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Complex network analysis has been proved to be an effective
tool to quantify the structural properties of different complex
systems. Large-scale software projects are interesting examples
of human-made complex systems, which can be analyzed using
theories and tools in the field of complex networks [1, 2].
Generally, the complexity of these systems can be reflected both
in their structure and in their development processes. Due to
the wide adoption of open-source practices using online in-
frastructures, we can trace the software development process
and the final software structure in an easy way. &us, a large-
scale dataset about software projects can be obtained, making
an in-depth study of software projects possible. During the last
decade, complex networks have been widely applied to analyze
the topological structure and dynamics of software projects.
Many shared physics-like laws of software projects have been
revealed, such as scale-free, small-world, and fractal properties.

&e objective of this special issue (SI) is to provide a
comprehensive and latest collection of research works on the
application of complex network theory and techniques to
explore software projects. &is SI receives 34 submissions in
total, and after a fair and rigorous peer-review process, 13 of
them are published, with the acceptance rate being roughly
38.2%. &e 13 papers can be roughly categorized into three
groups according to the topics that they focus on, i.e., object-
oriented software systems, service-oriented software sys-
tems, and others.

1. Object-Oriented Software Systems

Five papers focus on the research topics in traditional object-
oriented software systems, i.e., software metrics, bug report
classification, software defect prediction, and bug triage. Li
et al. [3] reviewed the interdisciplinary research work be-
tween the fields of complex networks and software engi-
neering. &ese papers are published in the last seven years
(2013 to 2019) and mainly focus on three different research
directions, i.e., modeling, analysis, and applications of
software networks. Gu et al. [4] analyzed the coupling be-
tween classes at different levels and used a set of bipartite
software networks to represent them. Finally, they proposed
metrics to characterize the coupling between classes. Guo
et al. [5] proposed a novel approach to solve the bug report
classification problem, which combines several imbalanced
learning strategies and multiclass classification methods
together. Shi et al. [6] proposed a novel software defect
prediction model, which leverages a convolutional neural
network to learn semantic features from the source code and
applies network embedding to learn structural features from
software networks at the class level. Ge et al. [7] proposed an
improved bug triage approach for newly reported bugs,
which removes the low-quality bug reports and considers the
influence of the engagement of developers on their final
ranking.
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2. Service-Oriented Software Systems

Five papers focus on the research topics in service-oriented
software systems, i.e., service clustering, service recom-
mendation, service discovery, service selection, and service
quality measurement. Zhou and Wang [8] proposed an
approach to organize API services into different clusters.
&eir approach applies structural metrics built from service
networks where APIs and Mashups are nodes, and their
couplings are edges. Xiong et al. [9] applied NLP and graph
embedding techniques to recommend APIs for Mashup
developers. &ey extracted structural semantics from a two-
mode graph of Mashups, APIs, and their relations. Sun et al.
[10] proposed an improved web service discovery approach,
which integrates labels of web services using a neural topic
model as external semantics for these web services. Jiang
et al. [11] proposed a novel API selection approach for
Mashup development. &eir approach extracted similarities
from the profile of APIs and Mashups. Yang and Wang [12]
proposed a hierarchical aggregation model to accurately
aggregate the ratings of services.

3. Others

&is SI also contains three papers which are not related to the
topic of this SI, i.e., [13, 14], and [15]. &ese papers are
handled by the editors from the editorial board of Mathe-
matical Problems in Engineering.
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Increasing physical objects connected to the Internet make it possible for smart things to access all kinds of cloud services. Mashup
has been an effective way to the rapid IoT (Internet of -ings) application development. It remains a big challenge to bridge the
semantic gap between user expectations and application functionality with the development of mashup services. -is paper
proposes a mashup service recommendation approach via merging semantic features from API descriptions and structural
features from the mashup-API network. To validate our approach, large-scale experiments are conducted based on a real-world
accessible service repository, ProgrammableWeb. -e results show the effectiveness of our proposed approach.

1. Introduction

Internet of -ings (IoT) was firstly introduced to the
community in 1999 for supply chain management. Now, we
will arrive to the post-cloud era, where there will be large
amounts of smart things to access all kinds of cloud services,
and the capabilities of smart things can be enhanced by
interacting with other functional entities through the in-
terfaces of cloud services. Since the functionality of an in-
dividual service is too simple to satisfy the complex
requirements of users, in an IoTapplication, people prefer to
combine several cloud services together. In recent years,
mashup technology has gained great attention since it can
support the development of IoT applications by composing
existing cloud services in the form of web APIs.

Several platforms, including Seekda1, Google, and
ProgrammableWeb [1], enabled vibrant software ecosystems
between service providers and developers, where developers
utilize one or more query items such as keywords and
category. However, keyword-based service recommendation
mechanisms usually have low accuracy [2]. NLP techniques
are increasingly applied in the software engineering domain,
which have been shown to be useful in requirements en-
gineering [3], usability of API documents [4], and other

areas [5]. -us, semantic queries may get more accurate
results.

Most of API descriptions and the tags are all text. -en,
these approaches use similar semantic metrics that capture
the service similarity, such as the similarity of service de-
scriptions and tags. Indeed, most of similarity metrics, which
are proposed to quantify the similarity of service descrip-
tions and the similarity of tags, are based on the semantic
information in the text. Some works utilized structural
metrics to quantify the structural similarity where the
metrics reached the topological information extracted from
methods, attributes, classes and their couplings, etc [6–8].
However, there are very few works in which structural
similarity has been introduced to guide the service ranking.

We present AMSRSSF (automating mashup service
recommendation via semantic and structural features), a
framework that utilizes NLP and graph-embedding tech-
niques to recommend services for developers in this study.
AMSRSSF takes as input the developers’ personalized re-
quirements and structural semantic and determines which
services can be recommended for developers. Furthermore,
we show that the structural semantics can be generated from
a two-mode graph, which can describe mashups, web APIs,
and their relations. We evaluate AMSRSSF against a dataset
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of description documents including 10050 web-based ser-
vices and 7155 mashups. Our experiments demonstrate that
our approach can rank mashup services efficiently, and its
performance is better than semantic-based mashup service
ranking approaches alone.

-is paper makes the following main contributions:

(1) We propose a mashup service recommendation
approach via merging semantic features from API
descriptions and structural features from the
mashup-API network

(2) We conduct comprehensive experiments on a real-
world dataset, demonstrating the effectiveness of our
approach

-e remainder of this paper is organized as follows:
Section 2 gives a motivating scenario and presents our
approach. Section 3 describes the experiments in detail.
Section 4 discusses the related works, and Section 5 con-
cludes the paper with future work directions.

2. Automating Service Recommendation via
Semantic Features and Structural Features

In this section, we first present a scenario to illustrate the
motivation of our work in Section 2.1. -en, we discuss the
issues ofmashup service recommendation in Section 2.2; next,
we propose a mashup service recommendation approach via
semantic and structural features in Sections 2.3–2.8.

2.1. Motivation. Under Internet scenario, more structures
are presented between data objects. A typical scenario is a
knowledge graph that consists of a global relationship di-
agram of user behavior data and an item with more attri-
butes. Structural and semantic similarities characterize
different aspects of the service similarity. Indeed, two
similarities are orthogonal, which motivate our work. We
expected that better service recommendation approaches
might be proposed by using structural features. In particular,
we propose a simple but effective approach AMSRSSF to
rank mashup services by using semantic and structural fea-
tures. First, it applies a two-mode graph to describe mashups,
web APIs, and their relations formally. Second, we quantify
the structural similarity between every pair ofmashup services
based on the two-mode graph.-e structural similarity results
from the structural context in which web APIs are used by
mashup services. Finally, we introduce a merging embedding
vectors algorithm that only considers the pairwise similarities
between mashup services to rank them effectively.

According to the above, it is certainly valuable to in-
troduce structural features and then improve the accuracy of
recommendation based on structural semantics.

Finally, there are some other issues which need to be
addressed:

(1) How to extract semantic from natural language API
descriptions?

(2) How to generate structural semantics of the mashup-
mashup network?

(3) How to merge multiple embedding vectors for better
accuracy?

(4) How do we design experiments for performance
evaluation?

2.2. Problem Description. Our work considers the task of
recommendation via representation learning as follows:
given a requirement q described in multidimensional in-
formation, which includes semantic and structural features,
the corresponding recommended services are given via
similarity calculation, which exists in terms of the repre-
sentation learning model.

Our model consists in learning a function S(·), which can
score requirement-service pairs (q, t). Hence, finding the
top-ranked answer t̂(q) to a requirement q is directly carried
out by

t(q) � argmax
t′∈K

S q, t′( , (1)

and to handle multiple recommended services, we
present the results as a ranked list rather than taking the top
service.

2.3. Overview of Our Framework. In this section, we will
present an overview of our approach. As shown in Figure 1,
our approach mainly consists of four components: semantic
extraction based on NLP pipeline, structural embedding
generation of the mashup-mashup network, merging of
multiple embeddings, and recommendation based on fusion
embedding. More specifically, the descriptions of web-based
services will be crawled from ProgrammableWeb.

We firstly preprocess natural language API descriptions
using NLP pipeline and extract text semantic embedding.
We then generate structural embedding of the mashup-
mashup network; next, we merge semantic embedding and
structural embedding. Finally, the developers give multi-
dimensional information of requirements, which will be
parsed into semantic and structural features and passed to
similarity calculation for ranking (Figure 2).

2.4. Semantic Extraction Based on the NLP Pipeline. -is
section preprocesses the sentences in API descriptions using
NLP pipeline named as NLTK [9], which resembles the
following high-level flow in Figure 3.

For purposes of illustration, we introduce a sample as
follows:

“-e Twitter microblogging service includes two
RESTful APIs. -e Twitter REST API methods allow
developers to access core Twitter data.”

We have the following steps.

2.4.1. EOS (End of Sentence) Detection. Breaking the texts
into paragraphs might be important. However, it may be
unlikely to help EOS detection, whichmarks the boundary of
a sentence from texts and breaks them into sentences. We
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utilize them to represent logical units of thought and tend to
give a predictable syntax for further analysis.

We will obtain the following results by parsing a sen-
tence with NLTK:

[“-e Twitter micro-blogging service includes two
RESTful APIs. -e Twitter REST API methods allow
developers to access core Twitter data.”]

A period “.” is utilized to mark the end of a sentence.
However, there are other legal usages of the period such

as decimal (periods between numbers), ellipsis “...,” and
shorthand notations just like “Mr.” and “Dr.”. We can
overcome this difficulty by looking up abbreviations from
WordNet and detecting decimals including period character
by regular expressions.

Moreover, there are instances where an enumeration list
is used to describe data type, such as the following:

“-is service where you can obtain the following data: (a)
abc . . ., (b) xyz . . ..”

It is prone to understand the implication for a human,
but it is arduous to seek appropriate boundaries as far as a
machine is concerned. An improvement over breaking on
characters “.” is leveraging the Syntax information:

(1) Placements of tabs
(2) Bullet points (numbers, characters, roman numerals,

and symbols)
(3) Delimiters such as “:” to detect appropriate

boundaries
We further improve the EOS detection using the
following patterns:

(1) We remove the leading and trailing “∗ ” and “-”
characters in a sentence.

(2) We consider the following characters as sentence
separators: “–”, “-”, “”, “§”, “￥”, “◇”, “}”, “|”, “∼”,
and “★” . . ..

(3) For an enumeration sentence, we split the sentence
into short ones for each enumerated item.

Currently, sentence detection has occurred for arbitrary
text.

2.4.2. Tokenization. We then split individual sentences into
tokens, leading to the following results:

[[“-e”, “Twitter”, “microblogging”, “service”, “in-
cludes”, “two”, “RESTful”, “APIs”, “.”], [“-e”, “Twit-
ter”, “REST”, “API”, “methods”, “allow”, “developers”,
“to”, “access”, “core”, “Twitter”, “data”,“.”]]

Here, tokenization appeared to split on whitespace, and
it tokenized out EOS correctly as well. We further improve
the discrimination by determining whether a period is the
end of sentence marker or part of an abbreviation.

2.4.3. POS (Parts of Speech) Tagging. Part of speech of each
token in a sentence means “word tagging” or “grammatical
tagging,” where the state-of-the-art approaches have been
shown to achieve 97% accuracy in classifying POS tags for

well-written news articles. We can obtain the following
results:

[[(“-e”, “DT”), (“Twitter”, “NNP”), (“micro-blog-
ging”, “NNP”), (“service”, “NNP”), (“includes”,
“VBZ”), (“two”, “NUM”), (“RESTful”,“’JJ”),
(“APIs”,“’NNP”)], [(“-e”, “DT”), (“Twitter”, “NNP”),
(“REST”, “NNP”), (“API”, “NNP”), (“methods”,
“NNP”), (“allow”, “VB”), (“developers”, “NNP”), (“to”,
’IN”), (“access”, “VB”), (“core”, “JJ”), (“Twitter”,
“NNP”), (“data”, “NNP”), (“.”, “.”)]]

“NNP” manifests a noun as the part of a noun phrase,
“VBD” manifests a verb in simple past tense, “DT” manifests
an article, “IN” manifests a preposition, “NUM” manifests a
numeral, and “JJ” manifests an adjective.

After finishing POS tagging, we can chunk nouns as part
of noun phrases and then try to deduce the types of entities
(e.g., people, places, organizations, etc.).

2.4.4. Chunking. Chunking means to analyze tagged tokens
from sentence and identify logical concepts, such as “Pan-
dora Internet radio” and “Google Maps.” We annotate such
phrases as single lexical units such as a noun phrase and a
verb phrase. -e state-of-the-art approaches achieve around
97% accuracy in classifying phrases and clauses over well-
written news articles4. We develop chunking with more
complex grammars to substitute default one in NLTK.

2.4.5. Named Entity Extraction. Named Entity Extraction
means analyzing chunks and further tagging the chunks as
named entities, such as people, organizations, and objects.
We will obtain the following results:

[Tree(“S”, [Tree(“OBJ”, [(“-e”, “DT”), (“Twitter”,
“NNP”), (“microblogging”, “NNP”), (“service”,
“NNP”)]), (“includes”, “VBZ”), Tree(“OBJ”, [(“two”,
“NUM”), (“RESTful”, “JJ”), (“APIs”, “NNP”), (“.”,
“.”)]), Tree(“S”, [Tree(“OBJ”, [(“-e”, “DT”), (“Twit-
ter”, “NNP”), (“REST’” “NNP”), (“PI”, “NNP”),
(“methods”, “NNP”)]), (“allow”, “VB”), Tree(“-
PERSON”, [(“developers”, “NNP”)]), (“to”, “IN”),
(“access”, “VB”), (“core”, “JJ”), (“Twitter”, “NNP”),
(“data”, “NNP”), (“.”, “.”)]

We can identify that “-e Twitter microblogging ser-
vice,” “two RESTful APIs,” and “-e Twitter REST API
methods” have been tagged as an object and “developers”
has been tagged as a person.

In addition, abbreviations usually lead to incorrect
parsing for sentence; for example, “Application Programming
Interfaces (APIs)” is treated as single lexical unit. We can
work it out looking up abbreviations from WordNet [10].

2.4.6. Semantic Embedding Generation. In order to convert
named entity into feature vectors and utilize them in latter
models, we utilize word2vector to encode named entities
from API descriptions.
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Word2vector is a powerful method to extract meaningful
grammatical and semantic features, which can transform a
word into a fixed-length vector. Each named entity fromAPI
description can be reduced to embedding vector Vtext , and
semantic embedding of API description can then be rep-
resented as a fixed-length vector as follows:

Vm � average Vtexti( ,

I � 1, 2, . . . , Nm ,
(2)

where Nm is the number of named entities of API
description.

2.5. Two-Mode Graph of Mashup Services and Web APIs.
-e first step of structural embedding generation is to
generate the mashup-mashup network. -e network can be
generated through mashup behavior sequence. -e infor-
mation, such as the same APIs between mashups, can be
utilized to establish the edges between mashups as well, so as
to generate structural graph. -e embedding vectors based
on this graph can be called structural embedding vectors.

In this article, two networks are utilized to represent all
relationships of mashup services and APIs: one is the net-
work between API and mashup services, and the other is the
network between mashup services.

Definition 1. MAN (mashup-API network) is a network of
2 modes, where the nodes represent the API and the
mashup services, and edges represent the relationship
between them.

Definition 2. MMN (mashup-mashup network) is a
weighted network between mashups, where each node
represents a mashup service and edges represent the rela-
tionship between them; the weight of edge represents the
relevancy between them. MMN can be represented with a
triple:

MMN � N, E, W{ }, (3)

where N is a node set of all mashup services; E is a set of all
edges in MMN network; W is an edge weights matrix. For
example, if Nodei and Nodej are linked, then Wij is
defined as the number of API intersections of two mashup
services.

2.6. Structural EmbeddingGeneration of theMashup-Mashup
Network. Structural embedding is designed to represent a
network in a low-dimensional space and retain as much
information as possible. By using structural embedding,
each node in the network can be represented as a vector.

-e traditional sequence embedding is inadequate for
network structure. We can conduct a random walk on the
graph structure to generate a large number of node se-
quences, which were input into word2vec as training
samples and obtained structural embedding. Figure 4 il-
lustrates the random walk process graphically.

As shown in Figure 4, random walk process firstly selects
random mashup as starting point and produces the

sequence, where the hop probability of the random walk
needs to be formally defined, that is, the probability of
traversing vj after reaching node vi. If the graph is an
undirected graph, then the hop probability from node vi to
node vj is defined as follows:

P vi vj

  �

(1 − d) + d
wij

j∈N vi( )wij

⎛⎝ ⎞⎠,

0, eij ∉ ε,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where N(vi) is the set of all outgoing edges of node vi andwij

is the weight of edge from nodevi to node vj.
We further tradeoff the homogeneity and structural

equivalence of network embedding by adjusting the weight
of random walk.

Specifically, the homogeneity of the network means that
the embeddings of nodes that are close to each other should
be as similar as possible. As shown in Figure 5, the em-
bedding expression of node u should be close to the nodes
which are connected to s1, s2, s3, and s4. -at is the em-
bodiment of homogeneity.

Structural equivalence means that the embeddings of
nodes with similar structures should be as close as possible.
In Figure 4, both node u and node s6 are the central node of
their local networks, respectively, which are similar in
structure. -eir embedding expressions should be similar,
which is the embodiment of structural equivalence.

Random walk needs to be inclined to the process of
breadth first search (BFS) in order to express the ho-
mogeneity of the network. -ere will be more homoge-
neous information in generated sequence because BFS
prefers access to direct connection. On the other hand,
depth-first search (DFS) can grasp the overall structure of
the network through multiple hops. However, it is im-
portant to trade off the tendency of BFS and DFS. For-
mally, the hop probability from node v to node x is
enhanced as follows:

P(v|x) � λpq(t, x) · P(v|x), (5)

where λpq(t, x) is defined as follows:

A

B

D E

CF

A B E F

B E C B A

C B A B E

D A B E C

E C B A

A B E C B

Figure 4: Random walk on network.
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λpq(t, x) �

1
pr

, if dtx � 0,

1, if dtx � 1,

1
pio

, if dtx � 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where dtxrefers to the distance from node t to node x and
the parameters pr and pio jointly control the tendency of
random walk. Parameter pr is known as return parameter,
which controls the probability of accessing the node
visited repeatedly. Parameter pio is called in-out param-
eter, which controls the outward or inward tendency.
Random walk tends to access nodes close to node t if
pio ≥ 1 and tends to access nodes far from node t if pio ≤ 1.
Our approach enhances Node2vec [11] by replacing wij as
P(v|x).

Figure 6 shows the hop probability of our approach while
jumping from node t to node v in the next step.

-e homogeneity and structure equivalence of the
network embodied by equation (5) can be intuitively
explained in the recommendation system. Items with the
same homogeneity are likely to be items of the same cat-
egory and attributes, while items with the same structure
are items with similar trends or structural attributes. -ere
is no doubt that both of them are very important features in
recommendation systems.

Next, we should encode above node sequences into
structural embedding. Our model named sequence2-
vector is derived from skip-gram, where the node
sequence also utilizes central node sequence to predict
the context, and its data structure can be represented by a
triplet st−1, st, st+1 . st is input, and st−1, st+1  is output.
-e neural network structure of the sequence2vector
model is the common encoder-decoder architecture
using the GRU model. -erefore, word vector is utilized
while training sequence vector; the output of encoder is
embedding vector of last word of node sequences. -e
formulas for the realization of encoding stage are as
follows:

r
t

� σ Wrx
t

+ Urh
t− 1

 ,

z
t

� σ Wzx
t

+ Uzh
t− 1

 ,

ht � tan h W
d
x

t
+ U r

t⊙ht− 1
  ,

h
t

� 1 − z
t

 ⊙ht− 1
+ z

t⊙ht,

(7)

where htrepresents the output of the hidden layer at the time
of t. While we take st+1 as an example, the formula for the
realization of decoding stage is as follows:

r
t

� σ W
d
r x

t− 1
+ U

d
r h

t− 1
+ Crhi ,

z
t

� σ W
d
zx

t− 1
+ U

d
zh

t− 1
+ Czhi ,

ht � tan h W
d
x

t− 1
+ U

d
r

t⊙ht− 1
  + Chi ,

h
t
i+1 � 1 − z

t
 ⊙ht− 1

+ z
t⊙ht,

(8)

where Cr , Cz, and C are used as vector bias for reset gate,
update gate, and hidden layer, respectively. Sequence2vector
can even be combined into the subsequent deep learning
network to retain different features of objects (Algorithm 1).

2.7. Embedding Fusion. From the above, we have got se-
mantic embedding of API description and structural em-
bedding through mashup behavior sequence. -en it is
important to integrate multiple embedding vectors to form the
final embedding of mashup. -e simplest approach is to add
the average pooling layer into the deep neural network to
average different kinds of embedding. On this basis, we have
added weights to each embedding, as shown in Figure 7. -e
hidden representation layer is the layer that performs the
weighted average operation on different kinds of embedding.
After the weighted average embedding vector is obtained, it is
directly input into the softmax layer. In this way, the weighted
αi(i � 0, . . . , 1) can be trained.

X1
X2

V

t

X3

λ = 1 λ = 1/pio

λ = 1/pioλ = 1/pr

Figure 6: Hop probability of the network.

S1
S2

S3

S4

S5

S6

S7

S8

S9

u

Figure 5: Homogeneity and structural equivalence of the network.
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In the actual model, we adopted eαi instead of αi as the
weight of corresponding embedding, which can avoid the
weight being 0 and own good mathematical properties
during the process of gradient descent.

Our model finally inputs semantic and structure
embedding into the model to generate the final fusion
embedding.

2.8. Interfering Semantic-Related Services. In this section, we
utilize fusion embedding from the above to calculate the
similarity between mashups as follows:

sim hi, hj  � exp − hi − hj

�����

�����1
 , (9)

where ‖ ‖1 is theManhattan distance. Finally, we recommend
the top-k mashups to developers.

3. Experiments

In this section, we conduct experiments to compare our
approach with state-of-the-art method. Our experiments are
intended to address the following questions:

(1) Does structural embedding improve the effectiveness
with respect to semantic similarities?

(2) What is the performance of top-k rankings of our
embedding models?

3.1. Data Set Description. We adopt a real-world dataset,
ProgrammableWeb, which was crawled from all registered
services in publically available repository until Nov. 25,
2015. -e dataset contains description documents in-
cluding 12250 web-based services and 7875 mashups,
which have attributes such as name, tags, summary, and
description.

3.2. Metrics. In statistical classification [12], Precision is
defined as the ratio of the number of true positives to the
total number of items reported to be true, and Recall is
defined as the ratio of the number of true positives to the
total number of items that are true. F-score is defined as the
weighted harmonic mean of Precision and Recall. Accuracy
is defined as the ratio of sum of true positives and true
negatives to the total number of items. Higher values of
precision, recall, F-score, and accuracy indicate higher
quality of identifying the semantic relationship. Based on the
total number of TPs, FPs, TNs, and FNs, we computed the
precision, recall, and F-score as follows:

Classifier

Output matrix

Hidden representation

Dense embeddings

Semantic embedding Structural embedding

H

α0 α1

Figure 7: Embedding fusion.

Input
MMN
Output
structure embedding vector h
Body
Random select a starting point for random walk using (5) and produce sequence s;
h� sequence2vector (s);
return h

ALGORITHM 1: Structure embedding algorithm.
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precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F − score � 2 ×
precision × recall
precision + recall

,

(10)

where TP denotes true positives, FP denotes false positives,
FN denotes false negatives, and TN denotes true negatives.

MAP (mean average precision) is the average of preci-
sions computed at the point of each of the relevant docu-
ments in the ranked sequence, whose equation is as follows:

MAP �
1

QR





q∈QR

AP(q), (11)

where AP is average precision and QR denotes relevant
documents.

We utilize the normalized discounted cumulative gain
(NDCG) [13] metric as well, which is a popular metric for
evaluating ranking results. Given ideal rankings (used as
ground truth) and the derived rankings, the NDCG value of
top-k ranked services can be calculated by the following
formula:

NDCGk �
DCGk

IDCGk

, (12)

where DCGk and IDCGk denote the discounted cumulative
gain (DCG) values of derived rankings and ideal rankings of
top-k services.

-e value of DCGk can be calculated by the following
formula:

DCGk � rel1 + 
k

i�2

reli
log2 i

, (13)

where reli is the score of the service at position i of rankings.
-e premise of DCG is that a high-quality service appearing
lower in a ranking list should be penalized as the score is
reduced logarithmically proportional to the position of the
result divided by log2 i.

3.3. Baseline Approaches. In this section, to show the ef-
fectiveness of our approach, we compare our approach with
the following approaches:

(1) SimpleGraph [14]: this approach extracts features of
subgraphs of question-answer pairs and utilizes a
logistic regression classifier to predict the probability
that a candidate answer is correct

(2) AvgPara: the semantics for a given question in this
model are directly averaged to predict the answers

(3) DataAugment: this approach employs semantics for
data augmentation during training which utilize the
question-answer pairs and semantics to automati-
cally generate new training samples

(4) SepPara [15]: this approach is the semantic scoring
model, which is trained on classification data,
without considering question-answer pairs

(5) Para4QA [15]: this approach results in learning se-
mantics, where semantic scoring and QA models are
trained end-to-end on question-answer pairs

3.4. Evaluation Protocols. In this section, we have designed
the experiments to evaluate our approach. We then created a
set of (q, t, l) triples, where q is a API description, t is a
mashup-mashup network, and l is a label (classes of
mashups). We manually tagged each pair with a label l. -is
resulted in a set of approximately 20 human judgments. -e
union of them composes set T1, which is considered as the
baseline to evaluate the precision of mashup
recommendation.

Five authors pick out 30 API descriptions of mashups as
well; top-20 rankings are artificially extracted by two authors
at least after analyzing and augmenting them, which is
considered as the baseline to evaluate the rankings of mashup
recommendation. -e union of them composes set T2.

3.5. Training Details. We utilized encoder-decoder archi-
tecture using the GRU model with 2 layers, with 800 cells at
each layer and 800 dimensional word embeddings. -e
complete training details are given below:

(1) We used word2vector to initialize the word em-
bedding matrix. Out-of-vocabulary words were
replaced with a special unknown symbol. We also
augmented API descriptions with start-of-sequence
and end-of-sequence symbols. Word vectors for
these special symbols were updated during training.
Model hyperparameters were validated on set T1.
Each of the structural and semantic features is
represented by a vector of 64 dimensions. -e
dropout rate was selected from {0.2, 0.3, 0.4}.

(2) Parameters were randomly initialized from a uni-
form distribution U(−0.08,0.08). -e learning rate
was 0.7. After 5 epochs, we began halving the
learning rate every half epoch. We trained our
models for a total of 20 epochs.-e batch size was set
to 150. To alleviate the exploding gradient problem,
the gradient norm was clipped to 5.

(3) We used the DNN model to train weighted
αi(i � 0, . . . , 1). -e DNN model takes the combi-
nation of semantic and structural features as input,
and each feature is represented by a vector of 16
dimensions. -e total input vector dimension is 32
(16 + 16), and output vector dimension vector is the
tag. To convert the input into a neural node, the
hidden layer utilizes a linear transformation and then
compresses the nonlinearity. -e DNN model uti-
lizes back-propagation and adjusts the weight αi

according to the training set. Finally, there is a
softmax layer that translates the issue into classifi-
cation problems.
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3.6. Results

3.6.1. Answer to RQ1. Table 1 presents the results of the
accuracy experiments. AvgPara achieves better accuracy
compared with SimpleGraph, since semantic embeddings
contain more information than the features of subgraphs.
DataAugment achieves better accuracy compared with
AvgPara, since data augmentation works. Our approach
achieves better accuracy compared with DataAugment, since
structural embedding and semantic embedding are fused
together.

3.6.2. Answer to RQ2. Table 2 presents the results of the
ranking experiments. Our approach obtains the best pre-
diction accuracy (largest NDCG values) under all the ex-
perimental settings consistently, since our approach
considers fusion embedding of semantic and structural
features, which improved the accuracy of similarity
calculation.

3.7. Breats to Validity. -e threats to external validity are
related to the representativeness of the dataset. To evaluate
the quality of semantic extraction and service recommen-
dation, we applied our approach on real-world dataset,
ProgrammableWeb, which is suitable for our study due to
public availability and activeness. -is threat has been
partially mitigated by the fact that we collected description
documents including 12250 web-based APIs and 7875
mashups. Furthermore, we applied our approach on top-10
subjects of them as well.

-e threats to internal validity of our study are related to
the results of the pairwise comparison on the criteria (see
Section 3.5). -ere is a possibility that the results are sub-
jective, as people may be biased. It may affect the weighted αi

which is assigned to the semantic and structural embedding.
-is threat has been partially mitigated by the fact that five
authors elicit 10 service description documents from each of
top-10 subjects independently to evaluate the quality of

semantic relationship extraction and query, where we man-
ually achieve top-10 rankings as the baseline in our
evaluations.

4. Related Works and Discussion

Our approach touches some areas such as recommendation,
DL artifacts, and requirements engineering. We next discuss
relevant works pertinent to our proposed approach in these
domains.

Most of recommendations focused on keyword-based
searching, where the keywords are usually tokenized from the
interface of web-based services, such as input, output, pre-
condition, and postcondition. For example, Junghans et al.
give an oriented functionalities and requests formalization
method [16]. OWLS-MX is proposed to calculate the simi-
larity of concept in OWL-S for recommendation [17]. Chen
et al. give a clustering approach named as WTCluster using
WSDL documents and service tags [18]. Mueller et al. give an
approach based on nature-inspired swarm intelligence [19].

Semantic parsing offers NLP-based techniques, such as
syntax directed [20], parse trees [21], combinatory cate-
gorical grammars [22, 23], and dependency-based semantics
[24, 25]. -ese approaches typically have high precision but
lower recall, which are sensitive to grammatically incorrect
or ill-formed descriptions. Several approaches utilize either
NLP or a merging of NLP and machine learning algorithms
(SVM driven, etc.) to infer specifications, such as API de-
scriptions [26–29].

Generally, most ranking approaches ranked services by
utilizing the text in service profiles (mashup descriptions,
API descriptions, WSDL documents, tags, etc.) to calculate
the semantic similarity between every pair of services. In
contrast, our proposed approach utilized structural simi-
larities to guide the ranking activities, which can reduce false
positives and reach higher performance.

5. Conclusion and Future Work

-is paper introduces a mashup service recommendation
approach via merging semantic features from API de-
scriptions and structural features from the mashup-API
network. Our approach can significantly outperform pre-
vious works after encoding semantic and structural features.

In spite of these promising results, some exciting chal-
lenges remain, especially in order to scale up this model to
more dimensions. Furthermore, many more modes have to
be carried out to encode the complex semantics into the
embedding space.
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Table 1: Performance of variants from the T1 test set.

Method Precision (%) Recall (%) F-score (%) Map (%)
SimpleGraph 86.32 26.55 40.60 16.54
AvgPara 77.99 32.13 45.51 22.62
DataAugment 71.66 35.55 47.52 32.97
Our approach 66.43 42.58 51.89 73.65

Table 2: Performance of top-k from the T2 test set.

Method NDCG1 (%) NDCG10 (%) NDCG20 (%)
SimpleGraph 43.33 57.94 66.72
AvgPara 57.56 63.44 78.54
DataAugment 68.93 76.68 79.34
SepPara 72.30 80.84 82.49
Para4QA 81.73 82.70 87.84
Our approach 83.27 85.83 88.76

Mathematical Problems in Engineering 9



Acknowledgments

-e work described in this study was fully supported by the
National Key Research and Development Program of China
(no. 2017YFB1400602), the National Natural Science
Foundation of China (nos. 61572371, 61702377, 61728202,
61572137, and 61873309), Science and Technology Devel-
opment Program of Central Guide to Local Government of
China (no. 2019ZYYD043), International Science and
Technology Cooperation Program of Hubei Province (no.
2019AHB059), the Natural Science Foundation of Hubei
Province in China (no. 2019CFC870), and Hubei Superior
and Distinctive Discipline Group of “Mechatronics and
Automobiles” (XKQ2020016).

References

[1] https://www.programmableweb.com/.
[2] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, “Recom-

mender system application developments: a survey,” Decision
Support Systems, vol. 74, pp. 12–32, 2015.

[3] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies
in natural language requirements,” ACM Transactions on
Software Engineering and Methodology, vol. 14, no. 3,
pp. 277–330, 2005.

[4] U. Dekel and J. D. Herbsleb, “Improving API documentation
usability with knowledge pushing,” in Proceedings of the 2009
IEEE 31st International Conference on Software Engineering,
Vancouver, BC, Canada, May 2009.

[5] G. Little and R. C. Miller, Keyword programming in Java, vol.
16, Springer US, Boston, MA, USA, 2007.

[6] W. Pan, B. Li, J. Liu, Y. Ma, and B. Hu, “Analyzing the
structure of java software systems by weighted k-core de-
composition,” Future Generation Computer Systems, vol. 83,
pp. 431–444, 2018.

[7] W. Pan, B. Song, K. Li, and K. Zhang, “Identifying key classes
in object-oriented software using generalized k-core de-
composition,” Future Generation Computer Systems, vol. 81,
pp. 188–202, 2018.

[8] W. Pan, H. Ming, C. K. Chang, Z. Yang, and D. K. Kim,
“ElementRank: ranking java software classes and packages
using multilayer complex network-based approach,” IEEE
Transactions on Software Engineering, 2019.

[9] http://www.nltk.org.
[10] https://wordnet.princeton.edu/.
[11] A. Grover and J. Leskovec, “node2vec: scalable feature

learning for networks,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 855–864, New York, NY, USA, August
2016.

[12] D. Olson, Advanced Data Mining Techniques, Springer-
Verlag, Berlin, Germany, 2008.
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Owing to the ever-expanding scale of software, solving the problem of bug triage efficiently and reasonably has become one of the
most important issues in software project maintenance. However, there are two challenges in bug triage: low quality of bug reports
and engagement of developers. Most of the existing bug triage solutions are based on the text information and have no con-
sideration of developer engagement, which leads to the loss of bug triage accuracy. To overcome these two challenges, we propose a
high-dimensional hybrid data reduction method that combines feature selection with instance selection to build a small-scale and
high-quality dataset of bug reports by removing redundant or noninformative bug reports and words. In addition, we also study
the recent engagement of developers, which can effectively distinguish similar bug reports and provide a more suitable list of the
recommended developers. Finally, we experiment with four bug repositories: GCC, OpenOffice, Mozilla, and NetBeans. We
experimentally verify that our method can effectively improve the efficiency of bug triage.

1. Introduction

A large amount of data is generated during software de-
velopment and maintenance. Bug reports are generated
continuously during this process. A bug report contains a
basic description of the bug, error messages, current status of
the bug (whether it has been solved or assigned to a de-
veloper), etc. [1]. According to statistics, bug fixing increases
the costs of software companies by 45% [2] and increases the
time of software development. )erefore, solving the
problem of bug triage efficiently and accurately, that is,
assigning the bug to the most suitable developer [3–9],
becomes important for software projects. Bug tracking
systems were developed to track all aspects of bug messages
and help software developers fix bugs in time. )ese systems
play an important role in dispatching work between de-
velopers. Typical bug tracking systems are Mantis [10],
Bugzilla [11], and JIRA [12].

)e earliest method of bug triage was to manually assign
a bug to a corresponding developer. )e senior manager
would read a bug report in the bug tracking system and
would select a suitable developer for this bug report based on
his/her own experience and knowledge of the developer’s
ability. However, this method of assignment not only wastes

time and human resources, but also has limited accuracy.
First, in large-scale software development, the number of
bugs dramatically increases, and the quality of bug reports
may vary. In 2001–2010, 333,371 bugs were submitted to
Eclipse frommore than 34,917 developers. When developers
submit many duplicated or invalid bugs, a lot of time is
wasted [13–15]. Moreover, owing to a large number of
developers, senior managers cannot remember the bug-
fixing skills of each developer and the types of bugs that this
developer is good at. )us, senior managers may assign bugs
improperly, which may reduce the accuracy of bug fixes.
Recently, a novel approach based on software networks is
proposed to address software quality-related problems, e.g.,
in the perspective of bug network [16] and social networks
[17]. )ese methods need two essential premises, con-
structed network extracted from software and extra infor-
mation such as the social relationship of developers. Due to
these drawbacks, it is difficult to widely adopt to improve
software quality and bug triage.

To solve the above problems of manual bug triage and
improve classification accuracy, Murphy et al. [5] proposed
to apply text categorization technology to bug triage; it
automatically generated a list of recommended developers
after training on a bug dataset with developer labels. In their
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research, a bug report is an instance. )e words in the bug
report are the corresponding attributes. )e developer is the
label of an instance. )en, they apply the classification al-
gorithm to predict the best developer sequence for bug fixes.
Subsequently, some researchers used the vector space model
to represent the bug report [2, 7, 18–24]. In addition, the
theme model was used to identify different documents, and
the words within the document have a specific relationship
to each theme [25]. Researchers [26–31] not only used the
theme model but also studied metadata (such as products,
components, and operating system types in the bug report)
to improve the accuracy.

Two challenges of automatic bug triage technology re-
main to be solved. First, the original bug repositories are
large scale with low-quality bug reports. Many problems
may arise due to large scale and low quality, such as extensive
computations and a decline in predictive performance.
Second, most of the existing work ignores the influence of
developer engagement. Developers who have joined recently
may be relatively more active because other developers may
change positions or leave.

In this study, we propose a high-dimensional hybrid data
reductionmethod to combine feature selection with instance
selection method to build a small-scale and high-quality set
of bug reports by removing redundant or noninformative
bug reports and words. Our method combines feature se-
lection (FS) with instance selection (IS) using the differential
evolution (DE) method with updated rules of crossover and
variation. In addition, we consider the developer engage-
ment in each project for more reasonable bug triage. If the
developer has dealt with bugs with this kind of product
information before, we consider he/she is more active, and
we are more likely to assign this bug report to him/her. We
conduct experiments on four public bug repositories: GCC,
OpenOffice, Mozilla, and NetBeans. )e main contributions
of this paper are summarized as follows:

(1) We present a high-dimensional hybrid data reduction
method based on DE to obtain a small-scale and high-
quality dataset for bug triage. Specifically, we aim to
address two aspects: (a) to simultaneously reduce the
bug reports dimension and the words dimension and
(b) to improve the performance of bug triage.

(2) We consider the developer engagement level further
and reorder the optimal list of recommended de-
velopers, combining it with product information that
is related to bug reports and developers.

(3) We verify the effectiveness of our proposed method
on four bug repositories (GCC, OpenOffice, Mozilla,
and NetBeans). )e experimental results show that
the results obtained by using our proposed method
are superior to the existing methods.

)e rest of the paper is structured as follows. Section 2
presents closely related work on bug triage. Section 3 details
the proposed DE method, which is improved in our paper.
Section 4 describes our experiment with GCC, OpenOffice,
Mozilla, and NetBeans and explains the results. Finally,
Section 5 concludes our paper and describes future work.

2. Related Work

2.1.Methods of BugTriage. )emain purpose of bug triage is
to find the right developer to fix a newly submitted bug
[2, 7, 11, 19, 20, 32–34]. At present, machine learning has
been used to accomplish automatic bug dispatching. When
we use machine learning, the developer is considered as the
category tag of the bug, and the text information of the bug is
regarded as a feature. First, the algorithm learns on historical
bug data. )en, the algorithm can predict which developer
should be assigned to a new bug report. Murphy and
Cubranic [7] propose a text classification approach to bug
triage. Based on the Näıve Bayes classification algorithm, a
list of recommended developers was predicted for Eclipse.
Anvik et al. [2] used a variety of machine learning algorithms
(such as Näıve Bayes, SVM, and C4.8) to learn historical data
for bug triage. Tamrawi et al. [23] proposed “Bugzie,” a
method in which a fuzzy set was used to simulate the de-
veloper’s expertise to determine whether a new bug report is
suitable for this developer. Naguib et al. [35] used a latent
Dirichlet allocation language model to learn the similarity
between new bug reports and developers by learning from
previously available data on bugs already fixed by devel-
opers. Yang et al. [27] divided bug reports into different
topics. Zhang et al. [36] considered both developer rela-
tionships and topic models to recommend the bug report to
a developer who would fix it better. Jeong et al. [21] used a
Markov chain-based graph model to improve bug triage
accuracy and tested it on Eclipse and Mozilla. Xia et al. [37]
proposed a composite method named DevRec and analyzed
bug reports and developers simultaneously.

Except for the bug report features, other information is
also used to classify bugs. Linares-Vásquez et al. [38] ana-
lyzed the title comments of related documents and found
relevant documents to recommend developers. Bhattacharya
and Neamtiu [22] studied the tossing graph with various
attributes, which included the developers who could not fix
this bug and others who could fix it, to improve the triage
accuracy. Kevic et al. [39] assigned the current bug to a
developer by finding a developer whose fixed bugs were
similar to the current bug report. Wang and Lo [40] used a
new approach named FixerCache, which assigned new bug
reports to developers based on the developer’s enthusiasm
for different product components. In the study by Shokri-
pour et al. [41], four information resources were considered
to obtain a list of recommended developers. Xia et al. [37]
proposed the TopicMinerMTM model, which used training
data tomodel the topic distribution of bug reports. However,
Xia’s approach had difficulties with distinguishing similar
developers.

2.2. Bug Triage and Software Networks. Besides the bug re-
ports, researchers adopt more information to address the
bug-related problems. Because the quality of a software
system is partially determined by its structure (topological
structure), software systems can be modeled as complex
networks in which software components are abstract nodes
and their interactions are abstract edges. )erefore,
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researchers have proposed many approaches and mea-
sures based on general software networks. Zhang and Lee
[42] proposed an automated developer recommendation
approach for bug triage via building the concept profile
(CP) for extracting the bug concepts with topic terms
from the documents produced by related bug reports.
)ey identify and rank the important developers by using
social network (SN) for bug fixing. Because of the func-
tional form of the incoming link distribution of software
dependence network, software is fragile with respect to the
failure of a random single component. Locating a faulty
component is easy if the failure only affects its nearest
neighbors, while it is hard if it propagates further. Challet
and Lombardoni [43] addressed the issue of how software
components are affected by the failure, and the inverse
problem of locating the faulty component through
adopting bug propagation and debugging in asymmetric
software structures. Pan et al. [44] also analyzed the bug
propagation process based on the weighted software
networks (WSNs). It considered the process of a bug in
one class propagating to the other and is effect to locate
the source of component with bug. )e aforementioned
approaches take advantage of complex networks, espe-
cially the relationship among developers, users, software
components, and bug reports. In the perspective of
software networks, bug triage involves developers and bug
reports, and thus, the improvement of the accuracy of bug
triage is able to promote and enhance the effectiveness of
software network-related methods. For example, bug
triage can help us gain a deeper insight of bug propagation
on the software networks. Correspondingly, the novel
measurements based on software networks may provide
more useful information for bug triage. In other words,
they are mutually beneficial.

In summary, we find that these traditional feature se-
lection approaches do not have sufficient search range and
depth and do not consider chronological order. )erefore,
the denoising ability is limited, and the effect on data re-
duction is not obvious. )is study addresses these two as-
pects. First, we fully consider the chronological order of bug
reports. Second, we propose to improve the differential
evolution method based on this to expand the search range
and search depth. Meanwhile, we also can ensure the
convergence of the method, and the accuracy of bug triage
increases effectively. Unlike the above research, our paper
focuses more on developer engagement. Except for the text
provided in the bug report itself, the bug report and the
developer’s developers’ bug-fixing experience are also used
to obtain the best list of recommended developers. When the
similarity of different bug reports is very high, our approach
helps the classifier to strictly divide different products to
complete the bug triage task successfully and substantially
improve the efficiency of bug triage.

3. The Proposed Algorithm

3.1. Overview. In this section, we propose a high-dimen-
sional hybrid data reduction method for bug triage, as
shown in Figure 1. )e method includes three main phases:

data preprocessing, data reduction, and developer en-
gagement detection. In the data preprocessing phase, we
preprocess each bug report using word segmentation, stop
words, stemming, and vector space representation to ob-
tain the word vectors. In the data reduction phase, we
propose a high-dimensional hybrid data reduction method
to combine feature selection with the instance selection
method to build a small-scale and high-quality dataset of
bug reports by removing redundant or noninformative bug
reports and words. In the developer engagement detection
phase, we consider the influence caused by the product
information of the current test case, which can include the
level of developer engagement in the final order of rec-
ommended developers.)ese three models are described in
the following sections.

3.2. Data Preprocessing. After extracting text and developer
information from the bug report tracker, our method pre-
processed the data to obtain word vectors for each bug
report. )e text preprocessing includes tokenization, stop-
word removal, stemming, and keyword vector representa-
tion [11]. Specifically, tokenization converts text from the
original bug report into a set of words. Stop-word removal
refers to removing insignificant words that appear frequently
in bug reports (such as “the” or “in”). Stemming transforms
words that may appear in different forms into their basic
form (for example, “computerized” can be changed into
“computer”). Keyword vector representation produces a
word vector to model a bug report after previous steps, and
we delete words with the word frequency less than 10. Fi-
nally, our method uses a multidimensional vector space,
where each word represents a dimension to describe the
processed bug report collection. Every bug report is a vector
based on the word dimensions, as shown in the following
equation:

R � w1, w2, w3, . . . , wi, . . . , wn, i ∈ [1, n], (1)

where R is a bug report and wi refers to i word in the word
dimension.

3.3. Data Reduction. After using the bug report pre-
processing model, our method obtains word vectors for bug
reports. Considering that some bug reports will become
outdated over time, the data will be noisy and redundant. To
reduce the impact of chronological order, our method di-
vides the bug reports into three parts according to the ratio
of 7 :1 : 2 from small ID to large ID (the first 70% is the
training set, the middle 10% is the verification set, and the
last 20% is the test set). In the search process, our method
first uses the training set for training and the verification set
for examining to find the optimal solution results with FS, IS,
and FS + IS. Next, the combination of the training set and
validation set is regarded as a new training set, and our
method obtains a final list of Top-10 developers for the test
set. Subsequently, we will explain the rules of the DEmethod
and the data reduction method of FS, IS, and FS and IS
simultaneously (FS + IS).
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3.3.1. Population Coding. To represent feature combination
and instance combination clearly and intuitively, we adopt
binary coding: our method uses a feature vector with n

feature dimensions to replace the feature sequence in the
population, and it transforms the selected feature combi-
nations into one 0, 1 binary string by the following equation:

Fi � f1, f2, f3, . . . , fi, . . . , fN, i ∈ [1, N], (2)

where Fi is a feature vector corresponding to a feature se-
quence, fi � 0 indicates that feature i is not selected and
fi � 1 indicates that feature i is selected, and N is the total
number of features.)us, a binary string represents a feature
selection method.

Similarly, the sequence of instances in the dataset can be
represented as a feature vector of 1 × M, and the selected
instance combination is also a 0, 1 binary string, which is
described by the following equation:

Sj � s1, s2, s3, . . . , sj, . . . , sM, j ∈ [1, M], (3)

where Sj is a feature vector corresponding to an instance
sequence, sj � 0 indicates that instance j is not selected and
sj � 1 indicates that instance j is selected, and M is the total
number of instances. A binary string represents an instance
selection method.

3.3.2. Population Initialization. )e population initializa-
tion in DE_IS (initial feature selection scheme): we sort bug
reports by their IDs, extract all features to obtain a feature
set, and generate 10 initial selection options that select 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%,
respectively.

)e population initialization in the initial feature se-
lection scheme (DE_IS): we generate a random number
between [0, 1] for each position in the binary string of each
scheme in the instance selection scheme. If the number is

less than 0.5, this position is set to 0. Otherwise, it is set to 1.
In this case, our method can obtain ten initial instance
selection schemes.

)e initial extraction scheme in DE_(FS + IS) (combined
scheme of feature selection and instance selection): first, our
method generates 10 initial schemes according to the initial
population generation methods in DE_FS and DE_IS; sec-
ond, the generated features and instances are combined with
the corresponding number of binary strings. )en, our
method obtains 10 extraction schemes in the initial
population.

For each individual in the initial population, after cal-
culating their values of fitness, our method records the
maximum value and its corresponding code value.

3.3.3. Genetic Manipulation

(1) Variation (Differential Variation). First, our method
generates a variation rate Prv randomly between [0, 1] and
defines the differential variation rate as Pd (Pd in this
method is always dynamic; it is judged according to the
number of iterations that our method is inclined to random
variation or differential variation, which takes place between
the individual and the currently optimal individual. )is is
described by the following equation:

Pd � de
1 − index

total Generation
 , (4)

where de is the differential coefficient of variation, index is
the current iteration number, and total Generation is the
number of iterations. If Prv <Pd, we use this extraction
scheme as a parent to carry out differential variation.
Otherwise, we do not perform variation. In differential
variation, Variation num (the number of mutated genes)
positions of variant genes (Lv) are randomly selected in the

DE_DR modelData

Developer recommendation list

Bug text message

Bug trigger time

Bug meta message

Bug report

Data preprocessing

Data reduction
FS/IS/FS + IS

Engagement of
developer

Model training stage

Model recommendation stage

New bug report

Submit Recommendation result

Bug report 
tracker

Developer

Bug report Developer

Bug report Developer

Figure 1: Flow diagram of bug triage process.
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scheme, and differential variation rule is defined by the
following equation:

Ln �
1, Lv � Lb or Lv ≠Lb and Dr ≥ 0.5( ,

0, Lv ≠Lb and Dr < 0.5,
 (5)

where Lv is the current variant gene position, Lb is the optimal
individual corresponding gene position, Ln is the corresponding
gene position of the new individual, and Dr is a random
number. If Lv is different from Lb, Ln is 1; if not, a random
number Dr between [0, 1] is generated. If Dr ≥ 0.5, then Ln is 1;
otherwise, it is set to 0. )e other genetic positions of the new
individual are identical to the currently selected parent.

(2) Crossover. Similarly, a crossover probability Prc is ran-
domly generated at start. )e crossover variation rate is
defined as Pc (also dynamically changed), and the formula is
shown in the following equation:

Pc � aberrance Rate
index

total Generation
 , (6)

where aberrance Rate is the cross coefficient of variation,
index is the current iteration number, and totalGeneration is
the number of iterations. If Prc <Pc, cross-variation is
performed to create a child generation. When cross-varia-
tion works, two positive integers P1 and P2 are randomly
generated (P1 <P2 and P1, P2 ∈ [1, length]), then the code
between P1 and P2 is cross-operated according to the
midpoint MID, where MID � (P1 + P2)/2. )e rest of the
new individual is the same as the parent.

(3) Variation (Random Variation). For each extraction
scheme of population, our method generates a variation rate
Prv and defines the random variation rate as Pr (also dy-
namically changed); its formula is defined as follows:

Pr � heredity Date
1 − index

total Generation
 , (7)

where heredityDate is the random variation coefficient,
index is the current iteration number, and totalGeneration is
the number of iterations. When Prv is less than Pr, the
extraction scheme mutates; otherwise, it is not mutated.
During the random variation, Variation num positions of
variant genes (Lv) are randomly selected in the binary string,
and the random variation rules are described as follows:

Ln �
1, Lv � 0,

0, Lv � 1,
 (8)

where Lv is the current variant gene position and Ln is the
corresponding gene position of the new individual. If its value is
0, it will be changed to 1, and the other condition is the opposite.

(4) Selection. We calculate the fitness values of all individuals in
the population. Our method not only conserves the new in-
dividuals that are generated by the crossover, but also the
parent individuals. Subsequently, a new population with twice
the size is aggregated. Next, all individuals are sorted according

to their fitness value in descending order. )e former half is
selected, and the latter half is eliminated.Meanwhile, the binary
code that has optimal fitness is updated.

3.3.4. Data Reduction Algorithm. After our analysis, both FS
and IS can achieve the goal of extracting useful attributes. FS
can be reduced at the attribute level, and IS can be reduced at
the instance level. )e effect of FS + IS might surpass the
result obtained by using FS and IS separately. )us, we
choose three feature extraction methods: FS, IS, and FS + IS.

)e parameters used in this section are defined in Table 1.

Pd � de
1 − index

totalGeneration
,

de � α,

(9)

Pc � aberranceRate
index

totalGeneration
 ,

aberranceRate � β,

(10)

Pr � heredityDate
1 − index

totalGeneration
,

heredityDate � c.

(11)

Algorithm 1 indicates that we carry out feature selection
(DE_FS) or instance selection (DE_IS) on the dataset. In the
first line, we empty the initial extraction scheme and the best
best individual scheme. In lines 2–6, we judge whether it is a
feature selection or an instance selection, and we call
Algorithm 2 for the former and Algorithm 3 for the latter. In
lines 7-8, we calculate the fitness value of each extraction
scheme in population through the fitness function (the
accuracy of Näıve Bayesian Mode (NBM)) and record the
extraction scheme with the largest fitness value. For each of
these three variants, parent can only choose one method to
mutate and generate a child. Lines 13–26 are the choice of
differential variation. And lines 28–36 present the choice of
cross-variation. )e choice of random variation is in lines
38–44. In lines 49–54, we unite the parents and child
generated, sorting the fitness in descending order, select the
best Top 10 to enter the next generation, and update the
optimal fitness and the corresponding binary code. In line
57, after executing T iterations, we decode the saved optimal
extraction scheme into a corresponding dataset

Table 1: Parameters.

Parameter Meaning
Train )e training set
NP Population number
N )e number of features
M )e number of bug reports
Variation num )e number of mutated genes
totalGeneration )e number of iterations
Pd )e differential variation rate
Pc )e crossover variation rate
Pr )e random variation rate
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Input: Train, NP, T, N, M, heredityDate, aberranceRate,de
Output: Reduced Train

(1) Population⟵∅best individual⟵∅
(2) if feature select then
(3) Population⟵ Initialize FS(Train, NP, N)

(4) else
(5) Population⟵ Initialize IS(Train, NP, M)

(6) end if
(7) Calculate the fitness value of each individual by NBM

(8) best individual⟵The individual with the largest fitness value

(9) T � 1
(10) while T< totalGeneration do
(11) for all Ifrom 1 to N do
(12) //Difference variation

(13) if randomf(0, 1)< de(1 − index/totalGeneration) then
(14) Randomly generate Variation Num mutation location

(15) Generates a new individual exactly the same as the current selected parent

(16) for alljfrom 1toVariation Num do
(17) if father[j]≠ best[i] then
(18) kid[i] � 1
(19) else
(20) if randomf(0, 1)< 0.5 then
(21) kid[i] � 0
(22) else
(23) kid[j] � father[j]

(24) end if
(25) end if
(26) end for
(27) //Crossover

(28) else
(29) if randomf(0, 1)< aberranceRate(index/totalGeneration) then
(30) //Generatesanewindividualexactlythesameastheselectedparent

(31) if featureselect then
(32) P1andP2arerandomlygeneratedfrom0toN(P1 <P2)

(33) else
(34) P1andP2arerandomlygeneratedfrom0toM(P1 <P2)

(35) P1andP2areswappedinsectionsaccordingtothemidpoint
(36) end if
(37) //Randomvariation

(38) else
(39) if randomf(0, 1)< heredityDate(1 − index/tnoqthalxG7eCn; eration) then
(40) Generatesanewindividualexactlythesameastheselectedparent

(41) RandomlygenerateVariation Nummutationlociation

(42) for alljfrom1toVariation Num do
(43) Ifthelocusis0, setitto1, andifitis1thensetitto0
(44) end for
(45) end if
(46) end if
(47) end if
(48) end for
(49) Calculate fitness values for all individuals

(50) Select theTop10from all individuals sorted by fitness value from large to small

(51) if the current optimal value > the original optimal value then
(52) update the current optimal value and the corresponding binary code

(53) end if
(54) Updating Population

(55) T + +

(56) end while
(57) The binary string corresponding to best individual is decoded asReduced Train

(58) return Reduced Train

ALGORITHM 1:Reduction (DE).
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Reduced Train. In line 58, we return Reduced_Train, which
is reduced (if this gene position is different from the
corresponding position of an optimal individual, the same
position of the new individual is 1. Otherwise, a random
number between [0, 1] is generated. If this number is equal
or greater than 0.5, the position of the new individual is 1;
otherwise, it is set to 0. )e other genetic positions of the
new individual are identical to the currently selected
parent).

Algorithm 2 represents the population initialization process
whenwe select features using theDEmethod. In the first line, we
empty the initial extraction scheme. In line 2, the IG is used to
select features and is recorded as metrics. In lines 3–9, we sort
the training set from high to low according to the importance of
features and select top 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, 90%, and 100% to add them into the feature selection
scheme (Initialize_Population_FS). We set the extracted feature
column to 1 and the opposite feature column to 0.

Algorithm 3 represents the population initialization
process when we select instances using the DE method. In
the first line, we empty the initial extraction scheme. In lines
2–11, each instance selection scheme is represented as a 1 ×

M binary string. )en, we generate a random decimal

between 0 and 1 for each gene position of each extraction
scheme. If the number is greater than or equal to 0.5, the
corresponding gene position of the individual is 1. Other-
wise, it is set to 0. We add generated instance selection
schemes to Initialize_Population_IS. In line 14, we return all
generated extraction schemes.

DE_(FS + IS) indicates that we select features and
instances simultaneously for the dataset using the DE
method. In line 1, we empty the initial extraction scheme
and the best best_individual scheme. In lines 2–6, we
combine the initialized feature selection scheme with the
initialized instance selection scheme. In lines 7-8, we
calculate the fitness value of each extraction scheme to
save the best extraction scheme and its fitness value.
Differential variation is described in lines 11–26. Cross-
variation is detailed in lines 28–37. Lines 39–47 present
the random variation. In lines 51–56, parents and children
are mixed and sorted by the fitness values to select the best
Top 10, which can enter the next generation. )e optimal
fitness and binary code are updated. In line 60, after T
iterations, we obtain Reduced_Train by decoding the best
extraction scheme. In line 61, we return the reduced
Reduced_Train.

Input: Train, NP, N

Output: Initialize Population FS

(1) Initialize Population FS←∅
(2) metrics←[IG]

(3) for each metric in metrics do
(4) Orderfeaturesbymetric

(5) for allifrom1 to10 do
(6) Take thefirst i × 10 ofN as fs

(7) Initialize Population FS.add(fs)

(8) end for
(9) end for
(10) return Initialize Population FS

ALGORITHM 2: Initialize_FS.

Input: Train, NP, M

Output: Initialize Population IS

(1) Initialize Population IS←∅
(2) for allifrom 1 to NP do
(3) Treat individual i as ins
(4) for ins gene location j from 1 to M do
(5) rate � Random(0, 1)

(6) if rate≥ 0.5 then
(7) Change the j locus of the ith individual to 1
(8) else
(9) Change the j locus of the ith individual to 0
(10) end if
(11) end for
(12) end for
(13) Initialize Population IS.add(ins)

(14) return Initialize Population IS

ALGORITHM 3: Initialize_IS.
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3.4. Engagement Detection. After analyzing the actual situ-
ation, we find that some developers may change jobs or leave
the company over time. Meanwhile, a bug report that has the
same problem with different product information may be
very similar.)us, we reorder developers depending on their
level of engagement and the product information. First, we
find the corresponding product information in the latter N

bug reports of each developer’s training set (the original
training set and the validation set, which analyze developer
engagement using recent bug reports). Subsequently, we use
a linked list to encapsulate the data to store more product
information. Next, the NBM classifier is used to select the
Top 30 developers. We record the product information of
current bug reports and check whether each developer has
dealt with the same product information or not. If not, we
choose to discard this developer, and the subsequent de-
velopers will fill up the empty positions one by one. Finally,
we can select the optimal Top 10 in this way (Algorithm 4).

4. Experiment

We conduct several experiments to verify our method. In
Section 4.1, we describe the experimental design, including
data preparation and experimental setup. In Section 4.2, we
specify the evaluation metrics. In Section 4.3, we discuss
experimental results, which answer our research questions.

4.1. Experimental Design

4.1.1. Data Preparation. To demonstrate the effectiveness of
our approach, we carry out a series of experiments on four
large-scale open-source bug repositories: GCC, OpenOffice,
NetBeans, and Mozilla. We only collected the fixed bug
reports which were denoted as “resolved” or “closed” before
December 31, 2014, due to their stability and reliability. We
have uploaded our experimental datasets to URL (https://
github.com/gexinxinge/complexnetwork). Table 2 shows the
dataset statistics, including the total number of products,
total number of reports, total number of words, total number
of developers, and time range.

We use the processing method from the previous re-
search [23, 26]. )e label of the developer who was assigned
to the bug report is regarded as the developer who fixed this
bug. To obtain a list of recommended developers, we exclude
the bugs that were never fixed [2]. Moreover, data on de-
velopers who worked on a small number of bug reports
would not be helpful for obtaining accurate results; there-
fore, we exclude the developers who worked on less than 10
bug reports from our study.

4.1.2. Experimental Setup. In this paper, we segment data by
a chronological method. )e bug reports are divided into
three parts in chronological order. Seventy percent is used as
the training set, ten percent is used as the validation set, and
the remaining twenty percent is used as the test set. Wemake
the following adjustments to the parameters (the experi-
mental parameters of the three differential methods are
consistent): α � 0.7, β � 0.08, c � 0.8. It is worth pointing

out that our approach is sensitive to these parameters. In
equation (9), α makes an influence on differential variation
rate (Pd). In equation (10), β decides the value of crossover
variation rate (Pc). And in equation (11), c affects the
random variation rate (Pr). For example, if the values of α
and c are too large, it is hard to remove unimportant fea-
tures. However, small values may lead to the local optimum.
)erefore, we use reasonable values published by others’
experience using difference algorithm. In this way, our
method can not only have sufficient search scope, but also
converge in the end.

We use two types of benchmarks for comparison: su-
pervised methods and unsupervised methods. Supervised
benchmark methods mostly include classifiers that are ef-
fective in text classification: Näıve Bayes (NB), polynomial
Näıve Bayes (NBM), support vector machine (SVM),
k-nearest neighbor (KNN), random tree (RT), and decision
tree (J48).

4.2. EvaluationMetrics. In this paper, we use the accuracy of
Top-k developers to evaluate the quality of bug triage, that is,
the ratio of the predicted exact quantity to all test data. )e
accuracy of Top-1 to Top-10 is examined in the experiment
altogether. )e accuracy of Top-k is calculated by the fol-
lowing equation:

Accuracyk �
Bug kcorrect

Bugtotal
, (12)

where Accuracyk is the accuracy of Top-k, Bug kcorrect refers
to the number of bug reports that are assigned correctly to
Top-k, and Bugtotal is the total number of bug reports in Top-
k. A higher Accuracyk describes a better list of recommended
developers.

4.3. Experimental Results

4.3.1. RQ1: Which Supervised Learning Algorithms Are the
Most Suitable? In this experiment, six supervised learning
algorithms (NB, NBM, SVM, KNN, RT, and J48) are applied
to classify four open-source bug repositories (Mozilla,
NetBeans, OpenOffice, and GCC). We use the classification
accuracy as an evaluation metric to choose the best classi-
fication algorithm.

)e results are shown in Tables 3–6. According to the
results, the classification effect of NBM (which is presented
in bold) is the best among the six methods. )e highest
classification accuracies of NBM on four bug repositories are
28.89%, 57.59%, 48.39%, and 68.84%, respectively. More-
over, NB ranks second; its highest classification accuracies
are 23.69%, 54%, 37.94%, and 50.27%, respectively. Both
methods have much higher classification accuracy than
other classifiers.

For OpenOffice, the accuracies of NBM from Top-1 to
Top-10 are much higher than those of other algorithms (NB,
NBM, SVM, KNN, RT, J48). Additionally, the Top-10 ac-
curacy of NBM is 37.33% higher than the Top-10 accuracy of
SVM on OpenOffice. Similarly, Table 6 shows that NBM
performs the best among six approaches (NB, NBM, SVM,
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Input: Train, NP, T, N, M, heredityDate, aberranceRate, de
Output: Reduced Train(FS + IS)

(1) Population ←∅ best individual←∅
(2) for all ifrom1to NP do
(3) Initialize Population FS � Initialize FS(Train, NP, N)

(4) Initialize Population IS � Initialize IS(Train, NP, M)

(5) Population ← Combine(Initialize Population FS, Initialize Population IS)

(6) end for
(7) Calculate the fitness value of each individual by NBM

(8) best individual ← The individual with the largest fitness value

(9) while T< totalGeneration do
(10) for all ifrom 1 to NP do
(11) //Difference variation

(12) if randomf(0, 1)<de(1 − index/tnoqthalxG7eCn; eration) then
(13) Randomly generate Variation Num mutation location

(14) Generates a new FS individual exactly the same as the selectedparent

(15) Generates a new IS individual exactly the same as the selectedparent

(16) for alljfrom 1 to Variation Num do
(17) if father[j]≠ best[i] then
(18) kid[i] � 1
(19) else
(20) if randomf(0, 1)< 0.5 then
(21) kid[i] � 0
(22) else
(23) kid[j] � father[j]

(24) end if
(25) end if
(26) end for
(27) //Crossover

(28) else
(29) if randomf(0, 1)< aberranceRate(index/tnoqthalxG7eCn; eration) then
(30) Generates a new FS individual exactly the same as the selectedparent

(31) Generates a new IS individual exactly the same as the selected parent

(32) //Cross feature select

(33) P1 and P2 are randomly generated from 0 to N(P1<P2)

(34) P1 and P2 are swapped in sections according to the midpoint

(35) //Cross instance select

(36) P1 and P2 are randomly generated from 0 to M(P1<P2)

(37) P1 and P2 are swapped in sections according to the midpoint

(38) //Random variation

(39) else
(40) if randomf(0, 1)< heredityDate(1 − index/tnoqthalxG7eCn; eration) then
(41) Generates a new IS individual exactly the same as the selectedparent

(42) Generates a new IS individual exactly the same as the selectedparent

(43) Randomly generate Variation Num mutation lociation

(44) for alljfrom1 toVariation Num do
(45) If the locus is 0, set it to 1, and if it is 1 then set it to 0
(46) end for
(47) end if
(48) end if
(49) end if
(50) end for
(51) Calculate fitness values for all individuals

(52) Select the Top10 individuals sorted by fitness value

(53) Enter the next generation and eliminate the rest.
(54) if the current optimal value > the original optimal value then
(55) update the current optimal value and the corresponding binary code

(56) end if
(57) Updating Population

(58) T + +

(59) end while
(60) The binary string corresponding to best individual is decoded as Reduced Train(FS + IS)

(61) return Reduced Train(FS + IS)

ALGORITHM 4: DE_(FS + IS).
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Table 2: Statistics of datasets.

Product Bug reports Words Developers Period
GCC 2 13961 51005 263 1999/08/03–2014/12/01
OpenOffice 37 23475 50166 553 2000/10/21–2014/12/31
Mozilla 12 18793 33186 1022 1999/03/17–2014/12/31
NetBeans 12 21538 41256 265 1999/02/11–2014/12/31

Table 3: )e accuracy of Mozilla using different classifiers.

Mozilla NB NBM SVM KNN RT J48
Top-1 0.0815 0.0906 0.0226 0.0509 0.046 0.0997
Top-2 0.1143 0.1463 0.0226 0.0509 0.046 0.1334
Top-3 0.1369 0.1833 0.0352 0.0627 0.0582 0.1477
Top-4 0.1578 0.2045 0.0352 0.0634 0.0582 0.1547
Top-5 0.1749 0.2233 0.0387 0.0662 0.0613 0.1599
Top-6 0.1868 0.2404 0.0397 0.0672 0.0624 0.1624
Top-7 0.1976 0.2551 0.0397 0.0672 0.0624 0.1652
Top-8 0.2129 0.2669 0.0397 0.0672 0.0624 0.1693
Top-9 0.2265 0.278 0.0397 0.0672 0.0624 0.1704
Top-10 0.2369 0.2889 0.0397 0.0672 0.0624 0.1704

Table 4: )e accuracy of NetBeans using different classifiers.

NetBeans NB NBM SVM KNN RT J48
Top-1 0.2157 0.2917 0.1478 0.1184 0.1184 0.2163
Top-2 0.3041 0.3972 0.1478 0.1184 0.1184 0.2783
Top-3 0.3649 0.4311 0.1478 0.1184 0.1184 0.2979
Top-4 0.4039 0.4612 0.1548 0.1251 0.1251 0.3069
Top-5 0.4359 0.4847 0.1548 0.1254 0.1257 0.317
Top-6 0.4572 0.5091 0.1585 0.1302 0.1307 0.3212
Top-7 0.4825 0.5273 0.2508 0.2202 0.2205 0.3621
Top-8 0.5018 0.5447 0.2508 0.2202 0.2205 0.3933
Top-9 0.5195 0.5627 0.2508 0.2202 0.2205 0.4084
Top-10 0.54 0.5759 0.2508 0.2202 0.2205 0.4087

Table 5: )e accuracy of OpenOffice using different classifiers.

OpenOffice NB NBM SVM KNN RT J48
Top-1 0.0969 0.182 0.0044 0.076 0.0716 0.132
Top-2 0.1607 0.275 0.0059 0.0775 0.0731 0.1984
Top-3 0.219 0.3211 0.0228 0.0935 0.091 0.2247
Top-4 0.249 0.3507 0.0434 0.1118 0.1087 0.2401
Top-5 0.2801 0.3775 0.0434 0.1128 0.1089 0.2583
Top-6 0.3054 0.4008 0.0491 0.117 0.1143 0.2666
Top-7 0.3274 0.4209 0.0505 0.1185 0.1155 0.2715
Top-8 0.3434 0.4437 0.0515 0.1221 0.1192 0.2745
Top-9 0.3603 0.4636 0.1018 0.1575 0.1577 0.2897
Top-10 0.3794 0.4839 0.1106 0.1594 0.1602 0.3066

Table 6: )e accuracy of GCC using different classifiers.

GCC NB NBM SVM KNN RT J48
Top-1 0.1598 0.3464 0.3295 0.1286 0.1188 0.1821
Top-2 0.2464 0.525 0.3313 0.1304 0.1205 0.2759
Top-3 0.3125 0.5786 0.3313 0.1304 0.1205 0.2955
Top-4 0.3589 0.6036 0.3313 0.1304 0.1205 0.3009
Top-5 0.4 0.6241 0.3313 0.1304 0.1205 0.3027
Top-6 0.4259 0.6464 0.3321 0.1313 0.1214 0.3045
Top-7 0.4473 0.6607 0.3321 0.1313 0.1214 0.3045
Top-8 0.4679 0.6705 0.3402 0.1393 0.1295 0.3089
Top-9 0.4884 0.6804 0.3402 0.1393 0.1295 0.3107
Top-10 0.5027 0.6884 0.342 0.1411 0.1304 0.3116
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KNN, RT, and J48). )e Top-1 accuracy of NBM is 22.76%
higher than that of RT and the Top-10 accuracy is 55.8%
higher than RT on GCC.

)erefore, we conclude that NBM is the most effective
algorithm among all methods. )us, we use NBM as a re-
liable classification algorithm in subsequent experiments.

4.3.2. RQ2: Can Our Proposed FS and IS Methods Perform
Better �an Traditional FS and IS Methods in terms of Data
Reduction? In this part, we conduct four experiments on
four open-source bug repositories, respectively. For each
bug repository, we consider the data reduction of the
original bug repository to specific data size, using feature
selection or instance selection methods as benchmarks. We
choose three traditional feature selection methods (IG, CHI,
and SU) and three traditional instance selection methods
(CNN, ENN, and ICF) as benchmarks to calculate Top-k
accuracies, which reduce the original bug repository to the
same data size as benchmarks. )e accuracies of our pro-
posed FS and IS heuristic search method with the same size
of data reduction are also obtained.)e columnwith the best
effect is shown in bold in Tables 7–10.

Table 7 shows that our proposed FS method has 26.01%
accuracy of Top-10 and the IS method has 30.44% accuracy
of Top-10. Compared with the original data reduction and
the traditional FS and IS methods, our proposed methods
perform better for Mozilla. Meanwhile, the accuracy of IS is
4.43% higher than that of FS. )e result for OpenOffice
(Table 9) is quite similar to Mozilla. Our proposed FS
method has the highest accuracy of 46.26% among feature
selection methods, and the accuracy of our proposed IS
method is 53.76%, which is also the best in IS approaches.
)e accuracy of IS is 7.5% higher than FS. Table 10 shows
similar experimental results for GCC: the highest accuracy is
84.51% for our proposed FS method (in FS methods) and the
highest accuracy is 83.69% for our proposed IS approach (in
IS approaches). )e only difference from the former is that
FS is 0.82% higher than IS, which indicates that FS is more
suitable for data reduction on GCC. However, there are
many differences in NetBeans results (Table 8): our FS
method is still the best with 54.14% accuracy among FS
methods. However, a traditional IS approach called ENN has
the highest accuracy of 59.88% in IS methods. Our IS
method appears to overfit. )e accuracy is rather high on the
validation set (61%) but is reduced on the test set. A possible
reason is that the developer flow of NetBeans may have been
frequent recently. Moreover, NetBeans is not greatly affected
by text information. In the RQ5, we verify this reason
further.

We consider that when reducing to the same data size,
the heuristic search method is generally better than the
traditional IS and FS search method.)emain reasons are as
follows:

(1) )e traditional FS methods and traditional IS
methods are based on the overall training set.
However, the effect of the bug report is time-sen-
sitive. Outdated bug reports will add redundancy and
noise, which may affect the classification accuracy.

Traditional IS and FS methods cannot effectively
eliminate noisy and redundant data.

(2) In the 7 :1 : 2 search strategy, our proposed approach
focuses more on extracting features related to recent
bug reports, which is helpful for removing noisy and
redundant data.

4.3.3. RQ3: Are the Accuracies of Our Proposed FS + IS, Best
FS, and Best IS Methods Improved Comparing with the
FS + IS Results of Xuan? If Our Results Are Improved, Which
One Is the Most Effective among Our �ree Methods?
Based on the experimental results in RQ2, we reproduce
the FS -> IS (IG + ICF) and IS -> FS (ICF + IG) experi-
ments of Xuan and gain the Top-k accuracy on four bug
repositories (Mozilla, NetBeans, OpenOffice, and GCC).
In addition, we also combine our proposed FS method
with the IS method (FS + IS) to reduce data of four bug
repositories. )e comparative results are shown in
Tables 11–14. Compared with FS -> IS and IS -> FS, our
proposed heuristic search method is better when reducing
to the same data size.

Our FS + IS method has the best effect for Mozilla in
Table 11 and NetBeans in Table 12. )e accuracies are
29.44% and 56.07%, respectively. )e Top-10 accuracy of
FS + IS is 6.78% higher than that of IS -> FS on Mozilla and
16.42% higher than that of IS -> FS on NetBeans. We think
another reason is that the heuristic search FS + IS focuses on
the extraction of features related to recent bug reports. )us,
the amount of information loss is relatively small, and the
ability to denoise and exclude redundancy is stronger. For
OpenOffice in Table 12, the best accuracy 53.76% belongs to
our IS method, which is 7.73% higher than IS -> FS and
45.57% higher than FS -> IS. On the contrary, we can find
that our FS approach, which has 84.51% accuracy, is the most
effective on GCC in Table 14. )e Top-10 accuracy of FS is
9.23% higher than that of IS -> FS method on GCC.

We conclude that our proposed approaches are overall
more effective than the results of Xuan. For four different
bug repositories, FS + IS performs well on Mozilla and
NetBeans. However, OpenOffice has the optimal effect with
IS and the best of GCC is FS.

4.3.4. RQ4: How about the Data Reduction Effect of Our
Proposed FS, IS, and FS + IS Methods? In this experiment,
we use our proposed FS, IS, and FS + IS methods based on
particle swarm optimization to obtain data reduction rates
and study the effect of our approaches on four open bug
repositories (Mozilla, NetBeans, OpenOffice, and GCC).)e
results are detailed in Tables 15–18 (data reduction degree of
FS or IS and overall reduction accuracy refer to the ratio of
the reserved instances or features to the original quantity).
Here, the “original information” represents the dataset
which is divided into 70% training dataset, 10% validation
dataset, and 20% test dataset. Our approach finds primary
features and instances using differential evolution algorithm
with training set.)en, they are merged to get a new training
set “original information (7 + 1).”
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According to our results, the reduction degrees of FS+ IS
are 96.05% on Mozilla, 94.43% on GCC, and 97.08% on
OpenOffice, which can substantially reduce the data dimen-
sions. However, FS+ IS does not work best on any bug re-
pository. For Mozilla, FS has the highest reduction degree of
97.21%, which is 1.16% higher than FS+ IS. However, the
reduction degrees of FS are smaller than for the FS+ ISmethod
on OpenOffice by 2.16% and GCC by 16.19%. )e IS method
also has a low degree of reduction onMozilla, OpenOffice, and
GCC.Nevertheless, it can reach 50%onOpenOffice.Moreover,
our three methods do not perform well on NetBeans. If we
compare the performance of three methods according to the
degree of reduction, the result is FS+ IS>FS> IS.

)e degree of data reduction by FS, IS, and FS + IS based
on the DE method is quite large. Compared with the tra-
ditional methods of removing invalid bug reports by name,
the heuristic search based on the DE method, which can
automatically delete invalid bug reports, is more effective in
denoising and excluding redundancy. However, according
to the previous experiment, FS + IS cannot achieve a further
improvement in the accuracy of the NBM classifier com-
pared to separate FS and IS methods.We consider the reason
may be the excessive reduction, which can result in serious
information loss. )erefore, we conclude that the data re-
duction of FS, IS, and FS + IS based on the DEmethod is very
effective.

Table 7: Comparison of different feature selection and instance selection methods on Mozilla.
Mozilla Original IG CHI SU FS
Top-1 0.0906 0.0723 0.0723 0.0723 0.0868
Top-2 0.1463 0.1155 0.1155 0.1155 0.13
Top-3 0.1833 0.1792 0.1792 0.1792 0.1578
Top-4 0.2045 0.1944 0.1944 0.1944 0.178
Top-5 0.2233 0.2072 0.2072 0.2072 0.1956
Top-6 0.2404 0.2196 0.2196 0.2196 0.2104
Top-7 0.2551 0.23 0.23 0.23 0.2287
Top-8 0.2669 0.2397 0.2397 0.2397 0.2424
Top-9 0.278 0.2487 0.2487 0.2487 0.2518
Top-10 0.2889 0.2563 0.2563 0.2563 0.2601
Mozilla Original CNN ENN ICF IS
Top-1 0.0906 0.0152 0.0218 0.0225 0.1208
Top-2 0.1463 0.0218 0.0402 0.0506 0.1884
Top-3 0.1833 0.0277 0.0568 0.0654 0.2105
Top-4 0.2045 0.0377 0.0724 0.0841 0.2351
Top-5 0.2233 0.044 0.0845 0.1049 0.2528
Top-6 0.2404 0.0485 0.097 0.1195 0.2639
Top-7 0.2551 0.054 0.1118 0.1281 0.276
Top-8 0.2669 0.0578 0.124 0.1423 0.2843
Top-9 0.278 0.063 0.133 0.1569 0.2933
Top-10 0.2889 0.0661 0.1461 0.1676 0.3044

Table 8: Comparison of different feature selection and instance selection methods on NetBeans.
NetBeans Original IG CHI SU FS
Top-1 0.2917 0.1778 0.1778 0.1778 0.2532
Top-2 0.3972 0.2571 0.2571 0.2571 0.3524
Top-3 0.4311 0.3188 0.3188 0.3188 0.4012
Top-4 0.4612 0.3551 0.3551 0.3551 0.4329
Top-5 0.4847 0.3877 0.3877 0.3877 0.4576
Top-6 0.5091 0.417 0.417 0.417 0.4732
Top-7 0.5273 0.4383 0.4383 0.4383 0.4911
Top-8 0.5447 0.4574 0.4574 0.4574 0.5072
Top-9 0.5627 0.4732 0.4732 0.4732 0.5251
Top-10 0.5759 0.4881 0.4881 0.4881 0.5414
NetBeans Original CNN ENN ICF IS
Top-1 0.2917 0.0378 0.225 0.1863 0.2993
Top-2 0.3972 0.0614 0.3384 0.2706 0.3965
Top-3 0.4311 0.0867 0.4038 0.3353 0.4418
Top-4 0.4612 0.1084 0.4512 0.3828 0.4661
Top-5 0.4847 0.1268 0.4928 0.4203 0.4812
Top-6 0.5091 0.1405 0.5216 0.4468 0.4923
Top-7 0.5273 0.1554 0.5462 0.4689 0.5058
Top-8 0.5447 0.1707 0.5662 0.4883 0.5207
Top-9 0.5627 0.183 0.5821 0.5053 0.5299
Top-10 0.5759 0.1974 0.5988 0.5171 0.5409
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4.3.5. RQ5: How Can the Developer’s Activities Affect the
Optimal List of Recommended Developers? In this part, we
add the developer engagement level into our experiment to
calculate the accuracy on four bug repositories (Mozilla,
NetBeans, OpenOffice, and GCC) from Top-1 to Top-10.
)e results are shown in Tables 19–22 (in Tables 19–22, we
use “Without developer engagement” to describe not con-
sidering the developer engagement, and “With developer
engagement” refers to the consideration of developer
engagement).

According to the results, NBM’s accuracy improves
higher on all feature extraction schemes except for Mozilla.
)e highest classification accuracies on the four bug

repositories have changed compared with accuracies with-
out considering developer engagement. )e improved
percent of FS + IS can reach up to 2.63% on Mozilla. For
NetBeans, the overall accuracies of FS, IS, and FS + IS have
substantially improved. )e Top-10 accuracies of FS, IS, and
FS + IS have gone up 5.64%, 2.47%, and 2.91%, respectively,
which verifies our thinking in RQ2. )e results indicate that
the accuracy of NetBeans with consideration of developer
engagement has substantial improvement, which explains
that the developer flow is frequent in NetBeans. Table 21
shows that the accuracies of the three proposed methods
improve on OpenOffice, and FS has a good improved range
of 9.33%. Similarly, considering developer engagement, the

Table 9: Comparison of different feature selection and instance selection methods on OpenOffice.
OpenOffice Original IG CHI SU FS
Top-1 0.182 0.0919 0.0919 0.0919 0.1458
Top-2 0.275 0.1563 0.1563 0.1563 0.2155
Top-3 0.3211 0.2123 0.2123 0.2123 0.266
Top-4 0.3507 0.2462 0.2462 0.2462 0.3005
Top-5 0.3775 0.2618 0.2618 0.2618 0.3295
Top-6 0.4008 0.2904 0.2904 0.2904 0.3569
Top-7 0.4209 0.3079 0.3079 0.3079 0.3802
Top-8 0.4437 0.3257 0.3257 0.3257 0.4078
Top-9 0.4636 0.3437 0.3437 0.3437 0.4368
Top-10 0.4839 0.353 0.353 0.353 0.4624
OpenOffice Original CNN ENN ICF IS
Top-1 0.182 0.0289 0.0289 0.0289 0.1477
Top-2 0.275 0.0491 0.0491 0.0491 0.2092
Top-3 0.3211 0.0735 0.0735 0.0735 0.2447
Top-4 0.3507 0.1017 0.1017 0.1017 0.2723
Top-5 0.3775 0.1266 0.1266 0.1266 0.2971
Top-6 0.4008 0.1479 0.1479 0.1479 0.3202
Top-7 0.4209 0.1673 0.1673 0.1673 0.3844
Top-8 0.4437 0.1815 0.1815 0.1815 0.4599
Top-9 0.4636 0.1992 0.1992 0.1992 0.5088
Top-10 0.4839 0.2197 0.2197 0.2197 0.5376

Table 10: Comparison of different feature selection and instance selection methods on GCC.
GCC Original IG CHI SU FS
Top-1 0.3464 0.1832 0.1832 0.1832 0.5115
Top-2 0.525 0.3109 0.3109 0.3109 0.6724
Top-3 0.5786 0.4151 0.4151 0.4151 0.7677
Top-4 0.6036 0.4899 0.4899 0.4899 0.7863
Top-5 0.6241 0.548 0.548 0.548 0.799
Top-6 0.6464 0.5912 0.5912 0.5912 0.8098
Top-7 0.6607 0.6281 0.6281 0.6281 0.8224
Top-8 0.6705 0.6608 0.6608 0.6608 0.8302
Top-9 0.6804 0.6817 0.6817 0.6817 0.8403
Top-10 0.6884 0.7085 0.7085 0.7085 0.8451
GCC Original CNN ENN ICF IS
Top-1 0.3464 0.1832 0.0923 0.1906 0.519
Top-2 0.525 0.3109 0.1869 0.3433 0.6798
Top-3 0.5786 0.4151 0.2695 0.4564 0.7677
Top-4 0.6036 0.4899 0.3325 0.5398 0.7822
Top-5 0.6241 0.548 0.3924 0.5961 0.7949
Top-6 0.6464 0.5912 0.4464 0.6448 0.8016
Top-7 0.6607 0.6281 0.4989 0.6839 0.8179
Top-8 0.6705 0.6608 0.5391 0.7118 0.8232
Top-9 0.6804 0.6817 0.5786 0.7375 0.8306
Top-10 0.6884 0.7085 0.6158 0.7587 0.8369
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accuracy of GCC is going up slightly. FS + IS has the biggest
improvement of 1.05% among the three proposed
approaches.

Meanwhile, the study of developer engagement alleviates
the overfitting problem effectively for feature extraction on
NetBeans. Moreover, the accuracy of NBM is significantly

Table 12: Comparison experiment using FS, IS, and FS + IS on NetBeans.

NetBeans Original FS -> IS (IG+ ICF) IS -> FS (ICF + IG) FS IS FS + IS
Top-1 0.2917 0.128 0.1148 0.2532 0.2945 0.261
Top-2 0.3972 0.1847 0.1827 0.3524 0.3951 0.3402
Top-3 0.4311 0.2279 0.2458 0.4012 0.4529 0.3974
Top-4 0.4612 0.2491 0.2786 0.4329 0.4708 0.4429
Top-5 0.4847 0.2687 0.3066 0.4576 0.4842 0.475
Top-6 0.5091 0.2864 0.3348 0.4732 0.4923 0.4946
Top-7 0.5273 0.3015 0.3532 0.4911 0.5019 0.5133
Top-8 0.5447 0.314 0.3683 0.5072 0.5176 0.5325
Top-9 0.5627 0.3292 0.3819 0.5251 0.5297 0.5426
Top-10 0.5759 0.3421 0.3965 0.5414 0.5442 0.5607

Table 11: Comparison experiment using FS, IS, and FS + IS on Mozilla.

Mozilla Original FS -> IS (IG+ ICF) IS -> FS (ICF + IG) FS IS FS + IS
Top-1 0.0906 0.0059 0.0654 0.0868 0.1208 0.1001
Top-2 0.1463 0.01 0.0879 0.13 0.1884 0.1488
Top-3 0.1833 0.0135 0.1083 0.1578 0.2105 0.1756
Top-4 0.2045 0.0197 0.1602 0.178 0.2351 0.2072
Top-5 0.2233 0.0214 0.1736 0.1956 0.2528 0.2388
Top-6 0.2404 0.0218 0.1916 0.2104 0.2639 0.2505
Top-7 0.2551 0.0256 0.1985 0.2287 0.276 0.2645
Top-8 0.2669 0.0284 0.21 0.2424 0.2843 0.2778
Top-9 0.278 0.0301 0.2269 0.2518 0.2933 0.2896
Top-10 0.2889 0.0308 0.2383 0.2601 0.3044 0.2944

Table 13: Comparison experiment using FS, IS, and FS + IS on OpenOffice.

OpenOffice Original FS -> IS (IG+ ICF) IS -> FS (ICF + IG) FS IS FS + IS
Top-1 0.182 0.0084 0.0313 0.1458 0.1477 0.1396
Top-2 0.275 0.0244 0.075 0.2155 0.2092 0.2022
Top-3 0.3211 0.0311 0.1061 0.266 0.2447 0.2516
Top-4 0.3507 0.0362 0.1554 0.3005 0.2723 0.2843
Top-5 0.3775 0.0411 0.1796 0.3295 0.2971 0.3122
Top-6 0.4008 0.0642 0.2025 0.3569 0.3202 0.3431
Top-7 0.4209 0.0708 0.4196 0.3802 0.3844 0.3681
Top-8 0.4437 0.075 0.4427 0.4078 0.4599 0.3955
Top-9 0.4636 0.0806 0.4547 0.4368 0.5088 0.424
Top-10 0.4839 0.0819 0.4603 0.4624 0.5376 0.454

Table 14: Comparison experiment using FS, IS, and FS + IS on GCC.

GCC Original FS -> IS (IG+ ICF) IS -> FS (ICF+ IG) FS IS FS + IS
Top-1 0.3464 0.2878 0.3414 0.5115 0.519 0.4749
Top-2 0.525 0.4494 0.4758 0.6724 0.6798 0.6356
Top-3 0.5786 0.5551 0.5566 0.7677 0.7677 0.7648
Top-4 0.6036 0.6288 0.6095 0.7863 0.7822 0.7884
Top-5 0.6241 0.6742 0.6504 0.799 0.7949 0.7989
Top-6 0.6464 0.7096 0.6768 0.8098 0.8016 0.8112
Top-7 0.6607 0.736 0.6992 0.8224 0.8179 0.8213
Top-8 0.6705 0.7543 0.7148 0.8302 0.8232 0.8281
Top-9 0.6804 0.7755 0.736 0.8403 0.8306 0.8345
Top-10 0.6884 0.7893 0.7528 0.8451 0.8369 0.8393
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Table 16: Reduced data size comparison of FS, IS, and FS + IS on NetBeans.

NetBeans FS + IS FS IS Original information (7 + 1)
IS number 16919 16941 5944 17231
FS number 9041 9964 24324 34413
Data reduction degree of IS 0.9819 0.9832 0.3450
Data reduction degree of FS 0.2627 0.2895 0.7068
Overall reduction degree (row∗ column) 0.2580 0.2847 0.2438

Table 15: Reduced data size comparison of FS, IS and FS+ IS on Mozilla.

Mozilla FS + IS FS IS Original information (7 + 1)
IS number 5272 11291 4679 15035
FS number 3528 1163 14686 31317
Data reduction degree of IS 0.3506 0.7510 0.3112
Data reduction degree of FS 0.1127 0.0371 0.4689
Overall reduction accuracy (row∗ column) 0.0395 0.0279 0.1459

Table 17: Reduced data size comparison of FS, IS, and FS + IS on OpenOffice.

OpenOffice FS + IS FS IS Original information (7 + 1)
IS number 12527 17941 18001 18781
FS number 1934 2349 24175 44248
Data reduction degree of IS 0.6670 0.9553 0.9585
Data reduction degree of FS 0.0437 0.0531 0.5464
Overall reduction degree (row∗ column) 0.0292 0.0507 0.5237

Table 18: Reduced data size comparison of FS, IS, and FS + IS on GCC.

GCC FS + IS FS IS Original information (7 + 1)
IS number I7493 10742 6394 11169
FS number 3842 10468 26170 46251
Data reduction degree of IS 0.6709 0.9618 0.5725
Data reduction degree of FS 0.0831 0.2263 0.5658
Overall reduction degree (row∗ column) 0.0557 0.2177 0.3239

Table 19: Accuracy of Top-k considering developer engagement and without considering engagement on Mozilla.

Mozilla Without developer engagement With developer engagement
FS
Top-1 0.0868 0.0868
Top-2 0.13 0.13
Top-3 0.1578 0.1578
Top-4 0.178 0.178
Top-5 0.1956 0.1956
Top-6 0.2104 0.2104
Top-7 0.2287 0.2287
Top-8 0.2424 0.2424
Top-9 0.2518 0.2518
Top-10 0.2601 0.2601
IS
Top-1 0.1208 0.1236
Top-2 0.1884 0.1911
Top-3 0.2105 0.2123
Top-4 0.2351 0.2382
Top-5 0.2528 0.2548
Top-6 0.2639 0.2715
Top-7 0.276 0.2777
Top-8 0.2843 0.2881
Top-9 0.2933 0.3012
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higher than the original accuracy. Because the accuracy of
the feature extraction scheme of FS + IS has been obviously
improved, we conclude that the introduction of developer
engagement can successfully compensate for the problem of
information loss caused by FS + IS.

We find that the accuracy on the test set using the NBM
classifier generally presents a trend of increasing first, then
lowering, and finally, flattening with increasing N. After a
careful analysis, we find that the two kinds of information

compete with the growth of N. One is the effective infor-
mation related to the test set, and the other is the noise. )is
confrontation relationship leads to the accuracy increasing
first and then decreasing with the growth of N. For the data
reduction of Mozilla_total’s DE_FS, the accuracy is always at
a lower degree with N changing. It is because the flow of
Mozilla_total staff changes frequently with time, which
causes the noisy and redundant data to grow and fragment.
However, we also found that the dataset generated by

Table 20: Accuracy of Top-k considering engagement and without considering engagement on NetBeans.

NetBeans Without developer engagement With developer engagement
FS
Top-1 0.2532 0.2521
Top-2 0.3524 0.3578
Top-3 0.4012 0.4173
Top-4 0.4329 0.4496
Top-5 0.4576 0.4734
Top-6 0.4732 0.4919
Top-7 0.4911 0.523
Top-8 0.5072 0.5518
Top-9 0.5251 0.5815
Top-10 0.5414 0.6342
IS
Top-1 0.2945 0.2995
Top-2 0.3951 0.3972
Top-3 0.4529 0.4423
Top-4 0.4708 0.4671
Top-5 0.4842 0.4824
Top-6 0.4923 0.4937
Top-7 0.5019 0.51
Top-8 0.5176 0.5277
Top-9 0.5297 0.5544
Top-10 0.5442 0.628
FS + IS
Top-1 0.261 0.2427
Top-2 0.3402 0.3551
Top-3 0.3974 0.4073
Top-4 0.4429 0.4406
Top-5 0.475 0.4649
Top-6 0.4946 0.4876
Top-7 0.5133 0.5197
Top-8 0.5325 0.5452
Top-9 0.5426 0.5717
Top-10 0.5607 0.6246

Table 19: Continued.

Mozilla Without developer engagement With developer engagement
Top-10 0.3044 0.3096
FS + IS
Top-1 0.1001 0.1071
Top-2 0.1488 0.159
Top-3 0.1756 0.204
Top-4 0.2072 0.2398
Top-5 0.2388 0.2607
Top-6 0.2505 0.2778
Top-7 0.2645 0.2853
Top-8 0.2778 0.3003
Top-9 0.2896 0.3116
Top-10 0.2944 0.3207
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Table 21: Accuracy of Top-k considering engagement and without considering engagement on OpenOffice.

OpenOffice Without developer engagement With developer engagement
FS
Top-1 0.1458 0.1703
Top-2 0.2155 0.2409
Top-3 0.266 0.2861
Top-4 0.3005 0.3208
Top-5 0.3295 0.3562
Top-6 0.3569 0.3951
Top-7 0.3802 0.4357
Top-8 0.4078 0.4889
Top-9 0.4368 0.5256
Top-10 0.4624 0.5557
IS
Top-1 0.1477 0.1646
Top-2 0.2092 0.2247
Top-3 0.2447 0.2636
Top-4 0.2723 0.3002
Top-5 0.2971 0.3724
Top-6 0.3202 0.455
Top-7 0.3844 0.5059
Top-8 0.4599 0.5392
Top-9 0.5088 0.5574
Top-10 0.5376 0.5741
FS + IS
Top-1 0.1396 0.1579
Top-2 0.2022 0.2305
Top-3 0.2516 0.2717
Top-4 0.2843 0.3106
Top-5 0.3122 0.3434
Top-6 0.3431 0.381
Top-7 0.3681 0.4197
Top-8 0.3955 0.4656
Top-9 0.424 0.5023
Top-10 0.454 0.5315

Table 22: Accuracy of Top-k considering engagement and without considering engagement on GCC.

GCC Without developer engagement With developer engagement
FS
Top-1 0.5115 0.5115
Top-2 0.6724 0.6724
Top-3 0.7677 0.7673
Top-4 0.7863 0.7863
Top-5 0.799 0.7986
Top-6 0.8098 0.8094
Top-7 0.8224 0.8235
Top-8 0.8302 0.8347
Top-9 0.8403 0.8436
Top-10 0.8451 0.8507
IS
Top-1 0.519 0.519
Top-2 0.6798 0.6798
Top-3 0.7677 0.7681
Top-4 0.7822 0.7807
Top-5 0.7949 0.7937
Top-6 0.8016 0.8116
Top-7 0.8179 0.8213
Top-8 0.8232 0.8284
Top-9 0.8306 0.838
Top-10 0.8369 0.847
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Mozilla_total’s DE_IS scheme performs well after adding
developer engagement, which indicates that the denoising
ability of IS on the Mozilla_total is better than that of the FS
approach.

We conclude that the introduction of developer en-
gagement can effectively improve the classification accuracy
of NBM. Moreover, it significantly alleviates the overfitting
phenomenonwhich happens when amodel learns the details
and noise in the training data to the extent that it negatively
impacts the performance of the model on unseen data. )is
means that the noise or random fluctuations in the training
data is picked up and learned as concepts by the model. )e
problem is that these concepts do not apply to new data and
negatively impact NBM’s ability to generalize. In our im-
proved NBM classification, removal of redundant features
from bug trial dataset can prevent overfitting. In addition,
the developer engagement effectively compensates for in-
formation loss caused by the FS + IS method and substan-
tially increases the accuracy. Meanwhile, compared with the
overall dataset, the optimal reference range is smaller and
easier to implement if considering developer engagement.

In Table 23, we analyze the peak of engagement, which
can explain the frequency of developers’ flow in different bug
repositories. A greater distance between the peak and the
average means a higher frequency of recent personnel
movements. We can learn that the developers of Mozilla and
OpenOffice flow more frequently than GCC and NetBeans.

5. Conclusion and Future Work

In this paper, we propose a new bug triage method for
recommending suitable developers to fix newly reported
bugs. To solve the problem of small search range and
neglecting the chronological order in the traditional bug
triage method, we improve the existing heuristic search
method and expand the search scope further based on the

chronological order of bug reports. We find that developer
engagement has an impact on bug triage; therefore, in ad-
dition to the text information provided in the bug report, we
consider the developer’s product information to recommend
the best developer for the new bug report. We use FS, IS, and
FS + IS to verify our approach on four bug repositories:
GCC, OpenOffice, Mozilla, and NetBeans. )e results show
that the method proposed in this paper is more effective than
the previous methods. In future work, we plan to verify our
approach using more bug repositories. Moreover, we plan to
apply our method to additional software projects.
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Product ratings are popular tools to support buying decisions of consumers, which are also valuable for online retailers. In online
marketplaces, vendors can use rating systems to build trust and reputation. To build trust, it is really important to evaluate the
aggregate score for an item or a service. An accurate aggregation of ratings can embody the true quality of offerings, which is not
only beneficial for providers in adjusting operation and sales tactics, but also helpful for consumers in discovery and purchase
decisions. In this paper, we propose a hierarchical aggregation model for reputation feedback, where the state-of-the-art feature-
based matrix factorization models are used. We first present our motivation..en, we propose feature-based matrix factorization
models. Finally, we address how to utilize the above modes to formulate the hierarchical aggregation model. .rough a set of
experiments, we can get that the aggregate score calculated by our model is greater than the corresponding value obtained by the
state-of-the-art IRURe; i.e., the outputs of our models can better match the true rank orders.

1. Introduction

With the advances and rapid proliferation of Web 2.0 in-
novations, many sites on the World Wide Web offer con-
sumers the possibility of sharing their experiences with
products and services through reviews and ratings. Con-
sumer feedback can not only rank a wide variety of online
offerings, but also enable ease of discovery of more useful
products and build trust in marketplaces. Moreover, positive
consumer feedback contributes to increase in visibility and
sale of offerings [1, 2]. .erefore, an accurate model of
consumer feedback aggregation is absolutely critical for
decision-making and marketing strategies of marketplaces,
which can help users avoid bad choices and drive them
toward more useful items.

Our goal in this paper is to study the problem of
modeling consumer feedback from large-scale sale data in
order to support personalized and scalable recommendation
and demand-forecasting systems. We focus on modeling
hierarchical aggregation method for reputation feedback of
services networks.

1.1. Motivation. As shown in Figure 1, shopping is an in-
dividual or household’s day-to-day activity, which can be
simply divided into three stages, i.e., category purchase,
product choice, and purchase quantity. For example, Amy
would like to buy a carton of milk. When she wanders
around fat-free milk and whole milk, she must do a choice. If
fat-free milk, she should select a brand, finally deciding the
quantity. Actually, the above purchase process indicates
Amy’s preferences.

Product preferences are generally reflected by purchase
incidence or purchase quantity in a consumer’s shopping
history. In the field of recommender systems, consumer
preference matching is well done in item-based collaborative
filtering [3] and matrix factorization technique [4]. More-
over, user preferences are also taken into account in service
selection [5, 6] and service composition [7–11]. To satisfy
increasingly complex user requirements, PaaS (API-driven
platform as a service cloud) allows quick composition of
existing services to deliver packaged solutions. It is very
important, for solution developers, to quickly assess those
composite services and regular feedback on performance of
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component services. Only in this way can they dynamically
update their compositions to ensure quality. However,
during the process of assessment, consumer feedback plays a
decisive role, which is dynamic and ephemeral. So, it is very
crucial to efficiently aggregate consumer feedback.

1.2. Hierarchical Aggregation. To address the challenging
problem about aggregations of consumer feedback, in this
paper we present a hierarchical aggregation model for
reputation feedback.

As shown in Figure 1, wemodel user shopping as a three-
stage decision-making process (so does service composition,
i.e., service provider selection, service categories choice, and
quantity decision for each category of atomic service). In a
real-world supermarket, we usually display products either
based on an existing commodity hierarchy or by clustering
their associated characteristics (e.g., text descriptions). For
each category, it may consist of some kinds of products
where consumers’ purchase decisions share similar patterns.
In womenswear department about sports style, for example,
maybe you can find Adidas or Nike jackets. However, be-
cause of different user preferences [12–15], in a concrete
purchase decision-making process, stages are
heterogeneous.

In our model, we regard user category purchase as a
binary prediction problem, where a multinomial distribu-
tion is explored to model the category purchasing process.
.en, user will choose one product. However, user deter-
mines what quantity of a product, which is up to a numeric
prediction problem. Our reputation feedback produce
procedure where binary, categorical, and numeric prediction
are combined, is quite different from that used by traditional
ways of aggregating feedback. So, new approaches must be
developed.

In this paper, we develop a hierarchical aggregation
model and extend state-of-the-art feature-based matrix
factorization models to include feedback as a factor. To
summarize, in this paper, we make the following
contributions:

(a) A generalized feature-based matrix factorization
approach was adjusted and applied in our hierar-
chical feedback aggregation model.

(b) To evaluate the contribution of a node’s own ratings
to the aggregate score, we present a model which
consists of two parts, i.e., the mean rating of the node

and the mean rating of the node’s universe. More-
over, the precedingmodels (detailed in Section 4) are
used for relevance or weight estimation.

(c) To effectively evaluate the contribution of a node’s
child nodes to its aggregate score, a model in (14) is
presented, where we do not only take sons into
account, but also consider siblings and cousins
(siblings and cousins are almost not concerned in
existing models for reputational feedback). It is a
weighted mean of the aggregate score AS(ai) of the d
child nodes. For each child, its contribution is
controlled by two factors, i.e., the trust value of its
ratings and the importance of its contribution.

(d) To illustrate the feasibility and efficiency of the
proposed framework, we conduct comprehensive
experiments. .e experimental results show that the
proposed framework is effective and efficient in the
hierarchical aggregation of consumer feedback using
consumer ratings.

.e rest of this paper is organized as follows: Section 2
surveys related work on user preference, trust, and repu-
tationmanagement. Section 3 extends GLMix and consider a
generalized feature-based matrix factorization (FBMF)
model. Section 4 details the hierarchical aggregation model
for reputation feedback. Section 5 discusses the experimental
settings and results. Finally, Section 6 concludes this paper
and outlines future work.

2. Related Work

.e theme of user preference has been richly studied for
recommender systems in various application scenarios such
as content-based approaches [16, 17] and collaborative fil-
tering approaches [3, 4, 18, 19]. To improve performance,
[20, 21] both combine multiple techniques to achieve more
complex tasks in hybrid recommender systems. Matrix
factorization techniques are the most widely used methods
in predicting the missing ratings of a user-item rating matrix
due to their accuracy and scalability in prediction
[18, 22–29]. In particular, feature-based matrix factorization
techniques have been well done in [30–34]. Moreover, some
researchers have developed efficient tools such as
SVDFeature and libFM [35, 36]. Zhang et al. [37] presented a
generalized linear mixed model (GLMix) for the LinkedIn
job recommender system, where a scalable parallel block-
wise coordinate descent algorithm was used. In this paper,
we also concern user preference, but we focus on aggregating
user preference by a hierarchical aggregation model. We
build our model upon GLMix to fit different prediction
settings.

It is also common to influence consumer behavior in
making purchases based on aggregate consumer feedback
[2, 38]. Floyd et al. [39] reached a conclusion that the volume
of reviews, review valence, and influence of reviewers have a
strong influence on purchasing decisions. For measuring the
aggregate consumer preferences, researchers navigated
many solutions to analyze the online product reviews. For
instance, Ghose and Ipeirotis did reviews ranking by a

Category
purchase

Product
choice

Purchase
quantity

Transaction
logs

Reputation
aggregation

model

Personalized
promotion

Figure 1: General shopping process.
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consumer-oriented mechanism or a manufacturer-oriented
mechanism, which were based on review helpfulness and
review’s expected effect on sales, respectively [40]. Xiao et al.
[41] addressed an econometric preference measurement
model, where a modified ordered choice model (MOCM)
was also presented to extract aggregate consumer prefer-
ences from online product reviews. Banic et al. [42] focused
on opinion mining by means of sentiment analysis, where a
system was presented for collecting, evaluating, and ag-
gregating user opinions. Zhang et al. [43] proposed a
feedback aggregation approach to rank products based on
the quality of reviews, which was calculated using a review’s
credibility as measured by helpfulness votes, relevance to the
product, and the posting date of the reviews. However, all
above approaches only consider product reviews rather than
user ratings.

.ere are also several studies on trust and reputation
management systems development, which aim to evaluate
the reputation of services based on consumer feedback [44].
To monitor the execution of composite services, Bianculli
et al. [45] presented a generic and customizable reputation
infrastructure, where notifications upon changes in service
reputation were allowable. In [46], Malik and Bouguettaya
proposed a framework for establishing trust in service-
oriented environments, where different ratings were ag-
gregated to derive a service provider’s reputation. Similarly,
Wang et al. [47] proposed a reputation measure method for
web services, which could ensure the reputation measure
accuracy through two phases, i.e., malicious rating detection
and rating adjustment [48]. Employed subjective probability
theory to do trust evaluation for composite services. Dif-
ferent from our work, these work focuses on reputation
system construction.

Many methods have been addressed to measure ag-
gregate consumer preferences, which can be reduced to three
major approaches: survey-, behavior-, and online review-
based. Due to the advantages of conjoint analysis which
depends strongly on survey data, it was explored to do
preference measuring by Netzer et al. [49]. By means of
collecting users’ preference data from surveys or experi-
ments, the survey-based approach could determine how
people value the different features that constitute an indi-
vidual product or service [50, 51]. However, they are time
consuming and costly. To deal with these challenges, some
work takes consumers’ behavioral data into account to infer
aggregate consumer preferences. For example, Fader and
Hardie [52] presented a discrete choice model to measure
consumer preferences for selected product features. But in
[53], based on transaction data and path data, aggregate
consumer preferences could be well estimated. Now, since
online product reviews are available and accessible, several
studies employed online product reviews to measure ag-
gregate consumer preferences. For instance, Decker and
Trusov proposed an econometric framework, which con-
sisted of three models (i.e., Poisson’s regression, negative
binominal regression, and latent-class Poisson’s regression
models), to measure aggregate consumer preferences from
online product reviews [54]. By means of analyzing the
reviewers’ knowledge and their opinion sentiment toward

the target products, Li et al. [55] exploited a social intelli-
gence mechanism for extracting and consolidating the re-
views which could provide insights into enterprises to make
decisions on product portfolio design. Different from pre-
vious work, this work focuses on the hierarchical aggrega-
tion of consumer reputation feedback.

Complex network refers to such network, which could
have properties of self-organization, self-similarity, attrac-
tor, small world, or no scale..ere are abundant examples of
systems composed by a large number of highly inter-
connected dynamical units, such as neural networks, bio-
logical and chemical systems, the Internet, and the World
WideWeb. To capture the global properties of such systems,
we usually model them as graphs whose nodes represent the
dynamical units and whose links stand for the interactions
between them [56]. In [57], the authors addressed a survey of
the use of measurements capable of expressing the most
relevant topological features which characterize its con-
nectivity and highly influence the dynamics of processes
executed on the complex network. In [58], the authors
explored the toolkit used for studying complex systems, i.e.,
nonlinear dynamics, statistical physics, and network theory.

At the same time, software networks have attracted more
and more attention from various fields of science and en-
gineering [59]. In [60], the optimal software-defined net-
work planning was investigated with multicontrollers, where
an adaptive feedback control mechanism was proposed. In
[61], the authors explored the community structure of a real
complex software network and correlated this modularity
information with the internal dynamical processes, which
the network is designed to support. Pan et al. [62] presented
a systematic approach to investigate the complex software
systems by using the k-core theories of complex networks.
Wood et al. [63] addressed communication networks
through the use of software-defined networking and the use
of virtualization, where a comprehensive SDN control plane
was needed. In [64, 65], the software key classes identifi-
cation was addressed through the use of algorithms in
complex networks.

Finally, service network is a typical complex adaptive
system, and we can reveal the mechanism of its formation,
evolution, and self-organization by the related theories and
methods of complex network. For instance, in [66], the
authors took advantage of the theory of complex network
and existing networked software research works to explore
the basic characteristics of services and service networks,
such as the service network’s “small world,” “scale-free”
characteristics and service network topology. Zhou and
Wang [67] proposed a SCAS (service clustering approach
using structural metrics) to group services into different
clusters, where a metric A2S (atomic service similarity) was
utilized to characterize the atomic service similarity. To
explore the needs of support tools and service provisioning
environments, [68] introduced the architecture of the open-
source SONATA system, a service programming, orches-
tration, and management framework, where a development
toolchain for virtualized network services could be fully
integrated with a service platform and orchestration system.
Correia et al. [69] proposed a hierarchical SDN-based
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vehicular architecture, which aimed to improve perfor-
mance in the situation of loss of connection with the central
SDN controller. Similarly, for services networks, we model
user shopping or service purchasing as a three-stage deci-
sion-making process (i.e., provider selection, service or item
categories choice, and quantity decision for each category),
where a generalized feature-based matrix factorization
(FBMF) model is used. We also address a hierarchical ag-
gregation model for consumer ratings, so that the true
quality of offerings can be embodied. Finally, we present how
to combine the above models to raise the aggregation
precision. Since the work in [70] is most similar to our
approach, in the experiments, we will mainly detail the work
of [70].

3. Preliminaries

In this section, we present a generalized feature-basedmatrix
factorization approach, which can be adjusted and applied in
our hierarchical feedback aggregation model. .e basic
notations used in this paper are shown in Table 1.

Generalized linear model (GLM) is widely used for
statistical inference and response prediction problems. For
example, in order to recommend relevant content to a user, a
large number of web companies utilize logistic regression
models to predict the probability of the user’s clicking on an
item (e.g., ad, news article, and job). In scenarios where the
data is abundant, constructing a more fine-grained model
focusing on user or item level would mostly contribute to
more accurate prediction, since both the user’s preferences
on items and the item’s specific attraction for users can be
better captured. Some work combines ID-level regression
coefficients with the global regression coefficients in a GLM
setting [71], and such models are called generalized linear
mixed models (GLMix) in the statistical literature.

In this paper, we extend GLMix and consider a gener-
alized feature-based matrix factorization (FBMF) model:

link(L(t)) � K(t) ≈ Φ(t)
TΨ(t). (1)

Here, L(t) is the time-aware label matrix, where each
element li, u(t) indicates the label for an item i and a user u
at timestamp t. Depending on the application, li, u(t) can be
either a real label or a binary label. When users explicitly
express their opinions on products, li, u(t) is a real label,
often in the range [1, 5], and li, u(t) is a binary label when
predicting category purchase or product choice. .e original
label matrix can be transformed into a numeric matrix K(t)
bymeans of the logit function or logarithm function. And we
decompose K(t) as a product of Φ(t) and Ψ(t), where Φ(t)

and Ψ(t) embody both explicit features and latent factors
from items and users. For each element ki,u(t) in K(t), it can
be formulated as follows:

ki,u(t) ≈ 〈Φi(t), Ψu(t) �〉

<C, gi, u(t)
√√√√

global features

>
√√√√√√√√√√√√√√

global effect

+ < Φ(c)

i (t)

√√√√item features

,Ψ(c)
u > + <Φ(c)

i , Ψ
(c)

u (t)

√√√√user features

>
√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

observed item/user−specific effect

+ <Φ(lf)

i ,Ψ(lf)
u >√√√√√√√√√√√√

latent item−user interaction

,

(2)

where <, > denotes the inner product. In our model, we
simply decompose each prediction into three components,
i.e., global effects, observed item/user-specific effects, and
latent item-user interactions.

Specifically, for global effects, gi, u(t) includes a set of
features for (i, u, t) and C denotes a set of global coefficients,
which can be estimated but should be consistent for all (i, u,
t) triples. For example, the weighted mean rating of universe
of a node x and universal relevance are all such features. In
fact, the second term (i.e., item/user-specific effects) is
similar to the random coefficient model [72, 73], which

includes explicit features with item- or user-dependent
coefficients. Generally speaking, in our model, contribution
of node x from its own ratings and consumer credibility are
explicit item- and user-related features. Finally, latent item-
user interaction is designed to capture the remaining latent
effects in terms of low-rank user and item factors.

4. Methodology

To achieve more complex tasks or to mash up data from
different data resources by using business process

Table 1: Notations.

Symbol Description
i, u, t Item, user, timestamp
C, gi, u Global coefficient, global feature
Φ(c)

i , Ψ(c)

u Explicit item features, explicit user features
Φ(c)

i , Ψ(c)
u Item random coefficient, user random coefficient

Φ(lf)
i ,Ψ(lf)

u Item latent factors, user latent factors
ςu(t) Probability of user u selecting a category
ξs′ ,u(t) Conditional probability of user u purchasing s′
OR(a) Contribution of a’s own ratings
CR(a) Contribution of a’s child nodes
MR(a) Weighted mean rating of node a
UR(a) Weighted mean rating of universe of node a
Rai ith consumer rating of node a
Cai

u Consumer credibility for Rai of node a
TV(a) Trust value of ratings of node a
TVa Trust votes of node a
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description languages, web services usually need to be
composed as workflows (i.e., service processes). As shown in
Figure 2, the process of constructing a service process can be
simply divided into three stages, i.e., service provider se-
lection, atomic service categories choice, and quantity de-
cision for each category of atomic service. In this section, we
present an integrated model to produce the aggregation of
feedback.

Users interact with services from a marketplace where
both atomic and composite services are available, refer to
existing feedback, and provide feedback based on their own
perception. According to the different contexts, a service
can independently receive direct feedback. .erefore, we
aggregate the feedback of a composite service based on not
only its direct feedback, but also the aggregate feedback of
its components. Below, we detail the hierarchical aggre-
gation method that provides an accurate evaluation of
feedback.

Given a service s′ in service category sc, a user u, and a
timestamp t, suppose there are the following definitions:

SCsc
u (t): user u selects the service category sc at time t;

Ss′
u(t): user u selects the service s′ at time t;

Qs′
u(t) � n: user u’s selection quantity of s′ at t is n.

.us, assuming that we focus on the service category sc,
user u’s preferences can be calculated by the joint proba-
bility of choosing a certain quantity of service s′ in category
sc; i.e.,

P Q
s′
u(t) � n, S

s′
u(t), SC

sc
u (t)  � P SC

sc
u (t)( 

√√√√√√√√
category

preference

× P S
s′
u(t) SC

sc
u (t)

 
√√√√√√√√√√√√√√√√

conditional

service preference

× P Q
s′
u(t) � n S

s′
u(t), SC

sc
u (t)

 
√√√√√√√√√√√√√√√√√√√√√√√√

conditional

quantity preference

.

(3)

Equation (3) can be regarded as a product of three
conditional probabilities which represent the preferences in
previous service selection stages. By adopting different link
functions in the previous FBMF formulation, these three
preferences can be estimated by logistic, categorical, and
quantity-based FBMF models.

Service Category Selection (C-FBMF). For a given service
category sc, user u can get the following logistic
probability:

ςu(t) ≔ P SCsc
u (t)(  � σ s

(cate)
u (t) , (4)

where σ(·) is the sigmoid function, and s(cate)
u (t) denotes a

service category preference score, factorized using (2), where
there is only one general “item,” i.e., the service category sc.

Atomic Service Choice (S-FBMF). Next, we formulate the
probability of selecting an atomic service within a service
category as a multinomial distribution via a softmax
formulation:

ξs′ ,u(t) ≔ P S
s′
u(t) SCsc

u (t)
  �

exp s
(atom)

s′,u (t) 

s″exp s
(atom)

s″ ,u (t) 

. (5)

Similarly, the atomic service preference score s
(atom)

s′,u (t) is
factorized by (2).

Atomic Service Quantity Decision (Q-FBMF). .e quantity of
choosing an atomic service s′ follows a shifted Poisson
distribution:

P Q
s′
u(t) � n S

s′
u(t),SC

sc
u (t)

  �
τs′,u(t)n−1 exp −τs′,u(t)( 

(n −1)!
,

(6)

where τs′, u(t) � exp(s
(quan)

s′,u (t)). Again, we apply (2) to
factorize the atomic service quantity preference
scores(quan)

s′,u (t), and we can get the conditional expectation of
atomic service quantity as

q
s′
u(t) ≔ E Q

s′
u(t) S

s′
u(t), SCsc

u (t)

  � τs′, u(t) + 1, (7)

which can be taken as an estimate of Qs′
u(t).

Consider the generalized hierarchy for service compo-
sition shown in Figure 3, based on the composite service
decision process in Figure 2. Feedback aggregation is per-
formed for every node at each level of the tree, starting from
the bottom with the leaves. In this work, we combine all
ratings for a particular node to have a single 5-star score. In
short, for a node at a higher level, the aggregation score
involves not only its own ratings, but also contributions
from the lower-level descendants.

For a node a, its aggregate score is calculated as follows:

AS(a) � β × OR(a) +(1 − β) × CR(a), (8)

where OR(a) denotes the contribution of a’s own ratings,
CR(a) represents the contribution of its child nodes, and β is
a system parameter. If a has no child nodes, then β� 1, and
vice versa.

OR(a) � χ × MR(a) +(1 − χ) × UR(a). (9)

We can evaluate the contribution of a node’s own ratings
by (9). In (9), it consists of two parts, i.e., the mean rating of
the node (MR(a)) and the mean rating of the node’s uni-
verse (UR(a)). If there are not numerous ratings for a, the
existing ratings of its similar nodes (e.g., other instances of
a) are used, as it is possible that a′s ratings will be analogous
to the ratings of similar nodes. So, (9) is a trade-off between
MR(a) and UR(a). Generally speaking, (9) is a weighted

Service provider
selection

Atomic service
category choice

Quantity
decision for

atomic service

Figure 2: .e hierarchical composition for service process.
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mean such that the nodes with fewer ratings are dominated
by the mean rating across similar nodes, while the nodes
with more ratings are mostly dominated by its own mean
rating.

MR(a) �


k
i�1 Rai × ξa,u(t) × Cai

u


k
i�1 ξa,u(t) × Cai

u

. (10)

We use (10) to calculate a node’s mean rating, which is a
weighted mean of k ratings received by a node. As shown in

(10), Rai denotes a rating, and its weight comes from (5)..e
weight can indicate the utility of a service as perceived by the
user. Cai

u presents the credibility of user u who makes the
rating and adjusts the rating accordingly. Actually, there are
users who may try to drive up or down the rating score. By
means of adjusting the contribution of each rating based on
the respective weight of user credibility, we can lower the
influence of those fake users.

UR(a) �
δ1 

m
i�1 

k1
j�1Raij × ξij

a,u(t) × C
aij
u  + δ2 

n
i�1 

k2
j�1Ra′ij × ξij

a′,u(t) × C
a′ij
u 

δ1 
m
i�1 

k1
j�1ξ

ij
a,u(t) × C

aij
u  + δ2 

n
i�1 

k2
j�1ξ

ij

a′,u(t) × C
a′ij
u 

, (11)

δ1 � P Q
a
u(t) � m S

a
u(t), SCsc

u (t)
  �

τa, u(t)m− 1 exp(−τa, u(t))

(m − 1)!
, (12)

δ2 � P Q
a′
u(t) � n S

a′
u(t), SCsc′

u (t)

  �
τa′, u(t)n− 1 exp(−τa′, u(t))

(n − 1)!
. (13)

Equation (11) is used to evaluate the mean rating of a
node’s universe. Generally speaking, the universe refers to
the set of nodes similar to this node. In this work, we just
consider two levels of similarity—siblings and cousins. As
shown in (11), for a service node a with service category sc, it
may have m siblings and n cousins with k1 and k2 ratings,
respectively. For them siblings, they could be instances of a,
which can independently receive direct feedback. However,
for the n cousins, they might come from different service
categories, even from different service providers. δ1 and δ2
are sibling similarity weight and cousin similarity weight,
respectively. Obviously, sibling nodes have a higher degree

of similarity than the cousin nodes; i.e., δ1 may be greater
thanδ2:

CR(a) �


d
i�1 AS ai(  × TV ai(  × w a, ai( 


d
i�1 TV ai(  × w a, ai( 

. (14)

In (8), CR(a) represents the contribution of the d child
nodes to a′s aggregate score. We use (14) to calculate it,
which is a weighted mean of the aggregate score AS(ai) of
the d child nodes. For each child ai, its contribution is
controlled by two factors, i.e., the trust value of its ratings
and the importance of its contribution, which are denoted as

Service process

Service provider

Service category

Atomic service

Figure 3: A generalized hierarchy for service composition.
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TV(ai) and w(a, ai), respectively. w(a, ai) can be decided by
ai
′s age, functionality, frequency of usage, etc. From (14), we
can conclude that all a node’s descendant nodes contribute
its aggregate score:

TV(a) �
1
2

TVa +
1
d



d

i�1
TV ai( ⎞⎠.⎛⎝ (15)

We define trust value by (15), which is an arithmetic
mean and consists of two parts, i.e., a node’s own trust votes
TVa and the trust values of its d child nodes TV(ai). .e
trust value of a node is a measure of consumer confidence in
its ratings and can be used as a replacement of the number of
ratings for a service.

TVa � 
k

i�1
ξa,u(t) × C

ai
u . (16)

By means of summing the multiplication of k feedback
relevance ξa,u(t) and the respective consumer credibility Cai

u

received by the node, we can get the trust value of itself for a
node.

5. Experiments and Results Analysis

5.1. Datasets. In this section, we conduct experiments to
evaluate our approach. We compare our FBMF with the
method detailed in [70] on multiple public real-world
datasets, which are extracted from Amazon.com by
McAuley et al. [74]. .e datasets contain product reviews
(i.e., ratings, text, and helpfulness votes) and product
metadata. Specifically, the metadata includes price, title, a list
of also viewed products, and a list of also bought products.
We preprocess all datasets so that each user rated at least
four products. Table 2 details the statistics of our datasets,
which include five datasets, i.e., Baby, Office Products, Pet
Supplies, Electronics, and Sports and Outdoors. In Figure 4,
the number of rated products in each dataset is counted,
respectively.

All experiments are implemented in Java. .e hardware
environment is a machine with the Intel® Core™ i5 CPU
760, 2.80GHz, and 4GB RAM running Windows 7 (64-bit
version).

5.2. Relevance Estimation. In Section 4, we use (5) to model
input relevance, i.e., the utility of a service as perceived by the
consumer. In Amazon, we can find “N people found this
helpful” for each review along with Yes and No buttons.
Many online malls similarly allow customers to upvote or
downvote those posted reviews, which can present an idea
about their relevance and be formulated as follows [70] (for
simplicity, we call this method IRURe):

Rel �
Us

Tsmax
+ 1 −

Ts

Tsmax
  ×


k
i�1 Usi


k
i�1 Tsi

. (17)

Re l is a weighted mean of the initial relevance (IRe, the
former part of (17)) and the universal relevance (URe, the
final part of (17)) of a review, where Us denotes the upvotes

on a review, Ts is the total votes on a review, and Tsmax is the
maximum total votes across all reviews in the universe.

In the next section, we will conduct several groups of
experiments to evaluate the effectiveness and robustness of
our approach.

5.3. Experimental Results. Both our model FBMF (in (8))
and IRURe (detailed in [70]) can get an aggregate score for a
node, respectively. A higher aggregate score means a best-
selling product or a more popular service, but is that really
the case?

Actually, it is really difficult to evaluate the true quality of
a product due to the subjectivity in the process. To deal with
this problem, many researchers try to evaluate the effec-
tiveness of a product ranking system using the sales rank
feature of products [39], where the relative rank of a product
in a given category is indicated by the amount of its sales. In
our experiments, for the five datasets (i.e., Baby, Office
Products, Pet Supplies, Electronics, and Sports and Out-
doors), we choose the top five aggregate scores, respectively.
.en, under each dataset, we take pairwise comparison of
true relative sales ranks of products with the ranking order
generated by the mentioned models. .rough experiments,
we analyze how well the outputs of the models match the
true rank orders; i.e., a higher aggregate score should
translate into a better (smaller) sales rank.

In our experiments, we use the sales rank values in
metadata, which are extracted from Amazon.com by
McAuley et al. [74]. .e below five tables, Tables 3–7, are the

Table 2: Data statistics.

Dataset Users no. Products no. Ratings no.
Baby 531890 64426 915446
Office Products 909314 130006 1243186
Pet Supplies 740985 103288 1235316
Electronics 4201696 476002 7825308
Sports and Outdoors 1990521 478898 3268695
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Figure 4: .e number of rated products in each dataset.
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experimental results for the five datasets, respectively.
Among those tables, the first column is the IDs of two
compared products. .e second and the third columns
correspond to aggregate scores obtained by IRURe and

FBMF, respectively. For simplicity, all aggregate scores are
normalized into the range of zero to five. .e corresponding
sales ranks for pairwise products are presented in column 4.
.e two rightmost columns show the accuracy of the models

Table 3: Correlation of aggregate rating and sales rank on Baby.

Product ID IRURe FBMF Sales ranks IRURe-A FBMF-A
B004U47T38 vs. B0089PSCVC 4.4235 vs. 4.312 4.7694 vs. 4.4248 154314 vs. 302889 √ √
B004U47T38 vs. B006PZ3WWC 4.4235 vs. 4.2725 4.7694 vs. 4.7702 154314 vs. 59909 √ √
B004U47T38 vs. B00HSFF9WY 4.4235 vs. 3.76 4.7694 vs. 4.4405 154314 vs. 11262 × ×

B004U47T38 vs. B005NV518M 4.4235 vs. 2 4.7694 vs. 3.2 154314 vs. 450577 √ √
B0089PSCVC vs. B005PWE6US 4.312 vs. 4.2725 4.4248 vs. 4.7702 302889 vs. 59909 √ √
B0089PSCVC vs. B00HSFF9WY 4.312 vs. 3.76 4.4248 vs. 4.4405 302889 vs. 11262 √ √
B0089PSCVC vs. B005NV518M 4.312 vs. 2 4.4248 vs. 3.2 302889 vs. 450577 √ √
B005PWE6US vs. B00HSFF9WY 4.2725 vs. 3.76 4.7702 vs. 4.4405 59909 vs. 11262 × ×

B005PWE6US vs. B005NV518M 4.2725 vs. 2 4.7702 vs. 3.2 59909 vs. 450577 √ √
B00HSFF9WY vs. B005NV518M 3.76 vs. 2 4.4405 vs. 3.2 11262 vs. 450577 √ √

Table 6: Correlation of aggregate rating and sales rank on Pet Supplies.

Product ID IRURe FBMF Sales ranks IRURe-A FBMF-A
B002JBDF6E vs. B0051BWC1S 4.9775 vs. 4.9615 4.991 vs. 4.9846 57251 vs. 81784 √ √
B002JBDF6E vs. B009V18PJM 4.9775 vs. 4.9765 4.991 vs. 4.9834 57251 vs. 103444 √ √
B002JBDF6E vs. B001UH5EZI 4.9775 vs. 4.9530 4.991 vs. 4.9812 57251 vs. 106414 √ √
B002JBDF6E vs. B00448HS36 4.9775 vs. 4.9500 4.991 vs. 4.9800 57251 vs. 146735 √ √
B0051BWC1S vs. B009V18PJM 4.9615 vs. 4.9765 4.9846 vs. 4.9834 81784 vs. 103444 × √
B0051BWC1S vs. B001UH5EZI 4.9615 vs. 4.9530 4.9846 vs. 4.9812 81784 vs. 106414 √ √
B0051BWC1S vs. B00448HS36 4.9615 vs. 4.9500 4.9846 vs. 4.9800 81784 vs. 146735 √ √
B009V18PJM vs. B001UH5EZI 4.9765 vs. 4.9530 4.9834 vs. 4.9812 103444 vs. 106414 √ √
B009V18PJM vs. B00448HS36 4.9765 vs. 4.9500 4.9834 vs. 4.9800 103444 vs. 146735 √ √
B001UH5EZI vs. B00448HS36 4.9530 vs. 4.9500 4.9812 vs. 4.9800 106414 vs. 146735 √ √

Table 4: Correlation of aggregate rating and sales rank on Electronics.

Product ID IRURe FBMF Sales ranks IRURe-A FBMF-A
B00000J49E vs. B000UVWLUQ 5 vs. 4.9335 5 vs. 4.9734 73397 vs. 136262 √ √
B00000J49E vs. B000N3SR8Q 5 vs. 4.923 5 vs. 4.9692 73397 vs. 140901 √ √
B00000J49E vs. B000MWFDF8 5 vs. 4.9165 5 vs. 4.9666 73397 vs. 174604 √ √
B00000J49E vs. B000X18Y9U 5 vs. 4.9121 5 vs. 4.8594 73397 vs. 180386 √ √
B000UVWLUQ vs. 000N3SR8Q 4.9335 vs. 4.923 4.9734 vs. 4.9692 136262 vs. 140901 √ √
B000UVWLUQ vs. 000MWFDF8 4.9335 vs. 4.9165 4.9734 vs. 4.9666 136262 vs. 174604 √ √
B000UVWLUQ vs. 000X18Y9U 4.9335 vs. 4.9121 4.9734 vs. 4.8594 136262 vs. 180386 √ √
B000N3SR8Q vs. B000MWFDF8 4.923 vs. 4.9165 4.9692 vs. 4.9666 140901 vs. 174604 √ √
B000N3SR8Q vs. B000X18Y9U 4.923 vs. 4.9121 4.9692 vs. 4.8594 140901 vs. 180386 √ √
B000MWFDF8 vs. B000X18Y9U 4.9165 vs. 4.9121 4.9666 vs. 4.8594 174604 vs. 180386 √ √

Table 5: Correlation of aggregate rating and sales rank on Office Products.

Product ID IRURe FBMF Sales ranks IRURe-A FBMF-A
1842104837 vs. B004I40BNK 5 vs. 4.9735 5 vs. 4.9894 950114 vs. 135142 × ×

1842104837 vs. B005NSB69I 5 vs. 4.9565 5 vs. 4.9826 950114 vs. 640434 × ×

1842104837 vs. B00FO81MCS 5 vs. 4.9375 5 vs. 4.975 950114 vs. 2058369 √ √
1842104837 vs. B001XE79S8 5 vs. 4.896 5 vs. 4.9816 950114 vs. 682879 × ×

B004I40BNK vs. B005NSB69I 4.9735 vs. 4.9565 4.9894 vs. 4.9826 135142 vs. 640434 √ √
B004I40BNK vs. B00FO81MCS 4.9735 vs. 4.9375 4.9894 vs. 4.975 135142 vs. 2058369 √ √
B004I40BNK vs. B001XE79S8 4.9735 vs. 4.896 4.9894 vs. 4.9816 135142 vs. 682879 √ √
B005NSB69I vs. B00FO81MCS 4.9565 vs. 4.9375 4.9826 vs. 4.975 640434 vs. 2058369 √ √
B005NSB69I vs. B001XE79S8 4.9565 vs. 4.896 4.9826 vs. 4.9816 640434 vs. 682879 √ √
B00FO81MCS vs. B001XE79S8 4.9375 vs. 4.896 4.975 vs. 4.9816 2058369 vs. 682879 × √

8 Mathematical Problems in Engineering



IRURe and FBMF in capturing the true rank ordering of the
products.

As we can see from Tables 3–7, on each product, the
aggregate score calculated by our model is greater than the
corresponding value obtained by IRURe..is is attributed to
our relevance model, which is detailed in Section 4. .e
results among the five datasets show that the pairwise or-
derings generated by FBMF always capture the relative
ranking of the products and are better than (or as good as)
the ones generated by IRURe. For example, on Baby’s
dataset, IRURe missed five pairwise orderings, but FBMF
missed only two ones. Particularly, on Electronics and Pet
Supplies, FBMF hits at all.

In each dataset, there are tens of thousands of product
reviews, so we cannot list all the pairwise products in a table.
For simplicity, the respective five products corresponding to
the top five aggregate scores are chosen to be displayed in
Tables 3–7. However, for each dataset, we did all the pairwise
comparisons, where those products with reviews and sales
ranks were all covered. Figure 5 is the statistical results about
hit rates throughout the five datasets. As shown in Figure 5,
FBMF has a higher hit rate than IRURe in each dataset.
Particularly, in Electronics, FBMF even has a hit rate of
93.56%. .e results for FBMF vs. IRURe reconfirm that

FBMF is able to capture the true relative order, although
IRURe also has the same capability in the most cases.

6. Conclusions

Consumer feedback, for example, product review, is an im-
portant source of information for customers to support their
buying decision. .ough product reviews are really helpful for
customers, aggregate responses from the participants indicated
that current rating systems also have their weaknesses, espe-
cially when review scales are large. It is an important but
difficult task to develop a new feedback mechanism and
management of feedback aggregation. In this paper, we pro-
pose a hierarchical aggregation model for reputation feedback,
which is based on a generalized feature-based matrix factor-
ization model. .is model aims to aggregate consumer feed-
back from large-scale sale data in order to support personalized
and scalable recommendation and demand-forecasting sys-
tems.We conduct several groups of experiments to evaluate the
efficiency and robustness of our approach. Experiments show
that FBMF performs well. Currently, we mainly consider
ratings. Our future work is to investigate how to incorporate
the information of “also viewed products” and “also bought
products” into our approach.
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“Combining user preferences and expert opinions: a criteria
synergy-based model for decision making on the Web,” Soft
Computing, vol. 23, no. 4, pp. 1357–1373, 2019.

[13] H. Jiang, Z. Hu, X. Zhao, L. Yang, and Z. Yang, “Exploring the
users’ preference pattern of application services between
different mobile phone brands,” IEEE Transactions on
Computational Social Systems, vol. 5, no. 4, pp. 1163–1173,
2018.

[14] D. Ke, L. Yanhua, Z. Jia et al., “User preference analysis for
most frequent peer/dominator,” IEEE Transactions on
Knowledge and Data Engineering, vol. 31, pp. 1421–1425, 2018.

[15] W. Shuai, S. Ali, Y. Tao et al., “Integrating weight Assignment
strategies with NSGA-II for supporting user preference
multiobjective optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 22, no. 3, pp. 378–393, 2018.

[16] P. Lops, M. De Gemmis, and G. Semeraro, “Content-based
recommender systems: state of the art and trends,” in Rec-
ommender Systems Handbook, pp. 73–105, Springer, Berlin,
Germany, 2011.

[17] M. J. Pazzani and D. Billsus, “Content-based recommendation
systems,” in>e Adaptive Web, pp. 325–341, Springer, Berlin,
Germany, 2007.

[18] Y. Koren, R. Bell, C. Volinsky et al., “Matrix factorization
techniques for recommender systems,” Computer, vol. 42,
no. 8, pp. 30–37, 2009.

[19] G.-N. Hu, X.-Y. Dai, F.-Y. Qiu et al., “Collaborative filtering
with topic and social latent factors incorporating implicit
feedback,” Acm Transactions on Knowledge Discovery from
Data, vol. 12, no. 2, pp. 1–30, 2018.

[20] R. Burke, “Hybrid recommender systems: survey and ex-
periments,” User Modeling and User-Adapted Interaction,
vol. 12, no. 4, pp. 331–370, 2002.

[21] A. Gunawardana and C. Meek, “A unified approach to
building hybrid recommender systems,” in Proceedings of the
>ird ACM Conference on Recommender Systems—RecSys ’09,
New York, NY, USA, October 2009.

[22] H. Yan, G. Liao, Z. Zhen et al., “Fast narrowband RFI sup-
pression algorithms for SAR systems via matrix-factorization
techniques,” IEEE Transactions on Geoscience & Remote
Sensing, vol. 57, pp. 250–262, 2018.
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Software systems are of great importance, whose quality will influence every walk of our life. However, with increase in their scale
and complexity, we are unable to control their quality since only little is known about their actual internal structure. “We cannot
control what we cannot measure.” -us, to control these complex software systems, the first task that we should do is to measure
their internal structure. In recent years, people applied the theories and techniques in the field of complex networks to sys-
tematically investigate the structure of software systems by representing software systems as networks (i.e., software networks),
andmany interesting and useful results have been revealed. In this work, we aim to briefly review some recent research advances in
the interdisciplinary research between complex networks and software engineering, including modeling, analysis, and appli-
cations. Specifically, we first describe some novel techniques to model the structural details of a specific software system. -en,
based on these modeling techniques, we introduce some research work on characterizing the static and dynamic structural
properties of software systems. -ird, we describe some promising applications of software networks in real-world scenarios.
Finally, we suggest some future research topics.

1. Introduction

Nowadays, software systems have almost been used in every
walk of life. -us, how to provide a piece of software with
high quality has been a problem attracting a lot of attention.
However, with increase in the scale and complexity of
software systems, it is a hard task to control the quality of a
specific piece of software, especially when we know very little
about the internal complexity of a specific software system
[1, 2]. It is well known that we cannot control what we
cannot measure. -us, to control the quality of software
systems, the first task that we should do is to measure their
internal complexity [3]. Software structure which is defined
as the software elements (e.g., attributes, methods, classes,
interfaces, and packages) and their couplings (e.g., “method-
call” couplings between methods and “inheritance” between
classes) have been one of the most important factors that
may influence the software complexity and further influence

the quality of the software.-us, how tomeasure and even to
control the complexity of a software system has been a
challenge faced by many researchers [4]. -ere is an urgent
need to develop a systematic approach to deeply explore the
internal structure of software systems.

Networks (or graphs) provide a natural and most ade-
quate representation of the software structure; i.e., software
elements are nodes and the couplings between software
elements are edges (or links). -ough network representa-
tion is not novel in software engineering, its form is simple
and intelligible, which makes it feasible to perform the
network analysis of software structure by using theories and
techniques in the field of complex networks, and many
significant discoveries and research results have been pro-
vided in the last decade [1, 2]. Note that such a network
representation of the internal software structure of a specific
software system is usually termed “software networks,” a
notion similar to “complex networks” [5].
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In this work, we aim to briefly review some recent re-
search advances in the field of software networks, high-
lighting different techniques in modeling, analysis, and
applications. Specifically, we first describe some novel
techniques to model the structural details of a specific
software system. -en, based on these modeling techniques,
we introduce some research work on characterizing the
static and dynamic structural properties of software systems.
-ird, we describe some promising applications of software
networks in real-world scenarios. Finally, we provide some
future research topics. Note that, in this work, we only
review the most recent research work which is published in
the last seven years (2013 to 2019). For research work
published before 2013, please refer to the reviews [1, 2]. In
this work, we only focus on the brief review of the most
recent research work in the field of software networks, rather
than their detailed comparison.

-e rest of this paper is organized as follows: Section 2
introduces the related reviews on software networks. Section
3 describes the data set we used. Section 4 introduces the
related advances in software networks from three per-
spectives, i.e., modeling, analysis, and applications. Section 5
outlines some future research topics. Finally, in Section 6, we
conclude the paper.

2. Related Work

To the best of our knowledge, there are a total of three
reviews related to software networks.

Li et al. [6] reviewed 36 research papers related to
software networks in 2008.-ey organized the existing work
into three groups, i.e., related work on discoveries of soft-
ware structural properties, related work on models of
software growth, and related work on software metrics based
on software networks. In the related work on discoveries of
software structural properties, they discussed some research
work on revealing shared structural properties in software
networks. In the related work on models of software growth,
they discussed the proposed evolution models to charac-
terize the software growth. In the related work on software
metrics, they discussed the metrics which are based on
software networks and are used to characterize software
quality.

Pan’s review examined 32 research papers on software
networks published before 2011 [2]. He discussed the
existing research from four perspectives, i.e., characteriza-
tion of software networks, modeling of software networks
growth, measurement of software networks, and application
of software networks in software engineering. In the
“characterization of software networks,” he reviewed the
work that aims to characterize the properties of software
structures such as scale-free and small world at different
levels of granularity. In the “modeling of software networks
growth,” he reviewed the work that aims to propose an
evolution model to explain the growth of software struc-
tures. In the “application of software networks in software
engineering,” he reviewed the work that applied software
networks in software engineering practices such as software
refactoring and software selection.

Sbelj and Bajec [1] also reviewed the related work on
software networks. First, they reviewed the work on dis-
covering the shared structural properties such as scale-free
and small world phenomena. Second, they reviewed the
work on characterizing the dynamical properties of software
networks such as bug propagation. -ird, they reviewed
some work on the application of software networks such as
refactoring and software abstraction.

Our current review is different from those of Li, Pan, and
Sbelj. We cover a different time period from 2013 to 2019.
-us, our focus is to review the very recent research work in
the field of software networks and shed some lights on the
future research topic.

3. Data Set

We searched the 7 most popular digital libraries, i.e., ACM,
IEEE, Springer, Scopus, ISI, ScienceDirect, and Compendex
and Inspec, to obtain a relatively complete list of the primary
research work. When searching the digital libraries, we used
the following search string:

(Java OR OO OR object-oriented OR object oriented OR
package OR packages OR class OR classes OROR interface OR
interfaces OR method OR methods OR attribute OR attri-
butes) AND (software network OR software networks OR
complex networks OR complex network OR graph OR graphs).

-e search string contains the major research terms and
their alternative spellings from the titles and keywords of
related work on software networks. We use Boolean ex-
pressions “AND” and “OR” to connect the major research
terms and their alternative spellings, respectively. Note that,
in a specific digital library, the search string should be
adapted slightly according to the grammar that library uses.
For example, in the Springer library, the above string should
be written as follows:

(Java OR OO OR “object-oriented” OR “object oriented”
OR package OR packages OR class OR classes OR interface OR
interfaces OR method OR methods OR attribute OR attri-
butes) AND (“software network” OR “software networks” OR
“complex networks” OR “complex network” OR graph OR
graphs).

Obviously, the results returned by each digital library
may overlap. -us, we should identify and remove the re-
dundant results. Furthermore, we also exclude research
papers based on their titles, abstracts, and full texts. Finally,
our data set contains 30 research papers (see the References
section).

4. Analysis and Discussion

-e research papers in our data set can be roughly cate-
gorized into three groups, i.e., modeling, analysis, and ap-
plications. Papers in the “modeling” category focus on the
novel techniques to model the structural details of a specific
software system. Papers in the “analysis” category focus on
characterizing the static and dynamic structural properties
of software systems. Papers in the “application” category try
to apply the software networks to solve some real-world
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problems in software engineering. -e three categories will
be detailed in the following sections.

4.1. Modeling of Software Structure. Different types of
software networks have been proposed to represent the
structural details of a specific software system at different
levels of granularity, such as associated software graphs [7],
class diagram [8], and cyclic dependency graphs [9] (see
Table 1). -ese software networks can be differentiated from
the levels of granularity (i.e., package level, class level, and
method (or attribute) level). Furthermore, these software
networks can also be differentiated from the nature of
couplings, i.e., whether their couplings are directed or
weighted.

As is shown in Table 1, we can observe that, in the
method level software networks, nodes represent methods
and edges (or links) represent the method call relations
between methods. We can use the frequency of method calls
to weigh the edge (or link) with the aim to signify the
coupling intensity that might exist between the twomethods.
Edge can also be directed to denote the coupling direction.
-e existing two software networks at the method level (i.e.,
weighted networks [10] and FCN [12]) are all not very
accurate to describe the software structure. Weighted net-
works ignored the reference relations between methods and
attributes, while FCN ignored the coupling direction. -us,
we can combine the two software networks to build a much
more accurate software network, i.e., weighted directed
feature coupling network (WDFCN). We use this feature to
denote methods and attributes. In the WDFCN, nodes
denote features, edges denote method class relations and
method-attribute reference relations, weights on the edges
denote the coupling frequencies, and the direction of edges
denotes coupling directions.

In the class level software networks, nodes represent
classes (or interfaces) and edges (or links) represent the
couplings between classes (i.e., inheritance and implement)
and couplings between the methods and attributes the
classes contain (i.e., parameter, global variable, local vari-
able, return type, and method call). Edges can also be
assigned weights to signify the coupling intensity between
classes (or interfaces) and can also be directed to denote the
coupling direction. In the existing class-level software net-
works, CCN and MCN are much more accurate than others.
However, they ignored two important coupling types be-
tween classes, i.e., the reference relations between methods
and attributes the classes contain and the instantiate rela-
tions between classes. -us, CCN and MCN can be im-
proved by considering the two coupling types.

In the package-level software networks, nodes represent
packages and edges (or links) represent the couplings be-
tween packages, which are derived from the couplings be-
tween classes. Edges can also be assigned weights to signify
the coupling intensity and can also be directed to denote the
coupling direction. In the existing two types of package-level
software networks, PDN is much more accurate than MPN.
However, as that in CCN and MCN, PDN and MPN also
ignored two important coupling types between classes, i.e.,

the reference relations between methods and attributes the
classes contain and the instantiate relations between classes.
-us, PDN and MPN can also be improved by considering
the two coupling types.

Note that, compared with the research work on software
networks published before 2013, the main difference of the
software recently built is that they took into consideration
much more information in the software systems such as
different coupling types, coupling frequencies, and the na-
ture of couplings. -e software networks recently built are
much more accurate. But they still ignored some infor-
mation, e.g., the reference relations between methods and
attributes the classes contain and the instantiate relations
between classes. If the software networks we built are not
very accurate, the results or findings that we obtained from
experimental studies may contain errors. -us, there is still
much more work that we can do.

In fact, how accurately the software networks can de-
scribe the software systems depends on the tools that are
used to extract the information enclosed in the software. To
the best of our knowledge, many research papers only
provide their software network models and show their re-
sults or findings. -ey usually do not mention the tools that
they used to build software networks. Pan et al. [4, 5, 12]
developed a software network analysis platform (SNAP) to
build many types of software networks at different levels of
granularity. -eir tools can be obtained via the URLs pro-
vided in their work. By their tools, we can build all the
abovementioned software networks.

4.2. Analysis of Software Networks. Chaikalis and Chatzi-
georgiou [18] proposed a network-based prediction model
to characterize the growth of software systems. -eir model
took into consideration both of the information from past
data and domain-related rules.

Wang and Xiao [10] represented the runtime structure of
the Linux operating system as a weighted network, where
nodes represent functions and edges represent function calls.
Based on the weighted network, they explored the execution
process of Linux by using theories and techniques in
complex networks. -ey found that the weight distribution
follows a power-law distribution, the process management
component of Linux plays the most important role, and the
reliability of Linux declines with the versions from 3.15 to
4.4.

Yang et al. [11] modeled software systems as Function
Call Networks (FCNs), where nodes represent functions and
edges represent function calls. Based on the FCNs, they
characterized the software structure using a set of mea-
surements from the perspective of modularity, hierarchy,
complexity, and fault propagation. -ey also proposed a
model to quantify software structural quality, which gives a
better understanding of the evolution of software systems.

Trindade et al. [19] represented software at the class level
as Little House, where nodes represent classes and edges
represent dependencies among classes. Based on the Little
House, they analyzed 81 versions of 6 software systems and
found some software evolution patterns. -ese patterns are
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further applied to define a software evolution model to
characterize software evolution and growth.

Pan et al. [16] use a multilayer network at the class level
to model software systems, where nodes are classes and
interfaces and edges are different coupling types between
classes (or interfaces). In their model, a specific type of
coupling forms a layer. -ey used an aggregation approach
to analyze the multilayer structure of a specific software
system by using a set of 10 topological measures from
complex networks. It is the first work to represent software
systems as multilayer networks, providing a novel per-
spective to analyze software systems.

Note that the abovementioned papers on analysis of
software networks used a traditional way to explore the
growth of software systems from a structural perspective and
also the structural properties enclosed in the software sys-
tems, but some of them took a new perspective. Specifically,
Chaikalis and Chatzigeorgiou characterize software evolu-
tion from a network perspective, Wang and Xiao built the
software network from execution process of the software,
Yang et al. characterized the software structure by using the
dynamic process of faults, Trindade andOrfano tried to use a
model to characterize software evolution and growth, and
Pan et al. used a multilayer networks, which is a much more
accurate software network model.

4.3. Applications of Software Networks

4.3.1. Software Metrics. Gu et al. [20] proposed metrics to
quantify the class cohesion from a complex network
perspective.

Pan and Chai [3] modeled software systems at the class
level as a weighted directed software network, and based on
the network, they proposed a metric, NIN, to quantify the
coupling intensity of two classes. -ey further proposed a
metric to quantify the class stability. In [14], they further

proposed a simulation way to calculate the software stability,
which is based on the analysis of change propagation dy-
namics in the software structure.

In [12], Pan et al. modeled software systems as feature
coupling networks (FCNs), where nodes are methods and
attributes and edges are method-call relations and method-
attribute reference relations. Based on the FCNs, they
borrowed some idea from community detection techniques
in complex networks and used the metric “modularity” to
quantify the modularity of a specific software system.

Obviously, the recent research work on software metrics
followed the traditional line of thoughts of the related work
published before 2013. -e only difference is they used a
much more accurate software network model and charac-
terized the software structure from a different perspective.

4.3.2. Bug Prediction. Concas et al. [7] used an Associated
Software Graph (ASG) to represent software systems at the
class level, where nodes represent classes and edges represent
the “inheritance,” “composition,” and “dependence” rela-
tions between classes. Based on the ASG, they computed the
number of communities, modularity of the software net-
work, and other network metrics such as clustering coeffi-
cient, average path length, and mean degree. -en, they
analyzed the correlation between these metrics and the
number of bugs in the software. -ey found that medium-
size systems with community structures tend to be buggy.

Yang et al. [11] proposed a software class network to
represent software systems at the class level. In the software
network, classes are nodes, and the calling relations between
the methods that every pair of classes contain constitute the
edges. Based on the software network, they proposed a set of
metrics to characterize the software network structure and
used some machine-learning algorithms to construct defect
prediction models. -eir results showed promising results.

Table 1: Summary of the existing software networks.

Name Level Nodes Couplings Directed? Weighted?
Weighted network
[10], FCNs [11] Method Methods Method call Yes Yes

FCN [12] Method Methods and
attributes Method call, method-attribute reference No Yes

Associated software
graphs [7] Class Classes Inheritance, composition, dependence No No

Class diagram [8] Class Classes
Dependency, common association, qualified association,
association class, aggregation association, composition

association, generalization, binding, generalization, realize
Yes Yes

Cyclic dependency
graphs [9] Class Classes and

interfaces Inheritance No No

DTMC [13] Class Classes Method call, method-attribute reference Yes Yes

WCCN [3, 4, 12, 14] Class Classes and
interfaces

Inheritance, implement, parameter, global variable, local
variable, return type No Yes

CCN [15] Class Classes and
interfaces

Inheritance, implement, parameter, global variable, local
variable, method call, return type Yes Yes

MCN [5, 16] Class Classes and
interfaces

Inheritance, implement, parameter, global variable, local
variable, method call, return type Yes Yes

MPN [17] Package Packages Inheritance, implement, global variable, method call Yes Yes

PDN [5] Package Packages Inheritance, implement, parameter, global variable, local
variable, method call, return type Yes Yes
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Zakari et al. [21] proposed a software network at the
statement level, where statements are nodes and the exe-
cution traces between statements are edges. Based on the
software network, they computed two centrality metrics (i.e.,
degree centrality and closeness centrality) for fault diagnosis.
Experimental results showed their approach is promising
and better than existing fault localization techniques.

Obviously, in the existing research work on fault pre-
diction, software networks are usually used to calculate some
structural metrics and the structural metrics can be used to
correlate with bugs or be used in traditional prediction
models to improve fault prediction performance. However,
the software networks the existing approaches used are not
very accurate, which makes the metrics obtained inaccurate.
-us, in the future, we can use a much more accurate
software network to compute structural metrics.

4.3.3. Software Refactoring. Pan et al. [22] modeled the
software structure at the method level as SFN, where nodes
represent methods and attributes and edges represent
method-call relations and method-attribute reference. -en,
they applied an evolutionary algorithm to optimize software
structure and detect the methods to be moved. In their
algorithm, they optimized a function which is based on
software modularity. In [23], Pan et al. proposed a similar
approach to identify the classes to be moved.

In [24], Wang et al. represented software at the class level
as a Class-Level Multirelation Directed Network (CMDN),
where nodes are classes and edges are the coupling between
classes, i.e., inheritance, association, and aggregation. Based
on the CMDN, they used the community detection algo-
rithm to identify many refactoring opportunities simulta-
neously. Experimental results showed that their approach is
better than some existing approaches.

-ere are many other refactorings in object-oriented
software systems. However, the existing work only con-
sidered three refactorings, i.e., move method refactoring,
move field refactoring, and extract class refactoring. Many
other refactorings such as extract method, pull up method,
and inline class need further exploration.

4.3.4. Key Class Identification. Meyer et al. [25] modeled
software systems at the class level as a software network and
applied the coreness in the k-core decomposition to measure
class importance in the software network. -e coreness is
further used as a criterion to rank classes.

Şora and Chirila [26] recently modeled software systems
as graph, where nodes represent classes and edges represent
the couplings between classes. Weights are assigned to the
edges to measure the coupling intensity. -en, they applied
PR-U2-W, CONN-TOTAL, and CONN-TOTAL-W to
measure class importance, respectively.

In [27], Luo et al. proposed an extend call graph to rep-
resent methods and their calling relations and utilized a
VertexRank algorithm to quantify the importance of methods.

In [28], He et al. modeled software systems as a weighted
software network, where nodes are methods and edges are

their calling relations. -en, they applied a PageRank-like
algorithm to quantify the importance of methods.

In [15], Pan et al. modeled software systems at the class level
as a weighted directed software network, where nodes are
classes and interfaces, edges are the 7 types of couplings be-
tween classes (or interfaces), and the weights on the edges are
the coupling frequencies. -en, they proposed a generalized
k-core decomposition to quantify the importance of classes. In
[5], they further proposed a multilayer software network at the
class level. Based on the software network, they compute the
importance of classes at each layer and further combine the
class importance at each layer to obtain the final importance.

-e software network proposed in [5] is the best accurate
one in the existing research work. But the authors ignored
two important types of couplings, i.e., the reference relations
between methods and attributes the classes contain and the
instantiate relations between classes.-us, there is still much
room for improving the existing work on key classes
identification. We can also use improved ranking algorithm
to improve the performance of the existing approaches. To
the best of our knowledge, there is no work on identifying
important software elements at other levels of granularity.

5. Future Research Topics

Based on the brief review of the related work on software
network, we proposed the following research topics that we
can carry out in the future:

(i) Much more accurate software networks at different
levels of granularity: for example, in the existing
software networks, no one considered all the
coupling types that might exist between classes.
-us, much work should be performed to consider
much more information in the software.

(ii) Runtime software networks: the majority of the
software networks is constructed statically from the
source code or bytecode of a specific software
system. Only one research paper [10] reported
constructing a runtime software network. -us,
much work can be carried out on runtime software
network modeling, analysis, and applications.

(iii) Software evolution model: software evolution
models are used to characterize the software evo-
lution and growth. -ey should reflect the prop-
erties enclosed in software systems. -us, if we find
more properties of software, the evolution model
can be updated.

(iv) Bug prediction: we can propose many software
metrics to characterize software structure and
further use them to improve any bug prediction
models.

(v) Software refactoring: much more work can be
proposed to identify other refactoring opportuni-
ties such as extract methods, pull up methods, and
inline classes.

(vi) Software comprehension: identifying important
software elements can be used to aid people
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understand a specific software system. Much more
work can be carried out on identifying important
software elements at other levels of granularity (i.e.,
package level, method level, or even statement
level). Furthermore, much more work can also be
performed to guide the specific comprehension
process of a software system.

(vii) Service-oriented system analysis: software networks
have also been used in service-oriented software
systems. Pan et al. [29, 30] used software networks
to represent API and their couplings in service-
oriented systems and applied community detection
algorithm to organize APIs into clusters. -us, in
the future, we can also perform service-oriented
software modeling, analysis, and applications.

6. Conclusions

-is paper briefly reviewed the recent advances in the re-
search field of software networks from 2013 to 2019. First, we
described the data set we used, i.e., the research work
published in the time period of 2013 to 2019.-en, we briefly
described the existing work from three perspectives, i.e.,
modeling, analysis, and applications. Specifically, we
reviewed the software networks that used to model the
structural details of specific software systems and high-
lighted the problems in the existing models. We briefly
introduced some research work on characterizing the static
and dynamic structural properties of software systems. We
also described some promising applications of software
networks in real-world scenarios such as software metrics,
bug prediction, refactoring, and key element identification.
Finally, we outlined some future research topics.
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At present, Mashup development has attracted much attention in the field of software engineering. It is the focus of this article to
use existing open APIs to meet the needs of Mashup developers. -erefore, how to select the most appropriate open API for a
specific user requirement is a crucial problem to be solved. We propose a Hybrid Open API Selection Approach for Mashup
development (HyOASAM), which consists of two basic approaches: one is a user-story-driven open API discovery approach, and
the other is multidimensional-information-matrix- (MIM-) based open API recommendation approach. -e open API discovery
approach introduces user stories in agile development to capture Mashup requirements. First, it extracts three components from
user stories, and then, it extracts three corresponding properties from open API descriptions. Next, the similarity calculation is
performed on two sets of data. -e open API recommendation approach first uses MIM to store open APIs, Mashups, and the
invoking relationship between them. Second, it enters the matrix obtained in the previous step into a factorization machine model
to calculate the association scores between theMashups and the open APIs, and TOP-N open API lists for creating theMashup are
obtained. Finally, experimental comparison and analysis are carried out on the PWeb dataset. -e experimental results show that
our approach has improved significantly.

1. Introduction

Unlike object-oriented software engineering [1, 2], service-
oriented software engineering (SOSE) is used to design, de-
velop, and maintain software systems [3] that use the prin-
ciples of service-oriented architecture (SOA) [4]. Open APIs
are the basis of SOSE [5]. Mashup development is a novel
development practice of SOSE for building multiservice ap-
plications by integrating single-function open APIs, which
becomes more and more popular. Mashup refers to a tem-
porary combination of web applications that allows users to
create entirely newAPIs using content retrieved from external
data sources [6]. As Mashup application developers face the
explosive growth of open APIs on the Internet, they often
suffer from the overload of API information.

At present, there are a large number of open APIs over the
Internet with similar descriptions but different functionalities
and qualities, which undoubtedly affect Mashup application
developers’ decisions. In addition, unstructured description

documents of open APIs increase the difficulty of semantic
extraction. All of the above problems make it more and more
difficult for developers to select the appropriate high-quality
open APIs to build Mashup applications. -erefore, a major
challenge to Mashup application development has emerged
[7]: how to effectively and efficiently select the most appro-
priate open APIs from a large number of available resources
to match the needs of Mashup developers.

In response to the above challenges, a number of open
APIs selection approaches have been proposed, including
keyword-based discovery approaches [8, 9], topic model-
based discovery approaches [10, 11], content-based rec-
ommendation approaches [12, 13], and QoS-based recom-
mendation approaches [14, 15]. Yet, there are some
problems with these studies: (1)Most established approaches
use nonnatural language (NL) text to describe Mashup re-
quirements [16], such as WSDL, which is not user friendly.
-e existing techniques do not work well with text modeling.
(2) Some users do not even know how to describe the
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requirements of Mashup exactly [17], which makes the API
search based on keywords difficult. -erefore, a compre-
hensive open API selection approach should not only in-
clude searching or discovering APIs based on keywords but
also include actively recommending APIs to developers
based on his/her preference. Yet, current approaches sep-
arate open API discovery from open API recommendation,
leading to inefficient results.

To overcome the above problems, we propose a Hybrid
Open API Selection Approach for Mashup development
(HyOASAM), which consists of two basic approaches: one is
a user-story-driven open API discovery approach, and the
other is a multidimensional-information-matrix- (MIM-)
based open API recommendation approach. -e user-story-
driven open API discovery approach is to tackle the first
problem. By introducing user stories into Mashup devel-
opment, the Mashup developers can easily capture the role,
aim, and motivation of a Mashup and then describe them
with NL-based user stories. In agile development, user
stories are used to capture and describe the rapidly changing
user requirements. -e MIM-based open API recommen-
dation approach is to tackle the second problem. We make
use of the historical information ofMashup developers (such
as the search history and the access history) to profile each
developer, elicit their preferences, and then recommend the
most suitable open APIs to them. -e open API discovery
approach can be divided into three steps: (1) extracting three
components from user stories, (2) extracting three corre-
sponding elements from open API descriptions, and (3)
calculating the similarity based on two sets of data. -e open
API recommendation approach can be divided into two
steps: (1) extracting open APIs, Mashups, and the invoking
relationships between them using MIM and (2) calculating
the association scores between the Mashup and the open
APIs using a factorization machine (FM) model to rec-
ommend TOP-N open APIs. Our approach can perform
attribute extraction well for both long and short texts, and
deeper associations can be better mined through FM.

In summary, the contributions of this paper are as
follows:

(1) We propose a novel hybrid open API selection ap-
proach, HyOASAM, enabling developers to quickly
and accurately find their wanted open APIs by both
discovering APIs and recommending APIs.

(2) We propose an approach that breaks the restrictions
of open API documents, described by user stories,
which can be used to capture and describe Mashup
developers’ requirements more accurately and
effectively.

(3) We tailor the current MIM matrix [26] and intro-
duce factorization machine (FM) into the open API
recommendation approach to calculate the semantic
similarity more accurately.

(4) We validate the effectiveness of HyOASAM through
various evaluation criteria based on the real data of

PWeb. -e evaluation results show that HyOASAM
has a better improvement over other approaches.

-e rest of the paper is organized as follows: Section 2
introduces previously established open API discovery and
recommendation approaches; Section 3 introduces our
proposed HyOASAM in detail; Section 4 compares the
HyOASAM with other approaches; Section 5 draws the
conclusions.

2. Related Work

In this work, we treat open APIs and services as synonyms
and use the two concepts interchangeably.

2.1. Open APIs Discovery. Open APIs discovery is the effi-
cient and accurate retrieval of a set of open APIs or services
that achieve the needs of users from a service database based
on the demand statements entered by users [18]. Generally,
the discovery approaches can be categorized into the fol-
lowing two main classes.

2.1.1. Syntax-Level Discovery Approaches. Syntax-level open
API discovery is the earliest proposed discovery technique. It
matches through several keywords and the grammatical
features of the service interface, and the matching mecha-
nism is relatively simple. Typical approaches are as follows.

Massimo and Erl [8] proposed a solution based on
DAML-S (DARPA Agent Markup Language) to perform
semantic matching between user requirements and service
description. Mateos et al. [19] use metaprogramming and
other related technologies to develop a set of tools for text
mining and service processing of WSDL documents. Paliwal
et al. [20] proposed clustering services by clustering ap-
proaches based on service descriptions and service regis-
tration information on UDDI and then used latent semantic
indexing (LSI) to achieve matching. Elgazzar et al. [21]
improved the accuracy of service discovery by searching key
information such as content, service types, messages, and
ports in the WSDL document and used Quality -reshold
(QT) clustering algorithms to group services based on key
information.

In general, the syntax-level open APIs discovery ap-
proaches are relatively simple to implement and easy to
maintain. However, the deep semantics cannot be under-
stood using such approaches. For example, the polysemy is a
common problem, which inevitably leads to a low precision.

2.1.2. Semantic-Level Discovery Approaches. Ontology is
used to solve the heterogeneity of grammatical-level service
descriptions at the early stage, so that the semantic de-
scription of services functions and behaviors is strengthened.
-e matching algorithms in semantic-level service discovery
rely on logical deduction and reasoning. -e continuous
development of artificial intelligence makes the service
discovery algorithms smarter, faster, and accurate.
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Ke et al. [22] transformed user requirements and service
description documents into ontology trees; calculated the
conceptual similarity, attribute similarity, and structural
similarity of corresponding nodes in a hierarchical and
classified manner; and thereafter effectively avoided complex
reasoning. Huang et al. [23] proposed a semantic similarity
calculation approach based on ontology distance calculation.
-e AGNES clustering algorithm clustered semantic service
sets to improve the efficiency of service discovery. Klusch [24]
used service profiles to select services described by OWL-S on
a semantic level. Wei et al. [25] proposed a customizable
SAWSDL service matcher that extends XQuery by using
various similarity measures to support multiple matching
strategies based on different application requests.

Most of the above open API discovery approaches
cannot meet the dynamic changing needs of Mashup de-
velopers to provide service choices. Moreover, most of the
Mashup developers’ requirement descriptions are inaccurate
and cannot describe their real needs better. -is will greatly
affect the results of service discovery. In traditional topic-
based data extraction models, such as LDA, TF-IDF, HDP,
and other topic models, the topic extraction method is the
generalization of the user’s overall needs, and the extracted
data will have a certain deviation from the actual needs of the
user; that is, it cannot describe user preferences and needs.

2.2. OpenAPIs Recommendation. With the rapid increase of
open APIs, some APIs that are of interest to Mashup de-
velopers are difficult to search because of the small number
of visits. On the other hand, developers often lack reasonable
and effective requirement description skills. In such cases,
open APIs discovery cannot be applied appropriately. Open
APIs recommendation maintains the ecology of the service
platform to tackle the problem. At present, the existing
recommendation research work can be roughly divided into
the following three categories.

2.2.1. Recommendation Based on Functional Characteristics.
-e functional characteristics are mainly extracted from
service description documents, and the most similar services
are recommended by measuring the similarity between the
description documents. For example, Cao et al. [26] used the
topic model to calculate the relationship between Mashup,
services, and the invoking relationship between them. By
integrating the popularity of the service into the model, they
predicted the link between the Mashup and the service and
then recommended the appropriate service for the Mashup
developer. Most service recommendation approaches based
on functional characteristics adopt traditional topic models
or keywords for similarity calculation. However, traditional
topic models need to specify the number of topics in advance
while extracting topic vectors, which has a direct impact on
the recommendation results.

2.2.2. Recommendation Based on Quality of Service (QoS).
QoS refers to the nonfunctional features of the service, such
as the user’s history of invoking services or the quality of

services. Zheng et al. [27] used collaborative filtering to
calculate the quality of services through user historical be-
haviors. Huang et al. [28] proposed a Mashup component
recommendation approach to establish a relationship be-
tween Mashup components through a generic layer model
and guide users to select components from a large-scale
Mashup component library. Xu et al. [29] proposed a socially
perceived approach, in which the coupling matrix model was
used to store the multidimensional social network between
potential users, topics, Mashups, and services, and the re-
lationships were predicted by existing relational networks.
However, those approaches have the problem of matrix
sparsity, which affects the recommendation accuracy.

2.2.3. Recommendation Based on Hybrid Characteristics.
Such approaches take into consideration not only the
functional characteristics of the service but also the QoS. By
combining the two characteristics, the accuracy of service
recommendation is improved. For example, Gao et al. [30]
proposed a manifold ordering framework. Based on the
similarity between Mashups and the heterogeneous rela-
tionship between Mashups and services, a manifold ranking
algorithm is applied to recommendation services. -e
similarity between Mashups and the heterogeneous rela-
tionship between Mashups and services are calculated by a
manifold sorting algorithm. Li et al. [31] proposed an ap-
proach for integrating multidimensional information, using
HDP to extract service, and the subject vector of Mashups
was used to calculate the similarity between Mashups, the
similarity between services, the fluency of services, and the
co-occurrence of services. -en they used the FM model to
score and recommend the highest rated N services to
Mashup developers. Xia et al. [32] proposed a new class-
aware service clustering and distributed approach. First, the
services were clustered by extending the K-means clustering
algorithm, and then, the service ordering was predicted
through a distributed machine learning framework. At
present, the service recommendation approaches based on
hybrid characteristics are among research hotspots, due to
its high precision. HyOASAM has taken the advantage of
such approaches.

From Table 1, we can see that the established open APIs
discovery approaches have the problem of the randomness
of user demand descriptions and open APIs description
texts, which leads to unsatisfactory results, whereas open
APIs recommendation approaches have the problem of
inability to fully mine hidden information. Besides, it is hard
to meet the real needs of developers to take either the
discovery approaches or the recommendation approaches. A
hybrid manner is a more accurate and comprehensive
manner.

3. HyOASAM Approach

If a Mashup developer enters a user story of a requirement “as
a user, I want to upload and edit photos online so that I can
process photos on the server,” then user-story-driven open
APIs discovery approach is applied to calculate the similarity

Mathematical Problems in Engineering 3



between the requirement and the open API description text
and returns a list of open APIs for developers according to the
level of similarities. If no requirements are entered, the MIM-
based open API recommendation approach is applied to
calculate the score between the developer’s profiles including
the Mashup usage and the information of the open APIs and
returns a list of open APIs for developers to choose from
based on the score. Below we will use the example to illustrate
the whole process of HyOASAM.

-e framework of the HyOASAM approach is shown in
Figure 1.HyOASAMtakes two scenarios into account: (1)When
the Mashup developer can describe his/her requirements with
user stories, the user-story-driven open API discovery approach
is applied to return a list of openAPIs to the developer. (2)When
the Mashup developer does not input any requirement, the
MIM-based openAPI recommendation is applied to return a list
of open APIs to the developer.

3.1. User-Story-Driven Open APIs Discovery Approach.
-e user-story-driven open APIs discovery approach
analyzes syntactic dependencies [33] of user stories by

the Mashup developer’s requirements and then uses NLP
technology to extract the requirements components
(Step 1). At the same time, open API properties are
extracted in the open API description (Step 2). -en, it
calculates the similarity between the requirement com-
ponents and open API properties. Finally, it sorts the
open APIs by the similarity to get the open API list with
the most similar N for developers to choose from (Step
3). Figure 2 shows the overall framework of the open API
discovery approach.

3.1.1. Requirements Components Extraction (Step 1)

Definitions. Developer requirement descriptions are often
too casual, so we use user story to describe open API re-
quirement components [34]. For example, “as a user, I want
to upload and edit photos online so that I can process photos
on the server”. Requirement components are the key in-
formation of open API requirements, and the detailed de-
scription is shown as follows:

Table 1: -e comparison of related work.

Approach Category Pros Cons

Service discovery based on
DAML-S [8]

Open API discovery

-e earliest service described by DARPA
agent markup language

-e randomness of user demand
descriptions and service description
texts leads to unsatisfactory results

Service discovery based on
text mining [19]

It combines text mining and
metaprogramming techniques

-e approach is unable to mine deep
relationships

Web service discovery based
on an ontology [20, 22, 24]

-ey address the issue of nonexplicit
service description semantics that match a

specific service request
-e semantic extension is not enough

Web service discovery based
on WSDL documents
clustering [21]

Narrowing the search space and improving
results

Each feature is not assigned its own
weight

Web service discovery based
on hierarchical clustering
[23]

-e vector space model improves the
accuracy and efficiency

It does not take the semantics into
consideration

Web service discovery based
on SAWSDL-iMatcher [25]

Multiple matching strategy extensions via
XQuery can effectively aggregate similar

values

-e approach is only useful in one
specific domain, not effective in other

domains

Open API recommendation
based on topic model [26, 31]

Open API
recommendation

-e document probability distribution is
obtained, and the distance is used to

calculate the semantic distance
-e topic model is not well trained

Web service
recommendation based on
collaborative filtering [27]

Collaborative filtering does not require
specialized domain knowledge and can be

easily modeled

Collaborative filtering cannot mine
hidden information

Model-based
recommendation [28]

-e use of a generic hierarchical graph
model can improve efficiency and

effectiveness

-is approach cannot get synthesis of
multiple constraints for more
personalized recommendation

Social-aware
recommendation [29] It can predict unobserved relationships -e matrix sparsity affects accuracy

Manifold-learning-based
recommendation [30]

Mashup can use manifold sorting
algorithm for better clustering

-e approach cannot handle
dynamically added services

Combining machine learning
and distributed
recommendation [32]

More accurate prediction -e approach ignores QoS

HyOASAM Open API discovery
and recommendation

HyOASAM can handle random
description text and make accurate

recommendations for unclear user needs
description

-e modeling process is a little more
complicated than other approaches
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(1) Role (ro)�<noun, adj>: the role to carry out the
functionality. -e noun is the role, and the adj is a
modification of the noun. In the above example, the
role is <user, null>.

(2) Aim (ai)�<verb, do, io, adj>: the aim that devel-
opers want to achieve. Verb is act of a role, do is the
direct object, io is the indirect object, and adj is the
extension of the corresponding noun. In the above
example, the aim is <{upload, edit}, photo, null,
online>.

(3) Motivation (mo)�<verb, do, io, adj>: the devel-
opers’ purpose. Components in mo and go are the
same. In the above example, the motivation is
<process, photo, server, null>.

Definition 1 (requirements components). rc�<ro, ai, mo>.
Requirements component represents developers’ actual
needs and is composed of role, aim, and motivation.

In the process of requirements components extraction,
we tag each word in the user story, because polysemy will
affect the final result. -en, we extract requirement com-
ponents based on grammatical dependencies. We use
Stanford Parser [35] to parse text and extract Stanford
Dependency (SD) set. Proceed as follows:

(i) Role extraction. We have found through several
experiments that the following three SDs can
completely extract the components of role, in-
cluding pobj(As, dep), nn(gov, dep), and amod(gov,
dep). Readers can refer to the white paper of
Stanford Parser [35] for the detailed explanation of
each SD.

(ii) Aim extraction. -e following eight SDs and their
combinations can extract all aim components,

including xcomp(want, dep), dobj(gov, dep),
iobj(gov, dep), conj(gov, dep), pobj(gov, dep),
nn(gov, dep), and amod(gov, dep).

(iii) Motivation extraction. As aim and motivation have
similar structures, their components extraction
processes are similar. We only need to change the
first SD here into aux(dep, can).

For example, when the Mashup developer enters the
requirement “as a user, I want to upload and edit photos
online so that I can process photos on the server,” through
Step 1, the final extraction result of the requirement com-
ponent is like this: <user, null>, <{upload, edit}, photo, null,
online>, <process, photo, server, null>.

3.1.2. Open API Properties Extraction (Step 2). Next, we
extract open API properties from the open API description
text. -e open API description text is generally a text de-
scribing the API function written by the API developer. It is
mainly a text that helps the developer understand the API
and how to use it. Currently, the open API description text is
written in NL, for example, “customers can use the service to
edit photos and video over the Internet.” Open API prop-
erties contain the following properties:

(1) Agent (ag)�<noun, adj>. -e subject that the open
API is served to. In the above example, the agent is
<customer, null>.

(2) Activity (ac)�<verb, do>. -e activity provided by
the open API. In the above example, the activity is
<edit, {photo, video}>.

(3) Scenario (sc)�<io, adj>. -e scenario of the open
API. In the above example, the scenario is <Internet,
over>.

Definition 2 (open APIs properties). oap�<ag,ac,sc> rep-
resents the properties of the entire open APIs.

As the style of the open API description text is not
limited, we extract the following 14 SDs to comprise open
API properties: nsubj, nsubjpass, xsubj, agent, csubj,
csubjpass, cop, nn, dobj, iobj, prep&pobj, pobj, amod, and
conj.

For example, the open API description text is “customers
can use the service to edit video and photos over the In-
ternet.” -rough Step 2, the final result of open API
properties is <customer, null>, <edit, {photo, video}>,
<Internet, over>.

3.1.3. Similarity Calculation (Step 3). -is section presents
the similarity formula between the user story q and open API
s through requirements components and open APIs
properties.

-e overall formula is as follows:

sim(q, s) � a × usim uq, us  + b × asim aq, as 

+ c × gsim gq, gs ,
(1)

User-story-driven open API discovery MIM-based open API recommendation

HyOASAM

Open API 
requirement

Open API

Open APIs list
Open API

Open APIs list

Mashup developer

Figure 1: Framework of HyOASAM.
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where usim(uq, us) represents the similarity between the
role components uq in user story q (e.g., <user, null>) and
the agent properties us in open API description text s
(e.g., <customer, null>); asim(aq, as) represents the
similarity between part of aim and motivation compo-
nents aq (verb and do) in user story q (e.g., <{upload,
edit}, photo>,<process, photo>) and the activity

properties as (verb and do) in open API description text s
(e.g., <edit, {photo, video}>); gsim(gq, gs) represents the
similarity between part of aim components gq (io and
adj) in user story u (e.g., <null, online><server, null>)
and scenario properties gs (io and adj) in open API
description text s (e.g., <Internet, over>). -e parameters
a, b, and c represent the weight of the three variables in

User story

Open API requirement
texts 

Open API requirement
texts 

Text preprocessing Text preprocessing

Requirement
components extraction

Open APIs properties
extraction

Requirement components Open APIs properties

(1) Requirement components extraction (2) Open APIs properties extraction

Similarity calculation

Open APIs list

(3) Open API similarity calculation

Figure 2: Framework of the user-story-driven open API discovery approach.
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(1), and a + b + c � 1. -e specific formula is as follows:

usim uq, us  �

sim wq1
ws1

  . . . sim wq1
wsj

 

⋮ ⋱ ⋮

sim wqk
ws1

  . . . sim wqk
wsj

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

gsim gq, gs  �

sim wq1
ws1

  . . . sim wq1
wsj

 

⋮ ⋱ ⋮

sim wqk
ws1

  . . . sim wqk
wsj

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

sim wqk
, wsj

  �
w
→

qk
w
→

sj

‖ wqk
‖ ‖ wsj

‖
. (4)

In (2),K is the amount of words in uq and J is the amount
of words in us. Equation (3) is the same as (2). In (4), first, we
vectorize the word with Word2Vec [36] and then calculate
the similarity. wqk

represents the word vector corresponding
to Word2Vec:

αk,j �
exp sim wqk

, wsj
  


j
i�1 exp sim wqk

, wsj
  

. (5)

We normalize the similarity of each row to calculate the
weight αk.j:

uk � 

J

j�1
αk,jsim wqk

, wsj
 . (6)

We use the accumulation of themultiplication of weights
and similarities as the similarity of each row in u:

usim uq, us  �
1
k



k

i�1
ui,

gsim gq, gs  �
1
k



k

i�1
ui. (7)

-e formula for asim(aq, as) is as follows:

asim aq, as  �


n
i�1 max masim aqi

, as1∼m
  

n
. (8)

Here n is the amount of verbs in the aim and motivation of u
and m is the amount of verbs in the activities of s.
masim(aqi

, asi
) represents the similarity between an element

in aq and an element in as:
masim aq, as  � w1 × sim Vq, Vs 

+ w2 ×


I
i�1 max 

J
j�1 sim Nqi

, Nsj
  

I
.

(9)

In (9), Vq is a verb in aim or motivation, Vs is another
verb in activity, I and J represent the number of nouns in aq
and as, respectively, Nqi

is the i-th noun in aq, Nsj
is the j-th

noun in as, and w1 and w2 are the weights of verbs and

nouns, respectively. Using (4), sim(Vq, Vs) and
sim(Nqi

, Nsj
) are calculated as similarities between words.

For example, when calculating the similarity between
requirements and the open API description text in step 3,
usim(uq, us) and gsim(gq, gs) are calculated in the same
way. Here, we take gsim(gq, gs) as an example. At this time,
gq is <null, online><server, null>, and gs is <Internet,
over>. First establish the similarity matrix

sim(null, Internet)
sim(server, Internet)

sim(null, over)
sim(server, over)

sim(online, Internet)
sim(null, Internet)

sim(online, over)
sim(null, over)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
of gsim, where

sim(online, Internet) is calculated using Word2Vec simi-
larity. After obtaining the similarity matrix, calculate the ak,j

weight for every similarity of each row; the weight indicates
the importance of each element in each row in the entire
row; then, linearly combine the weight with the corre-
sponding elements, and finally take the similarity of all rows;
the average of the values is taken as the final similarity of
gsim.

Compared with the calculation of gsim, asim needs to
calculate the similarity between verbs and verbs, nouns and
nouns, and then perform linear combination of weights.
Specifically, first calculate the similarity masim (aq, as) be-
tween an element in aq and an element in as; aq is composed
of aim and motivation (io and adj), that is, <{upload, edit},
photo> and <process, photo>; as is composed of scenario (io
and adj), that is, <edit, {photo, video}>. Because aq has 3
verbs and as has only one, n= 3 andm= 1. First calculate the
similarity between< upload, photo> and <edit, {photo,
video}>; the verb upload and verb edit are calculated with
Word2Vec, for the similarity of the nouns: photo and photo,
video; because< upload, photo> has only one noun in aq,
<edit, {photo, video}> in as has two nouns, I= 1, J= 2;
calculate sim(photo, photo) and sim(photo, video) respec-
tively; take the maximum value of the similarity of a noun k
in aq to all nouns in as as the similarity of k to as nouns, and
then take the average value of the similarity of all nouns in aq
to the as noun as the noun similarity between aq and as.
Finally, the weight of the verb and the similarity of the verb,
and the weight of the noun and the similarity of the noun are
linearly combined to obtain the final similarity, that is, the
final masim(aq, as). Similarly, calculate the similarity of
<edit, photo> and <edit, {photo, video}>, <process, photo>
and <edit, {photo, video}>. Take the maximum value of the
similarity of an element in aq to each element in as as the
similarity of the aq element to as, and at this time m= 1, so
the similarity of each element in aq to as is the maximum.
n= 3. Finally, calculate the average similarity of all elements
in aq to as as the final gsim.

Linearly combine usim, asim, and gsim to get the
similarity between the final user story and the open API
description text.

3.2. MIM-Based Open API Recommendation Approach.
Usually, there are a lot of existing open APIs andMashups in
the API registration platforms. Inspired by Li et al. [31], we
make use of these existing open APIs andMashups as well as
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their properties as multiple-dimensional information to
recommend open APIs to Mashup developers when these
developers cannot describe their requests clearly. In Figure 3,
the MIM-based open API recommendation approach is
generally divided into two steps:

Step 1. MIM construction. -e MIM contains an active
open API matrix, a target Mashup matrix, a similar open
API matrix, a similar Mashup matrix, a co-occurrence
matrix, and a popularity matrix. -e active open APIs
matrix is the open API currently used for scoring pre-
diction, and the target Mashup matrix is the Mashup served
by the recommended method. First, to build the similar
open API and similar Mashup matrix, we extract three
elements (i.e., agent, activity, scenario) of open APIs
properties and two elements (i.e., Mashup activity, Mashup
scenario) of Mashup properties separately by the depen-
dency syntax relationship, so as to combine these elements,
respectively, into a connected network to characterize the
relationships. -en, the co-occurrence of open APIs is the
external manifestation of open API composition rela-
tionships. Finally, the QoS property, i.e., the open API
popularity, is measured by the open API category and the
historical invoking times.

Step 2. FM model score prediction. Different types of in-
formation such as the open API popularity, the connection
model, and the co-occurrence are trained by the FM to
calculate the interaction between Mashups and open APIs,
obtain corresponding prediction scores, and then return the
list of TOP-N open APIs with the highest score to Mashup
developer.

3.2.1. MIM Matrix Construction (Step 1). As mentioned
before, MIM is an integrated matrix including multiple-
dimensional information. In MIM, the active open APIs
matrix represents the open API currently used for the score
prediction. -e target Mashup matrix represents the
Mashup to be developed. -e similar open API matrix
presents the similarities between open APIs. -e similar
Mashup matrix represents the similarity between the
Mashup in the Mashups matrix and their similar Mashups.
-e co-occurrence matrix represents the co-occurrence
relationships between the active open APIs and other open
APIs.-e popularity matrix represents the total frequency of
the invoking history of the active open APIs.

(1) ;e Similar Open APIs Matrix Construction. Open API
properties extraction. Open APIs properties are selected as
the functional characteristics for open API recommenda-
tion, i.e., the agent, activity, and scenario. -e extraction
process is the same as what we have shown in Section 3.1 and
will not be described here.

Similarity calculation: the calculation of similarity is the
same as what we have shown in Section 3.1.3 and will not be
described here. A similar open APIs matrix can be obtained
by multiple calculations of the above similarity approach.

(2) ;e Similar Mashup Matrix Construction. Mashup
properties extraction. Two Mashup properties are extracted
from the Mashup description text and the number of
identical open APIs invoked between Mashups.

(1) Mashup description text extraction:
-e Mashup description text recorded the detailed
information of the Mashup and a storage carrier,
which is written in NL and in any format, for ex-
ample, “customers can use the service to upload and
edit photos over the Internet.” We randomly extract
10,000 Mashup application descriptions from the
application library and extract SDs on the application
descriptions. Compared with open API, Mashup
lacks user description information. -erefore, we
only extract the activity (named as Mashup activity)
and scenario from the Mashup description text:

(1) Mashup activity (ma): the activity provided by
the Mashup, which in the example refers to
“upload and edit photos.”

(2) Mashup scenario (ms): the scenario of the
Mashup, which in the example refers to “over the
Internet.”

(2) -e number of identical open APIs invoked between
Mashups
Each Mashup to be developed is composed of two or
more open APIs, and different Mashups may invoke
the same open API. -erefore, the invoked open
APIs can reflect the similarity between twoMashups.

Definition 3 (Mashup properties). mp�<ma, ms>, where
ma represents open API key activity information consisting
of verbs and nouns. ms represents open API key scenario
information consisting of verbs and nouns

Definition 4 (Mashup activity). ma�<verb, object>; the
verb is a user-initiated operation. Object exists in the form of
a noun, a noun phrase, or a noun phrase in a binary group,
such as the open API key activity <{upload, edit}, photo>.

Definition 5 (Mashup scenario). ms�<object>; the verb
exists in the form of a verb in a binary group and is a user-
initiated operation, <Internet>.

We have identified 10 SDs and classified the SDs into
the following six scenarios to extract the Mashup
properties, as shown in Table 2.

Similarity calculation: suppose there are two Mashup
descriptions “customers can use the service to upload and
edit photos over the Internet” and “this Mashup allows users
to watch pictures on the server or Internet.” We calculate the
similarity between Mashups through Mashup description
text and the number of identical open APIs invoked between
Mashups.

-e specific formula for calculating the similarity of two
Mashups is shown in
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sim M1, M2(  � u × simma M1, M2(  + v × simms M1, M2( 

+ w × simse M1, M2( ,

(10)

where the weight parameter u� 0.2, v � 0.6, w � 0.2
(u+ v+w � 1). M1, M2 represent two different Mashups.
simma(M1, M2) represents the similarity of activities be-
tween two Mashups (e.g., <{upload, edit}, photo> and
<watch, picture>). simms(M1, M2) represents the similarity
of the scenarios between two Mashups (e.g., <Internet> and
<{server, Internet}>). simse(M1, M2) represents the simi-
larity of open APIs invoked between Mashups. -e formula
of simma (M1, M2) is as follows:

simma M1, M2(  �


n
i�1 max msimma M1i

, M21∼m
  

n
,

(11)

where n is the amount of verbs in the ma ofM1, andm is the
amount of verbs in the ma of M2. masim(aqi

, asi
) represents

the similarity between an element in ma of M1 and an el-
ement in ma of M2:

msimma M1, M2(  � w1 × sim V1, V2( 

+ w2 ×


I
i�1 max 

J
j�1 sim N1i

, N2j
  

I
.

(12)

Table 2: Related SDs when extracting Mashup properties.

Scenarios Related SDs
x, y are placed in the ma verb list conj(x, y), csubj(x, y), csubjpass(x, y)x is placed in the ma verb list
y is placed in the ma verb list dobj(x, y), iobj(x, y), prep(x, y) & pobj(y, z) (note: x is a verb)x is placed in the ma noun list
z is placed in the mp noun list prep(x, y) & pobj(y, z) (note: x is a noun)
y is placed in the ma noun list nn(x, y) (when x is already in the noun list of ma), cop(x, y)
y is placed in the mp noun list nn(x, y) (when x is already in the noun list of ms), pobj (x, y)
y is placed in the mp adjective list amod(x, y)

MIM matrix construction

Open API

Three open 
APIs attributes

Two Mashups 
properties

Open API 
description 
document

Mashup 
description 
document

Open API invoked 
by Mashup 
information

Open API 
co-occurrence

Open API category 
and history 

invoking times

Dependent 
syntactic 

relationship

Dependent 
syntactic 

relationship

Open API 
similarity

Top-A 
similar 

Open API 
matrix

Top-M 
similar 
Mashup 
matrix

Co-occurrence 
matrix

Popularity 
matrix

Mashup 
similarity

Co-occurrence 
similarity

Popularity
similarity

FM model scorecalculate

Figure 3: MIM-based open API recommendation approach.
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In (11),V1 is a verb in the ma ofM1, V2 is another verb in
the ma of M2, I and J represent the number of nouns in the
ma ofM1 and ma ofM2, respectively, N1i

is the i-th noun in
the ma of M1, N2j

is the j-th noun in the ma of M2, and w1

and w2 are the weights of verbs and nouns, respectively.
Using (4), sim(V1, V2) and sim(N1i

, N2j
) are calculated as

similarities between words.
-e formula of Simms (M1, M2) is as follows:

simms M1, M2(  �
1
k



k

i�1
ui,

ui �

max sim M11, M21(   . . . max sim M11, M2j  

⋮ ⋱ ⋮

max sim M1k, M21(   . . . max sim M1k, M2j  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13)

where ui represents a set of word combination’s similarities.
k, j respectively represent the amount of words contained in
the ma or ms of the two Mashups M1 and M2. M11, . . ., M1k
represent each word corresponding to ma or ms ofM1.M21,
. . ., M2j represent each word corresponding to ma or ms of
M2. -e two groups of words are compared one-to-one to
calculate the similarity, and a similarity matrix of k× j is
formed. Take the maximum value of the similarity result of
each row to represent the similarity of the corresponding
words, and finally a matrix of 1× k is obtained.

We adopted the Jaccard similarity calculation idea to
calculate the similarity of open APIs invoked between
Mashups:

simse M1i, M2j  �
Ai ∩Aj





Ai ∪Aj




. (14)

Here, |Ai ∩Aj| represents the amount (the intersection) of
the same open API in the corresponding open API com-
position of the two Mashups, and |Ai ∪Aj| represents the
total amount of open APIs (the union) in the open API
composition corresponding to the two Mashups.

For example, sim(M1, M2) is composed of three parts:
simma(M1, M2), simms(M1, M2), and simse(M1, M2). -e
calculation formula of simma(M1, M2) and simms(M1, M2)

is similar to that in Section 3.1.3, which is described in detail
here. simma(M1, M2) is the similarity between <{upload,
edit}, photo> and <watch, picture>, and simms(M1, M2) is
the similarity between <Internet> and <{server, Internet}>.
In simse(M1, M2), supposeM1 has invoked a total of 10 open
APIs, M2 has invoked a total of 15 open APIs; both M1 and
M2 invoke the same 5 APIs, and the final result of
simse(M1, M2) is 5/(10 + 15)� 0.2.

Next we linearly combine simma(M1, M2),
simms(M1, M2), and simse(M1, M2) to get the similarity
between M1 and M2.

(3) ;e Co-Occurrence Matrix Construction. Co-occurrence
refers to the external connection between open APIs formed
inMashup development. If two different open APIs S1 and S2
are directly invoked by the same Mashup, there is co-

occurrence between S1 and S2. -e following formula cal-
culates the co-occurrence between two different open APIs:

co ai, aj  �
ai ∩ aj





ai ∪ aj




. (15)

Here, ai and aj represent different open APIs, respectively.
|ai ∩ aj| represents the total times ai and aj were invoked by
the same Mashup. |ai ∪ aj| represents the sum of the times
the open API ai and aj were invoked in the past.

(4) ;e Popularity Matrix Construction. Quality of open API
(QoS) is the basis for ensuring the performance of the open
API. However, the QoS information is usually vague and
dynamic. -erefore, in this work, we have integrated the open
API popularity with QoS information to improve the rec-
ommendation effect. -e open API popularity is calculated by
the amount of historical invokes. -erefore, the more popular
the domain is, the more invoked the open API in this domain
will be. We use (16) to calculate the open API popularity:

pop(ai) �
Fre(ai) − min(Fre(Category(ai))

max(Fre(Category(ai)) − min(Fre(Category(ai))
,

(16)

where Fre(.) calculates the amount of times the corre-
sponding open API has been invoked by the Mashup,
Category(.) represents all open APIs that exist in the same
domain, max(.) calculates the maximum amount of times
the open API has been invoked in history, and min(.) cal-
culate the minimum amount of times the open API has been
invoked in history.

3.2.2. FM Model Score Prediction (Step 2). FM can learn the
characteristic interaction between Mashup and open API, so
as to calculate the correlation information between them.
-e specific formula of FM is as follows:

Y(X) ≔ w0 + 
n

i�1
wixi +

1
2



k

f�1


n

i�1
vi,fxi

⎛⎝ ⎞⎠

2

− 
n

j�i+1
v
2
j,fx

2
j

⎛⎝ ⎞⎠,

(17)
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where n is the amount of the features, w0 is the initial bias
term, wi is the weight of the i-th feature, xi, xj represent the
interaction between the paired feature variables, vi,f, vj,f

represent a hidden factor between Mashup xi and open API
xj in the factorization model, and k is the factorization
matrix dimension.

Figure 4 shows an example of an FM model’s input and
output. -e training data consists of two parts. In this work,
we use the MIM matrix as input data and a score value Y as
output data. Finally, FM can calculate the target value Y
between Mashup and the open API and offer recommen-
dations for the Mashup developers by sorting Y.

In the training set, if the active open API is historically
invoked by the Mashup, the value in the vector Y is 1;
otherwise it is 0. In the test set, the value in vector Y rep-
resents the calculated score of the active open API relative to
the Mashup. Finally, the final set of recommended open
APIs is obtained by ranking the predicted scores.

In the FM model, the model parameters w0, w, and v are
obtained from the training examples. In order to get the
optimal parameters, a loss function needs to be defined to
obtain the optimal parameter model. We define the loss
function as

l Y xi( , Y′(  � log 1 + exp −Y xi( Y′( ( . (18)

For example, suppose that there are a total of 3 open
APIs and 2 Mashups in the entire dataset. -e score between
the second open API and the first Mashup is calculated, so
the active open API is a vector [0, 1, 0] and the target
Mashup is a vector [0, 1], the similar open APIs matrix
calculated by the “Similar Open APIs Matrix Construction”
section is a vector [0.4, 0, 0.7], the similar Mashup matrix
calculated by the “Similar Mashup Matrix Construction”
section is a vector [0, 0.3], the co-occurrence matrix cal-
culated by (15) is a vector [0.5, 0], and the popularity matrix
calculated by formula (16) is a vector [3].-e finalMIM is [0,
1, 0, 1, 0, 0.4, 0, 0.7, 0, 0.3, 0.5, 0, 3] and will be entered into
the trained FM to get the final score.

4. Experimental Results and Analysis

We conducted a series of experiments on user-story-driven
open API discovery and MIM-based open API recom-
mendation approach to evaluate the effectiveness of the
HyOASAM approach [37].

4.1. Experimental Data Collection and Analysis. We crawled
all open APIs, Mashups, and information about the rela-
tionships between open APIs and Mashups on PWeb. We
have collected 15,928 open API items with 398 categories,
6,973 Mashups, and 13,613 links between open APIs and
Mashups.

After crawling the data, we performed a series of data
processing operations on the data, including filtering special
characters and removing open API description texts that are
not related to open APIs. After text preprocessing, we se-
lected 1,438 open APIs.

In order to evaluate the effectiveness of HyOASAM, we
have established a standard set. We appointed four graduate
students with extensive experience in Mashup development
to build the establishment of the standard set. -e four
students built four different sets of open API list standards
based on the practical experience they developed. In the end,
we used precision as criteria. Due to different standard sets,
the final results are also different, and we take the average of
the four results as the final standard set of the experiment.

4.2. ;e Experimental Analysis for Open API Discovery.
-ree requirements components are extracted from each
user story. Table 3 shows the result; we select the five dif-
ferent user stories domains in the table as the experimental
open API requirement texts.

4.2.1. Metric Selection. We use precision to evaluate the
effectiveness of user-story-driven open API discovery. -e
precision formula is as follows:

precision �
SA ∩ SM




SA




. (19)

Here, SA represents the requirements components extracted
by HyOASAM and SM represents the manually extracted
open API properties.

4.2.2. Parameter Selection. In (1), a represents the weight of
users, b represents the weight of functions, and c represents
the weight of motivation. We compared the open API sets
from three different domains user stories as input to the
three standard open API sets. In Figure 5, it can be seen that
the parameters of a� 0.2, b� 0.6, and c� 0.2 are in most
cases better than the precision of other parameters. -is
shows that function is the main factor of the overall
similarity.

4.2.3. Comparative Experiment. We compared the user-
story-driven open API discovery approach (USDOAD) with
other established open API discovery approaches [38, 39].
-e two established approaches are as below:

(1) Open API discovery approach based on vector space
model (VSMOAD): we used VSM to vectorize the
data processed user story u� {u1, u2, u3, u4, . . ., ui}
and open API description text s� {s1, s2, s3, . . ., si},
where i is the size of the corpus vocabulary, and then
used cosine similarity to calculate similarity:

cos( q
→

, s
→

) �
q
→

· s
→

‖ q
→

‖‖ s
→

‖
�


v
i�1 q

→
· s
→

��������������


v
i�1 q

→2
i 

v
i�1 s

→2
i

 . (20)

(2) Open API discovery approach based on LDA
(LDAOAD): LDA is a topic model, which can give
the topic of each document in the document set as a
probability distribution, so we used LDA to extract
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the subject distribution vector of user story u and
open API description text s and then used enhanced
cosine similarity to calculate similarity. -e formula
is as follows:

Sim(a, u) �
i∈I ra,i − ra  ru,i − ru 

�������������

i∈I ra,i − ra 
2

 �������������

i∈I ru,i − ru 
2

 . (21)

Figure 6 shows that our approach is significantly better
than the VSMOAD and LDAOAD approach, but the pre-
cision between TOP-20 and TOP-25 is significantly reduced.

Because Stanford Parse cannot fully extract the open API
demand components in some scenarios, open API function
is represented by (1) noun phrases, such as “video upload,”
and (2) sentences with grammatical errors or missing
structural components.

4.3.;eExperimentalAnalysis forOpenAPIRecommendation

4.3.1. Metric Selection. We adopt the precision, recall, and F-
measure to evaluate the efficiency of the MIM-based open
API approach:

Table 3: User story extraction examples. According to Section 3.1, we extract open API properties on PWeb. Table 4 shows specific examples
of open API properties.

No. User story Open API
category Requirements components

S1 As an editor, I want to download and edit pictures
on the website Photo <editor, null>, <{download, edit},picture, null, null>, <null,

null, website, null>

S2 As a producer, I want to search and upload music
online Music <producer, null>, <{search, upload},music, null, null>, <null,

null, null, online>

S3 As an editor, I want to download and upload videos
from the app Video <editor, null>, <{download, upload},video, null, null>, <null,

null, app, null>

S4 As a fan, I want to find music so that I can listen to
music online Music <fan, null>, <find, music, null, null>, <listen, music, null,

online>

S5 As a traveler, I want to find routes and hotel online Travel <traveler, null>, <find, {route, hotel}, null, null >, <null, null,
null, online>

MIM Y

Active open API Target Mashup Similar open API Similar Mashup Co-occurrence Popularity Score

1 0 0 1 0 0 0 0.6 0.5 0 0.3 0.7 0 0.5 0.5 12 1

0 1 0 1 0 0 0.4 0 0.7 0 0.3 0.7 0.5 0 1 3 0

0 0 1 0 0 1 0.5 0.8 0 0.3 0.4 0 0.5 1 0 5 1

1 0 0 0 0 1 0 0.6 0.3 0.3 0.4 0 0 0.5 0.5 7 0

0 1 0 0 1 0 0.6 0 0.7 0.5 0 0.6 0.5 0 1 1 1

0 0 1 0 1 0 0.5 0.7 0 0.5 0 0.6 0.5 1 0 8 1

… … … … …

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Figure 4: -e example of FM model input and output.

Table 4: Examples of open API properties extraction.

Name Category Open APIs properties

PicMonkey Photos
<{maker}, null>

<{upload, edit, save, contact}, {image, provider}>
<{documentation,talk@picmonkey.com}, null}>

Google maps Mapping
<map, null>

<{utilize, access, embedding}, {language, localization, api, developer, geocoding, service, intranet}>
<{service, customer, connection}, null>

Google-AdSense Advertising
<{developer, blog}, null>

<{create, generate, choose, generate, share, sense},{content, report, revenue, program, site}>
<{account, snippet, filter}, null>
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R Ai( 
.

(22)

In the above two formulas, R(Ai) represents the open
API actually invoked by the target Mashup and RM(Ai)
represents the recommended open API from our approach.

F-measure is the unified average of recall rate and
accuracy:

F_measure �
2 × Precall × Pprecision

Precall + Pprecision
. (23)

-e relationship between the three metrics and the
performance of the recommended algorithm is roughly
positively correlated. -e larger the recall, precision, and F-
measure are, the better the performance of the recom-
mended approach is; otherwise it has poor performance.

4.3.2. Parameter Selection. -e similarity calculation for-
mula for the open API-recommended algorithm invoked
Mashup that is proposed in this paper contains three pa-
rameters: u, v, and w, which correspond to the function of
Mashup, the application scenario and the similarity calcu-
lation of the invoked open API, and u+ v+w � 1. -ey
directly affect the construction of MIM, which indirectly
influences the effect of FM model. Figure 7 shows the effect
of the values of the five groups u, v, and w on the recom-
mended results. It can be seen from Figure 7 that when the
values of u, v, and w are 0.6, 0.2, and 0.2, the recommended
effect is higher than other groups, so our parameters are
configured as u � 0.6, v � 0.2, w � 0.2.

We choose the best values of TOP-A open APIs and
TOP-M Mashups similar to achieve the best recommended
results, as shown in Figures 8 and 9, respectively; when the
number of recommended open APIs is 1, 2, and 3, the values
of TOP-A and TOP-M (A is from 5 to 30 and M is from 5 to
30) affect the recommendation result. -e experimental
results show that when TOP-A remains unchanged and
TOP-M= 20, F-measure is the best; when TOP-M remains
unchanged and TOP-A= 10, the F-measure of MIM-based
reaches its peak value. It turns out that selecting the ap-
propriate TOP-A value and TOP-M value for the Mashup
creation in the open API recommendation is very important.

4.3.3. Comparative Experiment. We compared MIM-based
open API recommendation approach with other three
recommendation approaches, which are TF-IDF [40],
E-LDA [41], and LDA-FM [31].

(1) TF-IDF: -is approach starts from the degree of
similarity between the active open API description
document and the target Mashup description
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document, and the score is calculated in conjunction
with the open API popularity. First, we used the TF-
IDF to calculate the word vector between the open
API and the Mashup. -en, using the similarity of

the word vector, we measured the similarity between
the active open API and the target Mashup. Finally,
we combined the similarity with the open API
popularity to obtain the final open API recom-
mendation score.

(2) E-LDA: -is approach first calculates the topic
vector of target Mashup and open API with LDA,
then calculates their similarity, and then integrates
the open API popularity for recommendation.

(3) LDA-FM: First, it extracts the topic distribution of
the target Mashup and the active open API through
the LDA model. -e topic information is trained
with FM to calculate the probability distribution of
the open API. Similarly, we can get the similarity
between target Mashup and active open API. In
addition, it also takes the co-occurrence and pop-
ularity into account.

-e evaluation result is calculated in terms of the recall,
precision, and F-measure [42]. -e comparison shows that
our approach has the highest accuracy in all the three
metrics.

In Figure 10, our approach is better on recall than the
other three approaches, and recall increases as N increases.
In Figure 11, although the precision decreases asN increases,
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our approach is still the best. As shown in Figure 12, the
average F-measure value of the MIM-based approach is
2.21% higher than LDA-FM, 4.60% higher than E-LDA, and
15.81% higher than TF. In all cases, TF-IDF has the worst
performance. TF-IDF just uses the frequency of word oc-
currences to vectorize words, regardless of the underlying
semantic relevance behind them. MIM-based approach,
LDA-FM, and E-LDA reveal the semantic relevance of open
APIs and Mashup description documents, so they can
calculate their similarities with higher accuracy.

5. Conclusions and Future Work

In order to enable Mashup developers to select the most
suitable open API from a large set of open APIs in a rapid
agile development mode, we propose a Hybrid Open API
Selection Approach for Mashup development (HyOASAM).
HyOASAM is composed of two basic approaches: a user-
story-driven open API discovery approach and a MIM-
based open API recommendation approach. -rough
HyOASAM, Mashup developers can (1) use user stories to
describe open API requirements clearly and quickly, and (2)
dynamically get a list of open APIs that match the re-
quirements and select the open APIs they want. It can be
seen through experiments that HyOASAM has improved in
precision and recall. In the future we will consider
employingWord Embedding and AttentionModel into NLP
techniques, so that the semantic relationship between words
can be fully extracted.
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In this paper, free vibration analysis of the functionally graded porous (FGP) plates on the elastic foundation taking into mass
(EFTIM) is presented. .e fundamental equations of the FGP plate are derived using Hamilton’s principle. .e mixed inter-
polation of the tensorial components (MITC) approach and the edge-based smoothed finite element method (ES-FEM) is
employed to avoid the shear locking as well as to improve the accuracy for the triangular element. .e EFTIM is a foundation
model based on the two-parameter Winkler–Pasternak model but added a mass parameter of foundation. Materials of the plate
are FGP with a power-law distribution and maximum porosity distributions in the forms of cosine functions. Some numerical
examples are examined to demonstrate the accuracy and reliability of the proposed method in comparison with those available in
the literature.

1. Introduction

.e plate resting on the elastic foundation (EF) is one of the
most common types of structures which have practical
applications in civil and industrial constructions, especially
in transportation and irrigation. In particular, the structures
of beams and plates on the EF are subjected to moving loads
of means of transport such as roadbeds affected by vehicles,
railway tracks, and aircraft runways. In most publications,
when investigating the mechanical behavior of structures on
the EF, the researchers mainly use the one-parameter
Winkler foundation model [1] or two-parameter Win-
kler–Pasternak foundation model [2, 3]. .e analysis of
plates resting on the Winkler–Pasternak foundation was
previously addressed by several authors. For instance,
Fazzolari [3] used an analytical method to consider free
vibration and buckling of porous FG Sandwich beams

resting on the EF with the Winkler–Pasternak foundation
model. Leissa [4] presented results for the free vibration of
rectangular plates. Xiang et al. [5] studied free vibration for
Mindlin plates on the Winkler–Pasternak foundation using
an analytical method. Omurtag et al. [6] used the finite
element method (FEM) for the free vibration analysis of the
Kirchhoff plates resting on the EF. Özçelikörs et al. [7]
analyzed the exact solutions of bending, buckling, and vi-
bration problems of a Levy-plate on the two-parameter
foundation. Matsunaga [8] used a special higher-order plate
theory (HSDT) to analyze vibration and buckling of thick
plates on the EF. Ayvaz et al. [9] developed a modified
Vlasov model to consider the earthquake response of thin
plates on the EF. Shen et al. [10] based on the Rayleigh–Ritz
method to study free and forced vibration of the Reiss-
ner–Mindlin plates resting on the EF. Liew et al. [11, 12] and
Han and Liew [13] analyzed the free vibration of rectangular
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plates resting on the EF using a differential quadrature
method. Zhou et al. [14] considered the vibration of rect-
angular plates on the EF using the Ritz method. Chu-
cheepsakul and Chinnaboon [15] investigated plates by a
two-parameter foundation model using a boundary element
method. Civalek and Acar [16] investigated the bending of
Mindlin plates on the EF by developing a singular convo-
lutionmethod. Ferreira et al. [17] presented bending and free
vibration analyses of the FGP plates on the Win-
kler–Pasternak foundation by using radial basis functions.
Shahsavari et al. [18] used a new quasi-3D hyperbolic theory
for the free vibration analysis of the FGP plates resting on the
EF. Zenkour and Radwan [19] proposed an exact analytical
approach for free vibration analysis of laminated composite
and Sandwich plates resting on the EF using a four-unknown
plate theory. Duc et al. [20] presented the analysis of
nonlinear thermal dynamic response of shear deformable
functionally graded plates on the EF. Mahmoudi et al. [21]
developed a refined quasi-three-dimensional shear defor-
mation theory to analyze the functionally graded Sandwich
plates resting on the two-parameter EF under thermo-
mechanical loading. Duc et al. [22] used an analytical
method to calculate static bending and free vibration of FG
carbon nanotube-reinforced composite plate resting on
Winkler–Pasternak foundations. .ang et al. [23] consid-
ered the effects of variable thickness on buckling and
postbuckling behavior of imperfect sigmoid FGM plates on
elastic medium subjected to compressive loading. Banh-
.ien et al. [24] developed the isogeometric analysis for
buckling analysis of nonuniform thickness nanoplates in an
elastic medium.

In recent years, the FGP materials have attracted great
interest frommany researchers over the world due to their
lightness and high strength. As a result, they are widely
applied for civil engineering, aerospace structures, nuclear
plants, and other applications. Kim et al. [25] investigated
bending, vibration, and buckling of the FGP microplates
using a modified couples stress based on the analytical
method. Coskun et al. [26] presented analytical solutions
to analyze the bending, vibration, and buckling of the FG
microplates based on the third-order shear deformation
theory (TSDT). Chen et al. [27] investigated the static
bending and buckling of the FGP beams by using the
Timoshenko beam theory. Rezaei and Saidi [28, 29]
studied the vibration of rectangular and porous-cellular
plates based on an analytical method. .e vibration of the
FGP shallow shells using an improve Fourier method was
examined by Zhao et al. [30]. Moreover, the dynamics of
the FGP doubly-curved panels and shells were also in-
vestigated in [31]. Li et al. [32] analyzed the nonlinear
vibration and dynamic buckling of the Sandwich FGP
plates with graphene platelet reinforcement (GPL) on the
EF. For nonlinear problems, Sahmani et al. [33] used the
nonlocal method to analyze nonlinear large-amplitude
vibrations of the FGP micro-/nanoplates with GPL re-
inforce. Wu et al. [34] studied the dynamic of the FGP
structures by using FEM. .ang et al. [35] investigated the

elastic buckling and free vibration of porous cellular plates
based on the first-order shear deformation theory (FSDT).
Although the FGP materials have many different types, in
this paper, the authors only use the distribution of po-
rosity as presented in [25, 26].

In the other front of the development of numerical
methods for computational mechanics, Liu et al. [36]
have recently proposed an edge-based smoothed FEM
(ES-FEM) using triangular elements which show some
following excellent properties for the 2D solid mechanics
analyses such as (1) the numerical results are often found
superconvergent and very accurate; (2) the method is
stable and works well for dynamic analysis; and (3) the
implementation of the method is straightforward and no
penalty parameter is used. .e ES-FEM has been de-
veloped for n-sided polygonal elements [37], viscoelas-
toplastic analyses [38], 2D piezoelectric [39], primal-dual
shakedown analyses [40], fluid structure interaction
[41, 42], and various applications [43–45]. Recently, in an
effort to improve the accuracy of the plate and shell
structural analyses, the classical MITC3 element [46]
incorporated with the ES-FEM [36], has been proposed
to give the so-called ES-MITC3 element [47–51]. In the
formulation of the ES-MITC3, the system stiffness matrix
is employed using strains smoothed over the smoothing
domains associated with the edges of the MITC3 ele-
ments. .e numerical results demonstrated that the ES-
MITC3 has the following great properties [47]: (1) the
ES-MITC3 can eliminate transverse shear locking even
with the ratio of the thickness to the length of the
structures reach 10− 8 and (2) the ES-MITC3 has better
accuracy than the existing triangular elements such as
MITC3 [46], DSG3 [52], and CS-DSG3 [53] and is a good
competitor with the quadrilateral element MITC4 ele-
ment [54].

.e objective of this research now is to further extend
the ES-MITC3 method for free vibration analyses of the
FGP plates resting on the EFTIM. .e governing equa-
tions are derived from the FSDT and the Reiss-
ner–Mindlin plate theory due to simplicity and
computational efficiency. Besides, the EFTIM is modelled
based on a two-parameter Winkler–Pasternak foundation
model and added in a mass parameter of foundation. .e
plate is made from the FGP materials with a power-law
distribution (k) and maximum porosity distributions (Ω)
in the forms of cosine functions. .e accuracy and reli-
ability of the present formulation are verified by com-
paring with those of other available numerical results.
Moreover, the effects of some geometric parameters and
material properties on the free vibration of the FGP plates
are also examined in detail.

2. Functionally Graded Porous Material
Plates on Elastic Foundation

Let us consider an FGP plate resting on EFTIM, as shown in
Figure 1. .e FGP materials with a variation of two
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constituents and three different distributions of porosity
through-thickness are presented as follows [25, 26]:

Case 1: Λ(z) � Ω cos
πz

h
 ,

Case 2: Λ(z) � Ω cos
π
2

z

h
+ 0.5  ,

Case 3: Λ(z) � Ω cos
π
2

z

h
− 0.5  ,

(1)

where Ω is the maximum porosity value. A typical material
property of the FGP materials can be considered as in the
following power-law relations:

P(z) � Pt − Pb( 
z

h
+ 0.5 

k

+ Pb (1 − Λ(z)), (2)

where Pt and Pb are the typical material properties at the top
and the bottom surfaces, respectively; and k is the power-law
index. .e normalized distributions of porosity through the
thickness are shown in Figure 2(a). As shown in Figure 2(a),
the porosity distribution of Case 1 is symmetric with respect
to the midplane of plates. Case 2 and Case 3 are bottom and
top surface-enhanced distributions, respectively. Besides,
Figures 2(b)–2(d) show the distributions of a normalized
typical property associated with three different cases of
porosity distributions with parameters: Ω � 0.5, k� 1, 5, 10,
and Pt/Pb � 10.

.e EFTIM is built based on the Winkler–Pasternak
foundation by adding a mass parameter of foundation:

qe � k1w(x, y, t) − k2
z2

zx2 +
z2

zy2 w(x, y, t) + mf

z2w(x, y, t)

zt2
,

(3)

where w is the displacement of FGP plate; k1 and k2 are,
respectively, Winkler foundation stiffness and shear layer
stiffness of the Pasternak foundation. In order to mention
the effectiveness of the foundation mass involved in the
oscillation as well as the continuous interaction of the spring
with the plate, the parameter β with unit kg−1 is added. It
characterizes the effective level of the foundation mass in-
volved in vibration, which is determined based on an ex-
perimental basis and the ratio of the density of the
foundation to the density of plate material which is defined
as μF � ρF/ρ. .us, the density of mass mf involved vi-
bration with the foundation is determined mf � βμFρ. From
equation (3) we see that, for the static problem, the EFTIM
model and Winkler–Pasternak foundation model are the
same. But, for the dynamic problems, these two models have
differences, and when omitting the influence parameters of
the foundation mass, the EFTIM model is equivalent to the
Winkler–Pasternak foundation model. In addition, this
foundationmodel also covers theWinkler foundationmodel
when the influence of shear parameters and foundationmass
parameters ignored. It was found that the EFTIM model

closely resembles the true feature of the foundation, in-
cluding the Pasternak and Winkler foundation models.

3. The First-Order Shear Deformation Theory
and Weak Form of the FGP Plates

3.1. First-Order Shear Deformation %eory for FGP Plates.
.e displacement of the FGP plates in the present work
based on the FSDT model can be expressed as

u (x, y, z) � u0(x, y) + zθx(x, y),

v (x, y, z) � v0(x, y) + zθy(x, y),

w (x, y, z) � w0(x, y),

⎧⎪⎪⎨

⎪⎪⎩
(4)

where u, v, w, θx, and θy are five unknown displacements of
the midsurface of the plate. For a bending plate, the strain
field can be expressed as follows:

ε � εm + zκ, (5)

where the membrane strain is given as

εm �

u0,x

v0,y

u0,y + v0,x

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (6)

.e bending and transverse shear strains are written as

κ �

θx,x

θy,y

θx,y + θy,x

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (7)

γ �
w0,x + θx

w0,y + θy

 . (8)

FromHooke’s law, the linear stress-strain relations of the
FGP plates can be expressed as

σx

σy

τxy

τxz

τyz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q55 0

0 0 0 0 Q44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εx

εy

cxy

cxz

cyz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (9)

x

z

y

Spring stiffener

Shear layer

Mass of
foundationO

Figure 1: Modeling the FGP plate resting on EFTIM.
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where

Q11 � Q22 �
E(z)

1 − υ2
,

Q12 � Q21 �
υE(z)

1 − υ2
,

Q44 � Q55 � Q66 �
E(z)

2(1 + υ)
.

(10)

where E(z) presents for effective Young’s modulus and υ
represents Poisson’s ratio.

3.2. Weak Form Equations. To obtain the motion equations
of the FGP plates for the free vibration analysis, Hamilton’s
principle is applied with the following form:


t2

t1

(δU − δK)dt � 0, (11)

where U and K are the strain and kinetic energies, re-
spectively. .e strain energy is expressed as

U � U
p

+ U
f

, (12)

where Uf is the strain energy

U
f

�
1
2


ψ

k1w
2

− k2
z2w

zx2 

2

+
z2w

zy2 

2
⎡⎣ ⎤⎦⎛⎝ ⎞⎠dψ, (13)

and Up is the strain energy

U
p

�
1
2


ψ
εTDε + γTCγ dψ. (14)
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(d)

Figure 2: Distributions of porosity and typical material property. (a) Distribution of porosity along of z-axis, (b) distribution material
property with k� 1, (c) distribution material property with k� 5, and (d) distribution material property with k� 10.
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where ε � εm κ 
T and

D �
A B

B F
 , (15)

and A, B, F, and C can be given by

(A,B, F) � 
h/2

−h/2
1, z, z

2
 

Q11 Q12 0

Q21 Q22 0

0 0 Q66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dz, (16)

C � 
h/2

−h/2

Q55 0
0 Q44

 dz. (17)

.e kinetic energy in equation (11) is given by

K � K
p

+ K
f

, (18)

where Kp is the kinetic energy

K
p

�
1
2


ψ

_umpu dψ, (19)

where uT � u0 v0 w0 θx θy ϕx ϕy  is the displacement
field and mp is the mass matrix defined by

mp �

I1 0 0 I2 0

I1 0 0 I2

I1 0 0

I3 0

I3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where (I1, I2, I3) � 
h/2
−h/2 ρ(1, z, z2)dz.

In equation (11), the kinetic energy of the mass of
foundation Kf is defined as

K
f

�
1
2


ψ

_wmfw dψ. (21)

Substituting equations (12) and (18) into equation (11),
the weak formulation for the free vibration of the FGP plate
is finally obtained as


ψ
δεTDε dψ + 

ψ
δγTCγ dψ + 

ψ
δwT

· k1w − k2
z2w

zx2 +
z2w

zy2  dψ � 
ψ

_umpu dψ

+ 
ψ

_wmfw dψ.

(22)

4. Formulation of an ES-MITC3 Method for
FGP Plates

4.1. Formulation of the Finite Element Using the MITC3
Element. .e middle surface of plate ψ is discretized into ne

finite three-node triangular elements with nn nodes such that
ψ ≈ 

ne

e�1ψe and ψi ∩ψj � ∅, i≠ j. .en, the generalized
displacements at any point ue � [ue

j, ve
j, we

j, θ
e
xj, θ

e
yj]

T of
element ψe can be approximated as

ue
(x) � 

nne

j�1

NI(x) 0 0 0 0

0 NI(x) 0 0 0

0 0 NI(x) 0 0

0 0 0 NI(x) 0

0 0 0 0 NI(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

de
j

� 
nne

j�1
N(x)de

j,

(23)

where nne is the number of nodes of ψe; N(x) is the shape
function matrix; and de

j � [ue
j, ve

j, we
j, θ

e
xj, θ

e
yj]

T is the nodal
degrees of freedom (d.o.f ) associated with the jth node of ψe.

.e membrane bending strains of MITC3 element can
be expressed in matrix forms as follows:

εe
m � Be

m1 Be
m2 Be

m3 de
� Be

m de
, (24)

κe
� Be

b1 Be
b2 Be

b3 de
� Be

b d
e
, (25)

where

Be
m1 �

1
2Ae

b − c 0 0 0 0

0 d − a 0 0 0

d − a b − c 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (26)

Be
m2 �

1
2Ae

c 0 0 0 0
0 −d 0 0 0

−d c 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (27)

Be
m3 �

1
2Ae

−b 0 0 0 0
0 a 0 0 0
a −b 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (28)

Be
b1 �

1
2Ae

0 0 0 b − c 0
0 0 0 0 d − a

0 0 0 d − a b − c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (29)

Be
b2 �

1
2Ae

0 0 0 c 0
0 0 0 0 −d

0 0 0 −d c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (30)

Be
b3 �

1
2Ae

0 0 0 −b 0
0 0 0 0 a

0 0 0 a −b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (31)

To eliminate the shear locking phenomenon as the
thickness of the plate becomes small, the formulation of the
transverse shear strains of the MITC3 element based on
FSDT [36] in this study can be written as follows:

γe
� Be

s d
e
, (32)

where
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Be
s � Be

s1 Be
s2 Be

s3 , (33)

with

Be
s1 � J− 1

0 0 −1
a

3
+

d

6
b

3
+

c

6

0 0 −1
d

3
+

a

6
c

3
+

b

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

Be
s2 � J− 1

0 0 1
a

2
−

d

6
b

2
−

c

6

0 0 0
d

6
c

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (35)

Be(0)
s3 � J− 1

0 0 0
a

6
b

6

0 0 1
d

2
−

a

6
c

2
−

b

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (36)

where

J− 1
�

1
2Ae

c −b

−d a

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (37)

Here, a � x2 − x1, b � y2 − y1, c � y3 − y1, and d � x3 −

x1 are pointed out in and Ae is the area of the three-node
triangular element as shown in Figure 3.

Substituting the discrete displacement field into equation
(22), we obtained the discrete system equations for free
vibration analysis of FGP plate resting on the EF, respec-
tively, as

K − ω2M d � 0, (38)

where K and M are the stiffness and mass matrices,
respectively.

.e stiffness matrix in equation (38) can be written as

K � 
ne

e�1
Ke

p + Ke
f , (39)

where

Ke
p � 

ψe

BTDB dψe + 
ψe

BT
s CBsdψe, (40)

Ke
f � k1

ψe

NT
wNwdψe + k2

ψe

zNw

zx
 

T
zNw

zx
 ⎡⎣

+
zNw

zy
 

T
zNw

zy
 ⎤⎦dψe,

(41)

where

Be
� Be

m Be
b , (42)

Nw � 0 0N1 0 0, 0 0N2 0 0, 0 0N3 0 0 . (43)

Next, the mass matrix in equation (38) can be defined as

M � 
ne

e�1
Me

p + Me
f , (44)

where

Me
p � 

ψe

NTmpN dψe, (45)

Me
f � mf

ψe

NT
wNw dψe. (46)

4.2. Formulation of an ES-MITC3 Method for FGP Plates.
.e smoothing domains ψk is constructed based on edges of
the triangular elements such that ψ � ∪nk

k�1ψ
k and

ψk
i ∩ ψk

j � ∅ for i≠ j. An edge-based smoothing domain ψk

for the inner edge k is formed by connecting two end-nodes
of the edge to the centroids of adjacent triangular MITC3
elements, as shown in Figure 4.

Applying the edge-based smooth technique [36], the
smoothed membrane, bending, and shear strain εk

m, κk, γk

over the smoothing domain ψk can be created by

εk
m � 

ψk
εmΦ

k
(x)dψ, (47)

kk
� 

ψk

κΦk
(x)dψ, (48)

γk
� 

ψk

γΦk
(x)dψ, (49)

where εm, κ, and γ the compatible membrane, bending, and
the shear strains, respectively; Φk(x) is a given smoothing
function that satisfies at least unity property
ψkΦk(x)dψ � 1.

In this study, we use the constant smoothing function

Φk
(x) �

1
Ak

, x ∈ ψk,

0, x ∉ ψk,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(50)

y

d

c

a

b
x

3 (x3, y3)

2 (x2, y2)

1 (x1, y1)

Figure 3: .ree-node triangular element in the local coordinates.
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where Ak is the area of the smoothing domain ψk and is
given by

A
k

� 
ψk

dψ �
1
3



nek

i�1
A

i
, (51)

where nek is the number of the adjacent triangular elements
in the smoothing domain ψk; and Ai is the area of the ith
triangular element attached to the edge k.

By substituting equations (47)–(49) into equations (24),
(25), and (32), the approximation of the smoothed strains on
the smoothing domain ψk can be expressed as follows:

εk
m � 

nnk

j�1

Bk

mjd
k
j ;

kk
� 

nnk
sh

j�1

Bk

bjd
k
j ;

γk
� 

nnk
sh

j�1

Bk

sjd
k
j ;

(52)

where nnk
sh is the total number of nodes of the triangular

MITC3 elements attached to edge k (nnk
sh � 3 for boundary

edges and nnk
sh � 4 for inner edges as given in Figure 4; dk

j is
the nodal d.o.f associated with the smoothing domain ψk;
and Bk

mj, Bk

bj, and Bk

sj are the smoothed membrane, bending,
and shear strain gradient matrices, respectively, at the jth
node of the elements attached to edge k computed by

Bk

mj �
1

Ak


nek

i�1

1
3
A

iBe
mj, (53)

B
k

bj �
1

Ak


nek

i�1

1
3
AiB

e
bj, (54)

B
k

sj �
1

Ak


nek

i�1

1
3
A

iBe
sj. (55)

.e stiffness matrix of the FGP plate using the ES-
MITC3 is assembled by

K� 

nk
sh

k�1

Kk
, (56)

where Kk is the ES-MITC3 stiffness matrix of the smoothing
domain ψk and given by

Kk
� 

ψk

BKTDBk
+ Bkt

s CBk

s dψ � BKTDBk
A

k
+ Bkt

s CBk

s A
k
,

(57)

where

BkT
� Bk

mj
Bk

bj . (58)

5. Accuracy of the Proposed Method

In this section, the various numerical examples are solved to
verify the reliability and accuracy of the proposed method.
For convenience, the stiffness factors and nondimensional
frequencies of the plates are defined as the following
equations:

K1 �
k1a

4

H
;

K2 �
k2a

2

H
;

λ �
ωa2

π2

��
ρh

H



, withH �
Eh3

12 1 − ]2( )
.

(59)

To demonstrate the performance of numerical results,
the relative frequency error is defined by

Δ (%) � 100 ×
λpr − λre





λre




, (60)

where λpr and λre are nondimensional frequencies of present
method and nondimensional frequencies in [17, 18],
respectively.

.e results of the convergence of the first two nondi-
mensional frequencies of the plate in the case of fully simple
support (SSSS) plate and a fully clamped (CCCC) plate with
h/a� 0.1, K1 � 100, K2 �10, respectively, are shown in Fig-
ure 5. From these results, it can be seen that almost all
frequencies corresponding to different cases of boundary
conditions (BC) converge with 18×18 element mesh. For
18×18 mesh, we compare the first three nondimensional
frequencies of a plate resting on the Winkler–Pasternak
foundation with the published results as shown in Table 1. It
can be seen that the present results agree well with the results
of the authors using analytical methods [5, 14, 17] and are
more accurate than those using the original MITC3 element
and FEM [6]. In addition, from Table 2, it is obvious that the
relative error of the present results compared to [18] is less
than 2%. In [18], they used a new quasi-3D hyperbolic theory
to investigate the free vibration of the FGP plate resting on
the EF. .ese results are the basis to analyze the free vi-
bration of FGP plates on the EFTIM.

Boundary edge m

Inner edge k

Г(k)

ψ(k)

Г(m)

ψ(m)

Field node
Centroid of triangles

Figure 4: .e smoothing domain ψk is formed by triangular
elements.
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Next, we consider an SSSS FGP plate (Al/Al2O3)
with its material properties as follows: metal (Al)
Eb � 70GPa, ρb � 2702 kg/m3 and ceramic (Al2O3)
Et � 380GPa, ρt � 3800 kg/m3. Poisson’s ratio is fixed at
υ � 0.3. .e FGP plate with even porosities is expressed as
in [18]:

P(z) � Pb + Pt − Pb( 
z

h
+ 0.5 

k

−
ξ
2

Pt + Pb( , (61)

where ξ(ξ ≤ 1) presents the porosity volume fraction. .e
stiffness factor and nondimensional frequencies of the plates
are shown in equation (58) with Hb � (Ebh3/12(1 − υ2)) and

4 6 8 10 12 14 16 18 20
Mesh (nxn)

2.5

3

3.5

4

4.5

SSSS
CCCC

λ1

(a)

SSSS
CCCC

4 6 8 10 12 14 16 18 20
Mesh (nxn)

5

6

7

8

9

10

λ2

(b)

Figure 5: .e convergence of element mesh to nondimensional frequency of plate. (a)λ1 and (b)λ2.

Table 1: Nondimensional frequencies of plates.

Plates K1 K2 Author λ1 Δ(%) λ2 Δ(%) λ3 Δ(%)

SSSS
υ � 0.3
h/a� 0.01

100 10

Ferreira et al. [17] 2.6559 5.5718 8.5384
Zhou et al. [14] 2.6551 0.03 5.5717 0.00 8.5406 0.03
Xiang et al. [5] 2.6551 0.03 5.5718 0.00 8.5405 0.02

MITC3 2.6604 0.17 5.6103 0.70 8.6296 1.07
Present 2.6590 0.12 5.5920 0.37 8.6017 0.74

500 10

Ferreira [17] 3.3406 5.9285 8.7754
Zhou et al. [14] 3.3398 0.02 5.9285 0.00 8.7775 0.02
Xiang et al. [5] 3.3400 0.02 5.9287 0.00 8.7775 0.02

MITC3 3.3441 0.10 5.9649 0.61 8.8642 1.01
Present 3.3430 0.07 5.9477 0.32 8.8370 0.70

SSSS
υ � 0.3
h/a� 0.1

200 10

Ferreira et al. [17] 2.7902 5.3452 7.8255
Zhou et al. [14] 2.7756 0.52 5.2954 0.93 7.7279 1.25
Xiang et al. [5] 2.7842 0.22 5.3043 0.77 7.7287 1.24

MITC3 2.7874 0.10 5.3258 0.36 7.7719 0.68
Present 2.7887 0.05 5.3362 0.17 7.7971 0.36

1000 10

Ferreira et al. [17] 3.9844 6.0430 8.3112
Zhou et al. [14] 3.9566 0.70 5.9757 1.11 8.1954 1.39
Xiang et al. [5] 3.9805 0.10 6.0078 0.58 8.2214 1.08

MITC3 3.9827 0.04 6.0266 0.27 8.2619 0.59
Present 3.9836 0.02 6.0358 0.12 8.2856 0.31

CCCC
υ � 0.15
h/a� 0.015

1390.2 166.83

Ferreira et al. [17] 8.1669 12.821 16.842
Zhou et al. [14] 8.1675 0.01 12.823 0.02 16.833 0.05

Omurtag et al. [6] 8.1375 0.36 12.898 0.60 16.932 0.53
MITC3 8.1842 0.21 12.909 0.69 17.010 1.00
Present 8.1729 0.07 12.872 0.40 16.939 0.58
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Table 2: .e first nondimensional frequencies of FGP plate according to the Winkler–Pasternak foundation stiffness (k� 1).

(K1, K2) h/a
ξ � 0 ξ � 0.2

Present [18] Δ(%) Present [18] Δ(%)

(0, 0)

0.05 9.010 9.020 0.11 8.485 8.370 1.37
0.10 8.823 8.818 0.06 8.319 8.203 1.41
0.15 8.541 8.516 0.29 8.069 7.950 1.50
0.20 8.196 8.151 0.55 7.762 7.641 1.58

(100, 0)

0.05 9.389 9.430 0.43 9.020 8.917 1.16
0.10 9.207 9.231 0.26 8.858 8.753 1.20
0.15 8.933 8.934 0.01 8.614 8.505 1.28
0.20 8.599 8.577 0.26 8.315 8.203 1.37

(100, 100)

0.05 15.383 15.439 0.36 16.338 16.320 0.11
0.10 15.213 15.245 0.21 16.175 16.148 0.17
0.15 14.962 14.966 0.03 15.932 15.895 0.23
0.20 14.664 14.640 0.16 15.639 15.595 0.28

Table 3: Nondimensional frequencies of the FGP plate on EFTIM.

λ1 λ2 λ3 λ4 λ5 λ6
0.8583 1.8118 1.8157 2.8015 3.3898 3.4248

(a) (b)

(c) (d)

(e) (f )

Figure 6: .e first six mode sharps the FGP plate on EFTIM.
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Figure 7: Nondimensional frequencies of the eFGP plate with difference of featured-index β: (a) nondimensional frequency λ1; (b)
nondimensional frequency λ2; and (c) nondimensional frequency λ3.

Table 4: .e first three nondimensional frequencies of FGP on EFTIM.

Parameter of plate β 0 0.25 0.5 0.75 1
Case 1 λ1 1.1015 0.9575 0.8583 0.7847 0.7273
(K1 � 100, K2 �10) λ2 2.3078 2.0156 1.8118 1.6595 1.5400
(SSSS) λ3 3.5651 3.1154 2.8015 2.5665 2.3822
Case 2 λ1 1.0225 0.8988 0.8113 0.7453 0.6931
(K1 � 100, K2 �10) λ2 2.0774 1.8350 1.6612 1.5289 1.4239
(SSSS) λ3 3.2410 2.8630 2.5921 2.3859 2.2221
Case 3 λ1 1.2537 1.0735 0.9538 0.8669 0.8001
(K1 � 100, K2 �10) λ2 2.7399 2.3531 2.0942 1.9054 1.7599
(SSSS) λ3 4.1972 3.6097 3.2152 2.9269 2.7044
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Table 5: Nondimensional frequencies of the FGP plate with different K1 and K2.

Case of Porosity distribution K2
K1

100 250 500 750 1000

Case 1
(SSSS)

10 0.8583 0.8929 0.9477 0.9995 1.0488
25 0.9258 0.9579 1.0092 1.0580 1.1047
50 1.0285 1.0575 1.1042 1.1490 1.1921
75 1.1218 1.1485 1.1916 1.2332 1.2734
100 1.2079 1.2327 1.2730 1.3120 1.3499

Case 2
(SSSS)

10 0.8113 0.8452 0.8988 0.9493 0.9973
25 0.8775 0.9089 0.9589 1.0064 1.0518
50 0.9778 1.0061 1.0515 1.0950 1.1369
75 1.0687 1.0947 1.1365 1.1769 1.2160
100 1.1525 1.1765 1.2156 1.2534 1.2902

Case 3
(SSSS)

10 0.9538 1.0009 1.0747 1.1438 1.2090
25 1.0452 1.0883 1.1566 1.2211 1.2823
50 1.1819 1.2202 1.2815 1.3400 1.3960
75 1.3044 1.3392 1.3953 1.4492 1.5011
100 1.4163 1.4484 1.5004 1.5507 1.5993

0.8
100

1

85 100070 850

1.2

55 700

K1
K2

1.4

55040 40025 25010 100

λ1

(a)

K1

K2

0.8
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0.9

85

1

100070

1.1

850

1.2

55 700

1.3

55040 40025 25010 100

λ1

(b)

K1

K2

0.8
100

1

85 1000

1.2

70 850

1.4

55 700

1.6

55040 40025 25010 100

λ1

(c)

Figure 8: Nondimensional frequencies of FGP plate with different K1 and K2. (a) Case 1; (b) Case 2; and (c) Case 3.

Mathematical Problems in Engineering 11



Table 6: Nondimensional frequencies of FGP plate with different K1, K2, and β.

β K1 (K2 �10) K2 (K1 � 100)
Case 1

100 250 500 750 1000 10 25 50 75 100
0 1.1015 1.1459 1.2163 1.2828 1.3460 1.1015 1.1882 1.3199 1.4397 1.5502
0.25 0.9575 0.9961 1.0572 1.1150 1.1700 0.9575 1.0328 1.1473 1.2514 1.3475
0.5 0.8583 0.8929 0.9477 0.9995 1.0488 0.8583 0.9258 1.0285 1.1218 1.2079
0.75 0.7847 0.8163 0.8664 0.9138 0.9588 0.7847 0.8464 0.9403 1.0256 1.1043
1 0.7273 0.7566 0.8030 0.8469 0.8887 0.7273 0.7844 0.8715 0.9505 1.0235
Case 2
0 1.0225 1.0652 1.1327 1.1964 1.2569 1.0225 1.1059 1.2323 1.3469 1.4525
0.25 0.8988 0.9363 0.9957 1.0517 1.1049 0.8988 0.9721 1.0833 1.1840 1.2768
0.5 0.8113 0.8452 0.8988 0.9493 0.9973 0.8113 0.8775 0.9778 1.0687 1.1525
0.75 0.7453 0.7763 0.8256 0.8720 0.9161 0.7453 0.8060 0.8982 0.9817 1.0586
1 0.6931 0.7220 0.7677 0.8109 0.8519 0.6931 0.7496 0.8353 0.9129 0.9845
Case 3
0 1.2537 1.3156 1.4127 1.5035 1.5891 1.2537 1.3739 1.5536 1.7146 1.8617
0.25 1.0735 1.1265 1.2096 1.2874 1.3607 1.0735 1.1764 1.3303 1.4681 1.5941
0.5 0.9538 1.0009 1.0747 1.1438 1.2090 0.9538 1.0452 1.1819 1.3044 1.4163
0.75 0.8669 0.9097 0.9768 1.0396 1.0988 0.8669 0.9500 1.0742 1.1855 1.2872
1 0.8001 0.8395 0.9015 0.9595 1.0141 0.8001 0.8767 0.9914 1.0942 1.1880
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Figure 9: Continued.
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ω∗ � (ωa2/h)
�������
(ρb/Eb)


. .e first nondimensional frequen-

cies of present work compared with [18] are shown in
Table 2.

6. Numerical Results and Discussions

For free vibration problems, a fully simple support (SSSS)
FGP plate is considered, wherein
a � b, h � a/10, Ω � 0.5, k � 1, Et � 10Eb, ρt � 10ρb,
υ � 0.38, and μF � 0.5. .e first six nondimensional fre-
quencies of the FGP plate with porosity distribution of Case
1 and stiffener of foundation K1 � 100, K2 � 10 are shown
in Table 3; and the first six mode shapes are presented in
Figure 6. .e stiffness factors and nondimensional

frequencies of FGP plate are shown in equation (58) with
Hb � (Ebh3/12(1 − υ2)).

6.1. Influence of the Parameters of the EFTIM to the Free
Vibration for the FGP Plate. Firstly, in order to investigate
the effect of the featured-index of themass of foundation β to
free vibration of the FGP plate, the featured-index of mass is
changed from 0 to 1. In Figure 7 and Table 4, it is seen that all
cases of porosity distribution featured-index of the mass of
foundation β significantly influence to free vibration of the
FGP plate. As β increases, the mass of the plate increases, and
the frequencies of the plate decrease. For all cases of porosity
distribution of the FGP plate, the porosity distribution of
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Figure 9: Nondimensional frequencies of FGP plate with different K1, K2, and β. (a) Case 1; (b) Case 2; and (c) Case 3.

Table 7: Nondimensional frequencies of the FGP plate as a function of k and Ω.

Ω
SSSS CCCC
k k

0 2.5 5 7.5 10 0 2.5 5 7.5 10
Case 1
0 0.6146 0.8460 0.9468 1.0184 1.0706 1.0275 1.2153 1.3432 1.4571 1.5444
0.25 0.6584 0.8830 0.9777 1.0469 1.0984 1.0935 1.2518 1.3694 1.4783 1.5633
0.5 0.7126 0.9238 1.0105 1.0767 1.1273 1.1732 1.2869 1.3930 1.4958 1.5780
0.75 0.7820 0.9677 1.0446 1.1070 1.1564 1.2711 1.3154 1.4102 1.5061 1.5848
1 0.8745 1.0105 1.0776 1.1357 1.1836 1.3924 1.3226 1.4130 1.5021 1.5766
Case 2
0 0.6146 0.8460 0.9468 1.0184 1.0706 1.0275 1.2153 1.3432 1.4571 1.5444
0.25 0.6609 0.8604 0.9563 1.0288 1.0833 1.0977 1.2011 1.3156 1.4273 1.5162
0.5 0.7162 0.8685 0.9569 1.0299 1.0871 1.1707 1.1651 1.2611 1.3675 1.4564
0.75 0.7777 0.8600 0.9357 1.0073 1.0671 1.2179 1.0868 1.1556 1.2496 1.3342
1 0.7852 0.7972 0.8420 0.9009 0.9580 1.0347 0.9106 0.9310 0.9904 1.0547
Case 3
0 0.6146 0.8460 0.9468 1.0184 1.0706 1.0275 1.2153 1.3432 1.4571 1.5444
0.25 0.6609 0.9413 1.0475 1.1196 1.1714 1.0977 1.3661 1.5012 1.6147 1.6994
0.5 0.7162 1.0785 1.1908 1.2621 1.3122 1.1707 1.5836 1.7243 1.8317 1.9084
0.75 0.7777 1.3066 1.4256 1.4917 1.5363 1.2179 1.9297 2.0656 2.1484 2.2018
1 0.7852 1.8589 1.9631 1.9772 1.9807 1.0347 2.4083 2.4138 2.3588 2.3246
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Case 3 leads to the maximum values of frequencies of the
plate, while the porosity distribution of Case 2 leads to the
minimum values. It can be observed that the FGP plate with
porosity distribution Case 3 is stiffer than plates with other
porosity distributions.

Next, the influence of nondimensional parameters of
foundation stiffness K1 and K2 is investigated. We change K1
from 100 to 1000 and K2 from 10 to 100 with respect to
β � 0.5 and μF � 0.5. .e first nondimensional frequency of
the FGP plate with three cases of porosity distribution is
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Figure 10: Nondimensional frequencies vibration of the FGP plate as a function of k. (a) Case 1; (b) Case 2; and (c) Case 3.
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presented in Table 5 and shown in Figure 8. As shown in
these figure and table, when K1 and K2 increase, the non-
dimensional frequency of plate also increases. We also ex-
amine the effect of (β, K1) and (β, K2) parameters to
nondimensional frequency. .e numerical result is pre-
sented in Table 6 and Figure 9. Consequently, Winkler
foundation stiffness K1 and shear layer stiffness of Pasternak
foundation K2 make stiffness of plate become greater and the
mass of the EF involved in the plate’s vibrationmakes reduce
frequencies.

6.2. Influence of the Parameters-FGP to Free Vibration of the
Plate on EFTIM. Let us consider the effect of materials
property to free vibration of the FGP plate. .e power-law
index k is changed from 0 to 10, and maximum porosity
distributions Ω has the value from 0 to 1. We examine the
SSSS FGP plate and fully clamped (CCCC) plate resting on
EFTIM. .e parameters of EFTIM are given by β � 0.5,
μF � 0.5, K1 � 100, and K1 � 10. .e first nondimensional
frequencies of plate with three cases of porosity distribution
is shown in Table 7 and Figure 10.

As shown in these figures and tables, when k and Ω
change, the values of nondimensional frequency change with
no rule. It is understandable because with each case of
change in porosity distributions k and Ω, the stiffness and
the weight of the plate changes. From Figure 10, in the case
of the CCCC plate, nondimensional frequency depending on
k andΩ value varies more complex than the case of the SSSS
plate. If k andΩ values are same, the frequency of the CCCC
plate is larger than that of the SSSS plate..e results are quite
reasonable because the SSSS boundary condition inherently
offers more flexible boundary conditions than the CCCC
boundary condition.

7. Conclusions

In this paper, new numerical results of free vibration of the
FGP plate resting on EFTIM are studied. We used the ES-
MITC3 to establish the fundamental equation of the FGP
plate. .e computed results obtained by this approach are in
excellent agreement with others published. Our work has the
following advantages.

.e novel ES-MITC3 which computes the free vibration
of the plate on EF takes into account the mass of foundation.

.e numerical results obtained by ES-MITC3 show good
agreement with the reference solutions and are more ac-
curate than those obtained by the original MITC3.

.e elastic foundation of Pasternak with three-param-
eters is developed by adding the featured-index of mass β to
accurately describe the actual elastic foundation.

.e mass of the elastic foundation involved in the vi-
bration of the plate reduces the frequency of vibration, while
two parameters K1 and K2 effect the stiffness of the plate.

.e material parameters k, Ω and the case of po-
rosity distribution effect of vibration of the plate. Nu-
merical results are useful for calculation, design, and
testing of material parameters in engineering and
technologies.

.is study suggests some further works on the dynamic
response and heat transfer problems of the FGP plate resting
on EF using different plate theories.
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Roll-to-Roll (R2R) processing is a common processing method for flexible photoelectric film materials. Due to the physical
properties of the materials, the change in the performance of the R2R processing equipment can easily cause deformation of
the flexible film material, it is particularly important to predict the performance degradation of the processing equipment.
Based on the accuracy and real-time requirements of performance degradation prediction, a PTS-FNN model for per-
formance degradation prediction was proposed in this paper, which combines the Possibilistic C-Means (PCM) fuzzy
clustering and Takagi–Sugeno Fuzzy Neural Network (TS-FNN). We also studied the PCM classification algorithm of input
data of PTS-FNN model, the predecessor network of TS-FNN prediction model and the construction method of post-
component network. Finally, the implementation process of PCM classification algorithm and TS-FNN prediction model
were given. -e R2R processing equipment health prediction experiment system was built and the PTS-FNN model ex-
periment was carried out. -e experimental results showed that the training time of PTS-FNN model was 50.37% less than
the standard TS-FNN prediction model. -e prediction accuracy increased by 5.48%, and the PTS-FNN had no error in the
judgment of state 1 and state 4.

1. Introduction

Currently, Roll-to-Roll (R2R) processing technique is the
most widespread processing method for a series of flexible
thin film materials internationally, for it can maintain the
enhancement its productivity while automatizing the
mechanical equipment to the greatest extent. R2R pro-
cessing is a common processing method for flexible pho-
toelectric thin film materials, and the performance
deterioration of the R2R processing device is the primal
problem the mass manufacturing of flexible photoelectric
thin film materials faces. In recent years, the technology of
equipment health prognosis has become a research hotspot
[1, 2]. In 2017, Lee et al. [3] proposed a prognosis algorithm
that boosts material removal rate (MRR) based on inte-
grated models and data-driven approach. -e method
proposed combines the influences of physical mechanism
and nearest neighbors, extracts the relating characteristics.

-ese characteristics are inputted to build multiple re-
gression models which will be integrated so as to obtain the
final prognosis. Rapid development and extensive appli-
cations in deep learning have been achieved in the last few
years. In the field of industry, the researcher applies deep
learning to the analysis of industrial data. University of
Michigan’s Ni Xia [4] developed an operating load based
real-time rolling Grey forecasting technique, so as to
provide efficient accurate machine health prognosis, as well
as analyzed the influencing factors. Deng et al. [5] (2018)
combined the quality control chart and SoV, proposing a
fault diagnosis approach of the flexible material R2R
manufacturing system. Based on the relativity between the
source of fault and product quality during manufacturing
as well as statistical distribution pattern of the feature
vector of processing quality and the source of fault, this
approach utilized SoV model under controlled or un-
controlled state and mathematical model of probability

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 9232561, 10 pages
https://doi.org/10.1155/2020/9232561

mailto:2111701138@mail2.gdut.edu.cn
https://orcid.org/0000-0002-5722-1037
https://orcid.org/0000-0001-6535-6743
https://orcid.org/0000-0002-9063-6699
https://orcid.org/0000-0002-8044-6605
https://orcid.org/0000-0001-7351-0886
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9232561


distribution to deduce the statistical measurement of
quality characteristic variables. -e consequent quality
control chart can pinpoint the fault location in the system
quickly and easily. Zhao and Ouyang [6] (2016) applied
Multi-Agent Genetic Algorithms (MAGA) to the prognosis
of the state of avionic devices, which overcomes the flaw of
the Baum–Welch algorithm easily falling into locally op-
timal solutions, greatly enhancing the prognosis accuracy,
speed, and stability.

In application, the health prognosis model for R2R
processing device has advanced instantaneity require-
ment; therefore, it is particularly vital to study how to
enhance the instantaneity of the prognosis model. Be-
cause the Fuzzy C-Means (FCM) clustering algorithm is
based on fuzzy theory to describe the uncertainty of
sample generics, the fuzzy membership value of each
classification point is obtained by optimizing the ob-
jective function. Although FCM is widely used in clus-
tering algorithms, it has the problem of being sensitive to
noise data. -e PCM clustering algorithm can make up
for the shortcomings of the above-mentioned FCM al-
gorithm by relaxing the constraint of membership degree
without normalizing the data. Because the neural net-
work modeling has the characteristics to deal with the
nonlinear approximation problem well, the PCM clus-
tering method can well divide the data with irregular
boundaries. For that reasons, the following content will
be binding the PCM clustering analyzing method and the
Takagi–Sugeno Fuzzy Neural Network (TS-FNN) to
discuss the health state prognosis modeling of the R2R
processing device.

2. Neural Network Model for Health
Prediction of Roll-To-Roll
Processing Equipment

-e standard TS-FNN [7] was first proposed by Japanese
scholars Takagi and Sugeno; it is a specific method for
identifying fuzzy models of nonlinear dynamic systems.
TS-FNN can be divided into antecedent networks and
consequent network according to different structural
functions (Figure 1). -e antecedent network is used to
match the fuzzy rules, that is, to calculate the adaptability of
each fuzzy rule. -e antecedent network is composed of
four layers of neural networks: the first layer is the input
layer, the second layer is the membership layer (Gaussian
function), the third layer is to calculate the adaptability
(aj � min u11, . . . u1j, . . . unj , aj is the j-th fuzzy rule
adaptability, n represents the number of inputs), the fourth
layer is to perform normalized processing, the adaptability
is normalized (aj � (aj/

m
b�1 ab), m represents the number

of nodes in the fourth layer of antecedent network), and
{a1, a2, . . . am} is the output to the antecedent network. -e
consequent network is to generate fuzzy rules, it consists of
three layers of networks. -e first layer is the input layer,
and the second layer is the rule computing layer
(ygj � 

n
i�0 pr

jixi, j � 1, 2, . . . m; g � 1, 2, . . . r; pr
ji is the

linear parameter of the consequent network). -e third

layer is the system output layer. -e system output
{y1, y2, . . . yr} is obtained by adding the weights of
{a1, a2, . . . am} as the connection weights, where
yr � 

m
j�1 ajyrj, yr ∈ Y, yrj is the output of the j-th fuzzy

rule.
-e standard T-S fuzzy neural networkmodel requires to

linearize the input data, which will make the input space and
fuzzy rules difficult to optimize and extract, and this will lead
to more problems, for instance, the system structure should
be planned in advance. -erefore, when dealing with the
multi-input nonlinear space, the PCM fuzzy clustering is
used as the antecedent model extraction method, to realize
the expected purpose of improving the training efficiency
and recognition effect of the model. -e PCM algorithm can
adjust the clustering center, radius, and number of clusters
of the input space; rationally divide the ambiguity of the
input data; and determine the membership function of the
data points and the rule adaptability; therefore, this PCM
algorithm achieves basic elimination of the low quality
samples to participate in the antecedent networks calcula-
tion, and model training speed and accuracy can be greatly
improved. According to the above analysis and reference [8],
the performance regression evaluation model PTS-FNN of
R2R processing equipment based on PCM and TS-FNN
shown in Figure 2 is proposed. -e model combines the
advantages of the PCM method, the T-S fuzzy inference
model, and the fuzzy neural network modeling method. -e
PTS-FNN model includes an antecedent network and a
consequent network. -e antecedent network matches the
standard T-S fuzzy rules, and the antecedent network
concludes the fuzzy rules. After the weighted calculation of
the antecedent and consequent network, the PCA parameter
of each station roller axis performance X� {x1, x2, . . . xn} and
the nonlinear modeling of equipment health status S� {s1,
s2, . . . sr} are established [9].

3. PCMClassificationMethod for Input Data of
HealthStatePredictionModelofRoll-To-Roll
Processing Equipment

Instead of normalizing the input data, Possibilistic C-Means
Clustering Algorithm relaxes the constraints of the mem-
bership function during the division of data, which is an
advantage of Possibilistic C-Means Clustering Algorithm,
thus enhancing the sensitivity to noisy data [10, 11].

Here are the assumptions that xh of the sample set X�

{x1, x2, x3, . . ., xh, . . . xn} possesses p amount of charac-
teristics xh � { xh1, xh2, xh3, . . ., xhp}, the sample set X pos-
sesses c amount of clustering center V� {v1, v2, v3, . . . , vc},
and using dik to represent the Euclidean distance of sample
xk and clustering center vi, gives

dik � xk − vi





 �

������������



p

j�1
xkj − vij 

2




. (1)

In equation (1), i� 1, 2, ···, c; j� 1, 2, ···, p; k� 1, 2, ···, n.
-en the target function of PCM:
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minJPCM(X, U, V) � 

c

i�1


n

k�1
uik( 

α
d
2
ik + 

c

i�1
ηi 

n

k�1
1 − uik( 

α
.

(2)

In equation (2) U � [uik]c×n represents the possibility
partition matrix; α represents the weighting factor of the

clustering’s ambiguity and α ∈ [1,∞](normally
1.5≤ α≤ 2.5); uik represents membership under category No.
i sample No. k (uik ∈ [0, 1]); ηi represents the penalty pa-
rameter, its expression is shown as equation (3) [12].

ηi � K


n
k�1 uik( 

α
d2

ik


n
k�1 uik( 

α . (3)
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Membership 
function

PCA parameter of 
each roller 

PCM
Classifer

Neural network 
learning

Weighted 
calculation

Performance 
degradation forecast

Consequent network

Antecedent networkHistorical 
data

X = {x1, x2, …, xn} Fuzzy rule 
compatibility

Rule calculation

TS-FNN model

S = {s1, s2, …, sr}

Figure 2: PTS-FNN-based R2R processing equipment health prediction model framework.
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In order to avoid null solution in the target function,
introducing the regularization term f (U) of the possibility
partition matrix (shown in equation (4)), provides a larger
penalty value when uik⟶ 0+.

f(U) � 
c

i�1
ηi 

n

k�1
1 − uik( 

α
. (4)

As mentioned in the previous chapters and sections, for
the sake of dividing the fuzzy level of the input data of the
health prognosis artificial neural network model for R2R
processing device precisely, the front end of the PTS-FNN
model is classified by PCM first. Combining equations
(1)–(4), the calculating formulas of the possibility partition
matrix U and the clustering center V is shown as equations
(5) and (6), respectively.

uik � 1 +
d2

ik

ηi

 

(1/α− 1)

⎡⎣ ⎤⎦

− 1

, (5)

vi �


n
k�1 uik( 

α
xk


n
k�1 uik( 

α . (6)

Figure 3 provides the process of the PCM algorithm:

① Set clustering category to c, set the fuzzy weight to α
(normally α� 2), set the iteration thresholding to q
(normally between 0.001 and 0.01), set the iteration
count to t, initialize the possibility partition matrix
U(s) and the clustering prototype V(s) (s� 0)

② Estimate ηi base on U(s) and V(s) as well as equation
(3)

③ Update the division of the matrix U(s+1) and the
clustering prototype V(s+1) in accordance with
equations (5) and (6)

④ Reestimate ηi, repeat ③
⑤ Determining threshold: according to the given

threshold q, if ||V(s+1)–V(s)||≤q, stop the iteration;
otherwise, t� t+ 1 and Jump to ②

4. Construction of TS-FNN Model for Health
State Prediction of Roll-To-Roll
Processing Equipment

Figure 2 shows that the health status prognosis TS-FNN
model for R2R processing device includes determining the
structural parameter of the antecedent network and the
consequent network. -e following content focus on in-
troducing the deduction of the antecedent network’s the
membership function and the rule compatibility, as well as
the weight between each node of the consequent network
can be obtained using the Error Back Propagation Algorithm
[8].

Here are the assumptions that matrix U � [uik] is a fuzzy
matrix after PCM data division,Gi (1≤ i≤ c) represents fuzzy
category group of c after division, β represents clustering
fuzzy degree weighted index and the category center viq and

the corresponding variance σ2iq of Gi can be expressed as
[7, 8]

viq �


n
k�1 uik( 

β
qk


n
k�1 uik( 

β ,

σ2iq �


n
k�1 uik( 

β
qk − viq 

2


n
k�1 uik( 

β ,

i � 1, 2 . . . c,

(7)

Considering the critical demand of the fuzzy clustering
after dividing the input data space, the category data qk of Gi
and the corresponding variance σ2iq of the category com-
ponent vin+1, i � 1, 2, . . . c under the clustering center Vi �

[vi1, vi2 . . . , vin+1]
T approximate 0, thus using the minimal

value (namely the shortest distance to the category center
viq) of the category amount qk as the decision function
dF(Gi) of the fuzzy clustering dF(Gi),

dF Gi(  � qk |min qk − viq



  , k � 1, 2 . . . l, i � 1, 2 . . . c.

(8)

Start

Update
fuzzy partition matrix U(s+1)

and cluster prototype V(s+1)

Initialize parameters, set the 
iteration threshold q

Estimate ηi

Reestimate ηi

||V(s+1) – V(s)|| ≤ q

t Increase 1

Y

N

End

Figure 3: PCM algorithm calculation process.
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Correspondingly, the membership function Gu(xk) of
Gi is expressed as

Guji xkj  � Exp −
xkj − viq





viq − v’iq




× c⎛⎝ ⎞⎠ , i � 1, 2, ..., c; j � 1, 2, ...., n.

(9)

In the equation |viq − v’iq| represents the width of the
input data’s division area, v’iq represents the nearest cluster
center value of cluster center No. i, factor c sets the rate of
the membership decrease when the input samples fleeing the
cluster center, normally 2≤ c≤ 4.

-e membership function Guji(xkj) represents the
similarity between the input sample xk and a certain fuzzy
class Gi. -ere is a relationship between the two: when xk
is far away from the prototype, then Guji(xkj) is close to 0;
when xk is close to the prototype, then Guji(xkj) is close to
1.

R i represents a decision rule of certain clustering cat-
egory Gi
(Ri : if xk ∈ Gi, then d(xk) � dF(Gi), i � 1, 2 . . . c), when
the multidimensional fuzzy set Gi projected onto the entire
input data space, the decision rule Ri

′ can be expressed as

Ri
′ : If x1 ∈ Gi1 andx2 ∈ Gi2 and . . . andxn ∈ Gin,

Then d xk(  � dF Gi( , i � 1, 2 . . . c,
(10)

-e compatibility Gαi of the corresponding xk for rule Ri
′

is the product of each component’s membership
Guji(xkj), j � 1, 2..n:

Gαi � 
n

j�1
Guji xkj , i � 1, 2 . . . c. (11)

As shown above, the membership function of the model
is calculated by equation (9), the rule compatibility is cal-
culated by equation (11).

σ2iq manifests the quality of fuzzy division. -e larger σ2iq
is, the worse quality the division is; thus, enter Eσ as the
quality index of the fuzzy division. If σ2iq >Eσ, c � c + 1, a
second fuzzy division is warranted. -e relevant fuzzy
clustering will not be extracted as the TS-FNN antecedent
network until all the categories meet the condition σ2iq ≤Eσ
[8].

After the building of the antecedent network is com-
pleted, estimates of the consequent network’s linear pa-
rameter pr

ji are required. In this paper, the linear least
squares recursive estimation method is used to estimate the
parameters of the postnetwork. In this part of the training
learning phase, the parameters of the antecedent network
need to be fixed first.

Constructing error cost function is as

E �
1
2

yr
′ − yr( 

2
, (12)

where yr
′ represents the expected output, yr represents the

actual output.
Optimized estimate algorithm of pr

ji.

zE

zpr
ji

�
zE

zyr

zyr

zygj

zygj

zpr
ji

� − aj yr
′ − yr( xi,

p
r
ji(j + 1) � p

r
ji(j) − f

zE

zpr
ji

� p
r
ji(j) + faj yr

′ − yr( xi.

(13)

Among them, aj is the j-th fuzzy rule
adaptability, aj � (aj/

m
b�1 ab); f ∈ (0, 1), f is algorithm

learning rate; g � 1, 2, . . ., r; j� 1, 2, . . ., m.

5. Model Verification Experiment and Test

5.1. Construction of the Health Status Prognosis Model. In
order to verify the efficiency of the health prognosis PTS-
FNN model for R2R processing device this paper proposed,
the R2R continuous manufacturing device shown in Figure 4
is introduced as the experiment platform, its principle of
operation is shown as Figure 5. Use the PCA parameter x1,
x2, x3, and x4 of the roller performance corresponding to
workstation 1, 2, 3, and 5 of the R2R manufacturing system
as the input of the PTS-FNN model. Divide the thin film
processing quality and the health status of the device in
accordance with Table 1 and quantify to obtain the health
status indicator function y={1, 2, 3, 4} of the device as the
output of PTS-FNN.

As shown in Figure 4, the R2R flexible material pro-
cessing system adopted is mainly composed of a me-
chanical structure and drive control unit. For the
mechanical structure, standard enforced aluminum alloy
extrusions was selected as the supporting frame, including
the unwinding module, the drive module, the wind-in
module, etc. -e experiment chose blue PET polyester film
with thickness of 0.05mm, width of 50mm, elastic mod-
ulus of 3495MPa, density of 1450 kg/m3, and Poisson’s
ratio of 0.3.-e vibration data is collected by the AWA5936
vibration measuring instrument. -e AWA5936 vibration
measuring instrument has good repeatability and can
ensure the accuracy of the measurement. -e built-in ac-
celeration sensor sensitivity is 1pC/m/s2 ± 5%, the mea-
surement range of acceleration is 0.03m/s2 to 1000m/s2,
the piezoelectric sensor frequency response range is 10Hz
to 8 kHz, the measurement error is 5% to 10% (LO :10Hz to
1kH; HI: 1 kHz to 8 kHz), and the sampling frequency is
48 kHz.

Principle of operation is shown as Figure 5. Based on
different functions of each roll shaft, the R2R processing
system is divided into different workstations. As mentioned
in the previous content, the vibration workstation 1, 2, 3, 4,
and 5 is measured, respectively, and the data is collected and
documented every 30 minutes.

Roll shafts of four workstations used to evaluate the
performance deterioration of the R2R device are of 4 dif-
ferent stages: excellent condition, prerecession, developing
recession, and near expiry. Roll shaft of each stage dem-
onstrates different vibration signals. -e vibration signals of
workstation1’s unwinding roller at different performance
stages is shown in Figure 6 (g� 9.8m/s2).
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Collect 20 sets of data from each stage of each of the 4
workstations’ roll shafts, 320 in total, as the experiment
data of the performance deterioration prognosis PTS-
FNN model for the R2R processing device. Based on the
building method mentioned in Section 3, make c � 2,
Eσ � 1.25, and start the fuzzy division of the input data.
When c � 5 and all variance of the fuzzy division categories
meet the condition of σ2iq ≤Eσ, the fuzzy division of the
input data ends. Table 2 shows the 5 category centers after

fuzzy division, which is expressed as Vi, i � 1, 2, . . ., 5, and
the according width of divides data regions Riq

(Riq � |viq − v’iq|, viq and v’iq indicates the category com-
ponent of Vi, viq is the clustering center value nearest
category center No. i).

After obtaining each of the category center and the width
of the divided regions, according to equation (9), make
c � 2, and the membership functions of input (x)1∼(x)4 are
shown in Table 3.

Workstation 1 Workstation 2 Workstation 3 Workstation 4 Workstation 5

Vibration 
measurement

Vibration 
measurement

Vibration 
measurement

Figure 5: R2R system working principle diagram.

Figure 4: R2R continuous processing equipment.

Table 1: Film processing quality and equipment health status.

Serial
number Film processing quality Equipment health

status
Device health status quantified

value

1 -e number of pleats is 0 and the maximum offset of the winding
≤ 1mm Excellent condition 1

2 -e number of pleats is 1 and the maximum offset of the winding
≤ 1.5mm Prerecession 2

3 -e number of pleats is 1–3 and the maximum offset of the
winding ≤ 2mm Developing recession 3

4 More than 3 pleats or maximum offset > 2mm Near expiry 4
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Figure 6: Vibration signal diagram of different performance conditions of the unwinding roller.

Table 2: Center coordinates of each category、the width of the division area.

Gi
Center position coordinates -e width of the division area

vix1
vix2

vix3 vix4
Rix1

Rix2
Rix3 Rix4

G1 2.0863 2.5407 0.0824 1.7858 1.0760 0.2052 0.1001 0.1263
G2 1.4892 2.2923 0.0823 1.3848 1.0041 0.7030 0.0010 0.1213
G3 2.8620 1.5765 0.0912 2.0093 0.7403 0.1750 0.5743 0.1261
G4 1.8905 1.3779 0.0634 1.1342 1.5080 0.0003 0.1050 0.1264
G5 2.7644 3.0037 0.0735 1.6871 1.5760 0.0510 0.3847 0.1175
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Gα1 � Gu11 x1(  × Gu21 x2( Gu31 x3( Gu41 x4(  � exp −
x1 − 2.0863




|1.0760|
× 2  × exp −

x2 − 2.5407




|0.2052|
× 2 

× exp −
x3 − 0.0824




|0.1001|
× 2  × exp −

x4 − 1.7858




|0.1263|
× 2  ,

Gα2 � Gu12 x1(  × Gu22 x2( Gu32 x3( Gu42 x4(  � exp −
x1 − 1.4892




|1.0041|
× 2  × exp −

x2 − 2.2923




|0.7030|
× 2 

× exp −
x3 − 0.0823




|0.0010|
× 2  ×exp −

x4 − 1.3848




|0.1213|
× 2 ,

Gα3 � Gu13 x1(  × Gu23 x2( Gu33 x3( Gu43 x4(  � exp −
x1 − 2.8620




|0.7403|
× 2  × exp −

x2 − 1.5765




|0.1750|
× 2 

× exp −
x3 − 0.0912




|0.5743|
× 2  × exp −

x4 − 2.0093




|0.1261|
× 2 ,

Gα4 � Gu14 x1(  × Gu24 x2( Gu34 x3( Gu44 x4(  � exp −
x1 − 1.8905




|1.5080|
× 2  × exp −

x2 − 1.3779




|0.0003|
× 2 

× exp −
x3 − 0.0634




|0.1050|
× 2  × exp −

x4 − 1.1342




|0.1246|
× 2 ,

Gα5 � Gu15 x1(  × Gu25 x2( Gu35 x3( Gu45 x4(  � exp −
x1 − 2.7644




|1.5760|
× 2  × exp −

x2 − 3.0037




|0.0510|
× 2 

× exp −
x3 − 0.0735




|0.3847|
× 2  ×exp −

x4 − 1.6871




|0.1175|
× 2 .

(14)

Set neural nodes of the TS-FNN’s antecedent network
and consequent network for each layer referring to paper
[6, 7]; see Table 4 for details.

Select 240 sets of the 320 sample sets to train the con-
sequent network, the remaining 80 sets of samples are used
to inspect the accuracy of the model. Set the initial learning
efficiency to 0.55 which decreases successively by 0.05, the
minimal expected learning error to 0.005, the amount of
training steps to 500. -en the linear parameter of the
consequent network pr

ji is calculated (shown in Table 5).

5.2. Model Validation. In order to verify the validity of the
PTS-FNN model proposed, select 240 sets of the 320 sample
sets to build the PTS-FNN model and the standard TS-FNN
[7] prognosis model, respectively, and repeat training both
of the models 20 times each to establish the average time of
model building and training. Training time of the former is
47.85 seconds while the latter is 96.43 seconds, which means
the former model reduces the training time by 50.37%
relatively.

-e remaining 80 sets of samples are used to inspect the
accuracy of the model. Table 6 shows a part of samples and
testing data; the comparison of the accuracy of both models
is shown in Table 7.

Comparing the two prediction models of standard TS-
FNN and PTS-FNNneural network, it can be concluded that in
the training time, the latter is shorter than the training time of
the former, which improves the convergence speed of the
neural network and reduces the training time; In terms of
accuracy, the prediction accuracy of the standard TS-FNN is
91.25%, and the prediction accuracy of the PTS-FNN neural
network is 96.25%.-e latter is more accurate than the former,
and there is no error in the judgment of state 1 and state 4.

6. Conclusion

Based on the analysis of the health prediction status of
flexible photoelectric film processing equipment, this paper
proposed a PTS-FNN for flexible material processing
equipment health prediction combined with PCM and TS-
FNN. -e model combined the advantages of PCMmethod,
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Table 5: Consequent network parameter training results.

p1
1i p2

2i

0.4773 0.0749 0.6731 0.0389 0.5961 0.3543 0.1951 0.3349 − 0.2759 0.6936
− 0.0612 0.4454 0.3194 0.0080 0.6034 − 0.3855 − 0.0272 − 0.1542 0.2631 − 0.1080
0.5493 − 0.0567 − 0.2279 0.2641 − 0.3716 − 0.0477 0.0297 0.5030 0.1217 0.3906
0.6018 0.4309 − 0.1189 0.6352 0.2714 0.0866 − 0.2002 0.3345 − 0.2826 0.4592
0.4378 − 0.1727 0.0229 0.4259 − 0.1466 0.1848 0.6407 0.2744 − 0.1019 0.3758
− 0.2025 0.3485 − 0.1682 0.0041 0.0330 0.4103 0.5250 0.6120 − 0.2094 0.0872
− 0.1528 0.0966 0.3042 0.4979 − 0.1313 0.5285 0.4929 0.0388 0.3712 − 0.0690
− 0.0172 0.1219 − 0.1331 0.4291 − 0.2181 0.5231 − 0.2441 0.4129 0.4890 0.5448
− 0.3210 0.6402 0.0462 − 0.0245 − 0.2632 0.4507 − 0.0911 − 0.2587 0.3511 0.4184
− 0.1133 − 0.1793 0.2354 0.2057 − 0.0893 0.3479 0.5745 0.0471 0.4944 0.3721
0.0780 0.4552 0.0436 − 0.1228 − 0.0188 − 0.3268 0.5609 − 0.0953 − 0.1683 − 0.3001

Table 6: Part of the sample and test data.

Sample x1 x2 x3 x4 PTS-FNN prediction result TS-NN prediction result Actual health status

1 0.0183 0.0181 0.0185 0.0181 1 1 1
2 0.0186 0.0188 0.0188 0.0187 1 1 1
3 0.0189 0.0187 0.1024 0.0943 3 2 3
4 0.0321 0.0452 0.0187 0.0182 2 2 2
5 0.0181 0.0190 0.0186 0.0182 1 1 1
6 0.0186 0.0184 0.0188 0.0189 1 1 1
7 0.0184 0.0816 0.0368 0.0988 3 2 3
8 0.0357 0.0132 0.0189 0.0179 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . .

78 0.2240 0.4577 0.0183 0.2570 4 3 4
79 0.0182 0.0187 0.0186 0.0189 1 1 1
80 0.0377 0.0391 0.0450 0.2490 2 2 2

Table 3:Membership function of input quantity (x)1∼(x)4. And according to equation (11) and Table 3, Gαi can be expressed as the equation
given in the table.

Input quantity x1,x2 Input quantity x3,x4
Serial number Membership function Serial number Membership function
1 Gu11(x1) � exp(− (|x1 − 2.0863|/|1.0760|) × 2) 11 Gu31(x3) � exp(− (|x3 − 0.0824|/|0.1001|) × 2)

2 Gu12(x1) � exp(− (|x1 − 1.4892|/|1.0041|) × 2) 12 Gu32(x3) � exp(− (|x3 − 0.0823|/|0.0010|) × 2)

3 Gu13(x1) � exp(− (|x1 − 2.8620|/|0.7403|) × 2) 13 Gu33(x3) � exp(− (|x3 − 0.0912|/|0.5743|) × 2)

4 Gu14(x1) � exp(− (|x1 − 1.8905|/|1.5080|) × 2) 14 Gu34(x3) � exp(− (|x3 − 0.0634|/|0.1050|) × 2)

5 Gu15(x1) � exp(− (|x1 − 2.7644|/|1.5760|) × 2) 15 Gu35(x3) � exp(− (|x3 − 0.0735|/|0.3847|) × 2)

6 Gu21(x2) � exp(− (|x2 − 2.5407|/|0.2052|) × 2) 16 Gu41(x4) � exp(− (|x4 − 1.7858|/|0.1263|) × 2)

7 Gu22(x2) � exp(− (|x2 − 2.2923|/|0.7030|) × 2) 17 Gu42(x4) � exp(− (|x4 − 1.3848|/|0.1213|) × 2)

8 Gu23(x2) � exp(− (|x2 − 1.5765|/|0.1750|) × 2) 18 Gu43(x4) � exp(− (|x4 − 2.0093|/|0.1261|) × 2)

9 Gu24(x2) � exp(− (|x2 − 1.3779|/|0.0003|) × 2) 19 Gu44(x4) � exp(− (|x4 − 1.1342|/|0.1246|) × 2)

10 Gu25(x2) � exp(− (|x2 − 3.0037|/|0.0510|) × 2) 20 Gu45(x4) � exp(− (|x4 − 1.6871|/|0.1175|) × 2)

Table 4: Number of neurons in each layer of TS-FNN.

First layer Second layer -ird layer Fourth layer
Antecedent network 4 20 5 5
Consequent network 5 11 5 1

Table 7: Comparison of model prediction accuracy.

TS-FNN prediction result PTS-FNN prediction result
State 1 State 2 State 3 State 4 State 1 State 2 State 3 State 4

Actual health status

State 1 42 1 0 0 43 0 0 0
State 2 0 14 2 0 0 15 1 0
State 3 0 3 11 0 0 2 12 0
State 4 0 0 1 6 0 0 0 7
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T-S fuzzy inference model, and fuzzy neural network
modeling method. We also studied the PCM classification
algorithm of input data of PTS-FNN model, the antecedent
network of TS-FNN prediction model, and the construction
method of postcomponent network. Finally, the imple-
mentation process of PCM classification algorithm and TS-
FNN prediction model was given.

-e R2R processing equipment health prediction ex-
periment system was built and the PTS-FNN model ex-
periment was carried out. -e experimental results showed
that the training time of PTS-FNN model was 50.37% less
than the standard TS-FNN prediction model. -e prediction
accuracy increased by 5.48%, and the PTS-FNN had no in
the judgment of state 1 and state 4.

-e proposed PTS-FNN health state prediction model
was used for health state prediction of continuous
manufacturing systems with time-varying and multistation
features such as R2R processing equipment, which improved
the real-time and accuracy of the prediction model. -e
main problem which plagued the large-scale manufacturing
of flexible photovoltaic film materials was solved.
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Research on software defect prediction has achieved great success at modeling predictors. To build more accurate predictors, a
number of hand-crafted features are proposed, such as static code features, process features, and social network features. Few
models, however, consider the semantic and structural features of programs. Understanding the context information of source
code files could explain a lot about the cause of defects in software. In this paper, we leverage representation learning for semantic
and structural features generation. Specifically, we first extract token vectors of code files based on the Abstract Syntax Trees
(ASTs) and then feed the token vectors into Convolutional Neural Network (CNN) to automatically learn semantic features.
Meanwhile, we also construct a complex network model based on the dependencies between code files, namely, software network
(SN). After that, to learn the structural features, we apply the network embedding method to the resulting SN. Finally, we build a
novel software defect prediction model based on the learned semantic and structural features (SDP-S2S). We evaluated our
method on 6 projects collected from public PROMISE repositories. )e results suggest that the contribution of structural features
extracted from software network is prominent, and when combined with semantic features, the results seem to be better. In
addition, compared with the traditional hand-crafted features, the F-measure values of SDP-S2S are generally increased, with a
maximum growth rate of 99.5%. We also explore the parameter sensitivity in the learning process of semantic and structural
features and provide guidance for the optimization of predictors.

1. Introduction

Software defect is an error in the code or incorrect behavior
in software execution, also defined as failure to meet
intended or specified requirements. Software reliability is
regarded as one of the crucial problems in software engi-
neering.)us, themodels used to ensure software quality are
required, and the software defect prediction model is one of
them. Defect prediction can estimate the most defect-prone
software components precisely and help developers allocate
limited resources to those bits of the systems that are most
likely to contain defects in testing and maintenance phases
[1].

As we all know, in software life cycle, the earlier you find
the defect, the less it costs to fix [2]. )erefore, how to detect
defects quickly and accurately is always an open challenge in

the field of software engineering and has attracted extensive
attention from industry and academia.

Typical defect prediction is composed of two parts:
features extraction from source files and classifiers con-
struction using various machine learning algorithms.
Existing methods are dominated by traditional hand-crafted
features, namely, source code metrics (e.g., CK, Halstead,
MOOD, and McCabe’s CC metrics). Unfortunately, these
metrics generally overlook some important information
implied in the code, such as semantic and structural in-
formation. Meanwhile, extensive machine learning algo-
rithms have been adopted for software defect prediction,
including Support Vector Machine (SVM), Näıve Bayes
(NB), Decision Tree (DT), etc.

Programs have well-defined syntax and rich semantics
hidden in the Abstract Syntax Trees (ASTs), which have been
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successfully used for programming patterns mining [3, 4],
code completion [5, 6], and code plagiarism detection [7].
For example, Figure 1 shows two Java files, both of which
contain an assignment statement, a while statement, a
function call, and an increment statement. If we use tra-
ditional features to represent these two files, they are
identical because of the same source code characteristics in
terms of lines of code, function calls, raw programming
tokens, etc. However, they are actually quite different
according to semantic information. In other words, semantic
information as new discriminative features should also be
useful for characterizing defects for improving defect
prediction.

At present, deep learning has emerged as a powerful
technique for automated feature generation, since deep
learning architecture can effectively capture highly com-
plicated nonlinear features. To make use of its powerful
feature generation ability, some researchers [8, 9] have al-
ready leveraged deep learning algorithms, such as Deep
Belief Network (DBN) and Convolutional Neural Network
(CNN) in learning semantic features from programs’ ASTs,
and verified that it outperforms traditional hand-crafted
features in defect prediction.

As demonstrated by researchers [9], CNN is superior to
DBN because of CNN’s powerful efficiency to capture local
patterns. Hence, CNN is capable of detecting local patterns
and then conducting defect prediction. Since slight differ-
ence in local code structure, such as the code order difference
illustrated in Figure 1, may trigger huge variance in the
global program, we apply CNN instead of DBN to the
construction of the defect prediction model.

However, the abovementioned studies still overlook the
globally structural information among program files which
can lead to more accurate defect prediction, although they
consider the fine-grained semantic information in the
program files. In order to better represent the global
structure of software, previous studies [10–12] have suc-
cessfully abstracted a software as a directed dependency
network using complex network theory, usually termed as
software network (SN), where software components such as
files, classes, or packages are nodes and the dependency
relationships between them are edges. Furthermore, using
network analysis technologies, they have demonstrated the
effectiveness of network structure information in improving
the performance of defect prediction.

Unfortunately, network features the above authors used
in defect prediction modeling, such as modularity, cen-
trality, and node degree, still belong to the traditional hand-
crafted features. As an emerging deep learning technology,
network representation learning becomes a novel approach
for automatically learning latent features of nodes in a
network [13] and receives much attention. )erefore, using
representation learning to extract the structural information
from code files and further apply the learned features to
defect prediction may effectively improve the performance
of existing prediction models.

Unlike the existing studies, in our work, instead of using
traditional hand-crafted metrics, we introduced deep
learning technologies to automatically extract the semantic

(local fine-grained) and structural (global coarse-grained)
features of code files for defect prediction modeling and seek
empirical evidence that they can achieve acceptable per-
formance compared with the benchmark models. Our
contributions to the current state of research are summa-
rized as follows:

(i) We further demonstrated that the automatically
learned semantic features can significantly improve
defect prediction compared to traditional features

(ii) In terms of improving the performance of defect
prediction, we also validated that the contribution
of structural features extracted from software net-
work by representation learning is comparable to
that of semantic features on the whole

(iii) Interestingly, we also found that the combination of
semantic and structural features has greater impact
on the improvement of prediction performance

)e rest of this paper is organized as follows. Section 2 is
a review of related work on this topic. Sections 3 and 4
describe the preliminary theories and the approach of our
empirical study, respectively. Section 5 is the detailed ex-
perimental setups and the primary results. Some threats to
validity that could affect our study are presented in Section 6.
Finally, Section 7 concludes the work and presents the
agenda for future work.

2. Related Studies

2.1. Software Defect Prediction. Software defect prediction
technology has been widely used in software quality as-
surance and can effectively reduce the cost of software
development. It uses the previous defect data to build a
predictor and then employs the established model to predict
whether a new code fragment is defective. At present,
conventional software defect prediction can be roughly
divided into two steps. )e first stage is feature extraction,
which makes the representation of defects more efficient by
manually designing some features or combining existing
features.)e second is the classification by machine learning
methods, specifically, by using the learning algorithm to
establish an accurate model, so as to provide better
prediction.

Most defect prediction techniques leverage features that
are composed of the hand-crafted code metrics to train
machine learning-based classifiers [14]. Commonly used
code metrics include static code metrics and process metrics.
)e former include McCabe metrics [15], CK metrics [16],
and MOOD metrics [17], which are widely examined and
used for defect prediction. Compared to the above static

Figure 1: A simple case.
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code metrics, process metrics can reveal much about how
programmers collaborate on tasks. Moser et al. [18] used the
number of revisions, authors, past fixes, and ages of files as
metrics to predict defects. Nagappan and Ball [19] proposed
code churn metrics and showed that these features were
effective for defect prediction. Hassan [20] used entropy of
change features to predict defects. Other process metrics,
including developer individual characteristics [21] and
collaboration between developers [22, 23], were also useful
for defect prediction.

Meanwhile, many machine learning algorithms have
been adopted for defect prediction, including Support
Vector Machine (SVM) [24], Bayesian Belief Network [25],
Naive Bayes (NB) [26], Decision Table (DT) [1], neural
network [27], and ensemble learning [28]. For instance,
Kumar and Singh [24] evaluated the capability of SVM with
combinations of different feature selection and extraction
techniques in predicting defective software modules and
tested on five NASA datasets. In [25], the authors predicted
the quality of a software by using the Bayesian Belief Net-
work. Arar and Ayan [26] proposed a Feature Dependent
Naive Bayes (FDNB) classificationmethod to software defect
prediction and evaluated their approach on PROMISE
datasets. He et al. [1] examined the performance of tree-
based machine learning algorithms on defect prediction
from the perspective of simplifying metric. Li et al. [28]
proposed a novel Two-Stage Ensemble Learning (TSEL)
approach to defect prediction using heterogeneous data.
)ey experimented on 30 public projects and showed that
the proposed TSEL approach outperforms a range of
competing methods.

In addition, to overcome the lack of training data, a
cross-project defect prediction (CPDP) model was proposed
by some research studies. To improve the performance of
CPDP, Turhan et al. [29] proposed to use a nearest-neighbor
filter for target project to select training data. Nam et al. [30]
proposed TCA+, which adopted a state-of-the-art technique
called Transfer Component Analysis (TCA) and optimized
normalization process. )ey evaluated TCA+ on eight open-
source projects, and the results showed that TCA+ signifi-
cantly improved CPDP. Nam et al. [21] also presented
methods for defect prediction that match up different
metrics in different projects to address the heterogeneous
data problem in CPDP.

2.2. Deep Learning in Software Engineering.
Representation learning has been widely applied to feature
learning, which can capture the highly complex nonlinear
information. Recently, deep learning algorithms have been
adopted to improve research tasks in software engineering.
Yang et al. [31] proposed an approach to generate features
from existing features by using Deep Belief Network (DBN)
and then used these new features to predict whether a
commit is buggy or not. )is work was motivated by the
weaknesses of Logistic Regression (LR) that LR cannot
combine features to generate new features. )ey used DBN
to generate features from 14 traditional features and several
developer experience-related features. Wang et al. [8] also

leveraged DBN to automatically learn semantic features
from token vectors extracted from programs’ Abstract
Syntax Trees (ASTs) and further validated that the learned
semantic features significantly improve the performance of
defect prediction. Similarly, Li et al. [9] used convolution
neural network for feature generation based on the pro-
gram’s AST and proposed a framework of defect prediction.
To explore program’s semantics, Phan et al. [32] attempted
to learn new defect features from program control flow
graphs by convolution neural network.

However, these studies still ignore the structural features
of programs, such as the dependencies between program
files. Prior studies [12, 33–35] have demonstrated the ef-
fectiveness of network structure information in improving
the performance of the defect prediction model. Nowadays,
the node of a network can be represented as a low-di-
mensional vector by means of network embedding. A large
number of network embedding algorithms have been suc-
cessfully applied in network representational learning, in-
cluding DeepWalk [36], Node2vec [37], and LINE [38].
)rough the representational learning of software networks
formed by various dependencies between code files, in this
paper, we extract structural features of program files, so as to
supplement the existing semantic features for defect
prediction.

2.3. Software Network. In recent years, software networks
(SN) have been widely utilized to characterize the problems
in software engineering practices [39]. For example, some
complexity metrics based on software networks are pro-
posed to evaluate the software quality. Gu et al. [40] pro-
posed a metric of cohesion based on SN for measuring
connectivity of class members. From the perspective of
social network analysis (SNA), Zhang et al. [41] put forward
a suite of metrics for static structural complexity, which
overcomes the limitations of traditional OO software met-
rics. Ma et al. [42] proposed a hierarchical set of metrics in
terms of coupling and cohesion and analyzed a sample of 12
open-source OO software systems to empirically validate the
set. Pan and Chai [43] leverage a meaningful metric based on
SN to measure software stability.

In addition to complexity metrics, software network-
based measures for stability and evolvability have also been
presented by some researchers. Zhang et al. [41] analyzed the
evolution of software networks from several kinds of object-
oriented software systems and discovered some evolution
rules such as distance among nodes increase and scale-free
property. Gu and Chen [44] validated software evolution
laws using network measures and discussed the feasibility of
modeling software evolution. Peng et al. [11] constructed the
software network model from a multigranularity perspective
and further analyzed the evolutions of three open-source
software systems in terms of network scale, quality, and
structure control indicators, using complex network theory.

Besides, for software ranking task, Srinivasan et al. [45]
proposed a software ranking model based on software core
components. Pan et al. constructed [46] a novel model
ElementRank based on SN, which leverages multilayer
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complex network to rank software. In addition, SN is also
applied to analyze the structure of software structure [47].
Furthermore, a generalized k-core decomposition model
[48] is leveraged to identify key class.

3. Preliminaries

3.1. Overview of Software Defect Prediction. Software defect
prediction plays an important role in reducing the cost of
software development and ensuring the quality of software.
It can find the possible defective code blocks according to the
features of historical data, thus allowing workers to focus
their limited resources on the defect-prone code. Figure 2
presents a basic framework of software defect prediction and
has been widely used in existing studies
[1, 8, 12, 18, 19, 24, 25].

Most defect prediction models are based on machine
learning; therefore, it is a first step to collect defect datasets.
)e defect datasets consist of various code features and
labels. Commonly used features are various software code
metrics mentioned above. Label indicates whether the code
file is defective or not for binary classification. In the setting,
predictor is trained using the labeled instances of project and
then used to predict unlabeled (“?”) instances as defective or
clean. In the process of defect prediction, the instances used
to learn classifier is called training set and the instances used
to evaluate classifier are called test set.

3.2. Convolutional Neural Network. Convolutional neural
network (CNN) is one of the most popular algorithms for
deep learning, a specialized kind of neural networks for
processing data that have a known gridlike topology [49].
Compared with traditional artificial neural network, CNN
has many advantages and has been successfully demon-
strated in many fields, including NLP [50], image recog-
nition [51], and speech recognition [52]. Here, we will use
CNN for learning semantic features from software source
code through multilayer nonlinear transformation, so as to
replace the manual features of code complexity. Moreover,
the deep structure enables CNN to have strong represen-
tation and learning ability. CNN has two significant char-
acteristics: local connectivity and shared weight, which are
helpful to extract features for our software defect prediction
modeling.

Compared with the full connection in feedforward
neural network, the neurons in the convolutional layer are
only connected to some neurons of adjacent layer and
generate spatially local connection. As shown in Figure 3,
each unit hi in the hidden layer i is only connected with 3
adjacent neurons in the layer i− 1, rather than with all the
neurons. Each subset acts as a local filter over the input
vectors, which can produce strong responses to a spatially
local input pattern. Each local filter applies a nonlinear
transformation: multiplying the input with a linear filter,
adding a bias term, and then applying a nonlinear function.
In Figure 3, if we denote the k-th hidden unit in layer i as hk

i ,
then the local filter in layer i − 1 acts as follows:

h
k
i � f 

3

j�1
W

j
i−1 ∗ h

j
i−1 + bi−1

⎛⎝ ⎞⎠, (1)

where Wi−1 and bi−1 denote the weights and bias of the local
filter, respectively.

In addition, sparse connectivity has regularization effect,
which improves the stability and generalization ability of
network structure and can effectively avoid overfitting. At
the same time, it reduces the number of weight parameters,
is beneficial to accelerate the learning of neural network, and
reduces the memory cost in calculation.

Parameter sharing refers to using the same parameters (W
and b) for each local filter. In previous neural networks, when
calculating the output of a layer, the parameters of each unit
are different. However, in CNN, the same filter should share
the same weight W and bias b. )e reason is that a repeating
unit can identify feature regardless of its position in the re-
ceptive field. On the other hand, weight sharing enables us to
conduct feature extraction more effectively.

3.3. Construction of Software Network. In software engi-
neering, researchers in the field of complex systems used
complex networks theory to represent software systems by
taking software components (such as package, file, class, and
method) as nodes and their dependency relationships as
edges, named as software network.)e role of SN in software
defect prediction, evolution analysis, and complexity
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Figure 2: General framework of software defect prediction.
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Figure 3: A convolutional layer architecture.
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measurement has been confirmed in the literature
[11, 12, 33–35].

Files are key software components in the software sys-
tem, and they are gathered up by interactions. SN at file level
can be defined as in Figure 4: Every file is viewed as a single
node in SN, and the dependency and association relation-
ships between files are represented by edges (directed or
undirected). Let SN � (V, E) represents the software net-
work, where each file can be treated as node ni(ni ∈ V). )e
relationships between every pair of files, if exist, form a
directed edge ei(ei ∈ E).

3.4. Network Embedding. Network embedding (EM) is to
map information networks into low-dimensional spaces, in
which every vertex is represented as a low-dimensional
vector. Such a low-dimensional embedding is very useful in a
variety of applications such as node classification [3], link
prediction [10], and personalized recommendation [23]. So
far, various network embedding methods have been pro-
posed successively in the field of machine learning. In this
paper, we adopt Node2vec algorithm to embedding learning
of the token vector.

Node2vec performs a random walk on neighbor nodes
and then sends the generated random walk sequences to the
Skip-gram model for training. In Node2vec, a 2nd-order
random walk with two parameters p and q are used to
flexibly sample neighborhood nodes between BFS (breadth-
first search) and DFS (depth-first search).

Formally, given a source node u, we simulate a random
walk of fixed length l. Let ci denote the ith node in the walk,
starting with c0 � u. Node ci is generated by the following
distribution:

P ci � x
 ci−1 � v  �

πvx

Z
, if(v, x)εE,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where πvx is the unnormalized transition probability be-
tween node v and x, and Z is the normalized constant.

As shown in Figure 5, the unnormalized transition
probability πvx sets to πvx � αpq(t, x) · wvx, where dtx rep-
resents the shortest distance between node t and x:

αpq(t, x) �

1
p

, if dtx � 0,

1, if dtx � 1,

1
q
, if dtx � 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

4. Approach

In this section, we elaborate our proposed method of
software defect prediction via semantic and structural fea-
tures from source code files (SDP-S2S). )e overall
framework of SDP-S2S is presented in Figure 6. It mainly

consists of three parts: the first part is the generation of
semantic features from source codes and will be detailed in
Section 4.1. )e second part will be explained in Section 4.2,
which focuses on the extraction of structural features from
software network by network embedding learning. )e last
part refers to combining the semantic and structural features
obtained in the first two steps into new features and used for
software defect prediction.

4.1. Generation of Semantic Features. In order to achieve
semantic features for each source code file, we should first
map the source code files into ASTs and parse them as real-
valued token vectors. After that, the token vectors are
encoded and preprocessed, and then, the resulting token
vectors are fed to CNN for feature learning to generate the
semantic features. )e generation process is described in
detail in the following three steps.

4.1.1. Parsing AST. In order to represent the semantic
features of source code files, we need to find the appropriate
granularity as the representation of the source code. As
previous study [8] has shown, AST can represent the se-
mantic and structural information of source code with the
most appropriate granularity. We first parse the source code
files into ASTs by calling an open-source python package
javalang. As treated in [9], we only select three types of nodes
on ASTs as tokens: (1) nodes of method invocations and class
instance creations, which are recorded as their corre-
sponding names; (2) declaration nodes, i.e., method/type/
enum declarations, whose values are extracted as tokens; and
(3) control flow nodes, such as while, if, and throw, are
recorded as their node types. )ree types of selected nodes
are listed in Table 1.

We call javalang’s API to parse the source code into an
AST. Given a path of the software source code, the token
sequences of all files in the software will be output. As
described in Algorithm 1, first traverse the source code files
under path P, and each file is parsed into an AST via the
PARSE-AST function. For each AST, we employ the pre-
order traversal strategy to retrieve the three types of nodes
selected in Table 1 and receive the final token sequence.

4.1.2. Token Sequence Preprocessing. Since CNN only ac-
cepts inputs as numerical vectors, the token sequences
generated from ASTs cannot be directly fed to CNN.
)erefore, to get the numerical token vectors, it is necessary
for the extracted token sequences to be converted into in-
teger vectors. To do this, we give each token a unique integer
ID, and the ID of the recurring token is identical. Note that,
because the token sequences of all files are of unequal length,
the converted integer token vectors may differ in their di-
mensions. Also, CNN requires input vectors to have the
same length; hence, we append 0 to each integer vectors,
making their lengths consistent with the longest vector.
Additionally, during the encoding process, we filter out
infrequent tokens which might be designed for a specific file
and not generalized for other files. Specifically, we only
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encode tokens occurring three or more times, while denote
the others as 0.

In addition, for software defect prediction, the class
imbalance of defect dataset often exists. Specifically, the
number of clean instances vastly outnumbers that of de-
fective instances. Assuming that the number of clean in-
stances is labeled as sn and the number of defective samples
is sy, the imbalance rate (IR) [53] is used to measure the
degree of imbalance:

IR � ⌊
sn

sy

⌋. (4)

)e larger the IR, the greater the imbalance, and vice
versa. Imbalance data will degrade the performance of our
model. To address this issue, we duplicate the defective files
several times until the IR index is close to 1.

4.1.3. Building CNN. In this paper, we adopt classic ar-
chitecture of CNN for feature learning. After encoding and
preprocessing token vectors, exclude the input and output
layers; we train the CNN model with four layers, including
an embedding layer (turn integer token vectors into real-
valued vectors of fixed size), a convolutional layer, a max-
pooling layer, and a fully connected layer. )e overall ar-
chitecture is illustrated in Figure 7.

ReLu activation functions are used for training, and the
implementation is based on Keras (http://keras.io). )e
output layers are activated by sigmoid function and used

only for the parameters of the neural network weight matrix,
to optimize the learning features. In addition, in this paper,
Adam optimizer based on the improved stochastic gradient
descent (SGD) algorithm is employed. Adam optimizer
dynamically adjusts the learning rate for each parameter by
calculating the first- and second-order moment estimations
of the gradient. Compared with other optimization algo-
rithms, Adam can ensure that the learning rate is distributed
in an explicit range after each iteration, so that the parameter
changes smoothly.

Given a project P, suppose it contains n source code files,
all of which have been converted to integer token vectors
x ∈ Rl and of equal length l by the treatments described
previously. )rough the embedding layer, each token will be
mapped to a d-dimension real-value vector. In other words,
each file becomes a real-value matrix Xl×d. As the input of
convolutional layer, a filter L ∈ Rh×d is applied to a region
of h tokens to produce a new feature. For example, a feature
fi is generated from a region of tokens xi:i+h−1 by

fi � tanh L · xi:i+h−1 + b( . (5)

Here, b is a bias term and tanh is a nonlinear hyperbolic
tangent function. Each possible region of tokens in the
description x1:h, x2:h+1, . . . , xi:i+h−1, . . . , xl−h+1:l  applies fil-
ter L to produce a feature map:

F � f1, f2, . . . , fl−h+1 , (6)

where fi ∈ Rl−h+1. )en, a 1-max-pooling operation is
carried out over the mapped features and the maximum
value F � max f  is taken as the feature corresponding to
this particular filterL. Usually, multiple filters with different
region sizes are used to get multiple features. Finally, a fully
connected layer further generated the semantic features.

4.2. Generation of Structural Features. Before applying
network embedding to represent structural features of
source codes, it is necessary to build a software network
model according to source files. As we did in the previous
studies [11, 12], we use DependencyFinder API to parse the
compiled source files (.zip or .jar extension) and extract their
relationships using a tool developed by ourselves. With the
directed software network, we further perform embedding

A B

C D

A.java

public class A {
…;

}

B.java

public class B extends A { 
public C Attr; 

…;
}

C.java

public class C{
public void Method(A Arg){

…;
}

D.java

public class D{
public B Atrr1;
public C Attr2;
Atrr2.Method(Atrr1);

}

}

Figure 4: A single source code segment and its corresponding software network model at file level.
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Figure 5: Random walk process in Node2vec.
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learning using the Node2vec method. For more details on
Node2vec, please refer to the literature [37].

4.3. Feature Concatenation. So far, we have got the semantic
and structural features of source code files, respectively.
Here, we label semantic feature as Fsemantic and structural
feature as Fstructural. In order to verify the effectiveness of
code semantic and structural features on software defect
prediction, in addition to analyzing the impact of each type
of generation feature on defect prediction, we also explore
the impact of their combination.We directly concatenate the
semantic feature vectors with structural feature vectors via
Merge operator in Keras, and the resulting feature vectors
presented as Fhybrid.

5. Experiment Setup

5.1. Dataset. In our study, 6 Apache open-source projects
based on Java are selected (https://github.com/apache) and a

total of 12 defect datasets available at the PROMISE repository
(http://promise.site.uottawa.ca/SERepository/datasets-page.
html) are picked for validation. Detailed information on the
datasets is listed in Table 2, where #Avg. (files) and #Avg.
(defect rate) are the average number of files and the average
percentage of defective files, respectively. An instance in the
defect dataset represents a class file and consists of two parts:
independent variables including the learned features (e.g., the
CNN-learned semantic features) and a dependent variable
labeled as defective or not in this class file.

5.2.EvaluationMeasures. )e essence of defect prediction in
this study is a binary classification problem. Note that a
binary classifier can make two possible errors: false positives
and false negatives. In addition, a correctly classified de-
fective class file is a true positive and a correctly classified
clean class file is a true negative. We evaluate the classifi-
cation results in terms of Precision, Recall, and F-measure,
which are described as follows:
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Figure 6: )e overall framework of our approach.

Table 1: )e selected AST nodes.

ID Node types AST node record

Node1
Method invocations and class

instance creations MethodInvocation, SuperMethodInvocation, MemberReference, SuperMemberReference

Node2 Declaration nodes
PackageDeclaration, InterfaceDeclaration, ClassDeclaration, MethodDeclaration,

ConstructorDeclaration, VariableDeclarator, CatchClauseParameter, FormalParameter ,
TryResource, ReferenceType, BasicType

Node3 Control flow nodes

IfStatement, WhileStatement, DoStatementForStatement, AssertStatement,
BreakStatementContinueStatement, ReturnStatement, )rowStatement,
SynchronizedStatement, TryStatement, SwitchStatementBlockStatement,

StatementExpression, CatchClauseSwitchStatementCase, ForControl, EnhancedForControl
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Precision �
true positive

true positive + false positive
,

Recall �
true positive

true positive + false negative
,

F − measure �
2∗Precision∗Recall
Precision + Recall

.

(7)

False positive refers to the predicted defective files that
actually have no defects, and false negative refers to the
actually defect-prone files predicted as clean. Precision and
Recall are mutually exclusive in practice. )erefore, F-
measure, as a weighted average of Precision and Recall, is

more likely to be adopted. )e value of F-measure ranges
between 0 and 1, with values closer to 1 indicating better
performance for classification results.

5.3. Experiment Design. First, to make a comparison be-
tween the traditional hand-crafted features and automati-
cally learn features in our context, four scenarios will be
considered in our experiments.

(i) SDP-base represents software defect prediction
based on the traditional hand-crafted features

(ii) SDP-S1 represents software defect prediction based
on the semantic features Fsemantic

Input: path p of the software source code
Output: token sequences for all file

(1) function EXTRACT (Path p)
(2) F� the set of source code files under path p;
(3) for each f ∈ F do
(4) create sequence sfile−token;
(5) sfile−token⟵PARSE − AST(f);
(6) return sfile−token;
(7) end for
(8) end function
(9) function PARSE-AST (File f )
(10) create sequence stoken;
(11) root⟵ javalang.parseFile2AST(f );
(12) for all ASTNode k ∈ root do
(13) if k ∈ Node1 then
(14) record its name and append to stoken;
(15) else if k ∈ Node2 then
(16) record its declared value and append to stoken;
(17) else if k ∈ Node3 then
(18) record its type and append to stoken;
(19) end if
(20) end for
(21) return stoken
(22) end function

ALGORITHM 1: Parse-AST and return the token sequence of each file.

Preprocessing
token vectors 

Real-value
vector matrix 

Semantic
features 

Embedding layer Convolutional layer Pooling layer Full connected
layer 

Figure 7: )e process of CNN in our context.
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(iii) SDP-S2 represents software defect prediction based
on the structural features Fstructural

(iv) SDP-S2S represents software defect prediction
based on the semantic and structural features Fhybrid

Second, we will further explore prediction performance
under different parameter settings for CNN and network
embedding learning. For each project, note that we use the
data from the older version to train the CNN model. )en,
the trained CNN is used to generate semantic and structural
features for both the older and newer versions. After that, we
use the older version to build a defect prediction model and
apply it to the newer version.

5.4. Experimental Results

5.4.1. Impact of Different Features. For each type of feature,
Table 3 shows some interesting results: except for few cases
(Poi), the F-measure values of SDP-S1, SDP-S2, and SDP-
S2S are greater than those of the benchmark SPD-base,
implying a significant improvement in accuracy. For ex-
ample, for Camel, the growth rate of performance is more
than 21.7%, when using the learned semantic and/or
structural features. Especially when semantic and structural
features are used comprehensively, the advantage is more
obvious, indicated by the 99.5% performance growth. Ad-
ditionally, note that for Xerces, although the growth rates of
performance are slightly lower than that of Camel, it is still
considerable, around 30%. For Lucene, Synapse, and Xalan,
the corresponding maximum growth rates are 27.9%
(0.7564), 22.6% (0.5204), and 10% (0.2406), respectively.)e
majority of positive growth rates suggest the feasibility of our
proposed method of automatically learning features from
source code files.

In Table 3, the results also show that SDP-S2S performs
better than SDP-S1 and SDP-S2, indicated by more F-
measure values in bold. Specifically, compared to the other
two methods, SDP-S2S achieves the best performance on
projects Camel, Lucene, and Xerces. In order to better
distinguish their influences on defect prediction, we make
further comparisons in terms of the Wilcoxon signed-rank
test (p-value) and Cliff’s effect size from a statistical per-
spective. In Table 4, theWilcoxon signed-rank test highlights
that there is no significant performance difference among
the three predictors, indicated by the Sig. p> 0.01. However,
when it comes to the Cliff’s effect size delta, the negative
values show that their effect size is different. Specifically,
SDP-S2 outperforms SDP-S1, whereas SDP-S2S outper-
forms SDP-S2.

With the evidences provided by the above activities, the
approach of feature learning proposed in this paper is
validated to be suitable for defect prediction.

5.4.2. Parameter Sensitivity Analysis

(1) Parameter Analysis of CNN. When using CNN to rep-
resent semantic features, the setting of some parameters of
the network layer will affect the representation of semantic
features and thus affect prediction performance. In this
section, according to the key parameters of CNN, including
the length of filter, the number of filters, and embedding
dimensions, we tune the three parameters by conducting
experiments with different values of the parameters. Note
that, for other parameters, we directly present their values
obtained from previous studies [9]: batch size is set as 32 and
the training epoch is 15. By fixing other parameters, we
analyze the influence of the three parameters on the results,
respectively.

Figures 8–10, respectively, present the performance
obtained under different filter lengths, different number of
filters, and different embedding dimensions. It is not hard to

Table 2: Details of the datasets.

Project Releases Avg. (#files) Avg. (defect rate) (%) IR (imbalance rate)
Camel 1.4, 1.6 892 18.6 5.01
Lucene 2.0, 2.2 210 55.7 1.14
Poi 2.5, 3.0 409 64.7 0.55
Synapse 1.1, 1.2 239 30.5 2.70
Xalan 2.5, 2.6 815 48.5 1.07
Xerces 1.2, 1.3 441 15.5 5.20

Table 3: F-measure values of defect prediction built with four types
of features.

Projects SDP-
base SDP-S1 (△%) SDP-S2 (△%) SDP-S2S

(△%)

Camel 0.2531 0.5044
(99.3%)

0.3081
(21.7%)

0.5049
(99.5%)

Lucene 0.5912 0.6397 (8.2%) 0.6873
(16.3%)

0.7564
(27.9%)

Poi 0.7525 0.7250
(−3.7%)

0.7892
(4.9%)

0.7340
(−2.5%)

Synapse 0.4244 0.4444 (4.7%) 0.5204
(22.6%) 0.4390 (3.4%)

Xalan 0.6165 0.6780
(10.0%) 0.6229 (1.0%) 0.6623 (7.4%)

Xerces 0.1856 0.2406
(29.6%)

0.2432
(31.0%)

0.2650
(42.8%)

△% represents the growth rate of performance relative to SDP-base.

Table 4: Comparison of the distributions of three methods in terms
of the Wilcoxon signed-rank test and Cliff’s effect size.

Sig. p< 0.01 Cliff’s delta
SDP-S1 vs. SDP-S2 0.753 −0.056
SDP-S1 vs. SDP-S2S 0.345 −0.167
SDP-S2 vs. SDP-S2S 0.600 −0.056
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find that all six curves reach the highest performance when
the filter length is set to 10. )e optimal number of filters is
20, where the performance generally reaches the peak. In-
terestingly, for project Xerces, when the number of filters is
set as 100, the performance becomes particularly bad. With
regard to the embedding dimensions, six curves on the
whole are very stable, which means that the dimension of
representation vector has a very limited impact on the
prediction performance.

(2) Parameter Analysis of Software Network Embedding.
For the generation of structural features, in Node2vec, a
pair of parameters p and q controlling random walk will
affect the learning. )at is, different combinations of p and
q determine the different ways of random walk in the
process of network embedding and then generate different
structural features. )erefore, we further analyze the two
parameters.

Take Poi and Synapse, for example, we construct 25
groups of (p, q) and let p, q ∈ [0.25, 0.5, 1, 2, 4]. With
different combinations (p, q), the results are as shown in
Figure 11 and the effect of different combinations is
different. For example, when the combination (p, q) is set
as (4, 2) in Poi, the best performance 0.789 is achieved,
and yet the suitable combinations (p, q) is (0.5, 0.25) in
Synapse, and the F-measure value is 0.5204. )erefore, for
each project in our context, we give out the optimal
combination (p, q), shown in Table 5, so as to learn the
defect structural information and generate corresponding
structural features better.

6. Threats to Validity

To evaluate the feasibility of our method in defect pre-
diction, we constructed four kinds of predictors
according to different features and compared their per-
formance. In this paper, although we do not explicitly
compare with the state-of-the-art defect prediction
techniques, SDP-S1 is actually equivalent to the method
proposed in the literature [13]. Since the original
implementation of CNN is not released, we have
reproduced a new version of CNN via Keras. )roughout,
we strictly followed the procedures and parameters set-
tings described in the reference, such as the selection of
AST nodes and the learning rate when training neural
networks. )erefore, we are confident that our imple-
mentation is very close to the original model.

In this paper, our experiments were conducted with
defect datasets of six open-source projects from the
PROMISE repository, which might not be representative of
all software projects. More projects that are not included in
this paper or written in other programming languages are
still to be considered. Besides, we only evaluated our ap-
proach in terms of different features and did not compare
with other state-of-the-art prediction methods. To make our
approach more generalizable, in the future, we will conduct
experiments on a variety of projects and compare with more
benchmark methods.
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Figure 8: Different filter lengths.
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7. Conclusion

)is study aims to build better predictors by learning as
much defect feature information as possible from source
code files, to improve the performance of software defect
predictions. In summary, this study has been conducted on 6
open-source projects and consists of (1) an empirical vali-
dation on the feasibility of the structural features that
learned from software network at the file level, (2) an in-
depth analysis of our method SDP-S2S combined with se-
mantic features and structural features, and (3) a sensitivity
analysis with regard to the parameters in CNN and network
embedding.

Compared with the traditional hand-crafted features, the
F-measure values are generally increased, the maximum is
up to 99.5%, and the results indicate that the inclusion of
structural features does improve the performance of SDP.
Statistically, the advantages of SDP-S2S are particularly
obvious from the perspective of Cliff’s effect size. More
specifically, the combination of semantic features and
structural features is the preferred selection for SDP. In
addition, our results also show that the filter length is
preferably 10, the optimal number of filters is 20, and the
dimension of the representation vector has a very limited
impact on the prediction performance. Finally, we also
analyzed the parameters p and q involved in the embedding
learning process of software network.

Our future workmainly includes two aspects. On the one
hand, we plan to validate the generalizability of our study
with more projects written in different languages. On the
other hand, we will focus on more effective strategies such as
feature selection techniques. Last but not least, we also plan

to discuss the possibility of considering not only CNN and
Node2vec model but also RNN or LSTM for learning se-
mantic features and graph neural networks for network
embedding, respectively.
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Information retrieval-based Web service discovery approach suffers from the semantic sparsity problem caused by lacking of
statistical information when the Web services are described in short texts. To handle this problem, external information is often
utilized to improve the discovery performance. Inspired by this, we propose a novel Web service discovery approach based on a
neural topic model and leveraging Web service labels. More specifically, words in Web services are mapped into continuous
embeddings, and labels are integrated by a neural topic model simultaneously for embodying external semantics of the Web
service description. Based on the topic model, the services are interpreted into hierarchical models for building a service querying
and ranking model. Extensive experiments on several datasets demonstrated that the proposed approach achieves improved
performance in terms of F-measure..e results also suggest that leveraging external information is useful for semantic sparseWeb
service discovery.

1. Introduction

In the era of Big Data, a growing number of business en-
terprises worldwide are driven to deploy their business
applications into Web services in both intranet and internet
[1, 2]. A number of registry centers, such as, Pro-
grammableweb (http://www.programmableweb.com) and
Mashape (https://www.mashape.com/) and business enter-
prises, have built their own service discovery mechanism to
provide a convenient way to access these Web services. .e
search engine-based approaches are widely adopted among
these registries. However, the discovery method-based
searching engine technology which mainly focuses on
keyword-based matching may result in the poor recall
problem due to lacking of keywords in Web service de-
scriptions, using of synonyms, or variations of keywords [3].

Two kinds of methods are often adopted to alleviate the
poor recall problem in discovering nonsemantic Web

services [4, 5]. .e first one is to perform a broad searching
and get a potentially large number of Web services which
may not really be interest to users. .e second one is to
cluster services into similar functional clusters using the
descriptions of Web services to enhance the capability of the
search engine. Since this kind of method can effectively
reduce the search space, it has attracted higher attentions
from researchers [3–7].

.ere are some new issues emerged when using the
aforementioned Web service discovery approaches in recent
years. One is the semantic sparsity problem resulting from
short text descriptions of Web services that there is no
sufficient information to express the full semantics of the
Web service. .e current Web service marketplaces often
briefly describe the main functions, the providers, and the
types of a Web service using short sentences which do not
contain enough statistic information so as to hinder effective
similarity computing and pose challenges to traditional
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service retrieval approaches [8, 9]. Faced with this issue,
transfer of external knowledge to enrich the semantic rep-
resentation of short text documents has been proposed such
as Tian et al. [5] transfer external knowledge by using
Gaussian LDA and the word embedding model from aux-
iliary information to enhance the semantics of the Web
services.

Inspirited by these excellent findings, we propose to
introduce the word embeddings which have been shown to
capture lexico-semantic regularities in the language. In the
embedding space, words with similar syntactic and semantic
properties are found to be close to each other [10]. .us, this
feature is particularly suitable to solve the problems of using
synonyms/variations of keywords in the query. Further-
more, the context information such as the co-occurrence
information in the word embeddings can be effectively used
to enrich the semantics of a document. Inspired by this, we
propose to introduce word embedding to handle the se-
mantic sparsity problem in the discovery of Web service.

To enhance the clustering performance, extensive re-
search has been carried out on category information [11].
Inspired by this, some topic models can directly integrate
these information into the generative process of a topic
model to improve topic quality and cluster accuracy. Some
excellent work had been done to leverage external meta-
information to enhance the topic model [12].

According to the above description, we propose a label-
aided neural topic model (LNTM) derived from Gaussian
LDA [13] which leverages word embeddings and external
label information to improve Web service discovery.

Our main contributions are as follows:

(1) We presented an approach that leverages pretrained
word embeddings to enrich the semantics of Web
service descriptions

(2) We proposed a label-augmented neural topic model
to retrieve the Web services based on word em-
beddings and categories of the Web services

(3) We experimentally illustrate that the proposed ap-
proach outperforms several other approaches with
higher evaluation metrics

2. Related Work

Web service discovery provides a mechanism to discover
relevant services from different service registries. Base on the
description method of services, the Web service discovery
can be generally divided into two categories: semantic-based
and nonsemantic-based. For instance, the Ontology Web
Language for Services- (OWL-S-) based service is a typically
semantic description language. In contrast, WSDL, Web
Application Description Language (WADL), and natural
language are typical nonsemantic description languages.
Semantic-based approaches mainly focus on high-level
match-making [14, 15], whereas nonsemantic-based dis-
covery methods utilize information retrieval techniques
[3–7]. In the proposed approach, we concentrate on non-
semantic Web services.

.e nonsemantic-based discovery approaches are fairly
different due to different description languages. For ex-
ample, Elgazzar et al. [3] preprocessed the WSDL document
to extract content, types, messages, ports, and service name
as main features for the discovery method and utilized in-
formation retrieve approach to enhance Web service dis-
covery. .e WSDL documents need be preprocessed to
construct the features for representing the Web service. If
the Web services use different description languages, the
WSDL-based methods must be adjusted for the discovery
process. In this paper, we focus on the discovery of Web
services which have shorter description andmay contain less
features compared with the services with sufficient infor-
mation files. .erefore, the above methods may fail to work
since they lack ways to handle the semantic sparsity
problem.

Several studies have found that it is helpful to leverage
external information to handle the semantic sparse problems
of information retrieval approach [4, 8, 16]. Chen et al.
proposed an augment LDAmodel to utilize both WSDL and
tags for Web service discovery so as to provide effective Web
service clustering [16]. .ere are also different methods to
handle with the semantic sparsity problem. For example, Hu
et al. proposed to enhance the short text cluster by leveraging
world knowledge [17]. Jin et al. utilized a transfer learning
model to cluster short texts to embody auxiliary long texts
[8]. .ese approaches can partially handle the semantic
sparsity problem; however, they also have some limitations.
For instance, Hu et al.’s work in [17] makes the implicit
assumption that the auxiliary data are semantically related to
the short texts, which may not be true in the real world.
Similarly, work [8] makes the assumption that the topical
structure of the two domains which is completely identical
would not be wholly correct.

Some studies utilized the complex network to handle
Web service clustering problems to introduce the capability
of network-based software. Many approaches have been
performed from a complex network perspective by repre-
senting software systems (or service-oriented software sys-
tems) as software networks (or software service networks).
Ma et al. [18] and Pan et al. [19] analyzed the topological
structure of software networks, revealing many shared
properties such as small-world and scale-free. Şora and
Chirila [20] and Pan et al. [21, 22] proposed approaches to
identify key classes in Java systems. Ma et al. [18] and Pan
et al. [23–25] proposed software metrics by using parameters
in complex networks. Zhou and Wang [26] and Pan et al.
[27, 28] proposed an approach to cluster services by using
community detection approaches in complex networks.
.ere works are helpful to utilize the capability of the
complex network; however, it still has the problem of se-
mantic sparsity.

Faced with above problems, we propose to introduce
another solution that introduces external information by
word embeddings which have been shown to be beneficial
for the semantic sparsity [29].

Latent Dirichlet Allocation (LDA) and extensions have
been proved as efficient methods for boosting the discovery
performance of Web services [16, 30]. However, due to the
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base assumption that the words are discrete multinomial
distribution, these probabilistic models cannot benefit from
the word embeddings which are continuous vectors. Faced
with this, we propose to use the neural topic model to le-
verage the advantages of both word embeddings and
probabilistic models. Category labels can play an important
role in the clustering procedures. Inspired by this, leveraging
both label information and embeddings to enhance the
discovery performance has attracted our attention. As a
result, a label-aided neural topic model derived from
Gaussian LDA which integrates both word embeddings and
external label information is proposed.

3. The Discovery Process of the
Proposed Approach

As is shown in Figure 1, the service discovery process of the
proposed model consists of four major parts: service pre-
processing, service modelling, query modelling, and service
ranking. As shown in Figure 1, the Web service is firstly
crawled and preprocessed. .e description and the label of a
Web service are extracted from the collectedmaterials..en,
the service descriptions are taken as the input of the
word2vec model to create the word embeddings. After
getting the word embeddings, we map the words in the
service description label into word embedding to produce
one input and take the Web service label as the other input
for the proposedmodel LNTM..e LNTMwill convert each
Web service into representations of latent factors. To model
users’ queries, the words in a query are looked up from
embeddings and mapped into embeddings. In the service
ranking phase, based on LNTM and users’ queries, a
probabilistic service ranking model is proposed to retrieve
relevant services for the users.

In the proposed approach, training word embedding and
modelling services are conducted offline, and the efficiency
of the proposed discovery model can be guaranteed. Hence,
the focus of the approach will be placed on the accuracy of
discovery.

3.1. LNTM. For capturing semantic regularities in the
language and handling the semantic sparse of Web services,
an augmented topic model with word embeddings for Web
service discovery is proposed in [31]. In the meanwhile,
labels of documents can be used to guide topic learning so as
to find more meaningful topics [12]..erefore, in this paper,
a label-augmented neural topic model is proposed to le-
verage label information and capture semantic regularities
for enhancing discovery performance of the Web service in
this paper.

In the proposed model LNTM, the word embedding v

for each term in a document d at position i is written as
vdi ∈R

W, and W is the length of the word embedding. As a
result, the words in a document are mapped into continuous
vectors in theW-dimensional space. .erefore, each topic k
is characterized as a multivariate Gaussian distribution with
mean μk and covariance Σk. .e Gaussian parameterization
is determined by both analytic convenience and the semantic

similarity of embeddings. To govern the mean and variance
of each Gaussian, the Gaussian distribution centered at zero
and an inverse Wishart distribution for the covariance are
placed as the conjugate priors.

Similar to Gaussian LDA, Web service modeled by
LNTM is represented as the mixtures over latent topics with
proportions drawn from a Dirichlet prior.

To integrate labels, words are indicators for the presence
of labels, and then ld would include 1 in the positions for
each label listed on document d and 0, otherwise. .e
graphical representation of LNTM is shown in Figure 2.
Based on above notions, the generative process of LNTM for
a document can be summarized as follows:

(1) For topic k� 1, . . ., K,

(a) For each label l� 1, . . ., L, choose λl,k∼Ga(s, s)
(b) Draw topic covariance Σk∼W−1(Ψ, v)

(c) Draw topic mean μk ∼ Normal(μ, (1/k)Σk)

(2) For each document d in corpus D,

(a) For each topic k, compute αd,k � 
Ldoc
l λfd,l

l,k

(b) Draw topic distribution θd∼Dir(α)
(c) For each word index i� 1, . . ., Nd,

(i) Draw a topic zn∼Cat(θd)
(ii) Condition on zdi, draw a word vdi with a

probability
vdi/zdi, u1,...,K,Σ1,...,K ∼ Normal(μzdi

,Σzdi
)

3.2. Web Service Modelling Using LNTM. .e LNTM is a
generative model in which each embedding v in a service
description is associated with the latent variable topic z, and
each topic z is associated with the service description d. With
these two distributions, a Web service can be expressed as
two layers: the service topics and the topic embeddings.

After using the LNTM, the service-topic distribution is
achieved by the parameter θ (θ ∈ |services| × |topics|), and
topic embedding is achieved by the multivariate Gaussians.

To infer the topic assignments of individual embeddings
and the posterior distribution of services over the topics, a
collapsed Gibbs sampling method is adopted to derive the
topic assignments to each embedding by using the update
rule shown in the following equation:

p zdi � k, λdi � l | z−di, l−di, Vd, ζ, α( ∝ nldizdi
+ αzdi

 

×t]k−M+1 vdi | μk,
κk + 1
κk

Σk ,

(1)

where z−di represents the topic assignments of all word
embeddings, excluding the one at the i-th position of serviced.
λ−di represents the label assignments. Vd is the sequence of
vectors for service description d; M is the length of the word
embedding; a tuple ζ � (μ, κ,Σ, v) is the parameters of the
prior distribution; and tv′

(x | μ′, Σ′) is the multivariate t-
distribution with freedom degree v′ and parameters μ′ andΣ′.

Note that the first part of equation (1) which expresses
the probability of topic k in service description d is derived as
that of Gaussian LDA.
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.e second part of equation (1) expresses the probability
of assignment of topic k to the vector vdi given the current
topic assignments which represented by a multivariate t-
distribution with parameters (μk, κk,Σk, vk). .ese param-
eters for the posterior distribution are calculated by equation
(2) as the Gaussian LDA:

κk � κ + Nk,

μk �
κμ + Nkvk

κk

,

vk � v + Nk,

σk �
Ψk

vk − M + 1
,

Ψk � Ψ + Ck +
κNk

κk

vk − μ(  vk − μ( 
⊤

.

(2)

Here, the parameters vk and Ck are calculated as

vk �
di:zdi

vdi

Nk

,

Ck � 
d


i:zdi�k

vdi − vk(  vdi − vk( 
⊤

,

(3)

where Nk is the total counts of the words of the topic as-
signment of k across all descriptions. vk and Ck are the

sample mean and the scaled form of sample covariance
assigned topic k, respectively. Intuitively, the parameters μk
and Σk are the posterior mean and covariance. .e pa-
rameters κk and vk denote the strength of the priors for mean
and covariance, respectively. After getting these parameters,
we can simply achieve the topic-embedding distribution as
discussed above.

3.3. Query Modelling and Ranking. To retrieve relevant
services by the proposed model, we firstly translate the user
query into embeddings. .e words in a query are extracted
and mapped into the embeddings by looking up the em-
bedding features.

To rank the retrieved Web service, we use the generated
probabilities to calculate the similarity between the user
queries and the Web services as the work in [31]. .e
similarities are represented by P(Q ∣ si), where Q is the query
and si is the i-th Web service. .us, using the assumptions of
the LNTM described above, it can be calculated by the
following equation:

P Q | si(  � 
e∈Q

P e | si(  � 
e∈Q



K

z�1
P(e | z)P z | si( . (4)

Here, P(e ∣ z) and P(z ∣ s) are the posterior probabilities
computed according to above equation (2) and the matrix θ,
respectively. Finally, we can obtain a list of retrieved services
towards a query according the value of P(Q∣si).

4. Experiment Setting

To evaluate the proposed approach, we conducted several
experiments on the standard Web service test dataset
SAWSDL-TC3 (TC3) (http://www.semwebcentral.org/
projects/sawsdl-tc) as Tian et al. [31] did. To use TC3, we
first parse theWSDL files into a plain text and then removed
stop words and lemmatized the remaining words.

As is known to all, the Web services of TC3 do not have
explicit category labels. However, there are some implicit
categories in the WSDL files. As shown in Figure 3, the node
“<xsd:annotation>” of service “FoodMaxpricequantity.wsdl”

Train word embedding by
word2vec

Web service
description

Extracting web
service labels

Modelling Web service by
label neural topic model

Mapping service description
into embedding

Word embeddings

Query modelling by word
embeddings and LNTM

Query

Retrieved
services

Service ranking

T1 T2 Tv

Figure 1: .e discovery process.

s

K L

z

N

M

α θ

λ μl v

Figure 2: Graphical model of LNTM.
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has values of “#Food,” “#MaxPrice,” and “Quantity.” As a
result, we extracted these values to generate the category labels
for each Web service in our experiments. Since the Web
services in the real-world service registry all belong to their
certain categories, it is easily to collect the category label
information for using the proposed approach.

In our experiments, we used precision p, recall r, and
F-measure f as the evaluation criterion which is defined in
equation (5) for the proposed approach. .e larger the
F-measure is, the better the performance of the discovery is.

p �
|relevant∩ predicted|

|predicted|
,

r �
|relevant∩ predicted|

|relevant|
,

f � 2 ·
p · r

p + r
,

(5)

where relevant is the relevant class labels and predicted is the
predicted results of the classification methods.

4.1. Performance of the Proposed Approach. To examine the
performance of our approach, we compare the proposed
method with three other Web service discovery approaches.
.ese approaches are demonstrated as follows:

(1) LDA: when using LDA, the latent factors learnt from
the Web service description are adopted to represent
the Web service, and then a discovery approach is
used to rank the services [30].

(2) Meta-LDA: in Meta-LDA [12], metainformation
such as a category of a Web service is directly in-
corporated into the generative process. .e external
metainformation can improve the topic quality and
modelling accuracy. We use Meta-LDA to group
Web services into different clusters and then employ
a probabilistic model to rank the services.

(3) Gaussian− LDA: a Gaussian LDA-basedWeb service
discovery approach which makes use of embeddings

for semantic sparsity Web service discovery is
conducted based on the work done by Tian at al. [31].

(4) LNTM: for LNTM, we first train the word embed-
dings by word2vec from the prepared corpus. .en,
we train the LNTM by incorporating embedding and
service category labels into the generative process
and organize the Web service into different clusters.
Finally, we represent the query by embedding and
utilize the probabilistic discovery model to rank the
Web services as illustrated in Section 3.

For LDA and the Meta-LDA model, following the
modelling process mentioned above, the topics are gener-
ated from the descriptions of the Web services. .en, we
tuned the algorithms, respectively, to their best parameter
settings by cross validation.

Table 1 shows the experimental data on TC3. According
to these experiments, we have several observations: firstly,
LNTM outperformed all the competitors in terms of
F-measure on nearly all the settings, showing the benefit of
using both word embeddings and service category labels
which demonstrates the effectiveness of the proposed
model.

Secondly, by looking at the approaches using the label
information, we can see the significant improvement of these
models over LDA, which indicates that document labels can
play an important role in guiding topic modelling.

.irdly, the LNTM and Gaussian− LDA have better
performance than the LDA-based method. .e results show
that the embedding-based approach which takes continuous
embeddings as the input may capture more semantically
coherent topics compared to the traditional LDA-based
method.

Finally, it is interesting to note that the Meta-LDA
outperforms LDA and LNTM outperforms Gaus-
sian − LDA, respectively, in this study. .ese findings are in
agreement with the idea that utilizing the category label
data of Web services improves the performance of Web
service discovery. .ese results inspire the research work to
integrate other external information for effective Web
service discovery.

Figure 3: .e category labels for a service.
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4.2. Validation of Labels. To validate that incorporating
category label information can significantly improve the
generative topic accuracy, we varied the proportion of
services used in training from 20% to 80% and used the
remaining for testing. Here, we utilize normalised pointwise
mutual information (NPMI) as shown in equation (6) to
evaluate the topic quality of LDA, Meta-LDA, and LNTM:

NPMI(k) � ΣTj�2σ
j−1
i�1 log

p wi, wj 

p wi( p wj 
− log p wi, wj  ⎛⎝ ⎞⎠.

(6)

.e NPMI score of each topic in the experiments is
calculated with top 15 words (T�15). As shown in Figure 4,
the NPMI scores of both LNTM and Meta-LDA outperform
LDA. .e result indicates that the label information can
enhance the LDA-based model to find more meaningful
topics. .e details of the two corpus are shown in Table 2.

4.3. Validation of Embedding. As discussed above, em-
bodying more semantic knowledge by changing the Bag of
Words model into the continuous embedding space using
LNTM can enhance the performance of the Web service
discovery model. Several experiments are conducted so as to
validate the result. Figure 5 shows the F-measure perfor-
mance of the proposed approach with different word em-
beddings trained by the word2vec model using different
corpus TC3 and Wikipedia.

As shown in Figure 5, the proposed approach using TC3
has better F-measure performance than using Wikipedia.
.e possible explanation for this may be that some words
extracted from the WSDL files which do not have enough
appearance counts in the Wikipedia corpus are removed
when training the embeddings though they are very in-
formative [31].

4.4. Influence of Hyperparameters. In LNTM, the parameter
α illustrates the weight of language model contribution, μ
and Σ control the document contribution, while s con-
tributes to the label information. In our work, hyper-
parameters are empirically set as α� 1/K, s� zero, μ� zero
mean, Σ� 3∗ I, and 1,000 sampling iterations as in work
[31]. Here, K is the number of topics, and I is the identity
matrix. To check the influence of topic number k, we cal-
culated P(e ∣ k) for different k. As shown in Figure 6, the

Table 1: Performance of the proposed approach.

Query
LDA Meta-LDA Gaussian LDA LNTM

p r f p r f p r f p r f
@10 0.64 0.30 0.40 0.78 0.41 0.54 0.76 0.37 0.50 0.91 0.46 0.61
@15 0.57 0.35 0.43 0.80 0.39 0.52 0.69 0.43 0.53 0.82 0.55 0.65
@20 0.50 0.38 0.44 0.74 0.42 0.53 0.61 0.47 0.53 0.75 0.58 0.65
@25 0.45 0.31 0.43 0.69 0.39 0.49 0.58 0.51 0.54 0.71 0.63 0.66
@30 0.41 0.44 0.43 0.63 0.49 0.55 0.55 0.54 0.54 0.69 0.67 0.67
@35 0.38 0.46 0.42 0.67 0.53 0.59 0.51 0.59 0.55 0.65 0.72 0.68
@40 0.36 0.49 0.42 0.61 0.59 0.60 0.49 0.61 0.54 0.63 0.73 0.67

Validation of lables

0.00

0.01

0.02

0.03

0.04

0.05

N
PM

I

LDA
Meta-LDA
LNTM

Figure 4: .e influence of labels.

Table 2: Statistic of word embeddings.

TC3 Wikipedia
Words 6,895 8,069,236
Documents 1,043 3,758,076
Embeddings 50 50

15 20 25 30 35 4010
Number of retrieved services

0.60

0.62

0.64

0.66

0.68

F-
m

ea
su

re

TC3
Wikipedia

Figure 5: .e influence of different embedding sets.
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result suggests that the data are best accounted for the
proposed LNTM model incorporating 8 topics.

5. Conclusion

In this paper, we proposed a Web service discovery ap-
proach that combines word embeddings and category
labels to deal with the poor recall problem in searching
semantic sparse Web services. We used word embeddings
to map the word into embedding so as to enrich the Web
service semantics. We also introduced a label-augmented
neural topic model LNTM which organizes the Web
services into hierarchies for a probabilistic ranking
approach.

Several experiments were conducted on a widely used
dataset TC3 to validate the performance of our approach.
Experimental results suggested that the proposed approach
is feasible, and in particular, the word embeddings and label
information both lead to enhanced performance in the Web
service discovery process.

Since not all the Web services have their category labels,
it is necessary here to clarify exactly how to conduct effective
Web service discovery without labels. In the future, there is
abundant room to further investigate the usefulness of
various metainformation of Web service and propose dif-
ferent forms based on Gaussian− LDA to provide effective
service discovery.
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Context. Coupling between classes is an important metric for software complexity in software systems. Objective. In order to
overcome the shortcomings of the existing coupling methods and fully investigate the weighted coupling of classes in different
cases in large-scale software systems, this study analyzed the relationship between classes at package level, class level, and method
level.Method. ,e software system is considered as a set of special bipartite graphs in complex networks, and an effective method
for coupling measurement is proposed as well. Furthermore, this method is theoretically proved to satisfy the mathematical
properties of coupling measurement, leading to overcome the disadvantages of the majority of existing methods. In addition, it
was revealed that the proposed method was efficient according to the analyses of existing methods for coupling measurement.
Eventually, an algorithm was designed and a program was developed to calculate coupling between classes in three open-source
software systems. Results. ,e results indicated the scale-free characteristic of complex networks in the statistical data. Addi-
tionally, the calculated power-law value was used as a metric for coupling measurement, so as to calculate coupling of the three
open-source software. It indicated that coupling degrees of the open-source software systems contained a certain impact on
evaluation of software complexity.Conclusions. It indicated that coupling degrees of the open-source software systems contained a
certain impact on evaluation of software complexity. Moreover, statistical characteristics of some complex networks provided a
reliable reference for further in-depth study of coupling. ,e empirical evidence showed that within a certain range, reducing the
coupling was helpful to attenuate the complexity of the software, while excessively blindly pursuit of low coupling increases the
complexity of software systems.

1. Introduction

Coupling refers to the degree of interdependence between
software modules; a measure of how closely connected two
routines or modules are [1]; and the strength of the rela-
tionships between modules. Structured design, including
cohesion and coupling, was published in an article by Ste-
vens et al. and a book by Stevens et al. [2, 3], and the latter
subsequently became standard terms. Coupling is consid-
ered as a double-edged sword in object-oriented pro-
gramming. On the one hand, object-oriented software
development (OOSD) includes object-oriented requirement
analysis, as well as object-oriented design. OOSD is a
practical method of developing a software system which

focuses on the objects of a problem throughout develop-
ment. Interactions between objects reflect the interdepen-
dence between objects. If objects are isolated, then the
software system can only achieve simple functions. How-
ever, objects are equivalent to cells in human body. If cells
are completely isolated from human body, they basically do
not play any significant role, reflecting that functions of a
software system require a tight coupling between objects. On
the other hand, tight coupling between objects would lead to
a water-wave effect, meaning that changes in one object may
result in further changes in other objects. ,e most terrible
case is that there is a possibility of “avalanche” effect, which
may affect the whole system, leading to a sharp decline in the
testability, understandability, reliability, and maintainability
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of the system.,erefore, it is expected that classes are loosely
coupled in terms of software design. A system can be tightly
coupled in one aspect while being loosely coupled in an-
other. However, software developers mainly prefer to de-
velop those systems that are as loosely coupled as possible;
thus, design, testing, and maintenance of the system would
be relatively independent and more reasonable. Moreover, a
decrease may be observed in the possibility that errors
propagate between modules if there are few connections
between modules [4]. Coupling has been widely used in
evaluation of the degree of failure in classification [5–7],
effective analysis [8, 9], and design pattern [10] of software
systems.

,e present article has the following organization:
Section 2 summarizes the materials and methods. Section 3
shows the results. Section 4 provides a conclusion and
suggests perspectives.

2. Materials and Methods

2.1. Methods. Currently, the methods for coupling mea-
surement of object-oriented software systems are mainly
structure-oriented measurement methods (Tables 1 and 2)
[8, 11–15].

Comparative analysis of typical methods is shown in
Tables 1–3, indicating that

(1) Methods for coupling measurement are mainly
based on method invocation between classes.

(2) Calculation of coupling strength is defined as the
degree of method invocation, which is weighted
coupling.

(3) A small number of methods use fan-in and fan-out as
metrics.

(4) Inheritance is dominant.
(5) Few methods use static method invocation, system

measurement, and package-level metrics.

In addition to the abovementioned structural informa-
tion methods, some scholars have recently used dynamic
information methods [17, 18], semantic information
methods [19–21], and logical information methods [22, 23].
Based on the results of previous studies, methods of coupling
measurement cover the following cases:

(1) ,e DCMs are more accurate than that of structural
information methods, while it seems to be difficult in
the measurement of coupling metrics. However,
structural information methods are more intuitive
and easier to be perceived compared with semantic
information and logical information methods.

(2) At present, the majority of the traditional structural
information methods analyze coupling based on the
degree of connecting edges between classes and
mainly focus on complexity between classes and
emphasize more on measurement from a local fine-
grained aspect. Moreover, these degrees of con-
necting edges only consider a certain or a limited
aspects of software engineering. ,erefore, these

methods contain some limitations, which cannot
properly satisfy the requirement of an effective
coupling measurement in complex software systems.

(3) Although a number of coupling measurement
methods analyze network relationship from overall
and macro perspectives based on graph theory, the
majority of measurement metrics mainly use classes,
packages, or methods as nodes to construct some
undirected, directed, unweighted, or weighted net-
work models. Moreover, they ignore a complex re-
lationship of object-oriented characteristics between
different classes. Some methods have not been
theoretically verified for developing the mathemat-
ical characteristics of the measurement metrics.

,e process of establishment of an effective method for
coupling measurement between classes in a software sys-
tem is determined by the following two aspects: reasonable
measurement metrics and theoretical support of mea-
surement metrics [24, 25]. Briand et al. mathematically
analyzed measurement metrics of the software system and
presented a robust theoretical support for the measurement
metrics [4, 26, 27]. Many of complex networks have been
shown to share the features such as “scale-free” and “small
world” [28, 29]. Pan et al. revealed many physics-like laws
in software systems from a complex network perspective
recently [30, 31]. Studies on complex networks and soft-
ware engineering revealed that class-level, method-level,
and package-level diagrams of a software system could
show the characteristics of “scale-free” and “small world,”
which provided a novel perspective for finding more
reasonable measurement metrics [32–34]. Complex net-
work theories were applied to measure software [35, 36],
identify key software elements [37], and cluster Web ser-
vices [38–39]. Researchers have found that many real
networks have the bipartite graph characteristics of com-
plex networks [40–45]. With combination of package level,
class level, and method level, this study analyzed a complex
relationship between classes in the same layer and all layers
of a package and proposed a method for coupling metrics
for object-oriented systems based on bipartite graph of
complex networks, named here CSBG, and object-oriented
software systems were expressed as a set of special bipartite
graphs.

2.2. Problem Description. In this study, a statistical method
for complex networks was used to analyze the degree of fan-
out and the heterogeneity of classes at the same layer and all
layers of a package, in addition to the calculation of coupling
of software systems.

2.2.1. Relationship between Classes

Definition 1. ASS relationship (association and aggregation).
Association means which/how classes interact with each

other, and association can be represented by a line between
these classes with an arrow indicating the navigation
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direction. Aggregation implies that one class exists in an-
other class in the form of attribute.

Definition 2. DEP relationship (dependency)
DEP_D: dynamic dependency refers to an instancemethod

in a class that invokes methods and attributes in another class.
DEP_S: static dependency refers to static methods in a

class invokes methods and attributes in another class.

Definition 3. GEN (generalization)
One class inherits with another class, or one class imple-

ments interfaces with another class, or that of an abstract class.

2.2.2. Definition of Package Hierarchy. Packages of an ob-
ject-oriented software system include classes and sub-
packages in the current hierarchy, and these subpackages
contain classes in the current hierarchy and their

subpackages. Software systems can actually be considered to
be a tree hierarchical structure composed of packages.

t layer of a package is defined as pt ≤Et+1, Rt+1 > . Et+1

represents a set of classes in the t layer, while this layer does
not contain subpackages of this layer. Rt+1 represents class
relationship in the t layer, that is, Rt+1 ⊆Et+1 × Et+1.

S layer(i) is defined as a set of weighted fan-out of Ci at
the t layer of the package, that is, S layer(i)⊆Rt+1. S all(i) is
the set of weighted cross-package fan-out of Ci, that is,
S all(i)⊆R1 ∪R2 · · · Rt · · ·.

2.3. CSBG for CouplingMeasurement. Software stability and
modularity could be measured based on complex network
theories. In this study, software systems can be expressed as a
set of bipartite graphs that use nodes as classes, and ASS as
well as DEP are the edges constituted by attributes of the
class with those of another class based on complex network
theories. However, GEN is a direct connection between

Table 1: ,e first part of existing methods for coupling measurement.

Method Description

CBO [11] CBO(c) � | d ∈ C − c{ } | uses(c, d)∨uses(c, d){ }|; the metric is 1, if method in one class invokes other
classes or is attributed to another class, otherwise it is 0

CBO′ [12] CBO′(c) � | d ∈ C − ( c∪Ancestors(C){ }) | uses(c, d)∨uses(c, d){ }|; this is similar to CBO method;
however, that does not consider inheritance

RFC [13] RFC(c) � RFC1(c), which is used for calculating the number of methods responding to an object’s
message

RFCα [13] R0(c) � M(c), Ri+1(c) � ∪m∈Ri(c)PIM(m), that is, a set of polymorphic methods invoked by functions in
set Ri(c); then RFCα(c) � |∪αi�0Ri(c)| with α � 1, 2, 3, . . . ,

RFC′ [13] RFC′(c) � RFC∞(c)

MPC [13] MPC(c) � m∈MI(c)m′∈SIM(m)− MI(c)NSI(m, m′); this calculates the number of static method invocation of
classes

DAC [14] DAC(c) � | a | a ∈ AI(c)∨T(a) ∈ C |

DAC′ [14] DAC′(c) � | T(a) | a ∈ AI(c)∨T(a) ∈ C |; this formula is similar to DAC; however, if there is a
relationship between classes, the metric is 1, otherwise the metric is 0

Table 2: ,e second part of existing methods for coupling measurement.

Method Description
COF [14] COF(C) � (c∈C| d | d ∈ C − c{ }∪Ancestors(c)∧uses(c, d){ }|)/|C|2 − |C| − 2c∈CDescendent(c)

ICP [14] ,is method calculates the parameters invoked by the method in a weighted class
IH-ICP [14] ,is is similar to ICP, however, that only considers inheritance
NIH-ICP [14] ,is is similar to ICP, however, that does not consider inheritance
SIMAS [8] ,is method calculates the number of direct or indirect invocations between static methods of two different classes
PIM [8] ,is method calculates the number of invocations in class C of methods in class D, and polymorphism is considered

PIMAS [8] ,is method calculates the number of direct or indirect invocations between class methods, and polymorphism is taken
into account

INAG [8] ,e metric is 1 if there is an indirect aggregation between two classes; otherwise, the metric is 0

ACAIC [15] ACAIC(c) � d∈Ancestors(c)CA(c, d); this calculates the number of out-degrees between one class and attributes of
another classes in two classes with inheritance

OCAIC [15] OCAIC(c) � d∈Others(c)∪Friends(c)CA(c, d); it calculates the number of out-degrees between one class and attributes of
another class in two classes without inheritance

ACMIC [15] ACMIC(c) � d∈Ancestors(c)CA(c, d); it calculates the number of out-degrees between one class and methods of another
class in two classes with inheritance

OCMIC [15] OCMIC(c) � d∈Others(c)∪Friends(c)CA(c, d); it calculates the number of out-degrees between one class and methods of
another class in two classes without inheritance

AMMIC [15] AMMIC(c) � d∈Ancestors(c)MM(c, d); it calculates the number of out-degrees for methods between two classes with
inheritance

OMMIC [15] OMMIC(c) � d∈Others(c)∪Friends(c)MM(c, d)

ICF, FCF [16] ICFi � 
n
k�1 I(k, i)ICFk, I(i, j) � e(i, j)/

n
k�1 e(i, k), FCFi � 

n
k�1 F(k, i)FCFk, I(i, j) � e(i, j)/

n
k�1 e(k, j)
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classes. ,erefore, object-oriented software systems are taken
into account as a set of special bipartite graphs constituted by
classes in the package, as shown in Figure 1. ,ere are defects
in the coupling metrics containing the two metrics of fan-in
and fan-out, because their total number is equal in a software
system [46]. ,erefore, this study only analyzed fan-out
metric. ,e coupling strength between classes is correlated
with the complexity of information exchange between mod-
ules. ,e more complex the information interaction (such as
CBO), the tighter the coupling [47]. Coupling measurement
metrics refer to the weighted fan-out of classes in special
bipartite graphs. In these special bipartite graphs, classes as-
sociate with a class that may be at the same layer of the same
package or at different layers of the package. ,erefore, this
study analyzed degrees of fan-out for classes in the same layer
and all layers of the package. Moreover, heterogeneity of the
abovementioned weighted out-degree was analyzed.

2.3.1. Demonstration of CSBG for Coupling Measurement.
,e detailed scheme proposed here is explained in the
following, as illustrated in Figure 2:

(1) ,e object-orient software systems are constructed
as directed weighted network graphs, and classes and
relationship between classes are shown as nodes and
edges, respectively.

(2) ,e package level, class level, and method level are
combined to construct special weighted bipartite
graphs between classes, aiming to make preparation
for calculating the weighted out-degree of classes at

the same layer of the package (see step 3,
(|S layer(i)|)), and the weighted out-degree
((|  S all(i)|)) of all classes with classes across layers
of the package (see step 3).

(3) ASS layer, DEP D layer, DEP S layer, and
GEN layer at the same layer of the package were
calculated. S layer is determined by adding the
weights of x1, x2, x3, andx4 to the four mentioned
metrics, respectively, in order to calculate ASS all,
DEP D all, DEP S all, and GEN all between classes
across different layers of the package. ,en, weights
of x5, x6, x7, andx8 were added to these four metrics
to determine S all:
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(4) S layer and S all are weighted to calculate the
weighted out-degree S of the software system. ,e
system coupling is calculated through dividing S by
the number of classes:
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2.3.2. Calculation of the Weighted Fan-Out of Classes in a
Software System. A special bipartite graph is constructed
between classes of a software system. Weighted fan-out of
classes in the special bipartite graph is analyzed based on
characteristics of the object-oriented software.

(1) Construction of the Special Bipartite Graph in Software
Systems. In the graph G(V, E), if we divide the set V of nodes
into two complementary subsets S and T,
S∪T � V, and S∩T � ϕ, the graph G(V, E) is the bipartite
graph. In the graph Gij(Cij, Eij) constructed by classes Ci

and Cj for the software, if only coupling relationship be-
tween classes is considered, coupling of methods and at-
tributes in the class wouldn’t be taken into account; then, the

Figure 1: Illustration of a software system network composed of a
set of special bipartite graphs (the large squares represent packages,
and the 4 packages are at the same layer. ,e small squares show
subpackages in the package. ,e circles denote classes in the
package, and edges represent relationship between classes).
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property of bipartite graph Ci ∩Cj � ∅ is satisfied. A net-
work diagram constructed by classes Ci and Cj satisfies the
following formula: Ci∪Cj � Cij. Moreover, the two points of
a connecting edge between classes Ci and Cj are in classes Ci

and Cj, respectively.
In summary, the complex coupling between classesCi and

Cj constructs a bipartite graph Gij(Cij, Eij). However,
Gij(Cij, Eij) not only possesses the general properties of a
bipartite graph, including method invocation and depen-
dencies, but also possesses its own characteristics. In aggre-
gation, reference, inheritance, and interface implementation
between classes Ci and Cj, the two points of the connecting
edge are in classes Ci and Cj, respectively.,is bipartite graph
Gij(Cij, Eij) is defined as a special bipartite graph. However,
the software system G(C, E) can be considered as a set of
special bipartite graphs Gij(Cij, Eij) as well (Figure 3).

In the present study, the coupling of the complete bipartite
graph Gij(Cij, Eij) constructed by classes Ci and Cj was used
to analyze the coupling of the software system G(C, E).

(2) Modeling the Coupling of Special Bipartite and Calcu-
lating the Number of Weighted Fan-Out in Software Systems.
In this study, a software system G � (C1, C2, . . . , CN) was
defined. Classes Ci and Cj were defined as two different
classes in a software system: Ci � (Oi, Ai, Mi). Among them,
Oi � Oi1, Oi2, . . . , Oip  was the set of instantiated objects in
class Ci and p is the number of instantiated objects. Ai �

Ai1, Ai2, . . . , Aiq  is the attribute set of class Ci, and q is the
number of attribute. Mi � Mi1, Mi2, . . . , Mir  is the
method set of class Ci, and r is the number of methods. ,e
methods included class methods and instance methods, that
is, (C M∪C O M) ⊂M.

,e relationship of the special bipartite graph between
classes Ci and Cj can be summarized as follows:

ASS

In class Ci, there was instantiation of class Cj (as-
sociation), or one class existed in another class in the
form of attribute (aggregation), which was defined as
Cj Ojp′ , where 1≤p′ ≤p.

In the class Ci, instantiated object Ojp′ of class Ci was
implemented (1≤p′ ≤p), or Ojp′ was a part of class
Ci; then, there was an ASS edge between classes Ci and
Cj, that is, (Ci, Cj Ojp′) ∈ RASS. ,e set of ASS
weighted fan-out of class Ci was

ASS(i) � Ci, Cj Ojp′ 
 1≤ j≤N, 1≤p′ ≤p,

Ci, Cj Ojp′  ∈ RASS.
(3)

DEP

Relationship between classes is implemented defined
by instance methods and variables.
In class Ci, there are instance methods of class Cj: if
Cj Ojp′ Mjr′ , 1≤ j≤N, 1≤p′ ≤p, and 1≤ r′ ≤ r,
then the relationship between classes Ci and Cj is
defined as (Ci, Cj Ojp′ Mjr′) ∈ RDEP D M. In class Ci,
there are instance variables of class Cj: if
Cj Ojp′ Ajq′ , 1≤ j≤N, 1≤p′ ≤p, and 1≤ q′ ≤ q,
then relationship between classes Ci and Cj is defined
as (Ci, Cj Ojp′ Ajq′) ∈ RDEP D A. Under the condi-
tion of instance methods and instance variables, the
set of weighted fan-out for Ci was

S

x1, b1

x2, b2 x3, b3

x4, b4 x5, b5
x6, b6

x7, b7
x8, b8

1/n

∑S(i)

α, b1 + b2 + b3 + b4
β, b5  + b6  + b7  + b8

∑S_layer(i) ∑S_all(i)

∑ASS_layer(i) ∑ASS_all(i)∑GEN_layer(i)∑DEP_D_layer(i) ∑DEP_D_all(i) ∑DEP_S_all(i) ∑GEN_all(i)∑DEP_S_layer(i)

–

Figure 2: Illustration of the coupling measurement for a software system.

S_layer(i) ⊆ Rt+1

Rt+1 ⊆ Et+1 × Et+1

Gij (Cij, Eij)(Ci, Cj)

G = (C1, C2, …, CN)

ASS DEP_D DEP_S GEN

Ci ∪ Cj = Cij

Ci ∩ Cj = Ø

S_all(i) ⊆ R1
 ∪ R2… Rt…

Figure 3: Abstract diagram of the software system network
composed of a set of special bipartite graphs.
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DEP D(i) � Ci, Cj Ojp′ Mjr′ , Ci, Cj Ojp′ Ajq′ 

· 1≤ j≤N, 1≤p′ ≤p, 1≤ r′ ≤ r
 ,

1≤ q′ ≤ q, Ci, Cj Ojp′ Mjr′  ∈ RDEP D,

Ci, Cj Ojp′ Ajq′  ∈ RDEP D A.

(4)

Implementing connecting edges between two classes
through class methods and class variables.
If there are class methods of Cj (static methods) in class
Ci: Cj.Mjr′ , and 1≤ r′ ≤ r, then the relationship be-
tween classes Ci and Cj is defined as
(Ci, Cj Mjr′) ∈ RDEP S M, 1≤ r′ ≤ r. If there are class
variables (static variables) of Cj in class
Ci:Cj.Ajq′ , 1≤ q′ ≤ q, then the relationship between
classes Ci and Cj is defined as
(Ci, Cj Ajq′) ∈ RDEP S A, 1≤ q′ ≤ q. ,ereafter, under
the conditions of class methods and class variables, the
set of weighted out-degree for class Ci was

DEP S(i) � Ci, Cj Mjr′ , Ci, Cj Ajq′ 

· 1≤ j≤N, 1≤ r′ ≤ r, 1≤ q′ ≤ q,


Ci, Cj Mjr′  ∈ RDEP S M,

Ci, Cj Ajq′  ∈ RDEP S A.

(5)

GEN

As the inheritance is preferred in software engi-
neering, if one class is a subclass of another class, the
derived connecting edge was taken into account only
once in this study. Because transfer of derived con-
necting edges would make the software system net-
work more complex, this study did not consider
transfer of derived connecting edge but only con-
sidered the conditions that class Ci was a direct
subclass of class Cj (through extension), or class Ci

was implemented through interface class Cj (through
implementation), or class Ci was implemented by
abstract class Cj (through extension). ,us, there was
a GEN connecting edge between classes Ci and Cj,
which was defined as (Ci, Cj) ∈ RGEN, and a set of
GEN weighted out-degree for class Ci was

GEN(i) � Ci, Cj  Ci, Cj  ∈ RGEN

 . (6)

(3) Determination of Weights. In software systems, one class
can construct one or more special bipartite graphs with other
classes. Supposing that the number of classes and the total
number of weighted fan-out of all classes are definite in a
software system, the first case is that the number of weighted
fan-out in each class is the same or roughly the same. ,e
second case is that there is no rule for the distribution of the

number of weighted fan-out in a class. ,e third case is that
the number of weighted fan-out of a class is heterogeneity,
which approximately obeys the power-law distribution. For
the second case, heterogeneity of the out-degree of the class
is superior than that of the first case; however, this is im-
possible to be compared with the third case. For the third
case, because the number of fan-out is limited for the
majority of classes, only few classes have a large number of
fan-out; therefore, maintenance staff can dedicate more
effort on these few classes. Moreover, the maintenance
workload of these classes is lower than that of the first case.

In this study, heterogeneity under the situation of fan-
out was analyzed. If the distribution was the above-
mentioned third case, then the larger the power-law value,
the easier the maintenance, and the smaller the coupling
degree. However, if the distribution was one of the other two
cases, then it was considered in this study that the power-law
value was equal to 1. b1, b2, b3, and b4 are the power-law
values for the distribution of ASS layer, DEP D layer,
DEP S layer, and GEN layer, respectively. b5, b6, b7, and b8
are the power-law values for the distribution of ASS all,
DEP D all, DEP S all, and GEN all, respectively. ,e cal-
culating formula for weights was as follows:

x1, x2, x3, x4 
T

� 
4

i�1

bi

b1
, 

4

i�1

bi

b2
, 

4

i�1

bi

b3
, 

4

i�1

bi

b4

⎡⎣ ⎤⎦

T

,

x5, x6, x7, x8 
T

� 
8

i�5

bi

b5
, 

8

i�5

bi

b6
, 

8

i�5

bi

b7
, 

8

i�5

bi

b8

⎡⎣ ⎤⎦

T

,

α �


8
i�4 bi


8
i�1 bi

,

β � 1 − α.

(7)

In the present study, statistical analyses were performed
for the out-degree of the three open-source software sys-
tems, and the distributions were the first and the third cases
as mentioned above, demonstrating that the proposed
method had a certain practical value.

2.4.?eoreticalVerificationofCouplingMetrics. Whether the
proposed CSBG method met the mathematical properties of
the measurement metrics [4] was theoretically verified.

CSBG Property 1. CSBG satisfies nonnegativity.

Proof. In an object-oriented software system G �

(c1, c2, . . . , cN), there are two classes c1, c2 ∈ G. When
ASS layerDEP D layer, DEP S layer, and GEN layer are all
0, the minimum value of the software system CSBG(G) is 0.
However, there is a maximum value M(M> 0), so that the
CSBG(G) value is in the range of [0, M]. ,us, nonnegativity
of CSBG is satisfied, and the proposition is proved. □

CSBG Property 2. CSBG satisfies zero value.
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Proof. As described in CSBG property 1, if the minimum
value is 0, then CSBG satisfies zero-value, and the propo-
sition is proved as well. □

CSBG Property 3. CSBG satisfies monotonicity.

Proof. If one edge is arbitrarily added in the system, the
weighted out-degree of classes would increase according to
CSBG measurement metrics. Obviously, the coupling in-
creases as well. ,us, CSBG meets monotonicity and the
proposition is proved. □

CSBG Property 4. CSBG meets the property of class
merging.

Proof. In an object-oriented software system G �

(c1, c2, . . . , cN), there are two classes c1, c2 ∈ G, and class c′ is
a merger of classes c1 and c2. ,e object-oriented system G′
is a system in which classes c1 and c2 in G are replaced by
class c′. CSBG mainly calculates the weighted out-degree of
classes in software systems. ,erefore,

CSBG c1(  + CSBG c2( ≥CSBG c′(  CSBG(G)≥CSBG G′( 
 .

(8)

□

CSBG Property 5. CSBG satisfies the merge property of
two irrelevant classes.

Proof. In an object-oriented software system G �

(c1, c2, . . . , cN), there are two classes c1, c2 ∈ G, and the two
classes are not coupled. Moreover, class c′ is the merger of
classes c1 and c2.,e object-oriented system G′ is a system in
which classes c1 and c2 in G are replaced by class c′. CSBG
mainly calculates the weighted out-degree of classes in
software systems. ,erefore,

CSBG c1(  +CSBG c2(  � CSBG c′(  |CSBG(G) � CSBG G′(  .

(9)

□

2.5.ComparativeExperiment. In the next sections, the CSBG
method is herein proposed for coupling measurement and
the existing measurement methods were compared and
analyzed in order to verify the rationality of the results of
CSBG measurement.

2.5.1. Calculating the Coupling of the Software System Using
CSBG. In this section, CSBG for coupling measurement was
compared with the existing measurement methods.

,is experiment was conducted on a simple system as an
example to analyze and compare themeasurement values by the
existing coupling measurements. ,is system was composed of
6 classes (Shape.java, Point.java, Line.java, Triangle.java,
Quadrilateral.java, and Square.java), which described shapes,
points, edges, triangles, quadrilaterals, and squares, respectively.

Among them, the first three classes were in package graph, and
the last three classes were in package graph.polygon (hierarchy
of classes in package level is shown in Figure 4). ,ere were
inheritance, combination, variable declaration, and method
invocation among these classes, which were appropriate for
analyzing the coupling model. Codes of classes are shown in
Figures 5–10.

Graph1

Triangle2

Quadrilateral2

Square2

Graph.polygon2

Shape3

Point3

Line3

Figure 4: Diagram at package level.

Figure 5: Demonstration of class shape.

Figure 6: Demonstration of class point.
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,ere were three classes in the package graph, including
class Shape, class Point, and class Line.

,ere were three classes in the package graph.polygon,
which were classes of Triangle, Square, and Quadrilateral.

In this study, an algorithm was designed and the pro-
gram was developed based on the aforementioned mathe-
matical model, mainly calculating the four metrics for the
out-degree of classes in the same layer and different layers of
the package in software systems, including ASS, DEP_D,
DEP_S, and GEN. Couplingmetrics, including ASS, DEP_D,

DEP_S, and GEN, were corresponded to the cases described
in Section 2.3. Out-degrees of classes in various layers are
shown in Table 4.

,e mathematical model described in Section 2.3 was
herein used. Because the number of classes was small, the
heterogeneity of out-degree of classes could not be reflected.
Moreover, heterogeneity had little impact on the coupling in
this example.,erefore, it was considered that heterogeneity
was approximately the same. Coupling of software systems
was calculated as follows:

Figure 8: Demonstration of class triangle.

Figure 9: Demonstration of class square.

Figure 7: Demonstration of class line.
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(10)

Figure 10: Demonstration of class quadrilateral.
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2.5.2. Analysis of the Results of Various Methods for Coupling
Measurement. Coupling of software systems was calculated
based on existing measurement methods, which is shown in
Table 5. In addition to CSBG coupling measurement, other
measurement methods mainly focus on measurement of a
certain local fine-grained aspect.,ese methods were based on
the theory of reductionism, which did not investigate the
coupling of software systems from an overall and global
perspective. ,erefore, the measurement values were mostly
either very large or very small, and severalmetrics were equal to
0. In addition, discrimination of these metrics was not sig-
nificant compared with other methods for coupling mea-
surement. ,e metrics calculated by CSBG had a better
discrimination. ,erefore, the existed methods have limita-
tions, which cannot accordingly satisfy an effective coupling
measurement for complex software systems. CSBG not only
can consider a complex relationship between classes in object-
oriented software systems but also analyze the complexity of
classes and the special bipartite graph composed of classes from
the prospective of overall package level. ,erefore, the CSBG
measurement method contained a certain rationality in theory.

3. Results

3.1. Application of CSBG Measurement Metrics in the ?ree
Open-Source Software Systems. In order to further validate
the effects of CSBG, this study used CSBG to measure and
analyze coupling between classes in the three Java open-
source software systems from different fields, including Art
of Illusion [48], JabRef [49], and GanttProject [50]. Some
studies have reported results of class cohesionmetrics for the
three open-source software systems [51–53]; it is feasible to
further study the complexity of the three open-source
software systems if there is a more reasonable method for
coupling measurement. In order to verify the effects of the
CSBG measurement method in actual open-source software
systems, three Java open-source software systems from
different aforementioned fields were used. Art of Illusion is a
software system for 3D rendering, modeling, and animation.
JabRef is a graphical application for managing bibliographic
database. GanttProject is a software system for project
scheduling characterized by resource calendar, manage-
ment, and import or export (MS Project, PDF, HTML). ,e
reasons to use the three open-source software systems in the
measurement were because (1) these systems were based on
object-oriented Java; (2) the classes in the systems had a
certain scale; (3) the three systems were from different fields;

and (4) the source codes were available as well. Scholars can
freely download the source codes from an open-source
website (http://sourceforge.net).

3.2. Association of Coupling with Statistical Characteristics of
the ?ree Open-Source Software Systems. Firstly, the pro-
gram was developed and out-degree of classes at the same
layer and all layers of the package was eventually obtained,
including ASS, DEP_D, DEP_S, and GEN.

In this section, DEP_D and DEP_S were analyzed, and
the results are shown in Figures 11–18. In the experimental
results, DEP(i) was a nonstandardized part of probability
distribution P(i). If, P(i) ∼ i− c, then DEP ∼ (i)− c. A linear
function was fitted using the double logarithmic method that
was fitted to estimate Gamma index c (R is the Pearson’s
correlation coefficient and SD is standard deviation; c is also
expressed as B in the following table).

Although inheritance between classes increases coupling of
the system, this is encouraged by the software system, which is
conducive to reduce function definition and attribute defini-
tion in order to create a new class; thus, it is a poor coupling. It
can be seen from linear distribution of GEN (Table 6) that
neither all classes have an inheritance relationship, nor the
GEN fan-out of all classes were very large or very small.
However, classes with values equal to 0 or 1 were dominant.

Pearson’s correlation coefficient (R) and SD value pro-
vided the quality of the linear fitting; the larger the R value,
the better the quality of the linear fitting, and B is estimated
Gamma index c. Moreover, the smaller the SD value, the
better the quality of the linear fitting. As shown in Table 7, if
0.95 is considered to be the minimum value, it can be ap-
proximated that the distribution obeyed the power-law
distribution except that ASS value in JabRef was relatively
small (0.91651 and 0.88148). Furthermore, the distributions
of ASS layer, ASS_all layer, DEP_D layer, DEP_S layer,
DEP_D_all layer, and DEP_S_all layer were assumed to obey
power-law distribution. ,e results demonstrated that there
was a certain rule for the number of fan-out of classes in the
form of ASS and DEP, which was not the case that the values
were mostly large or small. However, they had “scale-free”
property for complex networks, which obeyed the power-
law distribution. In actual software development process, if
software developers excessively pursue low coupling be-
tween classes, a class may be divided into two or more
subclasses; thus, system complexity may be accordingly in-
creased.,e process of determination of the range of coupling

Table 4: Out-degrees of classes at the same layer and all layers of the package.

Class name
Out-degree at the same layer Out-degree of all layers

ASS DEP_D DEP_S GEN Total ASS DEP_D DEP_S GEN Total
Quadrilateral 0 0 0 0 0 8 16 0 1 25
Triangle 0 0 0 0 0 6 12 0 1 19
Line 6 10 0 1 17 6 10 0 1 17
Point 0 0 0 1 1 0 0 0 1 1
Shape 0 0 0 0 0 0 0 0 0 0
Square 0 0 0 1 1 4 0 0 1 5
Total 6 10 0 3 19 24 38 0 5 67
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Figure 12: ,e double logarithmic diagrams of the fan-out of DEP_D invocation for classes at the same layer of a package.

Table 5: Results of various methods for coupling measurement.

Quadrilateral Triangle Line Point Shape Square Software system
CSBG 17.5 13.3 5.1 0.3 0 3.1 7.17
CBO 3 2 2 5 4 2
CBO′ 1 1 1 4 0 1
RFC 0 0 0 38 0 0
RFCα 0 0 0 38 0 0
RFC′ 0 0 0 38 0 0
MPC 0 0 0 0 0 0
DAC 8 6 6 0 0 4
DAC′ 1 1 1 0 0 1
COF 0.2
ICP 16 12 10 0 0 1
IH-ICP 0 0 0 0 0 1
NIH-ICP 16 12 10 0 0 0
SIMAS 0 0 0 0 0 0
PIM 16 12 10 0 0 1
PIMAS 16 12 10 0 0 1
INAG 1 1 1 0 0 1
ACAIC 0 0 0 0 0 0
OCAIC 4 3 3 0 0 0
ACMIC 0 0 0 0 0 0
OCMIC 0 0 0 0 0 0
AMMC 0 0 0 0 0 1
OMMC 16 12 10 0 0 1
ICF 0 0 0 1 0 0
FCF 1 1 1 0 0 1
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Figure 11: ,e double logarithmic diagrams of the fan-out of ASS invocation for classes at the same layer of a package.
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Figure 15: ,e double logarithmic diagrams of the fan-out of ASS invocation for classes at all layers of a package.
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Figure 13: ,e double logarithmic diagrams of the fan-out of DEP_S invocation for classes at the same layer of a package.
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Figure 14: ,e double logarithmic diagrams of fan-out of GEN invocation for classes at the same layer of a package.
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Figure 16: ,e double logarithmic graph of fan-out of DEP_D invocation for classes at all layers of a package.
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Table 6: Values of fan-out for different classes of GEN.

Value of fan-out 0 1 2 3 4 5 7

GEN_layer
Illusion 244 199 21 5 1 0 0
JabRef 479 192 16 6 1 0 0

GanttProject 630 264 45 6 0 1 0

GEN_all
Illusion 173 246 29 19 3 0 0
JabRef 309 276 79 27 3 0 0

GanttProject 485 349 79 21 10 1 1

Table 7: Values of R, SD, and B parameters.

Software system R SD B

ASS_layer
Illusion 0.9772 0.08465 2.51614
JabRef 0.91651 0.17962 7.1483

GanttProject 0.94567 0.11961 7.22368

DEP_D_layer
Illusion 0.97249 0.31761 6.07342
JabRef 0.97537 0.12677 20.06268

GanttProject 0.95689 0.14931 25.12239

DEP_S_layer
Illusion 0.95388 0.14533 5.52632
JabRef 0.94658 0.19504 14.97997

GanttProject 0.94086 0.1309 17.20075

ASS_all
Illusion 0.97414 0.10346 1.84955
JabRef 0.88148 0.2079 1.65033

GanttProject 0.94905 0.13485 3.64204

DEP_D_all
Illusion 0.97028 0.14556 3.39056
JabRef 0.97314 0.13056 8.47787

GanttProject 0.96602 0.13634 9.56684

DEP_S_all
Illusion 0.97265 0.1208 3.5066
JabRef 0.96831 0.14207 4.47638

GanttProject 0.95419 0.12876 5.99337
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between classes in software systems is significant. Based on
data analysis, it can be seen that scale-free” property of
complex networksmotivated software developers to paymore
attention to the distribution range of the coupling in large-
scale software systems, which could provide a reliable ref-
erence for developing more reasonable software systems.

3.3. Coupling Measurement for the ?ree Open-Source Soft-
ware Systems. According to the results of the above-
mentioned analysis, out-degrees of classes were often equal to

0, 1, and 2 for class inheritance in generalization, interface
implementation, and implementation of abstract classes, which
were approximately linearly distributed. ,erefore, the power-
law value of GEN was approximated to 1.

3.3.1. Calculation of Coupling Measurement for Art of
Illusion. According to the CSBG method for coupling
measurement, coupling of the software system for Art of
Illusion was calculated as follows:
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3.3.2. Calculation of Coupling Measurement for JabRef.
According to CSBG for coupling measurement, coupling of
the software system for JabRef was calculated as follows:
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3.3.3. Calculation of CouplingMeasurement for GanttProject.
According to CSBG for coupling measurement, coupling of
the software system for GanttProject was calculated as
follows:

x1, x2, x3, x4 
T

� 
4

i�1

bi

b1
, 

4

i�1

bi

b2
, 

4

i�1

bi

b3
, 

4

i�1

bi

b4

⎡⎣ ⎤⎦

T

� 
4

i�1

bi

7.22368
, 

4

i�1

bi

25.12239
, 

4

i�1

bi

17.20075
, 

4

i�1

bi

1
⎡⎣ ⎤⎦

T

� [6.997378, 2.012023, 2.93864, 50.54682]
T
,

x5, x6, x7, x8 
T

� 
8

i�5

bi

b5
, 

8

i�5

bi

b6
, 

8

i�5

bi

b7
, 

8

i�5

bi

b8

⎡⎣ ⎤⎦

T

� 
8

i�5

bi

3.64204
, 

8

i�5

bi

9.56684
, 

8

i�5

bi

5.99337
, 

8

i�5

bi

1
⎡⎣ ⎤⎦

T

� [5.5496, 2.111695, 3.370766, 20.20225]
T
,

α �


8
i�4 bi


8
i�1 bi

� 0.285548,

β � 1 − α � 0.714452,



n

i�1
S layer(i)




� 

n

i�1
ASS layer(i)




, 

n

i�1
DEP D layer(i)




, 

n

i�1
DEP S layer(i)




, 

n

i�1
GEN layer(i)




⎡⎣ ⎤⎦ × x1, x2, x3, x4 

T

� [1102, 1331, 565, 379] ×[6.997378, 2.012023, 2.93864, 50.54682]
T

� 31206.69,



n

i�1
S all(i)




� 

n

i�1
ASS all(i)




, 

n

i�1
DEP D all(i)




, 

n

i�1
DEP S all(i)




, 

n

i�1
GEN all(i)




⎡⎣ ⎤⎦ × x5, x6, x7, x8 

T

� [3201, 3833, 2291, 622] ×[5.5491, 2.111695, 3.370766, 20.20225]
T

� 46138.17,

S � 
n

i�1
S(i)




� 

n

i�1
S layer(i)




, 

n

i�1
S all(i)




⎡⎣ ⎤⎦ ×[α, β]

T

� [31206.69, 46138.17] ×[0.285548, 0.714452]
T

� 41874.52,

S �
S

n
�
41874.52

946
� 44.26482.

(13)

Mathematical Problems in Engineering 17



,e three aforementioned open-source software systems
were analyzed from the points of view of package level, class
level, and method level using CSBG for coupling mea-
surement. A programwas also developed to calculate various
metrics; thus, the coupling of the three open-source software
systems in descending order was the Art of Illusion, JabRef,
and GanttProject, suggesting that it was feasible to use CSBG
for coupling measurement of software systems that con-
tained a certain practical value.

4. Conclusion

Based on bipartite graphs for complex networks, by com-
prehensive consideration of the weighted fan-out between
classes from points of view of package level, class level, and
method level, this study expressed that the interaction of
classes is a special bipartite graph, while a software system is
a set of these special bipartite graphs. For this purpose, first,
this study analyzed the four relationships for a software
system, including ASS, DEP_D, DEP_S, and GEN, and
coupling relationship for a class with other classes in the
same layer of package was considered as well. Moreover,
coupling relationship for classes in a package with other
classes in different layers of the package was taken into
account. ,erefore, the CSBG method for coupling mea-
surement of software systems was proposed, which was
completely in compliance with the mathematical charac-
teristics of the widely accepted metrics. Second, for a soft-
ware system, other typical methods and CSBG method were
compared for the purpose of coupling measurement, and the
results revealed that the measured value was either large or
small due to the defects of other measurement methods that
were analyzed from an overall and global perspective.
Moreover, the corresponding values were mostly equal to 0.
,erefore, there were some defects in other measurement
methods, while CSBG had its rationality. Eventually, a
program was developed based on the CSBGmethod to apply
the three open-source software systems (Art of Illusion,
JabRef, and GanttProject). ,e results demonstrated that
coupling of the three open-source software systems in the
descending order was the Art of Illusion, JabRef, and
GanttProject. Although inheritance between classes in-
creases coupling of the system, this is also followed by
software engineering, which is conducive to reduce function
definition and attribute definition in order to create a new
class, and thus, this is weak coupling. It can be concluded
from the linear distribution of GEN that all classes either had
an inheritance relationship, or that the number of GEN fan-
out of all classes was very large or very small. However,
classes with values equal to 0 or 1 were accounted. Fur-
thermore, it was revealed that in the same layer and total
layers of the package, fan-out values of ASS, DEP_D, and
DEP_S obeyed the scale-free property of complex networks.
,ese findings provided empirical support for the CSBG
method. ,e statistical power-law metrics were applied to
the method for coupling measurement proposed in this
study in order to calculate the coupling of the three open-
source software systems, which provided a reliable reference
for further investigation of coupling between classes in

software systems using statistics of complex networks. In
[54], it was mentioned that cohesion distribution of the
majority classes of a software system contained a certain
regularity. In other words, it was not the case that neither
cohesion of all classes was very large nor very small. In the
empirical analysis of coupling, the values of coupling metrics
had a regularity similar to class cohesion. Although coupling
represented the degree of interdependence between classes,
the greater the coupling, the more complex the software
from an intuitive aspect. However, excessive pursuit of “high
cohesion and low coupling” of software systems increases
the workload of software developers and the complexity of
software systems as well. ,erefore, the empirical evidence
showed that within a certain range, reducing the coupling
was helpful to attenuate the complexity of the software, while
excessively blindly pursuit of low coupling increases the
complexity of software systems.
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In order to better study themovement principles of overlying strata during backfill mining, we established a thin plate model on an
elastic foundation with elastic foundation boundary of the main roof. And by the finite difference method, the variation principles
of the main roof’s principal moments and maximum subsidence ω0 with the elastic foundation coefficient k1 of the coal seam, the
elastic foundation coefficient k2 of backfill body, the thickness h, Young’s modulus E, and Poisson’s ratio μ of main roof are
calculated and studied. Using these calculations, we were able to determine that the main roof had three principal bending
moment extreme points, includingMzz in backfill areas,Mc of the long side area, andMd of the short side area. +e distance Lc of
Mc advancing coal wall continuously increased with the increase in k2, while the principal moment of main roof’s middle area
decreased with an increase in k2; when k2 became larger, the maximum principal moment in themidpoint of main roof transferred
to the surrounding and themaximum principal moments was in four-corner area;Mc andMd decreased with an increase in k2, and
Md was more sensitive to k2 than Mc; and Md decreased significantly with the increase in k2. Lc continuously decreased with the
increase in k1, while Mc, Md and Mzz increased with the increase in k1 and the reduced amplitude of Mzz was the minimum. +e
effect of μ on principal bending moments and ω0 was very small;+e growth rate ofMzz was the largest when E or h increased.Md,
Mzz, and Lc remained unchanged when k1, k2, and Young’s modulus E of the main roof increased while the ratio value remained
constant (k1/k2/E). Finally, the theoretical calculations were applied to the I26 backfill working face in the Xingdong mine to
calculate the final subsidence amounts of the main roof. Field observations and theoretical calculations were about 48mm,
verifying the method’s applicability.

1. Introduction

Strata movement gradually develops on the surface after
underground coal seam mining, causing surface subsidence,
destruction of ground facilities, and so on. Solid backfill
mining, paste backfill mining, high-water backfill mining,
and other backfill mining methods are commonly used to
prevent surface subsidence caused by underground mining.
Qian et al. [1] put forward the concept of green mining in
coal mine and expounded the basic methods of mining
settlement and backfilling control. Wu et al. [2], through
image algorithms and so on, analyzed the mining landscape
changes before and after subsidence with the support of GIS

technology. According to the characteristics of mining
subsidence, Jung et al. studied the comprehensive prediction
and calculation methods related to mining subsidence, and
so on [3–9]. In view of the subsidence characteristics of the
surface steps caused by the mining of the shallow and extra
thick coal seam, Ju and Xu [10] put forward three possible
control methods for surface stepped subsidence. Based on
the field investigation and study of overburden damage in
ultra-thick coal seam mining, the statistical formula was
presented to estimate the maximum heights of failure zone
in the LTCC operation [11]. +e characteristics of dis-
placement and ground subsidence caused by underground
mining are studied by means of remote sensing and
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Geographic Information System [12–14]. Li et al. studied the
mechanical characteristics of the gangue filling body, the
mechanical and geometric characteristics of the hydraulic
support for gangue filling, and the characteristics of the
mining pressure in the solid filling face; they obtained that
the solid backfilling method was an effective method to
prevent hard-roof-induced face bursts, and the equivalent
mining height model is capable of predicting surface de-
formation [15–20]. Benzaazoua et al. studied, respectively,
the hardening process of cemented backfill, the preparation,
microstructure characteristics, mechanical parameters, and
backfilling technology of the paste backfill materials [21–24].
Based on the basic mechanical experiments of ultra-high-
water materials, Ding et al. [25] found that it was good
backfilling material. Yan et al. [26] put forward the pump
filling technology of ZKD high-water quick-setting material,
which was effectively applied to engineering practice. Feng
et al. [27] introduced four kinds of backfilling methods for
goaf with high water content materials and analyzed the
advantages and disadvantages of each method.

+ere have been many studies on the backfill mining
process and issues that may arise. Zhang et al. [28] analyzed
the interaction between the backfilling body and overburden
strata in a fully mechanized backfilling mining face. Miao
et al. [29] proposed the beammodel on an elastic foundation
with a fixed boundary condition to study the relationship
between subsidence of the main roof and Young’s modulus
of backfill body. Chen et al. [30] built a beam model on an
elastic foundation with an elastic foundation boundary to
analyze the variation of the main roof’s maximum subsi-
dence with Young’s modulus of backfill body and elastic
foundation coefficient of coal seam. Li et al. [31] proposed a
thin plate model on an elastic foundation of the main roof
with a fixed boundary condition to study the variation of the
main roof’s subsidence and maximum tensile stress with an
elastic foundation coefficient of the backfill body. Huang
et al. [32] analyzed overlying strata movement in backfill
mining using a similar physical simulation, and although
these results are beneficial for scientific backfill mining, there
are specific scenarios that they are applicable. +e beam
model in backfill mining is only suitable for roof mechanics
analysis of the middle area in the working face with large
length-width ratio.

+e thin plate model with the main roof being elastic and
fixed boundary condition for backfill mining simplifies the
main roof in order for it to be a fixed boundary condition.
However, the main roof is bound to sink in the coal seam
support area when the coal seam is thick and soft, making
the fixed boundary condition unsuitable.+eWinkler elastic
foundation model should therefore be considered because of
the weak shear-bearing capacity and non-deformability of
the coal seam [33]. +e main roof can then be regarded as an
elastic foundation, and the elastic foundation model is able
to analyze its mechanics and displacement characteristics
during backfill mining.

Here, we established a thin plate model on elastic
foundation of the main roof with an elastic foundation
boundary to study the variations of the internal force field
and displacement field with various elastic foundation

coefficients of the backfill body, elastic foundation coeffi-
cients of the coal seam, thicknesses of main roof, Young’s
modulus of the main roof, and Poisson’s ratio of the main
roof, and the fracture position and fracture conditions of the
main roof were then determined and compared. Finally, a
determination method for the elastic foundation coefficient
of the backfill body is proposed in this paper. +ese theo-
retical calculations were then verified using the I26 mining
face from Xingdong coal mine. +ese results have practical
value in further developments in backfill mining technology.

2. The Thin Plate Model on Elastic
Foundation with the Elastic Foundation
Boundary in Backfill Mining

2.1. /e Actual Surrounding Rock Condition of the Main Roof
in Backfill Mining. +e main roof is clamped between the
overlying strata and immediate roof after mining. Due to the
large compressive deformation and the weak shear-bearing
capacity of the coal seam, the coal seam is best represented
by the Winkler elastic foundation model. Similarly, the
backfill body is also best represented by the Winkler elastic
foundation model. Figure 1 shows the surrounding rock
relationship during backfill mining.

2.2. Mechanical Hypothesis Condition of the Main Roof in
Backfill Mining

2.2.1. Hypothesis of Elastic Foundation Boundary. For this
study, the coal seam is analyzed using the Winkler elastic
foundation model. +e displacement of the main roof is
mainly limited by the immediate roof and coal seam. In
general, Young’s modulus of the coal seam is much lower
than that of the main roof and immediate roof; therefore, the
coal seam is the main factor that limits the displacement of
the main roof. +e elastic foundation coefficient k0 can be
derived from equation (1) and is given by

k0 �
E1E0

E1h0 + E0h1
≈

E1

h1
� k1, (1)

where k0 is the composite elastic foundation coefficient of
the immediate roof and coal seam; k1 is the elastic foun-
dation coefficient of the coal seam; h0 is the thickness of the
immediate roof; E0 is Young’s modulus of the immediate
roof; h1 is the thickness of the coal seam; E1 is Young’s
modulus of the coal seam.

2.2.2. Hypothesis of Elastic Foundation of the Backfill Body.
Solid backfill material, paste backfill material, and high-
water backfill material approximately satisfy the Winkler
elastic foundation model.

2.2.3. Dimension Requirement of the Elastic /in Plate of the
Main Roof. In order to satisfy the requirements to be
considered a “thin plate,” the dimensions of the roof must
meet the requirement of
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where h is the thickness of the plate; L is the short side length
of the plate.

When h and L of the plate satisfy equation (2), the plate
can be seen as a thin plate.

In general, the ratio of the thickness of the roof to the
short side length satisfies equation (2); that is, the main roof
satisfies dimension requirements of the elastic thin plate.

2.3.MechanicalModel of the/in Plate on Elastic Foundation
with Elastic Foundation Boundary in Backfill Mining

2.3.1. Mechanical Model. +e mechanical model of a thin
plate on an elastic foundation with an elastic foundation
boundary of a main roof in backfill mining is shown in
Figure 2.

+e rectangle area ABCD is the backfill area S2. +e
length of AB is 2a and the length of AD is 2b. A coordinate
system is established by using the midpoint of the main roof
on the backfill body as the origin. Area S1 of the main roof,
which is outside of ABCD and inside of A1B1C1D1, is ap-
proximately the clamping area of the elastic layer. +e
displacement of the main roof in area S1 is mainly deter-
mined by the stiffness of the coal seam. +e load carried by
the main roof is q0.

2.3.2. Deflection Equation. According to the theory of a plate
[34–36], the partial differential equation of the deflection of
the main roof in an elastic foundation area S1 can be defined
as

z4ω1

zx4 + 2
z4ω1

zx2zy2 +
z4ω1

zy4 �
1
D

−k1ω1( , (3)

where ω1 is the deflection function of the main roof in the
area S1; and k1 is the elastic foundation coefficient of the coal

seam. +e stiffness of a thin plate is D� Eh3/(12−12μ2),
where E is Young’s modulus of the main roof; h is the
thickness of the main roof; and μ is Poisson’s ratio of the
main roof.

+e partial differential equation of deflection of the main
roof in the backfill area S2 can be defined as

z4ω2

zx4 + 2
z4ω2

zx2zy2 +
z4ω2

zy4 �
1
D

q0 − k2ω2( , (4)

where ω2 is the deflection function of the main roof in area
S2; q0 is the load carried by the main roof; and k2 is the elastic
foundation coefficient of backfill body.

2.3.3. Boundary Conditions

(1) Continuous Boundary Condition. Edges AB, BC, CD, and
AD are the main roof’s interface between the coal body and
the backfill body. +erefore, deflection, rotation angle,
bending moment, and shear force are the same on the in-
terface, and a continuous condition can be achieved by
combining all the relevant equations as equations (5) and
(6). A continuous boundary condition for the main roof can,
therefore, be expressed as
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z
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z
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zy2 + μ
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zy2 + μ
z2ω2

zx2 ,

zω1

zy
�

zω2

zy
,

ω1(x, b) � ω2(x, b),
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Figure 1: Depiction of the surrounding rock in backfill mining.

Mathematical Problems in Engineering 3



−b≤y≤ b,

x � a,

⎧⎨

⎩

z

zx
∇2ω1 �

z

zx
∇2ω2,

z2ω1

zx2 + μ
z2ω1

zy2 �
z2ω2

zx2 + μ
z2ω2

zy2 ,

zω1

zx
�

zω2

zx
,

ω1(a, y) � ω2(a, y),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−b≤y≤ b,

x � −a,

⎧⎨

⎩

z

zx
∇2ω1 �

z

zx
∇2ω2,

z2ω1

zx2 + μ
z2ω1

zy2 �
z2ω2

zx2 + μ
z2ω2

zy2 ,

zω1

zx
�

zω2

zx
,

ω1(−a, y) � ω2(−a, y).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

(2) Boundary Condition. A1B1 length is 2x0. A1D1 length is
2y0 (refer to Figure 2). At an infinite distance from the
backfill area S2, the mining effect is very small. +erefore, the
deflection and rotation angle of the main roof are both zero
and satisfy the fixed boundary conditions at an infinite
distance from the backfill area S2. +e fixed boundary
condition can then be defined as
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zω1
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(7)

3. The Finite Difference Method for Solving the
Partial Differential Equations

As mentioned above, it is extremely difficult to obtain the
exact solutions of the above partial differential equations, but

the approximate solutions satisfy engineering and practical
mining requirement. +e finite difference method is an
effective method to obtain the approximate solutions of
differential equations [37–39].

3.1. /e Finite Difference Method

3.1.1. /e Nodal Layout of the Difference Equation.
According to the finite difference theory, the difference
equation involving 13 nodes is needed to solve the partial
differential equation [34].

+e difference grid layout of 13 nodes is shown in
Figure 3. Δx�Δy� d is the nodal space. Point J0 is a feature
node. Deflection of point J0 is expressed as ωij. Numbers of
the remaining nodes are determined by the intersection of
the vertical and horizontal lines (refer to Figure 3).

3.1.2. /e Difference Equations of the Partial Differential
Equations. Combining with the difference grid layout and
the finite difference method of the partial differential
equations (refer to Figure 3), the difference equations of the
partial differential equations (3) and (4) at feature node J0
can be obtained by

20 + d
4k1

D
 ωij − 8 ωi+1,j + ωi−1,j + ωi,j+1 + ωi,j−1 

+ 2 ωi+1,j+1 + ωi+1,j−1 + ωi−1,j+1 + ωi−1,j−1 

+ ωi+2,j + ωi−2,j + ωi,j+2 + ωi,j−2 � 0,

(8)

where d is the nodal space; ωij, ωi+1,j, ωi−1,j, ωi,j+1, ωi,j−1,
ωi+1,j+1, ωi+1,j−1, ωi−1,j+1, ωi−1,j−1, ωi+2,j, ωi−2,j, ωi,j+2 and ωi,j−2
are nodal deflection, respectively (refer to Figure 3).

20 + d
4k2

D
 ωij − 8 ωi+1 + ωi−1,j + ωi,j+1 + ωi,j−1 

+ 2 ωi+1j+1 + ωi+1,j−1 + ωi−1,j+1 + ωi−1,j−1  + ωi+2,j

+ ωi−2,j + ωi,j+2 + ωi,j−2 �
q0d

4

D
.

(9)

3.1.3. /e Difference Equations of Boundary Condition.
+eoretically, the exact fixed boundary condition can be
satisfied when x0 and y0 approach infinity (refer to equation
(7)), but the finite difference method cannot calculate this
infinite region. Actually, when the outer boundary is three
times the maximum length of the mining area
(y0 � x0 � 3max{2a, 2b}), the influence of mining on this
boundary is very weak, which approximately satisfies both
the fixed boundary condition and engineering requirements.
Nodal space d is taken as 0.2m. +e difference equations of
the boundary condition in feature node J0 can be expressed
as
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ij

�
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� 0.
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(10)

3.2. Calculation Process. According to the finite difference
method, the 13-node difference equation should be established
for any node whose deflection is unknown within the area of S1
and the S2 area of the main roof. +e nodes whose deflection is
unknown can then be obtained by constructing all nodal
difference equations and the boundary condition equations.

Figure 4 presents the specific process of solving the
partial differential equations. +e process of solving partial
differential equations needs to adopt the Sparse function in
Matlab to form algebraic equations for a sparse matrix, and
each nodal deflection solution can be obtained by using
function Gmres [37] to solve the algebraic equations.

After solving each nodal deflection of the main roof, the
nodal internal force solutions can be obtained by

Mx( ij � −D z2ω
zx2 + μ z2ω

zy2 
ij

� −
D

d2 ωi−1,j − 2ωi,j + ωi+1,j  − μ ωi,j−1 − 2ωi,j + ωi,j+1  ,

My 
ij

� −D z2ω
zy2 + μ z2ω

zx2 
ij

� −
D

d2 ωi,j−1 − 2ωi,j + ωi,j+1  − μ ωi−1,j − 2ωi,j + ωi+1,j  ,

Mxy 
ij

� −D(1 − μ) z2ω
zx zy

 
ij

� −
D(1 − μ)

4d2 ωi−1,j−1 − ωi+1,−1 + ωi+1,j+1 − ωi−1,j+1 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where (Mx)ij is the nodal moment of the x-component; (My)ij
is the nodal moment of the y-component; and (Mxy)ij is the
nodal twisting moment.

4. Example and Analysis

+e thin plate model on an elastic foundation with an elastic
foundation boundary in backfill mining was investigated
under realistic geological conditions. Variations of the in-
ternal force and deflection of the main roof with E, h, μ, k1
and k2 were studied using the above equations for theoretical
calculations.

+e I26 working face of the Xingdong mine (length
AB� 70m and advancing length AD� 200m in Figure 2)
adopted the backfill bag of high-water material to backfill
mining, with a backfill rate of 100%. +is working face was
used to obtain realistic conditions for the calculations. Based
on the above analysis, when A1B1 �A1D1 � 600m, the outer
boundary can be regarded as fixed boundary.

In the I26 working face, the average angle of the coal
seam was 4–6°, mining height was 4.5m, and the thickness of
the main roof was 10m. Young’s modulus of the main roof
was 26Gpa and the elastic foundation coefficient k1 was
1000MN/m3. +e key rock thickness, which overlies the
main roof, was 110m and the average unit weight of the rock
was 0.024MN/m3. +erefore, the load carried by the main
roof was q0 � 2.64Mpa. +e elastic foundation coefficient k2
of the high-water material used during the backfill mining
process was 20MN/m3–220MN/m3.

4.1. Fracture Criterion.

M1, M3 �
Mx + My

2
±

��������������������

Mx − My

2
 

2

+ Mxy 
2
,




(12)

whereM1 is the maximum principal bending moment;M3 is
the minimum principal bending moment;Mx is the moment
of x-component; My is the moment of y-component; and
Mxy is the nodal twisting moment.

M1( ij

M3( ij

⎫⎪⎬

⎪⎭
�

Mx( ij + My 
ij

2

±

��������������������������

Mx( ij − My 
ij

2
⎛⎝ ⎞⎠

2

+ Mxy 
2
ij

,




(13)

where (M1)ij is the nodal maximum principal moment;
(M3)ij is the nodal minimum principal moment.

Because the tensile strength of the rock is much less than
the compressive strength, the principal moment of rock is
compared with the ultimate bending moment of rock to
judge whether the rock has failed or not. +e maximum
principal moment M1 and minimum principal moment M3
are obtained by equation (12), and the difference equation of
equation (12) is equation (13). +e moments (Mx)ij, (My)ij
and (Mxy)ij in equation (13) can be obtained by equation
(11). +e extreme points of the principal moment are
extracted from the cloud chart of the principal moment,
which are shown in Figure 5.
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4.2. Effect of Elastic Foundation Coefficient k2 of Backfill Body
in Backfill Mining

4.2.1. Basic Principles and Distribution Pattern of the Prin-
cipal Moment. +e elastic foundation coefficient of the
backfill body is the key material factor to decide the backfill
effect. Here, the backfill rate was 100%. +e elastic foun-
dation coefficient k2 was ∼20MN/m3–220MN/m3. When
k2 � 20MN/m3 and k2 �180MN/m3, cloud charts of the
principal moment in backfill mining were plotted, as shown
in Figures 5 and 6.

From Figures 5 and 6, we can obtain the distribution of
the principal moment during backfill mining: principal
moments M1 and M3 in the middle area of the main roof
directly overlying the backfill body were all positive bending
moments; namely, the lower surface of the main roof bores
the tensile stress and the upper surface of themain roof bores
the compressive stress in this area. +e nodal principal
moments M3 on the long side and short side area with a
certain distance to the coal wall (Lc) were negative bending
moments; namely, the upper surface of the main roof bores
the tensile stress and the lower surface of main roof bores the
compressive stress in this area.

According to the distribution characteristics of the
principal moment in Figures 5 and 6, the coordinates of the
extreme points of the main roof’s principal moment were
plotted, as shown in Figure 7.

When the value of k2 was smaller (k2 � 20MN/m3), and
according to the distribution characteristics of the principal
moment in Figure 5, the coordinates of the extreme points of
the principal moment were plotted, as shown in Figure 7(a).

+e maximum absolute value of the principal moment of
main roof in backfill area was at the midpoint with a co-
ordinate of (0, 0), which was set toMz, andMz �M1|(0, 0); the
maximum absolute value of the principal moment on the
long side area with a certain distance to the coal wall (Lc) was
the negative value of the minimum principal moment M3,
which was set toMc, the coordinates of which were (0, b+ Lc)
and (0, −b−Lc). +e distance of the Mc advancing coal wall
was set to Lc, and Mc � −M3|(0,b+Lc) � −M3|(0,−b−Lc); the
maximum absolute value of the principal moment on the
short side area with a certain distance to the coal wall (Lc)
was the negative value of the minimum principal moment
M3, which was set to Md, and the coordinates of Md are
(a+ Ld, 0) and (−a−Ld, 0).+e distance ofMd advancing coal
wall was set to Ld, and Md � −M3|(a+Ld,0) � −M3|(−a−Ld,0).

+e coordinates of the extreme points of the principal
moment from Figure 6 were plotted when k2 was larger
(k2 �180MN/m3), as shown in Figure 7(b). +e maximum
principal moment of main roof in backfill area was set toMzc
whose coordinates were (−a + Ldc, b−Lcc) and because of the
symmetry, there were four points whose moments were all
taken as Mzc(Mzc | (−a+Ldc,b−Lcc)>Mz � M1 | (0,0)). In
Figure 7(b), the maximum absolute value of the principal
moment of the long side area with a certain distance to the
coal wall (Lc) was set to Mc, and
Mc � −M3|(0,b+Lc) � −M3|(0,−b−Lc); the maximum absolute
value of the principal moment of the short side area with a
certain distance to the coal wall (Lc) wall was set to Md
(Md � −M3|(a+Ld, 0) � −M3|(−b−Lc, 0)).

As shown in Figures 5 and 6, when the value of k2
became large (k2 �180MN/m3), the maximum principal
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moment Mz in the midpoint of the main roof transferred to
the surrounding area and the points of the maximum
principal moment were in the four corners of the study area.
+e maximum absolute value of the principal moment of
main roof in the backfill area is denoted as Mzz, and Mzz
meets the following relationship: Mzz � max
M1 | (0,0), Mzc | (−a+Ldc,b−Lcc) 

Based on the above analysis, there appear to be three
types of extreme points of the principal moments: the
maximum absolute value of the principal moment Mzz of
the main roof in backfill area, the maximum absolute
value of the principal moment Mc in the long side area,

and the maximum absolute value of the principal moment
Md in the short side area. Based on the above analysis and
rock tensile properties, the lower surface of the middle
area of main roof and the upper surface of long side and
short side areas in front of the coal wall are the most
susceptible to fracturing. Using the plate model on an
elastic foundation with an elastic foundation boundary
during backfill mining, the principles governing the
fracturing of main roof are determined by the values of
Mc,Mzz andMd. +e main roof can only fracture when the
principal moment is larger than Ms (the ultimate bending
moment of the main roof ).
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During backfill mining, the principal moments and the
maximum subsidence ω0 of the main roof are related to k2,
k1, h, E and μ. +e principal movements and Lc were then
calculated with variations in the above mentioned variables
and analyzed in order to study the variations in the maxi-
mum subsidence of the main roof.

4.2.2. Effects of the Elastic Foundation Coefficient k2 of the
Backfill Body. +e following calculation examines the effect
of the elastic foundation coefficient k2 on the principal
bending moment and maximum subsidence ω0 of the main
roof.

(1) +e variation of the principal bendingmoment of the
main roof and Lc with the elastic foundation coef-
ficient k2 of the backfill body
Figure 8 shows the variations of the principal
bending moments of the main roof and Lc with the
elastic foundation coefficient k2 of the backfill body.
+e backfill body significantly reduced the value of
the maximum principal bending moment of the
main roof and improved the stability of the main
roof. +e principal bending moments (Mc, Md and
Mzz) continuously decreased with the increase in
values of k2. +e value of the principal bending
moment Mzz was highly sensitive to k2, and com-
paratively the principal bendingmomentMdwas less
sensitive. +e principal bending moments Mc and
Md were finally almost equal with an increase in k2.
In this situation, the long side and short side of the
main roof almost fractured simultaneously when the
maximum principal bending moment of the main
roof increased to the ultimate bending moment Ms.
+ere should be very little decrease in the principal
bending moments when k2 increases to some extent.
+e initial fracture position of the main roof was in
the long side area, which is located in front of the coal
wall with aMc value greater thanMs. Lc continuously
increased with the increase in k2. Specifically, when
Mc was greater than Ms, the larger the values of k2,
the further the distance between the fracture line of
main roof and the coal wall (refer to Figure 8).

(2) Variation of the maximum subsidence ω0 of the
main roof with an elastic foundation coefficient k2 of
the backfill body
Figure 9 shows the variation of the maximum
subsidence ω0 of the main roof with an elastic
foundation coefficient k2 of the backfill body. +e
maximum subsidence ω0 of the main roof appeared
to decrease with the increase in k2. +e maximum
subsidence should decrease very little when k2 in-
creases to some extent.
Using the above calculations and formulas, further
study should be conducted to further describe the
principal bending moments and the maximum
subsidence ω0 of main roof with an elastic foun-
dation coefficient k1 by varying the coal seam,

thickness h of the main roof, Young’s modulus E of
the main roof, and Poisson’s ratio μ of the main roof,
in order to better and widely study fracture prin-
ciples and subsidence of the main roof during
backfill mining.

4.3. Effect of the Elastic Foundation Coefficient k1 of the Coal
SeaminBackfillMining. +e elastic foundation coefficient k1
of the coal seam mainly reflects the limitation of the dis-
placement of the main roof. We then analyzed variations of
the principal bending moments and the maximum subsi-
dence ω0 with an elastic foundation coefficient k1.

(1) Variations in the principal bending moments and Lc
with k1.
Variations in the principal bending moments of the
main roof and the distance to the coal wall Lc with an
elastic foundation coefficient k1 are presented in
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Figure 10. +e principal bending moments (Mc, Md
and Mzz) apparently increased with the increase in
k1, and comparatively the principal bending moment
Mzz had a smaller growth rate. When the principal
moment Mc was greater than the ultimate moment
Ms, the larger the value of k1 (the harder the coal
seam), the closer the distance between the fracture
line of the main roof and the coal wall (refer to
Figure 10). +erefore, the influence of the boundary
condition on the principal bending moment of main
roof and Lc cannot be neglected. In other words, the
influence of the boundary condition on the fracture
position of main roof cannot be neglected.

(2) Variations in the maximum subsidence ω0 of the
main roof with an elastic foundation coefficient k1 of
coal seam.
+e change in the maximum subsidence ω0 with an
elastic foundation coefficient k1 of the coal seam is
presented in Figure 11. +e maximum subsidence
continuously decreased with an increase in k1,
whereas the sensitivity of the maximum subsidence
ω0 decreased with an increase in k1. +e value of the
maximum subsidence was reduced by approximately
10% with an increase in k1 (varying from 1000 to
8000MN/m3).

4.4.Effect of the/icknesshof theMainRoof. +e thickness of
the main roof can vary from mine to mine, depending on
various circumstances (geology, previous mining, etc.). +e
effects of various thicknesses h were analyzed on the
maximum subsidence ω0 and the principal bending mo-
ments in order to encompass a wide range of scenarios.

(1) Change in the principal bending moments and Lc
with h
Figure 12 graphically presents the variations of each
of the three principal bending moments and Lc with
various thicknesses of the main roof h (4–12m). +e
principal bending moments (Mc, Md and Mzz)
continuously increased with the increase in the roof
thickness. Principal bending momentMzz was highly
sensitive to h, and comparatively the principal
bending momentMdwas less sensitive.+e principal
bending moments Mc and Md were almost equal
when the thickness was relatively small (4–8m). In
such situation, the long side and short side area of the
main roof almost fractured concurrently when the
maximum principal bending moment of main roof
increased to the ultimate bending moment Ms. Lc
increased linearly with the increase in the roof
thickness. Actually, the thicker the roof, the further
the distance between the fracture line of main roof
and the coal wall (refer to Figure 12).

(2) Changes in the maximum subsidence of the main
roof with various thicknesses h
Figure 13 shows the change in the maximum sub-
sidence ω0 of the main roof with various thicknesses
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(4–12m).+emaximum subsidence of the main roof
continuously decreased with an increase in roof
thickness, and the sensitivity of the maximum
subsidence increased with an increase in the roof
thickness.

4.5. Variations of Young’s Modulus E of the Main Roof in
Backfill Mining. Young’s modulus E of the main roof was
then varied to analyze the effects on the principal bending
moment and maximum subsidence ω0.

(1) Changes in the principal bending moments and Lc
with various E
Figure 14 shows the changes in the principal bending
moments and Lc with various Young’s modulus
values E (10–75GPa). +e principal bending mo-
ments Mc and Md were almost equal when E was
relatively small (10GPa). In this condition, the long
side and short side area of the main roof almost
fractured concurrently when the maximum principal
bending moment of the main roof increased to Ms.
When the value of Young’s modulus reached 70GPa,
Mc and Mzz were nearly equal. In such situation, the
long side and themiddle area of the main roof almost
fractured simultaneously when the principal bending
moment was greater than Ms. +e larger the E, the
farther the Lc, and the farther the distance between
the fracture line of main roof and the coal wall (refer
to Figure 14). Based on the effect of Young’s modulus
on the main bending moment, we can conclude that
the greater Young’s modulus E value and the tensile
strength must also be large within the main roof to
ensure the main roof does not fracture.

(2) Change in maximum subsidence ω0 with various
Young’s modulus E values of the main roof
Figure 15 shows the change in the maximum
subsidence ω0 with an increase in Young’s modulus
E of the main roof. Maximum subsidence of the

main roof continuously decreased with an increase
in E, and the sensitivity of ω0 decreased with an
increase in E.

4.6. Effects of Poisson’s Ratio μ on the Main Roof in Backfill
Mining. Variations of the principal moments and maxi-
mum subsidence ω0 with Poisson’s ratio μ of main roof are
discussed in the following calculations. Generally, the value
of Poisson’s ratio varies from 0.1 to 0.3.

(1) Changes in the principal moments and Lc with
various Poisson’s ratio μ values
Figure 16 shows variations in principal moments and
Lc with changes in Poisson’s ratio μ (0.10–0.30). +e
principal moments (Mc, Md and Mzz) gradually in-
creased with the increase in μ, and Lc remained al-
most unchanged. Poisson’s ratio μ had little effect on
principal moments and Lc; therefore, Poisson’s ratio
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would have little effect on the position of fracturing
in the main roof.

(2) Variations of maximum subsidence ω0 of the main
roof with μ
Figure 17 shows how the maximum subsidence ω0 of
the main roof varies with μ (0.10–0.30). +e maxi-
mum subsidence slowly decreased with an increase
in Poisson’s ratio. +e maximum subsidence values
ω0 when μ� 0.1 and μ� 0.3 were almost equal.
Overall, Poisson’s ratio has little effect on the
maximum subsidence of the main roof.

4.7.Effects of k1, k2, E inBackfillMining. As observed through
the above calculations, both the distribution of the principal
bending moments of the main roof and the distance of the
advancing coal seam Lc were influenced by k1, k2 and E. +e
value of the principal bending moments decreased as k2
increased while the principal bending moments increased as
k1 increased; Lc decreased as k1 increased while Lc increased
as k2 increased; the principal bending moments and Lc
increased as E increased. +ese calculations only analyzed
the variations of the principal bending moments with a
single parameter. To better characterize backfill mining,
multiple parameters were analyzed to determine the effects
of the principal bending moments of the main roof and Lc.

(1) Variations of the principal moments and Lc with k1,
k2, E
Figure 18 shows the variations of the principal
bending moments and Lc with k1, k2, and E all taken
into consideration. +e bending moments of the
main roof and Lc did not change when k1, k2 and E
changed but the ratio of the three (k1/k2/E) remained
constant, and the fracture position was unchanged.

(2) Changes in the maximum subsidence ω0 with var-
ious k1, k2, E
Figure 19 shows the changes in the maximum
subsidence ω0 with various k1, k2 and E. +e

maximum subsidence ω0 of the main roof de-
creased gradually and the reduction extent sig-
nificantly decreased when k1, k2 and E increased
but with a constant ratio (k1/k2/E). +e principal
moments and fracture position of the main roof
remained constant with the constant ratio (k1/k2/
E), although the maximum subsidence ω0 changed
significantly.

4.8. Comparison of Model Conclusions. Under the condition
of backfill mining, the mechanical model of thin plate was
the most suitable to study the actual characteristics of
overburden movement, while the rock beam model could
only study the local mechanical characteristics in the mining
area. +erefore, the model in this paper mainly studied the
mechanical model of plate structure under the condition of
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backfill rather than the mechanical model of rock beam with
defects.

In general, the thin plate mechanical model with fixed
support boundary around the overburden in the backfill area
was widely used [31], so the comparison object selected in
this paper was the thin plate mechanical model with fixed
support boundary of four sides.

+e main differences were as follows:

(1) +e elastic foundation coefficient k2 of backfill body,
the elastic foundation coefficient k1 of the coal seam,
the thickness h, and Young’s modulus E of main roof
could affect the values and positions of the main roof
principal moments, the distance of principal mo-
ments advancing coal wall. However, the traditional
thin plate model with fixed support boundary could
not get these useful conclusions.

(2) In this paper, it was found that the fracture location
of the main roof was deep into the coal body area,
while the traditional model showed that the first
fracture location of the main roof was on the long
side of the mining area and along the coal wall, which
was independent of the boundary conditions, backfill
body parameters, thickness, and Young’s modulus of
the main roof.

(3) In particular, the weight relationship of the influ-
encing factors of main roof fracture law was ob-
tained; that is, when the ratio (k1/k2/E) was constant,
the magnitude of the principal bending moments
was constant, but the maximum subsidence changed
significantly, which could not be obtained by the
traditional plate structure model with fixed
boundary.

It could be seen that the conclusion of the traditional
model had great limitations. +e model and the conclusions
of this paper were more practical and helpful to guide the

engineering practice, which effectively made up for the
shortcomings of the traditional model.

5. Engineering Practice

Changes in the principal moments of the main roof, the
distance of theMc advancing coal wall Lc, and the maximum
subsidence ω0 with k1, k2, E, h, μ and the ratio of k1/k2/E in
backfill mining were examined to assist with forming the
basis for engineering practice. To verify the theoretical
calculations, the value of the elastic foundation coefficient k2
in the I26 backfill working face of Xingdong mine was
determined. Subsidence of main roof and support pressure
were then measured during mining.

(1) Calculating the elastic foundation coefficient of the
backfill body
+e tensile strength of themain roof was measured at
12.5MPa and the ultimate bending moment of the
main roof was 208MN m in the I26 backfill working
face. When the elastic foundation coefficient of the
backfill body was k2 � 60MN/m3, the maximum
principal moment of main roof was Mc � 199MN/
m3, and the distance of the Mc advancing coal wall
was Lc � 4m (refer to Figure 8).
To control the ground deformation and protect the
main roof from fracturing, the value of k2 of the
backfill body should be about 56–60MN/m3, while,
using previous methods [31], the thin plate me-
chanical model with fixed support boundary, to
calculate k2, the k2 would be 290MN/m3. Clearly, the
result calculated by the previous method was much
larger than that calculated by the present method.
From Figure 9 we know that the maximum subsi-
dence of main roof given by theoretical calculation
should be 44.5mm when the value of k2 is 60MN/
m3.
+e I26 working face adopted the backfill bag of
high-water material to backfill mining. In order to
meet the production need of the working face and
simultaneously ensure the convenience of backfilling
the goaf, the size of the backfill bag was designed to
be 15× 2.2× 4.8m (length×width× height). +e
high-water material used in the I26 working face was
a quick-setting high-water material.+ematerial was
prepared from the mixture of materials A and B,
which solidify after mixing for 10–20 minutes. +e
elastic foundation coefficient k2 of the prepared high-
water material was about 56–60MN/m3.

(2) Field observation
+e final main roof subsidence was about 48mm,
which was consistent with the value of theoretical
calculations presented here.
Mine pressure monitoring results showed that there
was no periodic weighting during the mining of the
I26 working face, which indicates that the main roof
did not periodically fracture, and the borehole ob-
servation also indicated that the main roof did not

M
ax

im
um

 su
bs

id
en

ce
 o

f m
ai

n 
ro

of
 (m

m
)

10

20

30

40

50

60

70

80

90

100

20
00

/1
20

/5
2

10
00

/6
0/

26

40
00

/2
40

/1
04

50
0/

30
/1

3

k1/k2/E

Figure 19: Variation of the maximum subsidence ω0 with various
k1, k2 and E.

Mathematical Problems in Engineering 13



fracture. Overall, it is feasible to determine the elastic
foundation coefficient k2 of the backfilling material
using the proposed theoretical calculation.+e result
calculated by the previous method was much larger
than that calculated by the present method. Trying to
achieve the larger elastic foundation coefficient of the
backfilling material is much more costly and ex-
cessive for the given situation. +us, the thin plate
model on the elastic foundation with an elastic
foundation boundary based on the actual boundary
of the surrounding rock can better guide practice and
can bring better economic benefits.

6. Conclusions

It is very important to establish a mechanical model that is in
line with the actual characteristics of the project to effectively
analyze and solve the mining engineering problems.

In this paper, the thin plate model with elastic foun-
dation boundary of overlying strata for backfill mining was
established, and the calculation method was given. +e
results showed that the calculation method was feasible.
+rough this model, the fracturing law of the main roof was
studied in detail, and new conclusions that the traditional
model could not get were obtained, which made up the
defects of the traditional model.

(1) +e elastic foundation coefficient k1 of the coal seam,
the elastic foundation coefficient k2 of backfill body,
the thickness h, Young’s modulus E, and Poisson’s
ratio μ of main roof could affect the values and
positions of the main roof principal moments, the
distance of principal moments advancing coal wall,
and the maximum subsidence ω0; the influence of k2
on the principal moments and maximum subsidence
ω0 of the main roof was the largest, while the in-
fluence of μwas the smallest; the values and positions
of each of the principal moments remained un-
changed but ω0 decreased significantly when k1, k2
and E increased and maintained the constant ratio
(k1/k2/E).

(2) According to the variations in the principal moment,
there were three types of initial fracturing of the
main roof: fracturing in the long side ahead of the
coal wall, fracturing in the long side ahead of the coal
wall and the middle area of the main roof simul-
taneously, and fracturing in the long side ahead of
the coal wall and short side ahead of the coal wall
simultaneously, which was helpful to effectively
monitor the fracturing position of the main roof in
engineering practice.

(3) +e elastic foundation coefficient k2 of the backfill
body calculated by the thin plate model on the elastic
foundation with elastic foundation boundary was far
less than the value of k2 calculated by the thin plate
model on an elastic foundation with fixed boundary.
Using the I26 working face as verification of the
calculation method, when the value of k2 was
56–60MN/m3, the main roof did not undergo

periodic weighting during mining. It provided a new
and more reliable calculation method for deter-
mining the elastic foundation coefficient of the
backfill body in order to protect the main roof from
fracturing.

(4) +e calculation model in this paper effectively made
up for the defects and deficiencies of the traditional
mechanical model, especially in the fracturing law of
the main roof, fracturing conditions, and the weight
relationship of the influencing factors. +e conclu-
sions promote the theoretical progress and had
important reference significance for engineering
practice.
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Since a large number of bug reports are submitted to the bug repository every day, efficiently assigning bug reports to the correct
developer is a considerable challenge. Because of the large differences between the different components of different projects, the
current bug classificationmainly relies on the components of the bug report to dispatch bug reports to the designated developer or
developer community. Unfortunately, the component information of the bug report is filled in by default according to the bug
submitter and the result is often incorrect. ,us, an automatic technology that can identify high-impact bug reports can help
developers to be aware of them early, rectify them quickly, and minimize the damages they cause. In this paper, we propose a
method based on the combination of imbalanced learning strategies such as random undersampling (RUS), random oversampling
(ROS), synthetic minority oversampling technique (SMOTE), and AdaCost algorithms with multiclass classification methods,
OVO andOVA, to solve bug reports component classification problem.We investigate the effectiveness of different combinations,
i.e., variants, each of which includes a specific imbalance learning strategy and a specific classification algorithm. We mainly
perform an analytical study on five open bug repositories (Eclipse, Mozilla, GCC, OpenOffice, and NetBeans). ,e results show
that different variants have different performance for bug reports component identification and the best performance variants are
combined with the imbalanced learning strategy RUS and the OVA method based on the SVM classifier.

1. Introduction

,ere are many studies on bug report predictions that have
been performed to help reduce software quality issues [1–5].
Software quality requires a great deal of effort in the testing
and debugging process. However, in many cases, the de-
veloper’s resources and time are limited, so many bugs
accumulate and are not fixed in the bug repository.

Anvik et al. reported their personal communication with
a Mozilla triager who explains, “everyday, almost 300 bugs
appear that need triaging, which is far too much for only the
Mozilla programmers to handle” [6]. ,erefore, it is espe-
cially important to find an effective method for improving
the efficiency of bug allocation and resolution. Many de-
veloper-recommendedmethods have been proposed to solve
bug classification problems by recommending suitable

developers for bug reports to improve the efficiency of bug
fixes. Xie et al. proposed a developer-recommended method
based on a topic model, using historical bug-solving records
to build topic models, simulating developers’ interest and
expertise in bug-solving activities, and providing a helpful
developer recommendation list for new bug reports [7]. On
this basis, Xia et al. proposed a bug-based analysis between
reports and a developer-based analysis for recommending a
suitable developer list for new bug reports by calculating the
relevance score [8]. Many researchers have proposed bug
prediction techniques to prioritize software testing and
debugging that can identify flawed components for devel-
opers and conduct considerable research on defect predic-
tion.,ese techniques predict the allocation model based on
features such as code lines, code complexity, and the number
of modified files [9–11]. Yang et al. proposed using deep
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learning techniques to predict changes in bug reports,
extracting a set of expression features from initial variation
features through deep confidence network algorithms, and
constructing machine learning classifiers based on these
expression features [12].

However, bug classification still has many problems and
faces many challenges. Large-scale and low-quality bug data in
bug repositories can prevent the usage of automatic bug
classification techniques. Since software bug data are free-form
text data, it is necessary to generate well-processed bug data to
facilitate the application [13–15]. Tamrawi et al. proposed a
cachingmodel based on fuzzy sets and knowledge based on the
professional repair of developers.,e fuzzy set is defined as the
relevant technical terms related to the bug report activities that
developers have previously participated in. Developers are
ranked by calculating the score between technical terms and
bug reports [16]. Alenezi et al. proposed an efficient bug
classificationmethod based on the term selectionmethod and a
naive Bayesian classifier to construct a prediction model. ,is
method improves the efficiency of bug classification by re-
ducing the dimensions of the terms [17]. Some researchers have
proposed automatic bug-dispatching techniques, such as
support-vector machine (SVM) [18], k-nearest neighbor al-
gorithm (KNN) [19], and naive Bayes multinomial (NBM)
[20], to ensure that bug reports are assigned to the appropriate
developers to improve the accuracy of bug allocation. Xia et al.
used different combinations of imbalanced learning strategies
and text classification algorithms to identify high-impact bug
reports.,e problem of class imbalance in bug reports is solved
through imbalancing the processing of data.

Because of the large differences in component categories
in different open source projects in the bug repository, it is
clear from the analysis that managers rely on the component
categories of bug reports to dispatch bug reports to a specific
developer or developer group. ,e multiclass classification
method OVO does not require retraining all classifiers when
adding samples and only needs to retrain the classifiers
associated with the added samples. ,e multiclass classifi-
cation method OVA only needs to train the same number of
classifiers, and the training time is relatively fast. In this
paper, we propose an automatic bug reports component
classificationmethod that combines the imbalanced learning
strategies such as random undersampling (RUS), random
oversampling (ROS), synthetic minority oversampling
technique (SMOTE), and AdaCost algorithms with the
multiclass classification methods, OVO and OVA, to solve
the automatic bug reports component classification prob-
lem. According to the mechanism of bug report classifica-
tion, each bug report component is assigned to a specific
developer or several developers. We recommend the ap-
propriate developers to implement bug report classification
through bug component classification. Since different
classification algorithms have different sensitivities to dif-
ferent categories, we explore the effectiveness of different
variants to find the optimal variant [21], i.e., each variant
contains an imbalanced learning strategy (ILS) and a clas-
sification method. To verify the validity of our proposed
model, we conduct experiments on five open source datasets:
Mozilla, GCC, NetBeans, OpenOffice, and Eclipse.

,e contributions of this article are as follows:

(i) We propose a newmodel that combines imbalanced
learning strategies and multiclass classification
methods to implement bug reports component
classification

(ii) We improve bug reports component classification
performance through different combinations of
imbalanced learning strategies and classification
algorithms, i.e., variants.

(iii) ,e validity of our proposed model is verified by
experiments for the Mozilla, GCC, NetBeans,
OpenOffice, and Eclipse projects, and the accuracy,
precision, recall, and F1 are used as the evaluation
metrics.

,e remainder of this paper is organized as follows. ,e
background knowledge and motivations are discussed in
Section 2. ,e design of our approach is discussed in Section
3. ,e experimental design and results are presented in
Section 4, and the conclusions are discussed in Section 5.

2. Background Knowledge and Motivations

2.1. Background Knowledge. Since the number of daily bugs
is large and properly assigned and the human triager has
difficulty grasping all the knowledge about bugs [22–25], it is
time consuming and error prone for humans to manually
classify bugs. Existing work uses text-based classification
methods to assist in bug classification, for example, [26–29].
Existing work uses a text-based classification approach to
assist in preventing misclassification in recommending the
correct developer. In such an approach, the summary and
description of the bug report are extracted as textual content
and the developer who can fix the bug is marked as a label for
classification. ,en, the appropriate developer is predicted
for the new bug report. Since the number of bug reports
submitted to the bug repository is very large, during the bug
classification process, developers resolve as many bug re-
ports with a high degree of impact and severity as possible.
Severity has become a key factor in determining the priority
for bug fixes. A number of prediction methods for bug
reporting severity labels have been proposed.

Xuan et al. used the modified REP algorithm and K-
nearest neighbor algorithm to predict the severity of bug
reports and fixer recommendations [30]. ,is method uses
a topic model to find the topic to which each bug belongs,
introduces topics to enhance similarity function REP, and
uses a K-nearest neighbor algorithm to search historical
bug reports similar to the new bug report. Based on fea-
tures extracted from the nearest neighbor of the new bug
severity prediction, fixer recommendations are realized.
Zhang et al. proposed a new automated method, SEVERIS,
which helps test engineers assign severity levels to bug
reports [31]. Menzies and Marcus compared the text
classification algorithms such as naive Bayes, naive Bayes
multinomial, K-nearest neighbor, and support-vector
machine to determine which particular algorithm is most
suitable for bug reporting severity level prediction. ,e
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results show that the naive Bayes multinomial algorithm
has the highest classification accuracy [32]. Lamkanfi et al.
proposed a new method of utilizing information retrieval
by analyzing the severity label assigned by historical bug
reports. Based on the document similarity function of
BM25, the severity label is predicted for the new bug report
[33]. Bug reports have serious imbalances. Tian et al.
proposed a new sampling technique, CR-SMOTE, to en-
hance the classification of bug reports with real imbal-
anced severity distributions [34]. ,is method uses the
RSMOTE sampling method combined with the ELM al-
gorithm to achieve bug severity prediction. In subsequent
research work, Chen proposed a fuzzy integral fusion
multi-RSMOTE method to solve the problem of data
distribution imbalance for the randomness problem of
RSMOTE [35, 36]. In order to address the imbalance of the
dataset, Guo et al. proposed an enhanced oversampling
approach called CR-SMOTE to enhance the classification
of bug reports with a realistically imbalanced severity
distribution [37]. Pan et al. proposed an approach to
empirically investigate the static and evolving topological
properties enclosed in the weighted software networks by
using weighted k-core decomposition [1]. In this study,
Pan et al. explored the structural properties of the mul-
tilayer software network at the class level by progressively
merging layers together, where each coupling type such as
inheritance, implements, and method call defines a specific
layer [38]. Jiang et al. proposed the ROSF method com-
bining both information retrieval and supervised learning
and recommend top-k code snippets for a given free-form
query based on two stages [39, 40]. On this basis, Pan et al.
proposed a novel approach to identify key class candidates
in object-oriented software [41–43]. Chai et al. proposed
an approach to cluster mashup services and determine the
cluster number based on a genetic algorithm [44, 45]. To
reduce the time developers spent analyzing bug reports,
Jiang et al. used crowdsourced data to infer and sum-
marized the valid attributes of bug reports [14]. To im-
prove the quality of detection bug reports, Chen et al.
proposed a new framework called the test report aug-
mentation framework (TRAF) to help developers better
understand and fix bug reports [14, 46–48].

2.2. Motivations. We find that actual data always contain
noise and redundancy [49–51]. Noise data can mislead data
analysis techniques, while redundant data can increase the
cost of data processing [52]. In the bug repository, all bug
reports are filled by developers in natural language. As the
scale grows, low-quality bugs are accumulated in the bug
repository. Such large-scale and low-quality bug data may
undermine the effectiveness of bug fixes [53, 54]. Figure 1
shows the distribution of components in the top 10,000 bug
reports for the five datasets. Because of the large number of
component categories, it is difficult to achieve accurate bug
report classification based on current classification methods.
Table 1 shows that each developer performs an average of 2-3
components with a single component allocation. In Table 1,
the second column represents an average of how each

component can be solved by several developers. ,e third
column represents how many components each developer
can solve on average. ,erefore, the rational allocation of
components directly affects the classification efficiency of
bug reports. ,e current component information is filled in
by the bug reporter and is the default option and cannot be
used directly. ,erefore, focus should be on the allocation of
the bug reports component.

Taking the OpenOffice dataset as an example, 27
components in the dataset are assigned to 1 to 5 devel-
opers, 3 components are assigned to 6 to 10 developers, 7
components are assigned to 11 to 20 developers, 6 com-
ponents are assigned to 21–30 developers, and 10 com-
ponents are assigned to more than 30 developers. Each
component is assigned to approximately 20 developers. On
average, each developer handles three components.
,erefore, we can more accurately assign a more appro-
priate developer to the bug report by identifying the bug
report component.

3. Methodology

In this section, we present the overall model for bug
component allocation problems and detail the algorithms in
the overall framework.

3.1. Overview. Inspired by the motivation in Section 2, we
propose a new method by combining an imbalance learning
strategy (ILS) with a multiclass classification method for bug
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Figure 1: ,e number of different components in the top 10,000
bug reports for the OpenOffice, NetBeans, Mozilla, GCC, and
Eclipse projects.

Table 1: Average of how each component is handled by each
developer for the OpenOffice, NetBeans, Mozilla, GCC, and Eclipse
projects.

Date Set Developer/
per_component

Component/
per_developer

OpenOffice 19.42 3.29
NetBeans 19.56 2.84
Mozilla 16.59 2.52
GCC 29.39 2.86
Eclipse 6.79 1.24
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component classification problems. ,e model consists of the
following three parts. (1) Data preprocessing: we use a text
categorization technique to convert each bug report into a
word vector based on the vector space model, which is
mentioned in [34, 41]. (2) Imbalanced processing of data:
because of the serious category imbalance in the dataset, we
use four imbalanced learning strategies, RUS, ROS, SMOTE,
andAdaCost, to process the data and obtain a balanced dataset
to make the classification results more accurate. (3) Multiclass
classification of data: we use the multiclass classification
methods, OVO and OVA, for the balanced dataset to classify
the bug component and solve the bug component classifi-
cation problem. Since different classification algorithms are
sensitive to different categories, we analyze the effectiveness of
different variants on the classification of bug reports com-
ponents, that is, an imbalanced learning strategy combined
with a specific classification algorithm. Figure 2 shows the
overall framework of our model.

3.2. Imbalanced Learning Strategy. Currently, the strategy
for solving the problem of class imbalance of data is mainly
divided into two directions. One direction starts with the
data training set and reduces the class imbalance of the
dataset by changing the sample distribution of the training
set. ,e other direction starts with the learning algorithm
according to the algorithmwhen solving the problem of class
imbalance and modifies the algorithm to improve its effi-
ciency. Many data sampling techniques have been intro-
duced in the literature [30, 41, 55]. In our study, we choose
RUS, ROS, and SMOTE methods based on changing
datasets,and the AdaCost algorithm based on cost
sensitivity.

3.2.1. Random Undersampling Method. ,e random
undersampling (RUS) method directly undersamples most
of the samples in the training set, that is, it removes some
samples in the majority class so that the number of positive
and negative examples is close and then learns.

,at is, some samples are randomly selected from the
majority class Smaj to form a sample set E, and then the
sample set E is removed from Smaj to obtain a new dataset
Snew � Smaj − E.

3.2.2. Random Oversampling Method. ,e random over-
sampling (ROS) method directly oversamples a small
number of samples in the training set, that is, it increases
some minority samples so that the number of positive and
negative examples is close and then learns.

,at is, some samples are randomly selected from the
minority class Smin, and then the sample set E is generated by
copying the selected samples, and they are added to Smin and
the original dataset is expanded to obtain a new minority
class set Snew � Smin + E.

3.2.3. Synthetic Minority Oversampling Technique. ,e basic
idea of the SMOTE method is to randomly select a sample x

∧

ifrom its nearest neighbors for each minority class sample xi

(x
∧

i
is a sample of minority classes) and then randomly select a

point on the line between xi and x
∧

i
as a newly synthesized

sample of minority classes.
,e specific method for synthesizing new minority

samples by the SMOTE method is as follows:

(i) For each sample xi in minority classes, the distance
from xi to all the samples in the sample set Smin of
minority classes is calculated according to the Eu-
clidean distance, and its k-nearest neighbors are
obtained.

(ii) A sampling ratio is set according to the sample
imbalance ratio to determine the sampling mag-
nification N. For each minority sample xi, several
samples are selected randomly from its k-nearest
neighbors, assuming that x

∧

i
is selected.

(iii) For each randomly selected nearest neighbor x
∧

i
, a

new sample is constructed with xi according to the
following formula:

xnew � xi + rand(0, 1) × x
∧

i
− xi . (1)

3.2.4. AdaCost Algorithm. ,e AdaCost algorithm learns a
classifier by iteration and updates the weight of the sample
according to the performance of the current classifier. ,e
weight update strategy greatly increases the weight of the
costly misclassification sample, and the weight of the correct
classification sample is appropriately reduced so that the
weight reduction is relatively small. ,e overall idea is that
the cost of the high sample weight is greatly reduced. ,e
sample weights are updated according to the following
formula [56]:

Dt+1(i) �
Dt(i)exp − αtht xi( yiβi( 

Zt

. (2)

β+ � − 0.5Ci + 0.5, β+ indicates the value of β in the case
where the sample is correctly classified. β− � 0.5Ci + 0.5, β−

indicates the value of β in the case where the sample is
misclassified.

3.3. Multiclass Classification Method

3.3.1. OVO Method. Assuming there are m categories, the
method creates a binomial classifier for the two categories
and obtains k�m∗ (m − 1)/2 classifiers. When classifying
new data, the k classifiers are sequentially used for classi-
fication. Each classification is equivalent to one vote, and
each of the classification results is equivalent to which class is
voted for. After classifying using all k classifiers, it is
equivalent to k-th voting and the class with the most votes is
selected as the final classification result. ,e following is a
description of the structure of the algorithm.

In line 1, y is initialized to null. Lines 2–4 indicate that a
classifier is designed between any two samples and classifiers
need to be designed. Lines 5–7 indicate that the classification
results are obtained. Lines 8–13 represent the voting strategy,
and if the sample belongs to the class, one is added. Line 14
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indicates that the class with the most votes lasting is the class
of the unknown sample. Line 17 indicates that the class score
with the most votes is returned.

3.3.2. OVA Method. Assuming there are n categories, the
method establishes n binomial classifiers; each classifier
classifies one of the categories and the remaining categories.
When making predictions, we use the n binomial classifiers
to classify the data and obtain the probability that the data
belong to the current class, and one of the categories with the
highest probability is selected as the final prediction result.
,e following is a description of the structure of the
algorithm.

In line 1, y is initialized to null. Lines 2–4 indicate that
there are n groups of classifications, i.e., n classifiers. Lines
5–11 indicate that each group of classification results h

(i)
θ (x)

is obtained, and the value with the highest probability is
selected as the prediction result. Line 12 indicates that the
maximum value of the classification value is returned.

4. Experimental Design

4.1. Experimental Datasets. To demonstrate the effective-
ness of the proposed approach, we carry out a series of
experiments on bug repositories of five large open source
projects, namely, Mozilla [57], GCC [58], NetBeans [59],
OpenOffice, [60] and Eclipse [61]. By analyzing the
components of the bug datasets in these five open source
projects, we found that there were category imbalances in
all five projects. Table 2 shows the different components
and their numbers of bug reports in these five large open
source projects. From Table 2, we found that the maximum
number of community components reached 10,473, while
the number of incubator components was only 19 for the
Eclipse project.

,erefore, we need to reduce the datasets; we read the
first 1,000 rows of data in five open source projects, and
Table 3 shows the word frequency in the five datasets and the
total number of bug reports for the original dataset. To more
accurately identify the category of bug reports, we removed
the number of bug report columns with word frequencies
less than 5 and bug reports with a category of less than 50.
Table 4 shows the categories of the processed datasets and
the number of columns after word frequency reduction.

4.2. Evaluation Metrics. We use accuracy, precision, recall,
and F1 as our evaluation metrics. ,ese metrics are com-
monly used measures for evaluating classification perfor-
mance [62].

,e number of true positives (TP) is the number in-
stances that are correctly divided into positive cases, that is,
the number of instances that are actually positive examples
and are classified into positive examples by the classifier. ,e
number of false positives (FP) is the number of instances that
are incorrectly divided into positive examples, that is, the
number of instances that are actually negative but are
classified as positive by the classifier. ,e number of false
negatives (FN) is the number of instances that are incorrectly
divided into negative examples, that is, the number of in-
stances that are actually positive but are classified as negative
by the classifier. ,e number of true negatives (TN) is the
number of instances that are correctly divided into negative
examples, that is, the number of instances that are actually
negative and are classified as negative by the classifier. Based
on the values of TP, FP, FN, and TN, the accuracy, precision,
recall, and F1 are calculated as follows.

4.2.1. Accuracy. Accuracy is the number of correctly clas-
sified samples divided by the total number of samples.
Generally, the higher the correct rate, the better the classifier.
We formally define the accuracy as follows:

Accurancy �
TP + TN

TP + FN + FP + TN
. (3)

4.2.2. Precision. Precision is the ratio that is actually divided
into positive examples. We formally define the precision as
follows:

Precision �
TP

TP + FP
. (4)

4.2.3. Recall. Recall is the proportion of positive cases that
are classified as positive examples. Mathematically, recall is
defined as

Recall �
TP

TP + FN
. (5)

Data
preprocessing

Imbalanced
processing of

data

Multiclass
classification

of data

Bug report
RUS
ROS

SMOTE
Adacost

OVO
OVA

Developer

Developer

Developer

Bug reports
component

category

Figure 2: ,e overall framework of our model.
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Input:
class y, sample i , sample j , learning algorithm H number of training T

Output:
class_score

(1) y⟵∅.
(2) For i from 1 to m do
(3) For j from 2 to m do
(4) Create a binomial classifier with samples of class i and class j, and for all samples, obtain classifiers
(5) Train the classifier to obtain the classification result.
(6) h

(i)
θ (x) � H(y � i | x; θ)

(7) h
(j)

θ (x) � H(y � j | x; θ)

(8) Voting strategy:
(9) if h

(i)
θ (x)> h

(j)

θ (x)

(10) yi increase one vote.
(11) Else
(12) yj increase one vote.
(13) End if
(14) class score � maxi�1,...,m 1≤j≠i≤m,t�1Tyi

, 1≤j≠i≤m,t�1Tyi
 

(15) End for
(16) End for
(17) Return class score

ALGORITHM 1: OVO method.

Table 2: Distribution of bug reports components in five open source projects.

Projects ,e largest number of
component names

Maximum number
of components

,e smallest number
of component names

Minimum number
of components

Total number of bug
reports (row∗ column)

Mozilla Cloud services 4243 Composer 15 (18793∗ 35365)
GCC gcc 13254 Classpath 710 (13964∗ 52405)
NetBeans Java 11593 Groovy 341 (19451∗ 40445)
OpenOffice Impress 2209 Xml 1 (23481∗ 50359)
Eclipse Community 10473 Incubator 19 (40938∗ 66029)

Input:
class y, sample i , sample j , learning algorithm H

Output:
H(x)

(1) y⟵∅.
(2) For all y from 1 to n do
(3) Choosing one class and lumping all the others into a single second class, obtain n classifiers.
(4) Repeat the previous step.
(5) Train n classifiers h

(i)
θ (x) for each class i to predict the probability that y � i.

(6) h
(1)
θ (x) � H(y � 1 | x; θ)

(7) h
(2,3,...,n)
θ (x) � H(y � 2, 3, . . . , n | x; θ)

(8) Record the probability value of the sample belonging to the current class.
(9) Repeat steps 6, 7, and 8 until all the n classifiers have been trained, and separately record the probability values of each sample

belonging to the current class.
(10) Pick the class i that maximizes.
(11) End for
(12) Return H(x) � maxi(h

(i)
θ (x))

ALGORITHM 2: OVA method.
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Table 3: Word frequency distribution of five datasets and total number of bug reports.

Project

Number of
columns
with word
frequency 1

Number of
columns
with word
frequency 2

Number of
columns
with word
frequency 3

Number of
columns
with word
frequency 4

Number of
columns
with word

frequency below 5

Number of
columns with
word frequency
greater than
or equal to 5

,e total number
of training sets
for bug reports

Mozilla 14822 2714 1310 786 19632 4406 (9048∗ 24038)
GCC 12438 2627 1287 816 17168 4638 (4851∗ 21806)
NetBeans 14121 3507 1616 874 20118 6780 (8538∗ 26898)
OpenOffice 14714 2887 1278 832 19711 4591 (9922∗ 24302)
Eclipse 15032 3232 1532 853 20649 4854 (9992∗ 25503)

Table 4: Category distribution of processed datasets and the number of columns after word frequency reduction.

Project Maximum number of categories for the
bug component

Minimum number of categories for the
bug component

Number of columns with word
frequency greater than 5

Mozilla 1089 52 4406
GCC 958 86 4638
NetBeans 2170 73 6780
OpenOffice 2770 82 4591
Eclipse 1064 52 4854

Table 5: Experimental results of the OVO and OVA methods based on the NBM, KNN, and SVM classifiers for the Mozilla dataset.

Project Classifier Evaluation metrics OVO method OVA method

Mozilla

NBM

Accuracy 0.5066 0.5066
Precision 0.5336 0.5336
Recall 0.5066 0.5066
F1 0.5074 0.5074

KNN

Accuracy Memory overflow 0.2674
Precision Memory overflow 0.3785
Recall Memory overflow 0.2674
F1 Memory overflow 0.2814

SVM

Accuracy 0.3569 0.5928
Precision 0.704 0.6015
Recall 0.3569 0.5928
F1 0.3626 0.5787

Table 6: Experimental results of the OVO and OVA methods based on the NBM, KNN, and SVM classifiers for the GCC dataset.

Project Classifier Evaluation metrics OVO method OVA method

GCC

NBM

Accuracy 0.6343 0.6179
Precision 0.6462 0.6385
Recall 0.6343 0.6179
F1 0.6389 0.6207

KNN

Accuracy 0.4356 0.4356
Precision 0.461 0.4417
Recall 0.4356 0.4356
F1 0.3817 0.4239

SVM

Accuracy 0.5705 0.6539
Precision 0.6723 0.6685
Recall 0.5705 0.6539
F1 0.4977 0.6153
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4.2.4. F-Measure. F-measure is also known as F-score.
When the precision (P) and recall (R) indicators sometimes
appear contradictory, you need to use the indicator to
consider both of them. F-measure is the weighted harmonic
average of precision and recall.

F − measure �
α2 + 1( ∗P∗R

α2∗ (P + R)
. (6)

When a� 1, it is the most common F1, i.e.,

F1 �
2∗P∗R

P + R
. (7)

5. Experimental Results

In this section, the experimental results are discussed in
relation to the specific research questions.

5.1. RQ1: Which Classification Method Has Better Classifi-
cation Effect Based on NBM, KNN, and SVMClassifiers’ OVO
and OVA Methods? To answer this question, we use the
OVO and OVA multiclass classification methods based on
NBM, KNN, and SVM classifiers, which together contain six
variants (i.e., OVO method-based NBM classifier, OVO
method-based KNN classifier, OVO method-based SVM
classifier, OVA method-based NBM classifier, OVA
method-based KNN classifier, and OVA method-based
SVM classifier) and record the experimental results. We use
accuracy, precision, recall, and F1 as evaluation criteria.
Tables 5–9 show our experimental results for the Mozilla,
GCC, NetBeans, OpenOffice, and Eclipse datasets.

From Tables 5–9, it can be seen that the OVA multiclass
classification method based on the SVM classifier improves
the effect most obviously for the five datasets. ,e experi-
mental results of the OVA method based on the SVM
classifier improved by 0.5928, 0.6015, 0.5928, and 0.5787,
respectively, for the Mozilla dataset. ,e experimental re-
sults of the OVA method based on the SVM classifier im-
proved by 0.6539, 0.6685, 0.6539, and 0.6153, respectively,
for the GCC dataset. ,e experimental results of the OVA
method based on the SVM classifier improved by 0.7892,
0.8033, 0.7892, and 0.7781, respectively, for the Eclipse
dataset. ,e experimental results of the OVA method based
on the SVM classifier improved by 0.5205, 0.5321, 0.5205,
and 0.4964, respectively, for the OpenOffice dataset. ,e
experimental results of the OVA method based on the SVM
classifier improved by 0.6160, 0.6260, 0.6160, and 0.6051,
respectively, for the NetBeans dataset. ,erefore, for the
Mozilla, GCC, NetBeans, OpenOffice, and Eclipse datasets,
the OVA method based on the SVM classifier has greater
efficiency in solving bug reports component classification
problems.

5.2. RQ2: What Is the Impact of Imbalanced Learning Strat-
egies on the Multiclass Classification OVO Method in Solving
Bug Reports Component Allocation Problems? Specifically,
the question explores whether an imbalanced learning
strategy has an impact on the OVO classification method. To
answer this question, we use the imbalanced learning
strategies RUS, ROS, SMOTE, and AdaCost algorithms to
process the Mozilla, GCC, Eclipse, OpenOffice, and Net-
Beans datasets and then use the multiclass classification
method OVO based on SVM, KNN, and NBM classifiers to

Table 7: Experimental results of the OVO andOVAmethods based
on the NBM, KNN, and SVM classifiers for the Eclipse dataset.

Project Classifier Evaluation
metrics

OVO
method

OVA
method

Eclipse

NBM

Accuracy 0.7332 0.7044
Precision 0.7706 0.7532
Recall 0.7332 0.7044
F1 0.7429 0.7185

KNN

Accuracy 0.4947 0.5292
Precision 0.6949 0.6382
Recall 0.4947 0.5292
F1 0.5045 0.5462

SVM

Accuracy 0.6417 0.7892
Precision 0.7836 0.8033
Recall 0.6417 0.7892
F1 0.616 0.7781

Table 8: Experimental results of the OVO andOVAmethods based
on the NBM, KNN, and SVM classifiers for the OpenOffice dataset.

Project Classifier Evaluation
metrics

OVO
method

OVA
method

OpenOffice

NBM

Accuracy 0.425 0.407
Precision 0.5173 0.5019
Recall 0.425 0.407
F1 0.4438 0.4226

KNN

Accuracy 0.3598 0.3747
Precision 0.4967 0.3996
Recall 0.3598 0.3747
F1 0.3584 0.37

SVM

Accuracy 0.4255 0.5205
Precision 0.6025 0.5321
Recall 0.4255 0.5205
F1 0.3497 0.4964

Table 9: Experimental results of the OVO andOVAmethods based
on the NBM, KNN, and SVM classifiers for the NetBeans dataset.

Project Classifier Evaluation
metrics

OVO
method

OVA
method

NetBeans

NBM

Accuracy 0.5024 0.4941
Precision 0.5341 0.5117
Recall 0.5024 0.4941
F1 0.5097 0.4973

KNN

Accuracy 0.3939 0.354
Precision 0.4594 0.4077
Recall 0.3939 0.354
F1 0.3834 0.3508

SVM

Accuracy 0.4614 0.616
Precision 0.6537 0.626
Recall 0.4614 0.616
F1 0.4432 0.6051
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solve the problem of bug reports component classification.
We combine ILS with OVO method based on SVM, KNN,
and NBM classifiers and an imbalanced learning strategy
combined with a classification method for the five datasets.
We use accuracy, precision, recall, and F1 as evaluation
criteria.

In addition, first, when we use RUS combined with the
OVO method based on SVM, KNN, and NBM classifiers, it
is found that RUS combined with the OVOmethod based on
the KNN classifier is the least effective compared with other
combinations. ,erefore, we use RUS and SMOTE com-
bined with the OVO method based on SVM and NBM
classifiers to carry out experiments for the five datasets.
According to RQ1, we learned that the OVO and OVA
methods based on the SVM classifier work best before the
data are imbalanced. ,erefore, we only use the algorithm-
based AdaCost to combine the OVO method based on the
SVM classifier to experiment and observe the experimental
results. Tables 10–14 show the results of our experiments
using ILS combined with the OVO method for the Mozilla,
GCC, NetBeans, OpenOffice, and Eclipse datasets.

From Tables 10–14, it can be seen that the combination
of the imbalanced leaning strategy RUS and the OVO

method based on SVM and NBM classifiers has higher ef-
ficiency in solving the bug reports component classification
problem compared to the OVO method based on the KNN
classifier for the Mozilla, GCC, NetBeans, OpenOffice, and
Eclipse datasets. ,e combination of imbalanced leaning
strategy ROS and the OVOmethod based on SVM andNBM
classifiers has the largest improvement in solving the bug
reports component classification problem compared with
other combinations for the Mozilla, GCC, NetBeans,
OpenOffice, and Eclipse datasets. From Table 10, for the
Mozilla dataset, the combination of the ROS and OVO
method based on the SVM classifier has the greatest im-
provement, increasing by 0.9288, 0.9415, 0.9288, and 0.9316,
respectively. A combination of the ROS and the OVO
method based on the NBM classifier also greatly improved
compared with other combinations, increasing by 0.8940,
0.8930, 0.8940, and 0.8906, respectively. ,e combination of
the RUS and OVO method based on the KNN classifier had
the lowest improvement, 0.0918, 0.2724, 0.0918, and 0.1042,
respectively. ,e combination of the AdaCost and OVO
method based on the SVM classifier had higher improve-
ment compared with the combination of the SMOTE and
OVO methods based on the SVM and NBM classifiers,

Table 10:,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVO method based on SVM, KNN,
and NBM classifiers for the Mozilla dataset.

Project ILS Classifier Evaluation metrics OVO method

Mozilla

RUS

SVM

Accuracy 0.2
Precision 0.525
Recall 0.2
F1 0.2294

KNN

Accuracy 0.0918
Precision 0.2724
Recall 0.0918
F1 0.1042

NBM

Accuracy 0.4408
Precision 0.4611
Recall 0.4408
F1 0.4372

ROS

SVM

Accuracy 0.9288
Precision 0.9415
Recall 0.9288
F1 0.9316

NBM

Accuracy 0.894
Precision 0.893
Recall 0.894
F1 0.8906

SMOTE

SVM

Accuracy 0.3541
Precision 0.5533
Recall 0.3541
F1 0.3817

NBM

Accuracy 0.4745
Precision 0.4907
Recall 0.4745
F1 0.4759

AdaCost SVM

Accuracy 0.5392
Precision 0.6477
Recall 0.5392
F1 0.534

Table 11: ,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVO method based on SVM, KNN,
and NBM classifiers for the GCC dataset.

Project ILS Classifier Evaluation metrics OVO method

GCC

RUS

SVM

Accuracy 0.2905
Precision 0.4873
Recall 0.2905
F1 0.265

KNN

Accuracy 0.1623
Precision 0.3543
Recall 0.1623
F1 0.0903

NBM

Accuracy 0.5213
Precision 0.5024
Recall 0.5213
F1 0.5023

ROS

SVM

Accuracy 0.9016
Precision 0.9035
Recall 0.9016
F1 0.9009

NBM

Accuracy 0.8601
Precision 0.8589
Recall 0.8601
F1 0.8589

SMOTE

SVM

Accuracy 0.5036
Precision 0.5702
Recall 0.5036
F1 0.4864

NBM

Accuracy 0.6271
Precision 0.6244
Recall 0.6271
F1 0.622

AdaCost SVM

Accuracy 0.7167
Precision 0.7127
Recall 0.7167
F1 0.682
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increasing by 0.5392, 0.6477, 0.5392, and 0.5340,
respectively.

From Table 11, for the GCC dataset, the combination of
the ROS and OVO method based on the SVM classifier had
the largest improvement, increasing by 0.9016, 0.9035,
0.9016, and 0.9009, respectively. A combination of the ROS
and OVO method based on the NBM classifier also greatly
improved compared with other combinations, increasing by
0.8601, 0.8589, 0.8601, and 0.8589, respectively. ,e com-
bination of the RUS and OVO method based on the KNN
classifier has the lowest improvement, 0.1623, 0.3543, 0.1623,
and 0.0903, respectively. ,e combination of the AdaCost
and OVO method based on the SVM classifier had higher
improvement compared to the combination of the SMOTE
and OVO method, which increased by 0.7167, 0.7127,
0.7167, and 0.6820, respectively. ,e combination of the
SMOTE and OVO method based on the NBM classifier was
more efficient than the combination of the SMOTE and
OVO method based on the SVM classifier, with elevations
of 0.6271, 0.6244, 0.6271, and 0.6220, respectively. From
Table 12, for the Eclipse dataset, the combination of the ROS
and OVO method based on the SVM classifier had the

greatest improvement, increasing by 0.9288, 0.9415, 0.9288,
and 0.9316, respectively. A combination of the ROS and
OVO method based on the NBM classifier also greatly
improved compared with other combinations, increasing by
0.9170, 0.9181, 0.9170, and 0.9154, respectively. ,e com-
bination of the RUS and OVO method based on the KNN
classifier had the lowest improvement, 0.1713, 0.4548,
0.1713, and 0.1713, respectively. ,e combination of the
SMOTE and OVO method based on the NBM classifier had
higher improvement compared with the combination of the
SMOTE, AdaCost, and OVO method based on the SVM
classifier, which increased by 0.7144, 0.7288, 0.7144, and
0.7147, respectively. From Table 13, for the OpenOffice
dataset, the combination of the ROS and OVO method
based on the SVM classifier had the greatest improvement,
increasing by 0.9204, 0.9346, 0.9204, and 0.9225, respec-
tively. A combination of the ROS and OVO method based
on the NBM classifier also greatly improved compared with
other combinations, increasing by 0.8489, 0.8496, 0.8489,
and 0.8437, respectively. ,e combination of the RUS and
OVO method based on the KNN classifier had the lowest
improvement, 0.1052, 0.1896, 0.1052, and 0.0958,

Table 12:,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVO method based on SVM, KNN,
and NBM classifiers for the Eclipse dataset.

Project ILS Classifier Evaluation metrics OVO
method

Eclipse

RUS

SVM

Accuracy 0.1923
Precision 0.572
Recall 0.1923
F1 0.2094

KNN

Accuracy 0.1713
Precision 0.4548
Recall 0.1713
F1 0.1713

NBM

Accuracy 0.5734
Precision 0.6175
Recall 0.5734
F1 0.5719

ROS

SVM

Accuracy 0.9288
Precision 0.9415
Recall 0.9288
F1 0.9316

NBM

Accuracy 0.917
Precision 0.9181
Recall 0.917
F1 0.9154

SMOTE

SVM

Accuracy 0.5842
Precision 0.6729
Recall 0.5842
F1 0.5919

NBM

Accuracy 0.7144
Precision 0.7288
Recall 0.7144
F1 0.7147

AdaCost SVM

Accuracy 0.6689
Precision 0.7966
Recall 0.6689
F1 0.6652

Table 13: ,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVO method based on SVM, KNN,
and NBM classifiers for the OpenOffice dataset.

Project ILS Classifier Evaluation metrics OVO
method

OpenOffice

RUS

SVM

Accuracy 0.1538
Precision 0.3992
Recall 0.1538
F1 0.1635

KNN

Accuracy 0.1052
Precision 0.1896
Recall 0.1052
F1 0.0958

NBM

Accuracy 0.4736
Precision 0.5044
Recall 0.4736
F1 0.475

ROS

SVM

Accuracy 0.9204
Precision 0.9346
Recall 0.9204
F1 0.9225

NBM

Accuracy 0.8489
Precision 0.8496
Recall 0.8489
F1 0.8437

SMOTE

SVM

Accuracy 0.4075
Precision 0.4693
Recall 0.4075
F1 0.3844

NBM

Accuracy 0.4455
Precision 0.469
Recall 0.4455
F1 0.4515

AdaCost SVM

Accuracy 0.4856
Precision 0.528
Recall 0.4856
F1 0.4439
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respectively. ,e combination of the AdaCost and OVO
method based on the SVM classifier had higher improve-
ment compared with the combination of the SMOTE and
OVO method based on the SVM and NBM classifiers, in-
creasing by 0.4856, 0.5280, 0.4856, and 0.4439, respectively.
From Table 14, for the NetBeans dataset, the combination of
the ROS and OVO method based on the SVM classifier had
the greatest improvement, increasing by 0.9043, 0.9125,
0.9043, and 0.9058, respectively. A combination of the ROS
and OVO method based on the NBM classifier also greatly
improved compared with other combinations, increasing by
0.8244, 0.8204, 0.8244, and 0.8175, respectively. ,e com-
bination of the RUS and OVO method based on the KNN
classifier had the lowest improvement, 0.1518, 0.3168, 0.1518,
and 0.1242, respectively. ,e combination of the AdaCost
and OVO method based on the SVM classifier had higher
improvement compared with the combination of the
SMOTE and OVO method based on the SVM and NBM
classifiers, which increased by 0.5645, 0.6295, 0.5645, and
0.5584, respectively.

,erefore, the combination of the imbalanced leaning
strategy RUS and the OVOmethod based on SVM andNBM
classifiers has higher efficiency in solving the bug reports

component classification problem compared with other
combinations for the Mozilla, GCC, NetBeans, OpenOffice,
and Eclipse datasets.

5.3. RQ3: How Much Improvement Does the Classification of
Bug Reports Component Have in Combination with the Im-
balanced Learning Strategies and the OVA Method? To an-
swer this question, we use the imbalanced learning
strategies RUSUS, ROS, SMOTE, and AdaCost algorithms
to process the Mozilla, GCC, Eclipse, OpenOffice, and
NetBeans datasets and then use the multiclass classifica-
tion method OVA based on SVM, KNN, and NBM clas-
sifiers to solve the problem of bug reports component
classification. We combine ILS with OVA method based
on SVM, KNN, and NBM classifiers and an imbalanced
learning strategy with a classification method for the five
datasets. ,en, we use accuracy, precision, recall, and F1 as
evaluation criteria and we build the classifier with refer-
ence to the combination of RQ2. Tables 15–19 show the
results of our experiments using ILS combined with the
OVA method for the Mozilla, GCC, NetBeans, Open-
Office, and Eclipse datasets.

Table 14:,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVO method based on SVM, KNN,
and NBM classifiers for the NetBeans dataset.

Project ILS Classifier Evaluation metrics OVO method

NetBeans

RUS

SVM

Accuracy 0.1729
Precision 0.2464
Recall 0.1729
F1 0.1484

KNN

Accuracy 0.1518
Precision 0.3168
Recall 0.1518
F1 0.1242

NBM

Accuracy 0.4008
Precision 0.4098
Recall 0.4008
F1 0.3966

ROS

SVM

Accuracy 0.9043
Precision 0.9125
Recall 0.9043
F1 0.9058

NBM

Accuracy 0.8244
Precision 0.8204
Recall 0.8244
F1 0.8175

SMOTE

SVM

Accuracy 0.4432
Precision 0.54
Recall 0.4432
F1 0.4366

NBM

Accuracy 0.5019
Precision 0.5089
Recall 0.5019
F1 0.5028

AdaCost SVM

Accuracy 0.5645
Precision 0.6295
Recall 0.5645
F1 0.5584

Table 15: ,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVA method based on SVM, KNN,
and NBM classifiers for the Mozilla dataset.

Project ILS Classifier Evaluation metrics OVA method

Mozilla

RUS

SVM

Accuracy 0.4612
Precision 0.493
Recall 0.4612
F1 0.4503

KNN

Accuracy 0.1346
Precision 0.3396
Recall 0.1346
F1 0.156

NBM

Accuracy 0.3693
Precision 0.3876
Recall 0.3693
F1 0.3612

ROS

SVM

Accuracy 0.946
Precision 0.9483
Recall 0.946
F1 0.945

NBM

Accuracy 0.7424
Precision 0.7683
Recall 0.7424
F1 0.742

SMOTE

SVM

Accuracy 0.4834
Precision 0.5162
Recall 0.4834
F1 0.4901

NBM

Accuracy 0.4237
Precision 0.4424
Recall 0.4237
F1 0.4188

AdaCost SVM

Accuracy 0.4701
Precision 0.58
Recall 0.4701
F1 0.4549
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From Table 15, for the Mozilla dataset, the combination
of the ROS and OVA method based on the SVM classifier
had the greatest improvement, increasing by 0.9460, 0.9483,
0.9460, and 0.9450, respectively. A combination of the ROS
and OVA method based on the NBM classifier also greatly
improved compared with other combinations, increasing by
0.7424, 0.7683, 0.7424, and 0.7420, respectively. ,e com-
bination of the RUS and OVA method based on the KNN
classifier had the lowest improvement, 0.01346, 0.3396,
0.1346, and 0.1569, respectively. ,e combination of the
SMOTE and OVA method based on the SVM classifier had
higher improvement compared with the combination of the
SMOTE and OVA method based on the NBM classifier, and
the combination of the AdaCost and OVA method based on
the SVM classifier increased by 0.4834, 0.5162, 0.4834, and
0.4901, respectively. From Table 16, for the GCC dataset, the
combination of the ROS and OVA method based on the
SVM classifier had the largest improvement, increasing by
0.9190, 0.9198, 0.9190 and 0.9185, respectively. A combi-
nation of the ROS and OVA method based on the NBM
classifier also greatly improved compared to other combi-
nations, increasing by 0.8260, 0.8320, 0.8260, and 0.8235,
respectively. ,e combination of the RUS and OVA method

based on the KNN classifier has the lowest improvement,
0.2222, 0.4332, 0.2222, and 0.1807, respectively. ,e com-
bination of the AdaCost and OVA method based on the
SVM classifier had higher improvement compared with the
combination of the SMOTE and OVAmethods based on the
SVM and NBM classifiers, which increased by 0.7116,
0.6950, 0.7116, and 0.6899, respectively. ,e combination of
the SMOTE and OVA methods based on the NBM classifier
was more efficient than the combination of the SMOTE and
OVA method based on the SVM classifier, with elevations
of 0.6069, 0.6186, 0.6096, and 0.6114, respectively. From
Table 17, for the Eclipse dataset, the combination of the ROS
and OVA method based on the SVM classifier had the
greatest improvement, increasing by 0.9460, 0.9483, 0.9460,
and 0.9450, respectively. A combination of the ROS and
OVA method based on the NBM classifier also greatly
improved compared with other combinations, increasing by
0.8705, 0.8745, 0.8705, and 0.8694, respectively. ,e com-
bination of the RUS and OVA method based on the KNN
classifier had the lowest accuracy value, recall value, and F1
value of 0.2762, 0.2762, and 0.2967, respectively. ,e
combination of the AdaCost and OVA method based on the
SVM classifier had higher improvement compared with the

Table 16:,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVA method based on SVM, KNN,
and NBM classifiers for the GCC dataset.

Project ILS Classifier Evaluation metrics OVA method

GCC

RUS

SVM

Accuracy 0.5042
Precision 0.4818
Recall 0.5042
F1 0.4784

KNN

Accuracy 0.2222
Precision 0.4332
Recall 0.2222
F1 0.1807

NBM

Accuracy 0.4786
Precision 0.4687
Recall 0.4786
F1 0.4668

ROS

SVM

Accuracy 0.919
Precision 0.9198
Recall 0.919
F1 0.9185

NBM

Accuracy 0.826
Precision 0.832
Recall 0.826
F1 0.8235

SMOTE

SVM

Accuracy 0.5777
Precision 0.6044
Recall 0.5777
F1 0.5556

NBM

Accuracy 0.6096
Precision 0.6186
Recall 0.6096
F1 0.6114

AdaCost SVM

Accuracy 0.7116
Precision 0.695
Recall 0.7116
F1 0.6899

Table 17: ,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVA method based on SVM, KNN,
and NBM classifiers for the Eclipse dataset.

Project ILS Classifier Evaluation metrics OVA method

Eclipse

RUS

SVM

Accuracy 0.5909
Precision 0.6701
Recall 0.5909
F1 0.5906

KNN

Accuracy 0.2762
Precision 0.6386
Recall 0.2762
F1 0.2967

NBM

Accuracy 0.5419
Precision 0.6012
Recall 0.5419
F1 0.5404

ROS

SVM

Accuracy 0.946
Precision 0.9483
Recall 0.946
F1 0.945

NBM

Accuracy 0.8705
Precision 0.8745
Recall 0.8705
F1 0.8694

SMOTE

SVM

Accuracy 0.6956
Precision 0.7412
Recall 0.6956
F1 0.7

NBM

Accuracy 0.6966
Precision 0.7157
Recall 0.6966
F1 0.7018

AdaCost SVM

Accuracy 0.7651
Precision 0.8155
Recall 0.7651
F1 0.7673
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combination of the SMOTE and OVA method based on the
SVM and NBM classifiers, which increased by 0.7651,
0.8155, 0.7651, and 0.7673, respectively. ,e combination of
the SMOTE and OVA method based on the NBM classifier
had higher accuracy value, recall rate, and F1 value com-
pared with the combination of the SMOTE and OVA
method based on the SVM classifier, with elevations of
0.6966, 0.6966, and 0.7018, respectively. From Table 18, for
the OpenOffice dataset, the combination of the ROS and
OVA method based on the SVM classifier had the greatest
improvement, increasing by 0.9300, 0.9335, 0.9300, and
0.9265, respectively. A combination of the ROS and OVA
method based on the NBM classifier also greatly improved
compared with other combinations, increasing by 0.7723,
0.7838, 0.7723, and 0.7647, respectively. ,e combination of
the RUS and OVA method based on the KNN classifier had
the lowest improvement, 0.1497, 0.3197, 0.1497, and 0.1534,
respectively. ,e combination of the SMOTE and OVA
method based on the SVM classifier had higher improve-
ment compared with the combination of the SMOTE and
OVA method based on the NBM classifier, and the com-
bination of the AdaCost and OVA methods based on the
SVM classifier increased by 0.4414, 0.4764, 0.4414, and

0.4305, respectively. From Table 19, for the NetBeans
dataset, the combination of the ROS andOVAmethod based
on the SVM classifier had the greatest improvement, in-
creasing by 0.9197, 0.9178, 0.9197, and 0.9172, respectively. A
combination of the ROS and OVA method based on the
NBM classifier also greatly improved compared with other
combinations, increasing by 0.7381, 0.7463, 0.7381, and
0.7350, respectively. ,e combination of the RUS and OVA
method based on the KNN classifier had the lowest im-
provement, 0.1476, 0.1810, 0.1476, and 0.1170, respectively.
,e combination of the AdaCost and OVAmethod based on
the SVM classifier had the highest accuracy value, the
precision rate value, and the recall rate value compared with
the combination of the SMOTE and OVA method based on
the SVM and NBM classifiers which increased by 0.5346,
0.5869, and 0.5346, respectively.

,erefore, the combination of the imbalanced leaning
strategy RUS and the OVAmethod based on SVM and NBM
classifiers had higher efficiency in solving the bug reports
component classification problem compared with other
combinations for the Mozilla, GCC, NetBeans, OpenOffice,
and Eclipse datasets.

Table 19: ,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVA method based on SVM, KNN,
and NBM classifiers for the NetBeans dataset.

Project ILS Classifier Evaluation metrics OVA
method

NetBeans

RUS

SVM

Accuracy 0.4683
Precision 0.4701
Recall 0.4683
F1 0.4586

KNN

Accuracy 0.1476
Precision 0.181
Recall 0.1476
F1 0.117

NBM

Accuracy 0.3713
Precision 0.3804
Recall 0.3713
F1 0.3699

ROS

SVM

Accuracy 0.9197
Precision 0.9178
Recall 0.9197
F1 0.9172

NBM

Accuracy 0.7381
Precision 0.7463
Recall 0.7381
F1 0.735

SMOTE

SVM

Accuracy 0.5329
Precision 0.568
Recall 0.5329
F1 0.5239

NBM

Accuracy 0.4775
Precision 0.4809
Recall 0.4775
F1 0.4723

AdaCost SVM

Accuracy 0.5346
Precision 0.5869
Recall 0.5346
F1 0.5217

Table 18:,e results of our classification using the ILS (RUS, ROS,
SMOTE, and AdaCost) and OVA method based on SVM, KNN,
and NBM classifiers for the OpenOffice dataset.

Project ILS Classifier Evaluation metrics OVA
method

OpenOffice

RUS

SVM

Accuracy 0.4291
Precision 0.4885
Recall 0.4291
F1 0.4325

KNN

Accuracy 0.1497
Precision 0.3197
Recall 0.1497
F1 0.1534

NBM

Accuracy 0.4291
Precision 0.438
Recall 0.4291
F1 0.4256

ROS

SVM

Accuracy 0.93
Precision 0.9335
Recall 0.93
F1 0.9265

NBM

Accuracy 0.7723
Precision 0.7838
Recall 0.7723
F1 0.7647

SMOTE

SVM

Accuracy 0.4414
Precision 0.4764
Recall 0.4414
F1 0.4305

NBM

Accuracy 0.4204
Precision 0.4438
Recall 0.4204
F1 0.4222

AdaCost SVM

Accuracy 0.4378
Precision 0.4714
Recall 0.4378
F1 0.3749

Mathematical Problems in Engineering 13



6. Conclusion

In this article, we propose a new method by combining
imbalanced learning technologies with multiclass classifi-
cation methods to implement bug reports component
classification problems. We use four imbalanced processing
strategies, RUS, ROS, SMOTE, and AdaCost, to process the
data and obtain a balanced dataset. ,en, we use the mul-
ticlass classification methods, OVO and OVA, based on
NBM, KNN, and SVM classifiers for the balanced dataset to
classify the bug reports component and solve the bug reports
component classification problem. We explored the optimal
performance of bug reports component classifications by
different combinations of imbalanced learning strategies and
classification algorithms. We can better solve the problem of
bug reports classification by using the bug component
classification to determine the appropriate developer for the
bug report. In our work, we could not only reduce the word
dimension of the original training set that improves the
quality of the training set but also improve the classification
performance for bug reports.
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Service-oriented computing has become a promising way to develop software by composing existing services on the Internet.
However, with the increasing number of services on the Internet, how to match requirements and services becomes a difficult
problem. Service clustering has been regarded as one of the effective ways to improve service matching. Related work shows that
structure-related similarity metrics perform better than semantic-related similarity metrics in clustering services.+erefore, it is of
great importance to propose much more useful structure-related similarity metrics to improve the performance of service
clustering approaches. However, in the existing work, this kind of work is very rare. In this paper, we propose a SCAS (service
clustering approach using structural metrics) to group services into different clusters. SCAS proposes a novel metric A2S (atomic
service similarity) to characterize the atomic service similarity as a whole, which is a linear combination of C2S (composite-
sharing similarity) and A3S (atomic-service-sharing similarity). +en, SCAS applies a guided community detection algorithm to
group atomic services into clusters. Experimental results on a real-world data set show that our SCAS performs better than the
existing approaches. Our A2S metric is promising in improving the performance of service clustering approaches.

1. Introduction

Web service is a new web application mode that has been
widely distributed and invoked on the whole Internet [1, 2].
With the rapid development of SaaS (software-as-a-service)
and SOA (service-oriented architecture) technologies, web
services on the Internet are showing a trend of rapid growth
[1, 2]. +e traditional way to develop software has moved to
service-oriented development. More and more software
systems are developed by composing existing services on
the Internet, and it has become a promising way to develop
software. +ere are a large number of web services with
different types on the Internet, which makes the matching
of requirements and services become a complex process
that needs to be solved through a process composed of
many steps such as clustering, selection, and evaluation of
services [3]. +us, in the initial stage of service matching,
how to cluster services has become an urgent problem for

the selection of service set that can meet the requirements
of users.

Service clustering has been widely regarded as one of the
effective ways to improve service matching [1]. In the lit-
erature, many different clustering approaches have been
proposed to group services into clusters. Among them, the
most widely used approaches are based on the mining of
features of WSDL documents [4–6]. +ese approaches first
extract key features such as WSDL description, WSDL type,
WSDL port, and web service name from the WSDL docu-
ment. +en, based on these extracted features, they calculate
the service similarity between services by using methods like
cosine similarity, so as to organize services into clusters.
However, due to the fact that WSDL documents usually
contain few descriptions, these approaches usually fail to
achieve satisfactory clustering results. Worse still, these
approaches usually ignore the semantic association between
services. +erefore, many other approaches based on the
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LDA topic model and its extensions have been proposed
[1, 2]. +ey first extract the hidden topics in web services,
and then use low-dimensional topic vectors to encode the
functional attributes of web services. Finally, they calculate
the similarity between services so as to organize services into
different clusters. +e experimental results show that these
topic model-based approaches can achieve good results.
However, the WSDL documents for web services are usually
short in length, containing very little semantic (or func-
tional) information that can be used by LDA-based clus-
tering approaches. +us, the semantic-related similarity
metrics seem to not perform better than structure-related
similarity metrics in clustering web services [1]. +erefore, it
is of great importance to propose much more useful
structure-related similarity metrics to promote the perfor-
mance of service clustering approaches.

+e purpose of this work is to propose some novel
structure-related similarity metrics so as to combine them
together to quantify the similarity between services as a
whole. It is expected that the novel similarity metrics can be
used to improve the performance of service clustering ap-
proaches. In this paper, we propose a SCAS (service clus-
tering approach using structural metrics) approach to group
services into different clusters. First, SCAS uses an ASAN
(atomic service affiliation network) to represent composite
services, atomic services, and their relationships. Based on
the ASAN, we propose our first structural metric, C2S

(composite-sharing similarity) which is a similarity owing to
the sharing of common composite services. Second, by
projecting the ASAN onto the atomic services, we build an
ASDN (atomic service dependency network) to denote
atomic services and their relationships. Based on ASDN, we
propose our second structural metric, A3S (atomic-service-
sharing similarity) which is a similarity owing to the sharing
of common atomic services. +ird, we propose the final
structural metric, A2S (atomic service similarity) to char-
acterize the atomic service similarity as a whole, which is a
linear combination of C2S and A3S. Finally, we propose a
SSN (service similarity network) and a community detection
algorithm, GUIDA (Guided community detection algo-
rithm), to find the community structures in the SSN. +e
communities correspond to the atomic service clusters.
GUIDA only takes the similarity between atomic services as
its input and can determine the number of clusters for the
atomic service set automatically. Our experimental study is
carried out on a real-world service data set collected from a
famous service directory ProgrammableWeb (PWeb)
(https://www.programmableweb.com). +e comparative
studies show that our approach performs better than
C2S-based approaches and semantic-based approaches.

+e main contributions of this paper can be summarized
as follows:

(i) +e introduction of a novel structural metric to
characterize the service similarity, which combines
two structure similarity metrics simultaneously, i.e.,
one is proposed to characterize the composite-
sharing similarity and the other one is used to
characterize atomic-service-sharing similarity. Our

metric is very different from the existing structural
similarity metrics which usually only character the
composite-sharing similarity, ignoring the atomic-
service-sharing similarity.

(ii) +e application of a parameter-free community
detection algorithm to detect the communities and
group services into clusters. Our approach only
takes the similarity between services as the input
and can determine the number of clusters in the
service set automatically. It is very different from the
existing approaches which needs to set the number
of clusters beforehand to cluster services.

(iii) A real-world data set is built to validate our ap-
proach empirically, which is very different from
those approaches using a simulation way to validate
their approaches.

+e reminder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 presents our
SCAS approach, with the focus on service networks, simi-
larity metrics, and the GUIDA algorithm used to group
services into clusters. Section 4 presents the empirical val-
idation of our SCAS approach. We draw conclusions in
Section 5.

2. Related Work

As mentioned above, service clustering is one of the effective
technologies to help the matching of requirements and
services. Its main goal is to group services into different
clusters according to the similarity of their functions.
Generally, services in the same cluster are similar to each
other while services in different clusters are different. Till
now, lots of service clustering approaches have been pro-
posed. According to the information that they used to
characterize service similarity, they can be roughly divided
into two categories: function-based service clustering ap-
proaches [1, 7–11] and nonfunction-based clustering ap-
proaches [12–16].

Function-based service clustering approaches employed
the functional information of services (e.g., description
documents, tags) to group services into clusters. Chen et al.
[7, 8] proposed an improved service clustering approach
which integrates WSDL documents and service tags to
improve clustering accuracy. +ey think that tags represent
the functional characteristics of services, which can be
combined with WSDL documents to much more accurately
determine the functional category of services. Shi et al. [9]
first organized words in the service description of all services
according to semantics using the Word2Vec, and then they
proposed an improved clustering approach by considering
the auxiliary function of the words which belong to the same
cluster with the words in the service description document.
Liu et al. [10] first trained a preliminary SVM classifier based
on a small set of manually labeled samples. +en, they
recommended potential labels for other services that are not
manually labeled based on the SVM classifier. Finally, ser-
vices are clustered based on these labeled samples. Cao et al.
[11] extracted the hidden topic information of mashup
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services based on the LDA topic model, and then clustered
the mashup services based on the LDA topic model. Chen
et al. [8] proposed an enhanced probabilistic topic model
(WT-LDA), which can model Web service description
documents and service tag information simultaneously so as
to group services into clusters. Shi et al. [9] proposed a
Mashup-API-Tag probabilistic topic model to model the
service description, label information, and the composite
relationship information among services, so as to improve
the accuracy of topic information extraction. Pan and Chai
[1] proposed a novel mashup service clustering approach
based on a structural similarity and a genetic algorithm-
based clustering algorithm. +eir approach can group
mashup services into clusters effectively and determine the
number of clusters automatically.

Nonfunction-based clustering approaches employed the
nonfunctional information of services (e.g., QoS and physical
locations) to group services into clusters. Liu et al. [12]
proposed a service clustering algorithm based on an ontology
which contains the information of service name, perfor-
mance, interface, and QoS attributes. Zhou et al. [13] used a
genetic algorithm to group services into clusters by using the
QoS information of services. To avoid converging to a local
optimum, they introduced the concept of entropy to measure
and improve the population diversity of their genetic algo-
rithm. Chen et al. [14] proposed a service clustering algorithm
based on the historical QoS data with similar physical
characteristics to ensure that services in the same cluster have
similar physical environment characteristics. +ese clustering
algorithms only consider nonfunctional attributes, thus
usually have a relatively small value of execution complexity.
However, these algorithms usually do not have good scal-
ability because nonfunctional attributes of services are often
difficult to obtain and unstable.

Generally, the structure-related similarity metrics
perform better than semantic-related similarity metrics
in grouping services into clusters since the WSDL doc-
uments and service descriptions do not always carry a lot
of function-related information. However, to the best of
our knowledge, there is only one structure-related
similarity metric, C2S (composite-sharing similarity) [3].
+erefore, it is of great importance to propose much
more useful structure-related similarity metrics to pro-
mote the performance of service clustering approaches.
In this work, we proposed an atomic-service-sharing
similarity metric. Our metric is different from C2S. Our
metric is based on the sharing relationship of atomic
services while C2S is based on the sharing relationship of
composites.

3. SCAS Approach

In this paper, SCAS approach is proposed to group services
into different clusters. It is composed of four steps: (1) SCAS
uses an ASAN to represent composite service, atomic ser-
vices, and their relationships and proposes the C2S metric.
(2) SCAS builds an ASDN to denote atomic services and
their relationships and proposes the A3S metric. (3) SCAS
proposes the A2S metric to characterize the atomic service

similarity as a whole. (4) SCAS applies a community de-
tection algorithm to find the service clusters in the set of
atomic services. +e workflow of the SCAS approach is
shown in Figure 1.

3.1. Services ProfileCrawling. To group services into clusters,
the first work that we should do is to craw the profile of
services to be clustered. Generally, the profile of services are
usually registered in a registration center where people can
share their own developed services with other people over
the world. Furthermore, people can find the right services to
meet their requirements by searching and browsing in the
registration center.

To the best of our knowledge, there are many famous
service registration centers such as ProgrammableWeb
(PWeb) (https://www.programmableweb.com), myExperi-
ment (https://www.myexperiment.org/home), and Bio-
catalogue (https://www.biocatalogue.org). To carry out the
service clustering work, we will crawl the profile of services
stored in these registration centers. +e information in-
cludes service name, the lower level services each composite
service used, and the category each service belongs to. +e
information will be stored in the local database as to reduce
the noises and finally build the data set for SCAS to perform
the service clustering task.

3.2. Service Network Construction. Complex network theory
has been widely used in software engineering to quantify
software structure [17, 18], identify key classes [19, 20], and
measure software quality [21–23]. In this work, to quantify
the service similarity as a whole, we also apply the complex
network theory and build three service networks, i.e., ASAN
(atomic service affiliation network), ASDN (atomic service
dependency network), and SSN (service similarity network),
which are defined as follows.

3.2.1. Atomic Service Affiliation Network

Definition 1. ASAN is an affiliation network that can be
denoted formally as ASAN � (Vc, Va, E), where Vc denotes
the node set of composite service, Va denotes the node set of
atomic services, and E denotes the unweighted undirected
edge set between every pair of composite service and atomic
service if the composite service uses the atomic service, i.e., if
vi ∈ Vc uses vj ∈ Va, then it follows that vi, vj  ∈ E. ASAN
is essentially a two-mode graph. As a two-mode graph, any
edge can only exist between the different node sets Vc and
Va, i.e., Vc ∩Va � ∅. To be specific, if (vi, vj) ∈ E, then it
follows that vi ∈ Vc and vj ∈ Va. E will be associated with a
|Vc| × |Va| adjacency matrix ψ to encode the “use” re-
lationships between a specific pair of composite service and
atomic service. +e entry of ψ, ψij, is defined as

ψij �
1, vi, vj  ∈ E,

0, otherwise.

⎧⎨

⎩ (1)

We use a simple example shown in Figure 2 to show the
idea to build the ASAN. +e example is chosen from our
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data set used in Section 4 and is borrowed from [1, 2]. As
shown in the example, the composite service (i.e., mashup
“Facebook Friend Plotter (https://www.programmableweb.
com/mashup/facebook-friend-plotter)”) consists of three
atomic services (i.e., APIs “Google Ajax Search (https://www.
programmableweb.com/api/google-ajax-search),” “Facebook
(https://www.programmableweb.com/api/facebook),” and
“Google Maps (https://www.programmableweb.com/api/
google-maps)”). +us, in the corresponding ASAN, there
exist three edges between composite service “Facebook Friend
Plotter” and the other three atomic services “Google Ajax
Search,” “Facebook,” and “Google Maps.” By taking a similar
way, we can establish other edges in the ASAN.

3.2.2. Atomic Service Dependency Network. ASAN describes
the macro composition information between composite
services and atomic services, and it also implicitly reflects the
composition potential between the atomic services that exist
in the same composite services. In other words, if two atomic
services vj ∈ Va and vk ∈ Va are used together in ≥1 com-
posite service(s), it follows that vj ∈ Va and vk ∈ Va have the
probability to be composed together to build a composite
service. +us, in this work, we will build an ASDN (atomic
service dependency network) to capture atomic services and
their composition potential.

Definition 2. ASDN can be formally denoted as
ASDN � (Va, Ea), where Va denotes the node set of atomic
services (Va is the same as that in ASAN) and Ea is the edge
set between atomic services, signifying the composition
potential between the atomic services, i.e., if (vj, vk) ∈ Ea,
and then it follows that vj and vk have the probability to be
composed together. Each edge will be assigned a weight to
denote the number of composite services that the two atomic
services commonly participate in. Ea will be associated with
a |Va| × |Va| adjacency matrix ψa to encode the composition
relations between a specific pair of atomic services.+e entry
of ψa, ψa

ij, is defined as

ψa
ij �

w, vi, vj  ∈ Ea,

0, otherwise,

⎧⎨

⎩ (2)

where w is the weight assigned to the edge vi, vj  ∈ Ea,
denoting the number of composite services that the two
atomic services commonly participate in.

We also use a simple example shown in Figure 3 to show
the idea to build the ASDN. ASDN is constructed from the
example shown in Figure 2. As is shown in the example, since
the composite service “Facebook Friend Plotter” uses the
function of atomic services “Google Ajax Search” and “Google
Maps,” an edge between the node of “Google Ajax Search” and
the node of “Google Maps” will be established in Figure 3. We
establish all other edges in Figure 3 by taking a similar way.

Service registries

Clusters

Data crawling

GUIDA algorithm

Data cleaning

Service profiles

Parsing

Atomic
services

Composite
services

1..∗
0..∗Compose

Relationship graph

Compute C2S
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A3S similarity matrix
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C2S and
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Figure 1: +e workflow of SCAS. +e workflow is adapted from that of [1, 2].
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In this work, ASDN is built by using the one-mode
projection of ASAN on atomic services. Specifically, if two
atomic services are used together in ≥1 composite service(s),
then it follows that an edge will be established between the
two atomic services in ASDN.

3.2.3. Service Similarity Network. We use SSN to denote
services and their similarity relationships. +us, SSN can be
defined as follows:

Definition 3. SSN can be formally denoted as
SSN � (Va, Es), where Va denotes the node set of atomic
services (Va is the same as that in ASAN and ASDN) and Es

is the edge set between atomic services, signifying the
similarity relationships between the atomic services, i.e., if
(vj, vk) ∈ Es, and then it follows that vj and vk are similar to
each other. Each edge will be assigned a weight to denote the
similarity between the two atomic services. Es will be as-
sociated with a |Va| × |Va| adjacency matrix ψs to encode the
similarity relations between a specific pair of atomic services.
+e entry of ψs (ψs

ij) is defined as

ψs
ij �

A2S(s, t), s, t{ } ∈ Es,

0, otherwise,
 (3)

where A2S(s, t) is the similarity between atomic services s
and t, which will be computed in Section 3.3.

3.3. Service Similarity Metrics. To group services into clus-
ters, we usually need to quantify service similarity as a whole.
In this work, service similarity is measured from the per-
spective of structure. As mentioned above, in this work, we
quantify service similarity using two structure-related
metrics, C2S (composite-sharing similarity) and A3S

(atomic-service-sharing similarity). +e service similarity as
a whole is measured as the integration of C2S and A3S.

If the composite-sharing similarity between two atomic
services s and t is denoted as C2S(s, t), then it can be defined
as

C2S(s, t) �
Ns ∩Nt




Ns ∪Nt



, (4)

where Ns and Nt denote the number of composite services
that atomic services s and t are used, respectively.

If the atomic-service-sharing similarity between two
atomic services s and t is denoted as A3S(s, t), then it can be
defined as

A3S(u, v) �

ψa
st


n
k�1ψa

st

, 

Va| |

k�1
ψa

kt ≠ 0,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Obviously, A3S(s, t) is the ratio of ψa
st relative to the total

number of weights on the edges that link to vt; otherwise,
A3S(s, t) equals 0.

Furthermore, the atomic-service-sharing similarity be-
tween atomic services s and t is denoted as the maximum
value of A3S(s, t) and A3S(t, s), i.e.,

A3S(s, t) � A3S(t, s) � max(A3S(s, t), A3S(t, s)). (6)

+en, the total similarity between atomic services s and t,
A2S(s, t), can be defined as

A2S(s, t) � λ × C2S(s, t) +(1 − λ) × A3S(s, t), (7)

where λ is the weight assigned to the component of equation
(7).

In this work, λ is determined by CV (coefficient of
variation) [24], which refers to a statistical metric that is
used to measure the distribution of data points in a data
series around the mean. CV is a helpful statistic in
comparing the degree of variation from one data series to
the other. CV is computed by deriving the ratio between
the standard deviation and the mean. +us, CV is defined
as

CV �
std

mean
, (8)

where std and mean are the standard deviation and mean of
the sample, respectively.

In this work, we will first compute C2S(s, t) (or
A3S(s, t)) for all pairs of atomic services s and t (s, t ∈ Va).
+en, we compute the std and mean for the C2S(s, t) (or
A3S(s, t)) set so as to obtain the CV for C2S (or A3S). If we
use CVc2s (or CVa3s) to denote the CV for C2S (or A3S), then
it follows that

λ �
CVc2s

CVc2s + CVa3s

. (9)

3.4. Community Detection Algorithm

3.4.1. Modularity Q. In the literature, many different
community detection algorithms have been proposed to
organize nodes in a network into communities. Among
them, a popular way used is to optimize a Q index [21, 25].
Q is short for modularity, which is used to quantify the
quality of a specific partition of a network into commu-
nities. Q is based on the measurement of density of edges
within communities compared with edges between

ASDN
Google Ajax Search Facebook Flickr

Google Maps Global Biodiversity
Information Facility

Figure 3: Illustration of ASDN.
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communities. In this work, we also applied Q to measure
the quality of a specific clustering solution of atomic ser-
vices. For SSN, a weighted undirected network, Q can be
defined as

Q �
1
2m


ij

Aij −
kikj

2m
 δ ci, cj , (10)

where m denotes the sum of the weight on all edges in the
SSN, Aij denotes the weight assigned to edge i, j  or ( j, i ),
ki and kj are the sum of the weight on the edges linking to
nodes i and j, respectively, ci and cj denote the communities
into which nodes i and j are organized, respectively, and δ
returns 1 when ci equals cj, 0, otherwise.

In the process of community detection in SSN, once an
atomic service is moved from one community to another
community, Q will be recalculated to decide whether to
accept or reject this movement.

3.4.2. Community Detection Algorithm Flow. In this work, a
Guided community detection algorithm (GUIDA) is in-
troduced to perform the community detection task in SSN.
GUIDA is originally proposed to refactor the class structure
[22, 23]. +e “guide” means GUIDA is different from the
traditional community detection algorithms using a guid-
ance way. Its “guide” reflects mainly in two aspects:

(i) Guide the initial division: composite services
consist of a set of related atomic services. +us,
composite services can be seen as the initial com-
munities of atomic services. +ere is no need to
start the community detection process using a
random way by assigning each atomic service to a
random community. In this work, we will guide the
initial division by grouping the atomic services in
the same composite service to a same community.
However, this will make some atomic services be-
long to different communities since some atomic
services may participate in the composition of ≥1
composite service(s). +us, in this work, we first
assign atomic services participating in the com-
position of ≥1 composite service(s) to different
communities. +en, for the atomic services par-
ticipating in the composition of only one composite
service, they will be assigned to the community of
the atomic services that they are most similar to that
in the SSN. Finally, for the remainder of the atomic
services, we will assign them to a random
community.

(ii) Guide the atomic-service-moving process: GUIDA
groups atomic services into communities by a series
of atomic-service-moving operations. In this work,
the atomic-service-moving operation can only
happen at atomic services linking to other atomic
services in ASDN and belonging to different
communities.

In Algorithm 1, we show the flow of GUIDA, where
array depend [·][·] stores ψa of ASDN; array sim [·][·] stores

ψs of SSN; deg [·] is an array storing the degree of atomic
services in ASAN, e.g., atomic service i has degree deg [i];
community [·] is an array storing the community identifiers
for all atomic services, e.g., atomic service i belongs to the
community with identifier community [i]; bInit[·] is an
array with the Boolean type denoting whether atomic service
i has been initialized or not; and bVisited[·] is an array with
the Boolean type denoting whether node i has been visited or
not.

As is shown in Algorithm 1, the most dominant steps of
GUIDA are step 32 to step 53 with the loop. +us, the
computational complexity of GUIDA is O (|Va|

2).

4. Empirical Study

In this section, we performed experiments to investigate the
effectiveness of our SCAS approach. For the experiment
environment, all the experiments were carried out on a PC at
2.6GHz with 8GB of RAM.

4.1. Research Questions. We performed experiments with
the aim to address the following two research questions
(RQs):

(i) RQ1: Does our SCAS approach perform better than
other C2S-based approaches?
We integrate C2S and A3S together to quantify the
similarity between atomic services and use a guided
community detection algorithm to group atomic
services into clusters.+us, we wish to knowwhether
our SCAS approach performs better than approaches
that only use C2S to quantify the similarity between
atomic services.

(ii) RQ2: Does our SCAS approach perform better than
other semantic-based approaches?
+ere are many research works on clustering services
(see Section 2). +us, we wish to know whether our
SCAS approach performs better than some of these
approaches, especially those based on semantic
similarities.

4.2.Objects of Study. Asmentioned above, PWeb is a famous
service repository and widely used as a benchmark data set
for experiments of service clustering approaches [1]. PWeb
provides the profile of APIs and mashups, including their
names, descriptions, tags, and providers. Every mashup is
composed of ≥1 API(s) which will be listed in the profile of
the mashup. Mashups can be regarded as composite services
and APIs can be regarded as atomic services. +us, PWeb
meets the requirement of our SCAS approach and can be
used as our object of study.

We crawled the profile of mashups stored in the PWeb
till December 14, 2011. Specifically, we crawled the name of
mashups and the APIs that mashups used. Figure 4 illus-
trates the information that we crawled for a mashup.

Specifically, we crawled the name of the mashup (i.e.,
“Pulse Medic”) and the APIs it used (i.e., “Google
AdWords,” “Healthfinder.gov,” and “eduroam”). Finally,
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Input:
ASAN, ASDN, and SSN

Output:
Q and all the communities

(1) Initialize depend [·][·], sim [·][·], community [·], bInit[·] � false, and bVisited[·] � false
(2) Calculate the degree of each atomic service in ASAN and store them in deg[ ]

(3) for i� 1 to |Va| do
(4) cnt � 0;
(5) if deg [i > 1 then]
(6) community [·] � cnt++;
(7) bInit [i] � true;
(8) end if
(9) end for
(10) for i� 1 to |Va| do
(11) if deg[i� � 1 && !bInit [i] then]
(12) MAX� − 1;
(13) max Index� − 1;
(14) for j� 1 to |Va| do
(15) if sim[i][j] > MAX then
(16) MAX� sim[i][j];
(17) max Index� j;
(18) end if
(19) end for
(20) if MAX !� − 1 | | maxIndex !� − 1 then
(21) community [·] � community [·];
(22) bInit [i] � true;
(23) cnt++;
(24) end if
(25) end if
(26) if cnt � � |Va| then
(27) break;
(28) end if
(29) i� 1;
(30) end for
(31) Calculate the initial Q according to equation (10)
(32) for i� 1 to |Va| do
(33) for j� 1 to |Va| && j! � i do
(34) if depend[j [i] ≥ 1 && community[j] ≠ community[i] && !bVisited[i]

then
(35) Suppose we move atomic service i to community community[j]

(36) Update community[·]

(37) Calculate Q according to equation (10). Denote it as Qt

(38) Store ΔQ � Qt –Q into an array ΔQ[ ]

(39) end if
(40) end for
(41) bVisited [i] � true
(42) Select the maximum ΔQ. Denote it as ΔQmax
(43) if ΔQmax > 0 then
(44) Move atomic service i to community community[j] that produces the largest ΔQ
(45) for m� 1 to |Va| do
(46) if depend[i [m]� � 1 then]
(47) bVisited[m] � false
(48) end if
(49) end for
(50) i� 1
(51) Q � ΔQ + Q

(52) end if
(53) end for
(54) return Q and all the communities

ALGORITHM 1: GUIDA algorithm.
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our data set for experiments contains 6,362mashups and 982
APIs.

4.3. Baseline Approaches. +e purpose of this work is to
improve the performance of service clustering approaches
that are based on structure-related metrics. +us, our SCAS
will be compared with the approach using C2S, which is
named as CSCA (C2S-based service clustering approach).
CSCA uses C2S to quantify the similarity between atomic
services and uses GUIDA to group atomic services into
clusters.

We cannot make a thorough comparison with the ap-
proaches that we have reviewed in Section 2. +e main
reason is that we cannot implement their approaches since
their work does not report the details of their approaches.
But, we try our best to compare our approach with the
approaches that we reviewed in Section 2. In this work, we
compare our approach with the following two approaches in
the related work, which are originally proposed to cluster
Web services.

(i) TCluster: it uses the information of tags to quantify
the semantic similarity between APIs by using LDA
and further applies k-means to organize APIs into
clusters.

(ii) DTCluster: DTCluster is very similar to TCluster.
+e only difference is DTCluster also utilizes the
information of the description.

4.4. Experiment Process and Results. We follow the main
procedures shown in Figure 1 to parse the data set, build the

ASAN, ASDN, and SSN, compute C2S, A3S, and A2S, and
apply GUIDA group APIs into clusters.

Figures 5(a) and 5(b) show the ASAN and ASDN we
constructed from PWeb, respectively. +e position of the
nodes in ASAN and ASDN is all computed using the circular
algorithm in Pajek (Pajek: http://vlado.fmf.uni-lj.si/pub/
networks/pajek/).

Based on ASAN and ASDN, we compute the C2S and
A3S similarity metrics between APIs so as to compute the
A2S to quantify API similarity as a whole. +en, we can use
GUIDA to group APIs into clusters. In the experiment,
GUIDA returns the communities in the SSN when it ter-
minates at Q � 0.521102.

4.5. Analysis of the Results. In this section, we analyze the
obtained service clustering results with the aim to answer the
research questions that we have presented in Section 4.1. To
compare SCAS with CSCA, we shouldmeasure the quality of
their clustering solutions.

In this work, we apply a set of criteria that are widely
used in information retrieval, i.e., Precision, Recall, and F-
Measure (i.e., F1 and F5) [1]. To compute the value of these
criteria, we use the classification system in PWeb as the
standard clustering results, i.e., APIs in the same category are
viewed as APIs in the same cluster. +ese criteria can be
defined as follows:

(i) True Positive (TP). A TP decision assigns two similar
atomic services to the same cluster

(ii) False Positive (FP). A FP decision assigns two dis-
similar atomic services to the same cluster

Figure 4: +e information that we crawled for a mashup.
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Figure 5: (a) ASAN and (b) ASDN constructed from PWeb.
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(iii) False Negative (FN). A FN decision assigns two
similar atomic services to different clusters

(iv) True Negative (TN). A TN decision assigns two
dissimilar atomic services to different clusters

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F1 �
2∗ Precision∗Recall
Precision + Recall

,

F5 �
26∗ Precision∗Recall
25∗Precision + Recall

.

(11)

Generally, a larger value of Precision, Recall, and F-
Measure indicates a better service clustering solution
[17–19].

4.5.1. Does Our SCAS Approach Perform Better than Other
C2S-Based Approaches? SCAS combined C2S and A3S to
quantify the similarity between atomic services while
CSCA applied C2S. +e only difference between SCAS and
CSCA is the similarity metrics that they used. +us, by
comparing the results obtained by SCAS with those of
CSCA, we can know whether SCAS performs better than
CSCA.

Figure 6 shows the performance comparisons of the two
approaches, SCAS and CSCA, when applied to the data set.
Obviously, SCAS outperforms CSCA with respect to
Precision, Recall, F1, and F5. It indicates that the combi-
nation of C2S and A3S can improve the performance of a
service clustering approach.

4.5.2. Does Our SCAS Approach Perform Better than Other
Semantic-Based Approaches? As mentioned in Section 2,
there are many research works on clustering services. In this
section, we performed experiments to check whether our
SCAS approach performs better than some of these ap-
proaches which are based on semantic similarities, i.e.,
TCluster and DTCluster. As mentioned above, the only
difference between SCAS and TCluster (or DTCluster) is the
former applied structure-based similarity metrics while the
latter applied semantic-based similarity metrics. +us, by
comparing the results obtained by SCAS with those of
TCluster (or DTCluster), we can know whether structure-
based similarities are better than semantic-based similarities
in service clustering.

Figure 7 shows the performance comparisons of the
three approaches, SCAS, TCluster, and DTCluster, when
applied to the data set. Obviously, SCAS outperforms
TCluster and DTCluster with respect to Precision, Recall, F1,
and F5. It indicates that structure-based similarity metrics
are better than semantic-based similarities in service
clustering.

5. Conclusions

In this work, we proposed a SCAS approach to group
services into different clusters. It proposed an improved
structure-related metric, A2S, to quantify service similarity
and proposed a guided community detection algorithm to
organize services into clusters. Comparative studies with
other related approaches on a real-world data set show that
SCAS performs better than some of the existing
approaches.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 6: Performance comparison of SCAS and CSCA. P,
Precision; R, Recall; F1 and F5 denote F1 and F5, respectively.
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Figure 7: Performance comparison of SCAS and TCluster (or
DTCluster). P, Precision; R, Recall; F1 and F5 denote F1 and F5,
respectively.
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