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Te primary objective of this proposed framework work is to detect and classify various lung diseases such as pneumonia, tuberculosis,
and lung cancer from standard X-ray images and Computerized Tomography (CT) scan images with the help of volume datasets. We
implemented three deep learning models namely Sequential, Functional & Transfer models and trained them on open-source training
datasets. To augment the patient’s treatment, deep learning techniques are promising and successful domains that extend the machine
learning domain where CNNs are trained to extract features and ofers great potential from datasets of images in biomedical application.
Our primary aim is to validate our models as a new direction to address the problem on the datasets and then to compare their
performance with other existing models. Our models were able to reach higher levels of accuracy for possible solutions and provide
efectiveness to humankind for faster detection of diseases and serve as best performing models. Te conventional networks have poor
performance for tilted, rotated, and other abnormal orientation and have poor learning framework. Te results demonstrated that the
proposed frameworkwith a sequentialmodel outperforms other existingmethods in terms of an F1 score of 98.55%, accuracy of 98.43%,
recall of 96.33% for pneumonia and for tuberculosis F1 score of 97.99%, accuracy of 99.4%, and recall of 98.88%. In addition, the
functional model for cancer outperformed with an accuracy of 99.9% and specifcity of 99.89% and paves way to less number of trained
parameters, leading to less computational overhead and less expensive than existing pretrained models. In our work, we implemented
a state-of-the art CNN with various models to classify lung diseases accurately.

1. Introduction

Lungs play a vital role in the human system, which performs
expansion and relaxation to bring in oxygen and take out
carbon dioxide. Lung diseases are respiratory diseases that
afect the various organs and tissues associated with
breathing, leading to airway diseases, lung tissue diseases,
and lung circulation diseases. Some of the respiratory dis-
eases like common cold and infuenza cause mild discomfort
and hindrance while others like pneumonia, tuberculosis

and lung cancer are life-threatening and cause severe acute
respiratory problems [1].

According to a research study done by the Forum of
International Respiratory Societies called “Te Global Im-
pact of Respiratory Disease,” 10.4 million people sufered
mild or severe symptoms of tuberculosis, and 1.4 million of
those afected died as per the survey reported [2]. Lung
cancer kills an astounding number of people every year.
More than 1.6 million people were reported to have died in
the year the survey was carried out. Pneumonia is one of the
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top respiratory diseases and 1.23 million children under the
age of 5 died due to pneumonia according to the Johns
Hopkins Bloomberg School of Public Health report titled
“Pneumonia and Diarrhea Progress Report 2020” [3]. De-
tection of the abovementioned diseases at the early stages of
infection can drastically increase the chances of survival and
can prevent human casualities. Chest X-ray images and CT
scans are common examinations that determine the pres-
ence of these diseases [4]. Te presence of trained pro-
fessionals is required to examine the scanned images and
determine the infections. According to the Union Health
Ministry data statistics there exists a shortfall of 76.1 percent
of physicians at the Community Health Centres (CHCs) in
rural areas. To overcome this, deep learning techniques are
implemented, which pave the way for a new strategy.

Deep learning is a branch of machine learning that
provides state-of-the-art accuracy and is a subset of the
artifcial intelligence with representation learning. Tis tool
has drawn attention in recent times due to their ability to
read image data, process them, and provide results based on
the previously trained data [5]. Deep learning models can
learn features and patterns from dataset images and use the
learned features to classify new test images that have not
been previously visualized by the model.

Numerous works have already been conducted by re-
searchers around the world and have led to promising results.
Tese works can help support existing methods or open
pathways to new ones that could not have been possible. Tese
advancements can help in quick and accurate detection as well
as classifcation of diseases and provide quick support to obtain
impressive results to eliminate deadly infectious diseases.

Te rest of the manuscript is structured as follows: In
Section 2, we introduce the basic foundation of the con-
volution neural networks. Section 3 describes the archi-
tecture of the proposed model. Section 4 discusses the
implementation of the proposed CNN technique and the
experimental results. Finally, we conclude our work with
a summary and future directions in Section 5.

2. Related Work

One of the best techniques currently used in medical image
analysis are CNNs, which have a remarkable efciency in
classifying the images. Some of the contemporary CNN
models are Pre-Trained, Functional, and Sequential, which
are reviewed in the forthcoming sections.

Liu et al. proposed three diferent types for the appli-
cations of CNN-trained models in tuberculosis detection. In
all these three methods, features are extracted by the CNN
architectures and are trained by the support vector machine
(SVM), and in the second proposal, features are extracted
from coreference resolution (CR) and are trained in the
SVM classifer. In the third proposal, these two proposals are
combined together to create an ensemble of the classifers.
TeMontgomery dataset has a total of 138 X-ray images and
the Shenzhen dataset has a total of 662 X-ray images. Tese
trained models help reduce the processing time but provide
low accuracy, which is not conducive and cannot be
implemented in medical diagnosis.

Amit Kumar Jaiswal, Prayag Tiwari, Sachin Kumar, and
Deepak Gupta proposed a method called mask RCNN. It is
a deep neural network model that can extract two types of
features: global and local. Pixel-wise division is carried out
and this method is expected to have a better performance
evaluated on the radiograph dataset. Tis technique high-
lights the infected regions and provides a heat map for better
understanding for people looking at the results. But they
have ensembled ResNet50 and ResNet101 (Mask RCNN
models) but achieved less biased results than expected and
require more GPU processing power to train.

Elshennawy and Ibrahim, presented on four diferent
models. Among these four models, CNN and LSTM-CNN
started from the beginning and the other two are pre-
trained models and the specifc models used are
ResNet152v2 and MobileNetV2. Tey formulated to
create from the ground, a deep learning neural network
model, which could diagnose pneumonia symptoms using
chest X-ray images, which has pneumonia [6]. Some of the
disadvantages are that it has a humongous architecture
with hundreds of millions of trainable parameter weights
[7, 8]. Tis type of model requires high computing and
processing power.

Various deep learning techniques, Naik and Edla [9]
developed a lung nodule classifcation and identifcation
model for computed tomography (CT) images. Te CTscans
required a computer-aided detection system for categorizing
the lung nodule into benign and malignant types, along with
the highest level of accuracy to protect from a delay in di-
agnosis. Te deep learning approaches used to categorize the
lung nodule have positive outcomes compared to other
methods. When the mutations were implemented in the deep
learning architecture, the accuracy of the classifcation system
increased rapidly. Te deep learning method was used to
specify the new impacts in nodule classifcation and also
recognized the preliminary stage of a malignant lesion [10].

3. Proposed Methodology

Tis section discusses the datasets used, the preprocessing,
the data augmentation methods, and the various algorithms
used. Te workfow of the proposed technique is presented
in a fowchart form in Figure 1.

3.1. Datasets. All the datasets used in this work are from
opensource datasets published on the website “Kaggle.”

Te pneumonia dataset published by Paul Mooney
contains 5,856 frontal chest X-ray images, 1,583 images of
the dataset are of people with no abnormalities in their lungs,
and 4,273 images predict some abnormalities and symptoms
of pneumonia.

Te tuberculosis dataset published by Scott Mader has
662 frontal X-rays. Tese images were collected by physi-
cians in the Guangdong Hospital, Shenzhen, China. Hence,
this dataset is commonly known as the Shenzhen dataset. It
contains 326 images, which contains lung images of healthy
persons and in turn contains 336 images that are infected by
tuberculosis.
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Te cancer dataset published byMohamed Hany has 907
lung CT-scan images, 215 images of the dataset are of people
with no signs of cancer, and 692 images of the dataset are of
people with cancer. Te dataset contains 3 types of cancer
images: adenocarcinoma, large cell carcinoma, and squa-
mous cell carcinoma. Figure 2 shows few sample images
from the CT-scan dataset.

3.1.1. Preprocessing and Data Augmentation. Te images
present in the datasets are of diferent resolutions. However,
the CNN models require images to be of one specifed size.
Hence, all the images in the dataset were resized to 224× 224.
Lowering the input image size helps process a faster exe-
cution of images and thus, makes the model faster for the
specifc associated task.

Data augmentation is a common support method used
to signifcantly increase the training data volume by in-
troducing slight variations of an image in each training
epoch. Te variations used in this work are horizontal fip,
zoom, shear, rotation, and rescale.Tis technique is essential
to get high levels of accuracy as the CNN model is able to
train on more data than originally present in the dataset.
Figure 3 shows the variations that can be created from one
sample image.

3.2. Deep Learning Algorithms. In recent times, a dataset of
medical images has been available in the Kaggle repository. In
this paper, this dataset has been implemented using the novel
models of CNN, namely, sequential and functional models,
combining CNN and data augmentation. Tree diferent
model algorithms were deployed in this proposed work. Tese
are explained in detail in the following subsections.

3.2.1. Sequential Model. Te sequential model is a model in
which layers are stacked to form a sequential order. Te
input is passed through all the layers in the order in which
the layers are stacked. Features are learnt at each and every

layer and more deeper into the layer, the model is capable of
distinguishing the infected areas and noninfected areas from
the chest X-rays [11].

Te proposed sequential model has fve convolutional
layers with the number of flters increasing as it proceeds
deeper into the network [12]. Te alpha parameter was set to
0.66. Leaky ReLU allows a small gradient to pass through,
while ReLU completely removes any gradient when the unit
is not active. In addition, max pooling was carried out after
each activation. Adam optimizer and learning rate of 0.0001
was employed. Te block diagram of the sequential model is
presented in Figure 4.

3.2.2. Functional Model. Te functional model has more
fexibility than the other algorithms. It can form connections
between any two layers contrary to the others and progress
in a linear fashion.Tis allows us to create more complicated
and sophisticated networks [13]. Te input goes through the
frst layer and then proceeds along the designed architecture.
Tis method also trains from the beginning, contrary to the
pretrained model.

Te proposed functional model has two convolution
layers of 7× 7 window and another with 1× 1 on top of 3× 3
window as presented in Figure 5. Te input is passed
through both convolution layers separately and then the
output from both layers is appended and then passed to fve
3× 3 convolution layers. Te Adam optimizer with learning
rate� 0.0001 was employed.

3.2.3. Pretrained Model. Tis is the easiest and most com-
monly used model for image classifcation. Instead of
training a model from the beginning, this technique uses
already trained weights on a large dataset of images to
classify the required images [14, 15]. Tis technique is also
called transfer learning as previously learned weights are
transferred and used for classifcation. Generally, this model
takes less time to train and produces better results and
accuracy.

Te pretrained model used here is VGG-16, a convolu-
tional neural network (CNN), famous for high accuracy and
achieved the top 5 accuracies in the ImageNet competition
with an accuracy of 97.7%.

4. Results and Discussion

Te various models were trained, their accuracies and losses
were plotted, and the test accuracy was obtained and
compared with other research works for lung disease de-
tection with CNN [16, 17]. Te performance metrics in-
volved in this proposed work are accuracy, precision, recall,
and F1 score.

(i) Accuracy represents the number of correctly clas-
sifed data instances over the total number of data
instances.

Accuracy �
TP + TN

TP + TN + FP + FN
, (1)

Covid - 19
Pneumonia Tuberculosis

Dataset Images

Preprocessing Image Resizing

Training Algorithm
Sequential

Functional
Pre-trained

Training Data Augmentation

Classification
TuberculosisPneumonia

Covid - 19

Figure 1: Workfow of the classifcation model.
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where, true positive is abbreviated as TP, true
negative as TN, false positive as FP, and false
negative as FN.

(ii) Precision should ideally be 1 (high) for a good
classifer. Precision becomes 1 only when the nu-
merator and denominator are equal, i.e,
TP�TP+FP, this also means FP is zero. As FP
increases, the value of the denominator becomes
greater than the numerator and the precision value
decreases.

precision �
TP

TP + FP
. (2)

(iii) Recall is also known as sensitivity or true positive
rate and is defned as follows:

Recall �
TP

TP + FN
. (3)

(iv) F1-score is a metric that takes into account both
precision and recall and is defned as follows:

Figure 2: Chest-CT scan images (source: kaggle).

Figure 3: Variations of a chest X-ray image.
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F1 score � 2∗
precision∗Recall
precision + Recall

. (4)

4.1. SequentialModel forPneumonia. In medical diagnostics,
it is common to analyze the classifer performance using
sensitivity (true positive rate) and specifcity (true negative
rate) instead of accuracy [6]. To assess the overall classif-
cation F1 score is computed [7, 18]. From the dataset of
5,856 chest X-ray images, 2,000 images were used for
training of which 1,000 images were of normal chest X-rays
and the other 1,000 images were of pneumonia-infected
chest X-rays.

Te model was trained for 50 epochs. Figure 6 shows the
increase in accuracy as the model trains with trained set
images and Figure 7 shows that the loss encountered with
this model is less. Te accuracy starts from 75% and
gradually increases to 90% with 10 epochs.

After training, the model was used to predict the labels of
test images that were not known by the model during
training. Te test image set had 583 images of normal chest
X-rays and 3,273 images of pneumonia-infected chest X-
rays. Table 1 provides accuracy of our model with the
existing works related to pneumonia and found that our
model outperforms other existing works. Te model pre-
dicted the labels accurately for 533 images from 583 normal

qconv2d_input: Input Layer
Input

Output:

[(None,224,224,3)]

[(None,224,224,3)]

leaky_re_lu_3:LeakyReLU
Input
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Figure 4: Block diagram of sequential model.
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CXR images and 3,070 images from 3,273 pneumonia-
infected CXR images.

4.2. Sequential Model for Tuberculosis. Te tuberculosis
dataset has a grand total of 662 chest X-ray images. Among 662
images, 285 images of normal chest X-rays and 292 images of
tuberculosis-infected chest X-rays were used for training. As
depicted in Figure 8, the tuberculosis model started with a very
low accuracy of 50%. After training for around 100 epochs, the
model accuracy value of 97% was obtained.

Numerous works have already been carried out by re-
searchers around the world and have led to promising

results. Tese works can help support the existing methods
or open pathways to new methods, which could not have
been possible before [8, 24]. Tese advancements can help in
faster and accurate detection, as well as classifcation of
diseases and provide support to obtain impressive results to
eliminate deadly infectious diseases.

Te model was used to predict the labels for test images.
Te test image set had a total of 85 images of which 41 were
of normal and 44 were of tuberculosis-infected. Te model
predicted 37 images of normal and 39 images of
tuberculosis-infected accurately as presented in Figure 9.
Table 2 provides an accuracy of our model with existing
works related to tuberculosis and fnds to be superior when
compared to other existing works.
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Figure 5: Block diagram of functional model.
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4.3. Functional Model for Cancer. Te dataset has a total of
907 lung CT-scan images, 215 images of people with no signs
of cancer, and 692 images of people infected with cancer
were used for training the model [30, 31]. Te model was
trained for 100 epochs. As seen in Figure 10, the model
started with an accuracy of 70% and increased to 90% in
about 10 epochs.

Te model was presented to predict for the test images.
Te test dataset had a total of 278 images, of which 224 were
cancer infected and 54 were normal. Te model accurately
predicted 54 images of normal and 204 images of cancer
infected, and the loss is shown in Figure 11.

Table 3 depicts the accuracy of our model with existing
works related to cancer and fnds to be extraordinary when
compared to other existing works.

4.4. Functional Model for Pneumonia. Te dataset used for
the functional model is the one that was utilized in sequential

model. Te model accuracy starts from around 81% and
rapidly increases to 90% in less than 5 epochs.

4.5. Pretrained Model for Pneumonia. Figure 12 shows the
model accuracy gradual improvement for the pneumonia
disease with the functional model. Te same dataset was
used for this model, i.e., from Paul Mooney with 5,856
images of which 1,000 are normal X-rays and other 1,000 are
infected chest X-rays. As the model has already been trained
before, the starting accuracy is very good. Tere is a minor
improvement after training for 15 epochs as is evident in
Figure 13.

Figure 14 shows that the initial model loss is low as
compared to the other models, hence, there is no continuous
progress like that in the sequential and functional models.

Figure 15 shows that the pretrained models are easy to
train and that the loss gradually decreases as they have
previously been trained on various datasets.
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Figure 11: Model loss vs. epochs for cancer.

Table 3: Accuracy of our model with existing works related to cancer.

Authors Dataset Techniques Accuracy Specifcity Sensitivity
Lee et al. [32] Annotated dataset-87 CNN 92.5 — —
Tomassini et al. [33] Planar data CNN 74 — 81%
Wei et al. [34] Annotated dataset-500 images CNN 99.3 98.31 100
Desai and Shah [35] Annotated dataset-1000 images MLP 91.92 92.3 91
Hassantabar et al. [36] Annotated dataset-682 images CNN 93.20 99.71 96.09
Our proposed model 278 images CNN 99.9 99.89 100
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5. Conclusion and Future Work

We have proposed three diferent architecture models of
CNNs, which were used to train on various lung diseases that
are available in the open-source dataset. Te trained models
were used to predict the labels of some test images that were
not visualized by the models. Te results of the proposed
models performed better than other related works. Te
results obtained through this framework with a sequential
model outperform other existing methods in terms of F1
score, accuracy and recall for pneumonia and for tuber-
culosis. In addition, the functional model for cancer out-
performed with accuracy and specifcity, and it requires less
computation cost and time. In future, varying the opti-
mizers, learning rate, and introduction of more data aug-
mentation could potentially lead to further improvements in
the classifcation accuracy of the proposed CNN models.
Early stopping techniques will likely provide further insights
into diagnosing lung diseases that can be passed down to
avoid overftting.
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Brain stroke is a major cause of global death and it necessitates earlier identifcation process to reduce the mortality rate. Magnetic
resonance imaging (MRI) techniques is a commonly available imaging modality used to diagnose brain stroke. Presently, machine
learning (ML) and deep learning (DL)models can be extremely utilized for disease detection and classifcation processes. Amongst
the available approaches, the convolutional neural network (CNN) models have been widely used for computer vision and image
processing issues such as ImageNet, facial detection, and digit classifcation. In this article, a novel computer aided diagnosis
(CAD) based brain stroke detection and classifcation (CAD-BSDC) model has been developed for MRI images. Te proposed
CAD-BSDC technique aims in classifying the provided MR brain image as normal or abnormal. Te CAD-BSDC technique
involves diferent subprocesses such as preprocessing, feature extraction, and classifcation. Firstly, the input image undergoes
preprocessing using adaptive thresholding (AT) technique for improving the image quality. Followed by, an ensemble of feature
extractors such as MobileNet, CapsuleNet, and EfcientNet models are used. Besides, the hyperparameter tuning of the deep
learning models takes place using the improved dragonfy optimization (IDFO) algorithm. Moreover, satin bowerbird opti-
mization (SBO) based stacked autoencoder (SAE) is used for the classifcation of brain stroke.Te design of optimal SAE using the
SBO algorithm shows the novelty of the work. Te performance of the presented technique was validated utilizing benchmark
dataset which includes T2-weighted MR brain image collected from the axial axis with size of 256 × 256.Te simulation outcomes
indicated the promising efciency of the proposed CAD-BSDC technique over the latest state of art approaches in terms of various
performance measures.

1. Introduction

Strokes are the 3rd most common cause of death around the
world as per the report of the world health organization
(WHO). With around 87% the more common type are is-
chemic strokes, caused by disturbance in the brain blood
supply. Measuring volume and lesion location could assist
diagnoses and guide treatment decisions [1]. Moreover,
lesion classifcation plays a signifcant role in cognitive

neuroscience research. Tis frequently includes an ana-
tomical analysis, where brain area is associated with the
neurological defcit that requires manual examinations of
massive stroke image databases. Hence, an automated
methodology for segmenting ischemic lesions in brain
images is extremely needed [2, 3]. Ischemic stroke lesions
undergo several developmental stages. Te moment of
partial or total loss of blood supply to the infected brain areas
is called the onset of the stroke and marks the beginning of
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the hyperacute stage. At onset, the infection areas are
separated into a core of infarcted tissue and a surrounding
penumbra of under perfused, however possibly salvageable
tissue i.e., partially provided by collateral blood fow [4]. Te
stroke developmental phase is related to amount of cell death
and reconstructing mechanism which afects visibility of the
stroke area in magnetic resonance imaging (MRI), mostly by
the migration of water molecules [5].

Brain imaging methodologies, namely, computed to-
mography (CT) and MRI are very supportive for a physician
for starting the early screening of the patients [6]. Also, there
are several imaging modalities for analyzing brain that might
involve difuse optical imaging, X-ray imaging, positron
emission tomography, magnetoencephalography, and
functional MRI [7]. But this imaging technique requires
well-trained operators and higher operating costs, thus
many of these imaging methods may not be presented in
every hospital and clinic. Image classifcation is broadly
utilized in medical imaging systems [8]. But the classifcation
method outcomes must be closer to the manual diagnoses.

Tis study introduces a novel computer aided diagnosis
(CAD) based brain stroke detection and classifcation
(CAD-BSDC) model on MRI images. Te proposed CAD-
BSDC technique involves preprocessing using adaptive
thresholding (AT) technique to improve the image quality.
In addition, an ensemble of feature extractors such as
MobileNet, CapsuleNet, and EfcientNet models are used.
Besides, the hyperparameter tuning of the deep learning
models takes place using the improved dragonfy optimi-
zation (IDFO) algorithm. Furthermore, satin bowerbird
optimization (SBO) based stacked autoencoder (SAE) is
used to classify the MR brain image as normal or abnormal.
Te experimental result analysis of the CAD-BSDC tech-
nique takes place utilizing benchmark dataset which com-
prises T2-weighted MR brain images.

2. Literature Review

Currently, deep learning (DL) method was widely utilized as
a classifcation system since it calculates features automat-
ically within the convolution layer of the deep system [9].
Te major beneft of utilizing DL method is that it out-
performs other traditional methodologies for the classif-
cation of images. Several DL methodologies have existed like
deep belief nets (DBN), RNNs, LSTM, and so on. Amongst
this method, convolutional neural network (CNN) was
widely employed in medical image processing and computer
vision challenges such as house numbers digit classifcation,
ImageNet, patch classifcation from medical images, face
recognition, and so on [10].

Nishio et al. [11] evaluated and developed an automated
acute ischemic stroke (AIS) detection method including 2-
phase DL models. Next, the 2-phase method implemented
the AIS recognition system in the testing set. To evaluate the
detection outcomes, a board-certifed radiologist assessed
the testing set head CT image with and without help of
detection system [12]. Hilbert et al. [13] examined DL
methods to build model to directly forecast better reper-
fusion afterward endovascular treatment (EVT) and better

functional outcomes using CT images. Tis model does not
need image annotation and is faster to calculate. Te study
compared DL to ML methods using conventional radio-
logical image biomarkers. Pan et al. [14] investigated a new
method based mainly on DL-ResNet for detecting infarct
cores on non-contrast CT images and enhancing the per-
formance of acute ischemic stroke diagnoses. Tey endlessly
enrolled magnetic resonance difusion weighted image (MR-
DWI) confrmed frst-episode ischemic stroke patients.
Next, utilize decision curve analysis (DCA) model for an-
alyzing the values of this technique in medical settings.

Zhang et al. [15] introduced a DL method that leverages
MRI difusion series for classifying TSS based medically
validated threshold. Also, the study presented an intra-
domain task-adoptive transfer learning technique that in-
cludes model training on simple medical tasks (stroke
recognition) and refned the method with distinct binary
thresholds of TSS. Wang et al. [16] evaluated and developed
a DL based method to assist the selection of appropriate
patients with acute ischemic stroke for endovascular
treatment-based 3D pseudo-continuous arterial spin label-
ing (pCASL).Te DL and six MLmethods have been trained
by using 10-fold CV.

3. The Proposed Model

In this study, a new CAD-BSDC model has been developed
for MRI images for classifying them into normal or ab-
normal. Te CAD-BSDC technique involves diferent sub-
processes such as AT based preprocessing, ensemble of
feature extraction, IDFO-based hyperparameter tuning,
SAE-based classifcation, and SBO-based parameter tuning.
Figure 1 illustrates the overall process of CAD-BSDC
technique.

3.1. Image Preprocessing Using at Technique. At the primary
level, the AT technique is applied on MRI images to remove
the noise and enhance the quality. It is an efective method to
determine the infected regions by the use of thresholding
concept. In the AT technique, the investigation of the MRI
images takes place for the distributed pixel intensities and
the threshold value is chosen. In this case, the input MRI
image can be denoted as g(x, y), I implies the threshold
value, and the fnal image can be defned as f(x, y). It can be
mathematically defned as follows [17]:

f(x, y) �
1, g(x, y)≥ I,

0, otherwise.
  (1)

3.2. Ensemble of Feature Extraction Approaches. During the
feature extraction process, the ensemble of feature extractors
namely MobileNet, CapsuleNet, and EfcientNet models are
used. Te DL is a type of CNN and has extremely utilized for
images [18]. In recent times, DL was extremely utilized in the
analysis of several medicinal diseases. Also, several re-
searchers are developed by analysis of skin disease utilizing
DL. Te DL has several linked layers using distinct weight as
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well as activation functions. A fundamental DL technique
involves convolution, pooling, and connected layers. Many
activation functions were utilized for adjusting the weight.
During this case, EfcientNetB3 was utilized for glaucoma
detection. Te EfcientNetB3 is current, cost-efcient, and
robust technique established by scaling 3 parameters namely
depth, width, and resolution [19]. An EfcientNetB3 method
with noisy-student weight was utilized from scenarios I and
III to the transfer learning (TL) procedure, but “isi-
call_ef3_weights” weight is utilized as pretrained to sce-
narios II and IV. Te GlobalAveragePooling2D layers were
added to all scenarios for generalizing the optimum model.
Te amount of parameters is decreased. Also, the rectifed
linear unit (ReLU) activation function was utilized with 3
dense and 2 dropout layers. Te resultant layer has several
outcome units to multiclass classifcation utilizing the
softmax activation functions. Figure 2 demonstrates the
structure of CapsNet.

Te MobileNet [20] has lesser framework, minimum
computation, and superior precision that is utilized to
mobile terminal and embedding devices. According to
depthwise separable convolutional, MobileNets utilize 2
global hyperparameters for keeping a balance amongst
efcacy and accuracy. Te basic concept of MobileNet is
decomposition of convolutional kernel. With utilizing
depthwise separable convolutional, the typical con-
volutional was decomposed as to depthwise convolu-
tional and pointwise convolutional with convolutional
kernels. Te depthwise convolutional flter execute
convolutional for all channels, and convolutional was
utilized for combining the outcomes of depthwise
convolutional layer. During this technique, N typical
convolutional kernel. Te typical convolution flters
integrate an input as to a novel group of outputs, but the
depthwise separable convolutional separates the inputs
as to 2 layers, one to flter and another to merge. Te
MobileNetV2 establishes novel components with
inverted remaining framework.

In order to compensate for shortcomings of CNN, the
network framework named the CapsNet was presented [21].
Te CapsNet is a deep network technique involving capsules.
Te capsule was comprised of a set of neurons. Te acti-
vation neuron signifes the features of modules from the
objects. All the capsules are responsible to determine a single
module from the object, and every capsule jointly defnes the
entire framework of objects. Conversely, for any DNNs (for
instance, DBN), this framework preserves object modules
and spatial data. Related to CNN, the CapsNet was com-
prised of multi-layer networks.

3.3. Hyperparameter Tuning Using IDFO Algorithm. For
optimally adjusting the hyperparameters of the DLmodels, the
IDFO algorithm is applied. Te DFO method was coined by
Mirjalili at Grifth University in 2016 [22]. Tis method is a
meta-heuristic approach-based SI is stimulated by dynamic as
well as static behaviors of dragonfies in nature. Tere are 2
primary phases of optimization: exploitation and exploration.
Tese two stages aremodelled by dragonfies, either statically or
dynamically searching for food or avoiding the enemy. Te 2
further behaviors are added to these three fundamental be-
havior in DA: move to the food and avoid the enemy. Tus,
once each individual moves to food source (equation (5)), they
need to avoid the enemy simultaneously (equation (6)).

Si � − 
N

j�1
X − Xj,

Ai �


N
j�1 Vj

N
,

Ci �


N
j�1 Xj

N
− X,

Fi � X
+

− X,

Ei � X
−

+ X,

(2)

Input: Dataset
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Figure 1: Overall process of CAD-BSDC technique.
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where, X indicates the immediate location of the individual,
in which Xj indicates the immediate location of jth indi-
vidual. N characterizes the amount of neighboring indi-
viduals, in which yj shows the speed of jth neighboring
individual. X+ and X− denotes the position of the food and
enemy source, correspondingly [23]. Te overall steps of the
DFO algorithm are given in 1.

To upgrade the place of artifcial dragonfies in the
searching space and simulate the motion, two vectors are
taken into consideration: position (X) and step (X). Te step
vector considers as speed, shows the direction of dragonfy
motion (equation (7)). Ten estimating the step vectors, the
position vector is upgraded (equation (8)):

∇Xt+1 � sSi + aAi + cCi + fFi + eEi(  + w∇Xt,

Xt+1 � Xt + ∇Xt+1.
(3)

In which, and f, e, w, and t represents the food factor,
enemy factor, inertia coefcient, iteration number, cor-
respondingly and the, a, and c indicates separation,
alignment, and cohesion coefcient, correspondingly.
Tis coefcient and the abovementioned factor enable to
implementation of exploitative and exploratory behav-
iors. In the IDFO algorithm, the traditional DFO algo-
rithm is integrated into the fower authorization
algorithm, we set the value ranges [Smin, Smax]. To ef-
ciently evade the situation where the dragonfy collectively
gathers in the frst phase, the uniform distribution is
utilized for implementing random initialization process
on all the dimensions [24],

x
0
id � Smin + Smax − Smin( . (4)

Afterward preprocessing, the 2 procedures are further
merged for guiding the dragonfy to fy to an optimal
location.

3.4. Image Classifcation Using SBO-SAE Model. Finally, the
SBO-SAE model can be employed for the classifcation of
MRI images. Te SAE is developed based on the concept of
auto encoder (AE). In SAE model, the encoding part of the
AE is stacked together, i.e., the input of initial layer of an AE
model is actual data and the input of lower layer is hidden
layer data. Lastly, a classifcation model is appended to the
network [25]. Te training process of the SAE model in-
volves the pretraining and the inverse fne-tuning procedure.
It makes use of a huge quantity of unlabeled data for un-
supervised learning, independently extracted the features,

and utilizes the labelled data for inverse fne tuning of the
network. For boosting the performance of the SAE tech-
nique, the weight and bias values are optimally chosen by the
SBO algorithm.

SBO technique begins generating a primary uniform
arbitrary population that contains a group of places to
bower [26]. All positions (pop(i).Pos) are determined to
the parameter which is supposed that optimize as written
in equation (6). It could be noticeable the value of primary
population lie among the existing minimal as well as
maximal limit of optimizing parameters.

pop (i) · Pos � rand 1, nvar(  · VarMax − VarMin( 

+ VarMin , ∀i ∈ nPop.
(5)

Comparatively, same as ABC, the probability of fasci-
nating of male/female (Probi) to bower was calculated as
follows.

Probi �
costi


nPop
k�1 costi

, ∀i ∈ nPop,

cos ti �

1
1 + f xi( 

, f xi( ≥ 0,

1 + f xi( 


, f xi( < 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

Same as other evolutionary dependent upon optimizer,
elitism was utilized for storing an optimum solution(s) at all
iterations of optimized procedure. In the mating season,
males like every other bird utilize its drives for building and
decorating the bower. Noticeably, older and experienced
males are appealed further attention of others to their bower.
Conversely, this bower has further ftness than the other
bower. During the SBO processes, the place of an optimum
bower created by bird was estimated as elite of kth iteration
(xelite,k) that is maximum ftness and is capable of afecting
the other places. In all iterations, a novel modifcation at
some bower was computed dependent upon equation
demonstrated in

χnewik � χoldi,k + βk

xjk + xelite,k

2
  − χoldi, k . (7)

It can be worth maintaining that roulette wheel selective
process was utilized for picking up bower with superior
probability (xjk). In SBO, Parameter βk defnes the count of
steps for selecting target bowers that are calculated to all
variables and modifed based on

168
DigitCaps

256
ReLU Conv1

9×9

20

PrimaryCaps

9×9

6

32

Wij = (8×16)
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||L2||

Figure 2: Structure of CapsNet.
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βk �
α

1 + Propi

. (8)

Arbitrary modifes were executed to xik with specifc
probability, where normal distribution (N) has been utilized
with average of xold

i,k and variance of σ as stated in equation.

X
neω
ik ∼ X

old
ik + σ · N(0, 1),

σ � Z · VarMax − VarMin( .
(9)

Finally, all the cycle is an old population and population
attained in modifes as aforementioned were evaluated,
integrated, sorted and novel population was created. Te
pseudocode of SBO algorithm is given in 2.

Te SBO approach develops a FF for attaining enhanced
classifcation efciency. It defnes a positive integer for
representing the optimum efciency of candidate solution.
During this case, the minimized classifcation error rate was
regarded as FF is provided in equation (10). Te optimum

Parameter Initialization
Assume maximum number of hyperspheres
Represent the archive size
While the termination criteria is not fulflled
Determine the objective value of every dragonfy
Compute nondominated solution
Upgrade the archives based on the attained nondominated solution
If the archive is occupied
Execute the archive maintenance scheme to discard the present archive member

Append the newly attained solutions to the archive
End if
If any of the newly appended solutions to the archive is situated external the hyper sphere
Upgrade and reposition the hypersphere for covering the newly obtained solutions
End if
Elect a food source from archive
Elect an enemy from archive
Upgrade step vector by the use of T(Δx) � |Δx/

�������
Δx2 + 1

√
|

Upgrade position vector by

Xt+1 �
−Xt r<T(Δxt+1)

Xt r≥T(Δxt+1)
 

Ensure and adjust the newly obtained position depending upon the boundary variable
End while

ALGORITHM 1: Pseudocode of DFO Algorithm.

Input: population Psp

��→

Output: optimal searching agent, Pbst

��→

Procedure SOA
Parameter Initialization: CA and CB

Determine the ftness of every search agent
Pbst

��→
← optimal searching agent

While (z<Maxiterations) do
for every searching agent do
Upgrade the location of searching agent
end for
Upgrade variables CA and CB

Determine ftness value of all searching agents
Upgrade Pbst

��→
when better solution exist over earlier optimum solution

z←z + 1
End while
Return Pbst

��→

End procedure

ALGORITHM 2: Pseudocode of SBO Algorithm.
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Table 1: Dataset descriptions.

Categories of MR brain stroke images Class labels Dimensions Number of images
Acute (speech arrest) Class 0 256 ∗ 256 25
Cerebral haemorrhages Class 1 256 ∗ 256 25
Fatal stroke Class 2 256 ∗ 256 24
Normal images Class 3 256 ∗ 256 54
Subacute stroke (hesitating speech) Class 4 256 ∗ 256 26
Subacute stroke (loss of sensation) Class 5 256 ∗ 256 24

Figure 3: Sample test images.
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Figure 4: Continued.
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Figure 4: Confusion matrix of CAD-BSDC technique.

Table 2: Result analysis of CAD-BSDC technique with diferent classes and epoch counts.

Classes Sensitivity Specifcity Accuracy Precision F-score MCC
Epoch-500
Class 0 92.00 98.04 97.19 88.46 90.20 88.58
Class 1 96.00 98.69 98.31 92.31 94.12 93.16
Class 2 100.00 98.05 98.31 88.89 94.12 93.36
Class 3 96.30 99.19 98.31 98.11 97.20 96.00
Class 4 92.31 100.00 98.88 100.00 96.00 95.45
Class 5 91.67 100.00 98.88 100.00 95.65 95.13
Average 94.71 99.00 98.31 94.63 94.55 93.61

Epoch-1000
Class 0 92.00 100.00 98.88 100.00 95.83 95.30
Class 1 88.00 98.69 97.19 91.67 89.80 88.19
Class 2 100.00 98.05 98.31 88.89 94.12 93.36
Class 3 100.00 97.58 98.31 94.74 97.30 96.15
Class 4 88.46 98.68 97.19 92.00 90.20 88.58
Class 5 91.67 100.00 98.88 100.00 95.65 95.13
Average 93.35 98.83 98.13 94.55 93.82 92.78

Epoch-1500
Class 0 100.00 98.04 98.31 89.29 94.34 93.56
Class 1 84.00 100.00 97.75 100.00 91.30 90.48
Class 2 91.67 99.35 98.31 95.65 93.62 92.67
Class 3 96.30 99.19 98.31 98.11 97.20 96.00
Class 4 100.00 100.00 100.00 100.00 100.00 100.00
Class 5 95.83 97.40 97.19 85.19 90.20 88.77
Average 94.63 99.00 98.31 94.71 94.44 93.58

Epoch-2000
Class 0 100.00 99.35 99.44 96.15 98.04 97.74
Class 1 80.00 100.00 97.19 100.00 88.89 88.02
Class 2 95.83 100.00 99.44 100.00 97.87 97.58
Class 3 100.00 97.58 98.31 94.74 97.30 96.15
Class 4 100.00 98.03 98.31 89.66 94.55 93.75
Class 5 95.83 100.00 99.44 100.00 97.87 97.58
Average 95.28 99.16 98.69 96.76 95.75 95.13

Table 3: Overall Classifcation result analysis of CAD-BSDC technique.

No. of epochs Sensitivity Specifcity Accuracy Precision F-score MCC
Epoch-500 94.71 99.00 98.31 94.63 94.55 93.61
Epoch-1000 93.35 98.83 98.13 94.55 93.82 92.78
Epoch-1500 94.63 99.00 98.31 94.71 94.44 93.58
Epoch-2000 95.28 99.16 98.69 96.76 95.75 95.13
Average 94.49 99.00 98.36 95.16 94.64 93.78

Journal of Healthcare Engineering 7



Se
ns

iti
vi

ty
 (%

)

Epoch-500

Epoch-1000

Epoch-1500

Epoch-2000

Epoch-500

Epoch-1000

Epoch-1500

Epoch-2000

Epoch-500

Epoch-1000

Epoch-1500

Epoch-2000

Epoch-500

Epoch-1000

Epoch-1500

Epoch-2000

Epoch-500

Epoch-1000

Epoch-1500

Epoch-2000

Epoch-500

Epoch-1000

Epoch-1500

Epoch-2000

A
cc

ur
ac

y 
(%

)
F-

Sc
or

e (
%

)

M
CC

 (%
)

Pr
ec

isi
on

 (%
)

Sp
ec

if
cit

y (
%

)

96

95

94

93

92

99.5

99

98.5

98

99

98.5

98

97.5

97

96

95

94

96

95

94

93

95

94

93

92

Figure 5: Overall classifcation result analysis of CAD-BSDC technique.

8 Journal of Healthcare Engineering



solutions have reduced error rates and the worst solutions
obtain an enhanced error rate.

fitness xi(  � ClassifierErrorRate xi( ,

�
number of misclassified instances

total number of instances
∗ 100.

(10)

4. Experimental Validation

Te performance validation of the CAD-BSDC technique
takes place using the benchmark dataset [27], which con-
tains MRI images under six distinct classes. Te details
relevant to the dataset are given in Table 1. Figure 3 shows
the sample MRI images.

Figure 4 shows the confusion matrices ofered by the
CAD-BSDC technique on the classifcation of brain stroke.
Te fgure shows that the CAD-BSDC technique has ef-
fectually identifed distinct classes of brain stroke. For in-
stance, under 500 epochs, the CAD-BSDC technique has
categorized 23 images in class 0, 24 images under class 1, 24
images in class 2, 52 images under class 3, 24 images in class
4, and 22 images in class 5, respectively. Simultaneously, in
1000 epochs, the CAD-BSDC approach has classifed 23
images under class 0, 22 images in class 1, 24 images in class
2, 54 images under class 3, 23 images in class 4, and 22
images in class 5 correspondingly. Furthermore, under 1500
epochs, the CAD-BSDC methodology has classifed 25

images in class 0, 21 images under class 1, 22 images in class
2, 52 images in class 3, 26 images in class 4, and 23 images in
class 5 correspondingly. Furthermore, under 2000 epochs,
the CAD-BSDC system has categorized 25 images in class 0,
20 images in class 1, 23 images in class 2, 54 images under
class 3, 26 images in class 4, and 23 images in class 5
correspondingly.

Table 2 ofers a detailed classifcation result analysis of
the CAD-BSDC technique under various classes and epoch
counts. Te results ensured the efective performance of the
CAD-BSDC technique interms of diferent measures.

Table 3and Figure 5 depict the overall classifcation result
analysis of the CAD-BSDC technique under varying epochs.
Te results show that the CAD-BSDC technique has resulted
in improved classifcation results. For instance, with 500
epochs, the CAD-BSDC technique has resulted in the sensy,
specy, accuy, precn, Fscore, and MCC of 94.71%, 99%,
98.31%, 94.63%, 94.55%, and 93.61%, respectively. As well as,
with 1000 epochs, the CAD-BSDC process has resulted in
sensy, specy, accuy, precn, Fscore, and MCC of 93.35%,
98.83%, 98.13%, 94.55%, 93.82%, and 92.78% correspond-
ingly. Furthermore, with 1500 epochs, the CAD-BSDC
method has resulted to the sensy, specy, accuy, precn, Fscore,

and MCC of 94.63%, 99%, 98.31%, 94.71%, 94.44%, and
93.58% correspondingly. Finally, with 2000 epochs, the
CAD-BSDC approach has resulted in the sensy, specy,
accuy, precn, Fscore, and MCC of 95.28%, 99.16%, 98.69%,
96.76%, 95.75%, and 95.13% correspondingly.

Table 4: Comparative analysis of CAD-BSDC technique with existing approaches.

Methods Sensitivity Specifcity F-measure Accuracy
CAD-BSDC 94.49 99.00 96.64 98.36
SIFT-DT model 91.04 98.23 91.91 97.25
SURF-DT model 78.10 95.11 80.15 92.62
EM-PSORF 92.50 95.80 95.17 93.40
EM-PSOSVM 90.40 94.60 93.44 93.20
FODPSO-RF 89.40 93.70 93.54 92.40
FODPSO-SVM 88.30 92.60 91.69 91.70
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Figure 6: Accuracy analysis of CAD-BSDC technique with existing approaches.
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In order to ensure the improvements of the CAD-BSDC
technique, a comprehensive comparison study is made in
Table 4 [28].

Figure 6 investigates the comparative accuracy anal-
ysis of the CAD-BSDC with recent methods on the test
dataset. Te fgure demonstrated that the FODPSO-SVM
technique has accomplished inefectual outcomes with the
least values of accuracy. In line with, the SURF-DT and
FODPSO-RF techniques have obtained slightly increased
values of accuracy. Followed by, the EM-PSORF and EM-
PSOSVM techniques have reached moderately improved
accuracy values. Tough the SIFT-DT technique has
reached near optimal accuracy of 97.25%, the CAD-BSDC
technique has accomplished maximum accuracy of
98.36%.

Figure 7 explores the comparative sensy, specy, and
Fmeasure analysis of the CAD-BSDC with current method-
ologies on the test dataset. Te fgure illustrates that the
FODPSO-SVM approach has achieved inefectual outcomes
with the least values of sensy, specy, and Fmeasure. In line
with, the SURF-DT and FODPSO-RF methodologies have
attained slightly improved values of sensy, specy, and
Fmeasure. Ten, the EM-PSORF and EM-PSOSVM algo-
rithms have reached better sensy, specy, and Fmeasure values.
Although the SIFT-DTmodel has reached to near optimum
sensy, specy, and Fmeasure of 91.04% 98.23%, and 91.91%, the
CAD-BSDC model has attained maximal sensy, specy, and
Fmeasure of 94.49%, 99%, and 96.64%.

Te above mentioned tables and fgures demonstrated
that the CAD-BSDC technique has showcased superior
performance over the other techniques.

 . Conclusion

In this study, a new CAD-BSDC model has been devel-
oped for MRI images for classifying them into normal or
abnormal. Te CAD-BSDC technique involves diferent
subprocesses such as AT based preprocessing, ensemble of

feature extraction, IDFO-based hyperparameter tuning,
SAE based classifcation, and SBO based parameter tun-
ing. Te experimental result analysis of the CAD-BSDC
technique takes place utilizing benchmark dataset which
includes T2-weighted MR brain images. Te simulation
outcomes indicated the promising efciency of the pro-
posed CAD-BSDC technique over the latest state of art
approaches in terms of various performance measures.
Tus, the CAD-BSDC technique can be realized in a real
time environment to aid physicians. As a part of future
extension, the classifcation performance of the CAD-
BSDC technique can be enhanced by the use of DL-based
segmentation approaches.
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[4] O. Öman, T. Mäkelä, E. Salli, S. Savolainen, and
M. Kangasniemi, “3D convolutional neural networks applied
to CTangiography in the detection of acute ischemic stroke,”
European radiology experimental, vol. 3, no. 1, pp. 8–11, 2019.

[5] R. Gupta, S. P. Krishnam, P. W. Schaefer, M. H. Lev, and
R. G. Gonzalez, “An east coast perspective on artifcial in-
telligence and machine learning,” Neuroimaging Clinics of
North America, vol. 30, no. 4, pp. 467–478, 2020.
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Early and accurate detection of COVID-19 is an essential process to curb the spread of this deadly disease and its mortality rate.
Chest radiology scan is a significant tool for early management and diagnosis of COVID-19 since the virus targets the respiratory
system. Chest X-ray (CXR) images are highly useful in the effective detection of COVID-19, thanks to its availability, cost-effective
means, and rapid outcomes. In addition, Artificial Intelligence (AI) techniques such as deep learning (DL) models play a
significant role in designing automated diagnostic processes using CXR images. With this motivation, the current study presents a
new Quantum Seagull Optimization Algorithm with DL-based COVID-19 diagnosis model, named QSGOA-DL technique. 'e
proposed QSGOA-DL technique intends to detect and classify COVID-19 with the help of CXR images. In this regard, the
QSGOA-DL technique involves the design of EfficientNet-B4 as a feature extractor, whereas hyperparameter optimization is
carried out with the help of QSGOA technique. Moreover, the classification process is performed by a multilayer extreme learning
machine (MELM) model. 'e novelty of the study lies in the designing of QSGOA for hyperparameter optimization of the
EfficientNet-B4 model. An extensive series of simulations was carried out on the benchmark test CXR dataset, and the results were
assessed under different aspects. 'e simulation results demonstrate the promising performance of the proposed QSGOA-DL
technique compared to recent approaches.
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1. Introduction

Coronavirus disease (COVID-19) should be diagnosed in
early stages in order to reduce the spread of virus and
prevent further complications. With the increasing spread of
COVID-19 cases, on a day-to-day basis across the globe, the
limitation of the present diagnosis tool imposes challenges in
managing and curbing the outbreak. Global researchers have
conducted vigorous research to develop efficient diagnosis
procedures and speed up the development of treatments and
vaccine [1]. In general, three diagnostic procedures are
widely employed such as medical imaging, blood tests, and
viral tests [2]. One of the most widely employed viral tests
that is identified as the gold-standard for detecting COVID-
19 is Reverse Transcription Polymerase Chain Reaction (RT-
PCR) which is employed as first-line screening tool. How-
ever, a number of researchers found that the experiment
results achieved a sensitivity between 50 and 62% only [3].
'is reveals the fact that first RT-PCR results could be
attained as negative also. 'erefore, in order to validate the
accuracy of the experimental diagnoses, many RT-PCR
experiments are conducted on a 14-day period of obser-
vation. In other words, an RT-PCR negative result for a
suspicious COVID-19 case is taken into account as True
Negative, if there is no positive RT-PCR result after running
screening tests during the 14-day period of observation.
Practically, this frustrates the patient diagnosed with
COVID-19 and stresses the already-exhausted healthcare
infrastructure of most of the nations due to lack of sufficient
RT-PCR kits and qualified personnel [4].

As per the literature, chest X-rays (CXR) were employed
as a first-line diagnosis tool in Italy and several countries [5].
Radiology scans can be run to detect the condition of the
lungs and the patient’s distinct phase of recovery/illness in
an efficient manner [6]. Radiologists have observed a range
of abnormalities present in radiology scan reports of
COVID-19 patients. In recent years, deep learning, observed
as the fundamental component of enhancing Artificial In-
telligence technology, was stated to have considerable di-
agnosis accuracy, in medical imaging, for automated
diagnosis of lung disease. It exceeded human level perfor-
mances on ImageNet classification tasks with one million
images to train in 2015 and further displayed dermatologist
level performances on the classification of skin lesions in
2017. It further produced outstanding results in terms of
screening lung cancer in 2019 [7].

In general, a radiologist’s manual screening process may
bring bias or wrong diagnoses and increases the possible risk
of lost diagnoses for minuscule lesions. 'erefore, health
professionals such as radiotherapists gain excellent benefit
out of emerging Artificial Intelligence (AI) methods in
computer-aided COVID-19 diagnostics. Artificial Intelli-
gence (AI) and advanced software, in the field of healthcare
image analyses, have directly assisted the healthcare pro-
fessionals in fighting this novel coronavirus. 'ese systems
offer effective and high-quality diagnosis result and drasti-
cally reduces manpower requirement [8]. Recently, machine
learning and deep learning, the two main fields of AI, have
forayed into healthcare applications commonly. Deep

learning-based support system is established in the diagnosis
of COVID-19 using X-ray and CT scan samples. Few
schemes have been proposed according to the pretrained
models using transfer learning, whereas some methods have
been presented with a personalized network [9]. Data sci-
ence and machine learning, though being different domains,
have been brought together and are dynamically employed
in different stages such as prognosis, diagnosis, outbreak
forecasting, and prediction for COVID-19. However, almost
all of the DL-based techniques, used in disease diagnosis,
require annotating the lesion, particularly for the disease
diagnoses in CT volume. Annotating the lesion of COVID-
19 incurs heavy cost, time, and effort for the radiotherapist
which prevents efficient curbing of the disease. COVID-19
has rapidly spread to global nations, and there is a huge
shortage for radiotherapists.'erefore, conducting COVID-
19 diagnosis using DL models is of great significance for the
community.

'e current study focuses on the design of a new
Quantum Seagull Optimization Algorithm with DL-based
COVID-19 diagnosis model, named QSGOA-DL technique.
Besides, the proposed QSGOA-DL technique involves the
design of EfficientNet-B4 as a feature extractor, whereas the
hyperparameter optimization process is carried out by the
QSGOA technique. Moreover, the classification process is
performed by a multilayer extreme learning machine
(MELM) model. In order to showcase the supremacy of the
proposed QSGOA-DL technique, a wide range of experi-
mental analyses was conducted on benchmark test CXR
dataset and the results were assessed under several aspects.

'e rest of the paper is organized as follows: Section 2
reviews the literature; Section 3 discusses the proposed
model; Section 4 validates the performance of the proposed
model; at last, Section 5 concludes the study.

2. Related Works

Roy et al. [10] presented a new deep network acquired from
the spatial transformer network. 'is network can predict
the disease’s seriousness rate concurrently based on input
frames and offer positioning of pathological artefact in a
weakly supervised manner. Additionally, the authors pre-
sented a novel methodology according to the uninorm for
aggregation of efficient frame scores at a video level. At last,
advanced deep methods were validated to estimate the pixel-
level segmentation of COVID-19 imaging biomarker. In
[11], a matrix profile technique was presented to detect the
abnormalities in CT scan image through two stages. Ab-
normality Severity Score (CT-SS) was evaluated, and the
variance of CT-SS between the COVID-19 CT image and
non-COVID-19 CT image was examined. A sparse abnor-
mality mask was evaluated and used for penalizing the pixel
value of all the images. 'e abnormality-weighted images
were utilized later for training the benchmark DenseNet DL
model to differentiate COVID-19 CT from non-COVID-19
CT image. In this study, the authors applied the VGG19
model as a baseline model for comparison purposes.

Sakib et al. [12] proposed a feasible and effective DL-
CRC framework for distinguishing COVID-19 from other
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abnormalities (for example, pneumonia) and usual case with
high precision. Exclusive datasets were developed from four
open sources with PA chest sight of X-ray information for
pneumonia, COVID-19, and usual case. 'e presented DL-
CRC frameworks leveraged the DARI model for COVID-19
data by adaptively using GAN and GAD models. Kaur et al.
[13] proposed expert models on the basis of deep feature and
PF-BAT enhanced PF-FKNN classifiers to diagnose the
novel coronavirus. In the presented method, the feature is
extracted from the FC layer of transfer-learned MobileNetv2
and FKNN training. 'e hyperparameter of FKNN is fine-
tuned with the help of PF-BAT algorithm.

Singh and Singh [14] proposed an automatic approach
to diagnose COVID-19 from chest X-ray images. 'e
study proposed an enhanced depth-wise CNN model to
analyze the chest X-ray image. Wavelet decompositions
were used in this study to integrate multiresolution an-
alyses in the network. 'e frequency subbands, attained
from the input image, were fed into the network to
identify the disease. 'e networks were developed to
predict the class of input image as either COVID-19 or
normal or viral pneumonia.

Li et al. [15] proposed a new method for efficient and
effective training of COVID-19 classification network with
less number of COVID-19 CT exams and a record of
negative samples. Specifically, new self-supervised learning
methods were introduced to extract the features from
negative sample and COVID-19-positive samples. Next, two
types of soft labels (“diversity” and “difficulty”) were made
for a negative sample by calculating the earth mover distance
between COVID-19 features and negative samples, where
the data “value” of the negative sample could be measured.
Shamsi et al. [16] presented a deep uncertainty-aware TL
architecture for COVID-19 recognition using healthcare
image. Four common CNNs, including InceptionResNetV2,
VGG16, ResNet50, and DenseNet121, were initially used in
this study to extract the deep features from CT and X-ray
images. Later, feature extraction was accomplished using
distinct ML and statistical modelling methods to identify
COVID-19 cases.

Wu et al. [17] developed a new JCS system to execute
explainable and real-time COVID-19 chest CT diagnoses.
In order to train these JCS systems, the authors created a
large-scale COVID-19 Segmentation and Classification
(COVID-CS) dataset containing 144,167 chest CT images
collected from 400 COVID-19 persons and 350 negative
samples. A total of 3,855 chest CT images, collected from
200 persons, were annotated to fine-grained pixel-level
label of opacification, i.e., improved attenuation of lung
parenchyma. Han et al. [18] proposed an AD3D-MIL
model in which a person-level label is allocated to a 3D
chest CT scan image that is viewed as a bag of instance.
AD3D-MIL could semantically create deep 3D instances by
following the probably diseased region. Furthermore,
AD3D-MIL employs an attention-based pooling method
for 3D instances so as to provide insight to every instance
that contributes toward bag labels. Finally, AD3D-MIL
learns Bernoulli’s distribution of bag-level label for easily
available learning.

3. The Proposed Model

In this study, a novel QSGOA-DL technique is presented to
detect and classify COVID-19 using CXR images. 'e
presented QSGOA-DL technique encompasses different
operational stages such as preprocessing, EfficientNet-B4-
based feature extraction, QSGO-based hyperparameter
optimization, and MELM-based classification. Figure 1 il-
lustrates all the processes involved in the proposed QSGOA-
DL model. 'e design of QSGO technique assists in optimal
selection of hyperparameter values of EfficientNet-B4
model.

3.1. Preprocessing. In the presented model, the images un-
dergo preprocessing through two ways such as data aug-
mentation and image resizing. 'e augmentation technique
generates the perturbed versions of the available images.
Scaling, rotations, and other affine conversions are com-
monly used herewith. It is generally carried out to increase
the size of the dataset and provide effective training to the
deep learning model on different types of images. Besides,
the 2D array (x-axis and y-axis) of the image of X-data (size
of 512 × 512) is normalized for pixel values between 0 and
255 and stored from PNG format with the help of OpenCV
library. All the preprocessed images measure 512 × 512 and
have three channels.

3.2. EfficientNet-B4-Based Feature Extraction. In this stage,
the preprocessed CXR images are passed onto EfficientNet-
B4 technique and generate a useful set of feature vectors.
Here, the CNN is directed towards an acyclic graph. 'is
network is able to learn extremely nonlinear functions too.
Neurons are the fundamental unit inside a CNN. All the
layers, in a CNN, are made up of many neurons. 'ese
neurons are hooked together, i.e., the output of neuron from
layer l becomes the input of neuron at layers l + 1, as given in
the following equation:

a
(l+1)

� f W
(l)

a
(l)

+ b
(l)

 , (1)

where W(l) represents the weight matrix of layers l, b(l)

denotes bias term, and f indicates the activation function.
'e activation for layer l is represented as a(l). In order to
train a CNN, it is important to learn W and b for all the
layers, so the cost functions are minimalized [19]. Generally,
assume a training set (x(1), y(1)), . . . , ( x(m), y(m))  with m

training example; weight W and bias b should be defined
since they minimize the cost, i.e., the differences between the
preferred output y and actual output fW,b(x). 'e cost
functions for individual training examples are determined as
follows:

J(W, b; x, y) �
1
2

hW,b(x) − y
����

����
2
, (2)

where h(x) represents the activation of final layer. Mini-
mization process is iteratively performed by following the
gradient descent method. 'is method involves the com-
putation of partial derivatives of cost functions with regard
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to weight and updates the weight consequently. A single
iteration of gradient descent updates the variables W and b

as follows:

W
(l)

� W
(l)

− α
z

zW
(l)

J(W, b),

b
(l)

� b
(l)

− α
z

zb
(l)

J(W, b).

(3)

'e BP model is employed in the computation of a
partial derivative of cost function. Each FC has a hidden unit
interconnected to each input unit. 'is increases the
numbers of connections to extreme levels, while at the same
time, it can also handle high-dimension information such as
images. When the image size is assumed to be its dimen-
sions, then the process of interconnecting every input pixel
to all the neurons incurs heavy computation cost. An image
as small as 100 × 100 pixel requires 104 × N connection at
the input layer, in which N represents the number of
neurons at the initial layer. 'e convolution layer allows the
construction of a sparse connection by assigning parameters
through neurons. In comparison with the FC layer, the
convolution layer has fewer parameters. So, it can be trained
easily. It is derived at the cost of small reduction in the
performance. 'e widely employed CNN for image detec-
tion includes convolutional and FS layers too. 'is network
is frequently called as a deep network.

In DL training procedure models, expansion of network
width, intensification of network depth, and improvement of
input image solutions are the most widely employed
methods to improve the precision of the models. Even
though previous works such as ResNet and WideResNet
proved the supremacy of the abovementioned approaches, it
is important to balance each dimension in network reso-
lution or width or depth so that the balance could be attained
by scaling all the dimensions at a constant ratio. Tan pre-
sented the EfficientNet models that could produce appro-
priate effects on the extension of resolution, depth, and
width of the networks and later attain a better performance.
Initially, the researchers could portray CNN as a function:

Yi � Fi(Xi), in which Fi represents the operator (op), Yi

indicates the tensor of output, and Xi signifies the input
tensor of shape 〈Hi, WI, Ci〉, where Ci, Hi , and Wi denote
the numbers of channels of an input image, height, and
width. A CNN could be determined as a sequence of layers:
Net � Fk ⊙ . . . ⊙F2 ⊙F1(X1) � ⊙ j�1...kFj(X1). In actual
application procedure, the CNN layers are generally
employed at many phases, where every phase uses a similar
network framework. Hence, it is determined as follows [20]:

Net � ⊙
i�1...s

F
Li

i X〈Hi,Wi,Ci〉 , (4)

where F
Li

i represents the layer Fi which is continued Li time
in a phase i and 〈Hi, WI, Ci〉 represents the height, width,
and numbers of channels of input tensor X of a layer i. Next,
the standard CNN design mostly focuses on identifying an
optimum layer framework Fi. However, according to the
predetermined Fi baseline network framework, model
scaling mostly extends the resolution (Hi, Wi), length (Li),
and width (Ci) of the networks. In the meantime, model
scaling overcomes the implementation problems for a novel
resource constraint by setting Fi.'ey could also examine Li,

Ci, Hi, andWi distinctly for all the layers because it is a
sample design space. EfficientNet stresses that each layer
should be uniformly scaled by a constant ratio to reduce the
design space. 'e target is to considerably enhance the
precision of the models in the provided resource constraint
environment since it is considered as an optimization
problem:

max
d,w,r

Accuracy (Net(d, w, r)),

s. t.Net (d, w, r) � ⊙ j�1...k
F

d·Li

i X
〈r·Hi,r· Wi,w·Ci〉

 ,

Memory (Net)≤ terget−memory,

FLOPS (Net)≤ terget_flops,

(5)

where w, d, and r represent the coefficients employed to
scale the width, depth, and resolution of the network;
Fi,

Li,
Hi,

Wi, and Ci represent the predetermined parame-
ters in the baseline network. Next, a novel compound scaling
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Deep Learning
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EfficientNet-B4 Model

Training Images

Figure 1: Overall process of the QSGOA-DL model.
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technique, using a compound coefficient ϕ, is employed for
uniform expansion of depth and width of the network as
follows:

depth: d � αϕ,

width: w � βϕ,

resolution: r � c
ϕ
,

s. t. α · β2 · c
2 ≈ 2,

α≥ 1, β≥ 1, c≥ 1 ,

(6)

where α, β, and c are constants. Amongst others, ϕ repre-
sents a stated value that determines how much resource is
valid for expanding the models, whereas α, β, and c de-
termine the allocation method of extra resources to reso-
lution, width, and depth of the network correspondingly.
Also, there is a certain relationship between the FLOPS of a
standard convolutional op and d, w2, and r2. When the
depth of network doubles, then FLOPS doubles as well.
However, when the network resolution/width doubles,
FLOPS quadruples. Since convolutional ops frequently
control the computational costs in the CNN, the CNN is
expanded with equation (7) which accurately increases the
overall FLOPS as (α · β2 · c2)ϕ. At last, scaling models does
not alter the layer operator Fi in the predetermined baseline
networks. 'erefore, it is crucial to have a baseline network
in place. EfficientNet, a novel mobile-size baseline network,
is proposed with multiobjective neural framework which
enhances both FLOPS and accuracy. 'e fundamental
component consists of squeeze and excitation optimization
and mobile-inverted bottleneck MBConv.

3.3. Hyperparameter Optimization. 'e QSGOA technique
is deployed for optimal selection of hyperparameters in-
volved in the EfficientNet-B4 model. In line with this, the
performance gets boosted. Seagulls (scientific term: Larus
minutus) are one amongst the coastal birds that started
inhabiting the planet before 30 million years. 'ey exist
nearly everywhere in the world. With large wings, seagulls’
hind legs have evolved so that they can travel in water too.
'ough fish is cited as the major food source for seagulls,
they also consume amphibians, reptiles, moles, earthworms,
and insects. In other terms, seagulls are omnivorous. 'ey
are considered as intelligent birds, while the average life span
of seagulls is between 10 and 15 years. Generally, they live as
a swarm and have a unique behaviour at the time of
migration.

Migration is the movement of birds to the south during
fall and to north during moving/spring from the ground to
the height or from coast-coast to endure the winter con-
dition and get wealthy food source with adequate amount of
ease. 'is migration phenomenon of seagulls, which is a
seasonal behaviour, is taken into account since they migrate
everywhere to achieve a wide range of food sources to gain
sufficient energy [21]. 'e procedure is given as follows:

(i) Migration starts when swarms of seagulls started
travelling towards north/south. In order to evade

collision, their primary position is made distinct
from one another.

(ii) One of the benefits from this swarm’s experience is
that they attempt to travel in the direction of optimal
survival so as to achieve the minimum cost value.

In general, seagulls attack the migrating birds on the
sea. 'is phenomenon occurs as a spiral-shaped behaviour
at the time of attack. Seagull models for SGO are delib-
erated through the following points. 'e migration be-
haviour simulates the mobility of seagull swarms towards
the position. For this purpose, three conditions must be
fulfilled.

Collision avoidance: in order to evade the collisions
amongst the neighboring seagulls, the models are deter-
mined as further parameter A to update the novel position of
the deliberated seagull (search agents):

P
→

� A × p
→

c(i),

i � 0, 1, 2, . . . , Max(i),
(7)

where P
→

N describes the location that avoids colliding with
other search agents, p

→
c(i) represents the location of the

candidates in their current iteration (i), and A describes the
movement behaviour of searching agents in their searching
region which is also modelled as follows:

A � fc − i ×
fc

Max(i)
  , (8)

where i describes the iteration and fc represents the fre-
quency control of parameter A in the range of [0, fc].

(i) With another neighbors’ experience: after avoiding
the collision from the neighbor, the candidate
progresses in the direction of optimal neighbors
(optimal solutions).

d
→

e � B × P
→

(i) − p
→

c(i) , (9)

where d
→

e describes the position p
→

c(i) of candidate
towards an optimal fitness candidate p

→
b(i). 'e

coefficient B is an arbitrary value which makes the
trade-off between exploration and exploitation
phases. B is attained as follows:

B � 2 × A
2

× R. (10)

Let R describe the arbitrary values between zero and
one.

(ii) Migration towards optimal solutions (search agents):
at last, search agents upgrade their location
according to the optimal solutions as follows:

D
→

e � P
→

N + d
→

e



, (11)

where D
→

e describes the variance between optimal
costs and seagulls.

At the time of migration, seagulls change the attack
speed and angle frequently. 'e location of seagulls can be
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retained in the air by using their wings and weight. During
attack procedure, the seagull moves in a spiral direction in
air in x, y, and z plane by

X � r × cos(t),

y � r × sin(t),

Z � r × t,

(12)

where t describes arbitrary values in the range between 0 and
2π andr denotes the radius of spiral turn as per the following
formula:

r � α × e
βt

, (13)

where e describes the natural logarithm base and α and β
represent the shapes of the spiral. 'e novel positions of the
seagull are upgraded as follows:

P
→

c(i) � D
→

e × x × y × z  + P
→

b(i), (14)

where P
→

c(i) keeps the optimal result. In order to improve
the exploration abilities of SGO algorithm, QSGOA is
designed including quantum computing.

Bit is the smallest unit of data fromdigital computers which
demonstrates either 0 or 1 at a particular time, while Q-bit or
quantum bit has achieved minimum unit of data from
quantum computing. All Q-bits are capable to exist in the
range of 0, 1, or a group of combined states simultaneously.
'is is named as superposition. Q-bit is referred to as a pair of
numbers (α, β), in which the values of |α|2 and |β|2 signify the
probabilities of determining the Q-bit from the states 0 and 1
correspondingly. 'e state of Q-bit is projected as follows:

|ψ � α|0 + β|1. (15)

All the Q-bits must fulfill the normalization formula
given as follows:

|a|
2

+|β|
2

� 1. (16)

In quantum computer, a separate q is signified as the
order of n Q-bits as follows [22]:

q � q1, q2, . . . , qn  �
α1
β1



α1
β2


· · ·



αn

βn

⎡⎢⎣ ⎤⎥⎦ . (17)

When a quantum state’s performance is detected, it
collapses toward the single state. 'e observation procedure
of Q-bit i is carried out as follows:

If rand. (0, 1)< (αi)
2

'en. fi � 0
Else. fi � 1
In quantum computer, the order of quantum functions is

implemented to update the values to Q-bits from all the
individuals. 'is results in adherence of the upgraded Q-bits
as in equation (20). Q-gate is the most quantum function to
update Q-bits. 'ere exist different Q-gates such as NOT
gate, controlled NOT gate, rotation gate, Hadamard gate,
x-gate, y-gate, and z-gate. In major analysis, the rotation
Q-gate is utilized over other Q-gates. 'e rotation Q-gate
U(Δθi) can be determined as follows:

U Δθi(  �
cos Δθi(  −sin Δθi( 

sin Δθi(  cos Δθi( 
 , (18)

where Δθi refers to the rotation angle of Q-bit i near 0/1
state. 'e state of Q-bit i at time t gets upgraded as follows:

αi(t + 10)

βi(t + 1)
  � U Δθi( 

αi(t)

βi(t)
  . (19)

3.4. ImageClassification. In this final stage, the derived set of
features is fed into MELM classifier to allot appropriate class
labels to the test CXR images. In the basic forms of SLFN,
Huang et al. presented ELM to enhance the training speed of
the work and later extended the hypotheses of ELM from
neurons hidden node to another hidden node. Sample
training can be expressed by xi, ti 

n
i�1, where n represents

the training sample, xi indicates the input of ith sample
using m dimension. Furthermore, ti denotes the output of
ith instance. Later, the input vector x is assumed to be the
output of SLFN using L hidden node, and it is expressed as
follows:

f(x) � 
L

i�1
βihi(x)

� h
T
(x)β,

(20)

where h(x) � [h1(x) · · · hL(x)]T represents the hidden
output and β � [β1 · · · βL]T indicates the output weight.
Given the output of n training, the sample could be esti-
mated by zero error and is given as follows:

Hβ � t, (21)

where H � [h(x1) · · · h(xn)]T signifies the hidden output
matrix [23]. 'e output weight β solutions involve a linear
formula, while such solutions might be equal to mitigation of
training errors, namely, minHβ − t. 'e optimum approx-
imation of output weight might be denoted as Moor-
e–Penrose generalized inverse H†:

β � H
†
t. (22)

In general, orthogonal projection is employed to resolve
the generalized inverse H†. If HTH is nonsingular,
H† � (HTH)− 1HT, or if HHT is nonsingular,
H† � HT(HHT)− 1.

MELM is a multilayer NN in which multi-ELM-AEs are
stacked together, where X(i) � [x

(i)
1 , · · · , x(i)

n ]; let x
(i)
k be the

ith data depiction for input xk, k � 1 to n. Assume Λ(i) �

[λ(i)
1 , · · · , λ(i)

n ] denotes the ith transformation matrix, in
which λ(i)

k denotes the transformation vectors employed in
depiction learning regarding x

(i)
k . Based on this, B replaces

with Λ(i), where T is replaced by X(i) correspondingly [24]:

H
(i)Λ(i)

� X
(i)

. (23)

Let H(i) be the output matrix of ith hidden layer with
regard to X(i), and Λ(i) is resolved as follows:

6 Journal of Healthcare Engineering



Λ(i)
� H

(i)
 

T I

C
+ H

(i)
H

(i)
 

T
 

− 1
X

(i)
. (24)

Next,

X
∗

� g X
(i) Λ(i)

 
T

 , (25)

where χ∗ represents the final depiction of X(1). X∗ is
employed as the hidden layer outputs to estimate the output
weights β∗ and β∗ which are evaluated by

β∗ � X
∗

( 
†
,

T � X
∗

( 
T I

C
+ X
∗

X
∗

( 
T

 
− 1

T.

(26)

4. Results and Discussion

'e proposed model was simulated using Python 3.6.5 tool
on a benchmark CXR image dataset [25]. 'e results were
investigated under varying sizes of training and testing
datasets. Figure 2 illustrates a few sample images considered
for the study.

Figure 3 portrays the confusion matrices generated by
the QSGOA-DL technique on test data with different
training/testing data. Figure 3(a) depicts the confusion
matrix produced by the proposed QSGOA-DL technique on
training/testing of 80 : 20. 'e figure exhibits that the
QSGOA-DL technique classified 3218 images as COVID-19
and 3219 images as healthy samples. Meanwhile, Figure 3(b)
showcases the confusion matrix developed by QSGOA-DL

Figure 2: Sample images.
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manner on training/testing of 70 : 30. 'e figure shows that
the QSGOA-DL algorithm outperformed compared to
others and classified 3214 images as COVID-19 and 3215
images as healthy ones. Eventually, Figure 3(c) illustrates the
confusion matrix generated by the QSGOA-DL algorithm
on training/testing of 60 : 40. 'e figure demonstrates that
the proposed QSGOA-DL methodology classified 3209
images as COVID-19 and 3212 images as healthy.

Table 1 shows the overall classification results
attained by the QSGOA-DL technique under different
training/testing data sizes. 'e results demonstrate that
the proposed QSGOA-DL technique accomplished the
maximum classification outcomes on all training/testing

sizes. For instance, with a training/testing data size of 80 :
20, the QSGOA-DL technique resulted in a precision of
0.9984, sensitivity of 0.9981, specificity of 0.9984, ac-
curacy of 0.9983, F-score of 0.9983, and MCC of 0.9966.
Moreover, with a training/testing data size of 70 : 30,
QSGOA-DL manner resulted in a precision of 0.9972,
sensitivity of 0.9969, specificity of 0.9972, accuracy of
0.9971, F-score of 0.9971, and MCC of 0.9941. Fur-
thermore, with a training/testing data size being 60 : 40,
the proposed QSGOA-DL method produced a precision
of 0.9963, sensitivity of 0.9953, specificity of 0.9963,
accuracy of 0.9958, F-score of 0.9958, and MCC of
0.9916.
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Figure 3: Confusion matrix analysis results of the QSGOA-DL model.

Table 1: Results of the analysis of QSGOA-DL model against different training/testing datasets.

Measures Precision Sensitivity Specificity Accuracy F-score MCC
Training/testing (80 : 20) 0.9984 0.9981 0.9984 0.9983 0.9983 0.9966
Training/testing (70 : 30) 0.9972 0.9969 0.9972 0.9971 0.9971 0.9941
Training/testing (60 : 40) 0.9963 0.9953 0.9963 0.9958 0.9958 0.9916
Average 0.9973 0.9968 0.9973 0.9971 0.9971 0.9941
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Figure 4 illustrates the accuracy graph plotted based on
the results from the QSGOA-DL technique on the applied
training/testing data size of 80 : 20. 'e figure reports that
both training and testing accuracies got increased with an
increase in epoch count. It got saturated after a maximum
epoch count. It is also observed that the training accuracy got
considerably higher than the testing accuracy.

Figure 5 exemplifies the loss graph plotted on the basis of
results from the QSGOA-DL technique on the applied
training/testing data size of 80 : 20.'e figure states that both
training and testing losses got heavily reduced with an in-
crease in epoch count and got saturated after a maximum

epoch count. It is noticed that the training loss is lower than
the testing accuracy.

Figure 6 showcases the accuracy graph plotted based on
QSGOA-DL method results on the applied training/testing
of 70 : 30. 'e figure describes that both training and testing
accuracy values got increased with an increase in epoch
count and got saturated after a maximal epoch count. It is
also detected that the training accuracy got significantly
enhanced to the testing accuracy.

Figure 7 demonstrates the loss graph plotted based on
the analysis results of QSGOA-DL method on the applied
training/testing of 70 : 30. 'e figure indicates that both
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Figure 4: Accuracy graph analysis of the QSGOA-DL model on training/testing (80 : 20).
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Figure 5: Loss graph analysis of the QSGOA-DL model on training/testing (80 : 20).
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training and testing losses got increased with a higher epoch
count and got saturated after a superior epoch count. It is
also observed that the training loss was lesser than the testing
accuracy.

Figure 8 demonstrates the results from accuracy graph
analysis of QSGOA-DL algorithm on the applied training/
testing of 60 : 40. 'e figure states that both training and
testing accuracy values get enhanced with an increase in
epoch count and attained saturation after a high epoch
count. From the results, it can be inferred that the training
accuracy is noticeably superior to the testing accuracy.
Figure 9 represents the loss graph analysis plot for the

presented QSGOA-DL technique on applied training/testing
of 60 : 40.'e figure showcases that both training and testing
losses turn into minimum value with a superior epoch count
and gets saturated after an increased epoch count. It can be
observed that the training loss got established and was lesser
than the testing accuracy.

Finally, a detailed comparative study was conducted
between the proposed QSGOA-DL technique and other
recent approaches, and the results are shown in Table 2 and
Figures 10 and 11 [26]. By examining the results in terms of
precision, it is evident that DHL-2, ResNet-1, and ResNet-2
techniques attained a minimal precision of 97%, 97%, and
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Figure 6: Accuracy analysis results of the QSGOA-DL model on training/testing (70 : 30).
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Figure 7: Loss analysis results of the QSGOA-DL model on training/testing (70 : 30).
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97%, respectively. Likewise, DHBL, DHL-1, and TL-ResNet-
2 techniques accomplished moderate precision values of
98%, 98%, and 98%, respectively. 'ough TL-RENet-1
produced a near-optimal precision of 99%, the proposed
QSGOA-DL technique gained a high precision of 99.80%.

Besides, with respect to sensitivity, it is clear that the
models such as TL-RENet-1, ResNet-1, and ResNet-2 have
obtained the least possible sensitivity of 97%, 97%, and 97%,
respectively. Likewise, DHL-1, TL-ResNet-2, and DHL-2
techniques have accomplished moderate sensitivity values of
98%, 98%, and 99%, respectively. However, DBHL produced
a near-optimal sensitivity of 99%, whereas the presented
QSGOA-DL methodology attained a superior sensitivity of
99.80%. At the same time, by examining the results in terms

of specificity, DHL-2, ResNet-1, and ResNet-2 techniques
attained the least specificity values, namely, 97%, 97%, and
97%, respectively. In line with this, DHBL, DHL-1, and TL-
ResNet-2 systems accomplished moderate specificity values
of 98%, 98%, and 98%, respectively. TL-RENet-1 achieved a
near-optimal specificity of 99%, while the projected
QSGOA-DL algorithm reached the maximum specificity of
99.80%.

On the other hand, by inspecting the results in terms of
accuracy, ResNet-1, ResNet-2, and TL-RENet-1 methods
attained the least accuracy values of 97.21%, 97.21%, and
98.06%, respectively. Likewise, TL-ResNet-2, DHL-1, and
DHL-2 methodologies too accomplished moderate accuracy
values of 98.14%, 98.14%, and 98.29%, respectively. 'ough
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Figure 8: Accuracy graph analysis of the QSGOA-DL model on training/testing (60 : 40).
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DBHL resulted in a near-optimal accuracy of 98.53%, the
proposed QSGOA-DL manner accomplished a superior
accuracy of 99.83%. 'e abovementioned results imply that

the proposed QSGOA-DL technique outperformed the
existing methods with a maximum precision of 99.80%,
sensitivity of 99.80%, specificity of 99.80%, accuracy of
99.83%, F-score of 99.80%, and MCC of 99.70%. 'erefore,
the proposed model can be utilized as a proper tool to di-
agnose COVID-19 using CXR images.

5. Conclusion

In this study, a novel QSGOA-DL technique is presented to
detect and classify COVID-19 using CXR images. 'e pro-
posed QSGOA-DL technique encompasses different opera-
tional stages such as preprocessing, EfficientNet-B4-based
feature extraction, QSGO-based hyperparameter optimiza-
tion, and MELM-based classification. 'e design of QSGO
technique assists in the optimal selection of hyperparameter
values of EfficientNet-B4 model. In order to showcase the
supremacy of the proposed QSGOA-DL technique, a wide
range of experimental analyses was conducted on benchmark
test CXR dataset. 'e results were assessed under several
aspects. 'e simulation results demonstrate the promising
performance of QSGOA-DL technique than the existing
approaches. In future, the performance of QSGOA-DL
technique can be validated using computed tomography (CT)
scan images in the diagnosis of COVID-19.

Data Availability

Data sharing is not applicable to this article as no datasets
were generated during the current study.

Ethical Approval

'is article does not contain any studies with human par-
ticipants performed by any of the authors.

Consent

Not applicable.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Authors’ Contributions

'e manuscript was written through contributions of all
authors. All authors have given approval to the final version
of the manuscript.

Table 2: Comparative analysis results of the QSGOA-DL model with different measures.

Methods Precision Sensitivity Specificity Accuracy F-score MCC
DBHL 98.00 99.00 98.00 98.53 98.00 97.00
DHL-2 97.00 99.00 97.00 98.29 98.00 97.00
DHL-1 98.00 98.00 98.00 98.14 98.00 96.00
ResNet-2 97.00 97.00 97.00 97.21 97.00 94.00
TL-ResNet-2 98.00 98.00 98.00 98.14 98.00 96.00
ResNet-1 97.00 97.00 97.00 97.21 97.00 94.00
TL-RENet-1 99.00 97.00 99.00 98.06 98.00 96.00
QSGOA-DL 99.80 99.80 99.80 99.83 99.80 99.70
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Figure 10: Comparative analysis results of the QSGOA-DL model
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Brain Computer Interface (BCI) technology commonly used to enable communication for the person with movement disability. It
allows the person to communicate and control assistive robots by the use of electroencephalogram (EEG) or other brain signals.
*ough several approaches have been available in the literature for learning EEG signal feature, the deep learning (DL) models
need to further explore for generating novel representation of EEG features and accomplish enhanced outcomes for MI
classification. With this motivation, this study designs an arithmetic optimization with RetinaNet based deep learning model for
MI classification (AORNDL-MIC) technique on BCIs. *e proposed AORNDL-MIC technique initially exploits Multiscale
Principal Component Analysis (MSPCA) approach for the EEG signal denoising and Continuous Wavelet Transform (CWT) is
exploited for the transformation of 1D-EEG signal into 2D time-frequency amplitude representation, which enables to utilize the
DL model via transfer learning approach. In addition, the DL based RetinaNet is applied for extracting of feature vectors from the
EEG signal which are then classified with the help of ID3 classifier. In order to optimize the classification efficiency of the
AORNDL-MIC technique, arithmetical optimization algorithm (AOA) is employed for hyperparameter tuning of the RetinaNet.
*e experimental analysis of the AORNDL-MIC algorithm on the benchmark data sets reported its promising performance over
the recent state of art methodologies.

1. Introduction

Brain-computer interface (BCI) is a technology that permits
us to communicate with the computer, whereby the device
forecasts the abstract aspect of cognitive states with brain
signals, namely, electroencephalography (EEG). Also, it is
named as Brain-computer interface (BCI) that is commonly
associated with AI-enabled approach which permits the user

to harness brain, etc [1]. It is a noninvasive approach that
gathers brain oscillatory activation patterns from the scalp.
*e human brain produces electrical signal that is identified
by using EEG. *erefore, it is highly reliable and applicable
method for receiving the control command for BCI [2].
Studies involving EEG signals when imagining limb or finger
movement, widely called motor imagery (MI), to function
artificial intelligence (AI) technique has been witnessed in
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this study [3]. An effective BCI scheme has two fundamental
needs that consist of effective machine learning (ML)
method for the classification of feature extraction and an
efficient set of EEG feature must be capable of differentiating
task induced brain activities. *e study aims to identify the
MI-task induced EEG patterns [4, 5].

Mostly, BCI system involves filtering or preprocessing to
remove this undesirable component that is embedded with
the EEG signals which leads to wrong conclusions and bias
the analysis of the EEG [6]. Appropriate preprocessing
within the BCI scheme results in cleaner EEG signal, thus
enhancing the classification outcomes. *e study focuses on
the quantummechanics inspired preprocessing phase within
the BCI scheme, for extracting further data from the attained
noisy EEG signal, and leads to increased classification
performance although categorized by using multiple clas-
sification methods [7]. Especially, SVM is widely employed
for MI classification in BMI. Imagery signal classification is
performed by LR method. KNN is utilized in seizure de-
tection, where NB is utilized for detecting the lower limb
movement by analyzing EEG signals [8]. At the same time,
DT is primarily utilized for hand amplitude modulation and
movement interpretation spatial activity. Deep Learning
(DL) method could considerably simplify processing
channel, allow automated end-to-end training of retrieval,
preprocessing, and classification models [9], while guaran-
teeing better performance in target. Deep neural network
(DNN) stimulated by previous methods like multilayer
perceptron (MLP).

*is study designs an arithmetic optimization with
RetinaNet based deep learning model for MI classification
(AORNDL-MIC) technique on BCIs. *e proposed
AORNDL-MIC technique undergoes two stages of
reprocessing namely Multiscale Principal Component
Analysis (MSPCA) based denoising and Continuous
Wavelet Transform (CWT) based decomposition. Besides,
the arithmetic optimization algorithm (AOA) based Reti-
naNet model is as feature extractor which are then classified
by the use of ID3 classifier. To ensure the better results of the
AORNDL-MIC approach, a number of experiments were
carried out and the result is inspected under different
aspects.

*e rest of the paper is organized as follows. Section 2
offers related works, Section 3 provides proposed model,
Section 4 discusses performance validation, and Section 5
draws conclusion.

2. Related Works

Zhang et al. [10] validate and developed a DL-based algo-
rithm for automatically recognizing two distinct MI states by
choosing the related EEG channel. It employs an automated
channel selection (ACS) approach. Furthermore, we pro-
posed a CNNmethod for fully exploiting the time-frequency
feature, therefore outperforming conventional classification
method interms of robustness and accuracy. Kant et al. [11]
present an integration of DL-based TL and CWTfor solving
the problems. CWT transforms 1D-EEG signal into 2D
time-frequency-amplitude representation enables users to

make use of deep network via TL method. Corsi et al. [12]
adapted a fusion technique that integrates features from
instantaneously recorded MEG and EEG signals to enhance
classification performance in MI-based BCI. *omas et al.
[13] introduce a discriminatory filter bank (FB) common
spatial pattern model for extracting FB for the classification
of MI. *e presented model improves the classifier per-
formance in BCI datasets.

Dong et al. [14], proposed a hierarchical SVM approach
for addressing an EEG-based 4-class MI classification
process. Wavelet packet transform is applied for decom-
posing original EEG signal. EEG feature vector is extracted
and a a two-layer HSVM approach is developed for clas-
sifying this EEG feature vector, whereas “OVO” classifier is
utilized in the initial layer as well as “OVR” in the next layer.
Zhang et al. [15], proposed a “brain-ID” architecture based
hybrid DNN using TL method for handling single difference
of 4-class MI tasks. A dedicated HDNN is designed for
learning the common feature of MI signals. *e suggested
algorithm comprises LSTM and CNN models that are
employed for decoding the spatiotemporal features of theMI
signal. Zhang et al. [16] introduce 5 systems for adoptation of
a DCNN based EEG-BCI scheme for decoding hand MI. All
the systems are widely trained, pretrained method and adapt
it to improve the efficiency.

3. The Proposed Model

In our study, an AORNDL-MIC approach was introduced to
classify the MI on BCIs. *e proposed AORNDL-MIC
technique encompasses a series of operations namely
MSPCA based denoising, CWT based decomposition,
RetinaNet based feature extraction, AOA based hyper-
parameter tuning, as well as ID3 based classification.

3.1. Data Preprocessing. Initially, the data preprocessing
takes place in two stages namely MSPCA based noise re-
moval and CWT based decomposition. Consider a mea-
surement data set with m sensor exists, namely xeRm. All the
sensors in the measurement samples have n sampling data,
that is integrated into a data matrix of size mxn. *e pro-
cedure has been shown as follows [2]:

X � x1, x2, x3, . . . , xn . (1)

All the columns represent a measurement variable, and
all the rows of X denote a sample. *e PCAmodels initiated
by normalizing all the samples of X by calculating the co-
variance matrix of X.

cov(x)≂
X

T
.X

n − 1
. (2)

*e method of decomposition X in its PCA, in which
PeRm×A has initial A feature vector of cov (x). Once the
feature decomposition of X is made, the size of feature value
is arranged from larger to smaller. A indicates the amount of
PCA, and it is equivalent to the amount of columns in T.

T ∈ Rm×A denotes a matrix, in which all the columns are
called as the principal element variable.
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X � X + Er � T.P
T

+ Er,

T � X.P.

⎧⎨

⎩ (3)

In which λ1, λ2, . . . , λn represent the initial A large eigen
values of covariance matrix of X, equation (4) is utilized for
determining the principal component covariance,

Λ �
X

T
.X

n − 1
�

λ1 . . . . . . . . .

. . . λ2 . . . . . .

. . . . . . . . . . . .

. . . . . . . . . λn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

In the study, the wavelet transform is integrated into the
PCA model for creating MSPCA to the incoming signal
denoising purpose. In MSPCA, the PCA ability for
extracting covariance among parameters is integrated to
orthonormal wavelets’ capability. *e capability of PCA is
improved by integrating the multi-scale analysis. Simulta-
neously, it leads to the MSPCA [17]. It finds linearly cor-
related wavelet coefficient at multilevel sub-bands, attained
using wavelet transform. It represents every subband with
less features when eliminating the autocorrelated coefficient.
*e signal is recreated by utilizing the wavelet syntheses. It
reduces unnecessary noises from the received signals and
generated noise-free and simple signal versions. Also, it can
be utilized as a scalogram that is signified by exact value of
CWT of the signals. MI signal is gradually changing event
peppered by abrupt transient with feature taking place at
distinct scales, so lower frequency event, offering maximum
time localization to higher frequency, shorter duration
event, and higher frequency localization to extended du-
ration, is attained utilizing scalogram.

3.2. RetinaNet Based Feature Extraction. Next to the data
preprocessing phase, the AORNDL-MIC technique involves
the RetinaNet model as a feature extractor. RetinaNet
comprises of two fully convolution networks (FCN), a
feature pyramid network (FPN), and residual network
(ResNet). ResNet uses distinct network layers. *e impor-
tant role of ResNet is the concept of RL that enables raw
input data to be transferred directly to the succeeding layers.
*e widely employed type of network layer consists of 101-

layer, 152-layer, and 50-layer. *e study chooses 101-layers
with the optimal training efficiency [18]. *en, extracted the
feature of the echocardiography with ResNet and later
transmitted to the following subnetworks. FPN is an ap-
proach to effectively extract the feature of all the dimensions
in a picture with a traditional CNN. Figure 1 illustrates the
overview of CNN. Firstly, use single-dimension images as
input to ResNet. Next, start from another layer of the
convolution network, the feature of each layer was chosen
using the FPN and later integrated to generate the last
output. *e class subnetwork in the FCN implemented the
classifier process. Focal loss: it is an amended form of binary
cross-entropy expression, as well as the cross-entropy loss:

CE(p, y) �
−log(p), if y � 1,

−log(1 − p), otherwise,
 (5)

whereas y ∈ [ ± , 1] characterizes the ground truth category
and p ∈ [0, 1] signifies the predicted likelihood of algorithm
for y � 1.

pt �
p, if y � 1,

1 − p, otherwise.
 (6)

*e abovementioned equation is abbreviated as

CE(p, y) � CE pt(  � −log pt( . (7)

To resolve the problems of the data imbalance among the
negative and positive instances, the novel version is changed
into the subsequent form:

CE pt(  � −αtlog pt( , (8)

and amongst them,

αt �
α, if y � 1,

l − α, otherwise,
 (9)

whereas, α ∈ [0, 1] characterizes the weight factor. To resolve
the problems of complex samples, the variable C is presented
for obtaining the last form of focal loss [19]. Figure 2 il-
lustrates the structure of RetinaNet.

FL pt(  � −αt 1 − pt( 
clog pt( . (10)

Since the hyperparameters of the RetinaNet model in-
fluence the overall classifier results of the AORNDL-MIC

Input Image Conv Layer-1 Pooling Layer-1 Conv Layer-2

Feature Extraction

Conv Layer-3 FCL Output

Class 1

Class 2

Class n

Classification

Pooling Layer-2

Figure 1: Overview of CNN.
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technique, the AOA is utilized. In general, as other MH
approaches, the AOA consists of, exploration, and exploi-
tation phases, stimulated by mathematical operations, like

−, +, ∗, and /. Firstly, the AOA generates a set of N solutions
[20]. *erefore, solution or agent represents X population,
as:

X � xN−1,1xN,1x2,1x1,1xN−1,jxN,jx2,jx1,jxN,n−1x1,n−1xN−1,nxN,nx2,nx1,n ,

X �

x1,1 · · · x1,j x1,n−1 x1,n

x2,1 · · · x2,j · · · x2,n

· · · · · · · · · · · · · · ·

⋮ ⋮ ⋮ ⋮ ⋮

xN−1,1 · · · xN−1,j · · · xN−1,n

xN,1 · · · xN,j xN,n−1 xN,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(11)

3.3. AOA Based Hyperparameter Tuning. *en, the fitness
function of solution is calculated for detecting optimal one
Xb. According to the Math Optimizer Accelerated (MOA)

values, AOA implements exploitation or exploration
methods. Subsequently, MOA is upgraded by

MOA(t) � Min + t ×
MaxMOA − MinMOA

Mt

 , (12)

where Mt characterizes the overall amount of iterations.
MinMOA and MaxOA signify the minimal and maximal
values of the accelerated function, correspondingly, the
division (D) and multiplication (M) are applied in the ex-
ploration stage of the AOA, as follows:

Xi,j(t + 1) �
Xbj÷ MOP + ∈(  × UBj − LBj  × μ + LBj , r2 < 0.5,

Xbj × MOP × UBj − LBj  × μ + LBj , otherwise.

⎧⎪⎨

⎪⎩

(13)

Next e signifies smaller integer value, LBj and UBj

shows upper and lower limits of the searching space at jth

parameter. μ � 0.5 denotes the control function. Further-
more, Math Optimizer (MOP) is determined by

MOP(t) � 1 −
t
1/α

M
1/α
t

. (14)

α � 5 characterizes the dynamic variable which defines the
accuracy of the exploitation stage.

Additionally, subtraction (D) and addition operator (A)
operators are employed for executing the AOA exploitation
phase, as follows.

xi,j(t + 1) �
Xbj − MOP × UBj − LBj  × μ + LBj , r3 < 0.5,

Xbj + MOP × UBj − LBj  × μ + LBj , otherwise.

⎧⎪⎨

⎪⎩

(15)

Now r3 characterizes an arbitrary value in [0, 1]. Next,
the agent updating procedure is executed by the AOA op-
erator [21]. In summary, Algorithm 1 demonstrates the steps
included in AOA.

3.4. ID3 Based Classification. Lastly, the ID3 architecture
receives the feature vector as input and carries out the
classification process. *e ID3 technique selects test ele-
ments with computing and relating its information gains
(IG). Assume S be the group of data instances. Supposing the
class element C has m distinct values that signify m various
class labels Ci(i � 1, 2, . . . , m). Assume that Si be the
amount of instances from class Ci(i � 1, 2, . . . , m). *e
predictable data amount needed for classifying S was pro-
vided in equation (15):

I S1, S2, . . . , Sm(  � − 
m

i�1
pilog2pi, (16)

where pi signifies the probability of samples from S ap-
propriate to class Ci. I(S1, S2, . . . , Sm) refers to the average
data amount needed for identifying the class label to every
instance from S.

Let the element A has v distinct values a1, a2, . . . , a] 

from the trained data set S. When A is a nominal element,
Afterward, the element separates S as to v subset such that
S1, S2, . . . , S] , in that Sj represents the subset of S where
sample from Sj has the similar element value aj on A. But,
instance from Sj can have various class labels [22]. Assume
Sij be the group of instances that class label is Ci from the
subset of Sj|A � aj, j ∈ 1, 2, . . . , ], Sj ∈ S} in which element
A � aj. *e needed data amount (i.e., entropy) of element A

for splitting the trained data set S was measured by (16):

E(A) � 
]

j�1

s1j + s2j + . . . + smj 

s
× I s1j, s2j, . . . , smj ⎛⎝ ⎞⎠.

(17)

*e minimum data amount needed, a further purity of
sub-dataset is.

I s1j, s2j, . . . , smj  � − 
m

i�1
pijlog2 pij , (18)

where pij implies the probability of instances from Sj based
on class Ci. I(s1j, s2j, . . . , smj) signifies the average data
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amount needed for identifying the class labels to every in-
stance from Sj. *e IG of A has determined as:

InfoGain (A) � I S1, S2, . . . , Sm(  − E(A). (19)

Specifically, the count of novel data requirement (only
dependent upon class) minus the count of novel data re-
quirements (based the split on element A). Selecting the
element with maximal InfoGain (A) as test element that is
allocated to internal node from DT. During this process, the
required data amount to classify samples is minimal.

4. Results and Discussion

*e performance validation of the AORNDL-MIC tech-
nique has been validated under two dataset includes BCI
competition 2003 dataset III and BCI competition IV data
set 2b.*e BCI competition 2003, dataset III [23], comprises
3-channel EEG data in healthy females, for the imagination
of the right, and left -hand movements. *e data from the
analysis has of recording in the motor cortex area of brain

utilizing 3 electrodes (C3, Cz, and C4) under the motor
imagery of combined right-or-left-hand movement. All
individual trail last to 9-second duration of data to all
channels C3, Cz, and C4 per trial with every label obtainable.
It holds 280 out of which 140 trials were accessible with its
labels, and other 140 instances were employed for validation
method. *e BCI competition IV data set 2b comprises nine
subjects all with 5 sessions of motor imagery experimentally,
amongst that the initial 2 sessions are verified with no
feedback and the remaining 3 sessions are combined online
feedback [24].

4.1. Result Analysis on BCI Competition 2003 III Dataset.
Figure 3 illustrates the confusion matrices generated by the
AORNDL-MIC algorithm under five iterations. At iteration-
1, the AORNDL-MIC technique has identified 67 instances
in left class and 68 instances in right class. Moreover, at
iteration-3, the AORNDL-MIC method has identified 69
instances into left class and 68 instances into right class.

Class+Box
Subnets

Class
Subnet

Box
Subnet

(d) Box Subnet (bottom)(c) Class Subnet (top)(b) Feature Pyramid Net(a) ResNet

x4

x4
WxH
x256

WxH
x256

WxH
x256

WxH
x256

WxH
x256

WxH
x256

Class+Box
Subnets

Class+Box
Subnets

Figure 2: RetinaNet network architecture.

Input: the parameter of AOA includes overall quantity of iterations Mt, dynamic exploitation variable (α), and number of agent (N).
Generate the primary value for the agent Xii � 1,, . . . N/. while (t<Mt) do
Calculate the fitness function for all the agents.
Define the optimal agent Xb.

Upgrade the MOA and MOP using equations (11) and (13),
for i � 1 to N do

for j � 1 to Di m do
Upgrade the values of r1, r2, and r3.

if r1 >MOA then
Exploration stage
Employ equation (12) to upgrade the Xi.

else
Exploitation stage
Employ equations (14) to upgrade the Xi.

end if
end for

end for
t � t + 1

end while
Display the optimal agent (Xb).

ALGORITHM 1: Pseudocode of AOA.
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Furthermore, at iteration-5, the AORNDL-MIC ap-
proach has identified 67 samples into left class and 66
samples into right class.

Table 1 and Figures 4, 5 provides a classifier results of the
AORNDL-MIC algorithm on BCI competition 2003 III
dataset. *e experimental result indicates the better out-
comes of the AORNDL-MIC technique under each iteration.
For example, with iteration-1, the AORNDL-MIC algorithm
has gained precision of 97.10%, recall of 95.71%, accuracy of
94.43%, F − score of 96.40%, and kappa of 95.26%. Mean-
while, with iteration-3, the AORNDL-MIC method has
reached precision of 97.18%, recall of 98.57%, accuracy of
97.86%, F − score of 97.87%, and kappa of 97.13%. Even-
tually, with iteration-5, the AORNDL-MIC system has
obtained precision of 94.37%, recall of 95.71%, accuracy of
95%, F − score of 95.04%, and kappa of 93.30%.

A comparative analysis of the AORNDL-MIC approach
with current methodologies on the test BCI competition

2003, dataset III showed in Figure 6 and Table 2. *e result
exhibits that the SqueezeNet, ResNet50, GoogleNet, Den-
seNet201, ResNet18, and ResNet101 techniques have
resulted to lower kappa values of 57%, 41%, 44%, 36%, 29%,
and 30% correspondingly. Next, the VGG19, AlexNet, and
VGG16 models have resulted in slightly increased kappa
values of 91%, 87%, and 90%, respectively. However, the
proposed AORNDL-MIC technique has accomplished
higher kappa value of 94.84%.

A comparative study of the AORNDL-MICmethod with
recent algorithms on the test BCI competition 2003, dataset
III is illustrated in Table 3 and Figure 7. *e outcome
demonstrates that the CSP-SVM, STFT-KNN, Optimized
GA FKNN-LDA, Hybrid KNN, andWTSE-SVM techniques
have resulted in minimum accuracy values of 82.86%,
83.57%, 84%, 84.29%, and 86.40%, respectively. *en, the
Adaptive PP-Bayesian, STFT-DL, and CWTFB-TL methods
have resulted in slightly maximal accuracy values of 90%,
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Figure 3: Confusion matrix of AORNDL-MIC technique under five iterations.
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90%, and 95.71% correspondingly. Lastly, the proposed
AORNDL-MICmethod has accomplished superior accuracy
value of 96.14%.

4.2. Result Analysis on BCI Competition IV Data Set 2b
Dataset. A classification results of the AORNDL-MIC
method on BCI competition IV data set 2b under several
subjects and runs is shown in Table 4 and Figure 8. *e
experimental value indicates that the AORNDL-MIC

algorithm has demonstrated better performance with an
average accuracy of 85.33%, 84.22%, 90.11%, 87.11%, and
85.89% under runs 1–5, respectively.

An average classification results of the AORNDL-
MIC method under several subjects are portrayed in
Figure 9. *e results showed that the AORNDL-MIC
system has the ability of accomplishing improved out-
comes with the maximum average accuracy of 81.20%
under S-1, 87.20% under S-2, 84.60% under S3, 91.60%
under S-4, and so on.
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Figure 4: Result analysis AORNDL-MIC technique on BCI competition 2003 III datasets.
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Table 1: Classification outcomes of AORNDL-MIC approach on BCI competition 2003 III datasets.

No. of iterations Precision Recall Accuracy F-score Kappa
Iteration-1 97.10 95.71 96.43 96.40 95.26
Iteration-2 97.10 95.71 96.43 96.40 95.26
Iteration-3 97.18 98.57 97.86 97.87 97.13
Iteration-4 93.15 97.14 95.00 95.10 93.24
Iteration-5 94.37 95.71 95.00 95.04 93.30
Average 95.78 96.57 96.14 96.16 94.84
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Table 5 and Figure 10 provide a comparative study of the
AORNDL-MIC system with current methodologies interms of
accuracy. *e experimental results indicated that the
AORNDL-MIC technique has resulted in better results over the
other methodologies under all subjects. For instance, with S-1,
the AORNDL-MIC algorithm has accomplished higher per-
formance of 81.20% whereas the CSP, FBCSP MIBIF, FBCSP

MIRSR, and FDBN techniques have attained lower accuracy of
66%, 68%, 70%, and 81% respectively. Moreover, with S-5, the
AORNDL-MIC approach has reached superior accuracy of
85.80% whereas the CSP, FBCSP MIBIF, FBCSP MIRSR, and
FDBN methods have attained lesser accuracy of 77%, 93%,
93%, and 93%, respectively. Furthermore, with S-9, the
AORNDL-MIC approach has gained superior accuracy of
87.60% whereas the CSP, FBCSP MIBIF, FBCSP MIRSR, and
FDBN methods have achieved minimum accuracy of 83%,
88%, 87%, and 91% correspondingly.
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Figure 6: Kappa analysis of AORNDL-MIC technique with current approaches.

Table 2: Kappa analysis of AORNDL-MIC technique with existing
approaches on test BCI competition 2003, dataset III.

Methods Kappa
AORNDL-MIC 94.84
VGG19 91.00
AlexNet 87.00
VGG16 90.00
SqueezeNet 57.00
ResNet50 41.00
GoogleNet 44.00
DenseNet201 36.00
ResNet18 29.00
ResNet101 30.00
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Figure 7: Accuracy analysis of AORNDL-MIC approach with
current methodologies.

Table 3: Accuracy analysis of AORNDL-MIC technique with
existing approaches on test BCI competition 2003, dataset III.

Methods Accuracy
Hybrid KNN 84.29
CSP-SVM 82.86
Adaptive PP-Bayesian 90.00
STFT-KNN 83.57
STFT-DL 90.00
Optimized GA FKNN-LDA 84.00
WTSE-SVM 86.40
CWTFB-TL 95.71
AORNDL-MIC 96.14
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For ensuring the improvement of AORNDL-MIC
model, an average accuracy analysis is also made in
Figure 11. From the figure, it is apparent that the CSP and
FBCSP MIBIF techniques have reached lower perfor-
mance with an average accuracy of 76.33% and 79.56%
respectively. In line with, the FBCSP MIRSR and FDBN

systems have resulted in moderately increased average
accuracy of 80.22% and 84.22% respectively. However, the
AORNDL-MIC approach has gained effective perfor-
mance over the other methodologies with the maximal
average accuracy of 86.53%. By observing the experi-
mental results and discussion, it is confirmed that the
AORNDL-MIC approach has shown better results over
the other methodologies.
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Table 4: Classification results of the AORNDL-MIC approach under several subjects and runs.

No. of runs S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 Avg.
R-1 87.00 85.00 88.00 86.00 84.00 76.00 83.00 96.00 83.00 85.33
R-2 71.00 83.00 80.00 94.00 85.00 79.00 91.00 83.00 92.00 84.22
R-3 84.00 96.00 94.00 98.00 88.00 90.00 85.00 89.00 87.00 90.11
R-4 82.00 91.00 75.00 89.00 91.00 92.00 81.00 88.00 95.00 87.11
R-5 82.00 81.00 86.00 91.00 81.00 87.00 95.00 89.00 81.00 85.89
Avg. 81.20 87.20 84.60 91.60 85.80 84.80 87.00 89.00 87.60 86.53
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Figure 10: Accuracy analysis of AORNDL-MIC technique with
recent methods.

Table 5: Comparative study of AORNDL-MIC technique with
recent methodologies interms of accuracy.

Subject CSP FBCSP
MIBIF

FBCSP
MIRSR FDBN AORNDL-

MIC
S-1 66.00 68.00 70.00 81.00 81.20
S-2 62.00 59.00 61.00 65.00 87.20
S-3 57.00 59.00 61.00 66.00 84.60
S-4 97.00 98.00 98.00 98.00 91.60
S-5 77.00 93.00 93.00 93.00 85.80
S-6 75.00 80.00 81.00 88.00 84.80
S-7 77.00 78.00 78.00 82.00 87.00
S-8 93.00 93.00 93.00 94.00 89.00
S-9 83.00 88.00 87.00 91.00 87.60
Average 76.33 79.56 80.22 84.22 86.53
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5. Conclusion

In this study, an AORNDL-MIC system was developed to
categorize MI on BCIs. *e proposed AORNDL-MIC tech-
nique encompasses a series of operations namely MSPCA
based denoising, CWT based decomposition, RetinaNet based
feature extraction, AOA based hyperparameter, and ID3 based
classification. *e AOA is employed to tune the hyper-
parameter of RetinaNet and improves the classification per-
formance of the AORNDL-MIC technique. For ensuring the
outcome of the AORNDL-MIC method, a number of exper-
iments were performed and the outcome is examined under
different aspects.*e experiment results of the AORNDL-MIC
algorithm on the benchmark datasets reported its promising
outcome over the current state of art approaches. In the future,
hybrid DLmodel can be utilized for boosting the efficacy of the
MI classification process.
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Prostate cancer is the main cause of death over the globe. Earlier detection and classification of cancer is highly important to
improve patient health. Previous studies utilized statistical and machine learning (ML) techniques for prostate cancer detection.
However, several challenges that exist in the investigation process are the existence of high dimensionality data and less number of
training samples. Metaheuristic algorithms can be used to resolve the curse of dimensionality and improve the detection rate of
artificial intelligence (AI) techniques. With this motivation, this article develops an artificial intelligence based feature selection
with deep learning model for prostate cancer detection (AIFSDL-PCD) using microarray gene expression data.*e AIFSDL-PCD
technique involves preprocessing to enhance the input data quality. In addition, a chaotic invasive weed optimization (CIWO)
based feature selection (FS) technique for choosing an optimal subset of features shows the novelty of the work. Moreover, the
deep neural network (DNN) model can be applied as a classification model to detect the existence of prostate cancer in the
microarray gene expression data. Furthermore, the hyperparameters of the DNN model can be effectively adjusted by the use of
RMSprop optimizer. *e design of CIWO based FS technique helps for reducing the computational complexity and improve the
classification accuracy. *e experimental results highlighted the betterment of the AIFSDL-PCD approach on the other tech-
niques with respect to distinct measures.

1. Introduction

In recent times, cancer is the leading cause of death
worldwide. Generally, around 1 death from 6 overall deaths
is because of cancer [1].*erefore, in 2030, several new cases
predicted annually might increase up to 25 million [2]. But
early diagnoses of cancer might save billions of dollars and

countless lives. *e earlier prediction and identification of
cancer is very crucial for cancer research and patient health.
Once cancer is detected at earlier stages, treatment is highly
efficient. In the past, classification of cancer is based on
clinical and morphological technologies [3]. *e innovative
technologies have made considerable development in pre-
cise observation of hundreds of cancer genes via gene
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expression data. *is method provides a massive amount of
information to the authors for exploring several knowledge;
however it has certain problems [4]. *e key challenges of
microarray data are low sample size and high dimension-
ality. Additionally, many microarray cancer information is
noisy and could not be extremely helpful in the diagnosis of
cancer [5]. Nowadays, categorizing cancer type more ac-
curately and precisely and selecting most important genes
associated with the cancer is one of the key challenges in the
study [6].

Prostate cancer (PCa) is the 3rd one of the general detected
cancers around the world, after breast and lung cancer, and the
5th cause of cancer-specific deaths in males [7]. In the past
decades, researchers focus more on the prediction, diagnosis,
and prognosis of PCa results taking the next step with help of
Statistics and Artificial Intelligence (AI) technology. *e usage
of computer-based learning methods developed a significant
research field in PCa. Generally, gene expression data contains
large amount of genes; some authors evaluated and analyzed
the cancer classification problems by utilizing different ma-
chine learning (DL), data mining (DM), and statistical based
algorithms [8]. SeveralMLmethods have attained lot of success
better and classification performance in the cancer classifica-
tion [9]. But, still, there are few problems with this approach
which makes the cancer classification nontrivial tasks [10]. A
disadvantage of conventional ML approach is needing
preengineered organization of new input data as to structured
data sets. *e DL approach is a field of ML that employed
layered structure for building sophisticated modules with the
capacity to understand complex information [11]. *is ca-
pability allowsDL algorithms to demonstrate conventionalML
techniques from multiple domains such as speech recognition
computer vision, image classification, and so on.

*e gene expression data comprises many redundant,
noisy, and irrelevant items. *e informative ratio to noisy
data is 1 :10 which degrade the performances of clustering
when traditional approaches are employed directly to the
comprehensive feature set. Hence, the informative feature
selection (FS) technique plays an important role in higher-
dimension gene expression data for biological data retrieval
[12]. *e FS method is separated into two classes. *e initial
class includes semisupervised, supervised, and unsupervised
methods based on availability of historical data. *e next
class comprises ensemble, filter, wrapper, embedded, and
hybrid approaches based on how they concatenate the se-
lection by modeling. Each of these approaches has its dis-
advantages and advantages. In general, the hybrid approach
is superior to the wrapper methods since it is less prone to
overfitting. But the ensemble methodology is very flexible
and robust [13].*e large dimension of gene expression data
includes irrelevant, noise, and redundant items which makes
it hard to examine. In this study, the FS methods are
employed to lower the dimension of information for analysis
of gene expression. Previously, the evolutionary learning
method has been used effectively in distinct microarray
researches, for example, to select informative subset of genes,
for biclustering and sample, and clustering classification.

*is article develops an artificial intelligence based
feature selection with deep learning model for prostate

cancer detection (AIFSDL-PCD) using microarray gene
expression data. *e AIFSDL-PCD technique derives a
chaotic invasive weed optimization (CIWO) based FS
technique for choosing an optimal subset of features. In
addition, the deep neural network (DNN) model can be
applied to prostate cancer classification utilizing the
microarray gene expression data. Besides, the hyper-
parameters of the DNN model can be effectively adjusted by
the use of RMSprop optimizer. For examining the better-
ment of the AIFSDL-PCD technique, a comprehensive
experimental analysis is carried out and the results are
examined under several aspects.

*e rest of the study is planned as follows. Section 2
offers the literature review, Section 3 presents the proposed
model, Section 4 elaborates the performance validation, and
Section 5 draws the conclusion.

2. Literature Review

Tavasoli et al. [14] presented a classification technique which
employed metaheuristic and SVM algorithms. *e opti-
mization of the SVM hyperparameters for the RBF is
implemented by utilizing the modified Water Cycle Algo-
rithm (mWCA). *e result indicates that the ensemble
performance of gene-mWCA SVM (EGmWS) was regarded
as effective methodology compared to related methodologies
in terms of accuracy and solving the uncertainty problems.
Elmarakeby et al. [15] designed a P-NET—a biologically
informed DL method—for stratifying patients with PCa by
treatment resistance state and gauging molecular driver of
treatment resistance to therapeutic target via method in-
terpretability. *ey demonstrated that P-NETcould forecast
cancer state by utilizing molecular information with per-
formances, i.e., better than other modeling techniques.

Glaab et al. [16] estimated a rule-based evolutionary ML
method, GAssist, and BioHEL, on three public microarray
cancer data sets, attaining simple rule-basedmodel for sample
classifier. Compared to other standards of microarray, sample
classification depends on three different FS methods. Dare-
ndeli et al. [17] focused on providing different perspectives of
cancer diagnoses with DLmethod on gene expression data. In
this work, RNA-Seq data of around thirty distinct kinds of
cancer patients and the normal tissue RNA-Seq data from
GTEx and Cancer Genome Atlas (TCGA) have been
employed. *e input data for the training was converted into
RGB formats and the training was performed by a CNN
approach.

Nirmalakumari et al. [18] focused on classifying the PCa
in an accurate manner. Open-source two-class prostate data
which contains 136 samples and 12,600 genes are taken into
account. At first, PCA and Kruskal-Wallis test are employed
to determine the informative genes. Next, they are catego-
rized by utilizing LDA, SVM, XGB, and KNN classification
to classify prostate patients as normal or abnormal. Ahn
et al. [19] aimed at addressing how far the DL method could
learn for recognizing cancer. *ey incorporated gene ex-
pression data from the GEO, TCGA, TARGET, and GTEx
database including 12,842 normal gene expression data and
13,406 cancer from twenty-four distinct tissues. First, a
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DNN system is trained for identifying normal and cancer
samples with different gene selection approach. Al-Obeidat
et al. [20] introduce gene encoder, an unsupervised 2-phase
FS method for the classification of cancer sample. Initially,
they aggregate three filter methodologies, such as spectral-
based FS, PCA, and correlation methods. *en, the GA
approach is utilized that estimates the chromosome using
the AE-based clustering. *e resulting feature subsets are
utilized for classifier process.

3. The Proposed Model

In this study, a new AIFSDL-PCD technique has been de-
veloped for the detection and classification of PCa. *e
proposed AIFSDL-PCD technique incorporates different
processes, namely, preprocessing, CIWO based FS, DNN
based classification, and RMSprop based hyperparameter
tuning. *e application of CIWO based FS technique helps
for reducing the computational complexity and improving
the classification accuracy. Figure 1 illustrates the overall
working process of AIFSDL-PCD technique.

3.1. Data Preprocessing. *e presented work utilizes the
preprocessed step as a huge volume of biological informa-
tion has high level of noise as well as bias. So, the gene term
dataset needs the subsequent more than one preprocessed
step previously executing design investigation [21].

(i) *e gene expression data demonstrate skewed
distributions where lower stated genes were among
zero as well as one, but the extreme term genes are
among one as well as infinity. *us, once a para-
metric statistical test was implemented for such
asymmetric data, at the end outcome is from biased
result. For overcoming this challenge, the log
transformation was utilized for making the data
further symmetric that is anticipated for giving an
accurate outcome under statistical tests.

(ii) *e replicate of handling look at the repeated gene
identify from a dataset that is afterward exchanged
by its average value, so extracting the unpredictable
repetitions.

(iii) *is design standardized was utilized that removes
the scale variance among the features by subtracting
the instance average and dividing the value by
standard deviation (SD).

(iv) *e occurrence of missing value of gene term has
allowed for average form.

(v) *e flat pattern filter was utilized which removes
genes for reducing the difficulty of dataset which is
employed to biological significant study.

3.2. Design of CIWO-Based Feature Selection Technique.
At this stage, the preprocessed data is passed as input to
CIWO technique for the optimum selection of feature
subsets. *e IWO technique is stimulated by the procedure
of adaptability, reproduction, and existence [22].

Accordingly, weeds represent unwanted plants which have
aggressive behaviour for growth and are threats to another
crop and prevent them from growing. *is approach is fast,
simple, and highly efficient in detecting the optimum point.
Indeed, this method is depending on the natural features of
weeds like struggle for existence, seed production, and
growth. *e description of IWO approach is given in the
following:

(i) *e evaluation of objective function and the pro-
duction of arbitrary population initialization (seed
distribution) from chosen domain are done, so that
an initial population from the problem solving
domains are distributed randomly and estimated.

(ii) Reproduction depends on upgraded SD and com-
petency. All the members of population, based on
their capacity, yield seeds according to themaximum
and minimum competence among the two pre-
determined quantities.

*e amount of seeds that every plant could yield linearly
differs in the small amount of seeds to the maximal number
(Smin; Smax). *e amount of seeds generated near every weed
is defined by the following equation:

Seedi � Round Smin + Smax − Smin(  ×
Nweed − ranki

Nweed − 1
 , (1)

where ranki represents the rank of i seed, Round denotes
the function to iteration number, Nweed indicates the
amount of initial weeds, Smax and Smin signify the least and
most seeds which are generated near every weed, corre-
spondingly, and Seedi implies the amount of seeds gen-
erated near ith weed. *e seed generated in the searching
space is distributed arbitrarily in the problem space with
standard distribution (predefined variance and average of
zero); the seed is dispersed near to its parent (weeds). *e
values of SD (riter) reduce nonlinearity in all iterations in
the first value (rinitial) to the last values (rfinal) as follows. For
example, the closer we get to the end of the process, the
further the seeds are produced near the answer attained and
the less distributed they are than at the beginning of the
process.

σiteri �
max iter − iteri

max iter
 

n

σinitial − σfinal(  + σfinal. (2)

In equation (2), max iter denotes the maximal amount
of iterations, iteri indicates ith iteration, n represent the
nonlinear coefficient, and σiteri

indicates the SD of ith it-
eration. When the weed does not reproduce, it would pass
away. Hence, competition among weeds is required for
limiting the maximal amount. Assuming that, after many
stages of iteration, the amount of seeds owing to repro-
duction rises, an algorithm must be determined for con-
trolling the entire amount of them. Once the maximal
amount of allowed seeds (Pmax) is attained, the weaker
seeds must be removed; thus the seed population remains
at the maximal number (Pmax). *is procedure is repeated
till the plant reaches the optimal by checking the end
condition.
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To improve the efficiency of the IWO algorithm, the
CIWO algorithm has been derived by the integration of
chaos theory. Chaos is a widespread nonlinear phenom-
enon by its nature and is a feature of randomness, ergo-
dicity, sensitivity to primary states, etc. [23]. Because of the
features of ergodicity and randomness, chaotic motion
traverses each state from particular range based on its
individual law without repetition. So, when it can be uti-
lized with chaos variables for searching optimum, it un-
doubtedly has further benefits to arbitrary searches. *e
chaos ergodicity feature was utilized for optimizing the
search and avoiding fall as to local minima; so, chaos
optimized search technique developed a new optimized
approach. *e chaotic orders created by distinct mappings
are utilized as tent map, sinusoidal map, logistic map,
singer map, and sine map. Many chaotic maps are tried and
an optimum one is selected for combining with IWO
technique. Because of the primary testing, logistic map
attained optimum outcomes. *erefore, the chaotic orders
were created by utilizing logistic map as

xi+1 � uxi 1 − xi( , (3)

where u refers to the control parameter and assumes u � 4.
When u � 4, the logistic mapping derives as to detailed
chaotic state. Assume xi ∈ (0, 1) and xi ≠ 0.25, 0.5, 0.75.

*e preliminary weed population Seedi is mapped to
chaotic order which is created based on (3), resulting in
equivalent chaotic seed population pch.

pch � xi ∗ Seedi. (4)

During the IWO based FS process, when the feature
vector size is N, the number of possible feature arrange-
ments is found to be 2N, which is massive. *e IWO al-
gorithm looks for the optimal subset of features in the search
space. Algorithm 1 shows the pseudocode of IWO
algorithm.

*e FS problem can be considered as a multiobjective
issue which aims for reducing the number of chosen features
and increasing the classification accuracy. *erefore, the
fitness function of the IWO algorithm can determine the
solutions constructed to maintain a tradeoff among two
objectives.

fitness � αΔR(D) + β
|Y|

|T|
, (5)

where ΔR(D) denotes the error rate of the classification
model, |Y| indicates the number of features chosen by the
IWO algorithm, and |T| represents the available set of
features that exist in the present dataset.

3.3. Design of Optimal DNN-Based Classification Model.
During classification process, the chosen subset of features is
passed into the DNNmodel for PCa detection.*e DNN is a
version of MLP and that is kind of FFNN with two or more
layers with 1 input, 1 output layer, and one or more hidden
layers. All layers have many neurons and FC with neurons
from forwarding direction [24]. *e model is mathemati-
cally determined as O: Rm × Rn. An input vector
x � x1, x2, x3, . . . , xm and their size is ‘m’ and resultant

Input: Microarray Gene Expression Dataset

Data Preprocessing

Deep Neural Network with RMSProp based Classification

Class 2: Prostate Tumor

Preprocessed Dataset Chaotic Invasive Weed Optimization (CIWO) based Feature Selection

Class 1: Normal Tissue

Figure 1: Overall process of AIFSDL-PCD technique.
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vector has O(x) and their size ‘n’. *e calculation of all
hidden layers hj is determined mathematically as

hj x
l+1
j  � f Zij + b

(l+1)
j , (6)

Zij � x
l
iw

(l,l+1)
ij . (7)

Every lower layer neuron individual is linked to neuron
j. In equations (6) and (7), x

(l)
i has neuron i activation

function at layer l and Zij refers to the influence of neuron i

at layer l to activation of neuron j at layer l + 1. *e function
f refers to the nonlinear activation function, w

(l,l+1)
ij implies

the weight, and bl+1
j represents the bias of neuron j. *is

technique utilizes softmax function as nonlinear activation
function to multiclass classifier. In several stacking hidden
layers MLP has been named DNN. Generally, the DNN with
several hidden layers is expressed as

Hl(x) � Hl Hl−1 Hl−2 . . . H1(x)( ( ( ( . (8)

*e DNN framework has 2 hidden layers. It gets inputs
x � x1, x2, x3, . . . , xm and outputs were
o � o1, o2, . . . , oc−1, oc. Figure 2 showcases the framework of
DNN.

Further advanced typical feedforward network DNN can
be utilized with all the hidden layers having ReLU nonlinear
activation functions. It is used for decreasing the state of
vanishing and error gradient problems [24] and is related to
another nonlinear activation function ReLU which is
quicker and simpler for training the technique with huge
hidden layer.

*e loss function has optimum parameters that can be
vital for achieving higher efficiency. *e target and forecast

values variance was computed as utilizing loss function. It
could be defined as

d(t, p) � ‖t − p‖
2
2. (9)

It attempts for learning an estimate to identify the
function, with the learning procedure explained as mini-
mizing reform error as illustrated in equation (9), where t

and p refer to the target as well as forecasted values cor-
respondingly. *e loss function is used for identifying that
forecasted value diverges in the target value. *e target is fed
to model along with features for calculating the loss function
and classifying the attack.*e negative log probability with t

and probability distribution p(pd) are utilized to target and
forecast classes correspondingly from multiclass classifier. It
could be written as

d(t, p(p, d)) � −log p(pd)t. (10)

To effectually tune the hyperparameters of the DNN
model, the RMSprop optimizer is utilized. RMSprop is the
enhancement form of Adagrad; the upgrade procedure of
RMSprop is the same as Adagrad [25]. For RMSprop, an
exponentially decaying average of squared gradient is
computed initially.

Gt � βGt−1 +(1 − β)gt ⊙gt

� (1 − β) 
t

τ�1
βt−τ

gτ ⊙gτ ,
(11)

where β refers to the decay rate that is generally offered
which is fixed to 0.9. And the upgrade value of parameters
from RMSprop is similar to Adagrad:

Begin {
(i) Parameter Initiation;
(ii) Present_iterat� 1;
(iii) While (Present_iterat<Maxm_iterat) do
(iv) {
(v) Determine the optimal and poor fitness in the population
(vi) Determine the standard deviation st d based on rounds
(vii) For every weed w in the population W
(viii) {
(ix) Determine the seed count w based on the fitness
(x) Elect the seed among the possible solution surrounding the parent weed w in a neighboring area with uniform

distribution of mean � O and standard deviation� std;
(xi) Append seeds created to the population W If (|W| Maxm_Size_Population)
(xii) {
(xiii) Arrange population W based on the fitness
(xiv) W�Select_Better(weed, seed, Maxm_Size_Population)
(xv) } End if
(xvi) } End for
(xvii) Present_iterat� Present_iterat + 1;
(xviii) } End while
(xix) }
(xx) End

ALGORITHM 1: Pseudocode of IWO algorithm.
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△θt � −
α

�����
Gt + ε

 ⊙gτ . (12)

Also, the simplified concept of Adagrad technique is
implemented. gt

′ is explained as

gt
′ �

1
�����
Gt + ε

 ⊙gτ , (13)

and the upgrade value of RMSprop has been determined as

Δθt � −αgt
′. (14)

So, the RMSprop is an optimized technique dependent
upon gradient actually. To provide analysis, the rate of
learning optimized technique was utilized for improving the
trained efficiency.

4. Results and Discussion

*e performance validation of the AIFSDL-PCD technique
takes place using an open access dataset, including 102 tissue
instances (52 prostate tumors and 50 normal tissues) with
2135 genes. *e proposed model is simulated using Python
3.6.5 tool. Table 1 and Figure 3 illustrate the result analysis of
the optimal DNN model under ten iterations. *e results
exhibited that the optimal DNN algorithm has accomplished
satisfactory outcomes. For instance, under iteration 1, the
optimal DNNmodel has provided sensy, specy, precn, accuy,
and Fscore of 96.30%, 95.56%, 96.67%, 96.64%, and 96.32%,
respectively.

In line with this, under iteration 4, the optimal DNN
method has provided sensy, specy, precn, accuy, and Fscore of
96.13%, 96.34%, 96.15%, 96.19%, and 96.19% correspond-
ingly. Meanwhile, under iteration 6, the optimal DNN ap-
proach has offered sensy, specy, precn, accuy, and Fscore of

95.59%, 95.63%, 96.55%, 95.86%, and 95.53%, respectively.
Eventually, under iteration 8, the optimal DNN technique
has showed sensy, specy, precn, accuy, and Fscore of 95.56%,
96.88%, 96.34%, 95.72%, and 96.43% correspondingly. At
last, under iteration 10, the optimal DNN methodology has
provided sensy, specy, precn, accuy, and Fscore of 96.44%,
96.18%, 96.15%, 96.38%, and 96.05% correspondingly.

*e ROC analysis of the optimal DNN approach is
implemented in Figure 4. *e figure displayed that the
optimal DNN approach has accomplished optimum ROC
classification performance with the increased ROC of
99.3002.

Table 2 and Figure 5 showcase the result analysis of the
AIFSDL-PCD approach under ten iterations.*e outcomes
showed that the AIFSDL-PCD technique has accomplished
satisfactory outcomes. For instance, under iteration 1, the
AIFSDL-PCD algorithm has provided sensy, specy, precn,

accuy, and Fscore of 97.75%, 97.26%, 96.87%, 97.47%, and
97.58% correspondingly. Likewise, under iteration 4, the

Input Layer
Multiple Hidden Layer

Output Layer

Figure 2: DNN structure.

Table 1: Result analysis of optimal DNN model

No. of
iterations Sensitivity Specificity Precision Accuracy F-

score
Iteration 1 96.30 95.56 96.67 96.64 96.32
Iteration 2 96.20 96.46 96.57 96.50 96.97
Iteration 3 95.82 96.64 96.55 95.99 95.95
Iteration 4 96.13 96.34 96.15 96.19 96.19
Iteration 5 96.25 95.66 96.75 96.51 95.63
Iteration 6 95.59 95.63 96.55 95.86 95.53
Iteration 7 95.92 96.04 96.11 95.99 96.04
Iteration 8 95.56 96.88 96.34 95.72 96.43
Iteration 9 96.17 95.57 96.53 96.31 96.27
Iteration 10 96.44 96.18 96.15 96.38 96.05
Average 96.04 96.10 96.44 96.21 96.14
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Figure 3: Result analysis of optimal DNN technique.
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Figure 4: ROC analysis of optimal DNN technique.
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AIFSDL-PCD technique has given sensy, specy, precn,

accuy, and Fscore of 97.49%, 97.10%, 96.92%, 97.18%, and
97.07% correspondingly. In the meantime, under iteration
6, the AIFSDL-PCD model has provided sensy, specy,
precn, accuy, and Fscore of 97.43%, 96.92%, 97.39%, 97.27%,

and 96.89%, respectively. Eventually, under iteration 8, the
AIFSDL-PCD approach has offered sensy, specy, precn,

accuy, and Fscore of 97.18%, 97.37%, 97.34%, 97.06%, and
97.75% correspondingly. At last, under iteration 10, the
AIFSDL-PCD model has provided sensy, specy, precn,

Table 2: Result analysis of proposed AIFSDL-PCD model.

No. of iterations Sensitivity Specificity Precision Accuracy F-score
Iteration 1 97.75 97.26 96.87 97.47 97.58
Iteration 2 97.25 97.30 96.69 96.83 97.48
Iteration 3 97.59 97.21 97.34 97.41 97.06
Iteration 4 97.49 97.10 96.92 97.18 97.07
Iteration 5 97.11 96.60 96.90 96.69 97.22
Iteration 6 97.43 96.92 97.39 97.27 96.89
Iteration 7 96.87 97.27 97.34 97.06 97.75
Iteration 8 97.18 97.37 97.43 97.34 97.71
Iteration 9 96.51 97.78 97.25 97.41 97.51
Iteration 10 97.28 97.66 97.23 97.28 96.51
Average 97.25 97.25 97.14 97.19 97.28
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Figure 5: Result analysis of AIFSDL-PCD approach.
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accuy, and Fscore of 97.28%, 97.66%, 97.23%, 97.28%, and
96.51% correspondingly.

*e ROC analysis of the AIFSDL-PCD technique is
performed in Figure 6. *e figure exhibited that the
AIFSDL-PCD technique has accomplished better ROC
classification performance with a maximum ROC of
99.6769.

Figure 7 demonstrates the accuracy analysis of AIFSDL-
PCD technique on the test dataset. *e outcomes exhibited
that the AIFSDL-PCD system has accomplished increased
performance with improved training and validation

accuracy. It can be clear that the AIFSDL-PCDmethodology
has reached enhanced validation accuracy on the training
accuracy.

Figure 8 depicts the loss analysis of the AIFSDL-PCD
approach on the test dataset. *e outcomes recognized that
the AIFSDL-PCD methodology has resulted in a proficient
outcome with lesser training and validation loss. It can be
obvious that the AIFSDL-PCD algorithm has obtainable
lesser validation loss on the training loss.

To portray the better classification performance of the
AIFSDL-PCD method, a comparative accy analysis is
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Figure 6: ROC analysis of AIFSDL-PCD technique.
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Figure 7: Accuracy graph analysis of AIFSDL-PCD technique.
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Figure 8: Loss graph analysis of AIFSDL-PCD technique.

Table 3: Comparative analysis of AIFSDL-PCD approach with existing techniques.

Methods Accuracy
PLR-MC 0.9460
RFLD-MC 0.9340
Bio-HEL 0.9400
SVM model 0.9120
GA-KNN+ SVM 0.8571
CSF-RC 0.9510
Optimal DNN 0.9621
AIFSDL-PCD 0.9719
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Figure 9: Accuracy analysis of AIFSDL-PCD technique with existing manners.
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made in Table 3 and Figure 9 [26, 27]. *e results show
that the GA-KNN+ SVM model has failed to achieve
proficient classification performance. At the same time,
the PLR-MC, RFLD-MC, and Bio-HEL techniques have
accomplished moderately closer accuracy values. Along
with that, the CSF-RC and optimal DNN techniques have
managed to demonstrate reasonable accuracy values.
However, the AIFSDL-PCD technique has resulted in
superior performance with higher accuracy of 0.9719.
From the aforementioned tables and figures, it can be
obvious that the AIFSDL-PCD method is found to be an
effective tool for PCa detection and classification.

5. Conclusion

In this study, a new AIFSDL-PCD method has been de-
veloped for the detection and classification of PCa. *e
proposed AIFSDL-PCD technique incorporates different
processes, namely, preprocessing, CIWO based FS, DNN
based classification, and RMSprop based hyperparameter
tuning. *e application of CIWO based FS technique helps
for reducing the computational complexity and improves
the classification accuracy. For examining the betterment of
the AIFSDL-PCD technique, a comprehensive experimental
analysis is carried out and the results are examined under
several aspects. *e experimental results reported the su-
premacy of the AIFSDL-PCD technique over the other
techniques in terms of different measures. *erefore, the
AIFSDL-PCD technique can be applied as a proficient tool
for the detection and classification of PCa. As a part of future
extension, hybrid DL based classifiers with metaheuristics
based hyperparameter optimizers can be developed to boost
the PCa detection results.
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Medical costs are one of the most common recurring expenses in a person’s life. Based on different research studies, BMI, ageing,
smoking, and other factors are all related to greater personal medical care costs. .e estimates of the expenditures of health care
related to obesity are needed to help create cost-effective obesity prevention strategies. Obesity prevention at a young age is a top
concern in global health, clinical practice, and public health. To avoid these restrictions, genetic variants are employed as in-
strumental variables in this research. Using statistics from public huge datasets, the impact of body mass index (BMI) on overall
healthcare expenses is predicted. A multiview learning architecture can be used to leverage BMI information in records, including
diagnostic texts, diagnostic IDs, and patient traits. A hierarchy perception structure was suggested to choose significant words,
health checks, and diagnoses for training phase informative data representations, because various words, diagnoses, and previous
health care have varying significance for expense calculation. In this system model, linear regression analysis, naive Bayes
classifier, and random forest algorithms were compared using a business analytic method that applied statistical and machine-
learning approaches. According to the results of our forecasting method, linear regression has the maximum accuracy of 97.89
percent in forecasting overall healthcare costs. In terms of financial statistics, our methodology provides a predictive method.

1. Introduction

.e incidence of overweight and obesity has increased
significantly in most countries in recent decades. Excess
weight is associated with an increased incidence of many
chronic diseases, including vascular disease, respiratory
disease, osteoarthritis, some cancer, type 2 diabetes, and
premature death. .ere is consistent evidence that an in-
creased BMI is associated with higher health costs, and these
costs are expected to increase as obesity. Modelling uses
machine-learning methods, in which the machine learns
from the data and uses it to forecast new data [1, 2]..emost

commonly predictive analytic model used is regression
[3–6]. .e proposed model for accurate prediction of future
outputs has applications in banking, economics, e-com-
merce, sports, business, entertainment, etc. A method used
to forecast healthcare costs for BMI is based on several
factors. Multiple linear regression is one of the statistical
techniques for estimating the relationship among the de-
pendent (target) and independent variables. .e regression
method is commonly used to develop a system based on a
number of factors to predict the cost [5–11].

.e regression analysis is performed to determine the
relationship among two or more variables with cause-effect
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relationships and to make predictions for the topic using
the relationships [12]. If regression used one indepen-
dent variable, then it is known as univariate regression
analysis, or else if it used more than two independent
variables then it is known as multivariate regression
analysis. Linear regression involves initially uploading
the data and then analysing the data. Subsequently, the
data are cut, and then, the data are trained and separated
to create the model. At last, it will evaluate the accuracy.
.e main aim of regression is to develop an efficient
technique for predicting dependent properties from a set
of characteristic variables. A regression problem is the
actual or continuous value of the output variables, that is,
area, salary, and weight. Regression can be defined as a
statistical method used in applications such as predicting
the healthcare costs. Regression is used to predict the
relationship among the dependent variable and set of
independent variables. .ere are various types of re-
gression techniques available namely simple linear re-
gression, multiple linear regression, polynomial
regression, support vector regression, and random forest
regression [13].

Fast-growing healthcare costs have become a significant
challenge in several developed countries. Existing evidence
suggests that healthcare costs have accumulated among a
large number of BMI. Even though experiments have
attempted to develop accurate models for predicting
healthcare costs for BMI, their effectiveness is excellent due
to the lack of detailed clinical information in the data used to
create complex intervals and prognostic models. Numerous
studies on more costs for obesity patient prognostic models
have relied on self-report data and electronic health data
from claims [14]. Data from laboratory tests are defin-
ed—these, more granular and detailed clinical information,
lead to improvements in the prognostic model. A recent
survey by health research program and claim data shows that
there is an improvement in the performance of the machine-
learning-based predictive model for health costs for obesity.
Still, many insurers and providers worldwide are actively
seeking an approach that can accurately predict obesity BMI
[15].

However, despite the potential value of advanced
machine-learning approaches for risk prediction, payers
and providers still rely heavily on linear regression to
manage and adapt their patient population [16, 17]. .e
slow adoption of advanced machine-learning techniques
may be partly explained by the lack of familiarity with risk
stabilization analysts with such techniques and the com-
bination of complex interpretation and results required in
practice. Machine-learning regression models are within
the framework of standard linear regression and perform
some sophisticated but less explicit machine-learning
techniques [18, 19]. .is study focused on fine linear re-
gression models, which conducted a complete comparison
of penalty regression with linear regression in forecasting
overall health costs, which was not reported in the pre-
viously published literature..e major focus of this study is
to estimate the health costs incurred due to obesity in the
population.

.e rest of this study is formalized as follows: Section 2
defines the related works on estimating the healthcare costs
using various methodology methods. Section 3 designates in
detail the workflow of the proposed algorithm. Section 4
represents the experiments with results and comparison
graphics with existing works and its discussion. Finally,
Section 6 concludes the study.

2. Related Work

Some of the recent literature that describes the various
mechanism of estimating the costs of physical healthcare is
summarized below. In [20], unplanned 30-day readmissions
are a common occurrence among congestive heart failure
(CHF) patients, posing major health concerns and in-
creasing healthcare costs. It is critical to implement tailored
treatment programs for high hazard patients of readmission
in an attempt to prevent readmissions and lower healthcare
costs. .is necessitates recognizing high individuals at the
time of hospital release. .ey constructed and evaluated a
deep learning network to predict 30-day unplanned read-
mission using actual information from over 7,500 CHF
patients hospitalized in Sweden. Using specialist charac-
teristics and situational integration of medical knowledge
provides a cost-sensitive implementation of the long short-
term memory (LSTM) neural net. Using both machine-
derived and professional characteristics, including frequent
patterns, and resolving the issue of class imbalances, this
research focuses on important parts of an EHR-driven
forecasting system in a single framework. We assess each
element’s impact on forecasting effectiveness (F1 measure,
ROC-AUC) and price benefits. In at least 2 evaluating
criteria, it shows that the technique with all critical features
outperforms the simplified approaches in terms of dis-
criminating capability. Researchers also propose a basic
economic assessment to predict annual income if high-risk
patients are provided tailored therapies.

Patients with heart failure (HF) require precise hazard
classification to implement tailored therapies focused on
enhancing their efficiency of living and results [21]. To assess
the economic benefit of complementing claim-based fore-
casting analytics with electronic medical record (EMR)-
derived data and to contrast machine-learning techniques to
conventional logistic regression in forecasting critical results
in patients with HF, healthcare patients with HF from 2
healthcare professional systems in Massachusetts, Boston,
were included in predictive research with a one-year follow-
up duration. “Providers” comprise therapists, various
medical professionals, clinicians, and their organization
including the network. Logistic regression, gradient boosted
modelling, regression trees, random forests, least absolute
shrinkage, classification, and selection operation regression
were used to predict all-cause morbidity, top cost decile, HF
hospitalization, gradient boosted modelling, and home days
loss larger than 25%. Information from network 1 was used
to educate all algorithms, which were then evaluated in
network 2. .e area under high accuracy curves (AUPRCs)
and overall value estimations from decision curves were
obtained after choosing the best effective modelling strategy
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depending on the Brier score, calibration, and
discrimination.

.e goal of this study was to evaluate the effectiveness of
machine-learning methodologies for predicting healthcare
expenses connected with spinal fusion in aspects of gains or
losses in Taiwan Diagnosis-Related Groups (Tw-DRGs) and
to use these techniques to investigate the major features
connected with spinal fusion medical costs. Methods: a data
collection was gathered from a healthcare facility centre in
Taoyuan, Taiwan, containing data on Tw-DRG49702 pa-
tients (without problems or comorbidity; posterior and
other spinal fusion). Weka 3.8.1 was used to forecast using
random forest, support vector machines, Naive Bayesian,
C4.5 decision tree, and logistic regression approaches
[22, 23]. .e research showed that the random forest ap-
proach may be used to estimate the healthcare expenditures
of Tw-DRG49702 and that it can help institutions improve
the financially operational effectiveness of this procedure.

Because of the ageing populations and enhanced therapy
of fundamental conditions, cardiac arrest is among the most
complicated chronic disorders with a higher incidence. .e
incidence is projected to gradually climb, reaching 3% of the
population inWestern countries [24]. It is the leading reason
for hospitalizations in people aged 65 and above, leading to
substantial expenses and a significant societal effect. In the
therapy of HF, the present “one-size-fits-all” strategy does
not produce the optimal results for all patients. .ese facts
pose a serious danger to the proper treatment of heart failure
patients. It will take an unconventional method from a
unique perspective on health care. We offer a unique
forecasting, preventive, and personalized healthcare strat-
egy, in which patients are actually in charge of their care,
aided by a user-friendly online form that employs artificial
intelligence (AI). .is technique study outlines the demands
in HF care, as well as the necessary paradigm shift and the
factors necessary to make it happen. A digital physician is
being developed through an exciting combination of
medical and high-tech partners from patient coaching, se-
rious gaming, North-West Europe, artificial intelligence, and
combining state-of-the-art HF health care. .e findings are
intended to improve and customize self-care, in which
patients conduct routine care chores without the inter-
vention of healthcare experts, allowing them to focus on
more difficult problems. .is innovative approach to health
care will lower prices per patient while increasing results,
ensuring the long-term viability of top-tier HF health care.

In [25], DRG codes are useful for price tracking and
allocation of resources since healthcare operators obtain
predetermined levels of compensation for certain treatments
under diagnosis-related group (DRG) payments. Coding, on
the other hand, is usually done after the fact, after the patient
has been discharged. .ey want to use normal medical text
to forecast DRGs and DRG-based case mix index (CMI) at
initial inpatient admission to forecast hospital costs in an
acute context. Without manual coding, a deep learning-
based natural language processing (NLP) method is tested to
forecast cost-reflecting weights and per-episode DRGs on 2
cohorts (paid by All Patient Refined (APR) DRG or
Medicare Severity (MS) DRG). In fivefold cross-validation

trials on the first day of ICU admission, it attained macro-
averaged area under the receiver operating characteristic
curve (AUC) scores of 0•871 (SD 0•011) on MS-DRG and
0•884 (0•003) on APR-DRG. When applied to hypothetical
patient populations to predict average cost-reflecting
weights, the algorithm improved over time, yielding absolute
CMI errors of 12•79 (2•31%) and 2•40 (1•07%) on the first
day, correspondingly. Because the system can adjust to
changes in admission time and cohort size while requiring
no additional manual coding, it has the potential to aid in
cost estimation for active patients and enable improved
functional outcome in hospitals.

3. The Proposed Method Based on
Linear Regression

Linear regression is one of the most common supervisory
machine learning statistical analysis techniques [26]. It is
commonly used to find linear correlations between two or
more responses and predictive variables. .e technique is
divided into two types depending on the number of variables
in the model such as simple linear regression and multiple
linear regression. A response variable corresponding to a
predictive variable is simple linear regression.Whether more
than two response variables correspond to predictive vari-
ables is known as multiple linear regression as shown in
Figure 1. .is work used linear regression to study the re-
lationship among total maintenance and other properties in
datasets to obtain the properties most affected by the total
cost of maintenance. 75% of the data in the dataset were
trained, and 25% of the data were tested. .en, Pearson’s
correlation coefficient (PCC) for each simple linear re-
gression sample was calculated. .e PCC is determined and
calculated by the following equation to find the parallel
variability and strength of a linear regression relationship
between two factors:

Yi
′ � fn Xi

′, βp  + e. (1)

Here, Xi
′ and yi

′ represent the independent variable and
dependent variable; fn represents the function; βp repre-
sents the unknown parameters; and e represents the error
terms. .e most commonly used measurements to estimate
the performance of a linear regression are the root mean
square error (RMSE), the mean absolute error (MAE), and
the mean square error (MSE) [26]. .e following equations
denote the error deviation for regression:
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.ese regression measurements are constant variables and
standard measurements for determining sample accuracy.
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3.1. Regression’s Role in Predicting the Costs. Clinics are
encouraged to find more meaning in the substantial amount
of data they generate and store each day [27]. Regression
provides useful predictive accuracy and value for machine-
learning clinics’ databases with useful methods, features, and
structures and contributes to a variety of strategies. .e
regression method aims to identify the possibility of im-
proving results based on the predictive value of large-scale
datasets for annual health costs. .is is evidence of effec-
tiveness in dealing with priority tasks, which defines that
behaviours have the maximum tendency to cause preferred
outcomes.

3.2. Steps for Applying Regression to Datasets. .e database
used here is a collection of medical expense personal data,
which contain anonymous information about people. .ese
data will act as a method learning object to generate
functional information. In Table 1, the attributes such as
BMI and age are continuous variables, and the attributes
such as smoker and sex are categorical variables:

(i) .e next step is data exploration and preparation,
and the quality of any machine-learning program is
largely based on the quality of the data it uses. .is
stage requires more human intervention in the
machine-learning process. Frequently cited statis-
tics show that 80% of efforts in machine learning are
dedicated to data. Most of this time is spent learning
more about data and its nuances throughout an
exercise known as data analysis.

(ii) .en, a model on the data is trained. .e specific
machine-learning task will announce the selection
of the suitable method, and the method will denote
the data in the form of a model.

(iii) Subsequently, the model performance is evaluated.
It is important to evaluate how well the method has
learned from its past experience as each machine-
learning model results in a biased solution to the
learning problem. Depending on the type of model
used, the accuracy of the sample can be estimated
using the experimental database.

(iv) Finally, the performance of the model is improved.
It is necessary to use advanced techniques to in-
crease the performance of the model if better per-
formance is required. Each time, an entirely
different type of model may have to be changed.
After completing these steps, if the model appears to
be operating acceptably, it can be used for its
intended purpose. .is model can be used to pro-
vide score data for forecasting, for financial data
forecasting, to generate relevant insights for mar-
keting or research, or to automate tasks.

3.3. Dataset Description. We intended to forecast a patient’s
healthcare costs for the coming year depending on their
insurance payment statistics and previous healthcare data.
Tsuyama Chuo Hospital contributed the healthcare record
information. .ese documents come from healthcare in-
surance applications that the hospital is required to submit
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Figure 1: Block diagram for the proposed model.

Table 1: Healthcare attributes and their specifications.

Attributes Specifications
BMI Body mass index
Age Primary beneficiary age
Sex Gender (male/female)
Smoker .e one who smokes affected by the obesity
Children Number of children under BMI
Costs Individual healthcare costs of the respective person
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to the administration. Every patient is recognized by an
individual identity (ID) in these reports, which include the
patient’s conditions, medications, operations, and payment
details [28]. .is claim’s comprehensive paperwork can be
obtained on the relevant website. We were able to retrieve
the following information using this information:

(i) Patient demographics include age and gender.

(ii) Patients’ characteristics include their body fat
percentage, height, weight, and waist circumference.

(iii) Health care verifies the outcomes of a patient’s
healthcare check-up tests. Every testing is assigned a
code, and the outcome should be provided. Blood
pressure (BP) and creatinine levels are two in-
stances. .ere are 25 various categories of tests, as
well as the date that they were gathered.

(iv) Prognosis: a patient’s ailment is diagnosed using
ICD-10 codes and is tracked by date.

(v) Payment details: for every session or hospital stay,
every patient was assigned a score. .is result ef-
fectively corresponds to the expense of a patient
payment, which is the figure we needed to forecast
for the following years.

It has been demonstrated that predicting patients’
healthcare costs solely based on medical data is difficult.
Preceding healthcare expenses are the strongest predictor of
future expenditures: a longer history of healthcare expen-
ditures is considered to increase forecasting. Depending on
this fact, it is easier to anticipate future healthcare expenses
when patients’ information is available for multiple periods.
When attempting to forecast expenditures for a single year,
at least a two-year history is required [29].

Patients’ monthly histories were included in our data-
base. Furthermore, since many patients only had limited
claims per year, there are several missing data. As a result, we
decided to arrange claims by year to reduce the number of
missing information. .is technique did not work out as
planned because many patients only had data [30]. We next
screened out these patients, leaving only those with clinical
history..e fundamental characteristics of these patients are
shown in Table 2.

Figure 2 forecasts every patient’s scores for the following
year. .ese scores are directly proportional to the amount of
cost a patient spent on health care. .e range of patient
values is depicted in the graph. As anticipated for healthcare
expenses, the scores exhibit all similar patterns as indicated
previously, with a spike at zero and a lengthy right-hand tail.

It has been claimed that using medical characteristics
produces similar results as using solely expense predictions.
Although the fact that medical record appears to have little
effect on forecast accuracy, we choose to maintain it because
it can enhance the range of variables in the algorithm, which
might enhance vector differentiation. Every resource ac-
cessible as characteristics was used to encode a patient’s
history. Demographics, health check-up results, ICD-10
diagnostic groupings, real score, and preceding score are the
inputs [31, 32]. .e patient’s vector is described in full in the

table. We employed all of the parameters listed in the table as
input vectors, with the exception of the real score, which was
used as our target attribute.

3.4. Training Phase. We must determine the ideal hyper-
parameters of our system for a forecast to adapt as closely as
feasible to its true value. .e weights of every dimension
used in the distance function and g in the discount function
are these parameters. For the training process, we used the
gradient-based methods since they have a strong mathe-
matical foundation for achieving optimal results.

.e gradient descent technique is an automated approach
for minimizing or maximizing a target function by optimizing
variable values. As our objective parameter, we used the mean
absolute error (MAE), which is calculated as follows:

MAE �
1
n



n

i�1
yi

���� − yi

����. (5)

.e target is to minimize the values of the MAE
equation, which is dependent on the variable vt that could be
either c or ω. .e following equation gives the updated value
of vt, termed vt+1 as follows:

vt+1 � vt − ∝
zMAE

zv
. (6)

.is technique offers us a series of numbers for v0, ..., vk

that minimizes the MAE, with the first value for v (i.e., v0)

generally chosen at random. During the training phase, we
use all of the remaining N − 1 patients in L as evidence to try
to forecast the expense of every patient pi in the training set
L. An epoch is an execution that computes forecasts for every
’N′ patient; the gradient descent approach accumulates by
completing repeated epochs.

Table 2: Patients’ characteristics and their predicted value.

Statistics Predicted value
Total no. of patients 24,353
Mean value for expenses 10,538
Mean (age) 46.08
Male (%) 47.48
Female (%) 50.30
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Figure 2: Graphic representation of cost range for patients’ score.
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3.5. Time Optimizing in Computing. A prediction’s com-
puting duration scales linearly with the size of the training
phase. To find the mass of vectors of dimension m in a
database with a training dataset of size n, we must firstly use
the discounting function, which has a O(m) complexity.
With the training set, we can estimate any discounting
functions of the input vector in O(mn). .en, we can es-
timate K (9), which requires O(mn). for every output series
and O(mn) for the accumulation; thus, we can estimate K in
O(mn). time. Lastly, we require the discounting function, K,
and a product series to get the mass, so we estimate the
weights of the input vector (8) while keeping O(mn).

.erefore, given O(mn). complexity, we could obtain the
forecast.

According to reference, aK-nearest neighbour technique
could be used to accelerate up calculation without sacrificing
efficiency. For the actual closest neighbour’s searches
depending on product quantization, we used [33] meth-
odology. Using this technique, we can generate indices for
the K-nearest searches in time O (mn + Kn) within the
training step. .e weights of the K-nearest neighbours,
which will be estimated in O (Km), are thus all that is re-
quired for a fresh forecast; the other weights are presumed to
be null. Whenever the algorithm has been trained, the
prediction’s complexity is O (Km).

3.6. Interpretability. .e IEVREG is a framework that is
accessible. For every forecasting we generate, we could
calculate the proportion (mass) of every element of infor-
mation in the testing phase L. As a result, we have a complete
understanding of how the anticipated quantity is calculated.
.is prototype is already interpretable, but to make it
completely understandable, we will write a system of reg-
ulations for every forecast using the weights from the
training dataset and themasses of every dimension gained all
through the training step [34]. .e idea is to calculate how
much every piece of proof adds to the forecast. Firstly, using
the weights of the existing N1 patients in the training dataset,
we establish a system of regulations for each of the patients
in the training phase for forecasting. Using the weights of the
remaining N1 patients in the phases and the weights of the
dimensions, we firstly build a system of regulations for each
of the patients in the training phase [35, 36]..e limits of the
measurements for each of the input characteristics, as well as
their weights, are encoded by these principles. .e algorithm
then chooses the patients in the training phase who are the
most identical and combines their principles to generate a
new collection of criteria for that forecast.

We use a tiny healthcare coverage database only with 5
characteristics as input to demonstrate how we get the
regulations with the IEVREG framework. Table 3 shows the
5 data inputs (measurements) and the anticipated result for
the healthcare expenses.

We used only the 60 closest neighbours to forecast this
patient’s result. .e most significant principles (greater
values) for expense forecasting are then obtained, as illus-
trated in Table 4..ese are the limits and parameters that the

patients have in common with the patients in the training
phase.

We could see how a patient’s expense projection is
interpreted in Table 4. Low weight is associated with age in
the IEVREG framework, while higher weight is associated
with others. As a result, the method seeks out individuals
with identical genders, BMIs, children, and smoking sta-
tuses, while ignoring age.

Algorithm 1 represents the steps of the linear regression
model.

.e flowchart for the proposed linear regressionmodel is
shown in Figure 3.

4. Results and Analysis

.e average annual rates and costs of consultations, tests,
and prescription items were estimated by BMI category at
the time of recruitment as shown in Figure 4. Percentage
differences in rates and average annual costs were calculated
for women with a BMI greater than 2 kg/m2 and a BMI
greater than 20 kg/m2, both overall and according to the type
of drug use. All models were evaluated using semi-possible
generalized linear models with variations such as record link
and Poisson. At the beginning of each year, annual expenses
are estimated in subgroups defined by alcohol consumption,
socioeconomic status, smoking level, educational qualifi-
cations, and strenuous exercise in recruitment [37]. .e
diversity of the proportional increases in annual costs among
the types of each subgroup was estimated using the chi-
square test.

.e mean absolute error, moreover, is ineffective for
comparing outcomes with costs stated in various dollars, so
we will use the mean absolute percentage error (MAPE), a
customized absolute error in which the MAE is reduced by
the mean cost and calculated as follows:

MAPE �
(1/n) 

n
i�1 | yi − yi


|

m
. (7)

Here, yi is the estimated output for parameter yi andm is the
mean of variable y, denoted as follows:

m �
1
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n
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We will also use additional metric, the R2, which reflects
how closely we are to the true cost curve and is defined as the
Pearson correlation among projected and real healthcare
costs. .e following formula is used to determine this
significance:

R
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2. (9)

5. Discussion

We provided a novel linear regression technique that can
simply demonstrate the purposes for producing a certain
forecast regarding potential healthcare expenses, which is a
useful capacity in the medical field. We evaluated its
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outcomes to the forecasting produced by the finest algo-
rithms from the analysed research and reported to see how
well it predicted. .e linear regression is what we are talking
about here. When we compare the outcomes of previous
designs for the cost of healthcare forecasting approach, we
can see that our system is more efficient, demonstrating that
a more explicit approach for an issue such as healthcare cost
forecasting is conceivable [38–40]. Our research, on the
other hand, clearly reveals that healthcare spending is highly
connected inside the Medicare program. .ere are ap-
proximately numerous people enrolled in the program. .is
finding could lead to preventive measures. Autocorrelation
shows an inherent methodology that could be influenced by
variables that can be changed. As a result, clinicians can use
more accurate machine-learning algorithms to target these
therapies to the proper HCHN group. .ere are a few flaws
in this research. Initially, we performed the research within
the context of a single state’s Medicare system..e outcomes

might differ depending on the state or kind of payer. Sec-
ondly, only general-purpose machine-learning algorithms
were used. Certain customized versions might function
optimally. .irdly, the prediction algorithms offer no di-
rection on the preventive characteristics that should be
considered when developing treatments. Lastly, determining
overall health solely based on claim statistics is restricted.
Further input resources, such as descriptive elements of
electronic health records (EHRs), illness intensity assess-
ments, and socioeconomic determinants of health care,
might well be required. A few of these restrictions will be
addressed in the forthcoming research. We intend to
broaden the scope of the study to include various sorts of
healthcare initiatives. We will additionally collect the
abovementioned extra data to assess predicted effectiveness
[40]. We will also work with physicians and policymakers to
make the algorithms more medically applicable using do-
main expertise to effectively target risk reduction actions.

Require: Training data D, number of epochs e, learning rate η, and standard deviation σ.
Ensure: Weights. ω0, ω1, . . .ωk

(1) Initialize weights ω0, ω1, . . .ωk from standard normal distribution with zero mean and standard deviation σ.
for epoch in 1, . . ., e do
for each (x, y) ∈D in random order do

y←ω0 + 
k
i�1 ωixi

if (y> 1 an dy � 1) or (y < − 1 andy � −1) then
Continue

ω0←ω0 − η2 (y − y)

for i in 1, . . ., k do
ωi←ωi − η2 (y − y)xi

end for
end for
return ω0, ω1, . . .ωk

ALGORITHM 1: Linear regression (LR).

Table 3: Details of the patients.

Gender BMI Smoker Age Children Actual value Forecasted value
Female 29.98 No 37 1 6245 7154
Male 32.12 No 40 2 6725 7540

Table 4: Estimated values.

Gender Estimated values Weights

Male

30.6530<BMI< 31.8560 0.45
Gender� 0.0 0.45
Children� 0.0 0.45
Smoker� 0.0 0.45

39.2016< age< 40.2451 0.22

Female

28.5421<BMI< 29.7451 0.39
Gender� 0.0 0.39
Children� 0.0 0.39
Smoker� 0.0 0.39

36.2016< age< 37.2452 0.19
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Figure 3: Flowchart for estimating the healthcare costs.
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6. Conclusion

We provided a new linear regression that can easily dem-
onstrate the reasons for producing a certain forecast re-
garding potential healthcare expenses, which is a useful
capacity in the healthcare area. .e linear regression algo-
rithm is used to estimate the healthcare costs of the patients
such as obesity (BMI) using certain devices such as
smartphones and smart devices. For estimation, by the use of
linear regression, supervised learning performs more ac-
curately. By providing comprehensive evidence, regression
methodology can be effectively used for prognosis in con-
junction with the dataset..e domain and time accuracy will
determine the prediction model and the estimation of
healthcare expenses. .e proposed method reduces the risk
of overfitting, and also, training time is less. .is method is
effective in estimating the healthcare costs of patients with
an accuracy rate of 97.89%..e extensive tests on a real-time
world database have confirmed the efficiency of our method.
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Intelligent decision support systems (IDSS) for complex healthcare applications aim to examine a large quantity of complex
healthcare data to assist doctors, researchers, pathologists, and other healthcare professionals. A decision support system (DSS) is
an intelligent system that provides improved assistance in various stages of health-related disease diagnosis. At the same time, the
SARS-CoV-2 infection that causes COVID-19 disease has spread globally from the beginning of 2020. Several research works
reported that the imaging pattern based on computed tomography (CT) can be utilized to detect SARS-CoV-2. Earlier iden-
tification and detection of the diseases is essential to offer adequate treatment and avoid the severity of the disease. With this
motivation, this study develops an efficient deep-learning-based fusion model with swarm intelligence (EDLFM-SI) for SARS-
CoV-2 identification. (e proposed EDLFM-SI technique aims to detect and classify the SARS-CoV-2 infection or not. Also, the
EDLFM-SI technique comprises various processes, namely, data augmentation, preprocessing, feature extraction, and classi-
fication. Moreover, a fusion of capsule network (CapsNet) and MobileNet based feature extractors are employed. Besides, a water
strider algorithm (WSA) is applied to fine-tune the hyperparameters involved in the DL models. Finally, a cascaded neural
network (CNN) classifier is applied for detecting the existence of SARS-CoV-2. In order to showcase the improved performance of
the EDLFM-SI technique, a wide range of simulations take place on the COVID-19 CTdata set and the SARS-CoV-2 CTscan data
set. (e simulation outcomes highlighted the supremacy of the EDLFM-SI technique over the recent approaches.

1. Introduction

Intelligent decision support systems (IDSS) has become
widely used in several applications of healthcare. Internet of
things (IoT), wearables, manual data entry, and online
sources are some of the instances of complex data sources for
IDSS. (e data sustained by IDSS significantly helps in the
earlier identification of diseases and equivalent treatments.

(e coronavirus disease 2019 (COVID-19) epidemic, caused
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), began inWuhan city, Hubei province, in December,
2019, and has spread throughout China. COVID-19 is an
infectious disease caused by the novel coronavirus named
SARS-CoV-2. (e virus is extremely infectious, and can be
transmitted by indirect or direct contact with diseased
persons with respiratory droplets while they cough, sneeze,
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or even talk [1]. Now, the real-time polymerase chain re-
action (RT-PCR) test is the common method used to
confirm COVID-19 infection, and with the rapid rise in the
number of diseased persons, almost all countries are con-
fronting a shortage of testing kit. Furthermore, RT-PCR
testing can have a higher false-negative rate and turnaround
times [2]. (erefore, it is appropriate for considering other
testing tools for detecting COVID-19 infected people to
isolate them and alleviate the pandemic impact on the lives
of several people. (e chest computed tomography (CT) is
an appropriate supplement to RT-PCR testing and plays a
role in diagnosing and screening COVID-19 infection. In
current works [3], the researchers manually investigated
chest CT scans of over thousands of patients and confirmed
the helpfulness of chest CT scan in COVID-19 detection
with a higher sensitivity rates.

In certain cases, the patient had a negative PCR test at
first, but confirmation was depending on their CT results.
Additionally, chest CT screening was suggested, while the
patient shows compatible symptoms with COVID-19;
however, the outcome of its PCR tests is negative [4].
Hence, it is necessary for an automatic detection tool that
exploits the current developments in deep learning (DL)
and artificial intelligence (AI), as well as the accessibility of
CT images to construct AI-based tools to prevent further
spreading and expedite the diagnoses method [5]. In order
to mitigate the shortage and inefficiency of current tests for
COVID-19 infection, various attempts have been dedi-
cated to seeking alternate testing tools [6]. Various re-
searches have exposed that CT scans manifest strong
radiological results of COVID-19 and are promising in
serving as an accessible and more efficient testing tool
because of the wider accessibility of CT devices, which
could achieve results at the highest rate. Furthermore, to
mitigate the burden of medical specialists from reading CT
scans, numerous studies have designed DL algorithms that
could automatically interpret CT images and forecast
whether the CT is positive for COVID-19 infection. When
this work has demonstrated effective outcomes, they have
two limitations [7]. Initially, the CT scans data set utilized
in this study are not accessible to the public because of
security concerns.

Accordingly, their results could not be reproduced, and
the trained methods could not be utilized in other hospitals.
In addition, the lack of open-sourced annotated COVID-19
CTdata sets seriously hinders the development and research
of innovative AI tools for precise CT-based testing of
COVID-19 infection [8]. Next, this study requires a wide
range of CTs at the time of model training to accomplish
performances that meet the medical standards. (ese re-
quirements are practically stringent, and it could not met by
several hospitals, particularly under the circumstance that
medical experts are very occupied in handing COVID-19
infected patients and do not have time to annotate and
collect a huge amount of COVID-19 CT scans.

(is study develops an efficient deep-learning-based
fusion model with swarm intelligence (EDLFM-SI) for
SARS-CoV-2 identification for complex healthcare appli-
cations. Moreover, the EDLFM-SI technique comprises a

fusion of capsule network (CapsNet) and MobileNet based
feature extractors are employed. Furthermore, a water
strider algorithm (WSA) is applied to fine-tune the
hyperparameters involved in the DL models. Lastly, a cas-
caded neural network (CNN) classifier is applied to detect
the existence of SARS-CoV-2. For examining the enhanced
outcomes of the EDLFM-SI technique, a comprehensive
experimental analysis is carried out on the COVID-19 CT
data set and the SARS-CoV-2 CT scan data set.

(e rest of the paper is organized as follows. Section 2
offers the related works; Section 3 elaborates the proposed
model; Section 4 provides the result analysis; and Section 5
draws the conclusions.

2. Related Works

(is section provides a comprehensive review of existing
COVID-19 detection models. Biswas et al. [9] aimed to
determine a strong COVID-19 predictive method via chest
CT images through effective TL methods. At first, they
utilized three typical DL algorithms, such as Xception, VGG-
16, and ResNet50, for COVID-19 prediction. Next, they
presented a method to integrate the abovementioned pre-
trained method for the general enhancement of the pre-
dictive capacity of the model. Ibrahim et al. [10] proposed a
new computer-aided framework (COV-CAF) to categorize
the severity level of the disease from three-dimensional CT
Volumes. COV-CAF integrates conventional and DL
methods. (e presented COV-CAF method contains two
stages: the preparatory stage and the feature analysis and
classification stage. (e feature analysis and classification
stage integrates fuzzy clustering for feature fusion and au-
tomated RoI segmentation.

In Dansana et al. [11], the CNN approach is utilized to
binary classification pneumonia-based transformation of
Inception_V2, DT, and VGG-19 methods on CT scan and
X-ray image data sets that have 360 images. It could gather
that fine-tuned VGG-19, Inception_V2, and DT methods
show outstanding performances with an increased rate of
validation and training accuracy. Wang et al. [12] hypoth-
esized that AI method that could extract certain graphical
features of COVID-19 and offer medical diagnoses in ad-
vance of the pathogenic test, therefore saving critical time for
controlling the disease. (ey gathered 1,065 CT images of
pathogen-confirmed COVID-19 cases and persons who
were diagnosed previously with standard COVID-19. (ey
adapted the inception TLmethod for establishing the model,
followed by external and internal validations.

Mei et al. [13] employed AImethods for integrating chest
CT results with laboratory testing, medical symptoms, and
exposure history to quickly analyze persons with positive for
COVID-19. Goel et al. [14] presented a novel architecture for
exploiting effective features extracted from the AE and
GLCM, integrated with the RF model for the effective and
faster diagnosis of COVID-19 with CT images. Mohammed
et al. [15] presented an automatic CAD system for COVID-
19-based chest X-ray image analyses. It is developed for
COVID-19 diagnosis from another ARDS, MERS, and SARS
infection. (e optimum threshold values for chest images
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segmentation are deduced by using Li’s model and PSI
method. (en, Laws’ mask is employed in the chest image
segmentation for highlighting secondary characteristics.
Next, nine distinct vectors of features are extracted from the
GLCM of every Laws’ mask finding. (e ensemble SVM
methods are constructed according to the extracted feature
vector. Munir et al. [16] presented a DNN method that is
trained on the X-ray image of the COVID-19 and standard
X-ray images to the COVID-19 diagnosis. Alquzi et al. [17]
developed a result to detect persons with COVID-19 from
CT images and ML models. (is method is depending on a
CNN model named EfficientNet.

3. The Proposed EDLFM-SI Technique

In this study, an effective EDLFM-SI technique is designed
to detect and classify the SARS-CoV-2 infection or not. Also,
the EDLFM-SI technique comprises various processes
namely data augmentation, preprocessing, fusion-based
feature extraction, WSA-based hyperparameter optimiza-
tion, and CNN-based classification. At the same time, a
fusion of CapsNet and MobileNet based feature extractors
are employed. Figure 1 illustrates the overall process of the
EDLFM-SI model. (e working principle of every process is
elaborated in the succeeding sections.

3.1. Preprocessing and Data Augmentation. Primarily, me-
dian filtering is applied for removing the noise present in the
test CT images. Next, data augmentation comprises raising
the number of training instances by the transformation of
the images with no loss of semantic details. In this study,
data augmentation takes place in three ways such as rotation,
horizontal flip, and scaling.

3.2. Fusion-Based Feature Extraction. At this stage, the
fusion-based feature extraction process is employed in
which the fusion of MobileNet and CapsNet features is
extracted.

3.2.1. MobileNet Model. (e MobileNet V2 enhances effi-
ciency of mobile techniques on several tasks and bench-
marks and through the spectrum of various technique sizes.
(e basic principle behind MobileNet technique is the re-
placement of convolutional layers with depthwise separable
convolution blocks where the depthwise convolution layer is
trailed by the pointwise convolution layer to create effective
feature vectors. It can be much greater than the regular
convolutional with around similar outcomes. In MobileNet
V2, all the blocks include 1 × 1 development layer frommore
depthwise and pointwise convolution layers. Different Vl,
the pointwise convolution layer of V2 recognized as the
prediction layer projects information with the maximum
amount of channels as to tensor with a considerably min-
imum amount of channels. MobileNetv2 is based on an
inverted residual structure where the residual connections
exist among the bottleneck layers. A 1 × 1 expansion con-
volution layer has increased the amount of channels

dependent upon expansion issue from the data previously as
it goes to depthwise convolutions. (e second novel thing
from MobileNet V2’s structure block has remaining linking
[18]. (e remaining linking uses the flow of gradient with
networks.

Computation cost is considerably lower than the typical
convolution with a compromise in slightly reduced
accuracy.

3.2.2. CapsNet Model. For overcoming the limitations of
CNN and generating it nearby the cerebral cortex activity
framework, Hinton [19] presented a maximum dimension
vector named as “capsule” for representing an entity (an
object or part of object) with a set of neurons before a single
neuron. All the capsules learn an implicit explanation of
visual entity that output the probabilities of the entity and
the group of “instantiated parameter containing the precise
pose (place, size, and orientation), deforming, velocity, al-
bedo, hue, texture, and so on.

(e structure of CapsNet has been distinct in other DL
techniques. (e outcomes of input and output of CapsNets
have been vectors whose norm and way demonstrate the
existence probabilities and several attributes of entity cor-
respondingly. If the several forecasts have been consistent,
the higher level of one capsule is developed actively. Figure 2
depicts the framework of the CapsNet model. (e structure
has been shallow with only two convolution layers (Convl,
and PrimaryCaps) and one fully connected (FC) layer
(EntityCaps). In detail, Convl has the typical convolution
layer that alters images to initial features and outcomes to
PrimaryCaps with a convolutional filter with a size of
13 × 13 × 256. During the case where the original image is
not appropriate to the input of the primary layer of the
CapsNet, the rule feature then convolution was
implemented.

(e second convolution layer generates the equivalent
vector framework as input of the capsule layer [20]. (e
typical convolutional of all output is scalars; however, the
convolutional of PrimaryCaps has distinct from the classical
one. It is considered 2-D convolutional of eight distinct
weights to the input of 15 × 15 × 256. (e third layer
(EntityCaps) has been the resultant layer that has nine
typical capsules equivalent to nine distinct classes.

A layer of CapsNet has been separated into several
computational units called capsules. Consider a capsule i
with activity neuron i, it can be given as capsule j for
generating activity level vj of EntityCaps. (e propagating
and upgrading have been conducted utilizing vectors among
PrimaryCaps and EntityCaps. (e matrix model was
employed to scalar input from all the layers of typical NN
that is basically a linear combination of outcomes. (e
capsule modeling input has been separated into two phases:
linear combination as well as routing. (e linear combi-
nation represents an idea of modeling scalar input with NN
that implies processing the connection among two objects
from the scene with a visual alteration matrix but main-
taining its relative relation. In detail, the linear combination
was expressed as follows:
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uj|i � uiWij, (1)

where u refers to the forecast vector created by changing the
outcome ui of the capsule from the layer under by weight
Wij. Afterward, during the routing phase, the input vector sj

of the capsule, j is determined as follows:

sj � 
i

cijuj|i, (2)

where cij implies the coupling coefficient defined as
the iterative dynamic routing procedure. (e routing
part comprises a weighted sum of u coupling
coefficients. (e vector output of capsule j has com-
puted by implementing a non-linear squashing function
produces

vj �
sj

�����

�����
2

1 + | sj

�����

�����
2

sj

sj

�����

�����
. (3)

Noticeably, the capsule activation function essentially
suppresses as well as redistributes vector length. Its output
has been utilized as probabilities of entity signified as the
capsule from the present type. (e entire loss function of
novel CapsNet has a weighted summation of marginal loss
and reconstructing loss.(eMSE has utilized from the novel
reconstructing loss function that degrades this technique
considerably if modeling noisy data.

3.2.3. Fusion Process. Data fusion is employed in many
applications of ML and CV methods. Feature fusion is an

Input: Training Images

Image Preprocessing

Feature Extraction Process

Fusion ModelMobileNet CapsuleNet

Extracted Features Classification Process using Cascaded Neural Network

Parameter Tuning
using

Water Strider Optimization Algorithm

Data Augmentation

Performance Measures

PrecisionSensitivityF-score AccuracySpecificity

Figure 1: Overall block diagram of EDLFM-SI model.
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8 16

10
DigitCaps ||L2||

32

Figure 2: Structure of the CapsNet model.
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important task that integrates one or more feature vec-
tors. (e proposed method is dependent on feature

fusion through entropy. (e two vectors are described as
follows:

fCapsNet1×n � CapsNet1×1,CapsNet1×2,CapsNet1×3, . . . ,CapsNet1×n ,

fEfficientNet191×m � MobileNet1×1,MobileNet1×2,MobileNet1×3, . . . ,MobileNet1×m .
(4)

Besides, the extracted features are integrated into a single
vector using the following equation:

Fused(features vector)1×q � 
2

i�1
fCapsNet1×n, fMobileNet1×m,

(5)

where f represents fused vectors (1 × 1186). (e entropy is
utilized on features vectors for the selection of optimum
features according to the score.

3.3. Hyperparameter Optimization. In order to optimally
adjust the hyperparameters involved in the fusionmodel, the
WSA is applied to it.(eWSA is a population-basedmethod
that stimulates succession of water strider bugs, territorial
behavior, feeding mechanism, mating style, and intelligent
ripple communication. (is method is described briefly in
the following steps.

3.3.1. Initial Birth. (e candidate solution/water strider
(WS) is arbitrarily caused in the searching space as follows:

WS
0
i � Lb + rand,

(Ub − Lb); i � 1, 2, . . . , nws,
(6)

whereWS0i represents the first position of i-thWS in the lake
(search space). Lb and Ub represent lower and upper
bounds, respectively. rand denotes an arbitrary value in the
range of zero and one, and nws indicates the amount of WSs

(population size).(e first position ofWSs is estimated by an
objective function to evaluate the fitness.

3.3.2. Territory Establishment. To determine nt amount of
territories, WSs is arranged based on their fitness, and
nws/nt amount of groups are generated orderly. (e j-th
member of all the groups is allocated to the j-th territory,
where j � 1, 2, . . . ,nt. (us, the amount of WSs lives in all
the territories are equivalent to nws/nt. (e position in all
the territories with the best and worst fatness is considered
female and male (keystone), respectively.

3.3.3. Mating. (e male WS transmits ripple to female WS
for mating. As the response of females is unknown, a
probability p is determined for attraction or else repulsion
[21]. (e p is fixed to 0.5. (e location of the male WS is
upgraded as follows:

WSt+1
i � WSt

i + R.rand; if mating happens (with probability of p),

WSt+1
i � WSt

i + R.(1 + rand); otherwise.

⎧⎨

⎩ (7)

(e length of R is estimated as follows:

R � WSt−1
F − WSt−1

i , (8)

whereWSt−1
i andWSt−1

F denotes the male and femaleWS
in the (t − 1)th cycle, respectively.

3.3.4. Feeding. Mating expends numerous energies for water
strider, and the male WS forages to food afterward mating.
During the latter scenario, the male WS move towards the

optimal WS of lake (WS) for finding foods based on the
following equation:

WSt+1
i � WSt

i + 2rand∗ WSt
BL − WSt

i . (9)

3.3.5. Death and Succession. In the novel location, the male
WS could not find food; it would pass away; and a novel WS

would replace it as follows:
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WSt+1
i � Lbt

j + rand∗ Ubt
j − Lbt

j , (10)

where Ubt
j and Lbj are the maximal and minimal values

of WS†s located inside the j-th territory.

3.3.6. WSA Termination. When the end criteria are met, the
process would return to the mating step for a novel loop.
Now, the maximum amount of function evaluation
(MaxNFEs) is considered an end criterion.

3.4. CNN-Based Classification. Finally, the features are fed
into the CNN model to allot the classes that exist in it. (e
perceptron linking that has been designed among the input
and output has a procedure of direct relation, but FFNN
linked generated among input and output was an indirect
connection. (e link was non-linear from shape with acti-
vation function from the hidden layer. When the link
generated on perceptron and multilayer network has been
joined, afterward, the network with direct link among the
input and output layers is created. (e network generated in
this linking design was named CNN. (e formulas are
created in the CNN technique that is expressed as follows:

y � 
n

i�1
f

iωi
ixi + f

o


k

j�1
ωo

jf
h
j 

n

i�1
ωh

jixi
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ , (11)

where f refers to the activation function in the input-output
layers and ωi

i implies the weight in the input-output layers
[22]. When the bias has more than the input layers and
activation function of all the neurons from the hidden layer
is fh, then

y � 
n

i�1
f

iωi
ixif

o ωb
+ 

k

j�1
ωo

jf ωb
j + 

k

j�1
ωo

jf
h
j

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ . (12)

During this case, the CFNN technique was executed
from the time sequences data. So the neurons from the input
layer are the delays of time sequences data
Xt−1, Xt−2, . . . , Xt−p, but the output has the present data Xt.

4. Performance Validation

4.1. Implementation Data. (e experimental validation of
the EDLFM-SI technique takes place using two benchmark
data set, namely, SARS-CoV-2 CT scan [23] and COVID-19
CT [24, 25] data sets. (e former contains a set of 2,482 CT
scans with 1,252 scans under SARS-CoV-2 and 1,230 scans
under other lung diseases. (e next data set includes 746 CT
images, with 349 CT images under COVID-19 and 397 CT
images under non-COVID-19. Few sample images are
demonstrated in Figure 3.

4.2. Result Analysis on SARS-CoV-2 CT Scan Data Set.
Figure 4 demonstrates the confusion matrices produced by
the EDLFM-SI technique on test data set-1. (e results
exhibited that the EDLFM-SI technique has identified the
COVID-19 and non-COVID-19 images correctly under all

runs. For instance, with run-1, the EDLFM-SI technique has
classified 1,234 images into COIVD-19 and 1,214 images
into non-COVID-19. At the same time, with run-4, the
EDLFM-SI approach has classified 1,241 images into
COIVD-19 and 1,214 images into non-COVID-19. Followed
by, with run-6, the EDLFM-SI method has classified 1,237
images into COIVD-19 and 1,216 images into non-COVID-
19. Moreover, with run-8, the EDLFM-SI system has clas-
sified 1,236 images into COIVD-19 and 1,215 images into
non-COVID-19. Furthermore, with run-10, the EDLFM-SI
methodology has classified 1,238 images into COIVD-19
and 1,218 images into non-COVID-19.

Table 1 and Figure 5 provide the overall COVID-19
classification outcomes analysis of the EDLFM-SI technique
on data set-1. (e table depicted that the EDLFM-SI
technique has the ability to classify images under all runs.
For instance, with run-1, the EDLFM-SI technique has
gained increased pren, seny, spey, accy, and Fscore of 0.9872,
0.9856, 0.9870, 0.9863, and 0.9864, respectively. Along with
that, with run-2, the EDLFM-SI system has reached en-
hanced pren, seny, spey, accy, and Fscore of 0.9888, 0.9904,
0.9886, 0.9895, and 0.9896, respectively. In line with that,
with run-6, the EDLFM-SI methodology has attained im-
proved pren, seny, spey, accy, and Fscore of 0.9888, 0.9880,
0.9886, 0.9883, and 0.9884, respectively. Followed by that,
with run-8, the EDLFM-SI technique has gained increased
pren, seny, spey, accy, and Fscore of 0.9880, 0.9872, 0.9878,
0.9875, and 0.9876, respectively. Lastly, with run-10, the
EDLFM-SI approach has achieved higher pren, seny, spey,
accy, and Fscore of 0.9904, 0.9888, 0.9902, 0.9895, and 0.9896,
respectively.

Figure 6 showcases the accuracy graph analysis of the
EDLFM-SI technique on the test data set 1. (e figure
revealed that the EDLFM-SI technique has resulted in
maximum training and validation accuracies. It is observed
that the EDLFM-SI technique has accomplished increased
validation accuracy compared to training accuracy.

Next, the loss graph analysis of the EDLFM-SI technique
under data set-1 takes place in Figure 7. (e figure reported
that the EDLFM-SI technique has attained minimal training
and validation losses. It is also noticeable that the EDLFM-SI

Figure 3: Sample images.
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Figure 4: Confusion matrix of EDLFM-SI model under data set-1: (a) run-1, (b) run-2, (c) run-3, (d) run-4, (e) run-5, (f ) run-6, (g) run-7,
(h) run-8, (i) run-9, and (j) run-10.

Table 1: Result analysis of EDLFM-SI model with distinct measures under data set-1.

No. of runs Precision Sensitivity Specificity Accuracy F-score
Run-1 0.9872 0.9856 0.9870 0.9863 0.9864
Run-2 0.9888 0.9904 0.9886 0.9895 0.9896
Run-3 0.9880 0.9880 0.9878 0.9879 0.9880
Run-4 0.9873 0.9912 0.9870 0.9891 0.9892
Run-5 0.9881 0.9920 0.9878 0.9899 0.9900
Run-6 0.9888 0.9880 0.9886 0.9883 0.9884
Run-7 0.9864 0.9864 0.9862 0.9863 0.9864
Run-8 0.9880 0.9872 0.9878 0.9875 0.9876
Run-9 0.9904 0.9872 0.9902 0.9887 0.9888
Run-10 0.9904 0.9888 0.9902 0.9895 0.9896
Average 0.9883 0.9885 0.9881 0.9883 0.9884
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technique has resulted in reduced validation loss over the
training loss.

A detailed comparative results analysis of the EDLFM-SI
technique with recent techniques takes place on data set-1 in

Table 2 and Figure 8.(e figure shows that the DTmodel has
gained poor outcomes with the lower classification. At the
same time, the GN, VGG-16, RN, and AN models have
reached moderately closer classification performance. Along
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Figure 5: Result analysis of EDLFM-SI model under data set-1.
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with that, the xDNN model has accomplished reasonable
classification performance over the other techniques. At last,
the proposed EDLFM-SI technique has outperformed the
othermethods with themaximum pren, seny, accy, and Fscore
of 0.9904, 0.9920, 0.9899, and 0.9900, respectively.

4.3. Results Analysis on COVID-19 CT Data Set. Figure 9
exhibits the confusion matrices formed by the EDLFM-SI
system on the test data set-2. (e outcomes showcased that
the EDLFM-SI manner has identified the COVID-19 and
non-COVID-19 images correctly under all runs.

For sample, with run-1, the EDLFM-SI scheme has
classified 331 images into COIVD-19 and 381 images into
non-COVID-19. Likewise, with run-4, the EDLFM-SI al-
gorithm has classified 335 images into COIVD-19 and 382
images into non-COVID-19. Similarly, with run-6, the
EDLFM-SI technique has classified 333 images into COIVD-
19 and 378 images into non-COVID-19. In addition, with
run-8, the EDLFM-SI method has classified 332 images into
COIVD-19 and 377 images into non-COVID-19. At last,
with run-10, the EDLFM-SI approach has classified 331
images into COIVD-19 and 383 images into non-COVID-
19.

Table 3 and Figure 10 offer the overall COVID-19
classification outcomes analysis of the EDLFM-SI approach
on data set-2. (e table outperformed that the EDLFM-SI
system has the ability to classify images in all runs. For
instance, with run-1, the EDLFM-SI approach has attained
maximal pren, seny, spey, accy, and Fscore of 0.9539, 0.9484,
0.9597, 0.9544, and 0.9511, respectively. At the same time,
with run-4, the EDLFM-SI methodology has attained su-
perior pren, seny, spey, accy, and Fscore of 0.9571, 0.9599,
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Figure 6: Accuracy analysis of EDLFM-SI model under data set-1.
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Figure 7: Loss analysis of EDLFM-SI model under data set-1.

Table 2: Comparative analysis of EDLFM-SI model with existing
approaches under data set-1.

Methods Precision Sensitivity Accuracy F-score
EDLFM-SI 0.9904 0.9920 0.9899 0.9900
xDNN model 0.0916 0.9553 0.9738 0.9731
RN model 0.9300 0.9715 0.9496 0.9503
GN model 0.9020 0.9350 0.9173 0.9182
VGG-16 0.9402 0.9543 0.9496 0.9497
AN model 0.9498 0.9228 0.9375 0.9361
DT model 0.7681 0.8313 0.7944 0.7984
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Figure 8: Comparative analysis of EDLFM-SI model under data
set-1.
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Figure 9: Confusion matrix analysis of EDLFM-SI model under data set-2: (a) run-1, (b) run-2, (c) run-3, (d) run-4, (e) run-5, (f ) run-6,
(g) run-7, (h) run-8, (i) run-9, and (j) run-10.

Table 3: Result analysis of EDLFM-SI model under data set-2.

No. of runs Precision Sensitivity Specificity Accuracy F-score
Run-1 0.9539 0.9484 0.9597 0.9544 0.9511
Run-2 0.9598 0.9570 0.9647 0.9611 0.9584
Run-3 0.9536 0.9427 0.9597 0.9517 0.9481
Run-4 0.9571 0.9599 0.9622 0.9611 0.9585
Run-5 0.9599 0.9599 0.9647 0.9625 0.9599
Run-6 0.9460 0.9542 0.9521 0.9531 0.9501
Run-7 0.9433 0.9542 0.9496 0.9517 0.9487
Run-8 0.9432 0.9513 0.9496 0.9504 0.9472
Run-9 0.9594 0.9484 0.9647 0.9571 0.9539
Run-10 0.9594 0.9484 0.9647 0.9571 0.9539
Average 0.9536 0.9524 0.9592 0.9560 0.9530
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0.9622, 0.9611, and 0.9585, respectively. Besides, with run-6,
the EDLFM-SI system has gainedmaximum pren, seny, spey,
accy, and Fscore of 0.9460, 0.9542, 0.9521, 0.9531, and 0.9501,
respectively. Moreover, with run-8, the EDLFM-SI tech-
nique has gained higher pren, seny, spey, accy, and Fscore of
0.9432, 0.9513, 0.9496, 0.9517, and 0.9487, respectively.
Eventually, with run-10, the EDLFM-SI methodology has

gained improved pren, seny, spey, accy, and Fscore of 0.9594,
0.9484, 0.9647, 0.9571, and 0.9539, respectively.

Figure 11 illustrates the accuracy graph analysis of the
EDLFM-SI approach on the test data set 2. From the
figure, it is obvious that the EDLFM-SI technique has
resulted in maximal training and validation accuracies. It
can be clear that the EDLFM-SI technique has
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Figure 10: Result analysis of EDLFM-SI model under data set-2.
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accomplished increased validation accuracy related to
training accuracy.

(en, the loss graph analysis of the EDLFM-SI approach
on the test data set-2 takes place in Figure 12. (e figure
stated that the EDLFM-SI system has reached lesser training
and validation losses. It can be also obvious that the EDLFM-
SI methodology has resulted in decreased validation loss
over the training loss.

A brief comparative outcomes analysis of the EDLFM-SI
approach with recent systems takes place on data set-2 in
Table 4 and Figure 13. (e figure demonstrated that the
Xception manner has attained worse results with minimum
classification. Simultaneously, the DN-121, InceptionV3,
RN-101, and DN-169 methods have obtained moderately
closer classification performance. Also, the DN-201 model
has accomplished reasonable classification performance
over the other techniques. At last, the presented EDLFM-SI
algorithm has outperformed the other methodologies with
the maximal pren, seny, accy, and Fscore of 0.9599, 0.9599,
0.9625, and 0.9060, respectively.

By looking into the detailed tables and figures, it is
obvious that the EDLFM-SI technique has resulted in im-
proved COVID-19 detection and classification performance
over the recent methods.

5. Conclusion

In this study, an effective EDLFM-SI technique is designed
to detect and classify the SARS-CoV-2 infection for complex
healthcare applications. Also, the EDLFM-SI technique
comprises various processes, namely, data augmentation,
preprocessing, fusion-based feature extraction, WSA-based
hyperparameter optimization, and CNN-based classifica-
tion. (e fusion-based feature extraction process is
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Figure 11: Accuracy analysis of EDLFM-SI model under data set-2.
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Figure 12: Loss analysis of EDLFM-SI model under data set-2.

Table 4: Comparative analysis of EDLFM-SI model with existing
approaches under data set-2.

Methods Precision Sensitivity Accuracy F-score
EDLFM-SI 0.9599 0.9599 0.9625 0.9599
RN-101 model 0.8810 0.9310 0.9090 0.9060
InceptionV3 0.8770 0.9000 0.8940 0.8880
Xception 0.8730 0.8830 0.8850 0.8770
DN-121 model 0.8760 0.8880 0.8890 0.8820
DN-169 model 0.8810 0.9370 0.9120 0.9080
DN-201 model 0.9130 0.9370 0.9290 0.9250
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Figure 13: Comparative analysis of EDLFM-SI model under data
set-2.
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employed in which the fusion of MobileNet and CapsNet
features is extracted. To optimally adjust the hyper-
parameters involved in the fusion model, the WSA was
executed to it. Finally, the features are fed into the CNN
model to allot the classes that exist in it. For examining the
enhanced outcomes of the EDLFM-SI technique, a com-
prehensive experimental analysis is carried out on the
COVID-19 CT data set and the SARS-CoV-2 CT scan data
set. (e simulation outcomes highlighted the supremacy of
the EDLFM-SI technique over the recent approaches. As a
part of the future scope, the classification performance of the
proposed EDLFM-SI technique can be employed for SARS-
CoV-2 detection by the use of hybrid metaheuristic-based
optimization algorithms.
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Natural computing refers to computational processes observed in nature and human-designed computing inspired by nature. In
recent times, data fusion in the healthcare sector becomes a challenging issue, and it needs to be resolved. At the same time,
intracerebral haemorrhage (ICH) is the injury of blood vessels on the brain cells, which is mainly liable for stroke. X-rays and
computed tomography (CT) scans are widely applied for locating the haemorrhage position and size. Since manual segmentation
of the CTscans by planimetry by the use of radiologists is a time-consuming process, deep learning (DL) is used to attain effective
ICH diagnosis performance. )is paper presents an automated intracerebral haemorrhage diagnosis using fusion-based deep
learning with swarm intelligence (AICH-FDLSI) algorithm. )e AICH-FDLSI model operates on four major stages namely
preprocessing, image segmentation, feature extraction, and classification. To begin with, the input image is preprocessed using the
median filtering (MF) technique to remove the noise present in the image. Next, the seagull optimization algorithm (SOA) with
Otsu multilevel thresholding is employed for image segmentation. In addition, the fusion-based feature extraction model using
the Capsule Network (CapsNet) and EfficientNet is applied to extract a useful set of features. Moreover, deer hunting optimization
(DHO) algorithm is utilized for the hyperparameter optimization of the CapsNet and DenseNet models. Finally, a fuzzy support
vector machine (FSVM) is applied as a classification technique to identify the different classes of ICH. A set of simulations takes
place to determine the diagnostic performance of the AICH-FDLSImodel using the benchmark intracranial haemorrhage data set.
)e experimental outcome stated that the AICH-FDLSI model has reached a proficient performance over the compared methods
in a significant way.

1. Introduction

In the last few years, traumatic brain injury (TBI) is the
primary cause of growing death rates and disability in the
USA. Nearly 30% of injury deaths have been reported [1].
After that, TBI, extra-axial intracranial tumours such as
intracranial hemorrhages (ICH), may take place. )e ICH
disease is the main reason for death worldwide that happens
for all ages. At first, the disease is initiated in the brain due to
the leakage in the blood vessel and removes the path of
interactions (follows the brain function and instruction
consequently) and internal organ that results in inactive

body functions such as memory loss, loss of eyesight, speech,
and so on [2–4]. )e most important risk factors such as
high blood pressure (BP), head trauma, leakage in veins, and
infected blood vessel walls are related to the ICH. To inspect
this disorder, the screening modalities such as single-photon
emission computed tomography (SPECT), X-ray, positron
emission tomography (PET), and computed tomography
(CT) are accessed via brain haemorrhage imaging. In
comparison to other methods, a CTscan is widely employed
in haemorrhage diagnosis as it is widely available, limited
duration, and inexpensive for imaging. )erefore, CT scans
are highly desired for ICH detection. )e manifestation of
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ICH clots on CT scans depends on external factors such as
volume, density, location, and slice intensity.

)e early prediction of ICH is indispensable for sufficient
scheduling of scanning and providing better treatment.
)erefore, enormous designers have used the computer-
based detection (CAD) method for ICH segmentation. )e
recently proposed computer-based CAD method of ICH is
based on the aspects such as automatic segmentation of
haemorrhage that can be forecasted without manual seg-
mentation, professional contribution, in which the human
experts have to offer a suitable input for segmentation. )e
current deployment in convolutional neural network (CNN)
and deep learning (DL) served remarkable performances in
automatic image segmentation and classification processes
[5].)us, the DL technique can able tomake automated ICH
segmentation and prediction.

In recent times, researchers have attempted to employ
the DL technique for the diagnosis of ICH on CT scans [6].
)is DL technique is a kind of machine learning (ML) that
employs various processing layers to learn a representation
of data with many levels of abstraction. Earlier researchers
utilizing this technique presented tremendous diagnostic
performances to detect ICH in every single CTscan, same as
that of expert radiotherapists. Additionally, the fully 3D DL
method (not on single CT scans) for diagnosing ICH has
been stated. Few researchers utilized the back-propagation
(BP) model for the learning approach and the CNN that has
pattern recognition and self-organization capacities without
human programming. Consequently, this method is a
problem agnostic and generic technique, not a problem-
specific and rule-based model [7]. But it remains challenging
to explicate how this technique generates the outcomes from
the input data.

)is paper presents an automated intracerebral hae-
morrhage diagnosis using fusion-based deep learning with
swarm intelligence (AICH-FDLSI) algorithm. )e AICH-
FDLSI model employs a seagull optimization algorithm
(SOA) with Otsu multilevel thresholding is employed for
image segmentation. Besides, the fusion-based feature ex-
traction using the Capsule Network (CapsNet) and Effi-
cientNet is applied to extract a useful set of features. At the
same time, deer hunting optimization (DHO) algorithm is
utilized for the hyperparameter optimization of the CapsNet
and DenseNet models. Lastly, a fuzzy support vector ma-
chine (FSVM) is employed as a classifier to determine
various classes of ICH. To showcase the improved classifier
results of the proposedmodel, a wide range of experiments is
performed using the test benchmark intracranial haemor-
rhage data set.

)e rest of the study is planned as follows. Section 2
provides the related works; Section 3 offers the proposed
model; Section 4 discusses the performance validation; and
Section 5 concludes the study.

2. Literature Review

Mansour et al. [8] proposed an innovative DL-based ICH
diagnoses and classification (DL-ICH) method with the help
of optimum image segmentation using inception network.

)e presented method includes segmentation, preprocess-
ing, classification, and feature extraction. First, the input
data undergoes conversion format in which the NIfTI files
are transformed into JPEG form. Anupama et al. [9] pre-
sented DL-based ICH diagnoses with GrabCut-based seg-
mentation using SDL, called GC-SDL algorithm.
Furthermore, GrabCut-based segmentation is utilized to
identify the infected portion efficiently in an image. To
execute the process of feature extraction, the SDL method is
employed, and lastly, the SM layer is applied as a classifier.

Venugopal et al. [10] proposed a uniquemultimodal data
fusion-based feature extraction method using a DL algo-
rithm, called FFE-DL for ICH Classification and Detection,
named as FFEDL-ICH. )e presented method consists of
classification, preprocessing, image segmentation, and fea-
ture extraction. First, the input images are preprocessed by
the GFmethod for removing noise. Next, the DFCMmethod
is employed for segmenting the image. Moreover, the fu-
sion-based feature extraction method is performed by deep
features (residual network 152) and handcrafted features
(local binary patterns) for extracting appropriate features.
Lastly, the DNN method is performed as a classification
method to distinguish different types of ICH. A new DL
method for ANN, totally distinct from the BP algorithm, was
proposed in earlier research [11]. )e objective is to measure
the possibility of utilizing the model for ICH classification
and detection of its subclasses, without applying the CNN
method.

Wang et al. [12] focused on evaluating the accuracy and
performance of a DL-based automatic segmentation method
in segmenting spontaneous ICH volume either with/without
IVH extensions. )ey related this automatic method with
two manual segmentation methods. Ginat [7] examines the
execution of DL for the work list prioritization and detection
of acute ICH on NCCT in different medical sceneries at an
academic medical centre.)e images were categorized based
on the type and presence of haemorrhage, whether this is
follow-up/initial images, and patient visit location, involving
outpatient, emergency or trauma, and inpatient sections. Yu
et al. [13] intended to improve a strong DL segmentation
technique for accurate and fast HV analyses via CT. Luong
et al. [14] presented a CAD that integrates a DL method and
image processing methods for determining patient who
suffers from ICH because of their CTscans.)e DLmethod-
based MobileNetV2 framework was trained.

Ngo et al. [15] developed a newfangled method for
training slice-level classifier on CT-based descriptor of the
nearby slices alongside the axis; all of them are extracted by
the CNN method. )is technique focuses on predicting the
existence of ICH and categorizes it into five distinct sub-
classes. )ey examine a two-phase training system. Initially,
CT images are processed simply as a group of two-di-
mensional images, and an advanced CNN classifier is trained
that is pretrained on ImageNet. In the training phase, all the
slices are tested together with the three slices beforehand and
the three slices afterward, which makes the batch size a
multiple of 7. Next, the output descriptor of all the blocks of
seven successive slices attained from phase 1 are stacked into
images and fed into other CNNs for the last predictions of
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middle slices. Hssayeni et al. [16] developed a method for
collecting and eighty-two CTscan data sets of subjects with a
traumatic brain injury.)en, the ICH regions were manually
delineated in every slice by a consensus decision of two
radiologists. )e data set is an open-source platform at the
PhysioNet repository for upcoming comparisons and ana-
lyses. Besides publishing the data set, that is, the major
objective of this manuscript, they executed a deep FCN
model called as UNet, for segmenting the ICH region from
the CT images in a fully automatic methodology.

3. The Proposed Model

)is paper has developed a novel AICH-FDLSI technique for
ICH detection and classification. )e proposed AICH-FDLSI
technique encompasses MF-based preprocessing, SOA with
Otsu multilevel thresholding-based segmentation, DHO-based
feature extraction, and FSVM-based classification.)e detailed
working of these processes is offered in the succeeding sections.

3.1. Image Preprocessing. Primarily, the MF technique is
applied as a preprocessing tool to eliminate the presence of
noise involved in it. )e MF is nonlinear statistical filtering
that changes the existing pixel values with the median value of
pixels under the adjacent area. A naive execution primary
makes a cumulative histogram to the neighbor area and af-
terward defines the primary index elsewhere half the amount
of pixels from the histograms. An essential issue of this
manner on GPU is all the threads required for computing
whole histograms. For 8-bit images, a histogram made of 256
bins is generated. It can be useless on present GP as there are
not sufficient hardware registers obtainable to all the threads,
and utilizing global memory to histogram calculation was too
slow. For resolving this issue, the presented model depends
upon a bisection search on histogram ranges. )is technique
does not calculate the actual histogram then iteratively im-
proves the histogram range that contains the median value. In
all rounds, the existing valid range was separated into two
halves, and the half that is the huge amount of pixels is elected
to the next iteration. )is procedure was repeated still the
range converged to a single bin.

3.2. Image Segmentation. During the image segmentation
process, the SOA with Otsu multilevel thresholding is ap-
plied to determine the affected regions. )e Otsu is also
named as maximal difference between clusters [17]. An
image histogram as fundamental and maximal difference
between target as well as background as the selective con-
dition, this technique obtained an optimum threshold from
several cases. An image whose gray-scale range has
0, 1, . . . , L − 1{ } was separated as to destination and back-
ground by thresholds t. )e possibility of gray i is pi. )e
likelihood of objective has ω0(t) � 

t
i�0 pi. )e possibility of

background is ω1(t) � 
L−1
i�t+1pi. )e mean of objective is

u0(t) � 
t
i�0 ipi/ω0. )e mean background is u1(t) �


L−1
i�t+1ipi/ω1. )e formulation of difference between two

parts is d(t) � ω0(t)ω1(t)(u0(t) − u1(t))2. An optimum

threshold t∗ generates the difference maximal.)erefore, the
process of multithreshold segmentation is as follows:
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, 1≤ n≤ (k + 1).

(1)

Optimum thresholds t∗1 , t∗2 , . . . , t∗k create the entire dif-
ference maximal as defined below:

t
∗
1 , t
∗
2 , . . . , t

∗
k � Argmax0<t1 < t2 < ...< tk

d t1, t2, . . . , tk( . (2)

In this study, the optimal threshold values of the Otsu
method are decided by the SOA. )e SOA is based on the
migration and attacking behavior of the seagulls in nature
[18].)emathematical model of attacking andmigrating the
prey is described below.)emigration (exploration) method
inspires how the group of seagulls moves everywhere. In this
stage, the seagulls need to fulfill three criteria:

To prevent collision between neighbors (i.e., other sea-
gulls), a further parameter A is applied for the assessment of
the new search location as follows:

C
→

s � A × P
→

s(x) , (3)

where C
→

s signifies the location of search agent that does not
collide with other searching agents, P

→
s implies the existing

location of the search agent, and x means the existing it-
eration as follows:

A � fc − x ×
fc

Maxiterαtion
  , (4)

where x � 0, 1, 2, . . .Maxiteration. fc controls the fre-
quency of A that is decreased gradually from fc to 0. In this
study, the value of fc is set to 2. After evading the collision
between neighbors, the searching agent is moving towards
the direction of the optimal neighbor.

M
�→

s � B × P
→

bs(x) − P
→

s(x) . (5)

Let M
�→

s be the position of searching agent P
→

s towards the
optimal fit searching agent P

→
bs (viz., appropriate seagull).

)e behavior of B is randomly assigned, that is, accountable
for appropriate balancing between exploitation and explo-
ration. B is evaluated by

B � 2 × A
2

× r d, (6)

where r d represents an arbitrary value within [0.1]. Finally,
the searching agent could upgrade its location regarding
optimal search agent as follows:
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D
→

s � C
→

s + M
�→

s



. (7)

Let D
→

s be the distance between the optimal fit search
agent and search agent (viz., optimal seagulls that fitness
value is lesser). )e exploitation focuses on exploiting the
history and experience of the searching method. Seagulls are
capable of changing the speed and angle of attack contin-
uously in migration. )ey retain their altitude with their
weight and wings. During prey attacking, the spiral
movement behavior takes place in the air. )e x, y, and z

planes are shown as follows:

x′ � r × cos(k),

y′ � r × sin(k),

z′ � r × k,

r � u × e
kv

,

(8)

where r indicates the radius of every turn of the spiral, k

represents an arbitrary value within [0≤ k≤ 2A], u and v

denote constant for determining the spiral shape, and e

represents the base of the natural logarithm. It can be
evaluated by

P
→

s(x) � D
→

s × x′ × y′ × z′  + P
→

bs(x), (9)

where P
→

s(x) saves the optimal solutions and upgrades the
position of another search agent. )e presented SOA ini-
tiates by an arbitrarily made population. )e search agent
might update their location regarding the optimum search
agent in the iteration method. For smooth transition be-
tween exploitation and exploration, B is in charge. )ere-
fore, the SOA is regarded as a global optimizer as a result of
its good exploitation and exploration capacity.

3.3. Feature Extraction. Once the images are segmented, the
next stage is to derive a fusion of feature vectors using the
CapsNet and EfficientNet models. )e two vectors can be
defined as follows:

fCapsNet1×n � CapsNet1×1,CapsNet1×11 × 2,CapsNet1×11×3, . . . ,CapsNet1×11×n ,

fEfficientNet×m � EfficientNet1×1,EfficientNet1×2,EfficientNet1×3, . . . ,EfficientNet1×n .
(10)

In addition, the derived individual features are combined
into a single vector, using the following equation:

Fused(features vector)1×q � 

2

i�1
fCapsNet1×n, fEfficientNet1×m,

(11)

where f represents fused vectors (1 × 1186). )e entropy is
applied on the features vectors to choose optimal features
based on the score to the classifier for differentiating the
healthier and glioma images.

3.3.1. CapsNet Model. To address the limitations of CNN,
Hinton [19] presented a higher dimension vector named
“capsule” for representing an entity (object or a portion of
object) by a set of neurons instead of an individual
neuron. )e activity of the neuron in the active capsule
signifies different features of a certain entity, that is,
existing in an image. Every capsule learns an implicit
description of a visual entity that outputs the likelihood
and a group of instantiated parameters that includes the
accurate posture (orientation, position, and size), albedo,
hue, texture, deformation, and so on. )e framework of
CapsNet is dissimilar to other DL methods. )e outcomes
of input and output of CapsNet are vector that direction
and norm represent the various attributes and existence
probability of the entity, correspondingly. )e similar
levels of capsule assist to forecast the instantiation pa-
rameter of a high-level capsule over a conversion matrix,
and then dynamic routing is adapted for making the
predictions reliable. Once the various predictions are

reliable, the high-level of the single capsule would turn out
to be active.

A simple CapsNet framework has been demonstrated in
Figure 1, where the framework is shallow by only one fully
connected layer (EntityCaps) and two convolution layers
(PrimaryCaps and Convl). Especially, Convl is the typical
convolution layer that converts the output to PrimaryCaps
and images to primary features via a convolutional filter with
13 × 13 × 256 size. In case, the original images are not
appropriate for the input of the primary layer of the Cap-
sNet, and the primary feature afterward convolution is
adapted. )e next convolution layer creates the respective
vector as input of the capsule layer. )e standard convo-
lutions of all the outputs are a scalar; however, the con-
volution of PrimaryCaps is dissimilar to the standard one. It
is considered as a two-dimensional convolution of eight
distinct weights for the input of 15 × 15 × 256. )e Pri-
maryCaps generate a thrity-two size of 11× 11 steps to 2
convolutions and output. )e third layer (EntityCaps) is the
output layer, which has nine traditional capsules respective
to nine distinct categories.

3.3.2. EfficientNet Model. )e EfficientNet technique was
utilized as a feature extraction component for generating a
helpful group of feature vectors of the input satellite image
[20]. )e DL is the most well-known framework as DL
approaches have been learned significant features in an input
image at a different convolutional level similar to the pur-
pose of the human brain. )e DL was solving complex
problems usually well as well as quickly with high classifier
accuracy and lower error rate. )e DL approach was
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contained different modules (convolutional, pooling layer,
and fully connected (FC) layers, and activation function).
)e DL models have the capability of attaining optimal
performance over the machine learning models with high
computational complexity. Distinct from other existing DL
approaches, the EfficientNet structure was a compound
scaling manner that employs the compound coefficients to
uniformly scale network width, depth, and resolution. An
EfficientNet has eight different methods from B0 to B7. )e
EfficientNet employs inverted bottleneck convolution which
is primarily well-known from the MobileNetV2 approach
that is a layer that primarily expands the network and next
compresses the channel. )is structure reduced computa-
tion with the factor of 2 as compared with normal convo-
lution, where f signifies the filter size. It is depicted that
EfficientNetB0 was the easiest of all eight approaches as well
as employs minimal parameters. So it can be directly
employed EfficientNetB0 to evaluate performance.

3.3.3. DHO-Based Hyperparameter Tuning. In this work, a
new metaheuristic DHO method has been developed for the
hyperparameter tuning process, stimulated from deer
hunting by a group of hunters [21]. For deer hunting, the
hunter encircles it as well as gets closer to them by using
some strategies. )is strategy includes the deliberation of
several parameters, such as the deer position, wind angle,
and so on. Cooperation between the hunters is another
relevant standard that makes hunting very efficient. Lastly,
they attain the target as per the location of the successor and
leader. )e objective function of this presented model is
shown below:

f(x) � max (accuracy). (12)

)e weight optimization with the DHO method is de-
scribed as follows: because of the unique capabilities of deer,
it could escape easily from hunting.)e process initiates by a
vector of an arbitrary population named hunter. It is de-
scribed by the following equation:

X � X1, X2, . . . , Xm 1< j≤m , (13)

where m means the amount of hunter’s population (weight),
and the overall amount of weight employed to the opti-
mization is denoted as follows. Next, the key parameters
such as position angle (weight) and wind angle are
employed. )e whole searching space is deliberated as a

circle; hence, the wind angle can be defined as the cir-
cumference of the circle.

θj � 2πa, (14)

where the arbitrary value within� [0, 1] is denoted as a, and
the existing iteration is signified as J. Now, θ implies the
wind angle. Subsequently, the location propagation with the
leader position (Xl) and successor location (Xs) for opti-
mization is presented. )e successor location defines the
location of subsequent weights, while the leader location
defines the primary location of the hunter.

Propagation via (Xl). Afterward initiating the optimal
location, all the weights in the population try to attain the
optimal location. )en, the location updating algorithm
starts by modeling the encircling behavior as follows:

Xj+1 � Xl − Y · p · L × Xl − Xj



. (15)

Let Xj be the location at the existing iteration and the
succeeding iteration location is denoted as Xj+1. )e Z and
K coefficient vectors are involved in this process. )e ar-
bitrary value, that is, presented by considering the wind
speed is denoted as p, and it comprises values fiiom0 to 2.
)e expression to estimate the Z and K coefficient vectors
are given below:

Z �
1
4
log j +

1
jmax

 b,

K � 2 · c,

(16)

where the maximal iteration is denoted as jmax . )e b

variable has values ranging from −1 to 1, besides the value of
other variables lies within [0, 1]. )e first location of the
hunter is signified as (X, Y) that gets upgraded according to
the location of prey. Both Z and K coefficient vectors are
modified to reach the optimal location (Xb, Yb). When the
value of p <1, the location updation algorithm takes place
that implies the hunter could arbitrarily move in a different
direction without considering the angle location. Propaga-
tion through Angle Location. )e angle location updating is
considered to rise the searching space. For making the
hunting method more efficient, it is crucial to describe the
angle location of the hunter. It can be implemented by

Xj+1 � Xl − p · cos (v) × Xl − Xj



, (17)
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Figure 1: Process of CapsNet [19].
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where p denotes the arbitray values and the optimal lo-
cation can be depicted as B � φj+1, Xbj

and p. )e individual
location is found the opposite to the angle location; hence, the
prey does not have any alertness of the hunter. Propagation via
Successor Location. In the exploration, the vector K is pre-
sented within the encircle behavior. At first, the arbitrary
searching method is performed by considering the K values as
less than 1. Lastly, the location updating algorithm takes place
based on a successor location instead of considering the op-
timal location. Next, the global searching is carried out by

Xj+1 � Xs − Z · p · K × Xs − Xj



. (18)

)e location updating method is performed for identi-
fying the optimal location (viz., termination condition).

3.4. ImageClassification. At the final stage, the FSVMmodel
is applied to determine the suitable class labels for the test
images. In conventional SVM, each data point is regarded as
equally significant and allotted a similar penal variable.
)ough in several real-time classification applications, few
sample points, such as noises/outliers, may not be accurately
allotted to one of these two classes, and all the sample points
do not have a similar meaning to the decision surface. )e
hyperplanes in the SVM model are shown in Figure 2. To
resolve this issue, the FSVM concept was initially presented
[22]. Fuzzy membership to all the sample points is proposed
so that discrete sample points might generate distinct
contributions to the generation of decision surfaces. )e
trained sample is considered as follows:

S � xi, yi, si( , i � 1, . . . , N . (19)

Let xi ∈ Rn be the n-dimensional sample point,
yi ∈ −1, +1{ } signifies its class label, and si (i � 1, . . . , N)

implies a fuzzy membership that fulfills σ ≤ si ≤ 1 with small
constant σ > 0. )e quadratic optimization problems for
classification can be represented by

min
w,s,ξ

1
2
w

T
w + C 

l

i-1
siξi,

s.t. yi w
T
xi + b ≥ 1 − ξi, ξi ≥ 0, i � 1, . . . , l,

(20)

where w indicates a standard vector of the separating hy-
perplane, b denotes a bias, and C represents a parameter that
needs to be determined earlier to control the trade-offs
amongst the cost of misclassification error and the classi-
fication margin. As si represent the attitude of the respective
point xi towards one class and the slack parameter ξi is a
measure of error, the siξi the term could consider the
measure of error with discrete weights. It is considered that
the larger the si is, the more significantly the respective point
is treated; the lower the si is, the less outstandingly the
respective point is treated. Hereafter, FSVM could discover a
strong hyperplane by maximalizing the margin by letting
some misclassification of lesser significant points.

For resolving the FSM problems, (2) is transformed into
the subsequent dual problem by introducing Lagrangian
multiplier αi as follows:

max
α



N

i�1
αi −

1
2



N

i�1


N

j�1
αiαjyiyjxixj,

s.t. 
N

i�1
yiαi � 0, 0≤ αi ≤ si C, i � 1, . . . , N.

(21)

When compared to the typical SVM, the above stated has
only a small difference, that is, the upper bounds of the value
of αi. By solving this dual problem in (3) for optimal αi, w,
and b could be recovered in the same way as in the typical
SVM.

4. Performance Validation

)e performance validation of the proposed model takes
place using a benchmark CT ICH data set, including 341
images [23]. It comprises 171 images under epidural (EPI)
class, 24 images under intraventricular (IVT), 72 images
under intraparenchymal (IPC), 56 images under subdural
(SBD), and 18 images under subarachnoid (SAD) class. )e
size of the image is 512∗ 512 pixels. Figure 3 shows the
sample test images. )e data sets include ICHmasks and CT
scans, in JPG and NIfTI format at PhysioNet repository.
NIfTI is a type of file format for neuroimaging, which is used
very commonly in imaging informatics for neuroscience and
even neuroradiology research.

Figure 4 showcases the confusion matrix of the AICH-
FDLSI technique on the test images under run-1. )e figure
reported that the AICH-FDLSI technique has classified 19
images under IVT, 64 images under IPC, 12 images under
SAD, 170 images under EPI, and 54 images under SBD.

Table 1 reports the ICH classification results analysis of
the AICH-FDLSI technique under run-1. )e results
demonstrated that the AICH-FDLSI technique has classified
the IVT class with the sensy, specy, precn, and accuy of
0.7917, 0.9811, 0.7600, and 0.9677, respectively. In line with,
the AICH-FDLSI technique has identified the IPC class with

Hyperplane

Maxim
um

Marg
in

Optimal Hyperplane

Hyperplane

Class Label 1
Class Label 2

Figure 2: SVM hyperplanes.
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the sensy, specy, precn, and accuy of 0.8889, 0.9888, 0.9552,
and 0.9677, respectively. Moreover, the AICH-FDLSI
technique has identified the instances under SBD with the
sensy, specy, precn, and accuy of 0.9643, 0.9895, 0.9474, and
0.9853, respectively.

Figure 5 displays the confusion matrix of the AICH-
FDLSI technique on the test images under run-2. )e figure
revealed that the AICH-FDLSI technique has identified 20

images under IVT, 64 images under IPC, 12 images under
SAD, 170 images under EPI, and 54 images under SBD.

Table 2 offers the ICH classification results analysis of the
AICH-FDLSI technique under run-2. )e experimental
values stated that the AICH-FDLSI technique has classified
the IVT class with the sensy, specy, precn, and accuy of
0.8333, 0.9811, 0.7692, and 0.9707, respectively. Moreover,
the AICH-FDLSI technique has categorized the IPC class
with the sensy, specy, precn, and accuy of 0.8889, 0.9888,
0.9552, and 0.9677, respectively. Eventually, the AICH-
FDLSI technique has determined the images under SBDwith
the sensy, specy, precn, and accuy of 0.9643, 1.0000, 1.0000,
and 0.9941, respectively.

Figure 6 demonstrates the confusion matrix of the
AICH-FDLSI technique on the test images under run-3. )e
figure shows that the AICH-FDLSI technique has identified
22 images under IVT, 64 images under IPC, 12 images under
SAD, 170 images under EPI, and 54 images under SBD.

Figure 3: Sample images.
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Figure 4: Confusion matrix of AICH-FDLSI technique under
run-1.

Table 1: ICH classification results analysis of AICH-FDLSI
technique on test run-1.

Classes Sensitivity Specificity Precision Accuracy
IVT 0.7917 0.9811 0.7600 0.9677
IPC 0.8889 0.9888 0.9552 0.9677
SAD 0.6667 0.9938 0.8571 0.9765
EPI 0.9942 0.9529 0.9551 0.9736
SBD 0.9643 0.9895 0.9474 0.9853
Average 0.8611 0.9812 0.8950 0.9742
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Figure 5: Confusion matrix of AICH-FDLSI technique under
run-2.
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Table 3 depicts the ICH detection performance analysis of
the AICH-FDLSI technique under run-1. )e results show
that the AICH-FDLSI technique has effectively identified the
IVT class with the sensy, specy, precn, and accuy of 0.9167,
0.9811, 0.7857, and 0.9765, respectively. Meanwhile, the
AICH-FDLSI technique has identified the IPC class with the
sensy, specy, precn, and accuy of 0.8889, 0.9888, 0.9552, and
0.9677, respectively. Lastly, the AICH-FDLSI technique has
identified the instances under SBD with the sensy, specy,
precn, and accuy of 0.9643, 1.0000, 1.0000, and 0.9941,
respectively.

Table 4 and Figure 7 offer an overall result analysis of
the AICH-FDLSI technique under three different runs.
)e results show that the AICH-FDLSI technique has
accomplished maximum classification performance under
three test runs. For instance, under run-1, the AICH-
FDLSI technique has classified the ICH with the sensy,
specy, precn, and accuy of 0.8611, 0.9812, 0.8950, and
0.9742, respectively. Likewise, under run-2, the AICH-
FDLSI technique has classified the ICH with the sensy,
specy, precn, and accuy of 0.8695, 0.9810, 0.9052, and
0.9754, respectively. Similarly, under run-3, the AICH-
FDLSI technique has classified the ICH with the sensy,
specy, precn, and accuy of 0.8861, 0.9833, 0.9106, and
0.9777, respectively.

Figure 8 investigates the accuracy graph of the AICH-
FDLSI technique on the test data set. )e figure demon-
strated that the AICH-FDLSI technique has resulted in
improved training and validation accuracies.

)e loss graph analysis of the AICH-FDLSI technique
takes place on the test data set in Figure 9. )e results
highlighted that the loss values tend to decrease with the
increased epoch count, and it is observable that the vali-
dation loss seems to be lower than the training loss.

Table 5 provides a brief result analysis of the AICH-
FDLSI with recent techniques. A brief sensy analysis of
the AICH-FDLSI technique with existing approaches
[16,24–27] is provided in Figure 10. )e figure shows that
the UNet, WANN, and SVM techniques have attained
lower sensy values of 63.10%, 60.18%, and 76.38%, re-
spectively. Eventually, the WEM-DCNN and convolu-
tional NN techniques have resulted in reasonable sensy of
83.33%, and 87.06%, respectively. But the AICH-FDLSI
technique has surpassed the other ones with the increased
sensy of 88.61%.

A comparative precn analysis of the AICH-FDLSI
technique with other techniques is shown in Figure 11. )e
figure reported that the WANN and SVM techniques have

Table 2: ICH classification results analysis of AICH-FDLSI
technique on test run-2.

Classes Sensitivity Specificity Precision Accuracy
IVT 0.8333 0.9811 0.7692 0.9707
IPC 0.8889 0.9888 0.9552 0.9677
SAD 0.6667 0.9938 0.8571 0.9765
EPI 0.9942 0.9412 0.9444 0.9677
SBD 0.9643 1.0000 1.0000 0.9941
Average 0.8695 0.9810 0.9052 0.9754

Intraventricular

Intraparenchymal

Subarachnoid

Epidural

Subdural

22

6

0

0

0

2

64

0

1

0

0

0

12

0

2

0 150

100

50

0

0

0

0

54

0

2

6

170

Predicted

Run-3

Ac
tu

al

0

In
tr

av
en

tr
ic

ul
ar

In
tr

ap
ar

en
ch

ym
al

Su
ba

ra
ch

no
id

Ep
id

ur
al

Su
bd

ur
al

Figure 6: Confusion matrix of AICH-FDLSI technique under
run-3.

Table 3: ICH classification results analysis of AICH-FDLSI
technique on test run-3.

Classes Sensitivity Specificity Precision Accuracy
IVT 0.9167 0.9811 0.7857 0.9765
IPC 0.8889 0.9888 0.9552 0.9677
SAD 0.6667 0.9938 0.8571 0.9765
EPI 0.9942 0.9529 0.9551 0.9736
SBD 0.9643 1.0000 1.0000 0.9941
Average 0.8861 0.9833 0.9106 0.9777

Table 4: Overall ICH results analysis of AICH-FDLSI technique.

No. of runs Sensitivity Specificity Precision Accuracy
Run-1 0.8611 0.9812 0.8950 0.9742
Run-2 0.8695 0.9810 0.9052 0.9754
Run-3 0.8861 0.9833 0.9106 0.9777
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Figure 7: Results analysis of AICH-FDLSI technique under three
different runs.
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attained lower precn values of 70.08% and 77.53%, respec-
tively. Along with that, the UNet, WEM-DCNN, and con-
volutional NN techniques have obtained moderate precn of
88.19%, 89.90%, and 87.98%, respectively. However, the

AICH-FDLSI technique has outperformed the other ones
with the higher precn of 91.06%.

Table 6 offers a comparative results analysis of the
AICH-FDLSI with recent techniques in terms of specy and
accuy. Figure 12 depicts the comparative specy analysis of
the AICH-FDLSI system with other techniques. From the
figure, it is notable that the UNet, WANN, Res-NexT,
convolutional NN, and SVM techniques have accom-
plished minimal classification performance with the specy

values of 88.60%, 70.13%, 90.42%, 88.18%, and 77.53%,
respectively. Next to that, the DN-ELM andWEM-DCNN
techniques have resulted to reasonable specy of 97.70%,
and 97.48%, respectively. However, the AICH-FDLSI
technique has gained improved performance with the
superior specy of 98.33%.
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Figure 8: Accuracy graph analysis of AICH-FDLSI technique.
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Figure 9: Loss graph analysis of AICH-FDLSI technique.

Table 5: Comparative results analysis of AICH-FDLSI with recent
methods-I.

Methods Sensitivity Precision
AICH-FDLSI 88.61 91.06
UNet model 63.10 88.19
WANN 60.18 70.08
WEM-DCNN 83.33 89.90
Convolutional NN 87.06 87.98
SVM 76.38 77.53
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Figure 13 portrays the comparative accuy analysis of the
AICH-FDLSI system with other techniques. From the figure, it
is notable that the UNet, WANN, Res-NexT, convolutional
NN, WEM-DCNN, and SVM techniques have accomplished
minimal classification performance with the accuy values of
87%, 69.78%, 89.30%, 87.56%, 88.35%, and 77.32%, respec-
tively. Following that, the DN-ELM model has offered com-
petitive accuy of 96.34%. But the AICH-FDLSI technique has
surpassed the other ones with the maximum accuy of 97.77%.

Finally, the CT analysis of the AICH-FDLSI method-
ology with recent approaches is shown in Figure 14. )e

results portrayed that the WANN, Res-NexT, and SVM
models have obtained worse outcomes with maximumCTof
78 s, 80 s, and 89 s, respectively. Following that, the WEM-
DCNN and convolutional NN techniques have attained
moderately closer CT of 75% and 74%, respectively. Along
with that, the DN-ELM and UNet models have obtained
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Figure 10: Comparative sensy analysis of AICH-FDLSI technique.
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Figure 11: Comparative precn analysis of AICH-FDLSI technique.

Table 6: Comparative results analysis of AICH-FDLSI with recent
methods-II.

Methods Specificity Accuracy
AICH-FDLSI 98.33 97.77
DN-ELM 97.70 96.34
UNet model 88.60 87.00
WANN 70.13 69.78
Res-NexT 90.42 89.30
WEM-DCNN 97.48 88.35
Convolutional NN 88.18 87.56
SVM 79.41 77.32
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Figure 14: Comparative CT analysis of AICH-FDLSI technique.
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reasonable CT of 29 s and 42 s, respectively. However, the
AICH-FDLSI technique has accomplished improved per-
formance with the CT of 24 s. From the above-mentioned
results, it is evident that the AICH-FDLSI process is found to
be an efficient tool for ICH detection and classification.

5. Conclusion

)is paper has developed a novel AICH-FDLSI technique for
ICH detection and classification. )e proposed AICH-
FDLSI technique encompasses MF-based preprocessing,
SOA with Otsu multilevel thresholding-based segmentation,
fusion-based feature extraction, DHO-based feature ex-
traction, and FSVM-based classification. )e application of
SOA and DHO algorithms helps improvise the overall ICH
classification performance. To showcase the improved
classifier results of the proposed model, a wide range of
experiments is performed using the test benchmark intra-
cranial haemorrhage data set. )e experimental outcome
stated that the AICH-FDLSI model has reached a proficient
performance. )erefore, the proposed AICH-FDLSI tech-
nique can be applied as a proficient tool for ICH diagnosis
and classification. In the future, the ICH classification
performance of the AICH-FDLSI technique can be im-
provised by the use of hybrid DL models.
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Parkinson’s disease (PD) affects the movement of people, including the differences in writing skill, speech, tremor, and stiffness in
muscles. It is significant to detect the PD at the initial stages so that the person can live a peaceful life for a longer time period.)e
serious levels of PD are highly risky as the patients get progressive stiffness, which results in the inability of standing or walking.
Earlier studies have focused on the detection of PD effectively using voice and speech exams and writing exams. In this aspect, this
study presents an improved sailfish optimization algorithm with deep learning (ISFO-DL) model for PD diagnosis and clas-
sification. )e presented ISFO-DL technique uses the ISFO algorithm and DL model to determine PD and thereby enhances the
survival rate of the person. )e presented ISFO is a metaheuristic algorithm, which is inspired by a group of hunting sailfish to
determine the optimum solution to the problem. Primarily, the ISFO algorithm is applied to derive an optimal subset of features
with a fitness function of maximum classification accuracy. At the same time, the rat swarm optimizer (RSO) with the bidi-
rectional gated recurrent unit (BiGRU) is employed as a classifier to determine the existence of PD.)e performance validation of
the IFSO-DL model takes place using a benchmark Parkinson’s dataset, and the results are inspected under several dimensions.
)e experimental results highlighted the enhanced classification performance of the ISFO-DL technique, and therefore, the
proposed model can be employed for the earlier identification of PD.

1. Introduction

Parkinson’s disease (PD) is a brain disorder that occurs as a
consequence of the loss of brain cells. It mainly affects body
mobility. Its symptom gradually becomes evident. Some of
these symptoms that perform at early stages are tremors,
slowness in movement, poor body posture, rigidness in
muscles, deviation in speech, handwriting strokes, and
imbalance [1]. In this disorder, a person’s nerve cell

gradually loses their ability to communicate between them,
which results in nervous system disorders such as depres-
sion.)is disease must be diagnosed at earlier stages because
it is incurable. When the accurate symptom of PD is rec-
ognized with their relative weightage, then doctors can
suggest a pathology lab test for this feature and diagnosis
might take place at an initial consultation itself. It will result
in an earlier diagnosis of Parkinson’s disease. )e symptoms
such as changes in speaking patterns and handwriting
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strokes might assist in an earlier diagnosis of this disorder
[2]. Erdogu Sakar and team lately received a speech dataset
by examining the pronunciation of vowels “a” and “o” of
disease-affected persons. Except speaking patterns, hand-
writing stroke patterns might help in detecting the disorder
[3]. Factors studied for distinguishing a person from a
healthier patient are individual age, fare handedness (right/
left), maximum and mean distance among given summary
in test, handwriting strokes noted in the drawing, and test
time duration.

Recently, data have been improved by number of in-
stances and numbers of features that make data noisier [4].
)e noisier datasets could create the model to decrease the
predicted accuracy, increase the computation cost, increase
the complexity, and train the data slower. )erefore, feature
selection developed an essential task for machine learning
(ML) beforehand training the models [5]. )e feature se-
lection (FS), also known as attribute selection, is a method
that focuses on finding a subset from the provided com-
prehensive set of features and fewer downgrades of the
system performance; thus, the subsets of feature forecast the
target with accuracy analogous to the performances of the
original set of features and with the reducing computation
costs. )e FS method is categorized into wrapper-based and
filter-based algorithms. )e filter-based method utilizes a
statistical method for finding the vital of all features (at-
tributes). )e wrapper-based method utilizes the machine-
learning (ML) method. )e wrapper-based method is
computationally costly when compared to the filter-based
method [6]. )e wrapper method is additionally classified as
heuristic search algorithm and sequential search algorithm.

An evolutionary algorithm is a part of artificial intelli-
gence (AI) system that primarily focused on biological
evolution. Biological evolution includes 4 major procedures
such as selection, reproduction, mutation, and recombina-
tion [7]. Different from conventional optimization models,
evolutionary algorithms depend on random sampling. )is
process is continuously employed on the solution officially
reported as population, and the FF was employed for de-
termining the quality of solutions. )is solution changes
based on the evolutionary procedure that finally assists to
discover the global solution to the problems [8]. )e evo-
lutionary method has been recognized for performing well
under distinct scenarios since it does not consider the
fundamental fitness landscape. Even an easy evolutionary
algorithm could easily resolve difficult challenges [9]. )e
only drawbacks in the evolutionary algorithm are the
computational cost factor that is decreased by the fitness
function calculation.

)is study presents an improved sailfish optimization
algorithm with deep learning (ISFO-DL) model for PD
diagnosis and classification. )e presented ISFO-DL tech-
nique designs an ISFO-based feature selection technique to
derive an optimal subset of features with a fitness function of
maximum classification accuracy. At the same time, the rat
swarm optimizer (RSO) with the bidirectional gated re-
current unit (BiGRU) is employed as a classifier to determine
the existence of PD. )e experimental validation of the
IFSO-DL model is carried out using a benchmark

Parkinson’s dataset, and the results are inspected under
several dimensions.

)e rest of the paper is arranged as follows. Section 2
offers the related works, Section 3 provides the proposed
model, Section 4 inspects the performance validation, and
Section 5 draws the conclusion.

2. Related Works

Huseyn [10] presented the DL methodology for realizing
healthy people, analysis of PD, and multiple system atrophy.
Oh et al. [11] employed the EEG signal of 20 PD and 20
standard subjects in this work. A 13-layer CNN framework
could conquer the requirement for the traditional feature
representation phases that are carried out. Wang et al. [12]
introduced a novel deep-learning model for the earlier
detection and classification of PD using the premotor fea-
tures. In particular, to diagnose PD at earlier stages, various
symptoms have been taken into account. Shahid and Singh
[13] developed a DNN method with the decreased input
feature space of Parkinson’s telemonitoring datasets for
predicting PD evolution. PD is a progressive and chronic
nervous system disorder, which impacts the motion of body.
PD is measured by utilizing the unified PD rating scale
(UPDRS).

Kaur et al. [14] surged a feasible medical decision-making
method, which assists the medical professionals in detecting
the PD-affected person. In this study, a certain architecture-
based grid searching optimization method is presented for
developing an enhanced DL algorithm to forecast the earlier
diagnosis of PD; therefore, various hyperparameters are to be
tuned and set for the assessment of DL algorithm. )e grid
searching optimization method includes its performance, the
optimization of DL method, and the hyperparameters. In the
study by Sivaranjini S. and Sujatha [15], an effort has been
made for classifying theMR images of healthier control and PD
subjects with theDL-NNmodel.)eCNN frameworkAlexNet
is utilized for refining the detection of PD. )e MR image is
tested to provide the accuracy measures and trained with the
transfer learned network.

Quan et al. [16] presented a Bi-LSTM method for
capturing the time-series dynamic feature of a speech signal
to PD diagnosis. )e dynamic speech feature is evaluated on
the basis of energy content evaluation from the transition
under voiced to unvoiced segments (offset) and the tran-
sition from unvoiced to voiced segments (onset). Sigcha et al.
[17] proposed a novel methodology-based RNN and a single
waist-worn triaxial accelerometer for enhancing the FOG
recognition accuracy to be utilized in real home
environment.

Leung et al. [18] focused on developing DL, an ensemble
method for the prediction in person with PD.)e initial and
next phases of the method extracted features from DaTscan
and medical measures of motor symptoms, respectively.
)en, an ensemble of DNN model was trained on distinct
subsets of the extracted feature for predicting the person
results from 4 years afterward early baseline screening.
Masud et al. [19] introduced an ACSA- and DL-based
optimal FS technique. )e presented method is the
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integration of CROW Search and DL (CROWD) SSAE-NN.
PD dataset has been taken for experimental purposes.

3. The Proposed ISFO-DL Model

In this study, the ISFO-DL technique has been developed
for PD detection and classification. )e proposed ISFO-
DL technique is mainly intended to determine PD and
thereby enhance the survival rate of the person. )e
presented ISF-DL technique involves three major pro-
cesses namely ISFO-based feature selection, BiGRU-based
classification, and RSO-based hyperparameter optimiza-
tion. )ese three processes are elaborated in the suc-
ceeding sections.

3.1. Design of ISFO-Based Feature Selection Technique. At
this stage, the ISFO algorithm is employed to choose an
optimal subset of features and thereby boost the classifier
results. Research has established that group hunting is the
major social behavior in groups of fish, birds, mammals, and
arthropods. In comparison with individual hunting, group
hunting could save the energy utilization of the hunter to
attain the aim of catching prey. Sailfish is employed for
saving the present optimum solution, although sardines are
applied in the searching space for finding an optimal so-
lution. )e arithmetical expression of the model is given as
follows.

)e population locations of sardines and sailfish are
arbitrarily initiated, and every sardine and sailfish are al-
located a randomized location Xk

SF(i) and Xk
S D(j), succes-

sively, where i ∈ sail fish{ }, j ∈ sardlines{ }, and k represent
the iteration count. )e upgraded location of sailfish has
been arithmetically given as follows:

X
k+1
SF(i) � X

k
eliie − μk × rand(0, 1) ×

X
k
elite + X

k
injure

2
− X

k
SF(i)

⎛⎝ ⎞⎠ , (1)

μk � 2 × rand(0, 1) × Pd − Pd, (2)

Pd � 1 −
NumSP

NumSF + NumSD
. (3)

Let Xk
SF(i) be the preceding location of the ith sailfish, and

μk indicates a coefficient created at kth iteration, using
equation (2). To conserve the optimum solution of all the
iterations, the sardine and sailfish with optimal fitness value
are known as “elite” sailfish and “injured” sardine, respec-
tively, and their location at iteration k is represented as Xk

eilie
and Xk

injure. P d denotes the density of prey sardines that
indicates the number of prey in all the iterations, as in
equation (3). NumSF and NumSD stand for the population
of sailfish and sardines [20], and the relation is NumSP �

NumSD× percent, in which percent characterizes the pri-
mary species of sailfish as a percentage of sardine
populations.

A novel location of the sardines at k iteration is estimated
as follows:

X
k+1
S D(j) � rand(0, 1) × X

k
elite − X

k
S D(j) + ATK , (4)

ATK � A ×(1 − (2 × iter × ε)), (5)

α � NumSD × ATK, (6)

β � d × ATK. (7)

Here, Xk
S D(j) signifies the preceding location of the jth

sardine. iter denotes the amount of existing iterations. ATK
means the sailfish attacking strength, i.e., decreased linearly
on all the iterations given by equation (5). Once the A � 4
and ε � 0.001, if ATK< 0.5, the amount of sardines that
upgrade the location (α) and the number of parameters of
them (β) is evaluated by equations (6) and (7). When
ATK≥ 0.5, each sardine gets upgraded.

For simulating the procedure of the sailfish catching
sardines, when f(SDj)<f(SFi), then the location of later
can be substituted with the place of the sardine i, as
follows:

X
k
SF(i) � X

k
S D(j) f SDj <f SFi( . (8)

Chaotic mapping algorithms have both randomness and
certainty and stochastic behavior and nonlinear motion.
Chaos concept is the study of dynamic systems. )e stim-
ulating property of this system is that if there is a slight
modification in the algorithm, the entire algorithm gets
affected. )e research has shown that the primary value of
chaotic technique, the population of metaheuristic model,
was initiated based on the relationship of chaotic mapping,
and chaotic order was made, which could efficiently save the
variety of populations and conquer the premature problems
of traditional optimization method. Figure 1 illustrates the
process flow of SFO technique.

)e population initiation of sardines and sailfish in the
SFO is a stochastic approach. It is based on population
initiation while searching for an optimum solution. For
enhancing the global searching capacity of the model and
preventing the problems that the diversities of sardine and
sailfish population reduce in late searches, hence we pro-
posed a population initialization of sailfish and sardines
using tent chaotic operator.)e tent map can be described as
follows:

Ti+1 �

Ti

0.7
, Ti ≤ 0.7,

1 − Ti

0.3
, Ti > 0.7.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

In the equation, Ti denotes that the sequence of ith it-
eration (Ti ∈ (0, 1)) indicates the tent chaotic sequence
distribution of Tn with the primary value T0 � 0.9 in 200
iterations. Next, the sardine and sailfish populations are
initiated:
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XSF(i+1) � Ti+1 × Xub − Xlb(  + Xlb ,

XSD(j+1) � Tj+1 × Xub − Xlb(  + Xlb.
(10)

While XSF(i+1) and XS D(j+1) indicate the location value
of individual sardines and sailfish, Xub and Xlb represent the
upper and lower bounds of the individual sardines and
sailfish in each dimension.

Assume the novel feature set be F � f1, f2, . . . , fD ,
where D implies the entire amount of features or dimension
of feature set, and consider the class label be C �

c1, . . . , cl , where l stands for the amount of classes.)e FS
technique determines a subset S � s1, . . . , sm , where
m<D, S ⊂ F, and S is minimal classification error rate than
some other subsets of similar size or some appropriate subset
of S. FS is the binary optimized issue, where the solution was
restricted to binary values from 0 to 1. At this point, the
solution has signified utilizing a binary vector where 1 refers
that the equivalent feature was chosen and 0 demonstrates
the equivalent feature is not chosen. )e size of this vector
was equivalent to the number of features from the original
dataset. )e ISFO was presented for solving continuous
optimized issues in which the solution contains the real
value. For mapping the continuous search space of typical
ISFO to binary one, it can utilize a transfer function [21]. It
can be utilized as a sigmoid transfer function and written as
follows:

T(x) �
1

1 + e
− x. (11)

At this point, utilizing the probability value attained in
equation (11), the present place of sailfish was upgraded by
the following equation:

X
d
(t) �

1, if rnd<T X
d
(t) ,

0, if rnd≥T X
d
(t) .

⎧⎪⎨

⎪⎩
(12)

Usually, the FS is a multiobjective issue, with 2 objec-
tives: (a) for achieving maximum classification accuracy (for

instance, maximized issue) and (b) for selecting minimal
number of features (for instance, minimized issue). Using
equation (15), these 2 objectives are joined and the FS issue
was changed to single-objective issue.

↓Fitness � ωc(S) +(1 − ω)
|S|

D
, (13)

where S stands for the chosen feature subset, |S| defines the
cardinality of chosen feature subset or the number of chosen
features, c(S) signifies the classification error rate of S, D

refers the novel dimensional of dataset, and ω ∈ [0, 1] sig-
nifies weight.

3.2. Design of the RSO-BiGRU-Based Classification Model.
During the classification process, the RSO-BiGRU model is
applied to carry out the classification process. Learning is a
continuous representation that is effective to control se-
quential data. An RNN is mostly appropriate to encoded
sequential data. Figure 2 demonstrates the framework of
BiGRU. During this analysis, it can utilize BiGRU for
learning [22].)e computation of BiGRUwas separated into
2 parts: forward and reverse order data broadcasts. To
provide sentence X � (x1, x2, . . . , xn), x ∈ Rk, x refers the
concatenating vector of present word and place, and the
forward GRU was computed as follows:

i � σ Wxixt + Whiht− 1 + bi( , (14)

f � σ Wxfxt + Whfht− 1 + bf , (15)

g � tanh Wxgxt + Whg i⊙ ht− 1(  + bg , (16)

ht � (1 − f)⊙ ht− 1 + f⊙g, (17)

where W∗ and b∗ signify the weight matrix and bias vectors,
respectively; σ refers the sigmoid functions; and ⊙ stands for
the element-wise multiplication. xt implies the input word
vector at time steps τ, and ht signifies the hidden state of
current time step r. hi

→
and hi

←
demonstrate the outcome of

forward and backward GRUs, respectively. )e BiGRU
output is represented as follows:

h
bi-gru
i � hi

→
; hi

←
 . (18)

To effectively tune the hyperparameters involved in the
BiGRU model, the RSO is applied to it.

)e rats are territory animals that live from the set of
combined males and females. )e performance of rats is
very aggressive from several analyses that are outcome
from the death of any animals. )is aggressive perfor-
mance is a vital simulation of this work but chase and
fight with prey. )e chasing and fighting behavior of the
rats can be used to model the RSO algorithm and can be
utilized to solve optimization problems. )is subsection
explains the performance of rats, for instance, chasing
and fighting. Afterward, the presented RSO technique is
summary.

Initialization

Elitism

Attack Alternation Strategy

Hunting

Catching Prey

Step 1

Step 2

Step 4

Step 3

Step 5

Figure 1: Process flow of SFO.
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3.2.1. Chasing the Prey. In general, the rats are social animals
to chase the prey under the set with situation social agonistic
efficiency. For defining this efficiency mathematically, it can
be assumed that optimum search agents have skill of place of
the prey. Another search agent has upgraded its places in
terms of optimum search agents attained so far. )e sub-
sequent formulas are presented under this process:

P
→

� A · P
→

i(x) + C · P
→

r(x) − P
→

i(x) , (19)

where P
→

i(x) demonstrates the places of rats and P
→

r(x)

signifies the better optimum solutions.
However, A and C parameters were calculated as follows:

A � R − x ×
R

MaxIteration
 where, x � 0, 1, 2, . . . , MaxIteration,

(20)

C � 2 · rand. (21)

So, R and C imply the arbitrary numbers among [1, 5]
and [0, 2], respectively. )e parameters A and C are re-
sponsible for optimum exploration and exploitation over the
course of rounds.

3.2.2. Fighting with Prey. For mathematically defining the
fight procedure of rats with prey, the subsequent formula
was projected:

P
→

i(x + 1) � P
→

r(x) − P
→

, (22)

where P
→

i(x + 1) implies the upgraded next places of rat. It
stores the optimum solution and upgrades the places of
other search agents in terms of optimum search agent. )e
rat (A, B) upgraded their place nearby the place of prey
(A∗, B∗). By altering the parameters as revealed in equations
(20) and (21), the distinct amount of places is achieved on
the present place [23]. Also, this technique is comprehensive

from n-dimensional environments. Consequently, the ex-
ploration and exploitation have been guaranteed using the
value of parameters A and C. )e projected RSO technique
stores optimum solutions with many operators.

4. Performance Validation

)is section inspects the PD classification result analysis of
the presented IFSO-DL technique. )e results are investi-
gated against four datasets namely HandPD Spiral, HandPD
Meander, Speech PD, and Voice PD [24–26]. Table 1 and
Figure 3 offer the selected features attained by the IFSO-DL
technique with other FS methods. )e results show that the
IFSO-DL technique has chosen the least number of features
compared with other FS techniques on all test datasets. For
instance, with the HandPD Spiral dataset with 13 features,
the IFSO-DL technique has selected a set of 4 features,
whereas the MGOA, MGWO, and OCFA techniques have
chosen a total of 5, 7, and 8 features, respectively.

Likewise, with the HandPD Meander dataset with 13
features, the IFSO-DL system has selected a set of 6 features,
whereas the MGOA, MGWO, and OCFA methods have
chosen a total of 8, 8, and 7 features, respectively. Mean-
while, with the Speech PD dataset with 23 features, the IFSO-
DL system has selected a set of 10 features, whereas the
MGOA, MGWO, and OCFA techniques have chosen a total
of 11, 12, and 13 features, respectively. Eventually, with the
Voice PD dataset with 26 features, the IFSO-DL manner has
selected a set of 7 features, whereas theMGOA,MGWO, and
OCFA algorithms have chosen a total of 8, 9, and 17 features,
respectively.

Table 2 offers a detailed comparative result analysis of the
IFSO-DL technique with recent methods on the test
HandPD Spiral dataset. )e results show that the MGWO-
KNN and MGOA-KNN techniques have obtained lower
accuracy of 0.734 and 0.756, respectively. In line with this,
the MGOA-DT technique has attained moderate accuracy of

x1

GRU GRU GRU GRU GRU

Output Layer

Bi-GRU Layer 1

Bi-GRU Layer 2

Input Layer

GRU

GRU GRU GRU GRU GRU GRU

GRU GRU GRU GRU GRU GRU

GRU GRU GRU GRU GRU GRU

x2 x3 xt-1 xt xt+1

y1 y2 y3 yt-1 yt yt+1

Figure 2: Structure of BiGRU.
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0.890. At the same time, MGOA-RF, MGWO-RF, and
MGWO-DT techniques have accomplished reasonable ac-
curacy of 0.929, 0.924, and 0.924, respectively. However, the
IFSO-DL technique has outperformed the other techniques
with the maximum accuracy, DR, and FAR of 0.933, 0.982,
and 0.080, respectively.

Figure 4 demonstrates the accuracy of graph analysis of
the IFSO-DL technique on the test HandPD Spiral dataset.
)e figure portrays that the IFSO-DL technique has gained
increased training and validation accuracies. It is noted that
the IFSO-DL technique has accomplished improved vali-
dation accuracy over the training accuracy.

)e loss graph analysis of the IFSO-DL technique is
investigated in Figure 5. )e figure shows that the IFSO-DL
technique has accomplished enhanced outcomes with the
lower validation loss compared with training loss. It also

demonstrates that the IFSO-DL technique has obtained
reduced validation loss compared with training loss.

Table 3 suggests a detailed comparative outcome analysis of
the IFSO-DL technique with recent approaches on the test
HandPD Meander dataset. )e results outperformed that the
MGWO-KNN and MGOA-KNN systems have obtained
minimum accuracy of 0.728 and 0.748, respectively. Afterward,
the MGOA-DT manner has gained moderate accuracy of
0.890. Also, MGOA-RF, MGWO-RF, and MGWO-DT sys-
tems have accomplished reasonable accuracy of 0.937, 0.930,
and 0.880, respectively. However, the IFSO-DL method has
exhibited the other methodologies with the maximal accuracy,
DR, and FAR of 0.940, 1.000, and 0.135, respectively.

Figure 6 reveals the accuracy graph analysis of the IFSO-
DL manner on the test HandPDMeander dataset. )e figure
shows that the IFSO-DL technique has reached improved
training and validation accuracies. It can be clear that the
IFSO-DL algorithm has accomplished improved validation
accuracy over the training accuracy.

)e loss graph analysis of the IFSO-DL system is studied
in Figure 7. )e figure portrays that the IFSO-DL technique
has accomplished enhanced outcomes with the lower vali-
dation loss related to training loss. It also outperforms that
the IFSO-DL technique has gained lower validation loss
related to training loss.

Table 4 provides a brief comparative outcome analysis of
the IFSO-DL system with recent approaches on the test Speech
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Figure 3: FS analysis of the IFSO-DL technique with 4 datasets.

Table 2: Result analysis of existing with the proposed IFSO-DL
model on the HandPD Spiral dataset.

Methods Accuracy DR FAR
MGOA-KNN 0.756 0.853 0.531
MGOA-RF 0.929 0.979 0.219
MGOA-DT 0.890 0.947 0.281
MGWO-KNN 0.734 0.819 0.500
MGWO-RF 0.924 0.940 0.119
MGWO-DT 0.924 0.940 0.119
IFSO-DL 0.933 0.982 0.080

Table 1: Selected features of existing with the proposed model.

Dataset Total features MGOA MGWO OCFA IFSO-DL
HandPD Spiral 13 5 7 8 4
HandPD Meander 13 8 8 7 6
Speech PD 23 11 12 13 10
Voice PD 26 8 9 17 7
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Figure 4: Accuracy analysis of IFSO-DL technique under the HandPD Spiral dataset.
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PD dataset. )e results depicted that the MGWO-KNN and
MGOA-KNN methods have obtained minimal accuracy of
0.918 and 0.897, respectively. Besides, the MGOA-DT tech-
nique has reached moderate accuracy of 0.846. Likewise,
MGOA-RF, MGWO-RF, and MGWO-DT methods have ac-
complished reasonable accuracy of 0.949, 0.939, and 0.898,
respectively. However, the IFSO-DL technique has shown the
other algorithms with the maximal accuracy, DR, and FAR of
0.953, 1.000, and 0.185, respectively.

Figure 8 displays the accuracy graph analysis of the
IFSO-DL approach on the test Speech PD dataset. )e figure
demonstrates that the IFSO-DL technique has achieved
higher training and validation accuracies. It can be obvious
that the IFSO-DL technique has accomplished increased
validation accuracy over the training accuracy.

)e loss graph analysis of the IFSO-DL algorithm is
explored in Figure 9. )e figure depicts that the IFSO-DL
technique has accomplished superior results with the lower
validation loss compared with training loss. It can also
portray that the IFSO-DL technique has reached reduced
validation loss related to training loss.

Table 5 provides a detailed comparative outcome analysis
of the IFSO-DL manner with recent techniques on the test
Voice PD dataset. )e results demonstrated that the
MGWO-KNN and MGOA-KNN methodologies have gained
minimal accuracy of 0.858 and 0.918, respectively. Similarly,
the MGOA-DT technique has achieved moderate accuracy of
1.000. Subsequently, MGOA-RF, MGWO-RF, and MGWO-
DTmethods have accomplished reasonable accuracy of 1.000,
1.000, and 1.000, respectively. Finally, the IFSO-DL technique
has displayed the other algorithms with the higher accuracy,
DR, and FAR of 1.000, 1.000, and 0.000, respectively.

Figure 10 exhibits the accuracy graph analysis of the
IFSO-DL system on the test Voice PD dataset. )e figure
portrays that the IFSO-DL technique has reached increased
training and validation accuracies. It is noticeable that the
IFSO-DL methodology has accomplished higher validation
accuracy over the training accuracy.

)e loss graph analysis of the IFSO-DL approach is
examined in Figure 11. )e figure outperforms that the
IFSO-DL method has accomplished enhanced outcomes
with the lesser validation loss related to training loss. It also

Table 3: Result analysis of existing with the proposed IFSO-DL model on the HandPD Meander dataset.

Methods Accuracy DR FAR
MGOA-KNN 0.748 0.858 0.476
MGOA-RF 0.937 1.000 0.191
MGOA-DT 0.890 0.918 0.167
MGWO-KNN 0.728 0.858 0.600
MGWO-RF 0.930 0.991 0.222
MGWO-DT 0.880 0.920 0.222
IFSO-DL 0.940 1.000 0.135
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Figure 6: Accuracy analysis of IFSO-DL technique under the HandPD Meander dataset.
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shows that the IFSO-DL manner has obtained reduced
validation loss connected to training loss.

Figure 12 shows the accuracy analysis of the IFSO-DL
technique with other recent techniques on the four test
datasets [27]. )e figure portrays that the IFSO-DL tech-
nique has gained effective outcomes with the maximum
accuracy values on all the test datasets.

Figure 13 illustrates the DR analysis of the IFSO-DL
algorithm with other recent manners on the four test
datasets. )e figure shows that the IFSO-DL technique

has achieved effective outcomes with the maximal DR
values on all the test datasets.

Figure 14 depicts the FAR analysis of the IFSO-DL
method with other recent approaches on the four test
datasets. )e figure outperforms that the IFSO-DL system
has reached effective outcomes with higher FAR values on all
the test datasets. From the abovementioned tables and
figures, it is apparent that the IFSO-DL technique has been
found to be an effective tool for PD detection and
classification.
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Figure 7: Accuracy analysis of IFSO-DL technique under the HandPD Meander dataset.

Table 4: Result analysis of existing with the proposed IFSO-DL model on the Speech PD dataset.

Methods Accuracy DR FAR
MGOA-KNN 0.897 0.967 0.300
MGOA-RF 0.949 1.000 0.222
MGOA-DT 0.846 0.900 0.300
MGWO-KNN 0.918 0.974 0.300
MGWO-RF 0.939 1.000 0.300
MGWO-DT 0.898 0.949 0.300
IFSO-DL 0.953 1.000 0.185
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Figure 8: Accuracy analysis of IFSO-DL technique under the Speech PD dataset.
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Figure 9: Loss analysis of IFSO-DL technique under the Speech PD dataset.

Table 5: Result analysis of existing with the proposed IFSO-DL model on the Voice PD dataset.

Methods Accuracy DR FAR
MGOA-KNN 0.918 0.835 0.009
MGOA-RF 1.000 1.000 0.000
MGOA-DT 1.000 1.000 0.000
MGWO-KNN 0.858 0.803 0.081
MGWO-RF 1.000 1.000 0.000
MGWO-DT 1.000 1.000 0.000
IFSO-DL 1.000 1.000 0.000
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Figure 10: Accuracy analysis of IFSO-DL technique under the Voice PD dataset.
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Figure 11: Loss analysis of IFSO-DL technique under the Voice PD dataset.
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5. Conclusion

In this study, the ISFO-DL technique has been developed
for PD detection and classification. )e proposed ISFO-
DL technique is mainly intended to determine PD and
thereby enhance the survival rate of the person. )e
presented ISF-DL technique involves three major pro-
cesses namely ISFO-based feature selection, BiGRU-based
classification, and RSO-based hyperparameter optimiza-
tion. )e design of ISFO and RSO algorithms finds useful
to significantly enhance the PD classification perfor-
mance. )e experimental validation of the IFSO-DL
model is carried out using a benchmark Parkinson’s
dataset, and the results are inspected under several di-
mensions. )e experimental results highlighted the en-
hanced classification performance of the ISFO-DL
technique, and therefore, the proposed model can be
employed for the earlier identification of PD. In future, the
PD classification performance can be boosted by the use of
outlier detection and clustering approaches.
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