
functional imaging data, AE related to AMPAR, GABAAR,
and CASPR antibodies, there is still a lack of SPECT- and
fMRI-related research, so specific brain functional imaging
changes cannot be obtained. +erefore, further large-scale
clinical imaging research is needed in the future.

Precision medicine is extremely important in modern
clinical medicine. It is an ideal goal that involves early ac-
curate diagnosis of disease and customizes the optimal
treatment plan. Because delayed immunotherapy is asso-
ciated with poorer prognosis and higher mortality, the di-
agnosis of AE requires consideration of multiple factors.
Antibody status as the only criterion for early diagnosis is
clearly unrealistic. Convenient and fast neuroimaging can be
used as an essential reference index for the diagnosis of AE.
Both structural and functional neuroimaging techniques are
particularly important in diagnosing and assessing disease
progression. According to the current research, there is a
tendency to combine the two to make better clinical
decisions.
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2e most common mesenchymal tumors are gastrointestinal stromal tumors (GISTs), which have malignant potential and can
occur anywhere along the gastrointestinal system. Imaging methods are important and indispensable of GISTs in diagnosis, risk
staging, therapy, and follow-up. 2e recommended imaging method for staging and follow-up is computed tomography (CT)
according to current guidelines. Artificial intelligence (AI) applies and elaborates theses, procedures, modes, and utilization
systems for simulating, enlarging, and stretching the intellectual capacity of humans. Recently, researchers have done a few studies
to explore AI applications in GIST imaging. 2is article reviews the present AI studies in GISTs imaging, including preoperative
diagnosis, risk stratification and prediction of prognosis, gene mutation, and targeted therapy response.

1. Introduction

2e most frequent mesenchymal tumors from the gastro-
intestinal system are gastrointestinal stromal tumors
(GISTs), with a prevalence of 14–20 cases per million [1].
GISTs can occur anywhere in the gastrointestinal system,
with 50–60% located in the stomach, 30–35% sited in the
small intestine, 5% originated in the colon and rectum, and
less than 1% in the esophagus [2]. 2e surgical operation is
the first treatment way for GISTs with malignant potential.

Imaging methods are important and indispensable of
GISTs in diagnosis, staging, follow-up, and surveilling
adjuvant therapy response [3]. 2e recommended imag-
ing method for GISTs classification is computed tomog-
raphy (CT) according to current guidelines [4], while
magnetic resonance imaging (MRI) or enhanced endo-
scopic ultrasonography (EUS) could be replacements for
iodine allergic or pregnant patients, [18F]-fluorodeox-
yglucose positron emission tomography (PET)–CTcan be

conducive for early phase monitoring of tumor response
to tyrosine kinase inhibitor (TKI) therapy [4].

At present, the clinical images practice mainly de-
pends on the subjective interpretation by radiologists of
morphological signs such as the location, margin, con-
tour, size, attenuation, growth type, and enhancement
degree. With the application and popularization of high-
end multislice spiral CT, high-quality images containing
rich digital information are available and prevalent,
promoting artificial intelligence (AI) techniques to mine
and process the big data deep in the images. Recently, an
explosion of AI research emerged, particularly in the
medicine field.

Recently, researchers have reported a few studies ex-
ploring the AI applications in GISTs imaging, including
preoperative diagnosis, risk stratification and prediction of
prognosis, gene mutation, and targeted therapy response.
2e current article aims to review the AI imaging studies in
GISTs in relation to these four aspects.

Hindawi
Contrast Media & Molecular Imaging
Volume 2020, Article ID 6058159, 8 pages
https://doi.org/10.1155/2020/6058159

mailto:songlab_radiology@163.com
https://orcid.org/0000-0003-3335-3948
https://orcid.org/0000-0002-6900-0696
https://orcid.org/0000-0001-5611-382X
https://orcid.org/0000-0001-9182-1709
https://orcid.org/0000-0001-6715-0183
https://orcid.org/0000-0002-7269-2101
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6058159


2. Artificial Intelligence

As an information science, AI applies and elaborates theses,
procedures, modes, and utilization systems for simulating,
enlarging, and stretching intellectual capacity of humans [5].

Lambin et al. [6] initially proposed the notion of
radiomics in 2012, which consisted of a computer-aided
operating instrument derived from a great number of fea-
tures from radiographic images. 2is technique as a new
imaging technology, which can provide objective image
information that cannot be recognized by the naked eye, is
more detailed than the personal image interpretation by
radiologists’ vision. And texture analysis can quantitatively
evaluate and extract the characteristics of tumors and can
assess tumor heterogeneousness related to histopathological
components in tumor tissues and mainly influenced by
tumor neovascularization (vascularization formation and
vascular permeability), tumor cellular structure, tumor cell
density, and microcirculation deformation. Such quantita-
tive-feature-based method could be of clinical associations
of tumor diagnosis, staging, prognosis, and therapy.

In detail, radiomic texture is mainly composed of sta-
tistical texture, morphology-based texture, and transform-
based texture. 2e statistical texture is formed on assessing
texture as a measurement of the gray levels statistical
properties based on processing the region of interest (ROI).
It mainly includes (1) first-order statistical features,
depicting distributed pixels in an image, such as histogram
analysis; (2) second-order statistical features, as well as
texture features, represent spatial relations between pixels
and corresponding pair ratios, including gray-level cooc-
currence matrix (GLCM), gray-level difference matrix
(GLDM), gray-level run-length (GLRLM), gray-level size
zone matrix (GLSZM), and neighborhood gray-tone dif-
ference matrix (NGTDM); (3) higher-order statistical fea-
tures refer to the features extracted after applying filters or
mathematical transformations for images, such as first-order
and textural features extracted from the wavelet-filtered,
Laplacian of Gaussian (LoG)-filtered, or local binary pattern
(LBP) filtered images.2e transform-based analysis includes
texture characteristic extraction based on wave spectral
statistical properties of and characterization of the global
periodicity of gray level by high-energy apices and their
varied types in the spectrum.

Morphology-basing method incorporates the decom-
position of an image into basic units and the determination
of the rules required to assemble a given image based on
these basic units. All of the above methods consist in various
descriptors. 2e detailed descriptions are presented in Ta-
ble 1. In a simplistic way, a representative radiomics
workflow is composed of four tasks: image attainment,
image segmentation, parameter extraction, and statistical
analysis (Figure 1).

Radiogenomics, as well as an encouraging novel ex-
emplification, has the potential to extend and expand tra-
ditional radiographic images into the field of molecular and
genomic imaging [7]. It aims to correlate image features with
patterns of gene expressions, gene mutations, and any other
genes associated traits, promoting a deeper level explanation

of tumor heterogeneity and the development of imaging
biomarkers [8].

Deep learning is a group of machine learning algorithms
extracting deep features of the input image via multiple
hidden layers [9]. Such multilayered computational models
can progressively learn representations of data during
multilevel abstraction [10]. A neural network is an
embranchment of machine learning that organizes the basic
structure of a deep learning network [11]. 2e models of
deep learning algorithms used in medical imaging pro-
cessing include Sparse Autoencoder, Convolutional Neural
Network (CNN), Deep Belief Network, Restricted Boltz-
mannMachine, and Residual Neural Network (ResNet) [10].
Among various deep learning networks, CNN is the most
popular architecture, and a further improved neural network
included more computational layers.

3. Diagnosis and Differential Diagnosis

GISTs represent a distinct histopathological group of sub-
epithelial tumors. A broad range of other mesenchymal
tumors can also manifest similar imaging features with
GISTs, while the two groups have distinguished prognosis
and treatment. Previous studies have differentiated GISTs
from other mesenchymal tumors based on tumor location,
margin, contour, size, attenuation, growth type, enhance-
ment degree, and necrosis [12–17]. However, it is still dif-
ficult to discriminate GISTs with a diameter less than 5 cm
from other mesenchymal tumors, only counting on sub-
jective imaging interpretations. 2ere is a vacancy of AI
research in this area, we look forward to more AI researches
to dig new data in this field.

Clinically, the preoperative diagnosis of GISTs around
the periampullary area poses a dilemma in conventional
imaging performance. Rather, pancreatic ductal adenocar-
cinomas (PDACs), duodenal adenocarcinomas (DACs), and
GISTs differed in surgery procedures and prognosis [15–17].
Recently, Lu et al. [18] retrospectively studied 74 patients
with duodenal tumors around the periampullary area: 26
DACs, 20 DACs, and 28 GISTs. Volumetric histogram
analysis was performed on enhanced multidetector CT
images based on tumor heterogeneity. 2ey concluded that
some parameters of CT histogram analysis of periampullary
tumors could be valuable for diagnostic differentiating
DACs, PDACs, and GISTs arising from the periampullary
area. However, the sample size and tumors type involved in
this article are limited. Further researches with more sample
capacity and various kinds of tumors will reinforce AI
application in GISTs diagnosis.

4. Prediction of Risk Stratification
and Prognosis

Several risk assessment systems for postoperative recurrence
of GISTs have been proposed and evolved over the years,
including the National Institute of Health (NIH) criteria,
Armed Forces Institute of Pathology (AFIP) standard, and
National Comprehensive Cancer Network (NCCN) risk
classification. In 2008, modifications of the NIH criteria were

2 Contrast Media & Molecular Imaging



proposed, which incorporated tumor location, size, mitotic
count, and tumor rupture. 2e criteria of the recurrence risk
categorized into four groups (including very-low-risk group,
low-risk group, intermediate-risk group, and high-risk
group) and is accepted worldwide [19]. Imaging can provide
more findings related to the risk stratification of GISTs.
According to previous studies [20–24], tumor growth mode
is related to the risk, and the risk level of GISTs with exo-
phytic or mixed growth mode is high. It has also been
suggested that the enhancement type, boundary, enlarged
blood vessels, necrosis, calcification, and invasions to ad-
jacent organs are connected to the tumor risk stratification.

2e differences among the observers of subjective
evaluations urged researchers to find more stable and more
objective parameters and indicators. 2e texture analysis
could extract more information hidden from medical im-
ages, which cannot be identified by subjective visual in-
terpretation. In theory, the judgment efficiency of texture
analysis of GISTs risk stratification is better than the con-
ventional imaging [24, 25]. Nine studies have researched the
performance of CT-derived radiomic signature for risk
stratification [24–32], and one study evaluated EUS-derived

texture [33] associated with risk stratification.2e details are
summarized in Table 2. In CT-derived analysis, four studies
have applied NIH criterion or modified NIH criterion for
GISTs malignant risk classification [25–28], while three
studies were determined on NCCN guideline [24, 29, 30]
and one study without clear guideline [33] and one study
used Ki-67 expression standard [32]. Two of the four NIH
studies based on NIH risk classification only evaluated CT
textural parameters [26, 27]. 2e remaining two studies
combined and compared conventional visual CT findings
and clinical indexes models [25, 28].

In 2018, Feng et al. [26] retrospectively reviewed 90
intestinal GISTs patients. GISTs risk levels were evaluated by
CT-derived histogram features that were compared
according to modified NIH risk classification. 2ey believe
that volumetric CT texture features show the feasibility to be
biomarkers for distinguishing low-risk, intermediate-risk,
and high-risk intestinal GISTs (area under the curve
(AUC)� 0.830, P< 0.001). However, some studies have
reported contradictory results with the present study
[29, 34–36]. We speculate that the differences in ROI de-
lineation methods, and differences between enhanced and
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Figure 1: A representative radiomics workflow is composed of four tasks: image acquisition, tumor segmentation, features extraction, and
subsequent statistical analysis.2e patient in Figure 1 had a small gastrointestinal stromal tumor in the duodenum.

Table 1: Feature metrics extracted in the radiomic analysis of images.

Texture metric Method (s) Descriptors
First-order
(statistical) Histogram analysis Mean, median, kurtosis, skewness, quartiles, minimum, maximum, energy

(uniformity), entropy, standard deviation

Second-order
(statistical)

GLCM, GLDM, NGTDM, GLRLM,
GLSZM

Homogeneity, contrast, autocorrelation, prominence, maximum probability,
difference variance, dissimilarity, inverse difference moment, sum entropy, sum

variance, sum average, inertia, coarseness, busyness, complexity, texture
strength, short run emphasis, long run emphasis, gray-level nonuniformity, run-
length nonuniformity, intensity variability, run-length variability, long-zone
emphasis, short-zone emphasis, intensity nonuniformity, intensity, zone

percentage, variability, size zone variability
Transform
(statistical)

Fourier, wavelets, discrete cosine,
Gabor, law, LoG, LBP Metrics assessing magnitude, phase, direction, edge, noise, and other descriptors

Structural analysis Fractal analysis Hurst component, mean fractal dimension, standard deviation, lacunarity
Note.GLCM� gray-level cooccurrence matrix, GLDM� gray-level difference matrix, NGTDM�Neighborhood gray-tone difference matrix, GLRLM� gray-
level run-length, GLSZM� gray-level size zone matrix, LoG� Laplacian of Gaussian, LBP� local binary pattern.
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unenhanced CT-derived texture features might be associ-
ated. In this study, the numbers of some risk groups of
intestinal GISTs were limited and the author combined some
groups. Moreover, this study only applied first-order sta-
tistical radiomics features. It will require further studies to
explain the controversy.

Another research [27] constructed a radiomics model
using multiple-order statistical radiomics features based on
contrast-enhanced CT to noninvasively predict malignant-
transformation potential and mitotic indexes of GISTs. In
this research, the patients were classified as low- (including
very-low-risk GISTs, low-risk GISTs, and intermediate-risk

GISTs) and high-malignant-transformation-potential group
(high-risk GISTs) based on the NIH criterion, and the
sample size is enlarged with 333 numbers in total (training
cohort� 233 and validation cohort� 100). 2e radiomics
model showed a good predictive performance in differen-
tiating high-from low-malignant-transformation-potential
GISTs with an AUC value of 0.882 in the training group and
0.920 in the validation group.

2e above two studies have only constructed radiomics
model, and a single radiomics model could not utilize and
compare the performance of conventional image findings and
clinical information in GISTs’ risk stratification. 2e next two

Table 2: Details of 10 articles on artificial intelligence in the prediction of GISTs’ risk stratification and prognosis.

Author Year Nation Study design Sample size Extracted features of AI Software

Feng C et al.
[26]. 2018 China Retrospective 90

First-order statistics: Mean attenuation; 10th, 25th,
50th, 75th, and 90th percentile attenuation; skewness;

kurtosis; entropy
CT kinetics

Wang C
et al. [27]. 2019 China Retrospective

333
Training

cohort� 233
Validation
cohort� 100

First-order (histogram), haralick features, GLCM,
GLRLM AK

Chen T
et al. [25]. 2019 China Retrospective

222
Training

cohort� 130
Validation
cohort� 92

GLV, GLRLM, GLSZM, NGTDM, GLSZM MATLAB

Yan J et al.
[28]. 2018 China Retrospective 213 First-order (histogram) gradient features, GLCM,

GLRLM MaZda

Liu S et al.
[29]. 2018 China Retrospective 78 First-order (histogram) Image

analyzer

Zhang L
et al. [30]. 2020 China Retrospective

140
Training

cohort� 100
Validation
cohort� 40

First-order features, shape and size features, second-
order features (GLCM, GLRLM, GLSZM) features, and

haralick features
AK

Choi I et al.
[24]. 2019 Korea Retrospective 145

First-order statistics: Mean SD of mean, entropy, MPP,
skewness, and kurtosis. Geometry with Gaussian

filtration
MATLAB

Ning Z et al.
[31]. 2018 China Retrospective

231
Training

cohort� 130
Validation
cohort� 101

First-order, second-order (GLCM, GLRLM, GLSZM,
and NGTDM) features

MATLAB
PYTHON

Zhang Q
et al. [32]. 2020 China Retrospective

339
Training

cohort� 148
|Internal validation

cohort� 41
External validation

cohort� 150

First-order statistics, features of shape, second-order
features (GLCM, GLRLM, GLSZM) PYTHON

Li X et al.
[33] 2020 China Retrospective

915
Training

cohort� 680
Validation
cohort� 54
Testing

cohort� 181

First-order (histogram), second-order (GLCM,
GLRLM, GLSZM, NGTDM) and wavelet-filtered

features
MATLAB

Note. GLCM� gray-level cooccurrence matrix, GLRLM� gray-level run-length matrix, GLV� gray-level variance, GLSZM� gray-level size-zone matrix,
NGTDM�Neighborhood gray-tone difference matrix.
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studies [25, 28] compared the accuracy of CT-derived textural
parameters, subjective CT parameters, and clinical index
models in predicting risk stratification. Yan et al. [28] in-
cluded 213 intestinal GISTs patients to assess the predictive
effect of clinical and subjective imaging findings and multi-
detector CT texture findings on preoperative risk stratifica-
tion. 2ey reported that an AUC of the model combining
clinical and conventional imaging findings and multidetector
CT texture features was 0.943. 2ey deduced that CT texture
may be a useful integrated tool for preoperative risk strati-
fication of intestinal GISTs. In 2019, Chen et al. [25] con-
structed a radiomics nomogram for predicting GISTs
malignancy potential. In comparison to conventional CT
parameters and clinical indexes, the radiomics model could
discriminate low-from high-malignant-transformation-po-
tential group GISTs with a higher AUC value of 0.858. Be-
sides, the generated radiomic nomogram model achieved the
highest diagnostic performance, which showed an AUC of
0.867 and 0.847 in the internal and external cohort.

2e same predicament for the only usage of radiomics
model and limited sample size applied to these studies using
NCCN guidelines [29, 30]. Liu et al. [29] found meaningful
texture parameters from various phases in differentiating
malignancy risks GISTs based on NCCN risk stratification,
which was consistent with a previous study [25]. But the
sample size is small as no more than 100 patients, and this
study only applied first-order statistical radiomics features.
With a larger included sample size (total number� 140,
training cohort� 100 and validation cohort� 40) and vari-
ous statistical radiomics features, Zhang et al. [30] high-
lighted discriminative performance with an AUC value of
0.935 and an accuracy value of 90.2% in the validation set for
advanced from nonadvanced GISTs. Further, the radiomics
indicated satisfied discriminative performance for four
groups of GISTs risk stratification with an AUC value of
0.809 and an accuracy value of 67.5% in the validation set.
Nevertheless, these studies did not conduct a direct or in-
direct correlation among radiomics features, subjective
imaging findings, and pathological results.

So then, Choi et al. [24] evaluated and compared the
diagnostic performance of CT radiomics parameters and
visual CT inspection to predict malignancy grade and mi-
tosis index of GISTs. 2ey found the diagnostic accuracy of
special radiomics features was better than visual inspection.

However, the previous studies independently used
radiomics methods for pattern classification, without regard
to relatively global artificially predefined parameters. Re-
searchers also start to explore the GISTs classification effi-
ciency of deep features obtained by deep learning networks.
In 2019, Ning et al. [31] introduced an integrated structure
including various features applied to a radiomics model and
deep convolutional models and incorporated these features
to engage in GISTs categorization. 2e hybrid structure with
the combination of radiomics and CNNs features exhibited
better performance with an AUC of 0.882 than that of the
conventional CT features model (AUC� 0.774), radiomics
model (global features) (AUC� 0.807), and CNN model
(local features) (AUC� 0.826). As far as we can tell, this is
the initial and exclusive study to apply radiomics model and

CNNs for GISTs risk stratification, in which the radiomics
parameters are derived from a three-dimensional universal
section and deep convolutional features derived from a
regional section were combined. 2is integrated structure
enhances not merely model robustness but classifier effi-
ciency as well.

In addition, the risk-related molecules were also pre-
dicted by using radiomics methods. 2e ki-67 index is an
important marker related to cell proliferation and tumor
heterogeneity [37]. Ki-67 is signified in the majority of the
reproducing cells in high level expression, besides G0 cells,
and Ki-67 is deemed as a global risk marker of malignant
potential in GISTs [38]. Previous literature has also dem-
onstrated that expression of high level Ki-67 indexes is an
unrelated risk marker for high-malignancy GISTs [39–41]. A
multicenter study [32] has also demonstrated a nomogram
that consisted of CT-based radiomics features combined
with tumor size indicated significant performance in pre-
dicting Ki-67 indexes expression in GISTs, with respective
AUCs of 0.801, 0.828, and 0.784 in the training, internal
validation, and external validation cohort, respectively. 2is
proved that the Ki-67 indexes expression rate in GISTs was
potentially connected with the CT textural signature.

Radiomics methods extended its applicability to various
imaging modalities. For EUS-based radiomics, Li et al. [33]
performed a EUS-derived radiomics model to differentiate
GISTs of the higher-risk classification (intermediate-risk and
high-risk) from the lower-risk classification (very-low-risk
and low-risk). 2is model can promote the preoperative
diagnosis and supply a beneficial reference for clinicians.

All of the above results show that radiomics is superior to
traditional imaging description in predicting the risk
stratification of GISTs, which built a foundation for the
application of radiomics in the future. However, the existing
studies remained insufficient. Present studies only evaluated
CT-derived texture. 2e MRI-derived texture analysis may
be more potential to dig hidden information, and quanti-
tative imaging modalities may be useful in precise medical
improvement. It should also be noted that at present, the
sample sizes of most studies were limited. 2e inconsistency
of scanning parameters, scanners, image acquisition pro-
tocol, lesion segmentation, the delineation of ROI, and
statistical modeling is also presented. Selection bias of
texture parameters extraction also manifested in the sta-
tistics of the levy, which leads to the consequence that
duplication of research results be questioned. In addition,
the conclusions of small samples also brought about poor
generalization ability in specific clinical applications. Fur-
thermore, CNN based on deep learning may substantially
supplement and extend the applicability of radiomics, in the
aspects of feature library or the prediction accuracy, but its
effectiveness still remains to be verified.

5. Prediction of Gene Mutation

GISTs grow up in the interstitial Cajal cells from the gas-
trointestinal system [42], and 90% express CD117 antigen
(C-KIT) [43], a tyrosinase kinase growth factor receptor
[44]. GISTs with KIT exon 11 mutated genes are more
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responsive to imatinib therapy [45–47], while other mo-
lecular mutations respond more poorly to imatinib. In
addition, GISTs with KIT exon 9 mutations are more re-
sponsive to sunitinib. 2e connection between CT findings
and GISTs genotype has been investigated [48]. GISTs with
KIT exon 9 mutation classification have significant linkages
with tumor size more than 10 cm, a stronger enhancement
grade and greater area of tumor necrosis when compared to
those of the KIT exon 11 mutation classification (P< 0.05).

In 2018, Xu et al. [49] reported a radiogenomic study on
GISTs. 2ey included enhanced CT images of 86 GISTs and
performed texture analysis. 2ey found that texture analysis
could be of use to discriminate GISTs without KIT exon 11
mutated gene group from those with KIT exon 11 mutated
gene group. In addition, the nongastric orientation, lower
CD34 staining, and higher radiogenomic signature values
were connected with GISTs without the KIT exon 11 mu-
tated gene, which achieved satisfactory diagnostic efficiency
in the validation group (AUC� 0.904− 0.962). However, the
sample size of the training cohort and validation cohort was
69 and 17 cases, respectively, and there were only four cases
of tumors without KIT 11 exon mutation in the validation
cohort, which may have affected the accuracy of the results.
Hence, a study with a large number of patients is required to
validate these conclusions.

6. Response Evaluation of Targeted Therapy

Adjuvant TKIs therapy is suggested for patients with a high
recurrence risk of GISTs, and enhanced CT is the recom-
mend imaging method for evaluating treatment response.

2e study in [50] constructed and confirmed a predictive
nomogram for recurrence-free survival (RFS) of GISTs after
surgery without aid treatment based on deep learning (ResNet
model).2e ResNet nomogramwas investigated on enhanced
CT and clinicopathological factors including mitotic index of
tumor, tumor location, and size. Both the ResNet nomogram
and model manifested significant prognostic capabilities in 3-
and 5-year RFS in receiver operating characteristic curves.
2ey suggested that ResNet nomogram was supreme to the
existing risk stratification standards and clinicopathological
nomogram majority of the probability of exceeding reason-
able threshold probabilities.

For metastatic GISTs undergoing TKI therapy, Ekert et al.
[51] identified 25 GISTs patients with KIT and PDGFR mu-
tations. All patients underwent first-line imatinib therapy and
different TKI therapies after disease progression. CT texture
features were extracted and associated with response categories
according to the modified Choi criterion. 2ey came to the
conclusion that some of the CTtexture features (GLCM inverse
difference, GLCM inverse difference normalized, GLRLM, and
NGTDM) correlated with prognosis, progressive-free survival,
gene mutations, and treatment regimens.

7. Conclusions

Previous studies had some limitations. First, all of the above
studies were retrospective. Most of them were the single
center and the sample sizes were limited. 2e restricted

number of samples not only limited the setting of imaging
radiomics threshold standard, but also imposed restrictions
on the training of the models [52]. Second, several image
acquisition scanners and parameters were used in the same
study, which might reduce the reliability and reproducibility
of potential findings. 2ird, all the studies evaluated CT-
derived texture. MRI-derived texture analysis might have
more potential to uncover hidden information, and quan-
titative imaging modalities may be useful for improving
precision medicine. In the end, most of the significant
texture semantics are statistical terms, which lacked ex-
plainable correlations to the specific clinicopathological
significance and biological characteristics directly and lim-
ited the interpretation of AI in repeatable research and
clinical application.

2e present studies demonstrated that AI methods in-
cluding radiomics or deep learning have clinical value for
GISTs and built a foundation for future application. Con-
sidering the limitations, prospective multicenter studies with
large samples are needed. Besides, further standardization of
inspection techniques and in-depth excavation of detailed
signs will deepen our understanding of GIST imaging. 2e
development of AI imaging in PET-CT and MRI will
broaden our exploration. In the future, more AI studies and
applications are expected in preoperative prediction of
various gene mutations and evaluation of the efficacy of
targeted therapies to make continuous progress towards the
goal of individualized and accurate treatment.
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Purpose. /e effect of mifepristone for treatment of low-risk cesarean scar pregnancy (CSP) was monitored by contrast-enhanced
ultrasound (CEUS).Methods. Data were collected from 23 CSP patients with a 10-point risk score <5 (low-risk CSP) and from 23
intrauterine pregnancy (IUP) patients with a scar from a previous cesarean delivery. All patients were prescribed 75mg mif-
epristone daily for 2 days and underwent transvaginal CEUS before and after administration of mifepristone. On the third day,
uterine curettage was performed after transvaginal CEUS. Arrival time (AT), peak intensity (PI), and area under the curve (AUC)
around the gestational sac were monitored by CEUS before and after application of mifepristone, and the rate of effective
treatment was compared between the two patient groups. Results. No patients experienced side effects from either the CEUS
procedure or the mifepristone treatment. Changes in AT, PI, and AUC index from before vs. after mifepristone treatment did not
differ significantly between the two groups (all p values >0.05). /ere was also no significant difference in the rate of effective
treatment between the two groups (95.65% in the CSP group vs. 100% in the IUP group; p> 0.05). Conclusions. Based on
monitoring by CEUS, the effect of mifepristone in low-risk CSP was comparable to that in IUP.

1. Introduction

Cesarean scar pregnancy (CSP), or implantation of the
gestational sac in a hysterotomy scar, is a rare but serious
complication that can occur in a subsequent pregnancy after
cesarean delivery [1]; it is especially concerning in China [2].
Prenatal diagnosis of CSP is based on the presence of a
gestational sac at the site of the previous uterine incision and
the presence of an empty uterine cavity and cervix and thin
myometrium adjacent to the bladder [3]./e severity of CSP
has been found to correlate with clinical and sonographic
characteristics including the implantation site, blood flow
around the gestational sac, timing within gestation, and
number of previous cesarean deliveries [4, 5]. Numerous
management options for CSP have been evaluated based on
case series, including laparoscopy, uterine artery

embolization (UAE), and high-intensity focused ultrasound
(HIFU) [6–8]. However, no standardized diagnostic or
management guidelines have been published [9].

Our group has developed and validated a scoring
system to rate the severity of CSP on a 10-point scale based
on clinical indicators including thickness of the myome-
trium at uterine incision, grading of blood flow, fetal
heartbeat, location of the gestational sac, maximal diameter
of the gestational sac, and number of previous cesarean
sections [10]. To validate this scoring system, patients were
assigned a risk score based on these indicators, and
treatment modalities employed were then assessed in re-
lation to risk scores. Results showed that patients with CSP
risk scores lower than 5 were significantly less likely to need
invasive salvage treatments compared to higher-risk pa-
tients [10].
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Mifepristone is the most commonly used progesterone
antagonist [11]. In addition to producing prostaglandins to
accelerate the degeneration and necrosis of villi, mifepris-
tone can also reduce the vascular endothelial growth factor
in decidual tissue, thereby reducing blood supply to the
embryo and bringing about termination of the pregnancy
[12]. A case report showed that the approach with mife-
pristone for treatment of CSP may be a safer and less in-
vasive method [13]. By contrast, another study suggested
that mifepristone is not very effective in the treatment of CSP
[14]. /erefore, there are no commonly accepted clinical
management guidelines on the use of mifepristone for CSP.

Contrast-enhanced ultrasound (CEUS) is a safe, widely
available, and relatively inexpensive imaging technique that
uses dedicated imaging ultrasound sequences and FDA-
approved contrast microbubbles, permitting high diagnostic
accuracy [15]. CEUS is a convenient method for diagnosis of
CSP, has excellent spatial and temporal resolution, and can
be used for quantitative assessment of microcirculation
perfusion of the gestational sac [16]. Building on findings
from our previous work, we sought to quantitatively analyze
changes in microcirculation around the gestational sac using
CEUS in order to evaluate the efficacy of mifepristone in the
treatment of low-risk CSP.

2. Materials and Methods

Data were prospectively collected between July 2018 and
March 2019 from patients seen in the department of ob-
stetrics and gynecology of the Second Clinical Medical
College of Army Medical University of China. Participants
included a group of patients with low-risk CSP (10-point risk
score <5, n� 23) and an equal-sized control group of pa-
tients having intrauterine pregnancy (IUP) with scar and
electing to terminate pregnancy. Patients were excluded
from the study if they had serious diseases of vital organs
such as the heart, kidney, and lungs. Diagnosis of CSP was
confirmed by review of sonographic images. In accordance
with the “2013 revision of the Declaration of Helsinki,” all
study participants gave written informed consent regarding
study procedures and treatment modalities after the pro-
cedures had been fully explained to them.

We assessed relevant demographic and clinical charac-
teristics including age, parity, gestational age, BMI, and
remnant myometrial thickness. All patients were prescribed
75mg mifepristone daily for 2 days and underwent trans-
vaginal CEUS before and after administration of mifepris-
tone (Figures 1 and 2). On the third day, uterine curettage
was performed after transvaginal CEUS.

2.1. CEUS Examination. All patients were examined by two
obstetric ultrasound technicians with at least 5 years of
experience. All ultrasound examinations were conducted
using a Philips IU-22 system (Philips Electronics N.V.,
Amsterdam, Netherlands) with a 5–9MHz transvaginal
transducer. A 21G trocar was used to puncture the cubital
vein and establish a venous channel. Next, 2.5mL of the
contrast agent was injected, and 5mL of 0.9% normal saline

was used for tube washing. When the contrast agent was
injected, the patient began holding their breath and took a
shallow breath when required or alternatively continued
with slow shallow breathing. All patients were trained in the
required breathing regime before the contrast process. Two
minutes of ultrasound data were recorded and saved for
analysis. /e lesion area with the most evident enhancement
was identified as the region of interest (ROI), with ROIs set
as 5 mm diameter circles and remaining unchanged. /e
ROIs were located at the embryo decidua basalis. Related
parameters obtained through the time intensity curve (TIC)
included arrival time (AT, the time from injection of the
agent to the point when the first contrast bubbles appeared
in the gestational sac), peak intensity (PI, the maximal in-
tensity of the TIC), and area under the curve around the
gestational sac (AUC, the area under the TIC) [17].

Operations were ceased if vaginal bleeding exceeded
300mL, in which case uterine balloons were employed for
temporary hemostasis. It is recommended that UAE be
performed if bleeding exceeds 500mL. All study patients
were followed up for at least one month following the study
procedure; assessments included the serum β-hCG level and
presence of abdominal pain, vaginal bleeding, and fever
every month.

2.2. Evaluation of Curative Effects. Curative effects were
assessed at three months following treatment and were rated
as follows:

2.2.1. Excellent Curative Effect. Ultrasound showed no re-
sidual gestational tissue; the patient had no abdominal pain,
vaginal bleeding, or fever, and the serum β-hCG level de-
creased and returned to normal in three months.

2.2.2. Moderate Curative Effect. Ultrasound results showed
residual gestational tissue; the patient had abdominal pain,
vaginal bleeding, or fever, and the serum β-hCG level was
decreased. After recurettage or pharmaceutical treatment,
ultrasound showed no residual gestational tissue, there were
no symptoms such as abdominal pain, vaginal bleeding, or
fever, and the serum β-hCG level returned to normal within
three months.

2.2.3. Poor Curative Effect. Ultrasound showed residual
gestational tissue; the patient had abdominal pain, vaginal
bleeding, or other symptoms, and the serum β-hCG level
may have increased or decreased but did not decrease to
normal levels. After recurettage or pharmaceutical treat-
ment, ultrasound showed that the residual gestational tissue
had persisted or grown. Patients had persistent vaginal
bleeding or abdominal pain and needed further treatment
such as laparoscopic surgery or UAE.

/e total effective treatment rate was defined as the
number of patients for whom treatment was rated as ex-
cellent or moderate divided by the total number of patients
in each study group and expressed as a percentage.
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2.3. Statistical Analysis. Analyses were performed using
SPSS software version 16.0 (IBM, Armonk, NY, USA). All
variables are presented as mean± standard deviation. /e
paired t-test was used to compare patient characteristics
between the CSP and IUP groups, to compare perfusion
parameters as assessed by CEUS before vs. after mifepristone
treatment, and to compare changes in perfusion parameters
and curative effects between the two study groups. /e chi-
squared test was used to verify the efficacy of mifepristone. A
p value of <0.05 was considered statistically significant.

3. Results

3.1. Patient Demographics and Clinical Characteristics.
Patient characteristics for the CSP and IUP groups are
shown in Table 1. Mean thickness of the lower uterine
segment was significantly higher among women with IUP
(5.72± 1.65mm vs. 2.60± 1.20, p≤ 0.001). /ere were no
other significant differences between the two patient groups.

/ere were 16 patients with fetal heart activity in the CSP
group and 15 patients in the IUP group. Two days after
misoprostol administration, there were 9 patients without
fetal heart activity detected in the CSP group and 7 patients
without fetal heart activity in the IUP group (difference
between the two groups not statistically significant,
χ2 � 2.000; p � 0.368).

/ree patients in the CSP group reported pain without
bleeding, 7 patients presented with bleeding but did not
report pain, and 7 patients presented with both pain and
bleeding. In the IUP group, 4 patients reported pain with no
bleeding, 6 patients presented with bleeding but did not
report pain, and 6 patients presented with both pain and
bleeding.

3.2. CEUS Findings. CEUS perfusion quantification values
for the two study groups before and after mifepristone
treatment are shown in Table 2. In the CSP group, before
mifepristone treatment, AT is 18.42± 3.38 (s), PI is
17.68± 2.84 (dB), and AUC is 1011.03± 194.53, and after
mifepristone treatment, AT is 13.39± 1.98 (s), PI is
14.48± 2.81 (dB), and AUC is 800.33± 109.41. In IUP group,
before mifepristone treatment, AT is 18.71± 2.01 (s), PI is
17.85± 2.61 (dB), and AUC is 1041.76± 168.14, and after
mifepristone treatment, AT is 14.06± 2.85 (s), PI is
15.47± 2.44 (dB), and AUC is 878.49± 162.23. Based on TIC
analysis, AT, PI, and AUC around the gestational sac were
significantly lower in both study groups after mifepristone
treatment than before (p< 0.05; Table 2).

Forty-eight hours following administration of mife-
pristone, in the CSP group, AT, PI, and AUC changes in
blood flow around the gestational sac are 5.03± 2.97 (s),

(a) (b)

Figure 2: Findings from transvaginal contrast-enhanced ultrasonography before and after mifepristone administration in patients with
intrauterine pregnancy. (a) Before mifepristone treatment. (b) After mifepristone treatment.

(a) (b)

Figure 1: Findings from transvaginal contrast-enhanced ultrasonography before and after mifepristone administration in patients with low-
risk cesarean scar pregnancy. (a) Before mifepristone treatment. (b) After mifepristone treatment.
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0.01± 1.78 (dB), and 210.69± 121.14; in the IUP group, AT,
PI, and AUC changes in blood flow around the gestational
sac are 4.65± 3.09 (s), 0.15± 1.53 (dB), and 169.26± 74.06.
Based on TIC analysis, changes in blood flow around the
gestational sac, including AT, PI, and AUC, did not differ
significantly between the two groups (Table 3).

3.3. Evaluation of Curative Effects. In the IUP group, no
patients had vaginal bleeding >500mL during uterine cu-
rettage. One week after uterine curettage, ultrasound showed
no residual gestational tissue and no abdominal pain, vaginal
bleeding, or fever, and serum β-hCG levels returned to
normal in three months in all patients. /us, the total ef-
fective treatment rate was 100% in the IUP group.

In the CSP group, two patients had vaginal bleeding
>500mL during uterine curettage; bleeding was significantly
reduced following administration of 1mL oxytocin during
the operation, and no further treatment was needed. One
week following the operation, 6 patients had residual ges-
tational tissue, minimal vaginal bleeding, and no abdominal
pain. /ese patients were instructed to take mifepristone
orally. Among them, 2 patients underwent recurettage be-
cause there had been no evident reduction of gestational
tissue. After recurettage, ultrasound showed no residual
gestational tissue, there was no vaginal bleeding, and serum
β-hCG levels returned to normal. One patient underwent
laparoscopic resection after conservative treatment for 1
month because of persistent vaginal bleeding, continuous
enlargement of residual gestational tissue, and disappear-
ance of local muscular layer (Figure 2); there was no sig-
nificant decrease in the serum β-hCG level in this patient. In
the remaining 3 CSP patients with no abdominal pain, re-
sidual gestational tissue gradually shrank and returned to
normal within one month, and serum β-hCG levels returned

to normal within three months. /e total effective treatment
rate among CSP patients was thus 95.65% (Table 4). /e
effective treatment rate did not differ significantly between
the two study groups (χ2 � 4.000; p � 0.261).

4. Discussion

With continuing advances in research on CSP, it is now
understood that the risk posed by CSP is affected by many
factors, including the number of previous cesarean deliv-
eries, the position of implantation of the gestational sac, and
the timing within gestation [4, 5]. While numerous man-
agement options for CSP have been identified and evaluated,
no standardized diagnostic or management guidelines have
been developed [8, 9, 18]. /erefore, it is crucial to make an
accurate diagnosis and to provide prompt therapy to avoid
potentially catastrophic complications.

In our previous study evaluating the utility of a CSP risk
scoring system to predict appropriate treatment, we found
mifepristone combined with uterine curettage to be the
optimal treatment for low-risk patients (those with a risk
score <5) [10]. In the present study, we found no significant
differences in maternal age, BMI, gravidity, parity, or ges-
tational days between CSP and IUP patients, but average
muscle layer thickness in the CSP group was less than half of
that of the normal pregnancy group. Our finding of low

Table 1: Patient characteristics.

Characteristic CSP (n� 23) IUP (n� 23) t p

Maternal age (years) 32.26± 3.99 32.43± 3.78 0.152 0.880
BMI 23.12± 2.92 22.37± 3.96 −0.726 0.471
Gravidity 4.29± 1.43 4.61± 1.47 0.507 0.615
Parity 1.47± 0.51 1.52± 0.51 0.289 0.774
Diameter of gestational sac (mm) 20.40± 7.90 21.37± 11.64 0.331 0.742
Previous cesarean deliveries (times) 1.47± 0.51 1.52± 0.51 0.289 0.774
/ickness of the lower uterine segment (mm) 2.60± 1.20 5.72± 1.65 7.341 ≤0.001
CSP, cesarean scar pregnancy; IUP, intrauterine pregnancy.

Table 2: CEUS perfusion quantification before and after mifepristone treatment in CSP and IUP patients.

Group Parameter Before mifepristone treatment After mifepristone treatment t p

CSP (n� 23)
AT (s) 18.42± 3.38 13.39± 1.98 8.117 ≤0.001
PI (dB) 17.68± 2.84 14.48± 2.81 6.446 ≤0.001
AUC 1011.03± 194.53 800.33± 109.41 8.341 ≤0.001

IUP (n� 23)
AT (s) 18.71± 2.01 14.06± 2.85 7.208 ≤0.001
PI (dB) 17.85± 2.61 15.47± 2.44 4.411 ≤0.001
AUC 1041.76± 168.14 878.49± 162.23 10.961 ≤0.001

AT, arrival time; AUC, the area under the time intensity curve; CEUS, contrast-enhanced ultrasonography; CSP, cesarean scar pregnancy; IUP, intrauterine
pregnancy; PI, peak intensity.

Table 3: Changes in blood flow around the gestational sac before
vs. after mifepristone treatment in CSP and IUP patients.

Parameter CSP (n� 23) IUP (n� 23) t p

AT (s) 5.03± 2.97 4.65± 3.09 −0.424 0.674
PI (dB) 0.01± 1.78 0.15± 1.53 −1.115 0.271
AUC 210.69± 121.14 169.26± 74.06 −1.399 0.169
AT, arrival time; AUC, the area under the time intensity curve; CSP, ce-
sarean scar pregnancy; IUP, intrauterine pregnancy; PI, peak intensity.

4 Contrast Media & Molecular Imaging



remnant myometrial thickness in CSP is consistent with
results from previous studies [9] and may stem from erosion
of the muscular layer of the gestational sac when it is
implanted in the scar, resulting in thinning of the gestational
sac.

/e effectiveness of high-dose mifepristone for abortion
has been well-established [19–21]. Mifepristone influences
the human endometrium during the luteal phase by re-
ducing stromal edema, increasing venular diameter, and
causing erythrocyte and leukocyte diapedesis and focal
hemorrhage and degeneration of the stromal extracellular
matrix. /rough these mechanisms, eventual degradation of
the endometrium is initiated, leading to termination of
pregnancy.

CEUS has become a widely available and well-accepted
imaging modality in recent years. By overcoming some of
the limitations of conventional ultrasonography, CEUS
creates a significant opportunity for visualization of the
microcirculation [22]. Findings from the present study show
that perfusion parameters around the gestational sac were
significantly reduced following mifepristone treatment in
both low-risk CSP patients and women with IUP. Ac-
cordingly, it appears that mifepristone brings about medical
abortion in part through reducing microcirculation of the
gestational sac by acting on endometrial vessels. In addition,
changes in microcirculation of the gestational sac did not
differ significantly between the two study groups, suggesting
that mifepristone has the same effect on pregnancy termi-
nation in low-risk CSP as in normal pregnancy. Further-
more, both groups achieved similar curative effects through
mifepristone combined with curettage. Accordingly, more
aggressive treatments such as laparoscopy, hysteroscopy,
and UAE can be avoided through the use of mifepristone
combined with curettage in low-risk CSP patients. /is
conclusion is consistent with findings from Fu et al. [23] and
suggests that personalizing treatment options based on the
patient’s condition can reduce the physical and mental
impact of treatment on patients while also reducing the cost
of their care.

Several limitations to our study should be acknowledged.
First, this study was conducted at a single center, and our
results should be confirmed in larger multicenter studies
before being applied more widely in clinical practice. Sec-
ond, we did not look at long-term outcomes such as re-
current ectopic pregnancy or subsequent fertility. We
recommend that future studies examine these outcomes in
order to develop a richer understanding of the long-term
safety and risks of mifepristone for treatment of low-risk
CSP.

In conclusion, based on monitoring by CEUS, the effect
of mifepristone in low-risk CSP was comparable to that in
IUP, and combined with uterine curettage, we found this

treatment was safe and effective in patients with low-risk
CSP. In this patient population, such a treatment course can
be used to avoid more aggressive treatments such as lapa-
roscopy, hysteroscopy, and UAE.
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Objectives. To develop and validate a radiomics-based nomogram with texture features from mammography for the prognostic
prediction in patients with early-stage triple-negative breast cancer (TNBC). Methods. &e study included 200 consecutive
patients with TNBC (training cohort: n� 133, validation cohort: n� 67). A total of 136 mammography-derived textural features
were extracted, and LASSO (least absolute shrinkage and selection operator) was applied to select features for building the
radiomics score (Rad-score). After univariate and multivariate logistic regression, a radiomics-based nomogram was constructed
with independent prognostic factors.&e discrimination and calibration power were assessed, and further the clinical applicability
of the nomograms was evaluated. Results. Among the 136 mammography-derived textural features, fourteen were used to build
the Rad-score after LASSO regression. A radiomics nomogram that incorporates Rad-score and pN stage was constructed. &is
nomogram achieved a C-index of 0.873 (95% CI: 0.758–0.989) for predicting iDFS (invasive disease-free survival), which
outperformed the clinical model. Moreover, it is feasible to stratify patients into high-risk and low-risk groups based on the
optimal cut-off point of Rad-score. &e validations of the nomogram confirmed favorable discrimination and considerable
predictive efficiency. Conclusions. &e radiomics nomogram that incorporates Rad-score and pN stage exhibited favorable
performance in the prediction of iDFS in patients with early-stage TNBCs.

1. Introduction

Breast cancer, the most frequently diagnosed malignancy, is
the leading cause of cancer-related deaths among women [1].
Triple-negative breast cancer (TNBC), accounting for
15–20% of breast cancers [2], does not benefit from en-
docrine therapy or classic targeted therapy due to the ab-
sence of estrogen receptor (ER), progesterone receptor (PR),

and the human epidermal growth factor receptor (HER-2)
gene amplification. Despite the attempts of novel therapeutic
agents such as immune checkpoint inhibitors [3] and poly
(ADP-ribose) polymerase inhibitors [4], traditional cyto-
toxic chemotherapy is still the mainstream systemic treat-
ment option for TNBC [5], while the clinical outcomes
remain the poorest among all molecular subtypes of breast
cancers.
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Nomogram is a feasible and efficacious statistical pre-
dictive tool that incorporates multiple variables of value
[6, 7]. Seeking new prognostic factors and embedding them
into nomograms is an important research method in the
prediction of clinical outcomes. To date, nomogram pre-
dictions for the survival of TNBCs merely considered
conventional clinical and pathological risk factors [8–10].
While efforts have been made in adding novel prognostic
factors such as the expression of HIF-1α and c-myc to
nomograms [11], imaging features have not yet been ana-
lyzed. Nowadays, the advent of deep-learning-based
“radiomics” technology has allowed for the high-throughput
extraction of quantitative imaging features from images,
thus enhancing the accuracy of diagnosis and prognostic
prediction, especially for malignancies [12]. Radiomics-
based methods are being widely applied in discrimination of
confusing lesions on the images [13, 14]. Mammography,
ultrasound, and MRI are the most important diagnostic
imaging modalities in the management of breast cancers.
And imaging-based radiomics nomograms have been
constructed in the prediction of axillary lymph node me-
tastasis in early-stage breast cancer [12, 15, 16].

Mammography, mainly displayed in craniocaudal (CC)
and mediolateral oblique (MLO) views, has long been a
routine screening method for early detection of breast
cancers, typically through detection of characteristic masses,
microcalcifications, and/or architectural distortions. Apart
from distinct biological properties and clinical activation,
TNBCs might be distinguished from non-TNBCs with
radiomics features based on mammography [17]. More
importantly, mammographic features can further help in
differentiating basal-like and normal-like subtypes of
TNBCs [18]. &ese facts suggested that mammographic
radiomics features might be a potential prognostic factor for
TNBCs.

So far, there has been no radiomics-based study for the
prognostic prediction of TNBC to the best of our knowledge.
&erefore, this study analyzes the prognostic value of
mammography textures using deep-learning strategies and
constructs an optimized nomogram for the prognostic
prediction of TNBCs.

2. Methods

&is study was approved by the West China Hospital Re-
search Ethics Committee (No. 2019[887]). &e study only
involved retrospective analysis of anonymous data, and in
consequence the requirement for informed consent was
waived.

2.1. Patient Selection. Between April 14, 2010, and April 17,
2017, a total of 200 consecutive patients with TNBC who
were treated at West China Hospital of Sichuan University
were retrospectively identified from hospital database. &e
inclusion criteria were pathologically diagnosed TNBCs with
mammography performed within 3 months before surgery.
In the determination of TNBCs, statuses of ER, PR, and
HER-2 were tested with immunostaining. Uncertain status

of HER-2 amplification was confirmed by fluorescence in
situ hybridization. &e exclusion criteria were as follows: a.
ductal carcinoma in situ (DCIS) or Paget’s disease without
invasive elements; b. excisional biopsy prior to mammog-
raphy; c. neoadjuvant therapy prior to mammography; d.
nonmass lesions, i.e., abnormities visible on either mam-
mographic views, which could not be characterized as a
distinct mass because of lack of a conspicuous margin or
shape [19], including (1) calcification without clear
boundary, (2) architectural distortion, and (3) focal asym-
metric density; e. patients with negative mammography; f.
recurrent or metastatic diseases.

&e included patients were randomly divided into the
training (n � 133) and validation (n � 67) datasets at a
ratio of 2 : 1 using random number table (Supplementary
Table 1). &e clinicopathological features and treatment
strategies of the patients were retrieved from medical
records, including age, clinical stage, WHO classifica-
tion, pathological type, Ki-67 expression, type of surgery,
radiation therapy, and chemotherapy.

2.2. Follow-Up. &e primary end point of this study was
invasive disease-free survival (iDFS). After surgeries, pa-
tients were routinely followed up every six months for the
first five years and annually ever after. IDFS was defined as
the period from the date of diagnosis until the date of ip-
silateral invasive breast cancer recurrence, ipsilateral
locoregional invasive breast cancer recurrence, contralateral
invasive breast cancer, distant recurrence/metastasis, death
from any cause, and/or the date of last follow-up.

2.3. Image Acquisition and Texture Feature Extraction.
Mammography images were acquired through Mammomat
Novation DR systems (SIEMENS, German). Meanwhile,
craniocaudal (CC) and mediolateral oblique (MLO) pro-
jections of both breasts were acquired for each patient.

Two participants (XJ and JY) who were blinded to
patient information independently extracted texture
features of mammography images using Local Image
Feature Extraction (LIFEx) software (http://www.
lifexsoft.org, version 5.10) and were supervised by a se-
nior breast radiologist in case of controversies [20].
Following the software instructions (supplementary data),
the regions of interests (ROIs) on both CC andMLO views
were carefully drawn along the edge of lesions (Figure 1).
Sixty-eight features of each mammographic view were
automatically extracted, and 136 features of both CC and
MLO projections were used to form the radiomic sta-
tistical dataset for subsequent machine-learning analysis.
&e extracted texture features by LIFEx include the grey
level co-occurrence matrix (GLCM), the neighborhood
grey-level different matrix (NGLDM), the grey-level run
length matrix (GLRLM), and the grey-level zone length
matrix (GLZLM). Original data of texture features
extracted from 200 patients’ mammography images is
provided in the Supplementary Table 2. Detailed de-
scription of features is provided in the supplementary
data.
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2.4. Selection of Radiomics Signatures. A total of 136 textural
features were extracted for each patient. &e logistic regression
model with least absolute shrinkage and selection operator
(LASSO) was adopted to select value features for clinical
outcomes with nonzero coefficients (Figure 1) [21]. &e cal-
culation formula of Rad-score was subsequently constructed
with a linear combination of the selected features of value that
were weighted by their respective coefficients [22, 23].

2.5. Construction, Assessment, and Validation of the Radio-
mics Nomogram. Univariate and multivariate analyses were
conducted with Cox proportional hazards regression model.
Firstly, a univariate analysis of Rad-score and clinicopatho-
logical features for iDFS prediction was performed within the
training dataset. For each parameter, hazard ratios (HRs) and
95% confidence intervals (95% CIs) were calculated, and sig-
nificant variables (p< 0.05) in univariate analysis were then
tested in backward stepwise selection in the multivariate lo-
gistic regression model. Upon the basis of the multivariate
regressionmodel, the independent predictive factors (p< 0.05)
of iDFS were incorporated in the ultimate nomogram, through
which a risk score was calculated for each patient.

In order to assess the predictive efficacy of nomogram,
the calibration curve was drawn to evaluate the calibration of
nomogram and the concordance index (C-index) was ap-
plied to further assess its performance.

&e internal validation of the nomogram was performed
with the validation dataset. Each patient in the validation
cohort received a Rad-score with the established formula.
&e calibration curve and C-index calculation were per-
formed subsequently. Moreover, Kaplan–Meier (K–M)
survival curve analysis of iDFS based on the median value of
the radiomics nomogram was performed to stratify patients
into high- and low-risk subgroups.

2.6. Clinical Utility Evaluation of Radiomics Nomogram.
Decision curve analysis (DCA) was conducted to evaluate
the clinical significance of radiomics nomogram in

predicting iDFS in TNBC patients. More specifically, the net
benefits at ranges of threshold probabilities were calculated
in the combined training and validation cohorts.

2.7. Statistical Analysis. &e comparisons of clinicopatho-
logical features between training and validation cohorts were
assessed by Student’s t-test or Mann–Whitney U test for
continuous variables and Pearson’s chi-squared test or
Fisher’s exact test for categorical variables. &e survival
curves were displayed with Kaplan–Meier method and
differences in survival were examined using the log-rank
test. All statistical analysis were performed using R software
(version 3.5.2). &e R packages implemented included
glmnet, psych, rms, Hmisc, survival, survminer, grid, Lattice,
Formula, ggplot2, nomogramEx, tidyverse, dplyr, tidyr,
rmda, devtools, rmda, and MASS. A two-tailed p< 0.05 was
considered to be statistically significant.

3. Result

3.1. Patient Characteristics and iDFS. A total of 200 TNBC
patients were included for data analysis and patient char-
acteristics in training and validation cohorts are summarized
in Table 1. &ere were no statistically significant differences
in the follow-up duration, clinical-pathological character-
istics, or treatment strategies between the two cohorts.

As of the last follow-up, 17 patients (8.50%) had expe-
rienced disease relapse or death. &e mean iDFS was 17.58
months and the median iDFS was 16.23 (3.10 to 36.43)
months. &e 1-, 2-, 5-, and 8-year cumulative iDFS of all
patients were 2.50% (5/200), 7.00% (14/200), 8.50% (17/200),
and 8.50% (17/200), respectively.

3.2. Construction of Radiomics Score. Among the 136
mammography-derived textural features, fourteen were
used to build the Rad-score after LASSO regression (Fig-
ure 2). &e equation of Rad-score was as follows:

Image
acquisition 

ROI
segmentation 

Feature extraction
with LIFEx

Feature selection
with LASSO

1 if (I(p, q) = i, I(p + Δx, q + Δy) = j)
and I(p, q), I(p + Δx, q + Δy) ∊ ROI
0 otherwise

1/PairsROI

N−Δx

p=1 q=1

M−Δy

∑ ∑GLCMΔx, Δy(i, j) =

Figure 1: Workflow of radiomic signature building. Abbreviation: ROI� region of interest; LIFEx� Local Image Feature Extraction;
LASSO� the least absolute shrinkage and selection operator.
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Table 1: Clinical and pathological characteristics of patients in training and validation cohorts.

Training cohort (n� 133) Validation cohort (n� 67) p value
Age (years, mean± SD) 49.22± 9.87 47.79± 10.10 0.196
BMI (kg/m [2], mean± SD) 23.59± 3.32 22.88± 2.63 0.232
Follow-up (months, mean± SD) 54.98± 21.72 54.39± 22.63 0.701
Menopausal status 0.889
Premenopausal 72 39
Postmenopausal 60 29

T Stage 0.651
T1 38 23
T2-4 92 42
Tx 3 2

N stage 0.452
N0 95 44
N1-3 37 23

WHO classification 0.276
1 0 0
2 6 6
3 108 47
NA 19 14

Ki-67 status 0.710
<14% 7 2
≥14% 126 65

Type of breast surgery 0.928
Mastectomy 120 60
Lumpectomy 6 4
NA 7 3

Neoadjuvant chemotherapy 1.000
Yes 13 7
No 120 60

Adjuvant chemotherapy 1.000
Yes 127 64
No 6 3

Adjuvant radiotherapy 0.468
Yes 30 19
No 103 48

SD: standard deviation; BMI: body mass index; NA: not available.
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Figure 2: LASSO selection and the predictive efficacy of radiomics features. (a). Tuning parameter (λ) selection with minimum criteria-
based 10-fold cross-validation in the LASSO model. Binomial deviances (y-axis) were plotted as a function of log (λ) (lower x-axis), and the
upper x-axis represents the average number of predictors. &e dotted vertical lines were drawn at the optimal values of λ and the value that
gave the minimum average binomial deviance was used to select radiomics features. &e optimal λ value of 0.01 (log (λ)� −4.610) was
selected. (b) LASSO coefficient profiles of the 136 texture features. Each colored curve represents the trajectory of the change of an
independent variable. At the value selected using 10-fold cross-validation, the optimal λ resulted in fourteen coefficients.
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Rad − score � CONVENTIONAL #std C
∗
(−0.00132048)

+ SHAPE Volume (mL) CC
∗
(0.004541706)

+ SHAPE_Volume (#vx) CC
∗
(2.016478E − 19)

+ GLRLM SRE CC
∗
(−74.75245)

+ NGLDM Contrast CC
∗
(−5.214166)

+ NGLDM Busyness CC
∗
(7.177503)

+ CONVENTIONAL #min MLO
∗
(0.0006480479)

+ HISTO Skewness MLO
∗
(−0.4479433)

+ GLCM Correlation MLO
∗
(−0.7861222)

+ GLCM Entropy log10 MLO
∗
(0.4937121)

+ GLCM Entropy log2 (� Joint entropy) MLO
∗
(0.0000005908434)

+ GLRLM GLNU MLO
∗
(−0.0004946444)

+ GLZLM SZE MLO
∗
(20.57717)

+ GLZLM SZHGE MLO
∗
(0.00003251064).

(1)

3.3. Development and Validation of Nomogram.
Univariate Cox regression model analysis indicated that pN
stage (HR: 3.964, 95% CI: 1.258–12.490, p � 0.019) and Rad-
score (HR: 3.071, 95% CI: 1.949–4.840, p< 0.001) were as-
sociated with iDFS in TNBC patients (Table 2). Subse-
quently, multivariate Cox regression analysis confirmed
pN stage (HR: 3.898, 95% CI: 1.181–12.867, p � 0.026) and
Rad-score (HR: 3.052, 95% CI: 1.868–4.985, p< 0.001) as
independent risk factors for iDFS. Accordingly, the no-
mogram was constructed to quantify probability 1-, 2-, 5-,
and 8-year survival (Figure 3(a)). As assessed by the
calibration curves, the nomogram revealed good cali-
bration in the prediction of iDFS (Figures 3(b)–3(e)). &e
C-index for the radiomics nomogram was 0.873 (95% CI:
0.758–0.989) in the training cohort and 0.944 (95% CI:
0.883–1.004) in the validation cohort, while for the clinical
nomogram (N stage), it was 0.668 (95% CI: 0.531–0.805)
in the training and 0.761 (95% CI: 0.608–0.913) in the
validation cohort, indicating a better efficacy of radiomics
nomogram than clinical nomogram in predicting iDFS.

Wewere able to stratify patients into high-risk and low-risk
groups based on the optimal cut-off point obtained by the
“surv_cutpoint” function of the “survminer” R package
[24, 25]. Patients with a total score higher than or equal to
-51.53 were identified as high-risk patients (n� 21), and those
with a total score less than -51.53 were classified as low-risk
patients (n� 179). &e verification with K-M survival curves
showed that the iDFS in the high-risk group was much lower
than that in the low-risk group in both the training (p< 0.0001)
and validation (p< 0.0001) cohorts (Figure 4).

3.4. Clinical Utility. &e DCAs for the radiomics nomogram
and clinical nomogram are presented in Figure 5. &e
radiomics nomogram adds more net benefit than the “treat
all” or “treat none” strategies without limitation on the
threshold probability.

4. Discussion

Due to an advanced histological grade, a more aggressive
behavior, and the lack of effective therapeutic targets, the
clinical outcomes of TNBCs remain the poorest among all
molecular subtypes of breast cancers [26]. &e recurrence
pattern of TNBCs is distinct from non-TNBCs. &e risk of
disease relapse and death steadily continues for seventeen
years after diagnosis in non-TNBCs [27]. However, in pa-
tients with TNBCs, the risk of recurrence reached its peak in
the first three years after diagnosis and declines thereafter.
Recurrence is unlikely to occur in patients who remain
disease-free over eight years after diagnosis [27]. Moreover,
TNBCs are highly heterogeneous and they respond variously
to standard chemo-regimens, resulting in a comparatively
wide range of survival [28]. &erefore, a model that validly
predicts the survival of TNBCs has significant clinical value.
In this study, we assessed the value of radiomics features of
mammography in the prognostic prediction of TNBCs, and
the results revealed a desired effect. Accordingly, we further
established and validated a radiomics-based nomogram to
accurately predict the iDFS in TNBC patients. &e nomo-
gram contains two indicators, namely, Rad-score and pN
stage.With the addition of mammography-derived radiomic
score, the nomogram significantly improved the predictive
efficiency compared to the existing predictive models.

Mammography has been adopted as a screening mo-
dality since 1960s and is currently accepted as the most
effective screening approach for breast cancer [29, 30].&ere
are several discriminative mammographic findings on
TNBCs from non-TNBCs. &e majorities of TNBCs appear
as a mass on mammograms [31]. In a retrospective study
with 198 premenopausal patients with breast cancer, all
TNBCs were associated with a mass (n� 33) while 55% of
HER-2+ cancers and 48% of ER+ cancers were related [32].
Moreover, TNBCs tend to be less frequently associated with
calcifications on mammography compared to non-TNBCs
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Figure 3: Radiomics nomogram to estimate iDFS for patients with triple-negative breast cancers and its discrimination performance. (a)
&e radiomics nomogram was developed by incorporating pN stage and radiomics score. b−e. Calibration curves of the nomogram for the
estimation of 1-year (b), 2-year (c), 5-year (d), and 8-year (e) iDFS in the training cohort. &e diagonal line represents a perfect match
between the predicted (x-axis) and actual (y-axis) probabilities, and the colored line represents the predictive performance of the nomogram.
&e closeness between the two lines indicates the predictive accuracy of the nomogram.

Table 2: Univariate and multivariate analysis of clinicopathological-radiomics characteristics for prognostic prediction in training cohort.

Variables
Univariate regression Multivariate regression

HR (95% CI) p value HR (95% CI) p value
Age (years) 1.007 (0.951–1.066) 0.812
BMI (kg/m2) 0.950 (0.793–1.138) 0.575
Menopausal status 0.373 (0.101–1.377) 0.139
pT stage 2.199 (0.482–10.040) 0.309
pN stage 3.964 (1.258–12.490) 0.019∗ 3.898 (1.181–12.867) 0.026∗
Histological type 3.886×10−8 (0-Inf) 0.998
WHO classification 0.506 (0.065–3.956) 0.516
Ki-67 status 2.643×107 (0-inf) 0.998
Type of breast surgery 1.750 (0.226–13.560) 0.592
Neoadjuvant chemotherapy 1.774 (0.389–8.096) 0.459
Adjuvant chemotherapy 0.534 (0.069–4.138) 0.548
Adjuvant radiotherapy 1.117 (0.302–4.127) 0.868
Radiomics score 3.071 (1.949–4.840) 1.331× 10−6∗∗∗ 3.052 (1.868–4.985) 8.380×10−6∗∗∗

∗p< 0.05; ∗∗p< 0.001. HR: hazard ratio; BMI: body mass index.
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[32], potentially because TNBCs progress rapidly to invasive
disease without a period of precancerous disease with in situ
components that is sufficient to allow calcifications to form
[31]. In a study involving 91 TNBC patients, analyses of
mammographic features suggested that mass margins were
significantly different between basal-like TNBCs and nor-
mal-like TNBCs. More specifically, margins of basal-like
TNBCs were microlobulated or speculated, whereas those

normal-like TNBCs were more likely to be microlobulated
[18]. &ese results suggest that the mammographic pre-
sentation of tumors may reflect the histological character-
istics and biological behavior of the tumors with
sophisticated mechanism.

Despite the wide popularity and the huge number of ex-
aminations, which makes mammography a potential data
reservoir in big data medicine, the in-depth information
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Figure 4: Kaplan–Meier survival analyses of high-risk and low-risk patients in the training (a) and validation cohort (b).
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hidden in the images has not been taken advantage of.
Nowadays, the advent of deep learning-based radiomics
technology has improved the accuracy of disease diagnosis and
prognostic prediction [12]. Radiomics is the process of high-
throughput extraction of a large number of image features,
which converts traditional medical images into high-dimen-
sional data that can be mined, and allows the subsequent
quantitative analysis of these data [33]. It helps in the iden-
tification of tumor types, noninvasively and quantitatively
evaluates tumor biological heterogeneity [34], and therefore
optimizes disease detection, diagnosis, treatment response
prediction, and prognosis evaluation to promote clinical de-
cision-making. At present, radiomics is mainly applied into the
management ofmalignant tumors, such as liver cancer [35, 36],
lung cancer [37], and glioblastoma [38].

In breast cancers, MRI-based radiomics has been eval-
uated in the prediction of response to neoadjuvant therapy
[39–41], prediction of sentinel lymph node metastasis [42],
and recognition of molecular subtypes [43]. Moreover, ul-
trasound-based radiomics has been applied in the prediction
of axillary lymph node metastasis [12] and the differential
diagnosis between TNBC and fibroadenoma [44]. Mam-
mography-based radiomics has been adopted in breast
cancer diagnosis [45]. However, few studies have applied
radiomics in prognostic prediction of patients with breast
cancer. &is study analyzed the prognostic value of mam-
mography textures and constructed an optimized nomo-
gram that incorporated Rad-score and clinical features (pN
stage) for the prognostic prediction of TNBCs. According to
the results of univariate and multivariate regression, Rad-
score rather than T stage remained an independent prog-
nostic factor apart from pN stage. &e Rad-score was
constructed with parameters of the grey level co-occurrence
matrix (GLCM), the neighborhood grey-level different
matrix (NGLDM), the grey-level run length matrix
(GLRLM), and the grey-level zone length matrix (GLZLM).
&ese parameters take into account number, distance, angle,
etc. (supplementary data). &e Rad-score and the according
nomogram exhibited favorable discrimination and consid-
erable predictive efficiency. Based on the Rad-score and the
according nomogram, we can predict the prognosis of pa-
tients according to the texture features of tumor combined
with pN stage and optimize the surgical mode and che-
motherapy accordingly. Rad-score successfully identified
high-risk patients with poor survival outcomes who need
more intensive treatment. Compared to long-term outcome
overall survival, iDFS is an end point that avoids extended
follow-up and enables early adjustment of treatment.
&erefore, our study may provide a more effective tool for
making early personalized treatment.

&ere are several limitations of our study. First, the
retrospective nature of the study design might inevitably
bias the patient selection. Second, this is a single-center
study and the sample size was relatively small. Although
the incidence of breast cancers remains the highest among
malignancies of all sites in women, the mortality is
comparatively lower. In 2019, breast cancer accounts for
30% of the estimated new cases of cancers in the United
States, while the estimated deaths only account for 15%

[46]. As a consequence in our situation, the number of
iDFS events was even smaller which may weaken the
statistical power of the current model. &us, the nomo-
gram should be further validated in prospective studies
with larger sample size and longer follow-up. &ird, we
only included TNBC patients with a definite mass on
mammogram to allow a ROI to be drawn. &erefore, our
nomogram is not applied to TNBCs with negative
mammograms and those with lesions appeared as dis-
tortions or calcifications with no clear boundaries.

In conclusion, we established a novel nomogram that
can effectively predict the iDFS in TNBC patients by in-
corporating mammography-based radiomics features into
clinicopathological variables. &is nomogram mainly
benefits primary TNBCs with a mass-like lesion on
mammography. Still, future work is required to evaluate its
reliability as a routine clinical tool.
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